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cancer institute, for their cooperation during the reader study.

I would like to express my gratitude to the members of the CatSim collaboration. In particular,
I would like to thank Dr. Bruno de Man and Dr. Paul Fitzgerald from GE Global Research Center
(GRC), who have maintained the CatSim project alive and cooperated with my work in improving
the simulation platform. I would like to thank Dr. Jed Pack for his feedback on simulation aspects,

i



ii Acknowledgements

and Dr. David Langan for sharing precious knowledge on material decomposition. I would also
like to thank Dr. Cristina Cozzini and Dr. Dirk Beque for sharing their expertise on Monte Carlo
simulation. I extend my gratitude to other GRC colleagues, Scott Zelakiewicz, Eric Tkaczyk,
Yannan Jin and many others, for all their advices and feedbacks.

Finally, I owe a deep gratitude to my family, especially my parents and my brother, for their
love and support throughout my life, despite always being thousand of kilometers away. And of
course, thank you Marion, for being at my side during these last years and for supporting me all
the nights, weekends and holidays spent in favor of science.



Summary

Background: Worldwide, breast cancer is the most common cancer and second deadliest can-
cer in women. Diagnostic imaging techniques are a critical part for screening, diagnosis, tumor
staging and cancer therapy of the breast, guiding clinicians towards a more effective treatment
planning and resulting in a better health outcome for the patient. Contrast-Enhanced Magnetic
Resonance Imaging (CE-MRI) is the current standard imaging technique allowing detection of
abnormal vascular development and lesion contrast uptake. CE-MRI is however very costly and
not widely available. Moreover, its spatial resolution might not be sufficient to depict certain types
of lesions including microcalcifications, whose presence is an important diagnostic indicator. It
has been demonstrated that in combination with an iodinated vascular contrast agent, contrast-
enhanced X-ray imaging can also give morphological and functional images. The development of
Contrast-Enhanced Spectral Mammography (CESM) has made the clinical use of intravenous con-
trast enhancement with conventional mammography possible. However, CESM is a 2D projection
technique and therefore presents limitations to depict the 3D internal structures of lesions and to
provide accurate quantitative 3D functional information.

Contrast-Enhanced Digital Breast Tomosynthesis (CE-DBT) and dedicated Contrast-Enhanced
Breast CT (CE-bCT) are two breast imaging modalities currently under investigation by academic
and industrial research groups. It is however anticipated that the quantitative potential of CE-
DBT is limited, due to the inherent low depth-resolution of limited opening angle DBT modality.
CE-bCT with quasi-isotropic spatial resolution and voxel signal intensity proportional to the linear
attenuation coefficient is believed to offer more accurate quantitative information, though a low-
dose operation is still a challenge.

Objectives: The purpose of this thesis has been to study the technical feasibility of CE-bCT and
its potential to accurately depict and localize tumors, as well as to provide accurate quantitative
morphological and functional imaging information about tumors, at low radiation dose levels.
To understand the incremental value of CE-bCT over CE-DBT, the quantitative potential of
both technologies have been compared. This investigation has been performed through computer
simulations.

Methods: At first, a simulation platform capable of modeling various X-ray breast imaging
techniques and providing radiographic images of simple and complex computational phantoms was
developed and validated. Secondly, an optimization study of a CE-bCT technique based on a
dual-energy approach was performed, aiming to maximize image quality of iodine-enhanced and
morphological images. Finally, the quantitative potential of CE-bCT and CE-DBT was compared
through the assessment of iodine-enhanced lesion detectability, characterization, localization and
3D extent measurement. In a human observer study, depiction and characterization of iodine-
enhanced lesions of different sizes, shapes and iodine uptakes was compared between CE-bCT and
CE-DBT using a mesh-based anthropomorphic breast phantom.

Results: Simulation results assuming ideal detectors showed that to obtain optimal iodine de-
tectability in recombined dual-energy images, low energy (LE) and high energy (HE) spectra need
to bracket the iodine K-edge and an approximate 50%-50% average glandular dose repartition-
ing between the LE and HE is required. Comparison between different polychromatic spectral
acquisition strategies revealed that iodine K-edge imaging with both energy-discriminating and
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non-discriminating detector are feasible. Moreover, under the hypothesis of this study, a careful
choice of topologic parameters (e.g. pixel and voxels sizes) in combination with noise-attenuating
FBP reconstruction kernels and post-processing denoising schemes specific for dual-energy imag-
ing allowed to depict the smallest lesion with minimum iodine concentration expected in clinical
practice, at dose levels of 2-view mammography.

With respect to the CE-bCT vs CE-DBT comparison, a quantification study demonstrated that
CE-bCT was superior in quantifying iodine concentration, while the artifacts caused by CE-DBT
limited depth resolution prevented any precise quantification of iodine uptake (at least not without
a priori knowledge of the iodine-enhanced lesion dimensions in all axes). In the human observer
study, results revealed that sensitivity and specificity in iodine-enhanced lesion detectability and
characterization for both geometries are not statistically different, except for lesion margin char-
acterization for which CE-DBT demonstrated superior sensitivity. Results also showed that, for
essentially round lesions, CE-DBT is more accurate and more precise in estimating lesion dimen-
sions than CE-bCT, with image noise being the determinant factor in the comparison.

Conclusions: The simulation studies in this PhD thesis suggest that dual-energy iodine-injected
CE-bCT could be a feasible technique for breast tumor depiction, localization and characterization,
with dose levels comparable to standard mammography. While preliminary comparisons with CE-
DBT suggests comparable depiction and characterization performance, the fully 3D information
combined with high spatial resolution confirms CE-bCT as an interesting low-dose evolution of
CESM toward 3D quantitative assessment of contrast uptakes and potential alternative to CE-
MRI for some clinical indications.

Keywords: breast, computed tomography, simulation, dual-energy, spectral optimization, image
quality, observer study



Résumé

Contexte : Le cancer du sein est le cancer le plus fréquent et le deuxième cancer le plus mor-
tel chez la femme. Les techniques d’imagerie constituent un élément essentiel pour le dépistage,
le diagnostic, la stadification et le traitement du cancer du sein. Elles guident les cliniciens vers
une planification du traitement plus efficace, entrainant de meilleurs résultats sur la santé de la
patiente. L’imagerie par résonance magnétique avec injection de produit de contraste (CE-MRI)
est actuellement la technique d’imagerie standard pour la détection du développement vasculaire
anormal et des prises de contraste des lésions mammaires. CE-MRI est cependant très coûteuse et
peu disponible. De plus, sa résolution spatiale pourrait être insuffisante pour la détection de cer-
tains types de lésions, et ne permet pas d’imager les amas de microcalcifications, dont la présence
est un important indicateur diagnostic. Il a été démontré que l’imagerie du sein par rayons X en
combinaison avec l’injection d’un produit de contraste peut également fournir des images morpho-
logiques et fonctionnelles. Le développement de l’angiomammographie double-énergie (CESM) a
permis l’utilisation des produits de contraste intraveineux en clinique avec des appareils conven-
tionnels de mammographie. Cependant, CESM est une technique de projection 2D et présente,
par conséquence, des limites pour décrire la structure 3D interne des lésions et pour fournir une
information fonctionnelle 3D précise.

La tomosynthèse numérique du sein avec injection de produit de contraste (CE-DBT) et le scanner
dédié du sein avec injection de produit de contraste (CE-bCT) sont deux techniques d’imagerie
actuellement en investigation par des groupes de recherche académiques et industriels. Il est cepen-
dant anticipé que le potentiel quantitatif de la CE-DBT soit limité, en raison de la faible résolution
en profondeur due à l’ouverture angulaire limitée de la DBT. CE-bCT, avec sa résolution spatiale
quasi-isotrope et son intensité de signal proportionnelle au coefficient d’atténuation linéaire, est
supposée offrir une information quantitative plus précise, bien qu’une utilisation à faible dose de
radiation reste toujours un défi.

Objectifs : L’objectif de cette thèse a été d’étudier la faisabilité de la méthode CE-bCT et
sa capacité à détecter et localiser des tumeurs vascularisées, ainsi que d’offrir de l’information
morphologique et fonctionnelle précise sur les tumeurs. Pour comprendre la valeur ajoutée de
la CE-bCT par rapport à CE-DBT, le potentiel quantitatif des deux méthodes a également été
comparé. Nos études ont été réalisées grâce à des simulations par ordinateur, validées par des
mesures expérimentales.

Méthodes : Dans un premier temps, une plateforme de simulation capable de modéliser différentes
techniques d’imagerie du sein par rayons X, et fournissant des images radiographiques de fantômes
numériques simples et complexes, a été implémentée et validée. Deuxièmement, une étude d’op-
timisation pour la technique CE-bCT basée sur une approche double-énergie a été réalisée, dans
le but de maximiser la qualité des images équivalentes-iode ainsi que des images morphologiques.
Enfin, le potentiel quantitatif des méthodes CE-bCT et CE-DBT a été comparé au travers de
l’évaluation de la détectabilité, de la caractérisation, de la localisation et de la mesure de l’étendue
3D des lésions iodées. Dans une étude impliquant des observateurs humains, la détectabilité et la
caractérisation des lésions iodées de différentes tailles, formes et concentrations ont été comparées
entre CE-bCT et CE-DBT, grâce à l’utilisation d’un fantôme anthropomorphique numérique du
sein.
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vi Résumé

Résultats : Des investigations basées sur des détecteurs idéaux ont démontré que pour obte-
nir une détectabilité optimale de l’iode dans les images double-énergie recombinées, les spectres
basse-énergie et haute-énergie doivent être placés autour de la discontinuité K de l’iode, avec une
répartition de la dose glandulaire entre les acquisitions basse et haute énergies d’environ 50%-50%.
La comparaison entre différentes stratégies d’acquisition spectrales polychromatiques a révélé que
l’imagerie de la discontinuité K de l’iode est réalisable avec des détecteurs tant discriminants que
non-discriminants en énergie. En outre, il a été démontré avec les hypothèses de cette étude qu’un
choix judicieux des paramètres topologiques (p.ex. la taille des pixels et voxels) en combinaison avec
des noyaux de reconstruction FBP et des méthodes de débruitage en post-traitement spécifiques
à l’imagerie double-énergie, permettent de détecter la lésion de plus petite dimension et de plus
faible concentration d’iode que l’on peut espérer rencontrer en clinique, avec une dose de radiation
comparable à la mammographie conventionnelle.

En ce qui concerne la comparaison entre les méthodes CE-bCT et CE-DBT, une étude de quan-
tification a démontré que la CE-bCT est supérieure pour la quantification de la concentration de
l’iode, tandis qu’en CE-DBT les artefacts causés par la résolution limitée en profondeur empêchent
toute quantification précise de la prise de contraste (au moins, sans avoir une connaissance a priori
des dimensions des lésions selon les trois axes). Dans une étude avec des observateurs humains,
les résultats ont révélé que la sensibilité et la spécificité de détectabilité et de caractérisation des
lésions prenant le contraste n’ont pas été statistiquement différentes entre les deux méthodes, à
l’exception de la caractérisation du contour des lésions pour laquelle CE-DBT a démontré une
sensibilité supérieure. Dans la même étude, les résultats ont également montré que pour les lésions
essentiellement rondes, CE-DBT est plus précise dans l’estimation des dimensions des prises de
contraste, le bruit étant le facteur déterminant dans la comparaison.

Conclusions : Les études de simulation menées pendant cette thèse suggèrent que le scanner dédié
du sein avec injection de produit de contraste iodé pourrait être une technique réalisable pour la
détection, localisation et caractérisation des tumeurs du sein, pour un niveau de dose comparable à
une mammographie standard. Bien que les comparaisons préliminaires avec CE-DBT suggèrent une
performance comparable sur la détection et caractérisation, l’information 3D complète combinée
avec une haute résolution spatiale font de CE-bCT une évolution intéressante de CESM vers une
évaluation quantitative 3D des prises de contraste, et une alternative potentielle à CE-MRI pour
certaines indications cliniques.

Mots-clés : sein, tomodensitométrie, simulation, double-énergie, optimisation spectrale, qualité
image, étude d’observateur
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Introduction

Worldwide, breast cancer is the most common non-skin cancer and second deadliest cancer in
women, with nearly 1.7 million new cases diagnosed in 2012 [1]. In the United States, 12.3%
percent of women will be diagnosed with breast cancer at some point during their lifetime. For
2013, approximately 232 000 new cases and 39 000 deaths are estimated1. In France, approximately
one woman in ten will develop a breast cancer during her lifetime. With 53 000 new cases and
almost 11 500 deaths estimated in 2011 [2], breast cancer is the most common cancer among women
in France and is the leading cause of cancer death.

In the light of these statistics, breast cancer is a major problem for global public health. In
response, the government of various countries worldwide have adopted organized breast screening
examination programs for an asymptomatic population satisfying certain eligibility criteria, e.g.
age group, breast density, family history etc. Mammography is the only technique which has
shown to reduce the mortality from breast cancer in a cost-effective way [3], and is today the
standard technique for population-based screening. Ultrasound (U/S) and Magnetic Resonance
Imaging (MRI) are complementary imaging techniques used mostly for dense breasts and high-risk
women [4,5].

During breast cancer development, the formation of new pathological blood vessels through
angiogenic process provides irrigation for tumors beyond 1-2 mm and thus fuel their growth [6].
The new vascular network replenishes the tumors with nutrients, oxygen and enables them to
eliminate metabolic wastes. In a breast cancer diagnosis, staging and therapy follow-up setting,
imaging techniques combined with intravenous contrast agents have been developed to visualize
breast tumor angiogenesis. When injected in the body, the contrast media enhances the visibility
of abnormal vascular development and cancerous lesions, which could ultimately improve cancer-
ous lesion detection, characterization and localization. Contrast-Enhanced Magnetic Resonance
Imaging (CE-MRI) is the current standard imaging technique allowing detection of abnormal vas-
cular development and lesion contrast uptake [7]. CE-MRI is however very costly and not widely
available. Moreover, its spatial resolution might not be sufficient for certain types of lesions and
does not allow microcalcifications depiction, whose presence is an important diagnostic indicator.
Other techniques such as contrast-enhanced full-body Computed Tomography (CT) [8], Positron
Emission Tomography (PET) combined with full body CT [9] and contrast-enhanced Doppler U/S
(CE-US) [10] have also shown positive results in emphasizing breast tumor angiogenesis. However,
these techniques each have their own limitations with respect to each technical aspects includ-
ing spatial resolution, radiation dose, cost, operator dependent outcome and economical aspects
including availability.

Contrast-enhanced X-ray imaging of the breast, as a potential less costly alternative, is cur-
rently under investigation. With an iodinated vascular contrast agent, contrast-enhanced X-ray
imaging can also provide morphological and functional images. Two imaging techniques have been
proposed: temporal and dual-energy recombination. In the temporal technique, radiographic im-
ages of the breast are acquired before and after intravenous administration of an iodinated contrast
agent, using X-ray spectrum containing energies predominantly above the K-edge of iodine [11,12].

1National Cancer Institute, http://seer.cancer.gov/statfacts/html/breast.html (Accessed on April 4th,
2014)
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Although clinical studies revealed some potential of the temporal approach in highlighting tumor
angiogenesis uptake and contrast-agent kinetics [13–15], this technique has not been implemented
in clinical practice. The main reason is that the temporal approach required two injections of
iodine to image two breasts, entailing in longer examinations and increased iodine toxicity expo-
sition. Additionally, Diekmann et al. [15] evidenced in a multicenter clinical study that the most
important diagnostic information comes from the morphological analysis of the contrast enhance-
ment and its intensity, rather than the contrast-agent kinetic information. Substantial patient
motion artifacts due to the extended time between pre- and post-contrast acquisitions and conse-
quent loss of lesion morphologic detail were also observed. Alternatively, 2D Contrast-Enhanced
Spectral Mammography (CESM) technique was proposed to overcome the limitation of the tem-
poral approach. In CESM, a dual-energy recombination approach is used, leveraging the iodine
K-edge absorption discontinuity for contrast enhancement while minimizing patient motion arti-
facts with rapid successions of low-energy (LE) and high-energy (HE) acquisitions. The feasibility
of this technique was shown in 2003 [16] and became clinically available in 2010 with the intro-
duction of SenoBright� application (GE Healthcare; Chalfont St Giles, UK). CESM is however a
2D projection technique of a 3D object, therefore limiting morphologic characterization of contrast
uptakes when compared to 3D techniques. An alternative 3D X-ray imaging technique, with wide
availability, low-cost, specifically designed for breast imaging and providing accurate quantitative
position, morphologic and functional lesion information would be therefore a natural evolution of
contrast-enhanced X-ray imaging.

Contrast-Enhanced Digital Breast Tomosynthesis (CE-DBT) and Contrast-Enhanced dedicated
breast CT (CE-bCT) are two potential 3D evolutions of CESM and currently under investigation by
academic and industrial research groups. It is however anticipated that the quantitative potential
of CE-DBT is limited, due to the inherent low depth-resolution of limited opening angle DBT
modality. CE-bCT with quasi-isotropic spatial resolution and voxel signal intensity proportional to
linear attenuation coefficients is believed to offer more accurate quantitative information, though
a low-dose operation could still be a challenge. Today, the incremental value of CE-bCT over
CE-DBT in their ability to provide quantitative information at low radiation dose levels is still
unknown. A complete evaluation on the quantitative performance of both technologies would be
beneficial.

For the same reasons as CESM, both CE-DBT and CE-bCT techniques would benefit from
iodine K-edge imaging techniques using dual-energy acquisitions. While some research effort has
been oriented towards the assessment and optimization of dual-energy CE-DBT geometry, acquisi-
tion parameters and protocols [17–26], little investigation on dual-energy recombination techniques
for iodinated contrast-agent and tumor angiogenesis enhancement in a dedicated breast CT setup
was performed. As a consequence, before any comparison with CE-DBT, an optimization study
aiming to reveal the dual-energy acquisition strategy and acquisition parameters maximizing the
performance of CE-bCT in depicting contrast-agent uptake is imperative.

This PhD thesis research has been focused on two topics: 1) the optimization and assessment of
an iodine-enhanced dual-energy breast CT technique and 2) its comparison with CE-DBT in their
potential to accurately depict and localize tumors, as well as to provide accurate quantitative infor-
mation on contrast uptake morphology and concentration, at radiation dose levels comparable to
a two-view mammogram. A cone-beam geometry was considered both for CE-bCT and CE-DBT,
since there is an interest in investigating techniques based on typical mammography geometries.
This choice would allow for instance to provide different exams with the same equipment, reducing
cost and improving accessibility. All investigations have been performed through realistic computer
simulations. This theoretical approach allows quantifying the effect of each individual parameter
in a complex imaging chain on image quality.

In Chapter 1, a short description on the breast anatomy, the development of cancerous tumors
and its association to pathological angiogenesis is provided. An overview on established clinical
vascular imaging techniques for breast cancer treatment is presented. Recently developed and
commercially available techniques with increasing acceptance and usage are also discussed. Finally,
CE-DBT and CE-bCT techniques are presented as two new potential candidates for vascular
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contrast-agent imaging. Details on technological aspects, and their individual advantages and
limitations are provided.

In Chapter 2, a detailed description of the simulation platform software developed for our re-
search is provided. This platform is based on CatSim, a computer software initially conceived at
GE Global Research Center (CT and X-ray Laboratories, Niskayuna, NY, USA) to simulate 3rd
generation CT projection images using analytical test objects [27]. As part of this PhD thesis
research, modules for CatSim simulation chain have been developed to model X-ray projections
of breast phantoms at a typical energy range used in breast imaging. The design of digital breast
phantoms aiming to emulate the compressed and uncompressed breast anatomy is presented. Both
simple phantoms, combining simplistic geometric shapes and complex mesh-based anthropomor-
phic phantoms, providing more realistic allure of the breast anatomy, are considered.

In Chapter 3, in order to make sure that the implemented simulation chain is capable of
emulating realistic physical phenomena underlying an X-ray breast imaging system, an extensive
validation of the developed models with regard to previously published and experimentally obtained
data is provided. The accuracies of X-ray spectrum modeling, Monte Carlo simulation of photon
interactions with matter as well as signal and noise propagation in digital detectors are qualitatively
and quantitatively evaluated.

In Chapter 4, the main existing spectral imaging acquisition techniques and the algorithms used
to combine spectral images into exploitable functional information are discussed. A brief overview
on the different methods allowing to obtain dual-energy data is also provided. A formulation of
the dual-energy three-material decomposition allowing for iodine K-edge imaging in digital breast
tomosynthesis and dedicated breast CT setups are discussed.

In Chapter 5, the optimization of dual-energy spectra and acquisition strategies for CE-bCT
is performed, leveraging the implemented simulation platform and the dual-energy recombination
framework described in Chapters 2 and 4, respectively. The critical factors and optimization
criteria are defined, and the spectral optimization is performed using monochromatic hypothesis.
Then, a new spectral optimization is performed for different polychromatic dual-energy acquisition
strategies (dual-source, fast kVp switching, energy-discriminating detector). The performance of
the different dual-energy acquisition strategies is subsequently compared. Finally, since columnar
structured Cesium Iodide (CsI) scintillators have been widely used for digital breast X-ray imaging,
a spectral optimization study considering different CsI layer thicknesses is performed.

In Chapter 6, using previously optimized dual-energy acquisition parameters for CE-bCT and
CE-DBT, their quantitative potential is evaluated and compared through a series of experiments.
Two preliminary studies evaluate the effect of CE-bCT and CE-DBT system topologies on lesion
3D extent estimation precision and iodine uptake quantification accuracy. For a more complete
evaluation, a human observer study comparing iodine-enhanced lesion depiction and characteriza-
tion in simulated CE-DBT and CE-bCT iodine-equivalent images is presented.

In Chapter 7, the optimized CE-bCT acquisition is discussed with particular focus on radiation
dose requirements to depict iodine-enhanced lesions with minimal size and minimal uptake expected
in clinical practice, while dose levels are compared to those expected for CE-DBT and current
two-view standard mammography. Different post-processing denoising strategies are evaluated to
improve iodine-enhanced lesion detectability in recombined CE-bCT images and potentially reduce
the associated radiation dose.

Finally, we conclude on the main results and contributions of this PhD thesis research, and put
forward research development perspectives for CE-bCT and CE-DBT applications.
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Chapter 1

Clinical Context

1.1 Breast Anatomy and Cancer Development

Anatomy of the Healthy Breast
The human breast is mainly composed of fibroglandular and adipose tissues. The mammary gland
is enveloped by a thin layer of connective and adipose tissues called Cooper’s ligaments. It provides
a connection between the pectoral muscle and its deep surface, as well as between the skin and
the superficial surface. The internal structure of the mammary gland is composed by a tree-like
structure of lactiferous ducts, which originate at the nipple through lactiferous sinuses, and grow
towards the pectoralis muscle. At the terminal part of the lactiferous ducts we encounter lobules
regrouping milk-secreting glands, i.e. the alveoli or acinii. The glandular tissue refers to the
aggregation of terminal ductal lobular units (0.5 to 2 mm diameter), each containing between ten
and hundred alveoli (approximately 0.12 mm diameter). The latter are surrounded by dense fibrous
connective tissues with adipose cavities [28–30], as well as epithelial cells which are responsible for
milk production during the lactation period. The glandular and connective tissues together are
known as Fibroglandular tissue. Beside the intraglandular adipose tissue, adipose tissue is further
divided in two types based on their anatomical location: subcutaneous adipose compartments are
positioned under the skin and retromammary adipose tissue is found near the chest wall. The
proportion of adipose and fibroglandular tissue varies among individuals. After the menopause,
the proportion of glandular tissues tends to decrease, being replaced by adipose tissue. Figure 1-1a
illustrates a sagittal cross-section of the breast anatomy.

A dense vascular network carries nutrients and oxygen inside the breast. Arteries carry oxy-
genated blood from the heart to the chest and the breasts, while the veins bring the deoxygenated
blood to the heart. The axillary artery extends from the armpit and drains the outer half of the
breast. The internal mammary artery leaves the neck down to the breast, draining its inner part.
A lymphatic network is concentrated in the armpit area. Axillary lymphs located near the armpit
drain 97% of lymphatic fluid in the breast. Another lymph chain extends along the median axis
of the thorax (internal mammary chain) and drains the remaining 3% of lymphatic fluid. Figure
1-1b illustrates the lymphatic system network in the breast and adjacent regions.

Breast Cancer Development
Breast cancer is most commonly linked to cancerous development in the lactiferous ducts or the
glandular lobules. There are many types of associated diseases, resulting in lesions most often
classified into benign or malignant lesions. Benign lesions do not endanger the life of the patient
while malignant lesions have the potential to lead to her death.

Among benign lesions we distinguish mainly the cysts, fibroadenomas, papillomas, abscess,
hematoma, inflammation, radial sclerosis, ductal ectasia, lipomas and cytosteatonecrosis. Although
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Figure 1-1: (a) Sagittal cross-section illustration of the breast anatomy and (b) lymphatic system
network illustration

benign lesions are not life-threatening, they can cause symptoms and sometimes be linked with a
higher risk of developing breast cancer in the future. Benign lesion are usually classified into 3
general groups of lesion, based on the cells growth (proliferative) and abnormality (atypia): non-
proliferative lesions do not seem to affect cancer risk, proliferative lesions without atypia slightly
increase cancer risk and proliferative lesions with atypia raise the risk of cancer.

Malignant lesions are primarily classified by their histological appearance (in situ or invasive)
and their tissular origin (ducts or lobules). Carcinoma in situ is a form of pre-invasive cancer,
characterized by a proliferation of cancerous cells within a particular tissue compartment without
invading the surrounding tissue. Ductal Carcinoma In Situ, or DCIS, is associated to cancerous
development within the mammary ducts, while Lobular Carcinoma In Situ, or LCIS, is associated
with cancerous development in the lobules. On the other hand, invasive carcinoma does not confine
itself to the initial tissue compartment. Three-quarters of invasive carcinomas are Invasive Ductal
Carcinoma (IDC), in which tumor cells progress not only inside the ducts but also around them.
The IDCs are often lobulated masses containing spicules radiating from their center. Around 10
to 15% [31] of invasive carcinomas are Invasive Lobular Carcinoma (ILC), in which tumor cells
infiltrate the tissue filaments running along the ducts and vessels, thus preserving the original
architecture of the breast. Due to the small creation of new connective tissue, it is hard to
distinguish an ILC from the normal parenchyma.

The presence and proximity of lymph nodes are important factors influencing breast cancer
spreading and the appearance of metastasis. Cancerous cells from the breast can infiltrate the
lymph nodes and be transported to other areas of the body through the lymphatic system. Treat-
ment and survival is often determined by whether or not breast cancer remains localized or spreads
to other locations in the body. The latter case is usually associated with a dramatically decreases
in a patient’s likelihood of survival.

There are several known physiological factors that can be associated with the risk of developing
a breast cancer. Firstly, the gender, age and reproductive or hormonal factors such as early first
period, late first pregnancy, late parity, low number of live-born children, oral contraceptive and
hormone replacement therapy (HRT). Other factors to be considered are: radiotherapy through the
chest wall during childhood, close family history of breast or ovarian cancers constituting a genetic
predisposition to the development of breast cancer, the BRCA1 and BRCA2 gene mutations, the
presence of diseases diagnosed as benign which can evolve to a cancer, smoking, obesity, increased
alcohol consumption, etc.

For a more detailed description on breast cancer development and the associated benign and
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malign lesions, we refer the reader to the work of A. Cooper [32].

Tumor Angiogenesis
Almost all tissues growing larger than a few millimeters in size develop a vascular network through
a process known as angiogenesis. Once formed, the vascular network is a stable system that regen-
erates slowly. The normal regulation of angiogenesis is governed by a fine balance between factors
that induce the formation of blood vessels and those that halt or inhibit the process. When this
balance is destroyed, it usually results in pathological angiogenesis which causes increased blood-
vessel formation in diseases which depend on the angiogenesis to grow. Pathological angiogenesis,
or the abnormal rapid proliferation of blood vessels, is implicated in over 20 diseases, including
cancer.

During breast cancer development, formation of new pathological blood vessels will provide
irrigation for tumors beyond 1–2 mm and thus fuel to their growth [6], replenishing them with
nutrients, oxygen and enabling them to eliminate metabolic wastes. Angiogenesis and tumor
growth is then accompanied by the disruption of the basement membrane and the cancer, until
now in situ, becomes invasive.

Imaging techniques combined with intravenous contrast agents have been developed to highlight
breast tumor angiogenesis. When injected in the body, the contrast media enhances the visibility
of abnormal vascular development and cancerous lesions, which could ultimately improve lesion
detection, characterization, localization and vascularization quantification. A brief description on
the most widely used imaging techniques highlighting breast tumor angiogenesis is provided in
Section 1.2.

For breast imaging, clinical studies have hypothesized that tumor angiogenesis could be as-
sociated with the diagnostic outcome of breast cancer [33]. The calculation of the Microvessel
Density (MVD), which consists in counting microvessels stained by immunohistochemistry and
observed by optical microscopy, is commonly used to quantify angiogenesis associated with breast
cancer. It could be an effective prognostic factor for invasive breast cancer [34–36]. Additionally,
several studies have shown that vascular density is also associated with a more aggressive disease
in patients with no lymph node invasion and in those with in situ [37–39] breast cancer.

Epidemiology
Worldwide, breast cancer is the most common non-skin cancer and second deadliest cancer in
women than any other cancer, with nearly 1.7 million new cases diagnosed worldwide in 2012.
This represents about 12% of all new cancer cases and 25% of all cancers in women [1]. In the
United States, 12.3% percent of women will be diagnosed with breast cancer at some point during
their lifetime. For 2013, approximately 232 000 new cases are estimated, representing 14.1% of all
new cancer cases in the U.S., and 39 000 deaths 1.

In France, approximately one woman in ten will develop breast cancer in her life. With 53
000 new cases estimated in 2011 [2], breast cancer is the most common cancer among women,
representing 33% of all new cancer cases in women. Breast cancer is also the leading cause of
cancer death in France, with almost 11 500 deaths estimated in 2011, accounting for 18.3% of
female cancer deaths.

Figure 1-2 shows the cancer incidence and mortality rates in France, per cancer type, as dis-
closed by the Institute for Public Health Surveillance (Institut de Veille Sanitaire - InVS) and the
National Cancer Institute (Institut Nationale du Cancer - INCa), in 2011 [2]. We can see that
breast cancer leads both incidence and mortality rates, followed by colon rectum and lung cancers.

Figure 1-3 illustrates the evolution of breast cancer incidence and mortality in France from
1980 to 2005, as disclosed by the InVS [41]. The incidence of breast cancer in France has increased

1National Cancer Institute, http://seer.cancer.gov/statfacts/html/breast.html (Accessed on April 4th,
2014)

http://seer.cancer.gov/statfacts/html/breast.html
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Figure 1-2: Incidence and mortality rates in France per cancer type (standardized to the world
population), in 2011. Data source: Projection de l’incidence et de la mortalité par cancer en France
en 2011. Rapport technique. Saint-Maurice: Institut de veille sanitaire; 2011, 78 p – Ref. [2]

(a) Hematological tumors are excluded from solid tumors

(b) The skin cancers other than melanoma, are excluded.

(c) The shares of deaths from cervical cancer of the uterus and uterine cancer were estimated by a specific method [40]

(d) Mortality estimates are not presented due to the uncertain quality of the data.

significantly and steadily between 1980 and 2005 with an incidence rate (standardized to the world
population), which has almost doubled from 56.8 to 101.5 cases per 100 000 women. The mortality
rate (standardized to the world population) decreased from 19.8 to 17.7 cases per 100 000 women
from 1995 to 2005, thanks to screening and early detection, as well as to progress in treatment.
Accordingly, and along with the substantial mortality rates described above, we may conclude that
breast cancer remains today a major problem for global public health.

Early Breast Cancer Detection
Knowing that the probability of a tumor producing metastasis increases with its size, it has been
shown that its early detection reduces mortality [42]. In response, the government of various
countries worldwide have adopted organized breast screening examination programs for an asymp-
tomatic population satisfying certain eligibility criteria, e.g. age group, breast density, family
history etc. These criteria vary from one country to another, depending on public health policies
and local statistics. In France, for example, since January 1st 2004, the female population between
50 and 74 years-old is invited every 2 years to participate in a free screening examination [43].

Mammography is the current standard for population-based screening. When applied in a
screening setting, mammography is the only technique which has shown to reduce the rate of death
from breast cancer in a cost-effective way [3], especially among women aged over 50 years [44].
Mammography is a low radiation x-ray projection technique providing morphological images of
breast tissue. Clinical studies have shown a 25% to 30% reduction of the mortality associated
with this disease in women aged 50 to 69 years and a reduction of approximately 16% for those
aged between 40 and 49 years [45]. Ultrasound (U/S) and Magnetic Resonance Imaging (MRI) are
complementary imaging techniques used mostly for dense breasts and high-risk women [4,5].

In France, mortality which had remained stable since 1980, began to decrease, as illustrated
in Figure 1-3. This increased survival, concurring with the results described in most Western
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Figure 1-3: Evolution of breast cancer incidence and mortality rates in France (standardized to
the world population), from 1980 to 2005. Data source: Belot et al., 2008 – Ref. [41], www.invs.
sante.fr/surveillance/cancers/estimations_cancers/default.htm (Accessed 06 Dec 2013)

countries [1], can be explained in part by increasing the proportion cancers detected at an early
stage in connection with the development of screening practices and secondly the major therapeutic
progress in the early 2000’s [46].

www.invs.sante.fr/surveillance/cancers/estimations_cancers/default.htm
www.invs.sante.fr/surveillance/cancers/estimations_cancers/default.htm
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1.2 Standard Vascular Imaging Techniques for Breast Can-
cer Treatment

This section provides a brief overview on established vascular imaging techniques, widely accepted
in clinical practice for breast cancer management, as well as additional descriptions on recently
developed and commercially available techniques with increasing acceptance and usage. For more
in-depth description on the different breast imaging techniques and their individual technological
aspects, we refer the reader to the work of D.B. Kopans [47].

For an illustrative guidance, in Figure 1-4 we summarize the clinical workflow of breast cancer
screening, diagnostics, staging and therapy monitoring, and the corresponding imaging techniques
for which vascular imaging is clinically available or under development. Figure 1-4 also summarizes
the main benefits and limitations of each imaging technique, as discussed below.

1.2.1 Contrast-Enhanced Magnetic Resonance Imaging

In certain situations, such as when a woman has a very high risk of breast cancer and high breast
density, Contrast-Enhanced MRI (CE-MRI) in combination with mammography is recommended
as a screening tool [4, 5, 7, 48–51]. CE-MRI has the advantage that it does not involve exposure
to ionizing radiation, for which high-risk women may exhibit an increased sensitivity [52–55]. It
has been shown that CE-MRI can increase detection of breast cancer for certain groups of women
[56,57]. Using gadolinium chelates as a vascular contrast agent, CE-MRI does not only provide 3D
images of breast morphology, but also functional images allowing detection of abnormal vascular
development and lesion contrast uptake. The signal intensity of gadolinium-enhanced lesions in CE-
MRI was shown to be correlated with the Microvessel Density (MVD) [58,59]. Another important
information in CE-MRI, complementary to the contrast-enhanced lesion morphology, is the kinetics
of the contrast agent. Early studies have shown that malignant lesions tended to take an earlier
and more pronounced contrast than the benign lesions [60, 61]. Hence, the shape of the curve of
contrast enhancement can be used as an indication of the benign or malignant nature of the lesion.

In a tumor staging and treatment setting, CE-MRI is currently the most recommended tech-
nique by the European Society of Breast Imaging (EUSOBI) [7], the European Society of Breast
Cancer Specialists (EUSOMA) [51] and the American College of Radiology (ACR) [7]. CE-MRI
results have shown to strongly correlate with the extent of disease [62–64], which forms the basis
for treatment decisions. CE-MRI is also recommended for monitoring early cancer response to
chemotherapy so as to avoid unnecessary toxicity and cost without potential benefit from treat-
ment and to decide whether or not to continue or change the therapy plan [65]. After neo-adjuvant
chemotherapy, assessment of residual tumor [66] before surgery allows the surgical approach to be
optimized to ensure negative margins and maximize breast conservation surgery.

Despite its great success, CE-MRI presents some important limitations. From a technical stand-
point, the first limitation is the inability to rapidly image the whole breast volume while preserving
a good spatial resolution. The speed of the MRI acquisition comes at the expense of its spatial
resolution, which may negatively affect the morphological analysis of the contrast uptake. Another
important limitation is the appearance of non-pathological contrast uptakes linked to hormonal
fluctuations [67], surgery and radiotherapy [68]. In addition, some benign fibroadenomas may be-
have identically to malignant tumors. From a socio-economic standpoint, two big disadvantages
of CE-MRI are its high cost and limited availability [69, 70]. In France, a CE-MRI costs about
five times a bilateral mammography exam (293¿ for a CE-MRI exam, 66¿ for a bilateral mam-
mography exam [71]) and only 20% of prescribed CE-MRI exams are performed due to limited
availability. In addition, as discussed above, CE-MRI has a high rate of false-positives [72], which
may result in more unnecessary biopsies and other additional examinations. Other practical disad-
vantages that should be highlighted are the discomfort encountered by claustrophobic patients and
the safety issues for patients who posses metal implants and non-MRI-compatible foreign bodies.
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Figure 1-4: Clinical workflow for breast cancer management and the corresponding main imaging
techniques associated to each step. The main limitations of each technique are summarized

1.2.2 Contrast-Enhanced Digital Mammography

The advent of digital mammography and the ability to develop post-processing techniques have
stimulated interest in Contrast-Enhanced Digital Mammography (CE-DM). Two imaging tech-
niques have been developed: temporal and spectral recombination. Both techniques take advan-
tage of the sudden increase in iodine attenuation coefficient (absorption edge) as a function of
X-ray photon energy; just above its K-shell binding energy (33.2 keV), iodine attenuation is 5.5
time higher than just below its K-edge (cf. Annex A for more details in x-ray photon interaction
with matter).

CE-DM using a temporal subtraction technique was pioneered in 2002 [11,12]. In this approach,
radiographic images of the breast are acquired before and after intravenous administration of an
iodinated contrast agent using a high-energy (HE) X-ray spectrum containing energies predomi-
nantly above the K-edge of iodine. Logarithmic subtraction of the pre- and post-contrast images
are used to obtain functional iodine enhancement images in which signal intensities are proportional
to the quantity of iodine crossed by the X-ray beam. This technique feasibility was demonstrated
in two clinical pilot studies [13, 73]. Later clinical studies have shown some potential of the tem-
poral approach in highlighting tumor angiogenesis uptake and contrast-agent kinetics, ultimately
improving the final diagnosis when it complements a standard mammography examination [13–15].
Although these clinical studies revealed the prognostic potential of the temporal approach, this
technique has not been implemented in clinical practice. The main reason is that the temporal
approach required two injections of iodine to image two breasts, entailing in longer examinations
and increased iodine toxicity exposition. Additionally, Diekmann et al. [15] evidenced in a multi-
center clinical study that the most important diagnostic information comes from the morphological
analysis of the contrast enhancement and its intensity, rather than the contrast-agent kinetic in-
formation. Moreover, substantial patient motion artifacts due to the extended time between pre-
and post-contrast acquisitions was observed and entailed in the loss of lesion morphologic detail.

To overcome the limitation of the temporal approach, dual-energy (DE) contrast-enhanced
digital mammography, also named contrast-enhanced spectral mammography (CESM) has been
proposed as an alternative solution [16]. In CESM, after iodinated contrast-agent injection, low-
energy (LE) and high-energy (HE) image pairs are acquired at energies that closely bracket the
iodine K-edge, simultaneously or in rapid successions. Iodine-enhanced images are then obtained
by recombining the two images. GE Healthcare is currently the only company with a commercial
CESM application as extension of the existing indications for diagnostic mammography with the
GE Senographe® Essential or Senographe® DS systems (GE Healthcare; Chalfont St Giles, UK).
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This imaging technique can be used as an adjunct following mammography and ultrasound exams
to help localize a known or suspected lesion. A clinical study, with 26 patients, demonstrated the
feasibility and potential of dual-energy technique for mammography [16].

CE-DM techniques have simpler implementations and faster acquisitions when compared to
CE-MRI and CE-US, and much with higher spatial resolution. However, CE-DM images are still
acquired from 2D projection of a 3D object, limiting morphologic characterization and localization
of iodine-enhanced lesions.

1.2.3 Other Vascular Imaging Techniques Used in Clinical Practice

Contrast-Enhanced Full-Body CT
The feasibility of tomographic breast imaging using a standard whole body scanner was assessed in
early 80’s by Muller et al. [74]. The authors concluded that although the system being technically
capable of providing good images and the ability to detect distant metastases through incidental
findings, the trade-off between the new diagnostic information and the high amount of radiation
dose delivered to the breast and neighboring body tissues in the thorax was insufficient when
compared to standard mammography. Moreover, the contemporaneous dedicated breast computed
tomography (CT) scanners produced better results.

Later on, the development of multidetector CT (MDCT) scanners with faster acquisitions and
improved resolution encouraged further research on breast imaging. Many clinical studies were
conducted to evaluate MDCT when associated with the administration of iodinated contrast-agents
as a tool for breast lesion diagnosis, cancer extent and conservation surgery planning [8,75–79]. For
these applications, contrast-enhanced MDCT imaging of the breast has shown to provide excellent
sensitivity (especially for patients with dense breast) but limited specificity [80]. Moreover, Inoue
et al. [77] also noted that that contrast-enhanced MDCT could be used for dynamic CT and
distinguish carcinoma from benign lesions. However, in all these studies radiation dose to the
patient was still substantially higher than standard mammography levels [78]. More recently
contrast-enhanced CT has been combined with Positron Emission Tomography (PET) imaging
systems [81,82] in order to produce in order to generate additional functional information. However,
a practical limitation is that nuclear imaging techniques have a relatively long implementation time
and are very expensive [9].

Contrast-Enhanced Ultrasound
Breast Ultrasound (U/S) can be used to solve equivocal radiological signs detected on a single
incidence of mammography, particularly in the differentiation of cystic lesions from solid masses.
It also allows for a better appreciation of the lesion composition. Breast US imaging has however
some limitations. Rather unusually, adipose tissues in the breast are hypoechoic when compared to
the parenchyma. The majority of masses and breast cancers are also hypoechoic. As a consequence,
a substantial number of cancers are difficult or impossible to depict, since they have the same
echogenicity as the surrounding tissue. Normal breast structures may be confused with cancer,
generating a high rate of false-positives.

Contrast-Enhanced Ultrasound (CE-US), combining the use of Doppler with gas-filled mi-
crobubbles contrast agents (1 to 10 microns in diameter), have shown to improve the detection of
blood vessels and down to diameters of the order of 40 microns [10]. As in CE-MRI, the assessment
of contrast uptake kinetics, in particular the derived outputs such as the peak of uptake intensity,
the mean transit time, the slope of the wash-in curve, the washout time and the area under the
curve of contrast, can be important parameters to distinguish benign and malignant lesions [83,84].
In CE-US however, microbubbles contrast agents are rather unstable, due to their size, and con-
sequently their lifetime inside the body is short (between 2 and 5 minutes). Hence, this time
constraint might jeopardize the contrast uptake curve assessment and prevent the examination to
cover the whole breast volume. From a more practical standpoint, another limitation of breast
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US is that the examination quality depends on the operator, and is therefore poorly reproducible.
Moreover, the manipulation is highly difficult due the lack of anatomical landmarks to guide the
review. Thus, it may still remain unclear whether the entire breast was imaged or not.

In summary, today the standard imaging techniques used for breast cancer diagnosis, staging
and therapy follow-up is CE-MRI; it provides morphologic, topological and functional information
of the tumor. CE-MRI is however very costly and is not widely available. Contrast-Enhanced
full body CT is characterized with limited spatial resolution and a substantial radiation dose
to the patient. Techniques based on U/S such as Doppler and contrast-enhanced Doppler have
also shown positive results in emphasizing breast tumor angiogenesis. However, the examination
quality is highly dependent on the operator. More recently, CE-DM has shown promising results,
though its benefits compared to CE-MRI and CE-US are still to be demonstrated. CE-DM 2D
projection nature may however limit the characterization of cancerous lesions when compared to
3D techniques.

In order to improve the accuracy of tumor diagnostics, staging and cancer therapy monitoring,
with wider accessibility and better dose-cost effectiveness, an alternative technique specifically de-
signed for breast imaging, providing accurate 3D quantitative position, morphologic and functional
lesion information is definitely welcome. In the next section Contrast-Enhanced Digital Breast To-
mosynthesis (CE-DBT) and Contrast-Enhanced Dedicated Breast CT (CE-bCT) are presented as
two potential candidates.
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1.3 Novel X-Ray Techniques for Vascular Imaging of the
Breast

1.3.1 Contrast-Enhanced Digital Breast Tomosynthesis

Digital Breast Tomosynthesis (DBT) is a low-dose x-ray tomographic technique recently introduced
in clinical practice. In DBT, pseudo-tomographic images of the breast are reconstructed from a
limited number of projection images acquired over a limited angular range, partially overcoming
the loss of three-dimensional (3D) information in standard mammography [85]. Because of data
incompleteness, an analytical solution for data reconstruction is not unique. The pseudo-3D re-
constructed volume is characterized by a very high spatial resolution in the planes parallel to the
detector, but limited depth resolution. This is translated by the generation of focal planes where
in-plane structures are sharp, while out-of-plane structures are blurred [86]. Meanwhile, the focal
planes can be affected by several artifacts originated from high contrast signals present outside the
in-focus plane, such as microcalcifications [87,88]. Despite that, DBT partly removes the confusion
of superimposed tissue encountered in standard mammography, resulting in better lesion depiction
and decreasing rate of false positives [89,90]. The interpretation of DBT images is very similar to
standard mammography images, with clinical protocol and equipment cost also comparable.

As discussed in the previous sections, although the clinical results with CE-DM are promis-
ing, CE-DM provides 2D projection images that do not depict 3D morphology nor 3D location of
contrast-enhanced lesions. To overcome these limitations, 3D Contrast-Enhanced Digital Breast
Tomosynthesis (CE-DBT), i.e. the combination of DBT and iodine-injected CE-DM, has been
proposed. For CE-DBT, temporal [91–95] and DE subtraction [17–20,22] techniques are currently
under investigation by academic and industrial research groups. Preliminary clinical studies have
shown that CE-DBT iodine enhancement images can demonstrate vascular characteristics of breast
lesions that are consistent with the vascular information provided by CE-MRI [91,96,97]. However,
in the temporal subtraction case, the presence of artifacts due to patient movement between ac-
quisitions of pre- and post-contrast projections is even more important than in temporal CE-DM,
because of the multi-view acquisition and consequent extended time interval between pre-contrast
and post-contrast image sets. Dual-energy techniques have the potential to minimize patient mo-
tion artifacts when each pair of spatially correlated LE and HE images is acquired within a short
period of time [22, 96]. Different image recombination methods, either on projection [20] or vol-
ume [23] domains, as well as the use of energy-discriminating photon counting detectors [25] have
been investigated to minimize motion artifacts and ameliorate residual texture cancellation.

On the other hand, following the same reasoning as for morphological DBT images, the limited
depth resolution caused by the limited angular range and its consequent imaging artifacts may still
be a limitation for CE-DBT when compared to other fully 3D techniques such as CE-MRI and
contrast-enhanced full-body CT. Nonetheless, when compared to these techniques, the CE-DBT
prototypes under evaluation present a much higher spatial resolution in the focal planes, with lower
predicted cost, higher accessibility and radiation dose levels comparable to current standard mam-
mography and morphological DBT acquisitions. When compared to CESM, with the attainment of
pseudo-3D images, it is also expected that CE-DBT could provide potential improvement in speci-
ficity, as it was for DBT when compared to standard mammography. Improved lesion localization
and improved characterization of the contrast-agent uptake morphology is likewise expected.

1.3.2 Contrast-Enhanced Dedicated Breast CT

The concept of performing dedicated breast CT (bCT) scans as alternative for breast cancer
screening was first introduced in the late 70’s [98–102], but was rapidly dismissed due to the
amount of radiation dose, as well low spatial resolution and cost-effectiveness. With the advent of
digital detectors with sufficient spatial resolution in the early 2000’s, dedicated CT scanners for
the breast were proposed by different academic research groups [103–106]. Various bCT system
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designs have been investigated [107]. Main differences between the various designs are the detector
technology and system geometry. Photon-counting and energy-integrating detectors dedicated for
breast imaging have been proposed. Helical [108, 109], cone-beam [103–106] and inverse-geometry
[110] geometries have been studied. In all three geometries, the x-ray tube and an opposite detector
are rotated about the pendant breast, with the woman lying prone on a tabletop. In helical
bCT, the x-ray tube and a narrow detector ring perform also a continuous translation along the
pendant breast. In cone-beam CT, the x-ray tube emits a half-cone beam towards a large area
flat panel detector. Inverse-geometry bCT consists of a large-area scanned source opposite a
detector array that is smaller than the source in the transverse direction. For all three geometries,
the projection images are subsequently reconstructed to tomographic images with quasi-isotropic
spatial resolution. For these system designs, much research efforts have been oriented toward
technology development addressing radiation dose [103, 111, 112], x-ray scatter [113, 114], incident
x-ray spectrum [115–117], acquisition orbit [118], system topology and spatial resolution [119–123],
anatomical noise [124,125], and image artifacts management [126].

The first clinical trial with the “new-generation” of dedicated breast CT scanners was carried
by Boone et al. at the University of California, Davis Medical Center (UC Davis), published in
2008 [127], with the objective to prospectively compare bCT with screen film mammography on
ten healthy women and 69 women with suspicious abnormality (BI-RADS2 4) and highly sugges-
tive of malignancy (BI-RADS 5). In this study, the cone-beam bCT prototype presented similar
performance for lesion visualization, significantly better for masses but worse performance in de-
picting microcalcifications smaller than 300 µm. In a more recent clinical study with 23 patients,
O’Connell et al. [128] concluded that most calcifications and all masses detected with mammog-
raphy were also detected with their clinical cone-beam breast CT prototype. The authors also
reported a better coverage of the inferior, posterior, medial, and lateral portions of the breast
when compared to conventional mammography, an equivalent coverage in the superior portion of
the breast but limited coverage in the axilla on the basis of visualizing lymph nodes. In addition to
the clinical findings, both studies included subjective questionnaires to the patient, who reported
that breast CT exams were significantly more comfortable. Several aspects of bCT technique still
need to be improved in order to provide more reliable morphological images, in particular axillary
tail coverage and microcalcification depiction. With recent advances in high-resolution low-noise
detector technology such as photon-counting detectors [129–131] or electron-multiplying CCD [132]
as well as novel iterative reconstruction algorithms [133,134], it has been shown by simulation [108]
and by experimentation [123,135] the possibility of visualizing microcalcification clusters of about
100-150 µm. New table designs and complex gantry trajectories for better axillary coverage and
patient comfort are also under study [136,137].

Similarly as for DBT, bCT combined with a vascular contrast agent, or Contrast-Enhanced
Breast CT (CE-bCT), can provide morphologic and functional information of breast lesions in
synergy [138]. The relationship between contrast concentration and CT enhancement is straight-
forward as there is a direct linear relationship between enhancement change and iodine concentra-
tion. Moreover, assuming the same geometry as for morphologic dedicated breast CT prototypes
described above, compared CE-MRI and contrast-enhanced full-body CT, CE-bCT could provide
higher spatial resolution and consequently better characterization of enhanced lesion morphology.
Early clinical trials using a dedicated bCT system [139] and with a conventional CT scanner [75]
suggested that the analysis of contrast medium enhancement in post-contrast bCT images, i.e.
without temporal or dual-energy recombination, could differentiate malignant from benign lesions.
This was confirmed in a more recent study by Prionas et al. [138] where iodine enhancement
was quantified in post-contrast CE-bCT images, and their conspicuity compared with that at un-

2The American College of Radiology (ACR) has developed a standard way of describing mammogram findings
and included in BI-RADS (Breast Imaging-Reporting and Data System) categories numbered 0 through 6. BI-RADS
0 indicates that an additional imaging evaluation and/or comparison to prior mammograms is needed. BI-RADS
1 indicates that no significant abnormality to be reported. BI-RADS 2 and 3 indicate a benign finding and a
probably benign finding (follow-up with repeat imaging suggested), respectively. BI-RADS 4 indicates a suspicious
abnormality that should be biopsied, while BI-RADS 5 suggests an abnormality with high malignancy. Finally,
BI-RADS 6 indicates a biopsy-confirmed malignancy.
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enhanced bCT and conventional mammography. Forty-six patients with 54 lesions classified as
BI-RADS 4 or 5 were invited for examination. Results suggested that conspicuity of malignant
breast lesions, including ductal carcinoma in situ, is significantly improved at CE-bCT.

Since unenhanced breast tissue can still be depicted in post-contrast images, we expect that
background texture cancellation and enhanced iodine uptake obtained from temporal or dual-
energy recombination techniques would further benefit CE-bCT, entailing in better cancerous
lesion detection, localization and characterization. In the particular case of bCT geometry with the
patient in prone position and the breast under none or minimal compression, temporal subtraction
CE-bCT technique is likely to suffer from patient motion artifacts between pre- and post-contrast
acquisitions, perhaps even more than temporal subtracted CE-DM and CE-DBT. A dual-energy
recombination technique for CE-bCT is in this case preferable.

As far as we know, at the beginning of this PhD thesis research, little investigation on dual-
energy recombination techniques for contrast-agent and tumor angiogenesis enhancement in a
dedicated breast CT setup was performed. The main contributions were from Shikhaliev at al.,
who proposed dual-energy recombination for multi-material enhancement using a scanning multi
slit multi slice (MSMS) x-ray system prototype equipped with a Cadmium Zinc Telluride (CdZnTe)
energy-resolved photon-counting detector [129, 130, 140, 141]. In their technical feasibility studies,
the combination of high spatial resolution, the low noise properties of the CZT detector and the
intrinsic scatter rejection geometry, resulted in enhanced material detectability when compared to
bCT with a conventional energy-integrating detector. However, in these studies, the main adopted
contrast agent was based on Gadolinium (Gd); the minimum photon energy sensitive to the CZT
detector (26 keV), prevented from exploring the iodine K-edge (33.2 keV), due to low x-ray quanta
detected in the small energy bin (25 − 33.2 keV ). It must be emphasized that although Gd-
based contrast media available in clinical practice are less nephrotoxic than iodine-based contrast
media [142, 143], to obtain comparable X-ray image quality, a higher toxic load is expected with
Gd-based contrast medium than with iodinated contrast medium3. This is due to the substantially
higher X-ray attenuation of iodine when compared to Gd. Further studies assessing dual-energy
applications for iodinated contrast-agent enhancement as well as other dual-energy recombination
strategies for CE-bCT are therefore required.

In summary, CE-DBT and CE-bCT are two potential candidate techniques for contrast-enhanced
vascular imaging of the breast. Probably the most significant advantage of CE-DBT is that it can
be performed on existing digital mammography systems with relatively minor modifications. In
spite of that, we can expect that the potential of CE-DBT in quantifying contrast medium uptake is
limited, due to the incomplete tomographic reconstruction and subsequent artifacts inherited from
the low depth-resolution of limited opening angle DBT acquisition. CE-bCT with quasi-isotropic
spatial resolution and voxel signal intensity proportional to the linear attenuation coefficient is be-
lieved to offer more accurate quantitative information, though a low-dose operation could still be a
challenge. Today, the incremental value of CE-bCT over CE-DBT in their ability to provide quan-
titative information is still unknown and a complete evaluation on the quantitative performance
of both technologies would be beneficial.

In order to achieve dose levels comparable to two-view mammography, both CE-DBT and
CE-bCT techniques would benefit from iodine K-edge imaging techniques using dual-energy ac-
quisitions. While dual-energy iodine-enhanced CE-DBT geometry, acquisition parameters and
protocols have been previously assessed and optimized [17–26], little investigation on dual-energy
recombination techniques for iodinated contrast-agent and tumor angiogenesis enhancement in a
dedicated breast CT setup was performed. As a consequence, before any comparison with CE-DBT,

3The guidelines for contrast medium from the European Society of urogenital radiology does not approve Gd-
based contrast medium for X-ray imaging due to nephrotoxicity at higher than approved doses and low X-ray IQ
at approved doses
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a preliminary optimization of the dual-energy acquisition parameters maximizing the performance
of CE-bCT in depicting contrast-agent uptakes is imperative.

In the next chapter, we provide a detailed description of the simulation platform software
developed for our research and providing the means for optimizing CE-bCT acquisition parameters
and comparing its quantitative performance with CE-DBT. An extensive validation is presented
in the subsequent chapter.
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Chapter 2

3D Breast X-ray Imaging
Simulation: evolution of CatSim

General Presentation of CatSim

CatSim, “Computer Assisted Tomography SIMulator”, is an X-ray imaging simulation platform
software. It was initially conceived in the late 2000’s by Samit Basu, Bruno De Man and Jed
Pack at GE Global Research Center (CT and X-ray Laboratories, Niskayuna, NY, USA). CatSim
was originally developed to simulate 3rd generation computed tomography projection images using
“simple” analytical test objects [27].

Today, thanks to the contributions of an increasing number of researchers and developers
throughout GE Global Research Center, GE Healthcare and external academic partners1, Cat-
Sim allows not only to simulate simple imaging system topologies, but also very advanced X-ray
imaging chains, including X-ray spectrum polychromaticity, realistic quantum and electronic noise
models, finite focal spot emission, detector cross-talk, detector lag or afterglow, bowtie filtration,
detector efficiency, non-linear partial volume, X-ray photon scatter (Monte Carlo) and absorbed
dose estimation. It supports complex analytic objects, such as the Forbild Phantoms2, complex
polygonal meshed surfaces, dynamic NURBS3 objects such as the XCAT/NCAT phantoms [144],
as well as voxelized phantoms which can, in principle, be made from reconstructed scans of actual
subjects or from voxelized versions of analytic and polygonal phantoms.

CatSim is structured in a set of modular functions, each one describing a particular physical
phenomenon or an architectural component underlying an X-ray imaging system. The modular
functions are written in Matlab (The MathWorks Inc.; Natick, MA, USA). They allows for simple,
flexible and customizable implementation, enabling to modify a single component (f.e. the detector
type) without affecting the rest of the acquisition chain. In order to increase efficiency, some
modules call for external functions written in C++. This allows building optimized and parallelized
implementation for heavier calculations, such as object projection and backprojection, as well as
the Monte Carlo engine.

CatSim includes material files and energy-dependent Photoelectric, Compton and Rayleigh
interaction database developed by members of the Geant4 Collaboration4.

1Stanford (Dr. Pelc), U Michigan (Dr. Fessler), Virginia Tech (Dr. GE Wang), Technische Universitat Munchen
(TUM), Duke U (Dr. Segars, Jim Colsher, Dr. Samei), U Washington (Dr. Kinahan) and RPI (Dr. Yazici)

2Forbild Phantoms – http://www.imp.uni-erlangen.de/phantoms/index.htm
3Non-Uniform Rational Basis Spline (NURBS)
4http://cern.ch/geant4
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Contributions of This PhD Thesis Research to CatSim Development

As part of this PhD thesis research, various modules for the CatSim simulation chain have been
developed and validated allowing to design, optimize and compare digital mammography (MX),
digital breast tomosynthesis (DBT) and dedicated breast computed tomography (bCT) systems
while considering realistic cone-beam geometries and X-ray spectra typically used for breast X-ray
imaging. More specifically, among other contributions, we highlight:

� The integration of X-ray spectrum models for Molybdenum, Rhodium and Tungsten anodes,
for the X-ray energy range considered in breast imaging

� The integration of a recently developed meshed-based digital breast phantom with existing
X-ray image projection routines

� The development of average glandular dose calculation routines in the context of a Monte
Carlo engine designed to track X-ray photon trajectory inside voxelized objects

� The development of an indirect X-ray detection cascade model based on a columnar struc-
tured Cesium Iodide (CsI) scintillator coupled to amorphous Silicon (a-Si) Thin-Film Tran-
sistors (TFT)

� The development of a flat panel detector model for primary photons simulation

� The development of a flat panel detector model for scattered photons simulation

� The extension of an existing Filtered Backprojection (FBP) reconstruction algorithm, from
a fan-beam to a cone-beam acquisition geometry

The next sections give a description on the design and development of these modules. They
provide detailed information on the CatSim acquisition chain, from X-ray beam generation to
image formation, including the calculations involved at each step. In Section 2.1, the geometry
framework used for our simulations is defined. In Section 2.2, the X-ray spectrum generation models
for anode materials and energy ranges used throughout this thesis are introduced. Flat and bowtie
filtration are also described. In Section 2.3, analytical and mesh-based test objects emulating
respectively geometrical and more complex anthropomorphic breast phantoms are illustrated. The
projection algorithms for both analytic and meshed phantoms are briefly discussed in Section 2.4.
In Section 2.5 and 2.6, Monte Carlo simulations of X-ray scattering and absorbed radiation dose
occurring in breast phantoms at typical breast X-ray imaging energies are described. In Section 2.7,
the developed cone-beam detector model is presented. Signal and noise propagation are defined
for a noise-free blur-free detector, which was the main model used throughout this thesis. For
experimental validation purposes, signal and noise propagation inside a realistic indirect conversion
scintillator-based detector are also detailed.

Since X-ray photon production, interaction with matter and detection by digital converters are
well known processes, their physical aspects are not discussed in this chapter. For further details,
we refer the reader to a short overview on the physics of medical imaging and imaging science
presented in Annex A.

Results from an extensive validation of the developed models with regard to previously pub-
lished and experimentally obtained data are provided further on, in Chapter 3.
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2.1 Coordinate System and Acquisition Geometry Defini-
tion

In this PhD thesis research, a cone-beam geometry was assumed for the simulation of DBT and
bCT projection images. These topologies can be generalized into the diagram illustrated in Figure
2-1, alongside with the adopted coordinate systems.

With the gantry in its initial centered position, the detector plane was defined such as to be
parallel to the x-z plane. The axis perpendicular to the x-z plane, passing through the intersection
of the x axis and z axis was defined as the y axis, with positive values towards the X-ray source.
The Center-of-Rotation (COR), or isocenter, is defined as the intersection between the gantry’s
rotation axis and any plane perpendicular to the detector plane and containing the X-ray source.
The isocenter was chosen to be the origin of the Cartesian coordinate system (x,y,z), with rotation
axis defined as the z axis. The distance between the source and the isocenter was defined as the
source-to-isocenter distance (SID).

At the detector plane, two more axes u and v were defined, for detector pixel columns and rows,
respectively. The origin (u, v) = (0, 0), or (u0, v0), represents the intersection of the line passing
through the X-ray source, the isocenter and perpendicularly incident over the detector plane. The
angles between this line and a given point coordinate in the u and v axes are the fan angle α and
cone angle γ, respectively. The distance between the source and the point (u0, v0) was defined as
the source-to-detector distance (SDD).

The gantry rotation angle, or acquisition angle β, was defined as the angle between the line
through a new source position and the isocenter, and the same line when the gantry is in its initial
centered state (i.e., β = 0). For dedicated breast CT, the source and the detector were assumed
be fixed with respect to each other, while the gantry rotates the detector-source around an axis
located at the center of the longitudinal section of the uncompressed breast, thus performing a full
360° orbit around the breast. For DBT, we assume a static flat detector and a gantry allowing the
source to rotate around the COR, usually located inside the compressed breast.

Table 2.1 summarizes the variables describing the dedicated breast CT and DBT cone-beam
geometries, as well as the other main variables defined further in this chapter.

Figure 2-1: Illustration of a cone-beam X-ray system geometry
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Table 2.1: Definition and units of the main variables used along Chapter 2

Variable Definition Units

Cone-Beam Geometry
(x, y, z) coordinates global coordinates system mm
(u, v) coordinates detector coordinate system mm
fu, fv detector coordinates in frequency domain mm−1

SID source-to-isocenter distance mm
SDD source-to-detector distance mm
α fan angle rad (radian)
γ cone angle rad (radian)
β gantry (or acquisition) angle rad (radian)

X-ray Source
s point source -
E X-ray photon energy keV
S X-ray photon fluence mm−2

mAs product of tube current and exposure time mA · s
Sraw(E) normalized anode X-ray fluence spectrum mm−2mA−1 s−1

µm(E) linear attenuation coeff. of filter material m mm−1

tm(α, γ) thickness of filter material m mm
Snet(E,α, γ), Snet(E, i) filtered X-ray fluence spectrum mm−2

Object
r object position in (x,y,z) coordinates mm
µo(r, E) linear attenuation coeff. of object o mm−1

tiso thickness of object o in the i− s ray path mm

Monte Carlo
N number of shot X-ray photons -
j interaction event index -
pj interaction location in (x,y,z) coordinates mm
~dj photon traveling direction before interaction mm
Ej photon energy before interaction keV
τj interaction type -
Σj collection of information on interaction j -
~βi,j vector linking interaction site j to del i mm
dΩj(i) del solid angle as seen by the site j sr
Ψ(E, i) scatter probability field -
D(r) absorbed radiation dose mrad,mGy

X-ray Detector
i detector element, del -
Sscatter(E, i) incident scattered X-ray fluence spectrum mm−2

Sinc(E, i) incident primary X-ray fluence spectrum mm−2

Ai detection element surface mm2

~wi unit vector normal to active surface -
~Li,s vector linking the source s to del i mm
dΩs(i) del solid angle as seen by the source s sr
Iinc(E, i) incident X-ray intensity spectrum -
η(E) quantum detection efficiency, QDE -
H(fu, fv) optical spread transfer function mm−1

Π(fu, fv) photodiode aperture transfer function mm−1

ξ(E) conversion function (E for EI, 1 for PC) -
k,G product of efficiencies and scaling factors d.u., d.u./keV
SI(i) projection image signal intensity digital units (d.u.)
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2.2 X-ray Source Modeling and Emitting Fluence Spectra

To generate an energy-dependent and direction-dependent X-ray photon beam, the simulated X-
ray source was defined by three components: a finite-sized focal spot, an X-ray photon fluence
energy spectrum generated by the anode and a filtration step.

2.2.1 X-ray Source Modeling

Focal Spot
X-rays are generated when electrons are accelerated and collide with the target anode, in a region
called thermal focal spot. In a real X-ray tube, the focal spot may emit X-rays from each point of its
surface. Different emission patterns have been observed depending on the X-ray tube design [145–
148]. The focal spot size and emitting pattern may degrade the X-ray system spatial resolution,
known as focal spot blurring [149]. Another source of degradation is linked to the continuous X-ray
tube movement during the sinogram acquisition, i.e. a tube motion blurring [120,150,151].

Although CatSim allows to simulate both blurring effects, for the investigations carried during
this PhD thesis research, the impact of focal spot and tube motion blur on the system’s spatial
resolution was disregarded. A single point source emitting isotropically at every direction was
considered for all simulations. Moreover, projections were assumed to be acquired in a “step-and-
shoot” mode with instantaneous displacement (infinite speed) between two consecutive view angles
(i.e. without tube motion blur). The time interval for one view integration and during which the
X-ray source emits photons continuously, is used for exposure calculation (i.e., mAs values).

Anode-Emitting X-ray Spectra Models
The second component required to build the X-ray source model concerns the definition of an
energy-dependent X-ray fluence emitted by the anode. In practice, the anode X-ray fluence energy
spectrum can be either predicted according to known analytic models of atomic interaction in
the anode or measured directly from the X-ray tube window using appropriate energy-sensitive
tools [152–154]. In this research work, two spectrum models were adopted according to the imag-
ing technique and its specific energy range: SpeXim and TASMIP. Table 2.2 summarizes the
information on both models.

Table 2.2: Spectrum models used in this study

Name Reference Anode Material En. Range Validation

SpeXim
Birch and Marshal, 1979a

Mo,Rh 0− 49 kV Section 3.1
Cranley et al., 1997b

TASMIP Boone et al., 1997c W 30− 140 kV Ref. [155]
a Ref. [154]
b Ref. [156]
c Ref. [155]

SpeXim is a short for “Spectrum Simulator” and is a software package previously developed
at GE Healthcare. The SpeXim model provides low-energy spectra for Molybdenum (Mo) and
Rhodium (Rh) anodes, typically used in single and dual-energy mammography, as well as single
and dual-energy breast tomosynthesis. The model is based on the Bremsstrahlung spectrum model
developed by Birch and Marshall [154], with characteristic rays added from tabulated data [156].
Validation of SpeXim model beam quality with regard to experimentally obtained data is provided
in Chapter 3.

TASMIP stands from “Tungsten Anode Spectral Model using Interpolating Polynomials”, and
was developed and published by Boone et al. [155]. The model relies on interpolating polynomials
through measured constant potential Tungsten (W) anodes X-ray spectra, published by Fewell
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et al. [157, 158]. Additional modifications from Fewell’s measurements were introduced in the
TASMIP model (numerical hardening) in order to better fit the given modern X-ray tubes and
generators. The TASMIP model generates high-energy spectra for W anodes typically used in
CT systems and has been widely adopted for breast CT system prototypes with W-based X-ray
tubes [113,117,120]. Validation of TASMIP model beam quality can be found in Ref. [155].

Both spectrum models were implemented such as to provide X-ray fluence spectra for Mo, Rh
and W anodes, in units of photons per mm2 per energy bin, at 1m from the source and normalized
by the X-ray tube current and the exposure time (mAs product). Figure 2-2a illustrates the
normalized raw anode X-ray fluence spectra, Sraw(E), generated using SpeXim model for Mo and
Rh anode materials (considering only the intrinsic filtration of the tilted anode and the beryllium
window). Characteristic rays for Mo anodes are located at 17.9 keV (K-alpha) and 19.5 keV (K-
beta), while for Rh anodes characteristic rays are located at 20 keV and 22.5 keV (cf. Annex A.1
for detailed description X-ray production and characteristic X-rays). Figure 2-2a also illustrates
the normalized raw W anode X-ray fluence spectra, generated using the TASMIP model.

Energy and Direction-Dependent X-ray Fluence Filtration
Additional filtration was used to further shape the energy-dependence and direction-dependent
X-ray fluence generated by the anode. This can be performed using both flat (mainly energy
shaping) and bowtie filters (mainly direction shaping).

Flat filters are typically flat sheets of a metallic alloy of high atomic number, high purity
and homogeneous thickness. Through mainly photoelectric interactions, the lower energy photons
are absorbed, shifting the spectra to higher energies (hardening). Filter materials containing
absorption discontinuities in the energy range of X-ray imaging can be used to attenuate photons
with energy higher than its electronic shells binding energies, due to the jump in attenuation. They
are usually called K-edge filters.

Bowtie filters can be used to shape a X-ray beam fluence depending on the beam’s take-off
angle. Typically they are built to provide higher photon fluence for beam paths with higher object
thickness to be crossed. Direct results of bowtie filtration are (but not exclusively): reduction
of cupping artifacts due to scattered radiation and beam hardening [114], average decrease and
better distribution of radiation dose inside a cylinder volume to be imaged [141] as well as better
homogeneity of X-ray fluence across the whole detector surface, entailing in improved contrast-no-
noise ratio and noise uniformity over the image [141].

2.2.2 Pre-patient X-ray Fluence Spectrum Calculation

Pre-patient X-ray fluence spectrum calculation was based on the definition of energy-dependent
and direction-dependent transmission factors of a set of filter materials. According to the Beer-
Lambert Law (cf. Annex A.2), the filtered net X-ray fluence spectra transmitted of the tube
housing, Snet (in photons per mm2 at 1m from the source), can be expressed as:

Snet(E,α, γ) = mAs · Sraw(E) · exp

(
−
∑
m

µm(E) · tm(α, γ)

)
(2.1)

where mAs is the product of tube current and exposure time, Sraw(E) is the raw X-ray fluence
spectra (output of SpeXim and TASMIP models) emitted isotropically by a point source s over
the anode, α and γ are the fan and cone angles, respectively, and µm and tm are respectively the
energy-dependent linear attenuation coefficient and the thickness of every material m crossed by
a X-ray beam with direction (α, γ).

As an example, Figure 2-2b shows the linear attenuation coefficient of two filter materials, Tin
(Sn) and Copper (Cu), as a function of the X-ray photon energy. Figure 2-2c illustrates the W
anode X-ray fluence spectrum of Figure 2-2a after being filtrated by 0.3 mm of Sn and 0.3 mm
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Figure 2-2: (a) X-ray fluence energy spectra, normalized by the tube current and exposure time,
generated by SpeXim and TASMIP models for: Mo anode and 26 kV tube voltage, Rh anode
and 30 kV tube voltage, and W anode and 60 kV tube voltage (considering only the intrinsic
filtration of the tilted anode and the beryllium window); (b) Energy-dependent linear attenuation
coefficients of Tin (Sn) and Copper (Cu); (c) W anode and 60 kV spectrum filtered with 0.3 mm
of Sn and 0.3 mm Cu

of Cu. Notice that since Sn possesses a K-shell absorption discontinuity at 29.2 keV , a Sn-based
filtration induces a discontinuity in the output spectra.

Figure 2-3 illustrates an example of bowtie filtration combining three materials: Aluminum
(Al), graphite and Copper (Cu). Figure 2-3b shows an example of the thickness profile of each
material as function of the fan angle α of the bowtie filter illustrated in Figure 2-3a. The resulting
transmission factor Snet/Sraw per mAs, for a given fixed energy, is illustrated in 2-3c. This filter
shapes the X-ray fluence from a isotropic distribution to a fluence concentrated around the zero
degree fan angle. This particular example would be, for instance, well suited for cylindrical objects,
were the thickness to be crossed by the X-ray beam is highest at zero degree fan angle and decreases
for more peripheral angles.

Figure 2-3: (a) Bowtie filter illustration combining three materials (aluminum, graphite and cop-
per); (b) a given thickness profile for the three materials as function of the fan angle α, as well as
the (c) resulting transmission factor for a given beam energy
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Definition 2.1. For the remainder of this thesis manuscript, we define the net X-ray fluence
spectrum Snet with respect to a detection element i. In other words, for each X-ray beam with
take-off direction (α, γ), we associate Snet to a detector element i such as:

{
xi = SDD · tan(α)

zi = SDD · tan(γ)
and Snet(E,α, γ)

(α,γ)→i−−−−−→ Snet(E, i)

where xi and zi are the coordinates of the detector pixel reached per X-ray photon emitted by the
source under (α, γ) angles (cf. Figure 2-1), SDD is the source-to-detector distance and E is the
X-ray photon energy.
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2.3 Computational Human Breast Phantoms

Three types of breast tissue equivalent phantoms, representing the compressed and uncompressed
breast were considered for our investigations: 1) analytic models, representing the breast through
geometric primitives. They allow for very fast projection calculation and are well suited to assess
the spatial and noise properties of a given imaging setup; 2) polygonal meshed models, with
increased flexibility to define complex surfaces with high anatomical fidelity. They are preferable
for simulations involving detectability and characterization tasks in the presence of anatomical
background; 3) voxelized models of the previous analytic and meshed phantoms, necessary in our
investigations for Monte Carlo calculations of X-ray photon scattering and absorbed radiation dose.

In all breast phantom models, independently of their internal structure, the breast was assumed
to be composed of fibroglandular and adipose tissues, or a homogeneous mixture of both tissues
(found either through mass or volume conservation hypothesis). Depending on the simulation
objectives, a skin layer was also added. The chemical composition of fibroglandular tissue, adipose
tissue and the skin was based on the work of Hammerstein et al. [159]. Chemical composition of
microcalcifications was modeled as Calcium Hydroxyapatite (CaHa).

As follows we provide a more detailed description on all three types of simulated breast phan-
toms.

2.3.1 Analytic Models

Throughout this PhD thesis research, analytical models of the compressed and uncompressed breast
were implemented to assess physical image quality, through measurements of image contrast, noise
and spatial resolution (Chapters 3, 5 and 6)

Using CatSim, analytic breast phantoms were built based on known geometric equations defin-
ing three-dimensional surfaces (e.g. cylinder, spheres, boxes, hyperboloids, cones, tori, . . . ) and
additional clipping planes. Generically, each surface can be fully described by defining four pa-
rameters: i) its geometric center position, ii) its 3D extent depending on the geometrical primitive
(e.g. semi-axes for ellipsoids, face lengths for cubes, radius and height for cylinders, . . . ), iii) a
rotation/scaling matrix and iv) the material filling its convex hull. More complex analytical breast
phantoms, comprising the skin and eventual embedded lesions, were therefore created by defining a
ordinated set of analytic objects. Their specific order determine their projection priorities, i.e. the
volume of a newly define object replaces the same volume of a previously defined object wherever
they overlap.

For DBT, a half-cylinder or a half-ellipsoid shape cropped by two parallel clipping planes
(Figure 2-4a) were used as approximations of the compressed breast shape in a cranial-caudal
(CC) view [160]. The height of the half-cylinder or half-ellipsoid, representing the compressed
breast thickness, was varied from 2 to 8 cm. The half-axis of both cylindrical and ellipsoidal
shapes, representing the breast surface area, was varied from 8.5 to 11.5 cm. Both height and
half-axis values are in agreement with realistic conditions [161].

For the breast CT geometry studied in this thesis research, cylindrical [112, 162–164] or half-
ellipsoid [104,165–168] approximations for the uncompressed breast shape with the patient in prone
position were assumed (Figure 2-4b). The diameter of the cylinder or half-ellipsoid (measure close
to the chest wall) varied from 10 to 18 cm. Their length (or height) was assumed to have 1.5 times
its measured radius. Both diameters and length values are in agreement with realistic conditions,
as evidenced by Boone et al. [111]. Moreover, the same research group verified in a clinical study
conducted with over 200 patients that an uncompressed breast with 14 cm diameter corresponds
to a 5 cm thick breast under typical mammography compression [162].

We refer the reader to the work of Huang et al. for a complete analysis of breast anatomical
metrics [169].
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Figure 2-4: Analytic phantom models for (a) compressed and (b) uncompressed breasts

2.3.2 Meshed Models

Other evaluation and optimization procedures in breast imaging research could benefit from test
objects modeling the complex anatomical structure of the breast with greater realism and known
ground truth. In this PhD thesis research, more realistic anthropomorphic representations of the
compressed and uncompressed breasts were used specifically to compare lesion detectability and
characterization with CE-bCT and CE-DBT (cf. Section 6.3) and to quantitatively assess image
quality in CE-bCT (cf. Section 7).

Anthropomorphic Human Breast Phantom and Lesion Models
The computational breast model exploited in this investigation was developed by colleagues at GE
Healthcare [170]. The work associated to this PhD thesis consisted in ensuring to have an image
acquisition chain for the breast phantom.

The full anthropomorphic breast model is able to simulate the skin with subcutaneous adipose
columns, the Coopers ligaments, adipose tissue compartments, the ductal network, fibroglandular
tissue, blood vessels, a chest wall with ribs and the pectoralis muscle. In this investigation however,
blood vessels, chest wall and pectoralis muscle were not considered in the model.

The shape, size and distribution of the internal breast structures are based on a review of
published breast anatomy research through anatomical dissections [32], ultrasound [171, 172] and
computed tomography technology [169,173,174] and histological sections [175]. Model of the inter-
nal structures has been conducted to make simulated mammography, digital breast tomosynthesis
(DBT), contrast-enhanced spectral mammography (CESM) and dedicated breast computed to-
mography (bCT) images visually and statistically similar to real patient images acquired with
these imaging modalities.

In practice, the computational breast model is defined by triangular surface meshes. Internal
structures were modeled by a variety of geometric mesh primitives, 3D Bézier curves and voronoi
cells. Computerized operations, such as surface subdivision and decimate mesh modifiers, were
used for geometry deformation, curve to mesh conversion and simplification of the meshes. The
internal structures are constructed with Blender (Blender Foundation, www.blender.org, v2.63),
a free and open source computer graphics software product developed for creation of 3D animation,
Python (v2.6.5) as internal scripting language, and Voro++, a free software library for carrying
out three-dimensional computations of the Voronoi tessellation. A main C++ code envelopes
the several modules both to ensure the communication between them and control input/output
functions. The main C++ code provides in the end the spatial coordinates of the various internal
structures, writing the vertex and face coordinates of meshed objects into a format compatible

www.blender.org
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with CatSim polygonal projector.

Two breast outline configurations were modeled: i) an outline representing a compressed breast
in cranio-caudal (CC) view during a mammography exam and ii) an outline representing an un-
compressed breast of a woman in prone position, as in MRI or dedicated bCT exams. Lesions with
different sizes and shapes defined by triangular surfaced meshes were simulated in a similar way.

Figure 2-5 illustrates the meshed breast phantom creation process, as described in Ref. [170].
Examples of low-energy morphologic breast X-ray images simulated using mammography, DBT
and bCT geometries are shown in Figure 2-6.

Aside from the breast phantom convex hull (phantom border and skin layer), the many sub-
modules linked to the phantom construction contained as many random processes as possible:
the location of adipose columns, Copper’s ligament, the growth direction of the ducts and the
fibroglandular tissue, etc. In other words, a given set of parameters would define the overall
disposition of fibroglandular tissue in the volume and its overall texture allure, however different
“runs” of the algorithm would never provide the same phantom.

It must also stay explicit that the phantom generator algorithm as it is today does not provide a
compressed and uncompressed breast phantoms that have perfect anatomic correlation, but rather
two independent phantoms obtained from separate “runs” of the algorithm. Nevertheless, since the
algorithm is based on the breast anatomy development, if the same input parameters are used, both
phantoms provide comparable anatomical properties. Examples and evidences of this statement
can be found in Ref. [170].

2.3.3 Voxelization of Analytic and Meshed-Based Models

Exclusively during Monte Carlo simulation for scattered radiation (Section 2.5) and absorbed
radiation dose (Section 2.6), a voxelization algorithm based on parallel beam projections was used
to produce a voxelized version of the analytic and meshed breast phantoms described above.

The voxelization algorithm available in CatSim produces 3D volumes for each material in the
phantom, representing the volume fraction of that material within each voxel. Each 3D volume
is formed by computing the object intersection points along a series of parallel rays through the
phantom. For voxels that are intersected by analytic or meshed shapes, their contents for a given
volume represent the average material content inside the voxel. To account for partial volume effect,
the precision with which partial voxels are calculated is determined by a projection oversampling
factor, i.e. the number of parallel ray crossing a single voxel. The higher this factor, the better
the estimate of the content in each voxel, though longer calculation times are required.
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Figure 2-5: Meshed-based anthropomorphic breast model used in this study; it emulates the skin
with subcutaneous adipose columns, Cooper’s ligaments, adipose tissue compartments, the ductal
network, fibroglandular tissue and embedded lesion

Figure 2-6: Example of simulated mammography, tomosynthesis and breast CT morphological
images using the breast phantom model. Images were simulated with a low-energy monochromatic
beam and without photon scattering
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2.4 X-ray Projection

X-ray projection images of primary X-ray photons transmitted through the breast models described
in Section 2.3 were generated using the Beer-Lambert law (cf. Annex A.2). The imaged object
energy-dependent transmission factor I(E)/I0(E) for an X-ray beam travelling from the point
source s to a detector element i is given by:

I(E)

I0(E)
= exp

(∑
o∈O

−µo(E)tiso

)
(2.2)

where I0(E) and I(E) are respectively the incident and transmitted X-ray photon intensities, O is
the ordered set of structures o composing the imaged object, tiso is the thickness of each structure
o in the X-ray beam path i − s and µo(E) is the linear attenuation coefficient of the primitive
structure o at energy E.

In the case of multiple structures inside a simulated object (cardinality of O greater than 2),
there exists an order of priority among the element of O which dictates their volume occupation
in 3D space.

Definition 2.2. (Ordered set O) A simulated test object is defined as N structures o ordered in a
set O = {o1, o2, · · · , oN}. The order among the elements of O dictates their volume occupation in
3D space with respect to one another, such as:

on = o∗n −
N⋃

k=n+1

o∗k n = 1, 2, · · · , N − 1

on = o∗n n = N

(2.3)

where the structure o∗n denotes the individual primitive shapes of structure on ( e.g. any meshed-
surface or analytically defined sphere, ellipsoid, cylinder,. . . ).

Equation 2.3 defines that a given structure replaces the volume of all structures with lower order
wherever their volumes intersect. Figure 2-7 illustrates the case where an object O is composed
of three structures, O = {o1, o2, o3}. In this example, o2 replaces de volume of o1 where they
intersect; similarly, o3 replaces de volume of o2 and o1 where they intersect. Their respective
thickness tiso1 , tiso2 and tiso3 in the X-ray beam path i− s are calculated considering the priorities
in ordered set O. The same reasoning can be generalized for any number of structures in O.

Ray-Tracing
The problem about object projection is summarized in knowing tiso, for each structure o ∈ O. For
both analytic and polygonal meshed phantoms, the calculation of piece-wise thicknesses tiso was
performed by using a ray-tracing algorithm. The latter calculates all intersections points between
an X-ray beam and the different primitive structures o∗ composing the imaged object. Once all
intersections points are known, the sum of the distances between the consecutive points defining
straight lines within the primitive structure convex surface represents the total crossed thickness
(cf. intersection points in Figure 2-8). The actual thickness tiso is then calculated by accounting
for the order of priority in O, as described by Equation 2.3 and illustrated in Figure 2-7.

For analytical test objects, ray-tracing was performed by calculating the intersection between
a parametrized line equation for the i − s ray path and the mathematical equation describing
each primitive structure surface defining the imaged object. Figure 2-8 illustrates two examples of
projections, one with a sphere and another with a torus. In the case of a sphere, the set of points
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Figure 2-7: Illustration of primitive structure priorities in a multi-structure phantom and its
consequence in total object thickness calculation. An object O is composed of three structures
O = {o1, o2, o3}. Their respective thickness tiso1 , tiso2 and tiso3 in the X-ray beam path i− s are
calculated considering the priorities in ordered set O

Figure 2-8: Illustration of ray-tracing projection on two meshed objects: a sphere (at left) and a
torus (at right). The X-ray path from the source s to the detector element i intersects with the
surface of the sphere and torus in respectively two and four triangular surface planes. Using an
analytical method, the points of intersection with these planes are computed
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p where the intersections occur is found by solving the following system:

{
p = s + q(s− i) 0 ≤ q ≤ 1

(p− p0)TRTSR(p− p0) = r
(2.4)

where the first equation refers to the i − s ray path, parametrized by q, and the second equation
is the an algebraic representation of the sphere surface, with p0 being the center of the sphere,
R and S the rotation and scaling matrices respectively, and r the sphere radius. In the case of
a torus object, the second equation is written as a 4th order algebraic equation. The idea can
be extended to any other object type, as long as their surfaces can be expressed as an algebraic
equation. Finally, the system of equations represented in Equation 2.4 can be resolved either by
using a root-finding algorithm such as the Newton-Raphson method, or by analytical calculation
using, for example, general Ferrari’s method or Lagrange resolvent for generic quartic polynomials.

In CatSim, for polygonal (mesh-based) test objects, ray-tracing was performed by identifying
the faces intersecting the i− s ray path, and subsequently calculating the intersection points with
the triangular surface plane equation by using a system of equations similar to Equation 2.4.
Compared to analytical solutions, the main disadvantage of ray-tracing on polygonal objects relies
on the amount of calculations necessary to discover the faces indexes. This is particularly true for
complex structures with very short-range spatial variations, where hundreds of thousands of faces
are defined. Nevertheless, polygonal meshed objects allow for much higher flexibility when defining
a phantom, therefore allowing to provide a higher level of realism when compared to analytical
objects.
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2.5 Monte Carlo Simulation of X-ray Photon Scattering

The ray-tracing projection methods described in Section 2.4 combined with the Beer-Lambert
law provide the X-ray photon spectra after primary interaction with the imaged breast phantom.
However, changes in the X-ray photon trajectory due to Compton and Rayleigh scattering allow
for multiple interactions, at different sites in the breast.

Monte Carlo (MC) approaches [176–179] are commonly used to individually track the transport
of large numbers of photons through the object being imaged, therefore allowing to estimate the
scattered X-ray photon fluence. They are based on the cross sections of the various physical
processes. Scatter probabilities are computed for each photon interaction in the object, down to
the detector surface, accounting this way for high-order interactions. For high statistical confidence
in the final result, an increasing number of photons are simulated until the scatter signal achieves a
given confidence level. Conventional MC simulation techniques are however computationally very
inefficient. Commonly a very small fraction of the simulated photons are actually intercepted by the
active area of the detector, particularly if they suffered high-order scattering. Moreover, a sizable
number of photons are absorbed by the phantom itself, particularly when imaging large phantoms.
Therefore, conventional MC techniques usually require high computation time to achieve low noise
and exploitable results.

Numerous methods concerning hardware-accelerated [180] and variance reduction scatter esti-
mators have been developed to overcome the disadvantages of conventional MC technique. Variance
reduction methods [181, 182] used in scatter simulation generally include spatial smoothing tech-
niques, in which the low-frequency nature of the scatter signal is exploited. Another approach
for variance reduction lies on forced detection methods [183]. In these methods the random selec-
tion process for the photons is modified so that the photons are more likely to be detected. For
instance, instead of allowing photons to terminate their trajectory in a photoelectric event, the
probability of the photon interaction is modified allowing the photon to continue to propagate.
Variance reduction techniques can significantly accelerate MC simulations, but do not provide
enough acceleration to make MC simulation practical use such as in real data scatter estimation
and correction.

An alternate approach to simulate scattered radiation is based on analytic techniques. Analytic
scatter estimation methods describe the X-ray photon fluence at each point in space as a scatter
field [184,185]. The integral equations describing photon absorption and scattering are calculated
to model how the X-ray photon fluence evolves given the flux at all other points in the object.
An iterative process drives the fields to equilibrium. In these techniques however, the scatter field
accuracy is directly linked to how the object and the field is sampled, as a function of photon
direction and energy. Hence, for an accurate solution, the computational time required is still
high.

In CatSim, a combination of Monte Carlo simulation and analytic calculations to calculate the
scatter field has been implemented. The hybrid approach consists in using conventional MC engine
for photon transportation inside the object and an analytic calculation of scatter probability to
build up an approximation of the photon’s scattering behavior inside the object and a smooth
scatter field. The approximation to the field improves with the increasing number of shot photons.
In the limit, the computed scatter field converges to the true field, which translated a scattered
photon probability map over the detector surface. The result is exceptionally fast, allowing for the
calculation of a scatter field in practical time frames.

For the investigation conducted during this PhD thesis, the hybrid analytic-MC model was
used. Modifications were introduced in the original MC code allowing to simulate cone-beam
geometries. Accordingly, an extensive validation of scatter intensity estimation for MX/DBT and
bCT cone-beam geometries was performed and the results are presented in Chapter 3.

As follows we present a brief description on how conventional Monte Carlo photon transport
engine is instrumented as well as the main principles behind the hybrid method.
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2.5.1 Overview on the Hybrid Analytic-MC Method

Initialization Using a Conventional MC engine
The hybrid approach is initialized by using a conventional MC engine to track X-ray photon
transport in the imaged object. Departing from the X-ray source, each photon is shot with random
energy and direction sampled from a probability density function (PDF) described by the energy-
and direction-dependent filtered X-ray fluence spectrum, Snet(E, i). For every voxel in the photon’s
path, the probability of the photon being transmitted (i.e. passing to the next voxel) or undergoing
an atomic interaction is calculated, based on known cross sections values for Compton, Rayleigh
and Photoelectric events (cf. Annex A.2 for more details on X-ray interactions with matter).
Depending on the interaction type, the effects on the photon’s energy and travelling direction are
the following:

� Compton: change in direction and energy

� Rayleigh: change in direction, conservation of energy

� Photoelectric: photon is entirely absorbed

For every photon, the MC engine keeps track of the following information during the photon
“lifetime”:

� The location pj of the interaction event

� The direction unit vector ~dj in which the photon was traveling before the interaction event

� Energy Ej of the photon before the interaction event

� The type τj of interaction event (Compton, Rayleigh or Photoelectric)

where j is the event index (or its order).

The conventional MC engine described above is used to track and register each event until
the photon escapes from the voxelized phantom volume or until it is completely absorbed by the
object 5. Differently from conventional MC scatter simulation, for the hybrid method the photon’s
final destination after escaping from the voxelized volume has no importance, since we are only
interested in the information at each interaction site. We denote by Σj the collection of information
about every interaction j the photons underwent during its lifetime:

Σj =
{
pj , dj , Ej , τj

}
(2.5)

Because the Monte Carlo simulation of photon transport is a well-known process, we do not
describe it in any detail. Several widely available packages are available to perform Monte Carlo
photon transport (Geant4 [186], MCNP [187], ESG4 [188], . . . ) and they can all be instrumented
to provide Σj .

Analytical Approach for Energy-Dependent Scatter Field Estimation
The next step in the hybrid method is the analytic calculation of the energy-dependent scatter
field by leveraging the collection of information Σj previously obtained. For all multiple tracked
scatter events j, the scatter probability spectrum Ψ(E′j , i) that the photon would scatter with an
energy E′j and be completely transmitted in its way to the sensitive surface of a detector cell i,
can be expressed as:

Ψ(E′j , i) = P
(

scatter from ~dj to ~βi,j | Σj
)
× P

(
transmission from pj to i | Σj

)
(2.6)

5Notice that in order to take into account photon scattering in the imaging systems components such as the
compression paddle, bucky, X-ray tube housing etc, they simply need to be considered as being part of the voxelized
object
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where ~βi,j is the vector from the interaction site j to the detector element i (cf. Figure 2-9). The
first term of Equation 2.6 is the scattering probability function, which can be generalized as:

P
(

scatter from ~dj to ~βi,j | Σj
)

=
∑
Z

f(Σj , ~βi,j , Z)dΩj(i) (2.7)

where f(Σj , ~βi,j , Z) is an analytic function specific for Compton or Rayleigh interactions, Z denotes
every atom inside the voxel at event position pj and dΩj(i) is the solid angle under which the
detector element i is seen from pj .

The function f(Σj , ~βi,j , Z) takes into account the density of every atom Z inside the voxel and

their respective differential cross sections based on the event characteristics {Σj , ~βi,j}. These cross
sections are described by Klein-Nishina (for Compton interactions) and Lorenz-Mie equations (for
Rayleigh interactions). In the case of Compton interactions, the detected photon energy E′j is a
fraction of Ej , and is analytically computed as function of the scattering angle [146].

The solid angle dΩj(i) ensures the transformation into a PDF and is calculated as:

dΩj(i) =
Ai · |〈~βi,j , ~wi〉|
‖~βi,j‖3

(2.8)

where Ai is the sensitive area of the detector element i, ~wi is the unit vector normal to the detector
element surface and 〈·, ·〉 denotes the scalar product operator.

The second term in Equation 2.6 is easier to calculate, relying solely on the Beer-Lambert law
for primary X-rays transmission (Equation 2.2):

P
(
transmission from pj to i | Σj

)
= exp

(
−
∫ 1

0

µ(pj + q~βi,j , E
′
j)dq

)
(2.9)

where µ(·, E′j) is the linear attenuation coefficient at energy E′j of the individual material composing

each voxel in the ~βi,j chord length, parametrized by q. Figure 2-9 summarizes the steps of the
scatter probability field estimation process for an individual photon.

Event Iteration and Scatter Field Convergence
The scatter field calculated with Equation 2.7 can be seen as a probability density function (PDF),
evaluated for a photon with given initial energy and traveling direction. This PDF is evaluated
for every detector element, at every tracked interaction site during an individual photon lifetime,
therefore accounting for high-order interactions. The contribution of the multiple events in the
photon lifetime is accumulated to a total energy-dependent scatter probability field for Compton
and Rayleigh interactions, while being rebinned to the closest energy bin E defined by the pre-
patient fluence spectra Snet(E, i). The process is repeated iteratively with the increasing number
of shot photons and normalized by the total number of photons:

1

N

N∑
n=1

∑
j ∈Σn

j

[
ΨC(E′j , i) + ΨR(E′j , i)

] rebinning−−−−−−→
E′j→E

Ψ(E, i) (2.10)

where indexes C and R refers to Compton and Rayleigh interactions, respectively, n = 1, . . . , N
is the index of each shot photons and Σnj is the collection of information of every interactions j
underwent by the photon n.

For a sufficient number of shot photons, the energy-dependent scatter field Ψ(E, i) will converge
to the true probability distribution that a photon with initial energy and direction picked randomly
from Snet(E, i), will fall with final energy E over a detector element i after being scattered in the
imaged object.
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Figure 2-9: Overview of hybrid MC-analytic scatter simulation

2.5.2 Detector Incident Scattered Photon Fluence Calculation

From Equation 2.10, the X-ray photon intensity spectrum, Iscatter(E, i), incident on the detector
and contributed from scattered photons only, can be calculated as:

Iscatter(E, i) = Ψ(E, i) ·
∑
i∈I

∑
E∗ ∈E

Snet(E
∗, i)dΩs(i) (2.11)

where I is the set of elements i forming the flat detector, E is the set of energy bins considered in
the filtered X-ray fluence spectra Snet(E

∗, i), and

dΩs(i) =
Ai · |〈~Li,s, ~wi〉|
‖~Li,s‖3

(2.12)

is solid angle of detector element i as seen from the source s and ~Li,s is the vector from the source
s to the detector element i. The second term of Equation 2.11 scales the normalized probability
field to a scatter intensity spectrum generated by the total number of photon in Snet(E, i)dΩs(i).

For simplicity, and to be consistent with the variables defined in this chapter, the scatter
intensity spectrum of Equation 2.11 can be transformed into a scattered X-ray photon fluence
spectrum, defined at 1m from the source, using the following relation:

Sscatter(E, i) =
Iscatter(E, i)

dΩs(i)
(2.13)

Notice that since photon scattering is a low-frequency phenomenon, it is not necessary to
calculate the scattered X-ray fluence for every detector element. For large detectors with small
detector element areas, the required calculation time to achieve convergence can increase rapidly.
In this case, it is sufficient to decimate the total number of detector elements in which the scatter
fluence is estimated (as illustrated in Figure 2-9), and then perform an up-sampling interpolation.
In CatSim, this interpolation is performed using B-splines.
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2.6 Monte Carlo Simulation of Absorbed Radiation Dose

Besides scattered radiation estimation, the Monte Carlo engine described in Section 2.5 was also
used to estimate the absorbed radiation dose deposited in breast phantoms during X-ray projection
simulations. The delivered radiation dose was calculated in terms of average glandular dose (AGD),
i.e. the total dose delivered to fibroglandular tissues only.

Similarly to the photon tracking procedure previously described, individual photons are shot
from the X-ray source with random energy and direction sampled from a probability density
function (PDF) described by the energy- and direction-dependent filtered X-ray fluence spectrum,
Snet(E, i). The MC engine tracks the X-ray photon transport inside the voxelized object, with
changes in energy and direction of movement foreseen by Photoelectric, Compton and Rayleigh
interaction models. During the photon’s lifetime, whenever Photoelectric or Compton interactions
occur, the energy (in keV ) absorbed by the voxelized object is accumulated.

The spatial distribution of the deposited energy, Edep(r), at a position r in space, accumulated
after N photons, can be transformed into glandular dose (in units of mGy) using the following
relation:

D(r) =

per interaction︷ ︸︸ ︷
Edep(r) ·Gf (r) ·1.6021× 10−10

mass(r)
· 1

N

∑
i∈I

∑
E∗ ∈E

Snet(E
∗, i)dΩs(i) (2.14)

where Gf (r) is a correction factor to account for the fibroglandular part of the breast only [189],
1.6021 × 10−10 is a conversion factor with units of mGy · keV −1 · g−1, N is the total number of
photons shot during MC simulation, mass(r) is mass associated to the fibroglandular tissue inside
the voxel at position r, I is the set of elements i forming the flat detector, E is the set of energy
bins considered in the filtered X-ray fluence spectra Snet(E, i) and dΩs(i) is solid angle of detector
element i as seen from the source s. As in scattered X-ray photon fluence simulation, the second
term in Equation 2.14 scales the average radiation dose per event to the total number of photons
in Snet(E, i)dΩs(i).

The correction factor Gf can be seen as a weighting factor accounting for eventual partial
volume effects between the fibroglandular tissue and the surrounding breast tissue. It can also
be used to estimate AGD in test objects composed of homogeneous mixtures of fibroglandular
tissue and other materials, usually adipose tissue. As suggested by Wilkinson and Heggie [190],
the correction factor Gf needs to be applied at each photon interaction by weighting any eventual
energy deposition with the scaling factor Gf . Assuming the fibroglandular tissue to be surrounded
by adipose tissue only, Gf can be calculated as [189]:

Gf (r) =
νg(r)(µen

ρ )g

νg(r)(µen

ρ )g + (1− νg(r))(µen

ρ )a
(2.15)

where νg(r) is the weight fraction of glandular tissue in the voxel at position r (e.g. νg = 0.5,
for 50% fibroglandular equivalent material), and (µen/ρ)a and (µen/ρ)g are the mass attenuation
coefficients of adipose and fibroglandular tissues, respectively. Accordingly, the mass associated to
the fibroglandular tissue can be calculated as:

mass(r) = νg(r)× volvoxel × ρ(r) (2.16)

where volvoxel is the voxel volume and ρ(r) is the density of the mixture inside the voxel.

The transformation into AGD is found by tallying the radiation dose deposited in the subset
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G of voxels which contain fibroglandular tissue:

AGD =
∑
r∈G

D(r) (2.17)

Normalized Glandular Dose Coefficients
For investigations where a fixed breast phantom was considered for different input spectra, AGD
was expressed in terms of Normalized Glandular Dose coefficients (DgN) [160, 191] resulting from
monochromatic input beams.

From Equation 2.14, DgN values for a monochromatic beam with energy E, expressed in
radiation per exposure units, mGy ·R−1, at a reference point p in space, are obtained as:

DgN(E) =
∑
r∈G

per interaction︷ ︸︸ ︷
Edep(r) ·Gf (r) ·1.6021× 10−10 · λ−1(E)

mass(r) · Sp(E)
(2.18)

where λ(E) is an energy-dependent factor converting photon fluence to Air Kerma (radiation units
per number of photons crossing a unit of area, R ·mm2) and Sp(E) is the incident monochromatic
beam fluence calculated from the N photons shot with energy E during MC simulation, at a
reference point p in space.

As defined by Boone et al. [160], a polychromatic normalized glandular dose (DgNpoly) can be
calculated as the weighted sum of monochromatic DgN coefficients:

DgNpoly =
∑
E ∈E

Sp(E)λ−1(E)DgN(E)∑
E ∈E Sp(E)λ−1(E)

(2.19)

where Sp(E) is the incident X-ray fluence calculated from Snet(E, i) at a reference point p in space
and E is the set of energy bins considered in Snet(E, i).

For the remainder of this PhD thesis manuscript, we express DgN values in units of mGy/mGy.
The conversion6 from mGy/R to mGy/mGy units is provided by multiplying DgN values obtained
with Equations 2.18 and 2.19 with a factor 0.1145.

6Radiation units: 1 gray (Gy) = 100 rad; 1 gray (Gy) = 114.5 Rontgen (R)
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2.7 X-ray Detection Modeling

For the cone-beam geometry considered during this PhD thesis research, a Flat Panel Detector
(FPD) model was developed and integrated in CatSim simulation chain. The implemented modules
allowed to define energy-integrating (EI) detectors, with simplified modeling of the scintillator’s
collection efficiency, as well as photon-counting (PC) detectors with simplified modeling of photon
pile-up. They also allowed to define multiple sample points for a detection element, incorporating
this way spatial sampling process. Moreover, simplified models of X-ray crosstalk, optical crosstalk,
lag, and other phenomena deteriorating image quality in X-ray projections are also present in
CatSim, but were not used nor discussed in this this PhD thesis research.

In this section, signal and noise propagation for a hypothetical noise-free blur-free detector,
which was the main detector model we used in our research, are described. For experimental
validation purposes, signal and noise propagation inside a realistic indirect conversion scintillator-
based detector are also described.

Flat Panel Detector Definition
In our simulator, Flat Panel Detectors were defined as the concatenation of detector cells (or de-
tection elements, del), distributed uniformly along a flat surface and forming this way the detector
pixel matrix (with rows and columns). Each cell has an active surface, i.e. sensitive to X-rays,
defined by a fill fraction factor. The detector fill fraction models the fact that it could exist a
dead zone between cells (due to electronic components for example), which is not sensitive to the
incoming quanta. A fill fraction of 1 means that the detector has no dead space. A fill fraction
of 0 means that the detector is completely inactive. A detector cell oversampling factor can be
defined, associating multiple sample points over each cell’s sensitive surface. Detector fill fraction
and detector cell oversampling are essential to emulate a continuous sampling window, i.e. the
detector aperture, which is discussed in details below.

Figure 2-10a illustrates an example of FPD construction. In the zoomed detector cell, an
example of 3×3 detector cell oversampling is illustrated, with sample points distributed uniformly
inside the cell’s sensitive surface.

Incident Photon Intensity Calculation
Assuming an X-ray point source s, the X-ray fluence spectrum incident on the detector element
i, Sinc(E, i), considering both primary (cf. Equation 2.2) and scattered radiation (cf. Equation
2.13) is given by:

Sinc(E, i) = Sscatter(E, i) + Snet(E, i)
1

ni

ni∑
i′=1

exp

(∑
o∈O

−µo(E)ti′so

)
(2.20)

where Sscatter(E, i) is the incident X-ray photon fluence contributed from scattered photons only,
Snet(E, i) is the pre-patient X-ray fluence, i′ = 1, . . . , ni are the indexes of the ni sample points
inside the detector element i, µo(E) is the linear attenuation coefficient of each primitive structures
o in the imaged object O the at energy E and ti′so is the thickness of every structure o in the
X-ray beam path i’− s.

Equation 2.20 assumes that the net X-ray fluence spectrum Snet(E, i
′) transmitted by the tube

housing is the same for all detector sample points i′ ∈ i. Finally, the X-ray fluence spectrum
Sinc(E, i) incident on the detector can be transformed into an intensity spectrum Iinc(E, i) (in
number of photons per energy bin) over each detector element i:

Iinc(E, i) = Sinc(E, i)dΩs(i) (2.21)
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Figure 2-10: A scheme of the Flat Panel Detector (FPD) model. The detector is defined as
a concatenation of detection cells. Each cell is defined by its total surface area, an active (or
sensitive) area and a finite number of uniformly distributed sampling points

where dΩs(i) is solid angle of detector element i as seen from the source s (Equation 2.12 and
Figure 2-10b).

2.7.1 Signal and Noise Propagation in Noise-Free Blur-Free Detectors

The signal intensity (SI) in a hypothetical noise-free blur-free detector, i.e., that does not generate
any kind of noise or blurring and for which quantum noise (modeled as a Poisson distribution) is
the only random component, can be approximated as:

SI(i) = κ ·
∑
E ∈E

ξ(E)P {η(E) · Iinc(E, i)} (2.22)

where κ is a scaling factor for digital units, E is the set of energy bins considered in Iinc(E, i),
ξ(E) is the detector conversion response, P{·} denotes the Poisson distribution, η(E) is a function
translating an eventual energy-dependent efficiency in detecting photons, Iinc(E, i) is the X-ray
intensity spectrum incident over the detector element i.

For ideal energy-integrating and counting detectors ξ(E) = E and ξ(E) = 1, respectively, which
translates the integration or counting processes. The function η(E) can be an extremely complex
function accounting for different energy-dependent inefficiencies during the detection process, such
as the absorption of X-ray photons within the scintillators or the spectral response of energy-
discriminating photon-counting detectors during energy threshold.

2.7.2 Signal and Noise Propagation in Indirect-Detection Detectors

Signal and Noise propagation inside indirect-detection X-ray detectors can be modeled as a cascade
model with 7 stages, as suggested by Siewerdsen et al. [192]. These stages comprise 1) the X-ray
interaction with the scintillator, 2) generation of light photons, 3) spreading and 4) coupling of
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optical quanta inside the detector, 5) the collection (aperture) and integration of light photons by
the photodiode, and finally 6) sampling and 7) additive electronic noise during readout.

This process assumes linearity, shift invariance, and stationarity of first- and second-order statis-
tics. Under these assumptions, it has been shown that the mathematical framework developed to
model each stage allows for commutative operations [147], e.g., binomial collection and spreading,
spreading and integration. It also allows the combination of multiplicative factors such as optical
gain, optical collection efficiency, coupling, and other scaling factors. Therefore, disregarding other
nonlinearities (e.g. lag, crosstalk,. . . ), for the investigations carried in this work, signal and noise
propagation was expressed in 4 major steps, plus an additional Analogic/Digital conversion step,
as illustrated in Figure 2-11. The 5-steps are summarized as:

1. X-ray Interaction: the energy-dependent Quantum Detection Efficiency (QDE) and X-ray
quantum noise modeled as a Poisson distribution P{·}

2. Optical Gain: the merging of various multiplication factors such as scintillation gain, light
reflection, optical collection efficiency, photodiode efficiency, etc. It can be seen as the detec-
tor’s total optical efficiency, and is generally expressed in light photons per keV.

3. Optical Spreading: stochastic spreading of the optical quanta inside the converter. In
the frequency domain, it can be approximated as Lorentzian decay7 functions H(fu, fv)
[192–194].

4. Integration and Sampling: the integration of quanta by the photodiode over its sensitive
surface (photodiode aperture transfer function, Π(fu, fv), expressed in the frequency domain)
and assignment of signal content to each detector element (detector sampling grid). Optical
spreading and photodiode aperture form the detector pre-sampling MTF, and depending on
its frequency content, signal sampling may cause aliasing artifacts.

5. Data Acquisition System: the charge readout by the Data Acquisition System (DAS),
adding electronic noise, and A/D conversion from electrons to digital units (d.u., gray levels,
or counts), forming the output image.

The 5 steps framework described above allows to summarize the signal intensity (SI) associated
to a given detector element i in a single mathematical expression. For a simple case where optical

7A generic representation of the Lorentzian function can be written as

L(f) =
1

π

( 1
2
· Γ)

(f − f0)2 + ( 1
2
· Γ)2

where f0 is the central frequency and Γ is a parameter specifying the full width at half maximum. The Lorentzian
function is normalized so that

∫∞
−∞ L(f) = 1 and has a maximum at f = f0, with L(f0) = 2

πΓ

Figure 2-11: Simplified 5-steps cascade model for indirect-detection
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spreading, photodiode aperture and any other spatial variation are not considered, the SI before
A/D conversion (in number of electrons) can be written as:

SI(i) = N (0, σDAS) +G
∑
E ∈E

E · P
(
η(E, i) · Iinc(E, i)

)
(2.23)

where N (0, σDAS) corresponds to the additive electronic noise modeled as a Gaussian distribution
N· with null average (µ = 0) and standard deviation σDAS , G is the total detector gain (combining
optical and electronic gains), E is the set of energy bins considered in Iinc(E, i), P{·} denotes the
Poisson distribution, η(E) is a function translating the energy-dependent QDE and Iinc(E, i) is
the X-ray intensity spectrum incident over the detector element i.

For the energy-integrating scintillator-based detectors used in this PhD research, the function
η(E) was approximated as:

η(E, i) = 1− eµscint(E)tscint(i) (2.24)

where µscint(E) is the linear attenuation coefficient at energy E of a continuous and homogenous
scintillator material and tscint(i) is the oblique thickness of the scintillator at detector element i.

Different studies have demonstrated that it exists a large variation in optical photon spreading
and spatial resolution across the detector surface due to incident X-ray beam obliquity over the
scintillator [194, 195]. More precisely, the response to an infinitely thin X-ray pencil beam, or
Point Spread Function (PSF), becomes asymmetric as the incidence angles increases. In this case,
indirect-detection becomes a nonstationary process. This is particularly true in the case of a breast
tomosynthesis geometry in which the detector remains static. The incidence angle can exceed 30°
and blurring due to oblique X-ray incidence can have a strong impact in resolution. For instance,
Mainprize et al. [195] have reported that at an incidence angle of 40°, the MTF of a bench-top
tomosynthesis system leveraging a GE Senographe® 2000D detector (GE Healthcare; Chalfont
St Giles, UK) falls by 35% at 5 cycles/mm and 65% at 8 cycles/mm, for a typical low-energy
mammography spectrum (Mo/Mo 26kV). Other than resolution degradation, beam obliquity result
in different absorption efficiencies across the detector surface, which may impact signal and noise
transfer to reconstructed breast tomosynthesis images. In our validation studies, only small incident
angles were considered. Hence, for simplicity, X-ray beam obliquity was disregarded in η(E, i)
calculation and optical spreading modeling, since it would entail only for small differences in signal
intensities [195,196].

Equation 2.23 only takes into account the detector sampling process. In order to fully simulate
the spatial resolution of a given detector, the optical spread H(fu, fv) and the photodiode aperture
Π(fu, fv) must be included. These two aspects can be implemented on the frequency domain, while
using multiple uniformly distributed samples over the detector cell to avoid aliasing artifacts. The
degree of oversampling will depend on the frequency contents of H(fu, fv) and Π(fu, fv). If the
hypothesis of linearity, shift invariance, and stationarity are held, then the SI for a detector element
i can be written as:

SI(i) = N (0, σDAS) +G · F−1

{
F

{∑
E ∈E

E · P
(
η(E) · Iinc(E, i)

)}
H(fu, fv)Π(fu, fv)

}
(2.25)

where F{·} and F−1{·} denotes respectively direct and inverse Fourier transform operators in the
detector u-v space.
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2.8 Discussion

In this chapter, we provided a detailed description of the main components of the simulation
platform developed specifically for this PhD thesis research work. X-ray point source models,
emitting low and high-energy fluence spectra, were introduced. Computational breast phantoms
based on analytical and meshed-based structures, as well as the equations modeling the primary
X-ray photons projections were described. X-ray scattering and absorbed radiation dose estimation
using a Monte Carlo engine was detailed. Finally, the detection of transmitted X-ray photons in
digital converters was described for a noise-free blur-free detector and a realistic indirect-conversion
detector. The developed acquisition chain provides the basic tools necessary to achieve the main
objectives of this PhD thesis research and to be discussed in later chapters.

In the light of the Figures-of-Merit exploited in this PhD thesis, a series of assumption and
simplifications were made to the simulation chain in order to keep simulation time manageable and
with no significant impact on the metrics under evaluation.

Previously developed analytical models for low-energy spectra typically used in mammography
(Mo and Rh anodes) and high-energy spectra typically used in current breast CT prototypes
(W anodes) were implemented. A point source emitting X-ray isotropically in every direction
was assumed. This hypothesis is justified for the assessment of low-frequency variations of signal
intensity (e.g. metrics based on average signal, contrast and noise, measured in large regions-
of-interest) but becomes unrealistic for high-frequency variations (especially close to the system
resolution) due to focal spot blurring. For a more realistic source model, one could define multiple
point sources, uniformly distributed over a finite thermal focal spot area. Moreover, a relative
weight representing the local intensity of emitted X-rays could also be associated to each of the
point sources. Focal spot oversampling and point source weighting would allow to emulate a given
X-ray tube emission pattern (uniform, Gaussian, trapezoidal,. . . ) and include the Heel effect.

In the presented model, the acquisitions were assumed to be performed in an ideal “step-and-
shoot” mode, with no blur introduced from tube motion. Step-and-shoot acquisition was the main
model used in this PhD thesis. However, many DBT and bCT systems today are equipped with
continuous X-ray acquisitions, entailing in decreased total acquisition time and reduced patient
motion artifacts. In order to simulate tube motion and its consequent spatial resolution degradation
in projected images, one could define an angular oversampling factor and approximate continuous
motion as the integration of stepwise sub-view projection data into one final projection view. The
result would be a blurring effect due to spatial uncorrelation between sub-views. Combination
of source, detector and angular oversampling are imperative to emulate more realistic spatial
properties of an X-ray acquisition system.

With respect to the indirect-detection X-ray detector model, X-ray beam obliquity was disre-
garded in the scintillator’s energy-dependent absorption efficiency η(E) calculation. As demon-
strated by Hajdok and Cunningham [196], oblique X-rays incident over a scintillator-based detector
has no effect on the NPS, but may reduce the MTF, and as consequence, the Detective Quantum
Efficiency8 (DQE). However, the authors in Ref. [196] showed that these effects are negligible at
low spatial-frequencies (below 5 cycles/mm), but become more pronounced above this threshold,
to finally decrease at higher frequencies. Despite results in Ref. [196] being demonstrated for a
direct-conversion a-Se detector model, similar trends were observed later by Mainprize et al. [195]
using a CsI-based detector model. Nonetheless, as discussed further on in Chapter 5, this effect is
negligible in the light of the Figures-of-Merit and cone-beam geometries under evaluation in this
PhD thesis investigations.

Another notable simplification in the indirect-detection X-ray detector model is that gener-
ation and re-absorption K-fluorescence photons in the scintillator were not fully implemented.
Re-absorption of K fluorescence affects the detected signal intensity due re-absorption of light
photons, the noise associated with the X-ray to light conversion process (energy-dependency of

8DQE(f) = MTF 2(f)/NNPS(f)
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the Swank factor) and the detector spatial resolution due to spreading of the additional quanta
inside the scintillator [197]. However, for the experimental validation purposes discussed in the
Chapter 5, the inclusion of a dedicated model for K-fluorescence was not necessary. As it will
be demonstrated, spatial resolution and local variations of signal intensities were well approxi-
mated through calibration of the total detector gain G and the optical spreading transfer function
H(fu, fv) (Equation 2.25). For the other investigations carried in this PhD thesis (Chapters 5, 6
and 7), no assumption was made on the detector technology and a hypothetical noise-free blur-free
detector was considered.

Finally, before exploiting the developed simulation platform, we wanted to make sure that it
describes with sufficient realism the behavior of actual breast X-ray imaging systems for which we
have access to real data. For this purpose, a complete validation of the different CatSim modules
for X-ray energy ranges and breast thickness and compositions expected in clinical practice are
provided in the next chapter.
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Chapter 3

Validation of CatSim for Breast
X-ray Imaging

As described in Chapter 2, new modules for CatSim simulation chain have been developed to
model realistic 2D/3D breast X-ray imaging systems. To make sure that the implemented simula-
tion chain is in agreement with realistic physical phenomena underlying an X-ray breast imaging
system, an extensive validation of the developed models with regard to previously published and
experimentally obtained data is provided in this chapter.

The validation was conducted in a modular way, i.e. isolating as best as possible each compo-
nent of the acquisition chain and performing individual evaluation on their performance compared
to expected values. In Section 3.1, the X-ray spectrum models exploited for CE-DBT were com-
pared to GE Senographe® DS prototype based Molybdenum and Rhodium anodes. In Section 3.2,
the results of X-ray photon scattering simulation validation are reported. Since we only explored
scattered radiation in a breast CT geometry, simulation results are presented for typical cone-
beam geometry, energy range and phantom sizes expected for CE-bCT. Results were compared to
previously published results. In Section 3.3, Monte Carlo based estimation of average glandular
dose absorbed by the computational breast phantoms was validated. Both typical mammography
and breast CT geometries were considered. Simulation results were compared to previously pub-
lished results based on well-known Monte Carlo packages (e.g. Geant4). In Section 3.4, X-ray
detector model was validated while considering the simplified cascade model for scintillator-based
indirect conversion detectors. A series of experiments on three different X-ray systems, using
both low-energy and high-energy spectra, was performed to assess variations in the detected signal
intensities.

3.1 Spectrum Model Validation

In this section we focus on assessing the beam quality of the SpeXim spectrum model with respect
to experimental data acquired from a mammography system. Conversely, an extensive validation
data on the TASMIP model can be found in Ref. [155] and will no further be discussed.

The term ”beam quality” generally refers to the beam’s penetrating ability. The N-th Value
Layer (VL) is a typical metric to describe the penetrating ability of a spectrum. The N-th VL is
defined as the thickness of a material at which the transmitted radiation fluence is reduced by a
factor N. Beam quality is typically assessed through Half Value Layer (HLV) measurements, i.e.,
N = 2. Measurements of higher order N-th VL (e.g. 1/4th, 1/8th,. . . ) allow for more accurate
evaluation of the beam quality. In this study, N-th VL values were obtained through Air Kerma
measurements using Aluminum as attenuating material.

47
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The procedure relied on measuring the exposure, at a fixed distance from the source, for different
thicknesses of Aluminum. In this setup, disregarding the X-ray beam attenuation in air, the Air
Kerma K transmitted by a thickness tAl of Aluminum at a distance r from the source, can be
written as:

K(t) =
1

r2

∫ ∞
0

λ−1(E)Snet(E)e−µAl(E)·tAldE (3.1)

where Snet(E) is the filtered X-ray fluence spectrum at 1 m from the source, λ−1(E) is the exposure
per fluence conversion factor (radiation units per number of photons crossing a unit of area, R·mm2)
and µAl(E) is the linear attenuation coefficient of Aluminum. From Equation 3.1 we may assume
that the relationship between the measured Air Kerma K and the increasing aluminum thickness
can be described as a nearly exponential relationship. This is because beam hardening inside
the aluminum sheets decreases X-ray fluence beyond the exponential decay foreseen by the Beer-
Lambert law (cf. Annex A.2 for further details on X-ray interaction with matter), particularly for
high thickness values. Equation 3.1 can, in this case, be approximated as

K(t) = K0 · exp (−cte · tAl) (3.2)

where K0 is the reference exposure measurement obtained without aluminum, and cte is a propor-
tionality constant.

Finally, in order to invert Equation 3.2, a log-interpolation was performed to calculate the
aluminum thickness that reduces the reference exposure K0 by a factor N.

3.1.1 Nth Value Layer Assessment for Mo and Rh anodes

To validate the SpeXim model, N-th VL values (N = 2, 4, 8, 10) of simulated spectra were compared
to N-th VL measured on a GE Senographe® DS system (GE Healthcare; Chalfont St Giles, UK).
Four sets of acquisition parameters were considered, covering the pairs of anode and filter available
on a GE Senographe DS system, including one high-energy spectrum typically used for contrast-
enhanced mammography [198]. Table 3.1 summarizes the spectra configuration as well as the
expected HVL and Tube Yield values range, according to GE Senographe DS’s “Mammograph
Quality Test Control Manual”.

Table 3.1: X-ray spectra used in the SpeXim validation experiments and the expected HVL and
Tube Yield values, as required by GE Senographe DS Quality Control (QC) manual

Spectrum HVL (mm) Yield (mGy/mAs)

Mo/Mo 26 kV 0.29 – 0.38 35 – 130
Mo/Rh 28 kV 0.31 – 0.47 35 – 130
Rh/Rh 30 kV 0.33 – 0.5 35 – 130
Mo/Cu 49 kV ∼3.3 N/A

Simulation Setup
For the simulation part, K(t) was analytically calculated as function of the Aluminum thicknesses
using Equation 3.1, at 10 µm step, using analytic test objects. The net fluence spectra Snet(E)
were calculated using raw anode fluence spectra Sraw(E) provided by the SpeXim model with
added flat filtration as foreseen by Equation 2.1. A log-interpolation was performed to inverse
Equation 3.2 and calculate individual 1/2, 1/4, 1/8 and 1/10 VLs.

Experimental Setup
For the experimental part, Air Kerma was measured according to the experimental setup illustrated
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in Figure 3-1 and for increasing Aluminum thickness. Aluminum sheets of various thicknesses were
piled up on top of the compression paddle, which was turned upside down and positioned as close
as possible to the X-ray source. This setup greatly reduces scattered X-rays influence on the dose
measurements. A metallic support was placed on the detector surface to hold a 6 cm3 ionization
chamber (RadCal® 10X6, RadCal Corporation; Monrovia, CA, USA) at 592 mm from the X-ray
source. This support also protects the detector from high exposure levels. The X-ray beam was
collimated to 9 × 9 cm2 Field-of-View (FOV) and the ionization chamber was positioned to be
aligned with the beam’s path.

The reference Air Kerma K0 was measured with no aluminum filtration in the radiation field
of view. The following Air Kerma measurements K(t) were repeated while combining Aluminum
sheets of 100, 200 or 300 µm thicknesses, progressively increasing the total Aluminum thickness tAl.
Finally, in same manner as for the simulation part, by exploring the log-interpolation of Equation
3.2 we calculate the 1/2, 1/4, 1/8 and 1/10 VLs.

Results
Figures 3-2a and 3-2b illustrates measured (markers) and simulated (solid lines) relative Air Kerma
values K(t)/K0 as function of aluminum thickness, for all four considered spectra. Air Kerma
measurements were repeated 6 times and showed on average ∼ 0.01 mGy standard deviation. This
resulted in a maximum 2% error in measured K(t)/K0 values and error bars for Figures 3-2a and
3-2b that were too small to be displayed. From visual inspection, we note the very good qualitative
agreement between measured and simulated curves values.

The bottom row in Figures 3-2a and 3-2b shows the absolute error in K(t)/K0 between sim-
ulated and measured data. Absolute errors in K(t)/K0 ratio were below 2%. The correlations in
error curves seen in Figure 3-2a might be explained by the possible deviation in Aluminum sheets
thickness with respect to their nominal values.

Table 3.2 compares measured and simulated 1/2, 1/4, 1/8 and 1/10 Value Layers. The last
column displays the SpeXim model error relative to the measured values. The last three rows
provide 1st and 2nd order statistics on the relative error. Average error was 1.04%, with one
standard deviation of 1.43%. Median of error values was 0.64%. The highest error (3.65%), found
for Mo/Mo 26 kV spectrum. Notice that, for the high-energy spectra, 1/8 and 1/10 VLs were not
calculated. This is because any further increase in aluminum thickness would decrease X-ray beam
fluence to the ionization chamber’s lower limit of sensitivity, therefore being unable to provide an
accurate Air Kerma measurement.

Discussion
Typical beam quality assessment in X-ray imaging system is limited to the evaluation of HVL
(N=2). In our study, in order to have greater credibility in the implemented model, we evaluated
the agreement between simulated and real X-ray beam penetration ability up to 1/10 Value Layers.

For SpeXim model validation, we presented qualitative (shape of the curves of relative Air
Kerma as function of the Aluminum thickness in Figures 3-2a and 3-2b) and quantitative (errors
in relative Air Kerma and N-th value layer measurements) that the beam penetrating ability
reflects well the behavior of a typical mammography X-ray tube for both LE and HE spectra, with
approximately 1% error on average.
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Figure 3-1: Experimental set-up for beam quality validation between SpeXim model and a real
mammography system

Figure 3-2: The top row shows relative dose values K(t)/K0 as function of the aluminum thickness,
calculated using experimental (markers) and simulated (solid lines) data for (a) low-energy and
(b) high energy spectra. The bottom row shows absolute error of K(t)/K0 between simulated and
measured data
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Table 3.2: Experimentally assessed and simulated N-th value layers. Simulations were performed
with CatSim using the SpeXim spectrum model

Spectrum FOM CatSim Measurement error (%)

Mo/Mo 26 kV

HVL (mm) 0.339 0.327 3.65
1/4 VL (mm) 0.752 0.748 0.57
1/8 VL (mm) 1.225 1.235 -0.86
1/10 VL (mm) 1.385 1.382 0.24

Mo/Rh 28 kV

HVL (mm) 0.417 0.415 0.53
1/4 VL (mm) 0.921 0.925 -0.44
1/8 VL (mm) 1.493 1.499 -0.46
1/10 VL (mm) 1.691 1.679 0.72

Rh/Rh 30 kV

HVL (mm) 0.446 0.441 1.05
1/4 VL (mm) 1.019 1.020 -0.12
1/8 VL (mm) 1.700 1.642 3.53
1/10 VL (mm) 1.935 1.875 3.19

Mo/Cu 49 kV

HVL (mm) 3.469 3.415 1.59
1/4 VL (mm) 7.288 7.193 1.31
1/8 VL (mm) - - -
1/10 VL (mm) - - -

MEAN 1.04
STD DEV 1.43
MEDIAN 0.64
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3.2 X-ray Scatter Simulation Validation

The goal of this section is to validate the performance of CatSim’s conventional Monte Carlo (MC)
engine and hybrid analytic-MC scatter simulator in a breast X-ray imaging setting. Since our
work focuses on cone-beam geometry, validation results are provided for different setups around
this geometry only. Scatter point spread functions, scatter intensity maps and scatter-to-primary
ratios maps were computed. The effect of geometric set-ups, X-ray spectrum, as well as test object
composition, size and shape were evaluated.

Our results were compared to previously published data, including experimentally assessed data
and Monte Carlo derived scatter data.

3.2.1 PSF for Infinitely Wide Flat Phantoms

The experiment described below is a preliminary verification of the calculations concerning photons
scattering and fluence estimation previously discussed in Section 2.5. To validate the Rayleigh
and Compton photon scattering calculations within the Monte Carlo engine, simulated Point
Spread Function (PSF) of scattered radiation was compared with the validated Monte Carlo engine
SIERRA, developed by Boone et al. [199]. Point-spread functions were calculated for a limited set
of beam energies and phantom thicknesses, and the results compared to published results [178].

Simulation Setup
To match the geometry used by Boone et al., an X-ray pencil beam was shot from a point source
at 650 mm from a flat panel detector surface, at normal incidence angle. A 50% fibroglandular
equivalent phantom, extremely wide, with constant thickness and voxelized at 1 mm3 voxel size,
was positioned parallel to the detector surface with a 10 mm air gap. Figure 3-3 illustrates the
simulated geometry.

One million photons with given initial energy were tracked inside the phantom and underwent
Photoelectric, Rayleigh and Compton interactions. The scattered X-ray photon intensity spectrum,
Iscatter(E, i), incident on the detector was calculated using the hybrid analytic-MC approach,
according to Equation 2.11. The scattered photons were detected and accumulated by a perfect
energy-integrating detector at a given position of its surface. The resulted signal will be referred
to as being obtained from the hybrid approach. For comparison, the same photons were tracked
down to detector surface, and their energies deposited individually at their terminal position over
the detector surface. The results will be referred to as being obtained from the pure Monte Carlo
approach.

The spatial distribution of the detected scattered photons energy was translated into polar
coordinates Edetected(r, θ), with origin at the incident primary photon position. The radial profiles
were integrated over 2π and tallied into n increments of radius, at 1 mm spacing step (Figure
3-3b). Accounting for differences in the n annulus surfaces, the final PSF was calculated as

PSF (rn) =

∫ 2π

0
Edetected(rn, θ)dθ

π(r2
n − r2

n−1)
(3.3)

PSF were calculated for three different acquisition setups: i) a 20 mm thick phantom hit by a
20 keV beam, ii) a 80 mm thick phantom hit by a 30 keV beam and iii) a 40 mm thick phantom
hit by a polychromatic spectra generate by a Molybdenum (Mo) anode at 26 kV tube voltage and
0.03 mm Mo filtration.

Results
Figure 3-4a illustrates the PSF calculated using the hybrid method (solid lines) and pure Monte
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Figure 3-3: (a) Simulation setup for scattered radiation PSF validation; (b) illustration of scattered
photons spatial distribution over the detector surface. The scattered photon energy is accumulated
into n annulus surfaces, at step-wise increments of the radial distance rn from the normally incident
primary photons position

Carlo (dashed lines), as well as the reference data (circles) from previously validated Monte Carlo
engine [199], for the three considered acquisition setups. From visual inspection, we observe good
agreement between both hybrid and pure MC curves obtained with CatSim and the reference MC
simulator.

It must be emphasized that since the results in Ref. [199] were not explicitly available (either
numerically or electronically), the reference data points illustrated in Figure 3-4a were obtained by
superposing magnified versions of the published curves over a high-resolution sampling grid. The
errors during the sampling process were estimated to be below the differences observed between
simulated and reference data. Unless otherwise specified, the same sampling process was used in
the remainder of this chapter to retrieve data points from reference publications.

Figure 3-4b illustrates a qualitative comparison between the detected energy map, Edetected(r, θ),
obtained with pure Monte Carlo and hybrid methods, while using the same input beam and the
same number of photons (106). From the curves in Figure 3-4a and the maps Figure 3-4b we may
notice that, for the same number of shot photons, the hybrid approach presents much smoother
energy distributions and PSFs when compared to pure Monte Carlo approach.

Discussion
The objective of this experiment was to verify if photon transport calculations inside CatSim Monte
Carlo hybrid engine agrees with the expected behavior predicted by Photoelectric, Compton and
Rayleigh interaction models (cf. Annex A.2 for details on X-ray interactions with matter). We
therefore assumed a limited set of X-ray spectra: two monochromatic beams at 20 and 30 keV,
and one polychromatic spectra at typical mammography energy levels.

This experiment was also a preliminary step in the validation of Monte Carlo engine for absorbed
radiation dose estimation, described in Section 3.3. Further indications on the quality of scattered
radiation spreading over a flat detector, and for a wider range of acquisition conditions, are provided
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Figure 3-4: (a) CatSim PSF comparisons with reference; (b) Detected energy Edetected on the
detector surface, for pure Monte Carlo and Hybrid approaches

as follows.

3.2.2 Scatter and Scatter-to-Primary Ratios Profiles

In the second part of the scatter simulation module validation, signal intensity profiles, or Scatter
Intensity profiles, generated from incident scattered radiation in an ideal blur-free detector, as
well as Scatter-to-Primary Ratio (SPR) radiation profiles were simulated with hybrid analytic-MC
method and compared to previously validated Monte Carlo engines. The experiment focused in
verifying the accuracy of the simulated scatter intensity distribution over the flat detector, when
different cone-beam breast CT geometries, input spectra, as well as different phantom sizes and
composition are considered.

Table 3.3 summarizes the three previously published references chosen for the comparison, as
well as the simulation parameters involved.

Simulation Setup
Following the description in Ref. [200], a cone-beam geometry illustrated in Figure 3-5a was as-
sumed, with SDD = 785 mm and SID = 415 mm. A 40 × 30 cm2 ideally sharp perfect energy-
integrating detector, with 0.31 mm pixel pitch and equipped with 600 µm-thick CsI scintillator
was considered. A 160 mm diameter, 240 mm wide homogeneous water phantom was centered at
the system’s center-of-rotation (COR) and voxelized into 2 × 2 × 2 mm3 voxel size. The incident
spectrum, emitted from a point source, was generated using the TASMIP model for a W anode
with 120 kV tube voltage and filtered with 8 mm of Aluminum. Scatter signal intensity was

Table 3.3: References for Scatter and Scatter-to-Primary Ratios Profile validation
Reference MC Engine Geometry X-ray Spectra Cylindrical Phantom

Kyriakou et al. 2006a ImpactMC SDD/SID=785/415mm W/Al 120 kV Water / 16 cm

R. Bhagtani & GEANT4 SDD/SID=780/465mm W/Al 80 KV, PMMA / 10,

TG. Schmidt, 2009b 50 keV 14, 18 cm

Liu et al., 2005c GATE (GEANT4) SDD=910mm W/Al 60 kV 50% fibroglandular/
Air Gap = 15, 20, 25cm 10, 12, 14 cm

a Ref. [200]
b Ref. [110]
c Ref. [113]
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estimated using conventional Monte Carlo method with 109 photons and using the hybrid method
with 106 photons.

Following the description in Ref. [110], a centered cone-beam geometry illustrated in Figure
3-5b was assumed1, with SDD = 780 mm and SID = 465 mm. A 40 × 30 cm2 ideally sharp
photon-counting detector, with 100% detection efficiency and 0.394 mm pixel pitch was considered.
Three 50% fibroglandular equivalent cylindrical phantoms with 10, 14 and 18 cm diameters and
heights equal to 1.5 times their respective radius were simulated. Simulations for the 10 and 18
cm diameter phantoms were carried according to a W anode 80 kV spectrum generated using
the TASMIP model and filtered with 3 mm of Aluminum, while scatter simulation for the 14 cm
diameter phantom was carried for a 50 keV monochromatic X-ray beam. One million photos (106)
were tracked in 2×2×2 mm3 voxels, to generate scatter signal intensities over the detector. Scatter-
to-Primary Ratio (SPR) maps over the detector, i.e., the ratio between the signal generated from
scattered photons only and the signal generated from primary photons only, were also calculated for
each experimental condition. Primary signal intensities were calculated from analytic projections
of each considered phantom.

Finally, following the description in Ref. [113], a shifted cone-beam geometry illustrated in
Figure 3-5b was assumed, with SDD = 910 mm. A 25× 20 cm2 ideal blur-free energy-integrating
detector, with 100% absorption efficiency and 2 mm pixel pitch was considered. Three 50%
fibroglandular equivalent cylindrical phantoms with 10, 12 and 14 cm diameters and heights equal
to 1.5 times their respective radius were simulated. The phantoms were positioned such as the
cylinder’s top cross-sectional plane was aligned with the COR. The incident spectrum, emitted from
a point source, was generated using the TASMIP model for a W anode with 60 kV tube voltage
and filtered with 1.5 mm of Aluminum. One million photos (106) were tracked in 2× 2× 2 mm3

voxels, to generate scatter signal intensities and SPR maps over the detector when the 10, 12 and
14 cm phantom were positioned such as to leave 15, 20 and 25 cm air gaps from the detector for
a fixed SDD value (i.e., corresponding to the difference SDD − SID values).

Results
Figure 3-6a shows the scatter intensity over the flat detector when hybrid and pure MC methods are
used following the experiments carried in Ref. [200]. While employing 1000 times less photons, the
hybrid method produces much smoother scatter intensity over the detector compared to pure MC
method. Figure 3-6b shows the center profiles, perpendicular to the cylinder axis, for the hybrid
and pure MC method, as well as the center scatter intensity from the reference. From visual
inspection, very good agreement in the curves shape and intensity was found between CatSim
simulations and the reference results.

Figure 3-7a shows the scatter intensity over the flat detector when the hybrid method is used, for
different input spectra and phantom diameters, as described in the experiments of Ref. [110]. Figure
3-7b shows the center SPR profiles, perpendicular to the cylinder axis, for the three simulated
setups, as well as the center SPR profiles from the reference. From visual inspection, very good
agreement was found between CatSim simulations and the reference results.

SPR curves in Figure 3-7b are higher with increasing phantom size. The authors in Ref. [110]
also observed that, for the same phantom size, SPR profiles are similar when considering a 50 keV
monochromatic spectra and a W/Al 80 kV polychromatic spectra. This is because it exists an
averaging effect on the energy-dependent scatter intensities of W/Al 80 kV spectra, giving similar
results to a monochromatic beam energy equal to the polychromatic spectrum average energy, i.e.,
approximately 50 keV in this case.

Figures 3-8 and 3-9 illustrate the dependency of scatter intensity and SPR with increasing
phantom diameter (fixed air gap) and increasing air gap (fixed phantom diameter), respectively,

1Notice that the geometry adopted in Ref. [110] was based on the scatter experiments carried by Kwan et al. [114]
in a table top prototype. Due to the lack of precise information in Ref. [114] about the phantom positionning with
respect to the COR, it was assumed that the COR was aligned with the center of the flat detector
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Figure 3-5: Simulated cone-beam geometries used for scatter simulation validation, according to
(a) Ref. [200] and Ref. [110] and according to (b) Ref. [113]

Figure 3-6: Scatter intensity profile comparison with Ref. [200]. (a) Scatter signal intensity over the
detector surface using Hybrid and pure Monte Carlo approaches; (b) central profiles comparison
with reference
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Figure 3-7: SPR profiles comparison with Ref. [110]. (a) Scatter Intensity over the detector surface
using Hybrid method for W/Al 80 kV and 10 cm diameter phantom, monochromatic beam at 50
keV and 14 cm diameter phantom and W/Al 80 kV and 18 cm diameter phantom ; (b) central
SPR profiles comparison with reference results

as described in the experiments carried in Ref. [113]. Both Scatter Intensity and SPR profiles
displayed in Figures 3-8 and 3-9 are taken from a centered line perpendicular to the cylinder axis
(coronal plane) and a centered line aligned with the cylinder axis (axial plane). The “bumps” or
“discontinuities” in both scatter intensity and SPR profiles occurs at the frontier of the cylinder’s
edges and the air.

Figure 3-8 shows that, for a fixed geometry and the same number of shot photons, scatter
intensity decreases with increasing phantom diameter while SPR increases with increasing phan-
tom diameter. Figure 3-9 shows that, for a fixed phantom size, both scatter intensity and SPR
decrease with the increasing air gap. From visual inspection, in both Figures 3-8 and 3-9 very
good agreement was found between CatSim simulations and the reference results.

Discussion
The objective of this experiment was to evaluate the accuracy of scattered radiation spreading
over a flat detector. For this experiment, we focused on assessing scatter intensity and scatter-
to-primary ratios specifically for cone-beam breast CT geometries. Typical clinical input spectra
(ranging from 60 to 120 kV tube voltage) and uncompressed breast phantom sizes (ranging from
10 to 18 cm in diameter) were considered.

To assess the performance of our pure MC and hybrid analytic-MC simulators, CatSim simula-
tions were compared to three different Monte Carlo engines [110,113,200]. Since the actual data in
Ref. [110,113,200] were not published, all conclusions were drawn solely through qualitative visual
inspection between an approximate curve retrieved from the publications and those obtained with
CatSim. A fair quantitative comparison would require access to the reference actual data, which
was unfortunately not available.

3.2.3 Peak Scatter-to-Primary Ratio Values

Finally, in the last part of the scatter simulation module validation, maximum Scatter-to-Primary
Ratio (SPR) values from simulated data were compared to SPR values previously published by
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Figure 3-8: Scatter Intensity and SPR profile comparison with Ref. [113]. Dependency of Scatter
Intensity and SPR with phantom diameter, for 15 cm air gap, using Hybrid method. (a),(b) Scatter
Intensity over the detector surface taken along the coronal and axial planes, respectively; (c),(d)
SPR over the detector surface taken along the coronal and axial planes, respectively
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Figure 3-9: Scatter Intensity and SPR profile comparison with Ref. [113]. Dependency of Scatter
Intensity and SPR with air gap, for the 12 cm diameter phantom, using Hybrid method. (a),(b)
Scatter Intensity over the detector surface taken along the coronal and axial planes, respectively;
(c),(d) SPR over the detector surface taken along the coronal and axial planes, respectively
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Kwan et al. [114], measured on a table top cone-beam X-ray system. The experiment focused in
verifying the quality of the simulated scatter intensity with respect to experimental data from a
real X-ray system, while varying the input spectra and phantom sizes.

Simulation Setup
Similarly to the previous experiments, following the description in Ref. [114], a centered cone-beam
geometry illustrated in Figure 3-5b was assumed, with SDD = 780 mm and SID = 465 mm. A
40 × 30 cm2 ideal blur-free energy-integrating detector, with 100% efficiency and 0.394 mm pixel
pitch was considered. Three 50% fibroglandular equivalent cylindrical phantoms with 10, 14 and 18
cm diameters and heights equal to 1.5 times their respective radius were simulated. The incident
spectrum, emitted from a point source, was generated using the TASMIP model for a W anode
with 40, 60, 80 and 100 kV tube voltage and filtered with 3 mm of Aluminum. Two millions
photos (2.0× 106) were tracked in 2× 2× 2 mm3 voxels, to generate scatter signal intensities over
the detector. Maximum SPR values were estimated using mean per-pixel signal intensities on a
region-of-interest at the center of primary-only projections and the mean per-pixel signal intensities
on a region-of-interest at the center of scatter-only projections.

Results
Figure 3-10a illustrates maximum SPR values for the 14 cm diameter phantom as function of the
tube voltage. Figure 3-10b illustrates maximum SPR values for 80 kV tube voltage as function of
the phantom diameter. Figure 3-10c illustrates maximum SPR values for 80 kV tube voltage as
function of the phantom diameter, but when the SDD value increases from 780 to 880 mm (i.e.
air gap increasing from 315 to 415 mm, for a fixed SID value). Solid lines represent simulated data
and squared markers represent measured data found in Ref. [114].

Figure 3-10a shows that peak SPR values decrease with increasing tube voltage. Figures 3-
10b and 3-10c show that peak SPR increases with phantom size and decreases slightly (in this
setup) with increasing air gap, as observed in the previous studies. From visual inspection, good
agreement in the trends of both simulated and measured peak SPR values was found.

For a quantitative analysis, Figure 3-11a summarizes the results of Figures 3-10a, 3-10b and
3-10c into a scatter plot of measured peak SPR values found in Ref. [114] versus simulated peak
SPR values. The solid line represents the linear regression of paired data, which showed coefficient
of determination (R2) equal to 0.9925. Residuals from the linear regression, which are shown in
Figure 3-11b, are randomly dispersed around the null error line, confirming the goodness of the
regression.

Discussion
The greater differences in peak SPR values were found for 80 and 100 kV tube voltages (respectively
0.06 and 0.08 absolute errors in Figure 3-10a). In order to explain this behavior, we emphasize
that the authors in reference Ref. [114] suggested a correction to the TASMIP model by adding
Aluminum such as to meet the actual X-ray tube half value-layer. However, due to the lack of
details in Ref. [114], in this experiment such correction was not performed, which might explain
the differences in SPR values for high tube voltages. Nonetheless, simulation results demonstrated
good agreement in the trends of peak SPR values, with less than 5% error after linear regression
correction.
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Figure 3-10: Maximum SPR value comparison with Ref. [114]. (a) Maximum SPR values as
function of tube voltage; (b)-(c) Maximum SPR profiles as function of phantom diameter for 315
mm and 415 mm air gap, respectively. Solid lines represent SPR results simulated with CatSim,
while markers represent published SPR measurements found in Ref. [114]

Figure 3-11: Scatter plot of reference vs simulated peak SPR values found in Figure 3-10
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3.3 Glandular Dose Simulation Validation

Absorbed dose simulation using CatSim’s MC engine was validated with previously published
results for a conventional mammography geometry and a breast CT geometry. The Figure-of-Merit
for dose simulation validation was the Normalized Glandular Dose (DgN) coefficients. DgN values
have been previously defined as conversion factors between Air Kerma and Average Glandular
Dose (AGD), i.e., the total radiation dose deposited in the breast fibroglandular tissue only.

3.3.1 Conventional Mammography Geometry

Simulation Setup
Monochromatic DgN coefficients calculated with CatSim were compared to DgN coefficients pub-
lished by Boone et al. [160]. The latter were obtained using the validated Monte Carlo engine
SIERRA, developed by the same research group [199].

Figure 3-12 illustrates the simulated geometry. To match the geometry used by Boone et al., a
flat X-ray detector was placed 65 cm away from a point source. A half-cylinder phantom modeling
the compressed breast in a cranial-caudal (CC) view, with 8.5 cm radius and either 2, 4 and 6
cm thicknesses, was positioned such as to leave a 1.2 cm air gap between the phantom and the
detector surface. The half-cylinder was composed of 50% and 100% homogeneous fibroglandular
equivalent materials. A skin layer of 4 mm encapsulated the half-cylinder. To account for possible
photon backscattering from the patient body, a chest wall was modeled as a very large object with
same composition as the irradiated breast.

Monte Carlo simulations were carried with incident photon energies ranging from 16 to 50
keV, using 2 keV steps. One million photons undergoing Rayleigh, Compton and photoelectric
interactions were tracked in 2 × 2 × 2 mm3 voxels. The energy absorbed by the homogeneous
fibroglandular equivalent breast tissue was tallied and corrected to account for the fibroglandular
part of the breast only [189]. As suggested by Wilkinson and Heggie [190], this correction was
applied at each photon interaction by weighting any eventual energy deposition with a scaling
factor Gf . Finally, DgN values translating the AGD per unit of exposure at the breast entrance
surface can be calculated following Equation 2.18, defined in Section 2.6.

Results
Figures 3-13a and 3-13b show scatter plots comparing monochromatic DgN values calculated using
CatSim’s MC engine with reference DgN values found in Ref. [160]. For this experiment only,
reference data points were calculated from a nonlinear fit model with coefficients published in
Ref. [160].

Figure 3-13a illustrates results for the 2 cm and 6 cm thick 50% fibroglandular equivalent
phantoms. Figure 3-13b illustrates results for the 4 cm and 6 cm thick 100% fibroglandular
equivalent phantoms. The solid lines represent the linear regression of paired data, with coefficient
of determination (R2) displayed beside each line. A very good agreement was found between
CatSim results and the reference publication, with coefficient of determination R2 greater than
0.99.

Figures 3-13c and 3-13d show the DgN coefficients of Figures 3-13a and 3-13b, respectively, as
function of the incident monochromatic beam energy. Below ∼10 keV, radiation dose is mainly
absorbed by the skin and DgN values are close to zero. For energies higher than 10 keV, DgN
values increase rapidly as function of energy due to the increased beam penetration and 2nd order
scattering in the breast tissues. From ∼40 keV onwards DgN values increase slowly since most
energy is transmitted through the phantom.

Discussion
In this study, DgN values were validated for a conventional mammography geometry. It must
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Figure 3-12: Simulated geometry used to validate DgN simulation with CatSim using conventional
mammography geometry. This illustration was adapted from Ref. [160]

Figure 3-13: Results of glandular dose simulation validation for mammography geometry. (a)-(b)
Scatter plot between DgN coefficient calculated with CatSim and the DgN coefficients published
in Ref. [160]; (c)-(d) The same DgN coefficients as function of the incident monochromatic energy
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be emphasized however that, for a digital breast tomosynthesis (DBT) acquisition, DgN values
are likely to vary as function of the oblique incident angle. In a similar Monte Carlo study,
Sechopoulos et al. [201] evaluated the absorbed dose as function of the oblique incidence angle α,
using a relative glandular dose coefficient metric, RGD(α), with respect to DgN values obtained
at 0° incidence. The authors reported that for a CC view, RGD(α) values decrease as low as
0.8 at α = 30°, depending mainly on breast thickness and chest-wall to nipple distance. As
a consequence, the mean RGD value over all angles µRGD =

∑αmax
α=αminRGD(α), varies from

minimum 0.91 and maximum 0.97 values including all experimental conditions. Hence, the use of
conventional mammography DgN values for DBT can overestimate the AGD by almost 10%.

In this PhD thesis research, unless otherwise stated, the investigations exploiting a DBT geom-
etry assumed a 50% glandular 5 cm-thick breast with a chest-wall to nipple distance of ∼ 10 cm in
a CC view compression (cf. Section 2.3 for a description). In this case, and assuming an acquisi-
tion with total angular range of 25° (SenoClaire�, GE Healthcare; Chalfont St Giles, UK), µRGD
values reported by Sechopoulos et al. would entail approximately 2% decrease in total AGD, with
respect to a conventional mammography incidence. Since this small error does not significantly
impact the Figures-of-Merit under evaluation, DgN values obtained at 0° incidence were used in
our work to estimate AGD in a DBT geometry.

3.3.2 Breast CT Geometry

Simulation Setup
Monochromatic DgN coefficients calculated with CatSim were compared to DgN coefficients re-
ported previously by Thacker and Glick [112], in which GEANT3 software package2 was used.

Figure 3-14a illustrates the simulated geometry. To match the geometry used by Thacker and
Glick, a point source was positioned at 100 cm from a flat detector, such as to make a half-cone
beam geometry. The breast was modeled as a 50% fibroglandular equivalent cylinder with three
different diameters (10, 14 and 18 cm) and height equal to 1.5 times their radius. A 4 mm skin
layer encapsulated the cylinder object, except at the top side. The cylinders’ central axes were
positioned at 60 cm from the source and such that the beam ray normal to the detector passed
through the top of the cylinder. In order to account for possible backscattering from the body,
the patient torso was modeled as a 30 cm diameter water cylinder, with long axis parallel to the
beam’s direction and placed directly next to the breast.

Monte Carlo simulations were carried with incident photons having energies ranging from 15
to 120 keV, at 5 keV step. One million photons undergoing Rayleigh, Compton and photoelectric
interactions were tracked in 2×2×2 mm3 voxels. DgN coefficients were calculated using Equation
2.18, translating the total AGD per unit of exposure at the system isocenter. The correction factor
Gf was applied in the same manner as the previous section, such as to account for fibroglandular
part of the 50% fibroglandular equivalent homogeneous mixture.

Results
Figure 3-15 shows the DgN coefficients calculated with CatSim MC engine, as well as the reference
DgN coefficients found in Ref. [112], as function of the incident monochromatic energy, for the 10,
14 and 18 cm diameter phantoms. From visual inspection, very good agreement between simulated
and reference DgN values can be observed for all three breast sizes.

Discussion
We have shown that the differences between previously published DgN values and DgN values
simulated with CatSim’s MC engine are in very good agreement.

2http://wwwasd.web.cern.ch/wwwasd/geant/

http://wwwasd.web.cern.ch/wwwasd/geant/
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Figure 3-14: Simulated geometry used to validate DgN simulation with CatSim using a breast CT
geometry set-up. This illustration was adapted from Ref. [112]

Figure 3-15: DgN coefficients calculated with CatSim as well as the DgN coefficients published in
Ref. [112], as function of the incident monochromatic energy
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Previously published DgN values were also obtained through MC simulation. To the best of
our knowledge DgN values have not been validated yet through experiment. Nevertheless, the
good match indicates that the AGD derived from the simulated DgN values we will calculate in
Chapters 5, 6 and 7 will be comparable to values found in literature.

Differently from what reported in Ref. [112], in the present study, the spatial distribution of the
deposited energy in the phantom was not assessed. This is because the purpose of our simulation
was to ensure we can compute total AGD values comparable to those found in literature.
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3.4 Detector Model Validation

As previously discussed, the investigations carried during this PhD thesis research and presented in
the following chapters, have been mainly focused on noise-free blur-free detectors, i.e., a detector
that does not generate any kind of noise or blurring and for which quantum noise is the only random
component. Since the model for signal and noise propagation defined in Equation 2.22 is a widely
adopted model for such idealistic detectors, the validation experiments presented in this section
were not focused in evaluating Figures-of-Merit (FOM) for an exhaustive set of input acquisition
setups and geometries. The validation experiment aimed to validate the developed simulation chain
and their individual modules and parameters, such as phantom projection, absorption efficiencies,
conversion factors, energy-integration and Poisson-distributed quantum noise.

To validate the idealistic detection model, a series of experiments on three real X-ray sys-
tems were performed and reproduced in simulation. A GE Senographe® DS system and a GE
Senographe® Essential mammography system (GE Healthcare; Chalfont St Giles, UK) using low-
energy spectra, as well as a GE Innova� Interventional Image Guided System (IGS) 620 (GE
Healthcare; Chalfont St Giles, UK), using high-energy spectra, were considered. The experi-
mental setups were reproduced in simulation, while considering the simplified cascade model for
scintillator-based indirect conversion detectors, defined previously in Equation 2.25. By validating
the signal and noise propagation in such detectors while considering straightforward acquisition
setups and energy ranges that have been adopted throughout this PhD thesis research and typical
for a contrast-enhanced breast X-ray imaging, it was assumed that signal and noise propagation
in noise-free blur-free detectors would also be validated.

Various FOMs were assessed: detector pre-sampling Modulation Transfer Function (MTF),
Noise Power Spectrum (NPS) and image descriptive statistics for stationary signals such as average
and standard deviation of signal intensities, and consequent Signal-to-Noise Ratio (SNR).

For convenience, Equations 2.22 and 2.25, corresponding to signal and noise propagation in
noise-free blur-free and indirect conversion detectors, respectively, are recalled below:


Eq. 2.22 : SI(i) = κ

∑
E ∈E

ξ(E)P {η(E) · Iinc(E, i)}

Eq. 2.25 : SI(i) = N (0, σDAS) +G · F−1

{
F

{∑
E ∈E

E · P
(
η(E) · Iinc(E, i)

)}
H(fu, fv)Π(fu, fv)

}

where κ is a scaling factor for digital units, ξ(E) is the detector conversion response, P{·} denotes
the Poisson distribution, η(E) is a function translating an eventual energy-dependent efficiency in
detecting photons, Iinc(E, i) is the X-ray intensity spectrum incident over the detector element
i and energy bins defined in the set E , N (0, σDAS) corresponds to the additive electronic noise
modeled as a Gaussian distributionN (µ, σ) with null average (µ = 0) and standard deviation σDAS ,
G is the optical gain, F{·} and F−1{·} denote respectively the direct and inverse Fourier transform
operators, H(fu, fv) and Π(fu, fv) are respectively the optical spread and photodiode aperture
transfer functions, with fu and fv corresponding to columns and rows directions, respectively, in
the frequency domain.

3.4.1 Modulation Transfer Function

In order to evaluate CatSim’s ability in emulating the spatial resolution of a given X-ray system
and as a pre-requirement for the evaluation of noise propagation, we compared the pre-sampling
MTF measured in X-ray projections acquired with a Senographe DS, Senographe Essential and
Innova IGS620 systems and the pre-sampling MTF measured in X-ray projections simulated with
CatSim.
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Figure 3-16 illustrates the methodology used to implement the optical spreading in CatSim
and perform the comparison of measured and simulated MTF. 1) X-ray projection images of a
thin radio-opaque Tungsten sheet are acquired for each considered X-ray system; the MTFs are
the calculated using the edge method and 2) the optical spread transfer function H(fu, fv) are
modeled using Lorentzian decay functions. 3) H(fu, fv) is introduced CatSim acquisition chain
(Equation 2.25). Using the same geometry adopted for the three experimental setups, X-ray
projection images of a thin radio-opaque Tungsten sheet are simulated and the MTFs calculated
using the edge method. Finally, 4) previously measured MTFs and simulated MTFs are compared.
Further details on steps 1 to 4 are provided as follows.

Experimental Setup
The calculation of the MTF for each considered X-ray system was performed using the edge method
and with aid of a software tool developed by Kao et al. [202].

X-ray projection images of a 100µm-thick radio-opaque Tungsten sheet placed directly on the
X-ray detectors were acquired. The Tungsten sheet was positioned such as to make a small angle
(ϕ ≈ 3°) with respect to the detector elements matrix (Figure 3-17a). X-ray fluence spectra for
Senographe DS and Senographe Essential systems were set for a Rhodium (Rh) anode with 28 kV
tube voltage filtered with 0.25 mm of Rh and set to 20 mAs of exposure. The correspondent
simulated X-ray fluence spectra were generated using the SpeXim model. X-ray fluence spectra
for Innova IGS620 system was a Tungsten anode with 80 kV tube voltage, 80 mA tube current,
10 ms pulse width and filtered by 0.3 mm of Copper. The correspondent simulated X-ray fluence
spectra were generated using the TASMIP model with additional 1.5 mm of Aluminum filtration
to match the system’s HVL.

The digital images were processed with the MTF tool described in Ref. [202] to obtain the
pre-sampled MTF. Image processing include the detection of the edge angle, reprojection and
sub-binning of the individual edge spread function (ESF) (Figure 3-17b) to obtain an oversampled
ESF (Figure 3-17c). By differentiating the oversampled ESF, the Line Spread Function (LSF)
was generated, and the absolute value of its Fourier transform originates the measured MTF,
MTFmeas(f) (in 1D only at this stage).

Estimation of the Optical Photon Spread Transfer Function H(fu, fv)
It was assumed that system’s pre-sampled MTF, MTFpre, is the concatenation of four responses
functions: the focal spot emission pattern Hfs, the X-ray tube motion blur Hmotion, the scintillator
optical spread Hscint = H(fu, fv) and the detector cell aperture transfer function Hap = Π(fu, fv).
Hence, in the frequency domain, MTFpre can be expressed as:

MTFpre(fu, fv) = Hfs(fu, fv) ·Hmotion(fu, fv) ·H(fu, fv) ·Π(fu, fv) (3.4)

Since the gantry is static during the acquisition, Hmotion(fu, fv) = 1. With the Tungsten sheet
placed directly over the detector, the influence of the focal spot blur is almost null since the focal
spot size is very small with respect to the source-to-detector distance and the object magnification
is close to 1. As consequence, Hfs(fu, fv) ≈ 1. Therefore, the optical spread transfer function
H(fu, fv), necessary for Equation 2.25, can be derived from the measured pre-sampled MTF,

MTFmeas(f)
rotation−−−−−−−→
symmetry

MTFpre(fu, fv) ≈ H(fu, fv) ·Π(fu, fv) (3.5)

where we assume that MTFmeas(f) is symmetric to rotation.

Assuming that the detector elements have the same pitch p and fill fraction a in both row and
column directions, generating this way a sensitive surface centered in the element total surface
(cf. Figure 2-10), the centered uniform aperture window in the spatial domain is translated into a



3.4. Detector Model Validation 69

Figure 3-16: Illustration of methodology used to implement the optical spreading in CatSim and
perform the comparison of measured and simulated MTFs

Figure 3-17: Illustration MTF estimation method. By projecting the (a) tilted radio-opaque slit
over the detector we acquire an (b) edge image, which will be used to estimate the (c) oversampled
ESF and the pre-sampling MTF
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sinc function in the frequency domain. The measured optical spread transfer function is therefore
found by

H(fu, fv) =
MTFpre(fu, fv)

sinc(apπfu) · sinc(apπfv)
(3.6)

where fu and fv correspond to columns and rows directions, respectively, in the frequency domain.

Optical Photon Spread Transfer Function H(fu, fv) Parametrization
In order to obtain a smoother and continuous model for H(fu, fv), the measured H(fu, fv) can
be fitted using Lorentzian decay functions. In this case, it was assumed that H(fu, fv) possesses
a high-frequency (HF) component due to the crystalline shape of CsI scintillators, and a low-
frequency (LF) component due to back-scattering and other long-range scattering (either X-ray or
optical photons) [192–194]:

H(fu, fv) = ωH
ζHF

ζHF + f2
u + f2

v

+ (1− ωH)
ζLF

ζLF + f2
u + f2

v

, 0 ≤ ωH ≤ 1 (3.7)

where ζLF and ζHF adjust the low- and high-frequency Lorentzians decay, respectively, and ωH is
a weight between both components ensuring the normalization of H(fu, fv).

By fitting the measured optical spread function with the Lorentzian model of Equation 3.7, the
full spatial resolution of given X-ray detector can be simulated at any given frequency f = (fu, fv).

Simulation setup
Using the same geometry adopted for the experimental setup, primary photons were shot from a
single point source and interacted with a simulated Tungsten sheet, with 3° tilt angle. Twenty-five
(5 × 5) sample points were uniformly distributed over each detector element sensitive surface in
order to avoid aliasing, with X-ray photon fluence spectrum calculated following Equation 2.20.
According to Equation 2.25, the oversampled incident photon intensity spectrum was integrated
and it’s Fourier transform filtered by the previously measured and parametrized optical spread
transfer function H(fu, fv), as well as by the photodiode aperture transfer function Π(fu, fv) de-
fined by the detector element size and fill fraction. After inverse Fourier transform and decimation
operations, the simulated images were used as input for the MTF calculation software, using the
same process as for the experimental setup.

Results
Figure 3-18 shows the measured and simulated pre-sampling MTF for the three considered X-
ray systems. The Nyquist frequency for the Senographe DS and Senographe Essential system is
5.0 mm−1 (pixel pitch p = 100 µm). The Nyquist frequency for the Innova IGS620 system is
2.5 mm−1 (pixel pitch p = 200 µm). From visual inspection, very good qualitative agreement is
found between simulated and measured data is found, for all three MTF curves. Table 3.4 shows
measured and simulated MTF values at 1, 1/2 and 1/4 fractions of the Nyquist frequency, for the
three considered X-ray systems.

Table 3.5 summarizes the Lorentzian parameters for the optical Spreading Function H(f) mod-
els, obtained from non-linear fitting (Curve Fitting Toolbox�, The MathWorks Inc.; Natick, MA,
USA) with the associated fitting goodness.

3.4.2 Noise Power Spectrum

With pre-sampling MTF implementation verified above, noise propagation was assessed by the
calculation of the Normalized Noise Power Spectrum (NNPS) in uniform X-ray images acquired
with real X-ray systems and simulated with CatSim
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Figure 3-18: Measured and simulated Modulation Transfer Function (MTF) for the three consid-
ered X-ray systems

Table 3.4: Measured and simulated MTF values at 1/1, 1/2 and 1/4 fractions of the Nyquist
frequency

X-ray System
Fraction of Nyquist Frequency
1/4 1/2 1/1

DS
meas 0.81 0.63 0.31

CatSim 0.83 0.65 0.31

Essential
meas 0.81 0.53 0.18

CatSim 0.81 0.52 0.18

Innova
meas 0.76 0.54 0.15

CatSim 0.75 0.51 0.18

Table 3.5: Lorentzian parameters for the optical spreading function H(f) models and associated
fitting goodness, measured by the coefficients of determination (R2)

Parameters DS Essential Innova IGS620

ωH 0.907 0.976 1
ζHF 21.895 8.547 1.44
ζLF 0.038 0.002 ∼ 0

R2 0.995 0.999 0.98
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For NNPS calculation, X-ray projection images of uniform phantoms are divided into N differ-
ent 256×256 pixels Regions-of-Interest (ROI). The ROI positions are chosen such as to overlap by
128 pixels in the horizontal and vertical directions. The numbers of ROIs are obtained such as to
cover a fraction of detector surface, usually close to the chest wall. Low-frequency variations in sig-
nal intensity due to Heel Effect and other photon fluence fluctuations were removed by subtracting
SI(u, v) from a reference image SIref (u, v), which was one of the acquired uniform images

Finally, the 2D-NNPS can be calculated by using the following equation:

NNPS(fu, fv) =
p2

256× 256 ·N · S̄IN

∑
N

∣∣∣∣F {SI(u, v)− SIref (u, v)√
2

}∣∣∣∣2 (3.8)

where p in the detector pixel pitch, N is the total number of ROIs, S̄IN is the average per-
pixel signal intensity calculated in the considered ROI, F{·} denotes the direct Fourier transform
operator and

√
2 corrects the noise added by the reference image.

Experimental setup
Figure 3-19 illustrates the experimental setup for NPS measurement, reproduced with the Senographe
DS and Senographe Essential systems. The experimental setup was built to suppress as much as
possible scattered radiation coming from the phantom.

The 2.7 mm PMMA breast compression paddle was set upside down, positioned as close as
possible to the X-ray source. A 5 cm PMMA flat phantom was placed over the compression paddle,
using the latter as support. This setup was chosen to leverage the increased air gap between the
phantom and the detector, decreasing this way scattered X-rays incident on the detector surface.
The X-ray detector was not equipped with bucky neither scatter grid.

In order to match Tube Yield values between experiment and simulation, Air Kerma measure-
ments were performed in a separate setup and without any object in the X-ray beam path, similar
to the illustration in Figure 3-1. A 6 cm3 ionization chamber (RadCal® 10X6, RadCal Corpora-
tion; Monrovia, CA, USA) was place at 592 mm from the X-ray source, using a metallic support
coupled to the detector surface. The collimator was set to 9 × 9 cm2 FOV and the ionization
chamber was positioned to be fully aligned with the beam’s path.

Seven X-ray projection images were acquired using a Rhodium (Rh) anode with 30 kV tube
voltage, 0.25 mm Rh filter thickness and 4.57 mAs. The images were cropped into 520×300 pixels
images close to the chest wall. One out of the seven images was used as reference image, resulting
in a total of 18 ROIs for NNPS calculation.

One-dimensional NNPS in the horizontal and vertical direction were obtained by averaging 14
central frequency bands on both sides of the u and v axes, respectively were averaged. The central
axes were excluded to avoid a residual trend in signal background.

Simulation setup
The same geometric setup illustrated in Figure 3-19 was emulated using CatSim. Simulated X-ray
fluence spectra for Rh anode with 30 kV tube voltage and 4.57 mAs were generated using SpeXim
model. Primary photons only were shot from a single point source and interacted with the 2.7 mm
PMMA paddle and the 5 cm PMMA flat phantom. The simulated photon fluences were set so as
to match the experimentally measured photon fluences. The transmitted photons were detected
by a 520 × 300 pixels flat detector with same QDE, optical gain G and A/D conversion factors
as the real Senographe DS and Senographe Essential systems (cf. Annex B for details). More
than ten projection images were simulated for each system, resulting in at least 30 ROIs for NNPS
calculation. One-dimensional NNPS was calculated in the same manner as for the experimental
data.



3.4. Detector Model Validation 73

Figure 3-19: Experimental setup used in NPS validation

Optical spread transfer function H(fu, fv) and photodiode aperture transfer function Π(fu, fv)
were included in the same way as for MTF measurements. Hence, the size of the detector matrix
(520× 300 pixels) was chosen to optimize simulation time and memory allocation, mainly due to
the detector element oversampling.

Results
Figure 3-20 shows measured and simulated NNPS curves obtained for the GE Senographe Essential
and Senographe DS systems. Very good agreement can be seen in the overall shape of both
simulated and experimental data. A small difference can be seen at lower frequencies for the
Senographe Essential system.

Figure 3-21 shows 1st and 2nd order statistics from a simulated image in comparison to an image
acquired with the GE Senographe Essential. Figure 3-21 shows a good quantitative agreement
between simulated and measured data.

3.4.3 Image Signal Descriptive Statistics

In order to assess the detector model accuracy and linearity in simulating signal intensity values,
a descriptive statistical analysis of 1st and 2nd order was performed as function of the input X-ray
spectra and exposure values. Per-pixel average and standard deviation of signal intensities, and
the consequent Signal-to-Noise Ratio (SNR) values, were assessed on homogeneous phantoms for
low-energy spectra on a Senographe DS system, as well as for high-energy spectra on an Innova
IGS620 system.

Experimental Setup on GE Senographe DS (low energy)
Figure 3-22a illustrates the experimental setup for average SI measurement, reproduced with the
Senographe DS system and emulated in simulation. The experimental setup was built to suppress
as much as possible scattered radiation coming from the phantom.

The 2.7 mm PMMA breast compression paddle was set upside down and was positioned as
close as possible to the X-ray source. A very wide 5 cm-thick PMMA flat phantom was placed
over the compression paddle, using the latter as support. This setup was chosen to leverage the
increased air gap between the phantom and the detector, decreasing this way scattered X-rays
over the detector surface. For further scatter suppression, a three-step collimation setup was used.
The collimators were thin steel plates including a single small circular hole, with 1, 2 and 5 mm
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Figure 3-20: Measured and simulated Normalized Noise Power Spectrum (NNPS) for GE
Senographe Essential and Senographe DS

Figure 3-21: Histogram, 1st and 2nd order descriptive statistics and Signal-to-Noise Ratio (SNR)
measured in simulated and experimental data obtained for NPS validation. Results are illustrated
using ImageJ v1.47 (U.S. National Institutes of Health; Bethesda, MD, USA)
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Figure 3-22: (a) Experimental setup illustration on GE Senographe DS used for SI validation; (b)
the X-ray image obtained using the diaphragm; measurement were performed in a ROI inside the
zone hit by photons

diameter, emulating different diaphragms. The 1 mm diaphragm was placed above the PMMA
slab and the2 mm diaphragm directly below it. The 5 mm diaphragm was placed over the detector
surface, which was not equipped with the bucky neither the scatter grid. All three diaphragms
were aligned such that a small zone over the detector was freely hit by X-rays photons, almost all
from primary radiation (cf. Figure 3-22b).

X-ray images were acquired at fixed 200 mAs exposure and for four combinations of anode/filter
and tube voltage: Mo/Mo 26 kV , Mo/Mo 28 kV , Mo/Rh 28 kV and Rh/Rh 30 kV . The average
per-pixel SI was measured in a circular region-of-interest (ROI) inside the region hit by primary
photons, where SI values were rather uniform. In order to ensure lag and afterglow-free measure-
ments, a time delay of several minutes was imposed between subsequent acquisitions. Gain map
correction was turned off, leaving only offset and bad pixel correction functional.

In order to match Tube Yield values between experiment and simulation, Air Kerma mea-
surements were performed in a separate setup and without any object in the X-ray beam path,
similar to the illustration in Figure 3-1. A 6 cm3 ionization chamber (RadCal® 10X6, RadCal
Corporation; Monrovia, CA, USA) was place at 592 mm from the X-ray source, using a metallic
support coupled to the detector surface. The collimator was set to 9x9 cm FOV and the ionization
chamber was positioned to be fully aligned with the beam’s path.

Simulation Setup (low energy)
The same geometric setup illustrated in Figure 3-22a was emulated using CatSim. Simulated
X-ray fluence spectra for the Mo and Rh anode were generated using SpeXim model. Primary
photons only were shot from a single point source, with matching photon fluence, and interacted
with the 2.7 mm PMMA paddle and the 5 cm PMMA flat phantom. The transmitted photons
were detected by flat detector with same QDE, optical gain G and A/D conversion factors as the
real GE Senographe DS system (cf. Annex B for details). Neither blur nor noise were considered,
since the FOM will only be sensitive to low-frequencies. Finally, the average SI was estimated in
the simulated ROI, placed at same position with respect to the detector geometry.

Experimental Setup on GE Innova IGS620 (high energy)
Figure 3-23a illustrates the experimental setup for average SI, standard deviation and SNR mea-
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surements, reproduced with the Innova IGS620 system and emulated in simulation. Once more,
the experimental setup was built such as suppress as much as possible scattered radiation coming
from the phantom.

A very wide 10 cm thick PMMA phantom was placed over the patient table at 720 mm from
the source. The table and the phantom were positioned such as to leave only the phantom in
X-ray beam path. The beam was collimated for a 5× 5 cm2 FOV over the detector, which leaves
an approximate 2.5 × 2.5 cm2 beam cross-section incident over the phantom. The collimation
combined with the air gap between the phantom and the detector substantially decreases the
detection of scattered radiation.

X-ray fluence was generated by the Tungsten anode with 0.3 mm-thick Copper filter and focal
spot set to 0.6 mm. Different sets containing over than 30 X-ray images were acquired using the
30 frames-per-second fluoroscopy mode with 60, 80 and 100 kV tube voltages and 60, 80 and 100
mA tube currents. Beam pulse width was set to 10 ms. An additional image was acquired at
80 kV tube voltage and 40 mA tube current, and served as reference data for simulation.

The average per-pixel SI, the SI standard deviation as well as their ratio, i.e. the Signal-to-
Noise Ratio (SNR), were measured in a circular region-of-interest (ROI) inside the 5×5 cm2 region
hit by primary photons, displaying uniform SI values (cf. Figure 3-23b).

Simulation Setup (high energy)
The same geometric setup illustrated Figure 3-23a was emulated using CatSim. Simulated X-ray
fluence spectra for the W anode were generated using TASMIP model with additional 1.5 mm of
Aluminum filtration to match the system’s HVL. Primary photons only were shot from a single
point source and interacted with the 10 cm PMMA flat phantom. The transmitted photons were
detected by flat detector with same QDE, optical gain G and A/D conversion factors as the real
Innova IGS620 system (cf. Annex B for details). For the sake of comparison, simulations were
repeated with and without the blur generated by the optical quanta spreading inside the scintillator,
to test the hypothesis that the FOMs are energy-independent.

In simulations, a scaling factor was calculated to match X-ray production of the Innova IGS620
tube with the TASMIP model. This scaling factor is necessary due to the possible mismatch in
X-ray photon production efficiency of tube, differences in X-ray photon absorption efficiency of the
detector when compared to nominal values (usually measured as the detector Conversion Factor
(CF), in units of electrons per X-ray quanta), as well as other physical and geometrical factors.
Hence, it scales the absolute photon counts to the right level which can be easily determined by
forcing the simulated image noise to match the measured ones, for one phantom and one acquisition
spectra. Additionally, the scaling factor for simulated blur-free detector is expected to be much
higher than simulation including optical spreading. This is due mainly to the differences in the noise
color modulation. Nevertheless, by analyzing the Innova IGS620 system pre-sampling MTF, it is
expected that in both cases the FOMs are energy-independent and therefore behave accordingly.

In this validation experiment, the scaling factors were estimated using a reference acquisition
at 80 kV and 40 mA. It is worth noting that even though such a scaling factor will lead to
nearly perfect agreement between measurements and simulations at 80 kV , discrepancies are still
expected for other tube voltage and tube current values, as a result of possible errors in the shapes
of the spectra, and the varying spectrum-amplitude ratios of 80 kV to other tube voltage values.

Results
Figures 3-24a and 3-24b shows signal intensity profiles passing through the ROIs where 1st and
2nd order statistic measurements occurred, as previously illustrated in Figures 3-22b and 3-23b
for the Senographe DS and Innova IGS620 experimental setups, respectively. The bottom row in
Figures 3-24a and 3-24b shows a zoomed region where the influence of residual scattered radiation
can be distinguished. A polynomial fit was applied on the data outside the 5 × 5 cm2 FOV, i.e.,
corresponding to scatter-only signals, in order to estimate the scatter signal inside the measurement
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Figure 3-23: (a) experimental setup illustration on GE Innova IGS620 used for SI, noise and SNR
validation; (b) the X-ray image obtained with 50 × 50 mm2 collimation at the detector level;
measurement were performed in a ROI inside the zone hit by photons

ROI. Good suppression of scattered radiation was seen in both experimental setups, with Scatter-
to-Primary Ratios (SPR) values at ∼ 1% for GE Essential DS setup and ∼ 4% for GE Innova
IGS620 setup.

Table 3.6 summarizes the measured and simulated average per-pixel SI for the Senographe DS
experiment. Good quantitative agreement was seen, with maximum absolute error of 5.5%.

Table 3.6: Measured and simulated average per-pixel SI for the Senographe DS experiment

Spectrum
Measured SI Simulated SI error

(counts) (counts) (%)

Mo/Mo 28kV 200 mAs 1958 1936 -1.12
Mo/Mo 26kV 200 mAs 1261 1224 -2.98
Mo/Rh 28kV 200 mAs 2432 2573 5.77
Rh/Rh 30kV 200 mAs 4421 4665 5.50

Figures 3-25a, 3-25b and 3-25c shows X-ray images obtained from measurement on the Innova
IGS620 system, as well as blur-free simulation and simulation including optical spreading in the
detector, respectively. They were acquired with the reference acquisition parameters: 80 kV and
40 mA. From visual inspection, we can observe a good similarity in background noise color between
measurement and simulation including optical spreading.

Figures 3-26a, 3-26b and 3-26c shows measured and simulated average signal intensity, standard
deviation and SNR, respectively, as function of the tube voltage and for 60, 80 and 100 mA tube
currents. A good agreement can be seen in the trends of both measured and simulated values.
Figures 3-27a, shows measured vs. simulated SNR values comprising all simulated conditions, with
linear regression fit and coefficient of determination R2 above 0.99. Figure 3-27b shows the relative
error between simulated and measured SNR as function of the tube voltage, increasing up to ∼ 8%
at 100 kV.
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Figure 3-24: Measured primary and scatter signal profiles in (a) GE Senographe DS (cf. 3-22) and
(b) GE Innova IGS620 (cf. 3-23) projection images; the bottom row shows a zoomed region of the
graphs in the top row, showing a polynomial fit of scatter only signal; SPR was estimated at ∼ 1%
for GE Senographe DS setup and ∼ 4% for GE Innova IGS620 setup

Figure 3-25: Innova IGS620 X-ray images obtained from (a) measurement and from simulations
(b) without and (c) with blur from pre-sampling MTF; images were obtained for 80 kV and 40 mA
setup
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Figure 3-26: (a) Average signal intensity, (b) noise std. deviation and (c) SNR as function of the
tube voltage and for 60, 80 and 100 mA tube currents. Measured data were obtained on the Innova
IG620 system and simulated data was obtained with and without blur generated by the optical
quanta spreading inside the scintillator

Figure 3-27: (a) Measured vs simulated SNR for all simulated conditions; (b) relative error of
simulated vs measured values as function of the tube voltage. Measured data were obtained on
the Innova IG620 system and simulated data was obtained with and without blur generated by
the optical quanta spreading inside the scintillator
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Discussion
In this section, a descriptive 1st and 2nd order statistical analysis of signal intensities was performed
on X-ray images of homogeneous phantoms obtained acquired using low-energy spectra on a GE
Senographe DS system, as well as high-energy spectra on a GE Innova IGS620 system.

For the high-energy experiment on Innova IGS620 system, the sufficiently wide ROI allowed
to obtained precise measurements of per-pixel average and standard deviation of signal intensities,
and the Signal-to-Noise Ratio (SNR) values. A good agreement can be seen in the trends of both
measured and simulated values, with maximum ∼ 8% error on the SNR. An approximate linear
relationship in SNR error with the increasing tube voltage was observed (R2 > 0.99), most likely
due to differences in the X-ray fluence, which could be further calibrated.

For the low-energy experiment on Senographe DS system, only per-pixel average signal intensity
was assessed. This is because our experimental setup did not provide homogeneous background
noise inside the ROI and precise standard deviation measurements, due to the small aperture of
the diaphragm. However, since the simulated NPS of Senographe DS system had good agreement
with the real system, and assuming the good linearity observed in the Innova IGS620 experiment
would also be found in Senographe DS simulation, we estimated that any difference in SNR could
also be calibrated.

To conclude, we verified that the developed simulation chain modules agreed with real X-ray
systems only for a limited set of acquisition configurations, but that covers the space of parameters
used during the remainder of this PhD thesis investigation. Further investigations are nonetheless
required in order to generalize our results to a wider set of acquisition configurations.
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3.5 Conclusions

In this chapter, an extensive validation of the different CatSim modules described in Chapter 2 for
a range of X-ray energies (10 to 80 keV), breast thicknesses (2 to 8-cm thick for compressed breasts,
10 to 18-cm diameter for uncompressed breast) and compositions expected in breast imaging was
performed. The main objective was to provide sufficient evidence that the implemented simulation
chain is capable to emulate realistic physical phenomena underlying an X-ray breast imaging
system, especially digital breast tomosynthesis and dedicated breast computed tomography.

Validation of implemented simulation modules was performed by analyzing each step of a X-
ray imaging chain: from the generation of X-ray photons, their interaction with matter and their
absorption in flat panel detectors. Beam penetrating quality of low-energy X-ray spectrum models
for Molybdenum and Rhodium anodes showed to be in agreement with the behavior of a typical
mammography X-ray tube, with error below 2% on average. X-ray photon scattering simulation
validation was performed for typical cone-beam breast geometries, and considering energy range
and phantom sizes expected for CE-bCT. Monte Carlo based simulation of scattered photon inten-
sity showed good qualitative agreement with previously reported results. Peak scatter-to-primary
ratio values where within ∼5% error. Monte Carlo based estimation of absorbed average glandular
dose were compared to previously published results and agreed within ∼4% error for both typical
mammography and breast CT geometries. X-ray detector model was validated while considering
the simplified cascade model for scintillator-based indirect conversion detectors. Detector spatial
resolution (pre-sampling MTF) and Noise Power Spectrum (NPS) simulations qualitatively agreed
to those of real X-ray imaging systems. Signal intensity and signal-to-noise ratio for low-energy
spectra (Mo/Mo 26kV to Rh/Rh 30kV) agreed within ∼5% error when compared to a real X-
ray mammography system, while signal intensity and signal-to-noise ratio for high-energy spectra
(W/Al 60kV to W/Al 100 kV) agreed within ∼8% error when compared to a real X-ray fluoroscopy
system.

In summary, we demonstrated that CatSim simulation chain is in good agreement, qualitatively
and quantitatively, with respect to real X-ray imaging systems and previously published simulation
and experimental results. We provided validation evidence through comparisons with experimen-
tally obtained data or previously published data from other validated simulation platforms.
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Chapter 4

Iodine-Enhanced Breast X-ray
Imaging Framework

Spectral imaging originated from the limitation of single-energy imaging in differentiating tissues
with different chemical composition but similar X-ray attenuation. Alternatively, any difference in
X-ray attenuation due to changes in the tissue density may also be mistaken with differences due
to changes in its chemical composition. There exists hence an ambiguity in single-energy imaging
which limits tissue differentiation and classification. For example, in single-energy CT, when
determining the amount of iodine enhancement of a soft tissue lesion the measured average CT
number in a region-of-interest in that lesion will reflect not only the enhancement due to iodine,
but also the underlying tissue. Therefore, the attenuation coefficients alone can hardly provide
sufficient information on the fundamental properties of the tissue, nor on its absolute density,
making it difficult to correlate measured signal intensities with pathologies [203]. To overcome this
limitation, additional information is required.

Due to the energy dependency of the linear attenuation coefficients, materials can be differenti-
ated in images acquired using different X-ray beam energies. By properly combining the acquired
spectral data set, one can generate images where the contrast of a given material of interest with
respect to all other materials in the imaged object is ultimately enhanced [204]. This is the main
principle behind spectral imaging. When combined with vascular contrast agents, spectral imaging
techniques lead to enhanced visibility of abnormal vascular development and cancerous lesions.

In this PhD thesis research, we leveraged a dual-energy imaging technique to generate selective
iodine images. Different dual-energy recombination algorithms were used to optimize and compare
the performance of iodinated contrast-agent-enhanced breast CT technique, while considering dif-
ferent dual-energy acquisition strategies and input spectra. In this chapter we introduce the basic
concepts behind spectral imaging and selective iodine image generation.

In Sections 4.1 and 4.2, we introduce the basics of basis material decomposition and the main
algorithm used to generate material selective images. In Section 4.3, a brief overview on the
different methods allowing to obtain dual-energy data is also provided. In Section 4.4 the frame-
work which will serve as basis for the dual-energy iodine imaging application, specifically design
for the dual-energy Contrast-Enhanced Digital Breast Tomosynthesis (CE-DBT) and dual-energy
Contrast-Enhanced breast CT (CE-bCT) geometry setups studied in this PhD thesis research
work, is presented. Image and projection-based decomposition algorithms, implemented to obtain
enhanced iodine uptake in recombined dual-energy images, are described. A material decomposi-
tion calibration method is proposed to ensure optimal recombined iodine-equivalent images during
CE-bCT acquisition parameters optimization discussed in Chapter 5.
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4.1 Basis Material Decomposition

Representation of Attenuation Coefficients
The attenuation coefficients of each material in an object, µ(r, E), as function of energy E and at
position r in its volume, may be decomposed as:

µ(r, E) = a1(r)ψ1(E) + a2(r)ψ2(E) + . . . aM (r)ψM (E) (4.1)

where ψm(E) are known energy-dependent basis functions and am(r) translate the local quantities
of ψm(E), for m = 1, 2, · · · ,M basis.

The functions ψm must be chosen so they can represent the energy-dependent behavior of all
materials inside the volume. Therefore, the most generic representation is to decompose µ(r, E)
into the energy-dependent mass or linear attenuation coefficient functions of all basis materials
composing the object [205,206]. In this case, am(r) represents the density distribution of the basis
material m at position r in its volume. This is the main representation behind material separation
and will be adopted as the main method throughout this PhD thesis.

Alternative representations of the attenuation coefficients have also been proposed. For in-
stance, in a two-basis setup (M = 2), Alvarez and Macovski [204] used the fact that most of the
atomic interactions occurring in CT energy range are Photoelectric and Compton events (cf. An-
nex A.2) and described both phenomena according to energy-dependent functions ψphoto(E) and
ψcompton(E). For Photoelectric effect they assumed a 1/E3 dependency, while for the Compton
effect the Klein-Nishina equation was used. If a material has a K-edge in the energy range of
interest, a third term aedge(r)ψedge(E) must be included in Equation 4.1 [205,207–209], which will
describe the behavior of the absorption edge. When multiple K-edges are present, each adds a
unique corresponding basis function.

4.2 Spectral Imaging

Spectral Imaging at M Energies and M Unknown Materials
One of the applications in spectral or multi-energy imaging is to obtain M images in which signal
intensities are proportional to the quantities of each m = 1, 2, · · · ,M basis materials inside an
object. For this purpose, the object is imaged using M different X-ray spectra and the materials
composing the object are differentiated by analyzing their differences in X-ray attenuation. This
material decomposition can be performed either in the reconstruction domain, hereafter referred
to as image domain, or in the projection domain.

In the image domain, we typically choose ψm(E) = µm(E) and am(r) = fm(r), respectively the
linear attenuation coefficient of basis material m at energy E and its volume fraction at position
r. Following Equation 4.1, we can write the measured attenuation volumes µ̃(r) as:

µ̃(r) = µ̄1f1(r) + µ̄2f2(r) + · · ·+ µ̄MfM (r) (4.2)

where µ̄m is the effective linear attenuation coefficient of basis material m calculated at the effective
energy of a given input spectrum.

In the projection domain, we typically choose ψm(E) = (µ/ρ)m(E) and am(r) = ρm(r), respec-
tively the linear mass attenuation coefficient of basis material m at energy E and its local effective
density at position r. Following Equation 4.1 and disregarding X-ray scattering, we can write the
measured log-projection p̃(i) at detector element i as:

p̃(i) = −ln
∫ ∞

0

w(E) ·exp
[
δ1(i)

(
µ

ρ

)
1

(E) + δ2(i)

(
µ

ρ

)
2

(E) + · · ·+ δM (i)

(
µ

ρ

)
M

(E)

]
dE (4.3)
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where δm(i) =
∫
ρm(r)dl is the projected area density (in g/cm2) of basis material m, dl is the

incremental chord length of the beam path between the X-ray source s and the detection element
i, and w(E) is a normalized spectral weight [131, 210] or system weighting function [211] defined
as:

w(E) =
Inet(E)ξ(E)η(E)∫∞

0
Inet(E)ξ(E)η(E)dE

(4.4)

where Inet(E, i) is the X-ray intensity spectrum generated by the X-ray source s and towards the
detection element i, ξ(E) is the detector conversion response and η(E) is a function translating an
eventual energy-dependent efficiency in detecting photons.

Under no further assumption, the problem of spectral imaging is then to invert a system of
equations based on M measurements similar to Equation 4.2 (for an image-based decomposition)
or Equation 4.3 (for an projection-based decomposition), and recover a unique solution to the
local quantities fm(r) or δm(i) of each basis materials. The solutions fm(r) or δm(i) are hereafter
referred to as material-equivalent images or material-equivalent projections, respectively, as their
intensity values are proportional to the quantity of material m.

In the case of monochromatic input spectra, both Equations 4.2 and 4.3 are linear combinations
of the local quantities fm(r) or δm(i), and can be solved by algebraic inversion of a linear system
of equations. In the case of polychromatic input spectra, Equation 4.2 is still linear but µ̃(r) <∑M
m=1 µ̄mfm(r), due to beam hardening. On the other hand, Equation 4.3 is no longer linear and

requires more complex calculations to invert the system of equations.

The accuracy of the inversion of both image and projection domain decomposition system of
equations is directly related to the singularity of their Jacobian matrices1 [204, 212]. In general,
a nonzero Jacobian determinant is sufficient to perform material separation. For monochromatic
spectra this is achieved by using M different X-ray beam energies. For polychromatic spectra, this
is achieved by using M different spectra. In both cases, the higher the distance and smaller the
overlap among the M different input spectra, the better conditioned the system of equations will
be, resulting in more accurate solutions of fm(r) or δm(i) and less sensitivity to quantum noise.

Material Separation in the Image Domain
Image-based decomposition is performed after tomographic reconstruction. It is a straightforward
approach that does not require the same acquisition geometry for all M spectral measurements.
Eachm-th projection data is treated independently until they are reconstructed. Spatial correlation
among the M reconstructed volumes is then achieved and basis decomposition is performed to
obtain the material-equivalent images fm(r) (Equation 4.2).

For an accurate material separation, beam hardening effects must be corrected. Beam hardening
occurs because the images are acquired using polychromatic X-ray beams. In CT, beam hardening
can cause inaccurate reconstructed attenuation coefficients due to intensity cupping, shading, or
streak artifacts. If not corrected, signal intensity in measured attenuation volumes µ̃(r) deviates
from the true material attenuation at position r, resulting in incomplete material separation,
residual texture from the complementary materials and jeopardized quantification.

There exists an extensive number of beam-hardening correction (BHC) methods to indepen-
dently correct the M acquisitions. In water-based correction [213,214], attenuation values displace-

1The Jacobian matrices of both image and projection domain decomposition system of equations, respectively
Jimg and Jproj , for M materials and M energies, are defined as:

Jimg =


∂µ̃1/∂f1 ∂µ̃1/∂f2 · · · ∂µ̃1/∂fM
∂µ̃2/∂f1 ∂µ̃2/∂f2 · · · ∂µ̃2/∂fM

...
...

. . .
...

∂µ̃M/∂f1 ∂µ̃M/∂f2 · · · ∂µ̃M/∂fM

 and Jproj =


∂p̃1/∂δ1 ∂p̃1/∂δ2 · · · ∂p̃1/∂δM
∂p̃2/∂δ1 ∂p̃2/∂δ2 · · · ∂p̃2/∂δM

...
...

. . .
...

∂p̃M/∂δ1 ∂p̃M/∂δ2 · · · ∂p̃M/∂δM


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ment due to beam-hardening is partially compensated by remapping the measured log-projection
values p̃(i) based on known water attenuation characteristics:

p̃corrected(i) =

NBHC∑
l=0

cBHCl [p̃(i)]
l

(4.5)

where NBHC is typically between 2 and 5 (depending on the object size). The coefficients cBHCl

are found through a priori calibration by performing least squares minimization with Equation 4.5
for known log-projection values of a homogeneous water phantom. Theoretically, any homogeneous
material could be used and correction accuracy increases if they better represent the imaged object
(e.g. soft-tissue). The corrected projections are then reconstructed and linearly combined to
generate the material equivalent images. Since CT values displacement is corrected with respect
to a single material, there may still be a significant variation in CT values if materials with
very different effective atomic number (Zeff ) are present (e.g. iodine, bone and metallic clips).
Nonetheless, the correction might be sufficient if such materials are present at low concentrations.

The use of bowtie filters provides similar results to water-based correction, since they also
perform an intrinsic linearization of CT values. Bowtie filtration provides uniform hardening of
the X-ray beam across the detector field of view, minimizing cupping artifacts and decreasing
corresponding deviation in CT numbers due to beam hardening. This approach is particular
suitable for dedicated breast CT geometry because the uncompressed pendant breast presents a
highly symmetrical geometry [141]. However, for a good performance the shape of the bowtie filter
must match the imaged object.

Maaβet al. [215] suggested to extend Equation 4.2 to a nonlinear version using a high-order
polynomial combination of measured attenuation volumes. Such method requires a pre-calibration
step based on known object templates and minimization of the differences between the recon-
structed material-selective images and the templates. Although significantly more precise than
the previous two methods, its real implementation could be very time consuming if multiple input
spectra are considered.

These pre-correction methods partially correct for the cupping artifacts and attenuation inac-
curacy in the individual projection images, but the resulting reconstructed images might still not
be fully quantitative.

Material Separation in the Projection Domain
Projection-based decomposition is performed before tomographic reconstruction. It requires that
the same acquisition geometry of all M spectral measurements. The system of equations based
on measured log-projection images is inverted to calculate the material projections δm (Equation
4.3), which are subsequently reconstructed to obtain material density volumes, ρm(r).

Since X-ray spectrum polychromaticity is foreseen in the nonlinear log-projection decomposition
of Equation 4.3, beam hardening is automatically taken into account. The accuracy in the inversion
of the system of equations based on Equation 4.3 will dictate the quality of beam hardening
correction.

A straightforward way to invert Equation 4.3 was proposed by Alvarez and Macovski [204,216].
It relies on expanding the nonlinear log-projection equation 4.3 into a Taylor series of high order
polynomial combination of the basis functions [216], or in its inverse form, expressing the basis
functions as a high order polynomial combination of the measured log-projections [205, 217]. The
coefficients of the Taylor series can be found by empiric calibration, using least squares minimization
of known values of δm. Typically, 2nd or 3rd order polynomials with crossed terms are sufficient to
account for beam hardening. However, if calibration is performed with the noisy projection data
(e.g. in a real X-ray system), fluctuations in the calculated coefficient and consequent inaccuracy
in material separation are expected.
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Look-up table methods have been also proposed [206,218], in particular to address the fluctua-
tions of polynomial coefficient calibration in the presence of high quantum noise levels and image ar-
tifacts. The look-up table maps a limited set of measured low-noise log-projections {p̃1, p̃2, · · · , p̃M}
into a set of material projections {δ1, δ2, · · · , δM}, and any intermediate values can found by bi-
linear interpolation. The image volume data sets reconstructed from the material projections are
free of beam hardening artifacts. Although the decomposition process is fast, stable and easy to
implement, the generation of tables can be time consuming depending on the desired accuracy.

Iterative methods minimizing the error of the spectral measurement with the expected attenu-
ation coefficients have also been proposed [211,219]. They can be incorporated in the flow process
of know iterative reconstruction algorithms and benefit from noise regularization and artifact man-
agement.

In contrary to image-based methods, projection-based decomposition enables for exact beam
hardening correction and therefore superior material separation accuracy and quantification.

Spectral Imaging at M − 1 Energies and M Unknown Materials
The decomposition of M unknown materials using M − 1 different X-ray spectra involves an
underdetermined system of equations, for which an external assumption or a priori information
must be included as the M -th equation.

For most biological materials and contrast agents involved in X-ray imaging, we can assume
that the sum of the volumes of the M constituent materials equals the volume of the mixture [220].
In image-based decomposition, volume conservation constraint is written as:

f1(r) + f2(r) + · · ·+ fM (r) = 1 (4.6)

In the projection domain, Equation 4.6 can be reinterpreted by integrating both sides over the
incremental chord length dl in the X-ray beam path, and obtain:

δ1(i)

ρ̄1
+
δ2(i)

ρ̄2
+ · · ·+ δm(i)

ρ̄m
= T (i) (4.7)

where the material projections δm(i) are normalized by the density ρm of material m in its pure
state and T (i) is total object length (or thickness) in the X-ray beam path from the source s and
the detector element i.

Spectral Imaging with K-edge
K-edge imaging involves performing material decomposition with one or multiple materials contain-
ing K-shell binding energy in the energy range of the M input spectra. Typical K-edge materials
explored in diagnostic X-ray energy range are iodine (33.2 keV), barium (37.4 keV) and gadolinium
(50.2 keV). In this PhD thesis investigations we concentrated on iodine imaging.

Selective iodine imaging can be performed either by exploring the K-absorption discontinuity of
iodine (at least one out of the M input X-ray spectra straddling 33.2 KeV), or without exploring
the discontinuity (all M X-ray spectra below or above 33.2 keV). The first option is however
more accurate, with superior cancellation of noniodine materials and is less sensitive to quantum
noise. This is because the K-edge discontinuity drastically increases the Jacobian matrices partial
derivatives with respect to iodine (∂µ̃/∂µiodine or ∂p̃/∂δiodine) if the X-ray spectra have mean
energy above the iodine K-edge. This entails in a better conditioned problem when compared to
non-K-edge decomposition.

Riederer and Mistretta [217] demonstrated that since the Photoelectric and Compton interac-
tions account for almost all X-ray photon attenuation in diagnostic X-ray energy range, the use of
three energy measurements is necessary and sufficient to distinguish iodine from any other material,
provided that the beam energies straddle only the K-edge of iodine and no other element K-edge.
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In a three-beam setup, material decomposition is therefore performed by describing the attenua-
tion coefficient discontinuity as an independent term aedge(r)ψedge(E) in Equation 4.1. This can
be performed either by decomposition the attenuation coefficients into Photoelectric, Compton
and iodine K-edge basis functions [205, 207–209], or by decomposition into three basis materials
attenuation coefficients: one with low Zeff (emulating the predominantly Compton interactions),
one with high Zeff (emulating predominantly Photoelectric interactions) and iodine (describing
its K-edge) [205,206,221].

In a two-beam (or dual-energy) setup, iodine K-edge imaging based on Photoelectric, Compton
and iodine K-edge basis functions decomposition cannot be performed, since we only dispose of
two spectral measurements. However, iodine K-edge imaging can be performed if based on basis
material attenuation coefficient decomposition combined with an additional volume conservation
hypothesis (Equation 4.6), which acts as the third equation. Accordingly, a system with three
equations can be solved as long as only three materials are present (M = 3). This is the main
principle behind dual-energy three-material decomposition.

Dual-energy three-material decomposition is exploited in Contrast-Enhanced Spectral Mam-
mography (CESM) in which iodine is separated from adipose and fibroglandular tissues and volume
conservation among the three materials is approximately held [16, 92, 198]. It has also been the
baseline to generate iodine-equivalent images for dual-energy Contrast-Enhanced Digital Breast
Tomosynthesis (CE-DBT) and dual-energy Contrast-Enhanced breast CT (CE-bCT) applications
investigated in this PhD thesis research. Further details on their implementation are provided in
Section 4.4.
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4.3 Acquisition Strategies to Obtain Dual-Energy Data

To obtain two spectral data sets, different acquisition strategies have been previously proposed.
These methods can be distinguished into two families, depending on where the energy separation
is performed: at the source, by using different input spectra, or at the detector using so-called
energy-resolved (or energy-discriminating) detectors.

In the first family of methods, one way to obtain different input spectra is by using dual source
(DS) systems with two independent, synchronized and specific source-detector couples. Due to
data truncation constraints, spectral material decomposition is commonly performed in the image
domain, usually combined with water-based beam hardening correction algorithms. The first
clinical DS CT scanner was introduced in 2006 [222], and acquired dual-energy data at 80 kV/140
kV LE/HE tube voltage combination (SOMATOM® Definition, Siemens Healthcare; Forchheim,
Germany). The main advantage of this setup is that both source-detector couples can be operated
independently with respect to voltage and current settings, and benefit from dedicated filtration
for improved spectral separation, such additional Tin filter (Sn) typically used at 100 kV/Sn140 kV
in the second generation DS CT scanners (SOMATOM® Definition Flash, Siemens Healthcare;
Forchheim, Germany) [223]. However, the presence of a second X-ray tube induces additional
scatter in the first detector and vice versa. Unfortunately, these supplementary photons cannot be
completely suppressed by anti-scatter grids [224] and will degrade signal-to-noise ratio in both LE
and HE projection images. An illustration of typical DS CT acquisition geometry and spectra are
provided in Figure 4-1a.

Another dual-energy acquisition technique is to use a single source (SS) system, with spectral
separation being achieved by alternating tube voltages and filtration. The most straightforward
way to generate dual-energy data in a SS system is to first perform a full patient or target-volume
scan with a LE spectrum, switch the acquisition parameters, and then perform another full scan
with a HE spectrum [220]. Although this method suffers today from patient motion artifacts and
consequent spatial resolution degradation due to long time interval between LE and HE scans, it
does offer the benefit of requiring little additional hardware compared to single-energy applications
and is therefore a relatively low cost solution for an additional dual-energy implementation. Fur-
thermore, it allows to adjust tube voltage and tube current for better dose distribution between
LE and HE acquisitions. In order to increase the temporal resolution, it is preferable to acquire
dual-energy data while “switching” LE and HE spectra between two consecutive projection views.
Two categories emerged: systems which perform slow and fast spectral switching.

Slow switching systems are easier to implement and the hardware often enables to change
both X-ray tube voltage and filter between two consecutive acquisition views. This is the case
of clinically available contrast enhanced mammography systems (SenoBright� , GE Healthcare;
Chalfont St Giles, UK) and a number of dual-energy contrast-enhanced digital breast tomosynthesis
prototypes based on energy-integrating detectors [95,96,225,226]. With exposure time intervals in
the order seconds, slow switching acquisition techniques greatly reduces patient motion artifacts
compared to non-switching techniques [22].

Alternatively, single source fast switching CT scanners became clinically available in late 2000’s
with the introduction of the GE Discovery� CT750 with GSI� (GE Healthcare; Milwaukee,
Wisconsin, USA). The GSI� technology applies rapid 80 kV/140 kV tube voltage switching
(0.3 − 0.5 ms interval between images), using a single filtration is available. This method, also
named Fast kVp switching, allows for very good temporal resolution and nearly perfect spatial
correlation between two consecutive acquisition views2. Achieving fast KV switching acquisitions
requires however solutions to several technical challenges: high-detector frame rates, electronic
systems capable of reading out two to three times more projection data, low electronic noise and
afterglow, inclusion of the spectrum rise/fall profiles in the acquisition view integration period [227],
flexibility in X-ray flux generation at both LE and HE spectra to enable dose efficiency optimiza-

2In reality, LE and HE projection data between two consecutive view angles are commonly spatially interpolated
before recombination, such as to fully align the projections [219]
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Figure 4-1: Illustration of four main acquisition strategies to obtain dual-energy data: (a) Dual
Source, (b) Fast kV Switching with dual filtration, (c) Fast kV switching with single filtration and
(d) single source system with energy-discriminating photon-counting detector. A representation of
their typical low-energy (LE) and high-energy (HE) spectra is also provided

tion, and so on. Accordingly, an easier alternative for fast switching scans is to keep tube voltage
constant and alternate filtration to enhance spectral separation. This acquisition technique was
proposed by Mistretta et al. [228] for iodine absorption-edge fluoroscopy by the means of a rotating
filter wheel composed of different material segments. A similar approach for breast imaging was
proposed by Carton et al. [23]. The authors studied a dual-energy CE-DBT acquisition using a
photon counting detector and a multi-slit scanning system. LE and HE images were acquired by
differentially filtering the X-ray beam incident on adjacent linear detector slits, using alternating
Tin and Copper filtration and fixed 49 kV tube voltage.

A fast kV switching technique with rotating filter, i.e. alternating simultaneously tube voltages
and filtration, is a technological challenge and has not yet been implemented in clinical practice
for dual-energy imaging. It would allow however for a substantial gain in spectral separation and
a potential increase in image quality. In this PhD thesis research, this technique is studied in a
theoretical framework, which could be implemented in the future. Illustrations of typical SS kV
switching CT acquisition with dual and single filtration are provided in Figures 4-1b and 4-1c,
respectively.

The second family of methods relies on performing spectral separation during the detection
process, using so-called energy-resolved detectors. This type of detector has been developed in
two ways. The first, relies on a sandwich detector with two photo-sensitive layers [220, 229, 230]
with energy-discrimination occurring as function of its depth. The first layer is a thin scintillator
coupled to a photodiode, and detects mainly low-energy photons. The transmitted photons reach a
second layer composed of a thicker scintillator and another photodiode, which detects the remaining
photons (mainly with high energy). This technology was recently introduced in clinical dual-energy
CT (IQon Spectral CT, Royal Philips; Eindhoven, The Netherlands). The energy discrimination in
this type of detector is however limited due to the large amount of spectral superposition between
the high and low energy measurements [220]. Another technique relies on detectors with energy
discriminant capabilities using photon counting technology. Energy resolution is provided by the
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measurement of individual photons energy and its association to pre-defined energy bins. The main
limitation of this technique is that it requires high temporal resolution in order to detect individual
photon events. Otherwise, a possible misinterpretation of two consecutive incident photons as
being a single event occurs, known as photon pile-up. Figures 4-1d illustrates a photon-counting
implementation and the separation of a single acquisition spectra into two energy bins.

Both techniques provide excellent spatial registration and temporal resolution between LE and
HE energy projection data, which makes them more suitable for projection-based decomposition.
However, by construction, energy-discrimination through photon counting is preferable for material
decomposition problem requiring minimal superposition. In breast X-ray imaging, dual-energy
system prototypes based on energy-discriminating detectors have been implemented for CESM
[18, 231], CE-DBT [25], and more recently for dual-energy breast CT with K-edge contrast agent
[140, 141] and without contrast-agent enhancement [131]. In 2013, a dual-energy mammography
system based on photon-counting technology was made available in clinical practice for breast
density measurements (MicroDose SI, Royal Philips; Eindhoven, The Netherlands), while contrast-
enhancement is still under investigation. Although encouraging results for breast CT applications
using current photon technology have been recently shown, count rate, spectral response and energy
resolution are still challenges for an actual K-edge breast imaging implementation.

In summary, both families of dual-energy acquisition methods present advantages and draw-
backs on their implementation, such as data truncation, tube power requirements, spectral sepa-
ration, temporal resolution, patient motion artifact and so on. Table 4.1 summarizes the charac-
teristics, advantages and limitations of different dual-energy acquisition strategies discussed in this
section.

In order to find the best acquisition strategies for dual-energy Contrast-Enhanced Breast CT,
in this PhD thesis research work, four different dual-energy acquisition strategies were considered:
dual source and fast KV switching with a single filtration are considered as state-of-the-art tech-
niques for dual-energy acquisitions; fast kV switching with dual filtration, as well as the exploitation
of photon-counting energy-discriminating detectors are considered as promising techniques, which
could be available in the future. These techniques are investigated in a theoretical framework, i.e.
disregarding up-to-date technical limitations (e.g., temporal resolution, patient motion artifacts,
data truncations, . . . ) while making idealistic hypothesis to the X-ray source and detector perfor-
mances. Further details are provided in Section 5.4. The four candidate acquisition strategies for
CE-bCT are summarized in Figures 4-1a to 4-1d.
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Table 4.1: Characteristics, advantages and limitations of different acquisition strategies to obtain dual-energy data

Acq. Strategy Constructor Application Characteristics Pros Cons

Dual Spin Toshiba CT
Two rotations Cost effective w/ little development Delay for kV switching
Helical acquisition Good spectral separation Large motion artifacts

Customizable dose repartition Poor temporal resolution

Dual-Source Siemens CT
2 source-detector pairs at 90° Better spectral separation Asynchronous projections
2 individual filtrations Customizable dose repartition Cross-scatter

Cost of 2 imaging chains

GE CT, RAD

Single source w/ single filter Good temporal resolution No mA nor dose modulation
Fast kVp Switching Less costly with one source Poor spectral separation
(Single Filtration) Thermal constraints

Slow kVp Switching
GE CESM

Single source w/ dual filter Better spectral separation Delay for kV switching
(Dual Filtration) Customizable dose repartition

Dual-Layer Detector Philips

Detector sensitive to 2 Perfect temporal resolution Dose repartition predicted
DE-DM*, CT, energy bins Dual-Energy ”always on” by the detector

RAD Poor spectral separation

Photon-Counting Detector GE, Hologic DXA Signal proportional to Perfect temporal resolution Pile-up, charge sharing
w/ Energy Discrimination Philips DE-DM* photon energy Ultra low dose scans Technology still very costly

Multi-energy imaging Requires high frame rate

CT – Computed Tomography *without contrast-agent

RAD – conventional digital Radiography

CESM – Contrast-Enhanced Spectral Mammography

DE-DM – Dual-Energy Digital Mammography

DXA – Dual-energy X-ray Absorptiometry
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4.4 Iodine-Enhanced Breast X-ray Imaging

In this PhD thesis research, we leveraged a dual-energy three-material decomposition approach to
generate selective iodine images.

Dual-energy three-material decomposition for iodine contrast-agent enhanced breast X-ray
imaging consists in acquiring two spectrally separated datasets, using low-energy (LE) and high-
energy (HE) spectra, and decompose them into three different basis materials: adipose tissue,
fibroglandular tissue and the injected iodinated contrast agent. It involves therefore solving the
system of equations based on Equations 4.2 (for an image-based decomposition) or Equation 4.3
(for an projection-based decomposition) with three unknowns (the quantity of each material) and
two measurements (the LE and HE data). Therefore, a third equation is included by assum-
ing a volume conservation constraint among the three materials. In order to achieve high image
contrast and low-dose levels, we were interested in dual-energy acquisition leveraging the iodine
K-absorption edge, i.e. with LE and HE spectra having mean energies that straddle the iodine
K-shell binding energy.

For both CE-bCT and CE-DBT geometries investigated in this PhD thesis, the goal of iodine
K-edge imaging is to invert a system of equations for fiodine(r) and obtain iodine-equivalent slice
images. Notice that signal intensities in iodine-equivalent images are proportional to the quantity
of iodine inside each voxel. Accordingly, the volumetric iodine concentration in each voxel can be
estimated by multiplying fiodine(r) with the iodine density in its pure state (ρ̄iodine ≈ 4.93 g/cm3).

4.4.1 Dual-Energy Recombination for CE-DBT

In this thesis, dual-energy recombination for CE-DBT has been performed using a projection-
based algorithm previously developed by Puong et al. [226]. In this algorithm, the LE and HE
log-projections pLE and pHE , respectively, are decomposed into material-equivalent projections
δm(i), using 2nd polynomial with crossed terms, as suggested by Alvarez and Macovski [204,216],
to account for beam hardening originated from polychromatic acquisitions:

δm(i) =

N∑
l=0

N∑
k=0

cl,k
[
pLE(i)

]l [
pHE(i)

]k
m = adipose, gland, iodine (4.8)

where N = 2 is the order of the polynomial. The coefficients cl,k are found by simulation, using
least squares minimization of known values of δiodine, while assuming a constant breast thickness
T in the X-ray beam path between the source and all detector elements i (Equation 4.7).

Reconstructed iodine-equivalent images (or volumes) are subsequently calculated by recon-
structing the iodine-equivalent projections δiodine:

fiodine(r) ≈ R
{
δiodine(i)

ρ̄iodine

}
(4.9)

whereR{·} is a linear reconstruction method and ρ̄iodine is the density of iodine in its pure state. In
this PhD research work, Filtered BackProjection (FBP) was the standard reconstruction algorithm
for CE-DBT data.

It must be emphasized that due to limited angular sampling in CE-DBT acquisition, the recon-
structed iodine-equivalent images fiodine(r) are only proportional to the actual volume fraction of
iodine. Hence, it does not allow to calculate the local iodine volumetric concentration at position
r in the breast volume. The limited iodine quantification in CE-DBT is discussed in Chapter 6.
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4.4.2 Dual-Energy Recombination for CE-bCT

As stated in the introductory chapter, one of the objectives of this PhD thesis is to optimize
dual-energy acquisition spectra for CE-bCT, while comparing the performance of different dual-
candidate acquisition strategies in their ability to provide optimal iodine detectability with mini-
mum background texture and cupping artifacts. This study is described in Chapter 5.

When designing an optimization study considering a large range of X-ray spectra, it is expected
that certain combinations of input LE and HE spectra might not provide good material separation,
especially those presenting significant spectral overlap due to poor filtration and with similar tube
voltage values. As discussed in Section 4.2, dual-energy three-material decomposition may become
for these cases an ill-conditioned problem due to lack of spectral separation and consequent Jaco-
bian matrix singularity. Under such conditions, the dual-energy system of equations (cf. Equation
4.2 and 4.6) becomes more sensitive to variations in signal intensity (e.g. due to quantum noise
or calibration error), ultimately leading into uncorrected cupping artifacts and poor background
texture cancellation in the iodine-equivalent images.

To allow for a fair comparison between the different acquisition strategies when a large range
polychromatic acquisition spectra are considered, we propose in this section a material decomposi-
tion calibration procedure for CE-bCT as a consistent way to determine the optimal recombination
parameters for any given input LE and HE spectra, and independently of the decomposition do-
main. The calibration objective is not to find the exact solution for the dual-energy three-material
system of equations, but rather to find a solution which gives the best image quality in terms
of minimal cupping and maximum texture cancellation in iodine-equivalent images. If the resul-
tant iodine-equivalent image is free of cupping and residual texture, we ensure that any signal
attributed to iodine uptake is, in fact, proportional to the iodine concentration. The accurate
iodine concentration value can be found a posteriori through further calibration.

Image Domain
For image-based decomposition, the implementation is straightforward. The measured LE and HE
log-projections p̃LE and p̃HE , respectively, were first corrected for beam-hardening by linearizing
CT values with respect to a reference material, using a 3rd order polynomial fit, as suggested by
Kachelrieβet al. [214]. The chosen reference material was the adipose tissue, since it is the material
with greater proportion in the breast volume.

The corrected LE and HE sinograms were afterwards reconstructed by FBP reconstruction to
generate LE and HE effective attenuation coefficients volumes µ̃LE(r) and µ̃HE(r). The latter were
subsequently used to invert the linear system of equations based on Equations 4.2 and 4.6. Since
the system of equations is linear, we can produce iodine-equivalent images as a linear combination
of the attenuation coefficient volumes:

f ′iodine(r) = (1− |wimg|) · µ̃LE(r) + wimg · µ̃HE(r) (image− based) (4.10)

where f ′iodine(r) is an offset and scaled version of the true iodine volume fraction fiodine(r) and
wimg is a weighting factor.

The image-based algorithm steps are illustrated in Figure 4-2.

Projection Domain
For projection-based decomposition, the LE and HE log-projections pLE and pHE were decom-
posed into material-equivalent projections δm using a 3rd order polynomial with crossed terms,
as suggested by Alvarez and Macovski [204, 216] (Equation 4.8, with N = 3). The material
projections were then reconstructed by FBP to generate material density volumes ρm(r), for
m ∈ {adipose, gland, iodine}.
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Figure 4-2: Flowchart of image-based decomposition

As proposed by Mendonça et al. [232], the production of material-selective images in a dual-
energy three-material decomposition setup can be divided in two steps. First, cupping-free syn-
thetic mono-chromatic attenuation images µ̃LE(r) and µ̃HE(r) can be generated at any given
energy by inserting the reconstructed densities of two support basis materials, ρ1(r) and ρ2(r) into
Equation 4.1, with ψm(E) = (µ/ρ)m(E) and am(r) = ρm(r) [204]. The support basis materials
must be chosen such as to approximately represent the energy-dependent attenuation behavior of
all materials inside the imaged object. Secondly, as in the image-based decomposition method,
µ̃LE(r) and µ̃HE(r) can be used to invert the system of equations based on Equations 4.2 and 4.6
and produce iodine-equivalent images.

Since both the generation of synthetic mono-chromatic images and the image-based dual-energy
system of equations are linear processes, in this PhD thesis investigation we propose to combine
them into a single equation and produce iodine-equivalent images directly from the material density
volumes of adipose tissue and iodine:

f ′iodine(r) = (1− |wproj |) · ρiodine(r) + wproj · ρadipose(r) (projection− based) (4.11)

where f ′iodine(r) is an offset and scaled version of the true iodine volume fraction fiodine(r) and wproj
is a weighting factor. Adipose tissue was chosen to approximately represent the energy-dependent
attenuation of all soft-tissues inside the breast.

The projection-based algorithm steps are illustrated in Figure 4-3.

Equations 4.10 and 4.11 are written in a normalized way with terms of (1− |w|) and w. This
was done such as to maintain the same range of weight values for the different input spectra to be
considered during the optimization.

It must be emphasized that the weighting factors wimg and wproj depend solely on the input
LE and HE spectrum pair, i.e. they are independent of the imaged object. Hence, the calibration
procedure described as follows has as objective to estimate and register the optimal weighting
factors wimg and wproj associated to every LE and HE spectrum pair considered in a look-up
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Figure 4-3: Flowchart of projection-based decomposition. Chosen basis material were iodine and
adipose tissue

table.

Despite the similarities between image-based and projection-based approaches, a fundamental
difference relies on the fact that the high-order polynomial transformation in Equation 4.8 takes
into account the beam-hardening effect during the polychromatic projection. In this case, it is
expected that projection-based decomposition provides better iodine quantification and non-iodine
materials residual texture cancellation.

Breast Phantom and Calibration Procedure
As previously stated, the objective of iodine selective imaging is to obtain iodine-equivalent images
with minimal residual texture from other materials in the imaged object. Accordingly, any remain-
ing signal in these images should be proportional to the quantity of iodine in each voxel. Hence,
we define the optimal weighting factors wimg and wproj that best cancel the Signal Intensities (SI)
of every material other than iodine inside the iodine-equivalent volume f ′iodine(r).

A cylindrical phantom with similar diameter as the target imaged breast size and composed
of adipose tissue was used as calibration phantom. It contained sixteen cylindrical fibroglandular
inserts, oriented with the main cylinder axis and distributed at various radial positions, as illus-
trated in Figure 4-4a. The many radial positions allow to measure fibroglandular tissue contrast to
background at different positions in the cylindrical phantom, ultimately enabling to assess intensity
cupping.

LE and HE projections of the calibration phantom were simulated and used as input for either
image or projection-based decompositions described above, to generate iodine-equivalent volumes
f ′iodine(r, w) as function of the weighting factors wimg and wproj , respectively.

The more intuitive way to find the weighting factor wimg and wproj ensuring the best texture
cancellation is to minimize the contrast of every fibroglandular insert with respect to their respec-
tive surrounding background. However, in the presence of important cupping artifact, minimizing
the local contrast could converge to a local minimum where texture is ultimately not cancelled.
Moreover, ensuring cupping-free images would also ensure SI values proportional to the iodine
quantity independently of the position r in the volume. Hence, to account for any residual cup-
ping, a Figure-of-Merit for texture cancellation taking into account the signal difference between
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Figure 4-4: Phantom used in a priori calibration method for optimal dual-energy CE-bCT recom-
bination

ROIs composed of both fibroglandular and adipose, at different positions in the volume, is needed.

Let G be the set of ROIs inside the fibroglandular inserts and SIgland their individual mean
per-pixel SI measured in the iodine-equivalent volume f ′iodine(r), as illustrated in Figure 4-4b. Let
also A be the set of ROIs on the adipose tissue background and SIadipose their individual mean
per-pixel SI measured in the iodine-equivalent volume f ′iodine(r), as illustrated in Figure 4-4b.
Accordingly, the optimal weighting factors wimg or wproj are defined as the weight w minimizing:

wimg, wproj = arg min
w
{
∑
l,k

|SIl(w)− SIk(w)|2 }, l, k ∈ G ∪ A (4.12)

where SIl(w) and SIk(w) are found using Equation 4.10 or 4.11.

Figures 4-5a and 4-5b illustrate an example on the variation of the expression
∑
l,k |SIl−SIk|2

with the weighting factor w, in image-based and projection-based algorithms, respectively. Optimal
weighting factor wimg and wproj are found at minimum expression value.

The calibration procedure was performed a priori to the actual optimization study. The optimal
weighting factors wimg and wproj were calculated for every LE and HE spectrum pairs considered
during optimization and registered in a look-up table.
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Figure 4-5: Illustration of calibration weighting for image and projection-based recombination

4.5 Discussion

In this chapter, the basic concepts behind spectral imaging and material separation were intro-
duced. The production of selective material images were discussed when M different spectral data
are decomposed into M material images (determined system of equations) and when M−1 different
spectral data are decomposed into M material images (undetermined system of equations). Both
image-based and projection-based decomposition approaches were described. Material decompo-
sition with one or multiple materials containing K-shell binding energy in the energy range of the
M input spectra were also discussed. A brief overview on the different state-of-the-art acquisition
strategies used to obtain dual-energy data was also provided.

For the investigations carried in the remainder of this PhD thesis, an iodine K-edge breast
imaging framework and the specific algorithms implemented to obtain iodine-enhanced images in
dual-energy CE-DBT and dual-energy CE-bCT setups were described. For CE-DBT, a projection-
based algorithm previously developed by Puong et al. [226] was implemented. For CE-bCT, both
image-based and projection-based methods were implemented. The image-based recombination
algorithm was based on the linear recombination of water-based corrected LE and HE attenuation
volumes, while projection-based recombination algorithm was based on Alvarez and Macovski
[204,216] high-order polynomial recombination of LE and HE projection data. For all methods, we
assumed the composition of every unit of volume in the breast to be an ideal solution composed of
adipose, fibroglandular tissues and iodine. To allow a fair comparison between different state-of-the-
art acquisition strategies, proposed in Chapter 5 as candidate design options to obtain dual-energy
data in a dedicated breast CT setup, we proposed a material decomposition calibration procedure
as a consistent way to determine the optimal recombination parameters for any given input LE
and HE spectra and independently to decomposition domain (images or projections).

In this PhD thesis, in order to solve the underdetermined problem of three-material separation
with two spectral measurements, a volume conservation hypothesis was made. However, the as-
sumption is not always verified. For example, whenever mixing salt and water, the volume of the
mixture is not equal to the sum of the individual volumes of salt and water. Alternative methods
based on the decomposition of mass fractions ωm were proposed [233, 234]. Accordingly, a mass
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conservation assumption could be written as:

ω1(r) + ω2(r) + ω3(r) = 1 (4.13)

In such methods, the material decomposition described by Equation 4.1 is written using
ψm(E) = (µ/ρ)m(E) and am(r) = ωm(r), where (µ/ρ)m(E) is the energy-dependent mass at-
tenuation coefficient of material m. More sophisticated approaches aiming to derive the density of
a mixture based on models for the excess free energy of a mixture [235], were also proposed. How-
ever, the added accuracy of both mass conservation and excess free energy models are negligible
in applications involving the biological materials and contrast agents expected for breast imaging,
where volume conservation assumption is approximately held.

In the presented image-based decomposition algorithm, measured low and high energy vol-
umes µ̃LE(r) and µ̃HE(r), respectively, are linearly recombined to form iodine equivalent images
fiodine(r). To reduce beam-hardening artifacts and achieve better background tissue cancellation,
µ̃LE(r) and µ̃HE(r) were corrected for beam-hardening by linearizing CT values with respect to a
reference material, using a high-order polynomial fit [214]. Maaβ et al. [215] has proposed an alter-
native empirical calibration using high-order polynomial combination of the measured CT values
for image-based decomposition. The method relies on the observation that, without the crossed
terms in Alvarez and Macovski decomposition, high-order polynomial combination of LE and HE
data can also be performed in the image-domain. In this case we would have:

am(r) =

N∑
l=0

N∑
k=0

cl
[
µ̃LE(r)

]l
+ ck

[
µ̃HE(r)

]k
(4.14)

where am(r) is the local quantities of material m and the coefficients cl and ck can be found by
calibration, using least squares minimization of known values of am(r), usually obtained from an
a priori calibration [236]. Naturally, this requires a linear reconstruction algorithm. Although the
method was develop to decompose two-materials using dual-energy data and generate synthetic
monochromatic images, we could have envisioned to apply it to the iodine K-edge imaging problem
described in this chapter.

Since in this PhD thesis research we have been manipulating simulated data, Alvarez and
Macovski [204,216] polynomial approach was chosen for projection-based material decomposition.
This allowed for faster calculation and little stability problems (e.g. fluctuations in the calculated
coefficient and consequent inaccuracy in material separation) during spectral optimization. In
a real case scenario however, photon starvation and other non-linear imaging artifacts could lead
polynomial fit approaches to erroneous decomposition. Elsewhere, look-up table methods were pro-
posed [206,218] for dual-energy imaging in order to address the instability of polynomial surfaces,
particularly in the presence of high noise and image artifacts. Furthermore, these methods could,
in theory, be conceived such as to better handle the K-edge discontinuity. Another way proposed
in literature to decompose dual-energy data is by using iterative methods [211,219]. They present
the possibility of being incorporated in an iterative reconstruction algorithm workflow and benefit
from noise regularization and artifact management. Both look-up table and iterative approaches
deserve further investigation to evaluate their potential in better handling real CE-bCT data.

Additionally, under the idealistic hypothesis of this study, beam hardening correction through
linearization of CT numbers or polynomial decomposition in the projection domain did not took
into account the variations of signal intensity in a given detector element other than the attenuation
of the basis materials. However, the presence of Heel effect, bowtie filtration, X-ray scatter and
non-homogeneous detector efficiency would deviate signal intensities in projection images from
the values expected in the fitted model. In this case, one solution is to consider a family of fit
models which depends on the detector element position, or alternatively on each X-ray beam path
from the source s to element i. For example, in projection-based decomposition case, the material
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projection δm(i) could be calculated as:

δm(i) =

N∑
l=0

N∑
k=0

Cl,k(i)︸ ︷︷ ︸
position-dependent

· cl,k
[
pLE(i)

]l [
pHE(i)

]k︸ ︷︷ ︸
std. decomposition model

(4.15)

where the coefficients Cl,k(i) depend on the detector element i. In practice, they could be estimated
by concatenating the effect of different phenomena:

Cl,k(i) = cHeell,k (i) · cbowtiel,k (i) · cscatterl,k (i) · cηl,k(i) · · · (4.16)

In summary, with a validated simulation platform and the iodine-enhanced breast X-ray imaging
framework described in this chapter, we achieve the basis for the ongoing improvements aimed at
optimizing the performance of Dual-Energy CE-bCT and comparing its performance with Dual-
Energy CE-DBT, i.e. the main objectives of this PhD thesis research work. Both topics are
discussed in the following chapters.



Chapter 5

Spectral Optimization of
Dual-Energy Contrast-Enhanced
Breast CT

As described in Chapter 1, in the past decade much effort has have been oriented towards the opti-
mization of single-energy (SE) breast CT image quality, in particular to improve the detectability of
fibroglandular tissue and microcalcifications. Optimization studies on dual-energy (DE) breast CT
have been limited to the improvement of spatial resolution as well as masses and microcalcification
detectability in non-contrast-agent-enhanced breast images using energy-weighting recombination
techniques [109, 131, 141, 237]. Little investigation on dual-energy recombination techniques for
contrast-agent and tumor angiogenesis enhancement in a dedicated breast CT setup has been per-
formed, with main contributions from Shikhaliev at al. [129,130,140]. This research group adopted
Gadolinium-based contrast agent, since the minimum photon energy sensitive to the CZT detector
(26 keV), prevented from exploring the iodine K-edge (33.2 keV), due to low X-ray quanta detected
in the small energy bin (25 − 33.2 keV ). As far as we know, by the beginning of this PhD thesis
research, no further studies had been carried to assess the feasibility of dual-energy recombination
for iodine-enhanced breast CT technique.

In a 3D dual-energy X-ray imaging system framework, the main components and parameters in
the imaging chain impacting dose-dependent detectability can be classified into two main groups:
1) energy-independent components defining spatial resolution and noise propagation (e.g. sys-
tem topology, acquisition orbit, detector noise characteristics, reconstruction and post-processing
methods) and 2) energy-dependent parameters (e.g. breast tissue attenuation, scattered radiation,
detector energy-dependent efficiencies, DE acquisition parameters and recombination algorithm).

The first group of parameters influencing image quality has been intensively studied for single-
energy breast CT. In particular, the effect of system topology [119–123], acquisition orbit [118,
136, 137], detector efficiency [123, 129, 130, 135] and reconstruction algorithms [133, 134, 238] on
the detectability of fibroglandular tissue and microcalcifications have been object of investigation.
They will not be further discussed in this chapter.

The second group of parameters is within the main topic of this chapter. Herein, we focus on
the evaluation and the optimization of energy-dependent parameters impacting the image quality
of dual-energy Contrast-Enhanced breast CT (CE-bCT). The study was performed through the
assessment of dose-dependent detectability of vascular contrast agent in simulated iodine-equivalent
images, as well as the dose-dependent detectability of fibroglandular tissue and microcalcifications
in simulated morphological images.

In this chapter, design factors impacting X-ray system spatial resolution and energy-independent
noise propagation were disregarded. Accordingly, idealistic hypothesis for the source and detector
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efficiency were made, and a linear reconstruction algorithm was adopted. In this framework, the
energy-dependent parameters influencing image quality and subject of the optimization studies of
this chapter were identified by analyzing the energy-dependent terms of the equation describing
the formation of X-ray images (cf. Annex A for further details on the principles of X-ray image
formation):

where κ is a scaling factor, ξ(E) is the detector conversion response, η(E) is a function translating
an eventual energy-dependent efficiency in detecting photons, Inet(E, i) is the X-ray intensity
spectrum generated by the X-ray source s and towards the detection element i (calculated from
the fluence Snet(E, i) and the detector element surface), µ(r, E) is the linear attenuation coefficient
of the imaged breast at energy E and position r in its volume, dl is the incremental thickness of
the traversed breast in the path s − i and Iscatter(E) is the X-ray intensity spectrum incident
over the detector element surface resulting from photon scattering (estimated from Monte Carlo
simulations).

In Section 5.1, the critical factors to image quality and optimization criteria translating the key
clinically relevant factors for breast cancer diagnosis, staging and therapy follow-up are defined.
In Section 5.2, a detailed description on the simulated cone-beam CT geometry and parameters
used throughout this chapter is provided. In Section 5.3, low-energy (LE) and high-energy (HE)
monochromatic spectra and average glandular dose distribution between the LE and HE acqui-
sitions are optimized. In Section 5.4, the optimal monochromatic spectra are used as a first
approximation for the optimal acquisition parameters in a polychromatic source scenario. Dif-
ferent dual-energy acquisition strategies are considered and individually optimized (dual-source,
dual kVp, energy-discriminating detector, . . . ). In order to have a glimpse on the impact of their
practical implementation constraints in the optimization results, the performance of the different
acquisition strategies is compared in Section 5.5. Finally, in Section 5.6, a spectral optimization
study considering different columnar structured Cesium Iodide (CsI) scintillators thicknesses and,
as consequence, energy-dependent absorption efficiencies is performed.

In all these experiments, X-ray scatter was disregarded. As shown by Glick et al. [163] and
as confirmed in the experiments presented in Annex C, image quality degradation (in terms of
contrast-to-noise ratio) due to X-ray scattering has little energy-dependency and would not have
significant influence on the optimization studies of this chapter.
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5.1 Optimization Critical-to-Quality Factors

As briefly described in Chapter 1 and mathematically formalized in Chapter 4, spectral techniques
for iodine-enhanced breast X-ray imaging enable to obtain functional iodine-enhanced images in
which the signal intensity is proportional to the quantity of iodine in breast tissues. These images
provide functional information on breast vascularity and highlight breast tumor angiogenesis. In
the case of a dedicated breast CT, the iodine-equivalent images are tomographically reconstructed
slices of the breast, with signal intensities proportional to the volumetric iodine concentration
inside each unit of volume. An optimal dual-energy system is therefore the one which provides the
best image quality in iodine-equivalent images while minimizing the total radiation dose delivered
to the patient.

In addition to functional images, it is also of great interest to provide additional morpho-
logic images which are spatially correlated to the functional images. They provide complementary
morphologic information on the mammary gland and eventual cancerous lesions, allowing to de-
pict asymmetrical breast tissues and density differences between the two breasts, architectural
distortions, unenhanced masses, microcalcifications clusters and other typical and relevant mam-
mographic findings during breast cancer screening. The morphological images can be defined as
either the reconstructed LE or HE volumes, or in some cases be found by an optimal combination
of LE and HE data1.

Accordingly, we define the Dual-Energy Contrast-Enhanced breast CT (CE-bCT) application
as the technique which, departing from two spectrally separated acquisitions, provides an iodine-
equivalent volume containing functional information on tumor angiogenesis, as well as a morpho-
logic volume containing morphological information on the mammary gland, masses and micro-
calcifications. The iodine-equivalent volume is obtained from the recombination of low-energy
(LE) and high-energy (HE) acquisitions. The morphologic volume is defined as the tomographic
reconstructed LE volume. The process in summarized in Figure 5-1.

1When LE and HE acquisitions have sufficient spatial correlation (either on image or projection domain), they
can also be recombined into a morphologic volume in which the detectability of fibroglandular tissue is optimal. In
spectral CT literature, this process is often referred as Energy Weighting for soft-tissue [129,131,237,239] and can
be used, in the present three-material decomposition problem, to enhance fibroglandular tissue depiction or mask
the iodine-uptake, as in Virtual Unenhanced CT techniques [232,240,241]. Energy-Weighting for breast morphologic
image was not addressed in this PhD thesis research.

Figure 5-1: Optimization Critical-to-Quality (CTQ) factors
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5.1.1 IQ Assessment in Recombined Iodine-Equivalent Images

Given the medical application just described, in this chapter the quality of recombined iodine-
equivalent images was evaluated through the detectability of iodine-enhanced lesions as well as
the detectability of the residual background texture (i.e. the anatomical noise). Image quality
is therefore optimal when maximizing the detectability of iodine uptake while ensuring optimal
cancellation of the residual texture (cancellation of the background texture caused by soft tissue
differential attenuation).

Spatial resolution effects on detectability are out of the scope of this chapter. Therefore,
Contrast-to-Noise Ratio (CNR) was chosen as the metric to assess iodine uptake detectability in
a given region of interest. CNR has been shown to be a measure of detectability under specific
experimental conditions [242,243].

Dose-Dependent Iodine Detectability
Contrast-to-noise ratio per pixel between iodine-enhanced breast tissue and the background nor-
malized to the square root of the total AGD (CNRD) was used as the figure of merit for dose-
dependent iodine detectability in the iodine-equivalent images fiodine:

CNRDiodine−bg =
SIiodine − SIbg

σbg
√
AGDLE+HE

(5.1)

where SIiodine and SIbg are respectively the mean per-pixel signal intensity (SI) in an iodine-
enhanced region of interest (ROI) and a non-iodine enhanced neighboring background ROI, σbg
is the standard deviation of the SI in the non-iodine enhanced neighboring breast background
ROI and AGDLE+HE is the sum of AGD delivered during LE and HE acquisitions (AGDLE and
AGDHE , respectively).

To assess background texture cancellation in iodine-equivalent images fiodine, CNRD values
between non-iodine-enhanced fibroglandular and adipose tissue were calculated as:

CNRDtexture =
SIgland − SIadipose

σadipose
√
AGDLE+HE

(5.2)

where SIgland and SIadipose are the mean per-pixel SI in a ROI containing unenhanced fibroglan-
dular and adipose tissues, respectively, and σadipose is the standard deviation of the SI in an ROI
containing adipose tissue.

Cupping artifact in the reconstructed iodine-equivalent images fiodine was quantified as another
quality metric. Cupping was estimated as the difference in mean per-pixel SI between circular ROIs
at the breast phantom center position, SIcenter, and the phantom’s edge, SIedge, normalized by
the contrast between the iodine-enhanced ROI and the unenhanced background ROI (Equation
5.1):

cupping(%) = 100× SIedge − SIcenter
SIiodine − SIbg

(5.3)

Iodine Concentrations Expected in Clinical Practice
The target iodine concentrations to be detected were calculated assuming typical injection protocols
of contrast-enhanced CT and mammography [97,244,245], i.e. a contrast agent with concentration2

Cagent = 270 to 370 mg I/mL, injected at d = 1.0 to 1.5 mL/kg of body weight. By assuming

2values are based on commonly used non-ionic iodinated contrast media: iopromide 300 and 370 (Ultravist®,
Bayer Health Care Pharmaceuticals; Berlin, Germany); iodixanol 270 and 320 (Visipaque®, GE Healthcare; Chal-
font St Giles, UK); iohexol 270, 300, 320 and 350 (Omnipaque®, GE Healthcare; Chalfont St Giles, UK); iopamidol
300 and 370 (Isovue®, Bracco Diagnostics Inc.; Princeton, NJ, USA)
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complete dissolution of iodine in the patient’s body volume, we calculated the minimum iodine
concentration expected in clinical practice:

Clesion,min =
mass of iodine

patient volume
=

Cagent · d ·M
1000 ·M/ρtissue

≈ 0.27 − 0.5 mg/cm3 (5.4)

where M is the patient body weight.

Using similar reasoning, the maximum iodine concentration would be achieved when the in-
jected contrast agent is concealed within the patient’s blood only. In this case, for an average
patient with M = 70 kg and V = 5 L of blood, we have:

Clesion,max =
mass of iodine

patient blood volume
=
Cagent · d ·M

V
≈ 4.2 − 7.7 mg/cm3 (5.5)

Target Iodine-Enhanced Lesion Size and Concentration
For the remainder of this PhD thesis, we consider a 2 mm diameter lesion as the minimum lesion
size to be detected in a contrast-enhanced breast imaging setup. We assume 2 mm to be the
smallest tumor size for which the angiogenesis phenomenon manifests (cf. Section 1.1 for details
on breast anatomy and cancer development).

Additionally, from Equations 5.4 and 5.5 above, we consider 0.5 mg/cm3 and 5.0 mg/cm3 as
the minimum and maximum iodine uptakes expected in clinical practice, respectively.

Measurement of Detectability for the Target Iodine-Enhanced Lesion
As a measure of detectability for the target iodine-enhanced lesion, effective CNR (CNReff )
between lesion contrast uptake and a homogeneous background in recombined iodine-equivalent
images fiodine was calculated for a given AGD level, as defined by Rose [246,247]:

CNReff =
SIiodine − SIbg

σbg
×
√

lesion area in pixels (5.6)

where SIiodine and SIbg are respectively the mean per-pixel SI in an iodine-enhanced region of
interest (ROI) and a non-iodine enhanced neighboring background ROI, and σbg is the standard
deviation of the SI in the non-iodine enhanced neighboring breast background ROI. Rose’s threshold
for minimum lesion depiction is achieved for CNReff values above 5.

For an average-sized breast (5 cm-thick compressed breast, corresponding to a 14 cm diameter
uncompressed breast [162]), we considered a practical AGD operating point at 3 mGy, which
corresponds approximately to the screening AGD for a two-view breast using the AOP3 Contrast
mode of GE Senographe® Essential system [248]. Note that 3 mGy is about half the radiation
dose accepted by the European Union4 and the American College of Radiology (ACR) guidelines
for two-view mammography screening. Moreover, it is likely that CE-bCT will not be used for
screening examinations but rather for diagnosis purposes. Therefore, higher AGD levels may be
acceptable.

5.1.2 IQ Assessment in LE Morphologic Images

The quality of morphologic images was evaluated through the detectability of unenhanced fibrog-
landular tissue in adipose background as well as the detectability of microcalcifications in fibrog-
landular background. As before, the criterion used to assess the detectability in a given region of
interest was the Contrast-to-Noise Ratio (CNR) per pixel. Image quality in morphological images

3AOP – Automatic Optimization of Parameters for exposure control system
4EUREF – European Guidelines for Quality Assurance in Breast Cancer Screening and Diagnosis
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is therefore optimal when maximizing CNR values between fibroglandular and adipose tissues, as
well as CNR values between microcalcification and fibroglandular tissue.

In this PhD thesis, eventual differences in contrast between healthy fibroglandular tissue and
tumors were not considered. Although Johns and Yaffe [249] showed slight differences in linear at-
tenuation coefficients between fibroglandular and tumor tissues, it remains unclear whether tumors
can actually be detected by contrast differences in morphologic breast CT images [107], at least
not without the aid of vascular contrast agents, as previously demonstrated by Prionas et al. [138].
Moreover, using Johns and Yaffe attenuation coefficients, Chen and Ning [104] demonstrated in a
spectral optimization study that maximum CNRD values for carcinoma and fibroglandular inserts
embedded in a 50% fibroglandular background are found at 32 and 31 keV, respectively, i.e. with
only 1 keV difference. Hence, for the optimizations studies of this chapter, we assumed the mea-
surement of fibroglandular tissue depiction as a good first approximation for unenhanced breast
masses detectability in LE morphologic images.

Microcalcification and Mass Detectability
CNRD between microcalcifications and fibroglandular tissue, CNRDµCal−gland, and between fi-
broglandular and adipose tissues, CNRDgland−adipose, were used as Figures-of-Merit assessing
respectively microcalcification and mass tissue detectability in the LE morphologic images:


CNRDµCal−gland =

SIµCal − SIgland
σgland

√
AGDLE+HE

CNRDgland−adipose =
SIgland − SIadipose

σadipose
√
AGDLE+HE

(5.7)

where SIµCal, SIgland, SIadipose are the means per-pixel SI in an ROI containing unenhanced
microcalcifications, fibroglandular and adipose tissues, respectively, and σgland and σadipose are
the standard deviation of the SI in fibroglandular and adipose tissues, respectively.
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5.2 Cone-Beam Breast CT Acquisition Geometry

In this chapter, a cone-beam breast CT topology similar to that described by Boone et al. [103]
was adopted as the main geometry and starting point for all simulations. With the woman in
prone position, the uncompressed breast was modeled as a cylinder with diameter D and height
equal to three-quarters of its diameter (3D/4) [162]. The cylinder’s central axis was positioned at
46 cm from the source and such that the beam ray normal to the detector passed through the top
of the cylinder. Figure 5-2 illustrates and summarizes the cone-beam topology.

Figure 5-2: Cone-Beam CT geometry used in dual-energy CE-bCT spectra optimization

The source was considered an isotropic emitting point, positioned at 88 cm from a flat de-
tector, such as to make a half cone-beam geometry. The detector pixel pitch was set to 776 µm
(4x4 binning), with total matrix size chosen to be wide enough to accommodate the irradiated
phantom in its FOV. As previously discussed, a throughout evaluation of the detector technology
impact on DE-bCT image quality is not in the scope of this PhD thesis research. Hence, unless
otherwise specified, the flat detector was considered to be a perfect detector, with perfect efficiency
in collecting and transforming X-ray photons into electronic signal, without suffering from optical
scattering or spectral distortions inherent of its technology (either energy-integrating or photon-
counting). For more information on X-ray detector technologies and performances, we refer the
reader to the work of Yaffe and Rowlands [250] (digital radiography), or Yaffe and Mainprize [251]
(digital mammography).

The acquisitions were simulated assuming a “step-and-shoot” mode, and the time interval for
one view integration is considered for exposure calculation (i.e., mAs values). The X-ray tube
and the detector rotated over a full angular sampling range of the object (360°). Tube voltage
switching during rotation was assumed to be ideally performed, i.e. with instantaneous transition
between LE and HE tube voltage values.

Between three and six hundred analytical projections were simulated for each LE and HE scans,
depending on the phantom size. Tomographic reconstruction was carried with the standard Filtered
BackProjection (FBP) algorithm, with an ideal ramp filter and distance-driven interpolation [252],
to obtain 512 × 512 coronal images with 0.41 × 0.41 mm2 pixel size, and 1 mm slice thickness.
Detection element and voxel sizes, as well as the number of projections views have no energy-
dependent impact on dose-dependent detectability. They were chosen to keep simulation time
manageable and to provide good noise estimation at all considered spectra.

As shown by Glick et al. [163], X-ray scattering in a single-energy acquisition has a moderate
effect on absolute lesion CNR value. However, the authors showed that CNR degradation has
little energy-dependency. In Ref. [163], this result was illustrated for a full cascade system analysis
of a 600 µm-thick CsI:Tl-based flat detector, including optical spreading, K-fluorescence, energy-
dependent QDE, and other inefficiencies. This observation was verified to be also valid for the
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cone-beam CT geometry exploited in this PhD thesis research work. A detailed study is described
in the Annex C (cf. Figure C-4c and C-5 for an illustration of the impact of scattered radiation
on CNR as function of the monochromatic beam energies, with additional published data from
Ref. [163]). Accordingly, we assumed henceforth that X-ray scattering has little effect on spectra
optimization for dual-energy CE-bCT, and was therefore further disregarded.
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5.3 Monochromatic Spectra Optimization

In this section, simulations are performed to optimize the low-energy (LE) and high-energy (HE)
monochromatic spectra and the average glandular dose (AGD) repartitioning between the LE and
HE acquisitions to obtain optimally enhanced iodine and morphological images. The analysis is
performed for small, average and large 50% fibroglandular equivalent breast phantoms, containing
iodine-enhanced inserts, as well as inserts with various fibroglandular equivalent compositions,
representing masses, and calcium hydroxyapatite, emulating calcifications.

Monochromatic spectra optimization is a preliminary step in our study. It provides a first
approximation on the design of optimal acquisition parameters in a polychromatic spectra scenario,
where it is desirable to generate low and high-energy polychromatic spectra with effective energies
as close as possible to optimal monochromatic energy pairs. Polychromatic optimization will be
discussed in Section 5.4.

5.3.1 Optimization Method

Breast Phantom and X-ray Image Simulation
The cone-beam CT geometry described in Section 5.2 and illustrated in Figure 5-2 was simu-
lated. Three 50% fibroglandular equivalent cylindrical phantoms with diameter D measuring 10,
14 and 18 cm and heights equal to three-quarters of their diameter (3D/4) were simulated to
mimic small, average and large uncompressed breasts, when the woman is in prone position [162].
Although a 50% fibroglandular assumption does not represent the average breast density [253],
for this preliminary monochromatic study, the 50-50 hypothesis allowed to verify that our re-
sults are in agreement with previously published investigations (glandular dose estimation [112],
scattered radiation [114, 163], mass and microcalcification detectability [116], . . . ). Eight 10 mm
diameter spherical inserts emulating 0, 25, 75 and 100% fibroglandular equivalent tissues as well
homogeneous mixtures of 50% fibroglandular tissue and 0.5, 1.0, 2.5 and 5.0 mg/cm3 of iodine,
were distributed in the horizontal plane at mid-depth of the cylinder (cf. Figure 5-3a). An iodine
concentration of 0.5 mg/cm3 was assumed to be the minimum iodine concentration expected clin-
ically if a typical injection protocol of contrast-enhanced mammography is considered (cf. Section
5.1). A CaHA (calcium hydroxyapatite) sphere, simulating microcalcifications composition, was
positioned at the cylinder’s axis but at a different height.

X-ray projections and tomographic reconstruction were simulated as described in Section 5.2.
Simulated low and high energy volumes µ̃LE(r) and µ̃HE(r), respectively, were recombined using
the dual-energy image-based recombination algorithm for three-material decomposition problem
described in Chapter 4, such as to produce iodine-equivalent slice images, fiodine(r).

Figure 5-3b illustrates a scatter plot representing the SI in the HE and LE reconstructed images.
SI from non-iodine enhanced breast tissue and iodine-enhanced breast tissue are distributed around
the linear fit L1 and L2 respectively. The angle θ between L1 and L2 can be used to evaluate
material separation and breast tissue cancellation in the iodine-equivalent images. In literature,
studies have used θ as a Figure-of-Merit for spectra optimization [254,255], especially when contrast
and average signal intensities are difficult to measure, e.g. in iodine-bone separation [256]. It can
be in some cases normalized by a given definition of noise and provide signal-to-noise ratio as
metric. In this investigation however, we assessed θ only as reference metric.

AGD was estimated using the Monte Carlo simulator described in Section 2.6. Two millions
photons (2 × 106) undergoing Rayleigh, Compton and photoelectric interactions were tracked in
2× 2× 2 mm3 voxels. The deposited energy was tallied and corrected to account for the glandular
part of the breast only [189, 190]. AGD was calculated in mGy and normalized to 1 mGy of air
kerma at the isocenter, forming Normalized Glandular Dose (DgN) coefficients. Since the spectral
optimization is independent of the total AGD, mAs values were adjusted to provide an ad hoc
total AGD of 100 mGy to avoid any artifacts attributed to a lack of quanta (e.g. streaks).
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Figure 5-3: (a) Slice of the cylindrical phantom containing different inserts used for dual-energy
CE-bCT spectra optimization; (b) example of scatter plot between the signal intensity in HE vs
LE images

Optimization Criteria
As described in Section 5.2, CNRD between iodine-enhanced breast tissue and unenhanced back-
ground breast tissue (CNRDiodine−bg) was used as the figure of merit for dose-dependent iodine
detectability in the iodine-equivalent images fiodine(r) and was calculated following Equation 5.1.

Assuming quantum noise only, the standard deviations of the SI in LE and HE images are
inversely proportional to

√
AGDLE and

√
AGDHE , respectively (Poisson distribution). Let τ =

AGDLE/AGDLE+HE be the LE dose allocation ratio, i.e., the fraction of the total AGD allocated
to the LE image. It can be derived that:

σ2
bg ∝

A

AGDLE
+

B

AGDHE
−→ CNRD2

iodine−bg ∝
τ(1− τ)

(B −A)τ +A
(5.8)

where A and B are proportionality constants. Equation 5.8 shows that CNRDiodine−bg is inde-
pendent of the total AGD and depends only on the AGDLE/AGDHE repartitioning [257].

CNRD between microcalcifications and fibroglandular tissue, CNRDµCal−gland, and between
fibroglandular and adipose tissues, CNRDgland−adipose, were respectively used as figures of merit
assessing microcalcification and mass detectability in the LE morphologic images. They were
calculated as described by Equation 5.7.

Since monochromatic X-ray beams only are considered, projections images are free from the
effects of beam-hardening. Moreover, assuming primary X-ray photons only, no cupping was intro-
duced from scattered radiation. Therefore, reconstructed iodine-equivalent images are cupping-free
and the dual-energy recombination provides perfect texture cancellation.

5.3.2 Research Space and Data Analysis

CNRDiodine−bg was calculated in the iodine-equivalent volume for beam energies varying from 20
to 80 keV, at 5-10 keV steps and at 1 keV step near the iodine K-absorption edge (33.2 keV).
For each LE and HE X-ray beam pair, LE dose allocation ratio was varied between 20% and 80%
at 5-10% steps. CNRDiodine−bg was evaluated as a function of the LE dose allocation ratio τ .
Optimal LE dose allocation ratio, τopt, i.e. maximizing CNRDiodine−bg was identified for each
LE/HE pair.

Figure 5-4 illustrates the simulated Normalized Glandular Dose (DgN) coefficients as function
of the X-ray beam energy, for the 10, 14 and 18 cm diameter phantoms. In the energy range
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considered for the spectra optimization, DgN values are very low before 20 keV since most photons
are stopped at the breast periphery. They increase rapidly after 20 keV due to the higher beam
penetration and higher scatter production. Finally, DgN values increase slowly at higher energies,
since most energy is transmitted through the phantom and the absorbed dose increases at the same
pace as the Air Kerma.

To ensure the best image quality in recombined iodine-equivalent images, CNRDµCal−gland
and CNRDgland−adipose were computed for τopt. As a consequence, the LE/HE spectra pairs ac-
counting simultaneously for maximum CNRDiodine−bg, CNRDµCal−gland and CNRDgland−adipose
ensure the best trade-off in image quality for both iodine-equivalent and morphologic images.

Figure 5-5a illustrates for three different energy pairs, CNRDiodine−bg as function of LE dose
allocation ratio τ . Figure 5-5b and 5-5c illustrates CNRDµCal−gland and CNRDgland−adipose,
respectively, as function of LE dose allocation ratio τ . A squared root dependency was found since
CNRDµCal−gland and CNRDgland−adipose as function of

√
τ .

A 2nd degree polynomial (for CNRDiodine−bg) and a squared root function (for CNRDµCal−gland
and CNRDgland−adipose) were used to the fit all simulated data as a function of LE dose allocation
ratio. This entailed in a better estimation of the optimal LE dose allocation ratio τopt and the
corresponding CNRD values. For all experimental conditions, fitness coefficients (R2) values were
larger than 0.95.

5.3.3 Optimal Spectra and Dose Allocation

Optimal Spectra and Dose Allocation for Iodine Uptake Depiction
Figures 5-6a, 5-7a and 5-8a show the optimal LE dose allocation ratio, τopt, i.e. providing maximum
CNRD in iodine-equivalent images, as a function of LE and HE pairs for 10 cm, 14 cm and 18 cm
diameter phantoms, respectively. Optimal LE dose allocation ratio, τopt, varies around 50% for a
large range of LE and HE pairs, and is in general higher for thicker phantoms. Optimal LE dose
allocation ratio increases rapidly for LE smaller than ∼ 25 keV, such as to compensate the lack of
transmitted quanta, and decreases slowly with increasing HE values.

Figures 5-6b, 5-7b and 5-8b show CNRDiodine−bg at τopt, as a function of LE/HE pairs and
for all phantom diameters. CNRDiodine−bg was computed considering an iodine-enhanced lesion
containing 5.0 mg I/cm3. This choice was meant to ensure accurate CNRD estimation for all
simulation points, especially in the presence of low lesion contrast and high quantum noise. For all
phantom diameters, CNRDiodine−bg is higher for LE and HE pairs just below and above the iodine
K-edge, than for LE and HE pairs with energies farther away from the iodine K-edge discontinuity.

Figure 5-4: DgN coefficients as function of the incident monochromatic beam energy for the 10,
14 and 18 cm diameter phantoms
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Figure 5-5: Illustration of (a) CNRDiodine−bg, (b) CNRDµCal−gland and (c) CNRDgland−adipose
as function of LE dose allocation ratio τ . Markers represent simulated data; solid lines represent
2nd degree polynomial or squared root function fits

Figure 5-6: Monochromatic spectra optimization results for 50% fibroglandular-equivalent 10
cm diameter phantom. (a) Optimal LE dose allocation ratio τopt; (b) CNRDiodine−bg at τopt;
CNRDiodine−bg computations were performed for iodinated lesions with 5 mg I/cm3; (c) result-
ing angle θ; (d) CNRDµCal−gland and (e) CNRDgland−adipose at τopt; (f) isocontours within which
CNRDiodine−bg (iodine), CNRDµCal−gland (CaHa-G) and CNRDgland−adipose (G-A) exceed 95%
of their maxima
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Figure 5-7: Monochromatic spectra optimization results for 50% fibroglandular-equivalent 14
cm diameter phantom. (a) Optimal LE dose allocation ratio τopt; (b) CNRDiodine−bg at τopt;
CNRDiodine−bg computations were performed for iodinated lesions with 5 mg I/cm3; (c) result-
ing angle θ; (d) CNRDµCal−gland and (e) CNRDgland−adipose at τopt; (f) isocontours within which
CNRDiodine−bg (iodine), CNRDµCal−gland (CaHa-G) and CNRDgland−adipose (G-A) exceed 95%
of their maxima

Figure 5-8: Monochromatic spectra optimization results for 50% fibroglandular-equivalent 18
cm diameter phantom. (a) Optimal LE dose allocation ratio τopt; (b) CNRDiodine−bg at τopt;
CNRDiodine−bg computations were performed for iodinated lesions with 5 mg I/cm3; (c) result-
ing angle θ; (d) CNRDµCal−gland and (e) CNRDgland−adipose at τopt; (f) isocontours within which
CNRDiodine−bg (iodine), CNRDµCal−gland (CaHa-G) and CNRDgland−adipose (G-A) exceed 95%
of their maxima
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For small, average and large diameter phantoms, maximum CNRDiodine−bg values are obtained
at 33keV/34keV LE/HE pairs.

Figures 5-6c, 5-7c and 5-8c show the angle θ, as a function of LE/HE pairs. Notice that since
the reconstructed images are free from beam-hardening, θ is independent of the phantom diameter.
Similar to CNRDiodine−bg results, θ is higher for LE and HE pairs below and above the iodine
K-edge, respectively. In this energy range, θ increases with decreasing LE beam energy, and is
maximum for ∼50 keV HE beam energy. Therefore, optimal LE and HE beam energies based on
CNRDiodine−bg and θ evaluation does not coincide, mainly because θ does not takes into account
image noise.

Optimal Spectra and Dose Allocation for µCal and Mass Depiction
Figures 5-6d, 5-7d and 5-8d show CNRDµCal−gland calculated in the morphologic images at τopt.
Figures 5-6e, 5-7e and 5-8e show CNRDgland−adipose calculated in the morphologic images at
τopt. For average and large diameter phantoms, CNRDµCal−gland and CNRDgland−adipose are
characterized by a broad maximum as a function of LE, although the values decline rapidly for
small LE values. Maximum CNRDµCal−gland and CNRDgland−adipose values for small, average
and large diameter phantoms are obtained for the LE ranges summarized in Table 5.1. These results
are concordant with a previously published optimization study carried by Weigel et al. [116], in
which optimal monochromatic spectra for single-energy morphologic bCT images were evaluated.

Optimal Trade-Off for Iodine-Equivalent and Morphological Images
Figures 5-6f, 5-7f and 5-8f show the isocontour lines of CNRDiodine−bg, CNRDµCal−gland and
CNRDgland−adipose at 95% of their maximum value, for all investigated LE/HE pairs. Based
on the intersection of the isocontours, 27keV/34keV, 30keV/34keV and 33keV/34keV LE/HE
pairs were found to provide a good compromise in performance for iodine, microcalcification and
mass detectability in small, average and large diameter phantoms, respectively. For these LE/HE
spectrum pairs, τopt was approximately equal to 50%.

As a measure of detectability for the target iodine-enhanced lesion (2 mm diameter, 0.5 mg/cm3

iodine uptake) in a homogeneous background (cf. Section 5.1 and Equation 5.6), effective CNR
(CNReff ) between lesion contrast uptake and a homogeneous background was calculated as defined
by Rose [246, 247] using CNRDiodine−bg values at a given AGD level. For the 14 cm diameter
phantom, we consider 3 mGy AGD comparable to the screening AGD for a two-view breast of
average thickness (AOP Contrast mode on GE Senographe® Essential system, for a 5 cm-thick
PMMA). In this case, for the acquisition geometry considered in this chapter (cf. Section 5.2)
and if a Hamming apodization function is included to the reconstruction ramp filter5, we obtain
at optimal LE and HE beam energies CNReff ≈ 5.1, i.e. just above the Rose’s detectability
threshold of 5.

Table 5.1 summarizes the optimal acquisition spectra for all phantom sizes.

Table 5.1: Summary of optimal monochromatic acquisition spectra for different 50% fibroglandular-
equivalent phantom diameters. Energy values were estimated using the isocontour lines of CNRD
surfaces, plotted in Figures 5-6f, 5-7f and 5-8f. The results are based on 50% glandular phantoms
and CNRD values computed relative to the 5 mg/cm3 iodine-enhanced lesion

Iodine Imaging CaHA-Gland. Gland.-Adipose

Phantom LE/HE En. AGD repart.
CNRD

Optimal Optimal
Diam. (cm) Pair (keV) LE/HE LE (keV) LE (keV)

10 33/34 49/51% 3.13 25–27 25–29
14 33/34 50/50 % 2.38 28–32 30–34
18 33/34 51/49% 1.41 30–38 34–44

5The ideal ramp alone would generate unrealistic noise levels, due to high-frequency signal amplification
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5.3.4 Discussion

This section illustrated the optimal monochromatic spectra for dual-energy subtraction cone-
beam breast CT. Under the assumptions of primary monochromatic X-rays and a perfect energy-
integrating noise-free blur-free detector, the monochromatic LE and HE spectra and the AGD
repartitioning between the LE and HE acquisitions providing optimally enhanced iodine-equivalent
and morphological images were presented.

Under the hypothesis of this study, to obtain maximum iodine detectability in iodine-equivalent
images, LE and HE spectra need to bracket the iodine K-edge and an approximate 50%-50% AGD
repartitioning between the LE and HE is required for all breast thicknesses. For microcalcification
and mass depiction in morphologic images, optimal LE levels were found to be close to those
optimizing the iodine-equivalent images, demonstrating the feasibility, in terms of spectra, of a
bCT system capable to provide both functional and morphological information. In this case, a
trade-off in image quality between iodine-equivalent and morphologic images can be achieved.

The results presented in this section were found using a perfect energy-integrating detector, i.e.
with 100% absorption efficiency at all energy levels, and can be considered as a first approximation
of optimal parameters independently of the detector type (energy-integrating or photon-counting).
However, if a CsI-based scintillator with finite thickness is used, an energy-dependent reduction on
its absorption efficiency is expected, which might ultimately affect the optimal parameters found in
this section assuming a perfect detector. The effect of CsI thickness on optimal X-ray spectra for
contrast-enhanced dual-energy bCT will be described in Section 5.6. Similarly, photon-counting
detectors are likely to have energy-dependent CNRD degradation, due to spectral distortions caused
by photon pile-up, which might also affect the optimal parameters found for a perfect detector. In
order to evaluate the best approach, further studies and an exhaustive comparison of both detector
types under more realistic scenarios for breast CT applications are required.

Spectral optimization was carried out with a high AGD level (i.e. 100 mGy) to prevent photon
starvation at the detector level (especially for the very low LE beams) and thus to obtain accurate
CNRD estimations. A practical operating point however would be at 3 mGy for average-sized
breasts, which corresponds to dose levels comparable to the screening AGD for a two-view breast
with average thickness, as discussed in Section 5.1. In this case, with optimal LE and HE beam
energies for the 14 cm diameter 50% fibroglandular equivalent phantom and a Hamming-windowed
ramp filter, we showed that CNReff ≈ 5.1, i.e. just above the Rose’s detectability threshold of 5.
Operation with a higher spatial resolution would therefore require either an increase in the total
delivered AGD (e.g. to diagnostic levels) or the implementation of more advanced reconstruction
algorithms and denoising schemes. A preliminary detectability study at low-dose levels is presented
further on in Chapter 7.
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5.4 Polychromatic Spectra Optimization

In order to develop a dual-energy technique for breast CT geometry, in which the iodine K-
edge discontinuity is explored and the total delivered radiation dose is minimal, a polychromatic
spectra optimization is performed. Four different dual-energy acquisition strategies are proposed as
candidates for CE-bCT, and are individually assessed in terms of iodine-equivalent image quality.

First, the four hypothetical acquisition strategies under consideration are presented. The image
quality metrics and the optimization methodology are then described. Finally, the four acquisition
strategies are each optimized and their performance with respect to the image quality metrics
presented as function of the acquisition parameters.

Their performance is compared subsequently in Section 5.5.

5.4.1 Candidate Acquisition Strategies for DE-bCT

As discussed in Chapter 4, to obtain the two poly-chromatic spectral data sets for Dual-Energy
acquisitions, different methods have been proposed. They can be separated into two main families
of methods. The first performs spectral separation by using different input spectra. This is typically
achieved either by using dual-source systems with independent spectrum filtration and two X-ray
detectors [224], or by using a single source with alternating tube voltages and/or spectrum filtration
and a single X-ray detector [198,216,258]. The second main family of methods relies on performing
spectral separation during the detection process, by using independent post-patient filtration such
as the “sandwich” detectors [229, 259] or, more recently, through photon-counting with energy-
resolved capabilities [260]. Both families of methods present advantages and drawbacks on their
implementation, such as the quality of spectral separation, data truncation artifacts, tube power
requirements and other engineering constraints. Their specific characteristics can, in a certain way,
be translated into different levels of image quality.

The four candidate dual-energy acquisition strategies considered in the poly-chromatic spectra
optimization study of this section were simulated as if they were obtained by the acquisition
techniques defined below:

1. Dual-Source with Dual Filtration (DS-DF): refers to a system with two independent
source-detector couples, linked to the same acquisition gantry and shifted for example by
a 90° angle. One source-detector couple acquires LE data with an individual tube voltage,
filter material, filter thickness and exposure; the other source-detector couple acquires HE
data with a different set of tube voltage, filter material, filter thickness and exposure. Due to
data truncation constraints, spectral material decomposition is commonly performed in the
reconstructed image domain (slices). The detector is assumed to integrate photon energy to
generate signal intensities. DS-DF strategy is illustrated in Figure 4-1a.

2. Single-Source with Dual Filtration (SS-DF): refers to a single source-detector couple,
with any given method allowing to switch between HE and LE spectra, for example through
kV and rotating filter switching. If tube voltage and filter switching are performed fast
enough between low and high energy acquisitions, material decomposition can be performed
in the projection domain. The detector is assumed to integrate photon energy to generate
signal intensity. SS-DF strategy geometry is illustrated in Figure 4-1b.

3. Single-Source with Fast kV Switching (SS-FkV): refers to a single source-detector
couple, with a single flat filter and any given method allowing to switch between two tube
voltages. With fast kV switching between LE and HE acquisitions, projection domain decom-
position is commonly used. The detector is assumed to integrate photon energy to generate
signal intensity. SS-FkV strategy geometry is illustrated in Figure 4-1c.
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4. Single-Source with Energy-Resolved Photon-Counting (SS-PC): refers to a single
source-detector couple, with a single flat filter and equipped with an energy-resolved detector,
which response to the incoming spectra is separated into low and high-energy bins. The
latter are separated by an energy threshold set at 33 keV, i.e. approximately at the iodine
K-shell binding energy (33.2 keV). By construction, low and high-energy projection images
are perfectly correlated, making of this technique the most suitable for decomposition in the
projection domain. The detector is assumed to count photons to generate signal intensity.
SS-PC strategy geometry is illustrated in Figure 4-1d.

Design of Polychromatic Spectra
In Section 5.3, it was demonstrated that, for an perfect energy integrating detector, the mono-
chromatic energy pair providing a good compromise in performance for iodine, microcalcification
and mass detectability, for an average-sized breast (14 cm diameter) with 50% fibroglandular
composition, is approximately 30 keV and 34 keV. Hence, for a real X-ray tube it seems reasonable,
as first approximation, to generate low and high-energy poly-chromatic spectra with mean energies
as close as possible to 30 and 34 keV. These results are used herein to design the optimal acquisition
parameters in a polychromatic spectra scenario.

For DS-DF and SS-DF techniques, both with dedicated and independent LE and HE filtration,
spectrum optimization was performed using X-ray fluence spectra generated from a Tungsten anode
and filtered with either Tin (Sn) or Copper (Cu), producing low-energy and high-energy images
respectively. The choice of the filter materials was a trade-off between maximizing spectral quality,
i.e., producing LE and HE spectra with minimal spectral overlap and average energies as close as
possible to 30 and 34 keV, as well as practical considerations such as the availability and durability
of high purity foil filters with homogeneous thickness. For SS-FkV and SS-PC techniques, both
with a single filtration, spectrum optimization was performed using X-ray fluence spectra generated
from a Tungsten anode and filtered with Copper (Cu), producing both low-energy and high-energy
images. X-ray spectra for the Tungsten anode were generated using the TASMIP model [261].

5.4.2 Optimization Method

Dual-Energy Recombination
As discussed in the theoretical framework of spectral imaging (cf. Chapter 4, Section 4.4), in order
to obtain iodine-equivalent images with no residual texture nor cupping, LE and HE spectra must
have minimal spectral overlap and minimal trespassing over the iodine K-edge. However, in light of
the polychromatic spectra designed for this study, it is expected that certain combinations of input
LE and HE spectra will hardly meet these conditions, especially those which are poorly filtered
and with similar tube voltages. In these cases, three-material decomposition may become an ill-
conditioned problem due to lack of spectral separation and the Dual-Energy system of equations
(cf. Equations 4.2 and 4.3 in Chapter 4) becomes unstable, ultimately leading into an important
cupping artifacts and poor background texture cancellation in the iodine-equivalent images.

In this optimization study, the dual-energy three-material decomposition framework combined
with the a priori calibration procedure developed in Chapter 4 are used as recombination algorithm
to obtain iodine-equivalent images. As previously demonstrated, for both image and projection-
based recombination, the solution of the system of equations above can be written as:

{
f ′iodine(r) = (1− |wimg|) · µ̃LE(r) + wimg · µ̃HE(r) (image− based)

f ′iodine(r) = (1− |wproj |) · ρ1(r) + wproj · ρ2(r) (projection− based)

where f ′iodine(r) is an offset and scaled version of the true iodine volume fraction fiodine(r) and the
weighting factors wimg and wproj , depending solely on the input LE and HE spectrum pairs, were
previously calculated and stored in a look-up table.
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Breast Phantom and X-ray Image Simulation
The phantom used for optimization was a 14 cm diameter cylinder phantom composed of adipose
tissue and containing different cylindrical inserts, oriented parallel to the main cylinder axis, as
illustrated in Figure 5-9a. Eight sets of cylindrical inserts of different compositions were placed
at three different radial positions (cf. Figure 5-9b), totaling 24 cylindrical inserts. Sets 1 to 4
correspond to 0, 25, 75 and 100% fibroglandular equivalent tissues. Sets 5 to 8 correspond to
homogeneous mixtures of 100% fibroglandular tissue and 0.5, 1.0, 2.5 and 5.0 mg/cm3 of iodine,
under volume conservation constraint (cf. Figure 5-9c). All inserts had the same diameter, which
was chosen such as to generate a phantom with total Volume Breast Density (VBD)6 equal to
12.5%, which represents the average density of a 14 cm diameter breast, as shown by Huang et
al. [169].

As in the monochromatic optimization study of Section 5.3, the log-projections pLE and pHE
(for image-based recombination), the material projections δiodine and δadipose (for projection-based
recombination), as well as their respective tomographic reconstructed volumes, were simulated as
described in Section 5.2.

AGD was calculated by first estimating the Normalized Glandular Dose (DgN) coefficients
for a homogeneous 12.5% fibroglandular equivalent cylinder, with monochromatic input beams
ranging from 10 to 80 keV. Using the input polychromatic spectral fluence as weights, AGD can
be expressed as:

AGD =

∫
DgN(E)Snet(E)λ(E)dE (5.9)

where Snet(E) is the filtered X-ray fluence spectrum (number of photons per unit of area,
mm−2) at energy E and measured at the isocenter, and λ(E) is an energy-dependent factor con-
verting photon fluence to Air Kerma (radiation units per number of photons crossing a unit of
area, mGy ·mm2). Since the spectral optimization is independent of the total AGD, mAs values
were adjusted to provide an ad hoc total AGD of 100 mGy to avoid artifacts attributed to a lack
of quanta (e.g., streaks). As in Section 5.3, we define τ = AGDLE/AGDLE+HE as the LE dose
allocation ratio, i.e., the fraction of the total AGD allocated to the LE image.

Optimization Criteria
As described in Section 5.2, CNRD between iodine-enhanced breast tissue and unenhanced back-
ground breast tissue (CNRDiodine−bg) was used as the figure of merit for dose-dependent io-
dine detectability in the iodine-equivalent images fiodine(r). Except for the SS-PC technique,

6The Volumetric Breast Density (VBD) is defined as the volume fraction of fibroglandular tissue with respect to
the total breast volume

Figure 5-9: Computational breast phantom used for polychromatic spectra optimization
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CNRDiodine−bg was evaluated in iodine-equivalent images following Equation 5.1 and as a func-
tion of the LE dose allocation ratio τ . Optimal LE dose allocation ratio, τopt, i.e., maximiz-
ing CNRDiodine−bg was identified for each LE/HE spectrum pair. For the SS-PC technique,
CNRDiodine−bg was evaluated for each input spectrum, since dose allocation between LE and HE
bins is dictated by the input spectrum and the energy threshold.

Background texture cancellation and cupping artifact in iodine-equivalent images f ′iodine(r)
were calculated as a secondary quality metric, as described respectively by Equations 5.2 and 5.3
defined in Section 5.1.

For projection-based decomposition, the coefficient of determination, R2, of Alvarez and Ma-
covski’s polynomial fit (cf. Equation 4.8) was tracked as an additional support quality metric for
material decomposition goodness. Low R2 values translate an ill-conditioned inversion problem
and can be used to evaluate how well the spectral conditions for material separation were satisfied
(cf. Section 4.4 for further details). The coefficient of determination of Alvarez and Macovski’s
polynomial fit are noted as R2

A&M , in order to differentiate it from other fit goodness measurements
during the data analysis.

In this section, microcalcifications and mass detectability were not assessed. We believe that for
a fair optimization of morphological images quality obtained from the different acquisition strate-
gies, spatial resolution properties due to practical implementation constraints and the possibility
of performing dual-energy recombination for enhanced breast morphology depiction should be as-
sessed. However, as previously discussed, both topics are not in the scope of this chapter. They
require more complex assessment of detectability, and cannot be evaluated by CNR evaluations
alone, as previously suggested by Kalluri et al. [131]. Hence, for the remainder of this chapter, we
will focus solely on the assessment of iodine contrast agent uptake in recombined iodine-equivalent
images.

5.4.3 Research Space and Data Analysis

Input Acquisition Parameters
Table 5.2 summarizes the input parameters considered in the optimization.

For DS-DF and SS-DF techniques, tube voltage for LE spectra was varied from 30 to 60 kV, at
5 kV steps, while the Sn filter thickness was varied from 0.03 to 0.30 mm, at 0.03 mm steps. Tube
voltage for HE spectra was varied from 40 to 80 kV, at 5 kV steps, while the Cu filter thickness
was varied from 0.05 to 0.50 mm, at 0.05 mm steps. LE dose allocation ratio τ was varied from
20 to 80%, at 5-10% steps.

For the SS-FkV technique, tube voltage was varied from 30 to 80 kV, at 5 kV steps, while the
Cu filter thickness was varied from 0.05 to 0.50 mm, at 0.05 mm steps. LE dose allocation ratio τ
was varied from 20 to 80%, at 5-10% steps.

For the SS-PC technique, tube voltage was varied from 40 to 80 kV, at 5 kV steps, while the
Cu filter thickness was varied from 0.05 to 0.50 mm, at 0.05 mm steps. The energy threshold for
the discriminating detector was set to 33 keV. Hence, the lower bound of 40 kV tube voltage for
DS-PC technique intended to enable two energy bins that straddle the iodine-K-edge.

Lower and upper limits of tube voltage values were chosen such as to mainly consider LE spectra
with average energy below the iodine K-edge and HE spectra with average energy above the iodine
K-edge. The choice of lower and upper limits of filter thickness was a trade-off in realistic aspects
of dose, tube power and commercial availability, as well as concerns on image quality (minimum
detector signal level) and exposition of patient skin to very low-energy X-ray photons.

The first row in Figure 5-10 illustrates the filtered fluence spectra incident over the imaged
phantom, Snet(E), for different tube voltages and using the Sn filter with 0.03, 0.15 and 0.3 mm
thickness. The second row in Figure 5-10 illustrates the input fluence spectra Snet(E), for different
tube voltages and using the Cu filter with 0.05, 0.25 and 0.5 mm thickness. A normalization in
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Table 5.2: Summary of input parameters for each acquisition technique considered in the poly-
chromatic spectra optimization

Technique Anode/Filter Parameters Recomb. Method

DS-DF

LE: W/Sn 30 – 60 kV

image-based

0.03 – 0.3 mm Sn
τ = 20 – 80%

HE: W/Cu 40 – 80 kV
0.05 – 0.5 mm Cu
τ = 20 – 80%

SS-DF

LE: W/Sn 30 – 60 kV

projection-based

0.03 – 0.3 mm Sn
τ = 20 – 80%

HE: W/Cu 40 – 80 kV
0.05 – 0.5 mm Cu
τ = 20 – 80%

SS-FkV W/Cu

LE:
30 – 60 kV

projection-based
τ = 20 – 80%

HE
40 – 80 kV
τ = 20 – 80%

0.05 – 0.5 mm Cu

SS-PC W/Cu
40 – 60 kV

projection-based0.05 – 0.5 mm Cu
En. threshold = 33 keV

arbitrary units was applied to obtain optimal illustration of the considered spectra, in all KV
ranges. It is only for purpose of illustration.

Figure 5-11 illustrates the correspondent polychromatic normalized glandular dose coefficients
[160], DgNpoly

7, as function of the X-ray tube voltage for three different Sn and Cu filtrations
considered in the spectra optimization, corresponding to minimum, average and maximum con-
sidered filter thickness values. Both Sn and Cu-filtered spectra, DgNpoly increases monotonically
with tube voltage and filter thickness. While the three Cu-filtered DgNpoly curves as function
of the tube voltage presents are approximately parallel to each other, differences in Su-filtered
DgNpoly values substantially decreases for tube voltage values between 45 and 55 kV, becoming
nearly independent of filter thickness. This is due to the presence of Sn K-shell absorption edge at
29.2 keV.

Concerning the recombination methods, for DS-DF technique, the iodine-equivalent images
f ′iodine(r) were obtained through image-based recombination of LE and HE effective attenuation
coefficients volumes µ̃LE(r) and µ̃HE(r), using previously calculated optimal weight wimg. For
SS-DF, SS-FkV and SS-PC techniques, f ′iodine(r) was obtained through projection-based recom-
bination of material density volumes ρiodine(r) and ρgland(r), using previously calculated optimal
weight wproj .

Data Analysis
The goal of spectral optimization is summarized in maximizing CNRDiodine−bg while varying up
to five unknown parameters (LE tube voltage, LE filter thickness, HE tube voltage, HE filter

7

DgNpoly =

∫
DgN(E)Snet(E)λ(E)dE∫

Snet(E)λ(E)dE
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Figure 5-10: Input spectra Snet(E) for W/Sn and W/Cu anode/filter combinations, for different
tube voltages and filter thicknesses. The vertical dashed lines indicate the iodine K-edge (33.2
keV). A normalization in arbitrary units was applied to obtain optimal illustration of the considered
spectra, in all KV ranges

Figure 5-11: Polychromatic DgN coefficients as function of the tube voltage for 12.5%
fibroglandular-equivalent cylindrical phantoms. Solid lines correspond to incident spectra filtered
with Tin (Sn), while dashed lines correspond to incident spectra filtered with Copper (Cu)
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thickness and dose repartition between LE and HE acquisitions), depending on the acquisition
strategy.

For the DS-DF and SS-DF techniques, the optimization was designed as a 5D problem. In order
to analyze the simulated data, the optimization problem was analyzed as a concatenation of a 1D
optimization problem (over the LE dose allocation ratio), followed by a 2D optimization problem
(over the tube voltages), followed by another 2D optimization problem (over the filter thicknesses).
For the SS-FkV technique, the optimization was designed as a 4D problem, since only one filter is
implemented. The optimization was in this case carried as for the DS-DF and SS-DF techniques,
but considering only the case when LE filter thickness is equal to HE filter thickness. For the
SS-PC technique, the optimization was designed as a 2D problem maximizing CNRDiodine−bg as
function of the tube voltage and filter thickness.

For a general data analysis framework, the 5D optimization problem was sub-divided in three
steps. Firstly, to obtain optimal LE dose allocation ratios, 2nd degree polynomials were fit to the
CNRDiodine−bg values as function of LE dose allocation ratio τ . At this step, we observed that
the coefficient of determination (R2) values were larger than 0.95, for all LE and HE tube voltages
and filter thicknesses. This step enables decreasing the optimization problem by one dimension.

Secondly, to obtain optimal LE and HE tube voltages as function for each pair of LE and HE
filter thicknesses, CNRDiodine−bg values found at optimal LE dose allocation ratio, τopt, were plot-
ted as function of the LE and HE tube voltages. A locally weighted smoothing fit function (loess,
robust, span: 25%) was implemented using Matlab (Curve Fitting Toolbox�, The MathWorks Inc.,
Natick, MA, USA) in order to better estimate the optimal parameters. Figure 5-12 illustrates a
series of CNRDiodine−bg smoothed surfaces, for SS-DF strategy, as function of LE and HE tube
voltages, and when LE and HE filter thicknesses increases from minimum to maximum values
(marks indicate maximum CNRDiodine−bg values for each surface).

Finally, optimal input acquisition parameters (LE dose allocation ratio τ , LE tube voltage
and HE tube voltage) and the correspondent optimized criteria (CNRDiodine−bg) and the sec-
ondary FOMs (CNRDtexture and cupping(%)) were analyzed as function of the LE and HE filter
thicknesses.

For projection-based decomposition, in order to expose and penalize outliers from ill-conditioned
spectral separation, all simulated data during fit and surface smoothing operations originated were
heavily weighted by the R2

A&M values.

5.4.4 Optimal Acquisition Parameters for Iodine Uptake Depiction

Table 5.3 summarizes the lower and upper limits of optimal input parameters (LE and HE tube
voltage, and LE dose allocation ratio) and optimal Figures-of-Merit (iodine detectability, texture
cancellation and cupping magnitude) relative to the 5 mg I/cm3 iodine-enhanced lesion, for all four
considered dual-energy acquisition strategies. As in Section 5.3, dose-dependent iodine detectabil-
ity was evaluated by assessing CNRDiodine−bg values relative to the 5 mg I/cm3 iodine-enhanced
lesion. This choice was meant to ensure accurate CNRD estimations for all simulation points, es-
pecially in the presence of low lesion contrast and high quantum noise. Accordingly, CNRDtexture

and cupping(%) were also computed relative to the 5 mg I/cm3 iodine-enhanced lesion.

Below we provide a more detailed description on the optimization results for each acquisition
strategy. All optimal surfaces presented below, were smoothed using Matlab’s locally weighted
smoothing fit function (loess, robust, span: 25%), with R2 values highlighted at the bottom of
each figure.

Optimal Acquisition Parameters for DS-DF technique
Figures 5-13a, 5-13b and 5-13c illustrate the optimal input parameters, LE tube voltage, HE tube
voltage and the LE dose allocation ratio respectively, as function of the LE and HE filter thicknesses.
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Figure 5-12: Illustration of iodine CNRD at optimal LE dose allocation ratio for SS-DF acquisition
strategy, as function of LE and HE tube voltages, and when Sn and Cu filter thicknesses vary from
the minimum to maximum studied values. Marks indicate maximum CNRDiodine−bg values for
each surface.

Table 5.3: Lower and upper limits of optimal input parameters and optimal Figures-of-Merit for the
unconstrained polychromatic spectra optimization, per considered dual-energy acquisition strategy
and for all filter thicknesses. The results are based on a 12.5% glandular 14 cm diameter phantom
and computed relative to the 5 mg/cm3 iodine-enhanced lesion

Optimal Input Parameters Optimal Figures-of-Merit

Technique
LE tube HE tube LE dose

CNRDiodine−bg CNRDtexture cupping(%)
voltage(kV) voltage(kV) alloc. ratio τ

DS-DF 30 – 35 48 – 58 47 – 51% 1.4 – 2.0 0 – 0.06 -0.5 – 1.8

SS-DF 33 – 36 47 – 55 48 – 53% 1.3 – 1.9 -0.025 – 0.045 -0.5 – 2.8

SS-FkV 28 – 32 47 – 55 48 – 50% 1.35 – 1.85 -0.035 – -0.045 -1 – 0.5

SS-PC - 40 – 80 - 0.4 – 2.6 -0.01 – 0.06 0 – -2.5

(*) Correspond to the range tube voltage values considered for all filter thicknesses

Maximum CNRDiodine−bg values for SS-PC are found between 40 and 45 kV, and with little influence of the filter thickness
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Figures 5-13d, 5-13e and 5-13f illustrate the output FOMs, CNRDiodine−bg, CNRDtexture and
cupping(%) respectively, calculated at optimal LE and HE tube voltages and optimal LE dose
allocation ratio, τopt, and as function of the LE and HE filter thicknesses.

Optimal LE tube voltage varies between 30 and 35 kV, approximately increasing with the
LE filter thickness. Optimal HE tube voltage decreased from 58 to 48 kV with increasing HE
filter thickness. Optimal LE dose allocation ratio was found to be approximately 50%. Optimal
CNRDiodine−bg values for the 5 mg I/cm3 lesion were found to vary between approximately 1.4
and 2.0, increasing with LE and HE filters thicknesses. HE filter thickness showed to have a larger
influence on CNRDiodine−bg values, as can be remarked by the approximately horizontal contour
lines. CNRDtexture values varied between 0 and 0.06, i.e. up to ∼ 3.5% of the 5 mg I/cm3

lesion contrast. Cupping artifact was found to be within -0.5 and 1.8 % of the 5 mg I/cm3 lesion
contrast.

In sum, optimal input parameters for the DS-DF technique generate LE and HE spectra that
bracket the iodine K-edge with approximate 50% dose repartitioning. Moreover, optimal LE and
HE spectra draw nearer to the iodine K-edge with the increasing filter thickness, converging to
the theoretical monochromatic limit found in the Section 5.3. Results showed that “water-based-
like” correction for image-based decomposition produced negligible beam-hardening, with residual
texture and cupping magnitude below 0.5 mg I/cm3, i.e. the minimal iodine-enhanced lesion
uptake we aim to detect.

Optimal Acquisition Parameters for SS-DF technique
Figures 5-14a, 5-14b and 5-14c illustrate the optimal input parameters, LE tube voltage, HE tube
voltage and the LE dose allocation ratio respectively, as function of the LE and HE filter thicknesses.
Figures 5-14d, 5-14e and 5-14f illustrate the output FOMs, CNRDiodine−bg, CNRDtexture and
cupping(%) respectively, calculated at optimal LE and HE tube voltages and optimal LE dose
allocation ratio, τopt, and as function of the LE and HE filter thicknesses.

Optimal LE tube voltage remained between 33 and 36 kV, slightly increasing with the LE filter
thickness. Optimal HE tube voltage varies between 47 to 55 KV. Optimal LE dose allocation ratio
was found to be approximately 50%. Optimal CNRDiodine−bg values for the 5 mg I/cm3 lesion
were found to vary between approximately 1.3 and 1.9, increasing with both filters thicknesses. As
for the DS-DF technique, HE filter thickness showed to have a larger influence on CNRDiodine−bg
values. CNRDtexture values varied between -0.025 and -0.045, i.e. up to ∼ 2.8% of the 5 mg I/cm3

lesion contrast. Cupping artifact was found to be within -0.5 and 2.8 % of the 5 mg I/cm3 lesion
contrast.

As for the previous technique, optimal input parameters for the SS-DF technique also favor LE
and HE spectra that closely bracket the iodine K-edge with approximate 50% dose repartitioning.
However, the use of projection-based decomposition slightly decreased CNRDiodine−bg values when
compared to DS-DF results. This result is concordant with previously published studies comparing
image and projection-based energy-weighting for morphologic breast CT imaging [131, 237]. The
decrease in CNRD is most likely due to the complex noise propagation in high order terms of the
decomposition equation (cf. Equation 4.8 in Section 4.4). Texture cancellation and cupping mag-
nitude were also below 0.5 mg I/cm3, though no substantial difference was found when compared
to image-based decomposition implemented for the DS-DF technique.

Optimal Acquisition Parameters for SS-FkV technique
The solid lines in Figures 5-15a, 5-15b and 5-15c illustrate the optimal input parameters, LE tube
voltage, HE tube voltage and the LE dose allocation ratio respectively, as function of the LE and
HE filter thicknesses. Figures 5-15d, 5-15e and 5-15f illustrate the output FOMs, CNRDiodine−bg,
CNRDtexture and cupping(%) respectively, calculated at optimal LE and HE tube voltages and
optimal LE dose allocation ratio, τopt, and as function of the filter thickness.
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Figure 5-13: Optimization results for DS-DF technique as function of the LE and HE filter thick-
nesses. In the first row, the optimal input parameters: (a) LE tube voltage, (b) HE tube voltage
and (c) LE dose allocation ratio. In the second row, the output FOM: (d) CNRDiodine−bg, (e)
CNRDtexture and (f) cupping(%), calculated at optimal input parameters. The dashed line in
(d) indicates the set of input parameters where the same tube power is required for LE and HE
acquisitions. The results are based on a 12.5% glandular 14 cm diameter phantom and computed
relative to the 5 mg/cm3 iodine-enhanced lesion

Figure 5-14: Optimization results for SS-DF technique as function of the LE and HE filter thick-
nesses. In the first row, the optimal input parameters: (a) LE tube voltage, (b) HE tube voltage
and (c) LE dose allocation ratio. In the second row, the output FOM: (d) CNRDiodine−bg, (e)
CNRDtexture and (f) cupping(%), calculated at optimal input parameters. The dashed line in
(d) indicates the set of input parameters where the same tube power is required for LE and HE
acquisitions. The results are based on a 12.5% glandular 14 cm diameter phantom and computed
relative to the 5 mg/cm3 iodine-enhanced lesion
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Figure 5-15: Optimization results for SS-FkV technique as function of the filter thickness. In the
first row, the optimal input parameters: (a) LE tube voltage, (b) HE tube voltage and (c) LE
dose allocation ratio. In the second row, the output FOM: (d) CNRDiodine−bg, (e) CNRDtexture

and (f) cupping(%), calculated at optimal input parameters. The results are based on a 12.5%
glandular 14 cm diameter phantom and computed relative to the 5 mg/cm3 iodine-enhanced lesion

Optimal LE tube voltage decreased from 32 and 28 kV with increasing LE filter thickness,
while optimal HE tube voltage decreased from 55 to 47 kV with the increasing HE filter thickness.
Optimal LE dose allocation ratio remained between 48 and 50% for all filter thicknesses. Optimal
CNRDiodine−bg values for the 5 mg I/cm3 lesion increased from approximately 1.35 to 1.85 with
increasing filter thickness. CNRDtexture values varied between -0.035 and -0.045, i.e. up to ∼ 2.5%
of the 5 mg I/cm3 lesion contrast. Cupping artifact was found to be within -1 and 0.5 % of the
5 mg I/cm3 lesion contrast.

In sum, when compared to the previous two techniques, optimal input parameters for the
SS-FkV technique also favor LE and HE spectra that closely bracket the iodine K-edge with
approximate 50% dose repartitioning. However, the SS-FkV technique presented lower optimal LE
tube voltage values, which aimed to decrease the spectral overlap with the HE spectra. Moreover,
both optimal LE and HE tube voltages decreases with increasing filter thickness. Although the
spectral overlap entailed in a slightly lower CNRDiodine−bg values when compared to DS-DF and
SS-DF techniques, residual texture and cupping artifact were also below 0.5 mg I/cm3.

Optimal Acquisition Parameters for SS-PC technique
Figures 5-16a, 5-16b and 5-16c illustrate the output FOMs, CNRDiodine−bg, CNRDtexture and
cupping(%) respectively, as function of the tube voltage and filter thickness.

In the range of the two input parameters, CNRDiodine−bg values for the 5 mg I/cm3 lesion
were found between 0.4 and 2.6, with broad maxima between 40 and 45 kV tube voltage and with
little influence of the filter thickness in this energy range. CNRDtexture values varied between -0.01
and 0.06, i.e. up to ∼ 5% of the 5 mg I/cm3 lesion contrast, and also presented minimum values
at regions of low tube voltages and large range of filter thicknesses. Cupping artifact remained
within 0 and -2.5 % of the 5 mg I/cm3 lesion contrast.

Differently from the previous three techniques, optimal CNRDiodine−bg values decrease with
filter thickness. This is because the increasing filtration hardens the input spectra and decreases the
dose allocated to the LE bin, with no significant change in its mean energy. In addition, although
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Figure 5-16: Optimization results for SS-PC technique as function of the tube voltage and filter
thickness: (a) CNRDiodine−bg, (b) CNRDtexture and (c) cupping(%), calculated at optimal input
parameters. The results are based on a 12.5% glandular 14 cm diameter phantom and computed
relative to the 5 mg/cm3 iodine-enhanced lesion

the energy-discriminating detector provided perfect spectral separation between LE and HE bins,
no significant difference was observed in texture cancellation or cupping correction quality when
compared to the previous non-discriminating techniques.

5.4.5 Discussion

In the second step of CE-bCT acquisition parameter optimization, X-ray fluence spectra generated
from a Tungsten anode and filtered with Tin (Sn, K-edge: 29 keV ) and Copper (Cu) were chosen to
provide LE and HE spectra with effective energies close to optimal monochromatic beam energies
found previously. Four dual-energy acquisition strategies were considered: i) Dual Source Dual
Filtration (DS-DF, 2 sources, 2 kVs and 2 filters), Single Source Dual Filtration (SS-DF, 1 source,
2 kVs and 2 filters); iii) Single Source with Fast kV Switching (SS-FkV, 1 source, 2 kVs and 1
filter); and iv) Single Source with energy-resolved Photon-Counting detector (SS-PC, 1 source, 1
kV, 1 filter). Point source and 100% efficient blur-free detector assumptions were made for all
considered strategies.

Optimization results showed that for all four acquisition strategies, there exists a given set of LE
and HE tube voltages and filter thickness which provides minimum cupping artifact (in absolute,
up to ∼ 3% of 5.0 mg I/cm3 lesion contrast, which represents ∼ 0.15 mg I/cm3 in terms of iodine
concentration) and minimum residual texture (in absolute, up to ∼ 5% of 5.0 mg I/cm3 CNRD,
which represents 0.25 mg I/cm3 in terms of iodine concentration). CNRDiodine−bg values for
the 5 mg I/cm3 lesion varied between approximately 1.35 and 2.6, depending on the acquisition
strategy.

In general, optimal LE tube voltages increased with LE filter thickness while optimal HE filter
thickness decreased with HE filter thickness. This behavior can be seen as a tendency to optimize
LE and HE spectra average energies and the amount of spectral overlap. Higher thickness values
make LE and HE spectra narrower, which allows to increase or decrease their mean energies
closer to 33.2 keV (iodine K-edge), approaching monochromaticity and providing optimal lesion
contrast and noise weighting. It also minimize the overlap between both spectra, therefore avoiding
undesired uncorrelated noise from the complementary spectral image. These two factors contribute
to increase CNRD in the recombined iodine-equivalent images. Therefore, as expected, we observed
that CNRDiodine−bg systematically increased when increasing the LE and HE filter thicknesses.

In this section, microcalcifications and mass detectability were not assessed. We assumed that
a fair comparison of morphological images quality from the different acquisition strategies, spatial
resolution constraints and dual-energy recombination for enhanced breast morphology depiction
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must be assessed. As demonstrated by Kalluri et al. [131], the assessment of CNR alone as mea-
surement of detectability for microcalcifications might be misleading. For instance, this research
group showed in a simulation study [262] that Signal-to-Noise Ratio (SNR) of microcalcifications
imaged with optimal weighting using a CZT based photon-counting detector was 30–40% higher
than with a CsI based energy-integrating detector [262]. However, the same research group showed
in a subsequent detectability study with human observers, that the percentage improvement of
the average Area Under ROC curve was 21–23%. In summary, further comparison studies using
human observers or mathematical observer models are necessary to understand the effect of each
acquisition strategy on microcalcification and mass detectability in morphologic breast CT images.

In summary, under the assumption of this study, we showed that through a careful choice of
acquisition parameters (Table 5.3) all four candidate strategies were able to provide recombined
iodine-equivalent images with cupping artifacts and residual texture below 0.5 mg I/cm3 contrast
levels, i.e. the minimum iodine concentration expected in clinical practice if a typical injection
protocol of contrast-enhanced mammography is considered (cf. Section 5.1). One could use the
curves presented above as preliminary guidance towards the optimal acquisition parameters of
one’s acquisition strategy of interest. It is expected however, each system will impose engineering
challenges for their actual implementation. In order to a have glimpse on the impact of their
practical design constraints in the optimization results, the performance of the different acquisition
strategies is compared in the next section.



5.5. Comparison of Candidate Dual-Energy Acquisition Strategies 129

5.5 Performance Comparison Between Candidate Dual En-
ergy Acquisition Strategies

The four candidate acquisition strategies optimized in the last section perform spectral separation
in different manners. In particular, they differ in the way low and high-energy data are obtained
while the system gantry rotates around the breast. Accordingly, their practical implementation
may impose substantial engineering constraints and ultimately impact image quality. For in-
stance, in the last section we demonstrated that iodine detectability (in terms of contrast-to-noise
ratio) increases monotonically with LE and HE filter thickness, therefore converging to the ideal
monochromatic beam scenario. However, an increase in the filter thickness would also demand
an increase in X-ray tube power required in order to deliver the desired X-ray fluence. This may
impose a severe constraint when designing the dual-energy acquisition systems.

In this section, in order to compare the performance of the four candidate acquisition strate-
gies, we impose a constant tube power constraint between LE and HE acquisitions and re-run
polychromatic optimization framework discussed in the previous section. The new constrained
optimization concentrated once again in maximizing iodine detectability (CNRDiodine−bg) while
reducing cupping and residual texture (CNRDtexture).

5.5.1 Comparison Methodology

To compare the four candidate acquisition strategies, three main technological assumptions were
sequentially combined to build one single constraint to the optimization.

First, as described in section 5.2, we assumed the acquisitions to be performed in a “step-and-
shoot” mode with instantaneous displacement (infinite speed) between two consecutive view angles
(i.e. without tube motion-induced blur). For each view, the X-ray source emits continuously and
integration time interval is used for exposure calculation (i.e. mAs values).

Secondly, any tube voltage switch was assumed to be performed ideally, i.e. with instantaneous
transition between consecutive values, and LE and HE photon fluences were assumed to be detected
during the same amount of time (in other words, with a fixed detector frame rate). Therefore, the
idealistic tube voltage waveforms for each acquisition strategy are illustrated in Figure 5-17a. DS-
DF strategy has independent and continuous LE and HE acquisitions during the gantry rotation.
The same is observed for the SS-PC strategy, although only one tube voltage is required. For
SS-DF and SS-FkV strategies, LE and HE acquisitions are intercalated during the gantry rotation.
Hence, in a real case scenario, LE and HE projection data between two consecutive gantry angles
are typically spatially interpolated before recombination [219,263]. The different waveforms would
impact the system spatial resolution due to tube motion. However, once again spatial resolution was
not considered to have an energy-dependent impact on the Figures-of-Merit of spectral optimization
and LE and HE acquisitions were assumed to have perfect spatial correlation. This setup is also
preferable to keep simulation time manageable.

Third, besides the consequences on spatial resolution, the different considered waveforms would
also require different X-ray tube powers to achieve the same photon flux and radiation dose. For
instance, as illustrated in Figure 5-17a, single-source designs would require twice the frame rate of
dual-source designs and twice the tube power for the same delivered dose. Therefore, knowing that
iodine detectability increases with LE and HE filter thickness, differences in tube power design can
be used as substantial differentiator in each acquisition strategy performance. X-ray tube power
was therefore the independent constraint variable for this comparison study.

Tube Power Constraint Definition
X-ray tube design can be a complex problem and power requirements have been previously used
as a constraint for dual-energy spectra optimization [219,264].
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Figure 5-17: (a) Ideal square tube voltage waveform for each acquisition strategy, at fixed detector
frame rate; (b) relationship between LE and HE tube voltage and current, for a fixed tube power

In a dual-energy CT setup, both a constant mA and constant power model for tube power
design have been reported [219, 264]. In the constant mA model the tube current is the same for
all tube voltages, while in the constant power model the product of the tube current and tube
voltage is fixed for all kV. The constant mA is technically easier to implement in fast kV switching
techniques, since in terms of tube design it is easier to keep the mA constant during kV switching.
This is the case of current clinical dual-energy fast kV switching systems [241, 265, 266] with
which iodine-enhanced and synthetic monochromatic imaging is performed using GE Discovery�
CT750HD system equipped with GSI� technology at 80kV/140kV body scans with approximately
constant 600mA (GE Healthcare; Chalfont St Giles, UK). On the other hand, imposing a constant
mA constraint to a dual source system goes against the main advantage of this technique, i.e.
the possibility of independent design of X-ray tubes for LE and HE acquisitions. Therefore, for
a fair comparison and since a constant power assumption can be considered the theoretical limit
of a X-ray tube behavior, we adopted the constant power constraint as a mean for comparison.
We assumed that for a constant tube power and fixed detector frame rate, tube voltage and tube
current are inversely proportional, as illustrated in Figure 5-17b.

For simplicity and to be free of other assumptions on the acquisition protocol, tube power values
for the different acquisition techniques were calculated as function of the acquisition parameters
and normalized by the total AGD and acquisition time, such as:

PN =
tube voltage× tube current× acq. time

AGD
(5.10)

where PN is the normalized tube power in units of kW · s · mGy−1 or J/mGy. Tube power
calculation took into account the waveforms in Figure 5-17a.

5.5.2 Optimal Acquisition Parameters from Constrained Optimization

In practical terms, the constrained optimization in summarized in restraining the space of pa-
rameters of the previous unconstrained optimization to a limited set of points in which the same
tube power is required between LE and HE acquisition. In the special case of the SS-PC tech-
nique (which has a single input spectrum), the problem is summarized in identifying maximum
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CNRDiodine−bg values as function of the X-ray tube power. For each acquisition strategy, op-
timal input parameters and optimal Figures-of-Merit are then described as function of a single
independent variable, the normalized tube power PN .

Table 5.4 summarizes the lower and upper limits of optimal input parameters (LE and HE tube
voltage, and LE dose allocation ratio) and optimal Figures-of-Merit (iodine detectability, texture
cancellation and cupping magnitude) for the constant power polychromatic spectra optimization.
For an easier comparison, the lower and upper limits found with the unconstrained optimization
(Table 5.3) are also presented. Below we provide a more detailed description on the optimization
results for each acquisition strategy under constant power constraint.

Table 5.4: Lower and upper limits of optimal input parameters and optimal Figures-of-Merit for
the unconstrained and constant power polychromatic spectra optimizations, per considered dual-
energy acquisition strategy and for all filter thicknesses. The results are based on a 12.5% glandular
14 cm diameter phantom and computed relative to the 5 mg/cm3 iodine-enhanced lesion

Optimal Input Parameters Optimal Figures-of-Merit

Technique
LE tube HE tube LE dose

CNRDiodine−bg CNRDtexture cupping(%)
voltage (kV) voltage (kV) alloc. ratio τ

UNCONSTRAINED OPTIMIZATION RESULTS

DS-DF 30 – 35 48 – 58 47 – 51% 1.4 – 2.0 0 – 0.06 -0.5 – 1.8

SS-DF 33 – 36 47 – 55 48 – 53% 1.3 – 1.9 -0.025 – 0.045 -0.5 – 2.8

SS-FkV 28 – 32 47 – 55 48 – 50% 1.35 – 1.85 -0.035 – -0.045 -1 – 0.5

SS-PC - 40 – 80 (*) - 0.4 – 2.6 -0.01 – 0.06 0 – -2.5

CONSTANT POWER OPTIMIZATION RESULTS

DS-DF 33 – 35 48 – 58 ∼48% 1.4 – 2.0 0.01 – 0.02 -0.5 – 1.8

SS-DF 33 – 36 47 – 55 ∼48% 1.3 – 1.9 ∼0.04 -2.0 – -1.0

SS-FkV 35 – 37 40 – 55 15 – 20% 1.05 – 1.15 -0.02 – 0 -1.25 – 0.25

SS-PC - 40 – 65 - 1.7 – 2.6 -0.01 – 0.05 -0.5 – -2.0

(*) Correspond to the range tube voltage values considered for all filter thicknesses

Maximum CNRDiodine−bg values for SS-PC are found between 40 and 45 kV, and with little influence of the filter thickness

DS-DF and SS-DF Strategies
For both DS-DF and SS-DF strategies, optimal input parameters and Figures-of-Merit found under
constrained optimization can be illustrated in the surfaces of Figures 5-13 and 5-14, presented in
the unconstrained optimization of Section 5.4.

For DS-DF and SS-DF techniques, the dashed lines in Figures 5-13d and 5-14d, respectively,
represent CNRDiodine−bg values for which the correspondent optimal acquisition parameters entail
equal tube power requirement between LE and HE acquisitions. The direction of increasing tube
power in the dashed lines coincides with the direction of increasing LE and HE filter thickness. The
optimal LE and HE tube voltages and optimal LE dose allocation ratio can be found by projecting
this line over the other surfaces in Figures 5-13 and 5-14.

For both techniques, it was found that CNRDiodine−bg increases with increasing tube power.
This is because the increasing available tube power allows for heavier filtration, higher LE tube
voltages and lower HE tube voltages. Together, they entailed in smaller spectral overlap, higher
proximity to the iodine K-edge and consequently better iodine separation from unenhanced breast
tissue. The constant power constraint only slightly affect the lower and upper limits of optimal in-
put parameters and optimal Figures-of-Merit compared to the unconstrained optimization results
(Table 5.4). This is because both systems allow for complete tuning of LE and HE tube volt-
ages, filter thicknesses and AGD repartitioning, and as consequence, to found a set of parameters
entailing the same tube power between LE and HE acquisitions.
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SS-FkV Strategy
The dashed lines in Figures 5-18a to 5-18e illustrate the optimization results when the constant
power constraint is applied to space of acquisition parameters.

Optimal LE tube voltage varied between 35 and 37 kV. Optimal HE tube voltage decreased from
55 to 40 kV with the increasing filter thickness. Optimal LE dose allocation ratio dropped from
50% to approximately 15% after applying the constant power constraint. Optimal CNRDiodine−bg
values slightly increases with filter thickness, ranging between 1.05 and 1.15. CNRDtexture values
varied between -0.02 and 0, i.e. up to ∼ 1.8% of the iodine-enhanced lesion contrast. Cupping
artifact was found to be within -1 and 0.5 % of the 5 mg I/cm3 lesion contrast.

In sum, the constant power constraint drastically reduces performance of the SS-FkV technique.
The decrease in LE dose allocation ratio (50 to 15% after applying the constraint) greatly affected
iodine-enhanced lesion detectability, with an approximate 40% drop in maximum CNRDiodine−bg
values (from 1.85 to 1.1 after applying the constraint). Moreover, differently from DS-DF and
SS-DF techniques, iodine detectability was almost independent of the tube power. Nonetheless,
residual texture and cupping magnitude remained in the same order of magnitude of the uncon-
strained optimization results.

SS-PC Strategy
For SS-PC technique, since only one X-ray spectrum is required, the problem is summarized
in identifying maximum CNRDiodine−bg values as function of the X-ray tube power. This was
performed by analyzing the results of the unconstrained optimization presented in the Section 5.4.

Figure 5-19a illustrates contour plots of normalized X-ray tube power, PN , required by the
SS-PC technique, as function of the tube voltage and filter thickness. A dashed line is drawn to
represent the maximum CNRDiodine−bg values found for each tube power level in the contour plot.
The correspondent CNRDiodine−bg values can be found in Figure 5-19b, where the same line is
draw. Figure 5-19b shows that CNRDiodine−bg increases with the available tube power, ranging
from 1.7 to 2.6. Optimal tube voltage decreases from 65 to 40 kV, while filter thickness increases
from 0.05 to 0.23 mm. Notice that maximum CNRDiodine−bg values are bound to the lower limit
of filter thickness values.

Residual texture detectability (CNRDtexture) and cupping magnitude can be found by pro-
jecting the dashed line in Figure 5-19b over the surfaces in Figures 5-16b and 5-16c, presented
Section 5.4. Better texture cancellation is observed with increasing tube power, whereas cupping
magnitude increases from -0.5 to 2.0%, due to lower tube voltages and increased beam hardening.

5.5.3 Iodine-Equivalent Image Quality Performance Comparison

Figure 5-20a summarizes the optimal CNRDiodine−bg values found with the constant power as-
sumption for each candidate acquisition technique, as function of the normalized tube power PN .
The dark dashed line illustrates the theoretical limit for CNRDiodine−bg, obtained with optimal
monochromatic spectra (LE/HE pair at 33/34 keV, with 50% dose repartitioning). The SS-PC
technique showed highest CNRDiodine−bg curve, while SS-FkV showed lowest CNRDiodine−bg
curve, due to the high tube power required by LE acquisitions. Moreover, CNRDiodine−bg values
are almost independent of the input tube power. DS-DF and SS-DF techniques showed interme-
diate performance in CNRDiodine−bg values.

To have a more practical view of the differences between the four strategies, Contrast-to-
Noise Ratio (CNR) per pixel between contrast uptake and the background in recombined iodine-
equivalent images were calculated for a particular set of acquisition design parameters. CNR values
were subsequently translated into an effective CNR (CNReff ), as defined by Rose [246,247], as a
measurement of detectability for the target iodine-enhanced lesion (2 mm diameter, 0.5 mg/cm3

iodine uptake) in a homogeneous background (cf. Section 5.1 and Equation 5.6). Rose’s threshold
for minimum lesion depiction is achieved for CNReff values above 5.
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Figure 5-18: Optimization results for SS-FkV technique as function of the filter thickness when
constant power constraint is applied. In the first row, the optimal input parameters: (a) LE tube
voltage, (b) HE tube voltage and (c) LE dose allocation ratio. In the second row, the output FOM:
(d) CNRDiodine−bg, (e) CNRDtexture and (f) cupping(%). Solid lines indicate the optimization
results for the unconstrained optimization, while dashed lines indicate the optimization results
when the constant power constraint is applied during the choice of τopt. The results are based on a
12.5% glandular 14 cm diameter phantom and computed relative to the 5 mg/cm3 iodine-enhanced
lesion

Figure 5-19: Optimization results for SS-PC technique as function of the tube voltage and filter
thickness, when constant power constraint is applied. (a) Normalized tube power in kW × s/mGy
and (b) correspondent optimal CNRDiodine−bg. Dashed line corresponds to the maximum
CNRDiodine−bg values found for each tube power level in Fig. (a)
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Figure 5-20: Results of the comparison between the four considered dual-energy strategies for the
12.5% glandular 14 cm diameter phantom. (a) Optimal CNRDiodine−bg relative to the 5.0 mg/cm3

iodine-enhanced lesion, as function of the normalized tube power PN . The dark dashed line illus-
trate the theoretical limit obtained with optimal monochromatic spectra; (b) CNRDiodine−bg (left
ordinate axis) and correspondent CNReff (right ordinate axis) of a 2 mm diameter 0.5 mg/cm3

iodine-enhanced lesion, when considering 300 projections acquired in 16.6 seconds and using a 1kW
tube power delivering 3 mGy AGD. The ratio of CNR values with respect to the monochromatic
limit is indicated in percentage

We assumed a full breast scan with three hundred projections per LE and HE spectra, acquired
in a total acquisition time of 16.6 seconds. This time interval was has been used for single-energy
acquisitions with the cone-beam breast CT topology published by Boone et al. [103], chosen as
the reference geometry for this chapter. Lindfors et al. [127] showed that 16.6 seconds has been
well tolerated by patients with a single breath hold. Optimal LE and HE acquisition parameters
were chosen such as to require 1 kW tube power, since it reflects the nominal X-ray tube power
of the reference cone-beam breast CT geometry [103]. This value is also very similar to typical
nominal tube powers implemented in state-of-the-art mammography and digital breast tomosyn-
thesis systems. AGD was set at 3 mGy, which corresponds approximately to the screening AGD
for a two-view average-sized breast (AOP Contrast mode on GE Senographe® Essential system,
for a 5 cm thick PMMA thickness [248]). Finally, in order to attenuate the unrealistic noise level
generated by the ideal ramp filter (due to high-frequency signal amplification), CNReff was also
calculated when a Hamming apodization function is included.

Table 5.5 summarizes the optimal input parameters entailing in 1 kW tube power and the cor-
responding optimal Figures-of-Merit (iodine detectability, texture cancellation and cupping magni-
tude). For comparison, we included optimal Figures-of-Merit when optimal monochromatic spectra
are considered.

Figure 5-20b, shows the CNRDiodine−bg and correspondent CNReff of a 2 mm diameter
0.5 mg/cm3 iodine-enhanced lesion, for each acquisition strategy and under the assumption just
described. CNReff values for DS-DF, SS-DF, SS-FkV and SS-PC were respectively at 70%, 60%,
39% and 91% of the theoretical monochromatic limit. When the Hamming apodization filter is
included, only SS-PC technique and the monochromatic implementation presented CNReff values
above Rose’s detectability threshold of 5.

5.5.4 Discussion

Under the same hypothesis of ideal, X-ray point source and a 100% efficient blur-free detector, in
this section we imposed a constant tube power constraint to the polychromatic optimization frame-
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Table 5.5: Optimal input parameters and optimal Figures-of-Merit for LE and HE polychromatic
spectra requiring 1 kW tube power, per considered dual-energy acquisition strategy and for the
theoretical monochromatic limit. The results are based on a 12.5% glandular 14 cm diameter
phantom and computed relative to the 5 mg I/cm3 iodine-enhanced lesion

Optimal Input Parameters Optimal Figures-of-Merit

Technique
LE HE LE dose

CNRDiodine−bg CNRDtexture cupping(%)
Spectra Spectra alloc. ratio τ

Mono 33 keV 34 keV 50% 2.75 (100%) 0 0

DS-DF 34 kV 52 kV
48% 1.89 (70%) 0.02 -0.95

0.24 mm Sn 0.30 mm Cu

SS-DF 34 kV 51 kV
50% 1.61 (60%) -0.04 -1.20

0.17 mm Sn 0.18 mm Cu

SS-FkV 34 kV 52 kV
14% 1.07 (39%) -0.02 0.29

0.14 mm Cu 0.14 mm Cu

SS-PC
-

42 kV
- 2.47 (90%) -0.02 -1.88

0.17 mm Cu

work previously discussed in order to compare the performance of the four dual-energy acquisition
strategies under evaluation in this chapter.

Comparison results between different dual-energy acquisition strategies under a constant power
constraint revealed that iodine K-edge imaging with both ideal energy-discriminating and non-
discriminating detectors, and with both image-based and projection-based recombination is fea-
sible in terms of background texture cancellation and cupping artifact magnitude, which showed
to be below the minimum target iodine-enhanced lesion concentration (0.5 mg I/cm3). Under
the idealistic hypothesis of detector performance, dual-energy acquisitions leveraging a photon-
counting energy-discriminating detector (SS-PC) showed highest iodine uptake CNRD, due to the
perfect spectral separation and proximity of LE and HE bins mean energies to the optimal mono-
chromatic beam energies. On the other hand, the DE acquisitions with a single source/filter pair
(SS-FkV) showed lowest iodine CNRD, mainly due to the high tube power required by LE acqui-
sitions. Techniques applying dedicated filtration for LE and HE acquisitions (DS-DF and SS-DF)
showed intermediate performance.

To have a more practical view of the differences between the four strategies, the effective CNR
(CNReff ), as defined by Rose [246,247], was calculated as a measurement of detectability for the
target 2 mm diameter 0.5 mg/cm3 iodine-enhanced lesion. Under a particular set of acquisition
assumptions (2 sets of 300 projections acquired in 16.6 seconds with a 1kW tube power constraint
and entailing total 3 mGy AGD), the SS-PC technique was the only technique presenting CNReff
levels above Rose’s detectability threshold.

In this section, idealistic hypothesis for the detectors efficiencies were made. Under these condi-
tions, the photon-counting (PC) energy-discriminating detector outperformed the non-discriminating
techniques based on energy integration (EI). This result has been observed in previous optimiza-
tion studies for full body dual-energy CT [267]. In literature, it has been shown however that
current energy-discriminating capability of PC detectors are far from ideal (due mainly to photon
pile-up and spectral distortions) and that state-of-the-art dual kV methods based on EI scintilla-
tors are still competitive with current PC-based dual-energy systems [140, 264, 267]. It must also
be emphasized, that the performance of PC detectors relative to EI detector would most probably
depend on the imaging task, as indicated by Wang et al. [268]. In light of the optimal acquisition
parameters presented for the PC implementation and their tendency to narrow the optimal X-ray
spectra around the iodine-K-edge for increased CNR performance, we estimate that count rate,
spectral response and energy resolution are still challenges for an actual K-edge breast imaging
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implementation. Although encouraging results for breast CT applications using current PC tech-
nology have been recently shown [140], further detector performance improvement may reveal the
potential benefits of energy-discrimination and its clinical applications.

A Copper-filtered Fast kV switching (SS-FkV) technique was implemented in this section.
Comparison between unconstrained and constant power -constrained optimization results revealed
that the high tube power required by LE acquisition substantially decreased SS-FkV technique
performance, with an approximate 40% drop in maximum CNRDiodine−bg values (from 1.85 to
1.1 after applying the constant power constraint). One possible solution is to replace the filter
material from Copper to Aluminum, since both materials provide comparable X-ray spectrum
shape and beam qualities, though Aluminum has nearly 30 times smaller attenuation coefficient.
In a previous optimization study for single energy breast CT, Weigel et al. [116] showed that
a Copper filtration provides slightly better contrast-to-noise ratio values when compared to an
Aluminum filtration. Nonetheless, given the significant performance handicap found in our results,
an Aluminum-based filtration would be fairly justified.

In this optimization study, other simplification assumptions were made. For instance, ac-
quisitions were assumed to be performed in a “step-and-shoot” with instantaneous displacement
between two consecutive view angles and therefore without introducing blur from tube motion.
Additionally, a square waveform with ideal transitions in LE and HE tube voltages were assumed.
If however a pulsed X-ray source with continuous rotation is considered, with no particular change
to kV transitions, as long as the duty cycle (or pulse width) is the same for both LE and HE ac-
quisitions, the optimal acquisition parameters for each candidate technique shall not change with
respect to a “step-and-shoot” mode. A simple example is to assume that during one frame rate,
the pulse width decreases by a factor 2 while the mA increases by a factor 2, while maintaining
mAs product constant. Any change in pulse width between LE and HE acquisition can be com-
pensated by changes in LE dose allocation ratio. Future analysis on the impact of more realistic
sinusoidal tube voltage waveforms on spectral separation and iodine detectability degradation in
a dual-energy breast CT setup is subject for further investigation.

In summary, if current X-ray detector technology is considered, we expect techniques with dual
filtration (DS-DF and SS-DF) to be the best choice for an actual dual-energy CE-bCT implementa-
tion. Dual-source techniques are simpler to implement but probably more costly, since they require
two acquisition chains. Single-source techniques are based on a single acquisition chain, but require
a more complex management of tube voltage and filter switching. Although our results showed
comparable performance between DS-DF and SS-DF techniques in terms of iodine uptake CNRD,
the impact of cross-scatter, lag, tube voltage waveforms and other inefficiencies on image quality,
as well the account for engineering trade-offs and constraints of a real dual-energy implementa-
tion could reveal further indications on the best technology path for CE-bCT. Additionally, since
both ideal implementation of DS-DF and SS-DF techniques showed insufficient performance for
target iodine-enhanced lesion detectability, further study on pre- and post-processing techniques
for noise reduction would be beneficial before their real implementation. In this PhD thesis, a pre-
liminary detectability study at low-dose levels leveraging two post-processing techniques dedicated
for dual-energy imaging is presented further on in Chapter 7 and intends to partially address this
question.

While the impact of realistic models for PC detector’s energy-dependent inefficiencies have been
studied elsewhere for dual-energy image quality optimization [264, 268, 269], no study has been
dedicated to the energy-dependent imaging quality performance of scintillator-based EI detector
while considering its energy-dependent absorption efficiency. In the next section, a preliminary
study on the impact of CsI scintillator thickness on optimal dual-energy acquisition spectra for
iodine K-edge breast imaging is performed.
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5.6 Impact of CsI-Scintillator Thickness on Optimal Spec-
tra

Columnar structured cesium iodide (CsI) scintillators doped with Thallium (Tl) have been widely
used for digital breast X-ray imaging since last decade. Several publications have investigated
their imaging performance at typical X-ray spectra for conventional digital mammography, digital
breast tomosynthesis and dedicated breast computed tomography [123,270–272]. So far, no study
has been dedicated to the energy-dependent imaging performance of CsI as a function its thickness
for dual-energy applications.

In this section, the impact of CsI scintillator thickness on the optimal spectra for dual-energy
breast imaging combined with an iodine-based contrast agent is investigated. A new spectra opti-
mization is performed to assess contrast-to-noise ratio between iodine-enhanced and unenhanced
tissue normalized to the square root of the average glandular dose, while considering different
quantum detection efficiencies.

In a first approach we considered monochromatic spectra. The optimization framework of
Section 5.3 was therefore leveraged in this section.

5.6.1 Energy-Dependent Absorption Efficiency

As discussed in Chapter 2, for energy-integrating detectors equipped with scintillators, the energy-
dependent absorption efficiency, η(E), can be approximated as:

η(E) = 1− eµscint(E)tscint(i) (5.11)

where µscint(E) is the linear attenuation coefficient at energy E of a continuous and homogeneous
scintillator material and tscint(i) is the oblique thickness of the scintillator at detector element i.
For simplicity, X-ray beam obliquity was disregarded in η(E) calculation since it would entail only
small differences in signal intensities for small incident angles [195].

Figure 5-21 shows η(E) as a function of incident photon energy for three CsI thicknesses and
for the perfect energy-integrating detector with η(E) = 1. It can be seen that η(E) increases with
scintillator thickness and all curves show discontinuities at the K-edges of Cs (36 keV) and I (33.2
keV), due to the sudden increase in their attenuation coefficients.

Figure 5-21: Absorption efficiency η(E) as function of incident photon energy E for 100, 250 and
600 µm CsI thicknesses
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5.6.2 Optimization Framework

The same optimization framework described in Section 5.3 was considered.

The cone-beam CT geometry with parameters described in Section 5.2 was simulated. Three
50% fibroglandular equivalent cylindrical phantoms with 10, 14 and 18 cm in diameter simulated
small, average and large uncompressed breasts. They contained spherical inserts emulating ho-
mogeneous mixtures of 50% fibroglandular tissue and 0.5, 1.0, 2.5 and 5.0 mg/cm3 of iodine (cf.
Figure 5-3a, in Section 5.3).

Contrast-to-Noise-Ratio per pixel between iodine-enhanced breast tissue and background breast
tissue normalized to the square root of the total AGD, CNRDiodine−bg, was used as the Figure-
of-Merit for the detectability of iodine in iodine-equivalent images.

CNRDiodine−bg was calculated for LE and HE beam energies pairs varying from 20 to 80 keV.
For each LE and HE X-ray beam pair, LE dose allocation ratio was varied between 20 and 80%.
CNRDiodine−bg was evaluated as a function of the LE dose allocation ratio τ .

Optimal LE and HE beam energies and optimal LE AGD allocation ratio, τopt, were identified
for tscint equal to 100, 250, 400, 600 and 780 µm and compared to the results obtained in Section
5.3, where a perfect energy-integrating detector with η(E) = 1, regardless of the energy value, was
considered.

Below, we provide the optimal LE and HE beam pairs and optimal LE AGD allocation ratio
entailing in maximum CNRDiodine−bg values as function of the CsI scintillator thickness and the
phantom diameter.

5.6.3 Optimal Spectra and Dose Allocation for Iodine Uptake Depiction

For all experimental conditions of this section, results showed similar trends in optimal LE dose al-
location ratio and CNRDiodine−bg as function of the LE and HE X-ray beam pairs when compared
to results with a perfect energy-integrating detector, described in Section 5.3. CNRDiodine−bg was
higher for LE and HE pairs just below and above the iodine K-edge, than for LE and HE pairs with
energies farther away from the iodine K-edge discontinuity (cf. Figures 5-6, 5-7 and 5-8). Therefore,
for simplicity, we did not present all the curves as function of the CsI scintillator thickness.

Figure 5-22a, 5-22b and 5-22c show optimal LE energies, optimal LE dose allocation ratio τopt,
and the corresponding CNRDiodine−bg values for all studied CsI thicknesses and for the perfect
energy-integrating detector. Figures 5-22a and 5-22b shows that optimal LE values increase as a
function of CsI thickness, while τopt, decreases as a function of CsI thickness. Optimal LE energies
and optimal LE dose allocation ratio for the perfect energy-integrating detector converge to 33
keV and ∼ 50%, respectively, discussed in Section 5.3, when CsI thickness increases.

For all studied cases, optimal HE beam energy occurs just above the K-edges of I or Cs (range
34 to 36 keV). Figure 5-22c shows that optimal CNRDiodine−bg increases monotonically with
increasing scintillator thickness and converges to CNRDiodine−bg obtained with the perfect energy-
integrating detector. Due to differences in the phantom thickness and since CNRD in independent
of dose, for a fixed CsI thickness CNRDiodine−bg decreases with increasing phantom diameter.
For an average sized breast, CNRDiodine−bg increases from 64% to 95% of the CNRDiodine−bg
obtained with the perfect energy-integrating detector, when passing from a 100 to 600 µm thick
CsI layer.

5.6.4 Discussion

Under the assumptions of primary mono-energetic X-rays and an energy-integrating noise-free
blur-free detector with the same absorption efficiency at all incident beam angles, it was shown
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Figure 5-22: (a) Optimal LE, (b) optimal AGD allocation ratio τopt and (c) optimal CNRDiodine−bg
as a function of the CsI scintillator thickness. The results are based on 50% glandular phantoms
and CNRD values computed relative to the 5 mg/cm3 iodine-enhanced lesion

that optimal LE and optimal LE dose allocation ratio vary up to 25% with CsI layer thickness
and that optimal iodine CNRD monotonically increases with increasing scintillator thickness. It
was observed that optimal LE values increase as a function of CsI thickness while optimal LE dose
allocation ratio decreases as a function of CsI thickness. This trend can be seen as compensation
for the loss in absorption efficiency for energies values just below the iodine K-edge (cf. black
arrows in Figures 5-21, 5-22a and 5-22b). Moreover, we found that the variations in optimal LE
values are more expressive as the breast size decreases, while variations in LE dose allocation ratio
are more expressive as the breast size increases.

Results were shown for a cone-beam breast CT geometry, for which the breast is not compressed
during imaging (10 to 18 cm in diameter). By extrapolating the trends in our results to breast sizes
in the order of magnitude of compressed breasts (2 to 8 cm-thick) and CsI scintillator thickness
used in digital mammography and digital breast tomosynthesis (100 – 250 µm-thick), we provide
preliminary evidence to why previously found optimal spectra for dual-energy Contrast-Enhanced
Mammography (CESM) and dual-energy Contrast-Enhanced Digital Breast Tomosynthesis (CE-
DBT) do not bracket the K-edge of iodine as closely as expected. For instance, Puong et al.
found that optimal LE and HE beam energies in a CESM setup with 5 cm-thick phantom and
100 µm-thick CsI are 20 and 34 keV, with 40% LE dose allocation ratio [257]. The same research
group found that optimal LE and HE beam energies in a CE-DBT setup with 5 cm-thick phantom
and 100 µm-thick CsI are 19 and 36 keV, with 51% LE dose allocation ratio [226]. Although the
trends in our results are aligned with those found in previously published data, the optimization
framework leveraged in this section should be extended to actual CESM and CE-DBT geometries
and CsI thickness, in order to disclose the optimal monochromatic spectra dependency on detector
efficiency.

In this section, simplified assumptions on X-ray image generation were made. A point source,
emitting mono-energetic X-ray beams was assumed. Although the adoption of polychromatic spec-
tra would degrade iodine uptake detectability, our results can be used as a preliminary detectabil-
ity evaluation for polychromatic X-ray beams with average energy coincident with the studied
monochromatic energies.

Idealistic hypothesis for the detector model were also made. Optical glare, the scatter of
optical photons within the phosphor layer of the detector, and its degrading effect on the detector
pre-sampling MTF were disregarded. Our results showed that CNRD increases with increasing
scintillator thickness. However, it is known that the detector pre-sampling MTF degrades with
increasing scintillator thickness, especially at high-frequency components. A blur-free assumption
would in this case be interesting to evaluate iodine uptake detectability through low-frequency
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metrics such as CNRD, but would possibly be insufficient for the assessment of iodine uptake
morphology and other Figures-of-Merit sensible to high-frequency variations in signal intensity.

X-ray beam obliquity was not taken into account when computing η(E). By geometric calcu-
lation, it can be demonstrated that oblique X-ray beam incidence entails up to ∼5% increase in
tCsI values (at the largest obliquity, for the largest phantom) and, as consequence, ∼ 3% average
increase in η(E). In cross-sectional images reconstructed at the phantom’s mid-depth, differences
in lesion CNRD values would be below 1% and, therefore, with imperceptible impact on the re-
sults presented above. Further studies including more realistic detector models will provide better
understanding on the impact of different CsI scintillators on iodine uptake detectability and char-
acterization.

In summary, several research papers on optimizing LE and HE X-ray spectra for dual-energy
contrast-enhanced iodine breast imaging found counter-intuitive results; optimal spectra do not
bracket the K-edge of iodine as closely as expected. Our work presents preliminary evidence
that optimal X-ray spectra strongly depend on detector scintillator thickness. Detector energy-
dependent absorption inefficiencies should therefore be taken into account when designing X-ray
imaging systems for spectral applications.
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5.7 Conclusions

In this chapter, under the assumptions of scatter free and perfect energy-integrating noise-free
blur-free detector, a spectral optimization study was performed aiming to reveal the dual-energy
acquisition strategy and acquisition parameters maximizing the performance of CE-bCT technique
in the depiction of contrast-agent uptakes in recombined iodine-equivalent images, as well as the
depiction of masses and microcalcifications in LE morphological images.

Through a monochromatic spectra optimization study, we found that to obtain optimal io-
dine detectability in recombined dual-energy images, LE and HE spectra need to closely bracket
the iodine K-edge (33.2 keV ) and an approximate 50%-50% average glandular dose repartition-
ing between LE and HE exposures is required. Moreover, optimal LE values optimizing masses
and microcalcifications are close to those optimizing iodine uptake detectability. These results
demonstrate the feasibility, in terms of spectra, of a CE-bCT system capable to provide both func-
tional and morphological information. The effective CNR (CNReff ), as defined by Rose [246,247],
was also calculated as a measurement of detectability for the target 2 mm diameter 0.5 mg/cm3

iodine-enhanced lesion, at 3 mGy average glandular dose (approximately the screening AGD for
a two-view average-sized breast using the AOP8 Contrast mode of GE Senographe® Essential
system). Using optimal input parameters for the 14 cm diameter 50% fibroglandular equivalent
phantom, we showed that CNReff is slightly above Rose’s detectability criterion.

Using the monochromatic optimization results as first approximation to design LE and HE
polychromatic spectra, a second optimization study was performed. Four dual-energy acquisition
strategies, based on state-of-the-art dual-energy system designs, were considered as potential can-
didates for dual-energy CE-bCT and individually optimized. Optimization results showed that
through a careful choice of acquisition parameters (Table 5.3) all four candidate strategies were
able to provide recombined iodine-equivalent images with cupping artifacts and residual texture
below 0.5 mg I/cm3 contrast levels, i.e. the minimum iodine concentration expected in clini-
cal practice if a typical injection protocol of contrast-enhanced mammography is considered (cf.
Section 5.1).

In order to a have glimpse on the impact of their practical design constraints, the perfor-
mance of the four acquisition strategies was compared under a constant tube power constraint
for the LE and HE acquisitions. We showed that a dual-energy implementation leveraging an
ideal photon-counting energy-discriminating detector showed highest iodine uptake detectability,
in terms of per-pixel CNR, due to perfect spectral separation and proximity of LE and HE bins
mean energies to the optimal mono-chromatic beam energies. On the other hand, DE acquisitions
with a single source/filter pair showed lowest detectability, due to the high tube power required
by LE acquisitions. Non-discriminating techniques applying dedicated filtration for LE and HE
acquisitions showed intermediate performance. The effective CNR (CNReff ) was also calculated
as a measurement of detectability for the target 2 mm diameter 0.5 mg/cm3 iodine-enhanced le-
sion. Under a particular set of acquisition assumptions (2 sets of 300 projections, acquired within
20 seconds with a 1kW tube power constraint and entailing 3 mGy AGD), the photon-counting
energy-discriminating technique was the only technique presenting CNReff levels above Rose’s
detectability criterion.

Finally, a monochromatic spectral optimization study considering different CsI layer thick-
nesses and, as consequence, different energy-dependent absorption efficiencies, was performed. In
this study we showed that optimal spectra do not bracket the K-edge of iodine as closely as ex-
pected. In fact, optimal LE beam energy and optimal LE dose allocation ratio varied up to 25%
with CsI layer thickness. Variations in optimal LE beam energy and dose allocation ratio act as
compensation for the loss in absorption efficiency for energies values just below the iodine K-edge,
whenever the CsI layer thickness vary. If the trends in our results are extrapolated to breast
sizes in the order of magnitude of compressed breasts and CsI scintillator thickness used in digi-
tal mammography, we can provide preliminary evidence to why previously found optimal spectra

8AOP – Automatic Optimization of Parameters for exposure control system
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for dual-energy Contrast-Enhanced Mammography (CESM) and dual-energy Contrast-Enhanced
Digital Breast Tomosynthesis (CE-DBT) do not bracket the K-edge of iodine as closely as ex-
pected [226,257]. We also showed that optimal iodine uptake CNRD monotonically increases with
increasing scintillator thickness. However, it is known that the detector pre-sampling MTF de-
grades with increasing scintillator thickness, especially at high-frequency components, due to the
spreading of optical quanta in the scintillator. Nonetheless, if the optical spreading transfer func-
tion can be estimated, the blur introduced in the pre-sampling MTF might be corrected through
post-processing techniques for resolution restoration [251,273].

In this chapter, a throughout evaluation of topological parameters, detector technology and
other energy-independent system design parameters impact on CE-bCT image quality was not
in the main objectives. In reality, energy-independent system design components defining spatial
resolution and noise propagation have been intensively studied for single-energy cone-beam breast
CT acquisitions. In particular system topology [119–123], acquisition orbit [118, 136, 137] and
reconstruction algorithms [133, 134, 238] impact on the detectability of fibroglandular tissue and
microcalcifications have been investigated. Assuming linearity and stationarity of first- and second-
order statistics, it was assumed that these results can be extrapolated to describe spatial resolution
and noise propagation in the dual-energy imaging framework studied in this chapter.

A noise-free blur-free detector was assumed in all optimization studies. A positive conse-
quence is that the derived optimal parameters and feasibility conclusions could be used as a priori
information for future studies on real X-ray systems. However, although photon-counting energy-
discriminating detectors showed, in theory, better detectability results during our optimization
study, further investigations taking into account more realistic photon-counting detectors models
are necessary to evaluate their degradation effect in image quality and the impact on iodine uptake
detectability. In particular, the high detector frame rates and low incident quanta necessary for
minimal photon pile-up, as well as energy-dependent inefficiencies such as spectrum tailing and en-
ergy resolution [264,268], impose substantial constraints to the photon-counting model and affect
its energy discriminating ability in dual-energy imaging setups.

In summary, we provided in this chapter an extended overview on the dual-energy acquisi-
tion parameters (monochromatic and polychromatic) and acquisitions strategies maximizing image
quality in recombined dual-energy CE-bCT images. With knowledge of the optimal parameters
for CE-bCT and CE-DBT, in the next chapter, we compare their potential to accurately depict
and localize tumors, as well as to provide accurate quantitative information on contrast uptake
morphology and concentration, at radiation dose levels comparable to a two-view mammogram.



Chapter 6

Quantitative Comparison Between
CE-bCT and CE-DBT

As discussed in Chapter 1, CE-DBT and CE-bCT are two potential candidates for providing accu-
rate quantitative information on breast lesions’ location, morphology, and functional information.
This chapter aims to perform a preliminary comparison between CE-DBT and CE-bCT in their
ability to provide quantitative information at low radiation dose levels. For a fair comparison, we
consider optimal acquisition parameters for CE-DBT and CE-bCT maximizing the depiction of
contrast-agent uptake in recombined iodine-equivalent images. Optimal dual-energy acquisition
parameters for CE-DBT have been previously assessed and are available in literature [17–26]. For
CE-bCT, an optimization study aiming to reveal the dual-energy acquisition parameters maximiz-
ing iodine detectability was presented in Chapter 5.

In the comparison studies described in this chapter, reconstructed CE-DBT and CE-bCT im-
ages of respectively compressed and uncompressed breast phantoms were simulated using optimal
dual-energy acquisition parameters. The breast phantoms contained lesions of different sizes,
shapes and iodine concentrations, enabling to compare both CE-DBT and CE-bCT topologies
with respect to the ability to accurately detect and characterize contrast-enhanced lesions through
localization, morphology, and the associated contrast uptake. In Section 6.1, the effect of CE-DBT
and CE-bCT topologies on 3D lesion extent estimation precision is investigated. In Section 6.2, the
quantitative accuracy of both topologies on the estimation of local quantities of iodine is compared.
For a more complete evaluation of both system potentials, in Section 6.3, a mesh-based anthropo-
morphic breast model with mathematically defined anatomical structures is exploited in a reader
preference study aiming to assess and compare the depiction and characterization of embedded
iodine-enhanced lesions of different sizes, shapes and iodine uptakes.

In all comparison studies, average glandular dose (AGD) was similar to AGD for two-view
mammography. Moreover, in order to keep simulation time manageable and without any significant
effect on the Figures-of-Merit defined in this chapter, primary mono-energetic X-rays and perfect
energy-integrating noise-free blur-free detectors were assumed.

143
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6.1 Iodine-Enhanced Lesion 3D Extent Estimation in CE-
bCT vs CE-DBT

As a first step in the assessment of breast CT potential benefits in comparison to breast to-
mosynthesis, the quantitative accuracy of CE-DBT and CE-bCT in term of 3D lesion extent was
investigated through theoretical modeling. At this point, lesion detectability was not considered
and simulations were performed without noise. In this case, only the systems’ geometry, angular
sampling, and reconstruction algorithm are assumed to impact quantification accuracy.

Previously described cone-beam topologies and acquisition techniques were compared. For
CE-DBT, a topology similar to a CE-DBT prototype based on a GE Senographe® DS system
(GE Healthcare; Chalfont St Giles, UK) using a dual-energy (DE) subtraction technique was
investigated [274]. For CE-bCT, a cone-beam topology similar to that published by Boone et
al. [127] using a dual-energy (DE) subtraction was investigated.

6.1.1 Breast Phantoms and X-ray Image Simulation

Figure 6-1 illustrates the investigated CE-DBT and CE-bCT topologies and phantoms. Table 6.1
summarizes the model parameters to simulate the CE-DBT and CE-bCT implementations. Two
50% fibroglandular equivalent mathematical phantoms were simulated. For CE-DBT, a 5 cm thick
half-cylinder was used to mimic the breast under compression, while for CE-bCT a 14 cm diameter
cylinder was used to mimic the same breast without applying compression and with the patient in
prone position [162]. Spherical lesions with 2 to 20 mm diameters and 0.5, 1.0, 2.5 and 5.0 mg/cm3

iodine concentrations were embedded in the phantoms. They were positioned at three distances
from the chest wall side of the detector, in order to assess the effect of the cone-beam artifact on
3D lesion extent (especially in the cone direction – z-axis).

To evaluate the impact of CE-DBT limited depth resolution, in addition to spherical lesions
we also considered lesions with ellipsoidal shape, with major axis aligned with the system depth
direction (y-axis). Different ellipsoid eccentricities were considered while varying the traverse
diameter length (y-axis) and keeping the conjugate diameter (x-z plane direction) constant at the
nominal spheres diameter (2 to 20 mm). The lesion eccentricity index ε was defined as:

εy,xz =
Y

X
=
Y

Z
(6.1)

where X, Y , Z are the true lesion dimensions in x-, y- and z-axis directions, respectively.

Figure 6-1: CE-bCT and CE-DBT topologies and phantom configurations for quantitative com-
parison studies of Sections 6.1 and 6.2. Iodine-enhanced lesions were positioned along the rotation
axis, at distance d from the chest wall side of the detector.
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Table 6.1: Parameters used to simulate the CE-bCT and CE-DBT implementations in the inves-
tigations of Sections 6.1 and 6.2

Model parameters CE-DBT CE-bCT

Spectrum Mono-energetic 20 & 34 keV 30 & 34 keV
Total AGD 3 mGy
Dose ratio (LE/HE) 50/50%

Geometry Mag (SDD/SID) 660mm / 620mm 880mm / 460mm
no. of projections 15 & 40°range 300 & 360°range

Phantom Thickness: 5 cm Diameter: 14 cm
Composition 50 % fibro-glandular equivalent

Diameter: 2, 5, 10, 15, 20 mm
Lesions Iodine concentration: 0.5, 1.0, 2.5,5.0 mg/cm3

Distance from chest wall: 20, 45, 70 mm
Flat detector Pixel size 0.100 mm 0.394 mm
Reconstruction Method FBP FBP

Voxel size 0.1× 0.1× 1.0 mm3 0.410× 0.410× 0.410 mm3

Perfect energy-integrating detectors that do not generate any kind of noise or blurring were
assumed. X-ray projections were simulated using mono-energetic X-ray beams, assuming primary
X-rays only. For CE-DBT, a projection-based dual-energy recombination technique was used to
generate iodine-equivalent projection images. Tomographic reconstruction of the iodine projections
was subsequently performed using a Filtered Backprojection (FBP), with a filter designed following
the methodology described in [275], to obtain reconstructed iodine images parallel to the detector
array with 1 mm spacing and an in-plane voxel pitch of 0.1 mm. For CE-bCT an image-based
dual-energy recombination technique was considered, due to its easier implementation and since
projection-based recombination with monochromatic spectra would lead to the exact same results
(cf. Chapter 4 for more details on projection-based and image-based dual-energy recombination).
LE and HE projection images were reconstructed by FBP, using a ramp filter and a 0.410 mm
isotropic voxel size, such as to avoid spatial distortions caused by apodizing filter and anisotropic
voxels, respectively. The reconstructed LE and HE attenuation volumes were then recombined into
an iodine-equivalent volume. Details on image and projection domain dual-energy recombination
techniques for CE-DBT and CE-bCT are provided in Section 4.4.

6.1.2 Lesion Extent Estimation and Quantitative Analysis Method

Automatic Lesion Extent Estimator
Lesion extent was evaluated independently in the x, y, z directions (Figure 6-1), using the recon-
structed iodine images for CE-DBT and CE-bCT and an automatic estimator, A. The estimator
is defined as the maximum of the convolution of a 1D profile through the lesion’s center of mass
(COM), f , with a sliding rectangle function, h, with varying width DW . For example, D̃ in the
x-direction was computed as:

D̃ = arg max
DW

{f(x) ∗ h(x)}, with h(x) =

{
1/DW , |x| ≤ DW /2

− 1/(N −DW ) , elsewhere
(6.2)

where N is the length of h(x).

Figures 6-2a and Figure 6-2c illustrate two lesion profiles f(x), respectively, a sharp and a
blurred rectangular window with Dtrue = 80 pixels, as well as the sliding rectangular window h(x)
and the calculated convolutions f(x)∗h(x−∆x), with maximum value identified by the red circles.
By convolving f(x) with sliding windows with different widths DW , the curves in Figures 6-2b and
6-2d are obtained. They illustrate the calculated values of the expression max{f(x) ∗ h(x,DW )}
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in Equation 6.2 as function of the window width DW . The estimated lesion extent D̃ is the width
W for which the expression is at its maximum value (red circles).

Notice that there exists a small difference ∆D̃ in the estimated lesion extent, as shown in
Figures 6-2b and 6-2d. This is due to the blurring present in one of the lesion profiles. This
is a simple illustration on how blurring due to the system’s MTF is introduced. Since in a real
scenario the system MTF can be estimated, a deconvolution could be performed in order to achieve
more accurate estimations. In this investigation however, this is performed by the linear regression
calibration.

The difference between D̃ and Dtrue, i.e. the true lesion dimension, was minimized through
linear regression:

Dtrue = α · D̃ + β︸ ︷︷ ︸
estimation of Dtrue

+ ε (6.3)

where α and β are calibration parameters and ε is the residual error. The coefficients α and β
were obtained by linear regression using a subset of simulated images with known lesions sizes.
The regression was repeated for each axis direction separately and included all lesion diameters,
positions and iodine concentrations. In this case, no hypothesis is made on the system’s MTF, and
the estimated extent is the best possible estimation within the limits of the estimator A (e.g. the
choice of a rectangular sliding window, instead of a blurred one).

Figure 6-3 summarizes the steps during automatic lesion extent assessment.

Multivariable Full Factorial Analysis
Since digital detectors are not shift invariant, the imaged lesion size depends on its alignment with
respect to the sampling grid. Therefore, the simulations were repeated by shifting the lesions’
COM by sub-voxel values in all three directions. The large obtained dataset (> 1000 simulated
lesions) allowed to calculate the residual error’s mean, ε̂, and standard deviation, σε, in lesion
extent estimation. Since ε̂ tends towards zero due to calibration regression (Equation 6.3), only
lesion size estimation precision was characterized through the assessment of σε.

A full factorial experiment was designed to understand the impact of iodine concentration,
lesion diameter and position (the independent variables) on the measurement precision, described
by σε (the observations). A general linear equation with crossed terms describes the interactions
within the model:

σε = a0 + asXs + apXp + acXc + aspXsXp + . . .+ aspcXsXpXc (6.4)

where Xs, Xp and Xc represent lesion size, position and iodine concentration values, respectively.
Statistical hypothesis tests were applied to verify the statistical significance of each factor in the
model. The level of significance for the p-values was set at 0.05. The data analysis was performed
using Minitab® Statistical Software (v12, Minitab Inc.; Conventry, UK).

6.1.3 Effect of CE-bCT vs CE-DBT Topologies

The obtained results indicate that the linear regression fit is adequate to estimate Dtrue; R
2 values

were found to be larger than 0.999 (t-test, p < 0.001) for all axes and both topologies, except
for the y-direction in CE-DBT (R2 = 0.79). Figure 6-4a shows the calibration of the automatic
estimator for CE-DBT depth-direction. Assuming that the reconstructed volume is limited to the
5 cm phantom thickness (blue diamond markers), the automatic estimator is unable to differentiate
lesions > 15mm in diameter positioned at mid-depth in the phantom. Due to CE-DBT’s limited
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Figure 6-2: Illustration of 3D lesion extent estimation. (a)-(c) Examples of two different lesion
profiles f(x) with Dtrue = 80 pixels, the sliding rectangular window h(x) and the convolution
f(x) ∗ h(x−∆x); (b)-(d) calculated values of the expression max{f(x) ∗ h(x,DW )} for increasing
window width DW . The red circles in all graphs indicate the estimated lesion extent

Figure 6-3: Method for automatic lesion extent assessment; A represents the automatic estimator,
f(x) and h(x) a 1D lesion profile and the rectangle window function in the x direction
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depth resolution in the y-direction, lesions appear ∼3 times larger in that direction1. This is
illustrated in Figure 6-4b, where a reconstructed coronal slice (y-x plane) passing through the
center of a 20 mm diameter spherical lesion is shown. To assess the precision to estimate lesion
dimension in the y-direction, the analysis was repeated with 10 cm thick phantoms and lesions
positioned at mid-depth (red circle markers in Figure 6-4a). This resulted in an improved fit in the
y-direction (R2 > 0.995, t-test, p < 0.001) without affecting the original calibration parameters in
the x- and z-direction.

Figure 6-5a summarizes the overall precision in spherical lesion diameter estimation; for both
topologies σε is shown for the x-, y- and z- directions. For CE-DBT, the precision to estimate
lesion diameter in the in-plane direction is about twice the in-plane voxel dimension (0.1 mm),
while the precision in the y-axis direction is about half the spacing between reconstructed slices.
For CE-bCT the precision to estimate lesion dimension is similar in all three axes directions; the
precision is approximately half the voxel dimension (0.410 mm).

Figure 6-5b summarizes the factorial analysis experiment; for both topologies, σε is shown as a
function of each independent variable (lesion concentration, lesion diameter and distance from chest
wall) and for the x-, y- and z -directions. Figure 6-5b highlights σε variations for the independent
variables who showed statistically significant effect on σε (p-values smaller than 0.05), while leaving
transparent those who did not presented enough statistical significance. In CE-DBT, measurement
precision is affected by the true lesion diameter in the three directions (t-test, p-values, 0.001, 0.064,
and 0.001 for the x-, y- and z-direction respectively) and by the lesion’s iodine concentration only
in the depth-direction (t-test, p = 0.029). The magnitude of these effects is however smaller than
the voxel dimensions, in all three directions. No statistically significant effect on σε as function
of the lesion position was found. In CE-bCT, measurement precision is only affected by the true
lesion diameter (t-test, p < 0.001). Again, the magnitude of this effect is smaller than the voxel
dimension. No statistically significant effect on σε as function of the lesion iodine concentration
and position was found for CE-bCT.

Effect of Lesion Eccentricity
Figure 6-6 illustrates the effect of CE-bCT and CE-DBT topologies in the estimation of ellipsoidal
lesion extent in the depth direction. Figure 6-6 shows the average measured ellipsoidal lesion
eccentricity ε̃y,xz versus true lesions eccentricity εy,xz for both CE-bCT and CE-DBT, considering
all iodine concentrations and x-z plane diameters (except 2 mm diameter lesions, since low εy,xz
values entail in measurement imprecision due to topology spatial resolution limits). Bars indicate
one standard deviation. The ideal curve is also illustrated by the unit slope (dashed line). For
CE-DBT, lesion extent estimation in y-axis is poorly correlated with its true values, while CE-bCT
presented nearly perfect correlation.

6.1.4 Discussion

This section focused on the quantitative comparison of a cone-beam CE-bCT and a cone-beam
CE-DBT topology in the assessment of iodine-enhanced lesion 3D extent. To assess lesion extent
in the reconstructed slices, a calibrated automatic estimator was proposed. Without quantum
noise, this estimator was shown to be robust to all simulated lesions and a factorial experiment
demonstrated the effect of lesion size, position and iodine concentration on estimation precision.

In the absence of noise, the results showed that CE-DBT and CE-bCT precision to estimate
lesion dimension was similar in the in-plane direction, while CE-bCT was superior to estimate
lesion dimension in the depth direction. This result was expected, despite the larger voxel size of

1It must be emphasized that the 3-fold magnification factor is strictly dependent on DBT acquisition topology,
as a direct consequence of incomplete data sampling (cf. Annex A.5 for more details on angular sampling effect on
Radon transform and tomographic reconstruction); it should vary with DBT total angular span and the implemented
acquisition orbit
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Figure 6-4: Reconstructed lesion magnification in the CE-DBT depth-direction, due to limited
angular span acquisition; (a) Automatic estimator calibration for CE-DBT depth-direction when
a 5 cm-thick (blue diamond markers) and 10 cm-thick (red circle markers) phantoms are consid-
ered. We can note that estimation precision in the y-axis decreases with the lesion diameter; (b)
Reconstructed coronal slice (y-x plane) crossing the center of a 20 mm diameter spherical lesion
inside 5 cm and 10 cm-thick phantoms

Figure 6-5: Results of 3D lesion estimation precision comparison between CE-bCT and CE-DBT.
(a) Overall precision to estimate lesion diameter with CE-DBT and CE-bCT by evaluating the
standard deviation, σε, of the residual errors, ε, in the three axis directions; (b) Main effect of
independent variables on lesion extent estimation precision. Highlighted σε variations correspond
to the independent variables who showed statistically significant effect on σε (p-values < 0.05),
while transparent variations correspond to those who did not
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Figure 6-6: Measured vs true ellipsoidal lesions eccentricity in both CE-bCT (solid line) and CE-
DBT (dot-dashed line), as well as the ideal behavior illustrated by the unit slope (dashed line)

the CE-bCT images, because CE-bCT is characterized by an inherently isotropic spatial resolution,
while CE-DBT has limited resolution in the depth direction (y-axis).

A multifactorial analysis demonstrated that the precision to estimate lesion dimension was
affected by lesion size and iodine concentration for CE-DBT, and only by lesion dimension for
CE-bCT. If instead an ellipsoidal shape, with major axis aligned with the system depth direction
is considered, the automatic estimator reveals that for CE-DBT, the estimated extent in the
y-axis is poorly correlated with its true values. For CE-bCT, estimated lesion extent in the y-
axis was perfectly correlated with the true extent in the same axis (cf. Figure 6-6). Hence, we
can conclude that any attempt to measure lesion extent in CE-DBT depth direction is far from
accurate. Moreover, introducing a priori knowledge from extent measurement in the focus plane
would entail in misleading results, since measurement in-plane and depth direction measurement
are poorly correlated.

The simulation studies of this section were performed without any source of noise. Although
not demonstrated here, we tested the simulation setup described in this section in the presence of
quantum noise correspondent to a 3 mGy average glandular dose. In this scenario, the automatic
estimator was shown to be inefficient for lesions with low CNR. In addition, the efficiency of the
estimator with respect to the human observer (i.e. the radiologist) was has not been investigated.
Other methods based on image segmentation have been developed to highlight the contour of breast
lesions in morphologic DBT [276–278] and bCT [279–281] setups. They are often cross-validated
with manually-drawn lesion outlines in the presence of noise and provide good correlation with
the human observer. If combined to a calibration procedure using known lesion sizes, they could
all be instrumented to assess the acquisition topology effect on iodine-enhanced lesion 3D extent.
In Section 6.3 that follows, a study including human observers is described to properly assess the
accuracy and precision of lesion extent estimation in the presence of noise.

The results presented in this section are a first step in the comparison of CE-DBT and CE-bCT
for their quantitative performance. By assuming an ideal monochromatic point source, primary
only X-rays and perfect energy-integrating detectors, we only assessed the impact of CE-DBT and
CE-bCT topologies. The framework proposed in this section could be used to further compare
dual-energy CE-DBT and CE-bCT systems while accounting for additional and/or more realistic
physical phenomena in the image simulation chain, and evaluate their individual impact on 3D
lesion extent estimation accuracy and precision. Inclusion of more a realistic imaging chain could
reveal further differences between CE-bCT and CE-DBT performances.
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6.2 Iodine Uptake Quantification in CE-bCT vs CE-DBT

As discussed in Chapter 1, imaging techniques combined with intravenous contrast agents have been
developed to highlight breast tumor angiogenesis. In breast imaging, the measurement of vascular
density associated to pathogenic angiogenesis can provide additional diagnostic information [33],
for example on its association with invasive breast cancers [34–36] and its aggressiveness [37–39].
Therefore, the ability to quantify intravenous vascular contrast agents uptakes in the breast could
be a useful clinical information.

In this section, the effect of CE-DBT and CE-bCT topologies on iodine uptake quantification
estimation accuracy is investigated.

6.2.1 Breast Phantoms and X-ray Image Simulation

The analytical breast phantoms and X-ray image simulation framework described in Section 6.1
were leveraged for iodine uptake assessment (Figure 6-1 and Table 6.1). Both spherical lesions
with 2 to 20 mm diameters and ellipsoidal lesion shapes, elongated along CE-DBT depth-direction
(y-axis), were embedded in the phantoms at three distances from the chest wall side of the detector.
Iodine concentrations of 0.5, 1.0, 2.5 and 5.0 mg I/cm3 were considered.

The simulations were repeated without quantum noise and with quantum noise corresponding
to a total average glandular dose (AGD) equal to 3 mGy, with 50/50% AGD repartitioning between
LE and HE acquisitions.

6.2.2 Figure-of-Merit for Iodine Quantity Estimation

As discussed in Chapter 4, iodine-equivalent images produced from dual-energy three-material de-
composition have, in theory, signal intensities (SI) proportional to the quantity of iodine per unit
of volume. However, in the presence of beam-hardening, scattered radiation and other artifacts,
SI values may deviate from its expected value. Nonetheless, if a proper decomposition method
is implemented, the relative intensity of iodine uptake with respect to its background is propor-
tional to local iodine quantities, despite absolute SI values having no particular physical meaning.
Image contrast is therefore a better suited metric to estimate iodine quantities than direct SI
measurements.

Iodine-enhanced lesion-to-background contrast, C, was used as metric for iodine uptake quan-
tity in recombined iodine-equivalent images:

C = SIiodine − SIbg (6.5)

where SIiodine and SIbg are, respectively, the average per-pixel SI in an iodine-enhanced region of
interest (ROI) and a non-iodine enhanced neighboring background ROI. SIiodine and SIbg were
computed in the reconstructed slices centered at the lesion’s COM.

To account for the different signal intensity scaling of the CE-DBT and CE-bCT reconstruction
algorithms, the absolute lesion contrast-to-background, C, was normalized to the absolute lesion
contrast-to-background of a reference lesion: a 10 mm diameter reference lesion, positioned at 20
mm from the chest wall side of the detector and with the same iodine concentration as the lesion
under consideration. We define therefore a relative lesion-to-background contrast metric, Crel,

Crel =
SIiodine − SIbg
SI10mm

iodine − SIbg
(6.6)

Notice that Crel is independent of lesion iodine concentration.
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6.2.3 Effect of CE-bCT vs CE-DBT Topologies on Quantification Accu-
racy

Fig. 6-7 shows average Crel values as a function of spherical lesions diameter and position in the
phantom. For CE-DBT, Crel is greatly affected by lesion diameter, with an approximate linear
relationship for lesion diameters between 5 and 20 mm, and a larger drop for the 2 mm diameter
lesion. For CE-bCT, Crel is almost constant for lesion diameters between 5 and 20 mm. For the 2
mm diameter lesion, Crel values were a slightly lower than 1. In this case, for both CE-DBT and
CE-bCT, measurement accuracy was affected by the voxel dimension. For CE-DBT and CE-bCT
the cone-beam artifact has only a small effect on Crel; for lesions positioned further away from the
chest-wall side Crel decreases up to 1% and 5% for CE-DBT and CE-bCT, respectively.

Figure 6-7 shows mean (unfilled markers) and standard deviation (error bars) in Crel values for
CE-DBT and CE-bCT, when quantum noise at 3 mGy AGD is added to the simulations. Average
Crel values were found very similar to those obtained for simulations without noise. For CE-
DBT, standard deviation remains constant with increasing lesion size, while for CE-bCT, standard
deviation decreases with increasing lesion size. For lesions > 10 mm in diameter, CE-bCT was
more precise than CE-DBT.

Effect of Lesion Eccentricity
Figures 6-8a and 6-8b show relative contrast Crel as function of the lesion eccentricity εy,xz (Equa-
tion 6.1) for CE-bCT and CE-DBT, respectively. For CE-DBT, Crel increases with both lesion
eccentricity and lesion diameter in the x-z plane. For CE-bCT, Crel is practically independent of
lesion dimension for all three axes directions when lesion size extends the voxel size, but slightly
decreases when the lesion diameter is smaller than 5 mm.

6.2.4 Discussion

This section focused on the quantitative comparison of a cone-beam CE-bCT and a cone-beam
CE-DBT topology in the assessment of iodine uptake estimation accuracy. Relative image contrast
between iodine-enhanced lesions and background breast tissue was used as figure of merit trans-
lating local quantities of iodine in recombined iodine-equivalent images. Relative image contrast
showed very good agreement with and without quantum noise, but may have a different behavior
when applying more advanced reconstruction algorithms.

Figure 6-7: Crel as a function of lesion diameter, for lesions positioned at different distances from
the chest wall. For CE-DBT, Crel is 60% higher for 20 mm diameter lesions than for 10 mm lesion,
while for CE-bCT Crel is almost independent of lesion diameter.
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Figure 6-8: Crel as function of the ellipsoid depth-direction eccentricity for (a) CE-bCT and (b)
CE-DBT, for different x-z plane diameter values

For CE-DBT, our results show that lesion contrast-to-background increases with lesion diam-
eter. As suggested previously, relative image contrast can be used to estimate the iodine area
density when the appropriate transformation is known. Since contrast in CE-DBT depends on
lesion size (Figure 6-7), one could say that the accuracy of iodine concentration estimation can be
improved by including the estimated lesion diameter as a priori information. This conclusion was
also drawn by Hill et al. [95] in an experimental study on iodine contrast agent kinetics CE-DBT.
However, when analyzing lesion contrast-to-background for ellipsoidal lesions, we showed that Crel
depends not only on lesion diameter as seen in the in-focus image plane, but also depends on
its depth extent (Figure 6-8). As a consequence, any calibration procedure to correct topologic
aspects of CE-DBT acquisition and accurate estimate iodine quantities should take both in-plane
and depth lesion extent into account. It must be emphasized however that a spherical assumption
might be sufficient for certain lesion types (well circumscribed round-like masses such as cysts,
fibroadenoma, rim-enhancements, metastasis, . . . ) and any residual error in iodine concentration
estimation could possibly be negligible depending on the clinical task. Further studies are required
to better understand the clinical needs in terms of accuracy of iodine uptake quantification.

For CE-bCT, our results show that lesion contrast-to-background is almost independent of
spherical lesion diameter and ellipsoid lesion eccentricity. This result was expected since CE-bCT
reconstructed images are obtained from a full angular sampling of the imaged breast. Deviations
on expected values were found, in principle, for lesion diameters below 5 mm, since it approaches
CE-bCT image resolution and jeopardizes ROI averaging metrics. Nonetheless, it remains clear
that CE-bCT outperforms CE-DBT in iodine quantification tasks.

Cone-beam showed to have little effect on iodine uptake quantification for both CE-bCT and
CE-DBT topologies. These results were found using monochromatic X-ray beams. If polychro-
matic beams are considered only a slight decrease is expected. Indeed, as long as LE and HE
acquisition parameters are chosen among the optimal parameters found in Section 5.4, cupping
and residual background should include respectively up to ∼ 0.15 and ∼ 0.25 mg I/cm3 variation
in iodine concentration estimation, which are below the minimum target iodine concentration of
0.5 mg I/cm3 considered in this PhD thesis research work.
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6.3 Iodine-Enhanced Lesion Detectability and Characteri-
zation in CE-bCT vs CE-DBT: a Human Observer Study

In this section, a mesh-based computational breast model with mathematically defined anatomical
structures is used to assess and compare the depiction and characterization of embedded iodine-
enhanced lesions of different sizes, shapes and iodine concentrations. A detailed description of the
anthropomorphic breast phantom is provided in Section 2.3.

Simulated reconstructed iodine-equivalent CE-DBT and CE-bCT images were shown to three
different readers, who scored the quality of iodine-enhanced lesion depiction and the characteri-
zation in a Likert scale. Statistical analysis for sensitivity and specificity was performed for the
different acquisition geometries. A detailed comparison study on the performance of CE-DBT
versus CE-bCT was then performed, which is the main goal of this investigation.

6.3.1 Image Database

An image database containing one hundred and forty-four 5 × 5 × 5 cm3 CE-DBT Volumes-of-
Interest (VOI) and one hundred and forty-one 5 × 5 × 5 cm3 CE-bCT VOIs were extracted from
simulated iodine-equivalent images of compressed and uncompressed meshed-based anthropomor-
phic phantoms embedded with enhanced lesions of different morphologies, sizes and injected iodine
concentrations. Two anatomical background types were considered; they were classified as being
representative ACR 2 and ACR 3 textures, through visual inspection of low-energy projection
images by Dr. Clarisse Dromain (radiologist at Gustave Roussy – former IGR; Villejuif, France).

The compressed breast phantom thickness for CE-DBT topology was 5 cm-thick, while the
uncompressed breast phantom for CE-bCT had 14 cm diameter close to the chest wall, mimicking
the same breast without applying compression and with the patient in prone position [162]. Both
compressed and uncompressed phantoms had, on average, approximately 7% Volumetric Breast
Density (VBD)2, which is similar to density values found for an average breast size [169]. The skin
was on average 3 mm thick.

Five types of lesions were simulated, classified according to their overall shape, margin and
internal enhancement:

� Round Homogeneous: round mass-like lesions, with smooth margin and homogeneous
internal iodine enhancement

� Rim Enhancement: round mass-like lesions, with smooth margin and peripheral iodine-
enhancement (seen as bright rim is radiographic images)

� Irregular: mass-like lesions with irregular shape, margin in an intermediate class between
smooth and spiculated, and homogeneous internal iodine enhancement

� Linear Enhancement: non-mass-like enhancement along a “line”, following the growth
direction of a given lactiferous duct

� Spiculated: essentially round nucleus, with spiculated margin randomly distributed around
the nucleus towards all three axes and homogeneous internal iodine enhancement

For Round Homogeneous, Rim Enhancement, Irregular and Spiculated lesions, two equally
populated sets of lesions were simulated: one with ∼5 mm diameter and the other with ∼10
mm diameters. For Linear Enhancement lesions, their largest extent ranged from ∼9 to 26 mm.
Iodine-enhanced images with no embedded lesion contrast uptake were also considered. Figure 6-9
illustrates the five lesion types.

2The Volumetric Breast Density (VBD) is defined as the volume fraction of fibroglandular tissue with respect to
the total breast volume
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Figure 6-9: Illustration of the five iodine-enhanced lesion types considered in the human observer
study. Lesions were classified according to their overall shape, margin and internal enhancement

The chemical composition of every object inside the phantom was based on the definitions of
skin, adipose tissue and fibroglandular tissue by Hammerstein et al. [159]. More precisely, adipose
compartments and adipose columns in the skin were emulated as Hammerstein’s adipose tissue
material. Copper’s ligament, lactiferous ducts, fibroglandular tissue and unenhanced lesions were
emulated as Hammerstein’s fibroglandular tissue material. The skin convex envelope and the
nipple were emulated as Hammerstein’s skin material. With the injection of the contrast agent,
we assumed that only the fibroglandular tissue and the lesions take contrast. Their final chemical
composition is that of fibroglandular tissue homogeneously mixed with a given iodine concentration
under a volume conservation constraint.

The simulated lesions were enhanced with 0.5, 1.0, 2.0 and 4.0 mg I/cm3. As described
in Section 5.1, an iodine concentration of 0.5 mg/cm3 was chosen to be the minimum iodine
concentration expected clinically in the embedded lesion, if a typical injection protocol of contrast-
enhanced mammography is considered (cf. Equation 5.4 in Section 5.1). Moreover, it was assumed
that the fibroglandular tissue constituting the mammary gland was also enhanced by the contrast
agent, as evidenced in previous clinical studies [282]. A contrast uptake of 0.2 mg I/cm3 in the
fibroglandular tissue was considered.

Table 6.2 summarizes the total number of studied cases per acquisition geometry, considering
all sizes, the four iodine concentrations and the two background glandularities.

Table 6.3 summarizes the parameters used to simulate low-energy (LE) and high-energy (HE)
projection images in CE-DBT and CE-bCT implementations. CE-DBT images were simulated
using the topology of a CE-DBT prototype based on the GE Senographe® DS mammography
systems (GE Healthcare; Chalfont St Giles, UK), as described in Section 6.1. For CE-bCT, the
same cone-beam topology described in Section 5.2 was simulated. As discussed in Chapter 5, this
choice of topologic parameters provided contrast-to-noise ratio values above Rose’s detectability
criterion [246, 247] for a 2 mm diameter 0.5 mg/cm3 iodine-enhanced lesion in an average-sized
breast and with dose levels comparable to a two-view mammogram.

Table 6.2: Total number of simulated lesion types for the human observer study, per acquisition
geometry

Lesion Type CE-DBT CE-bCT Total

No Lesion 36 39 75
Round Homogeneous 24 24 48
Rim Enhancement 24 24 48
Irregular 24 24 48
Linear Enhancement 12 6 18
Spiculated 24 24 48
Total 144 141 284

For both topologies, perfect energy-integrating detectors that do not generate any kind of
noise or blurring were assumed. X-ray projections were simulated assuming primary X-rays only.
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Table 6.3: Parameters used for CE-DBT and CE-bCT implementations in the human observer
study

Model Parameters CE-DBT CE-bCT

Acquisition Mono-energetic 20 & 34 keV 30 & 34 keV
Total AGD 1.86 mGy 3.72 mGy
Dose ratio (LE/HE) 50/50% 50/50%

Geometry Mag (SDD/SID) 660mm / 620mm 880mm / 460mm
no. of projections 9 (25°range) 300 (360°range)
Detector element size 0.100 mm 0.776 mm

Reconstruction Method FBP FBP
Filter Ref. [275] Ramp + Hamming
Voxel size 0.1× 0.1× 1.0 mm3 0.410× 0.410× 0.410 mm3

DE Recomb projection-based image-based

No compression paddle was emulated in this study. For CE-DBT, total AGD was kept at 1.86
mGy, corresponding to the dose delivered in clinical practice for a one-view contrast-enhanced
mammography exam (SenoBright� , GE Healthcare; Chalfont St Giles, UK). For CE-bCT, AGD
was kept at 3.72 mGy, i.e. twice the dose used for a single view SenoBright� acquisitions. This
choice was made assuming that the clinical protocols for CE-DBT would require two views (e.g.,
one CC and one MLO), while a single CE-bCT acquisition would provide complete 3D information
about the breast and the enhanced-lesions. It must be emphasized that, in terms of detectability,
this hypothesis favors CE-bCT, though there is no proof to this day that a 2-view CE-DBT protocol
is statistically better than a 1-view protocol. Nonetheless, in theory, a 2-view CE-DBT protocol
provides more accurate information on lesion morphology and localization than a 1-view protocol.
There exists hence a trade-off between lesion detectability and availability of morphologic and
localization information.

Figure 6-10a and 6-10b illustrate the lesion embedding process for CE-DBT and CE-bCT. Ex-
amples show reconstructed HE images for both considered background types, with and without an
embedded lesion. The final recombined iodine-equivalent images are also shown, where we distin-
guish the enhancement of lesion contrast as well as the 0.2 mg I/cm3 uptake in the fibroglandular
background.

Figure 6-11 shows examples of simulated iodine-equivalent images containing the different lesion
types considered in the study. For CE-DBT, the in-focus plane crossing the lesion center is shown.
For CE-DBT, the three orthogonal planes crossing the lesion centers are shown.

6.3.2 Observers

Three readers individually reviewed the random sequence of 284 images comprising the different
topologies.

Reader 1 (R1) is a radiologist with over 15 years’ experience in medical imaging and specialized
in diagnostic and interventional imaging of gastrointestinal, neuroendocrine and breast tumors.
Reader 1 has experience with full-body CT, MRI, conventional radiography and mammography
images review. Reader 1 is also actively involved in pre-clinical research investigations on contrast-
enhanced mammography and CE-DBT.

Reader 2 (R2) is a radiologist with over 10 years’ experience in medical imaging, specialized in
oncologic and breast imaging, and possesses a doctorate degree in Medicine for his/her research
on brain tumor malignancy evaluation in perfusion MRI. Reader 2 has experience with full-body
CT, MRI, ultrasound and mammography images review.

Reader 3 (R2) is a senior research engineer at GE Healthcare, with doctorate degree on Signal



6.3. Lesion Detectability and Characterization in CE-bCT vs CE-DBT 157

Figure 6-10: Illustration of volume-of-interest (VOI) cropping to form (a) CE-DBT and (b) CE-
bCT region-of-interest used for review. Two different background were considered: (A) classified
as ACR 3 (heterogeneously dense), and (B) classified as ACR 2 (presence of some fibroglandular
tissue). Average volumetric breast density (VBD) and surface breast density (SBD)4 values are
presented for the two background
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Figure 6-11: Examples recombined iodine-enhanced images for each topology and for each con-
sidered lesion type. Lesions had 2.0 mg I/cm3 uptake while the fibroglandular background had
0.2 mg I/cm3 uptake

and Image Processing for his/her research on automatic detection of masses in DBT. Reader 3
has accumulated over 8 years of experience in developing and evaluating iterative reconstruction
algorithms for morphologic DBT and dual-energy CE-DBT.

6.3.3 Viewing Conditions

CE-DBT images were stored for display on a Seno Advantage� Workstation (v4.4, GE Healthcare;
Chalfont St Giles, UK), equipped with high-resolution (5M pixels) grayscale portrait monitors
(SMD 21500 G, Siemens AG; Munchen, Germany), which were calibrated for review in a dark
room. CE-DBT slices were presented at fixed resolution. The mouse or the keyboard could be
used to alter the window/level, to zoom in, to change the position in the 3D CE-DBT stack,
perform extent measurement and to signify the beginning end of the review phase.

CE-bCT images were stored for display on an Advantage Workstation� (v4.5, GE Healthcare;
Chalfont St Giles, UK) equipped with Volume Viewer software (GE Healthcare, Chalfont St Giles,
UK) and calibrated for review in a dark room. Readers had simultaneous access to axial, sagittal,
coronal and oblique planes. Access to window/level, zoom and measurement tools was also granted
through the mouse or the keyboard. Additionally, the MIP (Maximum Intensity Projection) and
Average slice tools were also available, since they are common tools used by radiologist during
the review of other fully 3D methods such as MRI and full-body CT [283–286]. Accordingly, the
reconstruction of CE-bCT volumes at isotropic resolution would allow to better exploit the fully
3D topology by analyzing MIP and Average of any “thicker” oblique plane, potentially enhancing
lesion depiction and characterization.

During review, both CE-DBT and CE-bCT images were displayed in stand-alone. No con-
straints on viewing distance (typical distance was ≈ 40-50 cm) or on viewing time were imposed.
All cases were displayed once and in random order, mixing both CE-DBT and CE-bCT images.
The order in which the cases were displayed was different for each reader. To reduce effects of
reader fatigue, a 10 minutes pause was introduced after each 50 minutes of reading session.
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The readers had a priori knowledge on the acquisition geometry used to generate the image
being reviewed. They were also informed that all lesions were approximately localized at the center
of the VOI.

6.3.4 Preference Study Questionnaire

A review questionnaire based on ACR-BIRADS for CE-MRI was defined to study the readers’
confidence during image review. The questionnaire is summarized in Table 6.4.

For each presented ROI, six questions were asked to the readers. The questions regarded lesion
detectability (Q1), characterization (Q3,Q5,Q7,Q9) and 3D extent (Q11). For each questions,
except Q11, the reader was also asked to provide a degree of confidence in his answers, using
five-point Likert items where 1 represents “not at all confident”, 2 represents “not so confident”,
3 represents “moderately confident”, 4 represents “very confident” and 5 represent “extremely
confident”. In total, eleven items composed the questionnaire, which is summarized in Table 6.4.

Table 6.4: Review questionnaire based on ACR-BIRADS and used to assess the readers confidence

QUESTIONNAIRE

About lesion detectability
Q1 Is there a lesion in the center of the ROI? (YES = 1 / NO = 0)
Q2 How confident are you about that? *

About lesion characterization
Q3 This lesion is a mass? (YES = 1 / NO = 0)
Q4 How confident are you about that? *

Q5 The shape of the mass is: round = 1 / oval = 2 / irregular = 3 ?
Q6 How confident are you about that? *

Q7 The margin of this mass is : smooth = 1 / irregular = 2 / spiculated = 3 ?
Q8 How confident are you about that? *

Q9 The internal mass enhancement is: homogenous = 1 / rim = 2 ?
Q10 How confident are you about that? *

About lesion extent
Q11 What is the largest lesion dimension?

* Degrees of Confidence (Likert Scale)
Not at all confident = 1
Not so confident = 2
Moderately confident = 3
Very confident = 4
Extremely confident = 5

Q1/Q2 referenced to the presence or absence of a lesion. If the answer is positive, Q3/Q4
specified if the actual lesion was a mass-like or non-mass-like lesion, respectively. For mass-like
lesions only, the reader was asked to specify the morphological characteristics of the lesion, such
as the overall shape (Q5/Q6), its margin allure (Q7/Q8) and its internal enhancement (Q9/Q10).
Notice that it exists a hierarchical dependency between the different questions, which was taken
into account in the statistical analysis.

Table 6.5 summarizes a contingency table classifying each simulated lesion type by the possible
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answers to questions Q1 to Q9, with respect to their true value (or “Gold”). Although all
simulated mass-like lesions were approximately round, in order to assess an eventual distortion in
the reconstructed lesion shape (e.g. due to the acquisition geometry and angular sampling), for Q5
the readers could also characterize the mass-like lesions as having an “oval” or “irregular” shapes.

Table 6.5: Contingency table of reader answers as function of their true value, Gold(·)

Lesion Type
Gold(Q1) Gold(Q3) Gold(Q5) Gold(Q7) Gold(Q9)

(existence) (mass) (shape) (margin) (int enhanc)

Empty 0 - - - -
Round Homogeneous 1 1 1 1 1
Rim Enhancement 1 1 1 1 2
Irregular 1 1 1 2 1
Linear Enhancement 1 0 - - -
Spiculated 1 1 1 3 1

6.3.5 Reader Training

Before starting the real image review session, the experimental course was explained by means of an
additional subset of VOIs. The database was explained including the morphologic characteristics of
the lesions under study (different types, sizes, iodine concentrations) and the two ACR background
types.

The questionnaire was detailed to the reviewers, who were also instructed to use the full Likert
scale. The reviewers were told they had to detect, characterize and assess lesion size. For that,
reviewers were explained how to handle the mouse and the keyboard, to scroll between slices,
perform window/level and zoom adjustments, handle MIP and Average slice tools for CE-bCT,
and how to alternate between the different cases.

6.3.6 Statistical Analysis

For each reader and each acquisition geometry, a contingency table of each question by its true
value (gold) and by its Likert score was built. An overall Sensitivity (Se) and Specificity (Sp) per
reader and per acquisition geometry was then calculated. To compare the different geometries, a
summary measurement translating the “Majority Opinion” among the three readers was calculated
for questions Q1, Q3, Q5, Q7, Q9 and then compared to their gold value.

As previously stated, answers to Q5, Q7 and Q9 depend on having previously characterized
the lesion as a mass (Q3), which in turn depends on having previously detected the lesion (Q1).
Accordingly, in order to study the sensitivity and specificity of the majority opinion for Q3, only
the samples for which all three readers agreed on Q1 (i.e., a “unanimity opinion”) were considered.
Likewise, to study the majority opinion for Q5, Q7 and Q9, only the samples for which all three
readers agreed on both Q1 and Q3 were considered. Notice that this hierarchical selection process
could potentially decrease the samples size, ultimately affecting statistical strength.

For each acquisition geometry and each question, the agreement among the three readers was
studied by analyzing the distribution of Likert items per reader, as well as by calculating Cohen’s
Proportion of Overall Agreement (po) and Kappa coefficients (κC) [287] as statistical measurements
of interobserver agreement. To interpret Kappa coefficients magnitude, Landis and Koch [288] have
proposed different ranges of values for κC with respect to the degree of agreement among readers.
Although Landis-Koch benchmark scale is widely adopted [289], its interpretation was based on
their empirical results and opinions. A more general representation was proposed by Fleiss et
al. [290], where Kappa values below 0.40 or so may be taken to represent poor agreement, values
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between 0.40 and 0.75 may be taken to represent fair to good agreement, and greater than 0.75
or so may be taken to represent excellent agreement beyond chance. Both Landis-Koch and Fleiss
interpretations for Kappa magnitude are summarized in Table 6.6.

Table 6.6: Classification of reader agreement strength proposed by Landis and Koch [288], and
Fleiss et al. [290]

Kappa Landis and Koch (1977) Kappa Fleiss et al. (2003)

0.81–1.00 excellent 0.75–1.00 excellent
0.61–0.80 substantial

0.41–0.75 fair to good
0.41–0.60 moderate
0.21–0.40 fair

< 0.40 poor0.00–0.20 slight
< 0 poor

To study lesion detectability and characterization, for each acquisition geometry and each ques-
tion, the sensitivity and specificity of the majority opinion versus the “Gold” was calculated. A
multivariable logistic model was used in order to test the samples characteristics (iodine concentra-
tion, true lesion extent and background texture) effect on sensitivity and specificity. Especially for
the study of Q5 (shape), an additional variable translating the degree of ovality (or eccentricity) of
the simulated lesion was incorporated to the logistic model. The eccentricity index ε was defined
as:

εx,z =
X

Z
(6.7)

where X and Z are the true lesion dimensions in x- and z-axis directions, respectively. The
eccentricity index εx,z was translated into a symmetric variable, by taking | log(εx,z)|. A null
| log(εx,z)| value reflects a round shape, whereas values further away from zero reflect ellipsoidal
shapes. Two classes of rather round, {0.9 < εx,z < 1.11}, and rather oval, {εx,z < 0.9} ∪ {εx,z >
1.11}, forms were considered.

Also for Q5, majority agreement analysis was performed using Gold(Q7) as an additional vari-
able, to explore the hypothesis that simulated lesions with smooth margins (“round homogeneous
lesions” and “round rim-enhancement lesions”) would be associated with a better sensitivity.

To study the lesions extent measurement (Q11), a continuous variable defined as the median
extent measurement value between the three readers was calculated as a summary measure for each
sample. For this study, only the samples for which all three readers agreed in Q1 were considered
(unanimity opinion in lesion depiction). For each acquisition geometry, the difference of the median
measure for Q11 and the true lesion largest extent (i.e., a measurement error) was examined with
a Bland-Altman plot against the true lesion largest extent. The variation of the measurement
error was examined with a multivariable linear model according to the acquisition geometry and
the simulations characteristics (iodine concentration, true lesion extent and background texture).
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6.3.7 Results - Part I: Preference Scale Usage and Interobserver Agree-
ment

Interobserver Preference Distribution on Lesion Detectability Task
Figure 6-12 illustrates the Likert scale frequency distribution for Q1 (lesion existence) per acquisi-
tion geometry and per observer answer. The answers of all three readers were mainly concentrated
in high confidence items (4 and 5, cf. Table 6.4), summing up at least 70% of the sample. The
distribution is separated for each reader. A tendency of decreasing confidence of each reader can
be observed when passing from CE-DBT to CE-bCT. This trend is also observed for questions
Q3/Q4, Q5/Q6, Q7/Q8 and Q9/Q10 (for simplicity their individual graphs are not displayed; an
average behavior as function of each question is provided below).

Figure 6-12: Likert scale for Q1/Q2 (lesion existence) when Gold(Q1) is 0 (lesion not present) and
1 (lesion present), per individual readers and per acquisition geometry

Figure 6-13a and Figure 6-13b shows the Sensitivity (Se) and Specificity (Sp) of lesion detection
task (Q1), per acquisition geometry and per reader. Lesion detection sensitivity was slightly lower
for CE-bCT. Specificity greatly varied among the three readers, most probably due to the different
confidence behavior observed in Figure 6-12. The statistical analysis of sensitivity and specificity
are presented further on.

Figure 6-13: (a) Sensitivity and (b) Specificity of each reader in lesion detectability task (Q1), per
acquisition geometry

Interobserver Preference Distribution on Lesion Characterization Task
Figure 6-14 illustrates the average Likert scale values, ±1 standard deviation, for questions Q2, Q4,
Q6, Q8 and Q10. The average scores are given per acquisition geometry and per reader. Reader 3
showed an evident distinct confidence behavior compared to Readers 1 and 2. Reader 3 presented
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lower average confidence for all acquisition geometries but increased standard deviation, which
denote a better exploitation of the Likert scale.

Due to the hierarchical process in lesion characterization task, Sensitivity (Se) and Specificity
(Sp) for questions Q2, Q4, Q6, Q8 and Q10, as function of the acquisition geometry were studied
through majority agreement analysis and are discussed as follows.

Figure 6-14: Average Likert scale values for all questions, per individual reader, and independently
of the characterization answers (Q1, Q3, Q5, Q7 and Q9). The bars illustrate±1 standard deviation
of mean values

Interobserver Agreement
Figure 6-15 shows the Cohen’s Kappa coefficients, κC (bar plots, left ordinate axes) and the
Proportion of Overall Agreement, po (lines, right ordinate axes), for questions Q1, Q3, Q5, Q7 and
Q9, and for each pairwise test between readers: ’R1 vs R2’, ’R1 vs R3’ and ’R2 vs R3’. Figure 6-
15a and 6-15a show results obtained respectively from CE-DBT and CE-bCT data samples. Error
bars indicate 95% confidence interval in Kappa coefficient calculations, obtained from z statistics
with significance level for p-values set at 0.05. All calculated κC values presented p-values smaller
than 0.05, except the two κC values indicated by arrows in Figure 6-15.

According to Table 6.6, for Q1, Kappa coefficients indicate excellent agreement among readers
during CE-DBT images review (κC > 0.87, po = 100%), and good agreement for CE-bCT (κC >
0.51, po = 100%). For Q3, Cohen’s equation fails to calculate κC values, since it exists perfect
overall agreement (po = 100%) and imbalanced marginal answers among the possible categories5.
For Q5, taking into account the same Kappa calculation issues as Q3, Reader 1 and Reader 2
presented excellent agreement between themselves (κC = 1, po = 100%), but smaller agreement
with Reader 3 (po > 70%). For Q7, excellent agreement during CE-DBT images review was
observed among the three readers (κC > 0.75, po > 70%). However, for CE-bCT, while Readers 1
and 2 presented excellent agreement between themselves (κC = 1, po = 100%), they poorly agreed
with Reader 3 (κC < 0.21, po < 51%). The differences observed between Reader 3 and Readers 1
and 2 could be somewhat anticipated, since Reader 3 demonstrated different confidence behavior
in Q5 and Q7, when compared to Readers 1 and 2 (Figure 6-14). For Q9, excellent agreement
was observed among the readers during both CE-DBT and CE-bCT images review (κC > 0.85,
po = 95%).

5This problem has been referred to in literature as the ’Kappa paradox’, and occurs in the presence of imbalanced
number of answers among the possible categories. In this case, very low values of Kappa may not necessarily reflect
low rates of overall agreement, for instance, in the presence of high po values. Feinstein and Cicchetti [291, 292]
discussed the main issues in the ’Kappa paradox’ and how to address them. This requires, however, a more complex
analysis on the study design, increased number of samples and recursive reader training. To maintain a simple
approach, this subject is out of scope of this PhD thesis and is envisioned to be addressed in future work.
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Figure 6-15: Interobserver agreement in (a) CE-DBT and (b) CE-bCT data. Bar plots indicate
Cohen’s Kappa coefficients, κC (left ordinate axes), and lines indicate the Proportion of Overall
Agreement, po (right ordinate axes). Results are shown for questions Q1, Q3, Q5, Q7 and Q9, and
for each pairwise test between readers: ’R1 vs R2’, ’R1 vs R3’ and ’R2 vs R3’. Error bars indicate
95% confidence interval in Kappa coefficient calculations
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6.3.8 Results - Part II: Detectability and Characterization in CE-bCT
vs CE-DBT

Majority Opinion for Q1 (lesion existence)
Table 6.7 shows the overall distribution of majority opinion for Q1 (lesion detection), for both
CE-DBT and CE-bCT. In each cell, the number of each majority opinion answers against the
Gold is displayed and, in brackets, its percentage with respect to the total number of answers in
each column is also provided. The percentages in the diagonal cells represent the majority opinion
sensitivity or specificity. The distribution of majority opinions for questions Q3, Q5, Q7 and Q9
was represented in the same manner.

The overall majority opinion sensitivity for lesion existence (Gold(Q1) = 1), i.e. considering
both CE-DBT and CE-bCT, was 198/210 = 94%. As shown in Table 6.7, the majority opinion
sensitivity for CE-DBT was 108/108 = 100% against 90/102 = 88% for CE-bCT. However, the
difference in sensitivity between the acquisition geometries was not statistically significant (ho-
mogeneity test, p < 0.0002, exact test). Moreover, sensitivity was not influenced by any other
factor.

The overall majority opinion specificity (Gold(Q1) = 0), considering both CE-DBT and CE-
bCT cases was 74/75 = 99%. Due to the high specificity, no further study of variation was
performed.

Table 6.7: Q1 (lesion existence): distribution of majority opinion
answers vs Gold, for CE-DBT and CE-bCT

Gold(Q1) Gold(Q1)
0 1 0 1

m
a
j 0 36 (100%) 0 (0%)

m
a
j 0 38 (97%) 12 (12%)

1 0 (0%) 108 (100%) 1 1 (3%) 90 (88%)

CE-DBT CE-bCT

Majority Opinion for Q3 (mass-like and non-mass-like lesions)
Table 6.8 shows the overall distribution of majority opinion for Q3 (mass-like or non-mass like
lesions), for both CE-DBT and CE-bCT. Sensitivity and specificity were 100%, and therefore
no further study of variation was performed. This result indicates that the distinction between
mass-like and linear lesion was evident in both CE-DBT and CE-bCT.

Table 6.8: Q3 (mass/non-mass): distribution of majority opinion answers vs Gold,
for CE-DBT and CE-bCT

Gold(Q3) Gold(Q3)
mass non-mass mass non-mass

m
a
j mass 93 (100%) 0 (0%)

m
a
j mass 76 (100%) 0 (0%)

non-mass 0 (0%) 12 (100%) non-mass 0(0%) 3 (100%)

CE-DBT CE-bCT

Majority Opinion for Q5 (lesion shape)
Table 6.9 shows the overall distribution of majority opinion for Q5 (lesion shape), for CE-DBT
and CE-bCT. The overall majority opinion sensitivity for lesion shape (Gold(Q5) = round) was
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145/167 = 87%. As shown in Table 6.9, the majority opinion sensitivity for CE-DBT was 77/92 =
84% against 68/75 = 91% for CE-bCT.

Table 6.9: Q5 (shape): distribution of majority opinion answers
vs Gold, for CE-DBT and CE-bCT

Gold(Q5) Gold(Q5)
round round

m
a
jo
ri
ty

round 77 (84%)

m
a
jo
ri
ty

round 68 (91%)
oval 9 (10%) oval 1 (1%)

irregular 5 (5%) irregular 3 (4%)
no majority 1 (1%) no majority 3 (4%)

CE-DBT CE-bCT

Table 6.10 summarizes the multivariable logistic model results for Q5 (lesion shape) sensitivity,
for different influencing factors: acquisition geometry, iodine concentration, true lesion extent,
background texture type, lesion eccentricity (or ovality) and lesion margin (Gold(Q7)). For each
factor, the statistical significance is evaluated by the associated p-value. The level of significance
for the p-values was set at 0.05. The odds ratio (OR) quantify how strongly sensitivity is affected
by variable ’A’ relative to a variable ’B’ (illustrated as ’A vs. B’ in the table) describing each
factor. If OR < 1, sensitivity is higher for variable ’A’ and if OR > 1 sensitivity is higher for
variable ’B’. In the case numerical variables (as for ’iodine concentration’ and ’true lesion extent’
factors), OR > 1 indicates an increase in sensitivity with the increasing variable value, and vice
versa. Precision of the calculated OR values is indicated by the 95% confidence interval (CI).

Table 6.10: Q5 Sensitivity analysis results using multivariable logistic model

Factor p-value odd ratio 95% CI

Acq. Geometry 0.14
CE-bCT vs CE-DBT 2.3 0.77 7.2

Iodine concentration 0.18 1.3 0.88 2.0

True lesion extent 0.16 0.88 0.74 1.1

Bg texture type 0.84
ACR 3 vs ACR2 1.1 0.32 3.6

Ovality* 0.94
{εx,z < 0.9 ∪ εx,z > 1.11} vs 0.9 < εx,z < 1.1 0.95 0.29 3.1

Gold(Q7): margin 0.02
smooth vs. irregular 0.046 0.005 0.40
smooth vs. spiculated 0.060 0.006 0.59

*33 observations were deleted due to missing values for the response or explanatory variables

By analyzing Table 6.10, we conclude that smooth margins, i.e., Gold(Q7) factor, were asso-
ciated with increased sensitivity (p = 0.02, OR < 1), as illustrated in Table 6.11. No statistically
significant difference was observed between CE-DBT and CE-bCT.

Since the ovality factor was not found to be an important variable in the model (p = 0.94), in
order to increase the statistical power in the presence of the variable ’lesion margin’ and obtain
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Table 6.11: Majority opinion Sensitivity for
Q5 when gold is “round”, per geometry and
per Gold(Q7) variable (lesion margin)

Gold(Q7)
CE-DBT CE-bCT

’lesion margin’

round 98% 97%
irregular 65% 85%

spiculated 74% 84%

the 33 observations which were previously not considered, the sensitivity analysis was repeated
without the ovality factor. In this case, lesion margin strengthened its association with sensitivity
(p = 0.005), but the acquisition geometry was still not a significant factor (p = 0.19).

Majority Opinion Analysis for Q7 (lesion margin)
Table 6.12 shows the overall distribution of majority opinion for Q7 (lesion margin), for both CE-
DBT and CE-bCT. The overall majority opinion sensitivity for smooth lesion margin (Gold(Q7) =
smooth) was 63/82 = 77%. As shown in Table 6.12, the majority opinion sensitivity for CE-DBT
was 46/46 = 100% against 17/36 = 47% for CE-bCT.

The sensitivity varied with acquisition geometry (p < 0.0001), but did not varied with any other
factor. Table 6.13 illustrates the difference in sensitivity for CE-DBT and CE-bCT, by displaying
sensitivity values as function of the lesion iodine concentration. Because of the very low p-value
and 100% sensitivity for CE-DBT, the multivariable logistic model fails to distinguish variations
sensitivity from the other factors. Hence, we could not build a full table with p-values and OR
values for all considered influencing factors.

Table 6.12: Q7 (margin): distribution of majority opinion answers vs Gold, for CE-DBT and
CE-bCT

Gold(Q7) Gold(Q7)
smooth irregular spiculated smooth irregular spiculated

m
a
jo
ri
ty smooth 46 (100%) 7 (30%) 5 (22%)

m
a
jo
ri
ty smooth 17 (47%) 4 (20%) 4 (21%)

irregular 0 (0%) 5 (22%) 1 (4%) irregular 13 (36%) 7 (35%) 7 (37%)
spiculated 0 (0%) 10 (43%) 17 (74%) spiculated 2 (6%) 6 (30%) 7 (37%)

no majority 0 (0%) 1 (4%) 0 (0%) no majority 4 (11%) 3 (15%) 1 (5%)

CE-DBT CE-bCT

iodine conc. CE-DBT CE-bCT
(mg/cm3)

0.5 100% 0%
1.0 100% 55%
2.0 100% 60%
4.0 100% 42%

Table 6.13: Majority opinion Sensitivity
for Q5 when gold is “round”, per geometry
and per iodine concentration

iodine conc. CE-DBT CE-bCT
(mg/cm3)

0.5 18% 75%
1.0 82% 50%
2.0 100% 91%
4.0 92% 100%

Table 6.14: Majority agreement Specificity
for Q5 when gold is “irregular ∨ spiculated”,
per geometry and per iodine concentration

Also from Table 6.12, we see that the overall majority opinion specificity for smooth lesion
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margin (i.e., Gold(Q7) = irregular ∨ spiculated6) was 65/84 = 76%. The majority opinion
sensitivity for CE-DBT was 34/46 = 74% against 31/39 = 79% for CE-bCT.

Table 6.15 summarizes the multivariable logistic model results for Q7 (lesion margin) specificity,
for the different influencing factors. The specificity increased with iodine concentration (p = 0.001,
OR > 1), as can be seen in Table 6.14, and did not vary with acquisition geometry (p = 0.94).

Table 6.15: Q7 Specificity analysis results using multivariable logistic model. The level of signif-
icance for the p-values was set at 0.05

Factor p-value odd ratio 95% CI

Protocol 0.94
CEbCT vs CEDBT 1.05 0.32 3.4

Iodine conc (mg/cm3) 0.001 4.5 1.8 11

True lesion extent 0.85 0.98 0.80 1.2

Bg texture type 0.96
ACR 3 vs ACR 2 1.2 0.28 4.8

Majority Opinion Analysis for Q9 (lesion internal enhancement)
Table 6.16 shows the overall distribution of majority opinion for Q9 (lesion internal enhancement),
considering both CE-DBT and CE-bCT cases. Given the excellent sensitivity/specificity, no further
study was performed. This result indicates that the distinction between homogeneous and rim
enhancements was evident in both CE-DBT and CE-bCT.

Table 6.16: Q9 (internal enhancement): distribution of majority opinion answers vs
Gold, for CE-DBT and CE-bCT

Gold(Q9) Gold(Q9)
homog. rim homog. rim

m
a
j homog. 69 (100%) 0 (0%)

m
a
j homog. 58 (100%) 0 (0%)

rim 0 (0%) 23 (100%) rim 0 (0%) 17 (100%)

CE-DBT CE-bCT

Majority Opinion Analysis for Q11 (lesion extent)
For lesion extent measurement analysis, unanimity opinion on lesion existence (Q1) was 184/210 =
87%, with 102/108 = 97% agreement for CE-DBT and 79/102 = 77% agreement for CE-bCT.

Using the 184 unanimity opinion samples, Figures 6-16a and 6-16b illustrate the Bland-Altman
plots for the median extent error (i.e. difference of the median measure for Q11 and the true lesion
largest extent) for CE-DBT and CE-bCT, respectively. We note two main groups of measurement
points, which are associated to the two main populations of mass-like lesions: one with ∼5 mm
diameter and the other with ∼10 mm diameter. The sparse measurement points are associated to
Linear Enhancement lesions. A preliminary visual inspection of Figures 6-16a and 6-16b reveal a
small difference in lesion estimation precision between CE-DBT and CE-bCT. This can be observed
from the dotted lines, which indicate ±2 standard deviations in median extent error.

Table 6.17 summarizes the results of median extent error analysis using the multivariable logistic
model, for the different influencing factors. For a better analysis, we did not considered Linear

6We define ∧ and ∨ as, respectively, the conjunction (“AND”) and disjunction (“OR”) operators
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Enhancement lesions, since they introduce high variations to the model and weaken the statistical
power (cf. measured points above 10 mm in Figure 6-16). In this case, for mass-like lesions, the
median extent accuracy increases with the true lesion extent (p < 0.0001) and is better (i.e. lower
average error) for CE-DBT when compared to CE-bCT (p < 0.0001). The variance of the median
extent error is only affected by the acquisition geometry (p = 0.02), with better precision (i.e.
lower standard deviation) with CE-DBT.

Figure 6-16: Bland-Altman plot of median measured extents among the three readers for (a) CE-
bCT and (b) CE-DBT. Markers indicate median values, while the dotted lines indicate ±2 standard
deviations

Table 6.17: Q11 (lesion extent) analysis results using multivariable linear model. Linear lesions
were excluded from the analysis. The level of significance for the p-values was set at 0.05

Factor df
p-value p-value

(accuracy) (precision)

Protocol 1 < 0.0001 0.02
Iodine conc (mg/cm3) 1 0.18 0.24
True lesion extent 1 < 0.0001 0.46
Bg texture type 2 0.81 0.19

6.3.9 Discussion

This section presented a human observer study comparing iodine-enhanced lesion depiction and
characterization in simulated CE-DBT and CE-bCT iodine-enhanced images. Compressed and
uncompressed computational breast phantoms, with average size and glandularity, were embedded
with iodine-enhanced lesions of different morphologies, sizes and iodine concentrations levels ex-
pected in clinical practice. Idealistic hypothesis were made for the X-ray source (isotropic point
source emitting optimal monochromatic X-ray beams, with no tube motion blur), the imaged breast
(no patient motion) and the X-ray detector (blur-free perfect energy-integrating detector). For CE-
DBT, projection images were simulated with cone-beam topology similar to a GE Senographe DS
system, and reconstructed by FBP to generate iodine-equivalent images at 100 × 100 µm2 pixel
pitch and 1 mm slice spacing. For CE-bCT, projection images were simulated with a cone-beam
topology similar to that published by Boone et al. [103] and reconstructed by FBP to generate
iodine-equivalent images at 410×410 µm2 pixel size, and 1 mm slice thickness. For both CE-DBT
and CE-bCT, ACR 2 and ACR 3 anatomical background types taking 0.2 mg I/cm3 contrast
were considered, emulating residual background texture. Average glandular dose for CE-DBT



170 Chapter 6. Quantitative Comparison Between CE-bCT and CE-DBT

and CE-bCT were set respectively to 1.86 and 3.72 mGy, i.e. one and twofold the dose used in
clinical contrast-enhanced mammography acquisitions. Simulated reconstructed iodine-equivalent
images were shown to three different readers, who scored the visibility and characterization of
iodine-enhanced lesions.

Analysis of Cohen’s Kappa coefficient, κC , and the proportion of overall agreement, po, showed
an overall good to excellent agreement among the readers, depending on the question under analy-
sis. Although the interpretation of Kappa magnitude as a quantitative measurement of agreement
can be controversial [289,290], better results can be achieved by fine tuning the classification of κC
value ranges with respect to our specific study. This can be performed, for example, by training
the readers until κC values attains a predefined substantial level.

Also to assess reader agreement, we analyzed the readers’ frequency distribution of Likert items,
per acquisition geometry and per question. Results showed similar confidence behaviors among the
three readers when reviewing images originated from the different acquisition geometries. Although
not statistically confirmed, a tendency of decreasing confidence of each individual reader can be
observed when passing from CE-DBT to CE-bCT. Additional samples are required to strengthen
the statistical power and confirm if it really exists a difference in overall preference. A linearly
weighted Kappa coefficient calculation [293, 294], using Likert items as weights, could in this case
provide quantitative assessment.

Statistical analysis for sensitivity and specificity was performed for the different acquisition
geometries, with a detailed comparison study on the performance of CE-DBT versus CE-bCT.
Results showed no statistically significant difference in sensitivity and specificity between CE-DBT
and CE-bCT in lesion depiction (Q1) and characterization of its mass or non-mass nature (Q3),
overall shape (Q5) and internal enhancement (Q9). On the other hand, CE-DBT demonstrated
significant better sensitivity for characterizing lesions with smoothed margins (Q7). Additionally,
there was no difference in specificity for the complementary lesion set, i.e. lesions with irregular
or spiculated margins being characterized as having smooth margins. These results indicate that
in CE-bCT lesions with smooth margins could be seen as having irregular or spiculated margins.
Therefore, considering the other results of the study, this can only be explained by the lower signal-
to-noise ratio in CE-bCT images, as can be noticed in Figure 6-11, despite the fact that CE-bCT
protocol makes use of twice the dose used for CE-DBT.

The assessment of lesion extent accuracy and precision was also compared between CE-DBT
and CE-bCT, using a median extent measure (Q11) from samples which had unanimity opinion
on lesion depiction. For CE-DBT, readers measured lesion extent only in the x-z plane, i.e. the
plane parallel to the detector surface. In CE-bCT readers took the largest extent in all three axes
as lesion extent measurement. A multivariable linear model analysis indicated better lesion extent
estimation accuracy (i.e. lower average error) and precision (i.e. lower standard deviation) with
CE-DBT. Results also indicated that lesion extent accuracy in both CE-DBT and CE-bCT are
affected by the true lesion size. Background type and iodine concentration did not affect lesion
extent estimation accuracy and precision.

Lesion extent assessment results come in complement to the investigations carried in Section
6.1. In the previous investigation, lesion extent was assessed by a mathematical estimator and
in noiseless CE-DBT and CE-bCT images, with homogeneous background and the same spatial
resolution in the x-z plane considered in this section. The previous results indicated no statistically
significant difference in lesion extent estimation in the x-z plane. In comparison to the previous
investigation, in this section we introduced quantum noise and residual texture, whilst lesion extent
was assessed by human observers. Since results indicated that background texture does not affect
lesion extent accuracy and precision, it can be concluded that the differences between CE-DBT
and CE-bCT evidenced in this section originated either from the introduction of quantum noise
or from the observer variability, rather than being affected the acquisition geometries themselves.
Additionally, it must be emphasized that the simulated mass-like lesions had an approximate
spherical shape. If however ellipsoidal lesions with low eccentricity in CE-DBT depth-direction
are considered, CE-DBT performance in the presence of quantum noise should decrease due to the
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loss in lesion contrast and CNR, as demonstrated in Section 6.2.

The comparison study presented in this section was performed assuming blur-free perfect
energy-integrating detectors. If current design constraints such as a CsI-based scintillator with
finite thickness are applied (for example, 100 or 250 µm thick layer in current GE Senographe DS
and Essential systems, and 600 µm in current bCT prototypes) difference in lesion detectability
might be evidenced, as suggested in Section 5.6, due to CNR degradation. In this case, CE-DBT is
expected to have a substantial loss in CNR but to keep a high spatial resolution, while for CE-bCT
thicker CsI layer is expected to maintain the CNR close to ideal levels but to have a substantial loss
spatial resolution. Additionally, in a realistic setting, it can be expected that X-ray detectors for
CE-bCT and CE-DBT would present different efficiencies, in particular since geometric parameters
such as pixel size, angular sampling, acquisition time and so on, would impose certain constraints
to the detector performance (e.g., quanta spreading, lag, electronic noise, . . . ).

With respect to the X-ray source and acquisition modeling, it is expected that passing from
monochromatic to polychromatic input X-ray fluence spectra entails in a small CNR degradation,
as discussed in Section 5.4, due to increased quantum noise (sub-optimal photon energy weighting)
and residual textured noise (incomplete beam-hardening correction). As consequence, a possible
degradation in lesion detectability can also be expected. However, we believe this degradation to
be comparable7 for both CE-bCT and CE-DBT, and would ultimately be insufficient to affect the
comparison results between both techniques. In this case, a monochromatic simulation is justified
since it allows for much faster calculation, especially in the light of the great number of images
simulated for this study. On the other hand, a finite-sized focal spot, emitting different X-ray
fluences from inside its surface, would definitely impact the system’s spatial resolution through
focal spot blurring [149]. The latter would consequently lead to degradation of iodine-enhanced
lesion characterization. Furthermore, it is expected that this impact would be different for CE-bCT
and CE-DBT, due to their individual acquisition geometry.

Another important hypothesis made during our investigation was that AGD for CE-bCT sim-
ulations was twice the AGD used for CE-DBT. As previously discussed, this choice was made
assuming a two-view clinical protocols for CE-DBT, while a single CE-bCT acquisition would pro-
vide complete 3D information. However, if both views were available to the observers during image
review we could expect better results for CE-DBT, specially in terms of lesion characterization and
extent estimation. Further studies are therefore required to prove that a 2-view CE-DBT protocol
is statistically better than a half dose 1-view protocol with respect to characterization tasks.

Morphological information of the breast available in low-energy images were not explored during
image review. As it is performed today in clinical practice with CESM, the images acquired with
LE spectra are similar (in terms of X-ray acquisition spectra and dose) to a standard mammogram
and could can be used for anatomic landmark and a posteriori confirmation of lesion morphologic
characteristics and localization. They provide complementary morphologic information on the
mammary gland, eventual enhanced and unenhanced masses, as well as microcalcifications clusters
and other typical and relevant mammographic findings. Moreover, since anatomical background
is different in reconstructed morphological CE-bCT and CE-DBT volumes [124, 125], we can also
expect that the differences in detectability and characterization between CE-bCT and CE-DBT
will increase. CE-bCT would benefit from the lower anatomical noise in morphologic bCT images
when compared to DBT [124, 296] for better unenhanced masses depiction and characterization,
while CE-DBT would benefit from higher spatial resolution for microcalcification depiction and
characterization.

7For CE-DBT, Puong et al. [226, 257,295] showed a ∼35% decrease in CNR in a 5 cm-thick 50% fibroglandular
equivament phantom, when passing from optimal theoretical monochromatic X-ray beams to optimal acquisition
parameters constrained by a CE-DBT prototype based on GE Senographe DS. For CE-bCT, we showed in Section
5.5 a ∼40% decrease in CNR in a 14 cm diameter 12.5% fibroglandular equivalent phantom, when passing from
optimal theoretical monochromatic X-ray beams to optimal acquisition parameters for a 1-Source 2-kV 2-filter
implementation constrained by typical tube power and acquisition time used in current clinical breast CT prototypes.
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6.4 Conclusions

In this chapter, using previously obtained optimal dual-energy acquisition parameters for CE-bCT
(from Chapter 5) and CE-DBT (from previously published work), the quantitative potential of
both modalities was evaluated through a series of experiments assuming primary mono-energetic
X-ray point source and perfect energy-integrating noise-free blur-free detectors.

The first section focused on the quantitative potential of cone-beam CE-bCT and cone-beam
CE-DBT in the assessment of lesion 3D extent. Using a mathematical estimator, lesion extent in
all three axes was assessed in noiseless CE-DBT images at 100×100 µm2 pixel pitch and 1 mm slice
spacing, and CE-bCT images at 410×410×410 µm3 pixel size, both with homogeneous background.
In the absence of noise, we showed that CE-DBT and CE-bCT precision to estimate lesion extent
was similar in the in-plane direction, while CE-bCT was superior to estimate lesion extent in the
depth direction. A full factorial analysis showed that lesion extent estimation precision in CE-DBT
was affected by lesion size and iodine concentration, and only by lesion size in CE-bCT.

In a second study, using the same topological parameters of the previous investigation, io-
dine uptake quantification in lesions with different sizes, shapes and iodine concentrations was
compared. In this study, we demonstrated that CE-bCT was superior in quantifying their true
iodine concentration, while the artifacts caused by CE-DBT limited depth resolution prevented
any precise quantification of iodine uptake. Indeed, results show that iodine uptake quantification
in CE-DBT is only possible with a priori knowledge of the iodine-enhanced lesion dimensions in
all axes, particularly because lesion contrast depends not only on the lesion shape as seen in its
in-focus plane image, but depends also on its depth extent.

Finally, a human observer study comparing iodine-enhanced lesion depiction and characteriza-
tion in simulated CE-bCT and CE-DBT iodine-enhanced images was performed. For CE-DBT,
iodine-equivalent images were generated at 100 × 100 µm2 pixel pitch and 1 mm slice spacing,
while for CE-bCT, iodine-equivalent images at 410 × 410 µm2 pixel size, and 1 mm slice thick-
ness. For both CE-DBT and CE-bCT, ACR 2 and ACR 3 anatomical background types taking
0.2 mg I/cm3 contrast were considered, emulating residual background. Average glandular dose
for CE-DBT and CE-bCT were set respectively to 1.86 and 3.72 mGy, i.e. one and twofold the dose
used in clinical contrast-enhanced mammography acquisitions. Through the statistical analysis of
a preference questionnaire, results revealed that sensitivity and specificity in iodine-enhanced le-
sion detectability and characterization were not statistically different between the two techniques,
except for lesion margin characterization (e.g. spicules) for which CE-DBT demonstrated superior
sensitivity. Results also showed that CE-DBT is more accurate and more precise in estimating
lesion dimensions in the x-z plane (DBT in-focus plane) than CE-bCT. However, this result was
based in mass-like lesions with approximate spherical shape. If non-symmetric-shaped lesions are
considered, CE-DBT performance in the presence of quantum noise would drastically decrease due
to lesion contrast dependency on its depth extent and consequent effects on CNR.

The inferior performance of CE-bCT in lesion margin characterization and lesion extent preci-
sion was in contrast to what expected from the previous results, where no quantum noise, residual
texture nor observer variability were included. Naturally, since both tasks are directly related
to spatial resolution, this result can be in part associated to CE-DBT’s higher in-plane spatial
resolution (100 µm pixel pitch) when compared to CE-bCT (410 µm pixel pitch). However, since
noiseless simulations revealed no difference in lesion extent estimation and since residual texture
did not have a statistically significant effect on extent estimation, we can conclude that quantum
noise was the true limiting factor in CE-bCT performance. Nonetheless, it must stay clear that CE-
bCT presents the clear advantage of being able to characterize and estimate iodine-enhanced lesion
extent in all directions, while CE-DBT is limited to the lesion’s in-focus plane only. Moreover,
if again non-symmetric-shaped lesions are considered, CE-DBT performance should also decrease
due to variations in lesion contrast, CNR, and likely, detectability.

While assuming idealistic hypothesis for X-ray source and detector, the experiments presented
in this chapter allowed to evaluate and compare the performance of CE-bCT and CE-DBT topolo-
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gies on different quantification tasks. The only parameters influencing their performance were
linked to the cone-beam geometry (pixel size, distances, cone-angles), the X-ray beam energy, ac-
quisition trajectory and angular sampling (full 360° or limited angle), and the phantom thickness.
Any further assumption on the X-ray source (focal spot size, X-ray tube tilt, Heel effect degrada-
tion, acquisition time, tube power) and the detector (e.g. quanta spreading, lag, electronic noise,
. . . ) would impose the choice of engineering design constraints which would drive us away from
the main approach held so far. This method allowed us to understand and quantify the impact of
individual parameters on image quality. Nonetheless, in order to reveal more significant differences
between two practical CE-bCT and CE-DBT implementations on their ability to detect and char-
acterize contrast-enhanced lesion through localization, morphology, and the associated contrast
uptake, further studies considering more realistic X-ray imaging systems are still needed.

In summary, both CE-DBT and CE-bCT topologies present their advantages and limitations.
Both topologies presented equivalent performance in iodine-enhanced lesion detectability and char-
acterization. While CE-DBT with 100 µm pixel size demonstrated equal or superior performance
in tasks requiring better spatial resolution (lesion margin characterization and extent measurement
in the presence of noise), CE-bCT proved to be more adapted for iodine uptake quantification tasks.

It remained clear for us, however, that CE-bCT lower performance was especially influenced by
the presence of high quantum noise levels when assuming typical dose levels of two-view standard
mammography. In this scope, in the next chapter we present two post-processing techniques,
specifically designed for dual-energy imaging, and aiming to enhance the quality of CE-bCT iodine-
equivalent images.
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Chapter 7

Towards Low-Dose Fully 3D
Quantitative Breast X-ray Imaging

In the optimization study of Chapter 5 and in the human observer study described in Section 6.3, a
cone-beam breast CT geometry defined by a 776 µm detector element pitch, a Hamming-windowed
ramp kernel and tomographic reconstructed slice images with 0.41 × 0.41 mm2 pixel size and 1
mm slice thickness was considered (0.41 × 0.41 × 1.0 mm3 voxel size; cf. Section 5.2 for further
details). As discussed in Sections 5.3 and 5.5, based on contrast-to-noise ratio measurements and
Rose’s detectability criterion [246, 247], we showed that in an average-sized breast and with dose
levels comparable to a two-view mammogram, this cone-beam geometry allowed to barely depict a
2 mm diameter lesion containing 0.5 mg/cm3 of iodine, i.e. the smallest lesion and iodine uptake
clinically expected. Moreover, when considering human observers, we showed that iodine uptake
detectability in CE-bCT images was not significantly different from CE-DBT, and that noise was
the limiting factor for CE-bCT.

In this chapter, two different post-processing denoising strategies are evaluated to reduce noise
and potentially improve iodine-enhanced lesion detectability in recombined CE-bCT images. The
radiation dose required by an optimized CE-bCT acquisition such as to enable the depiction of
lesions with minimal size and minimal iodine uptake expected in clinical practice is object of
discussion. CE-bCT dose requirements are compared to those used in current two-view standard
mammography.

In Section 7.1, an Anti-Correlated Noise Reduction (ACNR) technique is described for the dual-
energy three-material decomposition problem of CE-bCT. In section 7.2, a previously developed
Total Variation regularization algorithm is described under the assumptions that contrast uptakes
in CE-bCT images have piecewise-constant properties. In Section 7.3, the two described techniques
are leveraged to improve lesion detectability using the effective Contrast-to-Noise Ratio and Rose’s
threshold as Figure-of-Merit.

7.1 Anti-Correlated Noise Reduction

In a dual-energy material decomposition context, Anti-Correlated Noise Reduction (ACNR) tech-
niques leverage the fact that quantum noise in the two different material basis images are anti-
correlated (the mathematical framework for image anti-correlation is briefly described below).
From this hypothesis, various denoising algorithms were developed to carefully combine a given
basis material image with filtered versions of the complementary basis images, reducing the total
covariance of the multispectral transformation [297–302].

175
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Since this technique requires perfect spatial correlation between low-energy (LE) and high-
energy (HE) images, its application to dual-energy breast imaging is however limited to conditions
without breast motion artifacts. At this time, resilience to motion artifact makes fast acquisi-
tion techniques more favorable for anti-correlated noise reduction. Appropriate motion correction
algorithms may make it pertinent for acquisition techniques with lower frame rates [303].

Noise Propagation in Dual-Energy Imaging
As described in Chapter 4, dual-energy material decomposition is summarized in transforming low
and high energy log-projections pLE and pHE into basis material projections δ1 and δ2:

(pLE , pHE)
TDE−−−−−−→ (δ1, δ2) (7.1)

where TDE denotes the dual-energy material separation. This transformation was described in
Chapter 4 and expressed by Equation 4.3, which can be re-written as:

p = −ln
(
SI

SI0

)
= −ln

∫ ∞
0

w(E)dE · exp
[
δ1

(
µ

ρ

)
1

(E) + δ2

(
µ

ρ

)
2

(E)

]
(7.2)

where SI is the signal intensity in the projections, SI0 is the signal intensity in projections without
the imaged object, w(E) is the normalized spectrum weight (cf. Equation 4.4) and (µ/ρ)m(E) is
the linear mass attenuation coefficient of basis material m ∈ 1, 2 at energy E.

Since the pLE and pHE are obtained from independent acquisitions, signal intensity fluctuations
depend solely on their individual photon statistics and, as consequence, the expectation E(pLE ·
pHE) = 0. Hence, if (σLE)2 and (σHE)2 are the variance of signal intensities in the log-projections
pLE and pHE , respectively, the variance and covariance of the material basis projections can be
expressed as:
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and
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(7.4)

If quantum noise (modeled as a Poisson distribution) is the main source of fluctuation, and
assuming a stationary and shift-invariant system, the partial derivatives (∂δ1/∂pLE ) · (∂δ2/∂pLE ) in
the first term of Equation 7.4 have opposite signs [297]. The same happens to the partial derivatives
(∂δ1/∂pHE ) · (∂δ2/∂pHE ) in the second term of Equation 7.4. As consequence,

Cov(δ1, δ2) < 0 (7.5)

The full mathematical expression for Cov(δ1, δ2) and the proof of its negativity was derived
previously by Alvarez et al. [304, 305]. Moreover, the derivative terms (∂δi/∂pLE,HE ) can be cal-
culated analytically using the transformation equation for δi, which in this thesis was modeled as
a weighted sum of the integrals in Equation 7.2, as suggested by Alvarez and Macovski [204, 216]
(cf. Chapter 4).

Although the noise propagation properties described above were derived for a set of material
projection images, they can be extended to the material equivalent volumes fiodine, fgland and
fadipose, which are the main outputs of the proposed Dual-Energy bCT framework in this thesis.
In order to do so, we will make use of the following theorem:
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Theorem 7.1. If a tomographic reconstruction method R can be expressed as a linear transforma-
tion, then a negative covariance among a set of projection images p1 and p2 results in a negative
covariance among the respective set of tomographic reconstructed volumes R{p1} and R{p2}:

Cov(p1, p2) < 0 =⇒ Cov(R{p1},R{p2}) < 0 (7.6)

as long as Cov(p1(i), p2(j)) = 0, where i and j are the index for two different detector elements
(i 6= j).

Proof. A theoretical demonstration of Theorem 7.1 is provided in Annex D.

Corollary 7.1. (Projection-based Recombination) The covariance negativity between the material
projections δ1 and δ2 are transferred to the reconstructed material volumes ρ1(r) and ρ2(r), and
further on to the material equivalent volumes fiodine(r), fgland(r) and fadipose(r).

Corollary 7.2. (Image-based Recombination) Covariance negativity found after the transforma-
tion TDE of the log-projections pLE,HE is found in the reconstructed low and high-energy volumes
µLE,HE(r) transformed by TDE, as long as the 3D volume data are spatially correlated, i.e. with-
out truncation artifacts nor non-rigid transformation such as patient movement. This implies that
covariance negativity will also be found in the material equivalent volumes fiodine(r), fgland(r) and
fadipose(r).

Algorithm for Noise Reduction
To illustrate the property of negative covariance, we make use of the simulation results carried in
Section 5.4, using projection-based recombination. Figure 7-1a illustrates a short profile of signal
intensities in δiodine and δgland, taken at the same detector positions (the profiles were centered
at their mean value and normalized to their respective variances, only to allow an illustration in
the same range of the ordinate axis range). Although the profiles have different low-frequency
behavior, the changes in intensity between consecutive pixels have opposite directions. The same
happens to the reconstructed material volumes ρiodine(r) and ρgland(r), as foreseen by the Theorem
7.1 and illustrated in Figure 7-1b.

The ACNR technique reduces noise in a given material image, say δiodine, by applying a high-
pass filter to the complementary image δgland. The filtered image will no longer contain anatomical
structures (i.e., low-frequency contents), leaving only the quantum noise, which is anti-correlated
to the quantum noise in δiodine. Finally, the target material image is added to the filtered comple-
mentary image, weighted by a parameter wc:

δACNR(u, v) = δiodine(u, v) + wcδgland(u, v) ∗ hHPF (u, v) (7.7)

where (u, v) are the 2D detector coordinates. The choice of wc can be determined analytically
through the minimization of quantum noise [305] or empirically through the quantitative or quali-
tative assessment of a given Figure-of-Merit. The same reasoning could be applied to reduce noise
in δgland, while using δiodine as complementary image.

Application to Three-Material Decomposition
In our case, we are mainly interested in reducing noise in the iodine-equivalent volume fiodine(r),
resulting of the three-material recombination. It must be noticed however that, independent of the
recombination method (image-based or projection-based) the linear system of three-material re-
combination has two inputs (pLE and pHE) and three outputs (fiodine(r), fgland(r) and fadipose(r)).
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Figure 7-1: Centered and normalized pixel values in (a) material projections δiodine and δgland, and
in (b) their respective tomographic reconstructed images ρiodine(r) = R{δiodine} and ρgland(r) =
R{δgland}, where R is the FBP reconstruction transformation

Hence, if no other source of fluctuation beside quantum noise is involved, we have:

Cov(fiodine, fgland) = −Cov(fiodine, fadipose) (7.8)

which means that the complementary image can be either fgland or fadipose, since both covariances
will be reduced simultaneously.

As mentioned previously, the noise reduction algorithm can be implemented in both projection
and image domains. In the image domain, the implementation is straightforward and, similarly to
Equation 7.7, the final denoised image, fACNR(x, y, z), is found as

fACNR(x, y, z) = fiodine(x, y, z) + wcfgland(x, y, z) ∗ hHPF (x, y, z) (7.9)

where (x, y, z) are the 3D volume coordinates and hHPF is a high-pass filter kernel.

In the projection domain, we recall the fact that the projections of fiodine and fgland, represented
here by tiodine and tgland, respectively, can be written as linear combinations of δiodine and δgland
(cf. Section 4.4), such as:

tiodine =

∫
Li,s

fiodine(r)dl = a1δiodine + a2δgland + a3

tgland =

∫
Li,s

fgland(r)dl = b1δiodine + b2δgland + b3

(7.10)

where dl is the incremental chord length of the beam path Li,s between the X-ray source s and
the detection element i, and ai’s and bi’s are the recombination coefficients for texture cancellation
in fiodine and fgland, respectively. Finally, the ACNR technique can be applied to denoise tiodine,
obtaining after reconstruction, the final iodine-equivalent volume fACNR(x, y, z):{

tACNR(u, v) = tiodine(u, v) + wctgland(u, v) ∗ hHPF (u, v)

fACNR(x, y, z) = R{tACNR(u, v)}
(7.11)

where R{·} is the linear reconstruction method, in this case, FBP.
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7.2 Total-Variation Regularization

Total variation (TV) regularization for image denoising/restoration was first introduced by Rudin
et al. [306]. It is based on the assumption that a signal with excessive high-frequency detail has
high total variation. As described in Ref. [306], TV minimization algorithms, constrained to be
faithful to the original data, remove noise whilst preserving the sharpness of edges.

TV-based regularization algorithms are particularly effective for piecewise-constant images. If
applied to images that are not piecewise constant, TV-minimization may lead to so-called staircase
or stepping artifacts. However, recent developments on new regularization strategies suggest that
discrete image arrays which are close enough to be piecewise-constant do not necessarily lead to
stepping artifacts [307].

In breast imaging, constrained TV minimization has been used in iterative image reconstruction
problems such as microcalcifications restoration under poorly sampled acquisitions [133,308], total
patient dose reduction while optimizing the trade-off between number of views and the dose level per
view [238,309], as well as a regularization term for noise reduction and edge preservation [108,310].

Previous work on breast CT data segmentation suggest that, excluding the skin and eventual
presence of microcalcifications, we may assume the breast to be composed of fibroglandular and
adipose tissues, or some combination of the two [311, 312]. In the construction of digital breast
phantoms, although density differentiation was found to provide better emulation of the marbling
effect [312, 313], binary classification between fibroglandular and adipose tissue also lead to real-
istic anatomic texture [296, 314]. As a consequence, we may conclude that a piecewise-constant
assumption for breast CT images is justified, making them suitable for TV-based regularization.

Piecewise-constant assumption becomes even truer for contrast-enhanced iodine-equivalent im-
ages, were any density variation between fibroglandular and adipose tissue is supposedly cancelled.
The exception would be in the case where the contrast agent is not homogeneously distributed,
due to gradients of vascularity or due to diffusion in the breast tissue. However, these effects will
not be discussed in this thesis and we assume, as in the previous sections, a homogeneous uptake
of iodine in the cancerous tissue volume.

In this section, we make use of a TV-minimization algorithm previously developed within GE
Healthcare by Reshef et al. [315] in the context of Compressed Sensing approaches for iterative
reconstruction in Rotational Angiography [316–318] and Subtraction Rotational Angiography [319].
We assumed that the contrast uptake in Contrast-Enhanced Dual-Energy breast CT images have
similar piecewise-constant properties as the injected vessels in angiography images. The algorithm
implementation follows the framework of Alternating Direction Method of Multipliers (ADDM)
introduced by Goldstein and Osher [320].

Algorithm Description
For Contrast-Enhanced Dual-Energy breast CT, we leverage the TV-minimization algorithm ex-
clusively as a filtering process for noise reduction and edge preservation. The algorithm is therefore
applied as a post-processing of previously obtained reconstructed iodine-equivalent volume data,
fiodine (output of either image-based or projection-based decomposition algorithms – cf. Section
4.4). For simplicity, the input iodine-equivalent volume will only be referred as f0 (as for the initial
observed data).

One typical way of representing the TV denoising problem for obtaining the uncorrupted image
f is the following [306]:

f = arg min
f
{ 1

2
‖f − f0‖22︸ ︷︷ ︸

data constraint term

+ λ · χ(Af)︸ ︷︷ ︸
regularization term

} (7.12)

where χ(·) is a convex regularization function, A is a linear operator and λ is the regularization
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parameter controlling how much smoothing is performed.

The Split Bregman technique defined in Ref. [320] is used to solve this problem in a very efficient
way, even for isotropic TV minimization problems. It consists in splitting Equation 7.12 into a
joint minimization problem over image f and a supporting variable g = Af . The optimization
problem is then written as:

f, g = arg min
f,g

{
1

2
‖f − f0‖22 +

µ

2
‖g −Af‖22 + λ · χ(Af)

}
(7.13)

with any µ > 0 (typically we chose µ equal to 1). The algorithm alternatively minimizes Equation
7.13 along direction f with g fixed, then along direction g with f fixed. To enforce the piecewise
constant assumption, a common approach is to penalize the image gradient g = Af = ∇f , using
either anisotropic `1-norm, χ = ‖ · ‖1,

‖g‖1 =
∑
k

‖gk‖1 =
∑
k

|gxk |+ |g
y
k |+ |g

z
k| (7.14)

or isotropic `1-norm, χ = ‖ · ‖1,2,

‖g‖1,2 =
∑
k

‖gk‖2 =
∑
k

√
|gxk |2 + |gyk |2 + |gzk|2 (7.15)

where gx, gy and gz are, respectively, the x, y and z components of the image gradient g. A variable
b is used in the term ‖g−Af − b‖22 in order to track the error of the gradient inversion g−Af and
is reinjected in the iterations.
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7.3 Assessment of Iodine-Enhanced Lesion Detectability Im-
provement in CE-bCT

In this section we perform a preliminary feasibility assessment of the proposed Cone-Beam DE-
bCT system in terms of the depiction of iodine in iodine-equivalent images, when the total Average
Glandular Dose is kept at the same level of a two-view standard mammogram. We leverage
the two denoising techniques described in Sections 7.1 and 7.2 to improve iodine-enhanced lesion
detectability, using the effective Contrast-to-Noise Ratio and Rose’s criterion as minimum threshold
for detectability.

Simulation Setup
An average-sized anthropomorphic breast phantom, containing minimum iodine concentration was
simulated. The 14 cm diameter phantom was constituted by a complex structure of 0.5mg/cm3 of
iodine mixed with 50% fibroglandular equivalent background (reference image in Figure 7-2).

As in Section 5.3, six-hundred projections were simulated using a 0.776 mm detection element
pitch, at optimal monochromatic LE and HE spectra and AGD repartition (i.e. LE = 30keV ,
HE = 34keV and 50/50% dose repartition - cf. Table 5.1). The choice of using monochromatic
spectra as input was to optimize computational efforts. Since we demonstrated good texture
cancellation at optimal polychromatic spectra (cf. Section 5.4), we can expect noise reduction
with monochromatic spectra to be in the same order of magnitude if polychromatic acquisitions
entailing same noise levels are used. The total AGD was kept at 3 mGy, corresponding to dose
levels of a two-view standard mammogram.

LE and HE 512 × 512 reconstructed images were reconstructed using FBP algorithm, with
0.41 × 0.41mm2 pixel size, and 1 mm slice thickness. Contrast-to-Noise Ratio (CNR) per pixel
between contrast uptake and the background in recombined iodine-equivalent images was calculated
and translated into an effective CNR (CNReff ), as defined by Rose [246,247], for a 2 mm diameter
circular lesion:

CNReff =
SIiodine − SIbg

σbg
×
√

lesion area in pixels (7.16)

where SIiodine and SIbg are respectively the means per-pixel SI in an iodine-enhanced region of
interest (ROI) and a non-iodine enhanced neighboring background ROI, and σbg is the standard
deviation of the SI in the non-iodine enhanced neighboring breast background ROI. Rose’s threshold
for minimum lesion depiction is achieved for CNReff values above 5.

CNReff was evaluated for different reconstruction filter kernels (ideal ramp alone and ideal
ramp with Shepp-Logan and Hamming apodizing windows), with additional anti-correlated noise
reduction (ACNR) and Total Variation minimization. For the ACNR implementation, the high-
pass filter kernel in Equation 7.9 was defined as hHPF (x, y, z) = 1−hLPF (x, y, z), where hLPF (x, y, z)
is a low-pass filter. Through qualitative assessment, we found that a 5×5 average kernel as low-pass
filter showed good results in terms of noise reduction while including minimal edge artifacts. For
the TV minimization, different values of regularization parameter λ were tested. We will illustrate
only two λ values entailing a soft and a strong smoothing, preserving in both cases the overall
appearance of the original images.

Results
Figure 7-2 summarizes the results of iodine-enhanced lesion detectability study using the anthropo-
morphic phantom. It illustrates the worst-case scenario in terms iodine uptake at low patient dose,
which explains the rather noisy images. The first row shows coronal slices of iodine-equivalent im-
ages acquired with a 30 keV/34 keV LE/HE pair and using a 50% LE dose repartitioning ratio, for
the different denoising schemes. The second row represents zoomed 60×60 pixels (24.6×24.6 mm2)
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ROIs. All images are displayed using the same window and level values. The last row of Figure
7-2 shows CNReff calculated for a 2 mm diameter lesion and for the difference denoising schemes.

In comparison to the Shepp-Logan windowed implementation, similar increase in CNReff
values was observed when applying a Hamming window and when combining the Shepp-Logan
window with the ACNR technique. However, CNReff doubled when the Shepp-Logan window
and the ACNR implementation are combined with a soft TV regularization, and quadruplicate
when combined with a strong TV regularization. Although we found improvements in CNReff for
the different denoising schemes, they were also correlated with an overall loss in spatial resolution,
as can be seen in the coronal slices illustrated in Figure 7-2. The images tended to be more blurred
as CNReff increased. This is particularly true from TV implementation, where in addition, “salt
and pepper” artifacts were introduced when high λ values were used.

Figure 7-3 shows the AGD required to achieve CNReff = 5 for a 2 mm diameter lesion and
0.5 mg/cm3 of iodine concentration, as function of the different denoising schemes combinations.
For reference, the 3 mGy AGD corresponding to approximate dose levels of two-view standard
mammography is also draw. Notice that the results in Figure 7-3 reflects those presented in Figure
7-2, by a squared root factor: CNReff ∝

√
AGD.

Discussion
Under the idealistic hypothesis of this study, both ACNR and TV regularization improved iodine
detectability in a CE-bCT setup.

Figure 7-2 showed that the CNReff threshold of 5 was not achieved when only the ideal ramp or
ideal ramp with Shepp-Logan apodization were used. For the Hamming windowed ramp kernel and
Shepp-Logan+ACNR implementations, CNReff values were slightly above 5. However, the ACNR
implementation demonstrated the possibility of keeping higher spatial resolutions, while reducing
noise. A greater improvement was observed with TV regularization. CNReff approximately
double when including a soft λ smoothing. Further improvement was achieved when including a
strong λ smoothing. Although CNReff also approximately double when compared to a soft λ,
“salt and pepper” artifacts were present. A soft regularization may therefore be preferred and
possibly sufficient.

The ACNR technique provided much lower relative improvement, when compared to TV. This
is may be partially attributed to the fact that LE and HE reconstructed images were highly
correlated, due to the proximity in LE and HE monochromatic beams energies. Hence, not much
anti-correlation was left to be filtrated. If polychromatic spectra are used, lower correlation will
be present and the algorithm is expected to provide better improvement in CNR.

Although the inclusion of TV regularization showed high improvements in CNR, it must stay
clear that the algorithm should have a worse performance for images with higher noise and entail-
ing in contrast uptakes below detectable levels. In other words, it is highly uncertain that a TV
filtration could recover a signal that is already not detectable, but will rather provide great im-
provement in terms of signal-to-noise ratios in situations where the signal can already be slightly
detected. Additionally, it must also be emphasized that the detectability improvement results
based solely on CNR measurements are likely to be different from the potential improvement in
detectability seen by a human observer. The loss in spatial resolution and the appearance of “salt
and pepper” artifacts from TV regularization should affect the improvement factors found in this
study.
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Figure 7-2: Detectability improvement in Iodine-equivalent slices of a textured phantom. The
reconstructed images were processed using different combination of denoising schemes. The second
row shows a zoomed 60×60 pixels (24.6×24.6 mm) ROI. The third row shows CNReff calculated
for a 2 mm diameter lesion. The results are based on a 50% fibroglandular 14 cm diameter phantom
with 0.5 mg/cm3 iodine uptake

Figure 7-3: Bar plot of Average Glandular Dose required to achieve CNReff = 5 for a 2 mm
diameter lesion and minimal 0.5 mg/cm3 of iodine concentration, as function of the different
denoising schemes combinations (left ordinate axis). The dashed line shows the CNR improvement
factor with respect to Shepp-Logan filtration only (right ordinate axis). The solid line indicate the
3 mGy level of a two-view mammogram
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7.4 Conclusions

In this chapter two post processing techniques, an Anti-Correlated Noise Reduction (ACNR) tech-
nique and a Total-Variation (TV) regularization, specifically designed for dual-energy imaging,
where evaluated to improve the detectability of iodine uptake in a dual-energy CE-bCT setup.

With the same breast CT geometry and under the idealistic assumptions of the previous chap-
ters (primary monochromatic X-rays photons and a perfect energy-integrating noise-free blur-free
detector), we showed that both post-processing schemes allowed to improve detectability and de-
pict iodine-enhanced lesions with minimal size and uptake expected clinically at dose levels of
standard mammography. We showed that the combination of ACNR and a soft TV regularization
gave optimal results in terms of CNR improvement while keeping minimum artifacts.

In the implemented ACNR technique, a high-pass filter kernel was defined as hHPF (x, y, z) =
1 − hLPF (x, y, z), where hLPF (x, y, z) was a 5 × 5 average kernel as low-pass filter. This choice
was based on preliminary observations in terms of noise reduction and introduction minimal edge
artifacts. Theoretically, any high-pass filter (or complementary low-pass filters) could have been
implemented. More importantly, the better filter choice would be the one adapted to the type
of texture in the image such as to avoid the appearance of artifact generated from filtration. In
literature, average [298] and Gaussian [301] low-pass filters with different kernel sizes have been
used for anti-correlated noise reduction in dual-energy imaging.

In our investigation, FBP reconstruction was chosen as the main algorithm for both CE-bCT
and CE-DBT. This type of algorithm is easy to implement, and present high stability and linearity
properties. The latter allows us for instance to extrapolate simulation results to scenarios under
different noise levels. In literature, different iterative reconstruction algorithms have been imple-
mented for single-energy breast CT acquisitions, supported by regularized or penalized gradient-
descent [106, 238, 309], statistical models of quantum variation [134], as well as more complex
algorithms integrating various physical models of an X-ray system acquisition chain [108]. As far
we know, the potential of iterative algorithms on reconstructing functional iodine-equivalent data
in a dual-energy CE-bCT setup, especially in their ability to exploit iodine-equivalent image noise
and sparsity properties, is still unknown. In this chapter, a TV regularization algorithm provided
preliminary assessment on the exploitation of sparsity properties of iodine-equivalent images. Al-
though the algorithm was not coupled to an iterative reconstruction framework, noise reduction
was evident, leaving good perspectives for future research work.

In summary, during the spectral optimization studies described in Chapter 5. CE-bCT per-
formance in the depiction of the smallest lesion size and iodine concentration expected in clinical
practice, at dose levels comparable to a 2-view mammogram, was either insufficient or just above
Rose’s detectability criterion, depending on the input parameters and the dual-energy acquisition
strategy. Moreover, as discussed in the human observers study presented in Section 6.3, maintain-
ing CNR close to detectable levels came in expense of CE-bCT spatial resolution, as observed by
the inferior performance in high-frequency tasks such as lesion characterization and lesion extent
estimation, when compared to CE-DBT.

Accordingly, aiming to improve CE-bCT performance, in this chapter we showed that both
ACNR and TV-regularization techniques can be leveraged as post-processing techniques to decrease
noise in iodine-equivalent images and potentially ameliorate detectability in CE-bCT.



Conclusions and Perspectives

The purpose of this PhD thesis research has been to study the technical feasibility of iodine-
enhanced dual-energy Contrast-Enhanced Breast CT (CE-bCT) and its potential to accurately
depict and localize tumors, as well as to provide accurate quantitative information on contrast
uptake morphology and concentration, at radiation dose levels comparable to a two-view mam-
mogram. To understand the incremental value of CE-bCT over Contrast-Enhanced Digital Breast
Tomosynthesis (CE-DBT), the quantitative potential of both technologies have been compared.

Implemented Methods
A cone-beam CT geometry was considered for CE-bCT technique since there is an interest in
investigating techniques based on typical mammography geometries and equipment. This geometry
also allows for an easier comparison with CE-DBT. A cone-beam breast CT topology similar to
that published by Boone et al. [103] was adopted.

In order to meet the objectives of this research, a software platform allowing to simulate,
optimize and compare 2D/3D cone-beam X-ray imaging systems was implemented. The platform
was based on CatSim, a virtual X-ray imaging tool in continuous development within GE Global
Research Center and GE Healthcare. We developed modules for CatSim simulation chain aiming
to model X-ray projections of breast phantoms at the energy range of breast imaging. X-ray fluence
spectrum models for anode materials and energy ranges used in breast imaging were discussed and
implemented. Analytical and mesh-based digital breast phantoms were implemented to emulate
the compressed and uncompressed breast anatomy. Monte Carlo models of X-ray scattering and
absorbed radiation dose occurring in breast phantoms were described. Signal and noise propagation
were described for an ideal blur-free detector, which was the main model used throughout this
thesis. For experimental validation purpose, signal and noise propagation inside a realistic indirect
conversion scintillator-based detector was also described.

In order to make sure that the implemented simulation chain is capable of emulating realistic
physical phenomena underlying an X-ray breast imaging system, we performed an extensive vali-
dation of the developed models with regard to previously published and experimentally obtained
data. The experiments were focused on X-ray photon energies, breast thicknesses and composi-
tions expected in breast imaging. Beam penetrating quality of X-ray spectrum models showed
to be in agreement with the behavior of a realistic X-ray tube, with error below 2% on average.
Monte Carlo based simulation of scattered photon intensity showed good qualitative agreement
with previously reported results. Peak scatter-to-primary ratio values were within ∼5% error.
Monte Carlo based estimation of absorbed average glandular dose (AGD) were compared to pre-
viously published results and agreed within ∼4% error for both typical mammography and breast
CT geometries. Detector spatial resolution (pre-sampling MTF) and Noise Power Spectrum (NPS)
simulations qualitatively agreed to those of real X-ray image systems. Signal intensity and Signal-
to-Noise ratio for low-energy spectra (below 33.2 keV) agreed within ∼5% error when compared to
a real X-ray mammography system, while signal intensity and Signal-to-Noise ratio for high-energy
spectra (above 33.2 keV) agreed within ∼8% error when compared to a real X-ray fluoroscopy sys-
tem. In sum, our results provided qualitative and quantitative evidence that developed acquisition
simulation chain is in agreement with realistic X-ray imaging systems.
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A dual-energy three-material decomposition framework allowing for iodine K-edge imaging in
a breast CT geometry setup was formulated. We described algorithms allowing to recombined
low-energy (HE) and high-energy (HE) acquisitions in both image and projection domains. The
image-based recombination algorithm was based on the linear recombination of measured LE and
HE attenuation volumes, while projection-based recombination algorithm was based on Alvarez
and Macovski [204, 216] high-order polynomial recombination of LE and HE projection data. We
demonstrated that it is possible to find for CE-DBT and CE-bCT, high and low energy acquisi-
tion spectra pairs, meeting the spectral conditions for three-material separation, benefiting from
improved contrast enhancement of K-edge imaging. Additionally, we proposed a material decompo-
sition calibration method to ensure optimal recombined iodine-equivalent images during CE-bCT
acquisition parameters optimization. The implemented method showed to be robust, providing
maximum background texture cancellation and minimum cupping artifact to a large set of input
LE and HE spectra, independently of the decomposition domain.

Since in this PhD thesis research we have been manipulating simulated data, Alvarez and
Macovski [204,216] polynomial approach was chosen for projection-based material decomposition.
This allowed for faster calculation and little stability problems during spectral optimization. In
a real case scenario however, photon starvation and other nonlinear imaging artifacts could lead
polynomial fit approaches to erroneous decomposition. Elsewhere, look-up table methods [206,218]
were proposed for dual-energy imaging in order to address the fluctuations of polynomial coefficient
calibration in the presence of high quantum noise levels and image artifacts. Furthermore, these
methods could, in theory, be conceived such as to better handle the K-edge discontinuity. Another
approach proposed in literature to decompose dual-energy data consists in using iterative meth-
ods [211, 219]. They present the possibility of being incorporated in an iterative reconstruction
algorithm workflow and benefit from noise regularization and artifact management. Both look-up
table and iterative approaches deserve further investigation to evaluate their potential in better
handling real CE-bCT data.

Optimal Dual-Energy Acquisition Technique for CE-bCT
In order to reveal the dual-energy acquisition strategy and acquisition parameters maximizing the
performance of CE-bCT technique in the depiction of contrast-agent uptakes, a spectral optimiza-
tion study was performed. The optimization assumed ideal detectors, i.e., with no blur and perfect
efficiency, and X-ray point sources emitting monochromatic and polychromatic beams. Rose’s de-
tectability criterion based on Contrast-to-Noise Ratio (CNR) measurements [246, 247] was used
to assess the detectability of iodine-enhanced lesion at optimal input parameters. We assumed a
2 mm diameter lesion enhanced by 0.5 mg/cm3 of iodine as the minimum lesion size and iodine
concentration expected in clinical practice. Detectability was assessed at 3 mGy AGD, which
corresponds approximately to the screening AGD for a two-view examination of an average-sized
breast using the AOP1 Contrast mode of GE Senographe® Essential system [248].

The spectral optimization started by identifying LE and HE monochromatic spectra and average
glandular dose repartitioning between the LE and HE acquisitions, for which dose-dependent de-
tectability criteria were maximized. We showed that in order to obtain optimal iodine detectability
in recombined dual-energy images, LE and HE spectra need to bracket the iodine K-edge (33.2 keV )
and an approximate 50%-50% average glandular dose repartitioning between LE and HE exposures
is required. For microcalcification and mass depiction in LE morphologic images, we found that
optimal LE values were close to those optimizing iodine depiction, demonstrating the feasibility,
in term of spectra, of a CE-bCT system capable to provide both functional and morphological in-
formation. For instance, 27keV/34keV, 30keV/34keV and 33keV/34keV LE/HE pairs were found
to provide a good compromise in performance for iodine, microcalcification and mass detectability
in respectively small, average and large diameter phantoms. For an average-sized breast, CNR of
target iodine-enhanced lesion was slightly above Rose’s criterion.

In a second step of CE-bCT acquisition parameter optimization, the results of the monochro-

1AOP – Automatic Optimization of Parameters for exposure control system
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matic optimization were used as first approximation for the optimal polychromatic acquisition
parameters. X-ray fluence spectra generated from a Tungsten anode and filtered with Tin (Sn,
K-edge: 29 keV ) and Copper (Cu) were chosen to provide LE and HE spectra with mean ener-
gies close to optimal monochromatic beam energies found previously, while enabling flexibility to
minimize superposition. While LE and HE X-ray spectra approaching monochromaticity provide
optimal lesion contrast and noise weighting, minimal spectral superposition between them avoids
undesired uncorrelated noise from the complementary spectral image. Four dual-energy acquisition
strategies were considered: i) 2 sources, 2 kVs and 2 filters (Sn/Cu); ii) 1 source, 2 kVs and 2
filters (Sn/Cu); iii) 1 source, 2 kVs and 1 filter (Cu); and iv) 1 source, 1 kV, 1 filter (Cu) and an
energy-discriminating detector. By comparing the different DE acquisition strategies we revealed
that iodine K-edge imaging with both ideal energy-discriminating and non-discriminating detectors
are feasible in terms of background texture cancellation and cupping artifact magnitude, which
showed to be below the minimum target iodine-enhanced lesion concentration (0.5 mg I/cm3).

The performance of the four acquisition strategies was compared under a constant tube power
constraint for the LE and HE acquisitions. A dual-energy implementation leveraging an ideal
photon-counting energy-discriminating detector showed highest iodine uptake detectability, due
to perfect spectral separation and proximity of LE and HE bins mean energies to the optimal
mono-chromatic beam energies. On the other hand, DE acquisitions with a single source/filter
pair showed lowest detectability, due to the high tube power required by LE acquisitions. Non-
discriminating techniques applying dedicated filtration for LE and HE acquisitions showed inter-
mediate performance. Assuming 300 LE and HE projections acquired in 16.6 seconds with a 1kW
tube power constraint, the photon-counting energy-discriminating technique alone presented CNR
of target iodine-enhanced lesion at 3 mGy AGD above Rose’s criterion.

As stated above, the optimization studies just described assumed ideal detectors. At the same
time, columnar structured Cesium Iodide (CsI) scintillators have been widely used for digital breast
X-ray imaging since the last decade. Several research papers optimizing dual-energy spectra for
iodine-enhanced breast imaging with CsI-based detectors found counter-intuitive results, where
optimal spectra do not bracket the iodine K-edge as close as expected [226, 257]. We performed,
a monochromatic optimization study considering different CsI layer thicknesses, and hence differ-
ent absorption efficiencies, aiming to provide an explanation to these observations. This study
revealed preliminary evidence that optimal dual-energy X-ray spectra strongly depend on detector
scintillator thickness. Optimal LE increases with CsI layer thickness and phantom diameter, while
optimal HE beam energy occurs just above the K-edges of I and Cs. The same reasoning could
be used to explain the behavior of optimal dual-energy spectra in imaging systems based on other
scintillator materials and thicknesses.

In this PhD thesis, a throughout evaluation of topological parameters, detector technology and
other energy-independent system design parameters impact on CE-bCT image quality was not
in the main objectives. In reality, energy-independent system design components defining spa-
tial resolution and noise propagation have been intensively studied for single-energy cone-beam
breast CT acquisitions. In particular system topology [119–123], acquisition orbit [118, 136, 137]
and reconstruction algorithms [133, 134, 238] impact on the detectability of fibroglandular tissue
and microcalcifications have been investigated. Assuming linearity and stationarity of first- and
second-order statistics, it was assumed that these results could be extrapolated to describe spatial
resolution and noise propagation in dual-energy imaging. With respect to the detector technology,
since the spectral optimization studies just described assumed mainly ideal detectors, the derived
optimal parameters and feasibility conclusions could be used as a priori information for future stud-
ies on real X-ray systems. Nonetheless, further investigations taking into account energy-dependent
inefficiencies of realistic energy-integrating detectors (e.g., scintillator materials and thicknesses)
and realistic energy-discriminating detectors (e.g. photon pile-up for photon-counting technology,
spectral distortion and realistic frame rates) are necessary to evaluate their actual degradation
in image quality and the impact on dose-dependent detectability. For instance, although in this
study the ideal energy-discriminating photon-counting detector presented highest iodine uptake
detectability, previously published studies has shown that current energy-discriminating capabil-
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ities of photon-counting detectors are far from ideal and that state-of-the-art dual kVp methods
are still competitive with current photon-counting-based dual-energy systems [140,264,267].

Quantitative Comparison of CE-bCT vs. CE-DBT
Using previously obtained optimal dual-energy acquisition parameters for CE-bCT and CE-DBT,
their quantitative potential was evaluated through a series of experiments. In a study comparing
iodine uptake quantification accuracy in lesions with different sizes, shapes and iodine concentra-
tions, we demonstrated that CE-bCT was superior in quantifying their true iodine concentration,
while the artifacts caused by CE-DBT limited depth resolution prevented any precise quantifica-
tion of iodine uptake. Indeed, results showed that iodine uptake quantification in CE-DBT would
only be possible with a priori knowledge of the iodine-enhanced lesion dimensions in all axes,
particularly because lesion contrast-to-background depends not only on the lesion shape as seen in
its in-focus plane image, but depends also on its depth extent. Results were independent of noise.

In another experiment, a human observer study comparing iodine-enhanced lesion depiction and
characterization in simulated CE-bCT and CE-DBT iodine-enhanced images was performed, while
fixing radiation dose at levels comparable to a two-view mammogram. Under idealistic assumptions
for the X-ray source and detector, we revealed that sensitivity and specificity in iodine-enhanced
lesion detectability and characterization were not statistically different between the two techniques,
except for lesion margin characterization (e.g. spicules) for which CE-DBT demonstrated superior
sensitivity. We also showed that, for essentially round lesions, CE-DBT is more accurate and more
precise in estimating lesion dimensions in the x-z plane (DBT in-focus plane) than CE-bCT. If
however, non-symmetric-shaped lesions are considered, CE-DBT performance in the presence of
quantum noise would drastically decrease due to lesion contrast dependency on its depth extent
and consequent effects on detectability.

In these comparison studies, we assumed the use of ideal CE-bCT and CE-DBT detectors.
In a more realistic setting, it is expected that X-ray detectors for CE-bCT and CE-DBT present
different efficiencies, in particular since geometric parameters such as pixel size, angular sampling,
acquisition time and so on, may impose certain constraints to the detector performance (e.g.
quanta spreading, lag, electronic noise,. . . ). Additional investigations considering a more realistic
implementation for CE-bCT and CE-DBT techniques could be of interest to provide further un-
derstanding on iodine-enhanced lesion detectability and characterization. We may expect to find
statistically significant differences in sensitivity and specificity, which was not observed during our
investigations.

Idealistic hypothesis for the X-ray source were also performed during the comparisons. For
instance, in the human observer study, an isotropic point source emitting optimal monochromatic
X-ray beams was considered. Indeed, it is expected that assuming polychromatic X-ray fluence
spectrum would entail a small degradation in lesion detectability, due to CNR degradation. How-
ever, this degradation was assumed to be comparable for both CE-bCT and CE-DBT, and that
it would ultimately be insufficient to affect the comparison results between both techniques. In
this case, a monochromatic implementation is preferable, since it allows for much faster calcu-
lation, especially in the light of the great number of images to be simulated for this study. On
the other hand, a finite-sized focal spot, emitting different X-ray fluences from inside its surface,
would definitely impact the system’s spatial resolution through focal spot blurring [149]. The latter
would consequently lead to degradation of iodine-enhanced lesion characterization. Furthermore,
it is expected that this impact would be different for CE-bCT and CE-DBT, due to their respec-
tive acquisition geometry. In this research, these aspects were however disregarded since it would
impose the choice of engineering design constraints such as power requirements for a given focal
spot size, X-ray tube tilt angles followed by Heel effect degradation, acquisition time and detec-
tor frame rates, and other factors that would drive us away from the main theoretical approach
held so far. Further studies considering a more realistic X-ray source model, with focal spot sizes
adapted for each technique, are still needed to better evaluate their individual iodine-enhanced
lesion characterization performance.
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In addition to the iodine-equivalent images explored in the observer study, it is also of great
interest to provide morphologic images which are spatially correlated to the functional images.
They provide complementary morphologic information on the mammary gland, eventual enhanced
and unenhanced masses, as well as microcalcification clusters and other typical and relevant mam-
mographic findings. As a consequence, it is expected that detectability and characterization of
cancerous lesions would increase when both types of information are available. Since anatomical
background is different in reconstructed morphological CE-bCT and CE-DBT volumes [124, 125],
we can also expect that the differences in detectability and characterization between CE-bCT and
CE-DBT will increase. Hopefully, such scenario could possibly reveal a statistically significant
difference between both techniques. CE-bCT would this case benefit from the lower anatomical
noise in morphologic bCT images when compared to DBT [124,296], while CE-DBT would benefit
from higher spatial resolution for microcalcification depiction and characterization. Additional hu-
man observer studies with available morphological information are required to assess the potential
increase in iodine-enhanced lesion detectability and characterization, as well as to verify its added
value for each technique.

CE-bCT Feasibility at Dose Levels of Standard Mammography
Under the idealistic hypothesis of this study, a careful choice of topologic parameters for CE-bCT
(e.g., pixel and voxel sizes) in combination with noise-attenuating FBP reconstruction kernels and
post-processing denoising schemes, an Anti-Correlated Noise Reduction (ACNR) technique and
a Total-Variation (TV) regularization, specifically designed for dual-energy imaging, allowed to
depict iodine-enhanced lesions with minimal size and uptake expected in clinical practice at dose
levels of standard mammography.

In our investigations, FBP reconstruction was chosen as the main algorithm for both CE-
bCT and CE-DBT. This type of algorithm is easy to implement, and presents high stability and
linearity properties. The latter allows us for instance to extrapolate simulation results to scenarios
under different noise levels. On the other hand, the availability of large computational capacities
in normal workstations has driven the development of iterative reconstruction algorithms in the
past decades. Their ability to include a higher degree of acquisition modeling has allowed to
reduce image noise and artifacts, recover spatial resolution and account for uncommon trajectories
or incomplete data. Different algorithms have been implemented for single-energy breast CT
acquisitions, supported by regularized/penalized gradient-descent [106,238,309], statistical models
of quantum variation [134], as well as more complex algorithms integrating various physical models
of an X-ray system acquisition chain [108]. However, as far as we know, the potential of iterative
algorithms on reconstructing functional iodine-equivalent data in a dual-energy CE-bCT setup,
especially in their ability to exploit iodine-equivalent image noise and sparsity properties, is still
unknown. In this PhD thesis, a TV regularization algorithm provided preliminary assessment of
the exploitation of sparsity properties in iodine-equivalent images. Although the algorithm was not
implemented in an iterative way, noise reduction was evident, leaving good perspectives for future
research work. While computing power may still be a challenge in a more complex modeling of
dual-energy acquisitions, X-ray scattering and patient motion compensation, further investigations
leveraging model-based iterative algorithms for dual-energy CE-bCT would certainly be beneficial.
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Appendix A

Fundamentals of 3D X-ray
Imaging

This chapter provides a short overview on the physics of medical imaging and imaging science
on which dual-energy X-ray imaging is based. Here, a snapshot of X-ray production, their main
interactions with matter as well as the X-ray photons detection with digital detectors are de-
scribed. Next, the X-ray image signal provided through any given acquisition angle is formalized,
while defining the Radon transform and the principles of tomosynthesis and CT reconstruction
techniques.

A.1 X-ray Production

X-ray imaging systems use an X-ray tube to produce photons, leveraging the fact that highly ener-
getic electrons interacting with matter convert their kinetic energy into electromagnetic radiation.

Figure A-1a illustrates a simplified diagram of a Coolidge tube, the most widely adopted design
for X-ray generation. It is also called hot cathode tube, since it produces electrons by thermionic
effect from a tungsten filament heated by an electric current. A large electrical potential, or tube
voltage, is applied between the cathode (source of electrons) and the anode (target). Electrons
are accelerated and focused to collide with the target anode. The region in which the collisions
occur is called the thermal focal spot, since only a small fraction (typically less than 1%) of the
energy deposited in the X-ray tube is converted into X-rays; the rest appearing in the form of
heat. When an electron comes within the proximity of a positively charged nucleus, it undergoes
a change in the initial trajectory and a deceleration, which causes a significant loss of kinetic
energy. The energy lost during this process is used to produce X-ray photon radiation, named
Bremsstrahlung radiation, usually emitted perpendicular to the path of the electron beam. The
amount of kinetic energy of the electrons transferred to X-ray photons is inversely proportional
to their distance to the nucleus. The probability of interactions of electrons with the nucleus is
increasing with their distance to the nucleus, and therefore a Brehmstralung spectrum decreases
with energy. The maximum energy of the generated X-ray spectrum corresponds therefore to the
electron’s acceleration energy in the electric field generated between the anode and the cathode, i.e.
a complete energy transfer; for a X-ray tube with 90 kV potential, the maximum electron energy
is 90 keV (cf. the “triangular” shape of the unfiltered Bremsstrahlung spectrum in Figure A-1b).
Low-energy photons in the Brehmstralung spectrum have short lifetime and are predominantly
absorbed by the anode material itself, due to photoelectric interaction (cf. Section A.2 for more
details on photoelectric interaction). In other words, the Brehmstralung spectrum is intrinsically
shaped by the anode material itself before leaving X-ray tube (cf. filtered Bremsstrahlung spectrum
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in Figure A-1b). For a tilted anode, different beam path lengths inside anode also generate non-
isotropic X-ray fluence emission, as in typical mammography X-ray tubes. This effect is known as
Heel Effect.

It is also possible for an accelerated electron to collide with an electron from the atom’s elec-
tronic shell, resulting in its ejection and the atom’s ionization. The vacancy is filled by an electron
of an outer shell. This transition causes the emission of a photon with energy equal to the differ-
ence between the binding energies of both shells. This discrete radiation is called characteristic
radiation. For K shell characteristic rays, the radiation emitted by an electron from the L shell re-
placing a vacant K shell electron is called K-alpha (Kα), while the radiation emitted by an electron
from the M shell replacing a vacant K-shell electron is called K-beta (Kβ). The same reasoning
can be applied to other electronic shells. Since binding energies are unique to a given element, the
characteristic radiation energy depends on the target material. In the case of a Tungsten target
for example, K shell characteristic rays are located at 59.3 keV (K-alpha) and 69.5 keV (K-beta),
as illustrated in Figure A-1b.

The remaining low-energy photons from Bremsstrahlung radiation are usually absorbed in the
upper layers of body. They do not contribute to the final image signal but increase the total
radiation dose absorbed by the patient. To reduce this amount of low-energy X-rays in the X-ray
spectrum, an additional filtration is applied using flat filters to better shape the emitted spectrum.
Flat filters are typically thin flat sheets of metallic alloy of high atomic number, high purity
and homogeneous thickness. Through mainly Photoelectric interactions, low-energy photons are
absorbed, shifting the average energy of the spectrum to higher energies. Filter materials with K-
shell binding energy in the anode’s spectrum range, highly attenuate photons with energies higher
than its shell’s binding energy, due to Photoelectric interactions. Hence, the so-called K-edge filters
create discontinuities in the filtered energy spectrum. K-edge filtration is an essential concept for
spectral separation in spectral imaging, and discussed on in Chapter 4.

A.2 X-ray Interactions with Matter in Diagnostic Imaging

Whenever electromagnetic waves travel through matter, the initial number of photons in a given
beam path is reduced due to their interactions with atoms. In the energy range of X-ray imaging,
between 10 and 140 keV, three main types of interactions may occur: Photoelectric absorption,
Compton scattering and Rayleigh scattering. An overview of the mechanisms of these interactions
is described below. We refer to the work of Johns & Cunningham [146] for a more in depth
description.

Main X-ray Interactions with Matter
In the Photoelectric absorption process, a photon undergoes an interaction with an electron of the
K, L,M, . . . shell of an absorber atom. The energy of the photon is completely absorbed; its energy
is transferred to the electron, and the latter is ejected from the electronic cloud. The electron
shell vacancy can be filled with an electron from a higher shell generating a fluorescent X-ray with
energy equal to the difference between the binding energies of both shells. Alternatively, the excess
energy may also result in the ejection of another outer shell electron, also called Auger electron. The
probability of occurrence of a Photoelectric event is dependent upon the incident photon energy
E and is proportional to 1/E3 rate [204, 321]. The probability of Photoelectric effect occurrence
as a function of incident photon energy exhibits sharp discontinuities at the binding energies of
the different electrons in the atom, called absorption edges. They are commonly designated by the
name of the newly available electron shell (e.g., K-edge). The photoelectric interaction is most
likely to occur if the energy of the incident photon is just greater than the binding energy of
the electron with which it interacts. Below that energy, Photoelectric interaction is energetically
unfeasible. The probability of Photoelectric interaction per atom is proportional to Z3 for high
Z materials and proportional to Z3.8 for low Z materials. X-ray contrast agents commonly used
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Figure A-1: (a) X-ray Tube illustration; (b) Tungsten anode X-ray intensity spectrum: the
Bremsstrahlung energy distribution for 90 keV tube potential, without and with intrinsic anode
material filtration, and with added characteristic radiation

in the energy range of radiography leverage the absorption edges discontinuities to enhance X-ray
attenuation of an enhancing tissue with respect to unenhanced soft tissue background. Iodine
(Z = 53) and Barium (Z = 56) are two examples, with K-absorption edges at 33.2 and 37.4 keV,
respectively.

Compton (or Inelastic, or Incoherent) scattering is the main type of interaction which X-ray
photons in the energy range of radiographic imaging are subject, occurring predominantly with
soft tissue. One exception is standard mammography, which makes use of X-ray spectra within the
energy range of 15 to 30 keV, and for which Photoelectric interactions are predominant. Compton
scattering originates from the interaction of an incident X-ray photon with free electrons. In
Compton scattering, the incoming X-ray photon is deflected through an certain angle with respect
to its original direction. The photon transfers a portion of its energy to the electron (assumed to
be initially at rest), which is then known as a recoil electron, or a Compton electron, and scattered
with another angle. Because of the energy loss of the incident photon, Compton scattering is also
called inelastic scattering. The energy lost during the Compton effect depends on the scattering
angle, whose probability distribution as a function of its incident photon energy is described by the
Klein-Nishina equation [322]. In the energy range of X-ray imaging, the probability of occurrence
of a Compton event is almost independent of the atomic number Z and of the photon initial energy
E.

Rayleigh (or Elastic, or Coherent) scattering can be better understood by considering the in-
cident X-ray beam as an electromagnetic wave. During a Rayleigh scattering event the incident
photon interacts with the entire atom. More precisely, the electric field of the incident electromag-
netic wave expends energy, causing all of the electrons in the atom to oscillate in phase. The atom’s
electron cloud, now an oscillating dipole, immediately radiates this energy emitting a photon with
same energy but in a slightly different direction. This interaction occurs mainly with very low
energy X-rays, such as those in the energy range of standard mammography (15 to 30 keV).

Linear Attenuation Coefficient
Figure A-2 shows the probability of occurrence of Photoelectric, Compton and Rayleigh effects as
a function of the photon’s incident energy considering water as interaction material. This figure
illustrates the dependency of each effect as function of the incident photon energy, for a water-based
object.

The measurement of probability that a photon, with initial energy E, will undergo an interaction
while crossing a given material is also called cross section, usually noted σ. The total interaction
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cross section σ(E) is therefore defined as the sum of the individual cross sections of each interaction
type:

σ(E) = σphoto(E) + σcompton(E) + σrayleigh(E) (A.1)

Let us consider a monochromatic X-ray pencil beam, with initial energy E and containing
a total number of photons I0. The photons hit the surface of a homogeneous block of a given
material, which is composed of a single kind of atom and with density ρA in atoms per unit of
volume (cm−3). The number of photons I after crossing a thickness l of the material can be
expressed in the derivative form as:

dI(E)

dI0(E)
= −σ(E)ρAdl (A.2)

The product σ(E)ρA is defined as the linear attenuation coefficient of the concerning atom,
usually noted as µ(E) and in units of cm−1. It translates the probability of a photon being removed
from the primary X-ray beam path (either by absorption or scattering) per unit of crossed material
thickness. For mixtures and compounds the total attenuation coefficient is obtained through the
sum of the mass attenuation coefficients of the k-th atomic constituents, (µ/ρ)k, weighted by their
weight fraction, wk:

(µ/ρ) =
∑
k

wk (µ/ρ)k (A.3)

By integrating Equation, A.2 we express the number of transmitted photons as a function of
the crossed thickness dl inside a given material, which is known as the Beer-Lambert Law:

I(E) = I0(E)e
−

∫
Li,s

µ(E)dl
(A.4)

where Li,s is the X-ray beam path between the source s and the detector element i.

Figure A-3 shows the linear attenuation coefficients, µ(E), of fibroglandular and adipose tissues,
hydroxyapatite (emulating microcalcifications) and iodine, a typical basis material for radiographic
contrast agents. We can notice the discontinuity on iodine attenuation coefficients at 33.2 keV,
due to the K-shell absorption.

A.3 X-ray Detection

The role of an X-ray image detector is to absorb the incoming X-ray photons, transform them into
intermediate carriers that can be sampled and converted to a digital signal to form a digital image.
Most modern digital X-ray detector can be classified according to these two properties: detection
and signal conversion. Photon detection can be performed either directly or indirectly, whereas
image signal formation can be performed by integrating or counting electric charges.

During direct detection, X-rays photons are absorbed within a semiconductor generating electron-
hole pairs. If this absorption occurs within the semiconductor’s depletion zone, the electrons
and holes are separated by the internal electric field. While holes rapidly undergo recombina-
tion, the generated electrons are accumulated in the semiconductor until being read-out. The
number of electron-hole pairs is directly related to the energy of the incident photons. Com-
mon semiconductors used in X-ray imaging are Silicon or Germanium doped with Lithium, Si(Li)
and Ge(Si), amorphous Selenium (a-Se), Cadmium Telluride (CdTe) and Cadmium-Zinc-Telluride
(CdZnTe) [129,323–325].
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Figure A-2: Probabilities of Photoelectric, Rayleigh and Compton interactions in water

Figure A-3: Linear attenuation coefficients, µ(E), of fibroglandular and adipose tissues, hydroxya-
patite (emulating microcalcifications) and iodine
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Indirect detectors use scintillation crystals as an intermediate step in X-ray photon detection.
The scintillator first absorbs the incident X-rays and emits visible light photons. The generated
light quanta will be afterwards detected by a photodiode and converted into an electric signal.
Common scintillation crystal materials are Cadmium Tungstate (CdWO4), Gadolinium Oxysulfide
doped with Praseodymium (Gd2O2S:Pr or GOS) and Cesium Iodide doped with Thallium (CsI:Tl)
[271,323,326]. Figure A-4 illustrates the main steps in indirect and direct detection processes.

Once the signal is generated either by direct or indirect detection of X-ray photons, an Analog-
to-Digital (A/D) conversion process is used to output a digital signal, normally sampled in a
pixelated matrix array, and form an intensity image. This is usually performed either by reading the
generated signal accumulated over a limited period of time, leading to energy-integrating (or charge-
integrating) detectors, or by counting the number of electric signals generated by the incoming
quanta, as in a photon-counting detectors.

Energy-integrating scintillation detectors are the most commonly used technology for medical
CT systems [323]. A number of X-ray detectors developed specifically for mammography are also
based on this technology, including the GE Senographe® DS and GE Senographe® Essential
systems (GE Healthcare; Chalfont St Giles, UK). They are based on amorphous Silicon (a-Si) tech-
nology with integrated CsI:Tl scintillators, and their specific characteristics can be found in Annex
B, respectively. Integrating scintillation detectors are the main detector technology investigated
in this thesis and a more detailed description of image signal formation and noise propagation
is available in Section 2.7.2. Energy-integrating direct conversion detectors based on amorphous
Selenium (a-Se) are also used in mammography systems [323].

Recent advances have been made to enable photon counting capabilities in direct conversion
detectors based on Cd:Tl and CdZnTd semiconductors [130]. The requirements of high detector
readout time rates to match the frequency of incoming X-ray photons can be achieved, making
it possible to identify individual photons and their respective energies. This allows for a certain
degree of energy discrimination, for instance by setting different energy thresholds for electric
charge registration and providing images associated to a chosen energy range in the beam spectrum.

For more details on X-ray detectors for digital mammography, including description on other
technologies such as photo stimulated luminescence (PSL) in barium fluorobromide doped with
europium (BaFBr:Eu) plates and gaseous ionization detectors, we refer the reader to the work of
Yaffe and Mainprize [251].

X-ray Image Formation
The generation, attenuation and detection of X-ray photons can be formalized into one mathe-
matical expression. Disregarding nonlinearities associated to the detector technology (e.g. lag,
photon crosstalk, blur,. . . ), the detected noise-free per-pixel signal intensity SI(i), associated to a
detection element i in the pixelated matrix array, can be approximated as:

SI(i) = κ

∫ ∞
0

ξ(E)η(E)
[
Iscatter(E, i) + Inet(E, i) · e

−
∫
Li,s

µ(r,E)dl
]
dE (A.5)

where κ is a scaling factor, ξ(E) is the detector conversion response, η(E) is a function translating
an eventual energy-dependent efficiency in detecting photons, Inet(E, i) is the net/filtered X-ray
intensity spectrum generated by the X-ray source s and towards the detection element i, µ(r, E) is
the linear attenuation coefficient of the imaged breast at energy E and position r in its volume, dl is
the incremental thickness of the traversed breast in the beam path Li,s and Iscatter(E) is the X-ray
intensity spectrum incident over the detector element surface resulting from photon scattering.

For integrating and counting detectors ξ(E) = E and ξ(E) = 1, respectively, which translates
the integration or counting processes. The function η(E) can be an extremely complex function
accounting for different energy-dependent inefficiencies during the detection process, such as the ab-
sorption of X-ray photons within the scintillators or the spectral response of energy-discriminating
photon-counting detectors during energy threshold.



A.4. Acquisition Gantry 197

Figure A-4: Illustration of indirect and direct detection processes

A.4 Acquisition Gantry

The third main component of an X-ray system, besides de X-ray source and detector, is the gantry.
It links both the X-ray source and the detector in order to offer them a certain freedom of rotation
around one or multiple axes. Hence, the gantry allows the X-ray system to image an object from
different acquisition views.

For example, in the case of standard mammography, the source and the detector are conserved
in the same relative position, allowing to image the complete compressed breast in a single view
(cf. Figure A-5a). It is also common to define different incidences of the gantry relative to
the compressed breast. The two most common views are the cranio-caudal (CC) view and the
mediolateral-oblique (MLO) view. In breast tomosynthesis, the detector can either be static or
rotate, and gantry allows the source (or source-detector couple) to rotate around an axis, usually
located inside the compressed breast. Multiple oblique views of the object are acquired, totaling a
limited angular span (cf. Figure A-5b). In current dedicated breast CT prototypes, the source and
the detector are usually fixed with respect to the other. The gantry rotates the detector-source
pair around an axis located at the center of the longitudinal section of the uncompressed breast,
performing a given orbit around the breast. Full 360° scans (cf. Figure A-5c), half 180° scans,
saddle and other complex trajectories have been studied for dedicated breast CT [118,327–330].

Whenever the gantry rotates on its axis, from its initial state to a view angle β, we can associate
the detected intensity profile with the view angle β. Disregarding scattered radiation and assuming
a monochromatic beam with energy E, Equation A.5 can be rewritten into

p(β, i) = −ln
(
SI(i, β)

SI0(i, β)

)
=

∫
Li,s

µ(r, E)dl (A.6)

where p is the log-projection and SI0 is the per-pixel signal intensity acquired without any object,
i.e. an airscan.

A.5 Tomographic Reconstruction

The objective of tomographic reconstruction is to recover the volumetric distribution of linear
attenuation coefficients µ(r) from the measured log-projections p(β, i). Various methods were
proposed to analytically [331,332] or iteratively [333] invert the Radon Transform.
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Figure A-5: Typical (a) Mammography, (b) Tomosynthesis and (c) circular dedicated breast CT
acquisition geometries

Analytic methods are based on the mathematical inversion of the Radon Transform for a
complete or approximate recover of the 3D object, depending on the acquisition trajectory. Filtered
backprojection is the most commonly known analytical algorithm for DBT and CT reconstructions,
and will be the standard reconstruction method used throughout this PhD thesis.

Iterative reconstruction methods rely on the minimization of the error between the projection
of the reconstructed object at a given iteration k − 1 and the measured projection data. At
each iteration, the error information is reconstructed and used to update the reconstructed object
to the iteration k. After a predefined number of successive iterations or when the fulfilment
of an image quality criterion is achieved, we obtain an estimation of the 3D object. Iterative
reconstruction algorithms may allow for patient dose reduction due to a more precise modeling of
the acquisition process, e.g. statistics of detected photons. Iterative reconstruction methods have
not been investigated this PhD thesis research.

For more in-depth description on the different analytical and iterative reconstruction techniques
in X-ray imaging, as well as an overview on the different image artifacts found in clinical practice,
we refer the reader to the work of J. Hsieh [334].

Radon Transform
Equation A.6 is an equivalent form of the Radon Transform if a geometric transformation r =
lβ,t(α) : R → R2, associating a volume element in r with a parametrized expression of the X-ray
beam path lβ,t(α) is applied:

p(β, t) =

∫
L(β,t)

µ(lβ,t(α))dα (A.7)

where β is an angular parameter, t a distance to the origin of coordinates and α is the parametriza-
tion variable. In CT, the set of log-projections p(β, t) is called the sinogram of the imaged object,
since each object point appears along a sinusoidal curve in the projection space β − t.

The Central Slice Theorem (or Fourier Slice Theorem) states that the Fourier Transform of a
log-projection p(β, t) at given view angle is found along a radial line in the 2D Fourier Transform
of the imaged object. As a consequence, a complete representation of the imaged object in the
frequency domain is obtained from a set of parallel projections covering an angular span of length
π. This angular sampling concept is key for 3D reconstruction of the object, especially when
the angular covering hypothesis is not met, such as in Tomosynthesis acquisitions. Figure A-6a
illustrates the projection geometry and the Radon Transform at a given angle β, while Figure A-6b
illustrates the corresponding Fourier Transform.
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Figure A-6: (a) Parallel projection geometry for Radon Transform; (b) representation of the Central
Slice Theorem

Beam Hardening
Notice that the inversion of Equation A.6/A.7 through tomographic reconstruction provides a
linear relationship to the object’s attenuation coefficient distribution µ(r, E) when the incident
beam is monochromatic. In the case of an incident polychromatic spectrum, this relation is no
longer linear and µ(r, E) becomes an effective linear attenuation µ̄(r). Indeed, low-energy photons
are more likely to be absorbed than high-energy photons, which cause the X-ray spectra to shift
to higher energies, or to harden, as the beam propagates through the object. Beam hardening
entails in a two different artifacts in reconstructed volumes: cupping and appearance of shading
or streaks.

Cupping artifacts refers to the differences in beam hardening occurring in a central region of
the object with respect to its edges, due to differences in crossed thickness. Because the beam
becomes harder at the center of the object, reconstructed effective attenuation coefficient values
are smaller than at the periphery, resulting in an image profile which appears as a “cup”. The
same cupping effect occurs in the presence of X-ray scattering, where additional detector signal is
generated from scattered X-rays occurring more likely at a X-ray beam path crossing the center of
a cylindrical object. Hence, according to Equation A.6/A.7, the increased projected signal is trans-
lated into decreased log-projection values p(β, i) and, as consequence, the decrease in reconstructed
attenuation coefficients µ̄(r).

Alternatively, shadings or streaks occur when beam hardening inside the imaged object is
different according to the acquisition view. The presence of high attenuating materials will favors
the appearance of stronger cupping in a particular direction, especially when other high attenuating
areas are present, creating therefore streaks.

Filtered Backprojection Algorithm
For cone-beam CT geometries, the approximate analytic inversion formula proposed by Feldkamp
[335] is the most used technique for 3D cone-beam reconstruction. Its implementation is very simple
and provides good results for circular trajectories with small cone angles [335]. The method is a
reinterpretation of the 2D fan-beam Filtered BackProjection (FBP) extended to 3D reconstruction
of cone-beam data. The algorithm can be summarized into three main steps: pre-filter rescaling,
high-pass filtration and backprojection.

1. Rescaling: it can be interpreted as a geometric correction of each detector element to
compensate for the cone-beam acquisition. The scaling factor is equal to the cosine of the
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angle between the ray and the central ray of the projection. If αi and γi are the fan and cone
angles associated to the detector element i, the corrected log-projections can be written as:

p′(β, i) = p(β, i) cosαi cos γi (A.8)

2. Filtering: it is needed to equalize the contributions of all frequencies in the Fourier Trans-
form’s polar grid. This can be done by individually convolving the signal of each detector
row with a high-pass filter kernel h(·). In this way, the magnitudes of the existing higher-
frequency samples in each projection are scaled up to compensate for their lower amount. If
we associate the detector element i position with a u-v coordinate plane over the detector,
we have:

p′′(β, i) = p′(β, u, v) ∗ h(v) =
∑
v∗

p′(β, u, v)h(v − v∗) (A.9)

where u and v indicate the detector columns and rows, respectively.

3. Backprojection: the filtered log-projections values are backprojected to a 3D voxelized
volume. For every voxel in a position r in space, there is a given set Ωr of projected data
pairs (β, i) which contribute to the voxel signal if the beam path linking a point source s
and the pixel element i intersects the voxel. The contribution is normally weighted and
interpolated to account for partial volume effects, magnification, etc. The backprojected
data b(r) can therefore be expressed as:

b(r) =
∑

(β,i)∈Ωr

wB(β, i)

L2
is

p′′(β, i) (A.10)

where Lis is the distance between the source s and the detector element i, and wB(β, i) is a
weight.

In summary, from Equations A.8, A.9 and A.10, we can express the FBP algorithm in a single
equation:

µ̄(r) =
∑

(β,i)∈Ωr

w′B(β, i)
∑
v∗

h(v − v∗) p(β, u, v) cosαi cos γi︸ ︷︷ ︸
rescaling︸ ︷︷ ︸

filtering︸ ︷︷ ︸
backprojection

(A.11)

where w′B(β, i) is an overall weighting function comprising the necessary scaling factors to obtain
the linear attenuation coefficients µ̄(r) from b(r).

Reconstruction of Dedicated Breast CT Data
Tomographic reconstruction of cone-beam CT data acquired with a circular trajectory, suffers from
data incompleteness (cf. Data Sufficient Condition - DSC - in Ref. [331,336,337]). Through simple
FBP reconstruction, the mid-slice of the object (plane perpendicular to the detector and passing
through the source and the gantry’s center of rotation) can be perfectly reconstructed, while object
points further away from this plane will exhibit artifacts called cone-beam artifacts.

The cone-beam artifacts of a reconstructed image tend to become stronger with larger cone
angles and away from the mid-plane [338]. They result in geometric distortion of the imaged objects
and inaccuracy of reconstructed linear attenuation coefficient (decreased intensity in reconstructed
pixels corresponding to larger cone angles).

In standard CT, and more recently in dedicated breast CT, more complex trajectories (e.g.
“circle-plus-arcs”, “circle-plus-line”, “circle-plus-circle”, saddle, . . . ) have been introduced in order
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to meet the DSC and reduce cone-beam artifacts [338–340]. In breast CT, they were also an attempt
to avoid eventual limitations on the gantry and improve patient table designs, therefore enabling
to perform acquisition closer to the chest wall and image the axillary tail [118,327,328,330,341].

Reconstruction of Breast Tomosynthesis Data
As explained in the introductory chapter, breast tomosynthesis (DBT) reduces tissue overlapping
compared to digital mammography, offering enhanced depiction of structures. Since DBT pro-
jections have limited angular span around the object, 3D reconstruction of the object becomes a
substantially ill-conditioned inversion problem with respect to the Central Slice Theorem. Figure
A-7 illustrates the partial angular sampling data and its translation into a cone in the Fourier
domain. Nonetheless, the limited data in the Fourier domain can be used to generate a pseudo-3D
representation of the object in the Fourier domain.

In order to understand the basic principle behind tomosynthesis reconstruction, we recall a
simple algorithm called Shift-and-Add [342], illustrated in Figure A-8a. It states that it is possible
to recover, to a certain extent, the attenuation information in a plane crossing the object by
analyzing the structural displacement in the projections. In other words, let us consider an object
which contains a structure at a given plane, parallel to the detector (x-z plane) and at a given
height along the y-axis. While projecting this structure over the different angles, its displacement
in the projections will be different from structures localized on other planes of the object. By
adding the projections with a well-defined geometrical weight, it is possible to construct an image
plane in which only the structures crossed by the plane will be sharp (or in-focus), while the other
structures become blurred. The method can be applied so as to reconstruct parallel planes of the
entire object.

It must be noticed, however, that since the object sampling is incomplete, the reconstructed
structures across the many planes will appear deformed and elongated along the direction of the
X-ray beam, i.e. perpendicular to the parallel planes (y-axis), as illustrated in Figure A-8b.
Moreover, high contrast signals present outside the in-focus plane, such as microcalcifications, will
create artifacts [87]. The resolution along the y-axis is therefore inferior to the resolution in the
x-z plane in order avoid the influence of outer planes. Nevertheless, the resolution in the x-z plane
can be as high as the native resolution of the projection images, favoring the depiction of small
structures such as microcalcifications.

As in cone-beam CT data, FBP reconstruction can also be applied to reconstruct parallel planes
of the object. In addition to the standard high-pass filter, a low-pass filter (or slice thickness filter)
can be applied in the y-axis direction to reduce the influence of incomplete sampling and provide
an approximately constant slice profile [343]. There have been numerous attempts to leverage

Figure A-7: Tomosynthesis projection at angle β and its corresponding representation in the Fourier
domain, as described by the Central Slice Theorem. The limited angular span is translated into a
cone in the Fourier space
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Figure A-8: (a) Illustration of tomosynthesis reconstruction with Shift-and-Add algorithm; (b)
example of geometric deformation in the y-axis when the spheres in plane 2 are reconstructed
using 25°angular span, when compared to a full 360°circular orbit

the benefits of noise reduction in iterative reconstruction methods with the speed of FBP. This
can be performed for example by selecting a high-pass filter which emulates the image quality of
iterative algorithms [275, 343]. However, besides the drawback of their longer calculation time,
iterative algorithms allow for better management of out-of-plane artifacts, such as those caused by
high-contrast structures [344,345].

For deeper insight on reconstruction techniques for digital breast tomosynthesis data, we refer
the reader to the work of I. Sechopoulos [346].



Appendix B

Reference Apparatus

In this PhD thesis research, three different X-ray imaging systems were exploited both for validation
purposes and as reference geometry for the simulated acquisition chains: a GE Senographe® DS
and a GE Senographe® Essential mammography systems (GE Healthcare; Chalfont St Giles, UK)
using low-energy spectra, as well as a GE Innova� Interventional Image Guided System (IGS) 620
(GE Healthcare; Chalfont St Giles, UK), using high-energy spectra.

The three different X-ray imaging system are illustrate in Figure B-1. Table B.1 below sum-
marizes their main technical information.

Figure B-1: (a) GE Senographe DS, (b) GE Senographe Essential and (c) GE Innova IGS620
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Table B.1: Technical information on the three X-ray imaging system exploited in our investigations

System Parameters Senographe DS Senographe Essential Innova IGS620

Topology beam shape cone-beam cone-beam cone-beam
SDD 660 mm 660 mm 1280 mm
SID 620 mm 620 mm 720 mm
0° incidence center col, first row center col, first row detector center
gantry orbit source circular arc source circular arc free C-arm orbit

Generator technology HF single-phase power supply HF single-phase power supply
acquisition mode continuous continuous pulsed
power 5 kW 5 kW
pulse width N/A N/A > 10 ms

X-ray Source technology Coolidge, rotating anode Coolidge, rotating anode Coolidge, rotating anode
tube tilt angle 22.5° 22.5° 11°
anode material Mo, Rh Mo, Rh W
focal spot size 0.1 - 0.3 mm 0.1 - 0.3 mm 0.6 mm
kV range 22 - 49 kV 22 - 49 kV 60 - 140 kV
available filtration Mo 30 µm Mo 30 µm Cu 0.3 mm

Rh 25 µm Rh 25 µm
Cu 0.3 mm + Al 0.3 mm Cu 0.3 mm + Al 0.3 mm

Detector technology CsI on a-Si TFT CsI on a-Si TFT CsI on a-Si TFT
matrix size 1914 x 2294 2394 x 3062 1024 x 1024
nominal pixel pitch 100 µm 100 µm 200 µm
frame rate 7.5, 15, 30 FPS
fill factor ∼ 0.71× 0.71 ∼ 0.79× 0.79 ∼ 0.8× 0.8
scintillator thickness 100 µm 250 µm 780 µm
MTF at 1.0×Nyquist 0.31 0.18 0.15
MTF at 0.4×Nyquist 0.7 0.64 0.65
anti-scatter grid yes yes yes



Appendix C

Scattered Radiation Impact on
Image Quality

As described in Annex A.2, in the energy range of X-ray imaging, typically between 10 and 140
keV, X-ray photons interaction with matter can be summarized into three main processes: photo-
electric effect, Compton (or incoherent) and Rayleigh (or coherent) scattering. Compton scattering
originates from the interaction of an incident X-ray photon with an atom’s electron, which results
in a change on the photon’s direction and loss of its initial energy. Rayleigh scattering is associated
with the electric polarization of the atom and the radiation of an electromagnetic wave with the
same energy as the incoming beam, but with a slight difference in the trajectory.

In practice, due to both Compton and Rayleigh scattering, incident X-ray photons will deviate
from its original primary path and change the detected signals from the expected primary X-ray
intensities. They will therefore affect object contrast (since it contains little information about its
original path) and increase noise in the projection images. In the case of tomographic imaging,
the additional scattered contribution will influence the quality of reconstructed images in three
different ways:

1. Non-homogeneity in CT numbers: it is usually presented as negative shifts in the ex-
pected values, causing cupping artifacts. Additional shadings or streaks might occur whether
high attenuating objects are present or not

2. Degradation of object contrast: it affects the quantification HU units in single-energy
imaging or contrast agent uptake values in contrast-enhanced dual-energy imaging

3. Degradation of object detectability: due to the increased number of scattered photons
adding stochastic noise but not contributing to the object signal, the overall detectability of
objects is reduced

The impact of Compton and Rayleigh scattering on the final trajectory and energy of an incident
photon depends on its initial energy, as described by Klein-Nishina and Lorenz-Mie equations,
respectively. Hence, the image artifacts generated by scattered radiation will differ according to
the input spectrum.

As preliminary step in the optimization of Dual-Energy Contrast-Enhanced Breast CT tech-
nique described in Chapter 5, we assessed the scattered radiation impact on image quality due to
cupping artifacts and object detectability degradation as a function of the incident photon energy.
The main objective was to provide evidence that image quality degradation (in terms of detectabil-
ity) due to X-ray scattering has little energy-dependency and would not have significant influence
on the optimization studies of Chapter 5. This result was observed elsewhere by Glick et al. [163]
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but for a different experimental setup. Here, it remained to be confirmed that this statement still
held for the setups investigated in this PhD thesis research.

Scatter-to-Primary Ratio (SPR) was used as metric to quantify the magnitude of scatter. In
order to assess the detrimental effect of scatter on image quality, the magnitude of the cupping
artifact and Contrast-to-Noise Ratio were used as figures of merit.

C.1 Materials and Methods

Simulation Setup
The cone-beam CT geometry described in Section 5.2 and illustrate in Figure 5-2 was simulated.
A 14 cm diameter (D), 10.5 cm height (3D/4) cylindrical phantoms and composed of homogeneous
50% fibroglandular equivalent was chosen to mimic an average uncompressed breast (cf. Figure
C-1). The cylinder contained eight 10 mm diameter cylindrical inserts distributed parallel to the
main cylinder axis. The inserts 1 to 4 correspond to 0, 25, 75 and 100% fibroglandular equivalent
tissues. Inserts 5 to 8 correspond to homogeneous mixtures of 50% fibroglandular tissue and 0.5,
1.0, 2.5 and 5.0 mg/cm3 of iodine.

The scattered photon fluence contribution Sscatter(E, i) was simulated using CatSim’s hy-
brid approach (cf. Section 2.5 for details), where approximately one million photons undergoing
Rayleigh, Compton and photoelectric interactions were tracked in 2× 2× 2 mm3 voxels. It is fair
to assume that the amount of scattered radiation Sscatter(E, i) would remain approximately un-
changed if an individual low-contrast object is placed or not in the beam path between the source
and the detector element i. Therefore, Sscatter(E, i) was estimated using only the homogeneous
50% fibroglandular equivalent cylinder, and the result extrapolated to projections acquired with
the inserts. This approach allows for much faster calculation since, for a symmetric homogeneous
object, the same noiseless 2D scatter intensity estimation is found for each acquired projection.
This allows us to compute scatter intensity for one projection and use the results in the other
projections.

Both primary only (P) and primary+scattered (P+S) radiations were detected in a perfect
blur-free energy-integrating detector with 776 µm pixel pitch. Three hundred projections were
simulated equally spaced over a 360° trajectory. In-plane slices, separated by 1 mm in the z-axis
direction and with a 0.41 × 0.41 mm2 pixel size, were reconstructed using a FBP algorithm and
an ideal ramp filter. The procedure was repeated for monochromatic input beams with energy
ranging from 10 to 80 keV, while the total AGD was kept constant at 50 mGy, avoiding this way
streak artifacts attributed to a lack of quanta.

SPR and Cupping Artifact Quantification
Similarly to Chapter 3, SPR values were estimated using mean signal intensities per pixel at the

Figure C-1: Cross section slice of the cylindrical phantom containing the different embedded inserts
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center of primary-only projections SIprojP and scatter-only projections SIprojS :

SPR =
SIprojS

SIprojP

(C.1)

where the index proj denotes SI values measured in projections images.

Cupping artifact in the reconstructed images was quantified as the normalized difference be-
tween CT numbers in a circular ROI at cylinder’s center position and in a circular ROI at the
cylinder’s edge, measured it the slice corresponding to the cylinder’s mid-depth:

cupping(%) = 100×
SIimgedge − SI

img
center

SIimgedge

(C.2)

where the index img denotes SI values measured in reconstructed images.

Contrast, Noise, and CNR Quantification
Embedded insert contrast in reconstructed slice images was measured as difference between the
mean SI per pixel of an ROI inside a reference insert, SIimginsert, and the mean SI per pixel of an

ROI on the insert’s surrounding background, SIimgbg . The standard deviation of signal intensities

in the background ROI, σimgbg , was used as estimate of background noise. Contrast-to-noise ratio
per pixel between the insert and the background normalized to the square root of the total AGD
(CNRD) was calculated as figure of merit for detectability:

CNRDinsert−bg =
SIimginsert − SI

img
bg

σimgbg

√
AGD

(C.3)

C.2 Results

Figure C-2a shows the SPR values as function of the incident monochromatic beam energy. For
energies below ∼ 25 keV , the scatter contribution to signal intensity is more important than the
contribution of primary radiation (SPR > 1). SPR values decreases rapidly from 20 to ∼ 30 keV ,
and more slowly afterwards.

Figure C-2b shows cupping(%) as function of the incident monochromatic beam energy. Cup-
ping artifact decreases with the increasing energy. Cupping can be as high as 20% for 20 keV, and
stays between 5 and 10% above 30 keV.

For a visual assessment of the cupping artifact, Figure C-3 illustrates the reconstructed slices
for 20, 40, 60 and 80 keV, with window width and level set to display the whole image histogram.
The 20% cupping at 20 keV is clearly distinguishable, while above 40 keV the difference in cupping
is subtle.

Figures C-4a, C-4b and C-4c illustrate, respectively, insert contrast, background noise and
resulting CNRD values as function of the incident monochromatic beam energy, for simulations
carried without X-ray scattering (solid lines) and with X-ray scattering (dashed lines). They also
show the ratio between results with X-ray scattering and without X-ray scattering (round markers).
Contrast and background noise decreases with input X-ray beam energy, for both simulations
without and with scattered radiation. CNRD increases at low energies since the background noise
decreases more rapidly than contrast, function of the photon energy, achieving a broad maximum,
and decreases steadily at higher energies mainly influenced by the decreasing insert contrast.

According to the ratio curves in Figures C-4a to c, both contrast and background noise decrease
in the presence of scattered photons. In the considered energy range, the drop in contrast was
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Figure C-2: (a) SPR and (b) cupping(%) as function of the monochromatic beam energy incident
on a 14 cm diameter 50% fibroglandular equivalent cylinder

Figure C-3: Cupping artifact in reconstructed volume due to scatter for 20, 40, 60 and 80 keV
monochromatic beam incident on a 14 cm diameter 50% fibroglandular equivalent cylinder. The
top and bottom columns illustrate a slice reconstructed with primary photons and primary+scatter
photons, respectively
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Figure C-4: (a) Contrast, (b) background noise std. deviation and (c) CNRD as function of the
incident monochromatic energy. Solid and dashed lines represent data obtained without and with
X-ray scattering, respectively. Round markers represent the ratio between simulations with scatter
and without scatter. Crosses represent reference data from Ref. [163]. All values were obtained at
constant AGD of 50 mGy

in the range of approximately 20 to 60% (ratio values between 0.4 and 0.8), while the drop in
noise was in the range of 5 to 40% (ratio values between 0.6 and 0.95), resulting in a CNRD drop
between 10 and 20% (ratio values between 0.8 and 0.9). All degradations were more expressive for
energies below 30 keV, due to the increased cupping.

Figure C-4c also shows the degradation of CNRD as function of the monochromatic energy
obtained from Ref. [163], measured by the ratio of CNRD obtained with and without X-ray scat-
tering (crossed markers). We notice that the drop in CNRD is similar between our geometry and
that of the reference.

Figure C-5 summarizes the CNRD results in Figure C-4c and makes the link with the opti-
mization studies presented in Chapter 5. We can notice that CNRD reduction varies slowly as
function of the incident monochromatic beam energy, staying between approximately 10 to 20%,
when changing from 20 to 80 keV. More importantly, when considering the expected optimal en-
ergy ranges for LE and HE spectra discussed in Chapter 5 and highlighted in Figure C-5 (25-33
keV for LE and 34-50 keV for HE), CNRD reduction is limited to the range of 14 to 19% (ratio
values between 0.81 and 0.86).

C.3 Discussion and Conclusions

In breast CT with the patient in prone position, the uncompressed breast shape can be considered
a cylinder (or semi-ellipsoid) with its major axis perpendicular to the incident X-ray beam [104,
165–168]. The shape of the detected x-ray scatter profile perpendicular to the major cylinder axis
(cf. Figures 3-6b, 3-8a and 3-9a) can be explained by two major contributions. At one hand,
the detected scatter profile decreases with increasing thickness of the cylinder, i.e. proportionally
with increased primary X-ray attenuation as a function of increased phantom thickness. However,
because the spatial extent of the cylinder is finite and supposing that the air surrounding the
phantom does not contribute to X-ray scatter, the scatter signal below the center of the cylinder
is received from a phantom scattering medium over 360 degrees, while the scatter signal below the
edge of the cylinder is received from about half of a 360 degrees (since ≈180 degrees adjacent to
the cylinder edge consists of air). The latter explains why the scatter signal intensity is increasing
at the phantom edges.

The additional detector signal generated by scattered photons when compared to primary
photons (scatter-to-primary ratio) is higher below the center of the cylinder and decreases toward
the detector periphery (cf. Figures 3-7b, 3-8c and 3-9c). After reconstruction, this additional
signal is translated into an artificial decrease in effective attenuation coefficients, with CT numbers
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Figure C-5: CNRD as function of the incident monochromatic energy. Solid and dashed lines
represent data obtained without and with X-ray scattering, respectively. Round markers represent
the ratio between simulations with scatter and without scatter. Crosses represent reference data
from Ref. [163]. Shade areas show the energy range of LE (blue) and HE (red) spectra considered
during dual-energy spectra optimization

being lower at inner parts of the breast when compared to those at its periphery, forming this way
a cupping artifact. This effect is illustrated in Figure C-3.

With respect to object detectability, since the decrease in object contrast was larger than the
decrease in background noise, for all considered energies, CNRD was ultimately reduced, as can
be seen in Figure C-4c. however, when considering the expected optimal energy ranges for LE and
HE spectra discussed in Chapter 5, CNRD reduction is limited to the range of 14 to 19% (ratio
values between 0.81 and 0.86).

We may conclude that, although scatter has a moderate effect on CNRD, the degradation
showed little energy-dependency. This result was also noticed by Glick et al. [163], as can be seen
from the published data in Figure C-4c. Moreover, an interesting fact is that the results presented
in Ref. [163] were based on a full cascade system analysis of a 600 µm thick CsI:Tl-based detector,
including optical spreading, K-fluorescence, energy-dependent QDE, and other inefficiencies.

We recall that in Chapter 5 we demonstrated that in the absence of scatter, optimal CNRD
surfaces as function of the input monochromatic LE and HE beam energies are rather broad around
their peak values. Hence, if scatter is included, we assumed that small variation of CNRD with
the input monochromatic energy would have little effect on spectra optimization for Dual-Energy
bCT, and was therefore be disregarded in the investigations.
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Proof of Theorems

D.1 Basic Properties of Covariance

Let, x = (x1, x2 . . . , xn) and y = (y1, y2 . . . , yn) be two random 1×n variables and Cov(x,y) their
n× n cross-covariance matrix. Accordingly, the following basic properties apply:

Property D.1. If A is a m× n matrix, then

Cov(Ax) = ACov(x)AT (D.1)

Property D.2. From Property D.1, if A and B are m × n matrices, and a and b are m × 1
vectors, then it is easy to derive that

Cov(Ax + a,By + b) = ACov(x,y)BT (D.2)

Property D.3. For real-valued random variables x, y, w and v and constants (“non-random”) a,
b, c, d, we can write

Cov(ax+ by, cw + dv) = acCov(x,w) + adCov(x, v) + bcCov(y, w) + bdCov(y, v) (D.3)

D.2 Proof of Theorem 7.1

Proposition D.1. (Theorem 7.1) If a tomographic reconstruction method R can be expressed as a
linear transformation, then a negative covariance among a set of projection images x and y results
in a negative covariance among the respective set of tomographic reconstructed volumes R{x} and
R{y}:

Cov(x,y) < 0 =⇒ Cov(R{x},R{y}) < 0 (D.4)

as long as Cov(xi, yj) = 0, where i and j are the index for two different detector elements (i 6= j).

Hypothesis D.1. (Uncorrelation) If i and j are the indexes of detector elements or pixels in the
projections images x = (x1, x2 . . . , xn) and y = (y1, y2 . . . , yn), we assume that:

Cov(xi, yi) = 0, ∀i 6= j, i, j ∈ {1, 2, · · · , n} (D.5)

In other words, we assume that different pixels in projection images x and y are uncorrelated.
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As discussed in Annex A.5, we can write the reconstruction method R as the concatenation of
three basic operations: scaling, filtration and backprojection. We will separate the demonstration
of Theorem 7.1 into these three parts, such as:

(x,y)
scaling−−−−−→ (x′,y′)

filtration−−−−−−→ (x′′,y′′)
backprojection−−−−−−−−−−→︸ ︷︷ ︸

R{·}

(x′′′,y′′′)

or

(x,y)
R{·}−−−→ (x′′′,y′′′)

def
= (R{x},R{y})

Hence, to demonstrate the proposition of Equation D.4, we need to show that the concatenation
of three basic operations entails in:

I. Scaling: Cov(x,y) < 0 =⇒ Cov(x′,y′) < 0

II. Filtration: Cov(x′,y′) < 0 =⇒ Cov(x′′,y′′) < 0

III. Backprojection: Cov(x′′,y′′) < 0 =⇒ Cov(x′′′,y′′′) < 0

I. Scaling

Proposition D.2. Let the scaling operation be expressed by a transformation s : Rn → Rn and a
n× n positive diagonal matrix s containing the weights associated to each detector element. If x,
x′, y and y′ are projection data represented as n× 1 vectors, then

Cov(x,y) < 0 =⇒ Cov(sx, sy) = Cov(x′,y′) < 0 (D.6)

Proof. If x and y are projection data represented as n×1 vectors, their scaled versions are simply
the multiplications x′ = sx and y′ = sy, respectively. By applying Property D.2, the covariance
of the backprojected data is:

Cov(sx, sy) = sCov(x,y)sT

and since s is diagonal,
Cov(sx, sy) = s2 Cov(x,y)

In other words, the scaling operator conserves the sign of Cov(x,y). Finally, since s2 is strictly
positive, we can write:

Cov(x,y) < 0 =⇒ Cov(sx, sy) = Cov(x′,y′) < 0
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II. Filtration

Proposition D.3. Let h be a filter kernel with limited support ΩK , represented by a K × 1 vector
h. If x′, x′′, y′ and y′′ are projection data represented as n× 1 vectors, then

Cov(x′,y′) < 0 =⇒ Cov(h ∗ x′,h ∗ y′) = Cov(x′′,y′′) < 0 (D.7)

Proof. The filtration step is defined as the convolution of the projection data x′ and y′ with the
kernel h:

(h ∗ x′)(i) def=
∑
k∈ΩK

h(k)x′(i− k)

(h ∗ y′)(i) def=
∑
k∈ΩK

h(k)y′(i− k)

where i and k are indexes for spatial variations in h, x′ and y′.

We start by picking the K-th element in the kernel support ΩK and expanding the convolution
(h ∗ x)(i) and (h ∗ y)(i) into two terms:

(h ∗ x′)(i) =
∑

k∈ΩK−1

h(k)x′(i− k)

︸ ︷︷ ︸
ΦK−1

x (i)

+ h(K)x′(i−K) = ΦK−1
y (i) + h(K)x′(i−K)

(h ∗ y′)(i) =
∑

k∈ΩK−1

h(k)y′(i− k)

︸ ︷︷ ︸
ΦK−1

y (i)

+ h(K)y′(i−K) = ΦK−1
y (i) + h(K)y′(i−K)

where ΦK−1
x (i) and ΦK−1

y (i) are auxiliary random variables denoting the products inside the con-
volution, for the support ΩK−1 = {ΩK −K}. Note that the convolutions x′′(i) = (h ∗ x′)(i) and
y′′(i) = (h ∗ y′)(i) are equivalent to ΦKx (i) and ΦKy (i), respectively.

The covariance Cov(h ∗ x′,h ∗ y′) = Cov(h ∗ x′, h ∗ y′)(i) = Cov(ΦKx ,Φ
K
y )(i) can therefore be

written as

Cov(ΦKx ,Φ
K
y )(i) = Cov(ΦK−1

x (i) + h(K)x′(i−K),ΦK−1
y (i) + h(K)y′(i−K))

and using Property D.3, we have

Cov(ΦKx ,Φ
K
y )(i) = Cov(ΦK−1

x ,ΦK−1
y )(i) + h(K) · Cov(ΦK−1

x (i), y′(i−K))+

+ h(K) · Cov(x′(i−K),ΦK−1
y (i)) + h(K)2 · Cov(x′(i−K), y′(i−K))

(D.8)

The second and third terms of Equation D.8 can be further expanded in a similar manner using
Property D.3, such as

Cov(ΦK−1
x (i), y′(i−K)) =

∑
k∈ΩK−1

h(k)Cov(x′(i− k), y′(i−K))

Cov(x′(i−K),ΦK−1
y (i)) =

∑
k∈ΩK−1

h(k)Cov(x′(i−K), y′(i− k))
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Assuming that x′(i− k) and y′(i−K) are uncorrelated for k 6= K (Hypothesis D.1),

Cov(x(i− k), y(i−K)) = 0 and Cov(x(i−K), y(i− k)) = 0

∴ Cov(ΦK−1
x (i), y(i−K)) = 0 and Cov(x(i−K),ΦK−1

y (i)) = 0

This result allows us to simplify Equation D.8 and write the covariance Cov(ΦKx ,Φ
K
y ) in a

recursive way:

Cov(ΦKx ,Φ
K
y )(i) = Cov(ΦK−1

x ,ΦK−1
y )(i) + h(K)2 · Cov(x′(i−K), y′(i−K)) (D.9)

The term Cov(ΦK−1
x ,ΦK−1

y ) in Equation D.9 can be expanded using Equation D.8 and simpli-
fied using Hypothesis D.1 for all elements k in the support of the filter kernel h. In the end, the
expression for the covariance Cov(ΦKx ,Φ

K
y ) can be reduced to:

Cov(ΦKx ,Φ
K
y )(i) =

∑
k∈ΩK−1

h(k)2 · Cov(x′(i− k), y′(i− k))

Finally, since h(k)2 > 0 ∀k ∈ ΩK , we have

Cov(x(i− k), y(i− k)) < 0, ∀k ∈ ΩK =⇒ Cov(ΦKx ,Φ
K
y )(i) < 0

or alternatively

Cov(x′,y′) < 0 =⇒ Cov(h ∗ x′,h ∗ y′) = Cov(x′′,y′′) < 0

III. Backprojection

Proposition D.4. Let the backprojection operation be expressed by a transformation B : Rn → Rm
and a m × n positive matrix B containing the weights of ray-tracing and interpolation processes.
If x′′, y′′ are projection data represented as n×1 vectors, and x′′′, y′′′ are volume data represented
as m× 1 vectors, then

Cov(x′′,y′′) < 0 =⇒ Cov(Bx,By) = Cov(x′′′,y′′′) < 0 (D.10)

Proof. If x′′, y′′ are projection data represented as n × 1 vectors their backprojected volumes
in Rm are simply the multiplications Bx′′ and By′′, respectively. By applying Property D.2, the
covariance of the backprojected data is:

Cov(Bx′′,By′′) = BCov(x′′,y′′)BT

and since the elements in B are all positive,

Cov(x′′,y′′) < 0 =⇒ Cov(Bx,By) = BCov(x,y)BT︸ ︷︷ ︸
<0︸ ︷︷ ︸
<0

Finally, we can write:

Cov(x′′,y′′) < 0 =⇒ Cov(Bx,By) = Cov(x′′′,y′′′) < 0
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In summary, by using the projections images x and y as input for the concatenations of the
processes (scaling, filtration and backprojection),

(x,y)
R{·}−−−→ (R{x},R{y})

and from Equations D.6, D.7 and D.10, we have:

Cov(x,y) < 0 =⇒ Cov (R{x},R{y}) < 0
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