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Héléna Alexandra Gaspar 

Cartographie de l’espace chimique  

 

Résumé 
Cette thèse est consacrée à la cartographie de l’espace chimique ; son but est d’établir les bases 
d’un outil donnant une vision d’ensemble d’un jeu de données, comprenant prédiction d’activité, 
visualisation, et comparaison de grandes librairies. Dans cet ouvrage, nous introduisons des 
modèles prédictifs QSAR (relations quantitatives structure à activité) avec de nouvelles définitions de 
domaines d’applicabilité, basés sur la méthode GTM (generative topographic mapping), introduite 
par C. Bishop et al. Une partie de cette thèse concerne l’étude de grandes librairies de composés 
chimiques grâce à la méthode GTM incrémentale. Nous introduisons également une nouvelle 
méthode « Stargate GTM », ou S-GTM, permettant de passer de l’espace des descripteurs 
chimiques à celui des activités et vice versa, appliquée à la prédiction de profils d’activité ou aux 
QSAR inverses. 

Mots-clés : visualisation, espace chimique, QSAR, inverse QSAR, domaine d’applicabilité, GTM, 
données massives 

 

Résumé en anglais 
This thesis is dedicated to the cartography of chemical space; our goal is to establish the foundations 
of a tool offering a complete overview of a chemical dataset, including visualization, activity 
prediction, and comparison of very large datasets. We introduce new QSAR models (quantitative 
structure-activity relationship) based on the GTM method (generative topographic mapping), 
introduced by C. Bishop et al. A part of this thesis is dedicated to the visualization and analysis of 
large chemical libraries using the incremental version of GTM. We also introduce a new method 
coined “Stargate GTM” or S-GTM, which allows us to travel from the space of chemical descriptors 
to activity space and vice versa; this approach was applied to activity profile prediction and inverse 
QSAR.   

Key words: visualization, chemical space, QSAR, inverse QSAR, applicability domain, GTM, big data 
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Abstract

This thesis is dedicated to the visualization of chemical space; its purpose is to lay
the foundations for a multitask toolbox providing an overview of a chemical dataset,
including activity prediction, visualization, and comparison of large chemical libraries.
We based most of our methods on the generative topographic mapping approach or
GTM, introduced by C. Bishop et al. and mainly used until now for visualization and
clustering tasks. In this thesis, we apply for the first time GTM as a regression and clas-
sification method, and introduce several applicability domain definitions for predictive
models; we also discuss new methodologies for analyzing and comparing large chemi-
cal libraries, and show how to use GTM maps to perform inverse QSAR (quantitative
structure-activity relationship) tasks. We also introduce a new method coined "Star-
gate GTM" or S-GTM, employed to predict activity profiles from molecular descriptors
(classical QSAR), or molecular descriptors from activity profiles (inverse QSAR). GTM
variants together with our own methodologies and algorithms were implemented in the
software ISIDA/GTM developed for this thesis.
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Résumé en français

Introduction

Cette thèse est consacrée à la cartographie de l’espace chimique ; son but est d’établir les
bases d’un outil donnant une vision d’ensemble d’un jeu de données, comprenant prédic-
tion d’activité, visualisation, et comparaison de grandes librairies. Nous nous sommes
basés sur la méthode GTM (generative topographic mapping) pour développer la plu-
part de nos approches méthodologiques. Cette méthode, développée par C. Bishop, a
été jusqu’à présent utilisée pour des tâches de visualisation et de partitionnement des
données. Dans cette thèse, nous démontrons pour la première fois l’usage de la cartogra-
phie GTM comme méthode de modélisation structure-activité (QSAR), et définissons
plusieurs types de domaines d’applicabilité pour nos modèles ; nous l’appliquons égale-
ment pour la première fois à des tâches de QSAR inverses. Une partie consacrée aux
grands jeux de données concerne la comparaison de grandes librairies de composés chim-
iques grâce à la méthode GTM incrémentale. Nous introduisons également une toute
nouvelle méthode « Stargate GTM », ou S-GTM, permettant de passer de l’espace
des descripteurs chimiques à celui des activités et vice versa, utilisée d’une part pour
la prédiction de profils d’activités à partir de structures chimiques, d’autre part pour
rechercher des structures correspondant à un profil d’activité.

Définition d’un espace chimique à l’aide de descripteurs

En chémoinformatique, un espace chimique peut être considéré comme un ensemble
de molécules décrites par des descripteurs moléculaires. Ces descripteurs, typiquement
des caractéristiques structurales ou physico-chimiques des molécules, peuvent avoir des
valeurs binaires, continues ou discrètes, et leur nombre peut atteindre plusieurs mil-
liers. On imagine alors les composés chimiques comme des points dans un espace de
dimensionnalité D égale au nombre de descripteurs ; D étant généralement largement
supérieure à 3, il est impossible de visualiser un tel espace. C’est ici qu’interviennent les
méthodes de réduction de dimension, permettant de réduire le nombre de dimensions à 2
ou 3, et de créer des cartes facilement interprétables. En chémoinformatique, les méth-
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RÉSUMÉ EN FRANÇAIS

odes les plus couramment utilisées sont l’ACP (analyse en composantes principales),
les cartes de Kohonen, et depuis peu la cartographie GTM. L’ACP et la cartographie
GTM permettent de visualiser les composés chimiques comme autant de points sur une
carte en 2 dimensions. Le grand avantage de l’approche GTM est son fondement prob-
abiliste, permettant non seulement la visualisation, mais également la prédiction et la
comparaison de jeux de données, une seule molécule étant associée à une distribution
de probabilité sur la carte entière.

La Cartographie GTM et ses variantes

Figure 1: La méthode GTM, à l’aide de la fonction de projection y(x;W), projette les points
d’une grille en 2D X dans l’espace des données (xk ! yk) ; les distances entre les points {yk}
et les instances dans l’espace des données {tn} permettent alors de calculer les coordonnées des
instances {x(tn)} dans l’espace latent (tn ! x(tn)).

La méthode GTM, introduite par C. Bishop, permet de passer de l’espace en D

dimensions à un espace latent en 2 dimensions. L’espace en 2 dimensions est dis-
crétisé en un ensemble de points {x

k

} régulièrement placés sur une grille qu’on appellera
« nœuds ». Le modèle génère un ensemble de responsabilités {R

kn

} ou probabilités de
trouver une molécule t

n

près d’un nœud x
k

sur la carte en 2 dimensions. Le mod-
èle est optimisé par un algorithme espérance-maximisation, optimisant une fonction de
vraisemblance. Plusieurs variantes de la méthode GTM ont été décrites par d’autres
auteurs, notamment « kernel GTM » (KGTM) et « incremental GTM » (iGTM) ; cette
dernière est conçue pour pouvoir traiter des millions de composés de manière incré-
mentale. Tous ces algorithmes ont été implémentés dans l’outil en ligne de commande
GTMapTool développé au cours de la thèse.

Visualisation et analyse de données
Nous proposons quelques approches originales de visualisation et d’analyse de données,
parmi lesquelles les paysages d’activité et les régions d’intérêt. Comme les cartes géo-

20



RÉSUMÉ EN FRANÇAIS

!Figure 2: Exemple de paysage d’activité, représentant les valeurs de la solubilité (LogS) sur
une carte GTM construite à partir d’une base de données d’environ 2,2 millions de molécules.

graphiques, une carte provenant d’un algorithme de réduction de dimension (GTM,
ACP, Kohonen, MDS, etc.) peut être coloriée en fonction de l’activité des composés,
de leurs classes ou même de leurs descripteurs. On obtient alors des paysages d’activité
permettant d’identifier en un coup d’œil des régions particulières de l’espace chimique.
L’approche GTM, générant des responsabilités {R

kn

} associées à chaque molécule t
n

et
nœud x

k

sur la carte, permet de construire simplement ces paysages d’activité en cal-
culant une valeur moyenne d’activité ā

k

à chaque nœud x
k

. Ces paysages peuvent être
superposés pour trouver des régions autour des nœuds {x

k

} correspondant à plusieurs
critères à la fois, et relever les composés qui s’y trouvent.

Modèles de classification GTM

!Figure 3: Exemple de modèle de classification GTM, visualisable sur une carte, où les couleurs
bleues et rouges représentent deux classes (inhibiteurs ou non de l’acétylcholinestérase), et la
transparence la confiance accordée à la prédiction.

La cartographie GTM permet de construire des modèles de classification dans l’espace
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initial et latent. Dans notre article [1] paru dans Molecular Informatics en 2012, nous
avons montré comment construire ces modèles dans l’espace initial, en utilisant des jeux
de données provenant du Directory of Useful Decoys. Durant cette thèse, nous avons
également établi deux méthodologies de classification par GTM dans l’espace 2D : la
méthode du nœud le plus proche, et une méthode bayésienne globale. La méthode du
nœud le plus proche consiste à calculer la probabilité conditionnelle P (x

k

|c
i

) de chaque
nœud x

k

sachant la classe c
i

, à partir des responsabilités des composés. Les nœuds {x
k

}
sont alors coloriés en fonction de la classe la plus probable, et la classe prédite pour un
nouveau composé t

q

projeté sur la carte sera celle du nœud le plus proche. Le modèle
bayésien global utilise les responsabilités pour calculer une probabilité conditionnelle
P (c

i

|x
k

) de chaque classe c
i

sachant la position x
k

sur la carte ; la classe d’un nouveau
composé t

q

sera celle qui aura la plus grande probabilité P (c
i

|t
q

) obtenue à partir des
probabilités P (c

i

|x) et des responsabilités de t
q

. Ces méthodes de classification dans
l’espace latent ont été utilisées pour visualiser et analyser le BDDCS (Biopharmaceutical
Drug Disposition Classification System), ou système de classification selon la solubilité
et le métabolisme, dans notre article [2] paru dans le Journal of Chemical Information
and Modeling en 2013 ; la performance des modèles obtenus était proche de celle de
méthodes d’apprentissage automatique classiques.

Modèles de régression GTM

Plusieurs méthodes de régression ont été développées : une méthode de V plus proches
voisins, et deux méthodes basées sur le paysage d’activité, l’une globale, l’autre locale.
Les méthodes basées sur le paysage d’activité passent par le calcul des activités {ā

k

}
attribuées à chaque nœud sur la carte. Pour la méthode locale, l’activité prédite d’une
molécule t

q

est la moyenne des activités des V plus proches nœuds dans l’espace à
deux dimensions. L’activité prédite par la méthode globale est la moyenne des activités
du paysage pondérées par les responsabilités de la molécule t

q

. Ces méthodes ont été
comparées dans notre article [3] paru dans Molecular Informatics en 2015, utilisant
différents jeux de données : inhibiteurs de la thrombine, solubilité, et complexants des
métaux Gd3+, Lu3+, et Ca2+ ; les performances se sont révélées proches des méthodes
d’apprentissage automatique classiques.

Domaine d’applicabilité de modèles GTM

Le domaine d’applicabilité (DA) permet d’estimer dans quelle mesure on peut appliquer
un modèle QSAR. Les méthodes de réduction de dimension telles que la cartographie
GTM permettent de visualiser les zones en dehors ou à l’intérieur du DA. Plusieurs
techniques ont été explorées pour trouver les molécules en dehors du DA, comprenant
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les molécules avec une faible vraisemblance, les molécules se trouvant dans une zone
peu peuplée par l’ensemble d’entraînement, et enfin celles se trouvant dans les zones
où la prédiction de classe ou d’activité est peu sûre. Des applications de domaine
d’applicabilité sont données dans nos deux articles [3] et [2], l’un sur les modèles QSAR
et l’autre sur la classification BDDCS. L’établissement d’un DA selon la vraisemblance
existait déjà ; dans cette thèse, nous avons introduit les DA spécifiques à la classification
et à la régression GTM.

Analyse de grands jeux de données par iGTM

L’iGTM (incremental GTM) peut être utilisé pour cartographier des millions de com-
posés à la fois. La méthode GTM générant des responsabilités (probabilités a posteriori)
pour toutes les molécules sur une carte en 2 dimensions, il est possible de résumer toute
une librairie chimique par un simple vecteur de responsabilités, en cumulant les re-
sponsabilités de tous les composés qui la constituent. Ces vecteurs peuvent ensuite
être comparés avec une simple mesure de similarité, ou être réutilisés pour créer de
nouvelles cartes à un niveau supérieur d’abstraction, des « mGTMs » ou meta-GTMs,
sur lesquelles un point ne sera non plus un composé, mais une librairie. Ces vecteurs-
librairies peuvent aussi être utilisés pour évaluer l’entropie ou le niveau de dispersion
d’une librairie dans l’espace en deux dimensions. Dans notre article [4] paru en 2015
dans le Journal of Chemical Information and Modeling, nous avons appliqué ces méth-
odes à la cartographie et à l’analyse de 37 librairies chimiques, totalisant un ensemble
d’environ 2,2 millions de molécules. L’iGTM avait déjà été décrit par C. Bishop ; dans
cette thèse, nous l’appliquons aux bases de données chimiques, et introduisons le con-
cept de vecteurs-prototypes pour des bases de données et leur utilisation pour calculer
la similarité, ainsi que le concept de mGTM.

Stargate GTM et profilage d’activité

Dans cet ouvrage, nous introduisons pour la première fois la méthode S-GTM. Partie
d’une idée originale de notre co-auteur, le Prof. I. I. Baskin de l’Université d’État
de Moscou, consistant à combiner les responsabilités de deux espaces différents durant
l’entraînement de la carte, nous l’avons développée et implémentée dans notre logiciel,
afin de prédire le profil d’activité d’une molécule sur la base de ses descripteurs ou
bien, inversement, prédire des valeurs possibles de descripteurs correspondant à un
profil d’activité. Ce nouveau modèle peut être vu comme une porte permettant de
passer d’un espace à un autre. Il devient possible de faire des prédictions grâce au
passage de l’espace des descripteurs et celui des activités et vice versa. En théorie, cette
méthode pourrait même être étendue à plus de deux espaces. L’approche S-GTM a
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!
Figure 4: L’approche Stargate GTM permet de voyager de l’espace des descripteurs à celui
des propriétés et vice versa.

été notamment appliquée à des inhibiteurs de la thrombine et à des complexants de
lanthanides, ainsi qu’au profilage de l’affinité de composés ChEMBL pour 8 différentes
cibles protéiques (article soumis au Journal of Chemical Information and Modeling [5]).

QSAR inverse par GTM et S-GTM

Les relations quantitatives structure à activité (QSAR) inverses permettent de passer, à
partir d’activités désirées, à la structure moléculaire ; plusieurs structures peuvent corre-
spondre à un seul profil d’activité. La méthode GTM conventionnelle permet de passer
des activités aux descripteurs de diverses manières, la plus simple étant d’utiliser un
paysage d’activité ou une superposition de paysages d’activité pour délimiter des zones
d’intérêt où de nouveaux composés pourraient être trouvés. Notre nouvelle méthode S-
GTM peut également accomplir une telle tâche ; diverses techniques ont été explorées,
dont les plus efficaces utilisent de multiples paysages d’activité, ou l’établissement d’une
fonction de score basée sur la vraisemblance dans l’espace des descripteurs pondérée par
les responsabilités dans l’espace des activités. Durant cette thèse, ces méthodes ont été
conçues, implémentées dans un logiciel, et appliquées dans un article en cours de ré-
daction, dont le sujet est de retrouver des structures moléculaires à partir d’une ou
plusieurs affinités pour des cibles protéiques.

Le Logiciel ISIDA/GTM

Un outil en ligne de commande a été programmé pendant la thèse (GTMapTool), as-
socié à une interface graphique (GTMap) et complété par des scripts R et perl pour la
visualisation, et dont l’utilisation est décrite dans des manuels et tutoriels pour l’instant
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réservés au laboratoire. Les différentes méthodes GTM et S-GTM décrites dans cette
thèse ont été implémentées dans ce logiciel, ainsi que les procédures permettant la clas-
sification, la régression, l’optimisation de modèles par validation croisée, l’estimation
des paramètres statistiques, et les différentes visualisations. L’ensemble de ces outils
a été implémenté par l’auteur de la thèse, mis à part le visualiseur de molécules et le
logiciel de fragmentation utilisé pour générer les descripteurs.

Conclusion
Les performances de nos modèles prédictifs se rapprochent de celles des méthodes
d’apprentissage automatique classiques telles que les machines à vecteurs de support ou
les forêts d’arbres aléatoires. Cependant, la plupart de ces méthodes ne fournissent pas
de visualisation, et cette dernière peut être essentielle pour tenter de comprendre com-
ment s’organise un univers chimique. Nos modèles ne sont peut-être pas les meilleurs,
car l’on perd une certaine quantité d’information en voulant réduire le nombre de di-
mensions ; cependant, on y gagne en compréhension. Nous avons par exemple utilisé
la visualisation GTM pour mieux comprendre l’organisation de l’espace de descripteurs
SILIRID (simple ligand-receptor interaction descriptor) et cartographier les interactions
protéines-ligands [6]. Pour les grandes librairies chimiques, la méthode iGTM est un
outil d’analyse et de visualisation utile, permettant de comprendre pourquoi une li-
brairie est plus concentrée dans telle ou telle région, grâce aux paysages d’activités qui
permettent de cartographier n’importe quelle propriété d’un jeu de données. La nouvelle
méthode présentée ici, S-GTM, permet non seulement de passer d’un espace à l’autre
mais également de voir comment, en essayant de trouver des structures correspondant à
une activité ou vice versa, on se retrouve parfois devant plusieurs choix possibles. Cette
thèse et la boîte à outils qui en a résulté devraient être utiles au chémoinformaticien
pour comprendre la structure de son jeu de données.

D’autres pistes en relation avec la cartographie GTM explorées au laboratoire et non
étudiées dans cette thèse incluent l’optimisation par algorithme génétique, et la mise en
place d’une carte universelle [7] ; l’interaction de l’utilisateur avec différentes visualisa-
tions de l’espace chimique serait également une piste de recherche intéressante, et les
méthodes de QSAR inverses basées sur une méthode comme la GTM pourraient être
améliorées pour obtenir non seulement une estimation des descripteurs, mais également
une génération de structures chimiques nouvelles.
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Chapter 1

Introduction

The cartography of chemical space aims at visualizing and analyzing the chemical space
using maps. Cartography comes from the Ancient Greek qàrthc ("papyrus", "roll",
"leaf of paper") and gràfw ("write", "describe", "generate") [8]. The word does not
mean the art of making maps, but rather the art of generating and describing maps,
which are representations on a leaf of paper. The describing aspect is of paramount
importance; the map is not only a visualization tool, but also a way to convey useful
and interpretable information for a specific purpose. In the modern world, the sheets
of paper have given way to visualizations on computer screens. The cartographers of
yesteryear generated maps describing spatial information, with representations of plains,
mountains, forests or sees; on the other hand, chemical space cartographers have to map
multidimensional descriptor spaces and find a way to highlight their regions of inter-
est. In this thesis, the chemical space is described as a D-dimensional descriptor space,
where molecules are characterized by D chemical descriptors. If D is large and the
descriptor space impossible to visualize, dimensionality reduction algorithms are used
to map molecules into a two or three-dimensional space.

Which existing methods can be used for chemical space cartography?
In Chapter 3, we provide a review of existing dimensionality reduction and visualization
techniques for multidimensional spaces, with examples generated by the author of this
thesis. We describe inter alia the generative topographic mapping approach and its in-
cremental variant designed by C. Bishop and al. [9, 10, 11], as well as the kernel version
introduced by Olier et al. [12]; GTM is a non-linear dimensionality reduction algorithm,
providing a wide range of visualization possibilities and a probabilistic framework. We
used it as a basis for most of our new developments, and to visualize not only indi-
vidual molecules but also ligand-target interactions (Appendix A) and entire chemical
libraries.
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CHAPTER 1. INTRODUCTION

What is new in this thesis?
This thesis provides several contributions to chemoinformatics and chemical space vi-
sualization:

1. GTM-based QSAR methods: we present new GTM-based classification meth-
ods, perform GTM-based regression tasks for the first time, and show how to visu-
alize the resulting classification and regression models. We also introduce several
new applicability domain definitions.

2. Methodology for visualizing and comparing chemical libraries: using
probability density functions generated by GTM, an entire chemical library can
be represented with a single vector of probabilities. These vectors can be used to
evaluate distances between libraries and their dispersion in chemical space. We
also introduce the concept of mGTM maps, where libraries are represented by
single points.

3. Methodology for analyzing maps: GTM-based descriptor or activity land-
scapes (designed in collaboration with Prof. I. I. Baskin and Prof. A. Varnek)
can be used to find regions of interest in chemical spaces; several descriptor scores
for GTM maps are also introduced.

4. A new multispace dimensionality reduction algorithm: the Stargate gen-
erative topographic mapping (S-GTM) is designed for objects "living" in several
spaces, such as molecules described in both property and descriptor spaces. Ob-
jects can travel from one space to another through the S-GTM "Stargate". S-GTM
was developed with the help of Prof. I. I. Baskin and Prof. A. Varnek.

5. GTM-based inverse QSAR methods: we present new methods for performing
inverse QSAR tasks with both S-GTM and conventional GTM.

6. Our chemical space visualization software: we implemented the GTM, kernel
GTM and incremental GTM algorithms as well as our own developments into a
new software, ISIDA/GTM, comprising a command-line tool (GTMapTool) and
a graphical user interface (GTMap). We thank Dr. G. Marcou for his valuable
advices on software design.

These developments and their applications are explored in greater depth in the following
chapters. Before delving into more practical approaches, let us begin by defining the
"chemical space" concept, which is, after all, the primary focus of our research.
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Chapter 2

Chemical Space and Chemical
Universe

Space comes from the Proto-Indo-European root *spē- "to succeed, prosper, fatten" [13].
There is therefore in the word itself the idea that space "grows fat", stretches beyond
its initial limits.

*sp�- 

Figure 2.1: Space comes from the Proto-Indo-European root *spē- meaning "to prosper,
fatten".

In mathematics, a space is a set with a specific structure. The Oxford Concise
Dictionary of Mathematics [14] describes the space as "a set of points with a structure
which defines the behaviour of the space and the relationship between the points".

A chemical space [15], according to this definition, would be a set of chemical com-
pounds, with a specific structure. Chemical compounds are substances composed of two
or more atoms bound by chemical bonds that are characterized by specific properties.
An example of chemical space could then be a set of compounds organized in a tree.
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Set of elements 

Structure 

Figure 2.2: In mathematics, a space is a set of some elements with an associated structure.

Figure 2.3: A set of compounds (cyclohexane derivates) structured in a tree.

The theoretical chemical space, in its broadest definition, should encompass all pos-
sible compounds. However, in practice, we only have access to a more limited set. This
set is our chemical universe, which changes depending on the task at hand. Some ex-
amples of chemical universes include the set of DNA molecules, kinases, small drug-like
molecules, etc.

Chemical 
Universe of 

Kinases 

Structure 
Kinase Space 

Figure 2.4: The chemical universe of kinases, and an example of kinase space with a structure.

But how can we represent the elements of our chemical universe? Two well-known
approaches include representations of molecules as graphs and as sets of descriptors.
Chemical descriptors are structural or physico-chemical properties, which can be exper-
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imental, or deduced from the 2D or 3D structures. A molecule can therefore be a simple
point (vector) in a D-dimensional vector space where each dimension is characterized
by a specific descriptor. This type of chemical space then falls into the category of
vector spaces, i.e., a closed set of vectors under scalar multiplication and finite vector
addition.

If our chemical space is represented as a vector space, we assume that by performing
these two basic operations (multiplication by a scalar, and vector addition) on elements
(vectors) of our chemical universe we can obtain new points in the chemical space, which
might not correspond to any existing chemical compound at all.

Such a space could be based on D chemical descriptors and would therefore be
D-dimensional; if it were based on quantum mechanical functions, it could even be
infinite-dimensional. In this work, we will use the D-dimensional chemical space based
on D structural and/or physico-chemical descriptors as a basis for other representations,
and we will name it, as cheminformaticians usually do, the descriptor space.

Mol. Weight LogP 

2.67 

2.95 

3.24 112.21 

98.19 

84.16 

… 

27.61 11.08 … 

12.93 

14.78 

32.15 

36.70 

… 

… 

Polarizability Refractivity 

Figure 2.5: The descriptor space is a D-dimensional vector space where each molecule is
represented by a vector based on properties such as the molecular weight, the octanol/water
partition coefficient (logP), polarizability, refractivity, the number of double bonds, the number
of oxygens, etc.

For example, if the descriptors of our finite chemical universe are real values, the
descriptor space over the field R will encompass the infinite set of real vectors of length
D. If the descriptors are binary, the chemical space over the binary field F2 (the set
{0,1}, together with modulo-2 addition and multiplication [16]) will encompass the finite
set of binary vectors of length D.

Instead of representing objects of our chemical universe by an explicit set of D

descriptors, it is possible to use the dissimilarities (or similarities) between objects.
Sometimes, dissimilarity is the only available data. Kernels, which are inner products
between features, therefore similarities, are an analogous representation, but they must
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fill Mercer’s conditions, i.e., they must be positive and semi-definite. The resulting
dissimilarity space is also a vector space [17], but with N dimensions, where N is
the number of molecules in the chemical universe of interest, and also the number of
dissimilarities between one molecule and all others (including itself).

Many other representations of the chemical space are possible, such as the tree
represented in Figure 2.3. However, such representations might be hard to visualize
when dealing with a large number of compounds. In this thesis, we used the descriptor
space approach with real, binary or count data.

From this D-dimensional descriptor space, and working with a given chemical uni-
verse of interest, our goal was to produce a 2D map, which could not only be used to
visualize compounds as points in a 2-dimensional space and to find clusters (this had
already been done before), but also to predict the class or activity of a compound, to
visualize predictive models and their applicability domain (AD) and compare libraries
of molecules. To meet these goals, we applied the GTM approach [10, 9]; we also em-
ployed our new method Stargate GTM (S-GTM) to perform inverse QSAR tasks and
predict whole activity profiles. There are several other dimensionality reduction meth-
ods, as well as different types of visual structures used in information visualization;
we will review most of them in the next chapter, dedicated to existing techniques of
multidimensional visualization.
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Chapter 3

Visualize a Multidimensional Space

In this chapter, we will review some concepts and techniques linked to the visualization
of a multidimensional space: descriptors used in chemistry (corresponding to the dimen-
sions of the space), the concept of intrinsic or hidden dimensionality, some "spooky"
phenomena arising in high-dimensional spaces with the infamous curse of dimensionality,
and how to visualize the multidimensional space using simple visualization techniques
or dimensionality reduction, with some illustrative examples.

3.1 Descriptors
Descriptors are an encoding system for molecules; any value providing a piece of infor-
mation on a molecule can be considered a descriptor. However, there are many ways to
represent a molecule, and many possible descriptors for each molecular model:

1. The 1D chemical formula. The simplest molecular representation is the chem-
ical formula, such as CH

2

O
2

. Descriptors associated with this formula are atomic
properties, including atom counts or molecular weight. This representation is not
very discriminatory, considering that many molecules are made up of exactly the
same atoms.

2. The 2D molecular graph. A second possible representation is the molecular
graph, corresponding to the structural formula in chemistry, wherein a molecule is
drawn as a set of vertices (atoms) and edges (bonds). Associated descriptors (2D
descriptors) include inter alia connectivity information or properties predicted
from the 2D structures, such as calculated LogS and LogP.

3. The 3D molecular structure. A third possible representation is the 3D molec-
ular structure; the associated descriptors derive from the 3D representation of
molecules, for instance the van der Waals volume or the density. A possible 3D
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model is the lattice representation, were the 3D structure is embedded in a grid
and interacts with a probe. Associated descriptors can be based, for example, on
molecular interaction fields (GRID [18], CoMFA [19]), or on 3D pharmacophoric
fingerprints.

Another somewhat counter-intuitive classification system discriminates "0D" descrip-
tors (atom counts, bond counts, molecular weight), "1D" descriptors (list of fragments),
"2D" descriptors (connectivity), "3D" descriptors (geometry) and "4D" descriptors (3D
structure with conformation information). Some descriptors may belong to more than
one of these different classes.

In this thesis, we used several sets of chemical descriptors: MACCS keys from MDL
Information Systems, ISIDA SMFs (substructural molecular fragments) [20], MOE 2D
descriptors [21], or VolSurf+ descriptors [22]. MACCS fingerprints are bit strings en-
coding the absence or presence of specific structural groups; ISIDA SMFs are 2D de-
scriptors which involve counting the number of occurrences of a specific graph pattern
in a molecular structure. MOE 2D descriptors include connectivity information, prop-
erties calculated from the 2D structures, or occurrences of specific structural groups;
VolSurf+ 3D descriptors are derived from molecular interaction fields generated by the
GRID software.

There is no best set of descriptors (yet) to define molecules in all circumstances.
However, there might be a best set of descriptors for a given problem. For predictive
models, descriptors are generally optimized to achieve the best predictive performance,
by using some acquired knowledge on the predicted property (e.g., which features are
relevant), and/or by statistical validation (see Chapter 6 on optimization procedures).

3.2 Apparent and Intrinsic Dimensionality
In a descriptor space, the dimensionality is simply defined as the number D of descrip-
tors. The choice of descriptors is always partly arbitrary; we may choose to represent
molecules by molecular fragments, experimental properties, and so on. But once we
have chosen all our descriptors, we obtain a specific descriptor space with a specific
dimensionality.

But is this dimensionality the "real one" for this descriptor space? In other words,
do some descriptors convey superfluous information? They often do; in fact, this di-
mensionality is only apparent.

The intrinsic dimensionality of a dataset, or the minimum number of features needed
to describe it given an initial set of descriptors, can be found using diverse methods [23],
divided into local and global approaches. The local and global PCA approaches are
certainly the easiest to explain and apply. The global PCA approach consists in counting
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the number of non-null eigenvalues of the entire data covariance matrix; the local PCA
approach or Fukunaga-Olsen’s algorithm [24] involves performing a Voronoi tesselation
or clustering of the data, and counting the number of normalized eigenvalues of the
covariance matrix in each Voronoi region.

Knowing the intrinsic dimensionality might be useful when, for example, performing
dimensionality reduction using a method like PCA, which actually discards some de-
scriptor information for visualization; the smaller the intrinsic dimensionality, the lower
the risk of losing important information when visualizing a PCA plot. Many dimension-
ality reduction methods are based on the assumption that the data lies in the proximity
of a linear or non-linear manifold of low dimensionality; if the intrinsic dimensionality
is small enough, the manifold assumption might not be completely incorrect. However,
the instrinsic dimensionality is not a magical number that can be found easily; it is a
concept which exists within the framework of the method that defines it. Many con-
ceptually different methods exist and give different estimations; the best policy could
be to try some of them and find a consensus value.

Although the intrinsic dimensionality is an important concept that should be kept
in mind, when speaking of "dimensionality" we will mainly refer to the apparent dimen-
sionality.

3.3 The Curse of Dimensionality

One of the biggest threats a data scientist has to face is the curse of dimensionality. This
concept was introduced by Bellman [25] in 1957 while studying dynamic optimization,
but is widely used to encompass all the phenomena arising from working with data in
a high-dimensional space.

The data scientist’s simple desire is to find relationships between data points; how-
ever, data points in a high-dimensional space, if not in a sufficient number, may be
completely isolated in the considerable volume of the space, which increases exponen-
tially with the number of dimensions. If n points at least are necessary to sample a
one-dimensional space, then nD points will be necessary to sample a D-dimensional
space. In practice, we never have that many points to train a model, and this may limit
its predictive ability; according to the Hughes Effect, for small datasets, the predic-
tive accuracy of a model decreases as the dimensionality increases beyond the optimal
dimensionality; on the other hand, the accuracy increases as the number of points in-
creases. This phenomenon was named after G. Hughes who highlighted it for pattern
classifiers in 1968 [26].

A possible representation of a high-dimensional space could be the hypercube. In
3D, most of a uniformly distributed 3D dataset will be near the center of the cube [27];
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Figure 3.1: Ratio of the volume of the unit hypersphere to the unit hypercube as a function
of dimensionality.

however, seemingly opposed to common sense, the data in a hypercube will mainly
lie in its corners. Why? Because the volume of a hypercube is concentrated near its
corners. This can be observed by plotting the ratio of the volume of the unit hypersphere
with radius r = 1 to the volume of a unit hypercube with side length 2r, as shown in
Figure 3.1. In 2D, 78% of the unit "hypercube" volume is within the hypersphere; 52%
in 3D, and only 4% in 7D, which means than in 7D 96% of the volume is in the corners
of the hypercube. With no more than 10 dimensions, there is almost no volume at the
center of the hypercube.

Another example of the curse is the nearest neighbors problem in high-dimensional
spaces, which has an impact on the performance of k-NN methods. The number of
nearest neighbors of a point on a hypergrid grows with the number of dimensions: there
are two equivalent nearest neighbors (at the same distance from the point) on a one-
dimensional grid, four on a two-dimensional grid, and 2⇥D on a D-dimensional grid.
Therefore, the concept of neighborhood and similarity may become irrelevant in spaces
with a sufficiently high dimensionality.

To avoid the curse or rather diminish its effects, the two most common solutions
are feature selection and dimensionality reduction. With feature selection [28, 29],
descriptors are selected to decrease the noise due to irrelevant and redundant descriptors,
yield a better model generalization and reduce overfitting; for example, the feature
selection step can be essential for GWASs (genome-wide association studies), to select
the most important single nucleotide polymorphisms associated with specific traits [30,
31, 32]. Feature selection can also be used as a preprocessing step for dimensionality
reduction methods. The selection may be supervised (e.g., select descriptors which
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correlate the most to a class or activity to be predicted), or unsupervised (e.g., remove
descriptors which have a high correlation to each other).

Dimensionality reduction methods, on the other hand, do not merely remove irrele-
vant descriptors; they use the information contained in all descriptors and find a smaller
number of new, transformed features; they also provide a way to visualize the data in a
reduced 2D or 3D space, if only 2 or 3 of these new features are generated.

3.4 Dimensionality Reduction

When the number of dimensions is too large, it may be useful to use dimensionality
reduction methods that will generate a smaller number of new features. These methods
provide a way to avoid the dimensionality curse as well as computational costs that
may occur when working with high-dimensional data. But to us, their most appreciated
quality is the 2D (or 3D) visualization, which provides an overview of the data and a way
to find (and visualize) outliers. There are two main types of dimensionality reduction
techniques: linear and non-linear. Linear methods usually assume the dataset lives
near a low-dimensional linear manifold; non-linear methods are used to investigate
more complex data structures by assuming that data points lie near a low-dimensional
non-linear manifold. We will give illustrations of each of the exposed methods using
some R and python packages (except for GTM and GTM variants, for which we used
our own implementations), always using the same dataset for comparison purposes: 100
inhibitors (red class) and 100 decoys (blue class) of the enzyme acetylcholinesterase,
described by ISIDA fragment descriptors (atoms and bonds, length 2-8) [20]. The
dataset was randomly selected from the DUD database (directory of useful decoys) [33].

3.4.1 Linear Dimensionality Reduction

The goal of dimensionality reduction methods is to project N data points of dimension-
ality D (data matrix T) into a space with a lower dimensionality L (data matrix X):

T 2 RN⇥D ! X 2 RN⇥L (3.1)

Linear dimensionality reduction achieves this goal by applying a linear transformation
U to the N data vectors in D-dimensional space:

X = TU (3.2)

where U 2 RD⇥L is optimized by an objective function. In this section, we will suc-
cinctly explore some linear dimensionality reduction methods: principal component
analysis (PCA), canonical correlation analysis (CCA), independent component analysis
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(ICA), linear discriminant analysis (LDA), linear multidimensional scaling (MDS) and
exploratory factor analysis (EFA).

Table 3.1: Some linear dimensionality reduction techniques.

Name Goal When to apply
PCA Minimizes reconstruction error, max. variance General
CCA Maximizes correlation between projections Several spaces
LDA Maximizes interclass/intraclass variance Labeled data
ICA Maximizes independence of components Signal separation
MDS Preserves initial distances General
EFA Optimizes factors influencing variables Identify factors

3.4.1.1 PCA

The most famous linear dimensionality reduction method is principal component anal-
ysis or PCA [34]. For PCA, the linear transformation is performed by the matrix
U 2 RD⇥L of the eigenvectors of the data covariance matrix with the L highest gl-
seigenvalues. The eigenvectors give the directions and eigenvalues the amount of data
variance. The objective of the method is to maximize the variance of the projected
data, or equivalently minimize the reconstruction error:

E =
�

�T�XUT

�

�

2 (3.3)

where T is the original data and XUT the reconstructed data with L eigenvectors. A
PCA can be performed by first centering the data and then applying a singular value
decomposition to find the eigenvectors and eigenvalues of the data covariance matrix.
There is no supplementary parameter to tune for PCA.

3.4.1.2 Linear MDS

The goal of metric MDS or metric multidimensional scaling [35, 36] in dimensionality
reduction is to obtain a projection which preserves as much as possible the distances
between data points in initial space; to achieve this goal, the algorithm minimizes
the squared error between distances in initial space {d(i, j)} and in the new lower-
dimensional space {d0(i, j)} measured between the ith and j th objects, or "stress"
function. An example of stress function would be:

E =

s

X

i<j

(d(i, j)� d0(i, j))2 (3.4)
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(a) MDS: Euclidean. (b) MDS: Manhattan. (c) MDS: Jaccard.

Figure 3.2: MDS projections with different dissimilarity measures: (a) Euclidean (gives the
same result as PCA or Kernel PCA), (b) Manhattan, (c) Jaccard. The dataset contains in-
hibitors (red) and decoys (blue) of acetylcholinesterase, described by ISIDA fragment descrip-
tors.

Metric MDS preserves initial space distances, whereas non-metric MDS only preserves
the rank order of distances. MDS with Euclidean distances gives the same results as
PCA (or KPCA with a linear kernel). However, any distance measure can be used with
MDS. Three examples using different dissimilarity measures are shown in Figure 3.2
(generated in R). There is no supplementary parameter to tune for MDS; however,
results may vary depending on the dissimilarity type used to construct the distance ma-
trix. The basic principle of MDS is one of the corner stones of dimensionality reduction,
and has been used as a foundation for several dimensionality reduction methods, such
as Sammon mapping or SPE [37].

3.4.1.3 CCA

Figure 3.3: CCA (canonical correlation analysis) map example representing inhibitors (red)
and decoys (blue) of acetylcholinesterase, optimized using both ISIDA and MOE descriptor
spaces.
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The goal of canonical correlation analysis or CCA [38] is to maximize the correlation
between two linear combinations of variables. Let our data be described in two spaces
so that we have the TA matrix in Space 1 and the TB matrix in Space 2. Then, two
transformation will be performed:

X
A

= T
A

U
A

(3.5a)

X
B

= T
B

U
B

(3.5b)

U
A

and U
B

are optimized by maximizing the correlation between the two projections:

⇢ = max
UA,UB

corr(T
A

U
A

,T
B

U
B

) (3.6)

X
A

and X
B

are called the canonical variates. This algorithm is useful when objets
are described in two different spaces, e.g., molecules described in two descriptor spaces
or molecules described in an experimental activity space and a descriptor space. The
visualization of individual objects can be made by plotting the coordinates of the L

first canonical variates; for scatterplots, if L = 2, axes will be defined by x1

A

and x2

A

(or
x1

B

and x2

B

). This method does not require to tune any other parameter. We provide
an example of CCA dimensionality reduction for acetylcholinesterase using two spaces
(Figure 3.3, generated with scikit-learn [39]): the space of ISIDA descriptors (atoms
and bonds, length 2-8) and the space of 186 MOE 2D descriptors.

3.4.1.4 LDA

(a) LDA (barplot). (b) LDA (scatter plot).

Figure 3.4: One-dimensional LDA map of inhibitors (red) and decoys (blue) of acetyl-
cholinesterase, described by ISIDA fragment descriptors: (a) bar plot visualization (b) scat-
terplot visualization.

Linear discriminant analysis or LDA [40, 41] can be used for classification tasks, with
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labeled data. LDA maximizes the interclass variance

intraclass variance

ratio, and projects the data into an
L-dimensional space with L = N

C

�1, where N
C

is the number of classes. And example
of LDA for a dataset with two classes (inhibitors and decoys of acetylcholinesterase) is
given in Figure 3.4 (generated with scikit-learn [39]); the model can be represented as
a histogram since for two classes L = 2� 1 = 1. LDA can also be used as a supervised
linear classifier, and has no supplementary parameter to tune.

3.4.1.5 ICA

Figure 3.5: ICA (Independent Component Analysis) map example representing inhibitors
(red) and decoys (blue) of acetylcholinesterase, described by ISIDA fragment descriptors.

Independent component analysis or ICA [42] is mainly used in blind signal sepa-
ration but can also be employed for dimensionality reduction. A typical case of blind
signal separation is the "cocktail party problem", where individual voices engaged in
simultaneous conversations have to be differentiated, i.e., the source signals have to be
retrieved. ICA is dependent on a random initialization but otherwise has no parameter
to tune. An example of visualization is given in Figure 3.5 (made with scikit-learn [39]).

3.4.1.6 EFA

Exploratory factor analysis or EFA is used to build linear generative latent variable
models, by means of a linear mapping with Gaussian noise [43], so that, for a data
matrix T:

T�M = XUT +E (3.7)

where X are the latent variables or factors, U the factor loading matrix, E Gaussian
noise and M the bias. Each factor loading’s square is the percent of variance of a variable
explained by a factor. The factor loadings can be fitted by maximum likelihood. EFA
gives results close to PCA, but its philosophy is quite different: in PCA, the initial
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Figure 3.6: EFA (exploratory factor analysis) map example representing inhibitors (red) and
decoys (blue) of acetylcholinesterase, described by ISIDA fragment descriptors.

data is represented by a linear combination of factors (descriptive model), whereas in
FA, the factors are represented as a linear combination of initial variables (generative
model). In PCA, all the data variance is analyzed, whereas in EFA only the common
variance is accounted for. We show here an EFA example (Figure 3.6) obtained with
scikit-learn [39]. EFA is to be distinguished from CFA (confirmatory factor analysis),
which aims at confirming a hypothesized structure instead of finding the latent structure.
Another family of dimensionality reduction methods related to factor analysis is NNMF
(non-negative matrix factorization) [44] for non-negative input matrices, which uses
non-negativity constraints.

3.4.2 Non-Linear Dimensionality Reduction

Table 3.2: Some non-linear dimensionality reduction techniques.

Name Key concept
KPCA Performs an eigendecomposition of a kernel
Sammon Preserves initial distances, favors small distances
Isomap Preserves geodesic distances
LLE Performs linear local approximations
Laplacian Eigenmaps Performs an eigendecomposition of the graph Laplacian
t-SNE Minimizes divergence between initial and latent distributions
Autoencoder Learns to reconstruct the data
SOM Topology-preserving neural network
GTM Fits iteratively a manifold to the data, probabilistic SOM

In this section, we will review some non-linear dimensionality reduction techniques
shown in Table 3.2, including KPCA, Sammon mapping, Isomap, locally linear em-
bedding (LLE), Laplacian Eigenmaps, autoencoders, self-organizing maps (SOMs) and
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generative topographic mapping (GTM). Sammon mapping is an MDS variant; Isomap,
LLE and Laplacian Eigenmaps are based on the construction of a k -NN graph and are
closely related to KPCA; t-SNE is a distance-preserving, probabilistic method; Autoen-
coders, SOM and GTM are based on neural networks. For all these dimensionality re-
duction techniques, the underlying assumption is that the data lies on a low-dimensional
non-linear manifold embedded in the D-dimensional descriptor space. Most of them rely
on preserving the neighborhood of points, and aim at unrolling the manifold to obtain
a lower-dimensional visualization.

3.4.2.1 KPCA

PC 1 (21.1%)

PC
 2

 (1
3.

2%
)

(a) PCA.
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(b) KPCA: RBF kernel.
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(c) KPCA: polynomial kernel.

Figure 3.7: (a) Conventional PCA, compared to kernel PCA maps with (b) an RBF ker-
nel and (c) a polynomial kernel. The dataset contains inhibitors (red) and decoys (blue) of
acetylcholinesterase, described by ISIDA fragment descriptors.

Kernel PCA or KPCA [45] is very similar to PCA; however, instead of working
with a data matrix T of N instances and D dimensions, PCA operations are performed
on an N ⇥ N kernel K that has been previously centered. The kernel matrix can be
considered as a similarity matrix which is positive semi-definite and symmetric. The
kernel approach allows us to work in an implicit feature space via the kernel trick: data
points t are mapped into a feature space of higher dimensionality with a function �(t)

that is never computed; instead, the inner product between objects in feature space is
reduced to a kernel function in input space:

K(t
i

, t
j

) = �(t
i

)�̇(t
j

) (3.8)

which results in an N ⇥ N kernel K characterizing objects in the possibly infinite-
dimensional feature space. In other words, the goal is to map the data into a high-
dimensional space using a kernel function. The reason for using the kernel trick is that
it is easier to separate linearly objects in a space with a higher dimensionality; therefore,
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this approach is particularly interesting for non-linear clustering (e.g., with k -means).
Examples of KPCA maps (obtained with the R package kernlab [46]) for inhibitors and
decoys of acetylcholinesterase, described by ISIDA fragment descriptors, are given in
Figure 3.7; RBF and polynomial kernels were used; the � parameter regulating the
width of the RBF kernel was set to 0.2. It should be noted that a PCA model can
been seen as a KPCA model with a linear kernel [45] computed from centered data.
Depending on the kernel, different parameters should be tuned. For the RBF kernel, it
is the � parameter:

K(t
i

, t
j

) = exp
⇣

�� kt
i

� t
j

k2
⌘

(3.9)

For the polynomial kernel, the user can tune the degree d, a constant cste and eventually
the slope a:

K(t
i

, t
j

) =
�

atT
i

t
j

� cste
�

d (3.10)

3.4.2.2 Sammon Mapping

(a) Sammon: Euclidean. (b) Sammon: Manhattan. (c) Sammon: Jaccard.

Figure 3.8: Sammon maps with different dissimilarities: (a) Euclidean, (b) Manhattan, (c)
Jaccard. The dataset contains inhibitors (red) and decoys (blue) of acetylcholinesterase, de-
scribed by ISIDA fragment descriptors.

Sammon mapping is a non-linear variant of MDS; it is the same algorithm, except
that the stress function to be minimized is normalized by the initial space distances [47]:

E =
1

P

i<j

d(i, j)

X

i<j

(d(i, j)� d0(i, j))2

d(i, j)
(3.11)

where {d(i, j)} are the distances in initial space and {d0(i, j)} the distances in the re-
duced space measured between the ith and j th objects. By dividing by the initial space
distances, the optimization favors small distances (larger stress function) over large
distances; as the non-linearity in data is better approximated by smaller distances, the
method integrates some non-linear information in this way. Three examples using differ-
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ent dissimilarity measures are used in Figure 3.8 (made with the R package MASS [48]).
As MDS, Sammon mapping does not require a parameter optimization, but results may
vary depending on the chosen dissimilarity type.

3.4.2.3 Isomap

(a) Isomap: Euclidean. (b) Isomap: Manhattan. (c) Isomap: Jaccard.

Figure 3.9: Isomaps with 30 neighbors and different dissimilarity measures: (a) Euclidean,
(b) Manhattan, (c) Jaccard. The dataset contains inhibitors (red) and decoys (blue) of acetyl-
cholinesterase, described by ISIDA fragment descriptors.

Isomap [49, 50] is also an MDS-derived method, which uses geodesic distances from
neighborhood graphs, and learns the global geometry of a dataset by using local metric
information. Isomap can be seen as special case of KPCA with geodesic distances as
kernel. The Isomap algorithm consists in three steps:

1. Retain only dissimilarities of k nearest neighbors for each object and draw a graph
where all data points are connected to their nearest neighbors (k-NN graph); the
weight of edges between neighboring vertices (objects) i and j is equal to the
initial space distance d(i, j).

2. Compute shortest path distances (matrix G) between all points or "geodesic"
distances minimizing the sum of weights of edges (d(i, j)) between the graph’s
vertices, with, e.g., Dijkstra’s algorithm for undirected graphs [51].

3. Perform a classical MDS preserving the geodesic distances G.

The Isomap’s output we are interested in are the L eigenvectors with best eigenvalues of
the geodesic distance matrix G. The Isomap model depends on the number of neighbors
k chosen to build the k-NN graph. Three examples using different dissimilarity measures
are used in Figure 3.9, with 30 neighbors (made with the vegan R package [52]).
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Figure 3.10: LLE (locally linear embedding) map example representing inhibitors (red) and
decoys (blue) of acetylcholinesterase, described by ISIDA fragment descriptors.

3.4.2.4 LLE

Locally linear embedding or LLE [53] computes an embedding preserving the neigh-
borhood of data points. LLE assumes that data points in the initial space and their
neighbors are close to a locally linear patch of manifold. The dimensionality reduction
is performed in 3 steps:

1. The k nearest neighbors {t
k

} of each point t
i

are computed (k -NN graph).

2. The weights {V
ik

} that best describe the data points {t
i

} as a combination of
their neighbors {t

k

} are found by minimizing the following cost function:

C(V) =
X

i
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3. Then, the projection to the L-dimensional space is done by finding the low-
dimensional coordinates of data points {x

i

} (with neighbors {x
k

}) minimizing
the following cost function:
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Therefore, the data points can be reconstructed from a combination of their neighbors
using the same weights in the initial or low-dimensional space. As Isomap, LLE can
be seen as a KPCA variant, and has a parameter k (the number of nearest neighbors
used to construct the k-NN graph) that must be tuned. An example of the method as
implemented in scikit-learn [39] is given in Figure 3.10, using 30 neighbors.
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3.4.2.5 Laplacian Eigenmaps

Figure 3.11: Laplacian Eigenmaps example representing inhibitors (red) and decoys (blue) of
acetylcholinesterase, described by ISIDA fragment descriptors.

As LLE and Isomap, the Laplacian Eigenmaps technique [54] begins by constructing
a neighborhood graph (k -NN graph). It builds a weighted adjacency matrix with a heat
kernel or binary weights, and the embedding is computed from the normalized Laplacian.
The algorithm takes 3 steps:

1. The k nearest neighbors t
k

of each point t
i

are computed (k -NN graph).

2. The weights V are computed, using a heat kernel:

V
ij

= exp
⇣

�� kt
i

� t
j

k2
⌘

(3.14)

where � is a tunable parameter. Weights V
ij

can also be set as equal to 1 if t
i

and t
j

are connected in the k -NN graph and equal to 0 otherwise.

3. The projection of points into the lower-dimensional space is performed by the
eigen-decomposition of the graph Laplacian:

LU = lDU (3.15)

where D
ii

=
P

j

V
ij

is the degree of vertex i, L is the Laplacian matrix L = D�V,
l the eigenvalues and U the eigenvectors used for the embedding in the space of
lower dimensionality.

Laplacian Eigenmaps, as LLE and Isomap, could therefore be interpreted as a variant
of KPCA, with a tunable parameter k, the number of neighbors to build the k -NN
graph; another parameter has to be taken into account (�) if the heat kernel is chosen.
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An example of dimensionality reduction with Laplacian Eigenmaps as implemented in
scikit-learn [39] is given in Figure 3.11.

3.4.2.6 t-SNE

Figure 3.12: t-SNE (t-distributed stochastic neighbor embedding) example representing in-
hibitors (red) and decoys (blue) of acetylcholinesterase, described by ISIDA fragment descrip-
tors.

t-SNE or t-distributed stochastic neighbor embedding [55], a variant of SNE [56]
(stochastic neighbor embedding), is an efficient method for datasets which have more
than one embedded manifold; it focuses on local data structures, and is a good choice
for separating clusters. As many MDS-related methods, the goal of SNE and t-SNE is
to preserve dissimilarities in the original data.

Conventional SNE measures Gaussian joint probabilities in the original space so that
the probability p

ij

is proportional to the similarity between points t
i

and t
j

; Gaussian
"induced" probabilities q

ij

are also measured for each pair of points in low-dimensional
space x

i

and x
j

. In other words, the similarities between points in the initial space and in
the latent space are translated into probabilities. The position of points in latent space is
updated by minimizing the Kullback-Leibler divergence [57] between joint probabilities
in the input and latent space using gradient descent; the KLB divergence can be related
in this case to the MDS error function.

In t-SNE, the probabilities q
ij

between each pair of points in low-dimensional space
are computed using a Student t-distribution instead of a Gaussian, so that points would
not be gathered at the same place (crowding effect): the Student t-distribution has
heavy tails that allow to represent moderate distances in the initial space by larger
distances on the 2-dimensional map. t-SNE also uses a symmetrized version of the
cost function. SNE and t-SNE have several parameters: the perplexity of Gaussian
distributions in the initial high-dimensional space, the learning rate, and eventually the
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early exaggeration, a multiplication factor for probabilities in the initial space at the
early stages of the optimization process. The perplexity can be related to a measure
of the number of neighbors (cf. Isomap); the learning rate used for gradient descent
has a great impact on the shape of the map, and the early exaggeration improves the
separation of clusters. We show a t-SNE example in Figure 3.12, computed with the
scikit-learn [39] implementation, with learning rate = 100, perplexity = 30, and early
exaggeration = 6.

3.4.2.7 Autoencoders

Central layer: 
2 latent variables 

Input Output 
encod

e decode 

Figure 3.13: Autoencoders are symmetric multilayer neural networks that learn to reconstruct
the data; in this diagram, 2 central hidden units are used to reconstruct the 3 initial variables.

Figure 3.14: Autoencoder dimensionality reduction example representing inhibitors (red) and
decoys (blue) of acetylcholinesterase, described by ISIDA fragment descriptors.

Autoencoders [58] are symmetric multilayer neural networks with a small central
layer trained to encode and reconstruct the initial dataset (Figure 3.13). In other
words, the autoencoder learns the identity matrix. With the small central layer, the net
automatically finds a small number of hidden features in the dataset. The autoencoder
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uses backpropagation to adjust its weights and to optimize its cost function so that
its input (initial data) becomes as similar as possible to its output. The autoencoder
is an attractive method, very simple to understand, but with several parameters to
tune. In Figure 3.14 we show an example of dimensionality reduction performed by
the simplest type of network (implemented in the autoencoder R package [59]) with
only 3 layers (input, hidden, output), and 2 hidden units corresponding to the number
of "latent" dimensions. This network, with 3 layers and 2 hidden units with logistic
activation functions depends on four other parameters: the random weight initialization
(here random values drawn from N (µ = 0,�2 = 0.001)), a weight decay parameter or
regularization coefficient � (here set to 2.10�4), and, since we used a sparse autoencoder,
two other parameters for the sparsity: the weight of the sparsity penalty term in the
autoencoder objective (set to 6), and the sparsity parameter (set to 0.5).

3.4.2.8 SOM

    [0, 0.1[ 
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    [0.25, 0.5[ 

    [0.5, 0.75[ 

    [0.75, 1.0] 

Class  1 Class  2
Figure 3.15: Self-organizing map (SOM) example representing the density of inhibitors (red)
and decoys (blue) of acetylcholinesterase at each node of the SOM grid by the node size.

Like Autoencoders, Kohonen maps or self-organizing maps (SOMs) [60] are neural
networks, inspired by the structure of biological neurons. The particularity of SOM
comparing to other neural networks is the conservation of the initial space topology;
instances closer in the initial space will be closer on the 2D map. The algorithm begins
by arranging artificial "nodes" on the 2D map, usually on a regular grid; to each node is
associated a weight vector of dimension D, the dimension of the initial space. Distances
can then be computed between the nodes’ weight vectors and the instances in initial
space; the node closest to each data instance is retrieved, and its weights as well as those
of its neighbors are updated to move closer to the data instance. The final position of
a data point on the 2D map will be at the same position as its best matching node.
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As represented on Figure 3.15 showing a SOM map computed with the kohonen [61]
package, the representation is usually that of a regular grid; different ways were designed
to better visualize the proportion of data points mapped at each node; here, we only
represent higher populations by a higher color intensity and color each node by the
major class. SOM has 4 main parameters: the learning rate, the neighborhood size,
the strategy used to modify the learning rate and neighborhood size as the training
progresses, and the resolution (number of nodes) (in Figure 3.15, set to 10⇥ 10). The
SOM can be randomly initialized (this is the case in Figure 3.15), or the weights can
be chosen from the principal components (PCA initialization).

3.4.2.9 GTM

GTM [10, 9] is the probabilisitc counterpart of SOM; it is a generative latent variable
model (it assumes that data is generated from a small number of latent variables), and
is also non-linear, with a strong probabilistic basis, and has a log likelihood objective
function which is optimized during training. It depends on 4 parameters: the map reso-
lution or number of nodes K, the number of RBF functions M , a factor influencing the
width of RBF functions w, and a regularization coefficient �. This method provided us
with a probabilistic framework, making it possible to build classification and regression
models and to perform various other tasks such as chemical database analysis or inverse
QSAR-like approaches. Its main drawback is a large number of parameters to tune.
The method is explained in further detail in the next section.

3.4.3 Visual Separation of Classes

For information purposes, we provide the balanced accuracy of all the plots we have
shown previously (Table 3.3), using the labeled dataset of 100 inhibitors and 100 decoys
of acetylcholinesterase described by ISIDA descriptors (atoms and bonds, length 2 to
8). To see how the balanced accuracy is computed, see Chapter 6; the BAC value can
only take values between 0 and 1; the model is inefficient for BAC < 0.5 and classifies
instances perfectly when BAC = 1. Here, we don’t use the balanced accuracy as an
actual performance measure but as an indicator of the visual separation of classes on
our fitted maps. Therefore, this is not in any way a comparative study of classification
performances of all the previously shown techniques; no optimization of parameters was
performed. We attributed a "predicted" class to each 2D point by finding the most
representative class among its k nearest neighbors (k -NN classification), and compared
this fitted prediction to the experimental classes of these compounds. Most of these
maps show a good separation, especially SOM, GTM, kernel PCA with an RBF kernel
and t-SNE.
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Table 3.3: Visual separation of classes on the maps shown in this chapter, measured by
balanced accuracy BACFIT .

Method Figure BAC
FIT

MDS (Euclidean), PCA Figure 3.2a 0.79
MDS (Jaccard) Figure 3.2c 0.77
MDS (Manhattan) Figure 3.2b 0.83
ICA Figure 3.5 0.87
CCA Figure 3.3 0.87
EFA Figure 3.6 0.79
KPCA (RBF) Figure 3.7b 0.90
KPCA (Polynomial) Figure 3.7c 0.84
Sammon (Euclidean) Figure 3.8a 0.76
Sammon (Jaccard) Figure 3.8c 0.60
Sammon (Manhattan) Figure 3.8b 0.66
Isomap (Euclidean) Figure 3.9a 0.79
Isomap (Jaccard) Figure 3.9c 0.76
Isomap (Manhattan) Figure 3.9b 0.78
Locally Linear Embedding Figure 3.10 0.79
Laplacian Eigenmaps Figure 3.11 0.83
t-SNE Figure 3.12 0.91
Autoencoder Figure 3.14 0.80
SOM Figure 3.15 0.92
GTM Figure 3.17a 0.90
KGTM (RBF) Figure 3.17b 0.89
KGTM (Polynomial) Figure 3.17c 0.87
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3.5 Generative Topographic Mapping

The generative topographic mapping or GTM [10, 9] was introduced by Bishop et al.
in the 1990s. It provides a probabilistic framework for Kohonen maps and guarantees
convergence, which can be checked with an objective function. GTM is a manifold-based
non-linear dimensionality reduction method, for which there is a topological ordering:
points on the manifold in the low-dimensional space will also be close to their mappings
in high-dimensional space. The method is "generative", for it is assumed that the
D dimensions are generated by a smaller number of latent or hidden variables. The
probabilistic framework of GTM allowed us to build regression and classification models
and create different types of data visualization. There are many variants of GTM; for
small datasets, the original algorithm is sufficient; however, for large amounts of data,
the incremental version (iGTM), also described by Bishop [11], is a valuable solution.
For data in similarity space, the kernel algorithm was introduced by Olier and al. [12]; an
LTM algorithm was introduced by Kaban and al. to deal with binary or count data [62],
and was applied by Owen and al. to the visualization of molecular fingerprints [63];
finally, we introduce in this thesis a multispace version of GTM or "Stargate GTM"
in Chapter 11, which can be used as a multi-space dimensionality reduction method
(as CCA), but also as a supervised regression technique and for navigating between
different descriptor spaces. In this section, we use most of the time the same symbols
as in Bishop’s article.

3.5.1 Original GTM Algorithm

GTM performs dimensionality reduction from the initial D-dimensional descriptor space
to the viewable 2-dimensional latent space. A regular grid of K nodes covering the
2-dimensional space is generated, and each node x

k

is mapped to a manifold point
y
k

embedded in the D-dimensional space: x
k

! y
k

(Figure 3.16), using the function
y(x;W) that maps points from the two-dimensional latent space into the D-dimensional
data space:

y(x;W) = W�(x) (3.16a)

Y = W�T (3.16b)

where Y is the K ⇥ D manifold, W is the D ⇥ M parameter matrix, and � is the
M ⇥K radial basis function matrix with M RBF centers m

m

:

�
mk

= exp

 

�

�x
k

� m
m

�

�

2

2�2

!

(3.17)
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In our implementation, �2 is initialized as the average squared Euclidean distance ⌧

between two RBF centers multiplied by a tunable factor w, and W is initialized as
follows:

W = UXT��1 (3.18)

where U is a matrix containing the two first eigenvectors and X the K ⇥ 2 matrix
comprising K grid nodes; W is initialized in this way to minimize the sum-of-squares
error between the GTM mapping of latent points and the PCA mapping (cf. Bishop’s
article [9] for further detail); ��1 is initialized as the third PCA eigenvalue. Therefore,
in order to correctly position the manifold in the initialization step, a PCA step has to
be performed. The points y

k

on the manifold Y are the centers of normal probability
distributions (NPD) of t:

p(t|x
k

,W,�) =
�

2⇡

D/2

exp

✓

��

2
ky

k

� tk2
◆

(3.19)

where t
n

is a data instance and � is the common inverse variance of these distributions.
An optimal GTM map corresponds to the highest log likelihood L(W,�), optimized by
EM (expectation-maximization) [64]. The formula for the complete log likelihood is:

L(W,�) =
X

n

ln

(

1

K

X

k

p(t
n

|x
k

,W,�)

)

(3.20)

� and W are optimized during the maximization step:
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where I is the identity matrix and G a K ⇥ K matrix with elements G
kk

=
P

n

R
kn

.
The four GTM parameters that can be tuned by the user are the number M of RBFs,
the number of nodes K, a multiplication factor w for the RBF width (Figure 3.16),
as well as the regularization parameter � for the weight matrix W, which is used to
avoid overfitting and can be seen as a smoothness parameter for the manifold. In our
implementation, we place RBF centers

�

m
m

 

and nodes {x
k

} on two square grids in
the 2D space; the parameters set by the user are actually

p
M and

p
K, to obtainp

M ⇥p
M and

p
K ⇥p

K grids. The responsibility or posterior probability that the
given point t

n

in the data space is generated from the kth node is computed using
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Figure 3.16: GTM concept and its parameters M (number of RBFs or radial basis functions),
K (number of NPDs or normal probability distributions), w (RBF width factor) and � (weight
regularization coefficient). The RBFs and NPDs are symbolized by the large blue circles and
red spheres, respectively. Each node xk in the latent space is mapped to its position yk in the
descriptor space, using an ensemble of RBFs � (with centers mm) and a weight matrix W. The
yk points are the centers of the NPDs, from which are computed the responsibilities. These
responsibilities are used as weighting factors to map the data points from the initial space tn
to their position x(tn) in 2D.

Bayes’ theorem:

R
kn
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(3.23)

These responsibilities R are used to compute the mean position of a molecule on
the map x(t

n

), by averaging over all nodes with responsibilities as weighting factors
(see t

n

! x(t
n

) on Figure 3.16):

x(t
n

) =
K

X

k=1

x
k

R
kn

(3.24)

Each point on the GTM map corresponds to the averaged position of one molecule.
Responsibilities may be visualized on the 2D map for each molecule; we also used them
for QSAR, to build property maps, and for database analysis.

3.5.2 Kernel GTM

KGTM is a variant of GTM introduced by Olier et al. [12], allowing the use of kernels
as input data. As for KPCA, the preliminary step is to map the data into an implicit
high-dimensional space using a kernel function; then, Olier. et al.’s algorithm is used
the train a KGTM map. We implemented this kernel algorithm into our command-line
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program GTMapTool, with different types of kernels (polynomial, linear, RBF, anova,
etc.). In this algorithm, a new parameter appears: the dimensionality of the implicit
feature space; it could be set as the intrinsic dimensionality of data, using a method
like global or local PCA dimensionality estimation. Two examples of KGTM with an
RBF and a polynomial kernel are shown in Figure 3.17; parameters were set arbitrarily
to [K = 100,M = 25, w = 1,� = 1], the � parameter regulating the RBF width was
fixed at 0.2 and the dimension of the feature space at 20.

(a) Conventional GTM. (b) KGTM: RBF kernel. (c) KGTM: polynomial kernel.

Figure 3.17: (a) Conventional GTM, compared to kernel GTM maps with (a) an RBF kernel
and (b) an polynomial kernel. The dataset contains inhibitors (red) and decoys (blue) of
acetylcholinesterase, described by ISIDA fragment descriptors.

3.5.3 Incremental GTM

Bishop described in one article [11] the possibility of an incremental algorithm (iGTM).
In the conventional GTM algorithm, the input data is considered as a single matrix of
dimensions N ⇥ D, where N is the number of molecules and D is the dimensionality
of the input space, i.e., the number of descriptors. When N is too large, it becomes
impossible to keep this matrix in a computer’s RAM. Unlike its conventional analogue,
iGTM learns by small data blocks instead of using the whole data matrix at once.
During the M-step, the parameters W and � are computed using both new and old
responsibilities R0 of N 0 molecules in a given data block T0 corresponding to a data
subset:

W = (�TG�+ �I)�1

n

RTold +
⇣

R0new �R0old
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(3.25)
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3.5.3.1 Implementation in GTMapTool

The following workflow was used in the command-line program developed during the
thesis (GTMapTool):

1. The initial GTM manifold is initialized using the whole dataset with an incremen-
tal PCA, or using an initial random data subset, from which the GTM intrinsic
parameters W and � are computed.

2. The first estimation of posterior probabilities (responsibilities) is performed in-
crementally (initialization E-step), using the W and � parameters computed in
(1).

3. The first optimization of parameters is performed (initialization M-step), using
the probabilities estimated in (2) .

4. Then, the actual incremental GTM starts, and the model is optimized by data
blocks until convergence. Reaching convergence might require several dataset
scans.

Figure 3.18: Incremental GTM process. An initial estimation of parameters and responsibil-
ities is first performed; then, the model is optimized incrementally data block by data block.
Several data scans (one scan = going through the whole dataset) might be necessary to reach
convergence.

The whole process is illustrated in Figure 3.18. In this implementation, we use the
"extended" floating point precision, but responsibilities are frozen if they reach the value
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10E-100, to avoid computational instability. The number of blocks is a parameter that
can be tuned by the user, just as the number of data scans (equivalent to the number of
iterations in classical GTM). If the number of blocks is equal to the number of instances,
then the model is optimized instance by instance; if it is equal to 1, it is equivalent to
the classical GTM. There are two possibilities for checking iGTM convergence: block
convergence and scan convergence.

For block convergence, the algorithm checks the log likelihood variation between
two data blocks; it does not wait until it scanned the entire file. If the update is small
enough (usually 10�4 log likelihood units), the algorithm stops. For scan convergence,
the algorithm checks the log likelihood gain between two entire data scans. The block
convergence, which usually gives the same result in a shorter amount of time, was
chosen: if convergence is reached after a few number of data blocks, the algorithm stops
without going through the rest of the dataset. The paper by Ng and McLachlan [65]
gives simple rules for determining the number of blocks for faster IEM (incremental
expectation-maximization) algorithms, which should be a trade-off between minimizing
the number of M-steps and maximizing the speed of M-step computations.

3.6 InfoVis Techniques for High-Dimensional Data

3.6.1 Introduction

Information visualization (InfoVis) techniques give visual and/or interactive represen-
tations of data, and rely on the interpretation of users. The principle is to give new
"points of view" on a dataset. These methods can be used on the original data, but also
on data transformed by a dimensionality reduction algorithm. In this section, we give
some examples of information visualization techniques which may help for visualizing
high-dimensional data. In Table 3.4, some types of visualizations techniques useful for
that purpose are listed. We mostly focused on table representations, the "parallel co-
ordinates" family and iconographic displays, which are easily applicable to any dataset
and are available in R or python packages.

Table 3.4: Different types of visual structures.

Display Type Some examples
Standard scatterplots, bar plots
Tables Bertin matrices, heatmaps
Parallel coordinates family parallel coordinates, Andrews curves
Iconographic Chernoff faces, star glyphs
Pixel-based VisDB
Stacked displays Tree maps, dimensional stacking
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3.6.2 Some InfoVis Examples

3.6.2.1 Standard Approaches

The simplest visualization approach is a 2D (or 3D) scatterplot, where features (de-
scriptors) can be visualized two by two (or 3 by 3). 2D or 3D scatterplots are also the
commonest way of representing objects having gone through a dimensionality reduction
algorithm, as we have shown in the section dedicated to these methods. Even with a
high number of dimensions, a lot of people still want to look at the scatterplot matri-
ces to detect simple patterns, which will sometimes not appear after using a complex
machine learning model. An example of scatterplot matrix for 6 MOE descriptors de-
scribing 100 inhibitors and 100 decoys of acetylcholinesterase is given in Figure 3.19.
These descriptors are the number of H bond acceptors O and N (HBA), the number
of H bond donors OH and NH (HBD), the number of rigid and rotatable bonds, the
number of rings, and logP (octanol/water partition coefficient).

(a) Ache inhibitors. (b) Ache decoys.

Figure 3.19: Scatterplot matrices for ache inhibitors (red) and decoys (blue), described by 6
MOE descriptors: number of H bond acceptors O and N (HBA), number of H bond donors OH
and NH (HBD), number of rigid and rotatable bonds, number of rings, and logP (octanol/water
partition coefficient)

3.6.2.2 Bertin’s Permutation Matrices

Bertin’s permutation matrices [66] (matrices ordonnables) are very simple data repre-
sentations that can also be used as analysis tools. A data matrix is represented by
a table; usually, for Bertin matrices, rows are features (descriptors) and columns in-
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stances. Feature values are represented by bar graphs. After reordering rows in order
to put similar features next to each other, the columns are similarly reordered so that
clusters may appear. Heatmaps and heightmaps are variants of Bertin matrices, where
descriptor values are represented by colors mapped on a 2D table or by heights on a
3D representation, respectively. An example of Bertin matrix in given in Figure 3.20,
with descriptors re-arranged according to their correlation to data labels; the figure was
generated with the bertin R package [67].themat
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Figure 3.20: Bertin matrix, where rows are structural descriptors and columns 100 inhibitors
(red) and 100 decoys (blue) of ache (acetylcholinesterase) described by ISIDA descriptors. The
descriptors were re-organized depending on their correlation to the class (inhibitor/decoy).

3.6.2.3 Parallel Coordinates Family

Parallel coordinates [68, 69] are certainly the oldest and most popular visualization
technique for datasets with a small number of dimensions. A line represents a data
instance; the y-axis gives the value of the descriptor that can be found on the x-axis. In
Figure 3.21, generated with the R package MASS [48], we show parallel coordinates for
100 inhibitors of acetylcholinesterase and 100 decoys, described by 6 MOE descriptors:
number of H bond acceptors O and N (HBA), number of H bond donors OH and NH
(HBD), number of rigid and rotatable bonds, number of rings, and logP (octanol/water
partition coefficient). Variants of parallel coordinates include circular parallel coordi-
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nates or RadViz [70] which considers springs attached to equally spaced "data anchors"
on one end and to data points on the other, where the spring constant for each point
and dimension is equal to the point coordinate. These methods share the disadvantage
of being highly dependent on the ordering of the dimensions along the x-axis for parallel
coordinates or around the circle for radial methods.

(a) Ache inhibitors. (b) Ache decoys.

Figure 3.21: Parallel coordinates for ache inhibitors (red) and decoys (blue), described by 6
MOE descriptors: number of H bond acceptors O and N (HBA), number of H bond donors OH
and NH (HBD), number of rigid and rotatable bonds, number of rings, and logP (octanol/water
partition coefficient).

Figure 3.22: Andrews curves, where each curve represents one inhibitor (red) or decoy (blue)
of acetylcholinesterase.

Andrews curves (1972) [71] are also an extension of parallel coordinates and provide
a unique representation, which is not dependent on the order of descriptors. Instances
(in our case, molecules) are represented by smooth curves on a 2-dimensional plot. Each
data point x defines a Fourier series where coefficients are descriptor values x

1

, x
2

, x
3

, ...

using the function f(t):

f(t) =
x
1p
2
+ x

2

sin(t) + x
3

cos(t) + ... (3.27)
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f(t) can then be plotted from t = �⇡ to t = ⇡. This method is especially useful
for outlier detection, and is also used for clustering; an example is given featuring
acetylcholinesterase inhibitors and decoys in Figure 3.22, for the same variables that we
used for parallel coordinates in Figure 3.21. The figure was generated with the andrews
R package [72].

3.6.2.4 Iconographic Displays

Hair width: C*C*C-N-C 

Height: C-C 

Smiling: C*C*C*C-N-C-C 

Face color (red to yellow): average of C-C and C-C-N 

Eye height and width: C-N and C-N-C 

Mouth height and width: C*C-N-C-C and C*C*C-N-C-C 

Width: C-C-N 

Figure 3.23: Application of Chernoff Faces to inhibitors and decoys of the acetylcholineesterase
(one molecule = one face). The 2D coordinates were generated by GTM, and the face features
were modified by structural descriptors; only a few of them are described here, where the sym-
bol "*" represents an aromatic bond. This representation integrates dimensionality reduction
information (2D GTM map) and original descriptors.

For iconographic techniques [73], each descriptor is encoded by a "glyph". These
techniques are highly biased and the result is often difficult to interpret. Chernoff faces
are certainly the most illustrative example of an iconic display. Two descriptors are
used to build a scatterplot of "faces"; the other descriptors values are encoded by facial

64



CHAPTER 3. VISUALIZE A MULTIDIMENSIONAL SPACE

features such as the nose, eyes, and so on. An example using the R package aplpack [74]
is given in Figure 3.23; in this case, only 15 features can be encoded. For this Figure, we
computed 2D coordinates with GTM for inhibitors and decoys of acetylcholinesterase
from a 140-dimensional dataset, and used 15 structural descriptors to modify the faces
(for example, the color of faces represents the number of CC and CCN fragments). An
analogous representation is the star plot, where descriptors values are represented as
spokes radiating from the center of a "star" glyph.

3.6.2.5 Hierarchical Techniques

Hierarchical techniques are most of the time used to deal with hierarchical data.
Treemap [75] or Dimensional Stacking [76] are some examples; we could also include
hierarchical clustering methods in this category. Treemap visualizes the data in the
form of nested rectangles and is generally interactive; Dimensional Stacking was origi-
nally used for binary data, and divides a grid into embedded rectangles which represent
dimensions.

3.6.2.6 Pixel-Based Methods

Pixel-based methods encode data values by pixels: a window, where each descriptor
is mapped to a pixel colored by descriptor value, represents each data instance. An
example of such system is VisBD [77].

3.6.3 Conclusion

All these visualization methods can be used in different circumstances. The Bertin
matrix is certainly the most simple of the methods we have shown, and has several
advantages: it gives a representation of the whole dataset without considerable modifi-
cations besides normalization, it may be used as a classification tool where important
descriptors can be directly identified, and the visualization is made easy even for a
high number of dimensions (we used 140 dimensions here). Parallel coordinates and
related methods are only useful for a restricted number of descriptors (20), and they
are dependent on the disposition of descriptors. However, by performing a PCA on the
dataset and by ordering descriptors by decreasing eigenvalues, a fixed representation
can be obtained. Andrews curves seem to be a self-sufficient visualization method, not
dependent on the ordering of descriptors and useful for outlier detection. Finally, hier-
archical techniques are useful for hierarchical data and pixel-based techniques for small
databases visualization.
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Chapter 4

Big Data Problem

In this chapter, we will discuss some technical issues related to the "big data" problem
for GTM, which might arise when working with a high number of compounds, a high
number of dimensions (e.g., more than 10000), or both.

4.1 Technical Considerations
The original data matrix T is an N ⇥D matrix, where N is the number of data points
and D the number of dimensions. When we say, "this is a huge amount of data”, it
may mean different things: we may have a plethora of data points, a large amount of
descriptors, or in the worst-case scenario (or the best, this depends from where you
stand), an overabundance of both. The kernel version of GTM (KGTM) allows us to
deal with an N⇥N matrix, which takes care of the dimensionality D problem, provided
the number of data points N is not even bigger than D. The way to deal with the N

issue is to use the incremental algorithm, which will process the data matrix data block
by data block; but the incremental algorithm does not solve the D issue.

Therefore, if we have a very large data matrix both in terms of dimensionality and
number of objects, we may find ourselves in a difficult situation. The kernel algorithm
should then be avoided, and the incremental algorithm could be used but would take a
long time to run. A combination of both kernel and incremental methods in a proper
new algorithm could be a solution for this but we did not have the time to reflect upon
this subject.

To deal with the D issue before running incremental GTM or iGTM, feature selection
methods can be applied. A possible filter type will select descriptors with a given
percentage of values different from 0, say 90%. Indeed, many sets of descriptors are in
fact structural fragments or fingerprints (count or binary data types), which are very
sparse, in the sense that many structural features are actually very rare in the dataset.
However, it should be noticed that for some problems, the rare structural features are
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actually the most interesting, and should not be removed. A lot of much more complex
descriptor selection methods are available; the issue of feature selection has been briefly
addressed in Chapter 3.

Finally, it should be noted that the GTM algorithm begins with a PCA initializa-
tion step for the initial positioning of the manifold; PCA has an O(D2N + D3) time
complexity, O(D2N) for the covariance matrix computation and O(D3) for the SVD
(singular value decomposition). The NIPALS algorithm for PCA [78] has an O(DNLI)

complexity, where L is the number of selected principal components which should be 2
in our case and I is the number of iterations, which does not reach higher values than
5-10; therefore, the NIPALS algorithm should always be used when dealing with a high
number of dimensions, since in our case L will be very small and equal to 2 in most
cases. For incremental GTM, PCA must be performed incrementally (by computing
the covariance matrix increment by increment) on the whole dataset, or by using an
initial subset; both options were implemented into our command-line tool. Choosing
this initial subset is an interesting problem, which is explored in further detail in the
next section.

4.2 Initialize iGTM with a Small Subset

4.2.1 Introduction

The incremental version of the EM (expectation-maximization) algorithm of GTM may
be convenient for decreasing the time needed to build a map for large datasets. However,
the initialization step, i.e., the initial positioning of the GTM manifold, still exists
and may be time-consuming. One solution would be to select a subset of the data
to initialize the manifold. However, the subset should be representative of the whole
dataset. In this section, we try different selection techniques and evaluate the efficiency
of a selected subset, before and after building the GTM. Here, we used a toy dataset of
two intertwined rings each defined by 500 points in 3D to investigate the impact of the
initial set. The intertwined rings dataset was downloaded from the Java SOMToolbox
website belonging to the Vienna University of Technology [79].

4.2.2 Methods

For our iGTM maps (incremental GTM), we used a number of RBFs or radial basis
functions M = 25, each of them with a width factor w = 1, K = 625 grid points, and
a regularization coefficient � = 1. The EM optimization stopped at convergence of the
log likelihood function ±10�4. We divided the dataset into 5 blocks of 200 instances, so
that the iGTM (incremental GTM) would process the instances not all at once but by
blocks of 200. All maps in this section were built using the iGTM algorithm. The GTM
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Table 4.1: 9 different subsets used to initialize the iGTM model: 6 random subsets (r1, r2,
r3, r4, r5, r6) and three diverse subsets selected with a diversity-based selection method (d1,
d2, d3).

Subset ID Selection method C1/C2
1 r1 random 3/7
2 r2 random 5/5
3 r3 random 3/7
4 r4 random 1/9
5 r5 random 3/7
6 r6 random 5/5
7 d1 MaxMin, random initial compound 5/5
8 d2 MaxMin, most representative initial compound 5/5
9 d3 MaxMin, most dissimilar initial compound 5/5

manifold was initialized with 9 different initialization sets comprising only 10 points
from the dataset. The first 6 initialization sets were selected randomly. The three
others were selected using the classical MaxMin DBCS (dissimilarity-based compound
selection) algorithm [80] based on three steps:

1. Select an initial compound and place it in the subset.

2. Compute distances between instances in the dataset and instances in the subset.

3. Select the instance in the dataset with the highest distance to its closest neighbor
in the subset and place it in the subset.

4. Return to step 2 until the required number of compounds in the subset is reached.

We used our own implementation of the algorithm, with Euclidean distances. The first
instance to be put in the diverse subset (step 1 of MaxMin DBCS algorithm) was either
chosen randomly, as the most similar ("most representative"), or as the most dissimilar
to the other instances. All initial subsets are described in Table 4.1. A diversity score
was established to assess the diversity of a specific subset, as the ratio of the average
distance within the subset to the average distance within the entire dataset:

DiversityScore
subset

=
diversity

subset

diversity
dataset

% (4.1)

4.2.3 Results and Discussion

In Figure 4.1, the initial manifold, the optimized manifold, and the data points of the
two intertwined circles are represented. Nine GTM maps were computed with the same
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whole dataset but using a different subset for positioning the initial manifold. It may
be noticed that for subsets r2, d1 and d2 the initial manifold is positioned in the same
plane as the one defined by one of the circles and cuts the other in two.

Random Representative Dissimilar 

r4 r5 r6 

r1 r2 r3 
(a) 

(b) 

Figure 4.1: Initial manifolds (grey planes) and optimized manifolds (black points) fitted to
the complete dataset (red and blue circles), built with GTM and initialized using 9 different
initial subsets comprising 10 instances, (a) selected randomly, (b) selected with a MaxMin
dissimilarity-based selection algorithm with a random (d1 subset), most representative (d2
subset) or most dissimilar (d3 subset) initial compound.

Random Representative Dissimilar 

r4 r5 r6 

r1 r2 r3 
(a) 

(b) 

Figure 4.2: Optimized manifolds (black points) fitting the same dataset, but initialized using
9 different initial datasets containing 10 instances, (a) selected randomly, (b) selected using a
MaxMin diversity-based selection algorithm with a random (d1 subset), most representative
(d2 subset) or most dissimilar (d3 subset) initial compound.

70



CHAPTER 4. BIG DATA PROBLEM

r4 r5 r6 

r1 r2 r3 

�  

�  

d1 d2 d3 

�  

r4 r5 r6 

r1 r2 r3 

�  

�  (a) 

(b) 
d1 d2 d3 

Initial maps Optimized maps 

Figure 4.3: 2D GTM initial maps (left) and optimized maps (right) built using 9 different
initial datasets containing 10 instances, (a) selected randomly, (b) selected using a MaxMin
diversity-based selection algorithm with a random (d1 subset), most representative (d2 subset)
or most dissimilar (d3 subset) initial compound.
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r4 r1 r3 r5 r6 d3 r2 d2 d1 Optimized likelihood 

Initial likelihood 

Figure 4.4: Initial and optimized log likelihood of 9 GTM maps built with the same dataset
but initialized with 9 different subsets (see Table 4.1). The initial log likelihood of the GTM
map initialized with r4 is out of range.

In Figure 4.2, only the optimized GTM manifold is represented. Manifolds initialized
with r2, d1 and d2 can reconstruct the complete structure of both circles at the end of
the optimization process. Manifolds initialized with d3, r5, and r6 subsets only form
incomplete circles, and the worst cases correspond to initial subsets r1, r3 and r4, for
which the original shape of the dataset is not recognizable. The worst manifold, with a
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Figure 4.5: Optimized log likelihood of GTM maps initialized with specific subsets, as a
function of subset diversity.

Table 4.2: Initial and final log likelihood, when using different initialization subsets with
different sizes and proportions from each class (C1/C2); the mean µ and standard deviation �
of the log likelihood for the different subsets is also indicated.

Nmol C1/C2 Initial L m s Final L m s
1 10 4/6 -0.159 0.94 1.168 0.384
2 10 3/7 -0.286 -0.152 0.137 0.95
3 10 5/5 -0.011 1.61
4 20 10/10 -0.054 0.98 1.004 0.094
5 20 13/7 -0.020 -0.045 0.022 1.11
6 20 12/8 -0.061 0.92
7 50 24/26 0.010 1.82 1.824 0.104
8 50 25/25 -0.020 -0.011 0.018 1.93
9 50 24/26 -0.023 1.72
10 100 42/58 -0.003 1.8 2.000 0.199
11 100 49/51 -0.007 -0.005 0.014 2.20
12 100 53/47 0.020 2.05
13 150 77/73 0.014 1.96 2.064 0.107
14 150 73/77 -0.006 0.009 0.014 2.17
15 150 75/75 0.020 2.06
16 200 95/105 0.010 2.23 2.262 0.05
17 200 98/102 0.001 0.008 0.007 2.23
18 200 95/105 0.014 2.32

rectangular shape twisted on the sides, was initialized with r4.

The corresponding 2D GTM maps are shown in Figure 4.3. In this figure, initial
maps were obtained by projecting all the dataset onto the initial manifold built from
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the subsets, and the optimized maps were obtained after optimization (they correspond
to the manifolds shown in Figure 4.2). Only GTM maps initialized with subsets r2, d1
and d2 separated the two rings, and only after the optimization process. GTM maps
initialized with d3 and r5 almost separated them, and the visually worst 2D map was
initialized with r4. The manifolds initialized with r2, d1, and d2 were in the same plane
as one of the rings, cutting the second in two parts (Figure 4.1), and, once optimized,
matched the shape of the data (Figure 4.2); also, r2, d1, and d2 optimized maps were
the only ones that separated the two intertwined rings (Figure 4.3, optimized maps).

The initial and optimized log likelihood of all 9 GTM maps were then considered and
their values reported in Figure 4.4. The initial log likelihood corresponds to the state of
the GTM at the initialization stage (initial manifold, built with the initial subset). The
optimized log likelihood was obtained at convergence, after one or several scans of the
entire dataset (optimized manifold). The three best GTMs according to the optimized
log likelihood were initialized with r2, d2 and d1 and the worst with r3, r1 and r4, r4
being far below the others. Figure 4.4 also shows a link between the initial and optimized
log likelihood. A GTM map that is not well initialized usually gives poor results (see
r3, r1 and r4 in Figures 4.1, 4.2, 4.3). The DiversityScore

subset

was plotted against
the optimized log likelihood in Figure 4.5. A link between the optimized log likelihood
and the diversity score could be identified. This relationship between subset diversity
and likelihood shows that the more diverse the initial subset is, the better the GTM
model fits the data. We also investigated the impact of the initial subset size (randomly
selected) on the log likelihood; results are given in Table 4.2. Results converge when
reaching a subset size of 150-200 instances; this means that this map could be initialized
with a random subset with a minimum size of approximately 150-200 instances.

4.2.4 Conclusion

The position of the initial manifold is important for fitting the data correctly with GTM.
The selection of a diverse subset using a classical dissimilarity-based selection algorithm
usually gives good results; however, it might be time-consuming for larger datasets,
and this defeats the purpose of gaining time with an incremental version of GTM.
We have shown that the more diverse the initialization subset is, the better the GTM
visualization will be as well as the value of the log likelihood, i.e., the GTM objective
function. We have also shown that a good enough subset could be found randomly,
and its quality for GTM initialization evaluated by the log likelihood function. We
recommend that, for labeled data, the initial subset be representative of the population
within each class; if the data is not labeled, representative samples can be selected using
a stratified sampling scheme.
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Chapter 5

Visualizing Descriptors or
Properties

In this chapter, we introduce new methods for visualizing descriptors or properties on
a 2D map. These methods provide a way to interpret a map obtained with GTM. The
x-axis and y-axis of GTM maps my seem meaningless; they cannot be directly linked
to any useful information. Visualizing original descriptors may be a way to understand
a GTM model and draw more interesting conclusions; for example, a cluster will be
characterized by specific descriptor values. We also show how to select regions of interest
(ROIs), where several conditions are met to find objects (molecules) matching a profile.

5.1 Activity or Descriptor Landscapes

GTM descriptor or activity landscapes are built by computing the average activity of
training set molecules at each node x

k

:

ā
k

=

P

N

n=1

R
kn

⇥ a
n

P

N

n=1

R
kn

(5.1)

where ā are the activity landscape values, a the activity values of the training set, R
kn

the responsibility of the kth node for the nth molecule. These values can be used to
generate a smooth 2D or 3D landscape using an interpolation method such as kriging [81,
82]. We used kriging in two different ways: by exploiting the previously calculated
landscape vector ā associated with coordinates X (grid matrix), or by using training
set experimental activities a at positions determined by the matrix X(T) containing the
2-dimensional coordinates of data points. Choosing the landscape activity vector ā with
X is more accurate, since instead of using the data points’ average positions we take all
responsibilities R into account. Moreover, the kriging interpolation is computationally
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very costly for big datasets and having a number of points limited to K grid nodes
insures that the computation will not take too much time. For 2D and 3D landscapes

0 

5 

10 

15 

20 

25 

(a) 2-dimensional. (b) 3-dimensional.

Figure 5.1: 2D and 3D landscapes representing the stability of Lu(III)-ligand complexes.

(Figure 5.1), the x-axis and y-axis delimit the GTM latent space; the activity ā is
represented by colors in 2-dimensional landscapes, and by an additional z-axis in 3-
dimensional landscapes. These landscapes can be built for descriptors or for properties.

The descriptor landscapes help to understand the organization of molecules on
the 2D map. Regions of interest corresponding to certain descriptor criteria can be
identified; for example, a region characterized by a high chirality and high molecular
weight. We used this approach for the analysis of large chemical libraries by building
2D descriptor landscapes of 186 MOE 2D descriptors in Chapter 17.

The activity landscapes are tools for visualization and prediction; we used them
as a basis for our GTM-based regression models in Chapter 16.

5.2 Descriptor Scores

In this section, we introduce three new descriptor scores to retrieve original descriptor
information on GTM maps. The principle is to visualize on the 2D map the behavior
of several descriptors instead of visualizing descriptor landscapes one by one. This
analysis can be employed as a complement to descriptor landscapes. The three scores
correspond to three questions we might ask about descriptors: at the kth node, which
is the descriptor with the highest value? the descriptor with the lowest value? the
descriptor for which molecules have the most similar values? The unscaled score
matrices S(max), S(min) and S(sim) with dimensions K ⇥D, where K is the number
of nodes and D the number of descriptors, are calculated using the following equations,
where T is the scaled data matrix with descriptor values lying in the [0, 1] interval and

76



CHAPTER 5. VISUALIZING DESCRIPTORS OR PROPERTIES

a_a
cid

a_a
cid

Slog
P_V

SA6

a_a
cid

a_a
cid

a_a
cid

Slog
P_V

SA6

a_a
cid

Slog
P_V

SA6

a_a
cid

PEO
E_V

SA−
2

PEO
E_V

SA−
3

a_a
cid

a_a
cid

a_a
cid

PEO
E_V

SA−
2

PEO
E_V

SA−
2

PEO
E_V

SA−
2

a_a
cid

b_tr
iple

PEO
E_V

SA−
2

PEO
E_V

SA−
2

PEO
E_V

SA−
2

PEO
E_V

SA−
2

b_tr
iple

(a) First lowest values.

a_b
ase

Slog
P_V

SA6

vsa
_ba

se

Slog
P_V

SA6

PEO
E_V

SA+
6

b_tr
iple

PEO
E_V

SA−
3

Slog
P_V

SA6

PEO
E_V

SA+
6

PEO
E_V

SA+
6

Slog
P_V

SA6

lip_
viol

atio
n

vsa
_ba

se

Slog
P_V

SA6

PEO
E_V

SA+
6

opr_
viol

atio
n

opr_
viol

atio
n

vsa
_ba

se

PEO
E_V

SA−
2

PEO
E_V

SA−
3

reac
tive

opr_
viol

atio
n

reac
tive

Slog
P_V

SA2

Slog
P_V

SA4

(b) Second lowest values.

a_n
F

PEO
E_V

SA+
6

PEO
E_V

SA+
6

PEO
E_V

SA+
6

Slog
P_V

SA6

a_n
Cl

PEO
E_V

SA−
2

a_n
Cl

PEO
E_V

SA−
2

vsa
_ba

se

a_n
Cl

reac
tive

PEO
E_V

SA−
3

PEO
E_V

SA−
2

a_n
F

Slog
P_V

SA6

a_n
F

PEO
E_V

SA−
3

a_n
S

PEO
E_V

SA+
4

Slog
P_V

SA6

chir
al

a_n
F

SM
R_V

SA1

chir
al

(c) Third lowest values.

Figure 5.2: Descriptors with the lowest values on the map; the nodes are colored by the
attributed class: red for inhibitors of ache and blue for decoys.
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Figure 5.3: Descriptors with the highest values on the map; the nodes are colored by the
attributed class: red for inhibitors of ache and blue for decoys.
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Figure 5.4: Descriptors with the most similar values; the nodes are colored by the attributed
class: red for inhibitors of ache and blue for decoys.

R the responsibilities matrix:

S
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(5.2)
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The final scores Score(max), Score(min) and Score(sim) are obtained after scaling as
following:

Score
kd

=
S
kd

�min(s
k

)

max(s
k

)�min(s
k

)
(5.5)

These scores can be used to rank the descriptors according to different criteria: high
value, low value, similar value at each node x

k

. In Figures 5.3, 5.2 and 5.4, we show a
classification map of acetylcholinesterase inhibitors (red) v.s. decoys (blue) with a very
low resolution (complete set of random parameters [K = 25,M = 25, w = 10,� = 100])
to better illustrate the principle of descriptor scores. Each node is colored according
to the predicted class, and the first, second and third best descriptor according to the
score is indicated over each node: Score(max) in Figure 5.3 for descriptors with the
highest values, Score(min) in Figure 5.2 for descriptors with the lowest values, and
Score(sim) in Figure 5.4 for descriptors with the most similar values. For example, in
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Figure 5.5: Descriptors with highest values at a given node of the GTM map, with Score(max)
> 0.8.

Figure 5.3 one node dominated by inhibitors (on the top row, the second from the left)
is characterized by a lower opr_leadlike score than most other nodes, and a high logP
and SlogP value, which means that we might find hydrophobic inhibitors of ache in this
region. If we are interested in this particular node, the complete score vector of a node
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score
k

can be plotted in a bar plot, as shown in Figure 5.5, showing descriptors with
the highest values at this node (with score > 0.8).

5.3 Regions of Interest (ROIs)
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Figure 5.6: (a) Four regions of interest (ROIs) corresponding to (b) dominance of inhibitors of
acetylcholinesterase (red) over decoys (blue) on the classification map and (c) to high solubility
(>-2.5) on the LogS landscape.

If we are interested in several descriptors or several properties, we can superimpose
landscapes to find regions of interest (or ROIs) corresponding to several criteria. An
ROI example in a chemical space of protein ligands could be a region of high solubility,
low chirality and high affinity for a target. This method could be used to find regions
corresponding to an entire activity profile.

A set of landscape vectors is first generated: {ā
1

, ā
2

, ā
3

, ...}. Then, ROIs are
found by applying a condition to each landscape node; ROIs correspond to nodes where
all these conditions are met. Molecules in ROIs can be retrieved automatically. The
simplest approach is to draw an ellipse around each node or group of nodes and retrieve
compounds within the ellipse. If the groups of nodes are easily identified, a k-means
procedure or any clustering approach can be used to find the nodes’ clusters and a
confidence ellipse can be drawn around the region. If groups of nodes cannot be easily
identified, the best approach is to retrieve compounds node by node. In Figure 5.6, four
regions exhibiting a "high" solubility (logS > -2.5) and a dominance of ache inhibitors
(red class) were drawn on a GTM map; the parameters used in this case were [K =

100,M = 25, w = 1,� = 1].
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Chapter 6

Optimization of models

6.1 Training and Test

Scale the 
training set, 
record the 
min/max 

values for each 
descriptor 

Build a model 
using the 

training set 

Normalize the 
test set, using 
the min/max 
values of the 
training set 

Project the 
test set onto 
the model 

Figure 6.1: GTM training and test sets normalization workflow.

Our goal is to build a model able to predict characteristics of new compounds;
typically, their localization in a cluster (clustering task), the class they belong to (clas-
sification task), or their activity (regression task). To build a model, we need a training
set, which contains compounds we want to learn from. For many machine learning
methods, the training set descriptors have to be normalized, so that each descriptor
value lies in the same interval; this can be done by max/min normalization (eq. 5.1) or
by standardization (eq. 5.2) of the original data matrix O to obtain the normalized ma-
trix T; we used max/min normalization in all our calculations to obtain values ranging
from 0 to 1:

T
nd

=
O

nd

�min(od)

max(od)�min(od)
(6.1)

T
nd

=
O

nd

� �(od)

µ(od)
(6.2)

The maximum and minimum values of each descriptor od are stored and used to scale the
test set containing new, unseen compounds. For GTM models, the test set is projected
onto the manifold built with the training set.
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6.2 Model Validation Procedure

Repeat y times for y parameter combinations. 

Internal Validation (training set) 

Cross-Validation 

Y-Randomization 

Bootstrapping 

Fit 

Applicability Domain 

External Validation (test set) 

Figure 6.2: Model validation workflow.

The classical QSAR validation procedure in chemoinformatics involves dividing the
dataset into training and test sets. The training set is used for the internal validation.
The internal validation process consists most of the time in cross-validation [83] (CV),
a procedure to find the best parameters according to a CV performance score. There
are other internal validation techniques, such as fit, y-randomization [84] or bootstrap-
ping [85]. After selecting the best model using CV and building it, an applicability
domain (AD) can be established to define the limitations of the model. Using y-
randomization together with CV for internal validation is a good policy to evaluate
the robustness of the model.

The external test set can be used to assess the prediction error (external validation),
and is used only once; the model should never be "aware" of it before the external
validation step.

It has been argued by Baumann et al. [86] that a better validation process would
involve a double cross-validation, where an inner loop would be dedicated to internal
validation (model selection) and an outer loop to external validation (model assessment).
However, in our applications to chemical datasets, we mainly used the conventional
internal and external validation procedures to avoid computational costs.

For the sake of completeness, we summarize the most common methods [87] used
to perform the internal validation of a model:
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Fitting consists in building a model from the entire training set given a specific set
of parameters and descriptors, and evaluating the performance of the model based on
its ability to predict the training set instances, i.e., the same instances that were used
to build the model.

Cross-validation [83] or CV consists in dividing the training set into n folds; a
model is trained with n�1 folds, and evaluated using the remaining fold; the procedure
is repeated n times, each time changing the fold used for testing, so that all folds at the
end have been tested once.

Fold 1: test 
Fold 2: train 
Fold 3: train 

Fold 1: train 
Fold 2: test 
Fold 3: train 

Training set 
Fold 1: train 
Fold 2: train 
Fold 3: test 

Figure 6.3: Cross-validation procedure: a training set is divided into n folds (here n = 3); n
models are then built, each trained with n� 1 folds, and evaluated using the remaining fold.

Bootstrapping [85] comes from the expression "to pull oneself up by one’s boot-
straps", which means to accomplish an impossible task. This method is often used
when performing induction from very small datasets, and is based on sampling with
replacement; "with replacement" means that after picking randomly one object from a
bag containing all our data, we place it back in the bag (we "replace" it), so it can be
picked again next time. The procedure involves selecting n groups of objects by sam-
pling with replacement from the available data. For each of the n training groups, n
models are built and applied to test compounds which were not included in the training
group. This method is much more tedious than cross-validation.

Y-Randomization [84] or scrambling can be useful to establish whether or not
our performances were due to chance, by randomizing the y variable (the dependent
variable). Thus, this methods relies on the presence of a dependent variable, such as
classes or properties to be predicted; the y values must be assigned randomly to the
objects in the dataset. The randomization/prediction process is repeated many times,
and the performances of models are compared to those without randomization. If the
results are too close, the models are deemed inefficient. This procedure can be coupled
with cross-validation; for example, comparing the outcome of normal v.s. y-randomized
cross-validation.

6.3 GTM Parameters
Four parameters should be optimized in the GTM algorithm: the number of RBFs
(radial basis functions) M , the RBF width factor w, the number of grid nodes K and
the regularization coefficient �. K and M define two regular grids in the 2-dimensional
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Figure 6.4: The four GTM parameters can be optimized by internal cross-validation on the
training test and external validation on the test set, using the log likelihood or performance
measures such as BAC (balanced accuracy) and R2 (determination coefficient).

Original data 

K = 625, M = 25, λ = 1, w = 1 

�︎ λ   (K = 625, M = 25, λ = 1000, w = 1) 

�︎ w   (K = 625, M = 25, λ = 1, w = 4) 

�︎ M  (K = 625, M = 100, λ = 1, w = 1) 

GTM manifolds 

Figure 6.5: Original 3D plot of two intertwined rings (side view), and 4 plots of manifolds
trained on the original data with different parameters. This figure shows how the shape of the
manifold can be changed by tuning the M , w and � parameters.

space: the grid of nodes and the grid of RBF centers. K may be seen as a resolution
parameter; beyond a certain value (we do not use more than 1600 nodes generally,
corresponding to a 40 by 40 grid), it will not improve the performance of the model
but only cost more computation time; in any case, it should not be greater than the
number of molecules. M also increases computation time, but we noticed that using
large M values (equal to K for example) could greatly increase the performance of a
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model. With a fixed K parameter, the shape of the manifold can be tuned with the M ,
w and � parameters; too small w and � parameters or high M might generate a too
complex model, that will shape the training data too well, and induce overfitting (cf.
Figure 6.5). We generally vary � from 10�n to 10n where n takes values from -4 to 3,
w from 0.25 to 2 or 3, M from 2 ⇥ 2 to 25 ⇥ 25 and K from 10 ⇥ 10 to 50 ⇥ 50. The
four GTM parameters can be optimized by monitoring the log likelihood function, if
no target activity is available; for QSAR (quantitative structure-activity relationship),
it is the predictive ability of the model that should be optimized (cf. Figure 6.4).
The unsupervised and supervised optimization procedures are detailed in the following
sections.

6.4 GTM Unsupervised Optimization

Pareto frontier 

L t
ra

in
 

(Ltest - Ltrain) / Ltrain 

Figure 6.6: The model can be optimized by choosing a trade-off between the average train
log likelihood in CV and the difference between the average test and train CV likelihoods.

The GTM unsupervised optimization is based on the log likelihood, the GTM ob-
jective function. A log likelihood value L

n

(W,�) can be computed for each molecule
(instance) t

n

:

L
n

(W,�) = ln

(

1

K

X

k

p(t
n

|x
k

,W,�)

)

(6.3)

In this thesis, we always used an average log likelihood value L
norm

(W,�) to compare
different datasets:

L
norm

(W,�) =

P

n

L
n

(W,�)

N
(6.4)

This formula can be used to compute the average train and test log likelihoods L
train

and L
test

obtained in CV:

L
train

=

P

nCV
n=1

L
norm

(train
i

)

n
CV

(6.5a)

L
test

=

P

nCV
n=1

L
norm

(test
i

)

n
CV

(6.5b)
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where L
norm

(train
i

) and L
norm

(test
i

) are the normalized log likelihoods of the train and
test fold i, respectively, and n

CV

the number of folds. The goal is to obtain a large log
likelihood; however, a train log likelihood much larger then a test log likelihood may
indicate that the model overfits the training set. A Pareto efficiency plot [88, 89] (see
Figure 6.6) can be used to choose a good trade-off between the train log likelihood and
the difference between train and test log likelihoods.

6.5 GTM Supervized Optimization

In this thesis, we often used a type of supervized optimization during the internal
validation step, by choosing the model according to the prediction performance instead
of the values of train and test log likelihoods. For regression, we used the root-mean-
square error as a measure of accuracy:

RMSE
CV

=

r

P

n

(a(pred)
i

� a(exp)
i

)2

N
(6.6)

where a(pred)
i

is the predicted activity of the ith compound during cross-validation
(compound in the "test fold" in Figure 6.3), a(exp)

i

the experimental activity, and N

the total number compounds exploited for cross-validation. We also used the cross-
validated determination coefficient [90, 91] Q2:

Q2 = 1�
P

n

(a(exp)
i

� a(pred)
i

)2
P

n

(a(exp)
i

� ā(exp))2
(6.7)

where ā is the average experimental activity; Q2 is less than or equal to one and may
have negative values if the predictions are worse than those obtained with a model
always predicting the sample mean. The formulas for external validation indicators
RMSE and determination coefficient R2 are the same as for cross-validation indicators
RMSE

CV

and Q2; however, for external validation, the predicted and experimental
activities a(pred) and a(exp) are assigned to a single test set predicted with a single
model. Models with a Q2 below 0.5 should be discarded; they should also achieve at
least R2 = 0.6 in external validation [92]. For classification tasks, we used several
performance measures, but usually opted for the balanced accuracy (BAC) [93]:

BAC =
1

N
c

X

n

TP
i

TP
i

+ FN
i

(6.8a)

BAC =
1

N
c

X

i

recall
i

(6.8b)
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where N
c

is the number of classes, TP
i

the number of true positives for the ith class
(instances correcly predicted as belonging to class c

i

) and FN
i

the number of false
negatives for the ith class (instances incorrecly predicted as not belonging to class c

i

).
The sum of TP and FN equals P , the total number of instances actually belonging
to the class. The balanced accuracy can be seen as an average of recalls for the differ-
ent classes. The recall is actually the proportion of relevant instances that the model
was able to retrieve. It answers the question: "What percentage of instances actually
belonging to the class have I been able to identify?":

recall =
TP

TP + FN
=

TP

P
(6.9)

Another useful indicator is the precision, which measures the proportion of retrieved
instances that actually belong to the class; the question is then: "From the instances
that I identified (correctly or not) as belonging to the class, how many actually do
belong to the class?":

precision =
TP

TP + FP
(6.10)

The F � score, the harmonic mean of recall and precision, can be used was well as the
BAC for the optimization of GTM models:

F � score = 2
recall ⇥ precision

recall + precision
(6.11)
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Chapter 7

GTM Classification Models

GTM can be applied to classification tasks using its probability density functions (PDFs)
in the initial space; this was already shown in our 2012 paper [1]. In this chapter, we
also introduce the classification in latent space using posterior probabilities or respon-
sibilities [2], and establish protocols to build GTM-based 2D classification models and
visualize them.

7.1 Initial Space Classification
To perform classification tasks, there are two possibilities: either fit one manifold per
class or use the same manifold for all classes. Our first initial space models [1] were
designed to fit one manifold per class, generating one data density p(t|c

i

) for each class
c
i

. The class probability P (c
i

|t) can be obtained by applying Bayes’ theorem:

P (c
i

|t) = p(t|c
i

)⇥ P (c
i

)
P

i

p(t|c
i

)⇥ P (c
i

)
(7.1)

where p(t|c
i

) is the approximation of the density generated in the data space:

p(t|c
i

) =
1

K
⇥
X

k

p(t|c
i

,x
k

) (7.2)

and P (c
i

) is the prior for class c
i

:

P (c
i

) =
N

ci

N
(7.3)

N
ci being the number of molecules in class c

i

and N the total number of molecules.
This methodology was applied to the classification of actives and decoys from the DUD
(directory of useful decoys), in our article shown in Chapter 14. The class of new
molecules can be predicted without building the model once again: the molecules are
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projected onto both manifolds, in order to obtain new data densities p(t
q

|c
i

) for each
qth new molecule given a class c

i

. Then, the above formula can be used to predict
their activity profile P (c|t

q

). However, the initial space classification model cannot be
visualized; this is why we introduced the latent space classification.

7.2 Latent Space Classification

Class  1 Class  2
(a) Node representation.

1

2

(b) Grid representation.

Figure 7.1: Two visual representations of GTM classification model with applicability domain
(AD), for ache inhibitors (red) and decoys (blue). Lighter regions have a lower probability given
the winning class P (xk|cmax

) and are outside the AD. Points in map (b) represent individual
compounds colored by class.

Instead of using the data density in initial space, we may use the posterior probabil-
ities or responsibilities (cf. Chapter 3). Thus, instead of computing the probability of
a class given the data, we compute the probability of a class given a node, using Bayes’
theorem once again:

P (c
i

|x
k

) =
P (x

k

|c
i

)⇥ P (c
i

)
P

i

P (x
k

|c
i

)⇥ P (c
i

)
(7.4)

where P (x
k

|c
i

) is computed as follows:

P (x
k

|c
i

) =

P

Nci
ni

R
kni

N
ci

(7.5)

where R
kni is the responsibility of node x

k

for a molecule belonging to class c
i

. Using
these formulas, two methods can be used to classify new query compounds.

1. Global method: to predict the activity profile P (c|t
q

) of the qth query com-
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pound with associated responsibilities {R
kq

}, the following equation can be used:

P (c
i

|t
q

) =
X

k

P (c
i

|x
k

)⇥R
kq

(7.6)

We named this method the "global" prediction, since it employs all responsibilities of
a query t

q

to generate the activity profile.
2. Local method: The "local" prediction only uses the conditional probability of

the node closest to the molecule in 2D P (x
nearest

|c
i

):

P (c
i

|t
q

) = P (x
nearest

|c
i

) (7.7)

The winning class will have the highest P (c
i

|t
q

) value.
The main advantage of using latent space classification models is the associated

visualization. Each GTM node will have a probability value P (x
k

|c
max

), where c
max

is
the winning class. Nodes can be represented as circles colored by class. The probability
P (x

k

|c
max

) assigned to each node can be used to change their shape or transparency. We
give in Figure 7.1 two possible representations of P (x

k

|c
max

) by transparency variation,
using the ache dataset from the DUD database.
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Chapter 8

GTM Regression Models

Regression consists in learning a hidden relationship between explanatory variables x
and dependent variables y from several observations. For QSAR (quantitative structure-
activity relationship) tasks, dependent variables are activities to be predicted, such as
the affinity for a given target or the solubility of molecular compounds. We designed new
GTM-based supervised and unsupervised regression methods; supervised approaches
use activity information as well as descriptors to train the models, whereas unsuper-
vised methods only use descriptors and are "blind" to the activities during the training
process.

8.1 Unsupervised GTM Regression

Our models based on conventional GTM are built by fitting a manifold to a training set
in descriptor space. Therefore, they are blind to the activities of the training set, which
are only used after building the model. We designed several regression methodologies,
consisting of a "global" method based on the whole probability distribution of a query
compound t

q

on the 2D GTM map, and "local" methods taking into account only the
neighborhood of t

q

.
1. Global Method. The global prediction approach is based on the K-dimensional

activity landscape vector ā computed as described in Chapter 5, with responsibilities of
a GTM based on a specific descriptor space, and some training set activities. The set
used for building the GTM map and the one providing the experimental activities do
not have to be the same. The GTM map can be built with a first set, and a second set
of compounds can be projected on the map to obtain new responsibilities, used together
with their activities to build a landscape. The global method uses the responsibility
R

kq

of each node x
k

for a query molecule t
q

as a weight for the activity landscape value
ā
k

at node x
k

, so that the predicted activities â of queries are weighted averages of
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landscape values:

â
q

=
K

X

k=1

R
kq

⇥ ā
k

(8.1)

2. Nearest nodes. The nearest nodes approach consists in selecting the V nearest
nodes x

v

of molecules on the 2D GTM map using Euclidean distances, and retrieving
their activity landscape values ā

v

; Euclidean distances are used to build the GTM
probability density functions (PDFs) during training and should be a natural choice
for this task. The predicted activity of a molecule query is the average of landscape
activity values of these V nearest nodes:

â
q

=

P

V

v

ā
v

V
(8.2)

3. Nearest neighbors. The nearest neighbors method (classical k-NN) is the same
as the nearest nodes approach, except that nearest training set compounds are retrieved
instead of nearest nodes. These nearest neighbors can be found by computing Euclidean
distances between the mean position of compounds on the 2D map or by estimating the
correlation between their responsibilities; the 2D approach is usually more performant
(see Chapter 16). The predicted activity of a new tested compound t

q

is the average of
experimental activities {a

v

} of the V nearest training set compounds:

â
q

=

P

V

v

a
v

V
(8.3)

All these GTM-based unsupervised prediction approaches were tested on several datasets
and compared to classical machine learning methods in Chapter 16.

8.2 Supervised GTM Regression with S-GTM
We developed regression methods to predict individual activities or whole activity pro-
files with our new Stargate GTM or S-GTM method. With S-GTM, molecules can
travel from an A-dimensional descriptor space to a B -dimensional activity space. This
mapping from one space into another generates coordinates in the activity space. Mod-
els are trained using descriptors and activities; therefore, the method is supervised.
Details about the algorithm and prediction methodology are given in Chapter 11.
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Chapter 9

GTM Applicability Domain

An applicability domain (AD) in chemoinformatics defines the domain in chemical space
where a model’s prediction is applicable; it is dependent on the instances used to train
the model as well as on the features used to model the space. We introduce in this
chapter some new AD definitions for GTM models.

9.1 Applicability Domain and Outliers

Structural outlier 

Structural descriptor x 

St
ru

ct
ur

al
 d

es
cr

ip
to

r 
y Class 1 

Class 2 

Activity outlier 

Figure 9.1: There are two main types of outliers: activity and structural outliers. Different
types of applicability domains may reject these molecules that cannot be well described by a
given model.

Applicability domains (ADs) and outliers are two closely related concepts. A model
prediction for a new compound will not be trusted if the compound is found outside the
AD; a compound outside the AD is an outlier. An outlier is an object that cannot be
well described by the model; this situation arises in many occasions: the model could
have some shortcomings and not be applicable to some instances, the outlier could be
a very rare instance, an experimental error, etc.
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If the model were a person deciding whether or not you could eat this evening, you
could ask "him" the question: "knowing what you know and having seen how a few
other people are fed, can you be trusted with such a big decision as whether I am to
be given a meal tonight or not?" Here, the "few other people" are the training set
and whether or not you are hungry and should be given a meal is the prediction. The
purpose of the applicability domain is to determine whether the model is able to make
a reliable prediction for you.

In which cases is the model not to be trusted? For the model in charge with tonight’s
meal, two problems might arise.

1. The structural outlier. Let us say that this model-person bases his decision
exclusively on your corporal features (big, small, large, etc.). Then, if you are a big
and large man, he will decide you must be very hungry. However, if you are the biggest
and thinnest man he has ever seen, he will not know what to decide, since by his own
experience big people need more food but slim persons do not eat very much. In this
case, you could be discarded from the applicability domain as a structural outlier.

For molecules, structural outliers are descriptor representations that have values
very different from the training set. An example of an applicability domain discarding
structural outliers is the bounding box, where the molecules whose descriptors do not
fall into a specified range (defined using the training set) are not included in the AD.

2. The activity outlier. Let us now say that you are very thin and small; the
model will then decide you do not need an evening meal. The model has seen a lot of
people just like you, and they were most of the time not hungry at all. However, you
could be very hungry because you are a very sportive person; therefore, the model would
be wrong not to feed you. This time again, you could be discarded from the applicability
domain, but as an activity outlier; the model did not include some necessary features
(such as sports) to correctly predict your activity, which is, in this case, your appetite.

For molecules, activity outliers are found by looking at activity variations of training
set compounds in a specific region of the chemical space or by estimating the difference
in predicted and experimental activity; the higher the variation, the higher the chances
that the activity of a molecule found in this region will be incorrectly predicted. There-
fore, we may consider that these regions are outside the applicability domain of the
model. An illustration of these two types of outliers (structural and activity outliers) is
given in Figure 9.1.

For GTM, we defined structure-dependent and activity-dependent applicability do-
mains. Some of our methods directly discard molecules from the applicability domain
that fail to fulfill a specific condition. On the other hand, other methods discard entire
regions of the 2D map from the applicability domain instead of individual compounds,
by finding which nodes on the map do not satisfy a specified requirement; the pre-
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diction of molecules near those nodes will not be trusted. There are several ways to
find molecules in discarded regions: simply find the nearest node for each molecule and
establish whether it was discarded or not, or draw a delimited area around each node
(Voronoi region, confidence ellipse, etc.) and capture molecules within the area. We
mainly used the distance-based approach (with Euclidean distances).

9.2 Structure-Dependent AD

In this section, we define two types of structure-dependent AD using GTM, based on
either the log likelihood or data density. These applicability domains can be used
without activity information, e.g., for simple visualization or clustering; but they can
also be used for classification and regression models. The log likelihood-based AD
discards individual test compounds from the applicability domain; the density-based
AD discards nodes (regions on the 2D map) not fulfilling data density requirements.

9.2.1 Likelihood-Based

For GTM, the log likelihood of each molecule can be computed and used to determine
whether a new molecule lies within the applicability domain; a related approach as been
used by Bullen et al. for scatterometer data to discard outliers [94]. We define a value
LF (likelihood factor), which is a percentile of the log likelihood distribution of training
set molecules; for example, LF = 10% means that 90% of training compounds have a
higher log likelihood than the value L

LF

. A query compound t
q

with a log likelihood
L
q

that does not satisfy the following condition will be discarded from the applicability
domain:

L
q

> L
LF

(9.1)

For an application of this method, c.f. Chapter 16.

9.2.2 Density-Based

Another activity-independent AD easily defined with GTM is the density-based AD.
First, a vector of cumulated responsibilities r̄ is computed, where r̄

k

is the value assigned
to each node x

k

:

r̄
k

=

P

n

R
kn

N
(9.2)

then, a threshold value is fixed, and the node x
k

(= region on the map) is discarded
from the applicability domain if it does not obey the following rule:

r̄
k

> threshold (9.3)
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where the threshold runs from 0 (all molecules within the AD) to 1 (all molecules
outside the AD). This method is easily applicable to classification or regression mod-
els, and can be visualized on a 2D map easily in both cases: for classification models,
by removing nodes outside the AD or using a transparency-based representation (Fig-
ure 7.1); for regression models, by shading regions of the activity landscape outside the
AD (Figure 9.3).

9.3 Activity-Dependent AD
In this chapter, we introduce several new activity-based AD definitions for classification
and regression using the GTM cartography.

9.4 Classification

    [0, 0.1[ 

    [0.1, 0.25[ 

    [0.25, 0.5[ 

    [0.5, 0.75[ 

    [0.75, 1.0] 

Class  1 Class  2
(a) CPF=1, BAC=0.66, Coverage=100%

    [0, 0.1[ 

    [0.1, 0.25[ 

    [0.25, 0.5[ 

    [0.5, 0.75[ 

    [0.75, 1.0] 

Class  1 Class  2
(b) CPF=3, BAC=0.76, Coverage=79%

Figure 9.2: BCRP (breast cancer resistance protein) inhibition classification map, where
inhibitors are more likely to be found in red regions and non-inhibitors in blue regions; nodes
are represented by large circles and tested compounds by points. The CPF applicability domain
was applied on the right-hand map to remove nodes outside the applicability domain. The
dataset was extracted from reference [95] and cleaned by Timur Gimadiev.

We introduce here 3 applicability domain definitions for classification models. The
class-dependent density and class prevalence factor methods discard nodes from the
applicability domain; in other words, some regions of the map will be considered as
"no man’s land". On the other hand, the class likelihood factor (CLF) defines which
test compounds the model is able to predict and discards the prediction of a query
compound that does not fulfill the CLF condition.

1. Class-dependent density. As explained in Chapter 7, a classification map is
obtained by coloring each node of the map by the winning class c

best

, which has the
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highest conditional node probability P (x
k

|c
best

) equal to the cumulated responsibilities
within class c

best

. GTM nodes (= regions on the map) within the AD fulfill the following
requirement:

P (x
k

|c
best

) > threshold (9.4)

where the threshold runs from 0 (all molecules within the AD) to 1 (all molecules outside
the AD). Therefore, this AD definition is very similar to the density-based AD, except
we only take into account the density of training compounds belonging to the winning
class. A representation of this applicability domain is given in Chapter 7, Figure 7.1.
The problem with this approach is that it does not take into account information from
other classes, and does not show the model’s difficulty in choosing between one class or
another, which is why we introduced the CPF (class prevalence factor) and CLF (class
likelihood factor) approaches.

2. Class prevalence factor (CPF). The class prevalence factor is a simple value
running from 1 (all compounds included in the applicability domain) to infinity, which
must be inferior to the ratio of the node probability given the best class to the node
probability given any over class:

CPF <
P (x

k

|c
best

)

P (x
k

|c
i

)
, 8c

i

6= c
best

(9.5)

In other words, the winning class c
best

should prevail more than CPF times over all
other classes in the node x

k

. If this is not the case, the node (region on the map) x
k

is
discarded from the applicability domain. We applied this AD definition and compared
it to the bounding box method in Chapter 15; apparently, these two methods yield
a similar performance. We also give an illustration of a CPF applicability domain in
Figure 9.2 where discarded nodes are simply removed from the classification map; we
applied the applicability domain on a model of BCRP (human breast cancer resistance
protein) inhibition. CPF usually removes regions at the frontier between two classes,
which is the main place where models "hesitate".

3. Class likelihood factor (CLF). The class likelihood factor method is based
on the class entropy, which is a value defined for each compound measuring the disorder
of class probabilities P (c

i

|t
q

) attributed to each query compound t
q

: if the probability
of the winning class is far greater than any other, the entropy will be low, since the
probability is concentrated in one place; however, if the probabilities are almost the
same for all classes, the disorder will be great and the entropy high. The entropy Eclass

q

for a query compound t
q

is defined as follows:

Eclass

q

= �
X

i

P (c
i

|t
q

) log(P (c
i

|t
q

)) (9.6)
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Then, the condition for lying within the applicability domain is the following for the
query compound t

q

:

CLF >
Eclass

q

Eclass

max

(9.7)

where Eclass

max

is the highest class entropy, which occurs when every probability P (c
i

|t
q

)

is equal to 1

Nc
, where N

c

is the number of classes; i.e, when all conditional class prob-
abilities are equal and no class wins. It should be noted that, in this case, we do not
discard nodes from the applicability domain but establish that some queries cannot
be correctly predicted. Therefore, this AD definition cannot be directly visualized as
the CPF method. However, we also applied this method to classification models in
Chapter 15 and its efficiency was close to that of CPF.

9.5 Regression

RMSE = 3.43 
Coverage = 81% 

(a) Landscape Difference.

RMSE = 3.47 
Coverage = 60% 

(b) Activity Variance.

RMSE = 3.70 
Coverage = 83% 

(c) Density.

Figure 9.3: Three different applicability domains applied to a model predicting the binding
constant of Gd3+-ligand complexes; the landscape represents the binding constant values on
the map, and the shaded areas are outside the applicability domain; circles are drawn around
compounds with pK RMSE > 4.7 (20% worst predictions).

We defined two activity-based applicability domains, which discard nodes with high
training set activity variation (activity variance method) or nodes with a high difference
between experimental and predicted landscapes (landscape difference method).

1. Activity variance method. The activity variance �2

k

is estimated in each node
x
k

using the following formula:

�2

k

=

P

N

n=1

R
kn

(a
n

� ā
k

)2
P

N

n=1

R
kn

(9.8)

where �2

k

is the activity variance in node x
k

, a
n

the experimental activity of compound
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t
n

, ā
k

the average activity in node x
k

, and R
kn

the responsibility of node x
k

for molecule
t
n

.
2. Landscape difference. The landscape difference method involves computing

the following differences between the predicted landscape values ā(pred)
k

at each node
x
k

and the experimental landscape values ā(exp)
k

:

diff
k

= abs(ā(pred)
k

� ā(exp)
k

) (9.9)

ā(exp)
k

is computed using the experimental activities of the training set and ā(pred)
k

using the predicted activities:

ā(exp)
k

=
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R
kn
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(9.10a)
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(9.10b)
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kn
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n

P

N
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R
kn

(9.10c)

A node x
k

will be within the applicability domain if:

diff
k

< threshold (9.11)

We experimented three AD for regression models (activity variance, landscape dif-
ference, and density) on a dataset of complexants of Gd3+, where the modelled activity
is the ligand-metal complex stability constant, in Figure 9.3. The activity landscape
was built using training set molecules; the points on the maps are test set molecules,
and the most incorrectly predicted molecules (20%) are highlighted; the goal of the op-
eration was to diminish the prediction error (RMSE) without discarding too many test
molecules from the applicability domain (coverage). We did not systematically evaluate
the performance of these AD definitions in any other practical application; the subject
of supervised AD for GTM regression models could be further investigated. However,
the landscape difference method shows promising results, whereas the activity variance
method mainly discards the most populated regions, resulting in a low coverage.
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Chapter 10

Chemical Libraries Analysis

In this chapter, we show how to compare and analyze large chemical libraries using
GTM. A part of this analysis consists in building activity and descriptor landscapes, as
described in Chapter 5. However, the key concept of our "big data" analysis is to use
probability distributions for whole data subsets (libraries) instead of considering each
element (molecule) one by one. We use these distributions to estimate the similarity
of libraries and their dispersion in descriptor space. An application of these methods
to a set of 37 chemical libraries (more than 2 million compounds) can be found in
Chapter 17.

10.1 Cumulated Responsibilities

Our analysis of large libraries is based on cumulated responsibilities. Since responsi-
bilities are assigned to every compound mapped on the GTM map, we can compute
cumulated responsibilities R̄ for each node x

k

and library c
i

:

R̄
ik

=

P

n

R
kn

(c
i

)

N
ci

(10.1)

where N
ci is the population within the library. Therefore, instead of considering each

library c
i

as a set of compounds, we represent it by a single K -dimensional vector of
cumulated responsibilities r̄

i

, where K is the number of nodes on the map.
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10.2 Library Diversity

A library’s diversity can be assessed by computing Shannon’s entropy [96]:

E(c
i

) = �
X

k

R̄
ik

log(R̄
ik

) (10.2a)

E
Norm

(c
i

) =
E(c

i

)

log(K)
(10.2b)

where E
norm

(c
i

) is the normalized entropy of library c
i

. This measure is an indicator of
the dispersion of a library on the 2D map.

10.3 Comparing Landscapes

Landscapes {ā(c
i

)} can be computed for each library c
i

. These landscapes can be
employed to compare libraries according to a specific property. We introduce a measure
coined RLE or relative landscape elevation, to measure the percentage of the map where
the landscape of a library has higher values than a landscape of reference:

RLE
i

=
1

K

K

X

k=1

H(ā
k

(c
i

)� ā
k

(reference))⇥ 100% (10.3)

where H is the Heaviside step function (H(x) = 0 if x < 0 and H(x) = 1 if x > 0),
RLE

i

is the relative landscape elevation (for a specific property) for library c
i

, ā
k

(c
i

) the
landscape value for library c

i

at node x
k

and ā
k

(reference) the reference landscape value.
Typically, the reference could be the landscape computed using all libraries. Relative
landscape elevations can be obtained for each library and plotted in a bar graph (see
Chapter 17). A library has higher property values than the reference database on RLE%

of the map; for example, if RLE = 100%, the library has higher property values than
the reference everywhere on the map.

10.4 Library Similarity

Libraries can be compared using their cumulated responsibilities vectors r̄
i

. Some pos-
sible similarity or distance measures S(c

i

, c
j

) include:

1. The Battacharyya similarity:

S
Bhattacharyya
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i

, c
j

) =
X
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q
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ik

⇥ R̄
jk

(10.4)
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2- The Euclidean distance:

S
Euclidean

(c
i

, c
j

) =

s

X

k

�

�R̄
ik

� R̄
jk

�

�

2 (10.5)

3. The Tanimoto similarity:
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(10.6)

These similarities and distances can also be used in the initial descriptor space to
compare molecules. If the descriptors are binary, the Tanimoto similarity between two
compounds I and J is usually used in chemoinformatics:

T (I, J) =
N(1, 1)

N(0, 1) +N(1, 0) +N(1, 1)
=

N(1, 1)

D �N(0, 0)
(10.7)

and can be used to compute an average distance between two libraries:

T (c
i

, c
j

) =
1

N
ciNcj

X

I2ci

X

J2cj

T (I, J) (10.8)

However, evaluating distances in the initial space is much more costly than using
cumulated responsibilities, since in the initial space all distances between all molecules
must be computed. On the other hand, by using cumulated responsibilities, comparing
two libraries is limited to computing the similarity between two vectors of cumulated
responsibilities.

10.5 Meta-GTM
We introduced the mGTM or meta-GTM concept while investigating chemical libraries
(thanks to Dr. D. Horvath for finding a better name than "GTM2"). The mGTM map
is a GTM map with a second level of abstraction: after training a first map with data
instances, the cumulated responsibilities vectors are computed for each library (or data
subset), so that each library is represented by a vector of cumulated responsibilities;
then, these vectors are used as if they were data instances to perform a second GTM
and finally produce the mGTM map. Points on the 2D mGTM map do not represent
molecules, but whole libraries. This method is useful when multiple data subsets or
libraries must be compared. The cumulated responsibilities can be seen as library
descriptors; other types of library descriptors can also be used, such as landscape vectors
or RLE values. To see applications of these approaches, see Chapter 17.
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Chapter 11

Stargate GTM (S-GTM)

11.1 Introduction

In this chapter, we introduce the Stargate version of the generative topographic map-
ping (S-GTM) and its use as a supervised regression method. In conventional 1-space
GTM, the D-dimensional descriptor space is reduced to a 2-dimensional space; with
Stargate GTM, two separate spaces (A-dimensional and B-dimensional), e.g., the space
of chemical descriptors and the space of experimental properties, are optimized in par-
allel. With a Stargate GTM model, it is possible to map data described only in one
of the spaces (e.g., the space of chemical descriptors) into the other space (e.g. the
space of properties). The original idea of S-GTM (using joint responsibilities to train
a model) originated from Prof. I. I. Baskin; the algorithm was developped and imple-
mented during this thesis. The method was first called "combined GTM" before the
name "Stargate GTM" was adopted thanks to Prof. Varnek; however, the term "com-
bined GTM" is still used in the command-line tool. In this chapter, we first describe the
new Stargate GTM algorithm and the methodology to train and test a model. Then,
we build Stargate models to predict coordinates in an 8-dimensional affinity space or
in individual 1-dimensional spaces corresponding to pKi values for 8 different targets,
based on a dataset of 1325 molecules from ChEMBL [97]. In the third section, we com-
pare the performance of Stargate GTM model to conventional GTM models using four
datasets: Lu binders (Lu dataset), thrombin inhibitors (Threx), a solubility dataset
(LogS), and compounds from the ChEMBL database (ChEMBL). Then, we investigate
how the performance of Stargate GTM models could be affected by weights applied to
each space, and finally study the effect of the correlation of properties to be predicted.
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Space&1&

Space&2&

Figure 11.1: Molecules can jump through the GTM "Stargate" from one vector space, where
they are described by a specific set of variables, to another vector space, with a different set of
variables. For example, Space 1 could be the space of structural descriptors, and Space 2 the
space of experimental properties. A molecule, by passing through the gate, could jump from
Space 1 to Space 2 and vice versa. The operation is not symmetric: two different manifolds are
used to travel to the 2 different spaces.

11.2 Stargate GTM

11.2.1 Algorithm

The GTM can reduce a D-dimensional data space to a 2D latent space. Stargate GTM
uses a combined model trained on two spaces with dimensionalities A and B as a "gate"
from one space to another (cf. Figure 11.1).

One molecule can therefore jump through the gate form one space (e.g. the space of
structural descriptors) to another (e.g. the space of experimental properties). For this
purpose, S-GTM optimizes two manifolds for the two different spaces separately, and
combines the probability density functions (PDFs) to obtain a combined probability
distribution for both spaces. Thus, two different manifolds are built, which may be
used to project new molecules from one space to another. The Stargate GTM workflow
is divided into two steps:

Training stage:
Train a model using Space 1 and Space 2 descriptors: we obtain 2 separate man-
ifolds for Space 1 and Space 2.

Test stage:

1. Projection of A-dimensional Space 1 data to the Stargate GTM 2D space.
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2. Mapping of the 2D coordinates from GTM 2D space to the B -dimensional
Space 2.

11.2.1.1 Training Stage

Data Set 

Space 1 Space 2 

Space 1 Manifold YSpace1   

Combined Responsibilities 
RSpaces1-2 

Space 1 PDF 
 p(dataSpace1|node) 

Space 2 PDF 
 p(dataSpace2|node) 

Update Space 1 model 
parameters using RSpaces1-2 

Repeat until 
convergence 

Space 2 Manifold YSpace2 

Update Space 2 model 
parameters using RSpaces1-2 

Repeat until 
convergence 

Figure 11.2: S-GTM training stage workflow.

At the training stage (Figure 11.2), two different probability density functions
(PDFs) p(tSpace1|x

k

,WSpace1,�Space1) and p(tSpace2|x
k

,WSpace2,�Space2) are considered
for Space 1 and Space 2, respectively. They can be computed using two different mani-
folds YSpace1 and YSpace2 as well as two different inverse variances �Space1 and �Space2.
Posterior probabilities (responsibilities) for Space 1 and Space 2 RSpace1 and RSpace2

are computed during the expectation step:
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as well as combined responsibilities:
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(11.2)
where wSpace1 and wSpace2 are weight factors attributed to each space, ranging from
0 to 1: [0  wSpace1  1, wSpace2 = 1 � wSpace1]. These combined responsibilities R
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will then be used to adjust the shape of the manifolds YSpace1 and YSpace2 during the
maximization step. This procedure is repeated until convergence of the log likelihood
function.

11.2.1.2 Test Stage

Figure 11.3: S-GTM test stage workflow.

S-GTM test stage. As shown in Figure 11.3, at the test stage, data in Space 1
(descriptor space) TSpace1 is mapped into Space 2 (activity space) to obtain T̂Space2.
The coordinates of a data point in Space 2 correspond to its properties (or activities).
The mapping from Space 1 to Space 2 TSpace1 ! T̂Space2 proceeds in two steps. First,
A-dimensional data points from Space 1 are projected into the 2D latent space:

TSpace1 ! X(TSpace1) (11.3)

then, they are mapped from the latent space into Space 2:

X(TSpace1) ! T̂Space2 (11.4)

The projection TSpace1 ! X(TSpace1) is performed by computing the distances in Space
1 between the data points TSpace1 and manifold points YSpace1. Then, these distances
are used to compute the associated PDFs and responsibilities, from which the 2D co-
ordinates of the nth molecule x(tSpace1

n

) can be obtained:

x(tSpace1

n

) =
K

X

k

x
k

RSpace1

kn

(11.5)
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The first step of the "reverse" mapping of the nth molecule from the latent space to
the B-dimensional Space 2 consists in applying radial basis functions to x(tSpace1

n

):
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(11.6)

where m
m

is the center of the mth RBF and � a parameter tunable by the user; these
functions are used together with a parameter matrix WSpace2 to map the 2D data points
into Space 2:
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(11.7)

11.2.2 Prediction with S-GTM

Prediction with S-GTM can be done in the same way as with conventional GTM, by
using an activity landscape or a k-NN approach. However, if Space 1 is the descriptor
space and Space 2 the activity space, coordinates of molecules in an activity space,
i.e., predictions, can be directly obtained by mapping from descriptor space to activity
space, without the need of an activity landscape; this is the prediction method we used
in this chapter. However, this method is valid only if responsibilities RSpace1 have one
mode per molecular structure, so that the posterior mean will be a good summary of the
distribution; in our case, it was indeed usually the case when mapping from descriptor
space to activity space. On the other hand, when the process is performed the other
way around (from activity space to descriptor space), the responsibilities RSpace2 usually
have several modes for only one activity corresponding to several possible structures;
in this case, computing the mean is not sufficient. However, several ways may be used
to find the corresponding structures, which will not all be explored here; we will only
illustrate one of them, which consists in selecting the nodes {x

k

} with the highest
responsibility values

n

RSpace2

kn

o

for the nth activity, and simply retrieve the training
set compounds on the 2D map that can be found within delimited areas drawn around
each of these nodes.

11.3 Application 1: Prediction of 8 Affinities

11.3.1 Data and Descriptors

For S-GTM, both structural (molecular descriptors) and activity data for each molecule
are required. However, it is sometimes rather difficult to find enough experimental
data to fill completely the activity matrix. In this work, we used a dataset containing
1325 ligands of 8 different rhodopsin-like GPCR receptors extracted from the ChEMBL
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database. The set was chosen to provide experimental pKi values for all molecules
for one of these receptors (Dopamine D2). For the others, missing experimental affini-
ties were completed by values theoretically predicted by SVM models reported in [98].
The dataset was randomly split into a training set of 883 compounds and a test set of
442 compounds. The modeling was performed using ISIDA atom-centered fragments
IIA(1-5)_P [20, 99] defining the descriptor space. These descriptors provide with the
best SVM models for dopamine receptor D2 affinity, for which experimental values were
available for all 1325 compounds. The descriptors were generated by ISIDA Fragmentor
v. 2013 program [99]. Notice that descriptors with more than 90% null values were dis-
carded. The target names and number of experimental and predicted affinities available
are given in Table 11.1.

Table 11.1: The Affinity dataset contains 1325 molecules with affinities for 8 targets. The
target names, ChEMBL IDs and short IDs used in this study are given in the table. Only some
compounds had experimentally measured pKi values of affinity for a given target. The number
of experimental (exp) and predicted (pred) affinities is indicated.

ChEMBL ID Short ID Target Name Exp. Pred.
1867 A2a Alpha-2a adrenergic receptor 22 1303
271 D2 Dopamine D2 receptor 1325 0
234 D3 Dopamine D3 receptor 684 641
219 D4 Dopamine D4 receptor 335 970
214 S1a Serotonin 1a (5-H1a) receptor 229 1096
224 S2a Serotonin 2a (5-H2a) receptor 187 1138
3155 S7 Serotonin 7 (5-HT7) receptor 20 1305
228 ST Serotonin transporter 58 1267

11.3.2 Methods

In this section, an "Affinity" dataset was used to predict 8 affinities towards targets listed
in Table 2 11.1. We compared the performance of Stargate GTM to the implementation
of Random Forests in WEKA [100] (with a small default number of tree = 10) and
conventional GTM.

For conventional GTM, the internal/external validation was performed as ex-
plained in Chapter 6; the best parameters were selected in a cross-validation procedure,
by keeping the number of RBF centers M = 400, the number of grid nodes K = 400,
and choosing the regularization coefficient � in [0.01, 0.1, 1, 10, 100] and the width
factor w in [0.25, 0.5, 1, 1.5, 2]. The best parameters were then used to build a model,
which was used to predict the 8 affinities for compounds in the external test set. For
conventional GTM, we used the GTM activity landscape method for predictions, which
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yielded a better performance than the GTM k -NN approach in this case.
For S-GTM, the parameter selection was the same; however, it was not necessary

to make an optimization for each property. Only one optimization is required for S-
GTM, since all properties are predicted at the same time. Therefore, 25 Stargate GTM
models were built by varying the w and � parameters, the weight parameter was fixed at
50% for both spaces, and the 3-fold cross-validated Q2 was also obtained each property.
However, in this case, we had only one set of parameters to find for all properties, in
opposition to conventional GTM, where we optimized one model per property. Thus,
the Q2 values for all properties had to be taken into account: the model with the largest
proportion of properties with a Q2 higher than 0.50 was selected. If two models had the
same proportion of Q2 > 0.50, then the models with the highest Q2 averaged across all
properties won. Then, the external test set was sent through this optimized gate from
the descriptor space into the property space, and we obtained directly predictions for
all properties and the associated determination coefficients.

S-GTM/8D and S-GTM/1D protocols. We employed two different Stargate
GTM approaches to predict the 8 affinities: with S-GTM/8D, we used the whole 8-
dimensional affinity space to build a model and be able to predict all 8 affinities at
the same time. With S-GTM/1D, for each affinity separately, we used a 1-dimensional
affinity space (corresponding to the affinity for one single target) to build a model and
predict only one activity at a time. Thus, for both S-GTM/8D and Stargate S-GTM/1D,
we built a supervised model, which was trained with the knowledge of activity values of
a training set. With S-GTM/1D, we simply predict one activity; with S-GTM/8D, we
predict the whole 8-dimensional activity profile. Only the parameters of Stargate GTM
8D were optimized and used to build both S-GTM/8D and S-GTM/1D models.

11.3.3 Results and Discussion

As mentioned in the foregoing section, we used an 8-dimensional (entire profile, with
prediction-filled missing values) and a 1-dimensional affinity space (8 models for 8 sep-
arate affinities) for the S-GTM modeling of the Affinity dataset.

The S-GTM model allows us to project data into the 2D latent space either from
descriptor space (with responsibilities RSpace1) or from activity space (with responsi-
bilities RSpace2). These two data projections look very different for S-GTM/8D and
S-GTM/1D protocols in Figure 11.4. Indeed, in S-GTM/8D calculations, data pro-
jection from the descriptor space into the 2D latent space results in a set of points
scattered on the map. On the other hand, data projection from 1D activity space into
the 2D space with S-GTM/1D results in a sort of one-dimensional curve embedded in
the latent space. This could be explained by significant differences between RSpace1 and
RSpace2 distributions, which define positions of data points (mean of the distributions).
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In fact, the rSpace1

n

distribution for one molecule is in most cases unimodal (Figures
6c), whereas the rSpace2

n

distribution is usually multimodal. The former reflects the fact
that a molecule is characterized by specific values of descriptors and activities, whereas
the latter shows that structurally different molecules might have similar activity values.
In particular, "inactives" are not subject to any structural constraints - they might be
scattered anywhere in the descriptor space.

This is a consequence of the intrinsic asymmetry of QSAR modeling and chemical
similarity concept: similar molecules should have similar activities, but similar activi-
ties could correspond to quite different chemical structures. Thus, passing a molecule
through the "gate" (S-GTM model) from the descriptor to the activity space, S-GTM
predicts its activities. On the other hand, passing an activity query (a set of specified
activity values) from the activity to the descriptor space, S-GTM performs an inverse
QSAR analysis: it finds areas in the descriptor space in which other molecules might
have the specified activity values.

Figure 11.4: Maps obtained with the S-GTM models using responsibilities RSpace1 (descrip-
tors) and RSpace2 (properties). RSpace1 and RSpace2 result from mapping the data from the
descriptors and activity spaces, respectively, to the 2D latent space. Three different representa-
tions are given: (a) activity landscapes of D2 affinity, (b) average position of data points, and
(c) responsibilities of a data point selected in (b).

We use the term "inverse QSAR" to denote only the first step (from activities to
molecular descriptors) of what is actually known as "inverse QSAR" in literature. S-
GTM does not directly generate new structures from scratch; it only finds areas where
known structures can exhibit specific activities. Those areas correspond to different
modes of the multimodal distribution in the descriptor space. They are depicted by the
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most intense dark grey spots in Figure 11.4.
Several important observations can also be made from close inspection of Figure 11.4.

First, the mode position of the unimodal distribution of the data from the descriptor
space coincides exactly with one of the modes of the multimodal distribution condi-
tioned on data from the activity space (second column). This means that a molecule,
having traveled through the gate to the activity space, and returned from there through
the same gate back to the descriptor space, is reconstructed. The second important
observation is that the areas corresponding to different modes of this distribution have
the same color in the affinity landscapes as the traveling molecule. This means that
after returning from the activity space, the molecule is accompanied by several other
molecules with a similar activity value or activity profile. The third observation is that
the number of those companion molecules is smaller for 8D affinity space than for 1D
affinity space. This could be explained by a much lower probability to find a molecule
with similar affinities for several targets than for a single target.

It is interesting to note that D2 activity landscapes obtained by projecting data
(descriptor values) from the descriptor space to the 2D latent space and by projecting
data (activity values) from the affinity space to the 2D latent space are very similar
(see Figure 11.4). The Pearson correlation coefficient between descriptor and activity
landscapes is 75% for both S-GTM/8D and S-GTM/1D protocols.

= Structural Query S 

= Activity Query A 

Distribution of  

Distribution of  

S 

A 

S 

A2 

A1 

A3 
A4 

A =   
{6.88, 8.82, 6.76, 6.65,  
7.67, 7.58, 7.22, 6.91} 

S’1!

S =  

S’2!

S’3!

S’4!

A’ =   
{6.99, 8.13, 7.27, 6.14,  
7.33, 6.96, 7.11, 6.60}  

S!

Figure 11.5: Activity prediction (conventional QSAR) and structures retrieval (inverse QSAR)
with S-GTM. Using a structural query as input, S-GTM predicts an activity profile (top),
whereas by using an activity query S-GTM retrieves several structures whose activities are
similar to the query (bottom). S was retrieved in the same region (A

1

) as S0
1

. See Figure 11.6.

In Figure 11.5, we show how a single S-GTM model can be used in 2D for both
conventional and inverse QSAR. For this, we used maps built with the S-GTM/8D
protocol (cf. Figure 11.4 for the different representations). In a conventional QSAR
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Figure 11.6: Table coupled with Figure 11.6: (a) structural query S and corresponding
experimental and predicted activity profiles A and A0; (b) activity profile query A and the
structures S0 found using S-GTM, with their associated experimental activity profiles.

procedure, an activity profile A0 is predicted from a structure S; as shown in Figure 11.5,
a structure with a unimodal distribution will have only one predicted activity profile
A0. On the other hand, for the inverse QSAR procedure where the goal is to find
structures S0 corresponding to an activity profile A, the probability distribution of the
query A on the 2D map is multimodal, so that modes of the distribution must be
selected to find structures {S0

i

} in the corresponding regions. Therefore, from S to
A0 (structure to activity), there is most of the time a one-to-one correspondence, but
from A to {S0

i

} (activity to structure), multiple answers to the query are possible. The
more dispersed the responsibilities, and the larger the number of modes of the activity
profile distribution in 2D, the more diverse will be the structures found by S-GTM.
In Figure 11.4, we may see that the distribution of a single activity covers a larger
portion of the map than the 8D activity profile, which confirms the simple fact that
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they are more compounds sharing the same single activity than compounds sharing a
whole activity profile. In Table 4, we show the queries S for QSAR and A for inverse
QSAR, as well as the answers given by S-GTM (A0 for the predicted profile and {S0

i

}
for the predicted structures).

Figure 11.7: Predictive performance of Random Forests (RF), GTM and S-GTM models for
8 different activities in the Affinity dataset assessed in 3-fold cross-validation on the training set
(top), and on the external test set (bottom). All GTM models were obtained with optimized
sets of parameters. The data points were sorted in ascending order of conventional GTM
determination coefficients Q2 and R2.

The model performances Q2 (internal performance assessed in 3-CV on the training
set) and R2 (external performance assessed on the external test set) for conventional
GTM, S-GTM/1D, S-GTM/8D and RF models are given in Figure 11.7, for each affinity
listed in Figure 11.1.

The internal and external predictive performances are very close. The only affinities
predicted with an internal performance Q2 > 0.5 were S1a (affinity for Serotonin 1a
receptor) and S2a (affinity for Serotonin 2a receptor), for which most models achieved
Q2 and R2 values close to 0.70. We can see that S-GTM models always outperform con-
ventional GTM models, although they are still less predictive than the Random Forests
models. We believe that the S-GTM performance could be improved by optimizing
weight factors wSpace1 and wSpace2 used to compute the combined responsibilities R.
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11.3.4 Conclusion

With S-GTM, an activity profile can be predicted by mapping an object (chemical
structure) from descriptor space to activity space; on the other hand, by mapping from
the activity space to the descriptor space, S-GTM delineates areas in descriptor space
populated by molecules possessing specific activity values, in this way performing an
inverse QSAR analysis. As a supervised learning method, S-GTM regression should
outperform conventional GTM models. This is clearly observed in the activity profile
prediction challenge, although S-GTM predictions are slightly inferior to those obtained
with the popular Random Forests method. We believe that the S-GTM performance
could be improved by optimizing the weight factors characterizing relative contributions
of each space at the training stage. Since S-GTM builds simultaneously two manifolds,
two different data projections from the two initial data spaces (descriptors and activities)
can be visualized. The probability distribution of a data point projected from the
descriptor space into the latent space is in most cases unimodal, whereas the probability
distribution of a data point projected from the activity space into the latent space is
often multimodal. These multimodal and unimodal distributions from descriptor or
activity space illustrate the fact that a chemical structure characterized by a set of
molecular descriptors has a particular activity profile, whereas a given activity profile
may correspond to several different chemical structures.

11.4 Application 2: Prediction of MOE 2D Descriptors

11.4.1 Data and Descriptors

In order to investigate the Stargate GTM approach, we must define two different spaces,
one for properties, the other for descriptors. In this section, we used the ChEMBL [97],
LogS, Lu and Thrombin datasets described in Table 11.2, and computed ISIDA frag-
ments for the descriptor space and MOE 2D descriptors for the property space. We also

Table 11.2: Datasets used to build conventional and Stargate GTM models. The ChEMBL,
LogS, Lu, and Thrombin datasets were used for methodological tests, to build models predicting
MOE properties.

Dataset Training set Test set
ChEMBL 500 500
LogS 818 817
Lu 95 94
Thrombin 107 106

used the LogS [101, 102, 103], Lu [104], and Thrombin [105] datasets when studying
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GTM-based QSAR models [3], cf. Chapter 16. The ISIDA fragments were not opti-
mized and set as sequences of atoms and bonds of length 2 to 8, generated by ISIDA
Fragmentor v. 2013 [20, 99]. For all GTM methods, we rejected descriptors with more
than 90% null values. The 186 MOE 2D descriptors defining the "property space"
include structural, topological and physicochemical properties, and were generated by
MOE v. 2011 [21].

11.4.2 Methods

We compared 25 different models for each property (for conventional and Stargate
GTM), obtained by varying the w and � parameters and keeping the M and K param-
eter fixed at 25 and 400, respectively. The set of possible w values was [0.25, 0.5, 1,
1.5, 2], the set of � values [0.01, 0.1, 1, 10, 100]. The "best" out of the 25 models was
selected by computing the 3-fold cross-validated Q2, which assessed the internal perfor-
mance of the model for the training set. For conventional GTM and S-GTM models,
we used the 3-fold cross-validated Q2 to select the best model parameters. S-GTM
models have a multidimensional activity space; therefore, we selected models which had
the highest number of properties with Q2 > 0.50. The external test set was then pro-
jected onto this "best" model, and an activity prediction was made for each test set
molecule. Computing the determination coefficient R2 assessed the final performance
of the model. Thus, at the end of the process, we had one R2 value per property. We
used the GTM k -NN approach to make the predictions for conventional GTM, and the
S-GTM mapping from one space to another as a prediction method for S-GTM.

11.4.3 Results and Discussion

For each of the 186 MOE properties, we found an optimal set of parameters [�, w] for
conventional GTM, for all 4 datasets. For Stargate GTM, only one set of parameters was
selected for each dataset (cf. Table 11.3). New models were built on the training sets

Table 11.3: Selected parameters [�, w] for 3-fold cross-validated Stargate GTM regression
models, with the corresponding percentage of properties with a determination coefficient R2

greater than 0.5, the average determination coefficient R2 and root mean square error RMSE
for all properties, and the associated standard deviations.

Dataset [�, w] %R2 >0.5 Average R2 Average RMSE
ChEMBL [0.01, 2] 0.54% 0.25± 0.20 0.13± 0.05
LogS [0.01, 0.5] 35.7% 0.36± 0.23 0.12± 0.05
Lu [100, 1.5] 48.3% 0.36± 0.28 0.14± 0.05
Thrombin [100, 0.5] 77.9% 0.54± 0.28 0.12± 0.05

with these parameters, and the external test sets were projected onto these optimized

119



CHAPTER 11. STARGATE GTM (S-GTM)

maps. Determination coefficients (R2) were obtained for all properties, for both Stargate
and conventional GTM. The R2 plots as a function of the MOE property are given in
Figure 11.8. They show that Stargate GTM generally performs as well as conventional
GTM (slightly better for the Thrombin dataset, worse for the LogS dataset).

Figure 11.8: Performance of conventional (black) and Stargate GTM (grey) regression models
predicting each MOE property, in terms of the determination coefficient (R2) computed for the
external test. The x-axis represents MOE properties identifiers, and data points were sorted by
increasing conventional GTM R2.

11.4.4 Conclusion

In this section, we compared the performance of GTM and S-GTM for predicting MOE
properties using ISIDA descriptors. In this experiment, there was no compelling evi-
dence that the S-GTM model based on an 186-dimensional activity space was any better
than the conventional GTM models. This contradicts our previous experiments with
8-dimensional or 1-dimensional activity spaces, where S-GTM achieved better perfor-
mances. This may indicate that, for S-GTM, only a few useful activities should be
chosen for the activity space, i.e., a small and relevant activity space should be used
for S-GTM regression models.

11.5 Going Further: Impact of Weight Factors

Weight factors wSpace1 and wSpace2 ranging from 0 to 1 are attributed to each space
to compute the joint responsibilities; one weight determines the other since wSpace1 =

1�wSpace2. We investigated the effect of these parameters on the joint responsibilities
by systematically varying the weight of the descriptor space form 0% to 100% by steps
of 10%. We used the Lu data set for this experiment, and built activity landscapes by
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GTM:%ISIDA% S*GTM:%100%%ISIDA%

S*GTM:%50%%ISIDA,%50%%MOE%

%
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GTM:%MOE% S*GTM:%100%%MOE%
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!

Figure 11.9: S-GTM LogS landscapes for the Lu dataset obtained by varying the weight given
to ISIDA and MOE descriptors, compared to the classical GTM landscapes, built with only
MOE or ISIDA descriptors.

! !
! !

!
Figure 11.10: Evolution of the S-GTM log likelihood as a function of the number of iterations.
The blue line represents the 100% ISIDA log likelihood, the red line the 100% MOE log like-
lihood, and the black line the S-GTM log likelihood (ISIDA and MOE) with different weights
for ISIDA and MOE spaces: (a) 10% ISIDA, 90% MOE, and (b) 50% ISIDA, 50% MOE.

mapping a MOE property (LogS) onto Stargate GTM and conventional GTM models.
The landscapes are shown in Figure 11.9; since we wanted to investigate the effect of
weights on the joint responsibilities R, we used R to compute the S-GTM landscapes
as well as the mean positions of data points, instead of using RSpace1 or RSpace2. The
Stargate and conventional GTM models were built with the parameters selected for
Stargate GTM [K = 400,M = 25,� = 100, w = 1.5]. We mapped the LogS MOE
property to see the evolution of the map’s shape. As could be expected, the 100%
ISIDA Stargate model is almost identical to the conventional ISIDA map, and the
100% MOE Stargate model almost identical to the conventional MOE map. The 50%
ISIDA, 50% MOE Stargate map is a mix of both ISIDA and MOE maps.
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In Figure 11.10, we show the evolution of the log likelihood as a function of the
number of iterations for two different sets of weights: the S-GTM log likelihood will be
closer to the 100% ISIDA log likelihood if the weight for ISIDA is larger. Figures 11.9
and 11.10 show how the weights can have an impact on the model; a user might want to
give more importance to one space or another for visualization, and it may be necessary
to optimize the weights to obtain a better prediction performance.

11.6 Going Further: Impact of Property Correlation

Figure 11.11: Average performance (for all properties in the model) of Stargate models for
the Lu dataset when adding new properties to be predicted, sorted by decreasing correlation
to a starting property (black line), or randomly (colored lines).

In order to investigate the impact of property correlation on prediction performances
within the S-GTM activity space, we applied a specific procedure to all four datasets.
A MOE property P

start

was chosen at random and the other MOE properties were
sorted by decreasing correlation to P

start

. A series of Stargate models were built (with
fixed parameters w = 1, l = 1, M = 25, K = 225), beginning with a model with
only P

start

, then including other properties into the model five by five by decreasing
correlation. A control experiment was conducted, starting from P

start

and including
more and more properties, but this time in a random order. The control experiment
was performed two times with a different random order. We could therefore compare
the "ordered" case to two "random" cases, and see if using correlated properties was
having an effect on the performance of S-GTM models. The procedure (one ordered
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Figure 11.12: Average performance (for all properties in the model) of Stargate models for the
Thrombin dataset when adding new properties to be predicted, sorted by decreasing correlation
to a starting property (black line), or randomly (colored lines).

Figure 11.13: Average performance (for all properties in the model) of Stargate models for
the LogS dataset when adding new properties to be predicted, sorted by decreasing correlation
to a starting property (black line), or randomly (colored lines).
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Figure 11.14: Average performance (for all properties in the model) of Stargate models for the
ChEMBL dataset when adding new properties to be predicted, sorted by decreasing correlation
to a starting property (black line), or randomly (colored lines).
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Figure 11.15: Q2 of Stargate models for the Lu dataset for 5 individual correlated properties
shown as colored lines (P

start

and its 4 most correlated properties), and averaged Q2 for the
5 properties (black line), as a function of the number of properties included in the Stargate
model, sorted by decreasing correlation to the starting property (BCUT_PEOE_0).

experiment, two random control experiments) was repeated two times with two different
starting properties P

start

(1) and P
start

(2). We can only observe a small effect (see
Figures 11.11 to 11.14) demonstrating that by adding less correlated properties, the
average ability of S-GTM models to predict them decreases. However, by only selecting
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some individual properties, as in Figure 11.15, where we selected one random property
and its 4 closest neighbors in terms of correlation, the effect is harder to see. It is
interesting to observe in Figure 11.15 that the performance seems to follow the same
trend for these correlated properties: for example, there is a low performance for all
properties when the dimensionality of the property space ranges from 75 to 100.

11.7 Conclusion
We introduced a new multispace visualization and regression method coined Stargate
GTM. With S-GTM, it is possible to jump from one vector space to another, by passing
through a 2D dimensionality reduction (a 2D "gate"). The user can tune the weight
assigned to each space. This method can be used in chemistry to travel from a descriptor
space to a property space and vice versa, to predict a whole activity profile based on
structural information, and to delimit regions populated by structures corresponding to
an activity profile. We showed that the performance of Stargate GTM for regression
can be at least the same or better than conventional GTM, depending on the relevance
of individual activities in the S-GTM activity space.
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Chapter 12

Inverse QSAR

12.1 Introduction

In this chapter, we introduce some inverse QSAR methodologies based on the conven-
tional GTM and the "Stargate" algorithm introduced in Chapter 11. Inverse QSAR is
usually defined as the process of generating new structures based on activity informa-
tion. This can be done in two steps, by first estimating the descriptors corresponding
to a specific activity profile and then by generating molecular graphs from descrip-
tors [106, 107]. Our definition of inverse QSAR is slightly different; we estimate de-
scriptors based on activity information and retrieve known structures corresponding to
an activity query, but we do not generate new chemical structures. We developed two
types of GTM-based and S-GTM-based methods: (1) methods generating approximate
descriptor values or "structure prototypes", which retrieve so-called "best matching
structures" (BMSs) from a database using a k-NN approach; (2) an approach similar to
virtual screening, which employs a scoring function to retrieve the BMSs corresponding
to an activity query; the BMSs are then equivalent to "hits" in virtual screening.

12.2 Data and Descriptors

For all our inverse QSAR experiments, we used the dataset of 1325 ChEMBL molecules
from the foregoing Chapter 11 dedicated to S-GTM, described by the same ISIDA
descriptors, and annotated by the affinity for Serotonin 1a. We used only one activity
(the affinity for Serotonin 1a) to find new structures, but it could have been an entire
activity profile, as we demonstrated in Chapter 11. The dataset was split into a training
set of 883 compounds and a test set of 442 compounds. The activity of training and
test set compounds is shown in Figure 12.1.
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Figure 12.1: Number of training and test set compounds as a function of the affinity for
Serotonin 1a.

12.3 Inverse QSAR with Conventional GTM
For inverse QSAR, the input data is an activity (or multiple activities); our goal is to
find chemical structures that also exhibit this activity. A way to do this with a simple
GTM model is to project the activity (or multiple activities) onto the map and obtain
an activity landscape (or multiple activity landscapes). On the landscape, a landscape
activity value ā

k

is assigned to each node x
k

; the coordinates of a node can be considered
as a 2D latent prototype, i.e., a type of average molecule at a specific location on the
map.

We can select activity landscapes node(s) with a desired activity. Then, two pos-
sibilities might arise. We may simply map molecules from the database and see which
molecules lie near this 2-dimensional node (latent prototype), or we may generate a D-
dimensional structure prototype made up of estimated descriptor values (D-dimensional
prototype). The latent prototype can be used to look for nearest neighbors on the 2D
map (latent space), and D-dimensional prototypes for nearest neighbors in the initial
space (D-dimensional descriptor space). There are at least 2 ways of generating the
D-dimensional prototype:

1. Manifold prototype: after selecting the 2-dimensional node with the desired ac-
tivity, we may simply retrieve its D-dimensional coordinates on the manifold to
obtain a D-dimensional prototype, since all manifold nodes have 2-dimensional
coordinates and D-dimensional coordinates. The manifold prototype is the equiv-
alent of the latent prototype in the D-dimensional space.

2. Landscape prototype: after selecting the 2-dimensional node with the desired ac-
tivity, we map all D descriptors onto the 2-dimensional map and get D landscapes.
From these D landscapes, we can reconstitute a prototype for the node we are
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interested in.

A structure prototype is generated by a GTM model and benefits from the information
provided by all training set compounds; therefore, the GTM approach is quite different
from simply computing similarities between individual molecules in the initial descriptor
space. Moreover, we might identify structure prototypes with the same activity in
different regions of the chemical space.

In the following sections, we will study 3 inverse QSAR methods applied to conven-
tional GTM:

1. 2-dimensional latent prototype (requires to map a database onto the model).

2. D-dimensional manifold prototype.

3. D-dimensional landscape prototype.

These methods depend upon the construction of an activity landscape or several affinity
landscapes for multiple activities. Here, we only have one activity to model: the affinity
for Serotonin 1a. The corresponding landscape is shown in Figure 12.2a.

2

3

4

5

6

7

8

9

10

(a) S1a landscape. (b) S1a regions of interest.

Figure 12.2: (a) Landscape of Serotonin 1a affinity, (b) high Serotonin 1a affinity nodes (>
8.9).

12.3.1 Latent Prototype

The simplest GTM-based inverse QSAR approach is the latent prototype, based on
finding database molecules near a GTM node corresponding to the activity query. The
2-dimensional latent space is characterized by 2 latent variables, which can be considered
as hidden structural features, and our latent structure prototype is made up of the 2D
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Figure 12.3: Structures (with their experimental affinities for Serotonin 1a) retrieved within
region 1 in Figure 12.2b with a predicted affinity > 8.9.

Figure 12.4: Structure (with experimental affinity for Serotonin 1a) retrieved within region 2
in Figure 12.2b with a predicted affinity > 8.9.

coordinates of the GTM node of interest. It can be seen as an average molecule at a
given position on the map. The workflow is the following:

1. Train a GTM model with the training set.

2. Build an activity landscape using the training set.

3. Project the test set (= the database) onto the GTM model.

4. Look for the 2D nearest neighbors of the latent prototype (GTM node) with a
specific activity.

5. Apply a density-based applicability domain: only sufficiently populated nodes can
become prototypes.
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Figure 12.5: Structures (with their experimental affinities for Serotonin 1a) retrieved within
region 3 in Figure 12.2b with a predicted affinity > 8.9.

Figure 12.6: Structures (with their experimental affinities for Serotonin 1a) retrieved within
region 4 in Figure 12.2b with a predicted affinity > 8.9.
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For this method, the activity queries are the activity landscape values. An activity
is assigned to each node (latent prototype); therefore, we should be able to retrieve
structures with a similar activity near the prototype. There are two ways to do this:
draw a region around each prototype and find the molecules mapped within this region
(we use confidence ellipses for this; cf. Figure 12.2b), or simply compute the distance
between nodes and compounds in the latent space and retrieve the nearest neighbors.
Applying the applicability domain (AD) is a necessary step here, since nodes that are
not well populated by the training set cannot be "trusted". The main advantage of us-
ing this approach is the easy identification of zones sometimes far away from each other
in the descriptor space but with a similar activity. For example, regions of high activity
(affinity > 8.9) are shown in Figure 12.2b. Several compounds were found near the four
prototypes with affinity > 8.9 and are shown in Figures 12.3, 12.4, 12.5 and 12.6, corre-
sponding to regions 1, 2, 3 and 4 in Figure 12.2b, respectively. There were 23 retrieved
structures, amongst which all 12 compounds with an experimental activity > 8.9 were
recovered; the other 11 retrieved compounds had similar structural characteristics but
slightly lower activities. We plotted the experimental activity of best matching struc-
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(c) 10 BMSs.

Figure 12.7: Average activity of best matching structures (BMSs) as a function of the activity
query in an inverse QSAR task. BMSs are the nearest neighbors of the structure prototype on
a 2D GTM map, and the activity query is the activity assigned to the structure prototype.

tures (BMSs) in the test set against the activity of latent prototypes (activity queries) in
Figure 12.7, to see if the method could identify compounds corresponding to a specific
activity query. For the problem at hand, the test set was quite small (442 compounds),
and the number of nodes high (400) and trying to find too many compounds per query
would ineluctably lead to failure; therefore, we did not consider more than 10 BMSs.
We used the correlation and determination coefficients (Table 12.1) to systematically
compare the activity query (the activity of each prototype) to the average activity of
best matching structures. This method shows promising results and has the advantage
of being simple, fast, and easily interpretable. Instead of a single activity, an activity
profile can also be used as a query by constructing multiple activity landscapes, finding
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regions of interest (ROIs, cf. Chapter 5) corresponding to criteria applicable to each
landscape, and selecting prototypes within these regions of interest. One of the drawk-
backs of this method is that we cannot use any activity query we want and look for the
corresponding molecules in the database: we have to find the landscape activity closest
to the desired activity and only then look for the best matching structures.

12.3.2 Manifold Prototype

The second inverse QSAR approach that we tested was the manifold prototype: instead
of using the 2D coordinates of nodes in the latent space, we selected their coordinates
on the manifold in the D-dimensional descriptor space. Each D-dimensional manifold
node y

k

will be considered a structural prototype, with a predicted activity value from
the affinity landscape; a structure with descriptors similar to that prototype should
have an activity similar to that of the prototype. The workflow was the following:

1. Train a simple GTM model with the training set.

2. Build an activity landscape using the training set activity.

3. Look for a node with a specific activity and retrieve its coordinates in D-dimensional
space: this will be the structural prototype.

4. Compute distances in descriptor space between the prototype and the database
molecules, and retrieve the best matching structures, which should have an activ-
ity similar to that of the prototype.

5. Apply a density-based applicability domain: only sufficiently populated nodes are
considered.

We get the prototypes by simply retrieving the D-dimensional coordinates of nodes of
interest on the manifold. We plotted the activity of the best matching structures in
the test set against the activity of prototypes (Figure 12.8), to see if the method could
allow us to systematically find compounds corresponding to an activity query. The
corresponding correlation and determination coefficients can be found in Table 12.1.

This method yields results close to those of the 2-dimensional approach, although
the manifold prototype is based on a different idea. The advantage of this method is
that we work with prototypes based on original descriptors predictions. However, these
prototypes do not correspond to any actual molecular structure; they are D-dimensional
vectors that should be similar to descriptor vectors related to actual molecular struc-
tures.
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(c) 10 BMSs.

Figure 12.8: Average activity of best matching structures (BMS) as a function of the activity
query in an inverse QSAR task. BMSs are the nearest neighbors of the manifold-based structure
prototype in D-dimensional space, and the activity query is the activity assigned to the structure
prototype.

12.3.3 Landscape Prototype

The last method that we explored for inverse QSAR with conventional GTM was the
landscape prototype. The process is quite similar to the manifold prototype: we want
to generate a D-dimensional prototype and use it to find neighboring structures in D-
dimensional space. This time, instead of using manifold nodes as prototypes, we used
multiple descriptor landscapes (cf. Chapter 5) to predict descriptor values for each
GTM node. We designed the following workflow:

1. Train a simple GTM model with the training set.

2. Build an activity landscape using the training set.

3. Build descriptor landscapes for all D descriptors. Each node will therefore be
associated with a predicted D-dimensional vector built from these landscapes.

4. Compute distances in descriptor space between the prototype and the database
molecules, and retrieve the best matching structures, which should have an activ-
ity similar to that of the prototype.

5. Apply a density-based applicability domain: only sufficiently populated nodes are
considered.

We plotted the activity of the best matching structures in the test set against the
predicted activity of prototypes (Figure 12.9), to see if the method would allow us to
systematically find compounds within our database matching the activity query. The
corresponding correlation and determination coefficients can be found in Table 12.1.

This method is more time-consuming than the latent prototype or manifold proto-
type approaches; if molecular structures are described by D descriptors in the database,
D landscapes have to be built to construct the landscape prototypes.
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(c) 10 BMSs.

Figure 12.9: Average activity of best matching structures (BMSs) as a function of the activ-
ity query in an inverse QSAR task. BMSs are the nearest neighbors of the landscape-based
structure prototype in the D-dimensional space, and the activity query is the activity assigned
to the structure prototype.

Table 12.1: R2 and Pearson correlation coefficients for the 3 inverse QSAR method, estimated
by comparing the prototype activity (= activity query) to the experimental activity of 1, 3 or
10 best matching structures (BMSs).

Pearson correlation 1 BMS 3 BMSs 10 BMSs
GTM: latent prototype 0.71 0.73 0.63
GTM: landscape prototype 0.78 0.78 0.75
GTM: manifold prototype 0.75 0.73 0.70
R2 1 BMS 3 BMSs 10 BMSs
GTM: latent prototype 0.43 0.49 0.37
GTM: landscape prototype 0.55 0.56 0.53
GTM: manifold prototype 0.42 0.46 0.43

12.3.4 Conclusion

The performance of our GTM-based inverse QSAR models are given in Table 12.1. The
determination and correlation coefficients were computed by comparing the landscape
activities (= queries) and the activities of the best matching compounds found with
the different methods. The "landscape prototype" approach seems to be the best for
conventional GTM.

12.4 Inverse QSAR with S-GTM

With S-GTM, we can travel from the descriptor space to property space and vice versa,
by going through a latent 2-dimensional space. For inverse QSAR, the input data is an
activity or an entire activity profile; the goal is to find chemical structures possessing a
similar profile. The conventional GTM methods shown in the foregoing section are also
applicable to S-GTM; we will also explore other ways to perform inverse QSAR with
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S-GTM.

12.4.1 Multimodality Problem

We will first expose a problem already highlighted in the chapter dedicated to Stargate
GTM (Chapter 11). If a structure travels to activity space, its distribution at arrival will
be unimodal: a structure maps to a single activity profile. However, when an activity
travels to the descriptor space, the distribution at arrival is usually multimodal, since
a single activity profile maps to multiple structural regions; this is the multimodality
problem. This phenomenon is already encountered in activity landscapes: different
regions may have similar activity values without being close to each other.

Therefore, in the case of an activity traveling to descriptor space (inverse QSAR)
through S-GTM, we cannot summarize the distribution in the 2-dimensional latent
space by the mean position on a 2-dimensional map. The most obvious (and wrong)
way to construct a "prototype" vector would be the following:

1. Train an S-GTM model.

2. Project a desired activity vector onto the 2-dimensional S-GTM model (the Star-
gate door).

3. Map the MEAN 2-dimensional position to descriptor space and obtain a D-
dimensional prototype.

However, this method would not be efficient, especially if the dimension of the activity
space were low. Why? - Because of the multimodality problem. More specifically,
when we project the desired activity vector onto the 2-dimensional S-GTM (step 2
in the workflow), we obtain a probability distribution as shown in Figure 12.10. The

Figure 12.10: 2-dimensional probability distribution obtained when mapping an activity to
the 2-dimensional S-GTM map.
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activity is not just located in one region. The darker regions represent zones where the
probability of finding the property of interest is higher. We can see that this distribution
has multiple modes. If we applied the previous workflow, we would just take the mean
point of this distribution, and then map it to descriptor space. This would be a good
approach if the distribution were unimodal. Since it is not the case, this approach was
discarded.

12.4.2 Multiple Prototypes

A way to account for the multimodality of activities projected onto the S-GTM 2D
map is to use multiple prototypes for one compound, corresponding to the multiple
modes of the activity distribution. We adopted the following workflow to investigate
this approach:

1. Train an S-GTM model.

2. Project 147 artificial "Serotonin 1a" activity samples, ranging from 3 to 10.3 by
steps of 0.05 and obtain the matrix of responsibilities R.

3. For each activity a, select the n nodes {x
k

} with the highest probability, for
example, R

ka

> 0.001. The n selected nodes could be used to select n prototypes
corresponding to manifold nodes in descriptor space (manifold prototypes) or in
2D latent space (latent prototypes). If the activity distribution is monomodal,
there is one structure prototype per activity. If it is multimodal, there are n

structure prototypes per activity.

The problem with this method is that the number of modes for one molecule (and
therefore the number of prototypes) is sometimes considerable and these prototypes
might become meaningless. To illustrate this, we plotted the number of nodes with
R

ka

> 0.001 for all tested activity values (Figure 12.11).
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Figure 12.11: Number of nodes {xk} with Rka > 0.001 as a function of the activity landscape
value a.

The number of selected nodes (R
ka

> 0.001) as a function of the activity value gives
a bell-shaped curve: the more extreme the activity, the fewer the nodes. This means that
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extreme (< 6 or > 9) activity values are more likely to be more localized when projected
onto the 2-dimensional map. This is linked to the number of training set compounds in
each activity range, as can be seen in Figure 12.1: only a few training set compounds
have extreme affinities for Serotonin 1a. Therefore, the number of prototypes that
should be tested is actually quite low for very high or very low activities, and quite
large if the values are in the middle range. For example, for an S1a affinity = 7.3, we
retrieve 284 nodes with probability > 0.001, which is more than half of the total of
number of nodes on the map and makes this methodology inefficient. This approach,
however, can be applied to retrieve structures when the selected structural regions are
just a few. This situation arises when we want to identify actives and separate them
from inactives. The actives often have very specific features and are localized within
specific regions of the map; this was already shown with the latent prototype approach
when we selected only four nodes with a Serotonin 1a activity > 8.9 (Figure 12.2).

12.4.3 Discarded Method: Weighted Landscape Prototype

Another way to create D-dimensional structural prototypes is to build descriptor land-
scapes based on the training set, as we did previously for conventional GTM. However,
this time, instead of looking for structures near a node on the 2-dimensional map, all
responsibilities R (posterior probabilities in latent space for the projected Serotonin 1a
activities, cf. Figure 12.10 for the distribution of an activity) are taken into account
to predict each descriptor value. In other words, we try to approximate a unique set
of descriptors, a structural prototype, for a given activity query. The workflow is the
following:

1. Use a training test for training an S-GTM model.

2. Map each descriptor onto the map and obtain 144 landscapes.

3. Project 147 artificial "Serotonin 1a" activities, ranging from 3 to 10.3 by steps of
0.05.

4. Using the responsibilities R for the projected Serotonin 1a activities and the D

descriptor landscapes {ā(1), ā(2), ..., ā(D)}, compute the 144 average descriptor
values of each artificial activity a, and obtain a 144-dimensional "prototype" vector
for each sample activity. The estimated descriptor value T̂

ad

for an activity query
a is computed as following:

T̂
ad

=

P

k

R
ka

ā
k

(d)
P

k

R
ka

(12.1)
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This method takes into account the whole probability distribution in 2D for a projected
activity. It also produces one vector prototype per compound, which makes it easy to
use. However, unlike the conventional GTM landscape prototype, this weighted land-
scape prototype is just an average of diverse descriptor values and is not representative
of the fact that many structures correspond to a single activity query. Therefore, it does
not account for multimodality in a broader sense, and is not a good approximation of
possible descriptor values. Nevertheless, we applied this method to search for matching
structures corresponding to activity queries. We plotted the average activity of the best
matching structures against the requested activity (Figure 12.12).
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(c) 10 BMSs.

Figure 12.12: Average activity of best matching structures (BMSs) as a function of the activity
query in an inverse QSAR task. BMSs are the nearest neighbors of the weighted landscape-
based structure prototype in the D-dimensional space, and the activity query is the activity
assigned to the structure prototype.

Just looking at Figure 12.12, we can see that this approach works, although it was
not the expected result. The correlation coefficients between the requested and retrieve
activities can be found in Table 12.2. This method seems to generate an "average
vector" which is able to find matching structures. However, we did not retain this
approach as a valid method, since the weighted landscapes did not correspond to any
real structural approximation.

12.4.4 Conditional Log Likelihood Approach

The conditional log likelihood approach consists in using a conditional log likelihood as
a scoring function for molecules in the test set. Molecules with the highest score for a
given activity are selected. We applied the following workflow:

1. Use a training test to train an S-GTM model.

2. Project 147 artificial Serotonin 1a activities, ranging from 3 to 10.3 by steps of
0.05. The responsibilities R

ka

of each node x
k

for the activity query a will be
used in (4).

139



CHAPTER 12. INVERSE QSAR

3. Project compounds of the test set onto the map. The PDF p(t
q

|x
k

,W, b) for each
compound t

q

and node x
k

will be used in (4).

4. Using R
ka

computed in (2) and p(t
q

|x
k

,W, b) computed in (3), calculate the con-
ditional log likelihood for each test set compound. There will be one conditional
log likelihood value for each [test set structure q, artificial activity a] combination.

5. For each artificial activity, take n best matching structures or BMSs in terms of
conditional log likelihood (n = 1, 3, and 10).

6. Plot the average activity of the best matching structures found in (5) against the
artificial activity queries.

The formula for the conditional log likelihood L
qa

assigned to the qth structure and ath
activity profile is the following:

L
qa

= ln

 

1

K

K

X

k

(R
ka

⇥ p(t
q

|x
k

,W,�))

!

(12.2)

where R
ka

is the responsibility of node x
k

for the requested activity a, p(t
q

|x
k

,W,�)

the probability density for each test compound t
q

given a node x
k

, and K the number
of nodes.
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(c) 10 BMSs.

Figure 12.13: Average activity of best matching structures (BMSs) as a function of the
activity query in an inverse QSAR task; BMSs are the structures with the highest conditional
log likelihood score.

In Figure 12.13, we show the results featuring the average activity of best matching
structures (BMSs) found using the conditional log likelihood as a scoring function as
a function of the requested activity. In Table 12.2, we also show the corresponding
correlation and determination coefficients for this method (S-GTM: likelihood) as well as
the previous method (S-GTM: weighted landscape prototype). Both methods perform
well; but the likelihood method is to be preferred, since the landscapes approach does
not account for multimodality and is not a conceptually valid approach..
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Table 12.2: Pearson correlation coefficient and determination coefficient R2 comparing activity
queries (affinity values ranging from 3 to 10.3 by steps of 0.05), to the experimental activity of
1, 3 or 10 best matching structures or BMSs using S-GTM-based inverse QSAR methods.

Pearson correlation 1 BMS 3 BMSs 10 BMSs
S-GTM: weighted landscape prototype 0.97 0.97 0.97
S-GTM: manifold prototype 0.96 0.98 0.98
R2 1 BMS 3 BMSs 10 BMSs
S-GTM: weighted landscape 0.84 0.91 0.84
S-GTM: manifold prototype 0.82 0.86 0.68

12.5 Comparing GTM and S-GTM approaches

Table 12.3: R2 for 4 inverse QSAR methods, estimated by comparing activity queries (sampled
from the landscape) to the experimental activity of 1, 3 or 10 best matching structures or BMSs.

1 BMS 3 BMSs 10 BMSs
S-GTM: likelihood score 0.63 0.70 0.76
GTM: latent prototype 0.43 0.49 0.37
GTM: landscape prototype 0.55 0.56 0.53
GTM: manifold prototype 0.42 0.46 0.73

Table 12.4: R2 for 4 inverse QSAR methods, estimated by comparing the queries (affinity
values ranging from 3 to 10.3 by steps of 0.05) to the experimental activity of 1, 3 or 10 best
matching structures or BMSs.

1 BMS 3 BMSs 10 BMSs
S-GTM: likelihood score 0.82 0.86 0.68
GTM: latent prototype 0.76 0.74 0.70
GTM: landscape prototype 0.77 0.75 0.75
GTM: manifold prototype 0.84 0.76 0.73

Finally, we retained four conceptually valid techniques for GTM and S-GTM-based
inverse QSAR. 3 methods were described in the section dedicated to conventional GTM
and can be applied to both GTM and S-GTM: latent prototypes, manifold prototypes,
and landscape prototypes. The fourth method, based on a conditional log likelihood
scoring function, is specific to S-GTM. To compare GTM and S-GTM approaches, we
did multiple activity queries and compared the ability of all methods to retrieve "cor-
rect" structures from the test set. This "test set" can be considered as a database

141



CHAPTER 12. INVERSE QSAR

consisting of molecules with unknown activities. The training set’s only purpose was
to train the map; to evaluate the method, we only used the test set, which was never
"seen" by the model. In Tables 12.3 and 12.4, we summarize the results obtained with
conventional GTM and S-GTM by looking for compounds with a Serotonin 1a affinity
close to GTM landscape values, or close to 147 "artificial" affinities ranging from 3 to
10.3 by steps of 0.05. Both queries (landscape values, artificial affinities) are different
ways of sampling the affinity space; one is representative of the training set population,
the other is a systematic search. The performance was evaluated by comparing the
queries and the actual test set affinities of retrieved compounds. Among GTM-based
methods, the landscapes approach seems to be the most stable, but there is no com-
pelling reason to argue that one method is better than the other. However, to avoid the
curse of dimensionality arising when computing distances in a multidimensional space,
the latent prototype or conditional log likelihood are the best choices.

12.6 Conclusion
In this chapter, we introduced new inverse QSAR methods based on conventional and
Stargate GTM. We selected 4 methods that were able to retrieve structures correspond-
ing to an activity query. The first three methods, applicable to both GTM and S-GTM,
are based on 2D latent prototypes, D-dimensional manifold prototypes and landscape
prototypes. The fourth approach is specific to S-GTM and employs the conditional log
likelihood as a scoring function to retrieve best matching structures for a given activity
query. These methods can be easily generalized to handle activity profile queries.
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Chapter 13

ISIDA/GTM Software

The ISIDA/GTM software is a chemical space visualization and modelling toolbox based
on the GTM algorithm [10, 9] and programmed during this thesis. All GTM variants
described in this thesis were implemented into the software, which can therefore be
employed for very large datasets (incremental algorithm), handling high dimensions
(kernel algorithm KGTM), traveling from descriptor space to property space or vice
versa (S-GTM), and for the validation of visual classification and regression models.
From a molecular structure data file (SDF), the ISIDA/GTM software generates frag-
ment descriptors (using the external tool ISIDA Fragmentor [99]), builds 2D GTM maps
with a link to the chemical structures, generates classification maps and property land-
scapes, and builds GTM classification and regression models. It is a multipurpose tool
providing insight into the underlying structure of a dataset. ISIDA/GTM and the sep-
arate command-line tool GTMapTool (Appendix B), will be available from the website
http://infochim.u-strasbg.fr/ after the submission of this thesis.
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13.1 Introduction
ISIDA/GTM is composed of a graphical user interface (GUI) GTMap, and a command-
line tool, GTMapTool, which can be used separately. Advanced options such as the ker-
nel and incremental algorithms or Stargate GTM are only available in the command-line
tool. The GUI uses the GTMapTool program for all GTM-related calculations. GTMap-
Tool takes as input tab-separated descriptors or files in the LIBSVM format [108]. To
make our software self-standing, the external command-line tool ISIDA Fragmentor
2013 [99] was integrated to build fragment descriptors from structure data files (SDF
format). The user can also load any other descriptor file of his own choice, such as
MACCS or MOE descriptors. ISIDA/GTM was entirely programmed in Free Pascal
using the Lazarus IDE [109], and was made available for Linux and OS X. The GUI
comprises 5 tabs, corresponding to the "natural" workflow:

1. Data and set-up

2. Descriptors

3. Build new GTM

4. QSAR

5. Analysis/visualization

6. Map new molecules onto trained model

The QSAR step is available when there is a property to model, and the user can jump
to any step directly. It is possible to go directly to the visualization step if the GTM
model was already computed with the command-line tool. All results are saved into
specified output directories and can be loaded into the software at any time. The author
of this thesis implemented the whole GTMapTool program and ISIDA/GTM interface,
but was not involved in the implementation of the Fragmentor program [99] nor of the
molecular structure visualizer MolDraw programmed by Vitaly P. Solov’ev.
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13.2 Data and Set-Up
In the Data and Set-Up tab (Figure 13.1), the user defines the output directory and the
location of the SDF file. In all tabs, the output directory can be changed. A property
can be selected for modeling tasks by loading it from an external file or directly from
the SDF file. The software supports class labels as well as continuous activity values.

Figure 13.1: Data and Set-Up tab, where molecular structures as well as the property to
model are loaded.
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13.3 Descriptors
The Descriptors tab (Figure 13.2) is dedicated to the computation of fragment descrip-
tors. The user may choose the SMF descriptor type he desires or re-compute the same
set of descriptors as before by loading a header file, which contains the reference of all
fragments. Re-computing the same descriptors is necessary to project new compounds
onto an existing map; the dimensionality of the input space must be the same for both
training and test sets.

Figure 13.2: Fragmentor tab, where descriptors are computed using molecular structures
(SDF file).
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13.4 Build New GTM
The Build New GTM tab (Figure 13.3) is devoted to constructing a GTM model from
a descriptor file. The descriptor file computed previously is automatically loaded, but
any other external file could be chosen. Four parameters can be tuned: the number of
RBF centers M , the number of nodes K, the RBF width factor w and the regularization
coefficient �. In the program, the parameters m and k are chosen so that m =

p
M

and k =
p
K, defining two grids m ⇥ m and k ⇥ k; the parameter � is written l for

convenience. In the GUI, the choice of these values was restricted to help the user. The
maximum number of iterations can also be set, as well as the log likelihood convergence
condition. The user may also choose to compute the coordinates of both data and
manifold in 3D PCA space, to see how the manifold fits the data. It is possible to run
a batch computation for selecting the model with the best parameters, with or without
cross-validation. The log file is displayed in a dedicated panel.

Figure 13.3: Build New GTM tab, where the user can run the GTM algorithm using descrip-
tors previously computed or loaded from an external file.
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13.5 QSAR
GTM classification and regression models can be constructed in the QSAR tab (Fig-
ure 13.4). GTM parameters can also be optimized for regression or classification using
cross-validation, with any number of folds. The optimized measures for classification are
the balanced accuracy and the F-score; for regression models, the performance can be
measured either by the determination coefficient or by RMSE. If the goal is not to opti-
mize a model but to predict activities or classes using a GTM regression or classification
model, predictions can be generated in the QSAR tab.

Figure 13.4: QSAR tab used for cross-validating GTM-based classification or regression mod-
els, and for predicting the activity of new molecules.
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13.6 Visualization
The GTM model computed in the Build New GTM Tab is visualized with the interactive
2D map visualizer (Figure 13.5). The 2D map visualizer displays the basic GTM map

Figure 13.5: GTM 2D visualizer. One point corresponds to one molecule; when the mouse
hovers over it, the structure appears in the visualizer pane. This map represents the ache dataset
(use case 1), with inhibitors of ache symbolized by red points and decoys by blue points.

where each point corresponds to one molecule. The molecular structure corresponding
to each point can be visualized when the mouse hovers over it. It is also possible
to zoom in/out on the map, find the closest neighbors of one molecule, and show the
distribution of one molecule on the map ("Show Responsibilities" option). Classification
maps and activity landscapes can also be created. For such maps, nodes are represented
by squares colored by the value of the most probable property (see use cases 1 and 2
for illustrations). The user can visualize the 3D PCA coordinates of both data and
manifold in the interactive 3D visualizer (Figure 13.6), where it is possible to click on
any data point to visualize the molecular structure in a pop-up window. If the user
wants to visualize new molecules on an already built GTM map, he may proceed to the
Map Molecules Onto Trained Model tab (Figure 13.7) and generate coordinates for the
new molecules.
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Figure 13.6: Visualization in 3D PCA space of the ache dataset (use case 1). Green points
represent molecules and black squares the GTM manifold fitting the dataset.

Figure 13.7: In the Map molecules onto trained model tab, a model built with a training set
can be used to predict the position of new molecules.
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13.7 Use Case 1 - Ache Dataset

Figure 13.8: Classification map of the ache training set represented by red (active) or dark
blue (decoy) squares. The maximum common substructure found in the two best separated
active regions (1 and 2) are also shown. The light blue circles represent 200 decoys of an
external tet set projected onto this previously trained activity map.

In the implementation section, we used a training set of 100 inhibitors and 100
decoys of acetylcholinesterase (ache), that we took from the DUD (Directory of Useful
Decoys) [33]. Inhibitors of ache should typically possess a cationic center to link to
the anionic site of the protein and a function to bind its esteratic site [110] which
recognizes acetylcholine and therefore is responsible for its hydrolysis. The map shown
in Figure 13.5 and built with parameters [k = 25,m = 5, w = 0.1, l = 1] (where k

= square root of the number of nodes, m = square root of the number of radial basis
functions, w = RBF width factor, l = regularization coefficient) from fragments of atoms
and bonds of length 2 to 8, made it possible to see inhibitors forming well-separated
clusters and others that where mixed with decoys. Figure 13.8 shows the corresponding
classification map, with well-separated clusters of inhibitors characterized by specific
common substructures. 3-fold internal cross-validated classification models gave an
averaged FScore of 0.87, which shows good predictive performance. An external test
set of 200 decoys was projected onto this trained classification map (Figure 13.8); only
5% were mapped onto nodes labeled as active, which means that 95% of these molecules
were correctly predicted as decoys by the GTM model.
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13.8 Use Case 2 - Gd3+ Dataset
The Gd3+ dataset containing 308 Gd3+ binders will be used to illustrate how the soft-
ware handles real activity values; for this experiment, the modeled activity is the stabil-
ity constant � of Gd3+-ligand complexes. After computing atom and bonds fragments
of length 2-8, several regression models were computed by 3-fold cross-validation to
select the best w and l values for fixed parameters k = 25 and m = 5, by using the
determination coefficient as the objective function (supervised learning). The best R2

(68%) was obtained with parameters [k = 25,m = 5, w = 2, l = 100]. One GTM map
was built with the optimized parameters, as well as an activity landscape displayed in
Figure 13.9. The activity landscape on Figure 13.9 shows a clear separation between

Figure 13.9: Activity landscape built with 308 Gd3+ ligands. The squares represent nodes
on the GTM grid and their color the value of the stability constant �. The 308 molecules are
mapped as light blue circles. An activity cliff is circled, with two molecules on it, mapped next
to each other but forming (a) highly stable or (b) less stable complexes.

ligands that form highly stable (high �, yellow-red regions) and unstable (low �, black
region) complexes with Gd3+; we can also observe a transition zone for ligands with
moderate �. Lanthanides form the most stable complexes with ligands that have a high
coordination number (� 6). This can be observed on the activity landscape, where the
high � zone is populated by ligands with a high coordination number, the lowest � zone
by monodentate or bidentate ligands (cf. Figure 13.10 for examples). An activity cliff
could also be identified with two ligands forming a stable and an unstable complex with
Gd3+, respectively, and mapped next to each other. The presence of this activity cliff
could be due to the fact that we used fragment descriptors. Indeed, both ligands have
many structural similarities such as the number of aromatic rings, two hydroxyls and
two carboxylic acid groups. However, the ligand in the high � zone has an experimental
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stability constant � = 20.27, whereas the ligand in low � zone (alizarin complexone)
has an experimental stability constant � = 4.54. 4 molecules mapped in the low or high
� zones are represented on Figure 13.10 with their individual distribution on the map
obtained with the software. Ligands (c) and (d) in the high � zone can form more stable
chelated complexes and are more localized on the map than molecules (a) and (b) in
the low � zone, which form less stable complexes. This is explained by the fact that (a)
and (b) have a much less complex structure, and are characterised by fragments which
are common to a lot of molecules, therefore their position on the map is more uncertain
than that of more complex ligands.

Figure 13.10: ISIDA/GTM representation of the distribution of four individual ligands of
Gd3+ on an optimized GTM. (a) and (b) form instable complexes, (c) and (d) stable complexes.
The size and colour of circles represent the responsibility of each grid node for the represented
molecule, and the cross the mean position of the molecule on the conventional GTM.
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13.9 Conclusion
ISIDA/GTM is a multi-purpose, visualization-based modelling tool for chemical data.
It can be used for QSAR, visualizing clusters, designing class maps and activity land-
scapes. With the ache dataset, we showed how to visualize regions dominated by dif-
ferent classes, provide an estimation of the predictive performance of the map, ob-
serve which substructure characterized a given cluster, and project new molecules on a
trained map. With the Gd3+ dataset, we demonstrated how to find the best map using
cross-validation, study activity landscapes, identify activity cliffs, and see how well the
position of a molecule is characterized on a map. We hope that this software will be
of interest for chemists, by providing an overview of a chemical dataset and a better
understanding of its structure.
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Application of GTM Initial Space
Classification to DUD
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Chapter 18

Conclusion

In this thesis, we explored and brought to light diverse methods for visualizing and
analyzing a chemical space, and introduced the new multispace dimensionality reduction
technique Stargate GTM, which links a property space to a descriptor space through
one unique model.

GTM-based regression and classification techniques exhibit performances close to
that of state-of-the-art methods such as Random Forests or SVM. They are neither the
fastest nor the most efficient methods but they provide a visual support that many do
not offer. The ease of interpretation of visual models compensates for the information
loss due to dimensionality reduction. We also introduced several ways of defining the
applicability domain of GTM-based models, for both classification and regression tasks,
providing a visualization of their boundaries. We used iGTM (incremental GTM) to
study large chemical libraries, and introduced various methodologies based on the dis-
tribution of libraries on the map to compare and analyze them. Our methods offer a
fast and comprehensive way to handle Big Data.

With our Stargate GTM method (S-GTM), we can construct maps trained on both
activity and descriptor spaces; we showed on an S-GTM map how a chemical structure
usually maps to only one activity (QSAR), and how, on the other hand, an activity
maps to several structures (inverse QSAR). Regions on the map corresponding to an
activity profile are less extended (lower structural diversity) than regions corresponding
to a single activity (higher structural diversity). Both S-GTM and GTM can be used for
QSAR or inverse QSAR; however, S-GTM is supervised and more performant. All our
developments were implemented into our command-line software GTMapTool, with a
graphical user interface GTMap, now part of the ISIDA/GTM software. This software
could be a tool for chemists investigating the structure of their data. Other studies
involving the GTM approach and chemical data are currently on the way, such as the
establishment of a universal map. Moreover, further development of generative inverse
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QSAR approaches can be foreseen in the future.
Visualization and chemistry are two topics that have always been closely interwoven.

From the time of Democritus to present day, human beings have made assumptions
about the structure of matter without being able to observe it; they created models or
representations that they could draw and grasp, mental pictures of what their eyes could
not see. Models of individual molecular compounds are an aspect of this visualization
of matter; models of entire chemical spaces offer a glimpse into the structure of chemical
datasets and the relationships between chemical compounds. Some day, we will be able
to navigate interactively within a virtual chemical space and to travel between different
descriptor space representations; in this thesis, we only scratched the surface of a very
large subject. All our models were "static", even when we "traveled" between descriptor
and activity spaces with Stargate GTM. An ideal visualization system would update
online models of chemical spaces using experimental results in real time, integrating
information from various sources, and would allow for user interaction. In other words, a
next step for chemical space visualization would be the creation of "living" and adaptive
models.

164



Bibliography

[1] N. Kireeva, I. I. Baskin, H. A. Gaspar, D. Horvath, G. Marcou, and A. Varnek.
Generative topographic mapping (GTM): universal tool for data visualization,
structure-activity modeling and dataset comparison. Molecular Informatics, 31(3-
4):301–312, 2012.

[2] H. A. Gaspar, G. Marcou, D. Horvath, A. Arault, S. Lozano, P. Vayer, and
A. Varnek. Generative topographic mapping-based classification models and
their applicability domain: application to the biopharmaceutics drug disposition
classification system (BDDCS). Journal of Chemical Information and Modeling,
53(12):3318–3325, 2013.

[3] H. A. Gaspar, I. I. Baskin, G. Marcou, D. Horvath, and A. Varnek. GTM-
based QSAR models and their applicability domains. Molecular Informatics, 34(6-
7):348–356, 2015.

[4] H. A. Gaspar, I. I. Baskin, G. Marcou, D. Horvath, and A. Varnek. Chemical data
visualization and analysis with incremental generative topographic mapping: big
data challenge. Journal of Chemical Information and Modeling, 55(1):84–94, 2015.
PMID: 25423612.

[5] H. A. Gaspar, I. I. Baskin, G. Marcou, D. Horvath, and A. Varnek. Stargate gtm:
bridging descriptor and activity spaces. Submitted to the Journal of Chemical
Information and Modeling, 2015.

[6] V. Chupakhin, G. Marcou, H. A. Gaspar, and A. Varnek. Simple Ligand–Receptor
Interaction Descriptor (SILIRID) for alignment-free binding site comparison.
Computational and Structural Biotechnology Journal, 10(16):33–37, 2014.

[7] P. Sidorov, H. A. Gaspar, G. Marcou, D. Horvath, and A. Varnek. Mappability of
drug-like space: towards a polypharmacologically competent map of drug-relevant
compounds. Submitted to the Journal of Chemical Information and Modeling,
2015.

165



BIBLIOGRAPHY

[8] H. G. Liddell and R. Scott. A Greek-English Lexicon, Ninth Edition with a Revised
Supplement. Clarendon Press, 1996.

[9] C. M. Bishop and C. K. I. Williams. GTM: A principled alternative to the self-
organizing map. In In Advances in Neural Information Processing Systems, pages
354–360. Springer-Verlag, 1997.

[10] C. M. Bishop, M. Svensén, and C. K. I. Williams. GTM: the Generative Topo-
graphic Mapping. Neural Computation, 10(1):215–234, January 1998.

[11] Christopher M. Bishop, Markus Svensén, and Christopher K. I. Williams. Devel-
opments of the generative topographic mapping. Neurocomputing, 21(1–3):203–
224, November 1998.

[12] I. Olier, A. Vellido, and J. Giraldo. Kernel generative topographic mapping. In
ESANN 2010 proceedings, European Symposium on Artificial Neural Networks -
Computational Intelligence and Machine Learning. Bruges (Belgium), 2010.

[13] J. Pokorny. Indogermanisches etymologisches Wörterbuch. Francke, 2002.

[14] C. Clapham and J. Nicholson. The Concise Oxford Dictionary of Mathematics
(4th Edition). Oxford University Press, 2009. Vector Space.

[15] R. Carbó-Dorca. About the concept of Chemical Space: a concerned reflection on
some trends of modern scientific thought within theoretical chemical lore. Journal
of Mathematical Chemistry, 51(2):413–419, 2013.

[16] K. Arai and H. Okazaki. N-Dimensional binary vector spaces. Formalized Math-
ematics, 21(2):75–81, 2013.

[17] R. P. W. Duin and E. Pękalska. The dissimilarity space: bridging structural and
statistical pattern recognition. Pattern Recognition Letters, 33(7):826–832, 2012.

[18] P. J. Goodford. A computational procedure for determining energetically favorable
binding sites on biologically important macromolecules. Journal of Medicinal
Chemistry, 28(7):849–857, July 1985.

[19] R. D. Cramer, D. E. Patterson, and J. D. Bunce. Comparative molecular field
analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins.
Journal of the American Chemical Society, 110(18):5959–5967, August 1988.

[20] A. Varnek, D. Fourches, F. Hoonakker, and V. P. Solov’ev. Substructural frag-
ments: an universal language to encode reactions, molecular and supramolecu-
lar structures. Journal of Computer-Aided Molecular Design, 19(9-10):693–703,
September 2005.

166



BIBLIOGRAPHY

[21] Chemical Computing Group Inc. Molecular Operating Environment (MOE),
2011.10, 2011.

[22] G. Cruciani. Molecular fields in quantitative structure–permeation relationships:
the VolSurf approach. Journal of Molecular Structure: THEOCHEM, 503(1-2):17–
30, May 2000.

[23] F. Camastra. Data dimensionality estimation methods: a survey. Pattern Recog-
nition, 36(12):2945–2954, December 2003.

[24] K. Fukunaga and D.R. Olsen. An algorithm for finding intrinsic dimensionality
of data. IEEE Transactions on Computers, C-20(2):176–183, February 1971.

[25] R. E. Bellman. Dynamic Programming. Courier Corporation, 1957.

[26] G. Hughes. On the mean accuracy of statistical pattern recognizers. IEEE Trans-
actions on Information Theory, 14(1):55–63, January 1968.

[27] M. Zaki. Data mining and analysis: fundamental concepts and algorithms. Cam-
bridge University Press, New York, NY, 2014.

[28] M. Shahlaei. Descriptor selection methods in quantitative structure–activity rela-
tionship studies: A Review Study. Chemical Reviews, 113(10):8093–8103, October
2013.

[29] H. Liu and H. Motoda. Feature selection for knowledge discovery and data mining.
Springer US, Boston, MA, 1998.

[30] M. L. Bermingham, R. Pong-Wong, A. Spiliopoulou, C. Hayward, I. Rudan,
H. Campbell, A. F. Wright, J. F. Wilson, F. Agakov, P. Navarro, and C. S.
Haley. Application of high-dimensional feature selection: evaluation for genomic
prediction in man. Scientific Reports, 5, May 2015.

[31] D. M. Evans, P. M. Visscher, and N. R. Wray. Harnessing the information con-
tained within genome-wide association studies to improve individual prediction of
complex disease risk. Human Molecular Genetics, 18(18):3525–3531, September
2009.

[32] C. Kooperberg, M. LeBlanc, and V. Obenchain. Risk prediction using genome-
wide association studies. Genetic Epidemiology, 34(7):643–652, November 2010.

[33] N. Huang, B. K. Shoichet, and J. J. Irwin. Benchmarking sets for molecular
docking. Journal of Medicinal Chemistry, 49(23):6789–6801, November 2006.

167



BIBLIOGRAPHY

[34] I. Jolliffe. Principal Component Analysis. In Encyclopedia of Statistics in Behav-
ioral Science. John Wiley & Sons, Ltd, 2005.

[35] W.S. Torgerson. Theory and methods of scaling. Wiley, 1958.

[36] A. S. Householder and G. Young. Matrix approximation and latent roots. The
American Mathematical Monthly, 45(3):pp. 165–171, 1938.

[37] D. K. Agrafiotis. Stochastic proximity embedding. Journal of Computational
Chemistry, 24(10):1215–1221, 2003.

[38] H. Hotelling. Relations between two sets of variates. Biometrika, 28(3/4):pp.
321–377, 1936.

[39] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: machine
learning in python. Journal of Machine Learning Research, 12:2825–2830, 2011.

[40] R. A. Fisher. The use of multiple measurements in taxonomic problems. Annals
of Eugenics, 7(2):179–188, 1936.

[41] G. McLachlan. Discriminant analysis and statistical pattern recognition. Wiley-
Interscience, Hoboken, N.J, 2004.

[42] P. Comon. Independent component analysis, a new concept? Signal Processing,
36(3):287 – 314, 1994. Higher Order Statistics.

[43] D. Barber. Bayesian Reasoning and Machine Learning. Cambridge University
Press, 2012.

[44] D. D. Lee and H. S. Seung. Learning the parts of objects by non-negative matrix
factorization. Nature, 401(6755):788–791, October 1999.

[45] B. Schölkopf, A. Smola, and K.-R. Müller. Kernel principal component analysis.
In Advances in Kernel Methods - Support Vector Learning, pages 327–352. MIT
Press, 1999.

[46] A. Karatzoglou, A. Smola, K. Hornik, and A. Zeileis. kernlab – an S4 package for
kernel methods in R. Journal of Statistical Software, 11(9):1–20, 2004.

[47] J. W. Sammon. A nonlinear mapping for data structure analysis. IEEE Transac-
tions on Computers, 18(5):401–409, 1969.

168



BIBLIOGRAPHY

[48] W. N. Venables and B. D. Ripley. Modern Applied Statistics with S. Springer,
New York, fourth edition, 2002. ISBN 0-387-95457-0.

[49] G. De’ath. Extended dissimilarity: a method of robust estimation of ecological
distances from high beta diversity data. Plant Ecology, 144(2):191–199, 1999.

[50] J. B. Tenenbaum, V. de Silva, and J. C. Langford. A global geometric
framework for nonlinear dimensionality reduction. Science (New York, N.Y.),
290(5500):2319–2323, December 2000.

[51] E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische
Mathematik, 1(1):269–271, December 1959.

[52] J. Oksanen, F. G. Blanchet, R. Kindt, P. Legendre, P. R. Minchin, R. B. O’Hara,
G. L. Simpson, P. Solymos, M. H. H. Stevens, and H. Wagner. vegan: Community
Ecology Package, 2015. R package version 2.3-0.

[53] S. T. Roweis and L. K. Saul. Nonlinear dimensionality reduction by locally linear
embedding. Science (New York, N.Y.), 290(5500):2323–2326, December 2000.

[54] M. Belkin and P. Niyogi. Laplacian eigenmaps for dimensionality reduction and
data representation. Neural Computation, 15:1373–1396, 2002.

[55] L. van der Maaten and G. E. Hinton. Visualizing high-dimensional data using
t-SNE. Journal of Machine Learning Research, 9:2579–2605, 2008.

[56] G. Hinton and S. Roweis. Stochastic neighbor embedding. In Advances in Neural
Information Processing Systems 15, pages 833–840. MIT Press, 2002.

[57] S. Kullback and R. A. Leibler. On information and sufficiency. The Annals of
Mathematical Statistics, 22(1):79–86, 1951.

[58] Y. Bengio. Learning deep architectures for AI. Foundations and Trends in Ma-
chine Learning, 2(1):1–127, 2009.

[59] E. Dubossarsky and Y. Tyshetskiy. autoencoder: an implementation of sparse
autoencoder for automatic learning of representative features from unlabeled data,
2014. R package version 1.0.

[60] T. Kohonen. Self-Organizing Maps. Springer, January 2001.

[61] R. Wehrens and L.M.C. Buydens. Self- and super-organising maps in r: the
kohonen package. J. Stat. Softw., 21(5), 2007.

169



BIBLIOGRAPHY

[62] A. Kabán and M. Girolami. A combined latent class and trait model for the
analysis and visualization of discrete data. IEEE Trans. Pattern Anal. Mach.
Intell., 23(8):859–872, 2001.

[63] J. R. Owen, I. T. Nabney, J. L. Medina-Franco, and F. López-Vallejo. Visual-
ization of molecular fingerprints. Journal of Chemical Information and Modeling,
51(7):1552–1563, 2011.

[64] A. Dempster, N. Laird, and D. Rubin. Maximum likelihood from incomplete data
via the em algorithm. Journal of the Royal Statistcal Society, 39(B):1–38, 1977.

[65] S. K. Ng and G. J. McLachlan. On the choice of the number of blocks with
the incremental EM algorithm for the fitting of normal mixtures. Statistics and
Computing, 13(1):45–55, February 2003.

[66] J. Bertin. La Graphique et le traitement graphique de l’information. Nouvelle
bibliothèque scientifique. Flammarion, Paris, 1977.

[67] G. Sawitzki. Bertin plots, 2014. R package version 0.1-94.

[68] F. W. Hewes. General summary, showing the rank of states, by ratios, 1880, 1880.

[69] A. Inselberg. Parallel Coordinates. Springer New York, New York, NY, 2009.

[70] P. Hoffman, G. G. Grinstein, K. A. Marx, I. Grosse, and E. Stanley. DNA visual
and analytic data mining. In IEEE Visualization, pages 437–442, 1997.

[71] D. F. Andrews. Plots of high-dimensional data. Biometrics, 28(1):pp. 125–136,
1972.

[72] J. Myslivec. andrews: Andrews curves, 2012. R package version 1.0.

[73] Ronald M Pickett and Georges G Grinstein. Iconographic displays for visualizing
multidimensional data. Proceedings of the 1988 IEEE Conference on Systems,
Man, and Cybernetics, 514:519, 1988.

[74] H. P. Wolf and U. Bielefeld. aplpack: Another Plot PACKage: stem.leaf, bagplot,
faces, spin3R, plotsummary, plothulls, and some slider functions, 2014. R package
version 1.3.0.

[75] B. Shneiderman. Tree visualization with tree-maps: 2-d space-filling approach.
ACM Trans. Graph., 11(1):92–99, January 1992.

170



BIBLIOGRAPHY

[76] J. LeBlanc, M. O. Ward, and N. Wittels. Exploring n-dimensional databases. In
Proceedings of the 1st Conference on Visualization ’90, VIS ’90, pages 230–237,
Los Alamitos, CA, USA, 1990. IEEE Computer Society Press.

[77] D.A. Keim and H.-P. Kriegel. VisDB: database exploration using multidimen-
sional visualization. IEEE Computer Graphics and Applications, 14(5):40–49,
September 1994.

[78] Y. Miyashita, T. Itozawa, H. Katsumi, and S. Sasaki. Comments on the NIPALS
algorithm. Journal of Chemometrics, 4(1):97–100, January 1990.

[79] Benchmark data sets, trained maps, sample files. http://www.ifs.tuwien.ac.

at/dm/somtoolbox/datasets.html. Accessed: 2015-06-15.

[80] M. Snarey, N. K. Terrett, P. Willett, and D. J. Wilton. Comparison of algorithms
for dissimilarity-based compound selection. Journal of Molecular Graphics and
Modelling, 15(6):372–385, December 1997.

[81] G. Matheron. Principles of geostatistics. Economic Geology, 58(8):1246–1266,
December 1963.

[82] M. A. Oliver and R. Webster. A tutorial guide to geostatistics: computing and
modelling variograms and kriging. CATENA, 113:56–69, February 2014.

[83] F. Mosteller and J. Tukey. Data analysis, including statistics. In G. Lindzey
and E. Aronson, editors, Revised Handbook of Social Psychology, volume 2, pages
80–203. Addison Wesley, 1968.

[84] C. Rücker, G. Rücker, and M. Meringer. y-Randomization and its variants in
QSPR/QSAR. Journal of chemical information and modeling, 47(6):2345–2357,
September 2007.

[85] B. Efron. Bootstrap methods: another look at the jackknife. Ann. Statistics,
7:1–26, 1979.

[86] D. Baumann and K. Baumann. Reliable estimation of prediction errors for QSAR
models under model uncertainty using double cross-validation. Journal of Chem-
informatics, 6(1):47, 2014.

[87] R. Veerasamy, H. Rajak, A. Jain, S. Sivadasan, C. P. Varghese, and R. K. Agrawal.
Validation of qsar models - strategies and importance. International Journal of
Drug Design & Discovery, 3:511–519, 2011.

171

http://www.ifs.tuwien.ac.at/dm/somtoolbox/datasets.html
http://www.ifs.tuwien.ac.at/dm/somtoolbox/datasets.html


BIBLIOGRAPHY

[88] A. Sen. The impossibility of a paretian liberal. Journal of Political Economy,
78(1), 1970.

[89] D. Brümmerhoff. Finanzwissenschaft. Oldenbourg, München [u.a.], 7., völlig
überarb. aufl. edition, 1996.

[90] J. Neter, W. Wasserman, and M. H. Kutner. Applied linear statistical models.
Irwin Press, Boston, 1990.

[91] V. Consonni, D. Ballabio, and R. Todeschini. Comments on the Definition of the
Q2 Parameter for QSAR Validation. J. Chem. Inf. Model., 49(7):1669–1678, June
2009.

[92] A. Tropsha. Best Practices for QSAR Model Development, Validation, and Ex-
ploitation. Mol. Inf., 29(6-7):476–488, July 2010.

[93] Kay Henning Brodersen, Cheng Soon Ong, Klaas Enno Stephan, and Joachim M.
Buhmann. The balanced accuracy and its posterior distribution. In ICPR, pages
3121–3124. IEEE Computer Society, 2010.

[94] R. J. Bullen, D. Cornford, and I. T. Nabney. Outlier detection in scatterometer
data: neural network approaches. Neural Networks, 16(3–4):419 – 426, 2003.
Neural Network Analysis of Complex Scientific Data: Astronomy and Geosciences.

[95] A. Sedykh, D. Fourches, J. Duan, O. Hucke, M. Garneau, H. Zhu, P. Bonneau,
and A. Tropsha. Human intestinal transporter database: QSAR modeling and
virtual profiling of drug uptake, efflux and interactions. Pharmaceutical Research,
30(4):996–1007, dec 2012.

[96] C. E Shannon and W. Weaver. A mathematical theory of communication. The
Bell System Technical Journal, 27:379–423,623–656, July, October 1948.

[97] Anna Gaulton, Louisa J. Bellis, A. Patricia Bento, Jon Chambers, Mark Davies,
Anne Hersey, Yvonne Light, Shaun McGlinchey, David Michalovich, Bissan Al-
Lazikani, and John P. Overington. ChEMBL: a large-scale bioactivity database
for drug discovery. Nucleic Acids Research, page gkr777, September 2011.

[98] J. B. Brown, Y. Okuno, G. Marcou, A. Varnek, and D. Horvath. Computational
chemogenomics: is it more than inductive transfer? Journal of Computer-Aided
Molecular Design, 28(6):597–618, April 2014.

[99] G. Marcou, F. Ruggiu, V. Solov’ev, and E. Moyemont. ISIDA Fragmentor, 2013.

172



BIBLIOGRAPHY

[100] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten. The
WEKA data mining software: an update. SIGKDD Explor. Newsl., 11(1):10–18,
November 2009.

[101] J. Huuskonen. Estimation of aqueous solubility for a diverse set of organic com-
pounds based on molecular topology. Journal of Chemical Information and Com-
puter Sciences, 40(3):773–777, 2000.

[102] N. R. McElroy and P. C. Jurs. Prediction of aqueous solubility of heteroatom-
containing organic compounds from molecular structure. Journal of Chemical
Information and Computer Sciences, 41(5):1237–1247, September 2001.

[103] D. Yaffe, Y. Cohen, G. Espinosa, A. Arenas, and F. Giralt. A fuzzy ARTMAP
based on Quantitative StructureProperty Relationships (QSPRs) for predicting
aqueous solubility of organic compounds. Journal of Chemical Information and
Computer Sciences, 41(5):1177–1207, September 2001.

[104] L. D. Pettit and K. J. Powell. IUPAC stability constants database (SC-database),
2009.

[105] J. J. Sutherland, L. A. O’Brien, and D. F. Weaver. A comparison of methods
for modeling quantitative structure-activity relationships. Journal of medicinal
chemistry, 47(22):5541–5554, October 2004.

[106] J. V. de Julian-Ortiz. Virtual Darwinian drug design: QSAR inverse problem, vir-
tual combinatorial chemistry, and computational screening. Combinatorial Chem-
istry & High Throughput Screening, 4(3):295–310, May 2001.

[107] D. P. Visco Jr., R. S. Pophale, M. D. Rintoul, and J.-L. Faulon. Developing a
methodology for an inverse quantitative structure-activity relationship using the
signature molecular descriptor. Journal of Molecular Graphics and Modelling,
20(6):429–438, June 2002.

[108] C.-C. Chang and C.-J. Lin. LIBSVM: A library for support vector machines. ACM
Transactions on Intelligent Systems and Technology, 2:27:1–27:27, 2011. Software
available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.

[109] M. van Canneyt, M. Gärtner, S. Heinig, F. M. de Carvalho, I. Ouedraogo, and
J. Braun. Lazarus Klassenbibliothek und IDE. Computer & Literatur Verlag
GmbH, Böblingen, Germany, 2011.

173

http://www.csie.ntu.edu.tw/~cjlin/libsvm


BIBLIOGRAPHY

[110] H. Dvir, I. Silman, M. Harel, T. L. Rosenberry, and J. L. Sussman. Acetyl-
cholinesterase: from 3D structure to function. Chemico-biological interactions,
187(1-3):10–22, September 2010.

174



List of Figures

1 Résumé: concept de la méthode GTM . . . . . . . . . . . . . . . . . . . 20
2 Résumé: paysage d’activité . . . . . . . . . . . . . . . . . . . . . . . . . 21
3 Résumé: classification GTM . . . . . . . . . . . . . . . . . . . . . . . . 21
4 Résumé: Stargate GTM . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.1 Space: etymology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.2 Space: mathematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.3 Compounds structured in a tree . . . . . . . . . . . . . . . . . . . . . . 32
2.4 Chemical universe concept . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.5 Descriptor space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.1 Hypersphere v.s. hypercube volume . . . . . . . . . . . . . . . . . . . . 38
3.2 MDS with different dissimilarity measures . . . . . . . . . . . . . . . . . 41
3.3 Canonical Correlation Analysis . . . . . . . . . . . . . . . . . . . . . . . 41
3.4 Linear Discriminant Analysis . . . . . . . . . . . . . . . . . . . . . . . . 42
3.5 Independent Component Analysis . . . . . . . . . . . . . . . . . . . . . 43
3.6 Exploratory Factor Analysis . . . . . . . . . . . . . . . . . . . . . . . . 44
3.7 PCA and kernel PCA . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.8 Sammon maps with different dissimilarities . . . . . . . . . . . . . . . . 46
3.9 Isomap with different dissimilarities . . . . . . . . . . . . . . . . . . . . 47
3.10 Locally Linear Embedding . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.11 Laplacian Eigenmaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.12 t-SNE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.13 Autoencoder Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.14 Autoencoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.15 Self-Organizing Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.16 GTM concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.17 GTM and kernel GTM . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.18 Incremental GTM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.19 Scatterplot matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

175



LIST OF FIGURES

3.20 Bertin matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.21 Parallel coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.22 Andrews curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.23 Chernoff Faces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.1 Intertwined circles: data and manifolds . . . . . . . . . . . . . . . . . . 70
4.2 Intertwined circles: manifolds . . . . . . . . . . . . . . . . . . . . . . . . 70
4.3 Intertwined circles: 2D GTM maps . . . . . . . . . . . . . . . . . . . . 71
4.4 Initial v.s. final log likelihood . . . . . . . . . . . . . . . . . . . . . . . . 71
4.5 Log likelihood as a function of diversity . . . . . . . . . . . . . . . . . . 72

5.1 Activity landscapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.2 "Min" descriptors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.3 "Max" descriptors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.4 "Sim" descriptors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.5 Descriptor score in GTM node . . . . . . . . . . . . . . . . . . . . . . . 78
5.6 Regions of interest (ROI) . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.1 GTM training and test sets normalization . . . . . . . . . . . . . . . . . 81
6.2 Model validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.3 Cross-validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.4 GTM optimization workflow . . . . . . . . . . . . . . . . . . . . . . . . 84
6.5 GTM parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.6 Likelihood Pareto efficiency plot . . . . . . . . . . . . . . . . . . . . . . 85

7.1 Classification maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

9.1 Outliers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
9.2 Class prevalence factor applicability domain . . . . . . . . . . . . . . . 98
9.3 Regression applicability domains . . . . . . . . . . . . . . . . . . . . . . 100

11.1 S-GTM: outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
11.2 S-GTM: training stage . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
11.3 S-GTM: test stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
11.4 S-GTM with 1D or 8D activity space . . . . . . . . . . . . . . . . . . . 114
11.5 S-GTM QSAR and inverse QSAR . . . . . . . . . . . . . . . . . . . . . 115
11.6 S-GTM QSAR and inverse QSAR (details) . . . . . . . . . . . . . . . . 116
11.7 S-GTM performances: 8 affinities . . . . . . . . . . . . . . . . . . . . . 117
11.8 S-GTM performances: MOE descriptors prediction . . . . . . . . . . . . 120
11.9 S-GTM weights: map shape . . . . . . . . . . . . . . . . . . . . . . . . 121

176



LIST OF FIGURES

11.10 S-GTM weights: likelihood . . . . . . . . . . . . . . . . . . . . . . . . . 121
11.11 Property correlation: Lu . . . . . . . . . . . . . . . . . . . . . . . . . . 122
11.12 Property correlation: Thrombin . . . . . . . . . . . . . . . . . . . . . . 123
11.13 Property correlation: LogS . . . . . . . . . . . . . . . . . . . . . . . . . 123
11.14 Property correlation: ChEMBL . . . . . . . . . . . . . . . . . . . . . . 124
11.15 Property correlation: individual predictions for Lu S-GTM . . . . . . . 124

12.1 Serotonin 1a training and test distribution . . . . . . . . . . . . . . . . 128
12.2 Serotonin 1a landscape and regions of interest . . . . . . . . . . . . . . 129
12.3 Retrieved compounds on 2D GTM (1) . . . . . . . . . . . . . . . . . . . 130
12.4 Retrieved compounds on 2D GTM (2) . . . . . . . . . . . . . . . . . . . 130
12.5 Retrieved compounds on 2D GTM (3) . . . . . . . . . . . . . . . . . . . 131
12.6 Retrieved compounds on 2D GTM (4) . . . . . . . . . . . . . . . . . . . 131
12.7 Inverse QSAR with latent prototype approach . . . . . . . . . . . . . . 132
12.8 Inverse QSAR with GTM manifold prototype . . . . . . . . . . . . . . . 134
12.9 Inverse QSAR with GTM landscape prototype . . . . . . . . . . . . . . 135
12.10 An activity distribution on the S-GTM . . . . . . . . . . . . . . . . . . 136
12.11 Number of nodes as a function of their activity . . . . . . . . . . . . . . 137
12.12 Inverse QSAR with GTM weighted landscape prototype . . . . . . . . . 139
12.13 Screening using the conditional log likelihood . . . . . . . . . . . . . . . 140

13.1 Software: data and set-up . . . . . . . . . . . . . . . . . . . . . . . . . . 145
13.2 Software: descriptors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
13.3 Software: build new GTM . . . . . . . . . . . . . . . . . . . . . . . . . 147
13.4 Software: QSAR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
13.5 Software: GTM 2D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
13.6 Software: 3D PCA space . . . . . . . . . . . . . . . . . . . . . . . . . . 150
13.7 Software: map new data . . . . . . . . . . . . . . . . . . . . . . . . . . 150
13.8 Software: ache classification . . . . . . . . . . . . . . . . . . . . . . . . 151
13.9 Software: Gd3+ activity landscape . . . . . . . . . . . . . . . . . . . . . 152
13.10 Software: molecule distribution . . . . . . . . . . . . . . . . . . . . . . . 153

177



List of Tables

3.1 Some linear dimensionality reduction techniques. . . . . . . . . . . . . . 40

3.2 Some non-linear dimensionality reduction techniques. . . . . . . . . . . . 44

3.3 Visual separation of classes on the maps shown in this chapter, measured
by balanced accuracy BAC

FIT

. . . . . . . . . . . . . . . . . . . . . . . . 54

3.4 Different types of visual structures. . . . . . . . . . . . . . . . . . . . . . 60

4.1 9 different subsets used to initialize the iGTM model: 6 random subsets
(r1, r2, r3, r4, r5, r6) and three diverse subsets selected with a diversity-
based selection method (d1, d2, d3). . . . . . . . . . . . . . . . . . . . . 69

4.2 Initial and final log likelihood, when using different initialization subsets
with different sizes and proportions from each class (C1/C2); the mean
µ and standard deviation � of the log likelihood for the different subsets
is also indicated. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

11.1 The Affinity dataset contains 1325 molecules with affinities for 8 targets.
The target names, ChEMBL IDs and short IDs used in this study are
given in the table. Only some compounds had experimentally measured
pKi values of affinity for a given target. The number of experimental
(exp) and predicted (pred) affinities is indicated. . . . . . . . . . . . . . 112

11.2 Datasets used to build conventional and Stargate GTM models. The
ChEMBL, LogS, Lu, and Thrombin datasets were used for methodolog-
ical tests, to build models predicting MOE properties. . . . . . . . . . . 118

11.3 Selected parameters [�, w] for 3-fold cross-validated Stargate GTM re-
gression models, with the corresponding percentage of properties with a
determination coefficient R2 greater than 0.5, the average determination
coefficient R2 and root mean square error RMSE for all properties, and
the associated standard deviations. . . . . . . . . . . . . . . . . . . . . . 119

178



LIST OF TABLES

12.1 R2 and Pearson correlation coefficients for the 3 inverse QSAR method,
estimated by comparing the prototype activity (= activity query) to the
experimental activity of 1, 3 or 10 best matching structures (BMSs). . . 135

12.2 Pearson correlation coefficient and determination coefficient R2 compar-
ing activity queries (affinity values ranging from 3 to 10.3 by steps of
0.05), to the experimental activity of 1, 3 or 10 best matching structures
or BMSs using S-GTM-based inverse QSAR methods. . . . . . . . . . . 141

12.3 R2 for 4 inverse QSAR methods, estimated by comparing activity queries
(sampled from the landscape) to the experimental activity of 1, 3 or 10
best matching structures or BMSs. . . . . . . . . . . . . . . . . . . . . . 141

12.4 R2 for 4 inverse QSAR methods, estimated by comparing the queries
(affinity values ranging from 3 to 10.3 by steps of 0.05) to the experimen-
tal activity of 1, 3 or 10 best matching structures or BMSs. . . . . . . . 141

179



Glossary

A

ache

Acetylcholinesterase or ache is an enzyme whose main function is to hydrolyze
acetylcholine. 91

activity landscape

In chemoinformatics, an activity landscape represents the activity of compounds
on a surface; generally, the x-axis and y-axis represent features of molecules,
which can be original descriptors or new variables generated by a dimensionality
reduction technique. 2D activity landscapes are usually colored by the activity
value; 3D landscapes have a supplementary z-axis representing the activity. 75,
93, 98, 101, 111, 128, 152

AD

An applicability domain (AD) in cheminformatics defines the domain in chemical
space where a model’s prediction is applicable; it depends on the instances used
to train the model and on the features defining the descriptor space. 14, 34, 82,
90, 95, 97–99, 132

Andrews curves

A visualization method where instances are represented by smooth curves on a
2-dimensional plot. 63

autoencoder

An autoencoder is a non-linear dimensionality reduction method based on a neural
network that learns to reconstruct a dataset. 51

B
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Glossary

Bayes’ theorem

Bayes’ theorem is used to estimate conditional probabilities: P (A|B) = P (B|A)P (A)

P (B)

with P (B) =
P

i

P (B|A
i

)P (A
i

). 57, 89

big data

The concept of big data arises when the data becomes so large that methods to
handle it must be tailored and optimized. 67, 103

BMS

Best matching structure, used in our chapter on inverse QSAR to name retrieved
molecular structures corresponding to an activity query. 127

C

canonical variates

In canonical correlation analysis, combination of variables from two spaces that
achieve the highest correlation. 42

CCA

Canonical correlation analysis (CCA) is a linear dimensionality reduction method
maximizing the correlation between projections in two spaces. 41

CFA

Confirmatory factor analysis (CFA) is a factor analysis method used to test a
hypothesized latent structure of a dataset. 44

chemical space

A chemical space is a set of molecular compounds with a specific structure; there
are many possible chemical spaces. "The" theoretical Chemical Space encom-
passes all possible molecular compounds. 31

chemical universe

Set of molecules considered for a given problem. 32

chemoinformatics

Chemoinformatics (or cheminformatics) is a multidisciplinary field linking infor-
matics and chemistry. 82, 95, 105

Chernoff faces

A visualization method encoding descriptors by facial features. 64
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Glossary

cumulated responsibilities

Average responsibilities of nodes for a whole set, computed by averaging the re-
sponsibilities of instances within the set. 97, 103

CV

Cross-validation (CV) is a statistical procedure used to validate models, consisting
in dividing the training set into n folds; the model is trained with n-1 folds, and
evaluated using the remaining "test" fold; the procedure is repeated n times, each
time changing the test fold. 82, 83

D

DBCS

Dissimilarity-based compound selection, method to select diverse subsets of com-
pounds. 69

descriptor

A value providing a piece of information on a molecule, such as the number of
double bonds, the solubility, etc.; the number of descriptors is equal to the number
of apparent dimensions in the dataset. In this thesis, we sometimes use the words
"feature", "variable", or "dimension" as related concepts. 32, 35, 36, 38, 67, 75,
76, 81, 96, 105, 107, 127, 143, 146

descriptor space

Vector space used for representing and investigating chemical compounds as vec-
tors, based on specific features called descriptors. 33, 107, 110, 112, 143

dimensionality

The "apparent" dimensionality is equal to the number of dimensions in a dataset;
in cheminformatics, it can be the number of original molecular descriptors or
features generated by a dimensionality reduction approach. 35–37, 67, 146

dimensionality reduction

Dimensionality reduction consists in generating a small number of informative
features from a set of original variables. 34, 37–39, 125

dissimilarity space

Vector space used for representing and investigating chemical compounds as vec-
tors, based on the dissimilarity between compounds. 34
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Glossary

E

EFA

Exploratory factor analysis (EFA) is a linear dimensionality reduction method
which identifies latent factors. 43, 44

eigenvalue

Value l by which the eigenvector v of the linear transformation A is scaled when
A operates on v: Av = lv. 37, 47, 49, 56, 65

eigenvector

The non-null vector v is an eigenvector of the linear transformation A (square
matrix) if its direction does not change when the linear transformation operates
on it and is only scaled by a value l (its associated eigenvalue): Av = lv; the
concepts of eigenvalue and eigenvector are used in PCA, where A is the original
covariance matrix. 40, 47, 49, 56

EM

Expectation-maximization (EM) algorithms find in an iterative process the param-
eters of a probabilistic model corresponding to a local maximum of the likelihood
(or log likelihood) function. The E-step (expectation) and M-step (maximization)
are repeated until convergence of the likelihood function: the E-step estimates
posterior probabilities and the M-step estimates parameters using the new poste-
rior probabilities. 68

F

feature selection

Process of selecting relevant features from a set of descriptors. 38, 67

G

GTM

Generative topographic mapping (GTM) is a non-linear dimensionality reduction
method, and the probabilistic counterpart of SOM. 39, 53, 55

GTMapTool

Command-line tool developed during this thesis for constructing GTM, kernel
GTM, incremental GTM and Stargate GTM models, including various options
for building and validating classification and regression models. 58, 59, 143, 163
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Glossary

GUI

A graphical user interface (GUI) is an interface between the user and the machine
that uses graphical elements such as windows, buttons, etc. 144

I

ICA

Independent component analysis (ICA) is a linear dimensionality reduction method
that maximizes the independence of signal components. 43

IDE

An integrated development environment (IDE) is a set of tools integrated in one
single program to help develop softwares. 144

iGTM

Incremental generative topographic mapping (iGTM) is an incremental variant of
GTM for handling large datasets. 13, 20, 23, 55, 58, 67, 68

InfoVis

Information visualization, a scientific field dedicated to visual representations of
information. 13, 60, 61

intrinsic dimensionality

The intrinsic dimensionality is the minimum number of features needed to describe
a dataset given an initial set of descriptors (features). 36, 58

inverse QSAR

Inverse quantitative structure-activity relationship (inverse QSAR) models seek to
find relationships between structural and activity information; an inverse QSAR
analysis consists in two steps: 1. generate descriptors from activities, 2. generate
structures from descriptors; in this thesis, the first step was performed to find
existing structures, without generating new chemical compounds. 34, 53, 114,
116, 127

ISIDA

ISIDA stands for "in silico design and data analysis", a project carried out by the
Laboratory of Chemoinformatics (Université de Strasbourg, France). 36, 39
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Glossary

ISIDA/GTM

Toolbox developed during this thesis for constructing GTM, kernel GTM, incre-
mental GTM and Stargate GTM models including the command-line tool GTMap-
Tool and the graphical user interface GTMap. The software is part of the ISIDA
project carried out by the Laboratory of Chemoinformatics (Université de Stras-
bourg, France). 143, 163

Isomap

Isomap is a non-linear dimensionality reduction method based on the eigendecom-
position of a geodesic distance matrix. 47

K

kernel

The kernel function k can be seen as a measure of similarity; it will be qualified
as kernel if it is symmetric (k(x

i

, x
j

) = k(x
j

, x
i

)), and if the kernel matrix K

with elements K
ij

= k(x
i

, x
j

) is positive semi-definite so that:
P

i

P

j

K
ij

c
i

c
j

� 0

where c
i

and c
j

are real numbers. The kernel matrix is also called Gram matrix.
33, 41, 45–47, 49, 55, 57, 67, 143

kernel trick

With the kernel trick, it is possible to map the data t into a space of higher
dimensionality (feature space) with a function �(t) that is never computed, by
reducing the inner product between objects in feature space to a kernel function
in input space: K(t

i

, t
j

) = �(t
i

)�̇(t
j

). 45

KGTM

Kernel GTM (KGTM) is a kernel variant of GTM. 20, 57, 67, 143

KPCA

Kernel PCA (KPCA) is a non-linear dimensionality reduction method using a
kernel instead of the original data. 45

L

landscape prototype

Term introduced in our inverse QSAR chapter to define a structure prototype
composed of descriptor landscape values defining a "prototype" molecule. 134,
190
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Glossary

Laplacian Eigenmaps

The Laplacian Eigenmaps approach is a non-linear dimensionality reduction method
based on the eigendecomposition of the graph Laplacian. 49

latent prototype

Term introduced in our inverse QSAR chapter to define a structure prototype
composed of manifold coordinates in the latent space defining a latent "prototype"
molecule. 128, 190

latent space

The latent space is a space defined by "hidden" variables; the goal of many dimen-
sionality reduction algorithms is to find a few of these latent or hidden variables
(two or three for visualization purposes) from a set of observed variables (descrip-
tors); in this thesis, the dimensionality of the latent space is most of the time
equal to two. 50, 76, 89, 108

LDA

Linear discriminant analysis (LDA) is a dimensionality reduction method and a
supervised classifier. 42

linear dimensionality reduction

Process of reducing the dimensionality of a dataset through a linear mapping. 39

LLE

Locally linear embedding (LLE) is a non-linear dimensionality reduction method
that assumes that data points in the initial space and their neighbors are close to
a locally linear patch of manifold. 48

log likelihood

Objective function L used in maximum likelihood estimation to choose the pa-
rameters ✓ optimizing the probability that the model will generate the data:
L =

P

i

ln p(t
i

|✓), where p(t|✓) is a probability distribution over instances t
i

;
in this thesis, we always used the normalized log likelihood by dividing L by the
number N of instances. 53, 56, 60, 73, 85, 97, 139, 147

LTM

A latent trait model (LTM) uses categorical data to find continuous latent vari-
ables; a latent trait analysis can be used to reduce the number of dimensions of a
binary or categorical dataset. 55
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Glossary

M

manifold

A manifold is a topological space that is locally Euclidean, i.e., which resem-
bles the Euclidean space in the neighborhood of each of its points; a line is a
1-dimensional manifold, a surface is a 2-dimensional manifold. Many dimension-
ality reduction methods use the concept of manifold to model a multidimensional
dataset; the manifold is then often a 2-dimensional surface embedded in the mul-
tidimensional space. The shape of the manifold should approximate the shape of
the dataset. 37, 39, 45, 48, 50, 55, 68, 85, 89, 93, 108, 133, 147

manifold prototype

Term introduced in our inverse QSAR chapter to define a structure prototype
composed of manifold coordinates in the D-dimensional descriptor space defining
a "prototype" molecule. 133, 190

MDS

Multidimensional scaling (MDS) is a type of dimensionality reduction, comprising
metric and non-metric MDS and representing the similarity of molecules in a
reduced space. Metric MDS respects the input space distances and non-metric
MDS the distance rankings. The classical metric MDS is a linear dimensionality
reduction method. 40, 46, 47, 50

N

NNMF

Non-negative matrix factorization (NNMF) is a linear dimensionality reduction
approach for non-negative input matrices. 44

non-linear dimensionality reduction

Process of reducing the dimensionality of a dataset, usually by trying to discover
a non-linear manifold embedded in the data space. 44, 55

NPD

Normal probability distribution. 56, 57

O
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Glossary

outlier

In statistics, a data point which significantly differs from the other data points; it
could be seen as lying in the tail of a probability distribution; if it is a molecule,
it may differ in terms of structure, activity, or both structure and activity. 39, 95

overfitting

Overfitting is a phenomenon arising when a model fits the training data too well,
in such a way that its performance on new data decreases as the performance on
the training data increases. 38, 85

P

parallel coordinates

A visualization method where instances are represented by lines on a 2-dimensional
plot; the y-axis gives the value of the descriptor that can be found on the x-axis.
60, 62–64

PCA

Principal component analysis (PCA) is a linear dimensionality reduction method
that produces uncorrelated features. 40, 56, 68, 147

PDF

A probability density function (PDF) is a function f of a continuous random
variable X such that: P (a 6 X 6 b) =

R

b

a

f(x)dx. 89, 94, 109, 110

Q

QSAR

Quantitative structure-activity relationship (QSAR) models aim at finding rela-
tionships between structural and activity information. 57, 82, 85, 93, 114, 115,
144, 148

R

RBF

A radial basis function (RBF) can be any type of real-valued function depending
only on the distance from a center. 46, 53, 56, 58, 68, 83, 112, 147
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Glossary

RF

Random forests, a machine learning technique based on multiple decision trees.
117

RLE

The relative landscape elevation (RLE) was introduced in this thesis to study ac-
tivity landscapes; it measures the percentage of the map where a specific property
has higher values than a reference. 104

ROI

In this thesis, a region of interest (ROI) is a delimited area in the 2D latent
space matching several criteria; we usually obtain ROIs by superimposing activity
landscapes, e.g., logS and chirality landscapes. 75, 79, 133

S

S-GTM

Stargate GTM, a variant of GTM for several descriptor spaces. 14, 15, 34, 94,
107, 111, 135, 143

Sammon mapping

Sammon mapping is a non-linear dimensionality reduction method based on pre-
serving the input space distances. 46

SMF

Substructural molecular fragment, a type of molecular descriptor. 36

SNE

Stochastic neighbor embedding (SNE) is a non-linear dimensionality reduction
method, based on minimizing the divergence between joint probabilities in the
input and latent space. 50

SOM

The self-organizing map (SOM) or Kohonen map is a non-linear dimensionality
reduction method based on a neural network. 44, 52, 53

structure prototype

Term introduced in our inverse QSAR chapter to define a set of estimated struc-
tural descriptors or "prototype" molecule; it includes D-dimensional prototypes
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Glossary

(see manifold prototype or landscape prototype) defined in the D-dimensional
descriptor space and 2D prototypes (see latent prototype) defined in the latent
space. 127

T

t-SNE

t-distributed stochastic neighbor embedding (t-SNE) is a non-linear dimension-
ality reduction method derived from SNE, based on minimizing the divergence
between joint probabilities in the input and latent space, where probabilities in
the input space are computed using a Student t-distribution. 50
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Symbols (GTM and variants)

A Activity profile query (inverse QSAR)
A0 Retrieved activity profile (inverse QSAR)
a Vector of activities
ā K-dimensional activity landscape vector
â Vector of estimated activities
� Inverse variance of GTM normal probability distributions
c
i

Depending on the context, ith class or ith library
D Number of dimensions, dimensionality
Eclass

q

Class entropy of an instance (molecule) t
q

based on class probabilities
E

norm

(c
i

) Normalized entropy of a set of instances c
i

based on cumulated re-
sponsibilities

� M ⇥K matrix of M radial basis functions
G K ⇥K matrix where G

kk

=
P

n

R
kn

I Identity matrix
K Number of grid nodes
L
test

Test set likelihood evaluated in cross-validation
L
train

Training set likelihood evaluated in cross-validation
L(W,�) Log likelihood
L
norm

(W,�) Normalized log likelihood
L
n

(W,�) Log likelihood of the nth compound
L
qa

Conditional log likelihood used as a scoring function for the qth com-
pound and ath activity query

� Regularization coefficient
M Number of RBF centers
m
m

2D coordinates of the mth RBF center
N Number of molecules
N 0 Number of molecules in a data block (iGTM)
N

c

Number of classes
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Symbols (GTM and variants)

N
ci Number of compounds belonging class c

i

O Original N ⇥ D data matrix in D-dimensional space before normal-
ization or standardization

od N -dimensional vector containing the dth column of the O matrix (all
instances for one descriptor)

Q2 Cross-validated determination coefficient
R K ⇥N responsibilities matrix
R0 K ⇥N 0 responsibilities matrix of a data block (iGTM)
R̄ N

C

⇥K matrix of cumulated responsibilities of K nodes for N
C

sets
R2 Determination coefficient
S Structure query (inverse QSAR)
S0 Retrieved structure (inverse QSAR)
S(c

i

, c
j

) Similarity (or dissimilarity, depending on the chosen measure) between
two sets c

i

and c
j

�2 RBF parameter
�2

k

Activity variance in node x
k

T N ⇥ D data matrix in D-dimensional space after normalization or
standardization

T0 N 0 ⇥D matrix representing a data block (iGTM)
t
n

D-dimensional vector representing a data instance
⌧ Average squared Euclidean distance between RBF centers
U D⇥L matrix of L first eigenvectors of the data (T) covariance matrix
W D ⇥M parameter matrix
w RBF width factor
wSpace1 Weight attributed to Space 1 (S-GTM)
wSpace2 Weight attributed to Space 2 (S-GTM)
X K ⇥ 2 matrix of manifold coordinates in 2-dimensional latent space
X(T) N ⇥ 2 matrix of mean positions of data instances in the 2D latent

space
x
k

2D coordinates of the kth node on the manifold
x(t

n

) mean position of the nth data instance in the latent space
Y K ⇥D matrix of manifold coordinates in D-dimensional space
y
k

D-dimensional coordinates of the kth node on the manifold
y(x;W) Function performing a non-linear mapping of points x from the 2D

latent space into the D-dimensional data space
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Appendix A

Visualization of the SILIRID Space

This article/appendix was removed from this publicly available thesis for copyright
reasons and can be found in the Computational and Structural Biotechnology Journal :

V. Chupakhin, G. Marcou, H. A. Gaspar, A. Varnek. Simple Ligand-Receptor
Interaction Descriptor (SILIRID) for Alignment-Free Binding Site Comparison, Com-
putational and Structural Biotechnology Journal, 10(16):33-37, 2014.
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Appendix B

GTMapTool 2015 Software Options

__________________________________

oooo ooooo
o o ooooooooo

ooo o o

ooooo WELCOME TO GTMAPTOOL
2015

oooooo o
ooo o o o oooo

ooooo ooooo
__________________________________

Laboratoire de Chémoinformatique
Université de Strasbourg

Implementation: Héléna A. Gaspar
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APPENDIX B. GTMAPTOOL 2015 SOFTWARE OPTIONS

//////////////
Basic Parameters
//////////////

-h get help (no argument)
-i svm input file (-i myfile.svm)
-o output file (-o out)
-w width factor for radial basis functions (-w 1.5)
-m square root of the number of RBF centers (-m 5 for 25 centers)
-k square root of the number of grid points (-k 25 for 625 points)
-l regularization coefficient, usually between 0.0001 and 1000 (-l 10.0)
-r random initialization of W matrix (GTM parameters) (no argument)
-f apply PCA before GTM (-f 20 for selecting 20 variables)
-t input .dat instead of .svm with (tab-separated values) (no argument)
-p clean input file by selecting descriptors with a minimum % of non-null values
(-p 0.01 for at least 1% of non-null values)
-c number of iterations (-c 100)
-b find best values for -l, -w, -k and -m (no argument)
-v perform crossvalidation (-v 3 for 3 folds)
-j perform projection from model _projection.xml (-j -y model_projection.xml)
-y input model for projection (-j -y model_projection.xml)
-a compute manifold and data coordinates in PCA 3D space (no argument)
-n clean file (no argument)

//////////////
Verbose Parameters
//////////////

--seed
different seed for cross-validation
(--seed=3)

--batchW
define set of values for k to use with -b or -b -v; syntax: begin:step:end
(--batchW=0.5:0.5:2)

--batchL
define set of values for log10(l) to use with -b or -b -v; syntax: begin:step:end
(--batchL=-2:1:2)

--batchM
define set of values for m to use with -b or -b -v; syntax: begin:step:end
(--batchM=4:1:6)

--batchK
define set of values for k to use with -b or -b -v; syntax: begin:step:end
(--batchK=10:5:20)

--limit
convergence criterion
(--limit=0.001)
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APPENDIX B. GTMAPTOOL 2015 SOFTWARE OPTIONS

--classes
labels (one value per line, first line is a comment)
(--classes=labelFilePath.txt)

--activities
activities (one value per line, first line is a comment)
(--activities=activityFilePath.txt)

--test
external test set (--test=externalTestSetPath.svm)

--magnificationFactors
compute magnification factors for classical GTM
(--magnificationFactors)

--noNormalization
do not normalize data
(--noNormalization)

--scaling
use file with min and max values for normalizing descriptors
(-n --scaling=myoutput_scaling.txt)

-n -y
use file for discarding descriptors
(-n -y myoutput_discarded.txt)

--missing
computes missing values with attribute value NAN in svm file
(format: 1:NAN) (no argument)

--NIPALS
use NIPALS algorithm for PCA: speeds up things for higher dimensions
(no argument)

--kernel
kernel algorithm, choose tanimoto, gaussian, linear, etc.
(--kernel=tanimoto or --kernel=gauss or --kernel=linear, etc.)

--kernelFile
input kernel for kernel GTM
(--kernelFile=kernelTrain.txt)

--kernelCentering
center kernel
(--kernelCentering)

--cste
constant for linear and polynomial kernels, default is 0
(--cste=0)
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APPENDIX B. GTMAPTOOL 2015 SOFTWARE OPTIONS

--degree
degree for polynomial kernels, default is 2
(--degree=2)

--slope
slope for polynomial kernels, default is 1
(--slope=1)

--nDim
for kernel GTM, feature space dimension
(--kernel=tanimoto --nDim=50)

--gamma
for kernel GTM with gaussian kernel exp(-gamma*x*x), gamma coefficient
(--kernel=gauss --gamma=0.5)

--computeKernels
compute 3 kernels: train*train, test*test, train*test
(--computeKernels --train=x --test=y --kernel=gauss)

--incremental
incremental algorithm... don’t forget to set the --blocks and -c options
(--incremental)

--blocks
number of blocks (packs of molecules) for the incremental algorithm
(--blocs=11)

--initialize
number of molecules used in the initialization process (first ones)
(--initialize=2000)

--inputFiles
for the incremental algorithms, when the dataset is divided into several files
(--inputFiles=file1.svm:file2.svm:file3.svm)

--combinedGTM
GTM with 2 manifolds for descriptors and properties (properties begin at ID x)
(--combinedGTM=50)

--COVAR
use entire covariance matrix instead of initial set for incremental GTM initialization
(--COVAR)

--PCAINCR
incremental PCA
(--PCAINCR)

197



APPENDIX B. GTMAPTOOL 2015 SOFTWARE OPTIONS

///////////
Examples
///////////

- Simple GTM:
$ GTMapTool -i mySvm.svm -o output -k 15 -m 5 -w 0.5 -l 10

- Batch GTM:
$ GTMapTool -i mySvm.svm -o output -k 15 -m 5 -b --batchW=0.5:0.5:2 --batchL=-2:1:2

- Projection:
$ GTMapTool -i mySvm.svm -o output -j -y myModel_projection.xml

- 3-fold cross-validation:
$ GTMapTool -i mySvm.svm -k 15 -m 5 -o output -v 3

- Batch 5-fold cross-validation:
$ GTMapTool -i mySvm.svm -o output -b -v 5

- GTM classification with cross-validation:
$ GTMapTool -i myWholeDataset.svm -o output --classes=labelFile.txt -v 3 -m 5 -k 15 -w 0.1 -l 1.0

- GTM classification with batch cross-validation (test different parameters l and w):
$ GTMapTool -i myWholeDataset.svm -o output --classes=labelFile.txt -v 3 -b -m 5 -k 15

- Predict labels of external test set with trained model:
$ GTMapTool -i myTrainingDataset.svm -y myTrainedModel_projection.xml -o output \
--classes=classesOfTrainedModel.txt --test=myTestDataset.svm

- GTM regression with cross-validation:
$ GTMapTool -i myWholeDataset.svm -o output --activities=activityFilePath.txt -v 3

- GTM regression with batch cross-validation (test different parameters l and w):
$ GTMapTool -i myWholeDataset.svm -o output --activities=activityFilePath.txt -v 3 -b -m 5 -k 15

- Predict activities of external test set with trained model:
$ GTMapTool -i myTrainingDataset.svm -j -y myTrainedModel_projection.xml -o output \
--activities=activitiesOfTrainedModel.txt --test=myTestDataset.svm

- Clean input file by removing descriptors given in _discarded.txt
and normalizing with _scaling.txt boundaries:
$ GTMapTool -i mySvm.svm -o output -n -y myoutput_discarded.txt --scaling=myoutput_scaling.txt

- Clean input file by removing descriptors with less then 10% non-null values,
without the default attribute normalization:
$ GTMapTool -i mySvm.svm -o output -n -p 0.1 --noNormalization

- Perform PCA and obtain 50 attributes (removes null descriptors beforehand):
$ GTMapTool -i mySvm.svm -o output -n -f 50
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- Make GTM and fill missing values (NAN in .svm file e.g. 3:NAN):
$ GTMapTool -i mySvm.svm -o output --missing

- Incremental learning (< 200 000 molecules for 200 descriptors and 8 GO RAM;
small dataset and dimensions < 1000):
$ GTMapTool -i mySvm.svm -o output -k 15 -m 5 --incremental --blocks=11 -c 10

- Incremental learning (large dataset but < 200000,
high dimensionality, randomize mySvm.svm beforehand!):
$ GTMapTool -i mySvm.svm -o output -k 15 -m 5 \
--incremental --blocks=11 -c 10 --initialize=100 --NIPALS

- Incremental learning with several files,
high dimensionality (randomize files beforehand!):
$ GTMapTool --inputFiles=file1.svm:file2.svm:file3.svm -o output -k 15 -m 5 \
--incremental --blocks=11 --initialize=100 --NIPALS

- Kernel GTM with svm input file:
$ GTMapTool -i mySvm.svm -o output --kernel=tanimoto -c 100 --nDim=20

- Kernel GTM with kernel input file:
$ GTMapTool --kernelFile -i myKernel.txt -o output -c 100 --nDim=20

- Compute kernels for training and test set, train*train, test*test and test*train:
$ GTMapTool --computeKernels -o output --train=train.svm --test=test.svm --kernel=tanimoto

- Kernel projection:
$ GTMapTool -j -y myTrainedModel_projection.xml -o output --kernel=tanimoto \
--test=testKernel.txt --train=trainKernel.txt --testVtrain=testTrainKernel.txt

- Predict activities of test set with trained model and train-test kernels with kernel GTM:
$ GTMapTool -j -y myTrainedModel_projection.xml -o output \
--activities=activitiesOfTrainedModel.txt --kernel=tanimoto --nDim=50 \
--test=testKernel.txt --train=trainKernel.txt --testVtrain=testTrainKernel.txt

- Predict labels of test set with trained model and train-test kernels with kernel GTM:
$ GTMapTool -j -y myTrainedModel_projection.xml -o output \
--classes=classesOfTrainedModel.txt --kernel=tanimoto --nDim=50 \
--test=testKernel.txt --train=trainKernel.txt --testVtrain=testTrainKernel.txt

- Perform combined GTM ("S-GTM") with properties beginning at 10, 20% weight for descriptors:
$ GTMapTool -i mySvm.svm --combinedGTM=10 -o output --weight=0.20

- Perform reverse mapping: obtain all coordinates in space 2 (trained with combined GTM):
$ GTMapTool -i space1_data.svm -o output -j -y space1_projection.xml \
--reverseProjection=space2_reverseProjection.xml

- GTM for binary data: LTM (Latent Trait Model)
$ GTMapTool -i mySvm.svm -o output --BIN --noNormalization
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///////////
Input File Formats
///////////

- svm file:
=> no comment line, one line is an individual, described by descriptors
with IDs and values represented as a couple "ID:value":
ONE LINE = ? 1:2 2:3 4:5
where ? can be any value and is not taken into account in this program

- tab-separated file:
=> no comment line, alternative to svm, with -t option:
ONE LINE = 2 3 0 5

- input kernel file:
=> complete Gram matrix, first line is a comment, values are separated by commas:
ONE LINE = 1,0.1,0.2,0.3

- activity or class file:
=> first line is a comment, each line is the activity of one instance:
ONE LINE = 0.5

///////////
Output Files for Conventional GTM
///////////

- out_matMeans.txt:
coordinates of points (each point = one object) as mean positions in 2D latent space

- out_matModes.txt:
coordinates of points (each point = one object) as mode positions in 2D latent space

- out_matX.txt:
coordinates of nodes (grid points in 2D latent space)

- out_matR.txt:
posterior probabilities or "responsibilities" of nodes (columns) for each object (row)

- out_allFiles.xml:
contains all previous files, to be used in GUI

- out_projection.xml:
trained model for projecting new data into the 2D latent space
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///////////
Output files specific to 2-spaces GTM
///////////

- out_prop_reverseProjection.xml:
trained model used to map data from 2D latent space into N-dimensional property space

- out_desc_reverseProjection.xml:
trained model used to map data from 2D latent space into N-dimensional descriptor space

- out_prop_projection.xml:
trained model used to map data from property space into the 2D latent property space

- out_desc_projection.xml:
trained model used to map data from descriptor space into the 2D latent descriptor space

- out_dataInPropertySpace.svm:
data projection in N-dimensional property space (can be used as property predictions)
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