
École doctorale IAEM Lorraine

Modèle de protection contre les codes

malveillants dans un environnement

distribué

THÈSE

présentée et soutenue publiquement le 11 Mai 2015

pour l’obtention du

Doctorat de l’Université de Lorraine

(mention informatique)

par

Thanh Dinh TA

Composition du jury

Rapporteurs : Juan Caballero Assistant research professor - IMDEA-Software
Mourad Debbabi Professor - Concordia University

Examinateurs : Guillaume Bonfante Maitre de conférences - Université de Lorraine
Eric Freyssinet Colonel de gendarmerie - Gendarmerie Nationale
Stephan Merz Directeur de recherche - INRIA Nancy

Directeurs de thèse : Jean-Yves MARION Professeur - Université de Lorraine
Guillaume Bonfante Maitre de conférences - Université de Lorraine

Laboratoire Lorrain de Recherche en Informatique et ses Applications — UMR 7503

Mis en page avec la classe thesul.

i

Remerciements

First, I would like to express my gratitude to my thesis advisor Jean-Yves Marion who
gives me opportunities to pursuit the Ph.D program. Without him, I would not have
any chance to realize my longing to do research, and this thesis would not complete.
With his immense knowledge and tolerance, he shows me clearly essences of confused
problems, and notices me which problem I should focus on, as well as which one I
could safely omit.

I would like to thank my thesis co-advisor Guillaume Bonfante who always en-
courages me to think about new ideas, rectifies me when I seem go in the wrong
direction, but also lets me pursuit independently my own ideas. I learned from him
that, a fancy idea will be useless if one does not seriously realize it. He tolerates my
mistakes and simply considers that they are lessons for me. He teaches me also that
one should never underestimate the importance of simple ideas.

I would like to thank Romain Péchoux who guides me at the first stage of the
thesis. He gives me his precious experiences in doing research that one must keep
tenacity. He lets me pursuit my own ideas, encourages me when I fall back into
despair, and tolerates me when my ideas lead to nothing. I learned also from him
that ideas should be described as simple as possible.

I would like to thank my colleagues Aurélien Thiery, Hugo Férée, Hubert Godfroy,
Fabrice Sabatier, Joan Calvet. Each of them has participated, directly or indirectly,
into my studies. They pull me out of my corner, shares with me their ideas and
experiences, both in life and in doing research.

I would like to thank members of CARTE. During my thesis, I do not feel alone,
instead I have experienced a warmly atmosphere as a member of this group.

Thank to my parents who always encourage me and believe that I can do some-
thing useful. Though do not interfere in, they follow me in any decision I made. They
share with me both weal and woe.

Finally, thank to my family. I have reserved very little time for them during the
thesis. Thank to my wife who is always with and supports me. I learned from her that
everything have always a deserved value, and we will finally recognize that, sooner or
later. Thank to my son, who always requests me to play with him and always accepts
my refuses, most of ideas of mine occur in playing some games with him.

ii

iii

Pour mon père qui m’a appris à faire des mathématiques, et
pour ma mère qui m’a appris beaucoup d’autres choses.

iv

Contents

Chapter 1 Introduction 1

1.1 Malware detection and challenges . 2

1.1.1 Malicious code detection . 2

1.1.2 Challenges . 4

1.2 Plan and contributions of the thesis . 7

Chapter 2 On malware communications 11

2.1 Introduction . 11

2.2 Automated malware analysis . 12

2.2.1 Limits of the static and the dynamic analysis 12

2.2.2 Approach from software testing and code coverage 16

2.3 Message format extraction . 17

2.3.1 Current research . 18

2.3.2 What is the “message format”? . 24

2.3.3 Our approach: message classification 26

Chapter 3 Mathematical modeling 29

3.1 Notations and terminology . 29

3.1.1 Graphs . 29

3.1.2 Labeled transition systems . 31

3.2 Prediction semantics of label transition systems 35

3.2.1 Π-equivalence . 36

3.2.2 Observational prediction . 43

3.2.3 Labeled transition system reduction 51

3.3 Algorithms . 62

3.3.1 Compact labeled transition system construction 63

3.3.2 Π-equivalence verification and construction 63

v

vi Contents

Chapter 4 Concrete interpretation 69

4.1 Notions and terminology . 69

4.1.1 Low-level representation . 71

4.1.2 Assembly code representation . 72

4.1.3 Execution of programs . 75

4.2 Stepwise abstraction . 81

4.2.1 From execution traces to the execution tree 82

4.2.2 From the execution tree to the message tree 89

4.2.3 From the message tree to the initial LTS 96

4.2.4 From the initial to the final LTS . 97

4.2.5 Message classification by the final LTS 98

4.3 Implementation and experimentation . 100

4.3.1 Implementation . 100

4.3.2 Experimentation . 102

4.3.3 Limits . 117

4.3.4 Case of ZeuS bot . 119

Chapter 5 Behavioral obfuscation 125

5.1 Introduction . 125

5.2 Behavior modeling . 127

5.2.1 Motivating example . 127

5.2.2 Basic categorical background . 128

5.2.3 Syscall interaction abstract modeling 130

5.2.4 Process behaviors as paths and semantics 134

5.3 Behavioral obfuscation . 137

5.3.1 Ideal detectors . 137

5.3.2 Main obfuscation theorem . 138

5.3.3 Obfuscated path generation through path replaying 140

5.3.4 Graph-based path transformation 142

5.4 Implementation and experiments . 145

5.5 Obfuscated path detection . 148

Chapter 6 Conclusions and perspectives 151

6.1 Conclusions . 151

6.2 Perspectives . 153

vii

Bibliography 155

viii Contents

List of Figures

2.1 Bootstrap codes of Slackbot . 14
2.2 A HTTP response message . 19
2.3 From input messages to observable behaviors 26

3.1 Graphs and morphisms . 31
3.2 An exemplified LTS . 33
3.3 Abstraction procedure . 38
3.4 LTS with π-equivalences . 39
3.5 LTS in Example 3.2.1 . 40
3.6 LTS in Example 3.2.2 . 41
3.7 Observational predictions of a LTS . 44
3.8 Trivial invalid observational prediction 45
3.9 Construction of the target LTS and the surjective complete morphism . 46
3.10 Choosing an image between pi(s) for a new state q′ 49
3.12 Original LTS A = A1 = A ′1 = A ′′1 . 56
3.13 Reduction sequence A1 vop A2 vop A3 vop A4 56
3.14 Reduction sequence A ′1 vop A ′2 vop A ′3 57
3.15 Reduction sequence A ′′1 vop A ′′2 . 57
3.16 LTS having normal forms with different number of states 59
3.17 Sub LTS(s) . 60
3.18 Intersected reduction sequences . 61

4.1 Control flow diversion using NtContinue 73
4.2 Simple execution tree . 80
4.3 Initial labeled transition system of wget with chosen finite length of 60 . 83
4.4 Execution tree of wget with the finite length of 25 86
4.5 Execution tree where only CFI(s) in traces are kept 87
4.6 Simplified execution tree of P . 89
4.7 Message treeM (P) of P . 89
4.8 Normalized message tree of wget with limit length 60 97
4.9 Initial LTS of wget with limit length 60 . 98
4.10 LTS(s) of wget with limit length 65 . 99
4.11 Final LTS of wget with limit length 90 . 101

ix

x List of Figures

4.12 Code coverage running time . 107
4.13 Exponential growth of CFI(s) in execution trees 108
4.14 Different CFI(s) process the same group of bytes 109
4.15 Final labeled transition systems . 110
4.16 Invalid message classification given by a LTS 112
4.17 Unbranchable CFI because of supplemental factors 113
4.18 Unbranchable CFI because of redundancy 113
4.19 Initial labeled transition system of links abstracted from execution

trees of different trace’s limit lengths . 114
4.20 Execution tree of links of limit length 100 115
4.21 Input message dependent CFI(s) of links 116
4.22 Manual reverse engineering of the input message parser of links 117
4.23 Selecting process for injecting codes . 120
4.24 Injecting codes into the opened process 121
4.25 Activating codes . 121
4.26 Final LTS of ZeuS with limit length 350 122

5.1 Inductive construction . 136
5.2 Obfuscated path construction . 140
5.3 String diagrams . 143
5.4 Registry initializing string diagram . 146
5.5 File copying string diagram . 146
5.6 File copying original string diagram . 147
5.7 Code injecting string diagram . 148
5.8 Code injecting obfuscated string diagram 148

Listings

1.1 Counter example of AntiM . 3

1.2 Hiding malicious behaviors using a 3SAT-opaque predicate 4

1.3 Environment-dependent malware . 5

1.4 W95/Regswap . 6

1.5 A variant of W95/Regswap . 6

2.1 Bootstrap codes of Slackbot backdoor . 13

2.2 Trojan’s main thread . 15

2.3 Second thread . 15

2.4 String matching using the Knuth-Morris-Pratt algorithm 22

2.5 Processing of wget in searching for the line-feed character 23

2.6 Processing of curl in searching for the line-feed character 23

2.7 Simple type propagation . 25

3.1 Surjective complete morphism construction algorithm 48

3.2 Construct A [i] by modifying A [i− 1] . 50

3.3 Label transition system reduction algorithm 63

3.4 π-equivalence verification algorithm . 64

3.5 π-equivalence construction algorithm . 66

4.1 Incorrect disassembly . 73

4.2 Correct disassembly . 73

4.3 Trojan.Zbot . 74

4.4 Effect of the control flow instruction . 76

4.5 “HTTP” string matching . 77

4.6 Sequence of executed instructions with input “HTa...” 77

4.7 Exception syscall . 78

4.8 Control-flow depends on the initial state 79

4.9 Execution tree construction algorithm . 84

4.10 Indirect dependency . 90

xi

xii Listings

4.11 Dynamic order parsing . 94

4.12 Normalized message tree construction algorithm 95

5.1 File unpacking . 127

5.2 Registry initializing . 127

5.3 Internal computation . 133

5.4 Syscall invocation . 133

5.5 Path X1 . 135

5.6 Path X2 . 135

5.7 Path X1-2 . 140

5.8 Replay rep(X2) of X2 . 141

5.9 Path X3 . 144

5.10 Path X4 . 144

5.11 Path X5 . 145

5.12 File copying . 146

5.13 Code injecting . 147

5.14 Replacing NtReadVirtualMemory . 148

List of Tables

4.1 Number of CFI(s) in the execution tree of (the HTTP parser of) wget . . . 104
4.2 Number of CFI(s) in the execution tree of links 105
4.3 Number of CFI(s) in the execution tree of ncftpget 106

xiii

xiv List of Tables

Chapter 1

Introduction

Nowadays, computer viruses are not anymore a hobby of curious students or smart
hackers like they were more than 30 years ago. The viruses, or in a more general term,
malwares come from simple mass variants which have no specific targets and try to
propagate as much as possible, to very sophisticated variants having specific targets
and trying to be stealth as much as possible. Such sophisticated malwares are written
and used by organized crime groups and armed forces to steal private information
or to control remotely the information infrastructure of their specific targets. The
purposes of crimes may be just money, but the armed forces aim to prevail over
oppositions in cyberwars.

For simple mass malwares, the reports of anti-virus companies [52, 109, 126, 154]
confirm that they receive about 100.000 new samples per day, in 2014. Fortunately,
according to these reports, most of these samples can be classified into a much smaller
number of families, each contains samples of similar identification. That is the reason
why the signature matching methods in current detection engines [125] still work in
detecting such kind of malwares. However, the reports warn that malware authors
start spending time to perfect their products. Consequently, we have little by little
hope to see the situation where malware authors do not learn from failures of their
products [31].

Serving much more difficult and specific purposes, the targeted malwares are
also more sophisticated, both in size and functionality. Some recent reports about
state sponsored/organized crime groups malwares (e.g. Stuxnet, Flame, Gauss, Zeus,
Citadel, Reign [60, 61, 73, 82, 93, 94, 131, 132, 133]) confirm that such malicious codes
can stay invisible for very long time under marketed antivirus softwares. Most of
them can be recognized only under some very specific technical analysis which re-
quires lots of manual intervention, others are in fact invisible until they are detected
by chance [61].

The defense methods from malware threats can be classified into two main classes:
broader and deeper defense. Roughly speaking, the former tries to prevent the infec-
tion of malwares as soon as possible by extending the detection to many channels (e.g.
Email, Web, USB drive, etc.) on which the computer can be infected. The latter tries

1

2 Chapter 1. Introduction

to recognize the existence of malwares even when they have landed on the computer
and may be equipped of stealth techniques. Both of them are deployed to construct
layered malware protection systems [112].

1.1 Malware detection and challenges

Such a layered architecture is necessary for designing protection systems, but it is not
sufficient. That is because of there are always vulnerabilities which malwaress can
penetrate into systems. Here, we do not discuss the vulnerabilities of the protected
system, indeed we simply mention the mistakes (i.e. vulnerabilities) of the protecting
system itself: it cannot detect the potential malicious codes.

To get a brief view of the difficulties that a malware detection system have to
deal with, we may think of the following schema which illustrates the asymmetricity1

between malwares and the protection against malwares

malwares
(written by malware authors)

compiler−−−−→ binary codes
(analyzed by malware analyzers)

Under the viewpoint of malware authors, malwares are just programs existing under
the source code forms. Today, malwares are written normally in some high-level
programming languages, under the viewpoint of malware analyzers, malwares are
programs existing under the binary code form.

Here the compiler, which transforms source codes to binary codes, plays also as
an obfuscator: it removes all abstract structures (e.g. data types, module structures,
function call flows, structured non-local control flows, etc) which exist only in high-
level programming languages. These abstract structures are essential ingredients help
understanding the semantics of the program.

Also in this schema, we implicitly omit the definition “what is a malware?”. That
is because of a malware is just a program, and this program is malicious or not, does
not depend on the program itself, this depends instead on how and where it is used.

1.1.1 Malicious code detection

In this schema, there is mostly no problem with malware writers because, say, mal-
wares are just programs. But malware analyzers have to do reversely, and the situation
becomes very different. Given a program under binary form, ideally the analyzers
first should understand what the program does, namely understand the semantics of
the program, then may give a report about its suspicious actions (if exist).

1Another asymmetric view between malware writers and malware analyzers is presented in [165].
Here the authors are inspired from the asymmetricity between the encryption and the decryption in
asymmetric cryptography.

1.1. Malware detection and challenges 3

Impossibility result Theoretically, the first requirement is impossible in general be-
cause of the Rice’s theorem: verifying whether an arbitrary program has some nontrivial
property is undecidable [134]. For example, in general, it is not possible to state that a
sample will behave like a known malware or not, or it is not possible to state that a
program will ask for some input from Internet.

Example 1.1.1. Suppose that there exists an “anti-malware” AntiMal which can always
state correctly whether a program sends stolen private information of users to Inter-
net, then the following program M will use (the supposed existence of) AntiMal itself
to deny the existence of AntiMal.

M()
{

if (AntiMal(M) == yes) does_nothing ();
else send_stolen_data ();

}

Listing 1.1: Counter example of AntiM

Here we get a contradiction about which answer the anti-malware AntilMal states
about M. Indeed,

• if AntiMal(M) == yes, namely AntilMal states that M will send stolen data,
but from the code of M above then M will not send stolen data (it does nothing),

• if AntiMal(M) == no, namely AntiMal states that M will not send stolen data,
but from the code, then M will send stolen data.

Remark 1.1.1. The construction of M is self-reference but well-defined because of
Kleene’s recursion theorem [149]. The contradiction above uses the self-reference
argument which is a popular techniques in proofs about the undecidability.

Malicious codes detection in practice

However, it is not because the problem is undecidable that we should simply forget
about it. In practice, researchers develop some techniques which solve partially these
issues. The clearest example is the existence of antivirus softwares which are intended
to detect known malwares in new samples.

Concretely, since the notion of “malicious programs” is too general and can be
only loosely defined, people try to characterize programs by some specific features
(e.g. data types [100, 102], control flow graphs [14], library/system call graphs [90],
self-modifying codes, suspicious encrypt/decrypt functions [32], network communi-
cation [105]). All of them are extracted by analyzing binary codes or by observing the
execution of binary codes in some protected environment.

Whenever such features are revealed, the malware detector will verify if they sat-
isfy some pre-determined signatures. The exact signature matching technique, though
can be easily bypassed, is still popularly deployed [125, 155]. Recent signatures use

4 Chapter 1. Introduction

code templates [35], program behaviors [9, 65, 90] together with model-checking [9,
152], or the morphology of control flow graphs [14, 15].

Other techniques There is an important class of program characterizing techniques
employs advances from machine-learning [91, 135]. Mining on large databases (about
thousands) of programs with some specific features (e.g. system calls imported in the
program and their arguments [135], n-gram representation of binary codes [91]), the
machine-learning based techniques aim to, first clustering the database into different
classes which separate malicious from benign programs, as well as separate different
families of malwares. Next, classifying an unknown program into some clustered
classes.

1.1.2 Challenges

Malwares writers and security researches have been proposing many methods to by-
pass both the code analysis and the feature verification. These methods are commonly
called obfuscation [38]. Obviously, malwares can take benefit from obfuscation meth-
ods to protect themselves.

Obfuscation against code analysis

This kind of obfuscation ranges from code hiding to semantics hiding. Roughly speaking,
the former consists of techniques that conceal the actual codes of malwares, whereas
the latter consists of techniques that conceal the actual behaviors of malwares.

Malwares use code hiding techniques to prevent their codes from being analyzed.
Beside techniques preventing dynamic analysis: anti-debugging, anti-dumping, etc.
There are techniques preventing static analysis, one of the most popular trick is to
use code packers [164]. That means the actual codes are packed when the malware is
not activated, and they are unpacked to execute only when the malware is activated.
Several reports [6, 20, 74] show that there are about 60− 90% malicious samples are
packed using different packers.

The techniques of semantics hiding are little more formal, they prevent analyzers
from understanding real behaviors of programs, even when the (binary) codes are
available. One of the first proposed technique is to use opaque predicates, that are
conditions in the program deciding the execution flow the program should follow.
Malware writers can use a condition which is very hard to evaluate precisely. An
example is the NP-opaque predicate [103, 117, 160] given in the following example.

Example 1.1.2. The malware M implements a 3-SAT formula E (x1, x1, . . . , xn) of n
variables that is not satisfiable for all values of xi(s), and let it be the condition deciding
whether M activates malicious behaviors.

M()
{

1.1. Malware detection and challenges 5

set of boolean variables X = {x1, x2, . . . , xn};
unsatisfiable 3-SAT instance E (X);
if (E (X)) does_nothing ();
else does_malicious_things ();

}

Listing 1.2: Hiding malicious behaviors using a 3SAT-opaque predicate

From the code in Listing 1.2, M does always malicious things since the formula E (X)
is always unsatisfiable. However, any static analyzer (cf. Remark 1.1.2) must solve E (X)
to understand the possible behaviors of M, this problem is known in NP-complete in
general [43].

Remark 1.1.2. In the case of obfuscation using opaque predicates, if the analyzer let the
program M execute, then it knows immediately that M exhibits malicious behaviors,
such an analyzer is dynamic. On the contrary, a static analyzer does not execute the
program M.

A more sophisticated technique is to use cryptographic triggers or the identity based
encryption [99, 139, 145, 162, 165]. That means malicious behaviors will be trig-
gered or not depending on the environment of the infected host. Such a malware
is environment-dependent, and in fact in some environment the program is not mali-
cious. Since the triggered conditions of the program are protected by secure crypto-
graphic algorithms, it is very hard to determine in which environment the program
activates malicious behaviors.

Example 1.1.3. The program M exhibits malicious behaviors or not depending on the
value of some specific registry key. This value depends on the host where M locates,
consequently on some hosts M is indeed benign. If the hash function is secure, then it
is very hard to know the registry key value that makes M exhibit malicious behaviors.

M()
{

if (hash(specific_registry) != stored_hash) does_nothing ();
else does_malicious_things ();

}

Listing 1.3: Environment-dependent malware

It is worth noting that the obfuscation techniques discussed above are not only
theoretical propositions, some of them have been deployed already in real world mal-
wares. For example, the malware Stuxnet will check the registry value NTVDM Trace
of a specific registry key1 to decide whether it should infect the host or not [61], an-
other example is the malware Gauss will look for some special file names inside the
folder %PROGRAMFILES% and use them as keys to decrypt and active malicious pay-
loads [73]. Both of them are well-known state sponsored malwares which are just
revealed recently.

1HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\MS-DOS Emulation

6 Chapter 1. Introduction

Obfuscation against feature verification

In Section 1.1.1, we have discussed that the practical detection verifies the existence of
some pre-determined signatures constructed from specific features (e.g. codes, con-
trol flow graph, system calls, etc). Then, even when the code analysis is success and
required features are collected, there is another problem about the reliability of signa-
tures: the program is actually malicious but the signature-based verification concludes
that the program is benign, or vice-versa [34].

Example 1.1.4. The pieces of codes in Listings 1.4 and 1.5 are given in [156] to illustrate
the metamorphic obfuscation technique of the W95/Regswap virus. They are extracted
from two different variant of this virus, both actually do the same thing but the regis-
ters usage has been substituted to bypass the syntactic pattern detection.

pop edx pop eax

mov edi ,0004h mov ebx ,0004h

mov esi ,ebp mov edx ,ebp

mov eax ,000Ch mov edi ,000Ch

add edx ,0088h add eax ,0088h

mov ebx ,[edx] mov esi ,[eax]

mov [esi+eax *4+00001118] , ebx mov [edx+edi *4+00001118] , esi

Listing 1.4: W95/Regswap Listing 1.5: A variant of W95/Regswap

To exploit this drawback of the feature verification, malware writers will use some
obfuscating transformation [40] to transform a malware (which may be already detected)
to a new variant which has the same behaviors (we then say that the transformation
is semantics preserving). This new variant has different features from the original
one, and become undetected again. Metamorphic codes, which are used widely in
the community of malware writers [156], are concrete examples of such a obfuscating
transformation.

Summary We have introduced briefly the current malware threats, their challenges
and the detection approaches. The impossibility result have denied the existence of
a detector that can detect all malicious programs. Considering both the efforts of
malware writers trying to bypass the detection, and the efforts of malware analyzers
trying to detect stealth techniques, one may recognize that they raise a co-evolution
of both sides of the front-line [119]. The thesis focuses on a narrow problem stated
below, hoping that it can contribute to the efforts of malware detection.

1.2. Plan and contributions of the thesis 7

1.2 Plan and contributions of the thesis

The thesis focuses on a class of malwares, called bots, which collaborate together
to create a network of bots, named a botnet. In analyzing a bot sample, malware
analyzers have to face up with a problem that this sample will not exhibit its malicious
behaviors if it does not receive some special messages from other bots.

Contributions In this thesis, we observe that this problem can be solved using ideas
of two different research problems. The first one is code coverage [22, 118], and the
second one is input message format extraction [26, 28, 45, 101, 161, 163]. Concretely, in
the context of malicious codes detection, the thesis gives two main contributions.

• First, by exploring different execution traces of a program when it consumes dif-
ferent input values, we give an efficient method for the problem of code coverage.
This contribution aims to activate dormant functions of malwares in a botnet,
even when the malwares are isolated from their network. Here, it is worth not-
ing that such malwares only exhibit their malicious behaviors only when they
receive some specific input messages.

Obviously, a more simpler approach is to analyse a bot sample while letting it
to communicate with other bots. However, this approach does not work if the
botnet is isolated or corrupted. Additionally, we may disclose to other bots that
this sample is under examined. Consequently the botnet may detect that it is
under surveillance, and it may deploy resistance measures.

Another approach is to let the bot sample to execute in a simulated environment
(e.g. in a lab simulating Internet). This approach requires network and computer
equipment. The contribution gives an alternative lightweight approach.

• Second, by classifying messages by their corresponding execution traces, we
give a total new method for the problem of message format extraction. One may
recognize that understanding the format of input messages will reinforce the
dormant functions activation, which is the aim of the first contribution. So the
two contribution are not independent of each other.

Moreover, the message format can be used also as a kind of detection signature:
two programs have strong relation if their consumed input messages have the
same format. Here, one can recognize that we have followed the “you are what
you read” slogan.

Plan The techniques used in this thesis employ directly the semantics of programs; we
do not consider statistical approaches (e.g. machine learning). Concretely, the plan of
the thesis is as follows:

8 Chapter 1. Introduction

We present in Chapter 1 the state of the art of malware creation/detection co-
evolution. By giving a schema about the viewpoint of malware authors versus mal-
ware analyzers, we show challenges to the malicious code detection, and we suggest
that these challenges rise mostly from the asymmetry between two viewpoints.

In Chapter 2, we discuss the message format extraction problem and its relation
with the malware detection. We present in detail some limits of static and dynamic
analysis in dealing with botnets, and next present a new approach that comes from
software testing. The application of this new approach in activating dormant func-
tions of malwares leads to an approach for the problem of input message format extrac-
tion. Next, we review the state of the art of this problem, then introduce some formal
analysis. These analysis lead to a formal notion of message format, called message
classification. Finally, we state a concrete interpretation for this formal notion.

In Chapter 3, we set up the mathematical framework for the thesis. This chapter
begins by recalling some (as well as introducing new) notions and concepts about
graphs and labeled transition systems (abbr. LTS(s)). The next section is the main
part of this chapter, we develop new results about the equivalence of states inside
a LTS, and consequently about how to construct a more compact LTS as a predictive
model of an original LTS. Not only showing the existence of this predictive model, in
the last section, we present algorithms constructing the model.

In Chapter 4, we present in detail a concrete interpretation for the abstract model
given in Chapter 3. This interpretation shows how the shape of the input message can
be recognized by classifying different execution traces, obtained by the execution of
the program in processing different values of the input message. To map this concrete
interpretation into the abstract model of LTS, we use a procedure called stepwise ab-
straction. At the final section of the chapter, we present a practical implementation and
experimental results on real-world programs; and show the theoretical and practical
limits of our method.

In Chapter 5, we present a formal model and constructive results about the behav-
ioral obfuscation. It supports our arguments discussed above about the obfuscation
against pattern verification. There are currently no work studying how malwares can
bypass the behavioral detection, whereas many work describes how behavioral de-
tection can successfully detect malwares. Though there may exist some reasons to
believe that behavioral detection is immune from obfuscation (e.g. such a pattern is
obtained from dynamic analysis, and (or) it characterizes behaviors of the program at
a high-level, etc.), we show it can be obfuscated.

In Chapter 6, we summary the methodology used throughout the thesis, mostly
about the subjects of Chapters 2 and 4, and how it is located in the general context of
reverse engineering. We discuss also the perspective of using message classification,
or concretely the final LTS resulted from the stepwise abstraction procedure, as a
pattern of a program. We propose finally some directions to improve the current
limits of our practical implementation.

1.2. Plan and contributions of the thesis 9

Publications The work in Chapters 2 to 4 has been partially published in [19] as a
full paper, in [17] as a short paper, and in [18] as a poster. The work in Chapter 5 has
been partially published in [127] as a full paper.

10 Chapter 1. Introduction

Chapter 2

On malware communications

In Section 2.1, we introduce briefly the communication between malwares in botnets,
and explain why malware detection has relation with the input message format extrac-
tion problem. In Section 2.2, we discuss some limits of classic analysis methods in
dealing with malwares, and introduce the current analysis trend. In Section 2.3, we
first review current approaches in reversing the sending/receiving message formats
of unknown binary codes, and show some of their drawbacks. Next, we discuss how
to give a formal definition of the message format and present our own point of view.
Finally, relying on this point of view, we state our approach for the input message
extraction problem.

2.1 Introduction

Historically, the input message format extraction tracks back to problems of protocol
reverse engineering - the method aiming first to reproduce the technical specification
of proprietary protocols, then this specification will be used to implement compatible
applications. One of the most well-known example may be the reversing of the pro-
prietary protocol SMB realized by Andrew Tridgell, and it takes him about 12 years to
do that [158]. However, the principal ideas of his method are still found in the mod-
ern methods [26, 28, 41, 45, 163]. Beside the original motivation of understanding
proprietary protocols, there is another one which arises from recent research dealing
with modern malwares.

New malwares and new challenges There is a new generation of malware in which
each of them does not operate alone, instead they collaborate and form a network of
"peer-to-peer" malwares that operates under the command of several masters. This
kind of architecture is called botnet where each malware is called bot and masters
are called bot-masters. We can mention here at length various botnets (though such a
list will be obsoleted quickly), notable examples recently are Mega-D, Zeus, Citadel,
BetaBot, etc. Some of them are even developed under the open source model (e.g.

11

12 Chapter 2. On malware communications

ZeuS, Citadel) and that accelerates hugely the development of new variants and sam-
ples (e.g. Gameover ZeuS is a bot developed from ZeuS).

To understand behaviors of a bot (i.e. a malware of a botnet), an approach is to
replay the bot sample in a safe environment. But a challenge is that the sample may
not be fully activated without the communication with other bots in their network. The
malware needs sending/receiving messages which may include data and (or) control
commands, and some of its functions are activated only when particular messages are
received. The malwares having such a characteristic are classified into a more general
class: trigger-based malwares [22] where each activates its malicious behaviors only if
some conditions in the execution environment are satisfied.

To deal with this challenge, the analyzers need to activate the dormant malicious
functions inside the codes of the sample. Moreover this activation must be coherent
with the input of the sample, namely the dormant functions must be activated by
some input values. We observe that by understanding the input message format that
consists of the structure and the semantics of messages, the dormant code activation
can be treated.

2.2 Automated malware analysis

The analysis of malwares focus by default on the binary codes: malwares samples
exist always in the binary form except very rare cases where their sources are dis-
closed1. The traditional malwares analysis approaches can be classified into either
static or dynamic. In static analysis, the binary codes of malwares are analyzed but
the malwares are not really activated. Whereas in dynamic analysis, malwares are
activated in a protected environment (e.g. sandboxes, virtual machines).

Concerning malicious codes in general, the survey in [57] shows the limits of static
analysis, that come from the incapacity in handling obfuscated codes (namely almost
all malwares). For the trigger-based malwares and botnets in particular, the researches
in [22, 118] show also the limits of dynamic analysis: one cannot analysis malicious
codes of a malware if they are not activated. Below, we discuss in little more detail
about these limits.

2.2.1 Limits of the static and the dynamic analysis

Static analysis Regardless of many advances and a long history of research, the
current techniques of static analysis are not scalable enough for obfuscated codes,
namely for most of malicious codes: this approach is limited in both practical and
theoretical aspects.

First, most of current malwares (about 75− 90%) [6, 20, 74, 136] are protected by
some packers (cf. Remark 2.2.1) but there is no method that can handle packed codes

1Even in these cases, the binary forms of malwares always occur first, their sources are public much
later when they have largely propagated and been recognized.

2.2. Automated malware analysis 13

directly: they need to be unpacked first. Second, the static unpacking needs always a
correct identification of packing algorithms, again there is no result in this direction,
current results are limited to distinguish packing codes from packed codes [42, 50,
53].

Third, even when the codes can be unpacked successfully, there are lots of obfusca-
tion tricks counteracting the abstract interpretation based analysis by making it incom-
plete (cf. Note 2.2.1), for example the opaque predicates [46, 49]. Finally, in a more
general context, the situation is even worse because there are constructive obfuscation
methods making the complexity of the static analysis become NP-complete [103, 117],
even on unpacked codes.

Remark 2.2.1. Code packing is a technique to generate gradually, at running time,
the codes of the program [74]. At loading time, the program is in its packed form
consisting of a small piece of codes, called the bootstrap codes, and of packed data.
The bootstrap codes will, at running time, unpack (e.g. decompress, decrypt) the
packed data into executable codes which, in turn, will be executed.

Example 2.2.1. The piece of codes in Listing 2.1 is extracted from a sample of the
Slackbot backdoor (cf. also Figure 2.1)1. This malware is packed using a customized
version of the UPX packer [124], and this piece of codes is the malware’s bootstrap
codes which restore the original codes from the packed codes.

...
0x408760 pushad
0x408761 mov esi ,0 x4070ae /* packed codes sec. */
0x408766 lea edi ,dword ptr [esi+0 xffff9f52] /* unpacked codes sec. */
0x40876c push edi
0x40876d or ebp ,0 xffffffff
0x408770 jmp 0x408782
...
0x408778 mov al,byte ptr [esi] /* copy and unpack */
0x40877a inc esi
0x40877b mov byte ptr [edi],al
0x40877d inc edi
...
0x4088ae popad
0x4088af jmp 0x4011cb /* jump to the OEP */
...

Listing 2.1: Bootstrap codes of Slackbot backdoor

The packed codes (i.e. data) are located in the region starting at the address
0x4070ae, data are first copied into the region starting at the address 0x401000 and
then are unpacked here. When the unpacking procedure finishes, the malware jumps
to its original entry point at 0x4011cb, which is now in the unpacked code section. It
is worth noting that the packed codes are not executable codes, disassembling them

1The analyzed backdoor sample has MD5 hash 365e5df06d50faa4a1229cdcef0ea9bf, downloaded
from https://malwr.com.

https://malwr.com

14 Chapter 2. On malware communications

directly will fail or give nonsense instructions, they instead should simply be consid-
ered as data.

Figure 2.1: Bootstrap codes of Slackbot

Note 2.2.1. 1 Abstract interpretation (abbr. AI) [44] is one of the major tools for static
analysis. An AI procedure is complete if the abstract semantics of the program (i.e. Abs (P))
is also the one obtained from the concrete semantics (i.e. Con (P)) through the abstrac-
tion map (i.e. α (Con (P)) = Abs (P)).

Normally an AI procedure should be sound, namely it requires at least α (Con (P)) ≤
Abs (P), but not always complete. However, the soundness only is sometimes not
enough (it needs to be also complete), for example in solving the opaque predicates
by the AI, the over-approximated results are indeed useless, they cannot specify ex-
actly which branch should the execution follow.

Dynamic analysis This approach will execute and then examine codes in some pro-
tected environment (e.g. sandboxes, virtual machines). Because the codes are actually
executed, this approach is immune from some obfuscation techniques which impede
the static analysis (e.g. code packing, opaque predicate). A typical case is the cur-
rent best results about code unpacking come from the dynamic approach [85, 138]:
they can restore the original codes without taking care of the algorithms used in the
packers.

But dynamic analysis can be impeded also, and one of the most popular techniques
is anti-debugging [62, 146, 155]. In practical dynamic analysis, malwares are executed
in some protected environment (e.g. debuggers, sandboxes), so the malware will try
to detect whether it is executed under such an environment, and stops executing
if it is the case. Another anti-debugging trick is shown in the example below, the

1We use notes and remarks to give supplemental information. There is no strict different between a
note and a remark, but a note is normally used to give more important information.

2.2. Automated malware analysis 15

malware sample will execute its actual codes in another thread and lets the main
thread suspended forever.

Example 2.2.2. The pieces of codes in Listings 2.2 and 2.3 are extracted from a sample
of a Trojan-Downloader malware1. It uses multiple threads to defeat the debugger.
Starting from the main thread, the malware creates another thread (cf. the instruction
at 0x402335), and then actives this thread (cf. the instruction at 0x402473) by calling
the Windows™API QueueUserAPC whose address is stored in ebx (cf. the instruction
at 0x402443).

0x402423 call ds:IsDebuggerPresent 0x401870 push ebp

0x402429 xor esi ,esi 0x401871 mov ebp ,esp

... 0x401873 and esp ,0 fffffff8h

0x402335 call ds:CreateThread 0x401876 sub esp ,0xc04

0x40243B mov edi ,eax 0x40187c push ebx

... 0x40187d push esi

0x402443 mov ebx ,ds:QueueUserAPC 0x40187e push edi

... 0x40187f nop

0x402458 mov ebp ,ds:SleepEx 0x401880 push eax

... 0x401881 pop eax

0x40236c push esi 0x401882 inc ecx

0x40246d push edi 0x401883 dec ecx

0x40246e push 0x401870 0x401884 push ebx

0x402473 call ebx 0x401885 pop ebx

... 0x401886 nop

0x40247c push 1 0x401887 sar edi ,cl

0x40247e push 0xffffffff 0x401889 adc al ,0xd8h

0x402480 call ebp 0x40188b jbe 0x4018f6

... ...

Listing 2.2: Trojan’s main thread Listing 2.3: Second thread

The important codes executed by the second thread are started at 0x401870 (cf. the
instruction at 0x40246e), and is shown in Listing 2.3. The main thread will end by
calling the Windows™API SleepEx (see the instruction at 0x402480) which will wait
forever because the passed argument is 0xffffffff (see the instruction at 0x40247e).
Consequently a debugger tracking the main thread will be blocked forever here,

1The analyzed sample has MD5 hash 7fd2f990cd4f2ed0d1ca12790f51ea2c and is obtained from
http://vxheaven.org. Several technical analysis about anti-debugging techniques used by this sample
are given, but we are not agree with their conclusions. For example, the analysis in [107] says that the
API IsDebuggerPresent, SleepEx, GetTickCount, GetCurrentProcessId are used to detect whether
the malware is traced by a debugger, but this conclusion is misleading in this case. Because of some
programming bugs in the sample, these API(s) do not help anti-debugging.

http://vxheaven.org

16 Chapter 2. On malware communications

whereas the second thread continues executing.
We can observe also that, in this case, malware authors have inserted junks in these

codes (e.g. push and pop consecutively eax, increase and decrease consequently ecx,
etc.), may be with an intention to make confused analyzers.

An inherent limit of the dynamic analysis is that it is incomplete. Since only the
executed codes are examined, the dynamic approach does not give any information
about the inactivated codes. This limit makes dynamic analysis seriously incompetent
in analyzing malwares of botnets, because a malware sample may activate its mali-
cious behaviors only when it receives some particular messages from bot masters.

Summary On one hand, static analysis is complete but imprecise in analyzing obfus-
cated codes; namely it will cover all possible behaviors of the examined program, but
it is not scalable enough for the obfuscated codes. On the other hand, dynamic anal-
ysis, say, if we accept that the anti-debugging techniques are not “essential”, then it
is precise but incomplete; namely it gives precise information for executed codes, but it
cannot give any information for dormant codes. These limits of static and dynamic
analysis make these approaches insufficient in analyzing bots, which consist of both
obfuscated and dormant codes.

2.2.2 Approach from software testing and code coverage

There is a new approach proposed recently by some pioneer researchers, e.g. A. Moser
et al. [118], D. Brumley et al. [22, 23] and J. Caballero et al. [26]. This approach
combines several recent advances coming from automated software testing [29, 69,
70] and automated theorem solvers [71].

Initially, automated testing works on source code because it has been essentially
designed to detect software bugs, as a phase in software engineering. The testing
procedure aims at exploring all execution traces of a program: all functions of the
program should be tested, thus need to be activated by some input. Any trace con-
straint (i.e. the required conditions so that the program with follow this trace) is
encoded as a conjunction of control conditions in the code, by symbolic execution [88],
the control conditions are resolved, the solutions consist of input values satisfying the
conjunction.

As previously discussed, incompleteness is an inherent disadvantage of dynamic
analysis. But the concolic execution method from the automated software testing can
help improving this. It is straightforward to see that one (i.e. concolic execution) com-
plements the other (i.e. dynamic analysis) in activating dormant codes of malwares,
except that concolic execution works on source code.

Some authors (e.g. Brumley et al [22]) have first lifted binary codes to a high-level
representation, named immediate representation (abbr. IR) codes [23], and then apply
the concolic execution on IR codes. This is also the current trend in the automated
binary codes analysis, for that we refer to the discussions in [7, 151].

2.3. Message format extraction 17

Remark 2.2.2. Between dynamic analysis and automated software testing, there is an
approach called fuzz testing [153], which has a rich history in software vulnerability
research, and is still very popular and effective. Very roughly speaking fuzz test-
ing is automated software testing without automated theorem solvers. It generates
automatically random inputs for testing.

Note 2.2.2. It is worth noting that symbolic execution has been introduced by J. C.
King [88] since 1976, but it is not quite scalable in practice because the complexity
of the total symbolic conjunction formulae. Until the work of P. Godefroid et al. [69]
where the concepts of “concolic execution” are introduced at the first time: this is a
combination of total symbolic execution and the concrete random testing. Whenever
a condition is not resolvable by any reasoning theory implemented in the SMT solver,
it is replaced by a concrete value calculated from the current program state. In the
general case, the concolic execution is still not complete, but in practice, it is much
better that symbolic execution.

2.3 Message format extraction

The input message format extraction is just one among many problems of the reverse
engineering. In automated protocol reverse engineering, researchers face up with the
problem of understanding the structure and the semantics (i.e. meaning) of messages
received by a program: to recognized the states of the protocol state machine, the
semantics of messages must be well determined. The largely agreed conclusion is
that the message format extraction should be the first and crucial step of the protocol
reverse engineering [26, 28, 41, 45].

In the context of the automated botnet analysis, the message format extraction
together with the traditional dynamic analysis, can help understanding functions of
bot as well as activate the dormant functions. That is because once the format of
inputs are recognized, the functions can be activated by changing systematically the
input value.

Obviously, this process is also the method of the automated software testing as
discussed above, except that the input format extraction is not a problem. The more
ambitious goal in the automated botnet analysis, similar with the automated pro-
tocol reverse engineering, is to understand completely the communication protocol
between bots. However, this thesis is a first step towards a protocol analysis, and
we will focus on message analysis, more strictly we will consider only the input message
extraction in this thesis.

Below, we first give a review for the current methods used in the automated mes-
sage format extraction researches. This review, aside from serving as a brief discus-
sion for the state of the art, gives an intuition about the format of the message. Here
we want to emphasize that there is not yet a unique understanding about the message for-
mat, researchers give different ideas about which properties should be considered as

18 Chapter 2. On malware communications

the structure of a message, and though these ideas are sharpened over time, the cur-
rent methods are still more or less experimental. We discuss next some drawbacks of
these methods, and finally, state some objective ideas about the current methods, then
give briefly our approach.

2.3.1 Current research

As discussed at the beginning of Section 2.1, the initial research is interested in un-
derstanding and reimplementing proprietary protocols (e.g. [66, Fritzler et al. with
AIM/OSCAR protocol], and [158, Tridgell et al. with SAMBA protocol]). These work
are done mainly by manual effort, and this approach is still effective today for so-
phisticated protocols (e.g. the reverse engineering of Skype [12, 110] or Dropbox [87]),
though it is also a very time consuming task.

The number of new malwares samples per day is more than 100.000 in 2014, as
confirmed by security reports of anti-virus companies [109, 126, 154]. Only a small
part of them is bots, and even a smaller part of these bots needs some special manual
treatment [52], but the number is still huge. Because of this massive production of
new samples, the manual approach becomes sooner or later insufficient in confronting
with malwares. So the interest of this thesis is the automated approach, which aims at
an “once and for all” treatment.

The automated message format extraction, or more generally the automated pro-
tocol reverse engineering, has a relatively short history in comparison with the reverse
code engineering. The first work is given in [45], and the currently most remarkable
results may be ones given in [26, 27]. This automated approach is currently in its
infancy, the obtained results are not yet as accurate as the manual approach in com-
plicated cases. It techniques can be criticized in many ways, and seriously speaking, it
is not yet completely automated. Nevertheless only these methods can keep up with
the massive production of new malwares in the future.

Current point of views about message formats In the first part of this section, we
will present current methods in automated message format extraction. The common
point of them is that the authors consider intuitively that the format of messages
should consists of fields and separators between fields (cf. Example 2.3.1), etc. as well
as a hierarchical structure where a message may wrap other messages of lower layer
protocols.

Example 2.3.1. The HTTP response message in Figure 2.2 consists of fields and sepa-
rators as follows

HTTP/1.0 301...︸ ︷︷ ︸
f ield1

separator︷︸︸︷
\r\n Location...︸ ︷︷ ︸

f ield2

The difference is in their technical treatments in recognizing these elements. The
current techniques can be classified into two main direction:

2.3. Message format extraction 19

Figure 2.2: A HTTP response message

1. mining a set of exchanged messages, and

2. tracing how the program processes a message.

Below, we will review the main ideas of each direction.

Message mining

The first direction, pioneered mostly by W. Cui et al. [45] and G. Wondracek et
al. [163], aims at extracting the information from network messages. Since the techni-
cal methods used in that work are quite similar, we review, for example, the method
used in [45].

Basically, they consider that a raw message consists of fields, which can be text
(i.e. ASCII printable characters) or binary data: at the low-level they are called tokens.
To find text tokens, they first find text segments by considering consequences of ASCII
characters that are separated by binary bytes. Inside each text segments, the text
tokens are detected by considering sequence of bytes separated by delimiters that are
space or tab characters. To find binary tokens, the procedure above is not applicable be-
cause delimiters for binary tokens are very hard to recognize, so they simply consider
each binary byte as a binary token.

They propose the token pattern as a upper-level representation of the raw message,
such a pattern has form

(direction, type of token, type of token, . . .)

where the direction specifies that the message goes from client to server or reversely.
To classify analogous messages into a pattern, these messages are compared using a
byte-wise alignment procedure based on the Needleman-Wunsch algorithm [120].

The hierarchical structure of messages is also considered. Here, that means a
message of some protocol may wrap another message of a lower protocol. They
assume that the wrapping can be recognized by a special type of token, called format
distinguisher. To detect a format distinguisher token, the messages are examined to
find out a common unique value lower than some threshold (which is experimentally
calculated). Moreover such a value is a token only if, recursively, the sub-message
(i.e. the wrapped message) is also a message.

Binary code leveraging

The second direction consists of techniques leveraging the binary program receiving
messages. The first treatment is pioneered by J. Caballero et al. [28], using dynamic

20 Chapter 2. On malware communications

analysis, the authors extract information by observing how the program processes
the message. This original method is reused and improved to handle messages with
hierarchical architecture in [26, 101].

Because the appeared techniques do not work with encrypted messages, the au-
thors in [161] identify the decrypted phase from the normal message parsing phase,
that allows applying next the method having been developed in [26].

Since all sequent research apply the original ideas in [28], we review here the
techniques used in this work. The authors first consider that the message has a (flat)
structure as a sequence of fields, each is characterized by 5 attributes:

• start position, i.e. the start position of the field in the message,

• length type, i.e. whether the field is of fixed or variable length (possible values:
1. fixed, or 2. variable),

• boundary, i.e how the field ends1. There are the following possible values:
1. fixed: the field is of the fixed-length, 2. direction: the length of field is de-
termined by another field, 3. separator: the field ends by a separator (i.e. some
constants marked the boundaries of fields),

• direction, i.e. whether the field contains information about the position of other
fields,

• keyword value, i.e. the value of the field (when it is determined as a keyword).

With the flat structure of the message, its fields will be extracted completely if the
length of each field and the separators are identified. Since the length of a given field
can be determined either by some value hard-coded inside the binary code or from
another field of attribute direction (i.e. a direction field), then extraction problem is
now reduced to identify direction fields and separators.

The identification of a direction field is realized by a specific tainting procedure,
which determines whether this field is used (by the program) in accessing another
field. The identification of a separator is realized by determining whether the field is
compared again other bytes of another field.

Summary Two directions discussed above, beside the differences in technical treat-
ment, have different perspectives about the message format. The former considers
that the similar patterns learned from a set of real communicated messages, will char-
acterize the message format, whereas the latter considers that the different behaviors
of program in processing different parts of a message, will bring out the message
format.

1The boundary attribute is different from the length type, it determines how the program find the
end of the field, in other words the length type is a consequence of the boundary.

2.3. Message format extraction 21

More importantly, in the latter direction, the role of the program processing mes-
sage suggests also that the format (i.e. semantics) of messages should be given by the
program, and not the messages themselves.

Drawbacks

We can classify the drawbacks of the current techniques into two categories: 1. the
difficulties in applying them in the context of malicious code analysis, and 2. the
inaccuracies of these techniques.

Application context difficulties The minimal condition for the operation of the mes-
sage mining techniques is that they must be able to capture a large enough set of
real messages exchanged between the examined malwares and other malwares in the
botnet. But with the sink-holed botnets, namely the botnets whose the bot masters
have been disrupted or isolated from Internet (cf. Remark 2.3.1), the communication
between bots is collapsed until there are no more sending/receiving messages.

In this situation, it is impossible to capture enough messages that are needed for
the mining procedure. In other words, it is impossible to study malwares without
their living botnet. On the contrary, the binary code leveraging techniques work with a
single input message, and they even do not require that this is a real message, so they
are not affected by the discussed situation.

Remark 2.3.1. In real-world, some botnets can be disrupted using the DNS sink-hole
technique [24]. This mitigation does not require fully understanding the communi-
cation protocol or the format of exchanged messages, instead some network related
measures will be used to redirect the IP addresses of the hosts (mostly the bot mas-
ters) to non-existent addresses or to the addresses of some controlled host. These IP
addresses are extracted normally from (configuration files, binary codes, etc.) of bots.

However, modern botnets can use several techniques to bypass the DNS sink-
hole (e.g. TDSS/TDL4 [95], Kraten [137]). One of the most popular technique is to
use Domain Generator Algorithms (abbr. DGA) [3]. Using this technique, the bot
will generate randomly many domain names, and try to connect to several domains
hoping that some of them are locations of the new masters.

Inaccuracies To criticize the inaccuracies of techniques, it is not surprising to show
the cases where they do not work yet (even in their determined problem scope) so we
only give several observations.

First, as pointed out also in [28, 101], the essential limitation of the message mining
techniques comes from the lack of semantics information in the network messages.
That means no matter what the improvement in the mining methods, the avoidance of
the programs leads always to the fact that these techniques cannot say anything about
how the programs consume the messages. But without the existence of programs
sending/receiving messages, the messages themselves are just meaningless data.

22 Chapter 2. On malware communications

For example, rationally an input message extraction technique should give a result
which semantically fits in with one given by the program. But we can think of a sce-
nario where a client sends a massive number of HTTP messages to a FTP server. Since
the receiver does not understand the protocol, it simply rejects all received messages.
In other words, under the server’s point of view, these messages are meaningless.

Now in this scenario, we consider a message mining procedure works on these
messages. Since it bases on a message analysis and not a programs analysis, it may
extract irrelevant regularities (from the program’s point of view). And in this case,
the procedure may still conclude that the messages contain some structure, and that
is obviously a false positive.

Second, the current techniques in binary code leveraging depends strictly on some
artificial assumptions of how the receiving programs treat the message, but these
assumptions are not always satisfied. For example, the detection of a separator follows
the assumption that there will be some string constant being compared byte-by-byte
(from the first to the last byte of the pattern) in a loop with the message. But this
assumption is not warranted where some non-popular string matching algorithms
are deployed.

We propose below two real-world examples for which the detection of separator
given in [28] does not operate. The first is extracted from an implementation of the
Knuth-Morris-Pratt string matching algorithm [89]. The second is extracted from the
binary codes of the programs curl and wget.
Example 2.3.2. The piece of codes1 in Listing 2.4 describes the operation of the Knuth-
Morris-Pratt string matching algorithm [89]. The pattern buffer is located at the ad-
dresses determined by the dword value at the address [ebp-0x10] and the code uses
a counter, determined by the dword value at the address [ebp-0x28], to specify which
byte of the pattern buffer is currently used to compare with the bytes of the target
buffer. Similarly, the target buffer is located at the address determined by [ebp-0x2c],
the counter of the target is determined by [ebp-0xc].

Each byte of the pattern is extracted by “movsx eax,byte ptr [ecx+eax]”, whereas
the byte of the target is extracted by “movsx ecx,byte ptr [edx+ecx]”. One is com-
pared with the other by “cmp eax,ecx”.
kmp_loop: mov al, 0

cmp [ebp -0x28], 0xffffffff
...
mov eax , [ebp -0x28] /* ebp -0x28: pattern counter */
mov ecx , [ebp -0x10] /* ebp -0x10: pattern buffer */
movsx eax , byte ptr [ecx+eax]
mov ecx , [ebp -0x2c] /* target counter */
mov edx , [ebp -0xc] /* target buffer */
movsx ecx , byte ptr [edx+ecx]
cmp eax , ecx /* compare pattern -target */
setnz bl

1This piece of codes is extracted from the compiled code (by the clang compiler version 3.6). The
source code, originally in C, is modified version of the implementation taken from [98].

2.3. Message format extraction 23

...
update: mov eax , [ebp -0x28]

mov eax , [ebp+eax*4-0x24] /* partial matching table */
mov [ebp -0x28], eax /* update pattern counter */
jmp kmp_loop

Listing 2.4: String matching using the Knuth-Morris-Pratt algorithm

Until there, everything follows perfectly the assumption. But when we examine how
the counter is updated (starting from the label update), we see that the counter of the
pattern does not increase sequentially: it is updated by a partial matching table located at
the address determined by the dword value at the address [ebp-0x24] (i.e. there is a
pointer dereferencing here). The codes from the label update are actually equivalent
with i = table[i] where i is the pattern counter.

More practically, even in the case the separator is a single character, the assumption
above is still not warranted. We can see that in the second example.

Example 2.3.3. The code snippet in Listing 2.5 is used by wget to search for the line-
feed character inside a HTTP message. The message’s buffer has its address stored in
eax, its length stored in edx. The register bl stores the value 0xa (which is the ASCII
code of line-feed).

The comparison starts from the beginning of the message, each byte is com-
pared with the line-feed character (by the instruction cmp byte ptr [eax], bl) until
a match is found, and while the number of compared byte is still less than the mes-
sage length (that verified by the instruction cmp eax, edx). This kind of search fits
perfectly with the assumption.

loop: cmp byte ptr [eax], bl /* bl = 0x0a (line -feed) */
jz ln_found /* line -feed detected */
inc eax
cmp eax , edx /* edx = message ’s length */
jb loop
...

ln_found: ...

Listing 2.5: Processing of wget in searching for the line-feed character

However, also searching for the line-feed character, curl uses a faster but more so-
phisticated searching algorithm as given in Listing 2.6. The message’s buffer has its
address stored in edx, its length stored in eax.

Scanning from the beginning of the message, each 4 bytes is xor-ed with 0x0a0a0a0a
(i.e. 4 line-feed characters), the result is used together with two “magic” values 0x7efefeff
and 0x81010100 to verify whether it contains a byte of value 0x00, and if yes then cal-
culate the position of this byte1.

loop: mov ecx , dword ptr [edx]

1The detail description of this fast searching algorithm can be referenced in the file memchr.asm of
the library msvcrt of Microsoft Windows™SDK.

24 Chapter 2. On malware communications

xor ecx , ebx /* ebx = 0x0a0a0a0a */
mov edi , 0x7efefeff
add edi , ecx /* edi = ecx - 0x81010101 */
xor ecx , 0xffffffff
xor ecx , edi
add edx , 0x4
and ecx , 0x81010100
jnz LN_found
sub eax , 0x4 /* eax = number of unexamined bytes */
jnb loop
...

LN_found: ...

Listing 2.6: Processing of curl in searching for the line-feed character

We can observe that in the case of wget, the assumption about the comparison of
the line-feed constant with bytes of the message is satisfied: one can recognize that
there is a specific constant (this is the value 0xa of line-feed stored in bl) that is
compared with every bytes of the message. But it is not in the case of curl, without a
prior knowledge about this fast searching algorithm, one cannot be sure which is the
interested constant (this is neither 0x7efefeff nor 0x7efefeff and nor 0x81010100).

Summary The assumptions taken by the techniques discussed above are not de-
duced naturally from the programs and the input messages, they are instead subjec-
tive assumptions of the authors. In some cases, the examined objects (i.e. programs
and input messages) satisfy these assumptions, but there will be many cases where
they do not. The drawbacks discussed above urge that there should be a new method
which tries to avoid as much as possible artificial assumptions.

2.3.2 What is the “message format”?

There is a question that is implicitly avoided until there and, as far as we understand,
also in other researches, this is “what is the format of a message?” The rigorous
definition of the format is not yet raised as a crucial requirement (though it can lead
to controversial conclusions). For the malware writers, the message format specifies
a convention between senders and receivers. But this convention is hidden from the
malware analyzers who must reconstructing it.

Being motivated by some real-world protocol specifications, the current research
consider an intuition that some basic elements, like fields, the separators, as well as sub-
fields (that give a hierarchical structure), etc. constitute the message format. Normally,
different authors will give different intuitions about the correlation between these
elements, such an intuition is not ready yet to be generalized.

We have claimed a general conception in Section 2.3 that the (input) format ex-
traction is to understand the structure and semantics of messages (received) by a
program. Unfortunately such a conception is not clear enough because one can ask

2.3. Message format extraction 25

a very similar question “what is the structure and (or) the semantics of messages?”;
then obviously we have no meaningful conclusions here. But we propose the follow-
ing analysis.

Message format as a mathematical model We may look for an analogy by thinking
of an input message as a normal input of a program, and the program (as a func-
tion) should have some specific but unknown input data type. Then, message format
extraction has relations with data type reconstruction from the binary codes [100, 102].
It is worth noting that data type is in fact a mathematical model which can be defined
formally, whereas data structure concerns a concrete implementation of data type which
cannot. So message format extraction can be understood as searching for mathematical
model of the message that fits a concrete implementation.

But for data type reconstruction, the “searching” principle is at least well defined
because types are concretely implemented following the convention of the high-level
programming language. Then, for example, types can be reconstructed from some
type-sink (i.e. an execution point in the program where types can be determined im-
mediately, e.g. a return value or arguments of a well-known system call [102]) using
a type propagation procedure, which is indeed a simple form of the type unification
procedures used in type inference algorithms [113].

func: push ebp
mov ebp , esp
lea eax , [ebp+0x8] /* eax=ebp+0x8 */
mov ecx , [eax]
add ecx , [eax+0x4]
movsx eax , byte ptr [eax+0x8]
add ecx , eax
mov eax , ecx
pop ebp
retn

Listing 2.7: Simple type propagation

Example 2.3.4. The code snippet in Listing 2.7 is a toy example illustrating the well-
defined principles of the type propagation. It describes a function in processing its
arguments. Since the value of eax is assigned to be ebp+0x8 by the instruction lea
eax, [ebp+0x8], we can recognize that there are 3 arguments located respectively at
[ebp+0x8], [ebp+0xc] and [ebp+0x10] on the stack. Let us consider the instruction

mov ecx, [eax]

The technical specification of mov says that if the target is a 32-bit register (here it
is ecx) then the source must be a 32-bit register or a 32-bit memory value, so in
the instruction above [eax] must be a 32-bit memory value: a type-sink is detected.
There is also a type propagation: the known type of ecx in the mov instruction allows
determining the type of [eax]. We have the type of the argument at [ebp+0x8] is

26 Chapter 2. On malware communications

dword, similarly the type of the argument at [ebp+0xc] and at [0x10] is respectively
dword and byte.

In Example 2.3.4, we can observe that the type reconstruction can follow the well-
defined principles of the type inference. Whereas for the input message format ex-
traction, such principles do not exist: given an input message which is assembled by
some specific but unknown convention, the program can use an arbitrary algorithm
to disassemble the message.

2.3.3 Our approach: message classification

The previous claim “the message format is a mathematical model of the message that
fits a concrete implementation” must be concretized. Let us consider a program P
and a set M of inputs of P, we interpret concretely

• the “concrete implementation” as some observable behavior r of P,

• the “mathematical model” (i.e. the message format) as some equivalence relation
R ⊆ M×M in the set of messages, and

• the “fitting” means a matching between R and the equivalence up to r(
m, m′

)
∈ R⇐⇒ P (m) ≈r P

(
m′

)
where P (x) is the observable behaviors that P exhibits along the execution with
the input value x. In other words, if (m, m′) ∈ R then the execution of P on
input m exhibits the same observable behavior r as the one on input m′.

◦

◦
◦

◦

•

•

input messages observable behaviors
program

Figure 2.3: From input messages to observable behaviors

Relying on the interpretation above, we observe that the format of an input mes-
sage is indeed the structure of the set (of all input messages). In other words reversing
the input format is reconstructing the structure of the input set. Because the program may
raise different observable behaviors of sort r in processing different input messages,

2.3. Message format extraction 27

the structure of the set of input messages can be understood by studying the set of
observable behaviors (cf. Figure 2.3).

Concretely, we state that the structure can be described (or at least approximated)
by a labeled transition system (abbr. LTS). Given a program receiving input messages,
we provide a LTS which will categorize these messages according to their correspond-
ing execution traces, as a concrete interpretation of observable behaviors.

Actually, we will show that one retrieves the shape of messages from the LTS.
More importantly, we do not make any hypothesis on the input message processing
algorithm of the program. Because the shape (i.e. format) of messages is simply a
consequence of the categorization, we use the notion of input message classification in-
stead of the “input message format extraction”. This formalization avoids problematic
terms such as “fields”, “separators”, “keywords”, etc. that we met together with the
classic notion of “message format”.

Summary In the last section of this chapter, we have reviewed the current trends in
message format extraction and stated out our approach. This approach relies actu-
ally on a different viewpoint of the message format. Here, we try to avoid artifical
assumptions and intuitive terms existing in other approaches. In the next chapter, we
will develop the mathematical framework of the approach

28 Chapter 2. On malware communications

Chapter 3

Mathematical modeling

In this chapter, we develop the theoretical framework that supports our approach
about input message classification. The first part of this chapter is reserved to recall
some specific mathematical notation about graphs and labeled transition systems.
Those are classic branches of mathematics and computer science. We extract only a
small subset as the minimal knowledge needed to present the framework.

In the second part, we develop upon these concepts new theoretical results that
will be reused in the next chapter, where the concrete problem is discussed. We also
try to give the intuitive but precise understanding of these results in our concrete
context, so all given examples are actually motivated from our concrete problems.

In the last part, we give algorithms that constructs some structures given in the
second part. These algorithms will be used in the next two chapters, where we give a
concrete interpretation and a practical implementation.

The results of this chapter have been presented partially in [19]. This is joint work
with Guillaume Bonfante and Jean-Yves Marion.

3.1 Notations and terminology

The concepts introduced below can be found in several standard textbooks and sur-
vey papers, for example [75, 77, 114, 140]. We refer to [77, 114] for a systematic
representation while to [75, 140] for a short review.

3.1.1 Graphs

Graph theory is a classic branch of mathematics, which has many applications in
computer science, the graphical models and the reasoning on them appear almost
everywhere. In the following, we review some algebraic notations of graphs and
functions between graphs.

Definition 3.1.1 (Directed graph). A directed graph G (V, E) consists of two dis-
tinguished finite sets: V of vertices and E of edges, together with total functions

29

30 Chapter 3. Mathematical modeling

s, t : E→ V, which specify respectively the source and the target of any edge.

E V
s

t

The set of edges and vertices of G are denoted by E (G) and V (G), respectively.

Remark 3.1.1. There exist in general multiple edges between a pair of the source and
the target vertex. Such a graph is called multi-graph to distinguish from a more familiar
definition where there is no more than an edge between any pair of vertices. From
now on, graphs are understood as multi-graphs without further mentions.

For any vertex v ∈ V, if an edge e satisfies s (e) = v then e is called an outgoing
edge of v, and if t (e) = v then e is called an incoming edge of v. If an edge e is both an
outgoing and incoming edge of some vertex v then e is called a loop-back at v.

A path in the directed graph is a sequence of consecutive edges p = e1e2 . . . en so
that t (ei) = s (ei+1) for all 1 ≤ i < n, next depicted as

p = v1
e1−→ v2

e2−→ . . . en−→ vn+1

The functions s, t have then natural extensions s, t : P→ V on the set P of paths. Given
some path p as above then s (p) = v1 and t (p) = vn+1 and write v1

p−→ vn+1. We call
also v1 the source and vn+1 the target vertex of p.

Definition 3.1.2 (Graph homomorphism). Given graphs G1, G2, a graph homomor-
phism h : G1 → G2 consists of functions:

hV : V (G1)→ V (G2) and hE : E (G1)→ E (G2)

satisfying
hV (s (e)) = s (hE (e)) and hG (t (e)) = t (hG (e))

for any e ∈ E (G1), in other words they make the following diagram commutative:

V (G1) E (G1) V (G1)

V (G2) E (G2) V (G2)

hV

s t

hE hV

s t

Remark 3.1.2. Given a graph homomorphism h : G1 → G2, we will omit the subscripts
in functions hV , hE and write them simply as h when the meaning is clear from the
context. Also, a graph homomorphism is called shortly as morphism.

Special graph morphisms For a graph G, let E (G)|v→ denote the set of all outgoing
edges of any vertex v ∈ V (G). Given a (graph homo)morphism h : G1 → G2 and a

3.1. Notations and terminology 31

vertex v ∈ V (G1), there is a function

h|v→ : E (G1)|v→ → E (G2)|h(v)→

that is the natural restriction of hE : E (G1)→ E (G2) on E (G1)|v→ ⊆ E (G1), then:

Definition 3.1.3 (Correct, complete and surjective graph morphism). The morphism
h : G1 → G2 is called correct (resp. complete) if the restriction h|v→ is injective (resp. sur-
jective) for all v ∈ V (G1). We say also that h is surjective if the function hV : V (G1)→
V (G2) is surjective.

Example 3.1.1. There are some morphisms from G1 to Gi
2 (for i = 1, . . . , 4) and their

properties are as follows

• the morphism h1 : G1 → G1
2 mapping vi 7→ v1

i for i = 1, . . . , 4, and e1, e2 7→ e1
and ei 7→ ei for i = 3, 4 is neither correct (since e1 and e2 in G1 have the same
image) nor complete (since e2 in G1

2 has no inverse image).

• the morphism h2 : G1 → G2
2 mapping vi 7→ v2

i and ei 7→ ei for i = 1, . . . , 4 is
correct but not complete (since e5 in G2

2 has no inverse image).

• the morphism h3 : G1 → G3
2 mapping vi 7→ v3

i for i = 1, 2 and v3, v4 7→ v3
3 is both

correct and complete.

Notice that the morphisms h1 and h3 are surjective but h2 is not (since v2
5 in G2

2 has
no inverse image).

v1

v2 v3

v4

e 1

e2

e3

e 4

(a) G1

v1
1

v1
2 v1

3

v1
4

e1

e2

e3

e 4

(b) G1
2

v2
1

v2
2 v2

3

v2
4

v2
5e 1

e2

e5

e3

e 4
e 6

(c) G2
2

v3
1

v3
2 v3

3

e 1

e2

e3

e4

(d) G3
2

Figure 3.1: Graphs and morphisms

The following result is derived directly from the definition of graph morphism
and the definition of correct, complete, surjective graph morphisms.

Proposition 3.1.1. The composition of two morphisms is a morphism. Moreover, the compo-
sition of two complete (resp. correct) morphisms is a complete (resp. correct) morphism.

3.1.2 Labeled transition systems

The states of a system and transitions between states are important concepts in com-
putation. An abstract model of them is studied in the theory of labeled transition

32 Chapter 3. Mathematical modeling

systems [114], which is a richer model of the graph. In the following, we give nota-
tions for a special class of labeled transition systems where each is deterministic and
has a special, unique state called the initial.

Definition 3.1.4 (Labeled transition system). A deterministic labeled transition system
A 〈Q, ι, Σ, δ〉 consists of

• a finite set Q of states, a special ι ∈ Q is qualified as the initial state,

• a finite set Σ of alphabet (i.e. labels),

• a partial function δ : Q×Σ→ Q with respect to Σ, called the transition function.

The set of state, the initial state, the alphabet and the transition function of a LTS A
are denoted respectively by Q (A), ι (A), Σ (A) and δ (A).

In other words, a labeled transition system (abbr. LTS) is a finite state automaton
but without the notion of final states. We have another notion of “ending” states
which we call terminal states. Given a LTS A 〈Q, ι, Σ, δ〉, a state q ∈ Q is called terminal
if there is no letter c ∈ Σ so that δ (q, c) is defined. There exists always a unique initial
state in A but there may exist multiple (or may not exist any) terminal states.

Remark 3.1.3. The standard definition of labeled transition systems [114] takes no in-
terest in the notion of initial state, such a state is interested rather in the theory of
automata [78]. The definition above of LTS(s) is a hybrid, because we are interested
in the unique existence of the initial state (which exists always in automata but not in
LTS(s)), but we do not keep such an interest for the terminal states.

Reached states and extended transition function For any states q, q′ ∈ Q and a
letter c ∈ Σ satisfying δ (q, c) = q′, we say that there is a transition labeled c from q to
q′, it is denoted by

q c−→ q′

The LTS A reads words w = c1 · c2 · c2 · · · cn ∈ Σ∗, starting from the initial state ι and
following the sequence of transitions:

(ι = q1)
c1−→ q2

c2−→ q3
c2−→ . . .

where qi+1 = δ (qi, ci). Since δ is a partial function, δ (qi, ci) may be undefined at some
index i, consequently A may not always read completely the word w. If w is read
completely then the last state of the sequence will be called a reached state and denoted
by δ (ι, w), if not then δ (ι, w) is undefined. This notation coincides with the natural
extension of the transition function

δ : Q× Σ∗ → Q

3.1. Notations and terminology 33

which is a partial function to words in Σ∗, defined as follows

δ (q1, c1 · c2 · · · · · cn) =

{
qn+1, if qi+1 = δ (qi, ci) for all 1 ≤ i ≤ n
undefined, otherwise.

Whenever δ (q, w) is defined for some word w ∈ Σ∗, the function Tr (q, w) is defined
to return the sequence of states occurring on the sequence of transitions.

Example 3.1.2. The LTS A in Figure 3.2 has Q (A) = {q1, q2, q3,⊥}, ι (A) = q1,
Σ (A) = {a, b, c} and the transition function δ (A) = δ is defined by

δ (q1, a) = q2, δ (q1, b) = q3, δ (q1, c) = ⊥
δ (q2, a) = q1, δ (q2, b) = q3, δ (q2, c) = undefined
δ (q3, a) = ⊥, δ (q3, b) = undefined, δ (q3, c) = undefined
δ (⊥, a) = undefined, δ (⊥, b) = undefined, δ (⊥, c) = undefined

The function δ is extended to words in {a, b, c}∗, for example δ (q1, a · a · b) = q3 and
Q (q1, a · a · b) = q2 · q1 · q3. There is only one terminal state in A , that is ⊥.

q1

q2 q3 ⊥

a b c

b

a

a

Figure 3.2: An exemplified LTS

Remark 3.1.4. Hereafter, we use the circle to mark the initial state of LTS(s) in illustra-
tive figures. The letter ⊥ (with or without scripts) serves to identify terminal states.

Remark 3.1.5. A state q in the LTS A is called reachable if there is a word w ∈ Σ∗ so
that δ (ι, w) = q, otherwise q is called unreachable. The unreachable states are not
interesting because they do not participate to the reading procedure of the LTS, and
can be safely removed accordingly. From now on, we suppose that the considered
LTS(s) contain only reachable states, except explicitly mentioned.

Definition 3.1.5 (Underlying graph of an LTS). Given an LTS A (Q, ι, Σ, δ), there cor-
responds a graph G (E, V) determined by

• the set of vertices V = Q,

• the set of (directed) edges E = {q c−→ q′ | δ (q, c) = q′},

• s (e) = q and t (e) = q′ if e = q c−→ q′ for some c ∈ Σ,

and is called the underlying graph of A , denoted by G (A).

34 Chapter 3. Mathematical modeling

LTS morphisms The concept of LTS morphisms is derived directly from the (under-
lying) graph morphism, and is defined as follows.

Definition 3.1.6 (LTS morphism). Given LTS(s) A1 and A2, a LTS morphism h : A1 →
A2 is a graph homomorphism h : G (A1)→ G (A2) satisfying

1. h
(

q c−→ q′
)
= h (q) c−→ h (q′),

2. h (ι1) = ι2,

then A1 and A2 are called respectively the source and the target of h. In other words,
the graph homomorphism respects letters in transitions.

Remark 3.1.6. From now on, we call LTS morphism shortly morphism when the mean-
ing is clear from the context.

Since the LTS morphism is a graph morphism, the complete, correct and injective
properties can be applied to it (cf. Definition 3.1.3). Concretely, for a LTS A 〈Q, ι, δ, Σ〉,
let Q|q→ denote the set of all outgoing transitions of q. Then given a LTS morphism
h : A1 → A2 and a state q ∈ Q (A1) there is a natural restriction of h on q

h|q→ : Q (A1)|q→ → Q (A2)|h(q)→

Definition 3.1.7 (Correct, complete and surjective LTS morphism). The morphism
h : A1 → A2 is called correct (resp. complete) if the restriction h|q→ is injective
(resp. surjective) for all state q ∈ Q (A1). We say also h is surjective if the function
hQ : Q (A1)→ Q (A2) is surjective.

Proposition 3.1.2. A LTS morphism is always correct. The composition of two morphisms is
a morphism.

Proof. The former can be verified directly from Definitions 3.1.6 and 3.1.7. The latter
is a direct consequence of Proposition 3.1.1.

Lemma 3.1.1. Given LTS(s) A1〈Q1, ι1, Σ1, δ1〉 and A2〈Q2, ι2, Σ2, δ2〉, suppose that there is
a morphism h : A1 → A2 then: if δ1 (ι1, w) is defined then so is δ2 (ι2, w), and δ2 (ι2, w) =
h (δ1 (ι1, w)).

Proof. The lemma can be proved by structural induction on w. For the base step, that
is w = ε (i.e. the empty word), we have δ1 (ι1, ε) = ι1 and δ2 (ι2, ε) = ι2 = h (ι1)
directly from the definition.

δ1 (ι1, w) δ1 (ι1, w · c)

δ2 (ι2, w) δ2 (ι2, w · c)

c

h h

c

3.2. Prediction semantics of label transition systems 35

For the inductive step, suppose that δ1 (ι1, w) is defined (and unique) and δ2 (ι2, w) =
h (δ1 (ι1, w)) for some word w. If δ1 (ι1, w · c) is defined for some letter c, namely there
is a unique transition

δ1 (ι1, w)
c−→ δ1 (ι1, w · c)

then there is a unique state h (δ1 (ι1, w · c)) satisfying the transition

h (δ1 (ι1, w))
c−→ h (δ1 (ι1, w · c))

We have h (δ1 (ι1, w)) = δ2 (ι2, w), then δ2 (i2, w · c) is uniquely defined and δ2 (i2, w · c) =
h (δ1 (ι1, w · c)).
Proposition 3.1.3. Given LTS A1 and A2, if there is a morphism h : A1 → A2 then h is
unique.

Proof. We first note that all states of A1 are reachable1: for any state q ∈ Q (A1) there
is a word w so that δ1 (ι1, w) = q. By Lemma 3.1.1, if δ1 (ι1, w) is defined then δ2 (ι2, w)
is also uniquely defined, and

h (q) = h (δ1 (ι1, w)) = δ2 (ι2, w)

That means h (q) = δ2 (ι2, w) for any morphism h, in other words, h is unique.

Summary The concepts presented above are mathematical background needed to
develop the next results about modeling the behaviors of a program receiving differ-
ent values of an input message. We are now ready to discuss some structures inside
a LTS as well as relations, given by morphisms, between LTS(s).

3.2 Prediction semantics of label transition systems

In this second part, we introduce two notions. The first one, called π-equivalence,
concerns a special equivalence relation of the set of states of a LTS. The second one,
called observational prediction (or behavioral prediction), concerns a special relation be-
tween LTS(s). Both of them are used to construct a model that abstracts the concrete
behaviors observed from finite execution traces of a program.

The advantage of this model is that it is constructed from finite behaviors, but it
can be used to “predict” arbitrarily long behaviors. Some results deduced from this
model are constructive and they allow us providing algorithms constructing practical
objects in the next chapter.

Obviously, these notions do not come from vacuum. They indeed come from our
subjective viewpoint in trying to propose a model that explains the concrete behaviors.
So beside presenting the formal results, we give also some initial intuitions leading to
them, that hopefully helps showing their naturalness.

1In Remark 3.1.5, we have supposed that all states in a LTS are reachable.

36 Chapter 3. Mathematical modeling

3.2.1 Π-equivalence

Given a LTS A = 〈Q, ι, Σ, δ〉, the transition function δ : Q × Σ → Q can be thought
of as a reaction function describing the behavior of A as a reactive system: at a state
q ∈ Q, depending the received input letter c, the system moves to the state q′

q c−→ q′

as determined by δ as (q, c) 7→ q′. Under this viewpoint, we are led to an important
concept in the theory of reactive systems: bisimulation and bisimilarity relation between
states of labeled transition systems [114, 140].

Definition 3.2.1 (Bisimulation and bisimilarity). Given a LTS A = 〈Q, ι, Σ, δ〉, a bisim-
ulation in A is a relation R ⊆ Σ× Σ satisfying: if (q1, q2) ∈ R, then

• for any transition q1
c−→ q′1 from q1, there is also a transition q2

c−→ q′2 so that
(q′1, q′2) ∈ R, and

• that is also true for any transition from q2.

The bisimilarity is determined by the unique union of all bisimulations.

Internal viewpoint of prediction

The bisimulation/bisimilarity relation is used to describe the behavioral equivalence
between processes in the theory of reactive systems [114], but the development lead-
ing to the notion of π-equivalence given below comes from a slightly different view-
point. That reveals also the difference between the two notions: standard bisimula-
tion/bisimilarity and π-equivalence.

Practically, we observe different execution traces of a program by feeding it with
different values of the input message, by this way we can construct initially a LTS
that reads all tested values. More importantly, there is a correspondence between the
reading sequences of the LTS and the traces of the program: we say that this LTS
simulates the program.

But the problem is that the observed traces, practically, must be finite, so the
simulation given by the constructed LTS is validated only for finite traces. Such an
LTS has a shape of tree, and thus is very limited: it cannot predict anything.

To get a more general LTS, we make a thesis that there are states in the initial LTS
that are equivalent1, so if we can abstract them as a single state then the obtained
LTS is more general: it can predict the behavior of arbitrarily long traces. The abstraction
procedure will verify some conditions about states:

1. they must have the same behaviors inside the finite (i.e observed) traces, and

1This is no surprising because by observing the reading procedure of any (long enough) word on an
LTS, one can recognize that there are always repeated states. The formal statement of this phenomenon
when the LTS is a finite state automaton is the pumping lemma [78, 149].

3.2. Prediction semantics of label transition systems 37

2. if they are considered to be equivalent, abstracting them as a single state does not
lead to any “observed contradiction”. That means the abstract LTS (i.e. the LTS
obtained from the abstraction procedure) may contain infinite traces, but any
infinite trace must contains a unique finite trace in the original LTS which ends
at a terminal state (i.e. ends at conventional state, from that further behaviors
are considered to unobservable with respect to the original LTS).

The second condition reveals also the difference between the standard notion of bisim-
ulation/bisimilarity and the one of π-equivalence. The abstracted LTS, while keeps
the same behaviors with the original LTS on observed traces, can “predict” also the
behaviors of terminal states in the original LTS. We may note that the terminal states
are states where, because of our limited observation, we cannot observe yet their
behaviors. They are not states where we can assure that there are no behaviors.

In summary, the abstracted LTS (constructed by merging equivalent states of the
original LTS) is not equivalent with the original LTS. Instead, it should be able to
predict some unobservable behaviors caused by the limited observation capability of
the original LTS. Thus, the standard notions of bisimulation and bisimilarity cannot
be used directly. Furthermore, we can prove that no existing notion of process equiv-
alence [68, 128] can capture this prediction semantics. As far as we known, such kind
of semantics is not discussed anywhere.

Relative prediction It is worth noting that the prediction is relative: it is validated
with the information obtained from observed finite traces but it may be invalidated
when we receive more information by observing longer finite traces. In this case, the
abstraction procedure must be restarted with the new information. We can observe
such a case in the following example.

Example 3.2.1. The abstraction procedure starts with the initial LTS in Figure 3.3a,
obtained by observing traces with the maximal length is 3. The LTS can distinguish
traces of the program when receiving different input values, for example the traces

Tr (q1, a · a · a · Σ∗) , Tr (a · b · Σ∗) , Tr (b · Σ∗)

are mutually distinguished. We may arrive also at the conclusion that some states of
the LTS are equivalent, for example

s1 ∼ s2 ∼ s3 ∼ ⊥3 and ⊥1 ∼ ⊥2 ∼ ⊥4

then we constructs an abstract LTS (cf. Figure 3.3b) as a predictive model. This pre-
diction will be valid in the case we observe traces with the maximal length is 4 and
obtain the LTS in Figure 3.3c, but it will be invalid if we obtain the LTS in Figure 3.3d.

38 Chapter 3. Mathematical modeling

q1

⊥1

q2

⊥2

q3 ⊥3

⊥4

a
b

a
b

a
b

(a) Observed initial LTS

q ⊥

a
b

(b) Abstracted LTS

q1

⊥1

q2

⊥2

q3

⊥3

q4

⊥4

q5
a

b
a

b
a

b
a

b

(c) Observed LTS (true prediction)

q1

⊥1

q2

⊥2

q3

⊥3

q4

⊥4

q5
a

b
a

a
a

b
c

b

(d) Observed LTS (false prediction)

Figure 3.3: Abstraction procedure

Formal development

Motivated by this intuition, we state the formal definition of this equivalence relation,
called the π-equivalence, as follows.

Definition 3.2.2 (π-equivalence). Given an LTS A = 〈Q, ι, Σ, δ〉, a π-equivalence in A
is an equivalence relation ∼⊆ Σ× Σ satisfying: if q1 ∼ q2 then

1. either q1 or q2 is a terminal state, or

2. for any transition q1
c−→ q′1, there is also a transition q2

c−→ q′2 so that q′1 ∼ q′2,

Note 3.2.1. The notation of π-equivalence given above and the standard notation of
bisimulation [114, 140] have an important difference. Consider some states q1, q2, q3
satisfying (q1, q2) ∈ R1 and (q2, q3) ∈ R2

• if R1 and R2 are bisimulations then there exists always some bisimulation R3 so
that (q1, q3) ∈ R3, but

• if R1 and R2 are π-equivalences then there may never exist any π-equivalence
R3 so that (q1, q3) ∈ R3.

Technically, let us consider q1, q2, q3 where q2 is a terminal state but q1, q3 are not,
then we have immediately (q1, q2) ∈ R1 and (q1, q3) ∈ R3, for some π-equivalence
R1 and R3 because they satisfy the first condition of Definition 3.2.2. Now we can
arrange q1 and q3 so that they do not satisfying the second condition, then there does
not exist any π-equivalence R3 so that (q1, q3) ∈ R3.

The π-equivalence is actually an approximation: it tries to approximate a state of
low-information by a state of high-information, here they are respectively q2 and
either q1 or q3. The intuition here is that q2 has no observed behaviors (i.e. no outgoing
transitions), such a state can be approximated by any state.

This difference leads to non-standard phenomenons. For example the union of all
π-equivalences is not a π-equivalence in general, so the standard definition of bisim-
ilarity (as the union of all bisimulations) can not be applied for the π-equivalence.

3.2. Prediction semantics of label transition systems 39

Example 3.2.2. From Definition 3.2.2, we can verify that the following equivalence
relations

∼1 = {{q2,⊥1}, {q1}, {q4}, {⊥2}, {⊥3}, {⊥4}, {⊥5}, {⊥6}}
∼2 = {{q4,⊥1}, {q1}, {q2}, {⊥2}, {⊥3}, {⊥4}, {⊥5}, {⊥6}}
∼3 = {{⊥1,⊥2,⊥3,⊥4,⊥5,⊥6, q1}, {q2}, {q4}}
∼4 = {{q2,⊥1,⊥2,⊥3,⊥4}, {q1,⊥5,⊥6}, {q1}}

in the LTS of Figure 3.4 are π-equivalences. It may worth noting that q2 ∼1 ⊥1 and
⊥1 ∼2 q4, but there is no π-equivalence relation ∼ so that q2 ∼ q4, because q2 has 3
transitions while q4 has only 2 transitions.

q1

q2 ⊥1 q4

⊥2 ⊥3 ⊥4 ⊥5 ⊥6

a b c

a b d a b

Figure 3.4: LTS with π-equivalences

Quotient labeled transition system From the definition of π-equivalence, we have
a property: if there is a transition of some label c from a state q, then any state in the
equivalence class [q]∼ either

1. has also a transition of label c, or

2. it must be a terminal state.

This is stated formally as follows.

Proposition 3.2.1. Let ∼ be a π-equivalence in a LTS A , given an equivalence class [q]∼
of some state q ∈ Q (A). If there is some transition q c−→ q′ for some c ∈ Σ (A) and some
q′ ∈ Q (A), then for any q1 ∈ [q]∼ either

• there is a unique state q′1 ∈ Q (A) so that q1
c−→ q′1 and q′ ∼ q′1, or

• q1 is a terminal state.

Proof. This is direct from Definition 3.2.2: we note that q ∼ q1 since q1 ∈ [q]∼, so if
q c−→ q′ and q1 is not a terminal state then there exists also the transition q1 ∼ q′1 for
some q′1 ∼ q′, and because the LTS A is deterministic then q′1 is unique.

From Proposition 3.2.1, if we identify equivalence states into a new single state
and define a transition

[q]∼
c−→ [q′]∼

40 Chapter 3. Mathematical modeling

whenever there is some q1 ∈ [q]∼ and q′1 ∈ [q′]∼ so that

q1
c−→ q′1

then the “similar” transition
q c−→ q′

for some q′ ∈ [q′]∼ exists also on any non-terminal state q ∈ [q]∼. That makes the
following construction of the quotient LTS is not ambiguous.

Definition 3.2.3. Given an LTS A = (Q, ι, Σ, δ) and a π-equivalence ∼ in A . The LTS
A /∼ constructed as follows:

• Q (A /∼) = {[q]∼ | q ∈ Q (A)}, ι (A /∼) = [ι (A)]∼,

• δ (A /∼) = {[q]∼
c−→ [q′]∼ | q c−→ q′ ∈ δ (A)}, Σ (A /∼) = Σ (A)

is called the quotient LTS of A by ∼.

Example 3.2.3. We reconsider several LTS(s) described in Examples 3.2.1 and 3.2.2.
First, we can verify that the following equivalence relations in the original LTS A1
(cf. Figure 3.5a)

∼1 = {{q1, q2, q3,⊥3}, {⊥1,⊥2,⊥4}}
∼2 = {{q1, q2, q3,⊥1,⊥2,⊥3,⊥4}}

are π-equivalences. The quotient LTS A1/∼1 (cf. Figure 3.5b) is constructed by letting

q = {q1, q2, q3,⊥3} and ⊥ = {⊥1,⊥2,⊥4}

and similarly, the quotient LTS A /∼2 (cf. Figure 3.5c) is constructed by letting

q = {q1, q2, q3,⊥1,⊥2,⊥3,⊥4}

q1

⊥1

q2

⊥2

q3 ⊥3

⊥4

a
b

a
b

a
b

(a) original LTS A1

q ⊥

a
b

(b) quotient LTS A1/∼1

q

a, b

(c) A1/∼2

Figure 3.5: LTS in Example 3.2.1

Second, in the LTS A2 (cf. Figure 3.6a) we have verified in Example 3.2.2 that the
following equivalence relations

∼1 = {{q2,⊥1}, {q1}, {q4}, {⊥2}, {⊥3}, {⊥4}, {⊥5}, {⊥6}}

3.2. Prediction semantics of label transition systems 41

∼2 = {{q4,⊥1}, {q1}, {q2}, {⊥2}, {⊥3}, {⊥4}, {⊥5}, {⊥6}}
∼3 = {{⊥1,⊥2,⊥3,⊥4,⊥5,⊥6}, {q1}, {q2}, {q4}}
∼4 = {{q2,⊥1,⊥2,⊥3,⊥4}, {q1,⊥5,⊥6}, {q1}}

are π-equivalences. They lead to the quotient LTS(s) A2/∼i for i = 1, . . . , 4 (cf. Fig-
ures 3.6b to 3.6e).

q1

q2 ⊥1 q4

⊥2 ⊥3 ⊥4 ⊥5 ⊥6

a b c

a b d a b

(a) original LTS A2

q1

q2⊥1 q4

⊥2 ⊥3 ⊥4 ⊥5 ⊥6

a, b c

a b d a b

(b) A2/∼1

q1

q2 q4⊥1

⊥2 ⊥3 ⊥4 ⊥5 ⊥6

a
b, c

a b d a b

(c) A2/∼2

q1

q2 ⊥123456 q4

a b c

a, b, d a, b

(d) A3/∼3

q1

q2⊥1234 q4⊥56

a, b c

a,b, d a,
b

(e) A3/∼4

Figure 3.6: LTS in Example 3.2.2

Any equivalence relation on a set defines a function from the set to the quotient set,
that maps any element to its equivalence class. Similarly, the π-equivalence defines a
morphism from the original LTS to the quotient LTS, moreover this morphism is also
complete as stated in Proposition 3.2.1.

Proposition 3.2.2. Given a π-equivalence ∼, the function h∼ : A → A /∼ that maps

q 7→ [q]∼ and q c−→ q′ 7→ [q]∼
c−→ [q′]∼

is a surjective complete morphism.

Remark 3.2.1. The function h∼ defined above is called the derived morphism of ∼.

Proof. The function h∼ is a surjective morphism by its construction. From Proposi-
tion 3.2.1, if there is a transition [q]∼

c−→ [q′]∼ and q is not a terminal state then there
is also a transition q c−→ q′′ for some q′′ ∼ q′, namely h∼ is complete.

42 Chapter 3. Mathematical modeling

Conceptually, a complete morphism will map equivalent states in the source LTS
into a single state of the target and it keeps also all labeled transitions. Then un-
surprisingly, a complete morphism determines also a π-equivalence, this is stated
formally as follows.

Proposition 3.2.3. Given a complete morphism h : A → A ′, then there is a π-equivalence
∼ in A whose the derived morphism h∼ satisfies A /∼ = h∼ (A) = h (A).

Remark 3.2.2. In Proposition 3.2.3 and hereafter, two LTS(s) are considered equal if
they are identical up to some relabeling of states.

Remark 3.2.3. In Proposition 3.2.3, the morphisms h and h∼ have different co-domains
(one is A ′ whereas the other is A /∼) then normally we cannot write h∼ = h. But
with the convention about the equality of LTS(s) we can write unambiguously h∼ = h.
In general, given LTS morphisms h1 : A1 → A ′1 and h2 : A2 → A ′2 , we can write
unambiguously

h1 = h2

whenever A1 = A2 and h1 (A1) = h2 (A2), the LTS equality notations follow Re-
mark 3.2.2.

Proof. (of Proposition 3.2.3) Let ∼ be a relation in (states of) A defined by

q ∼ q′ ⇐⇒ h (q) = h
(
q′
)

then clearly ∼ is an equivalence relation. To prove that ∼ is a π-equivalence, we
observe that, for any q ∼ q′, if q′ or q is a terminal state, then the conditions of the
π-equivalence in Definition 3.2.2 is satisfied immediately. So it is sufficient to verify
the conditions in the case both q and q′ are not terminal.

We will verify that if q ∼ q′ and both of them are not terminal states, then for
each transition q c−→ q1, there is a transition q′ c−→ q′1 so that q1 ∼ q′1. Indeed, we have

h
(

q c−→ q1

)
= h (q) c−→ h (q1), since h (q) = h (q′) and h is complete, there exists a

transition q′ c−→ q′1 so that

h
(

q′ c−→ q′1
)
= h

(
q′
) c−→ h

(
q′1
)
= h (q) c−→ h (q1)

and then h (q′1) = h (q1), in other words q′1 ∼ q1.

The following theorem, about the relation between the π-equivalence and the com-
plete morphism, will combines the results of Propositions 3.2.2 and 3.2.3.

Theorem 1. Given a morphism h : A → A ′, then h is complete if and only if there is a
π-equivalence ∼ in A so that h∼ = h.

3.2. Prediction semantics of label transition systems 43

3.2.2 Observational prediction

The π-equivalence gives an internal viewpoint which describes in which conditions a
state can be replaced by another state. This viewpoint has indeed a strong relation
with an external viewpoint (or operational viewpoint) which describes how a LTS can
predict correctly another LTS.

External viewpoint of prediction

The bisimulation gives an explanation for which cases we can say that two LTS(s) are
behavioral equivalence. The following interpretation gives an explanation for which
cases we can say that a LTS can be used as a predictive model of another LTS. One can
recognize the analogy between two pairs (bisimilarity, behavioral equivalence) and
(π-equivalence, behavioral prediction).

Let us consider LTS(s) A and A ′, in reading any word w = c1 · c2 · · · cn ∈ Σ∗ we
obtain two sequences of transitions:

(ι = q1)
c1−→ q2

c2−→ q3
c3−→ . . .

ci−1−−→ qi . . .(
ι′ = q′1

) c1−→ q′2
c2−→ q′3

c3−→ . . .
ci−1−−→ q′i . . .

Suppose that both of them have read successfully a suffix w = c1 · c2 · · · ci−1, and A
reaches the state qi while A ′ reaches the state q′i. There are some conditions that A ′

must satisfy to become a predictive model for A , they are described as follows:

• if A can continue reading some letter ci, namely the transition qi
ci−→ exists (the

target of the transition, which is not important here, is omitted), then A ′ can
also continue reading ci, namely the transition q′i

ci−→ exists. Otherwise, if qi
ci−→

does not exist then neither does q′i
ci−→,

• if there is a transition q′i
c−→ for some letter c ∈ Σ and qi is not a terminal state1,

then the transition qi
c−→ exists. Because if it does not then we have the following

ambiguity at q′i: in using A ′ which hopefully is a correct prediction of A , we can
wrongly conclude that A can read the word w · c (because A ′ can), but actually
it cannot.

Intuitively, the reasons of conditions above may be clear if we think of the situation
where A ′ is used instead of A .

Formal development

The intuitive conditions about external viewpoint of prediction are stated formally in
the following definition.

1We accept the case where qi is a terminal state, such a state is implicitly considered unobservable,
namely it has indeed transitions but we cannot observe.

44 Chapter 3. Mathematical modeling

Definition 3.2.4 (Observational prediction). Given LTS(s) A 〈Q, ι, Σ, δ〉 and A ′〈Q′, ι′, Σ, δ′〉
having the same alphabet, then A ′ is called an observational prediction of A if

1. for any word w ∈ Σ∗, if δ (ι, w) is defined then so is δ (ι′, w),

2. for any word w ∈ Σ∗ where δ′ (ι′, w) is defined but δ (ι, w) is not, there is a
unique proper prefix w of w so that δ (ι, w) is defined but δ (ι, w) is a terminal
state.

and we write A vop A ′ (here op stands for observational prediction).

The first condition of Definition 3.2.4 is clear: A ′ must be able to read any word
that A can read. The second condition can be thought of as: suppose there is a word
w so that δ (ι′, w) is defined but δ (ι, w) is not, that means if A ′ is used instead of A
then there is an ambiguity at this word (because A cannot read w). But this ambiguity
is acceptable because it is actually a prediction.

Concretely speaking, in reading w, the LTS A has read a maximal prefix w of w,
then it reaches the state δ (ι, w) having no outgoing transitions (i.e. a terminal state),
such a state implies that A may reach further states in reading w, but these states are
unobservable.

Example 3.2.4. The LTS(s) A1 and A2 (cf.Figures 3.7b and 3.7c) are observational pre-
dictions of A (cf. Figure 3.7a), but the LTS A3 (cf. Figure 3.7d) is not. Indeed,

• A and A1 have the same set of readable words W = {a, b, a · a, a · b, b · a, b · b}. A2
can read also any word in W, moreover if w is a readable word of A2 and w /∈W
(i.e. A cannot read w) then w has form w · c ·w′ where w ∈ {a · a, a · b, b · a, b · b}
(i.e. δ (ι, w) is a terminal state of A),

• A3 can read a · c while A cannot, the word a · c has two proper prefixes a and ε,
but neither δ (ι, a) nor δ (ι, ε) is a terminal state of A .

q1

q2

⊥1 ⊥2

a b

a b

(a) A

q′1

q′2 q′3

⊥′1 ⊥′2 ⊥′3

a b

a b a b

(b) A1 (valid pred.)

q′1

q′2

q′3

a b

a b
c

(c) A2 (valid pred.)

q′1

q′2

⊥′1 ⊥′2 ⊥′3

a b

a b c

(d) A3 (invalid pred.)

Figure 3.7: Observational predictions of a LTS

The LTS A2 is also a prediction for A : it can read the word a · a · c while A can
read only the prefix a · a. Here it simulates the original one, and moreover it predicts
that there may be a transition ⊥′1

c−→ q′1.

3.2. Prediction semantics of label transition systems 45

Example 3.2.5. There is a detail that may lead to the misunderstanding about the ob-
servational prediction. That is one may think that any LTS has a trivial observational
prediction consisting of a single state with multiple loop-back transition.

Consider the LTS inFigure 3.8, one may think that this LTS is an observational
prediction of all LTS(s) in Figure 3.7. But that is not true, one can verify the conditions

q1

a, b, c

Figure 3.8: Trivial invalid observational prediction

of Definition 3.2.4. For example, the LTS in Figure 3.8 can read a word such that c · a · b
but no LTS in Figure 3.7 can read this word. Moreover there is also no prefix of c · a · b
so that any LTS in Figure 3.7 can reach a terminal state in reading this prefix.

Observational prediction and complete morphism The following proposition shows
a relation between the complete morphism and the observational prediction.

Proposition 3.2.4. Given LTS(s) A 〈Q, ι, Σ, δ〉 and A ′〈Q′, ι′, Σ, δ′〉 having the same alpha-
bet, if there is a complete morphism h : A → A ′ then A vop A ′.

Proof. We verify the conditions of Definition 3.2.4. The first one can be derived directly
from Lemma 3.1.1: if δ (ι, w) is defined then so is δ′ (ι′, w). To prove the second one,
let us consider a word w where δ′ (ι′, w) is defined but δ (ι, w) is not, then we can
always find a suffix

w = c1 · c2 · · · ci−1

(in the worst case w = ε) of w by letting A read w as

(ι = q1)
c1−→ q2

c2−→ . . .
ci−1−−→ qi

and stop at qi whenever there is no valid transition, then δ (ι, w) is defined for ev-
ery prefix w′ satisfying |w′| ≤ |w|. Let A ′ read w, the reading sequence (given
by Lemma 3.1.1) is (

ι′ = h (ι)
) c1−→ h (q2)

c2−→ · · · ci−1−−→ h (qi)

Let ci ∈ C be the letter so that w has form

w · ci · · ·

such a letter exists always because w 6= ε (since δ (ι, w) is not defined), so there is
a transition h (qi)

ci−→ but the transition qi
ci−→ does not exist. Because h is complete,

the appeared situation of transitions is possible only when qi is a terminal state. That
means δ (ι, w.c) is undefined for any c ∈ Σ.

46 Chapter 3. Mathematical modeling

We can observe that the observational prediction is looser than the existence of a
complete morphism. For example, in Example 3.2.4 the LTS A1 is an observational
prediction of A , but there is no morphism from A to A1, then the inverse of Proposi-
tion 3.2.4 is not true. However, we can construct from A1 an observational prediction
A ′1 having no more states than A1 and there is a surjective complete morphism from
A to A ′1 (cf. Example 3.2.6). In general, we have the following:

Theorem 2. Given LTS(s) A and A ′ with A vop A ′, then there exists a LTS A ′′ having
no more states than A ′ and a surjective complete morphism h : A → A ′′.

Before giving the proof for the theorem, we can get an intuition about how to con-
struct the surjective complete morphism h and the LTS A ′′ in the following example.

Remark 3.2.4. In Figure 3.9, we have drawn several "multiple labels" transitions (e.g.

q1
a,b−→ q2 in Figure 3.9a). Each of them expresses actually multiple transitions of single

label (e.g. q1
a,b−→ q2 expresses 2 transitions from q1 to q2 of labels a and b respectively),

and not a single transition of multiple labels. We keep using this notation in latter figures.

Example 3.2.6. Let us consider the LTS(s) in Figure 3.9. The LTS A ′ (cf. Figure 3.9b)
is an observational prediction of A (cf. Figure 3.9a), but we can prove that there is
no surjective complete morphism from A to A ′. Indeed, suppose that there is such a
morphism h, since q1 and q′1 are initial state of A and A ′, we have q′1 = h (q1). Let us
consider the transition q1

a−→ q2, its image must be

h
(

q1
a−→ q2

)
= q′1

a−→ q′2

then we have q′2 = h (q2). But similarly, when considering the transition q1
b−→ q2,

we will have q′3 = h (q2). This ambiguity about the image of q2 means h cannot be a
morphism.

q1

q2 q3

⊥1

a,
b c

a, b a,
b

(a) Original (A)

q′1

q′2 q′3

⊥′1

a

b, c

a, b a,
b

(b) Step 1 (A1 = A ′)

q′1

q′2

⊥′1

a,b,c

a,b

(c) Step 2, 3, 4 (A ′
4 = A ′

3 = A ′
2)

Figure 3.9: Construction of the target LTS and the surjective complete morphism

The ambiguity above can be fixed by modifying the LTS A ′, for example we can

first change the transition q′1
b−→ q′3 into q′1

b−→ q′2, and next q′1
c−→ q′3 into q′1

c−→ q′2,

3.2. Prediction semantics of label transition systems 47

and the result LTS is still an observational prediction of A (cf. Figure 3.9c) Based on
this observation, we can construct the morphism h and modify the LTS A ′ in the
following steps

• Step 1: keep A1 = A ′ (cf. Figure 3.9b), and let h (q1) = q′1,

• Step 2: observe that q1
a,b−→ q2, but q′1

a−→ q′2 and q′1
b−→ q′3, then

– select an arbitrary state in {q′2, q′3}, for example q′2,

– replace q′1
b−→ q′3 by q′1

b−→ q′2,

– there remains a transition of target q′3 in A1, that is q′1
c−→ q′3, replace it by

q′1
c−→ q′2,

– the state q′3 becomes now unreachable, remove it from A ′1 ,

consequently, A ′1 becomes A ′2 (cf. Figure 3.9c), and let h (q2) = q′2,

• Step 3: since q1
c−→ q3 and q′1

c−→ q′2, keep A ′3 = A ′2 and let h (q3) = q′2,

• Step 4: since h (q2) = h (q3) = q′2, moreover q2
a,b−→ ⊥1 and q3

a,b−→ ⊥1, there are

also transitions q′2
a,b−→ ⊥′1; simply keep A ′4 = A ′3 and let h (⊥1) = ⊥′1.

The morphism h is now completely defined

h (q1) = q′1, h (q2) = h (q3) = q′2, h (⊥1) = ⊥′1

and A ′′ is obtained as A ′3 .

In the construction of the morphism h and the LTS A ′′ above, we can assign for
each step i a tuple

(
Qi, hi, A ′i

)
which determine the “state” si of the construction,

concretely

• Qi ⊆ Q (A) is the set of examined states in A ,

• hi : Qi → Q (A ′) is the map, mapping partially each state of A to a state, defined
by the construction, of A ′,

• A ′i is the constructed LTS at the result of this step.

For example, the following states are assigned for the construction steps in Exam-
ple 3.2.6

• Step 1: s1 = ({q1}, {q1 7→ q′1}, A ′1),

• Step 2: s2 = ({q1, q2}, {q1 7→ q′1, q2 7→ q′2}, A ′2),

• Step 3: s3 = ({q1, q2, q3}, {q1 7→ q′1, q2 7→ q′2, q3 7→ q′2}, A ′3),

48 Chapter 3. Mathematical modeling

• Step 4: s4 = ({q1, q2, q3,⊥1}, {q1 7→ q′1, q2 7→ q′2, q3 7→ q′2,⊥1 7→ ⊥′1}, A ′4).

and the construction can be presented then as a transition of states

s1 → s2 → s3 → s4

The idea of the state transition will be used to construct the morphism and the
target LTS in the general case. Given LTS(s) A = 〈Q, ι, Σ, δ〉 and A ′ = 〈Q′, ι′, Σ, δ′〉
sharing the same alphabet, and satisfying A vop A ′, the algorithm in Listing 3.1
constructs the surjective complete morphism h : A → A ′′ and the target LTS A ′′. It
is worth noting that the tuple (Q[i], h[i], A [i]) in this algorithm implies the state si as
discussed above.

MorphismConstruct(LTS(s) A vop A ′) {
i← 0;
(Q[i], h[i], A [i])← ({ι}, {ι 7→ ι′}, A ′);
while (∃q ∈ Q[i] | ∃q c−→ q′ in A and q′ /∈ Q[i]) {

(Q[i + 1], h[i + 1], A [i + 1])← (Q[i], h[i], A [i]);
i← i + 1;
qs← {q′ | q c−→ q′ in A for some c ∈ Σ and q′ /∈ Q[i]};
foreach (q′ ∈ qs) {

Q[i]← Q[i] ∪ {q′}; /* update Q[i] */
cs← {c | q c−→ q′ in A };
ps← {p | h (q) c−→ p in A [i] for some c ∈ cs};
p← an arbitrary element of ps;
h[i]← h[i] ∪ {q′ 7→ p}; /* update h[i] */
foreach (p′ ∈ ps \ {p}) { /* update A [i] */

replace h (q) c−→ p′ by h (q) c−→ p;
removes unreachable states from A [i];

}
}

}
h← h[i]; A ′′ ← A [i];

}

Listing 3.1: Surjective complete morphism construction algorithm

The proof of Theorem 2 bases on the termination and correctness of the algorithm.
In the following assertions, we first prove that it terminates (cf. Corollary 3.2.1). Be-
cause if h is not complete for some i, then the LTS A [i] cannot be an observational
prediction of A , then we prove that the algorithms is correct by showing that the
invariant A vop A [i] is valid for all i (cf. Corollary 3.2.3).

The state of the i-th construction step (i.e. the i-th execution of the while-loop
block) is represented by a tuple si = (Q[i], h[i], A [i]), the set of examined state Q[i] is
updated as similar to the set of examined vertices in a breadth-first search procedure:
starting from {ι}, new states will be added if they can be reached from the states of
the current set.

3.2. Prediction semantics of label transition systems 49

Lemma 3.2.1. For each state q 6= ι of the LTS A , there exists an index i such that q /∈ Q[i]
but q ∈ Q[i + 1].

Proof. We observe that Q[i] ⊆ Q[i + 1] for all i, consequently if the index i exists (for
a state q 6= ι) then it is also unique, so it is sufficient to prove the existence of i. Since
q is reachable from the initial state ι1, let w = c1 · c2 · · · cn ∈ Σ∗ be the shortest word
satisfying δ (ι, w) = q. Because at each step i, new state (beside states of Q[i]) will
be added into Q[i + 1] if they can be reached from Q[i], then δ (c1 · c2 · · · ci, ι) will be
added into Q[j] for some j ≤ i. Hence, q will be added into Q[m] for some m ≤ n.

Corollary 3.2.1. The algorithm in Listing 3.1 halts always, and Q[i] = Q when it halts.

Proof. It is sufficient to prove that the while-loop halts. Indeed, from Lemma 3.2.1
there is some index i so that q ∈ Q[i] for all q ∈ Q, in other words Q[i] = Q. Moreover
the while-loop will halt at an index i where all states, which are reachable from states
of Q[i], belong also to Q[i]

The construction of the algorithm in Listing 3.1 is similar to the construction of a
surjective function from a function by modifying its co-domain. The image h (q′) of a
state q′ ∈ Q is set by choosing a representative element q in the set of possible images
ps.

Example 3.2.7. We have assigned the image h (q) ∈ Q (A [i]) for the state q ∈ A [i]
(cf. Figure 3.10b). To assign the image for the new state q′, we can chose a state p in
the set

ps = {p | h (q) c−→ p in A [i] for some c ∈ cs}

and replace

h (q)
cj−→ pj by h (q)

cj−→ p

for other states pj ∈ ps \ {p} (cf. Figure 3.10c).

q

q′

cs
=
{c1 ,c2 ,...}

(a) in A

h (q)

p1 p2 pn

.

c 1
c2

cn

(b) in A [i]

h (q)

p

cs
=
{c1 ,c2 ,...}

(c) in A [i] (modified)

Figure 3.10: Choosing an image between pi(s) for a new state q′

1In Remark 3.1.5, we have supposed that all states of a LTS are reachable.

50 Chapter 3. Mathematical modeling

Lemma 3.2.2. If A [i] (i.e. the LTS at the end of i-th while-loop) is an observational prediction
of A then any word w ∈ Σ∗ that can be read from q′ in A , can be read also from any state
pj ∈ ps in A [i]. In other words, if δ (q′, w) is defined then δ[i]

(
pj, w

)
is defined, where δ[i]

denotes the transition function of A [i].

Proof. Let w be the shortest word satisfying δ (ι, w) = q. Consider the word w′ =
w · ci · w where ci ∈ cs and w is a word that can be read from q′ in A , then w′ can be
read from ι in A . Moreover A [i] is an observational prediction of A , then w′ can be
read also from ι[i], consequently w can be read from any pj ∈ ps.

Corollary 3.2.2. Let A [i + 1] be the LTS obtained from A [i] by replacing each

h (q)
cj−→ pj by h (q)

cj−→ p

where p ∈ ps and pj ∈ ps \ {p}. Then A [i + 1] is also an observational prediction of A .

Proof. Since A [i] is an observational prediction of A , by Lemma 3.2.2, any word
w ∈ Σ∗ that can be read from q′ in A , can be read also from any state pj ∈ ps in A [i].
Then the sequence of transitions obtained in reading any word in A [i + 1] is the same

as the one in A [i] except that any transition h (q)
cj−→ pj (if it exists) is replaced by

h (q)
cj−→ p, so A [i + 1] is still an observational prediction of A .

Corollary 3.2.3. The LTS A [i] at the end of the i-th while-loop block is an observational
prediction of A .

Proof. We will prove by induction on i. For the base case i = 0, we have A [0] = A ′,
then this is immediately true. Suppose that the corollary holds already for A [i − 1]
for some index i ≥ 1, we need to prove that A [i] is also an observational prediction
of A . Indeed, the LTS A [i] is modified from A [i− 1] inside the i-th while-loop block
by the commands in Listing 3.2 (cf. also Figure 3.10).

...
A [i + 1]← A [i]; i← i + 1;
...
foreach (p′ ∈ ps \ {p}) {

replace h (q) c−→ p′ by h (q) c−→ p;
remove unreachable states from A [i];

}

Listing 3.2: Construct A [i] by modifying A [i− 1]

Since A [i − 1] is an observational prediction of A , by Corollary 3.2.2, the LTS A [i]
(before removing unreachable states) is an observational prediction of A . And after
removing unreachable states, it is still an observational prediction of A .

Now we give the proof for Theorem 2, that is a consequence of Corollaries 3.2.1
and 3.2.3 and the construction of the algorithm in Listing 3.1.

3.2. Prediction semantics of label transition systems 51

Proof. (of Theorem 2) We observe the assignment h← h[i] and A ′′ ← A [i] at the end
of the algorithm in Listing 3.1. We will prove that the LTS A ′′ and the morphism h
satisfy the requirement of Theorem 2. Indeed,

• by Corollary 3.2.1, the algorithm halts and Q[i] = Q, so h = h[i] is a complete
morphism h : A → A ′′,

• by Corollary 3.2.3, A ′′ = A [i] is an observational prediction of A .

Moreover, if a state in A ′′ that is not an image h (q) of any state q ∈ Q, then it can
be removed also from A ′′, in other words h is a surjective complete morphism. Since
some states have been removed from A ′ then A ′′ has no more states than A ′.

Remark 3.2.5. There is a simpler proof for Theorem 2 though it is not constructive as
the proof given above. For each state q ∈ Q, we first calculate the set1:

H (q) = {q′ ∈ Q′ | ∃w δ (ι, w) = q, δ′
(
ι′, w

)
= q′}

Notice that H (q) 6= ∅ since A vop A ′, then we select a representative state q′ ∈ H (q).
We modify the LTS A ′ by replacing any transition q1

c−→ q′1 where q′1 ∈ H (q) and
q′1 6= q′, by the transition q1

c−→ q′. It can be proved that the modified LTS A ′ still
satisfies A vop A ′ but now H (q) = {q′}, then we define h (q) = q′.

Let us repeat the procedure above for other states, the complete morphism h is
defined for all q ∈ Q, moreover any state of A ′ that is not touched in this calculation
can be safely removed to obtain a LTS A ′′ having no more states than A ′. Then
h : A → A ′′ is a surjective complete morphism.

Summary We have introduced the internal/external views of the concept “observa-
tional prediction” in Sections 3.2.1 and 3.2.2. We have proved Theorem 1 (under the
internal viewpoint) and Theorem 2 (under the external viewpoint) which give rela-
tions between a π-equivalence and a surjective complete morphism, and between a
surjective complete morphism and an observational prediction. These results will be
used in the following part of the section.

3.2.3 Labeled transition system reduction

The notion of the π-equivalence and one of the observational prediction aim to de-
scribe behaviors of an LTS in predicting an initial LTS. The former takes an internal
view, it says that if some states of the initial LTS are equivalent, they can be merged
to form a LTS keeping the same information, and more interestingly the new LTS can
predict some unobservable behaviors. Whereas the latter takes an external view, it says
nothing about the relation between states, but it gives more general conditions that a
LTS should satisfy to become a correct predictor for the initial LTS.

1Such a set is defined always because all states of A are reachable (as supposed in Remark 3.1.5).

52 Chapter 3. Mathematical modeling

What is a good predictive labeled transition system?

There is immediately a question “how good the predictive LTS is?” There are at least
two requirements that come to mind 1. the prediction capability, and 2. the compactness.
A predictor LTS may not be good if even though, it describes correctly the observed
behaviors, it fails immediately where more behaviors are observed (cf. Example 3.2.8).
Also, it is not good if it is voluminous (i.e. has more states than the original LTS),
because any LTS is a trivial predictor of itself.

Example 3.2.8. We think of the LTS(s) A1 and A2 as partial observations of a unknown
LTS A , where A2 is more complete than A1. Suppose that we are given the LTS A1,
we next create A ′1 as the quotient of A1 by the π-equivalence ∼= {{q1, q2,⊥}}, then
we may predict that A ′1 is the unknown LTS A .

However this prediction fails immediately given the more complete observation
A2, because A ′1 is not an observational prediction of A2. For example A2 can read the
word a · b · c while A ′1 cannot.

q1 q2 ⊥
a, b a, b

(a) A1

q1 q2 q3 ⊥
a, b a, b a, b, c

(b) A2

q1

a, b

(c) A ′
1

We have no answer yet for the requirement about the prediction capability, predict-
ing correctly something which has not been observed completely yet is undecidable
in general [134]. But for the requirement about the compactness, we will present a
procedure constructing observational prediction LTS(s) which are more compact than
the original LTS. In many cases, we can even obtain the “best compact possible form”.

Remark 3.2.6. In considering the equivalence between LTS(s), the compactness require-
ment has been studied in researches about the optimization of DFA(s) [78]. The equiv-
alence used in the DFA optimization means that two equivalent LTS(s) (i.e. two DFA(s)
in this case) has the same language, it is then different from our definition of the ob-
servational prediction.

Observational prediction transitivity

The key idea of constructing a best compact LTS is to modify the original LTS by a se-
quence of observational prediction LTS(s). This is based on the following transitivity.

Proposition 3.2.5 (Observational prediction transitivity). Given LTS(s) A1, A2 and A3,
if A1 vop A2 and A2 vop A3 then A1 vop A3.

Proof. Because A1 vop A2 and A2 vop A3, the three LTS(s) share the same alphabet,
let

Σ = Σ (A1) = Σ (A2) = Σ (A3)

3.2. Prediction semantics of label transition systems 53

and let δ1, δ2 and δ3 denote respectively the transition function δ (A1) , δ (A2) and
δ (A3). We will verify the conditions in Definition 3.2.4 of the observational prediction.

For any word w ∈ Σ∗, because A1 vop A2, if δ1 (ι1, w) is defined then δ2 (ι2, w)
is defined; because A2 vop A3, if δ2 (ι2, w) is defined then δ3 (ι3, w) is defined. So if
δ1 (ι1, w) is defined then δ3 (ι3, w) is defined for any w ∈ Σ∗.

Let w ∈ Σ∗ be a word so that δ3 (ι3, w) is defined but δ1 (ι1, w) is not. If δ2 (ι2, w)
is defined, since A1 vop A2, there is a unique prefix w of w so that δ1 (ι1, w) is a
terminal state, and that gives immediately the result. If δ2 (ι2, w) is not defined, since
A2 vop A3, there is a unique prefix w of w so that δ2 (ι2, w) is a terminal state. Since
A1 vop A2, there must be two cases:

• if δ1 (ι1, w) is not defined (notice that δ2 (ι2, w) is defined) then there is a unique
prefix w of w so that δ1

(
ι1, w

)
is a terminal state, and w is also a prefix of w.

• if δ1 (ι1, w) is defined, since δ2 (ι2, w) is a terminal state, δ1 (ι1, w) must be also a
terminal state (because if δ1 (ι1, w · c) is defined then so is δ2 (ι2, w · c) for any c).

In both cases, there is a unique prefix w̃ of w (it will be w for the former and w for the
latter) so that δ1 (ι1, w̃) is a terminal state.

The following proposition gives a stronger result than Proposition 3.2.5 in a more
strict case where the observational prediction is derived from a π-equivalence.

Proposition 3.2.6. Given a LTS A , let ∼1 and ∼2 be respectively a π-equivalence in A and
in A /∼1, then there is a π-equivalence ∼ in A so that A /∼ = A /∼1/∼2.

Proof. Let h∼1 : A → A1 and h∼2 : A /∼1 → A /∼1/∼2 be respectively the surjective
complete morphism derived from ∼1 and ∼2 (cf. Proposition 3.2.2 and Remark 3.2.1).

A /∼1

A A /∼1/∼2

h∼2h∼1

h∼2◦h∼1

Let h = h∼2 ◦ h∼1 , by Proposition 3.1.1, h is a surjective complete morphism. Conse-
quently, by Theorem 1, there is a π-equivalence ∼ in A so that its derived morphism
h∼ satisfying h∼ = h, and A /∼ = A /∼1/∼2.

Note 3.2.2. We use the operator ⊗ to denote ∼=∼2 ⊗ ∼1, this operator corresponds to
the function composition ◦ in the construction of derived morphism h∼ = h∼2 ◦ h∼1 .
Immediately, the composition by ⊗ is associative:

(∼3 ⊗ ∼2)⊗ ∼1=∼3 ⊗(∼2 ⊗ ∼1)

but not commutative in general. It is worth noting that the composition by ⊗ of
π-equivalences is different from the normal composition of equivalence relations.

54 Chapter 3. Mathematical modeling

Remark 3.2.7. The π-equivalence ∼ in the proof above can be constructed directly from
∼1 and ∼2. Indeed, consider the relation ∼ in A being defined by

q ∼ q′ ⇐⇒ [q]∼1
∼2 [q′]∼1

Because ∼1 and ∼2 are equivalences, ∼ is immediately an equivalence. We now verify
the co-inductive property of ∼. Since if q or q′ is a terminal state then nothing needs
to be verified, it remains to verify the case where both are not terminal states.

For any transition q c−→ q1 in A , there is a corresponding transition [q]∼1

c−→ [q1]∼1
in A /∼1. Because q′ is not a terminal state and [q]∼1

∼2 [q′]∼1
by the definition above

of the relation ∼, then

1. q′ itself has a transition q′ c−→ q′1 in A , and then

2. there is a corresponding transition [q′]∼1

c−→ [q′1]∼1
in A2 so that [q1]∼1

∼2 [q′1]∼1
,

and then q1 ∼ q′1 from the definition of ∼.

In summary, we have proved that for any transition q c−→ q1, there is q′ c−→ q′1 so that
q1 ∼ q′1. Similarly, we can obtain the same conclusion for any transition q′ c−→ q′1. Thus
∼ is an π-equivalence.

Remark 3.2.8. The explicit definition of ∼ and its proof in Remark 3.2.7 use the co-
inductive technique. That is derived naturally from the fact that the π-equivalence is
co-inductively defined (cf. Definition 3.2.2). In such a definition (and proof), we do
not see how the relation is constructed, instead we see how it is destroyed. We refer
to [140] for discussions about the naturalness of the co-induction.

Reduction sequence

By Proposition 3.2.4 and Theorem 1, if ∼ is a π-equivalence in a LTS A then A vop
A /∼. Moreover if ∼ is nontrivial1, then A /∼ has strictly fewer state than A . A
best compact possible observational prediction of A is obtained through a sequence
of observational prediction LTS(s).

Definition 3.2.5 (Reduction sequence). Given a LTS A , a reduction sequence derived
from A consists of observational prediction LTS(s)

A1 vop A2 vop · · · vop An

where A1 = A , and Ai+1 = Ai/∼i with ∼i is a nontrivial π-equivalence in Ai for
i = 1, 2, . . . , n− 1, moreover there is no nontrivial π-equivalence in An.

1There is a unique trivial π-equivalence in any LTS, that is the identity relation.

3.2. Prediction semantics of label transition systems 55

Normal forms The last LTS of a reduction sequence derived from A is called a
normal form of A (e.g. the LTS An above is a normal form of A), other LTS(s) (except
A) of the sequence are called intermediate LTS(s).

The following result about the normal form of a LTS is a direct consequence
of Proposition 3.2.6, it says that for any reduction consequence derived from a LTS A
which has the last LTS An and consists of several intermediate LTS(s), then there is a
reduction consequence derived from A having also the last LTS An but without any
intermediate LTS(s).

Proposition 3.2.7. Given a reduction sequence A1 vop A2 vop · · · vop An derived from
the LTS A = A1, then there is a direct reduction sequence A1 vop An.

Proof. By Proposition 3.2.6, using the notion of composition ⊗ (cf. Note 3.2.2), let

∼=∼n−1 ⊗ ∼n−2 ⊗ · · · ⊗ ∼1

then An = A /∼ and that gives the result.

Example 3.2.9. We reconsider in Figure 3.12 the LTS A in Example 3.2.2. Some reduc-
tion sequences can be derived from A are as follows

• A1 vop A2 vop A3 vop A4 (cf. Figure 3.13) where A1 = A and

– ∼1= {{q1}, {q2,⊥1}, {⊥2,⊥3,⊥4}, {⊥5,⊥6}} in A1 (cf. Figure 3.12),

– ∼2= {{q1}, {⊥234,⊥56}} in A2 (cf. Figure 3.13a),

– ∼3= {{q1}, {q2⊥1}, {⊥23456, q3}} in A3 (cf. Figure 3.13b).

• A ′1 vop A ′2 vop A ′3 (cf. Figure 3.14) where A ′1 = A and

– ∼′1= {{⊥1, q1}, {⊥2,⊥3,⊥4,⊥5,⊥6}} in A ′1 (cf. Figure 3.12),

– ∼′1= {{q2}, {q3}, {q1,⊥23456}} in A ′1 (cf. Figure 3.14a).

• A ′′1 vop A ′′2 (cf. Figure 3.15) where A ′′1 = A and

– ∼′′1= {{q1,⊥1}, {q2,⊥2,⊥3,⊥4}, {q3,⊥5,⊥6}} in A ′′1 (cf. Figure 3.12)

We can observe that each reduction sequence has its own last LTS, then the LTS A
have several normal forms, for example A4 (cf. Figure 3.13c), A ′3 (cf. Figure 3.14b) and
A ′′2 (cf. Figure 3.15a) are different normal forms of A .

Remark 3.2.9. Hereafter, we use the cardinality notation |A | for the size (i.e. the
number of states) of a LTS A . This size can be also denoted by |Q (A)|.

Proposition 3.2.8. For a LTS A , any reduction sequence derived from A is finite.

Proof. The number of states of each LTS in a reduction sequence decreases strictly,
because |A | is finite, the result follows immediately.

56 Chapter 3. Mathematical modeling

q1

q2 ⊥1 q3

⊥2 ⊥3 ⊥4 ⊥5 ⊥6

a b c

a b d a b

Figure 3.12: Original LTS A = A1 = A ′1 = A ′′1

q1

q2⊥1 q3

⊥234 ⊥56

a,
b c

a, b, d a,
b

(a) LTS A2

q1⊥1

q2⊥1 q3

⊥23456

a,
b c

a, b, d a,
b

(b) LTS A3

q1⊥1

q2⊥1 q3⊥23456

a, b c

a, b, d a,
b

(c) LTS A4

Figure 3.13: Reduction sequence A1 vop A2 vop A3 vop A4

Variety of normal forms We have observed in Example 3.2.9 that a LTS can have
different normal forms, but have the same number of states. But actually we have
even no hope that the normal forms have the same number of states. Since giving
a counter-example is somehow not trivial, we give first a proposition that specifies
a necessary and sufficient condition for a LTS which is irreducible by a reduction
sequence, namely this LTS is a normal form.

Proposition 3.2.9. Given a LTS A and a π-equivalence ∼, if there exist two equivalence
classes Qi and Qj of the quotient set Q (A) /∼ = {Q1, Q2, . . . , Qn} satisfying: for any state
qi ∈ Qi and qj ∈ Qj, there exists always a π-equivalence ∼′ in A so that

q1 ∼′ q2

then A/∼ is reducible by a reduction sequence. Otherwise A/∼ is irreducible.

Proof. By Propositions 3.2.2 and 3.2.7, each state of the quotient LTS A /∼ corresponds
to a unique and distinguished class equivalence of the quotient set Q (A) /∼. We will
use the equivalence classes Q1, Q2, . . . , Qn to denote the state of A /∼.

Suppose that there are Qi and Qj satisfying the condition in the proposition. We
construct a symmetric-transitive relation R as follows

• R1 = {
(
Qi, Qj

)
,
(
Qj, Qi

)
},

• calculate

– R1
i+1 = {

(
Q′k, Q′l

)
| ∃c, (Qk, Ql) ∈ Ri : δ∼ (Qk, c) = Q′k, δ∼ (Ql, c) = Q′l}1,

1δ∼ is the transition function of the quotient LTS A/∼.

3.2. Prediction semantics of label transition systems 57

q1⊥1

q2 q3

⊥23456

a c

ba, b, d a, b

(a) LTS A ′
2

q1⊥1

q2⊥23456 q3

a c

b

a , b,d

a, b

(b) LTS A ′
3

Figure 3.14: Reduction sequence A ′1 vop A ′2 vop A ′3

q1⊥1

q2⊥234 q3⊥56

a c

b

a, b, d

a,b

(a) LTS A ′′
2

Figure 3.15: Reduction sequence A ′′1 vop A ′′2

– R2
i+1 = Ri ∪ R1

i+1, then

– let Ri+1 be the transitive closure of R2
i+1.

for i = 1, 2 . . . until a value n where Rn = Rn+1, then let R = Rn.

By the construction, R is an equivalence relation. We can also verify the conditions of
π-equivalence along construction steps of R to see that R is a π-equivalence.

Remark 3.2.10. In Definition 3.2.5, a LTS is a normal form if and only if it does not
contain nontrivial π-equivalence. In Proposition 3.2.9, we gives another condition to
verify whether a LTS is a normal form or not. It is worth noting that the condition
works on the initial LTS A and not A/∼, then it can be verified directly in the initial
LTS of a reduction sequence.

By Proposition 3.2.9, we have an immediate corollary that will support some rea-
soning about counter-examples for normal forms of different number of states.

Corollary 3.2.4. Given a LTS A and a π-equivalence ∼ in A . If for any pair of equivalence
classes Qi and Qj of ∼, we can always find states qi ∈ Qi and qj ∈ Qj so that qi 6∼′ qj for all
π-equivalence ∼′ in A , then A/∼ is a normal form.

The corollary means that whenever we construct a π-equivalence ∼ satisfying: for
any pair of equivalence classes of ∼, there is a state in one and there is another state
in the other so that these two states are not equivalent for any π-equivalence. Then
we can get a normal form as the quotient of the original LTS by ∼.

58 Chapter 3. Mathematical modeling

Moreover, we know that the number states of the normal form is also the number
of equivalence classes of ∼. So a trick is to find different partitions of Q satisfy-
ing Corollary 3.2.4 so that they have different number of classes. For example if we
have a set of states Q = {qa, qb, qc, qd} satisfying the following configuration1

qc ∼1 qa qa 6= qb

qc ∼1 qb qd 6= qc

qd ∼2 qa qd 6= qb

then we can find two π-equivalences of different number (one has 4 and the other has
3) of equivalence classes

{{qA, qC}, {qB}, {qD}} and {{qA, qD}, {qB, qC}}

Remark 3.2.11. The configuration above is not possible if ∼1 and ∼2 are bisimulations,
for example the following situation cannot happen

qc ∼1 qa qc ∼1 qb qa 6= qb

because the bisimulation is transitive. Concretely, from qa ∼1 qc and qc ∼1 qb, we have
qa ∼′1 qb where ∼′1 is the relational composition

∼′1= {
(
q, q′

)
| ∃q′′ : q ∼1 q′′ and q′′ ∼1 q′}

which is also a bisimulation [114].

Example 3.2.10. The LTS in Figure 3.16 consists of 4 sub-LTS(s) Qa, Qb, Qc, Qd given
in Figures 3.17a to 3.17d, respectively. There are two normal forms corresponding to
two π-equivalences

∼1= {{qa, qc}, {qb}, {qd}, {qa
e , qc

e, qd
e}, {qa

f , qc
f }, {q

a
g, qc

g, qd
g⊥a

2,⊥c
2}, {qc

h,⊥a
1,⊥c

1}

{qb
e}, {qb

f , qd
f }, {q

b
g}, {qd

h,⊥b
1,⊥d

1}, {q1,⊥a
3,⊥b

3,⊥c
3,⊥d

3,⊥d
4}}

∼2= {{qa, qd}, {qb, qc}, {qe
a, qe

d}, {q
f
a , q f

d}, {q
g
a , qg

d}, {⊥
a
1, qd

h,⊥d
1},

{qb
e , qc

e}, {qb
f , qc

f }, {q
b
g,⊥c

2,⊥b
2}, {qc

h,⊥c
1,⊥b

1}, {q1,⊥a
2,⊥d

2,⊥d
4,⊥b

3,⊥3
c}}

where ∼1 has 12 equivalence classes and ∼2 has 11. Consequently, these normal
forms has respectively 12 and 11 states.

However, in practice we may observe that the numbers of states of normal forms
are quite stable. That is because a π-equivalence is very easy to become a bisimulation.
Indeed, for a LTS having no terminal states then, by Definition 3.2.2, π-equivalence is
actually a bisimulation, moreover it is an equivalence relation. We call such a relation
a bisimulation-equivalence. If we consider reduction sequences beginning from a LTS

1Here, the notation 6= means that two states are not equivalent for any π-equivalence.

3.2. Prediction semantics of label transition systems 59

q1

Qa Qb Qc Qd

a b c d

Figure 3.16: LTS having normal forms with different number of states

having no terminal states, then the normal forms of this LTS always have the same
number of states.

Proposition 3.2.10. Given a LTS A having no terminal states, then all normal forms of A
have the same number of states. Concretely, if An1 and An2 are some normal forms of A , then

|An1 | = |An2 |

By Definition 3.2.1, the bisimilarity is defined as the union of all bisimulation re-
lations in a labeled transition system. The bisimilarity is an equivalence relation, and
also is a bisimulation itself. It is the unique largest bisimulation [114, 140]. Similarly,
we can define the unique largest bisimulation-equivalence as the transitive closure
of the union of all bisimulation-equivalences. In Lemmas 3.2.3 and 3.2.4 below, we
assume that A has no terminal states.

Lemma 3.2.3. The union of all bisimulation-equivalences in A is a bisimulation-equivalence.

Proof. Let ∼u denote the union of all bisimulation-equivalence in A. To prove ∼u is
a bisimulation-equivalence, let us consider two bisimulation-equivalences ∼1 and ∼2
and its relational composition

∼1 ◦ ∼2= {
(
q, q′

)
| ∃q′′ : q ∼1 q′′ and q′′ ∼2 q′}

Let ∼1 � ∼2 denote the reflexive-symmetric-transitive of ∼1 ◦ ∼2, then ∼1 � ∼2 is
immediately a bisimulation-equivalence, consequently ∼1 � ∼2⊆∼u. And that gives
the result.

Remark 3.2.12. By definition, the bisimilarity is a bisimulation and an equivalence
relation [114, 140]. In other words, the bisimilarity is a bisimulation-equivalence, and
is also the unique largest bisimulation-equivalence. This argument gives a direct proof
for Lemma 3.2.3.

The technical idea of the proof of Proposition 3.2.10 is to prove that the number
of states of a normal form is the number equivalence classes of Q (A) by the unique
largest bisimulation-equivalence ∼u.

Lemma 3.2.4. Given a LTS A and a π-equivalence ∼ in A , if ∼6=∼u then there is nontrivial
π-equivalence in the quotient LTS A /∼. Namely, A /∼ can be reduced again by a reduction
sequence.

60 Chapter 3. Mathematical modeling

qa

qa
e qa

f

⊥a
1

qa
g ⊥a

2

⊥a
3

a1 a2

{
f1 ,f2 }

e 1 e2

{g
1 ,g

2 ,g
3 }

(a) LTS Qa

qb

qb
e qb

f

⊥b
1

qb
g ⊥b

2

⊥b
3

a1 a2
{

f1 ,f2 }

e 1

e2

{g
1 ,g

2 }
(b) LTS Qb

qc

qc
e qc

f

qc
h ⊥c

1

⊥c
2

⊥c
3

a1 a2

f 1 f2{e1 ,e2 }

{h
1 ,h

2 }

(c) LTS Qc

qd

qd
e qd

f

qd
h ⊥d

1qd
g ⊥d

2

⊥d
3 ⊥d

4

a1 a2

f 1 f2e 1

e2

{g
1 ,g

2 ,g
3 }

{h
1 ,h

2 ,h
3 }

(d) LTS Qd

Figure 3.17: Sub LTS(s)

Proof. We notice that each state in A /∼ corresponds to a classes equivalence of ∼ in
the set of all states Q of A . Consider the following relation in Q/∼

[q]∼ ∼
′ [q′]∼ ⇐⇒ there are q1 ∈ [q]∼ and q′1 ∈ [q′]∼ so that q1 ≈u q′1

By Lemma 3.2.3 and the supposition ∼6=∼u of Lemma 3.2.4, we have ∼ is strictly
more rough than ∼u, then ∼′ is a nontrivial π-equivalence. Namely, A/∼ can be
reduced again by a reduction sequence.

Proof. (of Proposition 3.2.10) By Proposition 3.2.7, any LTS in a reduction sequence
of A is the quotient LTS A/∼ for some π-equivalence ∼. By Lemma 3.2.4, if ∼6=∼u
then A/∼ can be reduced again. By Proposition 3.2.8, any reduction sequence is
finite, then any normal form must be A/∼u since it is a irreducible LTS. Moreover ∼u
is unique, and that gives the result.

Now let us back to the general case where the considered LTS(s) have terminal
states, the following result is a direct consequence of Proposition 3.2.10. It explains

3.2. Prediction semantics of label transition systems 61

why the number of states of a normal form is “mostly” stable.

Proposition 3.2.11. Given reduction sequences Seq1 and Seq2, not necessarily beginning
from the same LTS. If there is a LTS A having no terminal states in both Seq1 and Seq2, then
the last LTS(s) of Seq1 and of Seq2 have the same number of states.

A1 Ai Aj+2 A′m

A

A′1 A′j Ai+2 An

vop vop

v
op

v
op

vop vopvop vop

v op

v op

vop vop

Figure 3.18: Intersected reduction sequences

Proof. The situation of the proposition is illustrated in Figure 3.18. Two reduction
sequences beginning from different LTS(s) A1 and A′1, they have a common LTS A
which has no terminal states.

Seq1 ,A1 vop · · · vop Ai vop A vop Ai+2 vop · · · vop An

Seq2 ,A′1 vop · · · vop A′j vop A vop A′j+2 vop · · · vop A′m

By Proposition 3.2.10, the normal forms An and A′m have the same number of states,
that is the number of equivalence classes of Q (A) /∼ where ∼ is the unique largest
bisimulation-equivalence in Q (A).

Best compact possible labeled transition system

The following result says that the best compact possible observational prediction will
be some normal form.

Proposition 3.2.12. Given a LTS A , let Amin be an observational prediction of A of the
minimal number of states, then there exists a normal form An of A so that

|Amin| = |An|

Proof. Since A vop Amin, by Theorem 2, there is a LTS A ′ having no more state than
Amin and a surjective complete morphism h : A → A ′. Moreover Amin is already of
the minimal number of state then

|A ′| = |Amin|

62 Chapter 3. Mathematical modeling

and then there is no nontrivial π-equivalence in A ′. Since h is a surjective complete
morphism, by Theorem 1, there is a π-equivalence ∼ in A so that h∼ = h, that leads
to a direct reduction sequence

A vop A ′

That means A ′ is also a normal form of A , let An = A′ and that gives the result.

In fact, if we do not count the number of states as the criteria to define which
normal form is better, then it will be hard to define which normal form is better in
the sense of observational prediction. That is because of one normal form is may
not an observational prediction of another normal form (cf. also Proposition 3.2.10
and example 3.2.9), in other words the normal forms are not comparable in the sense
of observational prediction. If we consider the set of all observational predictions of a
LTS with vop as the order in this set, then we obtain a poset where normal forms are
maximal elements. In general, we have the following result.

Proposition 3.2.13. Given a LTS A and two normal forms An1 and An2 of A satisfying

|An1 | > |An2 |

then An1 6vop An2 .

Proof. Suppose that An1 vop An2 , by Theorem 2, there is a surjective complete mor-
phism h : An1 → A′n2

where A′n2
is some LTS having no more states than An2 . Con-

sequently, we have |An1 | > |A′n2
|. By Proposition 3.2.3, there is a nontrivial π-

equivalence ∼ in An1 so that An1/∼ = A′n2
, that means An1 can be reduced again

by a reduction sequence. This contradiction gives the result.

Summary In Section 3.2.3, we have introduced reduction sequences and the nor-
mal forms of a LTS A. The results obtained assert that the best compact possible
observational prediction of A must be one of the normal forms of A.

3.3 Algorithms

This section can be considered as the calculation part, based on results developed
in Section 3.2. We will give algorithms to calculate a normal form of a given labeled
transition system. Let us first recall some obtained theoretical results.

1. by Definition 3.2.4, to simulate correctly a given LTS A , a LTS must be an obser-
vational prediction of A ,

2. by Propositions 3.2.2 and 3.2.4, such an observational prediction can be obtained
as a quotient A /∼ of A by some nontrivial π-equivalence ∼ (recall that a π-
equivalence is trivial if and only if it is the identity relation), and

3.3. Algorithms 63

3. by Proposition 3.2.12, the best compact possible observational prediction is al-
ways some normal form of A, that can be obtained from a reduction sequence.
Though we do not know exactly which reduction sequence gives the best com-
pact prediction, by Proposition 3.2.11 we know that we still have a high chance
to obtain it.

3.3.1 Compact labeled transition system construction

Straightforwardly from Definition 3.2.5, we have the algorithm in Listing 3.3 produc-
ing a normal form (i.e. a best compact possible observational prediction) of a labeled
transition system.

LTSReduction(LTS A) {
A ′ ← A ;
while (true) {
∼ ← StateEquivCons(A ′);
if (∼ is trivial) break; // no more nontrivial π-equivalence
else A ′ ← A ′/∼;

}
return A ′;

}

Listing 3.3: Label transition system reduction algorithm

Let us start from the initial LTS A , then look for a nontrivial π-equivalence ∼
in A , we obtain next the quotient LTS A /∼ which has strictly fewer states than
A . This procedure is repeated with A is replaced by A /∼ until no more nontrivial
π-equivalence is found.

Remark 3.3.1. Because the π-equivalences can be selected arbitrarily at each step,
the returned labeled transition systems of Algorithm 3.3 are not unique (cf. Exam-
ple 3.2.9), but their numbers of states are “mostly” stable as given by Proposition 3.2.11.

3.3.2 Π-equivalence verification and construction

The crucial point of the LTS reduction algorithm is the procedure StateEquivCons
which returns a nontrivial π-equivalence in a LTS A whenever such a relation exists
in A . The co-inductive definition of the π-equivalence (cf. Definition 3.2.2) is not
constructive: essentially it does not say about how to construct such a relation, instead
it say about how to verify whether a given relation is a π-equivalence or not.

We may note that the number of states in A is finite, then the number of binary
relations is also finite. Consequently, a verification algorithm, by checking each subset
of Q (A) × Q (A), gives indirectly a construction algorithm. However, this direct
approach is practically infeasible because there are 2Q(A)×Q(A) subsets.

In Listing 3.4, we use a slightly different approach by first introduce a verification
algorithm and then describe how to modify it to get a construction algorithm.

64 Chapter 3. Mathematical modeling

StateEquivVerif(equivalence R) {
Runv ← {(q, q′) , (q, q′) ∈ R | q 6= q′, q 6= ⊥, q′ 6= ⊥}; // the set of unverified pairs
Rved ← R \ Runv; // the set of verified pairs

while (Runv 6= ∅) {
(q, q′)← an element in Runv;
if (for each q c−→ q1 there exists q′ c−→ q′1 and vice -versa) {

Rved ← Rved ∪ {(q, q′) , (q′, q)}; Runv ← Runv \ {(q, q′) , (q′, q)};

Rl ← {
(
q1, q′1

)
,
(
q′1, q1

)
| ∃c : q c−→ q1, q′ c−→ q′1};

Rl
ved ← {(q, q′) ∈ Rl | either p = q, or p = ⊥ or p′ = ⊥};

Rved ← Rved ∪ Rl
ved; Runv ← Runv ∪ (Rl \ Rved);

if (Rved ∪ Runv 6= R) return false;
}
else return false;

}
return true;

}

Listing 3.4: π-equivalence verification algorithm

Remark 3.3.2. The input R of the algorithm in Listing 3.4 is an equivalence relation.
To make the algorithm work with any relation, we can simply add a pre-processing
procedure to verify whether R is an equivalence relation or not before passing R to
the procedure StateEquivVerif. Also in the presentation of the algorithm, we write
q = ⊥ or q 6= ⊥ to mean that the state q is or is not a terminal state, correspondingly.

Algorithm 3.4 verifies whether the input R (as an equivalence relation) is a π-
equivalence or not. The sets Runv and Rved contains respectively the unverified and
verified pairs of states of R. Since the verification of reflexive pairs or pair containing
some terminal states is not necessary, these sets are initialized by

Runv ← {
(
q, q′

)
,
(
q, q′

)
∈ R | q 6= q′, q 6= ⊥, q′ 6= ⊥} and Rved ← R \ Runv

Whenever there are still some pairs need to be verified (this is determined by checking
whether Runv is empty or not), then a pair (q, q′) is taken out from Runv.

Next, the states q and q′ are verified whether they satisfy the conditions of the
π-equivalence or not. Since q 6= q′ and both are not terminal states, the verification
means checking:

• for any transition q c−→ q1, there exists also q′ c−→ q′1 for some states q1 and q′1, and

• that is also true for any transition from q′.

If not then we can conclude immediately that R is not a π-equivalence. Otherwise, the
sets Runv and Rved are updated to reflect that the pairs (p, p′) and (p′, p) are verified:

Runv ← Runv \ {
(
q, q′

)
,
(

p′, p
)
} and Rved ← Rved ∪ {

(
q, q′

)
,
(

p′, p
)
}

3.3. Algorithms 65

We construct the local set Rl of corresponding targets from q and q′:

Rl ← {
(
q1, q′1

)
,
(
q′1, q1

)
| ∃c : q c−→ q1, q′ c−→ q′1}

Some pairs in Rl do not need to be verified (such pairs are reflexive or contain some
⊥ states), they are selected into a local set

Rl
ved ← {

(
q, q′

)
∈ Rl | either p = q, or p = ⊥ or p′ = ⊥}

and the set Rved is updated: Rved ← Rved ∪ Rl
ved. The local set of unverified pairs is

determined by Rl \ Rved, then Runv is updated:

Runv ← Runv ∪
(

Rl \ Rved

)
At this point, both Rved and Runv are updated with new "local information", that is the
set Rl of corresponding targets from q and q′, then we verify whether the invariant

Rved ∪ Runv = R

is preserved or not. If not, there are some unverified pairs which should belong to
R but they are actually not, then R cannot be a π-equivalence. If the verification can
reach to the point where Runv is empty, namely all pairs are verified and passed, then
R is a π-equivalence.

Lemma 3.3.1. Given an equivalence relation R, the procedure StateEquivVerif of the input
R halts always, and it returns true if and only if R is a π-equivalence.

Proof. Let Ri
unv and Ri

ved denote values of the set Runv and Rved at the beginning of
i-th while-step. We prove the invariants

R = Ri
unv ∪ Ri

ved and |Ri+1
ved | = |R

i
ved| − 2 for all i

Indeed, this is already true for i = 1. This is also true at the beginning of the (i + 1)-th
while-step, because the commands in the if-condition of the i-th while-step have been
fully executed. The invariants are proved

Since |Ri+1
ved | = |R

i
ved| − 2, StateEquivVerif (R) halts after no more than |R|/2 while-

step. We observe that the commands inside each while-step verify the conditions of
the π-equivalence (cf. Definition 3.2.2). Moreover, StateEquivVerif (R) returns true
if and only if it halts at R \ Rved = Runv = ∅, that means all pairs in R are verified and
passed.

Corollary 3.3.1. The worst-case (time) complexity of Algorithm 3.4 is O (|R|).

In Algorithm 3.4, if the verification of the invariant R = Rved ∪ Runv (as the last
command of each while-step) is always executed and passed then R is eventually a

66 Chapter 3. Mathematical modeling

π-equivalence. Consequently, instead of keeping the relation R as a fixed input, if we
update it by

R← Rved ∪ Runv

then Algorithm 3.4 becomes automatically a construction algorithm, but to make it
return an equivalence relation, the local set Rl need to be set appropriately.
StateEquivCons(LTS A) {

R← {(q, q) | q ∈ Q (A)}; // the trivial π-equivalence

foreach ((q, q′) ∈ Q (A)×Q (A) , q 6= q′) {
Runv ← {(q, q′) , (q′, q)}; // the set of unverified pairs
Rved ← {(q, q) | q ∈ Q (A)}; // the set of verified pairs
R← Rved;

while (Runv 6= ∅) {
(q, q′)← an element of Runv;
if (for each q c−→ q1 there exists q′ c−→ q′ and vice -versa) {

Runv ← Runv \ {(q, q′) , (q′, q)}; Rved ← Rved ∪ {(q, q′) , (q, q′)};

Rl ← {
(
q1, q′1

)
,
(
q′1, q1

)
| ∃c : q c−→ q1, q′ c−→ q′1};

Rl ← Rl \ Rved; Runv ← Runv ∪ Rl;

R← Rved ∪ Runv; R← transitive-symmetric closure of R;
Runv ← R \ Rved;

}
else break;

} // end of while

if (Runv = ∅) return R;
} // end of foreach

return R;
}

Listing 3.5: π-equivalence construction algorithm

The algorithm in Listing 3.5 returns a nontrivial π-equivalence whenever such a
relation exists in the input LTS A , otherwise it returns the trivial π-equivalence. In
fact, it does what one in Listing 3.4 does but in the opposite direction: the verification

if (Rved ∪ Runv 6= R) return false

is replaced by the construction

R← Rved ∪ Runv; R← transitive-symmetric closure of R

Proposition 3.3.1. The procedure StateEquivCons halts always. It returns a nontrivial
π-equivalence whenever such a relation exists, otherwise it returns the trivial π-equivalence.

Proof. One may recognize that the while-loop in StateEquivCons is a traditional tech-

3.3. Algorithms 67

nique to calculate the relation R as a fixed-point. To make it clear, for each pair(
q, q′

)
∈ Q (A)×Q (A) where q 6= q′

let Ri, Ri
unv and Ri

ved denote respectively value of the sets R, Runv and Rved just after
the last command of the "if ..." block (i.e. after the update Runv ← R \ Rved of the i-th
while-step. We prove that:

1. Ri is an equivalence relation, Ri ⊆ Ri+1

2. Ri = Ri
unv ∪ Ri

ved, and

3. Ri
ved (Ri+1

ved

for all i.
Indeed, we have {(q, q) | q ∈ Q (A)} ⊆ Ri for all i, then Ri is reflexive. Moreover

Ri is also transitive and symmetric at the end of each while-step, so Ri is an equiva-
lence relation. We have also Ri+1 is the transitive-symmetric closure of Ri ∪ Rl, then
Ri ⊆ Ri+1. From the last command

Runv ← R \ Rved

in the "if ..." block, we have Ri = Ri
unv ∪ Ri

ved. Also in each while-step, we have

Ri+1
ved = Ri

ved ∪ {
(
q, q′

)
,
(
q, q′

)
}

then Ri
ved (Ri+1

ved .
Since Ri

ved (Ri+1
ved ⊆ Q (A)× Q (A), the while-loop must halt at some value n of

i, consequently StateEquivCons halts always and returns

1. either R = Rn if there is some pair (q, q′) ∈ Q (A)×Q (A) and q 6= q′ satisfying
q ∼ q′ for any π-equivalence ∼ (in this case we have also R ⊆∼),

2. or the trivial π-equivalence.

and that gives the results.

The following result gives an evaluation for the time complexity of Algorithm 3.5.
This evaluation is still very rough, but it shows the advantage of the algorithm in
comparison with the direct approach which verifies 2|Q(A)|×|Q(A)| subsets.

Proposition 3.3.2. The worst-case (time) complexity of Algorithm 3.5 is |Q (A)|4.

Proof. Given any pair (p, q) ∈ Q (A)×Q (A) and p 6= q, the algorithm constructs the
minimal π-equivalence ∼min

pq containing (p, q) after no more than |∼min
pq | computation

steps, then time complexity to verify such a pair is no more than |Q (A)|2.

68 Chapter 3. Mathematical modeling

If ∼min
pq is the trivial π-equivalence1, then the algorithm continues to verify another

pair, otherwise the algorithm terminates and gives out ∼min
pq . The worst-case is that

there is no nontrivial π-equivalence and the algorithm has to verify all pairs possible,
namely the algorithm has to verify no more than |Q (A)|2 pairs. Thus the worst-case
time complexity of the algorithm is no more than |Q (A)|4.

Summary Algorithms 3.5 and 3.3 in this section are constructive consequences of
the theoretical framework given in Section 3.2. These algorithms will be used in the
next chapter under a concrete context. In the one hand, they allows us constructing
needed objects (i.e. normal forms of labeled transition systems). In the other hand,
we will see in Section 4.3.2 of the next chapter that these objects allow us verifying
the theoretically predicted results in this concrete context.

1We note that there is a unique trivial π-equivalence in any LTS A, this is the identity relation.

Chapter 4

Concrete interpretation

In Chapter 3, we have introduced labeled transition systems as a mathematical model
of the program, focused in modeling how the program processes its inputs. In some
conceptual discussions about technical details of this model, we have presented also
our original motivations that explain why these details should occur in this model.
These motivations come actually from real-world programs, and they can be consid-
ered as a sketchy interpretation only.

The goal of this chapter is to present in detail a concrete interpretation that helps
recovering the input message format of a program. As discussed at the end of Sec-
tion 2.3, our approach is to categorize the input messages according to their cor-
responding execution traces - as a concrete interpretation of observable behaviors.
Consequently, the concrete interpretation of the program is a set of execution traces.
Abstracting this set by a labeled transition system, we obtained a mathematical model
where the theoretical results developed in Section 3.2 can be applied.

This abstraction, from execution traces to a labeled transition system, is realized
through a stepwise abstraction procedure that consists of several supporting objects,
each of them and the abstraction from one to the other need to be carefully formalized.
Then in the first part of this chapter, we present the technical notions and terminology
about the syntax and the semantics of binary codes. That helps describing clearly
objects and their construction, which is presented in the stepwise abstraction of the
second part.

The results of this chapter have been presented partially in [17, 18, 19]. This is joint
work with Guillaume Bonfante and Jean-Yves Marion.

4.1 Notions and terminology

Since malwares are mostly available under the compiled binary codes, working with
this kind of codes is compulsory in malwares mitigation researches. The technical
notions and terminology about binary codes introduced below can be found in text-
books [25], technical manuals [80, 81, 108], or handbooks about binary codes reverse

69

70 Chapter 4. Concrete interpretation

engineering [51, 147].

Instruction sets and reasoning First, different from a generic mathematical model,
the binary codes are machine dependent where each processor architecture has its
own instruction set, and this instruction set may evolve over time. In this thesis, we
limit our interest within the x86 and x86-64 instruction sets, that are also the most
popular platform where the malicious codes operate. However, our approach remains
general enough and other instruction sets could be used.

Second, because the machine instructions are sophisticated enough, the current
trend is to lift them into an intermediate representation (abbr. IR codes) which has
more formal semantics and then easier for reasoning, some popular instances are
REIL [56] and BIL [23]. However, the current proposed IR codes still have several
technical limits.

The lifting method in both REIL and BIL is instruction-to-instructions, namely a
machine instruction will be translated into several IR instructions, but because the ma-
chine instruction set is large enough, the translation is not yet complete. Concretely,
the code lifting of REIL works only for x86 instruction set. Until just recently (version
0.8), BAP works for x86-64 instruction set but the translation is not complete, a re-
port of unsupported instructions and translation failures through daily testing can be
referenced at [5]. Additionally, BAP’s tools work only on Linux™platform and that
requires considerable efforts to implement a system analyzing Windows™programs.

Because of the limits discussed above, and we in fact do not need to take care of
every semantics aspects of machine instructions. In this thesis, we reason directly on
the machine instruction set together with a proper abstraction, which serves only our
interests.

Third, the machine instructions constitute also a low-level programming language
taking care of low-level properties (e.g. heap, stack, register usages, memory accesses,
execution flow, function calls, argument passing conventions, etc). Similar to the
reason above, we do not need to take care of all low-level properties to present the
objects of the stepwise abstraction procedure: only needed properties are presented.

Formalization We give also in this section a lightweight formalization for the tech-
nical notations. It is worth noting that there is currently no standard formalization
in malware binary codes analysis (and generally, in program analysis). This is due to
the fact that each work focuses on a different aspect of binary codes, and reasoning
in each aspect uses a particular logic (e.g. predicate logic, Hoare logic, etc.). Conse-
quently, the corresponding formal model of binary codes is normally chosen to be
convenient with the used logic.

The formalization given here does not aim at giving a standard. It gives instead
notations allowing to specify what we mean in various real-world situations without
repeating analogous details. For the logic reasoning aspect, it allows us representing

4.1. Notions and terminology 71

in Section 4.2.2 the condition of any execution trace under a first-order logic conjunc-
tion form of local conditions.

4.1.1 Low-level representation

Virtual memory and program A program is mapped into the virtual memory as
binary data, each byte is indexed by a memory address. Starting from a special
address called the entry point (abbr. EP) of the program, the CPU fetches, decodes,
and executes gradually each time a part of this data; this part is called a machine
instruction. The address where the CPU fetches each machine instruction is stored in
a special register, called the instruction pointer.

First, saying the mapped binary data of a program, we mean to the binary code
loaded into the virtual memory space reserved for the program by the operating system.
Aside from the data of the program itself on some physical storage, it consists of also
data of supplemental libraries that the program uses in execution. This data is loaded
automatically by the loader of the operating system, or explicitly by the program.

Second, strictly speaking, not all mapped binary data can be executed. The modern
CPUs are equipped with memory protection mechanisms, which allow executing only
data of certain mapped regions (or segments), other data is not executable. We do not
take interest in this detail and transparently consider only the executable regions of
the program.

Formalization The state of a program is characterized by the state of (i.e. the value
stored in) CPU’s registers and of the virtual memory space of the program. Operating
on the registers and the memory space, the execution of instructions by the CPU
changes the state of the program.

Remark 4.1.1. The no-operation nop instruction (which is indeed xchg eax,eax [80])
changes nothing except increases the value of the eip register.

The virtual memory space where a program located is modeled as a sequence of
bytes, the range of values that a byte can received is Bytes = [0, . . . , 255]. The position
(i.e. address) of a byte in the memory is specified by a value in the range Addrs,
practically Addrs is [0, . . . , 2x − 1] for x-bit memory space where x is 32 or 64. The
state of the memory is then determined by a function:

µ : Addrs→ Bytes

which specifies the byte value at each address in the address space Addrs. Let
Registers denote the set of registers, the instruction pointer IP ∈ Registers, the state
of registers is determined by a tuple:

ν = {r ← v | r ∈ Registers, v ∈ [0, . . . , 2|v| − 1]}

72 Chapter 4. Concrete interpretation

where |v| is the length of the register v. The state of the program is then modeled by a
couple ξ = (µ, ν).

We can distinguish registers from memory addresses Registers ∩ Addrs = ∅, we
can distinguish also different registers, and different memory addresses. Then given a
register or a memory address x ∈ Registers∪ Addrs, we can use the function notation
ξ (x) or the projection notation ξ|x to specify the state of x. In general, given a sub-set
xs ⊆ Registers∪ Addrs, we will write

ξ (xs) or ξ|xs

to specify the sub-state on xs of the program state ξ.
We use the assignment notation ξ[xs ← v] to specify a new state obtained from

ξ by updating the state of xs by v (where v must be well-typed with respect to xs in
the assignment) whereas keeping the state of all registers and memory addresses in
Registers∪ Addrs \ xs. The notation formalizes the updates of (sub-)states.

4.1.2 Assembly code representation

Instruction syntax A machine instruction can represented by the syntax of the as-
sembly language, here we use the Intel™syntax. An instruction has form

operator operand1, operand2, . . .

The operator (or mnemonic), as its name, determines the operation performed on the
operands. Most of operands occur explicitly in the assembly syntax of the instruction,
others (e.g. the eflags register) are hidden. An operand can be some register or
a memory address of some types, it can be a target (i.e. where the results of the
instruction is stored) or a source (i.e. the input of the instruction), or both. The types
of operands and the hidden operands of an instruction are specified in the manual
reference [80].

Remark 4.1.2. There are differences between x86 and x86-64 instruction sets, together
with accommodated implementation of the operating systems. Those do not lead to
any serious effect in our context (e.g. new 64 bit instructions rax, rbx, rip etc. are
introduced in x86-64 sets) and they will be noticed when needed.

Syntax of binary programs and the binary code disassembly problem Unfortu-
nately, there are no decidable method to disassemble statically the binary data into
separated machine instructions [79]. More precisely, such a separation does not stat-
ically exist (but dynamically exists), there is no strict difference between data and
executable codes [143]. A reason for this undecidability comes from indirect branch-
ing instructions, which make the CPU fetching data from a more or less arbitrary
memory address; another reason comes from self-modifying codes where the existing
mapped codes can generate themselves other executable codes.

4.1. Notions and terminology 73

Example 4.1.1. The pieces of codes in Listings 4.1 and 4.2 are extracted from a UnpackMe.
This program uses the Windows NT API NtContinue (cf. Figure 4.1) to divert its con-
trol flow: the address of the instruction executed after NtContinue returned is spec-
ified in a CONTEXT structure, located at the address determined by a dword at the
address [ebp+8] (see the instruction at 0x77b49efb.

In this case, the next fetched instruction will be pushad at 0x4078c0, and before
it should be data (e.g. at 0x4078bf in Listing 4.2). The correct disassembly is shown
in Listing 4.2 then. However, if the disassembler does not take care of the effect of
NtContinue, it can incorrectly recognize that there is an instruction at 0x4078bf, then
is led to a “domino effect” of incorrect disassembly as shown in Listing 4.1.

... ...

0x77b49ef9 push 1 0x77b49ef9 push 1

0x77b49efb push dword [ebp+8] 0x77b49efb push dword [ebp+8]

0x77b49efe call NtContinue 0x77b49efe call NtContinue

... ...

0x4078bf add [eax -0x42],ah 0x4078bf db 00

0x4078c2 adc eax ,0 x8d004070 0x4078c0 pushad

0x4078c7 mov esi ,0 xffff9feb 0x4078c1 mov esi ,0 x407015

... ...

Listing 4.1: Incorrect disassembly Listing 4.2: Correct disassembly

Figure 4.1: Control flow diversion using NtContinue

Note 4.1.1. The binary code disassembly problem is not just a technical challenge. In
theoretical models of computation (e.g. Turing machine, λ-calculus, etc.), there is no
difference between executable codes and data, both of them are considered simply
as data [83, 92]. In practice, well-decoded data can be mapped and executed as
instructions using some OS-specific APIs (e.g. mprotect in Linux™or VirtualProtect
in Windows™). Such a technique is popular in self-modifying codes. To uniform
codes as data, it may be better to think of that the codes does not execute themselves,
this is indeed the CPU fetches codes (as data) and changes the state of the program
depending on the fetched data (i.e. codes).

74 Chapter 4. Concrete interpretation

Avoiding self-modifying codes Practically, we examine only a part of the program
(mostly its input parsers) and we assume that the undecidability above does not occur
in the examined codes. Consequently, we go to the view that programs as a sequences
of machine instructions. This is not true in general, for example the self-modifying
program given in Example 4.1.1, and handling self-modifying codes is still a very
challenging problem [30, 130]. Here, we make this view first to avoid awful technical
details, and this is also a limit of our work.

Example 4.1.2. The following piece of codes extracted from Trojan.Zbot, describes
partly how the malware searches for some files in the infected host. It demonstrates
the binary level representation of the program as a sequence of machine instructions

...
0x41dfa1 mov edi ,[ebp+0x144+0x8]
0x41dfa7 mov eax ,[ebp+0x144+0xc]
0x41dfad mov ebx ,[ebp+0x144+0x10]
0x41dfb3 xor ecx ,ecx
0x41dfb5 test edi ,edi
0x41dfb7 setnz cl
0x41dfba mov [ebp+0x144 -0x158],eax
0x41dfbd test ecx ,ecx
0x41dfbf jnz 0x41dfc6
0x41dfc1 call 0x402969
0x41dfc6 xor ecx ,ecx
...

Listing 4.3: Trojan.Zbot

The structure of an instruction is illustrated as follows

0x41dfa1︸ ︷︷ ︸
address

operator︷︸︸︷
mov

operands︷ ︸︸ ︷
edi, [ebp+0x144+0x8]︸ ︷︷ ︸

instruction

This instruction is located at the address 0x41dfa1, its operator is mov and its operands
are (the constants are omitted) registers edi, ebp and the memory of type dword at the
address calculated by vebp + 0x144+ 0x8 where vebp is the current value stored in the
register ebp; also in this case the operands are shown completely within the syntax of
the instruction.

For some instructions, the operands are not shown completely in the assembly
syntax, for example the instruction located at 0x41dfb3

xor ecx, ecx

Aside from the register ecx, the register eflags is also an operand: the technical
description of xor in [80] says that SF, PF, ZF flags in eflags are set depending on the
result of the operator xor, while CF, OF flags (also in eflags) are cleared.

4.1. Notions and terminology 75

Instruction and program formalization An instruction’s opcode ins at the memory
address addr is characterized by a pair

ε = (ins, addr)

and hereafter we will use this notation to specify an instruction, namely we specify
the instruction not only by its opcode but also by its location.

Then the program, or more precisely the examined codes of the program, is stati-
cally represented by a sequence

P = [(ins1, addr1) , (ins2, addr2) , . . . , (insn, addrn)]

4.1.3 Execution of programs

Control-flow and execution trace The control-flow is the order on instructions, which
follows the CPU’s executed instructions. As discussed above, the CPU fetches, de-
codes, and executes gradually instructions of the program. The address where the
CPU fetches an instruction is stored in the instruction pointer (abbr. IP), which is the
register eip or rip on x86 or x86-64 instruction set, respectively. The control-flow
then determines a sequence of executed instructions, that is called an execution trace.

Formalization Given a program P being currently in a state ξ, the address addr of
the current executed instruction is well determined by ξ (IP) (i.e. the state of the
instruction pointer IP). This instruction (cf. Remark 4.1.3) is then well determined,
and denoted by

E (ξ)

The instruction’s opcode in the pair ε = E (ξ) is called the underlying instruction of ξ

and denoted by
I (ξ)

Remark 4.1.3. We note that an instruction ε = E (ξ) is determined by a pair (ins, addr)
where ins is the opcode and addr is the location. So the underlying instruction I (ξ) is
nothing but the opcode ins of ε. The notion “underlying instruction” just emphasizes
the current executed opcode, given the current state ξ of the program.

The state ξ is updated depending on the execution of the underlying instruction
I (ξ). Suppose that we examined the program from a state ξ1 then the execution of
the program is a sequence P (ξ) of state transitions

P (ξ) = ξ1 → ξ2 → . . .

where the transition ξi → ξi+1 depending on the execution of the underlying instruc-

76 Chapter 4. Concrete interpretation

tion I (ξi). The corresponding sequence of instructions

ε1 → ε2 → . . .

where εi = E (ξi), is called the execution trace starting from ξ1, denoted it by T (ξ1).
Sometimes, for convenience, we write a trace as a string

T (ξ1) = ε1 · ε2 · · ·

Changing of control-flow

Normally, the instruction pointer IP is set automatically by the address of the po-
sitionally next instruction, but if the executed instruction is a control-flow instruction
(abbr. CFI) or an exception instruction then it can modify explicitly the value of IP.

The conditional (direct) jumps are traditionally considered as CFIs. For the indirect
jumps/calls (e.g. call edx) and the return (i.e. ret) instruction, the address executed
next is stored respectively in the target and in the top of the stack (i.e. the memory
address specified by esp), then they are also CFIs.

Example 4.1.3. The piece of codes in Listing 4.4 is extracted from one in Example 4.1.2,
the instruction executed after jnz 0x41dfc6 depending on its effect: it verifies the flag
ZF of the register eflags, and if this flag is not zero then the next executed instruction
will be one located at the address 0x41dfc6 (i.e. xor ecx,ecx) otherwise one located
at 0x41dfc1 (i.e. call 0x402969) will be executed.

...
0x41dfbf jnz 0x41dfc6
0x41dfc1 call 0x402969
0x41dfc6 xor ecx ,ecx
...

Listing 4.4: Effect of the control flow instruction

Rep-prefixed instructions There is a class of instructions, though it consists indeed
of CFIs in accordance with the generic definition “ones can modify the value of eip”
but as fas as we know, is not considered anywhere. This class consists of rep-prefixed
instructions, such an instruction will repeat the execution of its suffix (that is another
instruction) until some condition is satisfied. Consequently, the instruction executed
next may be itself or the positionally consecutive instruction, depending on whether
the condition has been satisfied or not.

Remark 4.1.4. In the x86 and x86-64 instruction sets, the conditional jumps are always
direct. The loop/loop(xx) are also control flow instructions, but they are considered
deprecated and hardly generated by compilers because their semantics can be done
simply by conditional jumps, moreover their latency is high in modern CPUs [81].

4.1. Notions and terminology 77

Example 4.1.4. The piece of codes in Listing 4.5 is extracted from wget. It describes how
the program verifies whether the first 4 bytes of a received message are “HTTP” or not.
The number of verified bytes is stored in ecx (by mov ecx,0x4), the address of the
constant pattern “HTTP” is stored in edi (by mov edi,0x49ded0), the address of the re-
ceived message buffer is stored in esi (by mov esi,eax). The rep-prefixed instruction
compares the pattern with the received message (by rep cmpsb [esi],[edi]).

...
0x404f75 mov ecx ,0x4
...
0x404f80 mov edi ,0 x49ded0
0x404f85 mov esi ,eax
0x404f87 xor edx ,edx
0x404f89 rep cmpsb [esi],[edi] /* string matching by rep */
0x404f8b pop edi
...

Listing 4.5: “HTTP” string matching

Now depending on the value of first 4 bytes in the received message, the rep-prefixed
instruction can be re-executed multiple times. For example if the first 4 bytes are
“HTaB” (i.e. the first 2-bytes are matched but the third is not) then the instruction will
be executed 3 times. In other words, if we execute the codes with this message and
log each executed instruction, then the following sequence (of executed instructions)
will be received:

...
0x404f75 mov ecx ,0x4
...
0x404f80 mov edi ,0 x49ded0
0x404f85 mov esi ,eax
0x404f87 xor edx ,edx
0x404f89 rep cmpsb [esi],[edi] /* first comparison (matched H = H) */
0x404f89 rep cmpsb [esi],[edi] /* second (matched T = T) */
0x404f89 rep cmpsb [esi],[edi] /* third (unmatched T 6= a)) */
0x404f8b pop edi
...

Listing 4.6: Sequence of executed instructions with input “HTa...”

The instruction rep cmpsb [esi],[edi] is executed at the first time to compare the
byte at [esi] with one at edi, here there is a match since both bytes are h, then both
esi and edi are increased by 1, and the comparison is repeated. Consequently, the
instruction executed next is still rep cmpsb [esi],[edi] instead of the positionally
consecutive instruction pop edi.

Exception instructions We have considered the state and the control-flow of a pro-
gram. While the control-flow specifies the execution order of instructions, the state is
changed by this execution. However, the state of a program can be modified also by

78 Chapter 4. Concrete interpretation

the execution of instructions which do not belong to the program. This execution is
activated by exception instructions.

There are several classes of exceptions (interrupts, traps, etc), their detail descrip-
tions can be referenced in [25]. We consider in the following example the employment
of traps in implementing the system call invocation mechanism of modern operating
systems.

Example 4.1.5. The following piece of codes is extracted from the x86-64 binary form
of curl, it describes the invocation of the system call sys_recvfrom. The detail of the
invocation mechanism can be referenced in [108], in this case the identity (here it is
0x2d) of the system call is loaded into the register eax. Then the instruction syscall,
as a general instruction invoking all kinds of system calls, is executed. The result is
stored in the register rax, next compared to verify whether it is smaller than −4095
(which is the decimal form of the hex value 0xfffffffffffff001) or not.

...
0x7fc1224e26ac mov eax ,0x2d /* id of sys_recvfrom */
0x7fc1224e26b1 syscall /* invoke sys_recvfrom */
0x7fc1224e26b3 cmp rax ,0 xfffffffffffff001 /* compare with -4095 */
0x7fc1224e26b9 jnb 0x7fc1224e26ef
...

Listing 4.7: Exception syscall

The difference from the normal control-flow is that the execution of sys_recvfrom is
performed actually in the kernel-space. This execution is transparent from the view-
point of the program: it is seen as a single instruction syscall in the code1, but it
affects the state of the program: the value of the register rax is modified.

Remark 4.1.5. We should notice an important difference: the exceptions cannot be ab-
stracted as the normal control-flow, concretely the system call invocation using traps
in Example 4.1.5 cannot be implemented using the procedure calls. The technical rea-
son is that they are implemented differently (e.g. one operate in kernel-mode with
full access rights, the other operates in user-mode with restricted rights, etc).

A more essential reason is that the results of an exception cannot be determined by the
logic of the program, they are actually external stimulus from the environment that the
program must be able to handle, if it does not then there will be errors.

So in the low-level detail, we know that the CPU executes actually the instructions
of the exception, however under the program viewpoint this execution is abstracted
as (the execution of) a single instruction, and after that, the positionally consecutive
instruction is executed as normal. We keep this proper abstraction in this thesis, con-
sequently the instructions invoking exceptions will be not considered as the control-
flow instructions.

1We suppose that the binary codes must be stored in the virtual memory space of the program,
and normally located in the user-space, except for kernel-mode malwares.

4.1. Notions and terminology 79

Hereafter, we consider the execution of program where the exceptions do not oc-
cur. Obviously, this is not true in general, most programs need exceptions to commu-
nicate with the environment, for example to receive their inputs. But if we consider
only the processing of the input, and omit the mechanism up on that the input is
updated, then our consideration is rational.

In this context, the results of the execution of a underlying instruction are deter-
ministic. Consequently, the execution trace starting from a given program state ξ is
deterministic. The following result is simple, but important.

Proposition 4.1.1. The execution trace T (ξ) is uniquely defined by the program state ξ.

Initial state and input buffer

We have seen in Examples 4.1.3 and 4.1.4 that the CFIs can make the instructions of the
program executed in different orders, depending on the initial state of the program.
So by executing the program under different initial states, we can observe different
execution traces. We will characterize the changing the program’s state by an update
on the subset of memory space, next called the input message buffer.

Formalization The input message buffer is a subset Buf (Addrs so that by update
the state ξ by any value v of Buf (namely the updated state is ξ[Buf ← v]), then we
can obtain different execution traces

T (ξ[Buf← v])

by changing the value v. By Proposition 4.1.1, the trace T (ξ[Buf← v]) depends only
on the state ξ[Buf← v].

In this thesis, we are interested in the update of the initial state by the environment.
Concretely, this update should be made by an exception. However, we note also that this
update must be taken before the observation of execution traces, and not within.

Example 4.1.6. We extract again from Example 4.1.4 a piece of codes and mark its
instructions as in Listing 4.8. This piece is relevant with changes in the received
message buffer whose address is stored in eax: bytes of the received message will be
compared with the constant string “HTTP”.

...
0x404f85 mov esi ,eax /* ins1 */
0x404f87 xor edx ,edx /* ins2 */
0x404f89 rep cmpsb [esi],[edi] /* ins3 */
0x404f8b pop edi /* ins4 */
...

Listing 4.8: Control-flow depends on the initial state

In executing this piece from the initial state where the instruction pointer points al-
ways to ins1 but the buffer (specified by eax and then also by esi) may contain

80 Chapter 4. Concrete interpretation

different values, we can observe the following execution traces (note that the charac-
ter a used below is not important, for example it is can be replaced by other character
different from {H, T, T, P}):

received message corresponding execution trace
“a...” ins1, ins2, ins3, ins4

“Ha...” ins1, ins2, ins3, ins3, ins4

“HTa...” ins1, ins2, ins3, ins3, ins3, ins4

“HTTa...” ins1, ins2, ins3, ins3, ins3, ins3, ins4

“HTTP...” ins1, ins2, ins3, ins3, ins3, ins3, ins4

We can also observe that these traces constitute a tree (cf. Figure 4.2) where each path
from the root to a leaf corresponds to an execution trace. The general form of this
tree, which will be defined later, is called the execution tree.

ins1

ins2

ins3

ins4 ins3

ins4 ins3

ins4 ins3

ins4

Figure 4.2: Simple execution tree

Example 4.1.7. We can observe that the CFIs are also trace-relative, that means it can
change the control flow or not depending on its position in a trace. For example, in
the piece of codes in Listing 4.8, if we consider a trace of form

ins1, ins2, ins3, ins3, ins3, ins3, . . .

which corresponds to inputs of form “HTT...”. Then the 4-th ins3 is indeed not a CFI
because the next executed instruction is always ins4.

4.2. Stepwise abstraction 81

4.2 Stepwise abstraction

Given a program P at the original state ξ and an input buffer Buf, the abstraction
from the execution traces to a labeled transition system consists of supporting objects:
execution tree, message tree, initial labeled transition system. The construction steps are
described as follows

execution
traces

execution
tree

message
tree initial LTS final LTS

First, by fixing some limit length n, we explore execution traces of P starting from
states ξ[Buf ← v] for all states v of Buf, so that the length of each traces is n (cf. Re-
mark 4.2.1).

Second, the set of execution traces forms naturally a tree, where the branching
occurs only at CFIs1, then this tree can be simplified to contain just such instructions.
This tree is called the execution tree where each path from the root to a leaf corresponds
to an execution trace.

Third, on the execution tree, each edge (i.e. branch) from a node describes im-
plicitly also the input-dependence condition for that the corresponding control flow
instruction takes the branch. We take explicitly this condition, then we obtain a new
tree from the execution tree where the edges are labeled by their corresponding con-
ditions, and each path from the root to a leaf corresponds to an execution trace. We
continue merging some vertices on this tree, so that the conditions on any path (from
the root to a leaf) are mutually independent, the result is called the message tree.

Fourth, because for each path in the message tree, the input-dependence conditions
are mutually independent, then this message tree can be converted naturally into a
labeled transition system, called the initial LTS, where

• the vertices are converted into the states, and the root becomes the initial state
whereas the leaves become the terminal states,

• the outgoing edges of any vertex become the transitions from the corresponding
state (of this vertex) where the edges conditions are letter of the LTS’s alphabet.

The initial LTS has form of a tree where each path from the initial state to a terminal
state corresponds to a class of input messages. And finally, the final LTS is simply the
normal form of the initial LTS.

Remark 4.2.1. Since we consider the program as a static sequence of assembly instruc-
tions (cf. Section 4.1.2), there are cases where the executed instruction is not in the
static sequence. In such a case, we stop the trace just before the outside instruction is
executed, and then the length of the trace may shorted than the limit n.

1We recall that CFI stands for control-flow instruction.

82 Chapter 4. Concrete interpretation

Why the final LTS is needed?

Since the the original LTS is abstracted directly from the execution traces of finite
length, there are some problems in using it directly to classify the input messages.

First, the original LTS is still very sophisticated, its number of states increases ex-
ponentially with the chosen limit length n of execution traces. The initial LTS has
about 2O(n) states where n is the limit length (cf. Example 4.2.1). Whereas the full
execution trace of the input parser of a program, for example wget, has more than
1000 instructions, but working on a labeled transition system of 2O(1000) states is im-
practical1. The final LTS, which is a normal form of the initial LTS, as we will see, is
much more smaller.

Second, even though the initial LTS is sophisticated, it represents very few in-
formation about how program parses the input message, concretely it gives a very
rough messages classification (cf. Example 4.2.2). Whereas the final LTS, because it
is a normal form of the initial LTS, is an observational prediction of the initial LTS.
That means it can predict the unobservable behaviors given observable behaviors in
the initial LTS.

Example 4.2.1. We can see in Figure 4.3 the initial labeled transition systems of wget
abstracted from the set of execution traces with the limit length is just 60.

Example 4.2.2. The LTS in Example 4.2.1 represents the information about the set of
execution traces where each of them is limited at the length of just 60 instructions
whereas the full trace is about 1000 instructions.

4.2.1 From execution traces to the execution tree

Let P be a program having the static form (notice that P is assumed to not contain
exception instructions)

P = [(ins1, addr1) , (ins2, addr2) , . . . , (insn, addrn)]

and Buf (Addrs be an input message buffer of P. The program P starts at a state ξ

where ξ (IP) = addr1, any execution trace T (ξ[Buf← v]) is limited by a limit length
n, namely only the prefix of length n is considered.

Proposition 4.2.1. Given two different execution traces

T1 = T (ξ[Buf← v1]) and T2 = T (ξ[Buf← v2])

obtained by changing value of Buf, then they have a unique common prefix t of form t = t · ε

1We should distinguish the static size of the parser and the dynamic size of an execution trace, the
static size is much smaller than the dynamic size. For example, the execution traces unroll the loops in
the static code, then a same piece of codes will be repeated multiple times.

4.2. Stepwise abstraction 83

0x
40

4f
89

: r
ep

 c
m

ps
b

by
te

 p
tr

 [
es

i],
 b

yt
e

pt
r

[e
di

]

0x
40

4f
89

: r
ep

 c
m

ps
b

by
te

 p
tr

 [
es

i],
 b

yt
e

pt
r

[e
di

]

{
H

 }

te
rm

in
al

!{
 H

 }

0x
40

4f
89

: r
ep

 c
m

ps
b

by
te

 p
tr

 [
es

i],
 b

yt
e

pt
r

[e
di

]

{
T

 }

te
rm

in
al

!{
 T

 }

0x
40

4f
8d

: j
z

0x
40

4f
94

{
T

 }

te
rm

in
al

!{
 T

 }

0x
40

4f
b2

: j
nz

 0
x4

04
fc

5{
P

 }

te
rm

in
al

!{
 P

 }

0x
40

4f
b2

: j
nz

 0
x4

04
fc

5

!{
 1

0
}

0x
40

4f
ba

: j
nz

 0
x4

04
fc

1
0x

40
4f

c3
: j

z
0x

40
4f

d3

{
10

 }

0x
40

4f
b2

: j
nz

 0
x4

04
fc

5

!{
 1

0
}

0x
40

4f
ba

: j
nz

 0
x4

04
fc

1
0x

40
4f

c3
: j

z
0x

40
4f

d3

{
10

 }

0x
40

4f
b2

: j
nz

 0
x4

04
fc

5

!{
 1

0
}

0x
40

4f
ba

: j
nz

 0
x4

04
fc

1
0x

40
4f

c3
: j

z
0x

40
4f

d3

{
10

 }

te
rm

in
al

!{
 1

0
}

0x
40

4f
ba

: j
nz

 0
x4

04
fc

1

{
10

 }

0x
40

4f
b2

: j
nz

 0
x4

04
fc

5!{
 1

0
13

 }

0x
40

4f
bf

: j
z

0x
40

4f
d9

{
13

 }

te
rm

in
al

{
10

 }

te
rm

in
al

!{
 1

0
} 0x

40
4f

ba
: j

nz
 0

x4
04

fc
1

{
10

 }

te
rm

in
al

!{
 1

0
13

 }

0x
40

4f
bf

: j
z

0x
40

4f
d9

{
13

 }

te
rm

in
al

{
10

 }

te
rm

in
al

!{
 1

0
13

 }

0x
40

4f
bf

: j
z

0x
40

4f
d9

{
13

 }

te
rm

in
al

{
10

 }

te
rm

in
al

!{
 1

3
}

te
rm

in
al

{
13

 }

te
rm

in
al

!{
 1

0
}

te
rm

in
al

{
10

 }

te
rm

in
al

!{
 1

3
}

te
rm

in
al

{
13

 }

te
rm

in
al!{

 1
0

}

te
rm

in
al

{
10

 }

te
rm

in
al

!{
 1

0
}

te
rm

in
al

{
10

 }

Fi
gu

re
4.

3:
In

it
ia

ll
ab

el
ed

tr
an

si
ti

on
sy

st
em

of
wg

et
w

it
h

ch
os

en
fin

it
e

le
ng

th
of

60

84 Chapter 4. Concrete interpretation

where ε is a control flow instruction, in others word we can write

T1 = t · ε · ε1 · · · and T2 = t · ε · ε2 · · ·

where ε1 6= ε2.

Proof. Because there is no exception instruction in P, then the difference between T1
and T2 occurs only after a control flow instruction. That gives the result.

Remark 4.2.2. The assertion of Proposition 4.2.1 is not true if P has not a static form,
i.e. P contains self-modifying codes. For example, the instructions in the prefix t
can modify the next executed instruction, that means we can obtain ξ1 (IP) 6= ξ2 (IP)
where ins is not necessarily a control flow instruction.

The algorithm in Listing 4.9 constructs an execution tree from a set of execution
traces. The following proposition is a direct corollary of Proposition 4.2.1.

ExecTreeConstruction(set of execution traces Ts) {
T ← a trace of Ts;
ExecTree← T; Ts← Ts \ {T};
foreach (T ∈ Ts) {

εtree ← root (ExecTree); εtrace ← head (T);
while (εtree = εtrace) {

ε′trace ← next_ins (T, ε); /* return the instruction after εtrace in T */
if (ε′trace 6= NULL) {

if (edge εtree → ε′trace /∈ ExecTree) {
add a vertex of label ε′trace into ExecTree;
add the edge εtree → ε′trace into ExecTree;

}
εtree ← ε′trace; εtrace ← ε′trace

}
else break;

}
}

}

Listing 4.9: Execution tree construction algorithm

Proposition 4.2.2. The ExecTree constructed by the algorithm in Listing 4.9 in a tree where
the branching occurs only at CFI labeled vertices, and each path from the root to a leaf is an
execution trace.

Example 4.2.3. Consider the program P having static form [ins1, ins2, ins3, ins4] as
given in Listing 4.8 (cf. Example 4.1.7). The input message buffer Buf beginning from
some address given by ξ (esi) (cf. also Example 4.1.4). Then it can be verified that, by
changing the value of Buf, there are only following 4 execution traces

ins1 → ins2 → ins3 → ins4

ins1 → ins2 → ins3 → ins3 → ins4

4.2. Stepwise abstraction 85

ins1 → ins2 → ins3 → ins3 → ins3 → ins4

ins1 → ins2 → ins3 → ins3 → ins3 → ins3 → ins4

and the execution tree constructed by the algorithm in Listing 4.9 from these traces is
given in Figure 4.2.

Example 4.2.4. A real-world execution tree constructed from all execution traces of
wget, by modifying the value of the input message, is given in Figure 4.4. The limit
length n of traces is chosen as 25.

Execution trace and tree simplification

We have observed in Example 4.1.7 that some control flow instructions are trace-
relative, the definition of this notion is given in the following proposition.

Example 4.2.5. In Example 4.1.7, the CFI ins3 is branchable or not depending on its
position on a trace. For example, in a trace of form

ins1 · ins2 · ins3 · ins3 · ins3 · ins3 · · ·

then the first 3 occurrences of ins3 are branchable but the fourth is not because the
executed instruction after this occurrence is always ins4.

Definition 4.2.1 (Branchable CFI). Given a trace T = T (ξ[Buf← v[), a control flow in-
struction cfi in T is called branchable if there exists another trace T′ = T (ξ[Buf← v])
so that T and T′ has a common prefix t = t · cfi as

T = t · cfi · ε · · · and T′ = t · cfi · ε′ · · ·

where ε 6= ε′.

Example 4.2.6. The traces from the root to the leaves in Figure 4.5 are traces of wget
(where the chosen limit length is 50) but only input-dependent CFI(s) are kept. The
ones in orange are branchable, whereas ones in blue are not.

From the definition of branchable control flow instructions, we have the notion of
simplified trace.

Definition 4.2.2 (Simplified trace). Given trace T, a trace constructed from T by keep-
ing only branchable control flow instructions in T and the last instruction, is called a
simplified trace derived from T, and denoted by Simple (T).

Because the branching occurs only at the branchable instructions, we have immedi-
ately Proposition 4.2.3. Moreover, the algorithm in Listing 4.9 can be applied directly
for the corresponding set of simplified traces; consequently it gives a tree, called the
simplified execution tree.

86 Chapter 4. Concrete interpretation

<0x404f89: rep cmpsb byte ptr [esi], byte ptr [edi]>

<0x404f89: rep cmpsb byte ptr [esi], byte ptr [edi]>

0

<0x404f8b: pop edi>

<0x404f89: rep cmpsb byte ptr [esi], byte ptr [edi]>

0

<0x404f8b: pop edi>

<0x404f89: rep cmpsb byte ptr [esi], byte ptr [edi]>

0

<0x404f8b: pop edi>

<0x404f8b: pop edi>

<0x404f8c: pop esi>

<0x404f8d: jz 0x404f94>

0

<0x404f94: test edx, edx> <0x404f8f: sbb edx, edx>

<0x404f96: jnz 0x404fe1>

<0x404f98: mov ecx, ebx>

<0x404f9a: sub ecx, eax>

<0x404f9c: cmp ecx, 0x2>

<0x404f9f: jl 0x404fa4>

<0x404fa4: lea edx, ptr [ebx+ebp*1-0x2]>

<0x404fa8: cmp eax, edx>

<0x404faa: mov bl, 0xa>

<0x404fac: jnb 0x404fca>

<0x404fae: mov edi, edi>

<0x404fb0: cmp byte ptr [eax], bl>

<0x404fb2: jnz 0x404fc5>

0

<0x404fc5: inc eax>

<0x404fc6: cmp eax, edx>

<0x404fc8: jb 0x404fb0>

<0x404fb0: cmp byte ptr [eax], bl>

<0x404fb2: jnz 0x404fc5>

0

<0x404f8c: pop esi>

<0x404f8d: jz 0x404f94>

1

<0x404f8f: sbb edx, edx>

<0x404f91: sbb edx, 0xffffffff>

<0x404f94: test edx, edx>

<0x404f96: jnz 0x404fe1>

0

<0x404fe1: pop ebp>

<0x404fe2: pop ebx>

<0x404fe3: ret >

<0x412d8c: add esp, 0xc>

<0x412d8f: test eax, eax>

<0x412d91: mov dword ptr [esp+0x14], eax>

<0x412d95: jz 0x412ddb>

<0x412d97: mov ebx, eax>

<0x412d99: sub ebx, edi>

<0x412d9b: sub ebx, esi>

<0x412d9d: jns 0x412db6>

<0x412db6: test ebx, ebx>

<0x412db8: jz 0x412e90>

<0x412e90: mov byte ptr [edi+esi*1], 0x0>

<0x412e94: mov eax, esi>

<0x412e96: pop edi>

<0x412e97: pop esi>

<0x404f8c: pop esi>

<0x404f8d: jz 0x404f94>

1

<0x404f8f: sbb edx, edx>

<0x404f91: sbb edx, 0xffffffff>

<0x404f94: test edx, edx>

<0x404f96: jnz 0x404fe1>

0

<0x404fe1: pop ebp>

<0x404fe2: pop ebx>

<0x404fe3: ret >

<0x412d8c: add esp, 0xc>

<0x412d8f: test eax, eax>

<0x412d91: mov dword ptr [esp+0x14], eax>

<0x412d95: jz 0x412ddb>

<0x412d97: mov ebx, eax>

<0x412d99: sub ebx, edi>

<0x412d9b: sub ebx, esi>

<0x412d9d: jns 0x412db6>

<0x412db6: test ebx, ebx>

<0x412db8: jz 0x412e90>

<0x412e90: mov byte ptr [edi+esi*1], 0x0>

<0x412e94: mov eax, esi>

<0x412e96: pop edi>

<0x404f8c: pop esi>

<0x404f8d: jz 0x404f94>

1

<0x404f8f: sbb edx, edx>

<0x404f91: sbb edx, 0xffffffff>

<0x404f94: test edx, edx>

<0x404f96: jnz 0x404fe1>

0

<0x404fe1: pop ebp>

<0x404fe2: pop ebx>

<0x404fe3: ret >

<0x412d8c: add esp, 0xc>

<0x412d8f: test eax, eax>

<0x412d91: mov dword ptr [esp+0x14], eax>

<0x412d95: jz 0x412ddb>

<0x412d97: mov ebx, eax>

<0x412d99: sub ebx, edi>

<0x412d9b: sub ebx, esi>

<0x412d9d: jns 0x412db6>

<0x412db6: test ebx, ebx>

<0x412db8: jz 0x412e90>

<0x412e90: mov byte ptr [edi+esi*1], 0x0>

<0x412e94: mov eax, esi>

<0x404f91: sbb edx, 0xffffffff>

<0x404f94: test edx, edx>

<0x404f96: jnz 0x404fe1>

1

<0x404fe1: pop ebp>

<0x404fe2: pop ebx>

<0x404fe3: ret >

<0x412d8c: add esp, 0xc>

<0x412d8f: test eax, eax>

<0x412d91: mov dword ptr [esp+0x14], eax>

<0x412d95: jz 0x412ddb>

<0x412d97: mov ebx, eax>

<0x412d99: sub ebx, edi>

<0x412d9b: sub ebx, esi>

<0x412d9d: jns 0x412db6>

<0x412db6: test ebx, ebx>

<0x412db8: jz 0x412e90>

<0x412e90: mov byte ptr [edi+esi*1], 0x0>

Figure 4.4: Execution tree of wget with the finite length of 25

4.2. Stepwise abstraction 87
<

0x
40

4f
89

: r
ep

 c
m

ps
b

by
te

 p
tr

 [
es

i],
 b

yt
e

pt
r

[e
di

]>

<
0x

40
4f

89
: r

ep
 c

m
ps

b
by

te
 p

tr
 [

es
i],

 b
yt

e
pt

r
[e

di
]>

0

<
0x

40
4f

8d
: j

z
0x

40
4f

94
>

1

<
0x

40
4f

89
: r

ep
 c

m
ps

b
by

te
 p

tr
 [

es
i],

 b
yt

e
pt

r
[e

di
]>

0

<
0x

40
4f

8d
: j

z
0x

40
4f

94
>

1

<
0x

40
4f

89
: r

ep
 c

m
ps

b
by

te
 p

tr
 [

es
i],

 b
yt

e
pt

r
[e

di
]>

0

<
0x

40
4f

8d
: j

z
0x

40
4f

94
>

1

<
0x

40
4f

8d
: j

z
0x

40
4f

94
>

0

<
0x

40
4f

b2
: j

nz
 0

x4
04

fc
5>

0

<
0x

40
4f

96
: j

nz
 0

x4
04

fe
1>

1

<
0x

40
4f

b2
: j

nz
 0

x4
04

fc
5>

0

<
0x

40
4f

b2
: j

nz
 0

x4
04

fc
5>

0

<
0x

40
4f

b2
: j

nz
 0

x4
04

fc
5>

0

<
0x

40
4f

b2
: j

nz
 0

x4
04

fc
5>

0

<
0x

40
4f

b2
: j

nz
 0

x4
04

fc
5>

0

<
0x

40
4f

ba
: j

nz
 0

x4
04

fc
1>

1

<
0x

40
4f

b2
: j

nz
 0

x4
04

fc
5>

0

<
0x

40
4f

ba
: j

nz
 0

x4
04

fc
1>

1

<
0x

40
4f

96
: j

nz
 0

x4
04

fe
1>

0

<
0x

40
4f

96
: j

nz
 0

x4
04

fe
1>

0

<
0x

40
4f

96
: j

nz
 0

x4
04

fe
1>

0

<
0x

40
4f

c3
: j

z
0x

40
4f

d3
>

0

<
0x

40
4f

bf
: j

z
0x

40
4f

d9
>

1

<
0x

40
4f

b2
: j

nz
 0

x4
04

fc
5>

0

<
0x

40
4f

c3
: j

z
0x

40
4f

d3
>

0

<
0x

40
4f

bf
: j

z
0x

40
4f

d9
>

1

<
0x

40
4f

c3
: j

z
0x

40
4f

d3
>

0

Fi
gu

re
4.

5:
Ex

ec
ut

io
n

tr
ee

w
he

re
on

ly
C

FI
(s

)
in

tr
ac

es
ar

e
ke

pt

88 Chapter 4. Concrete interpretation

Proposition 4.2.3. Given a simplified trace s, there is a unique execution trace T so that
Simple (T) = s.

The simplified execution tree can be obtained directly from the execution tree by
reducing maximal unbranched paths on the tree (cf. Remark 4.2.3). Concretely, for each
unbranched path

• add a direct edge from the head to the tail if the head is a branchable CFI,

• if such an edge is added then remove all vertices in the path which are not
adjacent with the newly added edge, otherwise remove all vertices (in the path)
except the tail.

Remark 4.2.3. A maximal unbranched path is a longest path so that except the head or
the tail, all vertices in the path are unbranchable CFI(s), so it can be a path either

1. between two consecutive branchable CFI(s), or

2. between the root and an branchable CFI (but there is no other branchable CFI
between), or

3. between a branchable CFI and a leaf (but there is no other branchable CFI be-
tween).

Example 4.2.7. The tree given in Figure 4.6 is the simplified execution tree of P. It can
be constructed from simplified traces

ins3 → ins4

ins3 → ins3 → ins4

ins3 → ins3 → ins3 → ins4

ins3 → ins3 → ins3 → ins3 → ins4

Or directly from the execution tree of P (cf. Figure 4.2) by observing that there is only
a reducible maximal unbranched path

ins1 → ins2 → ins3

because the head ins1 is not branchable, then there is no newly added edge, and all
vertices in the path (except the tail) are removed.

Result Since the branching occurs only at branchable CFI(s), by Proposition 4.2.2,
the simplified execution tree has a similar property as the execution tree: each path
from the root to the leaf corresponds to a unique execution trace, then each path
corresponds to a unique class of messages. The result of this first step is the simplified
execution tree, which is called shortly as the execution tree for the next step, and
denoted by E (P).

4.2. Stepwise abstraction 89

ins3

ins4 ins3

ins4 ins3

ins4 ins3

Figure 4.6: Simplified execution tree of P

4.2.2 From the execution tree to the message tree

In the execution tree, an edge starts always from a branchable CFI (which is called the
source CFI of the edge). By Proposition 4.1.1, the branching depends only on the value
of the input buffer Buf. Then we construct the message tree directly from the execu-
tion tree E (P) by labeling each edge with the input-dependence conditions making
the source branchable CFI following the trace containing this edge. The message tree
is denoted byM (P).
Example 4.2.8. The tree in Figure 4.7 is the message tree constructed from the (sim-
plified) execution tree in Figure 4.6. We use the subscript index (insi

3 and insj
4) to

distinguish different occurrences of the same instruction ins3 and ins4.

ins1
3

ins1
4 ins2

3

ins2
4 ins3

3

ins3
4 ins4

3

Bu
f[0
] 6=

H Buf[0] =
H

Bu
f[1
] 6=

T Buf[1] =
T

Bu
f[2
] 6=

T Buf[2] =
‘T

Figure 4.7: Message treeM (P) of P

Remark 4.2.4. Hereafter, when we say a path in the message tree, we mean that this is
a path from the root to some leaf.

Local and path conditions

We observe that each occurrence of (branchable) CFI on the execution tree has a
branching condition which depends on only a subset of the input message buffer

90 Chapter 4. Concrete interpretation

Buf. For example the branching condition of the occurrence ins1
3 depends only the

value of {Buf[0]} (Buf. We declare a hypothesis that the latter reasoning bases on.

Hypothesis 1 (Static dependency). Given a (not leaf) node in the message tree, then

• the branching conditions of the corresponding CFI depend on a fixed subset of
the input message buffer Buf, and

• each branching condition (of this CFI) is also fixed.

In the general cases, the assumption that the each occurrence of a CFI in the mes-
sage treeM (P) must depend on a fixed subset of Buf is not true (cf. Example 4.2.9).
But practically, it is true for many parsers, for example all finite state machine parsers
satisfy this assumption.

Example 4.2.9. Let us consider the piece of codes in Listing 4.10, the input message
buffer is at [ds:m], the first CFI depends on only the first byte of the buffer (and then
it validates the hypothesis). But the second CFI is not because the byte of the input
buffer that it depends on, is determined from the value of the first byte of the buffer.
Namely, if the value of the first byte is 3 then the CFI depends on the 3-th byte of the
input buffer, if the value is 4 then the CFI depends on the 5-th byte, and so on.

0x400500 movzx rcx , byte [ds:m]
0x400508 xor eax , eax
0x40050a cmp rcx , 0x1
0x40050e je 0x400526 /* first CFI */
0x400510 movzx ecx , byte [ds:rcx+m]
0x400517 mov eax , 0x3
0x40051c cmp ecx , 0x2
0x40051f je 0x400530 /* second CFI */

Listing 4.10: Indirect dependency

Given the validity of Hypothesis 1, for each vertex i (i.e occurrence of a CFI)
which is not a leaf, let Buf (i) denote the subset of Buf that the branching conditions
of the corresponding CFI depends on. The condition labeled on each outgoing edge
of i→ i′ is a subset of

BytesBuf(i)

and is called a local condition of v, denoted by C (i→ i′).

Remark 4.2.5. Such a condition C is a subset of BytesB for some subset B ⊆ Buf, we use
the notation D (C) to denote the domain of any element of C, and call also D (C) the
domain of C. For example, D (C (i→ i′)) = Bufi, or Bufi is the domain of C (i→ i′).

Proposition 4.2.4. Given a (not leaf) vertex i in the message tree, let i→ i1, . . . , i→ in be
outgoing edges of i, then

∪n
i=1C (i→ ii) = BytesBuf(i)

and C (i→ ii) ∩ C
(
i→ ij

)
= ∅ for all i 6= j.

4.2. Stepwise abstraction 91

Proof. Any element of BytesBuf(i) makes the corresponding CFI of i branches into a
outgoing edges, that gives immediately the result.

For any path T = i1 → i2 → · · · → in−1 → in, the conjunction

C (i1 → i2) ∧ C (i2 → i3) ∧ · · · ∧ C (in−1 → in)

is called the path condition [88] of T, and denoted by C (T). The following proposition
is a direct corollary of Hypothesis 1.

Proposition 4.2.5. The path condition C (T) of a path T is unique.

Example 4.2.10. Consider the message tree in Figure 4.7 and let · · · → i denote the
path from the root to the leaf i. We have some path conditions

C
(
· · · → ins4

3

)
= {Buf[0] 7→ h} ∧ {Buf[1] 7→ t} ∧ {Buf[2] 7→ t}

C
(
· · · → ins3

4

)
= {Buf[0] 7→ h} ∧ {Buf[1] 7→ t} ∧ (Buf[2] 6= t})

where (Buf[2] 6= t}) stands for the set BytesBuf[0] \ {Buf[0] 7→ h}.
Since each local condition C (ii → ii+1) is a subset of BytesBuf(ii) then the path

condition C (T) is also a subset of

BytesBuf(i1)∪Buf(i2)∪···∪Buf(in−1)

We have the following proposition

Proposition 4.2.6. Given a path T = i1 → i2 → · · · → in−1 → in then the product

C (T)× BytesBuf\∪
n−1
k=1Buf(ik)

is the set of all values v of Buf so that T = Simple (T (ξ[Buf← v])), and denoted C[T].

Proof. The path T depends only the values of bytes at ∪n−1
i=1 Buf (ii), consequently

the values of bytes at addresses in Buf \ ∪n−1
i=1 Buf (ii) are independent from the path

condition C (T). And that gives the result.

Each path T determines a subset C[T] of the set of all input messages BytesBuf. The
following proposition asserts that all paths in the message tree determine actually a
partition in BytesBuf.

Proposition 4.2.7. Let T1, . . . , Tn be all paths of the message tree, then

∪n
i=1C[T] = BytesBuf

moreover C[Ti] ∩ C[Tj] = ∅ for all Ti 6= Tj.

Proof. The result follows directly from Proposition 4.2.4.

92 Chapter 4. Concrete interpretation

Path condition normalization

Given a path T = i1 → · · · → in, we cannot represent directly its condition C (T)
under the conjunction form

C (T) = C (i1 → i2) ∧ C (i2 → i3) ∧ · · · ∧ C (in−1 → in)

into the cartesian product

C (i1 → i2)× C (i2 → i3)× · · · × C (in−1 → in)

because there may exists vertices ii, ij where Buf (ii)∩Buf
(
ij
)
6= ∅ (cf Example 4.2.11).

Consequently, the condition C[T] cannot be represented directly as a cartesian product
of local conditions.

Example 4.2.11. In observing the message tree of wget with limit length to 60, we can
observe a path

i1
Buf[0]=H−−−−−→ . . .

Buf[3]=P−−−−−→ i5
Buf[4]=\n−−−−−→ i6

Buf[5] 6=\n−−−−−→ i7
Buf[5]=\r−−−−−→ i8

where

i1 = i2 = i3 = (rep cmpsb [esi],[edi], 0x40489)

i4 = (jz 0x404f94, 0x404f8d)

i5 = (jnz 0x404fc5, 0x404fb2)

i6 = (jnz 0x404fc1, 0x404fba)

i7 = (jz 0x404fd3, 0x404fc3)

i8 = (cmp [eax+0x2], bl, 0x404fbc)

The condition of this path is well represented under the conjunction form

(Buf[0] = H) ∧ · · · ∧ (Buf[3] = P) ∧ (Buf[4] = \n) ∧ (Buf[5] 6= \n) ∧ (Buf[5] = \r)

but not under cartesian product form because the following product is nonsense

(Buf[5] 6= \n)× (Buf[5] = \r)

Our goal is to represent the condition C[T] for any path T in the message tree under
a catersian product, because such a representation shows the independent effects of
subsets of Buf to the form of T. Let Buf (M) be the union of all Buf (i) where i is a
vertex of the message treeM (P).

Definition 4.2.3 (Address closure). Let RM ⊆ Buf (M) × Buf (M) be the relation

4.2. Stepwise abstraction 93

defined by the reflexive-symmetric-transitive closure of the relation R(
a, a′

)
∈ R⇐⇒ ∃ vertex i : a, a′ ∈ Buf (i)

then RM is called the address closure relation of the message treeM (P).

The address closure relation RM is obviously an equivalence relation. Thus RM
creates a partition in Buf (M). The following result is derived directly from the defi-
nition of RM.

Lemma 4.2.1. Given a vertex i of the message tree, then Buf (i) is included in a unique class
of the partition created by RM in Buf (M).

The address closure R then gives an important property about the representation
of a path condition under a cartesian product.

Proposition 4.2.8. Let {Buf1, Buf2, . . . , Bufn} be the partition of Buf (M) created by the ad-
dress closure relationRM. For any condition C[T], let C[T]|Bufi

denote the natural restriction
of C[T] on the equivalence class Bufi, then

C[T] = C[T]|Buf1
× C[T]|Buf2

× · · · × C[T]|Bufn
× BytesBuf\Buf(M)

Proof. Consider the path T = i1 → i2 → · · · → ik, the path condition C (T) has its
conjunction form

C (T) = C (i1 → i2) ∧ C (i2 → i3) ∧ · · · ∧ C (ik−1 → ik)

and C[T] = C (T)× BytesBuf\∪
k−1
l=1 Buf(il). From the conjunction form of C (T), we ob-

serve that if there is a partition of Buf so that any Buf (il) is included completely in a
unique class of this partition, then C[T] is the cartesian product of its restrictions on
the classes of the partition. Since the partition {Buf1, Buf2, . . . , Bufn} is created from
the address closure relation R, the result follows Lemma 4.2.1.

Example 4.2.12. We reconsider the path T in Example 4.2.11, its conjunction form is

(Buf[0] = H) ∧ · · · ∧ (Buf[3] = P) ∧ (Buf[4] = \n) ∧ (Buf[5] 6= \n) ∧ (Buf[5] = \r)

The restriction of (Buf[5] 6= \n)∧ (Buf[5] = \r) in Buf[5] is simply (Buf[5] = \r), then
we have the product form of C[T] as

(Buf[0] = H)× · · · × (Buf[3] = P)× (Buf[4] = \n)× (Buf[5] = \r)× BytesBuf\{0,1,2,3,4,5}

Message tree normalization

We obtain now an abstract representation any path T in the message tree M (P) as
the cartesian product of the condition C[T]

C[T] = C[T]|Buf1
× C[T]|Buf2

× · · · × C[T]|Bufn
× BytesBuf\Buf(M)

94 Chapter 4. Concrete interpretation

where BytesBuf\Buf(M) is common to all paths and then we will implicitly omit it. Our
next goal is to construct an abstract message tree, from the abstract representation
above of paths. Some coming constructions rely on the following hypothesis.

Hypothesis 2 (Static order). For any path i1 → i2 → · · · → ik in the message tree
M (P), let Bufo(k) denote the equivalence class of R (M) containing Buf (ik), then for
any l ≤ l′ we have o (l) ≤ o (l′).

Intuitively, Hypothesis 2 assumes that the order of parsed addresses in the mes-
sage buffer Buf does not change over different execution traces. In other words, the
message is read from left to right in whatever execution trace. In general cases, this
hypothesis is not true (cf. Example 4.2.13 below and also Example 4.2.9), but practi-
cally many input message parsers satisfy this hypothesis.

Example 4.2.13. The piece of codes in Listing 4.11 demonstrates that the order of parsed
addresses can change over different execution traces. Indeed, let Buf be the input
message buffer at the address 0x601040 then we observe two traces, starting from i1

i1
Buf[0]=1−−−−−→ i2

Buf[1]=2−−−−−→ i3
Buf[2]=3−−−−−→ . . .

i1
Buf[0] 6=1−−−−−→ i′2

Buf[2]=3−−−−−→ i′3
Buf[1]=4−−−−−→ . . .

where the orders of parsed addresses are different. It is Buf[0], Buf[1], Buf[2] in the
first trace, and is Buf[0], Buf[2], Buf[1] in the second one.
0x400512 movsx edi , byte [ds:0 x601040] /* first byte */
0x40051a cmp edi , 0x1
0x400520 jne 0x400570 /* i1 */
0x400526 movsx eax , byte [ds:0 x601041] /* second */
0x40052e cmp eax , 0x2
0x400533 jne 0x400564 /* i2 */
0x400539 movsx eax , byte [ds:0 x601042] /* third */
0x400541 cmp eax , 0x3
0x400546 jne 0x400558 /* i3 */
...
0x400570 movsx eax , byte [ds:0 x601042] /* third */
0x400578 cmp eax , 0x3
0x40057d jne 0x4005ae /* i′2 */
0x400583 movsx eax , byte [ds:0 x601041] /* second */
0x40058b cmp eax , 0x4
0x400590 jne 0x4005a2 /* i′3 */

Listing 4.11: Dynamic order parsing

Given the validity of Hypothesis 2, the construction of the abstract message bases
on the following result.

Proposition 4.2.9. Given two different paths T1 and T2 with conditions

C[T1] = C[T1]|Buf1
× C[T1]|Buf2

× · · · × C[T1]|Bufn

4.2. Stepwise abstraction 95

C[T2] = C[T2]|Buf1
× C[T2]|Buf2

× · · · × C[T2]|Bufn

then the two conditions have a unique common prefix, in other words they have form

C[T1] = C[T]|Buf1
× · · · C[T]|Bufi

× C[T1]|Bufi+1
× · · · × C[T1]|Bufn

C[T2] = C[T]|Buf1
× · · · C[T]|Bufi

× C[T2]|Bufi+1
× · · · × C[T2]|Bufn

where C[T1]|Bufi+1
∩ C[T2]|Bufi+1

= ∅.

Proof. Since T1 and T2 are different path in the message treeM (P), they have a unique
common prefix and we can write them as

T1 = i1 → · · · → ij → ij+1 → . . .

T2 = i1 → · · · → ij → i′j+1 → . . .

where i1 → · · · → ij is the common prefix and ij+1 6= i′j+1. By Hypothesis 2,
there will be equivalence classes Buf1, Buf2, . . . , Bufk (for some k), so that they contains
Buf (i1) , . . . , Buf

(
ij
)
. Because i1 → · · · → ij is the common prefix, then C (T1) and

C (T2) have the same conjunction

C (i1 → i2) ∧ · · · ∧ C
(
ij−1 → ij

)
but C

(
ij → ij+1

)
∩ C

(
ij → i′j+1

)
= ∅. Hence, there is some 0 ≤ i ≤ k− 1 so that

C[T1]|Bufl
= C[T2]|Bufl

for l = 0, 1, . . . , i but C[T1]|Bufi+1
∩ C[T2]|Bufi+1

= ∅.

The algorithm in Listing 4.12 constructs a new tree MsgTree (called the normaliza-
tion message tree) from the set cartesian products of conditions C[T] for all path T of
the message treeM (P). The correctness of the algorithm is given by Proposition 4.2.9,
also from the construction of MsgTree, we have the following result.

Proposition 4.2.10. Let TN be a path (from the root r to a leaf) in MsgTree

TN = r
C1−→ s2

C2−→ . . . Cn−→ sn+1

then there is a unique path T in the messageM (P) so that

C[T] = C1 × C2 × · · · × Cn

and vice-versa.

MsgTreeConstruction(Cs = {C[T] = C[T]|Buf1
× · · · × C[T]|Bufn

| T is a path inM (P)}) {
MsgTree← a single vertex r;

96 Chapter 4. Concrete interpretation

foreach (C[T]|Buf1
× · · · × C[T]|Bufn

∈ Cs) {
i← 1; s← r;

while (s
C[T]|Bufi−−−−−→ s′ is an edge of MsgTree) {

s← s′; i← i + 1;
}
while (i 6= n) {

s′ ← new vertex;

add s′ and edge s
C[T]|Bufi−−−−−→ into MsgTree;

i← i + 1; s← s′;
}

}
}

Listing 4.12: Normalized message tree construction algorithm

The following proposition restates a property about the local conditions at vertices
applied to the message tree (cf. Proposition 4.2.4), but now applied to the normalized
message tree.

Proposition 4.2.11. Given a (not leaf) vertex s in MsgTree, let s
C1−→ s1, . . . , s Cn−→ sn be

outgoing edges of s, then the conditions Ci have the same domain (cf. Remark 4.2.5)

D (C1) = · · · = D (Cn) = Ds

Moreover Ci ∩ Cj = ∅ for all i 6= j, and ∪n
i=1Ci = BytesDs .

Example 4.2.14. The normalized message tree of wget with limit length 60 is given
in Figure 4.8. We can observe that if the branchable CFI(s) are direct (i.e. the target
are specified in the instruction) then the execution tree is always a binary tree, but
even in this case the message tree is not a binary tree in general.

Result By Proposition 4.2.10, the normalized message tree MsgTree gives the same
partition of the set BytesBuf as the message tree M (P) (cf. Proposition 4.2.6): each
path corresponds to a unique class of messages. But MsgTree has an important property
that the local conditions in any path are independent, the tree is the result of this second
step and is denoted also by M (P) where the meaning is clear from the context. It
is worth noting that the normalized tree is abstract, it does not keep the notation of
control flow instructions in the vertices.

4.2.3 From the message tree to the initial LTS

In the message tree, we now know that each edge is labeled by a condition, which is
a subset of BytesB for some subset of parsed addresses B ⊆ Buf. By Hypothesis 2, we
have assumed that the order of parsed addresses is fixed, in other words this order is
included implicitly in the message tree. So we can omit the addresses in each subset

4.2. Stepwise abstraction 97

s1

s2 s3

s4s5

s6s7

s8 s9

s10 s11

s12 s13 s14 s15 s16

Bu
f[0
] 6=

H Buf[0] =
H

Buf[1] 6=
TBu

f[1
] =

T

Buf[2] 6=
TBu

f[2
] =

T

Bu
f[3
] 6=

P Buf[3] =
P

Bu
f[4
] 6=

\n
Buf[4] =

\n

Bu
f[

5]
=
\n

Buf[5] 6=
\n Bu

f[
5]
=
\n

Buf
[5]

=
\r

Buf[5] /∈
[\n, \r}

Figure 4.8: Normalized message tree of wget with limit length 60

of parsed addresses B and keep only their values, so the condition on each edge is
now a subset of values of Bytes|B|. By this way, we transform the message tree into a
labeled transition system A〈Q, ι, Σ, δ〉 where

• Q consists of all vertices of the message tree,

• ι is the root of the tree,

• Σ consists of all conditions on edges of the message tree, and

• δ (s, c) = s′ if and only if there is an edge s c−→ s′ in the message tree.

and we can also observe that the terminal states correspond to the leaves of the mes-
sage tree. Since each path of the messages tree corresponds to a unique class of
messages, each path from the initial state to a terminal state in the initial LTS corresponds to
a unique class of messages. This transformed LTS is the result of this abstraction step,
and we call it the initial LTS, and denote it Ai (P).
Example 4.2.15. The LTS in Figure 4.9 is transformed from the message tree in Fig-
ure 4.8. The initial state is s1, the terminal states are ⊥-labeled.

4.2.4 From the initial to the final LTS

In this step, we simply apply the algorithms in Section 3.3 to search for π-equivalences
in the initial LTS and construct a normal form. This normal form is called the final

98 Chapter 4. Concrete interpretation

s1

⊥1 s3

⊥2s5

⊥3s7

⊥4 s9

s10 s11

⊥5 ⊥6 ⊥7 ⊥8 ⊥9

!H H

!TT

!TT

!P P

!\n
\n

!\
n \n \n

\r
![\n, \r}

Figure 4.9: Initial LTS of wget with limit length 60

LTS, denoted by An (P) and it is also the result of this abstraction step.

Example 4.2.16. By the stepwise abstraction, the initial LTS in Figure 4.10a is con-
structed from the execution tree of wget where the execution traces are limited to
length 65. We can verify that the following equivalence

∼= {{s1}, {⊥1}, {s2}, {⊥2}, {s3}, {⊥3}, {s4}, {⊥4}, {s5, s6,⊥5},
{s7, s8}, {⊥7,⊥10}, {⊥8,⊥11}, {⊥9,⊥12}}

is a π-equivalence. The quotient of the initial LTS by ∼ is the quotient LTS in Fig-
ure 4.10b. The final LTS (i.e. the normal form of the initial LTS) is shown in Fig-
ure 4.10c (for illustrative purpose, we leave a terminal state in this final LTS, theoreti-
cally this state can be merged into any other state (cf. Definition 3.2.2)).

4.2.5 Message classification by the final LTS

We recall that each (finite) path from the initial state to a terminal state in the ini-
tial LTS Ai (P) corresponds to a distinguished class of messages, namely to a distin-
guished subset of BytesBuf.

In the final LTS An (P), which is an observational prediction of Ai (P), because
there may exists loop-back vertices (cf. Figure 4.10c) then the paths from the initial
state are infinite in general. Each path in An (P) still corresponds to a unique class
of messages but now we can get an arbitrary refined classification depending the length
of the path. More precisely, a (finite) prefix of a path corresponds to a unique class
of messages, but the extensions of this prefix will continue classify this class: each
extension corresponds to a unique subclass of messages.

4.2. Stepwise abstraction 99

s1

⊥1 s2

⊥2s3

⊥3s4

⊥4 s5

s6 s7

⊥5 s8 ⊥7 ⊥8 ⊥9

⊥10 ⊥11 ⊥12

!H H

!TT

!TT

!P P

!\n \n

!\
n \n \n

\r
![\n, \r}

\n

\r
![\n, \r}

(a) Initial LTS

s1

⊥1 s2

⊥2s3

⊥3s4

⊥4 s5 6⊥5

s7 8

⊥7 10 ⊥8 11 ⊥9 12

!H H

!TT

!TT

!P P

\n

!\n

\n

\r
![\n, \r}

(b) Quotient LTS

s1 s2 s3 s4 s5 6⊥5

s7 8⊥

H

!H

T

!T

T

!T

P

!P \n !\n

!{\n, \r}
\n
\r

(c) Final LTS

Figure 4.10: LTS(s) of wget with limit length 65

The reasoning about the format of messages on An (P), as illustrated in Exam-
ple 4.2.17 and remark 4.2.6 below, does not look like the reasoning on the previous
work in the message format extraction [26, 28, 41, 45]. But in many cases we will get
a similar or even more precise result.

Example 4.2.17. We observe that the paths (from the initial state to the terminal state)
in this final LTS distinguish the following classes of messages

!H · Bytesn−1 H·!T · Bytesn−2

H · T·!T · Bytesn−3 H · T · T·!P · Bytesn−4

HṪ · T · P · (!\n)k · \n · \n · Bytesn−k−6 H · T · T · P · (!\n)k\̇n · \r · Bytesn−k−6

H · T · T · P · (!\n)k · \n·!{\n, \r} · Bytesn−k−6

100 Chapter 4. Concrete interpretation

for k = 0, 1, . . . and n is the length of Buf. So one can understand what is a well-
formatted message, as decided by wget, such a message should at least have it first 4
bytes as H · T · T · P (cf. Remark 4.2.6). Moreover, by considering the class

H · T · T · P · (!\n)k · \n · \n · Bytesn−k−6

we can see that how the program process its input messages it matches the first 4
bytes with H · T · T · P, and continue accept non \n characters, etc. This information
is obtained by the stepwise abstraction just described above, without manual efforts in
reverse engineering the program.

Remark 4.2.6. Obviously, this is only an incomplete information about the message.
As discussed in Section 3.2.3, the prediction capability of the final LTS depends also
on the observed information (i.e. the initial LTS), here because the limited length is
quite short then the final LTS cannot give complete information about the message.

Example 4.2.18. The final LTS considered in Example 4.2.17 gives incomplete informa-
tion about the format of messages because of the limited length of execution traces is
short. The final LTS given in Figure 4.11 whose the initial state is visualized by corn-
flower blue, is the result of the stepwise abstraction where the limited length of traces
is 90. It indeed gives a complete information which can be reverified by comparing
with the result of the manual reverse engineering.

Summary The stepwise abstraction procedure with different construction steps, from
execution traces to a final LTS, is the practical guide for our approach in message for-
mat classification. In the next section, we will present an implementation following
this guide and experimental results.

4.3 Implementation and experimentation

We have implemented a prototype following the stepwise abstraction procedure de-
scribed in Section 4.2. This prototype consists of about 16.500 lines of C/C++ code,
and it is available online at [16]. In this section, we first present some new technical
solutions implemented in the prototype. Next, we gives some experimentations on
real-world programs which test the theoretical results of the thesis.

4.3.1 Implementation

The practical realization of the stepwise abstraction procedure starts with the explo-
ration of all execution traces. This is known as the code coverage problem [22, 69, 118]
as discussed in Section 2.2.2. We do not use the IR code lifting (cf. Remark 4.3.1),
instead we reason directly on the semantics of x86/x86-64 instructions with help of
Pin Dynamic Binary Instrumentation (abbr. DBI) framework [104].

4.3. Implementation and experimentation 101

0x404f89: rep cmpsb byte ptr [esi], byte ptr [edi]

0x404f89: rep cmpsb byte ptr [esi], byte ptr [edi]

{ H }

terminal

!{ H }

0x404f89: rep cmpsb byte ptr [esi], byte ptr [edi]

{ T }

!{ T }

0x404f8d: jz 0x404f94

{ T }

!{ T }0x404fb2: jnz 0x404fc5
0x404fbf: jz 0x404fd9

{ P }

!{ P }

!{ 10 }

0x404fba: jnz 0x404fc1
0x404fc3: jz 0x404fd3

{ 10 } !{ 10 13 } { 13 }

{ 10 }

Figure 4.11: Final LTS of wget with limit length 90

Remark 4.3.1. The current approach [22, 118] uses the dynamic analysis with the help
of constraint solvers [69]. This is a modern trend and scalable whenever the con-
straints, which are constructed by lifting the binary codes to IR codes, are well estab-
lished. The disadvantage is mostly technical, the lifting cannot be always obtained
because the immaturity of current supported platforms.

For example, the authors in [22] have used their own open source BAP platform,
there are still several technical difficulties in working with BAP: its lifting tool iltrans
does not allow translating coherently an arbitrary piece of binary codes to its BIL code
(whereas reasoning on a complete translation of a program is very sophisticated), BAP
works only on Linux platform, and until the currently newest version (0.8) the work
on the x86-64 instruction set is not yet complete. The authors in [118] use their private
platform, while the theoretical approach [69] is clear, the technical detail of lifting is
unknown.

Pin DBI framework and Pintool implementation Roughly speaking, a DBI frame-
work has similar principles with a just-in-time (abbr. JIT) compiler. Here the binary
codes of the original instrumented program will be modified (i.e. recompiled) by in-
strumenting codes (written by users), and the DBI framework manage this modifica-
tion on-the-fly, in both running time and loading time [121]. There are currently sev-

102 Chapter 4. Concrete interpretation

eral DBI implementations, for example, DynInst [11], Pin [76, 104], DynamoRIO [21],
Valgrind [122], etc with different approaches in code instrumentation. Among them
Pin is one the most popular framework.

Concretely, Pin fetches the original binary codes of the examined program and
modifies them depending on the instrumenting codes. The modified codes, stored
in a code cache managed by Pin, will be executed instead of the original codes. The
instrumenting codes are written by users under form of Pintools. The Pintools can
be arranged to get both loading (i.e. initializing) and running time information about
the original codes1. More importantly, this instrumentation is transparent from the
original codes, namely the original codes do not recognize the existence of the instru-
menting codes2.

Using the Pin DBI framework, we have implemented a Pintool [16] which realizes
the following functions:

• a dynamic tainting analysis [123, 142] (abbr. DTA) to detect, for each control flow
instruction, the nearest execution point from which the branching decision of
the CFI is affected,

• a reverse execution [13] engine allowing the program rollbacks from any execution
point.

While the former technique is quite popular, some other authors have actually given
their own implementation prototype of the DTA based on Pin (e.g. [37, 86]). The
latter, about the implementation of a rollback mechanism, does not capture yet much
interest.

The current implementation of rollback mechanism is to use some system emu-
lator for saving/restoring program states. For example, the authors in [118] have
implemented a QEMU [10] component to snapshot-ing completely the virtual mem-
ory space of program. Such implementation is indeed heavyweight.

Pin can be considered as a process-level virtual machine [150], our implementation
using Pin is lightweight since it tracks only the original values of the overwritten
memory addresses, and employs the mechanism of saving/restoring registers states
of Pin (with API(s) Pin_SaveContext, Pin_ExecuteAt, etc). The source codes of this
implementation is obviously available at [16].

4.3.2 Experimentation

We have tested the prototype Pintool in several programs, all of them are 32 bit binary
codes in Windows™platform, the experimentations are realized on a regular machine
(Intel®Core i5− 3230M CPU with 4G RAM). The following experimental results will
test some theoretical details discussed in the previous chapters.

1The current code injection mechanism of Pin does not allow Pintools getting loading information
of ntdll.dll, kernel32.dll and kernelbase.dll libraries [150].

2Strictly speaking, the code instrumentation is not completely transparent, some authors have pro-
posed methods to detect whether a program running under Pin or not [59].

4.3. Implementation and experimentation 103

Code coverage

The first class of experimentation concerns the first step of the stepwise abstraction:
we need to collect the set of different execution traces resulted from changing the
value of the input message buffer.

Number of explored control flow instructions As discussed in Section 4.2.1, the
execution traces form the execution tree and the number of control flow instructions
increases exponentially with the limit length of execution traces.

Moreover in the execution tree there may exist unbranchable CFI(s) (cf. also Defini-
tion 4.2.1). Here, we aim at a special class of CFI(s) which keep their branching de-
cision for all values of the input message. This class consists of CFI(s) which depend
on the input, but they keep always their branching decision. That distinguishes from
the CFI(s) which are independent from the input message, namely they may change
their branching conditions because of some other stimulus, not the input message.

The existence of this class of CFI(s), though have been predicted in the theoretical
part, but seems to be illogical or at least showing some code redundancies. We will
give a detail discussion about this phenomenon at the last part of this section.

In Figure 4.13, we can observe the exponential growth of CFI(s) in real-world
programs. Interestingly enough, except the case of the HTTP parsers of wget and
links; and of the FTP parser of ncftpget (cf. also detail information in Tables 4.1
to 4.3), other parsers do not contain unbranchable CFI(s). It is worth recalling that,
the number of CFI(s) is about 2O(n) where n is the limit length. Here the CFI(s) are
distinguished also by their proposition in distinguished traces, in fact the number of
real CFI(s) (which are distinguished only by their addresses) in the program’s parser
is much more smaller.

Covering time of control flow instructions The running time of our Pintool in cov-
ering all branchable CFI(s), evidently, is linear with the number of CFI(s) and vary
with different programs. Since the number of CFI(s) increases exponentially with the
limit length n of traces, the running time increases also exponentially with n (cf. Fig-
ure 4.12 and also detail information in Tables 4.1 and 4.2).

Thanks of the lightweight reverse execution engine, the running time does not
exceed 500 seconds in all realized tests. Such a modest amount of time is hardly
obtained if a traditional system-wide state saving/restoring is deployed.

Labeled transition systems, message classification and semantics

In Section 4.2.5, we have discussed the classification of messages on the final LTS
and given an exemplified classification for the case of wget (cf. also Figure 4.11), we
will present other examples below. Because our approach is automatic and generic,
the presentations would be similar for different programs. Then, we first present
in detail the program links [96] and its processing for the first input message (but

104 Chapter 4. Concrete interpretation

trace length branchable unbranchable total covering time(s)
30 4 10 14 6
35 4 11 15 7
40 4 12 16 7
45 6 12 18 7
50 10 13 23 8
55 14 16 30 8
60 20 20 40 8
65 31 25 56 9
70 50 34 84 10
75 79 50 129 12
80 124 75 199 14
85 198 114 312 20
90 319 177 496 30
95 512 279 791 47

100 821 442 1263 70
115 3412 1783 5195 269
120 5483 2845 8328 402
125 8809 4541 13350 559
130 14146 7248 21394 982

Table 4.1: Number of CFI(s) in the execution tree of (the HTTP parser of) wget

with different values). This program is an open source text-based web browser with
console interface. But here we are not interested in its sources, we instead grasp its
32-bit compiled binary codes for Windows at [96].

For the program, we first give its execution tree, initial and final LTS(s)1. We ex-
plain also some imprints of the stepwise abstraction procedure in these objects. Next,
we present the message classification reasoning based on the final LTS. Finally and the
most importantly, we give a clear comparison for different message semantics given
by different program programs (cf. also Section 2.3.2), what is implicitly discussed in
previous researches about message format extraction [26, 28, 41, 45], but has not yet
any explicit discussion. At the end, we will give briefly results for other programs.

Execution tree, initial and final labeled transition systems The final LTS is given
in Figure 4.15a, whereas several much more sophisticated initial LTS(s) are given
in Figure 4.19. These LTS(s) are constructed (by the stepwise abstraction procedure
discussed in Section 4.2) from the sets of execution traces, limited at length of 145
(cf. Figure 4.19a), of 160 (cf. Figure 4.19b) and of 175 instructions (cf. Figure 4.19c),
respectively. We can verify the validity of the construction by checking the condition

1The message tree is not given because it is graphically almost identical with the initial LTS. We
need only to remember that the initial LTS is the message tree where the order of processed bytes of
input messages are considered to be static and known (cf Hypothesis 2).

4.3. Implementation and experimentation 105

trace length branchable unbranchable total covering time(s)
130 31 15 46 7
135 42 19 61 9
140 50 19 69 10
145 56 23 76 10
150 74 30 104 14
155 89 31 120 16
160 102 34 136 20
165 129 48 177 28
170 158 53 211 32
175 186 54 240 39
180 230 79 309 56
185 281 95 376 60
190 341 100 441 86
195 415 130 545 90
200 496 167 663 103
210 755 223 978 105
215 877 292 1169 113
220 1134 361 1495 152
225 1372 395 1767 191
230 1571 497 2068 231
235 2035 670 2705 271
240 2488 722 3188 493

Table 4.2: Number of CFI(s) in the execution tree of links

given in Proposition 4.2.7 for these LTS.
The execution trees are even much more sophisticated, we given in Figure 4.20 an

execution tree where execution traces are limited at length of just 100 instructions.
All of these objects are constructed automatically, without any manual interven-

tion, by our Pintool. Whereas the manual reverse code engineering to understand the
parser of links will touch some codes as given in Figure 4.22.

Control flow instructions, nodes and states The execution tree is a binary tree
whose each branching node corresponds to exactly an CFI, but the inversion is not
true. By our implementation of the tainting analysis, we can detect that some CFI(s)
are independent actually from the input message. In Figure 4.21, we give the sim-
plified execution tree of one in Figure 4.20 where only input dependent CFI(s) are
kept. More interestingly, we see that some CFI(s) are input dependent but they does
not branch by any values of the input message (cf. CFI(s) in blue). We will discuss in more
detail about this phenomenon later.

The initial (and then the final) is not a binary tree in general, moreover each of their
states can correspond to several CFI(s) (cf. Figures 4.19a to 4.19c). That indeeds shows

106 Chapter 4. Concrete interpretation

trace length branchable unbranchable total covering time(s)
40 12 3 15 1
45 15 4 19 1
50 17 5 22 2
55 23 7 30 3
60 29 9 38 3
65 33 12 45 3
70 45 15 60 4
75 56 21 77 7
80 65 24 89 7
85 84 30 114 9
90 104 41 145 12
95 126 50 176 15

100 159 62 221 19
105 193 80 273 22
110 244 96 340 35
115 299 121 420 40
120 358 155 513 50
125 467 187 654 55
130 563 239 802 72
135 670 295 965 91
140 886 362 1248 108
145 1064 463 1527 124
150 1264 565 1829 157
155 1663 698 2361 206
160 2012 899 2911 253
165 2396 1084 3480 277
170 3112 1347 4459 295
175 3805 1723 5528 436
180 4558 2085 6643 530

Table 4.3: Number of CFI(s) in the execution tree of ncftpget

the imprint of the message tree normalization (cf. Section 4.2.2) where we will group
several CFI(s) using the address closure relation (cf. Definition 4.2.3). For example, we
can observe that 3 CFI(s) respectively at 0x4680f, 0x468136 and 0x468143 are grouped
into a node in the initial LTS.

Example 4.3.1. To understand why these CFI(s) have been grouped into a single node,
we consider in Figure 4.14 (which are obtained by disassembling the binary codes of
links) how these CFI(s) are used.

Indeed, these CFI(s) will divert the control flow depending on the value of the
register dl, which stores in fact the value of a byte of the input message buffer. We
can observe that this value is compared with 0x0d, 0x0a and 0x00. That fits also with
their corresponding state: we can observe that this state have 4 branches depending

4.3. Implementation and experimentation 107

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 20 40 60 80 100 120

se
co

nd

limit trace length

covering time

(a) wget (HTTP protocol)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 120 140 160 180 200 220 240

se
co

nd

limit trace length

covering time

(b) links

 0

 100

 200

 300

 400

 500

 600

 700

 800

 20 40 60 80 100 120 140 160

CF
I

nu
m

be
r

limit trace length

covering time

(c) wget (FTP protocol)

 0

 100

 200

 300

 400

 500

 600

 40 60 80 100 120 140 160 180

CF
I

nu
m

be
r

limit trace length

covering time

(d) ncftpget

Figure 4.12: Code coverage running time

on whether the value of the examined byte is 0x0d, 0x0a, 0x00 or none of them.

Remark 4.3.2. It might be worth noting that the analysis given in Example 4.3.1 is just
a demonstration for what happens inside our Pintool. We do not analyze the program
manually, indeed the Pintool detects automatically these situations and constructs the
initial LTS.

Message classification When we increase the limit length, the initial LTS(s) become
more and more sophisticated (cf. Figures 4.19a to 4.19c) but the final LTS (cf. Fig-
ure 4.15a), which is a minimal observational prediction of the initial LTS(s) (cf. Sec-
tion 3.2.2), is much more smaller. More importantly, the final LTS contains circles,
that means it can predict the behaviors of the program for arbitrarily long messages.
These properties justify our approach to the message classification based on the final
LTS.

In Figures 4.15a to 4.15c, we note that 0, 10 and 13 are respectively ASCII codes
of NULL, line-feed (abbr. LF or \n) and carriage-return (abbr. CR or \r) characters.
We keep also a terminal states for a comprehensive explanation, theoretically this
state can be merged into any other state (cf. Definition 3.2.2). We first observe that the
following classes of messages, characterized by the paths from the initial state to the

108 Chapter 4. Concrete interpretation

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 20 40 60 80 100 120

CF
I

nu
m

be
r

limit trace length

branchable
unbranchable

total

(a) wget (HTTP protocol)

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 150 200 250 300 350 400 450 500 550 600

CF
I

nu
m

be
r

limit trace length

branchable
unbranchable

total

(b) nginx

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 20 40 60 80 100 120

CF
I

nu
m

be
r

limit trace length

branchable
unbranchable

total

(c) curl

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 20 40 60 80 100 120 140 160

CF
I

nu
m

be
r

limit trace length

branchable
unbranchable

total

(d) jwhois

 0

 500

 1000

 1500

 2000

 2500

 3000

 60 80 100 120 140 160 180

CF
I

nu
m

be
r

limit trace length

branchable
unbranchable

total

(e) netcat

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 120 140 160 180 200 220 240

CF
I

nu
m

be
r

limit trace length

branchable
unbranchable

total

(f) links

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 20 40 60 80 100 120 140 160

CF
I

nu
m

be
r

limit trace length

branchable
unbranchable

total

(g) wget (FTP protocol)

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 40 60 80 100 120 140 160 180

CF
I

nu
m

be
r

limit trace length

branchable
unbranchable

total

(h) ncftpget

Figure 4.13: Exponential growth of CFI(s) in execution trees

4.3. Implementation and experimentation 109

Figure 4.14: Different CFI(s) process the same group of bytes

terminal state, are distinguished by the program

!H · Bytesn−1 H·!T · Bytesn−2

H · T·!T · Bytesn−3 H · T · T · T·!P · Bytesn−4

From these classes, because the number of meaningful values in these classes is quite
small, we can make a strong hypothesis that the program may reject the received
message if the first 4 bytes are not H · T · T · P. More precisely, it will check byte-by-
byte, and may reject the message immediately if it detects any unmatch with H · T · T ·
P · Bytesn−4. Next, the following class of message

H · T · T · P · NULL · Bytesn−5

also gives a strong hypothesis that the program may reject the message if if detects
that the 5-th byte is NULL, given the first 4 bytes are H · T · T · P.

More interestingly, the following classes of messages (categorized into two cate-
gories) are distinguished by the program

H · T · T · P · !{\r, \n}k · NULL · Bytesn−5−k

H · T · T · P · (\r · \n)l · \r·!\n · Bytesn−6−2l

for k = 1, 2 The first category means that, after first 4 bytes H · T · T · P are matched,
the program may continuously search for a character \r or \n, but whenever it meets
a character NULL, it may reject or stop parsing the message.

The second category means that the programs may separate the message into fields
separated by the pattern (or separator) \r · \n, but whenever it finds a pattern \r · \n,
it will reject or stop parsing the message. Similarly, one can extract other classes of
messages to understand how the program treat an input message.

110 Chapter 4. Concrete interpretation

0x4680aa: jnz 0x4682b6

0x4680bd: jnz 0x4682b6

{ H }

terminal

!{ H }

0x4680d0: jnz 0x4682b6

{ T }

!{ T }

0x4680e3: jnz 0x4682b6

{ T }

!{ T }

0x468136: jz 0x468254
0x468143: jnz 0x468108
0x46810f: jz 0x468e95

0x468149: jnz 0x468115
0x468ea3: jnz 0x468115

{ P }

!{ P }

0x468eb5: jnz 0x468254
0x468e99: jnz 0x468254

{ 10 }

!{ 10 }

{ 13 }

!{ 0 10 13 }{ 10 }

{ 0 }

(a) links

0xd71b91: jz 0xd71bb4

0xd71bda: jl 0xd71be5
0xd71be3: jle 0xd71c04

{ / }

terminal

!{ / }

0xd71c32: jnz 0xd71c4f
0xd71c56: jl 0xd71c61
0xd71c5f: jle 0xd71c80
0xd71ce2: jl 0xd71ced

{ [48-57] }

{ [0-47] [128-255] } { [58-127] }

0xd719cf: jz 0xd719f7
0xd719d5: jz 0xd719f7
0xd719db: jz 0xd719df

{ 10 }{ 13 }

0xd71ab6: jz 0xd71ad9

{ H }

!{ 10 13 H }

0xd71aff: jz 0xd71b22

{ T }

!{ T }

0xd71b48: jz 0xd71b6b

{ T }

!{ T }

{ P }

!{ P }

{ . }

{ [0-45] / [128-255] } { [48-57] } { [58-127] }

(b) nginx

0x766a41f8: jz 0x766a4280 !{ 10 }{ 10 }

(c) netcat

terminal

0x41530d: jnz 0x415326
0x41532f: jnz 0x41535b
0x415364: jnz 0x415397
0x41534e: jz 0x415359

{ 10 }

!{ 0 10 13 }{ 0 }{ 13 }

(d) ncftpget

Figure 4.15: Final labeled transition systems

Message classification and message format In the interpretation above about path-
based message classification, one can see that the notations of field, separator can occur
naturally. But different from other researches [26, 28, 41, 45], in constructing the
final LTS by the stepwise abstraction procedure, we do not need give any special
assumption about the existence of such notations.

4.3. Implementation and experimentation 111

Message semantics given by a program Practically, we know that the program
links should consume messages of the HTTP protocol, and so do the programs nginx
and wget. Now considering the final LTS(s) of these programs, given in Figures 4.11,
4.15a and 4.15b respectively, one can observe that these LTS(s) gives different mes-
sage classifications. Or using a classic notation, one can say that there are 3 different
message formats, for the same HTTP protocol.

Actually, we can see clearly here the argument discussed implicitly in other re-
searches [26, 28, 41, 45] that the program gives semantics for the message. Given messages
of the same protocol (here it is HTPP), different programs give different semantics for
these messages.

For an extreme case, one can consider the LTS of given in Figure 4.15c of the pro-
gram netcat1, and then conclude that the message semantics given by this program
is very simple. It fits with the actual operation of netcat: the program only estab-
lishes connection to a target and send/receiving messages, but do not take any special
interest in the message formats.

Relative prediction In Section 3.2.1, we have stated that the final LTS is a predictive
model, constructed from observable behaviors (here they are execution traces), of the
real program. But the prediction given by the final LTS is also relative (cf. also Exam-
ple 3.2.1). Practically, that means a final LTS constructed from execution traces where
the limit length is too short, may give a wrong prediction about the program. The LTS
in Figure 4.16 is constructed from execution traces of links where the limit length is
just 100.

This final LTS gives indeed a wrong prediction, for example one can first observe
the following class of messages

H · T · T · P · \r · \n · \r·!{H} · Bytesn−8

and then make a hypothesis that the program will reject or stop parsing the message
if the first 7 bytes are not H · T · T · P · \r · \n · \r; and even the first 7 bytes are matched,
the program still rejects (or stops parsing) the 8-th byte is not H. This hypothesis is
actually denied by the final LTS in Figure 4.15a, constructed from execution traces
with longer limit length.

Remark 4.3.3. The visual representation of LTS(s) are drawn automatically by our Pin-
tool thanks to the Graphviz visualization software [72]. Because of the optimal layout
algorithm for drawing directed graph of this software [67], the initial state (character-
ized by the unique node in cornflower blue) in some final LTS(s) (e.g. in Figure 4.16)
is not drawn by the node on the top.

1The input message is obtained by executing netcat with a parameter specifying the target HTTP
server and a parameter specify the sending command (here it is GET.... The program establishes a
TCP connection to the server, and send the command over this connection, and finally receives the
response message of the server.

112 Chapter 4. Concrete interpretation

But one can verify easily which is the initial state by checking the top node of an
initial LTS and find its corresponding node in the final LTS. Because an initial LTS is
always a tree, its initial state is always the node on the top (cf. Figures 4.19a to 4.19c).

0x4680bd: jnz 0x4682b6

0x4680d0: jnz 0x4682b6

{ T }

terminal

!{ T }

0x4680e3: jnz 0x4682b6

{ T }

!{ T }

0x468136: jz 0x468254
0x468143: jnz 0x468108
0x46810f: jz 0x468e95

0x468149: jnz 0x468115

{ P }

!{ P }

!{ 0 10 13 }{ 10 }

0x468e99: jnz 0x468254

{ 13 }

{ 0 } 0x468ea3: jnz 0x468115
0x468149: jnz 0x468115

{ 10 }

!{ 10 }

0x4680aa: jnz 0x4682b6
0x468eb5: jnz 0x468254

{ 13 }

!{ 10 13 } { 10 }

{ H }

!{ H }

Figure 4.16: Invalid message classification given by a LTS

Unbranchable control flow instructions

In experimentations realized in Section 4.3.2, we have observed the existence of input-
dependent but unbranchable CFI(s). They are blue CFI(s) visualized in Figure 4.21 for
the case of links1, and in Figure 4.5 for the case of wget (cf. also Example 4.2.6).

First, some of them are input-dependent but their decisions depend also on other
factors. For example, in checking whether the first 4 bytes of the input message are
H · T · T · P or not, wget has compare the input message buffer (stored at the address
determined by the value of esi) with a constant string H · T · T · P (stored at the address

1The orange CFI(s) are branchable (cf. Definition 4.2.1) but we do not draw their other branches
because, in this specific case, this branch does not lead to any other branchable CFI(s).

4.3. Implementation and experimentation 113

Figure 4.17: Unbranchable CFI because of supplemental factors

determined by the value of edi), by the instruction

rep cmpsb [esi],[edi]

Consequently, the 4-th occurrence of rep cmpsb [esi],[edi] in execution traces of
wget (cf. Figure 4.5) is input-dependent but unbranchable (whereas the first 3 occur-
rences are branchable). That is because the maximal repeat number of this instruction
is determined by the value stored in ecx, here it is 4 (cf. Figure 4.17). That means after
the 4-th rep instruction is executed, the next executed instruction is always pop edi
at the address 0x404f88, regardless of the result of the comparison in rep.

Second, some of them are actually redundant. For example, consider the CFI at
the address 0x468136 of links

jz 0x468254

and its first occurrence (cf. Figure 4.21). Its decisions depending on the result of
the comparison just before it, namely depending on the value of dl is zero or not
(cf. Figure 4.18). But this value is never zero at this occurrence of the CFI, because to
reaching to this occurrence, the first 4-bytes must be H · T · T · P already, then the value
of dl at the first occurrence of this CFI must be always H.

Figure 4.18: Unbranchable CFI because of redundancy

Summary

We have given a detail discussion for the case of links and give also results for other
programs. The reason why we have chosen links, first, is obviously because our
method work well in this case. But more importantly, it gives different use cases
where we can test our theoretical results. In these use cases, we can see concretely
how the program gives semantics for messages, by comparing the final LTS of links
with ones of other programs.

114 Chapter 4. Concrete interpretation

(a)
lim

it
length

145

(b)
lim

it
length

160

(c)
lim

it
length

175

Figure
4.19:Initiallabeled

transition
system

of
links

abstracted
from

execution
trees

of
different

trace’s
lim

it
lengths

4.3. Implementation and experimentation 115

Figure 4.20: Execution tree of links of limit length 100

116 Chapter 4. Concrete interpretation

Figure 4.21: Input message dependent CFI(s) of links

4.3. Implementation and experimentation 117

Figure 4.22: Manual reverse engineering of the input message parser of links

In all realized tests, our implementation (under the form of a Pintool) works for
all cases where the examined program uses some character-based parser. There are
obviously cases where it does not work, and we will discuss about them below.

4.3.3 Limits

In Section 2.3.1, we have given critiques to current methods in message format ex-
traction. Our approach has also limits, it is better than other methods in the cases
discussed above, and is worse than them in the cases discussed below. These limits
come both from our technical implementation and our theoretical hypothesis, and we
will discuss about them in this section.

Theoretical limits

The stepwise abstraction procedure uses Hypotheses 1 and 2. The former requires that
the set of bytes affecting each CFI is static and the branching conditions of each CFI
are fixed. As previously discussed, these conditions are not satisfied in general. For
example, they makes our methods cannot work with message formats having direction
fields. In this case, the value of a field can be used to determine the set of affecting
bytes for a CFI, and then this set is not static, consequently the branching conditions
of this CFI are not fixed. Hence, our method is worse than other approaches, e.g. [26,

118 Chapter 4. Concrete interpretation

28, 41, 101], that can handle direction fields.
The latter requires that positions of parsed bytes of the input buffer follows a

unique order in different execution traces, namely this order is maintained over dif-
ferent traces. Because a direction field will specify the positions of next interested
bytes, then it can change the order or parsed by over different execution traces. Con-
sequently, the existence of direction fields can again invalidate this hypothesis.

There is another limit coming from the byte regrouping using the address closure
(cf. Definition 4.2.3). If the partition, generated by the address closure relation on
the set of input buffer’s bytes, is too rough, then the result is actually nonsense. For
example, if this partition consists of only one class that is the input buffer itself, then
the result is nonsense: the initial labeled transition system consists of a single state,
and all transitions are loop-backs. Practically, this is also the case of encrypted messages,
in this case, the branching conditions of a CFI can depend on the values of all bytes
of the input buffer.

Finally, as previously discussed, the number of CFI in the execution tree is about
2O(n) where n is the limit length of execution traces. Then the number of states in
the initial LTS is also about 2O(n). The algorithm in Listing 3.5 about searching for a
nontrivial π-equivalence is polynomial with number of states in the LTS (cf. Propo-
sition 3.3.2). Hence the running time of the stepwise abstraction procedure is about
2O(n). That makes our method infeasible with long enough execution traces.

Technical limits

Suppose that the theoretical limits discussed above does not exist, there are still limits
coming from our practical implementation.

The essential point in the stepwise abstraction procedure is to explore different execu-
tion traces of the program that can obtained by changing the value of the input buffer.
Additionally, for each branchable control flow instruction, to determine precisely its
branching conditions. Our technical approach uses the dynamic tainting analysis to de-
termine the set of bytes of the input buffer that affects to each control flow instruction,
then uses the reverse execution to test all value possibles of this affecting set.

This approach cannot handle the case where the affecting set consists of several
bytes. For example if a set consists of 4 bytes, then the number of re-executions is 232,
that makes our implementation infeasible. In fact, in the current implementation, to
be able to determine precisely the branching condition of each CFI, we have required
that each set consists of exactly 1 bytes. That makes it can handle character-based
parsers only.

There is other limits concerned directly with the implementation. First, the Pintool
have been designed to explore the execution traces of the passed program whenever
the main thread of this program receives some input message. This is implemented
by intercepting several Windows API(s) (WSARecv, WSARecvFrom, recv, recvfrom, In-
ternetReadFile, InternetReadFileEx) and Linux system calls (recv, recvfrom) at

4.3. Implementation and experimentation 119

loading time1. This implementation does not allow tracing programs which

• receive their inputs without using the functions above,

• inject themselves into the existing memory space of another program, because
in this case

– the current implementation of the Pintool does not know exactly which
thread will receive input messages,

– the injected program has been loaded before (i.e. the program loading stage
have finished) and addresses of the imported Windows API(s) have been
determined, the Pintool cannot insert its appropriate interfering functions
for imported Windows API(s),

– the imported Windows API(s) can be modified or diverted also by other
hooking mechanisms.

Though these drawbacks can be considered just as a technical problem, but it makes
difficult in using directly this current implementation to analyze modern malwares.
We will present how we have managed to analyze the malware ZeuS in Section 4.3.4.

Second, the reverse execution inherits some limits of Pin. Indeed, Pin can be
thought of as a process-level virtual machine [150], then it cannot instrument kernel-
level executions. The reverse execution is implemented using Pin API(s), it cannot
control the writing into the program memory space taken by kernel-executions, con-
sequently it can work safely only when there are no exceptions (e.g. system calls) in
the execution of the program.

4.3.4 Case of ZeuS bot

We reserve this part to present experiments on ZeuS bot, a very well-know malware.
In fact, ZeuS is a common name for a family of malwares, consisting of several ver-
sions. The first versions of ZeuS appeared at the first time in 2007 [60], and the
malware is still actively developed today. The source codes of this malware are for
sale in the underground markets, and source codes of some early versions are even
leaked online (e.g. [166]).

Because of technical limits discussed in Section 4.3.3, our experimental Pintool
cannot detect the execution point where the malware hooked some Windows API(s)
to steal credential information, then cannot construct directly the execution tree and
the final LTS describing how the malware parses the inputs. We can only test the
Pintool on the parser extracted and recompiled from the available source codes.

However, the obtained results are promising. It suggests that if the technical dif-
ficulties about detecting the execution point can be handled, then our approach can

1One can refer the detail implementation in the source codes at [16].

120 Chapter 4. Concrete interpretation

be used to deal with real-world malwares. The analysis given following aims at dis-
cussing these technical difficulties, in the hope that gives some perspectives for the
future work.

Stealth techniques

There exist already several analysis on ZeuS [1, 2, 60, 82], the following analysis
focuses on the stealth techniques used by ZeuS1. The malware does not execute as a
explicit and dependent process, it instead injects itself into the memory space of other
processes, then execute as a thread of the injected process. The codes in Figure 4.23a
demonstrates how the malware select a process to inject itself into. It calls the API
CreateToolhelp32Snapshot to get a list of currently executed processes, then uses
the API Process32FirstW/Process32NextW to traverse this list. For each traversed
process, the malware tries to open this process by calling OpenProcess to inject codes
(cf. Figure 4.23b).

(a) Process listing and traversing (b) Process opening

Figure 4.23: Selecting process for injecting codes

The malware calls the API VirtualAllocEx to allocate new memory inside the
memory space of the opened process (cf. Figure 4.24a). Next, it calls WriteProcessMem-
ory to copy itself into the allocated memory (cf. Figure 4.24b). Finally, the malware
calls the API CreateRemoteThread to activate the injected codes as a new execution
thread of the injected process (cf. Figure 4.25).

1The analyzed sample has MD5 hash c84b88f6c567b2da651ad683b39ceb2d and is obtained from
https://malwr.com.

https://malwr.com

4.3. Implementation and experimentation 121

(a) Memory allocation (b) Writing codes

Figure 4.24: Injecting codes into the opened process

Figure 4.25: Activating codes

Technical difficulties The steal techniques discussed above, where ZeuS is a con-
crete instance, neutralize the function of our Pintool. Concretely, in tracing the exe-
cution such a program, the Pintool loses control where the program inserts itself as a
(or several) new thread in another process: the Pintool does not know exactly which
thread should be traced.

More importantly, the API interception mechanism of the Pintool functions only
at the loading time. First, it scans (by calling Pin’s API RTN_FindByName) the loaded
dlls to determine the addresses of intercepted API(s). Then it inserts instrumented
functions to intercept two execution points where the API is called and returns (by
calling Pin’s API RTN_InsertCall).

This interception mechanism does not work for programs using steal techniques
discussed above because it does not make sense to intercept API(s) at the loading
time of the instrumented program. The program may not call these API(s), instead it
injects its codes in another process, and use the Windows API GetProcAddress to get
directly addresses of these API(s) but in the context of the injected process.

One may think that the Pintool should instrument the injected process instead
of the program. But in this case, the injected process may have already loaded all
necessary dlls. Consequently, the loading time interception mechanism of the Pintool
does not work again.

Remark 4.3.4. It may worth noting that the technical difficulties above concern with
the input capturing only. It does not concern with the limits of our stepwise abstraction
procedure and with the limits of message classification using the final LTS. In other
words, it does not concern with our approach in message format extraction.

122 Chapter 4. Concrete interpretation

The general and automatic treatment for these technical difficulties is a must for a
real-world malwares analysis tool. Our implemented Pintool is only an experimental
prototype, it is currently at the first step toward such a tool.

Credential information parser

ZeuS hooks also the Windows API(s) send and WSASend to collect credential informa-
tion of users in the infected host. To do that, the hooked raw information is parsed
also by the malware. We can test out the Pintool on this parser by extracting and
recompiling the relevant codes from the source codes of the malware at [166]. Con-
cretely, in the following test case, we extract the function socketGrabber of ZeuS, re-
move irrelevant system calls inside the function, and change the macro XOR_COMPARE
into a character based comparison, recompile it, and put it under the examination of
our Pintool.

0x135ae19: jz 0x135ae1f
0x135b141: jz 0x135b157

0x135ae19: jz 0x135ae1f

{ U }

0x135ae19: jz 0x135ae1f
0x135b169: jnz 0x135b17e

{ P }

0x135b169: jnz 0x135b17e

{ C }

0x135ae19: jz 0x135ae1f

{ T }

0x135ae19: jz 0x135ae1f

{ L }

0x135ae19: jz 0x135ae1f

{ F }

0x135ae19: jz 0x135ae1f

{ S }

terminal

{ [0-66] [68-69] [71-75] [77-79] [81-82] [86-255] }

0x135ae19: jz 0x135ae1f

{ S }

!{ S }

0x135ae19: jz 0x135ae1f

{ A }

0x135b17c: jz 0x135b1c9

{ W }

!{ A W }

{ W }

!{ W }

0x135ae19: jz 0x135ae1f

{ Y }

!{ Y }

0x135ae19: jz 0x135ae1f

{ I }

!{ I }

0x135ae19: jz 0x135ae1f

{ E }

!{ E }

0x135ae19: jz 0x135ae1f

{ S }

!{ S }

{ P }

!{ P }

{ S }

!{ S }

0x135b000: jnz 0x135b0d1

{ R }

!{ R }

{ S }

!{ S V } { V }

0x135b03a: jz 0x135b045
0x135b043: jnz 0x135b047
0x135b04e: jnl 0x135b057

{ 32 }

!{ 32 } { [32-255] }

{ 13 }{ 10 } { [0-9] [11-12] [14-31] }

0x135ae19: jz 0x135ae1f

{ E }

!{ E }

!{ D } { D }

{ T }

!{ T }

{ A }

!{ A }

Figure 4.26: Final LTS of ZeuS with limit length 350

The final label transition system in Figure 4.26 is obtained from the stepwise ab-
straction procedure where execution traces are limited at length of 350 instructions
(note that 32 is the ASCII code of the space character). First, by considering paths
from the initial state to the terminal state, we receive following classes of messages
are distinguished by the parser

U · S · E · R · SPACE · {32, 33, . . . , 255}n−5 P · A · S · S · SPACE · {32, 33, . . . , 255}n−5

P · A · S · V · Bytesn−4 P · W · D · Bytesn−3

C · W · D · Bytesn−3 T · Y · P · E · {!A} · Bytesn−5

F · E · A · T · {!A} · Bytesn−5 S · T · A · T · {!A} · Byten−5

L · I · S · T · {!A} · Byten−5

4.3. Implementation and experimentation 123

The words USER, PASS, PASV, PWD, CWD, TYPE, FEAT, STAT, LIST occur in these classes are
exactly commands defined in the ftp protocol. That may be interpreted as an insight
that ZeuS steals information concerned with ftp communications. Moreover, besides
these words there is no more commands of ftp occurring in the final LTS, so we may
think that Zeus is interested only in this subset of ftp commands.

Second, we can observe also the following classes of messages in the final LTS
(note that the set {1, 2, . . . , 31} contains ASCII codes of all control characters)

U · S · E · R · {!SPACE} · Bytesn−5

U · S · E · R · SPACE · {32, 33, . . . , 255}k · \r · Bytesn−k−6

U · S · E · R · SPACE · {32, 33, . . . , 255}k · \n · Bytesn−k−6

U · S · E · R · SPACE · {32, 33, . . . , 255}k · ({1, 2 . . . , 31} \ {\r, \n}) · Bytesn−k−6

P · A · S · S · {!SPACE} · Bytesn−5

U · S · E · R · SPACE · {32, 33, . . . , 255}k · \r · Bytesn−k−6

U · S · E · R · SPACE · {32, 33, . . . , 255}k · \n · Bytesn−k−6

U · S · E · R · SPACE · {32, 33, . . . , 255}k · ({1, 2, . . . , 31} \ {\r, \n}) · Bytesn−k−6

These classes show clearly how ZeuS parses a USER or PASS command: it checks
whether the next character is space or not, if yes then it collects the bytes until a
control character is detected.

Static analysis and automated dynamic analysis We have discussed in Section 2.2.1
the limits of static and dynamic analysis. In Section 2.2.2, we have discussed that the
code coverage can be used to improve the incompleteness of the dynamic analysis.
The classes of messages in the case of ZeuS (and other classes in the cases of benign
programs in Section 4.3.2) are results obtained normally by static analysis because
each class contains arbitrarily long messages. But here we have obtained them actually
by dynamic analysis with code coverage. One can observe that the incompleteness
of the dynamic analysis have been improved to be as good as the static analysis.
Additionally, with dynamic analysis, we can bypass lots of obfuscation techniques of
malicious codes (cf. Section 2.2.1).

124 Chapter 4. Concrete interpretation

Chapter 5

Behavioral obfuscation

Until recently, program obfuscation was still considered as black-art, as cryptogra-
phy was more than 30 years ago. Some pioneer and rigorous works published in
the last decade have led to a renewal of scientific interest on this topic. Researches
on program obfuscation are sensitive since the obtained results are a double-edged
sword: they can be used for software protection but also to increase the nuisance of
malwares. In order to improve malware detection one should understand how they
conceal themselves. The goal of this chapter is to study how behavioral obfuscation
happens and can be detected. This study is performed through the use of a new ab-
stract model for process and kernel interactions based on monoidal categories, where
program observations are considered to be finite lists of system call (abbr. syscall)
invocations. In the first step, we show how malicious behaviors can be obfuscated by
simulating the observations of benign programs. In the second step, we show how to
generate such malicious behaviors through a technique called path replaying and we
extend the class of captured malwares by using some algorithmic transformations on
morphisms graphical representation. In the last step, we show that all the obfuscated
versions we obtained can be used to detect well-known malwares in practice.

The results of this chapter have been presented in [127]. This is joint work with
Romain Péchoux and inspired by many original ideas of Jean-Yves Marion.

5.1 Introduction

A traditional technique used by malware writers to bypass malware detectors is pro-
gram transformation. Basically, the attacker applies some transformations (e.g. useless
code injection, change of function call order, code encryption, etc.) a given malware
in order to build a new version having the same malicious behavior, i.e. semantically
equivalent relatively to a particular formal semantics. This version may bypass a mal-
ware detector succeeding in detecting the original malware if the transformation is
cleverly chosen. This risk is emphasized in [48] “an important requirement of a robust
malware detection is to handle obfuscation transformation”.

125

126 Chapter 5. Behavioral obfuscation

Currently, the works on Code obfuscation have been one of the leading research
topic in the field of software protection [39]. By using code obfuscation, malwares can
bypass code pattern-based detectors so that the detector’s database has to be regularly
updated in order to recognize obfuscated variants. As a consequence of Rice’s theo-
rem, verifying whether two programs are semantically equivalent is undecidable in
general, which annihilates all hopes to write an ideal detector. Consequently, efficient
detectors will have to handle code obfuscation in a convenient way while ensuring
a good tractability. Most of recent researches have focused on semantics-based detec-
tion [35, 48], where programs are described by abstractions independent from code
transformations. Since the semantics of the abstracted variants remains unchanged,
the detection becomes more resilient to obfuscation.

In this chapter, we will focus on behavior-based techniques [64, 90], a sub-class of
semantics-based ones, where programs are abstracted in terms of observable behaviors,
that is interactions with the environment. Beside the works on detection (cf. [47] for an
up-to-date overview), detection bypassing is also discussed academically in [63, 106,
129, 159] and actively in the underground. To our knowledge, there are only a few
theoretical works on behavioral obfuscation. The lack of formalism and of general meth-
ods leads to some risks from the protection point of view: first, malwares deploying
new attacks, that is attacks that were not practically handled before, might be omit-
ted by current detectors. Second, the strength of behavior-based techniques might be
overestimated, in particular if they have not a good resilience to code obfuscation.

Our main contribution is to construct a formal framework explaining how semantics-
preserving behavioral transformations may evolve. The underlying mathematical ab-
straction is the notion of monoidal category that we use to model system call interac-
tions and internal computations of a given process with respect to the kernel. First,
it allows us to formally define the behaviors in term of syscall observations and to
use the categorical abstraction to define the obfuscated versions that an ideal detec-
tor should recognize based on the knowledge of some malicious behaviors. Second,
it allows us to define a nontrivial subclass of behaviorally obfuscated programs on
which detection becomes decidable. Finally, we show that, apart from purely theo-
retical results, our model also leads to some encouraging experimental results since
the aforementioned decidability result allows us to recognize distinct versions of mal-
wares from the real-world quite efficiently.

Outline In Section 5.2, we first introduce an example motivating the need for an
interactive model in order to represent syscall-based behaviors of programs. Next, we
introduce a new abstract and simple model based on monoidal categories, that only
requires some basic behavioral properties, and introduce the corresponding notions
of observable behaviors. We provide several practical examples to illustrate that,
though theoretically oriented, this model is very close to practical considerations.
In Section 5.3, we present principles of behavioral obfuscation and some semantics-
preserving transformations with respect to the introduced model. In Section 5.4, we

5.2. Behavior modeling 127

introduce a practical implementation of our model and conclude by discussing related
works and further developments.

5.2 Behavior modeling

In this section, we introduce a formal model for behaviors of a program. The main
idea is to classify behaviors into two sorts: one consists of internal behaviors, which
the program can proceed freely without affecting the environment (i.e. the operating
system); the other consists of syscall interactions, where the invocation of each will
affect the environment.

5.2.1 Motivating example

We commence with an example showing how malwares can bypass easily behavior-
based detection techniques. This example emphasizes the need of a new model and
new detection techniques complementary to current behavior-based detection ones in
order to avoid detection failures. Here, the analyzed malware sample is a variant of
the trojan Dropper.Win32.Dorgam [55]. Since this trojan downloads and activates other
malicious codes, we restrict the analysis to stages where these downloaded codes have
not been activated yet.

The trojan’s malicious behavior consists in three consecutive stages. First, it un-
packs two PE files (cf. Listing 5.1) whose paths are added into the registry value Ap-
pInit_DLLs so that they will be automatically loaded by the malicious codes, which
are downloaded later.
NtCreateFile (FileHdl=>0x00000734 ,RootHdl <=0 x00000000 ,File <=\??\C:\ WINDOWS\system32\sys.sys) Ret=>0
NtWriteFile (FileHdl <=0 x00000734 ,BuffAddr <=0 x0043DA2C ,ByteNum <=11264) Ret=>0
NtFlushBuffersFile (FileHdl <=0 x00000734) Ret=>0
NtClose (Hdl <=0 x00000734) Ret=>0
NtCreateFile (FileHdl=>0x00000734 ,RootHdl <=0 x00000000 ,File <=\??\C:\ WINDOWS\system32\intel.dll) Ret=>0
NtWriteFile (FileHdl <=0 x00000734 ,BuffAddr <=0 x0041A22C ,ByteNum <=145408) Ret=>0
NtFlushBuffersFile (FileHdl <=0 x00000734) Ret=>0
NtClose (Hdl <=0 x00000734) Ret=>0

Listing 5.1: File unpacking

Second, it creates the key SOFTWARE\AD and adds some entries as initialized values
(cf. Listing 5.2).
NtOpenKey (KeyHdl=>0x00000730 ,RootHdl <=0 x00000784 ,Key <= SOFTWARE\AD\) Ret=>0
NtSetValueKey (KeyHdl <=0 x00000730 ,ValName <=ID,ValType <=REG_SZ ,ValEntry <=2062) Ret=>0
NtClose (Hdl <=0 x00000730) Ret=>0
NtOpenKey (KeyHdl=>0x00000730 ,RootHdl <=0 x00000784 ,Key <= SOFTWARE\AD\) Ret=>0
NtSetValueKey (KeyHdl <=0 x00000730 ,ValName <=URL ,ValType <=REG_SZ ,ValEntry <=http ://ad.***. com :82) Ret=>0
NtClose (Hdl <=0 x00000730) Ret=>0
NtOpenKey (KeyHdl=>0x00000730 ,RootHdl <=0 x00000784 ,Key <= SOFTWARE\AD\) Ret=>0
NtSetValueKey (KeyHdl <=0 x00000730 ,ValName <=UPDATA ,ValType <=REG_SZ ,ValEntry <=http ://t.***. com :82/***) Ret=>0
NtClose (Hdl <=0 x00000730) Ret=>0
NtOpenKey (KeyHdl=>0x00000730 ,RootHdl <=0 x00000784 ,Key <= SOFTWARE\AD\) Ret=>0
NtSetValueKey (KeyHdl <=0 x00000730 ,ValName <=LOCK ,ValType <=REG_SZ ,ValEntry <=http ://t.***. com ?2062) Ret=>0
NtClose (Hdl <=0 x00000730) Ret=>0
......

Listing 5.2: Registry initializing

128 Chapter 5. Behavioral obfuscation

Third, it calls the function URLDownloadToFile of Internet Explorer (abbr. MSIE) to
downloads other malicious codes from some addresses in the stored values.

Since the file unpacking at the first stage is general and the behaviors at the third
stage are the same as those of the benign program MSIE, a reasonable way for a
behavior-based detector D to detect the trojan is by examining its behaviors during
the second stage. That means D will detect the following system call sequence1:

NtOpenKey, NtSetValueKey, NtClose, NtOpenKey, NtSetValueKey, . . .

corresponding to the consecutive syscalls of Listing 5.2 in order to detect this tro-
jan. Since the association of NtOpenKey to each NtSetValueKey is verbose and can be
replaced by a single call, D has to detect also the sequence:

NtOpenKey, NtSetValueKey, NtSetValueKey, NtSetValueKey, . . .

Moreover, the key handler can be obtained by duplicating a key handler located in
another process, so the existence of NtOpenKey is even not necessary. That means D
has also to detect the sequence:

NtDuplicateObject, NtSetValueKey, NtSetValueKey, NtSetValueKey, . . .

In summary, the three syscall lists described above are equivalent behaviors that
the trojan could arbitrarily select in order to perform its task. The remainder of the
chapter will be devoted to modestly explain how such lists can be both generated and
detected for restricted but challenging behaviors.

5.2.2 Basic categorical background

Category theory is an important branch of mathematics which emphasizes on the ab-
straction of concrete mathematical objects. Under the categorical viewpoint, essential
properties of different mathematical notations are revealed and unified. In theoret-
ical computer science, it has been used as a very useful “toolbox” to abstract defi-
nitions and to prove theorems, not only in traditional branches (e.g. domain theory,
type theory and formal semantics of programming languages), but also as a rigorous
framework for new models of computation [115].

In the following, we introduce only basic categorical notions needed for the con-
struction of our formal model. We refer to [4] as a computer science oriented introduc-
tion to category theory, a very insightful introduction to monoidal categories can be
referenced in [116].

Category A category is a collection of objects m, n, . . . and morphisms s, r, . . . map-
ping a source object to a target object, including an identity morphism 1m for each

1For readability, we omit the arguments in the syscall lists.

5.2. Behavior modeling 129

object m, and an associative composition operator ◦. As usual, a morphism s of source
object source(s) = m and target object target(s) = n will be denoted using one of the
following notations:

m s−→ n or s : m −→ n

A category with objects as sets and morphisms as functions can properly represent se-
quential computation models [97]. Concurrent models employ a new operator named
tensor product, that leads to the use of monoidal categories [111].

Definition 5.2.1 (Monoidal category [144]). A monoidal category is a category with
a tensor product ⊗ operator, defined on morphisms and objects and satisfying the
following properties:

• Given morphisms s1 and s2, s1 ⊗ s2 is a morphism of the shape:

s1 ⊗ s2 : source(s1)⊗ source(s2) −→ target(s1)⊗ target(s2)

• There exists a unit object e.

• The tensor and composition operators have the following properties1:

(m1 ⊗m2)⊗m3 = m1 ⊗ (m2 ⊗m3) e⊗m = m = m⊗ e
(s1 ⊗ s2)⊗ s3 = s1 ⊗ (s2 ⊗ s3) 1e ⊗ s = s = s⊗ 1e

(s′1 ⊗ s′2) ◦ (s1 ⊗ s2) = (s′1 ◦ s1)⊗ (s′2 ◦ s2)

Morphism (resp. object) terms are terms built from basic morphisms (resp. ob-
jects) as variables, composition and tensor product. For example, (s1 ◦ s2) ⊗ s3 is a
morphism term and m1 ⊗ (m2 ⊗m3) is a object term.

Graphical representation Morphism and object terms can be given by a standard
graphical representation using string diagrams [84, 144] defined as follows:

• nodes are morphisms (except for identity morphisms) and edges are objects:

m
s

n> >
1m
> m>

• composition sj ◦ si:

mi
si ni = mj

sj
nj

> > >

• tensor product si ⊗ sj:

mi
si ni

> >

mj
sj

nj
> >

1The monoidal category used here is indeed a strict one.

130 Chapter 5. Behavioral obfuscation

In (planar) monoidal categories, diagrams are progressive [144], namely edges are
always oriented from left to right. The left-right direction induces a partial order 4
on nodes: 4 is defined as the reflexive and transitive closure of the relation R defined
by siRsj holds if there is an edge from si to sj.

5.2.3 Syscall interaction abstract modeling

From a practical viewpoint, the computations and interactions between processes and
the kernel can be divided in two main sorts, the system calls interactions and the
process or kernel internal computations.

System calls are implemented by the trap mechanism where there is a mandatory
control passing from the process (caller) to the kernel (callee). A syscall affects to and
is affected by both process and kernel data in their respective memory spaces.

We distinguish syscall names (e.g. NtCreateFile) from syscall invocations (e.g. NtCre-
ateFile(h,...)). The former are just names while the later compute functions and
will be the main concern of our study.

Internal computations are operations inside the process or kernel memory spaces.
There is no control passing and they only affect to and are affected by data of the
caller memory.

Our purpose to to abstract this concrete interpretation by a categorical model
where computations and interactions (i.e. both syscalls and internal computations)
will be represented by morphisms on the appropriate objects. For that purpose, ob-
jects will consist in formal representations of physical memories.

Definition 5.2.2 (Memory space and memory domain). A memory space Mi is a finite
set of addresses corresponding to memory bits:

Mi = {addr1, addr2, . . . , addrn}

where n is the size of Mi and i ∈ {k, p} is an annotation depending on whether Mi

is a kernel memory space (i.e. i = k) or a process memory space (i.e. i = p). The
memory domain dom(Mi) is the set of all bit sequences of size n on Mi:

dom(Mi) = {baddr1baddr2 . . . baddrn |baddrk
∈ {0, 1}}

For a given memory space Mi, i ∈ {k, p}, let mi, ni,. . . denote domains of its subsets,
that is mi = dom(Ni), ni = dom(Li) for some Ni, Li ⊆ Mi.

We are now ready to introduce the notion of interaction category in order to abstract
syscall invocations and internal computations.

Definition 5.2.3 (Interaction category). Let Mp, Mk be memory spaces satisfying Mp ∩
Mk = ∅. The interaction category C〈Mp, Mk〉 is a category equipped with a tensor
product ⊗ and defined as follows:

5.2. Behavior modeling 131

• The set of objects is freely generated from:

– process and kernel memory domains: mi, ni, . . . , i ∈ {k, p},

– cartesian products: mp ×mk, np × nk, . . . ,

– a unit which is also terminal: e = dom(∅).

• The set of morphisms is freely generated from:

– process and kernel internal computations: si : mi → ni, i ∈ {k, p}

– syscall interactions between the process and the kernel:

sp-k : mp ×mk → np × nk,

– cartesian projections: πi, i ∈ {k, p}.

• The tensor product is partially defined on objects and morphisms by:

– given i ∈ {k, p} and Ni, Li ⊆ Mi, if Ni ∩ Li = ∅1 then

dom(Mi)⊗ dom(Li) = dom(Mi ∪ Ni),

– if mp ⊗ np and mk ⊗ nk are both defined then

(mp ×mk)⊗ (np × nk) = (mp ⊗ np)× (mk ⊗ nk),

– if mp ⊗ np or mk ⊗ nk is defined then

(mp ×mk)⊗ np = (mp ⊗ np)×mk or (mp ×mk)⊗ nk = mp × (mk ⊗mk),

– given s1 : m1 → n1 and s2 : m2 → n2, then

s1 ⊗ s2 : m1 ⊗m2 → n1 ⊗ n2

is defined by v1 ⊗ v2 7→ s1(v1)⊗ s2(v2) whenever the following commuta-
tive diagram is well-formed (i.e. the tensor is well-defined on objects):

m1 ⊗m2 n1 ⊗m2

m1 ⊗ n2 n1 ⊗ n2

s1⊗1m2

1m1⊗s2 1n1⊗s2
s1⊗1n1

1The tensor represents the concurrent accesses and modifications performed by both internal com-
putations and syscall interactions on memory domains. A necessary condition for these operations to
be well-defined is that they do not interfere, that is they have to operate on disjoint domains.

132 Chapter 5. Behavioral obfuscation

Remark 5.2.1. To denote a value v of a memory domain m, the set notation v ∈ m and
the categorical one v : e → m, so do the composition s ◦ v and the application s (v)
will be interchangeably used depending on the context.

We show that interaction categories enjoy the mathematical abstractions and prop-
erties of monoidal categories:

Proposition 5.2.1. Each interaction category is a monoidal category where the tensor product
is partially defined.

Proof. For i ∈ {p, k}, let (the sets Ni, Li may also be empty set)

Obj ={dom (Np)× dom
(

Nk
)
|Ni ⊆ Mi}

Mor ={s : dom (Np)× dom
(

Nk
)
→ dom (Lp)× dom

(
Lk
)
|Ni, Li ⊆ Mi}

Definition 5.2.3 says that Obj and Mor are respectively generator of the set of objects
and the set of morphism of C〈Mp, Mk〉. Moreover, they are both closed under tensor
product and composition, hence the set of objects and of morphisms of C〈Mp, Mk〉
are well-defined and equal to Obj and Mor.

The properties applied solely to the tensor in Definition 5.2.1 are directly derived
from Definition 5.2.3, we prove the property which is applied to the tensor and the
composition. Given morphisms s1 : m1 → n1, s′1 : n1 → l1, s2 : m2 → n2 and s′2 : n2 →
l2, we need to verify, whenever they are well-formed, that:

(s′1 ⊗ s′2) ◦ (s1 ⊗ s2) = (s′1 ◦ s1)⊗ (s′2 ◦ s2)

Since the morphism tensoring is defined (cf. Definition 5.2.3) by:

s1 ⊗ s2 : m1 ⊗m2 → n1 ⊗ n2

v1 ⊗ v1 7→ s1(v1)⊗ s2(v2)

It makes the following diagram commute:

e

m1 m1 ⊗m2 m2

n1 n1 ⊗ n2 n2

l1 l1 ⊗ l2 l2

v1⊗v2v1 v2

s1 s1⊗s2

πm1 πm2

s2

s′1 s′1⊗s′2

πn1 πn2

s′2
πl1

πl2

Hence (s′1 ◦ s1)⊗ (s′2 ◦ s2) = (s′1 ⊗ s′2) ◦ (s1 ⊗ s2).

5.2. Behavior modeling 133

char *src = 0x00150500;
char *dst = 0x00150770;
strncpy(dst ,src ,10);

Listing 5.3: Internal computation

char *buf = 0x0015C898;
HANDLE hdl = 0x00000730;
NtWriteFile(hdl ,.,buf ,1024 ,.);

Listing 5.4: Syscall invocation

Example 5.2.1. Listing 5.3 is an example of (process) internal computation. The func-
tion strncpy is represented by a morphism:

strncpyp : dom([src])⊗ dom([dst]) −→ dom([src])⊗ dom([dst])

where [src] and [dst] are 10 bytes memory spaces in Mp respectively beginning at the
addresses 0x150500 and 0x150770.

Example 5.2.2. Listing 5.4 is an example of syscall invocation. The invocation of the
syscall name NtWriteFile is represented by a morphism:

NtWriteFilep-k : dom([bu f])× dom([hdl]) −→ dom([bu f])× dom([hdl])

where [bu f] is a 1024 bytes memory space in Mp beginning at the address 0x15C898,
and [hdl] is a memory space in Mk identified by the handler 0x730.

We now discuss basic properties for morphisms realized by a process Q running
in the memory space Mp of an interaction category C〈Mp, Mk〉.

Process internal computations are memory modifiers operating on some previ-
ously allocated memory spaces. Consequently, for any internal computation sp re-
alized by Q, the equality source(sp) = target(sp) always holds. In what follows, for
simplicity, we will represent each sp by a morphism of the shape:

sp : dom(Mp) −→ dom(Mp)

That means sp is implicitly tensored with the identity morphism 1dom(Mp\Np) when-
ever dom(Np) = source(sp).

Syscall interactions are multiform. From the process’s viewpoint, they operate on
some allocated memory spaces in Mp1. Consequently, each syscall invocation is rep-
resented by a morphism sp-k : dom (Np) × dom

(
Nk) −→ dom (Lp) × dom

(
Lk) such

that the equality Np = Lp always holds. As for process internal computations, each
syscall interaction will be identified with the shape:

sp-k : dom (Mp)× dom
(

Nk
)
−→ dom (Mp)× dom

(
Lk
)

From the kernel’s viewpoint, a syscall interaction morphism can be:

1We can safely assume that the process freely uses its memory space Mp by implicitly accept effects
of memory allocation syscalls like NtAllocateVirtualMemory.

134 Chapter 5. Behavioral obfuscation

• either a memory modifier operating on some fixed and allocated memory space
in Mk, hence Nk = Lk,

• or a memory constructor (resp. destructor) allocating (resp. freeing) some fresh
(resp. allocated) memory space in Mk, hence Nk 6= Lk. Note that a syscall
invocation can be both a constructor and a destructor.

Example 5.2.3. The syscall invocation NtWriteFile(hdl,...) is a memory modifier
(see also Example 5.2.2) while NtOpenKey(ph,...) is a memory constructor allocat-
ing a new memory space identified by *ph, and NtClose(h) is a memory destructor
freeing the memory space identified by h.

The following definition gives sound properties for a list of morphisms which is
realized by Q in the interaction category C〈Mp, Mk〉.

Definition 5.2.4 (Canonical property). A nonempty (finite or infinite) list X of mor-
phisms consisting of process internal computations and syscall interactions, i.e. X =

[sj1
1 , sj2

2 , . . . , sjn
n , . . .] for n ≥ 1 and ji ∈ {p, p-k} ∀i, is called canonical if for any syscall

interaction sp-k
i ∈ X of the shape:

sp-k
i : dom (Mp)× dom

(
Nk

i

)
−→ dom (Mp)× dom

(
Lk

i

)
then the following properties hold:

• there is no memory duplication: if sp-k
i is a memory constructor then its con-

structed memory Tk
i = Lk

i \ Nk
i is not duplicated, namely for any sp-k

j ∈ X, j 6= i;
if j > i then Tk

i ∩ Tk
j = ∅, else Tk

i ∩ Nk
j = ∅ and Tk

i ∩ Lk
j = ∅.

• there is no memory reuse: if sp-k
i is a memory destructor then its destructed

memory Uk
i = Nk

i \ Lk
i is not reused, namely for any sp-k

j ∈ X; if j > i then

Uk
i ∩ Nk

j = ∅ and Uk
i ∩ Lk

j = ∅.

The former prevents Q from reallocating a memory space and from accessing to
an unallocated one, while the later prevents it from accessing to a previously freed
memory space.

5.2.4 Process behaviors as paths and semantics

We now provide definitions of process behaviors in term of paths, namely lists of con-
secutive morphisms that processes realized in execution. By assuming that processes
can only be examined in finite time, the studied paths are finite.

Definition 5.2.5 (Paths). For a given interaction category, a finite canonical list of
morphisms X is called an execution path. The list of all syscall interactions in X is
called the corresponding observable path O of X.

5.2. Behavior modeling 135

Let X ,O denote the set of all execution paths and of all observable paths, respec-
tively; the function obs : X → O returns the observable path of an execution path
given as input, e.g. obs([sp-k

1 , sp
2 , sp

3 , sp-k
4]) = [sp-k

1 , sp-k
4].

Execution paths will be used to study all the possible computations (internal com-
putations and syscall interactions) at the process level while observable paths only
consist in behaviors that can be grasped by an external observer, that is some se-
quence of syscall invocations, and will be the main concern of our study.
Remark 5.2.2. Except where explicitly stated otherwise, the term path will from now
on refer to execution path.
Example 5.2.4. The paths X1, X2 in Listings 5.5 and 5.6 and their corresponding ob-
servable paths O1 = obs(X1) and O2 = obs(X2) are defined by:

X1 = [strncpyp
1 , strncpyp

2 , NtOpenKeyp-k
3 , memcpyp

4] O1 = [NtOpenKeyp-k
3]

X2 = [memcpyp
1 , strncpyp

2 , strncpyp
3 , NtOpenKeyp-k

4] O2 = [NtOpenKeyp-k
4]

strncpy(dst ,src1 ,10);
strncpy(dst+10,src1 +10 ,30);
NtOpenKey(h ,...{... dst ...});
memcpy(src2 ,src1 ,1024);

Listing 5.5: Path X1

memcpy(src2 ,src1 ,1024);
strncpy(dst+2,src2 ,15);
strncpy(dst+17,src1 +15 ,25);
NtOpenKey(h ,...{... dst +2...});

Listing 5.6: Path X2

Proposition 5.2.2 shows that data modification on Mp and Mk caused by a path
X can be represented by a morphism term built from the morphisms of X together
with identity morphisms. In what follows, the morphism corresponding to these data
modifications will be called path semantics of X, denoted s(X).

Proposition 5.2.2. Given a path X ∈ X , the data modifications caused by X on Mp and Mk

is a morphism s(X) of the shape:

s(X) : dom (Mp)× dom
(

Nk
)
−→ dom (Mp)× dom

(
Lk
)

, with Nk, Lk ⊆ Mk.

that can be represented by a morphism term obtained from the morphisms of X together with
identity morphisms.

Proof. We summarize the shape of morphisms in an execution path. Each syscall
interaction is of the shape:

sp-k : dom(Mp)× dom(Nk) −→ dom(Mp)× dom(Lk)

and belongs to one of two kinds: either memory modifier (Nk = Lk), or memory construc-
tor/destructor (Nk 6= Lk). Moreover, we can consider each process internal computation
sp as a special case of sp-k by writing:

sp : dom(Mp)× dom (∅) −→ dom(Mp)× dom (∅)

136 Chapter 5. Behavioral obfuscation

Since an execution path is canonical (cf. Definition 5.2.4), its morphisms satisfy:
no memory duplication, namely no memory space is reallocated; and no memory reuse,
namely no freed memory space is reused.

We prove the proposition by induction on the length n of an execution path. The
initial step with n = 1 is obvious. Suppose that for each execution path Xn of length
n, the path semantics s(Xn) defined by:

s(Xn) : dom(Mp)× dom(Nk
n) −→ dom(Mp)× dom(Lk

n)

can be represented as a morphism term Mn whose variables are morphisms of Xn
and identity morphisms (induction hypothesis). Let us consider an execution path

Xn+1 = Xn@[sn+1]

for some morphism sn+1. The path semantics s(Xn+1) can be represented as a mor-
phism term:

s(Xn+1) =
(

sn+1 ⊗ 1dom(Lk
n\Nk)

)
◦
(

s(Xn)⊗ 1dom(Nk\Lk
n)

)
of s(Xn), sn+1 and identity morphisms (cf. also Figure 5.1). To show this term is well-
formed, we need to verify that Nk

n ∩
(

Nk \ Lk
n
)
= ∅ and

(
Lk

n \ Nk) ∩ Lk = ∅. Both are
trivial if sn+1 is a process internal computation since Nk = Lk = ∅. Let us consider
the case where sn+1 is a syscall interaction.

s(Xn)

sn+1

>

>

> >

>

dom(Nk \ Lk
n)

dom(Nk
n)

dom(Nk ∩ Lk
n)

dom(Lk
n \ Nk)

dom(Lk)

Figure 5.1: Inductive construction

To prove the former, we notice that if s(Xn) frees some memory space then this
memory space cannot occurs in source of sn+1 anymore (no reuse). That means if
Nk and Nk

n share some memory space, then this one must occur in Nk ∩ Lk
n, in other

words Nk
n ∩

(
Nk \ Lk

n
)
= ∅.

To prove the later, we notice that if sn+1 allocates some memory space then this
memory space cannot occur in target of s(Xn) (no duplication). That means if Lk and
Lk

n share some memory space, then this one must occur in Nk ∩ Lk
n, in other words(

Lk
n \ Nk) ∩ Lk = ∅. Hence the inductive step is proved.

We note that if each morphisms s ∈ X has form 1dom(Mp) × sk where sk is a kernel
internal computations, namely sk is of the shape sk : dom(Nk

n) → dom(Lk
n) then s (X)

is equal to:
s (X) = 1dom(Mp) × sk (X)

5.3. Behavioral obfuscation 137

where sk (X) is inductively defined by:

sk(Xn+1) =

{(
sk

n+1 ⊗ 1dom(Lk
n\Nk)

)
◦
(

sk(Xn)⊗ 1dom(Nk\Lk
n)

)
if Nk ∩ Lk

n 6= ∅

sk
n+1 ⊗ sk(Xn) if Nk ∩ Lk

n = ∅

So in the general case, the structure of s(X) is sequential because the composition
through Mp is mandatory. But if we can consider s(X) without considering the data
modification on Mp, e.g. in the replay paths, then s(X) has a concurrent structure and
in this case the string diagram of s(X) can be deformed easily by a coherence theorem
(cf. Theorem 4) for monoidal categories.

5.3 Behavioral obfuscation

In this section, we first present a theoretical result which establish sufficient conditions
of behavioral mimic attack. The intuition behind this result is a malicious program
can hide itself by mimic behaviors of a benign program. Then, we introduce some
constructive schemata which shows how the mimicry can be obtained, by this way
we can really “create” malicious program for a mimic attack. Finally, we present an
experimental implementation and experiments on real malwares.

5.3.1 Ideal detectors

We now study behavioral obfuscation from the dual viewpoint: instead of studying
program equivalence wrt a given program transformation, we assume the existence of
ideal detectors and try to answer the question which behaviors should the ideal detectors
detect based on the knowledge of a given malicious behavior.

Intuitively, an ideal detector is an oracle that can decide whether the running
process is malicious or not by only examining the memory spaces Mp and Mk.

Definition 5.3.1 (Ideal detector). An ideal detector is a boolean target function:

D : dom (Mp)× dom
(

Mk
)
→ {T, F}

A verification of D on X ∈ X starting at a value vp
0 × vk

0 ∈ source (s (X)) is the result
of the application D

(
0X ⊗ s(X)

(
vp

0 × vk
0
))

, where the morphism 0X is equal to the
constant 0 ∈ dom

(
Mk \ target (s (X))

)
(i.e. is equal to 0 on all the kernel addresses

that do not belong to the target of s (X)). If the result of application is T then we say
that X is detected by D.

One of the main obfuscation techniques consists in camouflaging behaviors of
malwares with those of a benign programs. Such a technique will be illustrated by
a ransomware (cf. Listing 5.13) which hides some of its behaviors through the use of
Internet Explorer™functionalities.

138 Chapter 5. Behavioral obfuscation

Formally, consider a path X1 starting at some value vp
0 × vk

0 and ending at value
s (X1)

(
vp

0 × vk
0
)

detected by the ideal detector D. Consider another path X2 which
also starts at vp

0 × vk
0 and ends at:

s (X2)
(

vp
0 × vk

0

)
= s (X1)

(
vp

0 × vk
0

)
= vp

1 × vk
1

then X2 is also detected by D. We say that X2 obfuscates X1 or obs (X2) behaviorally
obfuscates obs (X1) at

(
vp

0 × vk
0, vp

1 × vk
1
)
, denoted by obs (X2) ≈ obs (X1). Clearly, the

relation ≈ fixed by a pair of values
(
vp

0 × vk
0, vp

1 × vk
1
)

is an equivalence relation.

Example 5.3.1. Let us consider the paths X′1, X′2 respectively consisting of the 3 last
morphisms of X1, X2 in Listings 5.5 and 5.6, namely:

X′1 = [strncpyp
2 , NtOpenKeyp-k

3 , memcpyp
4]

X′2 = [strncpyp
2 , strncpyp

3 , NtOpenKeyp-k
4]

In general, s(X′1) 6= s(X′2) but they will end at the same values if we let them start at
values so that the data on [src1] ∪ [src2]1 are the same. At these particular values, if
X′1 is detected by D then X′2 is also detected, and:

obs(X′1) = [NtOpenKeyp-k
4] ≈ [NtOpenKeyp-k

3] = obs(X′2)

It is also clear that these syscall invocations have the same name but actually consist
in two different morphisms.

5.3.2 Main obfuscation theorem

We now show a theorem stating that if a benign path has the same effects on the
kernel data as a malicious path, then there exist (malicious) paths having the same
path semantics as the initial malicious one, and the same observations as the benign
one. It seems may be not surprising though, this result has two main advantages.
First, it gives a first formal treatment of camouflage techniques. Second, the proof of
this theorem is constructive. This means that the theorem does not only show the
existence of such malicious paths but allows us to build them. As we will present
later, this plays also a role in a very first step towards an automated way of detecting
such malicious paths.

In order to state the theorem, we need to introduce the notions of process and ker-
nel (partial) semantics to distinguish the effects caused by a path on a kernel memory
space from the ones caused on a process memory space.

Definition 5.3.2. Given X ∈ X and its path semantics s(X) wrt the interaction cate-
gory C〈Mp, Mk〉, the following morphisms, named:

1[src1] and [src2] denote memory spaces as explained in Examples 5.2.1 and 5.2.2.

5.3. Behavioral obfuscation 139

• kernel semantics k (X), kernel partial semantics k (X) [vp] at vp,

• process semantics p (X), process partial semantics p (X) [vk] at vk,

are defined so that the following diagram commutes:

e

dom(Mp) dom(Mp)× dom(Nk) dom(Nk)

dom(Mp) dom(Mp)× dom(Lk) dom(Lk)

vp×vkvp v k

1dom(Mp)×vk

p(X)[vk] s(X)p(X) k(X)

vp×1dom(Nk)
k(X)[vp]

πp πk

Example 5.3.2. The semantics of the path X1 in Listing 5.5 is a morphism1:

s (X1) : dom ([src1] ∪ [src2] ∪ [dst])× e→ dom ([src1] ∪ [src2] ∪ [dst])× dom ([h])

and its process and kernel semantics are morphisms:

p (X1) : dom ([src1] ∪ [src2] ∪ [dst])× e −→ dom ([src1] ∪ [src2] ∪ [dst])
k (X1) : dom ([src1] ∪ [src2] ∪ [dst])× e −→ dom ([h])

The following theorem shows that if we first find an intermediate path X1-2 having
just the same kernel semantics as X1 (i.e. the same effects on the kernel memory
space), then we can later modify X1-2 (while keeping its observable behaviors) to
obtain X2 having the same paths semantics as X1.

Theorem 3 (Camouflage). Let X1 ∈ X and vp × vk ∈ source (s (X1)), for each X1-2 ∈ X
such that p(X1-2)[vk] is monic (i.e. injective) and:

k (X1-2)
(

vp × vk
)
= k (X1)

(
vp × vk

)
there exists X2 ∈ X satisfying obs (X2) = obs (X1-2) and:

s (X2)
(

vp × vk
)
= s (X1)

(
vp × vk

)
Proof. We construct X2 by first letting it imitate X1-2 and then concatenating a process
internal computation sp defined by:

sp = p (X1) [vk] ◦ p (X1-2) [vk]
−1

The morphism sp is well defined since p (X1-2) [vk] is monic. The execution path
X2 = X1-2@[sp] makes the diagram in Figure 5.2 commute. We deduce from this

1[src1], [src2], [dst] and [h] still denote memory spaces.

140 Chapter 5. Behavioral obfuscation

e

dom(Mp) dom(Mp)× dom(Nk) dom(Nk)

dom(Mp) dom(Mp) dom(Mp)× dom(Lk) dom(Lk)

dom(Mp)× dom(Lk)

vp×vkvp v k

p(X2)[vk]=p(X1)[vk]
1dom(Mp)×vk

p(X1-2)[vk] s(X1-2)

vp×1dom(Nk)
k(X2)[vp]=k(X1-2)[vp]=k(X1)[vp]

sp

sp×1dom(Lk)

πp πk

πp πk

Figure 5.2: Obfuscated path construction

commutative diagram and by Definition 5.3.2 that:

p (X2) ◦
(

vp × vk
)
= p (X2) [vk] ◦ vp = p (X1) [vk] ◦ vp = p (X1) ◦

(
vp × vk

)
k (X2) ◦

(
vp × vk

)
= k (X1-2) ◦

(
vp × vk

)
= k (X1) ◦

(
vp × vk

)
Consequently, s (X2) ◦

(
vp × vk) = s (X1) ◦

(
vp × vk). Moreover, we clearly have

obs (X2) = obs (X1-2) since X2 is just obtained by concatenation of X1-2 with some
(unobservable) process internal computation sp. And so the result.

In other words, if X1 is a malicious path and X1-2 (possibly benign) has the same
kernel semantics, then we can build X2 so that

s (X2)
(

vp × vk
)
= s (X1)

(
vp × vk

)
Then X2 is also malicious; but obs (X2) = obs (X1-2), so it looks like a benign path.

Example 5.3.3. The paths X1 and X1-2 in Listings 5.5 and 5.7 have the same par-
tial kernel semantics at the values "\SYSTEM\CurrentControlSet\..." ∪ . . . ∪ . . . of
dom ([src1] ∪ [src2] ∪ [dst]) but the process partial semantics are not (because values
on dom ([src1] ∪ [src2] ∪ [dst]) are set to 0 in X1-2).

NtOpenKey(h ,...{..."\ SYSTEM\CurrentControlSet \..."...});
memset(dst ,0 ,1024); memset(src1 ,0 ,1024); memset(src2 ,0 ,1024);

Listing 5.7: Path X1-2

5.3.3 Obfuscated path generation through path replaying

As previously mentioned, the proof of Theorem 3 will allow to generate paths with
camouflaged behaviors. The intuition behind such a procedure (will be presented

5.3. Behavioral obfuscation 141

below), named path replaying, is to transform a path X1 by specializing some invoked
values inside the process memory space Mp. We start by introducing the projection
morphisms that allow us to extract the partial values of a given total value.

Definition 5.3.3 (Projection morphisms). Let v ∈ m1 ⊗m2, the partial values v1 ∈ m1
and v2 ∈ m2 are respectively defined by the morphisms πm1 and πm2 making the
following diagram commute:

e

m1 m1 ⊗m2 m2

v1⊗v2
v1 v2

πm1 πm2

Given a path X = [sj1
1 , sj2

2 , . . . , sjn
n] and a value vp× vk ∈ source (s (X)); for 1 ≤ i ≤ n,

define Xl to be the path containing the first l morphisms of X, i.e. Xl = [sj1
1 , sj2

2 , . . . , sjl
l].

Consider morphisms sjl
l ∈ obs(X) (i.e. jl = p-k), the source value vp

l ∈ dom (Mp)

invoked by each sjl
l can be evaluated by:

vp
l = p (Xl−1)

(
πsource(s(Xl−1))

(
vp × vk

))
Definition 5.3.4 (Replay path). Let X = [sj1

1 , sj2
2 , . . . , sjn

n] ∈ X , vp × vk ∈ source (s (X)),
the replay rep(X) = [r1, r2, . . . , rn] of X at vp × vk is defined by:

ri =

{
sp

i if ji = p
1dom(Mp) × k(sp-k

i)[vp
i] if ji = p-k

Example 5.3.4. The path in Listing 5.8 is the replay of one in Listing 5.6 at the invoked
value "\SYSTEM\CurrentControlSet\..." of dom ([dst]).
memcpy(src2 ,src1 ,1024);
strncpy(dst+2,src2 ,15); strncpy(dst+17,src1 +15 ,25);
NtOpenKey(h ,...{..."\ SYSTEM\CurrentControlSet \..."...});

Listing 5.8: Replay rep(X2) of X2

Proposition 5.3.1. Let X1 ∈ X and rep (X1) be the replay of X1 at vp× vk ∈ source (s (X1)).
For each X1-2 ∈ X satisfying s (X1-2) = s (obs (rep (X1))), the following properties hold:

• p (X1-2) [vk] is monic and k(X1-2)
(
vp × vk) = k(X1)

(
vp × vk),

• if X2 = X1-2@[p(X1)[vk]], where @ is the usual concatenation operator on lists, then
s (X2)

(
vp × vk) = s (X1)

(
vp × vk).

Proof. For readability, let Y denote obs (rep (X1)). For the first property, since s (X1-2) =
s (Y) by assumption, we need to show that p (Y) [vk] is monic and that:

k (Y)
(

vp × vk
)
= k (X1)

(
vp × vk

)

142 Chapter 5. Behavioral obfuscation

By definition of the replay path, Y can be written as follows:

Y = [1dom(Mp) × k(sp-k
i)[vp

i], . . . , 1dom(Mp) × k(sp-k
l)[vp

l]]

To prove the former, note that s (Y) has form 1dom(Mp)× sk where sk is some morphism
of the shape:

sk : dom(Nk) −→ dom(Lk)

Hence p (Y) [vk] is equal to 1dom(Mp) and is obviously monic. The later equality on
kernel semantics is trivially deduced from the definition of the replay path.

The second property, X2 = X1-2@[p(X1)[vk]], is deduced from the proof of Theo-
rem 3. In this proof, the concatenated morphism sp is defined by:

sp = p (X1) [vk] ◦ p (X1-2) [vk]
−1

But p (X1-2) [vk] = p (Y) [vk] = 1dom(Mp), so sp = p (X1) [vk].

The former shows that X1-2 satisfies the assumptions of Theorem 3 while the later
explicitly builds an instance of X2. Hence obs (X2) behaviorally obfuscates obs (X1) at(
vp × vk, s (X1)

(
vp × vk)), provided that X1 is detected by D.

5.3.4 Graph-based path transformation

Since rep (X1) is constructed out of X1 by replacing each sp-k
i ∈ obs (X1) by

1dom(Mp) × k(sp-k
i)[vp

i]

the observable paths obs (rep (X1)) and obs (X1) have the shapes:

obs (X1) = [sp-k
i , . . . , sp-k

l]

obs (rep (X1)) = [1dom(Mp) × k(sp-k
i)[vp

i], . . . , 1dom(Mp) × k(sp-k
l)[vp

l]]

Proposition 5.3.1 provides a straightforward way of generating an obfuscated path X2
of X1 by setting:

X2 = X1-2@[p(X1)[vk]]

for some X1-2 such that X1-2 = obs (rep (X1)). The obtained path X2 complies with
obs (X2) = obs (rep (X1)) and obs (X2) 6= obs (X1).

Though having distinct syscall invocations, these paths are “not that different” in
the sense that the lists of the corresponding syscall names are still identical (cf. Exam-
ple 5.3.4). The general objective of this subsection is to show how to generate paths
that are semantically equivalent to obs (rep (X1)) but with distinct observations. For
that purpose, the string diagrams will be used since they allows to consider semantics-
preserving transformations on the syscall invocations in obs (rep (X1)).

5.3. Behavioral obfuscation 143

By Proposition 5.2.2, the path semantics s (obs (rep (X1))) is represented by a mor-
phism term constructed from the morphisms 1dom(Mp) × k(sp-k

i)[vp
i]. Hence it has a

graphical representation as a string diagram, moreover we can safely omit the iden-
tity morphism 1dom(Mp) in considering these morphisms.

Remark 5.3.1. In what follows, each path obs (rep (X1)) is considered without the iden-
tity morphism 1dom(Mp) in its elements.

Among string diagrams, we will only consider path diagrams, namely those such
that the projection of nodes on an horizontal axis is an injective function, so the projec-
tion allows us to define a total order on nodes. The reason for restricting our graphical
representation to path diagrams is that they represent their corresponding paths in
an unambiguous way.

s1

s2

s3

>
>
>

>

>

(a) (s2 ⊗ s3) ◦ s1

s1

s2

s3

>
>
>

>

>

(b) (1⊗ s3) ◦ (s2 ⊗ 1) ◦ s1

s1

s2

s3

>
>

>

>

>

(c) (s2 ⊗ 1) ◦ (1⊗ s3) ◦ s1

Figure 5.3: String diagrams

Example 5.3.5. Figures 5.3b and 5.3c are path diagrams respectively representing the
paths [s1, s2, s3] and [s1, s3, s2], but Figure 5.3a is not since there is an ambiguity about
projections of s2 and s3.

The following theorem gives us a sound property, when applied to the correspond-
ing string (or path) diagrams, of the semantics-preserving transformations from one
path to another.

Theorem 4 (Coherence of progressive plane diagrams [84, 144]). The equivalence of two
morphism terms in monoidal categories is deduced from axioms iff their string diagrams are
planar isotopic.

Following [144], we accept an informal definition of planar isotopy between string
diagrams as “...one can be transformed to the other by continuously moving around
nodes...” (but keep the diagram always progressive), the formal treatment can be
referenced in [84].

Example 5.3.6. Figures 5.3a, 5.3b and 5.3c are planar isotopic.

Between path diagrams, planar isotopy can be though of as moving the nodes but
keeping the total order compatible with the partial order 4 (see also section 5.2.2).
Hence, a linear extension Y of obs (rep (X1)), namely a permutation where the total
order remains to be compatible with 4, will preserves the semantics of obs (rep (X1)).
That leads to Algorithm 1.

Example 5.3.7. The paths X3, X4 in Listings 5.9 and 5.10 can be respectively represented
by path diagrams in Figures 5.3b and 5.3c. Consequently, given X3, Algorithm 1 can
generate X4.

144 Chapter 5. Behavioral obfuscation

Input: an observable path obs (rep (X1))
Output: a permutation Y satisfying s (Y) = s (obs (rep (X1)))

begin
M1 ← morphism term of s (obs (rep (X1)));
G1 ← string diagram of M1;
(obs (rep (X1)) ,4)← poset with order induced from G1;
(Y,≤)← a linear extension of (obs (rep (X1)) ,4);

end
Algorithm 1: Obfuscation by diagram deformation

NtCreateKey(h ,...{..."\ SOFTWARE\AD \"...}...); /*s1*/
NtSetValueKey(h ,...{..." DOWNLOAD "...}... ," abc "); /*s2*/
NtSetValueKey(h ,...{..." URL "...}... ," xyz "); /*s3*/

Listing 5.9: Path X3

NtCreateKey(h ,...{..."\ SOFTWARE\AD \"...}...); /*s1*/
NtSetValueKey(h ,...{..." URL "...}... ," xyz "); /*s3*/
NtSetValueKey(h ,...{..." DOWNLOAD "...}... ," abc "); /*s2*/

Listing 5.10: Path X4

A variable in a morphism term (resp. a node in the string diagram) is also a place-
holder [144] that can be substituted by another term (resp. another diagram) having
the same semantics, so Algorithm 2 is derived from Algorithm 1.

Input: an observable path obs (rep (X1))
Output: a new path Y satisfying s (Y) = s (obs (rep (X1)))

begin
M1 ← morphism term of obs (rep (X1));
s← a morphism of obs (rep (X1));
X ← an execution path satisfying s(X) = s;
M← morphism term of X;
M2 ← morphism term obtained by replacing s in M1 by M;
G2 ← string diagram of M2;
((obs (rep (X1)) \ s) ∪ X,4)← poset with order induced from G2;
(Y,≤)← a linear extension of ((obs (rep (X1)) \ s) ∪ X,4)

end
Algorithm 2: Obfuscation by node replacement

Example 5.3.8. Consider the replacement of s2 in Listing 5.9 by X = [s′2, s2] where:

s′2 = NtSetValueKey(h,”DOWNLOAD”......, ”a′b′c′”)

Using this replacement, given X3 in Listing 5.9, Algorithm 2 can generate X5.

5.4. Implementation and experiments 145

NtCreateKey(h ,...{..."\ SOFTWARE\AD \"...}...); /*s1*/
NtSetValueKey(h ,...{..." DOWNLOAD "...}... ,"a’b’c’"); /*s′2*/
NtSetValueKey(h ,...{..." URL "...}... ," xyz "); /*s3*/
NtSetValueKey(h ,...{..." DOWNLOAD "...}... ," abc "); /*s2*/

Listing 5.11: Path X5

Proposition 5.3.2. Algorithms 1 and 2 are sound.

Proof. Let Y1 denote obs (rep (X1)) and 4 is the partial order on Y1 induced from the
string diagram G1 of s(Y1). Let Y2 be a permutation of Y1 whose total order is a linear
extension of 4, the path diagram of Y2 is G2. We prove that G2 can be deformed to G1
by moving the nodes but keep the directions of edges.

The trick is to deform G2 to G1 through several intermediate diagrams by elemen-
tary steps so that the directions of edges are preserved after each step:

G2 → G21 → G22 → . . .→ G1

Now let ≤1 be the total order of Y1, applying a sorting by element exchanging algo-
rithm, e.g. bubble sort, with input Y2 and total order ≤1. Clearly, the output of sorting
will be Y1, and G2 is deformed to G1.

At each step of bubble sort, two adjacent nodes si, sj are swapped. First, neither
the edge si → sj (i.e. si 4 sj) nor sj → sj (i.e. sj 4 si) exists since the total orders
of Y1 and Y2 are both compatible with 4. Second, the swapping does not change the
direction of other edges since only the relative position between si and sj is changed.
Hence the swapping at each step keeps the direction of edges, in other words the
deformation keeps the direction of edges.

5.4 Implementation and experiments

In this section, we apply Algorithms 1 and 2 on several sub-paths extracted from real
malwares: Dropper.Win32.Dorgam [55] and Gen:Variant.Barys.159 [8]. The experi-
mental obfuscator, implemented in C++ and Haskell, uses Pin DBI framework [104]
for path tracing and Functional Graph Library [58] for path transforming. Its source
code is available at [157].

The results are visualized by string diagrams. In each diagram, the numbers ap-
pearing as node labels represent the total order in the original path; the fictitious
nodes Input and Output are added as the minimum and the maximum in such a way
that the path can be considered as a lattice. On any line, the number appearing as
edge labels represent the handlers which identify the corresponding memory space
inside kernel. On different lines, the same numbers may identify different memory
spaces. The obfuscated paths generated by Algorithm 1 are linear extensions which
are compatible with the order defined in the lattice. Note that their corresponding
diagrams are always path diagrams (but they are not illustrated here).

146 Chapter 5. Behavioral obfuscation

Experiment 1 The trojan Dropper.Win32.Dorgam [55] has its registry initializing stage
as the trace in Listing 5.2 (cf. Section 5.2.1). Let [hi], i ∈ {1, 4, 7, 10, 13, 16, 19, 22} denote
the memories identified by the handlers of the accessed registry keys, the replay path
is formulated by morphisms:

NtOpenKeyp-k
i : e→ dom ([hi])

NtSetValueKeyp-k
i+1 : dom ([hi])→ dom ([hi])

NtClosep-k
i+2 : dom ([hi])→ e

Its string diagram is represented in Figure 5.4. The number of possible linear exten-
sions is:

e(X) =

(
24
3

)(
21
3

)(
18
3

)(
15
3

)(
12
3

)(
9
3

)(
6
3

)(
3
3

)
=

24!
68

namely more than 369 quadrillion extensions.

Input

NtOpenKey
(22)0x00000000

NtOpenKey
(19)0x00000000

NtOpenKey
(16)0x00000000

NtOpenKey
(13)0x00000000

NtOpenKey
(10)

0x00000000

NtOpenKey
(7)

0x00000000

NtOpenKey
(4)

0x00000000

NtOpenKey
(1)

0x00000000

Output

NtSetValueKey
(2)

0x00000730 NtClose
(3)

0x00000730

0x00000000
NtSetValueKey

(5)
0x00000730 NtClose

(6)
0x00000730

0x00000000
NtSetValueKey

(8)
0x00000730 NtClose

(9)
0x00000730

0x00000000
NtSetValueKey

(11)
0x00000730 NtClose

(12)
0x00000730

0x00000000

NtSetValueKey
(14)

0x00000730 NtClose
(15)

0x00000730
0x00000000

NtSetValueKey
(17)

0x00000730 NtClose
(18)

0x00000730
0x00000000

NtSetValueKey
(20)

0x00000730 NtClose
(21)

0x00000730
0x00000000

NtSetValueKey
(23)

0x00000730 NtClose
(24)

0x00000730
0x00000000

Figure 5.4: Registry initializing string diagram

Exepriment 2 The trojan also uses the trace in Listing 5.12 to create a copy of iex-
plore.exe, its replay path has the string diagram provided in Figure 5.5.
NtCreateFile (FileHdl=>0x00000730 ,File <=\??\C:\ Program Files\Internet Explorer\IEXPLORE.EXE) Ret=>0
NtCreateFile (FileHdl=>0x0000072C ,File <=\??\C:\ Program Files\iexplore.exe) Ret=>0
NtReadFile (FileHdl <=0 x00000730 ,BuffAddr <=0 x0015C898 , ByteNum <=65536) Ret=>0
NtWriteFile (FileHdl <=0 x0000072C , BuffAddr <=0 x0015C898 , ByteNum <=65536) Ret=>0
......
NtReadFile (FileHdl <=0 x00000730 ,BuffAddr <=0 x0015C898 , ByteNum <=65536) Ret=>0
NtWriteFile (FileHdl <=0 x0000072C , BuffAddr <=0 x0015C898 , ByteNum <=48992) Ret=>0
NtReadFile (FileHdl <=0 x00000730 , BuffAddr <=0 x0015C898 , ByteNum <=65536) Ret = >3221225489
NtClose (Hdl <=0 x00000730) Ret=>0
NtClose (Hdl <=0 x0000072C) Ret=>0

Listing 5.12: File copying

Input

NtCreateFile
(1)0x00000000

NtCreateFile
(2)

0x00000000 Output

NtReadFile
(3)

0x00000730

NtWriteFile
(4)

0x0000072C

......
0x00000730

......
0x0000072C

NtReadFile
(21)

0x00000730

NtWriteFile
(22)

0x0000072C

NtReadFile
(23)

0x00000730

NtClose
(24)

0x0000072C

NtClose
(25)

0x00000730

0x00000000

0x00000000

Figure 5.5: File copying string diagram

5.4. Implementation and experiments 147

This path can be considered as an obfuscated version (generated by Algorithm 2)
of the path whose string diagram is in Figure 5.6, by considering the equivalences:

NtReadFilep-k
3(orig) = [NtReadFilep-k

3 , NtReadFilep-k
5 , . . .]

NtWriteFilep-k
4(orig) = [NtWriteFilep-k

4 , NtWriteFilep-k
6 , . . .]

It also means that a behavior matching detector can detect an obfuscated path, as-

Input

NtCreateFile
(1)0x00000000

NtCreateFile
(2)

0x00000000 Output

NtReadFile
(3(orig))

0x00000730

NtWriteFile
(4(orig))

0x0000072C

NtClose
(5)

0x00000730

NtClose
(6)

0x0000072C

0x00000000

0x00000000

Figure 5.6: File copying original string diagram

suming the prior knowledge of both the original path and the semantics equivalences
described above.

Experiment 3 We consider the ransomware Gen:Variant.Barys.159 [8]. The ex-
tracted path in Listing 5.13 explains how the malware conceals itself by injecting code
into file explorer process explorer.exe.
NtOpenProcess (ProcHdl=>0x00000780 ,DesiredAccess <=1080 , ProcId <=0 x00000240) Ret=>0
NtCreateSection (SecHdl=>0x00000778 ,AllocAttrs <=SEC_COMMIT ,FileHdl <=0 x00000000) Ret=>0
NtMapViewOfSection (SecHdl <=0 x00000778 ,ProcHdl <=0 xFFFFFFFF ,BaseAddr <=0 x02660000) Ret=>0
NtReadVirtualMemory (ProcHdl <=0 x00000780 ,BaseAddr <=0 x7C900000 ,BuffAddr <=0 x02660000 ,ByteNum <=729088) Ret=>0
NtMapViewOfSection (SecHdl <=0 x00000778 ,ProcHdl <=0 x00000780 ,BaseAddr <=0 x7C900000) Ret=>0

Listing 5.13: Code injecting

The malware first obtains the handler 0x780 to the running instance (whose pro-
cess id is 0x240) of explorer.exe then creates a section object identified by the handler
0x778. It maps this section to the memory of malware, copies some data of the in-
stance into the mapped memory, modifies data on this memory and maps the section
(now contains modified data) back to the instance.

Let [h1], [h2] denote the memories identified by handlers of the opened process and
of the created section, the replay path is formulated by morphisms:

NtOpenProcessp-k
1 : e→ dom ([h1])

NtCreateSectionp-k
2 : e→ dom ([h2])

NtMapViewO f Sectionp-k
3 : dom ([h2])→ dom ([h2])

NtReadVirtualMemoryp-k
4 : dom ([h1])→ dom ([h1])

NtMapViewO f Sectionp-k
5 : dom ([h1] ∪ [h2])→ dom ([h1] ∪ [h2])

and the corresponding string diagram is provided in Figure 5.7.

148 Chapter 5. Behavioral obfuscation

Input

NtOpenProcess
(1)0x00000000

NtCreateSection
(2)

0x00000000 Output

NtReadVirtualMemory
(4)

0x00000780

NtMapViewOfSection
(3)

0x00000778

NtMapViewOfSection
(5)0x00000778

0x00000780
0x00000778 + 0x00000780

Figure 5.7: Code injecting string diagram

If the morphism NtReadVirtualMemoryp-k
4 is replaced by a path [sp-k

4-1 , sp-k
4-2] corre-

sponding to the syscall invocations in Listing 5.14 then this replacement leads to the
string diagram in Figure 5.8.
NtReadVirtualMemory(ProcHdl <=0 x00000780 ,BaseAddr <=0 x7C900000 ,BuffAddr <=0 x02660000 ,ByteNum <=9088)
NtReadVirtualMemory(ProcHdl <=0 x00000780 ,BaseAddr <=0 x7C909088 ,BuffAddr <=0 x02669088 ,ByteNum <=72000)

Listing 5.14: Replacing NtReadVirtualMemory

Input

NtOpenProcess
(1)0x00000000

NtCreateSection
(2)

0x00000000 Output

NtReadVirtualMemory
(4-1)

0x00000780

NtMapViewOfSection
(3)

0x00000778
NtMapViewOfSection

(5)0x00000778

NtReadVirtualMemory
(4-2)

0x00000780
0x00000780

0x00000778 + 0x00000780

Figure 5.8: Code injecting obfuscated string diagram

The numbers of linear extensions for the original string diagram and the obfus-
cated one are respectively:

e1(X) =

(
4
2

)(
2
2

)
= 6 e2(X) =

(
5
3

)(
2
2

)
= 10

5.5 Obfuscated path detection

We will now discuss the detection by using practical detectors introduced in previous
existing works on behavior matching [36, 65, 90].

Basically, a behavior matching detector first represents an observable path by a
directed acyclic graph (abbr. DAG) using the causal dependency between morphisms,
a morphism sj (directly or indirectly) depends on si if the sources values of sj are
(directly or indirectly) deduced from the target values of si. Then the detector decides
a path is malicious or not by verifying whether there exists a malicious pattern occur-
ring as a subgraph of the original DAG. Here the malicious pattern is a (sub-)DAG
and it can be obfuscated to another semantics equivalent DAG.

Whereas Algorithm 1 can generate a large amount of paths, the verification of
whether an obfuscated path is semantically equivalent to the original path is simple:
it is an instance of the DAG automorphism problem where every vertex is mapped
to itself. The instance can be decided in P-time by repeatedly verifying whether two
paths have the same set of minimal elements, if they do then remove the set of minimal
elements from both paths and repeat; if they do not then decide No; if the sets are
both empty then decide Yes and stop.

5.5. Obfuscated path detection 149

The detection of obfuscated paths generated by Algorithm 2 is more challenging.
When applied naively, the behavior matching does not work since the algorithm can
generate paths of morphisms corresponding to syscall names and invocations distinct
from those of the original path. More generally, it may be nonsense to compare an
obfuscator and a detector which use different sets of behavioral transformations. In
other words, as discussed in [47], a detector which abstracts behaviors by using the
transformation set T, will be bypassed by an obfuscator which generates behaviors by
using a set T′ so that T ∩ T′ 6= ∅.

The original behavior matching techniques can be strengthened by generating (e.g. by
using Algorithm 2) in prior a set of patterns that are semantically equivalent to the
original one (see also the discussion in the experiment 2 of Section 5.4). Conversely,
that means simplifying obfuscated paths to their original unique form, several sim-
plifying techniques has been studied in some existing works on semantics rewriting
(e.g. [9]). So we might suggest that a combination of behavior matching and semantics
rewriting will improve the presented analysis. We reserve such an improvement as a
future work.

150 Chapter 5. Behavioral obfuscation

Chapter 6

Conclusions and perspectives

6.1 Conclusions

Our work about input message format extraction bases directly and indirectly on
work of many other authors. Concretely, it has been guided by the original ideas of
J. Caballero et al [26, 28], who have shown clearly, at the first time, that the seman-
tics of messages should be determined by the program. We have reformulated the
problem of message format, proposed another interpretation and developed it using
another theoretical framework. That is the theory of reactive systems, pioneered by
R. Milner [114].

Formal reverse code engineering The automated approach in reverse code engi-
neering have been capturing many efforts in recent years. In comparison with the
classic manual approach, the automated one still seem to be in their infancy. But
many researchers in this domains have been, step by step, sharpening their methods.
One of the difficulties for the automated methods is to define rigorously what we
need in doing reverse engineering.

To see the differences between automated and manual approach, we may think
of the manual code reverse engineering is a self-defined process. The reverser takes
some codes and try fo find relations between the concrete details in the codes with
higher abstract patterns in his expert knowledge. In other words, he tries to fit con-
crete details with a abstract model existing already in his expert knowledge1. The
automated approach is similar, except that the expert knowledge needs to be defined
formally before reversing codes, and that is the main differences.

In a pilot paper which tries to put the reverse engineering as a rigorous pro-
cess [33], the authors have given several formal definitions for terminologies of reverse
engineering. Concretely, they have proposed that

1If such an abstract model does not exist already in his current knowledge, he may acquire the
concrete details, with some pre-processing, into his knowledge.

151

152 Chapter 6. Conclusions and perspectives

Reverse engineering is the process of analyzing a subject system to cre-
ate representation of the system in another form or at a higher level of
abstraction.

So the need here is a “representation of the system in another form or at a higher level
of abstraction”. But such a definition is too general, for example “what is a form?” or
“what is an abstraction level?”. To be applicable, it must be concretely stated under
some clearly defined properties.

These questions are considered by R. Milner in [114], and we will reapply in our
context that the reverse code engineering is a science of artificial in the sense of H. A.
Simon [148]: the reverse code engineers do not study natural objects, they instead
study artificial objects, that are programs written by other people. The opinions of
the two authors is that first, a level of abstraction does not need to give a complete
formalization of the examined object, instead it needs only to focus on some specific
properties of this object. Second, a form resulted from reverse engineering does not
need to be the exact form of the examined object, instead it needs only to simulate
this object, at some specific properties.

Code obfuscation as a double-edged sword Since the reverse code engineering is a
science of artificial, the efforts in software protection can be employed also to impede
the efforts in reverse code engineering. While the researches in software protection
have currently lots of solid bases, for example the employment of asymmetric cryptog-
raphy in malicious programs [165] (see also the challenges discussed in Section 1.1.2).
Unfortunately, such a base does not exist yet in reverse code engineering.

Concrete interpretation of message formats In studying the problem of input mes-
sage format extraction, we have encountered the question of “what is a message for-
mat?”. And our approach is more or less similar with the proposition above when we
state in Section 2.3.3 that “the message format is a mathematical model of the message
that fits a concrete implementation”. And to practically realize this statement, we go a
little further to interpret it concretely, to retrieve “the mathematical model” as a labeled
transition system that classifies (i.e. “fits”) the execution traces (i.e. “a concrete imple-
mentation”) of the program following the input message values. This interpretation
is obviously not a complete formalization of programs, it focuses on a very specific
property: under different input values, the program may exhibits different execution
traces.

Moreover, the final label transition system is not a “message format” in the sense
of authors in [26, 28, 41, 45, 163]. It just simulates how the program parses the input
messages so that the specific property observed on it and on the program are the
same.

However, we are not sure that this property is essential or not. For example, with
the hypothesis given in the stepwise abstraction are invalidated, then the stepwise

6.2. Perspectives 153

abstraction procedure cannot proceed. Another example is that the stepwise abstrac-
tion procedure bases on the existence of control flow instructions. But, there exist
some theoretical instruction sets where the control flow instructions do not exist, for
example the Turing-complete instruction set given in [54] consisting of only mov and
a jmp that needs to be placed at the end of the program. Though we believe that the
stepwise abstraction procedure can be fixed to adapt with such a special instruction
set, we cannot state here that this property is essential.

In this work, we have used the labeled transition system model that is, more or
less, considered as irrelevant with current researches in reverse code engineering. In
fact, the theoretical results for our specific purpose are not available in the theory
of labeled transition systems, we have constructed some of them in Chapter 3. The
essential reason may be the theory of labeled transition systems have been developed
to describe mainly the equivalence between processes [68, 128], whereas we need a
notation of “prediction” to approximate unobservable behaviors of a process.

However, the linkage between reverse code engineering and the theory of labeled
transition systems is not surprising. This theory, like other theories, describe several
essential properties of concrete objects. One may, accidentally, find that her studied
objects can be described by a theory which is developed from different motivations.

Message semantics The theoretical basis have restricted also the applicable scope of
our work, as discussed in Section 4.3.3, but may be for good purposes. They allow us
rigorously define what we need in a specific context where all relevant properties are
clearly defined. This specific context, in fact, can give clear interpretations for some
implicit discussions which are not stated clearly before. This situation may be similar
with “time” in the following quote

[141] . . . For what is time? Who can easily and briefly explain it?. . . If no
one ask of me, I know; if I wish to explain to him who asks, I know not.. . .

That is the discussions about the semantics, given by the program, of the input
message. The authors in [26, 28, 41, 45] have had already strong consciousness that
one may get seriously lostness of message semantics if considering only the mes-
sages themselves and omitting the program. We just develop concretely their ideas,
by showing the differences between labeled transition systems of different programs
which parse the messages of the same HTTP protocol.

6.2 Perspectives

Labeled transition system as pattern Aside from the main purpose of the thesis,
that means activating dormant codes by understanding the input message format. We
can use the final labeled transition system as a “pattern” characterizing the program.

In the one hand, since such a pattern does not contains some low-level properties
(e.g. assembly instructions), it is immune from several pattern verification obfuscation

154 Chapter 6. Conclusions and perspectives

tricks (cf. also the last part of Section 1.1.2) (e.g. dead codes (or nop) insertion, registers
substitution, instructions transposition). This application of the labeled transition
system is indeed very similar with the template-based pattern [35] where the authors
have proposed the notion of template as a symbolic representation of concrete code
patterns.

In the other hand, such a pattern seems to be reliable. Because if we get two
programs which gives the same classification of input messages, then we can make
a strong hypothesis that they have something in common, though their syntax can
be very different. For example, one considers the LTS(s) given in Figures 4.11, 4.15a
and 4.15b of wget, links and nginx respectively, can make a strong hypothesis that
these programs, are not the same, but must have something in common. Indeed, we
know already that these programs parse messages of HTTP protocol, and considering
the codes in each program, we can observe also that they are very different. More
formally, we can prove that this kind of pattern immune from several code obfuscation
techniques, e.g. dead/nop instructions insertion, registers substitution, etc.

It may worth noting that in using LTS(s) as patterns, the input messages are not
required to be some “concrete messages” received by the program (e.g. messages of
HTTP, FTP protocols, etc.). In the first step of a stepwise abstraction procedure, we
give no assumption about the input messages. They are just values of a buffer that is
updated by an exception, or generally speaking, by some stimulus of the environment.

Additionally, the labeled transition system is just a concrete model for relations
between execution traces. So there may exist other sorts of pattern, that are not labeled
transition systems, but they are constructed upon some relation between execution
traces. In other words, we compare two programs using some relation between exe-
cution traces, instead of using directly execution traces.

Better methods for stepwise abstraction procedure In Section 4.3.3, we have dis-
cussed about limits of the stepwise abstraction procedure. The technical limits can
be improved by some better methods in constructing the execution tree, that requires
determining the branching conditions of branchable control flow instructions. For
example, the reverse execution plus fuzz testing can be replaced by a method us-
ing intermediate representation code lifting and SMT solvers. The theoretical limits
(namely Hypotheses 1 and 2) are much harder to fix, they may require a different
model than labeled transition systems.

Bibliography

[1] D. Andriesse and H. Bos. An Analysis of the Zeus Peer-to-Peer Protocol. Tech. rep.
VU University Amsterdam, 2014 (cit. on p. 120).

[2] D. Andriesse, C. Rossow, B. Stone-Gross, D. Plohmann, and H. Bos. “Highly
Resilient Peer-to-Peer Botnets Are Here: An Analysis of Gameover Zeus”. In:
MALWARE. 2013 (cit. on p. 120).

[3] M. Antonakakis, R. Perdisci, Y. Nadji, N. Vasiloglou, S. Abu-Nimeh, W. Lee,
and D. Dagon. “From Throw-Away Traffic to Bots: Detecting the Rise of DGA-
Based Malware”. In: USENIX Security. 2012 (cit. on p. 21).

[4] S. Awodey. Category Theory. 2nd ed. Oxford Logic Guides. Oxford University
Press, USA, Aug. 2010 (cit. on p. 128).

[5] BAP. BAP nightly report for x86-64. 2014. url: http://bap.ece.cmu.edu/
nightly-reports/index-x8664.html (cit. on p. 70).

[6] G. N. Barbosa and R. R. Branco. Prevalent Characteristics in Modern Malware.
2014. url: https://www.blackhat.com/docs/us- 14/materials/us- 14-
Branco-Prevalent-Characteristics-In-Modern-Malware.pdf (cit. on pp. 4,
12).

[7] S. Bardin and P. Herrmann. “OSMOSE: Automatic Structural Testing of Exe-
cutables”. In: (2011) (cit. on p. 16).

[8] Barys Malware. Gen:Variant.Barys.159. 2013. url: http://goo.gl/YDC1o (cit. on
pp. 145, 147).

[9] P. Beaucamps, I. Gnaedig, and J.-Y. Marion. “Behavior Abstraction in Malware
Analysis”. In: RV. 2010 (cit. on pp. 4, 149).

[10] F. Bellard. QEMU Open source processor emulator. 2014. url: qemu.org (cit. on
p. 102).

[11] A. R. Bernat and B. P. Miller. “Anywhere, Any Time Binary Instrumentation”.
In: PASTE. 2011 (cit. on p. 102).

[12] P. Biondi and D. Fabrice. Silver Needle in the Skype. 2006 (cit. on p. 18).

[13] B. Biswas and R. Mall. “Reverse Execution of Programs”. In: SIGPLAN Notices
34.4 (1999), pp. 61–69 (cit. on p. 102).

155

http://bap.ece.cmu.edu/nightly-reports/index-x8664.html
http://bap.ece.cmu.edu/nightly-reports/index-x8664.html
https://www.blackhat.com/docs/us-14/materials/us-14-Branco-Prevalent-Characteristics-In-Modern-Malware.pdf
https://www.blackhat.com/docs/us-14/materials/us-14-Branco-Prevalent-Characteristics-In-Modern-Malware.pdf
http://goo.gl/YDC1o
qemu.org

156 BIBLIOGRAPHY

[14] G. Bonfante, M. Kaczmarek, and J.-Y. Marion. “Morphological Detection of
Malware”. In: MALWARE. 2008 (cit. on pp. 3, 4).

[15] G. Bonfante, M. Kaczmarek, and J.-Y. Marion. “Architecture of a Morphological
Malware Detector”. In: Journal in Computer Virology 5.3 (2009), pp. 263–270 (cit.
on p. 4).

[16] G. Bonfante, J.-Y. Marion, and T. D. Ta. PathExplorer. url: https://github.
com/tathanhdinh/PathExplorer (cit. on pp. 100, 102, 119).

[17] G. Bonfante, J.-Y. Marion, and T. Thanh Dinh. “Efficient Program Exploration
by Input Fuzzing”. In: Botconf. 2013 (cit. on pp. 9, 69).

[18] G. Bonfante, J.-Y. Marion, and T. Thanh Dinh. Malware Message Analysis through
Binary Traces. Poster at GRSD. 2014 (cit. on pp. 9, 69).

[19] G. Bonfante, J.-Y. Marion, and T. Thanh Dinh. “Malware Message Classification
by Dynamic Analysis”. In: FPS. 2014 (cit. on pp. 9, 29, 69).

[20] T. Brosch and M. Morgenstern. Runtime Packers: The Hidden Problem? 2006.
url: https://www.blackhat.com/presentations/bh-usa-06/BH-US-06-
Morgenstern.pdf (cit. on pp. 4, 12).

[21] D. Bruening, E. Duesterwald, and S. Amarasinghe. “Design and Implementa-
tion of a Dynamic Optimization Framework for Windows”. In: FDDO. 2001
(cit. on p. 102).

[22] D. Brumley, C. Hartwig, Z. Liang, J. Newsome, D. Song, and H. Yin. “Auto-
matically Identifying Trigger-based Behavior in Malware”. In: Botnet Analysis
and Defense. 2008, pp. 65–88 (cit. on pp. 7, 12, 16, 100, 101).

[23] D. Brumley, I. Jager, T. Avgerinos, and E. J. Schwartz. “BAP: A Binary Analysis
Platform”. In: CAV. 2011 (cit. on pp. 16, 70).

[24] G. Bruneau. DNS Sinkhole. Aug. 2010. url: http://www.sans.org/reading-
room/whitepapers/dns/dns-sinkhole-33523 (cit. on p. 21).

[25] R. E. Bryant and D. R. O’Hallaron. Computer Systems: A Programmer’s Perspec-
tive. Prentice-Hall, 2008 (cit. on pp. 69, 78).

[26] J. Caballero, P. Poosankam, C. Kreibich, and D. X. Song. “Dispatcher: Enabling
Active Botnet Infiltration Using Automatic Protocol Reverse-Engineering”. In:
CCS. 2009 (cit. on pp. 7, 11, 16–18, 20, 99, 104, 110, 111, 117, 151–153).

[27] J. Caballero and D. Song. “Automatic protocol reverse-engineering: Message
format extraction and field semantics inference”. In: Computer Networks 57.2
(2013), pp. 451–474 (cit. on p. 18).

[28] J. Caballero, H. Yin, Z. Liang, and D. Song. “Polyglot: Automatic Extraction
of Protocol Message Format using Dynamic Binary Analysis”. In: CCS. 2007
(cit. on pp. 7, 11, 17, 19–22, 99, 104, 110, 111, 118, 151–153).

https://github.com/tathanhdinh/PathExplorer
https://github.com/tathanhdinh/PathExplorer
https://www.blackhat.com/presentations/bh-usa-06/BH-US-06-Morgenstern.pdf
https://www.blackhat.com/presentations/bh-usa-06/BH-US-06-Morgenstern.pdf
http://www.sans.org/reading-room/whitepapers/dns/dns-sinkhole-33523
http://www.sans.org/reading-room/whitepapers/dns/dns-sinkhole-33523

BIBLIOGRAPHY 157

[29] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R. Engler. “EXE:
Automatically Generating Inputs of Death”. In: CCS. 2006 (cit. on p. 16).

[30] H. Cai, Z. Shao, and A. Vaynberg. “Certified Self-Modifying Code”. In: PLDI.
2007 (cit. on p. 74).

[31] J. Calvet, C. R. Davis, and P.-M. Bureau. “Malware authors don’t learn, and
that’s good!” In: MALWARE. 2009 (cit. on p. 1).

[32] J. Calvet, J. M. Fernandez, and J.-Y. Marion. “Aligot: Cryptographic Function
Identification in Obfuscated Binary Programs”. In: CCS. 2012 (cit. on p. 3).

[33] E. J. Chikofsky and J. H. Cross. “Reverse Engineering and Design Recovery: A
Taxonomy”. In: IEEE Software 7.1 (1990), pp. 13–17 (cit. on p. 151).

[34] M. Christodorescu and S. Jha. “Static Analysis of Executables to Detect Mali-
cious Patterns”. In: SSYM. 2003 (cit. on p. 6).

[35] M. Christodorescu, S. Jha, S. A. Seshia, D. Song, and R. E. Bryant. “Semantics-
Aware Malware Detection”. In: SSP. 2005 (cit. on pp. 4, 126, 154).

[36] M. Christodorescu, C. Kruegel, and S. Jha. “Mining Specifications of Malicious
Behavior”. In: SIGSOFT. 2007, pp. 5–14 (cit. on p. 148).

[37] J. Clause, W. Li, and A. Orso. “Dytan: A Generic Dynamic Taint Analysis
Framework”. In: ISSTA. 2007 (cit. on p. 102).

[38] C. S. Collberg and C. Thomborson. “Watermarking, Tamper-proffing, and Ob-
fuscation: Tools for Software Protection”. In: TSE 28.8 (2002) (cit. on p. 4).

[39] C. Collberg and J. Nagra. Surreptitious Software: Obfuscation, Watermarking, and
Tamperproofing for Software Protection. 1st. 2009 (cit. on p. 126).

[40] C. Collberg, C. Thomborson, and D. Low. A Taxonomy of Obfuscating Transfor-
mations. Tech. rep. 148. Department of Computer Sciences, The University of
Auckland, 1997 (cit. on p. 6).

[41] P. M. Comparetti, G. Wondracek, C. Krügel, and E. Kirda. “Prospex: Protocol
Specification Extraction”. In: SSP. 2009 (cit. on pp. 11, 17, 99, 104, 110, 111, 118,
152, 153).

[42] K. Coogan, S. K. Debray, T. Kaochar, and G. M. Townsend. “Automatic Static
Unpacking of Malware Binaries”. In: WCRE. 2009 (cit. on p. 13).

[43] S. A. Cook. “The Complexity of Theorem-Proving Procedures”. In: STOC. 1971
(cit. on p. 5).

[44] P. Cousot and R. Cousot. “Abstract Interpretation: A Unified Lattice Model for
Static Analysis of Programs by Construction or Approximation of Fixpoints”.
In: POPL. 1977 (cit. on p. 14).

[45] W. Cui, J. Kannan, and H. J. Wang. “Discoverer: Automatic Protocol Reverse
Engineering from Network Traces”. In: USENIX Security. 2007 (cit. on pp. 7,
11, 17–19, 99, 104, 110, 111, 152, 153).

158 BIBLIOGRAPHY

[46] M. Dalla Preda. “Code Obfuscation and Malware Detection by Abstract Inter-
pretation”. PhD thesis. 2007 (cit. on p. 13).

[47] M. Dalla Preda. “The Grand Challenge in Metamorphic Analysis”. In: ICISTM.
2012, pp. 439–444 (cit. on pp. 126, 149).

[48] M. Dalla Preda, M. Christodorescu, S. Jha, and S. Debray. “A Semantics-Based
Approach to Malware Detection”. In: POPL. 2007 (cit. on pp. 125, 126).

[49] M. Dalla Preda and R. Giacobazzi. “Semantics-based Code Obfuscation by Ab-
stract Interpretation”. In: JCS 17.6 (2009) (cit. on p. 13).

[50] M. Dalla Preda, R. Giacobazzi, S. K. Debray, K. Coogan, and G. M. Townsend.
“Modelling Metamorphism by Abstract Interpretation”. In: SAS. 2010 (cit. on
p. 13).

[51] B. Dang, A. Gazet, and E. Bachaalany. Practical Reverse Engineering: x86, x64,
ARM, Windows Kernel, Reversing Tools, and Obfuscation. Wiley, 2014 (cit. on
p. 70).

[52] E. David. Kaspersky Security Bulletin 2014. Malware Evolution. 2014. url: https:
//securelist.com/files/2014/12/Kaspersky-Security-Bulletin-2014-
Malware-Evolution.pdf (cit. on pp. 1, 18).

[53] S. K. Debray and J. Patel. “Reverse Engineering Self-Modifying Code: Un-
packer Extraction”. In: WCRE. 2010 (cit. on p. 13).

[54] S. Dolan. mov is Turing-complete. Tech. rep. 2013 (cit. on p. 153).

[55] Dorgram Malware. Trojan-Dropper.Win32.Dorgam.un. 2013. url: http://goo.
gl/3e1AR (cit. on pp. 127, 145, 146).

[56] T. Dullien and S. Porst. “REIL: A platform-independent intermediate repre-
sentation of disassembled code for static code analysis”. In: CanSecWest. 2009
(cit. on p. 70).

[57] M. Egele, T. Scholte, E. Kirda, and C. Kruegel. “A Survey On Automated Dy-
namic Malware-Analysis Techniques and Tools”. In: ACM Computing Survey
44.2 (2012) (cit. on p. 12).

[58] M. Erwig. FGL/Haskell - A Functional Graph Library for Haskell. 2008. url: http:
//web.engr.oregonstate.edu/~erwig/fgl/haskell/ (cit. on p. 145).

[59] F. Falcon and N. Riva. Dynamic Binary Instrumentation Frameworks: I know you’re
there spying on me. 2012 (cit. on p. 102).

[60] N. Falliere and E. Chien. Zeus: King of the Bots. Tech. rep. 2009 (cit. on pp. 1,
119, 120).

[61] N. Falliere, L. O. Murchu, and E. Chien. W32.Stuxnet Dossier. Tech. rep. Syman-
tec Security Response, Feb. 2011 (cit. on pp. 1, 5).

[62] P. Ferrie. The Ultimate Anti-Debugging Reference. Tech. rep. 2011 (cit. on p. 14).

https://securelist.com/files/2014/12/Kaspersky-Security-Bulletin-2014-Malware-Evolution.pdf
https://securelist.com/files/2014/12/Kaspersky-Security-Bulletin-2014-Malware-Evolution.pdf
https://securelist.com/files/2014/12/Kaspersky-Security-Bulletin-2014-Malware-Evolution.pdf
http://goo.gl/3e1AR
http://goo.gl/3e1AR
http://web.engr.oregonstate.edu/~erwig/fgl/haskell/
http://web.engr.oregonstate.edu/~erwig/fgl/haskell/

BIBLIOGRAPHY 159

[63] E. Filiol. “Formalisation and implementation aspects of κ-ary (malicious) codes”.
In: Journal in Computer Virology 3.2 (2007), pp. 75–86 (cit. on p. 126).

[64] S. Forrest, S. A. Hofmeyr, A. Somayaji, and T. A. Longstaff. “A Sense of Self
for Unix Processes”. In: SSP. IEEE, 1996, pp. 120–128 (cit. on p. 126).

[65] M. Fredrikson, S. Jha, M. Christodorescu, R. Sailer, and X. Yan. “Synthesiz-
ing Near-Optimal Malware Specifications from Suspicious Behaviors”. In: SSP.
2010 (cit. on pp. 4, 148).

[66] A. Fritzler and S. Werndorfer. UnOfficial AIM/OSCAR Protocol Specification. 2000.
url: http://www.oilcan.org/oscar/ (cit. on p. 18).

[67] E. R. Gansner, E. Koutsofios, S. C. North, and P.-K. Vo. “A Technique for Draw-
ing Directed Graphs”. In: IEEE Transactions on Software Engineering (1993) (cit.
on p. 111).

[68] R. v. Glabbeek. “The Linear Time – Branching Time Spectrum I: The Semantics
of Concrete, Sequential Processes”. In: Handbook of Process Algebra. Elsevier,
2001. Chap. 1, pp. 3–99 (cit. on pp. 37, 153).

[69] P. Godefroid, N. Klarlund, and K. Sen. “DART: Directed Automated Random
Testing”. In: PLDI. 2005 (cit. on pp. 16, 17, 100, 101).

[70] P. Godefroid, M. Y. Levin, and D. Molnar. “Automated Whitebox Fuzz Testing”.
In: NDSS. 2008, pp. 151–166 (cit. on p. 16).

[71] C. P. Gomes, H. Kautz, A. Sabharwal, and B. Selman. “Satisfiability Solvers”.
In: Handbook of Knowledge Representation 3 (2008), pp. 89–134 (cit. on p. 16).

[72] Graphviz. Graph Visualization Software. 2014. url: http://www.graphviz.org/
(cit. on p. 111).

[73] GReAT, Kaspersky Lab. The Mystery of the Encrypted Gauss Payload. Aug. 2013.
url: http://goo.gl/uvWUA6 (cit. on pp. 1, 5).

[74] F. Guo, P. Ferrie, and T.-C. Chiueh. “A Study of the Packer Problem and Its
Solutions”. In: RAID. 2008 (cit. on pp. 4, 12, 13).

[75] G. Hahn and C. Tardif. “Graph homomorphisms: structure and symmetry”.
In: Graph Symmetry. Springer, 1997, pp. 107–166 (cit. on p. 29).

[76] K. M. Hazelwood. Dynamic Binary Modification: Tools, Techniques, and Applica-
tions. Morgan and Claypool Publishers, 2011 (cit. on p. 102).

[77] P. Hell and J. Nesetril. Graphs and Homomorphisms. Oxford University Press,
2004 (cit. on p. 29).

[78] J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to Automata Theory,
Languages, and Computation. 2007 (cit. on pp. 32, 36, 52).

[79] R. N. Horspool and N. Marovac. “An Approach to the Problem of Detransla-
tion of Computer Programs”. In: The Computer Journal 23.3 (1980), pp. 223–229
(cit. on p. 72).

http://www.oilcan.org/oscar/
http://www.graphviz.org/
http://goo.gl/uvWUA6

160 BIBLIOGRAPHY

[80] Intel Corporation. Intelő 64 and IA-32 Architectures Software Developer’s Manual.
Sept. 2014 (cit. on pp. 69, 71, 72, 74).

[81] Intel Corporation. Intelő 64 and IA-32 Optimization Reference Manual. Sept. 2014
(cit. on pp. 69, 76).

[82] IOActive. Reversal and Analysis of Zeus and SpyEye Banking Trojans. Tech. rep.
2012 (cit. on pp. 1, 120).

[83] N. D. Jones. Computability and Complexity - from a Programming Perspective. MIT
Press, 1997 (cit. on p. 73).

[84] A. Joyal and R. Street. “The Geometry of Tensor Calculus, I”. In: Advances in
Mathematics 88 (1 July 1991), pp. 55–112 (cit. on pp. 129, 143).

[85] M. G. Kang, P. Poosankam, and H. Yin. “Renovo: A hidden code extractor for
packed executables”. In: WORM. 2007 (cit. on p. 14).

[86] V. P. Kemerlis, G. Portokalidis, K. Jee, and A. D. Keromytis. “libdft: Practical
Dynamic Data Flow Tracking for Commodity Systems”. In: VEE. 2012 (cit. on
p. 102).

[87] D. Kholia and P. Wegrzyn. “Looking Inside the (Drop) Box”. In: WOOT. 2013
(cit. on p. 18).

[88] J. C. King. “Symbolic Execution and Program Testing”. In: CACM 19.7 (1976),
pp. 385–394 (cit. on pp. 16, 17, 91).

[89] D. Knuth, H. James, and V. Pratt. “Fast Pattern Matching in Strings”. In: SIAM
Journal on Computing (1977) (cit. on p. 22).

[90] C. Kolbitsch, P. M. Comparetti, C. Kruegel, E. Kirda, X. Zhou, and X. Wang.
“Effective and Efficient Malware Detection at the End Host”. In: USENIX Se-
curity. 2009, pp. 351–366 (cit. on pp. 3, 4, 126, 148).

[91] J. Z. Kolter and M. A. Maloof. “Learning to Detect and Classify Malicious
Executables in the Wild”. In: Journal of Machine Learning Research 6 (2006) (cit.
on p. 4).

[92] D. Kozen. Automata and Computability. Springer, 1997 (cit. on p. 73).

[93] C. Lab. sKyWIper (a.k.a. Flame a.k.a. Flamer): A complex malware for targeted attacks.
Tech. rep. Budapest University of Technology and Economics, 2012 (cit. on
p. 1).

[94] K. Lab. Gauss: Abnormal Distribution. Tech. rep. 2012 (cit. on p. 1).

[95] D. Labs. A New Iteration of the TDSS/TDL4 Malware Using DGA-based Command-
and-Control. Tech. rep. 2012 (cit. on p. 21).

[96] T. Labs. Links Web Browser. 2014. url: http://links.twibright.com/ (cit. on
pp. 103, 104).

http://links.twibright.com/

BIBLIOGRAPHY 161

[97] J. Lambek. “Cartesian Closed Categories and Typed Lambda-calculi”. In: Com-
binators and Functional Programming Languages. 1985, pp. 136–175 (cit. on
p. 129).

[98] T. Lecroq. Knuth-Morris-Pratt algorithm. 1997. url: http://www- igm.univ-
mlv.fr/~lecroq/string/node8.html (cit. on p. 22).

[99] H. Lee, J. Alves-Foss, and S. Harrison. “The Use of Encrypted Functions for
Mobile Agent Security”. In: HICSS. 2004 (cit. on p. 5).

[100] J. Lee, T. Avgerinos, and D. Brumley. “TIE: Principled Reverse Engineering of
Types in Binary Programs.” In: NDSS. 2011 (cit. on pp. 3, 25).

[101] Z. Lin, X. Jiang, D. Xu, and X. Zhang. “Automatic Protocol Format Reverse
Engineering through Context-Aware Monitored Execution”. In: NDSS. 2008
(cit. on pp. 7, 20, 21, 118).

[102] Z. Lin, X. Zhang, and D. Xu. “Automatic Reverse Engineering of Data Struc-
tures from Binary Execution.” In: NDSS. 2010 (cit. on pp. 3, 25).

[103] C. Linn and S. Debray. “Obfuscation of Executable Code to Improve Resistance
to Static Disassembly”. In: CCS. 2003 (cit. on pp. 4, 13).

[104] C.-K. Luk et al. “Pin: Building Customized Program Analysis Tools with Dy-
namic Instrumentation”. In: PLDI. 2005 (cit. on pp. 100, 102, 145).

[105] N. Lutz. “Towards Revealing Attackers’ Intent by Automatically Decrypting
Network Traffic”. MA thesis. ETH Zurich, 2008 (cit. on p. 3).

[106] W. Ma, P. Duan, S. Liu, G. Gu, and J.-C. Liu. “Shadow attacks: automatically
evading system-call-behavior based malware detection”. In: JCV 8 (1 2012),
pp. 1–13 (cit. on p. 126).

[107] A. Martin. Anti analysis tricks in Trojan-Downloader.Win32.Agent.abti. 2008. url:
http://www.martinsecurity.net/2008/09/01/anti-analysis-tricks-in-
trojan-downloaderwin32agentabti (cit. on p. 15).

[108] M. Matz, J. Hubika, A. Jaeger, and M. Mitchell. System V Application Binary
Interface. Oct. 2013. url: http://www.x86-64.org/documentation/abi.pdf
(cit. on pp. 69, 78).

[109] McAfee. McAfee LabsThreats Report. Aug. 2014. url: http://www.mcafee.com/
us/resources/reports/rp-quarterly-threat-q2-2014.pdf (cit. on pp. 1, 18).

[110] O. Medegan. Skype Reverse. 2012. url: http://www.oklabs.net/category/
skype-reverse/ (cit. on p. 18).

[111] J. Meseguer and U. Montanari. “Petri Nets are Monoids”. In: Information and
Computation 88.2 (Oct. 1990), pp. 105–155 (cit. on p. 129).

[112] E. Metcalf and R. Simon. Neutralize Advanced Threats. Tech. rep. 2013 (cit. on
p. 2).

http://www-igm.univ-mlv.fr/~lecroq/string/node8.html
http://www-igm.univ-mlv.fr/~lecroq/string/node8.html
http://www.martinsecurity.net/2008/09/01/anti-analysis-tricks-in-trojan-downloaderwin32agentabti
http://www.martinsecurity.net/2008/09/01/anti-analysis-tricks-in-trojan-downloaderwin32agentabti
http://www.x86-64.org/documentation/abi.pdf
http://www.mcafee.com/us/resources/reports/rp-quarterly-threat-q2-2014.pdf
http://www.mcafee.com/us/resources/reports/rp-quarterly-threat-q2-2014.pdf
http://www.oklabs.net/category/skype-reverse/
http://www.oklabs.net/category/skype-reverse/

162 BIBLIOGRAPHY

[113] R. Milner. “A Theory of Type Polymorphism in Programming”. In: Journal of
Computer and System Sciences 17.3 (1978) (cit. on p. 25).

[114] R. Milner. Communicating and mobile systems: the π-calculus. Cambridge Univer-
sity Press, 1999 (cit. on pp. 29, 32, 36, 38, 58, 59, 151, 152).

[115] R. Milner. Bigraphical reactive systems: basic theory. Tech. rep. 2001 (cit. on p. 128).

[116] R. Milner. The Space and Motion of Communicating Agents. Cambridge University
Press, 2009 (cit. on p. 128).

[117] A. Moser, C. Kruegel, and E. Kirda. “Limits of Static Analysis for Malware
Detection”. In: ACSAC. 2007 (cit. on pp. 4, 13).

[118] A. Moser, C. Krügel, and E. Kirda. “Exploring Multiple Execution Paths for
Malware Analysis”. In: SSP. 2007 (cit. on pp. 7, 12, 16, 100–102).

[119] C. Nachenberg. “Computer Virus-Antivirus Coevolution”. In: CACM 40.1 (1997),
pp. 46–51 (cit. on p. 6).

[120] S. B. Needleman and C. D. Wunsch. “A General Method Applicable to the
Search for Similarities in the Amino Acid Sequence of Two Proteins”. In: Jour-
nal of Molecular Biology 48.3 (Mar. 1970), pp. 443–453 (cit. on p. 19).

[121] N. Nethercote. “Dynamic Binary Analysis and Instrumentation”. PhD thesis.
University of Cambridge, Nov. 2004 (cit. on p. 101).

[122] N. Nethercote and J. Seward. “Valgrind: A Framework for Heavyweight Dy-
namic Binary Instrumentation”. In: PLDI. 2007 (cit. on p. 102).

[123] J. Newsome and D. Song. “Dynamic Taint Analysis for Automatic Detection,
Analysis, and Signature Generation of Exploits on Commodity Software”. In:
NDSS. 2005 (cit. on p. 102).

[124] M. Oberhumer, L. Molnar, and J. Reiser. Ultimate Packer for eXecutables. Sept.
2013. url: http://upx.sourceforge.net (cit. on p. 13).

[125] T. Ormandy. Sophail: A Critical Analysis of Sophos Antivirus. 2011. url: https:
//lock.cmpxchg8b.com/sophail.pdf (cit. on pp. 1, 3).

[126] PandaLabs. Quarterly Report PandaLabs. Aug. 2014. url: http://mediacenter.
pandasecurity.com/mediacenter/wp-content/uploads/2014/07/Informe-
Trimestral-Q2-2014-EN.pdf (cit. on pp. 1, 18).

[127] R. Péchoux and T. D. Ta. “A Categorical Treatment of Malicious Behavioral
Obfuscation”. In: TAMC. 2014 (cit. on pp. 9, 125).

[128] A. Pnueli. “Linear and Branching Structures in the Semantics and Logics of
Reactive Systems”. In: ICALP. 1985 (cit. on pp. 37, 153).

[129] M. Ramilli and M. Bishop. “Multi-Stage Delivery of Malware”. In: MALWARE.
2010 (cit. on p. 126).

http://upx.sourceforge.net
https://lock.cmpxchg8b.com/sophail.pdf
https://lock.cmpxchg8b.com/sophail.pdf
http://mediacenter.pandasecurity.com/mediacenter/wp-content/uploads/2014/07/Informe-Trimestral-Q2-2014-EN.pdf
http://mediacenter.pandasecurity.com/mediacenter/wp-content/uploads/2014/07/Informe-Trimestral-Q2-2014-EN.pdf
http://mediacenter.pandasecurity.com/mediacenter/wp-content/uploads/2014/07/Informe-Trimestral-Q2-2014-EN.pdf

BIBLIOGRAPHY 163

[130] T. Reps, J. Lim, A. Thakur, G. Balakrishnan, and A. Lal. “There’s Plenty of
Room at the Bottom: Analyzing and Verifying Machine Code”. In: CAV. 2010
(cit. on p. 74).

[131] S. S. Response. W32.Duqu - The precursor to the next Stuxnet. Nov. 2011. url:
http://www.symantec.com/content/en/us/enterprise/media/security_
response/whitepapers/w32_duqu_the_precursor_to_the_next%20_stuxnet.
pdf (cit. on p. 1).

[132] S. S. Response. W32.Stuxnet Dossier. Feb. 2011. url: http://www.symantec.
com/content/en/us/enterprise/media/security_response/whitepapers/
w32_stuxnet_dossier.pdf (cit. on p. 1).

[133] S. S. Response. Regin: Top-tier espionage tool enables stealthy surveillance. Tech.
rep. 2014 (cit. on p. 1).

[134] H. G. Rice. “Classes of Recursively Enumerable Sets and Their Decision Prob-
lems”. In: Trans. Amer. Math. Soc. 74 (1953), pp. 358–366 (cit. on pp. 3, 52).

[135] K. Rieck, P. Trinius, C. Willems, and T. Holz. “Automatic Analysis of Malware
Behavior using Machine Learning”. In: Journal of Computer Security 19.4 (2011)
(cit. on p. 4).

[136] K. A. Roundy and B. P. Miller. “Binary-Code Obfuscations in Prevalent Packer
Tools”. In: ACM Computing Surveys 46.1 (2013) (cit. on p. 12).

[137] P. Royal. Analysis of the Kraken Botnet. Tech. rep. 2008 (cit. on p. 21).

[138] P. Royal, M. Halpin, D. Dagon, R. Edmonds, and W. Lee. “PolyUnpack: Au-
tomating the Hidden-Code Extraction of Unpack-Executing Malware”. In: AC-
SAC. 2006 (cit. on p. 14).

[139] T. Sander and C. F. Tschudin. “Protecting Mobile Agents Against Malicious
Hosts”. In: Mobile Agents and Security. 1998 (cit. on p. 5).

[140] D. Sangiorgi. “On the Origins of Bisimulation and Coinduction”. In: TOPLAS
31.4 (2009) (cit. on pp. 29, 36, 38, 54, 59).

[141] P. Schaff. Nicene and Post-Nicene Fathers: Series I/Volume I/Confessions/Book XI/Chap-
ter 14. 2014. url: http : / / en . wikisource . org / wiki / Nicene _ and _ Post -
Nicene_Fathers%3a_Series_I/Volume_I/Confessions/Book_XI/Chapter_14
(cit. on p. 153).

[142] E. J. Schwartz, T. Avgerinos, and D. Brumley. “All You Ever Wanted to Know
About Dynamic Taint Analysis and Forward Symbolic Execution”. In: SSP.
2010 (cit. on p. 102).

[143] B. Schwarz, S. Debray, and G. Andrews. “Disassembly of Executable Code
Revisited”. In: WCRE. 2002 (cit. on p. 72).

[144] P. Selinger. A survey of graphical languages for monoidal categories. Aug. 2009. url:
http://arxiv.org/abs/0908.3347 (cit. on pp. 129, 130, 143, 144).

http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/w32_duqu_the_precursor_to_the_next%20_stuxnet.pdf
http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/w32_duqu_the_precursor_to_the_next%20_stuxnet.pdf
http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/w32_duqu_the_precursor_to_the_next%20_stuxnet.pdf
http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/w32_stuxnet_dossier.pdf
http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/w32_stuxnet_dossier.pdf
http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/w32_stuxnet_dossier.pdf
http://en.wikisource.org/wiki/Nicene_and_Post-Nicene_Fathers%3a_Series_I/Volume_I/Confessions/Book_XI/Chapter_14
http://en.wikisource.org/wiki/Nicene_and_Post-Nicene_Fathers%3a_Series_I/Volume_I/Confessions/Book_XI/Chapter_14
http://arxiv.org/abs/0908.3347

164 BIBLIOGRAPHY

[145] M. I. Sharif, A. Lanzi, J. T. Giffin, and W. Lee. “Impeding Malware Analysis
Using Conditional Code Obfuscation”. In: NDSS. 2008 (cit. on p. 5).

[146] T. Shields. Anti-Debugging - A Developer’s View. Tech. rep. Veracode Inc., 2009
(cit. on p. 14).

[147] M. Sikorski and A. Honig. Practical Malware Analysis: The Hands-On Guide to
Dissecting Malicious Software. No Starch Press, 2012 (cit. on p. 70).

[148] H. A. Simon. The Sciences of the Artificial. 3rd. Cambridge, MA: MIT Press, 1996
(cit. on p. 152).

[149] M. Sipser. Introduction to the Theory of Computation. 2nd ed. Cengage Learning,
2005 (cit. on pp. 3, 36).

[150] A. Skaletsky, T. Devor, N. Chachmon, R. Cohn, K. Hazelwood, V. Vladimirov,
and M. Bach. “Dynamic Program Analysis of Microsoft Windows Applica-
tions”. In: ISPASS. 2010 (cit. on pp. 102, 119).

[151] D. Song et al. “BitBlaze: A New Approach to Computer Security via Binary
Analysis”. In: ICISS. 2008 (cit. on p. 16).

[152] F. Song and T. Touili. “Efficient Malware Detection Using Model-Checking.”
In: FM. 2012 (cit. on p. 4).

[153] M. Sutton, A. Greene, and P. Amini. Fuzzing: Brute Force Vulnerability Discovery.
Addison-Wesley, 2007 (cit. on p. 17).

[154] Symantec. Symantec Internet Security Threat Report. 2014. url: http://www.
symantec.com/content/en/us/enterprise/other_resources/b-istr_main_
report_v19_21291018.en-us.pdf (cit. on pp. 1, 18).

[155] P. Szor. The Art of Computer Virus Research and Defense. Addison-Wesley Profes-
sional, 2005 (cit. on pp. 3, 14).

[156] P. Ször and P. Ferrie. Hunting For Metamorphic. Tech. rep. 2001 (cit. on p. 6).

[157] T. Thanh Dinh. Trace Transformation Tool. 2013. url: http://goo.gl/rqCSQ (cit.
on p. 145).

[158] A. Tridgell. How Samba was written. Aug. 2003. url: https://www.samba.org/
ftp/tridge/misc/french_cafe.txt (cit. on pp. 11, 18).

[159] D. Wagner and P. Soto. “Mimicry Attacks on Host-Based Intrusion Detection
Systems”. In: CCS. ACM, 2002, pp. 255–264 (cit. on p. 126).

[160] C. Wang, J. Davidson, J. Hill, and J. Knight. “Protection of Software-based
Survivability Mechanisms”. In: DSN. 2001 (cit. on p. 4).

[161] Z. Wang, X. Jiang, W. Cui, X. Wang, and M. Grace. “ReFormat: Automatic
Reverse Engineering of Encrypted Messages”. In: ESORICS. 2009 (cit. on pp. 7,
20).

[162] H. Wee. “On Obfuscating Point Functions”. In: STOC. 2005 (cit. on p. 5).

http://www.symantec.com/content/en/us/enterprise/other_resources/b-istr_main_report_v19_21291018.en-us.pdf
http://www.symantec.com/content/en/us/enterprise/other_resources/b-istr_main_report_v19_21291018.en-us.pdf
http://www.symantec.com/content/en/us/enterprise/other_resources/b-istr_main_report_v19_21291018.en-us.pdf
http://goo.gl/rqCSQ
https://www.samba.org/ftp/tridge/misc/french_cafe.txt
https://www.samba.org/ftp/tridge/misc/french_cafe.txt

BIBLIOGRAPHY 165

[163] G. Wondracek, P. M. Comparetti, C. Krügel, and E. Kirda. “Automatic Network
Protocol Analysis”. In: NDSS. 2008 (cit. on pp. 7, 11, 19, 152).

[164] W. Yan, Z. Zhang, and N. Ansari. “Revealing Packed Malware”. In: IEEE Secu-
rity and Privacy 6.5 (2008), pp. 65–69 (cit. on p. 4).

[165] A. Young and M. Yung. Malicious Cryptography: Exposing Cryptovirology. John
Wiley and Sons, 2004 (cit. on pp. 2, 5, 152).

[166] ZeuS source code. 2014. url: https://github.com/Visgean/Zeus.git (cit. on
pp. 119, 122).

https://github.com/Visgean/Zeus.git

Résumé

La thèse contients de deux parties principales: la première partie est consacrée à l’ex-
traction du format des messages, la deuxième partie est consacrée à l’obfuscation des
comportements des malwares et la détection. Pour la première partie, nous consid-
érons deux problèmes: "la couverture des codes" et "l’extraction du format de mes-
sages". Pour la couverture des codes, nous proposons une nouvelle méthode basée
sur le "tainting intelligent" et sur l’exécution inversée. Pour l’extraction du format
des messages, nous proposons une nouvelle méthode basée sur la classification de
messages en utilisant des traces d’exécution.

Pour la deuxième partie, les comportements des codes malveillants sont formalisés
par un modèle abstraire pour la communication entre le programme et le système
d’exploitation. Dans ce modèle, les comportements du programme sont des appels
systèmes. Étant donné les comportements d’un programme bénin, nous montrons
de façon constructive qu’il existe plusieurs programmes malveillants ayant également
ces comportements. En conséquence, aucun détecteur comportemental n’est capable
de détecter ces programmes malveillants.

Mots-clés: détection/obfuscation comportementals, codes malveillants, extraction
du format des messages.

Abstract

The thesis consists in two principal parts: the first one discusses the message for-
mat extraction and the second one discusses the behavioral obfuscation of malwares
and the detection. In the first part, we study the problem of “binary code coverage”
and “input message format extraction”. For the first problem, we propose a new
technique based on “smart” dynamic tainting analysis and reverse execution. For the
second one, we propose a new method using an idea of classifying input message
values by the corresponding execution traces received by executing the program with
these input values.

In the second part, we propose an abstract model for system calls interactions
between malwares and the operating system at a host. We show that, in many cases,
the behaviors of a malicious program can imitate ones of a benign program, and in
these cases a behavioral detector cannot distinguish between the two programs.

Keywords: behavioral detection/obfuscation, malicious codes, message format
extraction.

	Couverture
	Remerciements
	Dédicace
	Contents
	Listings
	Introduction
	Malware detection and challenges
	Malicious code detection
	Challenges

	Plan and contributions of the thesis

	On malware communications
	Introduction
	Automated malware analysis
	Limits of the static and the dynamic analysis
	Approach from software testing and code coverage

	Message format extraction
	Current research
	What is the ``message format''?
	Our approach: message classification

	Mathematical modeling
	Notations and terminology
	Graphs
	Labeled transition systems

	Prediction semantics of label transition systems
	Pi-equivalence
	Observational prediction
	Labeled transition system reduction

	Algorithms
	Compact labeled transition system construction
	Pi-equivalence verification and construction

	Concrete interpretation
	Notions and terminology
	Low-level representation
	Assembly code representation
	Execution of programs

	Stepwise abstraction
	From execution traces to the execution tree
	From the execution tree to the message tree
	From the message tree to the initial LTS
	From the initial to the final LTS
	Message classification by the final LTS

	Implementation and experimentation
	Implementation
	Experimentation
	Limits
	Case of ZeuS bot

	Behavioral obfuscation
	Introduction
	Behavior modeling
	Motivating example
	Basic categorical background
	Syscall interaction abstract modeling
	Process behaviors as paths and semantics

	Behavioral obfuscation
	Ideal detectors
	Main obfuscation theorem
	Obfuscated path generation through path replaying
	Graph-based path transformation

	Implementation and experiments
	Obfuscated path detection

	Conclusions and perspectives
	Conclusions
	Perspectives

	Bibliography
	Résumé
	Abstract

