Alex Huth 
  
Fabian Pedregosa 
  
Mehdi Senoussi 
  
Philippe Ciuciu 
  
Danilo Bzdok 
  
Elvis Dohmatob 
  
Olivier Grisel 
  
Thomas Hannagan 
  
Kyle Kast- Ner 
  
Konstantin Shmelkov 
  
Sergio Medina 
  
Bernard Ng 
  
Clément Moutard 
  
Martin Perez Guevara 
  
Esther Lin 
  
Salma Bougacha 
  
Laetitia Grabot 
  
Arthur Mensch 
  
Kamalakar Dadi 
  
Philippe Gervais 
  
Alexandre Abraham 
  
Nicolas Chau Ert 
  
Murielle Fabre 
  
Sandrine Lefranc 
  
Remi Magnin 
  
Guillaume Radecki 
  
Por- Querolles Andrés Hoyos-Idrobo 
  
Léonard Blier 
  
Pedro Pinheiro Chagas 
  
Loïc Esteve 
  
Aina Frau Christophe Pascual 
  
Thomas Pallier 
  
Eve- Lyn Hannagan 
  
Alexandre Eger 
  
Alexis Vignaud 
  
Aaron Amadon 
  
Schurger 
  
Baptiste Gauthier 
  
Yannick Schwartz 
  
Marie Amalric 
  
Pedro Pinheiro 
  
Kyle, Olivier Charles 
  
Bricquet for being the real-life incarnation of at least nine people in parallel with incredible real-world e ciency

and Natalia Bilenko and to have met Jack himself, Mike Oliver, Anwar Nuñez, James Gao, Fatma Imamoglu and the rest of the team during my stay.

Abstract

Computer vision studies and biological vision studies have evolved in parallel over the last century with mostly unilateral inspiration taken from biological vision and going into the engineering of computer vision systems. From the utility of edge and blob detection to the realization that a layered or hierarchical approach to abstraction can be very powerful, most of these phenomena are to be found in natural visual systems in some way or another.

With the successes in computer vision brought about during the last one and a half decades, which can be subdivided into di erent sub-eras (see chapter 4), it has become a highly intriguing question to assess whether these methods can help study brain function.

The main goal of this thesis is to confront a few more or less biologically inspired computational models of vision with actual brain data. The chosen brain data acquisition modality is fMRI, since it gives a good global overview of activity at a reasonable spatial resolution.

In recovering brain activity maps for the presentation of a preferably high number of visual stimuli, we shall attempt to relate the measured activity with the vectorial representations of the stimuli generated by the computational models.

Since these representations are typically very high in dimension, we need to resort to non classical statistical methods to establish a relationship between the model representations and the brain data. The method for functional translation from the computational model coe cients to brain activity data is kept linear. This is essential for evaluation, in order to keep most nonlinear complexity in the computational model under scrutiny, instead of adjusting for the lack of it through nonlinear estimators. However, due to the abundance of coe cients in typical computational models, the forward problem is ill-posed and calls for regularization as well as an evaluation on held-out data typical of the eld of machine learning.

In chapter 2 of this thesis we will familiarize ourselves with the nature of the fMRI BOLD response by evaluating the utility of estimating the hemodynamic impulse response function (HRF) due to experimental stimulation. The evaluation is speci cally geared towards assessing whether attention to estimating the shape of the HRF is merited in the context of machine learning forward and reverse models.

A focus on speci c convex regularization techniques will be explored in chapter 3. We introduce a convex region-selecting penalty which segments smooth active sets from a uniform zero background. This spatial regularizer is applicable to the space of brain images. We will evaluate it in a reverse modelling setting -predicting an external variable from brain activity patterns. Here again, the number of voxels typically largely exceeds the number of observations, leading to an ill-posed problem necessitating regularization. We choose to regularize by taking into account the spatial neighborhood structure of brain images, because neighboring voxels tend to correlate in activity.

In chapter 5 we evaluate a rst forward ("encoding") model with speci c attention to the bene ts of adding a layer to a convolutional lter model of vision. Indeed, one-layer lter models such as Gabor or Morlet ltering followed by recti cation have been tried and tested successfully in numerous experiments, including the notable application to fMRI by [START_REF] Kay | Identifying natural images from human brain activity[END_REF]. Since rst layer lters represent an adequate model for lower-level brain activity such as center-surround calculations in LGN or edge detection in V1, the question is whether adding a second layer to the analysis could be benecial to model tting. Experiments were performed on two datasets: 1) Data acquired in the Parietal lab prior to this thesis -BOLD fMRI responses to the presentation of natural visual textures. 2) The dataset of [START_REF] Kay | Identifying natural images from human brain activity[END_REF] for a parallel analysis on natural images. We evaluated the second layer of the scattering transform [START_REF] Mallat | Group Invariant Scattering[END_REF] against the rst layer, which is a wavelet transform modulus (e.g. Gabor or Morlet modulus). In addition, the texture experiment also yielded itself to classical statistics: brain activation due to texture stimulation and di erential brain activation between di erent texture classes are explored..

Recent breakthroughs in the eld of convolutional networks have led to breathtaking progress in their capacity to perform tasks that were previously believed to be strongholds of human superiority over machines. Deep layered convolutional architectures create progressively abstract representations of the data they analyze with increasing layer number. The rst layer of a convolutional network geared towards object recognition typically learns to detect edges, other rst-order texture boundaries, color boundaries and blobs -similar in essence to the functionality one may nd in earliest vision. At the end of the convolutional network there are indicator channels outputting probability estimates for a certain number of object categories. These are based on linear transformations of the penultimate layer, which can thus be declared to linearize object category. In [START_REF] Cadieu | Deep Neural Networks Rival the Representation of Primate IT Cortex for Core Visual Object Recognition[END_REF] it is shown that populations of inferotemporal neurons behave similarly. Having pinpointed similarities to biological signal processing at the beginning and at the end of the convolutional net processing hierarchy, we proceed to investigate similarities of the representations along the layers of the network.

Chapter 1 introduces the reader to fMRI and standard analysis methods. Chapter 4 gives an overview of computer-vision models.

At some point during the meanderings around and into the adjacent possible, guided less and less by external force elds giving drift direction, the question becomes whether the movement reduces to isotropically random or picks up its own intrinsic momentum that can compensate dwindling gradient information. In this situation, at one and the same moment one can feel perfectly isolated and fully woven into the surrounding social fabric. Scaling a mountain alone through a thick layer of fog, in the hope that the peak is either attainable and high enough to be above the clouds or the clouds low enough to see from somewhere o the slope can be quite a solitary experience. On the other hand, owing in the school-of-sh-like dynamics of the scienti c community is a collective and immersive action. We also ow along with society at large, which acknowledges an essential part of the human condition -curiosity -and accommodates a formalized version of it, i.e. letting us do our work, not of course without expecting and reaping its own bene ts. We are pretty lucky to be able to do research -to stand with one leg on the shoulder of the scienti c giants that preceded us and with the other on those many other shoulders of giants that give us the space to do what we do right now. At that level of generality there would be millions of people to thank. Here I will restrict myself to people I know, who helped me along these last years and without who I would not have come this far. My rst word of thanks goes out to my thesis director, Bertrand Thirion, who guided me through one year of internship and three years of PhD, without wavering, especially through the inevitable sticky moments this rst true journey into research can have. The same can be said of my co-supervisors Alexandre Gramfort and Gaël Varoquaux. All three never failed to push me forward when it was necessary and always had the right words at the right moment. The reviewers of my thesis manuscript were Marcel van Gerven and Nikolaus Kriegeskorte, whom I thank for accepting to review and for the feedback they gave me. Naturally I would also like to thank the rest of my thesis committee, which consisted of Yves Frégnac, who acted as president, Bertrand Thirion, Alexandre Gramfort, Balazs Kégl, and Stéphane Mallat. I would like to address special thanks to Stéphane Mallat for having accompanied my work over all these years through our common ANR project and always giving very helpful feedback. This also goes for all his team members, past and present, who in addition to being extremely competent, are also the friendliest of people: Joan Bruna, Joakim Andén, Laurent Sifre, Edouard Oyallon. I'm glad to be able to continue my work in this lab alongside Edouard, Mathieu Andreux, Irène Waldspurger, Vincent Lostanlen, Sira Ferradans, Grégoire Sergeant-Perthuis and Carmine Cella. Towards the end of my internship year preceding my PhD, I was also lucky enough to be able to work on the signal processing topic of super-resolution for MEG with Alexandre Gramfort and Gabriel Peyré, who I thank for the time he took and the impressive supervision and feedback he gave at every discussion. I also greatly enjoyed interacting with Samuel Vaiter, Mohammed Golbabaee, Charles Deledalle, Hugo Raguet, both at the lab and at spars2013. Next, in a brief stint of 11 days in Berkeley, I was able to meet and work with Jack Gallant's lab, the team that made my PhD results possible by kindly providing the data of their immensely suc- 

Introduction to functional MRI

Imaging modalities

There exist a number of techniques for the acquisition of brain activity which rely on a very diverse set of possible observable signals. In general, any signal that is su ciently immediately generated and modulated by brain activity can serve as a tap for a brain activity acquisition method. Useful dimensions by which to taxonomize a large number of these methods are the following:

• invasiveness, i.e. to what extent the body containing the brain of interest is manipulated during the acquisition,

• spatial resolution, characterized by a minimal characteristic spatial scale below which no details can be measured,

• temporal resolution, characterized by a time scale below which no details can be measured.

It is important to note that depending on the process by which brain signal is obtained, loss of resolution can be incurred at intermediate steps. Ideally, the nal measurement should re ect the intrinsic resolution of the signal due to this process, but in principle, these can be uncoupled: For example, an inherently slow signal can be sampled at many time points, which can potentially reduce noise, but it cannot recover any high temporal frequencies previously lost. We present an incomplete overview of methods in order to be able to situate fMRI, which this thesis makes use of, better with respect to the others.

Highly invasive methods

Highly invasive methods are characterized by requiring surgical intervention to enable acquisition.

Recently, several methods acquiring light images have had success. These methods include voltage sensitive die (VSD) [START_REF] Tasaki | Changes in uorescence, turbidity, and birefringence associated with nerve excitation[END_REF][START_REF] Orbach | Optical mapping of electrical activity in rat somatosensory and visual cortex[END_REF] methods, where a substance which changes color as a function of local potential electric energy is applied to the cortex, making electric brain activity visible to a camera. Figure 1.1: VSD setup. Taken from [Grinvald, 2004] Figure 1.2: Typical general optical imaging setup. If there exist contrast agents (natural or not) that modulate light according to biological function, this setup can be used to acquire images. Taken from [Hillman, 2007] While VSDs modulate with voltage change, calcium imaging [START_REF] Smetters | Detecting action potentials in neuronal populations with calcium imaging[END_REF] is a technique by which so-called calcium indicators, molecules that become uorescent on calcium binding, are used to assess the calcium content of neurons, which is directly related to their activity because it contributes to the polarization of the cell.

In general, any contrast agent creating modulation of uorescence or reectivity properties as a function of biological processes can be amenable to optical imaging methods [START_REF] Elizabeth | Optical brain imaging in vivo: techniques and applications from animal to man[END_REF].

More traditionally, there is electrophysiology, for which a variety of techniques has been developed. The general setup requires the placement of an electrical conductor into or into the vicinity of neurons in order to measure the local voltage. Intracellular recordings are obtained when an electrode is placed inside a neuron. Local eld potentials are obtained by placing an electrode at a su cient and su ciently similar distance from several neurons. The electrodes measure voltage uctuations from neurons within a certain radius. The latter, along with depth electrodes, are also used in humans, for example to determine the focus points of epilepsy attacks that a patient may su er.

Less invasive methods

Comparing to the strongly invasive methods mentioned above, there are less invasive imaging modalities, whose degree of invasiveness owes to the use of radiation or radioactivity. Anatomical and functional brain imaging can be obtained by computed tomography (CT). Tomography is the measurement of projections of a 3-dimensional object with varying density onto a certain number of 2-dimensional planes. Reconstruction of the original 3dimensional object can be done by solving an inverse problem, which is often linear. In X-ray CT the measurement projections onto planes are obtained using X-ray light which is partially absorbed depending on the local properties of the matter it traverses. Functional and other metabolic information can be imaged by injecting a contrast agent which the organism transports to speci c sites and which change the way the X-rays are absorbed. Another form of computed tomography is Positron Emission Tomography (PET), which is designed to track metabolic activity. A fast-decaying radioactive glucose is injected. At each radioactive decay, two gamma photons are emitted in opposite directions and captured outside the head. The emission of two photons is necessary to conserve momentum and makes it possible to localize brain activity.

Non-invasive methods

Non-invasive methods are techniques which measure brain signal and anatomy without any known potentially adverse side-e ects. No surgery is required and no contrast agents are injected. Electromagnetic brain activity can be measured outside the head. Scalp electrodes can acquire an electroencephalogram (EEG), providing measurements at almost arbitrary temporal resolution. By the non-relativistic Maxwell equations, the measurements are a linear function of the total brain electric activity. Similarly, dynamic magnetic activity of the brain can be measured using superconducting SQUID sensors, giving rise to a magnetoencephalogram (MEG). One can measure magnetic eld intensity (using so-called magnetometers) as well as magnetic eld gradient in two directions tangential to the surface (using so-called gradiometers). Both EEG and MEG acquisitions, by the simple fact that data acquisition is performed at a distance from the signal source, act as a spatial low-pass lter, where the kernel has heavy tails and decreases as

√ R 2 + x 2 -3
, where R is a characteristic distance. 1 Due to the Maxwell equations this cannot 1 This kernel arises exactly in a stylized setting, where one studies the magnetic eld evoked by sources on one straight line, measured on a parallel straight line. One observes a convolution of the source distribution with the kernel described here, which amounts to low-pass ltering. See [Eickenberg, SPARS 2013, Poster 141] for details. be avoided. Even if measurements were taken continuously on a full sphere around the head, the reconstruction problem remains ill-conditioned. Additionally, for EEG, the scalp acts like a further spatial low-pass lter, aggravating the ill conditioning of the source reconstruction problem. In the MEG case the scalp does not act as an additional low-pass lter, making measurements more precise. Typically one has access to around 300 channels, all types taken together, which is more than using a normal EEG setup, which can use anywhere from very few to around 250 electrodes. The fact in both MEG and EEG that there can only be up to hundreds of electrodes due to space constraints on the scalp makes the source reconstruction problem ill-posed in addition to ill-conditioned (because there are many more candidate locations for sources than measurements). Both ill-conditioning and ill-posedness can be addressed by regularization. A further non-invasive method which relates back to the optical imaging methods mentioned earlier is fNIRS (functional near-infrared spectroscopy). As many may have experienced, the light of a traditional ashlight, when covered by the hand, becomes a light red. This indicates permeability of tissue by light in the red spectrum. As it turns out, this permeability is most pronounced in the near infra-red spectrum (650nm to 1350nm). Skin, tissue and bone are almost transparent in the window of 700-900nm. However, oxyhemoglobin and deoxy-hemoglobin have stronger absorption properties and can thus be identi ed. They can also be distinguished amongst each other because their absorption spectra di er. This phenomenon can be used for optical imaging. By using several light sources and several points of measurement, a forward model of light di usion can be inverted, leading to spatial localization at a ∼ 1cm resolution.

Another method classi ed as non-invasive is Magnetic Resonance Imaging (MRI). Since this is the acquisition modality employed in this thesis, it will be described in a separate section.

MRI

Magnetic resonance imaging is based on Nuclear Magnetic Resonance (NMR). This non spatially speci c e ect is then exploited to obtain a spatial image.

Nuclear magnetic resonance

A proton 2 placed in a homogeneous magnetic eld will align its spin with 2 In general, an atom or molecule with non-zero net spin the magnetic eld vector. Energy introduced in the form of a radio frequency (RF) pulse can cause the proton to be excited into precession around its axis. The proton dissipates this energy by emitting radio waves at its precession frequency until it has returned into alignment with the magnetic eld. Cru-cially, the precession frequency, called the Larmor frequency, is proportional to the magnetic eld to which the proton is exposed.

The above description relies on concepts from classical physics, but the quantum mechanical description is similar: The application of a magnetic eld splits the ground energy state of a proton into two possible states. The energy gap between the states is proportional to the magnetic eld and thus an RF pulse containing photons of the corresponding frequency can excite the protons into the antiparallel state. The proton decays back into its ground state with a probability following an exponential law with a certain half-life, emitting the acquired energy in a photon with the Larmor frequency. This e ect was rst described in 1938 by Isidor Rabi, based on the Stern-Gerlach experiment. In the late 40s this technique was extended to liquids and solids, independently by Felix Bloch and Edward Mills Purcell. 

Magnetic Resonance Imaging

Magnetic Resonance Imaging (MRI) exploits the fact that nuclear magnetic resonance frequency has such a simple dependence on the intensity of the magnetic eld surrounding the nucleus. Producing a linear change in magnetic eld intensity (not orientation) along a given axis in 3D space makes all hyperplanes perpendicular to the change direction have the same magnetic eld intensity, leading to the same Larmor frequency for protons lying upon it. This fact permits selective excitation of 2D slices in 3D space, since it is possible to send an RF pulse in a prescribed frequency range, using a cardinal sine (sinc) waveform sin(πωt)/(πωt). In order to acquire an image of a 3D object, one may now consider the simpler problem of acquiring it slice by slice. However, the excitation of a full slice will lead to the simultaneous decay of excitation over all of the slice at the same Larmor frequency, rendering localization of activation impossible. To address this issue, spatial gradients along the slicing plane are put in place after the slice has been excited, leading to a variation of Larmor frequency across the slice. One can apply a linear gradient of di erent intensities in two directions along the slice. Measurement of the emitted RF signal for a given con guration of gradients yields a sum of signals over varying Larmor frequencies. When applying two linear gradients in perpendicular directions across the slice it is impossible to avoid identical Larmor frequencies on a set of parallel lines. These lines are in fact hyperplanes to the gradient intensity vector. Measuring the nuclear RF signal of a slice in many di erent constellations of linear gradient, usually on an equally spaced grid of gradient intensities, makes it possible to disambiguate the signal from speci c spatial locations which all summed into these factors. The space of possible gradient intensity vectors is called k-space, and by virtue of the fact that the measured RF signal is a linear superposition of signal at di erent frequencies, the acquired k-space signal conveniently is equal to the Fourier transform of the spatial signal. By applying a simple inverse Fourier transform, the spatial structure of the slice can be recovered.

Figure 1.9: Example of a k-space trajectory for the measurement of an EPI image • T1 is the characteristic time scale on which excited protons fall back into the ground state, aligned with the homogeneous magnetic eld. Also called spin-lattice decay, it indicates the time by which the longitudinal (z-axis) magnetization has decayed to exp(-1) ≈ 31% of its maximum magnetization.

• After a so-called 90-degree-pulse, which excites around half the protons, leading to a net longitudinal magnetization of 0 and a synchronization in the xy-plane, due to material-intrinsic local eld inhomogeneities the spins dephase, leading to an exponential decrease of the net xy-plane magnetization. T2 is the characteristic time of this decay type.

• T2* is similar to T2 decay but due to extrinsic magnetic eld inhomogeneities, for example blood ow. This relaxation type gives rise to the BOLD signal.

Depending on the timing of the measurements and the gradient pulses applied, the measured image can be dominated by di erent types of signal decay. T1-weighted images are typically used for anatomical imaging and T2-weighted images are used to create the BOLD contrast.

Initially, typical acquisitions proceeded by exciting a slice via an RF pulse, placing a series of spatial gradients and possibly other RF pulses, followed by measurement of the emitted radio frequency signal after a certain time of evolution. Echo-planar imaging [START_REF] Stehling | Echo-planar imaging: magnetic resonance imaging in a fraction of a second[END_REF] was introduced later and relies on the fact that several gradient positions can be measured with only one slice excitation, permitting a much faster sweep of k-space and an order of magnitude of acquisition speed improvement.

A typical MRI scanner consists of a superconducting hollow cylindrical magnetic coil carrying a magnetic eld of between 1.5T and 7T parallel to the axis of the cylinder. For human MRI machines the cylinder is oriented horizontally. The axis of the cylinder is called the z-axis, elevation is the y axis and the remaining left-right axis is called x. The z-axis gradient is created by a pair of Helmholtz coils placed at either ends of the cylinder. The x-and y-gradients are created by pairs of half-cylinder coils acting in an opposing manner.

Figure 1.10: Clinical MRI machine

Functional MRI

Most modern functional MRI acquisitions rely upon the BOLD e ect. It will be brie y introduced before a review of typical experimentation types done with this signal.

Blood Oxygen Level Dependent signal

In 1989, Ogawa and collaborators made a nding that should revolutionize the way brain function is measured [Ogawa and [START_REF] Nothdurft | Brain magnetic resonance imaging with contrast dependent on blood oxygenation[END_REF]. They discovered hemoglobin as a natural contrast agent in T2*-weighted imaging. Since hemoglobin is directly involved in the oxygen supply within the body, this contrast can measure metabolic activity in the brain. Following neural activity and depletion of energy, the active region is supplied with fresh blood in a localized manner. Immediately following neural stimulation, the concentration of deoxyhemoglobin rises, followed by an onrush of more than necessary oxyhemoglobin. Deoxyhemoglobin is paramagnetic, whereas oxyhemoglobin is diamagnetic. These are di erent susceptibility properties which lead to di erent behavior when these materials are placed in a magnetic eld: diamagnetic materials give rise to a magnetic eld which counteracts the one in which they are placed, leading to a local net-reduction of magnetic eld. Paramagnets act the opposite way by contributing in the direction of an externally applied magnetic eld.

Thus oxygen level as a metabolic indicator becomes visible to MRI. While the full mechanism of neuro-vascular coupling is still not fully understood, direct links to neural activity have been established [START_REF] N K Logothetis | Neurophysiological investigation of the basis of the fMRI signal[END_REF].

Since however the BOLD response is a mixture of cerebral blood ow, cerebral blood volume and cerebral metabolic rate of oxygen changes, it is a relative measure without a baseline. In certain settings this necessitates the interpretation of a contrast of two images instead of the images themselves.

Apart from extreme cases, the BOLD response is approximately linear in the underlying neural activity. Given a train of stimulative or behavioral events it has also been put forward and tested that the BOLD response, within a certain range, acts like a linear time-invariant system (LTI) [START_REF] Rey M Boynton | Linear Systems Analysis of Functional Magnetic Resonance Imaging in Human V1[END_REF]. As a consequence, the response of a given brain voxel to a function of neural activity and events is fully characterized by the convolution of the neural activity function with a causal nite impulse response function, generally named the hemodynamic response function (HRF).

With MRI scanners available in many hospitals and research institutions, the discovery of the BOLD signal gave cognitive scientist a relatively cheap, reliable and spatially well-resolved tool to examine brain function. The explosion in number of publications pertaining to fMRI studies con rms this [Poldrack et al., 2011a].

fMRI experiment types

Di erent ways of studying the brain with fMRI have been established and been given category names. A major di erence in brain activity can be observed between the brain engaged in a speci c task and the brain at rest. The latter type of experiment requires the subject to engage in nothing but possibly mind-wandering. This can be done eyes open or eyes closed without visual stimulation. A rich body of literature exists around resting state fMRI. A notable discovery using fMRI has been the default mode brain network, which seems to be strongly active during rest periods [START_REF] M E Raichle | A default mode of brain function[END_REF].

The other type of experiment is task-related. Given a cognitive task or external stimulation, brain activity speci c to it will be elicited and can be contrasted against appropriately chosen control conditions in which the studied brain function is presumably inactive.

Di erent types of experiments include the presentation of visual, auditory or sensory stimulation either in passive perception or with active tasks such as memory, attention, discrimination or decision tasks. Underlying the design of high-level cognitive tasks there is often a mechanism of testing one theory against another, by choosing situations in which they would yield di erent predictions.

An fMRI experiment with stimulation and/or tasks is typically set up either as an event-related or a block design. In an event-related design, neural activity is elicited in brief singular events which can be visualized on a graph as spikes. They lead to a hemodynamic response consisting of the superposition of HRFs time-locked to the events (provided these are not spaced too closely, incurring a violation of the LTI model). In a block design, neural activity is elicited during extended periods of time, for example by showing di erent images of a same category. The stimulus may change in order to sustain neural activity, but the activation will be considered as one block and averaged. The neural activation functions can be visualized as boxcar functions (this is the case e.g. in [START_REF] Haxby | Distributed and overlapping representations of faces and objects in ventral temporal cortex[END_REF]). When convolved with the hemodynamic response function, they give rise to a shifted version of the boxcar with slightly smoothed edges.

Statistical methods for fMRI data analysis

Functional MRI is an imaging modality in which raw images are uninterpretable or at least very di cult to interpret by the human eye. E ect sizes are small with respect to baseline signal: BOLD signal changes typically amount to 5% of the mean image and the signal to noise ratio is low -typically around 0.1. This situation makes statistical analysis indispensible even for qualitative analysis as activation is indistinguishable from non-activation by looking at the raw signal.

Preprocessing

Before any analysis can be done on fMRI data, a number of preprocessing steps needs to be taken. A typical experimental acquisition session involves an anatomical scan, using a T1-weighted image. This anatomical image permits a segmentation into di erent tissue types, such as white matter and gray matter. Cerebro-spinal uid (CSF) and skull or the rest of the head are also segmented. If coregistered with a functional acquisition, this permits the identi cation of gray-matter voxels in the functional images.

During functional scanning over a length of time, head movement is almost unavoidable. In motion correction or realignment, each acquired functional image is transformed to match a reference image (taken, e.g. from the middle of the acquisition), using strictly rigid body transforms, which can be parametrized by a translation and a 3D rotation. This assumption encodes the fact that we do not expect the brain to change shape or size during the acquisition. Since the alignment is done between images of the same type, one can expect that a well-aligned image should incur minimal 2 or correlation error. This is the cost function that is usually optimized in the transformation parameters.

An optional preprocessing step is slice-timing correction. In e ect, due to the fact that the 3D images are acquired by slices, one by one, the time of the acquisition of each slice is di erent. Further, adjacent slices may not be acquired at adjacent points in time. In interleaved acquisition and in multiband acquisitions, this is not the case. It is straightforward to see that the slice timing delay relative to the neural event onset will cause a shift in the sampling of the hemodynamic response. If using methods that are rigid in their assumptions of the HRF, and brain volume acquisition takes more than TR=2s, then slice-timing correction may be a useful preprocessing step. It is done by temporal interpolation, where the type of interpolation needs to be chosen. Temporal sinc interpolation yields the least biased results at the cost of needing more lter taps than e.g. a linear or quadratic interpolation.

It is also possible that fMRI acquisitions incur artefacts such as ghosting or spikes. Visual scrutiny or analysis using ICA or simple temporal di erential analysis summaries can give indications as to the locations of spikes and corresponding volumes.

After these steps, which are often referred to as minimal preprocessing, we are ready to perform fMRI statistics, basing ourselves on the hypothesis or fact that now a given voxel refers to the same part of the brain throughout the analysis.

FMRI signal has several properties that need to be taken into account in order for analysis not to fail. First and foremost there are the low-frequency drifts which dominate the norm of the signal and have been essentially characterized as nuisance variables. Importantly, the information recoverable by an fMRI analysis resides in the high frequencies or must reside in the high frequencies, because otherwise it is confoundable with drifts and discarded when drifts are discarded. As a consequence, when designing an experiment, one must be careful not to include e ects that are too slow. A typical cuto for drift frequency is 1/128Hz. Drifts can be removed by high-pass ltering through projecting onto high-frequency Fourier coe cients. One can also use global or local polynomials up to a certain degree, as they enforce slow variation. For local polynomial smoothing the Savitzky-Golay lter has turned out helpful. Drifts can be removed either before statistics or accommodated for in statistical estimation.

Another issue that needs to be taken into account is noise. Noise is generally so strong that it is impossible to see the BOLD-induced signal change in one image by eye. It must be included at least implicitly into any data analysis model put forward. One can choose a white Gaussian model, but an autoregressive model with a one-timepoint history has also been successfully employed.

GLM

In the General Linear Model (GLM), voxel activations due to experimental conditions are written as the noisy linear forward model

y = Xβ + ε,
where X represents in its columns the event or condition regressors, which, exploiting the LTI model, are indicators of neural activity convolved with the hemodynamic response. These di erent regressors are weighted by the entries of the β-vector and the noise vector is added. Assuming white Gaussian noise ε with zero mean and variance σ 2 and full column rank of X, the best unbiased estimator for β is

β = X + y = β + X + ε.
The new noise term X + ε is still Gaussian with zero mean.

After performing the GLM, we are usually interested in establishing a relative di erence measure between two or more conditions, in the form of a statistical contrast. Let (e i ) i be unit vectors and suppose we are interested in contrasting condition i with condition j. Then with c = e ie j , we would like to infer whether the null-hypothesis that c T β = 0 can be rejected. We have

c T β = c T β -c T X + ε, which is a Gaussian variable N (c T β, σ √ c T X + X +,T c) = N (c T β, σ c T (X T X) -1 c).
It is then straightforward to determine the probability of reaching the mean of this distribution with a distribution of the same variance centered at zero. A succinct test statistic is z =

c T β √ c T (X T X) -1 cσ
, which is the z-score of the normal distribution.

It is to be noted that we normally do not have access to σ and have to estimate it in the model. This can be done by observing that an estimate can be obtained in the GLM residuals:

r = y -X β = (Id -XX + )ε, which leads to r 2 = ε(Id -XX + )ε = (n -p) σ2
, where X ∈ R n×p and the np scaling due to the loss in degrees of freedom incurred by the orthogonal projection. Using σ in the above equation

t = c T β c T (X T X) -1 c σ
gives us a t-statistic on which we can perform the same inference.

Unsupervised methods

When there is no task, behavior or stimulation and the brain is scanned while resting or mind-wandering, there is still intriguing structure in the resulting signal. One method to obtain brain activation maps and their activations as time courses is Independent Components Analysis (ICA). This supposes that the signal is a linear combination A of underlying sources s, which are maximally statistically independent. In order to function, ICA requires at least as many samples as there are dimensions in the data. Since fMRI data are very high-dimensional and typically scarce in the sense that there are much more voxels per image than images, one resorts to discovering independent timecourses instead of independent activation maps. The matrix of timecourses has the correct shape proportions and the resulting ICA will show which latent timecourse components were active in which voxel. The map of each latent factor is usually spatially coherent even though by construction it contains no spatial information apart from a (crucial) smoothing before estimating the components. Another approach, this time with a focus on spatially contiguous and sparse activation maps is known as "TV-l1 multi-subject dictionary learning" (TV-MSDL), see [Abraham et al., 2013] for details. Both approaches give rise to clean maps than can be further segmented into regions if desired. A typical analysis performed on resting state data is the study of interactions between such regions. One can also obtain regions using an anatomical atlas. One can for example tell apart disease condition from normal condition by classifying the covariance matrices, where disease condition can be e.g. autism or schizophrenia.

Encoding and Decoding

Encoding and Decoding, as introduced in [START_REF] Naselaris | Encoding and decoding in fMRI[END_REF] describe a direction in which modeling is performed. Encoding models, also known as forward models, are aligned with the direction of causality as far as possible.

In an fMRI experiment, this means that the brain response is predicted from the stimulus. The way it is advocated in [START_REF] Naselaris | Encoding and decoding in fMRI[END_REF] is to make use of simple linear models on top of an arbitrarily complicated and nonlinear representation of the stimulus. If an encoding model of this type can explain brain activity well, it is an indication of the usefulness of the underlying nonlinear representation. These models can advance the understanding of brain function. Decoding models, or inverse models, perform inference in the opposite direction: E.g. given a brain image, a decoding model attempts to infer information about the stimulus. Often the output is chosen to be categorical, e.g. an object category seen on the screen, but can also be continuous and potentially multi-dimensional. Uses of this modeling direction arise e.g. in brain-computer interfaces, where brain state is used to control a machine, or potentially for medical diagnosis for the prediction of a disease phenotype.

Ringing implicitly within the mention of encoding and decoding models is method of evaluation. While one may reasonably argue that an encoding model is nothing other than a potentially ill-posed way of performing a GLM, usually the evaluation criteria are quite di erent. While the classical GLM is amenable to classical statistics, due to the full column rank of the design matrix X, the evaluation of an encoding model is better seen as the evaluation of a modern machine learning method, which calculate predictive performance on unseen data. This way, even if the design matrix is singular due to an abundance of feature columns, modeling capacity can be quanti ed. Decoding models are evaluated analogously -also by an accuracy measure on held-out data.

In this thesis, the focus will be on encoding and decoding models.

Despite the common usage of a canonical, data-independent, hemodynamic response function (HRF), it is known that the shape of the HRF varies across brain regions and subjects. This suggests that a data-driven estimation of this function could lead to more statistical power when modeling BOLD fMRI data. However, unconstrained estimation of the HRF can yield highly unstable results when the number of free parameters is large. We develop a method for the joint estimation of activation and HRF by means of a rank constraint, forcing the estimated HRF to be equal across events or experimental conditions, yet permitting it to di er across voxels. Model estimation leads to an optimization problem that we propose to solve with an e cient quasi-Newton method, exploiting fast gradient computations. This model, called GLM with Rank-1 constraint (R1-GLM), can be extended to the setting of GLM with separate designs which has been shown to improve decoding accuracy in brain activity decoding experiments. We compare 10 di erent HRF modeling methods in terms of encoding and decoding score on two di erent datasets. Our results show that the R1-GLM model outperforms competing methods in both encoding and decoding settings, positioning it as an attractive method both from the points of view of accuracy and computational e ciency.

In the next section, we provide an example motivating the study of HRF estimation techniques. The subsequent sections have been published in the Neuroimage journal. 

Motivating Example

The BOLD hemodynamic response to a stimulus is a complicated mechanism, dependent on the oxygen consumption following energy release due to neural activity, but also mechanical properties of blood ow and the blood vessels by which it is transported. It is thus somewhat surprising that linear time invariant systems modeling does capture the BOLD response quite well, provided that certain conditions on the inter-stimulus interval are met. This property is studied in [START_REF] Rey M Boynton | Linear Systems Analysis of Functional Magnetic Resonance Imaging in Human V1[END_REF]. However, when consecutive stimuli are placed too close together temporally, at e.g less than 2 seconds, then the system does not satisfy the superposition property. This can be seen e.g. by considering a higher order Volterra expansion of the hemodynamic response: In the quadratic term one observes nontrivial binary interactions when stimuli are very close [START_REF] K J Friston | Nonlinear responses in fMRI: the Balloon model, Volterra kernels, and other hemodynamics[END_REF].

In this chapter we focus on the modeling of BOLD response in the framework of a linear time-invariant system only, e.g. sytems equal to their own Volterra expansion of rst order, where we assume stimulation as impulselike input and BOLD signal is the ltered response (the convolution with the hemodynamic impulse response function). In this context it is crucial to be able to characterize the impulse response of the system since otherwise the estimation of activity can be completely misguided.

In gure 2.1 we can see a depiction of two impulse sequences describing stimulus events for two experimental conditions. Both stimulus event trains yield a hemodynamic response whose superposition yields the full BOLD response. If this signal is analyzed with the "wrong" impulse response function (peak shifted from 6 seconds to 4 seconds), then the estimated activations can become very wrong. In this speci c case they do not even preserve order.

Slightly more formally, we can write the event sequences as trains of Dirac deltas

E m (t) = N m ∑ n=1 δ(t -t m,n ), m ∈ {1, 2}, (2.1)
where m represents di erent experimental conditions and the t m,n indicate the event times for condition m.

Given an HRF h(t) which is assumed to have nite temporal support [0, L h ], the regressors used in a GLM are then the convolution of the E m event trains with the HRF:

X m (t) = E m * h(t) = N m ∑ n=1 h(t -t m,n ) (2.2)
The BOLD signal in one voxel is then modeled as a linear combination of these regressors:

y(t) = M ∑ m=1 β m X m (t) (2.3) Writing f , g = ∞ -∞ f (t)g(t)
dt and f 2 = f , f (for nite numbers of events these integrals clearly exist), given a BOLD signal y(t) the least squares estimate is written The third plot shows the total activity of the voxel due to the events (black line). The fourth plot shows the total activity and event responses using an HRF that peaks at 4s ("the wrong HRF"). The fth plot shows in magenta the best t obtainable with the HRF peaking at 4s. The last line shows that the estimated activation maps for condition blue < condition red, inverting the order of the two.

β = arg min β 1 2 y(t) - M ∑ m=1 β m X m (t) 2 (2.4)
Letting G l,m = X l , X m be the Gram matrix and c m = X m , y be the inner product similarity between regressors and BOLD time course, the solution to the least squares problem can be written as

β = G -1 c
(2.5)

Assuming now that we have two conditions and that the BOLD activity was generated using a "ground truth" HRF h(t), we assess what happens if the activity is estimated using a di erent underlying HRF g(t). Let

X h m (t) = E m * h(t) X g m (t) = E m * g(t) G g,g l,m = X g l , X g m G g,h l,m = X g l , X h m
and the BOLD signal generated as y(t) = ∑ m β m X h m (t). Then using the HRF g(t) leads to the following estimation of activity:

βg 1 βg 2 = (G g,g ) -1 G g,h β = X g 1 , X g 1 , X g 1 , X g 2 X g 2 , X g 1 , X g 2 , X g 2 -1 X g 1 , X h 1 , X g 1 , X h 2 X g 2 , X h 1 , X g 2 , X h 2 β
(2.6) In order to evaluate this estimation, we need to take a closer look at the scalar products involved. We exploit the fact that these can be written as a convolution evaluated at 0 and can then use associativity and commutativity properties of the convolution. Using the notation f : x → f (-x) we can write:

X g m , X h l = X g m * Xh l (0) = (E m * g) * ( Ěl * ȟ)(0) = (E m * Ěl ) * (g * ȟ)(0)
(2.7) The rule for the convolution of Diracs gives us (E m * Ěl )(t) = ∑ n,k δ(t -(t m,nt l,k )). Since the support of g * ȟ is [-L h , L g ], if the events are spaced at a larger inter-stimulus interval than max(L g , L h ), the scalar product reduces to X g m , X h l = N m δ ml (g * ȟ)(0) = N m δ ml g, h . The estimated activations then become

βm = g, h g, g β m , (2.8) 
If the hemodynamic responses to events do not signi cantly overlap (i.e. the events are su ciently temporally separated), then using the wrong HRF for estimation merely leads to the activation maps being scaled by a factor. and we conclude that using the "wrong" hrf in the absence of response overlap merely results in a rescaling of activation maps. In the context of two di erent event types, let us assume that event 2 follows event 1 after half of the duration of the hemodynamic response and that event 1 occurs periodically with inter-stimulus interval equal to the length of the HRF. Then, with the shorthand g, h t = (g * ȟ)(t), we obtain

X g 1 , X h 2 = X g 2 , X h 1 = N g, h L 2 X g 1 , X h 1 = X g 2 , X h 2 = N g, h 0
We thus obtain

βg 1 βg 2 = g, g 0 , g, g L 2 g, g L 2 , g, g 0 -1 g, h 0 , g, h L 2 g, h L 2 , g, h 0 β
Assume for simplicity that the HRFs g, h are step functions, for example

g = 2 L 1 [ L 2 ,L] and h = 2 L 1 [0, L 2 ]
. In this case g, g = h, h = g, h L 2 = 1 and the other values are equal to 0, leading to If the HRF used for estimation is radically di erent from the HRF generating the signal, and the events are unfortunately placed, then activation contrasts can ip sign. In the constructed example here, the two conditions exchange activation maps.

βg 1 βg 2 = 1 0 0 1 -1 0 1 1 0 β = β 2 β 1 ,
leading to an exact switching of activations. In practice the e ect may not be as clear cut, but gure 2.1 shows an example with plausible HRFs, where the order of the strengths of the weights is inverted.

In the following, we will make the case for an HRF estimation per voxel in the context of encoding and decoding models. Indeed, most e orts of decoding brain state from fMRI data use a deconvolution step in the form of an event related GLM in order to extract the activation coe cients β, instead of learning predictive models directly on BOLD signal (some exceptions exist and will be mentioned). We will show that the estimation of the hemodynamic response function per voxel aids both forward and reverse modeling techniques, from stimulus to brain activity and back.

Data-driven HRF estimation for encoding and decoding models

The use of machine learning techniques to predict the cognitive state of a subject from their functional MRI (fMRI) data recorded during task performance has become a popular analysis approach for neuroimaging studies over the last decade [Cox andSavoy, 2003, Haynes and[START_REF] Haynes | Decoding mental states from brain activity in humans[END_REF]. It is now commonly referred to as brain reading or decoding. In this setting, the BOLD signal is used to predict the task or stimulus that the subject was performing. Although it is possible to perform decoding directly on raw BOLD signal [START_REF] Miranda | Dynamic discrimination analysis: a spatial-temporal SVM[END_REF][START_REF] Miyawaki | Visual image reconstruction from human brain activity using a combination of multiscale local image decoders[END_REF], the common approach in fast event-related designs consists in extracting the activation coefcients (beta-maps) from the BOLD signal to perform the decoding analysis on these estimates. Similarly, in the voxel-based encoding models [START_REF] Kay | Identifying natural images from human brain activity[END_REF], Naselaris et al., 2011], the activation coe cients are extracted from the BOLD signal, this time to learn a model to predict the BOLD response in a given voxel, based on a given representation of the stimuli. In addition, a third approach, known as representational similarity analysis or RSA [Kriegeskorte et al., 2008a] takes as input the activation coe cients. In this case a comparison is made between the similarity observed in the activation coe cients, quanti ed by a correlation measure, and the similarity between the stimuli, quanti ed by a similarity measure de ned from the experimental setting.

These activation coe cients are computed by means of the General Linear Model (GLM) [START_REF] Karl J Friston | Statistical parametric maps in functional imaging : A general linear approach[END_REF]. While this approach has been successfully used in a wide range of studies, it does su er from limitations [START_REF] Poline | The general linear model and fMRI: does love last forever?[END_REF]. For instance, the GLM commonly relies on a data-independent canonical form of the hemodynamic response function (HRF) to estimate the activation coe cient. However it is known [START_REF] Daniel A Handwerker | Variation of BOLD hemodynamic responses across subjects and brain regions and their e ects on statistical analyses[END_REF], Badillo et al., 2013b] that the shape of this response function can vary substantially across subjects and brain regions. This suggests that an adaptive modeling of this response function should improve the accuracy of subsequent analysis.

To overcome the aforementioned limitation, Finite Impulse Response (FIR) models have been proposed within the GLM framework [START_REF] Dale | Optimal experimental design for event-related fMRI[END_REF][START_REF] Glover | Deconvolution of impulse response in event-related BOLD fMRI[END_REF]. These models do not assume any particular shape for the HRF and amount to estimating a large number of parameters in order to identify it. While the FIR-based modeling makes it possible to estimate the activation coe cient and the HRF simultaneously, the increased exibility has a cost. The estimator is less robust and prone to over tting, i.e. it may generalize badly to unseen data. In general, FIR models are most appropriate for studies focused on the characterization of the shape of the hemodynamic response, and not for studies that are primarily focused on detecting activation [START_REF] Poldrack | Handbook of Functional MRI Data Analysis[END_REF] Several strategies aiming at reducing the number of degrees of freedom of the FIR model -and thus at limiting the risk of over tting -have been proposed. One possibility is to constrain the shape of the HRF to be a linear combination of a small number of basis functions. A common choice of basis is formed by three elements consisting of a reference HRF as well as its time and dispersion derivatives [START_REF] Karl J Friston | Nonlinear event-related responses in fMRI[END_REF]], although it is also possible to compute a basis set that spans a desired function space [START_REF] Mark W Woolrich | Constrained linear basis sets for HRF modelling using variational bayes[END_REF]. More generally, one can also de ne a parametric model of the HRF and estimate the parameters that best t this function [START_REF] Lindquist | Validity and power in hemodynamic response modeling: A comparison study and a new approach[END_REF]. However, in this case the estimated HRF may no longer be a linear function of the input parameters.

Sensitivity to noise and over tting can also be reduced through regularization. For example, temporal regularization has been used in the smooth FIR [START_REF] Goutte | Modeling the haemodynamic response in fMRI using smooth FIR lters[END_REF], Ciuciu et al., 2003[START_REF] Casanova | The impact of temporal regularization on estimates of the BOLD hemodynamic response function: a comparative analysis[END_REF] to favor solutions with small second order time derivative. These approaches require the setting of one or several hyperparameters, at the voxel or potentially at the parcel level (if several voxels in a pre-de ned parcel are assumed to share some aspects of the HRF timecourse). Even if e cient techniques such as generalized cross-validation [START_REF] Golub | Generalized crossvalidation as a method for choosing a good ridge parameter[END_REF] can be used to choose the regularization parameters, these methods are inherently more costly than basis-constrained methods. Basis-constrained methods also require setting the number of basis elements; however, this parameter is not continuous (as in the case of regularized methods), and in practice only few values are explored: for example the 3-element basis set formed by a reference HRF plus derivatives and the FIR model. This paper focuses on basis-constrained regularization of the HRF to avoid dealing with hyperparameter selection with the goal of remaining computationally attractive. A di erent approach to increase robustness of the estimates consists in linking the estimated HRFs across a prede ned brain parcel, taking advantage of the spatially dependent nature of fMRI [START_REF] Wang | Multiscale adaptive smoothing models for the hemodynamic response function in fMRI[END_REF]. However, hemodynamically-informed parcellations [START_REF] Chaari | Hemodynamic-informed parcellation of fMRI data in a joint detection estimation framework[END_REF], Badillo et al., 2013a] rely on the computation of a large number of estimations at the voxel or sub-parcel level. In this chapter we focus on voxel-wise estimation methods.

We propose a method for the simultaneous estimation of HRF and activation coe cients based on low-rank modeling. Within this model, and as in [START_REF] Makni | Bayesian deconvolution of fMRI data using bilinear dynamical systems[END_REF][START_REF] Kay | Identifying natural images from human brain activity[END_REF], Vincent et al., 2010[START_REF] Degras | A hierarchical model for simultaneous detection and estimation in multi-subject fMRI studies[END_REF], the HRF is constrained to be equal across the di erent conditions, yet permitting it to be di erent across voxels. Unlike previous works, we formulate this model as a constrained least squares problem, where the vector of coe cients is constrained to lie within the space of rank one matrices. We formulate the model within the framework of smooth optimization and use quasi-Newton methods to nd the vector of estimates. This model was brie y presented in the conference paper [START_REF] Pedregosa | HRF estimation improves sensitivity of fMRI encoding and decoding models[END_REF]. Here we provide more experimental validation and a more detailed presentation of the method. We also added results using a GLM with separate designs [START_REF] Mumford | Deconvolving BOLD activation in event-related designs for multivoxel pattern classi cation analyses[END_REF]. Ten alternative approaches are now compared on two publicly available datasets. The solver has also been signi cantly improved to scale to full brain data.

The contributions of this chapter are two-fold. First, we quantify the importance of HRF estimation in encoding and decoding models. While the bene t of data-driven estimates of the HRF have already been reported in the case of decoding [Turner et al., 2012] and encoding approaches [Vu et al., 2011], we here provide a comprehensive comparison of models. Second, we evaluate a method called GLM with Rank-1 constraint (R1-GLM) that improves encoding and decoding scores over state-of-the-art methods while remaining computationally tractable on a full brain volume. We propose an e cient algorithm for this method and discuss practical issues such as initialization. Finally, we provide access to an open source software implementation of the methods discussed in this chapter.

Notation: • and • ∞ denote the Euclidean and in nity norm for vectors. We use lowercase boldface letter to denote vectors and uppercase boldface letter to denote matrices. I denotes the identity matrix, 1 n denotes the vector of ones of size n, ⊗ denotes the Kronecker product and vec(A) denotes the concatenation of the columns of a matrix A into a single column vector. A † denotes the Moore-Penrose pseudoinverse. Given the vectors {a 1 , . . . , a k } with a i ∈ R n for each 1 ≤ i ≤ k, we will use the notation [a 1 , . . . , a k ] ∈ R n×k to represent the columnwise concatenation of the k vectors into a matrix of size n × k. We will use Matlab-style colon notation to denote slices of an array, that is x(1 : k) will denote the rst k elements of x.

Methods

In this section we describe di erent methods for extracting the HRF and activation coe cients from BOLD signals. We will refer to each di erent stimulus as condition and we will call trial a unique presentation of a given stimulus. We will denote by k the total number of stimuli, y ∈ R n the BOLD signal at a single voxel and n the total number of images acquired.

The General Linear Model

The original GLM model [START_REF] Karl J Friston | Statistical parametric maps in functional imaging : A general linear approach[END_REF] makes the assumption that the hemodynamic response is a linear transformation of the underlying neuronal signal. We de ne the n × k-matrix X GLM as the columnwise stacking of di erent regressors, each one de ned as the convolution of a reference HRF [START_REF] Rey M Boynton | Linear Systems Analysis of Functional Magnetic Resonance Imaging in Human V1[END_REF][START_REF] Glover | Deconvolution of impulse response in event-related BOLD fMRI[END_REF] with the stimulus onsets for the given condition. In this work we used as reference HRF the one provided by the software SPM 8 [START_REF] Karl J Friston | Statistical parametric mapping: The analysis of functional brain images: The analysis of functional brain images[END_REF]. Assuming additive white noise, n ≥ k and X GLM to be full rank, the vector of estimates is given by βGLM = X † GLM y, where βGLM is a vector of size k representing the amplitude of each one of the conditions in a given voxel.

A popular modi cation of this setting consists in extending the GLM design matrix with the temporal and width derivatives of the reference HRF. This basis, formed by the reference HRF and its derivatives with respect to time and width parameters, will be used throughout this work. We will refer to it as the 3HRF basis. In this case, each one of the basis elements is convolved with the stimulus onsets of each condition, obtaining a design matrix of size n × 3k. This way, for each condition, we estimate the form of the HRF as a sum of basis functions that correspond to the rst order Taylor expansion of the parametrization of the response function. Another basis set that will be used is the Finite Impulse Response (FIR) set. This basis set spans the complete vector space of dimension corresponding to the length of the impulse response and it is thus a exible model for capturing the HRF shape. It consists of the canonical unit vectors for the given duration of the estimated HRF. Other basis functions such as FMRIB's Linear Optimal Basis Sets [START_REF] Mark W Woolrich | Constrained linear basis sets for HRF modelling using variational bayes[END_REF] are equally possible but were not considered in this work.

More generally, one can extend this approach to any set of basis functions. Given the matrix formed by the stacking of d basis elements B = [b 1 , b 2 , . . . , b d ], the design matrix X B is formed by successively stacking the regressors obtained by convolving each of the basis elements with the stimulus onsets of each condition. This results in a matrix of size n × dk and under the aforementioned conditions the vector of estimates is given by βB = X † B y. In this case, βB is no longer a vector of size k: it has length k × d instead and can no longer be interpreted as the amplitude of the activation. One possibility to recover the trial-by-trial response amplitude is to select the parameters from a single time point as done by some of the models considered in [START_REF] Mumford | Deconvolving BOLD activation in event-related designs for multivoxel pattern classi cation analyses[END_REF], however this procedure assumes that the peak BOLD response is located at that time point. Another possibility is to construct the estimated HRF and take as amplitude coe cient the peak amplitude of this estimated HRF. This is the approach that we have used in this paper.

GLM with rank constraint

In the basis-constrained GLM model, the HRF estimation is performed independently for each condition. This method works reliably whenever the number of conditions is small, but in experimental designs with a large number of conditions it performs poorly due to the limited conditioning of the problem and the increasing variance of the estimates.

At a given voxel, it is expected that for similar stimuli the estimated HRF are also similar [START_REF] Henson | Detecting latency di erences in event-related BOLD responses: application to words versus nonwords and initial versus repeated face presentations[END_REF]. Hence, a natural idea is to promote a common HRF across the various stimuli (given that they are su ciently similar), which should result in more robust estimates [START_REF] Makni | Bayesian deconvolution of fMRI data using bilinear dynamical systems[END_REF], Vincent et al., 2010]. In this work we consider a model in which a common HRF is shared across the di erent stimuli. Besides the estimation of the HRF, a unique coe cient is obtained per column of our event matrix. This amounts to the estimation of k + d free parameters instead of k × d as in the standard basis-constrained GLM setting.

The novelty of our method stems from the observation that the formulation of the GLM model with a common HRF across conditions translates to a rank constraint on the vector of estimates. This assumption amounts to enforcing the vector of estimates to be of the form

β B = [hβ 1 , hβ 2 , • • • , hβ k ]
for some HRF h ∈ R d and a vector of coe cients β ∈ R k . More compactly, this can be written as β B = vec(hβ T ). This can be seen as a constraint on the vector of coe cients to be the vectorization of a rank-one matrix, hence the name Rank-1 GLM (R1-GLM).

In this model, the coe cients no longer have a closed form expressions, but can be estimated by minimizing the mean squared error of a bilinear model. Given X B and y as before, Z ∈ R n×q a matrix of nuisance parameters such as drift regressors, we de ne F R1 (h, β, ω, X B , y, Z) = 1 2 y -X B vec(hβ T ) -Zω 2 to be the objective function to be minimized. The optimization problem reads:

ĥ, β, ω = arg min h,β,ω F R1 (h, β, ω, X B , y, Z) subject to Bh ∞ = 1 and Bh, h ref > 0 ,
(2.9)

The norm constraint is added to avoid the scale ambiguity between h and β and the sign is chosen so that the estimated HRF correlates positively with a given reference HRF h ref .

Otherwise the signs of the HRF and β can be simultaneously ipped without changing the value of the cost function. Omitting the norm constraint, which is always obtainable by appropriate rescaling, the optimization problem is smooth and is convex with respect to h, β and ω, however it is not jointly convex in variables h, β and ω.

From a practical point of view this formulation has a number of advantages. First, in contrast with the GLM without rank-1 constraint the estimated coe cients are already factored into the estimated HRF and the activation coe cients. That is, once the estimation of the model parameters from Eq. (2.9) is obtained, β is a vector of size k and ĥ is a vector of size d that can be both used in subsequent analysis, while in models without rank-1 constraint only the vector of coe cients (equivalent to vec(hβ T ) in rank-1 constrained models) of size k × d is estimated. In the latter case, the estimated HRF and the beta-maps still have to be extracted from this vector by methods such as normalization by the peak of the HRF, averaging or projecting to the set of Rank-1 matrices.

Second, it is readily adapted to prediction on unseen trials. While for classical (non rank-1 models) the HRF estimation is performed per condition with no HRF associated with unseen conditions, in this setting, because the estimated HRF is linked and equal across conditions it is natural to use this estimate on unseen conditions. This setting occurs often in encoding models where prediction on unseen trials is part of the cross-validation procedure.

This model can also be extended to a parametric HRF model. That is, given the hemodynamic response de ned as a function h : R d 1 → R d of some parameters α, we can formulate the analogous model of Eq. (2.9) as an optimization over the parameters α and β with the design matrix X FIR given by the convolution of the event matrix with the FIR basis:

α, β, ω = arg min α,β,ω F R1 (h(α), β, ω, X FIR , y, Z) subject to h(α) ∞ = 1 and h(α), h ref > 0 (2.10)
In section 2.3 we will discuss optimization strategies for both models.

Extension to separate designs

An extension to the classical GLM that improves the estimation with correlated designs was proposed in [START_REF] Mumford | Deconvolving BOLD activation in event-related designs for multivoxel pattern classi cation analyses[END_REF]. In this setting, each voxel is modeled as a linear combination of two regressors in a design matrix X GLM . The rst one is the regressor associated with a given condition and the second one is the sum of all other regressors. This results in k design matrices, one for each condition. The estimate for a given condition is given by the rst element in the two-dimensional array X Si † y, where X Si is the design matrix for condition i. We will denote this model GLM with separate designs (GLMS). It has been reported to nd a better estimate in rapid event designs leading to a boost in accuracy for decoding tasks [START_REF] Mumford | Deconvolving BOLD activation in event-related designs for multivoxel pattern classi cation analyses[END_REF][START_REF] Curran Associates | Linear reconstruction of perceived images from human brain activity[END_REF][START_REF] Lei | A mixed L2 norm regularized HRF estimation method for rapid event-related fMRI experiments[END_REF]. This approach was further extended in [Turner et al., 2012] to include the FIR basis instead of the prede ned canonical function. Here we employ it in the more general setting of a prede ned basis set. Given a set of basis functions we construct the design matrix for condition i as the columnwise concatenation of two matrices X 0 BSi and X 1 BSi . X 0 BSi is given by the columns associated with the current condition in the GLM matrix and X 1

BSi is the sum of all other columns. In this case, the vector of estimates is given by the rst d vectors of X † BSi y. See [Turner et al., 2012] for a more complete description of the matrices X 0 BSi and X 1 BSi . It is possible to use the same rank-1 constraint as before in the setting of separate designs, linking the HRF across conditions. We will refer to this model as Rank-1 GLM with separate designs (R1-GLMS). In this case the objective function has the form

F R1-S (h, β, ω, r, X B , y, Z) = 1 2 ∑ k i=1 y - β i X 0 BSi h -r i X 1 BSi h -Zω 2
, where r ∈ R d is a vector representing the activation of all events except the event of interest and will not be used in subsequent analyses. We can compute the vector of estimates β as the solution to the optimization problem β, ω, ĥ, r = arg min h,β,ω,r F R1-S (h, β, ω, r, X B , y, Z)

subject to Bh ∞ = 1 and Bh, h ref > 0 (2.11)

Optimization

For the estimation of rank-1 models on a full brain volume, a model is estimated at each voxel separately. Since a typical brain volume contains more than 40,000 voxels, the e ciency of the estimation at a single voxel is of great importance. In this section we will detail an e cient procedure based on quasi-Newton methods for the estimation of R1-GLM and R1-GLMS models on a given voxel.

One approach to minimize (2.9) is to alternate the minimization with respect to the variables β, h and ω. By recalling the Kronecker product iden-tities [START_REF] Roger | Topics in matrix analysis[END_REF], and using the identity vec(hβ T ) = β ⊗ h we can rewrite the objective function (2.9) to be minimized as:

1 2 y -X B (β ⊗ h) -Zω 2 = (2.12) 1 2 y -X B (I ⊗ h)β -Zω 2 = (2.13) 1 2 y -X B (β ⊗ I)h -Zω 2 .
(2.14)

Updating h, β or ω sequentially thus amounts to solving a (constrained) least squares problem at each iteration. A similar procedure is detailed in [START_REF] Degras | A hierarchical model for simultaneous detection and estimation in multi-subject fMRI studies[END_REF]. However, this approach requires computing the matrices X B (β ⊗ I) and X B (I ⊗ h) at each iteration, which are typically dense, resulting in a high computational cost per iteration. Note also that the optimization problem is not jointly convex in variables h, β, ω, therefore we cannot apply convergence guarantees from convex analysis.

We rather propose a more e cient approach by optimizing both variables jointly. We de ne a global variable z as the concatenation of (h, β, ω) into a single vector, z = vec ([h, β, ω]), and cast the problem as an optimization with respect to this new variable. Generic solvers for numerical optimization [START_REF] Nocedal | Numerical optimization, series in operations research and nancial engineering[END_REF] can then be used. The solvers that we will consider take as input an objective function and its gradient. In this case, the partial derivatives with respect to variable z can be written as ∂F R1 /∂z = vec([∂F R1 /∂h, ∂F R1 /∂β, ∂F R1 /∂ω]), whose expression can be easily derived using the aforementioned Kronecker product identities:

               ∂F R1 ∂h = -(β T ⊗ I)X T (y -X vec(hβ T ) -Zω) ∂F R1 ∂β = -(I ⊗ h T )X T (y -X vec(hβ T ) -Zω) ∂F R1 ∂ω = -Z T (y -X vec(hβ T ) -Zω)
If instead a parametric model of the HRF is used as in Eq. (2.10), the equivalent partial derivatives can be easily computed by the chain rule.

For the sake of e ciency, it is essential to avoid evaluating the Kronecker products naively, but rather reformulate them using the above mentioned Kronecker identities. For example, the matrix M = X(I ⊗ h) should not be computed explicitly but should rather be stored as a linear operator such that when applied to a vector

β ∈ R k it computes M(β) = X(β ⊗ h), avoiding thus the explicit computation of I ⊗ h.
Similar equations can be derived for the rank-1 model with separate designs of Eq. (2.11) (R1-GLMS), in which case the variable z is de ned as the concatenation of (h, β, ω, r), i.e. z = vec ([h, β, ω, r]). The gradient of F R1-S with respect to z can be computed as

∂F R1-S /∂z = vec([∂F R1-S /∂h, ∂F R1-S /∂β, ∂F R1-S /∂ω, F R1-S /∂r]).
The partial derivatives read:

           ∂F ∂h = ∑ k i -(X 0 BS i β i -X 1 BS i r i ) T (y -β i X 0 BS i h -w i X 1 BS i h) ∂F ∂β i = -(X 0 BS i h) T (y -β i X 0 BS i h -w i X 1 BS i h) ∂F ∂ω i = -Z T (y -β i X 0 BS i h -w i X 1 BS i h) ∂F ∂r i = -(X 1 BS i h) T (y -β i X 0 BS i h -w i X 1 BS i h)
A good initialization plays a crucial role in the convergence of any iterative algorithm. Furthermore, for non-convex problems a good initialization prevents the algorithm from converging to undesired local minima. We have used as initialization for the R1-GLM and R1-GLMS models the solution given by the GLM with separate designs (GLMS). Since the GLM with separate designs scales linearly in the number of voxels, this signi cantly reduces computation time whenever an important number of voxels is considered.

Whenever the design matrix X B has more rows than columns (as is the case in both datasets we consider when B is the 3HRF basis), it is possible to nd an orthogonal transformation that signi cantly speeds up the computation of the Rank-1 model. Let Q, R be the "thin" QR decomposition of X B ∈ R n×dk , that is, QR = X B with Q ∈ R n×dk an orthogonal matrix and R ∈ R dk×dk a triangular matrix. Because of the invariance of the Euclidean norm to orthogonal transformations, the change of variable X B ← Q T X B , y ← Q T y yields a Rank-1 model in Eq. (2.9) with equivalent solutions. This reduces the size of the design matrix to a square triangular matrix of size dk × dk (instead of n × dk) and reduces the explained variable y to a vector of size kd (instead of n). After this change of variable, the convergence of the Rank-1 model is signi cantly faster due to the faster computation of the objective function and its partial derivatives. We have observed that the total running time of the algorithm can be reduced by 30% using this transformation.

Some numerical solvers such as L-BFGS-B [Liu and [START_REF] Dong | On the limited memory BFGS method for large scale optimization[END_REF]] require the constraints to be given as box constraints. While our original problem includes an equality constraint we can easily adapt it to use convex box constraints instead. We replace the equality constraint Bh ∞ = 1 by the convex inequality constraint Bh ∞ ≤ 1, which is equivalent to the box constraint -1 ≤ (Bh) i ≤ 1 supported by the above solver. However, this change of constraint allows solutions in which h can be arbitrarily close to zero. To avoid such degenerate cases we add the smooth term -B(:, 1)h 1 2 2 to the cost function. Since there is a free scale parameter between h and β, this does not bias the problem, but forces Bh to lie as far as possible from the origin (thus saturating the box constraints). Once a descent direction has been found by the L-BFGS-B method we perform a line search procedure to determine the step length. The line-search procedure was implemented to satisfy the strong Wolfe conditions [START_REF] Nocedal | Numerical optimization, series in operations research and nancial engineering[END_REF]. Finally, when the optimization algorithm has converged to a stationary point, we rescale the solution setting to ensure that the equality constraint holds. This still leaves a sign ambiguity between the estimated HRF and the associated beta-maps. To make these parameters identi able, the sign of the estimated HRF will be chosen so that these correlate positively with the reference HRF.

We have compared several rst-order (Conjugate Gradient), quasi-Newton (L-BFGS) and Newton methods on this problems and found that in general quasi-Newton methods performed best in terms of computation time. In our implementation, we adopt the L-BFGS-B as the default solver.

In Algorithm 1 we describe an algorithm based on L-BFGS that can be used to optimize R1-GLM and R1-GLMS models (a reference implementation for the Python language is described in subsection Software). Variable r is only used for the R1-GLMS method and its use is denoted within parenthesis, i.e. (, r), so that for the R1-GLM it can simply be ignored.

Algorithm 1: Optimization of R1-GLM and R1-GLMS models

Data: Given initial points β 0 ∈ R k , h 0 ∈ R d , ω 0 ∈ R q (, r 0 ∈ R k ), convergence tolerance > 0, inverse Hessian approximation H 0 . Result: β m , h m (Optional): Compute the QR decomposition of X B , QR = X B , and replace X B ← Q T X B , y ← Q T y; Initialization. Set m ← 0, z ← vec([h 0 , β 0 , ω 0 (, r 0 )]); while ∇ f > do Compute search direction. Set p m ← -H m ∇ f (h m , β m , ω m (, r m ))
, where f is the objective function of the R1-GLM or R1-GLMS model.;

Set

z m+1 = z m + γ m p m , where γ m is computed from a line search procedure subject to the box constraints h m ∞ ≤ 1.; m ← m + 1; Extract R1-GLM(S) parameters from z m . Set h m ← z m (1 : d), β m ← z m (d + 1 : m + d);
Normalize and set sign so that the estimated HRF is positively correlated with a reference HRF:

q m ← h m ∞ sign(h T m h ref ), h m ← h m /q m , β m ← β m q m ;
The full estimation of the R1-GLM model with 3HRF basis for one subject of the dataset described in section Dataset 2: decoding of potential gain levels (16 × 3 conditions, 720 time points, 41, 622 voxels) took 14 minutes in a 8cores Intel Xeon 2.67GHz machine. The total running time for the 17 subjects was less than four hours.

Software

We provide a software implementation of all the models discussed in this section in the freely available (BSD licensed) pure-Python package hrf_estimation 1 .

1 https://pypi.python.org/pypi/hrf_estimation

Data description

With the aim of making the results in this paper easily reproducible, we have chosen two freely available datasets to validate our approach and to compare di erent HRF modeling techniques. Details on the datasets can be found in Appendix 8. In the following we explain the speci c processing performed on these datasets for the purposes of this chapter.

Dataset 1: encoding of visual information

Detailed dataset descriptions are to be found in the Appendix. We performed local detrending using a Savitzky-Golay lter [START_REF] Savitzky | Smoothing and di erentiation of data by simpli ed least squares procedures[END_REF] with a polynomial of degree 4 and a window length of 91 TR. The activation coe cients (beta-map) and HRF were extracted from the training set by means of the di erent methods we would like to compare. The training set consisted of 80% of the original session (4 out of 5 runs). This resulted in estimated coe cients (beta-map) for each of the 70 × 4 images in the training set.

We proceed to train the encoding model. The stimuli are handled as local image contrasts, that are represented by spatially smoothed Gabor pyramid transform modulus with two orientations and four scales. Ridge regression (regularization parameter chosen by Generalized Cross-Validation [START_REF] Golub | Generalized crossvalidation as a method for choosing a good ridge parameter[END_REF], see chapter 8 for original work on the extenstion of leave-one-out to leave-k-out cross-validation) was then used to learn a predictor of voxel ac-Generalized cross-validation for k left out samples derived in appendix -chapter 8 tivity on the training set. By using this encoding model and the estimated HRF it is possible to predict the BOLD signal for the 70 images in the test set (20 % of the original session). We emphasize that learning the HRF on the training set instead of on the full dataset is necessary to avoid over tting while assessing the quality of the estimated HRF by any HRF-learning method: otherwise, the estimation of the HRF may incorporate speci cities of the test set leading to arti cially higher scores.

In a rst step, we perform the image identi cation task from [START_REF] Kay | Identifying natural images from human brain activity[END_REF]. From the training set we estimate the activation coe cients that will be used to compute the activation maps. We use an encoding model using Gabor lters that predicts the activation coe cient from the training stimuli. From the stimuli in the validation set we predict the activation coe cients that we then use to identify the correct image. The predicted image is the one yielding the highest correlation with the measured activity. This procedure mimics the one presented in [Kay et al., 2008, Supplementary material].

In a second step, we report score as the Pearson correlation between the measurements and the predicted BOLD signal on left out data. The prediction of BOLD signal on the test set is performed from conditions that were not present in the train set. In order to do this, an HRF for these conditions is necessary. As highlighted in the methods section, the construction of an HRF for these conditions is ambiguous for non Rank-1 methods that perform HRF estimation on the di erent stimuli. In these cases we chose to use the mean HRF across conditions as the HRF for unseen conditions. Finally, linear predictions on the left out fold were compared to the measured BOLD signals.

Dataset 2: decoding of potential gain levels

For all subjects three runs were recorded, each consisting of 240 brain images with a repetition time (TR) of 2 seconds and a stimulus presentation at every 4 seconds. In order to perform HRF estimation on more data than what is available on a single run, we performed the estimation on the three runs simultaneously. This assumes HRF consistency across runs, which was obtained by concatenating the data from the three runs and creating a blockdiagonal design matrix correspondingly (each block is the design of one run).

After training a regression model on 90% of the data, we predict the gain level on the remaining 10%. As a performance measure we use Kendall tau rank correlation coe cient [START_REF] Kendall | A new measure of rank correlation[END_REF] between the true gain levels and the predicted levels, which is a measure for the orderings of the data. We argue that this evaluation metric is better suited than a regression loss for this task because of the discrete and ordered nature of the labels. Also, this loss is less sensitive to shrinkage of the prediction that might occur when pe-nalizing a regression model [Bekhti et al., 2014]. The Kendall tau coe cient always lies within the interval [-1, 1], with 1 being perfect agreement between the two rankings and -1 perfect disagreement. Chance level lies at zero. This metric was previously proposed for fMRI decoding with ordered labels in [START_REF] O M Doyle | Multivariate decoding of brain images using ordinal regression[END_REF].

Results

In order to compare the di erent methods discussed previously, we ran the same encoding and decoding studies while varying the estimation method for the activation coe cients (beta-maps). The methods we considered are standard GLM (denoted GLM), GLM with separate designs (GLMS), Rank-1 GLM (R1-GLM) and Rank-1 GLM with separate designs (R1-GLMS). For all these models we consider di erent basis sets for estimating the HRF: a set of three elements formed by the reference HRF and its time and dispersion derivative, a FIR basis set (of size 20 in the rst dataset and of size 10 in the second dataset) formed by the canonical vectors and the single basis set formed by the reference HRF (denoted " xed HRF"), which in this case is the HRF used by the SPM 8 software.

It should be reminded that the focus of this study is not the study of the HRF in itself (such as variability across subjects, tasks or regions) but instead its possible impact on the accuracy of encoding and decoding paradigms. For this reason we report encoding and decoding scores but we do not investigate any of the possible HRF variability factors.

Dataset 1: encoding of visual information

In the original study, 500 voxels were used to perform image identi cation.

We rst present the scores obtained in the image identi cation task for different variants of the GLM. This can be seen in Figure 2.2. The displayed score is the count of correctly identi ed images over the total number of images (chance level is therefore at 1/120). The identi cation algorithm here only uses the beta-maps obtained from the train and validation set. This makes the estimation of the HRF an intermediate result in this model. However, we expect that a correct estimation of the HRF directly translates into a better estimation of the activation coe cients in the sense of being able to achieve higher predictive accuracy. Our results are consistent with this hypothesis and in this task the rank-one (R1) and glm-separate (GLMS) models outperform the classical GLM model. The bene ts range from 0.9% for R1-GLM in subject 2 to 8.2% for the same method and subject 1. It is worth noticing that methods with FIR basis obtain a higher score than methods using the 3HRF basis.

In order to test whether this increase is statistically signi cant we performed the following statistical test. The success of recovering the correct image can be modeled as a binomial distribution, with p A the probability of recovering the correct image with method A and p B the probability of recovering the correct image with method B. We de ne the null hypothesis H 0 as the statement that both probabilities are equal, H 0 : p A = p B , and the alternate hypothesis that both probabilities and not equal, H 1 : p 1 = p 2 (this test is sometimes known as the binomial proportion test [START_REF] Röhmel | Unconditional non-asymptotic one-sided tests for independent binomial proportions when the interest lies in showing non-inferiority and/or superiority[END_REF]). The score test statistic for the one-tailed test is T

= (p A -p B )/ p(1 -p) 2
n , where p = (p A + p B )/2 and n is the number of repetitions, in this case n = 120. This statistic is normally distributed for large n. The p-value associated with this statistical test when comparing every model (by order of performance) with the model "GLM with with xed HRF" is (0.10, 0.10, 0.15, 0.19, 0.21, 0.26, 0.5, 0.5, 0.82, 0.81) for the rst subject and (0.18, 0.18, 0.25, 0.34, 0.34, 0.44, 0.5, 0.5, 0.86, 0.93) for the second. Image identi cation score (higher is better) on two di erent subjects from the rst dataset. The metric counts the number of correctly identi ed images over the total number of images (chance level is 1/120 ≈ 0.008). This metric is less sensitive to the shape of the HRF than the voxel-wise encoding score. The bene ts range from 0.9% points to 8.2% points across R1-constrained methods and subjects. The highest score is achieved by a R1-GLM method with a FIR basis set for subject 1 and by a R1-GLMS with FIR basis for subject 2. Average correlation score (higher is better) on two di erent subjects from the rst dataset. The average correlation score is the Pearson correlation between the predicted BOLD and the true BOLD signal on left-out session, averaged across voxels and sessions. Methods that perform constrained HRF estimation signicantly outperform methods that use a xed reference HRF. As for the image identi cation performance, the best performing method for subject 1 is the R1-GLM, while for subject 2 it is the R1-GLMS model, both with FIR basis. In underlined typography is the GLM with a xed HRF which is the method used by default in most software distributions. A Wilcoxon signed-rank test is performed between each method and the next one in the ordered result list by considering the leave-one-session out cross-validation scores for each method. We report p-values to assess whether the score di erences are statistically signi cant.

We will now use a di erent metric for evaluating the performance of the encoding model. This metric is the Pearson correlation between the BOLD predicted by the encoding model and the true BOLD signal, averaged across voxels. We will compute this metric on a left-out session, which results in ve scores for each method, corresponding to each of the cross-validation folds. Given two methods, a Wilcoxon signed-rank test can be used on these crossvalidation scores to assess whether the score obtained by the two methods are signi cantly di erent. This way, irrespective of the variance across voxels, which is inherent to the study, we can reliably assess the relative ranking of the di erent models. In Figure 2.3 we show the scores for each method (averaged across sessions) and the p-value corresponding the Wilcoxon test between a given method and the previous one by order of performance.

We observed in Figure 2.3 that methods that learn the HRF together with some sort of regularization (be it Rank-1 constraint or induced by separate designs) perform noticeably better than methods that perform unconstrained HRF estimation, highlighting the importance of a robust estimation of the HRF as opposed to a free estimation as performed by the standard GLM model with FIR basis. This suggests that R1 and GLMS methods permit including FIR basis sets while minimizing the risk of over tting inherent to the classical GLM model.

We also observed that models using the GLM with separate designs from [START_REF] Mumford | Deconvolving BOLD activation in event-related designs for multivoxel pattern classi cation analyses[END_REF] perform signi cantly better on this dataset than the standard design, which is consistent with the purpose of these models. It improves estimation in highly correlated designs. The best performing model for both subjects in this task is the R1-GLMS with FIR basis, followed by the R1-GLM with FIR basis model for subject 1 and GLMS with FIR basis for subject 2. The di erence between both models (Wilcoxon signed-rank test) was significant with a p-value < 10 -6 . Since the results for both subjects are similar, we will only use subject 1 for the rest of the gures.

Figure 2.4: Top: HRF estimated by the R1-GLMS method on voxels for which the encoding score was above the mean encoding score ( rst dataset), color coded according to the time to peak of the estimated HRFs. The di erence in the estimated HRFs suggests a substantial variability at the voxel level within a single subject and a single task. Bottom: voxel-wise encoding score for the best performing method (R1-GLMS with FIR basis) versus a standard GLM (GLM with xed HRF) across voxels. The metric is Pearson correlation. Points above the black diagonal correspond to voxels that exhibit a higher score with the R1-GLMS method than with a standard GLM.

To further inspect the results, we investigated the estimation and encoding scores at the voxel level. This provides some valuable information. For example, parameters such as time-to-peak, width and undershoot of the estimated HRF can be used to characterize the mis-modeling of a reference HRF for the current study. Also, a voxel-wise comparison of the di erent methods can be used to identify which voxels exhibit a greater improvement for a given method. In the upper part of Figure 2.4 we show the HRF estimated for the rst subject by our best performing method (the Rank-1 with separate designs and FIR basis). For comparison we also present two commonly used reference HRFs: one used in the software SPM and one de ned in [START_REF] Glover | Deconvolution of impulse response in event-related BOLD fMRI[END_REF]and used by software such as NiPy 2 and fmristat 3 . Because the HRF estimation 2 http://nipy.org estimated HRF for voxels for which the encoding score is above the mean encoding score. In this plot the time-to-peak of the estimated HRF is color coded. One can observe a substantial variability in the time to peak, con rming the existence of a non-negligeable variability of the estimated HRFs, even within a single subject and a single task. In particular, we found that only 50% of the estimated HRFs on the full brain volume peaked between 4.5 and 5.5 seconds.

In the lower part of Figure 2.4 we can see a scatter plot in which the coordinates of each point are the encoding scores with two di erent methods. The rst coordinate (X-axis) is given by the score using a canonical GLM whilst the second coordinate (Y-axis) corresponds to the Rank-1 separate with FIR basis. Points above the black diagonal exhibit a higher score with our method than with a canonical GLM. As previously, the color represents the time to peak of the estimated HRF. From this plot we can see that voxels that have a low correlation score using a canonical GLM do not gain signi cant improvement by using a Rank-1 Separate FIR model instead. However, voxels that already exhibit a su ciently high correlation score using a canonical GLM (> 0.05) see a signi cant increase in performance when estimated using our method.

These results suggest as a strategy to limit the computational cost of learning the HRF on an encoding study to perform rst a standard GLM (or GLMS) on the full volume and then perform HRF estimation only on the best performing voxels.

The methods that we have considered for HRF estimation can be subdivided according to the design matrices they use (standard or separate) and the basis they use to generate the estimated HRF (3HRF and FIR). We now focus on the performance gains of each of these individual components. In the upper part of Figure 2.5 we consider the top-performing model, the Rank-1 GLMS, and compare the performance of two di erent basis sets: FIR with 20 elements in the Y-axis and the reference HRF plus its time and dispersion derivatives (3HRF) in the X-axis. The abundance of points above the diagonal demonstrates the superiority of the FIR basis on this dataset. The color trend in this plot suggests that the score improvement of the FIR basis with respect to the 3HRF basis becomes more pronounced as the time-to-peak of the estimated HRF deviates from the reference HRF (peak at 5s), which can be explained by observing that the 3HRF basis corresponds to a local model around the time-to-peak. In the bottom part of this gure we compare the different design matrices (standard or separate). Here we can see the voxel-wise encoding score for two Rank-1 models with FIR basis and di erent design matrices: separate design on the Y-axis and classical design on the X-axis. Although both models give similar results, a Wilcoxon signed-rank test on the leave-one-session-out cross-validation score con rmed the superiority of the separate designs model in this dataset with p-value < 10 -3 .

In Figure 2.6 we can see the voxel-wise encoding score on a single acquisition slice. In the upper column, the score is plotted on each voxel and thresholded at a value of 0.045, which would correspond to a p-value < 0.05 for testing non-correlation assuming each signal is normally distributed, while in the bottom row the 0.055 contour (p-value < 0.001) for the same data is shown as a green line. Here it can be seen how the top performing voxels Averaged decoding score for the di erent method considered (higher is better) on the second dataset.

The metric is Kendall tau. Methods that perform constrained HRF estimation signicantly outperform methods that use a xed (reference) HRF. In particular, the best performing method is the R1-GLM with 3HRF basis, followed by the R1-GLMS with 3HRF basis. In underlined typography is the GLM with a xed HRF which is the method used by default in most software distributions. As in Figure 2.3, a Wilcoxon signed-rank test is performed and the p-value reported between a given method and the next method in the ordered result list to assess whether the difference in score is signi cant. follow the gray matter. A possible hypothesis to explain the increase of the encoding score between the method R1-GLMS with FIR basis and the same method with 3HRF basis could be related either to the shape of the HRF deviating more from a canonical shape in lateral visual areas or to the higher signal-to-noise ratio often found in the visual cortex when compared to lateral visual areas.

Dataset 2: decoding of potential gain levels

The mean decoding score was computed over 50 random splittings of the data, with a test set of size 10%. The decoding regression model consisted of univariate feature selection (ANOVA) followed by a Ridge regression classier as implemented in scikit-learn [START_REF] Pedregosa | Scikit-learn : Machine learning in python[END_REF]. Both parameters, number of voxels and amount of 2 regularization in Ridge regression, were chosen by cross-validation.

The mean score for the 10 models considered can be seen in Figure 2.7. Similarly to how we assessed superiority of a given method in encoding, we will say that a given method outperforms another if the paired di erence of both scores (this time across folds) is signi cantly greater than zero. This is computed by performing a Wilcoxon signed rank test across voxels. For this reason we report p-values together with the mean score in Figure 2.7.

As was the case in encoding, Rank-1 constrained methods obtain the highest scores. In this case however, methods with 3HRF basis outperform methods using FIR basis. This can be explained by factors such as smaller sample size of each of the runs, smaller number of trials in the dataset and experimental design.

Discussion

We have compared di erent HRF modeling techniques and examined their generalization score on two di erent datasets: one in which the main task was an encoding task and one in which it was a decoding task. We compared 10 di erent methods that share a common formulation within the context of the General Linear Model. This includes models with canonical and separate designs, with and without HRF estimation constrained by a basis set, and with and without rank-1 constraint. We have focused on voxel-independent models of the HRF, possibly constrained by a basis set, and have omitted for e ciency reasons other possible models such as Bayesian models [Marr-elec et al., 2003, Ciuciu et al., 2003[START_REF] Makni | Joint detection-estimation of brain activity in functional MRI: a Multichannel Deconvolution solution[END_REF] and regularized methods [START_REF] Goutte | Modeling the haemodynamic response in fMRI using smooth FIR lters[END_REF][START_REF] Casanova | The impact of temporal regularization on estimates of the BOLD hemodynamic response function: a comparative analysis[END_REF].

Other models such as spatial models [START_REF] Vincent | Spatially adaptive mixture modeling for analysis of fMRI time series[END_REF], and multi-subject methods [START_REF] Zhang | Nonparametric inference of the hemodynamic response using multi-subject fMRI data[END_REF][START_REF] Zhang | A semiparametric model of the hemodynamic response for multi-subject fMRI data[END_REF] that adaptively learn the HRF across several subjects are outside the scope of this work. The latter models are more relevant in the case of standard group studies and second level analysis.

Our rst dataset consists of an encoding study and revealed that it is possible to boost the encoding score by appropriately modeling the HRF. We used two di erent metrics to assess the quality of our estimates. The rst metric is the fraction of correctly identi ed images by an encoding model. For this we computed the activation coe cients on both the training and validation dataset. We then learned a predictive model of the activation coe cients from the stimuli. This was used to identify a novel image from a set of 120 potential images from which the activation coe cients were previously computed. The bene ts range from 0.9% points to 8.2% points across R1-constrained methods and subjects. The best-performing model in this task is the R1-GLM with FIR basis. The second metric is the Pearson correlation. By considering the voxel-wise score on a full brain volume we observed that the increase in performance obtained by estimating the HRF was not homogeneous across voxels and more important for voxels that already exhibited a good score with a classical design (GLM) and a xed HRF. The best-performing method is the Rank-1 with separate designs (R1-GLMS) and FIR basis model, providing a signi cant improvement over the second bestperforming model. We also found substantial variability of the shape in the estimated HRF within a single subject and a single task.

The second dataset consists of a decoding task and the results con rmed that constrained (rank-1) estimation of the HRF also increased the decoding score of a classi er. The metric here is Kendall tau. However, in this case the best performing basis was no longer FIR basis consisting of ten elements but the three elements 3HRF basis (HRF and derivatives) instead, which can be explained by factors such as di erences in acquisition parameters, signal-to-noise ratio or by the regions involved in the task.

A higher performance increase was observed when considering the correlation score within the encoding model. This higher sensitivity to a correct (or incorrect) estimation of the HRF can be explained by the fact that the estimation of the HRF is used to generate the BOLD signal on the test set. The metric is the correlation between the generated signal and the BOLD signal. It is thus natural to expect that a correct estimation of the HRF has a higher impact on the results.

In the decoding setup, activation coe cients (beta-map) are computed but the evaluation metric is the accuracy at predicting the stimulus type. The validation metric used for decoding is less sensitive to the HRF estimation procedure than the correlation metric from the encoding study, although it allowed us to observe a statistically signi cant improvement.

Conclusion

We have presented a method for the joint estimation of HRF and activation coe cients within the GLM framework. Based on ideas from previous lit-erature [START_REF] Makni | Bayesian deconvolution of fMRI data using bilinear dynamical systems[END_REF], Vincent et al., 2010] we assume the HRF to be equal across conditions but variable across voxels. Unlike previous work, we cast our model as an optimization problem and propose an e cient algorithm based on quasi-Newton methods. We also extend this approach to the setting of GLM with separate designs.

We quantify the improvement in terms of generalization score in both encoding and decoding settings. Our results show that the rank-1 constrained method (R1-GLM and R1-GLMS) outperforms competing methods in both encoding and decoding settings.

Outlook

In the above contribution we presented a fast method for activation estimation, which is available as a software package 4 . It is shown that using the 4 https://pypi.python.org/pypi/hrf_estimation weight maps obtained by estimating the HRF, instead of keeping it xed, lead systematically to higher scores in both the encoding and the decoding setting.

For in-depth work on the estimation of the HRF as an object of study in itself, there is a body of work already available. For instance, [START_REF] Ciuciu | Unsupervised robust nonparametric estimation of the hemodynamic response function for any fMRI experiment[END_REF]] devise a probabilistic model in which the hemodynamic response and its variance can be inferred. This model is re ned to incorporate automatic parcellation and inter-subject studies in later contributions, as well as fast inference algorithms using a Variational Bayes approach.

An addition to the existing probabilistic models would be to frame the estimation of the HRF as a fully continuous function by means of Bayesian kernel methods such as Gaussian kernel Gaussian processes. This would fully eliminate the necessity to interpolate given non-discretely jittered event sequences, at the cost of needing to invert a covariance matrix the size of the number of sampling points of the HRF function.

It should also be considered to undertake a comprehensive evaluation of probabilistic models enabling HRF estimation towards the goal of a reliable and thorough comparison amongst them. These models should have di erent levels of detail and complexity, with the classical GLM with xed HRF and i.i.d Gaussian noise assumption as baseline. As with other suggestions presented throughout this thesis, evaluation should be done, if possible, by evaluating the loglikelihood of the model on left-out data.

Take-Home messages • Taking HRF shape into account generally improves model estimation for encoding and decoding;

• For the classic GLM, constraining an HRF to be the same across conditions for a given voxel is generally bene cial to estimation compared to not constraining;

• The separate GLM is competitive also without rank-1 contraint;

• Datasets rich in number of trials bene t from an HRF t using a full basis, whereas less large datasets, while still bene tting from HRF estimation, may be better modeled with a less large HRF space, such as 3HRF.

3 Combining Total Variation and Sparsity in a new way

In the decoding setting (cf. 1.3.3), we are interested in inferring brain state, as described by an external discrete or continuous variable, from images of brain activity. Given the usually high dimensional nature of brain images and the low number of samples (even if one restricts to a small subvolume, one typically has more voxels than samples), the naive least squares optimization problem as well as the logistic regression problem are ill-posed due to the non-trivial kernel of the design matrix. This inverse problem can be regularized using convex penalties designed to make the problem well-posed in the kernel of the design matrix. In addition they can contribute to better conditioning, but not all of them do: Sparsity induced by the 1 norm can make the problem well-posed, but due to the known fact that brain activations tend to have spatial extent, hence inducing strong correlations in a design matrix containing them, the solutions can remain very unstable with respect to noise or resampling.

Here we introduce a spatial gradient regularizer based on an analysis sparse version of the group lasso, which can select spatially contiguous active regions together. 

Statistical learning with segmenting penalties

Prediction from medical images is a valuable aid to medical diagnosis if it is su ciently reliable. For instance, anatomical MR images can reveal certain disease conditions, while their functional counterparts can predict behavior or neuropsychiatric phenotypes. However, a physician will not conclude from predictions by a black-box model: understanding the anatomical or functional features that underpin decision is critical. Generally however, the weight vectors of even a simple classi er such as an SVM are not easily amenable to such an examination: Often there is no visually apparent identi able structure. Indeed, this is not only a prediction task, but also an inverse problem that calls for adequate regularization. We address this challenge by introducing an e cient convex region-selecting penalty, that can be used to regularize linear model coe cient vectors. Our penalty combines the spatial-contiguity-enforcing discrete total variation regularization and the sparsity-enforcing 1 regularization into one group: Voxels are either active with non-zero spatial derivative or zero with inactive spatial derivative. This leads to the segmentation of contiguous spatial regions (inside which the signal can vary almost freely) against a background of zeros. This segmentation of medical images in a target-informed manner is another important tool for analysis. For example, functional MRI is used intensively to chart the functional organization of the brain. Given the size and the 3D nature of brain images, computational e ciency is key. Keeping this in mind, we contribute an e cient optimization scheme that leads to signi cant computational gains compared to existing schemes. On several MRI experiments involving predictable brain states, the penalty shows good segmentation capacity.

Introduction

For certain pathologies, medical images carry weak indicators of some external phenotype. For instance, in Magnetic Resonance images, a pattern of brain atrophy centered on the thalamus predicts the evolution in Alzheimer's disease for elderly patients [START_REF] Stonnington | Predicting clinical scores from magnetic resonance scans in alzheimer's disease[END_REF]. Functional Magnetic Resonance Imaging (fMRI) can be used to infer the behavior of a subject from their brain activity [START_REF] Haxby | Distributed and overlapping representations of faces and objects in ventral temporal cortex[END_REF]. Machine learning methods are convenient tools for learning these biomarkers. With linear models, model parameters form a spatial map in the image domain. However, minimizing a prediction error gives little control on the ne details of the corresponding maps. Indeed, the prediction problem is usually an ill-posed inverse problem in the sense that there are often less samples than features available: In the case of limited observations of such high dimensional data, many di erent weight maps can generate exactly the same predictions. A default choice among these candidates is implictly taken by the type of estimator employed.

Using the statistical learning framework of empirical risk minimization, this choice can be actively imposed via a penalty which favors maps according to certain criteria, which, with due caution, can be interpreted as a "prior", re ecting information one may already have or think plausible. Sparsity for instance, imposable in convex optimization via the 1 norm, is very useful as it leads to selection of a small number of voxels in the images for the prediction. It has been widely used in medical imaging, from fMRI [START_REF] Yamashita | Sparse estimation automatically selects voxels relevant for the decoding of fmri activity patterns[END_REF] to regularizing di eomorphic registration [START_REF] Durrleman | Optimal data-driven sparse parameterization of di eomorphisms for population analysis[END_REF]. However, in many situations, imposing sparsity can lead to less stability in the estimated weight maps. Indeed, one often faces high correlations in neighboring voxels, which leads to selection of di erent voxels depending on which portion of the data one uses for estimation. Since the adjacent voxels contain similar information, only one of them is needed for estimation. The notion of spatial contiguity in activation patterns has led to several contributions which incorporate this information in an estimator. Using an 2 penalty on a nite di erences operator which acts on the image, one can force adjacent voxels to have similar weights [START_REF] Ng | Generalized sparse classi ers for decoding cognitive states in fmri[END_REF][START_REF] Grosenick | Interpretable whole-brain prediction analysis with graphnet[END_REF][START_REF] Benjamin | Predicting cognitive data from medical images using sparse linear regression[END_REF]: This is known as GraphNet.

An improvement upon this method is to impose true sparsity on the spatial derivative as in [START_REF] Michel | Total variation regularization for fMRI-based prediction of behavior[END_REF], or to combine sparsity of the derivative with sparsity of the weights [Baldassarre et al., 2012, Gramfort et al., 2013]. These penalties come with the mathematical property of positive homogeneity, which makes model selection easier. A drawback for these methods is that they tend to favor perfectly at or staircased and blocky activation maps -a property that can be considered an artifact: One would tend to expect smooth variation within an active region.

Sparsity and segmentation

It is around this idea that we center our contribution: Our goal is to detect spatially contiguous patches -however variably active-in statistically estimated images and to inform the estimation of the image with these detections. In essence, our work draws from two bodies of literature: the aforementioned concept of sparsity and the eld of segmentation.

Sparse penalties have remarkable theoretical recovery properties which have been extensively studied, see e.g [START_REF] Fuchs | Recovery of exact sparse representations in the presence of bounded noise[END_REF][START_REF] Candes | Signal recovery from random projections[END_REF][START_REF] Wainwright | Sharp thresholds for high-dimensional and noisy sparsity recovery using 1 -constrained quadratic programming[END_REF]. Their main e ect is to promote estimates with a small non-zero support, but given su cient incoherence properties on the design matrix and sparse ground truth activation, the true support of the signal can be recovered exactly. In fMRI, the sparsity property is very useful: specialized brain modules under study occupy only a small fraction of the image volume. Sparsity can thus be used in a foreground segmentation context: recovering non-zero functional regions from a noisy background. However, in many real-world applications, such as CT or medical imaging, the underlying measurement process leads to strong correlations in columns of the design matrix corresponding to neighboring pixels, rendering all recovery theorems non-applicable and making sparse support estimation highly unstable.

The other body of literature that we are concerned with is that of segmentation, with a speci c interest in convex variational approaches, as they can be expressed as penalties in a risk minimizer. A central aspect is the Mumford-Shah functional that yields piecewise smooth approximations of images [START_REF] Mumford | Optimal approximations by piecewise smooth functions and associated variational problems[END_REF]. [START_REF] Tony | Active contours without edges. Image processing[END_REF] introduced a variant for segmentation purposes computing piecewise constant approximations: the minimal partition problem. These variational formulations are not convex, but [START_REF] Pock | A convex relaxation approach for computing minimal partitions[END_REF] have shown that good solutions to the minimal partition problem can be achieved with a similar but convex functional, based on total variation, i.e. the 1 norm of the image gradient. For our purposes, this approach is appealing, as TV can be used as a penaltytechnically an analysis sparse penalty [START_REF] Nam | The cosparse analysis model and algorithms[END_REF]-that imposes sparse gradients and has good properties for image denoising [START_REF] Leonid I Rudin | Nonlinear total variation based noise removal algorithms[END_REF] or estimation in a linear model [START_REF] Candes | Signal recovery from random projections[END_REF]. However, all these related segmentation approaches model an object as a homogeneous constant-valued domain, thus washing out internal structure. Here, in the context of foreground-background segmentation, we want to impose a at structure on the background, but not in the selected image domain. In this setting, imposing atness of only the zero background seems a better candi-date for segmentation than imposing constant domains.

Our contribution is twofold: 1) We introduce a new penalty called Sparse Variation, based on the TV-1 combination, which forces zero activity on coordinates and spatial derivative jointly, and smooth variation of coordinates and derivatives in spatially contiguous active zones. 2) We provide a novel optimization routine called fast adaptive accuracy shrinkage thresholding algorithm, which allows for very fast estimation up to a very high precision. It is important to stress that useful spatial maps can only be obtained by assuring that the optimizer has thoroughly converged [START_REF] Dohmatob | Benchmarking solvers for tv-l1 least-squares and logistic regression in brain imaging[END_REF]. We empirically evaluate its properties in regression and classi cation on fMRI and structural MRI (voxel-based morphometry) data. In particular, we compare it to TV-1 regularization and contrast it to GraphNet.

Sparse Variation: A new spatially regularizing penalty

In this section, we brie y introduce two existing spatially regularizing penalties, GraphNet and TV-1 , before introducing our new variant, Sparse Variation. Then, in a dedicated optimization section, we elaborate the algorithm type we use along with speed-up mechanisms to keep runtime as small as possible.

Penalized regression

Our framework encompasses generalized linear models of which we will describe and use two emblematic ones: Linear regression for continuous output regression problems and logistic regression for binary output classi cation problems. The following optimization problem encompasses these variants.

Let n, p ∈ N denote number of samples and number of feature dimensions respectively. Let X ∈ R n×p be the design matrix and y ∈ R n the optimization target. Finally let w denote the weight vector and c and o set to be obtained by solving the optimization problem:

arg min w,c (Xw + c, y) + Ω(w) (3.1)
Here, is the so called loss function or data delity term and Ω is the regularizer. We suppose both (•, y) and Ω convex. The mean squared error loss employed for regression reads mse

(Xw + c, y) = 1 2n y -Xw -c 2 2 = 1 2n ∑ n i=1 (y i -X i , w -c) 2 ,
and, choosing y i ∈ {-1, +1}, the logistic loss can be expressed as log

(Xw + c, y) = 1 n ∑ n i=1 log(1 + exp(y i ( X i , w + c))).

Existing regularizers

The convex regularizer Ω imposes structure on the solution of the inverse problem. Two regularizers successfully applied to medical volume data are the GraphNet and TV-1 penalties, which we introduce now.

In the following, ∇ will denote a nite di erences spatial gradient operator acting upon an image. Generally, for a 3D grid of size p = p x p y p z , which is ravelled into a long vector, we have ∇ ∈ R 3p×p . Whenever a true gradient is used in an optimization problem, it will contain the variable with respect to which it is calculated in subscript, e.g. "∇ w ". • 2 denotes the euclidean norm. For a partition G of coordinates the 2,1 group norm is written v 2,1 = ∑ g∈G v g 2 . For all discussed penalties, λ > 0 regulates its strength and ρ ∈ [0, 1] is a parameter controlling the trade-o between coordinate sparsity and spatial regularity. The GraphNet penalty consists of the sum of an 1 penalty on all coordinates and a squared 2 penalty on the spatial gradient, whereas the TV-1 penalty is the sum of an 1 penalty and an 2,1 group penalty on the spatial derivative:

Ω GN (w) = λ((1 -ρ) ∇w 2 2 + ρ w 1 ) Ω TV-1 (w) = λ((1 -ρ) ∇w 2,1 + ρ w 1 ),

Sparse Variation

We propose a new penalty based on TV-1 , called Sparse Variation, which enforces contiguous zones of smooth activation against a background of exact zeros. Indeed, in TV-1 , the penalties for sparsity of the signal and sparsity of the gradient are separable in that they can be active and inactive independently. A non-zero constant block, for example, is active for the 1 penalty, but inactive for the gradient, except at the borders. This property can induce step functions and blockiness where one would expect smoothness. We address this issue in Sparse Variation by grouping coordinate activation with spatial derivative activation: Either a coordinate is active (nonzero) and its derivative is active (nonzero) as well -allowing for a smooth variation in active zones -or both are inactive (zero).

We de ne the composite linear operator K =

(1ρ)∇ ρ Id p , where Id p denotes the p × p identity matrix. For 3D grids, we have K ∈ R 4p×p . The Sparse Variation penalty can then be de ned as follows

Ω SV (w) = λ Kw 2,1 ,
where the 2,1 group norm consists of groups containing the coordinate and all derivatives at each coordinate.

Optimization strategy

All optimization problems mentioned in this manuscript -GraphNet, TV-1 and Sparse Variation, in combination with either the logistic loss or the mean squared error loss -have a similar global structure, in that they consist of sums of two convex functions, one being smooth, the other nonsmooth. This structure can be exploited in so-called proximal splitting algorithms (see e.g. [START_REF] Combettes | Proximal splitting methods in signal processing[END_REF]), of which we will present an optimized variant in detail. Let L(w) = F(w) + G(w) represent the cost function, where F is smooth and convex and G convex 1 . These algorithms rely on an 1 We omit c here for notational ease. It can be seen as the last coordinate of w, or, in the case of linear regression, be entirely omitted after data centering and reconstructed at the end of optimization.

implicit subgradient step in the non-smooth function called the proximal operator: prox tG (y) := (Id +t∂G) -1 (y) is the unique solution to the strongly convex problem arg min x

1 2t y -x 2 2 + G(x).
The simplest method, forward-backward splitting [START_REF] Combettes | Proximal splitting methods in signal processing[END_REF], is known in the case of the 1 -Lasso as Iterative Shrinkage-Thresholding Algorithm (ISTA) and will be referred to by this name in the following. At a given optimization step k ∈ N it consists in minimizing the following surrogate optimization problem w k+1 = arg min w F w (w k ) + ∇F(w k ), (w

-w k ) + L 2 w -w k 2 2 + G(w)
, an expansion around the current point, where L > 0 represents the Lipschitz constant of ∇ w F. This amounts to iterations of w k+1 = prox 1 L G w k -1 L ∇ w F(w k ) . In order to accelerate convergence, one can add a momentum term such as Nesterov momentum.Recently, this technique has been popularized as fast iterative shrinkage-thresholding algorithm or fISTA [Beck and Teboulle, 2009a]. In comparison to ISTA, the gradient steps are applied to a carefully chosen interpolation of the weight vectors w k and w k-1 .

The often considerable acceleration brought about by this method comes at the cost that there is no guarantee that each step of fISTA actually decreases the objective function. Indeed, this can lead to large rebounds in global cost on the way towards convergence. This non-monotone behavior can be remedied by switching to ISTA-type iterations whenever an increase in global cost is detected. The monotone fISTA (mfISTA) algorithm was introduced in [Beck and Teboulle, 2009b] to address this issue.

Computing the proximal operator

For linear regression with Sparse Variation, we choose

F(w) = 1 2 Xw -y 2 2
and G(w) = Ω SV (w). Analogously, for TV-1 , we use G(w) = Ω TV-1 (w).

For logistic regression, we use F(w) = 1 n ∑ n i=1 log(1 + exp(y i X i , w )). Note that for GraphNet, it is bene cial to incorporate the smooth spatial penalty in F in order to avoid inversion of a large regularized linear operator. For linear regression, this reads

F(w) = 1 2 Xw -y 2 2 + λ(1 -ρ) ∇w 2 2 and G(w) = λρ w 1 . An advantage of GraphNet is that prox G/L = prox λρ L • 1 has the closed form (prox λρ L • 1 (w)) i = (|w i | -λρ L ) + sign(w i )
, which is componentwise soft-thresholding. The proximal operators for TV-1 and Sparse-Variation do not exist in closed form and must be obtained via the solution of a second, "inner" optimization problem. Both Sparse Variation and TV-1 penalties can be written as λ K • • for an appropriate norm • • : For Sparse Variation,

• • = • 2,1 and for TV-1 , (u x , u y , u z , u 0 ) • = (u x , u y , u z ) 2,1 + u 0 1 . Let v * • = max u • ≤1 u, v denote its dual norm.
Then we have a minimax problem permitting the inversion of minimum and maximum operators at the optimum.

min v 1 2 w -v 2 2 + λ Kv = min v 1 2 w -v 2 2 + λ max u * • ≤1 u, Kv = min v max u * • ≤λ 1 2 w -v 2 2 + K T u, v = 1 2 w 2 2 + max u * • ≤λ min v 1 2 v -w + K T w 2 2 - 1 2 w -K T u 2 2 = 1 2 w 2 2 + max u * • ≤λ - 1 2 w -K T u 2 2 At optimum we have v = w -K T u and u = arg min u * • ≤1 1 2 w -K T u 2 2 .
We can determine u using e.g. an mFISTA algorithm, with

F(u) = 1 2 w - K T u 2 2 and G(u) = χ { • * • ≤λ} (u)
, where χ B is the convex indicator function of a set B. Accuracy can be measured by evaluating the dual gap γ

(u, v) = 1 2 w -v 2 2 + λ Kv -( 1 2 w 2 2 -1 2 w -K T u 2 2 -χ { • * • ≤λ} (u))
, where u, v, the dual and primal candidates respectively, are linked by v = w -K T u. When evaluating the dual gap, it is necessary that u respect the feasibility constraints u *

• ≤ λ in order for the result to be meaningful. Most algorithms ensure feasibility sometime during an iteration and it is then that the dual gap should be evaluated. The primal problem is not constrained, hence the choice v := w -K T as the primal candidate will work for any feasible u.

Fast Adaptively Accurate Shrinkage Thresholding Algorithm

It is important to note that evaluating prox G/L numerically is an inexact operation, which can easily lead to non-convergence of the outer loop. However, according to [Schmidt et al., 2011], the presented algorithms converge even if the proximal operator prox G/L is not calculated to in nite accuracy, but decreases su ciently with the iteration number k of the outer loop (with proofs for both ISTA and fISTA). Accuracy can conveniently be captured by the dual gap value. Instead of relying on a xed dual gap re nement strategy, we devise an adaptive method, which increases accuracy as needed, if energy fails to decrease during an ISTA step. Algorithm 2 describes this procedure in detail.

Algorithm 2: fAASTA Data:

w 0 ISTA ← False, v 1 ← w 0 , k ← 0, t 1 ← 1, dgtol ← 0.1; while not converged do k ← k + 1; w k ← prox G/L (v k -(1/L)∇F(v k ), dgtol); if L(w k ) > L(w k-1 ) then w k ← w k-1 ; v k ← w k-1 ; if ISTA then dgtol ← dgtol/2; while L(prox G/L (v k -(1/L)∇ w F(v k ), dgtol)) > L(w k-1 ) do dgtol ← dgtol/2 ISTA ← True; else if ISTA then v k ← w k else t k ← 1+ 1+4t 2 k-1 2 ; v k ← w k + t k-1 -1 t k (w k -w k-1 ); ISTA ← False

Empirical Results

In order to develop an intuition on the properties of Sparse Variation, we rst study a 1D problem in which we recover a signal from corrupted DCT measurements. Then we move on to study three 3D problems, namely the segmentation of activation patterns recovered from two fMRI experiments and the study of anatomical landmarks for age in structural MRI. Here we study the properties of the proposed penalties on a 1D recovery from corrupted measurements problem. We mimic a spectroscopy setting in which a signal with a continuous spectrum on a small, spatially contiguous support is measured with additive noise. The spectrum is obtained by solving an inverse problem with a discrete cosine transform operator. The signal measurements are given by y = X -1 DCT w + ε , where X DCT is the DCT operator, w the spectrum and ε a noise vector. For our experiments we use a ground truth spectrum of size 200, with around 80% zeros and an activated region resembling that of a chemical compound signature: Two overlapping smooth peaks, which we create here using a lower-thresholded, downward pointing parabola. We add Gaussian noise of 40% signal norm. Figure 3.1 shows the ground truth, along with the best 2 recovery results for Sparse Variation, TV-1 and GraphNet: Each method was evaluated on a grid of penalties λ and sparsity vs spatial contiguity ratios ρ. The couple λ, ρ which minimized mean squared error with the ground truth was selected. It is the closest reconstruction possible for the full parameter space of that method. This is a way to obtain an insight into the model space parameterized by λ, ρ: We are showing the outcome which is the closest possible to ground truth. As per

A simple 1D signal recovery problem

The 1D example gives us an insight into the model spaces spanned by the parameter grid for the di erent methods.

its construction, the TV-1 penalty promotes at signals, whereas the Sparse Variation penalty allows better recovery of the smooth nature of the signal. GraphNet selects a very low regularization, thereby incurring the most noise.

Segmenting regions from MRI data

We analyse experiments in both fMRI and structural MRI and exhibit the use of both the regression and the classi cation settings. The strategy is to predict a continuous or categorial variable from brain images over a full parameter grid λ, ρ. For each penalty type, the weight maps of the best performing parameters in cross-validation on held out data are shown.

Classi cation example: Intra-subject study on object recognition

The human ventral temporal cortex exhibits specialization to certain recurrent concepts such as faces, but also several other object categories. We revisit the data from a seminal publication in this line of work [START_REF] Haxby | Distributed and overlapping representations of faces and objects in ventral temporal cortex[END_REF]: responses to visual stimuli of di erent categories -faces, houses, chairs, scissors, bottles, shoes, cats, and a control condition named scrambledpix, Fourier phase scrambled versions of the other stimuli. We test two classic contrasts, faces versus houses and objects versus scramble with the logistic loss.

The maps at optimally predictive parameter settings for the three maps overall detect similar regions. The top row of Figure 3.2 shows the segmented right-hand Fusiform Face Area. TV-1 and Sparse Variation detect a somewhat similar region size, whereas GraphNet selects a stronger sparsity. For comparison, on the right we show an F-statistic, which indicates that good selection of regions is important in the context of interpretation. The bottom row represents the localization of the Lateral Occipital Complex (LOC). A similar description applies. It becomes apparent that Sparse Variation tends to select larger regions than the other two penalties. Note that the focality of these activation mappings is due to the single subject nature of the experiment.

GraphNet

TV-1 Sparse variation ANOVA 3.6.2 Regression example 1: Inter-subject analysis on gain prediction in gambling task

As an example for penalized linear regression using the proposed penalties in a multi-subject setting, we examined the fMRI gambling experiment by [START_REF] Sabrina | The neural basis of loss aversion in decision-making under risk[END_REF]. Subjects were asked to decide whether they would enter a series of gambles with varying gains and losses. Here we attempt to estimate the gain of a given gamble from the fMRI activation it evokes on multiple di erent subjects. At a xed ratio of sparsity to spatial contiguity ρ = 0.5 we evaluated predictive power of models estimated by smooth lasso, TV-1 and Sparse Variation on a grid of penalty values λ. The weight maps of the best predicting estimator for each penalty is shown in Figure 3.3. The strong noise in this multi-subject dataset makes the estimation di cult. At optimal predictive power the weight maps of TV-1 and Sparse Variation show spatial contiguity and activation in expected regions, whereas the smooth lasso weights are scattered. Comparing TV-1 to Sparse Variation, it becomes apparent that the main distinction is the "smoothness or zero" pattern enforced by the latter in comparison to more blocky activations for the former. Larger activated regions do justice to the multi-subject setting. Note the segmentation of the Insulae, which are duly mentioned in the original study. 

Convergence of the method

In data analysis, optimization speed is an important factor: The praticioner may often decide to use less accurate methods if others take too long to calculate. The adaptive re nement of the dual gap accuracy in the FAASTA setup leads to signi cant peformance gains with respect to other optimization methods. We compare this method to other ways of setting the dual gap accuracy in the inner loop. The other candidates are setting the dual gap tolerance to a constant, one strict (10 -10 ), one lax (0.1), and the dual gap tolerance re nement strategy according to [Schmidt et al., 2011] (decrease dual gap on the order of k -4 , where k is the iteration number). We also compare to the use of ISTA in the outer loop in a constant dual gap (0.1) setting and the adaptive re nement setting.

As can be seen in Figure 3.5, the results are striking. While the adaptive strategy always provides enough dual gap accuracy to ensure energy descent, the technique from [Schmidt et al., 2011] becomes too strict very quickly. Using a strict dual gap tolerance makes convergence very slow. Using a lax dual gap and fISTA as the outer algorithm leads to no energy decrease at all, and using the lax dual gap or the adaptive method with ISTA leads to stalling at insu cient accuracy rates. The proposed adaptive method provides by far the fastest convergence. FAASTA takes around 400s to converge, whereas other methods take more than 15 minutes

Discussion

We introduced a new region-selective and sparsity-inducing convex penalty called Sparse Variation, in order to eliminate drawbacks of existing methods and combine their strengths. Sparse Variation forces large regions of an estimated image to zero, but allows smooth variation within spatially contiguous, active zones.

We use Sparse Variation in empirical risk estimators with mean squared error and logistic losses on three brain imaging problems, where we concentrate on the region segmenting properties of this penalty with respect to prior art, TV-1 regularization and GraphNet. Indeed, it becomes apparent through all results that Sparse Variation tends to select smooth regions of interest. These regions of interest can be used in subsequent studies to obtain more re ned results.

In order to obtain reliable spatial maps it is essential to ensure good convergence of the associated optimization problems. As with TV-1 regularization, the optimization procedure via proximal splitting necessitates an inner optimization loop to evaluate the proximal operator. A linesearch strategy on dual gap accuracy is employed to re ne the required dual gap accuracy only as much as needed to ensure fast convergence. On a benchmark with other accuracy setting strategies, our method converges in the least time.

In conclusion, Sparse Variation with fAASTA is the optimal choice of region segmenting optimizer, if analysis of estimator weight maps is envisaged.

Screening rules?

In extremely high-dimensional statistical problems with sparsity constraints, e ort has been put into nding ways of reducing calculations by determining the non-zero support of the solution in advance to solving it. Speci cally, socalled variable screening techniques should have lower computational complexity than the problem at hand. Somewhat surprisingly, this is very much possible in the Lasso and Group Lasso settings. El Ghaoui and others [El Ghaoui et al., 2012] proposed SAFE rules, which, in a computational step much less costly than solving the Lasso problem, can identify certain vari-ables as inactive in the given problem. The later proposed STRONG rules are an inexact version which tendentially removes more variables but is liable to remove variables from the true support. Another type of screening is dual polytope projection (DPP, [START_REF] Wang | Lasso screening rules via dual polytope projection[END_REF]) which also works for the group Lasso. It exploits rm nonexpansivity of the dual problem, which is a projection onto a convex set. Recently, Fercoq and colleagues re ned Lasso screening rules to obtain the rst set of rules that gives a true acceleration to most practical problems [START_REF] Fercoq | Mind the duality gap : safer rules for the Lasso[END_REF]. Do any of these results extend to analysis sparsity in a straightforward manner? This seems to remain an open question: The fact that the dual problem of an analysis sparsity primal problem implies a vector from the kernel of K T seems to pose the main di culty.

Indeed, a dual formulation of the TV-1 and Sparse Variation problems treated here is as follows

max µ,ν - 1 2 µ -y 2 2 + 1 2 y 2 2 -χ { • * • ≤1} (ν) -χ {λK T ν=X T µ} (ν, µ), (3.2)
where • • represents the norm used in the article ( 2,1 here), and • *

• its dual norm. Using a decomposition ν = Kξ + η, where η ∈ ker K T , we obtain

max µ,ν - 1 2 µ -y 2 2 + 1 2 y 2 2 -χ { • * • ≤1} (Kξ + η) -χ {λK T Kξ=X T µ} (ν, µ), (3.3) Supposing that K T K is invertible, which is true in our case, due to the 1 -component, we obtain ξ = 1 λ (K T K) -1 X T µ and can rewrite max µ,ν - 1 2 µ -y 2 2 + 1 2 y 2 2 -χ { • * • ≤1} 1 λ K +,T X T µ + η -χ ker K T (η).
(3.4) The 2,1 norm employed is a group-wise norm which allows separate consideration of variable groups in the dual. The dual norm of • 2,1 is • 2,∞ = max g∈G x g 2 . If a variable group in the split variable (derivative space) does not saturate the bound of the dual norm, i.e.

1 λ (K +,T X T µ + η) g 2 < 1,
then it will be inactive in the primal and the coordinate associated with g equal to 0. While it would be straightforward to evaluate this property while ignoring the potential e ect of η, taking the latter into account is not easy. The variable η can vary freely in ker K T , thus making it possible to saturate coordinate groups which wouldn't be saturated with η = 0, or to desaturate coordinate groups which would saturate at η = 0. In our speci c case, where K is a gradient-type operator, the value that η attributes to one coordinate group is immediately linked to that which it associates to its neighbors, thus tying the estimations of activity and inactivity spatially. Concretely, ignoring the identity part of K T , the rest is a divergence-type operator, whose kernel contains the image of an associated curl-type operator. This intuition makes it possible to see that "closed loops" of 3D displacement steps are in this kernel and can be added to or subtracted from 1 λ K +,T X T µ. In conclusion, bounding 1 λ K +,T X T µ + η away from saturation is a dicult task.

Variation Lasso

For injective analysis operators K, a corresponding primal problem to (3.4) (and thus an equivalent formulation to the TV-1 and Sparse Variation primal problems) is

min z 1 2 XK + z -y 2 2 + z 2,1 + χ Im K (z), (3.5) 
which amounts to formulating the problem in the split variable z ∈ R 4p , and constraining the split variable to be a feasible output of the analysis operator K (e.g. a spatial derivative). By making the dual problem more strict in supposing η = 0 ∈ ker K T , we relax the primal problem into omission of the linear constraint χ Im K (z). In doing so, we obtain a new optimization problem in the split variable z, which amounts to the following group lasso problem.

min z 1 2 XK + z -y 2 2 + λ z 2,1 (3.6)
Applying K T to its solution yields what we dub Variation Lasso. In this setting, potential long-range cross-talk between variable groups is broken, but short-range smoothness is reinstated by multiplication with K T after optimization: u = K T z opt .

While the group lasso screening rules of e.g. [START_REF] Wang | Lasso screening rules via dual polytope projection[END_REF] are now applicable, the end result is less convincing owing to the lack of constraint in a split variable space several times larger than the space of interest.

We compare Variation Lasso to Sparse Variation, TV-L1 and the Lasso on the data of [START_REF] Haxby | Distributed and overlapping representations of faces and objects in ventral temporal cortex[END_REF]. For this, we frame the prediction of one of 8 brain states as a one-versus-rest multi-class classi cation problem. We obtain the best parameter settings for prediction by cross-validation on held-out data and present the average weight vectors over folds for the best parameters. Although predictive performance is a poor proxy for recovery, we would like our method to select plausible weight maps at optimal predictive power.

Take-Home Messages

• Typical fMRI decoding problems using linear classi ers are ill-posed and require regularization. The choice of regularizer impacts the shape of the resulting weight-map in a non-negligible way. All interpretation must be done in awareness of this fact;

• Choosing a convex foreground-segmenting penalty such as Sparse Variation regularizes the optimization problem and yields smooth weight maps against a zero background, along with an improvement in classi cation score over existing regularizers in several settings;

• We provide a novel optimization algorithm with adaptive accuracy in the inner proximal operator, which leads to fast convergence speeds. Last: Variation Lasso: Sparsity and spatial contiguity, but similar nonspatially-contiguous loadings as in Lasso, due to severing of connections mediated by ker K T

Computer-Vision models

Modern computer-vision is profoundly inspired by biological vision. It is probably fair to say that all of computer-vision is inspired by biological vision on a certain scale of analysis, but some, typically older ideas linked with symbolic approaches to arti cial intelligence may have the tendency to seek workarounds to core object recognition as it is known and performed nowadays.

Computer-vision is a vast and rapidly growing eld with enormous commerical interest driving its development. In the interest of concision we will restrict our brief introduction only to modern approaches with a strong emphasis on object recognition. Other elds of computer vision concern the video speci c action recognition, optical ow estimation and scene understanding -the "where?" counterparts to object recognition as well as many technical applications of image processing such as optical character recognition, satellite and space imagery processing and many imaginable types of surveillance.

The eld has seen several eras, where di erent concepts are predominant. A major transition has been taking place since 2012 with the arrival of large convolutional nets for object recognition. We provide an outline of these developments.

Classical Computer-Vision Pipelines for Object Recognition

Classically, object recognition pipelines have been modular. It has long been known and exploited that spatial gradients at several scales are relevant feature detectors for object recognition. Apart from the fact that they have also been found to be one of the main constituents of visual area V1 in mammals [START_REF] Hubel | Receptive elds of single neurones in the cat's striate cortex[END_REF], it also makes intuitive sense, since any boundary due to 3D occlusion will generate a sharp edge or texture boundary when projected onto a 2D plane. However, edges only do not permit the identication of an object: edges need to be understood in relation to each other. A possibility to integrate this information locally is to obtain e.g. histograms of orientations in patches. However, in general these descriptors vary more or less strongly under translation, rotation, change in pose and lighting of the object. Some of the variability can be addressed using "codebooks" in which one can "look up" a representant of the instance of the patch one found and thus have a comparison between code words instead of descriptors. In the following we give a brief overview of some of the descriptors and aggregators employed.

Descriptors

Often, images descriptors are mentioned in one breath with the detection/extraction strategies that have originally been associated with them, but they can often be separated. As for detection methods, the main dichotomy is between dense methods, where every point is endowed with a descriptor or keypoint detection, for example scale-space laplacian maxima.

• SIFT or scale-invariant feature transform [START_REF] Lowe | Object Recognition fromLocal Scale-Invariant Features[END_REF] descriptors are histograms of image gradients around a given keypoint and at a selected scale.

Image gradients in a patch around the keypoint are binned into a 4x4 spatial and 8 orientation bin histogram, where opposing directions of the gradient are identi ed, hence omitting phase information. In order to obtain rotation invariance, the descriptor is registered by a rotation to align the strongest orientation to a common angle. E.g. if the strongest orientation is at 45 degrees, then a rotation of -45 degrees is applied to the patch in order to have the strongest orientation at 0.

• HOG or Histogram of Oriented Gradients [START_REF] Dalal | Histograms of Oriented Gradients for Human Detection[END_REF]] is a dense descriptor, which creates histograms of gradients in image patches centered around each point, by binning in space and orientation. Sometimes the binning is smoothed across adjacent spatial and orientation bins. These descriptors are not made to be rotation invariant: Whereas SIFT descriptors are often used for image stitching, HOG features are mostly used for object detection, and objects do not generally occur at arbitrary orientations. Scale is often taken care of by a sliding window search algorithm, which will resize any window to a template size, giving rise to a registration in scale (but usually not orientation).

• SURF or Speeded Up Robust Features are similar to SIFT descriptors in spirit, but geared towards fast extraction while retaining robustness and speci city properties [Bay et al., 2006]. Around an interest point, determined by a Laplacian maximum computed via derivatives of Gaussians, the main orientation is determined using Haar wavelets. Oriented along this main orientation, a square is extracted and divided into 4x4 regions of 5x5 subregions each. In each of these subregions derivative descriptors are extracted in x and y direction. The responses of the subregions are accumulated over the regions 1) by summing and 2) by summing their absolute values. This results in 4 values per region and thus 64 values overall. Most computations can be carried out using integral images, leading to e cient implementations.

• DAISY descriptors are also similar to SIFT descriptors, but avoid histograms and gain speed to an extent where dense feature extraction is straightforward. In e ect they replace local histogramming by simple local orientation ltering, implemented as derivatives of a Gaussian pyramid [START_REF] Tola | DAISY: An e cient dense descriptor applied to wide-baseline stereo[END_REF].

A large-scale comparison of performance between di erent types of descriptors can be found in [START_REF] Mikolajczyk | A performance evaluation of local descriptors[END_REF] 

Agglomeration methods

As described in the introduction to this section, a typical classical computer vision pipeline needs to agglomerate low-level features into more stable representations. There are several inter-related ways of achieving this. They are centered around the notion of "bag of visual words".

• K-Means clustering. The archetype of agglomeration methods uses K-Means clustering on extracted features. Setting the number of cluster centers may be an issue, as well as the fact that cluster centers may ock to high-density regions, ignoring small but important regions of the space of descriptors. Nevertheless, a simple K-means clustering on descriptors to set up the system in an unsupervised manner and an association of any new patch to its closest cluster center has proven a good method for generating representations amenable to object recognition. Soft K-Means describes a manner of associating a new descriptor to existing centers. It amounts to a matching pursuit with one step: One associates the patch with its strongest scalar product against all cluster centers. This gives rise to a 1-sparse vector, indicating the cluster by the active coordinate and containing the correlation as activation.

• Sparse Coding Dictionary learning. Instead of K-Means, one can also perform 1or matching pursuit sparse coding on the set of descriptors. This gives rise to a dictionary of reference descriptors such that any candidate descriptor can be well approximated by a weighted some of very few dictionary elements. The sparse weight vector can then be analyzed in a next step.

• Fisher vectors. Using a Gaussian Mixture Model for the visual word vocabulary, already t to a training set, one can obtain more ne-grained appartenance measures than just the closest cluster for a given new descriptor. For a new point, taking the derivative of the loglikelihood of the model with respect to all parameters (for a spherical GMM the means and standard deviations) yields a measure of deviance with respect to the model: It encodes how the model can be modi ed to increase loglikelihood for this point. One can compare two of these vectors using a bilinear form with the Fisher information as Gram matrix, giving rise to the Fisher kernel. Multiplying the Cholesky square root of the Fisher information matrix against the derivative vectors yields the Fisher vector. These are naturally well scaled and amenable to classi cation [START_REF] Perronnin | Improving the Fisher kernel for large-scale image classi cation[END_REF].

Classi cation

After feature agglomeration, the hope is to be able to say that object category is su ciently linearized in the new representation so that a linear classi er su ces to perform object recognition. To a certain extent this is the case, making it possible to apply a linear classi er such as the margin-maximizing support vector machine. Logistic regression yields similar results. When dataset size permits, support vector machines with non-linear kernels, e.g. the Gaussian RBF kernel are also employed, often leading to better results and thus indicating that the feature extraction method has not fully linearized object category.

Arti cial Neural Networks

Arti cial neural networks are layered structures performing very simple, stepwise calculations, usually an alternation between linear functions and pointwise or spatially localized nonlinearities.

Arti cial neural networks geared to object recognition can be seen as performing a joint optimization of all the steps of the pipeline mentioned previously. That is, if you manage to make it converge to performing operations equivalent to this pipeline. No useful object recognition neural network has been able to avoid restricting the rst few linear layers to convolutions. This essentially enforces the extraction of local descriptors and reduces the number of parameters to estimate.

The above description is intentionally devoid of any reference to biology and remains very general. However, it is in the study of biological systems that the intuitions for these systems arose. Despite being inherently endowed with temporal dynamics, certain types of neural functionality can be formulated in a static manner. Consider a spiking neuron which integrates over its dendritic input where the contribution of individual dendrites can be weighted di erently, even negatively to produce an inhibitory e ect, and which res if a threshold is passed. Allowing for some Gaussian noise in the activations, the probability of a spike can be characterized as a sigmoidal function (a probit, to be speci c) of a weighted sum. Replacing the probit sigmoid (the error function) by a logistic sigmoid σ(t) = (1 + exp(-x)) -1 , one obtains the generalized linear model with logistic link function, which, in a machine learning context, can be t to data using logistic regression.

The constellation of linear functional and logistic sigmoid is the basis of many modern neural networks. Rosenblatt's Perceptron is a thresholded version of this building block, with a specialized learning rule to minimize error. General feedforward neural networks contain multiple layers of these building blocks, with several building blocks per layer. All outputs of a given layer serve as input to the building blocks of the next layer. Nonlinearities may vary: sigmoids, hyperbolic tangents, and most recently and very successfully, recti er functions x → x + can be used.

In a learning framework, the goal is to adjust the parameters (the weight matrices and vectors of the linear functionals) such that the outputs correspond to what is expected of the network. In a classi cation task, the output of a neural network is generally designed to be a vector with dimensionality corresponding to the number of classes with a softmax activation

softmax i (x) = exp(x i ) ∑ j exp(x j )
. These outputs can be interpreted as probabilities and the error can be quanti ed as a multinomial cross-entropy: For each sample, the negative log probability attributed to the true class of the sample can be taken as the error and this quantity can be added up for several samples. Using the chain rule for di erentiation, one obtains the gradient of the error in the set of weights for each layer and can make a small update to decrease this error. In the neural network literature the calculation of the network weight gradient step by step using the chain rule is called backpropagation. The weight updates are obtained by stochastic gradient descent (see e.g. [START_REF] Bottou | Large-Scale Machine Learning with Stochastic Gradient Descent[END_REF]), whereby the gradient of the weights is evaluated in one or a batch of few samples at a time and a small step is taken in the direction of the negative gradient in order to decrease the error. The step size is called learning rate. Stochastic gradient descent is justi ed by the fact that the quantity one would like to minimize is expected error, of which an unbiased estimator for any given sample size is the mean error. In many cases the gradient operator can be written inside the sum and the loss is separable sample by sample. In this situation stochastic gradient descent can be used to attain a minimum of the error function.

With recent successes in real world applications with important economic interest, development in the eld of arti cial neural nets has dramatically increased and many variants on architecture and re nements of the learning algorithm have been proposed. Many changes in architecture boil down to constraining the linear transformations at each layer to adhere to a certain form. In [START_REF] Lecun | Une procédure d'apprentissage pour réseau a seuil asymmetrique (a Learning Scheme for Asymmetric Threshold Networks)[END_REF] the rst network trained by gradient descent using convolutions as the linear operations was introduced to classify hand-written digits. Imposing that the linear transformations be convolutions is a translation of mathematical assumptions into the architecture: Convolutions imply spatial covariation of the output with respect to the input and carry the message that most translated versions of images are still images and to be treated in a similar way. A further, practical aspect is the typically very restricted size of the lter footprint, forcing the linear transformation to extract localized lter responses, while preserving spatial organization of the signal. For natural images, this typically results in the learning of edge, texture boundary and blob detectors. Having several layers of convolution operations followed by pointwise nonlinearities or localized nonlinearities like maximum pooling leads to a parallel treatment of all image patches by the same operations. This re ects biological processing in the sense that visual neurons perform mostly local computations and are organized in a retinotopic manner.

Biologically Inspired Models

While training by gradient descent is di cult to justify biologically, a hierarchy of levels of processing of visual information has been delineated in [START_REF] Dj Felleman | Distributed hierarchical processing in the primate cerebral cortex. Cerebral cortex[END_REF]. Biologically inspired models of vision typically attempt to implement the functionality known to exist in some of these processing steps. Thus, LGN cells are modelled as center-on-surround-o cells, often implemented as a di erence of Gaussian lters. V1 simple cells are modeled as edge detectors. If using LGN output, they are constructed from output from adjacent LGN neurons arranged along a straight line, otherwise as Gabor lters on image input directly. V1 complex cells pool over the output from spatially adjacent simple cells of the same orientation and scale. After this stage, modeling is much more di cult because the underlying functionality is unclear. Models taking into account correlations between di erent orientations exist [Freeman andSimoncelli, 2011, Portilla and[START_REF] Portilla | A parametric texture model based on joint statistics of complex wavelet coe cients[END_REF]. A class of models attempting to implement visual processing from V1 to object detection along the ventral stream is the class of HMAX models [START_REF] Riesenhuber | Hierarchical models of object recognition in cortex[END_REF]. In architecture, these models are convolutional nets with maxpooling, but the lters used are xed for the most part. In [START_REF] Serre | Robust object recognition with cortex-like mechanisms[END_REF], an HMAX model with symmetric (cosine) Gabor lters in the rst layer, max pooling across adjacent scale pairs and 2x2 pixel regions on the second layer, followed by convolutions with image templates chosen randomly from the outputs of the second layer but xed thereafter, topped by a spatial average and an SVM, was able to obtain near state of the art object recognition scores in some metrics as well as near-human performance in a rapid presentation animate versus inanimate distinction task.

Scattering Transform

The scattering transform is a functional signal transformation developed by Stéphane Mallat and his team to address several known issues of existing signal transformation techniques with respect to invariance and stability of representation.

Indeed, creating a stable representation of a signal which is non-trivial is not an easy task. By stability we mean su ciently regular behavior with respect to smooth deformations. This regularity is expressed as a Lipschitz condition on the size of the deformation. Given a 2D signal x(u), for example an image, and a smooth function τ : R 2 → R 2 , a deformation τx is de ned by τx(u) = x(uτ(u)).

We would like to obtain a representation Φ of the signal which preserves relevant information while being robust to deformations. Relevant is a term that needs to be de ned. Indeed, in the case of images, object identity can be the information of interest, while its position may not be important for the analysis. Often, the transformations that are not of interest can be endowed with a group structure. Position, for instance, can be encoded by the group of translations. Let G be the group of translations and g v ∈ G act on a position u ∈ R 2 as g v u = u + v. Then we can de ne the signal transformation

g v x(u) = x(g -1 v u) = x(u -v).
A signal representation that is invariant to a group G has the property that

Φ(gu) = Φ(u) ∀g ∈ G.
A signal representation that is covariant to a group G has the property that

Φ(gu) = gΦ(u) ∀g ∈ G,
where the action of G on the image of Φ needs to be de ned. For translation, if the image of Φ has spatial structure, then the elements of the group can act on that spatial structure. While invariance and covariance properties for "small" groups such as translations and rotations can be very useful, a full invariance for smooth transformations is detrimental. Indeed, in the case of object recognition in images, a smooth deformation can transform certain object categories into others, thus losing crucial information. Almost only topological aspects of the object class can be preserved.

However, stability with respect to small deformations is vital. By stability we mean that the distance of representations between the signal and the deformed signal must be proportional to the "size" of the deformation: Small deformations must incur small representation change and arbitrarily large deformations may incur larger representation change. A meaningful way of quantifying the "size" of a smooth deformation is the norm of its gradient. Indeed, if ∇τ = 0, then ∇τ = 0 and τ = const. Thus the deformation amounts to a rigid translation, whereas a nonzero norm of the deformation gradient can lead to local volume change and more generally other types of distortions. Stability with respect to deformation can thus be expressed by

Φ(τu) -Φ(u) ≤ C(u) ∇τ . (4.1)
For example, if Φ is linear in the gradient of the deformation eld, then the Condition (4.1) also implies translation invariance immediately, because then ∇τ = 0 and thus Φ(τu) = Φ(u) follows.

stability property is immediate (given dim Im Φ < ∞ or Φ bounded). Further, the representation should be continuous in the signal. A stronger property, which is usually imposed, is called the Lipschitz property and amounts to C(u) = C u -a change in representation is bounded by a constant factor times a the change in signal.

It is not straightforward to nd nontrivial image representations satisfying the stability property and invariance to translations. In [START_REF] Mallat | Group Invariant Scattering[END_REF], some examples are given. For example, the Fourier transform encodes translations as phase shifts in the representation. Thus, taking a complex modulus totally removes any position information. It is thus a translation-invariant representation. However, arbitrarily small scaling deformations cause an arbitrarily large di erence in high frequencies, increasing proportionally to frequency. This behavior violates the stability criterion. On the other hand, su ciently regular and localized wavelets satisfy a deformation stability property. However, wavelet transforms, by construction, are translation covariant, not invariant. A way to create a translation invariant representation out of a translation covariant one is to integrate the representation over all translations. This is true in general, for any group: to make a group-covariant representation group-invariant, calculate its integral over the group. For wavelets this operation is problematic, because it leads to trivial (constant) representations. When using wavelets, it is thus crucial to integrate over a nonlinear function of the wavelet transform. In [START_REF] Bruna | Scattering Representations for Recognition[END_REF] it is shown that stability with respect to deformations necessitates the nonlinear function to be applied pointwise. If in addition one requires the transformation to conserve signal energy it is necessary that the pointwise nonlinearity be the complex modulus.

Satisfying the above properties gives rise to the scattering transform. Given a complex wavelet ψ, for example a Morlet-lter and a low-pass lter φ, the translation covariant version of the scattering transform can be written as a cascade of convolutions and complex moduli. By writing ψ s,γ for an orientation γ and a scale s 1 , for the rst layer we can write 1 The rotated and scaled version reads

ψ s,γ (u) = 2 -s ψ(2 -s R -γ u) for R -γ a rotation by angle -γ. U[s, γ]x = |x * ψ s,γ |.
In order to make this translation covariant representation invariant, one can integrate it over space to obtain S[s, γ]x = |x * ψ s,γ |du. One can attenuate global translation invariance to local translation invariance, which gives rise to an output of the form

S J [s, γ]x = |x * ψ s,γ | * φ J ,
where φ J is the low-pass lter from above at scale J. Both global and local translation invariant representations lose high frequencies, which can carry important information. In order to recover these, they are measured using a second wavelet transform, also followed by a modulus, which reads

U[s 1 , γ 1 , s 2 , γ 2 ]x = ||x * ψ s 1 ,γ 1 | * ψ s 2 ,γ 2 |,
for s 1 , γ 1 the parameters of the rst layer wavelet transform and s 2 , γ 2 the parameters of the second wavelet transform. Here again, the local translation invariance is obtained by low-pass ltering with φ J :

S[s 1 , γ 1 , s 2 , γ 2 ]x = ||x * ψ s 1 ,γ 1 | * ψ s 2 ,γ 2 | * φ J .
It becomes immediate to relate this architecture to convolutional networks. As a matter of fact, the scattering output of the low-pass ltered rst and second layers is the output of a convolutional network, where the convolutions are performed with xed, mathematically motivated wavelets. to textures 

Introduction

This chapter is about second order models for image analysis. The term "Second Order" here refers to a second stage in processing after linear ltering a recti cation of an image. "First order" models, i.e. linear ltering and rectication are very limited in capacity. They could not detect anything other than a linear template matching in an image and are not very selective: An orientation lter may still respond to a contour with orientation perpendicular to its preferred orientation or at a di erent scale. They cannot, by themselves, detect the beginning or the end of a contour. Even if it may remain implicit, object recognition and scene understanding rely heavily on segmentation, which should ultimately be semantically informative. By pure probability, a fair amount of occlusion borders are detectable on rst order, by di erence in luminance or possibly color. This is however not always the case, and more subtle texture boundaries can be just as important. These are generally called "higher order" if they cannot be identi ed by simple luminance contrast edge detection.

Figure 5.1: Top: Exerpt of picture of Coney Island Boardwalk taken from [START_REF] Landy | Texture analysis and perception[END_REF]. The boards of di erent orienations form a texture boundary by e.g. orientation contrast, not luminance contrast. Bottom: Zebras, taken from [Landy, 2002]. Individual zebras have texture boundaries with background and with other zebras, which are of di erent order.

It is important to note that the term "order" is semantically overloaded and can mean di erent things. Another relevant meaning of order is the number of variables used for statistical analysis: Supposing that a texture is an instance of a 2D stationary process 1 , one can see the probability distri-1 A stationary process is a continuous collection of random variables X st , that are arranged spatially.

Stationarity means that their distribution does not depend on absolute, but relative position: (X s,t , X s ,t ) ∼ (X s-s ,t-t , X 0,0 ). bution of "pixels" as rst order statistics. Second order statistics are given by the joint distribution of all couples of points separated by a given distance vector. Third order statistics are characterized by the joint distributions of three points arranged in a speci c triangle shape (given by two relative displacement vectors). Generally, n-gon statistics are characterized by the joint distributions of n points as a function of their relative positions to another. It is this notion of order which Julesz used to generate texture images that have regions di ering on a certain statistical order [START_REF] Julesz | Textons, the elements of texture perception, and their interactions[END_REF].

Here, unless otherwise stated, order will be taken to mean number of layers necessary for analysis.

There is a rich body of literature on the segregation of textures, mostly of psychophysical and computational nature, but also including electrophysiology and fMRI experiments. [START_REF] Landy | Texture analysis and perception[END_REF] provides an excellent overview.

In [START_REF] Julesz | Textons, the elements of texture perception, and their interactions[END_REF], Julesz proposed the "texton" as an elementary unit of texture perception, from which the properties of "segregability" between two textures could be deduced. Textures di ering in these properties could be e ortlessly and pre-attentively segregated. Among these putative units could be edges, blobs, possibly end stops.

However, it was shown in [START_REF] Nothdurft | Brain magnetic resonance imaging with contrast dependent on blood oxygenation[END_REF] that it is not so much the regional di erence of textons that plays a role, but rather local phenomena such as orientation contrast. As depicted in gure 5.2, they constructed an image that would be seen as a rhomb if the relevant features were absolute orientation and a square if the relevant features were local relative orientation. Textons subsequently disappeared from the study of perception, but the concept was revived for computer vision a decade later, e.g. by Malik [START_REF] Leung | Representing and recognizing the visual appearance of materials using three-dimensional textons[END_REF]. The texton approach is to nd "building blocks" or "atoms" of texture with the goal of ultimately being able to synthesize any texture. As stated above, our goal is to study putative analysis methods in the attempt to explain the way our visual systems process this texture information. The typically studied analysis methods attempt to model more or less in detail the properties of mammal visual systems, sometimes starting from LGN-type center-surround units [START_REF] Thielscher | Neural mechanisms of cortico-cortical interaction in texture boundary detection: A modeling approach[END_REF] and sometimes from V1-type edge detection, stylized using e.g. Gabor or Morlet lters. What is crucial to be able to accurately capture behavioral results from psychophyics experiments is not to stop at linear recti ed edge detector type models, but to extract higher level information in a next step. This type of model has been named FRF (for Filter-Rectify-Filter) or LNL (for Linear-Nonlinear-Linear): Given a point-wise nonlinearity n(z) and two lters ψ 1 , ψ 2 , its output can be written as FRF(x) = ψ 2 * n(ψ 1 * x). Crucially, this type of analysis model is able to segregate the above texture patterns just as it pops out to the eye. Usually, the nonlinearity is chosen to be a recti er unit n(z) = (z) + . Similarly, the scattering transform introduced in chapter 4 is of the FRF form for n(z) = |z| and it is the transformation we shall use in our experiments. Pointwise nonlinearities can also be extended to simple local nonlinearities such as max pooling, which has also been used in biologically plausible models of vision [START_REF] Riesenhuber | Hierarchical models of object recognition in cortex[END_REF].

It is to be noted that the FRF models, while capable of capturing a variety of texture boundaries, cannot account for all texture segregation functionality attributable to the visual system. A texture devised by [START_REF] Ben | Curvature-based perceptual singularities and texture saliency with early vision mechanisms[END_REF] shows constant change in curvature across the image, but still gives rise to percepts of global contours (see gure 5.3) Figure 5.3: Texture of constant curvature change, taken from [START_REF] Landy | Texture analysis and perception[END_REF], originally from [START_REF] Ben | Curvature-based perceptual singularities and texture saliency with early vision mechanisms[END_REF] giving rise to percepts of global contours. An FRF model cannot identify these contours.

Many of the investigations performed to date are concerned with the capacity of visual systems to segregate images into di erent regions of texture and have been able to delineate interesting results as seen in this paragraph.

However, the contemplation of a uniform texture, not the border between two di erent ones, also evokes a visual representation, making it possible to say whether two textured regions are "made of the same stu " or not. The representation may recruit functionality essentially overlapping with that which is used for segregation.

Most studies of biological vision relative to textures use highly controlled synthetic texture images built from very simple primitives. In [START_REF] Portilla | A parametric texture model based on joint statistics of complex wavelet coe cients[END_REF]], Portilla and Simoncelli were able to provide a minimal characterization of a wide range of natural texture types by extracting a certain number of statistical descriptors from the images. New texture images were generated from noise by applying gradient descent until the descriptor values matched those of a given other texture. This resulted in images of very similar appearance to the texture from which the descriptors had been extracted. Minimality of the representation was shown by removing each one of the descriptors in turn and re-synthesizing textures. Each omission had a strong perceptual e ect on at least one class of textures, permitting the conclusion that at least the descriptors presented, or an equivalent set, are necessary to provide constraints that guide the generation of perceptually equivalent images.

Existing studies in fMRI do not employ natural textures or seemingly natural generated textures. Instead, they test the visual system with wellcontrolled synthetic texture images in order to analyze e.g. responses to second-order boundaries. When naturalistic textures are used, the analysis is focused on contrast maps and not ne-grained modeling, as we propose here.

[ [START_REF] Cant | fMRadaptation reveals separate processing regions for the perception of form and texture in the human ventral stream[END_REF] uses fMRI adaptation in an experiment to distinguish the e ects of shape, texture and color of a stimulus, varying only one dimension at a time. Stimuli are four fake 3D objects endowed with four di erent types of textures and four di erent colors. They identify shape e ects in lateral occipital complex and texture speci c processing in collateral sulcus. [START_REF] Kastner | Texture segregation in the human visual cortex: A functional MRI study[END_REF] uses oriented line segment textures, oriented at 45 or 135 degrees in contrast to textures consisting of the same types of lines but forming texture boundaries giving rise to shapes of squares. While V1 did not show any di erence in activity towards the two texture types, ventral V2, V3, V4 as well as dorsal V3A did show di erential activity. The subjects' attention was diverted by a counting task of foveally presented letters while the texture presentation was restricted to the upper right quadrant of the visual eld.

In [START_REF] Larsson | Orientation-selective adaptation to rst-and second-order patterns in human visual cortex[END_REF][START_REF] Luke E Hallum | Human primary visual cortex (V1) is selective for second-order spatial frequency[END_REF] the sensitivity of human visual cortex to second order texture modulations is investigated using an fMRI adaptation paradigm. Grating-type textures as carriers which modulate smaller scale textures of contrast or orientation at di erent spatial frequencies are presented to subjects. While [START_REF] Larsson | Orientation-selective adaptation to rst-and second-order patterns in human visual cortex[END_REF] focuses on second order orientation selectivity, [START_REF] Luke E Hallum | Human primary visual cortex (V1) is selective for second-order spatial frequency[END_REF] studies second order spatial frequency selectivity. The responses of visual areas V1, V2, V3 and V4 captured in [START_REF] Luke E Hallum | Human primary visual cortex (V1) is selective for second-order spatial frequency[END_REF] by adding a normalization component to the classical FRF model to obtain a lter-rectify-normalize-lter model. The study shows that V1 also is to some extent distinctive of second order texture variations.

In [START_REF] Montaser-Kouhsari | Orientation-selective adaptation to illusory contours in human visual cortex[END_REF] it is shown that even texture-induced illusory contours are detected in V1 and that responses to these contours increase along the visual processing hierarchies.

In a di erent line, multi-modality of textures has also been studied, see [START_REF] Whitaker | Vision and touch: Independent or integrated systems for the perception of texture[END_REF] for a review on the topic.

Using fMRI, we propose to study second order image analysis models of the scattering transform type on two types of natural images: Every-day photos and images of uniform texture. The former permit the study of texture boundaries and representations in a natural context. The latter focuses on the way single uniform texture types are processed in the brain. Our main approach will be an encoding model, as described in chapter 1. The experiment on textures images is also amenable to classic analysis and reverse inference (decoding). We will compare two contrasts, one showing voxels responding in any way to texture and another showing voxels that respond di erently to at least one of the textures. The decoding analysis will be used to predict texture class from di erent brain regions.

Experimental Setup

The fMRI BOLD response to visual stimuli was acquired during a visual comparison task, where subjects were asked to distinguish between images of six di erent texture classes. The study was of the rapid event-related type. [START_REF] Lazebnik | A sparse texture representation using local a ne regions[END_REF]. Representants of the six texture classes are shown inside the circular stimulus mask.

The experimental task

Stimulus images were circularly masked gray texture images of 120x120 pixels projected onto a screen situated behind the magnetic bore of the fMRI scanner and viewed by the subject via a mirror placed in their visual eld. The circular stimulus spanned 14 degrees of eld of view. Mean and standard deviation of the pixel values of the images were xed to 128 and 32 respectively for each image, where 0-255 is the full possible range.

Stimulus images were taken from the texture database of [START_REF] Lazebnik | A sparse texture representation using local a ne regions[END_REF] by taking random least overlapping crops of 120x120 pixels, applying a circular mask and a random rotation sampled uniformly from all angles of the circle.

Subjects were asked to compare two texture instances from the same class, presented one after the other, while xating a central cross. One experimental block took 12 seconds: At second 0, the rst image was presented for one second, ashed three times in an on-o -on-o -on sequence of 200ms duration each. At second 4 the second image was presented in the same manner. At second 8, a smaller image, centered around the xation point, was presented, containing an extract of either the rst, the second, or an unrelated image. The subject was asked to press a left-hand button if the rst image had been repeated, the right-hand button if the second image had been repeated and no button if the image was unrelated. One experimental session consisted of 36 such 12s blocks, which corresponds to the presentation of 72 images. All texture images were presented twice: once in rst position, once in second position, in order to be able to account for e ects due to ordering and in order to increase the signal to noise ratio in subsequent analyses.

One scanner session consisted of 6 experimental sessions. Thus a total of 216 distinct texture images were shown.

The task was presented to the subjects once before entering the scanner, with stimuli not used during the acquisition.

Measurements

Functional images were acquired on a 3T Siemens scanner (TR=2400ms, TE=30ms, matrix size 128 × 128, FOV 192mm×192mm). Each volume consisted of 34 2mm-thick axial slices without gap, with an in-plane resolution of 1.5mm× 1.5mm. Anatomical T1 images were acquired on the same scanner with a spatial resolution of 1mm × 1mm × 1mm. EPI data acquisition was performed using the sequence in [START_REF] Boegle | Combining prospective motion correction and distortion correction for epi: towards a comprehensive correction of motion and susceptibility-induced artifacts[END_REF] with IPAT=2; this sequence includes distortion and motion correction at the acquisition level. Slice timing correction and coregistration to the anatomy were performed using SPM8 software wrapped by pypreprocess 2 .

2 http://github.com/neurospin/pypreprocess Data were acquired from three subjects in two sessions each, using two di erent stimulus sets for the two sessions.

Data analysis methods

Several data analysis methods were performed. Classical statistics were used in order to estimate e ects of texture type regressors and of di erences in response between texture types. Reverse modelling (decoding) with texture class as target was employed globally and region by region in order to assess minimal information content of the acquisition pertaining to this target. An encoding model based on the scattering transforms of the texture images was evaluated and a contrast between layer 0, 1 and 2 performance versus layer 0 and 1 performance was computed 3 .

3 Scattering layer 1 contains smoothed wavelet moduli, layer 2 contains smoothed wavelet moduli of unsmoothed layer 1, layer 0 merely contains the smoothed input (low passed signal).

Data preprocessing

In order to disambiguate responses to consecutive image presentations, to slightly reduce the dimensionality and raise the signal to noise ratio, preprocessing of the time courses was performed in the form of a general linear model (GLM). This yielded an activity map for each unique image, implicitly averaging the responses to the two presentations. The two forms of GLM employed were a classic GLM with xed HRF and an event by event GLM [Turner et al., 2012] -see also chapter 2) of this thesis. However, the rather large TR of 2.4s made it less interesting to model the HRF explicitly as done in chapter 2. Using the GLM approach we can restrict ourselves to predicting a one-dimensional activity per voxel and image instead of a whole time course.

Classical statistics

For the texture experiment, F-statistics were obtained for two di erent contrasts. The statistical map fx_interest identi es locations that show signi cant activation when a texture image is shown (versus baseline). The statistical map fx_di indicates regions where the response to at least one texture class di ers signi cantly from the mean response to textures. At the same signicance level, the map fx_di is a subset of the fx_interest map which indicates where texture information is encoded di erently according to class.

Reverse modeling

In order to localize regions that encode di erent texture classes di erently, we performed reverse modeling using machine learning techniques. After selecting the regions of interest V1, V2d, V2v, V3v, V3d, V4v, hV4, V3A/B, IPS0, using an ROI atlas on the fsaverage surface [START_REF] Henriksson | Retinotopic maps, spatial tuning, and locations of human visual areas in surface coordinates characterized with multifocal and blocked fmri designs[END_REF], we proceeded to t a logistic regression classi er to predict texture class. The multiclass situation was handled using a one-vs-rest classi cation, and nested cross-validation was performed on a leave-one-session-out basis to set parameters and obtain mean scores across folds.

Forward modeling with scattering transform

Using Morlet wavelets, the two wavelet layers of scattering transform (and layer 0 -local averaging using a low pass lter) were applied to the texture stimuli and the stimuli of [START_REF] Kay | Identifying natural images from human brain activity[END_REF]. The nest scale lter, the one with the highest spatial frequency, was chosen to have 3 4 of the Nyquist rate. Eight orientations were used and ve scales, each separated by an octave. A cross-validated ridge regression was performed to assess the predictive power of scattering layers 0, 1 and 2 combined versus only scattering layers 0 and 1. In addition to this, texture class regressors were added in the case of the texture experiments, since these were a strong confounding factor: Scattering coe cients permit easy linear separation of texture classes, hence regions selective only to texture class will be very well driven by these coe cients. Since we are interested in modeling low-level features, we strive to separate this out.

The regression models corresponding to the two scattering coe cient sets are evaluated using predictive r 2 as scoring on the outer loop of a nested cross validation, where the inner loop is used to select optimal parameters. Predictive r 2 represents explained variance on held out data, i.e. to which extent mean l 2 prediction error is smaller than the overall variance of the test set. Due to nite data, possible mis-estimation of the intercept, and bias in the model, the null distribution of this score can be centered around a negative value.

In order to evaluate the excess predictive power of the two-layer model, we calculate the di erences of scores. Obtaining a meaningful threshold on this value is not obvious. Here we choose to construct an empirical null distribution and threshold according to a false discovery rate of 1% [START_REF] Benjamini | Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing[END_REF]. The distribution of score di erences is unimodal and slightly right skewed, where the right tail represents points where the twolayer model has an excess score with respect to the one layer model. The null distribution is created by re ecting the left-hand side of the distribution around the mode. Using the ratio of the cumulative density functions of the score di erence distribution and the empirical null, the cuto threshold is determined at an FDR of 1%.

Results

We discuss the results of the described data analysis methods applied to the texture experiment or both the texture experiment and the natural images experiment. Starting with a classical statistical analysis using GLM contrasts on regressors representing texture class, we obtain an overview of which regions respond to texture image presentation and which regions respond di erently to di erent textures. We follow up with the reverse or decoding model, which is applied to regions of interest as de ned by a probabilistic atlas of the visual areas [START_REF] Henriksson | Retinotopic maps, spatial tuning, and locations of human visual areas in surface coordinates characterized with multifocal and blocked fmri designs[END_REF]. This analysis can show which regions contain straightforward representations (i.e. linearly separable and with relatively little noise) of the target variable texture class. Next we compare the more ne tuned forward models based directly on the stimulus images. They are conceived in a hierarchical manner, any given level containing all of the lower levels, and consist of texture class regressors, zeroth layer output (smoothed image), rst layer scattering coe cients (smoothed Morlet lter moduli) and second layer scattering coe cients.

"fx interest" vs "fx di "

Figure 5.6: Two contrast map zscores averaged across all sessions of all three subjects, thresholded at z=2 (p=0.5 × 10 -6 uncorrected). Top: Contrast fx_interest, corresponding to signi cant activation elicited by texture images. Primary visual areas and both the ventral and dorsal visual stream are strongly activated. Bottom: Contrast fx_di erence showing areas that responded signi cantly di erently to the six texture classes. One observes that lower level visual areas are much less activated in this sense. Dorsal visual areas V3A/B and parts of the IPS seem to respond most di erently to these visual cues.

The top part of Figure 5.6 shows signi cant activation of the contrast fx_di erence on a group level xed e ects model (n=6) above a z-score threshold of 2 (p=0.5 × 10 -6 uncorrected). We observe strong activation on the dorsal side of the visual stream and signi cant activation on the ventral side of the visual stream, in both hemispheres. Visual areas V1, V2d, V2v, V3v, V3d, V4v, hV4, V3A, as well as parts of IPS show signi cant responses to this visual stimulation.

However, the situation is completely di erent when evaluating which regions respond di erently to the six texture classes. Most of the lowest level visual areas and most of the ventral stream do not exhibit signi cantly different activation across texture classes. However, the dorsal regions remain strongly active in the sense of this contrast.

Area speci c reverse modeling

Reverse modeling results are shown in Figure 5.7. A logistic regression in a one versus rest setting decodes well above chance level ( 1 6 ) in accuracy score and slightly di erently depending on the chosen regions. The highest accuracy scores are achieved in dorsal and lateral visual regions, re ecting the same tendency already observed in fx_interest and fx_di .

Forward modelling

The forward modeling comparison of scattering transform layers was performed on the textures dataset as well as the natural images dataset. Apart from some patches in V1, a gain in prediction by using layer 2 is observable mostly in extrastriate areas, both along the ventral stream, but also dorsally, as far as IPS. This is true for both the natural images dataset and the textures dataset, where it must be re-iterated that the texture data were analysed with a supplementary texture class regressor in order to factor out e ects of texture class alone and study the property of the local image descriptors. For the natural images the areas bene tting from the inclusion of layer 2 descriptors include transverse occipital sulcus and inferior IPS, both associated with scene perception, as well as specialized extrastriate areas such as probably the occipital face area and the extrastriate body area. Photos of scenes and photos of persons are abundant in the natural images dataset. Layer 2 seems to add speci city and permits a better t of brain activity due to these complex concepts.

Figure 5.8: Scattering layers 0, 1 and 2 with texture class vs scattering layers 0 and 1 with texture class at FDR=1%. Excess predictive score is present in low level visual area V1, as well as higher level visual areas dorsally, ventrally and laterally.

Figure 5.9: Scattering layers 0, 1 and 2 vs scattering layers 0 and 1 at FDR=1% for natural images data. Low level visual areas are well modeled by scattering layers 0 and 1 alone. The added value of layer 2 becomes visible in lateral and dorsal visual areas.

Discussion

Visual texture classi cation from neuroimaging data To the best of our knowledge, the presented work is the rst one that presents a statistical analysis of the functional correlates of natural visual textures using negrained forward modeling. If we compare this setting to more classical object viewing, this entails a double challenge, related to the fact that the stimuli do not present clear outlines: i) the association of these images with semantic content is sometimes ambiguous, because two di erent textured patterns may look similar after some rescaling or the same texture type may appear in several contexts, and ii) the contour shape at luminance boundaries or perceivable texture boundaries is an essential clue (for instance, a trunk carrying a wood texture is typically elongated in one direction) which were not present here. Nevertheless, the classes were easily separable. Note that in the texture experiment, the subjects were naive to the existence of six latent categories.

While the luminance normalization, variations in position, and rotation angle could rule out the use of local linear mappings of image intensity (such as gradients) as a means to discriminate between these textures, the situation is actually more complex. Scattering layer 1 alone (smoothed wavelet moduli, which can capture local luminance changes) is actually discriminative of the di erent texture classes, showing that the rst-order statistics are to some extent su cient (see gure 5.10). However, the adjunction of layer 2 improves the classi cation accuracy signi cantly, showing that more complex image features actually help discriminating texture classes. Figure 5.10 shows classi cation performance for cross-validated logistic regression on scattering transforms of varying parameters as a function of training set size. Layer 0 only feature scores are colored blue. Since they only contain local averages of the normalized texture images, the scores do not lie above chance. The conjunction of layers 0 and 1 is shown in red and achieves well above chance linear separation of texture classes. Adding layer 2 to 0 and 1 yields the green lines, of which all except one yield strictly better classi cation accuracy than layers 0 and 1. The roto-translation invariant scattering transform, depicted in turquoise, which recombines layer 2 coe cients using a wavelet in the angular variable while also applying rotations to the image, is the best linearization of texture class -only very few samples are needed to properly train a classi er. .10: Classi cation of textures from their scattering transforms using logistic regression. For di erent combinations of orientation and scale, we show classi cation scores on several training set sizes of translation invariant (spatially averaged) scattering coecients of layer 0 (spatial average), layers 0 and 1 (spatial average and rst level wavelet modulus average), layers 0, 1 and 2 (second layer wavelet moduli average in addition) and roto-translation-invariant scattering (layer 2 integrated to be invariant to roto-translation.) From the point of view of the FRF framework presented in the introduction, we must be careful about how to situate these classifying operations. Indeed, classifying linearly from a representation of a rst order model, i.e. a ltering followed by a recti cation, results in a linear-nonlinear-linear chain, where the last linear transformation is the dot product with classi er weights. It is not, however a lter-rectify-lter operation, since the last operation is not a spatial ltering. While the classi er weight dot product operation can yield functioning texture class cation, it collapses all of space and cannot make localized decisions on the presence or absence of a texture boundary. The second layer of the scattering transform is a true FRF model, followed by an output nonlinearity, the complex modulus. It is capable of detecting the texture boundaries an FRF model can detect. Adding the classi cation step on top collapses spatial information as before.

These distinctions may seem far-fetched at rst, but it is crucial to make the di erence between localized an global operations. Note that the rst layers followed by classi cation would become an FRF operation if the classier were applied locally at all locations using the same weight vector. This would result in a convolution ( ltering) with a decision function and would make texture boundaries localizable by simple thresholding of the lter output. Achieving an image of a potential texture boundary is what distiguishes FRF from lter-rectify-classify.

Resulting topographies Figure 5.6 illustrates an expected e ect, namely that the strong activations elicited by texture viewing are markedly reduced when only the di erential e ect of the textures classes is considered: low level visual areas (V1-V2) respond strongly to visual textures, but in a way that is not discriminative across classes. In contrast, the next areas in the dorsal pathway (V3A/B, IPS0) show di erent responses across texture classes. More surprising was the weakness of strong di erential responses in the ventral visual cortex, that is known to respond strongly and discriminatively to di erent object categories. For higher level ventral regions this may in part be explained by the absence of actual objects as de ned by texture boundaries in the stimuli. However, Freeman and others in [START_REF] Freeman | A functional and perceptual signature of the second visual area in primates[END_REF] were able to show di erential e ects against Fourier scramble in early visual ventral regions. By most models of the early visual system these should also be expected, so further investigation into the absence of activation here is necessary.

Interestingly, a spatially con ned yet signi cant discriminative response was observed bilaterally in postcentral sulcus, consistently across all subjects. Close inspection of subject pf120155, for whom the fMRI eld of view contained the deepest part of the horizontal segment of the intra-parietal sulcus (the other two subjects' fMRI eld of view did not contain any part of the horizontal IPS), revealed activation along the full length of the IPS into postcentral sulcus. This may be attributed to di erential attentional e ects across texture class. It is at least plausible since the di culty of the discrimination task varied with texture type.

If we consider within-subject classi cation scores, the picture is slightly more complex. Texture-discriminative information can be found at the individual level in all brain regions, even though there is a tendency toward higher prediction accuracy along the visual hierarchy from V1 to dorsal (V3AB, IPS0), lateral (LO1/LO2) and, to a lesser extent fusiform regions.

More importantly for us, the topography of brain regions that are better linearly predicted by a model with two scattering layers than a model with one scattering layer displays a few clusters in the same dorsal, lateral and fusiform regions (Figure 5.8). Most importantly, this result is replicated in a completely di erent setting, where the subject views natural images that are not speci cally tied to textures (Figure 5.9): IPS0, V3AB and LO1/LO2 contain again several clusters that are better modeled with a second layer of scattering, unlike lower-level regions. Ventral visual regions (V3v, V4) do not exhibit this e ect in either of the datasets.

Recent ndings After the acquisition and initial analysis of the present experiment, it was shown in [START_REF] Freeman | A functional and perceptual signature of the second visual area in primates[END_REF]] that V1 could be reliably segmented from V2 by a simple contrast of natural texture images against phase scrambled versions of the same images endowed with the same spectral envelope. This nding is in support of the idea that among the range of functionality V2 are computations equivalent to the extraction of correlations between local orientations. It has been put forward that V2 responds to second order correlations of natural images much better than to synthetic images that do not exhibit a particular second order correlation structure.

Even more recently, Okazawa and others were able to employ the Portilla-Simoncelli texture synthesis algorithm, which was also used in [START_REF] Freeman | A functional and perceptual signature of the second visual area in primates[END_REF] above, to create texture images and analyze the responses of macaque V4 neurons in a dynamic manner [START_REF] Okazawa | Image statistics underlying natural texture selectivity of neurons in macaque V4[END_REF]. After presenting a large number of images generated by the model for di erent parameter settings, the parameter space around stimuli which activated the neurons was studied more in detail by sampling the parameter space in the neighborhood. Thus a sparse dependency of the neural ring rates on the parameters could be estimated and neurons thus interpreted as responsive to combinations of very few of the parameters of the system.

In this work and in the literature we have found di erent depths of analysis systems to be adequate for the analysis of texture images. The detection of useful boundaries can be performed on several di erent layers. If these layers are similarly implemented in the visual system, then di erent parts of the visual system may be recruited to perform the task of segregation.

Problems with the experimental setup Analyzing the data from the texture experiment, we were able to compute a main e ect of texture class and evaluate a forward model based on the scattering transform. In retrospect, there were several shortcomings we could identify which should be addressed in a follow-up experiment on this topic.

The nature of the experimental comparison task between visual textures raises the question of how strong the measured brain signal is conditional upon this particular format of stimulation.

The fact that attention is directed towards discriminating two images of the same texture may have had several unexpected consequences. Firstly, it will yield di erent responses than a visual system passively viewing and not attending to di erences in the stimuli. Secondly, attention will vary across texture classes, because some are more di cult to discern instance-wise than others. Since we do not have an acquisition guiding attention away from the observations we are interested in, there no way of assessing to what extent attention is modulating responses. Evidence from other experiments suggests that this should be the case [Çukur et al., 2013]. Further, the task to discriminate between texture instances may have interfered with the instructions to xate, at least with some subjects, since useful information for discrimination may have layn slightly removed from the central cross.

A future experiment on visual textures for the study of the human visual system should provide better control conditions. The aspect of control conditions is addressed in more detail in the summary of this thesis. With the recent successes in the training of neural networks for computer vision (see chapters 4 and 6), it should be feasible to create stimuli with very ne grained control on particular stimulus properties of interest to the study at hand (e.g. compuational levels of abstraction).

The number of presented images of 216 per scanner session and two scanner sessions may also be too small to study su ciently large analysis models. Acquiring more data should generally improve con dence in results. Acquiring using adequately controlled stimuli should yield a complementary boost. Lastly, the adaptive sampling technique introduced in [START_REF] Okazawa | Image statistics underlying natural texture selectivity of neurons in macaque V4[END_REF] could be applied to generate stimuli for the next scanner session based on the previous ones.

Take-Home Messages

• Two-layer analysis models based on linear ltering such as the scattering transform are good at classifying textures • Texture types are easily classi able from fMRI brain activity

• Early visual areas V1 and V2 respond very similarly to all 6 presented texture classes. Di erential e ects appear later in visual hierarchy.

• Scattering layer 2 adds signi cant predictivity to encoding models in extrastriate areas for texture image as well as natural image stimulation. convolutional nets

The understanding of human vision and computer vision have historically evolved with mutual inspirations, re ning ideas such as hierarchical representations of images, invariance to transformations and feature encoding for object recognition. Convolutional networks used for computer vision, based on multiple layers of localized receptive elds, are achieving human-like capacity in core object recognition. As these networks represent candidate models for the computations performed in the mammalian visual system, we test whether they provide an accurate computational forward model of human fMRI data measured during the viewing of natural images. We construct a predictive model of brain activity for each brain voxel based on each of the layers of a convolutional net. Analyzing the predictive performance across layers yields characteristic ngerprints for each visual brain region: Our experimental results show that early visual areas are better described by lower level convolutional net layers and later visual areas are better described by higher level net layers, exhibiting a progression across ventral and dorsal streams. We validate the generalization capacity of our predictive model by synthesizing brain activity and performing classical analyses upon it, namely retinotopy and a contrast between face-selective and place-selective regions. The synthesis recovers the activations observed in fMRI studies of face and spatial visual processing, showing that this model captures representations of brain function that are universal across experimental paradigms.

This work has been submitted to PLoS Computational Biology • M. Eickenberg, A. Gramfort, G. Varoquaux, B. Thirion, Seeing it all: Computer-vision Neural Networks Map the Architecture of the Human Visual System Submitted to PLoS Computational Biology

Introduction

Human and primate visual systems are highly performant in recognizing objects and scenes, providing the basis of an excellent understanding of the ambient 3D world. The visual cortex is hierarchically organized, which means that many functional modules have feedforward and feedback connections compatible with a global ordering from lower levels to higher levels [START_REF] Dj Felleman | Distributed hierarchical processing in the primate cerebral cortex. Cerebral cortex[END_REF]. The concept of visual "pathways" or "streams" [START_REF] Mishkin | Contribution of striate inputs to the visuospatial functions of parieto-preoccipital cortex in monkeys[END_REF]Ungerleider, 1982, Goodale and[START_REF] Goodale | Separate visual pathways for perception and action[END_REF] is an established pattern which identi es principal directions of information ow for speci c tasks, namely object representation in the "ventral stream" (from occipital cortex into temporal cortex) and localization and spatial computations in the "dorsal stream" (from occipital cortex into parietal cortex). They share much processing in the occipital early visual areas and less oustide of them. The ventral visual stream encompasses visual areas V1, V2, V3, V4 and several inferotemporal (IT) regions. Feedforward pathways from V1 to IT exist, and probably account for rapid object recognition [START_REF] Thorpe | Speed of processing in the human visual system[END_REF][START_REF] Fabre-Thorpe | A limit to the speed of processing in ultra-rapid visual categorization of novel natural scenes[END_REF]. Many parts of the human and primate visual cortices exhibit retinotopic organization in so-called visual eld maps: The image presented to the retina is kept topographically intact in the next processing steps on the cortical surface [START_REF] Wandell | Visual eld maps in human cortex[END_REF]. This results in a one-to-one correspondence between a point on the retina and the "centers of processing" for that point in the visual eld maps, such that neighboring points on the retina are processed nearby in the visual eld maps as well.

The seminal work of [START_REF] Hubel | Receptive elds of single neurones in the cat's striate cortex[END_REF] showed that cat and other mammal V1 neurons selectively respond to edges with a certain location and orientation in the visual eld. This discovery inspired a long line of research investigating what other visual regions do and how they do it. As an example, certain monkey V2 neurons were found to react to combinations of orientations, such as corners [Anzai et al., 2007]. Recently, it has been put forward that V2 may be an e cient encoder of expected natural image statistics arising from interactions of rst-order edges [START_REF] Freeman | A functional and perceptual signature of the second visual area in primates[END_REF].

V4 is reported to respond to more complex geometric shapes, color, and a large number of other stimulus characteristics. Recently it has been posited that V4 performs mid-level feature extraction towards the goal of gureground segmentation, which can be modulated by top-down attention or bottom-up saliency [START_REF] Roe | Toward a Uni ed Theory of Visual Area V4[END_REF]. Further down the ventral pathway, neurons in the IT cortex have been shown to be selective to parts of objects, objects and faces [START_REF] Desimone | Stimulus-selective Properties of Inferior Temporal Neurons in the Macaque[END_REF][START_REF] N K Logothetis | Shape representation in the inferior temporal cortex of monkeys[END_REF]. Taken together, these ndings indicate an increasing trend in abstractness of the representations formed along the ventral stream.

FMRI has been used with great success to identify and delineate the aforementioned visual eld maps as well as brain regions that seem to specialize to certain tasks in the sense that their responses are particularly strong for speci c types of stimuli. This type of result has typically been formulated as a statistical contrast map. See [START_REF] Kanwisher | The Fusiform Face Area : A Module in Human Extrastriate Cortex Specialized for Face Perception[END_REF][START_REF] Downing | A cortical area selective for visual processing of the human body[END_REF][START_REF] Epstein | A cortical representation of the local visual environment[END_REF]] as examples for the localization of specialized regions using this technique. Finer models, known as "encoding" models or forward modeling techniques [START_REF] Naselaris | Encoding and decoding in fMRI[END_REF], have been used to study the brain response to stimuli in greater detail [START_REF] Kay | Identifying natural images from human brain activity[END_REF], Naselaris et al., 2009a, Nishimoto et al., 2011]. In this setting a rich model going beyond binary contrasts is employed. Using model prediction obtained from the stimulus, one tests how well brain activity can be linearly predicted. For example, in [START_REF] Kay | Identifying natural images from human brain activity[END_REF], almost 2000 naturalistic images were used as stimuli and the BOLD signal responses were then t using a predictive model based on Gabor lterbank activations of the images shown. Primary visual cortex was very well modeled, but also extrastriate areas such as visual area V4 were well explained by the Gabor lter model.

The Gabor lter pyramid employed in the original work of [START_REF] Kay | Identifying natural images from human brain activity[END_REF] can be seen as an instance of a biologically inspired computer vision model. Indeed, all of modern computer vision, in its roots, has been inspired by biological vision. The basic lter extraction techniques at the beginning of the most successful computer vision pipelines are based on local image gradients or laplacians [Canny, 1986, Simoncelli and[START_REF] Eero | The Steerable Pyramid: A Flexible Multi-Scale Derivative Computation[END_REF], which are operations that have been found in V1 as edge detection and in the LGN as center-surround features. The HMAX model was constructed to incorporate the idea of hierarchies of layers [START_REF] Riesenhuber | Hierarchical models of object recognition in cortex[END_REF]. It reached near state of the art object recognition capacities in [START_REF] Serre | Robust object recognition with cortex-like mechanisms[END_REF].

The key question at stake here is "What comes after the Gabor lter pyramid?" in predictive modeling of BOLD fMRI in visual brain areas. The scattering transform model [Mallat, 2012, Bruna and[START_REF] Bruna | Invariant scattering convolution networks[END_REF] provided only one supplementary layer of which one cannot state much more than the existence of brain voxels which it models well [START_REF] Eickenberg | Second order scattering descriptors predict fMRI activity due to visual textures[END_REF]. The layers C1 and C2 of HMAX as used in [START_REF] Serre | Robust object recognition with cortex-like mechanisms[END_REF], obtained using random templates taken from the preceding pooling layer activation, were not geared optimally towards object recognition. This made the di erence between layers di cult to evaluate (see e.g. [START_REF] Kriegeskorte | Matching categorical object representations in inferior temporal cortex of man and monkey[END_REF]). Although quite similar in architecture, deep arti cial neural networks are of much greater interest here. Indeed, they optimize intermediate layers to increase performance of object detection. This task or a representation equivalent to it is reportedly performed also in IT cortex in humans and primates.

Using these ideas of optimized feature hierarchies with layered architecture where single units of a layer compute a linear transformation of the activations of previous layers, followed by a simple pointwise nonlinearity, state of the art results have been obtained. Indeed, recent breakthroughs in the eld of arti cial neural networks have led to a series of unprecedented improvements in a variety of tasks, all achieved with the same family of architectures. Notably in domains previously considered to be the strongholds of human superiority over machines, such as object and speech recognition, these algorithms have gained ground, and, under certain metrics, have surpassed human performance.

On the neuroscience side, in [START_REF] Cadieu | Deep Neural Networks Rival the Representation of Primate IT Cortex for Core Visual Object Recognition[END_REF] and [Yamins et al., 2014], it is impressively shown using electrophysiological data that IT neuron activity is similarly predictive of object category as the penultimate layer of a deep convolutional network which was not trained on the stimuli. What is even more interesting is that a deep neural net can predict the activity of IT neurons much better than either lower level computer vision models or object category predictors. Furthermore, deep convolutional networks trained on object categories and linearly tted to neural activity are similarly predictive of neural activity as the same network tted directly to neural data, suggesting that object category as "seen" by the network is a good proxy for the representation of neural activity. These two works inspired us to investigate the phenomenon with fMRI in order to obtain a global overview of the system.

Inspecting the rst layer of a convolutional net yields lters that strongly resemble Gabor intensity lters, as well as color boundaries and color blob lters (shown at the top of Fig. 6.1). Inspecting the output of a convolutional net applied to an image often yields a correct object identi cation. We have thus pinned down similarities at the beginning and at the end of the ventral stream object recognition process and the arti cial neural network computations. Evaluating its intermediate layers with respect to how well they can explain activity in visual areas of the brain becomes interesting.

In this contribution we assess the predictive capacity of the processing layers of the convolutional network OverFeat [START_REF] Sermanet | OverFeat : Integrated Recognition , Localization and Detection using Convolutional Networks[END_REF], which yielded state of the art object recognition scores on the ImageNet dataset in early 2014. In an encoding framework [START_REF] Naselaris | Encoding and decoding in fMRI[END_REF], we train a linear predictive model of brain activity for each of the layers on the datasets of [START_REF] Kay | Identifying natural images from human brain activity[END_REF] and [START_REF] Huth | A Continuous Semantic Space Describes the Representation of Thousands of Object and Action Categories across the Human Brain[END_REF] and compare the modeling capacity by evaluating the predictive score on held out data for every voxel. We compare these scores over di erent layers and obtain continuous progression pro les that are distinct in each visual area. To validate the model, we propose to investigate the generalization capacity of the predictive model that we have learnt. To do so we use previously unseen stimuli, of which some come from totally di erent experiments and follow largely di erent pixel statistics. The learnt predictive model, which can be seen as data-driven forward model to generate fMRI activations, is used to generate putative brain activation maps corresponding to these novel inputs. In treating the model as a synthesizer for fMRI brain activation, we can draw on the extensive literature of paradigm-driven fMRI research by reproducing classical experiments. We consider two benchmarks: retinotopy, i.e. the capturing of spatial informa-tion to the point where visual eld maps can be generated, and a faces/places contrast to capture high-level information.

Figure 6.1: The experimental setup. Top left: 16 Examples of stimulus images (similar in content to the original stimuli presented to the subjects, and identical in masking) which are input to the convolutional network. Top middle: Selected features of rst layer (top left of panel) and image patches activating these features (other eight panels). Top right: Image space gradients of selected feature maps from layer 5 (left panel) and example patches driving these feature maps. The gradients show which change in the image would lead to a stronger activation of the feature map (see [START_REF] Simonyan | Deep Inside Convolutional Networks: Visualising Image Classi cation Models and Saliency Maps[END_REF]). Middle: Depicts convolutional net layers. Every layer is evaluated for its predictive capacity of all the voxels. For each layer, the corresponding predictive model is depicted by an arrow pointing downward from the convolutional net. It yields a score for each voxel, giving rise to a map of the brain, depicted below the arrow. Bottom: The close-up views are intended to highlight di erent areas that are well modeled: The rst layer models best medial occipital regions close to the Calcarine, the last layer explains more variance in lateral and inferior occipital regions. The middle layer shows an intermediate score map between the two extremes. 

Related work

In [Khaligh-Razavi and Kriegeskorte, 2014] the authors evaluate a large number of computer vision models, including a convolutional network. They assess their representational capacity with respect to brain activity while subjects viewed images of objects. They nd among other results that the last layers of the network exhibit similar representational similarities as IT neurons in the macaque as well as fMRI activation in humans.

Recent proof of concept work [START_REF] Güçlü | Deep neural networks reveal a gradient in the complexity of neural representations across the brain's ventral visual pathway[END_REF]] uses a convolutional network (di erent from the one used here, see [START_REF] Krizhevsky | Imagenet classi cation with deep convolutional neural networks[END_REF]), enabling the layer-wise analysis of voxel scores across layers. These results are restricted to one subject of [START_REF] Kay | Identifying natural images from human brain activity[END_REF], whereas we extend these results to both subjects. Moreover, we show that the mapping goes beyond a speci c experimental paradigm by reproducing our analysis on a video-viewing experiment.

Also concurrent with the present work is [Khaligh-Razavi et al., 2014], in which di erent computer vision algorithms and all layers of the convolu-tional network introduced in [START_REF] Krizhevsky | Imagenet classi cation with deep convolutional neural networks[END_REF] are compared to the BOLD activity on the data of [START_REF] Kay | Identifying natural images from human brain activity[END_REF]. The analysis is mostly restricted to representational similarity analysis, but a form of "remixing" features with the weights of a predictive ridge regression is introduced. A score progression across layers and regions of interest is also shown.

While the previous work only describes a given subject or experiment, we bring an important novel step to the use of convolutional networks for the study of human vision: showing that results generalize across datasets and paradigms. First, we show the validity of the approach on a new dataset with videos rather than still images. Second, we synthesize plausible brain activity to new images from completely di erent experiments that rely on hand-crafted, well controlled stimuli. These results demonstrate that convolutional networks can capture and analyze speci c cognitive processes that go beyond common studies of natural stimulation, generalizing to new experimental paradigms.

Methods

Datasets

We consider two di erent datasets of BOLD fMRI responses to visual stimulation of very di erent nature: still images and videos. The still images dataset [Kay et al., 2011a] originates from [START_REF] Kay | Identifying natural images from human brain activity[END_REF] and [Naselaris et al., 2009a]. It is described in detail in the Appendix 8.

The video stimulus was rst presented in [START_REF] Nishimoto | Reconstructing visual experiences from brain activity evoked by natural movies[END_REF] and used also in [START_REF] Huth | A Continuous Semantic Space Describes the Representation of Thousands of Object and Action Categories across the Human Brain[END_REF]. It consists of movie trailers and wildlife documentaries cut into blocks of 5-15 seconds and randomly shu ed. A train set of two hours duration and no repetition was separated from a test set in which around 10 minutes of unique stimulus were cut into blocks of around 3 minutes and repeated in random order 10 times each. Subjects xated a central cross while passively viewing these stimuli. This dataset comprises one subject.

Both datasets provide functionally localized regions of interest. Visual areas V1, V2, V3, V4, V3A, V3B and LOC were determined using phasecoded retinotopic mapping. All surface projections were computed using pycortex 1 . Flatmap diagrams were created directly with pycortex and ROI 1 http://pycortex.org boundaries were outlined according to localized maps, provided as volume maps in the dataset of [START_REF] Kay | Identifying natural images from human brain activity[END_REF] and as outlines for the data from [START_REF] Huth | A Continuous Semantic Space Describes the Representation of Thousands of Object and Action Categories across the Human Brain[END_REF]. Volume ROIs were projected to the surface using a nearest neighbor projection and outlines drawn along the borders of the projections.

The encoding pipeline

We chose the "large" version of the deep convolutional net "OverFeat" [START_REF] Sermanet | OverFeat : Integrated Recognition , Localization and Detection using Convolutional Networks[END_REF] to run our analyses. It features six convolutional layers and three fully connected ones. Details can be found in [START_REF] Sermanet | OverFeat : Integrated Recognition , Localization and Detection using Convolutional Networks[END_REF]. Here, we are interested in convolutional networks not to classify images, but as a means to transform them into successive intermediate representations: from Gabor-like features to abstract shapes (see Fig. 6.1). Using sklearn-theano 2 , the network was applied to all stimulus images and the 2 http://sklearn-theano.github.io outputs of all neural network layers kept. Since the intermediate representations are rather large (e.g. ∼ 10 6 features on the rst layer), each channel of each layer was spatially smoothed and subsampled to achieve a number of features of around 25000 per layer. This was achieved by determining smallest integer subsampling necessary to obtain 25000 features or less: for instance, the rst layer having 96 × 113 × 113 = 1225824 features, a spatial subsampling of factor 8 per axis is necessary to bring the number of features down to 19154. The smoothing parameter for the Gaussian is set to 0.35 × d, where d is the downsampling factor (here 8). For the video data, sampled at 15Hz at an acquisition TR of 2s, temporal downsampling was additionally performed by calculating the temporal mean across 30 frames at a time. A compressive non-linearity, log(1 + x) was applied pointwise, similarly to the procedure described in [START_REF] Naselaris | Encoding and decoding in fMRI[END_REF]. Using only the stimuli from the training set, 2 -penalized linear regression (ridge regression) was used to t a forward model for the outputs of each layer for each brain voxel. For the video data, temporally lagged copies of the outputs at t-4, t-6 and t-8 seconds were used in order to account for hemodynamic lag. We proceed by evaluating how well the activity of each brain voxel can be modeled by each of the OverFeat layers separately. The tted model was evaluated in a K-Fold cross-validation scheme with bagging. The training data were themselves divided into train/test splits (in accordance with scanner sessions: "leave one session out", K=5 for images, K=3 for videos) and a model trained on an inner train split was evaluated on the corresponding test split to select an optimal penalty. Model scores were obtained using predictive r 2 score for the dataset of [START_REF] Kay | Identifying natural images from human brain activity[END_REF]. This means that for a voxel v the activation y v test for the test set images was compared to the prediction by our model y v pred as follows: . The optimal models for each train/test split of the train data were averaged in order to gain stability of predictions. Mean scores over folds for the optimal penalty were kept as a quantitative measure of goodness of t.

r 2 v = 1 - y v test -
A schematic of the encoding model is provided in Fig. 6.1. All arti cial neural network layers are depicted as being convolutional, although the last three are what is generally known as "fully connected" layers. However, all fully connected layers can be reformulated as convolutions and [START_REF] Sermanet | OverFeat : Integrated Recognition , Localization and Detection using Convolutional Networks[END_REF] takes advantage of this to perform detection and localization. The lowest level layer is depicted on the left and the highest level layer on the right. The brain images below each layer show an r 2 score map for the predictive model learnt on this layer. The scores are normalized per voxel such that the sum of scores across layers is 1. This is necessary due to di erences in signal-to-noise ratio across brain regions and highlights the comparison of layers. As can be seen in the three close-up views of brain surfaces, the score maps look di erent across layers. This nding will be discussed in the results section.

Based on this result, we proceed with a per-ROI analysis of the cross-layer pro le of reponses and a more systematic mapping of layer preferences across all voxels that are well-explained by the model.

Synthesis of visual experiments

Using the predictive models learnt on each convolutional network layer, we propose a very simple, yet powerful, summary model by averaging all layer model predictions for each voxel. We validate the predictive capacity of this averaged model by using it as a forward model able to synthesize brain activation maps: Using new stimuli and the coe cients learnt using ridge regression, our model predicts full brain activation maps ("beta maps").

These activation maps can serve a classical analysis purpose in which one evaluates a general linear model with relatively few condition regressors, e.g. by contrasting the activation maps between two di erent experimental conditions.

We propose to revisit two classic fMRI vision experiments, retinotopy and the faces versus places contrast, by generating them with our forward model. Since these are known experiments, they can be compared and interpreted in context. At the same time, they test di erent levels of complexity of our model, retinotopy being purely bound to receptive eld location, the distinction of faces necessitating higher level features.

Note that retinotopic mapping was also used in the original study [START_REF] Kay | Identifying natural images from human brain activity[END_REF] to validate the forward model estimated using Gabor lters. In contrast to our setting, retinotopy was estimated by localizing receptive eld maxima for each voxel instead of using the predictive model as a data synthesis pipeline.

Retinotopy

We created "natural retinotopy" stimuli (compare [Sereno et al., 1995]) by masking natural images with wedge-shaped masks. The wedges were 30 • wide and placed at 15 • steps, yielding 24 wedges in total. After creation of exact binary masks, they were slightly blurred with a Gaussian kernel of standard deviation amounting to 2% of the image width. We chose 25 random images from the validation set of [START_REF] Kay | Identifying natural images from human brain activity[END_REF] and masked each one with every wedge mask by pointwise multiplication.

The thus obtained set of 600 retinotopy stimuli were fed through the encoding pipeline to obtain brain images for each one of them. These brain images were then used for a subsequent retinotopy analysis. The design matrix for this analysis contains the cosine and the sine of the wedge angle of each stimulus and a constant o set. The retinotopic angle is calculated from the arising beta maps by computing the arctangent of the beta map values for the sine and cosine regressors. Responsiveness of the model to retinotopy was quanti ed by the F-statistic of the analysis. In order to obtain an easily interpretable retinotopic map, the beta maps were smoothed with a Gaussian kernel of standard deviation 1 voxel before the angle was calculated. Display threshold is set at F > 1.

Synthesizing a "Faces versus Places" contrast Discriminating faces from places involves higher level feature extraction. It should be noted that with certain stimulus sets the distinction can also be done based on low level features such as edge detectors, but this is almost certainly untrue for the mechanism by which mammalian brains process faces due to the strong invariance and selectivity properties with respect to nontrivial transformations that they can undergo (see [START_REF] Pinto | Why is real-world visual object recognition hard[END_REF] for a discussion). In this sense, being able to replicate a "faces versus places" contrast with the proposed brain activity synthesis is a test for the ability to reproduce a higher level mechanism.

We compute a ground truth contrast against which we test our syntheses by selecting 45 close up images of faces and 48 images of scenes (outdoor landscapes as well as exteriors and interiors of buildings from the dataset of [START_REF] Kay | Identifying natural images from human brain activity[END_REF]). Examples similar to the original stimulus and identical in masking are depicted in Fig. 6.6 (A). Using a standard GLM, we compute a contrast map for "face > place" and "place > face", which are shown in Fig. 6.6 (C), thresholded at t = 3.0 in red tones and blue tones respectively.

Our rst experiment is to synthesize brain activity using precisely the 93 images which produced the ground truth contrast. We trained our predictive model on the remaining 1657 training set images of [START_REF] Kay | Identifying natural images from human brain activity[END_REF] after removal of the 93 selected face and place stimuli. After computing the synthesized activation images for the latter, we proceeded to analyze them using the same standard GLM procedure as above for the ground truth.

Due to the fact that the noise structure of the synthetic model is di erent, the threshold of the generated contrast must be chosen in a di erent manner. We use a precision-recall approach that can be described in the following way: Having xed the threshold of the ground truth contrast at t = 3.0, we de ne the support of the map as all the voxels that pass threshold. For a given threshold t on the synthesized map we de ne recall as the percentage of the support voxels from the ground truth contrast that are active in the thresholded synthesized map and precision as the percentage of active voxels in the thresholded synthesized map that are in the support of the ground truth map. We de ne the synthesized map threshold t R50 as the threshold guaranteeing a minimum of 50% recall while maximizing precision.

Our second experiment tests the generalization capacity of our model in a more extreme situation: In order to make sure that our feedforward model is not working with particularities of the stimulus set other than the features relevant to faces and scenes, we also evaluated the faces versus places part of the dataset from [START_REF] Haxby | Distributed and overlapping representations of faces and objects in ventral temporal cortex[END_REF]. This study showed distributed and overlapping representations of di erent classes of objects in ventral visual areas. Among the stimuli are 48 pictures of faces and 48 pictures of houses, both tightly segmented, on a light gray background. These stimuli are notably di erent in appearance from the ones used to train our model. We applied the same feedforward pipeline to obtain simulated activation maps for each of these images and the same GLM analysis and thresholding procedure as described in the preceding experiment.

Experimental results

On inspection of the three zoomed panels from Fig. 6.1 one observes that the score maps are di erent across layers. On the left, the model based on the rst layer explains medial occipital regions well with respect to the others. It includes the calcarine sulcus, where V1 is situated, as well as its surroundings, which encompass ventral and dorsal V2 and V3. This contrasts to the score map on the right, which represents the highest level model. The aforementioned medial occipital regions are relatively less well explained, but lateral occipital, ventral occipital and dorsal occipital regions exhibit comparatively higher scores.

Quantifying layer preference

For each voxel, we call the set of scores associated with the prediction of its activity from each layer the score ngerprint of that voxel. Given the fact that layer outputs are somewhat correlated (across layers) and each voxel contains many neurons, we do not expect sharp peaks in the score ngerprint for a speci c "best" layer. Rather we expect a progression of scores over layers indicating a global trend towards simple, intermediate or more highlevel representations. Using the ROI de nitions provided by the datasets, we can study the mean score ngerprints per region of interest. The average score ngerprint per ROI was obtained using the 25% best predicted voxels within the region. For each region of interest, the mean score ngerprint was normalized by its maximum value. The resulting normalized progressions are shown in Fig. 6.2. We observe that for both subjects, the score ngerprint for V1 peaks at the rst layer. It then decreases in relative accuracy as the layer index increases. For the mean ngerprint of V2, the peak lies on the second layer and the subsequent decrease is a little slower than that of the V1 ngerprint. This indicates a selectivity for a mix of higher level functionality less present in V1. The V3 mean score ngerprint also peaks at layer 2 and decreases less fast than the V2 ngerprint, indicating a layer selectivity mix of again slightly higher levels of representation than present in V2. The mean V4 ngerprint peaks signi cantly later than the rst three, around layers 4 and 5, but at lower layers the representation is never extremely bad. The score ngerprint is constantly above 70% of its maximum score. In contrast, the dorsal areas V3A and V3B are much less well modeled by lower level layers than by higher level layers. Similarly, the lateral occipital complex (LOC) shows a strong increase in relative score with increasing representation layer number.

In Fig. 6.3 we show an "argmax" map over spatially smoothed scores (σ = 1 voxel). It is obtained by smoothing each score map and then associating each voxel with the layer which best tted its activity. Despite the fact that the second strongest scores are sometimes only slightly below the maximum (cf. Fig. 6.2) it turns out that this marker provides compelling outlines of the organization of the visual system. It is indeed visible that the smoothing with argmax visualization is plausible with respect to network layer organization.

One observes that medial occipital regions are mostly in correspondence with the rst layer, that there is a progression in layers along the ventral and dorsal directions, which is symmetric, and that there is a global symmetry across hemispheres.

Figure 6.3: Best model per voxel. Among the voxels which are modeled by at least one of the convolutional network layers, we show which network layer models which region best. This is achieved by smoothing the layer score maps (σ = 1 voxel) and assigning each voxel to the layer of maximal score. One observes that the area around the Calcarine sulcus, where V1 lies, is best t using the rst layer. Further one observes a progression in layer selectivity in ventral and dorsal directions, as well as very strong hemispheric symmetry.

In order to better show the layer selectivity of each voxel as represented by its score ngerprint in a brain volume, we derived a summary statistic based on the following observation. As can be seen in Fig. 6.2, the average ngerprints of each region of interest have either an upward or a downward trend. It turns out that the rst principal component of all score ngerprints over signi cantly well predicted voxels is a linear trend. Moreover, it explains over 80% of the variance of all ngerprints. The projection onto it can therefore be used as a summary of the voxel ngerprint. Here we use a xed trend going from -1 at layer 1 to 1 at layer 9 in steps of 0.25. Projecting the score ngerprints onto this ascending trend, which amounts to evaluating the global slope, yields a summary of the voxel ngerprint. It is shown for subject 1 in Fig. 6.4 on the left. We observe that V1 ngerprints project almost entirely to the low level range of models, indicated by blue hues. V2 shows more presence of green, indicating intermediate level models. This trend continues in V3. V4 shows a clear preference for mid-level models. Subsequent regions show a tendency towards even higher level representations. Figure 6.4: Fingerprint summaries as brain map. We compute a summary statistic for voxel ngerprints by evaluating their inner product with an ascending linear trend from -1 to 1 in nine steps of 0.25. This yields low values for low layer preference and high values for late layer preference. Observe the preference for low-level models in earlier visual areas V1 and V2. With increasingly higher layer selectivity for V3, V4 and ulterior visual areas, a trend from low level to high level representation across the ventral and dorsal visual pathways becomes apparent.

This progression is mirrored exactly on the second panel of Fig. 6.4. Applying an identical visualization technique to the score ngerprints obtained from modeling the video experiment, we observe a very similar progression of model selectivity across the early visual areas. As above, the ngerprint summary indicates lower level layer preference in V1 and V2, intermediate layers in V3 and V4 and high level layers in parts of lateral occipital and specialized areas such as the extrastriate body area (EBA, [START_REF] Downing | A cortical area selective for visual processing of the human body[END_REF]) and the transverse occipital sulcus (TOS, [Bettencourt and Xu, 2013]).

Recall that the latter data were acquired in a completely di erent experiment, with videos instead of images. It is to be noted that the convolutional network was applied directly to the individual frames of the video, followed by a temporal aggregation in order to reach the temporal scale of the fMRI acquisition. No explicit motion processing or other video-speci c processing was incorporated. The fact that the same underlying model obtains similar results is a strong demonstration of the reproducibility of our ndings.

Synthesis of visual experiments Retinotopy

The angular maps obtained by synthesizing fMRI activation from virtual wedge-shaped stimuli can be seen in Fig. 6.5. Comparison to existing literature shows that the model indeed captures the transitions of known retinotopic regions. For instance, one can observe the sign inversions of the gradient of the angle map at the transitions from ventral V1 to ventral V2 and ventral V3 to ventral V4. These transitions are very clear and in perfect correspondence with the outlines of the volume-based retinotopic regions of interest provided with the dataset. The transitions in dorsal primary visual areas are apparent but slightly less well delineated, possibly due to surface projection di culties. In sum, the obtained virtual angle map is coherent with respect to Di culties possibly due to distortion between available anatomical and functional images. Regions of interest were drawn according to projection of volumebased maps. Irregularities were observed in placement of dorsal areas V3A/B and left V4. the information available in the subject (see [START_REF] Mi Sereno | Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging[END_REF] and [START_REF] Wandell | Visual eld maps in human cortex[END_REF]). Figure 6.5: Retinotopic map for subject 1. Synthesizing the responses to retinotopic wedge stimuli and performing a classic phasecoding GLM analysis, we show the retinotopic angle map at display threshold F = 1. As can be seen in the ventral part of the brain map (lower half), the retinotopic mapping indicates visual angle inversions exactly at the locations previously identi ed by a localizer, aligning perfectly with the visual map borders traced on the surface. Dorsal areas (upper half) exhibit the same tendencies in a less pronounced manner.

Replicating the "Faces versus Places" contrast

We rst synthesize the brain activity corresponding to the images which produced the ground truth contrast (but left out during model training). The results for the 93 held-out stimuli from [START_REF] Kay | Identifying natural images from human brain activity[END_REF] are shown in Fig. 6.6 (D) and the results of the transferral to the experiment of [START_REF] Haxby | Distributed and overlapping representations of faces and objects in ventral temporal cortex[END_REF] are to be seen in Fig. 6.6 (E). Observe the striking similarity of both simulated contrasts to the ground truth contrast in Fig. 6.6(C). [START_REF] Kay | Identifying natural images from human brain activity[END_REF] containing close up photos of faces (45 total) and places (48 total), removed from the train set of the synthesis model. (B) Examples of the stimuli from [START_REF] Haxby | Distributed and overlapping representations of faces and objects in ventral temporal cortex[END_REF] for faces and places (48 for each in total). (C) Contrast of BOLD activity from a GLM model of the held-out face and place stimuli. Referred to as ground truth in view of the synthetic data. (D) Predicted contrast for the 93 held out face and place stimuli from the training set of [START_REF] Kay | Identifying natural images from human brain activity[END_REF]. Thresholded at best precision given minimum recall of 50% of ground truth activation support. (E) Predicted contrast for the 96 face and house stimuli from [START_REF] Haxby | Distributed and overlapping representations of faces and objects in ventral temporal cortex[END_REF]. Thresholded as in D. (F) Predicted contrast for the 96 face and house stimuli from [START_REF] Haxby | Distributed and overlapping representations of faces and objects in ventral temporal cortex[END_REF]] using only layer 1, i.e. a rst order, edgedetector type feature map. Thresholded at 50% recall of ground truth as in D. Note the strong noise component in the map compared to D and E.

The areas that respond to faces are lateral occipital and inferior occipital. The Lateral Occipital Complex is known to have face selective subparts [START_REF] Grill-Spector | The lateral occipital complex and its role in object recognition[END_REF] and the inferior occipital Occipital Face Area is also known to be involved in face processing. It is possible that some more generally body part selective areas are active as well since the stimuli used to obtain the ground truth contrast may also contain a view on e.g. part of the torso [START_REF] John C Taylor | Functional MRI analysis of body and body part representations in the extrastriate and fusiform body areas[END_REF][START_REF] Downing | A cortical area selective for visual processing of the human body[END_REF]. Note that both the fusiform face area and the fusiform body area are outside the eld of view of the acquisition and thus invisible to the ground truth contrast and the synthesized contrast.

The areas responsive to places are mainly dorsal in the given eld of view. We observe activation in regions that are most likely to be transverse occipital sulcus (TOS) and inferior intraparietal sulcus (IPS). Since these regions are typically close together anatomically and as no localizer for them was performed on the given brain, it is di cult to tell them apart. However, [START_REF] Katherine | The role of transverse occipital sulcus in scene perception and its relationship to object individuation in inferior intraparietal sulcus[END_REF] shows that TOS is strongly scene selective whereas inferior IPS may be more concerned with object individuation and localization. Note that the habitually mentioned place-selective Parahippocampal Place Area [START_REF] Epstein | A cortical representation of the local visual environment[END_REF]] is also not within the eld of view of the acquisition.

In conclusion, the simulated face/place contrasts using stimuli from [START_REF] Kay | Identifying natural images from human brain activity[END_REF] and from the very di erent stimulus set of [START_REF] Haxby | Distributed and overlapping representations of faces and objects in ventral temporal cortex[END_REF] both create an activation contrast very close to the estimated ground truth contrast. The ground truth contrast yields coherent activation maps which t well into existing literature.

In order to show that this type of synthesis is impossible with a rst layer contour only model, we show the contrast using layer 1 from the model in Fig. 6.6 (F). The previously identi ed regions can no longer be distinguished from the strong noise in the surroundings. Fig. 6.6 (G) depicts the precision-recall curves for face and place selective areas for the averaged model and for the layer 1 model. Studying the high precision range at the left of the diagram, it becomes clear that the proposed average synthesis model shares its strongest activations exactly with the ground truth contrast, leading to 100% precision. This is never the case for the model obtained from layer 1.

Discussion

The study of the mammalian visual system has historically been led by crafting stimuli designed to trigger neural activation in various sub-systems of the visual cortex, from edges [START_REF] Hubel | Receptive elds of single neurones in the cat's striate cortex[END_REF], to abstract shapes and faces [START_REF] Gallant | Neural responses to polar, hyperbolic, and Cartesian gratings in area V4 of the macaque monkey[END_REF][START_REF] Desimone | Stimulus-selective Properties of Inferior Temporal Neurons in the Macaque[END_REF][START_REF] N K Logothetis | Shape representation in the inferior temporal cortex of monkeys[END_REF][START_REF] Kanwisher | The Fusiform Face Area : A Module in Human Extrastriate Cortex Specialized for Face Perception[END_REF][START_REF] Bentin | Electrophysiological studies of face perception in humans[END_REF]. However, the visual system responds conditionally to the types of stimuli that it receives. Elicited neural responses from parametrically varied synthetic stimuli may be strongly related to the chosen stimulus ensemble, making generalizations di cult. Naturalistic stimuli provide experimental settings that are closer to real-life ecological settings, and evoke di erent responses [START_REF] Gallant | Neural activity in areas V1, V2 and V4 during free viewing of natural scenes compared to controlled viewing[END_REF]].

While most detailed understanding about neural computation has been pushed forward using electrophysiological experiments, the non-invasive methodology of fMRI o ers the bene t of full-brain coverage. Many typical fMRI studies investigate binary hypotheses by devising stimuli speci c to a question, whether they be naturalistic or not. In contrast, the dataset on which we rely [Kay et al., 2011a], is due to an investigation of the BOLD fMRI responses to a large number of not speci cally chosen natural stimulus images, showing that it is possible to identify the stimulus among thousands of candidate images. Departing from studies based on manual crafting of speci c stimuli and corresponding restrictive hypotheses, we propose to model brain responses due to pure natural image statistics. Indeed, capturing and modeling the rich statistics in images of the world that surrounds us must be a driving principle of the structure of visual cortex, as suggested by [START_REF] Bruno | Emergence of simple-cell receptive eld properties by learning a sparse code for natural images[END_REF] for the primary visual areas. Here, we rely on a very powerful computational model capturing these statistics: a deep convolutional network with enough representational capacity to approach human-level core object recognition.

Based on the contest-winning convolutional network OverFeat, we have built a feedforward model explaining brain activity elicited by visual stimulation from the image representations in the various layers of the convolutional network. We tted a separate model to all brain activity for each layer and obtained prediction scores for each one of them. These prediction scores were analyzed in order to establish a comparison between the convolutional network feature hierarchy and brain regions. In an ROI analysis we show that early visual areas are better modeled with lower level layers from the convolutional network but that progressing ventrally and dorsally from the calcarine sulcus there is a clear increase in selectivity for complex representations as indicated by increasingly better scores for higher level layers. Furthermore, score ngerprint summaries obtained by projection of individual score ngerprints onto an ascending trend show a clear spatial gradient in a nity to higher level representations: Starting at V1 we observe a clear dominance of low level layers in the score ngerprint. Across subsequent extrastriate visual areas we observe a gradual and continuous increase in relative predictive power of the complex representations. The same result was obtained for a representation of score ngerprints due to a visual movie experiment. This yields a second indicator of the existence of a gradient in complexity coming from a completely di erent dataset. Finding the same global structure on such di erent stimuli is a strong con rmation that the uncovered structure is not spurious or due to experiment design.

It should be emphasized that this functional characterization does rely to some extent on the structural similarity between the functional organization of the visual cortex and that of the computational model. In a convolutional network, the linear transformation is restricted to the form of a convolution, which forces the replication of the same linear transformation at di erent positions in the preceding layer image. This forces similarity of processing across the 2D extent of the image and constrains the receptive elds of the units to be localized and spatially organized. This spatial sparsity saves computational resources and entails a strong inductive bias on the optimization by encoding locality and translation covariance. It is however important to note that biological visual systems generally do not exhibit linear translation covariance. The retinotopic correspondence map allocates much more cortical surface to foveal regions than to peripheral regions. This is called cortical magni cation (see e.g. [START_REF] Mark M Schira | Two-dimensional mapping of the central and parafoveal visual eld to human visual cortex[END_REF] for details).

In this work, we introduce a new method for validating rich encoding models of brain activity. We generated simulated brain activation for known, standard fMRI experiments using a model-averaged predictor and analyzed them using well-known, classical task fMRI methods. We chose two experiments at di erent levels of complexity: Retinotopy, a low-level spatial organization property of the visual system, and the faces versus places contrast, an experiment necessitating high-level recognition capacity and complex representations. The results show that both experiments are well replicated. Angle gradient sign inversion lines indicating the bounds of visual areas are correctly identi ed. Face and place selective voxels as de ned by a previously calculated contrast on true BOLD signal are correctly identi ed in the synthesized contrast in the sense that the voxels responding strongest to the simulated contrast are those that are the strongest in the BOLD contrast. This notion is visualized in a rigorous manner by presenting the synthetic maps at a threshold that recovers at least 50% of the supra-threshold area t ≥ 3.0 of the original activation map.

Both for left-out face and place stimuli from the original experiment and the stimuli of faces and houses used from [START_REF] Haxby | Distributed and overlapping representations of faces and objects in ventral temporal cortex[END_REF], the model had never seen these images at training time. It had seen the same type of image as the held out set in the sense that they were taken from the same photo base, had the same round frame and the same mean intensity. The type of image coming from [START_REF] Haxby | Distributed and overlapping representations of faces and objects in ventral temporal cortex[END_REF] was segmented di erently -tightly around the object-making the framing very di erent in addition to very di erent mean intensities and pixel dynamics. Our synthesis model for brain activation was robust to these di erences and yielded very similar contrasts to the ground truth. Similarly, the retinotopy stimuli were constructed from previously unseen images, and the geometry of the retinopy wedges was entirely new to the system as well. Generalizing to such images, with di erent statistics from those of the experiment used to build the model, is clear evidence that our model captures the brain representations of high-level invariants and concepts in the images.

We have thus built a data-driven forward model able to synthesize visual cortex brain activity from an experiment involving natural images. This model transcends experimental paradigms and recovers neuroscienti c results which would typically require the design of a speci c paradigm and a full fMRI acquisition. In the current setting, any passive viewing task with central xation can be simulated using this mechanism. After a validation of correspondence on many contrasts for which one has BOLD fMRI ground truth, one could use it in explorative mode to test new visual experimental paradigms. Discrepancies, i.e. the inability of the model to describe the response to a new stimulus adequately, would provide cues to re ne this quantitative model of the visual cortex activity. Take-Home Messages:

• Convolutional Neural Net layers t the activity of fMRI brain voxels in visual brain regions following stimulation with natural images;

• Mapping each voxel to the convolutional net layer which models it best yields a brain map of rising complexity along the visual processing hierarchy;

• Embedding score ngerprints into 1D PCA space yields smooth transition from low-level to high-level model preference across cortex;

• Averaging the predictions for all layers yields a forward model capable of predicting brain activity such that it generalizes to other experiments. We reproduce classical results when this brain activity is analyzed as if it were true brain activity. Examples: Low level: Retinotopy; High level: Faces vs Places.

Conclusion

Summary

• Through this thesis we aimed to advance the understanding of three elds by an increment: Understanding BOLD fMRI data, understanding appropriate analysis methods and understanding brain function.

• In order to better understand BOLD fMRI data, we performed a comprehensive analysis of the data from two event-related designs, with focus on the shape of the hemodynamic response function. We showed that taking the spatial variability of the hemodynamic response into account resulted in activation map estimation that yielded signi cant performance enhancement in both encoding and decoding models.

• We investigated the paradigm of brain decoding from fMRI data by approaching it from a machine learning and optimization perspective, with a strong emphasis on interpretability. Building on the existing set of spatially informed convex 1-homogenous penalties called TV 1 norms, we added a modi cation leading to a more plausible prior: Global sparsity with contiguous regions of zero activation and contiguous regions of smoothly varying activation. Studying the properties of these penalties as priors on weight maps, we registered slight performance increases and plausible feature maps.

• In an fMRI experiment investigating the responses of the human visual system to images of natural textures, we observed that large portions of the early visual system responds to texture images. In studying signi cant di erences in activation across the six texture classes it becomes apparent that V1 and V2 seem to activate very similarly to all classes. Only in later areas do the voxels respond signi cantly di erently to di erent texture classes. This result is along the lines of [START_REF] Freeman | A functional and perceptual signature of the second visual area in primates[END_REF][START_REF] Okazawa | Image statistics underlying natural texture selectivity of neurons in macaque V4[END_REF]. Further investigations are necessary in order to delineate these e ects with higher con dence. Notably, a scale-up in number of stimuli and number of texture classes seems called for, along with the generation of synthetic stimuli yielding similar descriptors or potentially mixing between classes. This would give access to useful control conditions. Experimental design should modulate attention in order to be able to assess and discount its impact on estimation.

• Finally, using a pre-trained convolutional net which reached state of the art in the ImageNet object recognition challenge in 2013, we were able to show that di erent convolutional net layers predict di erently well welldelineated parts of the visual hierarchy, showing a progression of rising complexity (as represented by layer number) as one progresses down the ventral stream. This nding corroborates many models of vision in highlighting the correspondences of intermediate steps.

Outlook

In this thesis we touched upon several aspects of fMRI data analysis. From the inspection of the data themselves via the examination of relevant methods to the study of some neuroscienti c aspects using encoding models. Each of these topics has given rise to follow-up questions to be addressed in future work. In this outlook we concentrate on the main points, the investigation of which should lead to the largest gain in terms of insight.

Natural stimuli

One important debate can be centered around comparison of natural stimulation versus controlled environment. Speci cally in order to test the responses of the visual systems with controlled stimuli, more and more complicated types of stimuli had to be devised in order to be able to drive neurons in higher level visual areas. These stimuli would often be parametrized by a low number of parameters and thus span a relatively low-dimensional space of images in a way that the experimenter has decided. Visual systems will likely respond to these stimuli, but conclusions can only be drawn taking to account the nature of that speci c set of stimuli. By choosing this set of stimuli to be natural stimuli, one avoids this problem, since the visual system is then confronted with input that it can plausibly have seen in its environment, i.e. stimuli it is "made to deal with well". It still holds that the response of the visual system is conditional on the stimulus set, but this speci c stimulus set is more easily justi ed. The issues arising from natural stimulation are immediate: It is largely impossible to sample the full space, so choices need to be made. Co-occurrences of concepts and correlations of more basic quantities are inevitable. It is in the interest of the experimenter to acquire as many data as possible to stand a chance at dissecting the correlation structure. Then again, this correlation may be "normal" and part of the statistics of natural images. This is certainly true for the correlation structure of lower level descriptors. But the fact that all images of boats that are in the stimulus ensemble only show boats in the middle of the ocean doesn't make boats outside the water irrecognizable to humans -although it may take a moment longer for us to recognize an object out of context. Here at the latest it should become very clear that the question the experimenter would like to ask of the data is crucial to and should precede the acquisition. Similar to this issue, there are non-negligible implicit biases within natural stimuli if they are taken to be photos. In general, photos are framed in very speci c ways, placing prominent object in a very restricted number of positions and typically having the horizon horizontal and plumb line vertical, which are evidently not always placed that way on the retina. It is shown in [START_REF] Pinto | Why is real-world visual object recognition hard[END_REF] how this type of framing bias can lead to classi cation performance that is higher than expected for very simple models of vision on CalTech101. It is then shown that this bias can be removed by "creating natural stimuli" by placing natural objects on natural background such that position, orientation and potentially other variables are sampled uniformly. It is clear to see that this is a form of controlling stimuli, and that it is motivated relative to a speci c question: in this case the evaluation of the capacity of invariant object recognition, a capability which primate brains tend to have. Natural stimulation is probably the only way to reach all visual areas and study them in detail. But speci c questions should be asked, and control stimuli created to be able to answer these. Concretely, once models of the visual system become more and more accurate even in predicting BOLD response, they can be conveniently tested by creating stimuli that yield the same response according to the model, as has been done in [Freeman andSimoncelli, 2011, Freeman et al., 2013]. This approach should be the general way of attacking new models. A counterpart is to nd stimuli that yield extremal responses of the model and to measure to what extent the response of the real system corresponds.

fMRI

This thesis has been fMRI-centered, touching on various aspects of statistical data analysis involving it. Many global studies concerning vision have been conducted and have yielded interesting results. Most of these results are of the "mapping" type, e.g. the discovery of a mosaic of seemingly specialized, modular brain units in higher level visual areas, such as FFA, PPA, OFA, TOS, EBA, VWFA and others, as de ned by being di erentially most active amongst a number of chosen stimulus classes. Additionally, mappings of spatial arrangment of functionality have been studied via retinotopy, to reveal spatial arrangement of brain areas from low level to high level. These are discoveries to which fMRI has been indispensable due to its global nature and su cient spatial resolution. The studies of [START_REF] Kay | Identifying natural images from human brain activity[END_REF] and [START_REF] Nishimoto | Reconstructing visual experiences from brain activity evoked by natural movies[END_REF] have shown that properties known to be true locally at the neuron level, e.g. the responsiveness of V1 to oriented edges, translate to the BOLD response of voxels: More contour energy leads to stronger BOLD response in the voxel. The analysis in chapter 6 shows that this can be pushed further by using features of mid and high-level complexity from object recognition neural networks. This population-level argumentation leaves the frustrating aftertaste of not being able to properly reach down and conclude on "what the neurons are doing". In V1, which is a relatively well understood visual area, it is clear that current fMRI methods, available for easy deployment in any laboratory, are not capable of spatially resolving cortical columns of any type (although speci c research into pushing this frontier has been done [START_REF] Yacoub | High-eld fMRI unveils orientation columns in humans[END_REF]). If they were, it would become necessary to study the subtle local hemodynamics of these structures to be able to draw conclusions. Having su ciently convinced oneself that one is able to thus properly study e.g. orientation selectivity in V1, one could then move on to the next visual areas and test hypotheses at the same level of resolution. Given the current techniques, the only way to see into subvoxel populations is by adaptation, which is an indirect technique that may not always permit the desired conclusions. On a higher level than orientation selectivity, what exactly would it mean to adapt to a certain higher level feature? This discussion would lead back into that of optimal control of stimuli. For future developments in negrained forward modelling, it could thus be of interest to invest time on the acquisition side and assess the possibility of exceptionally high resolutions, ideally both spatially and temporally, on single slices of e.g. V1, after having formulated a clear hypothesis of what one expects to nd.

Combination of modalities

The study of cognitive phenomena should not be intrinsically restricted to a certain modality. FMRI is situated at a certain trade-o in spatio-temporal resolution, which is arguably low on both sides. However, its spatial resolution is orders of magnitude better than that of e.g. MEG. In order to study the intricacies of information ow, especially that of visual feedback from higher to lower areas, one needs either some very cunning experimental design for fMRI to draw indirect conclusions, or su cient temporal resolution to be able to resolve these phenomena. Combining fMRI for localization and MEG for temporal tracking of activation may in the best case permit conclusions in the best spatial and temporal resolutions of both modalities. The work of [START_REF] Martin Cichy | Resolving human object recognition in space and time[END_REF] is an important step in this direction.

Concluding remarks

This thesis touched several aspects concerning the evaluation of computational models of vision with fMRI. It has been an attempt to settle in between the typical applications of machine learning and the eld of neuroscience, with the goal to do justice to both. The result is the development of ideas for a set of tools that will probably shape the future of the studies of neuroscience: Hard bottom-up computational models will likely become capable of explaining more and more types of brain activity and with an extra e ort, these models may remain interpretable. More ne-grained stimulus generation will result in a disection of populations of candidate models. A part from pushing neuroscienti c understanding, these insights may also be used to create more and more easy to use brain machine interfaces. The rst dataset we will consider is described in [START_REF] Kay | Identifying natural images from human brain activity[END_REF], Naselaris et al., 2009b, Kay et al., 2011b]. It contains BOLD fMRI responses in human subjects viewing natural images. Prediction of BOLD signal following the visual presentation of natural images is performed and compared against the measured fMRI BOLD signal. As the procedure consists of predicting the fMRI data from stimuli descriptors, it is an encoding model. This dataset is publicly available from http://crcns.org Two subjects viewed 1750 training images, each presented twice, and 120 validation images, each presented 12 times, while xating a central cross. Images were ashed 3 times per second (200 ms on-o -on-o -on) for one second every 4 seconds, leading to a rapid event-related design. The data were acquired in 5 scanner sessions on 5 di erent days, each comprising 5 runs of 70 training images -each image being presented twice within the run-and 2 runs of validation images showing 12 images, 10 times each. The images were recorded from the occipital cortex at a spatial resolution of 2mm×2mm×2.5mm and a temporal resolution of 1 second. Every brain volume for each subject has been aligned to the rst volume of the rst run of the rst session for that subject. Across-session alignment was performed manually. Additionally, data were temporally interpolated to account for slice-timing di erences. See [START_REF] Kay | Identifying natural images from human brain activity[END_REF] for further preprocessing details.

Appendix

Dataset 2: decoding of potential gain levels

The second dataset described in [Tom et al., 2007a] is a gambling task where each of the 17 subjects was asked to accept or reject gambles that o ered a 50/50 chance of gaining or losing money. The magnitude of the potential gain and loss was independently varied across 16 levels between trials. Each gamble has an amount of potential gains and potential losses that can be used as class label. In this experiment, we only considered gain levels. This leads to the challenge of predicting or decoding the gain level from brain images. The dataset is publicly available from http://openfmri.org under the name mixed-gambles task dataset.

The data preprocessing included slice timing, motion correction, coregistration to the anatomical images, tissue segmentation, normalization to MNI space and was performed using the SPM 8 software through the Pyprepro-cess 1 interface.

1 https://github.com/neurospin/ pypreprocess

Analytical leave-k-out ridge regression

We present an analytical formula to perform cross-validation in kernel ridge regression.

To the best of our knowledge, the extension of analytical leave-one-out cross-validation to analytical leave-k-out cross-validation represents original work.

Notation

Let X be a set and k : X × X → R be a positive de nite kernel. Let n ∈ N and (x i ) i=1,...,n be a nite number of samples from X and K ∈ R n×n be the Gram matrix with K ij = k(x i , x j ). Further let y i ∈ R, i ∈ {1, ..., n} be corresponding prediction target values (outcomes) and w i > 0 weights indicating the importance of each sample.

For 1 ≤ i ≤ n we denote K i = K i,• the ith row of matrix K and K •,i the ith column. For an index set I ⊂ {1, . . . , n}, x I denotes (x i ) i∈I , K I denotes all lines of K indexed by I, i.e. (K i ) i∈I , K •,I denotes all columns of K indexed by I, i.e. (K •,i ) i∈I and K I,I denotes the square submatrix of K indexed by I, i.e. (K ij ) i,j∈I .

We use the convention that f (x I ) = ( f (x i )) i∈I .

Refresher: Kernel Ridge regression with sample weights

We are interested in solving the following weighted Ridge regression problem:

f = arg min f 1 2 n ∑ i=1 w i ( f (x i ) -y i ) 2 + λ 2 f 2 k . (8.1)
Setting all w i = 1 recovers the simple unweighted Ridge regression functional. The simplest representer theorem covers this case [START_REF] Scholkopf | Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond[END_REF] and guarantees that the solution can be written in the form f = ∑ n i=1 ĉi k(•, x i ) for a certain dual solution ĉ ∈ R n . In particular, for 1 ≤ j ≤ n we have f (x j ) = ∑ n i=1 ĉi k(x j , x i ) = (K ĉ) j = K j , ĉ . The regression problem can thus be reframed to nding the vector ĉ such that 

ĉ = arg min c 1 2 n ∑ i=1 w i ( K i , c -y i ) 2 + 1 2 n ∑ i,j=1

Generalized generalized cross-validation

We now consider cross-validation with left out data. In the following, the train set will be indexed by I ⊂ {1, . . . , n} and the test set (held out data points) will be I C = {1, . . . , n} \ I. Following a reasoning similar to that used in [START_REF] Rifkin | Notes on regularized least squares[END_REF], we proceed to establish an analytical expression for the prediction error on the test set of the model tted on the train set. from which we deduce that g I minimizes f → 1 2 ∑ i∈I w i ( f (x i )y i ) 2 + λ 2 f 2 k , and by unicity of the minimizer must be identical to f I . Equivalently, f I is the solution to the Ridge functional with data (x j ) j=1,...,n and target z I .

Let f be the minimizer of the Ridge functional using all data I ∪ I C . Then, for x j , 1 ≤ j ≤ n we have f (x j ) = (K ĉ) j and similarly, f I (x j ) = (K ĉI ) j . By setting R = √ W( K + λ Id) -1 √ W, we can write ĉ = Ry and ĉI = Rz I . Thus we obtain f (x j ) = (K Ry) j and fI (x j ) = (K Rz I ) j . Since y and z I di er only on I C , we compare the two and obtain f (x j ) -fI (x j ) = K R(y - which establishes a very compact expression for the held-out error vector, making strong use of the resolvent operator R.

Performance evaluation

We propose to thoroughly evaluate the established analytical formula in a benchmark against the "traditional" approach for cross-validation on heldout data.

Comparing to an approach that inverts the regularized kernel matrix on only the train set, we expect to see an o set in preparatory calculation by the necessity of our model to invert the full regularized kernel matrix. However, for su ciently small test set sizes, the evaluation of held-out error can be done much faster, since for each test set no new train set kernel matrix needs to be inverted. 
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Figure 1

 1 Figure 1.3: Schematic visualization of an intracellular recording. It is possible to place arrays of many electrodes arranged in a grid to record from multiple locations at once. Intracranial EEG or Electrocorticography (ECOG) is a similar technique in which a plastic sheet containing more widely spaced electrodes is placed on the cortex.

Figure 1

 1 Figure 1.4: Electrocorticography electrode grid placed on the surface of the cortex of a human subject.
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 1 Figure 1.5: X-ray CT and PET scanner Siemens Biograph TruePoint

Figure 1 . 6 :

 16 Figure 1.6: Placement of EEG electrodes on the head.
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 1 Figure 1.7: MEG machine in a magnetically shielded room (MSR).
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 1 Figure 1.8: NMR spectrometer for the study of the structure of molecules via quantum magnetic e ects such as Zeeman energy level splitting.

  Sections 2.2 to 2.7 have been published in • F. Pedregosa, M. Eickenberg, P. Ciuciu, B. Thirion, A. Gramfort "Datadriven HRF estimation for encoding and decoding models", NeuroImage, Volume 104, 1 January 2015, Pages 209-220. • F. Pedregosa, M. Eickenberg, B. Thirion, and A. Gramfort, "HRF estimation improves sensitivity of fMRI encoding and decoding models", Proc. 3rd International Workshop Pattern Recognition in NeuroImaging, 2013

  Figure 2.2:Image identi cation score (higher is better) on two di erent subjects from the rst dataset. The metric counts the number of correctly identi ed images over the total number of images (chance level is 1/120 ≈ 0.008). This metric is less sensi-
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  Figure 2.3:Average correlation score (higher is better) on two di erent subjects from the rst dataset. The average correlation score is the Pearson correlation between the predicted BOLD and the true BOLD signal on left-out session, averaged across voxels and sessions. Methods that perform constrained HRF estimation signicantly outperform methods that use a xed reference HRF. As for the image identi cation performance, the best performing method for subject 1 is the R1-GLM, while for subject 2 it is the R1-GLMS model, both with FIR basis. In underlined typography is the GLM with a xed HRF which is the method used by default in most software distributions. A Wilcoxon signed-rank test is performed between each method and the next one in the ordered result list by considering the leave-one-session out cross-validation scores for each method. We report p-values to assess whether the score di erences are statistically signi cant.
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 2 Figure2.5: Voxel-wise encoding score for di erent models that perform HRF estimation ( rst dataset). As in gure 2.4, color codes for the time to peak of the estimated HRF at the given voxel. Top: two Rank-1 separate design models with different basis functions: FIR with 20 elements in the Y-axis and the reference HRF with its time and dispersion derivatives (3HRF) in the Xaxis. The color trend in this plot suggests that the score improvement of the FIR basis with respect to the 3HRF becomes more pronounced as the time-to-peak of the estimated HRF deviates from the reference HRF (peak at 5s). This can be explained by taking into account that the 3HRF basis is a local model of the HRF around the peak time of the canonical HRF. Bottom: voxel-wise encoding score for two Rank-1 models with FIR basis and di erent design matrices: separate design on the Y-axis and classical design on the X-axis. Although both models give similar results, a Wilcoxon signed-rank test on the leave-one-session-out crossvalidation score (averaged across voxels) con rmed the superiority of the separate designs model in this dataset with p-value < 10 -3 .

  Sections 3.1 to 3.8 have been accepted to the MICCAI conference 2015. • M. Eickenberg, E. Dohmatob, B. Thirion, G. Varoquaux Sparsity meets Total Variation -Learning with Segmenting Penalties, to appear in Proc. MICCAI 2015

FrequencyFigure 3

 3 Figure 3.1: Recovery for 1D spectroscopy. Note the blocky nature of the TV-1 solution, and the noise in the GraphNet estimation. The Sparse Variation solution follows the shape of the ground truth. Due to the 1 -penalization, all solutions are shrunk towards 0.
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 32 Figure 3.2: Weight maps obtained from discrimination tasks between two visual concepts on data from [Haxby et al., 2001]. Top: FFA (Fusiform Face Area) segmented in a face versus house discrimination. Axial cut at z= -20mm. around x=14mm, y=15mm. Accuracies on held-out data: GN: 95.5%, TV-1 : 96.6%, SV: 97.7% Bottom: LOC (Lateral Occipital Complex) segmented in an object vs scramble discrimination. In this intrasubject analysis the maps are very well localized. Axial cut at z = -16mm.%. Accuracies: GN: 78.8%, TV-1 : 80.0%, SV: 80.0%
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 3 Figure 3.3: Weight vectors from estimating gain on the mixed gambles task [Tom et al., 2007b]. Prediction target is the gain proposed in a series of gambles proposed to the subjects. This inter-subject analysis shows broader regions of activation. Mean correlation scores on held out data:

Figure 3

 3 Figure 3.5: Convergence of several optimizers on object vs scramble.FAASTA takes around 400s to converge, whereas other methods take more than 15 minutes

  Figure 3.6: Averaged weight vectors of cross-validation folds at best performing parameter values (in the sense of classi cation accuracy) in multi-class classi cation on the data of Top: Lasso estimator. Sparse weight vector, no apparent spatial structure. Second: TV-L1. Sparsity and spatial contiguity of weight vectors. Third: Sparse Variation. Sparsity, spatial contiguity and smoothness of weight vectors. Indeed, with respect to TV-L1 are more extended and smoother.Last: Variation Lasso: Sparsity and spatial contiguity, but similar nonspatially-contiguous loadings as in Lasso, due to severing of connections mediated by ker K T

  This work was published in the proceedings of the Pattern Recognition in Neuroimaging conference • M. Eickenberg, A. Gramfort, B. Thirion Multilayer Scattering Image Analysis Fits fMRI Activity in Visual Areas Proc. Pattern Recognition in Neuroimaging, 2012 • M. Eickenberg, F. Pedregosa, M. Senoussi, A. Gramfort, B. Thirion Second order scattering descriptors predict fMRI activity due to visual textures Proc. Pattern Recognition in Neuroimaging, 2013
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 52 Figure 5.2: Line texture, taken from [Nothdurft1991]. If the visual system responded to equally oriented lines, the perceived gure would be a rhomb. If the visual system responded to orientation contrast, the gure would show a square. The latter is the case.
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 54 Figure 5.4: Sample stimuli used in the experiment: Extracts from the UIUC data set from [Lazebnik, 2005]. Representants of the six texture classes are shown inside the circular stimulus mask.
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 5 Figure 5.5: Visualization of one 12 second block presenting 2 full images and one task related image extract. At seconds 0 and 4, two different texture image of a given class are ashed to the screen. At second 8, a foveal exerpt is shown of image 1, image 2 or an unrelated image. The task is to decide which one it was.
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 57 Figure 5.7: Bar diagram showing decoding scores with target variable texture class in a one vs rest setting. The decoding is performed on brain regions extracted using the prede ned atlas [Henriksson et al., 2012]. The scoring function is prediction accuracy, with chance level at 1 6 ≈ 0.167. Error bars indicate variance across subjects.

  Figure5.10: Classi cation of textures from their scattering transforms using logistic regression. For di erent combinations of orientation and scale, we show classi cation scores on several training set sizes of translation invariant (spatially averaged) scattering coecients of layer 0 (spatial average), layers 0 and 1 (spatial average and rst level wavelet modulus average), layers 0, 1 and 2 (second layer wavelet moduli average in addition) and roto-translation-invariant scattering (layer 2 integrated to be invariant to roto-translation.) From the point of view of the FRF framework presented in the introduction, we must be careful about how to situate these classifying operations. Indeed, classifying linearly from a representation of a rst order model, i.e. a ltering followed by a recti cation, results in a linear-nonlinear-linear chain, where the last linear transformation is the dot product with classi er weights. It is not, however a lter-rectify-lter operation, since the last operation is not a spatial ltering. While the classi er weight dot product operation can yield functioning texture class cation, it collapses all of space and cannot make localized decisions on the presence or absence of a texture boundary. The second layer of the scattering transform is a true FRF model, followed by an output nonlinearity, the complex modulus. It is capable of detecting the texture boundaries an FRF model can detect. Adding the classi cation step on top collapses spatial information as before.These distinctions may seem far-fetched at rst, but it is crucial to make the di erence between localized an global operations. Note that the rst layers followed by classi cation would become an FRF operation if the classier were applied locally at all locations using the same weight vector. This would result in a convolution ( ltering) with a decision function and would make texture boundaries localizable by simple thresholding of the lter output. Achieving an image of a potential texture boundary is what distiguishes FRF from lter-rectify-classify.

  Importantly, these synthetic experiments are a non-trivial step forward in several ways: They provide a new way of validating more open forward modeling techniques. By recovering actual activity patterns, they show that the underlying forward model is able to capture experimental results which until now had to be obtained in speci c, dedicated experimental paradigms. Once su ciently validated on known contrasts, they will provide a new tool for investigation of the e ects of visual stimuli measurable by fMRI.
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 66 Figure 6.6: Synthesizing Face versus Place contrast. (A) Examples of the stimuli similar to those of[START_REF] Kay | Identifying natural images from human brain activity[END_REF] containing close up photos of faces (45 total) and places (48 total), removed from the train set of the synthesis model. (B) Examples of the stimuli from[START_REF] Haxby | Distributed and overlapping representations of faces and objects in ventral temporal cortex[END_REF] for faces and places (48 for each in total). (C) Contrast of BOLD activity from a GLM model of the held-out face and place stimuli. Referred to as ground truth in view of the synthetic data. (D) Predicted contrast for the 93 held out face and place stimuli from the training set of[START_REF] Kay | Identifying natural images from human brain activity[END_REF]. Thresholded at best precision given minimum recall of 50% of ground truth activation support. (E) Predicted contrast for the 96 face and house stimuli from[START_REF] Haxby | Distributed and overlapping representations of faces and objects in ventral temporal cortex[END_REF]. Thresholded as in D. (F) Predicted contrast for the 96 face and house stimuli from[START_REF] Haxby | Distributed and overlapping representations of faces and objects in ventral temporal cortex[END_REF]] using only layer 1, i.e. a rst order, edgedetector type feature map. Thresholded at 50% recall of ground truth as in D. Note the strong noise component in the map compared to D and E.

  ning W = diag((w i ) i ), equation (8.2) can be rewritten in matrix L(c) = 1 2 (Kcy) T W(Kcy) + λ 2 c T Kc, its derivative with respect to c reads ∇L(c) = KW(Kcy) + λKc = K(W(Kcy) + λc).(8.4)With constant (e.g. w.l.o.g. unit) sample weights, one can show that the solutions to K((Kcy) + λc) = 0 are exactly the same as those of (Kcy) + λc = 0 simply by using the eigendecomposition of the symmetric matrix K.In order to establish a similar relation in presence of nontrivial sample weights, we set c = √ W -1 c. Then the normal equations ∇L(c) = 0 become0 = K(W(Kcy) + λc) = K is bijective, we conclude that solving (8.6) is equivalent to solving ( K + λ Id) c = ỹ, (8.7)which has exactly the same structure as the normal equations without sample weights and can thus be solved in the same way. We conclude that ĉ = √ W( K + λ Id) -1 ỹ =

  z I ) = (K R) •,I C (yz I ) I C = (K R) •,I C (y I C -fI (x I C ))For the held out data vector (x j ) j∈I C , we ndf (x I C ) -fI (x I C ) = (K R) I C ,I C (y I C -fI (x I C )) fI (x I C ) (8.12)Reordering yieldsf (x I C ) -(K R) I C ,I C y I C = (Id I C -(K R) I C ,I C ) fI (x I C ) (8.13)Observing that fI (x I C ) represent the predictions on the held out data, we are interested in solving this linear system for it. This results infI (x I C ) = (Id I C -(K R) I C ,I C ) -1 ( f (x I C ) -(K R) I C ,I C y I C ) = (Id I C -(K R) I C ,I C ) -1 ( f (x I C )y I C ) + y I CDe ning the cross-validation error as e I C = y I C -f (x I C ) and using f (x I C ) = (K R) I C y, we obtain e I C = (Id I C -(K R) I C ,I C ) -1 (Id -(K R)) I C y (8.14) Further, observing that Id -K R = λW -1 R, we can write e I C = ((λW -1 R) I C ,I C ) -1 (λW -1 R) I C y = ( RI C ,I C ) -1 RI C y,

  

  

  

  

  Let fI represent the model tted on the train set, i.e.I fI (x k ) if k ∈ I C (8.10)Now let ĝI be the unique 2 solution to the kernel ridge regression problem 2 for λ > 0 the optimization problem is strictly convex with target z I :

			fI = arg min f	1 2 ∑				λ 2	f 2 k	(8.9)
	Now de ne z I by								
			z I k = if k ∈ ĝI = arg min f y k 1 2 n ∑ k=1 w k ( f (x k ) -z I k ) 2 +	λ 2	f 2 k .	(8.11)
	Then we have the following chain of inequalities			
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						=	1 2 ∑				1 2 ∑ j∈I C	w λ 2	fI	2 k
						≥	1 2				λ 2	ĝI	2 k ,

i∈I w i ( f (x i )y i ) 2 + i∈I w i ( fI (x i )y i ) 2 + j ( fI (x j )z I j ) 2 + n ∑ k=1 w k ( ĝI (x k )y k ) 2 +
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