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, the empirical models of Nur et al.

 and with Gassmann's model.

The numerical results are slightly larger than the experimental data of Han (1986) and Gomez et al.

(2010); the origin of this small discrepancy has been tentatively analysed, but its cause has not been unambiguously identified.

The purpose of this Ph.D. thesis is to study acoustic waves in porous media. The homogenization theory [START_REF] Boutin | Dynamic behaviour of porous media saturated by viscoelastic fluid. application to bitominous concretes[END_REF][START_REF] Malinouskaya | Propagation des ondes acoustiques dans les milieux hétérogènes[END_REF][START_REF] Li | Propagation des ondes acoustiques dans les milieux hétérogènes[END_REF] is used together with the lattice models such as LBM, LSM, LSM2S, LBM-LSM, LBM-LSM2S in order to determine the macroscopic properties, the acoustic velocities, the attenuation effects in Fontainebleau samples with two components (pore and quartz) and in STATOIL samples with three components (pore, quartz and clay).

Three problems are studied numerically in this work. The first problem is devoted to characterizations of samples; this is done with the determination of the porosity and of the correlation functions with the corresponding Fourier components [START_REF] Adler | Porous Media: Geometry and Transports[END_REF][START_REF] Nguyen | Lubrication corrections for lattice-boltzmann simulations of particle suspensions[END_REF]. The second one addresses wave propagation in dry samples; the velocities are derived from the effective stiffness tensor C (eff) which can be calculated by LSM [START_REF] Pazdniakou | Dynamic permeability of porous media by the lattice boltzmann method[END_REF] or LSM2S. The third one corresponds to samples saturated by incompressible or compressible fluids; the velocities can be obtained from the Christoffel equation after determining C (eff) , the dynamic permeability K and the reactions to fluid pressure α and β.

For Fontainebleau samples, the calculations are performed with basic existing models such as LSM, LBM, LBM-LSM. These basic models are extended to solids with multiple components; they are validated by comparisons with others [START_REF] Nemat-Nasser | On composite with periodic structure[END_REF][START_REF] Torquato | Effective stiffness tensor of composite media: Ii. application to isotropic dispersion[END_REF][START_REF] Torquato | Modeling of physical properties of composite materials[END_REF][START_REF] Cohen | Simple algebraic approximations for the effective elastic moduli of cubic arrays of spheres[END_REF].

The velocities, the effective bulk and shear modulus of all the dry samples as well as the velocities and the attenuation effected in saturated samples are determined. These results are in good agreement compared Chapter 1

Introduction

The purpose of this thesis is to study acoustic wave propagation in dry or in saturated porous media on the pore scale. This phenomenon depends on the mechanic and hydraulic properties of media [START_REF] Boutin | Dynamic behaviour of porous media saturated by viscoelastic fluid. application to bitominous concretes[END_REF][START_REF] Malinouskaya | Propagation des ondes acoustiques dans les milieux hétérogènes[END_REF][START_REF] Li | Propagation des ondes acoustiques dans les milieux hétérogènes[END_REF].

The characteristics of wave propagation in homogeneous solid materials without pores are determined by the elastic constants [START_REF] Achenbach | Wave propagation in elastic solids[END_REF]. This result can be also extended in a first approximation to porous or heterogeneous media by reference to an equivalent homogeneous medium with adequate effective properties [START_REF] Boutin | Dynamic behaviour of porous media saturated by viscoelastic fluid. application to bitominous concretes[END_REF][START_REF] Malinouskaya | Propagation des ondes acoustiques dans les milieux hétérogènes[END_REF].

However, heterogeneities or pores induce additional phenomena such as reflections and refractions [START_REF] Christensen | Mechanics of composite materials[END_REF]. They are quite complex, especially when the characteristic pore (or heterogeneity) scale l is not negligible compared to the wave length λ.

Wave propagation in saturated porous media is more challenging since there are two phases whose mechanical behaviours obey different laws. In the solid, propagation depends on the elastic properties, while in the fluid it is governed by the Navier-Stokes equations [START_REF] Boutin | Dynamic behaviour of porous media saturated by viscoelastic fluid. application to bitominous concretes[END_REF][START_REF] Li | Propagation des ondes acoustiques dans les milieux hétérogènes[END_REF].

In this thesis, we are interested in acoustic and dynamic properties of Fontainebleau and STATOIL samples. They are reconstructed samples obtained from real rocks by micro-CT. There are 4 Fontainebleau samples with porosities ranging from 8 to 22% of the same form, namely cubes of size 2736 µm. The Fontainebleau samples include pore and quartz while the STATOIL samples include pore, clay and quartz and are parallelepipeds of various sizes. The porosities and the correlation functions [START_REF] Nguyen | Lubrication corrections for lattice-boltzmann simulations of particle suspensions[END_REF] of these samples are calculated. Introduction Propagation of waves in porous media is an important topic in many areas of Physics and it has various engineering applications. This phenomenon has been studied in soil mechanics, seismology, earthquake engineering, ocean engineering... and other domains.

The main purpose of this thesis is the study of acoustic wave propagation in porous media on the pore scale. It can be divided into three parts: characterization of samples, determination of acoustic velocities in dry samples and in saturated samples. The characterization includes the determination of porosity and of the correlation functions. The determination of the macroscopic conductivity tensor and the characteristic length Λ is also introduced.

The acoustic velocities in dry samples are derived from their macroscopic properties such as the effective stiffness tensor C ef f . These properties can be deduced by homogenization methods combined with numerical models [START_REF] Malinouskaya | Propagation des ondes acoustiques dans les milieux hétérogènes[END_REF][START_REF] Li | Propagation des ondes acoustiques dans les milieux hétérogènes[END_REF][START_REF] Pazdniakou | Dynamic permeability of porous media by the lattice boltzmann method[END_REF].

The propagation of acoustic waves in saturated samples is a more complex problem. The homogenization method for a single pore saturated by an incompressible fluid was developed by [START_REF] Boutin | Dynamic behaviour of porous media saturated by viscoelastic fluid. application to bitominous concretes[END_REF] and [START_REF] Malinouskaya | Propagation des ondes acoustiques dans les milieux hétérogènes[END_REF]. Then, it is extended to media with multiple disconnected pores and to compressible fluids [START_REF] Li | Propagation des ondes acoustiques dans les milieux hétérogènes[END_REF][START_REF] Pazdniakou | Dynamic permeability of porous media by the lattice boltzmann method[END_REF]. Based on this method, the acoustic velocities can be determined by solving an eigenvalue problem (the Christoffel equation) after the determination of the necessary macroscopic properties. On the other hand, Gassmann's model is an approximate model which predicts the wave velocities in saturated media and it is used for a comparison with the simulation results. This chapter is organized as follows. First, Section 2.2 reviews some methods and methodologies. Then, the characterization of geometry is presented in Section 2.3. The conduction and the length scale Λ are described in Section 2.4. The Lattice Boltzmann model and permeabilities are introduced in Section 2.5. Sections 2.6 and 2.7 present acoustic wave propagation in dry and in saturated porous media. Finally, a summary is given in Section 2.8.

2.2

Reviews, methodologies

Acoustic waves in porous media

This problem has been studied for several decades theoretically and also experimentally; [START_REF] Biot | General theory of three dimensional consolidation[END_REF]Biot ( , 1956a,b),b), [START_REF] Gassmann | Uber die elastizitat proposer medien, viertel[END_REF]... pioneered the field. For instance, Biot's work on wave propagation is considered as the first one employing fundamentals of porous media mechanics.

The acoustic wave velocities in dry porous media can be determined by solving an eigenvalue problem which is the so-called Christoffel equation [START_REF] Landau | Theory of elasticity[END_REF]. The coefficients of this equation involve the macroscopic mechanical properties of the medium which depend on the structure and on the solid properties. Various methods have been proposed to derive the macroscopic elastic properties of the materials such as the variational method of Hashin and Shtrikman (1962a,b), the self-consistent approximations of [START_REF] Clearly | Self-consistent techniques for heterogeneous media[END_REF], the multiple scale expansion of [START_REF] Poutet | The effective mechanical properties of random porous media[END_REF]... [START_REF] Boutin | Dynamic behaviour of porous media saturated by viscoelastic fluid. application to bitominous concretes[END_REF], [START_REF] Arns | The influence of morphology on physical properties of reservoir rocks[END_REF], [START_REF] Malinouskaya | Propagation des ondes acoustiques dans les milieux hétérogènes[END_REF], [START_REF] Li | Propagation des ondes acoustiques dans les milieux hétérogènes[END_REF], [START_REF] Pazdniakou | Dynamic permeability of porous media by the lattice boltzmann method[END_REF] have proposed other techniques.

Two types of waves can propagate through an isotropic and homogeneous material, namely the longitudinal and transversal waves with respect to the propagation direction; in this thesis, they are called compressional and shear waves. For anisotropic media, plane waves only propagate along the principal directions of the Christoffel equation with various velocities [START_REF] Li | Propagation des ondes acoustiques dans les milieux hétérogènes[END_REF]. In heterogeneous media, two situations occur depending on the relative orders of magnitude of the wave length λ and of the characteristic size l of the heterogeneities. When λ ∼ l, the problem is very complex with reflections and refractions due to local heterogeneities such as obstacles, different material properties... An analysis of the solutions of three-dimensional media with spatially periodic discontinuities is presented by [START_REF] Christensen | Mechanics of composite materials[END_REF].

When λ l, the medium can be considered as an equivalent homogeneous material [START_REF] Li | Propagation des ondes acoustiques dans les milieux hétérogènes[END_REF]; this assumption provides the general framework for study of acoustic waves in geological media. For a statistically isotropic medium, the classical formula still applies. There are only a few analysis for simple geometries. For instance, the dispersion of compressional and shear waves by an ellipsoid was analysed by a matched asymptotic development by [START_REF] Datta | Diffraction of a plane elastic waves by ellipsoidal inclusions[END_REF]. The finite difference or the finite element techniques are used by [START_REF] Saenger | Diffraction of a plane elastic waves by ellipsoidal inclusions[END_REF], [START_REF] Roberts | Computation of the linear elastic properties of random porous materials with a wide variety of microstructure[END_REF] and [START_REF] Arns | The influence of morphology on physical properties of reservoir rocks[END_REF] in order to determine the macroscopic elastic properties of complex realistic structures.

When λ l and for a spatially periodic medium, the homogenization techniques can be used to determine the macroscopic properties by solving equations on the pore scale [START_REF] Sanchez | Non homogeneous media and vibration theory[END_REF]. [START_REF] Boutin | Dynamic behaviour of porous media saturated by viscoelastic fluid. application to bitominous concretes[END_REF] derived the equations of successive orders in a systematic way.

The first order equations provide the polarization correction, the second ones give the velocity dispersion and the third ones the attenuation. [START_REF] Malinouskaya | Propagation des ondes acoustiques dans les milieux hétérogènes[END_REF] applied this theoretical framework to porous media. Moreover, they successfully developed a numerical tool (FMD) in order to calculate the macroscopic properties by solving first order local problems numerically. This was extended to higher orders by [START_REF] Li | Propagation des ondes acoustiques dans les milieux hétérogènes[END_REF].

Furthermore, Pazdniakou (2012) developed another numerical method, which can determine macroscopic properties of real materials, namely the Lattice Spring Model (LSM). In this model, the solids are modeled by a collection of springs connected at nodes (linear and angular springs).

The macroscopic elastic constants can be derived by the elastic energy stored in an elastic element which is included in order to improve the accuracy of LSM. The power of this model was demonstrated, but it was limited to media with only one solid. In this thesis, this model is extended in order to address porous media with two (LSM2S) or more solids.

The description of wave propagation in saturated porous media is more complex than in dry ones, because two phases (solid and fluid) influence the macroscopic behaviour. The propagation of low-and high-frequency waves in porous media saturated by a viscous compressible fluid was first studied by Biot (1956a,b). Wave propagation can be described with the effective elastic moduli, the permeability and the compressibility of the solid matrix. [START_REF] Biot | General theory of three dimensional consolidation[END_REF]Biot ( , 1956a,b) ,b) showed that there are three types of waves which are predicted by this theory at the macroscopic level; they are the fast compressional and shear waves and the slow compressional wave with a strong attenuation.

As for dry porous media, homogenization is a useful technique in order to describe wave propagations in saturated media. They are widely used by [START_REF] Sanchez | Non homogeneous media and vibration theory[END_REF], [START_REF] Boutin | Dynamic behaviour of porous media saturated by viscoelastic fluid. application to bitominous concretes[END_REF]... In a medium saturated by a fluid, the wave propagation in the solid is governed by the elastodynamic equation and by the Navier-Stokes equation in the fluid. In the framework of homogenization theory, the medium is supposed to be homogeneous, spatially periodic and composed by identical unit cells; therefore, these local problems are solved on the unit cell. Then, the corresponding solutions are averaged over the unit cell in order to obtain the macroscopic properties of the medium. These averages are introduced into the generalized Christoffel equation whose eigenvalues are the acoustic velocities in the saturated medium. [START_REF] Malinouskaya | Propagation des ondes acoustiques dans les milieux hétérogènes[END_REF] developed this homogenization method for porous media with a single pore saturated by an incompressible fluid. Then, [START_REF] Li | Propagation des ondes acoustiques dans les milieux hétérogènes[END_REF] extended it to multiple disconnected pores and compressible fluids characterized by a compressibility coefficient. In order to derive the wave velocities and also the macroscopic solid and relative fluid displacements, the effective stiffness tensor C ef f , the dynamic permeability K, the reaction of the solid matrix on the fluid pressure α and β are four necessary macroscopic properties. [START_REF] Pazdniakou | Dynamic permeability of porous media by the lattice boltzmann method[END_REF] used this homogenization method and developed numerical tools. These averaged quantities are calculated by combined models such as LBM, LSM, LBM-LSM... Then, the acoustic velocities in the medium can be derived by solving the generalized Christoffel equation. Thanks to that, the dependencies of the velocity and of the attenuation on the frequency are also studied. This method was shown to be efficient by [START_REF] Pazdniakou | Dynamic permeability of porous media by the lattice boltzmann method[END_REF]; therefore, this methodology is followed in this thesis.

Gassmann's model is another possible approach to describe waves in saturated media [START_REF] Gassmann | Uber die elastizitat proposer medien, viertel[END_REF][START_REF] Artola | Sensitivity analysis of gassmann's fluid substitution equations: Some implications in feasibility studies of time-lapse seismic reservoir monitoring[END_REF]; for instance, it is widely used to calculate seismic velocity changes resulting from various fluid saturations in reservoirs. [START_REF] Han | Gassmann's equation and fluidsaturation effects on seismic velocities[END_REF] presented

Gassmann's equations in fields of seismic velocities. The shear and compressional wave velocities can be predicted from the properties of the dry medium and of the saturating fluid. In fact, this approximate model has some limitations, such as the porous material is isotropic, elastic, homogeneous and composed of a single mineral; it does not apply to multiple minerals with different properties. Anyway, it is a simple method and it can be considered as suitable here. A short description of this approach is presented in Section 2.6.

Methodologies

Since the samples are composed by many elementary cubes which can be either solid or pore, the porosity is calculated by the counting method. Then, the number of solid and pore voxels can be determined and the sample porosity ε is obtained. The two point correlation function is determined along three directions and they are compared in order to characterize the samples.

The acoustic wave velocities in dry samples can be determined from the macroscopic properties of samples. The effective stiffness tensor is necessary and it can be directly calculated by using the program based on LSM [START_REF] Pazdniakou | Dynamic permeability of porous media by the lattice boltzmann method[END_REF] if the sample size is not very large and there is only one solid. For large samples, two methods are proposed which are the sub-sampling method and the coarsening method; it will be shown that the second one is adequate. Then, LSM is extended to LSM2S and LSMNS in order to determine the macroscopic properties of porous media with many solid components.

The calculation of acoustic waves in saturated porous media is based on the generalised Christoffel equation obtained from homogenization methods by [START_REF] Malinouskaya | Propagation des ondes acoustiques dans les milieux hétérogènes[END_REF] for a single pore and by [START_REF] Li | Propagation des ondes acoustiques dans les milieux hétérogènes[END_REF] for multi-pores and compressible fluids. Four macroscopic properties which are noted by C ef f , K, α and β (or α and B ) must be determined. They are calculated as follows.

The effective stiffness tensor C ef f is determined by LSM or LSM2S. The absolute and dynamic permeabilities K are calculated by the Lattice Boltzmann Model (LBM) for the original and the mirror configurations. The coefficients α and β which characterize the reaction of the solid matrix to the fluid pressure, are determined by simulations with the coupled models LBM-LSM for one solid component and with LBM-LSM2S for two solid components. Then, the acoustic velocities are derived for various frequencies and various compressibility coefficients. The influence of frequency and of the Reynold number on the velocities and on the attenuation of three types of waves (fast, slow compressional and shear waves) are studied.

Characterization of geometry

The geometry is characterized before studying propagation in porous media. Porosity and correlation functions are calculated.

Porosity

The porosity of a sample has a significant influence on the mechanical properties and also on the flow characteristics through the samples. It is defined by

ε = V p V 0 (2.1)
where V p is the void volume, V 0 the total volume. V p can be derived from the number of void cubes in the samples.

The samples are composed of elementary cubes of size a which are solid or void. Along each axis, a sample is composed by many slices. For instance, along the z-direction, a sample has N cz slices of the same size N cx × N cy ; in other words, each slice has N cx × N cy elementary cubes.

The porosity is first calculated for each slice along one direction; it is denoted by ε(z i ) for the slice i along the z-direction. The total number of cubes in this slice is

N total = N cx × N cy (2.
2)

The number of void N pore (z i ) in one slice is determined by the counting method for all the cubes present in this slice. The porosity of this slice is given by

ε(z i ) = N pore (z i ) N total (2.3)
where z = z a with z is the distance from the calculation slice to the boundary along the z-axis. The calculations are done for all the slices along the z-direction and the variations of slice porosity are presented in Fig. 2.1.a. Obviously, the average porosity along the z-direction ε(z) can now be determined. The calculation is similar for the two other directions and ε(x) and ε(y) are obtained as well as the sample porosity ε.

Correlation function

For practical purposes, the porous media are constructed in a discrete manner; they are composed of N cx × N cy × N cz elementary cubes of the same size a. Each elementary cube, filled either with solid or void, can be characterized by the phase function Z(r) as follows

Z(r) =       
1 if r belongs to the pore space 0 otherwise

(2.4)

where r denotes the position with respect to an arbitrary origin. Consequently, the spatial variables r and u take only discrete values, identified with the location of the elementary cubes; the corresponding trios of integers are denoted by r' = r a = (i, j, k) ; u' = u a = (r, s, t)

(2.5)

The correlation function R z (u) can be defined by

R z (u) = [Z(r) -ε][Z(r + u) -ε] (ε -ε 2 ) (2.6)
where the overbar denotes a statistical or a spatial average. [START_REF] Adler | The geometry of random fields[END_REF] pointed out that the correlation function of isotropic media depends only on the norm u of the vector u, in which case it is denoted by R Z (u).

The calculation of two point correlation functions and the least mean square filter will be done for each slice along the three different directions of a three-dimensional porous medium (as in Figure2.1.b). Then, the Fourier components corresponding to R Z can be calculated. [START_REF] Adler | The geometry of random fields[END_REF] showed that if these Fourier components are always positive (or the negative values are negligible), the media can be considered as statistically homogeneous. In addition, by comparisons between the slices and between the three directions, we can appreciate geometrical properties of samples such as isotropy.

2.4

Conduction in porous media and determination of the length Λ One of the macroscopic properties which characterize a porous medium is the macroscopic conductivity tensor Σ. According to [START_REF] Valfouskaya | Nuclear-magnetic-resonance diffusion simulations in porous media[END_REF], it can be derived from the resolution of the time-independent Laplace equation for the electric field ψ,

∇ 2 ψ = 0, n.∇ψ = 0 on S, (2.7) 
with adequate overall boundary conditions. S is the pore solid surface. When the porous medium is isotropic, the tensor is isotropic

Σ = ΣI (2.8)
A length scale Λ which can be used to characterize porous media was introduced by [START_REF] Johnson | New pore-size parameter characterizing transport in porous media[END_REF]. It is an intrinsic measure of the interconnected pore size and is defined as

Λ = 2 Ω |∇ψ(r)| 2 d 3 r S |∇ψ(r)| 2 d 2 s
(2.9)

where ψ(r) is the solution of the Laplace equation [START_REF] Pazdniakou | Dynamic permeability of porous media by the lattice boltzmann method[END_REF].

In this thesis, the macroscopic conductivity Σ as well as the length Λ of a porous medium can be determined by solving the Laplace equation (2.7) by a second order finite difference formulation of [START_REF] Thovert | Thermal conductivity of random media and regular fractals[END_REF]. They are related to the permeability K by the approximate formula

Λ 2 = 8KF (2.10)
where F is the formation factor. F is defined by

F = Σ 0 Σ (2.11)
where Σ 0 is the fluid conductivity.

Flows in porous media

In this section, the Lattice Boltzmann Model (LBM) is described. It is useful to calculate permeability in reconstructed porous media. [START_REF] Nguyen | Lubrication corrections for lattice-boltzmann simulations of particle suspensions[END_REF] and [START_REF] Pazdniakou | Dynamic permeability of porous media by the lattice boltzmann method[END_REF] used and developed LBM to simulate single and multiphase fluids through porous media.

LBM originated from the lattice gas automata (LGA) method [START_REF] Frisch | Lattice-gas automata for the navier-stokes equation[END_REF]d'Humières et al., 1986) in which space, time, and particle velocities are discrete. It was developed in order to overcome some deficiencies of LGA [START_REF] Zanetti | Hydrodynamics of lattice-gas automata[END_REF]. Compared to the classical CFD methods, the fluid state in LBM is described by a particle distribution function where a particle is characterized by a given velocity at a given space point at a given time. The fluid flow is described by the evolution of the distribution function in time and space. The basic Navier-Stokes equation can be derived from the lattice Boltzmann equations (LBE) by using the Chapman-Enskog procedure [START_REF] Pazdniakou | Dynamic permeability of porous media by the lattice boltzmann method[END_REF][START_REF] Li | Propagation des ondes acoustiques dans les milieux hétérogènes[END_REF]. Up to now, with its relative simplicity, LBM is a powerful numerical tool in large domains of physics and of fluid mechanics.

Local governing equations

As reminded above, the classical methods describe fluid motion by partial differential equations for the fluid density ρ, the pressure p, and the velocity u. At each point of the fluid domain, if these values are determined , the fluid state is completely described. The real molecular structure of the fluid is neglected and the fluid is considered as a continuous substance; hence, the fluid is described at the continuum level.

The Navier-Stokes equation is given by ρ( ∂u ∂t + u.∇u) = -∇p + µ∇ 2 u + (µ + ζ)∇(∇.u) + ρF (2.12)

where µ is the dynamic viscosity, ζ the volume viscosity and F the body force. The viscosity is a measure of fluid resistance to flow. The kinematic viscosity ν is equal to µ ρ .

Usually, the incompressible form of the Navier-Stokes equations is used ρ( ∂u ∂t + u.∇u) = -∇p + µ∇ 2 u + ρF (2.13)

∇.u = 0.

(2.14)

The no-slip boundary condition is applied at the solid boundary

u = 0 (2.15)
Equations (2.14), (2.15) form the basis for flow studies. The Navier-Stokes equation has no analytical solution except for some simple cases; therefore, numerical methods are necessary to solve it.

In hydrodynamics, dimensionless quantities are usually used and the Reynold number is one of the most important; it represents the ratio between inertial and viscous forces and characterizes the relative importance of these forces. It is given by

Re = U L ν (2.16)
where L is a characteristic linear size, and U a characteristic fluid velocity. Obviously, a low Re is the result of high viscosity, low velocity and small pores. Therefore, for stationary flows, the Navier-Stokes equation (2.14) is simplified into the Stokes equations 0 = -∇p ρ + ν∇ 2 u + F (2.17a)

∇.u = 0.

(2.17b)

As the Navier-Stokes equation (2.14), the Stokes equation (2.17) has a small number of analytical solutions and the geometry of porous media is very complicated; therefore, numerical methods are necessary to solve them.

Lattice Boltzmann Model (LBM)

The basic concept of Boltzmann methods is that the fluid is composed of interacting particles that can be described by classical mechanics. In this description, a statistical treatment is necessary and suitable due to the large number of particles. Then, the fluid state is given by a distribution function in which each particle is characterized by a given velocity at a given space point at a given time.

Continuous Boltzmann equation

The continuous Boltzmann equation describes the fluid in terms of a particle distribution function f (c,r,t) which is the probability of presence of the particle with velocity c at point r at time t. Then, the number of particles present in an elementary volume d 3 r with velocities lying in the range d 3 c at time t is given by f(c, r, t)d 3 rd 3 c. The particles are submitted to an external force F per particle mass. The equation for no collision between the particles is given by f (r + cdt, c + Fdt, t + dt)d 3 rd 3 c = f (c, r, t)d 3 rd 3 c (2.18)

Since the particles undergo collisions, this equation becomes

f (r + cdt, c + Fdt, t + dt)d 3 rd 3 c -f (c, r, t)d 3 rd 3 c = Q(f, f )d 3 rd 3 cdt (2.19)
where Q(f, f ) is the collision operator responsible for the changes in the distribution function due to collisions between particles. The Boltzmann equation is derived by expanding the left side (dt → 0) and dividing (2.14) by d 3 rd 3 cdt

∂f ∂t + c.∇ r f + F.∇ c f = Q(f, f ) (2.20)
Bhartnagar, Groos and Krook (BGK) devised a simple collision operator Ω(f ) [START_REF] Bhartnagar | A model for collision processes in gases. i. small amplitude processes in charged and neutral one-component systems[END_REF][START_REF] Pazdniakou | Dynamic permeability of porous media by the lattice boltzmann method[END_REF])

Ω(f ) = 1 τ [f (c, r, t) -f eq (c, r, t)] (2.21)
where τ is the relaxation time and f eq (c, r, t) the equilibrium distribution. This operator is imprecise. Here, the two-relaxation-time (TRT) collision operator is used. It is expressed as

Ω = A(f eq -f ) (2.22)
where A is the collision matrix with the following form

A = M -1 .S.M (2.23)
The diagonal matrix S defines the relaxation rates for different fluid moments and given by S = diag(0, s e , s ε , 0, s q , 0, s q , 0, s q , s ν , s π , s ν , s π , s ν , s ν , s ν , s m , s m , s m ),

s e = s ε = s π = s ν , s m = s q = 8 2 -s ν 8 -s ν
(2.24)

A detailed description of matrix M and S is presented by d [START_REF] Humières | Multiplerelaxationtime lattice boltzmann models in three dimensions[END_REF] and [START_REF] Ginzburg | Multireflection boundary conditions for lattice boltzmann models[END_REF]. The LBM with relaxation parameters defined by (2.24) is named the tworelaxation-time (TRT) model. According to [START_REF] Pazdniakou | Dynamic permeability of porous media by the lattice boltzmann method[END_REF], s ν is generally chosen equal to 1 ν/c 2 s + 1/2 .

Lattice Boltzmann equation

LBM can be implemented on various types of lattices in 1D, 2D, 3D and 4D spaces with various discrete velocity sets which makes it a versatile instrument for numerical simulations of fluid flows. Here, the D3Q19 configuration in three dimensions is used, as displayed in Fig. 2.2.

The corresponding discrete velocity set is composed by 19 vectors

c i =           
(±1, 0, 0)c, (0, ±1, 0)c, (0, 0, ±1)c, i = 1, ..., 6;

(±1, ±1, 0)c, (±1, 0, ±1)c, (0, ±1, ±1)c, i = 7, ..., 18;

(0, 0, 0), i = 19;

(2.25)

For D3Q19, the following lattice weights are used (2.26) where θ = k B T m is the normalized temperature. Sometimes, c 2 s needs to be an independent parameter [START_REF] Ginzbourg | Boundary condition analysis for the three dimensional lattice boltzmann model[END_REF] (for example when working with a multiphase LBM). Then, a new set of lattice weights ω * i can be obtained for D3Q19

ω i =            1 
ω * i =            c 2 s * 6 , i = 1, ..., 6; c 2 s *
12 , i = 7, ..., 18;

1 -2c 2 s * , i = 19;

(2.28)

where the sound speed c s * is an independent parameter. Obviously, the classical lattice weights correspond to c s * = 1 √ 3 .

Equilibrium distribution function

The equilibrium distribution function is an important component of any LBM. (2.15) and

(2.21) imply ∂f ∂t + c.∇ r f + F.∇ c f = 1 τ [f -f eq ] (2.29)
where F is the body force and τ the relaxation time. The equilibrium function f eq is given by

f eq (ρ, v) = ρ (2πθ) D/2 exp - (c -v) 2 2θ (2.30)
It was found that LBM can be obtained by a proper discretization of the continuous Boltzmann equation [START_REF] Luo | Theory of the lattice boltzmann method: Lattice boltzmann models for non ideal gases[END_REF], a method which is more convenient for theoretical studies of LBM.

Usually, the low Mach number expansion of the Maxwellian distribution is used in LBM as an equilibrium particle distribution function

f eq i (ρ, v) = ρω i 1 + 1 c 2 s (c i .v) + 1 2c 4 s (c i .v) 2 - 1 2c 2 s |v| 2 (2.31)
Using this equilibrium distribution function, the Navier-Stokes equation can be derived by the Chapman-Enskog decomposition at the macroscopic level. For the incompressible fluid simulation, the following equilibrium distribution function is used [START_REF] Pan | An evaluation of lattice boltzmann schemes for porous medium ow simulation[END_REF])

f eq i (ρ, v) = ω i ρ + ρ 0 1 c 2 s (c i .v) + 1 2c 4 s (c i .v) 2 - 1 2c 2 s |v| 2 (2.32)
Since in porous media, the fluid flow is usually characterized by low Re, the Navier-Stokes equation can be replaced by the Stokes equation. In order to simulate Stokes flow by LBM, the nonlinear terms of the equilibrium distribution function are discarded

f eq i (ρ, v) = ω i ρ 1 + 1 c 2 s (c i .v) (2.33)
When the sound speed c s * is an independent parameter, the equilibrium distribution is given by

Nie et al. ( 1998 
)
f eq i (ρ, v) = ρω * i + ρω i 1 c 2 s (c i .v) + 1 2c 4 s (c i .v) 2 - 1 2c 2 s |v| 2 (2.34)
where c s is the classical sound speed.

External force modeling

Various forces can be incorporated in LBM in order to simulate various situations ( pressure gradients, gravity forces or force fields of complex structure...). The most usual way is to incorporate a body force in LBM [START_REF] Luo | Theory of the lattice boltzmann method: Lattice boltzmann models for non ideal gases[END_REF])

F i = -ω i ρ c i -v c 2 s + c i .v c 4 s c i .F (2.35)
which obeys the conditions

q i=1 F i = 0 (2.36a) q i=1 c i F i = -ρF (2.36b) q i=1 c i,α c i,β F i = -ρ[u α F β + u β F α ], (2.36c) 
where the indices α, β denote the space coordinates. This term is used when the body force F is not constant in space in order to preserve the Galilean invariance. [START_REF] Luo | Theory of the lattice boltzmann method: Lattice boltzmann models for non ideal gases[END_REF] replaced (2.36c) by

q i=1 c i,α c i,β F i = 0, (2.37)
The usual body force term is obtained for constant body force fields (like gravity)

F i = -ω i ρ c i .F c 2 s (2.38)
When the redefined lattice weights ω * i are used, the body force term becomes

F i = -ω * i ρc i .F (2.39)

Chapman-Enskog analysis

The Chapman-Enskog analysis is applied to LBM in order to derive the macroscopic equation governing fluid flow. In most cases, we wish to obtain the continuity and the Navier-Stokes equations at the macroscopic level. It must be also noted that when working with LBM, some additional terms can be included in the traditional LBM in order to obtain a model with some special physical characteristics. These operations performed with Lattice Boltzmann equations necessitate a Chapman-Enskog procedure which can be applied to the BGK model and is presented by [START_REF] Pazdniakou | Dynamic permeability of porous media by the lattice boltzmann method[END_REF]. This analysis starts from the expansion of LBM components in terms of a small parameter η which is equal to δ t [START_REF] Luo | Theory of the lattice boltzmann method: Lattice boltzmann models for non ideal gases[END_REF] in the following. In terms of this small parameter, the particle distribution function and the time derivative operator are expanded as

f i (r, t) = ∞ n=0 η n f (n) i (r, t) (2.40a) ∂ t = ∞ n=0 η n ∂ tn (2.40b)
For the Chapman-Enskog analysis, only the truncated parts of these expansions are necessary. The particle distribution function at point (r + c i δt, t + δt) is expanded into a Taylor series

f i (r + c i δt, t + δt) = ∞ n=0 ι n (∂ t + c i .∇) (n) f i (r, t) (2.41)
and the second order truncation of this expansion is used.

Bounce-back boundary conditions

The computational domain is usually represented by a unit cell which is often a cube of side N c a. The behaviour of the distribution function on the solid-fluid interface must be properly defined. The bounce-back boundary condition is the oldest and most popular solid-fluid boundary condition used in LBM [START_REF] Ginzbourg | Boundary condition analysis for the three dimensional lattice boltzmann model[END_REF] and it was already used in LGA.

Figure 2.3: Bounce-back boundary conditions [START_REF] Pazdniakou | Dynamic permeability of porous media by the lattice boltzmann method[END_REF].

It is based on the principle that the post-collision particle distribution f i (r j , t) leaving the boundary fluid point r j in the direction c i of the solid point r i + c i at time t is returned back at time t + 1 with the opposite velocity c i = c i (see Fig. 2.3). This corresponds to a solid wall located at the middle of the two lattice points

f i (r j , t + 1) = f i (r j , t) (2.42)
The bounce back condition conserves the local fluid mass and needs no additional information to calculate the unknown distribution function; it can be easily programmed and does not consume a lot of computer resources. Generally, if no additional effort is made, the bounce back rule is first order accurate in space. The drawback of this condition is that the real position of the solid wall depends on the fluid viscosity (for the LBM with a BGK collision operator).

Implementation of the calculation

The bounce back boundary conditions are applied in the LBM program. The algorithm is divided into the collision and propagation steps which must be repeated at each lattice point during the simulation (Fig. 2.4). The simulation is stopped when the steady state is reached. The convergence of LBM for Stokes and Navier-Stokes flows in periodic domains is proved theoretically by [START_REF] Junk | Convergence of lattice boltzmann methods for navier-stokes flows in periodic and bounded domains[END_REF]. In fact, the calculation program can be parallelized in order to speed up the calculation time. This has an important influence on the scalability since the fractional time spent in non-parallelized regions increased when increasing the number of processors (Amdahl's law).

For the LBM code, an average speedup S(8) ≈ 6.5 is obtained for 8 processors and it is considered as a good result.

Absolute permeability

Permeability is one of the most important properties of porous media. It describes the easiness of fluid flow through the porous medium. Darcy's law can be written as

v = - K µ ∆p (2.43)
where K is the permeability, µ the dynamic viscosity and v the seepage velocity.

The permeability is necessary to study flows through saturated porous media [START_REF] Malinouskaya | Propagation des ondes acoustiques dans les milieux hétérogènes[END_REF]. It can be calculated by various numerical methods. The Lattice Boltzmann Model was implemented by [START_REF] Pazdniakou | Dynamic permeability of porous media by the lattice boltzmann method[END_REF]. The validation was done for the Poiseuille flow and presented by [START_REF] Adler | Porous Media: Geometry and Transports[END_REF] and [START_REF] Pazdniakou | Dynamic permeability of porous media by the lattice boltzmann method[END_REF].

Since calculations are done for spatially periodic conditions, it is critical to ensure connection between two opposite faces. It guarantees the continuation of flows and there is no artificial loss of permeability due to the mismatch between the inlet and outlet as shown in Figure 2.5a.

Therefore, depending on the sample geometry, the sample and its mirror image along the corre- sponding axis are used for simulation. If the medium is spatially periodic, we use it; otherwise, the mirror image is used (Figure 2.5b-c).

Dynamic permeability

Oscillating flows in porous media are of interest in various areas of Physics and industries and they are necessary in order to determine the acoustic velocities in saturated samples [START_REF] Malinouskaya | Propagation des ondes acoustiques dans les milieux hétérogènes[END_REF][START_REF] Li | Propagation des ondes acoustiques dans les milieux hétérogènes[END_REF][START_REF] Pazdniakou | Dynamic permeability of porous media by the lattice boltzmann method[END_REF]. Biot (1956a) defined the dynamic permeability tensor K(ω) as a complex valued tensor which depends on the frequency ω. The dynamic Darcy's law characterizing the oscillating flows is given by

v = - ρ µ K(ω).F (2.44)
where ρF is equivalent to a macroscopic pressure gradient ∆P . For isotropic media, it becomes K(ω)I where I is the unit tensor and K(ω) a complex number which can be expressed as

K(ω) = K r (ω) + iK i (ω) (2.45)
Similarly to the absolute permeability, the dynamic permeability can be calculated by LBM.

The calculation for a spatially periodic porous medium is as follows. An oscillating flow inside the unit cell is induced by an oscillating body force which is given by

F = eFcos(ωt) (2.46)
where e is one of the three unit basis vectors (x,y,z), and F the force amplitude. To calculate the dynamic permeability along the x-direction, e is set equal to (1,0,0). Then, with LBM, we can obtain the time dependent seepage fluid velocity v x which can be expressed as

v x = Acos(ωt + B) (2.47)
where A is the seepage fluid velocity amplitude and B the phase shift. The simulation is automatically stopped when the relative difference between two successive amplitudes A measured when v x is maximum, is less than a chosen value. Then, A and B can be found by using the least square fit method applied to the last period as in Figure 2.6. Finally, the real and imaginary parts of the dynamic permeability are derived by solving the system (2.48).

K 2 r + K 2 i = ( Aν F ) 2 ; K i = tan(B)K r (2.48)
where ν is the kinematic viscosity. Hence, we have

K r = Aν F cos(B) ; K i = Aν F sin(B) (2.49)
Since the parameters A and B are calculated numerically with LBM, the real and imaginary parts of the dynamic permeability can be derived from (2.49). The same procedure can be applied in order to calculate the other components of K(ω) by choosing another value of ε α .

The dynamic permeability is calculated by the program based on LBM and written in Fortran 90. The comparison between simulations by this program and analytical results of Poiseuille flow is used to validate the LBM [START_REF] Pazdniakou | Dynamic permeability of porous media by the lattice boltzmann method[END_REF]. In the same way, the program is parallelized with OMP to decrease the simulation time. However, the calculation of dynamic permeability is much more cumbersome than of absolute permeability since it depends on the frequency ω. It is shown in Section 4.4 that the memory requirements and the time depend on the frequency and are often larger than the ones for absolute permeability.

2.5.5

The dynamic permeability and the length Λ

The real part of dynamic permeability characterizes the flow due to the viscous forces and is a decreasing function of frequency; the imaginary part characterizes the phase shift due to fluid inertia and has a maximum. According to [START_REF] Pazdniakou | Dynamic permeability of porous media by the lattice boltzmann method[END_REF], this maximum corresponds to the transition from the viscous flow to the inertia flow regime and obtained for the frequency value ω c . Then, the viscous penetration depth δ becomes the order of the pore size l pore

l pore = Ω S ∼ 2µ ρω c (2.50)
Zhou and Sheng (1989) pointed out that the dynamic permeability can be considered as a scaling function with only two parameters for various porous media and does not depend on their micro structure. It is expressed as

K(ω) K 0 f ( ω ω c ) (2.51)
where K 0 is the absolute permeability; ω c is defined by

ω c = µε ρτ K 0 (2.52)
A more detailed form of (2.51) is also presented by Zhou and Sheng (1989)

K (ω c ) =        1 + iF -1 1 ω c ω c → 0, √ 2F -1 2 (ω c ) -3/2 + i(ω c ) -1 , ω c → ∞ (2.53)
The dimensionless dynamic permeability K , frequency ω c and F 1 , F 2 are defined as

K = K K 0 , ω c = ω ω c , F 1 = τ K 2 0 C 1 ε , F 2 = ( Λ 2 ε τ K 0 ) 1/2 (2.54)
where τ is the tortuosity factor, Λ the length scale in Section 2.4, C 1 a coefficient homogeneous to the fourth power of a length (see [START_REF] Zhou | First-principles calculations of dynamic permeability in porous media[END_REF]).

As indicated before, this scaling function is independent of the micro structure of porous media; therefore, it can be used in order to evaluate the dynamic permeability obtained by various methods. For this purpose, the Poiseuille flow is used; the configuration is simple: a fluid oscillates in the channel limited by the solid planes y = 0 and h. The analytical solution of the dynamic permeability is deduced from the Darcy law

K = ν ω 2 -iω + 2 √ iων h tanh iω ν h 2 (2.55)
Since the length scale Λ and the tortuosity of porous media are derived by solving the Laplace equation (2.7), the dimensionless dynamic permeability K (ω c ) can be also derived. 

Propagation of acoustic waves in dry porous media

As indicated, propagation of acoustic waves in porous media is important in fundamental and in applied studies. This section presents the general determination of wave propagation in dry porous media by solving the fundamental dynamic equation at a microscopic level.

The velocity of plane acoustic waves can be determined by solving the so-called Christoffel equation [START_REF] Malinouskaya | Propagation des ondes acoustiques dans les milieux hétérogènes[END_REF][START_REF] Li | Propagation des ondes acoustiques dans les milieux hétérogènes[END_REF]. Two types of waves can propagate through an isotropic and homogeneous material, namely the compressional and shear waves. In heterogeneous media such as porous media, two situations can be considered, λ ∼ l and λ l. [START_REF] Malinouskaya | Propagation des ondes acoustiques dans les milieux hétérogènes[END_REF] considered the second situation where the medium is approximated by an equivalent homogeneous material. Therefore, it is possible to use the homogenisation method in order to determine the macroscopic properties by solving the equations at the microscopic level [START_REF] Sanchez | Non homogeneous media and vibration theory[END_REF].

In this thesis, the acoustic waves velocity is derived by using the Lattice Spring Model (LSM) and the Lattice Spring Model for two solids (LSM2S) presented in Chapter 3.

Elastic waves in elastic media

The dynamical behaviour of an homogeneous elastic medium is governed by

ρ s ∂ 2 u ∂t 2 = ∇ • σ (2.56)
where ρ is the density, σ the stress tensor, u the microscale displacement and t the time. The boundary condition is expressed as

σ.n = 0 on Γ (2.57)
where Γ is a free boundary, n the unit normal to Γ. For elastic materials, the relation between the stress tensor and the strain tensor e is expressed as

σ = C {4} : e (2.58)
where C {4} is the stiffness tensor. The strain tensor e is given by

e = ∇u + (∇u) t 2 (2.59)
The subscript {4} denotes the order of the tensor. At most, C {4} has 21 independent components; this number can be decreased to 9 or 3 depending on the symmetries of the samples.

Plane harmonic waves are considered with a solid displacement u of the form

u = Aũe i(ωt-κp.x) (2.60)
where A is the wave amplitude, ũ the unit polarisation vector, ω the frequency, κ the wave number, p the direction of propagation unit vector, and x the position. The equations (2.56) and (2.60) yield the Christoffel equation (also called the dispersion equation) [START_REF] Malinouskaya | Propagation des ondes acoustiques dans les milieux hétérogènes[END_REF])

ρ s ω 2 I -κ 2 [p • C • p] • ũ = 0 (2.61)
Since the Christoffel equation is homogeneous, the solution ũ is not trivial if and only if the determinant is zero

det ρ s ω 2 I -κ 2 [p • C • p] = 0 (2.62)
The wave celerities can be derived from equation (2.62)

c phase = ω κ (2.63)

Elastic waves in porous media

The considered porous media are supposed to be statistically homogeneous and they are represented by a unit cell which is periodically replicated in space. When λ l, the elastic properties of porous media are given by the effective stiffness tensor C (ef f ) . Then, the elasticity equation and the Christoffel equation become

ρ s ∂ 2 u ∂t 2 = ∇ • σ = ∇ • C (ef f ) : ε (2.64a) ρ s ω 2 I -κ 2 [p • C (ef f ) • p] • ũ = 0 (2.64b)
Condition (2.62) yields the wave celerities. If the homogeneous medium has a cubic symmetry, the P-wave (compressional wave) and S-wave (shear wave) velocities are

υ p = C (ef f ) xxxx ρ ; υ s = C (ef f ) yzyz ρ (2.65)
where ρ is the average density of the unit cell

ρ = 1 V V ρdV = (1 -ε)ρ (2.66)

Propagation of acoustic waves in saturated porous media

As presented in Section 2.2, the homogenization method developed by [START_REF] Malinouskaya | Propagation des ondes acoustiques dans les milieux hétérogènes[END_REF] and Li (2010) associated with lattice models of [START_REF] Pazdniakou | Dynamic permeability of porous media by the lattice boltzmann method[END_REF] is used in this thesis in order to derive acoustic velocities in porous media with a single pore or multi-pores saturated by incompressible or compressible fluids.

Homogenization method

In this section, the theoretical basis of the homogenization method is summarized. This method was used by [START_REF] Malinouskaya | Propagation des ondes acoustiques dans les milieux hétérogènes[END_REF] and [START_REF] Li | Propagation des ondes acoustiques dans les milieux hétérogènes[END_REF].

The porous medium contains heterogeneities whose size l is supposed to be much smaller than the overall size of the medium Ł. The medium is assumed to be statistically homogeneous on some intermediate scale between l and Ł; therefore, it can be regarded as spatially periodic,i.e.. it is composed of replicated unit cells Ω of size L. Since the pore space is filled by a Newtonian fluid, the unit cell Ω is given by

Ω = Ω s ∪ Ω f (2.67)
where Ω s is the solid phase and Ω f the fluid phase. Ω s is composed by an isotropic elastic material;

Ω f is composed of a single or some disconnected pores [START_REF] Pazdniakou | Dynamic permeability of porous media by the lattice boltzmann method[END_REF]. The Newtonian fluid is compressible [START_REF] Li | Propagation des ondes acoustiques dans les milieux hétérogènes[END_REF] or incompressible [START_REF] Malinouskaya | Propagation des ondes acoustiques dans les milieux hétérogènes[END_REF]. The calculation of a single pore is detailed in this section; then, the corresponding results of multiple pores are presented.

Basic equations

We consider the propagation of an harmonic wave of pulsation ω and wave length λ such that

l Υ = λ 2π (2.68)
where Λ is the macroscopic scale.

The separation between microscale l and macroscale Υ allows us to use the homogenization theory. The small parameter η is defined as

η = l Υ 1 (2.69)
Two spatial variables x and y are introduced; x is macroscopic (of order Υ) while y is microscopic (of order l). They are related to one another by

y = η -1 x (2.70)
Therefore, the spatial gradient operator can be expressed as

∇ = ∇ x + η -1 ∇ y (2.71)
The wave propagation is governed on the microscopic level by the elastic equation

∇.σ s = -ρ s ω 2 u s in Ω s (2.72)
where ρ s is the solid density, u s the solid displacement. For an harmonic wave, the displacement

u s is of the form u = ûe iωt (2.73)
The fluid is supposed to be Newtonian and incompressible. The Navier-Stokes equation can be rewritten as

iωρ f v f = ∇.σ f (2.74) ∇.v f = 0
where ρ f is the fluid density, v f the fluid velocity.

At the solid-fluid interface, the no-slip boundary condition with the continuity of displacement and normal stress is given by

u s = u f on Γ (2.75) σ s .n = σ f .n on Γ
where n is the unit normal to the solid-fluid interface

Γ = Ω s ∩ Ω f .
Hereafter, all quantities related to solid and fluid are denoted by the indices s and f , respectively.

Double scale expansion

The medium is assumed to be spatially periodic as described above. [START_REF] Malinouskaya | Propagation des ondes acoustiques dans les milieux hétérogènes[END_REF] pointed out that any function of space can be represented as a function of two spatial variables f (x, y). It can be expanded as a series in terms of the small parameter η as

f (x, y) = η j f (j) (x, y) (2.76)
Because of the spatial periodicity of the medium, f (x, y) and also f (j) (x, y) are periodic functions of y. Then, this expansion can be applied to the solid and fluid displacements u s and u p and to the fluid pressure p

u s (x, y, t) = η j u (j) s (x, y, t) (2.77a) u f (x, y, t) = η j u (j) f (x, y, t) (2.77b) p(x, y, t) = η j p (j) (x, y, t) (2.77c)
The strain tensor e and the stress tensor σ s can be expanded by substitution of (2.77.a) into equation (2.72). A series of equations for the solid phase for each order of the small parameter η is obtained

η -2 : ∇ y .σ (-1) s = 0 η -1 : ∇ y .σ (0) s + ∇ x .σ (-1) s = 0 (2.78) η 0 : ∇ y .σ (1) s + ∇ x .σ (0) s = -ρ s ω 2 u (0) s η j : ∇ y .σ (j+1) s + ∇ x .σ (j) s = -ρ s ω 2 u (j)
s

The local description of the fluid velocity and stress tensor are expanded as

v f (x, y, t) = η j v (j) f (x, y, t) (2.79a) σ f (x, y, t) = η j σ (j) f (x, y, t) (2.79b) with v (j) f = iωu (j) f ; v (j)
f is periodic.

Substitution of the expansion (2.79) into equation (2.74) yields a series of equations for the fluid phase similar to that for the solid one for each order of the small parameter η η -2 : ∇ y .σ

(-1) f = 0 η -1 : ∇ y .σ (0) f + ∇ x .σ (-1) f = 0 (2.80) η 0 : ∇ y .σ (1) f + ∇ x .σ (0) f = -ρ f iωv (0) f η j : ∇ y .σ (j+1) f + ∇ x .σ (j) f = -ρ f iωv (j) f ∇ y .v (0) f = 0 ∇ y .v (j+1) f + ∇ x .v (j) f = 0, j = 1, 2, 3... (2.81)
Similarly, the boundary conditions for each order of η at the solid-fluid interfaces are

u (j) s = u (j) f on Γ σ (j) s .n = σ (j) f .n on Γ (2.82)
According to [START_REF] Malinouskaya | Propagation des ondes acoustiques dans les milieux hétérogènes[END_REF], the precise local description of the wave propagation depends on its mode. [START_REF] Boutin | Dynamic behaviour of porous media saturated by viscoelastic fluid. application to bitominous concretes[END_REF] found out three macroscopical behaviours depending on the various orders (O(η (0) ), O(η (1) ), O(η (2) )) of the transient Reynolds number defined by

R T = ρ f ωl 2 µ f (2.83)
where µ f is the dynamic viscosity of fluid and l the characteristic microscale length. These three kinds are associated with a biphasic macroscopic behaviour, an elastic macroscopic behaviour and a viscoelastic macroscopic behaviour, respectively. They are also related to the contrast between the mechanical properties C of the solid and the ones of the fluid ωµ |C| .

The order O(η (0) ) of the Reynold number corresponds to the order O(η (2) ) of this contrast, this corresponds to the biphasic mode where the relative solid-fluid motion is not zero. In Malinouskaya (2007), the fluid stress tensor is of the form

σ f = -Ip + η 2 µ f (∇v f + (∇v f ) T ) (2.84)
Substitution of the expansions of σ f , p and v f into (2.84) yields the expansion of the fluid stress tensor as

σ (-1) f = 0 σ (0) f = -Ip (0) σ (1 f = -Ip (1) + µ f [∇ y v (0) f + (∇ y v (0) f ) T ] (2.85) σ (j) f = -Ip (j) + µ f [∇ y v (j-1) f + (∇ y v (j-1) f ) T ] + µ f [∇ x v (j-2) f + (∇ x v (j-2) f ) T ]
From equations (2.78), (2.81) , (2.86), a series of microscopic equations for orders of η is obtained

η -2 : ∇ y .C : e(u (0) s ) = 0 in Ω s {C : e(u (0) s )}.n = 0 in Γ η -1 : ∇ y .C : [e(u (1) s ) + E(u (0) s )] + ∇ x .C : e(u (0) s ) = 0 in Ω s -∇ y p (0) = 0 in Ω f (2.86) {C : [e(u (1) s ) + E(u (0) s )] + Ip (0) }.n = 0 on Γ η 0 : ∇ y .C : [e(u (2) s ) + E(u (1) s )] + ∇ x .C : [e(u (1) s ) + E(u (0) s )] = -ρ s ω 2 u (0) s in Ω s -∇ y p (1) + ∇ y .[µ f (∇ y v (0) f + (∇ y v (0) f ) T )] -∇ x p (0) = ip f ωv (0) f in Ω f u (0) s = u (0) f on Γ {C : [e(u (2) ) + E(u (1) )] + Ip (1) -[µ f (∇ y v (0) f + (∇ y v (0) f ) T )]}.n = 0 on Γ
Then, these microscopic equations are integrated over Ω s and Ω f for the solid and fluid phases as in [START_REF] Malinouskaya | Propagation des ondes acoustiques dans les milieux hétérogènes[END_REF]. Hence, the equations of acoustic wave propagation in a porous medium saturated at the macroscopic scale can be expressed as

∇ x .C ef f : E(U (0) s ) + ∇ x .αp (0) = -ρ ω 2 U (0) s -ρ f ω 2 W (2.87a) iω W = 1 µ K.(-∇ x p (0) + ρ f ω 2 U (0) s ) (2.87b) ∇ x W = βp (0) -α : E(U (0) s ) (2.87c)
where C eff is the effective stiffness tensor, E(U (0) s ) the imposed macroscopic deformation, U (0) s the macroscopic solid displacement, α and β the coefficients describing the reaction of the solid matrix to the fluid pressure, p (0) the macroscopic fluid pressure and K the dynamic permeability [START_REF] Pazdniakou | Dynamic permeability of porous media by the lattice boltzmann method[END_REF]. Since U (0) s is a constant over the unit cell, the relative fluid displacement is given by

W = u (0) f -U (0) s (2.88)
It is important to note that W is an Ω periodic function and it is not zero since the fluid displacement

u (0) f is different from U (0) s .

Macroscopic descriptions

At the macroscopic level, the subscripts x , s , (0) and the symbol of W can be skipped in equation (2.87). One has the equations

∇.C ef f : E(U ) + ∇.αp = -ρ ω 2 U -ρ f ω 2 W (2.89a) iωW = 1 µ K.(-∇p + ρ f ω 2 U ) (2.89b) ∇.W = βp -α : E(U ) (2.89c)
As indicated above, in this method, a harmonic wave propagating along the direction p is considered. Therefore, the displacement and the pressure can be given by

U = Û e -ikxp+iωt (2.90a) W = Ŵ e -ikxp+iωt
(2.90b)

p = P e -ikxp+iωt (2.90c)
where k is the wave number.

According to Pazdniakou (2012), the phase wave velocity is defined by

c = ω k (2.91)
Using (2.90) and (2.91), equations (2.89) can be simplified and the velocity c with the vectors Û and Ŵ can be found by solving the eigenvalue problem of the Christoffel equation

   p.C ef f p -β -1 p.αα.p β -1 p.αp - ω µ f β K.pα.p ω µ f β K.pp    Û Ŵ = c 2    ρ I ρ f I - ωρ f µ f K iI    Û Ŵ (2.92)
It is clear that the four macroscopic properties K, α, β and C ef f must be determined in order to solve (2.92).

Multiple pores and compressible fluids

The fluid compressibility has an obvious influence on the macroscopic properties of saturated porous media. It is related to the fluid pressure by

p(t) -p 0 = c 2 s (ρ f (t) -ρ 0 ) (2.93)
where c s is the sound speed, ρ 0 and p 0 the fluid density and fluid pressure in the equilibrium state.

Then, the compressibility coefficient is defined by

c f = 1 ρ f c 2 s (2.94)
The influence of disconnected pores on the acoustic wave propagation in saturated media was considered by [START_REF] Pazdniakou | Dynamic permeability of porous media by the lattice boltzmann method[END_REF] and [START_REF] Li | Propagation des ondes acoustiques dans les milieux hétérogènes[END_REF]. [START_REF] Li | Propagation des ondes acoustiques dans les milieux hétérogènes[END_REF] pointed out that for a medium with n disconnected pores saturated by a compressible fluid, equations (2.89) which describe wave propagation through a saturated porous medium transform into

∇.C ef f : E(U ) + ∇.α p = -ρ ω 2 U -ρ f ω 2 I W (2.95a) iωW = 1 µ K.(-∇p + ρ f ω 2 IU ) (2.95b) ∇.W = (B -c f ) p + α : E(U ) (2.95c)
In this compact formulation, some special vector notations are used, such as I, p... They can be explained as follows. I is a column vector of size n whose components are all equal to 1. The variables relative to the pore are denoted by the superscripts i and j . Then, one has

p = (p i ) , W = (W i ) , α = (α i ) (2.96)
where p i , W i and α i are the pressure, the averaged fluid displacement and the coefficient relative to the pore i . B is the pore interaction matrix B ij . and K are expressed as

=       1 . . . n       , K =       K 1 . . . K n       (2.97)
where i is the volume fraction, K i the permeability of Ω i f . The special symbol denotes an inner product over the pore indices (superscripts), equivalent to the scalar product (•) over spatial indices (subscripts). The compressibility effects or the compressibility coefficient, from now on, are taken

into account by G G = (B -c f ) -1 (2.98)
Then, thanks to equation (2.95), similarly to the case of a single pore, the wave velocity c, the solid displacement Û , the averaged fluid displacement Ŵ can be found by solving the eigenvalue problem of the Christoffel equation for a saturated porous medium with multi-pores and compressibility fluids

   [p.(C ef f -α G α).p]. [p.α Gp] . [- 1 µ f K.pG α.p]. [ 1 µ f K.pGp] .    Û Ŵ = c 2    ρ ρ f I - ρ f µ f K. i ω    Û Ŵ (2.99)
Similarly to a single pore, the four quantities K, α, B and C ef f are necessary. The determination of these properties was studied in [START_REF] Malinouskaya | Propagation des ondes acoustiques dans les milieux hétérogènes[END_REF], [START_REF] Li | Propagation des ondes acoustiques dans les milieux hétérogènes[END_REF] and Pazdniakou (2012).

2.7.3

Determination of K, α, B and C ef f

The four quantities K, α, B and C ef f characterize the hydrodynamical and mechanical properties of the porous medium. They must be determined in order to obtain the acoustic veloci-ties in porous media with a single pore or multi-pores saturated by an incompressible or compressible fluid. This section presents their physical meanings and the methods of determination which are applied in this thesis.

• Effective stiffness tensor C ef f : this is the effective stiffness tensor of the dry medium.

It characterizes the elastic properties of the porous medium at the macroscopic level.

The average stress tensor σ is related to the mean strain tensor ε by C ef f as for an elastic material. It can be directly determined by the LSM and LSM2S as presented in the calculation of acoustic waves propagation in dry porous media.

• Dynamic permeability K: It is obtained by calculating the permeability tensors of all disconnected pores. In most cases, only one pore is percolating. The dynamic permeabilities K are complex and frequency dependent [START_REF] Biot | General theory of three dimensional consolidation[END_REF]. K is used to characterize oscillating flows in porous media. The theoretical basis of the dynamic permeability calculation was presented; in order to determine K, the numerical tool is LBM.

• The coefficients α, B (α and β): they characterize the reaction of the solid matrix to the fluid pressure. α characterizes the variation of the pore volume when the medium is submitted to the macroscopic strain E. B ij is the variation of the pore volume Ω i f when a unit pressure is imposed in the pore j. In fact, α and B are considered as a generalisation of α and β for one pore.

According to Li (2010), q i is necessary in the calculation of α and B. This is the displacement field in the porous medium when the unit fluid p i =1 is exerted on the pore surface Γ i while the other pores are at a zero fluid pressure. It can be found from the

equations                ∇ y .[C : e(q i )] = 0 in Ω s [C : e(q i )].n i = -n i on Γ i [C : e(q i )].n j = 0 on Γ j , j = i (2.100)
Then, the coefficients α i and B ij can be defined by

α i = -i I + C : e(q i ) (2.101) B ij = 1 Ω Γ i q j .n j ds
In the framework of this thesis, the macroscopic coefficients α, B (α and β) can be numerically simulated by using the LSM-LBM model for media with one solid and by LSM2S-LBM for two solids which are presented in Chapter 3.

When all four properties are determined, the acoustic velocities in saturated samples can be calculated. Three types of waves can be calculated: fast compressional wave, slow compressional wave and shear waves Biot (1956a,b), Pazdniakou (2012).

Gassmann's model

Gassmann 's (1951) equations are the relations most widely used to calculate seismic velocity in reservoirs. Gassmann fluid substitution is a simple method used for predicting the acoustic velocities in saturated porous media [START_REF] Han | Gassmann's equation and fluidsaturation effects on seismic velocities[END_REF][START_REF] Fredy | Sensitivity analysis of gassmann's fluid substitution equations: Some implications in feasibility studies of time-lapse seismic reservoir monitoring[END_REF]. It allows to determine the velocities of the compressional and the shear waves in saturated samples when the effective properties such as the bulk modulus, the shear modulus of dry samples... are fully determined.

As indicated before, in this thesis, the dry samples are calculated by numerical tools and the effective properties are derived; therefore, Gassmann's model can be used to predict the acoustic velocities in saturated samples. For the purpose of comparisons with our numerical results, in this section, this model is summarized.

The pore space stiffness K ε is related to the porosity ε, the bulk modulus K 0 of the solid component and the bulk modulus K d of the dry porous medium by

K ε = ε 1 K d - 1 K 0 (2.102)
The pore filled by fluids has influences on the macroscopic properties of the medium. For instance, the saturated bulk modulus K sat can be given by

K sat = 1 1 K 0 + ε K ε + K 0 K f K 0 -K f (2.103)
where K f is the fluid bulk modulus. Then, the density of such saturated medium ρ sat can be expressed as

ρ sat = (1 -ε)ρ 0 + ερ f (2.104)
where ρ 0 is the solid density and ρ f the fluid density.

In Gassmann's model, the shear modulus is independent of the pore filling, i.e., the shear modulus G sat of saturated medium is equal to the dry one G d . Therefore, the velocity of shear wave can be derived by

V s sat = G sat ρ sat = G d ρ sat (2.105)
The compressional wave velocity V p2 is more complex; it depends not only on the density and on shear modulus, but also on the saturated bulk modulus K sat . It is expressed as

V p sat = K sat + 4G sat /3 ρ sat (2.106)
In orderr to apply Gassmann's model to our calculations, the quantities K d , K 0 , G, ε, ρ f , ρ s and K f are determined. Thanks to equation (2.104), the saturated density of the medium can be calculated. Then, the shear wave velocity V s sat is determined from (2.105). The pore space stiffness is calculated according to (2.102). Therefore, the compression wave velocity V p sat can be obtained by (2.106) after determination of the saturated bulk modulus K sat by using (2.103). Hence, the acoustic velocities in saturated porous media can be approximated in a simple way.

Gassmann's model is based on several assumptions which are

• The porous material is isotropic, elastic, homogeneous and composed of a single mineral.

It is an issue for the STATOIL samples which are composed of two solid components.

However, it can be solved as presented in Chapter 5.

• The porosity is always constant, it means that the porosity does not change with different saturating fluids.

• The pore space is well connected and in pressure equilibrium. This may not be correct for samples with disconnected pores, but correct for our samples as it will be shown in Chapter 4 and Chapter 5.

• The medium is a closed system with no pore-fluid across the boundaries.

It is worth noting that this model takes into account the fluid compressibility; therefore, in the framework of the thesis, it is used for comparison with simulation results obtained by LBM ,LSM, LSM2S, LBM-LSM when the samples are saturated by water.

Summary

The three main works done in this thesis are presented: characterizations of samples, acoustic waves propagating in dry porous media and in saturated media.

The characterizations include calculations of porosity and the correlation function. This is a small part in the overall calculations, but important. A suitable method for each sample can be proposed based on its results.

The acoustic waves in dry porous media is determined from the macroscopic properties of the media. It is based on the calculations of elastic waves in elastic materials when the averaged values are introduced. The velocities can be derived from the effective stiffness tensor C ef f which is directly obtained by using numerical tools such as LSM, LSM2S when the sample size is not too large; sometimes the coarsening method must be applied.

The propagation of acoustic waves through saturated porous media was calculated by the homogenization method used by [START_REF] Malinouskaya | Propagation des ondes acoustiques dans les milieux hétérogènes[END_REF] and [START_REF] Li | Propagation des ondes acoustiques dans les milieux hétérogènes[END_REF]. The effective stiffness tensor C ef f , the permeabilities K, the reaction of the solid matrix on the fluid pressure α and β are Introduction

In the field of porous media, there are many problems that can be studied such as flows, mechanical properties... Most of them are very complex and difficult; there are only a few analytical solutions and numerical tools must be used most of the time. The development of computers makes numerical simulations easier and faster. Real experiments which are usually costly, can be partly avoided.

Since the propagation of acoustic waves in porous media is also complex, numerical simulations are needed to obtain results. In order to have simulations which are in good agreement with the real experiments, the models must reproduce correctly the physical situation (i.e., all the necessary physical characteristics which can influence the results have to be known) and the numerical methods have to be precise enough. In this section, lattice models which calculate flows and deformations in dry and in saturated porous media with one or two solid components are presented; they are the Lattice Spring Model (LSM), the Lattice Spring Model for two solids (LSM2S), the coupled LBM-LSM model and the LBM-LSM2S model.

LSM is used to calculate the effective mechanical properties of porous media at a macroscopic level; the medium in this case has only one solid component [START_REF] Pazdniakou | Dynamic permeability of porous media by the lattice boltzmann method[END_REF]. Solids are modeled by lattice points which are connected to others by springs. Linear and angular springs are used (Ladd et al., 1997a;[START_REF] Wang | The bond-bending model in three dimensions[END_REF], together with the concept of elastic elements [START_REF] Pazdniakou | Dynamic permeability of porous media by the lattice boltzmann method[END_REF]Ladd et al., 1997b). Then, the macroscopic elastic constants can be obtained by the energy stored in an elementary cell as described in [START_REF] Ostoja | Lattice models in micromechanics[END_REF].

Lattice Spring Model for two solids is new and is developed based on the basic LSM in order to calculate porous media with two solid components. There are two types of elastic elements in the lattice, one for each solid; this yields many values of elastic constants of springs depending on their location. After determination of all elastic spring constants, LSM2S works in the same way as LSM. In this chapter, LSM2S is developed and validated by comparison with existing methods such as the approximation methods of Nemat-Nasser and Iwakuma (1982), (1998,2000) and [START_REF] Cohen | Simple algebraic approximations for the effective elastic moduli of cubic arrays of spheres[END_REF], the FFT method of Hoang-Duc and Bonnet (2012), and the FMD of [START_REF] Malinouskaya | Propagation des ondes acoustiques dans les milieux hétérogènes[END_REF].

Torquato
The coupled LBM-LSM model [START_REF] Pazdniakou | Dynamic permeability of porous media by the lattice boltzmann method[END_REF] can study the interactions between fluid and solid phases in saturated porous media. The connection between LBM and LSM is the momentum exchange algorithm [START_REF] Buxton | Newtonian fluid meets an elastic solid: Coupling lattice boltzmann and lattice-spring models[END_REF][START_REF] Wu | Simulating 3d deformable particle suspensions using lattice boltzmann method with discrete external boundary force[END_REF] which is used to calculate the force exerted by the fluid on a solid surface element point and the reflected distribution function of LBM following the LSM iteration with the Verlet algorithm. This coupled model is used to derive the coefficients α and β which characterize the reaction of the solid matrix on the fluid pressure and they are needed to solve the Christoffel equation. Then, LBM-LSM2S is developed in order to determine these coefficients for media with two solid components.

This chapter is organized as follows. Section 3.2 presents the Lattice Spring Model. Then, the Lattice Spring Model for two solid (LSM2S) is described in Section 3.3. Section 3.4 details the coupled LBM-LSM model and the development of LBM-LSM2S. Finally, some conclusions are discussed in Section 3.5.

Lattice Spring Model

The Lattice Spring Model (LSM) can be used to simulate elastic media. In this model, the medium is represented by a lattice whose points are connected by linear springs; angular forces between contiguous linear springs can also be included [START_REF] Pazdniakou | Dynamic permeability of porous media by the lattice boltzmann method[END_REF]. Since LSM describes the elastic medium behaviour at the microscopic level, the behaviour in the continuum limit should be derived. In order to obtain the macroscopic properties, the displacements of lattice points are supposed small and the strain tensor uniform. The elastic energy stored in an elementary cube yields the macroscopic elastic properties [START_REF] Ostoja | Lattice models in micromechanics[END_REF].

3D LSM

In 3D, for isotropic media, a face centered cubic lattice with 18 springs is used (Fig. 3.1.a). For a lattice with 18 linear springs, the vectors corresponding to the six first neighbours (blue dots in Fig. 3.1) of any point are given by c (b) = (±a, 0, 0), (0, ±a, 0), (0, 0, ±a

), b = 1, • • • , 6 (3.1)
The twelve second neighbours (red dots in Fig. 3.1) are given by the vectors

c (b) = (±a, ±a, 0), (0, ±a, ±a), (±a, 0, ±a), b = 7, • • • , 18 (3.2)
where a is the size of the elementary cube. The corresponding unit vectors in the same direction are denoted by

n (b) c (b) |c (b) | (3.3)
Some lattice points can be considered as the centre of an elementary cube whose volume is a 3 (Fig. 3.1.b). The corresponding vectors are denoted by

r (b) = c (b) 2 (3.4)
There are also angular springs between some of the linear springs. In the lattice spring model, there are two types of angular springs with angles π 4 and π 3 as seen in Fig. 3.2. In an elementary cube, the length of all the linear springs is equal to half their initial length.

Therefore, κ (b) = 2α (b) where α b is the linear spring constant of the initial spring. The total energy stored in an elementary cube is

E = 1 2 b κ (b) |u (b) | 2 + 1 2 b,b β (b,b ) (∆ϕ (b,b ) ) 2 (3.7)
where β (b) is the angular spring constant.

Linear springs

The energy of all linear springs stored in an elementary cube is equal to

E c = 1 2 b κ (b) |u (b) | 2 (3.8)
The relative displacement u (b) can be expressed by using the strain tensor in the following way

u (b) i = ε ij r (b) j = |r (b) |ε ij n (b) j (3.9)
For small displacements, we have

|u (b) | = u (b) • n (b) = |r b |ε ij n (b) j n (b) i (3.10)
Then, the elastic energy of linear springs is

E c = 1 2 b κ (b) |u (b) | 2 = 1 2 b |r b |n (b) i n (b) j |n (b) k n (b) l ε ij ε kl (3.11)
The elastic energy density is given by

W c = E c V = 1 2 1 a 3 b |r b |n (b) i n (b) j |n (b) k n (b) l ε ij ε kl (3.12)
Therefore, the stiffness tensor relative to the central forces may be expressed as

C (cf ) ijkl = 1 a 3 b |r b |n (b) i n (b) j n (b) k n (b) l (3.13)
With the same value of κ (b) , the coefficients of the stiffness tensor can be given as follows

C cf xxxx = 3α a ; C cf xxyy = α a ; C cf xyxy = α a (3.14)
Under such conditions, the Poisson ratio is

ν = λ s 2(λ s + µ s ) = 0.25 (3.15)

Angular springs

Similar to the linear springs, the elastic energy density of angular springs in an elementary cube was found by Pazdniakou (2012) where ijk is the Levi-Civita tensor. By using the following tensorial identities

W a = 1 2 β a 3 sin 2 (ϕ) (b,b ) kij (n (b ) i n (b ) p -n (b) i n (b) p ) klm n (b) l n (b ) m ] acd (n (b ) c n (b ) h -n (b) c n (b) h ) af s n (b) f n (b ) s ] ε jp ε dh (3.16)
pij plk = δ il δ jk -δ ik δ jl ; δ ij a j = a i (3.17)
the angular stiffness tensor C

(af )

jphd can be simplified as

C (af ) jphd = β a 3 sin 2 • (b,b ) n (b ) i n (b) i n (b ) p n (b ) j -n (b) i n (b) i n (b) p n (b ) j -n (b ) i n (b ) i n (b ) p n (b) j + n (b) i n (b ) i n (b) p n (b) j • n (b ) l n (b) l n (b ) h n (b ) d -n (b) l n (b) l n (b) h n (b ) d -n (b ) l n (b ) l n (b ) h n (b) d + n (b) l n (b ) l n (b) h n (b) d (3.18)
It is necessary to know the angles between the angular springs in order to calculate the stiffness tensor. There are 24 angular springs with an angle equal to π 4 which corresponds to the first and second neighbours; they are located in 3 mutually orthogonal planes. Their stiffness tensor coefficients are expressed as

C ( π 4 ) xxxx = 4β a 3 ; C ( π 4 ) xxyy = - 2β a 3 ; C ( π 4 ) xxxx = 2β a 3 (3.19)
This tensor is not isotropic since it corresponds to a medium with a cubic symmetry.

In addition, there are too 24 angular springs with an angle equal to π 3 which correspond to second neighbours; they are located in 4 inclined planes. Their stiffness tensor coefficients are given by

C ( π 3 ) xxxx = 4β a 3 ; C ( π 3 ) xxyy = - 2β a 3 ; C ( π 3 ) xxxx = 4β a 3 (3.20)
This tensor is not isotropic for the same reason as before; however, the combination of these two angle sets with the same β yields an isotropic stiffness tensor

C (af ) xxxx = 8β a 3 ; C (af ) xxyy = - 4β a 3 ; C (af ) xxxx = 6β a 3 (3.21)

Combination of linear and angular springs

The total stiffness tensor which is the sum of the linear and angular force tensors is expressed by

C xxxx = 3α a + 8β a 3 ; C xxyy = α a - 4β a 3 ; C xxxx = α a + 6β a 3 (3.22)
The properties of the medium are

λ s = α a - 4β a 3 ; µ s = α a + 6β a 3 ; K = 5α a ; ν = α - 4β a 2 4α + 4β a 2 (3.23)
where λ s and µ s are the Lamé coefficients, K the bulk modulus and ν the Poisson ratio.

According to [START_REF] Pazdniakou | Dynamic permeability of porous media by the lattice boltzmann method[END_REF], the force exerted by the linear springs acting on the lattice point i is expressed as

F i = α n ((u n -u i ).ĉ i,n )ĉ i,n (3.24)
where ĉi,n is the normalized vector connecting the nodes i and n.

Then, the forces exerted by angular springs b -i -b acting on the two endpoints b, b and the vertex point i are given by

F (b) = β∆φ (b,b ) n (b) × n(b,b ) |n (b) × n(b,b ) ||c (b) | (3.25a) F (b ) = β∆φ (b,b ) n (b ) × n(b,b ) |n (b ) × n(b,b ) ||c (b ) | (3.25b)
F (i) = (F (b) + F (b ) ) (3.25c) 3.2.5
The problems of the original LSM

In fact, these formulas yield an incorrect Poisson ratio and inadequate boundary conditions.

Problem of Poisson ratio

With the original form of LSM, the Poisson ratio is given by equation (3.23) and it varies between -1 and 0.25 when β α varies from 0 to ∞. But for real materials, it can be larger than 0.25.

Boundary condition

With the previous formulas, the elastic constants are fixed for all linear and angular springs and they are correct when all the lattice points are located inside the medium. But in most cases, some surface points are presented, such as at the surface of the pores.

In order to prove this, some direct simulations with these formulas were performed and they introduced inaccuracies even for simple geometries as in Ladd et al. (1997a,b). Consider a cube of size L made of an isotropic elastic material and submitted to a simple stretching along the xdirection. According to the linear elastic theory, under the action of this load, the cube will be transformed into a rectangular parallelepiped (Fig. 3.4). However, in fact, a direct application of the original LSM is inaccurate and the side surface of size 20 submitted to a simple stretching is deformed as in Fig. 3.5.

Solution by introduction of elastic elements

It is obvious that the elastic constant of the springs located at the surface must be corrected. These problems were solved by introducing "elastic elements" into LSM [START_REF] Pazdniakou | Dynamic permeability of porous media by the lattice boltzmann method[END_REF].

An elastic element is an elementary cube which is limited by eight lattice points related by springs (Fig. 3.6) and it represents the smallest part of an elastic medium. Depending on the number of neighbours, each spring can belong to several elastic elements. The [1,0,0] type springs can belong to 1,2, 3 or 4 neighbour elastic elements. The [1,1,0] type springs can belong to 1 or 2 neighbour elastic elements. Therefore, the constant of the considered spring is equal to the sum of the linear spring constants of all the neighbour elastic elements containing the considered spring (Fig. 3.7). A similar approach is applied to the angular springs.

A [1,0,0] linear spring which belongs to an elastic element, has a constant equal to 1 4 α; when it belongs to 2 elements, the constant is equal to 1 2 α; when it belongs to 3 elements, the constant is equal to 3 4 α; the ones located inside the medium have a constant equal to α. An elastic element contains forty eight π 4 -and twenty four π 3 -angular springs. A π 3 -angular spring can belong only to one elastic element; therefore, its constant is β. A π 4 -angular spring can belong to 1 or 2 elastic elements; they correspond to β 2 and β, respectively. assigning negative values to the angular spring elastic constant; then, the Poisson ratio ν becomes larger than 0.25. This can be done because in the elastic element there is always a linear spring between the endpoints of any angular spring which compensates the force exerted by angular springs with a negative constant.

Boundary conditions

In elastostatics problems, the deformations inside an elastic body are usually due to two types of boundary conditions which are either prescribed deformations or prescribed forces.

In the LSM based on elastic elements, an external force is distributed according to the additive principle. The force acting on the side of an elastic element should be uniformly redistributed between the four lattice points composing this side. The total external force acting on a lattice point is the sum of the external forces taken over all the elastic elements containing this lattice point.

If a uniform stress is prescribed on the side of a cube as in Fig. 3.9, there are three types of lattice points: the points which belong to 3 cube sides where the force is ( F x 4 , 0, 0), the points which belong to 2 cube sides where the force is ( F x 2 , 0, 0) and the points on 1 cube side where the force is (Fx, 0, 0). Figure 3.9: Stress boundary condition. The external force is ( F x 4 , 0, 0) at the white points, ( F x 2 , 0, 0) at the blue points and (Fx,0, 0) at the red points.

A strain boundary condition can be imposed in the same way as in the original LSM.

Geometry LSM geometry

Figure 3.10: Example of LSM geometry in 2D. Z(i,j)=0: the corresponding elastic element is grey; the black dots are the solid lattice points. Z(i+1,j)=1: the corresponding pore element is white.

The samples are discretized into elementary cubes of size a which are either solid or void.

This can be represented by the phase function (2.4). Equivalently, Z(r ) can be denoted by Z(i,j,k)

where (i,j,k) are the integer coordinates of the voxel. The lattice points of LSM are deduced from Z; each solid voxel Z(i,j,k)=0 corresponds to one elastic element and eight solid lattice points are the vertices of the elementary cube (Fig. 3.10).

Application of LSM to calculate effective stiffness tensors

The elastic behaviour of porous media is governed by

σ = C (ef f ) : ε (3.26)
where σ and ε are the average values of stress and strain at the macroscopic level in the porous medium. C (ef f ) is the effective stiffness tensor.

In order to calculate the effective stiffness tensors based on LSM with elastic elements, In the general case, 6 simulations are necessary to obtain the 9 required values of the effective stiffness tensor

C (ef f ) =                 C xxxx C xxyy C xxzz 0 0 0 C xxyy C yyyy C yyzz 0 0 0 C xxzz C yyzz C zzzz 0 0 0 0 0 0 C yzyz 0 0 0 0 0 0 C xzxz 0 0 0 0 0 0 C xyxy                
(3.27)

3.3

The Lattice Spring Model for 2 solid components (LSM2S)

The mechanical properties of porous media are of theoretical and industrial interests. Many methods have been proposed in order to calculate the mechanical properties of porous media on the macroscopic level. However, most methods are limited to media with one solid component and pores, whereas media are often formed by many solid components. Some methods have been proposed to solve this problem, including the approximation methods of Nemat-Nasser and Iwakuma (1982), [START_REF] Torquato | Effective stiffness tensor of composite media: Ii. application to isotropic dispersion[END_REF][START_REF] Torquato | Modeling of physical properties of composite materials[END_REF] and [START_REF] Cohen | Simple algebraic approximations for the effective elastic moduli of cubic arrays of spheres[END_REF], the FFT method of Hoang-Duc and Bonnet (2012), and the FMD of [START_REF] Malinouskaya | Propagation des ondes acoustiques dans les milieux hétérogènes[END_REF]. The analytical methods are limited in applications; calculation of media with more than two solid components is complicated and large samples are difficult to calculate. Based on the basic Lattice Spring Model, a new model called Lattice Spring model with many components (LSM2S) is proposed; it can be used to calculate the macroscopic properties of porous media with two or more solid components.

LSM2S is based on the LSM created by [START_REF] Pazdniakou | Dynamic permeability of porous media by the lattice boltzmann method[END_REF]; solids are modeled by springs connected at nodes and the macroscopic elastic constants can be derived by the elastic energy stored in an elementary cell. LSM2S involves the characteristics of the basic LSM, such as the linear springs, the angular springs, the elastic elements, the boundary conditions and the Verlet algorithm. The important point of LSM2S is the presence of interfaces between the different components which induce various values of linear and angular spring constants.

In this section, the descriptions of the resolution of reaction problems between the different solids, the validation of LSM2S, the discussion and the perspectives of the model are presented.

Geometry

The model LSM2S is developed based on the basic Lattice Spring Model in order to calculate the macroscopic properties of heterogeneous media. To achieve this purpose, we must take into account the reaction between the various solids or between solids and pores. The geometry of the sample is discretized in the same way as in LSM. Again the porous medium is discretized into voxels corresponding to the phase function Z(i, j, k) (cf. (2.4)). For media with several components, each solid component is assigned a numerical symbol (0,2...) in the phase function.

Therefore, the phase function becomes The interface corresponds to the orange springs.

Z(i, j, k) =                0 if

Spring constants with two solids

It is clear that the effective properties depend on the distribution of the matrix and of the inclusions. The springs located at different positions have different values of the elastic constants.

According to the elasticity theory and the basic LSM, in an elastic element, the linear spring constant α and the angular spring constant β of each material are given by

α = aE 5(1 -2ν) β = a 3 E(4ν -1) 20(2ν -1)(1 + ν) (3.29)
where a is the voxel dimension, E the Young modulus, ν the Poisson ratio. Recall that the considered media are composed by pore, matrix and inclusion; their properties are given in Table 3.1.

Elastic modulus (GPa) Matrix Inclusion

Young modulus E

E 2 E 0
Poisson ratio ν ν 2 ν 0 Table 3.1: Elastic properties of matrix and inclusion.

From these values, one can obtain the linear spring constant and the angular spring constant of the inclusion α 0 , β 0 and of the matrix α 2 , β 2 , respectively.

Due to the complexity of the solid-pore interface, there exist many possible values of elastic constants in the lattice. One spring can belong to an elastic element of type 0, type 2 or both as it can be seen in Fig. 3.12.b (blue, green and orange spring). The elastic constant of a linear spring or an angular spring depends on the number and the type of elastic elements that it belongs to. The results are given in Table 3.2, where η 0 and η 2 are the number of elastic elements of type 0 and 2 to which the selected spring belongs, respectively. The calculations are detailed in Appendix A.1.

The spatially periodic boundary conditions

Usually spatially periodic media are considered. These media can be obtained by translation along the three axes of a unit cell. In order to calculate the macroscopic properties of spatially Type of springs

η 2 η 0 Elastic constant 1 0 α 2 4 2 0 α 2 2 (1 0 0) linear springs 3 0 3α 2 4 belong to only one type 4 0 α 2 of elastic element 0 1 α 0 4 0 2 α 0 2 0 3 3α 0 4 0 4 α 0 1 1 α 2 + α 0 4 1 2 α 2 + 2α 0 4 (1 0 0) linear springs 1 3 α 2 + 3α 0 4 belong to two types 2 1 2α 2 + α 0 4 of elastic element 3 1 3α 2 + α 0 4 2 2 3α 2 + α 0 2 1 0 α 2 2 2 0 α 2 (1 1 0) linear springs 0 1 α 0 4 0 2 α 0 1 1 α 2 + α 0 2 1 0 β 2 2 2 0 β 2 π 4 -angular springs 0 1 β 0 4 0 2 β 0 1 1 β 2 + β 0 2 π 3 -angular springs 1 0 β 2 0 1 β 0
Table 3.2: Elastic constants of springs in the lattice. periodic media, one has to determine the elastic properties of the unit cell by applying six different macro-strains. In this case, the unit cell is deformed and the displacements of opposite sides depend on each other [START_REF] Burla | Implicit boundary method for determination of effective properties of composite microstructures[END_REF]. The deformations and the displacements are described in Table 3.3.

These conditions must be applied to pairs of lattice points (two types) at opposite faces of the unit cell. Two opposite faces can be denoted with the superscript (1) and with the superscript

(2) where face (1) is the first face met in the direction of the normal axis and face (2) is the second one (Figure 3.13). When the opposite faces have the same displacements, all the lattice points from face (2) correspond to lattice point from face (1) and are connected to the previous layer by springs with spatial periodicity. The transformed unit cell now satisfies the prescribed condition of equal displacements at the opposite faces. However, to apply a nonzero macroscopic strain at the opposite faces, one does not need this step. Before starting the calculations with the Verlet algorithm, displacements corresponding to the desired macro-strain must be prescribed to pairs of solid lattice points at faces (1) and (2) . As a consequence, the total force acting on each point of the pair is equal to the sum of the forces acting on each point of the pair, separately. Then, the spatially periodic boundary conditions are satisfied because the corresponding points undergo the same displacement. A specific example of this problem was given by Pazdniakou (2012).

Macro-strain yz-faces xz-faces xy-faces

ε xx u 2 x -u 1 x = e; u 2 y = u 1 y ; u 2 z = u 1 z u 2 x = u 1 x ; u 2 y = u 1 y ; u 2 z = u 1 z u 2 x = u 1 x ; u 2 y = u 1 y ; u 2 z = u 1 z ε yy u 2 x = u 1 x ; u 2 y = u 1 y ; u 2 z = u 1 z u 2 x = u 1 x ; u 2 y -u 1 y = e ; u 2 z = u 1 z u 2 x = u 1 x ; u 2 y = u 1 y ; u 2 z = u 1 z ε zz u 2 x = u 1 x ; u 2 y = u 1 y ; u 2 z = u 1 z u 2 x = u 1 x ; u 2 y = u 1 y ; u 2 z = u 1 z u 2 x = u 1 x ; u 2 y = u 1 y ; u 2 z -u 1 z = e ε xz u 2 x = u 1 x ; u 2 y = u 1 y ; u 2 z -u 1 z = e u 2 x = u 1 x ; u 2 y = u 1 y ; u 2 z = u 1 z u 2 x = u 1 x ; u 2 y = u 1 y ; u 2 z = u 1 z ε yx u 2 x = u 1 x ; u 2 y = u 1 y ; u 2 z = u 1 z u 2 x -u 1 x = e; u 2 y = u 1 y ; u 2 z = u 1 z u 2 x = u 1 x ; u 2 y = u 1 y ; u 2 z = u 1 z ε zy u 2 x = u 1 x ; u 2 y = u 1 y ; u 2 z = u 1 z u 2 x = u 1 x ; u 2 y = u 1 y ; u 2 z = u 1 z u 2 x = u 1 x ; u 2 y -u 1 y = e ; u 2 z = u 1 z
Table 3.3: Spatially periodic boundary conditions corresponding to the six macro-strains.

3.3.4

Calculation of effective properties of porous media with two solids.

The final purpose of the model LSM2S is to determine the effective properties of porous media with many solid components. As in the basic LSM, they can be obtained by imposing spatially periodic boundary conditions on the unit cell as described above. Then, by using the Verlet algorithm, one can calculate the evolution of the displacement field. But, we must note that it is necessary to introduce a viscosity term θ to damp vibrations; the Verlet algorithm is given by

v i (t + δt 2 ) = v i (t) + a i (t) 2 δt (3.30a) u i (t + δt) = u i (t) + v i (t + δt 2 )δt (3.30b) a i (t + δt) = F i (t + δt) m i -θv i (t + δt 2 ) (3.30c) v i (t + δt) = v i (t + δt 2 ) + a i (t + δt) 2 δ t (3.30d)
According to [START_REF] Pazdniakou | Dynamic permeability of porous media by the lattice boltzmann method[END_REF], the best value of θ that one can use is 0.5. When equilibrium is reached, the average stress tensor is calculated and the effective moduli can be obtained by

σ = C (ef f ) : ε (3.31)
where σ and ε are the average values of stress and strain at the macroscopic level. In order to obtain the effective stiffness tensor, six simulations with the six macro-strains presented in Table 3.3 are needed. A code in Fortran was developed and can perform these six simulations.

Calculations of acoustic wave velocities in porous media with many solid components are similar to the ones in the basic LSM. The only difference is the average density over the unit cell

ρ which is ρ = 1 V V ρdV = φ 0 ρ 0 + φ 2 ρ 2 (3.32)
where φ 0 and φ 2 are the proportions of inclusion and matrix in the media; ρ 0 and ρ 2 are the corresponding solid densities.

The algorithm

In this section, we discuss the numerical implementation of LSM2S. The code is developed from the basic LSM code; therefore, it is implemented using Fortran 90. The program flowchart is given in Table 3.4 on the number of threads according to Amdahl's law [START_REF] Che | Amdahl's law for multithreaded multicore processors[END_REF] is presented in Fig.

3.14.

Read solid geometry data

Calculation of number of springs and of the elastic constant of each spring

Apply the driving forces (or the boundary conditions) LSM iteration step (Verlet algorithm)

• v(t + δ t /2) = v(t) + a(t)δ t /2 • r(t + δ t /2) = r(t) + v(t + δ t /2)δ t • Calculate elastic forces F(t+ δt ) • v(t + δ t ) = v(t + δ t /2) + a(t + δ t )δ t /2 Exit Test Stop yes no t = t + δt Table 3.4: The LSM2S program flowchart.

Validation

In order to validate LSM2S, some comparisons between our results and other methods are required. In fact, some methods can address media with two components such as the Clausius-Mossotti (CM) approximations of [START_REF] Cohen | Simple algebraic approximations for the effective elastic moduli of cubic arrays of spheres[END_REF], the approximate numerical solution of Nemat-Nasser and Iwakuma (1982) for ellipsoidal inclusions, the new perturbation expansions for the effective stiffness tensor of [START_REF] Torquato | Modeling of physical properties of composite materials[END_REF], the FFT solution of Hoang-Duc and Bonnet (2012), the numerical method FMD of [START_REF] Malinouskaya | Propagation des ondes acoustiques dans les milieux hétérogènes[END_REF]... These methods are limited; most of them are used for predicting effective properties of media with only two components (one solid -pore; two solids -non pore) and small sizes. Samples which have more than three components (two solids and pores) or with large sizes are more difficult to calculate. Therefore, the validation is performed by comparing the results for some simple samples that can be calculated by these methods.

3.3.6.1

Comparison with Cohen, Iwakuma and Nemat-Nasser and Torquato

Nemat-Nasser and Iwakuma (1982), [START_REF] Torquato | Effective stiffness tensor of composite media: Ii. application to isotropic dispersion[END_REF][START_REF] Torquato | Modeling of physical properties of composite materials[END_REF] and [START_REF] Cohen | Simple algebraic approximations for the effective elastic moduli of cubic arrays of spheres[END_REF] proposed approximation methods in order to predict the macroscopic properties of heterogeneous media.

Cohen (2004) calculated the effective elastic moduli by applying the method of elastostatic resonances to 3D cubic arrays of spheres. One can obtain the leading order in this systematic perturbation expansion in the form of simple algebraic expressions for the elastic moduli. Nemat-Nasser and Iwakuma (1982) proposed a method which is applied to cubic arrays of spheres inclusions, of void spheres and of ellipsoidal inclusions. Torquato (1998) developed new perturbation expansions for the effective stiffness tensor which are absolutely convergent.

Thanks to these methods, some results for predicting the effective elastic moduli of a simple cubic array of spheres (Fig. 3.15) were provided to which our results can be compared. These media include two solid components: the matrix and the inclusions. The study is performed for various values of inclusion volume fraction ρ and for two solid components which have properties satisfying the following conditions

ν 1 = ν 2 = 0.3, G 1 /G 2 = 3.
Some sample sizes were used; however, the differences between the results are small. Since the media are isotropic, only two simulations by LSM2S are needed in order to obtain the effective stiffness tensor which is reduced to

C (ef f ) =                 C 1111 C 1122 C 1122 0 0 0 C 1122 C 1111 C 1122 0 0 0 C 1122 C 1122 C 1111 0 0 0 0 0 0 C 2323 0 0 0 0 0 0 C 2323 0 0 0 0 0 0 C 2323                 (3.33)
Then, the effective bulk modulus K e , the first effective shear module G e , the second effective shear module G * e are defined by

K e = C 1111 + 2C 1122 3 ; G e = C 2323 ; G * e = C 1111 -C 1122 2 (3.34)
The dimensionless effective bulk modulus K e /K 2 , the first shear modulus G e /G 2 and the second shear modulus G * e /G 2 are gathered and compared in Tables 3.5 and3 As it can be seen, the differences between LSM2S and the CM-type approximation [START_REF] Cohen | Simple algebraic approximations for the effective elastic moduli of cubic arrays of spheres[END_REF][START_REF] Nemat-Nasser | On composite with periodic structure[END_REF] and the third-order approximation [START_REF] Torquato | Modeling of physical properties of composite materials[END_REF] are very small even at high inclusion volume fraction. The maximal error is always less than 2%. The results of LSM2S are very close to the others, and this demonstrates the accuracy of the LSM2S model in the calculation of the effective properties for the media with two solids. 

3.3.6.2

Comparison with FMD [START_REF] Malinouskaya | Propagation des ondes acoustiques dans les milieux hétérogènes[END_REF] Malinouskaya (2007) developed the FMD solver in order to calculate effective properties of heterogeneous materials. FMD which is based on a finite volume formulation, operates on a tetrahedral mesh which can be structured or unstructured; it uses a first order space discretization.

Depending on the ways of splitting the cubic elements into tetrahedra, 4 types of mesh are defined:

• SCT 6 : tetrahedral mesh obtained by splitting cubic elements into a pattern of 6 tetrahedra.

• SCT 24 : tetrahedral mesh obtained by splitting cubic elements into a pattern of 24 tetrahedra.

• SUT: tetrahedral mesh obtained by an advancing front technique in the solid, starting from a description of the solid surface on a cubic grid.

• TUT: fully unstructured tetrahedral mesh.

These different meshes are shown in Fig. 3.18. Figure 3.19 compares the results of LSM2S and FMD solvers. For the samples with small inclusion volume fraction ρ = 0.1, the differences of effective bulk moduli, first and second shear moduli are very small and less than 0.1%. The maximal error for the samples with ρ = 0.5, the difference between the second effective shear moduli in this case is 0.8%. Thanks to these comparisons, LSM2S is able to calculate the media composed by two solid components with very different elastic properties.

3.3.6.3

Comparison with the FFT solution of Hoang-Duc and Bonnet (2012)

Hoang-Duc and Bonnet (2012) presented a new method which allows the prediction of the effective properties of inclusion-matrix heterogeneous media. This method is based on an approx- imate FFT based solution which yields the effective properties of elastic media. The considered media are the same as in the previous comparisons; the elastic properties of the matrix and of the inclusion are the same as for the former comparison with FMD (Table 3.7). The effective bulk modulus K e , the first effective shear modulus G e are given and compared in Table 3.9.

The results of bulk moduli calculated by LSM2S seem quite close to the FFT solution; the maximal difference is equal to 0.17% when ρ is 0.5. However, a problem is met in the comparison of the first effective shear moduli; for small values of the inclusion volume fraction (0.1 and 0.2), the results are still good and the maximal error is 1.6%; but when ρ increases, the comparison gets worse; the error for ρ = 0.5 reaches 4.4%. Note that the results of the FFT solution were only compared with bounds of Voigt and Reuss Hoang-Duc and Bonnet (2012).

K e G e ρ LSM2S FFT Error LSM2S FFT Error (GPa) (%) (GPa) (%) 0.

3.4

The coupled models: LBM-LSM and LBM-LSM2S

The interactions between the fluid and solid phases in porous media are needed for many practical applications such as the numerical studies of seismic processes in a fluid rock system. In our case, as said before, they are necessary for the determination of coefficients α and β which characterize the reaction of the solid matrix on the fluid pressure. In this thesis, it is solved by the coupled LBM-LSM model.

There are some coupled LBM-LSM models in which the elastic medium is described by LSM [START_REF] Pazdniakou | Dynamic permeability of porous media by the lattice boltzmann method[END_REF][START_REF] Buxton | Newtonian fluid meets an elastic solid: Coupling lattice boltzmann and lattice-spring models[END_REF][START_REF] Wu | Simulating 3d deformable particle suspensions using lattice boltzmann method with discrete external boundary force[END_REF]. The usual connection between LSM and LBM is to use the momentum exchange algorithm [START_REF] Ladd | Lattice-boltzmann simulations of particle-fluid suspensions[END_REF]; this means that the momentum of the solid phase is exchanged with the one of the neighbouring liquid lattice nodes. There are many ways to apply this algorithm; in O'Brien and Bean. ( 2004), the solid and fluid lattice nodes are considered as in the same lattice, or in [START_REF] Buxton | Newtonian fluid meets an elastic solid: Coupling lattice boltzmann and lattice-spring models[END_REF], the solid is described by the LSM free and the solid nodes for momentum exchanged are defined as the LBM lattice nodes located within a distance of the LSM nodes.

This section presents the coupled LBM-LSM model which is used in calculations of acoustic waves velocities in saturated porous media. Then, the development of the coupled LBM-LSM2S model is also described for porous media with two solid components.

Geometry

As for LSM and LBM, the medium geometry is presented by the phase function Z(i, j, k)

given by (2.4). Then, each solid voxel is replaced by one elastic element created by eight lattice points as in LSM, while each liquid voxel is presented by a single lattice node located at the centre of the LBM voxel (Pazdniakou, 2012) (Fig. 3.21.a). The same lattice step δ is used for both LBM and LSM; in our calculation, δ is equal to 1 for simplicity. The lattices of LSM and LBM are shifted by δ 2 one with respected to another. Then, the solid is located exactly at half a lattice step for the liquid node (Fig. 3.21.b); thus, the bounce-back boundary condition in LBM can be directly applied in our model.

Since the model is used for calculating the acoustic velocities, the displacement of solid points (LSM lattice nodes) is supposed to be very small; therefore, the geometry of the medium is supposed to be unchanged. 

Boundary conditions

In order to couple LBM and LSM, the forces acting on the fluid and solid phases at the interfaces are needed. The volume force F (s) on an elastic solid medium is given by

F (s) i = i ∂ j σ (s) ij = (∇.σ (s) ) i (3.35)
where σ (s) is the elastic stress tensor. The equilibrium condition in the case of no external force is given by

∇.σ (s) = 0 (3.36)
According to [START_REF] Pazdniakou | Dynamic permeability of porous media by the lattice boltzmann method[END_REF], the momentum flux tensor for fluids with viscous dissipation is given by

Π ij = pδ ij + ρ (f ) v f i v f j -τ (f ) ij (3.37)
where p is the fluid pressure, ρ (f ) the fluid density, v f i the fluid velocity and τ (f ) ij the viscous stress tensor. In the general case, τ

(f ) ij is given by τ (f ) ij = µ (f ) (∂ i v (f ) j + ∂ j v (f ) i ) + λ (f ) (∇.v (f ) )δ ij = µ (f ) (∂ i v (f ) j + ∂ j v (f ) i - 2 3 (∇.v (f ) )δ ij ) + ζ (f ) (∇.v (f ) )δ ij (3.38)
where µ (f ) is the dynamic viscosity (the first viscosity coefficient), λ (f ) the second viscosity coefficient and ζ (f ) the bulk viscosity.

The total fluid stress tensor σ

(f ) ij is defined by σ (f ) ij = -pδ ij -τ ij . (3.39)
For an incompressible fluid, it is simplified into

σ (f ) ij = -pδ ij -µ (f ) (∂ i v (f ) j + ∂ j v (f ) i ) (3.40)
According to the no-slip boundary condition, the fluid and solid velocities are the same at the solid-fluid interfaces

v (f ) = v (s) (3.41)
The fluid and solid forces acting on the surface element ds of area |ds| at the interfaces are expressed as

F (f ) i = -|ds|σ (f ) ij n j = |ds|(n i p -τ ij ) , (3.42a) F (s) i = |ds|σ (s) ij n j = σ s .ds (3.42b)
where n is the unit normal directed from solid into fluid. Thanks to these two relations, the second boundary condition is derived as σ (f ) .n = σ (s) .n (3.43)

LBM-LSM coupling

The momentum exchange algorithm is an effective way to connect LBM to LSM [START_REF] Ladd | Lattice-boltzmann simulations of particle-fluid suspensions[END_REF][START_REF] Buxton | Newtonian fluid meets an elastic solid: Coupling lattice boltzmann and lattice-spring models[END_REF][START_REF] Wu | Simulating 3d deformable particle suspensions using lattice boltzmann method with discrete external boundary force[END_REF]. It is used to take into account the forces exerted by fluids on the solid wall. The physical principles of this method can be described quite simply. A particle moving straight with a velocity c i collides a perpendicular solid wall moving with a velocity u (s) c i . The post-collision particle velocity is -c i + 2u (s) and the force exerted on the wall is proportional to c i -u (s) .

According to [START_REF] Pazdniakou | Dynamic permeability of porous media by the lattice boltzmann method[END_REF], in LBM, the main hydrodynamic variables such as the fluid density ρ (f ) , the fluid momentum j (f ) and the momentum flux tensor Π are expressed by using the particle distribution function f and the set of discrete velocities c i

ρ (f ) = q i f i = q i f (eq) i , (3.44a) j (f ) α = q i f i c iα = q i f (eq) i c iα , (3.44b) Π αβ = q i f i c iα c iβ . (3.44c)
The equilibrium momentum flux tensor is given by

Π (eq) αβ = q i f (eq) i c iα c iβ = ρ (f ) c 2 s δ αβ + ρv f α v f β (3.45)
where the equilibrium distribution is given by

f (eq) i (ρ, u) = ρω * i + ρω i [ 1 c 2 s (c i .u) + 1 2c 2 s |u| 2 ] . (3.46)
Then, the viscous stress tensor can be derived as

τ αβ = -(Π αβ -Π (eq) αβ ) = - q i f (neq) i c iα c iβ , (3.47) where f (neq) i
is the non-equilibrium part of the distribution function.

In our model, the LSM lattice is shifted with respect to the LBM lattice and the no-slip surface is now located exactly at the solid surface; therefore, it is simple to apply the bounce-back boundary conditions in. The solid interface point r (s) neighbouring some liquid lattice node r (f ) is expressed as

r (s) = r (f ) + 1 2 c (b) i (3.48)
According to [START_REF] Ladd | Lattice-boltzmann simulations of particle-fluid suspensions[END_REF] and [START_REF] Nguyen | Lubrication corrections for lattice-boltzmann simulations of particle suspensions[END_REF], the reflected particle distribution f i with the bounce-back boundary conditions is derived as

f i (r (f ) , t + δ t ) = fi (r (f ) , t) - 2ω i ρ (f ) (u (s) .c i ) c 2 s , (3.49) 
where u (s) is the velocity of the solid interface. It is clear that in our model, r (s) belongs to the edge of the elastic element or to its face centre; then, u (s) is calculated as the average of the edge endpoints velocities or average of the face vertices, respectively.

The force exerted by the fluid on the solid wall due to the momentum transferred during the time step δ t is given by

F(r (s) , t + δ t 2 ) = [c i fi (r (f ) , t) -c i f i (r (f ) , t + δ t )] δ 3 x δ t = 2c i [ fi (r (f ) , t) - ω i ρ (f ) (u (s) .c i ) c 2 s ] δ 3 x δ t (3.50)
This calculated force is equally distributed between the endpoints or face vertices depending on the location of the solid interface point. According to [START_REF] Pazdniakou | Dynamic permeability of porous media by the lattice boltzmann method[END_REF], if at the equilibrium the fluid does not exert any pressure on the liquid-solid interface, (3.50) becomes

F(r (s) , t + δ t 2 ) = 2c i [ fi (r (f ) , t) - ω i ρ (f ) (u (s) .c i ) c 2 s -ω i ρ (f ) 0 ] δ 3 x δ t (3.51)
where

ω i ρ (f )
0 is the pressure at equilibrium.

Implementation aspects

The code of the coupled LBM-LSM model is based on the Fortran codes of LBM and LSM.

The program flowchart is displayed in Fig. 3.22. Since the detailed flowcharts of LBM and LSM are described, this subsection presents only the coupling between them. As can be seen in the flowchart, after reading the solid and liquid geometry of the medium, the main loop starts with the collision step and then the propagation step as in LBM. During the LBM-LSM boundary condition step, the force F(r (s) ) exerted by the liquid on the solid interface point r (s) is calculated by the momentum exchange algorithm; it is used in order to execute the LSM iteration (Verlet algorithm). The LSM iteration gives u (s) which is needed to calculate the reflected distribution function f i (r (f ) , t + δ t ) by using the bounce-back rule (3.49).

As for LBM and LSM, the LBM-LSM program is parallelized by OMP. The principles of parallelization were presented in the Section 3.2. Some applications of the coupled LBM-LSM model to simple cases are considered in [START_REF] Pazdniakou | Dynamic permeability of porous media by the lattice boltzmann method[END_REF]. The average speedup in the simulations is about 5.1 for 8 processors and it can be considered as a good result. 

• v(t + δ t /2) = v(t) + a(t)δ t /2 + F(r (s) )δ t /(2m (s) ) • r(t + δ t ) = r(t) + v(t + δ t /2)δ t • Calculate elastic forces F(t+ δt ) • v(t + δ t ) = v(t + δ t /2) + a(t + δ t )δ t /2 + F(r (s) )δ t /(2m (s) )
Calculate the reflected force f (r (s) , t + δ t ) using v(t + δ t ) (momentum exchange algorithm)

Exit Test The purpose of this chapter is to study the mechanical behaviour and the propagation of acoustic waves in dry and saturated Fontainebleau sandstones. Fontainebleau is one of the most studied porous media theoretically [START_REF] Adler | Porous Media: Geometry and Transports[END_REF][START_REF] Ferréol | Lattice-boltzmann simulations of flow through fontainebleau sandstone[END_REF]... and experimentally [START_REF] Han | Effects of porosity and clay content on acoustic properties of sandstones and unconsolidated sediments[END_REF][START_REF] Han | Effect of porosity and clay content on wave velocities in sandstones[END_REF][START_REF] Gomez | Laboratory measurements of porosity, permeability, resistivity, and velocity on fontainebleau sandstones[END_REF]... This study is of importance in many areas of physics and it has various practical applications such as the study of fracturing processes and elastic behaviour of materials.

This chapter is devoted to four measured samples of Fontainebleau sandstone with porosities ranging from 0.08 to 0.23, namely FB8, FB13, FB18 and FB22. They are all cubes of side 2736 µm.

First, their porosities and correlation functions are determined as indicated in Chapter 2.

In order to derive the acoustic velocities in dry samples, the macroscopic mechanical properties such as the effective stiffness tensor are needed. The Lattice Spring Model (LSM) developed by [START_REF] Pazdniakou | Dynamic permeability of porous media by the lattice boltzmann method[END_REF] is used to study mechanical properties as well as propagation of elastic waves in dry samples [START_REF] Zhao | 3d distinct lattice spring model for elasticity and dynamic failure[END_REF]. These Fontainebleau samples can be directly simulated by LSM in order to derive the effective stiffness tensors and the acoustic waves velocities. The problem of samples with large sizes can be solved by introducing the coarsening method. Then, the results of coarsened samples can be extrapolated. Our numerical results are the macroscopic Young modulus, the Poisson ratio, the bulk modulus and the acoustic velocities; they are compared to experimental data [START_REF] Han | Effects of porosity and clay content on acoustic properties of sandstones and unconsolidated sediments[END_REF][START_REF] Han | Effect of porosity and clay content on wave velocities in sandstones[END_REF][START_REF] Gomez | Laboratory measurements of porosity, permeability, resistivity, and velocity on fontainebleau sandstones[END_REF] and to other simulations [START_REF] Arns | The influence of morphology on physical properties of reservoir rocks[END_REF][START_REF] Nur | Wave velocities in sediments[END_REF][START_REF] Krief | A petrophysical interpretation using the velocities of p and s waves (full waveform sonic)[END_REF].

Finally, the saturated samples are considered. When there is only one solid (quartz) component, algorithms such as LSM, LBM, LBM-LSM are used to derived the four necessary quantities C, K, α, and β of the Christoffel equation. As indicated in Chapter 2, the calculations are done for the original samples and their mirror configurations in order to estimate them more precisely.

Then, three types of waves namely the fast compressional wave, the slow compressional wave and the shear wave with corresponding velocities are calculated by solving the generalized Christoffel equation. In this thesis, the influence of fluids on acoustic properties is also studied; the calculations are performed when the pores are filled by three types of fluids: incompressible, slightly compressible (water in normal conditions) and highly compressible fluids. Some comparisons with the Gassmann's model [START_REF] Gassmann | Uber die elastizitat proposer medien, viertel[END_REF][START_REF] Fredy | Sensitivity analysis of gassmann's fluid substitution equations: Some implications in feasibility studies of time-lapse seismic reservoir monitoring[END_REF] which was presented in Chapter 2 are also given.

This chapter is organized as follows. In Section 4.2, the sample porosities and the two point correlation functions Nguyen (2013) of the four samples are calculated. In the third Section, the acoustic velocities in dry samples are calculated. Some comparisons are performed in order to study the influence of porosity on the macroscopic properties and on velocities. Some additional comparisons are presented in Section 4.4. The diffusion formation factor F and the characteristic length Λ are calculated in Section 4.5. Section 4.6 yields the four necessary quantities C, K, α, β and solves the Christoffel equation in the samples saturated by the three types of fluids. Then, the acoustic velocities are derived and compared with the ones of the Gassmann's model. Finally, some conclusions are given in the last section.

Characterizations of Fontainebleau samples

Four reconstructed samples of Fontainebleau sandstones were provided by STATOIL; they are obtained from the real sandstones by micro-CT and have different porosities given by the suffix to their name in percent

• Sample Fontainebleau FB8

• Sample Fontainebleau FB13

• Sample Fontainebleau FB18

• Sample Fontainebleau FB22 These samples have the same form, namely a cube of side 2736µm; they are divided into (480) 3 elementary cubes of size a = 5.7µm. They include 2 components: 0 is pore and 3 is quartz.

In order to make it suitable for our present program, it is necessary to change the labels: 0 is quartz (solid) and 1 is pore. As described in Chapter 2, the pore space of these porous samples can be characterized by the phase function Z(r) given by (2.4).

Sample FB8

The sample FB8 has the smallest porosity among the four Fontainebleau samples. It is displayed in Figure 4.1.a; the pores are grey and the solid transparent.

Sample porosity

As mentioned in Section 2.2 devoted to methodologies, the porosity of the sample is calculated in the following way:

• Calculate porosity for each slice along each direction. The porosities are denoted by ε(x), ε(y) and ε(z).

• Calculate the total number of elements present in the surface

N total = N cx • N cy
• Calculate the number of porous elements present in the surface: N porous .

• Porosity of each slice:

ε(z i ) = N porous N total (4.1)
where z = z a with z is the distance from the calculation slice to the boundary along the z-axis. Calculations are performed along the x-,y-and z-directions; the porosities along each direction are displayed in Fig. 

Correlation function

The correlation functions are defined in Chapter 2; R z (u) and its exponential fit are given by (2.6). For Fontainebleau samples, the two point correlation function is used and the calculations are done for certain slices of samples along three directions.

The calculation program was done by [START_REF] Nguyen | Lubrication corrections for lattice-boltzmann simulations of particle suspensions[END_REF]; it can calculate the correlation function and the least mean square filter for each slice along the three different directions of the sam-ples. The results are presented in Fig. 4.3. The overall average is displayed in Fig. 4.4. The distance between 2 points is u , and u = u a is dimensionless, where a is the size of the elementary cube. When u is small, the correlation functions of the slices appear to be the same, while for large u there are small differences. Moreover, the results along the three directions are slightly different, but it is not significant. Therefore, the sample can be considered as isotropic.

Samples FB13, FB18 and FB22

The same procedure as for sample FB8 is applied to the next three samples FB13, FB18 and FB22. These samples are cubes of size 480 3 as shown in Fig. 4.1.b-d, respectively.

Calculations of porosities are performed along the x-,y-and z-directions. For each sample, the maximum porosity is 3% -6.3% larger than the minimum one along the same direction.

Since the difference between the three directions is small (nearly 1%) for all samples, they can be considered as isotropic. The porosities vary from 8.3% (FB8) to 21% (FB22 Similarly, the two points correlation functions of these samples are calculated for several slices along the three directions. The results are given for each slice as in Figure 4.3. Then, the overall average results of the three directions are displayed in Fig. 4.5. As can be seen, these results are similar to FB8.

Another check of the quality of the samples is done with Fourier coefficients [START_REF] Adler | Porous Media: Geometry and Transports[END_REF]. For statistically homogeneous media, the Fourier coefficients of the correlation function should be positive. In the four Fontainebleau samples, no negative value observed. For instance, the Fourier components corresponding to the average correlation function along the three directions of sample FB22 varies from 0.12 to 12.3 as can be seen in Fig. 4.5.d. Therefore, the samples can be considered as statistically homogeneous. (d) The Fourier components corresponding to the average correlation function along the three directions of sample FB22. Data are for: the x-direction (red), the y-direction (blue), the z-direction (green).

4.2.3

The influence of porosity on the correlation function in Fontainebleau sandstones.

Thanks to the previous results, the influence of porosity on the correlation function in Fontainebleau sandstones can be checked. In fact, this problem was often studied; for instance, [START_REF] Poutet | The effective mechanical properties of random porous media[END_REF] found a very small influence. In our case, the same conclusion holds. The correlation function curves are not very different along the three directions as seen in Fig. 4.6. The maximal differences along the x-, y-and z-directions are 18%, 13.3% and 17.1%, respectively. 

4.3

Acoustic wave velocities in the dry Fontainebleau sandstones

Effective stiffness tensor

The acoustic velocities in the dry Fontainebleau samples are derived from the effective stiffness tensors as described in Section 2.6. The calculation of C ef f is performed by using the simulation program created by [START_REF] Pazdniakou | Dynamic permeability of porous media by the lattice boltzmann method[END_REF] which is based on the Lattice Spring Model (LSM)

with elastic elements (Chapter 3).

Due to the required memory and the simulation time of LSM, two methods are proposed for calculations: the direct simulations or the coarsening method. The first method is used when computers have a sufficiently large memory and many processors. The second one is for very large samples or for weaker computers. This section presents the calculations obtained by the first way;

the second one is presented in Appendix A.2.

The solid component in the Fontainebleau samples is quartz. Its physical properties used in [START_REF] Han | Effects of porosity and clay content on acoustic properties of sandstones and unconsolidated sediments[END_REF] and [START_REF] Arns | The influence of morphology on physical properties of reservoir rocks[END_REF] are given by

K s = 37GP a G s = µ s,H = 44GP a (4.2)
where K s the solid bulk modulus and G s the solid shear modulus.

Based on the characterizations in Section 2, the four Fontainebleau samples are considered as isotropic. The coarsening method (see in Section A.2) pointed out that the difference between the three directions is very small, it is always less than 0.5% (Table A.1). Therefore, the calculations for the Fontainebleau samples can be limited to the x-direction. Only one simple stretching and one simple shear are needed to determine the three values of the effective stiffness tensors.

The sample FB22 with the largest porosity is calculated first. For each simulation, the simulation time is over one month and the required memory is 157Gb with a computer with 32 processors. The effective stiffness tensor given in GPa is expressed by 

C (ef f ) F B22 =                 47 
                (4.3)
The same simulations are done for the other samples FB18, FB13 and FB8. Then, the three values of C ef f are gathered in 

Acoustic velocities

The acoustic velocities in the dry Fontainebleau samples are derived from their effective stiffness tensor by (2.65). They seem to be a linear function of porosity (see Fig. 4.7). [START_REF] Arns | The influence of morphology on physical properties of reservoir rocks[END_REF] provided the single phase IOS model to calculate acoustic and macroscopic properties of clean sandstones with different porosities. A comparison of the numerical results to the IOS model and to the ones calculated by the coarsening method (Section A.1) is given in [START_REF] Arns | The influence of morphology on physical properties of reservoir rocks[END_REF] and the coarsening method.

be built for predictions. They are given by v p = 6.0218 -6.018 ε (4.4)

v s = 4.0733 -4.358 ε (4.5)
with correlation coefficients of 0.9977 and 0.9975, respectively. A good agreement between the numerical results and the predictions is shown in Fig. 4.8.

Since the effective stiffness tensors are determined, the macroscopic properties of the Fontainebleau samples can be derived from (3.34). The effective bulk modulus K e and the shear modulus G e of the dry samples are calculated. They are linear functions of porosity and close to the IOS model.

The difference for G e is larger than for K e especially when the porosity is large as can be seen in The empirical models are also used to predict the macroscopic properties of dry sandstones. [START_REF] Nur | Wave velocities in sediments[END_REF][START_REF] Nur | Critical porosity: the key to relating physical properties to porosity in rocks[END_REF] proposed an empirical model

K dry = K s (1 - ε ε c ) G dry = G s (1 - ε ε c ) (4.6)
where ε c is the critical porosity equal to 0.4. [START_REF] Krief | A petrophysical interpretation using the velocities of p and s waves (full waveform sonic)[END_REF] [START_REF] Arns | The influence of morphology on physical properties of reservoir rocks[END_REF], [START_REF] Han | Effects of porosity and clay content on acoustic properties of sandstones and unconsolidated sediments[END_REF][START_REF] Han | Effect of porosity and clay content on wave velocities in sandstones[END_REF] where m(ε) = 3/(1 -ε).

K dry = K s (1 -ε) m(ε) G dry = G s (1 -ε) m(ε) (4.
For the dry rock Poisson ratio, [START_REF] Roberts | Elastic properties of model porous ceramics[END_REF] proposed a linear function of porosity. Then, [START_REF] Arns | The influence of morphology on physical properties of reservoir rocks[END_REF] proposed a non-linear empirical model which is more reasonable and given by

ν dry =        ν s + (2ε) 1.5 (0.2 -ν s ), ν s < 0.2 0.2 + (1 -2ε) 1.5 (ν s -0.2), ν s > 0.2 (4.8)
We first compare the effective bulk modulus. It is slightly larger than (4.6) and (4. between these two empirical models as seen in Fig. 4.9.b. The Poisson ratio is compared with (4.8) in Fig. 4.9.c, the numerical line nearly coincides with the empirical line and the difference decreases when porosity increases.

Summary

The effective properties and the acoustic velocities are fully determined for all dry Fontainebleau samples and can be considered to be linear functions of porosity. Some comparisons are given and show that our simulation results are in good agreement with the other numerical, empirical models and the experimental data.

Additional comparisons

The calculations of Fontainebleau samples are done by two methods: the direct simulations and the coarsening method. The results of the first method were given in Section 4.3. Note that the second method can yield the wave velocities in the samples with an infinite discretization which are close to the real samples; its results are given in Section A.2. A comparison between the results of the coarsened samples with N c = ∞ with the results presented in Section 4.3 is done;

the difference is small as it can be seen in Fig. 4.10.

Hence, there is a small difference between our numerical results and the experimental data of [START_REF] Han | Effects of porosity and clay content on acoustic properties of sandstones and unconsolidated sediments[END_REF] or [START_REF] Gomez | Laboratory measurements of porosity, permeability, resistivity, and velocity on fontainebleau sandstones[END_REF]. As mentioned before, it may due to the presence of small fractures in the real samples. Other possibilities for this discrepancy were investigated. The first solution to improve the numerical results is using the mirror configuration along the three direc- (1991,1995), [START_REF] Krief | A petrophysical interpretation using the velocities of p and s waves (full waveform sonic)[END_REF] and [START_REF] Arns | The influence of morphology on physical properties of reservoir rocks[END_REF] [START_REF] Arns | The influence of morphology on physical properties of reservoir rocks[END_REF], [START_REF] Han | Effects of porosity and clay content on acoustic properties of sandstones and unconsolidated sediments[END_REF][START_REF] Han | Effect of porosity and clay content on wave velocities in sandstones[END_REF] 4.4: Simulation results for the coarsened sample FB22 (N c = 120) when the local Lamé coefficients vary linearly according to (4.9). Therefore, it seems the fact that the calculated velocities are larger than the measurement ones cannot be explained by these two possibilities.

λ x = λ 0 .(1 + x -a.N cx /2 a.N cx .ζ) µ x = µ 0 .(1 + x -a.N cx /2 a.N cx .ζ) ( 

4.5

The formation factor F and the characteristic length Λ

As mentioned in Chapter 2, the macroscopic conductivity tensor and the length Λ can characterize a porous medium. They are derived by solving the Laplace equation on the pore space by the program based on a second order finite difference approach of [START_REF] Thovert | Thermal conductivity of random media and regular fractals[END_REF].

The calculations are done for the coarsened samples which are provided in Section A.2 for the coarsening method. The computational time varies from some hours to more than one day; the required memory is from 0.1 Gb to 4.4 Gb depending on the sample size. Only one simulation is needed for each sample. The Fontainebleau samples are close to isotropic; therefore, the results are given only for the x-direction. The dimensionless length Λ/a and conductivity tensor Σ Σ 0 are determined and given in Table 4.5. et al. (2005) showed that if the field ψ(r) (see (2.9)) does not vary too much in the pore space, the length scale Λ can be approximated by

Valfouskaya

Λ ∼ 2 Ω p S (4.10)
where Ω p is the pore volume, S the pore surface. A comparison with the simulation results is presented The formation factor F is derived from the conductivity tensor by (2.11). [START_REF] Archie | The electrical resistivity log as an aid in determining some reservoir characteristics[END_REF] postulated a relationship between interconnected porosity ε and the factor F; it is given by

F = 1 ε m (4.11)
Archie further noted that m is close to 2 [START_REF] Worthington | The uses and abuses of the archie equations, 1: The formation factorporosity relationship[END_REF]. This is called the "first Archie equation". A comparison with this equation is presented in Fig. 4.12.a. The numerical results are close to Archie's law.

Another form of Archie equation is given by

F = a ε m (4.12)
The quantities a and m have been reported to vary widely for various formations. For the original Fontainebleau samples (N c = 480), the best fit for our numerical data is obtained when a = 0.2034 and m = 2.7747 (see Fig. 4.12.b). They are in good agreement with [START_REF] Gomez-Rivero | Some considerations about the possible use of the parameters a and m as a formation evaluation tool through well logs[END_REF] who proposed a = 0.04 -17.7 and m = 0.02 -5.67 for sandstones. The absolute permeability of Fontainebleau samples was calculated by a program based on the Lattice Boltzmann Model [START_REF] Pazdniakou | Dynamic permeability of porous media by the lattice boltzmann method[END_REF]. The program code is written in Fortran. Since the samples can be considered as isotropic, one only needs a single simulation to calculate the absolute permeability of each Fontainebleau sample. Moreover, the memory requirements for a simulation by LBM is smaller than for LSM; therefore, the coarsening method is not necessary in this case. absolute permeability K 0 is given by

K 0 = K.a 2 (4.13)
The results are given in Table 4.6.

Permeability K 0 (mD) FB8 FB13 FB18 FB22
The It can be seen that the results of the mirror images are better and larger than the ones of the original samples. In fact, the mirror configurations ensure connection between two opposite sample faces and therefore the continuity of the flow; as a result, there is no artificial loss of permeability in this case and the results are larger than in the corresponding original sample.

However, the results of both types are close to the experimental results.

Dynamic permeability

The same program based on LBM is used to calculate the dynamic permeability. However, due to the dependence on the frequency ω, it is necessary to simulate with several values of ω.

Furthermore, the first simulations indicated that the computation time depends on the frequency and is often larger than the ones for absolute permeability. For these reasons, it is difficult for our computers to simulate directly the original samples with large sizes. In order to solve this problem, the coarsening method is applied to the calculation of dynamic permeability and the coarsened samples are the same as for dry samples (Section A.2).

The sample FB22 with the maximum porosity is calculated first. The original and coarsened samples are displayed in Fig. A.5. The chosen kinematic viscosity, the frequencies in simulations have to satisfy the condition of Knudsen number Kn and of high frequency [START_REF] Pazdniakou | Dynamic permeability of porous media by the lattice boltzmann method[END_REF].

The memory requirements for a simulation of the coarsened samples of size N cx .N cy .N cz = 120 x 120 x 120 is about 0.5 Gb; the simulation time depends on the frequency. For small frequencies, a larger number of iterations is needed; therefore, the computation time becomes longer. All the simulations were done with the same parameters

c 2 s = 1 3 a 2 δt 2 ; ρ 0 = 1 m u a 3 ; ν = 10 -3 a 2 δt ; b f = [10 -7 , 0, 0] m u a δt 2 (4.14)
where c s is the sound speed (the maximum value is √ 0.5, 1/3 is recommended), ρ 0 the initial fluid density, ν the fluid kinematic viscosity, b f the fluid body force, and the convergence parameter. All the physical properties are given in lattice units a ( a is the size of the elementary cubes), time step δt and mass unit m u . The dimensionless permeability K/a 2 is calculated; the simulation is stopped when |A i+1 -A| < 10 -8 [START_REF] Nguyen | Lubrication corrections for lattice-boltzmann simulations of particle suspensions[END_REF].

The dimensionless real and imaginary parts of permeability K of the coarsened sample FB22

with N c = 120 are simulated for various frequencies; the results are given in Table 4.7.

Similarly to the calculation along the x-direction, the dynamic permeability along the y-and z-directions are simulated, with a fluid body force equal to [0, 10 -7 , 0] and [0, 0, 10 -7 ] ( mua δt 2 ), respectively. The simulation results are given in Table 4.7.

The results of dynamic permeability along the x-, y-, z-directions are close (see Fig. 4.16); therefore, it is not necessary to calculate for all three directions. The calculations of dynamic permeability for the other samples will be performed only along the x-direction.

Frequency

N c = 120

x-axis y-axis z-axis The dimensionless dynamic permeability K/a 2 along the x-, y-and z-directions for the coarsened samples FB22 with N c = 120. the simulation time which depends on the frequency can vary from several hours to more than one week with a computer with 8 processors, while the necessary ones for N c = 480 are about 8 times larger. The dimensionless real K r /a 2 and imaginary parts K i /a 2 of the calculated dynamic permeability are given in Table 4.8; the dimensionless quantities K/K 0 (K 0 is the absolute permeability) are presented in Figures 4.17 x-axis x-axis as can be seen in Table 4.9. For instance with ω = 2.5e -5, the difference of the real part Kr/a 2 is 12% when N c = 120 and 12.3 % when N c = 480. This difference is shown in Fig. 4.18 which displays real dynamic permeabilities for all the coarsened samples FB22 (mirror and original). In the same way, the dynamic permeability is calculated for the other samples, the results of the coarsened samples FB18 (N c =120, 240 and 480) are presented in Table 4.10 for the original configuration and in Table 4.11 for the mirror one. The results for sample FB13 are given in Table 4.12; it should be noted that, due to the small porosity, the smallest discretization N c = 120 creates problems in calculating K. Therefore, for this sample, only the results for N c = 240 and N c = 480 are presented. The same problem occurs with sample FB8. Then, some comparisons between the real values of their permeabilities are given in Figure 4.19.
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c p = |c| 2 c r ; a h = ωc i |c| 2 (4.15)
where c r and c i are the real and imaginary parts of c, respectively. Then, the attenuation effects can be considered by studying the penetration depth h given by

h = a -1 h (4.16)
The physical constants of quartz and fluid used in simulations are given by

K s = 37GP a G s = 44GP a ρ s = 2650kgm -3 (4.17) µ f = 10 -3 P a.s ρ f = 1000kgm -3
As the macroscopic stiffness tensor, in this section, these coefficients are calculated by the coarsening method with the same coarsened samples as in the previous sections. The first calculations are for sample FB22 with the largest porosity. The simulation results of α and β for the coarsened sample FB22 with N c = 120 are expressed as

α =       -0.3730 3.17 × 10 -3 -1.11 10 -3
3.17 × 10 -3 -0.2723 -5.42 × 10 -5

-1.11 × 10 -3 -5.42 × 10 -5 -0.3694

      (4.18a) β = -0.004504 GP a -1 (4.18b)
The tensor α is nearly spherical; the largest components are located on its diagonal. This corresponds well to the form presented by [START_REF] Pazdniakou | Dynamic permeability of porous media by the lattice boltzmann method[END_REF] and [START_REF] Li | Propagation des ondes acoustiques dans les milieux hétérogènes[END_REF]. Since the effective stiffness tensor is calculated and the dynamic permeability with various values of frequency are given in Table 4.7, the generalized Christoffel equation can be solved. Then, the velocity c, the solid displacement Û and the fluid displacement Ŵ are determined. For instance, when the frequency ω = 0.001 and p along the x-direction, the eigenvalue problem has four solutions c = 6.17 + 2.0 10

-11 i Û =       0.9999 -0.0042 -1.3 10 -13 i -0.0015 -4.7 10 -14 i       Ŵ =      
2.3 10 -12 + 1.3 10 -11 i 8.4 10 -15 + 4.6 10 -11 i 2.9 10 -15 + 1.6 10

-14 i       (4.19a) c = 3.319 + 7.8 10 -12 i Û =      
-1.8 10 -14 -4.9 10 -17 i -0.3294 -1.2 10 -14 i 0.9422

      Ŵ =          -3.1
, 10 -22 -1.3 10 -24 i 6.6 10 -13 + 3.6 10 -12 i -1.9 10 -12 -1.0 10

-11 i          (4.19b) c = 3.319 + 7.8 10 -12 i Û =      
0.0045 + 4.9 10 -13 i 0.9442

0.3294 + 1.2 10 -14 i       Ŵ =      
-7.7 10 -14 -4.2 10 -13 i -1.9 10 -12 -1.0 10 -11 i -6.6 10 -13 -3.6 10

-12 i       (4.19c) c = 3.06 10 -5 + 2.6 10 -5 i Û =      
-0.685 -2.0 10 -11 i 0.131 -4.5 10 -12 i 0.005 + 5.9 10

-13 i       Ŵ =       0.727 -2.1 10 -12 + 1.1 10 -13 i -4.3 10 -15 -4.9 10 -14 i       (4.19d)
As can be seen, in the first solution, the velocity is mostly real; the imaginary part is very small and the attenuation is very weak. The solid displacement Û is nearly purely real along the x-direction. Therefore, we can say that this is an almost pure compression wave. Moreover, the fluid displacement Ŵ is small compared to Û , i.e., the wave propagates mostly through the solid matrix. This corresponds to the fast compressional wave and the velocity is denoted by c f ast || .

In the second and third solutions, the solid displacement Û is nearly purely real along the y-direction or the z-direction, i.e., U oscillates along a single direction which is nearly orthogonal to p. They are called the shear waves and the velocity is denoted by c ⊥ . These two solutions are almost identical, and from now on, only one of them is considered.

In the last solution, both solid and fluid displacements occur mostly along the x-direction, but the velocity is much smaller than c f ast

||

; therefore, it is the slow compressional wave and the velocity is c slow

||

. Due to the large imaginary part, it has a strong attenuation. Of course, these three types correspond well to the ones presented by Biot (1956a,b).

Note that these results are relative to an incompressible fluid; then, the influence of the fluid compressibility can be studied by introducing the compressibility coefficient c f [START_REF] Li | Propagation des ondes acoustiques dans les milieux hétérogènes[END_REF]. The calculations of saturated samples are performed with three types of fluids: incompressible (c f = 0), slightly compressible (c f = 4.6×10 -10 P a -1 ; it corresponds to water in normal conditions) and highly compressible (c f = 100 × 10 -10 P a -1 ). Based on the simulation results for incompressible fluids, the dependency of β on c f can be calculated by (2.98). The velocities of the three waves (given in km/s ) are given in Table 4.13.

It is clear that c f has an influence on compressional waves while the shear wave does not depend on it as it will be demonstrated later.

C f c f ast || c ⊥ c slow || c f =
100 × 10 -10 P a -1 4.968 + 1.2×10 -11 i 3.319 + 7.8×10 -12 i 1.76×10 -6 + 1.5×10 -6 i c f = 4.6 × 10 -10 P a -1 5.025 + 8.6×10 -12 i 3.319 + 7.8×10 -12 i 7.94×10 -6 + 6.6×10 -6 i Gassmann's model 5.2087 3.319 -Error (%) 0.1 0 -Table 4.13: The velocities in sample FB22 of N c = 120 saturated by a slightly compressible fluid (c f = 4.6 × 10 -10 P a -1 ) and highly compressible fluid c f = 100 × 10 -10 P a -1 . Comparison to Gassmann's model.

As discussed in Section 2.7, in order to evaluate our simulation results, the Gassmann's model [START_REF] Gassmann | Uber die elastizitat proposer medien, viertel[END_REF][START_REF] Han | Gassmann's equation and fluidsaturation effects on seismic velocities[END_REF][START_REF] Fredy | Sensitivity analysis of gassmann's fluid substitution equations: Some implications in feasibility studies of time-lapse seismic reservoir monitoring[END_REF] Original

N cx =120 Mirror N cx =240 ω C f = 0 C f = 4.6 C f = 100 C f = 0 C f = 4.6 C f = 100 C r C i C r C i C r C i C r C i C r C i C r C i
0.05 6.17 1.8e-11 5.025 7.8e-12 4.968 1.0e-11 6.17 2.0e-11 5.025 8.6e-12 4.968 1.2e-11 0.025 6.17 3.0e-11 5.025 1.3e-11 4.968 1.7e-11 6.17 3.5e-11 5.025 1.5e-11 4.968 2.0e-11 0.01 6.17 6.4e-11 5.025 2.7e-11 4.968 3.7e-11 6.17 7.0e-11 5.025 3.0e-11 4.968 4.0e-11 0.005 6.17 6.2e-11 5.025 2.7e-11 4.968 3.6e-11 6.17 6.7e-11 5.025 2.9e-11 4.968 3.8e-11 0.0025 6.17 4.3e-11 5.025 1.9e-11 4.968 2.5e-11 6.17 4.8e-11 5.025 2.1e-11 4.968 2.8e-11 0.001 6.17 2.0e-11 5.025 8.6e-12 4.968 1.2e-11 6.17 2.3e-11 5.025 9.8e-12 4.968 1.3e-11 0.0005 6.17 1.1e-11 5.025 4.5e-12 4.968 6.0e-12 6.17 1.2e-11 5.025 5.0e-12 4.968 6.7e-12 0.00025 6.17 5.3e-12 5.025 2.3e-12 4.968 3.0e-12 6.17 5.9e-12 5.025 2.5e-12 4.968 3.4e-12 0.0001 6.17 2.1e-12 5.025 9.0e-13 4.968 1.2e-12 6.17 2.4e-12 5.025 1.0e-12 4.968 1.4e-12 5e-05 6.17 1.1e-12 5.025 4.5e-13 4.968 6.0e-13 6.17 1.2e-12 5.025 5.1e-13 4.968 6.8e-13 2.5e-05 6.17 5.3e-13 5.025 2.3e-13 4.968 3.0e-13 6.17 5.9e-13 5.025 2.6e-13 4.968 3.4e-13

Table 4.14: The fast compressional wave velocities in the original and mirror configurations of the coarsened sample FB22 (N cx =120) saturated by the three types of fluids: incompressible fluid ( C f = 0), low compressibility ( C f = 4.6, water in pressure of 1b) and high compressibility ( C f = 100).

. Table 4.15: The slow compressional wave velocities of the coarsened sample FB22 (N cx =120) saturated by the three types of fluids.

Original N cx =120 Mirror N cx =240 ω C f = 0 C f = 4.6 C f = 100 C f = 0 C f = 4.6 C f = 100 C r C i C r C i C r C i C r C i C r C i C r C i 0.
Original Similarly to sample FB22, since C eff , K, α and β are fully determined , the acoustic velocities and the penetration depth h of the other samples as FB18 and FB13 can be derived from the generalized Christoffel equation. The results are gathered in Tables A.13, A.14, A.15, A.16, A.17, The results for samples FB8 are not available yet due to problems difficulties in the determination of the dynamic permeability.

N cx =120 Mirror N cx =240 ω C f = 0 C f = 4.6 C f = 100 C f = 0 C f = 4.6 C f = 100 C r C i C r C i C r C i C r C i C r C i C r C i 0.
Then, Figures 4.24, 4.25, 4.26 and 4.27 compare these results for samples FB18 and FB13.

We can note that the ratio c f ast || /c dry decreases when the sample porosity decreases. For instance, for the coarsened samples N c = 240 saturated by the incompressible fluid, it is equal to 1.22 for FB22 (ε = 0.21), 1.17 for FB18 (ε = 0.177) and 1.075 for FB13 (ε = 0.129). However, this ratio is almost independent on the porosity for the slow compressional and shear waves.

Some noisy results for the penetration depth h occur for hight frequencies as can be seen in (blue), c f = 100 × 10 -10 (green).

As mentioned above, our simulation results can be compared with the compressional and shear wave velocities derived from the Gassmann's model presented in Chapter 2. The comparisons are done for the coarsened samples saturated by normal water (1bar) and the slightly compressible fluid. Then, Table 4.17 shows that the simulation velocities are very close to the Gassmann's model, the maximal relative difference is about 0.76 % for the fast compressional waves and always equal to 0% for the shear waves. This is consistent with the fact that the saturated shear wave velocity mostly depends on the shear modulus of the medium. Another comparison is performed for the samples saturated by air in normal conditions (1b).

According to [START_REF] Li | Propagation des ondes acoustiques dans les milieux hétérogènes[END_REF] and [START_REF] Denny | Air and water : the biology and physics of life's media[END_REF], the physical properties of the air in this condition are given by ρ a = 1.16Kg.m -3 ; µ a = 1.8 × 10 -5 P a.s; c f a = 10 -5 P a -1 ; K a = 1.01 × 10 5 P a (4.22)

Obviously, the samples which are saturated by air (1b) correspond to the dry samples. A comparison between the numerical results, the dry samples and Gassmann's model is given in As for the coarsening method used in Section A.2, since the acoustic velocities in the coarsened samples are determined, the ones for samples with an infinite discretization (N c = ∞) can be derived by extrapolation. The same procedure is repeated and the results are given in Table 4.19. The compressional and shear wave velocities were also measured in some saturated clean sandstone samples by [START_REF] Han | Effects of porosity and clay content on acoustic properties of sandstones and unconsolidated sediments[END_REF]. Due to the same reasons which are discussed in Section 4.3 devoted to dry samples, these experimental data are slightly smaller than the numerical ones as shown in Fig. 4.28. The shear wave velocity. Data are for: numerical (red •), Han (1986) (black ).

N c Velocity FB8 FB13 FB18 FB22 ∞ v p (

Conclusions

This chapter presents the calculations for the four Fontainebleau samples FB22, FB18, FB13 and FB8. The sample porosities and the two point correlation functions are calculated and they indicate that the samples are close to isotropic and statistically homogeneous. The macroscopic properties such as the effective stiffness tensor C ef f , the bulk modulus K, the shear modulus G and the acoustic velocities in dry samples are determined by LSM. The results are close to the other numerical or empirical models [START_REF] Arns | The influence of morphology on physical properties of reservoir rocks[END_REF][START_REF] Nur | Wave velocities in sediments[END_REF][START_REF] Krief | A petrophysical interpretation using the velocities of p and s waves (full waveform sonic)[END_REF] and the experimental data [START_REF] Han | Effects of porosity and clay content on acoustic properties of sandstones and unconsolidated sediments[END_REF][START_REF] Han | Effect of porosity and clay content on wave velocities in sandstones[END_REF][START_REF] Gomez | Laboratory measurements of porosity, permeability, resistivity, and velocity on fontainebleau sandstones[END_REF]. The maximal difference for velocities is less than 8.2%.

The macroscopic conductivity tensor and the characteristic length Λ are calculated by the method of [START_REF] Thovert | Thermal conductivity of random media and regular fractals[END_REF] and close to Archie's law. The absolute and dynamic permeabilities are calculated by LBM with the original and the mirror configurations and then compared to one another; the mirror one is considered to be more precise. The universal scaling behaviour is also verified and they are in good agreement with the Poiseuille flow. The coefficients α and β which characterize the interaction solid -fluid are determined by the LBM-LSM coupled model.

Then, the acoustic velocities and the penetration depth of the fast and slow compressional as well as shear waves are calculated for the coarsened samples saturated by three types of fluid: incompressible fluid, slightly compressible fluid and highly compressible fluid. The slightly compressible fluid corresponds to water in normal conditions; therefore, the simulation results in this case are compared with the Gassmann's model and a very good agreement is obtained since the relative difference is always less than 0.3%. Another comparison between the dry samples and the ones saturated by air in normal conditions is performed and the maximal difference is only about 0.2%.

Finally, the velocities in the saturated samples with an infinite discretization which are determined by extrapolations are in good agreement with the experimental data of [START_REF] Han | Effects of porosity and clay content on acoustic properties of sandstones and unconsolidated sediments[END_REF].

Chapter 5

Acoustic wave velocities in STATOIL samples with two solid components

Introduction

In this chapter, the calculations of wave propagations in four dry and saturated STATOIL samples X2, X7 ,Y5, Y13 are presented. These samples have three components, namely pore, clay and quartz.

The study of acoustic and dynamic properties of composite media has been an important and difficult problem for a long time. Hashin and Shtrikman (1962a,b), [START_REF] Torquato | Effective stiffness tensor of composite media: Ii. application to isotropic dispersion[END_REF][START_REF] Torquato | Modeling of physical properties of composite materials[END_REF], [START_REF] Garboczi | Computational materials science of cement-basedmaterials[END_REF]... obtained some results, but with limitations; the geometry must be simple such as a cubic array of spheres, the solid components must have the same Poisson ratio, there is no pore in the media... In the recent years, there are some efficient numerical codes such as FMD [START_REF] Malinouskaya | Propagation des ondes acoustiques dans les milieux hétérogènes[END_REF],... but only for dry samples with a size limit. In this chapter, a homogenization approach (Chapter 2) associated with numerical tools such as LSM2S and LBM-LSM2S is used to solve this problem.

The calculations are done by the same procedure as for Fontainebleau samples. The acoustic properties in dry samples can be obtained from the effective stiffness tensors which are calculated by LSM2S. Furthermore, due to the large sample size, the coarsening method is also applied. The conductivity tensor and the characteristic length are calculated as for the porous media with one solid component. Then, the acoustic velocities in saturated samples are derived from the Christoffel equation after determining the 4 quantities C ef f , K, α and β. The samples are saturated by slightly, highly and incompressible fluids; the influence of air under normal conditions (1b) is also studied. The calculations are performed with the original and mirror configurations as in the previous chapter. It is important to note that two comparisons are done in order to evaluate our simulation results; the first one is with Gassmann's model since the fluid is water (1b) and the second one is between the dry samples and the ones saturated by air (1b).

The organization of this chapter is as follows. Section 5.2 provides some details on the samples. The acoustic properties of dry samples are determined in Section 5.3. The formation factor F and the length Λ are given in Section 5.4. Then, the calculations of saturated samples are presented in Section 5.5, together with some comparisons. Finally, some conclusions are given in Section 5.6.

Characterizations of samples

Since these four samples are provided by STATOIL, they are called STATOIL samples. They As presented in Chapter 2, these samples contain three components: 0 is pore, 1 clay and 3 quartz. However, these labels are changed to make them suitable with our convention; 0 is clay, 1 pore and 2 quartz. Then, the phase function Z(r) characterizing the pore space in such samples is given by

Z(r) =                0 if r belongs to clay 1 if r belongs to pore 2 if r belongs to quartz (5.1)
The STATOIL samples are characterized by the porosities and the correlation functions as the Fontainebleau samples.

Porosities and component proportions

The size of sample X2 is 6480 × 6480 × 2485µm 3 and divided into 1200 × 1200 × 436 elementary cubes. It is shown in Fig. 5.1.a; the pores are transparent, the clay grey and the quartz black.

In the same way as in Section 4.2, the porosities of each slice along the x-, y-, z-direction of The same calculations are performed for the other samples X7, Y5 and Y13. The results are given in Table 5.4. The sample X7 has the maximal porosity (0.2712) and the Y13 has the minimal one (0.0739). The differences between the maximal and minimal porosities of slices along the three directions are significant in sample X2 ( from 5.2% to 13% ) and Y5 (from 14% to 18%); these differences are less than 7% in the samples X7 and Y13. Since the difference between the three directions is small (from 1% to 4%), these samples can be considered to be isotropic. In order to study the influence of the component proportions on the macroscopic properties, the proportions are calculated in the same way as the porosities and the results are given in 

Sample

Correlation functions

As for the Fontainebleau samples, the two point correlation functions are calculated for each slice (2D) and then the averages are compared between the three directions. The results of six slices along the z-direction of the sample X2 are presented in Fig. 5.3. As it can be seen in the superposition of all these results (Fig. 5.4.a), when the distance u is small, the correlation functions of slices seem to be the same, while for large u, differences are significant. Then, the averaged results along the three directions are calculated and compared in Fig. 5.4.a, the difference between them is small when u is less than 200. Similarly, the two point correlation functions of X7, Y5 and Y13 are determined and presented in Fig. 5.5. The results along the three directions of X7 and Y5 are close to each other as in the sample X2. However, for the sample Y13, the averaged one along the x-direction is different with the y-and z-directions even when u is small as it can be seen in Fig. 5.5.c.

The Fourier components of the correlation functions R Z are also checked as for the Fontainebleau samples. For all slices, the results which are always positive show that the four STATOIL samples can be considered homogeneous. For instance, the Fourier components corresponding to the correlation function of the slice Z = 240 of sample X2 are positive as it can be seen Fig. 5.6.a.

Thanks to these calculations, the correlation functions along the x-direction of all STATOIL samples are compared in Fig. 5.6.b. The results of X2, Y5 and Y13 are closer than the one of X7.

Acoustic velocities in the dry samples

As for the Fontainebleau samples, the acoustic velocities in dry STATOIL samples are derived from the effective stiffness tensors. However, the difference is that they have two solid components; therefore, we must use the Lattice Spring Model for two solid components (LSM2S) which is developed from the basic LSM presented in Chapter 3. The accuracy of LSM2S has been checked by comparison with others such as [START_REF] Nemat-Nasser | On composite with periodic structure[END_REF], [START_REF] Torquato | Effective stiffness tensor of composite media: Ii. application to isotropic dispersion[END_REF] and [START_REF] Cohen | Simple algebraic approximations for the effective elastic moduli of cubic arrays of spheres[END_REF], the FFT method of Hoang-Duc and Bonnet (2012), and the FMD of [START_REF] Malinouskaya | Propagation des ondes acoustiques dans les milieux hétérogènes[END_REF]. Moreover, simulations by LSM2S and FMD for the same coarsened samples X2 will be compared in Subsection 5.3.1.4. These samples contain three components: pore, clay and quartz which correspond to 1, 0 and 2 (1-pore, 0-clay and 2-quartz). Their properties are given by [START_REF] Arns | The influence of morphology on physical properties of reservoir rocks[END_REF] and recalled in Table 5.4.

Solid K (GPa) µ (GPa) ρ [g/cm -3 ]
Clay 20.8 6.9 2.6 Quartz 37.0 44.0 2.65

Table 5.4: The properties of solid components.

Samples X2

The simulation of simple stretching along the x-direction is carried out by LSM2S for the original sample X2, but due to the large sample size, the memory requirements are too large and exceed the computer memories.

Therefore, the coarsening method must be used, the principles of this method is presented in Section A.1. Then, for each coarsened sample, six simulations are needed to calculate nine values of the effective stiffness tensor for three simple stretchings and three simple shears.

The coarsened samples

The coarsened samples of size 150 x 150 x 54; 300 x 300 x 109 and 600 x 600 x 218 were derived from the original samples (Fig. 5.7).

The coarsening method slightly changes the component proportions in the samples as shown in Table 5.5 and Fig. 5.8. For comparison, the middle slices of the coarsened samples are displayed in Fig. 5.9. We can see that the coarsening method does not change much the spatial distribution of the components in the medium. The effective stiffness tensor of this sample is calculated by 6 simulations. The calculation time is about 2 days and the memory requirement is 2.56 Gb for each simulation with a computer with 8 processors. Since all the components are numerically determined, the effective stiffness tensor is shown as symmetric and the large components are located only on the diagonal. The result expressed in GPa is given by 

C (ef f ) =                 43 
                (5.2)
The proportions of clay and quartz in the sample are equal to 0.052 and 0.718, respectively.

The average solid density is given by

ρ = 1 V V ρdV = φ 0 ρ 0 + φ 2 ρ 2 = 2036.3 kg/m 3 (5.3)
As for Fontainebleau samples, the acoustic velocities in this dry coarsened sample along the various directions are calculated according to (2.65) and presented in Table 5.6: The velocities of compressional and shear waves along the three directions in the coarsened samples X2.

Sample of size 300 × 300 × 109

Calculations are done by 5 computers with 8 processors and 1 computer with 32 processors. The simulation time is about 11 days with a computer with 8 processors and the memory requirement is 22.01 Gb. The effective stiffness tensor expressed in GPa is given by 

C (ef f ) =                 39 
                (5.4)
Since the proportions of clay and quartz in the sample is equal to 0.056 and 0.722, the average density ρ is equal to 2058.1 kg/m 3 . The acoustic velocities in this dry coarsened sample along different directions are calculated and presented in Table 5.6.

Sample of size 600 × 600 × 218

The memory requirement for a simulation with N cx = 600 reaches 161.8 Gb. It takes over 1 month for one simulation with 32 processors. The effective stiffness tensor expressed in GPa is given by 

C (ef f ) =                 37 
               
(5.5)

The proportions of clay and quartz is equal to 0.056 and 0.727, the average density ρ is equal to 2071.1 kg/m 3 . The acoustic velocities are given in Table 5.6.

Extrapolation to the original size

After the calculation of these three coarsened samples, the acoustic velocities of the three compressional and the three shear waves along the x-, y-and z-directions are displayed in Table 5.6 and can be extrapolated to the original sample with N cx = 1200 or to a sample with an infinite discretization N cx = ∞ in the same way as Fontainebleau samples (cf Section A.1). The two point and three point lines will be used to find the best linear predicted function of these velocities. The best fits (three points lines), together with their correlation coefficient r and the velocities along the three directions are calculated and given in Table 5.7: The best fits and their correlation coefficients for acoustic velocities in the sample X2.

The lines through the last two points (N cx = 300 and 600) are also calculated. The velocities for N cx = ∞ derived from the three and two points lines are 4.11 and 4.06 (km/s), respectively.

They are in a very good agreement since the difference is equal to 1.2%. These lines are close to each other as can be seen in Fig. 5.10.

The accuracy of the extrapolation and of the coarsening method was demonstrated in the calculations of Fontainebleau samples (where the difference between the extrapolation and the direct simulation is about 1.28 %); therefore, it is clear that these methods can be applied to the STATOIL samples with two solids. 

Sample X7

As for sample X2, the macroscopic physical properties of X7 were calculated by the coarsening method. The coarsened samples with N cx = 150, N cx = 300 and N cx = 600 were derived from the original sample with N cx = 1200. The change of component proportions of these samples is given in Table 5.5. The calculations were done from the sample with the smallest to the largest N cx . The original and larger sample (N cx > 1200) are derived by extrapolations.

Simulation results

The effective stiffness tensors are determined by six simulations for each coarsened sample of size 150 x 141 x 60 and 300 x 283 x 121. Then, velocities of compressional and shear waves along the three directions are derived from (2.65) and given in Table 5.9. It should be noted that the difference between the x-, y-and z-directions is always less than 1.4% for v p and 0.4% for v s ; therefore, the results are similar along these directions. Thanks to this conclusion, for the coarsened sample with N cx = 600, due to the large required memory and the simulation time, the calculation is done only for the x-direction. It means that only one simple stretching and one simple shear simulation are needed. Then, the acoustic velocities of these samples are given in 5.9: The velocities of compressional and shear waves along the three directions in the coarsened samples X7.

Extrapolation to the original sample

With the same method as for X2, the acoustic velocity can be presented as a function of 1/N cx . The three point linear functions of 1/N cx are calculated. As mentioned above, the extrapolation is done only for the x-direction, the results with the corresponding correlation coefficient r and the velocities for N cx = 1200 and ∞ are derived and presented in Table 5.10. Note that the correlation coefficients are nearly equal to 1; therefore, these functions are trusted to be accurate. Table 5.10: The best fits with the corresponding correlation coefficients and the acoustic velocities along the x-direction of the sample X7.

Velocities

Sample Y5 and Y13

The sample Y5 has the same form as the samples X2 and X7; its dimensions are In the same way, the velocities in these coarsened samples are calculated as in Table 5.11.

N cx ×N cy × N cz =
Note that for the coarsened samples with larger sizes (N cx = 500 and 600), only the calculations along the x-direction are performed.

Velocities Sample Y5 Sample Y13

km/s 5.11: Acoustic velocities of compressional and shear waves along the three directions in coarsened samples Y5 and Y13.

N cx =150 N cx =300 N cx =600 N cx =125 N cx =250 N cx =500 υ X p 5.
Then, the extrapolations are made in order to determine the wave velocities along the xdirection in the original sample and the sample with N cx = ∞. The results are given in Table 5.12. Table 5.12: Acoustic velocities extrapolated to the original samples Y5 and Y13 and to an ∞ discretization.

Velocities

Finally, the velocities are determined for all the coarsened STATOIL samples. Unlike the Fontainebleau samples, these samples have different forms and dimensions; therefore, it is difficult to compare them. The velocities are decreasing functions of porosity for the original samples.

However, when N cx is small, the velocity can increase with porosity (see Fig. 5.13.a). A comparison with the velocities in a no-pore medium υ 0 is given in Fig. 5.13.b; the ratio υ/υ 0 is also a decreasing function of porosity and the difference υ p /υ p 0 -υ s /υ s 0 is always nearly equal to 0.03. Han (1986) also measured the wave velocities in various composite sandstones with porosity ranging from 2% to 30% and clay content ranging from 0 to 50%. Their component proportions are close to our samples as shown in the clay content-porosity relation (see Fig. 5.14.c). Furthermore, some linear functions to predict the velocities in the considered sandstones [START_REF] Han | Effect of porosity and clay content on wave velocities in sandstones[END_REF] are also provided V p = 5.41 -6.35ε -2.87C km/s (5.6a)

V s = 3.57 -4.57ε -1.83C km/s (5.6b)
where C is the clay proportion.

The numerical results of the compressional and the shear velocities are slightly larger than the experimental data as can be seen in Fig. 5.14.a-b. The differences are from 6% to 12% for V p and from 7% to 13% for V s in comparisons with the predictions (5.6). They are due to the small size and mostly to the small fissures which are likely to exist in the real samples. A more precise comparison is shown in Fig. 5.14.d, the ratio V p /V s of simulations is close to the predictions since the difference is less than 3%.

Since the effective stiffness tensors were calculated for all coarsened samples, the ones for the original samples are determined by extrapolations. Then, the effective bulk modulus and shear modulus can be derived from (3.34). The upper Hashin-Shtrickman's bounds [START_REF] Wall | A comparison of homogenization, hashin-shtrikman bounds and the halpin-tsai equations[END_REF]Hashin and Shtrikman, 1962b) for a composite medium with two materials are given by

K u = K 1 + m 2 1 K 2 -K 1 + m 1 K 1 + G 1 , G u = G 1 + m 2 1 G 2 -G 1 + m 1 (K 2 + 2G 1 ) 2G 1 (K 1 + G 1 ) (5.7) 
where K 1 , K 2 are the bulk moduli, G 1 , G 2 the shear moduli, m 1 , m 2 the volume fraction of the first and the second materials, respectively, with the condition:

(K 1 × K 2 )(G 1 × G 2 ) ≥ 0.
For comparisons, the clay in our samples is considered as quartz; then, the first material is quartz and the second is pore (K 2 = G 2 = 0, m 2 = ε). The numerical results are under the upper bounds; the effective shear modulus is closer to the HS bound than the bulk modulus as shown in Fig. 5.15.a-b.

They are also compared to the empirical equations (4.6) [START_REF] Nur | Wave velocities in sediments[END_REF][START_REF] Nur | Critical porosity: the key to relating physical properties to porosity in rocks[END_REF] and (4.7) [START_REF] Krief | A petrophysical interpretation using the velocities of p and s waves (full waveform sonic)[END_REF] in Fig 5 .15.c-d. K e is in a good agreement with the empirical results. The difference for G e is significant; but it should be noted that these equations are for media with only one solid component. Comparison of ratio V p /V s with Han's predictions. Data are for: numerical results (red •), Han's data (black ), Han's prediction (5.6) (green ).

Additional comparisons

The calculations of dry STATOIL samples are done by the coarsening methods; this authorize us to obtain the acoustic velocities in the samples with an infinite discretization (N cx = ∞).

The results are given in Tables 5.7, 5.10 and 5.12. It is clear that these samples are closer to the real samples than the original samples with N cx = 1200. Therefore, a further comparison between these results and the data given in Section 5.3 is presented in Fig. 5.16; the difference is quite smaller than the one in Fig. 5.14. d) G e with the empirical equations (4.6), (4.7). Data are for: numerical results (red), HS bounds (blue), Nur (black), Krief (green).

The samples X2, X7, Y5 and Y13 are provided by STATOIL and they also made some measurements for real samples whose components are clay, quartz and pore. There are two classes of samples that called the X-samples and the Y-samples. Obviously, X2 and X7 belong to the first class and Y5, Y13 to the second class. A comparison with the experimental data is given in Fig. 5.17. It can be observed that the results of Y5 and Y13 are close to the Y-samples but the ones of X2 and X7 are larger than the X-samples. This difference can be due to the small samples size, to the appearance of small fissures in samples, to the difference of solids proportions and to the difference of clay properties... [START_REF] Han | Effects of porosity and clay content on acoustic properties of sandstones and unconsolidated sediments[END_REF][START_REF] Han | Effect of porosity and clay content on wave velocities in sandstones[END_REF] As for the Fontainebleau samples, the mirror configurations along the three directions of the samples were also used to check the spatially periodic conditions. The obtained results are about the same as the original one. Another attempt is to check the influence of clay on the velocities.

In this case, the clay is considered as pores. The verifications are done for the coarsened samples X2 with N cx = 150 and in two different ways. In the first way, the clay is changed into pore and the simulation is done by LSM. In the second way, the properties of clay are assigned to be equal to the ones of air and the simulations is performed by LSM2S. Both ways yield the same results: C xxxx = 38.653 GPa and C yzyz = 16.4635 GPa. They are smaller in comparison with the obtained results in Section 5.3: C xxxx = 43.58 GPa and C yzyz = 18.52 GPa. However, it is important to note that when the clay is changed into pore, the averaged density ρ is also decreased; therefore, this has an influence the velocities. The new compressional and shear wave velocities are 4.51 (km/s) and 2.94 (km/s), respectively. They are about 2.7% smaller than the original results which are equal to 4.63 (km/s) and 3.02 (km/s), respectively. This comparison shows that the clay proportion does not have a heavy influence on the acoustic velocities of dry samples when the quartz proportion is unchanged.

5.5

The formation factor F and the characteristic length Λ

As for the Fontainebleau samples, the macroscopic conductivity tensor, the formation factor F and the characteristic length Λ are needed in order to study flows in STATOIL samples. The same program of [START_REF] Thovert | Thermal conductivity of random media and regular fractals[END_REF] is used for calculations. The numerical results of dimensionless length Λ/a and conductivity component Σ Σ 0 along the x-direction are determined. Then, they are compared with the approximate results calculated by (4.10) in Table 5.13.

The formation factor F of the coarsened STATOIL samples is derived from the conductivity tensor. They are close to the prediction of the "first Archie equation" when m = 2 as can be seen in Fig. 5.18.

Acoustic velocities in saturated STATOIL samples

The problem of wave propagations in saturated composite media is difficult. The method usually used is homogenization [START_REF] Juan | On the static and dynamic behavior of fluid saturated composite porous solids: A homogenization approach[END_REF][START_REF] Malinouskaya | Propagation des ondes acoustiques dans les milieux hétérogènes[END_REF][START_REF] Li | Propagation des ondes acoustiques dans les milieux hétérogènes[END_REF]. As described in Chapter 2, the generalized Christoffel equation (2.99) is obtained and the acoustic velocities can be derived after determining the four quantities C ef f , K, α and β.

The effective stiffness tensors C ef f are determined in Section 5.3. In this Section, the other calculations are presented. The dynamic permeability is calculated by LBM; the fluid reaction α, β by LBM-LSM2S.

Sample N cx Σ Σ 0 Λ a 2.Ω p S.

Permeabilities

Absolute permeability

In permeability calculations, the difference between the solid components does not matter.

The quartz and clay components are considered as the same solid component. Therefore, the absolute permeability of the STATOIL samples is calculated by the same LBM program [START_REF] Pazdniakou | Dynamic permeability of porous media by the lattice boltzmann method[END_REF].

The calculations of absolute permeability are performed by the coarsening method; the coarsened samples are the same as in Section 5.3. As for Fontainebleau samples, only one simulation is needed for each sample. The time and memory requirement depend on the sample size.

For example with a computer with 8 processors, the time is less than 10 hours and the memory is 0.6 Gb for the coarsened sample X2 of size 150 × 150 × 54 and more than a week and 36.7 Gb for N cx = 600. Normally, if N cx increases by a factor of 2, the memory and time is about 8 times larger. The calculations are done for the original and mirror configurations. Then, the absolute permeability can be derived by (4.13) and is given in Table 5.14. Some points can be observed:

the results of the mirror configurations are larger than the original ones, the permeability of the sample X2 is larger than the others. Table 5.14: The absolute permeability of the coarsened STATOIL samples.

Original Mirror Sample N cx K a K 0 K 0 (dimensionless) (µm) (real value) (mD) (real

Dynamic permeability

As for the Fontainebleau samples, we used the same program based on LBM [START_REF] Pazdniakou | Dynamic permeability of porous media by the lattice boltzmann method[END_REF] in order to calculate the dynamic permeability. Therefore, the input parameters are the same.

These calculations are for the original and mirror configurations with various values of frequency ω, but only along the x-direction.

For the original configuration of the coarsened sample X2 of size 150×150×54, the required memory is about 0.8 Gb for each simulation with 8 processors; the simulation time varies from some hours to 3 days. The results are given in Table 5.15 and the forms of the real part and imaginary parts are presented in Fig. 5.19.a.

The simulations of the coarsened sample X2 of size 300 × 300 × 109 ( a 300 = 22.8µm) are done with a memory requirement of 6.8 Gb, the simulation time can vary from one day to more than two weeks with a computer with 8 processors. The ones for the coarsened sample of size 600 × 600 × 218 ( a 600 = 45.6µm) are about 8 times larger. Then, two dimensionless values K K 0

and ω = ωK 0 ν which can be determined from the absolute permeability K 0 [START_REF] Pazdniakou | Dynamic permeability of porous media by the lattice boltzmann method[END_REF]) are used for comparisons as it can be seen in Fig. 5 Then, the calculations for the mirror configuration are also performed; the sample sizes are now 300 × 150 × 54 and 600 × 300 × 109. The simulation time and memory are about two times larger than the original one. The results are a little larger than the original; the difference is about 20% for the real part K r /a 2 with ω = 2.5e -5 and N cx = 150; this is reasonable as explained in Chapter 2. The real values (in mD) of dynamic permeability (K r and K i ) are calculated according to (4.13); a comparison between the coarsened samples X2 and between the configurations are presented in Fig. 5.19.c.

Original Mirror

Frequency

N cx = 150 N cx = 300 N cx = 300 N cx = 600
x-axis x-axis x-axis x-axis

ω K r /a 2 K i /a 2 K r /a 2 K i /a 2 K r /a 2 K i /a 2 K r /a 2 K i /a 2
0.05 0.00006 -5.6311e-04 0.00011 -8.0617e-04 0.00007 -6.6791e-04 0.00006 -8.0988e-04 0.025 0.00021 -1.1209e-03 0.00018 -1.4243e-03 0.00023 -1.2973e-03 0.00020 -1.6503e-03 0.01 0.00123 -2.2278e-03 0.00146 -3.1610e-03 0.00126 -2.6201e-03 0.00135 -3.3832e-03 0.005 0.00259 -3.3126e-03 0.00301 -5.3552e-03 0.00286 -4.0927e-03 0.00293 -6.2015e-03 0.0025 0.00481 -3.9628e-03 0.00574 -7.9191e-03 0.00556 -4.9525e-03 0.00634 -9.7685e-03 0.001 0.00775 -3.1241e-03 0.01266 -1.0870e-02 0.00933 -4.1630e-03 0.01461 -1.3538e-02 0.0005 0.00888 -1.9116e-03 0.01922 -1.0463e-02 0.01098 -2.6576e-03 0.02281 -1.3679e-02 0.00025 0.00927 -1.0204e-03 0.02425 -7.5980e-03 0.01159 -1.4459e-03 0.02980 -1.0575e-02 0.0001 0.00940 -4.1645e-04 0.02697 -3.6229e-03 0.01179 -5.9403e-04 0.03409 -5.3056e-03 5e-05 0.00941 -2.0884e-04 0.02748 -1.8699e-03 0.01182 -2.9819e-04 0.03496 -2.7714e-03 2.5e-05 0.00942 -1.0450e-04 0.02761 -9.4276e-04 0.01183 -1.4924e-04 0.03520 -1.4020e-03

Table 5.15: The dimensionless dynamic permeability K/a 2 along the x-direction of the coarsened samples X2 of size 150 x 150 x 54 (a 150 = 45.6µm) and of size 300 x 300 x 109 (a 300 = 22.8µm). N cx = 300 ( ), original (red), mirror (black), real part (-), imaginary part ( ---).

Original Mirror

Frequency

N cx = 150 N cx = 300 N cx = 300 N cx = 600
x-axis x-axis x-axis x-axis

ω K r /a 2 K i /a 2 K r /a 2 K i /a 2 K r /a 2 K i /a 2 K r /a 2 K i /a 2
0.05 0.00009 -6.4404e-04 0.00016 -1.0266e-03 0.00009 -6.9286e-04 0.00009 -1.1006e-03 0.025 0.00032 -1.2319e-03 0.00033 -2.0527e-03 0.00034 -1.3183e-03 0.00034 -2.1620e-03 0.01 0.00151 -2.2458e-03 0.00180 -4.3479e-03 0.00156 -2.4182e-03 0.00180 -4.5661e-03 0.005 0.00312 -2.6305e-03 0.00449 -6.8544e-03 0.00330 -2.9162e-03 0.00455 -7.2736e-03 0.0025 0.00464 -2.1543e-03 0.00898 -8.4244e-03 0.00501 -2.4251e-03 0.00939 -9.1501e-03 0.001 0.00558 -1.0937e-03 0.01549 -7.0875e-03 0.00610 -1.2466e-03 0.01655 -7.8805e-03 0.0005 0.00576 -5.7147e-04 0.01828 -4.5015e-03 0.00632 -6.5343e-04 0.01974 -5.0804e-03 0.00025 0.00581 -2.8909e-04 0.01931 -2.4453e-03 0.00638 -3.3085e-04 0.02095 -2.7784e-03 0.0001 0.00583 -1.1602e-04 0.01964 -1.0043e-03 0.00640 -1.3281e-04 0.02135 -1.1438e-03 5e-05 0.00583 -5.8037e-05 0.01969 -5.0412e-04 0.00640 -6.6441e-05 0.02141 -5.7437e-04 2.5e-05 0.00583 -2.9022e-05 0.01971 -2.5231e-04 0.00640 -3.3225e-05 0.02142 -2.8749e-04

Table 5.16: The dimensionless dynamic permeability K/a 2 for the original and mirror configurations along the x-direction of the coarsened samples X7 with N c = 150 (a 150 = 45.6 µm) and N c = 300 (a 300 = 22.8 µm).

Original Mirror

Frequency

N cx = 150 N cx = 300 N cx = 300 N cx = 600
x-axis x-axis x-axis x-axis

ω K r /a 2 K i /a 2 K r /a 2 K i /a 2 K r /a 2 K i /a 2 K r /a 2 K i /a 2
0.05 0.00005 -1.0747e-04 0.00011 -2.2562e-04 0.00007 -1.4152e-04 0.00006 -2.3125e-04 0.025 0.00007 -2.1441e-04 0.00031 -4.0436e-04 0.00009 -3.1353e-04 0.00010 -5.0309e-04 0.01 0.00071 -3.4872e-04 0.00126 -6.6351e-04 0.00065 -3.8577e-04 0.00040 -1.2095e-03 0.005 0.00094 -3.2215e-04 0.00172 -1.2228e-03 0.00107 -6.8693e-04 0.00157 -1.4590e-03 0.0025 0.00110 -2.8699e-04 0.00248 -1.2941e-03 0.00151 -6.0692e-04 0.00268 -2.1978e-03 0.001 0.00126 -1.7568e-04 0.00332 -1.1043e-03 0.00182 -3.3415e-04 0.00461 -2.2834e-03 0.0005 0.00130 -9.7294e-05 0.00385 -8.1174e-04 0.00189 -1.7922e-04 0.00570 -1.6351e-03 0.00025 0.00131 -5.0145e-05 0.00410 -4.7138e-04 0.00191 -9.1554e-05 0.00620 -9.4911e-04 0.0001 0.00132 -2.0243e-05 0.00419 -1.9877e-04 0.00192 -3.6865e-05 0.00639 -4.0083e-04 5e-05 0.00132 -1.0135e-05 0.00420 -1.0022e-04 0.00192 -1.8451e-05 0.00642 -2.0216e-04 2.5e-05 0.00132 -5.0692e-06 0.00420 -5.0220e-05 0.00192 -9.2275e-06 0.00642 -1.0131e-04

Table 5.17: The dimensionless dynamic permeability K/a 2 for the original and mirror configurations along the x-direction of the coarsened samples Y5 with N c = 150 (a 150 = 45.6 µm) and N c = 300 (a 300 = 22.8 µm).

The dynamic permeability of original and mirror configurations are similarly determined for the samples X7 and Y5. The results of coarsened samples X7 of size 150 × 141 × 60 and 300 × 283 × 121 are given in Table 5.16. Then, the real values are calculated and compared in Fig. 5.20.a.

The imaginary and real parts of K/a 2 of the coarsened samples Y5 of size 150 × 150 × 46 and 300 × 300 × 92 are presented in Table 5.17, and the results are compared in Fig. 5.20.b. Some noisy results are obtained for high frequencies although the viscosity was decreased in order to improve the Knudsen number [START_REF] Pazdniakou | Dynamic permeability of porous media by the lattice boltzmann method[END_REF]. Problems occur for samples with a small porosity such as sample Y13; some solutions are being studied to solve it. 

Coefficients α, β and acoustic velocities in saturated samples

The coefficients characterize the fluid action; α and β are derived by LBM-LSM2S as presented in Chapter 3. The physical properties of clay, quartz and fluid are described in (4.17)and in Table 5.4. As for Fontainebleau samples, very small pores which are disconnected are eliminated;

α and β are calculated by imposing a unit pressure in the pore as in Section 4.4.

The calculations are done by the coarsening methods with the same coarsened samples. A sample needs only one simulation to obtain these coefficients. For dry samples, the coarsened samples X2 are calculated first. The simulation for N cx = 150 takes about 4 days; the memory requirements is 2.92 Gb. The results are

α =      
-0.4831 6.964e -3 4.776e -3 6.964e -3 -0.4644 7.015e -5 4.776e -3 7.015e -5 -0.5002

      (5.8a) β = -0.00135 GP a -1 (5.8b)
The four needed quantities C ef f , K, α and β are fully determined; therefore, the acoustic velocities can be derived from the generalized Christoffel equation (2.99). Similarly to sample Original Table 5.18: The fast compressional wave velocities in the original and mirror configurations of the coarsened sample X2 (N cx =150) saturated by the three types of fluids: incompressible fluid ( C f = 0), slightly compressible ( C f = 4.6, water in pressure of 1b) and highly compressible ( C f = 100).

N cx =150 Mirror N cx =300 ω C f = 0 C f = 4.6 C f = 100 C f = 0 C f = 4.6 C f = 100 C r C i C r C i C r C i C r C i C r C i C r C i 0.
.

Original N cx =150 Mirror N cx =300 ω C f = 0 C f = 4.6 C f = 100 C f = 0 C f = 4.6 C f = 100 C r C i C r C i C r C i C r C i C r C i C r C i 0.05 1.
47e-04 7.55e-06 3.60e-05 1.84e-06 7.94e-06 4.07e-07 1.61e-04 7.91e-06 3.92e-05 1.93e-06 8.65e-06 4.26e-07 0.025 1.48e-04 1.34e-05 3.60e-05 3.28e-06 7.95e-06 7.24e-07 1.59e-04 1.37e-05 3.87e-05 3.35e-06 8.55e-06 7.40e-07 0.01 1.36e-04 3.50e-05 3.31e-05 8.54e-06 7.31e-06 1.89e-06 1.46e-04 3.34e-05 3.56e-05 8.14e-06 7.86e-06 1.80e-06 0.005 1.20e-04 4.15e-05 2.94e-05 1.01e-05 6.48e-06 2.24e-06 1.32e-04 4.17e-05 3.23e-05 1.02e-05 7.13e-06 2.25e-06 0.0025 9.91e-05 4.68e-05 2.42e-05 1.14e-05 5.34e-06 2.52e-06 1.09e-04 4.90e-05 2.67e-05 1.19e-05 5.89e-06 2.64e-06 0.001 6.65e-05 4.49e-05 1.62e-05 1.09e-05 3.58e-06 2.42e-06 7.44e-05 4.83e-05 1.82e-05 1.18e-05 4.01e-06 2.60e-06 0.0005 4.60e-05 3.72e-05 1.12e-05 9.07e-06 2.48e-06 2.00e-06 5.18e-05 4.08e-05 1.26e-05 9.95e-06 2.79e-06 2.20e-06 0.00025 3.16e-05 2.83e-05 7.70e-06 6.90e-06 1.70e-06 1.52e-06 3.56e-05 3.14e-05 8.67e-06 7.66e-06 1.92e-06 1.69e-06 0.0001 1.95e-05 1.86e-05 4.74e-06 4.54e-06 1.05e-06 1.00e-06 2.19e-05 2.08e-05 5.33e-06 5.07e-06 1.18e-06 1.12e-06 5e-05 1.36e-05 1.33e-05 3.32e-06 3.25e-06 7.33e-07 7.17e-07 1.53e-05 1.49e-05 3.73e-06 3.64e-06 8.23e-07 8.03e-07 2.5e-05 9.58e-06 9.47e-06 2.34e-06 2.31e-06 5.16e-07 5.10e-07 1.07e-05 1.06e-05 2.62e-06 2.59e-06 5.79e-07 5.71e-07

Table 5.19: The slow compressional wave velocities of the coarsened sample X2 (N cx =150) saturated by the three types of fluids.

Original 2.5e-05 2.858 7.7e-13 2.858 7.7e-13 2.858 7.7e-13 2.858 9.6e-13 2.858 9.6e-13 2.858 9.6e-13

N cx =150 Mirror N cx =300 ω C f = 0 C f = 4.6 C f = 100 C f = 0 C f = 4.6 C f = 100 C r C i C r C i C r C i C r C i C r C i C r C i 0.
Table 5.20: The shear wave velocities in the original and mirror configurations of the coarsened sample X2 (N cx =150) saturated by the three types of fluids. The calculations for coarsened samples X2 of size 300 × 300 × 109 and 600 × 600 × 218 are done in the same way. The wave velocities are determined for various frequencies and for both configuration types; they are given in Tables 5.21, 5.22 and 5.23 for N cx = 300 and in Table 5.24

for N cx = 600. Original . Table 5.22: The slow compressional wave velocities of the coarsened sample X2 (N cx =300) saturated by the three types of fluids.

N cx =150 Mirror N cx =300 ω C f = 0 C f = 4.6 C f = 100 C f = 0 C f = 4.6 C f = 100 C r C i C r C i C r C i C r C i C r C i C r C i 0.
Original N cx =150 Mirror N cx =300 ω C f = 0 C f = 4.6 C f = 100 C f = 0 C f = 4.6 C f = 100 C r C i C r C i C r C i C r C i C r C i C r C i 0.
Original The fast compressional, slow compressional and shear wave velocities of the coarsened samples Y5 with N cx = 150, 300 and 600 are given in turn in Tables A.35, A.36, A.37, A.38, A.39, A.40 and A.41. Together with the corresponding penetration depth h, they are compared to each other as shown in Figures 5.27 and and 5.28.

N cx =150 Mirror N cx =300 ω C f = 0 C f = 4.6 C f = 100 C f = 0 C f = 4.6 C f = 100 C r C i C r C i C r C i C r C i C r C i C r C i 0.
ω C f = 0 C f = 4.6 C f = 100 C f = 0 C f = 4.6 C f = 100 C r C i C r C i C r C i C r C i C r C i C r C i 0.
Due to the same reasons for sample X2, some noisy results can be observed for the slow compressional velocity and the depth h for high frequencies. Furthermore, as for sample FB8, the acoustic velocities in the saturated sample Y13 with the smallest porosity are not yet available because of problems of the determination of the dynamic permeability. As mentioned, two comparisons are done to evaluate our results. In the first case, Gassmann's model is used. It should be noted that this model is only for media with one solid component; therefore, in order to apply to the STATOIL samples, clay should be changed into quartz. The bulk modulus of dry samples are the results of Section 5.3. This is possible because the clay proportion in our samples is very small in comparison with quartz as can be seen in Table 5.5. The comparisons are done when our samples saturated by water under normal conditions (1b) correspond to the slightly compressible fluid with c f = 4.6 × 10 -10 P a -1 . The results are given in Table the prediction functions for velocities in saturated samples; they are expressed as V p = 5.59 -6.93ε -2.18C km/s (5.9a)

V s = 3.52 -4.91ε -1.89C km/s (5.9b)

Let us compare the extrapolated results and the experimental data of [START_REF] Han | Effects of porosity and clay content on acoustic properties of sandstones and unconsolidated sediments[END_REF]. Fig. 5.29

indicates that they are in good agreement but the numerical data are slightly larger than the measurement ones. We believe that this is for the reasons which are mentioned in Chapter 4. 

Conclusion

In this chapter, four STATOIL samples X2, X7, Y5 and Y13 are calculated. The acoustic velocities in dry samples are derived from the effective stiffness tensor which are calculated by LSM2S. Some comparisons are provided in calculations of the coarsened sample X2 in order to demonstrate the accuracy of this code. The calculations are done by the coarsening method and the results of the original samples are obtained by extrapolation. The results are slightly larger than the experimental data of [START_REF] Han | Effects of porosity and clay content on acoustic properties of sandstones and unconsolidated sediments[END_REF] and of STATOIL, but in good agreement with the Hashin-Shtrickman's bounds and the empirical models of [START_REF] Nur | Wave velocities in sediments[END_REF]; [START_REF] Krief | A petrophysical interpretation using the velocities of p and s waves (full waveform sonic)[END_REF].

The acoustic properties in saturated samples are determined by the Christoffel equation.

The calculations are done with the original and mirror configurations of the coarsened samples for three types of fluids: slightly, highly and incompressible fluids. Then, as for Fontainebleau samples, the influences of frequency, of compressibility coefficients, of discretization on the acoustic velocities and on the penetration depth h of fast, slow compressional and shear waves are also considered. Two comparisons are performed: the first is with Gassmann's model and the second is between the dry samples and the ones saturated by air under normal conditions. The maximal difference is about 1.0% in both cases; this coincidence allows us to evaluate the precision of our method. Finally, the acoustic velocities in the original samples and in the samples with an infinite discretization are determined by extrapolations. A comparison with the experimental data of Han (1986); [START_REF] Han | Effect of porosity and clay content on wave velocities in sandstones[END_REF] is done and this shows that they are close to each other but the numerical results are still slightly larger than the experimental ones.

Chapter 6

Conclusions

In this thesis, the lattice models are used to calculate the acoustic velocities in dry and in saturated porous media. The numerical tools may avoid some of the experiments which are usually more expensive. The basic models LBM, LSM, LBM-LSM [START_REF] Pazdniakou | Dynamic permeability of porous media by the lattice boltzmann method[END_REF] are extended to address the porous media with two solid components. The new models whose names are LSM2S

and LBM-LSM2S are validated by comparison with the other methods such as the approximation methods of Nemat-Nasser and Iwakuma (1982), [START_REF] Torquato | Effective stiffness tensor of composite media: Ii. application to isotropic dispersion[END_REF][START_REF] Torquato | Modeling of physical properties of composite materials[END_REF] and [START_REF] Cohen | Simple algebraic approximations for the effective elastic moduli of cubic arrays of spheres[END_REF], the FFT method of Hoang-Duc and Bonnet (2012), and the FMD of [START_REF] Malinouskaya | Propagation des ondes acoustiques dans les milieux hétérogènes[END_REF]. The codes are parallelized in order to work with large samples; the averaged speedup can be predicted according to Amdahl's law [START_REF] Che | Amdahl's law for multithreaded multicore processors[END_REF].

Two types of porous media are addressed in this work. The first type, which includes quartz and pore, corresponds to Fontainebleau samples and is named FB8, FB13, FB18 and FB22. The The characterizations include the determination of the porosity and of the correlation function. They are calculated for each slice along the three directions of the samples. The Fourier components corresponding to the correlation function are also determined. The calculations are done for all samples in the same way and they can be considered to be isotropic and statistically homogeneous.

For the dry samples, the wave propagation is ruled by the elastic behaviour. The acoustic velocities are derived from the effective stiffness tensor C ef f which can be determined numerically by LSM (for Fontainbleau samples) or by LSM2S (for STATOIL samples). The calculations are done by the direct simulations or by the coarsening method depending on the sample size. Then, the compressional, shear wave velocities and the effective bulk, shear modulus are determined for the original samples or the samples with an infinite discretization. It is shown that the results are in good agreement with the IOS model of [START_REF] Arns | The influence of morphology on physical properties of reservoir rocks[END_REF], the experimental data of [START_REF] Han | Effects of porosity and clay content on acoustic properties of sandstones and unconsolidated sediments[END_REF] and [START_REF] Gomez | Laboratory measurements of porosity, permeability, resistivity, and velocity on fontainebleau sandstones[END_REF] and the empirical models of [START_REF] Nur | Wave velocities in sediments[END_REF] and [START_REF] Krief | A petrophysical interpretation using the velocities of p and s waves (full waveform sonic)[END_REF]. The numerical results are slightly larger than the experimental data that may be due to the small size of real samples, to the appearance of small fissures in samples, to the difference of solids proportions and to the difference of clay properties... (1986).

It is clear that the numerical study has some advantages in comparison with the experiments such as the low cost, the reduction of errors... However, some problems still remain which can be listed as follows.

• There is always a difference between numerical results and the experimental data. As it is shown in Chapter 4 and 5, our results are slightly larger than the experimental ones.

• The determination of the dynamic permeability for samples with a small porosity (FB8 and Y13) is difficult. Until now, the results are not yet available. As a consequence, one cannot obtain the acoustic velocities in these samples.

• The computational time is usually very long for samples with a large size though the codes were parallelized.

• The required memory is still large (161 Gb for a sample of dimension 480 3 ); therefore, some computers are not strong enough to calculate.

In the future, we believe that these problems can be solved as a result of the development of technologies. Moreover, the present models can be developed to calculate porous media with many solid components and partially or fully saturated by two fluids. It must be also noted that this purpose is a complex problem because of various fluid-fluid, fluid-solid interface effects. 

A.2.2 Numerical results

The input elastic properties of the solid used in simulations are the Young modulus E s,nu and the Poisson ratio ν s,nu given by

E s = 36GP a ν s = 0.12 (A.1)
The coarsened samples FB22 are calculated first. The effective stiffness tensor of each sample is determined by 6 simulations with LSM. For the coarsened sample of size 60 × 60 × 60, the computation time is about 2 days with a computer with 8 processors and the required memory is 0.352 Gb for each simulation. These quantities are about 8 times larger when N c is doubled.

The stiffness tensors and the acoustic velocities of these three coarsened samples are gathered and compared in Table A.1. The effective stiffness tensors (GPa) and the acoustic velocities (km/s) along the three directions of the coarsened samples FB22 with N c =60, N c =120 and N c =240.

C (ef f ) 60 =                25 
               C (ef f ) 120 =               
               C (ef f ) 240 =                19 

Extrapolation to the original size

The extrapolation of the larger samples is performed with linear approximation functions.

The best fits and their correlation coefficient r are calculated. Then, the acoustic velocities in the original sample FB22 and the sample with an infinite discretization are also derived and given in 

Accuracy of extrapolation function

In order to estimate the accuracy of this function, a simulation which calculates the compressional wave velocity along the x-direction of the original sample FB22 (N c = 480) is performed. The simple stretching along the x-direction is simulated and yields C xxxx . The result is equal to 18.3012 GPa. The compressional wave velocity along the x-direction is derived as υ p X = 2.96km/s. Recall that the predicted value is υ p prediction = 3.00km/s; therefore, the extrapolation method provides reliable results since the error is only about 1.3%.

The same procedure is repeated for the other samples FB18, FB13 and FB8. The acoustic velocities along the three directions in the original samples and the infinite discretization samples are given in Table A.3. As can be seen, the difference of the results between the three directions is very small (less than 1%); this shows that these samples can be considered as isotropic (as in Section 4.2). Due to the difference between these input parameters, our simulations cannot be compared directly with the direct simulations (Section 4.3) or with [START_REF] Han | Effects of porosity and clay content on acoustic properties of sandstones and unconsolidated sediments[END_REF] and [START_REF] Arns | The influence of morphology on physical properties of reservoir rocks[END_REF]. If it is supposed that the Poisson ratio plays a minor role, three correction coefficients can be introduced

Velocities

Sample FB18 Sample FB13 Sample FB8 (km/s) N c = 480 N c = ∞ N c = 480 N c = ∞ N c = 480 N c = ∞ υ X p 3.
η 1 = E s,H E s,nu = 1.62; η 2 = ν s,H ν s,nu = 0.6183; η 3 = K s,H K s,nu = 2.3434 (A.3)
The acoustic velocities were corrected by multiplying with η 1 and then compared with the direct simulation method in [START_REF] Arns | The influence of morphology on physical properties of reservoir rocks[END_REF][START_REF] Krief | A petrophysical interpretation using the velocities of p and s waves (full waveform sonic)[END_REF]. 

A.3

Acoustic velocities in saturated Fontainebleau samples. . Original Original . Original 2.5e-05 3.011 5.8e-12 3.011 5.8e-12 3.011 5.8e-12 3.011 6.7e-12 3.011 6.7e-12 3.011 6.7e-12

Original N cx =240 Mirror N cx =480 ω C f = 0 C f = 4.6 C f = 100 C f = 0 C f = 4.6 C f = 100 C r C i C r C i C r C i C r C i C r C i C r C i 0.
Original N cx =240 Mirror N cx =480 ω C f = 0 C f = 4.6 C f = 100 C f = 0 C f = 4.6 C f = 100 C r C i C r C i C r C i C r C i C r C i C r C i 0.
N cx =240 Mirror N cx =480 ω C f = 0 C f = 4.6 C f = 100 C f = 0 C f = 4.6 C f = 100 C r C i C r C i C r C i C r C i C r C i C r C i 0.
N cx =480 Mirror N cx =960 ω C f = 0 C f = 4.6 C f = 100 C f = 0 C f = 4.6 C f = 100 C r C i C r C i C r C i C r C i C r C i C r C i 0 
Original N cx =480 Mirror N cx =960 ω C f = 0 C f = 4.6 C f = 100 C f = 0 C f = 4.6 C f = 100 C r C i C r C i C r C i C r C i C r C i C r C i 0.
N cx =480 Mirror N cx =960 ω C f = 0 C f = 4.6 C f = 100 C f = 0 C f = 4.6 C f = 100 C r C i C r C i C r C i C r C i C r C i C r C i 0.
Table A.12: The shear wave velocities in the original and mirror configurations of the coarsened sample FB22 (N c =480) saturated by the three types of fluids.

Original 0.0001 6.08 1.5e-12 5.152 7.3e-13 5.102 9.7e-13 6.08 1.7e-12 5.152 8.5e-13 5.102 1.1e-12 5e-05 6.08 7.5e-13 5.152 3.6e-13 5.102 4.9e-13 6.08 8.7e-13 5.152 4.3e-13 5.102 5.7e-13 2.5e-05 6.08 3.7e-13 5.152 1.8e-13 5.102 2.4e-13 6.08 4.4e-13 5.152 2.1e-13 5.102 2.8e-13

N cx =120 Mirror N cx =240 ω C f = 0 C f = 4.6 C f = 100 C f = 0 C f = 4.6 C f = 100 C r C i C r C i C r C i C r C i C r C i C r C i 0.
Table A.13: The fast compressional wave velocities in the original and mirror configurations of the coarsened sample FB18 (N cx =120) saturated by the three types of fluids: incompressible fluid ( C f = 0), low-compressible ( C f = 4.6, water) and high-compressible ( C f = 100).

. Table A.14: The slow compressional wave velocities of the coarsened sample FB18 (N cx =120) saturated by the three types of fluids.

Original N cx =120 Mirror N cx =240 ω C f = 0 C f = 4.6 C f = 100 C f = 0 C f = 4.6 C f = 100 C r C i C r C i C r C i C r C i C r C i C r C i 0.
Original 0.0001 3.414 6.8e-13 3.414 6.8e-13 3.414 6.8e-13 3.414 7.7e-13 3.414 7.7e-13 3.414 7.7e-13 5e-05 3.414 3.4e-13 3.414 3.4e-13 3.414 3.4e-13 3.414 3.9e-13 3.414 3.9e-13 3.414 3.9e-13 2.5e-05 3.414 1.7e-13 3.414 1.7e-13 3.414 1.7e-13 3.414 2.0e-13 3.414 2.0e-13 3.414 2.0e-13

N cx =120 Mirror N cx =240 ω C f = 0 C f = 4.6 C f = 100 C f = 0 C f = 4.6 C f = 100 C r C i C r C i C r C i C r C i C r C i C r C i 0.
Table A.15: The shear wave velocities in the original and mirror configurations of the coarsened sample FB18 (N cx =120) saturated by the three types of fluids.

Original . 2.5e-05 9.37e-06 9.21e-06 2.86e-06 2.82e-06 6.44e-07 6.33e-07 1.01e-05 9.97e-06 3.10e-06 3.05e-06 6.97e-07 6.85e-07

N cx =240 Mirror N cx =480 ω C f = 0 C f = 4.6 C f = 100 C f = 0 C f = 4.6 C f = 100 C r C i C r C i C r C i C r C i C r C i C r C i 0.
Original N cx =240 Mirror N cx =480 ω C f = 0 C f = 4.6 C f = 100 C f = 0 C f = 4.6 C f = 100 C r C i C r C i C r C i C r C i C r C i C r C i 0.
Table A.17: The slow compressional wave velocities of the coarsened sample FB18 (N c =240) saturated by the three types of fluids.

Original Original . Table A.20: The slow compressional wave velocities of the coarsened sample FB18 (N c =240) saturated by the three types of fluids.

N cx =240 Mirror N cx =480 ω C f = 0 C f = 4.6 C f = 100 C f = 0 C f = 4.6 C f = 100 C r C i C r C i C r C i C r C i C r C i C r C i 0.
N cx =480 Mirror N cx =960 ω C f = 0 C f = 4.6 C f = 100 C f = 0 C f = 4.6 C f = 100 C r C i C r C i C r C i C r C i C r C i C r C i 0.
Original N cx =480 Mirror N cx =960 ω C f = 0 C f = 4.6 C f = 100 C f = 0 C f = 4.6 C f = 100 C r C i C r C i C r C i C r C i C r C i C r C i 0.
Original Original . 2.5e-05 5.25e-06 5.21e-06 1.48e-06 1.47e-06 3.31e-07 3.28e-07 5.85e-06 5.80e-06 1.65e-06 1.64e-06 3.68e-07 3.65e-07

N cx =480 Mirror N cx =960 ω C f = 0 C f = 4.6 C f = 100 C f = 0 C f = 4.6 C f = 100 C r C i C r C i C r C i C r C i C r C i C r C i 0.
N cx =240 Mirror N cx =480 ω C f = 0 C f = 4.6 C f = 100 C f = 0 C f = 4.6 C f = 100 C r C i C r C i C r C i C r C i C r C i C r C i 0.
Original N cx =240 Mirror N cx =480 ω C f = 0 C f = 4.6 C f = 100 C f = 0 C f = 4.6 C f = 100 C r C i C r C i C r C i C r C i C r C i C r C i 0.
Table A.23: The slow compressional wave velocities of the coarsened sample FB13 (N c =240) saturated by the three types of fluids.

Original 5e-05 3.505 4.0e-13 3.505 4.0e-13 3.505 4.0e-13 3.505 5.0e-13 3.505 5.0e-13 3.505 5.0e-13 2.5e-05 3.505 2.0e-13 3.505 2.0e-13 3.505 2.0e-13 3.505 2.5e-13 3.505 2.5e-13 3.505 2.5e-13

N cx =240 Mirror N cx =480 ω C f = 0 C f = 4.6 C f = 100 C f = 0 C f = 4.6 C f = 100 C r C i C r C i C r C i C r C i C r C i C r C i 0.
Table A.24: The shear wave velocities in the original and mirror configurations of the coarsened sample FB13 (N c =240) saturated by the three types of fluids.

Original . Original A.4 Acoustic waves in saturated STATOIL samples . Table A.29: The slow compressional wave velocities of the coarsened sample X7 (N cx =150) saturated by the three types of fluids.

N cx =480 Mirror N cx =960 ω C f = 0 C f = 4.6 C f = 100 C f = 0 C f = 4.6 C f = 100 C r C i C r C i C r C i C r C i C r C i C r C i 0.
Original N cx =480 Mirror N cx =960 ω C f = 0 C f = 4.6 C f = 100 C f = 0 C f = 4.6 C f = 100 C r C i C r C i C r C i C r C i C r C i C r C i 0.
N cx =480 Mirror N cx =960 ω C f = 0 C f = 4.6 C f = 100 C f = 0 C f = 4.6 C f = 100 C r C i C r C i C r C i C r C i C r C i C r C i 0.
Original N cx =150 Mirror N cx =300 ω C f = 0 C f = 4.6 C f = 100 C f = 0 C f = 4.6 C f = 100 C r C i C r C i C r C i C r C i C r C i C r C i 0.
Original N cx =150 Mirror N cx =300 ω C f = 0 C f = 4.6 C f = 100 C f = 0 C f = 4.6 C f = 100 C r C i C r C i C r C i C r C i C r C i C r C i 0.
Original 2.5e-05 2.857 5.0e-13 2.857 5.0e-13 2.857 5.0e-13 2.857 5.5e-13 2.857 5.5e-13 2.857 5.5e-13

N cx =150 Mirror N cx =300 ω C f = 0 C f = 4.6 C f = 100 C f = 0 C f = 4.6 C f = 100 C r C i C r C i C r C i C r C i C r C i C r C i 0.
Table A.30: The shear wave velocities in the original and mirror configurations of the coarsened sample X7 (N cx =150) saturated by th three types of fluids.

Original . 2.5e-05 1.08e-05 1.07e-05 3.00e-06 2.96e-06 6.67e-07 6.59e-07 1.13e-05 1.12e-05 3.12e-06 3.08e-06 6.96e-07 6.87e-07

N cx =300 Mirror N cx =600 ω C f = 0 C f = 4.6 C f = 100 C f = 0 C f = 4.6 C f = 100 C r C i C r C i C r C i C r C i C r C i C r C i 0.
Original N cx =300 Mirror N cx =600 ω C f = 0 C f = 4.6 C f = 100 C f = 0 C f = 4.6 C f = 100 C r C i C r C i C r C i C r C i C r C i C r C i 0.
Table A.32: The slow compressional wave velocities of the coarsened sample X7 (N cx =300) saturated by the three types of fluids.

Original Original . 0.00025 1.61e-05 1.55e-05 3.13e-06 3.01e-06 6.83e-07 6.58e-07 1.96e-05 1.87e-05 3.79e-06 3.61e-06 8.28e-07 7.90e-07 0.0001 1.01e-05 9.95e-06 1.96e-06 1.93e-06 4.28e-07 4.21e-07 1.22e-05 1.20e-05 2.37e-06 2.32e-06 5.17e-07 5.07e-07 5e-05 7.12e-06 7.07e-06 1.38e-06 1.37e-06 3.01e-07 2.99e-07 8.60e-06 8.52e-06 1.67e-06 1.65e-06 3.64e-07 3.61e-07 2.5e-05 5.03e-06 5.01e-06 9.74e-07 9.70e-07 2.13e-07 2.12e-07 6.07e-06 6.04e-06 1.18e-06 1.17e-06 2.57e-07 2.56e-07

N cx =300 Mirror N cx =600 ω C f = 0 C f = 4.6 C f = 100 C f = 0 C f = 4.6 C f = 100 C r C i C r C i C r C i C r C i C r C i C r C i 0.
ω C f = 0 C f = 4.6 C f = 100 C f = 0 C f = 4.6 C f = 100 C r C i C r C i C r C i C r C i C r C i C r C i 0.
N cx =150 Mirror N cx =300 ω C f = 0 C f = 4.6 C f = 100 C f = 0 C f = 4.6 C f = 100 C r C i C r C i C r C i C r C i C r C i C r C i 0.
Original N cx =150 Mirror N cx =300 ω C f = 0 C f = 4.6 C f = 100 C f = 0 C f = 4.6 C f = 100 C r C i C r C i C r C i C r C i C r C i C r C i 0.
Table A.36: The slow compressional wave velocities of the coarsened sample Y5 (N cx =150) saturated by the three types of fluids.

Original 0.0001 3.185 4.8e-13 3.184 4.6e-13 3.184 4.6e-13 3.185 6.9e-13 3.184 6.8e-13 3.184 6.8e-13 5e-05 3.185 2.4e-13 3.184 2.3e-13 3.184 2.3e-13 3.185 3.5e-13 3.184 3.4e-13 3.184 3.4e-13 2.5e-05 3.185 1.2e-13 3.184 1.2e-13 3.184 1.2e-13 3.185 1.7e-13 3.184 1.7e-13 3.184 1.7e-13

N cx =150 Mirror N cx =300 ω C f = 0 C f = 4.6 C f = 100 C f = 0 C f = 4.6 C f = 100 C r C i C r C i C r C i C r C i C r C i C r C i 0 
Table A.37: The shear wave velocities in the original and mirror configurations of the coarsened sample Y5 (N cx =150) saturated by the three types of fluids.

Original . Table A.39: The slow compressional wave velocities of the coarsened sample Y5 (N cx =300) saturated by the three types of fluids.

N cx =300 Mirror N cx =600 ω C f = 0 C f = 4.6 C f = 100 C f = 0 C f = 4.6 C f = 100 C r C i C r C i C r C i C r C i C r C i C r C i 0.
Original N cx =300 Mirror N cx =600 ω C f = 0 C f = 4.6 C f = 100 C f = 0 C f = 4.6 C f = 100 C r C i C r C i C r C i C r C i C r C i C r C i 0.
Original 0.0005 3.062 6.6e-12 3.061 6.5e-12 3.061 6.5e-12 3.062 9.8e-12 3.061 9.6e-12 3.061 9.6e-12 0.00025 3.062 3.5e-12 3.061 3.4e-12 3.061 3.4e-12 3.062 5.3e-12 3.061 5.2e-12 3.061 5.2e-12 0.0001 3.062 1.4e-12 3.061 1.4e-12 3.061 1.4e-12 3.062 2.2e-12 3.061 2.2e-12 3.061 2.2e-12 5e-05 3.062 7.2e-13 3.061 7.1e-13 3.061 7.1e-13 3.062 1.1e-12 3.061 1.1e-12 3.061 1.1e-12 2.5e-05 3.062 3.6e-13 3.061 3.5e-13 3.061 3.5e-13 3.062 5.5e-13 3.061 5.4e-13 3.061 5.4e-13

N cx =300 Mirror N cx =600 ω C f = 0 C f = 4.6 C f = 100 C f = 0 C f = 4.6 C f = 100 C r C i C r C i C r C i C r C i C r C i C r C i 0.
Table A.40: The shear wave velocities in the original and mirror configurations of the coarsened sample Y5 (N cx =300) saturated by the three types of fluids.

Fast compressional velocity Shear wave velocity 

ω C f = 0 C f = 4.6 C f = 100 C f = 0 C f = 4.6 C f = 100 C r C i C r C i C r C i C r C i C r C i C r C i 0.

  NGUYEN,The Anh (Ph.D.) Thesis directed by Prof. Pierre M. ADLER ACOUSTIC WAVE IN POROUS MEDIA Numerical study of wave propagation in porous media with one or many mineral components. Applications to real Fontainebleau and STATOIL samples.

  Figure 2.1: a. Porosity of slices along the z-direction of one sample. b. Correlation function of one slice along the z-direction.

  18 , i = 1, ..., 6; 1 36 , i = 7, ..., 18; 1 3 , i = 19;

Figure 2

 2 Figure 2.2: Three-dimensional lattices and discrete velocities D3Q19. The lengths of the blue, red discrete velocities vectors are 1c, √ 2c and √ 3c, respectively.

  Figure 2.5: The mirror configurations. a. Calculation with the original configuration. b. The corresponding mirror configuration. c. The continuation of flows.

Figure 2

 2 Figure 2.6: (a) The output seepage velocity v x as a function of time. When the difference between two successive amplitudes A measured is less than a specified value, the simulation is automatically stopped. (b) The least square fit method is applied to the last simulated period to approximate the seepage velocity (the blue solid line) by the function Acos(ωt + B) (the black line). The red line is the body force F x ; it shows the phase shift with v x .

Pazdniakou ( 2012 )

 2012 Figure 2.7: Universal scaling behaviour of the dynamic permeability. (a) The real and imaginary part of dimensionless dynamic permeability K (ω c ). (b) The absolute value |K (ω c )|. Data are for: numerical (points), Poiseuille (black solid line).

  Figure 3.1: (a) The 3D LSM. (b) The elementary cube (red lines).

  Figure 3.2: Two types of angular springs. (a) The eight angles π 4 in the xy-plane. (b) The six angles π 3 in inclined planes.

Figure 3 . 3 :

 33 Figure 3.3: The angular displacement of two angular springs.

Figure 3

 3 Figure 3.4: A simple stretching along the x-direction of a cube. (a) Original form. (b) Transformed form predicted by the elastic theory.

  Figure 3.5: Deformation of the top side surface. (a) Inaccurate results with the original LSM (b) Accurate result with elastic elements.

Figure 3 . 6 :

 36 Figure 3.6: An elastic element.

Figure 3 . 7 :

 37 Figure 3.7: The red linear springs belong to one, two, three elastic elements; therefore, the force constants are α 4 , α 2 , and 3α 4 , respectively.

Figure 3

 3 Figure 3.8: The π 3 -angular springs which belong to only one elastic element correspond to β. The π 4 -angular springs which belong to one or two elastic elements correspond to β 2 and β, respectively.

  Pazdniakou (2012) devised a Fortran simulation program. There are six simulation programs including three simple stretching simulations along the x-, y-and y-directions and three simple shear simulations in the xy-, xz-and yz-planes. If the medium is isotropic, only 2 simulations are necessary to obtain the effective stiffness tensor, namely a simple stretching and a simple shear.

  Figure 3.11: Two simple simulations. (a) Simple stretching yields C xxxx and C xxyy . (b) Simple shear yields C xyxy .

  the voxel belongs to inclusion 1 if the voxel belongs to pore 2 if the voxel belongs to matrix (3.28)In the same way as in LSM, the lattice points of LSM2S are deduced from Z; each Z(i,j,k) equal to 0 or 2 corresponds to one elastic element of type 0 (blue) or type 2 (green), respectively; eight solid points are the vertices of the elementary cube (Fig.3.12.b).

  Figure 3.12: Two solids in the lattice. (a) LSM2S geometry and convention. (b) Two types of elastic elements. The blue is inclusion (corresponds to 0). The green is matrix (corresponds to 2). The interface corresponds to the orange springs.

Figure 3

 3 Figure 3.13: The unit cell which fully describes a spatially periodic medium.

  . Similar to LSM, the program spends most time in repeating the Verlet algorithm, in which the calculation of the elastic forces is the most demanding part. In order to decrease the number of objects calculated in the Verlet algorithm and to decrease the memory, loops of elastic force calculations are organized for springs, instead of lattice points. When the number of iterations meets the prescribed values (depending on the simulations) for real time simulations or when a convergence criterion is satisfied for static simulations, the calculations stop.It is clear that the complexity of LSM2S model lies in the calculation of the spring elastic constants. One must calculate the constants for many types of springs. However, the calculation time for this part is not long; it is much less than the time spent in the Verlet algorithm. Therefore, the use of the LSM program and LSM2S program in order to simulate the media which have the same dimension (the same quantity of elementary cubes), are not very different in terms of simulation times.The LSM and LSM2S are very often used to simulate real or reconstructed samples; they always have a large size; as a consequence, the required memory can be very large and the simulation time can be very long if the program only works on a single processor. With the same solution as[START_REF] Pazdniakou | Dynamic permeability of porous media by the lattice boltzmann method[END_REF], the OMP parallelization standard is used in our program for the loop of the Verlet algorithm. Thanks to this, the calculation time can be decreased depending on the number of threads. Pazdniakou (2012) pointed out that the average speed up S(p) observed in simulations is about 5.2 when 8 threads are used and about 10.4 with 48 threads. The dependence of S(p)

Figure 3

 3 Figure 3.14: Amdahl's law for LSM and LSM2S. The speedup S(P) as a function of the number of processors P.

Figure 3

 3 Figure 3.15: Simple cubic array of spheres. The matrix is transparent, the inclusions are grey.

  Figure 3.16: The effective bulk modulus K e /K 2 . Comparison of LSM2S (black) with the results of Cohen (2004) (red), Nemat-Nasser and Iwakuma (1982) (green) and Torquato (2000) (blue).
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 3 Figure 3.17: (a) The first shear modulus G e /G 2 , (b) The second shear modulus G * e /G 2 . Comparison of LSM2S (black) with the results of Cohen (2004) (red), Nemat-Nasser and Iwakuma (1982) (blue).

  Figure 3.18: Partitions of the elementary cubes into meshes. (a) SCT 6 contains 6 identical tetrahedra. (b) SCT 24 contains 24 identical tetrahedra. (c) SUT.

  Figure 3.19: Comparisons of LSM2S (red) with the results of the FMD solver (blue). (a) The effective bulk modulus K e . (b) The first effective shear modulus G e . (c) The second effective shear modulus G * e .

Figure 3

 3 Figure 3.20: The effective bulk modulus K e and the first effective shear modulus G e . Comparison of LSM2S with the results of the FFT solution.

Figure 3

 3 Figure 3.21: (a) The two lattices in the LBM-LSM model. The LSM lattice points (blue) and springs (green) represent the solid, the LBM lattice point (red) represents the fluid. (b) The solidfluid interface. The solid is located exactly at half a lattice step for the liquid node.

  This model is used to calculate the coefficients α, B (α and β) which characterize the reaction of the solid matrix to the fluid pressure. They are used to determine the acoustic velocities by solving the Christoffel equation which is discussed in Chapter 2. 3.4.5 Development of the coupled LBM-LSM2S model In order to calculate the coefficients α and β of porous samples with two solid components, the coupled LBM-LSM2S model is an extension of the LBM-LSM model. The geometry of the Read solid and fluid geometry data LBM collision step LBM propagation step Calculate fluid force F(r (s) ) (momentum exchange algorithm) LSM iteration step

  Figure 3.22: The LBM-LSM program flowchart.

  Figure 4.1: (a) Sample FB8. (b) Sample FB13. (c) Samples FB18. (d) Sample FB22. The pores are grey and the solid transparent.

  4.2. The maximal and minimal values are equal to 0.103 and 0.0603, denoted by ε M (x) and ε m (x) along the x-direction, respectively; ε M (y) = 0.11 and ε m (y) = 0.057 along the y-direction; ε M (z) = 0.1 and ε m (z) = 0.07 along the z-direction. The average porosities along the three different directions are equal to 0.08289 ≈ 0.083.

  Figure 4.2: Porosity averaged over slices of various directions in sample FB8.

  Figure 4.3: The correlation function for different slices in the xy-plane of sample FB8.

  Figure 4.5: The overall average of correlation function along the three axes. (a) Samples FB13. (b) Sample FB18. (c) Sample FB22.(d) The Fourier components corresponding to the average correlation function along the three directions of sample FB22. Data are for: the x-direction (red), the y-direction (blue), the z-direction (green).

  Figure 4.6: The correlation function averaged along the three axes for the four samples: FB8 (red), FB13 (blue), FB18 (green) and FB22 (pink).

Figures

  Figures 4.7.a-b.

  Figure 4.7: Comparisons between the numerical results and the IOS model[START_REF] Arns | The influence of morphology on physical properties of reservoir rocks[END_REF],[START_REF] Han | Effects of porosity and clay content on acoustic properties of sandstones and unconsolidated sediments[END_REF][START_REF] Han | Effect of porosity and clay content on wave velocities in sandstones[END_REF] and Gomez et al. (2010). (a) Bulk modulus. (b) Shear modulus. (c) Compressional wave. (d) Shear wave. Data are for: numerical results (red •), IOS model (blue ), Han's data (black ), Gomez's data (green ♦).

  Figure 4.7: Comparisons between the numerical results and the IOS model[START_REF] Arns | The influence of morphology on physical properties of reservoir rocks[END_REF],[START_REF] Han | Effects of porosity and clay content on acoustic properties of sandstones and unconsolidated sediments[END_REF][START_REF] Han | Effect of porosity and clay content on wave velocities in sandstones[END_REF] and Gomez et al. (2010). (a) Bulk modulus. (b) Shear modulus. (c) Compressional wave. (d) Shear wave. Data are for: numerical results (red •), IOS model (blue ), Han's data (black ), Gomez's data (green ♦).

Figure 4

 4 Figure 4.8: Comparison between the numerical results and the linear fits. Data are for: v p (•), v s ( ), numerical results (red), equation (4.4) (blue), equation (4.5) (green).

  Figure 4.9: Comparisons between the numerical results and the empirical models of Nur et al.(1991, 1995),[START_REF] Krief | A petrophysical interpretation using the velocities of p and s waves (full waveform sonic)[END_REF] and[START_REF] Arns | The influence of morphology on physical properties of reservoir rocks[END_REF]. (a) Bulk modulus. (b) Shear modulus. (c) Poisson ratio. Data are for: numerical results (blue •), Nur (red), Krief (blue), Arns (pink).

  Figure 4.9: Comparisons between the numerical results and the empirical models of Nur et al.(1991, 1995),[START_REF] Krief | A petrophysical interpretation using the velocities of p and s waves (full waveform sonic)[END_REF] and[START_REF] Arns | The influence of morphology on physical properties of reservoir rocks[END_REF]. (a) Bulk modulus. (b) Shear modulus. (c) Poisson ratio. Data are for: numerical results (blue •), Nur (red), Krief (blue), Arns (pink).

  Figure 4.10: Comparisons between the results of the coarsened samples N c = ∞ and the direct simulations, the IOS model[START_REF] Arns | The influence of morphology on physical properties of reservoir rocks[END_REF],[START_REF] Han | Effects of porosity and clay content on acoustic properties of sandstones and unconsolidated sediments[END_REF][START_REF] Han | Effect of porosity and clay content on wave velocities in sandstones[END_REF] and Gomez et al. (2010). (a) Compressional wave. (b) Shear wave. Data are for: N c = ∞ (violet * ), direct simulations (red •), IOS model (blue ), Han's data (black ), Gomez's data (green ♦).

  Figure 4.11: (a) The mirror configuration along the three directions of the coarsened sample FB18 with N c = 120. (b) The linear variation of the local Lamé coefficient λ in this sample.

  4.9) as illustrated in Fig. 4.11.b. Following this supposition, the simulations are done with various values of ζ for the coarsened sample FB22 with N c = 120 and the results are compared with the original result which corresponds to ζ = 0. The difference is negligible even for large variations of λ x and µ x as in

  Figure 4.12: The formation factor F of Fontainebleau samples. (a) Comparison with "first Archie equation" (4.11). (b) Comparison with (4.12) when a = 0.2034 and m = 2.7747. Data are for: N c = 480 (blue •), 240 (red ), 120 (green ), (4.11) (black line), (4.12) (red line).

Figure 4 .

 4 Figure 4.13: The formation factor F of the Fontainebleau samples compared with the data provided by STATOIL and the experimental data of Gomez et al. (2010) and STATOIL. Data are for: numerical (red •), STATOIL data for mCT samples (blue ), Gomez et al. (2010) (black ), STATOIL data for various subsamples (green ♦).

Figure 4 .

 4 Figure 4.14: The mirror configuration along the x-direction of sample FB22 (N cx .N cy .N cz = 960 x 480 x 480).

  figurations.

Figure 4 .

 4 Figure 4.15: The permeability of the Fontainebleau samples (blue •) and of their mirror images along the x-direction (red •) compared with the experimental data of Gomez et al. (2010) (green ), the data provided by STATOIL for subsamples (green ♦) and mCT samples (brown ).

Figure 4 .

 4 Figure 4.16: Comparison of dynamic permeability along the three directions of the coarsened samples FB22 (size 120 x 120 x 120).

  Figure 4.17.c.The universal scaling behaviour presented in Section 2.4 can be verified. Since the length Λ and the formation factor F are calculated for all samples by solving the Laplace equation in the pore space by the method of[START_REF] Thovert | Thermal conductivity of random media and regular fractals[END_REF], the frequency value ω c which corresponds to the

Figure 4

 4 Figure 4.17: (a) The dynamic permeability K/a 2 along the x-direction of the coarsened sample FB22 with N c = 240. (b) The results of the original sample with N c = 480. (c) Comparison of the real values K along the x-direction of the three coarsened samples. (d) Dynamic permeability in the universal scaling. Data are for: N c =120 (green), 240 (red), 480 (blue), Poiseuille flow (black), real part (-), imaginary part (---).

  Figure 4.18: (a) The comparison of real dynamic permeability of the mirror configurations along the x-direction of the three coarsened samples. Data are for: N c =120 (green), 240 (red), 480 (blue). (b) Comparison between the mirror configurations and the original ones of the coarsened samples. Data are for: N c = 120 ( * ), 240 ( ), 480 (•), original (red), mirror (black), real part (-), imaginary part (---).

  10: The dimensionless dynamic permeability K/a 2 for the original configurations of the coarsened samples FB18 with N c = 120 (a 120 = 22.8 µm), N c = 240 (a 240 = 11.4 µm) and N c = 480 (a 480 = 5.7 µm).

  11: The dimensionless dynamic permeability K/a 2 for the mirror configurations along the x-direction of the coarsened sample FB18 with N c = 120 (a 120 = 22.8 µm), N c = 240 (a 240 = 11.4 µm) and N c = 480 (a 480 = 5.7 µm).

  Figure 4.19: (a) The comparison of real dynamic permeability between the mirror configurations and the original ones of the coarsened sample FB18. Data are for N c = 120 ( * ), N c = 240 ( ), N c = 480 (•), original (red), mirror (black),real part (-), imaginary part (---). (b) The results for sample FB13.

Figures 4 .

 4 Figures 4.20 and 4.21 show the influence of the frequency, of the compressibility coefficient and also of the configuration type on the acoustic velocities and on the attenuation effect in this saturated sample. It can be seen that the frequency has almost no influence on the fast compressional wave and shear wave velocities while c slow ||

Figure 4

 4 Figure 4.20: The acoustic velocities in the coarsened sample FB22 (N c = 120) saturated by three types of fluids. (a) Fast compressional wave. (b) Slow compressional wave. (c) Shear wave. Data are for: original configuration ( * ), mirror configuration ( ), incompressible fluid c f = 0 (red), normal water c f = 4.6 × 10 -10 (blue), highly compressible fluid c f = 100 × 10 -10 (green).

Figure 4 Figure 4

 44 Figure 4.21: The penetration depth h characterizes the attenuation effects in the coarsened sample FB22 (N c = 120) saturated by three types of fluids. (a) Fast compressional wave. (b) Slow compressional wave. (c) Shear wave. Data are for: original configuration ( * ), mirror configuration ( ), incompressible fluid c f = 0 (red), normal water c f = 4.6 × 10 -10 (blue), highly compressible fluid c f = 100 × 10 -10 (green).

Figure 4

 4 Figure 4.23: The penetration depth h for the coarsened samples FB22 with N c = 120, N c = 240 and N c = 480. (a) Fast compressional wave. (b) Slow compressional wave. (c) Shear wave. Data are for: N c = 120 (. . . ), 120 (--), 480 (-), original configuration ( * ), mirror configuration ( ), c f = 0 (red), c f = 4.6 × 10 -10 (blue), c f = 100 × 10 -10 (green).

Figure 4

 4 Figure 4.24: Comparison of acoustic velocities between the coarsened samples FB18 with N c = 120, N c = 240 and N c = 480. (a) Fast compressional wave. (b) Slow compressional wave. (c) Shear wave. Data are for: N c = 120 (. . . ), 120 (--), 480 (-), original configuration ( * ), mirror configuration ( ), c f = 0 (red), c f = 4.6 × 10 -10 (blue), c f = 100 × 10 -10 (green).

Figure 4

 4 Figure 4.25: Penetration depths for coarsened samples FB18 with N c = 120, N c = 240 and N c = 480. (a) Fast compressional wave. (b) Slow compressional wave. (c) Shear wave. Data are for: N c = 120 (. . . ), 120 (--), 480 (-), original configuration ( * ), mirror configuration ( ), c f = 0 (red), c f = 4.6 × 10 -10 (blue), c f = 100 × 10 -10 (green).

Figures 4 .

 4 Figures 4.25 and 4.27. It might be due to problems of the determination of the dynamic permeability K since some changes were applied to satisfy the conditions on the Knudsen number.

Figure 4

 4 Figure 4.26: The acoustic velocities of the coarsened samples FB13 with N c = 240 and N c = 480. (a) Fast compressional wave. (b) Slow compressional wave. (c) Shear wave. Data are for: N c = 240 (--), 480 (-), original configuration ( * ), mirror configuration ( ), c f = 0 (red), c f = 4.6 × 10 -10 (blue), c f = 100 × 10 -10 (green).

Figure 4

 4 Figure 4.27: Penetration depths for the coarsened samples FB13 with N c = 240 and N c = 480. (a) Fast compressional wave. (b) Slow compressional wave. (c) Shear wave. Data are for: N c = 240 (--), 480 (-), original configuration ( * ), mirror configuration ( ), c f = 0 (red), c f = 4.6 × 10 -10

  Figure 4.28: Comparison between the acoustic velocities in Fontainebleau samples with an infinite discretization and the experimental data of Han (1986). (a) The compressional wave velocity. (b)

  are reconstructed from real porous media by micro-CT. Unlike the Fontainebleau samples, they are parallelipipedons of various sizes (as in Fig.5.1) and are divided into N cx × N cy × N cz elementary cubes of size a = 5.7µm. Their names are X2, X7, Y5 and Y13 and the corresponding dimensions are given in

  Figure 5.1: The four first samples from STATOIL: (a) X2, (b) X7, (c) Y5, (d) Y13.

  Figure 5.2: Porosity averaged over slices along the three axes in the sample X2.

Figure 5

 5 Figure 5.3: The correlation function of some slices in the x-y plane. STATOIL sample X2.

  Figure 5.5: The averaged correlation functions along the three directions. Data for the x-direction (red), y-direction (blue) and z-direction (green). (a) Sample X7. (b) Sample Y5. (c) Sample Y13.

  Figure 5.6: (a) The Fourier components corresponding to the correlation function of the slice Z = 240 of sample X2. (b) The averaged correlation functions along the x-direction of STATOIL samples. Data are for: X2 (red), X7 (blue) Y5 (green) and Y13 (black).

  Figure 5.7: The coarsened samples X2. (a) The original sample N cx =1200. (b) The sample N cx =600. (c) The sample N cx =300. (d) The sample N cx =150.

Figure 5

 5 Figure 5.8: The component proportions in the coarsened samples X2.

  Figure 5.9: The middle slices of the coarsened samples X2. (a) The original sample N cx =1200. (b) The sample N cx =600. (c) The sample N cx =300. (d) The sample N cx =150.

  Figure 5.10: The acoustic waves velocities and their extrapolated functions. (a) The compressional wave along the x-direction v x p . (b) The shear wave v x s . (c) The compressional wave v y p . (d) The shear wave v y s . (e) The compressional wave v z p . (f) The shear wave v z s . Data are for: 2 points line (green), 3 points line (red), numerical results ( ).

  Figure 5.11: Coarsened sample X2 with N cx = 150 for simulation by LSM2S (elastic properties of the red phase are equal to the yellow phase) (a). Then, clay (red) is assimilated to quartz (yellow) (b).

  Figure 5.12: The middle slices of the coarsened samples X7. (a) The original sample N cx = 1200. (b) The sample N cx = 600 (c.) The sample N cx = 300. (d) The sample N cx = 150.

  1200 × 1200 × 371. The coarsened samples of sizes N cx × N cy × N cz = 150 × 150 × 46, 300 × 300 × 92 and 600 × 600 × 185 were derived from the original sample. The sample Y13 has a different size: N cx × N cy × N cz = 1000 × 1000 × 554. The coarsened samples are of sizes N cx × N cy × N cz = 125 × 125 × 69, 250 × 250 × 138 and 500 × 500 × 277.

  N c = 1200 N c = ∞ N c = 1000 N c = ∞

  Figure 5.13: (a). The comparison of velocities between STATOIL samples. (b) The ratio V /V 0 for the original samples. Data are for: N cx = 150 or 125 (yellow), N cx = 300 or 250 (blue), N cx = 600 or 500 (green), N cx = 1200 or 1000 (red), N cx = ∞ (violet), compressional wave (•) and shear wave ( ).

  Figure 5.14: Comparisons between numerical results, Han's data and Han's predictions. (a) Compressional wave velocity. (b) Shear wave velocity. (c) The clay content-porosity function. (d) Comparison of ratio V p /V s with Han's predictions. Data are for: numerical results (red •), Han's data (black ), Han's prediction (5.6) (green ).

  Figure 5.15: Comparisons of the effective moduli with the Hashin-Shtrickman's bounds and the empirical equations. (a) K e with the HS bounds. (b) G e with the HS bounds. (c) K e with the empirical equations (4.6), (4.7). (d) G e with the empirical equations (4.6), (4.7). Data are for: numerical results (red), HS bounds (blue), Nur (black),Krief (green).

  Figure5.16: Comparisons between the results of the coarsened samples N c = ∞ and the original samples and experimental data of[START_REF] Han | Effects of porosity and clay content on acoustic properties of sandstones and unconsolidated sediments[END_REF][START_REF] Han | Effect of porosity and clay content on wave velocities in sandstones[END_REF]. (a) Compressional wave. (b) Shear wave. Data are for: N c = ∞ (violet * ), original samples (red •), Han's experimental data (black ), Han's predictions (green ).

  Figure5.16: Comparisons between the results of the coarsened samples N c = ∞ and the original samples and experimental data of[START_REF] Han | Effects of porosity and clay content on acoustic properties of sandstones and unconsolidated sediments[END_REF][START_REF] Han | Effect of porosity and clay content on wave velocities in sandstones[END_REF]. (a) Compressional wave. (b) Shear wave. Data are for: N c = ∞ (violet * ), original samples (red •), Han's experimental data (black ), Han's predictions (green ).

  Figure 5.17: Comparisons between the results of the coarsened samples N c = ∞ and the original samples, the predictions of Han (1986) and the experimental data of STATOIL. (a) Compressional wave. (b) Shear wave. Data are for: N c = ∞ (violet * ), original samples (red •), Y-samples (blue ), X-samples (brown ), Han's predictions (green ).

FFigure 5

 5 Figure 5.18: Comparison of numerical results of the formation factor F with the first Archie equation (4.11). Data are for: N cx =600 (blue •), 300 (red ), 150 (green ), equation (4.11) (black line).

  .19.a. A comparison between the dimensionless dynamic permeability K (ω c ) (Pazdniakou and Adler, 2013) of the coarsened samples with N cx = 150 and 300 and the plane Poiseuille flow is shown in Fig. 5.19.b. It can be seen that they are in good agreement since the simulation points are close to the curve corresponding to the analytical solution of the Poiseuille flow. However, a significant difference is observed for the real part Kr when ω c > 1; this may due to the reduction of the viscosity to satisfy the conditions on Knudsen number.

Figure 5

 5 Figure 5.19: (a) The dimensionless dynamic permeability of the original configurations X2 with N cx = 150, N cx = 300 and N cx = 600. (b) Comparison of K (ω c ) with the Poiseuille flow. Data are for: N cx = 150 (red), N cx = 300 (blue), N cx = 600 (green), Poiseuille flow (black), real part (-), imaginary part ( ---). (c) Comparison of the real dynamic permeability between the mirror configurations and the original ones of the coarsened samples X2. Data for N cx = 150 ( * ),

Figure 5

 5 Figure 5.20: (a) Comparison of real dynamic permeability between the mirror configurations and the original ones of the coarsened samples X7. Data for N c = 150 ( * ), N c = 300 ( ), original (red) and mirror (black), real part (-), imaginary part ( ---). (b) The results for sample Y5.

FB22,

  the calculations are done for various frequencies ω and three solutions are obtained for three types of waves. Furthermore, the STATOIL samples are saturated by three types of fluids: incompressible, slightly compressible and highly compressible with the same properties as for Fontainebleau samples. The results of v f ast || , v slow || and v ⊥ calculated for original and mirror configurations are presented in Tables 5.18, 5.19 and 5.20, respectively. It is worth noting that the relations between compressibility coefficients of fluids, type of configurations, frequency... in this coarsened sample are the same as in the Fontainebleau samples (Section 4.4). The velocities and the penetration depth h of wave propagation are derived by (4.15) and (4.16) and then compared in Figures 5.21 and 5.22. It is seen that the ratio v f ast || /v dry in this sample is larger than the one of Fontainebleau samples; it is about 2.1 in this case but only equal to 1.2 in the coarsened sample FB22 with N c = 120. The other ratios such as v slow || /v dry or v ⊥ /v dry are not very different from the Fontainebleau ones.

Figure 5

 5 Figure 5.21: The acoustic velocities in the coarsened sample X2 (N cx = 150) saturated by the three types of fluids. (a) Fast compressional wave. (b) Slow compressional wave. (c) Shear wave. Data are for: original configuration ( * ), mirror configuration ( ), incompressible fluid c f = 0 (red), normal water c f = 4.6 × 10 -10 (blue) , highly compressible fluid c f = 100 × 10 -10 (green).

Figure 5

 5 Figure 5.22: The penetration depth h of the coarsened sample X2 (N cx = 150) saturated by the three types of fluids. (a) Fast compressional wave. (b) Slow compressional wave. (c) Shear wave. Data are for: original configuration ( * ), mirror configuration ( ), incompressible fluid c f = 0 (red), normal water c f = 4.6 × 10 -10 (blue) , highly compressible fluid c f = 100 × 10 -10 (green).

Figure 5

 5 Figure 5.23: The acoustic velocities in the coarsened samples X2 with N cx = 150, N cx = 300 and N cx = 600. (a) Fast compressional wave. (b) Slow compressional wave. (c) Shear wave. Data are for: N cx = 600 (-), N cx = 300 (---), 150 (. . . ), original configuration ( * ), mirror configuration ( ), c f = 0 (red), c f = 4.6 × 10 -10 (blue), c f = 100 × 10 -10 (green).

Figure 5

 5 Figure 5.24: The penetration depths of the coarsened samples X2 with N cx = 150, N cx = 300 and N cx = 600. (a) Fast compressional wave. (b) Slow compressional wave. (c) Shear wave. Data are for: N cx = 600 (-), N cx = 300 (---), 150 (. . . ), original configuration ( * ), mirror configuration ( ), c f = 0 (red), c f = 4.6 × 10 -10 (blue), c f = 100 × 10 -10 (green).

Figure 5

 5 Figure 5.25: The acoustic velocities in the coarsened samples X7 with N cx = 150, N cx = 300 and N cx = 600. (a) Fast compressional wave. (b) Slow compressional wave. (c) Shear wave. Data are for: N cx = 600 (-), N cx = 300 (---), 150 (. . . ), original configuration ( * ), mirror configuration ( ), c f = 0 (red), c f = 4.6 × 10 -10 (blue), c f = 100 × 10 -10 (green).

Figure 5

 5 Figure 5.26: The penetration depths of the coarsened samples X7 with N cx = 150, N cx = 300 and N cx = 600. (a) Fast compressional wave. (b) Slow compressional wave. (c) Shear wave. Data are for: N cx = 600 (-), N cx = 300 (---), 150 (. . . ), original configuration ( * ), mirror configuration ( ), c f = 0 (red), c f = 4.6 × 10 -10 (blue), c f = 100 × 10 -10 (green).

Figure 5

 5 Figure 5.27: The acoustic velocities in the coarsened samples Y5 with N cx = 150, N cx = 300 and N cx = 600. (a) Fast compressional wave. (b) Slow compressional wave. (c) Shear wave. Data are for: N cx = 600 (-), N cx = 300 (---), 150 (. . . ), original configuration ( * ), mirror configuration ( ), c f = 0 (red), c f = 4.6 × 10 -10 (blue), c f = 100 × 10 -10 (green).

Figure 5

 5 Figure 5.28: The penetration depths of the coarsened samples Y5 with N cx = 150, N cx = 300 and N cx = 600. (a) Fast compressional wave. (b) Slow compressional wave. (c) Shear wave. Data are for: N cx = 600 (-), N cx = 300 (---), 150 (. . . ), original configuration ( * ), mirror configuration ( ), c f = 0 (red), c f = 4.6 × 10 -10 (blue), c f = 100 × 10 -10 (green).

  Figure 5.29: Comparison between the acoustic velocities in STATOIL samples with N cx = 1200 and N cx = 1200 and the experimental data of Han (1986). (a) The compressional wave velocity. (b) The shear wave velocity. Data are for: N cx = 1200 (red •), N cx = ∞ (violet * ), experimental data of Han (1986) (black ), Han's predictions (5.9) (green ).

  second one is composed by clay, quartz and pore; their names are X2, X7, Y5, Y13. For each type, three problems have been studied numerically. The first problem is devoted to characterizations of samples. The second one addresses wave propagation in dry samples. The third one corresponds to samples saturated by incompressible or compressible fluids.

For

  the saturated samples, the system of the local equations is more complicated. It includes elastic and Navier-Stokes equations in the solid and the fluid phases, respectively. The acoustic velocities can be obtained by solving the Christoffel equations for a single pore filled by an incompressible fluid or for many pores filled by a compressible fluid. Four quantities, namely the effective stiffness tensor C ef f , the dynamic permeability K, the solid-fluid reactions α and β, are needed. They are calculated by LSM (LSM2S), LBM, LBM-LSM (LBM-LSM2S), respectively. The fast compressional, slow compressional and shear velocities are determined for Fontainebleau and STATOIL samples which are saturated by incompressible, slightly compressible (water), highly compressible fluids and by air. The analysis of the influence of frequency, compressible coefficient, discretization and mirror configurations on the velocities and on the attenuation effect is studied. The obtained results are in very good agreement with Gassmann's model since the difference is always less than 1.2%; as for the dry samples, the result slightly larger the measurement data of Han

  Figure A.1: The [1 0 0] and [1 1 0] linear springs with the elastic elements of type 2.

Figure A. 4 :

 4 Figure A.4: The coarsening method.

  Figure A.6: Comparisons between the present simulation results and Han (1986), Arns (1996). (a) Acoustic velocities; (b) Macroscopic Poisson ratio; (c) Macroscopic bulk modulus. Data are for: numerical results (red), Han (1986) (blue) and Arns (1996) (green).

.

  

  28: The fast compressional wave velocities in the original and mirror configurations of the coarsened sample X7 (N cx =150) saturated by the three types of fluids: incompressible fluid ( C f = 0), low-compressible ( C f = 4.6, water in pressure of 1b) and high-compressible ( C f = 100).

  31: The fast compressional wave velocities in the original and mirror configurations of the coarsened sample X7 (N cx =300) saturated by the three types of fluids: incompressible fluid ( C f = 0), low-compressible ( C f = 4.6, water) and high-compressible ( C f = 100).

  35: The fast compressional wave velocities in the original and mirror configurations of the coarsened sample Y5 (N cx =150) saturated by the three types of fluids: incompressible fluid ( C f = 0), low-compressible ( C f = 4.6, water) and high-compressible ( C f = 100).
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  38: The fast compressional wave velocities in the original and mirror configurations of the coarsened sample Y5 (N cx =300) saturated by the three types of fluids: incompressible fluid ( C f = 0), low-compressible ( C f = 4.6, water) and high-compressible ( C f = 100).

Table 3

 3 .6.

	ρ	LSM2S Cohen (2004) N & I (1982) Torquato (2000) Error (%)
	0.05 1.047	1.046	1.046		1.046	0.1
	0.1	1.096	1.095	1.095		1.095	0.1
	0.15 1.147	1.146	1.147		1.146	0.1
	0.2	1.204	1.201	1.202		1.201	0.2
	0.25 1.261	1.259	1.260		1.260	0.2
	0.3	1.324	1.321	1.323		1.323	0.2
	0.4	1.468	1.459	1.461		1.464	0.6
	0.5	1.644	1.618	1.620		1.634	1.6
	ρ		G e /G 2			G * e /G 2	
	LSM2S Cohen N & I Error (%) LSM2S Cohen N & I Error (%)
	0.05 1.053	1.051 1.052	0.2	1.055	1.054 1.054	0.1
	0.1	1.105	1.103 1.104	0.2	1.117	1.115 1.116	0.2
	0.15 1.159	1.157 1.157	0.2	1.184	1.181 1.182	0.3
	0.2	1.214	1.212 1.213	0.2	1.257	1.254 1.255	0.2
	0.25 1.273	1.270 1.271	0.2	1.336	1.331 1.333	0.4
	0.3	1.336	1.332 1.336	0.3	1.420	1.413 1.415	0.5
	0.4	1.478	1.467 1.469	0.7	1.609	1.588 1.590	1.3
	0.5	1.659	1.627 1.629	1.9	1.807	1.771 1.774	2.0

.5: The effective bulk modulus K e /K 2 . Comparisons of LSM2S with

[START_REF] Cohen | Simple algebraic approximations for the effective elastic moduli of cubic arrays of spheres[END_REF][START_REF] Nemat-Nasser | On composite with periodic structure[END_REF][START_REF] Torquato | Modeling of physical properties of composite materials[END_REF]

.

Table 3

 3 

.6: The first shear modulus G e /G 2 and the second shear modulus G * e /G 2 . Comparison of LSM2S with Cohen (2004); Nemat-Nasser and Iwakuma (1982).

Table 3

 3 

	.7.

Table 3 .

 3 7: Elastic properties of the composite material.According to[START_REF] Malinouskaya | Propagation des ondes acoustiques dans les milieux hétérogènes[END_REF], SCT24 gives better results than SCT6; therefore, LSM2S and SCT24 are compared. The effective bulk modulus K e , the first and the second effective shear modulus G e , G * e in GPa are given and compared in Table 3.8. .3813 33.3975 0.05 21.7745 21.7812 0.03 21.9349 21.9490 0.06 0.2 37.1639 37.1914 0.07 23.6346 23.6454 0.05 24.1731 24.1982 0.1 0.3 41.4558 41.4961 0.1 25.6526 25.6683 0.06 26.6904 26.7250 0.13 0.4 46.4316 46.4880 0.12 27.9292 27.9508 0.08 29.4419 29.4548 0.04 0.5 52.7912 52.8714 0.2 30.8012 30.8316 0.1 32.5498 32.8037 0.8 Table 3.8: The effective bulk modulus K e , the first and the second effective shear modulus G e , G * e . Comparisons of LSM2S with FMD (SCT24).

	K e		G e		G * e	
	ρ LSM2S SCT24 Error LSM2S SCT24 Error LSM2S SCT24 Error
	(GPa)	(%)	(GPa)	(%)	(GPa)	(%)
	0.1 33					

Table 3 .

 3 9: The effective bulk modulus K e and the first effective shear modulus G e . Comparison of LSM2S with the results of the FFT solution.

	1 33.4443 33.4346 0.03 21.7606 21.831	0.3
	0.2 37.1494 37.1963 0.13	23.63	24.01	1.6
	0.3 41.467	41.449 0.04 25.716	26.549	3.2
	0.4 46.4371 46.3557 0.17 27.965	29.225	4.5
	0.5 52.6603 52.5701 0.17 30.7419 32.1127 4.5

Table 4

 4 

	.2.

Table 4 .

 4 2: The three components in the effective stiffness tensors of the 4 Fontainebleau samples.

Table 4

 4 

	Sample Porosity Celerities LSM IOS model Arns (1996) Error Coarsening method Error
			(km/s)	(km/s)	(km/s)	(%)	(km/s)	(%)
	FB8 FB13 FB18 FB22	0.083 0.129 0.177 0.21	υ p X υ s X υ p X υ s X υ p X υ s X υ p X υ s X	5.59 3.74 5.28 3.54 4.93 3.29 4.76 3.16	5.453 3.660 5.113 3.41 4.717 3.12 4.40 2.90	2.5 2.1 3.2 3.7 4.2 5.2 7.6 8.2	5.68 3.7 5.37 3.51 5.03 3.27 4.85 3.16	1.6 1.1 1.7 0.9 2.0 0.6 1.9 0
	Table 4.3: Comparison of the acoustic velocities in dry Fontainebleau samples: our numerical	
	results, the single phase IOS					

.3. The difference with the IOS model is less than 5.2% for samples FB8, FB13 and FB18, but it is about 8% for sample FB22 with the largest porosity. The two methods (direct and coarsening methods) give close results as seen in Table

4

.3.

Han (1986),

[START_REF] Han | Effect of porosity and clay content on wave velocities in sandstones[END_REF] 

and

[START_REF] Gomez | Laboratory measurements of porosity, permeability, resistivity, and velocity on fontainebleau sandstones[END_REF] 

also made a number of velocity measurements for dry clean quartz sandstones. The calculated acoustic velocities are slightly larger than the experimental ones. These differences can be due to the small sample size (2736 µm) ; moreover, small fissures which are likely to exist in the real samples might cause these differences. The comparisons are summarized in Fig.

4

.7. As it can be seen, the numerical results are in good agreement with the experimental ones.

Since the velocities are mostly linear functions of porosity, approximate linear functions can

  Table 4.4; it is about 0.3% when ζ = 0.2.

	ζ	0	0.02	0.05	0.06	0.1	0.2
	C xxxx (GPa) 56.7978 56.7968 56.7883 56.7836 56.7557 56.6206
	Table						

  Table 4.5 and the difference is at most 21.4% as it can be seen.

	Sample N c	Σ Σ 0		Λ a	2.Ωp S.a
		120 0.0255	1.143	0.942
	FB22 240 0.0473	2.067 1.7253
		480 0.0576	4.287 3.3667
		120	0.020	1.198	0.986
	FB18 240 0.0361	2.169 1.8182
		480 0.0437	4.475 3.5521
		120 0.0037 0.9959 0.8342
	FB13 240 0.0134	1.690 1.5136
		480 0.0183 3.4656 2.9402
		120	0		0	0.7544
	FB8	240 0.0016 1.3469 1.3369
		480 0.00327 2.6907 2.5461
	Table 4.5: The dimensionless conductivity components the Fontainebleau samples.	Σ Σ 0	and the characteristic length Λ/a of

Table 4 .

 4 

	a 2

Table 4 .

 4 

	a 2

Table 4 .

 4 

	a 2

Table 4 .

 4 

	a 2

  Then, the velocities of compressional and shear wave are derived according to (2.105) and(2.106) and compared to the numerical results in Table4.13. It is obvious that our results are in very good agreement with the Gassmann's model when the error for the fast compressional wave is less than 0.1% and the shear wave velocities are identical.The other simulations are done for various frequencies in the same way. The velocities of these three waves are calculated and presented in Tables 4.14 , 4.15 and 4.16. The dynamic permeabilities correspond to the original and the mirror configurations (Table4.7).

	is used for compari-
	son. It allows us to calculate the velocities in the coarsened sample FB22 with N c = 120 saturated
	by water (1 bar). The method is presented in Chapter 2; the value of K dry and G dry are obtained
	from simulations. The equations (2.102), (2.103) and (2.104) imply
	ρ

b2 = 2304 kgm -3 ; K φ = 12.738 GP a; K sat2 = 24.421 GP a; G = 25.376 GP a (4.20)

Table 4 .

 4 16: The shear wave velocities in the original and mirror configurations of the coarsened sample FB22 (N cx =120) saturated by the three types of fluids.

	05	3.319 7.0e-12 3.319 7.0e-12 3.319 7.0e-12 3.319 7.8e-12 3.319 7.8e-12 3.319 7.8e-12
	0.025	3.319 1.2e-11 3.319 1.2e-11 3.319 1.2e-11 3.319 1.4e-11 3.319 1.4e-11 3.319 1.4e-11
	0.01	3.319 2.5e-11 3.319 2.5e-11 3.319 2.5e-11 3.319 2.7e-11 3.319 2.7e-11 3.319 2.7e-11
	0.005	3.319 2.4e-11 3.319 2.4e-11 3.319 2.4e-11 3.319 2.6e-11 3.319 2.6e-11 3.319 2.6e-11
	0.0025 3.319 1.7e-11 3.319 1.7e-11 3.319 1.7e-11 3.319 1.9e-11 3.319 1.9e-11 3.319 1.9e-11
	0.001	3.319 7.8e-12 3.319 7.8e-12 3.319 7.8e-12 3.319 8.9e-12 3.319 8.9e-12 3.319 8.9e-12
	0.0005 3.319 4.1e-12 3.319 4.1e-12 3.319 4.1e-12 3.319 4.6e-12 3.319 4.6e-12 3.319 4.6e-12
	0.00025 3.319 2.0e-12 3.319 2.0e-12 3.319 2.0e-12 3.319 2.3e-12 3.319 2.3e-12 3.319 2.3e-12
	0.0001 3.319 8.2e-13 3.319 8.2e-13 3.319 8.2e-13 3.319 9.2e-13 3.319 9.2e-13 3.319 9.2e-13
	5e-05	3.319 4.1e-13 3.319 4.1e-13 3.319 4.1e-13 3.319 4.6e-13 3.319 4.6e-13 3.319 4.6e-13
	2.5e-05 3.319 2.0e-13 3.319 2.0e-13 3.319 2.0e-13 3.319 2.3e-13 3.319 2.3e-13 3.319 2.3e-13

Table 4 .

 4 17: The comparison between our simulation results and the Gassmann's model. The coarsened samples are saturated by water in normal conditions (1bar), c f = 4.6 × 10 -10 .

		Simulation	Gassmann's model	Error
	Samples N c	v p	v s	v p	v s	v p	v s
		km/s km/s	km/s	km/s	% %
	120 5.025 3.319 5.0287	3.319	0.1 0
	FB 22 240 4.754 3.105 4.7622	3.105	0.2 0
	480 4.657 3.011 4.643	3.011	0.3 0
	120 5.152 3.414 5.1588	3.414	0.13 0
	FB 18 240 4.921 3.236 4.9312	3.236	0.21 0
	480 4.875 3.163 4.838	3.163	0.76 0
	240 5.271 3.505 5.2791	3.505	0.15 0
	FB 13 480 5.204 3.445 5.233	3.445	0.56 0

Table 4 .

 4 18; they have the same velocities since the maximal difference is equal to 0.2%.

			Numerical results		Dry	Error	Gassmann's model	Error
	Samples N cx	v p	v s	v p	v s	v p v s	v p	v s	v p v s
			km/s	km/s	km/s	km/s	% %	km/s	km/s	% %
		120 5.208	3.4860	5.216 3.4811 0.2 0.1 5.2091	3.4812	0.2 0.1
	FB22	240 4.895	3.2575	4.895 3.2577 0	0 4.9028	3.2575	0.2 0
		480 4.759	3.16	4.76	3.16	0	0	4.764	3.16	0.1 0
		120 5.303	3.550	5.303 3.5502 0	0 5.3046	3.550	0	0
	FB18	240 5.039	3.3653	5.039 3.3655 0	0 5.0481	3.3653	0.2 0
		480 4.933	3.29	4.93	3.29	0.1 0	4.94	3.29	0.1 0
	FB13	240 5.367	3.6018	5.368 3.6019 0	0 5.3750	3.6018	0.1 0
		480 5.284	3.54	5.28	3.54	0.1 0	5.291	3.54	0.1 0

Table 4

 4 

.18: The comparison between the coarsened samples saturated by air (1b), the dry ones and Gassmann's model.

Table 4

 4 

	km/s)	-	5.195 4.7595 4.5215
	v s (km/s)	-	3.385 3.074	2.904

.19: The acoustic velocities in saturated samples with an infinite discretization.

Table 5 .

 5 Table 5.1. 1: The dimensions of the STATOIL samples. a = 5.7 µm.

	Sample N cx	N cy N cz
	X2	1200 1200 436
	X7	1200 1132 485
	Y5	1200 1200 371
	Y13	1000 1000 554

Table 5 .

 5 2: The maximal and minimal slice porosities of the 4 STATOIL samples.

		X2	X7	Y5	Y13
	ε	0.2133	0.2712	0.1781	0.0739
	ε M (x); ε m (x) 0.2656; 0.1738 0.2974; 0.2393 0.2612; 0.1154 0.1159; 0.0421
	ε M (y); ε m (y) 0.2844; 0.1541 0.2953; 0.2329 0.2828; 0.1097 0.1222; 0.0382
	ε M (z); ε m (z)	0.2428; 0.19	0.2849; 0.2571 0.2050; 0.1550 0.0935; 0.0515

Table 5

 5 

	Sample Pore	Clay Quartz
	X2	0.2133 0.0522 0.7345
	X7	0.2712 0.0501 0.6787
	Y5	0.1781 0.0413 0.7806
	Y13	0.0739 0.0757 0.8504
	Table 5.3: The component proportions of the 4 STATOIL samples.

.3. It is clear that the proportion of clay is very small in comparison with quartz; therefore, quartz is the main solid component which controls the effective properties.

Table 5

 5 

	Sample N cx	Pore	Clay Quartz
		1200 0.2133 0.0522 0.7345
	X2	600 0.2174 0.0561 0.7265
		300 0.2223 0.0562 0.7215
		150 0.2306 0.0518 0.7176
		1200 0.2712 0.0501 0.6787
	X7	600 0.2764 0.0537 0.6699
		300 0.2887 0.0501 0.6612
		150 0.3085 0.0378 0.6537
		1000 0.0739 0.0757 0.8504
	Y13	500 0.0734 0.0812 0.8454
		250 0.0711 0.0872 0.8471
		125 0.0679 0.0878 0.8443
		1200 0.1781 0.0413 0.7806
	Y5	600 0.1769 0.0444 0.7787
		300 0.1808 0.0430 0.7762
		150 0.1886 0.0357 0.7757

.5: The change of component proportions in the coarsened STATOIL samples.

Table 5

 5 

	.6.

  Table 5.7.

	Velocities	linear function	r	N c =1200 N c =∞
	υ X p	78.86/N cx + 4.11 0.9952	4.17	4.11
	υ Y p	71.12/N cx + 4.26 0.9948	4.32	4.26
	υ Z p	78.86/N cx + 4.0 0.9972	4.07	4.0
	υ X s	54.86/N cx + 2.66 0.9942	2.71	2.66
	υ Y s	53.14/N cx + 2.63 0.9947	2.67	2.63
	υ Z s	53.14/N cx + 2.71 0.9965	2.75	2.71

Table 5

 5 

	.9.							
		x-axis	y-axis	z-axis	Erros
	Size	υ X p	υ X s	υ Y p	υ Y s	υ Z p	υ Z s	υ p υ s
		(km/s) (km/s) (km/s) (km/s) (km/s) (km/s) % %
	150 x 141 x 60	4.7	3.09	4.75	3.09	4.77	3.08 1.4 0.3
	300 x 283 x 121 4.29	2.80	4.34	2.81	4.28	2.81	1 0.4
	600 x 566 x 242 4.07	2.64	4.07	2.6	4.07	2.64	-	-

Table

  

Table

  

		08	4.90	4.82	5.45	5.33	5.27
	υ Y p	5.03	4.85	-	5.37	5.26	-
	υ Z p	5.07	4.88	-	5.40	5.28	-
	υ X s	3.32	3.19	3.13	3.57	3.49	3.45
	υ Y s	3.34	3.20	-	3.60	3.51	-
	υ Z s	3.33	3.20	-	3.58	3.50	-

Table 5 .

 5 21: The fast compressional wave velocities in the original and mirror configurations of the coarsened sample X2 (N cx =300).

	05	8.84 3.0e-10 4.310 1.4e-11 4.180 2.4e-11 8.84 1.7e-10 4.310 7.9e-12 4.180 1.4e-11
	0.025	8.84 2.5e-10 4.310 1.2e-11 4.180 2.1e-11 8.84 2.8e-10 4.310 1.3e-11 4.180 2.3e-11
	0.01	8.84 8.3e-10 4.310 3.8e-11 4.180 6.7e-11 8.84 7.6e-10 4.310 3.5e-11 4.180 6.2e-11
	0.005	8.84 8.5e-10 4.310 3.9e-11 4.180 6.9e-11 8.84 8.3e-10 4.310 3.8e-11 4.180 6.8e-11
	0.0025 8.84 8.1e-10 4.310 3.7e-11 4.180 6.6e-11 8.84 9.0e-10 4.310 4.1e-11 4.180 7.3e-11
	0.001	8.84 7.2e-10 4.310 3.3e-11 4.180 5.8e-11 8.84 8.3e-10 4.310 3.8e-11 4.180 6.7e-11
	0.0005 8.84 5.4e-10 4.310 2.5e-11 4.180 4.4e-11 8.84 6.5e-10 4.310 3.0e-11 4.180 5.3e-11
	0.00025 8.84 3.4e-10 4.310 1.6e-11 4.180 2.8e-11 8.84 4.2e-10 4.310 1.9e-11 4.180 3.4e-11
	0.0001 8.84 1.5e-10 4.310 7.0e-12 4.180 1.2e-11 8.84 1.9e-10 4.310 8.9e-12 4.180 1.6e-11
	5e-05	8.84 7.8e-11 4.310 3.6e-12 4.180 6.3e-12 8.84 9.9e-11 4.310 4.5e-12 4.180 8.1e-12
	2.5e-05 8.84 3.9e-11 4.310 1.8e-12 4.180 3.2e-12 8.84 5.0e-11 4.310 2.3e-12 4.180 4.1e-12

Table 5 .

 5 23:The shear wave velocities in the original and mirror configurations of the coarsened sample X2 (N cx =300) saturated by the three types of fluids.

	05	2.714 1.6e-11 2.714 1.6e-11 2.714 1.6e-11 2.714 9.3e-12 2.714 9.3e-12 2.714 9.3e-12
	0.025	2.714 1.4e-11 2.714 1.4e-11 2.714 1.4e-11 2.714 1.5e-11 2.714 1.5e-11 2.714 1.5e-11
	0.01	2.714 4.5e-11 2.714 4.5e-11 2.714 4.5e-11 2.714 4.1e-11 2.714 4.1e-11 2.714 4.1e-11
	0.005	2.714 4.6e-11 2.714 4.6e-11 2.714 4.6e-11 2.714 4.5e-11 2.714 4.5e-11 2.714 4.5e-11
	0.0025 2.714 4.4e-11 2.714 4.4e-11 2.714 4.4e-11 2.714 4.9e-11 2.714 4.9e-11 2.714 4.9e-11
	0.001	2.714 3.9e-11 2.714 3.9e-11 2.714 3.9e-11 2.714 4.5e-11 2.714 4.5e-11 2.714 4.5e-11
	0.0005 2.714 3.0e-11 2.714 3.0e-11 2.714 3.0e-11 2.714 3.5e-11 2.714 3.5e-11 2.714 3.5e-11
	0.00025 2.714 1.9e-11 2.714 1.9e-11 2.714 1.9e-11 2.714 2.3e-11 2.714 2.3e-11 2.714 2.3e-11
	0.0001 2.714 8.3e-12 2.714 8.3e-12 2.714 8.3e-12 2.714 1.0e-11 2.714 1.0e-11 2.714 1.0e-11
	5e-05	2.714 4.2e-12 2.714 4.2e-12 2.714 4.2e-12 2.714 5.4e-12 2.714 5.4e-12 2.714 5.4e-12
	2.5e-05 2.714 2.1e-12 2.714 2.1e-12 2.714 2.1e-12 2.714 2.7e-12 2.714 2.7e-12 2.714 2.7e-12

Table 5 .

 5 24: The fast compressional and shear wave velocities in the original configuration of the coarsened sample X2 (N cx =600) saturated by the three types of fluids.

	05	8.335 5.4e-10 4.182 2.8e-11 4.028 5.5e-11 2.607 3.6e-11 2.607 3.6e-11 2.607 3.6e-11
	0.025	8.335 4.5e-10 4.182 2.3e-11 4.028 4.6e-11 2.607 3.1e-11 2.607 3.1e-11 2.607 3.1e-11
	0.01	8.335 8.9e-10 4.182 4.6e-11 4.028 9.0e-11 2.607 6.0e-11 2.607 6.0e-11 2.607 6.0e-11
	0.005	8.335 7.1e-10 4.182 3.6e-11 4.028 7.1e-11 2.607 4.8e-11 2.607 4.8e-11 2.607 4.8e-11
	0.0025 8.335 7.1e-10 4.182 3.7e-11 4.028 7.2e-11 2.607 4.8e-11 2.607 4.8e-11 2.607 4.8e-11
	0.001	8.335 6.6e-10 4.182 3.4e-11 4.028 6.6e-11 2.607 4.4e-11 2.607 4.4e-11 2.607 4.4e-11
	0.0005 8.335 6.1e-10 4.182 3.1e-11 4.028 6.2e-11 2.607 4.1e-11 2.607 4.1e-11 2.607 4.1e-11
	0.00025 8.335 5.1e-10 4.182 2.6e-11 4.028 5.2e-11 2.607 3.5e-11 2.607 3.5e-11 2.607 3.5e-11
	0.0001 8.335 3.2e-10 4.182 1.7e-11 4.028 3.3e-11 2.607 2.2e-11 2.607 2.2e-11 2.607 2.2e-11
	5e-05	8.335 1.9e-10 4.182 9.7e-12 4.028 1.9e-11 2.607 1.3e-11 2.607 1.3e-11 2.607 1.3e-11
	2.5e-05 8.335 9.9e-11 4.182 5.1e-12 4.028 1.0e-11 2.607 6.7e-12 2.607 6.7e-12 2.607 6.7e-12

Table A

 A 

	Velocities	linear function	r	N c =480 N c =∞
	υ X p	33.4468/N c + 2.9294 0.9890	3.0	2.93
	υ Y p	22.2093/N c + 1.9602 0.9882	3.0	2.93
	υ Z p	33.9357/N c + 2.9289 0.9901	3.01	2.94
	υ X s	22.1056/N c + 1.9053 0.9871	1.95	1.91
	υ Y s	33.1982/N c + 2.9419 0.9891	1.95	1.91
	υ Z s	22.2292/N c + 1.9017 0.9880	1.95	1.90
	Table A.2: The best fits and their correlation coefficients for acoustic velocities in the sample
	FB22.			
	.2.			

  Table A.6 and with Han (1986) in Table 4.3. The results are summa-Table A.4: The macroscopic Poisson ratio: comparison between the numerical macroscopic values η 2 ν m,nu and Arns' results ν m,A[START_REF] Arns | The influence of morphology on physical properties of reservoir rocks[END_REF].

	Sample Porosity	ν m,nu	η 2 .ν m,nu	ν m,A	Error Direct simulations Error
					Arns (1996)	%		%
	FB8	0.08	0.12659 0.0783	0.0827	5.3	0.0872	5.3
	FB13	0.129	0.1303	0.0806	0.0907	11.0	0.0961	16.1
	FB18	0.177	0.13603 0.0841	0.1007	16.4	0.1034	18.6
	FB22	0.21	0.1389	0.0859	0.1084	20.7	0.1089	21.1
	Sample η 3 .K m,nu IOS model	K m,A	Error Direct simulations Error
			Arns (1996) Krief (1990)	%			%
	FB8	29.85	29.23	28.19	2.0		30.03	0.6
	FB13	25.80	25.14	22.99	2.6		25.98	0.7
	FB18	21.49	20.85	18.19	2.9		21.71	1.0
	FB22	19.46	18.74	15.12	3.8		19.62	0.8
	Table A.5: The macroscopic bulk modulus: comparison between the numerical, Arns results (IOS)
	and the empirical results					

rized in Figure A.6. The macroscopic Poisson ratio is corrected by the factor η 2 , while the bulk modulus is multiplied by η 3 . The corrected results are compared with the experiments and Arns' results in Tables A.4 and A.5.

Table A

 A 

	Sample Porosity Celerities Numerical υ 0 η 1 .υ 0 Direct simulation Error
				(km/s)	(km/s) (exact properties) (%)
	FB8 FB13 FB18 FB22	0.083 0.129 0.177 0.21	υ p X υ s X υ p X υ s X υ p X υ s X υ p X υ s X	3.50 2.29 3.32 2.17 3.10 2.02 3.0 1.95	5.68 3.7 5.37 3.51 5.03 3.27 4.85 3.16	5.59 3.74 5.28 3.54 4.80 3.20 4.76 3.16	1.6 1.1 1.7 0.9 4.6 2.1 1.9 0

.6: Comparison of the acoustic velocities in dry Fontainebleau samples between the two calculations ways.

Table A .

 A 8: The slow compressional wave velocities of the coarsened sample FB22 (N c =240) saturated by the three types of fluids.

	05	1.27e-04 5.38e-06 3.91e-05 1.66e-06 8.79e-06 3.72e-07 1.32e-04 5.49e-06 4.06e-05 1.69e-06 9.14e-06 3.80e-07
	0.025	1.27e-04 9.52e-06 3.91e-05 2.93e-06 8.80e-06 6.58e-07 1.32e-04 9.68e-06 4.07e-05 2.98e-06 9.15e-06 6.69e-07
	0.01	1.17e-04 2.47e-05 3.61e-05 7.59e-06 8.12e-06 1.71e-06 1.23e-04 2.41e-05 3.79e-05 7.41e-06 8.53e-06 1.67e-06
	0.005	1.09e-04 3.07e-05 3.35e-05 9.44e-06 7.54e-06 2.12e-06 1.14e-04 3.17e-05 3.51e-05 9.74e-06 7.90e-06 2.19e-06
	0.0025 9.28e-05 3.74e-05 2.85e-05 1.15e-05 6.42e-06 2.59e-06 9.76e-05 3.85e-05 3.00e-05 1.18e-05 6.75e-06 2.66e-06
	0.001	6.53e-05 3.93e-05 2.01e-05 1.21e-05 4.51e-06 2.72e-06 6.92e-05 4.09e-05 2.13e-05 1.26e-05 4.79e-06 2.83e-06
	0.0005 4.60e-05 3.45e-05 1.42e-05 1.06e-05 3.18e-06 2.38e-06 4.90e-05 3.62e-05 1.51e-05 1.11e-05 3.39e-06 2.50e-06
	0.00025 3.16e-05 2.71e-05 9.72e-06 8.34e-06 2.19e-06 1.88e-06 3.37e-05 2.87e-05 1.04e-05 8.82e-06 2.33e-06 1.98e-06
	0.0001 1.94e-05 1.82e-05 5.95e-06 5.59e-06 1.34e-06 1.26e-06 2.06e-05 1.93e-05 6.35e-06 5.94e-06 1.43e-06 1.34e-06
	5e-05	1.35e-05 1.31e-05 4.15e-06 4.02e-06 9.34e-07 9.05e-07 1.44e-05 1.39e-05 4.42e-06 4.28e-06 9.95e-07 9.62e-07
	2.5e-05 9.48e-06 9.33e-06 2.92e-06 2.87e-06 6.56e-07 6.45e-07 1.01e-05 9.92e-06 3.10e-06 3.05e-06 6.98e-07 6.86e-07

Table A .

 A 9: The shear wave velocities in the original and mirror configurations of the coarsened sample FB22 (N c =240) saturated by the three types of fluids.

	05	3.105 9.3e-12 3.105 9.3e-12 3.105 9.3e-12 3.105 9.9e-12 3.105 9.9e-12 3.105 9.9e-12
	0.025	3.105 1.7e-11 3.105 1.7e-11 3.105 1.7e-11 3.105 1.7e-11 3.105 1.7e-11 3.105 1.7e-11
	0.01	3.105 4.0e-11 3.105 4.0e-11 3.105 4.0e-11 3.105 4.1e-11 3.105 4.1e-11 3.105 4.1e-11
	0.005	3.105 4.6e-11 3.105 4.6e-11 3.105 4.6e-11 3.105 4.9e-11 3.105 4.9e-11 3.105 4.9e-11
	0.0025 3.105 4.7e-11 3.105 4.7e-11 3.105 4.7e-11 3.105 5.1e-11 3.105 5.1e-11 3.105 5.1e-11
	0.001	3.105 3.5e-11 3.105 3.5e-11 3.105 3.5e-11 3.105 3.9e-11 3.105 3.9e-11 3.105 3.9e-11
	0.0005 3.105 2.2e-11 3.105 2.2e-11 3.105 2.2e-11 3.105 2.4e-11 3.105 2.4e-11 3.105 2.4e-11
	0.00025 3.105 1.2e-11 3.105 1.2e-11 3.105 1.2e-11 3.105 1.3e-11 3.105 1.3e-11 3.105 1.3e-11
	0.0001 3.105 4.8e-12 3.105 4.8e-12 3.105 4.8e-12 3.105 5.4e-12 3.105 5.4e-12 3.105 5.4e-12
	5e-05	3.105 2.4e-12 3.105 2.4e-12 3.105 2.4e-12 3.105 2.7e-12 3.105 2.7e-12 3.105 2.7e-12
	2.5e-05 3.105 1.2e-12 3.105 1.2e-12 3.105 1.2e-12 3.105 1.4e-12 3.105 1.4e-12 3.105 1.4e-12

Table A .

 A 10: The fast compressional wave velocities in the original and mirror configurations of the coarsened sample FB22 (N c =480) saturated by the three types of fluids.

	.05	5.78 1.1e-11 4.657 1.1e-11 4.543 1.7e-11 5.78 7.6e-12 4.657 7.5e-12 4.543 1.2e-11
	0.025	5.78 1.1e-11 4.657 1.0e-11 4.543 1.7e-11 5.78 1.1e-11 4.657 1.1e-11 4.543 1.7e-11
	0.01	5.78 4.0e-11 4.657 3.9e-11 4.543 6.3e-11 5.78 4.1e-11 4.657 4.0e-11 4.543 6.4e-11
	0.005	5.78 3.9e-11 4.657 3.8e-11 4.543 6.0e-11 5.78 3.9e-11 4.657 3.8e-11 4.543 6.1e-11
	0.0025 5.78 4.7e-11 4.657 4.6e-11 4.543 7.4e-11 5.78 5.0e-11 4.657 4.9e-11 4.543 7.7e-11
	0.001	5.78 5.6e-11 4.657 5.5e-11 4.543 8.7e-11 5.78 5.9e-11 4.657 5.8e-11 4.543 9.3e-11
	0.0005 5.78 5.2e-11 4.657 5.1e-11 4.543 8.2e-11 5.78 5.7e-11 4.657 5.6e-11 4.543 8.8e-11
	0.00025 5.78 4.0e-11 4.657 3.9e-11 4.543 6.2e-11 5.78 4.4e-11 4.657 4.3e-11 4.543 6.9e-11
	0.0001 5.78 2.1e-11 4.657 2.0e-11 4.543 3.2e-11 5.78 2.3e-11 4.657 2.3e-11 4.543 3.6e-11
	5e-05	5.78 1.1e-11 4.657 1.1e-11 4.543 1.7e-11 5.78 1.2e-11 4.657 1.2e-11 4.543 1.9e-11
	2.5e-05 5.78 5.5e-12 4.657 5.4e-12 4.543 8.6e-12 5.78 6.3e-12 4.657 6.2e-12 4.543 9.8e-12

Table A .

 A 11: The slow compressional wave velocities of the coarsened sample FB22 (N c =480) saturated by the three types of fluids.

	05	1.26e-04 4.67e-06 4.58e-05 1.70e-06 1.05e-05 3.90e-07 1.31e-04 3.18e-06 4.76e-05 1.16e-06 1.09e-05 2.66e-07
	0.025	1.27e-04 4.55e-06 4.64e-05 1.66e-06 1.06e-05 3.81e-07 1.32e-04 4.53e-06 4.81e-05 1.65e-06 1.10e-05 3.78e-07
	0.01	1.20e-04 1.84e-05 4.36e-05 6.69e-06 1.00e-05 1.54e-06 1.24e-04 1.79e-05 4.52e-05 6.53e-06 1.04e-05 1.50e-06
	0.005	1.19e-04 1.78e-05 4.33e-05 6.47e-06 9.93e-06 1.49e-06 1.24e-04 1.72e-05 4.52e-05 6.26e-06 1.04e-05 1.44e-06
	0.0025 1.13e-04 2.30e-05 4.10e-05 8.36e-06 9.41e-06 1.92e-06 1.18e-04 2.31e-05 4.28e-05 8.41e-06 9.83e-06 1.93e-06
	0.001	9.67e-05 3.15e-05 3.52e-05 1.15e-05 8.08e-06 2.64e-06 1.01e-04 3.20e-05 3.69e-05 1.17e-05 8.48e-06 2.68e-06
	0.0005 7.94e-05 3.60e-05 2.89e-05 1.31e-05 6.64e-06 3.01e-06 8.39e-05 3.69e-05 3.06e-05 1.35e-05 7.02e-06 3.09e-06
	0.00025 6.01e-05 3.62e-05 2.19e-05 1.32e-05 5.03e-06 3.03e-06 6.40e-05 3.76e-05 2.33e-05 1.37e-05 5.35e-06 3.14e-06
	0.0001 3.78e-05 2.97e-05 1.38e-05 1.08e-05 3.16e-06 2.48e-06 4.04e-05 3.13e-05 1.47e-05 1.14e-05 3.38e-06 2.62e-06
	5e-05	2.59e-05 2.29e-05 9.45e-06 8.33e-06 2.17e-06 1.91e-06 2.78e-05 2.43e-05 1.01e-05 8.85e-06 2.32e-06 2.03e-06
	2.5e-05 1.79e-05 1.68e-05 6.53e-06 6.12e-06 1.50e-06 1.41e-06 1.92e-05 1.79e-05 6.99e-06 6.53e-06 1.60e-06 1.50e-06

Table A .

 A 16: The fast compressional wave velocities in the original and mirror configurations of the coarsened sample FB18 (N c =240) saturated by the three types of fluids.

	05	5.90 2.0e-11 4.921 1.2e-11 4.850 1.7e-11 5.90 1.3e-11 4.921 7.8e-12 4.850 1.1e-11
	0.025	5.90 2.1e-11 4.921 1.2e-11 4.850 1.8e-11 5.90 2.3e-11 4.921 1.3e-11 4.850 1.9e-11
	0.01	5.90 5.9e-11 4.921 3.5e-11 4.850 5.0e-11 5.90 6.2e-11 4.921 3.7e-11 4.850 5.3e-11
	0.005	5.90 6.3e-11 4.921 3.7e-11 4.850 5.4e-11 5.90 6.6e-11 4.921 3.9e-11 4.850 5.7e-11
	0.0025 5.90 6.3e-11 4.921 3.7e-11 4.850 5.4e-11 5.90 7.0e-11 4.921 4.1e-11 4.850 6.0e-11
	0.001	5.90 4.8e-11 4.921 2.8e-11 4.850 4.1e-11 5.90 5.5e-11 4.921 3.2e-11 4.850 4.7e-11
	0.0005 5.90 3.0e-11 4.921 1.8e-11 4.850 2.6e-11 5.90 3.5e-11 4.921 2.1e-11 4.850 3.0e-11
	0.00025 5.90 1.6e-11 4.921 9.8e-12 4.850 1.4e-11 5.90 1.9e-11 4.921 1.1e-11 4.850 1.7e-11
	0.0001 5.90 6.8e-12 4.921 4.0e-12 4.850 5.8e-12 5.90 7.9e-12 4.921 4.7e-12 4.850 6.8e-12
	5e-05	5.90 3.4e-12 4.921 2.0e-12 4.850 2.9e-12 5.90 4.0e-12 4.921 2.4e-12 4.850 3.4e-12
	2.5e-05 5.90 1.7e-12 4.921 1.0e-12 4.850 1.5e-12 5.90 2.0e-12 4.921 1.2e-12 4.850 1.7e-12

Table A .

 A 18: The shear wave velocities in the original and mirror configurations of the coarsened sample FB18 (N c =240) saturated by the three types of fluids.

	05	3.236 1.2e-11 3.236 1.2e-11 3.236 1.2e-11 3.236 7.7e-12 3.236 7.7e-12 3.236 7.7e-12
	0.025	3.236 1.2e-11 3.236 1.2e-11 3.236 1.2e-11 3.236 1.3e-11 3.236 1.3e-11 3.236 1.3e-11
	0.01	3.236 3.4e-11 3.236 3.4e-11 3.236 3.4e-11 3.236 3.6e-11 3.236 3.6e-11 3.236 3.6e-11
	0.005	3.236 3.7e-11 3.236 3.7e-11 3.236 3.7e-11 3.236 3.9e-11 3.236 3.9e-11 3.236 3.9e-11
	0.0025 3.236 3.7e-11 3.236 3.7e-11 3.236 3.7e-11 3.236 4.1e-11 3.236 4.1e-11 3.236 4.1e-11
	0.001	3.236 2.8e-11 3.236 2.8e-11 3.236 2.8e-11 3.236 3.2e-11 3.236 3.2e-11 3.236 3.2e-11
	0.0005 3.236 1.8e-11 3.236 1.8e-11 3.236 1.8e-11 3.236 2.1e-11 3.236 2.1e-11 3.236 2.1e-11
	0.00025 3.236 9.6e-12 3.236 9.6e-12 3.236 9.6e-12 3.236 1.1e-11 3.236 1.1e-11 3.236 1.1e-11
	0.0001 3.236 4.0e-12 3.236 4.0e-12 3.236 4.0e-12 3.236 4.6e-12 3.236 4.6e-12 3.236 4.6e-12
	5e-05	3.236 2.0e-12 3.236 2.0e-12 3.236 2.0e-12 3.236 2.3e-12 3.236 2.3e-12 3.236 2.3e-12
	2.5e-05 3.236 1.0e-12 3.236 1.0e-12 3.236 1.0e-12 3.236 1.2e-12 3.236 1.2e-12 3.236 1.2e-12

Table A .

 A 19: The fast compressional wave velocities in the original and mirror configurations of the coarsened sample FB18 (N c =480) saturated by the three types of fluids.

	05	5.92 7.0e-12 4.875 8.5e-12 4.750 1.4e-11 5.92 8.5e-12 4.875 1.0e-11 4.750 1.7e-11
	0.025	5.92 6.2e-12 4.875 7.6e-12 4.750 1.2e-11 5.92 6.4e-12 4.875 7.9e-12 4.750 1.3e-11
	0.01	5.92 3.6e-11 4.875 4.4e-11 4.750 7.2e-11 5.92 3.1e-11 4.875 3.8e-11 4.750 6.3e-11
	0.005	5.92 2.6e-11 4.875 3.1e-11 4.750 5.1e-11 5.92 2.6e-11 4.875 3.1e-11 4.750 5.2e-11
	0.0025 5.92 2.8e-11 4.875 3.4e-11 4.750 5.7e-11 5.92 2.9e-11 4.875 3.6e-11 4.750 5.9e-11
	0.001	5.92 3.2e-11 4.875 4.0e-11 4.750 6.5e-11 5.92 3.5e-11 4.875 4.3e-11 4.750 7.1e-11
	0.0005 5.92 3.1e-11 4.875 3.8e-11 4.750 6.3e-11 5.92 3.5e-11 4.875 4.3e-11 4.750 7.0e-11
	0.00025 5.92 2.5e-11 4.875 3.0e-11 4.750 5.0e-11 5.92 2.8e-11 4.875 3.4e-11 4.750 5.6e-11
	0.0001 5.92 1.3e-11 4.875 1.6e-11 4.750 2.6e-11 5.92 1.5e-11 4.875 1.9e-11 4.750 3.1e-11
	5e-05	5.92 7.0e-12 4.875 8.5e-12 4.750 1.4e-11 5.92 8.1e-12 4.875 1.0e-11 4.750 1.6e-11
	2.5e-05 5.92 3.5e-12 4.875 4.3e-12 4.750 7.1e-12 5.92 4.2e-12 4.875 5.1e-12 4.750 8.4e-12

Table A .

 A 21: The shear wave velocities in the original and mirror configurations of the coarsened sample FB18 (N c =480) saturated by the three types of fluids.

	05	3.163 9.6e-12 3.163 9.6e-12 3.163 9.6e-12 3.163 1.2e-11 3.163 1.2e-11 3.163 1.2e-11
	0.025	3.163 8.5e-12 3.163 8.5e-12 3.163 8.5e-12 3.163 8.8e-12 3.163 8.8e-12 3.163 8.8e-12
	0.01	3.163 4.9e-11 3.163 4.9e-11 3.163 4.9e-11 3.163 4.3e-11 3.163 4.3e-11 3.163 4.3e-11
	0.005	3.163 3.5e-11 3.163 3.5e-11 3.163 3.5e-11 3.163 3.5e-11 3.163 3.5e-11 3.163 3.5e-11
	0.0025 3.163 3.9e-11 3.163 3.9e-11 3.163 3.9e-11 3.163 4.0e-11 3.163 4.0e-11 3.163 4.0e-11
	0.001	3.163 4.5e-11 3.163 4.5e-11 3.163 4.5e-11 3.163 4.9e-11 3.163 4.9e-11 3.163 4.9e-11
	0.0005 3.163 4.3e-11 3.163 4.3e-11 3.163 4.3e-11 3.163 4.8e-11 3.163 4.8e-11 3.163 4.8e-11
	0.00025 3.163 3.4e-11 3.163 3.4e-11 3.163 3.4e-11 3.163 3.9e-11 3.163 3.9e-11 3.163 3.9e-11
	0.0001 3.163 1.8e-11 3.163 1.8e-11 3.163 1.8e-11 3.163 2.1e-11 3.163 2.1e-11 3.163 2.1e-11
	5e-05	3.163 9.6e-12 3.163 9.6e-12 3.163 9.6e-12 3.163 1.1e-11 3.163 1.1e-11 3.163 1.1e-11
	2.5e-05 3.163 4.9e-12 3.163 4.9e-12 3.163 4.9e-12 3.163 5.7e-12 3.163 5.7e-12 3.163 5.7e-12

Table A .

 A 22: The fast compressional wave velocities in the original and mirror configurations of the coarsened sample FB13 (N c =240) saturated by the three types of fluids.

	05	5.93 1.3e-11 5.271 8.3e-12 5.226 1.1e-11 5.93 8.3e-12 5.271 5.5e-12 5.226 7.5e-12
	0.025	5.93 9.2e-12 5.271 6.1e-12 5.226 8.3e-12 5.93 1.0e-11 5.271 6.8e-12 5.226 9.3e-12
	0.01	5.93 3.7e-11 5.271 2.4e-11 5.226 3.4e-11 5.93 3.8e-11 5.271 2.5e-11 5.226 3.5e-11
	0.005	5.93 2.7e-11 5.271 1.8e-11 5.226 2.5e-11 5.93 3.0e-11 5.271 2.0e-11 5.226 2.7e-11
	0.0025 5.93 2.1e-11 5.271 1.4e-11 5.226 1.9e-11 5.93 2.4e-11 5.271 1.6e-11 5.226 2.2e-11
	0.001	5.93 1.2e-11 5.271 7.7e-12 5.226 1.1e-11 5.93 1.4e-11 5.271 9.4e-12 5.226 1.3e-11
	0.0005 5.93 6.3e-12 5.271 4.2e-12 5.226 5.8e-12 5.93 7.8e-12 5.271 5.2e-12 5.226 7.1e-12
	0.00025 5.93 3.2e-12 5.271 2.1e-12 5.226 2.9e-12 5.93 4.0e-12 5.271 2.7e-12 5.226 3.7e-12
	0.0001 5.93 1.3e-12 5.271 8.6e-13 5.226 1.2e-12 5.93 1.6e-12 5.271 1.1e-12 5.226 1.5e-12
	5e-05	5.93 6.5e-13 5.271 4.3e-13 5.226 5.9e-13 5.93 8.1e-13 5.271 5.4e-13 5.226 7.4e-13
	2.5e-05 5.93 3.3e-13 5.271 2.2e-13 5.226 3.0e-13 5.93 4.1e-13 5.271 2.7e-13 5.226 3.7e-13

Table A .

 A 25: The fast compressional wave velocities in the original and mirror configurations of the coarsened sample FB13 (N c =480) saturated by the three types of fluids.

	05	5.95 1.3e-11 5.233 2.0e-11 5.146 3.2e-11 5.95 3.3e-12 5.233 5.4e-12 5.146 8.5e-12
	0.025	5.95 4.6e-12 5.233 7.5e-12 5.146 1.2e-11 5.95 3.9e-12 5.233 6.3e-12 5.146 9.9e-12
	0.01	5.95 2.1e-11 5.233 3.3e-11 5.146 5.2e-11 5.95 2.2e-11 5.233 3.6e-11 5.146 5.5e-11
	0.005	5.95 1.6e-11 5.233 2.5e-11 5.146 3.9e-11 5.95 1.5e-11 5.233 2.4e-11 5.146 3.7e-11
	0.0025 5.95 1.2e-11 5.233 2.0e-11 5.146 3.1e-11 5.95 1.3e-11 5.233 2.1e-11 5.146 3.3e-11
	0.001	5.95 1.1e-11 5.233 1.8e-11 5.146 2.8e-11 5.95 1.3e-11 5.233 2.1e-11 5.146 3.2e-11
	0.0005 5.95 8.8e-12 5.233 1.4e-11 5.146 2.2e-11 5.95 1.1e-11 5.233 1.7e-11 5.146 2.7e-11
	0.00025 5.95 5.7e-12 5.233 9.2e-12 5.146 1.4e-11 5.95 6.9e-12 5.233 1.1e-11 5.146 1.7e-11
	0.0001 5.95 2.5e-12 5.233 4.1e-12 5.146 6.4e-12 5.95 3.1e-12 5.233 5.1e-12 5.146 7.9e-12
	5e-05	5.95 1.3e-12 5.233 2.1e-12 5.146 3.3e-12 5.95 1.6e-12 5.233 2.6e-12 5.146 4.0e-12
	2.5e-05 5.95 6.5e-13 5.233 1.0e-12 5.146 1.6e-12 5.95 8.0e-13 5.233 1.3e-12 5.146 2.0e-12

Table A .

 A 05 8.45e-05 1.94e-05 3.12e-05 7.15e-06 7.17e-06 1.64e-06 5.09e-05 8.58e-06 1.88e-05 3.17e-06 4.32e-06 7.28e-07 0.025 8.57e-05 7.08e-06 3.16e-05 2.61e-06 7.27e-06 6.01e-07 5.20e-05 9.84e-06 1.92e-05 3.63e-06 4.41e-06 8.35e-07 0.01 8.52e-05 3.14e-05 3.15e-05 1.16e-05 7.23e-06 2.67e-06 8.86e-05 3.23e-05 3.27e-05 1.19e-05 7.52e-06 2.74e-06 0.005 7.79e-05 2.60e-05 2.88e-05 9.60e-06 6.62e-06 2.21e-06 8.25e-05 2.30e-05 3.05e-05 8.48e-06 7.00e-06 1.95e-06 0.0025 7.04e-05 2.26e-05 2.60e-05 8.35e-06 5.97e-06 1.92e-06 7.70e-05 2.23e-05 2.84e-05 8.23e-06 6.54e-06 1.89e-06 26: The slow compressional wave velocities of the coarsened sample FB13 (N c =480) saturated by the three types of fluids.

	0.001	5.75e-05 2.50e-05 2.12e-05 9.23e-06 4.88e-06 2.12e-06 6.35e-05 2.62e-05 2.35e-05 9.66e-06 5.39e-06 2.22e-06
	0.0005 4.47e-05 2.57e-05 1.65e-05 9.49e-06 3.79e-06 2.18e-06 4.97e-05 2.76e-05 1.83e-05 1.02e-05 4.22e-06 2.34e-06
	0.00025 3.19e-05 2.32e-05 1.18e-05 8.55e-06 2.71e-06 1.97e-06 3.57e-05 2.53e-05 1.32e-05 9.33e-06 3.03e-06 2.15e-06
	0.0001 1.95e-05 1.70e-05 7.18e-06 6.26e-06 1.65e-06 1.44e-06 2.18e-05 1.88e-05 8.04e-06 6.92e-06 1.85e-06 1.59e-06
	5e-05	1.34e-05 1.25e-05 4.95e-06 4.62e-06 1.14e-06 1.06e-06 1.50e-05 1.39e-05 5.54e-06 5.13e-06 1.27e-06 1.18e-06
	2.5e-05 9.35e-06 9.03e-06 3.45e-06 3.33e-06 7.93e-07 7.66e-07 1.04e-05 1.01e-05 3.85e-06 3.71e-06 8.86e-07 8.53e-07

Table A .

 A 27: The shear wave velocities in the original and mirror configurations of the coarsened sample FB13 (N c =480) saturated by the three types of fluids.

	05	3.445 2.2e-11 3.445 2.2e-11 3.445 2.2e-11 3.445 5.8e-12 3.445 5.8e-12 3.445 5.8e-12
	0.025	3.445 8.0e-12 3.445 8.0e-12 3.445 8.0e-12 3.445 6.8e-12 3.445 6.8e-12 3.445 6.8e-12
	0.01	3.445 3.5e-11 3.445 3.5e-11 3.445 3.5e-11 3.445 3.8e-11 3.445 3.8e-11 3.445 3.8e-11
	0.005	3.445 2.7e-11 3.445 2.7e-11 3.445 2.7e-11 3.445 2.5e-11 3.445 2.5e-11 3.445 2.5e-11
	0.0025 3.445 2.1e-11 3.445 2.1e-11 3.445 2.1e-11 3.445 2.3e-11 3.445 2.3e-11 3.445 2.3e-11
	0.001	3.445 1.9e-11 3.445 1.9e-11 3.445 1.9e-11 3.445 2.2e-11 3.445 2.2e-11 3.445 2.2e-11
	0.0005 3.445 1.5e-11 3.445 1.5e-11 3.445 1.5e-11 3.445 1.8e-11 3.445 1.8e-11 3.445 1.8e-11
	0.00025 3.445 9.8e-12 3.445 9.8e-12 3.445 9.8e-12 3.445 1.2e-11 3.445 1.2e-11 3.445 1.2e-11
	0.0001 3.445 4.4e-12 3.445 4.4e-12 3.445 4.4e-12 3.445 5.4e-12 3.445 5.4e-12 3.445 5.4e-12
	5e-05	3.445 2.2e-12 3.445 2.2e-12 3.445 2.2e-12 3.445 2.8e-12 3.445 2.8e-12 3.445 2.8e-12
	2.5e-05 3.445 1.1e-12 3.445 1.1e-12 3.445 1.1e-12 3.445 1.4e-12 3.445 1.4e-12 3.445 1.4e-12

Table A .

 A 05 15.32 6.2e-10 4.452 1.6e-11 4.353 2.3e-11 15.32 6.5e-10 4.452 1.7e-11 4.353 2.4e-11 0.025 15.32 1.1e-09 4.452 2.9e-11 4.353 4.2e-11 15.32 1.2e-09 4.452 3.0e-11 4.353 4.4e-11 0.01 15.32 2.1e-09 4.452 5.4e-11 4.353 7.8e-11 15.32 2.2e-09 4.452 5.6e-11 4.353 8.1e-11 0.005 15.32 2.2e-09 4.452 5.6e-11 4.353 8.1e-11 15.32 2.3e-09 4.452 5.9e-11 4.353 8.5e-11 0.0025 15.32 1.6e-09 4.452 4.1e-11 4.353 6.0e-11 15.32 1.7e-09 4.452 4.5e-11 4.353 6.5e-11 0.001 15.32 7.8e-10 4.452 2.0e-11 4.353 2.9e-11 15.32 8.5e-10 4.452 2.2e-11 4.353 3.2e-11

	0.0005 15.32 4.0e-10 4.452 1.0e-11 4.353 1.5e-11 15.32 4.4e-10 4.452 1.1e-11 4.353 1.6e-11
	0.00025 15.32 2.0e-10 4.452 5.2e-12 4.353 7.5e-12 15.32 2.2e-10 4.452 5.7e-12 4.353 8.2e-12
	0.0001 15.32 8.1e-11 4.452 2.1e-12 4.353 3.0e-12 15.32 8.9e-11 4.452 2.3e-12 4.353 3.3e-12
	5e-05	15.32 4.1e-11 4.452 1.0e-12 4.353 1.5e-12 15.32 4.5e-11 4.452 1.1e-12 4.353 1.7e-12
	2.5e-05 15.32 2.0e-11 4.452 5.2e-13 4.353 7.5e-13 15.32 2.2e-11 4.452 5.7e-13 4.353 8.3e-13

  05 1.50e-04 1.04e-05 3.35e-05 2.32e-06 7.36e-06 5.10e-07 1.56e-04 1.05e-05 3.47e-05 2.34e-06 7.63e-06 5.14e-07 0.025 1.48e-04 1.91e-05 3.29e-05 4.26e-06 7.24e-06 9.35e-07 1.53e-04 1.93e-05 3.41e-05 4.31e-06 7.48e-06 9.48e-07 0.01 1.31e-04 4.01e-05 2.93e-05 8.94e-06 6.44e-06 1.96e-06 1.36e-04 4.00e-05 3.03e-05 8.93e-06 6.65e-06 1.96e-06 0.005 1.08e-04 5.02e-05 2.41e-05 1.12e-05 5.30e-06 2.46e-06 1.13e-04 5.08e-05 2.52e-05 1.13e-05 5.53e-06 2.49e-06 0.0025 7.95e-05 5.07e-05 1.77e-05 1.13e-05 3.90e-06 2.49e-06 8.34e-05 5.23e-05 1.86e-05 1.17e-05 4.09e-06 2.56e-06

	0.001	4.86e-05 4.00e-05 1.08e-05 8.91e-06 2.38e-06 1.96e-06 5.10e-05 4.16e-05 1.14e-05 9.28e-06 2.50e-06 2.04e-06
	0.0005 3.33e-05 3.01e-05 7.42e-06 6.72e-06 1.63e-06 1.48e-06 3.49e-05 3.15e-05 7.79e-06 7.02e-06 1.71e-06 1.54e-06
	0.00025 2.31e-05 2.19e-05 5.14e-06 4.89e-06 1.13e-06 1.08e-06 2.42e-05 2.30e-05 5.39e-06 5.12e-06 1.19e-06 1.13e-06
	0.0001 1.44e-05 1.41e-05 3.21e-06 3.15e-06 7.05e-07 6.91e-07 1.51e-05 1.48e-05 3.36e-06 3.29e-06 7.39e-07 7.24e-07
	5e-05	1.01e-05 1.00e-05 2.26e-06 2.24e-06 4.96e-07 4.91e-07 1.06e-05 1.05e-05 2.37e-06 2.34e-06 5.20e-07 5.15e-07
	2.5e-05 7.14e-06 7.10e-06 1.59e-06 1.58e-06 3.50e-07 3.48e-07 7.48e-06 7.44e-06 1.67e-06 1.66e-06 3.67e-07 3.65e-07

Table A .

 A 

	05	15.32 6.2e-10 4.452 1.6e-11 4.353 2.3e-11 15.32 6.5e-10 4.452 1.7e-11 4.353 2.4e-11
	0.05	11.49 5.8e-10 4.138 2.2e-11 4.003 3.8e-11 11.49 3.4e-10 4.138 1.3e-11 4.003 2.2e-11
	0.025	11.49 6.0e-10 4.138 2.3e-11 4.003 3.8e-11 11.49 6.2e-10 4.138 2.4e-11 4.003 4.0e-11
	0.01	11.49 1.3e-09 4.138 5.0e-11 4.003 8.4e-11 11.49 1.3e-09 4.138 5.0e-11 4.003 8.4e-11
	0.005	11.49 1.6e-09 4.138 6.2e-11 4.003 1.0e-10 11.49 1.6e-09 4.138 6.3e-11 4.003 1.1e-10
	0.0025 11.49 1.6e-09 4.138 6.2e-11 4.003 1.0e-10 11.49 1.7e-09 4.138 6.5e-11 4.003 1.1e-10
	0.001	11.49 1.1e-09 4.138 4.3e-11 4.003 7.2e-11 11.49 1.2e-09 4.138 4.6e-11 4.003 7.7e-11
	0.0005 11.49 6.6e-10 4.138 2.5e-11 4.003 4.2e-11 11.49 7.2e-10 4.138 2.7e-11 4.003 4.6e-11
	0.00025 11.49 3.5e-10 4.138 1.3e-11 4.003 2.2e-11 11.49 3.8e-10 4.138 1.4e-11 4.003 2.4e-11
	0.0001 11.49 1.4e-10 4.138 5.4e-12 4.003 9.1e-12 11.49 1.5e-10 4.138 5.9e-12 4.003 9.9e-12
	5e-05	11.49 7.1e-11 4.138 2.7e-12 4.003 4.6e-12 11.49 7.8e-11 4.138 3.0e-12 4.003 5.0e-12
	2.5e-05 11.49 3.6e-11 4.138 1.4e-12 4.003 2.3e-12 11.49 3.9e-11 4.138 1.5e-12 4.003 2.5e-12

  05 1.56e-04 1.22e-05 4.31e-05 3.37e-06 9.60e-06 7.50e-07 1.61e-04 6.86e-06 4.45e-05 1.90e-06 9.92e-06 4.22e-07 0.025 1.56e-04 1.25e-05 4.31e-05 3.44e-06 9.60e-06 7.67e-07 1.60e-04 1.26e-05 4.42e-05 3.47e-06 9.85e-06 7.73e-07 0.01 1.46e-04 2.91e-05 4.04e-05 8.03e-06 8.99e-06 1.79e-06 1.49e-04 2.84e-05 4.13e-05 7.85e-06 9.19e-06 1.75e-06 0.005 1.33e-04 3.97e-05 3.68e-05 1.10e-05 8.19e-06 2.44e-06 1.37e-04 3.92e-05 3.78e-05 1.08e-05 8.41e-06 2.41e-06 0.0025 1.11e-04 4.79e-05 3.05e-05 1.32e-05 6.80e-06 2.95e-06 1.15e-04 4.83e-05 3.16e-05 1.33e-05 7.05e-06 2.97e-06

	0.001	7.54e-05 4.84e-05 2.08e-05 1.34e-05 4.64e-06 2.98e-06 7.86e-05 4.96e-05 2.17e-05 1.37e-05 4.84e-06 3.05e-06
	0.0005 5.24e-05 4.11e-05 1.45e-05 1.13e-05 3.23e-06 2.53e-06 5.48e-05 4.25e-05 1.51e-05 1.17e-05 3.37e-06 2.61e-06
	0.00025 3.59e-05 3.17e-05 9.92e-06 8.75e-06 2.21e-06 1.95e-06 3.75e-05 3.29e-05 1.04e-05 9.08e-06 2.31e-06 2.02e-06
	0.0001 2.21e-05 2.10e-05 6.10e-06 5.79e-06 1.36e-06 1.29e-06 2.30e-05 2.18e-05 6.36e-06 6.03e-06 1.42e-06 1.34e-06
	5e-05	1.54e-05 1.50e-05 4.26e-06 4.15e-06 9.49e-07 9.25e-07 1.61e-05 1.57e-05 4.45e-06 4.33e-06 9.90e-07 9.64e-07

Table A .

 A 33: The shear wave velocities in the original and mirror configurations of the coarsened sample X7 (N cx =300) saturated by the three types of fluids.

		Fast compressional velocity	Shear wave velocity
	05	2.611 2.5e-11 2.611 2.5e-11 2.611 2.5e-11 2.611 1.5e-11 2.611 1.5e-11 2.611 1.5e-11
	0.025	2.611 2.6e-11 2.611 2.6e-11 2.611 2.6e-11 2.611 2.7e-11 2.611 2.7e-11 2.611 2.7e-11
	0.01	2.611 5.6e-11 2.611 5.6e-11 2.611 5.6e-11 2.611 5.6e-11 2.611 5.6e-11 2.611 5.6e-11
	0.005	2.611 7.0e-11 2.611 7.0e-11 2.611 7.0e-11 2.611 7.1e-11 2.611 7.1e-11 2.611 7.1e-11
	0.0025 2.611 7.0e-11 2.611 7.0e-11 2.611 7.0e-11 2.611 7.3e-11 2.611 7.3e-11 2.611 7.3e-11
	0.001	2.611 4.8e-11 2.611 4.8e-11 2.611 4.8e-11 2.611 5.1e-11 2.611 5.1e-11 2.611 5.1e-11
	0.0005 2.611 2.8e-11 2.611 2.8e-11 2.611 2.8e-11 2.611 3.1e-11 2.611 3.1e-11 2.611 3.1e-11
	0.00025 2.611 1.5e-11 2.611 1.5e-11 2.611 1.5e-11 2.611 1.6e-11 2.611 1.6e-11 2.611 1.6e-11
	0.0001 2.611 6.1e-12 2.611 6.1e-12 2.611 6.1e-12 2.611 6.6e-12 2.611 6.6e-12 2.611 6.6e-12
	5e-05	2.611 3.1e-12 2.611 3.1e-12 2.611 3.1e-12 2.611 3.3e-12 2.611 3.3e-12 2.611 3.3e-12
	2.5e-05 2.611 1.5e-12 2.611 1.5e-12 2.611 1.5e-12 2.611 1.7e-12 2.611 1.7e-12 2.611 1.7e-12

Table A .

 A 34: The fast compressional and shear wave velocities in the original configuration of the coarsened sample X7 (N cx =600) saturated by the three types of fluids.

	05	9.844 1.7e-10 3.955 7.9e-12 3.792 1.5e-11 2.465 1.0e-11 2.465 1.0e-11 2.465 1.0e-11
	0.025	9.844 2.9e-10 3.955 1.4e-11 3.792 2.6e-11 2.465 1.8e-11 2.465 1.8e-11 2.465 1.8e-11
	0.01	9.844 8.3e-10 3.955 3.9e-11 3.792 7.4e-11 2.465 5.0e-11 2.465 5.0e-11 2.465 5.0e-11
	0.005	9.844 9.5e-10 3.955 4.4e-11 3.792 8.5e-11 2.465 5.7e-11 2.465 5.7e-11 2.465 5.7e-11
	0.0025 9.844 1.2e-09 3.955 5.6e-11 3.792 1.1e-10 2.465 7.2e-11 2.465 7.2e-11 2.465 7.2e-11
	0.001	9.844 1.3e-09 3.955 5.9e-11 3.792 1.1e-10 2.465 7.6e-11 2.465 7.6e-11 2.465 7.6e-11
	0.0005 9.844 1.1e-09 3.955 5.0e-11 3.792 9.6e-11 2.465 6.4e-11 2.465 6.4e-11 2.465 6.4e-11
	0.00025 9.844 7.3e-10 3.955 3.4e-11 3.792 6.5e-11 2.465 4.4e-11 2.465 4.4e-11 2.465 4.4e-11
	0.0001 9.844 3.4e-10 3.955 1.6e-11 3.792 3.0e-11 2.465 2.0e-11 2.465 2.0e-11 2.465 2.0e-11
	5e-05	9.844 1.7e-10 3.955 8.1e-12 3.792 1.6e-11 2.465 1.0e-11 2.465 1.0e-11 2.465 1.0e-11
	2.5e-05 9.844 8.8e-11 3.955 4.1e-12 3.792 7.8e-12 2.465 5.3e-12 2.465 5.3e-12 2.465 5.3e-12

Table A .

 A 

	05	9.37 3.6e-10 4.943 9.9e-12 4.879 1.4e-11 9.37 4.8e-10 4.943 1.3e-11 4.879 1.9e-11
	0.025	9.37 2.2e-10 4.943 6.1e-12 4.879 8.7e-12 9.37 3.2e-10 4.943 8.8e-12 4.879 1.2e-11
	0.01	9.37 3.6e-10 4.943 1.0e-11 4.879 1.4e-11 9.37 8.8e-10 4.943 2.5e-11 4.879 3.5e-11
	0.005	9.37 6.3e-10 4.943 1.8e-11 4.879 2.5e-11 9.37 7.2e-10 4.943 2.0e-11 4.879 2.8e-11
	0.0025 9.37 3.7e-10 4.943 1.0e-11 4.879 1.5e-11 9.37 5.1e-10 4.943 1.4e-11 4.879 2.0e-11
	0.001	9.37 1.7e-10 4.943 4.7e-12 4.879 6.7e-12 9.37 2.5e-10 4.943 6.8e-12 4.879 9.7e-12
	0.0005 9.37 8.7e-11 4.943 2.4e-12 4.879 3.5e-12 9.37 1.3e-10 4.943 3.5e-12 4.879 5.0e-12
	0.00025 9.37 4.4e-11 4.943 1.2e-12 4.879 1.7e-12 9.37 6.4e-11 4.943 1.8e-12 4.879 2.5e-12
	0.0001 9.37 1.8e-11 4.943 4.9e-13 4.879 7.0e-13 9.37 2.6e-11 4.943 7.2e-13 4.879 1.0e-12
	5e-05	9.37 8.9e-12 4.943 2.5e-13 4.879 3.5e-13 9.37 1.3e-11 4.943 3.6e-13 4.879 5.1e-13
	2.5e-05 9.37 4.4e-12 4.943 1.2e-13 4.879 1.7e-13 9.37 6.5e-12 4.943 1.8e-13 4.879 2.5e-13

  05 9.32e-05 2.18e-05 1.81e-05 4.22e-06 3.94e-06 9.22e-07 1.07e-04 2.54e-05 2.07e-05 4.92e-06 4.53e-06 1.07e-06 0.025 9.15e-05 1.37e-05 1.77e-05 2.65e-06 3.87e-06 5.79e-07 1.11e-04 1.62e-05 2.14e-05 3.14e-06 4.68e-06 6.87e-07 0.01 8.78e-05 2.36e-05 1.70e-05 4.57e-06 3.72e-06 9.98e-07 9.35e-05 5.35e-05 1.81e-05 1.04e-05 3.96e-06 2.26e-06 0.005 7.08e-05 5.05e-05 1.37e-05 9.78e-06 3.00e-06 2.14e-06 8.64e-05 4.72e-05 1.68e-05 9.14e-06 3.66e-06 2.00e-06 0.0025 5.22e-05 4.03e-05 1.01e-05 7.81e-06 2.21e-06 1.71e-06 6.53e-05 4.42e-05 1.27e-05 8.56e-06 2.77e-06 1.87e-06

	0.001	3.32e-05 2.89e-05 6.44e-06 5.60e-06 1.41e-06 1.22e-06 4.09e-05 3.40e-05 7.92e-06 6.60e-06 1.73e-06 1.44e-06
	0.0005 2.31e-05 2.15e-05 4.48e-06 4.16e-06 9.79e-07 9.09e-07 2.82e-05 2.56e-05 5.46e-06 4.97e-06 1.19e-06 1.09e-06

Table A .

 A 

	05	15.32 6.2e-10 4.452 1.6e-11 4.353 2.3e-11 15.32 6.5e-10 4.452 1.7e-11 4.353 2.4e-11
	0.05	8.13 4.2e-10 4.794 1.9e-11 4.713 2.9e-11 8.13 2.2e-10 4.794 1.0e-11 4.713 1.5e-11
	0.025	8.13 5.8e-10 4.794 2.6e-11 4.713 4.0e-11 8.13 1.8e-10 4.794 7.9e-12 4.713 1.2e-11
	0.01	8.13 9.4e-10 4.794 4.2e-11 4.713 6.4e-11 8.13 1.1e-09 4.794 5.0e-11 4.713 7.7e-11
	0.005	8.13 6.4e-10 4.794 2.9e-11 4.713 4.4e-11 8.13 5.8e-10 4.794 2.6e-11 4.713 4.0e-11
	0.0025	8.13 4.6e-10 4.794 2.1e-11 4.713 3.2e-11 8.13 5.0e-10 4.794 2.2e-11 4.713 3.4e-11
	0.001	8.13 2.5e-10 4.794 1.1e-11 4.713 1.7e-11 8.13 3.4e-10 4.794 1.5e-11 4.713 2.3e-11
	0.0005	8.13 1.4e-10 4.794 6.4e-12 4.713 9.8e-12 8.13 2.1e-10 4.794 9.5e-12 4.713 1.4e-11
	0.00025 8.13 7.6e-11 4.794 3.4e-12 4.713 5.2e-12 8.13 1.2e-10 4.794 5.2e-12 4.713 7.9e-12
	0.0001	8.13 3.1e-11 4.794 1.4e-12 4.713 2.1e-12 8.13 4.7e-11 4.794 2.1e-12 4.713 3.2e-12
	5e-05	8.13 1.6e-11 4.794 7.0e-13 4.713 1.1e-12 8.13 2.4e-11 4.794 1.1e-12 4.713 1.6e-12
	2.5e-05 8.13 7.8e-12 4.794 3.5e-13 4.713 5.3e-13 8.13 1.2e-11 4.794 5.3e-13 4.713 8.2e-13

  05 1.15e-04 2.70e-05 2.65e-05 6.23e-06 5.84e-06 1.37e-06 1.14e-04 1.46e-05 2.63e-05 3.36e-06 5.79e-06 7.40e-07 0.025 1.13e-04 3.84e-05 2.59e-05 8.85e-06 5.71e-06 1.95e-06 1.19e-04 1.12e-05 2.73e-05 2.58e-06 6.02e-06 5.67e-07 0.01 1.08e-04 6.51e-05 2.48e-05 1.50e-05 5.46e-06 3.30e-06 1.09e-04 7.69e-05 2.50e-05 1.77e-05 5.51e-06 3.90e-06 0.005 9.61e-05 4.96e-05 2.21e-05 1.14e-05 4.88e-06 2.52e-06 9.98e-05 4.34e-05 2.30e-05 1.00e-05 5.07e-06 2.21e-06 0.0025 7.53e-05 4.56e-05 1.74e-05 1.05e-05 3.82e-06 2.32e-06 8.85e-05 4.19e-05 2.04e-05 9.66e-06 4.49e-06 2.13e-06

	0.001	5.05e-05 3.64e-05 1.16e-05 8.40e-06 2.56e-06 1.85e-06 6.41e-05 3.98e-05 1.48e-05 9.18e-06 3.26e-06 2.02e-06
	0.0005 3.62e-05 2.94e-05 8.35e-06 6.78e-06 1.84e-06 1.49e-06 4.58e-05 3.45e-05 1.06e-05 7.95e-06 2.32e-06 1.75e-06
	0.00025 2.52e-05 2.25e-05 5.81e-06 5.18e-06 1.28e-06 1.14e-06 3.16e-05 2.72e-05 7.29e-06 6.26e-06 1.61e-06 1.38e-06
	0.0001 1.56e-05 1.49e-05 3.59e-06 3.43e-06 7.91e-07 7.55e-07 1.94e-05 1.82e-05 4.47e-06 4.20e-06 9.85e-07 9.25e-07
	5e-05	1.09e-05 1.07e-05 2.52e-06 2.46e-06 5.54e-07 5.41e-07 1.35e-05 1.31e-05 3.12e-06 3.02e-06 6.87e-07 6.66e-07
	2.5e-05 7.67e-06 7.58e-06 1.77e-06 1.75e-06 3.89e-07 3.85e-07 9.50e-06 9.35e-06 2.19e-06 2.16e-06 4.82e-07 4.75e-07

  .0e-11 3.061 2.9e-11 3.061 2.9e-11 3.062 2.7e-11 3.061 2.6e-11 3.061 2.6e-11 0.0025 3.062 2.1e-11 3.061 2.1e-11 3.061 2.1e-11 3.062 2.3e-11 3.061 2.3e-11 3.061 2.3e-11 0.001 3.062 1.1e-11 3.061 1.1e-11 3.061 1.1e-11 3.062 1.6e-11 3.061 1.6e-11 3.061 1.6e-11

	05	3.062 1.9e-11 3.061 1.9e-11 3.061 1.9e-11 3.062 1.0e-11 3.061 1.0e-11 3.061 1.0e-11
	0.025	3.062 2.7e-11 3.061 2.6e-11 3.061 2.6e-11 3.062 8.2e-12 3.061 8.1e-12 3.061 8.1e-12
	0.01	3.062 4.4e-11 3.061 4.3e-11 3.061 4.3e-11 3.062 5.2e-11 3.061 5.1e-11 3.061 5.1e-11
	0.005	3.062 3

Table A .

 A 41: The fast compressional and shear wave velocities in the original configuration of the coarsened sample Y5 (N cx =600) saturated by the three types of fluids.

	05	7.397 4.1e-10 4.717 2.7e-11 4.625 4.3e-11 2.999 2.9e-11 2.998 2.9e-11 2.998 2.9e-11
	0.025	7.397 6.4e-10 4.717 4.2e-11 4.625 6.7e-11 2.999 4.6e-11 2.998 4.5e-11 2.998 4.5e-11
	0.01	7.397 1.2e-09 4.717 8.1e-11 4.625 1.3e-10 2.999 8.8e-11 2.998 8.6e-11 2.998 8.6e-11
	0.005	7.397 5.8e-10 4.717 3.8e-11 4.625 6.1e-11 2.999 4.2e-11 2.998 4.1e-11 2.998 4.1e-11
	0.0025 7.397 4.5e-10 4.717 3.0e-11 4.625 4.7e-11 2.999 3.2e-11 2.998 3.1e-11 2.998 3.1e-11
	0.001	7.397 3.1e-10 4.717 2.0e-11 4.625 3.2e-11 2.999 2.2e-11 2.998 2.2e-11 2.998 2.2e-11
	0.0005 7.397 2.0e-10 4.717 1.3e-11 4.625 2.2e-11 2.999 1.5e-11 2.998 1.4e-11 2.998 1.4e-11
	0.00025 7.397 1.4e-10 4.717 9.0e-12 4.625 1.4e-11 2.999 9.7e-12 2.998 9.5e-12 2.998 9.5e-12
	0.0001 7.397 6.5e-11 4.717 4.2e-12 4.625 6.8e-12 2.999 4.6e-12 2.998 4.5e-12 2.998 4.5e-12
	5e-05	7.397 3.4e-11 4.717 2.2e-12 4.625 3.5e-12 2.999 2.4e-12 2.998 2.3e-12 2.998 2.3e-12
	2.5e-05 7.397 1.7e-11 4.717 1.1e-12 4.625 1.8e-12 2.999 1.2e-12 2.998 1.2e-12 2.998 1.2e-12

medium is similar to the one in LSM2S. The elastic constants of springs are calculated in the same way as in Section 3.3. A code of LBM-LSM2S is developed based on the code of LBM-LSM2S.

The required memory for simulations is larger than the LBM-LSM model but the computation time is not very different. A simple comparison is performed when the sample FB18 is simulated by these models and the obtained results are the same.

Summary

In this chapter, the lattice spring models such as LSM, LSM2S, LBM-LSM and LBM-LSM2S are presented; they can address porous media with one or two solid components. By using these models and LBM, the four necessary quantities (the effective stiffness tensor C ef f , the permeabilities K, the reactions of the solid matrix on the fluid pressure α and β) for the Christoffel equation can be determined, from which one can obtain the acoustic velocities in dry and in saturated porous media.

The simulation time and memory requirements of numerical simulations for real samples are large. They are parallelized by OMP and the time is inversely proportional to the number of processors used; the averaged speedup is about 5.1 for 8 processors which is a good result.

All the necessary tools for calculating the acoustic velocities in dry and saturated samples are available. They will be applied to simulate the Fontainebleau samples and Statoil samples and the results will be shown in the next chapters.

The simulations for simple stretching along the x-direction of these two samples were done.

The first sample is simulated by LSM2S, the second by LSM. The simulation times are similar and about 1 day; the results are identical as seen in Table 5.8.

The second comparison: LSM2S and FMD of Malinouskaya for the coarsened sample X2 of size 150 x 150 x 54

The samples with two solid components can be calculated with the model FMD. This model was presented by [START_REF] Malinouskaya | Propagation des ondes acoustiques dans les milieux hétérogènes[END_REF] and [START_REF] Li | Propagation des ondes acoustiques dans les milieux hétérogènes[END_REF].

The coarsened sample X2 (Fig. 5.9.d) with N cx = 150 was used for comparison. We performed two simulations: a simple stretching and a simple shear along the y-direction. The results are given in Table 5.8; the errors are always less than 3% which is very good since FMD is a first order scheme.

The third comparison: LSM2S and FMD for the coarsened sample X2 of size 300 x 300 x 109

The second comparison is very good; it is enough to validate the model LSM2S. For an additional comparison, we used a sample with a twice smaller mesh, namely the coarsened samples X2 of size 300 x 300 x 109 (Fig. 5.9.c). The same simulations were performed. Their results are given in Table 5.8; the errors are less than 2.1%. Therefore, the Lattice Spring Model for two solids can be used to calculate the real reconstructed STATOIL samples with confidence. The first comparison is done when the medium is saturated by water. Then, the second comparison is performed for samples filled with air (1b). The physical properties of the air are given in (4.22).

Obviously, the samples saturated by air (1b) can be considered as dry. Thanks to that, a comparison between the numerical results, the dry samples obtained in Section 5.3 and Gassmann's model is done. They are about the same since the difference is always less than 1% as seen in and in the samples with an infinite discretization.

Note that various samples whose the quartz and clay proportions are close to our STATOIL as described in Fig. 5.14.c were also measured by [START_REF] Han | Effects of porosity and clay content on acoustic properties of sandstones and unconsolidated sediments[END_REF]. Then, [START_REF] Han | Effect of porosity and clay content on wave velocities in sandstones[END_REF] provided 0] linear spring, its constant is equal to α 2 4 , α 2 2 , 3α 2 4 , α 2 , if it belongs to one, two, three or four elastic elements of type 2 (Fig. A.1a-d). For one [1 1 0] linear spring, if it belongs to one elastic element of type 2 (Fig. A.1e), its constant is α 2 2 ; if it belongs to two elastic elements (Fig. A.1f), the constant is α 2 . This calculation is done in the same way for the elements of type 0 (for the inclusion); the elastic constant of linear springs in this case has 4 values: α 0 4 , α 0 2 , 3α 0 4 , α 0 . As mentioned above, in an elastic element, there are two types of angular springs: π 3 -angular spring and π 4 -angular spring; the junction of two elastic elements side by side does not create any new angular spring. A π 3 -angular spring can belong to only one elastic element while a π 4 -angular spring can belong to at most two elastic elements. When springs only belong to elements of type 2 (matrix), the π 3 -angular spring constant is equal to β 2 (Fig.