
HAL Id: tel-01293039
https://theses.hal.science/tel-01293039v1

Submitted on 24 Mar 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Generalization of the decremental performance analysis
to differential analysis

Zakaria Bendifallah

To cite this version:
Zakaria Bendifallah. Generalization of the decremental performance analysis to differential analysis.
Hardware Architecture [cs.AR]. Université de Versailles-Saint Quentin en Yvelines, 2015. English.
�NNT : 2015VERS038V�. �tel-01293039�

https://theses.hal.science/tel-01293039v1
https://hal.archives-ouvertes.fr


Université de Versailles Saint-Quentin-en-Yvelines École Doctorale “STV”

Généralisation de l’Analyse de Performance
Décrémentale vers l’Analyse Différentielle

Generalization of the Decremental Performance
Analysis to Differential Analysis

THÈSE

présentée et soutenue publiquement le 17 Septembre 2015

pour l’obtention du

Doctorat de l’Université de Versailles Saint-Quentin-en-Yvelines
(spécialité informatique)

par

Zakaria Bendifallah

Directeur de thèse : William Jalby - Professeur, Université de Versailles,
France

Président : Lee W.Baugh - Ingénieur, Google, Seattle, USA

Rapporteurs : Albert Cohen - Directeur de recherche, INRIA, France
Michel Krajecki - Professeur, Université de Reims, France

Examinateurs : Edouard Audit - Directeur, Maison de la Simulation, France
Andry Razafinjatovo - Ingénieur, Bull, France
Jean-Thomas Acquaviva - Ingénieur, DataDirect Networks, France





Remerciements

J’écris ces lignes alors que je suis dans un train Orléans-Paris, le voyage commence
et j’essaye de me remémorer les différentes personnes avec lesquelles j’ai partagé mes
quatre années de thèse ...

Merci à mon directeur de thèse William Jalby, qui a toujours été là depuis le
début jusqu’à la fin, pour ces précieuses remarques, directives et conseils. J’espère
avoir appris ne serait-ce qu’une petite partie de son savoir, ses méthodes de travail
et ses visions pragmatiques.

Je tiens aussi à remercier les membres de mon jury d’avoir accepté d’évaluer mon
travail et de m’avoir aidé à l’améliorer. Je remercie mes rapporteurs Albert Cohen et
Michel Krajecki d’avoir pris le temps de lire mon manuscrit et pour leur remarques
et suggestions pertinentes. Je remercie mes examinateurs: Edouard Audit et Andry
Razafinjatovo d’avoir accepté de faire partie du jury de soutenance. Un grand merci
à Lee Baugh qui était un très bon superviseur de stage et ami aux états-Unis, et
qui a accepté de faire le déplacement pour la soutenance.

Je remercie tous les membres du laboratoire Exascale avec qui j’ai travaillé de
près: merci à Jean-Thomas de m’avoir encadré pendant ma première année de thèse.
à Cédric, Mathieu et Emmanuel, de leurs aides pour tout ce qui concerne Maqao et
Madras. Merci à Abdelhafid et Pablo de leur aide dans l’écriture de ce manuscrit.
Je remercie aussi les autres membres du laboratoire qui sont présents en ce moment:
Franck, Hugo, Alexandre, JB, Salah, Andrès, Michel, Chadi, Aurèle, Alexandre et
Youenn; et aussi tous les membres qui ne sont plus là.

Je remercie particulièrement les membres de la micro-équipe Memory Systems
pour l’ambiance étrange qui régnait dans notre bureau !, José par l’aura qu’il dé-
gageait !, et Vincent, mon compagnon de thèse, de froid et de Subway :).

Un grand merci à mes amis, Farid et Sofiane pour avoir été là au moment où
je devais changer d’atmosphère et pour toute l’aide qu’ils m’ont accordée. Une
reconnaissance particulière envers mon brozer Mohamed, avec qui j’ai passé ma
dernière année de thèse, et qui m’a permis d’effectuer entre autres des travaux
avancés en sociologie, nous nous séparerons dans peu, mais je suis sŏr que le pacte
est scellé, et il n’y a pas de touche rewind.

je remercie mon oncle Nacer Bendifallah pour m’avoir accueilli comme un mem-
bre de sa famille et pour avoir été là au moment ou j’avais besoin d’aide.

Sans mes parents Fatma-Zohra et Mohamed Rachid Bendifallah et mes sœurs
Kaouthar et Rihab, leur présence, encouragements, affection et soutien incondition-
nel, je n’aurai certainement pas été là aujourd’hui. Que Dieu vous préserve et vous
garde auprès de moi.

Le train vient d’arriver, et si je suis toujours en vie c’est grâce à Dieu et unique-
ment grâce à lui, si j’ai pu terminer ce très modeste parcours, c’est aussi par sa seule
miséricorde. Je l’implore de m’aider à me souvenir de lui, à le remercier et à mieux
l’adorer.



ii

À mes parents et mes soeurs



iii

Résumé :

Une des étapes les plus cruciales dans le processus d’analyse des performances
d’une application est la détection des goulets d’étranglement. Un goulet étant tout
évènement qui contribue à l’allongement temps d’exécution, la détection de ses
causes est importante pour les développeurs d’applications afin de comprendre les
défauts de conception et de génération de code.

Cependant, la détection de goulets devient un art difficile. Dans le passé, des
techniques qui reposaient sur le comptage du nombre d’évènements, arrivaient facile-
ment à trouver les goulets. Maintenant, la complexité accrue des micro-architectures
modernes et l’introduction de plusieurs niveaux de parallélisme ont rendu ces tech-
niques beaucoup moins efficaces. Par conséquent, il y a un réel besoin de réflexion
sur de nouvelles approches.

Notre travail porte sur le développement d’outils d’évaluation de performance
des boucles de calculs issues d’applications scientifiques. Nous travaillons sur De-
can, un outil d’analyse de performance qui présente une approche intéressante et
prometteuse appelée l’Analyse Décrémentale. Decan repose sur l’idée d’effectuer
des changements contrôlés sur les boucles du programme et de comparer la version
obtenue (appelée variante) avec la version originale, permettant ainsi de détecter la
présence ou pas de goulets d’étranglement.

Tout d’abord, nous avons enrichi Decan avec de nouvelles variantes, que nous
avons conçues, testées et validées. Ces variantes sont, par la suite, intégrées dans
une analyse de performance poussée appelée l’Analyse Différentielle. Nous avons
intégré l’outil et l’analyse dans une méthodologie d’analyse de performance plus
globale appelée Pamda.

Nous décrirons aussi les différents apports à l’outil Decan. Sont particulière-
ment détaillées les techniques de préservation des structures de contrôle du pro-
gramme, ainsi que l’ajout du support pour les programmes parallèles.

Finalement, nous effectuons une étude statistique qui permet de vérifier la possi-
bilité d’utiliser des compteurs d’évènements, autres que le temps d’exécution, comme
métriques de comparaison entre les variantes Decan.

Mots clés : analyse de performances, réécriture binaire, analyse dynamique,
analyse statique du code, optimization de code, parallélisme, accès mémoire,
compteurs matérielle.



iv

Abstract:

A crucial step in the process of application performance analysis is the accurate
detection of program bottlenecks. A bottleneck is any event which contributes to
extend the execution time. Determining their cause is important for application
developpers as it enable them to detect code design and generation flaws.

Bottleneck detection is becoming a difficult art. Techniques such as event counts,
which succeeded to find bottlenecks easily in the past, became less efficient because
of the increasing complexity of modern micro-processors, and because of the intro-
duction of parallelism at several levels. Consequently, a real need for new analysis
approaches is present in order to face these challenges.

Our work focuses on performance analysis and bottleneck detection of compute
intensive loops in scientific applications. We work on Decan, a performance analysis
and bottleneck detection tool, which offers an interesting and promising approach
called Decremental Analysis. The tool, which operates at binary level, is based on
the idea of performing controlled modifications on the instructions of a loop, and
comparing the new version (called variant) to the original one. The goal is to assess
the cost of specific events, and thus the existence or not of bottlenecks.

Our first contribution, consists of extending Decan with new variants that we
designed, tested and validated. Based on these variants, we developed analysis
methods which we used to characterize hot loops and find their bottlenecks. We
later, integrated the tool into a performance analysis methodology (Pamda) which
coordinates several analysis tools in order to achieve a more efficient application
performance analysis.

Second, we introduce several improvements on the Decan tool. Techniques
developed to preserve the control flow of the modified programs, allowed to use the
tool on real applications instead of extracted kernels. Support for parallel programs
(thread and process based) was also added.

Finally, our tool primarily relying on execution time as the main concern for its
analysis process, we study the opportunity of also using other hardware generated
events, through a study of their stability, precision and overhead.

Keywords: performance analysis, binary rewriting, dynamic code analysis,
static code analysis, code optimization, parallelism, memory accesses, hardware
counters.



Contents

1 Introduction 1

2 Background on Micro-Processor Architecture 5
2.1 Uni-core Design details . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 Multiple Issue Processors . . . . . . . . . . . . . . . . . . . . 7
2.1.3 Vector Extensions . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.4 Out-Of-Order Execution . . . . . . . . . . . . . . . . . . . . . 8
2.1.5 Caches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Multi-core Designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.1 Multiple Cores[92] . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.2 Cache Organization[21] . . . . . . . . . . . . . . . . . . . . . 12
2.2.3 Shared Memory Support[89] . . . . . . . . . . . . . . . . . . . 13

2.3 GPUs and Many-Core Designs . . . . . . . . . . . . . . . . . . . . . 13
2.3.1 Graphical Processing Units (GPUs) . . . . . . . . . . . . . . 13
2.3.2 Many-cores . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Design Example: Intel Sandy-Bridge Architecture . . . . . . . . . . . 14
2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Application Performance Analysis 17
3.1 Performance Life-cycle . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2.1 Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2.2 Performance Pathologies and detection methods . . . . . . . . 19

3.3 Performance Evaluation Tools . . . . . . . . . . . . . . . . . . . . . . 23
3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.5 summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4 Differential Analysis 27
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2 Motivating Example . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.3 Decan: Practical Design . . . . . . . . . . . . . . . . . . . . . . . . 30

4.3.1 Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3.2 Decan Target . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.3.3 Variants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.3.4 Semantic Alteration . . . . . . . . . . . . . . . . . . . . . . . 32
4.3.5 Performance Monitoring . . . . . . . . . . . . . . . . . . . . . 32
4.3.6 Parallel Codes . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.4 Decan Variants Design . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.4.1 Instruction Subsets . . . . . . . . . . . . . . . . . . . . . . . . 33
4.4.2 Transformations . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.4.3 Decan Variants . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.5 Differential Analysis: Main Analysis Methods and Metrics . . . . . . 38
4.5.1 Observable Events . . . . . . . . . . . . . . . . . . . . . . . . 39
4.5.2 Saturation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39



vi Contents

4.5.3 LS/FP Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.5.4 Data Location and Return On Investment . . . . . . . . . . . 42
4.5.5 Expensive Instructions . . . . . . . . . . . . . . . . . . . . . . 43
4.5.6 Array Cost Analysis . . . . . . . . . . . . . . . . . . . . . . . 44

4.6 Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.6.1 Application Characterization and Analysis: RTM application 47
4.6.2 ACA: EUFLUXm Application . . . . . . . . . . . . . . . . . . 49
4.6.3 L1 Load Bandwidth Evaluation . . . . . . . . . . . . . . . . . 50

4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5 Pamda: Performance Assessment using Maqao toolset and Dif-
ferential Analysis 53
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.2 Motivating Example . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.3 Ingredients: Main Tool Set Components . . . . . . . . . . . . . . . . 57

5.3.1 MicroTools: Microbenchmarking the Architecture . . . . . . . 58
5.3.2 Cqa: Code Quality Analyzer . . . . . . . . . . . . . . . . . . 58
5.3.3 Decan: Differential Analysis . . . . . . . . . . . . . . . . . . 58
5.3.4 Mtl: Memory Tracing Library . . . . . . . . . . . . . . . . . 59

5.4 Recipe: Pamda Tool Chain . . . . . . . . . . . . . . . . . . . . . . . 60
5.4.1 Hotspot identification . . . . . . . . . . . . . . . . . . . . . . 60
5.4.2 Performance overview . . . . . . . . . . . . . . . . . . . . . . 60
5.4.3 Loop structure check . . . . . . . . . . . . . . . . . . . . . . . 61
5.4.4 CPU evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.4.5 Bandwidth measurement . . . . . . . . . . . . . . . . . . . . . 62
5.4.6 Memory evaluation . . . . . . . . . . . . . . . . . . . . . . . . 63
5.4.7 OpenMP evaluation . . . . . . . . . . . . . . . . . . . . . . . 63

5.5 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.5.1 PN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.5.2 RTM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6 Decan: Assembly Level Re-writing Challenges and Limitations 69
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.2 Decan Technical Design . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.2.1 General Overview of the Maqao Framework . . . . . . . . . 70
6.2.2 Decan architecture . . . . . . . . . . . . . . . . . . . . . . . 73

6.3 Dealing with Control Flow issues in Decan . . . . . . . . . . . . . . 74
6.3.1 Data Dependent Control Flow . . . . . . . . . . . . . . . . . . 75
6.3.2 In-vitro Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.3.3 In-vivo Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.4 Extensions for Parallel Applications . . . . . . . . . . . . . . . . . . . 78
6.4.1 Shared Memory Codes . . . . . . . . . . . . . . . . . . . . . . 78
6.4.2 Distributed Memory Codes . . . . . . . . . . . . . . . . . . . 80

6.5 Code Alteration Side Effects and Workarounds . . . . . . . . . . . . 80
6.5.1 Code Layout Sensitivity . . . . . . . . . . . . . . . . . . . . . 81
6.5.2 Data Dependence Alteration . . . . . . . . . . . . . . . . . . 83
6.5.3 Instructions with variable Latencies . . . . . . . . . . . . . . 85



Contents vii

6.5.4 Instrumentation Side Effects . . . . . . . . . . . . . . . . . . . 86
6.5.5 Floating-point Exceptions . . . . . . . . . . . . . . . . . . . . 86
6.5.6 Wrap-up: Side Effects Sources . . . . . . . . . . . . . . . . . . 87

6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

7 Tackling Measurement Precision, Stability and Probe Intrusive-
ness 89
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
7.2 Events of Interest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
7.3 Experimental Methodology . . . . . . . . . . . . . . . . . . . . . . . 90
7.4 Measurement Stability . . . . . . . . . . . . . . . . . . . . . . . . . . 91

7.4.1 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
7.5 Measurement Precision . . . . . . . . . . . . . . . . . . . . . . . . . . 94

7.5.1 Small Regions . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
7.5.2 Probes Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . 96

7.6 Probe Intrusiveness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
7.6.1 Relationship Between Event Type and Probe Intrusiveness . . 99
7.6.2 Reducing Probe Intrusiveness With Decan . . . . . . . . . . 100
7.6.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . 101

7.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

8 Conclusions 105
8.1 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

8.1.1 Tool Development . . . . . . . . . . . . . . . . . . . . . . . . 106
8.1.2 Research Topics . . . . . . . . . . . . . . . . . . . . . . . . . . 107

Bibliography 109





List of Figures

2.1 Five stages pipeline [49] . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Vector operations on Intel architectures. The two technologies illus-

trated are SSE(Streaming SIMD Extensions) and Advanced Vector
Extensions (AVX) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Processor with level three cache[13] . . . . . . . . . . . . . . . . . . 10
2.4 Common cache organizations, with two or three levels of cache . . . 12
2.5 Intel Sandy Bridge µarchitecture pipeline functionality [7] . . . . . . 15

4.1 Memory and Floating-point streams analysis with the variants LS and
FP. The experiments are performed on 4 cores . . . . . . . . . . . . . 29

4.2 Division and reduction impact analysis with the variants NO_DIV and
NO_RED. The experiments are performed on 4 cores . . . . . . . . . . 29

4.3 Execution time and saturation curves for NR codelet mprove on
different data sizes for a four cores execution. . . . . . . . . . . . . . 40

4.4 Execution time and saturation curves for NR codelet mprove on
different data sizes. Results are for a four cores execution. . . . . . 42

4.5 Execution time and saturation curves for NR codelet mprove on
different data sizes for a four cores execution. . . . . . . . . . . . . . 43

4.6 Execution Slowdown of a version of the loop instrumented to perform
FMT over its original version for BALAN_3 codelet on different data
sizes. The four levels of slowdown correspond from left to right to
data being in L1, L2, L3 caches and RAM. . . . . . . . . . . . . . . 47

4.7 Execution time in cycles for the hottest loops of the RTM kernel. . 48
4.8 LS/FP saturations for the hottest loops of the RTM kernel . . . . . 48
4.9 DL1 saturations for the hottest loops of the RTM kernel . . . . . . . 49
4.10 The left figure illustrates the source code of the matrix-vector product

in EUFLUXm. The right figure shows the individual contribution in
the overall execution time of memory instructions targeting each array
of the EUFLUXm routine. Results are presented for 2 and 4 cores. . 50

5.1 A Fortran source code sample and its main performance pathologies
highlighted in pink. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.2 Comparing static estimates obtained by Cqa with dynamic measure-
ments performed on different code variants generated by DECAN of
both the original and the vectorized versions: REF is the reference
binary loop (no binary modifications introduced by DECAN), FP
(resp. LS) is the DECAN binary loop variant in which all of the Load-
/Store (resp. FP) instructions have been suppressed, REF_NSD
(resp. FP_NSD) is the DECAN binary loop variant in which only
FP sqrt and div instructions (resp. all of the Load/Store and FP
sqrt/div instructions) have been suppressed. The y-axis represents
the number of cycles per source iteration: lower is better. . . . . . . 56

5.3 Cqa output. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.4 Pamda overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60



x List of Figures

5.5 Performance investigation overview. T means the condition is True,
otherwise it is False (F) . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.6 Detecting structural issues. . . . . . . . . . . . . . . . . . . . . . . . 61
5.7 DL1 subtree: CPU performance evaluation. . . . . . . . . . . . . . . 62
5.8 LS subtree: Memory performance evaluation. . . . . . . . . . . . . . 63
5.9 OpenMP performance tree: STD represents the standard deviation

between threads while the OVH branch stands for OpenMP Overhead
evaluation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.10 Streams analysis on PN. The REF curve corresponds to performance
of the original code. The LS (resp. DL1) curve corresponds to the
Decan variant where all FP instructions have been suppressed (resp.
all data accesses are forced to come out of L1). . . . . . . . . . . . . 64

5.11 Group cost analysis on PN. Each group curve corresponds to perfor-
mance of the loop while the target group is deleted. The original code
performance (REF) is used as a reference. . . . . . . . . . . . . . . . 65

5.12 Evaluation of the cost of cache coherence protocol. The S2L variants
show similar performance as their corresponding reference versions.
The NO_STORE variants also show similar performances, except for
two loops which present a relatively non negligible store cost. . . . . 66

6.1 The Maqao framework architecture . . . . . . . . . . . . . . . . . . 70
6.2 Decan tool workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.3 Flowchart showing the logic of the code generated by Decan for the

instance mode. As long as the loop call i is not reached the original
version of the loop is executed. Once the loop call is reached, the
transformed version of the loop is activated. The program is ended
at loop exit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.4 Flowchart showing the logic of the code generated by Decan for the
recovery loop mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.5 Flowcharts showing the logic of the code generated by Decan for
the two openMP operatory modes. Flowchart (A) illustrates the case
where all threads execute the same variant, and Flowchart (B) illus-
trates the case where different threads may executes different Decan
variants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.6 DL1,FP and LS variants on the four of the hot loops of the BT bench-
mark. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.7 Stream variants on 32 processes of the PN application . . . . . . . . 81
6.8 Performance of the REF, LS(ANMB), LS(AN1B) and LS variants for the

NR codelet toeplz_4 on a low frequency execution . . . . . . . . . 82
6.9 Performance of the REF, LS(ANMB), LS(AN1B) and LS variants for the

NR codelet toeplz_4 on a high frequency execution . . . . . . . . . 82

7.1 For each event, the stability of all data size points for all the NR
codelets of the test suite . . . . . . . . . . . . . . . . . . . . . . . . . 94

7.2 hqr_12 codelet source and binary codes. . . . . . . . . . . . . . . . . 95
7.3 Evolution of the number of measured L1D_REPLACEMENT events per

iteration following data size for balanc codelet. . . . . . . . . . . . 96



List of Figures xi

7.4 Evolution of the number of measured
MEMLOAD_UOPS_RETIRED_L1_HIT events per iteration following
data size for balanc codelet. . . . . . . . . . . . . . . . . . . . . . . 96

7.5 For each event, the distribution of the smallest event count starting
from where the real and reference measures match . . . . . . . . . . 97

7.6 Minimum cycles count for which the real measure matches the ref-
erence measure for heavy measurement method that accesses the
CPU_CLK_UNHALTED_CORE counter (CCUC) and light mea-
surement method using rdtsc. Results are shown for 17 NR codelets. 98

7.7 Average error reduction and error increase after the subtraction of
events generated by the probes . . . . . . . . . . . . . . . . . . . . . 101

7.8 Ratio of successful overhead corrections (relative error <0,05) among
error reductions (error increase cases are not taken into account) . . 102





List of Algorithms

1 Code example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2 LS/FP_analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3 Polaris (MD) loop 2937 source code . . . . . . . . . . . . . . . . . . . 51
4 Reference measures . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5 Real measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91





List of Tables

3.1 A few typical performance pathologies. . . . . . . . . . . . . . . . . . 20
3.2 Performance pathologies detection with static analysis techniques. . . 21
3.3 Performance pathologies diagnosis with simulation techniques . . . . 21
3.4 Performance pathologies diagnosis with dynamic time profiling tech-

niques. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.5 Performance pathologies detection with hardware counters based

techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.1 Assembly code of NR codelet SVDCMP_13 (SSE version). . . . . . 33
4.2 Advanced data-flow analysis tracks the symbolic values of registers.

Based on registers value it is then possible to infer which instructions
are targeting the same data structure. Such instructions are coalesced
within groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.3 Operands order change for a store instruction (the instruction is
transformed into a load). . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.4 Source operand deletion of a vector multiplication instruction (the
instruction is transformed into a load). . . . . . . . . . . . . . . . . . 36

4.5 Vector multiplication instruction with a load operand transformed
into a simple load instruction. . . . . . . . . . . . . . . . . . . . . . . 36

4.6 Vector multiplication instruction with a load operand to which a
prefetch instruction is added. . . . . . . . . . . . . . . . . . . . . . . 36

4.7 Group detection results through both grouping static analysis and
FMT runtime analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.8 Results of group reconstruction for EUFLUX application with the
use of both static and dynamic (FMT) analyzes. The cost of each
analysis in slowdown over original execution time is shown . . . . . . 50

4.9 Stream analysis for loop 2937 of POLARIS (MD) . . . . . . . . . . 51
4.10 Effect of L1 cache bandwidth reduction on performance for loop 2937

of POLARIS (MD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.1 A few typical performance pathologies. . . . . . . . . . . . . . . . . . 55
5.2 Decan variants and transformations. . . . . . . . . . . . . . . . . . . 59
5.3 Bytes per cycle for each memory level (Sandy Bridge E5-2680). . . . 62
5.4 PN Mtl results for the three most relevant instruction groups. . . . 65

6.1 Example of transformation which alters data dependency between
instructions. The resulting instruction (V1) adds new dependencies
whereas (V2) preserves the original ones . . . . . . . . . . . . . . . . 83

6.2 Code fragment of a loop extracted from POLARIS application. With
an emphasize on initial and added dependencies on some instructions
after transformation application . . . . . . . . . . . . . . . . . . . . 84

6.3 Comparison between the performance of REF variant and two ver-
sions of FP variant . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.4 Creation of an FP variant on a code which contains a division operation 85
6.5 Application of FP stream transformation on a code which contains a

division operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86



xvi List of Tables

7.1 List of hardware counters of interest, available in the Intel Sandy-
Bridge micro-architecture . . . . . . . . . . . . . . . . . . . . . . . . 90

7.2 Expected values for the approximation of l_val following the type of
interaction between probe and loop events. . . . . . . . . . . . . . . . 101



Chapter 1

Introduction

General context

How to complete the execution of a piece of code as fast as possible has always
been a primary concern since the emergence of computing machines. This goal is
tackled from several perspectives by different actors: hardware vendors seek to pro-
vide designs that can be efficiently exploited, programmers focus on algorithms more
efficient in the exploitation of underlying architecture, compiler developers attempt
to polish and optimize the written code and performance analysts try to find and fix
performance issues affecting the final code. We subscribe to the later category and
we also focus on HPC (high Performance Computing). HPC is characterized,on the
software side, by major simulation programs for various domains(crash simulations,
thermodynamics, molecular chemistry, etc), and on the hardware side, by the use
of supercomputers, the biggest computing machines ever made.

The time to completion (time to finish the task or a program) is important in
HPC. In his presentation, Tadashi Watanabe, Project Leader of Next-Generation Su-
percomputer R&D Center RIKEN and designer of the K supercomputer(the world´s
fastest supercomputer in 2011 and 4th fastest at the time of this writing) stated,
two months after the Fukushima nuclear disaster in Japan, that the simulation of
the tsunami wave took 2 hours with their fastest supercomputer at the time of the
catastrophe, and that the same simulation only takes 10 minutes with the K super-
computer. Knowing that it took the tsunami approximatively 50 minutes to reach
the nuclear power plant, he argued that the use of K would have given some time
to start reacting to it.

However, recent years recorded new turns in processor evolution, uni-core proces-
sors were deprecated in favor of multi-core processors. Modern day supercomputers
are clusters of processors, connected with either standard or dedicated communi-
cation networks, hence allowing thousands of processor cores to be exploited in
parallel. This raised new challenges: energy consumption, for example, becomes
a primary concern (the most powerful supercomputer at this time consumes near
17,808 KW [16]). Therefore, the energy consumed to complete the task becomes
another goal which usually holds a trade-off relationship with the first one.

On the application side, several programming paradigms emerged. We thus
find a widespread use of distributed memory models, notably with the use of the
Message Passing Interface MPI [47]). They aim to exploit the parallelism offered
by a high number of processors connected with a communication network. At node
level, the use of shared memory models is common notably with technologies such
as OpenMP [30] and Intel TBB [84]. Finally, at core level, we heavily rely on
optimizing technology of compilers such as GCC [6] or ICC [10]. The objective is
there to design a code generation scheme which allows to make the best use of the
power offered by the hardware.



2 Chapter 1. Introduction

Providing powerful hardware is a valuable asset to achieve high performance.
However, the aggregation of more computing power is not a solution in itself, due to
the severe technical limitations such as communication latency and power consump-
tion, as well as software limitations such as non-scaling algorithms. Additionally,
compilers contribute to better performance, but by becoming too complex, they
fail to find the optimal combination of optimizations. Performance analysis tools
complete the cycle by giving feedback on the nature of performance bottlenecks and
their locations.

Application Performance Analysis

Performance bottlenecks in HPC applications can be located at various levels.
In a typical parallel application, they are generally ordered according to the granu-
larity at which they occur: i) inter-node bottlenecks are at the highest granularity,
they mainly concern communications between different processors, load balancing,
synchronization, ii) intra-node bottlenecks are in a midst granularity and cover all
intra-node interactions such as load balancing and data sharing between threads, iii)
core bottlenecks are found at the lowest granularity and cover the good exploitation
of hardware (vectorization, data locality, etc).

Each level of granularity has its own set of analysis techniques. For inter-node
bottlenecks, the analysis is in general done through source code instrumentation.
This does not affect the normal behaviour, the difficulties mainly being to handle
the volume of collected data. As far as intra-node and core issues are concerned,
the focus is put on fine grain bottlenecks. They are the direct effects of interaction
between the code and the underlying architecture. Hardware related bottlenecks are
very sensitive. A simple probe which monitors cache effects in the L1, can generate
memory references and thus bias the result. Hardware vendors included in their
designs what is known as performance monitoring units (PMUs), a set of hardware
devices which monitor several micro-architectural actions (cache hits and misses,
branch mis-predictions, number of instructions dispatched in each execution port).
These made analysis tools less intrusive. However, they present some disadvantages
too. The counters differ in their semantics from architecture to architecture and
are not well documented. But most importantly, in the majority of cases, they only
assess quantitive date, no qualitative such as the weight in terms of performance
issues. They answer the question:"how often a particular event occured but give
no information on how it affected performance". The number of occurences is an
interesting metric to characterize code fragments, but it fails to determine the impact
of an event in a context where events may occur in parallel (the impact of an event
can be partially or completely masked), which is the case in modern architectures
(e.g. out-of-order execution and multi-threading).

Analysis methods are diverse too, in the previous paragraph we supposed that
the analyses are performed on the program at runtime, the set of techniques based on
this approach are gathered under the measurement category. It is also the category
to which our work subscribes. The other two notable categories include simulation
and modeling.

Contributions

Our work also includes measurement techniques. Traditional measurement and



3

instrumentation techniques rely on pure observation of the events. We believe that,
at such small scale, it is difficult for a performance tool, given the complexity of
modern architectures, to associate a weight (or cost) to a particular event (that could
be a bottleneck). Our work starts from the base idea of event idealization, where a
version of the code is created in which the event (e.g. memory reference) is idealized
(suppressed), the performance change between the modified and original versions
of the code indicates the impact of the event. The idea was first introduced with
a tool called Decan [57]. We propose to continue the development of the concept
further to target more performance issues and broaden its use beyond application
performance analysis.

With our research we make the following contributions:

New bottleneck identification techniques: we conceived, tested and
validated new Decan variants that enabled us to identify performance bottlenecks.
We also, redefined the concepts of the tool in a more abstract way in order to use
them more easily on other architectures.

Moving from In-Vitro to In-Vivo mode: the previous version of the tool
operated on extracted fragments of code (in-vitro mode). We developed techniques
to use the tool at runtime directly on the loops of real industrial applications
(in-vivo mode).

Performance assessment methodology: we use the flexibility of the
technique and its characterization capabilities to make it play a central role in
a methodology, aiming at coordinating several analysis tools and making them
collaborate in bottleneck investigation. There is no need for a heavy tool when a
lighter one can be used to investigate an issue.

Tackling measurement issues: we demonstrate that Differential Analysis
can be applied to metrics other than time. To achieve that, we study how accurate
and reliable hardware counters can be.

Outline

This dissertation is organized as follows:

• Chapter 2 discusses background and related work in the field. We review the
important micro-architectural components in a modern micro-processor.

• Chapter 3 provides material for bottleneck detection by outlining well-known
intra-node performance pathologies as well as the common diagnosis tech-
niques.

• In Chapter 4 we introduce the building blocks that enable Differential Analysis
as well as the analyses it provides.

• Chapter 5 builds an analysis methodology in which tools of different natures
are put together, with Decan as a central tool for coordination.



4 Chapter 1. Introduction

• In Chapter 6 we present some of the technical challenges a tool such as Decan
raises, and discuss how we handled them.

• Chapter 7 addresses measurement precision, stability and probes instrusive-
ness. It starts with an analysis and a classification of the most commonly
monitored events and proposes an overhead reduction technique for the tar-
geted events.

• Future work suggested and motivated by our research is outlined in Chapter
7 and finally, Chapter 8 presents our conclusions.



Chapter 2

Background on Micro-Processor
Architecture

Processor design has seen major developments in recent years. The focus on uni-
core processors favored the development of complex and powerful designs as well
as performant memory hierarchies. A sustained increase in processing speed could
be achieved by shrinking transistor size, but problems such as die heat rose, which
made further shrinking too costly, Therefore, the design trend shifted toward multi-
core designs in order to achieve the desired performance needs. In addition to
uni-core mechanisms, Multi-cores add another level of complexity due to inter-core
parallelism. Furthermore, processors need to access the data stored in a central
memory outside the processor die. This task is critical and has been of primary
concern in processor designs too. It leads to the development of smaller memories
close to the processor called caches.

The present chapter reviews some important processor micro-architectural de-
tails including those of the Intel Sandy-Bridge platform as it is the main architecture
on which we tested and validated our work.

We however note that the notions introduced within the chapter are by far
not exhaustive, and that specialized books [49] provide richer and more complete
material.

2.1 Uni-core Design details

A Uni-core processor is based on a computer architecture that has a single processing
unit. In this design, a program counter sequences the work by executing instructions
one-by-one. The current instruction has to be finished before the next one starts.
This ensures a sequential execution of programs. Program data are stored in an
external central memory, and circulate between it and the processor through a bus.

Several improvements were set up to tune the base design in order to achieve
better performance. The exploitation of different forms of parallelism allowed to
increase instructions throughput. Fast access to data being critical to performance,
the addition of several levels of caches shortened the time to access data. In the
current section we review some of the most significant improvements.

2.1.1 Pipeline

Pipelining is an implementation technique which consists of dividing the instructions
execution process into several stages. It allowes several instructions to be executed
at the same time. This is achieved by leting each isntruction to be in a different
stage of the pipeline at a given clock cycle. The technique takes advantage of the
opportunity of executing in parallel various actions within an instruction. Pipelining
offers the advantage of keeping all portions of the processor occupied. By increasing
the amount of useful work done, it increases the throughput of instructions.



6 Chapter 2. Background on Micro-Processor Architecture

Figure 2.1 shows a 5 stages pipeline of a MIPS processor which uses a RISC
instruction set [49]. In this architecture, an instruction passes through the following
stages to complete execution:

• Instruction Fetch (IF): the next instruction to execute is fetched from memory

• Instruction Decode (ID): decodes the fetched instruction. The decoding rec-
ognizes the opcode as well as the operands the instruction uses.

• Execution (EX): Executes the instruction. The execution is handled by the
ALU (arithmetic and logic unit), if the opcode corresponds to a memory op-
eration than the effective address is computed, otherwise, the operation is
performed on the decoded operands

• Memory Access (MEM): if the operation is a load, the operand is read from
memory, an if it is a store, the content of the register operand is written to
memory

• Write-back (WB): if the operation produces results, these are written back to
the register file.

Figure 2.1: Five stages pipeline [49]

The above pipeline example remains simple compared to modern pipelines.
These have more execution stages, some of which can be complex, hence having
a latency of more than one cycle. The Sandy-Bridge presented in Section 2.4 gives
an overview of such pipelines.

But pipelining generally presents disadvantages too, the most notable being[80]:

• Increased hardware complexity which generates resource conflicts, control de-
pendency and data dependency.



2.1. Uni-core Design details 7

• Pipeline stalls: due to what is called pipeline hazards (data hazards, disrupted
control, etc). They prevent smooth execution of the pipeline by causing flows
(bubbles) in it.

2.1.2 Multiple Issue Processors

Multiple issue processors (also called Superscalar architectures) are architectures
where multiple instructions are issued at the same time. The goal is to achieve a
bigger instructions per cycle (IPC) ratio by exploiting the independence available
between instructions, introducing what is called instruction level parallelism. In
general, multiple issuing is combined with pipelining in order to enable several in-
structions to be simultaneously initiated within a pipeline stage, in other words a
superscalar architecture can be seen as several pipelines working at the same time.
The same concept is applied at the pipeline stage level also (e.g. multiple functional
units), allowing several operations of the same type to BE executed in parallel.
Several types of superscalar architectures have been desgned. We find: statically
scheduled superscalar architecture, VLIW (Very Long Instruction Word) and dy-
namically scheduled superscalar architecture. The later one is the most widespread
in current processor designs, it is also the one we focus on within our study.

Superscalar architectures suffer from the same issues as pipelines, namely: re-
source conflicts, control dependency and data dependency.

2.1.3 Vector Extensions

Vector extensions are parts of the functional units of the processor which work on
packed data. A subset of the Instruction set architecture (ISA) allows to exploit
these units. By doing so, the processor has the ability to exploit data parallelism
when possible. In order to expose such parallelism to the processor, the compiler
constructs vectorized loops. When the vectorization is total, all loads, stores and
ALU instructions operate on vectors of data, whereas when it is partial only part of
of the instructions operate on vectors of data.

Figure 2.2: Vector operations on Intel architectures. The two technologies illustrated are
SSE(Streaming SIMD Extensions) and Advanced Vector Extensions (AVX)



8 Chapter 2. Background on Micro-Processor Architecture

Figure 2.2 illustrates an addition operation performed using two technologies
of vector extensions implemented in the Intel x86 micro-architecture: 1)Streaming
SIMD Extensions (SSE) which works on 128 bit long vectors and is able to pack
four elements in single precision (32 bit each) or two elements in double precision
(64 bit each), and 2) Advanced Vector Extensions (AVX) which is the successor of
SSE on newer Intel micro-architectures. and operates on arrays with double the
size of those of the former technology, hence allowing up to eight elements in single
precision and four in double precision.

Vector extensions technology is present in other architectures under other names.
AMD uses both SSE and AVX in addition to its own technology 3D Now [1], whereas
ARM developed its own technology called NEON[5].

2.1.4 Out-Of-Order Execution

Out-Of-Order execution is a technology which enables instructions to not follow
the first in first out (FIFO) strategy. Instead, they are buffurized in what is called
an instruction window. Within this window, each instruction whith ready operands
is dispatched to free functional units. Hence, non-ready instructions cannot block
the ready instructions that arrive after them. Once the execution finishes, the
processor ensures an in-order commit (WB) of instructions in order to preserve the
correct program semantic. In general, out of order execution starts in the execution
stage (EX) of the pipeline (see Figure 2.1). The following elements play a key role
in an out-of-order engine:

Instruction buffer: when an instruction terminates its passage in a pipeline
stage, it is recorded in a temporary register called alatche. Latches enable instruc-
tion preservation in case of pipeline stalls. In an in-order pipeline one latche is
needed in each stage because only one instruction can be active. In an out-of-order
context however, several instructions might be active within a single stage (e.g.
EX stage). Therefore, a buffer of instructions at the entry of the Out-of-order
area substitutes the latche. The buffer may have different designations but its
functionality is the same: providing an area where parallel polling of instructions is
possible.

Register renaming: one of the big issues of OOO execution is the handling
of data dependencies. Of the three possible data dependencies (WAW, WAR and
RAW), only Reads after Writes (RAW) are true dependencies, WAW (writes after
writes) and WAR (writes after reads) are possible because the same register name
refers to totally independent values. This is due to the fact that there are not
enough register IDs in the ISA. Register Renaming is a mechanism that allows
to rename register IDs in order to eliminate WAW and WAR dependencies. The
renaming mechanism has been first described by Tomasulo in [91], and most
modern processors use a variant of that process.

Speculation: conditional branch instructions are problematic for the out-of-
order engine and the pipeline in general. Until the instruction itself is executed,
the next path is not known, therefore it is not possible to know what instructions
should enter the pipeline next. In such situations, either no instruction coming
after a branch instruction is executed and even prefetched until the outcome of



2.1. Uni-core Design details 9

the branch is known, or the processor speculates that one of the two paths will
be taken and acts as if it was really the case. The branch prediction mechanism,
called branch predictor, helps the prefetcher to determine which instruction stream
should be fetched next. However, in the case of a bad prediction (also called
mis-prediction), the execution of all instructions which arrived afte rthe branch
is invalidated, the pipeline is flushed and execution resumes from the right path.
Although instructions executed speculatively are not committed until the outcome
of the branch instruction is determined, otherwise, it would not be possible to
cancel their effects.

The out-of-order engine introduces issues also. Most notably, if the instruction
window (which is a buffer) is full, it becomes impossible to execute new instructions
until new slots are free. In the case of long dependency chains between instruc-
tions, with costly memory accesses, the waiting time to enter the window can be
considerable for the newly decoded instructions.

2.1.5 Caches

As processors evolved and benefited from smaller circuitry, their working frequency
has grown faster than the frequency with which memory circuitry operates. Indeed,
the two being on different chips, processor technology grew faster than memory
technology. As a result, the main memory data access latency became relatively
bigger with each technology jump. This problem is commonly known as the memory
wall [100].

In order to decrease this performance gap, small and fast memories known as
caches were introduced. These are located between the processor and the main
memory, they can be organized in several levels and have different possible internal
organizations and characteristics.

2.1.5.1 Cache Hierarchies

Several levels of cache can be placed between the processor core and the main
memory. caches close to the processor core are faster and smaller, those which are
far are bigger and slower. Furthermore, a cache can be either split or unified. In
a split cache, instructions are held in an instructions cache(I-cache) and data in a
data cache(D-cache). On the other hand, a unified cache holds both instructions
and data.

A data request from the core is first passed to the L1 cache (the closest to the
core). If the data is found there, it is called a cache hit, if not, it is called a cache
miss. In the later case, the request is passed to the L2 cache, if it is found their,
then data are passed to the L1, otherwise the request is passed to the L3 cache, the
process is repeated until the data are found in a lower cache level, or the request
reaches the main memory, and the data is transfered from there to the L2 and L1
caches. Figure 2.3 illustrates this system.

2.1.5.2 Cache characteristics

We enumerate five questions which drive cache caracteristics:

1. Where to put data within the cache: we identify two extreme positions, either
the data have only one location in the entire cache, or any location can be



10 Chapter 2. Background on Micro-Processor Architecture

Figure 2.3: Processor with level three cache[13]

used. The former solution is known as direct mapped caches, and the second
as fully associative caches. A third category, known as set-associative caches,
is a trade-off between the two, and allows a number of caches lines to be placed
in one location.

2. What to do when the cache is full : when the cache is full and new data need to
be placed in it, then an already existing cache line should be evicted. Several
eviction techniques are possible: least recently used (LRU), most recently used
(MRU), random replacement (RR), etc.

3. How to identify data within the cache: only part of the address of data is
needed for its placement in cache, therefore, the rest of the address is recorded
in a tag register tied to the cache line. More over, mechanisms to verify the
validity of data within the cache lines are also needed.

4. How to manage a case of write: unlike a read which requires just to find
and bring data, a write includes not only findind data but propagates its new
value within the entire memory hierarchy. We enumerate two known write
strategies: write-back and write-through.

5. How to prefetch data chunks: includes all the matters of predicting data that
is likely to be used: how much to bring, to which cache level data should be
prefetched, how many parallel prefetch streams are needed.

2.1.5.3 Data locality

Caches greatly enhance data access latencies. However, as any sophisticated hard-
ware wiring, they constitute a limited resource, which puts more pressure on the
software part in order to exploit them efficiently. We identify two important prop-
erties the software needs to take into account:

• temporal locality: a referenced memory location is likely to be referenced again
in the near future.



2.2. Multi-core Designs 11

• spacial locality: if a memory location is referenced then it is likely that a
nearby location will be referenced in the near future.

2.2 Multi-core Designs

Moore´s law, a prediction dating from early 80’s and stating that processor speed
would double each 1.5 years was no more verified in early 2000. Processor per-
formance increases have begun to slow down. Chip performance attained a 60 %
increase per year in the 1990s but decreased to 40 % per year from 2000 to 2004,
We could build a slightly faster chip, but it would cost twice the die area while gain-
ing only a 20 percent speed increase, noted Marc Tremblay, chief architect for Sun
Microsystems Scalable Systems Group. The performance increase was sustained
because of the possibility to make smaller transistors, however, transistors cannot
shrink forever. Even now, as transistor components grow thinner, chip manufactur-
ers have struggled to cap power usage and heat generation, two critical problems. As
a result, chip manufacturers started to build chips with multiple cores, less powerful
but cooler.

Intrinsically, this added many design parameters: number of cores, symmetric-
ity of the cores, memory organization, core interconnects and power management.
Moreover, some software programs needed to be rewritten in order to take advantage
of the parallelism offered by multiple processing units, raising new questions: what
programming paradigm should be used, and how to transform the initial sequential
algorithms into parallel algorithms, which are able to utilize efficiently the multiple
processing units.

The existence of multiple cores on a single die introduces new challenges related
to internal communications and common resource sharing. First, cores should be
able to talk or notify each other, hence some sort of a network should be established
between them. Second, in contrast with uni-cores, the external main memory is
now shared between cores, which means that memory access management has to
be more elaborate. Third, if two or more cores run the same program, they would
share the same memory space, moreover, they are likely to access the same memory
cases, which would be in their local caches. Therefore, in order to maintain a global
coherent state of the memory some advanced memory coherency mechanisms are
needed.

2.2.1 Multiple Cores[92]

A multi-core processor can either integrate similar cores (homogeneous), or cores
with differen characteristics (heterogeneous). Most mainstream processors are ho-
mogeneous, examples include: Intel and AMD processors. Heterogeneous proces-
sors, have at least two cores with differences (e.g. ISA, functionalities, performance).
IBM’s Cell [54] is probably the most known example of it. In general, both orga-
nizations contain pipelined, superscalar cores with vector extensions, for a better
exploitation of the ILP. Nonetheless, since in some cases it is hard to exploit such
parallelism due to dependences, one can argue in the favor of structures with an
increased number of less powerful cores, or else in the exploitation of what is called
Simulataneous Multithreading (SMT), which consists of running multiple threads on
the same core at the same time.

More over, recent advances in power management make it possible to control



12 Chapter 2. Background on Micro-Processor Architecture

the frequency of each core independently. The control over core frequency change
enables the user/OS to define custom power consumption policies for the programs

2.2.2 Cache Organization[21]

The multi-core dimension adds some important design decisions to take into account.
Over time, the number of cache levels has increased from two levels L1 and L2 to
three levels L1, L2 and L3 (also called last level cache LLC ). Figure 2.4 gives a
schematic overview of some common organizations. In general, the last level of
cache is shared among cores, hence a core looking for a data first checks its local
cache, if it does not find it, it goes down in hierarchy until it reaches the LLC.
Shared caches bring several advantages: first, the available storage space can be
dynamically allocated among multiple cores, second, only one copy of the data is
needed within the cache, third, LLC is the level in which coherence misses (see
Section 2.2.3) can be resolved. But shared caches imply also that different cores
working on different data sets will interfere with each other. A data sought by
multiple cores necessarily creates contention problems. In contrast, private caches
do not generate interferences between cores on resources, and no contention over
data leading to performance benefits, but have more replicated data and a mis-use
of global memory available if compared with a shared cache.

Figure 2.4: Common cache organizations, with two or three levels of cache

Also, caches can be either centralized or distributed. We can take the case
of a LLC cache for example, along with its controller, it can represent a single
centralized entity from which surrounding cores may extract data, or it can be



2.3. GPUs and Many-Core Designs 13

physically distributed on the chip into banks, each being close to a specific core.
The combination of the core, its private caches and the LLC associated part with
it is called a tile. An on-chip network is used to connect the tiles. This way, if a
private cache of a core performs an access and fails, its request is routed through
the network to the tile where the line is expected to be.

2.2.3 Shared Memory Support[89]

Shared memory support makes it possible for multiple cores to access the same
shared address space, but it raises what are known as coherency problems. A co-
herence problem may arise when multiple cores each have a copy of a datum, in
their caches for example, and at least one of them accesses it with a write. In such
a case, the datum copies from the other core´s caches become stale, resulting in
an incoherent situation. Incoherent situations are resolved through a set of rules
implemented in different parts on the chip. This set of rules is known as coherence
protocol. Known coherence protocols include: MESI[49], MOESI[3], MESIF[45] and
DRAGON[71].

Coherency is part of memory consistency, a larger set of issues about the correct-
ness of data inside memory. Memory consistency models attempt to define shared
memory correctness. In the case of a uniprocessor, this would simply be rules about
loads and stores (memory reads and writes) and how they act upon memory. Only
one correct result among many incorrect ones is found. In the case of a multi-core
processor with shared memory it becomes less obvious. The shared memory consis-
tency model deals with loads and stores of multiple threads, hence multiple correct
behaviors are usually allowed. Applying the rules of consistency models involves
software assistance, which makes them visible to the program. Additionally, hard-
ware assistance through what is called coherency mechanisms and protocols insures
more performance. Though, these are neither crucial nor visible to software, they
prove to be very effective and important in modern designs.

2.3 GPUs and Many-Core Designs

We briefly reviewed some special architectures composed of several processors but
not referred to in the multi-core nomenclature. Classified as accelerators, they kept
their own name.

2.3.1 Graphical Processing Units (GPUs)

Late years recorded the introduction of graphical processing units (GPUs) in the
HPC field. GPUs are adequate and powerful in processing problems which expose
data parallelism. However, they are specialized for that kind of problems, and would
fail to achieve the same performance as a general purpose processor. Therefore,
current supercomputers integrate GPUs as accelerators. Programmers only use
them on kernels which expose a high level of data parallelism.

A GPU is composed of hundreds nay thousands of simple processor cores. The
idea is that each core executes the same instruction but on a different bundle of
data. The cores benefit from local private caches and distant shared ones. Finally,
the main processor communicates with the GPU through the Peripheral Component
Interconnect (PCI).



14 Chapter 2. Background on Micro-Processor Architecture

2.3.2 Many-cores

This kind of architecture has been released by Intel under the name Intel Many
Integrated Core Architecture (Intel MIC Architecture). The architecture integrates
around 50 to 60 processor cores on the same die. The cores are simpler than those
we find on multi-cores, but are much more powerful and integrate 512 bits long
vector registers. It is possible to either use a MIC as an accelerator, in the same
way a GPU is used, or to execute the entire code on it.

2.4 Design Example: Intel Sandy-Bridge Architecture

Figure 2.5 depicts the pipeline of a processor core based on an Intel Sandy Bridge
µarchitecture. All details are extracted from the official Intel optimization manual
for the Sandy-Bridge architecture [7].

The Sandy-Bridge pipeline can be cut into three major areas:

• An In-order front end which fetches instructions and decodes them into micro-
ops (micro operations). The processor being a CISC model, the decoding
process transforms instructions into RISC micro-ops. The front end should
deliver instructions in a continuous manner to the back end either from the
true or the speculated execution path.

• An out-of-order engine. able to dispatch up to six micro-ops per cycle. Micro-
ops are no more executed following program semantics but following data-flow,
where the rename/allocate unit issues a micro-op as soon as its operands are
ready and the adequate hardware resources for it are free.

• An In-order retirement unit which ensures that micro-ops retire in program
order (semantic order).

First, a block of instructions is chosen by the branch prediction unit. The
instructions start their execution in the decode block which is composed essentially
of the following units:

• Instruction cache ICACHE: the first level cache is divided into two inde-
pendent caches, one for data and the second for instructions. The dedicated
instruction cache is able to fetch 16 bytes of data in each cycle.

• Instruction pre-decode: scans the 16 bytes chunk fetched from ICACHE
in order to determine instruction boundaries. Since X86 instructions can be
of variable length, the scanning process becomes more complicated.

• Instruction decode: Four decoding units decode instructions into micro-ops.
It is worth noting that more than up to four micro-ops can be generated by
a single instruction, and only one decoder is able to perform such decoding.
The three others are only capable of decoding one micro-op instruction. De-
coded instructions are directed both to the micro-op queue and to the decoded
ICACHE. Also, decoding in Sandy-Bridge micro-architecture introduces two
important concepts:

– Micro Fusion: consists of fusing multiple micro-ops into a single one
when possible. This has the advantage of saving bandwidth by reducing



2.4. Design Example: Intel Sandy-Bridge Architecture 15

Figure 2.5: Intel Sandy Bridge µarchitecture pipeline functionality [7]

the number of micro-ops forwarded to the OOO engine. An example
of micro-op fusion are instructions that combine load and computation
operations.

– Macro Fusion: consists of merging two instructions into one micro-op
until the end of their execution, this technique enables a reduction of
latency, energy and hardware resources usage. Macro fusion is subject
to some limitations too, for example, if the first instruction comes at the
end of a cache line and the second at the beginning of the next one then
macro-fusion is not possible.

• Decoded ICACHE: is a small cache for micro-ops which stores decoded
instructions and makes them available. ICACHE is composed of 32 sets, each
having 8 ways with and able to hold up to six micro-ops. Micro-op storing is
also subject to some rules, therefore when an instruction cannot be stored in
the cache, it is directly delivered from the decoders. ICACHE automatically
brings major improvements. First energy can be saved by avoiding to fetch and
decode instructions already present in it. Second, in high performance codes
where the front-end with its 16 bytes bandwidth has troubles to keep feeding
the back-end, the more generous ICACHE bandwidth of 32 bytes brings a big
relief.

• Micro-op queue: acts as a bridge between the front-end and the OOO en-
gine. The queue holds micro-ops delivered either from decoders or from the
ICACHE. The queue helps to hide the disturbances that can happen in the



16 Chapter 2. Background on Micro-Processor Architecture

front-end micro-op delivery process by ensuring that four micro-ops are deliv-
ered at each cycle.

• Loop Stream Detector (LSD):is a mechanism that detects small loops in
the micro-op queue, once detected, the loop micro-ops are exclusively delivered
by the micro-op queue, which enables to shut down the upper pipeline stages
(fetch, decode and caches) for the duration of the loop.

At this point, the in-order phase is finished, now, the OOO engine takes micro-op
execution in charge. Its main components are:

• Renamer: removes false dependencies (WAW and WAR) by renaming
source and destination operands of micro-ops with internal micro-architectural
sources and destinations. The renamer also offers some execution capabilities,
such as delivering up to four micro-ops per cycle.

• Scheduler: acts by finding which micro-ops are ready for execution and
dispatches them following a priority order. The scheduler pulls its micro-ops
from a queue called reservation station and checks, for each operands, whether
he source operands are ready or not.

• Execution core: in sandy-Bridge the execution core is superscalar, it con-
sists of three execution stacks, each handling one of the following data types:
general purpose integer, SIMD integer or floating point and X87 (legacy float-
ing point unit of earlier Intel processor generations). Six execution ports are
available, some are dedicated to specific tasks such as port 4 for stores or 2
and 3 for loads/address calculation, the remaining ones (0,1, and 5) are more
general and handle several types of data and operations.

• Retirement: retires executed micro-ops in program order, and handles faults
and exceptions.

2.5 Summary

In the current chapter, we highlighted the design of modern high performance pro-
cessors, we addressed important components and technologies such as the processor
pipeline, the out-of-order engine and memory caches. Second, we introduced multi-
core architecture, along with the added complexity of core communications and
cache coherency. Finally, we presented the details of the Intel Sandy-Bridge micro-
architecture, a widely spread micro-architecture on which we based the majority of
our work.

The performance of an application being a function of both hardware and code
characteristics, this introduction sets the ground for the hardware part. Our next
chapter addresses the issues software faces to overcome hardware complexity and
take advantage of its power. The chapter also addresses specific issues of software
itself, and offers review of application performance analysis in general.



Chapter 3

Application Performance Analysis

Scientific applications need to make the best use of processor resources in order
to achieve better execution time. However, the increasing complexity of modern
processors makes this task harder and harder. As a result, more elaborate perfor-
mance analysis techniques and tools need to be developed and integrated into the
application optimization life-cycle.

in this chapter, we review some typical well-known performance pathologies,
and indicate how the already available performance analysis techniques proceed to
detect them. In section 3.4, we put the light on a number of weaknesses related to
bottleneck detection and impact assessment in the available analysis methods.

3.1 Performance Life-cycle

We recognize three major steps in the performance life-cycle:1) finding the locations
and sources of performance issues, 2) estimating the potential performance gain fol-
lowing bottleneck removal, and 3) selecting and applying the chosen optimizations.
The process is repeated for the new versions of the application.

Given the complexity of the encountered performance pathologies, it is difficult
to fully automate the process with tools which detect bottlenecks, assess the poten-
tial gain and apply optimizations. More over, the analysis and projection phases
can in general be automated but we fail to provide automated solutions for the
majority of optimizations. Several factors contribute to this limitation, the three
most important being first the lack of analysis tool to provide feedback on the high
level code structures involved in performance bottlenecks, second the nature of op-
timizations themselves which need deep code changes, and finally the quality of the
written code which often is poor.

Our work focuses on improving and automating the performance analysis and
bottleneck detection step. The later can be divided into two major phases:

• Bottleneck location identification: consists of performing a characterization of
the application (or a sub part of it) in order to find bottlenecks locations.
The parameters of the characterization depend on the granularity. At node
level, we primarily seek to separate loop nests and identify the characteristics
of each of them. The characterization parameters can be: branches, memory
accesses, data location, compute units use. If the parameters are well chosen,
they may give a hint on the nature of bottlenecks the phase suffers from.

• Bottleneck cause detection: consists, for a given program phase (or code), to
determine what is/are the main factor(s) limiting it from performing better.
The goal is to tie the bottleneck to its source, for example finding that cache
misses are responsible for performance degradation would not be of a help if
we cannot identify the array(s) involved.



18 Chapter 3. Application Performance Analysis

3.2 Performance Evaluation

Performance evaluation is an integral part of the performance analysis cycle. In an
evaluation process, it is important to choose the right technique in order to ensure
a quick detection of performance pathologies.

3.2.1 Techniques

Performance analysis techniques can be divided into three categories: measurement,
simulation and modeling. Despite the fact that the categories are distinct and
independent from each other, they can sometimes be complementary, hence allowing
to build hybrid techniques.

A brief description of each of the three categories is provided below:

3.2.1.1 Measurement

Measurement includes techniques which monitor the various events generated during
the execution of a program. The events can be of various natures: execution time,
memory references, hardware counters, etc. Moreover, the measures of an event can
be obtained with two different measurement methods:

• Tracing : probes are placed at the entry and exit of a code area in order to
measure all occurrences generated by a set of events within the delimited area.
Tracing has the advantage of being precise, but has a limit in monitoring small
code regions due to the overhead introduced by the probes. As it constitutes
also the choice for our measurements, we provide in Chapter 7 a study on the
quality of our measures.

• Sampling : consists of taking event values only at particular points during pro-
gram execution. The points can be either defined as time intervals, particular
points in the code, event counts (threshold) or a combination of the three. In
this method, the probe is located outside of the application code, it is reached
through an interrupt when a sampling point is encountered. Compared to
tracing, sampling is lightweight because it generates less overhead, however,
it also is less precise. Its precision can be controlled to some extent by either
increasing or decreasing the sampling frequency. Decreased frequency provides
low precision and low overhead, whereas increased frequency provides better
precision but adds considerable overhead.

3.2.1.2 Modeling

Consists of mathematical modeling of performance and design issues. Modeling
has many uses: understanding how an application performance will scale given
different problem sizes [68], predicting how an application will perform on other
architectures [68], designing and exploring micro-architecture [72, 41, 55], managing
energy consumption [56].

Within a performance analysis context, modeling is mostly used in application
characterization, because it enables to compute performance without re-simulation
[78], additionally, model parameters enable fast projections and more insight. How-
ever, it presents limitations too, and for some very complex problems the established
model proves to be inaccurate.



3.2. Performance Evaluation 19

3.2.1.3 Simulation

Simulation includes performance analysis techniques built on top of computer ar-
chitecture simulators. A simulator aims at reproducing the entire internal working
of the hardware (and optionally OS), thus it allows to have a full control over what
to observe. Known simulators include: Simplescalar [27] and simic[67].

Simulations of a sub-part of the hardware are also common. Complex issues
related to memory behaviour are for example investigated through a simulation of
the memory subsystem, where a trace of memory references is given in entry to the
simulator.

Simulation may be performed at different accuracy levels depending on the goals.
It is often combined with modeling to produce fast simulators. We distinguish the
following trade-offs[14] in the design of a simulator:

• Full system vs micro-architecture simulators: micro-arcihtecture simulators
only model the micro-architecture, whereas full system simulators model not
only the micro-architecture but the OS as well; they offer a more complete
picture but are slower.

• Functional vs performance simulators: performance simulators provide a more
accurate modeling of the architecture but are slower than functional simula-
tors.

• Trace driven vs execution driven: trace driven simulators run pre-recorded
traces of instructions, which allow a deterministic simulation, whereas execu-
tion driven simulators allow the exploration of speculative execution and OS
effects.

Simulation is used for different purposes such as micro-architecture design and
exploration, debugging and performance analysis. In the later category, simulation
techniques face the following challenges:

• Cycle accurate simulation is considerably slower than native execution.
Whereas simulating a single CPU is thousands of times slower, multiprocessor
simulation is up to a million times slower [99]. Still, Several works targeted
the reduction of simulation time .

• Hardware designers omit to provide the full specifications of their designs, this
directly echoes on the design of the simulators. The tool may give more or
less trustworthy results.

3.2.2 Performance Pathologies and detection methods

We are interested in our study on node level performance bottlenecks. Table 5.1
provides a list of typical performance pathologies of different causes. We generally
use the term pathology to designate an abnormal situation which may or may not
be a limiting factor for performance. The list represents a base ground on which we
can discuss the abilities of bottleneck detection techniques and tools.

3.2.2.1 Static Analysis

Static inspection of the code can be efficient in finding a number of performance
pathologies. The advantage of static analysis is that it is cheap compared to dynamic



20 Chapter 3. Application Performance Analysis

No Pathology Detail

CPU
1 ADD/MUL balance ADD/MUL parallel execution (of fused multiply

add unit) underused
2 Non pipelined execution units Presence of non pipelined instructions: div, sqrt
3 Lack of loop unrolling Significant loop overhead, lack of

instruction-level parallelism
4 Short loop trip count Significant loop overhead, control

instructions are costly
5 Vectorization Unvectorized loop
6 Complex control flow graph Prevents loop vectorization

in innermost loops
7 code alignment If the start of a short loop is not aligned

for example, it may lead to performance loss.
Same goes for succesive branches (See [50]).

8 Full buffers Some critical buffers within the micro processor
lead to performance losses if they are full because of
the pipeline stalls they induce.

Memory
9 Unaligned memory access Presence of vector-unaligned load/store instructions
10 Bad spatial locality Loss of bandwidth and cache

and/or non stride 1 space
11 Bad temporal locality Loss of perf. due to avoidable capacity misses
12 4K aliasing Unneeded serialization of memory accesses
13 Associativity conflict Loss of performance due to avoidable conflict misses
14 High number of memory Too many streams for hardware

streams prefetcher or conflict miss issues
Multi-thread

15 Load unbalance Loss of parallel perf. due to waiting nodes
16 Lock waiting Loss of performance , due to some threads spin waiting

for locks
17 Bad affinity Loss of parallel perf. due to

conflict for shared resources
Multi-thread - Memory

18 False sharing Loss of bandwidth due to coherence
traffic and higher latency access

19 Cache leaking Loss of bandwidth and cache space due
to poor physical-virtual mapping

Table 3.1: A few typical performance pathologies.



3.2. Performance Evaluation 21

analysis in terms of time. It fails, however, to assess the performance loss. A number
of static analysis tools exist, among which we cite: IACA[9], MAO[50] and CQA[35].
The later is part of the MAQAO framework on which we base our tools and is also
used in the performance analysis methodology we introduce in Chapter 5.

Table 3.2 indicates how static analysis techniques detect some of the pathologies
we enumerated in Table 5.1.

Pathologies diagnoses
2,3,5,6,7 Can be detected through a simple analysis of the generated code.
3,5,6 These can be returned by the compiler as feedback on

the optimizations it performed (or failed to). An example
of it is the opt-report option of the ICC
compiler[10]

Table 3.2: Performance pathologies detection with static analysis techniques.

3.2.2.2 Simulation Techniques

Simulation techniques are powerful and succeed in detecting the majority if not all
of the pathologies. However, some pathologies either can be investigated through a
cheaper technique or are not critical enough to require the use of a simulator. We
summarize in Table 3.3 the issues most frequently targeted by simulation.

Pathologies diagnoses
8, Can be investigated with a detailed simulation of the

flow of instructions within the micro-architecture.
10, 11, 12, 13, 14 Can be investigated through a simulation of the memory subsystem
17,18 behavior. A trace of memory references from the program is introduced

into the simulator. [17] [2].
Table 3.3: Performance pathologies diagnosis with simulation techniques

3.2.2.3 Dynamic time profiling

Measurement techniques based on time profiles are useful to diagnose a number of
pathologies. Profiling consists of instrumenting the code in order to be able, at
runtime, to capture program behavior.

Table 3.4 indicates how some of the pathologies introduced in Table 5.1 are
diagnosed through dynamic code profiling.

Pathologies Diagnoses
15, 16 sampling and attribution of idleness to causes[65]
17 source instrumentation or sampling of parallel regions

Table 3.4: Performance pathologies diagnosis with dynamic time profiling techniques.

3.2.2.4 Hardware Performance Counters Based Techniques

For two decades, hardware counters/events have attracted a large deal of attention
[73]. Many tools and analysis methods rely on them to analyze intra-node related



22 Chapter 3. Application Performance Analysis

performance issues. They are especially helpful to debug fine grain pathologies since
they have the ability to monitor various events occurring within the processor at very
low overhead and without altering the numerical output of the system. Hardware
counters are consequently used in a large number of tools; they now are natively
supported in the Linux kernel since the version 2.6 through the perf subsystem [37].

Table 5.1 can be diagnosed with hardware counters. We can describe mildly the
types of counters involved in such process in Table 3.5

Pathologies diagnoses
1,2 Counters that monitor the number of uops dispatched in each

execution unit
8 Counters that count stalls due to full buffer (e.g.

RESOURCE_STALLS_ROB or LD_BLOCKS on Sandy-Bridge)
17 Counters that count the occurrences when a load hits a

modified cache line in another core (e.g.
counter MEM_LOAD_UOPS_LLC_HIT_RETIRED.XSNP_HITM_PS
on Sandy-bridge [8])

12 Counters that count occurrences of load blocked by preceding
stores (e.g. LOAD_BLOCK.OVERLAP_STORE [8])

Table 3.5: Performance pathologies detection with hardware counters based techniques

We also make the following observations on the limitations, hardware counters
based techniques suffer from:

• Hardware events are excellent at capturing how a given piece of hardware is
used but, very often, they fail in evaluating the exact performance impact:
for example, hardware events can count cache misses but what matters is not
the number of cache misses but the total impact of cache misses on perfor-
mance (i.e. the product of the number of cache misses and the average cost of
cache misses. In general, hardware counters fail at evaluating accurately such
average costs).

• Another difficulty with hardware counters is the correlation between source
code and hardware event counts. Hardware counters can be triggered on
and off at the beginning and the end of a loop structure or a function but
the results are globally reported for the whole loop/function and not for
individual source code statements.

• One final difficulty with hardware performance events is their complexity.
First, their number is fairly high (in general over a thousand) making them
hard to use. Secondly, many of them refer to low-level microarchitectural
details which are not publicly available making counter information hard to
decipher. For example, knowing that the reservation station is full and gener-
ates partial stalls in the front end pipeline does not give a precise clue of what
to do to optimize the code.



3.3. Performance Evaluation Tools 23

3.3 Performance Evaluation Tools

Performance analysis tools are used to investigate and understand the precises
causes of bad performance for a particular piece of code on a particular platform.
They generally integrate one or several techniques among those we cited in the
previous paragraph. They also focus either on a specific granularity or handle
several. Some of the well established and effective tools are:

Scalasca: Scalasca [44] mainly focuses on MPI programs and is very efficient
for quickly identifying communication problems such as late sender-early receiver.
For OpenMP programs, Scalasca can identify load balancing issues in data parallel
loops and synchronization issues. Scalasca uses source level instrumentation which
is well suited for the communication problems listed above (minimal interference
with the compiler). However for more general performance bottlenecks, Scalasca
does not provide any specific exploration technique besides hardware performance
counters.

TAU: Tuning and Analysis Utilities (TAU) Performance System [86, 85] is
a performance profiling and tracing framework. As such, it offers much more
flexibility in the performance investigation techniques than Scalasca. The TAU
framework addresses performance problems on three levels: instrumentation,
measurement, and analysis. It provides instrumentation at different levels and
performs tracing on parallel programs. Although TAU offers many possibilities of
using (inserting / triggering) various performance counters, it basically inherits all
the key limitations of hardware performance counters and in many cases, it will not
be very helpful for performance bottleneck investigation.

PerfExpert: [28] goes a step further by trying to analyze performance bot-
tlenecks and provide optimization guidelines. Again, it mostly relies on hardware
performance counters to evaluate performance problems and suffers from the same
problems as the others. However, the approach of synthetizing hardware counter
information to derive performance optimization is very powerful.

XE Amplifier: XE Amplifier [4] is an Intel tool for performance analysis. It
has different features, including stack sampling, thread analysis and hardware event
sampling. Some traditional features, such as identifying the hottest modules and
functions in a whole application or tracking call sequences, are also supported. XE
Amplifier leverages hardware counters for in-depth analysis of the memory system
and architectural tuning and associates performance issues with the source code.
If no symbol sources are found in the binary, XE Amplifier navigates through the
disassembled code at a basic bloc granularity.

Cachegrind: Cachegrind [17] is the cache profiler included in the Valgrind
instrumentation framework. When using Valgrind, the original instructions never
run on the host processor. Instead, Valgrind converts instructions on-the-fly to
an intermediate representation. Valgrind companion tools can easily and directly
manipulate the intermediate representation which is then recompiled for the target
architecture. Cachegrind is based on the simulation of configurable L1I, L1D, and
L2 caches. It identifies the number of cache misses for each line of the source code,



24 Chapter 3. Application Performance Analysis

with per-function, per-module and whole-program summaries.

ThreadSpotter: Acumem AG [2] offers the commercial product ThreadSpotter
specially targeted at analyzing data access issues. It relies on a statistical analysis
of address traces to estimate various potential problems with data access (stride,
false sharing).

Maqao: Maqao [12] is a performance analysis framework that works at binary
level. By disassembling the binary and building an intermediate representation,
Maqao offers the base ground to build analysis tools in the form of modules.
Existing modules include: a profiling tool for sequential and parallel programs [31],
a memory tracing library called Mtl, a static analysis tool called Cqa [35] as well
as the tool we develop and work on within our study Decan [58].

3.4 Discussion

Our review of bottleneck detection techniques attracted our attention on some miss-
ing areas in the performance analysis cycle that we believe need to be filled. Below
are the important points we focused on

Better bottleneck detection

We noticed that the majority of bottleneck detection methods rather provide
more a pathology detection than a bottleneck detection. Indeed, highlighting a
bottleneck means assessing the importance of the pathology and of its impact on
performance, in other words its cost. However, the majority of presently known
methods fail to deliver accurate information. Hardware counters based techniques
provide an information on the quantity of an event rather than on on its cost.
Simulation techniques are technically capable of providing the cost such as in [43]
but are rarely used for that purpose because the analysis time is too high. Time
profiling, on the other hand, is able to assess the cost only if sufficient precision
is reached; however, loop level bottlenecks (especially innermost loops) require a
level of precision that classical profilers are unable to reach. The reason for this
is that instrumenting the code inside a loop may heavily alter its behavior, and
instrumentation results would be biased. Therefore, we identify a clear need in a
better bottleneck detection through pathology cost assessment.

Coordinate the application analysis process

performance characterization consists of finding the parts of code on which op-
timization effort should be spent, successive characterization steps with a lower
analysis granularity at each new step should lead at the end to the identification of
the bottlenecks. We then identify the need for an analysis approach which would
be based on successive steps of characterization leading to bottleneck detection. At
each step, numerous tools might be used. Consequently, a clear analysis methodol-
ogy would greatly help to answer the recurrent questions of: what tool to use and
when to use it.



3.5. summary 25

3.5 summary

Within this chapter we emphasized our interest on application performance analysis
issues. We particularly focused on on-core performance pathology detection and
performance characterization by reviewing well known pathologies as well as the
methods used to investigate them. Finally, we enumerated some flaws within the
actual methods and analysis process in general. The next chapter explores the tools
and methods we strived to establish in order to complete the performance analysis
process.





Chapter 4

Differential Analysis

4.1 Introduction

There is still more room for yet another performance analysis method and tool. Our
review of performance analysis techniques in the previous chapter enabled us to
draw the following observations:

• Failure to order pathologies following to their costs. Thus, it is less obvious
to assess if a pathology effectively is a bottleneck.

• Out-of-order execution on modern micro-processors allows several bottlenecks
to have parallel effects. For example, a costly memory reference may overlap
with a long latency instruction which will mask its effect. These cases are
important to catch in order to focus on the most important bottlenecks.

• The cost of a bottleneck helps to determine the potential gain which would
result from its optimization. Thus, it helps to order bottlenecks following to
their return on investment (ROI) ratio.

A novel technique called Decremental Analysis[57] addresses these concerns.
Decremental analysis consists in building the performance breakdown of a loop by
progressively pinpointing bottlenecks. The analysis is based on a binary transfor-
mation tool called Decan [57].

Decan targeted innermost loops at binary level. The tool operated by creating,
for a given loop, a version in which specific assembly instructions are suppressed.
The performance of the created version, called variant, is then compared with those
of the original version in order to assess the cost of the instruction. By modifying
loop instructions, Decan breaks the semantic of the code. Therefore, in order to
avoid random effects during runtime, the tool does not monitor loop performance
into its original context, but extracts it into an isolated kernel.

However, Decremental analysis provides the base idea, and needs further refine-
ment. We think that the concept can be pushed further to address a bigger set of
performance pathologies. On the tool level, the early version of Decan suffered from
several limitations which prevented it from supporting complex codes and providing
trustworthy results.

In our work we engaged both in the development of Decan as a tool and Decre-
mental Analysis as an analysis technique. The following contributions are detailed
in this chapter:

• We designed new Decan variants, which we tested and validated. These are
detailed in Section 4.4.

• At the tool level, we brought several structural changes and improvements
to Decan, these are briefly reviewed in this chapter, but benefit from more
details in Chapters 6 and 7.



28 Chapter 4. Differential Analysis

• At the analysis level, we broadened Decremental Analysis into a larger con-
cept that we named Differential Analysis through analyses based on a richer
variants catalogue and new use cases. These are detailed in Sections 4.5 and
4.6.

4.2 Motivating Example

A brief study of the following example (extracted from a dense Singular Value
Decomposition library) [82] will let us explore some of the concerns raised in the
previous section and introduce Differential Analysis.

Algorithm 1 Code example
real ∗ 8 A(N,16), scal, s(16) {Column oriented storage}
DO i = 1,16 (Parallel loop)
DO k= 1, N
A(k, i) = A(k, i)/scal

s(i) = s(i) +A(k, i) ∗A(k, i)
ENDDO

ENDDO

Let us consider the piece of code shown in Algorithm 1. We consider different
values of N ranging from 200 up to 1000K. The target machine is a 4-core Sandy-
Bridge architecture. The parallelization of the outermost loop is ideal and results
in a perfect load balance between the cores. The innermost loop contains a stride
1 access to an array. It results in a vectorized code. The only two potential issues
are: 1) the reduction operation and 2) the division operation which is very costly
on Sandy-Bridge architectures. The division operation can not be factored out of
the innermost loop because the use of a reciprocal operation followed by a multiply
affects numerical properties.

First, Decan is used to generate two binary variants to detect, for which data
range, the loop is CPU bound or data access bound:

• LS is a binary variant in which all of the floating-point (FP) arithmetic op-
erations have been suppressed: only the data access instructions and the ad-
dress/loop instructions have been kept.

• FP is a binary variant in which all of the load/store operations have been
suppressed: only the FP instructions and the address/loop instructions have
been kept.

Instructions wich contain both memory and arithmetic operations are transformed
in a way that keeps only one operation.

By measuring LS and FP we evaluate the contribution of data access and arith-
metic instructions to the overall execution time. Figure 4.1 shows that for values
of N less than 400K, the bottleneck is the arithmetic operations, while for N values
greater than 400K, the bottleneck is the data access.

To investigate the performance impact of reduction and division operations, two
more variants were generated:

• NO_DIV is a binary variant in which only the FP division is suppressed.



4.2. Motivating Example 29

Figure 4.1: Memory and Floating-point streams analysis with the variants LS and FP.
The experiments are performed on 4 cores

Figure 4.2: Division and reduction impact analysis with the variants NO_DIV and NO_RED.
The experiments are performed on 4 cores

• NO_RED is a binary variant in which the dependencies between iterations rela-
tive to the addition (second statement of the original loop) are suppressed.

Figure 4.2 presents the relative performance gains of these variants with respect
to the original. First, it clearly shows that the reduction operation induces no
performance penalties across the whole data range (NO_RED performance is identical
to the original). Second, the division operation is very costly (i.e. it is the main
performance bottleneck) for values of N less than 400K, while the division operation
cost is hidden by the data access for larger N values. Therefore, the technique
of keeping the division operation within the loop to increase numerical accuracy
had a performance impact only for the smaller values of N. A third variant,
NO_RED_NO_DIV, not shown here, was generated to detect potential interaction
between the division and the reduction operations. This third variant had exactly
the same performance as the NO_DIV variant. This indicates that no interaction is
present between them.



30 Chapter 4. Differential Analysis

With this example we find ourselves in a typical issue of loop level bottleneck
detection. First, since memory and arithmetic operations are executed in parallel
streams, it is important to know if one of the two dominates the execution. Decan
enabled us to quickly verify it by isolating the two streams and by assessing the
proper cost of each one of them. We thus could see two phases: a compute bound
phase in small and middle data sizes and a memory bound one for big data sets.
We could easily conclude that the memory bound phase was due to data being in
RAM. However, we did not know how to interpret the compute phase. Within the
code we saw two clear pathologies: divisions and reductions. The following solution
were considered:

• the impact of the division operation could have been achieved at the source
code level by suppressing it, but the compiler could have then suppressed the
original statement from the generated code.

• Another approach is to replace the division by a multiply operation, yet the
compiler may still generate an altered code. Operating at the binary level
allows “surgical” operations (with minimal intrusion) to be performed, keeping
variant code very close to the original target code.

• Suppressing reductions at the source level is much more challenging and in
most cases would result in a code very different from the original one.

• Using an analysis tool. The most suitable seemed to be XE Amplifier, because
it integrated a feature which pinpointed costly instructions within loops. The
problem is that the feature is based on sampling, thus usually fails to attribute
the cost to the right instruction.

Decan enabled us to quickly verify which of the two pathologies was a real bottle-
neck. We could verify in a reasonable amount of time that the division operation
was the main bottleneck. In general Decan is able to verify a pathology with one
variant.

The example studied above allowed us to review Decan as a tool which allows
to create modified version of binary loops called variants. It also enabled us to
introduce the analyses which use the variants in order to diagnose performance
pathologies.

4.3 Decan: Practical Design

We review within this section the general concept of Decan, and summarize the
important features we introduced into the tool. The features are detailed separately
throughout the manuscript.

4.3.1 Principle

Decan as a tool modifies parts of a program binary which results into a new binary;
it then runs the modified binary to compare various performance metrics with those
obtained for the original (unmodified) binary. These modified binaries are called
loop variants or in short variants. Variants are not semantically equivalent to the
original binary: in particular the memory state after running a Decan variant of a
loop is not the same as after running the original version.



4.3. Decan: Practical Design 31

4.3.2 Decan Target

The primary target for Decan are assembly instructions of innermost binary loops.
For a given innermost loop, Decan can generate several modified binaries according
to various transformation rules previously specified.

4.3.2.1 Characteristics of the targeted loops

The binary loops targeted by Decan have the following characteristics:

• The binary loop must be reducible (have a single entry point but may have
multiple exit points). Irreducible loops are non-standard constructs which are
difficult to handle by the majority of analysis tools. In practice, over 95% of
the innermost loops have a single entry point.

• The loop body can contain several basic blocks and, apriori, can have an
arbitrary control flow, except nested loops which are not supported. Regular,
one path loops, benefit from a better handling, as we found to be the major
hot loops in the applications we studied.

4.3.2.2 Characteristics of the targeted assembly instructions

The current implementation of Decan handles the Intel X86 instruction set archi-
tecture (ISA). Future developments should integrate more ISAs. The implementa-
tion has the following characteristics:

• The majority of instructions especially those used in arithmetic calculations
and memory operations are integrated. Are of a special interest also vector
extensions, where the entire set of SSE and AVX instructions is handled. New
instructions are added following the goals of the variants.

• X87 (in particular, all of the instructions manipulating the FP stack) instruc-
tions are left untouched/unmodified by DECAN. Therefore, for loops con-
sisting of only X87 instructions, DECAN will correctly run but the variants
generated by DECAN will be of little interest.

• Pointer, indirect addressing and complex structures are fully supported by
DECAN. They generate instructions on which DECAN can fully operate

4.3.3 Variants

A loop variant is a version of the loop in which assembly instructions have been
modified. Two main concepts are involved in the process:

• Instruction subsets: instructions are grouped into what we call subsets, these
are created following specific criteria.

• Transformations: a set of transformations that can be applied on assembly
instructions. These include: suppression, modification, replacement and addi-
tion.

A loop variant is created by applying transformations on instruction subsets
created from the instructions of the loop.



32 Chapter 4. Differential Analysis

4.3.4 Semantic Alteration

Decan performs what we qualify as a controlled alteration of the code. At runtime,
the control flow of the application risks to be changed, a case which should be
completely avoided. The earlier version of Decan applied what we call in-vitro
mode, whereas in our version we applied an in-vivo mode. Section 6.3 in Chapter 6
discusses these issues more in depth. Although, we review here the important points
of the in-vivo mode we use:

• For any loop, Decan will first identify all the instructions involved (necessary
for) in the control flow and these instructions will be blacklisted meaning
left untouched by all Decan transformations. Therefore, the control flow of
innermost loops is always preserved.

• In order to avoid altering the control flow of the application, Decan applies
the instance mode. This mode consists of activating the modified version of
the loop only for one loop call. The program is normally executed, when the
loop call is reached, the modified version of the loop becomes active instead
of the original version, the program is ended just after the loop finishes its
execution. By applying the process on a number of representative loop calls,
a precise image on loop performance can be constructed.

4.3.5 Performance Monitoring

The comparison between variants is based on execution time. Decan is able to
monitor the performance of the transformed loops with high accuracy. This is done
by injecting probes at the entry and exits of the binary loops. The process enables
to compare with precision only the loops which have been modified.

4.3.6 Parallel Codes

Our version of Decan adds support for parallel programs as well. The support is
detailed in Section 6.4 in Chapter 6. We review below the important aspects:

• In the case of shared memory models, Decan handles OpenMP based codes. It
particularly handles the parallel for constructs, where each thread executes the
same transformed version of the loop. The only difference with the sequential
case is that each thread will have its own probes and performance report.

• In the case of distributed memory models, Decan handles MPI based codes.
Only innermost loops without MPI_send and MPI_receive calls are supported,
all processes execute the same transformed version of the loop, but each have
its own performance report.

4.4 Decan Variants Design

Decan variants are created by first identifying instruction subsets and then applying
the transformations. During our study we defined the concepts of instruction subsets
and transformations with the goal of providing a more abstract view, which would
be reused when implementations for other ISAs are developed in Decan. We first
enumerate instruction subsets and then describe the transformations we developed
during our study. Finally, we introduce the variants we developed.



4.4. Decan Variants Design 33

4.4.1 Instruction Subsets

The first step in the transformation process identifies subsets of instructions to trans-
form. We distinguish two operative modes in the decision making for instruction
subset creation: local view and global view.

We use the assembly code shown in Table 4.1 as example from which we extract
instruction subsets. The assembly code correspond to the loop in Algorithm 1.

Assembly code
LOOP:

0 MOVAPS (%RAX,%RCX,8),%XMM4
1 MOVAPS 0x10(%RAX,%RCX,8),%XMM5
2 DIVPD %XMM1,%XMM4
3 DIVPD %XMM1,%XMM5
4 MOVAPS 0x20(%RAX,%RCX,8),%XMM6
5 MOVAPS 0x30(%RAX,%RCX,8),%XMM7
6 DIVPD %XMM1,%XMM6
7 DIVPD %XMM1,%XMM7
8 MOVAPS %XMM4,(%RAX,%RCX,8)
9 MULPD %XMM4,%XMM4
10 MOVAPS %XMM5,0x10(%RAX,%RCX,8)
11 MULPD %XMM5,%XMM5
12 ADDPD %XMM4,%XMM3
13 ADDPD %XMM5,%XMM2
14 MOVAPS %XMM6,0x20(%RAX,%RCX,8)
15 MULPD %XMM6,%XMM6
16 MOVAPS %XMM7,0x30(%RAX,%RCX,8)
17 ADD $ 0x8,%RCX
18 MULPD %XMM7,%XMM7
19 ADDPD %XMM6,%XMM3
20 ADDPD %XMM7,%XMM2
21 CMP %R14,%RCX
22 JB LOOP

Table 4.1: Assembly code of NR codelet SVDCMP_13 (SSE version).

4.4.1.1 Instruction subsets created through a local view

The decision to include an instruction in a subset only depends on information
collected on the instruction itself, no global analysis result or knowledge is taken
into account. The following notable instruction groups can be constructed:

L (Load subset) Corresponds to the set of instructions involved in load
operations. That is, all instructions having one of their source operands coming
from memory. The L subset that can be constructed from the assembly example
would contain the following instructions: L={0, 1, 4, 5}

S (Store subset) Corresponds to the set of instructions involved in store
operations. That is, all the SSE/AVX instructions having one of their destination
operands going to memory. The S subset that can be constructed from the



34 Chapter 4. Differential Analysis

assembly example would contain the following instructions: S={8, 10, 14, 16}

LS (Load-Store subset) Corresponds to the set of instructions involved in
memory (loads & stores) operations. We can notice how this subset is the result
of the union of the L and S subsets. Therefore, LS subset in the example code is:
LS={0, 1, 4, 5, 8, 10, 14, 16}

FP (Floating-Point subset) Corresponds to the set of instructions involved
in floating point computations. That is, all instructions which generate a micro-
operation that would be executed by an FP unit. The FP subset identified from
the example code is: FP={2, 3, 6, 7, 9, 11, 12, 13, 15, 18, 19, 20}

FP-DIV (FP Division subset) Corresponds to the set instructions involved
in floating-point division operations. That is, all instructions which generate a
micro-operation that would be executed by the FP division unit. The FP-DIV
subset identified from the example code is: FP={2, 3, 6, 7}

4.4.1.2 Instruction subsets created through a global view

The decision to include an instruction in a subset depends on information collected
with a global analysis on the loop. Usually, it is done through a static analysis on
the loop. The following notable instruction groups can be constructed:

RED (Reduction subset) Corresponds to the set of instructions involved in a
reduction operation. Reduction operations are identified as being long instruction
dependence chains which store their final result in the same location for all
iterations. In our example, if we look to the source code of Algorithm 1 we would
see only one reduction operation, the accumulator being variable s. On the other
hand, at assembly level (see Table 4.1), we notice that the code has been unrolled
four times, the reduction is accumulated on two registers %XMM2 and %XMM3
which will be merged after the loop to construct the variable s. In this case, we
don´t have just one but two RED subsets, these are: RED_1 = {0, 2, 8, 9, 12, 4,
6, 15, 19 }, RED_2 = {1, 3, 11, 13, 5, 7, 18, 20}.

CTRL subset Corresponds to the set of instructions involved in the control of
the looping process. That is, all instructions that participate in the definition of the
control flow of the loop. These are grouped by detecting in the data dependencies
graph (DDG) instructions of the dependence chains which ends are instructions
which have exit edges in the control flow graph (CFG). On the example in Table
4.1 this would correspond to instruction 21, and the resulting subset would be:
CTRL={21, 17}.

GR (group) subset Corresponds to the set of instructions that are part of
a single data structure. A group is a set of memory accesses to the same data
structure. The structure is usually an array, but it can also be a memory area used
for spill-fill. Two instructions are considered to belong to the same group if they
target an address using the same base and index register values, the only difference
being the offset.



4.4. Decan Variants Design 35

As shown in the example depicted in Table 4.2, grouping analysis requires a
partial knowledge of the execution context, which is evaluated through advanced
data-flow analysis. Indeed, for each used register or memory address, an internal
representation is used to keep its possible formal values. Because the analysis exclu-
sively relies on static analysis, it is not always possible to fully detect the entire data
structure, in other words, several instruction groups would contain a fragment of
it. However, it establishes a first step toward data structure detection. This static
detection is completed with a dynamic one (discussed in Section 4.5.6) in order for
the analysis to be able to detect entire array data structures.

Assembly code Groups
0 LOOP:
1 MOVSS (%RDI, %R8, 4), %XMM0 1 → G1
2 ADDSS 12(%RDI, %R8, 4), %XMM0 2 → G1
3 ADDSS 24(%RDI, %R8, 4), %XMM0 3 → G1
4 MOVSS %XMM0, 12(%RDX, %R8, 4) 4 → G2
5 INC %R8
6 CMP %R9, %R8
7 JB LOOP

Table 4.2: Advanced data-flow analysis tracks the symbolic values of registers. Based on
registers value it is then possible to infer which instructions are targeting the same data
structure. Such instructions are coalesced within groups

4.4.2 Transformations

Decan transforms assembly instructions in one of the following ways:

Deletion: Corresponds to a complete suppression of the instruction.

Modification: Consists of modifying the instruction operands following multi-
ple modification forms:

• operands order change: The order of operands is changed. As an example
we can take the store instruction 8 of Table 4.1 and transform it into a load
instruction. A simple operand order change would give the wanted result as
shown in Table 4.3.

Original instruction MOVAPS %XMM4,(%RAX,%RCX,8)

Modified instruction MOVAPS (%RAX,%RCX,8), %XMM4

Table 4.3: Operands order change for a store instruction (the instruction is transformed
into a load).

• operand deletion: some of the operands of the instruction are deleted. Ta-
ble 4.4 illustrates a vector multiplication instruction in which the memory
operand (source operand) is deleted. However, two operands (a source and a
destination) are required for the instruction to be valid, we copy the destina-
tion operand and inject it as a source also.



36 Chapter 4. Differential Analysis

Original instruction MULPS (%RAX,%RCX,8), %XMM4

Modified instruction MULPS %XMM4, %XMM4

Table 4.4: Source operand deletion of a vector multiplication instruction (the instruction
is transformed into a load).

Replacement: The instruction is replaced by another one. This is especially
helpful when an instruction is part of more than one subset. We can imagine the
case of a vector multiplication instruction mulps having a memory reference as its
source operand; and a transformation process in which only LS subset instructions
are kept, a possible solution is to replace the mulps by a movaps instruction and
keep its operands unchanged as shown in Table 4.6.

Original instruction MULPS (%RAX,%RCX,8), %XMM4

Modified instruction MOVAPS (%RAX,%RCX,8), %XMM4

Table 4.5: Vector multiplication instruction with a load operand transformed into a simple
load instruction.

Addition: One or more instructions are added to a specific instruction; we
recall how the local view in Decan shapes its transformation process, the addition
process only depends on the actual instruction.

Original instruction MULPS (%RAX,%RCX,8), %XMM4

Modified instruction MULPS (%RAX,%RCX,8), %XMM4
PREFETCHT0 (%RAX,%RCX,8)

Table 4.6: Vector multiplication instruction with a load operand to which a prefetch
instruction is added.

4.4.2.1 Transformation combinations

Combining transformations on one instruction is also possible, and eventually, the
resulting instruction could also be part of the ISA also. For example, it is possible to
both change the opcode and the operands of an instruction, or modify its operands
and add another instruction.

4.4.3 Decan Variants

Subsets and transformations being introduced, A Decan variant is obtained by
applying a set of transformations on a set of subsets.

Below is the set of Decan variants we have set up, tested and validated. The
variants can be classified in different manners, we chose to group them according
to their themes because of the diversity of tasks they cover. The variants list is the
result of practical tests and constantly grows as new useful variants are found.



4.4. Decan Variants Design 37

4.4.3.1 Decan variants targeting load-store and arithmetic instructions

An application code can be divided into two major components: arithmetic and
memory operations. Arithmetic operations are handled by the functional units
inside the micro-processor and memory operations are handled by the memory sub-
system. These can be seen as the two major streams into which program instructions
can be classified. They also determine the trend of a loop. Decan provides a variant
for each stream:

• LS: determines the share of memory operations in a loop performance. This
can be achieved by creating a loop version in which only memory operations are
present. In order to do so, pure floating-point instructions are deleted, mixed
instructions are replaced by instructions which operate on memory only.

• FP: determines the share of floating-point operations in a loop performance.
This can be achieved by creating a loop version in which only arithmetic
operations are present. In order to do so, pure memory instructions are deleted,
mixed instructions are replaced by floating-point only instructions.

4.4.3.2 Decan variants targeting expensive instructions

Some assembly instructions, whether memory or floating-point, may have a high
cost and can be a bottleneck in the loop they belong to. Decan variants are
quite adequate in the process of detecting such instructions. During our study,
we encountered a number of expensive instructions, for which we constructed the
following variants:

• NO_DIV/NO_SQRT: is used to verify the impact of high latency instructions
such as division and square-root (a latency of 20 to 40 cycles on x86
Sandy-Bridge architecture for the division instruction), on performance. The
NO_DIV/NO_SQRT variant is obtained by a deletion of the FP-DIV/FP-SQRT
subset.

• NO_RED: is a variant used to verify if reduction operations are severely im-
pacting the performance of the loop. It is obtained by a deletion of the RED
subset.

• NO_CALL: the cost of a function call can be quantified through a deletion of the
later, on the condition that it does not alter the natural looping proces. Also,
in cases where the performance of a loop needs to be profiled but where func-
tion calls are also present, a transformation in which the CALL instructions
are deleted can be helpful.

4.4.3.3 Decan variants targeting memory operations investigation

Memory sub-system being a major performance limiting part in scientific applica-
tions, we developed a number of Decan variants to investigate memory operations:

• DL1: The goal of the DL1 variant is to emulate an ideal case where all data
of the loop are in L1 cache. The resulting variant responds to the question:
how much can we gain from optimizing all memory accesses of the
loop. It also provides a good indicator of data location in the loop. The



38 Chapter 4. Differential Analysis

variant operates on the LS subset, where each memory operand is set to point
towards a unique memory location created for this purpose. Consequently, if
initially the memory operand Mi had a footprint of N which corresponds to
the number of different memory locations it pointed to at runtime, after the
DL1 transformation, its new footprint would be 1 corresponding to the first
access; all subsequent accesses are located in the L1 cache.

• GROUPING: Analyzing performance globally for all memory instructions is too
coarse. The goal is to refine the scope of the analysis to something more
meaningful and isolate delinquent instructions. However, discarding a single
instruction is misleading in case of hit under miss. For instance, if A[0] is a
miss, then the next access to A, A[1], will be a hit. Discarding the access to
A[0] will simply shift the miss to A[1]. To pinpoint the bottleneck accurately,
an aggregation scheme to regroup accesses on a cache line basis (A[0]-A[3]) has
to be designed. Furthermore, aggregation eases measurement interpretation.
Compared to a per cache line analysis, a per data structure analysis is more
relevant for an application developer. The ability to discard all the accesses to
a given data structure at the same time sorts out the different data structures
by cost. The variant is created by identifying the GR subsets and deleting
them one at a time.

• STORE2LOAD : Converts a store operation into a load operation but preserves
the same targeted memory operand. The main goal of this transformation is
to cancel the cache state change induced by the store operation without com-
pletely deleting its effect. Indeed, at a micro-architectural level a standard
store operation on an x86 machine first generates a load on the memory loca-
tion after which the store is applied. By only keeping the load operation, cache
coherency problems between threads in a multi-core context can be idealized.

4.4.3.4 Hardware-Software interaction

The low granularity with which Decan operates allows us to clozely analyze some
aspects of hardware-software interactions through the following variants:

• ADD_LOAD_PREFETCH/ADD_RIP_PREFETCH Adds a load instruction to an already
existing one. The new load can be placed before or after the original one. The
main goal of this transformation is to reduce the load ports bandwidth.

• CTRL : The CTRL transformation ensures that all instructions contained in the
loop are deleted, whether memory or arithmetic. The goal is to have a version
of the loop in which only the instructions involved in the control (branching)
are present; this enables to evaluate the cost of the loop overhead.

4.5 Differential Analysis: Main Analysis Methods and
Metrics

The motivating example in Section 4.2 gave an overview of data interpretation which
illustrated the simplicity of Differential Analysis. The current section describes the
analyses which use the results of the variants we introduced in the previous section.
We first define the events we are more likely to observe in order to have a better
idea of what can or cannot be expected from the analysis.



4.5. Differential Analysis: Main Analysis Methods and Metrics 39

4.5.1 Observable Events

Three important aspects in any application performance analysis tool are: 1) What
are the events it can observe or catch ? Second, how to observe the events ? last,
what is the accuracy with which the events are observed ? Though we will address
the last point in detail in Chapter 7, the first and second points are important to
define.

The primary goal of a Decan variant is to highlight some performance issue
or malfunction (or the inverse: the absence of a performance issue). The variant
attempts to achieve this by changing the stress applied on the micro-architectural
components that are supposed to be directly involved in the malfunction (compo-
nents that indirectly help are more difficult to detect). However, this is not always
possible because of two limiting factors:

• The stress being applied through the code, cannot always be directly applied
to the involved component but rather to another component. For example,
knowing if the functional unit responsible of division operation is a poten-
tial cause of bottleneck can be directly stressed through the NO_DIV variant.
Memory hierarchy components, on the other hand are more difficult to stress
separately, and it is not possible to know if the L3 cache is a potential source
of bottlenecks by stressing it with a variant without changing the complete
memory stream behavior.

• The main event we rely on in the comparison process in Differential Analysis
is execution time, Hardware usually provides very accurate counters for ex-
ecution time (e.g. time stamp counter on X86_64 platforms). Nonetheless,
execution time fails in a number of cases to provide a clear view of the issue,
for example it does not allow to verify if the change in performance is due to
the stressed component itself or to another one which behavior is altered by
the change too. Most modern processors provide multiple counters (commonly
known as Hardware Counters (HC)) that monitor different micro-architectural
components but they suffer from some drawbacks, we started to study their
accuracy in Chapter 7 in order to determine if they can be reliable in the
comparison process of Differential Analysis.

Additionally, the primary goal is to get feedback and understanding on the po-
tential causes of performance for a loop. We take execution time as the main mean
of observation. The choice is also driven by the ubiquity of the means of execution
time monitoring among different architectures, as it allows to use the same analysis
notions and concepts from one architecture to the other.

Also, a variant not necessarily targets a single event, it can eventually be an
aggregation of events. The streams variants LS and FP are an example of such a
case.

4.5.2 Saturation

Saturation is the main metric with which comparisons are performed among Decan
variants. It is the ratio between the execution time of a Decan variant VAR and
that of the original version of the loop REF, as illustrated in equation (1). The ratio
in equation (1) can be read as: the saturation of VAR relatively to REF.



40 Chapter 4. Differential Analysis

Since the variant attempts to reduce or idealize an event, its performance should
be inferior to those of the original loop. Therefore, saturation can be interpreted as
follows: if the ratio is equal to one, then the event highlighted in the variant has
no impact on performance, if it is close to zero then the event has a big impact on
performance. The more the ratio is close to one the less it is considered critical in
terms of performance within the loop.

Sat(VAR, REF) = T (VAR)
T (REF) (1)

Saturation is not necessarily computed between a variant and the original version
of the loop, it may as well be calculated between two variants, one of them being
considered as a reference for the second. This means that the new REF is itself a
variant with a transformed loop and the VAR variant contains the transformations
applied in the new REF plus its own ones. As an example, the LS variant can be
taken as a reference to the GROUPING variants where the share of each memory
group is quantified relatively to the memory stream only and not to the entire loop
performance.

Figure 4.3: Execution time and saturation curves for NR codelet mprove on different
data sizes for a four cores execution.

Figure 4.3 illustrates the relationship between saturation and execution time.
The results are for the NR codelet mprove_8 on a Sandy-Bridge machine. Two
Decan variants were used: REF and LS. The LS saturation curve (Sat(LS,REF))
follows the size of the gap between REF and LS. In data sets of small sizes saturation
is between 0.6 and 0.7, whereas for bigger sizes it climbs to a full saturation of 1.
The shift in saturation here is explained by the position of data in caches, data are
located in higher level caches for small sets of data therefore the latency of memory
operations is not the main bottleneck; but it becomes the main one when data are
located in lower level caches and notably RAM.

4.5.3 LS/FP Analysis

This analysis refers to a joint study of the saturation of LS and FP variants. LS/FP
Analysis (we also call it streams analysis) enables to characterize the trend of a



4.5. Differential Analysis: Main Analysis Methods and Metrics 41

loop and pinpoints whether bottlenecks are part of the memory or of the arithmetic
operations.

From a micro-architecture point of view, LS and FP operations share common
hardware resources notably the processor front-End but are processed by different
functional units in the back-end. Thus, they can ideally be executed in parallel;
however, data dependences may be a limiting factor in some extreme cases. Con-
sequently, parallel execution without Front-End and data dependence effects is the
optimal case we ought to achieve through stream analysis.

Algorithm 2 LS/FP_analysis
Data: T (LS), T (FP)
begin

SatLS ←− T (LS)
T (REF) ; SatFP ←− T (FP)

T (REF) ;

if SatLS = 1 ∧ SatFP = 1 then
Full saturation: Ideal case, the two streams fully overlap and both
fully saturate;

if SatLS � SatFP then
The loop is bounded by memory accesses;
if SatLS = 1 then

Two possible strategies:;
1. More computations can be introduced to reduce the gap
(SatLS − SatFP);
2. The LS stream can be optimized in order to reduce the gap
(SatLS − SatFP) ;

if SatFP � SatLS then
The loop is bounded by floating-point operations;
if SatFP = 1 then

1. More memory operations can be introduced to reduce the gap
(SatFP − SatLS);
2. Computations should be optimized in order to reduce the gap
(SatFP − SatLS);

if SatLS < 1 ∧ SatFP < 1 then
- Unsaturation case: two main reasons are possible;
1. Heavy interaction (dependencies) between the two streams.;
2. the core Front-end is a bottleneck because the two streams
latencies are not big enough to hide the front-end latency.;
3. bottleencks on some shared micro-architectural components
(front-end buffers, ROB, PRF), have been removed within the
variants (less instructions due suppressions)

end

Algorithm 2 illustrates the different combinations of values for the saturations of
the two streams along with the appropriate interpretation for each of them. From
the algorithm we notice three cases

• The ideal case is reached when the two streams are equal and achieve a full
saturation, meaning that somehow their operations overlap, which also means



42 Chapter 4. Differential Analysis

that neither of the two constitute a bottleneck for the other.

• The opposite case, no full overlap, indicates that there is an imbalance between
them, which could be eliminated if either the bottleneck stream (the one with
bigger saturation) optimize its operations to lower its saturation, or, if the
other stream reduces the slack it.

• The last case is when neither of the two achieves a full saturation. One of the
streams can still be a bottleneck, however, it may also reveal either a heavy
interaction between the streams leading to a speedup when they are separated,
or a relaxation on some components in the micro-processors, because of less
instructions in the LS and FP variants.

Figure 4.4: Execution time and saturation curves for NR codelet mprove on different
data sizes. Results are for a four cores execution.

Figure 4.4 illustrates different configurations for LS and FP saturations for the
same NR codelet mprove_8. We notice how the code is FP bound for small data set
sizes . More balance between the two streams is achieved when data set of bigger
sizes are used. We then reach a perfect balance between the two at a size of 700,
however, they are in an unsaturation state. Withing data set of big size, the code
is memory bound and gradually the LS variant reaches a full saturation.

4.5.4 Data Location and Return On Investment

In a memory bound loop, the location of loop data greatly determine the perfor-
mance. Knowing whether data are in memory or in cache is of great help. Moreover,
knowing that allows to have a precise idea of the potential return on investment;
indicating which loop is worth optimizing first. This can be illustrated through a
simple example: suppose that an application has two hot loops A and B respectively
representing 30% and 50% of the execution time. Given these numbers, it seems
more profitable to focus optimization effort on B, however, if the memory accesses
of the two loops are located in L1, then their execution times would be respectively
reduced by 90% and 30% respectively. Consequently, it would be more interesting
to focus on A since the total gain on its execution time would be 27% instead of



4.5. Differential Analysis: Main Analysis Methods and Metrics 43

15% for loop B respectively. DL1 saturation numbers enable us to perform this kind
of analysis. The comparison between the original performance of a loop and its
performance with an ideal memory behavior, allows to highlight within all the loops
of an application those representing the worst memory behavior. Thus, it allows to
reorder the priority list of loops to optimize. The initial order usually being dictated
by a simple execution time profile.

Sat(DL1, REF) = T (DL1)
T (REF) (3)

Saturation numbers can be interpreted as follows: If the DL1 saturation ratio in
equation (3) is equal to 1, then memory accesses are all in L1. Beyond this ratio, the
more saturation decreases, the more data are considered within lower level caches.
We also noticed that, in general, when the saturation is above 50%, then data are
within the L2 cache boundary.

Figure 4.5: Execution time and saturation curves for NR codelet mprove on different
data sizes for a four cores execution.

Figure 4.5 shows DL1 saturation for the NR codelet mprove_8. Saturation results
indicate that for small data sets, there is nothing to do regarding memory operations.
It also shows that in bigger data sets (starting from around 700) there is a significant
potential of performance improvement (about 60% since DL1 saturation converges
to 40%)

4.5.5 Expensive Instructions

In the case of a loop being bounded by its floating-point operations, it is relatively
easy to find the main source of bottleneck (if any). Within the FP stream, instruc-
tions with high execution latency are a common source of bottlenecks. These are
generally the same instructions in different ISAs and architectures such as divisions
and square-roots. Their execution latency is at a much higher level than the other
standard FP operations such as additions and multiplications.

The share of an expensive instruction can be determined by observing the sat-
uration of the Decan variants NO_DIV and NO_SQRT. A saturation close to 1 means
that the instruction does not have an impact on performance, whereas a saturation
close to zero means that the instruction is an important bottleneck within the loop



44 Chapter 4. Differential Analysis

4.5.6 Array Cost Analysis

The current section addresses array performance analysis, a well investigated issue
in HPC performance analysis through different techniques and tools. We describe
how differential analysis, through Array Cost Analysis, can come as a support for
other techniques (e.g. memory simulation tools) by giving quick assessments on
array performance.

Array Cost Analysis is an automatic lightweight performance analysis with the
following advantages:

• Provide quick assessment of the share each array has in the loop.

• Enables memory tracers to only focus on the major arrays, and hence decrease
their execution overhead

• Provide feedback on the performance of high level structures(arrays) from low
level analysis.

4.5.6.1 Principle

The concept of array cost analysis extends directly the Decan groups analysis intro-
duced in [57, 58] and detailed in Section 4.4.1. Groups analysis consisted basically
in deleting the groups one by one in order to find those that cost the most in terms
of performance; interactions between groups can also be analyzed by deleting com-
binations of groups. In ACA we keep the same analysis concept but extend it to
source level arrays instead of groups.

4.5.6.2 Array Reconstruction: Fast Memory Tracer tool (FMT)

The solution currently used in Decan groups analysis, called grouping, is based on
static analysis. The concept, is to track memory instructions with the same base
address, and therefore part of the same array, within the register contents. Static
analysis proved to be effective in several cases and provided some good results.
Even if the entire array is not recovered, it is gathered into few data fragments
called groups. We improved these results through a complementary lightweight
dynamic analysis. The idea is to trace memory references and record, for each
memory instruction, the range of memory cases they cover.

FMT´s design is driven by constraints of fastness and very low overhead. The
design of this tool obey to the following rules:

• No function call is injected inside the loop. All memory references are recorded
in buffers created with Madras through binary patching.

• To avoid overflows, we ensure that the size of each buffer is equal to the number
of iterations of the loop.

• Buffers contents are dumped at the exit of the loop, so that the same buffers
are reused in the next loop call

• For each memory instruction, we only record the smallest and the biggest
memory address. This eliminates the heavy memory footprint we find in
conventional tracers.



4.5. Differential Analysis: Main Analysis Methods and Metrics 45

• Instructions that reference the same array are grouped according to the fol-
lowing rules:

1. Two instructions I1 with reference range R1=[@L1,@H1] (@L1 being the
lowest reference addressed by I1 and @H1 being the biggest) and I2 with
reference range R2=[@L2,@H2] are considered part of the same array if:
R1 ∩ R2 6= {φ}.

2. An instruction I1 is part of a group of instructions G1 if there is at least
one instruction I2 part of G1 such that I1 and I2 satisfy (1).

3. Two instruction groups G1 and G2 are merged to form a super group if
there is at least one instruction I1 in G1 and one instruction I2 in G2
such that I1 and I2 satisfy (1).

• In order to overcome some cases where no overlap among memory references is
detected, program mallocs are traced as well. A traced malloc is considered
as a group G with reference range R=[@REF, @REF + MALLOC_SIZE]
(@REF being the address returned by malloc and MALLOC_SIZE the size
of the allocation), and the same group constraints are applied to it.

It is worth noting, however, that recovering all data structures from a binary is
usually performed in a decompilation context. It is a tedious task, and contains a lot
of challenges. In our case, the context is different; as we only seek to reocver arrays,
we can exploit array elements grouped in a contiguous memory area. Furthermore,
the recovery scope is limited to loop level since our study is loop centric.

4.5.6.3 Array reconstruction Results

Table 4.6 shows the results of detection for both the grouping static analysis and
FMT runtime analysis on 27 Numerical Recipes codelets.

For our experiments, we chose to work on small compute kernels called codelets.
They have been notably used by other works [79]. The codeletsare issued from: four
important algorithm types from Numerical Recipe[7] codes(see Ch. 2. Solution of
Linear Algebraic Equations, Ch.11. Eigensystems, Ch. 12. Fast Fourier Transform,
and Ch. 14. Partial Differential Equations). From these chapters, 17 important
recipes were selected, covering many functionalities described in these parts of lit-
terature. A codelet extraction tool called Codelet Finder automatically extracted
96 codelets from these 17 algorithms. Some recipes yielded up to 26 distinct codelet
types, but most have less than 10. Profiling revealed that 27 codelets (the ones we
used), represent most of the execution time in the 17 key numerical recipes1.

on the one hand, we notice that static analysis allows us to achieve 37% of success
on the codelet suite. FMT, on the other hand, was able to detect all source arrays.
Nonetheless, we recall that there are cases where FMT would fail to reconstruct the
entire arrays, in which case we would end-up with fragments such as those returned
by static analysis.

4.5.6.4 Runtime overhead

It is important to quantify how much time the refinement offered by FMT is going
to cost us. Figure 4.6 shows tracing results on an NR codelet called BALANC_3.

1 We used some of the codelets in other parts of our work, these appear in several parts
throughout the manuscript



46 Chapter 4. Differential Analysis

Codelet Groups constructed source level arrays
Static analysis FMT analysis

Balanc_3 1 1 1
Svdcmp_13 1 1 1
Svdcmp_14 2 2 2
Toeplz_1 3 3 3
Four1_2 2 1 1
Hqr_12 2 2 2
Lop_13 5 2 2
Ludcmp_4 9 1 1
Relax2_26 9 2 2
Hqr_15 2 1 1
Jacobi_5 2 1 1
Matadd_16 3 3 3
Mprove_8 3 2 2
Rstrct_29 5 2 2
Svdksb_3 3 2 2
Elmhes_10 2 1 1
Elmhes_11 16 1 1
Hqr_13 2 2 2
Mprove_9 2 2 2
Realft_4 2 1 1
Svdcmp_11 8 1 1
Svdcmp_6 1 7 2 2
Toeplz_2 3 2 2
Toeplz_3 4 3 3
Toeplz_4 4 2 2
Tridag_1 6 6 6
Tridag_2 2 2 2
% of success 37,04% 100,00% 100,00%

Table 4.7: Group detection results through both grouping static analysis and FMT run-
time analysis

.

The particularity of BALANC_3 is that it is regular in term of memory behavior,
meaning that by simply varying the problem size, we can clearly see if data are
in L1, L2, L3 or the RAM. This regularity allows us to see the tracing overhead
depending on where data are in memory hierarchy. Thus, from the figure, if data
are in L1 we approximately have 37 of slowdown on the loop original performance,
and as we shift to lower cache levels the overhead contribution also shrinks. In the
L2 cache, the overhead drops to 27, whereas in L3 cache it is at approximatively 19.
In RAM, we are at about 7.

4.6 Case Studies

The current section discusses some notable applications of differential analysis
throughout the study of different codes and for different objectives. Other case
studies we worked on are detailed in Chapter 5. The first case shows the use of Dif-
ferential Analysis in the process of application characterization. The second study
case illustrates the use of array cost analysis. The last study case illustrates an
original use of differential analysis to evaluate the hardware adequacy to software
needs.



4.6. Case Studies 47

Figure 4.6: Execution Slowdown of a version of the loop instrumented to perform FMT
over its original version for BALAN_3 codelet on different data sizes. The four levels of
slowdown correspond from left to right to data being in L1, L2, L3 caches and RAM.

4.6.1 Application Characterization and Analysis: RTM applica-
tion

Within this section we address RTM, an industrial code that we characterize with
LS/FP, Data location analyses.

Reverse Time Migration (RTM) [23] is a standard algorithm used for geophysical
prospection. The code used in this study is an industrial implementation of the RTM
algorithm by the oil and gas company TOTAL.

Our RTM code operates on a regular 3D grid. The core of the domain is uni-
formly processed, but a specific treatment is applied on the borders of the domain,
the skin of the domain, to annihilate potential wave reflections. From a performance
perspective, more than 90% of the execution time of the application is spent in two
functions, inner and damping. These two functions are executing similar code on
two different parts of the domain, inner is devoted to the core of the domain, while
damping is used on the skin of the domain. Standard domain decomposition tech-
niques are used to spread the workload on multi-core target machines. Since the grid
is uniform, load balancing is easily achieved by using rectangular sub-domains. We
conduct our analysis on the compute kernel which operates inside a node. OpenMP
is used to exploit parallelism among cores. Hence, computations on the grid are
evenly divided between the cores.

A profile of the kernel resulted in the selection of a set of 11 loops, in which
more than 90% of the execution time is spent. Figure 4.7 gives the importance
of each loop in respect to their share in the total execution time. The results are
ordered from the most to the least time consuming one. We notice that damping_174
dominates the list with a share of 37% of the total, whereas inner_132 is the least
important one with 5%. These results suggest to focus first and primarily on loops
damping_174 and inner_126 because of their high share in the execution time.

The loops can be quickly characterized through a LS/FP analysis. Figure 4.8



48 Chapter 4. Differential Analysis

illustrates saturation results for each loop, where we notice a clear memory oriented
behavior for all loops. Indeed, LS saturation is between 80 and 100%, whereas FP
saturation do not exceed 40%. This perspective would suggest ,for all loops, the
following: either to focus on optimizing memory accesses which itself is conditioned
by the accesses being bad, or to put more computations in the loops in order to
balance between the streams (e.g. merge loops with close memory accesses that
may overlap).

Figure 4.7: Execution time in cycles for the hottest loops of the RTM kernel.

Figure 4.8: LS/FP saturations for the hottest loops of the RTM kernel

In our case, the loops operate on different data, therefore loop merging appears
to be inefficient. We turn our attention to the possibility of optimizing memory
operations. In order to do that, we analyze the saturation of the DL1 variants,
which simulate an optimal memory behavior for the loops. The results shown in
Figure 4.9 allow us to draw the following observations:

• The DL1 saturation of the most time consuming loop damping_174 is near
90%, which means that the accesses of the loop are almost all hits in the L1
cache.



4.6. Case Studies 49

Figure 4.9: DL1 saturations for the hottest loops of the RTM kernel

• The DL1 saturation of the rest of the loops, are for the most between 40% and
60%, meaning that their memory accesses are roughly within the L2 cache
limit.

From these observations we derive two conclusions:1) the priority order estab-
lished by execution times is misleading, since the most time consuming loop happens
to be the one which has the best memory behaviour. DL1 saturation results suggest
instead to focus on loops where the gap is broad, since the gain would be bigger.
2) The fact that the loops have their data within the L2 limits indicates that the
chosen blocking already offers a descent locality, since the L1 cache is small and it
can be extremely difficult to fit data into it, especially in case when several arrays
are present (which is the case in the loops of RTM).

4.6.2 ACA: EUFLUXm Application

EUFLUXm is a 3D finite element CFD application from Dassault [38], ITRSOL (the
iterative solver) represents over 80% of the execution and is the most time consuming
routine is EUFLUXm. The EUFLUXm routine implements a sparse matrix-vector
product in a quadruply nested loop. Among the four different arrays, three of
them, VECX (2D), OMPU (3D) and OMPL(3D), are read-only and the last one
VECY (2D) is read and written. The code of EUFLUXm is presented in Figure 4.10.

A quick inspection of the code reveals that most of the array accesses suffer from
bad stride access. The two innermost loops could be interchanged or, alternatively,
arrays could be restructured (transposed). Restructuring an array is a complex and
expensive code modification because it has to be propagated throughout the whole
application. Therefore the issue we are interested in, is how to determine which
arrays should be prioritized for restructuring.

We tried first, to use static analysis to detect the four arrays VECX, VECY,
OMPU and OMPL as it does not have a cost. The analysis managed to
construct 10 groups out of 14 memory references which is a bit far from our
target number. FMT, on the other hand, succeeded in detecting the four arrays as
shown in Table 4.8, but it cost us an execution 12 times slower than the original one.



50 Chapter 4. Differential Analysis

Analysis Number of Analysis cost
groups detected (Slowdown over original)

Static analysis 10 no slowdown (significant speedup)
FMT 4 12.27

Table 4.8: Results of group reconstruction for EUFLUX application with the use of both
static and dynamic (FMT) analyzes. The cost of each analysis in slowdown over original
execution time is shown

.

Figure 4.10: The left figure illustrates the source code of the matrix-vector product in
EUFLUXm. The right figure shows the individual contribution in the overall execution
time of memory instructions targeting each array of the EUFLUXm routine. Results are
presented for 2 and 4 cores.

The arrays being detected at assembly level, we could match them with source
level arrays with the help of debug informations (obtained by compiling the program
with a -g), which enabled to associate each assembly instruction with its source
line and column. We generated four Decan variants to assess their costs. Each
variant had the memory references of one of the suppressed arrays. The difference
in execution times between each variant and the original program indicated the cost
of each array. Figure 4.10 shows that among the 4 arrays, the accesses to OMPU
and OMPL are the most time consuming. The two arrays represent more than 40%
of the total execution time, followed by VECY and VECX with an individual time
share lower than 10%. Therefore, we concluded that any optimization effort has to
consider that performance issues in the loop are essentially tied to the OMPU and
OMPL arrays.

4.6.3 L1 Load Bandwidth Evaluation

Another register in which Differential Analysis might be helpful is the exploration
of Micro-architectural features of the processor. Eventually, the analyzes one can
think of are not as elaborated and precise as those we find in [41, 40, 42], but we still
have enough oportunities of obtaining meaningful insights on software-hardware
interactions.



4.6. Case Studies 51

The idea here is to evaluate the adequacy of L1 cache bandwidth of the core for
real life applications. An appropriate L1 bandwidth is the one just big enough to
service the hot loop needs without any contention problems. The whole bandwidth
hasto be used, meaning that the bandwidth is not oversized.

We can evaluate a bandwidth with Differential Analysis by overloading the
memory stream. This can be achieved by the add of more memory instructions
in the loop. The PREFETCH transformation makes this possible, by adding after
each memory instruction of the loop a software prefetch instruction. The memory
references of the added instructions point to the same memory reference, hence
ensuring L1 accesses. The advantage of the use of prefetch instructions instead of
a duplication of the loads is that they would exactly act like memory instructions
without any alteration of the semantics of the program.

Algorithm 3 Polaris (MD) loop 2937 source code
DO j = ni+nvalue1,nagroua

nfj = nfi + nvalue2*(j-ni_ref)
nj1 = ndim3d*j + nc ; nj2 = nj1 + nvalue1 ; nj3 = nj2+nvalue1
u1 = x11-x(nj1) ; u2 = x12-x(nj2) ; u3 = x13-x(nj3)
p21 = pm1(nj1) ; p22 = pm1(nj2) ; p23 = pm1(nj3)
psr1 = u1*p21 + u2*p22 + u3*p23
psr2 = u1*p11 + u2*p12 + u3*p13
rij3 = dtemp(nfj) ; rij5 = dtemp(nfj+nvalue1)
rij15 = psr1*rij5 ; rij25 = psr2*rij5
pf1 = pf1 + u1*rij15 + p21*rij3
pf2 = pf2 + u2*rij15 + p22*rij3
pf3 = pf3 + u3*rij15 + p23*rij3
pm2(nj1,thread_num) = pm2(nj1,thread_num) + u1*rij25 + p11*rij3
pm2(nj2,thread_num) = pm2(nj2,thread_num) + u2*rij25 + p12*rij3
pm2(nj3,thread_num) = pm2(nj3,thread_num) + u3*rij25 + p13*rij3

END DO

Variant
DL1 FP LS

Saturation 79% 80% 81%
Table 4.9: Stream analysis for loop 2937 of POLARIS (MD)

We took as a test example for the analysis a loop from an industrial code named
POLARIS (MD). Its code is shown in Algorithm 3. Saturations of the LS, FP
and DL1 variants of the loop are summarized in Table 4.9. We performed gradual
overloads that reduced the bandwidth by 10% up to 50%, where a 10% reduction
means that a prefetch instruction is placed for each ten memory instructions, and
so forth. Therefore, a 50% reduction means that the bandwidth is divided by two.

The effects of bandwidth reduction on the loop are shown in Table 4.10. The
results can be interpreted as follows: if bandwidth is reduced by 10% than perfor-



52 Chapter 4. Differential Analysis

mance will drop by 2.33%, if it is reduced by 30% for example then there would
be a drop of 11.41%. It is interesting to notice that if the bandwidth of the L1
cache is divided by two, we end up with only 17.32% of global slowdown on loop
performance.

This case opens the door for Differential Analysis to be considered in fields other
than application performance analysis; we show here that it is possible to use the
tool to evaluate some micro-architectural aspects through a simple and lightweight
process. Consequently, we think that it is possible to use the approach in software-
hardware codesign matters.

% of reduction of L1 cache bandwidth
50% 40% 30% 20% 10% REFERENCE

Average overhead 17,32% 14,04% 11,41% 7,00% 2,33% 0,00%
Table 4.10: Effect of L1 cache bandwidth reduction on performance for loop 2937 of
POLARIS (MD)

4.7 Summary

Within this chapter, we introduced Differential Analysis through a typical bottleneck
detection issue example. We saw that it is based on comparing different versions of
the same loop, each version, also called variant, introduces controlled changes to the
assembly instructions of the loop. The goal is to be able, with a variant, to diagnose
at least one pathology. We then described the variant creation process: instruction
subsets detection and instruction transformations. The variants being introduced,
we illustrated how their performance scores are interpreted to get meaningful insight
on different performance trends and issues. At the end, we saw some cases where the
analyzes are used to understand the performance of real life industrial applications.
The last case study also showed that the analysis can be applied to evaluate details
of the micro-architecture, opening the door for other uses worth studying.



Chapter 5

Pamda: Performance Assessment
using Maqao toolset and

Differential Analysis

5.1 Introduction

The recent progress of high performance architectures generate new challenges for
performance evaluation tools: more complex processors (larger vectors, manycores),
more complex memory systems (multiple memory levels including NUMA, multiple
level prefetch mechanisms), more complex systems (large increase in core counts up
to several hundreds of thousands now) are all key issues which need to be simulta-
neously optimized to get a decent performance level.

To work properly, all of these mechanisms require specific properties from the
target code. For example, good exploitation of memory hierarchies relies on good
spatial and temporal locality within the target code. The lack of such proper-
ties induces variable performance penalties: such combinations (mismatch between
hardware and software) are denoted as performance pathologies. Most of them
have been identified (cf. Table 5.1) and efficient workarounds are well known. The
current generation of performance tools (TAU [87], PerfExpert [29], VTune [51],
Acumem [18], Scalasca [44], Vampir [77]) is excellent at detecting such pathologies
although some are fairly specialized: for instance, Scalasca/Vampir mainly addresses
MPI/OpenMP issues, requiring the combined use of several tools to get a global
overview of all of the performance pathologies present in an application.

Most of the current tools do not provide any direct insight on the potential cost
of a pathology. Furthermore, the user has no idea about what the potential benefit
of optimizing his code to fix a given pathology is. These two points prevent him from
focusing on the right issue. For example, let us consider a program containing two
hot routines A and B, respectively consuming 40 % and 20 % of the total execution
time. Let us further assume that the potential achievable performance gain on A is
10 % while on B it is up to 60 %. The overall performance impact on B can reach
60 % * 20 % = 12 % while on routine A, it is at best 10 % * 40 % = 4 %. As
a consequence, it is preferable to focus on routine B. Additionally, the user has no
clue of what the current performance level is, compared with the best achievable
one, i.e. he may not know when optimizing is worth the investment.

In general, the situation is even worse since a simple loop may simultaneously
exhibit several performance pathologies. In such cases, most of the above cite tools
give the user no hint of which ones are dominant and really worth fixing. For
instance, a loop can suffer from both a high miss rate and the presence of costly
Floating-Point (FP) operations such as div/sqrt: trying to improve the hit rate does
not improve the performance if the dominant bottleneck is the div/sqrt operations.

In this chapter, we propose a coherent set of tools (MicroTools [24], Cqa [32],



54
Chapter 5. Pamda: Performance Assessment using Maqao toolset

and Differential Analysis

Decan [58], Mtl [33]) to address this lack of user guidance in the tedious and
difficult task of program optimization. These tools are integrated in a unified en-
vironment (Pamda) to help the user to quickly identify performance pathologies
and to assess their cost and their impact on the global performance. The different
techniques (static analysis, value profiling, dynamic analysis) appear to be more
appropriate and give a more accurate answer depending upon which performance
pathologies have to be fixed: for example, detecting a badly strided access is im-
mediate through value tracing of array addresses, while the same task is extremely
tedious when only using static analysis or hardware counters. Anyway, such array
access tracing should only be triggered when really necessary due to its high cost.
In this paper, we focus on providing performance insight at core level and parallel
OpenMP structures. Our analysis can be combined with MPI analysis provided by
tools such as Scalasca, TAU or Vampir.

Through the integrated environment Pamda, we aim at providing the following
contributions:

• To get a global hierarchical view of performance pathologies/bottlenecks

• To Get an estimate of the impact of a given performance pathology taking
into account all other present pathologies

• To demonstrate that different specialized tools can be used for pathology de-
tection and analysis

• To perform an hierarchical exploration of bottlenecks according to their cost:
the more precise but expensive tools are only used on specific well chosen
cases.

Section 5.2 presents a motivating example in detail. Section 5.3 details the
various key components of Pamda while Section 5.5 describes the combined use
of these different tools. Section 5.5 describes some experimental use of Pamda.
Section 5.6 gives an overview of related works and the added value of the Pamda
system. Finally, Section 5.6 gives conclusions and future directions for improvement.

5.2 Motivating Example

Figure 5.1 presents the source code of one of the hottest loops extracted from PO-
LARIS(MD) [83]: a molecular dynamics application developed at CEA DSV. PO-
LARIS(MD) is a multiscale code based on Newton equations: it has been successfully
used to model Factor Xa involved in thrombosis.

This loop simultaneously presents a few interesting potential pathologies:

• Variable loop trip count.

• Fairly complex loop body which might lead to inefficient code generation by
the compiler.

• Presence of div/sqrt operations.

• Strided and indirect access to arrays (scatter/gather type).

• Multiple simultaneous reduction operations leading to inter-iteration depen-
dencies.



5.2. Motivating Example 55

Table 5.1: A few typical performance pathologies.

Pathologies Issues Workarounds
ADD/MUL balance ADD/MUL parallel execution Loop fusion, code rewriting

(of fused multiply add unit) underused e.g. Use distributivity
Non pipelined execution Presence of non pipelined Loop hoisting, rewriting code to use
units instructions: div, sqrt other instructions eg. x86: div and sqrt
Vectorization Unvectorized loop Use another compiler, check option

driving vectorization, use pragmas to
help compiler, manual source rewriting

Complex control flow graph Prevents vectorization Loop hoisting or code specialization
in innermost loops
Unaligned memory access Presence of vector-unaligned Data padding, use pragma and/or

load/store instructions attributes to force the compiler
Bad spatial locality Loss of bandwidth and cache Rearrange data structures or loop
and/or non stride 1 space interchange
Bad temporal locality Loss of perf. due to avoidable Loop blocking or data restructuring

capacity misses
4K aliasing Unneeded serialization of Adding offset during allocation,

memory accesses data padding
Associativity conflict Loss of performance due to Loop distribution, rearrange data

avoidable conflict misses structures
False sharing Loss of bandwidth due to coherence Data padding or rearrange data

traffic and higher latency access structures
Cache leaking Loss of bandwidth and cache space due Use bigger pages, blocking

to poor physical-virtual mapping
Load unbalance Loss of parallel perf. due to Balance work among threads or remove

waiting nodes unnecessary lock
Bad affinity Loss of parallel perf. due to Use numactl to pin threads on physical

conflict for shared resources CPUs
High number of memory Too many streams for hardware See conflict misses
streams prefetcher or conflict miss issues
Lack of loop unrolling Significant loop overhead, lack of Try different unrolling factors, unroll and

instruction-level parallelism jam for loops nest, try classical affinities
(compact, scatter, etc.)



56
Chapter 5. Pamda: Performance Assessment using Maqao toolset

and Differential Analysis

nj1 = ndim3d*j + nc ; nj2 = nj1 + nvalue1 ; nj3 = nj2 + nvalue1

u1 = x11 - x(nj1) ; u2 = x12 - x(nj2) ; u3 = x13 - x(nj3)

rtest2 = u1*u1 + u2*u2 + u3*u3 ; cnij = eci*qEold(j)

rij = demi*(rvwi+rvwalc1(j))

drtest2 = cnij/(rtest2 + rij) ; drtest = sqrt(drtest2)

Eq = qq1*qq(j)*drtest

ntj = nti + ntype(j)

Ed = ceps(ntj)*drtest2*drtest2*drtest2

Eqc = Eqc + Eq ; Ephob = Ephob + Ed

gE = (c6*Ed + Eq)*drtest2 ; virt = virt + gE*rtest2

u1g = u1*gE ; u2g = u2*gE ; u3g = u3*gE

g1c = g1c - u1g ; g2c = g2c - u2g ; g3c = g3c - u3g

gr(nj1,thread_num) = gr(nj1,thread_num) + u1g

gr(nj2,thread_num) = gr(nj2,thread_num) + u2g

gr(nj3,thread_num) = gr(nj3,thread_num) + u3g

do j = ni+nvalue1,nato

end do

div/sqrt

Indirect

accesses

Reductions

Non-unit stride accesses

Variable number of iterations

H
ig

h
 n

u
m

b
e
r 

o
f 

s
ta

te
m

e
n
ts

v
e
c
to

r 
v
e
rs

u
s
 s

c
a
la

r

Non-unit stride accesses

Figure 5.1: A Fortran source code sample and its main performance pathologies high-
lighted in pink.

Figure 5.2: Comparing static estimates obtained by Cqa with dynamic measurements
performed on different code variants generated by DECAN of both the original and the
vectorized versions: REF is the reference binary loop (no binary modifications introduced
by DECAN), FP (resp. LS) is the DECAN binary loop variant in which all of the Load/-
Store (resp. FP) instructions have been suppressed, REF_NSD (resp. FP_NSD) is the
DECAN binary loop variant in which only FP sqrt and div instructions (resp. all of the
Load/Store and FP sqrt/div instructions) have been suppressed. The y-axis represents the
number of cycles per source iteration: lower is better.

All these pathologies can be directly identified by simple analysis of the source
code. The major difficulty is to assess the cost of each of them and therefore to
decide which should be worked on.

A first value profiling of the loop iteration count reveals that the trip count
is widely varying between 1 and 2000. However the amount of time spent in the
trip count instances of small (less than 150 iterations) loop remains limited to less
than 10 %. The remaining interval of loop trip counts is further divided into 10
deciles and one representative instance is selected for each of them. Further timings
while analyzing loop trip count impacts, indicate that the average cost per iteration
globally remains constant independently from the trip count. Therefore, the data
size variation seems to have no impact on performance: the same optimization
techniques could be applied for instances having a loop trip count between 150 and



5.3. Ingredients: Main Tool Set Components 57

2000.

The static analyzer (see Figure 5.3) provides us with the following key informa-
tion: in the original version, neither Load/Store (LS) operations nor FP ones are
vectorized. It further indicates that due to the presence of div/sqrt operations, the
FP operations are the main bottlenecks. It also points out that even if the FP op-
erations were vectorized, the bottlenecks due to sqrt/div operations would remain.
However this information has to be taken with caution since the static analyzer
assumes that all data accesses are ideal, i.e. performed from L1.

Dynamic analysis using code variants generated by Decan is presented in Fig-
ure 5.2. Initially, the original code (in dark blue bars) shows that FP operations
(see FP versus LS DECAN variants) clearly are the dominating bottlenecks. Further-
more, the good match between Cqa and REF clearly indicates that analysis made
by Cqa is valid and pertinent. Optimizing this loop is simply obtained by inserting
the SIMD pragma ’!DEC$ VECTOR ALWAYS’, which forces the compiler to vectorize
FP operations. However, the compiler does not vectorize loads and stores due to
the presence of strides and indirect accesses. Rerunning DECAN variants of this
optimized version (see light blue bars in Figure 5.2) shows that, even for this opti-
mized version, FP operations still remain the key bottleneck (comparison between
LS and FP). Therefore, there is no point in optimizing data access, the only hope of
optimization lies in improving div/sqrt operations: for example SP instead of DP.
Unfortunately, in this case such a change would alter the numerical stability of the
code and cannot be used.

The major lesson to be drawn from this case study is that a combined use of
Cqa and Decan allows us to quickly identify the optimization to be performed and
also gives us a clear halt on tackling other pathologies without impacting overall
performance.

5.3 Ingredients: Main Tool Set Components

Performance assessment issues require robust methodologies and tools. Therefore,
in order to systematically provide programmers with a performance pathology hier-
archy and its related costs, the current work considers two toolsets: MicroTools, for
microbenchmarking the architecture, and the Maqao [22, 59, 12] framework, which
is a performance analysis and optimization tool suite.

The goal of Maqao is to analyze binary codes and to provide application devel-
opers with reports to optimize their code. The tool mixes both static (code quality
evaluation) and dynamic (profiling, characterization) analyses based on the ability
to reconstruct low level (basic blocks, instructions, etc.) and high level structures
such as functions and loops. Another Maqao key feature is its extensibility. Users
can easily write plugins thanks to an embedded scripting language (Lua), which
allows fast prototyping of new Maqao-tools.

From Maqao, Pamda extensively uses three tools including the Code Quality
Analyzer tool (Cqa) exposed in section 5.3.2, the Differential Analysis framework
(Decan) presented in section 5.3.3, and finally the Memory Tracing Library (Mtl)
in section 5.3.4. We briefly present how these three tools contribute to Pamda and
then describe their major characteristics.



58
Chapter 5. Pamda: Performance Assessment using Maqao toolset

and Differential Analysis

5.3.1 MicroTools: Microbenchmarking the Architecture

Microbenchmarking [90, 64, 20] is an essential tool to investigate the real potential
of a given architecture: more precisely, in Pamda, microbenchmarking is first used
to determine both FP units performance and achievable peak bandwidth of various
hardware components such as cache/RAM levels. Second, to estimate the potential
cost of various pathologies (unaligned access, 4K aliasing, high miss rate, etc.).

For achieving these goals, Pamda relies on MicroTools, consisting of two main
components: MicroCreator tool automatically generates a set of benchmark pro-
grams, while MicroLauncher framework executes them in a stable and closed envi-
ronment.

5.3.2 Cqa: Code Quality Analyzer

In Pamda, the Cqa framework is used first for providing a performance target un-
der ideal data access conditions (all operands are supposed to be in L1), second for
providing a bottleneck hierarchy analysis between the various hardware components
of the core (FP units, load/store ports, etc.) and third for detecting some perfor-
mance pathologies (presence of inter iterations dependencies, div/sqrt operations)
which are worth investigating via specialised Decan variants. The ideal assumption
(all operands in L1) is essential for CPU bound codes such as the POLARIS(MD)
loop studied in the previous section. For memory bound loops, a further dynamic
analysis is necessary.

Cqa is a static analysis tool directly dealing with binary code. It extracts key
characteristics, and detects potential inefficiencies. It provides users with general
code metrics such as details on basic loop characteristics, the number of instructions,
µops, and the number of XMM/YMM vector registers used. Cqa also allows users
to obtain more in-depth information on the loop execution on the target architecture.
For example, the tool provides a reliable front-end pipeline execution report, which
is an estimated number of cycles spent during each front-end pipeline stage. The
tool gives the same type of report for the back-end. Finally, Cqa provides a cycle
estimate of loop body performance under ideal conditions: all operands in L1, no
branches and infinite loop count (steady state behavior).

Cqa is able to report both low and high level metrics/reports (figure 5.3). For
example, when a loop is not fully vectorized, the high level report provides a poten-
tial speedup (reachable if all instructions were vectorized) and corresponding hints
(compiler flags and source transformations). For the same loop, some low level met-
rics/reports show the breakdown of vectorization ratios per instruction type (loads,
stores, ADDs, etc.) giving the user a more in-depth view of the issue.

Cqa is operational on Intel 64 micro-architectures from Core 2 to Ivy Bridge.

5.3.3 Decan: Differential Analysis

In Pamda, Decan is used for quantitatively assessing performance pathologies im-
pact. The general idea is fairly simple: a given pathology is associated with the
presence of a given subset of instructions, for example div/sqrt operations, then De-
can generate a binary version of the loop in which the corresponding instructions
are deleted or properly modified. This altered binary is measured and compared
with the original unmodified version.



5.4. Recipe: Pamda Tool Chain 59

Figure 5.3: Cqa output.

Table 5.2: Decan variants and transformations.

Variant
Type of SSE/AVX

Transformation
instructions involved

LS All arithmetic instructions Instruction deleted
FP All memory instructions Instruction deleted
DL1 All memory instructions Instruction operands modified to

target a unique address
NODIV All division instructions Instruction operands modified to

target a unique addresses
NORED All reduction instructions Instruction deleted
S2L All store instructions Converted into load instructions
NO_STORE All store instructions Instructions are deleted

Using Decan features, Pamda generates altered binaries, thereby splitting per-
formance problems between CPU, memory, and OpenMP issues. Table 5.2 presents
a range of loop variants used within the methodology discussed in Section 5.4. The
variants are described in more details in Chapter 4.

5.3.4 Mtl: Memory Tracing Library

Within Pamda, Mtl provides specific analysis of pathologies related to data access
patterns in particular stride values, alignment characteristics, data sharing issues
in multi threaded codes, etc. Mtl works by tracing addresses and by generating
compact representations of data access patterns. Mtl is not limited to innermost
loops but directly deals with multiple nested loops, allowing to detect more subtle
pathologies: for example, row major instead of column major accesses for a Fortran
array (stored column wise) are automatically detected. To perform these analysis,
Mtl uses the Maqao Instrumentation Language (Mil) [34]. This language makes
the development of program analysis tools based on static binary instrumentation
easier. In fact, MIL is a specific language for object-oriented and event-directed
domains to perform binary instrumentation at a high level of abstraction using
structural objects (functions, loops, etc.), events, filters, and probes.



60
Chapter 5. Pamda: Performance Assessment using Maqao toolset

and Differential Analysis

Figure 5.4: Pamda overview.

Figure 5.5: Performance investigation overview. T means the condition is True, otherwise
it is False (F)

5.4 Recipe: Pamda Tool Chain

Individual tools are the building blocks that Pamda glue together through a set of
scripts (cf all the diagrams). These scripts are under development but most of the
principles have already been evaluated. Figure 5.4 presents Pamda overall organi-
zation, which includes application profiling, cost analysis, structural checks, CPU
and memory subsystems evaluation, and finally OpenMP evaluation for parallel
applications. The current section describes Pamda components.

5.4.1 Hotspot identification

To limit the processing cost, we focus on the most time consuming portions of the
code. Our target loops are defined as the loops with a cumulated execution time
exceeding 80% of the total execution time. It should be noted that with such an
aggregated measurement, we can end up with a large number of loops with small
individual contributions. Such target loops are identified using Maqao sampling.

5.4.2 Performance overview

The Pamda approach divides performance bottlenecks into two main categories
(Figure 5.5): memory subsystem and CPU. Then, their respective contribution to
the overall execution time is quantified using Decan transformations LS (assessing
memory subsystem performance) and DL1 (assessing CPU subsystem performance).



5.4. Recipe: Pamda Tool Chain 61

Figure 5.6: Detecting structural issues.

The ratio of these contributions reveals whether the loop is memory or/and CPU
bound. Ideally, pipeline and out of order mechanisms insure that cycles spent for
memory accesses and for arithmetic operations perfectly overlap: as a result, the
time taken by REF should be the maximum time taken either by LS or DL1. In such
a case, only the slower component needs optimizing. If the time taken by LS and
DL1 is similar, the workload is said to be balanced: optimizing both components
is necessary to improve the loop’s performance. Finally, when cycles taken by the
memory and CPU components are poorly covered by one another (unsaturation),
optimizing either of them can be sufficient to gain overall performance.

5.4.3 Loop structure check

Loop structure issues can be detrimental to performance, and may be detected using
Decan loop trip counting feature. Indeed, in the case of unrolling or vectorization,
peel and tail scalar codes may have to be generated to cover the remaining iterations.
If too much time is spent in these peel and tail codes, this might indicate the unroll
factor is too high in respect to the source loop iteration count. To detect such cases,
loop trip counts for each version (peel/tail/main) are determined, and we can check
whether the main loop is processing at least 90 % of the source code iterations.

In some cases, the number of iterations per loop instance may not be large
enough to fully benefit from unrolling or vectorizing. This is easily highlighted by
comparing the dynamic execution time of the DL1 Decan variant with the Cqa
estimate, as the latter assume an infinite trip count. The difficulty to optimize such
loops is exacerbated when the loop trip counts are not constant.

5.4.4 CPU evaluation

Besides data accesses, CPU performance may be limited by other pathologies such as
long dependency chains (deps), reductions (textttRED), scalar instructions or long
latency floating point operations (div): these pathologies can be detected through
the combined use of Cqa and Decan (Figure 5.7). The front-end can also slow down
the execution by failing to provide the back-end with micro-operations at a sufficient
rate. Comparing their contribution to L1 performance (DL1) is a cost-effective way
to identify such problems. Finally, Cqa can provide us with estimations of the



62
Chapter 5. Pamda: Performance Assessment using Maqao toolset

and Differential Analysis

Figure 5.7: DL1 subtree: CPU performance evaluation.

Table 5.3: Bytes per cycle for each memory level (Sandy Bridge E5-2680).

Instruction L1 L2 L3 RAM
vmovaps 31.74 15.05 10.81 5.10
vmovups 31.73 14.96 10.81 5.10
movaps 30.72 18.16 10.80 5.14
movups 29.53 17.07 10.79 5.23
movsd 15.67 11.55 10.61 5.36
movss 7.91 6.65 6.39 4.97

effect of vectorizing a loop. We precisely quantify CPU related issues, enabling us to
reliably assess potential for optimizations such as getting rid of divisions, suppressing
dependencies or vectorizing. This information can guide the user’s optimization
decisions.

5.4.5 Bandwidth measurement

Data access rates from different cache levels/RAM highly depend on several factors,
such as the instructions used or the access pattern.

To this end, we generate microkernels loading data in an ideal stream case,
testing different configurations for load operations, with or without various software
prefetch instructions, and/or splitting the accessed data in streams to be accessed in
parallel. We also force misaligned addressing for vmovups and movups. Finally, we
use Microlaunch to run these benchmarks for each level of the memory hierarchy.

On our target architecture, 128-bit SSE load instructions could roughly achieve
the same bandwidth as 256-bit AVX (Table 5.3) throughout the whole memory
hierarchy. Except for movss, all instructions could attain similar bandwidths in L3
and RAM: only the type of instruction really matters for data accesses from L1 or
L2, and data alignment is not as relevant as it once was.



5.5. Experimental results 63

Figure 5.8: LS subtree: Memory performance evaluation.

5.4.6 Memory evaluation

Memory performance can be quite complex to evaluate. We use Mtl to find the dif-
ferent access patterns and strides for each memory group (as defined by the grouping
analysis [58]). Memory accesses typically are more efficient when targeting contigu-
ous bytes, while discontiguous accesses reduce the spatial locality of data. The worst
case scenario is having large and unpredictable strides, as hardware prefetchers may
not be able to function properly. Mtl also provides the data reuse distance, allowing
the temporal locality evaluation of groups.

Once potential performance caveats are identified, we can use Decan transfor-
mation del-group to single out offending groups and quantify their contribution
to the LS variant global time. Comparing the bandwidth measured for each group
with the bandwidth obtained in ideal conditions during the measurement phase may
then provide us with an upper limit on achievable performance.

5.4.7 OpenMP evaluation

Some issues are specific to parallel programs using OpenMP (Figure 5.9). The
standard deviation (STD) of the execution time for each thread points out workload
imbalances. It is particularly important that no thread takes significantly more
time than others to compute its working set, as loop barriers may then highly
penalize stalls. Another issue is excessive cache coherency traffic generated by store
operations on shared data. Transformation S2L converts all stores to loads: we can
quantify coherency penalties by comparing S2L with REF. Furthermore, the OpenMP
Overhead (OVH) module of Maqao is able to measure the portion of time spent in
OpenMP routines, providing an OpenMP overhead metric.

5.5 Experimental results

We applied our methodology on two scientific applications: PN and RTM. The
analysis processes and test results are presented below.



64
Chapter 5. Pamda: Performance Assessment using Maqao toolset

and Differential Analysis

Figure 5.9: OpenMP performance tree: STD represents the standard deviation between
threads while the OVH branch stands for OpenMP Overhead evaluation.

5.5.1 PN

PN is an OpenMP/MPI kernel used at CEA (French Department of Atomic Energy).
Hot loops are memory bound and are ideal to stress tools dedicated to memory
optimizations.

All tests are performed on a two-socket Sandy-Bridge machine, composed of two
Intel E5-2680 processors with 8 physical cores each.

The profiling done on the initial MPI version of the code presents four loops,
each consuming more than 8% of the global execution time each. Because of a
lack of space, we only study the first one, but the three other loops have a similar
behavior.

According to the methodology, the next step consists in gaining more insight
on the loop characteristics through performance overview, hence, the LS and DL1
Decan variants are used. The corresponding results shown in Figure 5.10 indicate
a strong domination of data accesses, with the LS curve being well over the DL1
curve and matching the REF one. Consequently, the investigation follows the LS
subtree.

Figure 5.10: Streams analysis on PN. The REF curve corresponds to performance of the
original code. The LS (resp. DL1) curve corresponds to the Decan variant where all FP
instructions have been suppressed (resp. all data accesses are forced to come out of L1).



5.5. Experimental results 65

Table 5.4: PN Mtl results for the three most relevant instruction groups.

Group Instructions Pattern
G1 Load (Double) 8*i1
G6 Load (Double) 8*i1+217600*i2+1088*i3
G5 Store (Double) 8*i1+218688*i2+1088*i3

In order to get more information on data accesses, we use Mtl. Six instruction
groups are detected but only three of them contain relevant SSE instructions dealing
with FP arrays. The Mtl results shown in Table 5.4 indicate a simple access pattern
for group G1 (stride 1) and, for groups G6 and G5, more complicated patterns
which need to be optimized. As a result, we are able in this step to characterize
our memory accesses with precision. However, it leaves us with two accesses and no
possibility to know which one is the most important. At this point, we return to our
notion of ROI provided by Differential analysis and apply the Decan del-group
transformation for each of the three selected groups. The del-group results shown
in Figure 5.11 clearly indicate that G6 is by far the most costly group: it should be
our first optimization target.

With the finding of the delinquent instruction group, the analysis phase comes
to its end. The next logical step is to try and optimize the targeted memory ac-
cess. Fortunately, the information given by Mtl reveals an interesting pathology.
The access pattern of the instruction of interest has a big stride in the innermost
loop (1088*i3) and a small one in the outermost loop (8*i1). In order to diminish
the access penalty, we perform a loop interchange between the two loops, which
results in a considerable performance gain with a speedup of 7.7x at loop level and
consequently a speedup of 1.4x on the overall performance of the application.

Figure 5.11: Group cost analysis on PN. Each group curve corresponds to performance
of the loop while the target group is deleted. The original code performance (REF) is used
as a reference.

5.5.2 RTM

Reverse Time Migration (RTM) [23] is a standard algorithm used for geophysical
prospection. The code used in this study is an industrial implementation of the
RTM algorithm by the oil & gas company TOTAL.

Our RTM code operates on a regular 3D grid. More than 90% of the application



66
Chapter 5. Pamda: Performance Assessment using Maqao toolset

and Differential Analysis

execution time is spent in two functions, Inner and Damping, which execute similar
codes on two different parts of the domain: Inner is devoted to the core of the
domain while Damping is used on the skin of the domain. Standard domain decom-
position techniques are used to spread the workload on multicore target machines.
Since the grid is uniform, load balancing can be easily tuned by using rectangular
sub-domain decomposition and by properly adjusting the sub-domain size.

All experiments are done on a single socket machine, which contains a quad-core
Intel Xeon E3-1240 processor with a cache hierarchy of 32KB (L1), 256KB (L2) and
8MB (shared L3).

Step 1: The original version of the code is provided with a default non-optimized
blocking. The first analysis on the OpenMP subtree reveals an imbalanced work
sharing. A second analysis done at the level of the performance overview subtree
shows that the code is highly bounded by memory operations. In order to fix this, we
focus on the blocking strategy. As a result it turns out that the default block size
is responsible for both the load imbalance between threads and the bad memory
behavior. We can then select a strategy which provides a good balance at work
sharing level as well as a good trade-off between the LS and FP streams. However,
we note that, to obtain an optimal strategy, a more dedicated tool should be used.

Step 2: The second step of the analysis consists in going further into the
OpenMP subtree and checking how the RTM code performs in term of coherency.
As explained earlier, the structure of the code induces a non-negligible coherency
traffic. Figure 5.12 shows experimental results after applying the S2L transforma-
tion on RTM. While the x-axis details loops respectively identified from Inner and
Damping, the y-axis represents speedups over the original loops. The results indi-
cate a negligible gain due to canceling potential coherency modifiers and a minimal
gain, observed on two loops, due to a complete deletion of the stores. Consequently,
we can conclude that maintaining the overall coherency state remains negligible,
therefore, there would be no point in going further in this direction.

Figure 5.12: Evaluation of the cost of cache coherence protocol. The S2L variants show
similar performance as their corresponding reference versions. The NO_STORE variants
also show similar performances, except for two loops which present a relatively non negligible
store cost.



5.6. Related Work 67

5.6 Related Work

Improving an application efficiency requires identifying performance problems
through measurement and analysis. Assessing bottlenecks impact on performance
is much harder. To achieve that, most researchers consider a qualitative approach.
TAU [87] represents a parallel performance system that addresses diverse require-
ments for the analysis and the observation of performance. Although performance
evaluation issues require robust methodologies and tools, TAU only offers support
to the performance analysis in various ways, including instrumentation, profiling
and trace measurements.

Tools such as Intel VTune [51], GNU profiler (Gprof) [46], Oprofile [63], MemSpy
[69], VAMPIR [77], and Scalasca [44] provide considerable insight on the profile of an
application. In term of methodology Scalasca, for instance, proposes an incremental
performance-analysis procedure that integrates runtime summaries based on event
tracing. While these tools help hardware and software engineers find performance
pathologies, significant manual or human operations still remain to improve software
performance, for example to select instructions in particular part of a program.

PerfExpert [29], HPCToolkit [19], and AutoSCOPE [88] pinpoint performance
bottlenecks using performance monitoring events. Furthermore, while PerfExpert
suggests performance optimizations, AutoSCOPE extends PerfExpert by automat-
ically determining appropriate source-code optimizations and compiler flags. Con-
trary to Pamda, the considered tools do not provide a methodology presenting the
cost related to the identified bottleneck. ThreadSpotter also helps a programmer by
presenting a list of high level advice without addressing return on investment issues:
what to do in case of multiple bottlenecks? How much do bottlenecks cost?

Interestingly in [101, 102], the authors present an automated system that finger-
prints the pathological patterns of the hardware performance events and identifies
the pathologies in applications, allowing programmers to reap the architectural in-
sights. The proposed technique is close to the current work and includes pathology
description through microbenchmarks as well as pathology identification using a de-
cision tree. However, in order to evaluate usual performance pathologies, Pamda
additionally integrates pathology cost analysis.

The above survey indicates that performance evaluation requires a robust
methodology, but traditional methods do not help much with coping with the overall
hardware complexity and with guiding the optimization effort. Also, previous works
focus on performance bottleneck identification providing optimization advice with-
out providing potential gains. The previous factors motivate to consider Pamda as
the only methodology combining both qualitative and quantitative approaches to
drive the optimization process.



68
Chapter 5. Pamda: Performance Assessment using Maqao toolset

and Differential Analysis

5.7 Summary

Application performance analysis is a constantly evolving art. The rapid changes
in the hardware mixed with new coding paradigms force analysis tools to handle as
many pathologies as possible. This can only be achieved at the expense of usability.
At the end, application developers work with extremely powerful tools but they have
to face significant differences and difficulties to use them.

This chapter illustrates the usefulness of performance assessment combining
static analysis, value profiling and dynamic analysis. The proposed tool chain,
Pamda, helps the user to quickly identify performance pathologies and assess their
cost and impact on the global performance.

The goal in using Pamda is to make sure that the right effort is spent at each step
of the analysis and on the right part of the code. Furthermore, we try to create some
synergy between different tools by combining them in a unified environment. We
provide some case studies to illustrate the overall analysis and optimization process.
Experimental results clearly demonstrate the benefits introduced by Pamda.



Chapter 6

Decan: Assembly Level
Re-writing Challenges and

Limitations

6.1 Introduction

Decan is built on top of a software stack called Maqao. Maqao as a framework,
targets the binary code of an application, it operates by disassembling the binary
and building an intermediate representation (IR). Thus, Maqao enables to build
performance evaluation tools as modules which exploit the intermediate representa-
tion. We identify two types of tools: 1) static analysis tools which exploit only the
IR, and 2) dynamic analysis tools such as profilers which exploit both the IR and the
binary rewriting capabilities provided by Maqao in order to instrument the code.
Decan as a dynamic analysis tool makes use of both the IR and binary rewriting,
and even pushes the later beyond what is usually done within classic tools.

Dynamic performance evaluation tools, whether they are trace based or sampling
based, have only to worry about their intrusiveness and precision of measure, this is
tied to their nature as tools for pure observation, their disturbance of the program
they watch is limited to the intrusiveness of their probes. Decan acts differently.
It performs what we qualify as controlled alteration of the code of the program in
order to highlight performance issues. Indeed, as a binary transformation software,
Decan cannot avoid introducing unwanted distortions within the variants it creates,
the effect of which would be seen at runtime. Some are easy to pinpoint, but some
others can be very tricky to highlight. In either case, it is necessary to keep their
effect as small as possible at runtime, otherwise the results of the variants could be
biased, and that would invalidate the comparison process.

This chapter summarizes the technical difficuties a tool such as Decan is likely
to raise. In what follows we:

• Describe the architectures of both Maqao framework and Decan.

• Describe how we handled the passage from In-vitro mode to In-vivo mode.

• Describe how we handled parallel codes with Decan.

• Enumerate and categorize the most important side effects we encountered and
dealt with during the design of Decan.

6.2 Decan Technical Design

Decan is built upon a binary manipulation framework called Maqao. The frame-
work works at the binary level by reverse engineering the binary code in a similar



70
Chapter 6. Decan: Assembly Level Re-writing Challenges and

Limitations

way as in a decompilation process. However, unlike the decompilation, which tries
to reproduce the original source code, Maqao stops after the construction of an
intermediate representation (IR). It then provides an API to manipulate the IR.

6.2.1 General Overview of the Maqao Framework

Figure 6.1 depicts a general view on Maqao architecture. We can identify three
major blocs, namely: Madras, Maqao core and a modules bloc. These are
described below.

Figure 6.1: The Maqao framework architecture

6.2.1.1 Madras:

We introduced in Chapter 4 Madras as the binary static rewriting tool Decan uses
to perform its transformations.We did not however justify that choice. Given that
binary patching tools can be grouped into two families: static and dynamic, we could
have chosen a dynamic binary rewriting tool as well. The reasons for discarding the
second family lies in the opposition that exist between their properties and the
constraints which need to be respected in order to be able to perform such analysis.



6.2. Decan Technical Design 71

We enumerate two major dynamic rewriting frameworks, DynamoRIO [25] and Pin
[66] which are built slightly differently. The major difference between the two being
that, DynamoRIO copies each basic bloc of the application into a code cache it fully
controls, and that the code is exclusively executed from that code cache. Pin, on
the other hand, recompiles each code sequence (straight line of code) with a JIT
compiler and puts the newly generated sequence in a code cache. The rest of the
processing is pretty much similar except for optimization details that each framework
uses in an attempt to mask its overhead. In a nutshell, a dynamic instrumentation
framework runs at the same time as the target application. It also takes the leadover
the control flow of the application, and this makes them intrusive and affects both
execution time and memory state (caches). Moreover, it is difficult to know when
this intrusiveness happens during the application lifetime, at the end, the use of
dynamic patching to generate Decan variants is likely to introduce a significant
amount of noise to seriously affect the comparison process. Still, the possibility to
use these tools in future developments should not be discarded, as they are making
substantial advancement into more transparency and less intrusiveness [26, 94].

In a different approach, static rewriting tools modify the binary code statically
and generate a new modified version to be executed. The modified program is only
active at runtime, the patching tool is no more needed. Therefore, the generated
overhead generated is minimal compared to dynamic rewriting tools. Our choice
to work with Madras is primarily justified by the fact that we were close to its
development and could easily include our needs and specifications for Decan into
its intrumentation capabilities. Other static binary rewriting tools are available such
as PEBIL [62], and basically have the same capabilities as Madras.

Madras (Multi Architecture Disassembler, Rewriter and ASsembler)[93] is the
binary code disassembler of Maqao, The tool translates binary code into a list of
instructions that can be analyzed. Madras relies on a static disassembly method
called linear sweep, the method consists of sequential disassembly of the executable,
hence ensuring a full recovery of the binary content. Though, one serious drawback
of the method is its lack of handling obfuscated codes (e.g. interleaving of data and
execution code).

The instruction stream returned by Madras permits a great flexibility in in-
struction manipulation, in addition of offering access to all the parts of an instruc-
tion, it is possible to query on the properties of the instruction (e.g. load or store,
branch or not, vector or scalar).

Madras also features a binary rewriting (also called patching) functionnality,
which is widely used by Decan in its instruction transformation process. Below is
an overview of its capabilities:

• Instruction insertion, deletion and modification: modification includes both
opcode and operands changing.

• Function call insertion: the code is injected at binary level, thus the function
call may change the contents of registers. In order to overcome this, Madras
records the contents of all the registers before the call and restores them after
it (spill-fill). It is also possible to have full control over the call injection and
avoid the spill-fill of all registers.

• Global variables insertion: includes the possibility to inject new global vari-
ables in the code and to reference them through modified or newly inserted



72
Chapter 6. Decan: Assembly Level Re-writing Challenges and

Limitations

instructions.

It is worth noting however, that the patching process does not come without
complications. Probably, the most naticeable one occurs in cases where either the
newly inserted instructions, function calls or modified instructions cannot be injected
within the code area itself due to a lack of space. For example, if we attempt to
replace a 4 bytes long instruction in the middle of the code (between two other
meaningful instructions), with two 4 bytes long instructions, the part of the code
located after the original instruction needs to be shifted by 4 bytes. The problem
with shifting big chunks of the code, is the need to recalculate all the references.
Within it, which is a tedious task prone to several mistakes due to the limits of
static disassemblers. Madras avoids the shift with the following workaround:

• The basic block containing the non-fitting code is moved to the end of the
binary, in its original location an unconditionnal branch is placed to point to
the relocated block. The remaining place in the original location is filled with
nop instructions.

• At the end of the newly relocated block an unconditionnal branch instruction
is placed to redirect the control to its normal flow (the next basic block)

6.2.1.2 Maqao core

Maqao core groups the high level analyses which construct the intermediate repre-
sentation. The following analyses are performed to construct the IR:

• Control flow analysis: takes the instruction stream returned by Madras and,
by following the branch instructions, constructs the control flow graph (CFG)
for each function. It also follows functions calls and constructs the Call Graph
(CG).

• Loop detection analysis: gets the CFG as entry and performs a Depth-first
search (DFS) tranversal of it to construct the loop hierarchy. The algorithm
used in the analysis is described in [98]. It detects both reducible and irre-
ducible loops. The majority of analyses based on Maqao are loop centric
including Decan.

• Advanced static analysis: Consists of several static analyses with the aim
of polishing the CFG and CG, such as indirect branches resolution, static
single assignment (SSA) and and groups detection which produces the groups
described in Section 4.4.1.

Several useful data structures results from this module, these include: the Control
Flow Graph (CFG), the Loop Hierarchy Graph (LHG) and the Call Graph (CG).
A rich API is also exposed for the extension modules to exploit these structures.

6.2.1.3 Modules

Modules are performance analysis softwares which exploit the data structures and
APIs offered by the lower parts of Maqao (Madras and Maqao core), Decan,
being one of them, is built at this level. Two of the most noticeable modules are:



6.2. Decan Technical Design 73

• CQA[32]: Is a static analysis tool; CQA analyses the quality of the generated
code, and provides feedback on potential optimizations as well as a projection
of new performances if these are applied.

• MIL[31]: Is a meta-language that enables fast prototyping of analysis tools
such as profilers.

• MTL: MTL is a memory tracing library with advanced compression techniques.

We used a number of modules built on top of Maqao, along with Decan, within
a unified performance analysis methodology which we introduced in Chapter 5.

6.2.2 Decan architecture

Decan is built as a module on top of Maqao; its entry is the binary file of the
target program as well as a configuration file that sets several parameters such as:
the transformations to apply, the profiling method and the choice of the recovery
strategy. Figure 6.2 illustrates the workflow of the tool. We can identify two major
phases:

Figure 6.2: Decan tool workflow

1) Variants generation is achieved by means of the following steps

• Instruction subsets construction: Decan scans the target loop instruc-
tions and constructs instruction subsets. This construction is discussed in
detail in Section 4.4.1.



74
Chapter 6. Decan: Assembly Level Re-writing Challenges and

Limitations

• Transformation: with the help of Madras API, Decan applies the appro-
priate transformations on the instruction subsets. Base transformations are
described in Section 4.4.2.

• Monitoring probes injection: for its comparison process, Decan has to
collect various events (the principal one being execution time).Decan imple-
ments its own runtime profile library. Monitoring probes are injected after the
transformation process at the entry and exits of the loop. Measurement re-
lated issues are discussed in detail in Chapter 7. For each variant, the following
events can be collected:

– Elapsed cycles: we implement our elapsed cycles monitoring probe on the
base of the rdtsc assembly instruction, an instruction provided in the
Intel platforms which reads the value of a cycles hardware counter called
time stamp counter (TSC).

– Value profiling : we implement probes which perform a value profiling
on the loop where the numbers of loop calls and iterations per call are
recorded.

– Hardware Counters: Decan uses a dedicated hardware monitoring li-
brary built within Maqao to monitor counter values. The library is
built on top of the Linux perf_event interface [15].

• Recovery strategy appliance: Decan transformations, by altering the
semantic of the code, may also alter its control flow and its normal behavior.
In order to avoid such situations we set up two recovery strategies: Instance
mode and Recovery loop. Recovery methods are discussed more in detail in
Section 6.3

2) variants execution and results processing. The major steps of each are:

• Variants execution: the generated Decan variants are executed following
a vigorous experimental setup (described in detail in Chapter 7) in order to
have reliable results for comparisons.

• Error checking: an error checking process determines whether the obtained
results are coherent or not. Two examples of such situations are the case of
a LS variant (with only memory operations) in which the execution time is
greater than that of the REF variant, and second two variants of the same loop
but with different iteration counts. Non-coherent results usually reveal the
presence of previously unseen side effects which should be handled.

• Differential analysis: implements the core analyses which perform compar-
isons between events generated within variants.

• Reports generation: depending on the goals of the analyses, appropriate
reports with feedback are generated. Data are also uploaded into a database
for further use.

6.3 Dealing with Control Flow issues in Decan

Decan performs what we qualify as controlled alteration of the code. If not taken
into account, this may cause serious issues at runtime, since the semantic alteration



6.3. Dealing with Control Flow issues in Decan 75

is likely to change the control flow of the program from its normal behaviour into
a random one. The consequences of a random control flow are critical both to the
program (program crash, infinit loops, etc) and the analysis method (number of
iterations of the loop may change between variants).

6.3.1 Data Dependent Control Flow

The main issue with semantic alteration is when the control flow is data dependent.
Decan performs well on loops with constant number of occurrences or of iterations,
which makes the tool very suitable in the case of stencil codes. In such cases, mod-
ifying the core of the loop with DECAN has no impact, neither on the number of
iterations nor on the number of occurrences (loop calls). However, other types of
encountered codes present a different behavior. Indeed, for a particular code frag-
ment, if the control structures (if statements and loops) depend on data computed
during the execution of the code and not on some invariant constants, the alteration
of computation can change the original orientations of those structures.

We differentiate two types of control alterations which may arise either separately
or at the same time:

• inner control flow alteration: corresponds to the case where the inner control
flow of the loop transformed by Decan is altered, which causes its number of
iterations to change.

• outer control flow alteration: corresponds to the case where the Decan trans-
formations on the intructions of a loop causes the control flow of the rest of
the program to change.

6.3.2 In-vitro Mode

The earlier version of Decan performed what we qualify as In-vitro execution,
where the routine containing the target loop is extracted from its original context
(the application) and executed separately. The following process was used[57]:

1. Dumping the memory context of the routine

2. Dumping the addresses of all the parameters of the routine.

3. Building a loader that maps the memory context of the routine and passes the
parameters of the routine to the stack/registers.

4. Patching the application in order to directly connect to the loader and avoid
the execution of the whole application.

The approach was interesting but we found some drawbacks:

• The process contained some flaws which led to program crash in several occa-
sions.

• The context dump of the memory context does not restore the original state
of caches. Therefore, the target loop may have a different behaviour than in
its original context.

• The process does not prevent control flow problems inside the routine.

These drawbacks prompted us into developping other techniques to deal with
control flow issues. These are discussed in the following section.



76
Chapter 6. Decan: Assembly Level Re-writing Challenges and

Limitations

6.3.3 In-vivo Mode

The approach we adopted for our updated version of Decan relies on the concept
of in-vivo execution. This means that the target loop is executed within its original
context. We had to handle both inner control flow and outer control flow issues.
For that, we used the techniques described below.

6.3.3.1 Instruction black lists

In cases where data corruption is due to inner control flow alteration, we attempt
to detect the instructions responsible for the data corruption and prevent them
from being transformed. The detection method is based on a static analysis which
detects the instruction chain involved in the control process, this is done through a
buttom-up search on the loop DDG, starting from the jump instruction involved in
the backward edge. All the instructions part of the dependency chain ending with
the jump instruction are put into a black list. All the instructions of the black list
are not transformed.

Because we only handled loops with a single basic block with Decan, the anal-
ysis stays fairly simple to perform. Newer versions of the tool handle multi-block
loops and perform a more advanced analysis.

The methods suffers from the drawbacks of static analyses, data manipulation
in memory cannot be accurately tracked, which causes the analysis to fail if such
cases happens.

6.3.3.2 Instance mode

In cases where data corruption is due to outer control flow alteration, we activate
the transformed loop only at a particular loop call (loop instance). This technique,
coupled with instructions black lists, is used in the majority of our analyses. It
operates as follows:

• First, a profiling is done on the loop to capture the number of iterations of each
loop call. We order the recorded trace and delimit deciles (we generally use
deciles but it depends on the wanted precision). Thus, we obtain ten buckets.

• Second, the program is patched in what we call instance mode, it follows the
logic shown in Figure 6.3. A test block is created before entering the loop. The
block holds a counters which is incremented with each loop call. A specific
loop call is considered as a threshold, as long as the threshold is not reached
the original version of the loop is executed and the program continues its
execution. When the threshold is reached, the transformed version of the loop
is activated (with its probes). Once, it finishes its execution, the program is
ended.

• In order to have a detailed image on the bahaviour of the loop, we take a loop
call from each of the created buckets and use it as a threshold for the binary
generated in instance mode.

This technique enable us to avoid dealing with outer control flow isses. The sampling
over loop call allows to have a good coverage on the performance of the loop. The
only drawback is that depending on the variation of the number of iterations, the
process can take more or less time. If the number of iterations of the loop does not



6.3. Dealing with Control Flow issues in Decan 77

change for all loop calls, then only one execution is needed, whereas if it varies a
lot, we need to take several loop calls in order to preserve our precision over loop
behaviour.

Figure 6.3: Flowchart showing the logic of the code generated by Decan for the instance
mode. As long as the loop call i is not reached the original version of the loop is executed.
Once the loop call is reached, the transformed version of the loop is activated. The program
is ended at loop exit

6.3.3.3 Recovery loop

Another approach to tackle outer control flow alteration problems is the injection of
a recovery loop to restore the correct state of registers and memory. Basically, the
original loop is not only replaced by the transformed one, but also duplicated; when
the modified loop call is finished, the original version is called. The code generated
by Decan follows the logic described in Figure 6.4. The mechanism is as follows:

• Context saving : All the registers (general purpose, vector, flags and FPU) are
saved.

• Start probe: The probe at the entry of the loop is activated.

• Modified loop execution: the transformed version of the loop is executed.

• Stop probe: The probe is deactivated at the exit of the loop.

• Context restore: All the registers are restored.

• Original loop execution: the original version of the loop is executed to recover
the correct state of registers and memory.

This technique is particularly efficient, since its cost is just twice the cost of the
loop. However, it supposes that the transformed loop does not change the memory



78
Chapter 6. Decan: Assembly Level Re-writing Challenges and

Limitations

Figure 6.4: Flowchart showing the logic of the code generated by Decan for the recovery
loop mode.

state, otherwise the original version of the loop would work on corrupted data. Thus,
stores need to be completely suppressed from the transformed version of the loop,
in order to keep the memory state unchanged.

6.4 Extensions for Parallel Applications

Despite targeting primarily on-core performance issues, we came during the devel-
opment of Decan to analyze some parallel codes. Thus, we had to extend Decan
in order to handle them.

Decan is agnostic to the programming model used in the application, what
it really sees, are assembly instructions, threads and processes. The Differential
analysis concept can be applied in different manners on a parallel code depending
on the granularity at which the concept is to be applied: instruction, thread or
process.

6.4.1 Shared Memory Codes

It consists of applying transformation process on loops inside parallel regions. The
OMP PARALLEL directive of the OpenMP standard [30] is a typical example of such
regions where each openMP thread executes a number of the iterations of the loop.
For such construct, we set up two operatory modes:

• Homogeneous processing of threads The same transformed loop is exe-
cuted by all threads. The flowchart (A) illustrated in Figure 6.5 shows the
logic of the code generated by Decan, each thread i has its own start and
stop probes, but all execute the same LS variant. This is a forward extension
of the sequential case, the only difference being that the monitored events are
captured for each thread separately.

Figure 6.6 shows the results of applying this operatory mode on four hot
loops of the BT benchmark (from the NPB 3.0 [53]). Three Decan variants
(DL1, FP and LS) were generated and a parallel execution on four threads were



6.4. Extensions for Parallel Applications 79

performed. We notice that each thread has its own reports on saturation. In
the majority of cases, the threads have close saturations, thus we generally
synthetize the results by taking the saturations of only one of them.

• Heterogeneous processing of threads Threads execute different variants
of the transformed loop. An example of this is illustrated within the flowchart
(B) in Figure 6.5, in which thread i executes the DL1 variant whereas the other
threads execute the LS variant.

Figure 6.5: Flowcharts showing the logic of the code generated by Decan for the two
openMP operatory modes. Flowchart (A) illustrates the case where all threads execute the
same variant, and Flowchart (B) illustrates the case where different threads may executes
different Decan variants

In our experiments on parallel codes we use the homogeneous processing of
threads operatory mode. The second mode, was just set up as a prototype and
could be the subject of future research.

Decan should work on the majority of shared memory parallel models and
frameworks. However, there are some subtelties that need to be handled differently
for each framework. In the actual implementation of the tool, we added support for
the OpenMP model. For that we managed the following details:

• Decan handles only loops wrapped inside parallel constructs and without
barriers, since it cannot handle well function calls inside the loop. The only
parallel construct it handles for the moment is the Parallel for



80
Chapter 6. Decan: Assembly Level Re-writing Challenges and

Limitations

Figure 6.6: DL1,FP and LS variants on the four of the hot loops of the BT benchmark.

• Both in GCC and ICC, the loops wrapped inside the parallel for construct
are extracted into independent functions and the OpenMP runtime manages
the control flow redirection to them. These functions are easily identified
by Decan, in ICC a special label is attributed to each function and enables
to identify its original function, whereas in GCC the functions are injected
without labels just after the one they are extracted from.

6.4.2 Distributed Memory Codes

Decan handles MPI applications in the same manner as it handles sequential ones.
The main difference lies in the results reporting mechanism: in the MPI case, a
report file is generated for each process in the loop. Still, loops containing standard
MPI statements such as SEND and RECEIVE are skipped due to the delicate
handling of function calls.

Figure 6.7 illustrates the results of applying Decan on PN, an OpenMP/MPI
kernel used at CEA (French Department of Energy). Each of the 32 processes of
the loop has its own reports of the stream variant.

6.5 Code Alteration Side Effects and Workarounds

A side effect is any unwanted change in program behaviour introduced by a Decan
transformation. The intensity of the runtime distortion caused by the alteration is
an indication of its harmfulness.

The detection of a side effect is not always obvious, we sometimes recognize
already some potential side effects just by looking at the nature of the Decan
transformation itself. In other cases, only an abnormal runtime behaviour reveals
the side effect.

The current section summarizes the main side effects we dealt with during the
development of Decan.



6.5. Code Alteration Side Effects and Workarounds 81

Figure 6.7: Stream variants on 32 processes of the PN application

6.5.1 Code Layout Sensitivity

By suppressing, modifying or replacing instructions, Decan is likely to change the
original layout (size and form) of the loop. Whether the change has an effect on
performance or not, depends on the behavior of the transformed loop. Indeed, the
total execution time of a loop is the aggregation between the time it spends in the
processor front-end and the time it spends in the processor back-end. When the
back-end is a bottleneck, the front-end time becomes negligible, but as the back-end
time shrinks the front-end becomes more important.

The problem raised is that instruction transformations, such as suppressions,
do not only affect the back-end but the front-end as well. The goal of instruction
suppression is to assess the latency of the instruction, therefore, it becomes difficult
to know how much gain is due to each.

We thus need to cancel the front-end effect due to instruction suppression. For-
tunately, the front-end is more sensitive to instruction size. We thus preserve the
original layout at the front-end level by replacing the suppressed instruction by a
neutral instruction called a nop . The advantage of a nop instruction is that it only
has a cost in the processor front-end, since it is evicted before reaching the back-end
(on earlier Intel plateforms, the instruction passes through the back-end but has
a small latency making it suitable for use also). Therefore, it would be possible
to preserve the same code layout in front-end and obtain the desired effect in the
back-end.

Globally for a transformation that alters code layout, three possible variants can
be be constructed, based on the degree of preservation targeted:

• Layout Unaware: Is a non aware version on the code layout. It deletes in-
structions without paying attention to the loss in the number of Uops between
the two codes. Consequently, the resulting loop is smaller than the original
one in terms of Uops.

• Layout Aware (One-Byte NOP): Each deleted instruction is replaced by a
standard one-byte NOP instructions (the NOP instruction is coded on one byte).
The original number of Uops is preserved, but the code size and alignment



82
Chapter 6. Decan: Assembly Level Re-writing Challenges and

Limitations

are not preserved.

• Layout Aware (Muli-Byte NOP): Each deleted instruction is replaced by
a multi-byte NOP instruction (the code size of the NOP instruction is the same
as the deleted instruction one). The original number of Uops is preserved as
well as the code size and alignment.

Figure 6.8: Performance of the REF, LS(ANMB), LS(AN1B) and LS variants for the NR
codelet toeplz_4 on a low frequency execution

Figure 6.9: Performance of the REF, LS(ANMB), LS(AN1B) and LS variants for the NR
codelet toeplz_4 on a high frequency execution

Figure 6.8 correspond to experiments conducted on toeplz_4 an NR codelet,
and gives an overview of the effect the change in code layout may have. The figure
shows the cycles per iteration for the original version of the loop (REF) and three
LS variants corresponding to the three possibilities of code layout described above.
The LS variant is unaware of layout, its curve deviates from the REF one. Though,
the deviation shrinks when the codelet is executed with big datasets, this matches
our former statement on the Back-end becoming more consequent because of longer
stalls. The two other curves AN1B and ANMB respectively correspond to the one-
byte NOP and multy-byteNOP versions, these variants have the same performance



6.5. Code Alteration Side Effects and Workarounds 83

as the original REF which means that the deviation between LS and REF was due
to layout effect induced by the deletion of FP instructions. We can notice another
factor that affects the loop sensitivity to layout via Figure 6.9. It takes exactly the
same codelet and variants, the only difference is that the machine frequency has been
fixed to its biggest value “3300000” (in the first experiment the frequency was fixed
to the smallest value “1600000”). Execution times of all variants have been divided
by two, but more importantly for big data set sizes there is no deviation between
LS and REF variants, the increase in frequency makes the instruction flow in the
pipeline faster. However, the lower levels of memory (e.g. RAM) run at a different
frequencies, lower than the processor. Therefore, the wait for data references located
in those level becomes more significant and completely covers the effect of layout.

Other tricky issues happen at the processor back-end level when instructions
are suppressed. These mainly include mainly the different buffers (ROB, PRF,
etc) located within the back-end, and led to pipeline stalls when they are full.
Instruction suppression hence releases some of the pression on them and leads to
gain in execution time. Unfortunately, the granularity is too small, and we do not
know for the moment how to handle such cases.

6.5.2 Data Dependence Alteration

One critical point in the instruction trasformation process of Decan is the preser-
vation of the original dependencies between instructions. We seek to preserve the
original dependencies of the instruction if it is suppressed, modified or replaced.
At first, we did not give much attention if our transformations created new depen-
dences, we thought that the later would have a negligible effect. This allowed us to
put some automation into our transformations, for example the same transformation
we created for two operands SSE instructions were used for three operands AVX
instructions. It turned out that some of the automated transformations introduced
some depedencies which biased significantly our results.

Original instruction VMOVHPD 0x2912d3c0(%R15),%XMM6,%XMM2

Transformation Instruction subset ={LS}, Transformation={DELETE}

Modified instruction (V1) VXORPS %XMM2,%XMM6,%XMM2

Modified instruction (V2) VXORPS %XMM6,%XMM6,%XMM2

Table 6.1: Example of transformation which alters data dependency between instructions.
The resulting instruction (V1) adds new dependencies whereas (V2) preserves the original
ones

The transformation described in Table 6.1 illustrates the issue. The table shows
two versions of the DELETE transformation on the vmovhpd instruction, the first
version (V1) was our initial solution constructed by an automated process and con-
sisted of replacing the memory operand with the destination register. The transfor-
mation targeted the LS subset and was supposed to produce an FP variant of the
loop. A fragment of the original assembly code of the loop is shown in Table 6.2,
along with the original and newly created dependencies related to the instructions
vmovhpd. We notice that the initial dependency between instruction 8 and 1 is a
WAW on %XMM2, the transformation introduced a new true dependency RAW
on the same register. The same goes for instructions 9 and 15.



84
Chapter 6. Decan: Assembly Level Re-writing Challenges and

Limitations

The FP variant has predictable performance. We are able, with our static anal-
ysis tool, Cqa to predict its performance with a less than 10% error. Therefore,
we compared the real and estimated execution times of the variant. The results
are shown in Table 6.3. We noticed a big gap between the real measure (134 cpi)
and the static estimation (87 cpi) for the FP(V1) which was surprising. We also
verified the recMII(minimum initiation interval due to recurrence constraints), a
known metric used within the modulo scheduling algorithm [48] and provided by
Cqa, and found a significant difference between the REF (3 cpi) and FP(V1) variant
(55 cpi). These observations led to a review of the generated code and a modifica-
tion of the transformation. The modification consisted in replacing the first source
operand by the second source operand instead of the destination operand (modified
instruction (V2) in Table 6.1). The modification had a positive effect. We noticed
that the execution time of the corresponding variant FP(V2) (90 cpi) was close to
the estimated execution time (87 cpi) which is the usual behaviour, more over, we
recovered the initial recMII of 3 cycles, which means that our critical dependency
chain was preserved.

This issue made us aware of the risks that automated transformations can bring.
We concluded that a validation suite made of small micro-benchmarks would help
us to detect the cases where a transformation tested on an instruction set and used
on a newer modifed one, fails to bring the desired behaviour.

Assembly code
1. VMOVSD 0xa0(%R15),%XMM2
2. VMOVSD 0xd0(%R15),%XMM1
3. VMOVHPD 0xb8(%R15),%XMM2,%XMM3
4. VMOVHPD 0xe8(%R15),%XMM1,%XMM15
5. VMOVUPS -0x70(%RBP),%YMM14
6. VMOVSD 0xa8(%R15),%XMM6
7. VMOVSD 0xd8(%R15),%XMM5
8. VMOVHPD 0xc0(%R15),%XMM6,%XMM2
9. VMOVHPD 0xf0(%R15),%XMM5,%XMM1
10. VMOVSD 0xe0(%R15),%XMM6
11. VINSERTF128 $0x1,%XMM15,%YMM3,%YMM7
12. VMOVUPS -0x50(%RBP),%YMM15
13. VSUBPD %YMM7,%YMM14,%YMM3
14. VMOVSD 0xb0(%R15),%XMM7
15. VMOVHPD 0xc8(%R15),%XMM7,%XMM5

Initial Added
dependencies dependencies
8. WAW(8,1,XMM2) RAW(8,1,XMM2)
9. WAW(9,2,XMM1) RAW(8,1,XMM2)
15. WAW(15,7,XMM5) RAW(15,7,XMM5)

Table 6.2: Code fragment of a loop extracted from POLARIS application. With an
emphasize on initial and added dependencies on some instructions after transformation
application



6.5. Code Alteration Side Effects and Workarounds 85

Code version Real Estimated recMII Saturation
exec time exec time

(cycles/iteration) (cycles/iteration) (cycles/iteration)

REF 156 87 3 1.00

FP (V1) 134 87 55 0.86

FP (V2) 90 87 3 0.54

Application:POLARIS - Function:grade2c - Loop:2126

Xeon E31240 Sandy Bridge 1600000-3300000
Mono socket - L1:32 - L2:256 - L3:8192

Table 6.3: Comparison between the performance of REF variant and two versions of FP
variant

6.5.3 Instructions with variable Latencies

One of the main relaxation points enabled by the use of Differential Analysis is
the destruction of code semantic. That makes the values in the registers no longer
correct. Still, this relaxation is only, possible if instruction latencies are fixed for all
operands ranges (the restriction concerns flaoting-point instructions only as mem-
ory instructions latencies vary depending on data location), otherwise, the propa-
gation of random values within the code will lead to random latencies and break
the comparison process. Fortunately, in recent architectures, and particularly in the
case of the base of our Decan tool, the Intel x86, most instruction latencies are
standardized with fixed latencies. The small fraction of instructions with variable
latencies are not used within scientific codes, except for two instructions division
and square-root . For these two, if operands values change, the latency of the
instruction changes too. Thus, we had to provide a special transformation which
would ensure a stable behaviour.

Original code VMOVUPD 0x20(%RAX,%RCX,8),%YMM3
VDIVPD %YMM0,%YMM3,%YMM7

Transformation Instruction subset ={LS}, Transformation={DELETE}

Generated code (V1) VXORPS %YMM3,%YMM3,%YMM3
VDIVPD %YMM0,%YMM3,%YMM7

Code version Execution time Saturation
(cycles per iteration)

REF 191.12 1.00

FP (V1) 59.60 0.31

Application:POLARIS - Function:mind2 - Loop:2943

Xeon E31240 Sandy Bridge 1600000-3300000
Dual socket capable - L1:32 - L2:256 - L3:8192

Table 6.4: Creation of an FP variant on a code which contains a division operation

We can see the difference between the forward and controlled handling of divi-
sions and square-roots in Tables 6.4 and 6.5. In the forward transformation (Table
6.4), no special processing is reserved for the division instruction. Deleting the
vmovupd causes the second source operand of the division XMM3 to be set to zero.
This is already problematic since it can generate FP exceptions (division by zero



86
Chapter 6. Decan: Assembly Level Re-writing Challenges and

Limitations

Original code VMOVUPD 0x20(%RAX,%RCX,8),%YMM3
VDIVPD %YMM0,%YMM3,%YMM7

Transformation Instruction subset ={LS}, Transformation={DELETE}

Generated code (V2) VXORPS %YMM3,%YMM3,%YMM3
VMOVUPD -0xa65(%RIP),%YMM3

VDIVPD -0xa4d(%RIP),%YMM3,%YMM7

Code version Execution time Saturation
(cycles per iteration)

REF(V2) 181.87 1

FP (V2) 89.61 0.49

Application:POLARIS - Function:mind2 - Loop:2943

Xeon E31240 Sandy Bridge 1600000-3300000
Dual socket capable - L1:32 - L2:256 - L3:8192

Table 6.5: Application of FP stream transformation on a code which contains a division
operation

and NANs) which can raise interrupts and trigger additional special code to handle
the exceptions. In this case we notice that the resulting FP variant has near 30%
saturation. Our solution consists in controlling the outcome of the division opera-
tion through its source operands. We, therefore, load the two source operands from
a memory location as illustrated in the generated code of Table 6.5. The loaded
values always are the same and the memory location does not change, this ensures
a small additional latency. Still, the modification of the source operands deviates
the latency of the division from its original output, which makes the comparison
with the original code impossible. We handle this by applying the same controlling
process (injection of load instructions) to the REF variant in order to obtain the same
behaviour in the two variants. We notice, in this case, that the execution time of
the REF variant changes relatively to the uncontrolled version (181 vs 191).

6.5.4 Instrumentation Side Effects

A number of side effects might be introduced by the instrumentation mechanism
itself. We encountered such a case with the DL1 variant. In the DL1 variant, the static
patcher creates a new binary section for the global variables which should replace
the load and store operands of memory instructions. It also places the section at the
end of the binary file. During runtime, we noticed that the execution time of the
DL1 variant was far bigger than the REF variant. After an extensive investigation, we
found that the global variables injected by the patcher were located on an unloaded
memory page, and caused a costly TLB miss. We later solved the case by adding a
first touch on the new variables before entering the transformed loop.

6.5.5 Floating-point Exceptions

The semantic alteration caused by instruction transformations are likely to change
the numerical values calculated within the loop. In a number of cases, this already
led to generating floating-point exceptions (e.g. denormal numbers, underflow, over-
flow). The problem with FP exceptions is that they trigger special software handling



6.5. Code Alteration Side Effects and Workarounds 87

mechanisms through interrupts. Once an FP exception occurs, an interrupt is im-
mediately triggered and a system function is called to handle the exception.

FP exceptions harm the comparison process of Decan. It is not possible to
know how many exceptions happen in each variant. Each time they are triggered,
several functions inside the OS are called, and the execution time of the handler is
not negligible, especially in the case of small loops.

Our solution to this problem was simple. It consists in turning off the interrupt
triggers before entering the loop and activating them again after its execution. On
Intel x86 architectures, the interrupts can be controlled through the MXCSR register.
The register holds a flag for each interrupt type which enables to either activate or
deactivate it.

6.5.6 Wrap-up: Side Effects Sources

In the previous section, we highlighted some of the unwanted effects that might
arise in the variants after code transformations. We therefore set up the root cause
categories from which the side effects might happen. It is worth noting that the
categories are likely to be incomplete as they are only derived fromprevious experi-
ences.

6.5.6.1 Code Level

Refers to specific properties of code that result in an unwanted runtime behavior in
the variant. The most critical being instructions involved in the control flow of the
applications. This is obviously inherent to all kinds of codes, and should be handled
appropriately.

6.5.6.2 Hardware Level

Technically, almost every component in the micro-processor can be a source of un-
wanted side effects. In a utopian transformation process, the effects to be highlighted
only are the reactions of the hardware towards the properties of instructions them-
selves (latency et cetera). But in practice, the reactions of the hardware to the
change in instructions, such as the layout change case discussed in Section 6.5.1,
add up some effect in the equation. These are also inherent in general, few are the
cases where we can completely mask or undo their effect, therefore, the best strategy
would be to try and reduce their effects as much as possible.

6.5.6.3 Instrumentation level

Effects on the patching process range, they range from simple implementation details
such as the jump instructions introduced to enter the patched areas, which harm
performance if they are misplaced, to more complex ones such as probe nature and
placement (discussed in Chapter 7). In a nutshell, in some cases, these are just the
limitations of instrumentation itself, we just cannot do better. In other cases, they
rather are mistakes or bad choices of instrumentation that can be avoided (see cases
discribed in sections 6.5.4 and 6.5.2).



88
Chapter 6. Decan: Assembly Level Re-writing Challenges and

Limitations

6.6 Summary

Within this chapter, we have introduced the overall architecture of Decan and
Maqao, the framework on top of which Decan is built. We detailed two important
features introduced in our version of Decan: first how we handled major issues
related to control flow alteration, and how we switched from an in-vitro mode to
an in-vivo mode, and second how we handled the transformation process in parallel
programs. We also exhibited the unwanted side effects that Decan might introduce,
and showed their effects on the comparison process. In all encountered cases, we
were able to provide workarounds which reduced their effects.



Chapter 7

Tackling Measurement Precision,
Stability and Probe Intrusiveness

7.1 Introduction

Measurement is a widely used technique in application performance analysis.
Mainly, it consists of monitoring hardware generated events during the execution of
a particular portion of code. Analogously to the observations performed on phys-
ical entities where measurement instruments and captors are used, and in order
to observe the behavior of a program, we use a special piece of code that we call a
probe. Furthermore, event measures can be obtained with two different measurement
methods:1) exhaustive measurement, where a code area is delimited with markers in
order to measure a number of events within the delimited area. 2)sampling, which
consists of taking event values only at particular points, the points can be either
defined as time intervals, particular points in the code, event count (threshold) or
a combination of the three. Within this chapter, we only focus on tracing, since it
was the method we used in all our measurements for Differential Analysis.

Differential analysis is a comparative approach that works at binary loop level.
This makes it very sensitive to measurements. Indeed, being able to say that a
particular event differently behave in two Decan variants is conditioned by the
correctness of measures. The approach still relies on execution time as the principal
event for the comparison process, because it is a known accurate and stable event.
However, the integration of other events, which might be more sensitive (eg : memory
related events) needs a primary step of investigation. This chapter globally describes
how we dealt with measurements in Decan, it also summarizes the investigations
that we conducted on a variety of events in order to see which opportunity they
offer within the comparison process of Differential Analysis.

In exhaustive measurement, three factors have a big impact on the quality and
accuracy of measures: stability, precision and intrusiveness:

1. Stability (we may also refer to it as measurement bias) is related to the repro-
ducibility of measures; it is not specific to performance analysis, but common
to all measurement purposes (e.g. the true gain of an optimization would
hardly be assessed if the measurements were unstable). Measurement stabil-
ity is present in the majority of experimental setups used in a variety of tasks:
program performance analysis, optimization validation, etc. If ignored, these
setups may lead to serious mistakes such as the validation of an optimiza-
tionthe results of which in reality is a highly biased measure. For Differential
Analysis, a biased measure may lead to the assessment that two variants are
different when they are not(or the opposit) thus invalidating the comparison
process itself.

2. Precision is related to probe placement and lightness. Precision here means



90
Chapter 7. Tackling Measurement Precision, Stability and Probe

Intrusiveness

the ability to only measure the events of the targeted code area. The more
probes are close to the area to measure, the better is the precision. Some
trade-offs are however necessary. A probe in itself is a source of noise if the
area to monitor does not generate enough events to make this noise negligible.

3. Intrusiveness is related to probe quality. As stated above the probe in it-
self can be a source of events, which cannot be differentiated from those of
the monitored area, and may even fight with them on hardware resources
(e.g. cache lines). Intrusiveness is just another perspective to deal with mea-
surement precision, and aims to quantify and subtract the noise instead of
minimizing it.

7.2 Events of Interest

The main event we rely on in the comparison process of Differential Analysis is
execution time. The event is obtained through the Time Stamp Counter TSC which
can be accessed quickly with the rdtsc instruction (more detail on this in Section
7.5.2) and the accurately measured. Nonetheless, we are interested to know if other
events provided by hardware counters deliver reliable values that can be used for
comparisons as well. We are particularly interested in memory related events. Thus,
the events we depicted in our study correspond to a number of hardware counters
we found in the Intel x86 Sandy-Bridge micro-architecture. Table 7.1 provides the
list of counters we depicted; they fall into the following categories: elapsed cycles,
instructions retired, memory traffic counters and cache hits. We use the terms event
and counter interchangeably since the term event reflects a more abstract view of
what the counter monitors.

Metric Category Alias
CPU_CLK_UNHALTED_CORE elapsed cycles CCUC

INSTR_RETIRED_ANY instruction retired IRA

L1D_REPLACEMENT memory traffic LR

L2_LINES_IN_ALL memory traffic L2LIA

L2_TRANS_L2_WB memory traffic L2TLW

L3_LAT_CACHE_MISS memory traffic LLCM

MEMLOAD_UOPS_RETIRED_HIT_LFB cache hits MURHL

MEMLOAD_UOPS_RETIRED_L1_HIT cache hits MURL1H

MEMLOAD_UOPS_RETIRED_L2_HIT cache hits MURL2H

MEMLOAD_UOPS_RETIRED_LC_HIT cache hits MURLLH

Table 7.1: List of hardware counters of interest, available in the Intel Sandy-Bridge micro-
architecture

.

7.3 Experimental Methodology

It is difficult to validate hardware counter measurements against true values. Vali-
dation is sometimes possible for counters. Their values can be more or less statically
determined from the code (e.g. instructions retired). In other cases, only a sim-
ulation reproducing the exact behavior of the micro-architecture would be able to



7.4. Measurement Stability 91

produce the correct values of the counters. Unfortunately, we do not know any
simulator able to accurately replicate the micro-architecture. To validate our mea-
surements, we had to set up reference values of the counters by using a software
measurement workaround. The idea is to use small computing kernels that we call
codelets. The advantage of using codelets is that we have a total control over their
execution; it is possible to change the problem size and easily repeat the execution
several times.

Our test suite is extracted from the Numerical Recipes (NRs) [82]. We chose
22 NR codelets as the base set for the experiments. These are part of a broader
set introduced in Section 4.5.6.3. The chosen codelets are selected between well
behaving codelets which operate on one and two dimensional arrays. For each
codelet, the problem size (size of matrices) can be controlled, 21 points enable us to
cover the entire memory hierarchy. This gives us a total of 462 points for the study.

Reference measures are obtained by putting the monitoring probes around a rep-
etition loop for the codelet (Algorithm 4). The number of repetitions is increased
until the measures reach stable values (normalized by the number of repetitions).
They correspond to the most accurate and close to real values we can have with a
measurement technique, and qualify as the reference measure. In contrast, real mea-
sures, those we seek to evaluate, have their monitoring probes inside the repetition
loop (Algorithm 5).

Within our study, real measures are compared to reference measures in order to
determine their accuracy. We consider a real measure to match the reference if its
deviation is under 5%.

Algorithm 4 Reference measures
Data: codelet data
Result: codelet results
begin

Monitoring_Start()
for rep = 1 to NREP do

Codelet()

Monitoring_Stop()
end

Algorithm 5 Real measures
Data: codelet data
Result: codelet results
begin

for rep = 1 to NREP do
Monitoring_Start()
Codelet()

Monitoring_Stop()

end

All experiments were conducted on an Intel Sandy-Bridge E5-2680 dual socket
processor with three cache levels having respectively: 32 kB, 256 kB and 20 MB.

7.4 Measurement Stability

Measurement stability has been addressed in a number of works, Mytkowicz and
al [76] showed that in that measurement bias is unpredictable, by using program
layout change through UNIX variables resizing. In other studies [97], V.M.Weaver
and al showed that hardware interrupts increment most hardware counters leading
to a non-deterministic over count, and described a correction method but did not
test it. Curtsinger and al in [36] proposed a tool that would randomize several parts
of the code and of the environment in order to make the program independent from
environment bias. Execution times following a gaussian distribution can then be
obtained. The method only considers as an event, the execution time; however the
range of potential events is much larger, one may consider a wider use of hardware



92
Chapter 7. Tackling Measurement Precision, Stability and Probe

Intrusiveness

counter events as well. Moreover, several external sources introduce variations which
prevent from having a stable measure. these sources include the operating system
[70], the program layout [76], the measurement overhead [103] and the hardware
implementation details [96].

because of the various sources of variation previously cited, a certain instability
is inherent to the measurement process. We adopted good practices in order to
stabilize and minimize it as much as possible. On all our experiments, we adopted
a rigorous experimental methodology by applying the following rules:

• Turn off all hardware features that may generate indeterminism such as Intel
Hyper-Threading technology, turbo mode and power optimizations such as
frequency scaling.

• Repeat the experiment several times in order to have a wide enough sample
to be able to verify measurements stability. We call these repetitions meta-
repetitions. The problematic part, however, is how to fix the number of meta-
repetitions since a small number is likely to be insufficient to represent the
distribution (if any). In our experiments, we fixed it to 31, the value has been
given in [52] which is a good reference in application performance analysis.

• Use the same machine and same OS for a single experiment in order to ensure
closer initial conditions.

• Our targets being loops, it is better to perform an individual measure on each
loop call, as the loop behavior may significantly vary throughout loop calls.

7.4.1 Estimation

In order to assess the stability of our results, we established a simple metric which
gives an idea of the distribution of measures in our samples. The metric, given
in equation (1), calculates the gap between the median and minimum values of a
sample of measure S, a small ratio means that half the points of the sample are
close to each other. We give less importance to the second half since we consider
that the biggest values are likely to be outliers.

Stability(S) = Median(S)−Min(S)
Min(S) (1)

For each event in Table 7.1, Figure 7.1 shows the stability of all the data
size points within each codelet of our test suite. Thus, we observe for all
events that, small data size points generally are concerned with instability; big
data do not suffer from it because of the high number of generated events,
except MEMLOAD_UOPS_RETIRED_L2_HIT and MEMLOAD_UOPS_RETIRED_LLC_HIT for
which we recorded some instability. We also notice that the stability within
small data size points vary between events, we record an excellent stability for
the event INTR_RETIRED_ANY, a good stability for cache traffic events, except
L3_LAT_CACHE_MISS for which we observe a high number of instable points. Still,
we noticed two major cases of instability: first in the majority of cases, instable
data size points are located between two stable data size points in memory related
events, which probably means that this instable point triggered its own abnormal
memory behavior, and second the number of events is too small to be considered,
thus the notion of stability is not really relevant in this case.



7.4. Measurement Stability 93



94
Chapter 7. Tackling Measurement Precision, Stability and Probe

Intrusiveness

Figure 7.1: For each event, the stability of all data size points for all the NR codelets of
the test suite

7.5 Measurement Precision

As mentionned earlier, Differential Analysis is a comparative approach, it operates
on loops at binary level. Therefore, the precision of measure should be better if the
probes are placed closer to the loop.

Figure 7.2 (a) illustrates the source code of hqr_12 codelet. Suppose we target
the inner loop (highlighted in light blue) with Decan. The corresponding binary
code (highlighted in light blue) in (b) contains three loops, a peel, main and a tail
loop. Decan only targets the main loop (highlighted in dark blue), since the peel
and tail loops are negligible compared to it. If the probes were to be placed around
the loop at source level, they would monitor the events of the three loops, which
may result in a loss in precision. We, therefore, use Madras to inject the probes at
the entry and exits of the main loop, which ensures the highest possible precision.

Still, the closest to the loop probes are, the more bias is likely to be introduced to
the measure. This is possible because probes also generate events. Probe generated
events are considered as noise, and need to be negligible for the measure to be
accurate. Two parameters are essential in the significance of such noise:

• The ratio probe event on loop events. The more events are generated within
the loop, the less probe events are significant.

• The quality of the probe itself: if carefully written, a probe generates less
events.

In the two following sections we analyze the impact of each of these two param-
eters on our measurements.

7.5.1 Small Regions

Following the experimental setup detailed in Section 7.3, we made the data size
within each of our codelet vary in order to get loops with a variable number of events.
We then observed the data size for each event, starting from the value where the
total event count converges in real measures till the total count found in reference
measures. We have been able to distinguish two types of events: 1) stable events
in which the real measure gets closer to the reference one as more events are being



7.5. Measurement Precision 95

Figure 7.2: hqr_12 codelet source and binary codes.

generated within the loop, until the two meet at a specific point and do not separate
for bigger data sizes. An example of this is shown in Figure 7.3 where real measures
of L1D_REPLCEMENT event slowly converge to reference values. 2) unstable events
which converge to reference values in more than one point. An example of this is
shown in Figure 7.4 where real measures values of MEMLOAD_UOPS_RETIRED_L1_HIT
converge to reference measures when the two reach the size 4k, after what the curves
disjoin to meet again in point 20k.

The problem that unstable events raise is that it is hard to define a threshold
value for the minimum event count that can ensure an accurate measure. Moreover,
we observed that event families: elapsed cycles, instructions retired and cache traffic
generally were stable, whereas cache hits events generally were unstable.

In order to get more insight on the threshold event counts starting where real
and reference measures match, we gathered for each event threshold values of all
codelets and studied their distribution. The first problem we encountered was a
difference in scale; some codelets generated a lot more events between two data
size points than others. Thus, we had to normalize each codelet event count at
the total number of executed instructions of the loop. Figure 7.5 shows distri-
butions of the normalized events for each event family. We, thus, noticed that



96
Chapter 7. Tackling Measurement Precision, Stability and Probe

Intrusiveness

Figure 7.3: Evolution of the number of measured L1D_REPLACEMENT events per iteration
following data size for balanc codelet.

Figure 7.4: Evolution of the number of measured MEMLOAD_UOPS_RETIRED_L1_HIT events
per iteration following data size for balanc codelet.

all cache traffic events except L2_TRANS_L2_WB seemed well distributed arround
their median, L1D_REPLACEMENT and L2_LINES_IN_ALL being arround a median
of 0.1 events per instruction and L3_LAT_CACHE_MISS at a much lower median.
CPU_CLK_UNHALTED_CORE and INSTR_RETIRED_ANY also seemed also well distributed,
with a median close to 2 events per instruction for each. Our suspicions about the
instability of cache hits events were confirmed, only MEMLOAD_UOPS_RETIRED_L1_HIT
and MEMLOAD_UOPS_RETIRED_HIT_LFB seemed relatively well distributed. We only
collected a few points for MEMLOAD_UOPS_RETIRED_L2_HIT, and could not collect any
threshold points for MEMLOAD_UOPS_RETIRED_LLC_HIT due to its high instability.

7.5.2 Probes Accuracy

The lightness of the probe plays a significant role in the accuracy of a measure. Using
hardware counters requires to directly access to special hardware registers (on Intel
x86 they are called Model Specific Registers MSRs). These usually are divided into



7.5. Measurement Precision 97

Figure 7.5: For each event, the distribution of the smallest event count starting from
where the real and reference measures match

configuration registers and counting registers. Because the number of counters is too
big, the right elements have to be chosen among the configuration counters before
being read through the counting registers. The configuration usually needs ring 0
privileges (kernel), whereas counter reading is less critical but still, in the majority
of cases, need kernel assistance. Thus, the Linux kernel provides the perf_event
interface [15] that translates users requests into the proper low-level CPU calls. In
general, access is done through high level libraries which may add more overhead
such as PAPI [75]. In [95] it has been shown that the perf_event, as well as older
interfaces, used to access hardware counters on Linux, such as perfmon2 [39] and
perfctr [74], and introduced an overhead because of the system context switches
and measurement, in addition to unindentified overheads that differs between Linux
kernel versions. They also observed that the current interface perf_event introduced
more overhead than perfmon2 and perfctr because more work is done inside the
kernel. They concluded that if CPU vendors provided faster access to the counters,
this might help reduce the overhead, and they observed efforts on AMD with the
spflt instruction and on the Intel MIC chip [11].

On the Intel x86 processors on which we conducted our measurement, only



98
Chapter 7. Tackling Measurement Precision, Stability and Probe

Intrusiveness

the time stamp counter (TSC) is made accessible in ring 3 (userspace) through the
assembly instruction rdtsc. The instruction enables to directly read the value of
the counter. It allowed us to build a light probe based on a method to access the
values of the counter described in [81].

In order to study the gain in precision obtained through the use of the light
method, we compared the results of the TSC (obtained with a light rdtsc based
probe) against the results obtained with the counter CPU_CLK_UNHALTED_CORE
(obtained with a heavy probe). The comparison is made possible because the
counters have the same accuracy in cycle counting, the only difference is that
textttCPU_CLK_UNHALTED_CORE is sensitive to the core frequency change,
whereas, TSC is converted to the highest frequency possible for the processor. There-
fore, by setting the core frequency at the maximum, we ensure the same scale for
the two counters.

We also used the same metric as in the previous section. For the two mea-
surement methods, we recorded, for each codelet, the minimum counter value that
matches the reference measure. The results presented in Figure 7.6 show that, for
the majority of codelets, the use of rdtsc offers a much better precision. We notice
big disparities for some codelets (e.g. Lop_13 and Relax_26). Only elmhes_11
records better precision for the heavy method, but we observed that the codelet has
unstable and varying performance among data size points.

Figure 7.6: Minimum cycles count for which the real measure matches the reference mea-
sure for heavy measurement method that accesses the CPU_CLK_UNHALTED_CORE
counter (CCUC) and light measurement method using rdtsc. Results are shown for 17
NR codelets.



7.6. Probe Intrusiveness 99

7.6 Probe Intrusiveness

Probe intrusiveness is related to probe quality. Being a piece of code themselves,
probes are likely to generate events as well. Some of these events are counted within
the measure and cannot be separated from the events generated by the monitored
area. Furthermore, they can fight on hardware resources with the other set of events,
thus, changing the original program behavior. Another aspect of intrusiveness is the
time overhead that is added by the measurement process to the original execution
time of the program. The majority of works on intrusiveness tackle the second
aspect and neglect the first one; in [61], transformation methods are proposed to
reduce the number of instrumentation points as well as the weight of the probes.
In this section, we try to gain more insight on the introduced overhead in order to
quantify and reduce it.

Equation (1) provides our view on how a measure t_val on an event e can be
decomposed. We use the following terms:

• t_val(e) is the observed number of occurrences of event e

• l_val(e) is the number of occurrences of event e generated within the loop

• p_val(e) is the number of occurrences of event e generated within the probe

• interac_val(e) is the change on the number of occurrences of event e induced
by the fight on hardware resources between probe events and loop events

t_val(e) = l_val(e) + p_val(e)± interac_val(e) (1)

l_val(e) represents the true number of occurrences that we seek for an event e,
p_val(e) and interac_val both represent the noise introduced by the probes. We
notice that the interaction between the two types of events may lead to either more
events, in which case the term interac_val is added, or less events, in which case
the term is subtracted.

Within this section, we try to reduce the overhead introduced by a probe
p_val(e) in a measure t_val(e), our goal being to get a close approximation of
l_val(e). For this, we use our tool Decan to determine p_val(e) as described in
Section 7.6.2.

7.6.1 Relationship Between Event Type and Probe Intrusiveness

The interaction between loop events and probe events greatly depends on the cate-
gory of the event. We recognize four main cases: no interaction, positive, negative
and random interaction:

• No interaction: no interaction between probe events and loop events
(interac_val = 0). Meaning that the events generated within the probe are
totally independent from those generated within the loop. Examples of events
that fall in this category include all counters that record the passage of micro-
instructions through execution ports: numbers of multiplication micro-ops
and division micro-ops, number of instructions retired, etc. We called event
associated with random interaction as throughput based events.



100
Chapter 7. Tackling Measurement Precision, Stability and Probe

Intrusiveness

• Positive/negative interaction: either more events are generated through
the interaction of probe events with loop events (interac_val is added) or less
events (interac_val is subtracted), depending on the nature of the event. On
the other hand, cache traffic events (cache line replacement) are an example of
positive interaction, because of the fight on cache slots between probe events
and loop events, more cache lines are likely to be replaced. Cache hit events,
on the other hand, are an example of negative interaction where less cache hits
are likely to be generated. We called event associated with random interaction
as capacity based events.

• Random interaction: the interaction between probe events and loop events
is random and differs between different executions of the same code; The
outcome of interaction can generate either more or less events or no extra
events at all. An example of events that fall in such category include the branch
history mechanism and the events associated with it, where the component
that generates the event depends on its own history. We called event associated
with random interaction as hysteresis based events.

Another important event kind that we tend to classify in the first category
are Elapsed cycles events (used to determine execution time). At a first glance,
no interaction seems possible between probe and loop events, however, the event
indirectly reflects the outcome of other events that admit interaction. For example,
if more cache traffic is generated through interaction, it is the noticeable in the form
of additional cycles within the execution time.

7.6.2 Reducing Probe Intrusiveness With Decan

The observed value of an event e through measurement t_val(e) is the aggregation
of the occurrences generated by the loop l_val(e) and those generate by the probe
p_val(e) with the addition or subtraction of the outcome of interaction between
the two inter_val(e) if present. It is impossible to know the true value of l_val(e)
since it requires the absence of probes, however, it is possible to measure p_val(e)
if we manage to obtain a version of the code in which only the probes are present.
By fixing p_val(e), it would be possible to reduce equation (1) into equation (2).
This simplification offers a better approximation to l_val(e) where inter_val(e)
remains the only unknown term.

l_val ± inter_val = t_val − p_val (2)

Decan fortunately offers this possibility. With Decan we are able to create
binary variants in which the loop to be measured is suppressed but probes are kept.
The CTRL variant introduced in Section 4.4.3 can be used for such a task. The
variant creates a minimal version of the loop in which only instructions involved in
the looping process are kept. It allows, thus, to measure p_val(e) for the majority
of events of interest introduced in Section 7.2 especially memory counters.

Regarding the efficacy of the corrections enabled by the technique, we expect
different results for each category of interaction. Thus, in the case of no interaction,
we expect a precise approximation of l_val as showed in Table 7.2. In a positive
interaction case, on the other hand, we expect the subtraction of p_val to system-
atically reduce the overhead, since extra events are generated by the interaction. In



7.6. Probe Intrusiveness 101

the case of negative interaction on the other hand, we are more skeptical regarding
overhead reduction, since the interaction itself acts as a reduction mechanism, the
subtraction of p_val can cause the correction to be worse than the measured value
t_val.

Interaction type Expected approximation of l_val
No interaction l_val = t_val − p_val
Positive interaction l_val + inter_val = t_val − p_val
Negative interaction l_val − inter_val = t_val − p_val

Table 7.2: Expected values for the approximation of l_val following the type of interaction
between probe and loop events.

.

7.6.3 Experimental Results

In order to evaluate the coverage of the overhead reduction mechanism we introduced
in the previous section, we applied the technique on all the data size points of our
codelets test suite, and for all the events of interest. We then, filtered the points
which are already close to the reference measures, and enumerated for the remaining
points all the cases where the reduction actually improved the measurement error
(reduced the relative error to the reference values). Figure 7.7 shows, for each
event, the average error reduction or error increase as well as the cases where the
correction did not have any effect. On average we were able to reduce the overhead
on 67% of the data size points. We noticed differences in scores between events
families. Cache traffic events register the best reduction score with an average of
76%, cache hits events register an average of 57%, whereas INSTR_RETIRED_ANY
and CPU_CLK_UNHALTED_CORE respectively register 67% and 73%. Moreover, in the
majority of cases, failuring to reduce the overhead in fact introduces an increase; we
indeed recorded an average increase on 28% of the points.

Figure 7.7: Average error reduction and error increase after the subtraction of events
generated by the probes



102
Chapter 7. Tackling Measurement Precision, Stability and Probe

Intrusiveness

We also evaluated the efficacy of the technique by counting the number of suc-
cessful corrections, i.e. when the reduction led to a match with the reference value.
The results are given in Figure 7.8. On the total number of overhead reductions an
average of 33% of cases had their overhead successfully subtracted. Furthermore, we
observed more successful cases for elapsed cycles, instructions retired and memory
traffic events than for cache hits events. This matches our statements on the efficacy
of the technique regarding the later category.

Figure 7.8: Ratio of successful overhead corrections (relative error <0,05) among error
reductions (error increase cases are not taken into account)

Finally, the major gap that could limit the application of our technique, despite
the high coverage of the reduction, is the detection of the appropriate cases to be
examined. It is because we knew that some points already matched the reference
values, that we filtered them out of the study, which is not possible in real applica-
tions. We think that the small regions issue that we investigated in Section 7.5.1 can
be a good start for an intelligent filtering of the points that already match reference.
Moreover, we do not exactly know why the overhead reduction attempt led to an
increase in the overhead for a certain number of points. We suspect that it is related
to the inner properties of the codelets, which means that a targeted characterization
might be necessary.



7.7. Summary 103

7.7 Summary

Within this chapter we investigated measurement related issues in an exhaustive
measurements through code instrumentation. The first issue common to all kinds
of measurements is measurement stability. Previous works on the matter identified
several factors which contribute to the instability of measurements, a number of
which cannot be nullified, thus we adopted some good practices in order to minimize
their effect. Also, despite finding some disparities in the stabilities of the events of
interest, we found that our samples generally had a good stability. Second, we
investigated measurement precision related issues. The probes being a source of
events as well, we studied the ratio of probe generated to loop generated events
which do not affect the accuracy of measure. Third, we investigated the issue
of probe intrusiveness, which is similar to precision issues except that, from this
perspective, we explored the possibility to quantifying and subtracting the added
overhead. In order to achieve this, we used Decan to isolate and subtract part of
the introduced overhead. Experimental results showed that we were able to reduce
the overhead in 67% of cases, among which 33% resulted in a total elimination.

Our investigation on the possibility to use hardware counters in Differential
Analysis seems promising. We were able to obtain hints on the minimum amount of
events a loop should have in order to obtain a good accuracy, and were able to test
an effective method to reduce the overhead of measure. However, the work remains
unfinished. On real cases, we still do not know when we should apply the overhead
reduction technique. We find that a joint study between these two aspects may
lead to better success rates, moreover, we believe that, codelet characterization, an
aspect that we neglected within our study also impact the matter and should be
included in future studies.





Chapter 8

Conclusions

We proposed extensions to and contributed to the design of a novel technique for
application performance analysis called Decremental Analysis. The technique adds a
new dimension to the observation process involved in a measurement based analysis
by introducing small modifications to the code and observing their effects. The goal
of the analysis is to detect fine grain bottlenecks. It targeted hot inner-most loops,
by deleting instructions in a search for the most expensive ones. The entire process
of code modification works at the binary level which has the double advantage of
avoiding any collateral process that may trigger other changes in the code, and of
being agnostic to the multiple programming paradigms.

Our main contribution consists of the extension of the concept of Decremental
Analysis, instead of only tying the cost assessment to the suppression of instruction,
we extended it to wider notion of Differential Analysis. With Differential analysis,
events are not necessarily idealized; they can be modified in order to have their
impact reduced (e.g. DL1 variant).

This was made possible as we established a better transformation process of
the instructions in which all the loop variants and analysis methods are motivated
by practical needs for both code characterization and bottleneck detection. This
technique proved to be effective in getting proper insight on loop behavior, and
quick and precise assessment of a number of fine grain performance bottlenecks on
industrial codes.

We believe that a single analysis approach cannot cover the entire spectrum
of performance evaluation and bottleneck detection. The diversity of the available
tools makes it possible to use a time consuming analysis for a performance issue that
could be diagnosed with a lighter one. Consequently, we integrated Decan with
another set of tools into an analysis methodology called Pamda. The methodology
tries to quickly find the location and nature of the most important pathologies,
and suggests the right tool to diagnose them. The characterization capabilities
of Differential Analysis make it as a central part of this methodology. The process
proved to be efficient in reducing analysis time by quickly determining the important
performance issues some industrial codes faced.

Differential Analysis relies on a technically challenging tool (Decan). During
our work, we focused on three technical aspects:1) the alteration of the inner control
flow of the modified loops and the global program control flow, which we managed
to either preserve or at least control. We thus have been able to use Decan on
loops in their real context (in-vivo) instead of extracted kernels (in-vitro), 2) the
feasibility, i.e. the possibility to find the right code transformations to highlight a
particular pathology. On this, we show that when facing some limitations, we can
either be able to establish some workarounds or, on the opposite, introduce some
unwanted noise in the variants that we have to try and reduce, and 3) the extension
of the tool to handle common FOR loops based on parallel threads (parallel for
of OpenMP) as well as process based parallelism (MPI context).



106 Chapter 8. Conclusions

Measurement correctness is important for tools that rely on measurement tech-
niques such as Decan. The tool currently relies on elapsed cycles as a mean of
comparison between variants. The advantage is that there is a particular hardware
mechanism which enables precise and stable measures of time. Still, we intend to
make use of other events (e.g. traffic events) as a means of comparison with elapsed
cycles. However, a prior study of their accuracy is needed. We conducted this
study on three aspects: measurement stability, precision and probe instrusiveness.
We showed that our measurement mechanism generally provided good stability and
precision, with some disparities between event families, whereas, on probe intru-
siveness, we used Decan to remove the overhead introduced by the probes, and
observed a reduction of intrusiveness in nearly 70% of the cases. Finally, we found
the study was an important enough step to be pushed a little further, the objective
being to introduce new counters within Differential Analysis.

8.1 Perspectives

In this section, we describe future work. We discuss the main development lines we
think are suitable for the development of Decan as a tool for a better analysis. We
also highlight what we consider as the most interesting research directions.

8.1.1 Tool Development

The Decan tool can still benefit from several improvements: tool usability, more
features for improved analysis, better coverage, etc. The most significant are:

8.1.1.1 Analysis Time Reduction

The current version of Decan can be quite heavy in terms of analysis. Each variant
needs an execution of the program. Therefore, a minimal analysis where only two
variants are run, e.g. REFERENCE and LS, costs (2 x T) (T being the execution time
of the program). The cost also has to be multiplied by the number of multiple
repetitions of execution in order to have a stable sample. We were able to reduce
this time with the instance mode, in which the execution is stopped just after exiting
the selected loop call by Decan. The analysis cost then depends on the location of
the selected loop call.

Several improvements can reduce analysis time. A new version Decan which
takes our tool as a starting instance is being developed and should support these
improvements:

• The use of recovery mode to execute several loops within a single run. The
present version creates variants for only one loop at a time. The handling
of several loop variants within a single execution of the program enables to
divide the analysis cost by the number of loops to analyze.

• recovery mode also allows to run several variants within a single program
execution. When combined with instance mode (without the exit), meaning
that only one loop call is processed, it would be possible to execute several
Decan created versions of the loop and, at the end, execute the original
version in order to ensure the semantic correctness.



8.1. Perspectives 107

• Another interesting improvement we can think of, is the replacement of pro-
gram repetitions by a lighter process. Since our measurements are done at
the loop call level, we may think of building our sample with several loop
calls´results. Obviously, this solution works for loops which do not behave
very differently when facing various loops calls.

8.1.1.2 Handling Multi-Path Loops

The version of Decan we developed for our research, only handles regular loops
(loops with a single execution path), which provided a good coverage, in term of
program execution time, for the majority of applications we had to analyze. Another
reason for this choice is that innermost loops are usually regular. However, the
handling of irregular loops (loop with multiple execution paths) will have the benefit
of providing a better coverage as well as the possibility to handle non innermost
loops. The main idea behind irregular loops handling is the preservation of the
proper control flow that is located inside the loop. Below are a few possible solutions:

• Perform a static analysis of the code in order to locate the instructions involved
in the internal control flow. The analysis can be very lightweight but it has
all the drawbacks of a static analysis, the biggest of which being the limited
success in detecting all the involved instructions (as runtime information are
needed).

• Perform a first execution of the unmodified loop in which the branches out-
come (taken/not taken) is recorded in a trace. The trace is then used to
control branch instructions in the transformed loop. The difficulty lies in the
manner with which the trace is fed to the transformed loop at runtime. New
instructions would probably need to be injected inside the loop in order to
support the trace.

8.1.1.3 Extensions to Other platforms

For the moment, the primary and only platform supporting Decan is Intel x86. The
concepts on which the tool relies (instruction subsets, transformations and variants)
provide a sufficient level of abstraction sufficient to enable an easy integration of
other platforms. However, the differences in micro-architectural details between
platforms suggests the applications of a rigorous validation process. We particularly
intend to provide a support for the ARM platforms in the near future.

8.1.2 Research Topics

The exploration of the potential of Differential analysis is still at its debute. In
our work, we focused mainly on its use in application performance analysis, an
increased mastering of the technical aspects would enable to continue the research
in this direction, but also to use the approach in other areas. Following are some of
the interesting research topics to address:

8.1.2.1 Energy Related Issues

Energy consumption has become a big concern in current years, with supercomputers
being equipped with a growing number of processors, efforts are twofold: on the



108 Chapter 8. Conclusions

hardware side, efforts are put on the need for highly energy efficient processors,
on the software side, optimized softwares for a moderate consumption need to be
elaborated.

As a result, we may start to thinking of energy as a performance pathology that
needs to be investigated, Therefore, Differential Analysis can be useful as illustrated
in the following scenarios:

• Characterisation of the different streams (LS, FP), instruction subsets (L, S,
GR) and instructions in term of energy consumption through the variants we
have introduced in Chapter 4.

• In a context where there is a trade-off between performance and energy con-
sumption, the DL1 variant can be useful to find out how much energy can be
saved in a memory bound loop. The result helps to decide whether the loop
should be optimized or not.

8.1.2.2 Hardware-Software codesign

Throughout our research, we have been able, to test Decan capabilities to explore
the behavior of micro-architectural components (see section 4.6.3). We also worked
in collaboration with Intel to integrate Decan in their codesign process. Codesign at
core level consists in determining the right capabilities hardware components should
have (e.g. size of cache, number of functional units, etc) following the needs of the
software. Generally, the search space is huge and is either explored through simu-
lation or through modeling. The first is too heavy and the second lacks accuracy.
Decan is involved in a tool the goal of which is to obtain the near optimal param-
eters with a very lightweight simulation compared to classical techniques. The idea
of the approach can be found in [60], and a practical example of it which includes
Decan as one of the simulation components is illustrated in [79].

8.1.2.3 Improve the analysis methodology

The provided methodology in chapter 5 is far from being finished. Our constant
challenge is to keep improving it as well as working towards full automation. We
also aim to enlarge it for other kind of paradigms through the integration of analyses
provided by complementary tools such as Scalasca, Vampir and TAU. Additionally,
refining optimization investigations is crucial in order to make it more user-friendly.



Bibliography

[1] 3DNow! technology. http://support.amd.com/TechDocs/21928.pdf. 8

[2] Acumem. http://www.roguewave.com/. 21, 24

[3] Amd64 architecture programmer s manual volume 2:system programming. http:
//developer.amd.com/wordpress/media/2012/10/24593_APM_v21.pdf. 13

[4] Amplifier XE. http://software.intel.com/en-us/articles/
intel-vtune-amplifier-xe-documentation/. 23

[5] ARM NEON support in the arm compiler. http://www.arm.com/files/pdf/neon_
support_in_the_arm_compiler.pdf. 8

[6] GCC, the gnu compiler collection. https://gcc.gnu.org. 1

[7] Intel 64 and IA-32 Architectures Optimization Reference Manual. http:
//www.intel.com/content/www/us/en/architecture-and-technology/
64-ia-32-architectures-optimization-manual.html. ix, 14, 15

[8] Intel 64 and IA-32 architectures optimization reference manual. http:
//www.intel.com/content/dam/www/public/us/en/documents/manuals/
64-ia-32-architectures-optimization-manual.pdf. 22

[9] Intel architecture code analyzer. https://software.intel.com/en-us/articles/
intel-architecture-code-analyzer/. 21

[10] Intel c and c++ compilers. https://software.intel.com/en-us/c-compilers. 1,
21

[11] Intel xeon phi coprocessor (codename: Knights corner) performance monitoring units.
. 97

[12] MAQAO project. http://www.maqao.org. 24, 57

[13] Memory part 2: Cpu caches. https://lwn.net/Articles/252125/. ix, 10

[14] Simulators and such... http://www.ecs.umass.edu/ece/koren/architecture/
Simplescalar/Simulators.pdf. 19

[15] The Unofficial Linux Perf Events Web-Page. http://web.eece.maine.edu/
~vweaver/projects/perf_events/. 74, 97

[16] Top 500 the list. http://www.top500.org/. 1

[17] Valgrind: instrumentation framework for building dynamic analysis tools. http:
//www.valgrind.org. 21, 23

[18] Acumem. Acumem threadspotter. http://www.roguewave.com/products/
threadspotter.aspx. 53

[19] L. Adhianto, S. Banerjee, M. Fagan, M. Krentel, G. Marin, J. Mellor-Crummey,
and N. R. Tallent. Hpctoolkit: tools for performance analysis of optimized parallel
programs http://hpctoolkit.org. Concurr. Comput. : Pract. Exper., 22(6):685–701,
Apr. 2010. 67

[20] S. R. Alam, R. F. Barrett, J. A. Kuehn, P. C. Roth, and J. S. Vetter. Characterization
of scientific workloads on systems with multi-core processors. In IISWC, pages 225–
236, 2006. 58

[21] R. Balasubramonian, N. P. Jouppi, and N. Muralimanohar. Multi-Core Cache Hier-
archies. Morgan and Claypool Publishers, 2011. v, 12

http://support.amd.com/TechDocs/21928.pdf
http://www.roguewave.com/
http://developer.amd.com/wordpress/media/2012/10/24593_APM_v21.pdf
http://developer.amd.com/wordpress/media/2012/10/24593_APM_v21.pdf
http://software.intel.com/en-us/articles/intel-vtune-amplifier-xe-documentation/
http://software.intel.com/en-us/articles/intel-vtune-amplifier-xe-documentation/
http://www.arm.com/files/pdf/neon_support_in_the_arm_compiler.pdf
http://www.arm.com/files/pdf/neon_support_in_the_arm_compiler.pdf
https://gcc.gnu.org
http://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-optimization-manual.html
http://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-optimization-manual.html
http://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-optimization-manual.html
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
https://software.intel.com/en-us/articles/intel-architecture-code-analyzer/
https://software.intel.com/en-us/articles/intel-architecture-code-analyzer/
https://software.intel.com/en-us/c-compilers
http://www.ecs.umass.edu/ece/koren/architecture/Simplescalar/Simulators.pdf
http://www.ecs.umass.edu/ece/koren/architecture/Simplescalar/Simulators.pdf
http://web.eece.maine.edu/~vweaver/projects/perf_events/
http://web.eece.maine.edu/~vweaver/projects/perf_events/
http://www.valgrind.org
http://www.valgrind.org
http://www.roguewave.com/products/threadspotter.aspx
http://www.roguewave.com/products/threadspotter.aspx


110 Bibliography

[22] D. Barthou, A. C. Rubial, W. Jalby, S. Koliai, and C. Valensi. Performance tuning
of x86 openmp codes with MAQAO. In Parallel Tools Workshop, Dresden, Germany,
sep 2009. Springer-Verlag. 57

[23] E. Baysal, D. Kosloff, and J. Sherwood. Rerverse time migration:geophysics, 1983.
47, 65

[24] J. C. Beyler, N. Triquenaux, V. Palomares, F. Chabane, T. Fighiera, J.-P. Halimi,
and W. Jalby. Microtools: Automating program generation and performance mea-
surement. In ICPPW, 2012, pages 424–433. IEEE, 2012. 53

[25] D. Bruening, T. Garnett, and S. Amarasinghe. An infrastructure for adaptive dynamic
optimization. In Code Generation and Optimization, 2003. CGO 2003. International
Symposium on, pages 265–275. IEEE, 2003. 71

[26] D. Bruening, Q. Zhao, and S. Amarasinghe. Transparent dynamic instrumentation.
In ACM SIGPLAN Notices, volume 47, pages 133–144. ACM, 2012. 71

[27] D. Burger and T. M. Austin. The simplescalar tool set, version 2.0. ACM SIGARCH
Computer Architecture News, 25(3):13–25, 1997. 19

[28] M. Burtscher, B.-D. Kim, J. Diamond, J. McCalpin, L. Koesterke, and J. Browne.
Perfexpert: An easy-to-use performance diagnosis tool for hpc applications. In 2010
ACM/IEEE, SC ’10, pages 1–11, Washington, DC, USA, 2010. IEEE Computer So-
ciety. 23

[29] M. Burtscher, B.-D. Kim, J. R. Diamond, J. D. McCalpin, L. Koesterke, and J. C.
Browne. Perfexpert: An easy-to-use performance diagnosis tool for hpc applications.
In SC, pages 1–11. IEEE, 2010. 53, 67

[30] B. Chapman, G. Jost, and R. v. d. Pas. Using OpenMP: Portable Shared Memory
Parallel Programming (Scientific and Engineering Computation). The MIT Press,
2007. 1, 78

[31] A. Charif-Rubial, D. Barthou, C. Valensi, S. Shende, A. Malony, and W. Jalby. Mil:
A language to build program analysis tools through static binary instrumentation. In
High Performance Computing (HiPC), 2013 20th International Conference on, pages
206–215, Dec 2013. 24, 73

[32] A. Charif-Rubial, E. Oseret, J. Noudohouenou, W. Jalby, and G. Lartigue. Cqa: A
code quality analyzer tool at binary level. In High Performance Computing (HiPC),
2014 20th International Conference on, Dec 2014. 53, 73

[33] A. S. Charif-Rubial. On code performance analysis and optimisation for multicore
architectures. PhD thesis, Oct. 2012. 54

[34] A. S. Charif-Rubial, D. Barthou, C. Valensi, S. S. Shende, A. D. Malony, and i.-p.
William Jalby. MIL: a language to build program analysis tools through static binary
instrumentation. In HiPC’13, Hyderabad, India, Dec. 2013. 59

[35] A. S. Charif-Rubial, E. Oseret, G. Lartigue, and W. Jalby. Cqa: A code quality
analyzer tool at binary level. In In 21th Annual International Conference on High
Performance Computing, HiPC’14, Goa, India, December 2014. 21, 24

[36] C. Curtsinger and E. D. Berger. Stabilizer: statistically sound performance evalua-
tion. In ACM SIGARCH Computer Architecture News, volume 41, pages 219–228.
ACM, 2013. 91

[37] A. C. de Melo. Performance counters on linux: the new tools. 2009. 22

[38] Q. V. Dinh, A. Naim, and G. Petit. rapport final de synthèse sur l’optimisation
des logiciels de simulation numérique de l’aéronautique. Technical report, Dassault
Aviation, pages xii, 51, 53, 54, 70, 71, 83, 2007. 49



Bibliography 111

[39] S. Eranian. Perfmon2: a flexible performance monitoring interface for linux. In Proc.
of the 2006 Ottawa Linux Symposium, pages 269–288. Citeseer, 2006. 97

[40] B. Fields, R. Bodík, and M. D. Hill. Slack: Maximizing performance under techno-
logical constraints. SIGARCH Comput. Archit. News, 30(2):47–58, May 2002. 50

[41] B. Fields, S. Rubin, and R. Bodík. Focusing processor policies via critical-path pre-
diction. SIGARCH Comput. Archit. News, 29(2):74–85, May 2001. 18, 50

[42] B. A. Fields, R. Bodík, M. D. Hill, and C. J. Newburn. Using interaction costs for
microarchitectural bottleneck analysis. In Proceedings of the 36th Annual IEEE/ACM
International Symposium on Microarchitecture, MICRO 36, pages 228–, Washington,
DC, USA, 2003. IEEE Computer Society. 50

[43] B. A. Fields, Rastislav, M. D. Hill, and C. J. Newburn. Interaction cost: For when
event counts just don’t add up. IEEE Micro, 24(6):57–61, Nov. 2004. 24

[44] M. Geimer, F. Wolf, B. J. N. Wylie, E. Ábrahàm, D. Becker, B. Mohr, and F. JÃ 1
4 lich.

The scalasca performance toolset architecture. In STHEC, 2008. 23, 53, 67

[45] J. Goodman and H. Hum. Mesif: A two-hop cache coherency protocol for point-to-
point interconnects (2004). 2004. 13

[46] Gprof. The gnu profiler. http://sourceware.org/binutils/docs-2.18/gprof/index.html,
2013. 67

[47] W. Gropp, E. Lusk, and R. Thakur. Using MPI-2: Advanced features of the message-
passing interface. MIT press, 1999. 1

[48] M. Hagog and A. Zaks. Swing modulo scheduling for gcc. In Proceedings of the 2004
GCC Developers Summit, pages 55–64, 2004. 84

[49] J. L. Hennessy and D. A. Patterson. Computer Architecture, Fourth Edition: A
Quantitative Approach. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
2006. ix, 5, 6, 13

[50] R. Hundt, E. Raman, M. Thuresson, and N. Vachharajani. Mao–an extensible micro-
architectural optimizer. In Proceedings of the 9th Annual IEEE/ACM International
Symposium on Code Generation and Optimization, pages 1–10. IEEE Computer So-
ciety, 2011. 20, 21

[51] Intel. Intel vtune amplifier xe. www.intel.com/software/products/vtune, 2013. 53,
67

[52] R. Jain. the art of computer systems performance analysis: techniques for experimen-
tal design, measurment, simulation and modeling. 1992. 92

[53] H. Jin, M. Frumkin, and J. Yan. The openmp implementation of nas parallel bench-
marks and its performance. Technical report, Technical Report NAS-99-011, NASA
Ames Research Center, 1999. 78

[54] J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns, T. R. Maeurer, and D. Shippy.
Introduction to the cell multiprocessor. IBM J. Res. Dev., 49(4/5):589–604, July
2005. 11

[55] T. S. Karkhanis and J. E. Smith. A first-order superscalar processor model. In
ACM SIGARCH Computer Architecture News, volume 32, page 338. IEEE Computer
Society, 2004. 18

[56] G. Keramidas, V. Spiliopoulos, and S. Kaxiras. Interval-based models for run-time
dvfs orchestration in superscalar processors. In Proceedings of the 7th ACM interna-
tional conference on Computing frontiers, pages 287–296. ACM, 2010. 18

[57] S. Koliai. Static and Dynamic Approach for Performance Evaluation of Scientific
Codes. PhD thesis, Versailles, France, 2011. 3, 27, 44, 75



112 Bibliography

[58] S. Koliaï, Z. Bendifallah, M. Tribalat, C. Valensi, J.-T. Acquaviva, and W. Jalby.
Quantifying performance bottleneck cost through differential analysis. In 27th ICS,
pages 263–272, New York, NY, USA, 2013. ACM. 24, 44, 54, 63

[59] S. Koliai, S. Zuckerman, E. Oseret, M. Ivascot, T. Moseley, D. Quang, and W. Jalby.
A balanced approach to application performance tuning. In LCPC, pages 111–125,
2009. 57

[60] D. Kuck. Computational capacity-based codesign of computer systems. In M. W.
Berry, K. A. Gallivan, E. Gallopoulos, A. Grama, B. Philippe, Y. Saad, and F. Saied,
editors, High-Performance Scientific Computing, pages 45–73. Springer London, 2012.
108

[61] N. Kumar, B. R. Childers, and M. L. Soffa. Low overhead program monitoring and
profiling. In ACM SIGSOFT Software Engineering Notes, volume 31, pages 28–34.
ACM, 2005. 99

[62] M. A. Laurenzano, M. M. Tikir, L. Carrington, and A. Snavely. Pebil: Efficient static
binary instrumentation for linux. In Performance Analysis of Systems & Software
(ISPASS), 2010 IEEE International Symposium on, pages 175–183. IEEE, 2010. 71

[63] J. Levon and P. Elie. Oprofile: A system profiler for linux.
http://oprofile.sourceforge.net, 2013. 67

[64] J. Liu, W. Yu, J. Wu, D. Buntinas, S. Kini, D. K, and P. Wyckoff. Microbenchmark
performance comparison of high-speed cluster interconnects. IEEE Micro, 2004. 58

[65] X. Liu, J. Mellor-Crummey, and M. Fagan. A new approach for performance analysis
of openmp programs. In Proceedings of the 27th international ACM conference on
International conference on supercomputing, pages 69–80. ACM, 2013. 21

[66] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. J.
Reddi, and K. Hazelwood. Pin: building customized program analysis tools with
dynamic instrumentation. ACM Sigplan Notices, 40(6):190–200, 2005. 71

[67] P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hallberg, J. Hogberg,
F. Larsson, A. Moestedt, and B. Werner. Simics: A full system simulation platform.
Computer, 35(2):50–58, 2002. 19

[68] G. Marin and J. Mellor-Crummey. Cross-architecture performance predictions for sci-
entific applications using parameterized models. In ACM SIGMETRICS Performance
Evaluation Review, volume 32, pages 2–13. ACM, 2004. 18

[69] M. Martonosi, A. Gupta, and T. Anderson. Memspy: Analyzing memory system
bottlenecks in programs. In Proc. ACM SIGMETRICS Conf. on Measurement and
Modeling of Computer Systems, pages 1–12, 1992. 67

[70] N. Mc Guire, P. Okech, and G. Schiesser. Analysis of inherent randomness of the
linux kernel. In Proc. 11th Real-Time Linux Workshop. Citeseer. 92

[71] E. M. McCreight. The dragon computer system. In Microarchitecture of VLSI Com-
puters, pages 83–101. Springer, 1985. 13

[72] P. Michaud, A. Seznec, and S. Jourdan. An exploration of instruction fetch re-
quirement in out-of-order superscalar processors. International Journal of Parallel
Programming, 29(1):35–58, 2001. 18

[73] T. Moseley, N. Vachharajani, and W. Jalby. Hardware performance monitoring for
the rest of us: a position and survey. In Proceedings of the 8th IFIP international
conference on Network and parallel computing, NPC’11, pages 293–312, Berlin, Hei-
delberg, 2011. Springer-Verlag. 21

[74] M.Pettersson. The perfctr interface. http://user.it.uu.se/~mikpe/linux/
perfctr/2.6/. 97

http://user.it.uu.se/~mikpe/linux/perfctr/2.6/
http://user.it.uu.se/~mikpe/linux/perfctr/2.6/


Bibliography 113

[75] P. J. Mucci, S. Browne, C. Deane, and G. Ho. Papi: A portable interface to hardware
performance counters. In In Proceedings of the Department of Defense HPCMP Users
Group Conference, pages 7–10, 1999. 97

[76] T. Mytkowicz, A. Diwan, M. Hauswirth, and P. F. Sweeney. Producing wrong data
without doing anything obviously wrong! ACM Sigplan Notices, 44(3):265–276, 2009.
91, 92

[77] W. E. Nagel, A. Arnold, M. Weber, H.-C. Hoppe, and K. Solchenbach. Vampir:
Visualization and analysis of mpi resources. Supercomputer, 12:69–80, 1996. 53, 67

[78] D. B. Noonburg and J. P. Shen. Theoretical modeling of superscalar processor per-
formance. In Proceedings of the 27th annual international symposium on Microarchi-
tecture, pages 52–62. ACM, 1994. 18

[79] J. Noudohouenou, V. Palomares, W. Jalby, D. C. Wong, D. J. Kuck, and J. C. Beyler.
Simsys: A performance simulation framework. In Proceedings of the 2013 Workshop
on Rapid Simulation and Performance Evaluation: Methods and Tools, RAPIDO ’13,
pages 1:1–1:8, New York, NY, USA, 2013. ACM. 45, 108

[80] I. Pantazi-Mytarelli. The history and use of pipelining computer architecture: Mips
pipelining implementation. In Systems, Applications and Technology Conference
(LISAT), 2013 IEEE Long Island, pages 1–7, May 2013. 6

[81] G. Paoloni. How to benchmark code execution times on intel IA-32 and IA-64 in-
struction set architectures. Technical report. 98

[82] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling. Numerical
Recipes in C: The Art of Scientific Computing. Cambridge University Press, New
York, NY, USA, 1988. 28, 91

[83] F. Real, M. Trumm, V. Vallet, B. Schimmelpfennig, M. Masella, and J.-P. Flament.
Quantum Chemical and Molecular Dynamics Study of the Coordination of Th(IV) in
Aqueous Solvent. J. Phys. Chem. B, 114(48):15913–15924, 2010. 54

[84] J. Reinders. Intel threading building blocks: outfitting C++ for multi-core processor
parallelism. " O’Reilly Media, Inc.", 2007. 1

[85] S. Shende, A. Malony, S. Moore, P. Mucci, and J. Dongarra. Integrated tool capabil-
ities for performance instrumentation and measurement. 2007. 23

[86] S. S. Shende and A. D. Malony. The tau parallel performance system. The Inter-
national Journal of High Performance Computing Applications, 20:287–331, 2006.
23

[87] S. S. Shende and A. D. Malony. The tau parallel performance system. Int. J. High
Perform. Comput. Appl., 20(2):287–311, May 2006. 53, 67

[88] O. Sopeju, M. Burtscher, A. Rane, and J. Browne. Autoscope: Automatic suggestions
for code optimizations using perfexpert. In 2011 ICPDPTA, pages 19–25, July 2011.
67

[89] D. J. Sorin, M. D. Hill, and D. A. Wood. A Primer on Memory Consistency and
Cache Coherence. Morgan & Claypool Publishers, 1st edition, 2011. v, 13

[90] C. Staelin and H. packard Laboratories. lmbench: Portable tools for performance
analysis. In USENIX Annual Technical Conference, pages 279–294, 1996. 58

[91] R. M. Tomasulo. An efficient algorithm for exploiting multiple arithmetic units. IBM
J. Res. Dev., 11(1):25–33, Jan. 1967. 8

[92] A. Vajda. Programming Many-Core Chips. Springer Publishing Company, Incorpo-
rated, 1st edition, 2011. v, 11



114 Bibliography

[93] C. Valensi. A generic approach to the definition of low-level components for multi-
architecture binary analysis. PhD thesis, 2014. ThÃ¨se de doctorat dirigÃ c©e par
Jalby, William Informatique Versailles-St Quentin en Yvelines 2014. 71

[94] S. Wallace and K. Hazelwood. Superpin: Parallelizing dynamic instrumentation for
real-time performance. In Proceedings of the International Symposium on Code Gen-
eration and Optimization, pages 209–220. IEEE Computer Society, 2007. 71

[95] V. M. Weaver. Linux perf_event features and overhead. In The 2nd Interna-
tional Workshop on Performance Analysis of Workload Optimized Systems, FastPath,
page 80, 2013. 97

[96] V. M. Weaver and S. A. McKee. Can hardware performance counters be trusted?
Workload Characterization, 2008. IISWC 2008. IEEE International Symposium on,
pages 141–150, 2008. 92

[97] V. M. Weaver, D. Terpstra, and S. Moore. Non-determinism and overcount on modern
hardware performance counter implementations. In Performance Analysis of Systems
and Software (ISPASS), 2013 IEEE International Symposium on, pages 215–224.
IEEE, 2013. 91

[98] T. Wei, J. Mao, W. Zou, and Y. Chen. A new algorithm for identifying loops in
decompilation. In Proceedings of the 14th International Conference on Static Analysis,
SAS’07, pages 170–183, Berlin, Heidelberg, 2007. Springer-Verlag. 72

[99] T. F. Wenisch, R. E. Wunderlich, M. Ferdman, A. Ailamaki, B. Falsafi, and J. C.
Hoe. Simflex: statistical sampling of computer system simulation. IEEE MICRO Spe-
cial Issue on Computer Architecture Simulation and Modeling, 26(PARSA-ARTICLE-
2007-001):19–31, 2006. 19

[100] W. A. Wulf and S. A. McKee. Hitting the memory wall: implications of the obvious.
ACM SIGARCH computer architecture news, 23(1):20–24, 1995. 9

[101] W. Yoo, K. Larson, L. Baugh, S. Kim, and R. H. Campbell. Adp: automated diagnosis
of performance pathologies using hardware events. In P. G. Harrison, M. F. Arlitt,
and G. Casale, editors, SIGMETRICS, pages 283–294. ACM, 2012. 67

[102] W. Yoo, K. Larson, S. Kim, W. Ahn, R. H. Campbell, and L. Baugh. Automated
fingerprinting of performance pathologies using performance monitoring units (pmus).
In 3rd USENIX Workshop on Hot Topics in Parallelism (HotPar ’11), Berkeley, CA,
05/2011 2011. USENIX, USENIX. 67

[103] D. Zaparanuks, M. Jovic, and M. Hauswirth. Accuracy of performance counter mea-
surements. In Performance Analysis of Systems and Software, 2009. ISPASS 2009.
IEEE International Symposium on, pages 23–32. IEEE, 2009. 92



Bibliography 115

List of Publications

1. Souad Koliaï, Zakaria Bendifallah, Mathieu Tribalat, Cédric Valensi, Jean-
Thomas Acquaviva, and William Jalby. 2013. Quantifying performance bot-
tleneck cost through differential analysis. In Proceedings of the 27th interna-
tional ACM conference on International conference on supercomputing (ICS
’13). ACM, New York, NY, USA, 263-272. DOI=10.1145/2464996.2465440

2. Bendifallah, Zakaria, William Jalby, José Noudohouenou, Emmanuel Oseret,
Vincent Palomares, and Andres Charif Rubial. "PAMDA: Performance As-
sessment Using MAQAO Toolset and Differential Analysis." In Tools for High
Performance Computing 2013, pp. 107-127. Springer International Publish-
ing, 2014.

3. David C. Wong, David J. Kuck, Vincent Palomares, Zakaria Bendifallah,
Mathieu Tribalat, Emmanuel Oseret, William Jalby. "VP3: A Vectorization
Potential Performance Prototype" In 2nd Workshop on Programming Models
for Vector Processing (WPMVP) 2015, San Francisco Bay Area, USA - United
States


	Introduction
	Background on Micro-Processor Architecture
	Uni-core Design details
	Pipeline
	Multiple Issue Processors
	Vector Extensions
	Out-Of-Order Execution
	Caches

	Multi-core Designs
	Multiple CoresVajda:2011
	Cache OrganizationRajeev:2011
	Shared Memory SupportSorin:2011

	GPUs and Many-Core Designs
	Graphical Processing Units (GPUs)
	Many-cores

	Design Example: Intel Sandy-Bridge Architecture
	Summary

	Application Performance Analysis
	Performance Life-cycle
	Performance Evaluation
	Techniques
	Performance Pathologies and detection methods

	Performance Evaluation Tools
	Discussion
	summary

	Differential Analysis
	Introduction
	Motivating Example
	Decan: Practical Design
	Principle
	Decan Target
	Variants
	Semantic Alteration
	Performance Monitoring
	Parallel Codes

	Decan Variants Design
	Instruction Subsets
	Transformations
	Decan Variants

	Differential Analysis: Main Analysis Methods and Metrics
	Observable Events
	Saturation
	LS/FP Analysis
	Data Location and Return On Investment
	Expensive Instructions
	Array Cost Analysis

	Case Studies
	Application Characterization and Analysis: RTM application
	ACA: EUFLUXm Application
	L1 Load Bandwidth Evaluation

	Summary

	Pamda: Performance Assessment using Maqao toolset and Differential Analysis
	Introduction
	Motivating Example
	Ingredients: Main Tool Set Components
	MicroTools: Microbenchmarking the Architecture
	Cqa: Code Quality Analyzer
	Decan: Differential Analysis
	Mtl: Memory Tracing Library

	Recipe: Pamda Tool Chain
	Hotspot identification
	Performance overview
	Loop structure check
	CPU evaluation
	Bandwidth measurement
	Memory evaluation
	OpenMP evaluation

	Experimental results
	PN
	RTM

	Related Work
	Summary

	Decan: Assembly Level Re-writing Challenges and Limitations
	Introduction
	Decan Technical Design
	General Overview of the Maqao Framework
	Decan architecture

	Dealing with Control Flow issues in Decan
	Data Dependent Control Flow
	In-vitro Mode
	In-vivo Mode

	Extensions for Parallel Applications
	Shared Memory Codes
	Distributed Memory Codes

	Code Alteration Side Effects and Workarounds
	Code Layout Sensitivity
	Data Dependence Alteration
	Instructions with variable Latencies
	Instrumentation Side Effects
	Floating-point Exceptions
	Wrap-up: Side Effects Sources

	Summary

	Tackling Measurement Precision, Stability and Probe Intrusiveness
	Introduction
	Events of Interest
	Experimental Methodology
	Measurement Stability
	Estimation

	Measurement Precision
	Small Regions
	Probes Accuracy

	Probe Intrusiveness
	Relationship Between Event Type and Probe Intrusiveness
	Reducing Probe Intrusiveness With Decan
	Experimental Results

	Summary

	Conclusions
	Perspectives
	Tool Development
	Research Topics


	Bibliography

