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Summary

This research takes place in the context of Private Mobile Radio networks evolution which

aims at designing a new LTE based PMR technology dedicated to public security services.

As the frequency bands dedicated to this service is scarce and the need of public safety

forces is different, we have revisited the Resource Allocation problem in this thesis with

two main objectives: designing new allocation algorithms which outperform the spectrum

efficiency and serving fairly the users instead of maximizing the global network throughput.

This thesis proposes new Resource Block (RB) allocation strategies in LTE downlink systems.

Instead of the well-known resource allocation algorithms, which work on the condition that

the RB capacity is already estimated, our RB allocation schemes can improve the potential

of the channel capacity, using Beamforming cooperation and game-theoretical problems

1. With the MIMO (Multiple-Input-Multiple-output) antennas, the Beamforming tech-

nique improves the received signal in order to increase the SINR (Signal-to-Interference-

plus-Noise-Ratio), but the improved signal may also influence the inter-cell interference in

the neighbouring cells. As inter-cell interference is the main interference in the OFDMA

system, a smart scheduling can choose UEs (User Equipment) in adjacent cells to control

interference increment caused by Beamforming.

In traditional methods, the scheduler allocates RBs to UEs depending on the RB capaci-

ties and other parameters, the system then applies the Beamforming technique to these

chosen UEs. After the Beamforming, the RB capacity varies but the scheduler keeps the

same allocation.

Our scheme allocates the RBs and chooses Beamforming vectors at the same time

to enhance the performance of the Beamforming technique. It increases the average

throughput by increasing the RB’s average capacity. Because more parameters are taken

into account, the complexity also increases exponentially. In the thesis we find an iterative

method to reduce the complexity. From the simulations, our iterative method also has good

performance and improves more than 10% of throughput on the cell edge.

2. In contrast to the performance first algorithms, game theoretic allocation schemes

maximize the UEs’ utility function from the economical point of view. The NBS (Nash

Bargaining Solution) offers a Pareto optimal solution for the utility function.
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The traditional NBS allocation in an OFDMA system is to optimize the subcarrier

allocation at each time slot, but in the OFDMA system, the subcarriers are composed of

Resource Blocks (RB) in time series. We propose an RB NBS approach, which is more

efficient than the existing subcarrier NBS allocation scheme.

We analyze the fast-fading channels and compare them without the path-loss influence.

Because of the great path-loss in cell edge, the edge UE always has lower RB capacity than

the cell center UE. Our idea is to bring in a compensating factor to overcome this path-loss

influence, and the compensating factors are carefully chosen to maximize the NBS function.

However, the computation of these factors has a high complexity and we develop four

approximated solutions which give same performance and accuracy. The performance

evaluation confirms that our method and its approximated solutions are able to spread

resources fairly over the entire cell.



Résumé

La recherche effectuée dans cette thèse a pour cadre les réseaux radio privés dédiés aux

forces de sécurité civile. En effet, doté actuellement d’un service bande étroite, ils doivent

évoluer pour faire face à de nouveaux besoins comme la vidéo ou le multimédia. L’objectif

est donc d’adapter la technologie LTE aux contraintes et propriétés de ces réseaux particulier.

Ainsi, la bande réservée se trouve dans les 400 MHz mais avec une largeur réduite, le

nombre d’utilisateurs est limité mais le service doit toujours être disponible et des priorités

peuvent être mises en œuvre.

Dans ce contexte, l’allocation des ressources de communication est un problème impor-

tant avec des prérequis différents des réseaux d’opérateurs. Notre conception d’algorithmes

d’allocation a donc été menée avec deux objectifs principaux : maximiser l’efficacité du

spectre et servir équitablement les utilisateurs au lieu de maximiser le débit global du

réseau. Cette thèse propose des nouvelles stratégies de l’allocation des blocs de ressources

(RB) dans les systèmes LTE sur le lien descendant. Au contraire des algorithmes classiques

d’allocation des ressources qui se basent sur la capacité de RB déjà estimée, nos stratégies

d’allocation des RB cherchent à améliorer le débit utilisateur, en utilisant la coopération à

base de Beamforming et les modèles de la théorie des jeux.

1. L’interférence inter-cellulaire est le principal problème des systèmes OFDMA. Grâce

aux antennes MIMO (Multiple-Input-Multiple-Output), la technique de Beamforming

améliore le signal reçu afin d’augmenter le SINR (Signal-to-Interference-plus-Noise-Ratio),

mais le signal amélioré peut également influencer l’interférence inter-cellulaire dans les

cellules voisines. Dans les méthodes traditionnelles, le contrôleur alloue les RBs aux UEs

(User Equipement) en fonction de la capacité des RB et d’autres paramètres, le système

applique alors la technique de Beamforming aux équipements utilisateurs choisis. Après la

formation des faisceaux, la capacité des RB varie mais l’ordonnanceur conserve la même

allocation. Au contraire, notre système alloue les RBs et choisit les vecteurs de Beamforming

conjointement pour améliorer les performances de la technique de Beamforming. Il accroît

le débit moyen en augmentant la capacité moyenne du RB. Comme plusieurs paramètres

sont pris en compte, la complexité augmente exponentiellement aussi. Dans cette thèse,

nous avons développé une méthode itérative pour réduire la complexité. Notre méthode
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itérative a également de bonnes performances étudiées par simulation. Notamment, elle

améliore de plus de 10% le débit des utilisateurs en bord de la cellule.

2. Contrairement aux performances des algorithmes qui maximisent le débit global

du réseau, les approches d’allocation de ressources à base de théorie des jeux maximisent

la fonction d’utilité des UE du point de vue économique. Si le modèle a une solution

NBS (Nash Bargaining Solution) il offre une solution optimale de Pareto de la fonction

d’utilité. L’allocation traditionnelle dans un système OFDMA est d’optimiser l’allocation

de sous-porteuses à chaque intervalle de temps, mais dans le système OFDMA, les sous-

porteuses sont formées de blocs de ressources (RB) dans le temps. Nous proposons une

approche RB NBS, qui est plus efficace que les schémas existants. Nous analysons les canaux

de fast-fading et les comparons sans l’influence de l’atténuation. En raison de la grande

atténuation de signal en bordure de la cellule, l’utilisateur dans ces cellules a toujours des

RB de plus faible capacité que celui au centre de la cellule. Notre idée est d’ajouter un

facteur de compensation pour combattre l’influence de la perte de propagation. Les facteurs

de compensation sont soigneusement choisis afin de maximiser la fonction NBS. Cependant,

le calcul de ces facteurs a une grande complexité et nous développons quatre solutions

approchées qui donnent les mêmes performances avec une bonne précision. L’évaluation des

performances de notre approche confirme que notre méthode et ses solutions approchées

sont capables de partager équitablement les ressources sur toute la cellule.



Table of contents

List of figures xvii

List of tables xix

1 Introduction 3

1.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Thesis Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Basic Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Technical Background and Mathematical Concepts 9

2.1 Wireless Communication Characteristics . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Frequency Band . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.2 Fading Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.3 Interference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.4 Spectrum Sharing and Multiple Access Techniques . . . . . . . . . . . 11

2.1.5 Antenna Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Cellular Wireless Communication . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 LTE Network Element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.2 LTE Radio Protocol Architecture . . . . . . . . . . . . . . . . . . . . . . 15

2.2.3 Radio Resource Management . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Radio Resource in LTE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4 LTE for PMR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4.1 Introduction of Professional Mobile Radio (PMR) . . . . . . . . . . . . 21

2.4.2 3GPP LTE in PMR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.5 Wireless Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.5.1 Fading Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.5.2 Path-loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24



xiv Table of contents

2.5.3 Signal-to-Interference-plus-Noise-Ratio . . . . . . . . . . . . . . . . . . 26

2.6 Multi-cell System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.6.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.6.2 Coordinated Multipoint . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.7 Beamforming Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.7.1 Selfish Beamforming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.7.2 Greedy Beamforming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.7.3 Minimum Generated Interference Beamforming . . . . . . . . . . . . . 30

2.7.4 Maximum Signal-to-Leakage-Interference-plus-Noise-Ratio

Beamforming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3 Resource Allocation Algorithms 33

3.1 Resource Allocation Schemes Classification . . . . . . . . . . . . . . . . . . . . 33

3.2 Throughput and Fairness Balancing . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2.1 Maximum Throughput Algorithm . . . . . . . . . . . . . . . . . . . . . . 35

3.2.2 Round Robin Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2.3 Max-min Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2.4 Proportional Fair Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2.5 Coordinated Proportional Fair Algorithm . . . . . . . . . . . . . . . . . 37

3.2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3 UE State Optimal Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3.1 The Maximum Largest Weighted Delay First (M-LWDF) . . . . . . . . 38

3.3.2 Exp-Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3.3 Log-Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3.4 Frame Level Scheduler (FLS) . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.4 Economical Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.4.1 Elements of the Game Theory . . . . . . . . . . . . . . . . . . . . . . . . 43

3.4.2 Nash Bargaining Solution . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.4.3 Dynamic Subcarrier Assignment . . . . . . . . . . . . . . . . . . . . . . 45

3.4.4 NBS for Subcarrier Allocation . . . . . . . . . . . . . . . . . . . . . . . . 47

3.4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.5 Chapter Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49



Table of contents xv

4 Complexity Reduction in Cooperative Allocation Framework 51

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.3 Framework for Two-User Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3.1 Exhaustive Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3.2 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.4 Heuristic Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.5 Application of Cooperative Framework on Other QoS Service . . . . . . . . . 63

4.5.1 Throughput Optimal with Finite Buffer . . . . . . . . . . . . . . . . . . 63

4.5.2 Delay Optimal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.6 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.6.1 Multi-cell MT Algorithm Results . . . . . . . . . . . . . . . . . . . . . . 66

4.6.2 Results for Multi-cell Log Rule and Exp Rule . . . . . . . . . . . . . . . 68

4.7 Conclusions and Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5 Channel Oriented Algorithms 71

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.3 Best Channel Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.4 NBS in RB Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.5 NBS Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.5.1 Exact Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.5.2 Proposed RB NBS Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.5.3 Parallel RB NBS Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.5.4 Log Scale RB NBS Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 86

5.5.5 Mixed RB NBS Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.6 Evaluation Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.6.1 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.6.2 Performance Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.6.3 Design of Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.7 Confrontation of Proposed Methods . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.7.1 Exhaustive and Iterative RB NBS . . . . . . . . . . . . . . . . . . . . . . 91

5.7.2 Conjecture Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.7.3 Influence of Parallel Treatment and Linear Approximation . . . . . . 94

5.7.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.8 Comparison of Mixed RB NBS with Reference Algorithms . . . . . . . . . . . 95

5.8.1 Throughput Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95



xvi Table of contents

5.8.2 Fairness Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.8.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.9 Conclusions and Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6 Conclusion and Perspectives 101

6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.2 Future . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

References 105

Appendix A Simulator Programming 113

A.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

A.2 LTE-Sim Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

A.3 Modification of Multiple Channel Model . . . . . . . . . . . . . . . . . . . . . . 114

A.3.1 Path-loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

A.3.2 MIMO Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

A.4 Interference and Beamforming Technique . . . . . . . . . . . . . . . . . . . . . 116

A.5 Simulation Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117



List of figures

2.1 LTE network architecture [DPSB08] . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 LTE Radio Protocol Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Subcarrier in OFDMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4 RB in LTE Downlink system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.5 The OFDMA Resource Block [3GP10] . . . . . . . . . . . . . . . . . . . . . . . . 20

2.6 MIMO Channel Models [SPSH04] . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.7 Cellular model for multi-cell environments [SLA11] . . . . . . . . . . . . . . . 27

4.1 RB allocation with Beamforming: the worst case . . . . . . . . . . . . . . . . . 53

4.2 RB allocation with Beamforming: the best case . . . . . . . . . . . . . . . . . . 53

4.3 CS/CB Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.4 Multi-cell organizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.5 Average throughput in cell center . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.6 Average throughput on the cell edge . . . . . . . . . . . . . . . . . . . . . . . . 59

4.7 Multi Cell Enumeration Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.8 Modified Algorithm Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.9 Average throughput per UE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.10 Allocation scheme efficiency in function of the number of iteration . . . . . 67

4.11 Average output-input ratio on the cell edge . . . . . . . . . . . . . . . . . . . . 68

4.12 Average packet delay on the cell edge . . . . . . . . . . . . . . . . . . . . . . . 69

5.1 Two-user illustrative example of the subcarrier NBS allocation . . . . . . . . 75

5.2 Two-user illustrative example of our RB NBS approach . . . . . . . . . . . . . 75

5.3 Group concatenation made on Step 4 of Parallel RB NBS Algorithm . . . . . 85

5.4 Log Scale linear approximation of compensation factors groups for the Log

Scale RB NBS Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.5 Geometric mean throughput vs number of UEs . . . . . . . . . . . . . . . . . . 92

5.6 Arithmetic mean throughput vs number of UEs . . . . . . . . . . . . . . . . . . 92



xviii List of figures

5.7 Throughput for RB NBS methods and channel oriented methods depending

on the UE path-loss (a higher UE index indicates a higher path-loss) . . . . . 93

5.8 Log scale approximation of compensation factors in cell edge group (Team 3

and 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.9 Comparison of proposed methods: geometric mean throughput in function

of the number of UEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.10 Comparison of our proposed methods with the other algorithms: geometric

mean throughput performance in function of the number of UEs . . . . . . . 95

5.11 Comparison of geometric throughput for Team 1 . . . . . . . . . . . . . . . . . 96

5.12 Comparison of geometric throughput for Team 2 . . . . . . . . . . . . . . . . . 96

5.13 Comparison of geometric throughput for Team 3 . . . . . . . . . . . . . . . . . 97

5.14 Comparison of geometric throughput for Team 4 . . . . . . . . . . . . . . . . . 97

5.15 Fairness index of different algorithms . . . . . . . . . . . . . . . . . . . . . . . . 98



List of tables

2.1 Typical Parameters for Downlink OFDMA Transmission [SBL14] . . . . . . . 20

3.1 Throughput and fairness trade-off . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2 UE state allocation algorithm enumeration . . . . . . . . . . . . . . . . . . . . 42

5.1 Algorithm enumeration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.2 Channel oriented algorithm development: decision criterion . . . . . . . . . 89





Nomenclature

ACM/TDM Adaptive Modulation and Coding and Time Division Multiplexing
AMC Adapting Modulation and Coding
ARQ Automatic Repeat Request
ARP Allocation and Retention Priority
BDM Bandwidth Division Mechanisms
BS Base Station
BPSK Binary Phase Shift Keying modulation
CBR Constant Bit Rate
CB/CS Coordinated Scheduling and Coordinated Beamforming
CC Component Carrier
CSI Channel State Information
CoMP Coordinated Multipoint
CP Cyclic Prefix
CQI Channel Quality Indicator
DL Donwlink
e-NodeB Enhanced Node B
EPC Evolved Packet Core
EPS Evolved Packet System
E-UTRAN Evolved UTRAN
PF Proportional Fairness
FDD Frequency Division Duplexing
FRM Frequency Reuse Mechanisms
GBR Guaranteed Bit-Rate
HDR High Data Rate
HOL Head of Line
ISI Inter Symbol Interference
JT Joint Communication
LOS Line of Sight
LTE Long Term Evoluation
MAC Medium Access Control
MBR Maximum Bit Rate
MCS Modulation and Coding Scheme



2 List of tables

MIMO Multiple Input Multiple Output
M-LWDF Modified-Largest Weighted Delay First
MME Mobility Management Entity
NBS Nash Bargaining Solution
OFDM Orthogonal Frequency Division Multiplexing
OFDMA Orthogonal Frequency-Division Multiple Access
PF Proportional Fairness
PHY Physical Layer
PLR Packet Loss Ratio
QAM Quadrature Amplitude Modulation
QCI QoS Class Identifier
QoS Quality of Service
QPSK Quadrature Phase Shift Keying
RB Resource Block
RLC Radio Link Control
RL Reinforcement Learning
RR Round Robin
SC-FDMA Single-Carrier Frequency-Division Multiple Access
SINR Signal to Interference plus Noise Ratio
SNR Signal to Noise Ratio
TIN Treat Interference as Noise
TPS Transmission Point Selection
TTI Transmission Time Interval
UE User Equipment
UL Uplink
UTRAN Universal Terrestrial Radio Access Network
UMTS Universal Mobile Telecommunications System
VoLTE Voice over LTE



Chapter 1

Introduction

1.1 Background and Motivation

The LTE (Long Term Evolution) is known as the 4G (4th generation) wireless cellular

system, which is a standard for wireless communication of high-speed data for mobile

phones and data terminals. The LTE systems are well deployed in the major economies

region, such as Europe, North America and East Asia.

LTE utilizes UE (User Equipment) categories or classes to define the performance

specifications to make base stations enable to communicate effectively with them knowing

their performance levels. Classes like LTE UE Category 3 (cat.3) or LTE UE Category 4 (cat.4)

are widely used and quoted. In its new Category 6 (cat.6) version, the peak downlink data-

rate has reached 300 Mbps [AGER10]. Its main principle is to combines two bandwidths

at 20 MHz each to achieve a double speed of cat.4 [GRM+10]. The frequency peak of the

spectrum efficiency does not increase much, which increase stays at 7.5 bps/Hz/cell when

passing from cat.4 to cat.6.

In the narrow band PMR (Personal Mobile Radio) network using LTE technique, whose

band varies from 1.4 MHz to 5 MHz, the peak data rate is under 37.5 Mbps, and edge

rate which is understood as 5% of the maximum rate is the worst data rate that a UE can

reasonably expect to receive when in range of the network. The edge rate is an important

metric and has a concrete engineering meaning. Before the deployment of 5G systems

which provide higher system spectral efficiency [ABC+14], the edge rate of PMR networks

is not high enough to meet the demands of high quality multimedia service.

When the radio resource is limited to support most of the UEs’ demand in service, well

designed allocation algorithms are necessary to increase the utilization of frequency.
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The resource allocation is a general challenge in the human’s production and life, and

the allocation in the wireless communication is a specific subset of the general allocation

problem.

In contrast to the allocation in the wired communication networks whose channel

quality is always constant, the allocation in wireless network is a dynamic problem because

the wireless channel varies like the fast fading does.

To find the solution of the dynamic problem, the first important thing is to find the

objective of the allocation.

Our work is to design a resource allocation scheme of a Private Mobile Radio (PMR)

network in the project SOAPS [oSp12], to meet the different Quality of Service (QoS)

demands in this PMR . There are two ideas to design allocation algorithms:

1. the resource allocation is based on the the specific parameter (throughput, delay or

other) optimization,

2. the resource allocation is based on the utility function optimization.

Concerning the first axis, there is a great number of algorithms solving the optimal

parameterization problem. These algorithms use, however, the power control which is

unavailable on the downlink in LTE systems. Our idea is to use the Beamforming technique

as an indrect power control. The allocation is based on the Resource Block (RB) capacity

(which equals to the channel capacity in LTE Downlink systems), a cooperative beamforming

can increase the capacity by balancing the interference.

The traditional allocation algorithms, the RB capacity are considered as a dynamic

parameter, its value is given (according to the given channel SINR) and we use it as the

base of the channel assignment.

We intend to create a resource and beamforming assignment framework to improve the

channel’s SINR and increase the RB capacity, which offers a higher total throughput of the

system.

The second axis is to represent the resource allocation in terms of an economical problem.

The goal of the LTE communication is to optimize the data service revenue of the operators.

Initially, the use of economic tools is justified by the fact that network operators want to

find the solution to find the maximum revenue with a certain quality of service (QoS).

Making abstraction of the initial motivation of this approach, it may be used to ensure

the best possible compromise between users’ demands and network resources available.

Economic mathematical tools can be applied in this sub-domain to solve this problem. The

game theory provides means to find the best strategy of resource allocation to UEs, we

therefore call for them in the context of PMR networks.
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The RB can be seen as goods in our theory, we trade the RBs between the UEs and

increase the UEs’ channel capacity according to the trading outcome.

The thesis focuses on both the above mentioned aspects. We aim to provide the positive

feedback on the RB capacity, according to the cooperating assignment with Beamforming

vector and to perform RB trading. We want to achieve a better performance than in the

traditional algorithms and a higher profit in the game theoretic allocations.

1.2 Thesis Objective

To address aspects we enumerated above, we formulate a list of objectives we identified at

the biegining of our work:

• understand the fundamentals of the LTE downlink system, as well as the channel

state variation, the channel enhancement tools such as Beamforming technique, the

game theory as well as the optimization theory namely a formal definition of a game

problem and an optimization problem.

• improve the Resource Block (RB) capacity thanks to the cooperation of Beamforming

and RB allocation.

• model the Resource Block allocation problems in LTE downlink networks as Beam-

forming cooperation problems and game theoretical problems.

• evaluate the LTE downlink network performance in terms of system throughput and

fairness with the simulator LTE-Sim for algorithmic methods we advanced.

• propose the heuristic methods tas the exact solutions of our problems require an

unacceptable computing time due to the complexity of exact methods.

1.3 Basic Assumptions

Before starting, we discuss and detail the assumptions that are made through out this thesis.

• Resource Block Allocation per transmission time slot (TTI): We assume that the

wireless channel state stays constant over the least one TTS (usually 1ms) which

equals to twice of the RB’s duration. The RB allocation needs to be updated every

TTI.
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• Power Control: The traditional power control is not available in the LTE downlink

system because of the subcarrier in the RB is not adjacent on the frequency. Instead of

the direct power control, we apply the Beamforming technique to modify the received

signal power and interference power.

• Chanel State Information: We assume that the complete and perfect CSI (Channel

State Information) is available at both the transmitters and receivers. We assume

all the channels are the fast fading channels which means the quality of the channel

changes every TTI. More precisely speaking in Chapter 5, we suppose that the variation

of the channel follows a Gaussian distribution.

• Path-loss: The path loss is dependent on the channel quality, it is a function of the

distance between the UE and e-NodeB. We assume that the path loss is known by the

e-NodeB.

• Rationality: One of the most common assumptions made in the game theory is

rationality. This means that every player always maximizes his payoff, thus being

able to perfectly calculate the probabilistic result of every action. However, in reality

this assumption can only be reasonably approximated since rationality of individuals

is limited by the information they have, the cognitive limitations of their minds, and

the finite amount of time they have to make decisions.

1.4 Thesis Outline

In general terms, the focus of this thesis is on the channel capacity improvement with the

design of resource allocation in wireless channels. The outline of all chapters is as follows.

After the present chapter (Chapter 1) gives the motivation, outline, and contributions

of this thesis. We start with the outline of the state of the art.

Chapter 2 overviews the technical background in wireless systems considered in this

thesis, such as wireless channel models, path-loss models, i.e., multiple access channels

and interference channels, Orthogonal Frequency Division Multiplexing Access (OFDMA)

technology in the LTE downlink system.

Chapter 3 summarizes the classic RB allocation schemes, game-theoretic resource

allocation algorithms, they are introduced as the reference algorithms of the thesis’s main

work. It also introduces the fundamentals of game theory, and explains a specific game

theoretic bargaining solution - NBS (Nash Bargaining Solution).

The next two chapters cover our original work.
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Chapter 4 starts with a proposition of an RB allocation framework to allocate the RB

and chooses the Beamforming vector at the same time. We use the Beamforming technique

to modify the received signal power and the inter-cell interference in the neighbouring

cells, which offers the indirect power control to increase the RB’s capacity potential. It

secondly apply this framework to the different kinds of RB allocation algorithms which

are designed for different Quality of Service (QoS) demands. The exact solution may be

found in polynomial time, as a polynomial degree is equal to the number of symbols in

the code book, a time required to run the exact method becomes too long to consider this

algorithm as worth implementing in practical. For this reason, the chapter introduces the

approximated method to reduce the complexity of the proposed algorithm. It introduces

the iterative method to reduce the complexity of the exhaustive solution for our framework.

In the end of this chapter, we compare the performance of our approximated methods and

the original algorithms.

Chapter 5 defines a model of allocation problem, and discusses the difference with

existing works that we presented in Chapter 3. This chapter contains our contribution

concerning two algorithms: Best Channel algorithm which is a more efficient version of

Round-Robin algorithm; RB NBS, which is to solve the NBS allocation problem in in the LTE

downlink networks. We present four variants of our RB NBS algorithm: iterative method,

parallelization computing, log-scale approximation, and mixed method. These variants are

adaptations of the principle algorithm to different conditions, for instance, the possiblity of

parallel computations, the computation acceleration thanks to the linear approximation

of the path loss, etc. We evaluate our game theoretic algorithms and its approximated

methods with the reference algorithms we have introduced in Chapter 3.

Chapter 7 summarizes the main results of this thesis and looks into the perspectives of

future researches.





Chapter 2

Technical Background and Mathematical

Concepts

Nowadays, the wireless communication becomes a topic of study since the Motorola created

the first cellphone and the past two decades have seen a surge of research activities in

this area. This is mostly given credit to the great demands of the mobile Internet industry.

Apple, Google, Facebook, Twitter, Instagram and Snapchat, a lot of giants develop their

business on the handsets and billions of customers use their mobile phone to deal with

their life and work instead of the computers.

Since the success of 2G (second generation) [MP92] digital wireless standards and

techniques, the research thrust in the past two decades has led to a much richer set of

perspectives on how to communicate over wireless channels. Based on these perspectives,

many new standards such as 3G/HSPA [HT00], CDMA [Vit95], Wi-Fi [Wal01], WiMAX

[GWAC05] and 3GPP LTE [DPSB08] have been developed to cope with the explosive

demand for wireless connectivity. Now, this evolution is still going on.

We will introduce the general architecture of the cellular wireless communication and

main techniques in the next sections.

2.1 Wireless Communication Characteristics

Providing a broadcast and multi-point channel, the radio wireless communication uses the

frequency band and electromagnetic wave as the signal carrier while no physical protector

like envelope or shielding isolate the signal from interference. Interference is caused by

other communication signals or propagation impairments.
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Because the signals can be received by all the equipment in a certain area, a spectrum

sharing access is needed among the users of the wireless communication. Even though the

electromagnetic wave can be created variously, a good antenna technique can improve

the quality of the electromagnetic signal.

In the next subsections, we will introduce them briefly.

2.1.1 Frequency Band

The wireless communication transmits the information as signals on a certain frequency,

which is always dedicated to a communication service to avoid interference.

The 2.4GHz and 5GHz bands are usually allocated to the Wi-Fi service, the band of 800–

900MHz, 1.8–2.2GHz are mainly used for cellular wireless communication [3GP11a]. Most

of bands are free for public service but the band of mobile service are usually auctioned.

Because the bands are licensed and limited, the operators need an efficient radio

resource allocation scheme to support more business service in the band. For this reason,

we begin with studying the characteristics of the wireless channel which have to be taken

into account in the channel assignment policy.

2.1.2 Fading Channel

When the transmitted signal travels from transmitter to receiver, the wireless environment

may cause fluctuations in amplitude, phase and angle of arrival of the received signal, we

define this phenomenon as fading, and channels that exhibit these properties are known as

fading channels [EDHH98].
There are two independent fading effects:

• Multipath delay spread leads to time dispersion and frequency-selective fading.

• Doppler spread leads to frequency dispersion and time-selective fading.

When the delay spread by multi-path delay spread or coherence time of Doppler effect

is less than the received symbol period, this causes fast fading which means the channel

characteristics change quickly.

When the delay spread by multi-path delay spread or coherence time of Doppler effect

is much more than the received symbol period, it causes the slow fading [Skl97].
In this dissertation, we use the fast-fading as the default configuration because the UE

speed is not too high and the coherence time is less than the duration of a symbol.
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2.1.3 Interference

Wireless communication from a sender to a receiver is significantly affected by the interfer-

ence generated by other devices. If devices in the vicinity of the receiver transmit at the

adjacent time and on the adjacent frequency, their signals interfere at the receiver with the

intended signal from the sender and thus impede proper reception.

Because user can not distinguish the signals on the same frequency at the same time,

the multiple access is designed to share these radio channels for the communication.

2.1.4 Spectrum Sharing and Multiple Access Techniques

The spectrum radio resource contains three degrees of freedom: the frequency, the time and

the code. The common multiple access techniques are designed on sharing these degrees

of freedom:

• FDMA

Frequency Division Multiple Access (FDMA) [CS94] is a channel access method which

gives each user an individual allocation of one or several frequency sub-bands (or

sub-channels).

With FDMA, the sub band can be assigned to only one user at a time. However, FDMA

imposes guard bands between two adjacent sub channels to avoid the co-channel

interference and its spectrum efficiency is low.

• TDMA

In Time Division Multiple Access (TDMA) [Pro91], it makes use of the same frequency

spectrum but allows more users on the same band of frequencies by dividing the time

into slots and shares the channel between users by assigning them different time

slots.

The TDMA can use narrow band because a user can use the full band at the same

time, but this technique imposes a strict synchronization between the distributed

users in order to transmit exactly in their time slot.

• CDMA

Code division multiple access (CDMA) [Vit95] uses a spectrum technique which

sends information simultaneously over a single communication channel and several

UEs share a band of frequencies. Using a code allocated to each other, several

communication are sent over a same band, seeing the other communication as

interference.
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CDMA is used in 3G/UMTS systems and its limitation is the level of interference

introduced by several users using the same band.

• OFDMA

Orthogonal Frequency-Division Multiple Access (OFDMA) [YA06] is a multiple ac-

cess of the Orthogonal Frequency-Division Multiplexing (OFDM) digital modulation

scheme. In OFDMA, the band is divided into orthogonal subcarriers which are used

to transmit messages. The orthogonal property means the product of two different

subcarriers is zero. After the signal is received, the OFDMA technique applies a

matched filter to decode the information, because all the subcarriers are orthogonal,

the signals of other subcarriers applied by the filter become zero.

OFDMA has many advantages: the most important one is less interference because of

the interference from the neighbouring subcarriers is negligible; and its subcarriers

are coded independently, so the system complexity does not increase with the number

of users.

Because of the advantages on channel capacity, the OFDMA is chosen as the multiple

access of the LTE downlink system and we design the allocation scheme to assign the

subcarriers for the communication.

2.1.5 Antenna Techniques

The purpose of an antenna is to collect and convert electromagnetic waves to electronic

signals.

Different forms of antenna technology refer to single or multiple input transmitters and

output receivers. Depending on the radio link, different forms of single/multiple antenna

links are defined as below:

• SISO - Single Input Single Output

• SIMO - Single Input Multiple output [SS08]

• MISO - Multiple Input Single Output [Vu11]

• MIMO - Multiple Input multiple Output [PGNB04]

Electronic miniaturization allows to put more than one antenna on a mobile terminal

and MIMO can be used to provide improvements in both channel robustness as well as

channel throughput [ZT03].
After the presentation of the general wireless network, we will introduce the specific

knowledge of the cellular wireless communication in the next section.
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2.2 Cellular Wireless Communication

All the communication system are composed by three basic elements: two sides of the

communication and the channel between them.

The core characteristic of the cellular communication system is that the users in cellular

network does not exchange the information with the other side directly but through a

communication node which is called the Base Station (BS).

The communication between the Base Stations are belonging to the traditional wire

communication and we focus on the wireless communication in this thesis.

The cellular wireless communication develops from the analogical mode (1G: first

generation) [Rap96] to digital mode (after 2G) where more and more User Equipment

(UE) are supported in the wireless network. From the GPRS (2.5G) communication, it

begins to support the data service. In the 3G service, the voice service and data service can

work simultaneously by separating the data channel from the voice channel. Because of

the high throughput and low latency in 4G service, we begin to treat the voice service as a

kind of data service, which is called - VoLTE (Voice over LTE) [CC11].

For this reason, we just study the data service under a given QoS (Quality of Service)

during the allocation of radio resources in this dissertation.

2.2.1 LTE Network Element

The high-level network architecture of LTE is comprised of the following three main com-

ponents (Fig. 2.1):

• The User Equipment (UE).

• The Evolved UMTS Terrestrial Radio Access Network (E-UTRAN).

• The Evolved Packet Core (EPC).

User Equipment

The UE (user equipment) includes all the wireless terminal that can exchange information

with the E-UTRAN network, such as cellphone, data card, Mi-Fi, and other devices. The

radio interface between the UE and the e-NodeB is called LTE-Uu.
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Fig. 2.1 LTE network architecture [DPSB08]

Evolve Packet Core

EPC (Evolved Packet Core) provides the user with IP connectivity to a PDN (Packet Data

Network) for accessing the Internet [GZAM10a], as well as for running services such as

VoLTE (Voice over IP). The bearer services are the physical communications between the

UE and the base station (e-NodeB). An EPC bearer is typically associated with a quality of

service (QoS). To quantitatively measure QoS, several related aspects of the network service

are often considered, such as error rates, bit rate, throughput, transmission delay. Differing

from the 2G/3G service, the EPC considers all the wireless communication as a specific

bearer and separates the user data (also known as the user plane) and the signalling (also

know as the control plane) to make the scaling independent [3GP11c]. Multiple bearers

can be established for a user in order to provide different QoS streams or connectivity to

different PDNs. For example, a user might be engaged in a voice (VoLTE) call while at the

same time performing web browsing or FTP download. A VoIP bearer would provide the

necessary QoS for the voice call, while a best-effort bearer would be suitable for the web

browsing or FTP session.

The E-UTRAN Access Network

The E-UTRAN [3GP11b] handles the radio communications between the UE and the EPC

and has just one component, the evolved base station, called eNodeB or e-NodeB. Each

e-NodeB is a base station that exchanges the information with UEs. The wireless connection

between the e-NodeB and the UE is called the downlink and uplink, while the downlink is

used to transmit the information from the e-NodeB to the UE and the uplink is from UE

to e-NodeB. In FDD-LTE system [DPSB08], the downlink and uplink use different bands
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but in TDD-LTE network, the downlink and uplink share the same band. In the Evolved

UMTS Terrestrial Radio Access Network (E-UTRAN), the UMTS is the radio network in the

WCDMA system, and in LTE, it evolves to the Long Term Evolution (LTE), so we can update

the WCDMA network to a 4G network without too much cost.

2.2.2 LTE Radio Protocol Architecture

As we described in the previous subsection, the protocol usually contains two parts in LTE

radio protocols [YCL+12]:

• Control Plane: allows one device to control how works the other one.

• User Plane: sends just raw data from one device to another

At user plane side, the application creates data packets that are processed by protocols

such as TCP, UDP and IP, while in the control plane, the Radio Resource Control (RRC)

protocol [LL06] writes the signaling messages that are exchanged between the base station

and the mobile. In both cases, the information is processed by the Packet Data Convergence

Protocol (PDCP), the Radio Link Control (RLC) protocol and the Medium Access Control

(MAC) protocol, before being passed to the physical layer for transmission.

The protocol architecture is shown in Fig. 2.2 and explain the two planes in detail in

the next two subsections.

User Plane

As shown in Fig. 2.2, the user plane deals with the data flow at the UE side and it is

composed of three components:

• Packet Data Convergence Protocol (PDCP): This layer processes Radio Resource

Control (RRC) messages in the control plane and Internet Protocol (IP) packets in

the user plane. Depending on the radio bearer, the main functions of the PDCP layer

are header compression, security (integrity protection and ciphering), and support

for reordering and retransmission during handover. For radio bearers which are

configured to use the PDCP layer, there is one PDCP entity per radio bearer. A UE

may experience many kinds of service, so it can build several PDCP with the e-NodeB.

• Radio Link Control (RLC): The main functions of the RLC layer are segmentation

and reassembly of upper layer packets in order to adapt them to the size which

can actually be transmitted over the radio interface. For radio bearers which need
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error-free transmission, the RLC layer also performs retransmission to recover from

packet losses. Additionally, the RLC layer performs reordering to compensate for

out-of-order reception due to Hybrid Automatic Repeat reQuest (HARQ) operation in

the layer below. There is one RLC entity per radio bearer.

• Media Access Control (MAC): This layer performs the multiplexing of data for a

variety of radio carriers. . Determining the amount of data that can be transmitted

from each radio bearer layer, the size of the packet, RLC and instructing on the MAC

layer to achieve negotiated Quality of Service (QoS) for each radio bearer.

The UE plane focus on the data transmission and it has no idea about how to transmit

the data flow, and this is the objective of the control plane.

Control plane

Comparing to the user plane, control plane contains two additional components, Radio

Resource Control (RRC) and Non-Access Stratum (NAS). The NAS control protocols handle

Public Land Mobile Network1 (PLMN) selection, tracking area update, paging, authentica-

tion and EPS bearer establishment, modification and release [Eks09].
The control plane largely depends on the Radio Resource Control (RRC) state of the

User Equipment (UE), which handles the control plane between the UE and the e-NodeBs.
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With the help of NAS, the UEs exchange the state information and header files with the

e-NodeBs, and with RRC protocol, it transmits the private messages with the E-UTRAN.

RRC contains two sub protocols, RRC_IDLE and RRC_CONNECTED. A UE in RRC_IDLE

performs cell selection and reselection – in other words, it decides on which cell to camp.

In RRC_CONNECTED, the E-UTRAN allocates radio resources to the UE to facilitate

the transfer of data via shared data channels. To support this operation, the UE monitors

an associated control channels used to indicate the dynamic allocation of the shared

transmission resources in time and frequency. The UE provides the network with reports

of its buffer status and of the downlink channel quality, as well as neighbouring cell

measurement information to enable E-UTRAN to select the most appropriate cell for the

UE.

In this dissertation, we will study the RRC_CONNECTED protocol and study the resource

radio management (RRM).

2.2.3 Radio Resource Management

When the RRC controls the radio resource, the strategy of the allocation belongs to the

Radio Resource Management (RRM). To allocate the radio resource, the LTE standard

designs a specific RR mechanism which are composed of two parts, the configuration and

core data transmission. The core part transmits the private messages, but the configuration

part guarantees the messages can be transmitted correctly.

• Resource management on configuration:

1. Radio Bearer Control (RBC): The establishment, maintenance and release of

Radio Bearers involve the configuration of radio resources associated with them.

2. Radio Admission Control (RAC): The task of radio admission control (RAC) is

to admit or reject the establishment requests for new radio bearers.

3. Connection mobility control (CMC) is concerned with the management of radio

resources in connection with idle or connected mode mobility. In idle mode,

the cell reselection algorithms choose the best cell and/or determine when the

UE should select a new cell. In connected mode, it decides the Handover based

on UE and e-NodeB measurements. (Handover means refers to the process

of transferring an ongoing call or data session from one e-NodeB to another

because of the UEs’ position movement)

• Resource allocation on core data transmission:
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1. The task of dynamic resource allocation or packet scheduling is to allocate and

de-allocate resources (including buffer and processing resources and resource

blocks) to user and control plane. Dynamic resource allocation involves several

sub-tasks, including the selection of radio bearers whose packets are to be

scheduled and the managing the necessary resources (e.g. the power levels or

the specific resource blocks used). Packet scheduling typically takes into account

the QoS requirements associated with the radio bearers, the channel quality

information for UEs, buffer status, interference situation, etc. Dynamic resource

allocation may also take into account restrictions or preferences on some of the

available resource blocks or resource block sets due to inter-cell interference

coordination considerations. DRA is located in the e-NodeB.

2. Inter-cell Interference Coordination (ICIC): Inter-cell interference coordination

[GJD+11] has the task to manage radio resources such that inter-cell interference

is kept under control. ICIC mechanism both includes a frequency domain

component and a time domain component. ICIC is inherently a multi-cell RRM

function that needs to take into account information (e.g. the resource usage

status and traffic load situation) from multiple cells. The preferred ICIC method

may be different in the uplink and downlink. The frequency domain ICIC

manages radio resource, notably the radio resource blocks.

The dynamic resource allocation and the interference management are two independent

parts of the RRM, but we find these two processes have interaction. In this dissertation, we

propose a cross-layer RB allocation algorithm cooperated with interference management to

improve the system performance.

2.3 Radio Resource in LTE

OFDMA meets the LTE requirement for spectrum flexibility and enables cost-efficient

solutions for very wide carriers with high peak rates. But the OFDMA in LTE downlink

network is different from the standard OFDMA.

In general subcarrier, the radio spectrum is divided into narrow orthogonal subcarriers

but in LTE downlink, the subcarriers make the Resource Block (RB) which is the basic

resource unit used by UEs to transmit information with e-NodeBs.

To increase the channel efficiency , LTE uses Orthogonal Frequency Division Multiple

Access (OFDMA) [NP00] for the downlink transmission.
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Fig. 2.3 Subcarrier in OFDMA Fig. 2.4 RB in LTE Downlink system

The difference of the general OFDMA system and LTE downlink OFDMA network is the

number of available orthogonal units as shown in Fig. 2.3 and 2.4.

• The general OFDMA radio resource is divided into many sub-carriers which can be

allocated to UEs (one or many subcarriers to a same UE’s communication). The

allocation method is applied to optimize the objective at each time-slot.

• The LTE downlink OFDMA bandwidth is divided in the temporal space into Resource

Blocks whose time length is equal to a half of the TTI (Time Transmission Interval).

Because each RB is composed of 12 subcarriers, the number of RBs available during

a TTI may be smaller than the number of UEs, even if it may happen that certain UEs

do not have any RB allocated in a TTI. During a transmission time period (100–1000

ms), however, the number of RBs is great enough to allocate resource to all the UEs.

In contrast to the traditional OFDMA technique, the basic LTE downlink physical resource

can be seen as a time-frequency grid, as illustrated in Figure 2.5:

A Resource Block (RB) contains 12 orthogonal subcarriers and the duration time is 0.5

ms.

We first describe the frame structure in the time domain, which is a common element

shared by both downlink and uplink.

In LTE specifications, the size of elements in the time domain is expressed as a number

of time units Ts = 1/(15000×2048) = 1/(15000×2048) seconds. As the normal subcarrier

spacing is defined to be ∆ f = 15KHz, Ts can be regarded as the sampling time of an

FFT-based (Fast Fourier Transform) OFDM transmitter/receiver implementation with FFT

size NFFT = 2048.

Note that this is just for notation purpose, as different FFT sizes are supported depending

on the transmission bandwidths. A set of parameters for typical transmission bandwidths



20 Technical Background and Mathematical Concepts

Fig. 2.5 The OFDMA Resource Block [3GP10]

for LTE in the downlink is shown in Table 2.1, where the subcarrier spacing is ∆ f = 15KHz.

The FFT size increases with the transmission bandwidth, ranging from 128 to 2048.

Transmission bandwidth [MHz] 1.4 3 5 10 15 20
Occupied bandwidth [MHz] 1.08 2.7 4.5 9.0 13.5 18.0
Guardband [MHz] 0.32 0.3 0.5 1.0 1.5 2.0
Guardband, % of total 23 10 10 10 10 10
FFT size 128 256 512 1024 1536 2048
Number of occupied subcarriers 72 180 300 600 900 1200
Number of Resource Blocks 6 15 25 50 75 100
Number of CP samples (normal) 9 × 610 18 × 620 36 × 640 72 × 680 108 × 6120 144 × 6160
Number of CP samples (extended) 32 64 128 256 384 512

Table 2.1 Typical Parameters for Downlink OFDMA Transmission [SBL14]

In the time domain, the downlink and uplink multiple TTIs are organized into radio

frames with duration Tf = 307200× Ts = 10ms. For flexibility, LTE supports both FDD and

TDD modes [DPSB08]. Most of the design parameters are common to FDD and TDD in

order to reduce the terminal complexity and maximize reuse between the designs of FDD

and TDD systems. Accordingly, LTE supports two kinds of frame structures: frame structure

type 1 for the FDD mode and frame structure type 2 for the TDD mode. In this thesis, we

do not analyze the frame structure type 2 because we just consider the RB allocation in

FDD mode.

For FDD, uplink and downlink transmissions are separated in the frequency domain.

In half-duplex FDD operation, the UE cannot transmit and receive at the same time while
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there are no such restrictions in full-duplex FDD. However, full-duplex FDD terminals need

high quality and expensive RF duplex-filters to separate uplink and downlink channels,

while half-duplex FDD allows hardware sharing between the uplink and downlink, which

offers a cost saving at the expense of reducing data rates by half. Half-duplex FDD UEs

are also considered a good solution if the duplex separation between the uplink and

downlink transmissions is relatively small. In such cases, the half-duplex FDD is the

preferable approach to mitigate the cross-interference between the transmit and receive

chains [GZAM10b].

2.4 LTE for PMR

My PhD work has taken place in the context of the SOAPS project [oSp12]. This project

targets the professional mobile radio (PMR) communication systems for the Public Safety

services of France. Currently as purely voice-based and low data rate systems, they must

now be adapted to the changing society and to the new demands from end-users. These

new services require new high speed data transfer radio technology. From an economical

point of view, it is interesting to leverage the technology evolution coming from commercial

domain, so we choose the 3GPP LTE technique to build this network.

2.4.1 Introduction of Professional Mobile Radio (PMR)

PMR are field radio communications systems which use portable, mobile, base station, and

dispatch console radios. When private- or professional-mobile-radio (PMR) first started

the systems simply consisted of a single base station with a number of mobiles that could

communicate with this single base station. These systems are still in widespread use today

with police or army for safety reasons.

Because the antenna may be mounted on a high tower, coverage may extend up to

distances of fifty kilometres. This is helpful especially when there is no signal in a mobile

phone.

Licenses are allocated for operation on a particular channel or channels. The user can

then have use of these channels to contact the mobile stations in their fleet. The base

station may be run by the user themselves or it may be run by an operating company who

will hire out channels to individual users. In this way a single base station with a number

of different channels can be run by one operator for a number of different users and this

makes efficient use of the base station equipment. The base station site can also be located

at a position that will give optimum radio coverage, and private lines can be provided to
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connect the users control office to the transmitter site. As there is no incremental cost for

the transmissions that are made, individual calls are not charged, but instead there is a

rental for overall use of the system. For those users with their own licences they naturally

have to pay for the licence and the cost of purchase and maintenance of that equipment.

2.4.2 3GPP LTE in PMR

To apply the LTE techinque in PMR network, some modifications are to satisfy the specific

demands of features:

• Point to multi-point communications: The broadcast channel become more important

than the public service because more messages are transformed to a group not to a

single UE in the PMR network. When LTE technique is applied, the specific UE can

be used as the e-NodeB.

• Good frequency: Because the Public Safety Service can use the band of 450 MHz,

the propagation loss decreases and the coverage area is larger than the commercial

version LTE.

• Narrow Band: Because the band around 450 MHz is limited, the SOAPS needs to

build a network with narrow band less than 5 MHz, so it needs a good resource

allocation scheme to satisfy the data demands of all the UEs. We use this value in

our dissertation.

• Closed User Group: Only employees of certain organizations can use this network,

the safety level of the network is more strictly than the LTE commercial operators.

2.5 Wireless Channel

In this section, we will introduce the channel model we use in our Radio Resource Allocation

strategies.

2.5.1 Fading Channel

The transmitted electromagnetic wave can propagate directly from the transmit to the

receive antenna, however it can also be reflected by objects like buildings, trucks, etc.

In addition, it can be scattered at trees, mountains, etc. This has the effect, that at the



2.5 Wireless Channel 23

receive antenna we have a superposition of several delayed and attenuated copies of the

transmitted signal. The consequence of this is fading and inter-symbol interference (ISI).

Fading means that the superposition of the waves add to a very small value which

implies that almost no signal power can be detected. ISI is due to the fact that a discrete

symbol has a finite duration T and if the propagation delay due to a detour of the signal

is larger than T - even if there is no fading - the waves which are added during a time

interval T represent different symbols. The corresponding channel model is called the

multi-path Fading Channel which is generated by the different transmitting and receiving

antennas. We use the matrix H to describe the whole channel system. In the Fig. 2.6, the

signals transmit through the certain channel such as h11, ..., h22 which are the elements of

the matrix.

Fig. 2.6 MIMO Channel Models [SPSH04]

The radio channel is composed of two parts:

1. the fading part, it means the signal’s phase and amplitude vary when it pass through

the channel, we denote it as gi, it usually satisfies the normal distribution N(0,1);

2. the path-loss, it means the strength of the signal decreases with the distance, it can be

estimated by some physical models, and it can be express by Li, so we have hi = gi/Li.

We will explain the path-loss models in the next subsection.
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2.5.2 Path-loss

When the wireless signal transmits in the space, the electromagnetic wave’s power density

reduces with distance. The path-loss is mainly depending on the environment and distance,

and it leads to bad channel quality when a UE is far from the e-NodeB.

A good feature of the path-loss is that it does not vary with time, so we can consider it

as a constant part.

The simplest path-loss model is the free space line of sight channel with no objects

between the receiver and the transmitter. This free space path-loss channel has very limited

applicability in the propagation environment as it requires a purely unobstructed Line of

Sight (LOS) path without any other component. Thus, more sophisticated path-loss models

are required that take into account several other parameters such as antenna heights,

propagation environment type, building heights terrain type and so on. When the UEs are

in the free space or in the building, the electromagnetic environments are totally different.

Actual environments are too complex to model accurately. In practice, most simulation

studies use empirical models that have been developed based on measurements taken

in various real environments. In this section we describe a number of commonly used

empirical models.

Rural area in a macro cell

In 1968, Okumura conducted extensive measurements of base station to mobile signal

attenuation throughout Tokyo and developed a set of curves giving median attenuation

relative to free space path-loss. To use this model one needs to use the empirical plots

given in his paper. This is not very convenient to use. So in 1980, Hata [Hat80] developed

closed-form expressions for Okumura’s data. According to Hata model the path-loss in an

urban area at a distance d is:

L(d) =69.55+ 26.16 log10 f − 13.82 log10 ht + (44.9− 6.55 log10 ht)

log10 d − 4.78(log10 f )2 + 18.33 log 10( f )− 40.94 [in dB]
(2.1)

where d is the e-NodeB UE separation in kilometres, f is the carrier frequency in MHz, ht

is the base station antenna height above ground in metres.
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Considering a carrier frequency of 450 MHz and 2 GHz and a e-NodeB antenna height of

45 meters above ground the propagation model is given by the following formula [3GP09]

L(d) = 85.6+ 34.1 log10 d [dB] when f = 450MHz

L(d) = 100.5+ 34.1 log10 d [dB] when f = 2GHz
(2.2)

Macro cell propagation model for urban area is applicable for scenarios in urban and

suburban areas outside the high rise core where the buildings are of nearly uniform height

Urban and suburban in a macro cell

Macro cell propagation model for urban area is applicable for scenarios in urban and

suburban areas outside the high rise core where the buildings are of nearly uniform height:

L = 40+ (1− 4 · 10−3ht) log10 d − 18 log10 ht + 21 · log10 f + 80 dB (2.3)

Considering a carrier frequency of 450MHz and 2GHz and a e-NodeB antenna height of

15 meters above ground the propagation model is given by the following formula:

L(d) = 114.5+ 37.6 log10 d [dB] when f = 450MHz

L(d) = 128.1+ 37.6 log10 d [dB] when f = 2GHz
(2.4)

Micro Cell Model

Micro Cell model is to be used for spectrum efficiency evaluations in urban environments

modelled through a Manhattan-like structure, in order to properly evaluate the perfor-

mance in microcell situations that will be common in European cities at the time of UMTS

deployment [FBR+94].
The proposed model is a recursive model that calculates the path-loss as a sum of LOS

and NLOS segments. The shortest path along streets between the e-NodeB and the UE has

to be found within the Manhattan environment [HXB99].
The path-loss in dB is given by the well-known formula [3GP09]

L = 24+ 45 log10(d + 20). (2.5)

In contrast to the macro cell model, the frequency is not a main factor of the path-loss,

the signals on the different frequency experience the same path-loss model.
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2.5.3 Signal-to-Interference-plus-Noise-Ratio

After the study of the channel, we need to get the SINR before the estimation of the RB

capacity. As the definition, the SINR can be expressed as:

Γ =
PRecv

I +σ0
, (2.6)

where PRecv represents the received signal power at the UE side, I presents the received

interference power, which is from the same frequency signals from the neighbouring cells,

and σ0 presents the white noise.

The received signal experiences the fading channel and attenuates because of the path-

loss. We present the transmitting signal by x , and the received signal is H x , where H
presents the corresponding fading channel, where the channel H contains the fading part

G and the path-loss L (H = G/
p

L). We decode this signal with a matched filter at the UE

side, so the received signal power is ||H||2 x2. Because the transmitting power P = x2, we

have PRecv = P||H||2. The received signal power is expressed by:

PRecv = P||H||2, (2.7)

The interference is generated by the the signal from the neighbouring cells on the same

frequency. Denote the interference channel as Hk, their path-loss as L j, because the UE

uses the matched filter to maximize the received power, the received interference is in the

form of P||H∗Hk||, where ∗ signifies the transposition and conjugation of a matrix. The

interference comes from all the neighbouring cells, so it equals:

I =
∑

j

P||H∗Hk||, (2.8)

Putting Eq. (2.7) (2.8) into (2.6), we can get a completed SINR formula:

Γ =
P||H||2

∑

j P||H∗Hk||+σ0

. (2.9)

2.6 Multi-cell System

2.6.1 System Model

We consider a multi-cell network made up of a central cell and J−1 neighbouring cells with

the same assigned frequency. Fig. 2.7 illustrates a system model in this work. There are K
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UEs in each cell which are randomly placed within their corresponding cells.. Let j denote

any of these J cells, and i j denotes a UE in the jth cell. The working frequency contains

M RBs. The e-NodeB in each cell is located at the centre and contains NT transmitting

antennas, each UE has NR receiving antennas.

In a multi-cell system, there exists two kinds of interference: the inner-cell interference

and inter-cell interference.

The inner-cell interference comes from the UEs in the same cellular, the user may not

distinguish the adjacent band signals because all the signals are not constant during their

propagation, their frequency may vary by the Doppler effect and their arriving order may

disorganize by the multiple signal path.

The inter-cell interference comes from the communication in the neighbouring cells,

because the bandwidth in the wireless network is limited, and the neighbouring cells signal

spreads to the receiver through the free space.

As all the sub-carriers are orthogonal, we can thus suppose the inner-cell interference

is zero. During the reception of the desired downlink signal from the self-eNodeB, UEs

experience inter-cell interference from their neighboring cells. Here, only neighboring cells

in the first-tier are counted as interfering sources.

Fig. 2.7 Cellular model for multi-cell environments [SLA11]

SINR is influenced by the beamforming vectors on the same frequency in neighbouring

cells, and expressed as in [SLA11]:
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Γm
i j
=

P||H j,i j
ωm

j ||
2

P
||H j,i j

ωm
j ||2
∑

k∈Φ( j) |ω
m∗
j H∗j,i j

Hk,i j
ωm

k |+σ0

, (2.10)

where Hk,i j
∈ CNR×NT denotes the communication channel matrix between the e-NodeB

in the kth cell and the UE i j, ω
m
j ∈ C

NT denotes a transmit beamforming vector of the

e-NodeB in the jth cell on the frequency of RB m, Φ( j) indicates a group of neighbouring

cells around the jth cell, and σi j
represents a white Gaussian noise vector at UE i j with the

power of each entry σ0. The average signal power is noted as P. We assume that each UE

perfectly knows the CSI value of its communication channel H j,i j
and interference channel

Hk,i j
, k ∈ Φ( j) based on the feedback channel.

According to the Formula. (2.10), we can conclude that the channel is mainly based on

the communication channel and interference channel.

2.6.2 Coordinated Multipoint

The trend of increasing demand for high quality of service at the UE, coupled with the

shortage of wireless spectrum, requires more advanced wireless communication techniques

to mitigate inter-cell interference and increase the cell edge throughput. Coordinated

Multipoint (CoMP) transmission and reception techniques utilize multiple transmit and

receive antennas from multiple antenna site locations, which may or may not belong to the

same physical cell, to enhance the received signal quality as well as decrease the received

spatial interference [LSC+12].
These types of CoMP are generally classified by three types [LSC+12]:

• Coordinated Scheduling and Coordinated Beamforming (CB/CS)

CS (Coordinated Scheduling) divides the entire network in clusters and apply cen-

tralized scheduling within each cluster in order to determine which eNodeB/TP in

the cluster should transmit in each time slot and to which UE. CB (Coordinated

Beamforming ) is to choose the beamforming vector in a multi-cell system with the

shared CSI (channel state information), this part of work is presented in Section 2.7.

• Joint Transmission (JT)

Joint transmission transmits the data to a UE simultaneously from multiple coop-

erating cells. With the cost of highly synchronization between the eNodeBs and

information multicast to the cooperating cells. As an advantage, it allows to improve
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the channel cell edge performance by converting as interference signal into a desired

signal.

• Transmission Point Selection (TPS)

The UE reports the SINR of all the neighbouring cells and transmits the information

with its preferred eNodeB/TP. The transmitted eNodeB can dynamically change from

a TTI (Time Transmit Interval), which is the minimum signal transmit time unit.

We focus on the CB/CS type of CoMP in this dissertation. In LTE-Advanced, approaches

of jointly combining CS and CB have been proposed to increase the system throughput with

the cost of higher complexity and requirements in terms of CSI feedback and CSI sharing

[YKS13, LSC+12].

In their CB/CS schemes, the existed RB allocation algorithms (presented in Section 3.2)

can be modified to a combing CS/CB scheme. The coordinated Beamforming is applied

in the next step after the coordinated scheduling [YKS13] and we will introduce some

coordinated Beamforming schemes in the next section.

2.7 Beamforming Techniques

Beamforming is a signal processing technique used in sensor arrays for directional signal

transmission or reception. This is achieved by combining elements in a phased array in such

a way that signals at particular angles experience constructive interference while others

experience destructive interference. Beamforming can be used at both the transmitting

and receiving ends in order to achieve spatial selectivity. The improvement compared with

omnidirectional reception/transmission is known as the receive/transmit gain (or loss)

[ZCA+09].

In the multi-cell network, the choice of beamforming vectors are based on two factors:

the received power and the neighbouring cells’ interference [BH07]. Some beamforming

schemes are introduced in [SLA11] to find a trade-off between increasing the received

signal power and reducing interference.

After the Resource Block is chosen, the Beamforming technique is applied to maximize

the total system throughput.

The Beamforming techniques introduced in Subsection 2.7.2, 2.7.3 and 2.7.4 all need

the CSI information from the neighbouring cells so they are defined as Coordinated Beam-

forming.
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2.7.1 Selfish Beamforming

The simplest solution is an egoistic strategy [LJ08]. Each BS greedily chooses the transmit

beamforming vector which maximizes the desired signal power without regards to the

generated interference power to neighboring cells. The transmit Beamforming vector is

chosen as:

ωm∗
j = argmax

ωm
j

||H j,i j
ωm

j ||
2. (2.11)

which is referred to as selfish Beamforming.

2.7.2 Greedy Beamforming

We first consider an ideal case where all CSI of every e-NodeBs in the network is shared

[YG06]. A centralized genie can find the optimal configuration for transmit beamforming

vectors {ωm∗
1 ,ωm∗

2 , ...ωm∗
J } by solving the following global optimization problem:

{ωm∗
1 ,ωm∗

2 , ...ωm∗
J }= arg max

ωm
j

R({ωm
1 ,ωm

2 , ...ωm
J }). (2.12)

Unfortunately, the function given by Eq. (2.12) is a non-convex combinatorial optimiza-

tion problem, which is in general computationally intractable. The exact solution can be

found with an exhaustive search over all possible configurations of {ωm
1 ,ωm

2 , ...ωm
J }, the

computational complexity of which grows exponentially with the number of e-NodeBs in

the network. Nonetheless, this genie-aided beamforming achieves the optimal performance

of cooperative MIMO cellular networks providing an upper bound.

2.7.3 Minimum Generated Interference Beamforming

An altruistic approach is to apply zero-forcing beamforming (ZFBF) developed for multiuser

MIMO [LHS03] to cooperative MIMO cellular networks [AYL07]. The rationale behind this

is to increase cell throughput by selecting transmit beamforming vectors which minimize the

total generated interference power to neighboring cells. Specifically, transmit beamforming

vectors are computed as:

ωm∗
j = argmin

ωm
j

∑

k∈Φ( j)

||Hk,i j
ωm

j ||
2. (2.13)

which is referred to as minimum generated interference (MIN-GI) beamforming strategy.
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2.7.4 Maximum Signal-to-Leakage-Interference-plus-Noise-Ratio

Beamforming

In the MIN-GI beamforming, only the generated interference to neighboring cells is consid-

ered, which is suboptimal since desired signal power is ignored [NEHA08]. Thus, a metric

called signal-to-leakage-interference-plus-noise-ratio (SLINR) is proposed in [LJSL09],
[ZHG09] and [STS07] to consider both desired signal and generated interference. The

transmit Beamforming vector based on the SINR metric is chosen as [SLA11]:

ωm∗
j = argmax

ωm
j

P||H j,i j
ωm

j ||
2

P
∑

k∈Φ( j) ||Hk,i j
ωm

j ||2 +σ0

. (2.14)

which is referred to as maximum SLINR (MAX-SLINR) beamforming. It has been shown

that this strategy provides a balanced solution between increasing desired signal power

and decreasing generated interference power to neighboring cells.

These Beamforming techniques are applied after the RB are allocated, so the channel

H is constant. These algorithms do not consider that the channel matrix may change

during the application of Beamforming, a more suitable UE matrix may increase the system

total throughput. In the next chapters, we will increase the freedom of Beamforming and

combine the RB assignment process with it.

2.8 Conclusion

This chapter introduced the main technical issues in RB allocation for LTE systems. Firstly, it

introduces basic concepts of wireless communication and the architecture of LTE networks.

Then we focus on a specific scenario for PMR network.

After the general presentation of the wireless systems, we continue to analyze the radio

channel and the channel improvement techniques – Beamforming.

In the next chapter, we will introduce the well-known allocation algorithms and mathe-

matical elements of game theory.





Chapter 3

Resource Allocation Algorithms

As we described in Chapter 1, the frequency band is limited in the cellular wireless commu-

nication network. Even the peak data-rate reaches 300 Mbps in the most recent category of

LTE network, the transmission quality depends on spatial factor due to fading attenuation.

Thus the cell edge UEs have difficulties to get enough resource for the communication.

To illustrate this fact we give the following example. We consider the worst channel

condition in which the cell UEs may obtain 5% of the peak data rate, equal to 15 Mbps. If

there are 15 active UEs in this cell, which is actually probable in the urbane or suburban

areas, the average data rate, which may be attributed to a UE is less than 1 Mbps. This

data rate is not sufficient to satisfy the UE’s demand.

The communication channels are dynamic and vary randomly, a bad channel to a certain

UE may be good for another UE. If the radio resource can be allocated to a UE when it

experiences a good channel quality, the radio resource is utilized more effectively and more

data can be transmitted.

The data demand of a UE is bounded, according to the economic theory which can also

be applied to cellular networks, very high data rate UEs and low data rate UEs make it

difficult to design a efficient allocation scheduler.

For the three reasons above, a good resource allocation scheme is necessary to balance

the resource allocation among the UEs in order to improve the network performance.

3.1 Resource Allocation Schemes Classification

The goal of achieving a good network performance can be reached by an appropriate design

of the resource allocation scheme.
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The performance is described numerous quantifiable measures, such as total and average

throughput, delay, operator’s data service revenue in commercial networks, etc.

We classify the performance parameters into three categories. We enumerate them

below, the number of the sections in which we discuss it in more detail.

1. throughput and fairness balancing (Section 3.2)

The explicit objective of resource allocation is to maximize the throughput of the

network. This is not necessarily a fair scheme because the bad condition UEs may

not get enough radio resource to complete the basic communication. The cellular

network has to meet the basic demands of the communication, and then develop

allocation schemes to find a trade off between the fairness and the optimal individual

data rate. This aspect is crucial in public security cellular networks.

2. UE state optimization (Section 3.3)

According to another criterion, meeting the UEs’ demand, as customers, is the main

objective of the communication system. The data transmission demand is presented

by the UE’s state, such as the packet delay, the length of the buffer, etc. The cellular

network has to meet the basic demands of the communication, and they provide

allocation schemes which optimize the UEs’ state. In the context of the public security

networks, this means that the commanding officers can always have an access to the

network.

3. economic utility maximization (Section 3.4)

In the review of economical theory, the telecommunication operators provide the

mobile services for the profit. Because of the diminishing marginal utility, the revenue

from a UE is not linear with its data-rate and maximization of the money paid by the

consumers is not equivalent to the maximization of the sum data rate. We use the

utility function to qualify the economical benefits, and the performance objectives of

this evaluation are to maximize the relevant utility function. Despite the fact that we

address in this thesis the public security network, this approach allows us to consider

the network allocation from the global point of view.

Corresponding to these three aspects of the performance objectives, the former mobile

network designers have created three kinds of allocation algorithms.

In Section 3.2, we introduce the allocation algorithms to balance the UE’s throughput

and fairness, these algorithms are classical and easy to apply on the system.

In Section 3.3, we present the algorithms which are designed to optimize the UE’s

interest. The algorithms take the UE’s delay or buffer’s length into account, and deal them

with the channel condition in order to increase the spectrum efficiency.
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The last section of this chapter introduces the economical resource allocation algorithms

which have been proposed to maximize the economical benefits under different conditions.

The scientists try to solve this kind of optimal problem by Game Theory whose recent work

on resource allocation is introduced here.

3.2 Throughput and Fairness Balancing

The performance of the first category of the allocation algorithms aim at maximizing

of the global network throughput. The maximum throughput (MT) [Tsy02] is the most

representative algorithm in this group. Other algorithms have been designed from MT

taking into account the fairness factor.

3.2.1 Maximum Throughput Algorithm

The maximum throughput (MT) algorithm always selects the UE with the highest reported

instantaneous downlink SINR value. This algorithm efficiently utilizes system resource as

UE’s packets are transmitted on a radio resource with a good channel condition. On the

other hand, a UE with low instantaneous downlink SINR value will never get access to the

available radio resource using the MT principle. This UE is deprived from using the radio

resource unless the UE’s channel condition improves. This situation results in low fairness

performance of the MT algorithm. This algorithm performs the maximization:

i∗j = arg max
i j

Γi j
. (3.1)

The MT algorithm maximizes the throughput but it does not take the fairness into

account. The following algorithms include the fairness factor in their operation mode.

3.2.2 Round Robin Algorithm

Given that fairness has not been an issue in the MT algorithm, the Round-Robin algorithm

[Hah91] was developed to address this problem. The Round-Robin copes with the fairness

by allocating an equal amount of packets transmission RBs to each UE. If a system have K
UEs, the probability of a UE having allocated an RB is 1

K . However, throughput performance

degrades significantly as the algorithm does not rely on the current channel quality when

determining the number of bits to be transmitted. The drawback of the Round-Robin is

that the efficiency is lower than the other algorithms.
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We propose a best channel algorithm which offers the UE the equal probability to get the

radio resource in Chapter 5.3, but the algorithm we designed leads to higher throughput

for all the UEs.

3.2.3 Max-min Algorithm

Instead of offering the same opportunity to get the radio resource, the max-min algorithm

[RC00] guarantees the same throughput for each UE.

The scheduler detects all the UEs’ throughput and allocates the RB to the UE whose

data-rate is the minimum. The policy can be expressed as: the RB will be allocated to the

UE i j when

i∗j = argmin
i j

r i j . (3.2)

There are two kinds of fairness: equality of opportunity and equality of outcome.

Rond-Robin leads to first equality and max-min stands for the second.

Moreover, since the max-min approach deals with the worst-case scenario, it penalizes

UEs with better channels and thus reduces the overall system’s efficiency. In addition, most

of the existing solutions have a high computation complexity, which prohibits their practical

implementations.

The fairness algorithms dismiss the channel efficiency because the scheduler does not

allocate the RB to the best channel UE and other algorithms have been proposed to fix this

problem.

3.2.4 Proportional Fair Algorithm

To provide a balance between throughput and fairness, the proportional fair (PF) algorithm

was proposed to make up the deficiency concerning the fairness of the first category of

algorithms and the throughput of the second one. PF was originally developed to support

the NRT (Non Real Time ) service in Code Division Multiple Access High Data Rate (CDMA-

HDR) system, and can also be applied in the LTE downlink system. Assuming Cm
i j

as the RB

m’s capacity of UE i j, r i j is the average data rate of this UE which is counted by the e-NodeB,

and the PF algorithm selects a UE with the highest metric defined as follows [RBSP09]:

i∗j = argmax
i j

Cm
i j

r i j

. (3.3)
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The PF scheduler is effective in reducing variations in UE bit rates with little average

bit rate degradation relative to the MT throughput as long as UEs average SINRs are fairly

uniform.

3.2.5 Coordinated Proportional Fair Algorithm

The PF algorithm can be modified to a coordinated version, with the instantaneously shared

channel information, the PF algorithms can cooperate with Beamforming and/or power

allocation to improve the system performance.

In [LSC+12], the authors propose a coordinated joint scheduling with coordinated

Beamforming scheme. The scheme contains a repeated process:

• Step 1: According to the PF algorithm, choose the UE under a given Beamforming

vector who can maximize

i∗j = arg max
i j

Cm
i j

r i j

(3.4)

where Cm
i j

is a function of the system Beamforming vector given by Eq. (2.10):

Cm
i j
=W T log(1+ SINRi j

) =W T log





P||H j,i j
ωm

j ||
2

P
||H j,i j

ωm
j ||2
∑

k∈Φ( j) |ω
m∗
j H∗j,i j

Hk,i j
ωm

k |+σ0



 ,

(3.5)

in this equation, W and T represent respectively the bandwidth and time length of

an RB.

• Step 2: Apply the multi-cell version Zero-Forcing Beamforming technique introduced

in Subsection 2.7.3 to choose the Beamforming vector.

• Step 3: Repeat Step 1 and 2 until the total system throughput converges.

In the author’s opinion, the scheduling in Step 1 can be replaced by any other effective

resource allocation algorithms (such as MT algorithm) and they can create a new CB/CS

allocation scheme.

3.2.6 Conclusion

The classical algorithms are simple as they just compare the RB capacity. They mainly

differ in their ability to provide a given fairness. We compare these algorithms in Table 3.1

in terms of decision formula, throughput, fairness. The MT algorithm, the base of these
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Algorithm Formula Throughput Factor Fairness Factor
MT max Γi j

Γi j
0

Round-Robin 1
K 0 1

K
Max-min min r i j Γi j

r i j

PF max
Cm

i j

r i j
Cm

i j
r i j

Table 3.1 Throughput and fairness trade-off

algorithms, allocates a RB to the UEs who has the highest capacity on this RB, this scheduler

can maximize the channel efficiency. The cell center UEs, however, may have higher SINR

which is equivalent to the higher capacity of RBs. In contrast, the cell edge UEs do not

have good channel capacity.

The fairness algorithms are designed to increase the throughput of UE with bad channel

conditions as they choose a fairness factor to increase the low SINR UE’s assigned RBs.

All these algorithms shown in Table 3.1 can also be modified to a coordinated version

with the same method introduced in Subsection 3.2.5.

3.3 UE State Optimal Algorithm

Classical approaches based on MT, Round Robin, max-min, PF are not strictly applicable

to handle real-time multimedia services. In fact, it is difficult to demonstrate their ability

to satisfy strong requirements of UEs’ state on Packet Loss Ratio (PLR), delay and waiting

buffer’s length in a general network setting. The buffer stores the data which the e-NodeB

has not sent to the UE yet.

For this reason, several recent contributions propose channel-aware schemes that privi-

lege flows having head-of-line packets approaching a target deadline [AKR+04], [AKR+00],
[SS02] and [SBdV11]. They mainly differ from the weighting functions adopted to optimize

fairness in bandwidth allocation and timeliness in packet delivery. In general, to meet QoS

(Quality of Service) constraints, it is not sufficient to provide guarantees on the average

packet delay, but it is necessary to enforce guarantees on the upper bound of packet delays.

3.3.1 The Maximum Largest Weighted Delay First (M-LWDF)

The maximum-largest weighted delay first (M-LWDF) method [AKR+04] is an algorithm

designed to support multiple real time data UEs in CDMA-HDR system but can also be
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applied to the OFDMA system. A UE obtaining an RB is selected based on the following

equation:

i∗j = argmax
i j

γi j
Wi j
(t)

Cm
i j

r i j

(3.6)

where Wi j
(t) is the head of line (HOL) packet delay (time difference between the current

time and the arrival time of a packet) of UE i j at time t and γi j
s are arbitrary positive

constants, as in Eq. (3.3), Cm
i j

signifies tbe capacity of RB m for UE i j and r i j is the average

data rate of this UE. M-LWDF algorithm achieves a relatively low packet loss ratio (PLR)

with a good throughput and fairness performance since it incorporates HOL packet delay

together with PF properties (e.g. the ratio of achievable data rate to the average data rate)

when determining UEs’ priority.

The key feature of this algorithm is that a scheduling decision depends on both current

channel conditions and the states of the queues. The M-LWDF scheme is very easy to

implement. The scheduler only needs to time-stamp arriving data packets of all UEs to

keep track of the current queue length.This simple algorithm is throughput optimal: it is

able to handle all the offered traffic, unless it is not feasible at all. In addition, a choice

of parameters γi j
s i allows one to control packet delay distributions for different UEs.

Increasing the parameter γi j
s for UE i j, while keeping γi j

s of other UEs unchanged, reduces

packet delays for this flow at the expense of a delay increase for other flows [AKR+04] .

This algorithm maximizes the number of UEs that can be supported with the desired QoS.

It provides QoS differentiation between different UEs and guarantees minimum throughput.

3.3.2 Exp-Rule

Despite the fact that M-LWDF is firstly proved to be a throughput optimal algorithm, it does

not consider the buffers in the UEs’ flow. The authors of [SS02] proposed an algorithm

to maximize the throughput when the UE’s buffer is variable. Such an approach differs

from the previous algorithm, because there is an exception that when a UE’s allocated RB

capacity is greater than the amount of data waiting in the buffer, a part of its bit transmission

redundancy is wasted. We rewrite the objective function as

min
j=J
∑

j=1

i j=I
∑

i j=1

[Q i j
−

m=M
∑

m=1

Cm
i j
)1m

i j
]+, (3.7)
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where

[x]+ =

(

x , if x > 0,

0, otherwise.

1m
i j
=

(

1, if RB m is allocated to UE i j,

0, otherwise.

and Q i j
represents the waiting data of UE i j in the eNodeB.

In [SS02], we find a prove that the Exp Rule can offer an optimal solution to Eq. (3.7).

The authors gave the solution considering different priorities of UEs in the equation:

i∗j = argmax
i j

1
r i j

exp(
ai j

Q i j

1+
q

a jQ j

)Cm
i j

, (3.8)

where

a jQ i j
=

1
K

i j=I
∑

i j=1

ai j
Q i j

,

in which r i j
denotes UE i j ’s average data rate, ai j

is a fixed positive constant, called UE

i j ’s workload contribution, which guarantees the leader of a PMR network can have better

quality of service. In our case, we think it as 1 because all the UEs have the same priority.

a jQ j thus denotes the average workload of cell j’s UEs weighted priority.

3.3.3 Log-Rule

Based on the simulation results provided in [RBSP09], we observe that when UEs see

heterogenous channels, policies such as Exp Rule that aims at minimizing the exponential

decay rate of delay distribution tail of the worst UE may excessively compromise the average

delay, in some cases penalizing the tail distributions of many of the UEs. In other words,

the Exp Rule algorithm does not perform well when some UEs (not necessarily numerous)

significantly exceed the data rate of other UEs.

The authors of [SBdV11] proposed a multi-user opportunistic packet schedulers for

UEs sharing a time-varying wireless channel from performance and robustness points

of view. This Log Rule can achieve better mean delays (overall and on a per UE basis)

and comparable or better distribution tails for large scale UEs’ case. The objective of the
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minimization of average delay is expressed as:

min
j=J
∑

j=1

i j=I
∑

i j=1

Wi j
. (3.9)

where Wi j
denotes the waiting time of the head-of-line packet in UE i j ’s buffer at the

e-NodeB.

A UE is scheduled based on the following priority metric:

max
i j

1
r i j

log(1+ ai j
Wi j
)Cm

i j
(3.10)

The ai j
denotes the priority of a UE, the leader of a group has higher ai j

which leads to

more assigned RBs. In our case, all the ai j
equals to 1 because they have the same priority.

The Log Rule algorithm is proved as the delay-optimal algorithm in [SBdV11] and it

achieves the minimum average delay in all the delay first algorithms.

3.3.4 Frame Level Scheduler (FLS)

The dynamic algorithms discussed above only work on the MAC layer of the LTE network,

Frame Level Scheduler (FLS) is a two-level scheduling strategy where the two distinct levels

(upper level and lower level) interact with each other to dynamically allocate RBs to the

UEs [PGB+11b]. At upper level, a resource allocation scheme (namely FLS), which utilizes

a Discrete-Time (DT) linear control loop, is implemented. FLS specifies the amount of data

packets that a RT source should transmit frame by frame to satisfy its delay constraint. At

lower level, in every TTI, RBs are allocated to the UEs using Proportional Fair (proposed

in [RBSP09]) scheme with taking into consideration the bandwidth requirements of FLS.

Particularly, the scheduler at the lower layer defines the number of TTIs/RBs through which

each RT source will send its data packets. The amount of data to be transmitted is given by

the following equation:

υi j
(k j) = hi j

(k j) ∗ qi j
(k j). (3.11)

where υi j
(k j) is an amount of data to be transmitted by the i-th flow in k-th LTE frame in

cell j. Operator ∗ is the discrete convolution operator, qi j
(k j) is the queue level. The above

equation says that υi j
(k j) obtained by filtering the signal qi j

(k j) through a time-invariant

linear filter with pulse response hi j
(k j).
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Algorithms Formula Feature

M-LWDF maxi j
γi j

Wi j
(t)

Cm
i j

r i j
Takes delay into account

EXP Rule maxi j

1
r i j

exp(
ai j

Q i j

1+
q

a jQ j
)Cm

i j
Throughput-Optimal

Log Rule maxi j

1
r i j

log(1+ ai j
Wi j
)Cm

i j
Delay Optimal

FLS υi j
(k j) = hi j

(k j) ∗ qi j
(k j) Frame Optimal

Table 3.2 UE state allocation algorithm enumeration

The data are grouped by packets and the UE can decode the message after receiving a

whole packet. If a UE receives only a part of the packet, it can not get any useful information,

and it has to wait for the rest part of the packet. This algorithm aims at maximizing the

completed sending packets instead of maximizing the sending data.

Compared to the other algorithms, it has more practical value because we sends the

data in packets in the LTE system. We can explain the advantage with a simple example, a

UE receives 1.8 packets and another receives 1.7 packets, each UE can only get 1 packet of

useful information; if a UE get 2 packets and another get 1, maybe the sum data rate is less

than the previous case, but the received information is more than before.

3.3.5 Conclusion

In this section, we presented the most important algorithms for the multimedia demand,

these algorithms does not only take the RB capacity into account, but also the packet delay

and buffer. The principle of these algorithms are introduced in Table 3.2, they evaluate the

UEs by the given formulas and assign the RBs to the maximum or minimum one.

Among these previous work, EXP and Log rule have been presented as the most promis-

ing approaches for downlink scheduling in LTE systems with delay-sensitive applications.

We remark that all the aforementioned approaches cannot offer any strict guarantees

on packet delivery delay, which plays a major role in the end-UE satisfaction.

In general, to meet QoS constraints, it is not sufficient to provide guarantees on the

average packet delay, but it is necessary to enforce guarantees on the upper bound of packet

delays. It is worth to note that only in [WGM07] a generic scheduling for channel-adaptive

wireless networks has been proposed to provide absolute delay guarantees to real-time

flows, but this scheme presents a very high computational complexity and it is hard to

adopt in the LTE radio interface. In our thesis, we build a resource allocation framework
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cooperating with the Beamforming technique to reduce the interference and increase the

channel capacity.

Furthermore, another important limitation is that the channel utilization is far from the

optimal state. In the following section, we will introduce game theoretic algorithm which

optimize the radio resource utilization and satisfy the UEs’ QoS demand at the same time.

3.4 Economical Optimization

In the previous two sections we described two kinds of algorithm are designed to maximize

the UE’s performance in a single cell. However, in multi-cell OFDMA systems, the co-

channel UE’s interaction leads to variable interference level which is assumed to be fixed

or ignored in single-cell scenarios. Hence the resource allocation problem becomes more

complicated in multi-cell systems. On the other hand, the UEs in different cells do not have

the knowledge of other UEs’ conditions and cannot cooperate with each other, they are

more likely to act selfishly to maximize their own performance in a distributed way.

Such facts motivate us to adopt the game theory, which is a mathematical tool to

provide a formal modeling approach for analyzing an interactive decision process. Game

theory allows us to investigate the existence, uniqueness and convergence to a steady state

operating point when network nodes perform independent distributed adaptations.

To be more important, telecommunication operators want to maximize the economical

benefit on the conditions of meeting the UE’s QoS demands. Their goal is not maximize

the throughput of a UE but the Average Revenue Per UE (ARPU) of a UE.

The game theoretic algorithms propose the economically optimal solution for the cellular

wireless communication operators and find a compromise for two key points:

1. satisfy the basic communication demands for the UE,

2. optimize the utility function instead of the UE’s performance

3.4.1 Elements of the Game Theory

The basic framework of game theory was introduced in the book "Theory of Games and
Economic Behavior" by John von Neumann and Oskar Morgenstern (1944) [NM44]. Until

now it is widely used in the many fields, primarily in economics (in order to model

competition between companies), as well as computer science, biology, politics and many

other areas. But David Ricardo is the first one to propose the idea that the trade of products
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or service can improve the utility of all the participants [Ric21]. He did it almost 200 years

ago while working on taxation.

Game theory is an effective description of strategic interactions. It attempts to mathe-

matically capture behavior of individuals in strategic situations, in which an individual’s

success in making choices depends on the choices of others. Game theory enhances the

understanding of conflict by devising theories, mathematical models and abstractions that

serve to explain nature and results of conflicts.

In game theory, there are some basic assumptions which are often utilized to facilitate

the construction of tractable models for real situations. First, it is assumed that each

individual in the game has a definite ordering of preferences over all outcomes of a given

situation [He10]. These preferences take the form of a utility function or a payoff. Second,

the participants in games are sometimes considered to be rational. This means that they

always act in a way that maximizes their payoffs, they will always be capable of thinking

through all possible outcomes and choosing the action which will result in the best possible

outcome.

In a cooperative game, players bargain with each other before the game is played

[SDHM07]. If an agreement is reached, players act according to the agreement reached,

otherwise players act in a non-cooperative way. Note that the agreements reached must be

binding, so players are not allowed to deviate from what is agreed upon. John Nash wrote

in his seminal paper on cooperative games that to understand the outcome of a bargaining

game, we should not focus on trying to model the bargaining process itself, but instead, we

should list the properties, or axioms, that we expect the outcome of the bargaining process

to exhibit. This way of analyzing cooperative games is called axiomatic bargaining game

theory.

3.4.2 Nash Bargaining Solution

A bargaining solution is a map that assigns a solution to a given cooperative game. Following

is the bargaining solution proposed by Nash in [Nas53], which is called Nash Bargaining

Solution (NBS).

Let K = {1, .., i, ..., K} be the players (UEs), S be a closed and convex subset of RK which

is the set of feasible payoff allocations that the players can get if they all work together.

Let Ri
min be the minimum payoff that the ith player would expect out of the cooperation.

Suppose {Ri ∈ S|Ri ≥ Ri
min,∀i ∈ K}, is a nonempty bounded set. If Rmin is defined as

(R1
min, ..., RK

min), then by (S,Rmin) we define that the K-person bargaining problem is to find

a solution set S under the condition of Rmin. With the feasible set S, we define the notion

of Pareto optimal as a selection criterion for bargaining solutions.
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Definition 1. The point (R1, ...,RK) is said to be Pareto optimal, if and only if there is no
other allocation R′i on the condition that ∀i, R′i > Ri, and ∃i R′i > Ri, i.e., there exists no other
allocation that leads to superior performance for some UEs without inferior performance for
some other UEs. There might be an infinite number of Pareto optimal points.

We need further criteria to select a bargaining result.

Definition 2. Let r= f (S,Rmin) be an NBS in the solution set S, if the following axioms are
satisfied

1. Pareto Optimal: See Definition 1.

2. Independence of Linear Transformations: Let y(·) be any positive affine transforma-
tion, then y(r) = f (y(S), y(Rmin)).

3. Symmetry: For any UE i1 and UE i2 where Ri1
min = Ri2

min, fi1(S,Rmin) = fi2(S,Rmin).

4. Independence of Irrelevant Alternatives: For any r′ ∈ S′ where r′ = f (S′,Rmin), if
S′ ⊂ S, f (S,Rmin) = r′.

According to [HJL05], the unique condition that satisfying Definition 2 exists:

f (S,Rmin) ∈ arg max
K
∏

i=1

(r i − Ri
min), where ri ∈ S,∀ir i > Ri

min. (3.12)

We consider cooperative games where the UEs exchange Channel State Information

(CSI) with the base station. Their objective is to find an NBS: to maximize the product of

the excesses of the transmitter data rates over their own minimum demands rk. The NBS

guarantees each UE to achieve its own demand, thus providing an individual rationality

to the resource allocation. The important result of applying an NBS is that the final rate

allocation vector is Pareto optimal. From the point of view of the game theory, our objective

is the maximization of the system utility [HJL05]. Song [SL05a] [SL05b] and Han [HJL05]
proposed the game theoretic OFDM(A) subcarriers allocation algorithms. Later on we refer

to this method as the subcarrier NBS allocation.

3.4.3 Dynamic Subcarrier Assignment

Song et al. investigated DSA (Dynamic Subcarrier Assignment) scheme to improve the

performance of an OFDM-based network [SL05a].
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Their work concerned the maximization of the sum of the utility function U(r i) = 0.16+
0.8 ln(r i − 0.3), when r i is very high in 4G LTE downlink network, U(r i) = 0.8 ln(r i − 0.3),
his goal is to maximize:

max U(r i) = 0.8
∑

ln(r i − 0.3) = 0.8 ln
∏

(r i − 0.3)

Their objective is equivalent to the Nash Bargaining Solution in Eq. (5.4).

They firstly propose a solution with two UEs and then extend to general networks. His

idea is to allocate a subcarrier to a UE whose marginal utility is larger then the other UE,

this thought is a classical method in economical field. Its pseudo code is given by Algorithm

1.

The algorithm computes the marginal utility of a UE: U ′i (r) =
dUi(r)

dr , then it uses an

iterative method to allocate the subcarriers.

Algorithm 1: Two-UE algorithm for utility maximization.
Data: Subcarrier Capacity Estimation – ci( f )
Result: Subcarrier Allocation – f

1 initialization: Initialize the subcarrier assignment by subcarrier capacity

ci( f ), estimate data-rate r1 and r2. ;

2 while U1(r) + U2(r) increases do

3 for Subcarrier f ← 1 to M do

4 if c2( f )
c1( f )
≤ U ′2(r)

U ′1(r)
then

5 allocate subcarrier f to UE 1;

6 else

7 allocate subcarrier f to UE 2;

8 end

9 end

10 end

For N > 2 UEs, the algorithm may be summarized as an allocation of frequency f to

UE i, if this frequency satisfies:

max U ′i (r)ci( f ) (3.13)

The difficulty of the algorithm is that the ri changes after the subcarrier assignment. As

marginal utility U ′i (r) varies with data rate ri, so the allocation is a dynamic process. Its

computational complexity is too high, in O(K4), where K is the number of UEs.

Due to these properties, the implementation of this algorithm is practice is problematic.
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Another problem of Song’s method is that the subcarrier can be seen as continuous and

infinite, but in LTE downlink network, the number of RBs is limited and the allocation is

defined in a discrete domain.

3.4.4 NBS for Subcarrier Allocation

Han et al. [HJL05] developed an algorithm to reach the Nash bargaining solution. As

with bargaining in a real market, the idea is to allow two UEs to negotiate and exchange

their subcarriers for mutual benefits. The main challenge is to determine how to optimally

exchange subcarriers, which can be considered a complex integer programming problem.

To solve this problem, all subcarriers are initially assigned and, for each UE i, a positive

weight factor ϱi is computed as follows (εi is a small positive number):

ϱi =







1
r i−Ri

min
, if r i > Ri

min + εi

1
εi

, otherwise.
(3.14)

Firstly, Han created an algorithm for two-UE case (see Algorithm 2), then he expanded

it to K UEs case. The subcarriers are sorted and a two-band partition algorithm is applied

for them to negotiate the exchange of subcarriers. To achieve the Nash bargaining solution,

an intermediate parameter gϱi
i needs to be updated for every iteration.

In the algorithm, the factor gi is defined as the channel gain to noise ratio of a channel:

gi =
||H||2
σ0

, where ||H||2 presents the channel gain and σ0 presents the white noise of a

channel.

The process of the allocation is presented in the table below:
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Algorithm 2: Two-UE algorithm for finding the NBS.
Data: Subcarrier Capacity Estimation – ci( f )
Result: Subcarrier Allocation – ordered list of RBs

1 initialization: Initialize the subcarrier assignment with the minimum rate

requirements. ;

2 while Nash Product (r1 − R2
min)(r

2 − R2
min) increases do

3 Arrange the indices from largest to smallest:
g
ϱ1
1

g
ϱ2
2

;

4 for Subcarrier j← 1 to M do

5 UE 1 occupies and water-fills subcarriers 1 to j ;

6 UE 2 occupies and water-fills subcarriers j + 1 to K .

7 end

8 Estimate r1, and r2 by Shannon formula;

9 update ϱ1 = 1/(r1 − R1
min) and ϱ2 = 1/(r2 − R2

min).

10 end

For the case in which K > 2, the computational complexity for allocating the subcarriers

is quite high, in O(N 4), where N is the number of subcarriers. For this reason most

researchers have approached the problem from a centralized perspective. To treat the

problem in a distributed manner, we can use an iterative scheme, based on the following

steps:

1. The UEs are grouped into pairs.

2. For each pair, Algorithm 2 is applied for the two UEs to negotiate and improve their

performance by exchanging subcarriers.

After the two steps are completed, the UEs are regrouped and they renegotiate again

and again until convergence. The remaining key question is how to group UEs into pairs.

One straightforward approach is to form pairs randomly and let the UEs bargain in an

arbitrary manner.

3.4.5 Conclusion

We introduced the conception of game theory and a Pareto optimal solution, NBS, and

introduced two highly cited NBS solutions applied to the OFDMA network.

For the subcarrier NBS allocation, as numerous subcarriers are available, a UE always

finds a certain good quality subcarrier. The subcarrier allocation is optimized at each

time-slot. For the RB allocation problem, as the number of RBs is limited, the optimization
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does not match very well when a UE’s channel quality always obeys a Gaussian distribution.

In Chapter 5, we propose a new NBS RB allocation algorithm that solves this problem.

3.5 Chapter Conclusions

In this chapter, we studied three kinds of allocation schemes. In the Section 3.2, we studied

the traditional performance-oriented allocation algorithm - Maximum Throughput (MT)

algorithm, then we explain that the fairness is necessary in the allocation mechanism

because some bad channel UEs may not get the RB with this algorithm. In Table 3.1, we

showed the fairness factor’s proportion in the algorithms, we made observe that taking

fairness into account (like the Round Robin mechanism) leads to a system which is not

efficient from throughput point of view.

In the LTE network, the voice and video calls are seen as data service, for these multi-

media service, the delay and buffer is more important. In Section 3.3, we presented the

algorithms that optimize the UE’s state. Table 3.2 lists some highly cited algorithms which

are designed to optimize a specific UE state – such as delay or buffer.

In Section 3.4, we reviewed the subcarrier NBS allocation algorithms it gives a solution

that has two meanings:

1. give a trade-off between the throughput and fairness that meets the demands of

Pareto optimal

2. optimize the economical utility function of each UE which is equivalent to maximize

the revenue of the cellular network operators.

The algorithms discussed in Section 3.2 and 3.3 do not take the interference management

into account, and in Chapter 4 we build a framework cooperated with Beamforming

technique that can improve their performance.

Han and Song proposed NBS allocation algorithms for OFDMA system and have good

performance, but their algorithms are just for subcarrier assignment. We will analyze the

difference of subcarrier allocation and LTE downlink in Chapter 5.





Chapter 4

Complexity Reduction in Cooperative

Allocation Framework

4.1 Introduction

Numerous RB allocation algorithms [YA06, KLL03, LL06, NLS12] have been proposed to

allocate Resource Blocks (RBs) among Users Equipment (UEs) which aim at satisfying a

specific parameter like delay or throughput while considering the single cell point of view.

In these algorithms, the allocation decision is taken either on UEs’ state (number of packets

in their buffer, service priority) or the channel capacity. The capacity of each channel is

mainly determined by the UE communication channels (received power) and inter-cell

interference on the cell edge, commonly represented as the Signal to Interference and Noise

Ratio (SINR).

To reduce the inter-cell interference, neighbouring cells should be considered in our

system. We study a multi-cell system to analyze the relation between the RB allocation

and interference. In the Multiple Input Multiple Output (MIMO) system, many techniques,

such as spatial multiplexing (precoding) and Beamforming [Blu03], are applied to increase

the channel capacity independently. The Beamforming technique varies the phase of the

signals emitted by different antennas to increase the received signal power in the cell centre

and to decrease interference on the cell edge.

We propose an iterative method to allocate an RB and to find the best Beamforming

parameter at the same time.

We focus on the guarantee of the QoS requirements specific to the professional cellular

networks PMR, Private Mobile Radio, as our work has been done within the project SOAPS

[oSp12]. In such networks a UE having a high priority has to be connected regardless of
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its localization. Keeping this strong constraint in mind, we are particularly interested in

increasing RB capacity for UEs being on the cell edge.

For the reason mentioned above, we consider that, contrary to any other interference

management technique, when Beamforming is applied the RB allocation model has to

be modified on the cell edge. When an RB is attributed to the UE, the corresponding

Beamforming parameter, called a beamformer, applied to the frequency of this RB does

not only change the UE’s received signal power, but also affects the interference in its

neighbouring cells [RBSP09]. This means that the SINR, which may be seen as equivalent

to the capacity of the RB, changes on this frequency on the edge of the neighbouring cells,

which consequently influences the RB allocation of these neighbouring cells. In this way,

the RB allocation in all the cells interacts with the Beamforming-OFDMA system [YKS11].
The RB allocation is determined by the UE’s capacity, but the capacities are also influ-

enced by the Beamforming technique. The decision of RB allocation and Beamforming

should be determined jointly to improve the performance of multi-cell networks.

In this chapter, we firstly propose a method to allocate RBs and to find the best Beam-

forming parameter at the same time. Our method is to allocate the RB and apply the

Beamforming technique in one process, this means the RB allocation in neighbouring cells

needs to cooperate in order to decrease inter-cell interference. This framework improves

the channel capacity but increases the compleixty at the same time.

In a few UEs’ case, the exhaustive method enumerates all the possible allocation schemes

and choose the best one, but when the number of UE increases, the complexity increases

polynomially but with very high rate, which makes this method useless for practical appli-

cations So we propose a heuristic method to solve the computation problem and apply our

framework to cooperate with the other existing allocation schemes.

4.2 Problem Definition

In Subsection 2.6.2, we observed that the coordinated Beamforming technique can improve

the performance of a multi-cell system. In coordinated Beamforming techniques, the RB

allocation and the Beamforming procedure are performed separately in different entities:

• Step 1: RBs are allocated to UEs.

• Step 2: The centralized system find the optimal Beamforming vector for the fixed

active UE set.

We give an example to explain the relationship between the resource block allocation

and the Beamforming technique.
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Fig. 4.1 RB allocation with Beam-
forming: the worst case

Fig. 4.2 RB allocation with Beam-
forming: the best case

We start by giving an instructive example in Figures 4.1 and 4.2, the RBs in the same

colour represent the RBs on the same frequency in different cells. Three pairs UEs in the

neighbouring cells are allocated to RB on the same frequency. For these pairs of UEs, a

better beamer for a UE will increase the interference of the other one.

Figure 4.1 shows the worst limiting case for the Beamforming in which each pair UEs is

allocated to the same frequency RB. Because all the RBs are orthogonal in OFDMA system,

the inter-cell interference on the same frequency introduces the strongest interference, in

Fig. 4.1, when the Beamforming technique improves the received signal power, it also

increases interference power, so we can not conclude that the Beamforming technique

improves the channel quality. Figure 4.2 shows the best limiting case in which all pairs of

UEs are assigned to different RBs, all the UEs can use Beamforming technique to improve

the received signal power without increasing neighbouring cells interference.

In the real world environment, the real channels are not as simple as the examples in

the two figures mentioned above, but the idea is consistent:

• an intelligent RB allocation can improve the effect of Beamforming.

• the neighbouring cells RB assignment can decrease the interference with the Beam-

forming.

Authors of [LSC+12] improved the coordinated Beamforming technique by proposing a

Coordinated Scheduling / Coordinated Beamforming technique. They developed it starting

from the two-step resource block allocation transformed into a three step process:
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Fig. 4.3 CS/CB Diagram

• Step 1: RBs are allocated to UEs on the condition of given Beamforming vectors.

• Step 2: The centralized system find the optimal Beamforming vector for the fixed

active UE set.

• Step 3: Repeat Step 1 and 2 until the system throughput converges (stops increasing).

Figure 4.3 presents the general process of the CS/CB algorithm, it repeats the traditional

steps until the system throughput stops increasing, a particular implementation of this

general scheme may be found in [YKS13].
In our dissertation, we want to propose a scheme to combine the CS and CB steps

together to create a cross-layer scheme that combine the two independent step together

(RB allocation and Beamforming configuration).

We consider a multi-cell network made up of a central cell and J − 1 neighbouring cells

with the same assigned frequency. There are K UEs in each cell. Let j denote any of these J
cells, and i j denote a UE in the jth cell. The working frequency band contains M RBs. The

eNode-B in each cell is located at the centre and contains NT transmitting antennas, each

UE has NR receiving antennas. As all the sub-carriers are orthogonal, we can thus suppose

the inner-cell interference is negligible. SINR of UE i j on frequency m, Γm
i j

, is influenced by

the Beamforming vectors on the same frequency in neighbouring cells and expressed as in
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[SLA11]:

Γm
i j
=

P||H j,i j
ωm

j ||
2

P
||H j,i j

ωm
j ||2
∑

k∈Φ( j) |ω
m∗
j H∗j,i j

Hk,i j
ωm

k |+σ0

, (4.1)

We provide a detailed description of variables found in this equation. Matrix Hk,i j
∈ CNR×NT

denotes the communication channel matrix between the e-NodeB in the kth cell and the

UE i j. It is calculated from the equation H = Gp
L(d)

, which says that it is a function of the

MIMO fading channel G with the path loss L depending on the distance d, and all the

elements of G obey the Gaussian distribution.

ωm
j ∈ C

NT denotes a transmit Beamforming vector of the e-NodeB in the jth cell on the

frequency of RB m, Φ( j) indicates a group of neighbouring cells around the jth cell, and

σi j
represents a white Gaussian noise vector at UE i j with the power of each entry σ0, ∗

signifies the transposition and conjugation of a matrix. The average signal power is noted

as P. We assume that each UE perfectly knows the CSI value of its communication channel

H j,i j
and interference channel Hk,i j

, k ∈ Φ( j) based on the feedback channel. Each e-NodeB

selects its transmit Beamforming vector ωm
j according to the same codebook F which is

defined in [SLA11]. With 2 transmit antennas, the codebook is represented in Appendix

A.4. Hence the SINR at the UE side in the jth cell on the frequency of RB m depends on

the transmit Beamforming vectors in each cell.

When the SINR is confirmed, the RB capacity is estimated by the function of SINR

R(SINR) [RBSP09]. The throughput available for a UE is the sum of all its allocated RB

capacities. At the same time, it should be less than the amount of data waiting in the UE’s

buffer. We use ri j
to denote the throughput of UE i j in a time-slot TL.

With these mathematical expression, we will build a cooperation framework to model

the problem consisting in allocating the RB and choosing the Beamforming vectors at the

same time. The problem objective is to maximize the network throughput.

Definition 3. Optimization Objective
Input: Communication channel matrices Hi j

and interference channel matrices Hk,i j
, the

Beamforming vector code book F
Output: Best UE i∗j and the corresponding Beamforming vector ωm

j on RB m.
Objective: The system total throughput

∑

r i j
is determined by the channel matrices Hi j

, inter-
ference channel matrices Hk,i j

and the Beamforming vector ωm
j , see Eq. (4.1). We want to find

the best UE i∗j (which decides the Hi j
and Hk,i j

) and best ωm
j to maximize

∑

r i j
.
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4.3 Framework for Two-User Case

In the conventional RB allocation methods, the Beamforming vectors are chosen after the RB

allocation. In our optimization problem, the RB choice is also a function of Beamforming

vectors i j(ωm
1 , ...,ωm

J )
∗. When Beamforming vectors change, the allocation is different

because the UE’s capacity varies as a result of SINR, according to Eq. (4.1).

On the other hand, the Beamforming vectors are also determined by the UEs’ channel

quality, because the vectors {ω∗1,ω2
∗, ...,ω∗J}(i1, ..., iJ) are a function of UE’s channel matrix

H.

The classical solution based on the greedy approach is to allocate the RB having the

highest capacity to a UE [Tsy02]. Put differently, we find the UE with the highest SINR in

each cell, and we make an allocation decision for them on RB m: Km
0 = (i1, ..., iJ) a group

of UEs which gets this RB in each cell. After the RB allocation, we apply the Beamforming

to the antennas to increase the channel capacity for each chosen UE. Using the commonly

admitted notationWm
0 stands for a set of (ωm

1 (0), ...,ωm
J (0)). With the allocation decision

and Beamforming vectors, we can estimate the total system throughput Rm
0 on RB m.

Because the scheduler in each cell will influence the neighbouring cell interference, the

sum of each cell’s maximum throughput is not necessarily equivalent to the maximum of

the total network throughput.

4.3.1 Exhaustive Solution

In a J cell system, we suppose there are only 2 UEs in each cell, we can search all the

RB allocation the Beamforming vector combinations to find a maximum for the formula

defining the total capacity of all RBs on frequency m:

max
i j ,Wm

J
∑

j=1

R

�

P||H j,i j
ωm

j ||
2

Ii j
(Wm) +σ0

�

, (4.2)

To keep the notation simple, we introduce the factor Ii j
which takes into account

interference existing between all the neighbouring cells. Which is weakened by the influence

of Beamforming vectors [HVT14].

Ii j
(Wm) =

∑

k∈Φ( j)

P|ωm∗
j H∗j,i j

Hk,i j
ωm

k |

||H j,i j
ωm

j ||2
, (4.3)
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Equation 4.3 represents the interference of UE i j which has been introduced in Eq.

(4.1), it contains the interference from all the neighbouring cells.

We should enumerate over all combinations of the UE channels and Beamforming

vectors to maximize the total network throughput. The computation complexity is thus

polynomial, O(K ||F||), where ||F|| is the number of elements in the Beamforming codebook

F [SLA11]. For this reason, when ||F|| ≥ 4, the computational effort becomes unacceptable.

For two UE case, the complexity is not too much, we can calcluate in a short time, but

the UEs are increasing, an approximated method is needed to decrease the complexity to

find the allocation and Beamforming vectors in the network.

In this section we limit ourselves to present the simplest two-user case, to explain in

detail the idea of our solution. The extension of our approach to a multi-user case together

with the reduction of its numerical complexity is described in Section 4.4.

4.3.2 Numerical Results

In this section, we compare the performance of the cooperative resource allocation -

Beamforming application framework with the traditional two-step method (Step 1: allocate

the resource block, Step 2: apply the Beamforming technique [YKS13]).

With the simulator LTE-Sim presented in Appendix A, we build a multi-cell scenario for

the simulation. There are J cells with the same configuration in our simulation settings. The

radius of the cell is 1 km. The number of cells increased from 3 to 7, the cells’ organization

is shown in Fig. 4.4. In each cell, there are a cell centre UE (d < 500m) and a cell edge UE,

the location of the UE is randomly settled by the seed function of LTE-Sim.

In our simulation setup, the bandwidth of the LTE network is 5 MHz and 25 RBs are

available at the same time, which corresponds to the constraints of the PMR network under

study in the SOAPS project [oSp12].
In the simulations, we propose to confront our solution with a reference one in order to

show the improvement of our framework. The algorithm to be a reference one is formulated

as follows. We allocate the RB to the UE and then choose the Beamforming vectors for each

UE: we allocate the RBs to the UEs in a cell who has the highest SINR, with the chosen RBs,

the e-NodeB applies the best cooperation Beamforming vector with the algorithm proposed

in [SLA11].
Our method is a cooperative method that chooses the RB and the corresponding vector

at the same time, we iterate all the possible RB assignment and the Beamforming vectors,

choose the best channel matrix H and Beamforming vector ω.

We compare our cooperating framework with the independent RB allocation and Beam-

forming application, in Fig. 4.5 and 4.6, we can see find that our modification improves
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J = 3 J = 4 J = 5

J = 6 J = 7

Fig. 4.4 Multi-cell organizations

the throughput for both cell center and cell edge UEs but the improvement in the cell edge

is larger than the cell center.

In the cell center, the average throughput of the cell center is 8 – 9 times of the cell

edge because the path loss of cell UEs in cell center is much smaller than the cell edge.

On the cell edge, UE’s distance to the corresponding e-NodeB is not much less than the

neighbouring cell’s e-NodeB, so the received message signal power is not too much larger

than the interference signal power. As inter-cell interference is the main cause of the low

SINR for cell edge UEs, and our framework decreases this interference, the improvement

of our algorithm is significant significantly higher than the traditional method.

In Fig. 4.6, we see that our performance improvement obtained thanks to our approach

increases with the number of cells, because the source of interference increases when the

number of cells increases. Our scheme minimizes interference so its effect becomes more

and more important.
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Fig. 4.6 Average throughput on the
cell edge

4.4 Heuristic Method

From our analysis and the simulations in the previous section, we conclude that our coop-

erative framework can improve the channel capacity and increase the average throughput

for all the UEs.

The weakness of the scheme is that the complexity, despite being polynomial, may be

unacceptably high, as the exponent is a number of elements in the code book. For this

reason, we propose a heuristic algorithm to whose complexity has a much lower polynomial

degree.

There is a certain similarity between the scheme proposed in [YKS13] which is based

upon the scheme in Fig. 4.3. However, in contrast to [YKS13], which performs Beamforming

and allocation sequentially, we do these two actions at the same time.

We propose a heuristic method of complexity in O(K · |F|). To compute interference

occurring between neighbouring cells we use two different schemes which introduce an

order between cells. They both depicted in Fig. 4.7. Scheme 1 in this figure allows us to

compute cell interference more efficiently than Scheme 2 which represents the traditional

cell numbering. We use both these schemes in our algorithms and the difference between

their performance will be analyzed and compared in Section 4.6.

The heuristic algorithm performing the allocation with Beamforming cooperation con-

tains two nested loop. In the internal loop, we allocate the RBs in J cells, starting from cell

1 until J ; in the external loop, we repeat the internal loop to improve the allocation. The

process of our cooperation allocation scheme is presented in Fig. 4.8 [HTV14].

Algorithm 3 presents the general structure of our method. We comment all element of

the algorithm in detail.
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Fig. 4.7 Multi Cell Enumeration Schemes

As we defined in Section 4.3, we repeat the notation of some important parameters. ωm∗
j

represents the chosen Beamforming vector in cell j on the frequency of RB m, i∗j represents

the UE who is assigned the RB m in cell j. Wm denotes the set of chosen Beamforming

vectors, andWm
j (l) represents the set of Beamforming vectors updated in the jth cell of lth

loop in Algorithm 3. K j(l) denotes the set of assigned UEs on RB m updated in the jth cell

of lth loop. Rm
j =

∑

r i j(Km
j (l),W

m
j (l)) denotes the estimated system throughput on the RB

m with the set of Km
j (l) andWm

j (l).

Algorithm 3: Heuristic multi-cell maximum throughput algorithm.

input : Communication channel matrix Hi j;
interference channel matrix Hk,i j

;
Beamforming vector code book F

output : Best UE set Km∗;
Beamforming vector setWm∗ on RB m..

1 /* initialization: */
2 /* RB allocation set Km←Km(0), Beamforming vector set
Wm←Wm(0) */

3 while
∑

r i j(l)<
∑

r i j(l + 1) do
4 /* estimate

∑J
j=1 r i j by

∑J
i j=1 R(Γi∗j ) */

5 for j← 1 to J do
6 i∗j , ω

m∗
j (l)← find_best_radio(i j,Wm) ;

7 W j(l)←W j−1(l), update the new Beamforming vector ωm∗
j

8 end
9 end



4.4 Heuristic Method 61

Algorithm 4: Internal loop: find_best_radio

input : All the active UEs i j,;
Beamforming vector code book F

output : Best UE i∗j ;
corresponding Beamforming vector ωm∗

j on RB m.

1 find_best_radio(i j,Wm):
2 for all (i j,ω

m
j ), i j ← 1 to K, ωm

j ← 1 to |F | do
3 if Rm

j (i j,ω
m
j )> Rm

j (i
∗
j ,ω

m∗
j ) then

4 i∗j ← i j, ω
m∗
j ←ω

m
j

5 end
6 end

Before our iteration, we firstly allocate the RB in each cell with the MT algorithm

described in Subsection 3.2.1, get an initialization RB assignment policy Km(0), then

choose the Beamforming vectors for all the cells with coordinated Beamforming technique

described in Subsection 2.7.3, and denote the set of Beamforming vectors asWm(0).

Internal Loop (“for” over cells and find_best_radio function)

The allocation of RBs is made sequentially cell after cell according to an appropriate cell

order (as those in Fig. 4.7). In the 1st cell, our only objective is to maximize the SINR on

RB m which is equivalent to find the maximized UE’s data-rate :

max
i j ,ω

m
j (l)

R

�

P||H j,i j
ωm

j (l)||
2

Ii j
(Wm

j−1(l)) +σ0

�

, (4.4)

where i = 1 and

Ii j
(Wm

j−1(l)) =
∑

ωm
k (l)∈W j−1(l)

P|ωm∗
j (l)H

∗
j,i j

Hk,i j
ωm

k (l)|

||H j,i j
ωm

j (l)||2
, (4.5)

Ii j
(Wm

j−1(l)) expresses the interference of UE i j which is estimated upon the set of

Beamforming vectorsWm
j−1(l).

We apply the find_best_radio (see Line 6 in Algorithm 3) to find the UE i∗1 and Beam-

forming vector ωm∗
1 (l), denote the new allocation decision on RB m as Km

1 (l) = (i
∗
1, i2, ..., iJ)

and Beamforming set asWm
1 (l) = (ω

m∗
1 (l),ω

m
2 (l − 1)...,ωm

J (l − 1)), where l is the number

of the external loop executions. At the lth loop, we estimate the total system throughput

Rm
1 (l), compare it with traditional system throughput Rm

0 . If step Rm
1 (l)≥ Rm

0 , we apply the
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Fig. 4.8 Modified Algorithm Diagram

new allocation policy and Beamforming vectors in the 1st cell. If Rm
1 (l)< Rm

0 , we keep the

traditional solution: Km
1 (l) =K

m
0 andWm

1 (l) =W
m
0 .

For the jth cell ( j = 2, 3, ..., J), we consider the Beamforming vectors of the former j−1

cells. Thanks to Eq. (4.4) we can obtain the allocation policy Km
j (l) and Beamforming set

Wm
j (l). As before, we compare the estimated data rate Rm

j (l) and Rm
j−1(l), if Rm

j (l)≥ Rm
j−1(l),

the final allocation policy is Km
j (l) and Beamforming set isWm

j (l). Otherwise we continue

to use the former allocation policy Km
j−1(l) and Beamforming vectorWm

j−1(l).

External Loop (“while” over throughput)

When the internal loop terminates at cell J, we get a new RB allocation policy Km
J and

Beamforming vector Wm
J . Based on the new Beamforming vectors in the neighbouring

cells, we may allocate this RB to another UE and the corresponding Beamforming vector to

increase the system throughput. So we repeat the internal loop.

After the external loop, we get the final allocation policy Km
J (l) and Beamforming vector

Wm
J (l). we give below a proof that our method converges.
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Proof of Convergence: From the definition of the algorithm, we can conclude that the

system throughput is not decreasing in each loop:

Rm
j (l)≥ Rm

j−1(l), Rm
j (l)≥ Rm

j (l − 1), (4.6)

The RB capacity function R(Γ ) is a step function [RBSP09] so the system throughput function

Rm
j (l) is also a step function. The property of the step function is: if Rm

j (l) > Rm
j (l − 1),

Rm
j (l)− Rm

j (l − 1) > ∆, where ∆ is the minimum difference between two neighbouring

steps of R(Γ ).

Because the white noise is always presented, we can estimate an upper bound Rm
upper for

the system throughput on this frequency by ignoring the interference:

Rm
upper =max

K,W

J
∑

j=1

P||H j,i j
ωm

j( j)||
2

σ0
, (4.7)

Thus the number of loops L satisfies:

L <
Rm

upper − Rm
0

∆
(4.8)

From Eq. (4.6) and (4.8), we can conclude that our multi-cell maximum throughput

algorithm is convergent [HTV14].

4.5 Application of Cooperative Framework on Other QoS

Service

As we have explained in Chapter 3, the MT algorithm is not applicable in all the scenarios and

there are other well designed allocation schemes which were proven as optimal algorithm

on different conditions. Our framework can also be applied to these algorithms and improve

the overall performance by increasing the average RB capacity.

4.5.1 Throughput Optimal with Finite Buffer

When the buffer of all the UEs is finite, we rewrite the function of data-rate, taking into

account data waiting buffer Q i j
of UE i j:
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min
j=J
∑

j=1

i j=K
∑

i j=1

[Q i j
−

m=M
∑

m=1

R(Γm
i j
)1m

i j
]+ (4.9)

[x]+ =

(

x , if x > 0,

0, otherwise.

1m
i j
=

(

1, if RB m is allocated to UE i j,

0, otherwise.

and Q i j
represents the waiting data of UE i j in the eNodeB.

An approach of this optimization problem from a single cell point of view is EXP-Rule

[SS02], which has been explained in Subsection 3.3.2. For a cell j:

max
i j

1
r i j

exp(
ai j

Q i j

1+
q

a jQ j

)R(Γi j
), (4.10)

where

a jQ i j
=

1
K

i j=K
∑

i j=1

ai j
Q i j

,

in which r i j
denotes UE i j ’s average data rate, ai j

is a fixed positive constant, called UE

i j ’s workload contribution, which may be expressed as 1 when all the UEs have the same

priority. a jQ j thus denotes the average workload of cell j’s UEs weighted priority. Gammai j

is given by the LTE downlink control channel.

As we have already said previously, this allocation algorithm does not consider the

influence of interference from neighbouring cells RB allocation and we add the similar

iterative method. In the first cell, the interference is ignored; in the jth cell, we consider

the interference of the former j − 1 cells:

max
i j ,ω

m
j

1
r i j

exp(
ai j

Q i j

1+
q

a jQ j

)× R(
P||H j,i j

ωm
j ||

2

P
||H,i j

ωm
j ||2
∑ j−1

k=1 |ω
m∗
j H∗j,i j

Hk,i j
ωm

k |+σ0

) (4.11)

Similarly, UE i∗j and the corresponding Beamforming vector ωm∗
j are chosen according

to Eq. (4.11). For each cell, the computation complexity is O(K · |F|).
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4.5.2 Delay Optimal

When dealing with the Real-Time service class, a delay constraint has to be respected. The

objective of this minimization is:

min
j=J
∑

j=1

i j=K
∑

i j=1

Wi j
, (4.12)

where Wi j
denotes the waiting time of the head-of-line packet in UE i j ’s buffer at the

e-NodeB.

An approach to this optimization problem is Log Rule [BS09], which we have discussed

in Subsection 3.3.2:

arg max
i j

�

1
r i j

log(1+ ai j
Wi j
)× R(Γi j

)

�

. (4.13)

The choice of UE i∗j given by Eq. (4.13) cannot be proven as optimal on the network

level because this equation does not consider the inter-cell interference.

To find a minimum for Eq. (4.13) we proceed in an iterative way as done in Sections

4.5.1. We start with the first cell for which we do not consider any interference.

For the jth cell, we consider the interference of the former j − 1 cells:

max
i j ,ω

m
j

1
r i j

log(1+ ai j
Wi j
)× R(

P||H j,i j
ωm

j ||
2

P
||H,i j

ωm
j ||2
∑ j−1

k=1 |ω
m∗
j H∗j,i j

Hk,i j
ωm

k |+σ0

). (4.14)

With this process, we can improve the upper bound of function given by (4.14) by the

Beamforming technique. With higher throughput, more packets can be sent in limited time

so the average waiting tie of the packets are also decreasing.

In this section, we apply our cooperation framework to the throughput-optimal and

delay-optimal algorithm and we will compare its performance with its original version in

the next simulation parts.

4.6 Numerical Results

In this section, we compare the performance of our iterative multi-cell RB allocation

algorithm with their single cell version. The performance evaluation is made using LTE-Sim
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[PGB+11a], a simulation package which we have introduced in Appendix A. We modified

the source code of the simulator and added the MIMO channel model to complete our

simulation.

The average UE throughput, O-I ratio (Output-to-Input Ratio: the average quotient of

sending and receiving data rate at the e-NodeB) and the average packets delay are chosen

as performance criteria. In our simulation setup, the bandwidth of the LTE network is 5

MHz and 25 RBs are available at the same time, which corresponds to the constraints of

the PMR network under study in the SOAPS project [oSp12]. There are 7 cells with the

same configuration in our simulation settings. The radius of the cell is 1 km and the UEs

are uniformly distributed in the cell by the distribution function of LTE-Sim [PGB+11a].
They are divided into two groups, the centre group includes 50% of the UEs which are the

nearest to the e-NodeB, the edge group is made up of the rest of the UEs. The Transmission

Time Interval (TTI) is fixed to 1ms, and an individual simulation time run lasts 100s. We

perform a series of simulation runs in order to obtain results with confidence level α = 0.05.

We repeat simulations 100 times, which is sufficient to get the confidence level assumed

and calculate the average value and variance of each performance criterion. Because the

channel is fast-fading and simulation time is long, the confidence intervals are very small

and for this reason we do not mark them on the figures below. As we mentioned before, the

complexity of exact optimal allocation for RB and Beamforming is too high, so we cannot

perform the comparison between our proposed scheme with the optimal enumeration

method.

4.6.1 Multi-cell MT Algorithm Results

We simulate the MT algorithm with the infinite buffer service because this method is to

dedicated to maximize the system throughput.

We firstly compare the throughput improvement obtained thanks to our modified

algorithms. Fig. 4.9 shows that the average individual throughput decreases with the

number of UEs because the average number of RBs allocated to UEs reduces as the number

of UEs increases. Our method benefits from the effect of Beamforming so the RB capacity is

higher than in the conventional algorithm, the average throughput per UE increases about

8% to 11% on the cell edge.

Our modification increases the throughput in two ways:

1. Choosing the best |H j,i j
ωm

j || to increase the received signal power.

2. Adjusting the inter-cell interference channels
∑

k∈Φ( j) |ω
m∗
j H∗j,i j

Hk,i j,h
ωm

k | to limit inter-

ference. In Scheme 1 (Fig. 4.7) we consider the interference channel information
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Fig. 4.10 Allocation scheme efficiency in function of the number of iteration

from fewer cells than in Scheme 2. For this reason the interference management effect

in Scheme 1 is weaker compared to that obtained with the enumeration according to

Scheme 2. This effect leads to less significant improvement in the large interference

area, namely on the cell edge.

Fig. 4.10 presents the average improvement of each external loop in our modified

algorithm. The throughput improves greatly in the first passage of the external loop. The

further loop executions do not increase the throughput significantly. Simulation makes

us observe that the algorithm converges quickly and throughput stabilizes after 5 or 6

repetitions.

Compared to the coordinated Beamforming algorithms introduced in Section 2.7, each

iteration of our algorithm shares the same CSI process. We can conclude that the exchange
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information is only a few times longer than the one of the traditional coordinated Beam-

forming technique. This multiplication is equal to the number of iterations performed by

our algorithm.

Because all the coordinated systems work under the assumption that the cells share the

same information system in a multi-cell cluster, and only hundreds of bits are exchanged in

each iteration, we confirm that the cost of the sharing CSI in our schemes is acceptable.

4.6.2 Results for Multi-cell Log Rule and Exp Rule

Exp and Log Rule modified algorithms are simulated with Finite Buffer and Video service:

in the Finite Buffer service, UEs download data with a Poisson distribution, the arrival data

per second for a UE is distributed according to P(X = k) = e−r rk

k! , where r is the average

data rate in the infinite buffer service; the Video service packets arrive according to the

H.264 standard streaming format, and its average data rate is k = 128 Kbps.
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Because of the throughput improvement of our multi-cell version, Fig. 4.11 shows that

the sending — receiving data ratio of multi-cell algorithms is greater than in its single cell

version. Our modified algorithms increase the RB capacity and more data could be sent

in the same duration. As in the previous analysis, our multi-cell Scheme 2 obtains higher

throughput on the cell edge and it leads to better performance than Scheme 1 in this area.

Exp Rule is designed for throughput-optimal [SS02], so its output-input ratio is higher than

Log Rule.

Fig. 4.12 presents the average packet delay of video service. We compare the delay of

all the packets, so the delay limitation in the LTE-Sim platform [PGB+11a] is cancelled to

avoid packet loss. The simulator estimates the average duration of the packet generating
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time and UE receiving time. Our multi-cell algorithm improves the RB capacity, and the

packets need less time to be transmitted, so the average delay is shorter than with the

single cell version. The simulation shows that our multi-cell version decreases the cell

delay by 8-10%. With more considerable improvement on the cell edge, the average delay

decreases more in this area. The delay improvement depends on the way with which cells

are enumerated. Scheme 2 is more efficiet in terms of this improvement. Log Rule is a

delay-optimal algorithm, hence its average packet delay is much lower than Exp Rule.
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From the simulation results, we conclude, once again that the performance of multi-cell

algorithms is better than their single cell version. Log Rule and Exp Rule are proven to be

optimal for different scenarios [SS02] and [BS09], Exp Rule has better throughput and Log

Rule benefits from a shorter average delay. Our multi-cell algorithm guarantees a better

performance than the reference methods.

4.7 Conclusions and Perspectives

We presented algorithms of RB allocation working with the Beamforming technique for

multi-cell networks. We took into account the interference resulting from the RB allocation

realized in the neighbouring cells. This increases the channel’s efficiency by adjusting

the interference of each cell. It should be pointed out that Beamforming is not the only

technique to limit interference, the other MIMO techniques like spatial multiplexing can

also be applied independently to increase network performance.

We proposed an iterative method to which allocate RBs taking advantage of the Beam-

forming technique. Our method has a reasonable numerical complexity. We proved that our
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iterative method is convergent in a few number of steps which has the additional advantage

to reduce CSI exchange between cells. Compared to traditional scheduling algorithms that

cooperated with coordinated Beamforming technique, more control channel information

should be shared among all the cells. With a polynomial complexity with low degree, the

network considerably benefits from our mechanism on the cell edge which is obviously

the most prone to suffer from interference. This feature is particularly important in secu-

rity wireless infrastructures because they must meet very high QoS (Quality of Service)

requirements.

We analyzed different cell ordering according to which Beamforming control messages

are transmitted. We kept the reduction of this overhead in mind. Comparing between

enumeration schemes 1 and 2, more sharing of channel information leads to better perfor-

mance. Scheme 2 has better improvement on the cell edge because it has more neighbouring

cell information to reduce interference. To extend the J -cell network to the one with an

infinite number of cells, scheme 1 is more workable because it needs less neighbouring cell

Beamforming information. Perspectives of our work will be to apply these both schemes to

other interference management techniques like pre-coding and multiplexing.

Moreover, our future work is to incorporate cooperation among cells during the RB

allocation to enhance performance without increasing complexity.



Chapter 5

Channel Oriented Algorithms

5.1 Introduction

Considering the different UEs’ channel qualities and the discrete nature of the channel-

assignment problem, it is difficult to assign the RBs to different UEs in a multi-user environ-

ment. To allocate these RBs to UEs, the formulated problem and solutions to it are focused

on the efficiency issue [AKR+04, SS02, SBdV11], these algorithms are all introduced in

Section 3.3. The fairness issue is mostly ignored in such approaches as they are clearly

oriented towards the allocation of RBs whose quality is the best for UEs. In other words,

the UEs, which are close to the e-NodeB and have less power path-loss than others clearly

benefit from these allocation schemes. There is a consistent thread running through this

dissertation that is to improve the performance of these bad radio condition UEs. On the

other hand, when the fairness of the UEs’ treatment is important, some trade-off algorithms

have been considered for channel allocation in multi-user orthogonal frequency-division

multiplexing (OFDM) systems in Section 3.2. However, advancing this trade-off does not

make it easy to take into account the notion that UEs might have different requirements in

terms of the throughput demanded. Moreover, since the fairness algorithms deals with the

worst-case scenario, they penalize UEs with better channels and thus reduces the system’s

efficiency. In addition, most of the existing solutions have a high computation complexity,

which prohibits their practical implementation. Therefore, it is necessary to develop an

approach that considers the fairness of resource allocation, system efficiency, and numerical

complexity altogether.

In this study we are inspired by an economics theory concerning goods exchange. In

everyday life, a global goods market serves as a central gathering point, where people

exchange goods and negotiate transactions, so they can be satisfied through bargaining.

Similarly, in multi-user OFDMA systems, the e-NodeB can serve as a function of the market.



72 Channel Oriented Algorithms

The distributed UEs can negotiate via the e-NodeB to cooperate in making the decisions on

the RB utilization, such that each of them can operate with others and common agreements

are made about their operating points. Such a fact motivates us to apply the cooperative

game theory, which can achieve the crucial notion of fairness and maximize the overall

system data rate.

In a multi-user LTE system, according to the trading theory [Ric21], each UE has the

opportunity to get RBs despite the fact that some UEs always have lower RB capacities

because of path-loss or indoor attenuation. For UEs whose channel quality is poor, the

capacity of available RBs also varies in function of time and frequency. These bad channel

UEs also have higher and lower capacities on these RBs at different times because of the

properties of fast fading. The efficient allocation scheme allocates the RB to the UE for

which the capacity of this RB is the highest.

Motivated by the above reasons, we apply the cooperative game theory for resource

allocation in OFDMA systems and use the comparative advantage to solve the problem.

The goal is to maximize the overall system data rate, under the constraints of each UE’s

minimal rate requirement. Our idea is to counterbalance the channel determination due to

the path-loss by compensation factors in order to increase the probability of having an RB

by UEs suffering from the poor channel quality [HVT15].

5.2 System Model

We consider a single-cell LTE system with M RBs, and an e-NodeB. The distance between

a UE i and e-NodeB is di. The channel between UE i and e-NodeB on RB m is denoted

by matrix Gm
i , whose elements g are independent, zero-mean complex Gaussian random

variables with unit variance. UE i’s received signal power Pi is expressed by

Pi =
P||Gm

i ||
2

Li(di)
, (5.1)

where P denotes the average transmit power and Li(di) presents the path-loss with distance

di.

With the Treating Interference as Noise (TIN) model, we can consider the interference

as a kind of noise and simplify the Signal-plus-Interference-to-Noise-Ratio (SINR) as in

[CSHP12]:
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Γ =
P||Gm

i ||
2

Li(di)σ0
= ||Gm

i ||
2 ·

1
Li(di)

·
P
σ0

. (5.2)

We observe that ||Gm
i ||

2 is time-varying as it depends on channel quality, the second

term 1
Li(di)

is identical for all RBs and all UEs being at distance di from the e-NodeB. σ0

represents the general noise which equals that the white noise adds the interference which

is considered as another kind of noise. The last term P
σ0

is statistically equal for all the UEs

of a given cell.

According to the Shannon Theory, the capacity of RB m for UE i could be seen as Cm
i =

W T log(1+ Γ ), where W is the bandwidth of an RB and T is the TTI (Time Transmission

Interval):

Cm
i =W T log

�

1+ ||Gm
i ||

2 · 1
Li(di)
· P
σ0

�

≈W T (log ||Gm
i ||

2 + log 1
Li(di)

+ log P
σ0
). (5.3)

The only factor varying in time is actually log ||Gm
i ||

2 because of fast-fading. The path-

loss factor log 1
Li(di)

can be approximated by a constant in a short time window for low speed

UEs. In a given time-slot, a total capacity which a UE can obtain is a sum of its allocated

RB capacities.

5.3 Best Channel Algorithm

In Subsection 3.2.2, we have introduced the Round-Robin algorithm which provides an

equal opportunity to get the RB for the communication. But with the same opportunity but

without taking the channel quality into account,

When we analyze the channel into two parts, channel quality Gi and the path-loss Li(d).
The path-loss is independent with the UE and the channel quality varies with the time. For

all the UEs, their channel distribution experience the same pdf (probability distribution

function).

Theorem 5.3.1. X i are N random variables with the same distribution p(X ), the probability
of P(X i > X j,∀ j ̸= i) = 1

N .

Proof. The probability that the X i is greater than the other variables is:

PX i
= P(X i > X j,∀ j ̸= i) =

∫ ∞

−∞
p(X i)

∫ ∫ ∫ X i

−∞
P(X )dX1....dXN
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For UE i from 1 to N , because the formula of all the X i are the same, we have:

PX1
= PX i

= ...= PXN
.

There is always a variable greater than the other variables, so we get
∑N

i=1 PX i
= 1, then

we get PX i
= 1

N .

From Theorem 5.3.1, we can conclude that, if we allocate the RB to the UE on the

condition of max ||Gi||2, each UE has the equal probability to get the RB.

Compared to the Round-Robin algorithm in Subsection 3.2.2, the UE’s opportunity is as

same as the Round-Robin, but each UE can transmit the signal when its channel quality is

the best, this leads to a higher Resource Block capacity.

5.4 NBS in RB Allocation

Because of the lack of fairness for performance-optimal algorithms and the worst channel

utilization efficiency of the fairness algorithms, the game theoretic framework proposes good

tradeoff between the fairness and the overall system performance. Numerous allocation

schemes based upon a game theoretic solution have been proposed. Most of the previous

approaches [WCLM99, YL00, YC02, RC00] study how to efficiently maximize the total

transmission rate or minimize the packet delay under some constraints.

In [WCLM99], the authors studied the dual problem, which consists in finding the

optimal subcarrier allocation to minimize the total transmitted power and satisfy a minimum

rate constraint for each user. This dual problem is formulated in terms of an integer

programming problem, and a sub-optimal solution was found by using a continuous

relaxation.

In [YL00], a low-complexity sub-optimal algorithm is proposed. It decouples the problem

into two sub-problems, finds the required power and the number of sub-carriers for each

user, and determines the corresponding subcarrier and rate allocation.

In [YC02], the discrete subcarrier allocation problem is relaxed into a constrained

optimization problem with continuous variables, thus the optimal assignment can be solved

with numerical methods.

We briefly remind the reader of basic concepts and theorems of the NBS that we have

introduced in Subsection 3.4.1. The bargaining problem of the cooperative game theory

can be described as in [HJL05].
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Fig. 5.1 Two-user illustrative example of the
subcarrier NBS allocation

Fig. 5.2 Two-user illustrative example of our
RB NBS approach

In [HJL05], the authors have introduced the Pareto optimal which is equivalent to the

economical optimization and a game theoretic solution – NBS (Nash Bargaining Solution):

argmax
K
∏

i=1

(r i − Ri
min), where ri ∈ S,∀ir i > Ri

min. (5.4)

Their OFDMA allocation is based on the subcarrier channels in the OFDM(A) where all

the subcarriers are orthogonal, in the LTE downlink network, because the RB are composed

by the subcarriers, we apply the same scheme for the RBs. But the difference of the general

OFDMA system and LTE downlink OFDMA network is the number of available orthogonal

units.

• The general OFDMA radio resource is divided into many sub-carriers which can be

allocated to UEs (one or many subcarriers to a same UE’s communication). The

allocation method is applied to optimize the objective at each time-slot.

• The LTE downlink OFDMA bandwidth is divided in the temporal space into Resource

Blocks whose time length is equal to a half of the TTI (Time Transmission Interval).

Because each RB is composed of 12 subcarriers, the number of RBs available during

a TTI may be smaller than the number of UEs, it may happen that certain UEs do not

have any RB allocated in a TTI. During a transmission time period (100–1000 ms),

however, the number of RBs is great enough to allocate resource to all the UEs.

Fig. 5.1 illustrates a two-user example of the subcarrier allocation where Rmin is assumed

to be zero. The triangle R1 + R2 = S is the feasible range for the NBS cost function, the
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optimal point is at (eR1,eR2) with R1R2 = eD, where eD is the largest constant for the feasible

set S.

In our approach through the RB allocation we add one more dimension to 2-D curves,

the time, and translate them into a 3-D model, shown in Fig. 5.2. It is clear that at different

time slots t1 and t2, the optimization allocation is different. This 3-D figure shows that the

optimization of the RB NBS is to maximize the volume of all the shadow part in a period:

max
∫ t2

t1
R1(t)R2(t)d t.

To find a best allocation to maximize the NBS, we use an economic approach. From this

point of view, the RBs are seen as goods and different capacities on all the RBs are seen as

the gain of these goods.

According to this theory, the cell edge UEs’ SINR is always less than centre UEs’ because

of the larger path-loss Li(di), but these edge UEs’ capacities also benefit from good and

bad channel quality. When we allocate the RBs depending on their capacity, the central

UEs have a position advantage. With some other allocation algorithms, these RBs may

be allocated to a UE when the channel quality is not good, and in such a case channel

efficiency is wasted. We remain in the economic context to determine the relative quality

of an RB for a UE. We need to allocate more RBs to edge UEs to satisfy the formula (5.4),

so it is better to allocate RBs to a given UE when their capacity is good [Ric21].

A cooperative theory tool is presented in the following example: a country’s choice of

goods production is not based on its cost compared with other countries, but on their own

cost among different goods. For instance, a developed country produces a machine at a

cost of 3 thousand euros and wheat at a cost of 4 thousand euros, whereas a developing

country produces a machine at a cost of 30 thousand euros and wheat at a cost of 5

thousand euros. The production costs of the developing country are higher than those of a

developed country for all goods, but if it only produces wheat, and the developed country

only produces machines, the sum of the two countries’ production is maximized [Ric21].

How to judge whether the capacity of an RB is good enough for a UE? We have three

parts in the RB capacity formula (5.3), in which only the first part ||Gm
i ||

2 is variable. We

compare this part with those of other UEs, the UE with maximum ||Gm
i ||

2 has the highest

efficiency on this RB. Thus our main idea consists in determining the RB allocation in

function of ||Gm
i ||

2. The reader might have already noticed that its straightforward use

would lead to favor UEs localized in the cell center. Such an unwanted phenomenon would

take place because all RBs pick up an RB with the same probability. Consequently, the

centrally situated UEs would benefit from the higher average RB capacity because of less

path-loss.
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This is the main idea of our allocation mechanism, but we cannot get the optimal

solution directly by comparing the ||Gm
i ||

2: Each UE has the same opportunity to get the

UEs so the numbers of their allocated RBs will be equal after a long time, the centre UEs

will have higher data-rate because their average RB capacities are higher by the reason of

less path loss.

5.5 NBS Solution

To maximize the gain of NBS of Eq. (5.4), we should avoid allocating the RBs to the differ-

ently positioned UEs with the same probability. A fair allocation scheme will increase the

probability of allocating an RB for UEs being on the cell edge and diminish this probability

for UEs being close to the e-NodeB. By doing so the scheme will smooth the data rate over

the cell. Thus we propose to weigh the channel quality by a compensation factor ai to

balance out the poor channel quality of UEs on the cell edge. A factor ai is obviously an

increasing function of path-loss Li(di). The decision of the allocation of RB m to UE i will

be taken according to ai||Gm
i ||

2.

We point out that in the real world, an e-NodeB always has at its disposal Z historical

SINR values from which we can estimate the average path-loss L(di), under the assumption

that the channel is defined by the Rayleigh model (in SISO channels). We thus have:

Z
∑

TTI=1

ΓTTI =
Z
∑

TTI=1

P||GTTI||2

L(di)σ2
i

=
P

L(di)σ0

Z
∑

TTI=1

||GTTI||2, (5.5)

which gives us in the presence of the Rayleigh assumption allowing us to say that the mean

of ||G||2 is equal to 1:

L(di) =
Z P

σ0

∑Z
TTI=1 ΓTTI

. (5.6)

We can compute the probability that a UE can get an RB. All the UEs have the same

distribution of the fast fading channels, the probability density function (pdf) of the channel

||Gi||2 is denoted as p(||Gi||2). Using the notation ||Gi||2 = x i, the probability that UE i gets

the RB, Pi, is expressed by

Pi =

∫ +∞

0

p(x i)

 

∏

k ̸=i

∫

ai xi
ak

0

p(xk)d xk

!

d x i, (5.7)

with normalization
∑K

i=1Pi = 1.
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For SISO (Single-Input-Single-Output) channel condition, the distribution of ||Gi||
follows a Rayleigh distribution, and ||Gi||2 follows an exponential distribution, p(x i) =
exp(−x i).

The average data rate of UE i is r i = Pi MCi, where Ci is the average RB capacity found

thanks to Eq. (5.3) and M is the number of available RBs at the same time. We put it into

Eq. (5.4), and omit the Rmin because we consider it as very small, a new objective for the

NBS is:

N =
∏

Pi MW
�

log x i + log
1

Li(di)
+ log

P
σ0

�

. (5.8)

The value of log x i is expressed by:

log x i =

∫ +∞
0

log x i p(x i)
�

∏

k ̸=i

∫

ai xi
ak

0 p(xk)d xk

�

d x i

Pi
. (5.9)

Because all the RBs of a UE are in the same environment, they have the same channel

distribution, and N given by NBS equation (5.8) depends on values of a1, ..., aK only. We

can achieve its maximum value when for all i:

∂ N
∂ ai
= 0. (5.10)

We get:

∂ Pi

∂ ai

�

log x i + log
1

Li(di)
+ log

P
σ0

�

+ Pi
∂ log x i

∂ ai
= 0. (5.11)

K independent equations with K − 1 variables a1, a2, ..., aK . Eq. (5.11) can thus be solved.

The channel quality matrix Gm
i can be obtained through control channels, the position

and path-loss for each UE are also known by the e-NodeB. With this information, we can

compute a suitable compensation factor ai for each UE to maximize the NBS function.

At each time-slot, we allocate the RB m to the UE i in order to satisfy:

argi∈K max ai||Gm
i ||

2. (5.12)

Eq. (5.12) ensures the RB allocation satisfying the NBS model. An algorithm performing

such an allocation must have an acceptable complexity. As the reader might have already

noticed, computing efficiently compensation factors ai is a real challenge.

In the remainder of this section, we present our principal algorithmic contribution – the

RB NBS method, together with its variants.
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5.5.1 Exact Solution

To find the average throughput r i = Pi MC i, we start with Eq. (5.7):

Pi =1+ (−1)2
K
∑

u=1,̸=i

1/ai

1/ai + 1/au
+ (−1)2

K
∑

u=1,̸=i

K
∑

v=1,̸=i,u

1/ai

1/ai + 1/au + 1/av

+ ...+ (−1)K−1 1/ai
∑K

u=1 1/au

(5.13)

According to the Binomial theorem, the expansions of Eq. (5.13) has
∑�K−1

k

�

= 2K−1

terms, the complexity of the solution to Eq. (5.11) is in O(2K−1).

Similarly to Eq. (5.7), Eq. (5.9) can also be expressed by an expansion with 2K−1 terms,

but it is not possible to have an analytic solution of the function
∫

x log xd x . We can use

the Newton method to compute a numerical solution of Eq. (5.7). Although the result of Eq.

(5.9) is a numerical solution, it is obtained with machine precision not an approximated

result.

Computation of factors ai can be done from Eq. (5.11) through solving a system of

first-order partial differential equations. This can be done for a small number of UEs

only, because of the exponential complexity. Therefore the exact method can be used for

networks with very few UEs. We call it exhaustive RB NBS in the rest of the dissertation.

5.5.2 Proposed RB NBS Algorithm

The numerical complexity of an exact algorithm makes it impossible to be implemented

in practice. To tackle this obstacle we propose a heuristic algorithm, called (iterative) RB
NBS, which treats the allocation in a greedy manner, UE by UE. Compensation factors are

computed one by one, iteratively [HTV15].

We start by sorting UEs in increasing order of their path-loss: L1(d1)< L2(d2)< ...<

LK(dK). Then we use a following method:

Suppose all compensation factors ai equal to 1 at first. It means that we allocate the

RB to a UE whose channel condition is the best, as a conventional allocation algorithm

would do. In order to find out the influence of the channel quality upon the allocation, we

assign for UE i, i = 2,3, ..., K factor ai whose value is greater than 1. We start with the

computation of an approximate value of a∗2 and then use the iterative method to find the

value of compensation factor for the next UE, one by one.

Step 1: We only consider first two UEs, UE1 and UE2. Assuming that L1 < L2. Obviously,

to maximize product of r1r2, we need to have a1 < a2. The solution of Eq. (5.7) for UE 1
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and UE 2 gives P1 =
a1

a1+a2
, P2 =

a2
a1+a2

. Eq. (5.9) can be rewritten in this as:

log x i =

∫ +∞
0

log x i p(x i)
�

1− e−
ak
ai

x i
�

d x i

Pi
, (5.14)

where i = 2 and k = i − 1= 1.

As an integral of type
∫

x log xd x presented in Eq. (5.14) cannot be solved analytically,

we use the Newton’s method to solve the Eq. (5.9) to get a new optimal value of a∗2. It

should be already obvious that the factor ai for UE i, i > 2 must be greater than a2 because

its path-loss is greater. Caring about the simplicity of the convergence proof we note here

that for a while a3 = ...= aK are equal to a∗2.

Step 2: Putting a∗1 and a∗2 in the Eq. (5.7), we find the formula for P3 in which a3

remains unknown. Eq. (5.9) allows us to express log x3 in function of a3. Combining P3

and log x3 into Eq. (5.11) we obtain a∗3.

Step 3: We pursue computing a∗i+1, i = 3, ..., K1, from the Pi+1 and log x i+1 according to

the scheme given on the previous step.

The process of the algorithm is expressed in the Table of Algorithm 5.

Algorithm 5: Proposed RB NBS algorithm.
Data: Channel Matrix Gi, Path loss Li(d)
Result: Factor ai

1 initialization: ai = 1 ;

2 Calculate a1 and a2 by Eq. (5.11) and (5.14);

3 for UE i⇐ 3 to K do

4 Put ai−1 and ai−2 in the Eq. (5.7) to express the Pi by ai;

5 express log x i in function of ai by Eq. (5.9);

6 take Pi(ai) and log x i(i) into Eq. (5.11) and make it a single function of ai;

7 solve this function and get the value of ai.

8 end

Our algorithm produces approximate compensation factors a∗1, ..., a∗K . Let us observe

that computations of ai rely upon Pi and log x i, and require i − 1 operations. For all UEs

we have
∑K

i=1 K operations which leads us to the complexity in O(K2).

We prove now that our algorithm converges:

We first prove that the NBS formula N =
∏

r i(ai) is a monotonic function in the set of

ai ∈ (a∗i−1, a∗i ):
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In iteration i of this algorithm, we have ai = ai+1,

∂ N
∂ ai
= r1...r i−1r i+2...rK

�

r i+1 ∂ r i

∂ ai
+ r i ∂ r i+1

∂ ai

�

+
K
∑

u=1,u̸=i,i+1

K
∏

v=1,v ̸=u

r v ∂ ru

∂ ai
; (5.15)

∂ N
∂ ai+1

= r1...r i−1r i+2...rK

�

r i ∂ r i+1

∂ ai+1
+ r i+1 ∂ r i

∂ ai+1

�

+
K
∑

u=1,u̸=i,i+1

K
∏

v=1,v ̸=u

r v ∂ ru

∂ ai+1
; (5.16)

In iteration i, obviously we have ∂ N
∂ ai
|ai=a∗i

= 0. We will show that ∂ N
∂ ai+1

> 0 when

ai+1 = a∗i .

Let us firstly study two partial expressions in them: ∂ r i

∂ ai
and ∂ ru

∂ ai
, where u ̸= i, i + 1.

Because r i = Pi MCi and M is constant, we have:

∂ r i

∂ ai
= M

∂

∂ ai
(PiCi) = M

�

Ci
∂ Pi

∂ ai
+ Pi

∂ Ci

∂ ai

�

(5.17)

∂ ru

∂ ai
= M

∂

∂ ai
(PuCi) = M

�

Cu
∂ Pu

∂ ai
+ Pu

∂ Cu

∂ ai

�

(5.18)

To analyze Eq. (5.17) and (5.18), we find from the Eq. (5.3), (5.7) and Eq. (5.9) with

notation ||Gm
i ||= x i that:

∂ Pi

∂ ai
=
∂ Pi+1

∂ ai+1
, (5.19)

∂ Pu

∂ ai
=
∂ Pu

∂ ai+1
, (5.20)

∂ Ci

∂ ai
=
∂ Ci+1

∂ ai+1
, (5.21)

∂ Cu

∂ ai
=
∂ Cu

∂ ai+1
, (5.22)

when ai = ai+1 and u ̸= i.

Because the UE i has higher probability to get the RB when its corresponding ai increases,

and other UEs have lower probability to be allocated an RB at the same time, we conclude

that:

∂ Pi

∂ ai
> 0, (5.23)

∂ Pu

∂ ai
< 0, (5.24)



82 Channel Oriented Algorithms

Equations (5.15) and (5.16) have two terms, and we will analyze these two terms in

the next two paragraphs.

Comparison r i+1 ∂ r i

∂ ai
+ r i ∂ r i+1

∂ ai
and r i ∂ r i+1

∂ ai+1
+ r i+1 ∂ r i

∂ ai+1

r i+1 ∂ r i

∂ ai
= r i+1

�

Ci
∂ Pi

∂ ai
+ Pi

∂ Ci

∂ ai

�

(5.25)

r i ∂ r i+1

∂ ai+1
= r i

�

C i+1
∂ Pi+1

∂ ai+1
+ Pi+1

∂ C i+1

∂ ai+1

�

(5.26)

When ai = ai+1, log x i = log x i+1. Because Li < Li+1, according to Eq. (5.3) we have:

C i > C i+1, (5.27)

so we get:

r i > r i+1. (5.28)

With Eq. (5.19), we have:

r i

r i+1
=
PiC i

Pi+1C i+i

=
C i

C i+i

, (5.29)

So we have:

r i+1Ci
∂ Pi

∂ ai
= r iCi+1

∂ Pi+1

∂ ai+1
(5.30)

Because of Eq. (5.21) and taking advantage of the fact that Pi = Pi+1 as ai = ai+1 for

ith iteration, we have:

Pi
∂ Ci

∂ ai
= Pi+1

∂ Ci+1

∂ ai+1
; (5.31)

⇔ r i+1Pi
∂ Ci

∂ ai
< r iPi+1

∂ Ci+1

∂ ai+1
; (5.32)

From Eq. (5.30) and (5.32), we conclude that:

r i+1 ∂ r i

∂ ai
< r i ∂ r i+1

∂ ai+1
(5.33)

Comparison r i ∂ r i+1

∂ ai
and r i+1 ∂ r i

∂ ai+1
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The expression can be represented as:

r i ∂ r i+1

∂ ai
= r i

�

Ci+1
∂ Pi+1

∂ ai
+ Pi

∂ Ci+1

∂ ai

�

(5.34)

r i+1 ∂ r i

∂ ai+1
= r i+1

�

Ci
∂ Pi

∂ ai+1
+ Pi+1

∂ Ci

∂ ai+1

�

(5.35)

Similarly to the proof of Eq. (5.30), we have:

r iCi+1
∂ Pi+1

∂ ai
= r i+1Ci

∂ Pi

∂ ai+1
(5.36)

According to Eq. (5.24), we have:

∂ Pi+1

∂ ai
=
∂ Pi

∂ ai+1
< 0; (5.37)

(5.38)

According to Eq. (5.22) and r i > r i+1 , we have:

r iPi
∂ Ci+1

∂ ai
< r i+1Pi+1

∂ Ci

∂ ai+1
< 0 (5.39)

According to Eq. (5.33) and (5.39), we can conclude that:

r i+1 ∂ r i

∂ ai
+ r i ∂ r i+1

∂ ai
< r i ∂ r i+1

∂ ai+1
+ r i+1 ∂ r i

∂ ai+1
(5.40)

Comparison ∂ ru

∂ ai
and ∂ ru

∂ ai+1

.

Represent the formulas of ∂ ru

∂ ai
and ∂ ru

∂ ai+1
:

∂ ru

∂ ai
= Cu

∂ Pu

∂ ai
+ Pu

∂ Cu

∂ ai
(5.41)

∂ ru

∂ ai+1
= Cu

∂ Pu

∂ ai+1
+ Pu

∂ Cu

∂ ai+1
(5.42)

According to Eq. (5.20) and (5.22), all the terms of the two expressions above (Eq.

(5.41) and (5.42)) are equal, so we conclude that:

∂ ru

∂ ai
=
∂ ru

∂ ai+1
(5.43)
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According to Eq. (5.40) and (5.43), we have:

∂ N
∂ ai
<
∂ N
∂ ai+1

(5.44)

Because in each iteration, we compute the ai by Eq (5.10) ∂ N
∂ ai
= 0, so

0=
∂ N
∂ ai
<
∂ N
∂ ai+1

.

From 0= ∂ N
∂ ai
< ∂ N
∂ ai+1

, we thus conclude that a∗i < a∗i+1.

Because we start by sorting UEs in increasing order of their path-loss: L1(d1)< L2(d2)<
...< LK(dK), ai is increased with the path-loss.

When ai+1 varies from a∗i to a∗i+1, ∀k > i: we have

N(a∗1, ..., a∗i , ai+1 = a∗i+1, ai+2 = a∗i , ..., aK = a∗i )≥
N(a∗1, ..., a∗i , ai+1 = a∗i , ai+2 = a∗i , ..., aK = a∗i ),

(5.45)

as a harmful impact of the path-loss of UEi+1 is reduced better by a greater compensation

factor.

Because 0≤ ∂ N
∂ ai+1

≤ ∂ N
∂ ai+2

≤ ...≤ ∂ N
∂ aK

in the interval [a∗i , a∗i+1], we can also conclude that

N(a∗1, ..., a∗i , ai+1 = a∗i+1, ai+2 = a∗i+1, ..., aK = a∗i+1)≥
N(a∗1, ..., a∗i , ai+1 = a∗i+1, ai+2 = a∗i , ..., aK = a∗i ).

(5.46)

This proves that our NBS product increases on each iteration of the algorithm. As we

deal with an heuristic method, we evaluate its performance via simulation whose results

we will discuss in Section 5.7 and 5.8.

5.5.3 Parallel RB NBS Algorithm

As shown above, the numerical complexity of the serial approach is in O(K2), which might

lead to a long computation time when K, the number of UEs, is very large. It would be thus

interesting to have our serial algorithm parallelized. Indeed, our algorithm compares the

values of ai||Gm
i ||

2, the allocation does not change as long as the ratio of ai/ak(i ̸= k) stays

constant. Therefore it is possible to compute compensation factors ai by groups in which

this ratio remains constant and make a normalization in the same quantitative system. This

variant will be called parallel RB NBS.
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[aq,1, ..., aq,p] [aq+1,1, ..., aq+1,p] [aq+2,1, ..., aq+2,p]

Local Optimal

[a∗q,1, ..., a∗q,p] [a
∗
q+1,1, ..., a∗q+1,p] [a

∗
q+2,1, ..., a∗q+2,p]

Concatenation
[a∗q,1, ..., a∗q,p, a∗∗q+1,1, ..., a∗∗q,p, a∗∗q+2,1, ..., a∗∗q+2,p]

Fig. 5.3 Group concatenation made on Step 4 of Parallel RB NBS Algorithm

To do this, we divide UEs into Q teams with path-loss of same order: (U Eq,1, ...U Eq,i, ..., U Eq,p).
Here q denotes a group index of the UEs, i represents an index of a UE in this group, and p
is the last UE in this group (the one with the greatest path-loss).

Firstly, we compute all the a∗q,i for each group q from the local perspective, i.e. group

q is seen in isolation from other groups when a∗q,i are computed. We apply the method

described in Subsection 5.5.2 to obtain this local optimum.

Then we begin with a normalization made for all the groups. The global normalization

computes out of compensation factors obtained for each group, a∗q,i, in isolation. As we

described in the previous subsection, the compensation factor of the first UE in each group

equals to 1: a∗q,1 = 1. After the parallelization, to compute a new a∗∗q,i our algorithm should

be written as:

Step 1: Start with the group 1 and 2: {UE1,1, ..., UE1,p}, {UE2,1, ..., UE2,p} respectively.

We have the local optimal a∗1,1 to a∗1,p and a∗2,1 to a∗2,p. We concatenate these two groups of

UEs.

Step 2: For the first group, we retain ai results. For the second group, we adjust all its

a2,i without change their ratio of a2,i
a2,k

, in order to keep it behind the first group.

Step 3: As shown in Subsection 5.5.2, we can compute a2,1 when a∗1,p is confirmed.

• Step 3.1: The objective function for this adjustment is Np = r1,pr2,1.

• Step 3.2: We express the r1,p and r2,1 (the mean throughput of UEs on the border of

the first and second groups) as functions of a∗1,p and a2,1.

• Step 3.3: We put them into Eq. (5.11) to get the relative result λ2 =
a∗∗2,1

a∗1,p
.

Step 4: In the second group, the updated a∗∗2,is are a∗∗2,i = λ2a∗1,p

a∗2,i

a∗2,1
. Because a∗2,1 = 1,

we have a∗∗p+i = λ2a∗1,pa∗2,i. The process of group concatenation is presented in Fig. 5.3.
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a∗q,p

a∗q,1













a∗q+1,p

a∗q+1,1













a∗q+2,p

a∗q+2,1













Linear Approximation

Fig. 5.4 Log Scale linear approximation of compensation factors groups for the Log Scale
RB NBS Algorithm

Step 5: For the (q + 1)th group, we repeat the Step 3 and 4 to find the ratio of

compensation factors for the UEs between adjacent groups = λq
a∗∗q+1,1

a∗q,p
. By doing this we

compute a∗∗q+1,i = λqa∗∗q,pa∗q+1,i.

Step 6: The iteration process of computing a∗∗q+1,i stops after reaching the last group.

Each group has K
Q members. The algorithm of square complexity (see Subsection 5.5.2)

is run for each group. What gives us the numerical complexity O(K2

Q ).

5.5.4 Log Scale RB NBS Algorithm

The parallel algorithm described above may be speed up when in some groups the knowledge

of compensation factors for the UEs on the group border only is sufficient to estimate these

factors for all UEs inside a group.

Observe the expression for the data-rate r i:

r i = Pi MW
�

log x i + log
1

Li(di)
+ log

P
σ0

�

. (5.47)

Thanks to this formula, we conclude that, when all the UEs experience the same channel

distribution ||G||, the other components of the formula are constant, the only variable part

of different UEs being log Li(di).
On the cell edge, because the path-loss increases slowly, the rate of increment between

the first UE and the last UE in the group may be small. We profit from this fact in our

estimation.

According to the Taylor formula, we state:

Conjecture 5.5.1. When the range of path-loss is relatively narrow in the group, we can
suppose that the values of ai have a linear relationship with log Li.

This conjecture will be a subject of the experimental validation (see Subsection. 5.7.2).
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Having this conjecture in our disposal, we can estimate the value of compensation

factors for these groups of UEs in which the variability of path-loss is negligible.

In a group {UEq,1, ...,UEq,p} with a weak path-loss variability, we just calculate the

relative value of the first aq,1 and last aq,p, then use the linear approximation to estimate

all the factors.

Step 1: The objective function for this approximation is Np = rq,1rq,p.

Step 2: We express rq,1 and rq,p in function of aq,1 and aq,p.

Step 3: We put them into Eq. (5.11) to get the linear relation sq in group q: sq =
a∗q,p

aq,1
.

The algorithm’s main idea is presented in Fig. 5.4.

Step 4: For the ith UE in this group, its estimated value is: a∗q,i =
log Lq,i−log Lq,1

log Lq,p−log Lq,1
(aq,p −

aq,1) + aq,1 =
�

log Lq,i−log Lq,1

log L(q,p−log Lq,1
sq +

log Lq,p−log Lq,i

log Lq,p−log Lq,1

�

aq,1

In this fourth method, called Log scale RB NBS, the part of computation only has to be

done in parallel — for these groups which are close to an e-NodeB in which a rapid growth

might be observed, and for this reason compensation factors of all group members have to

be computed in iterative way with the RB NBS algorithm. We remind to a reader that it

needs time O(K2) for each group.

As the path-loss increase rate slows down with a distance separating a group from an

e-NodeB, we may benefit from simpler computation when finding compensation factors for

groups relatively far from the cell center. These computation can be done in serial way as

their complexity is in O(K).

5.5.5 Mixed RB NBS Algorithm

In the cell center, as Li ∝ dα, α ≈ 3.7, the path-loss increases quickly with the distance

d. For this reason, the path-loss difference among the UEs in the center is very large. The

log scale approximated method is not in favor of center UEs. Thus, it is better to use the

iterative method described in Subsection 5.5.2 to compute the accurate ai in this area.

We then propose the fifth method called Mixed RB NBS (Table 5.1) which combines

the methods proposed above to obtain the suitable solutions for each area while keeping

the numerical complexity as low as possible even for cells with a large number of UEs.

The mixed RB NBS operates as follows. First, we treat separately these UEs which are in

the cell center using the iterative method. We obtain for these UEs accurate computation

factors. Second, UEs being on the cell edge are divided into groups in which the use of the

Log Scale RB NBS approach is possible. The compensation factors computed for the edge

groups are next concatenated according to the scheme illustrated in Fig. 5.4.
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In this section, we have discussed four heuristic methods (one of them being a mix)

to solve the fair RB allocation problem and to reduce the computation complexity. In the

following sections, we provide an exhaustive performance analysis.

5.6 Evaluation Methodology

We proposed heuristic algorithms to find a Pareto optimal solution to our allocation problem.

We also proved their convergence and formulated a conjecture which facilitates computation

when a certain hypothesis concerning the path-loss variability is taken.

As our algorithmic results require an experimental validation, this section provides its

framework. We start by giving a description of the simulation tool used together with its

parameterization we choose. Next, we give the performance measures, relevant in our study.

The design of experiments follows. We propose two main axis of performance analysis:

comparison with channel oriented methods and comparison with reference algorithms

aiming throughput or fairness.

We draw reader’s attention to the fact that we propose an especially designed channel

oriented method which is dedicated to assess a gain obtained by the introduction of

compensation factors.

5.6.1 Simulation Setup

The performance evaluation is made using LTE-Sim [PGB+11a], a simulation package which

provides a library of all LTE functions and architectures. We developed our methods with

this package and enriched the simulator to model our methods and perform simulation

runs. The detailed description of the modification we introduced in LTE-Sim is given in

Appendix A.

5.6.2 Performance Criteria

Throughput Evaluation: As performance throughput criteria we choose the average through-

put of an entire cell (the arithmetic mean) and the geometric mean throughput for a UE.

The arithmetic mean throughput per UE is expressed as
∑K

i=1 r i

K and it is used to evaluate the

channel efficiency. The geometric mean throughput per UE is K
q

∏K
i=1 r i. This indicator is

proposed to compare the product of all the UE’s throughput which is equivalent to the NBS

objective function (
∏K

i=1 r i).
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Fairness Index: Except the mean throughput, another criterion to evaluate the allocation

policy is the fairness index. It is used to present the data-rate difference among the UEs.

The fairness can also be explained that the UE do not want the other UEs have higher data

rate than itself. We use the Jain’s fairness index [JCH84] to evaluate the fairness for UEs.

It is expressed as:

τ(r1, r2, ..., rK) =
(
∑K

i=1 r i)2

K
∑K

i=1(r i)2
. (5.48)

A fairness index value ranges from 1
K (worst case) to 1 (best case). It reaches the maximum

when all UEs have the same throughput.

5.6.3 Design of Experiments

In Section 5.7, we show that our RB NBS algorithms have better performance than other

channel oriented algorithms and our approximated methods reduce the complexity but

do not affect too much accuracy. Subsection 5.8 covers fairness related results and we

introduce the reference algorithms which we use.

Channel oriented algorithms

Algorithms Subsection Complexity
Exhaustive RB NBS Subsection 5.5.1 O(2K−1)
(Iterative) RB NBS Subsection 5.5.2 O(K2)

Parallel RB NBS Subsection 5.5.3 O(K2/Q)
Log Scale RB NBS Subsection 5.5.4 O(K)

Mixed RB NBS Subsection 5.5.5 the bestO(K), the
worst O(K2/Q)

Table 5.1 Algorithm enumeration

Algorithms Criterion
Maximum Throughput (MT) maxi SINRi

Best Channel (BC) maxi ||Gi||2

Proposed RB NBS maxi ai||Gi||2

Table 5.2 Channel oriented algo-
rithm development: decision crite-
rion

As we were inspired by the Maximum Throughput (MT) algorithm (Subsection 3.2.1).

What we stress here is a difference between its approach and the one of our algorithms.

The core idea of the series of channel oriented algorithms is to use the highest capacity

RB to transmit data. The MT allocates RBs according to their SINR Value. Our RB NBS

method makes description allocation according to the channel matrix norm weighted by

compensation factors ai which are introduced to counterbalance a harmful influence of

path-loss upon the channel quality.
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Naturally, the beneficial impact of those factors upon the RB NBS method performance

poses into question. For this reason we propose a reference algorithm based exclusively

upon the channel quality, the Best Channel (BC) method (Section 5.3). In other words, the

BC method works as it is the RB NBS algorithm with all compensation factors set to one.

Table 5.2 gives the decision criteria for the three algorithms mentioned, the two reference

ones being discussed below in a more detailed way.

The MT algorithm allocates the RBs to the UE whose SINR is the highest and always

favors the center UEs. Indeed, our RB NBS algorithm was derived from MT but with

consideration not only to the channel quality but also path-loss as well, which are both

components of SINR.

To be able to judge the positive impact of compensation factors, we confront our

algorithm with its simplified version, BC algorithm. To increase the channel efficiency for

the cell edge UEs whose path-loss is exponentially increasing, the BC algorithm allocates

the RBs to these UEs which benefit from the highest ||Gi||2. Nevertheless, this condition is

not sufficient to guarantee a satisfactory throughput for UEs on the cell edge. Compared

the RB NBS based algorithms with the BC, the edge UEs have the same probability to get

the RBs (i.e. all ai = 1), but their average RB capacity is much lower than that of center

UEs. On the other hand, our channel oriented algorithms perform a balanced RB allocation

by weighting the channel quality by a compensation factor ai. We remind to the reader that

the decision of the allocation of RB m to UE i will be taken according to ai||Gm
i ||

2. Table

5.2 summarizes the decision parameter taken by each of these algorithms. We show that

in simulations the computation cost of ai brings an excellent performance of our RB NBS

algorithm.

Reference algorithms for throughput and fairness validation

We compare the proposed RB NBS algorithms with the other well-known optimal algorithms

focusing upon throughput and fairness.

In Chapter 3, we have introduced the EXP Rule algorithm [SS02], the game theoretic

algorithm max-min [RC00], and subcarrier NBS algorithm [HJL05] in the general OFDMA

system. The well known EXP Rule is proven to be throughput-optimal [SS02]. With the

use of simulations, we confirm that it has the best arithmetic mean throughput among the

non-game theory algorithms.

The max-min algorithm is the best fairness algorithm because the higher data-rate UEs

will transfer its allocated RB to the lower data-rate UEs to increase the minimum throughput

UE. This leads all the UEs to have the same level of data-rate.
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The subcarrier NBS algorithm works very well in the subcarrier allocation problem

[HJL05]. We explained the difference of subcarrier allocation in a general system and the

RB allocation in the LTE downlink in Section 5.4. Actually, the general OFDMA system

offers a large number of subcarriers and every UE is allocated to some subcarriers in order

to satisfy the algorithm’s demand at each time-slot. In contrast, the LTE downlink channel

is made up of limited number of RBs and the optimization of the RB allocation algorithm’s

objective is not done for each time-slot separately but for a period which contains hundreds

of time-slots.

To have a relevant reference in the LTE downlink system, we modify the Han’s NBS

algorithm to make it allocate the RB instead of subcarriers. This algorithm optimizes the

product of all UEs’ instantaneous data-rate in each TTI.

Our goal is to show that our RB NBS algorithm offers a geometric throughput as good

as that obtained with throughput-optimal algorithms and guarantees an excellent fairness

factor at the same time.

5.7 Confrontation of Proposed Methods

The exact method (Exhaustive RB NBS) gives the optimal result but does it at an excessive

complexity cost. In other words, the heuristic methods (Subsections 5.5.2, 5.5.3, 5.5.4)

reduce the complexity but their results are sub-optimal.

First, we compare the exhaustive and the iterative RB NBS algorithms. To offer a wider

outlook of our algorithm’s performance, we also use in our experiments two other channel

oriented allocation schemes, the classical MT algorithm and the BC algorithm which we

developed especially for evaluation purposes.

As comparisons with results obtained with the exact method are limited to instances

whose size is small, we pursue by comparing our algorithms between them. Before doing

this we note that our conjecture concerning a linear approximation of compensation factors

can be observed in simulations.

5.7.1 Exhaustive and Iterative RB NBS

The exact method obviously has the best theoretical performance, but because of its high

complexity, we cannot use it for instances with many UEs. We thus compare its results with

the iterative RB NBS method proposed in Subsection 5.5.2 for instances with several UEs

only. This iterative method converges on each iterative step and reduces the complexity

without losing too much accuracy.
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Fig. 5.5 compares the geometric mean throughput for the MT and BC algorithms with

our proposed exhaustive and iterative RB NBS methods, depending on the number of UEs.

From this figure we can conclude that our exact and iterative RB NBS algorithms have

nearly the same performance when the number of UE grows from 3 to 8. On the other

hand, their average geometric mean throughput is much better than that of the BC and MT

(see in Section 5.6.3) algorithms. This shows that:

1. as our proposed methods were designed to optimize NBS, the geometric mean

throughput they achieve is better than the one of the reference algorithms,

2. the iterative RB NBS method has good performance compared with the exhaustive

method as the geometric mean throughput is only 1–2% less than the exact results.

Looking at Fig. 5.6 we naturally find that the MT and BC algorithms have a higher

arithmetic mean throughput because they can allocate more RBs to the highest SINR UEs

which have lower path-loss. Our algorithm does not aim at maximizing the throughput but

finds a trade-off between the channel efficiency and the NBS.

We now compare the throughput obtained for each UE with these four algorithms. Fig.

5.7 gives the geometric throughput depending of UE index indicating the path-loss. It

shows that both exhaustive and iterative RB NBS methods give lower throughput to the

cell center UEs but higher throughput to the cell edge UEs. This is the main thrust of our

methods: to allocate more RBs to the edge UEs in order to increase the product of each

UE’s throughput. Both the MT and BC schemes give obviously better throughput to the

cell center UEs because they have a better SINR which means higher probability to get

the RB. In contrast, they give a very poor throughput to the cell edge UEs which have less

opportunity to get the RB.
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From the results exhibited in the confrontation of our methods with the reference

algorithms, we conclude that our objective is achieved as cell edge UEs obtain a highest

throughput at the cost of a lower but reasonable global throughput.

According to the simulations, the MT algorithm finds the RB with the highest capacity,

which leads to allocate more RBs to the cell center UEs, because they have lower path-loss

and thus, higher average SINR. The BC algorithm does not care about the path-loss and

offers the same opportunity of RB allocation for each UE, but the edge UEs get RB of lower

capacity than the centrally situated UEs because of the path-loss. For this reason, the

center UEs have higher average throughput than the edge UEs. Our NBS RB algorithm

also allocates the RBs to the best channel quality UEs as the MT and BC algorithms do, but

compensation factors introduced make the edge UEs’ probability to get the RB increase in

order to guarantee their throughput.

5.7.2 Conjecture Validation

In Subsection 5.5.4, we formulated Conjecture 5.5.1 that the values of compensation

factors ai are in a linear relationship with log Li. To validate it experimentally, we will firstly

estimate the factor ai with the approximation method we formulated in Subsection 5.5.4,

and compare the results with their values computed by the iterative method in Subsection

5.5.2. We verify below that Conjecture 5.5.1, which allows us to simplify the computations,

may be observed in simulations for these UEs groups for which a path-loss range is narrow.



94 Channel Oriented Algorithms

We divide UEs in a cell into four teams, the population of 25% UEs who have the lowest

path-loss are noted as Team 1, the 25%–50% UEs are Team 2, the 50%–75% are Team

3, the rest 25% UEs are Team 4. We name the first two teams as the cell center groups,

the Teams 3 and 4 as the cell edge groups. In the edge groups the path-loss gradient is

already small. After doing this we compare compensation factors ai obtained in the cell

edge groups with the iterative and our log scale approximation RB NBS methods.

In Fig. 5.8, the x axis represents the path-loss Li expressed in dB, which is equal to

the relative relation of log Li − 10 log10 Li =
10 log Li
log10 . The y axis represents the computed

ai values. We put in this figure compensation factors ai computed with the iterative

and log scale methods. We observe that the difference between approximated and exact

compensation factors is small. Indeed, the relative difference between them is in the range

of [0.5%, 3%], the average difference being less than 2%.

We conclude that Conjecture 5.5.1 holds in our experiments and argue that the log

scale approximation offers a very satisfying solution when the range of path-loss is narrow.

5.7.3 Influence of Parallel Treatment and Linear Approximation

We consider a scenario with a large number of UEs in order to compare parallel group and

log scale approximation algorithms with the iterative RB NBS method.

Using the same setup of UEs in Section 5.7.2, we will first compute compensation factors

ai with the iterative RB NBS method. Second, we compute these factors with the log scale

approximation method only. Finally, we use the parallel computation method to find factors

ai in the cell center group and the log scale approximation for the cell edge group (mixed

RB NBS algorithm).

Fig. 5.9 shows that these methods have same performance in terms of average geometric

throughput. The throughput for iterative method is only nearly 1–2% higher than the

mixed method which has much smaller complexity.

5.7.4 Conclusion

Our RB NBS algorithms experience higher geometric mean throughput than the classical

channel oriented scheme, MT, and the reference BC algorithms. Because our RB NBS

algorithms increase the edge UEs throughput to improve the fairness, a part of the RB

capacity is lost for the reason of edge UE’s path-loss. This leads to lower the arithmetic

mean throughput below the one obtained with the MT and BC algorithms.
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On the other hand, with the computation of compensation factors, the RB NBS family

algorithms have much higher geometric throughput than the BC algorithm which may be

seen as the RB NBS with trivial compensation factors, ai = 1.

From the result of Section 5.7.2 and 5.7.3, we conclude that the approximated solutions

of our algorithm have also very good performance and Conjecture 5.5.1 may be applied to

estimate the compensation factors.

5.8 Comparison of Mixed RB NBS with Reference Algo-

rithms

Our intention is to study the behavior of the proposed methods compared to the EXP Rule

and other game theory algorithms in order to bring out properties like reached fairness

and throughput (see Subsection 5.6.3).

5.8.1 Throughput Evaluation

Fig. 5.10 compares the geometric mean throughput obtained for EXP Rule, max-min,

subcarrier NBS and one of our RB NBS schemes. Among the different variants we developed,

we use here the iterative method to compute the ai factors when the number of UEs is less

than 20, and for more UEs, we apply the parallel computation in the center groups and the

log scale approximation in the cell edge groups (the mixed RB NBS method).
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The reader may observe this figure that the geometric mean throughput of our scheme

is more than 10% higher than the one of EXP rule, 12–15 % higher than the subcarrier NBS

algorithm, and much higher than the max-min method.

In contrast to the subcarrier NBS algorithms, our work expands the allocation from

a time-slot to several time-slots. This property is adapted to the characteristics of the

limited number of available RBs. Because a UE’s data transmission is not restricted in each

time-slot, it can stop transmitting in some time-slots (a few milliseconds) and transmit the

data when the channel returns to a good condition — this return does not last too long in

the fast-fading channels. This kind of allocation improves the channel efficiency, so the RB

allocation improves channel capacity compared with the subcarrier’s allocation method. As

we analyzed in Subsection 3.2.3, the max-min is an algorithm which focuses more on the

fairness than the channel efficiency, which leads to lower data-rate.

We now compare the performance of our proposed scheme with the reference algorithm

in the four teams which are described in Section 5.5. Fig. 5.11–5.14 present performance

of the UEs with different listed algorithms in the cell center and on the cell edge.

In Team 1, the EXP Rule must allocate the RBs depending on their capacity. As the

central UEs have lowest path-loss and highest SINR, their RB capacity is highest. For

this reason, the EXP Rule traditional algorithm gives the highest average throughput as

illustrated in Fig. 5.11.

Because the objective of our scheme is to find an approximated solution for the NBS,

our geometrical mean throughput per UE has a more significant improvement. For the EXP

Rule, because the edge UEs’ RB capacity is obviously lower than the centre one, their data

rate is much lower. For this reason, the product of all UEs’ average throughput is less than

that the ones obtained by the other algorithms. When all compensation factors ai are equal,
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our algorithm means to choose the UEs who has the best channel quality ||Gi||2 as the BC

algorithm does.

In Figs 5.11–5.14, we observe throughput obtained for different teams. When the UEs

are farther from the cell center, their RB capacity is lower but our proposed algorithm

guarantees the allocation chance of higher path-loss UEs, so the average throughput does

not decrease significantly.

On the contrary, the EXP Rule allocates the RB on the basis of RB capacity which

decreases with path-loss, so the UE’s performance is not as good as our proposed scheme

when the distance to the e-NodeB is large.

The max-min throughput algorithm has the same average throughput from the cell

center to the cell edge, because its mechanism guarantees that all the UEs have the same

throughput When a UE has higher throughput, we can allocate some of its allocated RBs to

the other UEs to increase the group’s minimum throughput.

From Figs. 5.10–5.14 we can conclude that our RB NBS scheme’s performance is the

best among other algorithms because it is proven as a global optimal. Simulations show

that our algorithms have a very good channel efficiency and guarantee fairness at the same

time. Indeed, the UE gets the RB when its channel is good and a distance compensating

factor ai increases the cell edge UE’s throughput to maximize the NBS product.

5.8.2 Fairness Index

Our RB NBS algorithms have better performance in terms of throughput than the other

algorithms. Now we look at them from a fairness point of view.
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Fig. 5.15 presents the fairness index of the MT algorithm, subcarrier NBS and RB NBS

algorithms. The MT algorithm does not consider fairness but only the channel efficiency

(see Section 5.7.3). It represents a category of efficiency oriented algorithms. The max-min

mechanism is to allocate the RB to UE whose data-rate is less than the others, so the

different UE’s data-rate converges to the same value. According to the Eq. (5.48), we

naturally find that its fairness index converges to 1.

The subcarrier NBS algorithm has the same fairness index as our RB NBS algorithm,

because both of them all have the same objective function. As we increase the available

allocated resource from the subcarrier in each time-slot to the RBs in hundreds of time-slots,

this means that the UEs can pick up the highest capacity RBs in these TTIs. For this reason,

the average RB capacity increases in our NBS RB allocation scheme. Fig. 5.15 confirms

that the MT algorithm the best average throughput but it suffers from a poor fairness index.

This means that some UEs are allocated more RBs and some UEs do not have enough

chance to get the transmitted RBs. We observe that the max-min algorithm have the highest

fairness index (≃ 1) and this fact guarantees that all the UEs converge to the same average

data-rate.

For the RB NBS algorithm, we find an excellent balance between the fairness and

the achieved throughput. They allocate more RB to the cell edge UEs to increase their

throughput, but every UEs get its allocated RBs when its channel is in the best condition.

Its average throughput does not decrease significantly while its fairness is not far from the

max-min algorithm.
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5.8.3 Conclusion

From the comparison of the geometric mean throughput with the reference algorithms,

our RB NBS algorithms have an excellent performance. In the zone close to the e-NodeB,

the EXP Rule algorithm may have higher throughput but in the other areas, our RB NBS

algorithms obviously benefits from a higher throughput.

The max-min throughput algorithm is the most fair algorithm but it loses too much

channel efficiency. Our algorithms give higher throughput and a good fairness index

compared to the other channel oriented algorithms.

5.9 Conclusions and Perspectives

In this dissertation, we focus on the downlink resource block allocation problem for LTE

systems.

Traditional algorithms propose a resource block allocation algorithm based on the RB

capacity in order to optimize the overall system data rate and highly unfair as UEs with bad

channel condition achieve very low data rates. In contrast, the fairness algorithms balance

the throughput between UEs either without taking into account the channel quality or

without maximizing efficiency. Our resource allocation proposition consists in maximising

the overall system throughput while ensuring the fair resource allocation among UEs. It is

based on the cooperative game theory, more precisely speaking, on the Nash Bargaining

Solution (NBS).

The main principle of our method, called RB NBS algorithm, is to counterbalance the

channel determination due to the path-loss by compensation factors in order to increase the

probability of having an RB by UEs suffering from the poor channel quality. To obtain an

optimal result for the NBS perspective, the other algorithms allocate more RB to a UE when

its average data rate is low, and the channel quality is not so important on this condition.

Our solution chooses another approach. The edge UEs have a higher probability to get

RBs as the procedure comparing the channel quality takes into account the compensation

factors we introduced.

Because the exact computation of compensation factors cannot be done due to their

exponential complexity, we propose four heuristic schemes instead. The first heuristic,

called (iterative) RB NBS, treats the allocation in a greedy manner with a square complexity,

and gives similar results as the exact method for a small number of UEs. To reduce the

numerical complexity of the iterative approach, we propose to compute the compensation

factors ai by group of UEs in which the ratio of ai/ak(i ≠ k) remains constant. For this third
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variant parallel RB NBS, the complexity is thus divided by the number of groups. Finally,

in the fourth method, called Log scale RB NBS, we observe in the data-rate expression,

only log Li(di) and we make the conjecture that the values of ai have a linear relationship

with log Li. This simplifies the ai computation as only the first and last factors have to be

computed and the complexity becomes linear. The last method called mixed RB NBS is the

combination of the two last one depending on the UE position in the cell. Compensation

factors are computed either with iterative method for center group of UEs or with Log Scale

approach for edge groups.

As we proposed several heuristics to compute the solution and reduce the numerical

complexity, a particular attention was paid to their experimental evaluation. We established

two main axis of performance analysis: comparison with channel oriented methods and

comparison with reference algorithms aiming throughput or fairness. Three performance

criteria were evaluated in simulations: arithmetic throughput, geometric throughput seen

as the NBS objective function and fairness index.

In this dissertation we hypothesized that channels are of SISO type. With this assumption,

||G||2 verifies the exponential distribution model. With MIMO (Multiple-input Multiple-

output) channel, it would be a real challenge as ||G||2 is distributed according to a χ2

law whose complexity is too high to be computed efficiently. Its complexity increases

exponentially with the number of MIMO antennas, we will introduce the statistic method

inspired by the econometric to find the approximated solutions with good accuracy. Let us

notice that the estimation of L(di) from the SINR history is not compromised as the mean

of ||G||2 equals to number of elements of G.

Our solution is also able to be applied in the LTE uplink system which utilizes SC-FDMA

(Single-Carrier Frequency-Division Multiple Access) technique, therefore, we will modify

our method to incorporate it in the distributed NBS system.



Chapter 6

Conclusion and Perspectives

6.1 Conclusions

The core of the RB allocation schemes proposed in this dissertation is to increase the channel

efficiency. We reached this goal by exploiting the following directions.

• Interference Management: an RB allocation scheme cooperating with the Beam-

forming technique.

• Equal Opportunity: the BC (Best Channel) algorithm which may be seen an advanced

version of Round-Robin.

• Economical Utilization Maximization: the RB NBS allocation algorithm which can

maximize the product of each UE’s data rate.

We summarize our results concerning these three axes.

Interference Management

In the existing allocation solutions, the algorithm designers always assumed that the channel

capacity is a given parameter and the allocation scheme is based upon this hypothesis. We

believe, however, the channel capacity is a feedback of the resource allocation, because when

the channel is allocated, a lot of signal process techniques are applied on the communication

channels and interference channels, and this process obviously changes the channel capacity.

As we have shown in Chapter 4 this dissertation, a smart allocation policy can increase

the channel (or RB) capacity by improving the effect of Beamforming technique. If we

allocate the RBs on the same frequency to a "good" group of UEs, the improvement of
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Beamforming technique can increase the average RB capacity significantly (more than 10%

in our simulations).

Equal Opportunity

Traditionally, the attribution of RBs to UEs is made upon the channel quality basis only: an

RB is allocated to a UE for which this RB has the highest SINR. This solution favours the

cell center UEs as they always have a high SINR because of a low path loss. Cell edge UEs’

path loss may be ten thousand times of a cell center UE. In our work we take advantage of

the fact that the channel quality is composed of two parts: the fading part (a varying in

time part) and the path loss (a part which does not depend on time).

The fast fading channel obeys a random distribution which is characterized by a high

variability in time. Our idea is to compare the various part of the channel, not the path loss

part.

According to the Round-Robin allocation algorithm, its principle is to allocate the RBs

to a UE with the same share because every UE pays the same for the radio resource and

they have equal rights to use the RB. Our modified version in Section 5.3 respects this rule.

Consequently, all UEs have the equal opportunity to get the RB, and all the UEs transmit

the messages when they reach their best channel condition.

Economical Utilization Maximization

After discussing the performance-first and fairness-first allocation algorithms, we designed

an RB allocation algorithm to maximize the economical utility in Chapter 5. This work is

developed from the idea of the BC algorithm, we compare the channel’s various part with a

compensation factor, and this factor is calculated to maximize the value of NBS function.

Differing with the BC algorithm, complexity of computing the compensation factors is

an NP hard problem, we propose four heuristic methods to reduce the complexity. From

the simulations we can find that the improvement is significant.

In most algorithms, a trade-off is found to improve a part of the performance, for

example, decrease the throughput to reduce the delay, decrease the throughput of some

UEs to increase the throughput of the other UEs. Our work improves the performance of

all the UEs by increasing the average RB capacity.
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6.2 Future Work

• Computational Improvement

As we address an NP-hard problem, algorithms which may solve it in reasonable time

are heuristic algorithms. In this thesis we worked on the channel represented by the

Rayleigh model. We would like to pursue our algorithmic work by proposing heuristic

methods to solve our problem with more realistic channel model (χ2 distribution

model) dedicated to the MIMO architecture in the game theoretic resource allocation

schemes.

• Distributed Allocation

We work on the centralized algorithm and the e-NodeB has the CSI information for

all the UEs. As the channel information for the entire network can be unknown by

the system, we plan to develop a distributed game theoretic algorithm to maximize

the system economical utility.

• Uplink Allocation Schemes

In the LTE uplink system, the network uses the SC-FDMA protocol and this protocol

introduces one more constraint upon the frequency allocation: RBs allocated to a

UE have to be on adjacent frequencies. The algorithm we proposed in this thesis can

be modified to satisfy this supplementary constraint. One of the possibilities which

could be considered here is a modification of the Hungarian method.
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Appendix A

Simulator Programming

A.1 Introduction

In this chapter we introduce our further developments on the open source simulator LTE-

Sim [PGB+11a], we developed the MIMO channel and Beamforming module to complete

our simulation.

In the previous chapter, we have introduced some well designed resource allocation

algorithms, the scientists and engineers need the experiments to evaluate them which costs

too much. The simulation is a low cost tool to evaluate the network and easily compare its

performance in different scenarios.

The most important mobile communication equipment vendors have implemented

their own business simulators [SGMJE06, MWI+09, BIPR11]. Moreover, other simulators,

developed in academia-industrial corporations, can be purchased using a commercial

license, and their source codes are not available so it is not possible to modify. The Matlab-

based LTE simulator has been proposed in [MWIB09], implementing a standard compliant

LTE downlink physical layer with Adaptive Modulation and Coding (AMC), multiple UEs,

MIMO transmission and scheduler. Unfortunately, it does not consider relevant aspects of

LTE simulation, such as realistic applications, a complete LTE protocol stack, and multi-cell

environments with uplink flows. In [IWR10], a system level simulator for LTE networks

has been proposed as a supplement of the previous one, in order to support cell planning,

scheduling, and interference. However, it does not support a complete LTE protocol stack,

uplink flows, and bearer management.

LTE-Sim is an open source simulation platform destined to simulate LTE scenarios

[PGB+11a].
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A.2 LTE-Sim Package

LTE-Sim has been conceived to simulate uplink and downlink scheduling strategies in multi-

cell/multi-users environments taking into account UE mobility, radio resource optimization,

frequency reuse techniques, AMC module, and other aspects very relevant for industrial

and scientific communities to test enhanced techniques for improving 4G cellular networks

such as new physical functionalities, innovative network protocols and architectures, high

performance scheduling strategies and so on. LTE-Sim is freely available under the GPLv3

license [gpl07]. LTE-Sim can simulate several types of services such as VoIP, video and

CBR (Constant Bit Ratio). More services can be added if necessary. This is an important

factor for modeling multi-service scenarios which is indispensable in LTE. The MAC and

PHY layers are well structured, they are modeled by following 3GPP specifications.

Because of these advantages, we choose it as the simulator in our work. We also create

several scenarios appropriate to validate the method we designed.

The LTE-Sim does not offer, unfortunately, either a model of the physical layer or the

Beamforming technique. We thus completed LTE-Sim by implementing the MIMO channel

and the Beamforming technique.

We will introduce our modification in the Section A.3 and A.4.

A.3 Modification of Multiple Channel Model

In the original LTE-Sim, the authors focus on the basic structures of the LTE network and the

MAC layer, and just develop the SISO (Single-input-single-output) channel. Thanks to the

well design of the LTE-Sim, the channel between the e-NodeB and the UEs are independent

with the other modules, we can rewrite the model without drastic revision.

When a PHY instance has to send packets on a set of sub-channels, it calls the method

Channel::StartTx of a proper channel object (i.e., the downlink channel for the e-NodeB

and the uplink channel for the UE), passing a list of packet to send and the transmission

power. Channel::StartTx handles packet transmission in two consecutive steps. It first

calculates, for each attached physical device, the channel variation and the path-loss. Then,

it forwards packets to all physical devices attached to it and calls the reception procedure.

A.3.1 Path-loss

We have introduced the path-loss in Chapter 2. There are typically three types of signal

attenuation which depend on the signal propagation properties for UEs which are located
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near the eNodeB (Type 1), or in urban area (Type 2), or in an area full of obstacles (Type

3). To express this diversity in our simulation model, we use these three types of path-loss

function available in LTE-Sim [PGB+11a] to represent the UEs real condition:

• Type 1: L(d) = 24+ 45 log10(d + 20)

• Type 2: L(d) = 85.6+ 34.1 log10 d

• Type 3: L(d) = 114.5+ 37.6 log10 d

Following the approach given in [PGB+11a], for the cell center UEs, whose d is less than

300 meters, we choose Type 1 as the path-loss function; for the other UEs, half of them are

randomly chosen as Type 2 and the other half UEs corresponds to Type 3.

A.3.2 MIMO Channel

Communication Channel

We create a two dimensional vector to save the channel matrix GNr ,Nt
, where Nt presents

the number of transmit antennas, and its Nr presents the number of received antennas.

As we introduced in Chapter 2, the MIMO channel can be expressed by a matrix, and

each element g of the matrix G present a channel from a transmit antenna and a received

antenna, the number of the Matrix element presents the the number of MIMO channels

from the transmitter and receiver.

Because all the channels have their own path, the value of each element of each element

are independent. We suppose all the channels the fast-fading [SLA11] channel in our work,

the g is supposed to be a zero-mean complex Gaussian random variable with unit variance.

We use the std::normal_distribution<double> distribution (0.0,1.0) to

generate the channel factor, and repeat them nr nt times to generate the matrix.

When the signal arrives at the UE side, the receiver uses a Hermitian transpose matrix

of the channel G to decode the signal, the decoded signal is G∗G = ||G||2, where we use

the G∗ to present the conjugate transpose of a matrix G.

The received signal experience the channel variation and path-loss, we can calculate

the SINR by the formula:

Γ =
Pr

σ0 + I
=

Pt ||G||2/L(d)
σ0 + I

=
Pt ||H||2

σ0 + I
(A.1)

where Pr is the received signal power and Pt presents is signal power at the transmitter,

the H presents the channel factor with path-loss.
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As the communication channel between the e-NodeB and the UE is changed into the

MIMO mode, the interference channels modules in LTE-Sim are also need to be written.

Interference Channel

As same as the communication channel module, the receiver receives the neighbouring

cells signal on the same frequency. The interference channels between the UE and the

neighbouring cells are also composed by two parts, the channel variation presented by the

channel matrix and the path-loss.

The interference signals come from all the neighbouring cells, when a UE is located in

LTE-Sim, we can calculate the distance from the UE and e-NodeBs of all the other cells,

and get the interference channel path-loss LI .

When the neighbouring cell signal is received, it is processed as same as the commu-

nication signal computation because it is impossible to distinguish. In our module, the

mathematical presentation is that the interference signal equals to
∑

k ||G
∗Gk||/Li, where k

stands for all the neighbouring cells and Gk is the interference channel matrix between the

UE and the neighbouring cells.

After the SINR is calculated, we store this value for the next step.

A.4 Interference and Beamforming Technique

In our thesis work, we create a cooperation allocation framework associated with RB and

beamforming technique in order to limit the interference. As this technique is not available

in LTE-Sim, we add the Beamforming module in the PHY instance .

In mathematical presentation, the Beamforming technique is equivalent to multiply

a Beamforming vector on the channel matrix which we has explained in Chapter 2. We

modify the phase of the received signal to increase the sum of the signal power.

From the the previous subsection, we know the channel factor gis a complex number,

the absolute value of g means the signal strength variation and the argument of g means

the phase variation of a signal when it transmits through this channel.

The Beamforming technique modifies the phase of the signals, we introduce the Beam-

forming technique by an example:

Suppose there are two MIMO channel g1 = a1 + b1i and g2 = a2 − b2i, all the a· and b·
are positive. The beamforming technique modify the phase of the received signals, but do

not change the absolute value of the channel, we defy four Beamforming vectors:
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• [1, 1]: does not change the relative phase of two signal, the sum of the two signal is

(a1 + a2) + (b1 − b2)i

• [1,−1], changes 180° of the second signal, the sum of the two signal is (a1 − a2) +
(b1 + b2)i

• [1, i] , changes 90° of the second signal, the sum of the two signal is (a1+b2)+(b1−a2)i

• [1,−i], changes −90° of the second signal, the sum of the two signal is (a1 − b2) +
(b1 + a2)i

We create the vectors in C++ to reserve the Beamforming vector, after the decoder,

the processed signal changes from ||G||2 to ||Gω||2 where ω presents the Beamforming

vector, and the interference is also decoded from
∑

k ||G
∗Gk|| to

∑

k |ω
∗G∗Gkωk|, where ωk

presents the Beamforming vector from the neighbouring cells. Then the SINR formula are

written as:

Γ =
Pt ||Gω||2/L(d)

σ0 +
∑

k |ω∗G∗Gkωk|
(A.2)

In our new Beamforming module, the scheduler can choose the beamforming vector

during its assignment of the RBs, and the Channel::StartTx can return a new SINR

after the Beamforming vectors are chosen.

A.5 Simulation Settings

In our simulation setup, the bandwidth of the LTE network is 5 MHz and 25 RBs are

available at the same time, which corresponds to the constraints of the PMR network under

study in the SOAPS project [oSp12].
The radius of the cell is 1 km and the UEs are uniformly distributed over the surface of

the cell by using a distribution function of LTE-Sim [PGB+11a].
We perform a series of simulation runs in order to obtain results on a confidence level

α = 0.05. We repeat simulations 100 times, these repetitions are sufficient to calculate the

average value of each performance criterion at the given confidence level.
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