
HAL Id: tel-01293212
https://theses.hal.science/tel-01293212

Submitted on 24 Mar 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Data distribution optimization in a system of
collaborative systems

Ronan Bocquillon

To cite this version:
Ronan Bocquillon. Data distribution optimization in a system of collaborative systems. Op-
erations Research [math.OC]. Université de Technologie de Compiègne, 2015. English. �NNT :
2015COMP2232�. �tel-01293212�

https://theses.hal.science/tel-01293212
https://hal.archives-ouvertes.fr

Par Ronan BOCQUILLON

Thèse présentée
pour l’obtention du grade
de Docteur de l’UTC

Data distribution optimization in a system of
collaborative systems

Soutenue le 16 novembre 2015
Spécialité : Technologies de l’Information et des Systèmes

D2232

Data Distribution Optimization
in a System of Collaborative Systems

Ronan Bocquillon

Sorbonne Universités, Université de Technologie de Compiègne,
CNRS, Heudiasyc UMR 7253

Thèse soutenue le 16 novembre 2015

Jury

Jacques Carlier Professeur des Universités Président
Chengbin Chu Professeur des Universités Rapporteur
Marie-Christine Costa Professeur des Universités Rapporteur
Vincent Jost Chargé de Recherche CNRS Examinateur
Antoine Jouglet Mâıtre de Conférences HDR Directeur
Jérôme Rogerie IBM-Ilog Examinateur

RemerciementsRemerciements

J e souhaite remercier Chengbin Chu et Marie-Christine Costa pour
avoir accepté de rapporter ce manuscrit, ainsi que Jacques Carlier et
Vincent Jost pour avoir participé au jury. Je suis heureux d’avoir pu

leur présenter mes travaux, et j’espère très sincèrement qu’ils ont pris plaisir
à évaluer cette thèse. Je remercie tout particulièrement Jacques, notre Grand
Guru à tous, qui en plus de nous avoir conseillés dans l’étude de complexité
menée en début de thèse, m’a fait l’immense honneur de présider le jury.

Je remercie ensuite Antoine Jouglet pour sa patience et sa disponibilité
durant ces trois années passées en sa compagnie. Chargé de TD en recherche
opérationnelle, en programmation orientée objet, en programmation logique,
en programmation par contraintes, puis responsable d’un projet de recherche
sur le job shop, et enfin directeur de thèse passionnant, il aura été à tous les
étages de ma formation utcéenne. Dans chacune de ses missions, sa pédagogie
excelle, son dévouement est complet, et ses qualités humaines... simplement
indiscutables. Mon aventure universitaire se serait sans aucun doute arrêtée
trois ans plus tôt sans Antoine. Je tiens d’ailleurs à m’excuser auprès de son
épouse Delphine et de leurs enfants pour les nombreuses heures dominicales
qu’il a sacrifiées pour moi.

Je remercie également tous les membres du labo avec qui j’ai pu discuter
musique, rando, jeux, recherche et autres, en pause-café, au Minibar, en conf
et ailleurs... Je remercie particulièrement Ada, Benjamin, Benôıt, Bérengère,
Brigitte, Dominique, Dritan, Gérald, Gildas, Laurie, Louise, Lyes, Michael,
Mylène, Nathalie, Paul, Rym, Sabine, Sébastien (docteur ès tikz), Séverine,
Sohaib, Sylvain, Taha, Yves et Véronique. Merci à Ali de toujours œuvrer à
la cohésion du labo !

Je souhaiterais aussi remercier tous ceux avec qui j’ai eu la chance de
partager le pain, le sel, et surtout... les dés ! Je remercie évidemment David,
Esther et Lucien pour les “soirées du jeudi”, les Witness, les frites au gras de
bœuf, les hamburgers, les courses de “patézés”, les Love Letters, le Compact
Curling, et tant d’autres... Encore merci à Antoine de m’avoir fait découvrir
Hypérion, Gazpacho, et l’incontournable Race For The Galaxy. Je m’excuse
platement pour mon manque de sensibilité face aux bonnes bières, ou face à
un bon rouge. Dans cette tâche, je reconnais mon échec (long et difficile est le
chemin de la Force) ! Je remercie en outre Olivier pour Roll For The Galaxy,
et pardonne Charline pour ses très (trop !) nombreuses tergiversations dans
Dungeon Petz. Je remercie les habitués de PlayUTC, en particulier Thibaut,
les GI’12 (Nicolas et Brice), et Vincent (“il fallait bien une cible !”) pour les
interminables parties de Cyclades.

Je remercie chaleureusement mes amis les plus chers : Aurélien et Marie-
Ève, Guillaume, Laura, et notre toute nouvelle star Agathe, Mathilde, Victor
et Élise. Je pense aussi à ceux que j’aurais aimé voir plus souvent : Clément,
Florian et Louise, François et Lucie, Guiz, Martin, Maxime, ... Mes retours
dans le Nord ont toujours été – et seront encore – mon meilleur remède dans
les moments difficiles. Merci à vous pour les nombreuses soirées Tennessee,
les soirées bouffes, les soirées jeux, sans oublier les moments de débauche sur
Command and Conquer, Call of Duty, et cie. Je remercie également tous les
utcéens : Andry, Christophe, Damien, Enguerrand, Ivan, Marianne, Gaëtan,
et la troupe des geeks : Corentin, François, les deux Guigui, Karim, Maxime,
Thibaud, Vivien, et toute la clique.

Je ne remercierai jamais assez ma famille. Mes parents pour avoir cru en
moi jusqu’au bout, pour leur patience et leur soutien, pour les innombrables
corrections orthaugrafiks, et pour tout l’amour qu’ils m’ont témoigné pendant
26 ans. Mes trois frères et sœur, mes éternels modèles, et inépuisables sources
d’admiration. Merci également Christian, Eliane, Gaëtan et Audrey pour les
week-ends sur Paris Cormeilles !

Pour terminer, j’embrasse Tifenn pour tout ce que les mots ne sauraient
exprimer...

AbstractAbstract

Keywords – Operational research · combinatorial optimization ·
dominance rules · constraint programming · delay-tolerant networks ·
systems of systems

S ystems of systems are supersystems comprising elements which are
themselves complex, independent operational systems, all interacting
to achieve a common goal [30]. When the subsystems are mobile and

deployed in extreme environments, these may suffer from a lack of continuous
end-to-end connectivity. To address the technical issues in such networks, the
common approach is termed delay-tolerant networking [20]. Routing relies on
a store-forward mechanism – i.e. data are sent from one system to another,
depending on the communication opportunities that arise when two systems
are close to each other, and stored throughout the network in hope that all
messages will reach their destination.

In this work, we assume that the trajectory of each system (of each node)
is deterministic and perfectly known. Thus, we focus on applications where
it is possible to make realistic predictions about node mobility. This includes
satellite networks (where the trajectory of nodes depends on straightforward
physics) and public transportation systems. The problem is making the best
use of knowledge about possibilities for communication – termed contacts in
the literature – when data need to be routed from a set of nodes to another
within a given time horizon. The fundamental question is “which elements of
the information should be transferred from which node to which node when
contacts occur”. A solution to this problem is termed a transfer plan.

The literature on that topic is limited. Intermittently-connected networks
have been widely addressed with opportunistic [5] and stochastic [3, 14, 34]
approaches, but few papers [2, 27, 29, 35] have considered the deterministic
case (although the applications mentioned above may require such studies).
In particular, in our opinion, the literature already proposes very interesting
models, but still lacks a clear and unified framework for such a situation.

That is why we started the thesis by formalizing the problem. We notably
studied a simplified version – the dissemination problem – where we consider
a single datum, split into several datum units, to be transmitted from a set of
source nodes to a set of recipient nodes. To this end, we consider a sequence
of contacts, i.e. an ordered set of pairs of nodes. During each contact, at most
one datum unit can be transferred from one node called sender, to another
called receiver. We proved that this (combinatorial) problem is strongly NP-
Hard, when there are at least two recipients, or at least two datum units.

Subsequently we worked towards solving this problem. More specifically,
we proposed several dominance rules to reduce its search space. These lead
to deduction algorithms aiming at identifying useless contacts, and necessary
transfers. Typically, a contact that is never leveraged in a dominant solution
can be removed from the instance before the main solving process starts, i.e.
before the enumeration procedure starts. These deductions algorithms, used
as preprocessing procedures, achieved very promising results. Unfortunately
our numerical experiments showed that they were inefficient when combined
with a branch-and-cut algorithm (when they were dynamically used while an
integer linear program modelling the problem was being solved).

Afterwards, to more appropriately use the dominance rules, we proposed a
constraint-programming-based enumeration algorithm (a branch-and-bound
procedure). This significantly outperformed the integer-linear-programming-
based approach mentioned above. Constraint programming was shown to be
particularly adapted to incorporation of ad hoc computations/methods, e.g.
lower bounds, symmetry breaking techniques, nogood recording. It achieved
the best experimental results on a benchmark of self-generated instances.

Finally, we addressed a robust version of the problem. This ongoing work
aims to find robust transfer plans. More precisely, we seek solutions enabling
the datum units to be correctly delivered, even if some transfers fail. This is
based on an adaptation of the constraint programming algorithm developed
beforehand for the case where all failures are disregarded. We actually hope
that our approach will help prediction errors to be more effectively managed
in practice.

Note that this work was presented at three international congress (namely
EURO|INFORMS 2013, MISTA 2013 [9] and BWCCA 2013 [8]). It won the
first MS2T Award during the first international workshop organised by Labex
MS2T [37] in october 2013. A study on the complexity of the dissemination
problem has been published in the international, peered-reviewed, European
Journal of Operational Research [12]. Two other papers have been submitted
to similar journals. These papers [10, 11] deal with more technical aspects –
e.g. dominances rules, constraint programming, etc.

Table of contentsTable of contents

1 The dissemination problem 1

1.1 Challenged internets . 2

1.2 Delay-tolerant networks . 3

1.3 Systems of systems . 6

1.4 The dissemination problem . 8

2 Complexity results 13

2.1 The data transfer problem . 15

2.1.1 The case u ≥ 2 . 16

2.1.2 The case |R| ≥ 2 . 20

2.2 Polynomial-time cases . 27

2.2.1 The one-datum-unit problem (u = 1) 27

2.2.2 The delivery problem (|R| = 1) 29

2.2.3 Upper bounded parameters 34

2.3 Additional results . 36

2.3.1 Arc-disjoint branchings in an evolving graph 36

2.3.2 Arc-disjoint Steiner trees in a digraph 42

2.4 Conclusion . 43

3 Dominance rules, preprocessings, and integer linear
programming 45

3.1 Dominance rules . 46

3.2 Transfer graph . 51

3.2.1 About the transfer graph 52

3.2.2 Transfer graph and subsets of transfer plans 54

3.2.3 Additional graph properties and complex subsets of
transfer plans . 57

3.2.4 Using the transfer graph 59

3.3 Deductive elements . 59

3.3.1 Finding non-minimal transfer plans 60

3.3.2 Elementary reasonings 62

3.3.3 Evaluating min-card and max-card 74

3.4 Solving the dissemination problem 82

3.4.1 Integer linear programming 82

3.4.2 Additional constraints 84

3.5 Computational results . 84

3.5.1 About the benchmarks 85

3.5.2 About the models . 87

3.5.3 About the preprocessing procedures 88

3.6 Conclusion . 95

4 Constraint programming 97

4.1 Modelling the dissemination problem 98

4.1.1 Constraint programming model 98

4.1.2 Branching algorithm 100

4.2 Additional features . 102

4.2.1 Lower bounds . 102

4.2.2 Symmetry-breaking techniques 104

4.3 Computational results . 112

4.3.1 About the model . 112

4.3.2 The additional features 114

4.4 Conclusion . 117

5 Robust optimization 119

5.1 The robust dissemination problem 121

5.1.1 Formal description . 121

5.1.2 Robustness and evolving graphs 122

5.2 Robust optimization . 123

5.2.1 Necessary and sufficient condition for a transfer plan
to be Γ-robust . 124

5.2.2 Enumeration procedure 127

5.3 A constraint programming approach 130

5.3.1 Model . 130

5.3.2 Additional features . 133

5.4 Preliminary results . 138

5.4.1 About the benchmark 138

5.4.2 Numerical results . 140

5.5 Conclusion . 142

6 Conclusion and perspectives 145

Bibliography 151

1The dissemination problem

T he present chapter describes the background and
the issues that led to this thesis. We will first remind
the limits of TCP/IP protocols for networks subject

to frequent partitioning (termed intermittently-connected
networks), and subsequently what leads to the emergence
of delay-tolerant networks (cf. Section 1.1). Then we will
focus on the challenges related to routing data in such a
network. The common approach is to use a store-forward
mechanism – i.e. data are sent from one node to another,
depending on the communication opportunities that arise,
and stored throughout the network in hope that messages
will reach their destination (cf. Section 1.2). These works
being part of a study on systems of systems, we will also
draw the parallel between systems of systems and delay-
tolerant networks (cf. Section 1.3). Finally, with all these
elements in hand, we will formalize the problem that will
be tackled in the following chapters. In short, the problem
is making use of knowledge about possibilities for commu-
nication when data need to be routed from one subset of
nodes to another within a given time horizon (cf. Section
1.4). Thus this study focuses on applications where node
mobility can be reliably predicted.

Contents
1.1 Challenged internets 2

1.2 Delay-tolerant networks 3

1.3 Systems of systems 6

1.4 The dissemination problem 8

1.1 Challenged internets

In 2015 the estimated number of Internet users is about three billions, that
is more than 40% on a world population of seven billions. This uncontested
success relies on the highly popular TCP/IP model [41] (that is the Internet
protocol suite), whose most important elements are the Transmission Control
Protocol and the Internet Protocol. These protocols make key assumptions
regarding the performances of underlying links [20] – e.g. an end-to-end path
exists between a data source and its peer(s), the maximum round-trip time
between any pair of nodes is not excessive, and the end-to-end packet drop
probability is small. These assumptions may not be realistic in networks that
are characterized by many disconnections (due to node mobility), a limited
longevity (especially where end nodes are placed in a hostile environment),
possible lack of large memory (embedded systems), low duty cycle operation
(due to energy saving policies for instance), or using non-reusable protocols
(these do not usually provide a sufficient abstraction for supporting layered
protocol families such as Internet). For instance, disconnections result in the
absence of a long-standing reliable end-to-end path, and thus lead to higher
latency, poor data rate and long queuing time.

Thus, TCP/IP protocols may operate poorly on exotic networks such as
terrestrial mobile networks, wireless sensor networks, vehicle ad hoc networks,
military ad hoc networks, low-Earth-orbit space networks, or interplanetary
networks.

Many solutions were then proposed to adjust classical protocols to such
networks. These include proxy-agent-based approaches, where middle boxes
entities (dedicated nodes) translate classical protocols to specific ones, and
link-repair approaches [13], which attempt to fool the classical protocols into
believing they are operating over a well-performing physical infrastructure.

1.2. Delay-tolerant networks 3

In general, unfortunately, the first approach leads to less reusable solutions
and does not achieve interoperability satisfactorily, while the second increases
the complexity of the architecture too significantly [20].

In fact, the well-known electronic courier service (e-mail) is the closest to
address routing challenges in exotic networks. Flexible naming, asynchronous
message-based operation, error reporting and interoperability are particularly
relevant. E-mail falls short due to its lack of dynamic routing, weakly-defined
delivery semantics, and lack of consistent application interface [20]. Therefore
Fall called for a paradigm shift, and proposed a new delay-tolerant network
architecture that uses messages as the primary unit of data interchange.

This architecture was designed to ensure interoperability, performances,
and security in heterogeneous networks where end-to-end routing paths may
not exist. It operates as an overlay network on top of the transport layer of
disparate regional (permanently connected) networks [20] (the routing is then
hierarchical). A store-forward mechanism is used to address issues related to
disconnections between the regional networks (cf. Section 1.2).

For concrete examples, we refer to the following projects:

• Zebranet [32]: researchers drive through a forest collecting data about
the dispersed zebra population.

• DakNet [38]: a public bus carries a mobile access point between villages
and a large city that has a high-speed Internet connectivity. This way,
the bus provides a disconnected Internet access to isolated villages.

• Bluespots [33]: a small computer on a bus serves as a bluetooth content
distribution station in a university public transit scenario.

• Disaster Monitoring Constellation [44]: a multi-satellite Earth-imaging
low-Earth-orbit sensor network where captured image swaths are stored
onboard each satellite and later downloaded from the satellite payloads
to a ground station.

1.2 Delay-tolerant networks

When end-to-end connections are difficult (impossible) to establish, routing
in a delay-tolerant network relies on a store-forward approach – i.e. messages
are transferred from one node to another, depending on the communication
opportunities (termed contact) that arise, and stored throughout the network
in hope that each message will reach its destination(s).

4 Chapter 1. The dissemination problem

To minimize latency, and/or to maximize the chances of a message being
successfully transmitted to its destination(s), the common solution, termed
epidemic routing [42], is to replicate messages and to spread out many copies
over the network. Of course, this approach is not suitable where nodes have
limited memory capacity, or where links bandwidth is weak.

In fact, when nodes produce contents that are larger than links capacity,
nodes must slice messages in order to transmit fragments (also termed datum
units) separately. This raises the problem of deciding the datum units to be
sent during each contact (whenever nodes meet). Belblidia et al. [5] proposed,
for example, a popularity-based decentralized heuristic (named Prevalence-
Aware Content Spreading) which tends to homogenize the dissemination of
each piece of data in the network.

This problem has exercised an increasing number of researchers over the
last decade. Many [3, 14, 34] proposed some stochastic methods that estimate
different probabilistic metrics to, in fine, decide the data to be transmitted.
Others [35, 27] considered deterministic time evolving networks and proposed
solutions that optimize a given criteria (average delay, robustness, ...). These
approaches focus on applications where it is quite possible to make realistic
predictions about node mobility. Such applications include satellite networks
(where the trajectory of nodes depends on straightforward physics), fleets of
drones, and public transportation systems. For example, Jain et al. [29] built
a scenario with twenty buses, equipped with wireless communication devices,
making scheduled trips inside San Francisco.

These so-called deterministic delay-tolerant networks are the heart of this
thesis. We will address the problem of making use of knowledge about node
mobility when information needs to be routed from sources to destinations
within a given time horizon. The fundamental question is which elements of
the information should be transferred from which node to which node when
contacts occur. A solution to such a problem is termed a transfer plan.

The literature is quite limited at this time. Alonso and Fall [2] proposed
a linear formulation for computing a minimum delay transfer plan (routing)
with respect to a set of nodes, a set of contacts and a set of messages. Links
need to be assigned to data such that every message can travel through the
network from one sender to one receiver. The formulation incorporates some
constraints that are to be found in real applications, e.g. transmission delay
(the length of time required by the sending node to process all the bytes that
are sent), propagation delay (the amount of time it takes for the head of the
signal to travel from the sender to the receiver over the medium concerned),
and buffers capacity (embedded memory). As in most of the works presented

1.2. Delay-tolerant networks 5

below, data transmissions are modelled by unidentified numbers of bytes to
be transferred through a dynamic transportation graph. So the problem can
be seen as a dynamic multi-commodity flow problem [19] in which messages
are commodities, and edge capacities are time-varying. The main drawback
here is that flow conservation constraints forbid duplication of data, making
such approaches unsuitable for multicast and multisource situations.

Alonso’s and Fall’s works were subsequently extended by Jain et al. [29],
who in particular proposed oracles to compare the performances of routing
algorithms in terms of the amount of knowledge of network topology that is
required. For example, the contacts oracle can answer any question regarding
the contacts. Computational tests showed, as expected, that the greater the
available knowledge, the better the performances. Zhao et al. [47] extended
the oracles of Jain et al. to take multicasting protocols into account, e.g.
the membership oracle answer questions related to group dynamics. In this
thesis we consider that all the oracles are available.

Interferences are often neglected (since delay-tolerant networks are often
sparse). In order to address higher-dimensional problems, other assumptions
were proposed. For example, Handorean et al. [26] defined atomic contacts,
where contact durations (as opposed to inter-contact durations) are assumed
to be instantaneous (both propagation and transmission delays are therefore
disregarded). Later, Hay and Giaccone [27] made the same assumptions, and
proposed a remarkable model that they called the event-driven graph. As the
graph is time-independent and polynomial in size with respect to the number
of contacts in the instance, very basic tools from graph theory can be used
to solve numerous problems straightforwardly. So, for example, the authors
solve shortest-path or maximum-flow subproblems to minimize the delay or
to maximize the network throughput.

Other models were proposed. Merugu et al. [35] proposed the space-time
graph, i.e. a graph comprised of several snapshots (instantaneous connectivity
graphs) placed side by side, and interconnected by temporal edges. Ferreira
[22] proposed the evolving graph, an effective combinatorial model capturing
the most significant characteristics of time-varying networks. This model will
be described in Section 1.4.

Finally – for those who want to go further – we refer to the delay-tolerant
networking research group [16], Voyiatzis’ survey [43], and to Zhang’s survey
[46] for their extensive review of the literature. The large number of papers
that they reference, reflects a high level of interest in problems of routing in
delay-tolerant networks.

6 Chapter 1. The dissemination problem

However, to our knowledge, no paper has so far addressed the multisource
case, despite its relevance if resulting algorithms are to be executed on-line,
such as when routing tables need to be refreshed dynamically, following new
predictions on node mobility or connectivity.

1.3 Systems of systems

We actually address problems of routing in delay-tolerant networks to better
identify issues related to communications in systems of systems (these works
being part of a multi-disciplinary scientific program that is focused on Control
of Technological Systems of Systems [37]).

Systems of systems have been defined in many ways. However, a practical
definition may be that systems of systems are supersystems comprising other
elements that are themselves complex, independent operational systems, all
interacting to achieve a common goal [30]. To this end, the systems (satellites,
drones, sensors, ...) exchange information and collaborate.

From a data transportation point of view, when systems are mobile and
intermittently connected, a system of systems can be considered as a delay-
tolerant network comprised of several heterogeneous systems. Every system
is characterized by:

• the capacity of its buffer, which quantifies the amount of bytes that the
system is able to store in its non-volatile memory (when this overflows,
a specific algorithm has to select some datum units to be dropped);

• the life expectancy of its battery, which limits the activity of the whole
system for a given period;

• a set of data that it wishes to store during a given period (or before a
given deadline), and a set of data it already stores;

• and some transmitters (e.g. Bluetooth and/or IEEE 802.11 devices).

Transmitters are communication devices (interfaces) that enable the systems
to collaborate and share data, by making opportunistic use of the possibilities
for communication (contacts) that arise when two entities are close enough
to each other. Every contacts is characterized by:

• the time interval during which the link is active;

• its transmission delay – the length of time required by the sending node
to process all the bytes that are sent (the delay caused by the bit-rate,
also known as the bandwidth of the link);

1.3. Systems of systems 7

• and its propagation delay – the length of time it takes for the signal to
travel from the sender to the receiver (this may be significant in some
applications, particularly in extraterrestrial networks where signals may
take several hours to reach their destination, e.g. the end-to-end round
trip time from Jupiter and Pluto to Earth vary between 81.6 and 133.3
minutes, and between 593.3 and 1044.4 minutes respectively, according
to the orbital location of the planets [1]).

Contacts enable elements of a system of systems to collaborate and to route
information from a subset of source nodes to a subset of recipient nodes. Such
a collaboration becomes necessary, for example, where contact durations are
relatively short with respect to the quantity of information to be transferred,
and where, consequently, the complete data cannot be transferred in a single
contact. To tackle this problem, modern protocols subdivide data into several
datum units which are sent in any order to recipient systems [5].

It is worth nothing here that the datum units may be sent to non-recipient
messenger systems whose role is to store and pass on the datum units.

The challenge is to find a valid transfer plan (valid store-forward routing
paths) to transfer data from their sources to their destinations. Some criteria
may have to be optimized, such as:

• the dissemination lengths (the average or the maximum delay);

• the number of contacts that are actually tapped (energy saving policy);

• or the robustness (the impact of network failures on the solution).

In this thesis, we only focus on the first criterion, i.e. the maximum delay is
to be minimized. Note, however, that we will also consider some robustness
constraints in Chapter 5 (at first networks failures will be disregarded).

In Table 1.1 we provide an overview of the constraints to be found in the
literature. In particular, we report the papers which studied these constraints
or, conversely, which neglected them. In the following, we make some of these
assumptions too.

• The network is assumed to be very sparse. Therefore interferences are
disregarded [2, 26, 27, 29, 35, 36, 47].

• Contact durations (as opposed to inter-contact durations) are assumed
to be instantaneous. So both propagation and transmission delays are
neglected – i.e. contacts are atomic [26, 27, 36].

• Buffers [26, 35, 36] and batteries [2, 26, 29, 35, 36, 47] are infinite.

8 Chapter 1. The dissemination problem

[2] [26] [27] [29] [35] [36] [47] our model

uni/multi-cast U U U U U M M multicast
flow yes yes yes yes no

interferences no
atomic contacts yes yes yes yes

buffers yes yes yes yes no (infinite)
batteries yes no (infinite)

Table 1.1 – State-of-the-Art (a short summary).

• We consider one datum, sliced into several datum units. These are then
sent separately [5]. During every contact, at most one datum unit can
be transferred, from one node to another. In this way, we do not follow
the traditional flow-based approach [29, 36, 47], and every datum unit
can have multiple sources and multiple destination. In fact, we consider
a many-to-many – as opposed to one-to-many [36, 47] – approach.

1.4 The dissemination problem

Let us now formally define our problem.

First we consider a set N = {1, 2, . . . , n} of n interacting mobile systems,
termed the nodes, and one datum D = {1, 2, . . . , u} of u datum units. Each
datum unit (also termed “unit”) represents a unitary, indivisible fragment of
data. Each node i ∈ N possesses a subset Oi ⊆ D of units from the outset.
Subset R ⊆ N defines the nodes wishing to obtain the datum D (i.e. all the
datum units) inside the given time horizon. For the sake of clarity, the term
source nodes (or “sources”) will refer to the nodes i ∈ N |Oi �= ∅. The nodes
in R are termed the recipient nodes (or “recipients”).

Remark 1.1

To simplify the formulation of this problem, we assume that the recipient
nodes need to obtain all the datum units. Note, however, that the results
described in this manuscript can all be generalised (with minor updates)
to the case where the recipients only need a subset of the units.

1.4. The dissemination problem 9

To ensure the dissemination of the datum D, nodes may exchange datum
units whenever they are close enough to communicate (such a communication
opportunity is termed a contact). We assume that the contacts are perfectly
known, or easily predictable at any time, since the trajectory of each node is
deterministic. Thus, we consider a sequence of contacts σ = {σ1, σ2, . . . , σm}
of m ordered pairs of N 2. During contact (s, r) ∈ σ, the sending node s can
send to the receiving node r at most one datum unit that it already possesses
(either from the outset or as a result of previous contacts). Once the contact
has occurred, node r also possesses unit k. Below nodes sc and rc denote the
sender and the receiver in contact σc ∈ σ, i.e. σc = (sc, rc).

Remark 1.2

To represent an undirected contact [i, j], we can consider a first directed
contact (i, j), followed by a reverse contact (j, i). Similarly, to represent
a longer contact (i, j), during which several datum units might be sent,
we can duplicate the contact (one contact per possible transfer).

A transfer plan φ : {1, 2, 3, . . . ,m} �→ {∅, {1}, {2}, . . . , {u}} is a function
where φ(c) designates the datum unit received by node rc during contact σc.
If φ(c) = ∅, then nothing is transmitted during contact σc. From now on Tφ

denotes the target set {∅, {1}, {2}, . . . , {u}} of φ. Each transfer plan φ has
a corresponding set of states Ot

i ⊆ D, defined for each node i ∈ N , and each
time index t ∈ {0, 1, . . . ,m}, such that:

(1) ∀i ∈ N , O0
i = Oi,

(2) ∀c ∈ {1, 2, ...,m}, Oc
rc = Oc−1

rc ∪ φ(c),
(3) ∀c ∈ {1, ...,m}, ∀i ∈ N\{rc}, Oc

i = Oc−1
i

(1.1)

Thus each state Ot
i contains the datum units received by node i during the

first t contacts of sequence σ (in addition to the datum units that node i has
possessed from the outset). The transfer plan is valid where nodes transmit
only datum units that they possess, i.e.

∀σc ∈ σ, φ(c) ∈ {∅} ∪ {{k} | k ∈ Oc−1
sc } (1.2)

A valid transfer plan φ has a delivery length λi(φ) for each node i ∈ N ,
corresponding to the smallest time index t at which node i possesses all the
units k ∈ D, i.e. λi(φ) = min {t ∈ {0, 1, . . . ,m} |Ot

i = D}. If this index does
not exist, then it is assumed that λi(φ) = ∞. The dissemination length λ(φ)
of the transfer plan corresponds to the smallest time index t at which all the
recipient nodes are delivered, i.e. λ(φ) = maxi∈R {λi(φ)}.

10 Chapter 1. The dissemination problem

The dissemination problem is to find a valid transfer plan φ minimizing
the dissemination length λ(φ). The problem is NP-Hard in the strong sense,
but it can be polynomially solved if u = 1 or |R| = 1 (cf. Chapter 2). It can
be seen as the offline version of the problem tackled by Belblidia et al. [5].

Evolving graphs

An instance of this problem can be described by an evolving graph [22], that
is a multigraph whose vertices represent nodes, and whose arcs represent
connections between these nodes. An arc is labelled with time intervals that
indicate when the link is really active. To appropriately take account of time
constraints, the notion of path is replaced by the notion of journey, that is
an ordered set of arcs having increasing labels. For our requirements, every
contact is thus represented by one arc whose label is given by its position in
the sequence σ.

In Figure 1.1, [σ1 = (1, 6), σ3 = (6, 5)] is a journey (because 3 ≥ 1). This
represents the fact that node 6 can forward the unit it receives from node 1
at time 1 to node 5 at time 3. Nonetheless, [σ13 = (5, 6), σ1 = (1, 6)] is not a
journey (since 1 < 13). More generally, given a datum unit k ∈ D, a journey
[(i, u), . . . , (v, j)] between a source node i ∈ N | k ∈ Oi and a recipient j ∈ R
represents a store-forward routing to transfer unit k from i to j.

Therefore, as will be shown in Chapter 2, a set of arc-disjoint branchings
(in the evolving graph) that are rooted on the source nodes of a given datum
unit k ∈ D, and such that the whole covers all the recipient nodes, defines a
store-forward routing to disseminate unit k. For example, in Figure 1.1, the
bold arcs define a set of branchings to disseminate datum unit 1 from nodes
1 and 2 to all the other nodes. Thus, solving the dissemination problem can
be seen as finding such a set of arc-disjoint branchings for each datum unit
in an evolving graph (see the branchings with bold and doubled arcs).

1.4. The dissemination problem 11

(a) an instance of the dissemination problem⎧⎨
⎩

N = R = {1, 2, 3, 4, 5, 6};D = {1, 2};
O1 = {1, 2};O2 = {1};O3 = O4 = O5 = O6 = ∅ ;
σ = [(1, 6), (6, 1), (6, 5), (1, 3), (3, 5), . . . , (5, 6)]

(b) a valid transfer plan⎧⎨
⎩

φ(4) = φ(5) = φ(7) = φ(10) = {1};
φ(1) = φ(3) = φ(6) = φ(8) = φ(11) = {2};
φ(2) = φ(9) = φ(12) = φ(13) = ∅

(c) the corresponding evolving graph [22]

6 5

1

{1, 2}

3

2
{1}

4

8

1

4

10

9

5

7

12

13

6

2

11

3

Figure 1.1 – The dissemination problem (an example).

2Complexity results

A s mentioned in Section 1.4, we are going to prove
the “dissemination problem” is NP-Hard in the strong
sense (cf. Section 2.1). Thereafter, we will show that

this problem can be solved in polynomial time when there
is only one datum unit, or only one recipient, or when the
number u of datum units and the number |R| of recipients
are lower than a given constant (cf. Section 2.2). Besides
this, knowing whether there exist k mutually arc-disjoint
branchings in an evolving graph – or whether there exist
k mutually arc-disjoint Steiner trees in a digraph without
circuit – will be shown to be NP-Complete in the strong
sense (cf. Section 2.3).

Contents
2.1 The data transfer problem 15

2.1.1 The case u ≥ 2 . 16

2.1.2 The case |R| ≥ 2 20

2.2 Polynomial-time cases 27

2.2.1 The one-datum-unit problem (u = 1) 27

2.2.2 The delivery problem (|R| = 1) 29

2.2.3 Upper bounded parameters 34

2.3 Additional results 36

2.3.1 Arc-disjoint branchings in an evolving graph . . . 36

2.3.2 Arc-disjoint Steiner trees in a digraph 42

2.4 Conclusion . 43

To our knowledge, apart from a few papers on evolving graphs [7, 23, 45],
there is no previous work attempting to determine the theoretical complexity
of routing problems in deterministic delay-tolerant networks. In this chapter
we therefore study the complexity of the dissemination problem. We aim to
determine the frontier between easy and hard cases.

In Section 2.1, we will show that the general case is NP-Hard in the strong
sense. Thereafter, in Section 2.2, we will show that it is polynomially solvable
where u = 1 or |R| = 1. Finally, in Section 2.3, we will prove the complexity
of two problems also related to delay-tolerant networking.

2.1. The data transfer problem 15

2.1 The data transfer problem

In this section, we show that the problem, called the data transfer problem,
of finding a valid transfer plan such that ∀i ∈ R, Om

i = D (all the recipients
receive all the units) is strongly NP-Hard. It also leads to the NP-Hardness of
the dissemination problem (i.e. the optimization version, where the delivery
length is minimized).

Let us consider the decision version of the data transfer problem, denoted
henceforward as Dt:

Problem 2.1 – the data transfer problem

Given a set N = {1, 2, . . . , n} of n nodes · a subset R ⊆ N of recipient
nodes · a sequence σ = (σ1, . . . , σm) of m pairs (i, j) ∈ N 2 with i �= j ·
a set D = {1, 2, . . . , u} of u datum units · for each node i ∈ N , a subset
Oi ⊆ D of datum units initially possessed by node i – is there a valid
transfer plan φ : {1, . . . ,m} �→ {∅, {1}, . . . , {u}} | ∀i ∈ R, Om

i = D ?

The data transfer problem (Dt) is obviously in NP, since it can be decided
in polynomial time whether a transfer plan φ is valid and such that ∀i ∈ R,
Om

i = D. Below we show the problem is strongly NP-Complete when u = 2
and |R| is not upper bounded, or conversely when |R| = 2 and u is not upper
bounded. To achieve this, we reduce a problem known as being strongly NP-
Complete to the studied cases.

In [25], Garey and Johnson give a comprehensive guide to the theory of
NP-Completeness, and provide an extensive list of NP-Complete/NP-Hard
problems. In this chapter, we consider the 3-Satisfiability problem, referred
to below as 3-Sat, cf. [25], page 259. 3-Sat is strongly NP-Complete and is
stated as follows:

Problem 2.2 – 3-Satisfiability

Given a set X = {x1, x2, . . . , xp} of p variables · a set C = {c1, . . . , cs}
of s clauses over X such that, for each c ∈ C, |c| = 3 – is there a truth
assignment that satisfies C ?

16 Chapter 2. Complexity results

2.1.1 The case u ≥ 2

We now show that 3-Sat is reducible in polynomial time to the special case
of Dt where u = 2 (Dt2u).

Theorem 2.1

The data transfer problem is strongly NP-Hard for u ≥ 2.

Polynomial-time reduction

Consider an instance of 3-Sat (cf. Problem 2.2). From this instance we build
an instance of Dt2u as follows.

Datum – We have u = 2 and then D = {1, 2}.
Nodes – We consider the following nodes.

• With each clause cj ∈ C, j ∈ {1, 2, . . . , s}, is associated a node ωj ∈ N
in Dt2u with Oωj

= {2}. The datum units possessed by node ωj will
correspond to the logical value of clause cj, in such a way that clause
cj will be considered to be true if node ωj possesses datum unit 1, and
to be false otherwise. In this way, all clauses are false at the beginning
(since the associated nodes possess only unit 2).

• With each variable xi ∈ X, i ∈ {1, 2, . . . , p}, are associated 2 nodes li
and l̄i ∈ N in Dt2u with Oli = Ol̄i = ∅. The datum units received by
these nodes will respectively correspond to the logical values of literals
xi and x̄i. The literal among {li, l̄i} which will store datum unit 1 will
be considered to be true, while the other one (which will store datum
unit 2) will be considered to be false. Initially all literals are considered
to be undetermined (the associated nodes possess no datum units).

• In Dt2u is also created a node α ∈ N with Oα = {1, 2}. This node is
the only one that initially possesses the two datum units. It will enable
the logical value of each literal to be given by providing unit 1 only to
the nodes associated with literals which have to be true, and then unit
2 only to the nodes associated with literals which have to be false.

• The recipients are R = {ωj | j ∈ {1, . . . , s}} ∪ {li | i ∈ {1, . . . , p}}.

Therefore, exactly n = s+ 2p+ 1 nodes have been created.

2.1. The data transfer problem 17

Sequence of contacts – The sequence of contacts σ = σ1 ◦ σ2 ◦ σ3 is built
from the concatenation of 3 subsequences:

• subsequence σ1 is built such that for each i ∈ {1, 2, 3, . . . , p}, we have
σ1
i = (α, li) and σ1

p+i = (α, l̄i) (hence |σ1| = 2p);

• subsequence σ2 (of size 3s) is built such that for each j ∈ {1, 2, . . . , s},
considering that cj = {lj1, lj2, lj3}, we have:

for k ∈ {1, 2, 3}, σ2
3(j−1)+k =

{
(li, ωj) if ljk = xi
(l̄i, ωj) if ljk = x̄i

;

• and subsequence σ3 is built such that for each i ∈ {1, 2, . . . , p}, we have
σ3
i = (l̄i, li) (hence |σ3| = p).

Thus, a sequence of exactly m = 3p+ 3s contacts has been created.

For example, let us consider the following instance of 3-Sat:

• p = 3 and X = {x1, x2, x3};
• s = 2 and C = {c1, c2};
• c1 = {x1, x̄2, x̄3} and c2 = {x̄1, x̄2, x3}.

The associated instance for Dt2u is (cf. Figure 2.1):

• u = 2 and D = {1, 2};
• n = 9, N = {ω1, ω2, l1, l2, l3, l̄1, l̄2, l̄3, α}, and R = {ω1, ω2, l1, l2, l3};
• Oω1 = Oω2 = {2}, Oli = Ol̄i = ∅ for all i ∈ {1, 2, 3}, and Oα = {1, 2};
• m = 15, σ = σ1 ◦ σ2 ◦ σ3 with:

– σ1 = [(α, l1), (α, l2), (α, l3), (α, l̄1), (α, l̄2), (α, l̄3)];

– σ2 = [(l1, ω1), (l̄2, ω1), (l̄3, ω1), (l̄1, ω2), (l̄2, ω2), (l3, ω2)];

– σ3 = [(l̄1, l1), (l̄2, l2), (l̄3, l3)].

From a valid transfer plan to a truth assignment satisfying C

Suppose that there exists a valid transfer plan φ such that ∀i ∈ R, Om
i = D

for the Dt2u instance defined above. From this transfer plan, we can build
a truth assignment that satisfies C as follows.

The logical values of all literals are set during subsequence σ1. Consider
the pair of nodes {li, l̄i} (i ∈ {1, 2, . . . , p}) associated with the pair of literals
{xi, x̄i}. First, during subsequence σ1, node li has an initial contact with α
during which it receives at most one unit of D. The situation is identical for

18 Chapter 2. Complexity results

α

l2

l̄2

l̄1

l1

l3

l̄3

ω1

ω2

σ2
1

σ2
4

σ2
5

σ2
2

σ2
6

σ2
3

σ3
1

σ3
2

σ3
3

{1, 2}

{2}

{2}

σ1
1

σ1
4

σ1
2

σ1
5

σ1
3

σ1
6

Figure 2.1 – The Dt2u instance associated with
the 3-Sat instance given on page 17.

node l̄i. Then, during subsequence σ3, a contact occurs between nodes l̄i and
li. Since li ∈ R, the transfer plan is such that Om

li
= D. Therefore, the only

way for such a transfer plan to be obtained is where, during the contacts of
σ1, li obtains one datum unit of D and l̄i obtains the other one. Next, during
the contacts of σ3, each node l̄i gives its unit to node li. This process ensures
that following subsequence σ1 (at time t = 2p):[

O2p
li

= {1} and O2p

l̄i
= {2}

]
or

[
O2p

li
= {2} and O2p

l̄i
= {1}

]
In the first case, xi is set to true (and x̄i is set to false). In the second case,
xi is set to false. At the end of the sequence σ1, exactly one of the literals in
{xi, x̄i} is then considered to be true, and the other false.

2.1. The data transfer problem 19

Let us now show that this assignment satisfies C. During the contacts of
sequence σ2, nodes {li, l̄i | i ∈ {1, 2, . . . , p}} can only transfer the datum unit
they possess to the nodes {ωj | j ∈ {1, 2, . . . , s}} associated with the clauses
they are related to. During sequence σ2, each node ωj, j ∈ {1, . . . , s}, related
to clause cj, is in contact with 3 nodes. These represent the 3 literals which
compose the clause. There are therefore 3 possible ways for each node ωj to
retrieve datum unit 1 (meaning that cj is true). After sequence σ2, all nodes
ωj, j ∈ {1, . . . , s} are such that 1 ∈ O2p+3s

ωj
= Om

ωj
= D, since ωj ∈ R. Thus

there is a truth assignment for C.

In Figure 2.1 the bold arcs correspond to the contacts where datum unit 1
is transmitted (conversely, the doubled arcs correspond to the contacts where
datum unit 2 is transmitted). It gives rise to the truth assignment x1 = true,
x2 = true, and x3 = true, which satisfies C = {{x1, x̄2, x̄3}, {x̄1, x̄2, x3}}.

From a truth assignment satisfying C to a valid transfer plan

Let us assume there exists a truth assignment that satisfies C. We can build
a corresponding valid transfer plan as follows.

• Subsequence σ1: For each i ∈ {1, 2, . . . , p},{
φ(i) = {1} and φ(p+ i) = {2} if xi is true (x̄i is false);
or φ(i) = {2} and φ(p+ i) = {1} otherwise.

• Subsequence σ2: For j ∈ {1, 2, 3, . . . , s}, considering that {lj1, lj2, lj3}
are the 3 nodes associated with the literals of clause cj,

∀k ∈ {1, 2, 3},
{
φ(|σ1|+ 3(j − 1) + k) = {1} if ljk stores unit 1;
φ(|σ1|+ 3(j − 1) + k) = ∅ otherwise.

If clause cj is satisfied, at least one node ljk can transmit datum unit 1
to ωj. Therefore, after subsequence σ2, every node ωj, j ∈ {1, 2, . . . , s},
possesses all the datum units, i.e. Om

ωj
= D.

• Subsequence σ3: For each i ∈ {1, . . . , p}, we set:

φ(|σ1 ◦ σ2|+ i) = O2p

l̄i

Recall that l̄i possesses the datum unit that li needs. Therefore every
node li, i ∈ {1, 2, . . . , p}, possesses all the datum units after σ3.

Every node i ∈ R possesses all the datum units. Thus the resulting transfer
plan is such that ∀i ∈ R, Om

i = D.

20 Chapter 2. Complexity results

2.1.2 The case |R| ≥ 2

We now show that 3-Sat is reducible in polynomial time to the special case
of Dt where |R| = 2 (Dt2r). For this purpose we adapt the proof of Even,
Itai and Shamir [19] showing that the two-commodity integral flow problem
is strongly NP-Complete. The significant difference is that instead of dealing
with units of flow, we are now dealing with identified datum units which can
be duplicated (i.e. conservation constraints no longer hold).

Theorem 2.2

The data transfer problem is strongly NP-Hard for |R| ≥ 2.

Polynomial-time reduction

Consider an instance of 3-Sat (cf. Problem 2.2, page 15). From this instance
we build an instance of Dt2r as follows.

Datum – We set u = s+1 and D = {0, 1, . . . , s} (exceptionally, for the sake
of simplicity, datum units are numbered starting with 0).

Nodes – We consider the following nodes.

• For i ∈ {1, 2, . . . , p}, let ai and bi be respectively the number of occur-
rences of xi and of x̄i in the clauses of C. With every variable xi ∈ X,
i ∈ {1, 2, . . . , p}, is associated set

Li = {βi, l
1
i , l

2
i , l

3
i , . . . , l

2ai
i , l̄1i , . . . , l̄

2bi
i , εi} ⊆ V

of 2(1 + ai + bi) nodes in Dt2r (cf. Figure 2.2). Initially, these nodes
possess no units – i.e. ∀x ∈ Li, Ox = ∅.

• With each clause cj ∈ C, j ∈ {1, 2, . . . , s}, is associated a node Cj ∈ N
in Dt2r with OCj

= ∅ (cf. Figure 2.3).

• Moreover four nodes α1, α2, ω1 and ω2 ∈ N are created in Dt2r with
Oα1 = Oω2 = {0}, Oα2 = Oω1 = {1, . . . , s} (cf. Figures 2.2 and 2.3).

• Finally the recipient nodes are R = {ω1, ω2}.

Therefore, exactly n = 4+ s+ 2
∑p

i=1 (1 + ai + bi) = 4 + 2p+ 7s nodes have
been created (since there are three literals per clause).

2.1. The data transfer problem 21

βi

l1i

l̄1i

l2i

l̄2i

l3i

l̄3i

l4i

l̄4i

l 2ai−1
i

l̄ 2bi−1
i

l 2ai
i

l̄ 2bii

εi

α2

Figure 2.2 – The set of nodes Li (associated with
variable xi), node α2, and the corresponding contacts.

Sequence of contacts – The sequence σ = σ1 ◦ σ2 ◦ σ3 ◦ σ4 of contacts is
the concatenation of several subsequences built as follows.

• Subsequence σ1 = σ1,1,1 ◦ σ1,2,1 ◦ σ1,1,2 ◦ σ1,2,2 ◦ · · · ◦ σ1,1,i ◦ σ1,2,i ◦ · · · ◦
σ1,1,p ◦ σ1,2,p is built such that for i ∈ {1, 2, . . . , p},

– we have σ1,1,i
j = (α2, l

2j−1
i) with j ∈ {1, 2, . . . , ai};

– and σ1,2,i
j = (α2, l̄

2j−1
i) with j ∈ {1, 2, . . . , bi} (cf. Figure 2.2).

Therefore σ1 contains
∑p

i=1 (ai + bi) = 3s contacts.

• Next σ2 is itself the concatenation of several subsequences.

Let

σ2,i = [(βi, l
1
i), (l

1
i , l

2
i), (l

2
i , l

3
i), . . . , (l

2ai−1
i , l2aii), (l2aii , εi),

(β1, l̄
1
i), (l̄

1
i , l̄

2
i), (l̄

2
i , l̄

3
i), . . . , (l̄

2bi−1
i , l̄2bii), (l̄2bii , εi)]

be a subsequence of 2(ai + bi + 1) contacts associated with variable xi,
and built as follows (cf. Figure 2.2):

– If ai = 0 (literal xi never occurs in C) then contact (βi, εi) occurs,
else contact (βi, l

1
i) occurs, followed in succession by the contacts

(lji , l
j+1
i), j ∈ {1, 2, . . . , 2ai − 1}, and finally by contact (l2aii , εi).

– Subsequently, if bi = 0, contact (βi, εi) occurs, else contact (β1, l̄
1
i)

occurs, followed in succession by the contacts (l̄ji , l̄
j+1
i), j ∈ {1, . . . ,

2bi − 1}, and finally by contact (l̄2bii , εi).

22 Chapter 2. Complexity results

The overall sequence σ2 is such that (cf. Figure 2.3):

σ2 = [(α1, β1)] ◦ σ2,1 ◦ [(ε1, β2)] ◦ σ2,2 ◦ [(ε2, β3)] ◦ . . .
. . . ◦ σ2,p−1 ◦ [(εp−1, βp)] ◦ σ2,p ◦ [(εp, ω1)]

First a contact occurs from α1 to β1. Thereafter each subsequence σ2,j,
j ∈ {1, . . . , p}, is successively applied with a contact (εj, βj+1) between
each pair of sequences (σ2,j, σ2,j+1), j ∈ {1 . . . , p−1}. Finally a contact
occurs from εp to ω1.

Therefore σ2 contains 2 + p− 1 +
∑p

i=1 2(ai + bi + 1) = 2 + 3p+ 6s− 1
contacts (recalling that there are three literals per clause).

• Subsequence σ3 is built as follows. For the xth occurrence of literal xi
(literal x̄i), there is one contact from l2xi (l̄2xi) to the node Cj associated
with the clause cj in which xi (x̄i) occurs.

In Figure 2.3, contacts (l21, C2), (l̄22, C2) and (l̄
2bp
p , C2) represent the fact

that clause c2 is such that c2 = {x1, x̄2, x̄p}, and such that they are the
1st occurrences of x1 and x̄2, and the (bp)

th occurrence of x̄p in C.

Therefore, subsequence σ3 contains 3s contacts.

• Subsequence σ4 = [(c1, ω2), (c2, ω2), . . . , (cs, ω2)]. Thus subsequence σ4

contains exactly s contacts (cf. Figure 2.3).

In total, a sequence of m = 13s+ 3p+ 1 contacts has been created.

For example, let us consider the 3-Sat instance defined in Section 2.1.1 – see
page 17. The associated instance for Dt2r is (cf. Figure 2.4):

• u = 3 and D = {0, 1, 2};
• n = 4 + 2p+ 7s = 24 and N = {α1, α2, ω1, ω2, C1, C2, β1, β2,
β3, ε1, ε2, ε3, l

1
1, l

2
1, l̄

1
1, l̄

2
1, l̄

1
2, l̄

2
2, l̄

3
2, l̄

4
2, l

1
3, l

2
3, l̄

1
3, l̄

2
3 };

• Oα1 = Oω2 = {0}, Oα2 = Oω1 = {1, 2}, Oi = ∅ for all other nodes;

• m = 15 and σ = σ1 ◦ σ2 ◦ σ3 ◦ σ4 with:

– σ1 = [(α2, l
1
1), (α2, l̄

1
1), (α2, l̄

1
2), (α2, l̄

3
2), (α2, l

1
3), (α2, l̄

1
3)];

– σ2 = [(α1, β1), (β1, l
1
1), (l11, l

2
1), (l21, ε1), (β1, l̄

1
1), (l̄11, l̄

2
1), (l̄21, ε1),

(ε1, β2), (β2, ε2), (β2, l̄
1
2), (l̄12, l̄

2
2), (l̄22, l̄

3
2), (l̄32, l̄

4
2), (l̄42, ε2),

(ε2, β3), (β3, l
1
3), (l13, l

2
3), (l23, ε3), (β3, l̄

1
3), (l̄13, l̄

2
3), (l̄23, ε3), (ε3, ω1)];

– σ3 = [(l21, C1), (l̄22, C1), (l̄23, C1), (l̄21, C2), (l̄42, C2), (l23, C2)];

– σ4 = [(C1, ω2), (C2, ω2)].

2.1. The data transfer problem 23

α1

{0}

α2

{1, . . . , s}

C1

. . .

. . .

. . .

C2

. . .

Cj

. . .

. . .

. . .

. . .

Cs
. . .
. . .

. . .

ω2

{0}

ω1

{1, . . . , s}

Figure 2.3 – The Dt2r instance built from a 3-Sat instance.

24 Chapter 2. Complexity results

α1{0}

α2{1, 2} ω2 {0}

β10

l11

l21

l̄11

l̄21

ε1

β2

l̄12

l̄22

l̄32

l̄42

ε2

0

0

β3

l13

l23

l̄13

l̄23

ε3

0

ω1 {1, 2}
0

1

2

C1

C2

1

2

1

2

Figure 2.4 – The Dt2r instance associated with
the 3-Sat instance given on page 17.

2.1. The data transfer problem 25

From a valid transfer plan to a truth assignment satisfying C

Suppose that there exists a valid transfer plan φ such that ∀i ∈ R, Om
i = D

for the Dt2r instance defined above. From this transfer plan, we can build
a truth assignment that satisfies C as follows.

Node ω1 needs to obtain datum unit 0, because initially it possesses only
units {1, 2, . . . , s}. This can only occur where unit 0 is transmitted from α1

to β1 during contact (α1, β1), and then from β1 to ω1 using some contacts of
subsequence σ2. Thus, for i ∈ {1, . . . , p}, unit 0 is transmitted through:{

[(βi, l
1
i), (l

1
i , l

2
i), (l

2
i , l

3
i), . . . , (l

2ai−1
i , l2aii), (l2aii , εi)]

or through [(β1, l̄
1
i), l̄

1
i , l̄

2
i), (l̄

2
i , l̄

3
i), . . . , (l̄

2bi−1
i , l̄2bii), (l̄2bii , εi)]

This means that at least one of these two subsequences is devoted exclusively
to transmitting unit 0 (no other unit can then transit through these nodes).
Unit 0 next uses contact (εi, βi+1) if i < p, or contact (εi, ω1) if i = p.

Node ω2 needs to obtain the subset {1, 2, . . . , s} of datum units, because
initially it possesses only datum unit 0. Each unit must therefore be obtained
from a different node Cj, since there are exactly s contacts from these nodes
to ω2. The datum unit k which is transmitted during contact (Cj, ω2) comes
initially from node α2. It has transited either through{

some nodes from l2x−1
i to l2yi (x, y ∈ {1, 2, . . . , ai}, y > x),

or through some nodes from l̄2x−1
i to l̄2yi (x, y ∈ {1, . . . , bi}, y > x),

so as finally to be transmitted to Cj. Note that if datum unit k is transmitted
to Cj through a node l2yi or a node l̄2yi ∈ Li with i > 1, then it cannot come
from a node l2x−1

z or l̄2x−1
z ∈ Lz with 1 ≤ z < i (since datum unit 0 is always

transmitted during contact (εi−1, βi)).

Actually, the path of contacts used to transmit datum unit k to node Cj
makes it possible to identify the literal that makes clause cj true.

• If k is transmitted through nodes from l2x−1
i to l2yi (x, y ∈ {1, . . . , ai},

with y > x), then variable xi is set to true.

• Conversely, if k has been transmitted through from nodes l̄2x−1
i to l̄2yi

(x, y ∈ {1, . . . , bi}, with y > x), then variable xi is set to false.

We should remember that unit 0 has transited using some of the contacts in
subsequence σ2i, and that xi obviously cannot be true and false at the same
time. It should also be noted that the same literal can cause several clauses
to be true. In this case, several units – one per true clause – transit through

26 Chapter 2. Complexity results

nodes of Li, using one disjoint path of contacts per unit. In other cases, none
of the datum units in {1, . . . , s} transits through nodes of Li. It means that
variable xi can be arbitrarily set to true or false.

Given that for each clause cj we have found exactly one literal that makes
cj true, we can therefore conclude that there is a truth assignment for C.

For the previous example, cf. Figure 2.4, datum unit 1 can be transmitted
through contacts [(α2, l̄

1
2), (l̄12, l̄

2
2), (l̄22, C1), (C1, ω2)], while datum unit 2 can be

transmitted through [(α2, l̄
3
2), (l̄32, l̄

4
2), (l̄42, C2), (C2, ω2)] – making x2 = false –

and then making both c1 and c2 true. In addition unit 0 can be transmitted
throughout sequence [(α1, β1), (β1, l

1
1), (l11, l

2
1), (l21, ε1), (ε1, β2), (ε2, β3), (ε2, β3),

(β3, l
1
3), (l13, l

2
3), (l23, ε3), (ε3, ω2)]. Finally x1 and x3 can be set arbitrarily.

From a truth assignment satisfying C to a valid transfer plan

Let us assume there exists a truth assignment that satisfies C. We can build
a corresponding valid transfer plan as follows.

First, unit 0 is transmitted during contact (α1, β1), during every contact
(εi, βi+1) with i ∈ {1, 2, . . . , p− 1} and then during contact (εp, ω1). For each
i ∈ {1, . . . , p}, datum unit 0 is also transmitted through contacts:{

[(βi, l
1
i), (l

1
i , l

2
i), . . . , (l

2ai−1
i , l2aii), (l2aii , εi)] if xi = true ;

or through [(βi, l̄
1
i), (l̄

1
i , l̄

2
i), . . . , (l̄

2bi−1
i , l̄2bii), (l̄2bii , εi)] otherwise.

Note that unit 0 is transmitted through contact (βi, εi) if xi is true and ai = 0
or if xi is false and bi = 0. Since datum unit 0 has been transmitted from α1

to ω1, ω1 possesses all datum units at the end of sequence σ.

In each clause cj, j ∈ {1, 2, . . . , s}, we choose the first true literal.

• Let us suppose that this literal is xi, i ∈ {1, 2, . . . , p}, and that it is the
yth occurrence of literal xi in set C. Datum unit j is transferred during
contacts (α2, l

2y−1
i), (l2y−1

i , l2yi), (l2yi , Cj), and (Cj, ω2).

• Let us now suppose that this literal is x̄i, i ∈ {1, . . . , p}, and that it is
the yth occurrence of literal x̄i in C. Then datum unit j is transmitted
during contacts (α2, l̄

2y−1
i), (l̄2y−1

i , l̄2yi), (l̄2yi , Cj), and finally (Cj, ω2).

In both cases, these contacts cannot have been used to transmit unit 0 since
the contrary would mean that both literals xi and x̄i are true.

All other transfers can be set to ∅. Each unit j ∈ D has been transmitted
from α2 to ω2. Thus the transfer plan is such that ∀i ∈ R, Om

i = D.

2.2. Polynomial-time cases 27

2.2 Polynomial-time cases

In this section, we first show that the data transfer problem can be solved in
polynomial time if u = 1. This specific case is also called the one-datum-unit
problem. Then we show that the data transfer problem can be polynomially
solved if set R = {ω} is a singleton. This specific case is termed the delivery
problem, and is to find a valid transfer plan φ minimizing λω(φ). Finally we
show the case where u and |R| are both constant is also polynomial.

2.2.1 The one-datum-unit problem (u = 1)

In this problem, D = {1} (there is only one datum unit). If there is at least
one transfer plan leading to the dissemination of the whole datum, then there
is at least one optimal transfer plan where, for each contact σc ∈ σ, we have
φ(c) = {1} if Oc−1

rc = ∅ and Oc−1
sc = {1} (if node rc does not possess the unit,

while node sc does). Indeed, there is no advantage to be gained in delaying
the dissemination of the only datum unit. Thus it is sufficient to go through
the sequence of contacts, and to enforce that every node obtains the datum
as soon as possible. This process is summarized in Algorithm 2.1.

In short o[i] represents the current state of node i ∈ N – i.e. o[i] is equal
to {1} if node i possesses the datum, or to ∅ otherwise – while Nd indicates
the current number of recipient nodes which possess the datum. In the first
loop, every element o[i] (∀i ∈ N) is therefore set to Oi, while Nd is initialized
with the number of recipients storing the datum at the outset. In the second
loop, contacts are considered in the order of the sequence. During a contact
σc ∈ σ (from c = 1 to m), the datum is transmitted to node rc if needed and
if possible, i.e. if o[rc] = ∅ and o[sc] = {1}. Of course o[rc], φ(c), and Nd are
updated accordingly. This loop terminates if all recipient nodes possess the
datum (if Nd = |R|), or if the end of sequence σ has been reached. If it stops
while Nd < |R|, then it means the instance is not feasible. Finally the third
loop sets all remaining transfers (if any) to ∅.

It is worth nothing that Algorithm 2.1 runs in O(max(n,m)) time.

Theorem 2.3

The dissemination problem can be solved in O(max(n,m)) time if u = 1
(if there is only one datum unit).

28 Chapter 2. Complexity results

Algorithm 2.1 – Solving the one-datum-unit problem

Require: An instance of the one-datum-unit problem ;
1:

2: # only the sources possess the datum unit from the outset.
3: Nd ← 0 ; λ(φ) ← ∞ ;
4: for i : 1 → n do
5: o[c] ← Oc ;
6: if Oc = {1} and i ∈ R then Nd ← Nd + 1 ;
7:

8: c ← 1 ;
9: while c ≤ m and Nd < |R| do
10:

11: # the recipient node obtains the datum unit if possible.
12: if o[rc] = ∅ and o[sc] = {1} then
13: φ(c) ← {1} ; o[rc] ← {1} ;
14: if rc ∈ R then Nd ← Nd + 1 ;
15:

16: # the transfer is set to ∅ otherwise.
17: else φ(c) = ∅ ;
18:

19: # the procedure stops if every recipient possesses the datum.
20: if Nd = |R| then λ(φ) ← c ;
21: c ← c+ 1 ;
22:

23: end while
24:

25: if Nd < |R| then
26: return “This instance is not feasible.” ;
27:

28: # the remaining transfers are set to ∅.
29: while c ≤ m do
30: φ(c) = ∅ ; c ← c+ 1 ;
31:

32: return φ and λ(φ) ;
33:

2.2. Polynomial-time cases 29

2.2.2 The delivery problem (|R| = 1)

Recall that this problem is similar to the dissemination problem, except that
only one specified node ω ∈ N needs to obtain all the datum units.

Obviously, the delivery problem can be solved in O(max(n,m)) if u = 1
(with Algorithm 2.1). We will now show that the general case is polynomial
as well. To this end, we show that solving the delivery problem is equivalent
to solving max(u,m) separate maximum flow problems.

Theorem 2.4

The dissemination problem can be solved in O((nu+m)max(u,m)) time
when |R| = 1 (when there is only one recipient).

Polynomial-time reduction

Let us consider an instance of the delivery problem. Let μi = |{σc ∈ σ such
that rc = i}| denote the number of contacts where node i ∈ N is the receiver
(note that even a source node may be the receiver of a contact).

We consider a transportation network G = (V,A, cap), built as follows:

• first we add a source vertex src ∈ V ;

• with each datum unit k ∈ D, we associate a vertex dk ∈ V ;

• for each node i ∈ N , we add a set of vertices {i0, . . . , iμi} ⊂ V ;

• ∀k ∈ D, we add an arc (src, dk) ∈ A with capacity cap(src, dk) = 1;

• ∀i ∈ N and ∀k ∈ D – if datum unit k ∈ Oi – we add an arc (dk, i
0) ∈ A

with capacity cap(dk, i
0) = 1;

• ∀i ∈ N , ∀x ∈ {1, . . . , μi}, we add (ix−1, ix) with cap(ix−1, ix) = u;

• for each contact σc = (i, j) ∈ σ – assuming that node i is the receiver
of x contacts before σc – and that σc is the y

th contact where node j is
the receiver – we add an arc (ix, jy) ∈ A of capacity cap(cx, jy) = 1;

• finally we add an arc (ωμω , src) ∈ A with cap(ωμω , src) = u.

For example, let us consider the following instance of the delivery problem:

• n = 4 and N = {1, 2, 3, 4}; u = 2 and D = {1, 2};
• O1 = {1, 2}, O2 = {2} and O3 = O4 = ∅ ; ω = 4, i.e. R = {4};
• m = 5 and σ = [(1, 3), (2, 4), (2, 3), (2, 4), (3, 4)].

30 Chapter 2. Complexity results

src d2

d1 10

20

30 31 32

40 41 42

43

1 1

1

1

1

1

1

1

1
1

1

1

1

1 1

u

u

u

1

1

1

u

u

1

u 2

Figure 2.5 – The transportation network associated
with the given instance of the delivery problem.

The associated transportation network is depicted in Figure 2.5. The arcs of
capacity u model the capacity for each node to store data, whereas the arcs
of unitary capacity represent possible transfers (first to initialize the sources,
and then to model the contacts).

It is worth nothing that the maximum flow on arc (ωμω , src) cannot exceed
its capacity u. The resulting transportation network contains 1 + u+ n+m
vertices and u+

∑
i∈N |Oi|+ 2m+ 1 ≤ (n+ 1)u+ 2m+ 1 arcs.

We show that solving the delivery problem (decision version) is equivalent
to searching for a flow of value u in the associated flow network.

2.2. Polynomial-time cases 31

Proposition 2.1

Given any instance of the delivery problem, there exists a valid transfer
plan such that the recipient node obtains the whole datum if and only if
there exists a flow of value u in the associated flow network.

From a flow of value u to a valid transfer plan

Let us consider a flow f : A �→ D (in the associated flow network) satisfying
capacity and conservation constraints, and such that the flow entering vertex
src is equal to u. A valid transfer plan φ can be obtained as follows.

First we consider the amount of flow from each vertex dk (k ∈ {1, . . . , u})
to each vertex i0 (i ∈ {1, 2, . . . , n}). If f(dk, i0) = 1 then i0 is the vertex that
is considered to be the owner of datum unit k. Each datum unit is considered
to be owned by at most one vertex, since the flow entering vertex dk cannot
exceed 1. From now on, every unit of flow from one vertex to another in the
transportation network is considered as a change of owner for a unit.

We consider the contacts in the order of the sequence. For each contact
σc = (i, j) ∈ σ, let (is, jt) ∈ A be the corresponding arc in the transportation
network – i.e. is ∈ V and jt ∈ V are the nodes such that i has already been
the receiver of s contacts before contact σc, and such that σc is the t

th (t > 0)
contact in which j is the receiver.

• If f(jt−1, jt) = p, then jt becomes the owner of p datum units that jt−1

previously owned. Note that flow conservation constraints ensure that
jt−1 was the owner of at least p datum units. If jt−1 was the owner of
more than p units, the p units whose owner is changing can be chosen
indifferently, e.g. the units with the smallest indices.

• If f(is, jt) = 1, then jt becomes the owner of one datum unit k that is

previously owned (arbitrarily chosen), and we set φ(c) = {k}.
• Finally, if f(is, jt) = 0, then we set φ(c) = ∅.

At the end of this step, note that every datum unit is still considered to be
owned by only one vertex. The process is iteratively applied to each contact
in sequence σ. Thereafter we look at the amount of flow through (ωμω , src).
If f(ωμω , src) = u, then we can conclude that vertex ωμω is the owner of all
the datum units (and thus that the transfer plan is such that node ω obtains
all these datum units during the sequence of contacts).

32 Chapter 2. Complexity results

For example, in Figure 2.5 (cf. instance page 29), the flow corresponds to
the transfer plan φ such that φ(1) = φ(5) = {1} and φ(2) = φ(4) = {2}.

From a valid transfer plan to a flow of value u

Conversely, let us now consider a valid transfer plan φ, solution of the delivery
problem. From the sequence of contacts, and from this transfer plan, we can
compute the states Oc

i of each node i ∈ N after the different contacts σc ∈ σ.
Then we can build the flow function f : A 7→ D as follows.

Initially the flow is null – i.e. ∀a ∈ A, f(a) = 0. Subsequently we consider
vertex ωµω in the transportation network, and we assume that this vertex is
the owner of all datum units. The procedure consists of searching iteratively
for the different owners of each datum unit k ∈ D, until a vertex i0 (i ∈ N)
becomes its owner.

To this end we consider a datum unit k that is initially owned by vertex
is = ωµω . We will assume s > 0 (if this were not the case, the process would
terminate immediately, since ω would never be the receiver in a contact and
would therefore have to own the whole datum at the outset). Let σx be the
sth contact whose i is the receiver, and thus let Ox

i be the set of datum units
possessed by i after contact σx.

• If k ∈ Ox−1
i , then vertex is−1 becomes the new owner of datum unit k,

and f(is−1, is) is incremented by one unit.

• Conversely, if k /∈ Ox−1
i , then node i has received datum unit k during

contact σx. Let j be the sender in this contact, and let t ∈ {1, . . . , µj}
be the number of contacts occurring before σc in which node j was the
receiver. jt becomes the new owner of k, and we set f(jt, is) = 1.

Note that the flow values obtained always respect the capacity constraints
of the flow network. Besides – by setting is = is−1 or is = jt−1 according to
the case – the process can be repeated until unit k is owned by a vertex i0.

At the end of each iteration there is only one owner of datum unit k, and
the change of owner results in an increase in the flow on the arc linking the
new owner to the previous owner (ensuring, this way, flow conservation).

This operation is repeated for all of the units. At the end of this process
we therefore know which vertex i0 is the owner of each datum unit k, and we
set f(dk, i

0) = 1 accordingly. For each dk ∈ D, we set f(src, dk) = 1. Finally
we set f(ωµω , src) = u.

2.2. Polynomial-time cases 33

src d2

d1 10

20

31 32

4∗

1

1

1
1

1
1

1

2

u

1

u

Figure 2.6 –The simplified transportation network associated
with the instance of the delivery problem given on page 29.

In practice the flow network can be simplified by iteratively removing the
vertices that have no successor or no predecessor, and through which the flow
can only be null. Moreover the vertices representing the states of node ω can
be merged into a single node (the resulting vertex ω∗ is the destination of all
arcs entering a vertex ωx, and any arc going out of such a vertex is removed,
apart from the one to src) – cf. Figure 2.6.

Optimizing the delivery length λω(φ)

Node ω needs at least u− |Oω| contacts to receive the whole datum. Thus,
one way of finding a valid transfer plan φ that minimizes the delivery length
λω(φ) is to build the flow network associated with the shortest subsequence of
σ involving u−|Oω| contacts whose node ω is the receiver. If f(ωμω , src) = u,
then the transfer plan φ associated with f is optimal. Otherwise, we complete
the current subsequence of σ in such a way that it involves u − f(ωμω , src)
more contacts with node ω. So a new maximum flow can be computed (note
that in practice the previous flow can be easily transformed to obtain a new
starting flow). The procedure is repeated until f(ωμω , src) = u, or until the

34 Chapter 2. Complexity results

current sequence equals σ. If the procedure stops while f(ωμω , src) < u, then
it means that the instance is infeasible. Using Ford-Fulkerson algorithm [24]
or Edmonds and Karp algorithm [18] to compute the maximum flow of each
transportation network that is considered, the overall procedure can run in
O((nu+m)max(u,m)) time, given that each augmenting path can be found
in O(|A|) time, and that we need to find at most max(u,m) such paths.

2.2.3 Upper bounded parameters

In this section we look at an instance of the dissemination problem in which
both u and |R| are assumed to be upper bounded by given positive constant
numbers K1 and K2, with K1 ≥ u ≥ 2 and K2 ≥ |R| ≥ 2.

We might be tempted to use the same kind of technique as in the previous
section, but as |R| ≥ 2 this is no longer possible. In the case where |R| = 1,
this worked because exactly u units were flowing through the transportation
network, and each unit of flow was interpreted as the ownership of a datum
unit. Note that the datum units did not need to be identified. Now, however,
the datum units might need to be duplicated (in order to be transmitted to
several nodes), which is prohibited by conservation constraints. In addition,
taking one unit of flow per datum unit per recipient is not possible, because
the units of flow are not identified (this could lead to transfer plans in which
a recipient node gets the same datum unit twice).

Nonetheless, by taking one unit of flow per datum unit and per recipient,
we can build Algorithm 2.2.

Theorem 2.5

The dissemination problem can be solved in polynomial time when the
number of units and the number of recipients are upper bounded.

Throughout the procedure, a set of states States is managed, and exactly
|R| copies of each datum unit are considered (because there is never a need
to duplicate a unit more than |R| times). Every state S ∈ States is defined
by a bidimensional array S.o, where S.o[k][z] designates the node owning the
zth (z ∈ {1, . . . , |R|}) copy of unit k ∈ D, and by the transfer plan S.φ from
which this state has arisen.

The procedure is started with only one state S (cf. lines 2–7) in which an
imaginary node 0 owns all copies of all datum units, and where S.φ(c) = ∅,
∀c ∈ {1, 2, . . . ,m}. The ownership of each copy z of each datum unit is then

2.2. Polynomial-time cases 35

Algorithm 2.2 – Solving the dissemination problem

Require: An instance of the dissemination problem ;
1:

2: # computation of the initial state.
3: S ← newState() ;
4: for k ← 1 to u do
5: for z = 1 to |R| do S.o[k][z] ← 0 ;
6: for c ← 1 to m do S.φ(c) ← ∅ ;
7: States ← {S} ;
8:

9: # datum unit copies are distributed to initial owners.
10: for k ← 1 to u do
11: for z = 1 to |R| do
12: # the zth copy of datum unit k is distributed.
13: States′ ← ∅ ;
14: for all S ∈ States do
15: for all i ∈ N | k ∈ Oi do
16: S′ ← copy(S) ; S′.o[k][z] ← i ;
17: add(States′, S′) ;
18: end for
19: add(States, States′) ;
20:

21: # the ownership of unit copies is transferred through contacts.
22: for c ← 1 to m do
23: States′ ← ∅ ;
24: for all S ∈ States do
25: for k ← 1 to u do
26: for z = 1 to |R| do
27: # the ownership of the zth copy of datum unit k
28: # is transferred to rc if possible – i.e. if the current
29: # owner of this copy is sc.
30: if S.o[k][z] = sc then
31: S′ ← copy(S) ; S′.o[k][z] ← rc ; S

′.φ(c) ← {k} ;
32: add(States′, S′) ;
33: if isSolution(S′) then return S′.φ ;
34: end if
35: end for
36: add(States, States′) ;
37:

36 Chapter 2. Complexity results

distributed (cf. lines 9–19) among source nodes i with k ∈ Oi. At the end of
this phase, a node i can own several copies of the same datum unit (so that
this datum unit can be transferred to several other nodes).

Next, the ownership of datum unit copies is transferred through contacts
(cf. lines 21–36). At the end of each iteration c ∈ {1, . . . ,m}, States contains
one state for each possible situation that can arise from contacts [σ1, . . . , σc].
For this purpose a new set of states States′ is computed from the set States
obtained at the end of the previous iteration. For each S ∈ States and each
copy z of each datum unit k, if S.o[k][z] = sc (if a transfer is possible), a new
state S ′ ∈ States′ is created by copying S, and by transferring the ownership
of copy z of unit k to node rc (see S ′.o[k][z]← rc). It corresponds to transfer
φ(c) = {k}, i.e. S ′.φ(c)← {k}. We here assume that S ′ is not considered if
there exists another state with exactly the same ownership matrix (although
not necessarily the same transfer plan). Note that instruction isSolution(S ′)
checks whether all recipient have received the whole datum (this can be done
in polynomial time). If this is the case, the algorithm immediately stops and
returns the computed transfer plan.

Time-complexity – Since the ownership of the zth copy, z ∈ {1, . . . , |R|},
of datum unit k ∈ D = {1, 2, . . . , u} can take n+ 1 values, there are at most
(n+1)|R|u possible states. Therefore the overall algorithm runs in O(mn|R|u)
time – which is polynomial in m and n, since |R| and u are upper bounded
by two positive constant numbers K1 and K2 (of course, this algorithm can
only be used for small values of |R| and u).

2.3 Additional results

In this section, we discuss complementary results arising from what has been
said so far. In particular, it will be shown that knowing whether there exist
k mutually arc-disjoint branchings in an evolving graph – or whether there
exist k mutually arc-disjoint Steiner trees in a directed graph without circuit
– are strongly NP-Complete

2.3.1 Arc-disjoint branchings in an evolving graph

To address this problem, we first remind its statement and classical results for
the more conventional case of directed graphs. Thereafter we show that these
results no longer hold for evolving graphs, and establish that the problem is
actually NP-Complete in this case (we reduce it to Dt).

2.3. Additional results 37

Usual graphs

Let G = (V,A) be a directed multigraph.

• Given t ∈ V , a branching B rooted at t is a subgraph of G such that,
for every vertex v ∈ V , there is exactly one path in B from t to v.

• Given X ⊂ V , δG(X) denotes the set of arcs (i, j) ∈ A such that i ∈ X
and j ∈ V \X – i.e. the arcs “going out” of X. Such a set is commonly
termed a cut in graph theory.

Theorem 2.6 – Edmonds 1972 [17]

There exist k mutually arc-disjoint branchings rooted at t if and only if
for any X ⊂ V such that t ∈ X and X �= V , we have |δG(X)| ≥ k.

Let then
cG(t) = min

{X|t∈X,X �=V }
|δG(X)|

be the maximum number of arc-disjoint branchings rooted at t in G. In fact,
cG(t) can be regarded as the “outwards connectivity” of t – i.e. the minimum
number of arcs that would need to be removed to make at least one vertex
unreachable from t [40]. cG(t) is actually the maximum number of mutually
arc-disjoint paths from t to any other vertex in V . This well-known property
is used by a number of polynomial algorithms that have been developed for
finding k mutually arc-disjoint branchings in a multigraph, such as Shiloach’s
[40] in O(k2|V | × (|V |+ |A|)).

Evolving graphs

As mentioned in Chapter 1, an evolving graph is a theoretical graph model,
first introduced by Ferreira [21], and designed to capture main characteristics
of intermittently connected networks. It is a directed multigraph G(V,A, τ)
whose vertices represent nodes, and whose arcs represent links between these
nodes. τ : A �→ I (I being the set of intervals which can be built over a given
time horizon) indicates the interval on which links can be used. Thus an arc
can represent a contact between two nodes. In its simplest version, τ is such
that τ : A �→ N – i.e. the interval of time during which every link is active is
reduced to a singleton. In this case, a path [a0, a1, a2, ..., az] (aj ∈ A) is such
that ∀j ∈ {0, . . . , z− 1}, we have τ(aj) ≤ τ(aj+1). From now on such a path
is termed a journey.

38 Chapter 2. Complexity results

Surprisingly, unlike usual graphs, knowing whether there exists a strong
connected component of a given size in an evolving graph (when considering
journeys instead of usual paths) is NP-Complete [7]. However, the minimum
spanning trees (rooted at each vertex) in a strongly connected evolving graph
can be polynomially computed. Some other algorithms in the literature can
be polynomially generalized in evolving graphs. These include the search for
foremost journeys (i.e. the journeys with the earliest arrival dates), shortest
journeys (using the smallest number of arcs) and fastest journeys (with the
smallest difference between departure and arrival times) from a source vertex
to all other vertices [45].

We now turn to the problem of knowing whether there exist k mutually
arc-disjoint branchings in an evolving graph. To our knowledge, this problem
has never been investigated.

Note first that Theorem 2.6 no longer holds for evolving graphs. This can
be shown with the following counter-example (cf. Figure 2.7):

• G = (V,A, τ); V = {t, a, b, c, d, e, f}; A = {a1, a2, . . . , a12};
• a1 = (t, a), a2 = (a, c), a3 = (a, e), a4 = (t, b), a5 = (b, c), a6 = (c, d),

a7 = (d, e), a8 = (d, f), a9 = (b, f), a10 = (t, a), a11 = (t, b), a12 = (c, d);

• τ : V 7→ N; ∀i ∈ {1, 2, . . . , 12}, τ(ai) = i;

Proof. We consider root t ∈ V . There are at least two arc-disjoint journeys
from t to any other vertex v ∈ V \{t}, i.e. cG(t) ≥ 2. Now let us show there
does not exist two mutually arc-disjoint branchings rooted at t.

First, let us assume there are two arc-disjoint branchings B1 and B2 rooted
at t. Each branching has exactly 6 arcs. Thus, {B1, B2} has to be a partition
of the set A of arcs. a10 and a11 cannot be in the same branching, otherwise
vertices c, d, e and f could not be reached. Let us assume that a10 ∈ B1 and
a11 ∈ B2. It means that arc a4 ∈ B1, and a1 ∈ B2. The only possible course
of action is to add arc a5 to B1, and to add arc a2 to B2. Then, we have to
put a6 in one branching, and a12 in the other one. If a6 ∈ B1 and a12 ∈ B2,
then a7 and a3 have respectively to be in B1 and B2 (because a3 cannot be
used after a10). Thus, both arcs a9 and a8 can be added in B1, but none can
be added to B2 because a9 cannot be used after a11, and a8 cannot be used
after a12. The same contradiction arises with a10 ∈ B2 and a11 ∈ B1, or with
a6 ∈ B2 and a12 ∈ B1.

2.3. Additional results 39

t

a b

c

de f

1

10 11

4

5

9

2

3
6 12

7 8

Figure 2.7 – This counter-example shows
Theorem 2.6 no longer holds for evolving graphs.

In fact knowing whether there exist k mutually arc-disjoint branchings in
an evolving graph is NP-Complete. To prove this, let us consider the decision
version of this problem, referred to below as Adbeg.

Problem 2.3 – arc-disjoint branchings in evolving graphs

Given an evolving graph G = (V,A, τ) · a root t ∈ V · an integer k with
k ≤ |A|/(|V | − 1) – are there k mutually arc-disjoint branchings
rooted at t in G ?

Theorem 2.7

Adbeg (Problem 2.3) is NP-Complete.

40 Chapter 2. Complexity results

Polynomial-time reduction

Let us show that Dt is reducible to Adbeg in polynomial time. To this end,
we consider an instance of Dt (cf. Problem 2.1, page 15), and we build the
following instance of Adbeg.

Vertices – With each node i ∈ {1, . . . , n} in Dt, we associate a vertex i ∈ V
in Adbeg. Then, with each datum unit k ∈ D in Dt, we associate a vertex
dk ∈ V in Adbeg. Finally, we add a vertex t ∈ V .

Arcs – For each datum unit k ∈ D of Dt, we add one arc (t, dk) ∈ A with
τ(t, dk) = 0 in Adbeg. Then, for each node i ∈ {1, 2, . . . , n} and each datum
unit k ∈ D in Dt – iif. k ∈ Oi – we add an arc (dk, i) ∈ A with τ(dk, i) = 0
in Adbeg. With each contact σc ∈ σ in Dt, we associate an arc (sc, rc) ∈ A
with τ(sc, rc) = c in Adbeg. Finally, for each node i ∈ R = N\R, we add
u arcs (t, i) with τ(t, i) = m+ 1.

An example is given in Figure 2.8. The Dt instance corresponds to the one
of Figure 1.1 (page 11), with the addition of a non-recipient node.

Proof of equivalence

Suppose that there exist a set {B1, B2, . . . , Bu} of u mutually arc-disjoint
branchings in G = (V,A). The only way to reach a vertex i ∈ R from t is
to first use an arc (t, dk) with τ(t, dk) = 0, and then to follow some arcs aj
with 1 ≤ τ(aj) ≤ m. Each branching is then associated with exactly one arc
(t, dk) (there are only u such arcs). Let Bk denote the branching associated
with arc (t, dk).

We can build a valid transfer plan φ for Dt as follows.

• We initially set φ(c) = ∅ for c ∈ {1, 2, . . . ,m}.
• Next, for each branching Bk, k ∈ {1, 2, . . . , u}, and for each arc a ∈ Bk

with 1 ≤ τ(a) ≤ m, we set φ(τ(a)) = {k}. Note that since the different
branchings are mutually arc-disjoint, and since there is exactly one arc
a ∈ A associated with a contact in σ, we never try to set several values
to the same transfer φ(c).

In each branching Bk, and for each i ∈ R, there is a journey [a0, a2, . . . , ax]
such that a0 = (t, dk), a1 = (dk, z) with k ∈ Oz, and for all j ∈ {3, 4, . . . , x},
1 ≤ τ(aj) ≤ m and τ(aj−1) < τ(aj). Consequently it corresponds to a list of
contacts which enable datum unit k to be transmitted from source node z to
node i. Thus, at the end of σ, all i ∈ R are such that Om

i = D.

2.3. Additional results 41

(a) an instance of the data transfer problem⎧⎨
⎩

N = {1, 2, . . . , 7};R = N\{7};D = {1, 2};
O1 = {1, 2};O2 = {1};O3 = O4 = O5 = O6 = O7 = ∅ ;
σ = [(1, 6), (6, 1), (6, 5), (1, 3), (3, 5), . . . , (5, 6), (4, 7)]

(b) the associated Adbeg instance

6 5

1 3

2

4

7

t

d1 d2

8

1

4

10

9

5

7

12 14

13

6

2

11

3

0

0 0

0 0

m
+ 1 =

15

Figure 2.8 – An instance of the data transfer
problem (Dt) and the corresponding Adbeg instance.

42 Chapter 2. Complexity results

Now, suppose there is a valid transfer plan φ. For each datum unit k ∈ D,
we first set Bk = (V,ABk

= {(t, dk)}). Next, for each node i ∈ N such that
k ∈ Oi, we add arc (dk, i) in ABk

. Then, for each c ∈ {x |φ(x) = k}, we add
arc (sc, rc) in ABk

. Note that for any list of transfers enabling datum unit k
to be transmitted from a node z ∈ N with k ∈ Oz to node i ∈ N , there is a
corresponding journey from t to i in Bk. In particular, it holds for any node
i ∈ R. Moreover, the nodes i ∈ V \R for which there is no path from t to i
cannot be connected to another node in Bk. For such nodes, we add an arc
(t, i) ∈ ABk

with τ(t, i) = m + 1. This is always possible since there exist u
arcs of this kind. Thus subgraph Bk is a branching. It must finally be noted
that B1, B2, . . . , Bk are mutually arc-disjoint by construction.

2.3.2 Arc-disjoint Steiner trees in a digraph

The problem of packing arc capacitated directed Steiner trees is a well known
problem [15]. It is stated as follows.

Problem 2.4 – Steiner tree packing problem

Let us consider a directed graph G = (V,A, cap) with positive capacities
(cap : A �→ N

+), a set T ⊆ V of terminals, and a root t ∈ T . A directed
Steiner tree rooted at t is a directed subgraph of G (a tree) that contains
a path from t to every terminal v ∈ T . The Steiner tree packing problem
is to find the maximum number of Steiner trees rooted at t, such
that for every arc a ∈ A, the total number of Steiner trees containing a
is at most cap(a).

Cheriyan and Salavatipour [15] established that the problem of knowing
whether there are two arc-disjoint Steiner trees in a graph with unit capacities
and only three terminals is NP-Complete. The proof is based on the following
reduction — given two pairs of vertices (x1, y1) and (x2, y2) ∈ V 2, are there
two arc-disjoint paths, one from x1 to y1, and the other from x2 to y2 ?

In fact, it can be shown that this problem is NP-Complete even if there
are three terminals and the graph is without circuit. Indeed, as discussed in
Section 2.1.2, the data transfer problem is NP-Complete in the strong sense,
even if |R| = 2 (i.e. Dt2r).

2.4. Conclusion 43

In addition, with an instance of Dt2r, we can associate a directed graph
G = (V,A, cap) similar to the one we built for the delivery problem (Section
2.2.2 and Figure 2.5).

• first we add a source vertex src ∈ V ;

• with each datum unit k ∈ D, we associate a vertex dk ∈ V ;

• for each node i ∈ N , we add a set of vertices {i0, . . . , iµi} ⊂ V ;

• ∀k ∈ D, we add an arc (src, dk) ∈ A with capacity cap(src, dk) = 1;

• ∀i ∈ N and ∀k ∈ D – if datum unit k ∈ Oi – we add an arc (dk, i
0) ∈ A

with capacity cap(dk, i
0) = 1;

• ∀i ∈ N , ∀x ∈ {1, . . . , µi}, we add (ix−1, ix) with cap(ix−1, ix) = u;

• for each contact σc = (i, j) ∈ σ – assuming that node i is the receiver
of x contacts before σc – and that σc is the yth contact where node j is
the receiver – we add an arc (ix, jy) ∈ A of capacity cap(cx, jy) = 1;

• note that we no longer consider the “return” arc (ωµω , src).

Thus, knowing whether there is a valid transfer plan Om
i = D (∀i ∈ R) with

|R| = 2 becomes equivalent to knowing whether there exist two arc-disjoint
Steiner trees rooted at src with terminals T = {src}∪R in the corresponding
transportation network. Here it should be noted that this network is always
without circuit (by construction).

2.4 Conclusion

In this chapter, we highlighted several polynomial cases for the dissemination
problem, i.e. the latter is solvable in polynomial time when there is only one
datum unit, or only one recipient, or when both the number of datum units
and the number of recipients are upper bounded by a given constant.

However, we also proved the general case is strongly NP-Hard. Therefore,
non-polynomial algorithms can be investigated in order to solve the problem
in the general case, like branch-and-cut/branch-and-bound procedures.

3Dominance rules, preprocessings,
and integer linear programming

N ow that the NP-Completeness of the dissemination
problem has been established, it seems interesting to
propose non-polynomial algorithms (such as branch-
and-bound procedures) to solve it. With this aim in

view, in this chapter we are going to propose a number of
dominance rules for this problem. These yield conditions
on which a subset of the search space considered to solve
the problem can be ignored (cf. Section 3.1). Thereafter,
we will propose algorithms which make use of these rules
to deduce additional constraints, and this way, eliminate
dominated solutions – i.e. solutions which can be ignored
according to the dominance rules. The algorithms rely on
a graph model, called the transfer graph (cf. Section 3.2),
aiming at capturing knowledge about admissible transfer
plans. Finally, all of this will be tested and incorporated
into preprocessing procedures (cf. Section 3.3). These will
aim to strengthen an integer linear program modelling the
problem (cf. Section 3.4).

Contents
3.1 Dominance rules 46

3.2 Transfer graph . 51

3.2.1 About the transfer graph 52

3.2.2 Transfer graph and subsets of transfer plans 54

3.2.3 Additional graph properties and complex subsets
of transfer plans 57

3.2.4 Using the transfer graph 59

3.3 Deductive elements 59

3.3.1 Finding non-minimal transfer plans 60

3.3.2 Elementary reasonings 62

3.3.3 Evaluating min-card and max-card 74

3.4 Solving the dissemination problem 82

3.4.1 Integer linear programming 82

3.4.2 Additional constraints 84

3.5 Computational results 84

3.5.1 About the benchmarks 85

3.5.2 About the models 87

3.5.3 About the preprocessing procedures 88

3.6 Conclusion . 95

3.1 Dominance rules

The solving techniques discussed in the present thesis are based on a number
of dominance rules (see [31] for a comprehensive paper on that topic) which
dramatically improve performances of any enumeration algorithm. All these
dominance rules will be defined in this first section. These results will form
the basis for additional constraints and deduction algorithms to be presented
in the following sections.

3.1. Dominance rules 47

Firstly, it will be remarked that more than one transmission of the same
unit to the same receiving node might occur during the same valid transfer
plan. From an operational point of view, resources are wasted, while from a
computational point of view, taking such solutions into account significantly
enlarges the search space we consider – which makes it desirable to disallow
redundant transfers.

Hence the definitions below and the ensuing dominance rule.

Definition 3.1

The transfer occurring at time c ∈ {0, 1, . . . ,m} in transfer plan φ is said
to be null if and only if no datum unit is transmitted during contact σc,
i.e. φ(c) = ∅.

Definition 3.2

The transfer occurring at time c ∈ {0, 1, . . . ,m} in transfer plan φ is said
to be improving if and only if the receiving node rc obtains a new datum
unit during contact σc, i.e. |Oc−1

rc | < |Oc
rc |.

Definition 3.3 – minimal transfer plan

A transfer plan φ is said to be minimal if and only if all its transfers are
either null or improving, i.e. no node receives the same datum unit more
than once.

Proposition 3.1

The set of minimal transfer plans is dominant.

Proof. Let φ be a valid non-minimal transfer plan. Therefore there exists at
least one transfer which is neither null nor improving, i.e. ∃c ∈ {1, 2, . . . ,m}
such that φ(c) = {k} ⊆ Oc−1

rc . The transfer plan φ′ – obtained by copying φ
and by setting φ′(c) = ∅ – has the same dissemination length than φ, that is
λ(φ′) = λ(φ). This process is to be repeated as long as the new transfer plan
is not minimal.

48 Chapter 3. Dominance rules, preprocessings, and integer linear programming

The idea behind minimal transfer plans may be further reinforced by only
considering the minimal transfer plans during which any non-recipient node
forwards any datum unit it receives at least once. From an operational point
of view, this means avoiding transferring data to a non-recipient node which
is not able to contribute to a better dissemination of the datum.

Formally, it gives the following dominance rule.

Definition 3.4 – strictly-minimal transfer plan

A transfer plan φ is said to be strictly-minimal if and only if it is minimal
and every non-recipient node forwards at least once all the datum units
it receives.

Proposition 3.2

The set of strictly-minimal transfer plans is dominant.

Proof. Let φ be a minimal, non-strictly-minimal, transfer plan. There exists
at least one transfer φ(c), c ∈ {1, 2, . . . ,m} | rc ∈ N\R, such that φ(c) = {k}
(k ∈ D) and ∀c′ ∈ {c+ 1, . . . ,m} | sc′ = rc, φ(c

′) �= {k} – i.e. a non-recipient
node rc ∈ N\R obtains datum unit k ∈ D during contact σc ∈ σ, but never
forwards it. The transfer plan φ′ obtained by copying φ, and then by setting
φ′(c) = ∅ has the same dissemination length, i.e. λ(φ′) = λ(φ). The process
is to be repeated as long as the transfer plan is not strictly-minimal.

Unfortunately, in practice, this dominance rule is found to be less efficient
than the minimality rule introduced above. Our numerical tests even showed
that it is beneficial to schedule improving transfers as possible, rather than
trying to reduce their number at a high computational cost.

Therefore we propose the following dominance rule.

Definition 3.5

A transfer plan φ is said to be active if and only if there exists no contact
σc ∈ σ in which a datum unit k ∈ D is transmitted from sc to rc, where
the same transmission could have been done earlier making better use
of a non-improving transfer φ(c′). Formally,

∀c ∈ {2, 3, . . . ,m} such that |Oc−1
rc | < |Oc

rc |,
��∃c′ ∈ {1, . . . , c− 1} with rc′ = rc, φ(c) ⊆ Oc′−1

sc′
and Oc′−1

rc′
= Oc′

rc′

3.1. Dominance rules 49

Proposition 3.3

The set of active transfer plans is dominant.

Proof. Let φ be a non-active transfer plan. There exist c, c′ ∈ {1, 2, . . . ,m}
and k ∈ D such that c′ < c, rc = rc′ , k ∈ Oc′−1

sc′
, k /∈ Oc′−1

rc′
, Oc′−1

rc′
= Oc′

rc′
, and

φ (c) = {k}. Let us consider φ′, the transfer plan obtained first by copying φ
and then by setting φ′(c′) = {k}. The dissemination length of transfer plan
φ′ is better than or equal to the dissemination length of φ, i.e. λ(φ′) ≤ λ(φ).
The process is repeated until φ′ is active. φ′(c) can also be set to ∅ (at each
iteration) if minimality properties have to be maintained.

In an active transfer plan, an improving transfer might still be ignored in
favour of another non-improving or null transfer. In particular, there might
be c′ ∈ {1, . . . ,m− 1} and k ∈ D with k ∈ Oc′−1

sc′
, k /∈ Oc′

rc′
, and Oc′−1

rc′
= Oc′

rc′
,

if rc′ /∈ R and ∀c ∈ {c′, . . . ,m} | rc = rc′ , φ(c) �= {k}.
The dominance rule below strengthens the idea of an active transfer plan

by ensuring that a fruitless transfer can never be preferred to an improving
transfer.

Definition 3.6

A transfer plan φ is said to be strictly-active if and only if all transfers
are improving when possible, i.e. ∀c ∈ {1, 2, . . . ,m}, if ∃k ∈ D such that
k ∈ Oc−1

sc and k /∈ Oc−1
rc , then |Oc−1

rc | < |Oc
rc |.

Proposition 3.4

The set of strictly-active transfer plans is dominant.

Proof. Let φ be a non-strictly-active transfer plan, i.e. ∃σc ∈ σ and ∃k ∈ D
such that k ∈ Oc−1

sc , k /∈ Oc−1
rc , and Oc−1

rc = Oc
rc . Then, let φ

′ be the transfer
plan obtained by copying φ, and by setting φ′(c) = {k}. The dissemination
length of φ′ is necessarily better than or equal to that of φ, i.e. λ(φ′) ≤ λ(φ).
The process is repeated until φ′ is strictly-active.

50 Chapter 3. Dominance rules, preprocessings, and integer linear programming

Remark 3.1

A strictly-active transfer plan is active (by definition). Moreover we can
show that the sets of minimal-active and minimal-strictly-active transfer
plans are both dominant (by combining the above proofs).

The remainder of the chapter will focus on algorithms designed to identify
the non-minimal or the non-strictly-active transfer plans. Beforehand we will
illustrate how these dominance rules can help us to solve the problem.

To this end, we consider the instance depicted in Figure 1.1 (on page 11):

• dominance-rule-based deductions – First node 1 initially possesses
all units, whereas node 6 starts with an empty buffer, i.e. O1 = {1, 2}
and O6 = ∅. Thus, φ(1) �= ∅ holds in every strictly-active transfer plan,
i.e. φ(1) = {1}∨φ(1) = {2}. It also means that node 6 possesses either
datum unit 1 or datum unit 2 afterwards. Since node 1 possesses these
two units from the start, then φ(2) is null in all minimal strictly-active
transfer plans. Therefore, in practice, contact σ2 can be removed from
the instance before any computation is done. With the same approach,
it can be shown that φ(3) = φ(1) and φ(8) = {2} hold in any minimal
strictly-active transfer plan. Figure 3.1 illustrates the results that can
be collected by applying these methods over each contact (in the order
of the sequence). Five contacts are seen to have been set.

• delivery-requirement-based deductions – A feasible transfer plan
has still to be found. It needs to be decided how to continue the process,
e.g. by deciding φ(1) = {1} or, conversely, φ(1) = {2}. Let us assume
that φ(1) = {2}. There exists only one possibility for delivering datum
unit 1 to nodes 6 and 5, with φ(4) = φ(5) = φ(7) = φ(10) = {1}. Next,
to transfer datum unit 2 to node 4, the only remaining possibility is to
set φ(6) = {2}, cf. Figure 1.1. It should be remarked that a symmetric
solution can be found with φ(1) = {1}. These transfer plans are both
minimal, strictly-active and optimal.

In fact, the methodology described above is applied within any branching
algorithm, e.g. a branch-and-bound or a branch-and-cut algorithm. Decisions
and backtracks constitute the branching stage (i.e. generation and selection
of nodes), with local deductions performed at every node of the search tree
to filter dominated solutions, e.g. through constraint propagation or cuts.

3.2. Transfer graph 51

6 5

1

{1, 2}
3

2

{1}

4

φ(8)
= {2}

φ(1)

φ(4)

φ(10)

9

φ(5) = φ(4)

φ(7) = φ(4)

12

13

φ(6)
φ(2) = ∅

φ(11)

φ(3) = φ(1)

φ(1) ∈ {{1}, {2}} • φ(2) = ∅ • φ(3) = φ(1) • φ(4) ∈ {{1}, {2}}
φ(5) ∈ {φ(4), ∅} • φ(6) ∈ {φ(1), φ(4)} • φ(7) ∈ {φ(4), ∅} • φ(8) = {2}

φ(9) = ∅ • φ(10) = {{1}, {2}} • φ(11) ∈ {φ(1), φ(10)} • φ(12) = ∅ • φ(13) = ∅

Figure 3.1 – The knowledge collected using
dominance-based deduction tools.

The following two sections describe how these deduction techniques have
been implemented. Thereafter, Section 3.4 focuses on a particular branching
procedure (based on integer-linear programming) that we proposed to solve
the dissemination problem.

3.2 Transfer graph

In this section, we propose a graph model – the transfer graph – which enables
a set of valid transfer plans to be represented, i.e. a subset of the search space
associated with the dissemination problem. It is the data structure that forms
the basis for some deduction algorithms that will be subsequently proposed
(Section 3.3). These procedures update the transfer graph so that the search
space is dynamically reduced.

These techniques will be applied to pre-process the instances (to reduce
their size), and within an integer-linear-programming framework, i.e. within
a branch-and-cut procedure (cf. Section 3.4).

52 Chapter 3. Dominance rules, preprocessings, and integer linear programming

3.2.1 About the transfer graph

First, let us recall that each state Ot
i ⊆ D with i ∈ N and t ∈ {0, 1, . . . ,m}

contains the subset of units possessed by node i after the first t contacts of
the sequence. Let us also recall that a transfer plan is valid if nodes transmit
only datum units that they have possessed from the outset, or that they have
obtained as a result of previous transfers. Hence the following assertion:

∀c ∈ {1, 2, . . . ,m}, Oc−1
sc = Osc ∪

⎛
⎜⎝ ⋃

t∈{1,...,c−1}
rt=sc

φ(t)

⎞
⎟⎠

︸ ︷︷ ︸
the units obtained as a
result of former transfers

From now on we will be looking at a graph – the transfer graph – designed
to take account of dependencies between transfers. It is defined as follows.

Definition 3.7 – transfer graph

Let us consider an instance of the dissemination problem. The associated
transfer graph is a directed acyclic graph Gφ = (V,A) with V = VD∪VT ,
A = A1 ∪ · · · ∪ Am ⊆ VT × V , where V and A are built as follows:

1. VD = {v{k} | k ∈ D} – where vertex v{k} is associated with datum
unit k;

2. VT = {vφ(c) | c ∈ {1, 2, . . . ,m}} – where vertex vφ(c) is associated
with transfer φ(c);

3. ∀c ∈ {1, 2, . . . ,m},

Ac = {(vφ(c), v{k}) | k ∈ Osc}︸ ︷︷ ︸
corresponds to the units
initially possessed by sc

∪

{(vφ(c), vφ(t)) | t ∈ {1, . . . , c− 1} and rt = sc}︸ ︷︷ ︸
corresponds to the units obtained by sc

during the contacts which precede contact σc

In such a graph, an arc between two vertices vφ(c) ∈ VT and v{k} ∈ VD

symbolises the fact that node sc ∈ N can transmit datum unit k ∈ D during
contact σc ∈ σ because it has possessed that datum unit from the outset, i.e.

3.2. Transfer graph 53

(a) an instance of the problem⎧⎨
⎩

N = {1, 2, 3, 4};R = {1};D = {1, 2, 3};
O1 = {1, 2};O2 = {2, 3};O3 = ∅ ;O4 = {3};
σ = [(1, 3), (2, 3), (3, 4), (4, 1)]

(b) its evolving graph

1

{1, 2}

2 {2, 3}

3 4

{3}
1

2
3

4

(c) the corresponding transfer graph

v{1} v{2} v{3}

vφ(1)

φ(1) = ∅

vφ(2)

vφ(3) vφ(4)

φ(3) = φ(2)

φ(4) = φ(3)

φ(2) = {3}

VD

VT

Figure 3.2 – An instance of the problem, its evolving graph,
and finally the corresponding transfer graph.

k ∈ Osc . Similarly, an arc between two vertices vφ(c) and vφ(t) ∈ VT models
the possibility that node sc will forward during σc a unit that it has received
during σt, as t < c and rt = sc.

Remark 3.2

The transfer graph contains no circuits, and is polynomial in size of the
instance with which it is associated (there are exactly u+m vertices and
O(mu+m2) arcs).

54 Chapter 3. Dominance rules, preprocessings, and integer linear programming

Remark 3.3

The vertices in VD are termed unit vertices, and those in VT are termed
transfer vertices. As we shall see below, the distinction between the unit
vertices and the transfer vertices is rarely required. We frequently need
to refer to the unit φ(c) that is transmitted during a contact σc, without
knowing precisely which unit k ∈ D it corresponds to, or even whether
anything has really been transmitted. To clarify our notations, such an
element is termed a transfer value. While a vertex v{k} ∈ VD represents
a datum unit and a vertex vφ(c) ∈ VT represents a transfer, we will use
the notation vz ∈ V to refer to any kind of vertex.

These definitions are illustrated in Figure 3.2. The set of unit vertices is
VD = {v{1}, v{2}, v{3}}, and the set of transfer vertices is VT = {vφ(1), vφ(2),
vφ(3), vφ(4)}. The set of transfer values is then

{{1}, {2}, {3}, φ(1), φ(2), φ(3), φ(4)}

The arcs going out of vertex vφ(4) are (vφ(4), v{3}) (because s4 has possessed
unit 3 from the outset) and (vφ(4), vφ(3)) (because contact σ3 occurs before
contact σ4 and the receiver r3 of that contact is s4).

3.2.2 Transfer graph and subsets of transfer plans

By construction, the set Ac of arcs going out of each vertex vφ(c) ∈ VT defines
the set of all values that transfer φ(c) can take in a valid transfer plan. Thus,
a path [vφ(cp), . . . ,

vφ(c2),
vφ(c1),

v{k}] (of p+ 1 arcs) from a transfer vertex
vφ(cp) ∈ VT to a unit vertex v{k} ∈ VD defines a possible way to route datum
unit k from the source sc1 to rcp . A solution where φ(c1) = · · · = φ(cp) = {k}
is valid and enables nodes rc1 , . . . , rcp to obtain datum unit k. More generally,
an anti-branching rooted on a unit vertex v{k} ∈ VD describes a routing to
disseminate datum unit k ∈ D. It corresponds to a set of branchings in the
evolving graph.

Thus a transfer plan can equally be defined as a subgraph of the transfer
graph made up of u vertex-disjoint anti-branchings that are each rooted on a
different unit vertex. It corresponds to a spanning subgraph of the transfer
graph containing at most one arc going out of each vertex. This constraint
originates from the fact that at most one unit can be transmitted during each
contact. Therefore selecting an arc (vφ(c), v{k}) is interpreted as φ(c) = {k},
while selecting an arc (vφ(c2),

vφ(c1)) ensures that the unit transferred during

3.2. Transfer graph 55

contact σc1 is transmitted during contact σc2 , that is φ(c1) = φ(c2). In short,
in this subgraph, transfer φ(c) is either considered to be null if no arc out of
vertex vφ(c) has been selected, or equal to {k} if vertices vφ(c) and v{k} are
linked by a path. For example, in Figure 3.2 the bolded arcs define a way to
transmit datum unit 3 to node 1. Moreover, the anti-branchings associated
with vertices v{1} and v{2} contain no arcs, because these datum units are
never transmitted.

Remark 3.4

Such a subgraph does not really need to be the union of anti-branchings.
It prevents situations where a subgraph includes an arc (vφ(c2),

vφ(c1)),
but does not include an arc going out of vertex vφ(c1) (the path starting
from vφ(c2) does not end on a unit vertex). The meaning of this path –
that is φ(c2) = φ(c1) = ∅ – can already be expressed by not selecting arc
(vφ(c2),

vφ(c1)) at all. Taking such sets into account would therefore not
enhance the expressiveness of the transfer graph, but would dramatically
increase the number of subsets to be explored.

Remark 3.5

In Figure 3.2, it is worth nothing that the same transfer plan is obtained
by selecting arc (vφ(4), v{3}) rather than arc (vφ(4), vφ(3)) ∈ A. This is
because the transfer plan represented by these subgraphs is not minimal
(cf. Definition 3.3). Node 4 receives unit 3 during contact σ3 even though
it has possessed this unit from the outset. Therefore, during contact σ4,
node 4 can send either the unit it has possessed from the outset, or the
new copy it has just received. Fortunately, a minimal transfer plan has a
unique corresponding subgraph, and consequently we never address this
case in practice.

To represent a particular subset of transfer plans, we need to be able to
arbitrarily disallow certain arcs or, alternatively, stipulate that certain arcs
must be used. To this end we introduce function χA : A �→ P({true, false}),
whose role is to indicate which arcs are allowed to be selected when a set of
u anti-branchings (a transfer plan) is constructed. So, ∀(vφ(c), vz) ∈ A,

– χA(
vφ(c), vz) = {true} means that arc (vφ(c), vz) must be selected and

that node sc must transmit transfer value z during contact σc;

56 Chapter 3. Dominance rules, preprocessings, and integer linear programming

(a) the transfer graph and some of its properties

v{1} v{2} v{3}

vφ(1)

χD(vφ(1), 1) = 0

vφ(2)

vφ(3) vφ(4)

{true}

χA(vφ(4), vφ(3)) = {true, false}

{f
a
l
s
e
}

{true}

(b) additional vertex properties

− χφ(
v{3}) = {{3}} − χD(

v{1}, 3) = ∞
− χφ(

vφ(1)) = {∅} − χD(
v{2}, 1) = 0

− χφ(
vφ(2)) = {{2}} − χD(

v{3}, 3) = 2
− χφ(

vφ(4)) = {∅, {3}} − χD(
v{3}, 3) = ∞

(c) the two transfer plans represented by this transfer graph

φ1 :

⎧⎨
⎩

φ1(1) = ∅
φ1(3) = φ1(2) = {3}
φ1(4) = ∅

φ2 :

⎧⎨
⎩

φ2(1) = ∅
φ2(3) = φ2(2) = {3}
φ2(4) = φ2(3) = {3}

Figure 3.3 – The transfer graph and its properties
(the instance is given in Figure 3.2).

– χA(
vφ(c), vz) = {false} means that arc (vφ(c), vz) cannot be selected

and that sc must not transmit transfer value z during contact σc;

– χA(
vφ(c), vz) = {true, false} means that no decision has been taken

yet, i.e. there is no additional constraint upon this transfer.

As shown in Figure 3.3, this function can represent various constraints.

• For example, χA(
vφ(3), vφ(2)) = {true} expresses φ(3) = φ(2).

• whereas χA(
vφ(1), v{1}) = {false} ∧ χA(

vφ(1), v{2}) = {false} force
transfer φ(1) to be null, i.e. φ(1) = ∅.

Below, in the light of Remark 3.4, a transfer φ(c) (c ∈ {1, 2, . . . ,m}) will be
considered as null if and only if all arcs a ∈ A leaving or entering vφ(c) ∈ VT

are such that χA(a) = {false}.

3.2. Transfer graph 57

3.2.3 Additional graph properties and complex
subsets of transfer plans

The transfer graph, or more specifically function χA, represents a set of valid
transfer plans. If all arcs a ∈ A are such that χA(a) = {true, false}, that is
the whole transfer graph is retained, then all valid solutions are represented.
On the other hand, if χA includes constraints, e.g. some arcs cannot or must
be selected, then some transfer plans can no longer be built, and in this case
only a subset of transfer plans is represented.

Nevertheless, it remains impossible to represent more complex subsets of
transfer plans, e.g. the transfer plans such that φ(3) = {2} (since there is no
arc between vertices vφ(3) and v{2}), or the set of transfer plans such that a
given node receives a given datum unit between two given dates (since time
windows are not represented in the graph).

However, these sets of transfer plans are all defined by sets of constraints
which can easily be represented with the additional properties we introduce
below:

• χφ : V 7→ P(Tφ) (recalling that Tφ = {∅, {1}, . . . , {u}}) : this property
specifies the domain of every transfer value – that is the set of values
that transfer values are allowed to have, e.g. χφ(vφ(c)) = {∅, {1}, {2}}
indicates that transfer φ(c) must either be null, equal to {1}, or equal
to {2}. In short,

– ∀vφ(c) ∈ VT , χφ(vφ(c)) is the domain of φ(c) and φ(c) ∈ χφ(vφ(c))
must hold. Thus χφ(vφ(c)) = {∅} means that φ(c) has to be null,
while ∅ /∈ χφ(vφ(c)) means that φ(c) cannot be null.

– ∀v{k} ∈ VD, χφ(v{k}) = {{k}} by convention.

This property is used to represent various kinds of constraints. Looking
back at Figure 3.3, χφ(vφ(1)) = {∅} ensures that transfer φ(1) is null,
while χφ(vφ(4)) = {∅, {3}} enforces that transfer φ(4) is either null or
equal to {3}. Transfer φ(2) has been set to {2}. Note that this property
is used when a transfer is shown to be improving in all minimal strictly-
active solutions represented by the transfer graph.

• χD and χD : V ×N 7→ {0, . . . ,m,∞} : these two properties specify an
earliest and a latest date at which each node is allowed to receive each
transfer value (∞ = m+ 1 in practice):

– ∀vz ∈ V , ∀i ∈ N , χD(vz, i) forbids node i to receive transfer value
z too soon, i.e. ∀t ∈ {0, . . . ,m}, if t < χD(vz, i), then z��⊆Ot

i ;

58 Chapter 3. Dominance rules, preprocessings, and integer linear programming

– ∀vz ∈ V , ∀i ∈ N , χD(
vz, i) imposes a deadline on node i to obtain

transfer value z, i.e. ∀t ∈ {0, . . . ,m}, if t ≥ χD(
vz, i), then z ⊆ Ot

i

must hold.

Node i is allowed to receive transfer value z during contacts occurring
between dates χD(

vz, i) and χD(
vz, i). If we look back at the example

in Figure 3.3, node 1 is constrained to possess φ(1) from the outset as
χD(

vφ(1), 1) = 0 – i.e. φ(1) ⊆ O1 must hold, regardless of the value of
φ(1) (the fact that φ(1) is null as a result of χφ does not matter here).
In addition, node 3 is not allowed to receive unit 3 before contact σ2,
since χD(

v{3}, 3) = 2, and is even not required to possess this unit at
the end of a transfer plan as χD(

v{3}, 3) = ∞.

Remark 3.6

The properties focus on different aspects of the problem. Although linked
by constraints, the different properties have their particular features and
are not interchangeable. Redundancy is not really a problem in practice,
but deduction algorithms must take account of it, for example in ensuring
that ∀c ∈ {1, . . . ,m}, all arcs a ∈ A leaving or entering a transfer vertex
vφ(c) ∈ VT are such that χA(a) = {false} when χφ(

vφ(c)) = {∅} – and
vice versa...

Altogether, the transfer graph shown in Figure 3.3, (cf. the instance given
in Figure 3.2) represents the set {φ1, φ2} of transfer plans where the transfer
arising during contact σ1 is null, and where datum unit 3 is transmitted from
node 2 to node 4 during contacts σ2 and σ3. Then, the fourth transfer must
either be null, i.e. φ1(4) = ∅, or improving, i.e. φ2(4) = φ2(3) = φ2(2) = {3}.
Transfer plan φ2 is seen not to be a solution, since it does not fulfil delivery
requirements (datum unit 3 is not transmitted to recipient node 1).

What represents what – a short summary of Sections 3.2.1 to 3.2.3:

1. the transfer graph represents the whole set of valid transfer plans;

2. a spanning subgraph of the transfer graph (described by function χA)
thus represents a subset of valid transfer plans;

3. a spanning subgraph of the transfer graph which includes at most one
arc going out of each vertex represents one valid transfer plan;

4. we limit the search to the sets of anti-branchings (which are rooted on
unit vertices) in order to avoid considering equivalent solutions;

5. other properties χφ+χD+χD enable us to refine the subset of transfer
plans represented by the transfer graph and χA.

3.3. Deductive elements 59

3.2.4 Using the transfer graph

The transfer graph (and its properties) can be used to represent a state in a
branching algorithm which searches for a valid transfer plan. The properties
can be used to separate a set of transfer plans during the branching stage –
e.g. given a unit k ∈ D and a contact σc ∈ σ, the branches χφ(vφ(c)) = {{k}}
and {k} /∈ χφ(vφ(c)) separate the transfer plans according to whether or not
φ(c) = {k}. The properties are always initialized with the constraints of the
problem only, so that the whole set of valid transfer plans (the whole search
space) is represented when the solving procedure starts. For example, for all
datum units k ∈ D and all nodes i ∈ N – assuming that α refers to the first
contact where i = rα – we set:

• χD(v{k}, i) = χD(v{k}, i) = 0 if k ∈ Oi;
• χD(v{k}, i) = α and χD(v{k}, i) = m if k 6∈ Oi and i ∈ R;

• χD(v{k}, i) = α and χD(v{k}, i) =∞ otherwise.

Besides, the transfer graph can also be used to apply deductive elements
locally. The properties can be updated to express new knowledge, e.g. value ∅
can be removed from set χφ(vφ(c)) if it is shown that transfer φ(c) cannot be
null in a dominant solution. This enables dominated solution to be removed
where possible.

3.3 Deductive elements

In this section we propose several elements of deduction (based either on the
dominance rules discussed in Section 3.1, or on the problem itself). Given a
transfer graph, we would like to update its properties (χA, χφ, χD and χD)
to reduce the search space it represents (so that dominated solutions can be
ignored during the search for an optimal valid transfer plan).

60 Chapter 3. Dominance rules, preprocessings, and integer linear programming

3.3.1 Finding non-minimal transfer plans

Let us first consider the following proposition.

Proposition 3.5

Let k ∈ D be a datum unit and σc ∈ σ be a contact.

1. [minimality] Node rc cannot receive multiple copies of unit k in a
minimal solution, which means that it is not necessary to consider
the transmission of unit k to node rc during σc if it is known that
rc already possesses k when σc occurs, i.e. c > χD(

v{k}, rc) implies
that {k} /∈ χφ(

vφ(c)).

2. [validity] The validity constraint ensures that node sc possesses the
unit it sends, i.e. c ≤ χD(

v{k}, sc) implies {k} �∈ χφ(
vφ(c)).

3. [earliest-date] Node rc can receive datum unit k only if it is allowed
to possess unit k, i.e. c < χD(

v{k}, rc) implies {k} /∈ χφ(
vφ(c)).

These statements can be generalized to any transfer value. For example,
in a minimal transfer plan, transfer value φ(c), whatever its value, cannot be
forwarded to a node that already possesses this element.

Hence the following corollary.

Corollary 3.1

Let σc ∈ σ be a contact, and (vφ(c), vz) ∈ A be an arc out of vφ(c),

1. [minimality] c > χD(
vz, rc) =⇒ χA(

vφ(c), vz) = {false}
2. [validity] c ≤ χD(

vz, sc) =⇒ χA(
vφ(c), vz) = {false}

3. [properties] c < χD(
vz, rc) =⇒ χA(

vφ(c), vz) = {false}

The following deduction rules aim to refine the domain χφ of each transfer,
by using the information we have about other transfers. Figure 3.4 illustrates
the propositions below. Definition 3.8 is introduced for the sake of clarity.

3.3. Deductive elements 61

(a) Proposition 3.6

vz2
vz1

vz3

vφ(c)

{k} /∈ χφ(
vz1) {k} /∈ χφ(

vz2) {k} /∈ χφ(
vz3)

{k} /∈ χφ(
vφ(c))

(b) Proposition 3.7

vz1

vz2

χφ(
vz1) = {{1}, {2}}

χφ(
vz2) = {{3}, {4}}

�=

Figure 3.4 – Deduction tools for strengthening
the domain χφ of each transfer.

Definition 3.8

Γ : V �→ V indicates the remaining successors of each vertex, i.e. the set
of values that transfers can still have in accordance with function χA:

– ∀vφ(c) ∈ VT , Γ(
vφ(c)) = {vz ∈ V such that arc (vφ(c), vz) ∈ A and

true ∈ χA(
vφ(c), vz)};

– and ∀v{k} ∈ VD, we set Γ(v{k}) = ∅ by convention.

Proposition 3.6

Given a datum unit k ∈ D and a contact σc ∈ σ, transfer φ(c) cannot be
equal to value {k} if none of the transfer values that may be transmitted
during contact σc can have that value, i.e. [∀vz ∈ Γ(vφ(c)), {k} /∈ χφ(

vz)]
implies {k} /∈ χφ(

vφ(c)).

Proposition 3.7

For any contact σc ∈ σ and any transfer value z that may be transmitted
during that contact – i.e. such that vz ∈ Γ(vφ(c)) – transfer φ(c) cannot
be equal to z if the domains of these transfer values are conflicting, i.e.
χφ(

vz) ∩ χφ(
vφ(c)) ⊆ {∅} implies χA(

vφ(c), vz) = {false}.

62 Chapter 3. Dominance rules, preprocessings, and integer linear programming

These propositions are the basis for all the deduction algorithms discussed
hereafter in this chapter. The aim will usually be to make use of bounds χD,
χD and Corollary 3.1 to remove arcs (to set χA-properties to {false}) in the
transfer graph, so as to reduce the domain of transfers (to remove elements
in χφ-properties) using Proposition 3.6. We try to show that some transfers
are necessarily null in a dominant transfer plan, by proving that the recipient
nodes always possess all the transfer values that the sending nodes are able
to transmit in such a transfer plan.

The practical procedure for applying these deductive elements is described
in Algorithm 3.1 – whose effectiveness will depend on the quality of bounds
χD and χD. We shall therefore devote the following subsection to consistency
procedures designed to strengthen these bounds.

3.3.2 Elementary reasonings

In this subsection we propose algorithms designed to strengthen bounds χD

and χD. This will enable us to show that some transfers are always null in a
dominant solution (cf. Subsection 3.3.1).

Bottom-up deductive reasoning

In this paragraph, we aim to make use of knowledge related to earlier contacts
(corresponding to the vertices at the bottom of the transfer graph) in order
to deduce information about later contacts (corresponding to the vertices at
the top of the transfer graph).

Proposition 3.8

Let i ∈ N be a node and t ∈ {0, 1, 2, . . . ,m} a time index. Let vφ(c) ∈ VT

be a transfer vertex, and vz1, . . . ,
vzα ∈ Γ(vφ(c)) its successors (transfer

values z1, . . . , zα ∈ Tφ therefore correspond to what node sc may transmit
to node rc during contact σc). If i possesses z1, z2, . . . , and zα at time t,
then it necessarily possesses φ(c) at time t. Whatever the value chosen for
transfer φ(c) from among z1, . . . , zα, or ∅, node i possesses that element
at time t. Thus [∀vz ∈ Γ(vφ(c)), t ≥ χD(

vz, i)] implies χD(
vφ(c), i) ≤ t.

3.3. Deductive elements 63

Algorithm 3.1 – Minimality+Validity consistency

Require: transfer graph Gφ = (V,A, χA, χφ, χD, χD) ;
Require: the vertex vφ(c) to which we apply these deduction rules ;
1:

2: # consistency rules in accordance with Proposition 3.5.
3: for all k ∈ D do
4: if [c > χD(

v{k}, rc)] ∨ [c < χD(
v{k}, rc)] ∨ [c ≤ χD(

v{k}, sc)]
5: then remove {k} from χφ(

vφ(c)) ;
6:

7: # R is the union over vz ∈ Γ(vφ(c)) of sets χφ(
vz) – computed

8: # line 21 and used line 26.
9: R ← ∅ ;

10:

11: for all vz ∈ Γ(vφ(c)) do
12:

13: # consistency rules in accordance with Corollary 3.1.
14: if [c > χD(

vφ(c), rc)] ∨ [c > χD(
vz, rc)] ∨ [c < χD(

vz, rc)]
15: ∨ [c ≤ χD(

vz, sc)] then set χA(
vφ(c), vz) = {false} ;

16:

17: # consistency rules in accordance with Proposition 3.7.
18: else if ∀{k} ∈ χφ(

vφ(c)), {k} /∈ χφ(
vz) then

19: set χA(
vφ(c), vz) = {false} ;

20:

21: else add χφ(
vz) to R ;

22:

23: end for
24:

25: # consistency rules in accordance with Proposition 3.6.
26: for all {k} ∈ χφ(

vφ(c))\R do remove {k} from χφ(
vφ(c)) ;

27:

28: # this contact is “removed” from the model if possible.
29: if [Γ(vφ(c)) = ∅] ∨ [χφ(

vφ(c)) = ∅] then
30: set φ(c) = ∅ ; and update the transfer graph:
31: • set χφ(

vφ(c)) = {∅} ;
32: • for all i ∈ N do set χD(

vφ(c), i) = χD(
vφ(c), i) = 0 ;

33: • for all a ∈ A leaving or entering vφ(c) do
34: set χA(a) = {false} ;
35:

64 Chapter 3. Dominance rules, preprocessings, and integer linear programming

vz1 . . . vzk . . . vzα

. . .vzk1
vzkβ

vφ(c)

⊆ Oc−1
rc ⊆ Oc−1

rc ⊆ Oc−1
rc

⊆ Oc−1
rc

⊆ Oc−1
rc

⊆ Oc−1
rc [c− 1 ≥ χD(vzkβ , rc)]

Figure 3.5 – The bottom-up procedure, cf. Proposition 3.8.

From a practical point of view, this leads to Algorithm 3.2. This algorithm
visits a transfer vertex vφ(c) ∈ VT and tries to strengthen bounds χD(

vz, rc),
vz ∈ Γ(vφ(c)), associated with the recipient node rc of transfer φ(c) and each
transfer value z ∈ Tφ that node sc could send during that transfer. If it can
be shown that node rc necessarily possesses a transfer value z at time c− 1
(if c−1 ≥ χD(

vz, rc)), then Corollary 3.1 enables us to remove arc (vφ(c), vz)
by setting χA(

vφ(c), vz) = {false}. Note that if all arcs going out of vertex
vφ(c) can be removed in this way, then it proves that transfer φ(c) is null in
any dominant solution.

The bounds are strengthened in accordance with Proposition 3.8 within
function bottom-up, with i = rc and t = c−1. vz refers to the vertex whose
bounds must be refined. The function returns true if node i possesses vz at
time t and puts a mark on all visited nodes to avoid redundant calculations.
If the best known bound χD(

vz′, rc) of a vertex z′ ∈ Γ(z) is greater than c−1
(if a condition to deduce that c− 1 ≥ χD(

vz′, rc) is not fulfilled), we attempt
to refine it recursively (line 18). This algorithm is depicted in Figure 3.5.

Remark 3.7

Although Algorithm 3.2 traverses vertices in depth-first, information is
propagated from lower to upper vertices. The same outcome might also
be achieved by calling function bottom-up with transfer vertices vφ(1),
vφ(2), . . . , vφ(c) in the order of the sequence. However, this would compel
us to visit all the vertices “below” vφ(c), whatever the situation.

3.3. Deductive elements 65

Algorithm 3.2 – Bottom-Up consistency

Require: transfer graph Gφ = (V,A, χA, χφ, χD, χD) ;
Require: the vertex vφ(c) to which we apply these deduction rules ;
1:

2: unmark all vertices ; boolean b ← true ;
3: for all vz ∈ Γ(vφ(c)) do
4: # the recursive procedure is performed over each successor.
5: b ← b and bottom-up (vz, rc, c− 1) ;
6:

7: if b = true then
8: # it has been proved that φ(c), is possessed by rc at time c− 1.
9: apply χD(

vφ(c), rc) ≤ c− 1 ;
10:

1:

2: function bottom-up (vz ∈ V, i ∈ N , t ∈ {0, . . . ,m}) : boolean
3:

4: if t ≥ χD(
vz, i) then

5: return true ;
6:

7: if vz ∈ VD then
8: put a mark on vz ; and return false ;
9:

10: for all vz′ ∈ Γ(vz) such that t < χD(
vz′, i) do

11:

12: if vz′ is marked then
13: # the procedure has already failed to prove that node i
14: # possesses z′ at time t.
15: put a mark on vz ; and return false ;
16:

17: # the procedure attempts to prove that i possesses z′ at time t.
18: else if vz′ is not marked and bottom-up (vz′, i, t) = false

19: then put a mark on vz ; and return false ;
20:

21: end for
22:

23: # according to Proposition 3.8, i possesses z at time t.
24: apply χD(

vz, i) ≤ t ; and return true ;
25:

66 Chapter 3. Dominance rules, preprocessings, and integer linear programming

Top-down deductive reasoning

In this paragraph, we aim to make use of knowledge related to later contacts
(and therefore shown at the top of the transfer graph) to deduce information
about earlier contacts (located at the bottom of the transfer graph).

For example, let us consider the case where a node i ∈ N is the receiver
in only two contacts σc1 = (s1, i) and σc2 = (s2, i) (cf. Figure 3.6). Then let
us assume that sending nodes s1 and s2 possess two units 1 and 2 ∈ D, i.e.
Oc1−1

s1 = Oc2−1
s2 = {1, 2}, and that node i did not possess any datum units at

the outset, i.e. Oi = ∅. Note that a datum unit is always transmitted during
σc1 in a strictly-active transfer plan, and that χφ(

vφ(c1)) = {{1}, {2}} in the
transfer graph. This remark also holds for contact σc2. As the datum units
transmitted to node i are always different in a minimal transfer plan, we can
deduce that node i necessarily possesses datum units 1 and 2 after these two
contacts in a strictly-active minimal transfer plan, i.e. χD(

v{1}, i) ≤ c2 and
χD(

v{2}, i) ≤ c2. We have actually shown that node i possesses at least two
datum units from among subset Z = {1, 2} after contact σc2 in any dominant
solution. Thus, φ(c1) ∪ φ(c2) = {1, 2} and Z ⊆ Oc2

i .

The approach can be generalized to any set of transfer values.

Definition 3.9

Given a set vZ ⊆ V of vertices in the transfer graph, a node i ∈ N , and
a time index t ∈ {0, 1, . . . ,m}, min-card(vZ, i, t) corresponds to a lower
bound on the smallest number of transfer values z ∈ Z that node i have
after the t first contacts in any minimal strictly-active transfer plan, i.e.
the smallest number of transfer values z ∈ Z such that z ⊆ Ot

i in such a
transfer plan.

In Section 3.3.3 we will discuss how min-card may be evaluated.

Proposition 3.9

Let vZ ⊆ V be a set of vertices, i ∈ N a node, and let t ∈ {0, 1, . . . ,m}
denote a time index. If min-card(vZ, i, t) = |vZ| (i.e. if node i possesses
at least |vZ| transfer values from among a set of |vZ| transfer values at
time t), then node i possesses all the transfer values in Z at time t – i.e.
[∀vz ∈ vZ, χD(

vz, i) ≤ t] necessarily holds.

3.3. Deductive elements 67

(a) an example of top-down deductive reasoning

s1

s2

i

φ(c1)

φ(c2)

�=

Oc1−1
s1 = {1, 2}

Oc2−1
s2 = {1, 2}

Oc2
i = {1, 2}

(b) the same reasoning in the corresponding transfer graph

v{1} v{2}

vφ(c1) vφ(c2)

χD(v{1}, i) ≤ c2 χD(v{2}, i) ≤ c2

χD(vφ(1), i) ≤ c2 χD(vφ(2), i) ≤ c2

min-card({v{1}, v{2}}, i, c2) = 2

Figure 3.6 – The top-down procedure, cf. Proposition 3.9.

From a practical point of view, this leads to Algorithm 3.3. The procedure
visits a transfer vertex vφ(c) ∈ VT and tries to prove that transfer φ(c) is null
in any dominant solution. With this aim in view, it attempts once again to
prove that any transfer value which could be transmitted during contact σc

is already possessed by node rc at time c − 1 in all dominant transfer plans
– that is ∀vz ∈ Γ(vφ(c)), c− 1 ≥ χD(

vz, rc). This can sometimes be achieved
using Proposition 3.9 with vZ = Γ(vφ(c)), i = rc and t = c−1, which involves
evaluating min-card(Γ(vφ(c)), rc, c− 1).

The algorithm is quite straightforward. It should be noted, however, that
strengthening the bound χD(

vz, rc) of a vertex vz ∈ V might enable a better
lower bound min-card(Γ(vz), rc, c− 1) to be computed, and therefore enable
Proposition 3.9 to be applied on child vertices – with vZ = Γ(vφ(c)), i = rc,
and t = c−1. In fact, the same deductive steps are repeated, from the upper
to the lower vertices – the aim being to find matches between the subset of
transfer values which are possessed by node rc at time c−1 and other subsets
of transfer values (corresponding to former contacts), or ideally to subsets of
datum units.

68 Chapter 3. Dominance rules, preprocessings, and integer linear programming

Algorithm 3.3 – Top-Down consistency

Require: transfer graph Gφ = (V,A, χA, χφ, χD, χD) ;
Require: the vertex vφ(c) to which we apply these deduction rules ;
1:

2: # the procedure starts at vertex vφ(c) with i = rc and t = c− 1.
3: top-down (vφ(c), rc, c− 1) ;
4:

1:

2: procedure top-down (vφ(c) ∈ VT , i ∈ N , t ∈ {0, 1, . . . ,m})
3:

4: # computing the smallest number of transfer values vz ∈ vZ
5: # possessed by node i at time t.
6: bound ← min-card(vZ, i, t) ;
7:

8: if bound = |vZ| then
9: # node i possesses all transfer values vz ∈ vZ at time t.
10: ∀vz ∈ vZ, apply χD(

vz, i) ≤ t ;
11: ∀vz ∈ vZ ∩ VT , top-down (vz, i, t) ;
12:

13: else if bound = |vZ| − 1 and rc = i and t = c− 1 then
14: # node rc will possess all transfer values vz ∈ vZ after σc.
15: ∀vz ∈ vZ, apply χD(

vz, i) ≤ c ;
16: ∀vz ∈ vZ ∩ VT , top-down (vz, i, c) ;
17:

18: end procedure
19:

Strict-activity-based deductive reasoning

Let us now turn to the strict-activity-based deduction rule. First recall that a
transfer plan is strictly-active iif. no transfer that might have been improving
is not improving (cf. Definition 3.6). This means that a transfer is necessarily
improving if the sending node possesses a unit that the receiving node does
not possess. For example, if we look back at Figure 3.2b (given on page 53),
transfer φ(3) is improving in a strictly-active minimal transfer plan, because
node 3 possesses at least two units from among {1, 2, 3} in such a solution,
whereas node 4 only possesses unit 3 when contact σ3 occurs.

3.3. Deductive elements 69

Algorithm 3.4 – Strict-Activity consistency

Require: transfer graph Gφ = (V,A, χA, χφ, χD, χD) ;
Require: the vertex vφ(c) to which we apply these deduction rules ;
1:

2: # the two bounds are evaluated – cf. Subsection 3.3.3 for details.
3: min-s ← min-card(VD, sc, c− 1) ; max-r ← max-card(VD, rc, c− 1) ;
4:

5: # Proposition 3.9 still holds.
6: if min-s = |VD| then
7: for all v{k} ∈ VD apply χD(

v{k}, sc) ≤ c− 1 ;
8:

9: # Proposition 3.10 is then applied.
10: if min-s > max-r then remove ∅ from χφ(

vφ(c)) ;
11:

This leads to the following definition and the ensuing proposition.

Definition 3.10

Given a set vZ ⊆ V of vertices in the transfer graph, a node i ∈ N , and
a time index t ∈ {0, . . . ,m}, max-card(vZ, i, t) corresponds to an upper
bound on the greatest number of transfer values z ∈ Z that node i have
after the t first contacts in any minimal strictly-active transfer plan, i.e.
the greatest number of transfer values z ∈ Z such that z ⊆ Ot

i in such a
transfer plan.

In Section 3.3.3 we will discuss how max-card may be evaluated.

Proposition 3.10

Let σc ∈ σ be a contact, and vZ ⊆ V a set of vertices. If node sc always
possesses more units than node rc when contact σc occurs (in a minimal
strictly-active transfer plan), then transfer φ(c) is necessarily improving
(in such a transfer plan). min-card(vZ, sc, c−1) > max-card(vZ, rc, c−1)
therefore implies ∅ /∈ χφ(

vφ(c)).

This condition is tested with vZ = VD in practice, cf. Algorithm 3.4.

70 Chapter 3. Dominance rules, preprocessings, and integer linear programming

Delivery-requirement-based deductive reasoning

This paragraph looks at enforcing the delivery constraint, which states that
every node j ∈ N has to obtain every unit k ∈ D before time t = χD(

v{k}, j)}
(except where t = ∞). To this end, we can utilize contacts σc = (i, j) which
occur before time t between a node i ∈ N and j. For φ(c) = {k} to be valid,
other conditions have also to be fulfilled:

• c > χD(
v{k}, i) (node i possess unit k when contact σc occurs);

• χD(
v{k}, j) ≤ c ≤ χD(

v{k}, j) (j is allowed to obtain k at time c);

• {k} ∈ χφ(
vφ(c)) (transfer φ(c) = {k} is allowed).

In consequence, if node j does not possess unit k from the outset, and if
only one node i ∈ N is able to transfer k to node j on time, then an implicit
constraint forces node i to obtain k, and this early enough to transmit it to
node j on time. For example, in Figure 3.7, node 3 is the only one that can
send datum unit 1 to recipient node 4 within time interval {χD(

v{1}, 4) = 2,
. . . , χD(

v{1}, 4) = 3}. So, node 3 has to obtain datum unit 1 during contact
σ1 at the latest. This can be formulated as follows.

Proposition 3.11

Let k ∈ D be a datum unit, and j ∈ N a node that is required to obtain
k during the transfer plan – i.e. k /∈ Oj and χD(

v{k}, j) ≤ m. Let then
N j,k = { i ∈ N | ∃σc = (i, j) ∈ σ with c > χD(

v{k}, i), c ≥ χD(
v{k}, j),

c ≤ χD(
v{k}, j) and {k} ∈ χφ(

vφ(c)) } denotes the set of nodes that can
transmit datum unit k to node j in a valid transfer plan. If N j,k = {i}
is a singleton (i.e. if only one node i can send unit k to node j), then

χD(
v{k}, i) < χD(

v{k}, j) and χD(
v{k}, i) < χD(

v{k}, j)

hold. On the other hand, if N j,k = ∅ (if there are no nodes able to send
unit k to node j), then there is no solution fulfilling the set of constraints
represented by the transfer graph.

For instance, in Figure 3.7a, Proposition 3.11 is applied with k = 1, j = 4,
and i = 3. The only predecessor of node 4 is N 4,1 = {3}. Thus, χD(

v{1}, 3)
can be adjusted to χD(

v{1}, 4) = 3. Thereafter, as shown in Figure 3.7b, the
proposition is applied with k = 1, j = 4, and i = 1. Contact σ4 is no longer
consistent with χD(

v{1}, 3), and node 2 then becomes the only node able to
transmit datum unit 1 to node 3. Transfer φ(1) can even be set to {1}, since
only one contact σ1 = (1, 3) ∈ σ exists.

3.3. Deductive elements 71

(a) Node 3 has to receive unit 1 before time 3 to forward it to node 4.

2

1

3 4
χD(v{1}, 4) = 2
χD(v{1}, 4) = 3

χD(v{1}, 3) = 1
χD(v{1}, 3) =��∞ 3

{1}

{1} 4

1
2

3

(b) Thus σ4 occurs too late and transfer φ(1) = {1} is necessary.

2

1

3 4
χD(v{1}, 4) = 2
χD(v{1}, 4) = 3

χD(v{1}, 3) = 1
χD(v{1}, 3) = 3

{1}

{1} �4

φ(1) = {1}
2

3

Figure 3.7 – The delivery-requirement-based
deductive reasoning (Proposition 3.11).

From a practical point of view, this leads to Algorithm 3.5. The procedure
ensures that bounds χD and χD are consistent – in the sense of Proposition
3.11 – for a given unit k ∈ D and all the nodes in N . Note that S is a stack
containing the pair of nodes (i, j) ∈ N 2 such that N j,k = {i}, i.e. the nodes
{ j ∈ N such that k /∈ Oj and χD(

v{k}, j) ≤ m } whose bounds χD(
v{k}, j)

and χD(
v{k}, j) might need to be strengthened. Instruction fail notifies the

calling function that there is no transfer plan fulfilling the set of constraints
represented by the transfer graph. Therefore, if Delivery-Requirements

is used within a branching algorithm, it prunes the current branch and then
triggers a backtrack.

Global deductive elements

The deduction procedures described above are heuristically orchestrated in
Algorithm 3.6. The vertices of the transfer graph are sequentially processed
to reduce the domain of possibilities χφ associated with each transfer. If the
domain of a transfer becomes a singleton, then it means that the transfer has
been decided. If it becomes empty, or if the other properties are inconsistent,
e.g. if ∃vz ∈ V, ∃i ∈ N |χD(

vz, i) > χD(
vz, i), then it means that no transfer

plan fulfils the constraints represented by the transfer graph.

72 Chapter 3. Dominance rules, preprocessings, and integer linear programming

Algorithm 3.5 – Delivery-Requirements consistency

Require: transfer graph Gφ = (V,A, χA, χφ, χD, χD) ;
Require: the vertex vφ(c) to which we apply these deduction rules ;
1:

2: # the set of nodes whose bounds have to be checked is stored in stack S.
3: S ← {(i, j) | N j,k = {i}} ;
4:

5: # the bounds are updated in accordance with Proposition 3.11.
6: while S �= ∅ do
7:

8: (i, j) ← S.back() ;S.pop() ;
9: apply χD(

v{k}, i) < χD(
v{k}, j) and χD(

v{k}, i) < χD(
v{k}, j) ;

10:

11: # unique transfers are even forced.
12: if ∃!σc = (i, j) ∈ σ | c > χD(

v{k}, i), c ≥ χD(
v{k}, j),

13: c ≤ χD(
v{k}, j), and {k} ∈ χφ(

vφ(c))
14: then apply φ(c) = {k} ;
15:

16: # stack S is then updated if required.
17: update N i,k ; and push (z, i) if N i,k = {z} ; or fail if N i,k = ∅ ;
18:

19: end while
20:

During each iteration c ∈ {1, 2, . . . ,m}, there is first an attempt to refine
the bound χD(

vz, rc) of every successor vz ∈ Γ(vφ(c)) of vertex vφ(c) in the
transfer graph (using both bottom-up and top-down deductions). This aims
to prove that some transfer values which can be transferred by node sc during
contact σc are possessed by node rc when the contact occurs (in any minimal
and strictly-active transfer plan). Subsequently, the minimality consistency
algorithm is charged with updating χA and χφ. The strict-activity- and the
delivery-requirement-based consistency algorithms are run independently.

This way, we can often show that some transfers are null in any dominant
transfer plan. The procedure can be repeated as long as changes are occurring
in Delivery-Requirements. Nevertheless, this is seen to be inefficient in
practice (most of the transfers being fixed from the first call). We have tested
Algorithm 3.6 as a preprocessing procedure aiming at detecting and removing
fruitless contacts, so that the size m of sequence σ can be reduced before the

3.3. Deductive elements 73

problem is solved. Moreover, we have tested it as a propagation procedure,
whose goal is to set variables during each branching stage of a branch-and-cut
algorithm (during the solving of an integer-linear-programming model which
will be described in Section 3.4). However, before going any further, we must
discuss how bounds min-card and max-card are computed in practice.

Algorithm 3.6 – Global-Consistency – heuristic

Require: transfer graph Gφ = (V,A, χA, χφ, χD, χD) ;
1:

2: # the main loop aims to find which transfers are necessarily null.
3: for c : 1 → m do
4:

5: # we try to show that all the transfer values possessed by node sc
6: # are also possessed by node rc when contact σc occurs.
7: Bottom-Up (Gφ,

vφ(c)) ; Top-Down (Gφ,
vφ(c)) ;

8:

9: # the strict-activity consistency procedure is run independently.
10: Strict-Activity (Gφ,

vφ(c)) ;
11:

12: # the redundant transfers are finally removed in accordance
13: # with the minimality rule.
14: Minimality+Validity (Gφ,

vφ(c)) ;
15:

16: end for
17:

18: # the delivery constraints are then propagated as necessary.
19: while at least one change occurs do
20: for all k ∈ D do Delivery-Requirements (Gφ, k) ;
21:

74 Chapter 3. Dominance rules, preprocessings, and integer linear programming

3.3.3 Evaluating min-card and max-card

In this section, we will look at how to evaluate an upper and a lower bound
on the number of transfer values possessed by a given node at a given time
(cf. Definitions 3.9 and 3.10). The input data will always be one instance of
the dissemination problem, one transfer graph (one subset of transfer plans),
one subset vZ ⊆ V of its vertices, one node i ∈ N , and finally one time index
t ∈ {0, . . . ,m}. With regard to max-card, note that only the case vZ = VD
will be considered, i.e. we will have to find an upper bound of the number of
datum units possessed by node i at time t (cf. Algorithm 3.4).

How to compute max-card

Let us consider the problem of evaluating max-card(VD, i, t). We recall that
the different datum units (represented by VD) that a node i ∈ N can receive
before time t ∈ {0, . . . ,m} are associated with as many vertex-disjoint paths
in the transfer graph. Each path has to start at a transfer vertex vφ(c) ∈ VT
(c ≤ t) where rc = i, and end at a unit vertex v{k} ∈ VD. These paths must
also fulfil the constraints which result from functions χA, χφ, χD and χD (cf.
the summary given on page 58).

Therefore, by relaxing the constraints expressed with functions χφ, χD
and χD, the problem in hand can be reformulated as the problem of finding
the greatest number of arc- and vertex-disjoint paths from a transfer vertex
vφ(c) ∈ VT such that c ≤ t and rc = i to a unit vertex v{k} ∈ VD. Of course
the search is limited to the subgraph defined by χA (i.e. the arcs a ∈ A such
that true ∈ χA(a)). To solve this problem, we compute a maximum flow in a
transportation network G = (X,U, cap) comprised of the following elements
(cf. Figure 3.8, instance Figure 3.2, page 53):

1. we consider a source vertex src ∈ X and a sink vertex snk ∈ X;

2. with each vertex vz ∈ V in the transfer graph, we associate two vertices
zs and ze ∈ X and an arc (zs, ze) ∈ U between these two vertices in the
transportation network;

3. with each arc a = (vx, vy) ∈ A such that true ∈ χA(a) in the transfer
graph, we associate an arc (xe, ys) ∈ U in the flow network;

4. we add an arc from the source node src to any vertex zs ∈ X which is
associated with a transfer value possessed by node rc at time t (where
χD(vz, i, t) ≤ t in the transfer graph);

5. we add an arc from each unit vertex {k}e ∈ X to the sink node snk;

3.3. Deductive elements 75

{1}s

{1}e

{2}s

{2}e

{3}s

{3}e

φ(1)e

φ(1)s

φ(2)e

φ(2)s

src

snk

max-card(vZ = VD, i = 3, t = 2) = 2

1/1 1/1 0/1

1/1 1/1

1/1 1/1

Figure 3.8 – An example of transportation network used to evaluate
max-card (the instance is given in Figure 3.2 on page 53).

6. the capacity of each arc a ∈ U is finally set to cap(a) = 1;

7. note that any node z ∈ X that is not descendant of src, nor ascendant
of snk can be removed.

Flows represent arc-disjoint paths (as all capacities are set to 1), and define
a valid assignment of the transfer values possessed by node i at time t. Note
that the value of each transfer φ(c), c ∈ {1, . . . ,m} is unambiguous because
at most one unit can flow out of each vertex φ(c)e ∈ V (the paths are vertex
disjoint). The constraints expressed by χA are fulfilled by construction.

76 Chapter 3. Dominance rules, preprocessings, and integer linear programming

Hence the following proposition.

Proposition 3.12

Let fM be the maximum flow through G. fM = max-card (VD, i, t) is an
upper bound on the greatest number of units that node i ∈ N possesses
after the first t contacts.

Finally, it is worth nothing that strict-activity and minimality constraints
can be disregarded when computing max-card(vZ, i, t) – because redundant
and postponed transfers can only lead to a reduction in the number of datum
unit received by node i.

What about min-card ?

Let us now turn to the problem of computing min-card(vZ, i, t) (the smallest
number of transfer values z ∈ Z possessed by node i at time t in a dominant
transfer plan). It might be tempting to use the same approach and to try to
transform the smallest cardinal bound problem into a well-known flow-based
problem. Unfortunately this does not work. The optimal solution will always
be the null transfer plan in which no datum units are transferred at all, and
therefore the lower bound will always be null. To get tight bounds, solutions
must be required to be minimal strictly-active transfer plans (which prevents
unjustified null transfers occurring). Unfortunately this constraint cannot be
introduced into a flow problem. Note that it can be proved that computing
an exact value min-card(vZ, i, t) – i.e. the precise number of transfer values
in vZ that node i possesses at time t in the worst case – is strongly NP-hard
if solutions have to be strictly-active.

We were unable to find a satisfactory heuristic for the problem. Thus we
have proposed a procedure for polynomially transforming an instance of the
smallest cardinal bound problem, where vZ ⊆ VD does not necessarily hold,
into another instance where vZ ⊆ VD holds, i.e. where datum units only need
to be considered. In this case, the integer-linear-programming model defined
in Section 3.4 can be adapted to our needs (with minor changes). Evaluating
the exact value of min-card in the transformed instance gives rise to a lower
bound of min-card(vZ, i, t) in the original instance.

Unfortunately, the transformation is not always relevant and the method
is then limited to some cases that we describe below.

3.3. Deductive elements 77

(a) an instance of the dissemination problem

2

1 {1, 2}

3

{3, 4}

4 6

{5}

5

7

8{4, 5}

9

10

{3, 4}
11

1 2

3

4

6

8

10

9

5

7

(b) the associated transfer graph

v{1} v{2} v{3} v{4} v{5}

vφ(1) vφ(3) vφ(5) vφ(11)

vφ(2) vφ(7)

vφ(6)vφ(4) vφ(10) vφ(8)

vφ(9)

Figure 3.9 – An instance of the dissemination problem
and the corresponding transfer graph.

78 Chapter 3. Dominance rules, preprocessings, and integer linear programming

How to perform this transformation

Let us consider the instance depicted in Figure 3.9. We would like to compute
min-card({vφ(1), vφ(3)}, 5, 6), that is the smallest number of transfer values
from among set Z = {φ(1), φ(3)} possessed by node i = 5 after the first t = 6
contacts in a dominant solution.

As we stated above – in order to evaluate min-card (using integer linear
programming) – we wish to reduce the original problem to an easier problem
where vZ ⊆ VD. With this goal in mind, we propose adding a virtual datum
unit {A} to represent transfer value φ(1) ∈ Z. Like φ(1), {A} is transmitted
to node 1 at time 1 via a fictitious source node s1, while contact σ1 is removed
from the instance. Transfer φ(3) ∈ Z is then replaced by virtual datum unit
{B} in the same way. Finally, any contact (resp. node) whose representative
arc (resp. vertex) does not belong to a journey to node i = 5, or which occurs
after contact σt = σ6, is removed from the instance, since it cannot help i to
obtain new units on time. This instance is depicted in Figure 3.10a.

In fact, min-card({vφ(1), vφ(3)}, 5, 6) in the original instance is equal to
min-card({v{A}, v{B}}, 5, 6) = 2 in the new instance (we can compute this
value since we are only considering datum units). Node 2 receives unit {A}
instead of transfer value φ(1) (during σ1), but both represent one datum unit
in the set {{1}, {2}}. Next node 4 receives {B} instead of transfer value φ(3)
(during σ3), but both represent one unit in the set {{3}, {4}}. As the rest of
the instance is not changed, units {A} and {B} play the same role as transfer
values φ(1) and φ(3) ∈ Z in the original instance. Consequently, φ(1) ⊆ O6

5

and φ(2) ⊆ O6
5 hold in all dominant solutions.

In the general case, thanks to the transfer graph, the transformation can
be automated using the following procedure.

1. To “replace” a transfer φ(c) by a virtual unit, it is sufficient to remove
all descendants of vertex vφ(c) in the original transfer graph, so that it
becomes a leaf in the new transfer graph (i.e. a vertex that represents a
datum unit). This virtual datum unit thus aggregates the choices that
must be made regarding the removed vertices. This operation is to be
repeated for all the vertices vz ∈ vZ ∩ VT . In this way, all the transfer
values in vZ are units in the new instance.

2. Thereafter, the deletion of the irrelevant entities consists in removing
the contacts occurring too late (i.e. {vφ(c) ∈ VT | t < c}), together with
the transfer values whose representative vertex is not a descendant of a
vertex associated with node i in the transfer graph (i.e. { vz ∈ V such
that ��∃vφ(c′) ∈ VT , c′ ≤ t, rc′ = i and vz is a descendant of vφ(c′) }).

3.3. Deductive elements 79

(a) the transformed evolving graph

2

1

s1

{A}

���{1, 2}

3���{3, 4}

4

s2 {B}

6
��{5}

5

7

8���{4, 5}

9

10

���{3, 4}

1

3

2

4

6

(b) the new transfer graph

v{1} v{A} v{2} v{3} v{B} v{4} v{5}

vφ(1) vφ(3) vφ(5) vφ(11)

vφ(2) vφ(7)

vφ(6)vφ(4) vφ(10) vφ(8)

vφ(9)

Figure 3.10 – A valid transformation
for computing min-card({vφ(1), vφ(3)}, 5, 6).

This transformation is shown in Figure 3.10b.

These operations sometimes transform other transfer vertices vφ(c) ∈ VT\Z
into leaves. For instance, in Figure 3.11, the transformation of transfer φ(3)
into unit {B} also transforms transfer φ(11) into unit {C}.

80 Chapter 3. Dominance rules, preprocessings, and integer linear programming

The limits of our approach

In some cases, not all of the successors of a vertex are removed. For example,
in Figure 3.11b, the successor v{4} of vertex vφ(5) is removed to transform
φ(3) into {B}, while vertex v{5} is kept. In a such situation, the evaluation
of min-card in the transformed instance is not a lower bound of min-card in
the original instance. Extra transformations are required, because the set of
choices concerning these transfers has been implicitly reduced. Some transfer
plans might thus be ignored.

In this example, it would imply that φ(5) = φ(7) = {5}, and consequently
that φ(8) = φ(9). We would therefore find φ(9) = {A}, φ(10) = {B}, or vice
versa, and finally conclude that min-card({vφ(1), vφ(3)}, 7, 11) = 2. Yet the
minimal strictly-active transfer plan φ such that – φ(1) = φ(2) = φ(8) = {1},
φ(3) = φ(10) = {3}, φ(5) = φ(7) = {4}, φ(9) = {5}, and φ(11) = ∅ – proves
that node 7 can possess fewer than 2 units at time 11 in a dominant solution.
Consequently the best bound ismin-card({vφ(1), vφ(3)}, 7, 11) = 1, e.g. with
φ(3) ⊆ O11

5 and φ(1)��⊆O11
5 .

In fact, for the bound to be computed consistently, transfer φ(5) needs
to be transformed into a fourth virtual unit {D} by removing the remaining
descendant v{5} of vertex vφ(5). In practice, such cases are never addressed,
since they generally lead to complex transformations (triggered in chain) and
poor bounds. Each transformation is actually a relaxation of some minimality
constraints, in the sense that dependent sets of choices are being assimilated
to independent units. For example, the transformation of transfers φ(3) and
φ(11) ⊆ {3, 4} into virtual datum units {B} and {C} implicitly allows that
φ(3) = φ(11), although r3 = r11 = 10.

The case where some transfer values in vZ have hierarchical relationships
is not addressed either. Transforming ancestors implies deleting descendants,
so that the target value min-card(vZ, i, t) = |vZ| becomes unattainable from
the beginning.

Proposition 3.13

Let vZT be the set of (virtual) datum units in the transformed instance
(corresponding to the set of transfer values vZ in the original problem).
Letmin-cardT (

vZT , i, t) refer to the smallest number of transfer values in
ZT that node i possesses at time t in a dominant transfer plan (computed
in the transformed instance). min-cardT (

vZT , i, t) = min-card(vZ, i, t)
is a lower bound of the smallest number of transfer values possessed by
node i after the first t contacts in the original instance.

3.3. Deductive elements 81

(a) the transformed evolving graph

2

1

s1

{A}

���{1, 2}

3���{3, 4}

4

s2

{B} ≡ {3,4}

6

{5}

5

7

8{�4, 5}

9

10
���{3, 4}

s3

{C}

11

1

3

2

8

10
9

5

7

(b) the new transfer graph

v{1} v{A} v{2} v{3} v{B} v{4} v{5} v{C}

vφ(1) vφ(3) vφ(5) vφ(11)

vφ(2) vφ(7)

vφ(6)vφ(4) vφ(10) vφ(8)

vφ(9)

implic
itely

igno
red

Figure 3.11 – An inconsistent transformation for
computing min-card({vφ(1), vφ(3)}, 7, 11).

In the following section we propose an integer-linear-programming model
designed to solve the dissemination problem. Note that it is quite similar to
the model we use in practice to compute min-cardT (

vZT , i, t).

82 Chapter 3. Dominance rules, preprocessings, and integer linear programming

3.4 Solving the dissemination problem

In Section 3.1 we proposed several dominance rules which enable the search
space to be reduced. Deduction procedures based on these results were then
discussed in Sections 3.2 and 3.3. In this section we propose an integer-linear-
programming model to solve the problem.

3.4.1 Integer linear programming

The integer-linear-programming model we propose is quite straightforward,
and is based on a set of time-indexed boolean variables describing a transfer
plan. For each node i ∈ N , we define Ti = {0} ∪ {c ∈ {1, 2, . . . ,m} | rc = i},
the set of time indexes at which the state of node i can change, i.e. at which
node i can receive a datum unit. Subsequently, ∀t ∈ {0, 1, . . . ,m}, we define
Ti(t) = max {t′ ∈ Ti | t′ ≤ t}. Thus, Ti(t) refers to the last contact occurring
before time t where node i is the receiver.

The variables are defined as follows:

• ∀k ∈ D, ∀c ∈ {1, . . . ,m}, xk,c = 1 if datum unit k is transmitted from
node sc to node rc during contact σc, and xk,c = 0 otherwise.

• ∀i ∈ N , ∀k ∈ D, and ∀t ∈ Ti, yi,k,t = 1 if node i possesses unit k after
contact σt, and yi,k,t = 0 otherwise.

• ∀t ∈ {0, 1, . . . ,m}, zt = 1 if there is a node i ∈ R which is not entirely
served after the first t contacts, and zt = 0 otherwise.

Remark 3.8

y-variables are indexed with sets Ti instead of set {0, 1, . . . ,m}. However,
we may easily know whether a node i ∈ N possesses a datum unit k ∈ D
at any index t ∈ {0, 1, . . . ,m}. Indeed, yi,k,Ti(t) = 1 if and only if node i
possesses datum unit k after the first t contacts.

The model thus contains um x-variables, u.(2m + n) y-variables and m + 1
z-variables.

Minimizing the dissemination length leads to the following objective.

λ∗ = min
m∑
t=0

zt (3.1)

3.4. Solving the dissemination problem 83

Given a time index t ∈ {0, 1, . . . ,m}, variable zt is null if and only if all the
recipient nodes have been served at time t, i.e. ∀i ∈ R, ∀k ∈ D, yi,k,Ti(t) = 1.
Hence the following constraints.

∀i ∈ R, ∀t ∈ Ti, ∀k ∈ D, zt ≥ 1− yi,k,t (3.2)

Equations (3.2) can be aggregated in different ways:

∀t ∈ {0, . . . ,m}, ∀i ∈ R, zt ≥ 1− 1

u

∑
k∈D

yi,k,Ti(t) (3.2-a)

and/or ∀t ∈ {0, . . . ,m}, ∀k ∈ D, zt ≥ 1− 1

|R|
∑
i∈R

yi,k,Ti(t) (3.2-b)

and/or ∀t ∈ {0, . . . ,m}, zt ≥ 1− 1

u.|R|
∑
i∈R

∑
k∈D

yi,k,Ti(t) (3.2-c)

The efficiency of the variants will be discussed in Section 3.5.

Other constraints bind the x-variables (the decision variables) to the y- and
the z-variables (the auxiliary variables). They ensure that each constraint is
respected (e.g. the transfer plan must be valid):

• All recipients have to be served before the end of the time horizon:

zm = 0 (3.3)

• Each node i ∈ N initially possesses a subset Oi of datum units:

∀i ∈ N , ∀k ∈ D | k ∈ Oi, yi,k,0 = 1 (3.4)

∀i ∈ N , ∀k ∈ D | k /∈ Oi, yi,k,0 = 0 (3.5)

• The transfer plan must be valid (sending nodes must possess the datum
units that they transfer):

∀k ∈ D, ∀c ∈ {1, 2, . . . ,m}, xk,c ≤ ysc,k,Ti(c−1) (3.6)

• Nodes possess a datum unit from the time they receive it:

∀k ∈ D, ∀c ∈ {1, . . . ,m}, yrc,k,c ≤ yrc,k,Ti(c−1) + xk,c (3.7)

∀k ∈ D, ∀c ∈ {1, . . . ,m}, yrc,k,c ≥ 1/2
[
yrc,k,Ti(c−1) + xk,c

]
(3.8)

• At most one datum unit can be transferred during each contact:

∀c ∈ {1, . . . ,m},
∑
k∈D

xk,c ≤ 1 (3.9)

84 Chapter 3. Dominance rules, preprocessings, and integer linear programming

3.4.2 Additional constraints

Together, constraints (3.7) and (3.8) ensure that variable yrc,k,c is equal to 1
if yrc,k,Ti(c−1) = 1 or xk,c = 1, and to 0 otherwise – i.e. node rc possesses unit
k after contact σc if it already possessed k after contact σc−1, or if it received
the unit during contact σc. Yet, if we seek a minimal transfer plan, as both
conditions cannot be true at the same time, constraints (3.7) and (3.8) can
be replaced by the following constraint:

∀k ∈ D, ∀c ∈ {1, 2, . . . ,m}, yrc,k,Ti(c−1) + xk,c = yrc,k,c (3.10)

It is possible to strengthen the model such that transfer plans are active,
but this unfortunately leads to complex equations and poor numerical results
in practice. However, it is quite easy to guarantee that solutions are strictly-
active. This can be achieved by ensuring that transfer plans are minimal and
that any transfer φ(c) cannot be null if the sending node sc possesses at least
one datum unit that the receiving node rc does not possess (since φ(c) 6= ∅
and Oc

rc > Oc−1
rc are equivalent in a minimal transfer plan), i.e.

∀k ∈ D, ∀c ∈ {1, . . . ,m}, ysc,k,Tsc (c−1) − yrc,k,Trc (c−1) ≤
∑
k′∈D

xk′,c (3.11)

Altogether, the model contains 1 +un+m+ 4um constraints – including
constraints (3.2) through (3.11) (except constraints (3.2-a) through (3.2-c)
and constraints (3.7)+(3.8)).

Below we discuss the effectiveness of preprocessing procedures, cf. Section
3.3, and we compare the different models proposed in this Section.

3.5 Computational results

In this section, experimental results are reported and discussed. First of all,
in Section 3.5.1, the random process used to generate the benchmark will be
described. Instance classes are built with respect to the number of nodes n
and the number of datum units u (the number of contacts m is chosen such
that most of the instances are feasible). The models described in Section 3.4
are assessed in Section 3.5.2, while the preprocessing procedures proposed in
Sections 3.2 and 3.3 are discussed in Section 3.5.3.

3.5. Computational results 85

3.5.1 About the benchmarks

In this section, we describe a destruction/construction algorithm to generate
difficult instances for the dissemination problem. The instances are available
on our website [28].

Random instances are generally easy to solve. That is why we developed a
procedure which attempts to increase the “hardness” of an existing instance
by iteratively renewing the least relevant contacts (the contacts removed by
a trivial preprocessing procedure). Usually starting with a random instance,
the process is intended to generate harder and harder instances by removing
irrelevant contacts, in such way that new ones can be added elsewhere in the
sequence, without increasing the size of the problem (specifically the number
of contacts). Note that a few random contacts are also renewed to introduce
more diversity in the instances visited during the process.

At each iteration, the instance is solved by a given solver (in practice we
can use the branch-and-cut algorithm defined in Section 3.4.1). After a given
number of iterations, the instance that has required the most CPU-time to
be solved is returned (this is assumed to be the most “difficult” instance).

The generated instances were classified by difficulty, with respect to the
number of nodes n and the number of datum units u. The number of contacts
m was chosen accordingly. Next the instances were solved using a variety of
solvers, e.g. a MIP-based solver with and without a preprocessing procedure,
and the union of the twenty hardest instances obtained for each solver was
retained (except that the instances which could not be solved by at least one
of these solvers were ignored).

184 instances were selected in this way, resulting in eight classes (named
3u10n, 4u20n, 4u50n, 4u100n, 5u50n, 10u10n, 50u10n, and 100u10n).
These classes are described by the number nbinst of instances they contain,
the number u of datum units and the number n of nodes characterizing these
instances. The average number rec of recipients i ∈ R, the average number
src of sources i ∈ N |Oi 6= ∅, and the average number m of contacts of these
instances are reported below. Thereafter, the eight classes were grouped by
difficulty. The first group contains the easiest instances. The second and the
third group contain the instances having many nodes but few datum units,
or few nodes but many datum units, respectively.

86 Chapter 3. Dominance rules, preprocessings, and integer linear programming

name nbinst u n rec src m

1
3u10n 36 3 10 10 1 135

4u20n 41 4 20 18 1 366

2

4u50n 26 4 50 39 1 710

4u100n 20 4 100 87 2 1720

5u50n 23 5 50 50 1 726

3

10u10n 16 10 10 6 2 197

50u10n 16 50 10 6 2 750

100u10n 6 100 10 7 4 2000

In the following subsections, we provide and discuss some computational
results that show the efficiency of our algorithms. These computations were
performed on a server equipped with 16× 6 cores (each running at 2.67Ghz)
and 1TB RAM. All the algorithms are implemented in C++. MILP are solved
by CPLEX, the commercial solver developed by IBM-ILOG. Multithreading
features proposed by this library are deactivated, since the use of concurrent
optimizers led to unstable results. More specifically, several executions of the
same computation sometimes led to different results (in terms of CPU time),
which prevents us making reliable analyses. Consequently, all instances were
solved by an exact, sequential, and deterministic algorithm, within a one-hour
time-limit.

The same information is to be found in all tables of results, namely:

1. solved (-%) indicates the ratio of instances solved by the solver.

2. feas (-%) indicates the ratio of instances that remained unsolved but for
which the solver found at least one feasible solution within the one-hour
time-limit.

Therefore 100%− solved− feas (-%) indicates the ratio of instances for
which the solver neither found a feasible transfer plan, nor showed the
instance to be infeasible.

3. gap (-%) is the average relative gap between the best lower bound and
the best feasible solution which have been computed during the search
(this metric concerns only the feas% of the instances which remained
unsolved but for which the solver found at least one feasible solution).

3.5. Computational results 87

4. cpu (-s) indicates the average solving time for the given solver, including
all instances and thus all time-limits. cpu therefore tends to 3600s when
solved tends to 0.0%.

Remark 3.9

In each section, different sets of parameters are compared, and the best
strategies selected. In our opinion, such a selection should be made with
respect to the three groups rather than the eight classes. In this way the
benchmark cannot be learned by heart.

3.5.2 About the models

Models – The most trivial model is given in Section 3.4.1. This MILP-based
model is defined by equations (3.1) through (3.9), and is labelled std in the
following. To decide which constraints from among (3.2), (3.2-a), (3.2-b) and
(3.2-c) are most suitable, we compare the four cases, cf. Table 3.1.

There is no clear dominance between these four models. In every group,
one notes that the best results per class are obtained with a different model
(the impact of each constraint appears to be random at first glance). However
we decided to use constraint (3.2-a) in the following, because it leads to the
best results on average, i.e. across all classes.

Dominance rules – Model std can be refined. If transfer plans are required
to be minimal, constraints (3.7)+(3.8) can be replaced by constraint (3.10),
giving rise to a new model denoted as min. If transfer plans are required to
be strictly-active too, constraint (3.11) can be added to model min. It gives
rise to a third model, termed min+st/act. The numerical results obtained
with these two models are reported in Table 3.2.

Model min+st/act is seen to outperform both std and min in the first
group, while model min dominates the two others on bigger instances. None
of them, however, gives convincing results, and limits appear as the number
of nodes and, more importantly, the number of units increases.

As we will confirm below, the difficulty of an instance is better explained
by the number of datum units than by the number of nodes. With a solving
rate greater than 90% for all solvers, the instances in group 2 (characterized
by many systems but few units) seem manageable whereas, instances of the
third group (few systems but many units) seem out of reach for the moment.
This being said, we could state that min is the best model out of the three,

88 Chapter 3. Dominance rules, preprocessings, and integer linear programming

because it is the only one that successfully solves some of the most difficult
instances. However, this model’s disappointing results when dealing with the
easier classes (namely 3u10n and 4u20n), make us reluctant to make such
a categorical statement.

These three options (std, min and min+st/act with constraint (3.2-a))
will therefore continue to be considered in the next section. The superiority
of model min will then be clearly established.

3.5.3 About the preprocessing procedures

The main conclusion of the previous section is probably that standard solvers
show their limits quite soon for this kind of problem.

Fortunately the deduction algorithms proposed in Section 3.3 significantly
improve efficiency of solvers when applied within a preprocessing procedure
whose role is to remove useless contacts or, conversely, to detect unavoidable
transfers. To show this, we will now investigate different procedures that are
based on Algorithm 3.6, cf. Section 3.3.2.

Let us recall that Algorithm 3.6 is based on a model known as the transfer
graph that encapsulates knowledge about each transfer φ(c), c ∈ {1, . . . ,m},
and each state Ot

i , i ∈ N , t ∈ {0, . . . ,m}. We are then able to apply different
dominance-rule-based propagation algorithms to deduce new knowledge, and
in particular to reveal the transfers that are always null (or improving) in a
minimal strictly-active transfer plan. The routine processes all transfers φ(c),
c ∈ {1, 2, . . . ,m}. First, it calls Bottom-Up and Top-Down to determine
which units possessed by node sc have been received by node rc. Thereafter
procedure Minimality+Validity uses the eponymous dominance rules to
avoid fruitless transfers. Strict-Activity and Delivery-Requirements
also detect transfers that are necessary, or impossible. The knowledge, thus
enriched, can finally be passed on to the mathematical model. Some variables
can be fixed at the root node – e.g. if transfer φ(c) is shown to be null in all
dominant solutions, then ∀k ∈ D, xk,c = 0.

As usual, a tradeoff has to be found between the time spent running the
preprocessing procedure, and the time saved in the branch-and-cut procedure
as a result of the preprocessing. Actually, this is particularly true for routines
Top-Down and Strict-Activity, since both often consume a significant
amount of time computing min-card (cf. Section 3.3.3). To empirically find
the compromise, we propose five more or less aggressive strategies, which are
labelled minimal, light, normal, aggressive and maximal. The strategies

std // constraint (3.2) std // constraint (3.2-a)

name solved feas cpu gap solved feas cpu gap

1
3u10n 100 - 0.80 - 100 - 0.64 -

4u20n 100 - 9.9 - 100 - 12.3 -

2

4u50n 100 - 39.7 - 100 - 49.6 -

4u100n 100 - 148 - 100 - 224 -

5u50n 91.3 8.7 520 9.2 95.7 4.3 332 12.6

3

10u10n 50.0 25.0 2362 21.8 68.8 12.5 1614 22.2

50u10n 0.00 12.5 3587 2.7 0.00 6.3 3585 1.1

100u10n 0.00 0.00 3593 - 0.00 0.00 3592 -

avg 82.6 4.3 724 13.8 84.8 2.2 645 14.5

std // constraint (3.2-b) std // constraint (3.2-c)

name solved feas cpu gap solved feas cpu gap

1
3u10n 100 - 1.1 - 100 - 0.96 -

4u20n 100 - 17.3 - 100 - 19.6 -

2

4u50n 100 - 84.1 - 100 - 50.8 -

4u100n 100 - 110 - 100 - 165 -

5u50n 95.7 4.3 398 14.5 95.7 4.3 392 12.5

3

10u10n 50.0 25.0 2087 16.5 56.3 18.8 1969 17.2

50u10n 0.00 18.8 3586 1.8 0.00 18.8 3586 8.2

100u10n 0.00 0.00 3589 - 0.00 0.00 3589 -

avg 83.2 4.3 688 10.7 83.7 3.8 679 12.7

Table 3.1 – Computational results achieved with CPLEX and different models.

min // constraint (3.2-a) min+st/act // const. (3.2-a)

name solved feas cpu gap solved feas cpu gap

1
3u10n 100 - 0.91 - 100 - 0.30 -

4u20n 100 - 14.1 - 100 - 4.2 -

2

4u50n 100 - 30.2 - 100 - 50.7 -

4u100n 95.0 5.0 240 4.6 90.0 10.0 919 10.6

5u50n 95.7 4.3 266 14.0 95.7 4.3 696 3.3

3

10u10n 81.3 12.5 1317 20.1 93.8 6.3 706 10.2

50u10n 56.3 18.8 2563 2.6 0.00 6.3 3591 16.5

100u10n 33.3 16.7 3116 0.28 0.00 0.00 3597 -

Table 3.2 – Computational results achieved with different models.

90 Chapter 3. Dominance rules, preprocessings, and integer linear programming

are built with the intuitive idea that consistency algorithms are more efficient
on earlier contacts than on later ones, because min-card problems involving
few transfers are much smaller. Therefore we just vary the number of contacts
after which the most computationally costly routines are skipped.

These strategies are characterized by the maximum amount pre.tl of time
which can be spent in the preprocessing procedures, the ranges td.range and
sa.range of contacts to which routines Top-Down and Strict-Activity

will respectively be applied, and the maximum number dr.limit of times the
while-loop of routine Delivery-Requirements can be run. The functions
evaluating min-card and max-card are limited in time by parameters minc.tl
and maxc.tl, respectively. Bottom-Up andMinimality+Validity can be
used without any restriction.

The five strategies are described below. Note that td.range = 0.25 means
that top-down deductive reasoning is applied to the first quarter of transfers
(from c = 0 to c = �0.25×m�). The experimental results obtained using the
different strategies are reported in Tables 3.3 through 3.7. The two columns
rem and fcd (-%) indicate the average percentages of contacts that have been
removed (shown to be null in all dominant solution), or alternatively forced
(compelled to be improving or even fixed). In this way rem and fcd measure
the efficiency of the procedures. They must be considered together with prep,
the average amount of time required to execute the procedures.

minimal light normal aggr. maximal

pre.tl (-s) 25 25 25 600 2400

do.bottom.up yes yes yes yes yes

do.minimality yes yes yes yes yes

td.range - 0.50 1.00 1.00 1.00

sa.range - 0.15 0.50 1.00 1.00

dr.limit 2 2 2 4 4

minc.tl - 0.06s 0.06s 0.10s 0.10s

maxc.tl - 0.20s 0.20s 0.30s 0.30s

standard min min+st/act efficiency

name solved cpu solved cpu solved cpu prep rem fcd

1
3u10n 100 0.70 100 0.78 100 0.26 0.00 15.2 -

4u20n 100 8.6 100 11.3 100 3.3 0.01 4.9 -

2

4u50n 100 31.3 100 33.5 100 46.5 0.02 5.6 -

4u100n 95.0 237 95.0 230 95.0 600 0.08 5.1 -

5u50n 100 270 95.7 270 95.7 433 0.02 2.3 -

3

10u10n 62.5 1819 87.5 997 81.3 956 0.00 9.8 -

50u10n 0.00 3589 56.3 2343 0.00 3593 0.05 5.5 -

100u10n 0.00 3590 33.3 3208 0.00 3591 0.29 1.9 -

Table 3.3 – Computational results achieved using minimal preprocessings.

standard min min+st/act efficiency

name solved cpu solved cpu solved cpu prep rem fcd

1
3u10n 100 0.48 100 0.47 100 0.52 0.42 49.0 5.3

4u20n 100 2.2 100 2.0 100 2.6 1.4 26.9 6.7

2

4u50n 100 9.0 100 4.1 100 17.3 2.5 21.0 6.7

4u100n 100 32.0 100 20.1 100 275 5.7 20.3 5.6

5u50n 100 19.6 100 19.4 100 107 2.7 13.1 7.4

3

10u10n 75.0 1184 93.8 482 93.8 546 0.62 19.0 6.4

50u10n 6.3 3523 68.8 1647 0.00 3583 5.0 8.8 3.8

100u10n 0.00 3594 33.3 3112 0.00 3591 25.3 0.76 1.3

Table 3.4 – Computational results achieved using light preprocessings.

standard min min+st/act efficiency

name solved cpu solved cpu solved cpu prep rem fcd

1
3u10n 100 1.8 100 1.9 100 2.0 1.8 62.8 8.9

4u20n 100 6.5 100 6.1 100 6.8 5.8 34.3 10.6

2

4u50n 100 16.7 100 10.8 100 24.9 9.8 23.6 11.2

4u100n 100 60.0 100 35.3 100 271 21.7 20.3 9.4

5u50n 100 39.0 100 15.5 100 171 11.5 13.3 12.0

3

10u10n 81.3 1017 100 107 100 313 3.5 14.4 12.3

50u10n 0.00 3590 62.5 1721 0.00 3581 25.1 4.9 5.9

100u10n 0.00 3590 16.7 3267 0.00 3587 25.3 0.76 1.3

Table 3.5 – Computational results achieved using normal preprocessings.

standard min min+st/act efficiency

name solved cpu solved cpu solved cpu prep rem fcd

1
3u10n 100 3.0 100 3.1 100 3.2 3.0 64.9 12.1

4u20n 100 17.0 100 17.1 100 17.7 16.4 37.9 11.4

2

4u50n 100 42.2 100 36.2 100 49.0 35.0 24.9 12.2

4u100n 100 170 100 137 100 322 128 21.6 9.8

5u50n 100 74.5 100 54.2 100 173 48.8 13.4 12.5

3

10u10n 75.0 1020 93.8 464 100 277 12.9 14.6 15.5

50u10n 0.00 3589 68.8 1691 0.00 3584 156 8.8 8.9

100u10n 0.00 3592 66.7 3305 0.00 3591 601 1.6 1.8

Table 3.6 – Computational results achieved using aggressive preprocessings.

standard min min+st/act efficiency

name solved cpu solved cpu solved cpu prep rem fcd

1
3u10n 100 3.5 100 3.5 100 3.4 3.5 65.1 12.1

4u20n 100 25.6 100 25.0 100 25.4 25.0 40.2 11.4

2

4u50n 100 64.1 100 58.3 100 66.9 57.1 25.9 12.2

4u100n 100 233 100 215 100 319 206 21.9 9.8

5u50n 100 109 100 87.1 100 196 84.0 13.4 12.5

3

10u10n 75.0 1029 93.8 533 100 337 19.7 14.7 15.5

50u10n 0.00 3593 68.8 1724 0.00 3590 195 8.8 8.9

100u10n 0.00 3600 0.00 3597 0.00 3600 2402 2.0 1.8

Table 3.7 – Computational results achieved using maximal preprocessings.

3.5. Computational results 93

se
le
ct
e
d

co
m
p
u
ta
ti
o
n
a
l
re
su

lt
s

p
e
rf
o
rm

a
n
ce

s

n
am

e
m
od
el

pr
ep
.

so
lv
ed

fe
as

cp
u

ga
p

Δ
re
m

Δ
fc
d

Δ
p
re
p

1
3
u
1
0
n

m
in

li
gh

t
10
0

-
0.
47

-
75
.3

44
.0

11
.9

4
u
2
0
n

m
in

li
gh

t
10
0

-
2.
0

-
66
.9

58
.1

5.
6

2

4
u
5
0
n

m
in

li
gh

t
10
0

-
4.
1

-
81
.2

54
.6

4.
4

4
u
1
0
0
n

m
in

li
gh

t
10
0

-
20
.1

-
92
.7

57
.1

2.
8

5
u
5
0
n

m
in

li
gh

t
10
0

-
19
.4

-
97
.8

59
.0

3.
2

3

1
0
u
1
0
n

m
in

ag
g.

93
.8

6.
3

46
4

10
.1
7

99
.6

10
0

65
.6

5
0
u
1
0
n

m
in

ag
g.

68
.8

6.
3

16
91

1.
06

10
0

99
.9

79
.7

1
0
0
u
1
0
n

m
in

ag
g.

66
.7

0.
00

33
05

-
81
.1

97
.7

25
.0

Δ
re
m
=

re
m
(p

r
e
p
.)
/r

e
m
(m

a
x
.)
(×

10
0)

•
Δ

fc
d
=

fc
d
(p

r
e
p
.)
/f

cd
(m

a
x
.)
(×

10
0)

•
Δ

p
re
p
=

p
re
p
(p

r
e
p
.)
/p

re
p
(m

a
x
.)
(×

10
0)

T
a
b
le

3
.8

–
T
h
e
b
es
t
p
re
p
ro
ce
ss
in
g
st
ra
te
gi
es
.

94 Chapter 3. Dominance rules, preprocessings, and integer linear programming

Remark 3.10

The most aggressive strategy – maximal – is characterized by a specific
propagation algorithm, which is executed before procedure Bottom-Up

for all contact indexes, that is at the beginning of Algorithm 3.6’s main
loop. It attempts to prove that node rc has necessarily obtained all the
units (the whole datum) in accordance with Proposition 3.9, by testing
whether min-card(VD, rc, c−1) = u. If so – combined with Bottom-Up

and Minimality+Validity – this results in the deletion of contact σc.
Although this procedure is inefficient in practice, we retained it as part
of maximal, because it is only designed to upper-bound the number of
deductions that can be done with our approach.

Minimal – In this strategy, only the most basic procedures are run, e.g. no
transfer can be forced (since Strict-Activity is deactivated). The number
of null transfers detected is low. Although the amount prep of time required
to preprocess the instance is insignificant, and almost linear with respect to
the number of contacts, this strategy does not improve the behaviour of the
solver (the results reported in Tables 3.1/3.2 and 3.3 are similar). In fact we
may suppose that CPLEX’s preprocessing engine already makes such kinds
of deductions from the MILP model.

Light/Normal/Aggressive – The effects of the preprocessing procedures
become significant when Top-Down and Strict-Activity are acting, e.g.
if we look at the first class in Table 3.4, almost half of the contacts have been
removed and about 5% of the transfers have been forced in only 0.4 seconds.
The efficiency of the preprocessing procedures is remarkable on the first two
groups, but unfortunately collapses when the number of datum units is large
(rem and fcd drop when u is greater than 4 or 5).

This behaviour may be explained by the fact that both Top-Down and
Strict-Activity need strongly NP-Hard problems (evaluating min-card)
solved (which is far from straightforward). These problems are characterized
by fewer contacts, some datum units, and only one recipient. In fact, we try
to solve smaller problems in order to deduce information about the original
master problem. Unfortunately, these problems are much more difficult when
the number of units is larger (for all transfers, there are too many options),
and the CPU time required to run preprocessing procedures explodes – e.g.
see column prep in Table 3.7.

3.6. Conclusion 95

Maximal – This strategy is really much too aggressive. The computational
overhead of the overall preprocessing procedure is unjustified. This remark is
highlighted in Table 3.8, where the experimental results of the best strategies
are summarised. In the three last columns are given different ratios between
these strategies and maximal. Thus, if we consider class 5u50n, almost all
contacts removed (resp. about 60% of the contacts forced) by maximal, are
also removed (resp. forced) by strategy light, with a computational cost that
is around 30 times less. So strategy maximal should not be used.

Note in addition that model min is clearly dominant when preprocessing
procedures are used – except for 10u10n which is better solved with model
min+st/act.

3.6 Conclusion

First it will be remarked that the dissemination problem can be solved more
efficiently by using the deductive elements proposed in Section 3.3. We have
shown how these can be used within a preprocessing procedure designed to
simplify the instances. Given the positive results achieved, we also attempted
to apply these deduction rules dynamically, by propagating the constraints
during the branching stage, as a constraints-programming engine would do.
However, this gave poor results that are not worth reporting here.

Such an approach falls within the well-known framework called constraint
propagation, a powerful tool of constraint programming that is unsuitable for
linear programming. Implementing Algorithm 3.6 with linear programming
seemed unnatural and excessively complex. Typically, matching the variables
of our model and the properties of the transfer graph (χA, χφ, χD and χD)
is not at all a straightforward matter. This prevents us from making full use
of the information obtained using the deduction procedures in the model –
e.g. what kind of relationships is it that binds the arcs of the transfer graph
(or more specifically function χA) and the x-variables ?

In addition, while the notion of minimal transfer plan is seen to be well
integrated into the model (through constraint (3.10)), the concept of strictly-
active transfer plan continues to yield disappointing results. To tackle these
problems, we now propose a new constraint-programming-based model.

4Constraint programming

I nteger linear programming has been seen to be an
unsuitable framework for taking full advantage of the
dominance rules proposed in Chapter 3. In particular,

formulating the concept of strictly-active transfer plan in
the linear program has yielded mitigated numerical results
(as opposed to the notion of minimal transfer plan, which
has already produced promising results). To address this
issue, we propose to use constraint programming in hope
that constraint propagation mechanisms will enable every
dominance rule to be leveraged more effectively. First we
will propose a new program modelling the dissemination
problem, and then a branching algorithm for obtaining a
solution (cf. Section 4.1). Next we will propose additional
features to refine this procedure (cf. Section 4.2).

Contents
4.1 Modelling the dissemination problem 98

4.1.1 Constraint programming model 98

4.1.2 Branching algorithm 100

4.2 Additional features 102

4.2.1 Lower bounds . 102

4.2.2 Symmetry-breaking techniques 104

4.3 Computational results 112

4.3.1 About the model 112

4.3.2 The additional features 114

4.4 Conclusion . 117

4.1 Modelling the dissemination problem

In this section, we first propose a constraint programming model for solving
the dissemination problem, and then a branching algorithm for finding valid
transfer plans (this procedure will be refined in Section 4.2).

4.1.1 Constraint programming model

The model proposed below is directly inspired by the linear model described
in Section 3.4. However, since non-linear expressions can now be used, many
constraints will be significantly simplified.

As a reminder, for each node i ∈ N is defined Ti, the set of time indexes
at which the state of i can change, i.e. Ti = {0}∪{c ∈ {1, 2, . . . ,m} | rc = i}.
In addition, ∀t ∈ {0, 1, . . . ,m}, we refer by Ti(t) to the last contact occurring
before time t where node i is the receiver, i.e. Ti(t) = max {t′ ∈ Ti | t′ ≤ t}.
The variables are defined as follows:

• ∀k ∈ D, ∀c ∈ {1, . . . ,m}, xk,c = 1 if datum unit k is transmitted from
node sc to node rc during contact σc, and xk,c = 0 otherwise.

• ∀i ∈ N , ∀k ∈ D, and ∀t ∈ Ti, yi,k,t = 1 if node i possesses unit k after
contact σt, and yi,k,t = 0 otherwise. See Remark 3.8 on page 82.

4.1. Modelling the dissemination problem 99

• ∀c ∈ {1, 2, . . . ,m}, ac = 1 if transfer φ(c) is improving (something new
is transmitted to node rc), and ac = 0 otherwise.

• ∀i ∈ N , ∀k ∈ D, variable λi,k represents the delivery length associated
with datum unit k and node i – i.e. the date from which node i stores
datum unit k. Its domain is Ti ∪{∞}. Note that λi,k =∞ means that
node i does not recover unit k during the transfer plan. In practice we
can take ∞ = m+ 1.

• ∀i ∈ R, variable λi = maxk∈D {λi,k} then represents the delivery length
of recipient node i – i.e. the date from which node i stores all the datum
units. Its domain is Ti (because i has to be served).

• Finally, variable λ = maxi∈R {λi} represents the dissemination length
of the transfer plan. Its domain is therefore

⋃
i∈R Ti ⊆ {0, 1, . . . ,m}.

Minimizing the dissemination length leads to the following objective.

λ∗ = minλ (4.1)

The constraints are written as follows:

• Each node i ∈ N initially possesses a subset Oi of datum units:

∀i ∈ N , ∀k ∈ D | k ∈ Oi, yi,k,0 = 1 (3.4)

∀i ∈ N , ∀k ∈ D | k /∈ Oi, yi,k,0 = 0 (3.5)

• The transfer plan must be valid (sending nodes must possess the datum
units that they transmit):

∀k ∈ D, ∀c ∈ {1, 2, . . . ,m}, xk,c ≤ ysc,k,Ti(c−1) (3.6)

• Nodes possess a datum unit from the time they receive it:

∀k ∈ D, ∀c ∈ {1, 2, . . . ,m}, yrc,k,Ti(c−1) + xk,c = yrc,k,c (3.10)

• At most one datum unit can be transferred during each contact:

∀c ∈ {1, 2, . . . ,m},
∑
k∈D

xk,c = ac (4.2)

• λi,k is the delivery length associated with datum unit k and node i:

∀i ∈ N , ∀k ∈ D, ∀t ∈ Ti,
{
yi,k,t = 0⇐⇒ λi,k > t
yi,k,t = 1⇐⇒ λi,k ≤ t

(4.3)

100 Chapter 4. Constraint programming

• The transfer plan must be strictly-active:

∀k ∈ D, ∀c ∈ {1, 2, . . . ,m},
if [ysc,k,Tsc (c−1) > yrc,k,Trc (c−1)] then [ac = 1] (4.4)

Remark 4.1

As a reminder, constraint (3.10) ensures that node rc possesses a datum
unit k after contact σc if it possessed k after contact σc−1, or if it received
k during contact σc. Nevertheless, the constraint prevents both of these
conditions being true at the same time, and so ensures that the solution
is minimal.

Altogether, the model thus contains um x-variables, u.(2m+ n) y-variables,
nu+ |R|+ 1 λ-variables, m a-variables, and un+m+ 5um constraints.

The model is solved by a branch-and-bound procedure. The efficiency of
such an algorithm is heavily dependent on the “branching variables” that are
selected, as well as on the quality of the bounds computed at every node of
the search tree. For this reason we propose a branching heuristic in the next
section. Lower bounds for the problem will be introduced in Section 2.3.

4.1.2 Branching algorithm

In order to prune branches as early as possible and obtain a fast convergence,
it is necessary to find good upper bounds quickly. To this end, priority should
be given to the most promising branches, so that the better solutions (whose
values are upper bounds) are visited sooner. This is why we propose setting
transfers sequentially and heuristically, i.e. the x-variables are set from xk,1

(∀k ∈ D) to xk,m. This also makes it easy to develop ad hoc procedures that
reduce the size of enumerations (cf. Sections 4.2.1 and 4.2.2).

In practical terms, at each node of the search tree, the solver selects the
smallest index c ∈ {1, 2, . . . ,m} for which the value of transfer φ(c) has not
yet been decided, then creates one branch per possible value – i.e. it creates
one branch for each unit k ∈ D such that variable xk,c is not fixed, then sets
xk,c = 1 and xk′,c = 0 for all k′ ∈ D\{k}. If variable ac is not fixed to 1, then
an extra branch is created for the null transfer. To this end the whole set of
xk,c variables (∀k ∈ D) is set to 0.

4.1. Modelling the dissemination problem 101

Therefore, except for the branch corresponding to the null transfer, each
branch is associated with exactly one datum unit k ∈ D, and can be referred
to as Bk unambiguously.

The order in which these branches are visited is heuristic (and the result of
many empirical tests conducted by A. Groud, L. Leichtnam, and myself).

1. First of all, we seek to identify the most “critical” transfers in terms of
feasibility. In particular – as the fewer the remaining opportunities for
node rc to receive a datum unit k ∈ D, the more urgent the transfer of
k becomes – we give priority to the branches Bk for which criterion

|{ t ∈ {c, . . . ,m} such that rt = rc and xk,t is not set to 0 }|

is the lowest.

2. In case of a tie, we seek to balance the dissemination of all the datum
units. Therefore we prioritize the branches Bk whose criterion

|{ t ∈ {1, 2, . . . ,m} such that rt 6= rc and xk,t is not set to 0 }|

is the highest. This criterion is actually based on the heuristic proposed
by Belblidia et al. in [5].

3. If there is one, the branch corresponding to the null transfer is always
considered as a last resort.

In practice, this heuristic has given promising results. It unfortunately fails
on some instances of medium and large size. When the number of backtracks
starts to soar, we therefore switch to the solver’s built-in algorithm1 and start
the search again from scratch. The default algorithm seems better to prove
the optimality of a solution – i.e. to “close” the nodes in the search tree.

These failures occur because pure depth-first searches (like ours) generally
yield an initial solution quite fast – but do not move easily from one area of
the search space to another, since they are often unable to recover sufficiently
quickly from bad decisions made early on in the process. For this reason we
devote the following sections to ad hoc methods designed to counterbalance
this familiar drawback of depth-first searches. Note that the implementation
of these ad hoc methods is significantly facilitated by the fact that transfers
are set sequentially.

1 The behaviour of this algorithm will not be described in the present chapter (see the
online documentation of the IBM-Ilog CP Optimizer for more details).

102 Chapter 4. Constraint programming

4.2 Additional features

In this section, we propose additional features that can easily be integrated
into the branching algorithm proposed in Section 4.1.2. We first propose two
lower bounds for the problem, then we describe three techniques for breaking
the symmetries that are inherent in our approach.

4.2.1 Lower bounds

In this subsection we propose some lower bounds of the delivery length λi(φ)
corresponding to the different recipient nodes i ∈ R, and consequently some
lower bounds of the dissemination length λ(φ) of a transfer plan φ.

Let us first consider the following proposition.

Proposition 4.1

Let i ∈ R be a recipient node and α = u− |Oi| be the number of datum
units that node i has to obtain during a transfer plan. Let σx ∈ σ be the
αth contact σc = (sc, i) ∈ σ during which a datum unit k ∈ D\Oi can be
transferred to node i – i.e. such that variable xk,c is not set to 0. If this
index does not exist (e.g. if it remains less than α contacts fulfilling the
condition), we consider that x = ∞. x is a valid lower bound for λi(φ)
and λ(φ) – i.e. λ ≥ λi ≥ x.

This lower bound can be enhanced by checking whether a valid assignment
between available transfers and required datum units exists. This point may
be illustrated by considering a recipient node i ∈ R that must receive units
1, 2, 3 (α = 3) and for which the following contacts are available:

domains
σc x1,c x2,c x3,c

σ3 = (s3, i) {0, 1} {0, 1} {0, 1} → φ(3) ∈ {∅, {1}, {2}, {3}}
σ5 = (s5, i) {0, 1} {0} {0} → φ(5) ∈ {∅, {1}}
σ8 = (s8, i) {0, 1} {0} {0} → φ(8) ∈ {∅, {1}}
σ9 = (s9, i) {0} {0, 1} {0, 1} → φ(9) ∈ {∅, {2}, {3}}

Any contact σc, c ∈ {3, 5, 8, 9}, is such that there exists a unit k ∈ D\Oi for
which variable xk,c is not set to 0. Thus Proposition 4.1 states that delivery
length λi(φ) ≥ 8. However, it is clear that there is no transfer plan enabling
node i to receive datum units 1, 2 and 3 using only contacts σ3, σ5 and σ8.

4.2. Additional features 103

available transfers

required units

φ(3)

φ(5)

φ(8)

φ(9)

{1}

{2}

{3}

Figure 4.1 – The assignment problem that must
be solved to compute the lower bound.

In the best case, node i receives one unit from among {2, 3} during contact
σ3 and unit 1 during contact σ5 or σ8. Even so, node i still has to receive at
least one datum unit from among {2, 3} during contact σ9. In fact, delivery
length λi(φ) is necessarily greater than or equal to 9, since there is no valid
assignment of transfers φ(3), φ(5) and φ(8) enabling node i to receive datum
units {1, 2, 3}, cf. Figure 4.1. Hence the following proposition.

Proposition 4.2

Let i ∈ R be a recipient, and σi ⊆ σ be the subsequence of contacts that
is built by considering only contacts σc = (sc, i) ∈ σ during which a unit
k ∈ D\Oi can be transferred to node i (such that variable xk,c is not yet
fixed to 0). Let σx ∈ σi denote the first contact from which – by adding
the contacts of σi one after the other – there exists an assignment of the
transfers which leads to the delivery of all the units to node i. If such
an index x does not exist, then we consider that x = ∞. x is a lower
bound for λi(φ) and λ(φ), i.e. λ ≥ λi ≥ x.

104 Chapter 4. Constraint programming

The computational investment required to compute this lower bound gives
a particularly good return when the number of datum units is high, but the
weaker bound defined in Proposition 4.1 usually gives good results too – cf.
Section 4.3 for a comprehensive comparison between these lower bounds.

Another lower bound can be derived from the proof of polynomiality that
we proposed in Section 2.2.2 for the case – called the delivery problem – where
there is only one recipient node, i.e. |R| = 1. Given a recipient node i ∈ R,
the optimal solution which can be computed for the problem where node i is
the unique recipient, is a lower bound for delivery length λi(φ) in the original
problem. Unfortunately this lower bound is weak in practice. Transforming
the problem into a flow problem implies relaxing the “identity” of the datum
units (a unit of flow is not associated with a specific unit). This prevents us
using information collected during the search (e.g. the values of the variables)
to constrain the admissible flows.

4.2.2 Symmetry-breaking techniques

The efficiency of the search can be improved by breaking the symmetries that
are inherent in our approach. The search space we consider contains a large
number of equivalent transfer plans that should be ignored. For this purpose
we propose new dominances rules.

Symmetric transfer plans

Let us consider the example on the top of Figure 4.2. At time t = 3, datum
units 1 and 2 share the same sources (nodes 1, 2 and 3) – i.e. ∀i ∈ N , 1 ∈ O3

i

if and only if 2 ∈ O3
i . Thus, the role of these datum units can be swapped in

the rest of the sequence, as shown in the bottom half of the figure. In other
words, the sub-branchings (in the evolving graph) corresponding to units 1
and 2, and associated with the contacts occurring after σ3, can be swapped.
The dissemination length is not affected by this operation. So it is sufficient
to consider one option (φ(4) = {1} or φ(4) = {2}) out of the two to solve the
dissemination problem, e.g. we can arbitrarily decide to transmit the datum
unit with the lowest index first.

4.2. Additional features 105

1{1, 2} 6

2

{2}

3

4

5

φ(
1)
=
{1}

φ(3) = {2}

φ(2) = {1}

φ(7) = {2}

φ(4) = {1}

φ(5) = ∅

9

11 10

8

6

1{1, 2} 6

2

{2}

3

4

5

φ(
1)
=
{1}

φ(3) = {2}

φ(2) = {1}

φ(4) = {2}

φ(7) = {1}

11

9

φ(5) = ∅

10

8

6

the role of datum units 1 and 2 can be swapped from contact σ4.

Figure 4.2 – A symmetry appears between datum
units 1 and 2 when we try to set transfer φ(4).

106 Chapter 4. Constraint programming

This can be formalized as follows.

Definition 4.1 – partial transfer plan

Let t ∈ {0, 1, . . . ,m} be a time index. A partial transfer plan φ t of length
t is a partial function from {1, . . . ,m} to Tφ = {∅, {1}, . . . , {u}}, whose
domain X is at least {1, 2, . . . , t} (i.e. {1, . . . , t} ⊆ X). Note that X can
be empty if t = 0. The states Ox

i (cf. equation (1.1) on page 9) are still
defined for any node i ∈ N and any x ∈ {0, . . . , t}. The delivery length
λi(φ

t) of a node i ∈ N becomes λi(φ
t) = min {x ∈ {0, . . . , t} |Ox

i = D},
or λi(φ

t) = ∞ if such an index does not exist. The dissemination length
remains λ(φ t) = maxi∈R {λi(φ

t)}.

Definition 4.2 – extension of a partial transfer plan

Let φ t be a partial transfer plan of length t ∈ {0, 1, . . . ,m}, and X refer
to its domain. The extension Λ(φ t) of φ t denotes the set of valid transfer
plans φ such that ∀c ∈ X, φ(c) = φ t(c).

Proposition 4.3

Let t ∈ {0, 1, . . . ,m} be a time index, and φ t be a partial transfer plan
of length t. Let k1 and k2 ∈ D be two datum units (such that k1 < k2).
If k1 and k2 are possessed by the same nodes after the first t contacts –
i.e. k1 ∈ Ot

i(φ
t) if and only if k2 ∈ Ot

i(φ
t) for all nodes i ∈ N – then the

set Φ1 of transfer plans φ1 ∈ Λ(φ t) such that φ1(t+1) = {k1} dominates
the set Φ2 of transfer plans φ2 ∈ Λ(φ t) such that φ2(t+ 1) = {k2}.

Proof. Let φ2 be a valid transfer plan in Φ2. We prove there exists a transfer
plan better than or equivalent to φ2 in subset Φ1. To this end, we consider a
copy φ1 of φ2, where we set φ1(c) = {k1} for all c ∈ {t, . . . ,m} |φ2(c) = {k2},
and φ1(c) = {k2} for all c ∈ {t, . . . ,m} |φ2(c) = {k1}. Transfer plan φ1 thus
belongs to Φ1 (the role of k1 and k2 have been swapped after σt). Let us now
prove that φ1 has the same dissemination length as φ2. First, it will be noted
that k ∈ Oc

i (φ2) and k ∈ Oc
i (φ1) are obviously equivalent for any other unit

k ∈ D\{k1, k2}, any node i ∈ N , and at any time c ∈ {0, . . . ,m}. We would
like to show that k1 ∈ Oc

i (φ2) is equivalent to k2 ∈ Oc
i (φ1). This is obvious in

the case of c ≤ t. We then assume it holds at a time c > t, and we consider
the situation at time c+ 1.

4.2. Additional features 107

1. If i �= rc+1, then
k1 ∈ Oc+1

i (φ2) ⇒ k1 ∈ Oc
i (φ2) ⇒ k2 ∈ Oc

i (φ1) ⇒ k2 ∈ Oc+1
i (φ1).

2. If i = rc+1, then
k1 ∈ Oc+1

i (φ2) ⇒ k1 ∈ Oc
i (φ2) ∪ φ2(c+ 1) and so:

(a) if k1 ∈ Oc
i (φ2), then k2 ∈ Oc

i (φ1) ⇒ k2 ∈ Oc+1
i (φ1);

(b) if {k1} = φ2(c+ 1), then {k2} = φ1(c+ 1) ⇒ k2 ∈ Oc+1
i (φ1).

In the same way, we can prove that k2 ∈ Oc+1
i (φ1) ⇒ k1 ∈ Oc+1

i (φ2) – which
demonstrates the result by recurrence. Finally we can prove that k2 ∈ Oc

i (φ2)
is equivalent to k1 ∈ Oc

i (φ1). Therefore O
λ
i (φ1) = Oλ

i (φ2) always holds at time
λ = λ(φ2) and consequently λ(φ1) = λ(φ2).

In practice – Proposition 4.3 can be applied at each node of the search tree.
Given a sequential branching algorithm like that described in Section 4.1.2,
every node defines one partial transfer plan φ t of size t (t being the number
of transfers that have been set during the search, from the root to the node
we consider in the search tree). Thus, if T = { k ∈ D | xk,t+1 is not set to 0 }
denotes the set of units that could be transferred during contact σt+1, we can
check whether two units k1 and k2 ∈ T (with k1 < k2) have the same source
nodes. If so, the proposition allows us to remove k2 from T (variable xk2,t+1

can be set to 0). As the branch where xk1,t+1 = 1 (i.e. the subset of transfer
plans Φ1 ⊆ Λ(φ t) such that φ(t+ 1) = {k1}) will be explored, we can ignore
the branch where xk2,t+1 = 1 (the set of transfer plans Φ2 ⊆ Λ(φ t) such that
φ(t+ 1) = {k2}) can be ignored.

Remark 4.2

In the trivial case where only one source node s ∈ N possesses the whole
datum at the outset – i.e. Os = {1, 2, . . . , u} and ∀i ∈ N\{s}, Oi = ∅ –
this proposition means we only need to consider one transfer plan out of
u! during the search. For each transfer plan, that is for each subset of u
arc-disjoint branchings of the evolving graph, we can find u! symmetrical
transfer plans by permuting the assignments of each datum unit to the
branchings. Proposition 4.3 ensures that the branchings are assigned to
the units according to their indexes (other permutations are ignored).

108 Chapter 4. Constraint programming

Consecutive transfers

Let us now turn to the example shown on the left half of Figure 4.3. Node 3 is
the recipient in contacts σ1 = (1, 3) and σ2 = (2, 3), but has no opportunity
to transmit data to a third node between these contacts. Therefore, the order
in which datum units are sent to node 3 during these contacts is not relevant
(if we assume that both are improving) – i.e. O3

2 = {1, 2} if φ(1) = {1} and
φ(2) = {2}, or if φ(1) = {2} and φ(2) = {1}. So, to prevent such symmetries
from expanding the search space, we propose considering only transfer plans
where the datum units are transmitted in the order of their indexes, i.e. such
that φ(1) = {1} and φ(2) = {2}. This can be formalized as follows.

Proposition 4.4

Let i ∈ N be a node. Let k1, k2 ∈ D denote two datum units such that
k1 < k2. One assumes there are two contacts σx1 and σx2 ∈ σ (x1 < x2)
with rx1 = rx2 = i, between which node i has no opportunity to transfer
data, i.e. ��∃y ∈ {x1, . . . , x2} with sy = i. Among the valid transfer plans
such that

k1 ∈ Ox1−1
sx1

∩Ox2−1
sx2

\Ox2−1
rx2

and k2 ∈ Ox1−1
sx1

∩Ox2−1
sx2

,

the subset Φ1 of transfer plans φ1 with φ1(x1) = {k1} and φ1(x2) = {k2}
dominates the subset Φ2 of transfer plans φ2 where φ2(x1) = {k2} and
φ2(x2) = {k1} (the unit with the lowest index is transferred first).

Proof. Let φ2 ∈ Φ2 be a transfer plan such that k1 ∈ Ox1−1
sx1

∩ Ox2−1
sx2

\Ox2−1
rx2

;
k2 ∈ Ox1−1

sx1
∩ Ox2−1

sx2
; φ2(x1) = {k2}; and φ2(x2) = {k1}. We build a transfer

plan φ1 ∈ Φ1 by copying φ2, and by setting φ1(x1) = {k1} and φ1(x2) = {k2}.
Note that φ1 is valid, since φ2 is valid, k1 ∈ Ox1−1

sx1
and k2 ∈ Ox2−1

sx2
. Moreover,

we have λ(φ1) = λ(φ2) ≥ x2 since k1 /∈ Ox2−1
rx2

.

In practice – Proposition 4.4 can be applied every time we have to decide
the value of a transfer φ(x1) for which there exists a contact σx2 ∈ σ, x1 < x2,
such that rx1 = rx2 and ��∃y ∈ {x1, x1 + 1, . . . , x2} | sy = rx1 (in a sequential
branching algorithm like that proposed in section 4.1.2). Note that the first
x1−1 transfers are then fixed, and the set T = { k ∈ D | xk,x1 is not set to 0 }
of units that can be transmitted during contact σx1 is given. Thus, in every
branch k2 ∈ T (associated with decision φ(x1) = {k2}), transfer φ(x2) = {k1}
can be blocked if k2 ∈ Ox2−1

sx2
.

4.2. Additional features 109

3

1

2

{1, 2}

{1, 2}

O2
3 = {1, 2}

3

1

2

{1, 2}

{1, 2}

1

4

2

3

{2, 3}

{1, 2, 3} 5

{1, 2, 4}

{1, 3}

{
φ(3) ∈ {{1},��{2}, {4}}
φ(4) ∈ {��{1},��{3}} → ∅

φ(1) = {1}

φ(2) = {2}

φ(1) = {2}

φ(2) = {1}

φ(1) = {2}

φ(2) = {3}

3 4

Figure 4.3 – When consecutive contacts occur,
datum units can be sent in the order of their index.

The other constraints cannot be violated:

1. assertions k1 ∈ Ox1−1
sx1

and k2 ∈ Ox1−1
sx1

already hold;

2. k1 ∈ Ox2−1
sx2

is required for transfer φ(x2) = {k1} to be valid;

3. and k1 /∈ Ox2−1
rx2

is also necessary for that transfer to be minimal.

This can be automated simply by adding the following constraint in each of
these branches:

∀k1 ∈ {1, 2, . . . , k2 − 1} ∩ T, [ys,k2,t = 1 =⇒ xk1,x2 = 0]

(with s = sx2 and t = Ts (x2− 1))

The use of such constraints cannot be avoided, since the state Ox2−1
sx2

is not
fixed when the value of transfer φ(x1) is being decided.

Moreover, when several contacts σx2 fulfil the above conditions, we need
to post the constraints for each possibility. If we look at the instance shown
on the half right of Figure 4.3, x2 = 3 and x2 = 4 both need to be considered
when we set φ(2) = {3}. Finally, note that the case where φ(3) = {1} cannot
be ignored, because no swap will be possible between transfers φ(2) and φ(3)
(node 3 will not be in possession of datum unit 3 when σ3 will occur).

110 Chapter 4. Constraint programming

Further research could include trying to detect other symmetry patterns,
e.g. we could attempt to detect that the transfer plans such that φ(1) = {2},
φ(2) = {1}, φ(3) = {4} and φ(4) = {3} maximize the number of datum units
received by node 5 throughout these four contacts, while ensuring that as far
as possible the units are transferred in the order of their indexes. This way,
more transfers could be arbitrarily set, and fewer transfer plans would need
to be considered during the search.

Nogood recording

The final technique for breaking symmetries that we propose in this chapter
involves registering the state of the nodes visited throughout the search. This
enables branches to be pruned by detecting dominance relationships among
transfer plans.

Different sequences of transfers can give rise to a similar dissemination –
i.e. it can exist two partial transfer plans φ t

1 and φ t
2 of length t ∈ {1, . . . ,m}

such that ∀i ∈ N , Ot
i(φ

t
2) ⊆ Ot

i(φ
t
1). Where this is the case, the set of transfer

plans φ1 ∈ Λ(φ t
1) dominates the set of transfer plans φ2 ∈ Λ(φ t

2) since, from
any transfer plan φ2 ∈ Λ(φ t

2), we can consider a better or equivalent transfer
plan by taking the first t contacts of φ t

1, and keeping the last m− t contacts
of φ2. This can be formalized as follows.

Proposition 4.5

Let φ t
1 and φ t

2 be two valid partial transfer plans of length t ∈ {1, 2, . . . ,
min {m,λ(φ t

1)}}. If Ot
i(φ

t
2) ⊆ Ot

i(φ
t
1) holds for all the nodes i ∈ N , then

Λ(φ t
1) dominates Λ(φ t

2).

Proof. Let φ2 be a transfer plan in Λ(φ t
2). We build a transfer plan φ1 ∈ Λ(φ t

1)
by copying the first t transfers of φ t

1, and by completing with the last m− t
transfers of φ2 – i.e. ∀c ∈ {1, . . . , t}, φ1(c) = φ t

1(c), and ∀c ∈ {t+ 1, . . . ,m},
φ1(c) = φ2(c). It is assumed that Ot

i(φ2) ⊆ Ot
i(φ

t
1) = Ot

i(φ1) for all the nodes
i ∈ N . We thus consider that Oc

i (φ2) ⊆ Oc
i (φ1) for a time index c ∈ {t+1, . . . ,

m− 1}, and let us examine the situation at index c+ 1.

1. If i �= rc+1, then
Oc+1

i (φ2) = Oc
i (φ2) ⊆ Oc

i (φ1) = Oc+1
i (φ1).

2. If i = rc+1, then
Oc+1

i (φ2) = Oc
i (φ2) ∪ φ2(c+ 1) ⊆ Oc

i (φ1) ∪ φ1(c+ 1) = Oc+1
i (φ1).

4.2. Additional features 111

Consequently, we have proved by recurrence that Oc
i (φ2) ⊆ Oc

i (φ1) holds for
all indexes c ∈ {t, . . . ,m}. The validity of φ t

1 and φ2 therefore results in the
validity of φ1. Moreover – since t ≤ λ(φ t

1) – we also have t ≤ λ(φ1) = λ and
Oλ

r (φ2) ⊆ Oλ
r (φ1) for all the recipient nodes r ∈ R. So, λ(φ1) ≤ λ(φ2).

In practice – at every node of the search tree, and after having set the new
transfer φ t

2(t), we also save the corresponding global-state

S
curr
t = {Ot

i | i ∈ {1, 2, . . . , n}}

in a list Lt. In short, Scurr
t saves the units possessed by each node at the end

the first t transfers of the current partial transfer plan φ t
2. Every list Lt then

contains the global states associated with all visited partial transfer plans of
length t ∈ {1, 2, . . . ,m}. From Proposition 4.5, we know that a node can be
pruned if there exists a dominant state Sdom

t ∈ Lt (corresponding to a visited
partial transfer plan φ t

1) such that ∀i ∈ N , Ot
i(S

curr
t) ⊆ Ot

i(S
dom
t).

Such a symmetry-breaking technique falls within the well-known nogood
recording framework, which was first introduced by Schiex and Verfaillie [39].
The major drawback of such an approach is the huge number of global states
that can be generated, and thus recorded. An easy way of managing this is
to implement lists Lt as truncated heaps sorted according to the “cardinal”
|St| =

∑
i∈N |Ot

i(St)| of the states St ∈ Lt. The intuitive idea is to prioritize
the global states that are most likely to include other global states.

Remark 4.3

If the global states are represented with bit vectors, testing whether two
sets S1

t and S
2
t are such that S1

t ⊆ S
2
t is trivial using boolean operations.

This computational efficiency makes it possible to store several thousand
global states in each list Lt, t ∈ {1, . . . ,m}, and thereby to improve the
performances of the solver drastically, cf. Section 4.3 for more details.

Three methods have been proposed to break symmetries inherent in our
approach. The first two techniques can be qualified as proactive, as both are
intended to avoid generating symmetric solutions during the search, whereas
the third is more reactive insofar as it aims to detect (and prune) symmetric
branches after they have been generated.

112 Chapter 4. Constraint programming

4.3 Computational results

In this section numerical results are reported and discussed. All experiments
were performed in the same conditions as for Chapter 3 (the same instances,
the same machine, the same criteria, and still with a one-hour time limit),
cf. Section 3.5.1. We used CP-Optimizer, the constraint-programming engine
developped by IBM-ILOG. Note that the best results achieved with integer
linear programming will serve as a reference for subsequent comparisons.

The model described in Section 4.1 is discussed in Section 4.3.1, and the
features proposed in Section 4.2 are evaluated in Section 4.3.2.

4.3.1 About the model

Let us discuss the computational results reported in Table 4.1. These results
were obtained using three different algorithms. First min consists in solving
the constraint programming model defined by constraints (3.4) through (4.3)
(the transfer plan is therefore required to be minimal). Then, min+st/act
follows the same approach, but by also considering constraint (4.4) (here the
transfer plan is required to be strictly-active, in addition of being minimal).
Finally, procedure prep+min+st/act consists in calling the preprocessing
procedure defined in Chapter 3 (we only consider the strategies reported in
Table 3.8, page 93), followed by min+st/act.

The experimental results reported in Table 4.1 may appear disappointing
at first glance, especially compared to those reported in Table 3.8. However,
it should be remarked that there is a significant gap between the two model
min and min+st/act. This shows that we were successful in implementing
the dynamical deduction procedures that were discussed in the conclusion of
Chapter 3 – i.e. we managed to integrate fully into the solver the concept of
strictly-active transfer plan. This was made possible through the addition of
a-variables, and through non-linear constraints (4.4).

Moreover, there is also a clear gap between algorithms min+st/act and
prep+min+st/act, showing that the preprocessing procedures we proposed
outperform the consistency algorithms implemented in CP Optimizer.

4.3. Computational results 113

m
in

m
in
+
st
/
a
ct

p
re
p
+
m
in
+
st
/
a
ct

n
am

e
so
lv
ed

fe
as

cp
u

so
lv
ed

fe
as

cp
u

so
lv
ed

fe
as

cp
u

1
3
u
1
0
n

10
0

-
3.
1

10
0

-
4.
1

10
0

-
0.
84

4
u
2
0
n

10
0

-
12
.3

10
0

-
10
.2

10
0

-
5.
5

2

4
u
5
0
n

10
0

-
33
9

10
0

-
60
.2

10
0

-
18
.5

4
u
1
0
0
n

80
.0

20
.0

81
8

10
0

-
19
6

95
.0

5.
0

33
3

5
u
5
0
n

69
.6

30
.4

13
16

91
.3

8.
7

55
5

10
0

-
17
3

3

1
0
u
1
0
n

18
.8

50
.0

30
27

18
.8

50
.0

29
64

37
.5

37
.5

22
69

5
0
u
1
0
n

0.
00

31
.3

36
02

0.
00

0.
00

36
01

0.
00

0.
00

36
01

1
0
0
u
1
0
n

0.
00

33
.3

36
04

0.
00

0.
00

36
03

0.
00

0.
00

36
03

T
a
b
le

4
.1

–
T
h
e
re
su
lt
s
ac
h
ie
ve
d
w
it
h
C
P
O
p
ti
m
iz
er

an
d
d
iff
er
en
t
m
o
d
el
s.

114 Chapter 4. Constraint programming

4.3.2 The additional features

In fact, to get the most out of constraint programming, a custom branching
algorithm often needs to be implemented. The strategy proposed in Section
4.1.2 is quite easy to implement with CP-Optimizer. As a reminder, transfers
are set in the order of the sequence. The search is guided in accordance with
a heuristic. If the number of backtracks starts to become unreasonably large,
the search is restarted from scratch with the built-in algorithm. In this case,
the solver is notified that the x-variables are the decision variables and that
they should be given priority during the branching. Experimental results are
reported in Table 4.2, columns none. Note that the proportion of instances
successfully solved is significantly better, but is still not comparable to results
obtained with integer linear programming.

To obtain competitive results, we must consider the ad hoc tools described
in Section 4.2 – namely the weak (wlb) and the strong (slb) lower bounds, the
proactive symmetry-breaking techniques (sym) and/or the nogood-recording
(ngr), cf. Tables 4.2 through 4.4.

Lower bounds – wlb and slb have positive effects on the efficiency of our
algorithm. They enable the solver to prune some branches earlier. The weak
lower bound provides better results for the first two groups – i.e. the smallest
instances – than for the third group; and, conversely, the strong lower bound
provides better results for the third group – i.e. the hardest instances – than
for the first two groups. As is often the case, there is a balance to be struck
between on the one hand heavy computations but tight bounds, and on the
other light computations but weak bounds.

Symmetry-breaking techniques – ngr and sym enable the search space
to be significantly reduced at a low computational cost. The numerical results
show that both operate well across all classes.

In summary, algorithm sym+ngr+wlb should be used on the first two
groups. sym+ngr+slb is more suitable for large instances, cf. Table 4.5.

none sym sym+ngr sym+ngr+wlb

name solved cpu solved cpu solved cpu solved cpu

1
3u10n 100 0.46 100 0.47 100 0.46 100 0.39

4u20n 100 1.8 100 1.7 100 1.7 100 1.3

2

4u50n 100 6.3 100 3.2 100 3.2 100 2.7

4u100n 100 198 100 160 100 58.5 100 88.5

5u50n 100 51.2 100 33.7 100 39.4 100 20.7

3

10u10n 43.8 2236 50.0 1807 81.3 812 87.5 462

50u10n 43.8 2106 43.8 2105 43.8 2102 75.0 1029

100u10n 83.3 1184 83.3 1184 83.3 1189 100 702

Table 4.2 – Computational results obtained with CP Optimizer – part-1.

sym+ngr+slb sym+wlb sym+slb ngr

name solved cpu solved cpu solved cpu solved cpu

1
3u10n 100 0.59 100 0.38 100 0.59 100 0.46

4u20n 100 1.8 100 1.3 100 1.8 100 1.7

2

4u50n 100 3.6 100 2.6 100 3.7 100 5.2

4u100n 100 216 100 181 100 174 100 107

5u50n 100 73.1 100 12.6 100 66.0 100 54.2

3

10u10n 100 36.1 68.8 1135 93.8 379 43.8 2143

50u10n 87.5 640 75.0 1032 75.0 1061 43.8 2107

100u10n 100 1220 100 731 100 1291 83.3 1183

Table 4.3 – Computational results obtained with CP Optimizer – part-2.

ngr+wlb ngr+slb wlb slb

name solved cpu solved cpu solved cpu solved cpu

1
3u10n 100 0.38 100 0.59 100 0.38 100 0.60

4u20n 100 1.3 100 2.0 100 1.5 100 2.2

2

4u50n 100 4.3 100 7.7 100 5.6 100 11.9

4u100n 100 84.6 100 279 100 154 100 395

5u50n 100 46.7 100 241 100 29.9 95.7 245

3

10u10n 50.0 1807 68.8 1425 43.8 2091 62.5 1725

50u10n 62.5 1689 62.5 1497 62.5 1662 62.5 1495

100u10n 83.3 1187 83.3 1431 83.3 1187 83.3 1473

Table 4.4 – Computational results obtained with CP Optimizer – part-3.

116 Chapter 4. Constraint programming

n
am

e
a
lg
or
it
h
m

so
lv
ed

fe
as

cp
u

1
3
u
1
0
n

sy
m
+
n
gr
+
w
lb

10
0

-
0.
39

4
u
2
0
n

sy
m
+
n
gr
+
w
lb

10
0

-
1.
3

2

4
u
5
0
n

sy
m
+
n
gr
+
w
lb

10
0

-
2.
7

4
u
1
0
0
n

sy
m
+
n
gr
+
w
lb

10
0

-
88
.5

5
u
5
0
n

sy
m
+
n
gr
+
w
lb

10
0

-
20
.7

3

1
0
u
1
0
n

sy
m
+
n
gr
+
sl
b

10
0

-
36
.1

5
0
u
1
0
n

sy
m
+
n
gr
+
sl
b

87
.5

12
.0

64
0

1
0
0
u
1
0
n

sy
m
+
n
gr
+
sl
b

10
0

-
12
20

T
a
b
le

4
.5

–
T
h
e
al
go
ri
th
m
s
th
at

ob
ta
in
ed

th
e
b
es
t
re
su
lt
s
w
it
h
C
P
O
p
ti
m
iz
er
.

4.4. Conclusion 117

4.4 Conclusion

In this chapter we proposed an algorithm based on constraint programming
for solving the dissemination problem. It outperforms our previous algorithm,
with a better heuristic branching algorithm and some extensions – i.e. some
lower bounds and some symmetry breaking techniques.

Table 4.6 shows the best computational results achieved so far, for every
class and across Chapters 3 and 4.

In the next chapter we plan to investigate several methods for solving the
dissemination problem in an uncertain context. This implies studying robust
optimization in order to find transfer plans which remain valid when not all
transfers are successful.

118 Chapter 4. Constraint programming

a
lg
o
ri
th

m
a
d

h
o
c
p
ro

ce
d
u
re
s

re
su

lt
s

n
am

e
so
lv
er

m
od
el

pr
ep
ro
ce
ss
in
g

f
ea
tu
re
s

so
lv
ed

fe
as

cp
u

3
u
1
0
n

C
P
L
E
X

m
in
+
st
/a
ct

m
in
im

al
-

10
0

-
0.
26

4
u
2
0
n

C
P
O

m
in
+
st
/a
ct

li
gh

t
sy
m
+
w
lb

10
0

-
1.
3

4
u
5
0
n

C
P
O

m
in
+
st
/a
ct

li
gh

t
sy
m
+
w
lb

10
0

-
2.
6

4
u
1
0
0
n

C
P
L
E
X

m
in

li
gh

t
-

10
0

-
20
.1

5
u
5
0
n

C
P
O

m
in
+
st
/a
ct

li
gh

t
sy
m
+
w
lb

10
0

-
12
.6

1
0
u
1
0
n

C
P
O

m
in
+
st
/a
ct

ag
gr
es
si
ve

sy
m
+
n
gr
+
sl
b

10
0

-
36
.1

5
0
u
1
0
n

C
P
O

m
in
+
st
/a
ct

n
or
m
al

sy
m
+
n
gr
+
sl
b

87
.5

12
.5

54
0

1
0
0
u
1
0
n

C
P
O

m
in
+
st
/a
ct

n
or
m
al

sy
m
+
w
lb

10
0

-
12
9

T
a
b
le

4
.6

–
T
h
e
b
es
t
re
su
lt
s
ac
h
ie
ve
d
so

fa
r.

5Robust optimization

R obust optimization is an approach to optimization
problems affected by uncertainty. In this chapter one

will seek a transfer plan which ensures the delivery
of each datum unit to all recipients when a given number
Γ ≤ m of transfers might fail. First we will formalize this
new problem, focusing particularly on the differences with
the original problem (cf. Section 5.1). Thereafter we will
propose a necessary and sufficient condition for a transfer
plan to be “robust”. This will finally lead to a branching
algorithm (cf. Section 5.2), implemented in practice with
constraint programming (cf. Section 5.3).

Contents
5.1 The robust dissemination problem 121

5.1.1 Formal description 121

5.1.2 Robustness and evolving graphs 122

5.2 Robust optimization 123

5.2.1 Necessary and sufficient condition for a transfer
plan to be Γ-robust 124

5.2.2 Enumeration procedure 127

5.3 A constraint programming approach 130

5.3.1 Model . 130

5.3.2 Additional features 133

5.4 Preliminary results 138

5.4.1 About the benchmark 138

5.4.2 Numerical results 140

5.5 Conclusion . 142

In the previous chapters, the dissemination problem has been addressed
for the case where transfers cannot fail. We now propose to tackle a variant
where failures might occur. We would like to find transfer plans during which
every datum unit is correctly delivered to all recipient nodes, regardless the
failures scenario. Of course, by “failure” we mean anything which prevents a
transfer to terminate successfully – e.g. link problems, battery depletions, ...
In this way, we hope to cover a wide range of real applications. In practice,
we will assume that at most Γ ∈ N transmissions can fail during a scenario,
following the well known approach proposed by Bertsimas and Sim [6].

The present chapter is organized as follows. In Section 5.1, we extend the
formulation of dissemination problem to the robust optimization case. Then,
in Section 5.2, we propose an enumeration algorithm to find all valid robust
solutions. This algorithm is integrated into a constraint-programming solver
(like in Chapter 4) in Section 5.3, and finally assessed in Section 5.4.

5.1. The robust dissemination problem 121

5.1 The robust dissemination problem

In this section, we generalize the formulation of the dissemination problem
to the case where one considers failures. In addition, we show that these two
problems (the robust and the non-robust problems) are different.

5.1.1 Formal description

The robustness criteria may depend on numerous parameters (the intended
applications, the environment, ...). In this chapter, we consider a parameter,
Γ ∈ N, to characterize the minimum “level” of robustness the solution has to
guarantee. The problem is to compute a “Γ-robust” transfer plan minimizing
the dissemination length, i.e. a transfer plan ensuring that the recipient nodes
are served if at most Γ failures occur.

Formally, a scenario of Γ failures is a function S : {1, 2, . . . ,m} 7→ {0, 1}
such that

∑m
c=1 S(c) = Γ. In fact, S(c) = 1 indicates that contact σc ∈ σ has

failed. Therefore, given a scenario S and a transfer plan φ, we can compute
the realization of the states Ot

i(S, φ) (for all nodes i ∈ N and all time indexes
t ∈ {0, 1, . . . ,m}) as follows:

(1) ∀i ∈ N , O0
i = Oi,

(2) ∀c ∈ {1, 2, ...,m} | S(c) = 1, ∀i ∈ N , Oc
i = Oc−1

i ,

(3) ∀c ∈ {1, 2, ...,m} | S(c) = 0, Oc
rc = Oc−1

rc ∪ [φ(c) ∩Oc−1
sc],

(4) ∀c ∈ {1, 2, ...,m} | S(c) = 0, ∀i ∈ N\{rc}, Oc
i = Oc−1

i .

(5.1)

Consequently state Ot
i(S, φ) denotes the set of datum units possessed by node

i at time t when transfer plan φ is used during scenario S.

The delivery length λΓ
i (φ) of node i ∈ N must now indicate the smallest

time index at which one can guarantee that i possesses all the datum units,
regardless the contacts that fail. Thus, we will now consider:

λΓ
i (φ) = min { t ∈ {0, 1, . . . ,m} |Ot

i(S, φ) = D for any

scenario S of at most Γ failures }

In this way, the dissemination length λΓ(φ) = maxi∈R {λΓ
i (φ)} indicates the

time index at which we can guarantee that all the recipient nodes possess all
the datum units (regardless the contacts that fail).

The robust dissemination problem is to find a transfer plan φ minimizing
the dissemination length λΓ(φ). Note that a transfer plan φ is Γ-robust when
λΓ(φ) 6=∞. Only such solutions are admissible for the robust dissemination

122 Chapter 5. Robust optimization

problem, so an instance can be feasible with a given value of Γ, but infeasible
with a greater value of that parameter. In particular, some feasible instances
of the dissemination problem (Γ = 0) may become infeasible with respect to
the robust dissemination problem (Γ ≥ 1). However, Γ-robust transfer plans
are always p-robust for all 0 ≤ p ≤ Γ.

The robust dissemination problem is NP-Hard in the strong sense, since
the dissemination problem (a strongly NP-Hard problem) is a special case of
the robust dissemination problem where Γ = 0.

5.1.2 Robustness and evolving graphs

Instances of both problems (the dissemination and the robust dissemination
problems) can be described by evolving graphs. Let us remind that these are
multigraphs whose vertices represent nodes and whose arcs represent a set
of connections between these nodes. Each arc is labelled with time intervals
which indicate when the corresponding link is active. To appropriately take
account of time constraints, the notion of path must be replaced by the notion
of journey, i.e. an ordered set of arcs having increasing labels. For our needs,
each contact is thus represented by an arc whose label is given by its position
in the sequence – cf. Figure 1.1 on page 11.

Actually, a set of arc-disjoint branchings (in the evolving graph) that are
rooted on the source nodes of a given unit k ∈ D, and which globally covers
all the recipient nodes, defines a possible store-forward routing to disseminate
unit k. For example, in Figure 1.1, the bold arcs form a set of branchings to
disseminate datum unit 1 from nodes 1 and 2 to all the other nodes. In the
following, such a set of branchings is just named a covering branching, since
this actually is one branching if we consider a virtual root node to transmit
unit k to the source nodes (1 and 2) at time 0.

Therefore – as shown in Section 2.3.1 – solving the dissemination problem
(Γ = 0) can be seen as finding u arc-disjoint such covering branchings – i.e.
one per datum unit (see the branchings with bold and double arcs).

An intuitive extension to the robust case consists in searching for exactly
Γ + 1 arc-disjoint covering branchings per datum unit. The resulting transfer
plan (built from the (Γ + 1)× u covering branchings) is Γ-robust. It defines
how Γ + 1 copies of each datum unit can be routed (along independent and
contact-disjoint journeys) to the recipient nodes. This way, Γ failures cannot
be enough to prevent a given node to receive a given datum unit.

5.2. Robust optimization 123

However, it is worth nothing that this approach is over protective and the
existence of (Γ+1)×u covering branchings is a sufficient, but not necessary,
condition for a Γ-robust solution to exist.

Proposition 5.1

The existence of (Γ+1)×u mutually-arc-disjoint covering branchings in
the evolving graph (i.e. Γ+1 branchings per datum unit) is a sufficient,
but not necessary, condition for a Γ-robust transfer plan to exist.

Proof. The condition is sufficient, since Γ failures are not enough to invalidate
Γ + 1 arc-disjoint branchings. To prove it is not necessary, we then consider
the evolving graph depicted in Figure 2.7 on page 39. We assume that there
is only one datum unit, whose the only source is node t, and that all nodes
are recipient – i.e.{

R = N = {t, a, b, . . . , f} ;D = {1} ;
Ot = {1} ; and ∀i ∈ {a, b, . . . , f}, Oi = ∅.

The valid transfer plan φ such that ∀c ∈ {1, . . . , 12}, φ(c) = {1} is 1-robust
– i.e. no single failure can prevent the correct delivery of unit 1. Yet we have
already shown that there does not exist two arc-disjoint covering branchings
rooted at node t (the source) in this evolving graph.

Note that this proposition justifies the present chapter. Solving the robust
case is not equivalent to solve the initial problem by considering Γ+1 times
more datum units.

5.2 Robust optimization

In this section, we propose a branching algorithm to enumerate all Γ-robust
transfer plans. This procedure is based on a necessary and sufficient condition
that will be discussed in the first place. Moreover, we propose a polynomial-
time algorithm to check that a given transfer plan is Γ-robust. This branching
algorithm will be incorporated into a branch-and-bound procedure described
in Section 5.3 (and developed with a constraint programming approach).

124 Chapter 5. Robust optimization

5.2.1 Necessary and sufficient condition for a
transfer plan to be Γ-robust

In the worst case, all the failures prevent the same node r ∈ R to receive the
same datum unit k ∈ D, i.e. the failures break all the journeys enabling r to
receive k. Therefore, to prove that a given valid transfer plan φ is Γ-robust,
one can show that for all datum units k ∈ D, and all recipient nodes r ∈ R,
the minimum number of contacts which must fail to prevent r from receiving
unit k, is strictly-greater than Γ. To this end, for each datum unit k ∈ D and
each node r ∈ R, we consider the transportation network G(φ, k, r) = (X,U)
built as follows:

1. First, we add a source vertex src ∈ X and a sink node snk ∈ X.

2. For each node i ∈ N , we add µi + 1 nodes {i0, i1, . . . , iµi} ⊆ X, where
µi = |{σc ∈ σ | rc = i }| is the number of contacts whose receiver is i.

3. Next, we add one arc (src, i0) ∈ U for each source node i ∈ N | k ∈ Oi,
and one arc (rµr , snk) ∈ U . All those arcs have an infinite capacity.

4. For each node i ∈ N , we add arcs {(i0, i1), (i1, i2), . . . , (iµi−1, iµi)} with
infinite capacities.

5. For each contact σc = (i, j) ∈ σ such that φ(c) = {k} – assuming that
node i is the receiver of x ∈ {0, . . . , c−1} contacts before σc – and that
σc is the yth (y ∈ {1, 2, . . . ,m}) contact where node j is the receiver –
we add an arc (ix, jy) ∈ U of capacity 1.

Such a graph has been proposed in Section 2.2.2 to prove that the non-robust
dissemination problem with one recipient is polynomial and can be reduced
to the solving of a max-flow problem. The graph has been slightly simplified
as we only consider one datum unit at a time. In Figure 5.1b, we report the
flow network G(φ, k = 1, r = 5) associated with the transfer plan φ described
in Figure 5.1a. Of course this network can be simplified using the procedure
defined on page 33 (cf. Figure 2.6).

Following the proof of Section 2.2.2, we can prove that a src-snk flow in
G(φ, k, r) describes a set of arc-disjoint journeys to transmit unit k, from one
or several sources, to node r. These journeys are obtained from the saturated
arcs representing a contact – i.e. the arcs having a flow and a capacity of 1.
Each unit of flow entering vertex snk actually correspond to a journey from
a source node to r. Thus, we can assert that Γ failures cannot be enough to
prevent node r from receiving unit k during transfer plan φ if the maximum
amount of flow traversing G(φ, k, r) is greater or equal to Γ + 1 – i.e. if there
are at least Γ + 1 arc-disjoint journeys to deliver unit k to node r.

5.2. Robust optimization 125

(a) a transfer plan φ to deliver datum unit 1 from node 1 to node 5

1{1}

3

2

4 5

∀c ∈ {1, 2, . . . , 8}, φ(c) = {1}

1

2

3

4 8

5 6

7

9

(b) the corresponding flow network G(φ, k = 1, r = 5)

src 10

20

30

40

21

31

22

32

41 42

50 51 52

snk∞
1

∞ ∞

∞ ∞
1

∞

1
1

1

1

1 1

1

1

1

1
1

∞

∞ ∞
1

∞
1

1

σ9

minimum cut

Figure 5.1 – The flow network used to show
the robustness of a transfer plan.

In Figure 5.1, only one unit of flow can traverse G(φ, 1, 5), i.e. the transfer
plan is not robust to failures. The minimum cut (depicted in gray) computed
by Ford-Fulkerson [24] algorithm informs us that node 5 cannot receive datum
unit 1 if contact σ5 = (3, 4) fails. This contact is represented by the only arc
– namely (32, 41) – which is in the minimum cut (all the journeys from nodes
1 to 5 actually use contact σ5). On the other hand, adding one contact (4, 5)
at time 9 (with φ(9) = {1}) would improve the robustness of the solution –
cf. the augmenting path (src, 10, 21, 22, 42, 52, snk). The arc-disjoint journeys
would then be (σ1, σ5, σ6) and (σ2, σ8, σ9).

126 Chapter 5. Robust optimization

Formally, this results in the following proposition.

Proposition 5.2

Let φ be a valid transfer plan. φ is Γ-robust if and only if, for all datum
units k ∈ D, and all recipient nodes r ∈ R, there exists a src-snk flow
of value Γ + 1 in transportation network G(φ, k, r).

Proof. In this proof, we assume that the maximum flow is finite. Indeed, the
maximum flow is infinite (and then greater than Γ+ 1) if and only if node r
is a source (k ∈ Or) – i.e. if and only if even an infinite number of failure is
not sufficient to prevent r to possess k at the end of the sequence.

The condition is obviously sufficient, since Γ failures cannot be sufficient
to invalidate the Γ + 1 journeys enabling r to receive k which correspond to
a flow having a value of Γ + 1. To show the condition is necessary, we apply
the max-flow/min-cut theorem, which states that the maximum amount of
flow passing from src to snk in G(φ, k, r) is equal to the minimum capacity
of a src-snk cut. Only arcs representing a contact (with a capacity of 1) can
belong to such a cut (others have an infinite capacity). Thus, if the capacity
of the minimum cut does not exceed Γ, then it exists a scenario with at most
Γ failures during which node r will not be able to receive unit k. The failures
are given by the minimum cut. Removing all these arcs prevents any flow to
pass from src to snk – i.e. this breaks all the journeys enabling r to receive
unit k in the evolving graph.

On a practical level, Proposition 5.2 comes to a polynomial time algorithm
to check whether a transfer plan is Γ-robust. For each datum unit and each
recipient, we solve a max-flow problem in order to verify that there exist at
least Γ+1 mutually arc-disjoint journeys linking a source of this datum unit
to this recipient. This test runs in O(u.|R|.(Γ + 1).(n +m)) time. For each
pair (k, r) ∈ D ×R we need to find Γ + 1 augmenting paths in a graph that
contains at most 1 + n+ 2m arcs.

This result is the basis of the enumeration procedure that we propose in
the following section. It enumerates the transfers plans where Γ+1 journeys
link the sources and each recipient node.

5.2. Robust optimization 127

5.2.2 Enumeration procedure

The most naive method to enumerate the set of all Γ-robust transfer plans,
consists in enumerating the set of all valid transfer plans, and in keeping only
Γ-robust solutions – i.e. the transfer plans which guarantee that every node
receives the whole datum in any scenario of at most Γ failures. To this end,
we can use the branching algorithm proposed in Section 4.1.2 (on page 100).
Transfers are set in the order of the sequence σ, from φ(1) to φ(m). At each
node of the search tree, the first transfer φ(c) that is not yet set is selected,
and one branch is created for each possible value – i.e. one branch for each
unit k ∈ Oc−1

sc , and one branch for the null transfer. The algorithm proposed
in Section 5.2.1 is finally used to filter non-robust solutions.

Unfortunately, such an approach compels us to explore the whole search
space. To avoid this, we propose to generalize the dominance rules proposed
in Section 3.1 (on page 46).

Robust-minimal transfer plans

In Chapter 3, a 0-robust transfer plan φ is said to be minimal if every transfer
φ(c) is either improving (node rc receives a new datum unit, |Oc−1

rc | < |Oc
rc |)

or null (no datum unit is transmitted, φ(c) = ∅) – i.e. if no node receives the
same datum unit more than once. The set of such transfer plans was shown
to be dominant where Γ = 0. Although this dominance rule no longer holds
where Γ > 0, it can be generalised. Note that the main idea is still to avoid
fruitless transfers.

Definition 5.1

Transfer φ(c) = {k}, c ∈ {1, 2, . . . ,m}, k ∈ D, is robust-improving if and
only if it improves the “level” of robustness associated with datum unit
k and node rc – i.e. the minimum number of failures required to prevent
node rc from receiving datum unit k – without, however, exceeding Γ.

In practice, a transfer φ(c) = {k} is then robust-improving if and only if:

1. the maximum amount of flow passing from src to snk in transportation
network G(φ, k, rc) is larger when we consider transfer φ(c), than when
we only consider the c− 1 first contacts (i.e. when the capacity of the
arcs which correspond to a contact σt with t ≥ c, is set to 0);

2. the value of such a flow does not exceed Γ + 1.

Of course, an improving transfer is also robust-improving.

128 Chapter 5. Robust optimization

Definition 5.2 – robust-minimal transfer plan

A transfer plan φ is robust-minimal if all its transfers are null or robust-
improving.

In Figure 5.1, transfer φ(6) is robust-improving, since it “opens” the first
journey to node 5. Transfer φ(7) is not robust-improving, because adding or
removing arc (41, 52) does not increase the amount of flow that can traverse
G(φ, 1, 5). If we set φ(7) = ∅, φ becomes robust-minimal. It remains robust-
minimal if we consider φ(9) = {1} (since φ(9) is robust-improving).

Proposition 5.3

The set of robust-minimal transfer plans is dominant.

Proof. Let φ be a valid non-robust-minimal transfer plan. So there exists at
least one transfer φ(c) which is neither null, nor robust-improving. Therefore
the transfer plan φ′ – obtained by copying φ and by setting φ′(c) = ∅ – has
the same dissemination length than φ – i.e. λΓ(φ′) = λΓ(φ). This process is
to be repeated as long as the new transfer plan is not robust-minimal.

Robust-strictly-active transfer plans

Given the definition of a robust-improving transfer, the concept of strictly-
active transfer plan can be generalised straightforwardly. The idea remains
to prevent postponement of improving (robust-improving) transfers.

Definition 5.3 – robust-strictly-active transfer plan

A transfer plan φ is robust-strictly-active if and only if all transfers are
robust-improving when possible – i.e. ∀c ∈ {1, . . . ,m}, if ∃k ∈ Oc−1

sc such
that φ(c) = {k} is robust-improving, then φ(c) is robust-improving.

Proposition 5.4

The set of strictly-active transfer plans is dominant.

5.2. Robust optimization 129

Proof. Let φ be a non-robust-strictly-active transfer plan – i.e. there exist a
non-robust-improving transfer φ(c), c ∈ {1, . . . ,m}, and a datum unit k ∈ D
such that φ(c) = {k} would be robust-improving. Let then φ′ be the transfer
plan obtained by copying φ, and by setting φ′(c) = {k}. The dissemination
length of φ′ is always better than or equal to the dissemination length of φ –
i.e. λΓ(φ′) ≤ λΓ(φ). Of course, this process must be repeated as long as the
new transfer plan is not robust-strictly-active.

Proposition 5.5

The set of robust-minimal and robust-strictly-active transfer plans is also
dominant (by combining the above proofs).

Enumerating robust transfer plans

Proposition 5.5 states that enumerating robust-minimal and robust-strictly-
active transfer plans is sufficient to solve the robust dissemination problem
(i.e. other transfer plans can be ignored). Therefore – if we use a sequential
branching algorithm – we can skip all the branches that correspond neither
to a null transfer, nor to a robust-improving transfer.

At each node of the search tree, the earliest transfer φ(c) that is not yet
set is selected, and one branch is created for each possible transfer φ(c) = {k}
(k ∈ Oc−1

sc) that “opens” a new journey from a source of k to node rc. If no
such a transfer exists, then φ(c) is set to ∅. A transfer plan then is Γ-robust
as soon as every recipient node has received Γ + 1 copies of each unit.

If we keep the flows (used to check that all transfers are robust-improving)
from one node to another during the search, testing whether a given transfer
is robust-improving then takes O(n+m) time, because only one iteration of
the Ford-Fulkerson [24] algorithm is required. At most one new journey can
be found. Indeed, a single transfer cannot enable two or more new journeys
to be found at the same time.

130 Chapter 5. Robust optimization

Remark 5.1

In practice, we store only one flow network in memory. The graph defined
in Section 5.2.1 has a structure that essentially depends on the instance
we consider. In particular, only the capacities vary between two graphs
G(φ1, k1, r1) and G(φ2, k2, r2) (the capacities only depends on the partial
transfer plan, the datum unit and the node we consider). Therefore only
the capacities – associated with each unit k ∈ D and each node i ∈ N –
and the resulting flows must be stored in a reversible (i.e. backtrack-able)
data structure. The structure of the graph itself can be static.

5.3 A constraint programming approach

In this section, we implement the scheme proposed in Section 5.2 for solving
the robust dissemination problem. We use constraint programming, and take
advantage of pre-implemented tools to easily develop a complete branch-and-
bound procedure. Moreover, we propose ad hoc methods (e.g. lower bounds)
to speed up the solving of the problem.

5.3.1 Model

The model proposed below is an update of the model proposed in Chapter 4
for the case Γ = 0. All transfers are required to be robust-improving. Thus,
every recipient node r ∈ R must receive exactly Γ + 1 copies of each datum
unit k ∈ D. At the outset, we assume that r possesses Γ + 1 (resp. 0) copies
of k if k ∈ Or (resp. k /∈ Or).

As a reminder, for each node i ∈ N is defined Ti, the set of time indexes
at which the state of i can change, i.e. Ti = {0}∪{c ∈ {1, 2, . . . ,m} | rc = i}.
In addition, ∀t ∈ {0, 1, . . . ,m}, we refer by Ti(t) to the last contact occurring
before time t where node i is the receiver, i.e. Ti(t) = max {t′ ∈ Ti | t′ ≤ t}.
The variables of our model are defined as follows:

• ∀k ∈ D, ∀c ∈ {1, . . . ,m}, xk,c = 1 if datum unit k is transmitted from
node sc to node rc during contact σc, and xk,c = 0 otherwise.

• ∀i ∈ N , ∀k ∈ D, ∀t ∈ Ti, yi,k,t indicates the number of copies of datum
unit k possessed by node i after contact σt. Thus, the domain of these
variables is {0, 1, . . . ,Γ + 1}. See Remark 3.8 on page 82.

5.3. A constraint programming approach 131

• ∀c ∈ {1, . . . ,m}, ac = 1 if transfer φ(c) is robust-improving, and ac = 0
otherwise.

• ∀i ∈ N , ∀k ∈ D, variable λi,k represents the delivery length associated
with datum unit k and node i – i.e. the date from at node i possesses
Γ + 1 copies of datum unit k. Its domain is Ti ∪ {∞}. λi,k =∞ means
that node i does not recover unit k during the transfer plan. In practice
we consider that ∞ = m+ 1.

• ∀i ∈ R, variable λi = maxk∈D {λi,k} then represents the delivery length
of recipient node i – i.e. the date from which node i possesses all datum
units in any scenario of at most Γ failures. Its domain is Ti (because i
has to be served).

• Finally, variable λ = maxi∈R {λi} represents the dissemination length
of the transfer plan. Its domain is therefore

⋃
i∈R Ti ⊆ {0, 1, . . . ,m}.

Minimizing the dissemination length leads to the following objective.

λ∗ = minλ (4.1)

The constraints are written as follows (note that these constraints alone are
not sufficient to ensure that the transfer plan is Γ-robust):

• Each node i ∈ N initially possesses a subset Oi of datum units:

∀i ∈ N , ∀k ∈ D | k ∈ Oi, yi,k,0 = Γ + 1 (5.2)

∀i ∈ N , ∀k ∈ D | k /∈ Oi, yi,k,0 = 0 (3.5)

• The transfer plan must be valid (sending nodes must possess the datum
units that they transmit):

∀k ∈ D, ∀c ∈ {1, 2, . . . ,m}, xk,c ≤ ysc,k,Ti(c−1) (3.6)

• Nodes possess a datum unit from the time they receive it:

∀k ∈ D, ∀c ∈ {1, 2, . . . ,m}, yrc,k,Ti(c−1) + xk,c = yrc,k,c (3.10)

• At most one datum unit can be transferred during each contact:

∀c ∈ {1, 2, . . . ,m},
∑
k∈D

xk,c = ac (4.2)

132 Chapter 5. Robust optimization

• λi,k is the delivery length associated with datum unit k and node i:

∀i ∈ N , ∀k ∈ D, ∀t ∈ Ti,

{
yi,k,t < Γ + 1 ⇐⇒ λi,k > t
yi,k,t = Γ + 1 ⇐⇒ λi,k ≤ t

(5.3)

Implicit constraints

No constraints explicitly ensures that the transfer plan is Γ-robust. Actually,
this is implicitly done through the branching stage. As mentioned in Section
5.2.2, to solve the problem, we sequentially set the transfers. It corresponds
to set x-variables from xk,1 (∀k ∈ D) to xk,m.

1. At each node of the search tree, the earliest transfer φ(c) which is not
yet set – i.e. the smallest index c ∈ {1, . . . ,m} such that ∃k ∈ D where
xk,c is not yet fixed – is selected.

2. Next, one branch is created for each robust-improving transfer – i.e. for
each datum unit k ∈ Oc−1

sc , if transfer φ(c) = {k} is robust-improving,
then one adds a branch where xk,c = 1 and ∀p ∈ D\{k}, xp,c = 0.

3. If no robust-improving transfers have been found, then φ(c) is set to ∅
– i.e. ∀k ∈ D, we set xk,c = 0.

To check whether a given transfer is robust-improving, we use the test defined
in Section 5.2.2. Note that the capacities of the transportation network are
given by the x-variables for transfers occurring before φ(c), and must be set
to 0 for other transfers.

In this way, we ensure that the transfer plan is Γ−robust (because other
constraints ensure that each recipient receives Γ + 1 copies of each unit).

In addition, this approach ensures that the transfer plan is robust-minimal
(every transfer is either null or robust-improving), and robust-strictly-active
(because robust-improving transfers cannot be postponed).

Remark 5.2

A transfer φ(c) = {k} is necessarily robust-improving if there exist more
arc-disjoint journeys from a source of datum unit k to node sc than from
a source of k to node rc. Consequently, in such a case, no flow has to be
computed and one can set ac = 1. In practice, note that constraint (4.4)
can be used (cf. page 100).

5.3. A constraint programming approach 133

5.3.2 Additional features

As regards the robust dissemination problem, key concepts and models have
been discussed. However, like in Section 4.2, ad hoc algorithms can speed up
the solving process. Below we propose an additional propagation procedure,
and adaptations of the techniques developed for the case where Γ = 0.

Look-ahead

In some circumstances, the propagation engine can reveal necessary transfers
even before the sequential branching algorithm have to chose a value for those
transfers (by combining some constraints of the model). The corresponding
x-variables are then set to 1. For example, on Figure 5.2a, the solver might
deduce that φ(6) = {1} and φ(9) = {1} at the start (since there are only two
contacts left for sending the two required copies of unit 1 to node 6).

In the following, we study such a situation. Formally, we assume the first
t ∈ {0, . . . ,m− 1} transfers have been set. Thus, φ(t+ 1) is the first unfixed
transfer. We then consider a transfer φ(c) = {k}, c ∈ {t+ 2, . . . ,m}, k ∈ D,
that has been set by a third propagation procedure.

Unfortunately, we cannot guarantee, at this stage, that transfer φ(c) will
necessarily be robust-improving, or even that a dominant solution such that
transfers φ(c) is robust-improving exists. This may depend on some transfers
φ(x), x ∈ {t+ 1, . . . , c− 1}, which are not yet set. However, we can already
check that φ(c) has a chance of being robust-improving. To this end, we use
the transportation network G(φ, k, r = rc) (cf. Section 5.2.1) restricted to:

1. all contacts σx, x ≤ t, such that xk,x = 1, i.e. such that φ(x) = {k};
2. contacts σx, x ∈ {t+ 1, . . . , c}, such that rx = rc and xk,x = 1 (because

we must show that these contacts can be robust-improving);

3. contacts σx, x ∈ {t+ 1, . . . , c− 1}, such that rx 6= rc and xk,x is not set
to 0, i.e. such that φ(x) might/must be equal to {k}.

In fact, we consider the transportation graph associated with the hypothetical
transfer plan φ where all the available contacts are leveraged for transmitting
unit k. Obviously, if we cannot find enough arc-disjoint journeys with such
a transfer plan – that is, if we cannot find one augmenting path in this flow
network for each contact σx, x ∈ {1, 2, . . . , c}, such that rx = rc and xk,x = 1
– then no dominant solution can be computed (developed) from this node of
the search tree (the transfers towards node rc cannot all be robust-improving
at the same time). If so, a backtrack must be triggered immediately.

134 Chapter 5. Robust optimization

If we look back at Figure 5.2a, the corresponding transportation network
is given in Figure 5.2b. Contacts σx, x ∈ {1, 2, 3, 4, 5, 7, 8}, may be used for
transferring unit 1 to node 6, so the capacity of the arcs associated with these
contacts is 1. Conversely, contact σ10 will be used for sending datum unit 2
to node 5, so the capacity of arc (31, 52) is set to 0 (this arc is removed from
the flow network). We can find an augmenting path for transfer φ(6) and for
transfer φ(9) (the two transfers fixed in advance) : [src, 10, 23, 41, 61, 62, snk]
and [src, 10, 21, 22, 23, 51, 62, snk]. Thus we cannot prune this branch.

Remark 5.3

Note that contacts σx, x ∈ {t+1, . . . , c−1}, such that rx = rc and xk,x is
still free (neither set to 0, nor set to 1), are ignored (we set the capacity of
the corresponding arcs to 0). In fact, considerings these contacts would
over-constrain the flow, because we would have to find augmenting paths
for transfers that are not required to be robust-improving.

In practice, it may be hard to prune a node in such a way, because there
may be many available contacts, and therefore potentially many augmenting
paths. Nevertheless, computing these maximum flows also provides valuable
information regarding the possible transfers. More specifically, any arc that
belongs to a minimum cut in the transportation network described above is
necessary for the flow to be maximum – i.e. for the transfers fixed in advance
to be robust-improving.

In Figure 5.2b, the minimum cut given by the hatched vertices – namely
{(23, 41), (23, 51)} – reveals that we must use contacts σ5 and σ7 to transmit
datum unit 1 to nodes 4 and 5 respectively. Thus, x1,5 = 1 and x1,7 = 1.

Proposition 5.6

Let M = |{σx ∈ {1, . . . , c} such that rx = rc and xk,x = 1 }| refer to the
required value of a maximum flow in G(φ, k, rc) (when only considering
the contacts listed above).

1. The flow value cannot exceed M (by construction).

2. If the value of a maximum flow is M , then every arc belonging to a
minimum cut of G(φ, k, rc) corresponds to a contact during which
datum unit k must be transmitted.

3. Finally, if the value of a maximum flow is lower than M , then the
current branch cannot lead to a dominant solution.

5.3. A constraint programming approach 135

(a) an instance of the robust dissemination problem
(Γ = 1, 6 ∈ R and t = 0)

1 2 4 6

3 5

{2}

{2}

{1, 2}
1

2

3

4
5 φ(6) = {1}

78
φ(
9)
=
{1}

φ(10) = {2}

(b) the transportation network G(φ, k = 1, rc = 6)

src 10

20

30

40

50

21 22 23

31

51 52

41 42

60 61

62

snk

∞

∞ ∞ ∞

∞

∞ ∞

∞ ∞

∞
∞ ∞

1

1

1

1

1

1

1

1

1

0

minimum cut

m
inim

um
cut

Figure 5.2 – The look-ahead propagation procedure.

136 Chapter 5. Robust optimization

Proof. (item.2) Let C be a minimum cut in G(φ, k, rc). Let a ∈ C be an arc
of that cut. We assume that there exists a dominant transfer plan (developed
from the current node in the search tree) such that the contact corresponding
to arc a is not leveraged for transferring datum unit k. Therefore, there is a
flow of value M in G(φ, k, rc)− {a} (i.e. the graph obtained after removing
arc a in G(φ, k, rc)). This flow is maximum. Yet, C−{a} is a cut of capacity
M − 1 in graph G(φ, k, rc)− {a} – which contradicts the max-flow/min-cut
theorem.

In practice, we enumerate the minimum cuts with the recursive algorithm
proposed by Balcioglu and Wood [4]. Therefore, this propagation procedure
runs in O (M(n+m) +K(n+m)2) time, with M = |{σx ∈ {1, . . . , c} such
that rx = rc and xk,x = 1 }|. K denotes the number of maximum cuts in the
flow network. As K may be huge, recursion depth should be limited.

Lower bounds and symmetry-breaking techniques

Almost all ad hoc methods proposed in Section 4.2 can be generalised to the
robust case straightforwardly. Actually, almost all proposed methods remain
applicable on condition that we consider the datum units and their copies –
i.e. on condition that we correctly take into account that each recipient has
to receive Γ + 1 copies of each datum unit, instead of one.

For example, the first lower bound becomes:

Proposition 5.7

Let i ∈ R be a recipient node, and α = (Γ+1)×(u−|Oi|) be the number
of datum units (including copies) that i has to receive during a transfer
plan. Let σx ∈ σ denote the αth contact σc = (sc, i) during which a unit
k ∈ D\Oi can be transferred to node i (i.e. such that variable xk,c is not
set to 0). If this index does not exist (if it remains less than α contacts
fulfilling the condition), we consider that x = ∞. x is a lower bound for
λΓ
i (φ) and λΓ(φ) (λ ≥ λi ≥ x in the model).

For further details, we refer to Section 4.2 at page 102. Note that one can
still use the lower bound defined in Proposition 4.1; the lower bound defined
in Proposition 4.2; the symmetry-breaking technique defined in Proposition
4.3; and the nogood-recording technique defined in Propositon 4.5 – that is
everything but the symmetry-breaking technique defined in Proposition 4.4
(cf. Figure 5.3 and Remark 5.4 for more details).

5.3. A constraint programming approach 137

1

2

3

4

5

{1}

{2}

{2}

1

2

5

3

4

6

consecutive contacts

φ(1) = φ(2) = φ(3) = φ(4) = φ(6) = {1} and φ(5) = {2}

Figure 5.3 – Symmetry-breaking techniques, consecutive contacts.

Remark 5.4

In Proposition 4.4, page 108, we study the situation where a node is the
receiving node in several contacts, without having any possibility to send
data to a third node between these contacts. We propose to enforce that
datum units are transferred, in such a situation, in order of their index.
For instance, in Figure 4.3, page 109 (Γ = 0), considering

[φ(1) = {1} and φ(2) = {2}] or [φ(1) = {2} and φ(2) = {1}]

leads to equivalent states (all nodes possess the same units). Therefore,
considering one option among the two is sufficient to solve the problem.
Unfortunately, in Figure 5.3 (Γ > 0), the “symmetric” transfer plan

[φ(4) = {2} and φ(5) = {1}]

does not lead to the same state – because transfer φ(6) = {1} no longer
is robust-improving (the two journeys associated with node 5 and datum
unit 1 relies on contact σ1).

138 Chapter 5. Robust optimization

5.4 Preliminary results

In this section, experimental results are reported and discussed. First of all,
we describe our benchmark. The latter is built from the instances generated
for the non-robust dissemination problem. Next we study the results obtained
with the different algorithms described in Section 5.3. All experiments were
performed in the same conditions as for Chapters 3 and 4 – i.e. on the same
machine, with the same parameters and the same one-hour time limit.

5.4.1 About the benchmark

In order to generate hard instances, we used the instances generated for the
dissemination problem, cf. Section 3.5.1 at page 85.

Given Propositions 5.1 and 5.2, one can expect an instance of the robust
dissemination problem to be as difficult as an instance of the dissemination
problem characterised by about Γ times more units (if we keep constant the
number of nodes and the number of contacts). Consequently, we propose to
reuse the instances generated for the dissemination problem, by reducing the
number of datum units in such a way that the old number of datum units is
of the same order of magnitude as (Γ + 1)× u in the new instance. Actually,
we must find a well-known compromise:

1. between a larger value of (Γ+1)×u – feasible transfer plans are harder
to be found, but proofs of infeasibility are usually easier;

2. and a smaller value of (Γ + 1)×u – feasible transfer plans are easier to
be found, but proofs of infeasibility may be harder.

This compromise must ensure that it is difficult to prove that a transfer plan
is optimal.

The new benchmark is described in Table 5.1. As a reminder, the classes
are characterised by the number nbinst of instances it contains, the required
level of robustness Γ, the number of datum units u, and the number of nodes
n of these instances. The average number rec of recipients i ∈ R, the average
number src of source nodes i ∈ N such that Oi 6= ∅, and the average number
m of contacts in every class are also reported. In column from, we indicate
the classe(s) (originally used for the dissemination problem) from which the
new instances are built (for the robust dissemination problem).

5.4. Preliminary results 139

n
a
m
e

fr
o
m

n
bi
n
st

Γ
u

n
re
c

sr
c

m

1
r2

u
2
0
n

4
u
2
0
n

41
1

2
20

18
1

36
6

1
r2

u
5
0
n

4
u
5
0
n
+
5
u
5
0
n

49
1

2
50

44
1

71
7

1
r2

u
1
0
0
n

4
u
1
0
0
n

20
1

2
10

0
87

2
17

20

1
r5

u
1
0
n

1
0
u
1
0
n

16
1

5
10

6
2

19
7

1
r2

5
u
1
0
n

5
0
u
1
0
n

16
1

25
10

6
2

75
0

1
r5

0
u
1
0
n

1
0
0
u
1
0
n

6
1

50
10

7
4

20
00

2
r2

u
5
0
n

2
r5
u
5
0
s

23
2

2
50

50
1

72
6

2
r3

u
1
0
n

1
0
u
1
0
n

16
2

3
10

6
2

19
7

2
r1

7
u
1
0
n

5
0
u
1
0
n

16
2

17
10

6
2

75
0

2
r3

4
u
1
0
n

1
0
0
u
1
0
n

6
2

34
10

7
4

20
00

3
r2

u
1
0
n

1
0
u
1
0
n

16
3

2
10

6
2

19
7

3
r1

3
u
1
0
n

5
0
u
1
0
n

16
3

13
10

6
2

75
0

3
r2

5
u
1
0
n

1
0
0
u
1
0
n

6
3

25
10

7
4

20
00

T
a
b
le

5
.1

–
T
h
e
b
en
ch
m
ar
k
ge
n
er
at
ed

fo
r
th
e
ro
b
u
st

d
is
se
m
in
at
io
n
p
ro
b
le
m
.

140 Chapter 5. Robust optimization

5.4.2 Numerical results

Let us have a look at column none in Table 5.2. This contains the numerical
results obtained by considering the model of Section 5.3.1, and the branching
algorithm described in Section 5.2.2, that is the minimum needed for solving
the robust dissemination problem (with no additional features).

We note that only 13% of the benchmark has been solved to optimality,
but feasible (robust) transfer plans have been found for approximatively 77%
of the remaining instances. It shows that the benchmark is quite challenging,
and that the solver (namely CP-Optimizer) can run into difficulties, even for
small instances.

To achieve better results, we need to consider the additional propagation
algorithms proposed in Section 5.3.2:

• the weak (wlb) or the strong (slb) lower bounds;

• the symmetry-breaking technique (sym);

• the nogood-recording (ngr);

• and/or the look-ahead procedure (la).

In practice, by activating each feature one by one, we noticed that the weak
lower bound is the element that has the most impact on the performances of
the solver – cf. column wlb in Table 5.2. However, we may wonder whether
the strong lower bound is really relevant for this problem, because we observe
that the percentage of instances solved proven to optimality tends to be worse
in column slb than in column wlb.

Nogood-recording and symmetry-breaking techniques have also appeared
to be very effective. Using these two features (together with the weak lower
bound) enable more than 70% of the benchmark to be solved – see columns
wlb+ngr and wlb+ngr+sym in Table 5.3. The impact of the look-ahead
procedure is certainly more limited, see column wlb+ngr+sym+la, but is
worth mentioning.

Note finally that the best numerical results were achieved with a variant
of the look-ahead procedure, termed “weak-look-ahead”. This consists in not
executing the look-ahead algorithm more than once, for a same transfer in a
same branch – i.e. we check that a transfer fixed in advance has a chance to
be robust-improving only the first time we detect it. The results are reported
in Table 5.4.

none wlb slb

solved feas cpu solved feas cpu solved feas cpu

1r2u20n 73.2 26.8 1171 78.0 22.0 882 75.6 24.4 1259

1r2u50n 12.2 83.7 3169 14.3 81.6 3096 14.3 81.6 3133

1r2u100n 20.0 65.0 2881 25.0 60.0 2701 25.0 60.0 2701

1r5u10n 6.3 62.5 3377 31.3 37.5 2477 31.3 37.5 2484

1r25u10n 0.00 93.8 3601 43.8 50.0 2027 43.8 50.0 2046

1r50u10n 0.00 100 3604 50.0 50.0 1811 50.0 50.0 1850

2r2u50n 0.00 60.9 3601 21.7 39.1 2933 34.8 43.5 2349

2r3u10n 12.5 75.0 3303 50.0 37.5 1918 50.0 37.5 1979

2r17u10n 0.00 93.8 3601 50.0 43.8 1818 50.0 43.8 1963

2r34u10n 0.00 100 3603 50.0 50.0 1808 50.0 50.0 1828

3r2u10n 43.8 56.3 2111 68.8 31.3 1239 56.3 37.5 1670

3r13u10n 0.00 87.5 3601 56.3 31.3 1640 50.0 37.5 1825

3r25u10n 0.00 100 3602 50.0 50.0 1807 50.0 50.0 1821

average 12.9 77.3 3171 45.3 44.9 2012 44.7 46.4 2070

Table 5.2 – Computational results obtained with CP Optimizer – part-1.

wlb+ngr wlb+ngr+sym wlb+ngr+sym+la

solved feas cpu solved feas cpu solved feas cpu

1r2u20n 100 - 0.41 100 - 0.31 100 - 0.23

1r2u50n 67.3 30.6 1310 73.5 24.5 1144 81.6 16.3 857

1r2u100n 55.0 45.0 1622 60.0 40.0 1506 65.0 35.0 1366

1r5u10n 43.8 37.5 2090 56.3 25.0 1586 56.3 25.0 1581

1r25u10n 43.8 50.0 2027 50.0 37.5 1814 50.0 37.5 1814

1r50u10n 50.0 50.0 1810 83.3 16.7 620 83.3 16.7 620

2r2u50n 34.8 34.8 2400 34.8 34.8 2369 43.5 30.4 2336

2r3u10n 87.5 12.5 798 93.8 6.3 311 93.8 6.3 273

2r17u10n 50.0 43.8 1816 68.8 25.0 1180 68.8 25.0 1185

2r34u10n 50.0 50.0 1807 66.7 33.3 1216 66.7 33.3 1211

3r2u10n 100 - 0.28 100 - 0.20 100 - 0.20

3r13u10n 56.3 31.3 1603 62.5 25.0 1351 62.5 25.0 1351

3r25u10n 50.0 50.0 1807 66.7 33.3 1207 66.7 33.3 1208

average 60.6 33.5 1469 70.5 23.2 1100 72.2 21.8 1062

Table 5.3 – Computational results obtained with CP Optimizer – part-2.

142 Chapter 5. Robust optimization

5.5 Conclusion

In this chapter, we addressed the problem of finding a Γ-robust transfer plan,
i.e. a valid transfer plan which guarantees that the recipient nodes correctly
receive all datum units, even if some transfers (at most Γ) fail. We hope that
this approach will manage to cover a wide range of constraints that are to
be found in real applications.

We proposed an algorithm based on constraint programming. This relies
on a necessary and sufficient condition for a transfer plan to be Γ-robust, cf.
Proposition 5.2. Note, moreover, that this algorithm is an adaptation of the
procedure proposed in Chapter 4 for the original dissemination problem.

Finally, promising results were reported. It appeared that specific ad hoc
propagation algorithms – e.g. some lower bounds – are required for the model
to be efficiently solved (even more than before).

5.5. Conclusion 143

wlb+ngr+sym+wla

solved feas cpu

1r2u20n 100 - 0.20

1r2u50n 81.6 16.3 835

1r2u100n 60.0 40.0 1502

1r5u10n 56.3 25.0 1582

1r25u10n 50.0 37.5 1815

1r50u10n 83.3 16.7 620

2r2u50n 39.1 30.4 2354

2r3u10n 93.8 6.3 251

2r17u10n 68.8 25.0 1150

2r34u10n 83.3 16.7 1025

3r2u10n 100 - 0.20

3r13u10n 62.5 25.0 1351

3r25u10n 66.7 33.3 1207

average 72.7 20.9 1053

Table 5.4 – The best results achieved with CP-optimizer.

6Conclusion and perspectives

I n this thesis, we addressed the problem of making use of knowledge
about node mobility when information must be routed throughout an
intermittently-connected network, i.e. a delay-tolerant network (DTN)

or a system of systems. We sought store-forward routings – termed transfer
plans – which enable a set of recipient nodes to receive some data from a set
of source nodes, when a sequence of contacts (an opportunity for two nodes
to communicate) can be reliably estimated. In practice, this took the shape
of a combinatorial problem, termed the dissemination problem.

Our contributions are organised into three parts.

1. First, we formally defined the “dissemination problem”. This step was
essential since the literature was lacking a clear and unified framework
for such problems. In addition, the literature did not properly consider
the case where identified and indivisible pieces of data (termed datum
units) need to be routed from one or several sources, to one or several
recipients. Next we proved that the problem is NP-Hard in the strong
sense. We also highlighted some polynomial cases. Another interesting
point is that the dissemination problem was shown to be equivalent to
finding mutually arc-disjoint branchings in an evolving graph. In fact,
all of this corresponds to Chapters 1 and 2.

2. The second part comprises more technical elements. More specifically,
we proposed two solving schemes. The first one relies on integer-linear
programming, and was defined in Chapter 3. The second one relies on
constraint programming, and was defined in Chapter 4. Both of them

146 Chapter 6. Conclusion and perspectives

are based on the dominance rules that we proposed beforehand. These
were leveraged to build efficient preprocessing procedures, and to define
extra constraints. In addition, we proposed specific ad hoc propagation
algorithms for the constraint-programming model to be more efficiently
solved. For example, one of these algorithms is based on a lower bound
of the dissemination length. Note that constraint programming has led
to the best experimental results on a self-generated benchmark.

3. Finally, we study a variant of the dissemination problem – termed the
robust dissemination problem – where we need to find Γ-robust transfer
plans, i.e. valid transfer plans which guarantee that the recipient nodes
correctly receive all datum units, even if any Γ transfers fail. We hope
that this approach will manage to cover a wide range of constraints of
real applications. To tackle this problem, we proposed a necessary and
sufficient condition for a valid transfer plan to be Γ-robust. Thereafter
we adapted the solving scheme based on constraint programming (and
proposed for the original problem) in order to take account of this new
constraint. All of this is discussed in Chapter 5.

This work is still underway.

Concerning the robust dissemination problem, we still have to propose a
more specific benchmark, with few but well-characterized classes and groups
(like we did for the dissemination problem). For this purpose, we propose to
follow the promising approach discussed in Section 5.4.1.

At the same time, we must develop/implement a preprocessing procedure
for the robust dissemination problem. We are currently adapting the one we
proposed for the initial dissemination problem to that end.

Finally, we think that further research on robust optimization would help
prediction errors to be more effectively managed in practice (which seems to
us to be a crucial point in a real context). For example, instead of considering
that some contacts may fail, we could also envision that contacts occur in an
uncertain order, or even that some nodes may be destroyed. Nodes deployed
in hostile (e.g. military) environments are indeed prone to such risks.

This being said, many other constraints are also worth considering – e.g.
buffers and/or batteries limitations, transmission and/or propagation delays,
interferences, etc.

BibliographyBibliography

[1] I. F. Akyildiz, O. B. Akan, C. Chen, J. Fang, and W. Su. InterPlaNetary
Internet: state-of-the-art and research challenges. Computer Networks,
43(2):75–112, 2003.

[2] J. Alonso and K. Fall. A Linear Programming Formulation of Flows over
Time with Piecewise Constant Capacity and Transit Times. Technical
report, Intel Research, Berkeley, 2003.

[3] E. Altman, G. Neglia, F. De Pellegrini, and D. Miorandi. Decentralized
Stochastic Control of Delay Tolerant Networks. In The 28th Conference
on Computer Communications, IEEE INFOCOM 2009, pages 1134–
1142. IEEE, 2009.

[4] A. Balcioglu and K. R. Wood. Enumerating Near-Min S-T Cuts. In D. L.
Woodruff, editor, Network Interdiction and Stochastic Integer Program-
ming, volume 22 of Operations Research / Computer Science Interfaces
Series, pages 21–49. Springer US, 2003.

[5] N. Belblidia, M. Dias De Amorim, L. H. M. K. Costa, J. Leguay, and
V. Conan. PACS: Chopping and shuffling large contents for faster op-
portunistic dissemination. In 8th International Conference on Wireless
On-Demand Network Systems and Services, WONS 2011, pages 9–16.
IEEE, 2011.

[6] D. Bertsimas and M. Sim. The Price of Robustness. Operations Research,
52(1):35–53, 2004.

[7] S. Bhadra and A. Ferreira. Computing multicast trees in dynamic net-
works and the complexity of connected components in evolving graphs.
Journal of Internet Services and Applications, 3(3):269–275, 2012.

148 Bibliography

[8] R. Bocquillon and A. Jouglet. Data Transfer in Delay-Tolerant Net-
works. In 2013 Eighth International Conference on Broadband and
Wireless Computing, Communication and Applications, BWCCA’2013,
pages 355–359. IEEE, 2013.

[9] R. Bocquillon and A. Jouglet. Minimizing the dissemination length in
the one-datum-unit data transfer problem. In 2013 Sixth Multidisci-
plinary International Conference on Scheduling, Theory and Applica-
tions, MISTA’13, 2013.

[10] R. Bocquillon and A. Jouglet. A constraint-programming-based ap-
proach to solve the data dissemination problem. submitted, 2015.

[11] R. Bocquillon and A. Jouglet. Modeling elements and solving techniques
for the data dissemination problem. submitted, 2015.

[12] R. Bocquillon, A. Jouglet, and J. Carlier. The data transfer problem
in a system of systems. European Journal of Operational Research,
244(2):392–403, 2015.

[13] J. Border, M. Kojo, J. Griner, G. Montenegro, and Z. Shelby. Perfor-
mance Enhancing Proxies Intended to Mitigate Link-Related Degrada-
tions, 2001.

[14] B. Burns, O. Brock, and B. N. Levine. MV routing and capacity build-
ing in disruption tolerant networks. In Proceedings IEEE 24th Annual
Joint Conference of the IEEE Computer and Communications Societies,
volume 1, pages 398–408. IEEE, 2003.

[15] J. Cheriyan and M. R. Salavatipour. Hardness and approximation results
for packing steiner trees. Algorithmica, 45(1):21–43, 2006.

[16] The delay-tolerant networking research group. http://www.dtnrg.

org/.

[17] J. Edmonds. Combinatorial algorithms, chapter Edge-disjoint branch-
ings, pages 91–96. Algorithmic Press, New York, NY, USA, R. Rustin
ed., 1972.

[18] J. Edmonds and R. M. Karp. Theoretical Improvements in Algorithmic
Efficiency for Network Flow Problems. Journal of the ACM, 19(2):248–
264, 1972.

http://www.dtnrg.org/
http://www.dtnrg.org/

Bibliography 149

[19] S. Even, A. Itai, and A. Shamir. On the Complexity of Timetable
and Multicommodity Flow Problems. SIAM Journal on Computing,
5(4):691–703, 1976.

[20] K. Fall. A delay-tolerant network architecture for challenged internets. In
Proceedings of the 2003 conference on Applications, technologies, archi-
tectures, and protocols for computer communications, SIGCOMM 2003,
page 27, New York, NY, USA, 2003. ACM Press.

[21] A. Ferreira. On models and algorithms for dynamic communication net-
works: The case for evolving graphs. In 4e rencontres francophones sur
les Aspects Algorithmiques des Télécommunications, ALGOTEL 2002,
pages 155–161. INRIA Press, 2002.

[22] A. Ferreira. Building a reference combinatorial model for MANETs.
IEEE Network, 18(5):24–29, 2004.

[23] A. Ferreira and A. Jarry. Complexity of Minimum Spanning Tree in
Evolving Graphs and the Minimum-Energy Broadcast Routing Problem.
In Proceedings of WiOpt’04, Modeling and Optimization in Mobile, Ad
Hoc and Wireless Networks, 2004.

[24] L. R. Ford and D. R. Fulkerson. Maximal flow through a network. Cana-
dian Journal of Mathematics, 8:399–404, 1956.

[25] M. R. Garey and D. S. Johnson. Computers and Intractability, A Guide
to the Theory of NP-Completeness. W. H. Freeman & Co., New York,
NY, USA, 1990.

[26] R. Handorean, C. Gill, and G.-C. Roman. Accommodating Transient
Connectivity in Ad Hoc and Mobile Settings. In Pervasive Comput-
ing, proceedings of the Second International Conference, PERVASIVE
2004, volume 3001 of Lecture Notes in Computer Science, pages 305–
322. Springer Berlin Heidelberg, 2004.

[27] D. Hay and P. Giaccone. Optimal routing and scheduling for determin-
istic delay tolerant networks. In 2009 Sixth International Conference
on Wireless On-Demand Network Systems and Services, pages 27–34.
IEEE, 2009.

[28] Instances of the dissemination problem. https://www.hds.utc.fr/

~rbocquil/dokuwiki/_media/dp_instances.zip.

https://www.hds.utc.fr/~rbocquil/dokuwiki/_media/dp_instances.zip
https://www.hds.utc.fr/~rbocquil/dokuwiki/_media/dp_instances.zip

150 Bibliography

[29] S. Jain, K. Fall, and R. Patra. Routing in a delay tolerant network. ACM
SIGCOMM Computer Communication Review, 34(4):145, 2004.

[30] M. Jamshidi. System of Systems Engineering: Principles and Applica-
tions. Boca Raton, Taylor & Francis, 2008.

[31] A. Jouglet and J. Carlier. Dominance rules in combinatorial optimization
problems. European Journal of Operational Research, 212(3):433–444,
2011.

[32] P. Juang, H. Oki, Y. Wang, M. Martonosi, L. S. Peh, and D. Ruben-
stein. Energy-efficient computing for wildlife tracking. ACM SIGARCH
Computer Architecture News, 30(5):96, 2002.

[33] J. LeBrun and C.-N. Chuah. Bluetooth content distribution stations on
public transit. In Proceedings of the 1st international workshop on De-
centralized resource sharing in mobile computing and networking, Mo-
biShare 2006, page 63, New York, NY, USA, 2006. ACM Press.

[34] A. Lindgren, A. Doria, and O. Schelén. Probabilistic Routing in In-
termittently Connected Networks. SIGMOBILE Mobile Computing and
Communications Review, 7(3):19–20, 2003.

[35] S. Merugu, M. Ammar, and E. Zegura. Routing in Space and Time in
Networks with Predictable Mobility. Technical report, Georgia Institute
of Technology, 2004.

[36] M. Mongiovi, A. K. Singh, X. Yan, B. Zong, and K. Psounis. Efficient
multicasting for delay tolerant networks using graph indexing. In 2012
Proceedings IEEE INFOCOM, pages 1386–1394. IEEE, 2012.

[37] Labex MS2T “Control of Technological Systems-of-Systems”. https:

//www.hds.utc.fr/labex-ms2t-484/.

[38] A. Pentland, R. Fletcher, and A. Hasson. DakNet: rethinking connec-
tivity in developing nations. Computer, 37(1):78–83, 2004.

[39] T. Schiex and G. Verfaillie. Nogood Recording for static and dynamic
constraint satisfaction problems. In Proceedings of 1993 IEEE Confer-
ence on Tools with Al (TAI-93), pages 48–55. IEEE Comput. Soc. Press,
1993.

[40] Y. Shiloach. Edge-disjoint branching in directed multigraphs. Informa-
tion Processing Letters, 8(1):24–27, 1979.

https://www.hds.utc.fr/labex-ms2t-484/
https://www.hds.utc.fr/labex-ms2t-484/

Bibliography 151

[41] A. S. Tanenbaum and D. J. Wetherall. Computer Networks. Prentice
Hall Press, Upper Saddle River, NJ, USA, 5th edition, 2010.

[42] A. Vahdat and D. Becker. Epidemic Routing for Partially Connected
Ad Hoc Networks. Technical report, Duke University, 2000.

[43] A. Voyiatzis. A Survey of Delay- and Disruption-Tolerant Networking
Applications. Journal of Internet Engineering, 5(1), 2012.

[44] W. D. Wood, Lloyd Ivancic, W. M. Eddy, D. Stewart, J. Northam,
C. Jackson, and A. da Silva Curiel. Use of the Delay-Tolerant Network-
ing Bundle Protocol from Space. In 59th International Astronautical
Congress and Exhibition, Glasgow, Scotland, United Kingdom, 2008.

[45] B. B. Xuan, A. Ferreira, and A. Jarry. Computing shortest, fastest,
and foremost journeys in dynamic networks. International Journal of
Foundations of Computer Science, 14(2):267–285, 2003.

[46] Z. Zhang. Routing in intermittently connected mobile ad hoc networks
and delay tolerant networks: overview and challenges. IEEE Communi-
cations Surveys & Tutorials, 8(1):24–37, 2006.

[47] W. Zhao, M. Ammar, and E. Zegura. Multicasting in delay tolerant net-
works. In Proceeding of the 2005 ACM SIGCOMM workshop on Delay-
tolerant networking, WDTN 2005, pages 268–275, New York, New York,
USA, 2005. ACM Press.

	PDT BOCQUILLON
	Soutenue le 16 novembre 2015

	manuscrit
	The dissemination problem
	Challenged internets
	Delay-tolerant networks
	Systems of systems
	The dissemination problem

	Complexity results
	The data transfer problem
	The case u greater than or equal to 2
	The case |R| greater than or equal to 2

	Polynomial-time cases
	The one-datum-unit problem (u=1)
	The delivery problem (|R|=1)
	Upper bounded parameters

	Additional results
	Arc-disjoint branchings in an evolving graph
	Arc-disjoint Steiner trees in a digraph

	Conclusion

	Dominance rules, preprocessings, and integer linear programming
	Dominance rules
	Transfer graph
	About the transfer graph
	Transfer graph and subsets of transfer plans
	Additional graph properties and complex subsets of transfer plans
	Using the transfer graph

	Deductive elements
	Finding non-minimal transfer plans
	Elementary reasonings
	Evaluating min-card and max-card

	Solving the dissemination problem
	Integer linear programming
	Additional constraints

	Computational results
	About the benchmarks
	About the models
	About the preprocessing procedures

	Conclusion

	Constraint programming
	Modelling the dissemination problem
	Constraint programming model
	Branching algorithm

	Additional features
	Lower bounds
	Symmetry-breaking techniques

	Computational results
	About the model
	The additional features

	Conclusion

	Robust optimization
	The robust dissemination problem
	Formal description
	Robustness and evolving graphs

	Robust optimization
	Necessary and sufficient condition for a transfer plan to be robust
	Enumeration procedure

	A constraint programming approach
	Model
	Additional features

	Preliminary results
	About the benchmark
	Numerical results

	Conclusion

	Conclusion and perspectives
	Bibliography

