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THÈSE DE DOCTORAT
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“Les machines un jour pourront résoudre tous les problèmes, mais jamais
aucune d’entre elles ne pourra en poser un.”

Albert Einstein
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Introduction

Understanding ductile fracture phenomena has been essential to the mechanical en-
gineering community for the past forty years, especially in the context of applications
such as the design of aeronautical and space structures, or metal forming processes.

Existing numerical methods, such as standard Finite Element methods, tend
to encounter difficulties to objectively predict strain localizations and crack propa-
gations involved in the ductile fracture process, since the material models usually
entailed when modeling ductile fracture include a softening behavior. This spe-
cific behavior is of crucial importance to account for the loss of carrying capacity
inevitably involved when modeling structure responses until fracture.

Indeed, it is now a well-known fact that, in a Finite Element modeling context,
the “post-peak” phase of a structure response subjected to severe loadings until
fracture are crucially depending on the chosen Finite Element discretization of the
structure. The element size as well as its type and orientation are critical parame-
ters. This is essentially due to the fact that standard Finite Element methods are
initially designed to model volumic phenomena and not surfacic phenomena such
as fracture. Modeling ductile fracture actually requires the introduction of an ad-
ditional parameter which is a characteristic length that corresponds to the domain
in which fracture occurs. In a standard Finite Element context, this characteristic
length automatically becomes the element characteristic size, unavoidably inducing
a crucial dependence of the response on this element size. These considerations will
be dealt with in details in the following chapter in section 1.3.1.

For the past forty years, the fracture mechanics community has been adressing
this problem by proposing novel methods. These methods all have advantages and
drawbacks as we will see in section 1.3. A criterion that we use to choose and
enhance one of these methods is the amount of programming that this enhancement
involves at the different stages of the standard Finite Element method.

Another reason for this choice is the fact that, in the short term, one of the
objective of this work is the possible implementation in an industrial context. Since
the vast majority of industries that rely on numerical simulation are using industrial
Finite Element codes, and since for most of these codes the programmer does not
have access to its whole architecture, it becomes critical to limit the enhancements
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Introduction

involved in the method to the levels of the architecture that the programmer has
access to. Mainly, these levels are the element level and the material point level. This
means that we will limit our enhancements to these levels of the FE architecture.

Having considered these requirements, one of the frameworks that fulfills these
conditions is the Strong Discontinuity Approach (SDA) framework whose foundings
and basics will be discussed in section 1.3.4. As specified above, this method has
the advantage to only involve local enhancements. Indeed, the corresponding nu-
merical enhancements remain limited to the elements involved in the localization
zone, each enhancement being independent from an element to another. This latter
consideration is of great importance since we will see that it allows the non-linear
Finite Element resolution procedure to remain unchanged from standard non-linear
computations. In particular we will see that this is due to the fact that no additional
degrees of freedom are considered at the global level of the code architecture, con-
trary to X-FEM based methods for instance. However this approach has drawbacks,
for instance its inability to ensure the continuity of the crack opening and sliding
from one element to another.

This framework has mostly been the subject of brittle and quasi-brittle fracture
modeling, and few authors have intended to adapt this method to the ductile fracture
context. One of the main contributions of this work is to propose a model that
accounts for coupled plasticity and damage in the context of the Strong Discontinuity
Analysis, both of these dissipative mechanisms being of great importance when
modeling ductile fracture, as we will see in the following chapter in sections 1.1 and
1.2.

The structure of the manuscript is as follows. In a first chapter, the physical
mechanisms involved in ductile fracture are discussed, as well as the different tech-
niques that have been developed to model these phenomena, without any ambition
of being exhaustive, but rather with the goal of emphasizing those that have most
influenced the ductile fracture scientific community. In this chapter, the strain local-
ization phenomenon is also highlighted from a numerical point of view, along with
the different techniques that have been developed to circumvent this phenomenon,
again without any claim of proposing an exhaustive review, since the amount of
methods is too important to be mentionned in this manuscript.

In a second chapter, the SDA theoretical formulation and its numerical im-
plementation are described in the context of Lemaitre’s phenomenological coupled
damage-plasticity model (see [94]). A four-node quadrangular element enhanced
with a linear displacement jump is described, and numerical examples showing the
capabilities of the method are presented. A critical damage value is used as a cri-
terion to introduce the discontinuity surface. All numerical developments presented
have been implemented in FEAP, an open source Finite Element software developed
by R.L. Taylor at the beginning of the 90’s (see [156] for FEAP’s website), relying
on the books written by O.C. Zienkiewicz and R.L. Taylor [173, 174].
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In a third and final chapter, we aim at extending the formulation proposed in the
previous chapter to the large strain hypothesis. This is one of the main objectives
of this work since ductile fracture often involves large strain scenarios, thus the
limitation to the small strain hypothesis becoming irrelevant. In this chapter and in
particular, we will see that the corresponding numerical enhancements do not involve
considerable changes in the structure of the code from the small strain hypothesis
case, even if the hypothesis itself is significantly different.

Finally we will conclude and suggest a few perspectives with respect to the
present work.
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Chapter 1

Ductile fracture modeling: a review

Ductile fracture modeling has been the subject of many differ-
ent approaches, mainly phenomenological and micromechanical
approaches. Without the ambition of being exhaustive, these
different techniques are reviewed in this chapter. The strain
localization phenomenon is also highlighted from a numerical
point of view, along with the different techniques that have been
developed to circumvent this phenomenon
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Chapter 1. Ductile fracture modeling: a review

1.1 Ductile fracture physical mechanisms

Ductile fracture is composed of three distinct stages. The first stage deals with void
nucleation in which voids are initiated at material defects, that is voids or inclusions
(in most cases) related to the material microstructure. In a second phase, voids
grow due to plastic deformation of the matrix surrounding the void, with a growing
dependent on the stress triaxiality ratio. At high stress triaxiality values, voids grow
until they coalesce to form a micro-crack, which means that several voids merge.

This situation is prevalent when only one population of inclusions is present in
the microstructure as it was shown by several authors [27, 152]. These authors have
found that with these alloys that contain only one population of inclusions, and at
high stress triaxiality a macro-crack appears due to the coalescence of primary voids
that are nucleated at inclusions. This phenomenon is reffered to as internal necking.

However, when the microstructure contains several populations of inclusions at
different length scales, another fracture mechanism may prevail at low stress triaxi-
alities. This physical process was reffered to as void sheeting by Garrison et al. [57].
In this case, primary voids remain small due to low stress triaxiality and secondary
voids are nucleated at narrow strain localization bands to form a macro-crack.

In most industrial cases and considering highly sophisticated metallic alloys, the
actual fracture process is a combination of these two mechanisms, which depends
on several material and loading characteristics such as the types of voids, inclusions,
their spacing, their sizes, the stress triaxiality ratio, the plastic strain ...etc...

In a more phenomenological description, ductile fracture is composed of three
phases: an elastic phase, a pre-peak phase in which plasticity and damage is increas-
ing until a global peak is reached, and a post-peak phase in which strain localization
occurs, as well as the formation of a macro-crack leading to its propagation until
complete fracture.

1.2 Models for ductile fracture

For the past thirty years, authors have intended to describe and model these mech-
anisms by different approaches, in order to be able to implement these models in
industrial numerical tools. Very few of them have intended or succeeded in model-
ing the whole mechanism, that is the three different stages of the ductile fracture
process. They have often focused on modeling void growth. This large amount
of studying and modeling these processes has led to the rise of new challenges in
numerical modeling which we will intend to describe in the following section, after
having presented the main different categories of ductile fracture modeling.

Many approaches have been used to model the ductile fracture process. As hard
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as it is to classify these approaches, we may divide them into two main categories
which rely on the type of description that is used, whether it is a micromechanical
description (with the three stages involving void nucleation, growth and coalescence)
or a phenomenological description relying on the effects of the mechanisms at the
macro-scale (elasticity, then plasticity and damage, and finally strain localization
and fracture).

The first category deals with micromechanical models in which the microscopic
mechanisms are modeled. They mainly rely on Gurson’s famous approach on void
growth micromechanical modeling. The second category deals with phenomenologi-
cal models (or empirical models), in which models are established by considering the
macroscopic phenomena involved in ductile fracture. This category contains vari-
ous types of models that are always based on macroscopic empirical considerations.
They can be derived from a rigorous thermodynamical framework or not.

However, these categories are not fully closed and some models may belong to
both categories, besides it is possible to categorize these models using a different
heuristic. For example, Li and Wierzbicki [98] proposed to categorize ductile fracture
models with respect to their approach of fracture, whether fracture is considered to
occur spontaneously when some critical situation is reached with no dependence on
the loading history, or whether it considers damage as a cumulative process, this
time depending on the loading history. In this situation, fracture occurs when this
cumulative damage measure reaches a critical value.

1.2.1 Micromechanical models

The micromechanical approach relies on the study at the micro-scale (the scale of the
void responsible for fracture) of the physical process that leads to fracture. The first
micromechanical developments for modeling ductile fracture were led by McClintock
[112], and Rice and Tracey [132]. They isolated a cylindrical void and a spherical
void, respectively, and described its growing in a rigid perfectly plastic matrix. They
emphasized the important role of the plastic strain and the triaxiality ratio in their
modeling. A simplified version of the void growth model for high stress triaxialities
is expressed as:

Ṙ

R0

= αexp
(3

2

σh
σy

)
ε̇eq (1.1)

where R is the current void radius, R0 is the initial void radius, σh is the hy-
drostatic pressure, σy is the matrix yield stress and εeq is the von Mises equivalent
strain. α initially set to 0.283 was then modified by Huang [66] for better accuracy.
Other authors have extended this model to account for strain hardening effects on
ductility (see [31, 13]). By integrating equation (1.1) and assuming a critical void
radius above which fracture occurs, this model has led to a simple criterion [106]:
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R

R0

=

(
R

R0

)
c

(1.2)

This criterion does not take into account the three stages of the ductile fracture
process, even though the criterion expressed above may be interpreted as a critical
void growth above which coalescence occurs.

Besides, the model does not take into account the interactions between voids
which implies that coalescence is not represented in the model, as for the void
nucleation stage. Another critic is that this void growth has no influence on the
material behavior, and no softening can occur with such a modeling.

Gurson [62] proposed a model that takes this critic into account. He proposed
that the distribution of voids in the matrix is idealized as a unique spherical void
containing all the volume of void, and surrounded by a rigid perfectly plastic sphere.
He performed an upper bound analysis of this model to obtain the yielding condi-
tion expressed below in (1.3). The model uses the void volume fraction f which
is equivalent to porosity, and represents the ratio of the volume of void over the
volume of the sphere. In that case, the growing void has an effect on the material
behavior through the void volume fraction that is coupled with the yielding function,
originally expessed by Gurson as:

Φ =
(σeq
σy

)2

+ 2fcosh
(1

2

σh
σy

)
− 1− f 2 (1.3)

where σeq is the von Mises equivalent stress. It has to be noticed that without
any void, the Gurson model is exactly the same as the conventional von Mises model,
and that damage increases until there is a complete loss of load-carrying capacity
only when f = 1.

Since this is an unrealistic behavior because the load-carrying capacity is com-
pletely lost only when there is no material anymore, Tvergaard [161, 162] introduced
new parameters q1 and q2 in his modified version of the Gurson model, expressed
as:

Φ =
(σeq
σy

)2

+ 2q1fcosh
(3

2

q2σh
σy

)
− 1− (q1f)2 (1.4)

This model is often reffered to as the Gurson-Tvergaard-Needleman model (GTN).
By setting q1 = 1.5 and q2 = 1 based on the bifurcation analysis of Gurson’s model
and his numerical studies for a material containing periodic distributions of voids,
he obtained a loss of load-carrying capacity at f = 1/q1. This value is still too large
based on experimental observations carried out by Brown and Embury [28] and on
unit cell analysis performed by Koplik and Needleman [82]. They showed that the
critical volume fraction above which coalescence occurs is usually less than 15%.
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Faleskog et al. [56] showed that q1 and q2 depend on the plastic hardening exponent
and on the ratio of the yield stress over Young’s modulus. Koplik and Needleman
highlighted the fact that Gurson’s model was not able to predict void coalescence
and that a specific criterion should be introduced along with this void growth model.

Consequently, authors have used a so-called critical void volume fraction for
calescence in the literature. It simply assumes that coalescence occurs when a critical
volume fraction fc is reached, without assuming any stress state dependency or any
initial void volume fraction. This was assumed to be a material constant that can
be determined experimentally or numerically, a common value is fc = 0.15 [163] or
fc = 0.1 [169, 136].

Tvergaard then addressed the problem that the critical void volume fraction
does not depend on the initial void volume fraction, and therefore it depends on the
material and can not be a simple constant.

Koplik and Needleman also commented on the influence of stress triaxiality on fc
and concluded that if the initial void volume fraction was small (ie < 1%), then the
influence of stress triaxiality could be neglected. However for larger values, fc at high
stress triaxiality was significantly lower than for the case at low stress triaxiality.

Tvergaard and Needleman then proposed to simulate coalescence with the fol-
lowing function:

f ∗ =

{
f for f 6 fc

fc + f−fc
fR−fc

( 1
q1
− fc) for f > fc

(1.5)

where fR is the fracture porosity that can be freely chosen. f ∗ can be seen as
an effective porosity. This function simply states that if the void volume fraction is
below the coalescence criterion, then the void volume fraction follows Gurson’s stan-
dard void growing rule, and if it reaches a critical value, the void growing is amplified
to represent the sudden loss of load-carrying capacity. Figure 1.1 was established by
Zhang [178] and displays the evolution of the effective void volume fraction along
with its influence on the load-carrying capacity within a FE computation.

Besson highlighted the fact that any other function of f ∗ could be suitable [23].
and that low values of fR and fc can lead to convergence problems. It is to be noted
that there is a large difference of void volume fraction between the begining and
the end of coalescence and that it is un unstable and very quick process, whereas
void growth is more stable and produces much less void. Koplik and Needleman [82]
and Zhang [178] emphasized the accuracy of the function in (1.5) with respect to
void coalescence simulation although it is proven to be less accurate for high stress
triaxiality values.

Nucleation in a micromechanical-based analysis is much less studied than void
growth or coalescence, even though its role in the process of ductile fracture is
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Figure 1.1: (a) schematic plot of equation (1.5), (b) response of a material point in
FE analyses with and without the modified function in 1.5 (see [178])

undoubtedly significant. This aspect of ductile fracture is the less known stage
of the process and authors have reported that it is a highly material-dependent
phenomenon. Indeed, nucleation of voids depends on the distribution of inclusions,
their sizes and shapes, their strength, and on the hardening exponent of the plastic
law of the matrix. It is often studied in a phenomenological way in the following
form:

ḟn = Anṗ (1.6)

where ḟn is the change of porosity due to nucleation, An is the strain driven
nucleation rate and p the accumulated plastic strain. Then the total change of
porosity is expressed as:

ḟ = ḟn + ḟg + ḟc (1.7)

where ḟg and ḟc are the change of porosity due to void growth and coalescence,
respectively.

Chu and Needleman proposed a model [38] of this strain driven nucleation rate
that is often coupled with the GTN model. It is expressed as a Gaussian function
as:
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An =
fN

sN
√

2π
exp

(
− 1

2

(p− εN
sN

)2
)

(1.8)

where fN is the volume fraction of inclusions at which voids can be nucleated, εN
is the strain for which 50% of the inclusions are broken, sN is the standard deviation
of the nucleation strain. Chu and Needleman [38] calibrated their model to find
εN = 0.3 and sN , and many authors have used the same values without taking into
account that they highly depend on the material microstructural properties. Other
authors have proposed other forms for An (e.g. [177, 20]).

Although it is not often used, a similar expression can be obtained for a stress
controlled nucleation intensity, and the total void nucleation rate is then written as:

ḟn = Anṗ+Bn(σ̇h + σ̇eq) (1.9)

This allows the hydrostatic stress in equation (1.9) to have an effect on nucleation
which has a physical sense. This law is a statistical void nucleation law.

Zhang [178] highlighted that there exist two other nucleation mechanisms, the
cluster of voids nucleation mechanism in which voids are nucleated when some crit-
ical condition has been reached, and it is often assumed that voids nucleate at the
beginning of plastic deformation, setting a so-called initial void volume fraction f0.

The second other type of nucleation model is called a continuous nucleation
model, in which it is considered that the number of voids increases linearly with
plastic deformation as it was shown by Gurland [61] for some specific material.
Zhang in [177] did not recommend to use Chu and Needleman’s statistical model
due to the difficulty that arises from the determination of the three parameters of the
model, and due to the fact that it may lead to non-uniqueness issues, in a numerical
point of view.

The model proposed by Chu and Needleman is actually a statistical version of
the cluster of voids model, it states that most of the void will be nucleated at a
critical value of plastic deformation for the strain-driven void nucleation model.

Gurson’s model and low stress triaxiality handling

When stress triaxialities are low, for which shear stress becomes prevalent with
regards to hydrostatic stress (η < 0.33), it is proven that Gurson’s original model is
not efficient to simulate the so-called void sheeting mechanism (see section 1.2.2).
Shear damage is actually caused by void rotation, when shear deformation increases,
voids are driven towards each other and the ligaments between voids reduce which
induces a loss of carrying capacity as it does when necking occurs at high stress
triaxialities. This mechanism prevails in the context of metal forming in which
stress triaxialities remain low.
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Recent works (e.g. [7]) have shown that void coalescence at low stress triaxiali-
ties is related to the critical strain, which can be approximated with a function of
the stress triaxiality and the amount of shear loading. There exist shear damage
models that require the precise information of the microstructure geometry. For
instance Bacha’s model [5] requires lots of geometrical parameters to define the mi-
crostructure which induces a prohibitive calibration method, considering that this
calibration is even possible. Model parameters should remain as low as possible
so an identification procedure remains possible in an industrialization perspective
of the method. Jackiewicz proposed a review [72] of models that incorporate the
shear-driven coalescence mechanism, and which do not require a lot of parameters.
In the following a quick review of these approaches is proposed.

Mc Veigh et al. proposed to include the shear-driven coalescence mechanism
considering the assumption stated above, namely the relation between this mech-
anism with a critical strain. He considered that the simplest way to include the
shear mechanism was to include a dependence of the porosity rate on the equivalent
plastic strain rate, since it describes quite simply the amount of shear deformation
rate. He proposed the following expression for the porosity rate, to be compared
with equation (1.7):

ḟ = ḟn + ḟg + ḟc +Kṗ (1.10)

The term Kṗ does not have a physical sense but it enables Gurson’s model
to account for the shear-driven coalescence mechanism that prevails at low stress
triaxialities.

Nahshon and Hutchinson proposed a slightly different approach, considering that
the variable f is not only related to void growth, but should be interpreted as a
universal damage measure, which describes the loss of carrying-capacity in a phe-
nomenological way. It was emphasized that in a pure shear stress state, no void
growth occurs with the actual definition of Gurson’s model, however there is a loss
of load-carrying capacity due to void distortion and ligament reduction between
voids.

The authors proposed to add a term in the definition of ḟ to account for damage
increase in pure shear stress states, without modifying the accurate definition of this
rate in the case of axisymmetric stress states. They expressed the damage rate as
follows, in the finite deformation framework, without accounting for damage increase
due to nucleation:

ḟ = (1− f)tr(Ėpl) + kωfω(S)
Sdevij Ėpl

ij

Seq
(1.11)

where Epl is the plastic part of Green-Lagrange’s deformation tensor, S is the
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the second Piola-Khirchoff stress tensor, kω is the unique material parameter that
sets the magnitude of the damage growth rate due to pure shear stress states, and
ω(S) is expressed as:

ω(S) = 1− [27J3(S)/2S3
eq]

2 (1.12)

where J3 is a measure of the third invariant. This definition of ω(S) allows to not
modify the axisymmetric cases since ω(S) = 0 in this case, and ω(S) = 1 for pure
shear stress states, while it lies in the range 0 < ω(S) < 1 fo all intermediate stress
states. In equation (1.11), the term (1−f)tr(Ėpl) refers to the damage increase rate
due to void coalescence for the unmodified Gurson model.

Xue [171] performed analytical calculations on a unit cell containing a void and
subjected to simple shear, in order to define damage increase due to shear. He
analysed the reduction of the distance between the void free surface and the cell
boundary during shear straining and defined a shear damage measure considering
this assumption. He then obtained an expression of this shear damage rate as:

Ḋshear = qfngθE
pl
eqĖ

pl
eq (1.13)

where q and n are constants that only depend on the number of dimensions of the
model (2D or 3D), and gθ is the Lode parameter dependent function, also related to
the third invariant as in the model proposed by Nahshon and Hutchinson described
above. This function is defined as:

gθ = 1− 6|θL|/π and θL = tan−1
[ 1√

3
(2χ− 1) (1.14)

where χ = (S2−S3)/(S1−S3) and S1, S2 and S3 are the maximum, intermediate
and minimum principal stress components.

Jackiewicz [72] in his review of these two additional terms proposed by Nahshon
and Hutchinson on the one hand [115], and by Xue on the other hand [171], high-
lighted the fact that the model proposed by Xue gives better accuracy of the strain
localization, induced by the reduction of inter-particle spacing during large material
rotations, than the one proposed by Nahshon and Hutchinson. In his paper, Jack-
iewicz also introduced a new simple coalescence criterion that states that coalescence
occurs when the effective stress (that accounts for damage, i.e. section reduction)
becomes singular.

Void shape and rotation influence

One of the major limitations of Gurson’s model is that it cannot handle non-spherical
voids which is a problem when low stress triaxiality cases are considered. It is pos-
sible with Gurson’s model to tune parameters q1 and q2 by performing unit cell
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analysis corresponding to the actual microstructure. However, in order to describe
more precisely this situation, Gologanu et al. [58, 59] proposed to completely revise
the analysis performed by Gurson by considering ellipsoidal voids (oblate and pro-
late) in their analysis. They obtained a closed-form expression for the yield surface
for both oblate and prolate voids, loaded only axisymmetrically. It is reffered to as
the GLD model. The only added parameter, in comparison with Gurson’s model, is
the shape aspect ratio of the void, namely the ratio of the radius in the direction of
the symmetry axis over the radius in the radial direction.

The model is not expressed here but it has to be noticed that it becomes equiv-
alent to Gurson’s model when the aspect ratio is equal to 1. Besides, it enables
to model flat voids and an equivalent porosity is computed that is equal to the
porosity of a cell containing a spherical void with the same projected area as the
’penny-shaped’ flat void. Finally, it is possible to consider cylindrical voids with this
model, in the case of an infinite void aspect ratio.

As stated above, this model only allows axisymmetric loadings and therefore
cannot handle void straining when the principal strain axes are not aligned with the
ellipsoidal void axes, and therefore cannot induce void rotation and shearing. This
means that this model does not properly fall in the category of models that can
handle low stress triaxilities.

Ponte Castañeda and Zaidman [130], and Kailasam and Ponte Castañeda [78]
proposed a model for 3D ellipsoidal pores in which loadings are not limited to the
axisymmetric case contrary to the GLD model. In this model, the evolution of
the aspect ratios of the cavities is deduced from the cavity mean deformation rate,
which is itself obtained from the macroscopic plastic strain rate, using Eshelby theory
[55] considering plastic incompressibility. The formalism developed by Eshelby also
provides the cavity mean rotation rate.

However, Besson [23] higlighted the fact that this formalism is probably more
suitable for linear viscous solids than for plastic solids. Bordreuil [24] considered this
problem with a description of cavity rotation rate by using the representative theory
developed by Wang [165] for skew-symmetric tensor-valued functions. He developed
a model that contains parameters that need to be fitted by unit cell calculations.
He showed that rotation rates strongly differ if the matrix is considered as a plastic
or viscous solid.

Before Gologanu’s work on ellipsoidal void growth model [58, 59], Thomason
proposed a coalescence model using the same geometrical considerations [157, 158],
an axisymmetric unit cell containing an ellipsoidal void. He assumed that coales-
cence occurs when the inter-void ligament reaches its plastic limit load. Such an
hypothesis tends to be confirmed by observations [17] and unit cell calculations [82].
The model uses a new material parameter, the cell aspect ratio Lz/Lx. He obtained
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the coalescence condition by writing the mechanical equilibrium of the ligament:

π(L2
x −R2

x)Cfσ0 = πL2
xσ33 (1.15)

where Rx is the radius of the cavity in the radial direction, Lx is the length of the
cell in the radial direction, σ0 is the elastic limit stress and Cf is a constraint factor
that describes the stress concentration in the ligament due to the cavity. Cf was
computed by Thomason by using the upper-bound theorem for limit-load analysis.
Its approximation in the case of an axisymmetric cell is expressed as [159]:

Cf = 0.1
(Lx/Rx − 1

S

)2

+ 1.2
√
Lx/Rx (1.16)

Using Besson’s notations and simplifications [23], the coalescence criterion is
written as: (

1− R2
x

L2
x

)
Cf =

(2

3
+ η
)
X(f, η) (1.17)

where η is the macroscopic stress triaxiality ratio, X is defined as the ratio σeq/σ0

which depends on the void volume fraction f .
The evolution of the cell aspect ratio is related to the extensional plastic defor-

mation through the relation:

(Lz/Lx)

(Lz/Lx)0

= exp
(3

2
εplzz

)
(1.18)

The main drawback of this criterion is that it doesn’t account for void growth,
and it is only based on geometrical considerations. The consequence is that X in
(1.17) is overestimated. Microstructural parameters (void volume fraction f and
void aspect ratio Rz/Rx) should be computed using a dedicated model, such as
Gurson’s void growth model which was performed by [175, 176]. In their works,
void shape changes were neglected as it was assumed that voids remained spherical.
Thomason’s coalescence criterion was also used with the GLD model [58] to predict
X, f and S = Rz/Rx [17, 124, 125] which is confirmed by unit cell calculations.

In their works Pardoen and Hutchinson [124, 125] combined Thomason’s model
for coalescence with the GLD model to model void growth. It consits of modeling
two different modes of plastic deformation, the void growth model is dedicated to
model diffuse plasticity and any other void growth model could be used (e.g. the
GTN model), while the second one corresponds to localized plasticity in the inter-
void ligament that occurs during coalescence. It means that both yield functions
compete with each other, thus there exists a situation in which both yield functions
intersect and plastic flow is defined by the cone of normals defined at the intersection
point (see figure 1.2).
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Thomason's model

GTN model

cone of normals

Figure 1.2: Yield surface defined as the intersection of Thomason’s model in (1.17)
and the GTN model in equation (1.4) (thick line)

Other extensions of Gurson’s model

It is possible to extend the GTN model to account for plastic anisotropy, using a
different stress measure in equation 1.4:

Φ =
( σ̄
σ∗

)2

+ 2q1fcosh
(q2

2

σh
σ∗

)
− 1− (q1f)2 = 0 (1.19)

where σ∗ is the GTN effective stress and σ̄ is an anisotropic stress measure.
Various stress measures can be used. For example authors have often used the Hill
model for plastic anisotropy (see e.g. [49, 134, 60, 30]) or more advanced stress
measures (see e.g. [10, 79]). Besson et al. have rigourously derived the Gurson-like
yield equation in the case of Hill’s anisotropic stress measure [18] in which voids are
considered to remain spherical.

In cases of non-proportional or cycling loadings, it is important to account for
kinematic hardening. Even though Gurson’s micromechanical approach cannot ac-
count for the micromechanisms involved in a fatigue process, since its approach does
not correspond to fatigue mechanisms, authors have intended to account for a prede-
formation or low-cyle fatigue within a Gurson-like approach (see e.g. [108, 91, 22]).
However, experimental tests are still missing.

Calculations comparing kinematic hardening and isotropic hardening show that
accounting for kinematic hardening accelerates the failure occurence.

For all the models described above, it is assumed that once a void has nucleated,
the particle that was the site of nucleation no longer influences the void growth or
coalescence phenomenon. This is proven to be true as long as the stress triaxiality
remains high so that void deformation is not influenced by particle interaction. How-
ever, at low stress triaxialities, voids tend to elongate in the direction of maximum
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deformation and shrink in the direction perpendicular to the direction of maximum
deformation. Particles can prevent this shrinkage and thus increase porosity in this
specific direction. A model based on this assumption and on the GLD model [58]
was established by Siruguet et al. [149]. It allows to represent ductile fracture under
pure shear loadings.

An alternative to Gurson’s model

Alternatively to Gurson’s approach on ductile fracture modeling on porous media,
Cheng et al. [37] proposed a model applied to a rigid-plastic hollow sphere (as in
Gurson’s approach) that is based on a statical limit analysis combined with a homog-
enization technique in order to obtain a macroscopic yield criterion that accounts for
the three invariants of the macroscopic stress field, while Gurson’s model only takes
into account the first two invariants of the stress tensor. In the authors’ formulation,
the internal boundary condition on the stress field is relaxed, leading to a so-called
“quasi-lower bound” yield criterion. They obtained this “Stress Variational Model”
by considering Hill’s variational principal [64] together with the introduction of a
Lagrange multiplier to solve the minimization problem.

1.2.2 Phenomenological approaches

Contrary to micromechanical approaches to fracture, the phenomenological ap-
proach deals with empirical considerations. In this context, authors try to relate
mechanical variables defined at the microscopic level to phenomena that occur at
the macroscopic scale, such as the loss of carrying capacity in the context of ductile
fracture. In this section and without the aim of proposing an exhaustive review,
we first review the most famous fracture criteria that rely on a phenomenological
approach, and then we review some of the most notorious models (mostly damage
models) proposed by authors that also rely on phenomenological considerations.

Among the ductile fracture scientific community, in many works authors use in
their models the notion of the so-called fracture strain, the strain at which fracture
occurs. They postulate that fracture occurs when the accumulated plastic strain
reaches a critical value, depending on a combination of the hydrostatic pressure, the
von Mises equivalent stress and the principal tensile stress.

For all of these models, authors have intended to model the dependence of the
fracture strain to different variables that characterizes the stress state, such as the
hydrostatic pressure, the von Mises equivalent stress, the principal tensile stress, the
principal shear stress, the third invariant of the stress tensor (or the Lode angle).
The models are then formulated in the following sense :∫ εf

0

f(stress state)dε = C (1.20)
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where εf is the equivalent fracture strain, and C the critical value. Some of these
works rely on existing plasticity theories, or intend to establish new theories with
different yield surfaces.

Within these criteria, one of the first so-called empirical model is the Cockroft-
Latham-Oh criterion [41] in which fracture is driven by the maximum principal stress
over the equivalent stress integrated over the strain path. This model was modified
by Brozzo et al. [29] to include a hydrostatic stress dependence, and Clift et al. [40]
replaced the maximum principal stress by the equivalent stress.

Another class of models relates fracture to the stress triaxiality state. For exam-
ple, the Rice and Tracey criterion [132] states that fracture exponentially depends
on the stress triaxiality ratio.

Bao and Wierzbicki [8] have tested a few of these criteria and they concluded
that none of these standard criteria could describe the aforementioned two different
fracture mechanisms (’internal necking’ and ’void sheeting’). They were accurate
only in a specific range of triaxiality ratios, and specifically not in the middle range
where the ’void sheeting’ mechanism prevails.

These authors also emphasized [7] that the aforementioned authors did not carry
sufficient tests in the intermediate stress triaxiality range, and that they could not
rigorously assume that within this middle range the fracture locus follows the same
rule as in the extremas.

They addressed the issue that the elaboration of tests within this range was
particularly difficult, this is why the description of the fracture locus within this
range is very challenging. They eventually obtained a complete fracture locus for
the Al 2024-T351 aluminium alloy used in the aeronautical industry, which highlights
their previsions on the middle range triaxiality ratio fracture locus. They also showed
the existence of a cut-off value of the stress triaxiality ratio below which fracture
never occurs, which was not emphasized by Rice and Tracey [132] or Johnson and
Cook [75].

Recently, with a similar approach Bai and Wierzbicki [6] have extended the
Mohr-Coulomb yield criterion, that has been extensively used to describe fracture
in the geomaterial community, to the range of ductile fracture. They reformulated
this criterion, originally formulated in the principal stress space, in the space of
equivalent fracture strain, stress triaxiality and Lode angle (ε̄f , η̄, θ̄). and included a
pressure and a Lode angle dependence that were missing in the original formulation.

Figure 1.3 presents the fracture locus for the Johnson-Cook model and for the
Bai-Wierzbicki model in a plane stress state, it illustrates the aforementioned dif-
ferences between the two models. In the general stress state case, the fracture locus
for Bai-Wierzbicki’s model becomes a 3D surface.

Xue [170] along with other authors [6] also emphasized with these studies, that
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Figure 1.3: Johnson-Cook’s and Bai-Wierzbicki’s models fracture loci

the third invariant (or Lode angle parameter) plays a role in the ductile fracture
process. Indeed, they performed tests on different specimens that exhibited the
same triaxiality ratio but different in-plane deviatoric states, which means different
values of Lode parameters, and they obtained different fracture strains for these
tests.

This shows the importance of the Lode angle parameter in the ductile fracture
process and the need to account for it in models.

As a consequence, authors have recently intended to describe the fracture strain
locus with respect to both the triaxiality ratio and the Lode angle parameter, by
several means. Some [6] completely reestablished standard J2 plasticity models by
incorporating the third invariant and pressure dependencies on the yield condition,
or they included this dependency in the damage accumulation process [170], both
intend to account for the Lode angle dependence at different stages of the modeling.

We recall that at high triaxiality ratios, the prevalent mechanism is primary void
growth which implies that coalescence happens sooner at high stress triaxiality than
at low stress triaxiality level. However a shift occurs at stress triaxialities below
0.3−0.4 where the void sheeting mechanism prevails. This induces a different shape
of the fracture locus below this range, as it is shown in figure 1.3.

Lemaitre’s model

Lemaitre [94] developed a theory of ’Continuum Damage Mechanics’ based on the
early works of Kachanov [77]. Some authors [23] criticize this terminology knowing
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that micromechanical models also use the notion of continuum damage. This is why
they prefer to refer to this theory as “phenomenological” because they are based on
macroscopic considerations.

Lemaitre’s notion of damage relies on the macroscopic phenomenon of loss of
carrying capacity when plastic strain is increasing during a loading. It is related to
the weakening of Young’s modulus which is equivalent to the loss of resisting section,
as follows in the scalar version:

D =
S0 − S
S0

=
E0 − E
E0

(1.21)

where S0 is the resisting section of the undamaged material, S is the current
resisting section, E0 is the Young modulus of the undamaged material and E the
Young modulus of the current material. This definition of damage allows to intro-
duce the important notion of effective stress, which corresponds to the stress across
the undamaged section after having removed from the total section the part that
has been damaged, which corresponds to voids and microcracks. It is defined as
follows:

σ̃ =
σ

1−D
(1.22)

Lemaitre’s damage variable can be scalar for isotropic materials in proportional
loadings configurations, as in the previous definitions, or it can be tensorial for
anisotropic materials and/or for non-proportional loadings.

Lemaitre’s damage-plasticity model has been widely extended to different appli-
cations such as creep, fatigue or brittle fracture. These different applications are
detailed in the book [97], and are written in a rigorous and consistent thermody-
namical framework, in a way that dissipation always remains positive.

Considering Lemaitre’s isotropic damage plasticity model with isotropic and
kinematic hardening, the model has four internal variables: the plastic strain tensor
εp, the scalar kinematic hardening variable α and the scalar damage variable D. The
model is actually formulated like von Mises standard plasticity model, but replacing
the true stress tensor σ by the effective stress tensor σ̃ defined in (1.22). It relies
on Lemaitre’s principle of strain equivalence which states:

"The principle of strain equivalence states that any strain constitutive equation of
a damaged material is written exactly as for a virgin material except that the stress
is replaced by the effective stress."

The yield function associated to this model is then defined as:

Φ =

√
3

2
dev(σ̃ −X) : dev(σ̃ −X)− (σy + q(r)) (1.23)
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1.2. Models for ductile fracture

where dev is the deviatoric part of a second order tensor, X is the stress associ-
ated to kinematic hardening, q(r) is the hardening law (which can either be chosen
as a power law or a saturated law), and σy is the elastic limit.

Lemaitre’s model is a non-associated model so the internal variables are defined
by deriving the following dissipation potential:

GD = Φ +
S

(1 + s)(1−D)

(Y
S

)1+s

(1.24)

where Y is a thermodynamic force from which the damage variable derives, also
known as the elastic energy release rate, s ans S are Lemaitre’s material parameters.

The damage variable evolution law is defined by Lemaitre as:

Ḋ =
λ̇

1−D

(Y
S

)s
(1.25)

Since this model is used in the present work, its theoretical developments as well
as its numerical implementation are detailed in section 2.2 in the following chapter.

Remark 1.2.1 (Lemaitre’s model and anisotropic damage). As mentioned above,
the damage variable can be tensorial in the case of anisotropic materials such as
laminated plates or in the case of non-proportional loadings since in this case the
normal to the resisting section is not constant with respect to the loading path. This
comes from the fact that Lemaitre’s damage variable, contrary to Gurson’s porosity
definition, is defined from areas and not volumes.

Thus, authors have tried to rebuild Lemaitre’s model by considering a tensorial
measure of damage. There exist different ways of defining a tensorial damage, it
can either be a second order tensor (see e.g. [111, 42, 39]) or a fourth-order tensor
(see e.g. [34, 83]). The second order version is often prefered due to the complexity
induced by the fourth-order version, and the definition of the effective stress tensor
in the case of the second order damage tensor is actually an approximation of the
fourth-order case (which corresponds to the most general case).

In the case of a second order damage tensor, the effective stress tensor may be
written [97]:

σ̃ = dev(H.dev(σ).H) +
σH

1− ηDH

1 (1.26)

where dev(a) is the deviatoric part of tensor a, H is defined as H = (1−D)−1/2,
η is a material parameter that drives the effect of damage on the hydrostatic stress
and on the deviatoric stress (called the hydrostatic sensitivity of damage), σH and
DH are the hydrostatic stress and hydrostatic damage, respectively. η is claimed to
be easy to identify.

17



Chapter 1. Ductile fracture modeling: a review

As mentioned in [97], this is the only definition of the effective stress tensor using
a second-order damage tensor that fulfills the conditions of symmetry of the effective
stress, that is independent of the strain behavior, and that is compatible with the
thermodynamics framework.

In this case of anisotropic damage, Lemaitre et al. [96] have proposed to gener-
alize the definition of the tensorial damage evolution law as:

Ḋ =
(Y
S

)s
|ε̇p| (1.27)

where ε̇p is the absolute value of the plastic strain tensor rate.

Remark 1.2.2 (Damage closure). Lemaitre’s has been modified [95, 1] to account
for compressive behavior under cyclic loading or complex loading paths. This version
takes into account the partial recovering of elastic properties when voids or micro-
cracks close, which is not straightforward in the standard version. To this purpose,
the strain energy release rate has been modified as:

Y =
1 + ν

2E

(< σ >+:< σ >+

(1−D)2
+ h

< σ >−:< σ >−
(1− hD)2

)
− ν
E

((tr(< σ >+)

1−D

)2

+ h
(tr(< σ >−)

(1− hD)

)2
) (1.28)

where < a >+ and < a >− represent the positive part and the negative part of
tensor a, respectively. h is a parameter (such that h 6 1) that describes the effect
of damage closure. If h = 1 there is no damage closure and the original model is
recovered, and if h = 0 there is no damage growth since Y = 0 under compression.

The above definition of the energy release rate considering damage closure has
been extended to anisotropy by Ju [76] and Chaboche [35] for quasi-brittle materials
and by Lemaitre [96] and Desmorat et al. [47] for ductile materials.

Remark 1.2.3 (Other extensions of Lemaitre’s model). Several extensions of the
CDM (Continuum Damage Mechanics) theory have been proposed. Among them, we
can cite the works of Saanouni [137, 138, 139] in which the authors enhanced the
model to account for anisotropy with respect to several mechanical variables, such
as the kinematic hardening, the elastic stiffness, the plastic yield function as well as
the thermal effects, in the context of metal forming using a finite strain hypothesis.
For example, the new yield function is written in Hill’s sense [63] as follows:

Φ(σ,X, R,D, T ) =

√
(σ −X) : H : (σ −X)−R√

1−D
− σy = 0 (1.29)
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1.2. Models for ductile fracture

where X is the anisotropic kinematic hardening, T the temperature, and H is a
fourth order tensor that accounts for an initial plastic anisotropy. The stress tensor
is, in this context, defined as:

σ = (1−D)Γ : εe − (T − T0)
√

1−Dk (1.30)

where Γ is a symmetric fourth order tensor that takes into account the elastic
stiffness anisotropy and k is a symmetric second order tensor that accounts for the
anisotropic thermal elongation.

In the same context of metal forming simulations, Labergere et al. [87] have
worked on a remeshing technique based on various types of error estimators in order
to circumvent the issue of having a “process zone” smaller than the characteristic
length (that is the mesh size).

They proposed an error estimator based on the derivatives of the plastic strain
(the Hessian matrix of the plastic strain). The computation of the Hessian of the
plastic strain is rendered possible by using the diffuse approximation technique for
which the local derivatives are immediately available since the approximation is poly-
nomial.

They also proposed an error estimator based on the damage rate Ḋ.
This remeshing method was implemented in Abaqus explicit for the solver together

with the software DIAMESH2D for the remeshing process (see [86]).

The Rousselier model

Rousselier introduced a model [135] based on Lemaitre and Chaboche thermody-
namical framework, that describes void growth for ductile materials which leads to
a quite similar yield surface to Gurson’s model. He developed his model with the
aim of obtaining a simple model in a consistent thermodynamic framework which
depends on the two first invariants of the stress tensor. Rousselier uses the poros-
ity f as an internal variable in such a way that it satisfies the equation of mass
conservation stated as:

ḟ = (1− f)tr(ε̇p) (1.31)

The yield function is expressed as:

Φ =
σeq

1− f
+ σ1fD exp

( tr(σ)

(1− f)σ1

)
−R (1.32)

where σ1 is a material parameter, D is a parameter that is supposed to be
independent of the material and R is the isotropic hardening which depends on the
accumulated plastic strain p. Although the Rousselier model looks like the Gurson
model, they do not enable the same growth mechanisms for different stress states.
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For instance, if one considers a pure shear stress state in which tr(σ) = 0 damage
growth still occurs with the Rousselier model whereas it does not evolve for the
Gurson model.

One of the main advantage of Rousselier’s model is that, contrary to Lemaitre’s
model, it enables to model volume change and density change through the use of
porosity as a damage measure, within a consistent thermodynamical framework
such as the one proposed by Lemaitre [94]. It also provides as good predictions as
Gurson’s model while it is claimed to better capture strain and damage localization.

The presence of a vertex point on the yield surface also enables to preserve a
shear plastic flow even at high stress triaxialities.

The Rousselier model has been extended by Tanguy et al. [153] to viscoplastic
and temperature dependent materials.

Remark 1.2.4 (Links between micro-mechanical and phenomenological modeling).
Both types of modeling have their advantages and drawbacks. As discussed above,
Lemaitre’s phenomenological model doesn’t account for volume change and thus is
not able to properly model void growth, it is essentially related to void nucleation.
The main advantage of such a model is its thermodynamically consistent formalism
contrary to Gurson’s model. In order to be able to use this formalism and to recover
the predictive mechanisms obtained with the GTN model, Lemaitre and Desmorat
[97] showed that it is possible to tune the parameters of Lemaitre’s model to simulate
void growth. A further attempt has been made by Chaboche to combine Lemaitre’s
formalism for void nucleation together with the GTN void growth model in order to
obtain an elliptic model.

Another advantage of Lemaitre’s model is that it enables to simulate the effects
of damage on elastic properties, and this coupling induces complex numerical inte-
gration procedures. Some authors have neglected this coupling [170] to simplify the
model by defining an independent damage evolution law.

1.3 Mesh dependency issue: a review of the local-
ization limiters

1.3.1 Highlighting the mesh dependency issue

Ductile fracture models often induce softening behaviors since, for instance in the
case of Lemaitre’s model, the development of damage induces a loss of load-carrying
capacity. This type of behavior leads to strain localization and in the context of FE
modeling, this leads to a pathological dependence of the solution on the mesh size
and type.

This comes from the fact that FE discretization uses a characteristic length which
is the mesh size. When strain localization occurs, the dissipative mechanisms are
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localized in a small area that depends on the mesh size. Since the total dissipation
depends on the area in which dissipation occurs, if standard FE are used, the mesh
size inevitably appears in the total dissipation and in the extreme case of an infinitely
small mesh size, fracture would occur without any dissipation.

An example of this phenomenon is presented on figure 1.4, in which a simple
tensile test is simulated using Lemaitre’s isotropic damage model in a plane strain
framework. Three meshes using Q4 elements with full integration and with different
mesh sizes are considered, an element at the center of the specimen is "weakened"
to simulate a micro-defect in order to drive localization, the yield stress σ2

y of this
element is equal to 0.99σ1

y where σ1
y is the yield stress of the other elements of the

mesh. Material parameters for this test are sumed up in table 1.1. We recall that s
and S that appear in table 1.1 are Lemaitre’s model parameters that appear in the
damage evolution law:

Ḋ =
ṗ

1−D

(
Y

S

)s
(1.33)

Lemaitre’s model
Young’s modulus 210 GPa
Poisson’s ratio 0.3
Hardening law 620 + 3300(1− exp (−0.4R))
Yield stress σ1

y 620 MPa
Yield stress σ2

y = 0.99σ1
y 613.8 MPa

s 1
S 3.5 MPa

Table 1.1: Lemaitre’s damage-plasticity model parameters

It is obvious that the post-peak phase of the force/displacement curve strongly
depends on the mesh size. The dissipated energy during this phase tends to converge
to 0 as stated above. It has to be noticed that the global post-peak phase which
corresponds to the force/displacement curve does not necessarily coincide with the
local post-peak phase at the material point. Indeed, local softening generally occurs
before global softening. At the end of the test, the major part of the strain is
localized in the weakened element. This is why the total dissipation of the softening
phase reduces to 0 as the element width reduces to 0.

This phenomenon is also related to the fact that standard elements are designed
to model volumic dissipative mechanisms and not to model surfacic dissipative mech-
anisms which are inseparable from ductile fracture modeling.
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Figure 1.4: (a) meshes and boundary conditions ("weakened" element in gray), (b)
Reaction/Displacement curves

Many techniques have been used for the limitation of mesh dependency issues.
They are mainly divided in two types of techniques, local models and non-local
models. In this section, our interest is to review a few of these methods, before
introducing our method based on the Strong Discontinuity Approach (SDA).

1.3.2 Local methods

Viscous regularization

One of the techniques consists in introducing an artificial viscosity in the model.
This local method is based on the fact that the rate dependency of a material
induces a regularizing effect. Indeed, in a mathematical point of view, governing
equations involving material rate dependency remain elliptic, even with softening
materials. This was proved by the work of Needleman [116] in which he showed with
a one-dimensional model under quasi-static and dynamic loadings that a viscoplastic
effect removes the pathological mesh-dependency issue by introducing an artificial
length scale in the governing equations, which keeps them elliptic.

This method was used by Dube et al. [50] in the case of a one-dimensional model
for concrete under dynamic loading, he numerically showed that the objectivity of
the solution was ensured. This type of regularization was also implemented by Sluys
et al. [150] in the case of dynamic loadings in which they determined an explicit
expression of the viscoplastic length scale for regularization.

Recently, Niazi et al. [118] have demonstrated the regularizing capabilities of
a viscoplastic regularization applied to a modified version of Lemaitre’s model for
quasi-static problems, considering anisotropic damage. They showed that a so-
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called viscoplastic effective regularizing length decreases as damage grows, and if this
length becomes shorter than the mesh size, the problem becomes mesh-dependent
again. These authors recommend to use very fine meshes to avoid this issue.

The limitation of this method lies in the fact that the introduced viscous parame-
ters’ physical significations are not necessarily established in the case of a non-viscous
plasticity/damage model, while they are only used for their numerical regularizing
effects. Besides, the use of these parameters involves characteristic times consider-
ations along with limited time steps.

Parameters depending to mesh size

Another kind of method, probably the most easy to implement, is those that involve
parameters that depend on the mesh size. The philosophy of this approach consists
in adjusting, with regards to the mesh size, softening parameters in order to ensure
the objectivity of the solution. This method was first introduced by Dugdale [51]
and Barenblatt [9].

A method based on this approach and on non-linear fracture mechanics was then
introduced by Hillerborg et al. [65] in the framework of quasi-brittle materials. It
consists in enforcing the computed fracture energy Gf to remain independent from
the element size. The so-called "fracture process zone" is determined through a FE
computation and material parameters governing the softening phase are tuned to
give an equal total fracture energy. This energy depends on the number of elements
crossed by a displacement discontinuity, as a consequence these parameters depend
on the sizes of the elements crossed by discontinuities.

An obvious drawback of this method is the non-physical sense of these element-
size dependent parameters. Another one is the need of a new set of parameters for
each FE computation involving a new mesh. On the other hand, it is quite simple
to implement in a FE code. Only the material law requires an adjustement with
this method.

Cosserat models

The Cosserat brothers developed a generalized continuum theory [43], also known
as the micro-polar continuum theory, that has then been used to treat localiza-
tion problems at the beginning of the 90’s by De Borst and Sluys [46] and Yu
et al. [172]. The key idea is to introduce additional rotational degrees of freedom
within the equilibrium equations, which are treated within an additional momentum
equilibrium equation. This enriched continuum formulation implies that a bending
modulus appears in the equations that automatically incorporates a characteristic
length essential for regularization.
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These models have also been used in a certain extent to model granular materials
by Mulhaus and Vardoulakis [113] in which Cosserat’s theory is used to evaluate
the thicknesses and orientations of shear bands for materials with internal friction.
More recently, Khoei and Karimi [80] reemployed Cosserat’s theory to model shear
bands in ductile materials together with a X-FEM formulation. Cramer et al. [44]
proposed an adaptative mesh method in the context of associated and non-associated
plasticity using Cosserat’s continuum theory.

The generalized continuum theory developed by the Cosserat brothers have
brought a certain attention in the strain localization modeling for ductile fracture
since the beginning of the 90’s, and are essentially used to model shear bands.

One of the drawbacks is that it is necessary to reformulate the material constitu-
tive equations since couple stresses terms appear along with the traditional Cauchy
stress tensor.

1.3.3 Non-local methods

Gradient models

Gradient models can be of different types, those who involve a gradient formulation
directly within the equilibrium equation, and those using a gradient of internal
variables instead of the variable itself in the material model formulation.

The first kind of gradient models uses a high order velocity gradient, in which
the equilibrium equations are modified. The founding principles of these methods
were introduced by Toupin (see [160]) and Mindlin (see [109]). The key point is to
postulate that the principle of virtual power includes the use of the second gradient
of velocity ∇∇v, in addition to the deformation rate ε̇ = ∇sv (which corresponds
to the first gradient of velocity).

The standard formulation of the principle of virtual power is actually a restriction
of the second gradient theory, where only the first gradient of velocity appears in
the formulation. Although this method relies on a very rigourous thermodynamical
framework and is quite elegant, its numerical implementation is complicated by the
requirement of the use of shape functions that are able to describe a second gradient
of velocity, on the one hand. On the other hand, writing the boundary conditions
is quite difficult because they need to be written for the dual variable of the second
gradient of velocity which is a third-order stress tensor, and this is not an easy task.

The other type of gradient models use a gradient of internal variables. The
introduction of the gradient of a certain internal variable within the constitutive
equations or in the evolution equations allows the regularization. While integral
models use a convolution of a variable over a given neighborhood instead of the
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variable itself, these models use their spatial derivatives.

Among these models, we can cite Mulhaus et al. [114] which was developed for a
softening plasticity model. The Laplacian of the hardening variable is used to com-
pute its dual variable that appears in the plasticity yield function. A generalization
of this assumption was proposed by Lorentz et al. [102] in which the free energy is
rewritten to account for the spatial derivative dependency of the dual variables to
the state variables. Then the differentiation of the free energy to obtain the state
equations naturally links the dual variables to the state variables and their gradi-
ents. In their works [102] Lorentz et al. showed that the gradient plasticity model
proposed by Mulhaus et al. [114] is a particular case of their general framework.
They also proposed in their paper a damage homogenization and a porosity model
based on their general gradient framework.

In a similar way Reusch et al. [131] proposed a modification of the GTN model
to account for non-local damage. They replaced the porosity f that appears in the
yield function by a so-called time-dependent continuum damage field v, assuming
that the effect of the damage field v is the same as the one of f :

Φ =
(σeq
σy

)2

+ 2q1vcosh
(3

2

q2σh
σy

)
− 1− (q1v)2 (1.34)

An additional term related to the gradient of this damage field is also added to
the free energy:

Ψ = Ψs(ε, εp) +
1

2
αDl

2
D∇v.∇v (1.35)

where Ψs is the standard free elastic energy for the GTN model, lD is the char-
acteristic length of the non-local damage field and αD is a characteristic time.

Recently, Linse et al. [101] proposed a different modification of the GTN model
to account for non-local damage. The non-local aspect appears in the formulation of
the porosity rate, in which the dilatiational part of the plastic strain rate is replaced
by its average over a neighborhood, whereas in the previous model a new damage
field variable was introduced:

ḟnlg = (1− f) ˙̄εp (1.36)

where ε̄p is defined implicitly as the solution of the diffusion differential equation
expressed as:

ε̄p − c∇2ε̄p : I = εp (1.37)

where ∇2() : I reduces to the Laplace operator,
√
c has a dimension of length

and plays the role of the characteristic length responsible for regularization. It is
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often more numerically convenient to use the gradient of plastic strain instead of
the gradient of damage since damage is limited to the range [0, 1] contrary to the
plastic strain which does not have a superior limit.

Other extensions of non-local damage modeling along with the Gurson model
have been proposed by [164, 90, 71], and with the Rousselier model by [140].

A similar implicit gradient of damage formulation has been formulated as an ex-
tension of the Lemaitre damage model by César de Sá et al. [33]. A non-constitutive
damage variable D̄ is implicitly related to the local constitutive damage variable D
through the diffusion differential equation (as in (1.37)):

(D − D̄) + l20∇2
0D̄ = 0 (1.38)

where l0 is the characteristic length scale that drives the area of damage diffu-
sion. Then this non-local damage variable D̄ replaces the standard local damage
D variable in the Lemaitre constitutive equation. In their works César de Sá et al.
implemented this extended model in a mixed-enhanced strain FE framework, which
is convenient when non-local field variables are considered.

One of the drawbacks of these models is the difficulty to implement them in a
finite element program since the gradients of internal variables are usually treated as
additional degrees of freedom, which implies the use of non-standard FE procedures
since the added “dofs” cannot be condensed at the element level due to the non-local
property of these variables. The use of gradient of internal variables also implies
that high-order finite element are used in order to properly represent these gradients.
Another drawback is the difficulty induced with regards to boundary conditions since
the gradients should naturally vanish at boundaries which has to be enforced in the
model. Usually a simple Neumann boundary condition is introduced as an additional
condition:

∇D̄.n = 0 on ∂Ω (1.39)

and is weakly implemented in the FE procedure.

Integral models

We now focus on models that involve the use of non-local variables through the
use of an integral over a given neighborhood. The use of non-local integral models
involves the replacement of some scalar variables by their mean over a neighborhood
V , using a weighting function that drives the size of the neighborhood. They were
firstly introduced by Pijaudier-Cabot et al. (see [128]).

For example, if one considers a local variable f(x), the corresponding non-local
averaged field is defined as:
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f̄(x) =

∫
V

α(x, s)f(s)ds (1.40)

where s defines the "source" term and α(x, •) is the weighting function around
point x. In order to reproduce exactly uniform fonctions, the following condition
has to be satisfied: ∫

V

α(x, s)ds = 1 ∀x ∈ V (1.41)

Finally, the standard average function is defined as:

α(x, s) =
α∞(||x− s||)∫

V
α∞(||x− s||)ds

(1.42)

where α∞(r) is usually chosen as a bell-shaped function that tends to zero when
r tends to the boundary of the volume V .

The first immediate limitation of this method is the choice of the weighting
function that appears in the integral over the neighborhood, Planas et. al showed
that the model is very sensitive to this function (see [129]). Another one is the
choice of the characteristic length associated to the weighting function, which also
has a very important influence on the response of the model.

Jirasek [73] performed an exhaustive overview of non-local integral damage mod-
els based on Lemaitre’s damage theory [94], and compared results with regards to
the type of averaging that is undertaken and the formulation of damage model itself.
Indeed, it is possible to perform the averaging on different variables: the damage
variable D itself, the energy density release rate Y , the equivalent strain (consid-
ering the non-local extension [141] of the damage model for concrete developed by
Mazars [107]), the inelastic stress s = Deεe − σ...etc...

He eventually showed with a simple tensile test that averaging quantities like the
damage variable, or the inelastic stress induced a non-negligeable locking effect due
to the fact that, when averaging such quantities, the stress was not reduced to zero
even for very large imposed displacements, which is not realistic. On the contrary
averaging quantities like the energy density release rate or the inelastic stress where
consistent and did not induced such unrealistic behavior.

Non-local plasticity models were first introduced by Eringen [54] with no aim
of proposing a localization limiter. It then inspired authors like Bazant and Lin
who proposed a non-local plasticity model with strain softening [11] in which the
averaged variable is the plastic multiplier computed as:

¯̇λ =

∫
V

α(x, s)λ̇(s)dV (1.43)
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and replaces the local plastic multiplier, which is computationally more efficient
than averaging the plastic strain tensor εp itself since it is scalar. However, this
formulation still gives rise to the aforementioned locking effects since it is equivalent
to averaging the inelastic stress.

Many other non-local plasticity models have been developed using the same
averaging philosophy, some of these models were reported by Baz̆ant and Jirásek
in [12]. The main diffences between these models are in the choice of the averaged
variables.

Finally, similar to gradient models, as these models are difficult to implement
and require information on the neighborhood’s variables, important modifications
of the global architecture of the finite element resolution need to be carried out.

1.3.4 Discontinuity models

A last type of regularizing method reviewed in this document is the one involving
discontinuities of the displacement or the strain field. The aim of these models is not
to precisely describe at the micro-scale the localization phenomena, but to account
for them at the macro-scale.

A major difference between these methods and the aforementioned ones is that
the finite element enhancement only involves modifications at the element level, con-
trary to non-local methods for example that require the knowledge of some quantities
at the vicinity of the considered point, that is the surrounding elements.

The main philosophy is to introduce an incompatible strain field within an el-
ement, that can describe a discontinuous strain field (in the case of weak disconti-
nuities) or a discontinuous displacement field (in the case of strong discontinuities).
They require the use of incompatible shape functions. The weak discontinuity mod-
els are briefly described in the following section while the strong discontinuity for-
mulation (which is the method used in this work) is detailed in a subsequent section.

Weak discontinuities

The weak discontinuities models were initially introduced by Pietrusczak et al. [126],
and then by Ortiz et al. [122]. The idea is to build elements capable of representing
discontinuous strain fields within an element. When a localization mode is detected,
the shape function basis is enhanced with incompatible shape functions that can
take into account a discontinuous strain field with an orientation (n,m) given by
the localization analysis (n is the normal to the discontinuity surface while m is
the tangential vector to the discontinuity). For every localized mode (I or II) the
strain jump is represented by a single parameter which is considered as an additional
degree of freedom.
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One drawback of this method is that the additional shape functions do not verify
the C0 continuity at the element boundaries. However, since the additional degrees
of freedom are specific to the localized element, using the three field Hu-Washizu
variational principle it is possible to eliminate these dofs at the global level by
static condensation at the element level. Thus, this method can be implemented
in a standard FE industrial code. Another limitation of the model proposed by
Ortiz [122] is that it does not properly introduce a characteristic length necessary
to regularize since a localization band is characterized by two strain discontinuity
surfaces. Thus, it cannot be considered as a localization limiter.

Belytschko et al. [14] addressed this problem and enhanced this principle by
allowing the introduction of a full localization band in a three node element, which
means that two surfaces of strain discontinuity are introduced within the element.
In this model, the plastic deformation is entirely localized in this band, and the
out-of-band material is supposed to remain elastic. Contrary to the work of Ortiz
[122], no additional shape function is introduced in the element, however the effect
of the localization band behavior modifies the element behavior which is taken into
account by the formulation of the three field Hu-Washizu variational principle.

An important parameter of such a model is the relative area of the localization
band and the non-localized zone which implies that a minimum element size is
required, in order to be fully crossed by a localization band with a given width. This
represents a limitation of this method, indeed a minimum element size is required.
Another drawback is that the position of the localization band cannot be properly
described.

Recently and based on the work of Ortiz and Belytschko, Huespe et al. [68] pro-
posed to introduce a full localization band in a four node element whose kinematics
are described by an additional shape function capable of representing a discontinu-
ous strain field across the band. The new shape function is plotted on figure 1.5(a) in
the case of a one dimensional element. Considering a one-dimensional finite element
discretization, the total displacement is expressed as:

u(x, t) = ū(x, t) +MΩd
(x)α(t) (1.44)

and in an element e:

ue(x, t) =

nnodes∑
i

N e
i (x)di(t)︸ ︷︷ ︸

ū(x,t)

+ (HΩd
(x)−

∑
i∈Ω+

N e
i (x))︸ ︷︷ ︸

Me
Ωd

(x)

αe(t) (1.45)

where αe is the displacement jump vector across the band. HΩd
can be seen as

a penalized Heaviside function. Indeed, instead of jumping from 0 to 1 discontin-
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uously, it linearly increases in the band (see figure 1.5(a)), which keeps the total
displacement field continuous in the element.

The equilibrium equations are written following a Petrov-Galerkin formulation
and the additional equilibrium equation weakly imposes the traction continuity
across the localization band.

Contrary to the Ortiz’s work [122], the new shape function satisfies the C0 con-
tinuity condition since it vanishes at the element boundary (see figure 1.5(a)).

The model falls into the framework of ductile fracture modeling since the out-
of-band material is described by the GTN model described in section 1.2.1. Huespe
et al. performed a rigorous bifurcation analysis (based on the singularity of the
acoustic tensor) to obtain a criterion that triggers the localization band introduction
and that defines its orientation. They performed calculations in which mode I and
II are activated in axisymmetric notched-bar tensile test. However, they did not
perform mesh dependency tests with their model, the aim of this work was to finely
describe the localization band behavior.
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i
i+1
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(a)

i i+1

1

1
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i
i+1
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Figure 1.5: (a) compatible and incompatible shape functions, and displacement
fields in the weak discontinuity framework of Huespe et al. [68], (b) compatible and
incompatible shape functions, and displacement fields in the strong discontinuity
framework
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The philosophy of weak discontinuities introduced by Pietrusczak and Ortiz rep-
resents the starting point of the more recently developed strong discontinuity meth-
ods, which is discussed in the following paragraph.

Strong discontinuities

The foundings of strong discontinuity analysis were proposed by Dvorkin [53] and
Klisinsky and Simo et al. [147], and developments of this method have been proposed
since then [26]. The key idea is to introduce a surface of discontinuity of displacement
that has a zero measure, and to concentrate the whole dissipation on this surface.
Hence, the regularization is ensured since a characteristic length is automatically
introduced (and is equal to zero). An immediate consequence is that there is no
neighboring issue as in the non-local models.

The main purpose being the regularization of the softening behavior, there is
no purpose in finely describing the micro-scale mechanisms (by fully describing the
localization band for example). The idea is to enhance the local model with surfacic
dissipative mechanisms at the element scale in a FE framework, and to account for
their effects at the macro-scale in order to regularize the solution. A straightforward
consequence is the necessity to enhance the finite element formulation with shape
functions capable of representing discontinuous displacements across the newly in-
troduced surface.

Considering a one-dimensional finite element discretization, the total displace-
ment is written (to be compared with equation (1.44)):

u(x, t) = ū(x, t) +MΓ(x)α(t) (1.46)

where in an element e:

ue(x, t) =

nnodes∑
i

N e
i (x)di(t)︸ ︷︷ ︸

ū(x,t)

+ (HΓ(x)−
∑
i∈Ω+

N e
i (x))︸ ︷︷ ︸

Me
Γ(x)

αe(t) (1.47)

In this case, the Heaviside function HΓ is not regularized and is discontinuous
(see figure 1.5(b)). The formulation is actually the same as proposed by Huespe in
[68] but with Ωd being of zero width. Derivation of the Heaviside function implies
that the total strain field becomes singular on the discontinuity surface within the
element. This total strain field is then expressed as:

εe(x, t) =

nnodes∑
i

Be
i (x)di(t)︸ ︷︷ ︸

ε̄(x,t)

−
∑
i∈Ω+

Be
i (x)αe(t) + (αe(t)⊗ n)δΓ(x)︸ ︷︷ ︸

¯̄ε(x,t)

(1.48)
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where Be
i is the standard elementary gradient of shape functions matrix for

node i, n is the unit normal vector to the discontinuity surface, and δΓ is the dirac
distribution associated to the discontinuity surface.

Different philosophies have been proposed to treat the strain singularity. Some
authors proposed that a strain singularity is compatible with standard continuum
mechanics, and so the displacement jump and the singular strain directly appear in
the stress evolution equations, which finally gives a generalized constitutive equa-
tion that includes both the bulk material law and the traction/displacement jump
law. The compatibility equations also allow to write a straightforward localization
condition (the condition that allows the introduction of a discontinuity).

Another philosophy, proposed by Wells and Sluys [166, 167] and Ibrahimbegovic
and Brancherie [70], states that a distinct constitutive law related to the displace-
ment jump allows to deal with the singularity, and allows to model the desired
dissipative mechanisms. It is typically chosen as a cohesive law (softening trac-
tion/displacement jump law).

Jirásek proposed a review [74] on the different methods used by authors to treat
the singularity of the strain field. In all cases, the finite element formulation relies
on the three-field Hu-Washizu variational principle. The differences between those
formulation mainly lies on the element formulation, and more precisely on the hy-
pothesis concerning the matrix of incompatible shape functions, for example whether
it can represent the kinematics of the displacement discontinuity properly (formu-
lation named KOS: Kinematically Optimal Symmetric) or whether it can satisfy
the traction continuity condition across the discontinuity (formulation called SOS:
Statically Optimal Symmetric).

In the present work, the formulation used is the one proposed by Simo and Oliver
in [148] and is called SKON (Statically and Kinematically Optimal Non-symmetric).
This formulation states that the enhanced elements are capable of properly repre-
senting the kinematics of a displacement discontinuity, as well as satisfying the
traction continuity condition on the discontinuity surface, which leads to a non-
symmetric formulation of the problem. The formulation is detailed further in this
document.

Originalities of the present work

It has to be noticed that most of the works relying on the strong discontinuity
methods imply that all the dissipative mechanisms are gathered on the discontinuity
surface cohesive law, while the behavior in the bulk remains elastic. This means that
this method has been mainly used to model brittle fracture. The works on the Strong
Discontinuity Approach adapted to inelastic behavior mainly apply to the standard

32



1.3. Mesh dependency issue: a review of the localization limiters

von Mises plasticity material law for the bulk. Hence, the main objective and one
originality of this work is to account for plasticity as well as damage, using Lemaitre’s
fully coupled model for the pre-peak phase, along with the Strong Discontinuity
Approach to account for surfacic dissipative mechanisms occuring in the context of
ductile fracture.

This means that two different dissipative mechanisms interact with each other, a
volumic dissipative mechanism that accounts for plasticity and damage growth, and
a surfacic dissipative mechanism that allows to take into account strain localization
as well as the development of a macro-crack and its propagation, the philosophy
being that we do not intend to precisely describe the apparition of localization
bands and their behavior, but to account for their effects at the macro-scale.

As the Strong Discontinuity Method can be seen as a localization limiter tech-
nique, we propose in chapter 2 a regularized version of Lemaitre’s elasto-plastic
damageable model. In chapter 3, we propose an enhancement of the Strong Discon-
tinuity Method, initially restricted to a small strain hypothesis, to the context of
finite strain modeling, this hypothesis being more suitable to model ductile fracture
that involve large strains and displacements.
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Chapter 2

Ductile fracture modeling with the
strong discontinuity method in small

strain hypothesis

In this chapter, the SDA theoretical formulation and its numer-
ical implementation are described in the context of Lemaitre’s
phenomenological coupled damage-plasticity model. A four-node
quadrangular element enhanced with a linear displacement jump
is described, and numerical examples showing the capabilities of
the method are presented. A critical damage value is used as a
criterion to introduce the discontinuity surface. All numerical
developments have been implemented in FEAP, an open source
Finite Element software developed by R.L. Taylor at the begin-
ning of the 90’s (see [156] for FEAP’s website and [173, 174]
for the books that the program relies on).
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2.1 SDA: theoretical formulation and FE implemen-
tation

2.1.1 Kinematics of the strong discontinuity approach (SDA)
enhancement

Theoretical formulation

The Strong Discontinuity Approach (also called “Embedded Discontinuity Finite
Element Method”) was initiated and widely developed since the beginning of the
90’s (see [2], [88], [89], [119], [120], [26]) mostly in the framework of brittle fracture,
and results attesting of its performance were shown, in terms of regularization ability.
Recent works have implemented the method in the context of oxide layer fracture
[98] or in the context of reinforced-concrete frames bending failure [127]. In the
following section, a detailed presentation of the theoretical formulation is carried
out, while we limit the study to the small deformation case in this chapter.

Let us consider a surface Γs of unit normal vector n and tangent vector m
crossing entirely a domain Ω and dividing this domain into two subdomains Ω+ and
Ω− (see figure 2.1) such that:{

Ω+ = { x | x.n > 0 }
Ω− = { x | x.n < 0 } (2.1)

Considering the introduction of this surface of discontinuity of displacement,
a discontinuous part of the displacement ¯̄u(x, t)HΓs(x) is added to the standard
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displacement ū(x, t) field in (2.2) (see figure 2.2(a) for a schematic representation
in a 1D case).

u(x, t) = ū(x, t) + ¯̄u(x, t)HΓs(x) (2.2)

where HΓs(x) is the Heaviside function:

HΓs(x) =

{
1 if x ∈ Ω+

0 if x ∈ Ω−
(2.3)

With such a decomposition, the essential boundary conditions involve both the
continuous and the discontinuous part of the displacement, (see figure 2.2(a)). In
order to limit the contribution of the discontinuous displacement field to the neigh-
borhood of the discontinuity Γs, a new decomposition of the total displacement field
is proposed (see figure 2.2(b) for the 1D case).

u(x, t) = ũ(x, t) + ¯̄u(x, t)[HΓs(x)− φ(x)] (2.4)

with

ũ(x, t) = ū(x, t) + ¯̄u(x, t)φ(x) (2.5)

and φ a smooth, at least C1 function verifying:

φ(x) =

{
0 if x ∈ Ω− \ Ω−d
1 if x ∈ Ω+ \ Ω+

d

(2.6)

where Ωd is a subdomain of Ω containing the discontinuity Γs.
For such a decomposition, the contribution of the displacement jump ¯̄u(x, t)

vanishes on the boundary of the domain so that the essential boundary conditions
written on the total displacement u(x, t) can be prescribed to the regular field ũ(x, t).
This point is of great importance for the local aspect of the method as it will be
detailed in the following paragraph.

Results on derivation of distributions (see [151]) give the strain field as:

Figure 2.1: Domain Ω crossed by a discontinuity surface Γs

37



Chapter 2. Ductile fracture modeling with the strong discontinuity method in small strain hypothesis

(a)                                                         (a)                                                                                 (b)

Figure 2.2: Schematic representation of the displacement fields for a 1D problem

ε(x, t) = ∇su(x, t) = ∇sū(x, t) + ∇s[¯̄u(x, t)HΓs(x)] (2.7)

And finally,

ε(x, t) = ∇sū(x, t) + ∇s ¯̄u(x, t)HΓs(x)︸ ︷︷ ︸
ε̄(x,t)

+
(

¯̄u(x, t)⊗ n
)s
δΓs (2.8)

where (•)s denotes the symmetric part of (•).
It has to be noticed that the total strain field is now decomposed into a regular

part ε̄ and a singular part
(

¯̄u(x, t) ⊗ n
)s
δΓs , where δΓs is the Dirac distribution

associated with the discontinuity surface.

A four-node quadrangular element enhancement

Introducing a displacement field discontinuity requires an enhancement of the stan-
dard shape functions. We choose to rely on the incompatible modes method which
enables the modifications to be limited to the element level. Other methods such
as X-FEM ([15], [110], ...) use a different type of enhancement, which involves a
specific treatment at global level. We consider a quadrangular element with four
nodes and a linear displacement jump.

On the basis of the works of [99] and [52], the displacement jump is projected
on a basis (n0, n1,m0,m1) that corresponds to the different modes of separation
of a crack, in the linear case, namely: a constant normal separation mode n0, a
linear normal mode n1 equivalent to the rotation of the discontinuity around the
discontinuity midpoint xΓs , a constant tangential separation mode m0 and a linear
tangential separation mode m1. The amplitude of each separation mode is gathered
into a vector α =< αn0 αn1 αm0 αm1 >

T .

The kinematics proposed (described in figures 2.3, 2.4, 2.5 et 2.6) allow to rep-
resent every possible separation modes in two dimensions, in the case of a linear
displacement jump.
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Remark 2.1.1. All the considered separation modes produce zero strain in the bulk
except the one along “m1” which produces a deformation in Ω+.
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The total displacement field is then interpolated by adding shape functions as-
sociated to each of these separation modes, in the following form:
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uh(x) =
a=4∑
a=1

Na(x)ua +αn0

[
HΓs(x).n−

∑
a∈Ω+

Na(x).n
]

+αm0

[
HΓs(x).m−

∑
a∈Ω+

Na(x).m
]

+αn1

[
−
∑
a∈Ω+

Na(x)(n ·mT −m · nT ) · (xa − xΓs)+

(n ·mT −m · nT ) · (x− xΓs)HΓs

]
+αm1

[
−
∑
a∈Ω+

Na(x)
(
(xa − xΓs) ·m

)
m+(

(x− xΓs) ·m
)
mHΓs

]

(2.9)

where Na is the standard shape function associated to node “a”, xΓs and xa are
the coordinate vectors of the midpoint of the element and node “a” respectively.

Remark 2.1.2. In the case of mode n0 alone, the function φ introduced in section
2.1.1 takes the following form:

φ(x) =
∑
a∈Ω+

Na(x)n (2.10)

This expression in (2.9) can be put in the general following form:

uh(x) =
a=4∑
a=1

Na(x)ua + Mα (2.11)

where M is a discretized version of the continuous function HΓs(x) − φ(x) in-
troduced in equation (2.4). This function allows the contribution of the separation
modes to be limited to a localized element with Ωd (see section 2.1.1) chosen equal
to the considered quadrangular element. This guarantees the local feature of the
proposed method and no additional nodal degrees of freedom have to be introduced
like for X-FEM for instance [15] [110].

On the basis of this displacement field, the real strain interpolation is given by:

εh(x) =

a=4∑
a=1

Ba(x)ua +αn0

[
−
∑
a∈Ω+

Ba(x).n + N.n δΓs

]
+αm0

[
−
∑
a∈Ω+

Ba(x).m + N.m δΓs

]
+αn1

[
−
∑
a∈Ω+

Ba(x)

[
0 1
−1 0

]
(xa − xΓs) + ξΓsN · n δΓs

]
+αm1

[
−
∑
a∈Ω+

Ba(x)
(
(xa − xΓs

) ·m
)
m + MmHΓs

+(
(x− xΓs) ·m

)
NmδΓs

]
(2.12)
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where ξΓs = (x − xΓs) · m (x ∈ Γs) represents the curvilinear abscissa along

the discontinuity surface Γs (which is here a straight line), N =

nx 0
0 ny
ny nx

 (M is

identically defined in terms of the components of m) and δΓs represents the Dirac
distribution on the discontinuity surface Γs.

A plot of the incompatible shape functions M (see equation (2.11) for both con-
stant and linear normal modes (n0 and n1)is presented on figure 2.7. It has to
be noticed that the shape functions vanish on the boundaries of the quadrangular
domain keeping the contribution of the displacement jump reduced to the corre-
sponding element.
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Figure 2.7: Incompatible shape function M (a) for constant normal mode, (b) for
linear normal mode

The displacement jump ¯̄u introduced in section 2.1.1 and the current vector α
of separation modes are linked by the following relation:

[
¯̄u · n
¯̄u ·m

]
=

[
1 ξΓs 0 0
0 0 1 ξΓs

]
αn0

αn1

αm0

αm1

 (2.13)

where ξΓs is the curvilinear abscissa along the discontinuity such that ξΓs ∈
[− `Γs

2
,
`Γs

2
], `Γs is the discontinuity length, ¯̄u ·n and ¯̄u ·m are respectively the normal

part and tangential part of the displacement jump on the discontinuity surface.
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The strain interpolation can be put in the general form:

ε(x, t) = Bu + Ḡrα+ N. ¯̄GrαδΓs where α = < αn0 , αn1 , αm0 , αm1 >
T

Ḡr =
[
Ḡrn0 Ḡrn1 Ḡrm0 Ḡrm1

]
and ¯̄Gr =

[ ¯̄Grn0

¯̄Grn1

¯̄Grm0

¯̄Grm1

]
with



Ḡrn0 = −
∑
a∈Ω+

Ba(x).n

Ḡrm0 = −
∑
a∈Ω+

Ba(x).m

Ḡrn1 = −
∑
a∈Ω+

Ba(x)

[
0 1
−1 0

]
(xa − xΓs)

Ḡrm1 = −
∑
a∈Ω+

Ba(x) ((xa − xΓs) ·m) m + MmHΓs

(2.14)

and



¯̄Grn0 = n

¯̄Grm0 = m

¯̄Grn1 = ξΓs .n

¯̄Grm1 = ξΓs .m

(2.15)

The virtual strain is interpolated in the same form:

δε(x, t) = Bδu + Ḡvδα+ N. ¯̄GvδαδΓs (2.16)

where δu and δα denote the virtual nodal displacement and virtual displacement
jump respectively.

Ḡv and ¯̄Gv are computed from Ḡr and ¯̄Gr by imposing the patch-test [69]
guaranteed by:

Gv = Gr −
1

AΩe

∫
Ωe

GrdΩ (2.17)

where AΩe =
∫

Ωe
dΩ is the area of the considered element Ωe.

Taking into account (2.14), (2.15), and (2.17), we have then:
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Ḡvn0 = Ḡrn0 −
1

AΩe

∫
Ωe

Ḡrn0dΩ− lΓs

AΩe

N.n

Ḡvm0 = Ḡrm0 −
1

AΩe

∫
Ωe

Ḡrm0dΩ− lΓs

AΩe

N.m

Ḡvn1 = Ḡrn1 −
1

AΩe

∫
Ωe

Ḡrn1dΩ

Ḡvm1 = Ḡrm1 −
1

AΩe

∫
Ωe

Ḡrm1dΩ

(2.18)

and



¯̄Gvn0 = n

¯̄Gvm0 = m

¯̄Gvn1 = ξΓs .n

¯̄Gvm1 = ξΓs .m

(2.19)

Remark 2.1.3. The total displacement field introduced in (2.9) and (2.11) are
formed only to deduce the interpolation of the deformation fields. By using the
incompatible modes method, only the deformation field is modified.

2.1.2 Problem resolution

Having presented the interpolation used for displacements and strains, we introduce
in this section the numerical resolution procedure used in this work.

Since we introduce an incompatible strain field, the three-field Hu-Washizu prin-
ciple is an appropriate formulation of the problem. A two-field formulation could
also be suitable, however using the three-field Hu-Washizu principle allows to rewrite
the equations in the most general framework possible. The following expression of
the non-linear discrete problem comes from developments established by [168] and
[69] in the framework of the so-called “incompatible modes method”. Detailed de-
velopments that lead to the further formulation can be found in appendix A.
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Chapter 2. Ductile fracture modeling with the strong discontinuity method in small strain hypothesis

Find (d,α) such that: 
Nel

A
e=1

[f int,e(x)− f ext,e(x)] = 0

he(x) = 0, ∀e ∈ [1, Nel]

(2.20a)

(2.20b)

with 

f int,e(x) =

∫
Ωe

BT (x)σ(ε(x)) dΩ

f ext,e(x) =

∫
Ωe

NTb(x) dΩ +

∫
∂tΩe

NTh(x) dΓ

he(x) =

∫
Ωe\Γs

ḠT
v (x)σ(ε̄(x))dΩ +

∫
Γs

¯̄Gv

T
(x)tΓs(x)dΓ

ε|Ωe (x) = B(x)d + Gr(x)α

(2.21a)

(2.21b)

(2.21c)

(2.21d)

where d are the nodal displacements, α are the displacement jumps projected
along the different modes described in section 2.1.1, and Nel is the number of el-
ements. N(x) = [N1(x)...NNn(x)] is the matrix of shape functions for a standard
Q4 element, B(x) = [B1(x)...BNn(x)] = LN(x) with L the matrix form of the ∇s

operator, and δuT (x, t) = [δu1(x, t)...δuNn(x, t)], b(x) is the imposed volumic force
field and h(x) the external force vector imposed on surface ∂tΩe. Ḡv and ¯̄Gv are
defined in (2.18) and (2.19).
σ(ε̄(x)) is the stress tensor in the bulk defined from the continuous part of the

strain tensor ε̄(x). In the following work, the bulk is considered to have a non-linear
behavior, considering both plasticity and damage. For further information on the
material model, please refer to section 2.2.1 in which the model used for the bulk in
this work is detailed.

tΓs(x) refers to the driving traction on the discontinuity surface Γs. It is linked
by a non-linear cohesive law (detailed in section 2.2.2) to the displacement jump ¯̄u
(and so the separation modes α defined in section 2.1.1 above).

We note that both the bulk and the discontinuity surface account for non-linear
behaviors, which is a matter of interest in order to solve the problem defined in
(2.20) above. This is the purpose of the following section.

Resolution of the discretized problem

Due to the non-linear behavior of the bulk and discontinuity, system (2.20) is non-
linear. The solution is obtained by linearization and introduction of a pseudo-time
“t”. Let us consider a global iteration i of a time step n+ 1. We denote:
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2.1. SDA: theoretical formulation and FE implementation

d(tn+1)(i) = d
(i)
n+1 ; α(tn+1)(i) = α

(i)
n+1 (2.22)

and

∆d
(i)
n+1 = d

(i+1)
n+1 − d

(i)
n+1 ; ∆α

(i)
n+1 = α

(i+1)
n+1 −α

(i)
n+1 (2.23)

With such notations, the full linearization of system (2.20) can be written as:



Nel

A
e=1

{[∫
Ωe\Γs

BT ∂σ

∂d

∣∣∣∣(i)
n+1

dΩ

]
∆d

(i)
n+1 +

[∫
Ωe\Γs

BT ∂σ

∂α

∣∣∣∣(i)
n+1

dΩ

]
∆α

(i)
n+1

}

=

Nel

A
e=1

{
f
ext,e(i)
n+1 − f

int,e(i)
n+1

}
he(i) +

[∫
Ωe\Γs

ḠT
v

∂σ

∂d

∣∣∣∣(i)
n+1

dΩ +

∫
Γs

¯̄Gv

T ∂tΓs

∂d

∣∣∣∣(i)
n+1

dΓ

]
∆d

(i)
n+1

+

[∫
Ωe\Γs

ḠT
v

∂σ

∂α

∣∣∣∣(i)
n+1

dΩ +

∫
Γs

¯̄Gv

T ∂tΓs

∂α

∣∣∣∣(i)
n+1

dΓ

]
∆α

(i)
n+1 = 0

(2.24)

Furthermore, constitutive laws for both the bulk and the discontinuity are written
in an incremental form as:∆σ

(i)
n+1 = Can(i)

n+1

[
B∆d

(i)
n+1 + Ḡr∆α

(i)
n+1

]
∆t

(i)
Γsn+1 = ¯̄Can(i)

n+1 ∆¯̄u
(i)
n+1

(2.25a)

(2.25b)

where we have considered the numerical integration of the material laws for the
bulk and the discontinuity surface (see sections 2.2.1 and 2.2.2). Can(i)

n+1 and ¯̄Can(i)

n+1 are
the tangent moduli at time n+1, iteration (i) for the bulk and for the discontinuity,
respectively.

We have then:

∂tΓs

∂α

∣∣∣∣(i)
n+1

=
∂tΓs

∂ ¯̄u

∣∣∣∣(i)
n+1

· ∂
¯̄u

∂α
= ¯̄Can(i)

n+1

[
1 ξΓs 0 0
0 0 1 ξΓs

]
∂σ|Ω\Γs

∂α

∣∣∣∣(i)
n+1

= Can(i)

n+1 Ḡr

∂σ|Ω\Γs

∂d

∣∣∣∣(i)
n+1

= Can(i)

n+1 B

∂tΓs

∂d

∣∣∣∣(i)
n+1

= 0

(2.26a)

(2.26b)

(2.26c)

(2.26d)
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Chapter 2. Ductile fracture modeling with the strong discontinuity method in small strain hypothesis

Due to the expression of the constitutive law on the discontinuity surface in
(2.25b), the values of tractions only depend on the displacement jumps and not on
nodal displacements, this is why we obtain equation (2.26d).

With these expressions in (2.26), the system to be solved may be written:


Nel

A
e=1

{
K
e(i)
fd,n+1∆d

(i)
n+1 + K

e(i)
fα,n+1∆α

(i)
n+1

}
=

Nel

A
e=1

{
f
ext,e(i)
n+1 − f

int,e(i)
n+1

}
h
e(i)
n+1 + K

e(i)
hd,n+1∆d

(i)
n+1 +

[
K
e(i)
hα,n+1 + F

e(i)
hα,n+1

]
∆α

(i)
n+1 = 0

(2.27a)

(2.27b)

where

K
e(i)
fd,n+1 =

∫
Ωe\Γs

BTCan(i)

n+1 BdΩ ; K
e(i)
fα,n+1 =

∫
Ωe\Γs

BTCan(i)

n+1 ḠrdΩ

K
e(i)
hd,n+1 =

∫
Ωe\Γs

ḠT
vCan(i)

n+1 BdΩ ; K
e(i)
hα,n+1 =

∫
Ωe\Γs

ḠT
vCan(i)

n+1 ḠrdΩ

F
e(i)
hα,n+1 =

∫
Γs

¯̄Gv

T ¯̄Can(i)

n+1

∂ ¯̄u

∂α
dΓ

(2.28)

The resolution is then sequential. The nodal displacements are obtained by
solving at the global level equation (2.27a) while the separation modes ∆α

(i)
n+1 are

obtained by solving the local (element) equation (2.27b) for fixed nodal displace-
ments d

(i)
n+1. This procedure is called the “operator split method”.

First the problem is solved at the element level with a standard Newton-Raphson
procedure. The local equation is written for local iteration j as follows (i denotes
the global interation):

Knowing d
(i)
n+1, for each element e ∈ [1, ..., Ne], find α

(i,j)
n+1 such that :

h
e(i,j)
n+1 +

[
K
e(i,j)
hα,n+1 + F

e(i,j)
hα,n+1

]
∆α

(i,j)
n+1 = 0 (2.29)

At the end of the procedure, we have

h
e(i,j)
n+1 = 0 (2.30)

And the linearized system (2.27) is written in matrix form:
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2.1. SDA: theoretical formulation and FE implementation

K
e(i)
fd,n+1 K

e(i)
fα,n+1

K
e(i)
hd,n+1 K

e(i)
hα,n+1 + F

e(i)
hα,n+1


∆d

(i)
n+1

∆α
(i)
n+1

 =

f
ext,e(i)
n+1 − f

int,e(i)
n+1

0

 (2.31)

Using the static condensation of the second equation in (2.31), we have :

∆α
(i)
n+1 = −

[
K
e(i)
hα,n+1 + F

e(i)
hα,n+1

]−1
K
e(i)
hd,n+1∆d

(i)
n+1 (2.32)

And then the global problem is written:

Nel

A
e=1

{[
K
e(i)
fd,n+1 −K

e(i)
fα,n+1

[
K
e(i)
hα,n+1 + F

e(i)
hα,n+1

]−1

K
e(i)
hd,n+1

]
∆d

(i)
n+1

}

=

Nel

A
e=1

{
f
ext,e(i)
n+1 − f

int,e(i)
n+1

} (2.33)

which is equivalent to:

Nel

A
e=1

{
K̂
e(i)
n+1∆d

(i)
n+1

}
=

Nel

A
e=1

{
f
ext,e(i)
n+1 − f

int,e(i)
n+1

}
(2.34)

with

K̂
e(i)
n+1 = K

e(i)
fd,n+1 −K

e(i)
fα,n+1

[
K
e(i)
hα,n+1 + F

e(i)
hα,n+1

]−1

K
e(i)
hd,n+1 (2.35)

System (2.34) is equivalent to the standard non-linear Finite Element problem,
the only difference is the formulation of the element tangent stiffness matrix K̂

e(i)
n+1

given in (2.35). This matrix is not symmetric which involves an appropriate reso-
lution of system (2.34). The fact that the global Finite Element procedure remains
unchanged highlights the main advantage of this method. Only a new element needs
to be implemented, the rest of the FE resolution architecture remains unchanged,
while the introduction of new degrees of freedom, as for X-FEM for example, involves
a specific treatment at the global level.

The full enhanced Finite Element resolution procedure is sumed up in the fol-
lowing algorithm:
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Chapter 2. Ductile fracture modeling with the strong discontinuity method in small strain hypothesis

Data: dn, αn
Result: dn+1, αn+1

i = 0;

while

[
ANel

e=1

{
K̂
e(i)
n+1∆d

(i)
n+1

}
−ANel

e=1

{
f ext,en+1 − f int,en+1

}
> tol

]
do

for e = 1→ Nel do
∆σ

(i)
n+1 = Can(i)

n+1 B∆d
(i)
n+1

if localization not yet detected then
K̂
e(i)
n+1 = K

e(i)
fd,n+1

else
j = 0
α

(i,j)
n+1 = αn

while
[

h
e(i,j)
n+1 > tol

]
do

∆σ
(i,j)
n+1 = Can(i,j)

n+1

[
B∆d

(i)
n+1 + Ḡr∆α

(i,j)
n+1

]
∆t

(i,j)
Γsn+1 = ¯̄Can(i,j)

n+1
∂ ¯̄u
∂α

∆α
(i,j)
n+1

h
e(i,j)
n+1 =

∫
Ωe\Γs

ḠT
vσ

(i,j)
n+1dΩ +

∫
Γs

¯̄Gv

T
t

(i,j)
Γsn+1dΓ

α
(i,j+1)
n+1 = α

(i,j)
n+1 −

[
K
e(i,j)
hα,n+1 + F

e(i,j)
hα,n+1

]−1
h
e(i,j)
n+1

j = j + 1
end

K̂
e(i)
n+1 = K

e(i)
fd,n+1 −K

e(i)
fα,n+1

[
K
e(i)
hα,n+1 + F

e(i)
hα,n+1

]−1

K
e(i)
hd,n+1

end
f
int,e(i)
n+1 =

∫
Ωe BTσ

(i)
n+1 dΩ

f
ext,e(i)
n+1 =

∫
Ωe NTb

(i)
n+1 dΩ +

∫
∂tΩe NTh

(i)
n+1 dΓ

end

Solve ANel

e=1

{
K̂
e(i)
n+1∆d

(i+1)
n+1

}
= ANel

e=1

{
f
ext,e(i)
n+1 − f

int,e(i)
n+1

}
to find d

(i+1)
n+1

i = i+ 1
end

Algorithm 1: Full resolution procedure

where ∂tΩe is the boundary of the domain where external forces are applied.

In the framework of ductile fracture, the plastic strain tends to prevail over the
amount of elastic strain, which implies an almost inscompressible strain field. In a
numerical point of view, this can induce locking issues for some cases, especially when
using a Q4 element in our case (as detailed in section 2.1.1 above). In the following,
we briefly summarize the main ingredients of the B-bar method and comment on
the modifications needed to couple such a method to the embedded discontinuity
method.
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2.1. SDA: theoretical formulation and FE implementation

2.1.3 B-bar method implementation along with SDA

B-bar method - main ingredients

The B-bar method was designed as an alternative method to mixed formulation to
overcome locking obtained for incompressible or near incompressible problems. The
basic idea of the B-bar method is to decompose the strain field into its deviatoric
and dilational parts and choose different interpolations for those two parts.

In order to fix the notations, we recall for the case of standard finite element the
strain interpolation:

ε(x) = B(x)d (2.36)

where d denotes the nodal displacement vector and with

B(x) =
[
B1(x) B2(x) . . . Bn(x)

]
(2.37)

where n is the number of nodes of the considered problem.
For a 2D problem under plane strain hypothesis, we have:

Bi(x) =


B1(x) = ∂Ni(x)

∂x1
0

0 B2(x) = ∂Ni(x)
∂x1

0 0

B2(x) = ∂Ni(x)
∂x2

B1(x) = ∂Ni(x)
∂x1

 (2.38)

where Ni is the interpolation shape function associated to node i.
The dilational part of Bi is then obtained by:

Bsph
i (x) =

1

3


B1(x) B2(x)
B1(x) B2(x)

0 0
B1(x) B2(x)

 (2.39)

The B-bar method consists in an appropriate definition of the dilatational part
of the displacement to strain operator B. Different choices are possible (see [67]),
we’ve chosen here to replace the dialational part of Bi by its mean value over an
element:

B̄i(x) =

∫
Ωe Bi(x)dΩ∫

Ωe dΩ
(2.40)

We obtain then:

B̄i(x) =


2B1(x)+B̄1(x))

3
−B2(x)+B̄2(x)

3
−B1(x)+B̄1(x))

3
2B2(x)+B̄2(x))

3
−B1(x)+B̄1(x))

3
−B2(x)+B̄2(x)

3

B2(x) B1(x)

 (2.41)
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Chapter 2. Ductile fracture modeling with the strong discontinuity method in small strain hypothesis

Remark 2.1.4. This method was also implemented for axisymmetric cases. The
formulation is very close to the one presented above, the main difference is that all
integrals are computed as follows :∫

Ωe

• dΩ =

∫∫∫
• rdrdθdz (2.42)

where (r, θ, z) are the cylindrical coordinates.
In the axisymmetric case, the problem does not depend on θ and the integral may

be written ∫
Ωe

• dΩ = 2π

∫∫
• rdrdz or

∫
Ωe

• dΩ =

∫∫
• rdrdz (2.43)

if a unit angle θ is considered.
Another difference with the plain strain case is the formulation of matrix Bi.

Indeed, since the gradient is now formulated in cylindrical coordinates, the third
component of the strain tensor is not zero anymore (which accounts for direction θ).
Bi is now written :

Bi(x) =


B1(x) = ∂Ni(x)

∂x1
0

0 B2(x) = ∂Ni(x)
∂x2

Ni(x)
x1

0

B2(x) = ∂Ni(x)
∂x2

B1(x) = ∂Ni(x)
∂x1

 x1 being r. (2.44)

B-bar method - numerical examples

To illustrate the modifications induced in the structure response when consid-
ering B-Bar method, we present in the following a couple of numerical results . A
comparison with standard finite element is also provided.

A three-point bending test on a notched specimen is studied for two meshes with
different characteristic sizes in the “process zone” which are presented along with
the boundary conditions in figure 2.8. The material model used in this example
is Lemaitre’s coupled damage-plasticity model (see section 2.2.1 for details), which
falls in the framework of near incompressible models. It justifies the use of the B-bar
method as shown in the following results. As it is obvious on figure 2.9, the so-called
locking phenomenon occurs for this test, for both mesh sizes. The computation is
stopped when convergence stops occuring for each test.

The B-bar method allows to “unlock” the problem. The benefits of the method
are obvious for this test as it is shown on figure 2.9. Indeed, the structure’s response
is softer than with the standard finite element computation, and the maximum
displacement is much higher in this case. The convergence rate is also better with
the B-bar method, when the damage variable of the most deformed element becomes
close to 1.
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2.1. SDA: theoretical formulation and FE implementation

U

U

Figure 2.8: Meshes and boundary conditions for the three-point bending test
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Figure 2.9: Force/displacement curve for two different meshes, with and without
the B-bar method
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Chapter 2. Ductile fracture modeling with the strong discontinuity method in small strain hypothesis

Embedded discontinuities with B-bar method

In section 2.1.1, we presented the kinematics and the implementation of SDA in
a four-node quadrangular element, considering a linear jump displacement, for a
standard finite element formulation. We now focus on the modifications induced by
the use of the B-bar method in a SDA computation framework.

There are only a few modifications to undertake to obtain a coupled formulation
of SDA using a B-bar formulation of the strain tensor. As for a non-SDA formulation,
the only change induced by a B-bar formulation is the use of matrix B̄ instead of B
in all the computed matrices that depend on matrix B.

Then, the total strain with B-bar coupled with the SDA formulation takes the
following form :

ε(x, t) = B̄u + Ḡrα+ N. ¯̄GrαδΓs where α = < αn0 , αn1 , αm0 , αm1 >
T

Ḡr =
[
Ḡrn0 Ḡrn1 Ḡrm0 Ḡrm1

]
and ¯̄Gr =

[ ¯̄Grn0

¯̄Grn1

¯̄Grm0

¯̄Grm1

] (2.45)

with



Ḡrn0 = −
∑
a∈Ω+

B̄a(x).n

Ḡrm0 = −
∑
a∈Ω+

B̄a(x).m

Ḡrn1 = −
∑
a∈Ω+

B̄a(x)

[
0 1
−1 0

]
(xa − xΓs)

Ḡrm1 = −
∑
a∈Ω+

B̄a(x) ((xa − xΓs) ·m) m + MmHΓs

(2.46)

and



¯̄Grn0 = n

¯̄Grm0 = m

¯̄Grn1 = ξΓs .n

¯̄Grm1 = ξΓs .m

(2.47)

Numerical examples with SDA coupled (or not) with B-bar will be presented in
section 2.3. We will show the interest of introducing a coupling of SDA with B-bar
for the case of the three-point bending test, presented above without SDA.
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2.2. Material model formulation and implementation

2.2 Material model formulation and implementa-
tion

In this section, we present the consitutive laws for both the bulk and the surface of
discontinuity involved in this model.

2.2.1 Bulk material model : Lemaitre damage model

With the aim of representing the pre-peak phase of the material behavior, we con-
sider the coupled damage-plasticity Lemaitre model [94] widely used in the literature
to model ductile metal failure. We limit the study to the consideration of isotropic
damage (the scalar variable D is the isotropic damage) and isotropic hardening (ξ̄
denotes the accumulated plastic strain and q̄ its dual variable). In this case, the
yield function is very close to the von Mises yield function taking into account the
effective stress σ̃ = σ/(1−D), and is written as follows :

φ̄(σ, D, q̄) =

√
3

2
dev(σ̃) : dev(σ̃)−

(
σy0 + q̄(ξ̄)

)
(2.48)

where σy0 is the elastic limit. q̄ is the hardening variable associated to the
accumulated plastic strain ξ̄ defined in (2.49), and dev(σ̃) is the deviatoric part of
the effective stress tensor.

q̄(ξ̄) = (σy0 − σyinf
)
(
1− exp(βξ̄)

)
(2.49)

In the Lemaitre damage model, the damage evolution law is written as follows:

Ḋ =
γ̇

1−D

(
−Y
r

)s
(2.50)

where Y is the dual variable of the damage variable D (also called damage energy
release rate), γ̇ is the plastic multiplier, and s and r are the two Lemaitre parameters
that characterize damage evolution.

The consistent tangent operator that appears in equation (2.25) takes the fol-
lowing form:

Can
n+1 =

dσn+1

dεn+1

=
1

1−Dn+1

(
a
[
I− 1

3
1⊗ 1

]
+ b s̄n+1 ⊗ s̄n+1+

c s̄n+1 ⊗ 1 + d1⊗ s̄n+1 + e1⊗ 1

) (2.51)

where s̄n+1 = devσn+1

‖devσn+1‖ , I is the fourth-order identity tensor, 1 is the second-
order identity tensor.
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Chapter 2. Ductile fracture modeling with the strong discontinuity method in small strain hypothesis

Expressions of a, b, c and d along with details on the numerical implementation
of this model can be found in appendix B.

Remark 2.2.1. It has to be noticed that we use a fully implicit integration scheme
for the elastoplastic material coupled with damage, even though other techniques
are used in the literature. We can mention the works of Bergheau et al. [19] who
use a semi-implicit integration scheme over time for the elastoplastic damageable
material. In their works, the authors take into account interactions between creep
phenomena and damage of the material in the context of fracture of pressure vessels.
In particular, they compared the efficiencies of several tangent stiffness matrices.

To properly define the discontinuity, several ingredients are needed. We have to
define a material model for the discontinuity surface (a cohesive law). We also need
to define a criterion to introduce the discontinuity since it is not taken into account
at the beginning of the computation. Finally, an orientation of the discontinuity has
to be chosen. Note that it is considered to remain fixed during the computation.
These three aspects are dealt with in the folowing sections.

2.2.2 Cohesive law on the discontinuity surface

Once a discontinuity suface is introduced within an element, a new surfacic dissi-
pative phenomenon occurs and is added to the bulk dissipation. Bulk and surfacic
dissipative phenomena can coexist so that damage can still evolve in the bulk while
surfacic dissipation occurs.

To model this surfacic dissipation, we choose a damageable interface model,
within the framework of interface thermodynamics. In order to be consistent with
the perfectly rigid behavior of the discontiniuty surface that is needed before the
crack opens, we choose to model the surfacic behavior in terms of the surfacic com-
pliance, unlike most damageable cohesive models which are defined in terms of the
surfacic stiffness and a damage variable (see [32], [123], [36], ...).

We choose to use a damage exponential cohesive law (see figure 2.10). No plas-
ticity occurs during the loading, so when the discontinuity surface is completely
unloaded, there is no residual displacement jump. As for a damage law for bulk
models, the material stiffness decreases with damage evolution, as it is shown on
figure 2.10.

The following deals with the thermodynamics of the chosen discrete law. This
model uses a surface energy ¯̄Ψ defined on a discontinuity surface, and depends on
the displacement jump between the crack lips ¯̄u, the surfacic compliance ¯̄Q and an
internal variable ¯̄ξ that deals with the cracking irreversibility. The surface energy is
given by:
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2.2. Material model formulation and implementation

¯̄Ψ(¯̄u, Qnn, Qmm,
¯̄ξn,

¯̄ξm) = 1
2
¯̄u.(Qnnn⊗ n +Qmmm⊗m︸ ︷︷ ︸

¯̄Q

)−1.¯̄u + Ξ(¯̄ξn,
¯̄ξm) (2.52)

where n and m are the normal and tangential vectors to the discontinuity, re-
spectively. ( ¯̄ξn,

¯̄ξm) are the internal variable associated to softening in directions n
and m, respectively, and their dual variables are (¯̄qn, ¯̄qm).

The model takes into account both I and II fracture modes, where Qnn and
Qmm are the scalar compliances in directions n and m respectively. Only the terms
involving the normal components of ¯̄u and tΓs will be defined in the following ex-
pressions. Indeed, the cohesive laws are similar in both directions, the only change
being that negative jumps are permitted in the tangential direction while it is not
in the normal direction (see section 2.2.5 for further details).

Figure 2.10: Traction/normal opening law

The dual variables (tn,
¯̄Yn, ¯̄qn) associated to the state variable ¯̄un and the internal

variables Qnn and ¯̄ξn, respectively, are given by the state equations:

tn = tΓs .n =
∂ ¯̄Ψ

∂ ¯̄un
=

¯̄un
Qnn

¯̄Yn = − ∂ ¯̄Ψ

∂Qnn

= 1
2
t2n

¯̄qn = − ∂
¯̄Ψ

∂ ¯̄ξn
= σc[1− exp(− σc

Gc

¯̄ξn)]

(2.53a)

(2.53b)

(2.53c)

σc is the limit traction in mode I. It is the maximum principal stress at the onset
of localization. When a maximum principal stress criterion is considered, the value
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Chapter 2. Ductile fracture modeling with the strong discontinuity method in small strain hypothesis

of σc is a user parameter to be set, while this value is computed as the maximum
principal stress when a damage criterion is considered (see the following section for
further aspects on the introduction criteria).

Gc is the fracture energy density of the surface of discontinuity, it corresponds
to the energy that is needed to fully open a unit surface of discontinuity.

The proposed model belongs to the framework of non-associated laws, where the
yield function ¯̄φn and the dissipation potential Fn, in the case of a mode I fracture,
are given by: 

¯̄φn(tn, ¯̄qn) = |tn| − (σc − ¯̄qn)

Fn(tn, ¯̄qn) = |tn|
(

2− ln
( |tn|
σc

))
− (σc − ¯̄qn)

(2.54a)

(2.54b)

The evolution of the state variables are given in terms of the dissipation potential
as: 

˙̄̄
ξn = ˙̄̄γn

∂Fn
∂ ¯̄qn

= ˙̄̄γn

Q̇nn = ˙̄̄γn
∂Fn

∂ ¯̄Yn
=

˙̄̄γn
tn

∂Fn
∂tn

(2.55a)

(2.55b)

where ¯̄ξn is the Lagrange multiplier for the opening mode in direction n. Together
with the Kuhn-Tucker conditions, if ¯̄φn = 0 then ˙̄̄γn > 0 and we have:

tn = σcexp
(
− σc
Gc

¯̄ξn

)
(2.56)

And finally, equation (2.55b) may be written:

Q̇nn =
˙̄̄γn
tn

(
1 +

σc
Gc

¯̄ξn

)
(2.57)

Integration of equation (2.57) gives :

Qnn(t) =

∫ t

0

Q̇nndt =

∫ ¯̄ξ(t)

0

1

σc
exp
( σc
Gc

¯̄ξn

)(
1 +

σc
Gc

¯̄ξn

)
d ¯̄ξ =

¯̄ξn
σc

exp
( σc
Gc

¯̄ξn

)
(2.58)

And finally, the consistent tangent operator, for both linear loading/unloading
and dissipative phases, is given by:

¯̄Can
nn =

∂tn
∂ ¯̄un

=


σc
¯̄ξn
exp
(
−σc
Gc

¯̄ξn

)
if ¯̄φn < 0

σc
¯̄ξn

(
1− (¯̄un)2

(
σc
Gc

+ 1
¯̄ξn

))
exp
(
−σc
Gc

¯̄ξn

)
if ¯̄φn = 0

(2.59)
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2.2. Material model formulation and implementation

Remark 2.2.2. Considering that the normal and tangent behaviors are uncoupled,
the consistent tangent modulus corresponding to the tangent behavior ¯̄Can

mm takes the
same form as the one corresponding to the normal behavior ( ¯̄Can

nn in (2.59) above).
These two consistent tangent moduli are used in the resolution of the local equilibrium
equation (2.27) with the element matrices defined in (2.28).

2.2.3 Criteria to introduce the surface of discontinuity

As specified in section 2.2.2, the formulation allows to implement, in a same frame-
work, two different possibilities for the criteria of introduction of the discontinuity:

• A maximum principal stress criterion: the average of the maximum principal
stress over the Gauss points of the bulk in the current element is computed at
each time step. If this averaged value exceeds the critical value specified as a
parameter, then this current element is considered to be localized and a local
iterative procedure is undertaken.{

standard element if σ̄ < σc
localized element if σ̄ ≥ σc

(2.60)

where σ̄ represents the average of the maximum principal stress over the four
Gauss points, and σc is the critical maximum principal stress.

• A damage criterion: the same procedure as previosuly presented is considered,
we compute the average damage value over the Gauss points of the bulk in
the current element at each time step, and if this value exceeds the specified
critical damage value, the element is localized.{

standard element if D̄ < Dc

localized element if D̄ ≥ Dc
(2.61)

Differences between the two criteria are discussed in section 2.3.4.

Remark 2.2.3. The integration of the discrete material model requires the informa-
tion of the trial tractions on the discontinuity. This does not imply any issue if the
discontinuity surface is already opened (see the state equation (2.53a)). However,
at the onset of localization, that is when the criterion has just been verified, this
information is not available and we use the following procedure to compute the trial
tractions.

In order to compute these trial tractions in the case of rigid beahavior of the
discontinuity (at the onset of localization), we use equation (2.20b) which has to
be verified for each localized element, in particular at the very moment when the
discontinuity is introduced. Projecting equation (2.20b) on the different modes of
opening of the discontinuity < n0 , n1 , m0 , m1 >, we obtain a set of four equations:
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hen0
=

heΩ,n0︷ ︸︸ ︷∫
Ωe

ḠT
vn0
σdΩe +

∫
Γs

¯̄G
T

vn0
tΓsdΓ = 0

hen1
=

heΩ,n1︷ ︸︸ ︷∫
Ωe

ḠT
vn1
σdΩe +

∫
Γs

¯̄G
T

vn0
ξΓtΓsdΓ = 0

hem0
=

heΩ,m0︷ ︸︸ ︷∫
Ωe

ḠT
vm0
σdΩe +

∫
Γs

¯̄G
T

vm0
tΓsdΓ = 0

hem1
=

heΩ,m1︷ ︸︸ ︷∫
Ωe

ḠT
vm0
σdΩe +

∫
Γs

¯̄G
T

vm1
ξΓtΓsdΓ = 0

(2.62a)

(2.62b)

(2.62c)

(2.62d)

When computing
∫

Γs
• dΓ by a two points Gauss integration technique, we obtain:

heΩ,n0 +
lΓs

2

(
t1n,Γs

+ t2n,Γs

)
= 0

heΩ,n1 +
lΓs

2

(
− lΓs

2
√

3
t1n,Γs

+
lΓs

2
√

3
t2n,Γs

)
= 0

heΩ,m0 +
lΓs

2

(
t1m,Γs

+ t2m,Γs

)
= 0

heΩ,m1 +
lΓs

2

(
− lΓs

2
√

3
t1m,Γs

+
lΓs

2
√

3
t2m,Γs

)
= 0

(2.63a)

(2.63b)

(2.63c)

(2.63d)

where the Gauss points on the discontinuity are such that ξΓs = ± lΓs

2
√

3
and where

we have denoted as tin,Γs
and tim,Γs

the normal and tangential components of the
traction at integration point number i (i = 1, 2).

2.2.4 Orientation of the discontinuity surface

The orientation of the newly introduced discontinuity surface is governed by the type
of opening we wish to model. Hence, we have the two following different possibilities
for the orientation of the discontinuity surface:

• In the case of a mode I fracture modeling framework, the direction is defined
by the direction of maximum principal stress, whether a maximum principal
stress or a damage criterion is considered. In particular, the normal to the
discontinuity is defined as an average over the Gauss points in the bulk of the
current element.
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2.3. Numerical results and discussion

• In the case of a mode II fracture modeling framework, the direction of the
discontinuity surface is defined by the direction of maximum shear stress. In
the following example dealing with mode II fracture (see section 2.3.5) a dam-
age criterion is used. In this case, the tangent to the discontinuity is oriented
along the average of the directions of maximum shear stress over the Gauss
points of the element, that is 45◦ to the maximum principal stress direction.

Remark 2.2.4. As for the position of the discontinuity surface, we introduce it at
the center of the localized element.This consideration is probably a limitation of this
work. Indeed, with such a consideration, the continuity of the crack path cannot be
ensured, which is not a strong limitation if we consider that the aim of this modeling
is to regularize Lemaitre’s model in the framework of ductile fracture, and so, to
be of concern essentially to the global response of the structure’s failure. Authors
such as [99] worked on more flexible positionings of the discontinuity within a four-
node element. They also consider branching discontinuities (see [100]) which imply
a treatment at global level, this reduces the local aspect of the method.

2.2.5 Interpenetration processing

In fact the normal displacement is not allowed to be negative to prevent interpene-
tration. Numerically, the element acts as if no localization had occured and equation
he = 0 is considered to be solved. It means that the local iterative procedure is
stopped and two cases are to be considered for the computation of the consistent
tangent operator ¯̄Can given in (2.59):

• If there was no displacement jump at the previous time step (¯̄un·n = 0) and the
discontinuity has never opened ( ¯̄ξn = 0), which means the discontinuity still
has a perfectly rigid behavior, then the consistent tangent operator takes a very
large value (∼ 1012) to simulate the perfectly rigid behavior of the discontinuity
(penalty method to treat rigid behavior at initiation of localization).

• If the discontinuity has already opened normally at least once in the loading
history ( ¯̄ξn > 0) then, the consistent tangent operator takes the value of the
linear case specified in equation (2.59) (with ¯̄ξn+1 = ¯̄ξn).

In both cases, the stress is updated considering no displacement jump.

2.3 Numerical results and discussion
In order to test the capabilities of the proposed strategy to regularize Lemaitre
damage model, three numerical tests are considered: a simple traction test, a three-
point bending test and a tensile test on a cylindrical notched specimen.
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Chapter 2. Ductile fracture modeling with the strong discontinuity method in small strain hypothesis

As specified previously, we use in the following examples a B-bar extension of
the method (see section 2.1.3 for the details of the implementation).

2.3.1 Uniaxial tensile test

Results presented in this section deal with a uniaxial tensile test of a 10 cm x 5 cm
x 5 cm plate under plane strain hypothesis (see figure 2.11). A displacement is in-
crementally prescribed on the right side of the specimen. Parameters for Lemaitre’s
model were calibrated for an AISI 1010 low carbon steel in a rolled state by Benallal
et al. [16]. These parameters are presented in table 2.1, and the studied meshes
along with the normal opening at the end of the test are presented in figure 2.12

An elastic unloading is carried out around 17 mm of prescribed displacement
and we note that damage already occurred in the bulk (See figures 2.13(a) and
2.13(b)). The discontinuity surface was introduced when the maximal principal
stress reached σd = 920 MPa for every element, whereas an element located at the
bottom of the specimen was weakened with σd = 919 MPa in order to control the
onset of the failure process. Then the discontinuity surface is propagated straight
from this weakened element and orthogonally to the loading direction, which means a
mode I type of behavior was considered even though it is well-known that such a test
involves a mode II fracture mode. This test was performed to attest the regularizing
capability of the method and not the precise simulation of ductile fracture, thus it
should only be considered as a first step towards fracture modeling.

As it is seen on figure 2.13(a), the global softening behavior is quite brittle which
involves that the global softening phase begins when the first element is localized.
Besides, it is shown that the solution remains mesh independent. In figure 2.13(b),
the damage evolution in the weakened element is presented, damage evolves until it
reaches a value of 0.13 that corresponds to the onset of localization in the element.
Thus, for this test, the volumic and surfacic mechanisms are never activated at the
same time within an element.
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2.3. Numerical results and discussion

Lemaitre’s model
Young’s modulus 210 GPa
Poisson’s ratio 0.3
Hardening law 620 + 3300(1− exp (−0.4R))

Lemaitre’s model parameters s = 1
r = 3.5 MPa

Cohesive model
Critical stress ¯̄σc = 920 MPa

Fracture energy density Gc = 1000 MPa.mm

Table 2.1: Model parameters for the uniaxial tensile test

10 cm

5
 c

m

U

Figure 2.11: Geometry of the specimen and boundary conditions for the uniaxial
tensile test
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Figure 2.12: (a) meshes considered, (b) mode I opening at the end of the test
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Figure 2.13: (a) Reaction/displacement curves, (b) damage evolution in the weak-
ened element
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2.3.2 Embedded discontinuities with the B-bar method

In order to attest the regularization capabilities of the SDA method combined with
a B-bar formulation, let us recall the three-point bending test to which the mesh
dependency issue was demonstrated above in section 2.1.3. It was shown that frac-
ture (which means the most deformed element has reached a damage value of 1)
occured sooner for the fine mesh, in terms of maximum displacement, than for the
fine mesh, in quite large proportions. This is a well-knwon result when using a
softening material behavior such as Lemaitre’s model.

Three different meshes are studied, the element size differ in the cracking area
such that there are two elements in front of the notch for the “coarse” mesh while
there are five elements in this area for the “fine” mesh and four elements for the
“intermediate” mesh.

The same test with the same meshes was carried out, but this time taking into
account the surfacic mechanisms. The criterion of introduction of the discontinuity
surface is a damage criterion. When the average of the damage variable within an
element reaches 0.1, the critical traction σc is computed as the average of maximum
principal stresses over the Gauss points of the element at this very moment of
localization. As the model takes into account a constant fracture energy Gc, the
dissipated energy is the same for every opening discontinuity, whatever this critical
traction value is. Hence, the regularization is ensured.

The SDA regularization is undertaken for this test using a fracture energy quite
large (Gc = 1000 MPa.mm), enabling the material to remain ductile for both the
bulk and the surfacic beahavior, which means both dissipative mechanisms can be
activated at the same time. Only mode I fracture is considered for this test. Results
in terms of reaction/displacement at nodes where the displacement is applied are
shown in figure 2.14.

It is obvious that results with SDA are much less mesh-dependent for this test.
The benefits of the use of this method for this test are the equivalence of the com-
puted ultimate loads for both meshes, along with the similar prediction of both the
onset of localization and dissipated energy, while they highly differ without the use
of SDA. Besides, there is a good convergence rate even in the global post-peak phase,
while it induces bad convergence rates without SDA when passing the global peak.

Even though these results are not completely mesh-independent while the prop-
agation goes further, it is necessary to keep in mind that the considered meshes
have characteristic lenghts in the process zone that are very different. Besides,
even though the “fine” mesh curve and the “coarse” mesh curves are not totally su-
perposed, the “intermediate” mesh curve shows that results tend to converge to a
response very close to the “fine” one in figure 2.14.
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Figure 2.14: Force/displacement curve for two different meshes, with and without
SDA
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2.3.3 Three-point centered bending test on a notched speci-
men

A three-point centered bending numerical test was undertaken on a notched speci-
men. Parameters for Lemaitre’s model are the same as the previous test in section
2.3.1. They are again presented in table 2.2.

Maximum principal stress criterion

A notched plate of 1800 mm length, 500 mm height and 50 mm width, with 20 mm
wide and 200 mm high notch is modeled considering a plane strain hypothesis. A
13 mm displacement is prescribed at the top of the specimen and vertically over the
notch. A maximum principal stress (σc = 1200MPa) criterion is considered for this
test. The parameters for both Lemaitres’s model and the cohesive law are sumed
up in table 2.2.

Lemaitre’s model
Young’s modulus 210 GPa
Poisson’s ratio 0.3
Hardening law 620 + 3300(1− exp (−0.4R))

Lemaitre’s model parameters s = 1
r = 3.5 MPa

Cohesive model
Critical stress ¯̄σc = 1200 MPa

Fracture energy density Gc = 1000 MPa.mm

Table 2.2: Model parameters for the three-point bending test

The model and the corresponding meshes are presented in figure 2.15 along with
the crack opening at the end. Results in terms of force/displacement are presented in
figure 2.16 (for a unit thickness). The influence of the activation of the linear mode
on the global response has been studied for two topologically identical meshes, but
with different element sizes. The relatively coarse mesh considers 1015 Q4 elements
while the fine mesh considers 4060 elements.

We note that results differ slightly when we take into consideration the linear
mode, and that the peak is higher when only a constant displacement jump is
considered. This may be due to the well-known “locking phenomenon” that occurs
in the case of the constant jump alone. The benefits of the consideration of a
linear opening mode to avoid this stress-locking were enlightened by [105] in the
case of bending tests. The interest in the linear mode is obvious for this test,
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since we observe that a stress concentration occurs near the notch that induces an
heterogeneous stress state in the neighboring elements. Thus, a linear opening of
the crack allows for a more correct representation of the traction state along the
interface for these elements than with only a simple constant crack opening.

mesh a

mesh b

deformed mesh a (x20)

Figure 2.15: Considered meshes and deformed mesh at the end of the test (x20)

Damage criterion

The same test was performed, this time using a damage criterion in order to show
the versatility of the method with respect to the criterion used to introduce the
discontinuity surface.

Three different meshes are studied, the element size differs in the cracking area
such that there are two elements in front of the notch for the “coarse” mesh while
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Figure 2.16: Reaction/displacement curve
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there are five elements in this area for the “fine” mesh and four elements for the
“intermediate” mesh.

A first set of tests was undertaken to show the mesh dependency if no SDA
regularization is used, meaning only Lemaitre’s damage model is responsible for the
global softening behavior. Results show that for a smaller mesh size, convergence
stops occuring sooner in the test than with the larger mesh, and the peak appears
also sooner. This is due to damage localization occuring faster for smaller elements
in the process zone.

Results in terms of reaction/displacement at the top of the specimen (where the
displacement is prescribed) along with the considered meshes (coarse and fine) and
boundary conditions are shown on figure 2.18 and figure 2.17, respectively.

coarse mesh

fine mesh

U

U

Figure 2.17: Considered meshes and boundary conditions for the three-point bending
test

The same test with the same meshes was carried out, but this time taking into
account the surfacic mechanisms. The criterion of introduction of the discontinuity
surface is a damage criterion. When the average of the damage variable within an
element reaches Dc, the critical traction σc (in the traction/displacement jump law)
is computed as the average of maximum principal stresses over the Gauss points of
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Figure 2.18: Force/displacement curve when considering only Lemaitre’s damage
model

the element at this very moment of localization. As the model takes into account
a constant fracture energy Gc, the dissipated energy is the same for every opening
discontinuity, whatever this critical traction value is. Hence, the regularization is
ensured.

In order to preclude the loss of uniqueness at the material point level, Dc was set
to 0.1 which is a quite low value that ensures that the standard localization condition
is not yet reached. However we plan to use the standard localization criterion within
this framework in future works. This first implementation should be considered to
be as a first step to localization prediction

The SDA regularization is undertaken for this test using a fracture energy quite
large (Gc = 1000MPa.mm), enabling the material to remain ductile for both the
bulk and the surfacic beahavior, which means both dissipative mechanisms can be
activated at the same time. Only mode I fracture is considered for this test. Results
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in terms of reaction/displacement at nodes where the displacement is applied are
shown in figure 2.19.
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Figure 2.19: Force/displacement curve for two different meshes, with and without
SDA

It is obvious that results with SDA are much less mesh-dependent for this test.
The benefits of the use of this method for this test are the equivalence of the com-
puted ultimate loads for both meshes, along with the similar prediction of both the
onset of localization and dissipated energy, while they highly differ without the use
of SDA. Besides, there is a good convergence rate even in the global post-peak phase,
while it induces bad convergence rates without SDA when passing the global peak.

Even though these results are not completely mesh-independent while the prop-
agation goes further, it is necessary to keep in mind that the considered meshes
have characteristic lengths in the process zone that are very different. Besides,
even though the “fine” mesh curve and the “coarse” mesh curves are not totally su-
perposed, the “intermediate” mesh curve shows that results tend to converge to a
response very close to the “fine” one in figure 2.19.
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2.3.4 Tensile test on a notched bar

A tensile test on a cylindrical notched specimen is performed in this section, consider-
ing axisymmetric strain hypothesis. An adjustment of the numerical implementation
formulation was carried out to take into account such an hypothesis. In particular,
the incompatible shape functions appearing in (2.14), (2.15), (2.18) and (2.19), were
adjusted . Adjustments in the computations of the enhanced elementary tangent
stiffness K̂

e(i)
n+1 and the residual f

int,e(i)
n+1 were also undertaken.

The same set of parameters used in the previous test is considered for this test.
A damage criterion (Dc = 0.1) was used considering two different mesh sizes, as
shown in figure 2.20. The fracture energy density is Gc = 100MPa.mm, which
corresponds to a more brittle behavior than the one studied in 2.3.3.

(a)                                                 (b)                                                        (c)

Figure 2.20: (a) geometry and boundary conditions (see [48]), (b) fine mesh, (c)
coarse mesh

Results in terms of reaction/displacement are also shown on figure 2.21. These
responses are very close, which attest the regularization capabilities of the method.
For this set of parameters, even though the accumulated plastic strain is maximum
near the notch (see figure 2.22(c)), the dependence of Lemaitre’s damage model on
the triaxiality ratio (see figure 2.22(b)) allows the damage (see figure 2.22(a)) to be
maximum at the center, and so the cracking to be initiated at this location. Then
the crack is propagated straight to the notch.

Remark 2.3.1. A particularity of this test is that both dissipative mechanisms are
simultaneously active within a localized element. In figure 2.24 we present the evolu-

72



2.3. Numerical results and discussion

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

10

20

30

40

50

60

70

80

90

fine mesh 

coarse mesh 

Displacement (mm)

R
ea

ct
io

n
 (

k
N

)

Figure 2.21: Force/displacement curve
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Figure 2.22: (a) damage variable, (b) triaxiality ratio, (c) accumulated plastic strain
at the onset of plasticity
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Figure 2.23: (a) damage variable, (b) triaxiality ratio, (c) accumulated plastic strain
at the onset of localization

tion of the damage variable as well as the mode I crack opening in the first localized
element, that is the element at the center of the specimen. It is shown that damage
is still evolving while the discontinuity begins opening, and that its evolution is pro-
gressively slowing down with respect to the crack opening. This phenomenon does
not occur with the uniaxial tensile test presented in section 2.3.1, in which damage
stops evolving exactly when the damage threshold is reached, which means that the
bulk is elastically unloading at this moment.

Another test was undertaken with a different set of parameters. A fracture en-
ergy density of Gc = 200MPa.mm and a damage criterion of Dc = 0.1 was used
and this time it is shown on figure 2.25(a) (where the crack opening is represented)
that there is a bifurcation in the propagation path, which corresponds to the well-
known "cup cone" propagation phenomenon. This result was numerically studied
first by Tvergaard and Needleman (see [163]) with the GTN model, and a detailed
study of this phenomenon was presented by Besson et al. [21] comparing the pre-
diction capabilities of the models proposed by Gurson and Rousselier by the mean
of localization analyses.

This result illustrates the link between the fracture mode and the surfacic model’s
parameters, more precisely, it is shown that higher values of the damage criterion
and the fracture energy (which means higher ductility) induce the onset of the so-
called cup cone. Additionally, this is a first step towards a sensitivity analysis of
these parameters on the cup cone appearance, and also towards an identification of
these parameters for a specific material, as we know that these parameters can be
effectively identified.
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Figure 2.24: (a) Damage variable, (b) mode I crack opening in the first localized
element, with respect to the prescribed displacement
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Figure 2.25: (a) Crack opening at the end of the test (b) Reaction/displacement
curve

2.3.5 Shear test

A final test, exhibiting mode II fracture is performed on a notched specimen. Even
though this test is originally to be performed in a 3D framework, it has been extended
to the 2D case in order to show the capabilities of the 2D enhanced model presented
above in a mode II fracture framework.

The geometry of the specimen is shown on figure 2.26 with the boundary condi-
tions. We assume a plane strain hypothesis and the thickness of the specimen is 20
mm. Several meshes are tested with different mesh sizes, but with the same bias.
They are shown in the final deformed configuration on figure 2.27(b) along with the
mode II crack opening in the undeformed configuration on figure 2.27(a).

The criterion used for this test is a damage criterion, which is set to Dc = 0.12,
and the fracture energy density Gc is set to 50MPa.mm. As for the previous tests,
this criterion ensures that the localization condition is not reached at the gauss
point.

This value guarantees that the loss of ellipticity condition is not reached for this
level of damage. Again and as for all the tests presented, any criterion (like the
loss of ellipticity criterion) could be used to initiate localization. For this test, the
discontinuity surface is introduced with the tangent to the discontinuity in the same
direction as the maximum shear direction. This guarantess that the shear stress in
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the bulk is oriented in the same direction as the tangent traction on the discontinuity,
which will enable the mode II opening mode on the discontinuity surface along with
shear elastic unloading in the bulk.
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Figure 2.27: Crack opening in mode II at the end of the test in the deformed
configuration (scale factor=1) for different mesh sizes

Results, in terms of the vertical displacement prescribed at the right edge of the
specimen and the reaction force at this location and in this direction, are presented
in figure 2.28(a) for different meshes without the presented method, and in figure
2.28(b) with the presented method.

A well-known result appears in figure (a), indeed, we note that the post-peak
responses differ with respect to mesh size, giving different dissipated energies after
the global peak is reached, the slope of the softening response increases with the
mesh size to a point that the energy becomes almost zero for a very refined mesh,
inducing a loss of convergence of the global implicit iterative Newton procedure for
even finer meshes. However, we note that with our method (see figure 2.28(b)),
this phenomenon does not appear at all, the slopes of the softening responses are
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Figure 2.28: (a) Vertical reaction/displacement curve without SDA (b) Vertical
reaction/displacement curve with SDA
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equivalent for all mesh sizes, giving equivalent dissipated energies after the peak.
We also note that with our method the peak is not reached at the same prescribed

displacement for the coarse meshes a and b and the fine meshes c and d, this is due
to the fact that the coarse meshes a and b are not converged, even in the pre-peak
phase of the test. This implies that the damage field in the ’process zone’ is not well
represented for these meshes, and thus the damage criterion becomes irrelevant.

On the contrary, results for meshes c and d are perfectly superimposed, which
tends to prove the mesh-size objectivity of the proposed method.

2.4 Extension to explicit formulation of the FE prob-
lem with SDA

In this section, we present the strong discontinuity method’s extension to the explicit
global integration scheme, while remaining in the field of the quasi-static problems.
The purpose is to overcome convergence issues with the implicit formulation, which
can be difficult to deal with considering a strong discontinuity enhancement in which
we deal with three levels of non-linearities (at the Gauss point level, the element level
and the global level). Another purpose is to reduce computational costs. We will
show with an example that the total computational costs can be drastically reduced,
if the time increment is carefully chosen, along with the mass density parameter.

The only difference that exists with the implicit scheme is the integration of
dynamic effects in the formulation, which does not change the elementary stiffness
matrix, but adds acceleration terms in the residue formulation.

The global equilibrium equation is written:

Mü(t) + K(u(t))u(t) = f(t) (2.64)

A centered difference scheme is used to compute the acceleration and velocity
terms:  ü(t) ' 1

∆t2
(u(t+ ∆t)− 2u(t) + u(t+ ∆t))

u̇(t) ' 1
∆t

(u(t+ ∆t)− u(t−∆t)) (2.65)

where ∆t is the time-increment.

2.4.1 Critical time step

The use of an explicit integration scheme induces a potential instability if the maxi-
mum eigenvalue of the amplification matrix A is greater than 1, where A is defined
in a recursive form as:
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2.4. Extension to explicit formulation of the FE problem with SDA

u(t+ ∆t) = Au(t) (2.66)

Let us compute the amplification matrix A.
From (2.64) and (2.65), we may write:

M

∆t2
(u(t+ ∆t)− 2u(t) + u(t−∆t)) + K(u(t))u(t) = f(t) (2.67)

which after some algebraic manipulations gives:

u(t+ ∆t) = (2I−∆t2M−1K)u(t) + ∆t2M−1f(t)− u(t−∆t) (2.68)

Thus we have

A = 2I−∆t2M−1K (2.69)

Then the stability condition of this explicit integration scheme may be written:

2−∆t2λmax ≤ 1 (2.70)

where λmax is the maximum eigenvalue of M−1K. Equation (2.70) is equivalent
to the following condition:

∆t ≥
√

2

λmax
(2.71)

This means that if the time step exceeds this value, the stability of the scheme
is not ensured anymore. Thus an automatization of the time increment has to be
implemented, which has been done in this work.

Remark 2.4.1. Matrices M and K are the assembled mass and stiffness matrices,
respectively. This means that condition (2.71) deals with these global matrices, and
that the maximum eigenvalue of M−1K has to be computed at the global level. This
induces prohibitive additional costs. To overcome this issue, a standard approxi-
mation has been considered. Condition (2.71) is actually written at the elementary
level, which involves an additional computation for each element but dramatically
decreases the total cost of the condition computation since we now deal with matri-
ces that have the size of the elementary matrices. The computation of the maximum
eigenvalue at the elementary level then becomes acceptable. This approximation is
common in industrial FE codes.

In a practical point of view, in this work, condition (2.71) is computed for every
element at each time step, and if the condition is violated, a new time increment is
computed and the computation of the global equilibrium is started again considering
this new time increment.
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Remark 2.4.2. In this work the mass matrix is lumped, which gives a diagonal ele-
mentary mass matrix, easy to invert in order to compute the maximum eigenvalues
of Me

−1Ke

Remark 2.4.3. We recall that we lie in the framework of quasi-static problems.
This means that the dynamic effects induced by the use of the new scheme have to
be lowered as much as possible, since we do not lie in the dynamics computation
framework. In other terms and in a practical point of view, it means that the mass
density parameter is not viewed as a physical parameter, but more as a numerical
parameter that enables the total cost to be lowered, as long as the dynamic effects
remain low enough. Two parameters are responsible for theses effects, the mass
density and the time increment.

If the mass density increases, then the stability condition (2.71) gives larger
critical time increments, while increasing the undesirable dynamic effects and vice
versa. Increasing the total time of the test enables to lower the dynamic effects. As a
consequence, there is no unique time increment/mass density ideal couple that gives
the desired computational cost. A choice has to be made, one can choose to take the
physical mass density of the specimen and then increase the total time of the test,
or one can do the other way around: choose a total time and then decrease the mass
density to lower the dynamic effects.

2.4.2 Comparison between explicit and implicit formulation

The tensile test on a round notched axisymmetric specimen was performed compar-
ing the explicit and implicit formulations. The material is an AISI 120 steel, with
E = 210000MPa and with Poisson’s ratio ν = 0.3 and the constitutive law used for
the bulk is a von Mises plasticity law with an exponential hardening law of the form
σy = 620 + 3300 ∗ (1− exp(−βR)) with β = 0.4. Only mode I opening is taken into
account for this test. The discrete law on the discontinuity surface is an exponential
rigid-damageable law defined with the fracture energy density Gc = 200 MPa.mm.
The criterion used for the onset of localization (that is the introduction of the dis-
continuity surface) is a Rice and Tracey criterion with ( R

R0
)c = 1.3. The mass density

for the explicit case is set to the physical mass density, that is ρ = 7800 kg/m3, and
the total time is set to 200 s for both cases.

The geometry of the specimen along with the mesh and the discontinuity opening
at the end of the test are presented in figure 2.29.

Remark 2.4.4. For this test, the geometry of the specimen along with the Rice and
Tracey criterion used imply that the triaxiality ratio is maximum at the center of
the specimen which also imply that the onset of localization appears at the center of
the specimen (since the Rice and Tracey criterion strongly depends on the triaxiality
ratio), while the maximum accumulated plastic strain remains near the notch. This
test has already been performed using Lemaitre plasticity-damage constitutive law
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Figure 2.29: (a) geometry of the specimen and symmetry simplifications, (b) FE
mesh and discontinuity opening in mm at the end of the test
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(in which the damage evolution strongly depends on the triaxiality ratio) exhibiting
a bifurcation in the crack path while the crack propagation reaches the notch. See
section 2.3.4 for further details. The use of a Rice and Tracey criterion does not
exhibit such bifurcation with the chosen set of parameters. Indeed the crack remains
straight from the center to the notch.

Results in terms of reaction force and displacement at the top of the specimen
are presented in figure 2.30.
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Figure 2.30: Response for explicit formulation (blue cross) and implicit formulation
(red square)

As shown in figure 2.30, results are quite similar which proves that the explicit
formulation does not exhibit any substantial dynamic effects, with the chosen mass
density and total test time.

In table 2.3, the computational costs variables are presented for both formula-
tions.

From table 2.3, it is clear that the interest of the use of an explicit formulation
is established. Indeed, the total time computation is 22.4 times smaller with the
explicit formulation, and the risk of a loss of convergence is also lowered in this case.
However, as explained in remark 2.4.3, the choice of the total time, time increment
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2.5. Conclusion

Total comput. time (s) Mean time increment (s) Final displ. (mm)
Implicit case 83171 10−3 0.78
Explicit case 3709 ∼ 10−4 0.78

Table 2.3: Computational cost for implicit and explicit formulations

and mass density parameters are not straightforward and one can easily choose these
parameters in a way that the computational cost becomes prohibitive, or in a way
that the dynamic effects are no longer insignificant.

2.5 Conclusion

In the small hypothesis framework, a regularization method using the strong dis-
continuity method was presented to deal with the loss of uniqueness of the post-
peak phase when dealing with Lemaitre’s damage model. The strong discontinuity
method allows the consideration of both surfacic and volumic dissipative mechanisms
while a standard finite element method only permits to model volumic dissipative
mechanisms.

We note that the added incompatible shape functions in localized elements van-
ish at the elements’ nodes, and that the resolution procedure is carried out by an
“operator split method”, which implies that the local equilibrium is solved sequen-
tially with the global equilibrium resolution. Together with the static condensation
of the added degrees of freedom at the global level, no degree of freedom is added
in the global equilibrium resolution. Thus, there is no modification carried out in
the Newton iterative procedure, unlike in the X-FEM method for example, in which
degrees of freedom are added and taken into account at the global level.

The enhanced element presented in this chapter is a quadrangular bilinear ele-
ment (first presented by [99]) enhanced with a linear displacement jump which is
an extension of the more commonly used three-nodes triangular element that only
describe constant strain fields. This new element was never implemented in the
context of ductile failure considering a coupled damage-plasticity model in the bulk,
and particularly together with Lemaitre’s damage model. In the context of ductile
failure, only models that consider J2-plasticity theory have been used (see e.g. [3]).
The traction/displacement jump law used to model the cohesive behavior of the
discontinuity surface is a damageable behavior without plasticity consideration.

Lemaitre’s damage variable was used as an introduction criterion of the disconti-
nuity surface within a localized element. Both mode I and mode II were considered
in the examples presented. Results demonstrating the regularization capabilities of
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the method were shown in the cases of a three-point bending test, a shear test ex-
hibiting mode II failure mode, and a tensile test on a cylindrical notched bar, in the
frameworks of plane strain and axisymmetric computations. Indeed, a good regu-
larization was observed in terms of ultimate load prediction and dissipated energies
while conserving good convergence rates. It was shown in the case of the shear test,
that it is needed to work with fine enough meshes in order to obtain a good repre-
sentation of the damage field in the ’process zone’ that triggers the introduction of
strong discontinuities. This well-known feature is related to standard finite element
topics, rather than the consideration of strong discontinuities.

Besides the regularization abilities of the method, results showing different crack
paths driven by both the damage criterion and fracture energy density, were also
presented. The so-called cup cone phenomenon was also obtained in the case of
the axisymmetric computation. A correlation between the cup cone appearance
and both the damage criterion and the fracture energy was demonstrated, which
is a first step towards an identification of these material parameters and towards
precise crack path prediction. We also observe that these fracture parameters are
phenomenological parameters that have a physical sense. Nevertheless, further work
needs to be carried out to precisely describe the sensitivity of the cup cone occurence
to these fracture parameters. This last result lightens Lemaitre’s model ability to
depict the cup cone phenomenon while this ability has already been attested for
Rousselier and Gurson’s models [21].

We recall that there is no resctriction to the implementation of a different bulk
model into this strong discontinuity formulation, as long as it is able to give infor-
mation of the damage state in the bulk or any other variable that can be used as
an introduction criterion of the discontinuity surface. In this perspective, further
developments and tests will be performed using different ductile damage models for
the volumic behavior.

As presented above, this chapter is limited to the small strain hypothesis, in the
following chapter a finite strain hypothesis is considered.
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Chapter 3

Ductile modeling with the strong
discontinuity method in large strain

hypothesis

In the previous chapter, the SDA theoretical formulation and
its numerical implementation were described in the context of
small strain hypothesis. In this chapter, we aim at extending
this formulation to the large strain hypothesis in the ductile
fracture framework.
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3.1 SDA in the finite deformation range: theoreti-
cal formulation and FE implementation

In the previous chapter considering small strain hypothesis, we emphasized the
necessity to enhance the spaces of both the displacement fields and the deformation
fields to take into account a strong discontinuity. The following deals with the
extension of the previous work to the finite strain framework.

3.1.1 Theoretical formulation

The enhanced deformation gradient formulation

In the following section, a detailed presentation of the theoretical formulation of the
enhanced deformation gradient operator is carried out. All entities refering to the
reference (material) configuration are designated with upper case letters and the
ones refering to the current (spatial) configuration with lower case letters. Since the
enhancement of the displacement field is similar to the small strain hypothesis, the
developments of the one-dimensional case of the displacement field enhancement is
not expressed in this section. For further details, the reader shall refer to section
2.1.1, from equation (2.1) to equation (2.6).

We recall that the transformation from the initial configuration to the deformed
configuration defines the following mapping:

(x, t)→ x(t) = ϕ(X, t) (3.1)

Considering the enhancement with a displacement jump, this transformation
function ϕ is expressed as:

ϕ(X, t) = ϕ̄(X, t) + ¯̄uHΓs(X) (3.2)

where ϕ̄ is the standard mapping function from the initial to the deformed current
configuration. We recall that it is expressed as:

ϕ̄(X, t) = X + u(X, t) (3.3)

Then, we may express the total displacement vector as:

u(X, t) = ϕ̄(X, t)−X + ¯̄uHΓs(X)

= ū(X, t) + ¯̄uHΓs(X)
(3.4)

In this context, the deformation gradient is written as follows:
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{

Figure 3.1: Motion decomposition scheme
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F(X, t) = F̄(X, t) + [¯̄u(X, t)⊗N]δΓs︸ ︷︷ ︸
F̃

(3.5)

where F̄ and F̃ represent the regular part and the singular part of the deformation
gradient, respectively, and where N is the unit normal vector to Γs in the initial
configuration. Following the notations used in section 2.1.1, F̄ is expressed as:

F̄(X, t) = I+∇ū(X, t) = I+∇ũ(X, t)−∇[¯̄u(X, t)φ(X)]+∇¯̄u(X, t)HΓs(X) (3.6)

where we recall that φ is an additional function that allows to have the same
essential boundary conditions for the total displacement field u and ũ. Results on
derivation of distributions were used to express F̃ (see [151]) and δΓs is the Dirac
distribution associated to the discontinuity surface. See figure 3.1 for a schematic
representation of the proposed motion decomposition.

In (3.5), ¯̄u refers to the spatial jump. We may introduce the material jump using
the pull-back transformation:

¯̄U = F̄−1 ¯̄u (3.7)

for which we propose a normal-tangential decomposition as follows:

¯̄U = αnN + αmM (3.8)

where M is the unit tangential vector to the discontinuity surface Γs in the
undeformed configuration.

With such a decomposition and using equation (3.7), we may write:

¯̄u = αnF̄N + αmF̄M = αnn
] + αmm] (3.9)

where {
n] = F̄N

m] = F̄M

(3.10a)
(3.10b)

n] and m] are the convected vectors corresponding to N and M, respectively. It
has to be noticed that n] and m] are not necessary orthogonal nor unitary vectors.

Remark 3.1.1. n] is not the normal to γs = ϕ(Γs), the transformed of the discon-
tinuity surface Γs.

One of the normal vectors to γs is n[ = F̄−TN (using Nanson’s formula on the
transport of a piece of oriented surface).

It follows that n[ is not unitary either and that n[ 6= n].

90



3.1. SDA in the finite deformation range: theoretical formulation and FE implementation

Figure 3.2: Representation of bases (n],m]) and (n[,m[), and projection of ¯̄u

We have the following relations:

n[.m] = (F̄−TN).(F̄M) = N.(F̄−1F̄M) = N.M = 0 (3.11)

because (N,M) is an orthonormal basis.
It follows that m] is tangent to the convected surface γs, remembering that m] is

not necessarily unitary.

See figure 3.2 in which a graphical representation of bases (n],m]) and (n[,m[)
is proposed, as well as the decomposition of the displacement jump in basis (n],m])
as it was defined in (3.9).

We may define a multiplicative decomposition of the deformation gradient, as it
was proposed by Armero and Garikipati [2], as:

F = F̄
(
I + ¯̄U⊗NδΓs

)
= F̄F̂ (3.12)

where F̂ = I + ¯̄U ⊗NδΓs . This new motion decomposition is shown on figure
3.3.

Problem definition

In this section, we properly define the problem that is to be linearized and solved
using standard non-linear resolution procedures. The formulation in this context of
large deformation is similar to the infinitesimal case. The differences lie in the fact
that the problem is defined in terms of the first Piola Kirchhoff stress tensor P if we
work in the undeformed configuration (Lagrangian formulation), or in terms of the
Kirchhoff stress tensor τ if the problem is formulated in the deformed configuration
(Eulerian configuration).
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Figure 3.3: Multiplicative motion decomposition scheme
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Since we introduce an incompatible strain field, the three-field Hu-Washizu prin-
ciple is an appropriate formulation of the problem. The following expression of
the non-linear discrete problem in finite deformation comes from developments es-
tablished by [168] and [69] in the framework of the so-called “incompatible modes
method”.

Considering w, θ, and η the variations of displacement fields, first Piola-Kirchhoff
stress fields and displacement gradient fields, respectively, the formulation states:

Find (u,P,H) such that:

∀(w,θ,η),



∫
Ω

∇w : P dΩ−
∫

Ω

w.b dΩ−
∫
∂tΩ

w.h dΓ = 0∫
Ω

θ : [∇u−H] dΩ = 0∫
Ω

η : [P(H)−P] dΩ = 0

(3.13)

where h and b are the prescribed surfacic and body forces, respectively. H is the
real deformation field. In this context, P(H) is a second order tensor that satisfies
the material law.

With the incompatible modes method, both variations and real displacement
gradients (η and H) are decomposed in a standard compatible part (∇w and ∇u)
and an incompatible part (η̃ and H̃):{

η = ∇w + η̃

H = ∇u + H̃
(3.14)

With such a decomposition, system (3.13) can be written:

∀(w,θ,η),



∫
Ω

∇w : P dΩ−
∫

Ω

w.b dΩ−
∫
∂tΩ

w.h dΓ = 0∫
Ω

θ : H̃ dΩ = 0∫
Ω

∇w : [P(H)−P] dΩ +

∫
Ω

η̃ : [P(H)−P] dΩ = 0

(3.15)

The method then states that the space of stress fields (θ and P) and incompatible
deformation fields (η̃ and H̃) are constructed orthogonally.

Hence,
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∫
Ω

θ : H̃ dΩ = 0 and
∫

Ω

P : η̃ dΩ = 0 (3.16)

Combining (3.16) and (3.15), we obtain

∀(w,η),



∫
Ω

∇w : P(H) dΩ−
∫

Ω

w.b dΩ−
∫
∂tΩ

w.h dΓ = 0∫
Ω

∇w : [P(H)−P] dΩ = 0∫
Ω

η̃ : P(H) dΩ = 0

(3.17)

Considering that the material law is verified exactly, that is P(H) = P, system
(3.17) is written:
∀(w,η), 

∫
Ω

∇w : P(H) dΩ−
∫

Ω

w.b dΩ−
∫
∂tΩ

w.h dΓ = 0∫
Ω

η̃ : P(H) dΩ = 0

(3.18a)

(3.18b)

Then, let us consider that the added parts of deformations are decomposed into
a regular and a singular part: {

η̃ = ˜̄η + ˜̄̄ηδΓs

H̃ = ˜̄H +
˜̄̄
HδΓs

(3.19)

Then, system (3.18) may be written as:

∀(w,η),


∫

Ω

∇w : P(H) dΩ−
∫

Ω

w.b dΩ−
∫
∂tΩ

w.h dΓ = 0∫
Ω\Γs

˜̄η : P( ˜̄H) dΩ +

∫
Γs

˜̄̄η : P|Γs
(

˜̄̄
H) dΓ = 0

(3.20)

where Γs is the discontinuity surface and where classical results on distributions
have been used.

Besides, the singular part of the deformation fields ˜̄̄η and ˜̄̄
H are supposed to

derive from discontinuous displacement fields ¯̄w and ¯̄u respectively, so they may be
written as : {

˜̄̄η = ¯̄w ⊗N

˜̄̄
H = ¯̄u⊗N

(3.21)
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The final formulation of the Hu-Washizu principle in the framework of incom-
patible modes methods is then written as :
∀(w,η), 

∫
Ω

∇w : P(H) dΩ−
∫

Ω

w.b dΩ−
∫
∂tΩ

w.h dΓ = 0∫
Ω\Γs

˜̄η : P(H) dΩ +

∫
Γs

¯̄w.[P|Γs
(H).N] dΓ = 0

(3.22a)

(3.22b)

Alternatively, as presented above, the previous problem may be written in terms
of the Kirchhoff stress field τ :

∀(w,η),


∫

Ω

∇w : τ (H)F̄−T dΩ−
∫

Ω

w.b dΩ−
∫
∂tΩ

w.h dΓ = 0∫
Ω\Γs

˜̄η : τ (H)F̄−T dΩ +

∫
Γs

¯̄w.τ |Γs
(H)F̄−T .N dΓ = 0

(3.23)

where we have used the relation P = τ F̄−T .
Introducing n[ = F̄−TN, system 3.23 may finally be written:

∀(w,η),


∫

Ω

∇wF̄−1 : τ (H) dΩ−
∫

Ω

w.b dΩ−
∫
∂tΩ

w.h dΓ = 0∫
Ω\Γs

˜̄ηF̄−1 : τ (H) dΩ +

∫
Γs

¯̄w.[τ |Γs
(H).n[] dΓ = 0

(3.24)

where we have used the following tensorial identity A : (BC) = ACT : BT (A,
B and C are second order tensors).

which can be expressed in terms of the convected components of the variations
of the displacement gradient and its regular enhanced part as:

∀(w,η),


∫

Ω

∇xw : τ (H) dΩ−
∫

Ω

w.b dΩ−
∫
∂tΩ

w.h dΓ = 0∫
Ω\Γs

˜̄ηx : τ (H) dΩ +

∫
Γs

¯̄w.[τ |Γs
(H).n[] dΓ = 0

(3.25)

with ∇xw = ∇wF̄−1 and ˜̄ηx = ˜̄ηF̄−1.
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Working in the deformed configuration and with Kirchhoff stresses allows to use
the symmetries of the Khirchhoff tensor field, which implies that:

∀(w,η),

{
∇xw : τ (H) = ∇s

xw : τ (H)

˜̄ηx : τ (H) = ˜̄ηsx : τ (H)
(3.26)

where we recall that ∇s = 1
2
(∇+∇T ). This consideration will notably simplify

the finite element formulation of the problem.

Another reason that we choose to work with quantities referring to the deformed
configuration is that the chosen constitutive law (which is used for the bulk model
in this work, and will be expressed further) deals with Kirchhoff stresses and with
the spatial tangent modulus.

The final continuum formulation, that will be the basis of the finite element
problem formulation, is expressed as:

∀(w,η), 
∫

Ω

∇s
xw : τ (H) dΩ−

∫
Ω

w.b dΩ−
∫
∂tΩ

w.h dΓ = 0∫
Ω\Γs

˜̄ηsx : τ (H) dΩ +

∫
Γs

¯̄w.[τ |Γs
(H).n[] dΓ = 0

(3.27a)

(3.27b)

We may now introduce the driving traction tΓs on the discontinuity surface which
is defined as:

tΓs = P|Γs
.N = τ |Γs

.n[ = tnn
[ + tmm[ (3.28)

for which we have projected this traction on the convected basis (n[,m[).
And equation (3.27b) can be rewritten:∫

Ω\Γs

˜̄ηsx : τ (H) dΩ +

∫
Γs

¯̄w.tΓs dΓ = 0 (3.29)

3.1.2 Finite element implementation

The following section deals with the discretization of the continuum problem defined
above.
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The three-node triangular element enhancement

As specified above, we consider a triangular element with three nodes and one regular
integration point. Given that strain and stress fields are constant over the element,
the enhanced mode shall also be interpolated as a constant displacement jump over
the element to ensure consistency.

Starting from equation (3.4), an interpolation of the displacement can be written
as (see e.g. [53, 147]):

uh(X) =
a=3∑
a=1

Na(X)da +
[
HΓs(X)−

a=3∑
a=1

Na(X)]¯̄u (3.30)

1

2

3

X Γs

αn
N

M

αm

Figure 3.4: Representation of the enhanced modes for the T3 triangle in its “unde-
formed” configuration (only the displacement jump is shown)

The total displacement field is interpolated with a standard part, correspond-
ing to the standard nodal interpolation, and with additional non-standard shape
functions corresponding to the added separation modes discussed in 2.1.1, in the
following form, if we consider the decomposition ¯̄u = αnn

] + αmm] on (n],m]) for
the spatial jump ¯̄u:

uh(X) =
a=3∑
a=1

Na(X)da +αn

[
HΓs(X)n] −

∑
a∈Ω+

Na(X)n]
]

+αm

[
HΓs(X)m] −

∑
a∈Ω+

Na(X)m]
] (3.31)

where Na is the standard shape function associated to node “a”, and da are
standard nodal displacements for node “a”.

The non-conforming shape function appearing in (3.31) is plotted in figure 3.5.
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Figure 3.5: Non-conforming shape function for the T3 triangle

This expression in (3.31) can be put in the general following form:

uh(X) =
a=4∑
a=1

Na(X)da +M(X)[n] m]]α (3.32)

where M is a discretized version of the continuous function HΓs(x) − φ(x) in-
troduced in equation (2.4) in section 2.1.1. It is defined as:

M(X) = HΓs(X)−
∑
a∈Ω+

Na(X) (3.33)

A representation ofM is given on figure 3.5.
α is a vector that contains the components of the spatial jump, following the

decomposition proposed in (3.31). It is expressed as α = [αn αm]T .

This function allows the contribution of the separation modes to be limited to
a localized element, Ωd is then chosen equal to the considered triangular element.
This guarantees the local feature of the proposed method and no additional nodal
degrees of freedom have to be introduced like for X-FEM for instance [15] [110].

On the basis of this displacement field, the real deformation gradient interpola-
tion is given by:
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Fh(x) = Ih +

a=3∑
a=1

Bns
a (X)da +αn

[
−
∑
a∈Ω+

Bns
a (X).n] + N.n] δΓs

]
+αm

[
−
∑
a∈Ω+

Bns
a (X).m] + N.m] δΓs

] (3.34)

where Ih =


1
1
0
0

 is the second order identity tensor in vector form, N =

NX 0
0 NY
NY 0
0 NX


where NX and NY are the components of normal vector N (in the undeformed

configuration), Bns
a (X) =


∂Na
∂X 0

0 ∂Na
∂Y

∂Na
∂Y 0

0 ∂Na
∂X

 is the unsymmetric gradient matrix referring

to the undeformed configuration, and δΓs represents the Dirac distribution on the
discontinuity surface Γs.

The deformation gradient interpolation can be put in the general form:

Fh(X, t) = Ih + Bnsd + Ḡrα+ ¯̄GrαδΓs where α = < αn, αm >T

Ḡr =
[
Ḡrn Ḡrm

]
and ¯̄Gr =

[ ¯̄Grn
¯̄Grm

]
with 

Ḡrn = −
∑
a∈Ω+

Bns
a (X).n]

Ḡrm = −
∑
a∈Ω+

Bns
a (X).m]

(3.35)

and {
¯̄Grn = N.n]

¯̄Grm = N.m]
(3.36)

Noticing that we have ¯̄u = αnn
] + αmm], then we can rewrite the deformation

gradient in (3.35) as:

Fh(X, t) = Ih + Bnsd +
[
Ḡ

′

r + ¯̄Gr

′

δΓs

]
¯̄u (3.37)

where

Ḡ
′

r = −
∑
a∈Ω+

Bns
a (X) and ¯̄Gr

′

= N (3.38)
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This decomposition can be related to equation (3.31) in which an interpolation of
the displacement is defined in the same manner. And we notice that these shape
functions do not depend on the current deformation state.

The virtual deformation gradient is interpolated in the same form:

δF(x, t) = Ih + Bnsδd + Ḡvδα+ ¯̄GvδαδΓs (3.39)
where δu and δα denote the virtual nodal displacement and virtual displacement

jump respectively. Then, the discretization of the virtual displacement gradient η
introduced in (3.14) takes the following form:

η = Bnsδd + Ḡvδα+ ¯̄GvδαδΓs (3.40)
for which the enhanced part introduced in (3.14) is defined as:

η̃ = Ḡvδα+ ¯̄GvδαδΓs (3.41)

Ḡv and ¯̄Gv are computed from Ḡr and ¯̄Gr by imposing the patch-test [69]
guaranteed by:

Gv = Gr −
1

AΩe

∫
Ωe

GrdΩ (3.42)

where AΩe =
∫

Ωe
dΩ is the area of the considered element Ωe in the initial

configuration. This allows equation (3.18b) (or equation (3.22b)) to be verified for
a constant Piola-Kirchhoff stress field P.

Taking into account (3.35), (3.36), (3.42) and the fact that the enhanced shape
functions are constant over the element, we have then:

Ḡvn = Ḡrn −
1

AΩe

∫
Ωe

ḠrndΩ︸ ︷︷ ︸
=0

− lΓs

AΩe

N.n] = − lΓs

AΩe

N.n]

Ḡvm = Ḡrm −
1

AΩe

∫
Ωe

ḠrmdΩ︸ ︷︷ ︸
=0

− lΓs

AΩe

N.m] = − lΓs

AΩe

N.m]

(3.43)

and {
¯̄Gvn = N.n]

¯̄Gvm = N.m]
(3.44)

It has to be noted that, with these shape functions at hand for a T3 element,
equations (3.22) and (3.27b) give very simple expressions since the different fields
involved in the formulation remain constant for such an element.
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We recall that the Hu-Washizu formulation may be expressed in terms of the
first Piola-Kirchhoff stress tensor P in (3.22), or in terms of the Kirchhoff stress
tensor τ in equation (3.27). The virtual shape functions defined above are the ones
that are supposed to be used with P.

Considering that the constitutive law for the bulk is, in our case, given in terms
of the Kirchhoff tensor stress, we need to express the virtual shape functions that
appear in the spatial version of the local equation (3.27) as:

ḡvn = − lΓs

AΩe

n[.n]

ḡvm = − lΓs

AΩe

n[.m]

(3.45)

and {
¯̄gvn

= n[.n]

¯̄gvm
= n[.m]

(3.46)

where n[ =

n[x 0

0 n[y
n[y n[x

, for which we have used the fact that the Kirchhoff stress

tensor is symmetric. n[x and n[y are the components of n[ defined as n[ = F̄−TN in
remark 3.1.1.

Finite element problem formulation

With the interpolation functions defined above in section 3.1.2, the following ex-
pressions are verified: 

∫
Ωe\Γs

ḡTvτ dΩ =

∫
Ωe\Γs

ḠT
vP dΩ∫

Γs

¯̄gv
Tτ |Γs

dΓ =

∫
Γs

¯̄Gv

T
P|Γs

dΓ

(3.47a)

(3.47b)

with ḡv = [ḡvn ḡvm ], Ḡv = [Ḡvn Ḡvm ], ¯̄gv = [¯̄gvn
¯̄gvm

] and ¯̄Gv = [ ¯̄Gvn
¯̄Gvm ].

We can easily show that, from definition (3.46) we have the following relation:

¯̄gv
Tτ |Γs

= [n] m]]Tτ |Γs
.n[ = [n] m]]T tΓs =

[
tn
tm

]
(3.48)
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where we have used the definition of the driving traction and its projection on
(n[,m[), as it was introduced in (3.28).

Indeed we have the following relations:

n].tΓs = tnn
].n[ + tmn].m[ = tn (3.49)

since, as it was specified in remark 3.1.1, n].m[ = 0, and n].n[ = 1.
In a similar manner, we can show that m].tΓs = tm.
Finally, we have: ∫

Γs

¯̄gv
Tτ |Γs

dΓ = lΓs

[
tn
tm

]
(3.50)

Using the same procedure, we show that :

∫
Ωe\Γs

ḡTvτ dΓ =
lΓs

AΩe

∫
Ωe\Γs

[n] m]]Tτ .n[ dΓ = lΓs [n
] m]]Tτ .n[ (3.51)

since in a T3 element, the stress field τ remains constant over the element.

Using equations (3.50) and (3.51), the discrete local equilibrium equation (3.47a)
is finally equivalent to:

[n] m]]Tτ .n[ =

[
tn
tm

]
(3.52)

We recall that tn and tm are respectively the normal and tangential components of
the driving traction that appears in the cohesive law. This cohesive law is expressed
in incremental form through the following scalar equations:

{
ṫn = ¯̄Can

(n,n)α̇n

ṫm = ¯̄Can
(m,m)α̇m

(3.53a)

(3.53b)

with ¯̄Can =

[
¯̄Can

(n,n) 0

0 ¯̄Can
(m,m)

]
.

The tangent modulus of the cohesive law is here supposed to be diagonal, which
implies that mode I and II do not interact with each other as it may be possible for
some special cohesive laws (see [26]).

Using the discretization specified in section 3.1.2, the system to be solved may
finally be sumed up as follows:
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Find (d,α) such that: 
Nel

A
e=1

[f int,e − f ext,e] = 0

he = 0, ∀e ∈ [1, Nel]

(3.54a)

(3.54b)

with 

f int,e =

∫
Ωe

BT
xτ dΩ

f ext,e =

∫
Ωe

NTbJ dΩ +

∫
∂tΩe

NThJ dΓ

he =

∫
Ωe\Γs

ḡTvτ |Ωe\Γs
dΩ +

∫
Γs

¯̄gv
T tΓsdΓ

= −`Γs [n
] m]]Tn[,Tτ |Ωe\Γs

+ `Γs

[
tn
tm

]

(3.55a)

(3.55b)

(3.55c)

(3.55d)

where d are the nodal displacements, α are the displacement jumps projected
along the different modes described in section 3.1.2, and Nel is the number of ele-
ments. N = [N1 N2 N3] is the matrix of shape functions for a standard T3 element,
Bx = [Bx,1 Bx,2 Bx,3] = LxN with Lx the matrix form of the ∇s

x operator referring
to the shape functions derivatives in the spatial configuration. J is the jacobian of
the transformation, such that J = det(F̄).

Remark 3.1.2. It has to be noticed that the stresses τ are a regular distribution
over Ωe, then we can write the following relation:

f int,e =

∫
Ωe

BT
xτ dΩ =

∫
Ωe\Γs

BT
xτ dΩ (3.56)

Remark 3.1.3. In the following part that deals with the linearization of system
(3.54), the external forces f ext,e are not taken into account since the examples pre-
sented in section 3.4 do not account for external forces. However, if these external
forces were to be accounted for, it has to be noticed that their linearization should not
be omitted since the jacobian of the transformation J appears in their formulation
in (3.55b).

Linearization of the discretized problem

The non-linear system (3.54) needs to be linearized with respect to (d,α) in order to
be solved in a Newton procedure. A detailed presentation of the full linearization of
(3.54) is proposed in appendix C. The final linearized system is written as follows:
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Nel

A
e=1

[δf int,e] =

Nel

A
e=1

[f ext,e − f int,e]

he + δhe = 0, ∀e ∈ [1, Nel]

(3.57a)

(3.57b)
where

δfint,e =

∫
Ωe

Bns,T
x

(
HTcanTr + τ̂

)
Bns
x dΩδd

−
∫

Ωe

Bns,T
x

(
HTcanTr + τ̂

) ∑
a∈Ω+

Bns
a,x.[n

] m]]dΩδα
(3.58)

and

δhe = −[n] m]]Tn[,ns,T
((
τ̂ + τ̌

) a=3∑
a=1

Bns
a,x + canTr

a=3∑
a=1

Ba,x

)
δd

+

[
[n] m]]Tn[,ns,T

((
τ̂ + τ̌

) ∑
a∈Ω+

Bns
a,x + canTr

∑
a∈Ω+

Ba,x

)
.[n] m]]

+

[
¯̄Can

(n,n) 0

0 ¯̄Can
(m,m)

]]
δα

(3.59)

Resolution of the discretized problem

The numerical solution of the linearized problem is obtained by introducing a pseudo-
time “t”. Let us consider a global iteration i of a time step n+ 1. We denote:

d(tn+1)(i) = d
(i)
n+1 α(tn+1)(i) = α

(i)
n+1 (3.60)

and

∆d
(i)
n+1 = d

(i+1)
n+1 − d

(i)
n+1 ∆α

(i)
n+1 = α

(i+1)
n+1 −α

(i)
n+1 (3.61)

With this “time” discretization expressions, the linearized system (3.57) to be
solved may be written:



Nel

A
e=1

{
∂f int,e

∂d

∣∣∣∣(i)
n+1

∆d
(i)
n+1 +

∂f int,e

∂α

∣∣∣∣(i)
n+1

∆α
(i)
n+1

}
=

Nel

A
e=1

{
f
ext,e(i)
n+1 − f

int,e(i)
n+1

}
h
e(i)
n+1 +

∂f int,e

∂d

∣∣∣∣(i)
n+1

∆d
(i)
n+1 +

∂f int,e

∂α

∣∣∣∣(i)
n+1

∆α
(i)
n+1 = 0

(3.62)
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which can be rewritten in matrix form:


Nel

A
e=1

{
K
e(i)
fd,n+1∆d

(i)
n+1 + K

e(i)
fα,n+1∆α

(i)
n+1

}
=

Nel

A
e=1

{
f
ext,e(i)
n+1 − f

int,e(i)
n+1

}
h
e(i)
n+1 + K

e(i)
hd,n+1∆d

(i)
n+1 + K

e(i)
hα,n+1∆α

(i)
n+1 = 0

(3.63a)

(3.63b)

where the matrices involved in this system rely on the linearization detailed
above. They are defined as:

K
e(i)
fd,n+1 =

∫
Ωe\Γs

BT
x canTrBxdΩ +

∫
Ωe\Γs

Bns,T
x τ̂Bns

x dΩ

K
e(i)
fα,n+1 =

∫
Ωe\Γs

BT
x canTrḡrdΩ +

∫
Ωe\Γs

Bns,T
x τ̂ ḡnsr dΩ

K
e(i)
hd,n+1 = ¯̄gv

ns,T
(
canTrBx +

(
τ̂ + τ̌

)
Bns
x

)
K
e(i)
hα,n+1 = ¯̄gv

ns,T
(
canTrḡr +

(
τ̂ + τ̌

)
ḡnsr

)
+

[
¯̄Can

(n,n) 0

0 ¯̄Can
(m,m)

]
(3.64)

where Bx =
∑a=3

a=1

∂Na

∂x
0

0 ∂Na

∂y
∂Na

∂y
∂Na

∂x

, Bns
x =

∑a=3
a=1


∂Na

∂x
0

∂Na

∂y
0

0 ∂Na

∂x

0 ∂Na

∂y

,
ḡr = −

∑
a∈Ω+ Ba,x.[n

] m]], ḡnsr = −
∑

a∈Ω+ Bns
a,x.[n

] m]],

¯̄gv
ns = −n[,ns.[n] m]], τ̂ =


τ11 τ12 0 0
τ12 τ22 0 0
0 0 τ11 τ12

0 0 τ12 τ22

 and τ̌ =


τ11 0 τ12 0
τ12 0 τ22 0
0 τ11 0 τ12

0 τ12 0 τ22

.

Remark 3.1.4. It has to be noted that, contrary to the small strain formulation in
section 2.1.2, and since we choose to formulate the problem in the current configu-
ration, all the quantities involved in the formulation, and particularly the different
matrices containing the derivatives of the shape functions as well as the spatial vec-
tors (n],m]) and (n[,m[), depend on the current pseudo-time step tn+1 and the
global iteration i. This is why their references are omitted in the definition of the
matrices in (3.64).

Remark 3.1.5. It also has to be noted that, contrary to the small strain case, the
matrices in (3.64) contain a “geometric” part that is not related to the material
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model, but to the non-linear transformation from the undeformed to the deformed
configuration. All these matrices can be put in the following general form:

K
e(i)
∗,n+1 = K

mat,e(i)
∗,n+1 + K

geo,e(i)
∗,n+1 (3.65)

where K
mat,e(i)
∗,n+1 contains the material tangent modulus among other quantities,

and K
geo,e(i)
∗,n+1 contains the “geometric” terms.

The resolution of this sytem is carried out using the same “operator split” method
as in the infinitesimal case. Thus, the reader is invited to go to section 2.1.2 for
further details concerning this matter.

The final problem can then be put in the general following form:

Nel

A
e=1

{
K̂
e(i)
n+1∆d

(i)
n+1

}
=

Nel

A
e=1

{
f
ext,e(i)
n+1 − f

int,e(i)
n+1

}
(3.66)

with

K̂
e(i)
n+1 = K

e(i)
fd,n+1 −K

e(i)
fα,n+1

[
K
e(i)
hα,n+1

]−1

K
e(i)
hd,n+1 (3.67)

System (3.66) is equivalent to the standard non-linear Finite Element problem,
the only difference is the formulation of the element tangent stiffness matrix K̂

e(i)
n+1

given in (3.67). This matrix is not symmetric which involves an appropriate reso-
lution of system (3.66). The fact that the global Finite Element procedure remains
unchanged highlights the main advantage of this method. Only a new element needs
to be implemented, the rest of the FE resolution architecture remains unchanged,
while the introduction of new degrees of freedom, as for X-FEM for example, involves
a specific treatment at the global level.

The full enhanced Finite Element resolution procedure is sumed up in the fol-
lowing box:
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Data: dn, αn
Result: dn+1, αn+1

i = 0;

while

[
ANel

e=1

{
K̂
e(i)
n+1∆d

(i)
n+1

}
−ANel

e=1

{
fext,en+1 − f int,en+1

}
> tol

]
do

for e = 1→ Nel do
Compute deformation gradient
F̄

(i)
n+1 = Ih + Bns∆d

(i)
n+1

Compute Kirchhoff stress and tangent modulus
τ

(i)
n+1 = f(F̄

(i)
n+1,qn)

c
an,(i)
Trn+1

if localization not yet detected then
K̂
e(i)
n+1 = K

e(i)
fd,n+1

else
j = 0

α
(i,j)
n+1 = αn

while
[

h
e(i,j)
n+1 > tol

]
do

F̄
h,(i,j)
n+1 = Ih + Bns∆d

(i)
n+1 + Ḡr∆α

(i,j)
n+1

begin
Compute material models for the bulk and disc. surface
τ

(i,j)
n+1 = f(F̄

(i,j)
n+1,qn)

c
an,(i,j)
Trn+1

∆t
(i,j)
Γs,(n,m),n+1 = ¯̄Can(i,j)

(n,m),n+1∆α
(i,j)
n+1

¯̄Can(i,j)

n+1

end

[n
],(i,j)
n+1 m

],(i,j)
n+1 ] = F̄

h,(i,j)
n+1 [N M]

[n
[,(i,j)
n+1 m

[,(i,j)
n+1 ] = F̄

h,(i,j)−T

n+1 [N M]

h
e,(i,j)
n+1 = −`Γs

[n
],(i,j)
n+1 m

],(i,j)
n+1 ]T n

[,T,(i,j)
n+1 τ

(i,j)
n+1 + `Γs

t
(i,j)
Γs,n+1

α
(i,j+1)
n+1 = α

(i,j)
n+1 −

[
K
e(i,j)
hα,n+1

]−1
h
e,(i,j)
n+1

j = j + 1
end
Compute updated deformation gradient, Kirchhoff stress and tangent
modulus
F̄

(i)
n+1 = Ih + Bns∆d

(i)
n+1 + Ḡr∆α

(i)
n+1 , τ (i)

n+1 = f(F̄
(i)
n+1,qn) , c

an,(i)
Trn+1

Compute enhanced tangent stiffness matrix

K̂
e,(i)
n+1 = K

e,(i)
fd,n+1 −K

e,(i)
fα,n+1

[
K
e,(i)
hα,n+1

]−1

K
e,(i)
hd,n+1

end
B

(i)
xn+1 = f(F̄h,(i)n+1 ,B)

f
int,e(i)
n+1 =

∫
Ωe B

(i),T
x n+1τ

(i)
n+1 dΩ

f
ext,e(i)
n+1 =

∫
Ωe NTb

(i)
n+1J dΩ +

∫
∂tΩe NTh

(i)
n+1J dΓ

end

Solve ANel

e=1

{
K̂
e,(i)
n+1∆d

(i+1)
n+1

}
= ANel

e=1

{
f
ext,e(i)
n+1 − f

int,e,(i)
n+1

}
to find d

(i+1)
n+1

i = i+ 1
end

Algorithm 2: Full resolution procedure
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Chapter 3. Ductile modeling with the strong discontinuity method in large strain hypothesis

where qn is the set of internal variables for the bulk constitutive model computed
at time tn.

3.2 Material model formulation and implementa-
tion

In this section, the material model for the bulk material is formulated and its numer-
ical implementation is discussed. Furthermore, a criterion different from the small
deformation case is formulated and discussed.

3.2.1 Bulk material model: Large strain von Mises plasticity
model

We recall that the bulk material has to be able to model the bulk dissipative mech-
anisms that occur during the pre-peak phase of the material response. This means
that, at least the plastic dissipation has to be taken into account in our material
model. In order to circumvent the convergence issues in the implicit non-linear
global problem resolution induced by Lemaitre’s coupled damage-plasticity model,
we choose to use an isotropic von Mises plasticity model for the bulk material,
combined with a Rice & Tracey void growth model and its associated coalescence
criterion, that we will use as the criterion that triggers the introduction of a dis-
continuity surface. However, combining a coupled damage-plasticity model such as
Lemaitre’s in a finite strain scenario is in perspective.

Since in this part of the work a large strain hypothesis is considered, the von
Mises plasticity model is not straightforward, and a proper adaptation of the small
strain case has to be made. The following section deals with the formulation of the
von Mises J2-plasticity model in the large strain scenario.

3.2.2 Theoretical formulation

Contrary to the small strain hypothesis in which the additive decomposition of the
total strain ε into an elastic part and a plastic part is assumed, in a finite strain
hypothesis, we use a multiplicative decomposition of the total deformation gradient
F:

F = FeFp (3.68)

where we recall that the deformation gradient defines the transformation between
the undeformed and the deformed configurations:
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F =
∂x

∂X
(3.69)

where X ∈ ΩX refers to the reference configuration (or undeformed) and x ∈
ωx = ϕ(ΩX) refers to the deformed (or spatial) configuration.

See figure 3.6 in which the motion decomposition is schematically represented.

Figure 3.6: Multiplicative decomposition of the deformation gradient

Such a decomposition has been considered by many authors for the past forty
years (see e.g. Lee and Liu [92], Lee [93], Kroner and Teodosiu [85], Mandel
[103, 104], Kratochvil [84], Sidoroff [142], Nemat-Nasser [117], ...etc...). This de-
compostion relies on the principle of an intermediate local stress-free configuration
which is now known to lead to a simple class of integration algorithms, and in
particular to a straightforward extension of the return-mapping algorithm of the in-
finitesimal J2-plasticity theory, which is of great interest in our case. This principle
relies on micromechanical considerations with regards to the plastic flow occurring
in a single-crystal, studied by G.I. Taylor and other authors (see [154, 155]). They
defined the plastic part of the deformation gradient as the dislocation motion of a
crystal subjected to a single slip-system, while the elastic part is the deformation
caused by stretching and rotation of the crystal lattice. This principle has been
extended to crystal subjected to several slip systems, for which a review of articles
has been proposed by Asaro [4].

The principle of the local intermediate stress-free configuration implies that we
can interpret the tensor Fe−1 as the deformation that releases the stresses from the
deformed configuration.

109



Chapter 3. Ductile modeling with the strong discontinuity method in large strain hypothesis

As it was presented in section 3.1.1, we chose to write the governing equilibrium
equations in the spatial (or Eulerian) configuration since this configuration deals
with the Kirchhoff stress tensor τ which remains symmetric as the Cauchy stress
tensor σ, which is computationally more convenient. Thus we need to define all
the strain and stress tensors in the spatial configuration. Associated to this current
configuration, the left Cauchy-Green strain tensor is defined as:

b = FFT (3.70)

Another useful strain measure is the right Cauchy-Green strain tensor (related
to the reference configuration) defined as:

C = FTF (3.71)

and its plastic part:

Cp = FpTFp (3.72)

which is useful to define the elastic left Cauchy-Green tensor:

be = FeFeT = FFp−1Fp−TFT = F
[
FpTFp

]−1

FT (3.73)

which, in view of 3.72 can be rewritten:

be = FCp−1FT (3.74)

Model formulation

Assuming an isotropic stress response and an incompressible plastic flow, we can
write:

Jp = detFp = detCp = 1 (3.75)

which leads to:

J = detF = detFedetFp = detFe = Je (3.76)

Considering these assumptions, we proceed to the model formulation as follows.
This model was first proposed by Simo (see [143] for the continuum formulation and
[144] for its integration algorithm). Assuming the notion of a stress-free intermediate
configuration, the free energy function is of the form:

Ψ = U(Je) + Ψ̄(b̄e) (3.77)
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where b̄e = Je−2/3be is the volume preserving elastic left Cauchy-Green tensor
and U and Ψ̄ are the volumetric and deviatoric part of the total free energy Ψ,
respectively. They take the following form:{

U(Je) = 1
2
κ
[

1
2
(Je2 − 1)− ln(Je)

]
Ψ̄(b̄e) = 1

2
µ
(
tr[b̄e]− 3

) (3.78)

where κ and µ are the bulk modulus and shear modulus, respectively. This
uncoupled stored energy function leads to an uncoupled volumetric-deviatoric stress-
strain relationship, defined as follows:

τ = Jep1 + s (3.79)

where 1 is the second-order identity tensor, and with:{
p = U

′
(Je) = κ

2
(Je2 − 1)/Je

s = dev[τ ] = µdev[b̄e]
(3.80)

Let us now define the Mises-Huber yield function, which is the finite strain
equivalent of the von Mises infinitesimal yield function:

φ(τ , r) = ||dev[τ ]|| −
√

2
3
[σy + q(r)] (3.81)

where q(r) is the non-linear hardening function and r is the standard hardening
parameter.

The associative-flow rule is uniquely defined by the principle of maximum dissi-
pation, and this flow rule can be defined in the spatial description as:

Lvbe = −2
3
γtr[be]n (3.82)

where Lv is the Lie derivative, γ is the plastic multiplier, and where as in the
infinitesimal theory, n is defined as:

n =
s

||s||
(3.83)

Since in the integration algorithm, detailed in a further paragraph, the flow rule
is defined in terms of the plastic strain tensor C̄p−1

n+1 at time step n+ 1, the flow rule
can also be defined in the reference configuration as:

∂

∂t
C̄
p−1

= −2
3
γ tr[be]F−1nF−T (3.84)

where C̄p−1 is the inverse of the volume preserving plastic right Cauchy-Green
tensor.

The evolution of the hardening parameter is defined as:
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ṙ =

√
2

3
γ (3.85)

and γ is the plastic multiplier that satisfies the standard Kuhn-Tucker load-
ing/unloading conditions:

γ > 0, φ(τ , r) 6 0, γφ(τ , r) = 0 (3.86)

with the consistency condition:

γφ̇(τ , r) = 0 (3.87)

Integration algorithm

We now deal with the integration algorithm of the aforementioned constitutive
model. It was developed by Simo [144, 145]. Using a backward Euler difference
scheme together with the plastic flow rule (3.84) and the evolution of the hardening
variable (3.85), we obtain the following discrete evolution equations:{

C̄
p−1
n+1 − C̄

p−1
n = −2

3
∆γ
[
Cp−1
n+1 : Cn+1

]
F−1
n+1nn+1F

−T
n+1

rn+1 − rn =
√

2
3
∆γ

(3.88)

After some algebraic manipulations, the spatial discrete evolution equations are
written: 

b̄
e
n+1 = f̄n+1b̄

e
nf̄
T
n+1 − 2

3
∆γ tr[b̄en+1]nn+1

nn+1 =
sn+1

||sn+1||
sn+1 = dev[τ ]

rn+1 = rn +
√

2
3
∆γ

(3.89)

where f̄n+1 is the volume preserving part of the deformation gradient between
the deformed configuration at time step tn and the deformed configuration at time
step tn+1. It is expressed as:

f̄n+1 = F̄n+1F̄
−1
n = (Jn+1/Jn)−1/3fn+1 = (Jn+1/Jn)−1/3Fn+1F

−1
n (3.90)

where fn+1 = Fn+1F
−1
n .

With these developments at hand, we can now define the return-mapping algo-
rithm, and as in the infinitesimal case, it is a strain driven algorithm. It is based on
the elastic predictor and plastic corrector standard procedure, which is summed up
in the following paragraph.
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Let us consider a trial state in which plastic flow does not occur at time step
tn+1. We have then: {

Cp−1,trial
n+1 = Cp−1

n

rtrialn+1 = rn
(3.91)

Then, we can express the trial elastic state of the different variables:

τ trialn+1 = pn+1Jn+11 + strialn+1

strialn+1 = µdev[b̄
e,trial
n+1 ]

ptrialn+1 = U
′
(Jn+1)

b̄
e,trial
n+1 = f̄n+1b̄

e
nf̄
T
n+1

rtrialn+1 = rn

(3.92)

And the trial yield function is expressed as:

φtrialn+1 = φ(τ trialn+1 , r
trial
n+1 ) = ||dev[τ trialn+1 ]|| −

√
2
3
[σy + q(rtrialn+1 )] (3.93)

Then, if φtrialn+1 6 0 the Kuhn-Tucker conditions in (3.86) are satisfied with ∆γ =
0, and this trial elastic state is the solution at time tn+1. Thus, we can define the
updated variables as (•)n+1 = (•)trialn+1 where (•)trialn+1 are defined in equation (3.92).

However, if φtrialn+1 > 0, then the Kuhn-Tucker conditions are not satisfied and
this trial elastic state is not admissible, so that τ n+1 6= τ trialn+1 . Time step tn+1 is a
plastic step with ∆γ 6= 0. The radial return procedure corresponding to a plastic
step is detailed in the following paragraph.

By taking the trace of b̄en+1 in expression (3.89), we can write:

tr[b̄en+1] = tr[b̄en+1] (3.94)

which, using the expressions of the elastic response in (3.92), leads to:

sn+1 = strialn+1 − 2
3
µ∆γ tr[b̄e,trialn+1 ]nn+1 (3.95)

After some manipulations in (3.95), we can write:

ntrialn+1 =
strialn+1

||strialn+1 ||
= nn+1 (3.96)

which implies the following equation:

||sn+1||+ 2µ̄∆γ = ||strialn+1 || (3.97)

where

µ̄ = 1
3
µtr[b̄e,trialn+1 ] (3.98)
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which will be useful to compute the updated yield function φn+1.

Now we need to compute the plastic multiplier ∆γ, which is done, as in the
standard infinitesimal case, by iteratively solving φ(τ n+1, rn+1) = 0 with a Newton
scheme. It cannot be directly computed since the hardening function q(r) is non
linear in our case. Substituting equation (3.97) in (3.81), we can express the following
equation to be solved in order to obtain ∆γ:

φ(∆γ) = ||strialn+1 || −
√

2
3
σy −

[√
2
3
q(rn +

√
2
3
∆γ) + 2µ̄∆γ

]
= 0 (3.99)

Then ∆γ is computed using the standard Newton scheme as follows:

∆γ(k+1) = ∆γ(k+1) − φ(∆γ(k))

φ′(∆γ(k))
(3.100)

which is solved until φ(∆γ(k+1)) 6 0.
In equation (3.100), φ′

(∆γ(k)) is expressed:

φ
′
(∆γ(k)) = −2µ̄

[
1 +

q
′
(rn +

√
2
3
∆γ(k))

3µ̄

]
(3.101)

Remark 3.2.1. In the framework of finite strain J2-plasticiy theory, other numerical
procedures exist. For example, Simo [146] developed an elegant procedure that is
very similar to the one presented above, the difference being that the procedure relies
on the principal stretches defined by the spectral decomposition of the left Cauchy-
Green tensor b, which allows to obtain the logarithmic strain ε, the problem then
leads to a similar formulation of the infinitesimal problem, which is solved in the
principal basis. A straightforward change of basis to the original global basis leads to
a similar formulation of the updated Kirchhoff stress tensor, and updated left Cauchy-
Green strain tensor. The linearization leads to the formulation of the elastic-plastic
modulus in a similar manner as in the infinitesimal case.

We also need to compute the spatial consistent tangent elastic-plastic modulus.
For details of the linearization procedure leading to the following formulation of the
elasto-plastic modulus, please refer to [144, 145].

For an elastic step, the elasticity tensor is expressed as:

c = (JU ′)′J1⊗ 1− 2JU ′I + c̄ (3.102)

where:

c̄ = 2µ̄[I − 1
3
1⊗ 1]− 2

3
||s||[n⊗ 1 + 1⊗ n] (3.103)

and where we recall that:
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s = µdev[b̄

e
]

n = s/||s||
µ̄ = 1

3
µtr[b̄e]

(3.104)

For a plastic step, after the exact linearization proposed by Simo [144, 145], we
obtain the following expression for the consistent elastic-plastic tangent modulus:

cepn+1 = ctrialn+1 − β1c̄
trial
n+1 − 2µ̄β3n⊗ n− 2µ̄β4

[
n⊗ dev[n2]

]s
(3.105)

where [•]s refers to the symmetric part of [•], and where:

β0 = 1 +
q′(rn+1)

3µ̄

β1 =
2µ̄∆γ

||strialn+1 ||

β2 = 2
3

[
1− 1

β0

] ||strialn+1 ||
µ̄

∆γ

β3 =
1

β0

− β1 + β2

β4 =
[ 1

β0

− β1

] ||strialn+1 ||
µ̄

(3.106)

Remark 3.2.2. This consistent elasto-plastic tangent modulus corresponds to the
spatial modulus defined as canTr that appears in the definition of the element tan-
gent stiffness defined in (3.64). We recall that it appears in the rate form of the
constitutive equation:

τ̊ Tr = Lv(τ ) = canTr : ε̇ = cep : ε̇ (3.107)
where τ̊ Tr is the Trusdell rate of the Kirchhoff stress.

It is actually computed by first “pulling back” the stress tensor s in the reference
configuration using the following relation: S = F−1sF−T , then derivating this mate-
rial stress tensor with respect to C and finally “pushing forward” this derivative in
the spatial configuration with the relation:

cepijkl = 2FiIFjJFkKFlL
∂SIJ
∂CKL

(3.108)

where Einstein’s summation convention has been adopted. Again, please refer to
[144, 145] for details regarding the linearization procedure.

Since in the present finite strain formulation the discrete cohesive law has the
same formulation as in the small strain case, the reader is invited to refer to section
2.2.2 for details concerning this matter.
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Chapter 3. Ductile modeling with the strong discontinuity method in large strain hypothesis

3.3 Instability issue

There is still a numerical difficulty to circumvent in the presence of strong dis-
continuities in a non-linear finite element framework. Indeed, when a surface of
discontinuity of displacement is introduced, because of the non-smooth transition
between the rigid phase and the plastic/damageable phase of the cohesive law, a
loss of convergence may occur in some cases during the Newton-Raphson non-linear
solving procedure at global level. This is in fact due to the presence of a bifurcation
point that requires a special treatment to circumvent this issue. At this bifurcation
point, two branches are solutions of the global equilibrium equation. Thus numeri-
cally, the solution oscillates between these two solutions until the maximum number
of iterations is reached at the time step of interest.

To overcome this problem, a possible way is to use a small perturbation to
smooth the different equilibrium paths occurring when crossing a bifurcation point.
It remains to make sure that the solution lies on the right equilibrium path, which
corresponds to the path with minimal energy. This is done considering that the
unique stable path remains continuous, so continuation should be ensured with the
use of small enough time steps.

The use of perturbation methods implies that the solution loses its physical sense,
the “amount of loss of physical sense” being proportional to the amount of perturba-
tion. Thus, the perturbation should remain small enough to keep the physical sense
of the solution.

In the following subsection, the viscosity perturbation method introduced by
Oliver et al. [121] is detailed.

3.3.1 Viscosity regularization

The method introduces an artificial viscous behavior of the discontinuity surface.
An additional term appears in the weak form of the traction continuity condition
(3.27b). It is in this context expressed as follows:

∀(w,η),

∫
Ω\Γs

˜̄ηsx : τ dΩ +

∫
Γs

¯̄w.[τ |Γs
.n + γ ˙̄̄u] dΓ = 0 (3.109)

The viscosity parameter γ drives the amount of perturbation of the initial solu-
tion.

The constitutive law on the discontinuity surface is expressed in rate form as:

ṫ∗Γs
= ¯̄Can ˙̄̄u + γ ¨̄̄u (3.110)
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3.3. Instability issue

where ṫ∗Γs
is the total traction on the discontinuity which includes the viscosity

contribution.
Projecting this equation on basis (n],m]), we obtain the following expression for

the time derivatives of the components of the driving traction ṫ∗Γs
on basis (n],m]):

[n] m]]T .ṫ∗Γs
=

[
ṫn
ṫm

]
=

[
¯̄Can

(n,n) 0

0 ¯̄Can
(m,m)

][
α̇n
α̇m

]
+ γ

[
α̈n
α̈m

]
(3.111)

where we have used the decomposition: ¯̄u = αnn
] + αmm], and its time deriva-

tion by a “pull-back/push-forward” operation, as it is detailed in appendix C, and
particularly in (C.16).

Remark 3.3.1. In equation (3.110) ¯̄Can is different from

[
¯̄Can

(n,n) 0

0 ¯̄Can
(m,m)

]
that

appears in equation (3.116), since a projection has been performed between (3.110)
and (3.111).

Using the time discretization proposed in section 3.1.2, this constitutive equation
is written in incremental form as:

∆t
∗,(i)
(n,m),n+1 = ¯̄C

an,(i)
(n,m),n+1∆α

(i)
n+1 + γ∆α̇

(i)
n+1 (3.112)

where ∆t
∗,(i)
(n,m),n+1 =

[
∆t

(i)
n,n+1

∆t
(i)
m,n+1

]
, ¯̄C

(i)
(n,m),n+1 =

[
¯̄C
an,(i)
(n,n),n+1 0

0 ¯̄C
an,(i)
(m,m),n+1

]
is the con-

sistent tangent moduli of the discontinuity surface constitutive law ( ¯̄C
an,(i)
(n,n),n+1 for

mode I and ¯̄C
an,(i)
(m,m),n+1 for mode II), and where ∆•(i)

n+1 is defined as:

∆•(i)
n+1 = •(i+1)

n+1 − •
(i)
n+1 (3.113)

Using an Euler implicit scheme to approximate the discontinuity jump rate α̇(i)
n+1,

we have:

α̇
(i)
n+1 '

α
(i)
n+1 −αn
tn+1 − tn

(3.114)

which gives:

∆α̇
(i)
n+1 = α̇

(i+1)
n+1 − α̇

(i)
n+1 =

α
(i+1)
n+1 −αn
tn+1 − tn

−
α

(i)
n+1 −αn
tn+1 − tn

=
∆α

(i)
n+1

∆tn+1

(3.115)

And the perturbed constitutive law in equation (3.116) is then written:
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Chapter 3. Ductile modeling with the strong discontinuity method in large strain hypothesis

∆t
∗,(i)
(n,m),n+1 =

[ ¯̄C
an,(i)
(n,m),n+1 + 1

γ

∆tn+1

]
∆α

(i)
n+1 (3.116)

With these notations, the fully linearized system (3.63) slightly changes from the
previous definition, by adding a new term in K

e(i)
hα,n+1:

K̃
e(i)
hα,n+1 = K

e(i)
hα,n+1 + `Γs1

γ

∆tn+1

(3.117)

The updated solution procedure in box 3.1.2 is then the following:

Find (d,α) such that: 
Nel

A
e=1

[f int,e − f ext,e] = 0

he = 0, ∀e ∈ [1, Nel]

(3.118a)

(3.118b)

with 

f int,e =

∫
Ωe

BT
xτ dΩ

f ext,e =

∫
Ωe

NTbJ dΩ +

∫
∂tΩe

NThJ dΓ

he =

∫
Ωe\Γs

ḡTvτ |Ωe\Γs
dΩ +

∫
Γs

¯̄gv
T (tΓs + γ ˙̄̄u)dΓ

= −`Γs [n
] m]]Tn[,Tτ |Ωe\Γs

.n[ + `Γs

([tn
tm

]
+ γα̇

)

(3.119a)

(3.119b)

(3.119c)

(3.119d)

Critical time step and automatic time stepping implementation

Oliver and Huespe [121] highlighted the fact that associating an artificial viscosity
behavior to the discontinuity surface induces a critical time step above which fol-
lowing the stable continuous equilibrium path is no longer ensured. Indeed, since in
the case of a quasi-static problem the resolution relies on a pseudo-time discretiza-
tion, for a given time-step with a given perturbation, nothing guarantees that the
response will lie on the stable equilibrium branch, and the solution might fall on the
unstable branch.

The method detailed above only ensures the continuity of the stable equilibrium
path, but does not ensure its uniqueness. Thus, an appropriate procedure should
be used to ensure that the pseudo-time discretization allows the solution to remain
on the stable equilibrium path. In other words, this procedure should control the
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3.3. Instability issue

pseudo-time step discretization with regards to the amount of perturbation intro-
duced.

The following deals with the critical time step evaluation, which directly allows
an automatization of the time step to ensure the algorithmic uniqueness of the
solution.

We recall that the fully linearized system (3.63) is written :


Nel

A
e=1

0

0 χΩe,loc


K

e(i)
fd,n+1 K

e(i)
fα,n+1

K
e(i)
hd,n+1 K̃

e(i)
hα,n+1


∆d

(i)
n+1

∆α
(i)
n+1

 =

f
ext,e(i)
n+1 − f

int,e(i)
n+1

0

 (3.120)

where


Nel

A
e=1

0

0 χΩe,loc

 is an interpretation of the fact that the first set of equations

is assembled over the whole structure, while the second set of equations is only
written for the localized elements (χΩe,loc is the characteristic function of the domain
Ωe,loc). This system can be rewritten:

[K̂
(i)
n+1]∆β

(i)
n+1 = r̂

(i)
n+1 (3.121)

with

β
(i)
n+1 =

d
(i)
n+1

α
(i)
n+1

 (3.122)

and

r̂
(i)
n+1 =

f
ext,e(i)
n+1 − f

int,e(i)
n+1

0

 (3.123)

If the solution is not unique at a given time step tn+1, we have:

∆β
(1),(i)
n+1 −∆β

(2),(i)
n+1 6= 0 (3.124)

and

[K̂
(i)
n+1](∆β

(1),(i)
n+1 −∆β

(2),(i)
n+1 ) = 0 (3.125)

which implies the singularity of matrix [K̂
(i)
n+1].
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Chapter 3. Ductile modeling with the strong discontinuity method in large strain hypothesis

Thus, the positive definiteness of matrix [K̂
(i)
n+1] will ensure the uniqueness of the

solution. Ensuring this positive definiteness will then allow us to define a relation
between the viscosity parameter and the critical time step during the discontinuity
evolution.

If we consider that the original stiffness matrix [K
e(i)
fd,n+1] defined in (3.64) is posi-

tive definite, which is consistent with the fact that we always introduce a discontinu-
ity while the global tangent stiffness remains positive (see remark 3.3.2 below), then
a necessary condition for the positive definiteness of matrix [K̂

(i)
n+1] is the positive

definiteness of matrix [K̃
e(i)
hα,n+1].

Oliver and Huespe [121] proposed that a reasonable approximation of this con-
dition is to state that the symmetric part of this matrix remains positive, which is
expressed as:

[K
e(i)
hα,n+1 + 1

γ

∆tn+1

]s → positive ∀e ∈ [1, Nel] (3.126)

which is equivalently expressed as

λ
e(i)
min,n+1 +

γ

∆tn+1

> 0 ∀e ∈ [1, Nel] (3.127)

with λemin being the minimum eigenvalue of elementary matrix [K
e(i)
hα,n+1].

Then, the critical time increment may be expressed as:

∆tcritn+1 = min
e

( γ

|λemin,n+1|

)
(3.128)

In a practical point of view, the critical time step should be computed for every
iteration of a given time step and for each localized element. Finding the minimum
of these values is simply done, at element level, by comparison between the current
element’s critical time step and the critical time step computed for the last localized
element. At the end of the current converged time step, the new value of the time
incement is set according to the computed critical time increment.

An alternative to ensure uniqueness is to fix the time increment and to adapt the
value of the perturbation, while still ensuring equation (3.126). However, considering
that the value of the perturbation evolves independently from the user, nothing
guarantees that the perturbation is small enough to keep the physical sense of the
solution. Both cases are discussed in section 3.3.1 below.

Remark 3.3.2. Working in the finite deformation range implies that even with an
elastic behavior, the global response can enter softening due to the geometric non-
linearities. As a consequence, the solution may not be unique and singularity of the
global tangent stiffness matrix may occur. In a structural analysis point of view,
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3.3. Instability issue

this means that for a simple tensile test, material striction occurs even for an elastic
behavior, and the response becomes mesh-dependent.

The purpose of the strong discontinuity method is to preclude this singularity
by introducing a surfacic behavior that is in charge of modeling all the softening
behavior of the structure. Thus, it should always be introduced before the global
response begins to soften.

In other words, the criterion used to introduce the discontinuity should contain
both the “material” condition and the “geometric” condition. Contrary to the small
strain case, the positive definiteness of the global stiffness tangent matrix doesn’t
only involve positive definiteness of the acoustic tensor:

det(n.C(an).n) > 0 ∀n (3.129)

but it also contains some geometric information since the global tangent stiffness
matrix may now be written:

[K̃] = [K̃mat] + [K̃geo] (3.130)

Such a unified localization condition is not established here, but we recall that
it should be kept in mind when establishing a localization criterion. Authors have
worked on the establishement of a unified “geometric” and material localization con-
dition (see Armero [2] for example). Having considered this point, in the following,
we ensure that the discontinuity is always introduced before the global response begins
to soften by considering reasonable strain levels (below the “geometric” condition) at
the onset of failure. This is generally true in a ductile metal failure analysis in which
equivalent fracture strain levels are in general below 0.3.

These considerations mean that it is reasonable to consider that the matrix
K
e(i)
fd,n+1 is always positive definite.

Numerical examples

In this section, examples attesting the performance of the viscous regularization de-
tailed above are shown. As an introducing example, a simple tensile test considering
plane strain hypothesis is shown. As the test is completely homogeneous, nothing
in the model drives the crack initiation and the discontinuity is then introduced
within every element of the structure exactly at the same time. This is a good
example to show the loss of uniqueness problem and the numerical issues that it
implies at global level, since several discontinuities are activated at the same time.
The considered mesh along with the boundary conditions are shown in figure 3.7.

The material is an elasto-plastic material, following the J2-plasticity model de-
tailed in section 3.2, with an exponential hardening law. The criterion used to
introduce the discontinuity is a Rice and Tracey criterion, as detailed in section 3.2,
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Chapter 3. Ductile modeling with the strong discontinuity method in large strain hypothesis

U

Figure 3.7: Mesh and boundary conditions

and parameters are homogeneous in the model. The model parameters are sumed
up in table 3.1

Finite strain plasticity model
Young’s modulus E = 210 GPa
Poisson’s ratio ν = 0.3
Hardening law σy = 620 + 3300(1− exp (−0.4R))

Cohesive model

Rice & Tracey criterion
(
R
R0

)
c

= 1.3

Fracture energy density Gc = 1000 MPa.mm

Table 3.1: Model parameters for the volumic and surfacic models

If no procedure is undertaken to regularize the bifurcation problem, then at the
onset of localization convergence is lost, as shown in table 3.2 which exhibits the
residual norm and the energy norm for each iteration of the non-converged step.
The time increment is the same for every time step of the computation and is set
to 0.01.

It is obvious that the solution oscillates between two non-converged solutions,
one exhibiting a negative energy norm, which is typical of loss of "positivity".

The same test is performed with the viscous regularization implemented, but
without the auto time-stepping procedure. The value of the viscosity is set to 0.1
which is low enough to keep a physical sense to the solution. Results in terms of
convergence are shown in table 3.3

We can see that convergence is still not ensured. The time increment is actually
too large and the solution falls in the unstable branch of the equilibrium path. It is
obvious that a path continuing procedure such as the auto time stepping procedure
detailed above is necessary to preclude this branch switching.

In this last test, the auto-time stepping procedure is implemented and results in
terms of convergence are shown in table 3.4, for the time step that corresponds to
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3.3. Instability issue

Iteration Residual norm Energy norm
1 7.759× 103 2.713× 102

2 1.194× 103 −1.968× 101

3 2.046× 102 1.829× 10−1

4 7.821× 101 −7.425× 10−2

5 2.122× 102 1.968× 10−1

6 7.822× 101 −7.426× 10−2

7 2.122× 102 1.968× 10−1

8 7.822× 101 −7.426× 10−2

9 2.122× 102 1.968× 10−1

10 7.822× 101 −7.426× 10−2

Table 3.2: Residuals during the Newton iterative procedure at the non-converged
time step corresponding to the onset of localization

Iteration Residual norm Energy norm
1 7.759× 103 2.713× 102

2 1.171× 103 −1.934× 101

3 2.061× 102 1.856× 10−1

4 7.781× 101 −7.501× 10−2

5 2.153× 102 2.027× 10−1

6 7.781× 101 −7.501× 10−2

7 2.153× 102 2.027× 10−1

8 7.781× 101 −7.501× 10−2

9 2.153× 102 2.027× 10−1

10 7.781× 101 −7.501× 10−2

Table 3.3: Residuals during the Newton iterative procedure at the non-converged
time step with viscous regularization
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Chapter 3. Ductile modeling with the strong discontinuity method in large strain hypothesis

the discontinuity introduction.

Iteration Residual norm Energy norm
1 7.759× 103 2.713× 102

2 5.097× 101 1.171× 10−1

3 5.481 5.323× 10−4

4 1.801× 10−1 5.749× 10−7

5 5.941× 10−3 6.256× 10−10

6 1.960× 10−4 6.805× 10−13

7 6.460× 10−6 7.397× 10−16

8 2.133× 10−7 8.075× 10−19

Table 3.4: Residuals during the Newton iterative procedure at the time step at which
discontinuities are introduced, with viscous regularization and auto-time stepping

It is shown that convergence is ensured, and the time step dramatically decreases
to a value of ∆t = 6.568× 10−5 s, while it was initially set to ∆t = 1× 10−2 s at
the previous time step.

An alternative procedure to ensure uniqueness would be to set the viscosity
parameter automatically with regards to the current time increment, while still
ensuring equation (3.127). Then the critical viscosity parameter is computed as:

γcrit = min
e

( |λemin,n+1|
∆tn+1

)
(3.131)

The main advantage of this technique is that the time increment remains fixed
and thus does not dramatically decrease as in the previous test (see table 3.5). The
main drawback is that nothing drives the amount of viscosity with regards to the
physical sense of the solution. In order to show the loss of physical sense of the
solution, a final test is performed with exactly the same parameters as the previous
test, the unique difference being that the viscosity parameter is set automatically
using equation (3.131).

The responses for both cases (automatic time increment and automatic viscosity
parameter) are plotted in figure 3.8.

Test type visc. par. Time inc. (s) Time steps numb. CPU time (s)
Auto time 1× 10−1 ∼ 7.65× 10−5 1.0515× 104 1.085× 101

Auto visc. par. ∼ 1.2× 101 1× 10−2 5.60× 102 4.5× 10−1

Table 3.5: Comparison of automatic time increment procedure and automatic vis-
cosity procedure
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Figure 3.8: Responses with two different perturbation regularization procedures
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As it is shown in table 3.5, the automatically computed viscosity parameter is
quite high and thus explains why both curves in figure 3.8 are not superimposed.
Even though with the automatic viscosity computation, the solution remains unique
and is computed very quickly, it is obvious that for this test the physical sense of
this solution is not well preserved, as we can see in figure 3.8 that a non-negligeable
residual force remains at the end of the test.

In the following paragraph, a sensitivity analysis is performed with regards to the
viscosity parameter for the same test and for the case of automatic time increment
computation. Results in terms of global responses are shown, along with a table
gathering results in terms of total CPU time, average automatic time increment
and number of time steps (see table 3.6 and figure 3.9). The end of computation is
considered when the final displacement reaches 28 mm.

Test numb. Visc. par. Av. time inc. (s) Time steps num. CPU time (s)
1 1× 10−2 ∼ 7.65× 10−6 1.045 45× 105 9.955× 101

2 1× 10−1 ∼ 7.65× 10−5 1.0515× 104 1.085× 101

3 1 ∼ 7.31× 10−4 1.107× 103 1.28
4 1.0× 101 ∼ 7.05× 10−3 1.61× 102 1.9× 10−1

5 1.00× 102 ∼ 6.80× 10−2 6.2× 101 6× 10−2

Table 3.6: Computational results for different viscosity parameters

We can see from table 3.6 that very low values of the viscosity parameter imply
dramatically high computational costs, while they allow to keep a realistic physical
sense. On the other hand, high values of the viscosity parameter induce a loss of
physical sense while implying very low computation costs. From these results and
for this test, we conclude that reasonable values for the viscosity parameter are
between 0.1 and 1. This range allows the physical sense to be realistic while keeping
reasonable computational costs. However, this conclusion might only be true for
this test setting, and other numerical examples should be performed to confirm
these conclusions.

3.4 Numerical examples

In this section, every mentioned numerical example considers the regularization
method mentioned above. Mode I, mode II and mixed mode discontinuity opening
are also considered depending on the studied case.
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Figure 3.9: Responses for different values of viscosity parameters
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3.4.1 Simple tensile test in mode I fracture

As it was performed in earlier numerical examples, a simple tensile test is undertaken
to show the regularizing capabilities of the method. An element is "weakened" in
the lower region of the mesh to simulate the presence of a micro-defect which drives
the onset of localization, which is performed using a Rice and Tracey criterion. For
this "weakened" element, the Rice & Tracey criterion is chosen to be slightly lower
(( R
R0

)c = 1.29) than for the rest of the mesh ( R
R0

)c = 1.30). As for the rest of
the material models, the same parameters as in section 3.3.1 are used for this test,
and the normal to the discontinuity surface is chosen according to the maximum
principal stress direction, as for the examples presented in section 3.3.1.

The considered fine mesh contains identical elements with a size ten times smaller
than the coarse mesh (the mesh considered for all the previous tests in section 3.3.1).
Results in terms of reaction/displacement are shown in figure 3.11 along with the
meshes and boundary conditions. The final deformed meshes are plotted on figure
3.12 where the discontinuity opening in mode I is also plotted.

U

U

Figure 3.10: Meshes and boundary conditions

It is obvious that the post-peak phase of the response is regularized for this
example. The only difference between the responses is a slight shift of the peak due
to difference of the size of the “weakened” element used to onset the localization.
Indeed, for the coarse mesh, once the first element is localized, half of the section
of the specimen is unloading due to the cohesive behavior in the localized element,
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Figure 3.11: Reaction/displacement curves
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Figure 3.12: Discontinuity opening in mode I on deformed meshes (×2) at the end
of the computation
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while only a tenth of the section specimen is unloading at the onset of localization
for the fine mesh. This explains the slight difference between the post-peak phases
for the two considered meshes.
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3.4.2 Simple tensile test exhibiting mixed mode fracture

A similar test was performed, this time considering mode II and mixed mode frac-
ture. An element is also “weakened” at the bottom of the specimen, using the same
values for the Rice & Tracey criterion as in the previous example. We recall that
the constitutive model used for the bulk material is a von Mises plasticity model.

For this test, the discontinuity surface is introduced in such a way that its normal
is normal to the maximum shear direction, that is 45◦ with respect to the maximum
principal direction. This direction corresponds approximately to the direction of
localization given by the loss of ellipticity mathematical condition, in the case of
a von Mises plasticity constitutive model for a simple tensile test in plane strain
hypothesis. There are actually two directions that give an even maximum shear,
we choose to arbitrarily impose the direction of the discontinuity surface in such a
way that the scalar product of m (the tangent vector to the discontinuity surface)
with the maximum principal direction nI remains negative. The total fracture en-
ergy density is set to Gc = 2000MPa.mm. This fracture energy density actually
corresponds to the sum of the fracture energy density in mode I and in mode II,
corresponding respectively to the energy needed to fully open the crack and to its
full sliding, until there is no residual traction left. As a first approximation, this
distribution of fracture energy density between both modes is chosen to be equal,
such that GcI = GcII = 0.5Gc.

A first set of results presented shows mode I opening and mode II sliding at the
end of the test for three different mesh sizes in figures 3.13(a) and 3.13(b), respec-
tively. From these figures, we can see that, on the one hand the crack propagates
at 45◦ from the weakened element until the other side of the specimen, and on the
other hand, mode I opening remains infinitesimal with regards to mode II sliding,
which confirms the fact this test exhibits a mode II fracture opening mode, which
is attested in many experiments documented in the literature. We can also see that
for the intermediate and fine meshes, the discontinuity surface appears not only in
the crack path, but also in the neighborhood of the crack path. In this area, the dis-
continuity surface only exhibits residual mode I opening which remains insignificant
with regards to the opening in the actual crack path. This is due to the redistribu-
tion of the stress at each time step, indeed, the adjacent element to the crack tip
tends to be naturally more loaded than the other neighboring elements. It is also
to be noted that the “activation” of these neighboring elements do not influence the
convergence rate of the solution.

In figure 3.14, the responses corresponding to these three tests are presented, in
which it is obvious that the solution remains size-independent.

We now focus on the influence of the distribution of the total fracture energy
density between mode I and mode II. In the previous test, we recall that we chose

132



3.4. Numerical examples

-6.25E-01

-5.62E-01

-5.00E-01

-4.37E-01

-3.75E-01

-3.12E-01

-2.50E-01

-1.87E-01

-1.25E-01

-6.25E-02

-5.15E-05

-6.87E-01

6. 24E- 02

_________________ S T R E S S 6

1.88E-06

5.16E-05

1.01E-04

1.51E-04

2.01E-04

2.51E-04

3.00E-04

3.50E-04

4.00E-04

4.50E-04

4.99E-04

-4.79E-05

5. 49E- 04

_________________ S T R E S S 5

1.29E-07

7.39E-05

1.48E-04

2.21E-04

2.95E-04

3.69E-04

4.43E-04

5.17E-04

5.90E-04

6.64E-04

7.38E-04

-7.37E-05

8. 12E- 04

_________________ S T R E S S 5

-1.59E+00

-1.43E+00

-1.27E+00

-1.11E+00

-9.53E-01

-7.94E-01

-6.36E-01

-4.77E-01

-3.18E-01

-1.59E-01

-1.19E-04

-1.75E+00

1. 59E- 01

_________________S T R E S S 6

1.88E-06

8.72E-06

1.56E-05

2.24E-05

2.92E-05

3.61E-05

4.29E-05

4.97E-05

5.66E-05

6.34E-05

7.03E-05

-4.95E-06

7. 71E- 05

_________________ S T R E S S 5

-2.07E+00

-1.87E+00

-1.66E+00

-1.45E+00

-1.24E+00

-1.04E+00

-8.30E-01

-6.22E-01

-4.15E-01

-2.08E-01

-1.77E-04

-2.28E+00

2. 07E- 01

_________________ S T R E S S 6

(a) (b)

Figure 3.13: For three different mesh sizes, (a) mode I opening, (b) mode II sliding
on deformed mesh
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Figure 3.14: Reaction/displacement curves

an equal distribution of the fracture energy density between both modes.
In the following examples, we made different tests with different fracture energy

density distributions between these modes.

A first test corresponds to mode II alone, which means that GcII = Gc (where
Gc = GcI +GcII in the general case) and mode I opening is forbidden. A second test
corresponds to the following distribution: GcI = 0.2Gc and GcII = 0.8Gc. A third
test corresponds to: GcI = 0.8Gc and GcII = 0.2Gc. A final test is set to: GcI = Gc

and mode II is forbidden.
For all these tests, only the coarse mesh used in the previous example is consid-

ered, the purpose being to show which mode is predominant when the distribution
of fracture energy densities changes.

Mode I opening and mode II sliding at the end of the tests are presented in
figures 3.15 and 3.16.

The responses for these different tests are presented in figure 3.17.
From this figure, we can see that the mixed mode case corresponds to a more

“brittle” response of the specimen, exhibiting less dissipation. This was predictable
since, for theses cases, the fracture energy density corresponding to the “activated”
single mode is lower than for the cases “mode I alone” or “mode II alone”. This
test actually never exhibits both modes at the same time, one always become pre-
dominant, which is exhibited in figures 3.15 and 3.16. From these figures, we can
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Figure 3.15: Deformed meshes for the cases (a) GcII = Gc and mode I is not allowed,
(b) GcI = 0.2Gc and GcII = 0.8Gc
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Figure 3.16: Deformed meshes for the cases (a) GcI = 0.8Gc and GcII = 0.2Gc, (b)
GcI = Gc and mode II is not allowed
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conclude that the dominant mode is the mode with the lowest fracture energy den-
sity, which again was a predictable result since a minimum fracture energy density
for a considered mode means a quicker loading of the cohesive surface for this mode.

3.4.3 Compact Tension test (CT)

To attest the regularizing capabilities of the aforementioned method, a compact
tension test (CT) is performed for different meshes. This test is usually performed
to compute the stress intensity factor in mode I (K1c) at the crack tip, since an
initial crack is present in the specimen. However, in our case we only use this test
to validate the capabilities to predict the crack propagation path, and to ensure
that for different mesh sizes, the computed maximum loads and displacements at
maximum load are close enough for different mesh sizes. Half of the specimen is
modelled since the test is symmetrical. The geometry and boundary conditions are
shown in figure 3.18. As it was mentioned, a crack already exists which induces a
singular stress state at the crack tip. This means that a fine enough mesh has to be
considered to catch the gradients in the vicinity of the crack tip in order to obtain
a converged result even in the pre-peak phase.

A vertical displacement is prescribed at the top of the pin, which is considered
to be a rigid body. The material model and parameters are the same as for the
previous test, the Rice and Tracey criterion is set at

(
R
R0

)
c

= 1.2. The different
tested meshes are presented in figure 3.19. For the finest mesh, the elements in the
region of interest (along the crack path) are approximately four times smaller than
for the coarsest mesh. Results in terms of reaction and displacement at the top of
the pin are presented in figure 3.20. The deformed mesh (“coarse” mesh) is also
presented in figure 3.21.
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Figure 3.18: Geometry and boundary conditions for the CT specimen
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Figure 3.19: Different meshes for the CT specimen

140



3.4. Numerical examples

0.5 1 1.5 2 2.5 3 3.5 4
0

2

4

6

8

10

Déplacement (mm)

maillage a

maillage b

maillage c

R
éa

ct
io

n
(k

N
)

R
ea

ct
io

n
 (

k
N

)

mesh a

mesh b

mesh c

Figure 3.20: Reaction/displacement curves for the CT test
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Figure 3.21: Deformed mesh at the end of the CT test

Results show good convergence, especially in terms of maximum load and dis-
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placement at maximum load, as well as for the description of the softening phase,
even though this test is very mesh-dependent since a crack already exists in the spec-
imen at the beginning of the test. Furthermore, it is well-known that T3 elements
converge slower than Q4 elements for example, this is another reason to model this
test with small enough T3 elements.
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3.5 Conclusion
In this chapter, an extension of the strong discontinuity formulation to its finite
range was proposed, based on the work of Armero et al. (see [2]). The theoretical
formulation of the method was proposed considering plasticity evolution, and its
finite element implementation was described, using a current configuration formula-
tion, that is using Kirchhoff stress tensors. This choice was made to ensure that the
constitutive laws usually obtained considering small strain hypothesis can be easily
transferred to the finite range, without major additional developments. A Rice and
Tracey void coalescence criterion was presented and justified for the extension of
SDA in the finite deformation framework.

In a further section, we focused on the well-known issue in the presence of bifur-
cation points exhibited by the introduction of a strong discontinuity of the displace-
ment field, and its influence on the convergence rates during the global Newton-
Raphson resolution procedure. A method using the introduction of an artificial
viscous behaviour within the cohesive law was described. We showed that adding
this artefact in the formulation exhibited the presence of critical pseudo-time steps.
To circumvent this issue, we proposed a method to compute this critical time step,
and more particularly to automatically compute the pseudo-time increment in order
to keep the physical sense of the solution, based on the work of Oliver and Huespe
(see [121]). Finally, results attesting the performance of the proposed method were
shown for a simple tensile test and for a compact tension test, using a Rice and
Tracey criterion to drive the appearance of a dissipative surfacic behaviour, thus
modeling the failure of the specimen.

Moreover, a Compact Tension test was presented in terms of the capabilities of
the formulation to predict the ultimate load and the displacement at ultimate load.
Finally, a simple tension test was performed in mode II and mixed mode, in order
to show the versatility of the method and the influence of the crack energy density
distribution between mode I and mode II on the final result and the crack opening
and sliding.

An obvious drawback of the T3 element presented in this chapter is its ten-
dency to exhibit locking when subjected to quasi-incompressible strain, which is the
presently the case since we deal with the J2-plasticity material model for the bulk.
The work presented in this chapter should be seen as a first step towards a more
complex formulation that aims to overcome the locking effect as it was proposed with
the enhancement of the standard Q4 element with a “B-bar” formulation. Indeed, a
perspective of this work on the T3 element would be its adaptation to a Q4 formu-
lation considering a B-bar enhancement, for instance. Another solution would be to
implement SDA in the finite strain context combined with a mixed formulation, par-
ticularly suited to overcome locking effects when dealing with quasi-incompressible
strain scenarios.
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The goals of this work were to adapt an existing theoretical framework, that has
proven its capability in terms of objective description of brittle and quasi-brittle
fracture, to the context of ductile fracture. One requirement was to propose a nu-
merical method that limits the enhancements of existing Finite Element non-linear
procedure to the element level, thus enabling the adaptation of this academic work
to an industrial context which requires the use of non-intrusive procedures. This
work relies on the Strong Discontinuity Analysis framework, initially developed in
the brittle-fracture context. One of the main originalities of the presented work
is the consideration of two coexisting dissipative mechanisms, a volumic dissipative
mechanism and a surfacic dissipative directly resulting from the Strong Discontinuity
Analysis framework, since it naturally involves a cohesive behavior. As for the volu-
mic dissipative mechanism, few authors have considered a coupled damage-plasticity
behavior such as Lemaitre’s material model together with the Strong Discontinuity
framework. This represents one of the major contributions of this work.

We first proposed the enhancement of a bilinear quadrangular element with a
linear displacement jump (first presented by [99]) which is an extension of the more
commonly used three-nodes triangular element that only describes constant strain
fields. This element was never implemented in the context of ductile fracture con-
sidering a coupled damage-plasticity model in the bulk, and particularly together
with Lemaitre’s damage model. We proposed to appeal Lemaitre’s damage variable
as an introduction criterion of the discontinuity surface within a localized element.
The proposed model allows to account for both mode I and II. We also presented
a B-bar adaptation of the model to circumvent the locking phenomenon that we
emphasized and issued by substantial plastic strain amounts for some cases.

The results presented demonstrated the good regularizing capabilities of the
model. Indeed we presented accurate ultimate load predictions as well as consistent
ultimate displacements, dissipated energies and crack paths.

Moreover, the so-called “cup-cone” phenomenon was obtained in the case of an
axisymmetric computation. In particular, we emphasized that the transition from
a plane to slant fracture mode (corresponding to a “cup-cone” in an axisymmetric
framework) was, in our modeling context, driven by both the damage criterion Dc
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and the fracture energy density Gc.

This enables interesting perspectives with regards to a possible identification of
these material parameters. Besides, since these parameters have a physical sense
and Gc is a global and well-known fracture parameter, it most probably renders the
identification process easier than for models that involve material parameters that
do not have this obvious physical meaning.

Another objective was to propose an adaptation of the latter work to the context
of large strain scenarios. This is of great importance when dealing with ductile
fracture, which by definition is a phenomenon that involves strain amounts that are
no longer consistent with a small strain hypothesis.

In this context, we proposed a numerical model that relies on the enhancement
of a three node element with a constant displacement jump. The Finite Element
implementation was performed in the current (deformed) configuration. This choice
was motivated by the fact that it enables to appeal constitutive laws initially de-
veloped in the small strain context without major additional developments since,
among other reasons, in this configuration the symmetries of the stress tensors are
preserved.

The volumic behavior is based on the J2-plasticity theory adapted to the large
strain framework, initially proposed by [145]. As an introduction criterion for the
surface of discontinuity, we used the Rice and Tracey criterion in the examples pre-
sented. Results emphasizing the regularizing effects of the method were presented,
for mode I, mode II and mixed mode. We highlighted the influence, once again, of
the fracture energy density parameter Gc, this time underlying the fact that differ-
ent distributions of Gc between mode I and II involved different “dominating” modes
(see section 3.4.2).

For all the developments involved in chapters 2 and 3, that is the Q4 enhanced
element in small strain hypothesis, and the T3 element in finite strain hypothesis, it
has to be noted that the structure of the program is such that any type of material
model, for the bulk or the discontinuity surface, can be “plugged” in the element.
Indeed, as long as a standard displacement Finite Element formulation is adopted,
(thus excluding formulations in which the stress, strain and displacement are no
longer dependent on each other through the compatibility equation and the material
law, which would require a specific Finite Element formulation such as mixed or
enhanced strain formulations), the elements that have been programmed can be
seen as modules in which we can plug: a material law for the bulk, a cohesive
law, and the necessary informations to introduce the discontinuity surface, that is a
criterion and an orientation of the surface.

Hence, the perspectives of this work are quite numerous. For instance, it becomes
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straightforward to study fracture of a hyperelastic material in the finite strain range
using the enhanced T3 element proposed in chapter 3. Evidently, the fracture crite-
rion and the orientation of the crack still have to be carefully considered and studied.
Even though this work was limited to study ductile fracture, we could have easily
studied brittle fracture appealing the mentionned developments, which would have
been out of the scope of this work as it was initially defined.

Since in the aeronautical industry, there is great interest of studying thin struc-
tures, another interesting perspective of the present work is the adaptation to plane
stress hypothesis while only plane strain and axisymmetric problems were consid-
ered, the ultimate perspective being the possibility to consider full 3D problems.

We realize there are several limitations with regards to this work. For instance,
for the Q4 element, Lemaitre’s coupled-damage plasticity model was considered,
and a rigorous criterion to introduce the discontinuity surface is the loss of elliptic-
ity of the equilibrium equations, which corresponds to the singularity of the acoustic
tensor defined as: ∃n /det(n.Can.n) = 0, where Can is the anelasic modulus (see
[133]). Such a condition is not straightforward for a complex material model such
as Lemaitre’s one, and authors have shown that this condition has an analytical
formulation only for specific loadings, such as pure shear...etc... A rigorous solu-
tion to this problem would have been to compute the acoustic tensor for all the
directions of space n at each time step (and each Gauss point) and to state that
strain localization occurs when the acoustic tensor becomes singular, thus defining
the moment, position and direction of strain localization, which would have induced
prohibitive computational costs.

As a final word, we also emphasize the fact that the presented work involved a
great amount of programming, at the Gauss point level for the bulk material for
the coupled plasticity-damage model and the cohesive law, and especially at the
element level for which solving the local equilibrium equation as well as obtaining
the tangent stiffness matrix were not straightforward tasks for both elements. These
also involved long debugging phases throughout this work period.
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Appendix A

Formulation of the discretized
problem

If N(x) = [N1(x)...NNn(x)] is the matrix of shape functions for a standard Q4
element, B(x) = [B1(x)...BNn(x)] = LN(x) with L the matrix form of the ∇s

operator, and δuT (x, t) = [δu1(x, t)...δuNn(x, t)] the vector of virtual displacements
(Nn being the number of nodes of the discretized problem), and with the discretized
expression of virtual strains in (2.16), the discretization of the system gives:
∀(δu, δα),

∫
Ωe

δuT (x)B(x)Tσ(ε(x)) dΩ−
∫

Ωe

δuT (x)NT (x)b(x) dΩ

−
∫
∂tΩe

δuT (x)NT (x)h(x) dΓ = 0∫
Ωe

δαT (x)ḠT
v (x)σ(ε(x)) dΩ +

∫
Γs

δαT (x) ¯̄Gv

T
(x)NT . σ|Γs

(ε(x)) dΓ = 0

(A.1)

Noticing that
NT . σ|Γs

(ε(x)) = tΓs(x) (A.2)

with tΓs the traction vector on the surface Γs, system (A.1) can be put into the
following form:

∀(δu, δα),



∫
Ωe

δuT (x)BT (x)σ(ε(x)) dΩ−
∫

Ωe

δuT (x)NTb(x) dΩ

−
∫
∂tΩe

δuT (x)NTh(x) dΓ = 0∫
Ωe

δαT (x)ḠT
v (x)σ(ε(x)) dΩ +

∫
Γs

δαT (x) ¯̄Gv

T
(x)tΓs(x) dΓ = 0

(A.3)
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where Ḡv and ¯̄Gv are defined in (2.18) and (2.19).
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Appendix B

Numerical implementation of
Lemaitre’s model

The numerical implementation of this model is carried out using the one equation
return-mapping proposed by de Souza Neto et al. (see [48]). Such an equation is
solved using a Newton-Raphson procedure. This equation represents the discretized
version of equation (2.50) and recalled in (B.1).

f(∆γ) = ω(∆γ)− ωn +
∆γ

ω(∆γ)

(
−Y (∆γ)

r

)s
= 0 (B.1)

where ∆γ is the plastic multiplier that we seek,

ω = 1−D (B.2)

and

ω(∆γ) =
3G∆γ√

3
2
‖dev σ̃trialn+1‖ −

(
σy0 + q̄(ξ̄n+1)

) (B.3)

with

dev σ̃trialn+1 = 2Gdev εe,trialn+1 (B.4)

where

εe,trialn+1 = (εn − εpn + ∆εn+1) (B.5)

G denotes the shear modulus, εe,trialn+1 stands for the elastic trial strain, and ξ̄n+1 =
ξ̄n + ∆γ.

In equation (B.1), Y (∆γ) is written as follows:
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Y (∆γ) = −
[
σy0 + q̄(ξ̄n+1)

]2
6G

−
p̃2
n+1

2K
(B.6)

whereK is the compressibility modulus and p̃n+1 = K 1
3
tr(εn+1) is the hydrostatic

part of the effective stress.
De Souza et al. in [48] formulated the expression of the consistent tangent

operator as:

Can
n+1 =

dσn+1

dεn+1

= 1
1−Dn+1

(
a
[
I−1

3
1⊗1

]
+b s̄n+1⊗s̄n+1+c s̄n+1⊗1+d1⊗s̄n+1+e1⊗1

)
(B.7)

where s̄n+1 = devσn+1

‖devσn+1‖ , I is the fourth-order identity tensor, 1 is the second-
order identity tensor, and

a =
2Gω(∆γ)

(
σy0 + q̄(ξ̄n+1)

)√
3
2‖dev σ̃trialn+1 ‖

b = 2G

(
a1H(ξ̄n+1)ω(∆γ) +

(
σy0 + q̄(ξ̄n+1)

)(
a4 −

ω(∆γ)√
3
2‖dev σ̃trialn+1 ‖

))

c = K
√

2
3

(
a2H(ξ̄n+1)ω(∆γ) + a3

(
σy0 + q̄(ξ̄n+1)

))
d = K

(
ω(∆γ) + a3p̃n+1

)

(B.8a)

(B.8b)

(B.8c)

(B.8d)

In the last expression, H(ξ̄n+1) is the updated slope of the hardening curve, and
together with (2.49), we obtain:

H(ξ̄n+1) =
dq̄
dξ̄

∣∣∣∣
ξ̄n+1

= −β(σy0 − σyinf
) exp(βξ̄n+1) (B.9)

and a1, a2, a3, a4 are defined as:

a1 =

(
1− ∆γ

(ω(∆γ))2

(
−Y (∆γ)

r

)s)
ω(∆γ)(√

3
2‖dev σ̃trialn+1 ‖ −

(
σy0 + q̄(ξ̄n+1)

))
F ′

a2 = − s∆γ

ω(∆γ)rK

(
−Y (∆γ)

r

)s−1
p̃n+1

F ′

a3 = a2ω
′

a4 = a1ω
′
− ω(∆γ)√

3
2‖dev σ̃trialn+1 ‖ −

(
σy0 + q̄(ξ̄n+1)

)

(B.10a)

(B.10b)

(B.10c)

(B.10d)

where

F
′

= ω
′
+

1

ω(∆γ)

(
−Y (∆γ)

r

)s(
1− ∆γω

′

ω(∆γ)

)
+

s∆γ

rω(∆γ)

(
−Y (∆γ)

r

)s−1H(ξ̄n+1)
(
σy0 + q̄(ξ̄n+1)

)
3G

(B.11)
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and

ω
′
=

3G+ ω(∆γ)H(ξ̄n+1)√
3
2
‖dev σ̃trialn+1‖ −

(
σy0 + q̄(ξ̄n+1)

) (B.12)

For further information on the numerical integration of the material law, please
refer to [48].

It is clear that this consistent tangent operator is not symmetric due to the
different expressions of c and d. As a consequence, a specific treatment is required
to solve the global system, since the element tangent stiffness is also not symmetric.
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Appendix C

Linearization of the finite strain
discretized problem

The following developments are based on a method proposed by Crisfield [45]. His
method relies on the linearization of the already discretized problem (the FE for-
mulation), and particularly the internal forces f int,e. Other methods rely on the
linearization of the continuum problem (also described in the book written by Cr-
isfield), and then the linearized continuum formulation is discretized, which is a
method that we find less convenient.

C.1 Linearization of he

Let’s focus on the linearization of equation (3.55c), for which we recall the expression:

he = −`Γs [n
]m]]Tn[,Tτ + `Γs

[
tn
tm

]
= 0 (C.1)

We may express he differently as:

he = −`Γs [N M]T F̄T

[
Nx Ny 0 0
0 0 Nx Ny

] [
F̄−1 0
0 F̄−1

]
HTτ + `Γs

[
tn
tm

]
(C.2)

where H =

1 0 0 0
0 0 0 1
0 1 1 0

, and where τ is the vector form of the (symmetric)

Kirchhoff stress tensor defined as τ =

τ11

τ22

τ12

 (in 2D). We ha ve also used the following

relations:n[ = F̄−TN, n] = F̄N and m] = F̄M.
With these expressions at hand, a small variation of he is expressed as:
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Appendix C. Linearization of the finite strain discretized problem

δhe = −[N M]T δF̄T

[
Nx Ny 0 0
0 0 Nx Ny

] [
F̄−1 0
0 F̄−1

]
HTτ

−[N M]T F̄T

[
Nx Ny 0 0
0 0 Nx Ny

] [
δF̄−1 0

0 δF̄−1

]
HTτ

−[N M]T F̄T

[
Nx Ny 0 0
0 0 Nx Ny

] [
F̄−1 0
0 F̄−1

]
HT δτ +

[
δtn
δtm

] (C.3)

where we have omitted the term `Γs since it disappears when writing the lin-
earized equation he + δhe = 0.

To completely compute this expression, we need to express the following quanti-
ties: δF̄T , δF̄−1 and δτ . Let us focus on the material model for the bulk to compute
δτ . The time derivative of the Kirchhoff stress is defined as follows:

τ̇ = canTr : ε̇+ lτ + τ lT (C.4)

where l is the deformation rate (or deformation gradient rate: l = ∇u̇), and
where canTr is the tangent modulus defined in terms of the Trusdell rate of stress. It
is equivalent to the Lie derivative of the Kirchhoff stress, and thus it is an objective
definition of the Kirchhoff stress rate. Indeed, we have:

τ̊ Tr = τ̇ − lτ − τ lT = canTr : ε̇ (C.5)

where τ̊ refers to an objective stress rate, in this case, the Trusdell rate of the
Kirchhoff stress. We could have used another objective stress rate such as the
Jaumann stress rate (defined as: τ̊ J = τ̇ − Ω̇τ − τ Ω̇T = canJ : ε̇ where canJ is the
Jaumann tangent modulus and Ω̇ is the total spin tensor). The reason for the choice
of one type of stress rate or another comes from the material model formulation.
Since with our model, the output tangent modulus corresponds to the Trusdell rate
of the Kirchhoff stress canTr, we choose to use this one and derive our linearization
considering this point. We will deal with this consideration in section 3.2.

The spatial strain rate is expressed as: ε̇ = 1
2
(l + lT ).

It follows that the terms lτ and τ lT are not material related but come from
the geometry of the deformed configuration, as it is the case for the terms involving
δF̄−1 and δF̄ in (C.3).

With straightforward manipulations, a small variation of τ can be expressed in
matrix form (for the 2D case):

δτ =
(
canTr +

2τ11 2τ12 0 0
0 0 2τ12 2τ22

τ12 τ22 τ11 τ12

)


∂
∂x

0
∂
∂y

0

0 ∂
∂x

0 ∂
∂y

 δu (C.6)
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Moreover, we have the following expressions for δF̄−1 and δF̄:{
δF̄ = ∇δu

δF̄−1 = −F̄−1∇δuF̄−1 = −F̄−1∇xδu
(C.7)

where ∇xδu and ∇δu refer to the tensor forms of the spatial and material gra-
dients of a small variation of total displacement δu, respectively.

Using equations in (C.7), we can write the following relations that will be useful
to properly compute (C.3):



[N M]T δF̄T = [N M]T (∇xδuF̄)T = [N M]T F̄T (∇xδu)T = [n] m]]T (∇xδu)T[
Nx Ny 0 0
0 0 Nx Ny

] [
δF̄−1 0

0 δF̄−1

]
= −

[
Nx Ny 0 0
0 0 Nx Ny

] [
F̄−1∇xδu 0

0 F̄−1∇xδu

]
= −

[
n[x n[y 0 0
0 0 n[x n[y

] [
∇xδu 0

0 ∇xδu

]
(C.8)

Inserting these expressions in (C.3) (only diagonal terms appear in the tangent
modulus matrix), we can express the linearization of he as follows:

δhe = −[n] n]]T (∇xδu)Tn[,ns,THTτ

+ [n] m]]Tn[,ns,T
[
∇xδu 0

0 ∇xδu

]
HTτ

− [n] m]]Tn[,ns,THT
(
canTr +

2τ11 2τ12 0 0
0 0 2τ11 2τ12

τ12 τ22 τ11 τ12

)(∇s
x)vδu +

[
δtn
δtm

] (C.9)

where n[,ns =


n[x 0
n[y 0
0 n[x
0 n[y

.
After some matrix manipulations, we obtain the following formulation for the

linearization of he with respect to the total displacement u:

δhe = −[n] n]]Tn[,ns,T

((
τ̂ + τ̌

)
(∇x)vδu + canTr(∇s

x)vδu

)

+

[
¯̄Can

(n,n) 0

0 ¯̄Can
(m,m)

] [
δαn
δαm

] (C.10)

where τ̂ and τ̌ are defined as:
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τ̂ =


τ11 τ12 0 0
τ12 τ22 0 0
0 0 τ11 τ12

0 0 τ12 τ22

 τ̌ =


τ11 0 τ12 0
τ12 0 τ22 0
0 τ11 0 τ12

0 τ12 0 τ22

 (C.11)

In (C.9) and (C.10), (∇x)v denotes the vector form of the gradient. We have

then (∇x)vu =


∂
∂x

0
∂
∂y

0

0 ∂
∂x

0 ∂
∂y

u, and(∇s
x)vu =

 ∂
∂x

0
0 ∂

∂y
∂
∂y

∂
∂x

u.

We have also used the material model initially defined in (3.53). We recall its
rate form expression:

[
ṫn
ṫm

]
=

[
¯̄Can

(n,n) 0

0 ¯̄Can
(m,m)

] [
α̇n
α̇m

]
(C.12)

where both mode I and II are defined independently, and where the same cohesive
model as in section 2.2.2 is used.

It remains to express the small variation of the total displacement δu and its
spatial gradient ∇xδu (and the symmetric part ∇s

xδu) in terms of small variations
of nodal displacements δd and enhanced modes δα.

From the definition of the discretized total displacement in (3.30), we may write
the small variation of the total displacement as:

δuh(X) =
a=3∑
a=1

Na(X)δda +
[
HΓs(X)−

∑
a∈Ω+

Na(X)]δ ¯̄u (C.13)

where ¯̄u is the spatial jump defined as : ¯̄u = F̄ ¯̄U where ¯̄U is the material jump.
Let us recall the multiplicative definition of the total deformation gradient in (3.12):

F = F̄
(
I + ¯̄U⊗NδΓs

)
= F̄F̂ (C.14)

The velocity gradient will allow us to define the gradient of a small displacement
variation. It is defined as:

l = ḞF−1
|F=F̄ = ˙̄FF̄−1 + F̄

˙̂
FF̄−1

= l̄ + F̄
˙̄̄
U⊗ F̄−TNδΓs

= l̄ + ˙̄̄u⊗ n[δΓs

(C.15)
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Thus we have identified ˙̄̄u with the material jump rate ˙̄̄
U pushed forward in the

current configuration through the relation ˙̄̄u = F̄
˙̄̄
U. ˙̄̄u actually corresponds to the

Lie derivative of the material jump, thus it is an objective rate.
We can now write the following expression for the small variation of the spatial

jump:

δ ¯̄u = F̄(δαnN + δαmM) = δαnn
] + δαmm] (C.16)

With these expressions and following standard derivation procedures, we obtain
the following expression for the vector form of the gradient of small variation of
displacement:

(∇x)vδu =
a=3∑
a=1

Bns
a,xδda +

(
−
∑
a∈Ω+

Bns
a,x.[n

] m]] + δΓsn
[,ns.[n] m]]

)
δα (C.17)

and its symmetric part:

(∇s
x)vδu =

a=3∑
a=1

Ba,xδda +
(
−
∑
a∈Ω+

Ba,x.[n
] m]] + δΓsn

[.[n] m]]
)
δα (C.18)

where Bns
a,x =


∂Na

∂x
0

∂Na

∂y
0

0 ∂Na

∂x

0 ∂Na

∂y

 and Ba,x =

∂Na

∂x
0

0 ∂Na

∂y
∂Na

∂y
∂Na

∂x

, and δα =

[
δαn
δαm

]
.

Inserting expressions (C.17) and (C.18) in (C.10), we obtain:

δhe = −[n] m]]Tn[,ns,T
((
τ̂ + τ̌

) a=3∑
a=1

Bns
a,x + canTr

a=3∑
a=1

Ba,x

)
δd

+

[
[n] m]]Tn[,ns,T

((
τ̂ + τ̌

) ∑
a∈Ω+

Bns
a,x + canTr

∑
a∈Ω+

Ba,x

)
.[n] m]]

+

[
¯̄Can

(n,n) 0

0 ¯̄Can
(m,m)

]]
δα

(C.19)

We have used the fact that the first integral that appears in he deals with the
domain Ωe \ Γs. This is why the term in factor of δΓs in (C.17) and (C.18) does not
appear in this expression.
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Appendix C. Linearization of the finite strain discretized problem

C.2 Linearization of fint,e

We follow the same procedure to obtain the linearization of the internal forces in
(3.54). We can express fint,e as follows:

fint,e =

∫
Ωe

a=3∑
a=1

[∂Na

∂x
∂Na

∂y
0 0

0 0 ∂Na

∂x
∂Na

∂y

]
HTτdΩ =

∫
Ωe

Bns,T
x HTτdΩ (C.20)

Then a small variation of fint,e is written as:

δfint,e =

∫
Ωe

δBns,T
x HTτdΩ +

∫
Ωe

Bns,T
x HT δτdΩ (C.21)

Following the same definition as in (C.6), we have for the second integral in
(C.21):

∫
Ωe

Bns,T
x HT δτdΩ =

∫
Ωe

Bns,T
x HT

(
canTr +

2τ11 2τ12 0 0
0 0 2τ12 2τ22

τ12 τ22 τ11 τ12

)(∇x)vδudΩ

=

∫
Ωe

Bns,T
x

(
HTcanTr + τ̂ + τ̃

)
(∇x)vδudΩ

(C.22)

where τ̂ is defined in (C.11) and τ̃ =


τ11 τ12 0 0
0 0 τ11 τ12

τ12 τ22 0 0
0 0 τ12 τ22

.
As for the first integral in (C.21), we can express Bns,T

x as follows:

Bns =


∂Na

∂X
0

∂Na

∂Y
0

0 ∂Na

∂X

0 ∂Na

∂Y

 =

[
F̄T 0
0 F̄T

]
∂Na

∂x
0

∂Na

∂y
0

0 ∂Na

∂x

0 ∂Na

∂y

 =

[
F̄T 0
0 F̄T

]
Bns
x (C.23)

And by differentiating this equation, we obtain:

0 =

[
δF̄T 0
0 δF̄T

]
Bns
x +

[
F̄T 0
0 F̄T

]
δBns

x (C.24)

which implies that:
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δBns,T
x = −Bns,T

x

[
δF̄ 0
0 δF̄

] [
F̄−1 0
0 F̄−1

]
= −Bns,T

x

[
∇xδu 0

0 ∇xδu

]
(C.25)

Then, the first integral in (C.21) can be expressed as:∫
Ωe

δBns,T
x HTτdΩ = −

∫
Ωe

Bns,T
x

[
∇xδu 0

0 ∇xδu

]
HTτdΩ (C.26)

which, after some matrix manipulations is finally expressed as:∫
Ωe

δBns,T
x HTτdΩ = −

∫
Ωe

Bns,T
x τ̃ (∇x)vδudΩ (C.27)

Gathering equations (C.27) and (C.22) into (C.21), we now obtain:

δfint,e =

∫
Ωe

Bns,T
x

(
HTcanTr + τ̂ + τ̃

)
(∇x)vδudΩ−

∫
Ωe

Bns,T
x τ̃ (∇x)vδudΩ

=

∫
Ωe

Bns,T
x

(
HTcanTr + τ̂

)
(∇x)vδudΩ

(C.28)

Introducing the formulation of the gradient of a small variation of displacement
(∇x)vδu defined in (C.17), we finally obtain the following formulation for a small
variation of the internal forces with respect to d and α:

δfint,e =

∫
Ωe

Bns,T
x

(
HTcanTr + τ̂

)
Bns
x dΩ δd

−
∫

Ωe

Bns,T
x

(
HTcanTr + τ̂

) ∑
a∈Ω+

Bns
a,x.[n

] m]]dΩ δα
(C.29)
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