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I read in a book that the objectivity of human thought can be expressed by
using the verb to think in impersonal form. Could we ever say “it plays”
as we say “it rains”, or “today it is windy”? [...] And may we also say
“it listens” as we say “it rains”?

— Freely translated and adapted by the author from Se una notte
d’inverno un viaggiatore, Italo Calvino.



Abstract

Is it possible to represent the horizontal motions of the melodic strands of a contra-
puntal composition, or the main ideas of a jazz standard as mathematical entities?
In this work, we suggest a collection of novel models for the representation of music
that are endowed with two main features. First, they originate from a topological
and geometrical inspiration; second, their low dimensionality allows to build simple
and informative visualisations.

Here, we tackle the problem of music representation following three non-orthogonal
directions. We suggest a formalisation of the concept of voice leading (the assign-
ment of an instrument to each voice in a sequence of chords) suggesting a horizontal
viewpoint on music, constituted by the simultaneous motions of superposed melodies.
This formalisation naturally leads to the interpretation of counterpoint as a multivari-
ate time series of partial permutation matrices, whose observations are characterised
by a degree of complexity. After providing both a static and a dynamic represen-
tation of counterpoint, voice leadings are reinterpreted as a special class of partial
singular braids (paths in the Euclidean space), and their main features are visualised
as geometric configurations of collections of 3-dimensional strands.

Thereafter, we neglect this time-related information, in order to reduce the
problem to the study of vertical musical entities. The model we propose is derived
from a topological interpretation of the Tonnetz (a graph commonly used in compu-
tational musicology) and the deformation of its vertices induced by a harmonic and
a consonance-oriented function, respectively. The 3-dimensional shapes derived from
these deformations are classified using the formalism of persistent homology. This
powerful topological technique allows to compute a fingerprint of a shape, that re-
flects its persistent geometrical and topological properties. Furthermore, it is possible
to compute a distance between these fingerprints and hence study their hierarchical
organisation. This particular feature allows us to tackle the problem of automatic
classification of music in an innovative way. Thus, this novel representation of music
is evaluated on a collection of heterogenous musical datasets.

Finally, a combination of the two aforementioned approaches is proposed. A
model at the crossroad between the signal and symbolic analysis of music uses
multiple sequences alignment to provide an encompassing, novel viewpoint on the
musical inspiration transfer among compositions belonging to different artists, genres
and time. To conclude, we shall represent music as a time series of topological
fingerprints, whose metric nature allows to compare pairs of time-varying shapes
in both topological and in musical terms. In particular the dissimilarity scores
computed by aligning such sequences shall be applied both to the analysis and
classification of music.
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Introduction

Modelling a creative process is a daunting task, since it is not yet possible to define
an operator capable of judging its aesthetics in an objective way. This is one of
the main reasons that renders the realisation of formal models for the analysis and
classification of music such a challenging endeavour. It is necessary to investigate the
compositional process, in order to provide a coherent analysis and a robust classifier
of music.

Often, the core of a piece of music is made of a small collection of strong, recog-
nisable musical concepts, that are grasped by the majority of the listeners (Dowling,
1972; Folgieri et al., 2014; Tulipano and Bergomi, 2015). These musical concepts are
shaped by varying levels of tension over time, drawing the attention of the listener
to particular moments thanks to specific choices, frustrating his or her intuition
through unexpected changes, or confirming his or her expectation with, for instance,
a well-known cadence leading to resolution.

Our approach to the analysis of music composition stems from the assumption
that it is based on two main actions used by the composer to describe musical
concepts and shape his or her piece. The philosopher and musicologist Ernst Kurth
in Grundlagen des Linearen Kontrapunkts (Kurth and Rothfarb, 1991) describes the
counterpoint as an equilibrium among streaming linear forces (kinetic energy) and
congealing harmonics forces (potential energy). These terms, that are not meant
to be interpreted as scientific definitions, suggest a twofold interpretation of music.
On one side, the horizontal point of view, intended as the behaviour of superposed
independent melodic strands of counterpoint; on the other side, a vertical perspective
where music is compressed in a harmonic form, and chords summarise the information
otherwise ordered in time.

From a scientific viewpoint, the analysis of music has largely been attacked on
the symbolical side with algebraic tools (Andreatta, 2003; Zabka, 2009) and the
category theory (Mazzola and Andreatta, 2006; Mazzola et al., 2002; Popoff et al.,
2015), while its audio signals have been largely explored in computer science, leading
to the field of Music Information Retrieval (Casey et al., 2008). Recently, the
mathematical community witnessed a surprising growth of the field of Topological
Persistence (d’Amico et al., 2006; Edelsbrunner and Harer, 2008). This theory
provides a rigorous approach to the problem of shapes recognition, allowing to
compare complex forms, while giving a simple and robust representation of their
geometrical and topological properties. As the models for the analysis of audio
signals take advantage of the strategies developed for image analysis (Smaragdis
and Brown, 2003; Wang et al., 2003; Li et al., 2010), it is possible to borrow some
tools from the topological analysis of shapes and data to tackle the problem of music
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analysis.
The main aim of this work lies in the introduction of low-dimensional topological

and geometrical models in order to describe, albeit in a extremely simplified form, the
compositional process. This task has been split into two smaller problems, following
the approach described by Kurth. On one side, the analysis of multidimensional
time series as a concatenation of events in time, which finds its natural musical
counterpart in the voice-leading theory. On the other side, the representation of
persistent features of static and time-varying shapes, encoding in their geometry the
information carried by the symbolic and signal-based nature of music.

The structure of this work reflects these considerations. After an introductory
part, aimed at defining some basic musical and mathematical concepts, it is developed
in three parts. In Parts II and III, these horizontal and vertical approaches are
described separately, although they are far from being orthogonal. Consequently, two
strategies considering both these aspects are proposed in Part IV. In the following
paragraphs the main contributions of each parts are described.

Musical and mathematical preliminaries

In this first part, we introduce the main musical and mathematical characters
that shall intervene in this work. First, a quick historical presentation of the
concepts of monody and polyphony is presented and the links between these classical
compositional techniques and their modern counterparts are discussed. Second, we
place our research at the crossroad between mathematics and music. Two state-of-
the-art approaches that inspired our investigation are discussed. On one hand, we
introduce the geometrical representation of harmonic objects provided by the chords
space (Tymoczko, 2011; Callender et al., 2008), together with the interpretation of
voice leadings as trajectories in this space, which inspired the research described
in Part II. On the other hand, we introduce the notion of simplex and simplicial
complex, two standard objects in algebraic topology, that will be used to provide a
topological definition of the Tonnetz.

Algebraic and geometric models for the voice leading theory

Given a sequence of chords, the voice leading process corresponds to their transforma-
tion in a superposition of melodies, endowed with a certain degree of independence.
The main contribution of this part is the introduction of a mathematical formalisa-
tion of the concept of voice leading and the representation of simultaneous motions
of voices as partial permutations. An algorithm to univocally compute the partial
permutation matrix associated to a voice leading is proposed. In particular, we
demonstrate how this simple representation suffices to describe the behaviour of the
voices, with a focus on voice crossing.

As a geometrical counterpart to this first algebraic interpretation, voice leadings
are interpreted as piecewise geodesics in several spaces. The different types of voice
motions are analysed in each space, pointing out how minimal geodesic paths repre-
sent non-crossing voice leadings among two chords. Then, consecutive simultaneous
motions of voices are represented as concatenation of geodesics.

Once the essential role played by the juxtaposition of voice leadings as a con-
catenation of linear function has been modelled, the concatenations of geodesics
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are substituted by concatenations of partial permutation matrices. Associating to
each permutation matrix a 4-dimensional complexity vector describing the main
features of the voice leading, we provide a representation of the counterpoint of
the first species. After generalising this model to the study of the concatenation of
voice leadings containing rests, a naïve extension to other contrapuntal species is
suggested.

Finally, in order to provide a visualisation of voices motions, voice leadings are
described as trajectories in 3-dimensional Euclidean space by using the mapping
which is naturally defined between partial braids and partial permutations. This
representation shall prove to be very efficient for the visualisation of voice leadings
between n-notes chords, when a particular class of trajectories is considered.

Persistent musical features

In this section, the ordering of melodic or harmonic states that represented the core
of the previous part is neglected. Music is seen as composed by vertical, unordered
entities, as a pianist could interpret a scale as a cluster, to grasp at first sight its
intervallic properties.

The main idea is to introduce a metric representation of the Tonnetz interpreted
as a planar polyhedral surface, whose vertices are displayed along a third dimension,
through a specific function. In particular, we shall consider two deformation functions.
The first one is defined in the symbolic domain and takes into account the pitch
classes and durations of a series of notes. The second, based on the interaction
between signal and symbol, is constructed on the consonance function as it has been
defined by (Plomp and Levelt, 1965).

The shapes obtained via these deformations are then classified by computing
their persistent homology. The novel and lively field of computational topology
provides a series of tools allowing to associate a fingerprint to a shape, describing
its geometrical and topological features as a simple diagram. After a preliminary
section introducing the basic definitions and theorems of persistent homology, this
formalism is applied to the analysis of music. The results are interpreted in a musical
context. Moreover, the distance between persistence diagrams is used to classify
several datasets of compositions, modal scales and triads.

Harmonic time series and persistence snapshots

The dynamic and time-dependent nature of music is one of the main ingredients
of this last part. In the first chapter, we suggest a novel approach to the analysis
of pop music. At the intersection of the symbolic and signal-analysis domains,
this method consists in the interpretation of automatically transcribed harmonic
progressions as symbolic sequences. Such sequences shall be analysed by computing
their multiple alignment. Widely used in phylogenetic, this technique shall provide an
encompassing representation of the harmonic features characterising a dataset of 138
Pop songs. The analysis of statistically recurrent motifs of these aligned sequences
allows to quantify and analyse the shared inspiration and the contamination over
time among compositions.

Thereafter, we propose an adaptation of the model introduced in the previous
section, in order to include time in the geometrical and topological analysis of
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music. Static shapes are now considered as time-varying systems, whose evolution is
describable as a sequence of observations in time. Thus, we shall consider the time
series formed by topological fingerprints computed on a sampling of the Tonnetz’s
deformation in time. A musical interpretation of the meaning of these topology-based
time series is followed by an application of this technique to a music classification
task on three different datasets.



Part I

Musical and mathematical
preliminaries
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Abstract

The aim of this first section is to introduce the ingredients of music theory that
inspired our research, in order to provide a practical musical setting for the whole work
and to give some important music-oriented bibliographic references. In Chapter 1,
a brief history of monody, polyphony, counterpoint and its relationship to western
common practice tradition is discussed.

In Section 2.1 we introduce the concept of simplicial complex, a core object in
algebraic topology representing one of the main mathematical ingredients of this
work. Then, we place our investigation in the mathematical/musical domain: we
introduce the chord space, which inspired a model describing the complexity of voice
leading presented in Part II and the Tonnetz, that will be used in Part III.
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One

Music theory preliminaries

Monody and polyphony allow to introduce two apparently orthogonal approaches
to music analysis. The former suggests the well-known interpretation of chords as
unordered sets of notes (referred hereafter as a vertical analysis). The latter, can be
defined as the study of voices moving independently as a superposition of melodies
(referred hereafter as horizontal analysis). Although both approaches encode relevant
information, we shall observe that it is not possible, even on a historical basis, to
order these approaches chronologically, nor to define them as independent techniques.

In Figure 1.1 an intuitive representation of these viewpoints is depicted. Monody
can be depicted as a set of horizontal lines in simultaneous motions, while polyphonic
music can be represented as a series of independent lines in terms of height (pitches)
and time (duration). The superposition of several melodies allows the composer to
enrich and emphasise a main melody, which is preferred among the others.

Shortly, we shall provide a quick historical overview on monophony and polyphony.
This section aims at supplying the reader with the basic information concerning
what shall be developed in the next parts of this work, to provide the essential music
theory bibliographic references and some examples linking the classical concepts of
monody and polyphony with modern music.

1.1 Monody, polyphony and modern notation

1.1.1 Monody and lead sheet

In the fourth century, when the first monastic communities were created, the
psalmodic practices arose as ancestors of the Gregorian chant (Apel, 1958; Chanan,
1994). The monophonic monastic psalmody was used as a metaphor of discipline, to

(a) Monody. (b) Polyphony.

Figure 1.1: Intuitive representation of monody and polyphony. (a) Monody is
intended as a melodic line supported by a harmonic progression. (b) The polyphonic
approach allows to create superpositions of independent melodic strands, that affect
the listener both as a whole and separated entities.

11
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Figure 1.2: An example of lead sheet.

create and enforce the bond among the members of the community, as it is described
in (Basil, 1963).

It is important to note that, in the context described above, monophony represents
a specific choice, rather than an ancestor of polyphonic music, representing the
rejection of earlier —presumably polyphonic— practices. Indeed, polyphony has
never supplanted monophony in the history of western music. If the term monophony
is used to describe music consisting of a single (generally vocal) melodic part,
monophony is a melody sustained by a harmonic progression. This term was
introduced in (Galilei, 1569), in order to describe a single voice supported by the
chords played by a lute. We refer interested reader to (Taruskin, 2009, Chapter 1)
for further details about the passage from monastic psalmody to monophony.

In a modern music context, the idea of monody and its notation are widely used.
It is common practice to use the lead sheet notation to represent music in a concise
form, as it is depicted in Figure 1.2. The melody is written in standard notation,
while chords appear above the staff as symbols (see Appendix E for an introduction to
chord notation). This kind of harmonic notation provides no information concerning
the voicings that should be used and both the rhythmical and dynamical aspects
are also neglected.

In lead sheet notation, chords are represented as vertical structures. In this case,
it is natural to think about them, as pitch-class sets, i. e. collections of notes in which
neither the octave, nor the order of the notes composing the chord are specified.
The mathematical model describing this construction will be detailed in Chapter 2.
However, it is clear that the style and the time in which a song has been composed,
arranged or re-arranged, lead the performer to certain musical choices, that at least
partially, fill the notation’s gaps. This vertical approach to music inspired the model,
that we will describe in Part III.

1.1.2 Polyphony, modal harmony and melodic voicings

Polyphony has always been present in European music. However, we can identify the
12th century as the moment in which polyphonic composition became the standard
technique in Western music. As we claimed above, polyphony and monophony are
not terms in opposition, but answers to different needs.

The practice of polyphony was firstly described in the treatise Musica Enchiriadis
and its contemporary commentary Schola Enchiriadis, see (Erickson and Palisca,
1995). These treatises depict two polyphonic techniques that can be used to enrich a
given melody. It is interesting to note how these two techniques can be reinterpreted
in a modern context.

The first one is the ison chanting, in which the tonic note of the melody, explicitly
notated, is supposed to be held while the main melody is sung. In a modern music
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Figure 1.4: Example of polyphony from Musica Enchiriadis. Transcription
from (Taruskin, 2009, Chapter 2).

context, this type of practice is analogous to the modal harmony notation. For
example, consider the notation used in The Law of Diminishing Returns’ solo section
depicted in Figure 1.3. In this case, the notation specifies a particular modal choice
(lydian) and its ison, i. e. the root of the modal scale and the reference pitch that
allows to identify the lydian mode. See Appendix A.1 for an introduction to modal
theory.

The second technique describes the harmonisation of a given melody through
parallel doubling, i. e. the accompaniment of a melody with another one consisting
of its transposition to a fixed consonant interval. The modern analogous to this
technique is the arrangement process known as the voicing of a melody or block
voicing. This practice lies at the intersection between monody and polyphony. Given
a lead sheet, the melody can be voiced using its harmonic structure (see Figure 1.5
for an example). We refer to (Wei, 2008) for a detailed explanation of this technique
in its modern version and to (Taruskin, 2009, Chapter 5) for details on its classical
use. It is possible to find something similar in the two partitions of Figure 1.4.
They are not examples of polyphonic composition, but a reinforcement of the vox
principalis through a lower melody, organum, producing an intuitive contrapuntal
harmony.

As the enrichment of a melody using voicings is strictly related to a chord the
two techniques described in Musica Enchiriadis are far from the compositional inde-
pendence that characterises a polyphonic composition. Two important innovations
are described in the Micrologus (d’Arezzo et al., 1993). First, as it is depicted
in Figure 1.6, more than one contrapuntal solution can be given as harmonisation of
the same melody. In particular, in Figure 1.6b the final is reached with a passing
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Figure 1.6: Two different harmonizations of Jerusalem. Guido d’Arezzo, Micrologus.

note and the major second is used as a secondary consonance, giving rise to a
smoother passage to the final than the direct leap used in Figure 1.6a. Second,
although some intervals like the perfect fifth are still judged as hard-sounding, in
Micrologus the contrapuntal technique is based on the pleasantness of a certain
harmonic choice, rather than on a natural law. Thus, not only the process of voicing
has been brought to a more human level, but even the concept of parsimony of voice
leading is introduced, as one may notice from the movement of the organum in both
the examples of Figure 1.6.

At the same time, the examples given in the Micrologus stress a preference for
contrary motion at cadences, while the parallel doubling represents a sporadical
choice, thanks to the new degrees of freedom the voices are endowed with. See
also (Rankin, 1993) for pre-guidonian evidences on the use of parsimonious voice
leadings and contrary motion. In Figure 1.7 it is possible to observe an example of
this relative independence of voices.

This independence has been inherited by modern music, representing the typical
behaviour of the melody against a bass line. The former moving more or less freely
depending on the context, and the latter linked to the harmonic choices made by
the composer. In Figure 1.8 the bars 1-4 of Interplay by Bill Evans are depicted.
The harmonic progression is stressed by the movement of the bass line and enriched
with a higher voice, in a harmonisation of major and minor twelfths. This choice
states both a tonal (B[ minor) and modal (F phrygian) choice. The melody moves
with a high degree of independence, often in contrary motion and crossing the tenor
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Figure 1.7: Independent voice leading and contrary motion. A fragment of Alleluia:
Angelus Domini - Chartres 109, fol. 75.
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Figure 1.8: Polyphonic Jazz standard. Segregation among the melody and the bass
voices. Interplay, Bill Evans, bars 1-4.

voice. Voice leading techniques shall be detailed later in Section 1.2. However
the degree of independence of the voices either in rhythmical or intervallic terms,
allows to classify counterpoint into five species, depicted in Figure 1.9. To conclude
this comparison among classical and modern monodic and polyphonic techniques,
we show how the first and fifth contrapuntal species has been used in two jazz
composition in Figures 1.10 and 1.11, respectively.

The necessity of a representation of simultaneous motion of voices and its
visualisation inspired the work we describe in Part II. The time-dependent nature of
Music, suggested the time-series-oriented representation of Music, will be described
in Part IV.

1.2 Voice leading practice

Harmony and the study of counterpoint provide some theoretical axioms to guarantee
the smoothness of a composition (where smoothness is intended in this context as
understandability). We refer to (Aldwell et al., 2010, Chapter 6 ) for a list of
phenomena occurring in the voice leading process in four-part writing. The following
list aims at describing some compositional strategies, that shall be used in the
remainder of this work.

Vocal range. Each voice has to be settled in a range that can be sung without
excessive effort. Thus the construction of a melody associated to each voice has to
take into account this particular feature:
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Figure 1.10: A reduced orchestration of Boplicity bars 1-4. Birth of the Cool, by
Miles Davis.

i) Soprano : C4 → G6,

ii) Alto : G3 → C5,

iii) Tenor : C3 → G4,

iv) Bass : E2 → C4.
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Figure 1.11: Alto sax, baritone sax, trumpet and horn voices in Move, bars 1-11, by
Miles Davis.

Doubling. We assume that the only absolute rule to augment the complexity of a
voice leading is the doubling of a tension of a chord. The fifth can be omitted in
root-position chords, since they do not add information concerning the genre of the
chord. Thus, in seventh-chords the doubled root could take the place of the fifth,
while the doubling of a seventh has to be considered as dissonant. The third can
only be omitted to achieve special effects.
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Figure 1.12: Motion classes for two voices. Similar: same direction but different
intervals; parallel: same direction and same intervals; oblique: only one voice is
moving; contrary: opposite directions.

Microscopic spacing rules. A wide spacing among the upper voices can create
an effect of thinness mostly if it is continued for two or three chords. Normally,
adjacent upper voices should not be more than an octave apart, while even a two
octaves separation is acceptable among the tenor and the bass voices. Furthermore
a soprano voice segregated from the other voices or the excessive proximity of the
tenor and the alto voices can create confusion.

Voice crossing. Crossing occurs when two voices exchange positions. It is less
problematic when it involves inner voices and for a small amount of time.

Overlap. Overlap occurs when a voice moves above or under the former state of
an adjacent voice. Thus the difference between voice crossing and overlap is that
in the latter the relative positions of the voices are maintained, but their ranges
intersect in two consecutive moments. This practice can lead to confusing voice
leadings.

Leap. The degree of complexity of a leap depends on its intervallic size and its
consequent consonant or dissonant nature. Here follows a simple classification:

• Minor and major third: consonant leaps.

• Sixth or seventh: dissonant leaps, usually followed by a change of motion.

• Larger than an octave: not permitted, rarely used to create interest.

• Perfect fourth and perfect fifth: consonant and often followed by a motion
change.

Two consecutive leaps in the same direction are usually avoided, with the
exception of two consecutive third leaps.

Melodic motion. Generally, the soprano line tends to move by conjunct motion
avoiding leaps. The bass line is normally in charge to support the other voices,
clarifying the harmony of the piece, thus it can move disjointedly. Inner voices
have to complete the tones of the chord framed by the bass and soprano lines. In
conclusion, leaps of the soprano voice increase the complexity of a voice leading, but
their complete absence would create repetitive and static melodies and would make
the harmonic structure vague.
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Simultaneous motion. It is possible to classify the simultaneous motion of two
voices as follows (refer to Figure 1.12 for an intuitive representation):

• Similar Motion: same direction, different spacing.

• Parallel Motion: same direction and same spacing.

• Oblique Motion: only one voice is moving.

• Contrary Motion: opposite directions.

Contrary motion provides contrast and independence to the voices, creating an
interesting soundscape for the listener. Parallel motion in thirds, sixths and tenths
can be considered among the most powerful voice leading techniques. In some cases,
parallel motion bounds the possible configurations of the voices, thus it is forbidden
for unisons, octaves, fifths.

Consecutive fifths and octaves by contrary motion are normally avoided. Hidden
fifths and octaves are to be avoided in few voices contexts (forbidden in two parts
writing). A complex texture or a dissonant context mitigate the effect of parallel
fifths and octaves. The general rule holds, hidden octaves have to be avoided in the
outer voices.





Two

Mathematical models: state of the art

In this section we present two important music representation models. First, the
chord space which has the interesting mathematical structure of an orbifold. This
space has been recently introduced in (Tymoczko, 2006) and it is characterised by a
metric, continuous structure. Second, in a sort of mathematical opposition to this
model, we describe the Tonnetz. It was represented, at its origin, as a table (Euler,
1739b), aiming at stressing the acoustic relationships among pitches. It has been
described as an abstract graph in (Zabka, 2009). We shall suggest a topological
representation of the Tonnetz. In order to safely define these music representation
spaces, we shall introduce two basic concepts of algebraic topology: simplices and
simplicial complexes.

2.1 Simplicial complexes

2.1.1 Simplices

A standard object in Topology is the gluing diagram: a collection of topological
polygons, whose edges are labeled and oriented. Such a diagram represents the space
obtained by gluing the sides labeled with the same letters, and matching orientations.
Geometrical entities like the torus T2, the Möbius strip M , the projective plane RP2

and the Klein bottle K can be obtained by attaching two triangles as it is depicted
in Figure 2.1.

Simplices generalise this idea to higher dimensions: it is possible to think about
the n-dimensional simplex as an equivalent of the n-dimensional triangle.

Let V = { v0, v1, . . . , vn } be a set of points in Rm. The points in V are affinely
independent if and only if the vectors vi − v0 for i ∈ { 1, . . . , n } are linearly inde-
pendent. An affine combination of the points vi is given by x =

∑n
i=0 αivi with∑n

i=0 αi = 1. A convex combination of the vi is an affine combination such that
αi > 0 for all i.

Definition 2.1.1. The convex hull of a set of points V = { v0, . . . , vn } ⊂ Rm is the
set of all convex combinations of points in V :

C =
{

n∑
i=0

αivi

∣∣∣∣∣ ∑
i

αi = 1, αi > 0
}
.

Definition 2.1.2. Let V = { v0, . . . , vn } ⊂ Rm be a set of n+1 affinely independent
points. The convex hull conv (V ) is said to be a simplex of dimension n, denoted by
σ = [v0, . . . , vn].

21
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Figure 2.1: Gluing diagrams of the torus T2, the Möbius strip M , the projective
plane RP2 and the Klein bottle K.

Figure 2.2: Representation of low-dimensional simplices.

The 0, 1 and 2-dimensional simplices are called vertices, edges and triangles. The
3-simplex, a tetrahedron, corresponds to the 3-dimensional extension of the triangle.
These simplices are depicted in Figure 2.2.

Let σ be a simplex generated by the set of affinely independent points V . A face
τ of σ, is the convex hull of a non-empty subset S ⊆ V . In particular a face is said
to be proper if S is a proper subset of V . We will use the notation τ < σ if τ is a
proper face of σ and τ 6 σ otherwise.

The boundary of σ, denoted bd σ is the union of all its proper faces and its
interior is int σ = σ − bd σ.

2.1.2 Simplicial complexes

Simplicial complexes are particular collections of simplices, that are closed under
the operation of taking faces and in which improper intersections of simplices are
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Figure 2.3: Star and link of a vertex of a simplicial complex.

forbidden. Formally, we have

Definition 2.1.3. A simplicial complex K is a finite collection of simplices, such
that for σ, σ0 ∈ K:

(i) if τ < σ then τ ∈ K;

(ii) σ ∩ σ0 is a face of both simplices or empty.

The dimension of a simplicial complex K is the maximum dimension of its sim-
plices. A subcomplex of K is a simplicial complex L ⊆ K. Particular subcomplexes
of K are its skeleta, in particular the k-skeleton is defined as the set containing all
simplices of K of dimension at most k. The underlying space of K, denoted as |K|,
is the polyhedron given by the union of its simplices with the topology it inherits
from Rm. Let X be a topological space, it is said triangulable if it has a triangulation
given by a homeomorphism Φ : X→ |K|, where K is a simplicial complex.

The star of a simplex τ ∈ K is the set of its cofaces, i. e. St τ = { σ ∈ K | τ 6 σ }
which is generally not a subcomplex of K. Hence, we can consider its closure, the
closed star of τ denoted by St τ , which is the smallest subcomplex containing St τ .
The link of τ is the collection of all simplices in its closed star that does not intersect
τ . See Figure 2.3 for a representation of the star and the link of a vertex of a
simplicial complex.

A simplicial complex of dimension 2 can be described as a purely combinatorial
object, starting with a set of vertices, then attaching the edges to obtain a graph and
finally, adding triangles to the graph’s structure. In the case of higher dimensional
simplicial complexes, according to (Hatcher, 2002, Sec. 2.1), since the simplices of
a simplicial complex K are univocally determined by their vertices, it is possible
to give a combinatorial interpretation of K, as a set K0 of vertices, with sets Kn

of n-simplices, i. e. (n + 1)-element subsets of K0. In addition, every subset of
(k + 1)-element subset of the vertices of Kn has to be a k-simplex, in Kk.

2.2 The geometrical approach: continuous models

2.2.1 From pitch labels to continuous frequencies

When considering the equal temperament, given the fundamental frequency ν of
a note it is possible to represent its pitch as a real number through the function
p : (0,+∞)→ R defined by

p(ν) := 69 + 12 log2

(
ν

440

)
. (2.2.1)
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(a) R (b) S1 = R/12Z.

Figure 2.4: The linear space of pitches and the space of pitch classes.

The majority of humans, including either trained listeners or musicians are not
sensitive to absolute note frequencies but rather to their ratios. This suggests that a
notion of distance in the mathematical space of notes should be defined in terms of
ratios of their fundamental frequencies. The advantage brought by Equation (2.2.1)
is that we are able to deal with subtractions (which are handier, compared to the
ratios). It is thus reasonable to interpret the pitch space as the metric space (R, d),
where d is the distance induced by the absolute value: d(p, q) := |p− q|. Observe
that this model implies the existence of infinitely many notes between any two
pitches p and q. A way to visualise this concept is to image a continuous glissando of
an instrument such as the violin or the trombone, or even a human voice. However,
the values corresponding to the notes actually played in music (by a piano or a
clarinet, for instance) are in fact specific integer numbers. This is due to the choice
of working in the equal temperament framework, where the octave is subdivided
into 12 equally spaced subintervals, so that the ratio of two consecutive semitones is
21/12.

In this work, we assume continuous trajectories among notes (represented as
points of a space) to be paths between one discrete state of the space to another, as
they are defined by equal tuning.

In order to carry out a more qualitative and deeper analysis, hence reaching
a visualisation of the harmonic essence of a piece, we must consider pitch classes,
obtained by identifying pitches modulo octave:

[p] := { p+ 12k | k ∈ Z } . (2.2.2)

This amounts to take the quotient space R/12Z ∼= S1 =: T1, which we endow with
the distance

d̄
(
[p], [q]

)
:= min { |p− q| | p ∈ [p], q ∈ [q] } ;

we call (T1, d̄) the pitch class space.
Thanks to the definitions given above, it is possible to start modelling objects be-

longing to the domain of harmony. Several studies aiming at a geometric description
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of the chord space have already been developed, in particular by D. Tymoczko and
others in (Tymoczko, 2006, 2008; Callender et al., 2008; Tymoczko, 2011). In Music,
a chord is the simultaneous execution of two or more notes (say n, in general) modulo
octave, which translates in mathematical language into an n-tuple of real numbers
(i. e. a point of Rn). Since in harmony, one is not sensitive to octaves when studying
the relations between chords or notes, we actually think in terms of pitch classes.
Hence, an n-tuple of pitch classes is, in principle, a point of the n-dimensional torus
Tn. However, chords where notes (or pitch classes) are permuted are considered
equivalent from the harmonic point of view. Therefore, if we ignore the order in
which the notes are arranged, we have to quotient Tn by the symmetric group Sn,
and we come up with the mathematical definition of chord. In what follows we shall
always assume n > 2.

Definition 2.2.1 (n-dimensional pitch space). A tuple of n notes (p1, . . . , pn), where
P = {pi}ni=1 ⊆ Z12 is a point in the space

Tn =
(
S1
)n
.

The idea is to neglect the order in which notes are listed in P , thus

Definition 2.2.2 (Chord space). A chord is a point in the space

An = Tn/Sn,

where Sn is the symmetric group, that acts by permutation of the coordinates:

σ (x1, . . . , xn) =
(
xσ(1), . . . , xσ(n)

)
.

2.2.2 Geometrisation of the chord space

The n-dimensional torus can be viewed as a quotient space with respect to integer
translations: Tn ∼= Rn/(12Z)n. Since the action of (12Z)n on Rn has no fixed
points, the projection π : Rn → Tn is a covering map and therefore it preserves
the local topology. Furthermore, the symmetric group Sn acts on the n-torus via
diffeomorphisms (isometries) by permuting the coordinates of each point. Thus An
inherits from Tn the structure of metric space. Moreover, since it has been obtained
from a differentiable manifold through the action of a finite group, it is also an
orbifold. We refer to (Thurston, 2002) for details on this topic. However, An is not
a differentiable manifold, because the points fixed by the action of Sn are singular.1

The following result was proven in (Slavich, 2010) and provides a geometric
characterisation of the chord spaces. The proof has been rewritten in Appendix B
since the original document is written in Italian.

Theorem 2.2.1. The space of chords An is a metric space, obtained by gluing
the (n − 1)-dimensional tetrahedral bases of a right n-dimensional prism via the
equivalence relation induced by a cyclic permutation of the vertices.

1A point in An is singular if at least 2 of its coordinates have the same value: in this case the
action of the permutation group admits fixed points.
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Figure 2.5: The space A3.

It is possible to characterise the points of the chord space by considering the
number of repeated pitch classes they contain. For instance, the points of the space
A3 depicted in Figure 2.5 are structured as follows:

(a) the points representing chords with no repeated pitch classes lie in the interior
of the prism Ån.

(b) the chords whose representatives are tuples of the form (x, x, y) lie on the
2-dimensional faces of the prism.

(c) the edges of the prism are constituted by unisons (modulo octave).

The voice leading between two n-notes chords can be represented as a trajectory
in the chord space. The singular boundaries of the prism acts as mirrors on the
trajectory (this particular feature of the chord space will be discussed in more details
in Section 3.3). To help the reader’s intuition, it is possible to think about these
reflections in the simplified representation of the billiard table orbifold in Figure 2.6
on the facing page. The action of the group of isometries of the plane on the four
sides of the table generates infinitely many collections of balls in R2 and the edges
of the rectangle R act as mirrors respect to the trajectory of the ball.

2.3 The Tonnetz
The Tonnetz has been largely studied in computational musicology. Its structure
mirrors the acoustical properties of pitch classes and the connections between its
vertices highlight relevant tonal, harmonic objects, such as major and minor triads.
In the following sections, we will sketch its history and we define it both as an
abstract graph and a simplicial complex.
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R

Figure 2.6: The billiard table orbifold is generated by the group of isometries of
R2 reflecting a rectangle along its four sides. The borders of the rectangle R act as
mirrors on the dashed trajectory.

Figure 2.7: The Euler Tonnetz. Two pitch classes are connected by an edge, if they
form a consonant interval. The horizontal arrow (PV) links two pitch classes a
perfect fifth apart, while the two pitch classes connected by the vertical arrow (MIII)
forms a major third interval.

2.3.1 An overview on tone-networks

Leonhard Euler was the first to describe a Tonnetz in (Euler, 1774). Although this
structure has been largely generalised, see for instance (Douthett and Steinbach,
1998; Tymoczko, 2012), the original idea was to create a diagram mirroring the
acoustical proximity of the pitch classes of the chromatic scale in just intonation
temperament. This representation of the Tonnetz is depicted in Figure 2.7. Two
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consecutive notes on the horizontal axis, equipped with the orientations of the arrows
showed in the figure, form a perfect fifth interval (PV). On the vertical axis, a couple
of consecutive notes form a major third (MIII) from top to bottom2.

The Tonnetz has inspired important modern musical models. For instance, the
spiral array (Chew, 2002) (in equal temperament) can be described as a spiralisation
generalising the Euler 3× 4 diagram. It is defined as a 3-dimensional helix where
the position of the ith pitch class has cylindrical coordinates

p(i) = (sin(iπ/2), cos(iπ/2), ih),

where h is a fixed height parameter and i ∈ Z.
Hence, consecutive pitches on the helix are arranged to form perfect fifth intervals.

Moreover, the periodicity of the trigonometric functions implies that

πx,y(p(i)) = πx,y(p(i+ 4)),

where πx,y : R3 → R2 is the canonical projection. Thus, two such points differ only
in their last coordinate, and represent a major third interval. See Figure 2.8 for a
representation of the spiral array and an example of the two configuration of pitch
classes described above.

If the aim of the Tonnetz was to represent the acoustical nearness among the
12 notes of the chromatic scale, the first infinite Tonnetz was introduced by von
Oettingen in 1866. A new direction on the graph can be considered as relevant: the
notes on the left-bottom/right-top diagonals in the Euler’s matrix are minor third
intervals. Thus it is possible to extend the diagram of Euler as a infinite triangular
planar lattice.

To safely define the Tonnetz in the Graph Theory formalism, we introduce the
following definitions.

Definition 2.3.1 (Abstract graph). An abstract unoriented graph is a pair (V,E)
where V is a finite non-empty set and E is a non-empty set of unordered pairs of
different elements of V . Thus, an element of E is of the form {v, w} where v and w
belong to V and v 6= w. We call vertices the elements of V and edges the elements
{v, w} of E connecting v and w.

Pitches can be associated to the Tonnetz ’ vertices by defining a labelling function
lV : V → L. It is clear how it is possible to associate to the Euler’s diagram a set
of vertices, which in terms of pitch classes correspond to the chromatic scale, and
associate an edge to every couple of pitches with intervallic distance equal to 7, 3 or
4 half-steps3.

A formal definition of the Tonnetz as an abstract graph is given in (Zabka, 2009).

Definition 2.3.2 (Realization of a graph). Let (V,E) be an abstract graph. A
realization of (V,E) is a set of points in RN , whose elements are associated to vertices
in V and edges are realized as segments joining the pairs e ∈ E. Such a realization
is termed a graph. We require that the following two intersection conditions hold:

2A change of the orientation of the axis will reverse the intervals. A perfect fifth’s inversion is a
perfect fourth, while the inversion of a major third is a minor sixth.

3We shall always consider an octave to be splitted in 12 half-steps
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Figure 2.8: The spiral array. Two consecutive pitch classes lying on the helix are
a perfect fifth apart (considering the orientation of the curved arrow), while the
vertical arrow connects two pitch classes a major third far from each other.

1. two edges meet either in a common end-point or not at all;

2. no vertex lies on an edge except at one of its ends.

It is possible to represent the Tonnetz as a geometric realisation of an abstract
graph corresponding to a 2-dimensional triangular lattice, whose edges are determined
by three translation functions of the form

τi : Z/12Z→ Z/12Z
p 7→ p+ i mod 12,

where i ∈ {3, 4, 5} and p ∈ LV is the set of labels equipped with the labelling function
lV . See Figure 2.9 for a visualization of the Tonnetz.

The cardinality of the set of unique vertices of the Tonnetz T (τ1, τ2, τ3) is
determined by the order of the translations involved in its construction. In particular,
it is the maximum of the orders of the translation maps involved, and corresponds
to the whole chromatic scale if and only if τi generates Z/12Z for some i ∈ {1, 2, 3}.
In particular T (3, 4, 5) contains the whole chromatic scale since 5 is a generator of
Z/12Z.

2.3.2 The Tonnetz as a Simplicial Complex

Thanks to the theory introduced in Section 2.1, it is possible to give a simplicial
complex interpretation of the Tonnetz, as originally suggested in (Bigo et al., 2013).



30 CHAPTER 2. MATHEMATICAL MODELS: STATE OF THE ART

Figure 2.9: Realization of the Tonnetz as a tiling of the plane.

The vertices of the graph in Figure 2.9 correspond to 0-simplices, edges to 1-simplices
and the 2-simplices are attached to the structure defined by the 1-skeleton we just
provided. In particular, considering the labels inherited by the graph we have that
the 0-simplices correspond to pitch classes, 1-simplices to perfect fifth, major third
and minor third intervals4 and 2-simplices to major and minor triads. In Figure 2.10
the 2-simplices are labeled as triads. The label corresponds to the triad generated
by the superposition of the notes on the triangle’s vertices. For instance, the triad
of C major corresponds to [C,E,G], while C minor is associated to [C,E[,G].

In the remainder of this work, we will refer to the Tonnetz as a simplicial complex,
denoting it by T and its underlying space by |T |. In particular, we define an extended
shape E of the Tonnetz as a subcomplex E ⊂ T .

Given a topological space X and a discrete group G acting on it, a fundamental
domain of the action of G on X is an open set S ⊂ X, such that the projection
π : X→ X/G is injective when restricted on S and surjective on D̄. Observe that
a fundamental domain of the Tonnetz corresponds to a region which is the torus
generated by the major and minor third intervals. Geometrically, it is realised by
identifying the horizontal and vertical edges of the square represented in Figure 2.10
on the next page, according to the labels of the vertices. In the remainder of this
work, we shall denote such a region by F .
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Figure 2.10: The gluing diagram of the Tonnetz torus. Pitch classes correspond to
0-simplex. Each triangle represents either a major or a minor triad denoted by a
bold label, with major triads indicated by capital letters.

Figure 2.11: Simple shapes and four notes chords.

Extended Shapes on the Tonnetz

The extended shape generated by a trace of the pitch classes played in a music phrase
on the Tonnetz depends on the intervals among the notes involved in the phrase.
However, it would not be possible to distinguish geometrically the subcomplexes
associated to a C∆ and Cm7 (modern chord notations and the definition of triad,
seventh chord and altered chord are detailed in Appendix E), both corresponding to

4Or their inversions depending on the orientation of the edges.



32 CHAPTER 2. MATHEMATICAL MODELS: STATE OF THE ART

(a) Ionian extended shape. (b) Locrian extended shape.
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(d) The locrian mode.

Figure 2.12: Extended shapes on the Tonnetz. Two different modes are represented
by the same extended shape.

the subcomplex generated attaching two adjacent triangles of T sharing an edge. In
particular, more exotic chords correspond to the same shape. In Figure 2.11 some
of the possible subcomplexes given by the attachment of two triangles on T are
depicted. It is possible to observe in the figure, that altered chords appear next to
the standard ones.

The same phenomenon occurs for modes by analysing extended shapes generated
considering different modal scales. In this context, we refer to a mode as a scale
supported by a fundamental note or a chord defining the set of resolutions and
tensions in the scale. (See Appendix A for details on modern modal theory).
In Figures 2.12a and 2.12b we show how the same extended shape is associated to
two different modes. Figures 2.12a and 2.12b have been realised with the software
Hexachord5 from MIDI files corresponding to the partitions of Figures 2.12c and 2.12d.
The idea that led to the model we shall present in Part III is to define a preferred
subcomplex of the fundamental domain of the Tonnetz, generated considering the
pitch classes and the durations of musical phrases.

5Developed by Louis Bigo during his Ph.D. thesis and available at http://www.lacl.fr/~lbigo/
recherche.

http://www.lacl.fr/~lbigo/recherche
http://www.lacl.fr/~lbigo/recherche
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Abstract

This part focuses on the analysis of voice leadings, i. e. the transformation of a
sequence of chords into a collection of superposed melodies in simultaneous motion.
In Chapter 3, the musical idea of voice leading is formalised from a mathematical
viewpoint as a multiset: an unordered collection of pitches where repetitions of the
same element are allowed. Thereafter, a representation of voice leadings as partial
permutations is described.

This algebraic approach is re-interpreted geometrically in Section 3.3. Voice
leadings become geodesics and their concatenation a piecewise geodesic path in the
space of pitches, pitch classes and the chord space. The different kind of simultaneous
voice motions are analysed in each space, pointing out how minimal geodesics paths
represents non-crossing voice leadings among two chords. In Section 3.4 we show
how partial permutation matrices encode the information concerning simultaneous
motions of n voices, including possible crossings among pairs of voices. We propose
a method to represent different kinds of voice leadings used in a piece as a multiset
of points endowed with a multiplicity. Then, we suggest a simple extension of this
model to other contrapuntal species than the first one. Sequences of voice leadings,
described as 5-dimensional points, are seen as multi-dimensional time series and
compared using dynamic time warping.

Finally, in Chapter 4, partial singular braids are introduced as a tool for the
visualisation of partial permutations and, hence, voice leadings. Indeed, by selecting
a particular class of braids it is possible to visualise voice leading among chords of n
notes in the 3-dimensional Euclidean space. Then, the first model is extended to
take into account the intervallic leap of each voice. In conclusion of this chapter,
we analyse the behaviour of the model in the space of pitch classes, analysing four
examples previously discussed in (Tymoczko, 2011).

This part represents joint work with Alessandro Portaluri and Riccardo Jadanza.
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Three

Voice leadings, partial permutations and
geodesics

Counterpoint represents the melodic point of view of composition, reflecting a
horizontal way of thinking. In the particular case of simultaneous motion of voices,
the attention is centered on the composition of multiple, independent melodies
that end up forming a sequence of chords. This choice allows to compose melodies
affecting the listener both as a whole (chords) and as different autonomous fluxes
of notes (parts). In the following sections, we shall focus on the formalisation of
the voice leading process, also called part writing, that is the evolution and the
interaction of parts or voices in a sequence of chords.1 Intuitively, we can think of it
as the assignment of a melody to a certain instrument, when more than one melody
is played by more than one instrument at the same time.2

3.1 Defining the voice leading

In general, it is possible to describe a melody as a finite sequence of ordered pairs of
pitches or pitch classes (pi, pi+1)i∈I , where I is a finite set of indices. See Section 2.2
for the definition of pitch and pitch class. In order to model the voice leading
in a mathematical way it is necessary to introduce first the concept of multiset, a
generalisation of the idea of set. This approach was already considered in (Tymoczko,
2006). Formally, a multiset M is a couple (X,µ) composed of an underlying set X
and a map µ : X → N, called the multiplicity of M , such that for every x ∈ X the
value µ(x) is the number of times that x appears in M . In layman terms, we can
think of a multiset as of a list, where an object can appear more than once, whilst the
elements of a set are necessarily unique. As an example consider L = [a, a, a, b, b, c].
The underlying set of L is X = { a, b, c } and the multiplicity function µ takes values
µ(a) = 3, µ(b) = 2, µ(c) = 1.

We define the cardinality |M | of M to be the sum of the multiplicities of the
elements of its underlying set X. Observe, however, that a multiset is in fact
completely defined by its multiplicity function: it suffices to set M :=

(
dom(µ), µ

)
.

Definition 3.1.1. Let L and M be two finite multisets, such that |L| = |M |. A
1Here the term “chord” is used in the musical sense, not necessarily as a point of the space An.
2It is possible to think in terms of voice leading even in non-compositional contexts: for instance,

a guitarist reading a partition makes a part-writing choice, deciding to play a note on a certain
string. Thus we can imagine the six strings as a choir composed by six singers playing together.
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bijection between L and M is the multiset Φ ⊂ L×M , such that

Φ = {(l1,m1), . . . , (ln,mn)},

where L = {l1, . . . , ln} and M = {m1, . . . ,mn}.

If we interpret a set of n singing voices (or parts played by n instruments, or both)
as a multiset of pitches of cardinality n, then a voice leading can be mathematically
described as follows.

Definition 3.1.2. Let M := (XM , µM ) and L := (XL, µL) be two multisets of
pitches with same cardinality n and arrange their elements into n-tuples (x1, . . . , xn)
and (y1, . . . , yn) respectively.3 A voice leading of n voices betweenM and L, denoted
by (x1, . . . , xn)→ (y1, . . . , yn), is the (bijection) multiset

Z :=
{
(x1, y1), . . . , (xn, yn)

}
,

whose underlying set is XZ := XM × XL and whose multiplicity function µZ is
defined accordingly, by counting the occurrences of each ordered pair.

Remark 1. Observe that the definition just given is not linked to the particular type
of object (pitches): it is possible to describe voice leadings also between pitch classes,
for instance.

Note that it is also possible to describe a voice leading as a bijective map from
the multiset M to the multiset L, i. e. as a partial permutation of the union multiset

M ∪ L := (XM ∪XL, µM∪L),

where
µM∪L := max{µMχM , µLχL}

and χM and χL are the characteristic functions of XM and XL, respectively.4

3.2 Partial permutations
A partial permutation of a finite (multi)set S is a bijection among two fixed
sub(multi)set of S. For instance, this function can be a string of n symbols, in which
we admit � as a special character to denote the empty character. In this definition
the domain of the partial permutation is constituted by the position indices of the
non-empty elements of the string. For instance the string “1 1 � 2” represents the
partial permutation of domain {1, 2, 4}. The symbol 1 fixed, 2 is mapped to 1 and 4
to 2. The corresponding cycle notation is(

1 2 3 4
1 1 � 2

)
,

where the two sub(multi)sets corresponds to the rows of the matrix, the mapping to
the columns and � is associated to unmapped elements.

3These are in fact the images of two bijective maps ψM : {1, . . . , n} →M and ψL : {1, . . . , n} →
L., where M and L are understood as “sets” with (possibly) repeated elements.

4For a multiset S we assume that µS(x) = 0 if x /∈ XS . Under this assumption, the function
µM∪L is defined on the entire set XM ∪XL.
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Remark 2. In order to be able to do computations with partial permutations, it is
fundamental to fix an ordering among the elements of the union multiset M ∪ L.
We give to M ∪L the natural ordering 6 of real numbers, being its elements pitches.
Indeed, in classical music with equal temperament, one defines the pitch p of a note
as a function of the fundamental frequency using the Equation (2.2.1). This can
be done also in the case where the elements of the union multiset are pitch classes:
the ordering is induced by the ordering of their representatives belonging to a same
octave.

Example 3.2.1. The voice leading

(G2, G3, B3, D4, F4)→ (C3, G3, C4, C4, E4) (3.2.1)

is described by the partial permutation of the ordered union multiset

(G2, C3, G3, B3, C4, C4, D4, E4, F4)

defined by (
G2 C3 G3 B3 C4 C4 D4 E4 F4
C3 � G3 C4 � � C4 � E4

)
. (3.2.2)

Thus, a voice leading between two multisets of n voices can be seen as a partial
permutation of a multiset whose cardinality is less than or equal to 2n.

The next step is to associate a representation matrix with the partial permutation.
Let V be an n-dimensional vector space over a field F and let E := {e1, . . . , en} be
a basis for V . The symmetric group Sn acts on E by permuting its elements: the
corresponding map Sn × E→ E assigns (σ, ei) 7→ eσ(i) for every i ∈ {1, . . . , n}. We
consider the well-known linear representation ρ : Sn → GL(n,F) of the group Sn
given by

ρ(1 i) :=



0 1
1
. . .

1
1 0

1
. . .

1

 ,

where the 1’s in the first row and in the first column occupy the positions 1, i and
i, 1 respectively. The map ρ sends each 2-cycle of the form (1 i) to the corresponding
permutation matrix that swaps the first element of the basis E for the i-th one.
Note that each row and each column of a permutation matrix contains exactly
one 1 and all its other entries are 0. Following this idea and (Horn and Johnson,
1991, Definition 3.2.5, p. 165), we say that a matrix P ∈ Mat(m,R) is a partial
permutation matrix if for any row and any column there is at most one non-zero
element (equal to 1). When dealing with a voice leading M → L, the dimension m
of the matrix P is equal to the cardinality of the multiset M ∪ L.
Remark 3. In general, the partial permutation matrix associated with a given voice
leading is not unique. This is due to the fact that we are dealing with multisets: if
M → L is a voice leading it is possible that some components of L have the same
value, i. e. that different voices are playing or singing the same note.
For this reason we introduce the following convention.
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Convention 1. Let M := (x1, . . . , xn) → L := (y1, . . . , yn) be a voice leading and
suppose that more than one voice is associated with a same note of L. To this
end, let (xi1 , . . . , xik) be the pitches of M (with i1 < · · · < ik) that are mapped to
the pitches (yj1 , . . . , yjk) of L, with yj1 = · · · = yjk and j1 < · · · < jk. In order to
uniquely associate a partial permutation matrix P := (aij) with the above voice
leading, we assign the value 1 to the corresponding entries of P by following the
order of the indices, that is by setting ai1j1 = 1, . . . , aikjk = 1.

Thus, we shall henceforth speak of the partial permutation matrix associated with a
given voice leading.

Example 3.2.2. The partial permutation matrix associated with the cycle rep-
resentation of Equation (3.2.2) of voice leading represented in Equation (3.2.1)
is 

0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0


.

Therefore, if M → L is a voice leading, if both M and L are thought of as ordered
tuples and if P is its partial permutation matrix, we have that PM = L; in addition,
the “reversed” voice leading L→M is obviously described by the transposed PT of
P : PTL = M .

This representation has the advantage of providing objects that are much handier
than a multiset of pairs, speaking in computational terms. Algorithm 3.1 presents
the pseudocode for the computation of the partial permutation matrix of a voice
leading.

Algorithm 3.1 Computing the partial permutation matrix.

Input:
M → L . Source (M) and target (L) multisets describing the voice leading

Output:
P . Partial permutation matrix associated with the voice leading

Evaluate multiplicities of all x ∈M and all y ∈ L;
Generate the ordered multiset U := M ∪ L;
Initialise P ∈ Mat

(
|U | ,R

)
by setting P (i, j) = 0 for all i, j;

1: for i, j ∈ {1, . . . , |U |} do
2: if U(i)→ U(j) then
3: P (i, j) = 1
4: end if
5: end for
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3.3 Voice leading and piecewise geodesic paths
We can imagine a voice leading of n voices as a sequence of n-dimensional vectors
(points in Rn), whose components are the pitches associated with each note played
by each voice. An important feature of this visualisation is that the melody of a
certain voice is always represented by the same coordinate (say the ith one) in every
vector of the sequence: we can thus read it very simply by looking at the projections

πi : Rn → R
(v1, . . . , vn) 7→ vi for i = 1, . . . , n.

A useful way to represent this idea is to take an oriented segment joining two
consecutive points u and v of Rn, that is a path γ : [0, 1]→ Rn given by

γ(s) := u+ s(v − u). (3.3.1)

Note that this is just a convenient graphical tool and does not mean at all that
every point constituting the path is effectively “played”: the only ones that are
involved in the melody are the endpoints γ(0) = u and γ(1) = v.

The main characteristic of the path presented just above is that it is a geodesic
between the points u and v, being the n-dimensional Euclidean space flat. There
are infinitely many ways to connect two points in Rn, and we are not interested in
the particular way they are joined. It makes sense to set the convention that they
are linked in the simplest way possible; this choice will bring advantages also in the
following, as the reader will see.

If we iterate this process for each note and for each voice we obtain a polygonal
chain in Rn, which is not a geodesic but rather a piecewise geodesic. This is not
surprising and in fact quite desirable, because if we considered a melody of more
than 2 notes (per voice) and if we joined the endpoints with a segment, then we
would lose all the information between the two, that is we would erase the melody
itself! For this reason it is meaningful to consider a concatenation of geodesics, which
allows to reproduce every step of the music.

This is the geometric representation of what has been presented above in the
algebraic form through partial permutation matrices. Indeed, if we consider a melody
as a finite sequence of points (say k) in Rn, with n the number of voices, then we
can describe it geometrically through a piecewise linear path and algebraically as the
product Pk · · ·P1, where Pi is the partial permutation matrix of the i-th voice leading.
As an example, consider the progression of triads in Figure 3.1a on the following
page: each of them is represented as a triple (p1, p2, p3) in R3, with p1 < p2 < p3.
In general it is possible to build a voice leading by associating each note of a given
chord with a note of the following one, respecting the order induced by <. This rule
has been used to draw the path in Figure 3.1b.

Let us now consider the four voice leadings

(B3, F5)→ (C4, E4) and (F5, B3)→ (E4, C4),
(B3, F5)→ (E4, C4) and (F5, B3)→ (C4, E4),

depicted in Figure 3.2 on page 45: from the musical and perceptual viewpoint
they are completely equivalent in pairs (each row describes the same voice leading).
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leading.

Figure 3.1: Voice leading and corresponding piecewise geodesic path.

Generalising this fact to n voices, it is natural to identify the paths in Rn that are
symmetric with respect to the diagonal of this space.
An immediate generalisation of this situation leads to the conclusion that if we
apply the same permutation to both the endpoints of the paths representing a voice
leading, then we obtain de facto the same voice leading.

The above discussion about symmetry, points out that it makes sense to represent
a voice leading of n voices as a geodesic on the Riemannian manifold with boundary
Rn/Sn. In the special case n = 2 the space R2/S2 is isomorphic to the half-plane

H := {(x, y) ∈ R2 | x 6 y}.

Figure 3.2 shows the voice leading between two dyads in R2.
It possible to represent and to analyse voice leadings as paths on more harmony-

oriented spaces, such as the pitch class space Tn (whose points tuples of pitch classes)
or the chord space An, introduced in Section 2.2. From the harmonic point of view
it is indeed admissible to ignore the octave which a certain note of a chord belongs
to, and to identify each chord with the whole set of its possible voicings. We are
therefore interested in geodesics on these spaces, as they will be the representation
of voice leading also in this fairly general setting. The paths that we are seeking will
be easily constructed once we note that Tn and An are obtained as identification
spaces from Rn. Therefore it suffices to draw the segments connecting the endpoints
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Figure 3.2: The four possible voice leadings between the notes of the score depicted
above. Observe the symmetric nature of the paths with respect to the dashed line
(y = x).

of the voice leading in Rn, just like before, and then project them via the covering
map that gives rise to the desired space. Here are some illustrated examples.

Example 3.3.1 (Voice Leading on T2). In Figure 3.3a on the following page, the
torus is described as a gluing space (see also Section 2.1). Thus, a trajectory crossing
the upper border of the square in a certain point (x, u) will re-enter in the square
at the point (x, l), where y = u and y = l are the lines where the horizontal edges
lie, respectively. Symmetrically, the same argument holds for the vertical edges.
Counting how may times a trajectory crosses the opposite edges of the square5, it is
possible to retrieve the number of octave leaps made by one or more voices during a
voice leading (which a priori is lost, since we are considering pitch classes). Let us
consider for this purpose the following four voice leadings in R2:

i) (D0, F0)→ (E0, G0), ii) (D0, F0)→ (E1, G0),
iii) (D0, F0)→ (E0, G1), iv) (D0, F0)→ (E1, G1).

They all represent the same voice leading (D,F )→ (E,G) in the pitch class space,
but their path realisations are different. Figure 3.3a on the next page displays these
four paths on T2:

5It would be equivalent to consider the generators of the fundamental group of the torus
π1
(
T2) = Z× Z. See (Hatcher, 2002, Ch. 1).
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(a) Geodesics and octave leaps in T2.

(b) Geodesics in A2.

Figure 3.3: Voice leading paths in the pitch class space T2 and in its relative chord
space A2. (a) The torus T2 is represented as a square with the usual identification
rule on its sides expressed by the symbols > and 4. (b) The identification rule on
A2 is represented by the arrows on the vertical edges of the square.

Path i) is drawn as the shortest red arrow, since the jump between the dyads does
not exceeds the 0-th octave;

Path ii) is represented by the green arrow, exiting the square from its right side
and coming back in from its left side: this reflects the fact that the first
voice makes a leap of one octave;

Path iii) is associated with the blue arrow, pointing to the top and re-entering the
figure from the bottom: in this case it is the first voice that jumps to the
next octave;
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Path iv) is rendered by the dashed red arrow: it jumps from the top to the bottom
and then from the right to the left of the square, because both voices
exceed the 0-th octave.

Example 3.3.2 (Voice Leading on A2). In the 2-dimensional case of dyads A2 =
T2/S2 is the Möbius strip. See (Bergomi et al., 2014b) for details about the con-
struction and the positioning of the chords on the lattice. Figure 3.3b shows three
different geodesic paths corresponding to the voice leading {B,F} → {C,E}, where
the curly braces mean that we are identifying all possible assignments of parts to
each voice. Observe the identification of the left and right side of the square with
inverted orientation and note the singular boundary of the unisons, constituted by
the upper and lower side of the square. As we intuitively described in Section 2.2,
the paths bounce back when touching it because of the quotient by the symmetric
group. Here, it is clear that harmony is favoured over melody, as neglecting both
octaves and ordering leads to focus on the ensemble of voices.

These examples share and show one important feature: the shortest paths joining
the two pairs of pitch classes T2 or dyads A2 (the minimal geodesics between those
two points) represent voice leading with neither crossing nor octave leaps, whilst the
paths that touch the singular boundary correspond to part writings where at least
one of these phenomena occurs.

Although the voice crossing is not advised as a standard practice in harmony
manuals, it is a useful technique to avoid repeated notes, parallel fifths and hidden
octaves and to assure a high degree of independence to each voice. For further
details on orchestration and the use of voice crossing, see (Prout, 2012; Boland and
Link, 2012; Russo, 1997; Sussman and Abene, 2012; Notley, 2007).

3.4 Simultaneous motions of the voices and
complexity of a voice leading

We have seen in the previous section how the partial permutation matrix associated
with a voice leading contains the information describing the path leading from one
note to the next for each voice. Here, we are going to illustrate that, in fact, the
tool that we have built also encodes the direction of motion of the different voices,
including their crossings.

On the one hand, in music one distinguishes between three main behaviours
(cf. Figure 1.12 on page 18; here, we omit parallel motion because it is not involved
in our analysis):

(i) Similar motion, when the voices move in the same direction;

(ii) Contrary motion, when the voices move in opposite directions;

(iii) Oblique motion, when only one voice is moving.

On the other hand, with reference to a partial permutation matrix (aij), it is possible
to describe the motion of a voice by noting three conditions, which are immediate
consequences of the ordering of the union multiset:
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1) If there exists an element aij = 1 for i < j then the i-th voice is moving “upwards”;

2) If there exists an element aij = 1 for i > j then the i-th voice is moving
“downwards”;

3) If there exists an element aii = 1 then the i-th voice is constant.

The connection between the two worlds is the following:

• If either Condition 1) or Condition 2) is verified by two distinct elements then
we have similar motion;

• If both Condition 1) and Condition 2) hold for two distinct elements then we
are facing contrary motion;

• The case of oblique motion involves Conditions 1) and 3) or Conditions 2) and
3), for at least two distinct elements.

As we mentioned in Section 1.2, voice crossing is a particular case of these
motions where the voices swap their relative positions. This phenomenon can be
described in terms of multisets as follows.

Definition 3.4.1. Let (x1, . . . , xn) → (y1, . . . , yn) be a voice leading (n ∈ N). If
there exist two pairs (xi, yi) and (xj , yj) such that xi < xj and yi > yj or such that
xi > xj and yi < yj then we say that a (voice) crossing occurs between voice i and
voice j.

The partial permutation matrix retrieves this information, as the following proposi-
tion shows.

Proposition 3.4.1. Consider a voice leading of n voices and let P := (aij) be its
associated partial permutation matrix. Choose indices i, j, k, l ∈ {1, . . . , n} such that
aij = 1 and akl = 1. Then there is a crossing between these two voices if and only if
one of the following conditions hold:

i) i < k and j > l;

ii) i > k and j < l.

Furthermore, the total number of voices that cross the one represented by aij is
equal to the number of 1’s in the submatrices (ars) and (atu) of P determined by the
following restrictions on the indices: r > i, s < j and t < i, u > j.

Proof. In a partial permutation matrix the row index of a non-zero entry denotes
the initial position of a certain voice in the ordered union multiset, whereas the
column index of the same entry represents its final position after the transition.
It is then straightforward from Definition 3.4.1 that for a voice crossing to exist
either condition i) or condition ii) must be verified. Every entry akl satisfying one
of those conditions refers to a voice that crosses the one represented by aij . Hence,
the number of crossings for aij equals the amount of 1’s in positions (r, s) such that
r > i and s < j, summed to the number of 1’s in positions (t, u) such that t < i and
u > j.
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Remark 4. The fact that the number of crossings with a given voice equals the
number of 1’s in the submatrices determined by the entry corresponding to that
voice (as explained in the previous proposition) holds true only because we assumed
Convention 1. Indeed, if we did not make such an assumption, the submatrices could
contain positive entries referring to voices ending in the same note but that do not
produce crossings.

From what we have shown thus far it emerges that it is possible to give a
qualitative description of a voice leading by counting the voices that are moving
upwards, those that are moving downwards, those that remain constant and the
number of crossings. We summarise these features in a 4-dimensional complexity
vector c defined by

c :=
(
#upward voices, #downward voices, #constant voices, #crossings

)
, (3.4.1)

so that we are now able to classify and distinguish voice leadings by simply looking
at these four aspects.
Remark 5. The notion of complexity we defined above is not equivalent nor related
to the standard definitions of complexity.

Example 3.4.1. Similar motion. The voice leading (C1, E1, G1)→ (D1, F1, A1) is
represented by 

0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0


and its complexity vector is (3, 0, 0, 0).

Oblique motion. The voice leading (G2, G2, C3)→ (C3, C3, C3) is associated with
0 0 1 0 0
0 0 0 1 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1


and its complexity vector is (2, 0, 1, 0).

Voice crossing. The voice leading (C1, E1, G1)→ (G1, C1, E1) is represented by0 0 1
1 0 0
0 1 0


and its complexity vector is (1, 2, 0, 2).

By virtue of these tools it is straightforward to analyse an entire first species
counterpoint, by considering the concatenation of its voice leadings and thereafter
we retrieve a sequence of complexity vectors. This last piece of information can be
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Figure 3.4: Alleluia, Angelus Domini, Chartres fragment n. 109, fol. 75.

visualised as a set of points in a 4-dimensional space — or rather as one or more of
its 3-dimensional projections (see Subsection 3.5). In fact, if one wants to represent
the complexity of the whole composition as a point cloud, one should take into
account that different matrices can produce the same complexity vector. Therefore,
we have a multiset of points in R4 (with non-negative integer components).

3.5 Complexity analysis of two Chartres Fragments
We are going to analyse two pieces that are parts of the Chartres Fragments, an
ensemble of compositions dating back to the Middle Ages: Alleluia, Angelus Domini
and Dicant nunc Judei. Both of them are counterpoints of the first species and
involve only two voices. The musical interest in these compositions consists in the
introduction of a certain degree of independence between the voices and the use of
a parsimonious voice leading, i. e. an attempt to make the passage from a melodic
state to the next as smooth as possible. Note how the independence of the voices
is reflected by the presence of contrary motions and crossings, which can then be
interpreted as a rough measure of this feature. For a complete treatise on polyphony
and a historical overview we refer the reader to Taruskin (2009).

In what follows, we represent the multiplicity of each complexity vector c as a
circle of centre c ∈ R4 and radius equal to the normalised multiplicity µ(c)/n of c,
where µ(c) is the number of occurrences of c in the analysed piece and n is the total
number of notes played or sung by each voice in the whole piece.

Alleluia, Angelus Domini. The fragment under examination is depicted in
Figure 3.4; here is the list of its first four voice leadings, as they are generated by
the pseudocode described in Algorithm 3.1:

Voice Leading: [’F4’, ’C4’] [’G4’, ’D4’]
[2, 0, 0, 0] - similar motion up
Voice Leading: [’G4’, ’D4’] [’A4’, ’E4’]
[2, 0, 0, 0] - similar motion up
Voice Leading: [’A4’, ’E4’] [’G4’, ’F4’]
[1, 1, 0, 0] - contrary motion
Voice Leading: [’G4’, ’F4’] [’F4’, ’G4’]
[1, 1, 0, 1] - contrary motion - 1 crossing

Table 3.1 on page 52 contains the the complexity vectors and their occurrences in
the piece. The point cloud associated with this multiset is represented in Figure 3.5.
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(a) Projection neglecting the crossing compo-
nent of the complexity vectors.

(b) Projection neglecting the constant voices
component of the complexity vectors.

Figure 3.5: Three-dimensional projections of the complexity cloud of the paradigmatic
voice leading Alleluia, Angelus Domini. The radius of each circle represents the
normalised multiplicity of the corresponding complexity vector.
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Figure 3.6: Dicant nunc Judei, Chartres fragment.

Observe how the projection that neglects the component of c corresponding to the
number of constant voices (Figure 3.5b) gives an immediate insight on the relevance
of voice crossing in the piece.

Dicant nunc Judei. The first part of the output of Algorithm 3.1 produces the
following analysis:

Voice Leading: [’F4’, ’C4’] [’G4’, ’E4’]
[2, 0, 0, 0] - similar motion up
Voice Leading: [’G4’, ’E4’] [’F4’, ’D4’]
[0, 2, 0, 0] - similar motion down
Voice Leading: [’F4’, ’D4’] [’E4’, ’C4’]
[0, 2, 0, 0] - similar motion down
Voice Leading: [’E4’, ’C4’] [’D4’, ’D4’]
[1, 1, 0, 1] - contrary motion - 1 crossing

The complexity vectors arising in the whole piece and their multiplicities are
again collected in Table 3.1; see Figure 3.7 instead for a visualisation of the point
cloud describing the piece. Note how the voice crossing is more massive than in the
point cloud describing Alleluia, Angelus Domini. In addition, the point (0, 0, 0) in
Figure 3.7b corresponds to the point (0, 0, 2, 0) ∈ R4, that represents trivial voice
leadings where both parts do not vary.
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(a) Projection neglecting the crossing compo-
nent of the complexity vectors.

(b) Projection neglecting the constant voices
component of the complexity vectors.

Figure 3.7: Three-dimensional projections of the complexity cloud of the paradigmatic
voice leading Dicant nunc Judei. The radius of each circle represents the normalised
multiplicity of the corresponding complexity vector.

Alleluia, Angelus Domini
c µ(c)

(0, 1, 1, 0) 2
(0, 1, 1, 1) 2
(0, 2, 0, 0) 4
(1, 0, 1, 1) 2
(1, 1, 0, 0) 6
(1, 1, 0, 1) 4
(2, 0, 0, 0) 4

Dicant nunc Judei
c µ(c)

(0, 0, 2, 0) 1
(0, 2, 0, 0) 7
(1, 0, 1, 0) 5
(1, 0, 1, 1) 1
(1, 1, 0, 0) 9
(1, 1, 0, 1) 15
(2, 0, 0, 0) 4

Table 3.1: Complexity vectors of the analysed fragments and their occurrences.

3.6 Rhythmic independence and rests
The examples analysed in Subsection 3.5 are counterpoints of the first species —
which is the simplest case, voices follow a note-against-note flow. It is, however,
possible to study more complex scenarios by introducing rhythmic independence
between voices and rests in the melody, reducing non-simultaneous voices to the
simplest case.

If the voices play at different rhythms or follow rhythmically irregular themes,
we consider the minimal rhythmic unit u appearing in the phrase and homogenise
the composition based on that unit: if a note has duration ku, with k ∈ N, we
represent it as k repeated notes of duration u (see Figure 7.4 for an example). This
transformation of the original counterpoint introduces only oblique motions and
does not alter the number of the other types of motion.

In musical terms, if a voice is silent it is neither moving nor being constant and
it cannot cross other voices. Therefore, in order to include rests in our model it is
necessary to slightly modify Algorithm 3.1 by introducing a new symbol (p) in the
dictionary of pitches. We also choose to indicate a rest in the matrices associated
with a voice leading by the entry −1. We adopt the following convention concerning
the ordered union multiset.
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(a) Counterpoint of the fifth species.
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(b) Reduction to the first species.

Figure 3.8: Reduction of rhythmically independent voices to a counterpoint of the
first species.

Convention 2. We choose rests to be the last elements in the ordered union multiset
associated with a voice leading. In other words, we declare p to be strictly greater
than any other pitch symbol.

Example 3.6.1. The voice leading (p,D4, D5)→ (D4, C3, C3) corresponds to the
matrix 

0 0 0 0 0
0 0 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 −1 0 0

 .

Remark 6. Note that when introducing the −1’s in the matrix associated with a
voice leading, we are no longer dealing with partial permutation matrices. However,
to study voice leadings with rhythmic independence of the voices as before (thus
ignoring rests) it is enough to consider the minor of the matrix obtained by deleting
all rows and columns containing −1 (which is obviously again a partial permutation
matrix).

We extend the complexity vector defined previously in Formula (3.4.1) by adding
a fifth component that counts the number of voices that are silent at least once in
the voice leading, i. e. it counts the number of negative (−1) entries of the associated
matrix. Furthermore, we slightly modify also the notion of normalised multiplicity
of a complexity vector c, needed for the representation of the complexity of a piece
in the form of a point cloud, now dividing the number µ(c) of occurrences of c in
the piece by the total number of notes per voice after the homogenisation.

3.6.1 Example: the Retrograde Canon by J. S. Bach

We consider the Retrograde Canon (also known as Crab Canon), a palindromic canon
with two voices belonging to the Musikalisches Opfer by J. S. Bach, the beginning
of which is reproduced in Figure 3.9.
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Figure 3.9: The Retrograde Canon (bars 1–4), a palindromic canon belonging to the
Musikalisches Opfer by J. S. Bach, and its reduction to first species counterpoint
(unisons have been omitted).

Retrograde Canon
c µ(c) c µ(c)

(0, 0, 1, 0, 1) 2 (1, 0, 0, 0, 1) 2
(0, 0, 2, 0, 0) 8 (1, 0, 1, 0, 0) 43
(0, 1, 0, 0, 1) 2 (1, 0, 1, 1, 0) 1
(0, 1, 1, 0, 0) 43 (1, 1, 0, 0, 0) 14
(0, 1, 1, 1, 0) 1 (1, 1, 0, 1, 0) 3
(0, 2, 0, 0, 0) 11 (2, 0, 0, 0, 0) 11

Table 3.2: Complexity vectors of the Retrograde Canon and their occurrences.

We homogenise the rhythm by expressing each note in eighths and we apply
Algorithm 3.1. Here is the output of the first four meaningful voice leadings:

Voice Leading: [’D4’, ’D4’] [’D4’, ’F4’]
c = [1, 0, 1, 0, 0] - oblique motion
Voice Leading: [’D4’, ’F4’] [’F4’, ’A4’]
c = [2, 0, 0, 0, 0] - similar motion up
Voice Leading: [’F4’, ’A4’] [’F4’, ’D5’]
c = [1, 0, 1, 0, 0] - oblique motion
Voice Leading: [’F4’, ’D5’] [’A4’, ’C#5’]
c = [1, 1, 0, 0, 0] - contrary motion

Table 3.2 collects the complexity vectors and their multiplicities; they are displayed
in the form of point clouds in Figure 3.10.

3.7 Concatenation of voice leadings and time series
The paradigmatic point cloud associated with a voice leading gives a useful 3-dimen-
sional representation of the piece; however, this analysis is just structural, as it does
not take into account the way in which voice leadings have been concatenated by
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(a) Projection on the first three components
of the complexity vector.

(b) Projection on the upward, downward and
crossing components of c.

(c) Projection on the upward, downward and
rest components of c.

Figure 3.10: Three-dimensional projection of the 5-dimensional point cloud repre-
senting the complexity of the Retrograde Canon. The radius of each circle represents
the normalised multiplicity of each complexity vector.

the composer. It is possible to introduce this temporal dimension by looking at the
sequence of complexity vectors from a different viewpoint.

The concatenation of observations in time can be seen as a time series, that is a
sequence of data concerning observations ordered according to time. In our case each
piece of music can be described as a 5-dimensional time series, whose observations
are the complexity vectors associated with each voice leading. More specifically,
we use the so-called Dynamic Time Warping (DTW), a method for comparing
time-dependent sequences of different lengths: it returns a measure of similarity
between two given sequences by “warping” them non-linearly (see Figure 3.11 for an
intuitive representation) along the temporal axis. We invite the reader to consult
Senin (2008) for a detailed review of DTW algorithms.

3.7.1 Dynamic Time Warping analysis

Let F be a set, called the feature space, and take two finite sequencesX := (x1, . . . , xn)
and Y := (y1, . . . , ym) of elements of F, called features (here n and m are natural
numbers). In order to compare them, we need to introduce a notion of distance
between features, that is a map C : F × F → R, also called a cost function, that
meets at least the following requirements:
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Figure 3.11: Dynamic Time Warping among two series of observation.

i. C(x, y) > 0 for all x, y ∈ F;

ii. C(x, y) = 0 if and only if x = y;

iii. C(x, y) = C(y, x) for all x, y ∈ F.

Now, if we apply C to the features X and Y , we can arrange the values in an n×m
real matrix C :=

(
C(xi, yj)

)
, where i ranges in {1, . . . , n} and j in {1, . . . ,m}.

A (n,m)-warping path in C is a finite sequence γ := (γ1, . . . , γl) ∈ Rl, with l ∈ N,
such that:

1. γk := (γxk , γ
y
k) ∈ {1, . . . , n} × {1, . . . ,m} for all k ∈ {1, . . . , l};

2. γ1 := (1, 1) and γl := (n,m);

3. γxk 6 γxk+1 and γyk 6 γ
y
k+1 for all k ∈ {1, . . . , l − 1};

4. γk+1 − γk ∈
{
(1, 0), (0, 1), (1, 1)

}
for all k ∈ {1, . . . , l − 1}.

The total cost of a (n,m)-warping path γ over the features X and Y is defined as

Cγ(X,Y ) :=
l∑

k=1
C(xγx

k
, yγy

k
).

An optimal warping path on X and Y is a warping path realising the minimum total
cost (see Figure 3.12). We are now ready to define the DTW distance between X
and Y :

DTW (X,Y ) := min { Cγ(X,Y ) | γ is a (n,m)-warping path } .

Remark 7. Note that the minimum always exists because the set is finite.
We computed the DTW distance between each pair of the three examples that we

analysed in Subections 3.5 and 3.6.1, choosing as cost function the Euclidean distance
in R5. We embedded the 4-dimensional complexity vectors in R5 by adding a fifth
component and setting it to 0. The results of the comparison are shown in Table 3.3.
Although we analysed only three compositions, it is possible to observe how the
DTW distance segregates the two pieces belonging to the Chartres fragments.
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Figure 3.12: Optimal warping path on Alleluia, Angelus Domini and Dicant nunc
Judei.

Alleluia Dicant Canon

Alleluia 0.00 0.62 1.34
Dicant 0.62 0.00 1.16
Canon 1.34 1.16 0.00

Table 3.3: DTW distance matrix for the three time series of complexity vectors.

3.8 Discussion
Our analysis showed that our definition of complexity in terms of the relative
movements of the voices and especially of crossing is suitable for characterising a
musical piece. The point-cloud representation yields a “photograph” of complexity,
a sort of fingerprint that lets clearly emerge the main features of the examined
composition, noticeable even at first glance.

Albeit the extension of this method to the whole set of contrapuntal species
forces a naïve simplification of the compositions, it provides a measure of their
dissimilarity. The information collected by the time series of complexity vectors
associated to a composition grabs the organisation of voice leadings in time, encoding
the information concerning the motion of each voice, the overall configuration of
the voices (relative motions and crossings) and the distribution of rests in time and
among the parts. The DTW provides a direct measure of the dissimilarity between
the complexity time series of two pieces. The optimal warping path points out the
regions of the compositions that can be considered comparable with respect to the
set of properties listed above.





Four

A braid-oriented visualisation of voice
leadings

Partial permutations and their representation as low-dimensional sparse matrices are
a handy computational tool to describe voice leadings, however they cannot provide a
intuitive visualisation of the horizontal motions of the voices. Often describing voice
leadings, musicologists refer to the superposed melodies naming them strands (Kurth
and Rothfarb, 1991; Lester, 1994; Larson, 2012). Following this natural approach,
we shall shortly define simultaneous melodic strands as a set of 3-dimensional paths,
that is representative of a partial permutation. Furthermore, allowing these strands
to intersect either at their starting or ending point, it is possible to visualise unisons.
This comfortable representation of repeated pitches shall allow us to represent
additional information such us leaps among voices. Finally, we take advantage of
this representation, in order to tackle the problem of the interpretation of voice
leadings between pitch-class sets.

4.1 The braid group and the partial singular braid
monoid

In this section the basic background concerning braids and partial singular braids
are recalled. Our main references are (Hansen, 1989) and (East, 2007, 2010).

4.1.1 The braid group

Definition 4.1.1. A braid β on n strands is a collection of embeddings

B := {βα : [0, 1]→ R3, α = {1, . . . , n}},

with disjoint images such that:

• βα(0) = (0, α, 0);

• βα(1) = (1, τ(α), 0) for some permutation τ ;

• the images of each βα is transverse to all planes {x = const}.

Definition 4.1.2. Two braids are said to lie in the same topological braid class if
they are homotopic relative to the endpoints in the sense of braids: one can deform
a braid into the other without any intersection among the strands.

59
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1

(a) First braid

1

(b) Second braid

1

(c) Their concatenation

Figure 4.1: Concatenation of braids.
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(a) Action of σi before σj .
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(d) σi+1σiσi+1

Figure 4.2: Graphical representation of the Braids properties in Equations (4.1.1)
and (4.1.2).

There is a natural group structure on the space of topological braids with n strands,
Bn, given by concatenation Figure 4.1. Using generators σi which interchanges the
i-th and (i+ 1)-th strands with a positive crossing yields the presentation for Bn.

Let

p1 : σi σj = σj σi; |i− j| > 1 (4.1.1)
p2 : σi σi+1 σi = σi+1 σi σi+1; i < n− 1. (4.1.2)

These two properties are depicted in Figure 4.2. We are ready to give a presentation
of the group Bn as

Bn := 〈σ1, . . . , σn−1 : p1 and p2 hold〉.
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Figure 4.3: A partial braid β ∈ IB5

Let si be the permutation (i i+1), and the symmetric group Sn can be presented
as

〈s1, . . . , sn−1 | sisj = sjsi for |i− j| > 1,
s2
i = 1, sisi+1si = si+1sisi+1 for 1 6 i < n 〉,

thus the projection defined on the group of braids on n strands, on the symmetric
group is given by

π : Bn → Sn

σi 7→ (i i+ 1).

4.1.2 Partial braids and partial permutations

The braid group is too structured to represent generic voice leadings where voices
can collide in unisons or can be rested. Our solution is to consider a weaker structure
in which strands are endowed with higher degrees of freedom. Here, we introduce
the inverse monoid of partial permutation and the partial singular braid monoid.

Definition 4.1.3 (Monoid). A monoid is a couple (S,+), where S is a set, + is an
associative binary operation and it exists e ∈ S such that it is the identity element
(for that operation).

We associate a monoid to a given set in the following way.

Definition 4.1.4 (Inverse monoid). Given a set S the inverse monoid IS is the set
of all the partial bijections of S.

The braid inverse monoid IBn introduced in (Easdown and Lavers, 2004) is the
braid analogous of the symmetric inverse monoid In of partial permutations on n
symbols. The monoid IBn is the monoid of all homotopy classes of partial braids on
n strands. A partial braid can be thought as a full braid b ∈ Bn, with some strands
removed. A representative of a partial braid in IB5 is depicted in Figure 4.3. There
exists an epimorphism IBn → In, extending the projection π : Bn → Σn defined
above. The epimorphism

π∗ : IBn → In

β 7→ β
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(a) Two elements β
and β1 of IB5.

(b) Concatenation
β ∗ β1.

(c) Removal of the
unlinked strands.

Figure 4.4: Concatenation of partial braids in IB5.

is defined by construction. The partial braid depicted in Figure 4.3 is naturally
associated to the partial permutation in I5, such that

(
1 2 3 4 5
� 1 4 � 2

)
.

The operation defined on IBn is the multiplication of partial braids. Given
two elements of { β, β1 } ⊂ IBn (see Figure 4.4a), the multiplication of the two
partial braids is depicted in Figure 4.4b and in Figure 4.4c. Observe that the string
fragments which do not connect the upper plane to the lower plane are removed.
See (East, 2007) for further details.

4.1.3 Singular braids

Singular braids are a generalisation of the standard braids, in which strands can
intersect generating at most a finite number of singularities. Singular points have no
inverses (Fenn and Keyman, 2000), then the set SBn of singular braids on n strands
is not endowed with a group structure, it is a monoid and it is possible to define it
as follows.

Definition 4.1.5. SBn is generated by s1, . . . , sn−1, s
−1
1 , . . . , s−1

n−1, t1, . . . , tn−1, due
to the relations

1. ∀i < n, sis
−1
i = e.

2. For |i− j| > 1 the compositions sisj , titj and sitj commute;
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Figure 4.5: Singular generator of SBn.

3. ∀i < n− 1

sisi+1si = si+1sisi+1

tisi+1si = si+1siti+1

ti+1sisi+1 = sisi+1ti+1.

Geometrically the singular generator has to be included, see Figure 4.5.
Musically, we shall only admit singularities representing unisons (multiple strands

starting or ending at the same point).

4.1.4 Partial singular braids

To model all of the possible simultaneous motions of voice leadings including rests and
unisons, we need to consider the monoid of partial singular braids PSBn containing
both the partial and the singular braid monoid defined above. The theory about
PSBn will be sketched in this section, however we refer to (East, 2010) for a detailed
analysis.

Consider the set { 1, . . . , n } with n ∈ N and a singular braid b ∈ SBn. A partial
singular braid β is obtainable by removing some strands of b. The removal of the
whole set of strands is allowed in PSBn. In this particular situation β is said to be
a sub-braid of b. A partial singular braid β induces a partial permutation β̄ ∈ In
exactly as a partial braid does. Let { β1, β2 } ∈ PSBn, the two partial singular braids
are said to be equivalent if the partial permutations they induce are the same and
if β1 ⊂ γ1 and β2 ⊂ γ2 with γ1 and γ2 singular braids equivalent in the sense of
rigid-vertex-isotopy (Birman, 1993).

The multiplication of two partial singular braids follows the same rule we in-
troduced for partial braids (see Figure 4.4). In particular denoting as |β| the
number of strings of β and as N (β) the number of its singular points, the two
submonoids of partial braids and singular braids of PSBn can be described as
IBn = { β ∈ PSBn | N (β) = 0 } and SBn = { β ∈ PSBn | |β| = n }.

4.2 Modelling voice leading in PSBn

The first approach we describe is a mere translation in the braid formalism of the
model described in Section 3.2. We define a voice leading of at most n voices as a
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(a) Unison. (b) Unison and crossing.

Figure 4.6: Partial singular braid representation of voice leadings.

partial singular braid β ∈ PSBm, where m is the cardinality of the underlying set of
the multiset M ∪ L as it has been introduced in Section 3.1.

These braids are better visualisable as piecewise linear braid diagrams, i. e. 2-
dimensional projections of the partial singular braids, in which strands are depicted
as line segments in R2. See Figure 4.6 for an exemple. This particular visualisation
is suitable for representing simultaneous motions of voices, since the slope of each
(projected) strand encodes the information concerning the movement (upward,
downward) of each voice.

The introduction of singularities in correspondence of the starting and ending
points of the braid diagram allows to simplify the model described in Section 3.2.
Given a voice leading v : M → L, whereM and L are two multisets, we can represent
the elements of M ∪L labeled with the same symbol as a single point of the domain
of the braid and encode their multiplicity as in the example of Figure 4.6a, where
the voice leading

(C4, E4, G4)→ (D4, F4, F4)

is represented as a singular braid.
A crossing of the voices in PSBn is represented as a crossing of the strands of

the partial singular braid diagram. The voice leading

(C4, E4, G4)→ (F4, D4, F4)

represented in Figure 4.6b has a surprisingly clear musical interpretation: it contains
a voice crossing corresponding to the crossing of the projected strands and it is
singular, since two voices collapse on their target chord in a unison.

Let s (βα) be the slope of the line segment βα, and b+, b−, b0 the number of
strands of the piecewise braid with positive, negative and zero slope respectively; cr
the number of crossings; r = n−N (β), where n is the number of voices involved in
the voice leading including rested ones; and finally s = |β| the number of singularities.
We can now rewrite the complexity vector associated to voice leadings in braid
notation as

c =
(
b+, b−, b0, cr, r, s

)
.
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(a) Voices’ leaps. (b) Voices’ leaps and crossing.

Figure 4.7: Partial singular braid representation of voices leaps.

4.2.1 Leaps

In Section 1.2, leaps were pointed out as an important feature to determine the quality
of a voice leading. The partial permutation matrix model described in Section 3.2
does not take them into account. To do so, we should define a partial permutation
whose domain has minimal cardinality equal to n ×m, where n is the number of
voices involved in the voice leading and m is the number of half-steps from the lower
to the higher pitch involved in the voice leading. For example, the representation
of a voice leading between two 4-notes chords, ranging on 2 octaves, will require a
partial permutation matrix of dimension 96.This is why in the partial permutation
representation of voice leadings, we established a convention in order to manage
repeated pitches and we build the model aiming at minimising the dimension of the
matrix representing the voice leading1.

Partial singular braids allow to represent leaps defining a dominion of cardinality
m. The dominion of the braid consists in the pitches ranging from the minimum
to the maximal pitch involved in the voice leading. Singularities can be used to
represent repeated voices in a chord and the the slope of each strand corresponds
univocally to a musical interval. In Figure 4.7, two piecewise linear singular partial
braids describing the leap information are depicted. It is possible to store this
information in the complexity vector either by writing explicitly the slope of each
strand, or for instance, by splitting them into two classes of consonant and dissonant

1Considering a concatenation of voice leadings, to represent the whole counterpoint with matrices
and to take into account intervallic leaps, it would be necessary to use matrices of maximal dimension,
generating in the case of an orchestra a high-dimensional sparse representation.
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(a) β1 (b) β2

Figure 4.8: Partial braids inducing the same partial permutation.

intervals (referring to the definitions given in Section 1.2).

Voice leading, partial singular braids and partial permutations

As we stated in the mathematical introduction of this section, there exists a natural
projection π∗ : PSBn → In. Thus, a class of partial singular braids β, in the sense of
braid’s homotopy (Definition 4.1.2) describes a particular partial permutation β̄ on
the elements of the dominion of β in an obvious sense. As it is shown in Figure 4.8
the braids β1 and β2 induce the same partial permutation represented by the cycle(

1 2 3 4 5 6
3 � � 5 � 4

)
.

A crossing of two strands, both oriented from left to right is said positive if it
corresponds to a positive braid generator. The particular choice of dealing with
piecewise linear, positive, partial singular braid diagrams allows to associate a partial
permutation to this particular class of braid diagrams and vice versa.

4.2.2 Partial singular braids on pitch classes

It is possible to model voice leadings modulo octave by considering the pitch-class
space

(
T1, d̄

)
, introduced in Section 2.2. In this case, the partial singular braids

domain is given by the chromatic set of pitch classes

{ [C] , [C]] , . . . , [B] } ∼= { [0] , [1] , . . . , [11] }

and the strands are defined on a cylinder C = R/12Z × [0, 2π]. Following the
piecewise linear approach that we used in the previous paragraphs, we assume the
braid’s strands to be lines wrapped around a cylinder i. e. geodesics on a cylinder,
corresponding to helix segments parametrised as

γ : [0, 2π]→ R3

γ (t) = (cos (at) , sin (at) , t) .

Consider the voice leading

C1 = (C,E,E)→ C2 = (F],C], E) ,
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Figure 4.9: The partial singular braid representation of a voice leading defined in
R/12Z.

depicted in Figure 4.9. Although the information concerning the octave is neglected,
we can read in the image the measure of the leaps relative to each voice. The path
connecting C to F] makes a complete round along the cylinder, meaning that the
two notes are more than one octave apart. The singularity at E in the top face of
the cylinder represents the unison or the doubling of the second and third voices of
the chord C1. These doubled voices lead to C] and E respectively without octave
leaps.

Simultaneous voice motions have an interesting representation in this context: tak-
ing into account the orientation of the wrapping (clockwise or counterclockwise/right-
handed or left-handed) of the helix segments on the cylinder. In our example we
can deduce that C and one of the E move downward to F] and C] respectively,
while the last E is fixed since the trajectory is a straight line. Topologically, this
information is encoded in the fundamental group of the cylinder C: π1 (C) = Z
meaning that m positive or negative turns around the cylinder encode the octave
leaps information.

Remark 8. Considering the class of partial singular braids with geodesics strands
and positive crossings on pitch-classes, we cannot associate a unique braid to a
partial permutation, in fact in this context geodesics are not unique, however it
is always possible to consider minimal geodesics to represent strands among pitch
classes, respecting the direction of the voice leading, if it is known a priori.

True and false crossings

The pitch class representation does not allow to distinguish among true and false
voice crossings, unless the distance among the voices of the first chord is known a
priori: a trajectory representing a leap of more than an octave and less than two,
makes one complete turn around the cylinder, and hence crosses all the other strands
involved in the voice leading, even if voices do not truly cross in musical sense.
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In Figure 4.10 four different voice leadings among the 2-pitch class chords
C1 = (C,E) and C2 = (D,F ) are depicted2. As we stated few lines above, the lack
on information given by the identification of the octaves does not allow to distinguish
among true or false voice crossings, as it can be shown by analysing the four voice
leading represented in Figure 4.10:

a) In Figure 4.10a the two strands do not make a complete tour of the cylinder
and do not cross, meaning that the target pitch-classes lie in the same octave of
the pitch-classes of the first chord and that there is no topological and musical
crossing among the voices.

b) Figure 4.10b shows the crossed alternative of the previous voice leading C1 →
σ12C2, where σ12 ∈ S2. Since the helix segments are left-handed and right-handed
respectively and the strands of the braid do not complete the tour of the cylinder,
what we can deduce from this configuration is that F lies in the same octave as
C and symmetrically D lies in the same as E. To establish if the voices cross
in a musical sense mirroring the strands’ crossing, it is necessary to know the
distance among the voices of the first chord: assuming C and E to belong to the
same octave, the voices actually cross. However, if the two notes belong to two
different octaves, for instance C4 and E5, no crossing occurs among them.

c) In Figure 4.10c, C and E moves downward to reach F and D respectively and
both voices move in contrary motion of less than one octave. No crossing can
occur among these voices as it is mirrored by the trajectories of the braid.

d) In the last figure, voices move in contrary motion, downward and upward respec-
tively always targeting pitch-classes less than one octave distant from them. If
the pitch classes of the first chord lie in the same octave, then no music crossing
occurs, despite the topological configuration of the braid’s strands, however it
suffices to choose the representative of C and E to be C4 and E3 to have an
actual crossing corresponding to the one depicted on the figure.

In conclusion, the analysis of voice leadings between pitch-class sets gives a
representation of the no-crossing voice leading as the collection of shortest paths
among multisets of pitch-classes3 and maximize the number of crossings in the other
cases. Thus, the pitch-class braid-oriented visualisation of voice leadings collects the
information concerning both octave leaps and voice crossings as they are described
in Hughes (2015), where a model of voice leading built on the fundamental groupoid
of the chord space An, is discussed.

4.2.3 Concatenation of voice leadings in PSBn

As we point out in Section 3.3, representing several ordered voice leadings, it is not
desirable to compose the braids representing each of them, but to concatenate them
one after the other: the composition PSBn inherits from PBn imposes to delete

2see (Tymoczko, 2011, p. 76) for a representation of the same voice leadings in A2.
3Hence, neglecting the order in which voices are associated, we can always retrieve a no-crossing

voice leading connecting the voices of the first chord to the ones of the second through minimal
geodesics on the cylinder, as in Figure 4.10a.



4.2. MODELLING VOICE LEADING IN PSBn 69

(a) (C,E) 2,1−−→ (D,F ). (b) (C,E) 5,−2−−−→ (F,D).

(c) (C,E) −7,−2−−−−→ (F,D). (d) (C,E) −7,10−−−−→ (F,D).

Figure 4.10: Simultaneous motions of two voices. The movement of each voice
is written above the arrow in half-steps, the sign distinguish among upward and
downward movements.

strand fragments not connecting the first braid to the second, see Figure 4.4. Thus,
using the multiplication defined on PSBn to compose braids, one would delete the
strands representing any melody containing a rest, losing the information concerning
the whole piece of music.

The idea is to represent a succession of voice leadings as a time series { βi }i∈{ 1,...,n },
such that βi ∈ PSBn for each i, corresponding to a concatenation of braids as it is
shown in Figure 4.11 where both the pitches and pitch classes braids for the first
seven voice leadings (corresponding to eight melodic states) of Alleulia: Angelus
Domini are depicted. The fragment we analyse is given by the superposition of the
two voices

v1 = (F4, G4, A4, G4, F4, G4, B[4, A4)
v2 = (C4, D4, E4, F4, G4, G4, F4, E4) ,

represented by the blue and red trajectory respectively.
In this case, being the pitches involved in the segment of the composition we

represented contained in a octave, the pitch and the pitch class diagram are equivalent.
It is possible to observe how this kind of representation gives a friendly access to the
information describing the simultaneous motion of voices. It retrieves the special case
of parallel motion, voice crossings and unisons are represented by strands crossings
and singularities, respectively. Observe, that in this case, the concatenation of partial
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singular braids corresponds to the multiplication defined in PSBn, since no rests are
included in the passage we examined.

Given a sequence of voice leadings {β1, . . . , βn}, a motif is a subsequence
{βp, . . . , βq} with 1 6 p < q 6 n. This last representation allows to compare
voice leading motifs at first sight (consider, for instance, the crossing pattern in Fig-
ure 4.11). It provides a possible solution for the evaluation of their features, according
to both their geometry and concatenation in time. The advantage of this braid
representation, is the possibility to encode the whole information concerning the
voice leading in a three dimensional braid, despite the number of voices composing
it.
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Figure 4.11: Concatenation of pitch and pitch-class partial singular braids.The
observation of a single strand, or of the whole voice leading (regions 1, . . . , 7) provide
an intuitive representation of both the motions of pairs of voices (similar, parallel,
oblique, contrary) and of the behaviour of each voice (downward, upward and fixed).
The length of a crossing is simply measurable, as more complicated phenomena such
as the overlap (see Section 1.2).





Five

Discussion and future works

Thanks to the mathematical formalisation of the concept of voice leading, we
deduced a model to describe voices’ motions as low dimensional partial permutation
matrices. The geodesics-oriented interpretation of voice leadings and the analysis of
their concatenation, provided a relationship between the algebraic and the geometric
context. Thereafter, the information carried by the partial permutation matrix
associated to a voice leading has been rewritten under the form of complexity vector.
Sequences of such vectors have been used to characterise the counterpoint of first
specie as a multiset of 4-dimensional points.

We proposed a generalisation of the model to the other contrapuntal species and
the sequence of complexity vectors has been interpreted as a multi-dimensional time
series, describing how different kind of voice leadings has been concatenated in time.
Dynamic time warping provides a measure of the distance between the complexities
of pairs of compositions, and gives a quantitative description of the dissimilarity of
their time-series representation.

In order to visualise voice leadings in a 3-dimensional space, a braid-like rep-
resentation has been introduced allowing to extend the first model, measuring the
intervallic leap of each voice in the passage from a chord to the next one. In addition,
a pitch-class version of the braid representation provides an environment to visualise
voice leadings among n-chords, mirroring the properties of trajectories in the space
of chords.

A straightforward development offered by the model we describe is the possibility
to classify the collection of possible voice leadings among two chords in terms of the
length of the geodesic strands of the braid representing it. Connecting the notes of
two chords with minimal paths corresponds to a crossings-free voice leading. The
variations of this configuration could be classified considering the length of each
strand of the braid associated to the voice leading.

73
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In addition, the model we introduced as a visualisation tool has topological
properties that could be investigated, for instance in terms of knot theory (Alexander,
1923, 1928). To do that one should weaken our assumption on the crossings among
the strands. A possible definition could involve, for piecewise braids, the slope of
the line segment describing the voices, forcing a strand associated to a bigger leap
to pass above the others.



Part III

The vertical dynamics of music:
persistent musical features
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Abstract

In contraposition to the analysis of voice leadings as superposition of horizontal
melodies, this part is devoted to the study of music as composed by vertical structures.
Albeit triads, seventh chords and their altered forms represent the basic vertical
objects in western music, every melodic interval (arpeggio) can be notated and
thought vertically as the harmonic superposition of its note. In Figure 5.1 both the
melodic and harmonic representations of a major third interval, a major seven chord,
an altered chord and a whole scale are depicted in consecutive bars. This double
vision of scales and chords as arpeggi and clusters inspired several techniques such as
broken chords (Pass, 1987, p. 3) to enrich the harmonic and melodic playing of guitar
with uncommon phrases built breaking a chord in smaller clusters. Neglecting the
notion of voices, but taking into account only pitches (or pitch-classes) and durations
of the notes, it is possible to produce an efficient and simple musical representation,
able to grasp a compositional idea, that is repeated in a composition and hence,
represents its core.

In Chapter 6 an early approach aiming at describing music (concepts) through
the deformation of a topological space is described. The vertices of the Tonnetz are
endowed with a variable height, respect to particular choices of pitch classes and
durations of a sequence of notes. This representation inspired a second approach,
whose mathematical bases are introduced in Chapter 7. The topological theory
described in this chapter provides the tools we shall employ to interpret the musical
information, once it is represented in the geometrical and topological structure of
the deformed Tonnetz. The applications to music analysis and classification and
the results obtained through these strategies are described in Chapters 8 and 9.
The former takes place in the symbolical domain and the latter is positioned at the
crossroad between signal and symbols (this last part has been the subject of the
talk (Bergomi, 2015)).
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Figure 5.1: Melodic and harmonic intervals. Pairs of consecutive bars represent
different musical entities from a melodic and a harmonic viewpoint, respectively.
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Six

Music analysis through deformations of
the Tonnetz

One of the most common features of geometric spaces for music analysis is their
isotropic nature. Indeed, the pitch-class space (R/12Z, d) is usually represented as a
cyclic graph where the 12 vertices representing the pitch classes are evenly spaced
(we depicted this representation in Figure 2.4b). This feature reflects the equality of
pitches in equal tuning, as in the representation of the pitch classes as an abstract
graph a weight equal to 1 is naturally associated to the graph’s vertices. Here,
we seek a strategy to associate to these vertices a collection of musically relevant
weights, in order to produce an intuitive and analysable geometrical representation
of a music piece.

When dealing with Western Music and in particular with modern Music it is
natural to reduce the possible temperaments to the equal tuning and hence to develop
models based on these evenly spaced representations and unweighted graphs. This
homogeneity is unavoidably inherited by spaces generated through the identification
of notes modulo octave. Here, the main idea is to develop a strategy to introduce
preferred directions in these spaces. By preferred directions we mean a change in the
geometry of the space, encoding relevant musical information. For instance, we shall
represent a relevant pitch-class set on the realisation of the Tonnetz as a mountain
ridge, highlighting the relevance of that particular choice of pitch classes respect to
the others.

In musical terms, these preferred directions can be thought as the core concepts
representing the main musical ideas of a composition. Often, a concept sprouts in
the mind of a composer as a small cell generally based on a precise rhythmical idea,
a sequence of pitches, a harmonic pattern, or their combination. The original idea
is then varied, merged with new ones, stretched or condensed and maybe left for a
completely new one.

Often, these musical variations are conceived to accompany the listener and are
well codified, as it is shown by the vast literature concerning the study of melodic
variations and the analysis of motifs. See for instance (Piston, 1947; Dudeque, 2005;
Johnson, 2009) for a musical theoretical point of view on this subject and (Lewin,
2007; Buteau and Mazzola, 2000) and many others for a mathematical-oriented
viewpoint. In (Dowling, 1972) the perception of the inversion and the retrogradation
of a melody has been investigated, showing that it is grasped and understood by
the listener. Being such variations relevant to the humans’ perception of music, our
claim is that their representation as deformations of a metric space would grab this

81
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Figure 6.1: The musical concept evolution in Time by Hans Zimmer. The first bar
represents the musical idea that opens the composition. The following bars depicts
consecutive evolutions of the first concept.

fundamental information. Once constructed, such a space shall give an immediate
visual feedback and represent this information in geometrical and topological terms.

Figure 6.1 shows how the musical concept described in the first bar of Time by
Hans Zimmer evolves during the piece. Each bar describes one of its variations
(see Appendix D for the whole partition, as it has been arranged for piano by
Sebastian Wolff). The A minor triad suggested by a minor third interval in the
first bar, appears as a whole in the second one. On the rhythmical side, always
in the second bar, the bass’ clave changes doubling the rhythmical figure. Then
a new melodic idea is introduced: the second of the chord is added to enlarge the
sonority of the triad. In the fourth variation, an indication concerning the dynamics
of the phrase is introduced. Finally, a new melodic concept is added in the fifth
bar. Observe how these variations of the first idea allow to declare an initial context,
describe it and later enrich it with details and dynamics. The musical concept that
is implied in these variations shall represent our preferred directions in music.

Figure 6.2: A displacement of the vertices of |Z/12Z| according to the occurrences
of their labels in the second movement of Shönberg Op. 19.
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Figure 6.3: Deformed geometries generated from the Tonnetz. A portion of the
planar Tonnetz is represented on the plane z = 0.

6.1 An anisotropic Tonnetz for music analysis
Consider the graph describing pitch classes and assume to weight the vertices counting
the occurrences of each pitch class in a piece of music. Equivalently, it is possible
to define a function on the set of vertices of the space (R/12Z, d̄), say h : V → R
associating to each vertex a height corresponding to the number of occurrences of
its label in the piece. Hence, the function h is defined as the composition

h : V l−→ L
c−→ R,

where l associates vertices to pitch classes and c : L→ R is the function counting
the pitch classes’ occurrences.

Consider the cylinder R/12Z× [0, 1]. It suffices to redefine the position of the
vertices as (xv, yv, h(v)) ∈ R3 to obtain the space represented in Figure 6.2. Such
a space does not differ from a common pitch-class histogram (Six and Cornelis,
2012), the only additional information retrieved by this representation is due to the
structure of the graph. Pitch classes a half-step apart are connected by an edge.
This consideration suggests the possibility to take advantage of the structure of the
graphs that already proved their efficacy in Music analysis.

Dealing with a more structured graph as the Tonnetz (see Section 2.3), one
has the possibility to take advantage of the symbolic and acoustical properties it is
endowed with. In particular, we recall that interpreting the Tonnetz as a simplicial
complex, its edges are associated to precise intervals and triangles represent triads.
Moreover, it was conceived to represent the acoustical relationships among pitch
classes. This whole structure is preserved, when updating the height of the vertices
of its geometric realisation.

The Tonnetz has already been used to classify genres in (Bigo et al., 2013)
analyzing the compactness of the simplicial structures representing the trace of a
piece of music on different planar Tonnetze. As it has been shown in Section 2.3.2
the subcomplexes generated as a planar trace on the Tonnetz do not distinguish
scales or sonorities in a geometrical and topological sense.

In order to capture the temporal and harmonic information, the vertices shall
be displaced depending on the pitch which is played and on its duration. The
reason why we use only three dimensions to encode these two features is to have
the possibility to visualise the surface generated through these displacements, and
provide a direct visual feedback, as it is depicted in Figure 6.3.
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(a) T (b) 1-skeleton

Figure 6.4: The Tonnetz deformed with a major triad and its 1-skeleton. The triad
appears as a maximal triangle with respect to the height function.

6.1.1 A variable geometry, 3-dimensional Tonnetz
Let T be the infinite planar simplicial Tonnetz and |T | ⊂ R3 its geometrical realisation
(see Sections 2.1 and 2.3). Given a note n, let p be its pitch and d its duration. The
vertices of T labelled with the pitch class [p] are translated in R3 along the z-axis
direction of a distance d.

In symbols, let V be the 0-skeleton of |T | and l : V → L the function associating
vertices to labels. Let

V[p] = { v ∈ V | l (v) = [p] }

be the set of vertices of |T | labelled with [p]. The updating of the height of the
vertices corresponding to a certain pitch-class is provided by a family of functions
{h[p]}[p]∈L defined as

h[p] : V[p] → R3

(xv, yv, zv) 7→ (xv, yv, zv + d) (6.1.1)

for every [p] ∈ Z/12Z. Considering a collection of notes

{n1, . . . , nm} = {(p1, d1), . . . , (pn, dn)},

the vertices of the Tonnetz labelled with the pitch class [p] will be translated vertically
of the value corresponding to the sum of the durations of the notes ni such that
pi = [p] mod 12, for 1 6 i 6 n. We refer to the geometric realisation of the Tonnetz
in a deformed state, i. e. when at least one of its vertices does not lie in the plane
z = 0, denoting it as T. In Figure 6.4 deformation T induced by a major triad played
for 8 seconds is depicted.

A 3-dimensional interactive animation showing how the Tonnetz is deformed by
a musical phrase and allowing the user to play with its own keyboard to generate
specific deformations is available at http://nami-lab.com/tonnetz/examples/
deformed_tonnetz_int_sound_pers.html. The Javascript and html code are also
available on the web. See Appendix C for a commented version of the code generating
the animation and a brief tutorial concerning its functions. The translation of the
vertices is rendered as a continuous displacement in time, at a constant speed. The
resulting shape after the deformation is equivalent to the one generated through the
collection of functions defined in Equation (6.1.1).

http://nami-lab.com/tonnetz/examples/deformed_tonnetz_int_sound_pers.html
http://nami-lab.com/tonnetz/examples/deformed_tonnetz_int_sound_pers.html
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Figure 6.5: A vertex map from the fundamental domain of the Tonnetz to the
Tonnetz torus. The red and blue lines corresponds to the two generators of the torus,
given by the translation (transposition) of 3 and 4 half-steps, respectively.

6.1.2 Preferred directions in music: a naïve approach

Before using persistent homology to classify different configurations of the Tonnetz,
we describe the first approach we followed and consequently a first simple music
representation strategy. This trial is based on the definition of a preferred subcomplex
of T induced by the values of the height function on the vertices of its deformed
geometrical realisation.

Consider the simplicial complex T derived by deforming the heights of the vertices
of |T | with a sequence of notes. Let

fV : V ⊂ T → R
(x, y, z)→ z.

be the height function, V the 0-skeleton of T and m = max{f(v) | v ∈ V }. The
label of the vertex of maximal height is given by {l(v) | fV (v) = m} for v ∈ V . Let
Vt ⊂ V be

Vt = { v ∈ V | fV (v) > m/t }

the collection of vertices whose height is greater than the threshold m/t ∈ R. The
preferred pitch class set P is constituted by the pitch classes labelling the vertices of
Vt.

This set has infinite cardinality since any label is associated with infinite vertices
of T . The labelling of the Tonnetz is double periodic with respect to both the
translations of major and minor third intervals. We can restrict our analysis to the
fundamental domain F ⊂ T generated by the translation corresponding to these
intervals. See Figure 6.5.

To map the square F in the Tonnetz torus T depicted in Figure 6.5, it is necessary
to introduce some definitions. Let K be a simplicial complex.
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Definition 6.1.1. A point x ∈ |K| belongs to the interior of exactly one simplex of
σ ∈ K. Assume σ = [v0, . . . , vn]. Then

x =
n∑
i=0

λivi,

where λi > 0 for each i and
∑n
i=0 λi = 1. Let v be an arbitrary vertex of K, the

barycentric coordinates bv(x) of x with respect to v are defined by setting

bv(x) =
{
λi if v = vi for 0 6 i 6 n
0 otherwise

.

The following lemma (Munkres, 1984, Ch. 2, Lemma 2.7) allows to extend a
map defined on the 0-skeletons of two simplicial complexes to their entire structures.

Lemma 6.1.1. Let ϕ : KV → LV a map between the 0-skeletons of the complexes
K and L. Suppose that whenever the vertices v0, . . . , vn of K span a simplex of K,
their images f(v0), . . . , f(vn) are vertices of a simplex of L. Then ϕ can be extended
to a continuous map Φ : |K| → |L|, such that

x =
n∑
i=0

λivi ⇒ Φ(x) =
n∑
i=0

λiϕ(vi).

The map Φ is called the linear simplicial map induced by the vertex map ϕ.

In our case, the enharmonic labelling of the Tonnetz allows to define a vertex
map and its extension to a simplicial map Φ : F → T. Consider the subcomplex
S ⊂ F given by the simplices of F whose vertices are elements of VP . We obtain a
subcomplex of Φ(S) ⊂ T, by identifying the simplices of S lying on opposite edges
of F . In Figure 6.6 we show how this subcomplex can be computed in the case of
Ravel’s Jeux d’Eau and setting t = 2 in three steps:

1. Figure 6.6a represents the projection of the preferred set of vertices on |T |.
The darker parallelogram is the fundamental domain F visualised as a region
of |T |.

2. The same region of the space is depicted in Figure 6.6b, where different colours
highlight edges and points to be identified.

3. The last figure represents the subcomplex S ⊂ T generated by the vertices
labelled with preferred pitch classes.

In geometrical terms, to consider the threshold t corresponds to slice T, in order
to retrieve the vertices belonging to level-set f−1 ([m/2,m]). In musical terms, this
operation allows to segregate the pitch classes that we heard at least m/t seconds
during the piece. In addition, relevant pitch-class sets endowed with the structures
of triads and consonant intervals (perfect fifths, major and minor thirds and their
inversions), corresponds to simplices of S. It is also possible to retrieve the absence
of preferred musical entities if every pitch is a preferred one, and hence S = T.
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(a) Fundamental domain. (b) Preferred pitch class set
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(c) Preferred pitch
classes subgraph

Figure 6.6: Deriving a preferred pitch class set for Jeau d’Eau.

Sometimes we shall refer to the subcomplex S, or its equivalent that will be
defined in the remainder of this work, as the subcomplex of preferred directions
associated to a musical phrase or to a composition. This expression refers to the
musical preferred directions (pitch-class sets corresponding to intervals, triads, or
the whole chromatic scale) highlighted by the height function.

Remark 9. In our analyses we consider only the Euler Tonnetz. However, this
approach and in general the whole set of strategies we shall describe in this part are
suitable for the analysis of other types of Tonnetze (Cohn, 2011; Bigo et al., 2013).

Application

The structure of the subcomplex of preferred directions associated to a composition
can be used in order to classify them. It is important to notice that in order to do
that, no labelling is needed in order to perform the analysis.

In Figure 6.7 the shapes associated to several music pieces are depicted along
with their preferred subcomplexes. The threshold we considered for the examples
presented in this paragraph is t = 2. It is possible to see how tonal pieces are
associated to subcomplexes representing a selection of major and minor triads along
the fifth axis of the Tonnetz (horizontal edges). Jeux d’Eau is described by a suite
of three pitch classes a perfect fifth a part, or equivalently three triads composed
by six distinct notes corresponding to a diatonic scale minus its fourth degree
(see Figure 6.6c). The first movement of Mozart’s Sonata no. 8, is represented by
two consecutive triads a perfect fifth apart. The subcomplex associated to the first
movement of Beethoven’s Sonata no. 13 is also developed on the fifth’s axis of the
Tonnetz, where a minor triad represented by the only 2-simplex in Figure 6.7d is
enriched with a perfect fourth, evoking a pentatonic sonority.

Figures 6.7h and 6.7j represent Klavierstük I and a sequence of random pitches,
respectively. Note that the first subcomplex includes 11 of the 12 vertices (modulo
identifications) of F , while the collection of randomised pitches includes the whole
set of pitch classes. The analysis of the third piece of the Schönberg’s work reveals
exactly the same preferred pitch-class subcomplex, we identified for the first one. On
the contrary, the second piece has a different structure. The subcomplex depicted
in Figure 6.7e differs both from the representations we found for random sequences
of pitches and from the tonal ones. In this case, a minor triad is preferred together
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with its major sixth and minor second, which could be considered a modal, rather
then a tonal or a chromatic choice.
Remark 10. The results presented in this section can be replicated on the web
application. The set of preferred vertices can be visualised on |T | by clicking on
the button dips_pref , after the Tonnetz has been deformed. The information
concerning the labels of the height of the vertices is displayed in the JavaScript
console.
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(a) Sonata n. 8, mov. 1- Mozart. (b) Preferred pitch class
subcomplex.

(c) Sonata in C major, mov. 1 -
Beethoven.

(d) Preferred pitch class
subcomplex.

(e) Klavierstück I - Schönberg. (f) Subcomplex.

(g) Klavierstück II - Schönberg. (h) Preferred pitch class
subcomplex.

(i) Random Pitches. (j) Preferred pitch class
subcomplex.

Figure 6.7: Deformed Tonnetze and their preferred subcomplexes. Identifications
are omitted for clarity.
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Figure 6.8: Weighted preferred subcomplexes of T .

6.2 Towards a topological classification of music

Although the coincidence of the subcomplexes associated to the first and last piece
of Drei Klavierstücke is encouraging given their common atonal nature, we retrieve
identical preferred subcomplexes even by considering Debussy’s Clair de Lune and
Arabesque and Ravel’s Jeux d’Eau. Again, this result is interesting, being Ravel and
Debussy the two most relevant exponents of the Impressionistic music. However, it
points out one of the limitations of this approach: forgetting the weight associated to
the vertices, it is not possible to distinguish between identical preferred subcomplexes
of the Tonnetz.

Let f̄ : F → R be the restriction of the height function to the fundamental
domain of the deformed Tonnetz. Such a function allows to distinguish the three
isomorphic subcomplexes associated to Jeux d’Eau, Arabesque and Clair de Lune.
Moreover, it induces an ordering on the vertices of F given by f̄ ◦h : |F | → R, where
h : |F | → F is a simplicial homeomorphism.

The vertices of the preferred subcomplexes in Figure 6.8 are labelled with
the values induced by the height function. The subcomplex associated to Jeux
d’Eau is based on a minor triad and includes its perfect fourth, that is to say, this
representation suggests a minor pentatonic sonority to be a characteristic of the
piece. In the case of Claire de Lune a major triad enriched with its major second and
its perfect fourth is highlighted. By ordering the notes according to their heights and
assuming for simplicity the root of the major triad to be C, we obtain the sequence
of note (G,C,D,E, F,A). This sequence reveals the diatonic inspiration of this
piece, the height of the notes points out a mixolydian1 structure. The subcomplex

1the mode built on the fifth degree of the diatonic scale and associated to dominant chords and
pentatonic sonorities.
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associated to the third movement of Drei Klavierstücke suggests either a sonority
based on one of the modes deduced from the melodic minor scale as the dorian [2,
or a chromatic construction of the composition.

The height function retrieves relevant information even neglecting the temporal
ordering in which notes are presented. The natural advance from this point is to
avoid the definition of an arbitrarily threshold and to extend the function defined
on the vertices to the other simplices (edges and triangles) of the complex. Morse
theory (Milnor, 1963) revealed the close relationship between the topology of a
manifold and the critical points of a smooth function defined on it. In particular,
discrete Morse theory (Forman, 1998, 2002) is an adaptation of this formalism to
simplicial complexes. Unfortunately, in order to produce a discrete Morse function
from a real function f defined on a point cloud (King et al., 2005), it has to be
injective on the set of points where it is defined. Even after the restriction to the
fundamental domain of the Tonnetz, where the labelling function is bijective, this
hypothesis is too strong for music analysis: two or more pitch classes can be played
exactly for the same amount of time in a composition, or never be played, and this
information cannot be neglected. However, it is possible to describe the topology of
a simplicial complex by taking into account an ordering induced on its simplices by a
continuous real-valued function under milder assumptions. The solution is provided
by the theory of persistent homology, we introduce in the next chapter.





Seven

Topological persistence

Topological persistence was introduced by Patrizio Frosini and collaborators under
the name of Size Theory (Frosini, 1992), addressing the problem of shape recognition
from a rigorous mathematical point of view. This theory is comparable (although
more general) to the 0-dimensional persistent homology described in (Edelsbrunner
et al., 2002).

As we shall see in the remainder of this chapter, the hypothesis required by
the formalism of persistent homology are weak enough to make it suitable for a
plethora of applications, including the analysis of music. It has been applied to the
classification of shapes (Chazal et al., 2009; Di Fabio and Landi, 2011), of hepatic
and melanocytic lesions (Adcock et al., 2014; d’Amico et al., 2004), the analysis of
cortical data (Chung et al., 2009), covering of sensor networks (De Silva and Ghrist,
2007; Munch et al., 2012), group behaviour analysis (Topaz et al., 2015) and many
other fields.

In order to safely introduce persistent homology, the homology of a topological
space has to be defined.

7.1 Simplicial homology

The homology theory is a standard subject in Algebraic Topology. It is extensively
described in a general setting in (Hatcher, 2002) and (Munkres, 1984). In this
context we will describe homology as it is defined for simplicial complexes.

7.1.1 n-chains

Let K be a simplicial complex and n ∈ Z. A simplicial n-chain is a formal sum∑
i αiσi where αi ∈ Z/2Z and σi are n-simplices of K. Let c =

∑
i αiσi and

d =
∑
i βiσi be two n-chains and define their sum as

c+ d =
∑
i

(αi + βi)σi. (7.1.1)

The set of n-chains, equipped with the operation defined in Equation (7.1.1) form the
group of n-chains (Cn,+) or simply Cn, if the context allows to simplify the notation.
The neutral element is 0 and the associativity of + is inherited by the sum in Z/2Z.
The inverse of an element c ∈ Cn is −c = c, since c+ c = 0. Moreover, Cn is abelian
since the addition modulo 2 is commutative. The group of n-chains is defined for
every n ∈ Z. In particular, if n is less than 0 or greater than the dimension of K,

93
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Figure 7.1: A 3 and a 2-simplex and their respective boundaries.

Cn is trivial. It is possible to link chain groups of different dimension by defining
the boundary homomorphisms.

7.1.2 Boundary homomorphisms and homology groups

The boundary of the n-simplex σ = [v0, . . . , vn], denoted as ∂n (σ), is the sum of its
(n− 1)-faces. In symbols we have

∂n (σ) =
n∑
i=0

[v0, . . . , v̂i, . . . , vn] .

where the hat indicates the vertex to be dropped in order to consider the ith face of
σ. In Figure 7.1 a tetrahedron and a triangle are depicted along with their respective
boundaries. When considering coefficients in fields different from Z/2Z it is necessary
to orient each simplex by taking into account the indices of its vertices. Thus, it is
necessary to define the boundary homomorphism as an alternate sum, rather than a
simple one (Hatcher, 2002, Ch. 2).

The boundary of a n-chain is the sum of its simplices’ boundaries. Let c and d
be two n-chains, then ∂n(c+ d) = ∂n(c) + ∂n(d). Hence, ∂n : Cn → Cn−1 is a group
homomorphism.
The sequence

· · · ∂n+2−−−→ Cn+1
∂n+1−−−→ Cn

∂n−→ · · · ∂2−→ C1
∂1−→ C0

∂0−→ 0,

of the abelian groups {Cn}n equipped with the boundary homomorphisms, where
∂0 = 0, is called a chain complex. A n-chain c with zero boundary, i. e. such that
∂n(c) = 0, is called a n-cycle. The collection of n-cycles denoted by Zn is the kernel
of the boundary homomorphism ∂n and consequently a subgroup of Cn.

A n-boundary is a n-chain c such that ∂n+1(d) = c, for some d ∈ Cn+1. In other
words, a n-boundary is a n-chain which is the boundary of a (n + 1)-chain. In
particular, the collection of n-boundaries Bn = Im ∂n+1 and hence Bn ⊆ Cn is also
a subgroup.

Lemma 7.1.1. ∂n+1 ◦ ∂n = 0 for every n ∈ Z.

Proof. Let σ be a (n+ 1)-simplex. Its boundary consists of the sum of its n-faces
and each (n− 1)-face belongs exactly to two n-faces, hence ∂n+1∂n(σ) = 0.
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Figure 7.2: Representation of a chain complex associated to a 3-dimensional simplicial
complex.

It is simple to verify this property in low dimension, for instance consider the
boundary of the boundary of a 3-simplex:

∂2∂3([v0, v1, v2]) = ∂2([v0, v1] + [v1, v2] + [v2, v0]),

as we said above the boundary homomorphisms commute with the sum, hence

∂2([v0, v1] + [v1, v2] + [v2, v0]) = 2(v0 + v1 + v2) = 0 mod 2.

From the Lemma 7.1.1 follows that every n-boundary is a n-cycle. Hence, Bn is a
subgroup of Zn. We can consider the quotient Zn/Bn, whose elements are the cosets
of the form c+Bn where c ∈ Zn. This quotient is an abelian group, since Zn is so.
In Figure 7.2 a chain complex associated to a simplicial complex of dimension 3 is
depicted. Observe how the 4th and 0th chain groups are both trivial. In particular,
the triviality of the latter implies C0 = Z0. The dashed lines between consecutive
chain groups denote the effect of the boundary homomorphism. The n-cycles vanish
when mapped to the lower chain group; the n-boundaries are represented as a subset
of the subgroup of n-cycles and correspond to the image of ∂n+1.

Definition 7.1.1. The nth homology group of a chain complex is the quotient
Hn = Zn/Bn, for n ∈ Z. Two cycles are said to be homologous if they are in the
same coset.

The chain group is also a vector space for every n ∈ Z. Furthermore, the group
Cn ' (Z/2Z)sn , where sn ∈ N ∪ { 0 } is the number of n-simplices in K. Hence,
Cn is generated by sn elements. These elements can be thought as the vectors
having only one non-zero component, corresponding to the ith n-simplex of K, for
i ∈ { 1, . . . , sn }. The same structure is inherited by the cycles and the boundaries
of Cn. We define the nth Betti number of K as

βn = dimHn = dimZn − dimBn.

7.1.3 An algorithm for computing homology

To compute the Betti numbers of a simplicial complex K, it is necessary to introduce
its matrix representation. The information provided by the boundary homomor-
phisms is stored in a collection of matrices called boundary matrices. The nth
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Figure 7.3: 2-dimensional simplicial complex.

boundary matrix Bn is defined as Bn (i, j) = 1 if the i-th (n − 1)-simplex is the
boundary of the jth n-simplex and 0 otherwise. The ordering used to store the
simplices in the boundary matrix is the one induced by the vertices of the simplicial
complex.

Example 7.1.1 (Boundary Matrices). Consider the simplicial complex K of Fig-
ure 7.3. Its 0-boundary matrix is

B0 =
[
0 0 0 0

]
.

Since, the 0-simplices (columns of the matrix) have no faces. Ordering the 1-
simplices of K as [v0, v1] , [v0, v2] , [v1, v2] , [v1, v3] , [v2, v3] on the columns and the
vertices following the subscripts indices on the rows, we have

B1 =


1 1 0 0 0
1 0 1 1 0
0 1 1 0 1
0 0 0 1 1

 .
The last boundary matrix has one column corresponding to [v0, v1, v2] and six rows
corresponding tot he 1-simplices of K ordered as before, we have

B2 =


1
1
1
0
0


Let v be the column vector of the coefficients of a n-chain c. Its boundary is

computed as Bn · v, where · is the standard matrix product. The vector v is a
n-cycle if and only if it exists a vector u ∈ Cn+1 such that Bn+1 · u = v.

The rank of the n-chain group Cn is the number of n-simplices in the simplicial
complex K let denote it as sn, hence the n-th boundary matrix Bn ∈ Mat (sn−1, sn).
To represent the sizes of Bn and Zn and consequently Hn, the matrix Bn is reduced
to normal form, as it is shown in Figure 7.4. The operations required to achieve the
normal form reduction of the matrix are equivalent to the ones used in Gaussian
reduction to solve linear systems of equations. See Algorithm 7.1 for the pseudocode.
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Figure 7.4: Reduced n-th boundary matrix.

Algorithm 7.1 Boundary Matrix Reduction.

Input:
Bn . a boundary matrix

Output:
R . the reduced boundary matrix

1: while m ∈ { 1, . . . , sn } do
2: if Bn (i, j) == 1 and i > m and l > m then
3: Exchange the rows m and i and the columns m and j;
4: for k ∈ {m+ 1 . . . sn−1 } do
5: if Bn (k,m) == 1 then
6: add row k to row m;
7: end if
8: end for
9: for l ∈ {m+ 1 . . . sn } do
10: if Bn (m, l) == 1 then
11: add column j to column m;
12: end if
13: end for
14: end if
15: end while
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On every iteration on m at most a linear number of rows and columns operations
is performed. Hence the total running time is at most O

(
N3), where N is the

number of simplices of K.

Example 7.1.2 (Boundary matrix reduction). Consider the boundary matrices
of Example 7.1.1, in their normal form they are

R0 = B0 =
[
0 0 0 0

]
,

R1 =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 0

 ,
and

R2 = B2 =


1
1
1
0
0


Setting zn = RankZn and bn = RankBn, we have z0 = 4 from B0 and b0 = 3 from

B1, hence the 0-th Betti number is β0 = 1, which is exactly the expected value, since
the simplicial complex of Figure 7.3 has one connected component. In dimension 1
we have z1 = 2 and b1 = 1, thus β1 = 1 corresponding to the 1-dimensional hole of
the simplicial complex. Finally z2 = 0 and hence β2 = 0.

7.2 From homology to persistent homology

7.2.1 An intuition

Observing a shape for the first time, one tries to identify its persistent properties by
neglecting details that can be easily lost by changing the position of the shape or
hidden by small occlusions.

The idea behind persistent homology is to measure these properties by rebuilding
a shape as a monotonic sequence of nested spaces called a filtration. In Figure 7.5,
we considered a point cloud subsampled from the image of a manuscript note and
we associated to each point a circle of radius r ∈ R. The blob formed by the union
of the circles assumes the shape of a musical note, while increasing the radius of
the circles. Disconnected regions of the blob, as well as the small holes generated
by partial intersections of circles do not impede the perception of the whole shape.
Moreover, it is necessary to largely increase the radius of the circles to hide the
persistent shape of the note.

As an example, consider the classification of manuscript notes, in order to
recognise their author. The filtration we produced above, is sensitive to the variations
of the relative positions of the points, but invariant under uniform translation or
rotations of the whole point cloud. Hence, this particular choice is suitable for the
discrimination of the author who wrote the notes, that can be rotated according to
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Figure 7.5: Three topological spaces corresponding to a part of the filtration as-
sociated to a cloud of points derived form an image representing a manuscript
note.

their position on the score, but that are generally characterised by similar shapes of
the head, or thickness of the stem.

Shortly, we shall develop the necessary theory to define a filtration function by
considering either a continuous function on a topological space, or as a sequence
of nested subcomplexes of a given simplicial complex. Furthermore, the noisy and
persistent properties of the shape will be represented by a multiset of 2-dimensional
points. This representation provides a surprisingly suitable framework for the
comparison of shapes and in our case, of musical compositions.

7.2.2 Persistent homology for topological spaces

Here and for the remainder of the dissertation, we assume X to be a triangulable
topological space and f : X→ R a continuous function. We recall that homology is
computed with coefficients in Z/2Z.

Homological critical values and tame functions

Let f : X → R be a continuous function on X. We denote by Xu = f−1((−∞, u])
the sub-level set of the function f , for every u ∈ R. Consider the topological sphere
TS depicted in Figure 7.6 on the following page. The real numbers

a1 6 a2 6 . . . 6 a7

generate seven nested sub-level sets TSai = f−1 ((−∞, ai]) of the height function
f : TS → R, for i ∈ {1, . . . , 7}.
To safely introduce persistence homology, two fundamental ingredients have to be
defined: homological critical values (Govc, 2013) and tame functions.

Definition 7.2.1. Let X a topological space and f : X→ R a continuous function.
A real number a is called a homological regular value of f if there exists ε > 0, such
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Figure 7.6: Sub-level sets of the height function on a topological sphere. The six
critical points of the height function are depicted as red dots.

that for every couple of real numbers x < y on the interval (a−ε, a+ε), the inclusion

f−1((−∞, x]) ↪→ f−1((−∞, y]),

induces isomorphisms on all homology groups. Otherwise, a is called a homological
critical value of f .

Definition 7.2.2. Let X be a triangulable topological space. A continuous function
f : X → R is tame if it has a finite number of homological critical values and the
homology groups Hk(Xu) are finite-dimensional for every u ∈ R and k ∈ Z.

Note that in general, the definition of a tame function asks the homology groups
to have finite dimension. The fact the f has a finite number of homological critical
values assures that changes in the homology groups occur a finite number of times
along the filtration and in correspondence of these critical values. Examples of
tame functions are Morse functions on manifold and piecewise linear functions on
triangulable topological spaces.

Persistence modules and persistent Betti numbers

Definition 7.2.3. Let X be a triangulable topological space, f : X → R a tame
function and u, v ∈ R, such that u < v. The kth persistence module Hu,v

k is the
image of the homomorphism

ιu,vk : Hk(Xu)→ Hk(Xv),

induced by the inclusion Xu ↪→ Xv.



7.2. FROM HOMOLOGY TO PERSISTENT HOMOLOGY 101

� �

�

Hk(Xi�1) Hk(Xi) Hk(Xj�1) Hk(Xj)� . . .� � �
Figure 7.7: The class α is born in Xi since it is not in the image of ιi−1,i

k depicted in
green. It dies in Xj , since it merges in Imιi−1,j

k .

The k-persistent Betti number is defined as βu,vf,k = dim Im(ιu,vk ), for every k ∈ Z.
It counts the homology classes of dimension k surviving in the passage from Xu to
Xv. Here, it is possible to speak about the dimension of the image of the function
induced by the inclusion Xu ↪→ Xv, since considering coefficients in a field, Hk(Xu)
and Hk(Xv) are vector spaces and ιu,vk is a linear function.

It is now possible to define the filtration of the topological space X induced
by the sub-level sets of a tame function f : X → R. By Definition 7.2.3 f has a
finite number of homological critical values, say {c1, . . . , cn}, where n ∈ N. Let
{r0, . . . , rn} be regular homological values of f , such that ri−1 6 ci 6 ri for every
i ∈ {1, . . . , n}. It is possible to define a filtration of X as the collection of nested
subspaces { Xri }i∈{0,...,n}, such that

Xr0 ⊆ Xr1 ⊆ · · · ⊆ Xrn .

In addition, set r−1 = c0 = −∞ and rn+1 = cn+1 = +∞, in order to include in the
filtration that empty set and the whole space. If the context is clear we denote the
subspaces of this filtration simply as Xi.

Finally, by traversing the filtration, we assist to a finite number of changes (since f
is tame) of the homology groups associated to each subspace Xi for i ∈ {0, . . . , n+1}.
In Figure 7.7, we say that the homology class α is born entering in Xi, since it does
not came from a class in Xi−1. Symmetrically, we say that α dies entering Xj if the
image of the map induced by the inclusion Xj−1 ⊂ Xj contains α and the image of
the map induced by Xi−1 ⊆ Xj−1 does not.

Persistence barcodes and persistence diagrams

The information retrieved by the analysis of the lifespan of homology classes along
the filtration can be represented as a diagram called persistence diagram. In such
a diagram birth and death-levels of each homology class are represented as points
lying in the open half-plane above the diagonal and endowed with a multiplicity
(Frosini and Landi, 2001; Ferri et al., 2011).

To describe how the persistence diagram is built, it is necessary to introduce
another fundamental ingredient of persistent homology: the pairing. Under the
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hypotheses of triangulability and tameness of X and f respectively, let ci be a critical
homological value of f . If ci is responsible of the birth of a homological class α, it is
paired with the homological critical value cj responsible of its death (if it exists).
The lifespan of α corresponds to the open interval [ci, cj), with i < j. The homology
with infinite lifespan are paired with∞. The collection of intervals retrieved running
the whole filtration is called a persistence barcode (Carlsson et al., 2005; Ghrist,
2008).

The persistence diagram is built considering the pairing (ci, cj) as point in R2,
or to be more precise, in the closure of the Euclidean plane including the points at
infinity.

Let ∆ =
{

(u, v) ∈ R2 ∣∣ u = v
}
be the diagonal of the Euclidean plane, ∆+ ={

(u, v) ∈ R2 ∣∣ u < v
}
be the open-half plane above the diagonal and ∆∗ = ∆+ ∪

{ (u,∞) | u ∈ R } the extension of ∆+ including the points at infinity. Observe that
the definition of ∆∗ is necessary, in order to describe cycles with infinite lifespan.

Definition 7.2.4. Let (u, v) be a point of ∆+. The number µ(u, v) ∈ R realising
the minimum over the real numbers ε > 0, with u+ ε < v − ε, of

βf,k (u+ ε, v − ε)− βf,k (u− ε, v − ε)− βf,k (u+ ε, v + ε) + βf,k (u− ε, v + ε) ,

is called the multiplicity of (u, v) for the persistent Betti number βf,k and k ∈ Z.
A point (u, v) is called a proper cornerpoint for βf,k if its multiplicity is strictly
positive.

Definition 7.2.5. Let r : u = ū be a vertical line in R2. We identify it with its
point at infinity (ū,∞) ∈ ∆∗. The multiplicity µ(ū,∞) is the minimum over the
positive real numbers ε, with ū+ ε < 1/ε, of

βf,k

(
ū+ ε,

1
ε

)
− βf,k

(
ū− ε, 1

ε

)
.

A point at infinity endowed with a strictly positive multiplicity is called a cornerpoint
at infinity for βf,k.

Finally, we can introduce the definition of persistence diagram.

Definition 7.2.6. The k-persistence diagram Dk (f) is the multiset1 of all corner-
points for βf,k, union the points of the diagonal ∆ counted with infinite multiplicity.

The persistence barcode and the persistence diagram associated to the filtration
of a topological sphere are depicted in Figure 7.8. Green intervals describe the
information concerning the 0-dimensional persistence of the shape, while the blue ones
describe the contribution of the 2-persistence module. Finite intervals correspond to
proper cornerpoints, while the cornerpoints at infinity are represented as vertical
half-lines, also called cornerline.

In conclusion, persistence diagrams describe the topological and geometrical
properties of a shape X. These properties are retrieved by the analysis of the life
and death-levels of the homological classes of the nested spaces determined by the

1Each cornerpoint is equipped with a multiplicity.
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Figure 7.8: An example of persistence barcode and persistence diagram. Noisy
classes are represented as short bars in the barcodes and as points near the diagonal
in the diagram representation. The critical points of the height function are denoted
by red circles. According to their labels, the pairing is given by (c1,∞), (c2, c4),
(c3, c5) and (c6,∞).

filtration induced by the sub-level sets of a tame functions f . Moreover, the lifespan
of the homology classes represented by a cornerpoint corresponds to its distance
from the diagonal. Thus, noisy and persistent homological classes are represented
by cornerpoints lying near to or far from the diagonal, respectively.

Bottleneck distance

Persistence diagrams are simpler than the shape they represents and describe its
topological and geometrical properties, as they are highlighted by the homological
critical values of the function used to build the filtration. The bottleneck distance
allows to compare such diagrams.

Definition 7.2.7. Let X be a triangulable topological space and f, g : X→ R two
tame functions. The bottleneck distance between Dk(f) and Dk(g) is

dB (Dk(f), Dk(g)) = inf
γ

sup
p∈Dk(f)

‖p− γ(p)‖∞ ,

where γ : Dk(f)→ Dk(g) is a bijection and ‖p− γ(p)‖∞ = maxp∈Dk(f) |p− γ(p)|.

In Figure 7.9 a bijection between two k-persistence diagrams is depicted. Corner
points belonging to the two diagrams are depicted in orange and yellow, respectively.
Observe how the inclusions of the points of ∆ allows the comparison of multisets of
points whose underlying set has different cardinality (see Section 3.1 for a definition
of multiset) by associating one of the purple points to one of the points lying on the
diagonal.

An important property of persistence diagrams is their stability. A small pertur-
bation of the tame function f produces small variations in the persistence diagram
with respect to the bottleneck distance.
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Figure 7.9: A matching between two k-persistence diagrams. The bijections between
elements of the diagrams is denoted using left-right arrows.

Theorem 7.2.1. Let X be a triangulable topological space and f, g : X → R two
tame functions. For every integer k, the inequality

dB (Dk(f), Dk(g)) 6 ‖f − g‖∞ ,

where ‖f − g‖∞ = supx |f(x)− g(x)|, holds.

7.2.3 An algorithm for computing persistence

Persistence is computed through an algorithm mirroring the one we described
in Algorithm 7.1. Let K be a triangulation of X, and f̃ : K → X a monotone
function such that f̃ (τ) 6 f̃ (σ) if τ is a face of σ. Consider an ordering of the
simplices ofK, such that each simplex is preceded by its faces and f̃ is non-decreasing.

This ordering allows to store the simplicial complex in a boundary matrix B,
whose entries are defined as

B (i, j) =
{ 1 if σi < σj

0 otherwise . (7.2.1)

The algorithm receives in input a boundary matrix B and reduces it to a new
0−1 matrix R via elementary column operations. Let J = { 1, . . . , n } be the indices
of the columns of B and

lowR : J → N
j 7→ l,

where l is the lower row index of the last 1 entry of the jth column. If a column has
only 0 entries lowR (j) is undefined. A matrix R is reduced if for every couple of
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non-zero columns of indices j 6= j′, lowR (j) 6= lowR (j′). The reduction process is
described recursively in Algorithm 7.2. The corresponding Python code is available
in Appendix C.

Algorithm 7.2 Persistence Algorithm.

Input:
B . a boundary matrix

Output:
R . the reduced boundary matrix

1: function R = reduce(B)
2: R = B
3: for j ∈ { 1, . . . ,m } do . the number of simplices in K
4: for j0 ∈ { 1, . . . , j − 1 }: do
5: if lowR (j) == lowR (j0): then
6: Rj = Rj +Rj0 mod 2 . Add the j-th and the j0-th columns
7: R = reduce(R)
8: return R
9: end if

10: end for
11: end for
12: return R . if B is already reduced, return B
13: end function

Thus, the algorithm compute a upper-triangular invertible matrix V = v (i, j)
whose entries are elements of Z2, such that R = BV . From the reduced matrix R it is
possible to deduce the pairing of critical simplices and thus the k-persistence diagram
for every k ∈ Z. Consider the couple of simplices (σi, σj) such that i = lowR (j). We
call σi positive and σj negative, since the homology class created by σi dies when σj is
introduced. By construction of B in Equation (7.2.1), dimσi = dimσj − 1 = n, thus
the coordinates

(
f̃ (σi) , f̃ (σj)

)
has to be added to the n-dimensional persistence

diagram.
Observe that the reduced matrix is not unique, for instance it can be computed

as the complete Smith normal form of B. However the points
(
f̃ (σi) , f̃ (σj)

)
do

not depend on the choice of R. Let denote with M j
i the minor of the matrix

M ∈ MatR (k, l) obtained by deleting the first i − 1 rows and l − j columns, and
define

rB (i, j) = rankBj
i − rankBj

i+1 + rankBj−1
i+1 − rankBj−1

i .

Lemma 7.2.2. Let B = RU , being U = V −1, a decomposition of B. Then
lowR (j) = i if and only if rB (i, j) = 1. In particular, the pairing function is
not dependent on the choice of R.

Proof. A proof of the Pairing Uniqueness Lemma can be found in (Cohen-Steiner
et al., 2006, Sec. 3).

If the number of simplices in the complex is m, then the algorithm runs in a
O
(
m3) time in the worst-case. For instance, the Vietoris-Rips complex of a n-points
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Figure 7.10: 2-dimensional simplicial complex.

cloud has at most
(n
k

)
simplices for each dimension k, making the computation time

prohibitive. It is possible to fix this issue by computing persistence in low dimensions,
or limiting the length of the radius associated to each point.

We give an explicit example of the construction of the persistent boundary matrix
and the deduction of the pairing in the following examples.

Example 7.2.1. Consider the simplicial complex K depicted in Figure 7.10. It
consists of 10 simplices: 4 vertices, 5 edges and 1 triangle. To get a filtration we
add them following the order induced by their dimension. Since each simplex has to
be associated to a column and a row of the boundary matrix, we number them from
1 to 10 following the ordering defined by the filtration. Hence, the simplices will be
placed in the order (v0, v1, v2, v3, e01, e12, e20, e13, e23, t012) on the rows and columns
of the matrix:

B =



1 2 3 4 5 6 7 8 9 10
1 0 0 0 0 1 0 1 0 0 0
2 0 0 0 0 1 1 0 1 0 0
3 0 0 0 0 0 1 1 0 1 0
4 0 0 0 0 0 0 0 1 1 1
5 0 0 0 0 0 0 0 0 0 1
6 0 0 0 0 0 0 0 0 0 1
7 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0 0 0



Following the algorithm we look for columns whose last 1 entry has the same index,
i. e. the column B(j) and B(j0) with lowB (j) = lowB (j0) with j ∈ { 1, . . . , 10 } and
j0 < j. In this case we have lowB (7) = lowB (6) and lowB (9) = lowB (8). We sum
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Figure 7.11: Reduction of the persistent boundary matrix to normal form.

the two columns obtaining

R1 =



1 2 3 4 5 6 7 8 9 10
1 0 0 0 0 1 0 1 0 0 0
2 0 0 0 0 1 1 1 1 1 0
3 0 0 0 0 0 1 0 0 1 0
4 0 0 0 0 0 0 0 1 0 1
5 0 0 0 0 0 0 0 0 0 1
6 0 0 0 0 0 0 0 0 0 1
7 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0 0 0


Iterating this process once we obtain the reduced boundary matrix R2 = R, depicted
in its decomposition R = DV in Figure 7.11.

The iteration of the algorithm stops at its second step, since there are no more
lowR (j) = lowR (j0) with j0 < j, while j ranges on the column’s indices of the
matrix. Consider the reduced matrix R of Figure 7.11, the red 1 of the 5-th column,
corresponds to the row index 2, that is to say the vertex 2 creates a 0-cycle, killed by
the edge 5. The same argument holds for the 1 in position (3, 6) and (8, 4). When
the edges 7 and 9 appear nothing change in terms death of cycles, since the columns
R (7) and R (9) has only 0 entries. These two zero columns corresponds to two
1-cycles generated by the edges (5, 6, 7) and (6, 8, 9) as it is shown by the 7-th and
9-th column of the matrix V in Figure 7.11. While the triangle kills the first 1-cycle
when the edge 7 is added to the complex in position (7, 10), the other one survive
along the whole filtration.





Eight

A topological fingerprint for music
analysis

A persistence diagram is a fingerprint of a shape that represents its geometrical and
topological properties as a multiset of 2-dimensional points. The deformations of
the Tonnetz we discussed in Chapter 6 can be analysed using the height function
defined on T to induce a filtration on the fundamental domain F . Moreover, the
fundamental domain of the Tonnetz is completely rebuilt by this filtration, allowing
to remove the threshold we defined in Section 6.1.1 and to take into account pitch
classes that are less used in the piece, but that could reveal interesting properties of
musical phrases, or whole compositions.

In the first part of this chapter we set up all the machineries needed to safely
compute persistent homology when considering the deformation of the Tonnetz and
analyse the persistence diagrams associated to several music pieces. In the second
part we will utilise the bottleneck distance (see Definition 7.2.7) to provide a distance
between musical pieces and to classify them, according to their persistent properties.

Remark 11. In the following applications, the persistence diagrams and the bottleneck
distance will be computed by using Dionysus1.

8.1 Persistent homology classification of deformed
Tonnetze

The main aim of this section is to compute the persistent homology of the deformed
Tonnetz we described in Section 6.1. In the previous chapter, we shown how a
filtration can be defined considering a tame function f on a topological space X. A
filtration of a finite simplicial complex K can be provided as a sequence of nested
subcomplexes {K0, . . . ,Kn } containing as its first and last elements (considering
the ordering induced by the index of the subcomplexes of the filtration) the empty
set and K, respectively.

In our case, it is necessary to define a filtration on a simplicial complex K,
equipped with a function f : V → R defined on its 0-skeleton.

1Dionysus is a C++ library for persistent homology available at http://www.mrzv.org/
software/dionysus/.
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Figure 8.1: Lower star filtration of a simplicial complex.

8.1.1 The lower star filtration

Let fV : V → R be a real-valued function defined on the vertices of K. Linearly
extending fV we obtain a piecewise linear function f : |K| → R, such that f(x) =∑
i bi(x)f(vi). This continuous, piecewise extension of f allows to build a filtration

of K. Moreover, since K is finite, f is tame.
Remark 12. It is possible to show that under some hypotheses, every filtration of a
simplicial complex K is induced by a continuous function f : K → R (Di Fabio and
Frosini, 2013).

Assume that f is injective on the vertices of K. Then it is possible to order them
as

f(v0) < f(v1) < · · · < f(vn). (8.1.1)

For every 0 6 i 6 n define Ki as the subcomplex defined by the first i vertices, i. e. a
simplex σ belongs to Ki if and only if its vertices are smaller or equal to vi with
respect to the ordering of Equation (8.1.1). The lower star of vi is defined as

St_vi = { σ ∈ St vi | x ∈ σ ⇒ f(x) 6 f(vi) } ,

where St vi is the star of vi, as it has been defined in Section 2.1.2 (see also Figure 2.3
for an intuition). Each simplex has a unique maximum vertex, since we assumed
f to be injective on V , such that σ belongs to a unique lower star. Moreover,
Ki = ∪j6iSt_ vj , and Kn = K. The lower star filtration of K is given by

∅ = K−1 ⊂ K0 ⊂ K1 ⊂ · · · ⊂ Kn = K.

Each element of the filtration corresponds to a sub-level set of the function f .
Furthermore, for t ∈ [f(vi), f(vi+1)) ⊂ R, |K|t = f−1((−∞, t]) has the same
homotopy type of Ki. Let σ be a simplex that is cut by the plane defined by z = t.
Assume that σ = [v0, . . . , vk] ∈ K, then there exists at least a couple (vl, vk) of
distinct vertices of σ, such that vl ∈ Ki and vk ∈ K −Ki. Consider σ as a union of
line segments connecting the points of its maximal face in Ki to its the maximal face
in K −Ki. By construction the collection of such line segments lies only partly in
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(a) Maximum (b) Minimum. (c) Monkey saddle.

Figure 8.2: Critical points of the height function defined on the vertices of a portion
of the deformed Tonnetz.

f−1 ((−∞, t]). Refer to Figure 8.1 for an intuitive representation of this construction.
Define the fractions of the line segments contained in Ki as

s : [0, 1]→ σ

s(λ) = λx+ (1− λ)y,

where f(s(0)) = f(y) = t and s(1) = x is the endpoint of the line segment. By
considering the deformation retraction, obtained going from time λ = 0 to λ = 1,
we have that |K|t and Ki have the same homotopy type.

8.1.2 A filtration of the deformed Tonnetz

The deformed geometrical realisation of the infinite planar Tonnetz is not a suitable
for the computation of persistent homology. Following a symmetrical approach with
respect to the one we used in Section 6.1.2, we consider the fundamental domain
F of the Tonnetz and its warping T. The idea is to use the values of the height
function to induce a filtration on T.

However, even after this restriction, the height function can assume the same
value on several vertices of T. Indeed, more than one pitch class could be silenced in
a phrase, having height 0, or two or more pitch classes could be played exactly for
the same amount of time.

Maintaining the notation introduced in the previous paragraph, assume that the
function fV : V → R has the same value on some (or even all) the vertices of K.
Consider the set of the unique values of fV , ordered as a1 < · · · < an, with n ∈ N.
Define Vi = {v ∈ V | f(v) = ai}, the collection of vertices whose value with respect
to the function fV is ai. We define Ki = ∪il=1St_Vl . The sequence

∅ = K0 ⊆ K1 ⊆ · · · ⊆ Kn = K

is a filtration of the complex K. Hence, it is possible to induce a filtration on the
finite simplicial complex T, by considering the sub-level sets of the linear extension
of the height function defined on the vertices of F.

Remark 13. It is possible to approximate the linear extension of f with the constant
linear function f̄(σ) = maxx∈σ f(x), in order to obtain a function that is monotone
in the sense of simplicial complexes (if σ ⊂ τ , then f(σ) 6 f(τ)).
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The homological critical values, whose pairing determine the lifespan of the
homological classes of T correspond to the critical points of the height function on
the deformed Tonnetz. In Figure 8.2 the simplest configurations of a maximum, a
minimum and a saddle on the geometrical realisation of a portion of the deformed
Tonnetz are depicted. Observe that, in our case a maximum or minimum can be a
whole subcomplex of connected pitch classes, whose vertices share the same height.
As an example, the configuration depicted in Figure 6.4 on page 84 is obtained by
playing the pitch classes corresponding to a major triad for the same amount of
time.
Remark 14. For an intuition concerning the sub-level sets of the height function, it
is possible visualise them using the web application. The button disp_filtr generates
the plane z = 0. The slider filt_height allows to change the height of the plane and
visualise the sub-level sets of the height function.

8.2 Musical interpretation and persistent clustering
Introducing the Topological Persistence, we claimed that it is capable of describing
persistent features of a shape, mirroring the process we use to identify them. In a
music analysis context, it is necessary to endow our filter with a relative pitch rather
then an absolute one. This is why we chose the height function. On one hand, it
assures the invariance under uniform transposition of a phrase; on the other hand, it
takes into account the structure of the Tonnetz, when extending the function to the
whole simplicial complex.

In Figure 8.3 a particular sub-level set of the height function of several deformed
Tonnetze is depicted. The differences between the tonal and atonal approaches are
highlighted by the geometry of the sub-level set associated to each composition.
By considering a single sub-level set at a fixed height t, we obtain the specular
approach to the one we considered in Section 6.1.2. The filtration induced by the
height function rebuilds T entirely, hence it is not necessarily to fix a threshold. The
information retrieved evaluating the birth and death-levels of the 0 and 1 homological
classes traversing the filtration is encoded in two persistence diagrams.

8.2.1 Musical Interpretation

The 0 and 1-persistence diagrams associated to three compositions are represented
in the first and second row of Figure 8.4, respectively. The two diagrams gives
two representation of the each shape, in our case the different configurations of
cornerpoints and cornerlines can be interpreted as descriptors of the compositional
styles characterising the compositions we analysed.

0-persistent homology

Consider the first row of Figure 8.4. Being F connected it is not surprising to
observe the presence of one cornerpoint at infinity in each diagram. This cornerline
retrieves the connectedness of F . Moreover, its birth-level gives an insight on the
use of the pitch classes in the composition, by representing the height of the minimal
subcomplex of the deformed Tonnetz. More information is retrieved considering
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(a) KV 311, mov. 1 - Mozart. (b) KV 311, mov. 2 - Mozart.

(c) KV 311, mov. 3 - Mozart. (d) Klavierstück, I - Schönberg.

(e) Klavierstück, II - Schönberg. (f) Klavierstück, III - Schönberg

Figure 8.3: Sub-level sets of the height function (in blue) on several deformed
Tonnetze. Different compositional styles are characterised by particular choices of
pitch classes and durations.

the proper cornerpoints, that describe the lifespan of the connected components
along the filtration. The three examples of Figure 8.4 present as many different
configurations. In particular, Arabesque and Jeux d’Eau that were topologically
equivalent for our first naïf classifier are now neatly distinguished by their persistence
diagrams.

It is possible to give a musical interpretation of the 0-persistence diagram
considering the birth-level of the cornerline, say x = b, and the proper cornerpoints
p ∈ C. In our representation, b corresponds to the height of the minimal subcomplex
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(a) Arabesque, Debussy. (b) Jeux d’Eau, Ravel. (c) Klavierstück I, Schönberg.

(d) Arabesque, Debussy. (e) Jeux d’Eau, Ravel. (f) Klavierstück I, Schönberg.

Figure 8.4: The 0 and 1-persistence diagrams representing the topological fingerprints
associated to three different compositions.

of the deformed Tonnetz. If b ≈ 0, there exist a pitch-class set that has not a relevant
role in the composition, suggesting that it is based on a stable tonal or modal choice.
On the contrary, if b >> 0 every pitch class has been used in the composition for a
relevant time. This configuration corresponds to a more atonal or chromatic style.

The presence of more than one connected component has to be interpreted as the
presence of two minimal subcomplexes respect to the height function. Hence, these
subcomplexes are not connected by an edge in the 1-skeleton of F . Furthermore,
the structure of the fundamental domain generated by major and minor third allows
to retrieve a maximum of three connected components. To create this particular
configuration it is necessary to play a chromatic cluster, for instance C,C],D. The
same argument holds for the maxima of the height function, that will be discussed
in the next paragraph.

Coming back to the three examples of Figure 8.4, we can interpret the low
birth-level and the absence of proper cornerpoints in the diagram associated to
Arabesque as an evidence of its pentatonic and diatonic modal inspiration (Trezise,
2003), we retrieve also the fact that the whole chromatic scale has been used
during the composition. The cornerline in the persistence diagram associated to
Jeuxd′Eau is characterised has been a higher birth-level compared to the one we
analysed previously. Moreover, it is not surprising in this case to retrieve a proper
cornerpoint, whose presence is justified by the ante-litteram use of the Petrushka
chord, a superposition of a major triad and its tritone substitute, for instance
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G = (G,B,D) + C] = (C],E],G]). Finally, the diagram associated to Klavierstück
I has a cornerline with a birth-level comparable with the one associated to Jeux
d’Eau. In this case, two proper cornerpoints (that corresponds to two minima,
forming a chromatic cluster with the one retrieved by the cornerline) point out the
atonal nature of the composition.

1-persistent homology

Now, consider the second row of Figure 8.4. The common denominator of the
three diagrams is the presence of two cornerpoints at infinity. These infinitely
persistent homological classes retrieve the two generators of the torus F ∼= S1 × S1,
see Figure 6.5. In musical terms, the value of birth-levels of the cornerlines and their
distance are relevant and give a first characterisation of the style of the composition.
We discuss four configurations of the cornerlines, in order to provide an intuition
concerning the stylistic information they retrieve. Let b1 < b2 the birth-levels of the
two generators, their distance is given by d = |b1 − b2|.

(a) b1 ≈ 0 and d >> 0 (Figure 8.4d). This configuration points out a tonal choice.
A cycle representing one of the generator is born suddenly, this means that there
exist a pitch-class set that has not been used in the composition. Hence, this
feature suggest a precise choice in terms of tonality (or modulations among near
tonal centres), or modality. The high distance between the cornerlines points out
that a pitch class set is less used than the others in the composition, generating
two maxima, as it is depicted in a representative surface of Figure 8.5a.

(b) b1 >> 0 and d >> 0 (Figure 8.4e). An extensive use of the whole chromatic
scale (both in terms of pitches and durations) is retrieved by the high birth-level
of the first cycle. However a particular modal or tonal choice is highlighted by
the presence of two distinguishable maxima (see Figure 8.5b).

(c) b1 >> 0 and d ≈ 0 (Figure 8.4f). This configuration represents an atonal
compositional choice. The whole chromatic scale has been equally relevant
during the composition and the average height of the vertices of the Tonnetz
does not allow to distinguish any preferred direction generating a compressed
surface as the one of Figure 8.5c. In the applications we present in the next
section, we shall see how a tonal piece modulating on several tonal centres, and
hence, using extensively the whole set of available pitch classes, is equipped
with a structure, that allows to distinguish it from a serial or a ultrachromatic
composition.

(d) b1 ≈ 0 and d ≈ 0. This case that is not represented in the persistence diagrams
we chose. In this case, there exists a pitch-class set that less relevant for the
composition and two distinct maxima with a low minimum. In this case the
composition can be classified as modal or tonal and based on a small set of precise
musical ideas. See Figure 8.5d for a representative surface of this configuration.

More information is retrieved considering the proper cornerpoints of the persistence
diagrams. These points retrieve the lifespan of other maxima, arising in different
configurations by considering chromatic, dodecaphonic or serial compositions.
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Figure 8.5: Smooth surfaces representative of four different configurations of the
deformed Tonnetz.

8.2.2 Hierarchical persistent music clustering

Let (D∞, dB) be the space of the persistence diagrams equipped with the bottleneck
distance. We recall that a piecewise linear functions defined on finite simplicial
complexes are tame. Thus the bottleneck distance is stable under small variation
of f . A collection of k-persistence diagrams represents a point cloud in P ⊂ D∞.
In particular, considering the collections of k-persistence diagrams associated to a
set of pieces of music, it is possible to compute their pairwise bottleneck distance.
Then, we shall describe the configuration of such point cloud through a hierarchical
clustering analysis (Ott, 2009). This analysis gives a simple representation of all the
possible clusterings between points, visualisable as a dendrogram.

Representation of data through dendrograms

Dendrograms provide an intuitive representation of the hierarchical clustering of
data. We refer to (Langfelder et al., 2008; Martinez et al., 2010) for a complete
description of these subjects. Consider the 2-dimensional data represented as points
in R2 in Figure 8.6a. The data form two clusters and have two singletons labelled
as I and J . The horizontal axis of the dendrogram represents the distance or the
dissimilarity between clusters, while each object is represented by its label on the
vertical axis. The information carried by the dendrogram concerns similarity and
clustering of data. Each joining is represented by the splitting of a horizontal line
into two horizontal line. The position of the split allows two retrieve the distance
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Figure 8.6: Dendrogram representation of data dissimilarity. The structure of the
2-dimensional point cloud consists of two distinct groups and two outliers. The
dendrogram reflects such a structure representing the two groups as separate clusters
and joining the outliers to the clusters respecting their relative position respect to
the configuration of the point cloud.

among two clusters. Observing the dendrogram in Figure 8.6b, one can see how the
two main clusters are represented as branches occurring at about the same distance.
The outliers are fused at much higher distances.

Computation. Consider a collection of n objects and let D = dij be the matrix
representing the distance among the clusters i and j, composed by ni and nj objects
respectively. The dendrogram is computed as follows:

i) Find the clusters ı̄ and ̄ such that dı̄̄ is minimum in D.

ii) Merge ı̄ and ̄ in a new cluster k with nk = ni + nj objects.

iii) Compute a new clusters distance matrix as

dkl = aı̄dı̄l + ād̄l + bdı̄̄ + c|dı̄l − d̄l|.

Particular choices of the parameters distinguish among different algorithms. We
shall utilize the complete linkage where ai = aj = 1/2, b = 0 and c = 1/2.

iv) Iterate the previous steps.
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Schoenberg - 2

Schoenberg - 1

Ravel - Jeux

Mozart - 3

Mozart - 2

Beethoven - 1

Beethoven - 2

Debussy - Arab

Beethoven - 3

Figure 8.7: Persistence-based clustering of nine classical and contemporary pieces.

0-dimensional persistence

In the following examples 0-dimensional persistence has been used to classify different
collections of music pieces. The examples are organised in order to show some possible
applications of the topological characterisation of music: classification of tonal and
atonal pieces, evaluation of different versions of the same jazz standard played by
different improvisers and the discrimination of different styles in a pop music context.

Remark 15. To safely compare different pieces, the height function has been nor-
malised. The collection of MIDI files used to generate the examples described in the
following section is available at http://nami-lab/experiments/midi-collection.
com.

Example 1. Tonal and Atonal Music. The first example we present is the
hierarchical clustering of some of the pieces included in the web application for the
visualisation of deformed Tonnetze. The nine pieces we analyse have been selected
among the compositions by Beethoven, Debussy, Mozart, Ravel and Schönberg,
in order to provide a heterogeneous dataset in terms of compositional style. The
similarity among these pieces, computed considering the pairwise bottleneck distances
of the persistence diagrams associated to the selected pieces, is depicted in Figure 8.7
as a dendrogram.

It is possible to observe how data are organised in two main clusters, segregating
the two first pieces of Schönberg’s Drei Klavierstücke and Ravel’s Jeux d’Eau, from
the ones by Mozart, Beethoven and Debussy. The association between the second

http://nami-lab/experiments/midi-collection.com
http://nami-lab/experiments/midi-collection.com
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[2]complete_MIII

[2]complete

[1]complete_MIII

[1]complete

[3]theme

[3]solo_4_coda

[1]theme2

[1]theme

[3]solo_2

[1]intro

[3]intro

[1]interlude

[1]random

[2]random

[3]random

Figure 8.8: Comparing three different version of All the Things You Are.

piece of the Drei Klavierstücke with Jeux d’Eau respects what we found examining
the weighted subcomplex of the Tonnetz in Section 6.1.2. Some tonal traces are
hidden in this piece, albeit they are not evident to a human interpretation, as it is
proven by the disparate tonal interpretations of these three pieces, see for instance
(Brinkmann, 1969; William, 1984; Ogdon, 1981). Concerning the Ravel’s composition,
the ante litteram utilisation of the Petrushka chord highlight the atonal nature of
the piece.

The two movements from Mozart’s KV311 form suddenly a cluster reached at an
increasing distance by the two first movement of the Sonata in C major by Beethoven,
while the third movement is grouped with Arabesque, which is characterised by a
generous use of the pentatonic scale, before joining the others.

Example 2. Comparing three versions of All the Things You Are. The
aim of this test is firstly to investigate the distance between the 0-dimensional
topological fingerprint of three versions of the same jazz standard; secondly to
show the invariance of such fingerprint under (musical) transposition; and finally,
to show the relationship between the fingerprint extracted by the whole piece of
music and its segments. In addition, a randomized-pitches version of each song
has been introduced in the dataset, to test the ability of persistent homology to
distinguish between a piece modulating in several distinct tonalities2 and enriched
with chromatic solos, and a suite of random pitches without any apparent structure.

2A tonal harmonic analysis of the standard reveals it modulates in five different keys: A[ major,
C major, E[ major, G major and E major.
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Figure 8.9: Pop clustering.

The three versions are labelled in the dendrogram of Figure 8.8 as [1], [2] and [3].
The number is followed by an attribute such as [i]complete meaning the persistence
diagram has been computed on the whole length of version i, or on its transposition
[i]complete_interval, or a segment as [i]intro. The three versions we considered
are structured as follows:

a) version [1] is played by four instruments in a pretty standard way, with doubled
harmony. The main section are a 3/4 introduction, a first exposition of the theme
[1]theme, a 12 bars interlude labelled as [1]interlude, introducing the last theme
containing short improvisations and embellishments.

b) [2] is performed by a piano solo, and it is characterized by a rich chromatic
playing style of both hands in which the main theme is executed twice.

c) the last version we examined is performed by a trio version (piano, bass, percus-
sion). Its structure consists of an introduction, an exposition of the theme, and
a piano solo. We included two improvisations dividing them according to the
structure of the standard, the introduction and the main theme.

It is not surprising to see that the transposed versions of the pieces have distance
zero from the original ones. What is interesting to observe is that the randomized
versions of the songs are well segregated from the rest of the dataset, as it is shown
by the green cluster at the bottom of the figure.

Proceeding from bottom to top, we find a small cluster containing the interlude
of the first and the introduction of the third version, which share a very similar
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structures in terms of leaps and rhythm, see the partitions [1]interlude and [3]intro
in appendix Appendix D.

Finally, it is possible to observe how in the top cluster the two complete songs
are linked to the fragment of the third version containing the theme. Hence the
0-persistence homology retrieves the fragments containing the whole structure of the
standard. This feature is surprising, taking into account the several modulations
of the piece and that we are considering only the complex created by the whole
segment. The first and second themes of the first version all clustered together with
the last improvisation of the the third version of the standard, which is the one more
respectful of the original theme.

Example 3: Pop clustering. The dendrogram obtained considering two songs
by Christina Aguilera, and three songs by Sting and Paul McCartney respectively is
depicted in Figure 8.9. Sting’s Fortress Around Your Heart is represented as an outlier.
A cluster contains the two songs by Christina Aguilera, that result well separated
from the other cluster grouping Sting’s and Paul McCartney’s tunes. The position of
the outlier is due to the hard modulations of the piece. For its harmonic transcription
refer to http://yalp.io/app/sting-fortress-around-your-heart-701.

8.2.3 1-dimensional persistence

It is possible to explore dendrograms built utilizing the pairwise distances of persis-
tence diagrams representing the behavior of the first homology group. In layman
terms, measuring the persistence of 1-dimensional holes generated by the filtration,
as its 0th counterpart discussed above, measures the lifespan of the connected
components.

Example 1: Tonal and Atonal Music. We propose a new clustering of the
nine pieces we analysed above. As we expected, the persistence of 1-cycles gives
different results than its 0 counterpart. Figure 8.10 shows a dendrogram composed
by two green clusters grouping the two movements of Mozart’s Sonata no. 9 and
Debussy’s Arabesque and the first and third movements of Beethoven’s Sonata
no. 13 with Klavierstück II as an outlier. A red cluster is formed by the second
movement of the Sonata no. 13 and Jeux d’Eau. Even in this case, the first of the
three Schöberg’s piano pieces is represented as an outlier of this last cluster. We
still retrieve a classification of the different compositional styles. In this analysis,
Beethoven and Mozart are represented by two different clusters and the atonality of
the Drei Klavierstücke is expressed by the high dissimilarity of its two pieces. Such
a dissimilarity is nuanced for the two compositions, as in the 0-persistence analysis,
the first piece is the farther from the rest of the dataset.

Example 2: All the Things You Are. In Figure 8.11 the hierarchical clustering
between the three versions of All the Things You Are we analysed above, is depicted
in its 1-dimensional version. The invariance under transposition still holds, being
the transposed version of [1] and [2] at distance 0 from the original ones. The
random-pitch versions are still grouped together. The introductions of the first and
third versions are represented as outliers. A homogeneous cluster recollect the first

http://yalp.io/app/sting-fortress-around-your-heart-701
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Figure 8.10: H1 persistence-based clustering of nine classical and contemporary
pieces.

version and its segments, denoting a sort of robustness to occlusions of the musical
fingerprint. The similarity between the first and the second version is retrieved in
this cluster. Finally, a solo of version [3] is grouped with its theme.

Example 3: Big Pop Clustering. Figure 8.12 shows a simplification of the
clustering resulting by the comparison of 58 pop songs performed by 28 artists,
spacing from Ray Charles to Lady Gaga. In order to give a simplified representation
of this clustering we considered only the three big groups the algorithm found and
listed on the left of each cluster the artists whose songs belong to that group. In
particular names written in black bold characters are artists whose song are entirely
grouped in the cluster at their right, while the artists’ names written in red bold
characters identify the three artists whose songs are spread along the three groups.

It is interesting to observe how the whole collection of songs by Ringo Starr,
Paul McCartney and Simon and Garfunkel are grouped together in the blue cluster,
with Ray Charles, Stevie Wonder and George Benson. At the same time it is
admissible that the diversity characterizing Sting’s compositions is mirrored by the
positions of his songs in the dendrogram. The seconds and third clusters are less
homogeneous, but promising, taking into account that so far songs are identified by
a single persistence diagram.

Discussion
In this chapter we suggested a model describing music taking into account the
contribution of each paring (pitch class, duration) associated to the notes of a
composition. A filtration has been defined on the fundamental domain of the Tonnetz.



8.2. MUSICAL INTERPRETATION AND PERSISTENT CLUSTERING 123

[3]theme

[3]solo2

[1]complete_MIII

[1]complete

[1]theme2

[1]theme1

[2]complete_MIII

[2]complete

[3]solo_4_coda

[1]interlude

[2]random

[1]random

[3]random

[1]intro

[3]intro

Figure 8.11: Comparing three different version of All the Things You Are using
1-dimensional persistence.

Such a filtration is induced by the height function defined on the vertices of T. The
k-persistence diagrams associated to different music pieces have been considered as
point of a space equipped with the bottleneck distance. The possible clusterings
of the points belonging to such dataset have been discussed and represented as
dendrograms, showing that 0 and 1-persistence can be used to analyse and classify
music. In particular, the stability of the bottleneck distance allows to generalise this
construction from MIDI files to audio, as we shall discuss in the conclusions of the
whole part.
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Figure 8.12: A simplified version of the clustering of 58 pop songs generated from
their 1-persistence diagrams.



Nine

Audio feature deformation of the
Tonnetz

The analysis of music can be considered from two different sides: a horizontal one
naturally suggested by counterpoint and voice leading theory, and a vertical one
given by the superposition of notes.

Nevertheless, a significant piece of information is carried by the signal. For
instance, the timbre of the instrument we are listening to affects the perception of a
whole piece, as the same phrase played on an acoustic piano or on a Rhodes will
surely evolve in different ways in a composition, albeit keys and hammers are used
in the same way by both instruments (Barona, 2014; Lee et al., 2009).

In this chapter, we suggest two applications based on the deformed Tonnetz, in
which the function used to displace its vertices is derived form the signal domain.
Hence, the height of each vertex is computed by considering an audio feature. In
particular, we shall use the consonance function as it has been introduced by Plomp
and Levelt. In a first part, it will be used to compute the displacement of the
vertices of the Tonnetz labelled with the pitches belonging to a single octave and
compared to a fixed pitch. This space shall be used to classify the 21 modal scales

Figure 9.1: A Tonnetz deformed through a signal-based height function.
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derived from the diatonic, melodic minor and harmonic minor scale. The octave
dependency of the consonance function is highlighted as a fundamental feature, that
musicians exploit in their compositions. As a second application, we will show how
a trivial extension of the consonance function to chords can give interesting results,
once interpreted in a geometrical metric context and in the formalism of topological
persistence.

9.1 The calculation of consonance values according to
Plomp and Levelt

The notion of consonance has a long history, dating back to the time of Greek
philosophers. The notion itself is complex and has been given multiple meanings and
explanations throughout the history of music theory and acoustics. For a detailed
review of the history of consonance theory, the reader is invited to refer to (Sethares,
2004) and (Tenney, 1988).

The original idea of the Greeks, and of various philosophers and scientists such
as Galileo (Galilei, 1638), Euler (Euler, 1766, 1739a), or Diderot, was that consonant
intervals are those based on small frequency ratios as consonants, an idea which
originated from Pythagoras. In the nineteenth century, departing from consonance
theories based only on the musical objects at hands, Helmholtz introduced in his
book On the Sensation of Tone (Helmholtz, 1877) a theory of sensory dissonance
based on the processes at work in the auditory system. It is a well-known fact that
two pure tones of close frequencies produce beats, the frequency of which is equal to
the difference of frequency between the original pure tones. When the frequencies
of the original signals are close, the beat frequency is low, and the slowly evolving
resulting signal is not perceived as dissonant. Helmholtz observed that when the
beat frequency increases, the roughness of the resulting signal increases, peaking at a
maximum for a reported beat frequency of 32 Hz. Thus, the dissonance of a tone is
directly linked to the presence or absence of beats. By considering the interaction of
all the partials of two harmonic sounds, and by assuming that the total dissonance
is obtained additively from the dissonance between two partials, Helmholtz was able
to calculate the dissonance value of any interval.

In the mid 1960s, Plomp and Levelt (Plomp and Steeneken, 1968; Plomp and
Levelt, 1965) published an influential experimental work on the sensation of con-
sonance and dissonance for pure tones. A number of listeners were asked to rate
the consonance of various pairs of pure tones sounded at different frequencies. This
resulted in the determination of a dissonance function, which gives a dissonance
value as a function of the frequency ratio of the two pure tones, expressed in units
of the critical bandwidth. The typical plot of this function is presented in Figure 9.2.
The notion of critical bandwidth derives from the mechanism of the auditory system
itself (Fletcher, 1940). In the cochlea, pure sinusoidal tones excite different places
of the basilar membrane. The place theory of pitch perception links the excitation
place with the perceived pitch of the tone. When two tones of similar frequencies are
sounded together, they excite similar places of the basilar membrane: in other terms,
they occupy the same critical band. The width of this critical band is therefore
linked to the ability to perceive two simultaneous tones of different frequencies as a
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Figure 9.2: Plot of the consonance function between two sinusoidal tones, whose
frequency ratio is expressed as a ratio of the corresponding critical bandwidth.

unique tone or not. The critical bandwidth is roughly constant and equal to 100 Hz
in the range 100-1000 Hz, and then increases proportionally with frequency (Zwicker,
1961; Zwicker and Terhardt, 1980).

The results of Plomp and Levelt provide an experimental justification of the work
of Helmholtz, with the addition that the maximum of dissonance occurs at roughly
one quarter of a critical bandwidth. It is therefore dependent on the frequency of the
tones and not fixed to 32 Hz, as was the case for Helmholtz (which is incidentally
the value of one quarter of a critical bandwidth for a frequency of roughly 600 Hz).

Multiple parametrizations of the Plomp and Levelt curve have been given by
various authors. We use here the parametrization used by Sethares in (Sethares,
2004), wherein the consonance function between two pure tones of frequencies f1
and f2 > f1 is given by

d(f1, f2) = exp(−3.5 · s · (f2 − f1))− exp(−5.75 · s · (f2 − f1)),

where s is defined as
s = 0.24

0.021 · f1 + 19 ,

and is introduced to account for the variation of the critical bandwidth with frequency.
Based on their work on pure tones, Plomp and Levelt then studied the consonance

of complex tones. Since a complex tone has a spectrum consisting of multiple partials,
they assumed that the total consonance results from the addition of the consonance
values between all pairs of distinct partials (under the hypothesis that all partials
have the same intensity). In other terms, given a complex tone whose spectrum is a
set {f1, f2, . . .} of partials at frequencies fi, the total consonance is given by

D =
∑
fi

∑
fj>fi

d(fi, fj).
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Figure 9.3: Plot of the consonance value of a complex tone consisting of the
superposition of two tones with six harmonic partials of identical intensities, as a
function of the frequency ratio of the two tones, the first one having a fixed frequency.

Using this definition, they calculated the consonance value of a complex tone
consisting of the superposition of two tones as a function of their frequency ratio, the
first tone being fixed. Each tone had a spectrum consisting in six harmonic partials
of identical intensities. The plot of this consonance value is given on Figure 9.3. As
can be seen on this graph, minima of the dissonance function are obtained for pure
intervals such as the unison (1 : 1), the octave (2 : 1), the fifth (3 : 2), the fourth
(4 : 3), the major third (5 : 4), the minor third (6 : 5), and the major sixth (5 : 3).

Of course, the calculation of the consonance value of a complex tone is not limited
to harmonic sounds. Sethares (Sethares, 2004) has investigated complex tones whose
spectrum is inharmonic, and has deduced the corresponding consonant intervals
between such sounds. In the following sections, we explore the use of consonance
calculations to determine the hierarchical organization of various musical entities.

A consonance-based height function

Maintaining the notation of the previous section, let p ∈ R be a pitch. Define
hp : V → {pi} × Li → R as

hp(v) = d (p, l (v)) ,

where d : R2 → R is the consonance function1 and l : V → Li is the labelling
function associating to the vertices of the Tonnetz the chromatic scale built on the
ith octave of the piano, with root r, such that [r] = [p]. In the remainder of this
section we shall refer to p as the reference pitch used to compute the displacement

1Here we identifies a pitch with its fundamental frequency, see Equation (2.2.1) for the formula
associating fundamental frequencies to pitches.
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(a) T4
3 . (b) T5

3 .

Figure 9.4: Deformation of a portion of the Tonnetz. The reference note used to
displace its vertices is C3. The labels associated to the Tonnetz ’s vertices correspond
to the chromatic scale built on the fourth and the fifth octave of the piano.

of the vertices of the Tonnetz. Let

W : V ⊆ R3 → R3

v 7→ (xv, yv, hp (v)),

be the function that defines the height of every v ∈ V . Such a height corresponds
to the consonance value of the interval (p, l (v)). It should be noted that, for
a transposition of the reference pitch, the consonance value decreases when the
frequency of its reference pitch increases. In order to compensate for this effect, we
renormalise the frequencies to the reference tone.

Variable geometry

The space we defined above is endowed with two interesting properties. First, the
evenness of the equal temperament assures that the computation of the consonance
is robust modulo uniform transposition of the reference pitch and the chromatic scale.
That is to say, the intervals (C3, C]3) and (D3, D]3) share the same consonance value.
Second, the consonance function is not invariant modulo octave. Respecting the
common sensory experience, an interval of minor second (C4, D[4), is less consonant
than a minor ninth (C4, D[5)2. Hence, the geometry of the Tonnetz varies depending
on the choice of both the chromatic set of pitches associated to its vertices and the
choice of the reference pitch p.

The surfaces resulting from the deformation of the planar Tonnetz computed
with C3 as reference pitch and the pitches of the chromatic scale of the third and
fourth octave of the piano are depicted in Figures 9.4a and 9.4b respectively. We
will denote these surfaces as T3

3 ,T
4
3 . In the figure, a height function highlights

2Behaviour of the dissonance function respect to octave changes: d (C2, C]2) = 1.7, d (C2, C]3) =
0.9 and d (C2, C]4) = 0.4.
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Figure 9.5: Variations of the Tonnetz’s geometry on three octaves.

maxima and minima of each surface. As in the application examined in the previous
chapter, what we gain is the metric nature of this representation and the information
given by the interaction between the structure of the Tonnetz and the deformation.
In Figure 9.5 three different states of the geometry of T are depicted.

9.2 Persistent homology and audio feature deformed
Tonnetze

While listening to a bass line or a whole harmonic sequence, it is a common experience
to imagine a melody matching with the progression of notes or chords we are listening
to. This melodic choice can be represented by a set of tensions and a set resolutions
having the bass (or the chord) as a reference. One possibility is to build from such a
choice a 7-notes, octaviant scale3, that superposed to the reference bass creates a
recognisable sonority, called a mode. The tensions and the resolutions of a mode give
to a trained listener the whole information he or she needs to recognise it. Thus,
the space we propose is particularly suitable for the representation of modes, since
tensions and resolutions are nuanced by the height function defined on the vertices
and the whole scale is described as an extended shapes of the Tonnetz.

Exploiting this characteristic, we classify the 21 modes derived form the diatonic,
melodic and harmonic minor scales (see Table A.1) by considering the point cloud of
vertices of the consonance-Tonnetz and computing their persistent homology. In the
next section we introduce the construction that we will use to associate a filtration
to these point clouds.

9.2.1 Persistence for point clouds

Let P ⊂ Rn be a point cloud. There are two main constructions used to associate
a simplicial complex to P , called the Čech and the Rips complex. The former is
defined as an abstract simplicial complex denoted by CP (r), such that its 0-simplices
are exactly the vertices of P and its simplices are generated whenever the balls of
radius r centred on its vertices have non-empty intersections. In symbols, we have

3The pitches composing the scale are contained in a single octave.
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CP (r) =
{
σ = [p0, . . . , pk]

∣∣∣∣∣
k⋂
i=0

Br(pi) 6= ∅,
}
,

where pi ∈ P for every i ∈ {1, . . . , k}.
Given a point cloud P , we have that CP (r) ⊆ CP (q) if r < q. Hence, it is

possible to build a filtration of the Čech complex choosing a sequence {r1, . . . , rn}
of increasing radii and setting Xi = CP (ri).

An important feature of this construction is that the homology of the Čech
complex is exactly the one given by the union of r-balls centred on the points of P .
This is a straight-forward consequence of the nerve lemma (the interested reader is
referred to (Kozlov, 2007)).

Definition 9.2.1. Let X be a topological space and U = {Xi}i∈I be a covering.
The nerve of U is the (abstract) simplicial complex N(U), whose set of vertices is
given by I and such that a finite subset S ⊂ I is a simplex of N(U) if and only if
∩i∈SXi is nonempty.

Lemma 9.2.1. Let F = {C1, . . . , Cn} be a finite family of closed set, such that
every intersection between its members is either contractible or empty. Then, the
nerve of F and the union of sets in F have the same homotopy type.

Balls in Rd satisfy the hypothesis of the Nerve lemma, and as an immediate conse-
quence we have that for every point cloud P ⊂ Rn,

Hk (CP (r)) ∼= Hk

⋃
p∈P

Br(p)

 ,
for k ∈ Z.

The Čech complex is an object of difficult computation, thus it is often substituted
by the Vietoris-Rips (or simply Rips) complex RP (r). A simplex is added to the
Rips complex, when all pairs of points representing its vertices are less than 2r
distant.

RP (r) = { σ = [p0, . . . , pk] | ‖pi − pj‖ 6 2r, ∀ i, j } .

Although the Vietoris-Rips complex of a point cloud does not share the homo-
topy type of the union of the balls built on its vertices, it is largely used for its
computational ease. The error in the approximation of CP (r) with RP (r) is bounded
by

RP (r) ⊆ CP

(√
2r
)
⊆ RP

(√
2r
)
.

9.2.2 Deformed Tonnetze for modern modes classification

Let the mode M = (p, { r,m2 . . . ,m7 }) be the couple composed by the reference
pitch p and the set of pitches corresponding to a modal scale. This section’s aim
is to provide a characterisation of the modal scales, considering the 3-dimensional
point cloud generated by the vertices labelled as {r,m2, . . . ,m7} on the fundamental
domain F ⊂ T.
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Methodoloy

The procedure we use to classify modes is similar to the one that allowed us to deal
with musical compositions in the previous chapter:

(i) The Tonnetz is deformed according to the consonance values induced by the
reference pitch p and the chromatic scale built on the same octave than p.

(ii) The point cloud M0 is extracted from the the 0-skeleton of F.

(iii) According to the definition given in Section 9.2.1, we compute the 0-persistent
homology of the point cloud, considering the filtration induced by the Rips
complex. Such a filtration is sensitive to the relative distance between the points
composing the cloud, whose configuration depends both on the dissonance
function and on the structure of the Tonnetz.

(iv) Finally, the similarity between the point clouds is represented as persistence
diagrams and visualised in a dendrogram.

9.2.3 Applications

Scale-wise classification of modes

As we stated above, 21 modes can be deduced considering the degrees of the
major, melodic minor and harmonic minor scales. In Figure 9.6 the dendrograms
representing the hierarchical organisation of modes, induced by the distances of
their 0-persistence diagrams is depicted scale-wise. As a first remark, observe
how no sonorities have 0 distance. Thus, this representation grasp the different
tension/resolution sets of each mode.

In Figure 9.6a the modes deduced from the major scale are considered. The only
mode associated to a half-diminished (its root note forms a half-diminished chord
with the third, fifth and seventh degree of the modal scale) chord is segregated from
the others. The two more similar point clouds are the ones associated to the ionian
and the mixolydian modes. The lydian scale, characterised by the presence of an
augmented fourth and a major seventh, is separated from the ionian and mixolydian
modes. However, these three major modes are represented as a homogenous cluster.
Further from this three modes, we find the dorian and the eolian sonorities. The
phrygian and the locrian modes are a minor and a diminished mode respectively
and are represented as outliers. Both contain a minor second and are the most tense
and recognisable sonorities of this dataset.

Figures 9.6b and 9.6c show the clusterings of the modes derived form the melodic
and harmonic minor scales, respectively. In both cases the shapes result divided into
two main clusters, one of them consisting at least of a mode built on a diminished
triad. The bigger cluster of Figure 9.6b is formed by two pairs of modes grouped
together: mixolydian[6 - locrian]2 and hypoionian - lydian augmented respectively.
The mixolydian]4, which is considered a blues mode (containing an augmented fourth
on a dominant chord) is a well characterised sonority, and it is segregated from
the other modes. Mirroring the structure of the clustering associated to the major
scale’s modes the last mode of the bigger cluster in Figure 9.6c is the mixolydian[2[6,
also known as Spanish phrygian and the most identifiable mode of this dataset.
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Figure 9.6: Hierarchical clustering of modes interpreted as point clouds of the
consonance-deformed Tonnetz.

An overview on the organisation of modes

Here we consider the grouping induced by the 0-persistence representation of the
whole collection of modes we considered. The dendrogram representing this clustering
is depicted in Figure 9.7.

From top to bottom we find the ultralocrian and superlocrian modes grouped
together. Both are diminished modes and are generally considered the two most
tense sonorities among the ones we analysed. In the second cluster are grouped three
modes characterised by the presence of the minor second. The modes composing
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Figure 9.7: Hierarchical clustering of the 21 modes of Table A.1.

the third cluster are also equipped of a minor second but among the modes we
considered, they are the ones associated to Spanish sonorities.

The other 12 modes are clustered together. Taking a closer look to this big-
ger cluster we observe an interesting class of groupings: (dorian]4,mixolydian]4),
(eolian,mixolydian[6) and (dorian,mixolydian). The modes composing these pairs
(that are built on a major and on a minor triads respectively) are commonly inter-
changed in jazz and fusion melodic phrasing on dominant chords: the minor third of
the dorian and eolian sonorities provides the blue note typically used in such contexts.
Thus, this representation is coherent from a harmonic and melodic viewpoint. It
is also interesting to notice how, despite the augmented fourth, the lydian and
ionian modes are represented as similar sonorities. These clusters represent well
superposition of scales used commonly in jazz composition and improvisation.

Octave dependency of the consonance function

It is well known in musical practice, that a (altered) chord sounds more consonant
in open than in root position, or that a bass player prefers to play the 12th rather
than the 3rd of a chord while accompanying. What we expect analysing the modal
point clouds played an octave higher than the accompanying bass, is a smaller
distance between their persistence diagrams, and hence a fusion of the clusters in
the dendrograms.

The clusterings representing the distance between modes built with pitches
belonging to two different octaves are depicted in Figure 9.8. In this case we divided
modes in three groups, consisting of minor seven, dominant and diminished modes,
respectively. This subdivision has been obtained considering the chord built on the
root of the modal scales.
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Figure 9.8: Octave dependency of the harmonic-oriented modes clustering. On the
right the organisation of modes represented as point clouds of T3

3 , on the left their
counterparts in T4

3 .

First, we remark that the maximal distance between the shapes decreases when
considering point cloud derived from T4

3 . Consider the two clusterings associated to
the minor seven modes in the first row of the figure. The dorian[2 is an outlier: the
tensions of the modes on the simplicial structure of the Tonnetz makes the point
cloud distinguishable from the others even when the scale is played an octave higher.
On the contrary, as we expected the phrygian is not an outlier in the diagram on
the right. The minor ninth is less tense than a minor second and it is the only notes
that differs between the eolian and the phrygian scales.

The dendrograms representing the distances between dominant modes segregates
the mixolydian[2[6 which is the most recognisable sonority among them. It is
interesting to notice how this is the only diagram which does not change its shape
passing from one octave to the other. Containing the tritone (the interval between
the third and the seventh of a dominant chord measures three whole steps) dominant
chord are structurally tense. This feature makes their configuration invariant modulo
octave. The same phenomenon occurs for the locrian]2 in the last row of the figure.
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9.2.4 Discussion

We used an audio feature to generate a deformation of the structure of the Tonnetz
and then considered the point cloud generated by a vertical displacement of its
vertices. The analysis of the Rips complex built on the point cloud representing
the modal scale allowed to compare different melodic patterns generated by an
accompaniment and a scale. This paradigm can be extended to the analysis of more
than one octave superposing different deformed fundamental domains of the Tonnetz
as it has been shown in Figure 9.5. Persistent homology has been used to provide
a quantitative analysis of different sonorities, proving that our representation is
suitable for the classification of different tension/resolution patterns. Finally, despite
the model we proposed is limited by the choice of a particular harmonic spectrum
for the computation of the consonance, the stability of persistence diagrams, assures
that small variation of the consonance function shall correspond to small variation
of the diagrams.

9.3 Tonnetz deformation through triads’ consonance
It is possible to generalise the dissonance function defined on intervals to chords. In
this section we present a comparison between the consonance function evaluated on
six different families of triads.

As a first application, we study the clustering of triads of different types having
varying their root on the whole chromatic scale and considering two different harmonic
spectra. Thereafter, for a fixed triad, we will consider the dissonance generated by
the block voicings composed by the superposition of the triad and each pitch of the
chromatic scale an octave higher than the root of the triad. In particular, we will
use a harmonic spectrum composed by six equal partials, in order to highlight the
pathological behaviour of the consonance function.

Again, this computation will be used to define the displacement of the vertices
of the Tonnetz. The surfaces created by varying the triad’s class, shall be analysed
by utilising both their metric properties and classified computing their persistent
homology, for several filtrations.

9.3.1 The consonance function for triads

We consider here six different classes of chords, namely: the major, minor, augmented,
diminished, suspended fourth, and suspended second triads. These chords are built
using fifths, fourths, major thirds, and minor thirds. The list of these chords,
along with their usual notation and a representative pitch-class set, is presented
on Table 9.1. Each triad is considered in root position as composed by pitches
belonging to the third octave of the piano. For each type of triad, we consider the
twelve different triads obtained on the twelve different roots in the set of pitch-classes

S = {C4, C]4, D4, D]4, E4, F 4, F ]4, G4, G]4, A4, A]4, B4}.

The consonance of the various triads is calculated using the theory of Plomp and
Level as exposed in Section 9.1. For each tone with a given frequency, an harmonic
spectrum consisting of six partials is generated. The final consonance value of a chord
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Triad type name Notation Representative pitch-
class set

Major M {C, E, G}
Minor m {C, E[, G}
Diminished ◦ {C, E[, G[}
Augmented aug {C, E, G]}
Suspended second sus2 {C, D, G}
Suspended fourth sus4 {C, F, G}

Table 9.1: Names of the studied triads and their corresponding representative
pitch-class set.

is calculated by evaluating the individual consonance for each pair of frequencies
between the partials of all tones. It should be noted that, for a given chord type,
the consonance value decreases when the frequency of its root increases. In order to
compensate for this effect, we have renormalized the frequencies to the C4 reference
tone.

The triads’ consonance-hierarchical organisation

Once the calculation of the consonance value of each chord has been performed, a
distance matrix between chords is obtained, wherein the value of each entry (i, j) is
equal to the difference of the consonance values associated to the chord j and the chord
i. Figure 9.9 shows two distance matrices representing the consonance relationships
among triads, computing by using the harmonic spectra h1 = (1, 1/2, 1/3, . . . , 1/6)
and h2 = (1/3, 1/5, 1, 1/6, 1/3, 1/6), respectively. Notice that in both distance
matrices, all the block on the diagonal have zero values, which is a direct result of the
nature of equal temperament: since all intervals have an equal size, the consonance
value of a triad of a given type is therefore independent of its root. Moreover, notice
how the consonance function depends on the harmonic spectrum by considering the
two distance matrices.The colours associated to each block of the matrices describe
the gain and loss of consonance passing from one class to another. Consider the first
column of each matrix. The one associated with a decreasing spectrum tells us that
passing from a major triad to another class we always lose consonance (the block
matrices associated to these classes are red). The same occurs for the first column
of the second matrix. However the harmonic spectrum where the third harmonic
(the fifth of each note composing the chord) is more powerful the the others, alters
in an obvious way the perception of the triads. For example, minor and suspended
fourth triads share the same consonance value.

Each distance matrix allows us to calculate a corresponding dendrogram, which
illustrates the hierarchical clustering of the different triads. In Figure 9.10 we
show how a distance-based clustering represents the triads classes as six different
clusters. In addition, the dendrograms in the second row of the figure show how
different inversions of a major chord (and for every other classes in equal tuning)
are characterisable in terms of consonance.
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Figure 9.9: Distance matrices between triads in equal temperament. The value of
each cell (i, j) is equal to the difference in calculated consonance between the chord
j and the chord i. The matrices have been computed using h1 and h2 as harmonic
spectra, respectively.

9.3.2 Analysis of block voicings on the consonance-deformed
Tonnetze

The Tonnetz labelled with the pitches of the chromatic scale built on the 5th octave
of the piano and deformed by the six classes of triads we considered is depicted
in Figure 9.11. We start our analyses by describing the the dissonance values
associated to each vertex of the six configurations of the Tonnetz induced by the
triads. We shall see how the generalisation of the consonance function reflects
our perception. Note that, at this stage, the deformed Tonnetze provide only a
comfortable visualisation of chords.
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Figure 9.10: Hierarchical structure of triads’ consonance. In the first row it is
possible to observe how the consonance classify triads according to their classes, by
using two different harmonic spectra. In the second row the inversions of the major
triads are classified according to their consonance value, computed with h1 and h2,
respectively.

Major triad deformation, Tmaj. The major triad (C4, E4, G4) is depicted in Fig-
ure 9.11a. The height of each vertex of the deformed configuration corresponds
to a block voicing whose highest voice is the label of the vertex. Thus, it is not
surprising to observe that the chord (C4, E4, G4, C]5) is the most dissonant point
on the polyhedral surface, followed by the vertices labelled by G] and E[.

We also retrieve that the two smallest values of the consonance function corre-
spond to the vertices labelled with G5 and C5, in particular we have

d(C4, E4, G4, G5) < d(C4, E4, G4, C5),

this behaviour corresponds to the fast decreasing that characterises the consonance
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model we considered and the interaction between the two sequences of overtones
generated by the pitches of each chord. Ordering the vertices by increasing heights,
the next block voicing to be considered is (C4, E4, G4, A5), or a Cadd13 in standard
jazz notation. This kind of harmonic solution is largely used in modern and classical
music4. The same holds for the configuration corresponding to Cadd9.

From a modal point of view, the set of notes belonging to the ionian scale
{C,D,E, F,G,A,B} represents the least dissonant seven notes set in this particular
configuration, while the substitution of the perfect fourth with the augmented one
of the lydian scale, (F]), introduce a local maximum in terms of musical tension.

The same argument can be applied considering the tension climax provided by the
mixolydian scale {C,D,E, F,G,A,B[}; the mixolydian [6 {C,D,E, F,G,A[,B[};
and the phrygian dominant scale {C,D[,E, F,G,A[,B[}.

Minor triad deformation: Tmin. As expected, the Tonnetz deformed with a
minor triad Cm the vertex corresponding to a minor third is a minimum. Comparing
this geometrical state to the one associated to the major triad, we can observe
that the major second D will result in a less consonant choice, being the leading-
tone of the third E[. The minor seventh (B[), has a low dissonance configuration
compared to the major seventh (B). Furthermore, the vertex associated to the chord
(C4, Eb4, G4, F 5) is a minimum of Tmin.

From the modal point of view, we retrieve the results obtained by persistent
homology in the previous application, for instance the vertices labelled with the
pitches corresponding to the eolian scale {C,D,E[, F,G,A[,B[}, and the dorian scale
{C,D,E[, F,G,A,B[} share similar configurations, as well as the ones corresponding
both to the hypoionian {C,D,E[, F,G,A,B} and the hypoionian [6 scales.

Augmented triad deformation: Taug. The state generated by the augmented
triad is characterised by a low dissonance configuration for the augmented fifth
interval, which is part of the underlying chord. The major seventh has a low
dissonance configuration and that should not surprise the reader, for the same
frequency-spacing argument used before and for the standard use of ∆]5 chords,
which are naturally generated, for instance, on the third degree of the seventh-chord
harmonisation of the harmonic minor scale. The augmented fourth loses its role of
leading-tone, since G is not part of the chord, thus the F] dissonance configuration
is lower than the F .

Diminished triad deformation: T◦. Among the cases we analysed, the dimin-
ished state is the only one where the vertex associated to the minor second (C])
is not the absolute maximum. On the modal side, this configuration appears to
be reasonable, when considering the five standard possible modes associated to a
diminished triad, as detailed in Table A.4.

On the tonal harmonic point of view, the modal argument we just introduced
can be translated in terms of chord or non-chord tones. Generally diminished chords
(occasionally equipped either with a minor or a diminished seventh) bear tension

4It suffices to think about A Foggy Day by Gershwin, or to the chorus of Man In The Mirror
by M. Jackson.
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(a) Major. (b) Minor.

(c) Augmented. (d) Diminished.

(e) Suspended 2. (f) Suspended 4.

Figure 9.11: Tonnetze deformed with the dissonance computed from the interaction
of a triad in root position and the chromatic scale an octave higher than the chord.

given either by the perfect fourth, represented as a local minimum in Figure 9.11d,
or by the minor sixth5.

Suspended triads deformation: Tsus2 and Tsus4.

In a tonal composition suspended triads allow to circumvent or delay a precise
tonal choice, since the lack of the third makes their univocal association to a key

5Examples of the use of diminished chord in modern music can be found in Georgia on My
Mind by H. Carmichael, or Make a Mistake with Me by Brad Paisley
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impossible6. This feature is well mirrored in the two simplicial complexes associated
to the sus2 and sus4 triads, depicted in Figures 9.11e and 9.11f, respectively. For
instance, observe how in Figure 9.11e, the consonant vertices correspond to the set
of pitches {G, A, B[, B, D, C, F}, which is the union of a G7 and a Gm7 arpeggio
with the addition of the perfect fourth C, that loses the central role it has in the
other configurations of the Tonnetz.

What about the geometry? The structure of the Tonnetz is based on the
harmonic relations among the pitches that label its vertices. The displacements of
the vertices induced by the consonance of the triads generates maximal and minimal
subcomplexes on the Tonnetz that characterise the triads and allow to recognise
them even removing the labels from the vertices of the surface. The heat-map
used to highlight the consonant and dissonant regions of the six deformed Tonnetze
represented in Figure 9.11 makes them distinguishable at first sight. The geometries
generated by the major triads are characterised by tensions lying on the perfect fifth
axis. The configuration induced by a minor triad is characterised by a relevant minor
triad of tensions, (C],E,G]) in the example. The same holds for the two classes
of suspended 2 and suspended 4 triads, that can be assimilated to the geometries
corresponding to a major and a minor triad, respectively. Moreover, the deformed
Tonnetze associated to the augmented and diminished triads present completely
different configurations in terms of block voicings’ consonance.

If in our first analysis of the deformed Tonnetz the study of the sub-level sets
of the height function was a natural consequence of our construction, here we can
explore different geometric properties of these simplicial complexes, that will be used
at the end of this chapter to induce several filtrations on these shapes, in order to
classify them through persistent homology.

9.3.3 Gaussian curvature: a geometric music feature

In this section we use the discrete Gaussian curvature to analyse the different geomet-
ric states of the Tonnetz. In the next paragraph we provide an intuition concerning
this geometrical property. Thereafter, we will give its musical interpretation, in the
case of consonance-based deformed Tonnetz

Intuition

Consider a planar, unit speed curve γ : [0, 1] ⊂ R → R2. Its curvature is defined
as the length of its acceleration κ(t) = γ̈(t). Geometrically, the curvature at the
point p = γ(t) corresponds to the circle tangent to γ at p, having acceleration vector
at p equal to the one of γ. This circle is called osculating circle, see Figure 9.12a
for its representation. Thus, the curvature is κ(t) = 1/R, where R is the radius of
the osculating circle. By this definition, the curvature is positive for every t ∈ [0, 1].
By choosing a normal vector field N along γ, the curvature can take both positive
and negative values. The resulting function κN is called a signed curvature. The
curvature of a surface S is described by a couple of numbers at each point p. Let

6Normally, it is possible to associate a precise tonality to a suspended triad, by analysing the
harmonic context in which it is used.



9.3. TONNETZ DEFORMATION THROUGH TRIADS’ CONSONANCE 143

R

p �̇

(a) The osculating circle.

p

�

N

(b) Computing the principal curvature.

Figure 9.12: Visualisation of the curvature for planar curves and surfaces.

N be the normal vector to the surface at p. Let π be a plane containing N . Its
intersection with the surface generates a curve γ, as it is depicted in Figure 9.12b.
We call the principal curvatures of S at p the numbers k1 and k2 realising the
minimum and the maximum of the signed curvature κN , when considering all the
normal plane π. The Gaussian curvature of a point p ∈ S is defined as K = κ1 · κ2.
This definition allows one to classify the points of a surface as follows.

1. K > 0: elliptic points, κ1 · κ2 > 0, the quadratic approximation of the surface
in a neighbourhood of p is an elliptic paraboloid;

2. K = 0: parabolic points, one of the principal curvature is equal to zero, the
quadratic approximation of the surface near p is a parabolic cylinder;

3. K < 0: hyperbolic points κ1 · κ2 < 0, the quadratic approximation of the
surface in p is given by a hyperbolic paraboloid.

4. Umbilical points: κ1 = κ2 6= 0 elliptic point, or κ1 = κ2 = 0, planar points:
it is not possible to determine the shape of the surface near p examining the
second order derivate. The typical example is the point at the origin of a
monkey saddle.

Intuitively, the discrete Gaussian curvature measures the bending of a polyhedral
surface at each vertex. Let v ⊂ K be a vertex, the discrete Gaussian curvature (or
angular defect) at v is defined as

Kv = 2π −
n∑
i=1

θi,

where θi are the interior angles at v of the triangles included in St_ v. Thus, for
instance, a positive discrete Gaussian curvature is associated to vertices giving rise
to maxima and minima, a negative curvature to saddle points and trivial curvature
to planar points. The algorithm we used to compute the discrete Gaussian curvature
of the consonance-deformed Tonnetze is described in (Cohen-Steiner and Morvan,
2003).
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(a) (b)

Figure 9.13: The elliptic paraboloid (a) and the hyperbolic paraboloid (b).

Labels CM Cm Caug Cdim Csus2 Csus4

C5 + − − + + +
C]5 + + + + + −
D5 − + − + − −
E[5 + + + − + −
E5 − + − + − +
F 5 − − + − − +
F]5 + + − + − +
G5 + + + + + +
A[5 − + − + − +
A5 + + − − + +
B[5 + + + + + −
B5 + − − + − −

Table 9.2: The sign of the discrete Gaussian curvature characterise the each vertex
of the by considering its interaction with its star. Here it is possible to compare
the curvature values associated to each pitch, in the six classes of triads that we
analysed.

9.3.4 Musical interpretation

Consider Figure 9.14a, the curvature is positive in at the vertices labelled by the
pitches

C5, G5, A5, B[5, B5, E[5, F ]5, C]5.

These vertices correspond either to particularly high maxima or particularly low
minima, hence, they are endowed with a strong characterisation in terms of conso-
nance/dissonance. On the contrary, the vertices labelled with D5, E5, F 5, A5[ are
not maxima, nor minima with respect to the directions defined by the triangles
included in their star. Symmetrical arguments hold for the other configurations of
the Tonnetz depicted in Figure 9.14.

Tmin and Taug are the only deformations in which the vertex labelled with C5

has negative curvature (see Table 9.2). The vertex corresponding to G5 has positive
curvature in every configuration. It generates highly consonant block voicings, when
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(a) Tmaj (b) Tmin

(c) Taug (d) T◦

(e) Tsus2 (f) Tsus4

Figure 9.14: Discrete Gaussian curvature on the deformed Tonnetz in different
state. The colormap shows the smoothed value of the curvature in every point of
the surface. We recall that the labelling of the Tonnetze is given by pitches of the
chromatic whose root is one octave apart from the root of the triad used to produce
the deformation of the Tonnetz.

superposed to the major, minor and the suspended triads. On the contrary, it is
extremely dissonant when coupled with either the augmented or the diminished
triad. Both the vertices associated to C]5 and B[5 have negative curvature only in
the Tsus4. The suspended4 triads is meant to be perceived as a centre of gravity
between two consecutive tonalities on the circle of fifths, in this case C and F major.
Hence, B[5 lose its strength both in terms of tension (in C major) or resolution to
F. Furthermore, C]5, labelling the most dissonant chord in the other configurations,
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Figure 9.15: Values of the discrete Gaussian curvature on the vertices of deformed
fundamental domain of the Tonnetz.

here is outclassed by E and F] (see Figure 9.11).
The discrete Gaussian curvature allow to classify the four notes chords whose

consonance determine the height of the vertices of the Tonnetz for a fixed triad.
We saw how the value of the curvature associated to certain pitches recurs in
configurations induced by different triads. A comparison of the columns of Table 9.2
reveals that the sign of the curvature is almost identical for the configurations
induced by major, augmented and suspended2 triads. The values of the discrete
curvature associated to the vertices of different deformed Tonnetze is represented
in Figure 9.15. Although columns of Table 9.2 associated to the suspended4 and
the minor triads are different, it is interesting to notice how five of their vertices
share almost the same curvature value. Moreover, notice how the union of the set
of pitches of the major and suspended4 triads gives four or five note of the major
pentatonic scale built on the root of the triads, respectively. The same holds for the
minor and the suspended4 triads, with respect to the minor pentatonic scale.

9.3.5 Classification of the consonance-deformed Tonnetze

To conclude the analysis of these consonance-deformed shapes, we compute their
persistent homology by considering the three different filtrations, induced by the
Rips complex (proximity of the vertices as a point cloud), the height function (block
voicing consonance) and the more exotic discrete Gaussian curvature.

The dendrograms computed by considering the distance between the 0-persistence
diagrams of the shapes for each filtration are depicted in the left column of Figure 9.16.
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The three filtrations highlight different musical properties of the chords:

(a) Rips complex. The six classes of triads are grouped into two almost specular
clusters. The first by the two suspended triads and the major one. The
second composed by the diminished, augmented and the minor triad. The
characterisation of the shape given by the Rips complex classify the suspended
triads near to their resolution, while the minor triad is an outlier respect to the
two most dissonant triads that have distance 0 in this representation.

(b) Consonance. The filtration induced by the sub-level sets of the height function
order the simplices of T respect to the consonance of the voicings built on their
vertices. As expected this filtration classifies the triads according to their own
consonance value.

(c) Curvature. The grouping of the triads obtained by studying the sub-level sets of
the discrete Gaussian curvature reflects the our observations. We retrieve the
pentatonic link between the major-suspended2 and minor-suspended4 triads,
respectively. As well as the segregation of the diminished mode and the similarity
of the triplet suspended2, augmented and minor triad.

Once the musical interpretation of the geometric properties of the shapes we gener-
ated is clear, persistent homology allows us to explore different parameters of the con-
sonance function. The left column of Figure 9.16 has been obtained by changing the
harmonic spectrum used in the consonance function to h = (1, 1/2, 1/3, 1/4, 1/5, 1/6).
The classification of the shapes provided by the Rips complex is almost unchanged;
the filtration induced by the height function points out the similarity between the
shapes generated by the major and minor triads, while the others are segregated.
The consonance function, in this second and more realistic configuration groups the
shapes associated to a suspended2 and major triads, while another cluster contains
the augmented and diminished triads. The minor and suspended4 triads are outliers.

9.4 Discussion
In Sections 9.2 and 9.3 we suggested two applications of consonance calculation
for the hierarchical organisation of musical entities. The filtration induced by the
Rips complex, built on a point cloud representing each mode, allowed to compute a
dissimilarity among modal scales. The octave dependency of the consonance function
has been discussed. It has been shown how the mixolydian modes maintain the same
relationship among them, when considering a fixed reference pitch and scales built
on two consecutive octaves. In general, the filtration defined by the Rips complex
segregates recognisable sonorities, i. e. modal scales that together with a bass note
used as accompaniment give rise to what we could refer to as Spanish sonority, or a
bluesy one, and so forth.

In Section 9.3, we have studied the organisation of common triads. A simple
generalisation of the Plomp and Levelt consonance model allows to associate a
unique consonance value to each triad class. It has been shown how the consonance
is invariant modulo transposition of the same triad and how different classes of triads
are recognised, despite changes of the harmonic spectrum used to compute the their
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consonance. Later on, this was used to study the relations between different pitch
classes in a given chordal context, by the usual update of the height of the vertices of
the Tonnetz. This led to a variable geometry space which is suitable for the analysis
of different chord classes, and provides a link between the harmonic and the melodic
level intended as the block voicings of a triad on the chromatic scale. The surfaces
obtained in this way have been discussed, considering the height function, as well as
their discrete Gaussian curvature. In conclusion, three different filtrations have been
used to classify these six classes of triads, according to the geometric properties of
their representations as deformed Tonnetze. Once the meaning of the function used
to induce the filtration is clear, the classification provided by persistence homology
allows to study the effect of the harmonic spectrum on the geometry of the deformed
Tonnetze and hence with respect to the tension/resolution patterns of each pairing
of a triad class and chromatic scale.
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Figure 9.16: Hierarchical clustering of consonance-deformed Tonnetze generated
by triads and two harmonic spectra: (1, 1, 1, 1, 1, 1) on the left column and
(1, 1/2, 1/3, 1/4, 1/5, 1/6) on the right.
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Discussion and future works

The three applications described in this part represent a first formalisation of the
topological and geometrical music analysis. Music features have been represented
as polyhedral surfaces and point clouds. After the analysis and the discussion of
several dataset, persistent homology revealed itself an efficient tool both in a purely
symbolic or in a hybrid signal/symbolic context.

Figure 10.1: Chromagrams.

The first model for the analysis and classification of music based on pitch classes
and notes’ durations we suggested has been realised considering different datasets of
MIDI files. The stability of the height function allows to extend this analysis to audio
files. It is possible to describe the pitch classes and duration of the notes in an audio
file, by computing a chromagram (Harte and Sandler, 2005). Such a representation
allows to pass from the domain of time to the domain of frequencies through a
fast Fourier transform. Then pitch classes are obtained wrapping frequencies on
a single octave. Each pitch class is represented taking into account its magnitude.
The first two chromagrams1 in Figure 10.1 describe the pitch-class contribution
during a perfect cadence Dm7 − G7 − Cmaj9 − Cmaj7 played using two virtual
instruments emulating a Fender Rhodes and a Bösendorfer respectively. The third
one represents a small fragment (≈ 10 seconds) of a jazz composition involving two
guitars, a basic drum set and a bass. From such representation it is possible to
deduce what notes are played considering their magnitude (colour) and how much
time they last (horizontal axis). In this case, the height function would surely be
affected by the noisy data coming form the signal. However, the stability of the
persistence diagrams for tame functions assures that a small perturbation of the

1The figures have been realized through the Librosa Python library available at https://bmcfee.
github.io/librosa/.
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function that induces the filtration corresponds to small variations of the persistence
diagrams.

In order to generalise the consonance based applications to the analysis of
complex signals, it is necessary to retrieve more information than the one represented
in a chromagram. One possibility is represented by the Snail Analyzer-Tuner
(http://medias.ircam.fr/x1b825e at minute 20). A software developed at the
IRCAM, that allows to visualise the same information represented in a chromagram,
on the whole audible frequency spectrum. This information coupled with a chord
detection algorithm(Mauch et al., 2009; Ellis and Weller, 2010), would allow to
compute the consonance values and hence to update the height of each vertex of the
Tonnetz in time, directly from an audio signal.

The model itself can be largely refined in several ways. It is possible to augment
its dimensionality, losing its property to be easily visualisable, but having the
possibility to encode more information. For instance, it could be possible to associate
to each pitch class of the Tonnetz its velocity, or merge the two pitch-class/duration
and consonance approaches. Moreover, topological persistence offers further tools
to improve the strategies we suggested. A natural development is the study of
the multidimensional persistent homology (Cagliari et al., 2010; Cerri et al., 2013;
Carlsson and Zomorodian, 2009) of musical spaces.

http://medias.ircam.fr/x1b825e
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Abstract

This part is devoted to the analysis of the time-dependent nature of music. In Chap-
ter 11 we suggest a novel approach to the analysis of popular music, based on the
multiple (read simultaneous) alignment of symbolic sequences. We will consider
the sequences derived from several harmonic-oriented analyses of the harmonic
progressions of a dataset of 138 compositions. Given a harmonic progression, music
theory provides the tools allowing to retrieve tonal centres, cadences and modu-
lations. We take advantage of these high-level features to define three families of
symbolic sequences associated to our dataset. Their global pairwise alignment is
used to tackle several problems such as detection of cover tracks and the retrieval of
genres and artists. Finally, multiple sequence alignment is computed to produce an
encompassing analysis of the transfer of musical patterns among the heterogeneous
collections of songs, artists and genres of the dataset we analysed. This chapter
represents joint work with Philippe Esling (Esling and Bergomi, 2015).

The main contribution of Chapter 12 is the adaptation of the model proposed
in Chapter 8 (whose aim was the analysis of persistent properties of music) to the
study of the time-varying geometry of the Tonnetz, when its vertices are deformed
considering the pitch classes and durations of the notes of a composition. In
particular, we consider the time series arising from the topological analysis of the
natural time framing of music, provided by its subdivision in bars. The state of
the art concerning the representation of time-varying systems in the formalism of
topological persistence is discussed and a method to align these time series composed
by topological subfingerprints is provided. We investigate the musical relevance of
the information carried by the time series of persistence diagrams, as well as the
analysis of their dissimilarity. In particular, we will focus on three datasets collecting
classical, pop and jazz compositions, respectively.
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Eleven

Harmonic time series and pop music
analysis

The past decade has witnessed a growing interest in content-based retrieval for
multimedia databases (Yoshitaka and Ichikawa, 1999). Large amounts of work have
been devoted to performing similarity queries and genre recognition over musical
songs databases, leading to the field of Music Information Retrieval (MIR) (Casey
et al., 2008). However, in this field, the signal-based and symbolic-based approaches
to musical analysis are often considered antipodal strategies. Could these viewpoints
cohexist as complementary? Would it be possible to improve the results provided by
signal analysis by augmenting its abstraction level through a symbolic framework?
The limitations of the genre recognition tasks have recently been exhibited. Indeed,
since the first work in musical genre recognition in 1995 (Matityaho and Furst, 1995),
it seems that most research still revolves around a signal-based classification of a
ground truth annotation of music genre provided by human experts and a train/test
paradigm (Sturm, 2014). However, the reference databases for the evaluation of
these systems suffer from multiple flaws such as duplicatas, corrupted files, genres
made of single artists and wrong (or too subjective) genre labelling (Sturm, 2013a,b).
Furthermore, this simplifying task is far from accounting the fact that musical
inspiration and transfer of different musical patterns go way beyond the notion of
musical genre.

We introduce an innovative way to analyse pieces of popular music (termed here
pop music), by performing a high-level symbolic analysis of their content. Our main
goal is to provide an encompassing view over the cadential patterns and modulations
motifs in pop music (Everett, 2000; von Appen et al., 2015) and how these can
show artistic influences across various musical genres. In order to achieve this aim,
the harmonic progressions corresponding to a dataset of pop songs is derived from
their corresponding audio signals and a harmonic analysis is performed. As a result,
we retrieve three different classes of symbolic sequences describing high-level tonal
features of each song. We further analyse the similarity among pairs of sequences
belonging to the same symbol class by relying on several state-of-the-art global
sequence alignment algorithms typically used in time series (Esling and Agon, 2012)
and genetic analyses. Some interesting properties of this approach are discussed.
First, it is shown how the similarities of these sequences can provide a valuable
instrument to refine hand-made semiotic segmentations of the songs. Second, the
accuracy of the harmonic transcription and the harmonic analysis is evaluated by
performing a cover track recognition task. In addition, the clusterings generated by
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each possible combination of weight matrix and alignment algorithm are evaluated by
measuring their cluster-wise accuracies with respect to the metadata corresponding
to the considered collection of songs. Although our analyses provide higher-level
assessments of melodic and harmonic similarities across musical pieces, we show that
it still bears some coherence in the traditional evaluation paradigm of genre and
artist recognition.

We further introduce the application of Multiple Sequence Alignment (MSA)
(Thompson et al., 2011) in the analysis of music at a symbolic level. This analysis is
performed by considering several state-of-art MSA algorithms, which are evaluated
through a variety of quality metrics. As a result of this multiple alignment procedure,
it is possible to compute both the consensus sequences associated to each cluster
and perform an analysis of motifs over the whole dataset. The former represents
a paradigmatic sequence of modulations, which exhibits the typical path followed
in the songs belonging to a certain cluster, while the latter provides an evident
representation of the harmonic contamination and artistic influences among pop
songs. Hence, we perform an encompassing analysis across pop music, based on the
MSA structure organised across different clusters. By analogy to the well-known
molecular clock hypothesis in genetics (Martin and Palumbi, 1993) which allows
to evaluate the similarity between species based on their shared amount of genetic
similarity, we show that these types of analyses provide higher-level views on musical
similarity across genres, with various artists influencing each other over time.

11.1 Symbolic sequence alignment

11.1.1 Pairwise sequence alignment

The goal of pairwise alignment is that given a pair of symbolic sequences S1 and S2
of potentially different length n,m ∈ R2 composed of symbols from a given alphabet
Σ and a scoring function δ (x, y) that defines the similarity between two symbols
x, y ∈ Σ2 we want to find the sequences S∗1 and S∗2 of equal-length k such that the
sum of similarity scores is maximized by inserting gaps in the two original series.

Definition 11.1.1. Given two sequences S1 ∈ Σn and S2 ∈ Σm, pairwise alignment
seeks the sequences S′1 ∈ Σk and S′2 ∈ Σk (k > max (m,n)) such that

∥∥∥S′1 − S′2∥∥∥δ is
minimal.

Based on a set of symbolic sequences, we can evaluate their pairwise similarities
by aligning two sequences at a time (Sankoff, 1972). This alignment can be based
on any type of symbolic information, given that the two sequences are composed of
symbols with the same underlying signification. Pairwise alignment allows to gain
information about the similarity between two sequences, but also about their inner
structure. Hence, this can allow to find common patterns, or to assemble together set
of sequences (fragment assembly). The different issues related to pairwise alignment
are that

• Most of the sequences we are comparing will differ in length

• There may be only relatively small matching regions in the sequences
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GSAQVKGHGKKVADALTNAVAHV---D--DMPNALSALSDLHAHKL
:: ::::|: || : :| :: | ||||:|: |:::|: |
NNPELQAHAGKVFKLVYEAAIQLQVTDVVDMPNTLKNLGSVHVSKG

Figure 11.1: Example of global alignment between two (apparently) lowly-related
sequence. Exact matches are identified by (|) and related matchs are identified by
(:). Even though the symbols in both sequences are quite different, most of these are
actually closely related in their functions, which implies that the sequences share a
high amount of similarity.

• We want to allow variable matches between the symbols

It should be noted that three types of alignments can be performed. A global
alignment seeks the best match between both sequences in their entirety and it is
the only type of alignment utilized in this work. A local alignment will find the
best subsequence match, even in very small portions of the sequences. Finally a
semi-global alignment seeks the best global match without penalizing gaps on the
ends of the alignment. An example of global pairwise alignment is displayed in
Figure 11.1.

Levenshtein (edit) distance

The first way to obtain the alignment between two symbolic sequences is through the
Levenshtein distance (also called edit distance) (Levenshtein, 1966), which considers
that three types of differences can arise wen comparing two symbolic sequences

Substitutions ACGA ⇒ AGGA
Insertions ACGA ⇒ ACCGA
Deletions ACGA ⇒ ACA

The Levenshtein distance is defined as the minimal number of applications of
these operations that are required to transform one sequence into another. The main
problems of this distance are that all operations are considered equivalent (the same
score is assigned to any change) and only the binary match/mismatch relationship
is taken into account (symbols cannot be more or less related).

Dynamic Programming

Dynamic Programming (DP) provides an optimal solution to the global alignment.
Its basic assumption is that the optimal solution can be found by aggregating several
optimal solutions computed considering smaller parts (subsequences) of the problem
(Berndt and Clifford, 1994).

Scoring scheme This approach relies on a substitution (or weight) matrix δ (x, y)
which indicates the score of aligning any characters x and y from our alphabet Σ.
Moreover, the scoring use a gap penalty function w (k) which indicates the cost of a
gap of length k, usually through a linear cost w (k) = g · k where g ∈ R is a constant.
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The idea of dynamic programming is that given a sequence S of length n and a
sequence T of length m, we can construct a (n+ 1)× (m+ 1) matrix F such that
Fi,j is the score of the best alignment of S [1 . . . i] with T [1 . . . j]. This means that
the score of any cell can be deduced by the scores of its three previous neighboring
(up and left) cells. Therefore when extending an alignment in the cell Fi,j , three
choices can be made

• align S [1 . . . (i− 1)] with T [1 . . . (j − 1)] and match S [i] with T [j].

• align S [1 . . . i] with T [1 . . . (j − 1)] and match a gap with T [j].

• align S [1 . . . (i− 1)] with T [1 . . . j] and match a gap with S [i].

Hence one way to specify the DP problem is in terms of its recurrence relation

F (i, j) = max


F (i− 1, j − 1) + δ (S [i] , T [j])
F (i− 1, j) + g

F (i, j − 1) + g

Several algorithms have been developed based on this idea, such as the Dynamic
Time Warping (DTW) algorithm (Berndt and Clifford, 1994) which is the first to
use these principles. However, it is extremely brittle to the presence of outliers and
noisy regions. These problems can be alleviated by allowing gaps in matching two
sequences, with algorithms such as the Longest Common Subsequence (LCSS) (Das
et al., 1997). Finally, the Edit Distance with Real Penalty (ERP) (Chen and Ng,
2004) attempts to combine the merits of DTW and edit distance by using a constant
reference point. We will use these three algorithms in our subsequent analyses.

Needleman-Wunsch algorithm

The linear gap penalty function (w (k) = g · k) of the DP approach implies that a
long gap of n positions has the same impact on the alignment as n gaps disseminated
along both sequences. However, it seems obvious that we should favour a single
long gap between highly matching sub-sequences (putting emphasis on the similarity
of local structures shared between sequences). The Needleman-Wunsch (NW)
algorithm (Needleman and Wunsch, 1970) was introduced to handle this mechanism
by providing an affine gap penalty function

w (k) =
{
α+ βk k > 1
0 k = 0

where α defines the cost for opening the gap and β defines the cost for extending
it. By choosing α > β, we implicitly penalize small sporadic gaps as it costs more
to open a gap than to extend an existing one. In order to keep the computational
complexity of this refined alignment in O

(
n2) time, the NW algorithm relies on

three different scoring matrices instead of a single one. First, the matrix M (i, j)
defines the best score given that S [i] is aligned to T [j]. Second, IS (i, j) defines
the best score given that S [i] is aligned to a gap and IT (i, j) defines the best score
given that T [j] is aligned to a gap. Hence, the NW algorithm redefines the previous
recurrence relations as
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M (i, j) = max


M (i− 1, j − 1) + δ (Si, Tj)
IS (i− 1, j − 1) + δ (Si, Tj)
IS (i− 1, j − 1) + δ (Si, Tj)

IS (i, j) = max

{
M (i− 1, j) + α+ β

IS (i− 1, j) + β

IT (i, j) = max

{
M (i, j − 1) + α+ β

IT (i, j − 1) + β

The overall NW algorithm can be drafted in three steps

1. Initialization

a) M (0, 0) = 0
b) Ix (i, 0) = α+ β.i

c) Iy (0, j) = α+ β.j

2. Fill the three matrix (M, Ix and Iy) together iteratively

3. Traceback

a) Start at the largest value between M (m,n), Ix (m,n) and Iy (m,n)
b) Stop at any of M (0, 0), Ix (0, 0) and Iy (0, 0)

On the influence of the scoring matrix

One of the core concepts shared by most variants of the DP and NW algorithms is
that they rely on a scoring function δ (x, y) which provides a mechanism to define
variable symbolic matching. Hence, one of the key factor in the success of alignment
algorithms lies in this prior knowledge of the symbols (dis)similarities. This can
be defined as the dissimilarity measure δ (x, y) between symbols x and y (usually
summarised in a weight matrix)
Remark 16. The scoring function is not necessarily a metric. We recall that a
function δ is called a metric if it is symmetric

δ (x, y) = δ (y, x)

and subadditive
δ (x, z) 6 δ (x, y) + δ (y, z) .

The definition of this scoring matrix highly influences the resulting alignment.
Furthermore, we can evaluate the score of an alignment by using the sum of all
distances

D (S1, S2) =
∑
k

δ
(
sk1, s

k
2

)
or by minimising the entropy of each column given by

D (si) = −
∑
a

cialog2 (pia)
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where si is the ith column of an alignment s, cia is the number of occurences of
character a in column i and pia is the probability of character a in column i. The
effect of devising different scoring matrix is displayed in Figure 11.2.

Applications to music

Over the past years, there has been several researches relying on pairwise sequence
alignment for musical data analysis. Most of these works are devoted to content-
based querying such as Query By Humming (QBH), which allows to retrieve a song
inside a database based on a query hummed by the user (Pardo and Sanghi, 2005).
Other works have targeted the use of sequence alignment to improve optical music
recognition from multiple recognizers (Bugge et al., 2011), score following in order to
distinguish between aligned and non-aligned audio frames (İzmirli and Dannenberg,
2010), cover detection using local alignment algorithms (Martin et al., 2012) and
folk music analysis (Bergomi and Andreatta, 2015; Bergomi et al., 2015).

11.1.2 Multiple sequence alignment

Pairwise alignments allows to define a similarity but also to find some common local
structures between sequences. However, if an entire set of sequences is analysed,
pairwise alignment fails to provide a more encompassing level of reasoning, as it is
unable to align multiple sequence at the same time.

Definition 11.1.2. The problem of Multiple Sequence Alignment (MSA) can be
defined as finding from a set of k sequences of various length S = {S1, S2, . . . , Sk}, the
aligned set of k equal-length sequences S∗ = {S∗1, S∗2, . . . , S∗k}, where S∗i is obtained by
inserting gaps into Si, ∀i ∈ [0, k] while minimizing the overall dissimilarities between
the symbols.

Compared to pairwise alignment, MSA requires a global objective to minimise
across the whole set of sequences. The most straightforward way to define an error
function to minimise in a MSA problem is to rely on the Sum-of-Pair (SP) score

SPscore (a1, . . . , ak) =
∑

16i<j6k
δ (ai, aj)

where ai is a column of the alignment composed of symbols from our dictionary
(or gaps) and δ (ai, aj) is the distance defined in our weight matrix. Then, the overall
score of an alignment S∗ can be defined as

SPscore (S∗) =
∑
x

SPscore (S∗1 [x] , . . . , S∗k [x])

In other words, we are trying to minimise the position-wise differences in symbols
simultaneously for all sequences in the alignment.

As opposed to pairwise alignment, there has been, to the best of our knowledge,
no application of this approach to musical data. The only work relying on MSA
was aimed at lyrics alignment (Knees et al., 2005) where lyrics extracted from the
internet were used to perform faster retrieval of songs. We will provide in this work
the first assessment of MSA for harmonic and motivic analyses.
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Figure 11.2: The effect of using different grammars (symbolic information) and
different weighting matrix can lead to dramatically different results in the final
alignments and similarities between the sets of sequences.
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Figure 11.3: Multiple sequence alignment of 3 sequences through dynamic program-
ming. (a) Given a set of 3 sequences to align, (b) we can construct a 3-dimensional
matrix in which (c) each cell defines 7 different paths. (d) Following the same
procedure as pairwise alignment, we can find the optimal (e) multiple sequence
alignment. (f) An interesting property is that we can project the multidimensional
path on bi-dimensional planes to obtain pairwise alignments between any sequence
of the set.

Dynamic programming

As seen previously, dynamic programming is an excellent tool to perform the
alignment of two sequences, as it provides the global optimum to this problem. This
technique can be extended to perform the alignment of a set of k sequences and
provides the optimal solution for this set. We can rewrite the original dynamic
programming equation as

V (i1, i2) = max
(b1,b2)∈{0,1}2−{(0,0)}

{V (i1 − b1, i2 − b2) + δ (S1 [i1b1] , S2 [i2b2])}

This equation simply states that the best path from one cell depends on its
3-neighbourhood of previous cells in the scoring matrix. As this form is closely
related to that of the SP-score, we can extend it by considering

V (i1, . . . , ik) = SPscore {align (S1 [1 . . . i1] , . . . , Sk [1, . . . ik])}

Hence, the score of the last column would be the SP-score of the optimal
alignment between the k sequences. Therefore, for each cell of the k−dimensional
matrix

V (i1, · · · , ik) =
= max

(b1,...,bk)∈{0,1}k
{V (i1 − b1, . . . , ik − bk) + SPscore (S1 [i1b1] , . . . , Sk [ikbk])}

Therefore, the SP-score of the optimal multiple alignment of S = {S1, S2, . . . , Sk}
is V (n1, · · · , nk) where ni is the length of Si (ie. the “last” cell of the scoring matrix).
Overall, we fill the k−dimensional scoring matrix similarly to the two sequences to
compute V (n1, · · · , nk). This process is detailed in Figure 11.3.

However, it should be noted that the complexity is exponential in the number of
sequences to align. Therefore, this algorithm rapidly becomes impossible to apply
both in terms of computation time and memory requirement.
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Figure 11.4: Summary of the centre star algorithm.

Center-star method (approximation)

It would be preferable to obtain a good approximation of the optimal alignment
using polynomial time. The centre star method was one of the first method proposed
to minimise the SP-score in an efficient way.

The main idea behind this method is to find a reference (centre) sequence inside
the set of sequences to align, and then aligning all other sequences with this reference.
In order to find the reference sequence, we compute the pairwise alignments of all
pairs of sequences and select the sequence that minimises the sum of distances (which
represents the centroid of the set). Then, based on the pairwise alignments, we can
iteratively find the multiple alignment by simply adding gaps in the current alignment.
The overall workflow for the center-star method is presented in Figure 11.4

Center_Star Input: A set S of sequences.
Output: A multiple alignment M with a SP-score at most twice that of the

optimal alignment of S.

1. Compute D (Si, Sj) for all Si, Sj ∈ S.

2. Find the center sequence Sc which minimizes
∑k
i=1 D (Sc, Si).

3. For every Si ∈ S − {Sc}, choose the optimal pairwise alignment between Sc
and Si.

4. Introduce gaps into Sc so that the multiple alignment M satisfies the alignments
found in Step 3.

Heuristics methods

The star method suffers from several flaws in terms of time and space requirements,
but also in the quality of the final alignment. Furthermore, the centre star method
is highly brittle to the choice of the reference sequence. Hence, several heuristics
have been devised to alleviate this problem.
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Progressive alignment Progressive alignment is based on the idea of iteratively
aligning the most closely related sequences until all sequences are aligned. Several
algorithms have been developed based on this idea such as ClustalW (Thompson
et al., 2002), T-Coffee (Notredame et al., 2000) and ProbCons (Do et al., 2005). All
these algorithms follow the same three main steps

1. Computing pairwise distance scores for all pairs of sequences, through the
(triangular) distance matrix containing D (Si, Sj) for all Si, Sj ∈ S (often
expressed as the percentage of mismatches). The choice of alignment algorithm
and weight matrix both highly influence the final multiple alignment.

2. Generating the guide tree based on sequence similarities in the distance matrix
to obtain a hierarchical clustering. Any linkage function and clustering algo-
rithm can be used to obtain this iterative grouping (dendrogram of sequences
similarities).

3. Aligning the sequences iteratively along the guide tree, by starting from the
leaves and moving up the tree. Each internal node connecting several sequences
represents an alignment of the corresponding sequences. This process is
repeated until the root node.

The process of iterative alignment implies several multiple alignments between
subsets of the sequences (some of which already aligned in a previous step), which
can be done through the principle of Profile-Profile alignment.

Profile-Profile Alignment Given two aligned sets of sequences A1 and A2, the
profile-profile alignment introduces gaps to A1 and A2 so that both of them have
the same length. In order to determine this alignment, we need a scoring function
such as

PSP (A1 [i] ,A2 [j]) =
∑
x,y

gixg
j
yδ (x, y)

where gix is the observed frequency of symbol x in the column i and δ (x, y) is
the distance between symbols x and y (as defined in our weight matrix). Hence, our
aim is to find an alignment between the two sets that in order to maximise the PSP
score. The overall workflow for the progressive alignment methods is summarised in
Figure 11.5

Iterative methods The main limitation of the progressive alignment is that it will
not try to realign the sequences once the MSA is found. Hence, the final alignment is
highly brittle to the quality of initial alignments, and is not guaranteed to converge
to the global optimum. In order to alleviate these flaws, iterative methods introduce
heuristics that starts with a progressive alignment and then iteratively improves
it. Examples of iterative methods are MAFFT (Katoh et al., 2002) and MUSCLE
(Edgar, 2004). These algorithms are based on two ideas

1. Generating a draft multiple alignment as fast as possible, usually through
slightly modified progressive alignment method. First, the distance matrix is
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S1 BBGEFCDCAC
S2 BADGEFDCAC
S3 BBDGFCDC
S4 GADGFDCCC
S5 GADGFDCAC

S1 S2 S3 S4 S5
S1
S2
S3
S4
S5 s1 s2 s3 s4 s5

S1 B-BGEFCDCAC
S2 BADGEF-DCAC

S4 GADGFDCCC
S5 GADGFDCAC

(a) (b) (c)
1

1

1

1

1

.9 .8 .4 .6

.6 .8 .9

.5 .5

.9
s1 s2 s3 s4 s5

S1 B-BGEFCDCAC
S2 BADGEF-DCAC
S3 BBDG-FCD--C
S4 GADG-F-DCCC
S5 GADG-F-DCAC

S1 B-BGEFCDCAC
S2 BADGEF-DCAC
S3 BBDG-FCD--C

(d)

Figure 11.5: Summary of the progressive alignment algorithm. (a) The similarity
matrix is computed based on pairwise alignments. (b) The guide tree is obtained
from this matrix. (c) By going up the tree, each node generates a specific alignment,
between subsets of sequences. (d) When the root of the tree is reached, we obtain
the set of multiple alignments.

computed faster by discriminating sequences based on the symbols frequency.
Second, the Unweighted Pair-Group Method using Arithmetic mean (UPGMA)
method is used to perform clustering Finally, the PSP score may favor gaps
as it relies on the direct sum of weighted symbol distances (and gaps are
considered as symbols). This can be alleviated by using the log-expectation
score in the profile-profile alignment

LE (A1 [i] ,A2 [j]) =
(
1− fGi

) (
1− fGj

)
log

(∑
x,y

fxi f
y
j

pxy
(pxpy)

)

where fGi is the proportion of gaps in A1, fxi is the proportion of symbol x in
A1, px is the overall proportion of symbol x and pxy is the probability that x
aligns with y. It should be noted that

pxy
(pxpy)

= eδ(x,y).

2. In the second stage, the distance matrix is computed by first finding the fraction
D of identical symbols shared by two aligned sequences, and computing

− log
(

1−D − D2

5

)
.

The progressive alignment is iterated but re-alignment of the sequences is
performed only when there are changes relative to the original tree.

The MSA algorithms that will be used here are ClustalW (Thompson et al., 2002),
Muscle (Edgar, 2004), MAFFT (Katoh et al., 2002), ProbCons (Do et al., 2005) and
TCoffee (Notredame et al., 2000). We will compare different algorithms with various
types of symbolic informations and different weighting matrix to assess different
structural properties of music.

Evaluating MSA results

As MSA can produce widely varying results, we need objective measures of the
alignment quality. In genetics, this is usually performed by comparing the alignment
to a known reference sequence. However in our case, as we do not have a specific
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reference, we rely on reference-free evaluation methods. The simplest quality metrics
are the Total columns (TC) aligned, the Q-Score (percentage of aligned pairs over
the total number of pairs) and the Sum of Pairs (SP) score as defined previously
(Section 11.1.2). However, more advanced reference-free metrics have also been
developed. The Z-Score (Ahola et al., 2006) relies on importance sampling and
statistical profile analysis for counting the number of significantly conserved positions
in the alignment. The Multiple Overlap Score (MOS) (Lassmann and Sonnhammer,
2005) identifies alignment quality by expressing the overlap among groups of aligned
sequences. The Information Content (IC) (Hertz and Stormo, 1999) provides a
log-likelihood scoring scheme based on a priori probabilities of symbol occurrence.
The APDB distance (OSullivan et al., 2003), Root Mean Square Deviate (iRMSD)
and Normalized iRMSD (iRMSD) (Armougom et al., 2006) are based on the idea
that if an aligned pair is correct, then the neighborhood of this pair should also
be aligned. Therefore they are derived by computing the percentage of aligned
neighbors across all positions in the alignment. Finally, the Mean Distance (MD)
and Normalized MD (NorMD) (Thompson et al., 2001) combines column scoring
and similarity scores by performing a ratio of the number, length and similarity of
aligned subsequences.

Motif mining

Once the multiple alignment is obtained, it is straightforward to perform a motif
mining analysis. Indeed, as sequences are now all globally aligned, the search of
motifs can be performed by looking for highly conserved “blocks” of symbols. A
motif is a particular subsequence that occur with a significant number of repetitions
across the set of aligned sequences and with eventual small variations. Here, we rely
on the MEME (Multiple EM for Motif Elicitation) algorithm (Bailey et al., 2006) to
perform motif discovery from the results of the multiple alignment. MEME works
by searching for repeated, ungapped sequence patterns that occur in an aligned
set of sequences. Using a process akin to local sequence alignment based on a set
of selected seeds, MEME searches for statistically significant motifs in the input
sequence set by sliding these seeds over the multiple alignment.

Computing the consensus sequence

Once the multiple alignment and the motif analysis are computed, we can obtain the
consensus sequences of different motifs, which represents the “mean” sequence of a
particular motif. These consensus sequences can allow to study different properties
of a group considered as a motif in a single glance (Bailey et al., 2006). Even though
several statistical methods have been developed for constructing the consensus
sequences, we will only rely here on the method based on frequencies, provided by
the MEME Suite. An example representation of the consensus sequence is displayed
in Figure 11.6
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Figure 11.6: Possible representations of the consensus sequences

11.2 Harmonic sequences

In this section, we define different types of symbolic sequences obtained analyzing
the harmonic features of each song. Moreover, we describe the construction of ad
hoc weighting matrices for the alignment of harmonic-based sequences.

11.2.1 From harmonic progressions to symbolic sequences

The lead sheet notation depicted in Figure 11.7a provides a natural interpretation
of a harmonic progression as a symbolic sequence. The idea here, is to produce a
higher abstract description of the harmonic content of a song, based on the sequence
of symbols describing its chords. To achieve this aim, we interpret chords as the
degrees of a major tonality (see (Piston et al., 1978, Ch. 2)). In music, a tonality is
defined as the collection of triads constructed from a certain scale as it is depicted
in Figure 11.7b. Assuming a whole song to be written in a single tonality would
be simplistic. However, it is possible to segment it in tonal regions, defined as
subsequences of consecutive chords belonging to the same tonality.
The algorithm associating a tonality to each chord is based on the spiral array
(Chew, 2002). In this model pitch classes are represented as points of a helix. Thus,
a chord (a collection of several pitch classes) is represented by the convex hulls of the
points describing its pitches on the spiral. The centre of gravity of the convex hull is
the representative point of the whole chord. This construction allows to describe
several musical entities. Even a whole tonality can be represented in the spiral array,
when considered as a collection of pitch classes. Given a sequence of chords, the
computation of the 3 nearest tonalities to each chord in the spiral array allows to
define stable tonal regions on the whole harmonic structure and to avoid sudden
tonality changes for small modulations1.

We shall consider four different kind of symbolic sequences. Three of them are
deduced directly form the tonal analysis of the harmonic progression, the fourth is

1A harmonic sequence like Dm− C −Am is interpreted as a collection of chords belonging to
the tonality of C major (see the chord labeled as 2,1 and 6 in Figure 11.7b). However, it is desirable
that the sequence Dm− C −Am−B[ be interpreted as a harmonic sequence in F major rather
than a C major modulating to F major or B[. It is common practice to substitute the third degree
of a tonality with a major triad (from Em to E in C major). In this case, if a E major triad appears
in the middle of a sequence of chords belonging to the tonality of C major, the algorithm hide this
brief modulation, maintaining the same tonality.
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(a) Miles Davis - Tune Up
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(b) Triad harmonization of the C major scale.

Figure 11.7: From chords to symbols. (a) In a lead sheet, the standard chord
notation is substituted by symbols. (b) The triad harmonisation of the diatonic
scale of C and its seven degrees.

based on a semiotic analysis of music. As a paradigmatic example we refer to the
harmonic structure of Tune Up, as transcribed in Figure 11.7a.

Degree

Neglecting the information regarding the tonality of each song, we consider only the
degree associated to each chord. For instance, considering the harmonic structure of
Tune Up we obtain 251251251425125, being Em the second degree of the tonality of
D major, A the fifth degree and so forth. The repetition of the same degrees pattern
points out the extensive use of perfect cadences across the whole piece (see (Piston
et al., 1978, Ch. 12)).

Spike

We consider the sequence built by taking the differences between the tonalities
associated to two consecutive chords. This difference is defined as the cardinality of
the set given by the union of the altered notes of each tonality. This is equivalent
to counting the number of counterclockwise steps separating the two tonalities
on the circle of fifths (see Figure 11.8). In the case of Tune Up, this sequence is
00020020040440. Geometrically speaking, this sequence corresponds to a sequence of
spikes whose height depends on the modulation occurring in the harmonic structure.

Tonality

In this case, each chord is substituted by its major tonality. In our example, we have
DDDCCCB[B[B[DDB[DD. Whereas the previous sequence could be visualized
as a succession of spikes, this one can be thought of as a step function. The dictionary
used to describe tonality is described in Figure 11.8.
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Figure 11.8: In the circle of fifths major (and relative minor) tonalities are organized
in relationship to the altered notes they contain. Two tonality a step apart differ of a
single note. The only exception is represented by the tonalities of C] and C[, which
are separated by a thick line. The bold letters surrounding the circle correspond to
the alphabet used to build the tonality class of sequences.

Semiotic annotation

It is natural for a (trained) listener to intuitively segment music while listening to it.
The automatic segmentation of a music piece into meaningful parts (like introduction,
choruses and verses) is a difficult task and it has been tackled in several ways. For
example, in (Foote and Uchihashi, 2001) a subdivision is derived from the analysis of
rhythmic changes occurring in the song. Another strategy described in (Aucouturier
et al., 2005) is based on the evaluation of the evolution of the timbre. In (Jensen,
2007) several music features are interpreted to provide a segmentation of the song in
choruses, verses and so forth. It is also possible to define formal techniques to obtain
a segmentation of a song in semiotic blocks (Bimbot et al., 2012). The semiotic
characterization of a song consists of the definition of a labelling function on a set
of symbols and taking its values on the set of semiotic blocks identified during the
segmentation. The association between blocks and labels highlights the similarity
between different parts of the song. For instance, it is possible to associate more
than one block to the same label or to define a variation of a preexistent symbol.
This procedure leads to a straightforward definition of a degree of similarity among
the blocks.

Summary

The class degree describe the harmonic cadences used in a composition. Its dictionary
is composed by 9 symbols. 7 of these symbols correspond to the degrees of the



174 CHAPTER 11. HARMONIC TIME SERIES AND POP MUSIC

(a) Degrees’ distance matrix.

C D A B X M AB AX M*

C 1 0.7 -1 -1 -1 0.5 -1 -1 -1

D 0.7 1 -1 -1 -1 0.5 -1 -1 -1

A -1 -1 1 0.4 -1 -1 0.5 0.8 -1

B -1 -1 0.4 1 -1 -1 0.5 0.1 -1

X -1 -1 -1 -1 1 -1 -1 0.5 -1

M -1 -1 -1 -1 -1 1 -1 -1 0.9

AB -1 -1 0.5 0.5 -1 -1 1 -1 -1

AX -1 -1 0.8 0.1 0.5 -1 -1 1 -1

M* 0.2 0.2 -1 -1 -1 0.9 -1 -1 1

(b) Semiotic weighting matrix.

Figure 11.9: Two weighting matrices expressing the similarity between degrees of a
tonality (left) and semiotic labelling (right). The former is computed considering
the distances of chords in the spiral array, the latter is deduced from the similarity
of the block retrieved by the semiotic segmentation of music.

tonality depicted in Figure 11.7b, the 8th one denotes the absence of a chord
(silences and percussive breaks); a last symbol is used to label chords involved in
small modulations or harmonic substitutions. The two classes of sequences named
spike and tonality represent the modulations (Piston et al., 1978, Ch. 8) occurring
during the piece. The former class is invariant respect to musical transposition,
while the latter is sensitive to it. Their dictionaries have 15 symbols corresponding
to the 15 major (and relative minor) tonalities. Finally, the sequences belonging
to the semiotic class are the only hand-made ones we consider and they reflect the
perception of musical blocks of a trained listener.

11.2.2 Weighting matrices

One of the main ingredient of sequence alignment is the weighting matrix. Here,
we consider four different weighting matrices in order to deal with the specific
dictionaries of the classes of sequences described above. Let n ∈ N the number of
considered symbols.

• The binary matrix B = bij is built as an identity matrix associating a positive
score to exact matches, i.e. diagonal entries bii and a uniform negative score
to the elements bij with i 6= j corresponding to a mismatch.

• The linear matrix L associates a score to a given pair of symbols by taking
into account their distance from the diagonal and thus from maximum score
(exact match). Let 1 6 i, j 6 n be two natural numbers. The entries of the
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matrix L are defined as

lij =
{
n if i = j

n− |i− j| otherwise
.

• The constructed matrix C = cij is built to deal with the seven degrees of
a tonality. It is a symmetric matrix and its entries are elements of the set
{−1, 0.4, 0.6, 1}.

cij =


1 if i = j

0.6 if n− |i− j| = 2
0.4 if n− |i− j| = 5
−1 otherwise

.

These particular choice stresses out the natural relationships among degrees.
Let d ∈ {1, . . . , 7} be a degree of a tonality. By construction, it shares two
pitch classes with the d+ 2 and d+ 5 degrees, modulo 8.

• The alternate matrix is a refinement of the constructed one. It is built by
computing the distance between pitch-class triads in the spiral array. There
are several possibilities to interpret a chord of n notes as a point of a metric
space (Bergomi et al., 2014a), for instance considering its pitches as coordinate
of a point in Rn, or its pitch classes as a point of the n-dimensional torus
Tn = (Z/12Z)n. In Figure 11.9a the distance between triads belonging to the
harmonization of a tonality is computed considering the centre of gravity of
triangles representing triads in the spiral array. This particular choice reflects
the perceptual relation among the degrees of the tonality. For instance the
first, sixth and third degrees are near while the second is the farthest, followed
by the seventh, fourth and fifth degrees.

• The semiotic similarity matrix is obtained considering the similarity defined
by the semiotic labelling function. The matrix is depicted in Figure 11.9b.
The matches on the diagonal of the matrix have value 1, mismatches between
unrelated symbols correspond to −1 entries of the matrix. The distance
between similar labels nuanced according to their definition given in (Bimbot
et al., 2012).

11.3 Applications

11.3.1 Database, visualisation and notation

We considered a collection of 138 songs belonging to the Quaero database. These
compositions are performed by 72 different artists and cover a timespan of 50 years,
from 1962 to 2012. In order to show how even heterogeneous music styles can be
tagged as popular, here follows a list of the artists we considered in our analyses.



176 CHAPTER 11. HARMONIC TIME SERIES AND POP MUSIC

Quaero’s artists

50 Cents
ACDC
Aerosmith
Ali Farka Toure
Amy Winehouse
Bjork
Bobby McFerrin
Britney Spears
Buckcherry
Buenavista Soc...
Carl Douglas
Cher
CoCo Lee
Cranberries
D’Angelo

Daughtry
Destiny’s Child
Dillinger
Dolly Parton
Eminem
Eric Clapton
Faith Hill
Finger Eleven
Flo Rida
Franck Zappa
Georges Michael
Goran Bregovic
Gwen Stefani
Jedi Mind Tricks
Jim Jones

Joan Baez
Judas Priest
Justin Timberlake
Kiss
Lil Wayne
Ludacris
Madcon
Madonna
Mariah Carey
Massive Attack
Michael Jackson
Moby
Neil Young
Obituary
Patrick Hernandez

Pink Floyd
Platiskman
Pucho and his latin
soul brothers
Puff Daddy
Faith Evans
Radiohead
Ray Charles
Run DMC
Scorpions
Shack
Sweet
The Beatles
The Cure
The Fall A Sides

The harmonic transcription of each song has been computed using the algorithm
presented in (Mauch, 2010). The association between audio and chord symbols is
not injective. Consider a chord composed by the pitch classes C,E,G,A. It can be
interpreted as an minor seventh chord, or a major add6. In order to deal with a
small dictionary of chord symbols and to reduce the ambiguity in their retrieval, we
transcribed each songs utilizing only major, minor and diminished triads.

From this computation we construct three classes of symbolic sequences and we
will consider a fourth class given by the semiotic sequences.

Let S = {Degree, Spike, Tonality, Semiotic} be the set of these classes. Let
M = {binary, linear, constructed, alternate, semiotic} be the set of weighting ma-
trices and A = {DTW,ERP,LCSS,NW} the collection of alignment algorithms
we shall consider. We denote a clustering of our dataset as an element of the set
C ⊂ S ×M ×A.

We visualize the information retrieved by the computation of the pairwise global
alignment of symbolic sequences as a polar dendrograms. The information carried
by a dendrogram concerns the similarity and the configuration (clustering) of data.
Each joining between sequences (or clusters of sequences) is represented by the
splitting of a circular segment into two smaller ones. The position of the split
respect to the centre of the circle allows two retrieve the similarity between two
clusters. Outliers are fused to preexistent clusters near the centre of the circle. In
Figure 11.10, the two sequences grouped in the red cluster are very similar, while
the object labeled as 50 Cents is an outlier of the big grey cluster on its left.

Finally, the multiple sequence alignment of a particular clustering c ∈ C shall be
computed comparing the performances of five algorithms. The analysis of motifs
highlighted by the alignment shall be computed using MEME.
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Figure 11.10: Dendrogram obtained by evaluating the dissimilarity among 19 songs
of Quaero and 3 Beatles’ covers contained in the original set.

11.3.2 Cover recognition

In this first application, we consider a dataset composed of 19 Quaero’s songs
belonging to different genres and by 3 cover tracks of songs by The Beatles that are
part of the original set. This collection of songs is processed to obtain their sequences
of degrees, which are aligned using the NW algorithm weighted with the alternate
matrix. This test aims at exhibiting the coherence of the harmonic information and
the detection of tonal regions. The resulting dendrogram is displayed in Figure 11.10,
where the positions of original songs and their cover tracks is highlighted. As we can
see, the original Beatles’ songs are always coupled with their respective covers, albeit
a non-neglectible distance. This points out the structural changes characterizing the
alternative versions of these songs.

11.3.3 Metadata and clustering

Consider a clustering c ∈ C and denote by ci its clusters, for i ∈ {1, . . . , n} ⊂ N. In
order to compare these groupings with the traditional genre and artist classification
paradigm, we rely on the set of metadata provided with the analyzed songs. The
1-NN accuracy of c respect to the metadata is computed. The cluster precision and
the cluster recall in terms of retrieval of genres and artists has been computed for
every cluster ci ∈ c. This information is encoded in the 5-dimensional visualizations
depicted in Figure 11.11 on the following page.

As we can see, best results are obtained with the pairings (alternate, ERP )
considering degrees, (linear,NW ) for spike sequences and (binary,NW ) considering
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(a) Degrees. (b) Spikes. (c) Tonalities.

Figure 11.11: Evaluation of several harmonic-oriented clusterings in relation to a
genre recognition task. Different clusterings are represented as colored spheres of
variable radius in the space. The colour represent the alignment algorithm used to
obtain the clustering. The size of the spheres corresponds to the 1-NN accuracy of
the clustering, while the height of the spheres depends on the weighting matrix used
to generate the clustering. On the cluster precision/cluster recall plane (z = 0 ), the
projection of each sphere is depicted as a cross.

the class of tonality sequences. The idea, is to focus on the information provided by
the evolution of the composition in terms of modulations. The resulting dendrograms
are depicted in Figure 11.12.

It is important to notice that well recognisable artists and genre tend to be mostly
grouped together. For instance, in both clustering several songs by The Beatles are
grouped together and the Hip Hop songs are segregated from the others. At the
same time, it is possible to notice a certain degree of contamination among songs
and artists from different genres. Even though this observation appears obvious for
most music listeners, it is difficult to exhibit it using local signal-based features.

11.3.4 Semiotic clustering

The computation of the distance between semiotic symbolic sequences, produces the
clustering of Figure 11.13a. Such a dissimilarity has been computed using the NW
algorithm and the weighting matrix deduced from the semiotic labelling depicted in
Figure 11.9b. The clusters are surprisingly well shaped, however some aberrations
appear. For instance a really homogeneous rock/pop group of Eric Clapton’s and
Beatles’s pieces labelled in the figure as Pop Rock is followed by another cluster
(Hip Hop) where hip hop and rock songs are mixed together.

11.3.5 Towards semantic clustering

The previously discussed hand-made semiotic segmentation can be refined by con-
sidering the information carried by the analysis of the sequences of degrees. If we
consider the Pop Rock and Hip Hop clusters of Figure 11.13a, we can clearly see
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Figure 11.12: Two possible clusterings. Each cluster has been labeled coherently
with the genre represented by its objects. Clusters whose objects do not share a
similar genre are labelled as Mixed. Big clusters have been labelled according to
their subgroups. Finally, the cluster named as Beatles for Sale in (b) owes its name
to the presence of a neat groups of songs belonging to this album.
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Figure 11.13: Interaction between the semiotic segmentation and the harmonic-based
sequences. (a) The polar dendrogram representing the hierarchical organisation of the
semiotic sequences aligned with the NW algorithm and the semiotic weighting matrix.
Clusters are genre-wise labeled. Mixed clusters corresponds to incoherent groupings
in terms of genre. (b) Re-organisation of the Pop Rock and Hip Hop clusters of (a)
through the alignment given by the combination (Degrees, alternate,NW ). The
new dissimilarity measure has been computed cluster-wise, enhancing the genre
retrieval obtained by the semiotic approach.
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(a) MSA comparison.

Q-score
TC

APDB
SP

TCofee

ProbCons

MUSCLE

ClustalW

MAFFT

0

1

0.5

NorMD
NiRMSD

MD
iRMDS

IC
TCofee

ProbCons
MUSCLE

ClustalW
MAFFT

400

0

600

200

APDB-r

MOS

TCofee

ProbCons

MUSCLE

ClustalW

MAFFT

4

3

2

1

5

0

(b) Reference-free MSA evaluation

Figure 11.14: Reference-free methods are represented in three different barplots
according to their order of magnitude.

that the homogeneity of the former and the heterogeneity of the latter both in
terms of genres and artists retrieval. In order to reshape these two clusters while
maintaining the knowledge provided by the prior semiotic alignment, we compute a
further cluster-wise alignment. We considered the sequences of degrees and com-
puted their dissimilarity through the NW algorithm and the alternate weighting
matrix. Figure 11.13b shows the new clustering of the two groups of songs, where
songs belonging to the Pop Rock cluster occupies the upper part of the dendrogram,
while the Hip Hop cluster’s songs are entirely represented in the lower half of the
dendrogram. As we can see, the songs belonging to the first cluster are joint in a
single group at a dissimilarity value of 0.24, while it is necessary to climb up the
whole dendrogram to obtain a cluster composed by the whole set of the Hip Hop
cluster’s songs.

In the upper-half of the polar dendrogram, the songs by The Beatles are clustered
with those by Eric Clapton. The small cluster composed by four Clapton’s blues
songs is clustered with Tell Me Why and Baby’s Black by Neil Young and The
Beatles respectively. Layla is an outlier of this cluster and is the only ballad that
has been considered. By observing the reorganisation of the Hip Hop cluster, we can
notice how the hip hop songs are grouped together on the bottom-left of the figure.
The only exception represented by the ACDC song which is considered as an outlier
of this cluster. The lower right part of the dendrogram is occupied by rock songs.
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11.3.6 Motif mining and molecular clock

The analysis of the clusterings generated by different types of musical information,
weighting matrices and alignment algorithms allows to grasp the contamination
affecting artists and genres. However, pairwise alignment cannot provide a broad
overview on the structure of the whole sequences. The multiple sequence alignment
of the clustering (Tonality, binary,NW ) has been computed using five different
algorithms. Each results has been evaluated on 11 reference-free quality metrics.
In Figure 11.14a on page 181 the whole set of evaluation in summarised in a single
diagram, that highlights MAFFT as the algorithm giving the best results. A more
informative representation of the MSA algorithms is represented in Figure 11.14b.
Best results are obtained using MAFFT, that presents a lower quality measure than
the other algorithms only evaluating its multiple overlap score. Finally, a motif
analysis has been performed using MEME, in order to identify significant modulation
patterns in the overall structure of the multiple aligned sequences.

Figure 11.15 shows the results of these analyses. By construction, sequences
belonging to the tonality class represent the modulations occurring during a song
and are sensitive to musical transposition. Hence we retrieve the particular tonal
and modulation choices recurring in each cluster.

At first sight, it is possible to notice that although in equal temperament all major
(and relative minor) tonalities are equal, they are not equally distributed among the
clusters. Moreover, it is not surprising that the most recurrent modulations are given
by small displacements on the circle of fifths. Popular music is often composed for a
voice, as the singer could not be at ease by singing a suite of incoherent altered notes
without any link given by a clear modulation, generally starting on a meaningful
pivot chord (Piston et al., 1978, Ch. 8).

The Rock and Blues cluster contains four recurring motifs, based mainly on
the tonalities of A and D, that are a step apart on the cycle of fifths (depicted in
Figure 11.8). This respects the typical blues structure that tends to be stable on
a single tonality (considering only triads). It is interesting to note how the blues
paradigm influenced other compositions: among the artists listed in the Rock and
Blues cluster of Figure 11.12b, we can find names like Aerosmith and Pink Floyd
but also D’Angelo and CoCo Lee, whose genre is nearer to the classic pop than
the other artists. The richer motif corresponding to this cluster is the third one,
where three tonalities are considered, again D, A and E are visualisable as three
consecutive points on the cycle of fifths. If we look more closely at the following
cluster (named Soft Pop), we can see a motif shared more than once by the whole
set of songs, involving only one tonality (D). The second highlighted motif of
this cluster is more complex, suggesting several possible modulations between four
consecutive tonalities on the cycle of fifths. Such a variability often characterises
bridges and modulations which follow the climax of compositions endowed with a
more complex structure. It is surprising how this feature is shared by artists like
Faith Hill, Mariah Carey, Buckcherry and finds its origin in songs by The Beatles.
Clusters with heterogeneous nature are points of interest of our analyses. The
motifs characterizing the World-Soft Hip Hop are shared among songs by Ali Farka
Toure, Madonna and Jedi Mind Tricks. It is interesting to observe how the cluster
labelled as Rock Pop & Folk represents a counterclockwise shift on the circle of
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Figure 11.15: The polar dendrogram constituting the centre of the figure is the
clustering obtained considering sequences of the class Tonality, aligned with the
NW algorithm and the binary weighting matrix. The radial segments represent
the result of the multiple sequence alignment. Recurrent modulation patterns have
been highlighted as coloured segments. Finally, the consensus of the most relevant
motifs have been depicted for each cluster. For the sake of simplicity, the consensus
sequences are composed only by capital and lowercase letters, representing natural
and flat tonalities, respectively (the symbol C denotes the tonality of C major, while
c the major tonality of C[ ).
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fifths respect to the previous one. The tonalities involved in its common patterns
are B[, F,C,G,D,A. The third motif of this cluster coincide with the first of the
previous one. In addition, a particular modulation motif concerning the tonalities of
A and C suggests the utilisation of parsimonious voice leadings (Pearsall, 2012, Ch.
1, p. 10) or secondary dominants (Piston et al., 1978, Ch. 14). This techniques are
subtler than a modulation by pivot chord. This approach is homogeneously shared
among the songs forming this cluster.

The Easy Rock cluster is characterised by a strong tonal stability. It is not
surprising that Gmajor/E minor is the most used tonality in a cluster grouping
authors as Eric Clapton and the britpop band Shack. However, even compositions by
Justin Timberlake and Radiohead are part of this cluster, that mean they modulate
using the same modulation motifs. Considering the Mixed cluster, three main
motifs are shared by compositions of Ray Charles, Buenavista Social Club and The
Cure. The Dance cluster is of particular interest considering how three long motifs
are shared among artists like Gwen Stefani, and Cher, but also Jedi Mind Tricks,
Eric Clapton and two compositions by The Beatles. Finally, we observe that the
second consensus sequence associated to the World/Soft Rock cluster is a half-step
transposition of one of the Rock Pop & Folk grouping.

11.4 Discussion and perspectives
In this chapter we considered a collection of symbolic sequences derived from the
harmonic analysis of the chords progressions of 138 pop songs. These sequences
describe the structure of each song in terms of cadential patterns, modulations and
semiotic blocks. The global pairwise alignment of each type of sequences has been
computed testing different algorithms and weighting matrices. In particular, we
suggested a specific collection of these matrices in order to evaluate the harmonic
data retrieved from the audio.

The pairings of weighting matrix and distance algorithm have been tested on
several applications. First, the detection of cover tracks, where the global pairwise
alignment retrieves the relationship between the original and the cover track and
provides a measurement their dissimilarity. Second, respecting the classical tasks
of MIR, for each clustering of the dataset obtained choosing a particular type of
symbolic sequence, a distance algorithm and a weighting matrix, we computed
its 1 −NN accuracy, the cluster precision and cluster recall in terms of retrieval
of genres and artists. As a third application, we showed how the results of the
alignment computed using the semiotic sequences can be improved in terms of
coherence, by adding the harmonic information concerning the cadential patterns of
each song. Finally, taking advantage of the analyses conducted in the applications
described above, the multiple alignment of the sequences representing the changes
of the tonal centres of each song has been computed using five different algorithms.
A collection of reference-free methods allowed to evaluate the results obtained by
these algorithms and to choose a particular multiple alignment of the sequences
of the dataset. The analysis of recurrent, coherent motifs of the multiple aligned
sequences highlights the transfer of musical inspiration among several artists whose
compositions do not necessarily belong to the same genre, or time. To conclude, we
computed the consensus sequences of the most relevant motifs shared cluster-wise
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by the compositions we analysed. These paradigmatic modulation choices represent
a common harmonic strategy used in the compositions contaminated by the same
motif. The standard analyses based only on the signal content of the audio neglect
this broad high-level viewpoint on the common strategies employed in songs that
would result different, if compared using standard descriptors. Multiple sequence
alignment of harmonic-based sequences provides a tangible evidence of the transfer
of music inspiration over time.





Twelve

Musical Persistence Snapshots

In Part III we used persistent homology to compute a descriptor of music, based on
the deformation of the geometry of the Tonnetz. This construction neglects one of
the most important features of music: a composition evolves in time. This evolution
allows the composer to introduce a musical idea, then describe it and finally proceed
to a new scenario. Would it be possible to refine our analysis considering several
configurations of the Tonnetz in time? What follows is a primal attempt to include
this time-dependency in the vertical topological analysis of the deformed Tonnetz,
in order to compare the evolution in time of two compositions.

12.1 Persistence and time varying systems

Given a continuous function on a topological space we expressed its geometrical
and topological properties in terms of critical homological values of the function. In
our static model a piece of music was represented by a single persistence diagram.
Here, the idea is to study how the Tonnetz evolves when its vertices are updated by
successive notes.

12.1.1 State of the art

The theory of persistent homology has been generalised to the study of time varying
systems in (Cohen-Steiner et al., 2006). Intuitively, given a time-dependent continu-
ous function f : X× [0, 1]→ R, it is possible to represent its evolution in time as a
multiset of continuous paths in the space of persistence diagrams.

In Sections 7.2 and 8.1 we described the algorithm to build the filtration of a
simplicial complex given a function defined on its vertices. Once the filtration is
built and the pairing between critical simplices defined, it is possible to compute the
boundary matrix B (see Equation (7.2.1)), and its decomposition B = RU . If the
function varies in time, this variation will be translated in a change of the ordering
of the simplices in the matrix B. The swap of the ith and the (i+ 1)th simplices is
expressed by the product PBP , where P is the permutation matrix swapping the
ith and (i+ 1)th rows and columns of B. To update the pairing of critical simplices
and the persistence diagram, it suffices to recompute the RU -decomposition of the
matrix. In particular, this result can be achieved in linear time in the number of
simplices.

This procedure can be interpreted in terms of a continuous function defined on a
topological space, by considering the evolution of its critical homological values in

187
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H(x̄, 0) = f(x̄)

H(x̄, t1)

H(x̄, t2)

H(x̄, 1) = g(x̄)

Figure 12.1: Homotopy between the functions f, g : X→ Y.The values t ∈ [0, 1] can
be interpreted as time, thus H(x, t) describes the continuous deformation allowing
to transform f in g.

time.

Definition 12.1.1. Let X and Y two topological spaces and I = [0, 1] ∈ R. Consider
two continuous functions f, g : X→ Y. The maps f and g are said homotopic f ' g,
if there exists a continuous function H : X× I → Y called a homotopy, such that
F (x, 0) = f(x) and F (x, 1) = g(x), for every x ∈ X.

Now, consider two tame functions f, g : X→ R. Let H : X× I → R a homotopy
between f and g. Assuming that F (x, t) is tame for every t ∈ [0, 1], we have a
persistence diagram of dimension k, for every couple (t, k) ∈ I × Z. Let R̄3 be
the extended Euclidean space including the points at infinity. The time-dependent
collection of k-persistence diagrams is called a k-dimensional vineyard. The 3-
dimensional trajectory associated to each corner-point is called a vine. The different
kind of paths described by the vines can be divided in three different classes. A vine
is said

1. open if it is represented by a path composed by proper corner points for every
t ∈ I;

2. closed if it starts and ends at an off-diagonal point;

3. half-open or half-closed if it starts (ends) on the diagonal plane and it ends
(starts) at an off-diagonal point.

In Figure 12.2 on the facing page two open vines are represented as solid paths,
a half-open and a half-closed vine are depicted as dashed trajectories, while the
dotted path corresponds to a closed vine. If the homotopy is smooth, the vine is
also smooth, the only exceptions are represented by the points in which the pairing
of homology critical values change. These points are called knees points and come
in pairs. We refer to (Cohen-Steiner et al., 2006) for the discussion of the possible
configurations of vines, that shall not be used in this chapter.
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t

b

d

Figure 12.2: An example of vineyard. The axes represent the time t, the birth level
b and the death level d of the k-homology classes of a system evolving in time. Vines
are represented as continuous paths.

In general, a vineyard has a complicated geometrical structure. Statistics has
been introduced in this theory in order to provide a unique mean diagram associated
to the vineyard (Mileyko et al., 2011; Munch et al., 2012; Munch, 2013).

12.2 Dissimilarity of persistence time-series
Albeit vineyards represent a powerful tool, for the description of the time-varying
systems, their interpretation is not intuitive. In addition, there is not a general
technique that allows to compare vineyards deduced from the evolution of two
different topological spaces. Furthermore, the comparison of two mean diagrams
cannot provide a description of local changes in the evolution of the space that can
be relevant.

Let X be a topological space, f : X × [0, T ] → R a piecewise linear function
and t = { t0, . . . , tn } a partition of (n + 1) evenly spaced points of [0, T ] ⊂ R. A
k-persistence diagram Dfi,k is associated to each instant ti. The collection of these
k-persistence snapshots is a time series Df,n = {Dfi,k }

n
i=0 ⊂ D∞. We name Df,n a

k-persistence time series.

12.2.1 Dynamic Time Warping algorithm for persistence time
series

Let tn = { t1, . . . , tn } and tm = { t1, . . . , tm } two evenly spaced partition of [0, Tf ]
and [0, Tg], respectively, where Tf , Tg ∈ R and m,n ∈ N. Let

f : T × [0, T1]→ R
g : T × [0, T2]→ R

be two functions, such that fti and gtj are tame for every i ∈ {1, . . . , n} and j ∈
{1, . . . ,m}, respectively. Consider the two persistence time series Df,n = {Dfi,k }

n
i=0

and Dg,k = {Dgi,k }
m
i=0 associated to the evolution of the two functions.
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There exists several methods to evaluate the dissimilarity of two time series
in a metric space, in particular Dynamic Time Warping has already been used
in this work in Section 3.7.1 to obtain the dissimilarity scores of multivariate
time series and in Section 11.1.1 to compute the pairwise alignment of symbolic
sequences. By definition, the bottleneck distance between k-persistence diagrams
dB,k : Dk ×Dk → R satisfies the three properties that characterise a cost function
for every k ∈ Z. Let x, y ∈ Dk, then

• dB,k(x, y) > 0 for every x, y and for every k ∈ Z;

• dB,k(x, y) = 0 if and only if x = y;

• dB,k(x, y) = dB(y, x) for every x, y ∈ Dk, for every k ∈ Z.

Let Df and Dg be two time series of k-persistence diagrams of length n,m ∈ N
respectively and α and β two natural numbers such that 1 6 α 6 n and 1 6 β 6 m.
Following the notation introduced in Section 3.7.1, the DTW between two sequences
of k-persistence diagrams is given by the computation of the optimal warping path
γ∗:

DTW (Df ,Dg) = dBγ∗ (Df ,Dg)
= min

{
dBγ (Df ,Dg)

∣∣ γ is an (n,m)− warping path
}
.

In particular, the DTW inherits the symmetry by the bottleneck distance and the
tameness of f and g assures the bottleneck stability of every diagram Dfi and Dgj ,
with i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}.

Consider the prefix sequences Df,α = {Dfi,k }
α
i=0 and symmetrically Dg,β =

{Dgi,k }
β
i=0. For simplicity, the index k specifying the dimension of the persistence

diagram shall be omitted if the context is clear. Let

A (α, β) := DTW (Df,α, Dg,β) ,

be the entry of the accumulated cost matrix, then A (n,m) = DTW (Df ,Dg).

Theorem 12.2.1. Let A be the accumulated cost matrix. The identities

1. A (α, 1) =
∑α
l=1 dB (Dfl, Dg1), for 1 6 α 6 n;

2. A (1, β) =
∑β
l=1 dB (Df1, Dgl), for 1 6 β 6 m;

3. A (α, β) = min {A (α− 1, β − 1) , A (α− 1, β) , A (α, β − 1) }+dB (Dfα, Dgβ),
for 1 < α 6 n and 1 < β 6 m.

hold. Moreover, the number of operations required for the computation of DTW (Df,n, Dg,m)
is O(nm).

The theorem holds for general cost functions and it is proved in (Senin, 2008). The
optimal warping path with respect to the accumulated cost matrix is computed
through the Algorithm 12.1.
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Algorithm 12.1 Optimal warping path.

Input:
A . Accumulated cost matrix.

Output:
γ∗ = { γ∗1 , . . . , γ∗l } . Optimal warping path.

1: γ∗l = (n,m) and γ∗1 = (1, 1);
2: while l > 1 do

3: γ∗l−1 =


(1, β − 1) , if α = 1
(α− 1, 1) , if β = 1
min {A (α− 1, β − 1) , A (α− 1, β) , A (α, β − 1) } , otherwise

.

4: end while

12.3 Applications

In the following applications we use DTW to compute the dissimilarity between 0
and 1-persistence time series associated to three datasets composed by classical, pop
and jazz compositions, respectively. Often, musical phrases are organised respect to
the metric of the piece: modulations occur each four or eight bars in a jazz context,
as the melodic line of the voice is arranged in a question and answer paradigm
consisting of cycles of 2 or 4 bars in pop music. Thus, reflecting the approach
followed when performing signal analysis, it is reasonable to space observations in
time by taking into account the subdivision of each piece in bars. Therefore, it is
also reasonable to study the properties of these features when the windowing is
varied.

12.3.1 Musical interpretation

First of all, it is necessary to provide an interpretation of the music features repre-
sented by the persistence time series. In Figure 12.3 on the next page, a sequence of
six 0-persistence diagrams computed considering a 8-bar windowing of Klavierstück I
is depicted. We recall that the 0th persistent module describes the connectedness of
the torus F , when it is rebuilt via the filtration induced by the height function on T.
First of all, note that the axes of the persistence diagrams in the figure have different
limits. Consider the top-left persistence diagram, the two corner points represent
the lifespan of two connected components. The first one is a cornerpoint at infinity.
It reveals the connected nature of F and represents the subcomplex of minimal
height retrieved by the height function. The proper cornerpoint, as we mentioned
in Section 8.2 points out the presence of a minimum of the height function, which
is disconnected from the first one. The remainder of the observations describes
the changes in terms of death and birth-levels of such minima. In particular, the
connected components correspond to disconnected subcomplexes of the fundamental
domain of the Tonnetz. The chromatic and atonal nature of the piece is suggested by
the persistence of these minima. Moreover, the increasing growth of the birth-levels
of the points of the whole multiset grabs the homogeneous gain of height of the
whole simplicial complex T. This means that the whole chromatic scale is utilised
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schon_1 

Figure 12.3: The six first observation of the 0-persistence time series. Klavierstück I
- Schönberg. Persistence snapshots are taken each 8 bars.

in the composition in a uniform way, both in terms of pitches and duration of
the notes. The relative distances among corner points represent their disparity
when represented as subcomplex of the deformed Tonnetz T. The variability of
their configuration highlights the different preferred directions followed by the piece:
disconnected regions of the Tonnetz at different heights represent pitch class or
pitch-class sets that we have listened to in inverse proportion to their birth-level in
the filtration.

In Figure 12.4 the persistence time series associated to the same composition, but
composed by 1-persistence diagrams is shown. We recall, that the two cornerpoints
at infinity correspond to the two generators of F consisting of major and minor
third intervals, respectively. In the first observations the two cornerpoints at infinity
are well separated and a third maximum disconnected from the others give rise
to a proper cornerpoint. This homology class vanishes at the second observation
suggesting a progressive compression of the whole set of pitch classes. The same
idea is highlighted by the progressive reduction of the distance between the two
cornerpoints at infinity, which are fused in a single point of multiplicity 2 in the
third observation.

We are now ready to align two k-persistence time series and compute their
dissimilarity and their optimal warping path, using the DTW algorithm.

12.3.2 Optimal persistence warping path

Given a set of k-persistence time series, the calculation of the pairwise bottleneck
distance, which normally represents a computationally hard task, can be performed
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schon_1_1 

Figure 12.4: Consecutive observations of a 1-persistence time series. Klavierstück I -
Schönberg. Persistence snapshots taken at constant relative time intervals of 8 bars.

in a reasonable amount of time, due to the low dimensionality and simple structure
of F . DTW allows to compute the pairwise optimal warping path between two
compositions. In Figure 12.5 on the following page two examples are depicted. The
images in the first row of the figure describe the optimal warping path between the
third movement of the Sonata n. 8 by Mozart and Jeux d’Eau by Ravel, for an
8 and a 4-bars windowing, respectively. The second row represents the alignment
of two pop songs, namely Genie in a Bottle by Christina Aguilera and Fortress
around Your Heart by Sting. Both pieces have been aligned using a 8 and a 4-bars
windowing.

According to Theorem 12.2.1, the first point of the warping path is assumed to
be the (1, 1) entry of the accumulated cost matrix. This assumption corresponds
to force the alignment of the first w bars of the two pieces, where w ∈ N is the
size of the windows we consider. Horizontal and vertical segments of the piecewise
linear path along the matrix correspond to the insertion of gaps while aligning two
symbolic sequences. Thus, in musical terms, the optimal warping path represents
comparable regions of the two compositions represented by similar (near with respect
to the bottleneck distance) persistence diagrams. In Figure 12.6 two persistence
time series associated to the compositions A and B are represented by piecewise line
segments and their observations are labelled according to a 4-bars windowing. The
dashed lines represent the alignment of the compositions described by the optimal
warping path. The first twelve measures of A are associated to the first four bars of
B. Assuming to consider an accumulated cost matrix whose columns represent the
observations of A and rows the observations of B, the warping path would connect
A(1, 1) to A(1, 3) and it is a horizontal line segment. Symmetrically, the last eight
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(a) Sonata n. 8 - 3, Mozart vs. Jeux d’Eau -
Ravel (8 bars windowing).

(b) Sonata n. 8 - 3, Mozart vs. Jeux d’Eau -
Ravel (4 bars windowing).

(c) Genie in a Bottle, Aguilera vs Fortress of
Your Heart, Sting (8 bars windowing).

(d) Genie in a Bottle, Aguilera vs Fortress of
Your Heart, Sting (4 bars windowing).

Figure 12.5: Accumulated cost matrices and optimal warping paths between 0-
persistence time series.

bars of A are associated to the four last measures of B. In this region the warping
path would be represented as a vertical line segment.

Following the musical interpretation of the 0-persistence diagrams we gave
in Section 12.3.1 and the results discussed in Section 8.2, the optimal warping
path suggests local regions of the two pieces in which the minima of the height
function evaluated on the two deformed Tonnetze are organised in a similar way.
Symmetrically the optimal warping path between 1-persistence time series highlights
regions in which the 1-dimensional holes defined by the height function, have similar
configurations in terms of height (birth-level) and connectedness (number and
relevance of the cornerpoints), with respect to the structure of the Tonnetz. Hence, a
timespan in which the compositional choices characterising the pieces are comparable
in terms of their persistent representation.
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Figure 12.6: Dynamic time warping between persistence time-series associated to two
compositions A and B. Observations are labelled according to a 4-bars windowing.

Composition Movements Author
Sonata n. 27 1,2,3 Beethoven
Arabesque Debussy
Sonata n. 8 1,2 Mozart
Jeux d’Eau Ravel
Klavierstük I,II Schönberg

Table 12.1: Summary of the compositions of the classical music dataset.

12.3.3 Dissimilarity of persistence time series

Let Df = {Dfi,k }
n
i=0 and Dg = {Dgi,k }

m
i=0 be two persistence time series of

k-persistence diagram, for k ∈ Z. The computation of

DTW (D1,D2) = A(n,m)

allows to retrieve the dissimilarity between the two time series.
This value provides a measure of the effort needed to produce the minimal cost

elastic transformation described by the optimal warping path, in order to warp a
composition into the other.

In Figure 12.8 on page 200 the dissimilarity score computed by aligning the
compositions belonging to three datasets are depicted. Each row of the image
consists of two distance matrices, derived from an 8 (on the left) and 4-bars (on the
right) windowing, respectively.

Classical alignments

Observe the first row of the figure. The pieces of the dataset are listed in Table 12.1.
Proceed reading the matrix from top to bottom. Both Schönberg’s compositions
(we will denote them by DK11-1 and DK11-2) gave high dissimilarity score when
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Label Ensemble Style
Caravan-js 4 Gtrs, Org, Kora, Bgtr B.B. arr., no solo
Caravan-md Tpt, Pf, Bgtr Rich solos and Tensions
Fly-bz Bgtr, Vib, Kora, Pf B.B. arr., chromatic solos
Fly-dc Flt, Tnr & Bar Sax, F Hn, Org, Gtr B.B. arr., Manouche guitar
Fly-gw Big Band B. B. arr.
How-gr 2 Obss, 2 Gtrs, Bgtr Manouche
How-jh Pf, Bgtr Chromatic solo
How-mw Tpt, Gtr, Bgtr, Str, Pf Embellishments, chromatic

Table 12.2: Summary of the compositions of the jazz dataset.

aligned with the tonal pieces. Consider the results of the alignment of the whole
dataset with DK11-2 (first row of the matrix). The two minimal dissimilarity scores
we retrieved are obtained comparing DK11-2 with the compositions by Debussy and
Ravel. DK11-1 obtained smaller dissimilarity scores, however they are sufficient to
segregate it from the tonal pieces we considered. The corresponding results depicted
in the distance matrix on the left do not differ greatly from the one we just discussed.
However the tonal traces left in DK11-1 are highlighted by the finer windowing
we considered. The same consideration holds focusing on the scores realised by
Jeux d’Eau. The surprisingly low score generated by its alignment with the second
movement of the Beethoven’s sonata changes considering a 4-bars windowing. In this
case the composition by Ravel results segregated form the other ones we considered,
while the 2nd movements of the sonata n. 27 obtain a surprisingly low dissimilarity
score, when it is aligned with DK11-1. The tonal and pentatonic compositions are
highlighted as similar in both representations.

Pop alignments

The dissimilarity scores computed on the dataset composed by 2 songs by Christina
Aguilera and 3 pieces by Paul McCartney and Sting respectively confirm the results
we obtained by the analysis of the same dataset in Section 8.2. In both diagrams the
two Aguilera’s pieces result well separated from the others. Sting’s Fields of Gold
and If You Love Somebody Set Them Free turn out to be similar to the pieces by
McCartney. It is not the case for Fortress Around Your Heart that recollects high
dissimilarity scores when aligned to the other songs of the dataset. It is interesting
to notice how the two distance matrices are almost invariant respect to the change
of windowing.

Jazz alignments

The classification of jazz standards is a difficult task due to the improvisational
nature of this style. We considered a dataset composed by two versions of Caravan
and three versions of Fly Me to the Moon and How High the Moon, respectively.
Each interpretation is characterised by different choices in terms of ensemble and
arrangements. We summarised these features in Table 12.2 denoting a big band
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Figure 12.7: Optimal warping path between to versions of Caravan. The positions
of the gaps correspond to the solo parts of the longer version (frames 25-50 and
51-65 respectively).

arrangement (breaks, horns fills, et cetera) as B.B. arr., pointing out the presence of
solo parts, their main features, or particular stylistic choices.

The dissimilarity scores resulting by the global pairwise alignment of the per-
sistence time series associated to these compositions are depicted in the third row
of Figure 12.8. In this example, the information retrieved by the alignment is twofold:
on one hand it stresses the mere melodic and harmonic similarity. On the other hand,
it retrieves common stylistic choices. In both distance matrices the scores associated
to the same compositions are reasonably low, highlighting their similarity in the case
of Fly Me to the Moon and How High the Moon. An exception is represented by the
two versions of Caravan. The presence of rich solos in Caravan-md distinguishes it
neatly by the other interpretation of the standard. Notice how the optimal warping
path between these two pieces depicted in Figure 12.7 tries to align them on the
themes, skipping the solo parts. Hence, the evolution in time of the persistence
diagrams grasps the difference between an organised thematic flow, and a freer
improvisational context. Moreover, we notice how the three versions of Fly Me to
the Moon result well separated from the three versions of How High the Moon only
utilising a 4-bars windowing. This feature is opposite to the one characterising the
analysis of the Pop dataset, stressing the different dynamics of the two styles.

12.4 Discussion and perspectives

We presented a method to adapt persistent homology to the time-dependent nature
of music. We introduced the concept of persistent snapshots and presented the
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state-of-the-art methods concerning time-varying system and the computation of
the evolution of persistence properties of a shape in time. The nature of the model
proposed in Part III and of the functions encoding the information concerning the
pitch classes and the durations of notes allowed us to consider time series, whose
observations provide a persistence characterisation of collections of frames of a
composition, obtained considering its subdivision into bars. We gave a musical
interpretation of the evolution in time of the persistence diagrams associated to
a composition and we utilised DTW to provide an alignment of persistence time
series. Finally, we analyse both the optimal warping path and the alignment score of
collections of classical (tonal, modal and atonal) compositions, pop songs endowed
with different harmonic complexity and a collection of jazz standards played by
different ensembles, with different arrangements and solo parts. The computation
of the pairwise alignment scores for each dataset, revealed how in a classical music
context the persistence time series classify tonal, modal and atonal compositions.
The stability respect to a change of windowing of the pop compositions and hence
the possibility to study them with a coarser distribution of observations has been
highlighted, as the retrieval of the peculiar harmonic choices made in Fortress Around
Your Heart. The analysis of jazz standards is more complex due to their variability
in terms of improvisational styles, the generous utilisation of harmonic substitutions
and the highly variable composition of the ensemble. Nevertheless, the tool we
proposed is able to retrieve the similarity of different versions of the same standard,
as to distinguish between the ordered structure of the theme, in opposition to the
more entropic solo parts.

The natural development of this work is to extend it to the analysis of audio. The
stability of the persistence diagrams assures that small variations of the function will
be represented as small variations of the persistence diagrams forming the persistence
time series. A chromagram can also be used to produce dynamic deformations of
the Tonnetz, as the consonance function could be used to describe the variations in
terms of tension/resolution of the degrees of the chromatic scale in relationship to a
variable harmonic choice.

The variation of the Tonnetz in time can be used to generate music. The
study of free or constrained trajectories of a mass on the time-dependent deformed
surface induced by a composition can be used to create a new melody, according to
the preferred directions defined by the deformation. Different melodies computed
considering the nearest pitch class or pitch-class set to the mass can be classified in
terms of periodicity and symmetry. The same ideas can be extended to a system of
n masses moving on the surface. Some interesting starting points can be borrowed
by the theory of configuration and reconfiguration spaces (Abrams and Ghrist, 2002;
Ghrist and Peterson, 2007).

Persistence time series could be substituted by continuous vineyards, which are
suitable for representing the variations induced by piecewise constant and piecewise
linear functions. It would be interesting to study the alignment between continuous
representation of the variation in time of persistence diagrams considering the
minimal homotopy leading from a vineyards to another one. The musical framework
we introduced is particularly suitable for this task, given the simple structure of the
persistence diagrams derived from the Tonnetz and the possibility to provide their
musical interpretation.
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The persistence time series we introduced in this last chapter have full memory
with respect to the notes that are played in time. It would be possible to introduce
in the model a gravity function, in order to represent the plasticity of the listener’s
perception. In a pitch-duration-based model this assumption would enhance the
representation of repeated musical ideas, while in a consonance-oriented model this
function would reflect the decreasing of the tensional content of a long lasting or
repeated harmonic/melodic choice.
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Figure 12.8: Alignment score of 0-persistence time series for different datasets and
variable windowing. The colour and the size of the circles associated to each pair of
pieces depends on their alignment score.
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Thirteen

Conclusion

The question that inspired the investigations portrayed in this work is simple: why
some melodies create interesting musical soundscapes even when they are simply
whistled, while others need an orchestra to be easy to understand?

To answer this question, we represented music by using topological and ge-
ometrical models, following the twofold interpretation suggested by (Kurth and
Rothfarb, 1991). We tried to keep the dimensionality of our representation as low as
possible, in order to guarantee a visual intuition over the entities that we described
mathematically. Furthermore, the metric that is naturally defined on the spaces we
considered allows to define a distance between musical objects in a natural way.

We used collections of partial permutation matrices and three dimensional paths
to describe voice leadings and counterpoint. Our model surely needs improvements in
order to reflect the vast information contained in a whole contrapuntal composition,
and also to describe the numerous techniques that are used by composers to generate
interest in the listener. As we stated in the introduction, despite some attempts have
been made (Birkhoff, 1933) and it is an open line of research (Juslin and Västfjäll,
2008; Tulipano and Bergomi, 2015; Brattico and Pearce, 2013), it is not yet possible to
evaluate the aesthetics of music objectively. Thus, it is not possible to speak of a truly
mathematical complexity, unless considering a sort of understandability/originality
dilemma: the action of the composer on a piece, in order to shape its resolution and
tension structure in time, in order to accompany or frustrate the expectation of the
listener. From this consideration follows the necessity of producing time-dependent
models and study their patterns. We hope that, beyond the limitations of the model
we suggest, its formal core and novel outline shall give a new perspective on the
study and representation of counterpoint.

Second, we encoded part of the information contained in a musical phrase by
displacing the vertices of the well-known Euler Tonnetz, in its simplicial complex
interpretation. The assumption, in this case, does not concern the concatenation in
time of motifs endowed with nuanced complexities, but the hypothesis that a core
musical idea should be repeated, although slightly transformed, along a composition.
In this model, a piece of music is represented as a three dimensional shape. Persistent
homology, computed on the deformed surfaces derived from the Tonnetz, is able
to grasp the main ideas used in a composition and to encode them in a simple
representation. The main advantages of this approach are twofold. On one side, the
topological tools we used can deal with any finite number of dimensions and have
been proved to be effective in the retrieval of different musical properties. On the
other side, persistence diagrams are points of a metric space. Hence, it is possible to
compare them, even though the computational complexity of this distance requires
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a large amount of time (interesting researches are currently investigating novel
algorithms for the computation of this distance (Di Fabio and Ferri, 2015)).

When questioning the possible representations of music, it also natural to wonder
if it is describable through absolute models. In this work, we do not provide a
ultimate answer to this question. However, we assumed that the perception of
music depends on the culture and the background of the listener. According to this
observation, we introduced models whose main ingredients are the Tonnetz and the
consonance function (Plomp and Levelt, 1965). This coupling of a musicological
model and a function deduced from the fitting of experimental data, allows to
consider both the symbolic structure of music and the information carried by the
signal. Our consonance-based shapes are limited compared to the abstraction level
provided by the standard Tonnetz. Nevertheless, they reflect the perceptive nature
of music, providing interesting and coherent results.

Finally, the two last models we suggested are a consequence of the exploration
of both the horizontal and vertical approaches. They are not to be considered
as improvements of the previously investigated strategies. On the contrary, they
are endowed with their own independence, and offer a novel viewpoint on the
complementarity of low and high-level features of music. Moreover they take into
account the dynamical nature of real-life musical applications.

Music proved to be a rich source of inspiration for the development of mathe-
matical tools, providing a suitable framework for the novel time-series approach to
the topological characterisation of time-varying systems.

If the primary goal of this research was to provide a complete formalisation of
the compositional process, we are surely far from giving a broad representation of all
its features. However, we hope that this work shall represent a new starting point for
future researches in music analysis, music information retrieval and computational
algebraic topology.



Fourteen

Future works

The results portrayed in this work can be divided in three main groups, according
to the three directions we explored. The modelling and the visualisation of voice
leadings, the topological description of music features and, finally, the time-oriented
analysis of musical entities. Following this structure, we give a brief summary of the
results discussed at the end of each chapter. Then each subsection provides a more
detailed overview on their future developments.

14.1 Voice-leading modelling

14.1.1 Voice leadings as partial permutations and geodesics

The formalisation of simultaneous motions of voices provides a handy representation
of a voice leading as a partial permutation matrix. The representation of voice
leadings as geodesic paths in several spaces allows to simply understand their
representation as a concatenation of geodesics and the different information retrieved
by the standard spaces of music analysis.

The information carried by each partial permutation matrix has been rewritten
as a five-dimensional vector, in order to represent rested voices. Thus, given a
contrapuntal composition it is possible to compute its paradigmatic voice leadings
and to represent them as a multiset of 5-dimensional points. Furthermore, the
interpretation of the sequence of vectors as observations of a time series allows to
describe the evolution of voices’ motions in time. Thus, to define a dissimilarity
measure describing two compositions, it is possible to apply the powerful techniques
used for the computation of the distance between time series. Finally, a particular
class of partial singular braids is used to visualise the voice leadings between chords
represented as pitches and pitch classes.

Test and evaluation

The algorithm for the comparison of time series of complexity vectors has been
tested on a small set of compositions. The evaluation of its accuracy in relation to
tasks such as the artist retrieval and both the stylistic and temporal classification
should be computed on large datasets. The same holds for the visualisation of
the paradigmatic voice leading choices as a multiset of points. This representation
should be evaluated on a large collection of compositions by a musicologist, which
could provide a meaningful interpretation of the 3-dimensional projections of the
point cloud.
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Figure 14.1: The partial permutation matrices give a low-dimensional representation
of the features of each voice leading. Here, they are used to feed a harmonic
conditional restricted Boltzmann machine. The lateral connections in the visible
layer are used to retrieve the harmonic structure of chords. Past events are taken
into account thanks to the autoregressive connections between the current and past
units.

Higher order phenomena

The complexity vector we introduced takes into account only the features of a single
voice leading. This analysis is extremely localised, and it is blind with respect to
phenomena occurring in the concatenation of several voice leadings. For instance,
the overlap of two voices (described in Section 1.2) is visible only by considering
more than one voice leading at a time. In addition, the behaviour of each voice can
be tracked by analysing its evolution in the concatenation of partial permutation
matrices. This approach allows to measure the length of the crossings between voices
and hence, a more accurate computation of the overall complexity of a polyphonic
composition.

A deep learning model for orchestration

The analysis of the voice leading complexity can be used to implement the structure
of generative models for automatic orchestration (Crestel, 2015). The deep neural
network depicted in Figure 14.1, based on the models described in (Taylor and
Hinton, 2009; Osindero and Hinton, 2008) and implemented by Léopold Crestel aims
at the generation of real-time orchestrations of symbolic data (onset, pitch, duration,
velocity). The network is trained by comparing piano and orchestral arrangements
of a set of compositions. The number of instruments composing an orchestra (15 at
the actual state of development of the model) give rise to high-dimensional, sparse
representations, that can be simplified considering the representation of voice leadings
through partial permutations. Furthermore, we suggested a simplistic extension
of the partial permutation model in order to classify contrapuntal composition of
other species than the first. In this context, the discretisation used to compute
the complexity of the voice leadings shall be improved by the (noteon/noteoff)
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Figure 14.2: Trefoil knot. Identifying the domain and co-domain of a braid b ∈ Bn
produces a closed braid. In particular, any knot can be represented as a closed
braid (Alexander, 1923).

information provided by the MIDI files.

14.1.2 Voice leadings and braids

A concatenation of voice leadings between n-notes chords can be represented as a
piecewise geodesic path in Rn (ordered pitches), Tn (ordered pitch-classes), or An
(pitch-class multisets). When n > 3 this path cannot be easily visualised. Braids
allow to depict a voice leading between n-notes chords as a collection of n paths in
R3. Furthermore, unisons and rests can be represented by intersections (singularity)
and deletion (partiality) of the strands, respectively. In order to univocally associate
a voice leading to a collection of three dimensional paths, we considered the class of
piecewise, positive, partial, singular braids.

Voice leading’s topological qualities

This visualisation strategy can be transformed in a representation space by taking
into account the topological complexity of the braids we defined. We showed
how both the motion of each voice and the intervallic leap it covers during the
voice leading can be represented as the slope of the strand associated to the voice.
The musical relevance of the topological invariants (Birman, 1974) of this voice-
leading-oriented braids should be investigated. For instance, this problem can be
tackled by considering the link generated by the closure of a braid (Alexander, 1928)
(see Figure 14.2 for an example). When it is defined, it is possible to consider the
closure of the multiplication (concatenation and removal of discontinuous strands) of
the partial braids representing a suite of voice leadings. In our model, we assumed
that every crossings between strands are positive. However it is possible to define a
rule determining the sign of the crossings, for instance by taking into account the
slope of the strands. In this way, the information concerning the intervallic leaps of
the voices would be inherited by the structure of the link associated to a braid.
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A distance between pitch and pitch-class sets

We visualised voice leadings between ordered tuples of pitches as a collection of
geodesics paths in R3. The idea is to consider the length of the strands in order
to define a distance between two particular ordered representative of a set of
pitches. In particular, minimal geodesics represent a non-crossing voice leading.
The introduction of crossings implies the use of longer line segments to connect the
pitches. Note that this kind of distance would be different than a mere count of the
crossings, since the length of the segment (or equivalently its slope) describes the
relative intervallic motion of each voice. A symmetric argument can be applied to
pitch-class sets, considering the helices connecting two copies of R/12Z.

14.2 Persistent music features
We interpret the Tonnetz as a 2-dimensional simplicial complex. Its embedding in a
metric space and its structure, in which pitch classes, consonant intervals and triads
are represented as 0, 1 and 2-simplices respectively, have been used in order to take
advantage of a third dimension to add relevant information to its structure.

14.2.1 Pitch classes and durations

As a first application, we use the pitches and durations of a sequence of notes and
chords, in order to define the height of the pitch-classes labelling the vertices of the
Tonnetz. After introducing the theory of persistence homology, the height function
defined on the vertices has been used to induce a filtration of the fundamental
domain of the Tonnetz generated by the major and minor third intervals.

Styles classification

In spite of its simplicity, the first approach we introduced that considers a slice of
the deformed Tonnetz in order to determine a preferred extended shape associated
to a composition, revealed an interesting behaviour when applied to the description
of different styles of classical music. For instance, the shapes retrieved from the
analyses of impressionistic compositions are isomorphic. This result and the ease of
the model are strong points that can lead to an intuitive representation of different
compositional styles. This representation will be tested on large datasets and can be
refined by introducing a variable threshold, in order to take into account the pitch
classes and pitch-class set circulation (Tymoczko, 2011; Bigo, 2013).

14.2.2 A topological music fingerprint

Given a musical phrase, the computation of its persistent homology by considering
the homological critical values of the height function generates two relevant persis-
tence diagrams. The 0-persistence diagram describes the lifespan of the connected
components of the shape along the filtration. The 1-persistence diagram collects the
same information concerning the 1-dimensional holes of the shape. Both these repre-
sentations have a neat musical interpretation. Furthermore, persistence diagrams
are points of a metric space, equipped with the bottleneck distance. This notion
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(a) Time, Hans Zimmer. (b) Sonata n.8, mov. 1,
Mozart.

(c) Klavierstück, I, Schönberg.

Figure 14.3: Visualisation of different compositional styles as sub-level sets of the
height function (light grey area). The displacement of vertices is given by the
duration and pitch classes of notes and chords.

allowed to use the 0 and 1-persistent homology representation of music, to provide
a quantitative analysis of the distance between compositions. Thus, it has been
possible to organise three different datasets (of classical, jazz and pop compositions
respectively), according to their topological representation.

Didactic: composition

The deformed Tonnetze and the contours depicted by the sub-level sets of the height
function highlight the differences between compositional styles. This property can
be used to ease the complicated task of teaching (and learning) how to compose
a piece of music. The 3-dimensional deformation of the Tonnetz can be used to
visualise common tonal and atonal pattern, as depicted in Figure 14.3. Moreover, it
can be a valuable tool for composers and students in composition, allowing them to
produce an immediate visual feedback of their musical ideas and compare them to
common patterns or educational examples.

Extension to audio analysis

It is possible to extract information concerning both pitch classes and duration
of a sequence of notes directly from audio files (Harte and Sandler, 2005). In
a chromagram, a magnitude is associated to each pitch class, representing its
importance over time. The interest of this extension is twofold: on one side the
stability of the persistence diagrams (computed considering tame functions) makes
this representation robust to the small errors introduced by the analysis of the
signal. On the other hand, the information carried by the signal is richer than
the information contained in a MIDI file. The harmonic spectra of melodic and
harmonic instruments influence the chromagram, but also the harmonic contribution
of percussive instruments. Moreover, auditory masking phenomena (Wegel and
Lane, 1924) are non-negligible. Thus, this extension would better approximate our
perception of the musical information.
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Validation

The results obtained by considering both the 0 and 1-dimensional persistent diagram
associated to shapes generated deforming the Tonnetz are promising. In a classical
music context tonal, modal and atonal classical pieces have been represented as
separated clusters. Three different versions of a jazz standard have been grouped
coherently with respect to their arrangements and pop songs belonging to different
artists have been grouped according both to their genre and compositional style.
The 1-persistence diagrams seemed to grab the similarity between melodies, but
also to distinguish between the ordered structure of a theme and the more entropic
solo parts. However it is necessary to test all this feature on large datasets. The
extension of the model to the analysis of the audio shall be fundamental to test our
model on a heterogenous and rich collection of compositions

Application to other music-oriented simplicial complexes

In this work, we considered the Tonnetz for its acoustical and musicological relevance.
However, our constructions can be applied to every simplicial complex, graph or
point cloud having a musical meaning. Clearly, one difficulty is the choice of the
filtration function, as it should reflect the musical persistence properties one wants
to consider.

Higher dimensions

In our model, we considered only three dimensions, to visualise the deformations
of the Tonnetz. However, persistent homology is suitable for the analysis of high-
dimensional data, that makes possible to study features such as the velocity, the
position of a note in a bar respect to a certain metric and dynamics of a sequence of
notes.

Multidimensional persistence

A further development consists in the extension of the deformed model to multidi-
mensional persistence (Carlsson and Zomorodian, 2009; Cagliari et al., 2010). This
theory allows to explore several filtrations of a topological space. In Figure 14.4, a
bi-filtration of a triangulation of an ant has been defined considering the position
of the simplices with respect to the y-axis and their discrete Gaussian curvature
κ. Fixing one of the parameters, we obtain a filtration of the shape and hence, its
representation in terms of persistence diagrams. Although this multidimensional
model allows to build an accurate fingerprint of the shape, it is computationally
hard. We guess that it would be possible to decrease the complexity of this problem,
by consider the information obtained by the analysis of random filtrations. Similar
diagrams obtained varying a single parameter identify the topological and geometri-
cal property of the shape that are robust to this parameter. It would be possible to
restate the evaluation of the parameters governing the multidimensional filtration as
a problem of exploration/exploitation. On one side the (random) exploration of the
space of filtrations. On the other side, the exploitation of the knowledge acquired
by exploring the space randomly. In the future, it would be interesting to consider
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Figure 14.4: Multidimensional persistence. A 2-dimensional filtration, whose param-
eters are the discrete Gaussian curvature κ and the height function y. Persistent
homology can be applied on each filtration obtained by fixing one of the two param-
eters.

this approach, inspired by the theory of reinforcement learning (Watkins and Dayan,
1992).

14.2.3 Audio feature deformed Tonnetz

In a second application, we modified either the labelling function associated to the
vertices of the Tonnetz and the function used to deform its geometry. The former
is restricted to the pitches corresponding to the chromatic scale built on a single
octave, the latter computes the consonance (Plomp and Levelt, 1965) between a
reference pitch and the pitches of the chromatic scale used to label the vertices.

The invariance of the consonance function in terms of uniform transposition
of the chromatic scale and the reference notes is discussed, as well as its octave
dependence. The space generated by deforming the Tonnetz with the consonance-
based function is used to classify the 21 modal scales derived from the diatonic,
melodic and harmonic minor scales. After fixing a reference pitch and a labelling of
the vertices, we represented these scales as subsets of the 0-skeleton of the deformed
Tonnetz. Thereafter, we consider the 0-persistent homology of each point cloud
generated by its filtered Vietoris-Rips complex. The resulting consonance-based
persistent fingerprint of modes recognises different sonorities, organising them in
coherent clusters according to the disposition of their tension and resolution pitches
on the Tonnetz. Moreover, the changes in the clustering given by the uniform
transposition of the chromatic scale of an octave with respect to the reference pitch
reflect the properties of the chords (first, third, fifth and seventh degrees) associated
to the modal scales.
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Figure 14.5: Configuration of the tensions (circles) and resolutions (squares) on the
consonance-deformed Tonnetz obtained by considering block voicings of a major
chord and the chromatic scale built an octave higher than the root note of the triad.

Melodic phrasing analysis

The space that we proposed is limited, since its geometry varies for uniform octave
transposition of the chromatic scale used to label the vertices of the Tonnetz.
Nevertheless, its topological properties are sensitive to the different sonorities we
examined. Thus, a natural development of this work is the analysis of point clouds
generated by other scales and, then, by more complex musical phrases. As we
suggested for the model discussed above, it could be possible to describe additional
features (for instance the occurrences of pitches) embedding the Tonnetz in a
higher-dimensional space.

Learning the melodic phrasing

Every music teacher experienced how the concept of mode, sonority, or the use of
the right tension at the right moment can be awkward for a beginner or even an
experienced musician. We are surely far from explaining in a clear and unifying way
these concepts. The geometric representation of consonance we suggested inherits the
cultural and temporal dependence of the curve of Plomp and Levelt. Nevertheless,
the visualisation of the consonance-deformed Tonnetz and the configurations of
its vertices in terms of tension and resolution patterns could be used in a didactic
context, to explain the aforementioned ideas. In Figure 14.5, the pitches (of the
chromatic scale built an octave higher than the root of the chord) are highlighted
to represent typical tensions and resolutions on a major triad, to obtain a bluesy
sonority. Looking at this representation, one can build new patterns, that are not
evident when the scales are visualised directly on an instrument. In addition, pitches
connected by an edge on the Tonnetz or representing the vertices of a triangle
are acoustically related. For instance, in the figure the tritone substitution (G[
major for C major) is represented as a triangle of tensions, juxtaposed to a triangle
of resolutions (A minor triad). This representation gives an insight on harmonic
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substitutions (often considered as complex rules), rather than valuable compositional
or improvisational techniques.

14.2.4 Harmonic variable geometry

An extension of the consonance function to chords has been suggested and used to
compute the deformation of the vertices of the Tonnetz labelled with the pitches of
a chromatic scale. The height of each vertex is computed by considering the overall
consonance of the superposition of its label and a fixed triad. In this setting, we
compared the surfaces generated by six classes of triads. In particular, the values of
the discrete Gaussian curvature have an interesting musical interpretation in terms
of harmonic classification.

We classified the shapes obtained by deforming the Tonnetz with the six classes
of triads, by computing their persistent homology. We compared the three different
filtrations induced by the sub-level sets of the consonance function, the Vietoris-Rips
complex and the discrete Gaussian curvature. The clustering of the shapes produced
by the distance between their 0-persistence diagrams gave interesting preliminary
results, that reflect different harmonic properties of the triads that we considered.

Chords and voicing classification

The model shall be tested on seventh chords. This analysis would provide an
interesting vision of the block voicing technique, commonly used in jazz arrangements.
Furthermore, we proved that in equal temperament the inversions of a chord are
classified by their consonance value modulo changes of the harmonic spectrum used
to compute the consonance of the voicings. The study of several families of chords
and their inversions, in terms of geometrical configurations (shapes) of the deformed
Tonnetz can lead to a classification of chords parametrisable in terms of harmonic
spectra and voicing classes.

Configuration and generation

The variable geometry characterising both the modal and harmonic-oriented deformed
Tonnetz can be used for the automatic generation of melodic lines. Figure 14.6
depicts the trajectories of several particles moving under gravity, on the surface of a
deformed Tonnetz. Each trajectory depends on the mass and the initial condition
(height, position with respect to the plane z = 0 and initial speed) of each particle.
The retrieval of the nearest pitch along the trajectory of each particle in time allows
to define a melody (in terms of pitches and durations). Furthermore, it could be
interesting to study the configurations of more than one particle (Abrams and Ghrist,
2002; Ghrist and Peterson, 2007) by modelling the superpositions (and collisions) of
several melodies on a given harmonic structure.

It is natural to extend this model to a dynamical framework. We can consider
these trajectories while the geometry of the space updates according to a progression
of bass or harmonic changes. On a given accompaniment, it would also be interesting
to study the periodicity of the trajectories and introduce symmetries in order to
influence the paths of the particles.
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Figure 14.6: Gravity on the deformed Tonnetz. Masses move following the defor-
mation of the surface. The pitches or pitch classes lying in a neighbourhood of the
trajectories can be used to generate melodic lines.

14.3 Harmonic and persistence time series

The horizontal representation did not take into account the intervallic relationships
between the notes constituting the domain and codomain of the voice leading. The
vertical analysis neglected the ordering of notes and chords in time. In the two last
applications, we recovered this ordering. On one hand, we considered time series
whose observations are computed from a harmonic analysis of a composition. On
the other hand, persistence time series represent the geometrical properties of the
deformation of the Tonnetz at evenly-spaced instants.

14.3.1 Multiple (harmonic) sequences alignment

We suggested a novel method based on multiple sequences alignment, for the
analysis of pop music. Albeit global pairwise alignment has already been applied
to music (Pardo and Sanghi, 2005; İzmirli and Dannenberg, 2010; Martin et al.,
2012), our approach consists in the exploitation of the both the signal and symbolic
information and in the definition and test of a set of ad hoc tools for the alignment of
harmonic-oriented symbolic sequences. Furthermore, multiple sequences alignment
allowed us to give an encompassing analysis of the propagation of the musical
inspiration among different artists, genres and time.

Abstract descriptors

Historically, the music analysis community has been devided between the symbolic
(musical notations, discrete nature) and signal-oriented (continuous flux of infor-
mation) research paradigms. In this signal/symbol application, the analysis of the
audio allowed to extract musical descriptors, that the symbolic approach endowed
with a higher-level of abstraction. In our analyses, these high-level music features
(as modulations or cadential patterns) reveal surprising properties of music, that
are normally neglected by the standard notion of musical genre. We suggested in
the introduction of this work, that a composition is built on a collection of core
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Figure 14.7: Dendrogram chasing. For each branch of the dendrogram it is possible
to build a consensus sequence, that describe the similarity between the sequences of
the cluster once they have been aligned.

concepts: strong musical ideas that are clearly grasped by the listeners and that
allow musicians to build their own vocabulary. The high-level descriptors allow to
represent the propagation of these musical concepts, retrieving them in compositions
that do not belong to the same genre.

Music molecular clock

The Molecular Clock Hypothesis (MCH) consists in the reconstruction of the evo-
lutional history of species by measuring the variations of particular structure (for
instance the haemoglobin) that occur at an almost constant time rate. It would be
pretentious to translate literally this assumption to music. However, the construction
we proposed allows to follow the evolution of a particular motif, through the chase
in the dendrogram depicted in Figure 14.7. The cluster in this figure has been
obtained by computing the pairwise alignment of sequences of degrees (cadential
patterns) among the 138 Quaero’s songs we analysed, utilising the weighting matrix
deduced by the spiral array and the NW algorithm. Red points corresponds to the
consensi, or in MCH terms to the common ancestors of the songs represented in the
cluster. Considering these points from the right to the left of the figure, the first
consensus sequence corresponds to the synthesis of cadential solutions between the
very similar Baby’s Black and Polythene Pam. Then, by climbing toward the centre
of the dendrogram, to broader syntheses of the cadential patterns used in the whole
set of multiple aligned songs. The information carried by these common ancestors
can be relevant either in musicological studies of particular artists, genres or periods
and for music recommendation.

Computer-assisted composition

The results in terms of pairwise and multiple alignment, motif mining and the com-
putation of the consensus sequences can be used for computer-assisted composition.
Indeed, pairwise alignment provides a local description of the similarity regions of
two compositions and induces a grouping of a set of songs. Multiple alignment
allows to chase similarity patterns in the diagram generated by the simultaneous
alignment of a set of songs and highlighted by the analysis of motifs. Finally, the
consensus sequences provide a candidate capable to summarise in its structure the
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Figure 14.8: Static classification between three Chet Baker’s themes and improvi-
sations and a version of Blue Bossa. Two solos by the same author are grouped
together, while the bass solo of Blue Bossa is linked to the theme of Summertime at
a high distance.

common features of a set of previously aligned sequences. In musical terms and
in our application, consensus sequences depict a possible synthesis of the coherent
harmonic solutions provided by different artists, in a different time.

14.3.2 Persistence time series

The last model we proposed consists in the representation of the deformation of
the Tonnetz in time, as a time series of persistence diagrams. We provided a
musical interpretation of the sequences of diagrams and utilised the dynamic time
warping algorithm with the bottleneck distance as cost function, to compute the
optimal warping path between two compositions and their alignment score. These
computations provide an alignment between two compositions and a dissimilarity
score. We analysed three datasets collecting classical, pop and jazz compositions, by
considering time series of evenly-spaced observations at 8, 4 and 2-bars respectively.
The dissimilarity scores and the analysis of their variations with respect to the
windowing, provide a good stylistic descriptor of music able to distinguish among
tonal, atonal and modal classical compositions and sensitive to the use of different
tensional paradigms in pop music.

Improviser retrieval

The jazz dataset represents a point of interest due to the improvisational nature of
the compositions. In this case the information provided by the optimal warping path
allows to distinguish between themes and solo parts, in two versions of the same
standard. This method can be used to measure the distance between improvisational
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styles. This particular development is also suggested by the preliminary result we
obtained considering the static deformed Tonnetz depicted in Figure 14.8.

Musical concepts: granularity and propagation

In order to interpret the evolution of a system in time as a collection of observations,
we defined a windowing, consisting in an even partition of the composition according
to its subdivision in bars. We saw how the three datasets we considered respond
differently to changes of this windowing. In musical terms, this corresponds to the
pace at which musical concepts evolve in the composition. It would be interesting
to compute the optimal time granularity necessary to describe the evolution of
compositions belonging to different genres or artists.

Mean persistence diagrams

The computation of the pairwise bottleneck distances between the observations of two
persistence time series has a high computational cost. A possible development of our
model consists in the evaluation of the strategy introduced in (Munch, 2013) in which
a unique average persistence diagram is associated to the vineyard associated to a
time-varying system. In terms of classification, it would be interesting to compare
the results obtained through our primary static analysis and the corresponding mean
persistence diagrams. In addition, their differences could be relevant in order to
compute the optimal granularity mentioned above or at least to bound its value.

Persistence time series analysis

The strategy we proposed in order to compare the evolution of the persistence
properties of two time-varying spaces is a new approach. Its efficiency can be tested
in many applications, such as animals tracking (Pérez-Escudero et al., 2014) and
group behaviour (Topaz et al., 2015).

Memory

The dynamic Tonnetz has full memory of the composition: the heights of its vertices
increases monotonically. This feature does not reflect our perception of music, since
we cannot remember every note of a whole composition. The definition of a gravity
function in opposition to the one generating the deformation of the vertices can be
used to endow this space with a type of short-term memory. The same argument
can be applied to the study of dynamical consonance-based deformed Tonnetze. In
addition, we can define a variable gravitational field (or equip the vertices with
variable masses) in order to diminish the effect of the gravity in correspondence of
vertices representing relevant elements of a musical phrase (for example its higher,
lower, first, ending and syncopated notes), we refer interested readers to (Perricone,
2000).
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A

Modes in Modern Music and a
Topological viewpoint

The aim of this chapter is twofold. On one hand, it provides both the basic references
concerning modal theory and the definition of mode in a modern music context
(Appendix A.1). On the other hand, it gives an intuitive, topological-oriented point
of view on modal theory. A mode is interpreted as a superposition of a four-note
chord and a triad. This construction follows naturally when modes are deduced
from the harmonisation of a scale: the four-note chord (named the base-chord in
the remainder of this chapter) represents the set of resolutions of the modal scale it
defines, while a triad of tensions is formed by the second, fourth and sixth degree of
the modal scale.

Finally, we associate to each class of base-chord an oriented planar connected
graph. This association allows both to define a new family of modes and to provide
a topological, qualitative description of seven classes of four-note chords.

Remark 17. What follows is a shortened, modified version1 of (Bergomi and Portaluri,
2013).

A.1 Standard modes as superposition of chords

From a music theory viewpoint, modes are defined as a seven-note scales created
by starting on any of the seven notes of a major or a melodic minor scale (Levine,
2011). In the following paragraphs, we apply this definition to deduce a family 21
modal scales and discuss their hidden harmonic nature.

A.1.1 Deducing the standard modes

Following the definition given in (Levine, 2011), we assume that a mode is a
heptatonic scale, whose structure is inherited from a tonal scale. In table A.1 we list
the 21 modes built on each degrees of the diatonic, melodic minor and harmonic
minor scale. We include the harmonic minor scale, since its modes are widely used in
several musical contexts. See (Bergomi and Geravini, 2012) for details and examples.

A comparison between Tables A.1 and A.2 reveals that the idea of mode is deeply
related to a harmonic choice: a modal scale is recognisable if it is played together
with either a reference pitch (its root), or a chord.

1The full text is available at http://arxiv.org/abs/1309.0687.
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Scale Degree Modes Example
Major I Ionian C - D - E - F - G - A - B

II Dorian D - E - F - G - A - B - C
III Phrygian E - F - G - A - B - C - D
IV Lydian F - G - A - B - C - D - E
V Mixolydian G - A - B - C - D - E - F
V I Eolian A - B - C -D - E - F - G
V II Locrian B - C - D - E - F - G - A

Melodic Minor I Hypoionian C - D - E[ - F - G - A - B
II Dorian [2 D - E[ - F - G - A - B - C
III Lydian Augmented E[ - F - G - A - B - C - D
IV Lydian Dominant F - G - A - B - C - D - E[
V Mixolydian [13 G - A - B - C - D - E[ - F
V I Locrian ]2 A - B - C -D - E[ - F - G
V II Super locrian B - C - D - E[ - F - G - A

Harmonic Minor I Hypoionian [6 C - D - E[ - F - G - A[ - B
II Locrian ]6 D - E[ - F - G - A[ - B - C
III Ionian augmented E[ - F - G - A[ - B - C - D
IV Dorian ]4 F - G - A[ - B - C - D - E[
V Phrygian dominant G - A[ - B - C - D - E[ - F
V I Lydian ]2 A[ - B - C - D - E[ - F - G
V II Ultra locrian B - C - D - E[ - F - G - A[

Table A.1: The 21 modes derived from the major, melodic minor and harmonic
minor scale. Examples have been built on the C major, melodic minor and harmonic
minor scale, respectively.

A.1.2 Modes as superposition of chords

In this paragraph we want to stress the importance of the harmonic choice lying
behind the modal scale.

Consider both the seventh chord and the modal scale built on the same degree
of a tonal scale. It is easy to see that the pitch classes composing the chord are the
first, third, fifth and seventh degrees of the modal scale. In a modern music context,
it is possible to refer to these pitch classes as resolutions.

Example A.1.1. Consider F lydian. The chord associated to this mode is Fmaj7,
then we have

F lydian scale F −G−A−B − C −D − E
Fmaj7 arpeggio F −A− C − E

Given a mode, we refer to the seventh chord built on its root as the base-chord
of the mode. Thus, we call tension-triad, the triad composed by the second, the

fourth and the sixth degree of the modal scale, obtained by deleting the pitch classes

of the base chord.
F lydian scale F −G−A−B − C −D − E

Base-chord arpeggio F −A− C − E
Tension-traid arpeggio G−B −D
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Scale Degree 7th Chord Arpeggio (example)
Major I maj7 C - E - G - B

II −7 D - F - A - C
III −7 E - G - B - D
IV maj7 F - A - C - E
V 7 G - B - D - F
V I −7 A - C - E - G
V II −7[5 B - D - F - A

Melodic Minor I −maj7 C - E[ - G - B
II −7 D - F - A - C
III maj7]5 E[ - G - B - D
IV 7 F - A - C - E[
V 7 G - B - D - F
V I −7[5 A - C - E[ - G
V II −7[5 B - D - F - A

Harmonic Minor I −maj7 C - E[ - G - B
II −7[5 D - F - A[ - C
III maj7]5 E[ - G - B - D
IV −7 F - A[ - C - E[
V 7 G - B - D - F
V I maj7 A[ - C - E[ - G
V II ◦7 B - D - F - A[

Table A.2: Seventh chord harmonisation on the major, melodic minor and harmonic
minor scale. Refer to Appendix E for details on modern chord notation.

The F lydian mode is given by the superposition of a Fmaj7 chord and a G major
triad.

Every modal scale can be decomposed uniquely in a seventh chord built on its
root and a triad built on its second degree. A modal scale is recognisable, if it is
played on its base-chord, so one can consider the base-chord as the set of stable
notes and the tension-triad as the collection of tension notes of the mode2. See table
A.3 for a complete description of modes in terms of base-chords and tension-triads.
This decomposition arises naturally from the musical-oriented definition of modes
of (Levine, 2011).

It is possible to associate a family of modes to each class of base-chord [B] by
varying the tension triad [T ]. In Table A.4 modes are organised according to their
base-chord classes. For instance, let [B] be a major seven chord, then, it is possible
to associate to [B] three different classes of tension-triads [Ti]. For example, by
considering the pitch class C as root of the modal scales and maj7 as chord class,
we can describe the three modes associated to the base chord Cmaj7 as

1. Ionian: i := (Cmaj7, D−);
2The term mode here is intended as a non necessarily ordered modal scale, played on its base

chord, or at least with its root as accompaniment.
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Mode Scale Base-chord Tension-triad
C Ionian C - D - E - F - G - A - B Cmaj7 D−
D Dorian D - E - F - G - A - B - C D − 7 E−
E Phrygian E - F - G - A - B - C - D E − 7 F
F Lydian F - G - A - B - C - D - E Fmaj7 G

G Mixolydian G - A - B - C - D - E - F G7 A−
A Eolian A - B - C - D - E - F - G A− 7 B − [5
B Locrian B - C - D - E - F - G - A B − 7[5 C

C Hypoionian C - D - E[ - F - G - A - B C −maj7 D−
D Dorian [2 D - E[ - F - G - A - B - C D − 7 E[]5

E[ Lydian Augmented E[ - F - G - A - B - C - D E[maj7]5 F
F Lydian Dominant F - G - A - B - C - D - E[ F7 G
G Mixolydian [13 G - A - B - C - D - E[ - F G7 A− [5
A Locrian ]2 A - B - C -D - E[ - F - G A− 7[5 B − [5

B Super locrian B - C - D - E[ - F - G - A B − 7b5 C−
C Hypoionian [6 C - D - E[ - F - G - A[ - B C −maj7 D − [5
D Locrian ]6 D - E[ - F - G - A[ - B - C D − 7[5 E[]5

E[ Ionian augmented E[ - F - G - A[ - B - C - D E[maj7]5 F
F Dorian ]4 F - G - A[ - B - C - D - E[ C − 7 G

G Phrygian dominant G - A[ - B - C - D - E[ - F G7 A− [5
A[ Lydian ]2 A[ - B - C -D - E[ - F - G Amaj7 B − [5
B Ultra locrian B - C - D - E[ - F - G - A[ B◦7 C−

Table A.3: Modes as a superposition of two chords.

2. Lydian: l := (Cmaj7, D);

3. Lydian ]2: l]2 := (Cmaj7, D]−[5)

Every couple ([B], [T ]) can be associated uniquely to a modal scale. The scale is given
by the set of notes {b1, b2, b3, b4, t1, t2, t3} where B = {b1, . . . , b4} and T = {t1, t2, t3}.
Following (Piston et al., 1978, Chapter 10) for the analysis of non-harmonic tones in
classical harmony we are entitled to define

Definition A.1.1. Let B = {b1, . . . , b4} and T = {t1, t2, t3}. Non-chord tones are
pitch classes that do not belong to the base-chord; i.e.

ti ∈ T such that ti 6∈ B.

Let m = ([B], [T ]), then

1. m identifies a unique mode;

2. chord tones and non chord tones are splitted into two components, respectively
[B] and [T ]

3. considering the notes belonging to [B] and [T ] we deduce the modal scale
associated to m, that can be re-ordered in a 7-uple in which the degrees of the
scale are displayed from the root, to the seventh note.
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Base-chord maj7 Modes Example (root C)
T-M III-P V-M VII Ionian C - D - E - F - G - A - B

Lydian C - D - E - F] - G - A - B
Lydian ]2 C - D] - E - F] - G - A - B

Base-chord maj7 ]5 Modes Example (root C)
T-M III-aug V-M VII Lydian augmented C - D - E - F] - G] - A - B

Ionian augmented C - D - E - F - G] - A - B
Base-chord 7 Modes Example (root C)

T-III M-V P-VII m Mixolydian C - D - E - F - G - A - B[
Mixolydian [13 C - D - E - F - G - A[ - B[

Phrygian dominant C - D[ - E - F - G - A[ - B[
Lydian dominant C - D - E - F] - G - A - B[

Base chord −7 Modes Example (root C)
T-m III-P V-m VII Dorian C - D - E[ - F - G - A - B[

Phrygian C - D[ - E - F - G - A[ - B[
Eolian C - D - E[ - F - G - A[ - B[

Dorian [2 C - D[ - E[ - F - G - A - B[
Dorian ]4.. C - D - E[ - F] - G - A - B[

Base chord −7 [5 Modes Example (root C)
T-m III-dim V-m VII Locrian C - D[ - E[ - F - G[ - A[ - B[

Locrian ]2 C - D - E[ - F - G[ - A[ - B[
Superlocrian C - D[ - E[ - Fflat - G[ - A[ - B[
Locrian ]6 C - D[ - E[ - F - G[ - A - B[

Base-chord −maj7 Modes Example (root C)
T-m III-P V-M VII Hypoionian C - D - E[ - F - G - A - B

Hypoionian [6 C - D - E[ - F - G - A[ - B
Base-chord ◦7 Modes Example (root C)

T-m III-dim V-dim VII Ultralocrian C - D[ - E[ - F - G[ - A[ - B[[

Table A.4: Modal scales associated to a fixed base-chord

Thus, it is possible to associate to a fixed base-chord an ordered modal scale for
every available choice of tension-triad.

Example A.1.2. Fix a seventh chord, for instance a Cmaj7. The idea is to split
tensions and resolutions according to the ordering induced by the modal scale as
follows

C → � → E → � → G → � → B

White squares are placeholders for the note of a suitable triad. As we showed in
the previous paragraph, choosing a D minor triad one can find the C ionian scale,
considering a D major triad we have a C lydian and with a D] diminished triad we
obtain the C lydian ]2 scale.

C → D → E → F → G → A → B
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C → D → E → F] → G → A → B

C → D] → E → F] → G → A → B
Remark 18. The following section lies beyond the scope of this appendix. However,
it represents the first effort towards a topological interpretation of music I made
with Alessandro Portaluri, thus I decided to add it to this thesis.

A.2 A geometrical representation of modes through
graphs

In this section we suggest an elementary topological-oriented analysis of modes and
modal scales. Fixed a seventh chord, a particular graph is used both to provide an
intuitive visualisation of the possible modal choices associated to the seventh chord
and to give a qualitative description of the seventh chord classes we listed in the
first column of Table A.4.

A.2.1 Some mathematical preliminaries

Definition A.2.1. Two abstract (unoriented) graphs (V,E) and (V ′, E′) are iso-
morphic if there exists a bijective map f : V → V ′ such that

{v, w} ∈ E ⇐⇒ {f(v), f(w)} ∈ E′.

Remark 19. Analogous definitions for oriented graphs are obtained by replacing
unordered pairs {·, ·} by ordered pairs (·, ·).

Definition A.2.2. For n > 1, a path on a graph G from v1 to vn+1 is a sequence
of vertices and edges

v1e1v2e2 . . . vnenvn+1

where e1 = (v1v2), e2 = (v2v3), . . . , en = (vnvn+1).

If G is oriented, we only require that ei = (vivi+1) or ei = (vi+1vi) for i = 1, . . . , n;
that is, the edges along the path are oriented in the opposite way.

Definition A.2.3. The path is simple if e1, . . . , en are all distinct, and v1, . . . , vn+1

are all distincts except that possibly v1 = vn+1. If the simple path has v1 = vn+1

and n > 0 is called a loop.
A graph G is said to be connected if, given any two vertices v and w of G there

is a path on G from v to w. A graph which is connected and without loops is called
a tree.

Definition A.2.4. Given a graph G, a graph H is called a subgraph of G is the
vertices of H are vertices of G and the edges of H are edges of G. Also H is called
a proper subgraph of G if H 6= G.

The following definition is central in the remainder.
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(a) An example of a pla-
nar grap

(b) A maximal tree

Definition A.2.5. Let G be a graph, H be any maximal tree in G, S be a subset
of the vertices set and k is an integer. An admissible path γ in G with respect to S
of length k is any proper subgraph of H satisfying the two conditions:

1. each vertex v ∈ S lies in γ;

2. the total number of vertices in γ is k.

We also observe that any graph G as a subgraph which is a tree (e.g. the empty
subgraph is a tree) so that the set T of subgraphs of G which are trees will have
maximal elements. That is, there exists at least one T ∈ T such that T is not a
proper subgraph of any T ′ ∈ T .

Lemma A.2.1. Let G be a connected graph. A subgraph T of G is a maximal tree
for G if and only if T is a tree containing all the vertices of G.

Proof. Cfr. (Giblin, 2010, Proposition 1.11, pag.18). �
For a connected graph G there is a standard way to compute the homotopy group.
In fact the following result holds:

Proposition A.2.2. For a connected graph G with maximal tree T , π1(G) is a free
group with basis the classes [fα] corresponding to the edges eα of X \ T .

Proof. Cfr. (Hatcher, 2002, Proposition 1A.2 pag.84). �

A.2.2 Graphs and base-chords

Definition A.2.6. Given a base-chord [B] the associated graph G ([B]) is the reali-
sation of the abstract graph whose vertex set is given by the set of all notes forming
[B] and of every compatible tension-triad. The oriented edge set is represented by
all possible oriented connections between each vertex, according to the order of the
degrees of the scale; i.e. from the root to the seventh. (See Figure A.1).

Associating a graph to a modal scale, it is possible to arrange its degrees in the
plane in infinitely many ways. However considering the orientation induced by the
degrees of the scale all the oriented graphs are homeomorphic. Since homeomorphisms
induce isomorphisms in homotopy, all of the homotopic classification is not affected
by the convention given in definition A.2.6. We also observe that on the second,
fourth and sixth degrees we have at most two choices. This is a straightforward
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b1

t1

t1

b2

t2

t2

b3

t3

t3

b4

b1 → t1

b1 → t̄1 b2 → t̄2

b2 → t2

b3 → t̄3

b3 → t3

Figure A.1: A graph built assuming that the modal choices on a base-chord B =
{b1, b2, b3, b4} are given by two tension-triads T = {t1, t2, t3} and T = {t1, t2, t3}

I mII mIII dIV dV mVI dVII

Figure A.2: The graph associated to the diminished seventh chords, Γ◦7.

I MII MIII

aIV

PIV

aV MVI MVII

Figure A.3: The graph associated to diminished seventh chords, Γmaj7]5 .

consequence of the constructions of the modes from the major, melodic minor and
harmonic minor scales.

Following definition A.2.6, it is possible to associate a graph to each base-chord
class:

◦7, maj7]5, −maj7, maj7, 7, −7, −7[5.

1. Diminished seven: Γ◦7. This type of chord appears only in the harmoni-
sation of the seventh degree of the harmonic minor scale, therefore the only
available mode is the ultralocrian. Its graph (and a fortiori maximal tree) is
represented in ??

2. Major seven ]5: Γmaj7]5. Fixing a maj7 ]5 chord as base of the mode, we
have two different possibilities: either the ionian sharp five or the lydian sharp
five modal scale ??. See ?? for an example of maximal three of Γmaj7]5 .

3. Minor major seven: Γ−maj7. In this case we can choose between two
different modes: hypoionian and hypoionian [6. The graph is

4. Major seven: Γmaj7. This is certainly a more common chord than the
previous ones. We expect to have more possibilities, in fact a well known
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I MII mIII PIV PV

MVI

mVI

MVII

Figure A.4: The graph associated to minor major seventh chords, Γ−maj7.

I

aII

MII

MIII

aIV

PIV

PV MVI MVII

Figure A.5: The graph associated to major seven chords, Γmaj7.

I

mII

MII

MIII

aIV

PIV

PV

mVI

MVI

mVII

Figure A.6: The graph associated to dominant chords, Γ7.

and simple base-chord surely will bear more tension-triads than a naturally
dissonant one, as depicted in Figure A.5.

5. Dominant: Γ7 . Dominant chords are largely used in blues and traditional
jazz thanks to their capability of bearing tensions. The graph associated to
this chord class is depicted in Figure A.6.

6. Minor seven: Γ−7. For a minor seventh chord the only forbidden notes
are the augmented second and the diminished fourth. So, we obtain a graph
isomorphic to Γ7 in Figure A.7.

7. Minor seven [5: Γ−7[5. In this case, the root note and the diminished
fifth form a tritone interval which gives a stable sense of dissonance to the
half-diminished seventh chord, that is emphasised by the minor second which
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I

mII

MII

mIII

aIV

PIV

PV

mVI

MVI

mVII

Figure A.7: The graph associated to minor seven chords, Γ−7.

I

mII

MII

mIII

dIV

PIV

dV

mVI

MVI

mVII

Figure A.8: The graph associated to minor seven flat five chords, Γ−7[5 .

is natural in three of the four modal solutions we find by considering this chord
class, i.e. locrian, superlocrian and locrian ]6 scales. See Figure A.8.

Remark 20. It is clear by previous discussion that even if the graphs associated to
Γ7, Γ−7, Γ−7 [5 are isomorphic, they are built on different notes and hence they are
quite different in the essence so the homotopy is not suitable to distinguish among
them.

All of these graphs show in a clear and net way how to construct new modes from
the existing ones. Given a graph G, let us consider any proper tree H (not maximal,
in general!) contained in G and having 7 vertices. By taking into account definition
A.2.5, we give the following:

Definition A.2.7. Let [B] a base-chord and G ([B]) be the associated base-chord
graph. An admissible mode is any admissible connected subgraph (or path in the
graph) γ([B]) in G with respect to [B] of length 7. If γ([B]) is not a mode constructed
above, we refer to as admissible special mode.

Proposition A.2.3. Given the base-chord class [B] the following modes are the
only admissible special modes:

1. if [ΓB] = [Γmaj7] then γ([B]) is the path

γIon]2 := {I, aII,MIII, PIV, PV,MV I,MV II}
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2. if [ΓB] = [Γ7] then γ([B]) are the paths

γMix[2 := {I,mII,MIII, PIV, PV,MV I,mV II}
γMix[2]4 := {I,mII,MIII, aIV, PV,MV I,mV II}
γMix]4[6 := {I,MII,MIII, aIV, PV,mV I,mV II}

γMix[2]4[6 := {I,mII,MIII, aIV, PV,mV I,mV II}

3. if [ΓB] = [Γ−7] then γ([B]) are the paths

γEol[2 := {I,mII,mIII, PIV, PV,mV I,mV II}
γEol]4 := {I,MII,mIII, aIV, PV,mV I,mV II}
γPhr]4 := {I,mII,mIII, aIV, PV,mV I,mV II}

4. if [ΓB] = [Γ−7[5] then γ([B]) are the paths

γLoc]2]6 := {I,mII,mIII, PIV, dV,mV I,mV II}
γSup]2 := {I,MII,mIII, dIV, dV,mV I,mV II}
γSup]6 := {I,mII,mIII, dIV, dV,MV I,mV II}

γSup]2]6 := {I,MII,mIII, dIV, dV,MV I,mV II}

Proof. The result readily follows by the previous graph classification. Let us consider
every class of chord to prove the existence of special modes.

• ◦7. It is not possible to have path associated to special modes on the graph
Γ◦7 (Figure A.2), since there is only one path available which represent the
ultra locrian mode.

• maj7]5 and −maj7. In both Γmaj7]5 (Figure A.3) and Γ−maj7 (Figure A.4)
The only available choice is on the fourth and the sixth degree of the modal
scale, respectively. This fact implies that only two admissible modes can be
built on such graph and they differs exactly for one note. So we can choose
among two paths on the graph which are exactly the two admissible modes we
used to build the graph.

• maj7. In Γmaj7 (Figure A.5) there are 22 available choices. The modes which
generate this graph are three, so there is a special mode which represent the
admissible path on Γmaj7 which is different from the paths representing the
Ionian, Lydian and Lydian ]2 scales. The only possible, admissible path is

{I, aII,MIII, PIV, PV,MV I,MV II}.

• 7. Four admissible non special modes generate Γ7 (see Table A.4 and Fig-
ure A.6). The total number of admissible modes in this graph is 23 = 8. We
expect to find 4 special modes:

{I,mII,MIII, PIV, PV,MV I,mV II}
{I,mII,MIII, aIV, PV,MV I,mV II}
{I,MII,MIII, aIV, PV,mV I,mV II}
{I,mII,MIII, aIV, PV,mV I,mV II}
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• −7 and −7[5. This cases are similar to the previous one. Γ−7 (Figure A.7) is
generated by 5 admissible, non special modes (table A.4), so we have 3 special
modes which are

{I,mII,mIII, PIV, PV,mV I,mV II}
{I,MII,mIII, aIV, PV,mV I,mV II}
{I,mII,mIII, aIV, PV,mV I,mV II}.

Γ−7[5 (Figure A.8) is generated by four admissible non special modes (table
A.4), we have the following four special modes:

{I,mII,mIII, PIV, dV,mV I,mV II}
{I,MII,mIII, dIV, dV,mV I,mV II}
{I,mII,mIII, dIV, dV,MV I,mV II}
{I,MII,mIII, dIV, dV,MV I,mV II}

�

A.2.3 A qualitative description of the base-chord classes

The aim of this section is to associate a value to each base chord, with respect to
the connections of its graph, as we defined it in the previous section.

Definition A.2.8. Given a base-chord [B], let G ([B]) be the associated base-chord
graph. We call topological quality of [B], i.e. τ([B]), the number of generators of
the fundamental group of G ([B]).

Lemma A.2.4. Let [B] be a base-chord. The integer τ([B]) is well-defined.

Proof. It is enough to observe that given any base-chord [B], the associated integer
τ([B]) is uniquely defined. In fact by the classification given in section A.2, at each
base-chord [B] we can uniquely associate a planar connected graph G ([B]). As direct
consequence of proposition A.2.2, the fundamental group of π1

(
G ([B])

)
is a free

group having τ([B]) generators. �

Proposition A.2.5. Let [B] be a base-chord, G ([B]) be a planar graph. Then the
fundamental group π1

(
G ([B])

)
and the topological measure of complexity are given

in the table below.
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Base-chord [B] π1
(
[B]
)

τ([B])
◦7 {1} 0

maj7]5 Z 1

−maj7 Z 1

maj7 Z∗2 2

7 Z∗3 3

−7 Z∗3 3

−7[5 Z∗3 3

Proof. The proof follows from the classification given in section A.2 and proposition
A.2.2. �

In conclusion, the topology of the graphs we constructed reflects the degrees of
freedom offered by a standard seventh chord, from a modal viewpoint. Moreover,
dominant, minor seventh and half-diminished chords are commonly substituted in
a jazz context. Think either about the equivalence between dominant and minor
seven chords in a blues improvisation, or the strong relation between the pitch-class
sets of a dominant chord, the half-diminished built on its major third and the minor
seven on its perfect fifth (for instance {G,B,D, F}, {B,D,F,A} and {D,F,A,C},
respectively).





B

Geometric characterisation of the chord
space (proof).

Theorem B.0.1. The space of chords An is a metric space, obtained by gluing
the (n − 1)-dimensional tetrahedral bases of a right n-dimensional prism via the
equivalence relation induced by a cyclic permutation of the vertices.

Proof. Let G = 〈Tn, Sn〉 be the group of isometries such that An = Rn/G and
x = (x1, . . . , xn) a point in Rn. Let τi ∈ Tn be the translation (x1, . . . , xi, . . . , xn) =
(x1, . . . , xi + 1, . . . , xn) and σij ∈ Sn the permutation swapping the ith and jth
coordinates of x. The group G is isomorphic to Tn o Sn, since Tn ∩ Sn = {e} and
Tn is normal in G.
The proof is structured as follows:

1. Study the subgroup of isometries F ⊂ G that fixes the hyperplanes in Rn, then
observe that the elements of this group are reflections.

2. Define the fundamental domain for the action of G and show that it is the
prism endowed with the structure described in the thesis of the theorem.

1. Let Ct be the hyperplane{
(x1, . . . , xn) ∈ Rn

∣∣∣∣∣
n∑
i=1

xi = t

}

for t ∈ R and F ⊂ G the subgroup of isometries fixing Ct. An element of F can
be written as στ , where σ ∈ Sn and τ = τ e1

1 · · · τ enn , with
∑n
i=1 ei = 0. We prove

by inducing on m = | { ei 6= 0, for i = 1, . . . , n } | that τ is an element of the group
generated by conjugate elements of Sn. Observe that m has to be at least 2, indeed
τ = τ e1

1 · · · τ enn . The sum of the coordinates
∑
i xi = t is invariant under τ only if

the sum of its exponents
∑
i ei = 0, hence m > 1.

• m = 2: τ = τki τ
−k
j =

(
τiτ
−1
j

)k
, τiτ−1

j = σijτ
−1
i σijτi.

• We assume the statement true for every integer up to m. For (m+ 1) we have

τ = τ e1
i1
· · · τ em+1

im+1
=
(
τ e1
i1
· · · τ em+em+1

im

) (
τ
−em+1
im

τ
em+1
im+1

)
.

By induction hypothesis both τ e1
i1
· · · τ em+em+1

im
and τ−em+1

im
τ
em+1
im+1

can be written
as products of conjugated of elements in Sn and hence, so is τ .

237
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(PROOF).

The subgroup F is generated by elements of the form τσijτ
−1. Thus, it is

necessary to study the transformations of the form τσijτ
−1. We distinguish two

cases:

(i) τ = τmk and k 6∈ {i, j}, then τmk σijτ
−m
k = σij .

(ii) τ = τmk and either k = i or k = j. Assume k = j, then

τmj σijτ
−m
j (x1, . . . , xi, . . . , xj , . . . , xn)

τmj σij (x1, . . . , xi, . . . , xj −m, . . . , xn)
τmj (x1, . . . , xj −m, . . . , xi, . . . , xn)
(x1, . . . , xj −m, . . . , xi +m, . . . , xn) .

Hence, τmj σijτ−mj corresponds to the reflection with respect to the hyperplane
xj − xi = m.

2. The fundamental domain for the action of G is given by P = C ∩D, where

C =
{

(x1, . . . , xn) ∈ Rn
∣∣∣∣∣

n∑
i=1

xi ∈ [0, 1]
}

and

D = { (x1, . . . , xn) ∈ Rn | xi > xi+1 ∀i ∈ { 1, . . . , n− 1 } , x1 6 xn + 1 } .

Indeed, every point x ∈ Rn can be translated to some Ct, for t ∈ [0, 1], hence, every
x ∈ Rn is in relationship with a point of P , through the action of elements of G.
The elements of F act as mirrors with respect to the hyperplane xi = xj +m, with
c ∈ Z. These constitute

(n
2
)
families of parallel hyperplanes, that decompose Ct in a

union of (n− 1)-dimensional simplices. Through these reflections, each point of Ct
can be associated to one and only one point of the simplex D ∩ Ct.

The points lying in the interior of P are not in relationship. Observe that the
elements of G modifies the sum

∑
i xi of an integer value. If two points x ∈ Cp and

y ∈ Cq, with p, q ∈ [0, 1] were in relationship, it should be p− q ∈ Z, then, there are
only two possible cases:

(i) p = 0 and q = 1 (or vice versa). In this case the points x and y belong to the
basis of the prism and not to its interior.

(ii) p = q. Both points lie in the simplex D ∩ Cp, hence they cannot be in
relationship. Assume the contrary, then it exists g ∈ F such that g(x) = y,
i. e. y can be obtained by reflecting x with respect to a hyperplane of the form
xi = xj + c, which is impossible for an aforementioned argument.

Finally, we study the possible relationships between the two bases D ∩ C0 and
D ∩ C1. Let g be an element of G, V = {v0, . . . , vk} a set of points in Rn and
x =

∑k
i=0 λivi, where

∑
i λi = 1, then

g(x) = g

(
k∑
i=0

λivi

)
=

k∑
i=0

λig(vi),
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these equalities show that we can study the possible relationships between the
vertices of the two bases, and then extend them to their convex hulls. The vertices
of D ∩ C0 are the origin v0 and the points

vk =

 k

n
, . . . ,

k

n︸ ︷︷ ︸
(n−k) times

,
k − n
n

, . . . ,
k − n
n︸ ︷︷ ︸

k times

 where k ∈ { 1, . . . , n− 1 } .

The vertices of the basis D∩C1 have form uk = vk+
(

1
n , . . . ,

1
n

)
for k ∈ {0, . . . , n−1},

i. e. they are obtained by a translation of the vertices vk along the height-axis of the
prism P . Note that every vk is in relationship with the point

(
k
n , . . . ,

k
n

)
(it suffices

to apply τj for j > n − k). For the same argument, every uk is in relation with(
k+1
n , . . . , k+1

n

)
. Hence, for k ∈ {0, . . . , n− 2}, uk is in relation with vk+1 and un−1

is in relation with v0.





C

Code

C.1 Boundary matrix reduction in persistence
algorithm

import numpy as np

def low(column):
ones = np.nonzero(column)
# p r i n t one s [ 0 ]
if not ones[0].any():
low = None

else:
low = int(max(ones[0]))

return low

def persistence(boundary):
# I n i t i a l i z e t h e r e d u c e d ma t r i x as a copy o f

bounda ry
R = boundary
# Check i f t h e boundary ma t r i x ha s non−a dm i s s i b l e

e n t r i e s
nonz = R[np.nonzero(R > 1)]
if nonz.shape[1] > 0:
print "check your boundary matrix!"

else:
columns = R[:R.shape[1]].T
for i in range(len(columns)):
for j in range(i):
ci = np.array(columns[i])[0].tolist()
cj = np.array(columns[j])[0].tolist()
low_i = low(ci)
low_j = low(cj)
if low_i != None and low_j != None and low_i==
low_j:
new_col = np.mod(np.add(ci,cj),2)
columns[i,:] = new_col
persistence(R)

241
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return columns.transpose()

C.2 Three Dimensional Visualization of the Deformed
Tonnetz

The following code add some comments to the JavaScript generating the web appli-
cation hosted at http://nami-lab.com/tonnetz/examples/deformed_tonnetz_
int_sound_pers.html. This implementation depends on the Three.js and MIDI.js
libraries, which are free downloadable. We refer to the online version of the code for
libraries’ dependencies and to see how the script is embedded in a html page.

C.2.1 Tutorial

The web application allows to deform a 15× 15 Tonnetz in two different ways, giving
to the user the possibility to play chords and melodies on the keyboard using the
keys of the first and second line as a piano keyboard, according to table C.1 or
playing a piece of Music among the one listed in the menu song of the graphic user
interface (gui). It is possible to orbit in the 3D scene using the mouse to zoom and
rotate the Tonnetz and to move the whole mesh (right click and drag).

The skeletons of the simplicial complex can be hidden using the show commands
of the gui, to better understand the positions of the vertices as a point cloud, or the
geometry of the edges which could be hidden by the triangles in some configurations.

Once the Tonnetz has been deformed, the function disp_pref allows to compute
a preferred set of pitch classes filtering the vertices of the Tonnetz on their relative
height, considering the one higher than a certain threshold, depending on the height
of the maximal peak among the vertices. The preferred pitch class configuration is
then show as a point cloud on the planar Tonnetz in z = 0.

Table C.1: Pitches - Key association

Key a w s e d f t g y h u j k o l p
Pitch C C] D D] E F F] G G] A A] B C C] C D]

<!−− Soundfont settings −−>
<script>
MIDI.loadPlugin({

soundfontUrl: "./soundfont/",
instrument: "acoustic_grand_piano"

});
</script>
<script>
// Three js standard objects
var group;
var container , stats;
var particlesData = [];
var camera, scene, renderer;

http://nami-lab.com/tonnetz/examples/deformed_tonnetz_int_sound_pers.html
http://nami-lab.com/tonnetz/examples/deformed_tonnetz_int_sound_pers.html
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// Tonnetz variables
var positions ,colors;
var pointCloud;
var particlePositions , vertices;
var triangles , edges_helper , edges, mesh;
var num_of_points_per_line = 10;
var num_of_lines = 10;
var num_of_triangles = 2 ∗ (num_of_lines − 1) ∗ (
num_of_points_per_line − 1 );

var num_of_edges = 3 ∗ num_of_triangles / 2 + (
num_of_lines − 1) + num_of_points_per_line − 1;

var faces = [];
var num_of_particles = num_of_points_per_line ∗
num_of_lines;

var particleCount = num_of_particles;
var shadow, mesh_s;

// keyboard listener
var keyboard = new THREEx.KeyboardState();
var indices_array = [], pitches_array = [];

// GUI
var effectController = {

showVertices: true,
showEdges: true,
showTriangles: true,
showHelper:true,
play_pause: true,
stop: false,
song : "1all_the_things_you_are.mid",
reset_ton: false

}
// MIDI playing settings
var delay = 0; // play one note every quarter second
var velocity = 127; // how hard the note hits
var note, cur_playing=[];
var player = MIDI.Player;
var pitch = [], message;

// Songs
var songsToFiles ={
"All the Things You Are": "3
all_the_things_you_are_piano_solo_2_tema.mid",

...
};

init();
animate();

function initGUI() {
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var gui = new dat.GUI();

gui.add( effectController , "showVertices" ).onChange
( function( value ) { pointCloud.visible = value;
} );

gui.add( effectController , "showEdges" ).onChange(
function( value ) { edges.visible = value; } );

gui.add( effectController , "showTriangles" ).
onChange( function( value ) { mesh.visible = value
; } );

gui.add( effectController , "showHelper" ).onChange(
function( value ) { edges_helper.visible = value;
} );

gui.add( effectController , "disp_pref" ).onChange(
function( value ) { if (value == true) {disp_pref
(); mesh.visible = false;}else{mesh.visible =
true}} );

gui.add( effectController , "play_pause" ).onChange(
function( value ) { if (value == true) {player.
start(); }else{player.pause()}} );

gui.add( effectController , "stop" ).onChange(
function( value ) {{player.stop(); }} );

gui.add( effectController , ’song’ ,songsToFiles ).
onChange( function( value ) { player.stop();
player.loadFile("midi/" + value, player.start); }
);

gui.add( effectController , "reset_ton" ).onChange(
function( value ) { undeform()} );

}

function init() {

initGUI();

container = document.getElementById( ’container’ );
// camera settings
camera = new THREE.PerspectiveCamera( 45, window.
innerWidth / window.innerHeight , 1, 4000 );

camera.position.z = 10;
camera.position.x = 0;
camera.position.y = −20;
// controls
controls = new THREE.OrbitControls( camera,
container );
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// scene and lights
scene = new THREE.Scene();
scene.fog = new THREE.Fog( 0x050505, 2000, 3500 );

var light1 = new THREE.DirectionalLight( 0xffffff,
0.5 );

light1.position.set( 100, 100, 100 );
scene.add( light1 );

var light2 = new THREE.DirectionalLight( 0xffffff,
1.5 );

light2.position.set( 0, −1, 0 );
scene.add( light2 );
// Tonnetz vertices
group = new THREE.Group();
scene.add( group );

positions = new Float32Array( num_of_particles ∗ 3 )
;

colors = new Float32Array( num_of_particles ∗ 3 );
// vertices material

var pMaterial = new THREE.PointCloudMaterial( {
color: 0xffffff,
size: 3,
blending: THREE.AdditiveBlending ,
transparent: true,
sizeAttenuation: false

} );

particles = new THREE.BufferGeometry();
particlePositions = new Float32Array(
num_of_particles ∗ 3 );

// defining the triangle of the tonnetz as
equilateral

var k = 0;
for ( var i = 0; i < num_of_lines; i++ ) {

for ( var j = 0; j < num_of_points_per_line; j++
) {
if ( i % 2 == 0 ){

var x = j;
var y = Math.sqrt(3)/2∗i;
var z = 0;
pitches_array[k] = ((j∗7)+i/2)%12;

}
else{

var x = j+1/2;
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var y = Math.sqrt(3)/2∗i;
var z = 0;
pitches_array[k] = ((j∗7+4)+ (i−1)/2)
%12;

}
particlePositions[ k ∗ 3 ] = x;
particlePositions[ k ∗ 3 + 1 ] = y;
particlePositions[ k ∗ 3 + 2 ] = z;
indices_array[k] = k;
k++;
}

}
// add position and index attribute to vertices
particles.addAttribute( ’position’, new THREE.
DynamicBufferAttribute( particlePositions , 3 ) );

particles.addAttribute( ’index’, new THREE.
BufferAttribute( new Uint16Array( indices_array ),
1 ) );

// add vertices to the scene
pointCloud = new THREE.PointCloud( particles ,
pMaterial );

group.add( pointCloud );
// create the 2- skeleton ( edges will be added later )
triangles = new THREE.Geometry();
for (var i = 0; i < num_of_particles; i++){

var v = new THREE.Vector3(particlePositions[ i ∗
3 ], particlePositions[ i ∗ 3 + 1 ],
particlePositions[ i ∗ 3 + 2 ]);

triangles.vertices.push(v);
}
var ind = 0;
for (var j = 0; j < num_of_lines−1; j++){
var k = j ∗ num_of_points_per_line
for (var i = 0; i < num_of_points_per_line−1; i++)
{
if (j%2 ==0){

triangles.faces.push(new THREE.Face3(k+i+0,k
+i+1,k+i+num_of_points_per_line));

var v1 = [k+i+0,k+i+1,k+i+
num_of_points_per_line];

triangles.faces.push(new THREE.Face3(k+i+
num_of_points_per_line ,k+i+
num_of_points_per_line+1,k+i+1));

var v2 = [k+i+num_of_points_per_line ,k+i+
num_of_points_per_line+1,k+i+1];

}else{
triangles.faces.push(new THREE.Face3(k+i+0,k
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+i+1,k+i+num_of_points_per_line+1));
var v1 = [k+i+0,k+i+1,k+i+
num_of_points_per_line+1];

triangles.faces.push(new THREE.Face3(k+i+
num_of_points_per_line ,k+i+
num_of_points_per_line+1,k+i));

var v2 = [k+i+num_of_points_per_line ,k+i+
num_of_points_per_line+1,k+i];

}
faces[ind] = v1;
faces[ind + 1] = v2;
ind += 2;

}
}
for ( var i = 0; i < triangles.faces.length; i ++ ) {
triangles.faces[ i ].color.setHex( 1∗ 0xffffff );

}
// Set the faces ’ material
var material = new THREE.MeshPhongMaterial( {
color: 0xaaaaaa, specular: 0x00ffff, shininess:
250,

side: THREE.DoubleSide ,vertexColors: THREE.
FaceColors

} );
// Compute their normals
triangles.computeFaceNormals();
mesh = new THREE.Mesh( triangles , material );
// State the geoemtry will be dynamically updated
mesh.geometry.dynamic = true;
// Add triangles
group.add(mesh)
// generate the planar Tonnetz behind the deformed

one
edges_helper = new THREE.EdgesHelper( mesh, 0x00ff00

);
group.add(edges_helper);
// edge material : the attribute wireframe allows to

generate the edges directly from the triangles
var ematerial = new THREE.MeshBasicMaterial( {
color: 0x00ff00, specular: 0x00ffff, shininess:
250,

side: THREE.DoubleSide , wireframe:true
});
// Add edges
edges = new THREE.Mesh( triangles , ematerial );
group.add(edges);
// Asociation among keyboard character and sounds
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var playing_char = ["a","w","s","e","d","f","t","g",
"y","h","u","j","k","o","l","p","Ãš"];

for (var i = 0; i < playing_char.length; i++){
cur_playing[playing_char[i]] = 0;

}
// MIDI player settings

window.onload = function (){
MIDI.loadPlugin(function ()
{

player.timeWarp = 1.0;
player.addListener(function(data)
{

message = data.message;
// If a pitch plays return it
if (message === 144){

pitch.push(data.note);
}else{pitch = [];}

});
});

}
// renderer

renderer = new THREE.WebGLRenderer( { antialias:
true, alpha:true} );

renderer.setPixelRatio( window.devicePixelRatio );
renderer.setSize( window.innerWidth , window.
innerHeight );

renderer.gammaInput = true;
renderer.gammaOutput = true;

container.appendChild( renderer.domElement );
// fps stats
stats = new Stats();
stats.domElement.style.position = ’absolute’;
stats.domElement.style.top = ’0px’;
container.appendChild( stats.domElement );

window.addEventListener( ’resize’, onWindowResize ,
false );

}

function onWindowResize() {
camera.aspect = window.innerWidth / window.
innerHeight;

camera.updateProjectionMatrix();
renderer.setSize( window.innerWidth , window.
innerHeight );

}
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// MIDI noteOn and noteOff
function play(note) {
MIDI.noteOn(0, note, velocity , delay);

}
function stop(note) {
MIDI.noteOff(0, note, delay);

}
function animate() {
requestAnimationFrame( animate );
stats.update();
render();

}
// Tonnetz deformation through keyboard : play a

pitch and update the geometry of the simplicial
complex

function key(character , note){
var c = 0.002;
if( keyboard.pressed(character) ){
for (var i = 0; i < pitches_array.length; i++){

if (pitches_array[i]==note%12){
particlePositions[i∗3+2] += c;
mesh.geometry.vertices[i].z += c;

}
}
if( cur_playing[character] == 0){
cur_playing[character] = 1;
play(note);
}

}
else if (cur_playing[character] == 1){
cur_playing[character] = 0;
stop(note);
}
}
// Bring the tonnetz to its planar shape
function undeform(){
var c = 0.002;
for (var i = 0; i < pitches_array.length; i++){

particlePositions[i∗3+2] = 0;
mesh.geometry.vertices[i].z = 0;

}
}
// Deformation induced by the MIDI player
function playerdef(pitch){

c = 0.002
if( message === 144){

for (var i = 0; i < pitches_array.length; i
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++){
if (pitches_array[i]==pitch%12){
particlePositions[i∗3+2] += c;
mesh.geometry.vertices[i].z += c;

}
}

}
}

function disp_pref(){
// get the values of the vertices on the mesh
var sk_0 = mesh.geometry.vertices;
// get the faces of the mesh
var sk_2 = faces;
var height = [];
var h_val = [];

var sort_indices = [];
var pref_pitches = [];
// read heights of pitches and create an indexed

array
for (var i = 0; i < 12; i++){

height[i] = [ i , sk_0[i].z ];
h_val[i] = sk_0[i].z;

}
var fifths = [[0,’C’] ,[7,’G’] ,[2,’D’] ,[9,’A’]
,[4,’E’] ,[11,’B’] ,[6,’F#’] ,[1,’C#’] ,[8,’Ab’]
,[3,’Eb’] ,[10,’Bb’] ,[5,’F’] ];

var aver = eval(h_val.join(’+’))/12;
// sort the vertices using their height and save

the
// corresponding permutation of the indices in the

array
// sort_indices
height.sort(function(x,y){return x[1] − y[1] })

for (var i = 0; i < height.length; i++){

sort_indices[i] = height[i][0];
pref_pitches[i] = fifths[height[i][0]];

}
//
var soil_pref = [];
var s = 0;
var threshold = 2;
var max_h = height[height.length−1][1];
soil_pref[0] = height[height.length−1];
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// select preferred pitches ( depends on threshold )
for (var i = height.length−1; i > 0; i−− ){

if (height[i][1] > max_h/threshold){

soil_pref[s] = height[i];
s++;

}
}
// sort preferred pitches remembering their indices
soil_pref.sort(function(x,y){return x[1] − y[1] })
console.log(soil_pref)
var sort_soil_indices = [];
var pref_soil_pitches = [];

for (var i = 0; i < soil_pref.length; i++){

sort_soil_indices[i] = fifths[soil_pref[i
][0]][0];

pref_soil_pitches[i] = fifths[soil_pref[i
][0]][1];

}
// preferred pitches and their value in Z /12 Z are

displayed in console
console.log(sort_soil_indices , pref_soil_pitches)
var material = new THREE.PointCloudMaterial( {
color: 0x000000,
size: 5,
transparent: false,
sizeAttenuation: false

} );
// generate the geometry associated to preferred

pitches
shadow = new THREE.Geometry();
// draw it
for (var i = 0; i < sort_soil_indices.length; i++)
{
var pref_pitch = sort_soil_indices[i];
for (var j = 0; j < pitches_array.length; j ++){
if (pitches_array[j] == pref_pitch){

var v = new THREE.Vector3(
particlePositions[ j ∗ 3 ],
particlePositions[ j ∗ 3 + 1
],0);

shadow.vertices.push(v);
}

}
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}
// generate the point cloud of preferred pitches

and add it to the group
mesh_s = new THREE.PointCloud( shadow, material );

mesh_s.geometry.dynamic = true;
group.add(mesh_s)

}

function render() {
key("a", 60);
...

// Receive pitches from the player and deform the
tonnetz

if (message === 144){
for (var i = 0; i<pitch.length; i++){
playerdef(pitch[i])
}

}
// Need Update declaration
pointCloud.geometry.attributes.position.
needsUpdate = true;

mesh.geometry.verticesNeedUpdate = true;
renderer.render( scene, camera );

}
</script>

C.3 Persistent homology computation
The following code described the computation of the persistence diagrams of the
torus Tonnetz through the filtration induced by the height function defined on its
planar covering.
import os
import numpy as np
from music21 import ∗
from dionysus import ∗
from os import listdir
from os.path import isfile, join
import matplotlib.pyplot as plt
import matplotlib as mpl
import csv
from mpl_toolkits.mplot3d import axes3d
import mpl_toolkits.mplot3d.axes3d as p3

class Tonnetz:
def __init__(self, left, lowRight , upRight):
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self.left = left
self.lowRight = lowRight
self.upRight = upRight
self.weights = {}
self.triangles = []

notes = [’C’, ’C#’, ’D’, ’Eb’, ’E’, ’F’, ’F#’, ’G’
, ’G#’, ’A’, ’Bb’, ’B’]

def computeDataFrom(self, piece, considerDurations
= True):

def extractFromChord(c):
values = []
value = None
try:

value = c.pitchClass
except AttributeError:

pass # do no t t r y o t h e r s

if value is not None:
values.append(value)

if values == []:
for p in c.pitches:

# t r y t o g e t g e t v a l u e s from p i t c h
f i r s t , t h e n cho rd

value = None
try:

value = p.pitchClass
except AttributeError:

break # do no t t r y o t h e r s
if value is not None:

values.append(value)
return values

self.weights = {}
for i in range(12):

self.weights[i] = 0

flat = piece.flat.getElementsByClass([note.
Note, chord.Chord])

for obj in flat:
if ’Chord’ in obj.classes:

values = extractFromChord(obj)
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else: # s im u l a t e a l i s t
values = [obj.pitch.pitchClass]

for i, value in enumerate(values):
if considerDurations:

self.weights[value] += obj.
duration.quarterLength

else:
self.weights[value] += 1

def loadDataFromTxt(self, filename):

with open(filename, "r") as text_file:
lines = text_file.readlines()

self.weights = {}
for i in range(12):

self.weights[i] = float(lines[i].replace("
\n", ""))

def draw2D(self, title = ’’, showValues = True):
nCols = 4
nRows = 4
x = []
y = []
z = []
for i in range(nRows):

for j in range(nCols):
x.append(1 + 2 ∗ j + i)
y.append(nRows + 1 − 2 ∗ i)

self.triangles = [[0,4,1],[1,5,2],[2,6,3],
[1,4,5],[2,5,6],[3,6,7],
[4,8,5],[5,9,6],[6,10,7],
[5,8,9],[6,9,10],[7,10,11]]
triangles = np.asarray(self.triangles)
print triangles

plt.figure()
plt.gca().set_aspect(’equal’)
plt.triplot(x, y, triangles , "o−−", color=’
blue’)

plt.title(title)
plt.axis([0,10,0,6]) # marg in s
plt.axis(’off’)
matrix = [[0 for i in range(10)] for j in
range(10)]

noteIndex = self.left % 12 # f i r s t " p r e v i o u s "
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p o i n t
for i in range(3): # t h i s s e q u e n c e d ep end s on

x and y c r e a t i o n o r d e r
for j in range(4):

noteIndex = (noteIndex − self.left) %
12

xx = (1 + 2 ∗ j) + i
yy = 5 − 2 ∗ i
try:

matrix[yy][xx] = self.weights[
noteIndex]

except KeyError:
print ’Error: Please call
computeDataFrom before calling
draw2D’

return
label = self.notes[noteIndex]
if showValues:

label += ’ (’ + str(self.weights[
noteIndex]) + ’) ’ + "[" + str
(4∗i+j) + "]"

plt.annotate(label, xy=(xx, yy),
xytext=(8, 3), textcoords=’offset
points’, color=’blue’)

noteIndex = (noteIndex + self.lowRight + 4
∗ self.left) % 12

cmap = mpl.colors.LinearSegmentedColormap.
from_list(’my_cmap’, [’white’,’red’], 256)

cmap._init()
alphas = np.linspace(0, 0.8, cmap.N+3)
cmap._lut[:,−1] = alphas

plt.imshow(matrix, alpha=1, cmap=cmap,
interpolation=’blackman’)

plt.colorbar()
plt.show()

def draw3D(self, title = ’’, showValues = True,
saveFileName = ""):
nCols = 4
nRows = 4
x = []
y = []
z = []
for i in range(nRows):
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for j in range(nCols):
x.append(1 + 2 ∗ j + i)
y.append(nRows + 1 − 2 ∗ i)

self.triangles = [[0,4,1],[1,5,2],[2,6,3],
[1,4,5],[2,5,6],[3,6,7],
[4,8,5],[5,9,6],[6,10,7],
[5,8,9],[6,9,10],[7,10,11]]

triangles = np.asarray(self.triangles)

fig = plt.figure()
ax = fig.gca(projection=’3d’)
ax.view_init(elev=40., azim=268)

noteIndices = []
noteIndex = self.left % 12 # f i r s t " p r e v i o u s "

p o i n t
for i in range(3): # t h i s s e q u e n c e d ep end s on

x and y c r e a t i o n o r d e r
for j in range(4):

noteIndex = (noteIndex − self.left) %
12

noteIndices.append(noteIndex)
z.append(self.weights[noteIndex])

noteIndex = (noteIndex + self.lowRight + 4
∗ self.left) % 12

if (showValues):
[ax.text(x[i], y[i], z[i], self.notes[
noteIndices[i]] + ":" + str("{0:.2f}".
format(z[i]))) for i in range(12)]

ax.plot_trisurf(x, y, z, triangles=triangles ,
cmap=’Blues’, linewidth=0.1, shade=True)

if saveFileName != "":
fig.savefig(saveFileName + ’.pdf’)

else:
plt.show()

def getTonnetz3D(self):
nCols = 4
nRows = 4
x = []
y = []
z = []
for i in range(nRows):

for j in range(nCols):
x.append(1 + 2 ∗ j + i)
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y.append(nRows − i)
self.triangles =
[[0,4,1],[1,5,2],[2,6,3],[3,7,0],

[1,4,5],[2,5,6],[3,6,7],[0,7,4],

[4,8,5],[5,9,6],[6,10,7],[7,11,4],

[5,8,9],[6,9,10],[7,10,11],[4,11,8],

[8,0,9],[9,1,10],[10,2,11],[11,3,8],

[9,0,1],[10,1,2],[11,2,3],[8,3,0]]

triangles = np.asarray(self.triangles)
# p r i n t t r i a n g l e s

noteIndex = self.left % 12 # f i r s t " p r e v i o u s "
p o i n t

for i in range(3): # t h i s s e q u e n c e d ep end s on
x and y c r e a t i o n o r d e r
for j in range(4):

noteIndex = (noteIndex − self.left) %
12

z.append(self.weights[noteIndex])
noteIndex = (noteIndex + self.lowRight + 4

∗ self.left) % 12

return [x,y,z]

def max_vertex(s, vertices):
values = [vertices[v] for v in s.vertices]
if len(values) > 0:

return max(values)
else:

return 0

def max_vertex_cmp(s1, s2, vertices):
m1 = max_vertex(s1, vertices)
m2 = max_vertex(s2, vertices)
return cmp(m1, m2) or cmp(s1.dimension(), s2.
dimension())

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−#
#−−−−−−−−−−−−−−−−−−− MAIN −−−−−−−−−−−−−−−−−−−#
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−#
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midi_dir = "sibeliusnodrums"
distance = 1
holes_under = 1 # 0 t o d i s a b l e , 1 t o remove z b e l ow

1/10 , 2 t o remove z b e l ow 2 / 1 0 . . .

# Name o f CSV f i l e s
weights_csv_name = "weights_" + midi_dir + ".csv"
distances_csv_name = "distances_" + midi_dir + "_z.csv
"

# Ou t p u t t i n g w e i g t h s t o CSV
header=[’Name’,’Coords’]
with open(os.path.join(weights_csv_name), ’wb’) as
csvfile:
writer = csv.DictWriter(csvfile, fieldnames =
header, delimiter = ’;’)

writer.writeheader()
myfile = open(weights_csv_name , ’ab’)
wr = csv.writer(myfile, delimiter=";")

# −−− MIDI −−−
dir_path = "./" + midi_dir + "/"
paths_list = [dir_path + f for f in listdir(dir_path)
if isfile(join(dir_path, f)) ]

# −−− end MIDI −−−

# −−− Music21 Corpus −−−
#cor eCo rpu s = co r p u s . CoreCorpus ( )
#p a t h s _ l i s t = [ p a t h f o r p a t h i n c o r eCo rpu s . g e t P a t h s ( ) ]
# −−− end Music21 Corpus −−−

dgms = []
names = []
n = 1

print "Writing weights..."
for path in paths_list:#[ 0 : 5 ] :

# −−− t x t −−−
name = path.replace(dir_path , "")
if not name.endswith(".txt"):

continue
print "iteration %d on element %s" % (n, name)
path = path.replace(".txt", "")
name = name.replace(".txt", "")
n += 1
# −−− end t x t −−−
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print
names.append(name)
n += 1
tonn = Tonnetz(3,4,5)

# tonn . computeDataFrom ( p i e c e , c o n s i d e rD u r a t i o n s =
True )
tonn.loadDataFromTxt(path + ".txt")
tonn.draw3D(saveFileName = "") #pa t h )
row = name, tonn.getTonnetz3D()
wr.writerow(row)

result = row[1]
maxZ = max(result[2])

points = []
vertices = []
simplices = Filtration()
for i in range(12):

vertices.append(10 ∗ float(result[2][i]) /
maxZ)

for i in range(24):
if (vertices[tonn.triangles[i][0]] >
holes_under and vertices[tonn.triangles[i
][1]] > holes_under and vertices[tonn.
triangles[i][2]] > holes_under):
simplices.append(Simplex([tonn.triangles[i
][0]]))

simplices.append(Simplex([tonn.triangles[i
][1]]))

simplices.append(Simplex([tonn.triangles[i
][2]]))

simplices.append(Simplex([tonn.triangles[i
][0], tonn.triangles[i][1]]))

simplices.append(Simplex([tonn.triangles[i
][1], tonn.triangles[i][2]]))

simplices.append(Simplex([tonn.triangles[i
][2], tonn.triangles[i][0]]))

simplices.append(Simplex(tonn.triangles[i
]))

simplices.sort(lambda x,y: max_vertex_cmp(x,y,
vertices))

print "Complex in the filtration order: ", ’, ’.
join((str(s) for s in simplices))

print
p = StaticPersistence(simplices)
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p.pair_simplices()

# Outpu t t h e p e r s i s t e n c e d iag ram
smap = p.make_simplex_map(simplices)

dgm = init_diagrams(p, simplices , lambda s: max(
vertices[v] for v in s.vertices))

print "Diagram:"
print dgm

# drawPe r s i s t e n c eD i a g r am ( dgm )
print
dgms.append(dgm)

print "Writing distances..."
header=[’Name1’, ’Name2’, ’Distance’]
with open(os.path.join(distances_csv_name), ’wb’) as
csvfile:
writer = csv.DictWriter(csvfile, fieldnames =
header, delimiter = ’;’)

writer.writeheader()

with open(distances_csv_name , ’ab’) as csvfile:
wr = csv.writer(csvfile, delimiter=";")

for i in range(len(dgms)):
for j in range(i+1, len(dgms)):

if i % 100 == 0 and j == i+1:
print i, "/", len(dgms)

try:
bott_dist = bottleneck_distance(dgms[i
][distance], dgms[j][distance])

except:
bott_dist = ’undefined’

result = names[i], names[j], bott_dist
print result
wr.writerow(result)

print "Finished."

C.4 Persistent time series - pairwise bottleneck
distance

import os
import sys
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import numpy as np
from music21 import ∗
from dionysus import ∗
from os import listdir
from os.path import isfile, join
import matplotlib.pyplot as plt
import matplotlib as mpl
import csv
from mpl_toolkits.mplot3d import axes3d
import mpl_toolkits.mplot3d.axes3d as p3

class Tonnetz:
def __init__(self, left, lowRight , upRight):

self.left = left
self.lowRight = lowRight
self.upRight = upRight
self.weights = {}
self.triangles = []
self.numberOfFragments = 0

notes = [’C’, ’C#’, ’D’, ’Eb’, ’E’, ’F’, ’F#’, ’G’
, ’G#’, ’A’, ’Bb’, ’B’]

def computeDataFrom(self, piece, considerDurations
= True, tsNumberOfMeasures = 1):

def extractFromChord(c):
values = []
value = None
try:

value = c.pitchClass
except AttributeError:

pass # do no t t r y o t h e r s

if value is not None:
values.append(value)

if values == []:
for p in c.pitches:

# t r y t o g e t g e t v a l u e s from p i t c h
f i r s t , t h e n cho rd

value = None
try:

value = p.pitchClass
except AttributeError:

break # do no t t r y o t h e r s
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if value is not None:
values.append(value)

return values

self.weights = {}

flat = piece.flat.getElementsByClass([note.
Note, chord.Chord])

fragmentNum = 0;
self.weights[0] = {}
for i in range(12):

self.weights[0][i] = 0
for obj in flat:

fragmentNum = int(obj.offset / (4 ∗
tsNumberOfMeasures))

if (len(self.weights) <= fragmentNum):
for i in range(len(self.weights),
fragmentNum + 1):
self.weights[i] = {}
for j in range(12):

self.weights[i][j] = self.
weights[i − 1][j]

if ’Chord’ in obj.classes:
values = extractFromChord(obj)

else: # s im u l a t e a l i s t
values = [obj.pitch.pitchClass]

for i, value in enumerate(values):
if considerDurations:

self.weights[fragmentNum][value]
+= obj.duration.quarterLength

else:
self.weights[fragmentNum][value]
+= 1

self.numberOfFragments = fragmentNum + 1

def getTonnetz3D(self, fragmentNum = 0):
nCols = 4
nRows = 3
x = []
y = []
z = []
for i in range(nRows):

for j in range(nCols):
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x.append(1 + 2 ∗ j + i)
y.append(nRows − i)

self.triangles =
[[0,4,1],[1,5,2],[2,6,3],[3,7,0],[1,4,5],

[2,5,6],[3,6,7],[0,7,4],[4,8,5],[5,9,6],

[6,10,7],[7,11,4],[5,8,9],[6,9,10],
[7,10,11],[4,11,8],[8,0,9],[9,1,10],
[10,2,11],[11,3,8],[9,0,1],[10,1,2],
[11,2,3],[8,3,0]]

triangles = np.asarray(self.triangles)
# p r i n t t r i a n g l e s

noteIndex = self.left % 12 # f i r s t " p r e v i o u s "
p o i n t

for i in range(3): # t h i s s e q u e n c e d ep end s on
x and y c r e a t i o n o r d e r
for j in range(4):

noteIndex = (noteIndex − self.left) %
12

z.append(self.weights[fragmentNum][
noteIndex])

noteIndex = (noteIndex + self.lowRight + 4
∗ self.left) % 12

return [x,y,z]

def drawPersistenceDiagram(dgm, name):
for dim in range(2):

plt.figure()
plt.gca().set_aspect(’equal’)
plt.title("Persistence Diagram")
maximum = 0
try:

points = [i for i in dgm[dim]]
except:

continue
x = []
y = []
for point in points:

if (np.isinf(point[1])):
x.append(point[0])
y.append(point[0])
plt.plot([point[0], point[0]], [point
[0], 100], ’r’)

maximum = max(maximum, point[0])
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else:
x.append(point[0])
y.append(point[1])
maximum = max(maximum, point[0], point
[1])

plt.axis([0, maximum+1, 0, maximum+1]) #
marg in s

plt.plot(x, y, ’ro’)
# p l t . show ( )

plt.savefig(name + ’_diagram’ + str(dim) + ’.
pdf’)

plt.close()

def max_vertex(s, vertices):
values = [vertices[v] for v in s.vertices]
if len(values) > 0:

return max(values)
else:

return 0

def max_vertex_cmp(s1, s2, vertices):
m1 = max_vertex(s1, vertices)
m2 = max_vertex(s2, vertices)
return cmp(m1, m2) or cmp(s1.dimension(), s2.
dimension())

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−#
#−−−−−−−−−−−−−−−−−−− MAIN −−−−−−−−−−−−−−−−−−−#
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−#

midi_dirs = ["midi_new_classic_mini", "
midi_new_jazz_mini", "midi_new_pop_mini", "
midi_new_pop_minimini"]

tsMeasures = 2 # Number o f measure s ( i n t ime s e r i e s
c a s e )

#
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

holes_under = 0 # 0 t o d i s a b l e , 1 t o remove z b e l ow
1/10 , 2 t o remove z b e l ow 2 / 1 0 . . .

for midi_dir in midi_dirs:
print "Processing dir: ", midi_dir

# −−− MIDI −−−
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dir_path = "./" + midi_dir + "/"
paths_list = [dir_path + f for f in listdir(
dir_path) if isfile(join(dir_path, f)) ]

# −−− end MIDI −−−

# −−− Music21 Corpus −−−
#cor eCo rpu s = co r p u s . CoreCorpus ( )
#p a t h s _ l i s t = [ p a t h f o r p a t h i n c o r eCo rpu s .

g e t P a t h s ( ) ]
# −−− end Music21 Corpus −−−

dgms = {}
names = []
n = 1

for path in paths_list:#[ 0 : 5 ] :

# #−−− MIDI −−−
name = path.replace(dir_path , "")
try:

piece = converter.parse(path)
except:

continue
# #−−− end MIDI −−−

names.append(name)
dgms[len(dgms)] = []
n += 1
tonn = Tonnetz(3,4,5)
tonn.computeDataFrom(piece, considerDurations
= True, tsNumberOfMeasures = tsMeasures)

maxZ = max(tonn.getTonnetz3D(fragmentNum =
tonn.numberOfFragments − 1)[2])

print name, "Number of fragments: ", tonn.
numberOfFragments

for j in range(tonn.numberOfFragments):
row = name, tonn.getTonnetz3D(fragmentNum
= j)

result = row[1]

points = []
vertices = []
simplices = Filtration()
for i in range(12):
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vertices.append(10 ∗ float(result[2][i
]) / maxZ)

for i in range(24):
if (vertices[tonn.triangles[i][0]] >
holes_under and vertices[tonn.
triangles[i][1]] > holes_under and
vertices[tonn.triangles[i][2]] >
holes_under):
simplices.append(Simplex([tonn.
triangles[i][0]]))

simplices.append(Simplex([tonn.
triangles[i][1]]))

simplices.append(Simplex([tonn.
triangles[i][2]]))

simplices.append(Simplex([tonn.
triangles[i][0], tonn.triangles[
i][1]]))

simplices.append(Simplex([tonn.
triangles[i][1], tonn.triangles[
i][2]]))

simplices.append(Simplex([tonn.
triangles[i][2], tonn.triangles[
i][0]]))

simplices.append(Simplex(tonn.
triangles[i]))

simplices.sort(lambda x,y: max_vertex_cmp(
x,y,vertices))

p = StaticPersistence(simplices)
p.pair_simplices()

smap = p.make_simplex_map(simplices)
dgm = init_diagrams(p, simplices , lambda s
: max(vertices[v] for v in s.vertices))

drawPersistenceDiagram(dgm, "./" +
midi_dir + "/" + name + str(tsMeasures)
+ "_no_holes_frag" + str(j))

dgms[len(dgms) − 1].append(dgm)

distance = 0
# Name o f CSV f i l e s
distances_csv_name = "./
distances_no_holes_dim0_torus_ts_" + str(
tsMeasures) + "meas/distances_" + midi_dir + "_z
.csv"
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print "Writing distances..."
header=[’Name1’, ’Name2’, ’Distance’]
with open(os.path.join(distances_csv_name), ’wb’)
as csvfile:
writer = csv.DictWriter(csvfile, fieldnames =
header, delimiter = ’;’)

writer.writeheader()

with open(distances_csv_name , ’ab’) as csvfile:
wr = csv.writer(csvfile, delimiter=";")

for i in range(len(dgms)):
print names[i], len(dgms[i])
for j in range(i+1, len(dgms)):

# Pa i r w i s e d i s t a n c e s
distances = []
for ii in range(len(dgms[i])):

for jj in range(len(dgms[j])):
try:

bott_dist =
bottleneck_distance(dgms
[i][ii][distance], dgms[
j][jj][distance])

except:
bott_dist = ’undefined’

distances.append(bott_dist)

result = names[i], names[j], distances
wr.writerow(result)

distance = 1
# Name o f CSV f i l e s
distances_csv_name = "./
distances_no_holes_dim1_torus_ts_" + str(
tsMeasures) + "meas/distances_" + midi_dir + "_z
.csv"

print "Writing distances..."
header=[’Name1’, ’Name2’, ’Distance’]
with open(os.path.join(distances_csv_name), ’wb’)
as csvfile:
writer = csv.DictWriter(csvfile, fieldnames =
header, delimiter = ’;’)

writer.writeheader()

with open(distances_csv_name , ’ab’) as csvfile:
wr = csv.writer(csvfile, delimiter=";")
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for i in range(len(dgms)):
for j in range(i+1, len(dgms)):

# Pa i r w i s e d i s t a n c e s
distances = []
for ii in range(len(dgms[i])):

for jj in range(len(dgms[j])):
try:

bott_dist =
bottleneck_distance(dgms
[i][ii][distance], dgms[
j][jj][distance])

except:
bott_dist = ’undefined’

distances.append(bott_dist)

result = names[i], names[j], distances
wr.writerow(result)

print "Finished."
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Scores

Here we report the minimal collection of scores that we believe essential for the
understandability of the musical applications contained in this work. The author
transcribed part of the pieces contained in this chapter, while both the two versions
of Caravan and the fragments ([1]interlude and [3]intro) of All the Things You Are
correspond to the MIDI files freely downloadable at http://www.midiworld.com/
and http://midkar.com/.
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All the Things You Are - Jerome Kern
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E

Modern Chord Notation

As it has been discussed in chapter 1 the lead sheet notation is widely used in modern
music. We recall it consists of a melody written in classical notation supported by
chords denoted as symbols. In tables E.1 and E.2 we list the most common symbols
using C as root to build examples for triads and seventh chords, both including
their chord tones extensions. A chord is said to be altered if a pitch not belonging
diatonically to the chord is added, such as C7[9 = (C,E,G,B[,D[). Where used,
these chords will be described explicitly.

Table E.1: Modern triad notation.

Name Notation Arpeggio
Major C (C,E,G)
Minor Cm (C,E[,G)

Augmented Caug (C,E,G])
Diminished Cdim (C,E[,G[)
Suspended 2 Csus2 (C,D,G)
Suspended 4 Csus4 (C,F,G)

Major Added 9 Cadd9 (C,E,G,D)
Minor Added 9 Cmadd9 (C,E,G,D)
Major Added 6 Cadd6 (C,E,G,A)

Table E.2: Modern seventh chords notation.

Name Notation Arpeggio
Major 7 C∆ (C,E,G,B)
Minor 7 Cm7 (C,E[,G,B[)
Dominant C7 (C,E,G,B[)

Minor Major 7 Cm∆ (C,E[,G,B)
Major 7]5 C+∆ (C,E,G],B)

Augmented Dominant C+7 (C,E,G],B[)
Half-Diminished C∅ (C,E[,G[,B[)

Diminished C◦ (C,E[,G[,B[[)
Six C6 (C,E,G,B[,A)
Nine C9 (C,E,G,B[,D)

Six-Nine C6/9 (C,E,G,B[,A,D)
Minor Nine Cm9 (C,E[,G,B[,D)
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