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Outline of the manuscript

This work is aimed at understanding the various plasmonic modes that can be supported by metallic

structures. The application of such plasmonic modes for bio-sensing has been demonstrated. The

essence of surface plasmons can be described by the fact that metallic structures undergo a resonance in

absorption of EM radiation. When such resonance condition is satisfied, the EM field is confined within

sub-wavelength distances from the metallic surfaces. The basic understanding of surface plasmons thus

lies in explaining or rather predicting this resonance condition.

• The condition obviously depends on the type of metal which in turn is mathematically expressed as

the dielectric function of the metal. The first chapter of this work (Chapter 1) is focussed on the different

models currently available to describe the complex dielectric function.

• The condition also depends on the geometry of the metallic structures. However till date, analytical

solutions for such conditions are available only for a handful of geometries. The second chapter (Chapter

2) describes the two types of surface plasmons that are excited in metallic structures. The very basic

geometry is a metal-dielectric interface and the surface plasmons are known to propagate along such a

interface. The second type of surface plasmon can be supported by isolated particles with dimensions

much smaller than the wavelength of light. The excitation of such plasmons lead to strong localized EM

fields around the surface of the metallic particles.

• Furthermore, the resonance condition depends on the dielectric medium surrounding the metal

surface. This factor is used for the purpose of molecular detection. The basic governing principle for

Surface plasmon resonance (SPR) detectors are described in Chapter 3. Another type of plasmonic

detection technique, the Surface Enhanced Raman Scattering (SERS) described in Chapter 4, relies on the

actual EM field intensity confined around the metallic nano-particles.

• In Chapter 5 the limitations of conventional SPR detectors and the various types of nano-structured

biochips used in order to overcome such limitations are discussed. A major portion of this work was done

as a part of ANR project «PIRANEX» which aims at developing a novel instrument combining SERS and

SPR detection. The project is described in section 5.4.

It is important to understand the mechanism of surface plasmon excitation in nano-structures for their

application to biosensing. The EM properties can be calculated by solving the Maxwell’s equations by

numerical methods. A brief introduction to various such numerical models is presented in Chapter 6.

In this work, numerical simulations were carried out to evaluate the near and far field characteristics of

various metallic structures.

• The numerical model used for this work is a combination of two well-known methods namely the

Fourier modal method (FMM) and the finite element methods (FEM). This hybrid model described in

Chapter 7 can be used for different complex geometries involving metal and is shown in this work to give

accurate results which are verified by experiments.

Having described the purpose of this work and the numerical tool used for it, we have then described the

excitation of various types of surface plasmons in a number of periodic geometries. To our knowledge

such a complete description of the mechanisms behind the plasmon excitation in metallic structures have

never been published. Along with novel explanations for already observed types of surface plasmons, in

this work we have also introduced some new types of surface plasmons that can be excited in periodic

11



structures. These are covered in Part IV of this work.

• To explain the mechanism for the excitation of different types of surface plasmons in metallic

structures, we have classified them in terms of «Plasmonic modes». The concept of plasmonic modes was

described in Chapter 8. The basic fundamental plasmonic mode called the Propagating surface plasmon

(PSP) can be excited at a metal-dielectric interface.

• In nano-structures depending on its geometry, the PSP can manifest itself to give rise to various other

plasmonic modes. For metallic gratings on a glass substrate, owing to its periodicity, the Wood-Rayleigh

anomaly (WRA) are excited when the incident photon lies along the axis perpendicular to the gratings.

The EM properties of these modes are described in details in section 9.1 of Chapter 9. When the photon

is incident parallel to the grating ridges, the PSP can propagate along the length of the ridges. However

owing the finite width of the grating, the Confined Propagating plasmon (CPP) modes can be excited.

These modes are described in section 9.2 of Chapter 9.

• Another fundamental plasmonic mode is excited in nano-particles with dimensions much smaller

than the wavelength of light. These modes are called the Localized plasmon modes (LSP) and are strongly

confined within a few tens of nanometers from the metal surface. In this work we have introduced a

simple analytical model called the χ formulation to calculate the resonance condition for the LSP and is

described in Chapter 10.

• For arrays of metallic nano-particles with an underlying metallic film, a mode similar to the WRA,

called the Bragg modes (BM) are excited. These modes are excited due to the diffraction of the PSP of the

metallic film by the array of metallic particles. They are described in Chapter 11. In such a structure, the

LSP of the nano-particles can also couple to the PSP of the metallic film, to give rise to a new plasmonic

mode, called the Hybrid Lattice Plasmon (HLP). In section 11.2.1, we have offered a complete description

of the coupling mechanism of the LSP and the PSP.

• This model along with the EM properties of the HLP is discussed in Chapter 12 for a 3D array of

metallic nano-cylinders on a metallic film. Appropriate analytical formulation is introduced in this work

which can accurately predict the resonance condition of all the plasmonic modes that are excited in such

types of nano-structures.

Finally in Part V, the plasmonic modes were studied for their application in bio-detection.

• First the sensitivity of the various modes to bulk refractive index change of the surrounding medium

was calculated by numerical methods. Appropriate analytical formulations for the same are also derived

and shown in Chapter 13.

• In Chapter 14, the sensitivity of the different modes for affinity biosensing is calculated by numerical

methods. The effect of localization of the target molecules at areas where the EM field intensity is

enhanced due to excitation of the plasmonic modes, is also calculated. To quantify this for plasmonic

modes a figure of merit called the Sensitivity Enhancement factor (SEF) is introduced.

• Different nano-structures are fabricated by e-beam lithography to validate the numerical results. A

SPR imaging system, based on a spectral scanning modality is used to experimentally excite the plasmonic

modes in different nano-structures. This is covered in chapter 15. The plasmonic modes for applications

in SERS is also experimentally studied and calculations to quantify the electromagnetic contribution for

the SERS intensity enhancement were shown in chapter 16.
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Introduction to plasmonics : Theoretical
Foundations
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Chapter 1

Electromagnetic properties of metals

The evidence for describing light as waves was well established by the turn of the last century. The

photo-electric effect confirmed that light can also manifest itself as a particle. The long wavelength

radiation (microwaves, radiowaves) is described mainly by the wave theory while short wavelength

radiation (X-rays) mainly exhibit particle properties. In the optical regime the wave-particle duality

is most pronounced. However for nano-optics we can describe most of the observed phenomenon by

adopting the wave theory.

1.1 Electromagnetic wave propagation

1.1.1 Fields and matter

The starting point to describe the optical phenomenon in nano-scale would be the classical field theory

based on the macroscopic Maxwell’s equations. The equations in differential form and in SI units can be

written as

∇ ·D(r, t) = ρ(r, t)

∇ ·B(r, t) = 0

∇×E(r, t) = −∂B(r,t)
∂t

∇×H(r, t) = J(r, t) + ∂D(r,t)
∂t

(1.1)

where the four macroscopic fields D (the dielectric displacement), E (the electric field), H (the

magnetic field) andB (the magnetic induction) are related to the external charge and current densities,

ρ(r, t) and J(r, t) respectively. It should be noted that the total charge and current densities are given

as the sum of the internal and external charge and current densities respectively (ρtot = ρ+ ρint and

Jtot = J + Jint). The external charges and currents excite the system while the internal set represents

the response of the material system to external excitations [1].

The first equation relates the distribution of electric charge to the resulting electric field while the

second equation considers the basic entity for magnetism to be the magnetic dipole. These two basic
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electromagnetic Gauss’s laws do not contain enough essential information for our purpose of developing

the fundamental base for explaining electromagnetic wave propagation. However the conservation of

charge is contained in these equations and by rearranging them, we can write

∇ · Jint(r, t) +
∂ρint(r, t)

∂t
= 0 (1.2)

The third and fourth equations which stem from the Faraday’s law of induction and Ampere’s circuital

law respectively will be used extensively to develop the in-homogeneous wave equations. But the

macroscopic equations do not include the microscopic nature of matter. In other words apart from these

equations we also need relations that describe the behavior of matter under the influence of the fields

defined by the Maxwell’s equations. The electromagnetic properties of a medium are described by the

macroscopic polarization P and magnetization M given by

D(r, t) = ε0E(r, t) + P (r, t)

H(r, t) = B(r,t)
µ0

−M(r, t)

(1.3)

where ε0 and µ0 are the permittivity and permeability of vacuum respectively. In a non-dispersive,

linear and isotropic medium these material equations (also called the constitutive relations) have the form

D(r, t) = ε0εE(r, t)

P = ε0χeE(r, t)

B(r, t) = µ0µH(r, t)

M = χmH(r, t)

(1.4)

where χe and χm are the electric and magnetic susceptibility respectively. In an anisotropic medium

the tensorial form of ε and µ must be used. The last important constitutive linear relationship is between

the internal current density Jint and the electric field E defined by the conductivity σ given as

Jint(r, t) = σE(r, t) (1.5)

The Maxwell’s equations show a duality between the electric and the magnetic fields and from

Equation (1.1) we see that a variable electric field can generate a variable magnetic field and vice-versa.

This causes a flow of energy in the form of an electromagnetic wave. Substituting equation (1.4) in (1.1)

we obtain the vectorial wave equation given by

∇×∇×E(r, t) +
1

c2

∂2E(r, t)

∂2t
= −µ0

∂

∂t

(
J(r, t) +

∂P (r, t)

∂t
+∇×M(r, t)

)

∇×∇×H(r, t) + 1
c2
∂2H(r,t)
∂2t

= ∇× J(r, t) +∇× ∂P (r,t)
∂t + µ0

∂M(r,t)
∂t

(1.6)

1.1.2 Time harmonic fields

The time dependence of the fields can be expressed as a harmonic variation with a frequency ω. It is

thus possible to use a complex representation of the fields for the temporal sinusoidal variation. Thus the

electric and the magnetic fields can be written as
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E(r, t) = Re
∣∣∣E(r)e−iωt

∣∣∣
H(r, t) = Re

∣∣H(r)e−iωt
∣∣ (1.7)

The last two Maxwell’s equations of (1.1) can now be written as

∇×E(r) = iωB(r)

∇×H(r) = −iωD(r) + J(r) (1.8)

Combining the two time harmonic equations we can derive the wave equation for the complex fields

given by

∇× 1

µ
∇×E(r)− ω

2

c2
[ε+ iσ/ (ωε)]E(r) = iωµ0J(r) (1.9)

In absence of external charge and current densities and by substituting [ε+ iσ/ωε] by ε, the complex

dielectric constant, we can simplify equation (1.9) to have the Helmholtz equation which describes how

the electromagnetic wave propagates in space with wave-vector k0 = ω/c

∇× 1

µ
∇×E(r)− k2

0εE(r) = 0 (1.10)

A similar equation can be written for the magnetic field as∇× 1
ε∇×H(r)− k2

0µH(r) = 0 and

for situations when the relative permeability µ is discontinuous, this equation cannot be defined. However

such situations will not considered for this work, as all the materials under study are considered to be

non-magnetic with µ = 1.

Depending on the geometry we can describe most of the optical phenomenon of electromagnetic wave

propagation using the basic concepts introduced in this section. We will now proceed to describe the

material properties and then to the propagation of plasmons in the material.

1.2 The complex dielectric function of metals

The optical properties of a material can be best described by using the complex dielectric function as

shown in equation (1.10). It gives a complete picture of the material which a simple dielectric constant

fails to provide. In 1900, Paul Drude proposed a simple model to describe the properties of a free electron

gas [2]. This was later modified by Arnold Sommerfeld by combining it with quantum mechanical

Fermi-Dirac statistics. This model of free electron gas can give accurate approximations for the complex

dielectric function of metals for longer wavelengths. However for visible wavelengths the effect of bound

electrons must be considered. The various models to calculate the dielectric complex function of metals

and their accuracy will be discussed.

1.2.1 Drude-Sommerfeld model of free electron gas

The Drude model considers electrons as free particles moving in a constant background potential. Som-

merfeld modified the model by treating the electrons as fermions and used Pauli principle to distribute

them in the available energy states. Applying the Drude-Sommerfeld model for the free electron gas we

can write the equation of motion as
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m
∂2r

∂t2
+mΓ

∂r

∂t
= eE0e

−iωt (1.11)

wherem and e are the mass and charge of electron respectively and E0e
−iωt is the applied electric

field with the frequency ω. The damping term Γ is related to the Fermi velocity vf and electron mean

free path le as Γ = vf/le. τ = 1/Γ is known as the relaxation time of the free electron gas and has

typical values of the order of 10fs. Solving equation (1.11) we can derive the complex dielectric function

of metals as a function of the frequency of the applied electric field as

εd−s(ω) = 1−
ω2
p

ω2 + Γ2
+ i

Γω2
p

ω (ω2 + Γ2)
(1.12)

where ω2
p = ne2/(mε0) is the plasma frequency of the free electron gas with n being the density

of electrons. The implications of the result and some typical values and its relation to the propagation of

light in a metal will be discussed shortly. However for more accurate results we must consider the effect

of bound electrons in a metal.

1.2.2 Interband transitions in real metals

In the visible range of the spectrum, higher energy photons can excite electrons lying in the lower shells

of the metal atom to the conduction band. This phenomenon can be described as the oscillations of the

bound electrons. We can write the equation of motion similar to equation (1.11) with an additional term

which results from the contribution of the bound electron with resonance frequency ω0.

m
∂2r

∂t2
+mΓ

∂r

∂t
+mω2

0r = eE0e
−iωt (1.13)

The resulting contribution of the interband transitions to the complex dielectric function of metals can

be written as

εibt(ω) = 1 +
ω2
p

(
ω2

0 − ω2
)(

ω2
0 − ω2

)2
+ Γ2ω2

+ i
Γω2

pω(
ω2

0 − ω2
)2

+ Γ2ω2
(1.14)

A number of equations of the form of equation (1.13) must be solved for each contribution of the bound

electrons and then added to the free electron result to have a more accurate model for the dielectric

function of metals.

1.3 Some typical values for bulk gold

The complex refractive index n =
√
ε can be written as n+ ik. In 1972, P. B. Johnson and R. W. Christy

in their article [3] calculated the optical constants n and k for gold from reflection and transmission

measurements on vacuum-evaporated thin films at room temperature. The volume plasma frequency (ωp)

and the relaxation time of electrons (τ ) were then calculated by fitting the measured results to the models

of the complex dielectric function described in the last section. The typical values are given in Table 1.1.

The calculated values for the complex dielectric function of gold from equation (1.12) and equation

(1.14) using the constants given in Table 1.1 are shown in figure 1.1. The values of the parameters for the

interband transition model (contribution of a single interband transition was accounted for) were taken as

ωp = 45× 1014s−1 , Γ = 9× 1014s−1 and ω0 = 2πc/λ with λ = 450nm.
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Table 1.1: Optical mass, plasma frequency, Fermi velocity and relaxation time of gold

m ωp vf τ

0.99me 13.4× 1015 s−1 1.39× 106 m/s 9.3× 10−15 s

In figure 1.1, ε is plotted as a function of the wavelength of the applied field λ = 2πc/ω. The

figure also shows the values of ε as obtained by Johnson and Christy. The imaginary part of ε below

λ = 650nm clearly shows that the interband transitions become important in this regime.

Figure 1.1: (a)Dielectric function of gold ε calculated using the Drude model, considering the effect of
interband transitions and the values obtained by Johnson-Christy.(b)The measured values of ε is shown
along with those found by Johnson-Christy.

The gold used for fabrication of all structures used in this work was characterized using ellipsometry

on a thin gold film of 200nm. As shown in figure 1.1(b), the dielectric function of the gold used follows

closely that of the values found by Johnson-Christy. There are different methods of fit used to model the

dielectric function of metals based on the values of Johnson-Christy [4, 5]. For this work we have used

a table of values calculated from the dielectric function of Johnson-Christy, for all the theoretical and

numerical calculations. As can be seen from figure 1.1(b), we do not expect strong deviations between the

numerical calculations and experimental results due to the variation of the refractive index of gold in the

visible. However slight deviations can be expected for wavelengths greater than 1100nm.

Another point that must be mentioned for the property of bulk gold is the depth of penetration of

electromagnetic field in metal. We can derive from equation (1.10) the electric field of a propagating

wave to be proportional to e−ik0nr. Applying Beer’s law of absorption according to which the field in a

material falls off as e−αr/2 we can find the absorption coefficient (α) and the corresponding skin depth

(δ = 2/α) as

α = 2× k0Im(n) = 2
ω

c
Im(n) (1.15)

The skin depth as a function of wavelength for the measured values of the refractive index of gold

19



Figure 1.2: The skin depth(δ)and the absorption coefficient(α)of gold.

was calculated and is shown in figure 1.2. The values of skin depth is of the order of 20-40nm and this

plays a very important role in nano-optics where structures and thin films of metal used may have similar

dimensions.
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Chapter 2

Excitation of surface plasmon
polaritons in metals

In 1902, while working with optical gratings Robert Wood observed that spectra obtained with a continuous

light source "drop from maximum illumination to minimum, a drop certainly of from 10 to 1, occurred

within a range of wavelengths not greater than the distance between the sodium lines" [6]. This finding

followed decades of work to explain the so-called ’Wood’s anomaly’ starting with the hypothesis of

Rayleigh based on classical grating theories [7] and Fano with his breakthrough theory based on "leaky

waves" supported by gratings [8]. In the same decade as Wood, J.C. Maxwell-Garnett observed colors in

metal doped glasses [9, 10] and in 1908, Gustav Mie proposed his theory on the scattering of light by

metallic nano-particles [11]. These observations reported at the beginning of the last century over the

years has developed into a new branch of science and consequent development has resulted in what we

know today as nano-plasmonics [12]. However most of the study on nano-plasmonics can be traced back

to the two types of phenomenon namely the surface waves in metallic films and scattering of light from

metal particles [1]. In the following sections the two pillars of plasmonics will be explained in details.

2.1 Surface plasmon polariton on planar surfaces

To start this section we must first describe the concept of a polariton. An electromagnetic wave (photon)

polarizes the material through which it propagates causing a collective oscillation of the material con-

stituents. The strong coupling of the photon with these collective oscillations of the material constituents

excites a polariton. The coupling of photons and the electron-hole pair oscillations (excitons) when the

photon propagates through a semi-conductor gives rise to exciton polaritons. The coupling of the same

with mechanical oscillations of atoms or molecules in condensed matter (phonons) excite the phonon

polaritons. For materials that can support free electrons, like metals, the coupling of photons with the

collective oscillations of the electron gas results in the plasmon polaritons, to which this work is purely

dedicated.

2.1.1 The plasmon polariton

The concept of oscillations of the electron gas in metals was introduced in section 1.2. We have shown

that a free electron gas has the oscillation frequency at ωp =
√
ne2/(mε0). The incoming photon can
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be considered as an oscillation at frequency ω = k0c. From equation 1.12 and neglecting the damping

of the electrons we see that for values of ω > ωp the real part of the dielectric function of metals is

positive and the metal behaves mostly as a dielectric from the optical point of view. For ω < ωp the

metal retains its optical ’metallic’ properties with a negative dielectric constant. At the transition between

the two regimes the dielectric constant ε(ω) = 0 (almost zero but for damping and interband transitions

as explained before). For the wave equation (1.10) in Fourier space, the electric fields for transverse

waves obey k · εE = 0. However for the condition ε = 0 we may have longitudinal solutions of the

wave equation with k · E 6= 0. From the point of view of harmonic coupling between two oscillator,

the solution of the coupled system has oscillation frequencies which are different from both ω and ωp
and this new oscillation frequency of the coupled system (mode) is the plasmon polariton. The plasmon

polariton propagating in a bulk medium is thus a longitudinal electromagnetic mode. But for applications

and realization of the plasmon polariton we are more interested in the transverse waves propagating at the

surfaces of metals. The approach will be the same, to search for transverse solutions of the wave equation

at the surfaces of metals. This will be explained in brief in the next section.

2.1.2 The plasmon polariton surface waves

Surface waves can be described as the energy flow along an interface of two media with the field decaying

in the direction normal to the interface. Considering the interface in the x-y plane as shown in figure 2.1

the solution of the Helmholtz equation (1.10) must have a decaying term along z and a propagating term

along x in medium 1. Such a solution does not exist for s-polarization (transverse electric or TE)and the

solution for p-polarization (transverse magnetic or TM) for the electric field components (x and z) can be

written as

z < 0
{
Ex/z(z) = E0x/ze

ikxxekz2z
}

z > 0
{
Ex/z(z) = E0x/ze

ikxxekz1z
} (2.1)

Figure 2.1: Geometry of the metal(2)-dielectric(1) interface illustrating the surface charge and the field
lines of the surface plasmon polariton.
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Applying the boundary conditions and continuity of H and E to equation 2.1 at the interface we obtain

kz1

kz2
= −ε1

ε2
(2.2)

where ε1 and ε2 are the dielectric constants of medium 1 and 2 respectively. This result implies that

surface transverse wave solutions of the Maxwell’s equations are possible at the interface of two materials

only if

a) the dielectric constant of one of the media is negative in which case the surface waves are called

Fano waves. The phase velocity (vp = ω/k) for the Fano waves is less than the velocity of light.

b) or has a nonzero imaginary part in which case they are called the Zenneck waves and their phase

velocity is more than the velocity of light. In fact the concept of surface waves was first proposed by

Zenneck in 1907 which was further developed by Sommerfield and observed much later in the late 1980s.

For optical frequencies Zenneck waves have not really been observed [13]. A detailed description of the

Zenneck waves can be found in Chapter 2 and Chapter 6 of reference [1].

2.1.3 Dispersion of the plasmon polariton

To understand the phenomenon of surface waves for metals which is the main focus of this work, we need

to look at the dispersion of the surface waves (dependence of the solutions (modes of the system) for the

surface waves of frequency ω and wave-vector k). The surface waves have a decaying z component but a

propagating x component. The values of kx would give the wave-vector (ksp(ω)) of the propagating

surface wave along x. By squaring equation 2.2 and solving for kx we can derive one of the central

conditions for surface wave dispersion.

k2
sp(ω) = k2

0

[
nd

2nm
2

nd2 + nm2

]
(2.3)

where ε1 = nd
2 and ε2 = nm

2 as medium 1 will be considered a dielectric and medium 2 as metal

henceforth and nd and nm are their refractive indices respectively. In this case, the dielectric constant is

both negative and has a non-zero imaginary part depending on the frequency. So we can excite the surface

waves of both the Fano or Zenneck type.

The physical mechanism of the surface wave at a metal-dielectric interface can be explained by the

fact that the z-component of the electric field creates a surface charge at the metal interface. So the surface

wave can be seen as a propagation of surface charge density along x. To have continuous field lines in the

dielectric we must have a field component in the dielectric close to the surface charge density. This is the

origin of the propagating surface plasmon (PSP) polariton.

The dispersion curve was calculated using the values of the dielectric constant for gold calculated by

the Drude-Sommerfeld model (section 1.2) and as found by Johnson-Christy mentioned in section 1.3.

An interesting characteristic of the dispersion curve must be mentioned here [14].

For equation 2.3, when considering losses in the metal, the term nPSP = nd
2nm2

nd2+nm2 is a complex

term and thus the equation needs to be solved with complex k and complex ω. In figure 2.2 the dispersion

of the PSP is plotted for a plane interface between gold and air (nd = 1). Please note that the axes were

normalized by kp = ωp/c where ωp = 13.4× 1015s−1. We see that the solution has two branches.

For real values of nPSP , the lower ω branch is an asymptote to ωp/
√

2. This is because for an interface,
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when the thickness of metal tends to infinity, the charge density builds up only on one surface instead of

two. So the oscillation frequency of the electron gas at the interface is ωp/
√

2 instead of ωp.

The dispersion curve is also an asymptote to the light-line (k0 = ω/c). This behavior is similar to

the characteristic frequencies of a coupled system of two harmonic oscillators. Thus we can consider

the PSP as a result of the harmonic coupling of a photon with oscillation frequency ω and the electron

gas cloud with oscillation frequency of ωp/
√

2. This asymptotic behavior of the PSP dispersion is also

observed if we solve equation 2.3 for complex roots of ω.

Figure 2.2: a)Dispersion of the PSP calculated for real values of nPSP . b)The same for complex values
of nPSP . c)The dispersion of PSP considering the values of Johnson-Christy. The axes are normalized
by kp = ωp/c. The lightline (k0 = ω/c) is also shown (data for Johnson-Christy is restricted to values
of wavelength λ > 150nm (k0/kp < 0.93)).

However if we take into account the losses (mathematically represented by the complex refractive

index of metals (nm = n + ik) and thus complex values of nPSP ) we see a back bending of the

dispersion curve [15]. This phenomenon is quite well know and first observed by Arakawa et al in 1973

[16]. Quoting from the article "In the vicinity of the surface plasmon energy the dispersion curve was

found to bend back toward the light line instead of increasing asymptotically to the surface plasmon

energy at infinite momentum. We conclude that surface plasmon interactions must be characterized by a

complete response-function surface rather than by a single dispersion curve." This backbending is also

observed is we solve equation 2.3 for complex roots of ksp. So one must be careful when studying the

dispersion characteristic of a PSP, close to the oscillation frequencies of electron gas. We must mention

here that for values of ω > ωp the upper ω branch of the solution of equation 2.3 is not a surface wave

as the metal behaves as a dielectric. In fact, equation 2.3 which was solved by squaring equation 2.2, is

also a solution of kz1kz2
= ε1

ε2
which is simply the Brewster’s angle for which the p-polarized light has zero

reflection [13, 17].

The dispersion of the PSP with values of the dielectric constant of Jhonson-Christy is also shown

in figure 2.2. We see that the dispersion matches closely in the region ω < ωp/2 which corresponds

roughly to wavelengths greater than 300nm. However some bumps are observed in the dispersion curve

which results from the interband transitions in gold as mentioned in section 1.2. As this work is mainly

dedicated to bio-sensing it will be focused on the visible and near infrared region of the EM spectra. In

this domain, the surface plasmon dispersion lies close to the lightline and to the right of it. Therefore, the
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PSP cannot be excited at a simple interface of a metal and a dielectric. The method for excitation of PSP

in this region of the spectrum will be described in chapter 3.

2.1.4 Some typical length scales of the PSP

From the previous section we can conclude that PSP is a surface wave which exists at the surface of a

metal and the electric field decays exponentially from the surface. We can also see that the PSP has finite

values of kx which signify that they are waves propagating along the metal-dielectric interface. This work

is dedicated to applying surface plasmon polaritons for biodetection. For this application the electric field

confined to the metal surface due to the excitation of the plasmon polaritons plays a very important role.

The evanescent field due to the plasmon polaritons at the metal-dielectric interface guides the energy

of the incident light along the surface of the metal. However due to absorption in the metal the PSP has a

finite propagation length which can be directly calculated from the imaginary part of the wave-vector kx.

From equation 2.1 we see that the electric field at the interface varies as eikxx so the propagation length

(Lx) of the field intensity can be written as

Lx =
1

2Im(ksp(ω))
(2.4)

The decay length of the electric field into the dielectric is called the penetration depth (δz) of the PSP

and is given by 1
2Im(kz(ω)) . The wave-vector kz is related to ksp by the relation

kz
2 + ksp

2 = k0
2 (2.5)

The values ofLx and δz are shown in figure 2.3 as a function of excitation wavelength for a gold-water

interface. We see that the values of Lx is around 10µm− 20µm and δz is around 100nm− 200nm

in the visible part of the spectrum.

Figure 2.3: a)The propagation length of the PSP as a function of wavelength b)The penetration depth
of the PSP as a function of wavelength. The values were calculated for a gold-water interface which is
typical for bio-detection experiments.
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2.2 Plasmon modes in metallic nanoparticles

In the previous section we have described the propagating, dispersive electromagnetic wave caused by the

electron plasma at a metal-dielectric interface. The second fundamental type of plasmon polariton occurs

when the incoming photon energy couples to the localized oscillation of the electron charge density at the

surface of metallic nano-structures. The oscillating field of the incident light causes a polarization of the

electronic charges in metal nanoparticles. We will consider the case where dimensions of the particles are

much smaller than the wavelength (λ) of the incident light. The approximation on the particle dimensions

much smaller than λ is only to assume a quasi-static condition where the polarization charge does not have

retardation effects. However the same effect can take place for much larger particles and the consecutive

theories for them have been developed. The curved surface of the particle offers a restoring force to the

developed charge density resulting in a depolarization field. This depolarization field is strongly localized

to the particle surface with typical decay lengths of some tens of nanometers [18, 19]. The magnitude of

the depolarization field undergoes a resonance at certain frequencies of the exciting light which depends

on the particle shape, the dielectric function and the distribution of charge densities in the particle. This

resonance is called the localized surface plasmon (LSP) resonance [20, 21, 22, 23].

2.2.1 Theoretical models for LSP

Most theories on the LSP are based on the solutions of a scattering problem of a particle brought into

a electromagnetic field E0(r) [24]. The polarization of the particle present in the incident field is

proportional to the depolarization field (Ed(r)) created by E0(r). We can assume the relation between

E0(r) and Ed(r) to be linear and thus the polarization can be written as (equation 1.4)

p = ε0αE0(r) (2.6)

whereα is the microscopic polarizability of the particle and is similar to the macroscopic susceptibility

(χe)of a medium. Given that the scattering and absorption cross-section are proportional to α2 and

Im(α) respectively, the starting point of most theories to evaluate the resonance condition of the LSP

rests on the calculation of α. The earliest evaluation of α dates back to the 1870s when the Clausius-

Mossotti formula was developed to show that the polarizability of a substance with dielectric constant ε in

air is proportional to (ε− 1)/(ε− 2). In an electrostatic approach, solving the Laplace equation for the

potential (∇2Φ = 0), we can derive the polarizability of a spherical metallic particle of diameter d, with

dielectric constant εm in a medium εd as

α = 4πd3 εm − εd
εm + 2εd

(2.7)

From this, the Frohlich condition for resonance of the LSP is given by Re(εm(ω)) = −2εd. For

non-spherical particles the solution of the scattering problem is a lot more demanding. However it has

been shown that a general equation can be derived of the form

α ∝ εm − εd
εd + χ(εm − εd)

(2.8)

where χ is the depolarization factor which depends on the shape and size of the particles (not to be

confused with the susceptibility which is written in this manuscript as χe or χm). the evaluation of χ for
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different nano-particles and modification of equation 2.8 depending on the particle type and environment

will be discussed later and constitutes a major portion of this work.

We must mention here that the above equation assumes a quasi-static approach where the nano-particle

is treated as a radiating dipole. For larger particle dimensions a rigorous electrodynamic treatment of the

scattering problem was proposed by Mie in 1908 [11]. The Mie theory takes into account the radiation

damping and retardation of the polarization caused by the larger size of the particle. We will come back to

this theory and will also use rigorous solutions for the Maxwell’s equation to arrive at similar results for

the resonance of LSP for larger particle dimensions. Such methods are explained in chapter 10.

2.2.2 Typical LSP resonance in metallic sphere

The depolarization factor for a metallic sphere can be taken as 1/3 and the resonance frequency for it

was evaluated using equation 2.8. The extinction spectrum (proportional to α) of a metallic sphere in

water (nd = 1.333) is shown in figure 2.4. At resonance, the depolarization field of the LSP is in phase

with the incident electric field. This causes an enhancement of the local electric field at the position of the

charge density induced by the incident field. As seen in section 2.1.4 the decay length of the PSP is of

the order of hundreds of nanometers. For the LSP as seen in figure 2.4 the decay length is a few tens of

nanometers. This is very useful for certain bio-detection applications which will be presented in this work.

We can also see from figure 2.4 that the field distribution of the LSP is directional and is parallel to the

polarization of the incident field. In general, α is a tensor and thus the depolarization field may or may

not be parallel to the incident field depending on the shape and size of the particle. Thus playing with the

polarization of the incident field, the shape and size of the particles we can have multiple LSP modes in a

system. This will be described in details in the following chapters.

Figure 2.4: (a) The calculated normalized polarizability (α) for a sphere in water (b) The electric field
intensity (E2) normalized to the incident intensity (E2

0 ) calculated at 540 nm (at the position of resonance).
The incident field is polarized along x.
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Conclusion of Part I

In this part we have shown the mechanism of excitation of surface waves in metal-dielectric interfaces.

We have seen that due to the presence of conduction electrons in metals we can have a resonance for the

oscillation frequencies of the charge densities of the electron cloud. The coupling of a photon to such

plasma oscillations give rise to plasmon polaritons.

We can broadly classify the plasmon polaritons into two families. The coupling of an incident photon

to the electron charge density oscillations at uniform metal-dielectric interfaces result in the propagating

surface plasmon (PSP). The resonance frequencies of the PSP can be calculated from a eigenvalue problem

and they are simply the transverse wave solutions of the Maxwell’s equations at the interface. These

waves propagate along the interface and decay exponentially in the direction normal to the interface.

The propagation length is of a orders of a few tens of micrometers while the penetration depth into the

dielectric is of the order of few hundreds of nano-meters for the visible part of the spectrum.

The second type of plasmon polaritons are supported by curved metal surfaces and thus by metal

nano-particles. The electric field caused by these plasmon polaritons are strongly localized close to the

metal surface. The mechanism of excitation of the localized surface plasmons (LSP) is similar to the PSP

and the modes that can be supported by the particles can be calculated by solving the scattering problem

of the particle brought into a electromagnetic field. The LSP modes are non-propagating and the decay

length of the electric field into the dielectric, at resonance, is of the order a few tens of nanometers.

With these two fundamental types of plasmon polaritons we can play with the structure geometries to

have various other modes of the complete system. Such modes which result from intra or inter coupling

of PSP and LSP have certain properties in terms of electric field enhancement or field confinement which

can prove to be useful for various applications. The focus of this work is to use such hybrid modes of

complex plasmonic structures to enhance detection capabilities of bio-sensors. Such plasmonic biosensors

and their advantages and limitations will be discussed in Part II.

The basic approach to optimize structures for applications is to first understand the mechanism of

excitation of the different modes in a complex structure. For this we need various numerical methods to

solve the modes of the system. In Part III we will discuss the numerical methods that we have used in this

work.
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Part II

Application of plasmonics for biosensing
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Introduction to plasmonic biosensors

Biosensors comprise of two principle components: the bio-receptor and the transducer. The bio-receptor

is a bio-chemical part of the biosensor which helps to recognize the analyte under study. The analyte

may consist of the biomolecular species such as DNA, antibody, enzymes, living components such as

cells or tissues or biomimetic materials such as synthetic bioreceptors. A probe layer which offers high

degree of selectivity to the target analyte is used for the recognition by various interaction mechanisms

such as nucleic acid interactions, antibody-antigen interactions, enzymatic interactions and so on. The

transducer helps to convert such bio-chemical interactions into measurable signals which can be analyzed.

Transduction process can follow various methods such as optical detection, electro-chemical detection

or mass based methods. Each method has its own type of output signal which give an insight on the

bio-chemical process under study. This work is dedicated mainly to the transduction part of the bio-sensor

and more specifically the method of optical transduction based on surface plasmons.

Majority of the optical transduction techniques depend on various methods of spectroscopies to

measure the spectrochemical properties of the analyte. This offers a direct insight into the type of chem-

ical species under study. Fluorescence spectroscopy is widely used and depends on the fluorescence

emission process of either the molecule itself (intrinsic fluorophores) or fluorescent labels attached to

the bio-molecules. Depending on the optical detection procedure used such methods can be used to

detect individual bio-chemical species or chemical interaction kinetics. However the main drawback of

fluorescence spectroscopy lies in the availability of appropriate intrinsic fluorophores or other fluorescent

dyes. Photo-bleaching (temporal delay between the excitation and emission of fluorescence) and fluores-

cence quenching (any process which decreases the fluorescence intensity of a given substance such as its

proximity to a metal surface) are other challenges faced by fluorescence detection methods.

Raman spectroscopy is a label-free technique that has been used for chemical analysis because of its

capability to offer molecular fingerprint of the analyte and thus identify specific chemical groups. However

the low scattering cross-section of the Raman emission process deterred its used until the development

of Surface Enhanced Raman scattering (SERS). SERS is based on the excitation of particle plasmons as

introduced in section 2.2 and this detection technique will be discussed in details in chapter 4. Another

commonly used label free optical bio-detection method is the surface plasmon resonance (SPR) detection

which mainly depends on propagating plasmons as introduced in section 2.1.2 and will be discussed in

chapter 3. This work is purely based on these two detection techniques namely SPR and SERS.
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Chapter 3

Surface plasmon resonance detectors

Surface plasmon resonance (SPR) detectors are based on the detection of refractive index changes that

occur due to various bio-chemical interactions. Since such detectors directly measure the refractive

changes, they do not require labeling of the chemical species and thus simplifies the chemical processes

involved in data collection. Conventional SPR detectors are based on a simple metal-dielectric interface

which can support the PSP. As shown in figure 2.3 the penetration depth of the PSP is around a few

hundred nanometers. The SPR detectors can thus probe local refractive index changes within a few

hundreds of nanometers from the metal surface. This makes it possible to detect molecular binding

processes which induce a change in the local refractive index. With advanced SPR detection systems,

minute refractive changes upto the order of 10−6 can be measured with very high precision. In this work

we will focus on the detection limit of SPR detectors with respect to analyte molecular concentrations

which has already been shown to be as low as a few nano-molar.

The dispersion of the PSP was discussed in section 2.1.3. From equation 2.3, we see that the dispersion

of the PSP depends on the refractive index of the dielectric medium (nd) at the metal-dielectric interface.

Thus a change in the refractive index translates to a shift in the resonance condition of the PSP. This

shift in the resonance condition with nd forms the basis of almost all SPR detectors. However as can be

seen from figure 2.2, for a simple metal-dielectric interface the wave-vector of the PSP (ksp) is greater

than the wave-vector of light in the dielectric (k0). Thus the propagating plasmon cannot be excited in a

simple metal-dielectric interface. To excite the PSP certain coupling schemes must be employed. The

most common method conventionally used for coupling the incident photons to surface plasmons was

introduced by Otto in 1968 and another similar coupling method was demonstrated by Kretschmann and

Raether in the same year.

3.1 Coupling of incident photons to plasmons

To excite the surface plasmons in an uniform metallic film we need to match the incident photon

momentum (or wave-vector kincx) to the wave-vector of the propagating surface wave of the PSP (ksp).

The wave-vector for a plane wave incident at an angle θ from a medium with refractive index ng can be

written as kincx = k0ngsin(θ). For the configuration shown in figure 3.1 the condition for coupling

the wave-vectors of the incident light to the PSP using equation 2.3 is given by

35



kincx/k0 = ngsin(θ) =

√
nd2nm2

nd2 + nm2
(3.1)

Figure 3.1: Coupling of incident light to surface plasmons by (a) the Otto configuration (b) the
Kretschmann configuration. The incident field is TM polarized with incident wavelength λ and thus
wave-vector k0 = 2π/λ (c)The coupling of incident wave-vector kincx to the wave-vector of the PSP
(ksp) with θ = 70◦.

We see that the coupling condition cannot be satisfied with ng = nd. To match the wave-vectors

Otto proposed the configuration shown in figure 3.1(a) where a thin layer of dielectric with refractive

index nd was sandwiched between the metal and another dielectric with index ng > nd. However the

configuration is not very adaptable for practical reasons. The configuration shown in figure 3.1(b) was

proposed by Kretschmann and Raether [25], uses a thin metal film (of a few 10s of nms in thickness)

between two dielectric layers of refractive indices ng > nd where the coupling condition can be satisfied

for the metal-nd interface [26]. The dispersion of the PSP in terms of wavelength (λ) and kx/k0 is

shown in figure 3.1(c) with nd = 1.333 and ng = 1.513. We see that for metal-nd interface the PSP is

excited for values of kx/k0 > nd. This was also seen in figure 2.2. With the angle of incidence θ and

incidence medium with index ng we can have access to the values of kx/k0 from 0− ng. The value of
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kx/k0 = nd denotes the critical angle for the ng − nd interface. Thus without the gold film we expect

total internal reflection (TIR) for values of kx/k0 > nd. For certain values of wavelength (λ) and angle

θ the coupling condition is satisfied as shown in figure 3.1(c) for θ = 70◦ and the PSP can be excited at

that particular λ and θ. When light passes through a high refractive index (ng) medium and is totally

reflected at the the medium of index nd it gives rise to an evanescent wave which can penetrate the metal

film given its thickness is of a few tens of nms. This evanescent wave propagates along the interface (x)

with the propagation constant kincx and if its value matches the wave-vector of the PSP it couples to the

surface plasmons at the metal-nd interface generating the PSP.

For SPR detectors the Kretschmann configuration is conventionally used to couple the incident photons

to the plasmons. Other methods such as matching the PSP wave-vectors to that of diffraction orders from

a grating or the wave-vectors of propagating modes of a waveguide have also been used. However such

methods have not proved to be as convenient as the Kretschmann configuration owing to the inherent

simplicity of the later. Here in this work we will focus on the SPR detectors using the Kretschmann

coupling configuration.

3.2 Practical realization of SPR detectors

SPR detectors using the Kretschmann coupling configuration are generally realized using a prism for the

high refractive index medium (ng). The scheme of a conventional SPR detector is shown in figure 3.3.

The fluidic cell generally contains water (or other solvent used to dissolve the analyte) and has a refractive

index lower than that of the prism used (generally BK7 glass, index 1.513 or flint SF10 glass, index 1.712).

Light with wavelength (λ) and internal angle of incidence (angle at the prism-biochip interface) θ is

totally reflected at the prism-fluidic cell interface and the reflectivity is measured by the detector. We will

consider the biochip as a uniform thin metallic film, which is conventionally used for SPR detectors. The

aim of this work is to develop new generations of structured bio-chips which we will explain in details in

part IV. For the wavelengths and internal angle at which the PSP, is excited the energy of the incident

photons is coupled to the PSP and thus we have a fall in reflectivity measured by the detector. Thus by

scanning over λ or θ and measuring the reflectivity we can virtually follow the resonance condition given

by equation 3.1. This resonance condition is strongly dependent on the refractive index of the medium in

the fludic cell (nd) and thus any change in the index will manifest as a shift in the resonance condition in

both λ and θ. This is the basic principle of all SPR detectors and most of them are used to probe bulk

refractive index changes around the bio-chip surface.

Some examples of currently used SPR detection systems is shown in figure 3.2. All the SPR detectors

shown use the same principle, which is to follow the satisfaction of the coupling condition in either λ

or θ. Some of the setups use a broad band source and use a monochromator or diffraction grating for

wavelength scanning. Others use narrow band sources such as LED or laser diodes and thus the coupling

condition is matched by tuning the angle of incidence.

The SPR configuration used for this work is based on a spectro-angular modality shown in figure 3.4

[35]. The source is a halogen lamp and thus have a broad range of wavelengths. A monochromator is used

to scan the wavelengths for interrogation. Light from the monochromator is collected by a multi-mode

fiber and then collimated and linearly polarized using a polarizer. The angle of incidence is chosen by a

motorized platform. The reflected light from the bio-chip surface is imaged by a CCD camera. Using this
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Figure 3.2: Different SPR detectors: (a) I.Stemmler et al (1999)[27] uses illumination and collecting fibers
to couple the photons to the plasmons and collect the reflected light. A diode array spectrometer was used
to study the reflectivity spectrum. (b) B.N. Feltis et al (2008) [28] constructed a compact hand held SPR
biosensor (c) M.Piliarik et al (2009) [29] used a special diffraction grating structure which coupled the
incident light to the plasmons and the same was used to diffract the light for spectral readout of SPR signal.
(d) F.Bardin et al (2009) [30] used a diffraction grating at the output to study the reflectivity spectrum (e)
A.Sereda et al (2015) [31] used a compact 5-LED illumination system for spectral interrogation in SPR
imaging. (f)J.A.Ruemmele et al (2013) [32] using a collimated white light source and spectroscopic read
out using a liquid crystal tunable filter (g) Z. Zheng et al (2008) [33] using an ultrafast laser and dispersive
element for spectral analysis (h) S. Otsuki et al (2010) [34] used a broadband lamp as the source and a
monochromator for spectral scanning.
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Figure 3.3: The scheme of a conventional SPR detector using a prism to couple the incident light to the
PSP. The source is generally tuned over a range of wavelengths (λ). The detector is used to measure the
reflectivity from the biochip-prism surface. The bio-chip is fuctionalized with the probe molecules and
the target analyte is introduced in the fluidic cell. The SPR detector can study the interaction between the
probe molecules and the target analyte.

Figure 3.4: A.Sereda et al (2014) [35]: SPR imaging setup in Kretschmann configuration. The source is a
halogen lamp with a monochromator to choose the wavelength of interrogation. A polarizer is used to
choose the polarization of the incident collimated beam. A motorized platform is used to scan the angle of
incidence. A CCD camera records the reflection from the bio-chip surface at different wavelength and
internal angle. Using this configuration we can extract the complete image of each point of the biochip
surface.
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configuration we can image the entire bio-chip surface and thus have complete access to the reflectivity

coefficients for all wavelength and internal angle at each point.

A complete spectro-angular map of the reflectivity can be extracted using the setup described above.

For a simple bio-chip comprising of a 50nm gold film the variation of the reflectivity as a function

of wavelength and kx/k0 = ngsin(θ) is shown in figure 3.5. The value of refractive index of the

BK7 prism used was taken as 1.513. This was verified by ellipsometric measurements. Henceforth

we will write kx/k0 = (k///k0) following the notation commonly used for waveguides. The details

and benefits of this notation will be explained in later sections. We see a drop in reflectivity at certain

wavelengths and internal angle((k///k0)) which correspond to the dispersion of the PSP as given by

equation 3.1. This is the direct demonstration of the excitation of plasmonic modes in an experimental

setup. The complete reflectivity variation as a function of wavelength and (k///k0) can be considered

directly to be the dispersion map of the plasmonic modes present in the system. This work consists of

such detailed dispersion maps of different structures and the understanding of the plasmonic modes that

can be identified in such a map.

3.2.1 Interrogation methods for SPR detectors

On the aspect of bio-sensing as mentioned earlier, a change in the local refractive index manifest in a

shift of the resonance condition of the PSP and thus a shift in the position of reflectivity minimum in

the dispersion map. In figure 3.6 we have shown the variation of reflectivity as a function of wavelength

and (k///k0). The measurement was done with water injected into the fluidic cell. Then a sucrose

solution was injected in the fluidic cell which manifests a change in refractive index of the medium (a

change of around 2× 10−3 RIU is expected). We see that the position of the reflectivity minimum shifts

with a change in refractive index of the medium in the fluidic cell. This offers three different methods of

interrogations for SPR detectors

(a) Reflectivity interrogation: Due to the shift of the PSP dispersion condition in wavelength and

internal angle, there is a change in the absolute reflectivity close to the resonance position. This reflectivity

change (∆R)is proportional to the changes in refractive index of the surrounding medium. With present

available SPR detectors a refractive index variation as low as 10−6 RIU can be measured. The advantage

of reflectivity interrogation method is that it does not require a scan over the wavelength or angle of

incidence and thus can be used to measure real time refractive index changes. An image with a digital

camera, of the biochip surface at a given wavelength and internal angle (close to the resonance position) is

sufficient to measure ∆R. However the main disadvantage of this method is the dispersion of the absolute

reflectivity, due to the inhomogeneity of the dielectric above the metallic film. This is caused by different

experimental conditions and inhomogeneity of the biochip functionalization method. Thus this method is

not very robust to detect really small refractive index changes.

(b) Spectral interrogation: The shift in the resonance wavelength (∆λ) at a fixed internal angle can

also be used to probe refractive index changes in the fluidic cell. This method is more robust than the

reflectivity interrogation as ∆λ does not depend on the inhomogeneity over the biochip surface and is

also less sensitive to noise in the light source used. However it is not possible to extract ∆λ in real time

and have SPR imaging capabilities at the same time. Measurement of ∆λ requires post processing by

spectroscopic measurements. Thus real time spectral interrogation can be carried out using a spectrometer

coupled to the camera, but a complete image of the biochip surface cannot be recorded.
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For a conventional biochip which comprises of a thin gold film, the reflectivity dip can be fitted to a

Lorentzian distribution and the spectral position of the minimum reflectivity can be calculated directly to

evaluate ∆λ. This however may not be adapted, when studying nano-structured biochips, where a simple

Lorentzian distribution to fit the reflectivity spectra is no longer applicable. This will be treated elsewhere

in this work.

(c) Angular interrogation: This is similar to the spectral interrogation and thus the advantages and

drawbacks of the method is same as those of spectral interrogation. The incident wavelength is fixed and

the shift in the internal angle (∆θ) satisfying the resonance condition is measured. In figure 3.6 we have

shown the shift in (k///k0) at a fixed wavelength. This is proportional to the shift in internal angle as

(k///k0) = ngsin(θ). It has been shown that resolutions upto 10−7 RIU can be achieved by SPR

detectors using spectral or angular interrogation.

Recent works have also demonstrated SPR detection with phase modulation. The reflection at an

interface is generally associated with phase shift of the reflected field. In case of a flat metal surface, the

phase of the reflected field in TM configuration undergoes an abrupt phase shift of upto 2π when the

PSP is excited. This has inspired researchers to use interferometric configurations to measure the phase

shift (∆Φ) associated with the excitation of surface plasmons. In such configurations the shift in phase is

observed as spatial displacement of the interference fringes. In figure 3.7 we have shown the calculated

reflectivity and the phase of the reflected field for a thin gold film of 50nm in the configuration similar to

that shown in figure 3.5. The calculation was done by the Rouard method described in section 6.1. We see

that the phase jump is rather sharper compared to the SPR reflectivity dip width in spectral or angular

interrogation. This has proved to enhance the detection limit of SPR sensors and resolutions of upto 10−8

RIU has been obtained using phase interrogation. However due to the sharp nature of the phase jump,

such a detection method is vulnerable to temperature and index fluctuations of the fluidic cell and has a

very limited dynamic range of detection. For this work we will not use the phase interrogation method.

3.3 Molecular detection using SPR detectors

So far we have introduced the basic principle of SPR detectors and the various methods for detection

of refractive index changes in the medium surrounding the bio-chip. The inherent detection limit of the

conventional bio-chip using a thin metallic film and structuration of the bio-chip surface is the motivation

for this work and will be described in details in part IV. However the main application of this work is not

to detect bulk refractive index changes around the bio-chip surface but detection of specific molecular

interactions close to the bio-chip surface. In this section we will present some of such bio-molecular

interaction which SPR detectors are capable of sensing.

Depending on the method of interrogation used, the signal of a SPR detector is a the change in

reflectivity (∆R), shift in resonance wavelength (∆λ measured in nm) or shift in angle of incidence (∆θ

measured in ◦). The signal can be normalized to the change in refractive index (RIU) and the sensitivity

used to characterize the sensor is generally expressed in terms of /RIU such as nm/RIU for spectral

shift or ◦/RIU for angular shift.

Another major application of the SPR detection systems is SPR affinity biosensing, which studies the

interaction of a biorecognition element with a specific analyte [36, 37]. The binding occurs within a thin

layer of a few nanometers above the bio-chip surface. The signal for such applications is normalized to the

size of the analyte bound to the biochip surface. Thus the sensitivity used to characterize such detection is
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generally expressed in terms of analyte thickness (in nm) such as nm/nm for spectral shift or ◦/nm

for angular shift.

For SPR affinity detection, one of the molecules is generally immobilized on the bio-chip surface. We

will call this the probe molecule. The analyte (or target) molecule is generally prepared in a liquid solution

and injected into the fluidic cell. The choice of the target and probe molecules and the immobilization

of the probe on the biochip surface plays a critical role in the performance of SPR affinity biosensors.

Thus such systems require an additional step of surface functionalization to immobilize the probe. Such

detection offers binding kinetics measurement and real time monitoring of biomolecular recognition.

The main advantage of using SPR for affinity detection, lies in the fact that SPR detection is sensitive

only within a few hundreds of nanometers from the biochip surface, depending on the penetration depth

of the electric field into the dielectric as shown in section 2.1.4. Thus such detection is not affected by

the inhomogeneity or fluctuations in the bulk medium of the fluidic cell. However any molecule binding

to the biochip surface can cause a variation in the signal measured. Thus the biochip surface must be

functionalized to maximize the specific binding of the analyte molecules on the sensor surface and at the

same time prevent the binding of non-specific molecules which may cause a spurious signal.

Four main types of detection schemes that govern affinity bio-sensing are shown in figure 3.8.

(a) Direct detection: For this method the probes are immobilized such that the entire biochip surface

can be covered, thus inhibiting non-specific binding of other molecules. The binding target is introduced

in the fluidic cell and they are directly captured by the probe molecules. This method applies when the

probes are such that they specifically bind to the analyte molecules and repel other non-specific molecules.

Once binding occurs the analyte comes within the evanescent field of the plasmons and thus cause a

detectable signal.

(b) Indirect detection: This method may involve two types of probe molecules, one that can bind to

the target molecules and the other that undergoes modification in their chemical structure and thus have

decreased biomolecular affinity to the analyte. Sometimes specific probe molecules are not available for

the analyte molecule and thus the probes used can capture all types of molecules present in the solution.

To solve for non-specific binding a second step of detection process is involved where the probe molecules

of the same type or different, are reintroduced into the fluidic cell and the binding of probe-analyte-probe

is followed to measure the bio-molecular interactions.

(c) Detection by competition: This method is used when the analyte molecules have very low

molecular mass and thus the signal caused by their binding to the probe is below the detection limit of the

system. In this case another molecule with higher molecular mass (M) which binds specifically to the

analyte is introduced and the binding event of probe-analyte-M is studied. The presence of the molecule

with higher molecular mass assures a signal above the detection limit of the system.

(d) Detection by inhibition: This method like the previous one is used for analyte molecules which

cause signals lower than the limit of detection during the binding event. In this case if possible the analyte

is directly functionalized on the bio-chip surface and probe molecules with larger molecular mass is

introduced in the fluidic and the binding of analyte-probe is measured.

SPR affinity biosensors have been implemented for the detection of various bio-molecule groups such

as DNA, RNA and peptides, proteins, immunoassays and cell studies. Chemical functinalization plays a

major role in such detection techniques and involves specific choice of probe molecules for each measured

analyte. Rigorous steps are also involved in passivation of the metallic surface to avoid non-specific
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binding. This work is not directly involved in the surface chemistry used for such detection and details

of the chemical methods used will be avoided. However one example of probe immobilization on a

gold biochip surface as presented by J. Spadavecchia et al [38] is shown in figure 3.9 and will be briefly

described.

The aim of such surface chemistry is

(a) passivation of the metallic surface to prevent non specific absorption of target molecules on the

surface.

(b) to facilitate the specific absorption of probe molecules on the surface

(c) prevent modifications (as much as possible) of the bio-molecular interaction process of the probe

and the analyte

(d) in some cases, help the regeneration of the unbound target molecules.

The various steps in surface chemistry (as per the example shown in figure 3.9) are described below.

(1) The first step is to functionalize a SAM (self-assembled monolayer) on the metallic surface, in this

case the thiol (HS). This layer helps in the passivation of the metallic surface and facilitates the binding

of a reactive chemical group (in this case −NH2). In the cited example this is done by binding a short

chain of -mercaptoethylamine (cysteamine) to the gold.

(2) The next step is to activate the chemical group (−NH2), in this example done by covalent

attachment of cross-linked 1,4 phenylenediisothiocyanate (PDC).

(3) The final step of surface chemistry is to bind the probe molecules to the activated chemical group.

For the example this is done by a neutravidin layer that allows binding of the biotinylated probes.

Such surface chemistry is a long process and generally takes more than a day of preparation time.

However the process is robust in terms of reproducibility and can be used for various bio-molecular

binding processes.
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Figure 3.5: The measured reflectivity (R) of a 50nm thin gold film with wavelength and (k///k0) =
ngsin(θ) as obtained by the SPR imaging setup. The prism is of BK7 glass and the medium in the fluidic
cell is water. We see a drop in reflectivity at certain values of wavelength and internal angle ((k///k0))
which correspond to the dispersion of the PSP as given by equation 3.1 (blue dashed).

Figure 3.6: The various interrogation methods for SPR detection: (a) The variation of reflectivity as
a function of wavelength (λ) for (k///k0) = 1.39 (θ = 66.6◦) for the fluidic cell containing water
(black) and the same containing sucrose (red). An expected refractive index change between water and
sucrose is 2×10−3 RIU. The reflectivity difference (∆R) for water and sucrose solution as a function of
wavelength is also shown (blue). (b) The variation of reflectivity as a function of (k///k0) (ngsin(θ))
for λ = 750nm for the fluidic cell containing water (black) and the same containing sucrose (red). The
reflectivity difference (∆R) for water and sucrose solution as a function of (k///k0) is also shown
(blue).
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Figure 3.7: The calculated reflectivity (R)(black) and phase of the reflected field (blue) of a 50nm gold film
as a function of (k///k0) for incident wavelength of 750nm (left). The same as a function of wavelength
for angle of incidence of 67◦ ((k///k0) = 1.39) (right).

Figure 3.8: The four main types of detection formats in SPR affinity biosensors: (a) Direct detection
(b) Indirect detection (c) Detection by competition (d)Detection by inhibition. The green background
represents the decaying evanescent field caused by the plasmon mode.
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Figure 3.9: J. Spadavecchia et al (2009)[38]: Structural reaction mechanism for the covalent attachment
of neutravidin to a gold surface.
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Chapter 4

Detectors using particle plasmons

Localized plasmon mode was introduced in section 2.2. Photon coupling to the localized oscillation of

electron charge density at the surface of metallic particles induce a strong electromagnetic field on the

surface that decay within a few nano-meters into the dielectric medium surrounding the particle. This

LSP mode like the PSP can be used to measure refractive index variations of the surrounding medium.

Coupling of the incident light to the LSP modes in metallic particles can be achieved directly and do not

need specific coupling configurations like in the case of the PSP. However the dispersion and the resonance

frequencies of the LSP can be sometimes complicated to calculate and depend largely on the metallic

particle size, shape and distribution. In this chapter we will present some examples of bio-detectors that

use the phenomenon of photon-LSP coupling and the consequent optical approach used to realize them.

4.1 Detection based on localized plasmon resonance

Single nano-particle based nano-probes have found various applications in sensing local chemical changes

within nanometric scales such as molecular-binding events, gas detection, catalytic reactions, in vivo

imaging, therapy monitoring and so on [39, 40, 41, 42, 43, 44]. The main advantage of nano-particles

is the strong confinement of the evanescent field induced by the plasmon resonance. They are almost

insensitive to bulk drift that occur beyond the penetration depth of the evanescent field. The absorption

and scattering cross-sections of metallic nano-particles can be enhanced up to a million times compared

to the fluorescence cross-section of a fluorescein molecule. Moreover the fact that metallic nano-particles

do not undergo photo-bleaching makes them more attractive for spectroscopy based bio-detections.

Most of the localized plasmon resonance (LSPR) detectors are based on spectroscopic measurements

which probe the extinction spectra (absorption or scattering peaks in the spectrum) of an incoming

light beam. The resonance frequency shift in such an extinction spectra can give insight on molecular

events occuring in the medium surrounding the nano-particles. Various particle sizes ranging from a

few nano-meters to 100s of nano-meters, various shapes starting from a simple sphere to even weird

particle geometries and materials such a noble metals, heavy metals and alloys have been fabricated

for this purpose [45, 46, 47, 48]. Silver nanoparticles exhibit the strongest absorption and scattering

characteristics among all metals. However oxidization of silver makes it less attractive when chemical

functionalization of the nano-particles are involved. Gold given its bio-compatibility and the possibility of

thiol-Au functionalization and other types of bio-chemical conjugations, makes it the most common metal
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for LSPR based biosensors.

Y.Wang et al [49] in a recent review presented an overview of various nano-particles fabricated for

surface enhanced raman scattering (SERS) detection. SERS will be explained in the following section

(4.2). Figure 4.1 taken from the above mentioned review gives an idea of the range of nano-particle types

which has been under research and the diversity of the extinction spectra that can be observed in such

nano-particles.

Figure 4.1: Y.Wang et al (2013)[49]: Nano-substrates for synthesis of SERS tags and their extinction
spectra (absorbance).
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4.1.1 Synthesis and functionalization of metal nano-particles

The most common chemical process to synthesize colloidal gold nano-particles was introduced by J.

Turkevich et al. in 1951 [50] and further developed by G. Frens in the 1970s [51, 52]. The process follows

the reduction of chloroauric acid by sodium citrate to form Au ions. The citrate acts both as a reducing

agent and a capping agent which inhibits the gold nano-particles to aggregate into larger particles. The

process also offers stability and quasi-spherical nano-particles ranging from 8-120nm in size can be

synthesized by varying the citrate/Au ratio. With increasing demand of metal nano-particles in sensing

applications various other chemical methods have been developed by which colloidal nano-particles can

be synthesized with controlled homogeneity in shape, size and surface properties. Physical processes such

as lithography, vapor deposition, laser ablation and so on have also been used for the purpose.

For biochemical applications the nano-particles thus synthesized needs to be functionalized. Different

methods of functionalization for gold nano-particles was presented in the review by R.A.Sperling et al

(2008) [53] and further discussed by G.Doria et al (2012) [54]. Table 4.1 taken from the later review

shows the various types of conjugations between bio-molecules and metallic nano-particles and their

respective advantages and drawbacks.

Table 4.1: G.Doria et al (2012) [54]: Types of nano-particle functionalizations and their respective
advantages and drawbacks.

Type of conjugation Advantage Drawbacks

Electrostatic interactions
(e.g., adsorption of nega-
tive charged DNA to posi-
tive charged gold NP)

- Very simple and straight-
forward to perform

Restricted to opposite charged
biomolecules and NPs;
- Very sensitive to environmental
properties (e.g., pH, ionic strength,
etc.);
- Weak functionalization.

Chemisorption
(e.g., quasi-covalent bind-
ing of thiolfunctionalized
biomolecule to gold NP)

- Allows oriented function-
alization;
- Very robust functionaliza-
tion.

- Requires NPs with capping agents
with weaker adsorption than the deriva-
tization moiety;
- Usually requires modification of the
biomolecule;
- Subject to interference by other chem-
ical groups available for adsorption
within the biomolecule;
- Affected by chemical degradation and
surface oxidation of some NPs (e.g., sil-
ver).

Affinity-based
(e.g., His-tag protein bind-
ing to Ni-NTA derivatized
gold NP)

- Allows oriented func-
tionalization;
- Very straightforward
binding between affinity
pairs.

- Requires modification of both NPs and
biomolecules with an affinity pair;
- Limited to availability of suitable bind-
ing affinity pairs.
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4.1.2 LSPR detector configurations

As mentioned earlier LSPR detectors are based on direct spectroscopic measurements of the absorption

or scattering by the functionalized nano-particles. Gold or silver nano-particles undergo LSPR in the

near UV to visible part of the spectrum. Thus the colloidal solutions of such nano-particles are generally

colored depending on the absorption band, and can help in direct colorimetry measurements. In figure

4.2 the extinction spectrum of silver nano-disks and nano-prisms are shown with different sizes to give

an idea of the range over which the LSPR resonance frequencies can be tuned for such nano-particles.

Generally for single nano-particles as can be seen from equation 2.8 the size dependence of the resonance

frequency stems from the depolarization factor χ. It has been widely reported that resonance frequencies

of symmetrical nano-particles undergo a red-shift with an increase in size. However for particles with

unsymmetrical geometries the tendency depends on the aspect ratio of the particles and the polarization of

the incident light. We will describe the various phenomenon which affect the resonance frequencies of

nano-particles in details in part IV and it forms an important part of this work.

Figure 4.2: J.N.Anker et al (2008) [55]: The LSPR extinction spectrum of silver nano-disks and nano-
prisms of different sizes.

In most detectors (apart from in-vivo measurements) the colloidal nano-particles are deposited on a

substrate on which spectral measurements are carried out. Different optical instrumentation geometries

have been tried for this purpose. Most optical instruments consist of a broad band light source, the

sample holder and a detector. For transparent samples the direct transmission spectra are recorded. For

opaque samples however, optical geometries to record the reflection spectra are used. Mostly bright field

microscopy techniques are used to record the reflection or transmission spectra. Dark-field scattering

microscopy techniques are used when only a small portion of the sample is needed to be studied. In
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such configurations only the scattered field from the sample is received for spectroscopic measurements.

Figure 4.3 shows the four different types of instrumentation and optical geometries commonly used for

LSPR detectors. Apart from them, different groups have also tried illuminating the nano-particles using

waveguides or optical fibers and then recording the scattered field using dark-field microscopy techniques.

Various research groups have reported different bio-molecule detection techniques [56, 57, 58, 59].

LSPR can be used to detect bulk refractive index changes of the medium surrounding the nano-particles

by recording the shift in resonance wavelength [60, 61]. However this technique is much less sensitive for

this purpose as compared to the SPR technique mentioned in chapter 3. In fact the bulk index sensitivity

of metal nano-particles using LSPR is atleast 3 times smaller as compared to that of an uniform metallic

film using the PSP. This can be attributed to the fact that the penetration depth of the PSP is much larger

than the LSP. This will be discussed in details in part IV. However this very principle is useful when using

LSPR detectors for affinity based biosensors as introduced in section 3.3 as they offer robust detection

almost insensitive to bulk refractive index or temperature drifts in the bulk solution. In table 4.2 we have

given a brief overview of different reported research using LSPR for affinity detection.

Table 4.2: Various LSPR affinity biosensors and the type of detection carried out.

Type of detection Optical Configuration and nano-particle
geometry

Reference

Immunoassay: Antibody-
Antigen

Transmission bright field mode : Gold
Nanorods with average length of 50nm
and 15nm in diameter

K.M. Mayer et al
(2008)[62]

SAM formation on single
nano-particles with zepto-
mole sensitivity

Dark field microscopy: Silver nano-
spheres, nano-triangles and nano-rods.

A.D.McFarland et al
(2003) [63]

Length of DNA measured
with subnanometre axial
resolution

Dark field microscopy in transmission
mode: DNA conjugated to gold nano-
particles; LSPR shift is proportional to
DNA length

G.L.Liu et al (2006) [64]

Demonstrated Al as a pot-
tential nanoplasmonic ma-
terial in UV-Visible part of
the spectrum

UV Dark-Field Microspectroscopy with
Al nano-disks ranging from 70-180nm.
Also studied the effect of Al native ox-
ide formation on the plasmonic behav-
ior.

M.W. Knight et al (2014)
[65]

Sequence-specific DNA
sensor: detection of
DNA molecules com-
plementary to a ssDNA
oligonucleotide probe

Dark field optical microscopy in trans-
mission mode with gold nano-triangles
of average size of 100nm and thickness
of 17nm.

L.Soares et al (2014) [66]

Tracking individual gold
nanoparticles in live cells

Bright field transmission microscopy
used to track 5nm gold nano-particles
in living cells

D.Lasne et al (2006) [67]
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Figure 4.3: Optical geometries used for LSPR detection: (a) Bright field transmission mode using a broad
band source and an objective to illuminate the sample. Light scattered from the sample is recorded by a
spectrometer to obtain the extinction spectra. (b) Dark field microscopy in transmission mode where only
the scattered field transmitted by the sample is recorded. (c) Bright field reflection mode where the same
objective is used to illuminate the sample and collect the reflected field. (d) Dark field microscopy in the
reflection mode where the same objective is used to illuminate the sample and collect the scattered field
reflected from the sample.
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4.2 Surface enhanced Raman scattering

Inelastic scattering of light by matter was predicted by Adolf Smekal in 1923 [68]. In 1928, C.V.Raman

[69] and K. S. Krishnan (and independently by G.Landsberg and L.Mandelstam [70]) experimentally

demonstrated that a small portion of white light changes frequency when scattered by a fluid and for

this work, C.V.Raman received the Nobel Prize in Physics in 1930. Ever since this first demonstration,

the phenomenon which takes his name has been reported widely and used in spectroscopy to identify

molecules by their unique Raman spectral fingerprint.

For elastic scattering (called Rayleigh scattering) of photons by particles smaller than the wavelength

of light, there is no shift in the frequency of the incoming photon. The Raman effect is caused by the

inelastic scattering of a photon by the molecule owing to a vibrational or rotational mode of the later. In

such an inelastic scattering the energy of the fundamental vibration (hνm) is transferred to the photon

and thus the incoming photon undergoes a change in energy and a consequent shift in frequency. There

are two types of scattering process that can take place when a photon with energy hνp is incident on

the molecule. Firstly the photon can excite a vibrational mode of the molecule and thus loosing energy

(hνp − hνm). This process is called the Stokes scattering. The second possibility occurs if the photon

gains energy (hνp+hνm) owing to the de-excitation of a vibrational mode of the molecule. This is called

the anti-Stokes scattering. The two possible Raman scattered frequencies are therefore νs = νp − νm
and νas = νp + νm for Stokes and anti-Stokes scattering respectively.The energy diagram of a molecule

undergoing Raman scattering is shown in figure 4.4.

Figure 4.4: The Jablonski energy diagram of a molecule showing different scattering processes. For
simple IR absorption a photon with energy hνp is absorbed. For the Rayleigh scattering the photon
undergoes elastic scattering without a shift in frequency. For Raman scattering there is a shift in frequency,
proportional to the energy of the vibrational band (hνm). Resonant Raman scattering occurs when the
molecule is excited to one of the electronic states, followed by an inelastic scattering process. The process
of fluorescence is also shown.

The schematic of the fluorescence process is also shown in figure 4.4. Due to the non-elastic electron

relaxation process in the case of fluorescence, the spectrum is relatively broad as compared to the sharp
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spectrum of Raman scattering. This thus offers a much detailed analysis of the molecule under study.

Raman spectroscopy is also more robust compared to IR absorption as the shift in frequency is not affected

by background absorption. However the Raman process occurs through transitions between the vibrational

states and virtual states of the molecule and thus is not a resonant process. Thus the efficiency of Raman

scattering is much lower as compared to fluorescence [71]. This is even true for resonant Raman scattering

which takes place via electronic transition states. Therefore with a scattering cross-section in the order of

10−28 − 10−30cm−2 per molecule per stereoradian, Raman scattering have not really been useful for

molecular detection till the 1970s.

In 1974 Fleischmann et al [73] reported a huge increase of the Raman signal while studying pyridine

molecule using rough silver electrodes. This was followed by a series of publications which reported the

enhancement of Raman scattering efficiency when the molecules under study were adsorbed on roughened

metallic surfaces [74, 75]. One such spectrum is shown in figure 4.5. An enhancement of the order of 105

was reported and thus paved way for the research of Surface Enhanced Raman Scattering (SERS) [76, 77].

Later similar enhancements were observed for metal nano-particles and soon the effect was attributed to

the possibility of plasmon resonance in metallic particles [78, 79]. Thus Raman effect which is somewhat

a chemical phenomenon depending on molecular properties, now became a research interest in the field of

photonics and optical properties of metals. In the next section we will discuss briefly the known causes

for the enhancement of Raman scattering by metallic surfaces.

4.2.1 Role of surface plasmons in SERS

Surface enhanced Raman scattering (SERS) is a powerful tool used to identify molecular species using

their Raman fingerprint [80, 81]. Recent development in the domain has reported an enhancement of

the Raman response of molecules by a factor of up to 107 when they in the vicinity of rough metallic

surfaces [82, 83, 84, 85]. A complete understanding of this enhancement is still eluding [86, 87]. However

researches have pointed out that such enhancements may be related to local chemical effects due to the

interaction of the analyte with metal surfaces [88, 89]. This chemical enhancement is mainly due to the

modification of the electronic structure of the molecule by complex charge transfer between the molecule

and the metal. Chemical enhancement can also be a result of the modification of the polarizability of

the molecule and thus modifying its Raman response. Such effects though reported and studied over

sometime, cannot attribute to an enhancement factor of more than 102 [90, 91].

A more prominent reason for SERS has been found to be the enhancement of the local electromagnetic

field close to the metallic structures which in turn enhance the Raman response of the molecules [92, 93,

94]. This process can be explained in two steps as shown in figure 4.6.

The incident electromagnetic field (Einc) is enhanced by the metallic structure owing to the excitation

of surface plasmon resonance modes. This enhancement (M(νi)) depends of the localized plasmon mode

excited and thus on the type of metallic structure. However as commonly known for LSP, the enhancement

is generally larger at sharp edges and with surfaces with roughness. This enhancement also depends on

the incident frequency νi and its proximity to the LSP resonance frequency. This enhanced field (El)

is scattered by the molecule at the Raman shifted frequency νs. The scattered field is re-radiated by the

metallic structure and it also undergoes an enhancement owing to the plasmon resonance, however this

time at the Raman shifted frequency (M(νs)). The field is then emitted to the far field and the SERS

intensity recorded (ISERS) is enhanced by a factor roughly proportional toM(νi)
2M(νs)

2.
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Figure 4.5: M.W.Howard et al(1980) [72]: The Raman spectra of pyridine at silver electrode interfaces.
(a)The pyridine applied to electrode surface at a pottential of -0.2V but before the anodic cycle. (b) after
anodic cycle (c) at a electrode pottential of -0.6V (d) the signal from a dry electrode 3 days after the
pottential control was removed at -0.2V.

The detailed mathematical formulation for the EM enhancement is SERS will be treated in part V and

forms an important application of this work.

4.2.2 Instrumentation for SERS

Raman spectroscopy is based on the detection of Raman shift in frequency of an incident illumination

owing to the molecular vibrations of the analyte [95, 96]. This shift is much smaller than the incident

frequency (νi) and is generally calculated in terms of wave-number given as ∆SRaman = [νs − νi]/c.
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Figure 4.6: Process of electromagnetic enhancement in SERS: 1) The local electromagnetic field around
the metallic structure is enhanced at the incident frequency νi. 2) This enhanced field is scattered by
the molecule to give the Raman scattered field Es at Raman shifted frequency νs. 3) The scattered field
is re-enhanced by the metal structure (ER). 4) This re-radiated field at the Raman shifted frequency is
emitted to the far field with intensity ISERS .

The recorded signal in Raman spectrometers is the scattered intensity as a function of this shift ∆SRaman

in units of cm−1. Because of the low shift in frequencies, Raman spectroscopy requires a source with

well defined excitation frequency with a very low spectral width. Thus almost all Raman spectroscopes

use lasers as source. The Raman shift is generally independent of the excitation wavelength (λi = c/νi)

and depends purely on the type of molecule and its vibration states.

A normal microscopic configuration is used to record the scattering event from the molecules and

then spectroscopic measurements are done on the recorded intensity. To have higher spatial resolution

Raman microscopy generally uses a confocal configuration. This also assures excitation of specific zone

of the sample and thus reduces background scattering and fluorescent events from effecting the Raman
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spectrum. A notch filter is also used to block the light at the incident wavelength and thus filtering the

Rayleigh scattered intensity.

Recent development has also paved way for Raman imaging where the confocal microscope is scanned

over the sample to obtain a 2D (and even 3D) profile of Raman spectra [97, 98]. In this case a complete

spectrum is acquired at each and every pixel of the image, and then interrogated to produce a false color

image of the Raman spectra over the entire sample surface. Another method of detection of molecules

by enhanced Raman spectrometry is by introducing a metallic tip and scanning the sample. The method

called Tip enhanced Raman scattering (TERS) follows the same principle as SERS but with a much

higher spatial resolution (down to a few tens of nanometers) [99, 100]. Figure 4.7 shows an example of

a commercial Raman microscope from Horiba scientific and this is one of the instruments used for the

Raman spectra presented in this work.

Figure 4.7: (a) Schematic of confocal microscopy configuration for Raman spectroscopy. A laser is
generally used as the source and a microscope objective to illuminate the sample. The same objective
is used to collect the Raman scattered field which is then passed through a notch filter to eliminate the
Rayleigh scattered field at the frequency of incidence. The Raman scattered field is then processed by a
spectrometer to obtain the Raman spectra. (b) Commercial Raman microscope XploRA ONE TM from
Horiba Scientific.
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Chapter 5

Biochip and nano-structuration

We have introduced the different methods of bio-sensing using surface plasmon resonance. Broadly we

can classify the detectors in two categories. Firstly the ones that use propagating surface plasmons to

detect bulk refractive index changes or local molecular binding kinetics. These were described in chapter

3. The other category of plasmonic bio-sensors use localized plasmon resonance of metallic nano-particles

and can be used to probe individual molecular interaction events or to specifically identify the molecules

by their Raman fingerprint. These were described in chapter 4. However both these categories of detectors

have one thing in common: they depend on the electromagnetic field confined at metallic surfaces. Thus

a complete understanding of this phenomenon is very important to enhance the performance of these

detectors. Apart from the fluctuations and drifts causes by various noises introduced inherently by the

instrumentation used in the detectors, plasmonic detectors also have inherent limit of detection (LOD)

owing the the very physical properties of the plasmons. Thus to surpass the LOD we cannot purely rely

on the PSP or the LSP and recent research and this work is concentrated on combining both types of

plasmonic modes in various hybrid configurations. This paves the way for nano-structuration of the

metallic surface which we will discuss in this chapter.

5.1 Limitations of conventional detection systems

5.1.1 Limitation of SPR detectors

Conventional SPR detectors use a thin metal film with the PSP excited at the metal-dielectric interface

for bio-sensing. M.Piliarik and J.Homola in their publication in 2009 [101] calculated the ultimate

performance of such SPR detectors. In the article they have shown that the resolution of a SPR detector to

changes in refractive index depends primarily on three factors

1) The noise factor of the detector which depends on the instrumentation used and the method of data

processing.

2) The coupling factor which depends on the coupling of the incident light to the surface plasmons

and depends on the coupling methods used such as the Kretschmann configuration or grating coupling.

3) The material factor which was shown to be equal to
[
d(ksp/k0)

dn

]−1
where ksp can be calculated

by equation 2.3 and n is the refractive index of the medium.
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Thus the total refractive index resolution was shown to be

σR =

[
Kr√
N

] [
(C + 1)3

C2

] [
d(ksp/k0)

dn

]−1

[σI/I0] (5.1)

whereK is the noise distribution factor (shot noise value of 6% of light intensity), r the noise correlation

factor (ideal value 1),N the total number of averaged values in the measurement (around 4× 104). C

characterizes the coupling strength between the incident light and the plasmons with values between 1 and

2. σI is the standard deviation of the incident intensity I0.
[
d(ksp/k0)

dn

]−1
was calculated to be ε′′mn

3
d

2(ε′m)2

where the permitivity of metal is ε′m + iε′′m and the refractive index of the dielectric medium is nd.

The first two factors can be reduced depending on the available materials, optical components and

data processing methods. It was shown back in 2009 that developments in instrumentation have helped to

achieve a resolution very close to the calculated " ultimate resolution " as shown in figure 5.1.

So the future of SPR detectors depends on the improvement of the 3rd factor
[
d(ksp/k0)

dn

]−1
and

thus changing the very dispersion characteristic of the plasmon mode used. Recent research have tried

to overcome this barrier by replacing the thin metal film by structured bio-chips and developments in

fabrication technology have helped enormously in this aspect.

Figure 5.1: Adapted from M.Piliarik et al (2009) [101] showing the calculated ultimate resolution of SPR
detectors using a thin metallic film and different reported resolutions: Wu et al [102], Thirstrup et al [103],
Bolduc et al [104], Bardin et al [30], Piliarik et al [105], Alleyne et al [106].
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5.1.2 Limitation of detector systems using particle plasmons

For detectors based on particle plasmon resonance, the LSP mode characteristics strongly depend on the

nano-particle shape and geometry [107, 108]. Recent research in this domain is far from realizing an

ultimate resolution of detection limit as still no consensus has been reached to understand and validate an

optimum nano-particle. This is mainly because the frequency, line width and line-shape of resonance is

completely different for particles with different shape, roughness and edge rounding. Such detections also

depend largely on the localization of the analyte molecules and the homogeneity of molecular species

attached to the particles. It is now known and as mentioned earlier, the LSPR mode has a high field

confinement close to sharp edges of the particle and decay rapidly (within 10s of nm) into the medium.

This is what makes LSPR an attractive phenomenon for detectors, but the very same characteristics make

it difficult to develop a theoretical model to predict the behaviour of the nano-particles.

Thus to understand the resonance feature of a nano-particle it is of utmost importance to be able

to develop an analytical theory that can somewhat predict its performance. Recent development in

computational electrodynamics can help this in certain aspect but rigorous numerical calculations of

spectra do not help to understand the physical mechanisms involved in such resonances.

The resonances of isolated particles are easier to model though presently all analytical models work

for spherical or quasi-spherical or ellipsoidal particles. It is also easier to study molecular localizations for

single nano-particle detection. However such methods are not really applicable for practical biosensing

given their low throughput. Also detecting single nano-particles require narrow field of view and thus

not suitable for detection of large number of functionalized nano-particles. Such methods also are not

applicable for bio-chip based detections and nano-particle mobility pose addition detection issues.

Colloidal nanoparticles solve the problem of low throughput. However a colloidal solution with ran-

dom distribution of nano-particles makes it impossible to predict detector performance. The fundamental

principle governing multi-particle detection is the possibility of coupling between the plasmonic modes of

adjacent particles or an array of particles. The plasmon resonance of individual particles are generally

treated as oscillating dipoles. If two particles are brought in close proximity with gaps less than the

wavelength of incident light, the respective dipoles can interfere coherently giving rise to new plasmonic

modes. Such new modes generally have an enhancement of the local electromagnetic field compared to

that for isolated nano-particles. In figure 5.2 we have shown a calculated electric field distribution (E
2

E0

with E0 being the incident field) in logarithmic scale for a gold nano-sphere when approaching a thin

gold film. The field is incident from the side of the film and thus similar to the Kretschmann configuration.

For the film the field confinement results from the PSP while for the sphere it results from the LSP. We

see that the field intensity is enhancement almost by a factor of 106 when the separation between the film

and the particle is 5nm. This enhancement is due to the coupling of the LSP and the PSP and the main

aim of this work is to understand and characterize this phenomenon.

Though refractometric measurements depend mainly on the dispersion characteristics of the plasmonic

mode as shown in the previous section (equation 5.1), measurements such as SERS depend mostly on field

enhancement caused by the metallic particle. In this respect such coupled structure geometries are more

beneficial than single particles. But such field enhancement vary strongly with the distance and distribution

of the interacting particles and this is impossible to predict in random colloidal nano-particles. Thus the

results often obtained are not reproducible and characterization of such substrates for bio-detection is

difficult. Thus for a systematic understanding of the working of particle plasmon detectors we need to
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Figure 5.2: Electric field intensity distribution in logarithmic scale for a gold sphere of 50nm with
separations of 5nm,80nm,200nm and 400nm from a thin gold film.

focus on ordered arrays of nano-particles. Understanding the very physical aspect of SERS is another

research problem and this work will aim to explain some of physical phenomenon relating the SERS

effect to plasmonic modes in an arrayed substrate.

5.2 Structure fabrication techniques

Gold nano-particles have been synthesized for the last 2000 years with a famous example of its use being

the 4th century Roman Lycurgus Cup. But only recently have they found interest in scientific research

and thus methods to control precisely the tailored shape and size have been developed. One such method

was described in section 4.1.1. For ordered structures a greater control on the structure geometry over

larger surfaces is required.

A biochip surface consists of different zones each dedicated to a specific functionalization and read-

out depending on the type of detection carried out. For detections based on confocal imaging such as
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Figure 5.3: A structured biochip placed on a glass prism, used for SPR imaging. The biochip consists of a
thin gold film and a nano-structured zone in the center.

absorption spectroscopy or SERS a small portion (up to a few micrometers) of the biochip surface is

studied. However for detections based on imaging such as SPR or Raman imaging a large area of the

biochip surface is imaged for data processing. In the case of SPR detection using propagating plasmons

a homogeneous structured zone larger than the propagation length of the plasmons (around a few tens

of micrometers) is required. For periodic structures a stable control over the periodicity and structure

roughness must be maintained for the entire zone under study.

The fabrication techniques currently available are broadly classified into two categories, the top-down

or bottom-up methods. The bottom-up method generally relies on a seed mediated growth. In such a

process the atoms or molecules are deposited one by one to form the desired structure. The structure

geometry is controlled by the initial seed growth on the substrate and then by chemical precipitation of

metal, oxides or alloy ions on the substrate. Certain defects or faults of the initial seed allow preferential

growth directions of the nano-structures. Self assembly of nano-particles or molecules or electro-chemical

deposition is also used to fabricate plasmonic structures. Another technique used in this domain is called

the Glancing Angle Deposition (GLAD) where the atoms or molecules are deposited on the substrate at

an oblique angle in a vacuum which results in a columnar deposition [109, 110]. The angle of incidence

controls the tilt of the columns and affects the degree of shadowing. This has been used to fabricate

structures such as nano-pillars, nano-spirals etc.

For this work the structures that have been used were fabricated using the top-down method. In this

method a bulk material is removed step by step to form the desired structures in nanometric scale. Some

common techniques used in this method are electron beam lithography (EBL) [111, 112], plasma etching

or nano-imprint lithography (NIL) [113, 114].

EBL and NIL are shown in figure 5.4. In EBL, an electron sensitive photoresist, commonly poly(methyl

methacrylate) PMMA, is deposited by spin coating on the substrate. Then the desired pattern is obtained

on the resist by exposing it to e-beam and a step of chemical development commonly with methyl isobutyl
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Figure 5.4: Top-down fabrication techniques: Electron beam lithography (top) and UV nanoimprint
lithography (bottom).

ketone (MIBK) and isopropyl alcohol (ISO). This process allows precise control of shape, size and spatial

distribution with a high resolution of less than a hundred nano-meters. The resolution of the process

depends on the wavelength of the radiation source in this case the wavelength and thus the energy of

the electron beam. However e-beam patterning of the PMMA is a time-consuming process and has low

throughput for larger surfaces.

For such larger zones (around a few millimeters) requiring less precision the NIL is more suitable.

NIL is based on patterning the resist using mechanical molding of the PMMA by a transparent mold or

stamp. The mold is pre-fabricated and the resolution of process depends on the dimensions of the stamp

used. This process allows control of geometrical parameters comparable to e-beam lithography at a much

faster fabrication rate and thus is useful for mass-production of bio-chip substrates for commercial use.

Metal is deposited on the patterned substrate after EBL or NIL, by thermal evaporation and then the

resist along with the excess metal is removed by a lift-off process by dipping it in acetone. This leaves

behind the desired structured bio-chip.

Other techniques used for nano-fabrication are laser ablation, electrolytic deposition or other electro-

chemical processes [115, 116, 117, 118]. The main factors governing the choice of technique are the

64



reliability and reproducibility requirements for the substrates.

5.3 Detection using Nano-structured bio-chip

Structured biochips can help in bio-detection owing to different plasmonic modes that such structures

can support either by coupling the PSP and the LSP or by other optical phenomenon which rise due to

the periodicity of the structure. This has been used successfully and reported by various groups where

such structures help to increase the detection performance of the respective biosensor. Table 5.1 shows the

various bio-detector configurations reported in the literature which uses such structured biochips.

Type of detection Structure geometry

K.Kim et al (2009)

[119]: SAM for-

mation; DNA Hy-

bridization; Ethanol

ambiance

Gold gratings of height 10/15nm and periodicity 200/300nm on a

uniform gold film of height 40/55nm.

K.M.Byun et al

(2008) [120]: SPR

imaging to monitor

SAM formation

Gold nano-wires of height 20nm and periodicity 50/100/200nm on a thin

gold film.
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L.Malic et al

(2009) [121]: SPR

imaging to monitor

refractive index

changes, DNA

immobilization and

DNA hybridization

events

Nano-gratings and Nano-grooves fabricated using NIL of periods

500/600nm and widths 30/80nm.

M.G.Manera et al

(2009) [122]: SPR

imaging to study

the hybridization

process of ssDNA

carbonarius probes.

Gold film of 50nm with patterned chromium layer of diameter 300µm

L.S.Live et al

(2012) [123]: SPR

sensitivity en-

hanced by a factor

of 3 to five times

compared to contin-

uous films; order

of magnitude lower

detection limit of

IgG biodetection;

the potential for

surface-enhanced

spectroscopy.

Microhole array of depth 65nm and hole diameter of 1.8µm and period

3.2µm fabricated by nanosphere lithography
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L.P. Xia et al (2014)

[124]: Enhance-

ment of Raman

scattering spectrum

of rhodamine 6G

(R6G) upto 3.85

times

Hole arrayed metal-insulator-metal (HA-MIM) structure with SiO2

used as the insulator with thickness of around 20nm. Diameter of holes

around 400nm and separation of holes around 20nm. Structure fabricated

by etching and then lifting off polystyrene (PS) spheres

A. V. Kabashin et

al (2009) [125]: En-

hanced sensitivity

to refractive-index

variations up to

30000nm per

refractive-index

unit.

Metamaterial consisting of an assembly of Au nanorods electrochemi-

cally grown into a substrate. The range of rod lengths between 20 and

700 nm, rod diameter 10-50nm and separation from 40 to 70 nm.
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X.Wang et al (2012)

[126]: Understand-

ing plasmon

coupling between

nano-particles to

optimize them

for chemical and

biological sensing.

50nm gold nano-particle array of period ranging from 80-170nm and

varying periodicity along two axes. Structure array fabricated by EBL

on a quartz substrate

K.Lodewijks et

al (2012) [127]:

Study of LSP and

PSP coupling using

phase sensitive

spectroscopic

ellipsometry. Dra-

matic increase of

refractive index

sensitivity of LSP

modes.

Gold nano-disks of periodicity 400nm and diameter 100/140nm.
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V. G. Kravets et

al (2008) [128]:

Extremely nar-

row plasmon

resonances with

half-width of just

several nanome-

ters in regular

arrays of metallic

nanoparticles.

Gold nano-pillars of period 320nm, diameter 100nm and height 90nm.

W.D.Li et al (2011)

[129]: High area-

average SERS en-

hancement (1.2 ×
109).

Dense three-dimensional cavity nanoantenna array, through nano-gaps,

with dense plasmonic nanodots; new nanofabrication that combines

nanoimprint, guided self-assembly and self-alignment.

Table 5.1: Detection using structured bio-chips

Apart from the above mentioned reports there are other numerous articles in the literature where use

of structured bio-chip has helped to enhance the performance of SPR or SERS detectors. In this work we
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would present the principle of coupling between various plasmonic modes which helps in such enhanced

performance.

5.4 ANR PIRANEX project

This work was partially done as a part of the ANR project «PIRANEX». The project focuses on

developing a bimodal instrument which combines SERS and SPRI detection. SPRI provides parallel

imaging capabilities and label free detection to probe bio-molecular binding events and real time molecular

interaction kinetics. SERS helps in unique identification of the binding molecules owing to the Raman

spectral signatures of the molecules at the binding locations. Such bimodal detection techniques have been

proposed in the literature [130, 131, 132]. Piranex project however aims to develop the bimodal instrument

using the same biochip. Thus an optimized nano-structuration of the bio-chip surface is required to assure

high throughput for both local refractive index changes using SPRI and high Raman enhancement for

SERS. An in-laboratory made code is developed for this purpose to model the plasmonic modes of various

structures and have a better understanding of the role played by each mode in molecular sensitivity. With

a detailed understanding of the electromagnetic aspects of plasmonic nano-structures, one of the aims of

the project is to provide various bio-chip surfaces adapted to various sensing requirements of the bimodal

instrument thus developed.

The structures were initially produced by EBL for experimental validation of the numerical methods

used and the electromagnetic model developed. Such structures were also used to demonstrate bio-

chemical detection procedures. Chemical functionalizations were developed to utilize such structures as

bio-chips. Some applications of the system developed by Piranex are in the domain of bio-marker detection

for cancer, cardio-vascular pathologies and other medical diagnostics or detection of food containments.

Then the optimized nano-structures would be fabricated by NIL techniques to have large areas (millimetric

scales) at low cost and less fabrication time for industrial use. The schematic of PIRANEX project is

shown in figure 5.5.

Here in this work we will use the numerical models developed to characterize the plasmonic nano-

structures and present a detailed understanding of the electromagnetic properties of the structures in

terms of the confined EM field intensity and refractive index sensibility. Various structure geometries are

studied for this purpose in different configurations for their use in SERS and SPRI. Some geometries with

huge enhancement of sensitivity will be described and experimental results have been used to validate

the numerical results. Using new hybrid plasmonic modes which result from inter-coupling of different

fundamental modes, we can help to increase the throughput of the bimodal instrument and lower its limit

of detection.
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Figure 5.5: Schematic of PIRANEX project showing the bimodal instrument for simultaneous SERS and
SPRI detection.
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Conclusion of Part II

In this part we have introduced the different types of plasmonic bio-sensors which are currently available.

In chapter 3 we have explained the basic principle of surface plasmon resonance detectors. Such detectors

use propagating plasmon mode (PSP) which has a penetration depth of a few hundreds of nano-meters

and is sensitive to refractive index changes within the decay length of the evanescent field. Conventional

SPR detectors use an uniform metallic film to probe refractive index changes in the bulk medium. This

can also be used for affinity based detectors which probe molecular binding events. For this, a confined

evanescent field is necessary which is more sensitive to local index changes and almost inert to refractive

index drift of the bulk medium.

In chapter 4 we have described the various detectors that use metal nano-particles for bio-sensing.

These detectors conventionally use the Localized plasmon (LSP) mode which have strong confinement

of the electromagnetic field within a few tens of nano-meters from the metallic surface. The various

configurations used for such detectors were also shown. Metal surfaces with roughness has proved to be

useful to enhance the Raman signal of molecules and this has opened a new arena in biosensing using

raman spectroscopy, the surface enhanced raman scattering (SERS). The basic mechanism of SERS was

described in section 4.2. To optimize the SERS substrates a complete understanding of the plasmonic

modes of the metallic system is required.

SPR detectors using an uniform metallic film has a fundamental limit of detection resolution and

to surpass that limit we need to develop new structured bio-chips and harness the potential of coupling

different plasmonic modes. The fabrication techniques currently used to synthesize such structured

bio-chips was shown in chapter 5. We have also presented some of the reports in the literature which use

such structured bio-chips for enhanced sensitivity of bio-detection. Recent research has also focused on

combining SERS and SPR imaging using the same substrate. This will help in studying molecular binding

events using SPRI and at the same time identify the molecules involved in such a event using SERS. This

is one of the aims of the ANR project Piranex and a part of this work is dedicated in that respect.

This work will focus on the development of structured bio-chips to enhance the detection sensitivity

of SPR detectors. At the same time we will explain the physical phenomenon involved in the excitation

of various plasmonic modes in hybrid structures and such an understanding can help to optimize the

structures for SERS detection.
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Part III

Numerical methods for electromagnetic
modeling
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Computational electromagnetics

The basis of this work is to study the various plasmon polariton modes present in structures with

complex geometries and then optimizing the modes for applications in bio-detection. Such bio-detectors

was discussed in part II and structures will be described in part IV. But first we need to study the

electromagnetic phenomenon of light interacting with materials and the dependence of the same on the

geometry of the material. Generally such phenomenon is treated by electromagnetic field theories by

studying the interaction between electric charges at rest and electric currents.

Such interactions are well described by the Maxwell’s equations as shown in section 1.1. By treating

the Maxwell’s equations as an eigenvalue problem, the solutions thus obtained, give the modes of the

system. Such a treatment for an planar metal-dielectric interface was shown in section 2.1.2. The scattering

problem as shown in section 2.2 is yet another example of such treatment. However analytical solutions

for most real life situations are not possible mainly when considering complex geometries and advanced

applications. Applying certain crude approximations can help to arrive at a relatively acceptable analytical

solution.

However with advanced computers at our disposal, we can solve electromagnetic problems that require

large amount of computations. The branch of electromagnetic that deals with such computational methods

is called Computational electromagnetics (CEM). Using CEM, the partial differential equations that arise

from relating the charges and currents in a system to the electromagnetic flux and field in a system can be

broken down into discrete sets of equations. Such discretized differential equations can be solved by well

known numerical methods. Such methods can treat a variety of real life electromagnetic problems using

simple computer algorithms and programs. In table 5.2 we would introduce a few of the many different

methods of CEM that have been used to characterize plasmonic modes in metallic systems.
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Method used Studied EM problem Remarks References

Mode solver

based on density

of states (DOS)

formulation.

Study of dielectric-loaded

surface-plasmon-polariton

waveguide (DLSPPW) with

100nm thick gold film and

strips of PMMA of height and

thickness of 600nm.

Numerically investigated both

leaky and bound (lossy) modes

supported by dielectric-loaded

surface-plasmon-polariton

waveguides

G. Colas des

Francs et al

(2009) [133]

B-spline modal

method (BMM)

Applied to a 1D metallic grating

structure

Resolution of Maxwell and con-

stitutive equations with a B-

spline approximation. Method

compared to Rigorous Cou-

pled Wave Analysis (RCWA)

method.

P.Bouchon

et al (2010)

[134]

Multipole expan-

sion (ME) and

FEM (COMSOL

software).

Studied dimers of 20nm and sepa-

ration of 5nm consisting for solid

spheres and shells.

Comparision between ME and

FEM; 1D triangular nanowires

also studied as SERS substrate.

C.G.

Khoury

et al (2010)

[135]

An ab initio the-

ory for Fano res-

onances using the

Feshbach formal-

ism

Applied to dolmen type plas-

monic structures

Verified the theory with numeri-

cal results ; analogy to mechan-

ical coupling of two harmonic

oscillators with losses.

B.Gallinet

et al (2011)

[136]

Zubarev’s Green

functions method

Metallic particle of few 10s of

nm and a quantum emitter in its

vicinity; for modeling the optical

response of plasmons interacting

with quantum emitters

studied coupled plasmon-

exciton system that supports

plexitons;

A. Man-

javacas et

al (2011)

[137]

Method of Mo-

ments (MoM)

Gold V-shaped antennas of

length 1.2µm and thickness

100-200nm.

Compared result to FDTD simu-

lations.

R. Blan-

chard et

al (2012)

[138]

RCWA modal

method

Gold grating of width 200nm and

height 100nm deposited on free

standing silicon nitrade mem-

brane of 650nm thickness for use

as transmission band pass filters.

Structure studied in 1D and 2D

for periodicities of 2-3 microme-

ters.

E.Sakat et al

(2012) [139]
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2D Finite Dif-

ference Time

Domain (FDTD)

Double layered silver nano strips

of thickness 20nm and widths

ranging from 50-90nm separated

by PMMA layer.

Structure applied to sensing ap-

plications; Refractive index sen-

sitivity and SERS enhancement

factor evaluated numerically.

Z.Kang et al

(2013) [140]

A self-consistent

electromagnetic

treatment of the

local density of

states

Study of coupling between

dipoles emitters and dissipative

nano-resonators

Method verified by vectorial nu-

merical results obtained for plas-

monic nanoantennas made of

gold nanorods.

C. Sauvan

et al (2013)

[141]

Green tensor for-

mulation

Calculation of electric field in

metallic nano particles; Optimiz-

ing particle dimensions for com-

plete absorption of electromag-

netic radiation.

Rapid and simple analytical

method to optimize nano-

particle dimensions for total

absorption of incident light.

A.Sentenac

et al (2013)

[142]

3D Fourier Modal

Method

Applied to plasmonic waveguide

called the hybrid dielectric-

plasmonic slot waveguide

(HDPSW)

Capable of efficient 3D vector

modelling

J.Ctyroky

et al (2013)

[143]

Extended coupled

oscillator (ECO)

model

Study of highly tunable Fano res-

onant nano-structure consisting

of 4 interacting nano-rods.

In contrast to Conventional cou-

pled oscillator (CCO) model, for

ECO the damping characteris-

tics of the hybridized modes are

calculated and not set a priori.

A.Lovera

et al (2013)

[144]

A general theory

to describe scat-

tering electromag-

netic interactions

of resonator net-

works for arbitrary

multipolar orders.

Application of the method for sin-

gle and binary metallic particle

arrays dispersed in regular hexag-

onal lattices

Results verified by Finite ele-

ment method (FEM).

M.Langlais

et al (2014)

[145]

Table 5.2: Numerical methods to characterize metal nano-structures

and some examples of the application of the method.
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Chapter 6

Introduction to the numerical
formulations

In this work we would study the different plasmonic modes present in structures with complex geometries.

As mentioned in chapter 2 the two fundamental types of plasmon polaritons are the propagating surface

plasmons (PSP) and the localized surface plasmons (LSP). The PSP can be excited in flat surfaces and

the analytical solution for such a flat surface was already shown in section 2.1.2. However we are

also interested in calculating the reflectivity and transmission of such an uniform metallic surface. The

generalized Rouard method offers an analytical solution to such problems consisting of uniform layers of

various materials. We will discuss this method in section 6.1. However for more complex structures as

mentioned earlier, analytical solutions are not possible and we have used a hybrid model for modeling

the optical responses of the systems. The hybrid model described in details in chapter 7 combines two

popular numerical methods namely the Fourier modal method (FMM) and finite element method (FEM)

which have been described in sections 6.2 and 6.3 respectively of this chapter.

6.1 Generalized Rouard method

Treating Maxwell’s equation as matrix formulation was first proposed by Abeles [146] and later developed

by P. Yeh [147]. Such matrix formulation was further developed and is used in most CEM techniques

which will be described in later sections. However in 1937 M.P. Rouard proposed a method for calculating

the reflectivity for multiple stacks of thin films [148]. His method accounted for the light that may reflect

back and forth between the interfaces, thus affecting the effective reflective properties of the stack. The

method was developed by an infinite mathematical series to sum the response of these multiple reflections.

The result of this infinite series formulation gives a single coefficient to represent the effective reflection

of the complete stack. However his method was limited to non-absorbing materials and applying it to

absorbing materials such as metals generally lead to convoluted expressions. In 2006, Lecaruyer et al

developed a general formulation of the Rouard method for an absorbing thin film stack [149]. This is the

method which we will describe in brief and have used for this work.

The Rouard method stems from the basic Fresnel coefficients for reflection (r) and transmission (t) at

an interface (mn) which are given by
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Figure 6.1: A stack of multiple thin films with refractive index nm and thickness em for themth layer.
The angle of incidence and angle of refraction at the interfacem→m+ 1 is taken to be θm and θtm
respectively.

TE


rs:m→n = nmcosθm−nncosθtm

nmcosθm+nncosθtm

ts:m→n = 2nmcosθm
nmcosθm+nncosθtm



TM


rp:m→n = nmcosθtm−nncosθm

nmcosθtm+nncosθm

tp:m→n = 2nmcosθtm
nmcosθtm+nncosθtm



(6.1)

for TE and TM polarization respectively, where θm and θtm are the angle of incidence and angle

of refraction respectively. A schematic of reflection and transmission in a stack of multiple thin films

is shown in figure 6.1. By a simple summation of all the reflection and transmission coefficients at an

interfacem→ (m+ 1) we can write the total reflectivity of interfacem as

rm = rm−1→m + tm−1→me
−iφmrm→m+1e

−iφmtm→m−1

+tm−1→me
−iφmrm→m+1e

−iφmrm→m−1

e−iφmrm→m+1e
−iφmtm→m−1 + ...

= rm−1→m +
tm−1→mrm→m+1tm→m−1e−2iφm

1−rm→m−1rm→m+1e−2iφm

(6.2)

The phase change for propagation in layer m is given as φm = 2π
λ nmemcosθm where λ is

the wavelength of light, em the layer thickness and nm the refractive index of the layer. The equa-

tion can be simplified considering that the Fresnel coefficients are related to each other in the manner

tm−1→mtm→m−1 = 1− r2
m−1→m as

rm =
rm−1→m × rm+1e

−2iφm

1 + rm−1→m × rm+1e−2iφm
(6.3)
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For a multiple thin film stack the contribution of each layer must be summed to have the total reflection

coefficient of the stack. For the metallic layers the complex refractive index for equation 6.1 can be written

as nm = n+ ik as shown in section 1.3. We have developed an in-lab program using Matlab to calculate

the total reflectivity (R = rr∗) of a multilayer stack at each incident wavelength and angle of incidence

(θ1 for figure 6.1) to give a complete dispersion map (variation of reflectivity with λ = 2πc/ω = 2π/k0

and kx = nmk0sinθm)

Figure 6.2: The calculated reflectivity (R) for a gold film of 50nm as a function of wavelength (λ) and
kx/k0. Light is TM polarized and incident from a homogeneous medium of refractive indexng = 1.513.
The refractive index of the medium on the other side of the gold film is nw = 1.333. The condition for
kx = ksp is also shown (blue dotted)

In figure 6.2 we have shown the calculation of total reflectivity (R) dispersion map for a thin gold

film of 50nm with homogeneous media of refractive index nw = 1.333 and ng = 1.513 on either

side. Light is considered to be TM polarized and incident at an angle θ from the medium of index ng.

The map is plotted with respect to the incident wavelength λ and kx/k0 = ngsinθ where kx is the

wave-vector of the incident light in the plane of the interface along the direction of propagation. We see

that the reflectivity is close to 1 for most of the map which is expected with a metal film. The critical

angle for the ng → nw interface is given by θc = sin−1(nw/ng) thus for kx/k0 = nw. This also

defines the light line in the medium nw. We see an abrupt drop in reflectivity at certain wavelengths and

internal angles which correspond to kx = ksp where ksp is given by equation 2.3 with the index of the

dielectric taken as nw = 1.333. This drop is due to the excitation of the PSP at the gold-nw interface

which was explained in section 2.1.2. The physical interpretation of this in practical conditions and the

different methods for the excitation of the PSP was shown in chapter 3. The other drop of reflectivity

below 550nm is due to high absorption of gold for lower wavelengths (figure 1.2) and not due to plasmon

excitation.
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6.2 Fourier modal method (FMM)

The Rouard method is suitable to calculate the reflection of a stack of thin films but is limited to only

planar surfaces. Another fundamental problem in CEM is that of a periodic diffraction grating. As

mentioned in the beginning of chapter 2 the research in plasmonics originated somewhat from Wood’s

anomaly in optical gratings and Rayleigh’s hypothesis based in classical grating theories. For a long time,

different theories to define perfectly the orders of diffraction, reflection and transmission from a grating

has been proposed and formulated.

The well known grating equation for a periodicity of Λ written as

kxm = kxi +mKB (6.4)

gives precisely the direction of diffracted orders with kxi being the wave-vector of the incident field in the

plane parallel to the grating and kxm, the same for the diffracted orderm. KB = 2π/Λ is a constant

and depends only on the period of the grating and is generally considered as the ’wave-vector’ of the

grating. We will call it the Bragg wave-vector in reference to the work by William Lawrence Bragg and

William Henry Bragg in 1913 where they formulated the theory to explain diffraction of X-rays from the

periodic lattice of crystalline solids [150]. However the grating equation does not give any information on

the energy distribution in the different orders.

Figure 6.3: Geometry for the binary rectangular-groove grating diffraction problem. The period of the
grating is Λ. The refractive index of the incident medium is n1 and that on the other side is taken as n2.

The earliest known method to derive the distribution of energy in different diffraction orders was by

the Rayleigh expansion method which states that the total field can be represented by a series expansion
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of plane waves. In the space on either side of the grating (shown in figure 6.3) the electric field can be

written in the form of Rayleigh expansion as

z < 0

{
ER(x, z) =

∞∑
m=−∞

rme
ikxm+ikzm

}

z > h

{
ET (x, z) =

∞∑
m=−∞

tme
ikxm+ikzm

} (6.5)

where rm and tm are the reflection and transmission coefficients that are to be determined to solve for

the energy distributed in each orderm with wave-vectors kxm and kzm in x and z direction respectively.

This expansion directly stems from the wave condition and the Helmholtz equation (equation 1.10) and

can be solved using suitable boundary conditions. This holds in the upper and lower halfspace however

fails to give precise results inside the grating grooves. This is because the complex dielectric constant (ε)

of the grooves is not constant but a function of x and z and thus a well defined solution is not possible

directly. The method also fails to take into account the polarization of the incident light. A more accurate

approach to the problem is to solve the set of Maxwell’s equations.

To solve for the field in the grating grooves two methods were introduced in the early 1980s. One

method called the C-method was introduced by Chandezon et al [151, 152]. The method is based on the

fact that the Rayleigh expansion would work if the interface was planar and thus the method introduces a

new coordinate system to map the corrugated grating surfaces to planar surfaces.

The other method is to write the solution in the grooves as a Fourier expansion and was introduced

by Knop et al [153] and further developed by Moharam and Gaylord [154, 155]. This method, called

the Fourier modal method (FMM) or historically called the rigorous coupled wave analysis (RCWA),

eliminates the z-dependency of ε by slicing up the grating such that at each slice, ε only depends on x.

Then applying suitable boundary condition at the slice edges we can resolve the Maxwell’s equations into

a matrix eigenvalue problem. In this section we would describe in details the basics of FMM and the

formulation that we have used for this work in the case of 1D and 2D arrays.

6.2.1 Formulation in Fourier space for 1D array

The two Maxwell’s equations 1.8 when considering no external charges or currents can be written as

∇× E(r) = iωµµ0H(r)

∇×H(r) = −iωεε0E(r) (6.6)

whereµ and ε are symmetric tensors and we defineZ0 =
√
µ0

ε0
= cµ0. By dividing the first equation

by
√

(Z0) and multiplying the second equation by i
√

(Z0), we can have the symmetric Maxwell’s

equations of the form

∇×E = k0µH

∇×H = k0εE (6.7)
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This provides the advantage of solving for either E orH and then obtaining the other just by permuting

the tensors ε or µ with the fields E andH .

The wave equation (equation 1.9) can now be written as

∇× 1

q
∇× ~u− k0

2p~u = 0 (6.8)

where for the electric field formulation p = ε, q = µ and ~u = E = E(r)/
√
Z0 while for the

magnetic field formulation p = µ, q = ε and ~u = H = iH(r)
√
Z0.

Considering the geometry of figure 6.3 for TE and TM polarization, we can write the equation 6.7 as

TE


∂Ey

∂z = −k0µ
x(x)Hx

∂Ey

∂x = k0µ
z(x)Hz

∂Hz

∂x −
∂ ~Hx

∂z = k0ε
y(x)Ey



TM


∂Hy

∂z
= −k0ε

x(x)Ex

∂Hy

∂x = k0ε
z(x)Ez

∂Ez

∂x −
∂Ex

∂z = k0µ
y(x)Hy



(6.9)

To solve in the grating grooves (we will consider here the incident field to be TE polarized, similar

treatment can be shown for TM polarization), the system of equations can be written within a slice along

x in terms of the field components continuous in x (considering ε and µ to be functions of x)as

TE


∂Ey

∂z
= −k0B

x

∂Hx

∂z = ∂Hz

∂x − k0ε
z(x)Ey

with

Hz = Bz/µx(x)

Bx = µx(x)Hx

k0B
z = ∂Ey

∂x

 (6.10)

By applying the Floquet theory to the above set of equations we can write the fields in terms of a

Floquet-Fourier series with period Λ as



Ey(x, z) =
N∑
m=1

Êym(z)eiβmx

Hx(x, z) =

N∑
m=1

Ĥx
m(z)eiβmx

Hz(x, z) =
N∑
m=1

Ĥz
m(z)eiβmx





Dy(x, z) =
N∑
m=1

D̂y
m(z)eiβmx

Bx(x, z) =
N∑
m=1

B̂xm(z)eiβmx

Bz(x, z) =

N∑
m=1

B̂zm(z)eiβmx


(6.11)

while the dielectric constants can be expressed in terms of a Fourier series as

εy(x) =

N∑
m=−N

ε̂yme
imKBx

1
µx(x) =

N∑
m=−N

ˆ[
1

µxm

]
eimKBx

µz(x) =

N∑
m=−N

µ̂zme
imKBx


(6.12)
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where we define βm = β0 +mKB with β0 = n1k0sinθ, a constant determined by the incident

plane wave. Êym,Ĥx
m,Ĥz

m,D̂y
m,B̂xm and B̂zm are the Fourier coefficients (for convenience we will refer

to both Fourier and Floquet-Fourier coefficients as Fourier coefficients). We must note that Ey, Hz

and Bx are continuous in x and thus we can reduce the number of Fourier coefficients by using the

relation between them similar to equation 6.9. We can also write the dielectric constants in form of

Toeplitz matrix. We should also note that for equations of the form ~Ey(x, z) =
N∑
m=1

Êym(z)eiβmx

and ∂ ~Ey

∂x = k0
~Bz(x, z)⇒ k0

N∑
m=1

B̂zm(z)eiβmx, we can write for the coefficients in matrix form as

k0B̂
z = iβÊy where β is a diagonal matrix of size N ×N . Thus equation 6.9 can be simplified in

terms of Fourier coefficient matrices as


∂Êy

∂z
= −k0B̂

x

∂Ĥx

∂z = iβĤz − k0D̂
y

with


Ĥz = [µz]−1 B̂z

B̂x =
[

1
µx

]−1
Ĥx

D̂y = [εy] Êy



with
[
εj
]

=


ε̂0 ε̂−1 ... ε̂−N

ε̂1 ε̂0 ... ...

... ... ... ...

ε̂N ... ... ε̂0



and
[
µj
]

=


µ̂0 µ̂−1 ... µ̂−N

µ̂1 µ̂0 ... ...

... ... ... ...

µ̂N ... ... µ̂0


j = x, y, z

(6.13)

where
[
εj
]

and
[
µj
]

are in the form of Toeplitz matrix (diagonal-constant matrix).

In equation 6.13 we have a symmetric form of the Maxwell’s equation in terms of Fourier coefficients.

The equations can be expressed as matrices which are purely functions of z as


dÊy

dz
= −k0

[
1

µ̂x

]−1

Ĥx

dĤx

dz = 1
k0
β [µ̂z]−1 βÊy − k0 [ε̂y] Êy


or

d
dz

(
Êy

Ĥx

)
=

(
0 A

B 0

)(
Êy

Ĥx

)
= M ×

(
Êy

Ĥx

)
(6.14)

whereA andB are constant matrices of dimensionN ×N given by
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A = −k0

[
1

µ̂x

]−1

B = 1
k0
β [µ̂z]−1 β − k0 [ε̂y]

(6.15)

The soultion of equation 6.14 for initial value z = z0 and final value z = zh = z0 + h can be

written as

(
Êyzh
Ĥx
zh

)
= eM×h

(
Êyz0
Ĥx
z0

)
= T ×

(
Êyz0

Ĥx
z0

)
(6.16)

Where T is called the transfer matrix and relates the fields at z = z0 and z = z0 + h. To solve for each

slice along z (figure 6.4) as a function of x we need to find the values of the matrix T = eM×h.

Figure 6.4: Geometry for the binary triangular-grating diffraction problem with transfer matrix (T)
formulation with slices along z for 1D array. The period of the grating is Λ.

6.2.2 Formulation in Fourier space for 2D array

For the 2D array we will follow the same approach as explained for the 1D case in the last section. We

can write the relation for the fields, similar to equation 6.9 but now in terms of all the 6 field components
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Ex, Ey, Ez,Hx,Hy andHz as



∂Ex

∂z
= µyHy +

∂Ez

∂x

∂Ey

∂z = −µxHx + ∂Ez

∂y

Hz = 1
µz

(
∂Ey

∂x −
∂Ex

∂y

)
Ez = 1

εz

(
∂Hy

∂x −
∂Hx

∂y

)


(6.17)

Substituting the last equation in the first two of equation 6.17 we can write


∂Ex

∂z
= µyHy +

∂

∂x

[
1

εz

(
∂Hy

∂x
− ∂H

x

∂y

)]
∂Ey

∂z = −µxHx + ∂
∂y

[
1
εz

(
∂Hy

∂x −
∂Hx

∂y

)]
 (6.18)

By decomposition of the fields in terms of Floquet-Fourier series with periodicity along x and y being

Λx and Λy respectively, we can write the field components similar to equation 6.11 as

Ex(x, y, z) =

Nx∑
mx=1

Ny∑
my=1

Êxmx,my
(z)ei(β

x
mxx+βymyy)

etc...

(6.19)

where βxm = βx0 + (m−mx
0)KBx and βym = βy0 + (m−my

0)KBy withKBx = 2π/Λx and

KBy = 2π/Λy for each value ofm. The dielectric constants can also be expressed in terms of a Fourier

series similar to equation 6.12 as

εx(x, y) =

Nx∑
mx=1

Ny∑
my=1

ε̂xmx,my
ei(mxKBxx+myKByy)

etc...

(6.20)

Considering Êx to be the column vector with the Fourier coefficients Êxmx,my
(z) as the elements,

we can write the relation between the coefficients of field in matrix form as


∂Êx

∂z
= [µ̂y] Ĥy − βx

[
1

ε̂z

]
(βxĤy − βyĤx)

∂Êy

∂z = − [µ̂x] Ĥx − βy
[

1
ε̂z

]
(βxĤy − βyĤx)


with

Êz =
[

1
ε̂z

]x,y
(βxĤy − βyĤx)

(6.21)
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Treating the above equations in a form similar to equation 6.14 we can write the coefficients in matrix

form as

d

dz


Êx

Êy

Ĥx

Ĥy

 =

(
0 A

B 0

)
Êx

Êy

Ĥx

Ĥy

 = M ×


Êx

Êy

Ĥx

Ĥy

 (6.22)

whereA andB are constant matrices given by

A =

 βx
[

1

ε̂z

]
βy [µ̂y]− βx

[
1
ε̂z

]
βx

− [µ̂x] + βy
[

1
ε̂z

]
βy −βy

[
1
ε̂z

]
βx



B =

 βx
[

1

µ̂z

]
βy [ε̂y]− βx

[
1
µ̂z

]
βx

− [ε̂x] + βy
[

1
µ̂z

]
βy −βy

[
1
µ̂z

]
βx


(6.23)

Generalizing equation 6.14 for 1D array and equation 6.22 for 2D array we can write the general

relation in the form of transfer matrix T as

(
Êzh
Ĥzh

)
= eM×h

(
Êz0

Ĥz0

)
= T ×

(
Êz0

Ĥz0

)
(6.24)

where Êzh = Êyzh and Ĥzh = Ĥx
zh

for the 1D array case, while Êzh =

(
Êxzh
Êyzh

)
and Ĥzh =(

Ĥx
zh

Ĥy
zh

)
for the 2D array case. The general problem thus requires matrix formulation to solve for the

matrixM to evaluate the fields in terms on the transfer matrix T .

6.2.3 Gereralized Matrix formulation for 1D and 2D arrays

Recalling some basic matrix rules, if M is diagonalizable such that M = MD × ν ×M−1
D with ν a

diagonal matrix, then we can write eM×h = MD × eνh ×M−1
D . To find the matricesMD and ν we

can use the relation d2

dz2
Ê = (AB)Ê which can be found directly from equation 6.14. Considering

ν2
p = (AB) as the eigenvalues of this relation and Ĥ = A−1 dÊ

dz we can write the Fourier coefficients

of the fields as
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~E = V c+eνpz + V c−e−νpz

~H = A−1
[
νpV c

+eνpz − νpV c−e−νpz
]

or

(
Êzh
Ĥzh

)
=

(
V V

A−1νpV −A−1νpV

)(
evph 0

0 e−vph

)(
c+

c−

)

and

(
Êz0

Ĥz0

)
=

(
V V

A−1νpV −A−1νpV

)(
c+

c−

)

(6.25)

Comparing the above relation with equation 6.16 and the fact that (AB) = V ν2
pV
−1, where V is

the matrix used to diagonalize (AB) we can write

M =

(
0 A

B 0

)
=

(
Q Q

P −P

)(
νp 0

0 −νp

)(
Q−1/2 P−1/2

Q−1/2 −P−1/2

)

= MD × ν ×M−1
D

where

Q = V νp

P = BV

(6.26)

On developing the matrix T = eM×h = MD × eνh ×M−1
D we get the transfer matrix as

T =

 Qcosh(νph)Q−1 Qsinh(νph)P−1

Psinh(νph)Q−1 Pcosh(νph)P−1

 (6.27)

To have stable solutions, the eigenvalues vp must satisfy the relation Re(νp) ≤ Im(νp). It has

been seen that transfer matrix formulation is relatively unstable for large values ofRe(νp). To solve this

problem another matrix called the scattering matrix (S) is more commonly used. S can be found easily

from T and is related to the fields at z = z0 and z = zh = z0 + h as(
Êzh
Ĥz0

)
= S ×

(
Êz0

Ĥzh

)

S =


Q

1

cosh(νph)
Q−1 Qtanh(νph)P−1

−Ptanh(νph)Q−1 P 1
cosh(νph)P

−1


(6.28)

We can use a more general relation between the Fourier coefficients by defining what we call theG

matrix starting from the T matrix.
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(
e−νph 0

0 1

)(
Q−1/2 P−1/2

Q−1/2 −P−1/2

)(
Êzh
Ĥzh

)
=

(
1 0

0 e−νph

)(
Q−1/2 P−1/2

Q−1/2 −P−1/2

)(
Êz0

Ĥz0

)

or

Gh

(
Êzh
Ĥzh

)
= G0

(
Êz0

Ĥz0

)
(6.29)

Using this relation to solve for the fields in the grating we need to solve for each slice the matrices

defined by P ,Q and νp, as shown in figure 6.4. For more complex geometries we can either decompose

them in slices or use other numerical methods to derive the Toeplitz matrices as defined by equation 6.13

and thus the S and T matrices. One of such methods, the Finite element method will be described in brief

in the next section. The complete method of combining FMM and FEM, that we have used to calculate

the fields in this work will be described in chapter 7.

6.3 Finite element method (FEM)

Finite element methods (FEM) is a powerfool tool to have approximate solutions of partial differential

equations that arise in mathematical modeling of various physical phenomenon. Symmetric Maxwell’s

equations as described in equation 6.7 are one of such partial differential equations and thus can be

solved using FEM [156, 157, 158]. The advantages of FEM are that it can be used for solving complex

geometries, non linear problems, with possibilities of temporal, harmonic or modal solutions and can be

hybridized with other analytical or numerical methods. In this section we will describe in brief the FEM

and the formulation we have used in this work.

The starting point of FEM is describing a problem in terms of partial derivatives. Once such formula-

tion is done, the domain under study is chosen based on symmetry or periodicity. The materials of each

section of the domain can be described in terms of permittivity or permeability vectors. Suitable boundary

conditions must be imposed at the boundary of the domain. These conditions are used while describing

the symmetry of the system and help to reduce the domain of calculation. The domain is then discretized

for 2D by dividing the surface in triangular or quadrangular elements ad for 3D by sectioning the volume

in cubic, tetrahedral or pyramidal elements.

6.3.1 The elements of Whitney

The domain under study Ω is discretized by a mesh consisting of finite elements, where the electromagnetic

field is described by approximate elementary matrices. Such matrices are assembled to generate to

complete global matrix for the system. A simple system consisting of a circular domain is shown in figure

6.5 along with the defined symmetry, the boundary conditions and the mesh.

Each element of the mesh is identified by the nodes (n), edge (a), face (f ) or volume (v). A simplicial

mesh is when Ω is discretized in such a way that any two elements can intersect only along a common
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Figure 6.5: Basics of Finite element methods. The 3D structure consists of a sphere of permittivity ε1 in
a homogeneous medium of permittivity ε2 with an incident electric field (E) alongX . The domain of
study Ω is chosen with respect to the periodicity inX and Z. The boundary conditions are applied at the
boundary of the domain and then a 2D mesh (inX −Z plane) consisting of triangles or a 3D mesh for
the entire volume is chosen.

node, edge or face. We denote N , A, F , V to the set of simplices of dimensions 0 to 3 respectively

for nodes, edges, faces and volumes of the elements. We associate a function λi called the barycentric

coordinates with each node i such that λi(k) = 1 if i = k and λi(k) = 0 for all other nodes (k) with

i 6= k.

The element of Whitney is a differential vector field which relates the all the simplices of the mesh.

For the lowest order (dimension of simplice) Whitney element which is associated to a node (order 0,

W 0) we can write wn = λi for node i = n. In this case a scalar function φ which can be defined as

φ =
∑
n∈N wnφn with φn being the values of φ at the node n, is continuous across the edge of the

elements.

The next higher order of Whitney elements (order 1, W 1) is defined for the edge {i, j} between

nodes i and j. The vector field for the Whitney field in this case is defined as wa = λi∇λj − λj∇λi.
The field is non existent for the elements without the edge {i, j} in common and the circulation of the

vector wa = 1 for that edge and zero for the others. wa is discontinuous across the face of the elements,

however the tangential component is continuous. The approximate field in terms of Whitney elements of

order 1 can be written as h =
∑
a∈Awaha. The degrees of freedom of ha are the circulation of h along

the edges.

Similarly for the Whitney elements of order 2 (W 2) on the face {i, j, k} we can write wf =

2(λi∇λj ×∇λk + λj∇λk ×∇λi + λk∇λi ×∇λj). The flux of wf = 1 across the face {i, j, k}
and zero for the others. The flux density can be approximated as b =

∑
f∈F wfbf with bf being the

flux trough face f . For the third order (W 3) we can define wv for the volume of the element and the

integral of it is unity over the defined volume element.
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For electromagnetics the scalar pottentials (electric Φ, magnetic Ψ) are approximated by W 0, the

fields (electric E, magneticH) and vector pottentials (electric U , magneticA) byW 1, the flux (electric

D, magnetic B) and current densities (J) by W 2 and the volume charge densities (ρ) by W 3. Table

6.1 summarizes the different physical components of electromagnetics and the corresponding Whitney

element to be used to approximate.

Table 6.1: Electromagnetic quantities and corresponding Whitney elements

Volt(V) Weber (Wb) Ampere (A) Coulomb (C)

W 0 Φ Ψ Scalar potentials

W 1 E = −∇Φ −
∂A/∂t

A H = −∇Ψ −
∂U/∂t

U Fields, Vector
potentials

W 2 0 = ∇ × E +
∂B/∂t

B = ∇×A J = ∇ ×H −
∂D/∂t

D = ∇×U Flux density,
Current density

W 3 0 = ∇ ·B ρ = ∇ ·D Charge density

6.3.2 FEM formulation for 1D array

The set of Maxwell’s equations that have to be solved is given in equation 6.9. The equations can be

written as

TE

{
− ∂

∂x

(
1

µz
∂Ey

∂x

)
− ∂

∂z

(
1

µx
∂Ey

∂z

)
= k2

0ε
yEy

}
(6.30)

It must be noted that we have chosen to formulate the problem in terms of the electric field for TE.

The same can be written for TM as suited to the application this work is based on. For it the magnetic

fieldH must be permuted with E and ε with µ. For TE we have only one component of the electric field

(Ey) and thus can be solved by approximating the field with nodal elements (W 0). For TM we have the

rotation form of the equations (∇×) and so edge elements (W 1) must be used to approximate the electric

fields.

The Galerkin method is commonly used in FEM to solve differential equations by converting them

to a discrete problem by weak formulation. For a problem which can be described as Lu = f with

L being the differential operator, u the function to be solved and f the source term, we can write∫
Ωwi(Lu − f)dΩ = 0 over the domain Ω. The function u can then be discretized in terms of the

weight function wi as u =
∑
iwiui with ui being the basis function of u. For our purpose we would

chose the weight function to be the elements of Whitney of zero or first order and describe the fields in

terms of a basis function as E = eie
iγz andH = hie

iγz.
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Using the Galerkin method for equation 6.30 and ignoring the source term we can write for TE

polarization in terms of the fields E =
[
0 Ey 0

]
and H =

[
Hx 0 Hz

]
by weak formulation

after integration by parts as

−
∫
Ω

∇w∗n ·
(
µz 0

0 µx

)−1

∇Ey
dΩ− k2

0

∫
Ω

[w∗n · εyEy]dΩ

= ±
∮
Γx

[
w∗n ·

1

µz
∂Ey

∂x

]
dΓx ±

∮
Γz

[
w∗n ·

1

µx
∂Ey

∂z

]
dΓz

(6.31)

withwn being the nodal elements with domain Ω and surface of the domain Γ. For periodic structures

the fields at the boundaries of the domain must be approximated to zero. The fields can be treated in

the same manner for TM polarization using the edge elements (wa) and the tangential components for

E =
[
Ex 0 Ez

]
andH =

[
0 Hy 0

]
.

Once such formulation is done and the fields are discretized in terms of nodal or edge elements we can

use matrix formulation to solve for the field E as [K][E] = [F ] withK being the global matrix, F the

source term if any which are to be developed from the formulations. The boundary conditions at domain

surface (Γ) must be applied as [E] = E0 for Dirichlet or d[E]/dn = H0 for Neumann as applicable.

It must be noted thatK is different from the scattering matrix described in section 6.2 for FMM and for

FEM, it is a function of the barycentric coordinates of the Whitney elements (λi). However we would use

the same nomenclature and in the hybrid model used in this work we would combine the FMM and FEM

methods in terms of the S matrix to solve for the entire system, as described in the next chapter.

6.3.3 FEM formulation for 2D array

For 2D array all the 6 components of the fields must be treated. We would use the wave equation which

can be solved by FEM. The wave equation was shown in equation 1.9. Ignoring external current densities,

it can be written as

∇× 1

µ
∇×E − k2

0εE = 0 (6.32)

Using the Galerkin method and Whitney elements as weight functions, as described in the previous

section we can write

∫
Ω

wi ·
[
∇× 1

µ
∇×E(r)− k2

0εE(r)

]
dΩ = 0

or∫
Ω

[
∇×wi ·

1

µ
∇×E(r)

]
dΩ + k2

0

∫
Ω

[wi · εE(r)]dΩ

−
∮
Γ

[
w∗i · n×

1

µ
∇×E(r)

]
dΓ = 0

(6.33)

where we have used integration by parts and the relationA · ∇ ×B = B · ∇ ×A−∇ · (A×B).

Using∇×E = iωµH we get
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∫
Ω

[
∇×wa ·

1

µ
∇×E

]
dΩ + k2

0

∫
Ω

[wa · εE]dΩ

+iωµ

∮
Γ

[w∗a · n×H]dΓ = 0
(6.34)

We can create the global matrices by assembling the terms from the above relation in the form

[K][E] = [F ] as in the case of 2D. Here for the formulation we have used the Whitney edge

elements(W 1). To solve for the electromagnetic field we need to apply the boundary conditions

(a) Dirichlet boundary condition: The condition states that the tangential component of the electric field

at the boundary must be continuous. Thus n×E = 0 for homogeneous boundary or n×E = n×Eex
for non-homogeneous boundary with external excitation Eex with n, the vector normal to the boundary.

For it we can consider a Perfect electric conductor (PEC) with vanishing tangential components of the

electric fields at metallic boundaries, neglecting the skin depth.

(b) Neumann boundary condition: The condition is utilized for magnetic interfaces where the tangential

component of the magnetic field is continous. Thusn×H = 0 for homogeneous boundary (n×∇×E =

0) or n ×H = n ×Hex for non-homogeneous boundary with external excitation Hex. For it we

consider a Perfect magnetic conductor (PMC) with vanishing tangential components of the magnetic

fields at the boundary of the domain.

c) Absorbing Boundary conditions (ABC) also called the Silver-Muller method, where the unknown

values at the boundary are chosen to be either the field diffracted by the domain or a plane wave at the

domain boundary. Etangent −
√
µ0

ε0
H × n = 0

d) Perfectly Matched Layers (PML) is an artificial absorbing layer where the fields are vanishing

inside the layer. The major property for the formulation of the PML is that the fields incident on the PML

from the domain do not reflect back into the domain.

In the next chapter we will describe the hybrid method used for this work where the fields inside the

domain was calculated by FEM with proper boundary conditions and then the matrices solved by FEM

were coupled to the FMM method to resolve for the entire extended system. This numerical model was

developed in collaboration with Mondher Besbes of Laboratory Charles Fabry.
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Chapter 7

Hybrid model for complex structures

The two numerical methods to solve the Maxwell’s equations were described in the previous chapter.

Both methods have their own advantages and disadvantages. The Fourier modal method (FMM) (section

6.2) using matrix formulation with propagation algorithm along a given direction can efficiently solve for

most grating problems without large consumption of time or processor memory. However for complex

geometries and particularly for metallic media, calculations with FMM leads to a convergence problem

[159]. The Finite element methods (FEM) (section 6.3), using an appropriate mesh can overcome this

problem. However, such calculations, for large computational domains compared to the wavelength of

light, are time consuming and have high memory requirements. The time and memory requirements of

such methods often become unreasonable even with the availability of commercial software and powerful

computers. It is also redundant to use FEM for regions of the structure which comprise only of planar

interfaces as such interfaces can accurately be solved by FMM. Thus the two methods are somewhat

complementary and by coupling them we can effectively reduce the size of the computational domain and

accurately solve for the electromagnetic fields over the complete geometry.

The structures presented in this work comprises of planar metallic or dielectric interfaces with a

periodic arrays of metallic nano-structures. The basic approach of the hybrid model is to describe the

electromagnetic problem (for example, in terms of the electric field E) for the complete system in

matrix form as described in the previous chapter following the propagation algorithm (for example,

[K][E] = [F ] withK being the global matrix, F the source term). The global matrix for the structured

part of the system is solved by FEM formulations. The matrices for planar interfaces of the system and its

far field response (total reflectivity or transmission of the system) is calculated by decomposition of the

computational domain in layers and following FMM formulations. The structured zone is considered as

one such layer of FMM formulation. The matrix obtained for that zone by FEM is coupled to the other

matrices as obtained by FMM to calculate the response of the complete system. The schematic of this

method for a 3D geometry comprising of an array of metallic nano-cylinders with underlying metallic

planar film on a glass substrate is shown in figure 7.1. The global matrix for the schematic is considered to

be the [K] matrix described by equation 6.28 for FMM and in section 6.3.2 for FEM. For the structured

zone, in this case the cylinder array, the matrix is computed by FEM. For the semi-infinite media on top

and bottom of the array, the matrices are calculated by FMM and then the global matrix for the complete

system is calculated by coupling all the individual matrices [160].
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Figure 7.1: A sketch of the hybrid numerical method for a 3D geometry comprising of a metallic cylinder
array on a metallic film, surrounded by homogeneous semi infinite media on both sides. The numerical
method uses a mesh around the nano-structured region to calculate the [S] matrix by FEM, and then uses
FMM to calculate the intensities diffracted by the system.

7.1 Formulations used for the hybrid numerical model

To compute the EM field in a diffraction grating problem, the domain is divided into multiple layers. By

using Floquet theorem we can express the relationship between the harmonic coefficients of the fields

E and H on the top of a layer to that at the bottom. This is done in terms of the G matrix described

in equation 6.29 of section 6.2.3. This matrix for the structured zone is determined by FEM, using the

discretization of Maxwell’s equations with Whitney elements to obtain an algebraic system relating the

field E at each position of the mesh to the fieldH at the boundary.

For the simplest case, the nodal elements (Whitney elements W 0 with wn = λi for node i = n)

are used for the formulation. The normal component of the electric field Ez is determined by applying

appropriate boundary conditions (section 6.3.3) at the limiting contours of the mesh towards top and

bottom of the zone. For the x, y plane, the limiting contours of the mesh are related by pseudo-periodic

conditions. To simplify the calculation, numbering of the nodes are chosen in a way to reduce the degrees

of freedom within the mesh.

The algebraic system thus obtained can be written in matrix form as
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(
KN0,N0 KN0,N

KN,N0 KN,N

)(
EN0

EN

)
=

(
0

Hx
N

)
(7.1)

where

Ki,j =

∫
Ω

∇w∗i ·
(
µz 0

0 µx

)−1

∇wj

dΩ− k2
0

∫
Ω

[w∗i · εywj]dΩ (7.2)

This follows from the FEM formulations described in section 6.3.3 (equation 6.34) with E =∑
nwnEn using the Galerkin method (section 6.3.2). The right hand side of equation 7.1 denotes the

sources (considered zero for simplicity) and the fieldHx
N =

∫
Γ

[w∗iH
x]dΓ. The subscriptN0 denotes

the nodal elements (DOF numbers) inside the meshed domain. The subscriptN denotes the elements at

the boundaries withN = [Nh,Nb] whereNh denotes the DOF numbers for the top boundary andNb

for the bottom as shown in figure 7.2.

Figure 7.2: The nodal elements for the meshed zone of the calculation

The electric field inside the meshed zone can be written asEN0 = −(KN0,N0)−1KN0,NE
z
N while

that at the boundary can be written as EN = (KN,N −KN,N0(KN0,N0)−1KN0,N)−1Hx
N . Thus

we can relate the EN0 at every node inside the mesh to the values at the boundaries EN . By appropriate

numbering of the nodes and using the above matrix formulation we can find a relationship between the

fields at the top (Ezh at nodesNh) and bottom (Ezb at nodesNb) boundaries to the sources and fieldH

in a matrix form given by

(
Ezh

Ezb

)
=

(
Mh,h Mh,b

Mb,h Mb,b

)(
Hzh

Hzb

)

with

[M ] = (KN,N −KN,N0(KN0,N0)−1KN0,N)−1

(7.3)

where K is the global finite element matrix and N are the DOF numbers at the top and bottom

boundaries andN0, the same inside the meshed domain.
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7.1.1 Developing the G-matrix for the meshed domain

The relation between the fields at the top (z = zh) and bottom (z = zb) boundaries of the meshed

domain are written in terms of the G-matrix to facilitate the coupling of FEM to FMM. This is done by

transformation of the fields in terms of Floquet-Fourier series as described in equation 6.11 for FMM in

section 6.2.1.

Such transformation together with Galerkin representation yield the following relations for the fields

and their Fourier components. 

Ej =

N∑
m=1

Êjme
iβmx

Ĥj
m =

1

Γ

∫
Γ

[
Hjeiβmx

]
dΓ

j = x, y, z




[
Ê
]

=
1

Γ

∫
Γ

[
Eeiβmx

]
dΓ = [E] [E]

[H] =
N∑
m=1

Ĥme
iβmx = [H]

[
Ĥ
]


where

βm = β0 +mKB

(7.4)

Using the above formulations we can relate the Fourier components of the fields at the top and bottom

boundaries of the mesh to the corresponding fields as(
Êzh

Êzb

)
=

(
Eh 0

0 Eb

)(
Ezh

Ezb

)
(
Hzh

Hzb

)
=

(
Hh 0

0 Hb

)(
Ĥzh

Ĥzb

) (7.5)

Finally the above relation together with equation 7.3 can be rearranged to give the final relation for

the fields at the two boundaries in terms of the Finite element G-matrix as(
[I] −EhMh,hHh
0 EbMb,hHh

)(
Êzh

Ĥzh

)
=

(
0 −EhMh,bHb

[I] EbMb,bHb

)(
Êzb

Ĥzb

)

or

Gh

(
Êzh

Ĥzh

)
= Gb

(
Êzb

Ĥzb

)
(7.6)

This relation is similar to the G-matrix formulation given by equation 6.29 derived by FMM. For

the complete system under study, the G-matrices are calculated for the structured zones by FEM and

for planar interfaces by FMM and the global matrix is then constructed and solved for the electric and

magnetic fields for the entire computation domain by propagation algorithm as described earlier.
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7.2 Conclusion

We have described in brief the formulations used to couple the two well known numerical methods, namely

the FMM and FEM to solve the Maxwell’s equations for a complete periodic system. This hybrid model

so described was used for most of the numerical results presented in this work. Different periodic nano

structures were studied in the course of this work with excitation wavelengths within the range of near

UV to near IR. Almost all the structures comprise of either metallic nano-particle arrays or metallic films

or the both. Different geometries such as infinite metallic strips, spherical nano-particles or cylindrical

nano-particles with finite heights were considered. As this work is dedicated to bio-detection, molecular

layers were simulated as thin dielectric layers with thickness of a few nanometers. For some calculations

it was also necessary to simulate metallic layers of a few nanometers. As will be shown in this work, the

hybrid model can be used to accurately calculate the far field reflectivity or transmission of such complex

metallic systems and the results obtained almost have near perfect correspondence with the experimental

results. To conclude we will list the basic advantages of the hybrid model when used for the purpose

presented in this work.

• Possibility of reducing the computational domain by applying conditions for periodicity and con-

sidering the symmetry of the geometry

• Due to the formulation using the global matrix we can simultaneously calculate the EM fields and the

intensities of diffraction for the structures.

• All the structures studied consists of metal and the hybrid model offers better convergence for metal.

• The hybrid model can be used for different complex geometries and was seen to give highly accurate

results.
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Part IV

Plasmonics of Nano-structures
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Chapter 8

The concept of plasmonic mode

In this part, we will demonstrate the various plasmonic modes that can be supported by periodic structures

with periodicity along a particular direction. All the results that will be demonstrated here were calculated

using numerical methods described in part III. To understand the concept of plasmonic modes we will

start with the very basic configuration that consists of a uniform metallic film on a glass substrate. The

medium on the other side of the uniform film will be considered semi-infinite with refractive index nh.

8.1 Uniform metallic film: the basic plasmonic mode

The propagating surface plasmon (PSP) was introduced in section 2.1 and its applications mentioned

in chapter 3. The generalized Rouard method which is used to calculate the reflectivity of such planar

surfaces was described in section 6.1. A calculated dispersion map of the PSP as a function of wavelength

(λ) and in-plane wave-vector (k///k0) = kx/k0 was shown in figure 6.2 and the experimental map

shown in figure 3.5. Here we will first describe the concept of a plasmonic mode and its analytical

interpretation.

In the early part of the last century the concept of energy of light quanta was theoretically established.

The well-known Planck–Einstein relation introduced the minimum energy required to create an electro-

magnetic field associated with an independent unit oscillating particle (photon) and is given as E = ~ω
with ω being the angular frequency of the particle. The energy is related to the linear momentum (P)

required to create the field as E = Pc for a photon with c being its linear velocity and thus we arrive

at the de Broglie relation which holds for all particles as P = ~k0 with k0 = ω/c in free space for a

photon. The relation E = Pc which holds for a photon, can be generalized as P = f(E) where the

momentum associated with the electromagnetic field is a function (f ) of the energy of the field. Using

Planck–Einstein relation and de Broglie relation we can write this in terms of a wave-vector ~k (along

a given direction) and angular frequency ω as ~k = f(ω) and this relation signifies the dispersion of

momentum along a given spatial direction with the angular frequency ω.

First we would use this description of a photon to describe a plane wave incident on an optical

system. Furthermore we will define a plasmonic mode as the function (f ) which can be used to describe

this relation between momentum wave-vector (~k) and the frequency of the associated electromagnetic

field. In general the mode of a system is derived from the eigenvalues of the solution of Maxwell’s

equations without a source term. Such eigen values can be represented as the dispersion of the free-space
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wave-vector (k0) with the in-plane wave-vector (k//) of the solution. We would follow a similar approach.

Thus the function f denotes the dispersion of in plane wave-vector with the free space wave-vector of

the plasmonic mode. For this work we will express the angular frequency in terms of the wave-vector of

photons in free space k0 = ω/c (let us call it the frequency wave-vector). Thus the major part of this

work is to express the plasmonic effects in various media in terms of plasmonic modes or ~k = f(k0).

For an uniform metallic film, as shown in section 2.1.3 the dispersion of the PSP can be written as

kx = k0

√
(n2
hn

2
m)/(n2

h + n2
m) where kx denotes the momentum wave-vector of the plasmon along

a given direction x. The physical aspect is that an uniform thin metallic film can support a wave whose

momentum will change with its frequency as given by this relation. The relation itself is defined by the

material properties and thus the propagating medium. With analogy to all the work published in the domain

of guided optics, we can consider that a system comprising of a metal-dielectric interface can support a

«mode» which satisfies the relation kx = k0 × (k///k0) with (k///k0) =
√

(n2
hn

2
m)/(n2

h + n2
m),

called the normalized in-plane wave-vector. It should be noted that the k// denoted here gives the in-plane

wave-vector that can be satisfied by the mode of the system, solved without considering any incident plane

wave. This is similar to obtaining an eigen value by solving the Maxwell’s equations without a source

term. Thus the PSP so described is a mode that the specific system can support.

Now for a photon along a given direction x, the dispersion relation in a medium with refractive index

of n1 is given by kx = k0 × n1. In analogy to this expression we can consider that a plasmonic system

introduces a retardation to the momentum of the photon (considering plasmon-photon interactions) and

thus can be effectively treated as (k///k0) where the value of the normalized in-plane wave-vector

depends on the geometry and physical properties of the plasmonic system. We will thus treat the plasmonic

systems in terms of the frequency of electromagnetic field associated with the mode (written in terms of

frequency wave-vector k0) and the retardation it offers to an incoming photon, in terms of normalized

in-plane wave-vector (k///k0) = |~k|/k0.

In most analytical studies we come across interfaces between two media. For an incident photon in

medium 1 along a unit vector û, the component of the momentum wave-vector parallel to the interface

(unit vector parallel to the interface p̂) is thus ~k · p̂ with ~k = k0n1 · û. Defining (k///k0) along the

interface as (k///k0) =
~k·p̂
k0

we see that the maximum momentum possible for the incident photon is

thus defined by its normalized in-plane wave-vector (k///k0) = n1.

For the interface 1→ 2, the momentum parallel to the interface is conserved, thus (k0n1 · û) · p =

(k0n2 ·û)·pwhich is the Snell’s law for refraction. The critical condition when the incident photon has no

positive momentum in the medium 2 is given by ~k · p̂ ≥ k0n2 and thus in this situation (k///k0) ≥ n2,

when (k///k0) is defined along the interface. This is a major advantage in treating systems in terms

of (k0, (k///k0)) and we can directly relate the critical conditions for positive photon momentums

while traversing various interfaces to the values of the (k///k0) of the system. For all of the structures

presented we will consider the interface in the x− y plane and (k///k0) will be defined with respect to

the momentum wave-vector parallel to the interface kx.

The dispersion of the PSP in terms of the wave-vectors (k0, kx) is shown in figure 2.2 and in

terms of wavelength (λ) in figure 3.1.In figure 8.1 the same dispersion is presented in (k0, (k///k0))

representation with the substrate of refractive index nb = 1.72 and medium of index nh = 1.30 on

the other side. We would mention once again that in this treatment of the dispersion, we represent only

the «mode» of the system without specifying any incident photon and thus without any photon-plasmon
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interaction.

In such a system we can identify two modes that can be written as Mode PSPh which satisfies

(k///k0) =
√

(n2
hn

2
m)/(n2

h + n2
m) and ModePSPb which satisfies (k///k0) =

√
(n2
bn

2
m)/(n2

b + n2
m).

If a photon with appropriate (k0, (k///k0)) is incident on the system, only then can it couple to a mode

and create the electromagnetic field associated with the mode. For this particular geometry, a photon

incident from medium nh can have normalized in-plane wave-vector (k///k0) < nh and thus will

not couple to any of the two modes. A photon incident from the medium nb (where maximum possible

normalized in-plane wave-vector is defined by (k///k0) < nb) can however couple to Mode PSPh
but in that case as (k///k0) > nh, there will be no positive momentum in the medium nh and thus the

electromagnetic field caused by the photon should be considered as an evanescent field in medium nh.

Figure 8.1: The propagating plasmon modes in an uniform gold film between two media with refractive
indices nh = 1.30 and nb = 1.72.

Considering that the retardation of a photon in a homogeneous medium is its refractive index, we

can add vectorially the (k///k0) values calculated along different directions. Thus for the direction

perpendicular to the interface we can write (k///k0)z =
√
n2
d + (k///k0)2

p̂ where nd is either equal

to nh or nb. This is similar to equation 2.5 where we derived the wave-vector of the PSP in the direction

perpendicular to the interface. Using the values for gold and (k///k0) along p̂ we see that for this

configuration there exists no real value of (k///k0)z . Thus the field along z perpendicular to the interface

is exponentially decaying.

By treating a geometry in terms of dispersion (k0, (k///k0)) can directly give an insight of the basic

modes supported by the system and the appropriate mechanism that can be used to couple an incoming

photon to a corresponding mode.

Now we will describe the characteristics of the electromagnetic field associated with a mode. It

must be noted that formulating modes in terms of frequency and momentum does describe the excitation
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conditions of a particular mode but do not give any insight on the field distribution associated with it. This

is because the mode is a property of the geometry of the system while the electromagnetic field associated

is a property of the excitation mechanism or rather the coupling mechanism of the photon to the mode.

For the modes presented in this work, they will have the same dispersion characteristics irrespective of

the method of photon-plasmon coupling, however for the field distributions presented there may be a

difference depending on the property of the incoming photon.

In the case of PSPh it is simple to guess from the physical interpretation of the mode, that the

electromagnetic field will be uniform along the interface gold-nh and exponentially decaying into the

dielectric for a photon incident from the medium nb. The penetration depth of the electromagnetic

field was described in section 2.1.4. The propagation length of the plasmon was also defined using the

wave-vector ksp. We have now shown that the ksp is basically proportional to the momentum of the

photon that it can have when it couples to the Mode PSPh. Thus the propagation length can be thought

to be the length required for the photon to dissipate its momentum to the absorbing medium, in this case

gold.

Now we will consider an incident photon from the medium nb at an angle θ with the normal to the

interface. The normalized in-plane wave-vector for the photon is defined by (k///k0) = ~k · p̂/k0 =

nbsinθ with its maximum (k///k0) = nb when θ = 90◦. The reflectivity for such a geometry

was calculated and shown in figure 8.2 as a function of frequency (represented by k0) and momentum

(represented by (k///k0)). Reflectivity can be considered as ratio of the photons that retain the same

momentum after reflection from the interface. Thus at the (k0, (k///k0)) of the mode, the momentum

was transfered to the PSPh mode and thus we have a dip in reflectivity characteristic of PSP.

Figure 8.2: The calculated reflectivity from an uniform gold film between two media with refractive
indices nh = 1.30 and nb = 1.72.

An important feature to note in the reflectivity map is the broadening of the reflectivity dip for larger

k0 and this gives an insight of the strength of the coupling between the incoming photon and the mode of

the system. This is caused by the fact that the medium has a finite absorbance (given analytically by the

imaginary component of the refractive index) and thus matching between the momentum of the mode and

the incident photon is never perfect but occurs roughly over certain values of (k0, (k///k0)). We see
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that the broadening is more for larger values of k0 and thus for smaller wavelengths and we can correlate

this to the increase of the imaginary part of the refractive index of gold for smaller wavelengths (as shown

in section 1.3).

We have now introduced the treatment of plasmonic modes with respect to the dispersion of

(k0, (k///k0)) and have shown the basic mechanism for coupling of a photon to such a mode. We will

follow the same approach for different geometries and treat the plasmonic modes supported by the geome-

try and then demonstrate the effect of coupling of photons to the modes in terms of the electromagnetic

field distribution and the far-field effects such as reflection and transmission.
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Chapter 9

Plasmonics of a metallic grating on
glass substrate

Following the approach described in the preceding chapter, we will describe the various modes that can

be present in a periodic array of metallic structures on a glass substrate.

9.1 Plasmonic modes for binary metallic grating

We will start with a very basic metallic structure. Here we will consider a binary metallic grating with

width (w1) and periodicity (Λ) placed on a glass substrate. The schematic of the structure and the

orientation of the unit vector p̂ defined for the calculation of (k///k0) is shown in figure 9.1. For the

calculations we would define the momentum of the modes in terms of the normalized in-plane wave-vector

as (k///k0) =
~k·p̂
k0

.

Gratings have intrigued research in optics ever since Robert Woods demonstrated the phenomenon

which bears his name as the Wood’s anomaly. This was mentioned in brief in the beginning of chapter

2. The system studied here is in principle the same as the phenomenon observed by Woods and thus the

consequent theories developed to explain a grating can directly be related to the plasmonic modes of the

system.

Let us first consider a homogeneous medium with refractive index nd. The mode of the system

following the description of the previous chapter can be defined by the dispersion of the energy in the

system with respect to a given frequency of the electromagnetic field and thus (k///k0) = nd and

k0 = ω/c. The change in momentum due to a periodic structure can be denoted by the normalized

in-plane wave-vector (k///k0) = nP and the total normalized in-plane wave-vector of the system can

be represented by (k///k0) = nd ± nP .

To evaluate nP let us consider the energy distribution of a periodic lattice. This is categorically de-

scribed by the Bloch theorem [161]. According to the theorem named after Felix Bloch, the wavefunction

(Ψ) of any particle in a periodic environment can be given as

Ψ(r) = ei
~k·ru(r) (9.1)

where u(r) is is a function which denotes the periodicity of the environment.
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In fact similar formulations to study a periodically repeating systems was formulated many times,

notably the Floquet theory for periodic linear differential equations or the Kronig-Penney model for

an electron in a 1D periodic potential [162, 163]. The basis of all such formulations is that the events

within a given unit cell of the system repeats itself after a certain interval, denoted by its periodicity. This

translational effect is denoted by the vector ~k in equation 9.1. In solid state physics (for which Bloch

theorem was originally developed) this vector is called the crystal wave vector and denotes the momentum

associated with electrons in a crystal lattice, pcrystal = ~~k. The solution of the Bloch equation is not

unique in the sense that it can be defined by all wave-vectors having the form ~k + mKB where m

is an integer and KB the reciprocal lattice vector [164, 165, 166]. Thus the maximum change in the

momentum wave-vector ~k is given by ±KB = ±2π/Λ with Λ being the periodicity of the lattice.

Figure 9.1: A binary grating of width w1 and periodicity Λ placed on a glass substrate with refractive
index nb. The medium surrounding the grating has a refractive index nh and the metal with an index nm.
p̂ defines the unit vector in the plane of the interface perpendicular to the grating ridges.

9.1.1 The Wood-Rayleigh anomaly (WRA)

We can use this theorem to describe the possible modes in our periodic structure. The normalized in-plane

wave-vector of a mode in a periodic structure can thus be written as (k///k0) = nd ± nP with nP
having values between 0 andmKB/k0. The minimum of nP = 0 is when p̂ is defined perpendicular to

the grating periodicity and the maximum nP = mKB/k0 when p̂ is considered parallel to the grating

periodicity with the intermediary values varying as a sinusoidal function depending on the direction of

definition of p̂.
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Figure 9.2: The calculated dispersion of the WRA ((k///k0)h) for different periods (Λ) withm = 1.
The dotted curves represent (k///k0)h = |nh + nP | while the solid curves represent (k///k0)h =
|nh − nP |. The refractive indices were nh = 1.333 and nb = 1.513.

Figure 9.3: The calculated dispersion of the WRA ((k///k0)h) for Λ = 800nm for different orders
m. Here we show the calculated curves for (k///k0)h = |nh − nP |. The refractive indices were
nh = 1.333 and nb = 1.513.
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In figure 9.1 we have defined the unit vector for (k///k0) parallel to the grating periodicity and thus

we can expect two different modes in the system given as

(k///k0)h = |nh − nP |
(k///k0)b = |nb − nP |

(9.2)

where (k///k0)h denotes the mode in the medium with refractive index nh and (k///k0)b the

mode in the medium with index nb.

We will not consider the nd+nP term as it is not physically possible to excite this mode by a photon

which would require increasing the photon momentum than what it has in a homogeneous medium. Such

modes were reported in the literature for binary gratings, including the famous Wood-Rayleigh anamoly

[167] and more recently in plasmonic structures such as Gao et al [168]where they named this mode

the Rayleigh Anomaly (RA). We will follow the same nomenclature and call them the Wood-Rayleigh

anomaly (WRA).

We must note that the WRA depend purely on the periodicity and is independent of the structure

shape and dimensions. We also see from the equation that (k///k0) is proportional to the energy of

the modes as 1/k0. The dispersion of the WRA ((k///k0)h) calculated by equation 9.2 form = 1 is

shown in figure 9.2. We see that the (k///k0) = 0 for nd = nP and at this condition the normalized

in-plane wave-vector for the homogeneous medium nd is cancelled by the effect of the grating. In

guided optics this condition is generally referred to as the cut-off condition. Writing k0 = 2π/λ we can

write this condition as mλ = ndΛ. For the values of λ below this condition (k0 ≥ 2mπ/ndΛ), the

wave-vector of the WRA is in the direction of p̂ while for λ values above this condition ((k0 values below

this condition)) the direction of the wave-vector is opposite to p̂.

9.1.2 Far and near field characteristics of the WRAs

Having described the possible modes in a simple grating structure let us now introduce the photon in the

system and study the effect of these modes on the physical properties such as reflectivity or transmission.

For this calculation we have used the rigorous numerical methods as described in chapter 7.

For light incident from the medium with refractive index nh the normalized in-plane wave-vector for

the photon can have values lying between (k///k0) = 0 to (k///k0) = nh while that incident from the

medium with refractive index nb will have normalized in-plane wave-vector values up to (k///k0) = nb.

We will first consider light to be incident from the medium nb.

Let us consider an incident plane wave perpendicular to the grating interface. In this case the

momentum wave-vector of the photon along p̂ is zero. Considering the electric field of the photon along

p̂ we can excite the WRA at the cut-off condition whenmλ = ndΛ where λ is the wavelength of the

incident light. In this case (k///k0) of the modes is zero and thus we expect the modes to be symmetric

in the direction of p̂. Since the wave-vector of the mode along p̂ is null, the field distribution would

resemble the form of a standing wave with a periodicity equal to Λ/m.

The electric field for the structure with an incident plane wave from the medium with index nb,

perpendicular to the grating-substrate interface was calculated using the hybrid numerical model. In figure

9.4 the electric field intensity distribution of the structure for the WRAs is shown. For the calculation

a 2D mesh was used in the X − Z plane. The electric field components along X and Z axes were
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calculated and then the total intensity was evaluated as I = E2
x +E2

z . The total calculated field was

finally normalized to the incident field intensity I0.

The period was taken as Λ = 1000nm and thus the cut off condition for (k///k0)h with nh =

1.333 is given by λ = 1333/m nm for the order m. The same for (k///k0)b with nb = 1.513 is

given by λ = 1513/m nm. We see that for the mode (k///k0)h the field is more intense in the medium

with index nh while for (k///k0)b the field is distributed mainly in the medium nb. We also see that for

m = 1 we have one standing wave (two spatial maxima for intensity distribution) within one period of

the structure while form = 2 we have two standing waves. Thus we can define a so called wavelength of

the WRA, being equal to Λ/m and this value is same for both (k///k0)b and (k///k0)h.

The field intensity distribution was also calculated for the same modes but with the light incident from

the medium with refractive index nh and shown in figure 9.5. We see that the distribution of the electric

field intensity is similar to the case when light is incident from the medium nb. Thus the WRAs can be

excited with light incident from any side of the structures.

Now for the same configuration, the plane wave is considered to be incident at an angle θ with p̂.

Thus the photon now has a momentum along p̂ and couple to the WRAs for the values when the incident

momentum (in terms of normalized in-plane wave-vector (k///k0)) matches the dispersion of the WRA

given by equation 9.2. Such coupling causes a change in the reflectivity which was calculated using the

hybrid numerical method. We will consider light to be TM polarized and thus having a component of the

electric field along p̂.

First let us consider light to be incident from the medium nh = 1.333. The width of the grating is

taken as 200nm. The period of the grating was changed to study its effect on the reflectivity dispersion

of the structure. This is shown in figure 9.6. First let us define the filling factor of the structures as

f = w1/Λ which the ratio of the surface covered by gold to the nb − nh interface. Considering the

metal to have a reflectivityRm and the interface to have a reflectivityRd we can linearly approximate

the total reflectivity of the structure to be

Rtot = f ×Rm + (1− f)×Rd (9.3)

The reflectivity for nh − nb interface at θ = 0◦ is given by the Fresnel equation and is equal

to
(
nh−nb
nh+nb

)2
= 0.004. The reflectivity drops with the incident angle θ and is equal to zero at the

Brewster’s angle for TM polarization. So we can approximate the reflectivityRd in this case to be almost

zero. If we consider the reflectivity of the metal (Rm) to be unit we can writeRtot = f .

For the gross reflectivity of the structures as shown in figure 9.6, we see that it decreases as we increase

the period Λ and thus as we increase f . However apart from the gross reflectivity we also have some

regions in the dispersion map where the reflectivity drops or increases sharply. These reflectivity minima

correspond to the dispersion of the WRAs.

At the values of (k0, (k///k0)) when the photon can couple to the (k///k0)h mode, the energy of

electric field is confined in the medium nh as can be see from the electric field intensity distribution of

figure 9.5. This causes an increase of reflectivity when considering incidence from nh. The inverse is true

for the (k///k0)b mode and we expect a drop in reflectivity when the mode is excited. We clearly see the

existence of the two WRA at each order. The mode with higher frequency wave-vector (k0) corresponds

to (k///k0)h and we see an increase of reflectivity for that mode, while those at lower frequencies

correspond to (k///k0)b and manifest in a drop of reflectivity.
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Figure 9.4: The electric field intensity for a grating of period 1000nm and width 500nm. A plane wave
is incident along z axis from the medium nb and linearly polarized with the electric field along x axis.
The intensity was calculated at (a)λ = 1333nm: (k///k0)h mode withm = 1. (b)λ = 666.5nm:
(k///k0)h mode with m = 2.(c)λ = 1513nm: (k///k0)b mode with m = 1.(d)λ = 756.5nm:
(k///k0)b mode withm = 2. The gold-substrate interface is shown with solid lines and the vector p̂.
The height of the grating is taken as 50nm.

Figure 9.5: The same structure with a plane wave is incident along z axis from the medium nh and
linearly polarized with the electric field along x axis. The intensity was calculated at (a)λ = 1333nm:
(k///k0)h mode withm = 1. (b)λ = 666.5nm: (k///k0)h mode withm = 2.(c)λ = 1513nm:
(k///k0)b mode withm = 1.(d)λ = 756.5nm: (k///k0)b mode withm = 2.
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Figure 9.6: The reflectivity (R) of the structure for different periods (Λ) as a function of k0 = 2π/λ
and (k///k0) = nhsin(θ) for incident plane wave from the medium nh at an angle θ. The calculated
values for WRAs are also shown in the figure ((k///k0)h:dashed and (k///k0)b:solid)

Figure 9.7: The transmission (T) of the structure for Λ = 500nm as a function of k0 = 2π/λ and
(k///k0) = nhsin(θ) for incident plane wave from the medium nh at an angle θ. The calculated
values for WRAs are also shown in the figure ((k///k0)h:dashed and (k///k0)b:solid)
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The same understanding applies for the transmission and neglecting absorption (A) in the metal we

can consider the transmission (T) equal to 1-R. We see from figure 9.7 a drop in T at the frequencies

where (k///k0)h modes are excited and an enhanced transmission when (k///k0)b is excited.

The WRAs modes results from simple diffraction at the grating and thus is not confined in nano-metric

scales as we expect plasmonic modes to be. We will call them the «Extended Modes». The energy of

such extended modes is distributed into the far field and the type of mode dictates the characteristics of

reflectivity or transmission of the structures. For this work we are rather interested in plasmonic modes

which help to confine the electromagnetic field within nano-metric scales. We will call those modes the

«Confined Modes». For various other geometries we will show the existence of different types of Extended

or Confined modes.

For incident plane wave from the medium nb = 1.513 the normalized in-plane wave-vector for the

photon can have access to all the values of (k///k0) between 0 and nb. Above (k///k0) = nh =

1.333 we have total internal reflection and thus the reflectivity will be expected to be unit. The reflectivity

dispersion map is for this configuration is shown in figure 9.8 for a grating width of 200nm and different

periodicities.

Figure 9.8: The reflectivity (R) of the structure for different periods (Λ) as a function of k0 = 2π/λ
and (k///k0) = nhsin(θ) for incident plane wave from the medium nb at an angle θ. The calculated
values for WRAs are also shown in the figure ((k///k0)h:black dashed and (k///k0)b:black solid).
The calculated dispersion of the PSP mode (PSPh) is also shown (blue dashed)

The modes are not prominent in the reflectivity map. This is because of the high reflectivity above the

critical angle ((k///k0) = nb) due to the total internal reflection which overshadows the WRAs. This is
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more so for larger periods when the filling factor decreases. However what is interesting to note is for a

filling factor of f = 0.67 which corresponds tow1 = 200nm and Λ = 300nm we have a prominent

mode above the critical angle. The reflectivity drops sharply for certain values of (k///k0) > nh. This

drop of reflectivity for Λ = 300nm corresponds closely to the calculated dispersion of the mode PSPh
as described in section 8.1. Thus we see that for these structures there is a possibility of exciting the PSP

mode, however for this particular configuration withw1 = 200nm the PSP mode is not strong enough

to have a distinct resonance dip in reflectivity.

Interpreting the results physically we can consider the WRAs as those conditions which are satisfied

when one of the diffracted orders lie in the plane of the grating. Comparing the condition for the WRAs

as given by equation 9.2 to the basic grating equation we can easily verify this notion.

For the modes as described in this work, we will define «Wavelength of the mode» (λmode) as

λmode = λ/(k///k0) where λ = 2π/k0. This is basically derived by writing the wave-vector of the

mode as ~k = 2π/λmode. This parameter will be useful to give an idea of the spatial magnitude of the

mode along the defined vector p̂. We can assume that for each mode of a structure to be excited efficiently

by a photon, we need the feature length to be at least larger than the wavelength of the mode (λmode).

The wavelength of the PSPh and PSPb as a function of λ is shown in figure 9.9.

Figure 9.9: The wavelength of the PSP modes as a function of λ.

For the metallic ridges, the electric field of the incident light along the Z axis excite the PSP. However

the coupling of the photon momentum to the momentum of the PSP mode is not strong enough given that

the width of the grating ridge is 300nm which is much smaller than the wavelength of the the PSP mode.

However for larger ridge widths the PSP modes can be excited and the reflectivity dips are expected to be

more prominent.

For the configuration with the photon incident from the medium with index nb, we studied the effect

of the width of the grating on the dispersion of the modes. The WRAs depend purely on the periodicity
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and thus with a constant period we do not expect any change in the dispersion of the WRAs. For the

study we will choose a period of Λ = 1400nm thus offering a larger range for the widths of the grating.

The analytical dispersion of the structure is shown in figure 9.10. We have all the various orders (m) of

the two WRAs (only (k///k0)b shown in the figure) and thus over most of the (k0, (k///k0)) space

we expect sharp loss of reflectivity. But what is interesting to note is the zone above the critical angle

where both the PSP and the WRAs are excited. This is where we expect mode coupling between the two

modes. We will explain this phenomenon and it plays a principle role in understanding the plasmonic

modes present in this work.

Figure 9.10: The calculated dispersion of the WRA ((k///k0)b) for Λ = 1400nm for different orders
m. The refractive indices were nh = 1.333 and nb = 1.513. We have also shown the dispersion of
the PSPh (blue) and PSPb (red).

9.1.3 Plasmonic Band Gaps in periodic structures

As we have mentioned in section 9.1.1 the momentum wave-vector for the condition that gives rise to

the WRA is in the direction of p̂ for values of k0 above the cut off frequency while the momentum

wave-vector is in the direction opposite of p̂ for k0 below the cut-off. We see from figure 9.10 that for the

WRA condition that intersect the dispersion curve of the PSPh, the values of k0 are below the cut-off.

The momentum wave-vector of the PSPh by definition lies in the direction of p̂. Thus for values of

(k0, (k///k0)) where the WRA condition intersect the PSPh we have the same normalized in-plane

wave-vector ((k///k0)) values for both the modes however oriented in opposite directions. Thus both

the wave-vectors cancel each other and we have no positive wave-vector in the system. This manifests

itself in the reflectivity or transmission map in the form of a «band-gap».

The band-gap in solid state physics signifies energy ranges where no particle states can exist. In

analogy to that definition we can consider a plasmonic band-gap as the frequency ranges where several

plasmonic modes with their respective wave-vector dispersion would have existed separately, however
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owing to the geometry of the structure the resulting wave-vectors cancel each other and thus for the

resulting configuration there exists no positive wave-vector [169, 170].

We must mention here that the basic definition of a plasmonic modes is the possibility of a photon

with a particular momentum and frequency to couple to that mode of the system. Thus a plasmonic

band-gap can be defined as the frequency and momentum of a photon which has no possibility to couple

to a plasmonic mode of the system.

For the structure with Λ = 1400nm we have calculated the reflectivity dispersion map in figure

9.11. We see that at the frequencies of the PSPh, we have a drop in reflectivity. This is the expected

characteristic of a PSP mode. However close to the values of (k0, (k///k0)) where the WRAs cross the

PSP, we can see a band-gap. This is more evident in the absorption map. The absorption was calculated as

A = 1−R− T whereR and T are the reflection and transmission respectively.

Figure 9.11: The reflectivity (R) and the absorption (A) for Λ = 1400nm, w1 = 1200nm. The
refractive indices were nh = 1.333 and nb = 1.513. We have also shown the calculated dispersion of
the PSPh (blue) and the WRAs ((k///k0)b) (black solid) ((k///k0)h) (black dashed).

We see absorption maximum for the PSP mode. Such an absorption maximum indicates that the

energy of the incoming photon is not transfered to the far field (reflection and transmission) and thus is

confined in the near field. This is not the case for the WRAs where we have reflection minima at the

positions of the transmission maxima and vice versa. Thus a mode which has high absorption will be

called the «Confined Modes» and should in principle be different from the Extended modes such as that

satisfied at the condition for the WRAs. At the position of the band-gaps the absorption of the PSP drops

sharply and thus indicating that the mode is non-existent.

The field intensity distribution (I/I0) for the different modes at (k///k0) = 1.45 was calculated.

A plane wave from the medium with index nb was incident at θ = 73◦. The field intensity distribution in

log scale is shown in figure 9.12. For all the modes we see the field intensity is confined within a few

hundred nano-meters from the grating surface. The field intensity of the PSPh is higher than the WRAs.

However the field distribution shows the standing wave pattern as expected for the WRAs. This is a result

of the coupling between the PSP and the WRA. It should be noted that for the standing wave pattern for
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the WRAs the number of maxima in the intensity distribution directly indicates the orderm of the modes.

Whenever we have a coupling between two modes the electric field distribution sustains some of the

characteristics of both the modes. In this case the field is confined which is a characteristic of the PSP,

however manifests a standing wave pattern which is the characteristic of the WRA. Thus such modes

resulting from coupling are not in principle the same as the parent modes which couple and thus we will

call them the hybrid modes. This will be described in later sections with much detailed examples.

To summarize the results, an incident photon having its momentum wave-vector perpendicular to the

grating ridges can excite the WRAs which are extended modes with a very low electric field intensity

confined close to the metal surface. For ridge widths larger than the wavelength of the PSP, the photon

can excite the PSP which is a confined mode with intense electric field close to the metal surface and

exponentially decaying within a few hundreds of nano-meters. The PSP and WRAs can couple given their

dispersion has the same values of (k0, (k///k0)), giving rise to band-gaps and hybrid field distribution

patterns.

Figure 9.12: The electric field intensity distribution in log scale for the different modes (values of
(k0, (k///k0))) as shown in the dispersion map (top left) for Λ = 1400nm, w1 = 1200nm.
For all the calculations (k///k0) = 1.45 (θ = 73◦). (a)λ = 612nm,k0 = 10.3/µm (b)λ =
655nm,k0 = 9.6/µm (c)λ = 694nm,k0 = 9.0/µm (d)λ = 776nm,k0 = 8.1/µm (e)λ =
828nm,k0 = 7.6/µm

In the next section we will describe the modes that can be excited by an incident photon with its

momentum wave-vector parallel to the grating ridges.

9.2 Plasmonic modes in periodic metallic strips

We will consider the same binary grating structure as described in the last section (9.1) with width w1

and period Λ. But here to calculate the dispersion of the plasmonic modes we will define the unit vector
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p̂ parallel to the grating ridges. The schematic is shown in figure 9.13.

In the last section we introduced the wavelength of PSP. We mentioned that we need an uniform metal

layer of length larger than λPSP along a defined p̂ to effectively excite the PSP mode. Thus the PSP was

shown to be excited only for gratings with larger widths. By defining p̂ along the grating ridges however

removes this constraint and thus we can expect to excite the PSP for smaller grating widths as well.

However for efficient excitation of the PSP, the length of the metal layer perpendicular to the direction

of propagation of the plasmon (p̂) also plays a major role. We will follow the same normalized in-plane

wave-vector ((k///k0)) approach as mentioned earlier to express the modes of the system. Apart from

the conventional PSP we will also introduce other modes that can be excited in such a geometry.

Figure 9.13: A binary grating of width w1 and periodicity Λ. p̂ defines the unit vector in the plane of the
interface parallel the grating ridges.

In such a geometry the basic mode that we expect is the PSP and the (k///k0) for the PSPh and

PSPb can be written as

(k///k0)PSPh =

√
(n2
hn

2
m)

(n2
h + n2

m)

(k///k0)PSPb =

√
(n2
bn

2
m)

(n2
b + n2

m)

(9.4)

These modes would be expected to propagate on the top (interface of gold and medium nh) and the

bottom (interface of gold and medium ) of the strips respectively. The WRAs explained in the previous

section appear solely when we have a periodicity in the direction of propagation of the modes. In this case
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the strips are considered infinite and thus we would not have grating modes. However due to the finite

width of the strips we expect something similar to the modes that exist in rectangular waveguides. Thus

we should draw an analogy with the wave-guide modes in this section.

9.2.1 The Confined Propagating Plasmons (CPP)

To solve for the modes we will follow the approach used for rectangular waveguides. The geometry is

shown in figure 9.14. The electric field along the propagation direction (y) can be written as Ey(x, z) =

E0(x, z)eiβy where β is the propagation vector of the guided mode. Considering the time-independent

wave-equation (Helmholtz equation) we can write

(
∂2

∂x2
+

∂2

∂z2
+ β2)E0(x, z) = 0 (9.5)

By using the method of separation of variables and writing E0(x, z) = Ex(x)Ez(z) we get

d2Ex
dx2

+ k2
xEx = 0

d2Ez
dx2

+ k2
zEz = 0

(9.6)

where kx and kz are the wave-vectors along x and z respectively.

Figure 9.14: The geometry for a metallic strip

We will first approximate that the gold film is semi infinite along z and thus the solution will be derived

for a gold-dielectric interface truncated along x. To solve for Ex we need to consider the following

boundary conditions for the x− y plane with z = h.
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E0(x, z) = 0 : x = w1/2

E0(x, z) = 0 : x = −w1/2
(9.7)

Thus we can derive Ex of the form Ex(x) = sin(kxx) with kx = mπ/w1 where m is an odd

integer. Thus the electric field is expected to have a standing wave pattern along x with odd number of

lobes and a maxima at x = 0 and zeros at x = w1/2 and x = −w1/2. The wave-vector of guided

mode β is related to kx by the relation k2
y = β2 − k2

x. This is the result that we are interested in to

classify the modes in terms of (k///k0). We defined our (k///k0) along y and thus for our purpose

(k///k0)CPP = ky/k0.

So far we have solved for the x-dependence of a guided mode in the system. For our configuration the

mode which is guided along the strip is none other than the PSP that can be excited at a metal-dielectric

interface. Thus the β in this case is simply the wave-vector of a propagating plasmon and can be given

as β = k0(k///k0)PSP . Now considering the real system with two metal-dielectric interfaces we can

thus write the modes of the system as

(k///k0)CPPh =
√

((k///k0)PSPh)2 − (mπ/k0w1)2

(k///k0)CPPb =
√

((k///k0)PSPb)
2 − (mπ/k0w1)2

(9.8)

for order m=1,3,5... These modes are simply propagating plasmon modes that result due to the

truncation of the uniform metal film along x. Thus we would call these modes the Confined Propagating

Plasmons (CPP). TheCPPh mode results from the PSPh which is guided along the metal-nh interface

while the CPPb is caused by PSPb guided along metal-nb interface.

From equation 9.8 we see that the CPP modes depend only on the width (w1) of the metallic strips.

The dispersion of the CPP (1st order) for widths w1 = 500nm,1000nm,1500nm,2000nm are

shown in figure 9.15. The refractive indices are taken as nb = 1.513 and nh = 1.333. The dispersion

follows closely the PSP when we increase the width. This is expected as for an infinite width we have

only the PSP in the system.

The dispersion of the different orders of the CPPb is shown forw1 = 2000nm in figure 9.16. The

shift of the resonance frequencies of the CPP with width was also calculated and shown in the same figure.

We must note here that unlike the WRAs, the CPP dispersion do not depend on the periodicity of the

structure. The resonance frequencies of the CPP modes at a given (k///k0) undergoes a red-shift with

the width of the strips and approaches its corresponding PSP for larger widths (figure 9.15).

Confined modes guided along metallic structures have been reported previously [171, 172, 173, 174,

175, 176] and in our recent publication [177]. The modes described in such publications can be identified

with the CPP mode described here.

9.2.2 Near-field and Far-field properties of the CPP

Having analytically expressed the dispersion of the CPP modes we will now present the coupling of an

incoming photon to the CPP. In this case and as before, we can either introduce the photons from the

medium nh or the medium nb. We will choose the later to have access to the values of (k///k0) > nh.

It should be noted that whenever we have modes where the PSP plays a major role, it is always more

interesting to study the properties for (k///k0) > nh. Thus we will consider a plane wave incident
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Figure 9.15: The calculated dispersion of the CPP modes for widthsw1 of 500nm, 1000nm, 1500nm and
2000nm. The CPPh and CPPb are shown as black dashed and black solid respectively. The PSPh
(blue) and PSPb (red) are also shown in the dispersion map.

from the medium with index nb at an incident angle of θ with the gold-dielectric interface. The direction

of incidence is now along the length of the strips. Thus the (k///k0) defined along the length of the

strips (p̂) can be written as (k///k0) = nbsin(θ). This configuration can be considered similar to

the configuration shown in figure 9.8, however with the direction of incidence in this case being parallel

to the grating ridges. We will study the properties of TM incident light as the PSP do not exist for TE

polarization.

The reflectivity dispersion map was calculated for the structure with w1 = 5µm and varying

periodicity as shown in figure 9.17. Here we will consider (k///k0) to be greater than nh and thus the

angle was varied from 63◦ − 85◦. Since the incident angle is greater than the critical angle for nb − nh
interface we expect total internal reflection. However as already mentioned in chapter 8 we have a drop in

reflectivity at the (k0, (k///k0)) values where the plasmon modes are excited.

The major reflectivity dip corresponds to the dispersion of the PSPh. We see that the dispersion

of the modes in reflectivity do not change with period as expected from the discussion above. The only

change is in the contrast of the reflectivity which decreases with increasing period. This phenomenon was

explained in equation 9.3 and can be attributed to the fact that with increasing period we reduce the ratio of

the surface covered by gold where the PSP is excited and the nb − nh interface (thus the filling factor f).

The analytical reflectivity was calculated using the linear approximation asRtot = fRm + (1− f)Rd.

Here in this caseRd is the reflectivity at the metal-nh interface and is equal to unit. Rm is the reflectivity

calculated for an uniform metal film of 50nm. The reflectivity spectra at (k///k0) = 1.46 (θ = 75◦) is

shown in figure 9.18. We see the minimum of reflectivity and thus the contrast of the reflectivity spectra

126



Figure 9.16: (a) The dispersion of the CPPb modes for w1 = 2000nm for different orders m. (b)
Variation of resonance frequencies of theCPPb with width of the strips for m=1,3,5,7,9,11. The value of
(k///k0) was taken to be 1.48.

fits closely with the calculatedRtot.

In figure 9.17 and 9.18 we see other dips in the reflectivity apart from the classical PSPh. These can

be attributed to the CPP modes. With the photon incident from the medium nb it can couple to theCPPb
modes at the corresponding (k0, (k///k0)) values. The energy of the photon then propagates along the

length of the strips and thus causes dips in the reflectivity specta at those (k0, (k///k0)) values.

Keeping a constant filling factor f = 0.5 (Λ = 2w1) we have calculated the reflectivity dispersion

for different widths and periods of the structure. This is shown in figure 9.19. The dispersion of the

CPPb(m) and CPPh(m) for the mth order, calculated by equation 9.8 is also shown in the figure.

We see a drop in reflectivity at the (k0, (k///k0)) values associated with the CPP modes. The reflectivity

dip is less pronounced for higher orders of the CPP. This can be explained by the fact that to excite the

higher orders we need to increase the width of the grating. For larger widths, the incoming photon is

coupled more strongly to the PSP and thus the CPPs of higher orders become less prominent.

In figure 9.20 we have plotted the frequencies of such reflectivity dips as a function of the structure

width for (k///k0) = 1.49 (θ = 80◦). We see that the reflectivity minima undergo a redshift with

increasing width. The dependence of theCPPb(m) mode as a function of strip width was also calculated

and plotted in the same figure. We see a very close correspondence between the numerically calculated

reflectivity minima and the analytically calculated orders of the CPP. This confirms that the multiple

reflectivity modes we have in this system are the different CPP modes.

The transmission of the structure in this configuration was also studied and no substantial transmission

modes were observed. However for the WRAs in a previous section (9.1.1) we had observed transmission

modes. This is not surprising because it must be noted that the WRAs were «Extended modes» while

the CPPs are «Confined modes» and thus do not radiate energy into the far field. Thus in this case the

reflectivity dip can be considered purely as the absorption of the structure where the energy remains

confined to the near field.

Now we will present the near field characteristics of the CPP modes. While deriving the (k///k0)

for the CPPs we mentioned the boundary conditions that we applied for the guided modes. Thus the
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Figure 9.17: The reflectivity (R) for metallic strips for widthw1 = 5000nm and periods (Λ) of 5500nm,
7000nm and 10000nm thus a gap between the strips of 500nm, 2000nm and 5000nm respectively. The
height of the strips (h) was taken to be 50nm. The dispersion of the PSPh is shown in blue.

Figure 9.18: The reflectivity (R) for the structure at (k///k0) = 1.46 for the three periods (black solid).
Reflectivity of an uniform gold film of 50nm (Rm) is shown in blue andRd = 1 for gold-nh interface.
The linear approximated reflectivity (Rtot) is shown in red dashed.
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Figure 9.19: The reflectivity (R) for metallic strips for widthw1 of 500nm, 1000nm 2000nm and 3000nm.
The period is taken as Λ = 2w1. The strips (h) was taken to be 50nm. For the analytical dispersion
of the modes CPPh(m) is shown as black dashed and CPPb(m) as black solid for order m. The
PSPh dispersion is also shown as blue solid.

distribution of energy of the CPP modes would follow the same spatial profile. The electric field intensity

would thus have a maxima at the center of the strips and decay towards the edges. The number of lobes of

the standing wave pattern is equal to the order of the modes (m).

We calculated the electric field using the hybrid numerical method for a quasi-3D period mesh. In

this case the structure periodicity was taken in the x− z plane and a small width was considered along

y. The periodicity condition was also applied along y, to simulate an infinite length of the strips. The

electric field components were calculated along all the 3 directions and the total intensity evaluated as

I = E2
x +E2

y +E2
z . As before the field thus calculated was normalized to the incident intensity I0.

The field distribution was calculated for w1 = 2750nm. Within the calculated wavelength range of

λ = 550nm− 900nm for this width we have 3 CPP modes of the orders 3,5 and 7. The reflectivity

dispersion map for w1 = 2750nm and Λ = 2w1 is shown in figure 9.21. We see reflectivity drops at

the positions of the calculated CPPb dispersion. The electric field intensity for the 4 modes namely the

PSP and the 3 orders of CPPs at (k///k0) = 1.49 is also shown in the figure.

We see for the PSP (k0 = 10.72/µm : λ = 586nm) the electric field intensity is uniformly

distributed along x at the metal-nh interface. This is the characteristic field distribution of the PSPh.

For the CPPs we have a standing wave pattern along x with (m+ 1)/2 lobes for themth order. For

example CPPb(3) having 2 lobes and so on.

An interesting feature to note in the field distribution of the CPPb is that they have a significant field

intensity at the sides of the strips. The height of the ribbons (h) was taken as 50nm. Thus we have a

propagating plasmon mode confined to a few tens of nanometers. This can prove to be very useful for

bio-sensing when detecting molecules at low concentrations. This feature will be described in details with

respect to bio-sensing in later chapters (Part V).
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Figure 9.20: The frequencies (k0) of reflectivity minima as a function of strip width (w1) (red dots). The
value of (k///k0) = 1.49 thus an incidence angle of θ = 80◦. The calculated resonance frequencies of
the CPPb(m) modes for orderm is also shown as a function of w1.

The same structure was illuminated with the photons incident from medium nh. In this case we will

not excite the PSP. The normalized in-plane wave-vector for the incident photon ((k///k0)) will be less

than nh. From figure 9.15 we see that for (k///k0) < nh we can excite only the CPPs for small widths

and more prominently the CPPh mode. For incidence from nh, there is not total internal reflection

and thus a study of the transmission of the system would be more interesting. For the modes we can

expect a dip in transmission. The transmission dispersion map for w1 = 500nm and Λ = 1000nm

is shown in figure 9.22. The analytical calculation of the dispersion of the CPPs is also shown. We see

transmission dips at the (k0, (k///k0)) values which correspond to the 1st orders ofCPPh andCPPb.

Another weak drop in reflectivity is also observed which corresponds to the CPPh(2). Thus in such a

configuration the even orders of the CPPh may also be excited.

The field distribution for the CPPh(1) and CPPb(1) was also calculated and is shown in figure

9.22. As expected we see one maxima for both the modes, confined at the interface of metal with nh and

nb for CPPh and CPPb respectively.

An important point to note here is that the field distribution of the CPPh is somewhat similar to the

PSPh however it can be excited with a plane wave incident from the medium nh. This is not possible

for the conventional PSPh. This provides an advantage if we require to excite a quasi-conventional

propagating plasmon mode without the Kretschmann configuration and total internal reflection setup. In

the literature this is sometimes explained in a cursory manner as simple grating coupling. However the

modal analysis present in this work gives a more subtle explanation of the phenomenon and helps in a

complete understanding of its excitation.

We have presented different modes such as the WRAs and the CPPs that can be excited in metallic

strips (gratings) by light incident either perpendicular or parallel to the strips. In the next chapter we
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Figure 9.21: Left: The reflectivity dispersion map for w1 = 2750nm and Λ = 5500nm. The height
of the strips was taken as 50nm. The analytical calculations for the dispersion of the PSP (blue solid) and
the CPP modes (black solid) together with the light line in the dielectric medium (k///k0) = nh are
also shown. Right: The electric field intensity in logarithmic scale for different k0 values corresponding
to the different modes at (k///k0) = 1.49. (Top-bottom): k0 = 10.72/µm : λ = 586nm, k0 =
9.86/µm : λ = 637nm, k0 = 8.81/µm : λ = 713nm, k0 = 7.17/µm : λ = 875.5nm.

will describe the plasmonic modes that can be excited in a periodic 3D array consisting of metallic

nano-particles.
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Figure 9.22: (a) The geometry of the configuration with an incident plane wave from the medium nh
at an angle θ and the plane of incidence parallel to the strips (b) The transmission dispersion map for
w1 = 500nm and Λ = 1000nm. The height of the strips was h = 50nm. The analytical calculation
for the (k0, (k///k0)) of the different modes is shown. The electric field intensity in logarithmic scale
for (c)k0 = 8.03/µm(λ = 782nm) and (k///k0) = 1.31(θ = 78.5◦) (d)k0 = 7.82/µm(λ =
803nm) and (k///k0) = 1.11(θ = 56◦).
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Chapter 10

Plasmonics of nano-particles on glass
substrate: The LSP resonance

So far we have discussed the modes which are either extended or confined caused by the propagating

plasmon mode (PSP) and its confinement by the structures. In plasmonics there exists another fundamental

type of resonance, namely the localized surface plasmon (LSP). In this chapter we will introduce the

conditions for the LSP resonance in metallic nano-particles.

10.1 The LSP resonance condition

We will now study a complete 3D structure which consists of an array of gold cylinders in square packing

placed on a glass substrate (medium with index nb). The medium surrounding the cylinders will be

considered semi infinite with a refractive index nh. The structure geometry is shown in figure 10.1.

So far we have described the confined plasmonic modes such as the PSP or the CPP and the extended

modes such as the WRAs. In this structure with nano-particles, there exists another fundamental plasmonic

mode, the Localized surface plasmon (LSP). The basic principle of the LSP was described in section 2.2

and the application of LSP for bio-detection was introduced in section 4. The LSP results from local

electron oscillations in metallic nano-particles. However such oscillations are confined to the surface of

the particles and thus do not cause energy to propagate along the structure. So our momentum-energy

approach that we have used to describe the plasmonic modes so far is not directly applicable to the LSP as

for them the momentum wave-vector does not have any physical meaning. Thus the LSP is not a «mode»

of the system by our definition. It however follows a resonance condition and can be excited by photons

having a certain particular energy or frequency. Thus for the LSP we will describe the resonance condition

at which we expect them to be excited.

10.1.1 Theoretical models for LSP resonance

For a nano-particle of a given shape, it undergoes a LSP resonance at certain frequencies. This is

generally explained by a term called the polarization of the particle. In fact, in any medium, an incident

electromagnetic field can cause a displacement of the charges. This displacement creates surface charges

in the medium which in turn counteracts the applied electric field. This is what we call the polarization of
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Figure 10.1: An array of gold cylinders of diameterD and periodicity Λ placed on a glass substrate with
refractive index nb. The medium surrounding the cylinders has a refractive index nh and the metal with
an index nm. p̂ defines the unit vector in the plane of the interface.

the applied field. The amount of polarization offered by the particle depends primarily on the particle

shape and properties. Such properties in electromagnetism is described by the polarizability (α) .

For metallic nano-particles this polarization is caused by the presence of free electrons in the metal.

At certain frequencies the free electrons undergo resonant oscillation causing the LSP. This resonant

condition depends primarily on the shape of the particle and thus the distribution of the surface charges at

the metal edges. The basic formulation for such polarization of metallic nano-particles was introduced in

section 2.2 where the generalized equation for polarizability was given as

α ∝ εm − εd
εd + χ(εm − εd)

(10.1)

The poles of the polarizabilty gives the resonance condition for the LSP when the particle polarization

to an incident field is maximum. Thus the plasmonic property of the nano-particle according to this

approach is described purely by the factor χ which is called the depolarization factor. However this model

has a major drawback as it cannot be used for particles with complex geometry.

The basic principle of modeling the polarization offered by a particle by α stems from replacing the

extended particle by a dipole and thus approximating the response of the particle by a dipole response.

Thus the simplest method is to solve the Laplace equation for a scalar electric potential (∇2Φ = 0) with

E = −∇Φ. Using the boundary conditions at the surface of the particle we calculate the polarization of

the particle. For a spherical metallic particle with dimensions much smaller than the wavelength of light, it

has been shown elsewhere that the depolarization factor is given as χ = 1/3 [178]. Using equation 10.1
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with a spherical nano-particle surrounded by a homogeneous medium with refractive index nh = 1.333

we can calculate the resonance wavelength for the LSP as λLSP = 552nm , (k0 = 11.38/µm).

However this approach does not include the effect of diameter of the sphere on the resonance

wavelength. However, as have been shown in numerous articles and reviews, the LSPR condition depends

on the particle size for particles with dimensions of the order of the wavelength of light [179, 180, 181,

126].

Several other formulations have been used to calculate the resonance conditions for simple particle

geometries [182, 183, 184, 185, 186]. Such theories are mostly based on using multipolar expansions

to calculate the polarization offered by the particle to an incoming electric field. But there are very

few geometries where the Mie scattering theory can be solved analytically and are only applicable for

dimensions much smaller than the wavelength of light [187, 188].

In this work for the LSP, we will use a rigorous numerical approach to calculate accurately the

resonance condition of the nano-particles. Let us consider a metallic nano-particle (refractive index

nm =
√
εm) with arbitrary shape present inside a homogeneous medium of refractive index nh =

√
εh.

The field (electric E or magneticH) in the medium nh can thus be written as a sum of the incident field

(E(i)) and the field scattered by the particle E(s). Thus the average energy flow which is represented by

the Poynting vector (S = E ×H) can be written as

〈S〉 =
〈
S(i)

〉
+
〈
S(s)

〉
+Re

{
E(i) ×H∗(s) +E(s) ×H∗(i)

}
(10.2)

where
〈
S(i)

〉
= Re

{
E(i) ×H∗(i)

}
and

〈
S(s)

〉
= Re

{
E(s) ×H∗(s)

}
. The rate of energy flow is

represented by the integral of the radial component 〈S〉. In case of a dielectric nano-particle it is zero.

However for a metallic particle, the integrals of the radial components of the three terms of equation 10.2

gives the rate at which energy is absorbed by the particle. Considering the medium nh to be dielectric

and thus the integral of the radial component of
〈
S(i)

〉
to be zero we can write the total rate of energy

absorbed and scattered by the particle as

Wext = Re


∫
Ω

(
E(i) ×H∗(s) +E(s) ×H∗(i)

)
· ndS

 (10.3)

where Ω denotes the surface bounding the particle and n being the normal to that surface. Using

matrix formulation we can write E(i) ×H∗(s) +E(s) ×H∗(i) = Φ(i) ×Φ(s) with Φ(i) =

(
E(i)

H(i)

)

and Φ(s) =

(
E(s)

H(s)

)
. Using the divergence theorem and considering the media to have constant

permeability (µ) we can writeWext as

Wext = Re


∫
V

(
ΦT

(i)(εm − εh)Φ(s)

)
dV

 (10.4)

We will call this the extinction caused by the metallic particle to the incident electric field. Using

FEM we have calculated the electric and magnetic fields without the metallic nano-particle (Φ(i)) and

then the total field with the particle (Φ(s)). Then volume integral was carried out over the calculation

domain as according to equation 10.4.
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Figure 10.2: The calculated extinction (Wext) of a gold sphere of diameter (D) 110nm in a homogeneous
medium of refractive index nh = 1.333. The computational domain for the FEM is shown in red.

Figure 10.3: Resonance wavelength (λLSP ) for a gold sphere in a homogeneous medium with refractive
index nh = 1.333 for two different angle of incidence θ. (red and blue squares) The same calculation
was done by considering the incident medium to have a refractive index nb = 1.513 (glass substrate).
λLSP with a glass substrate is also shown (black and magenta circles). The incident light is TM polarized
with its electric field oriented along x and z axes.

Such an extinction spectrum is shown in figure 10.2. A gold sphere of diameter 110nm was considered

in a homogeneous medium of refractive index nh = 1.333. The normalized Wext is plotted as a

function of incident wavelength λ. We see an extinction peak at λLSP = 584.4nm. This is not the

same as the resonance wavelength calculated by considering the pole of polarizability. In fact using the

FEM to calculate the extinction shows that the resonance condition depends on the diameter of the sphere

unlike that predicted by equation 10.1.

The variation of the extinction peak and thus the LSP resonance wavelength (λLSP ) as a function of

diameter of the sphere is shown in figure 10.3. We observe a red shift of the LSPR condition with the

diameter of the sphere.
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For the calculation an angle of incidence was considered as shown in the figure and thus the incident

electric field can be separated into its x and z components (TM polarization). For a sphere in a homoge-

neous medium this distinction does not have a physical sense (as the dimensions of the sphere is same

along x and z) and thus as shown in the result, the resonance wavelengths found for two different angles

of incidence are identical (θ = 0◦ and θ = 60◦). But this will be important when considering a more

unsymmetrical geometry as in the case of a metallic cylinder.

The extinction for the sphere placed on a substrate with refractive index nb = 1.513 was also

calculated and shown in figure 10.3. We see that with normal incidence (θ = 0) and thus for the electric

field oriented along the interface (x axis) there is negligible difference of λLSP . Thus the presence of the

substrate has little effect on the LSP resonance of a gold sphere when excited parallel to the interface.

However for θ = 60◦ when there exists a component of the electric field along z axis (perpendicular

to the interface), the λLSP shifts towards slightly higher wavelengths. This shift is higher for larger

diameters. We will present some analytical approximate theories that can help to predict the resonance

wavelengths of such nano-particles.

10.1.2 Effect of particle dimensions on LSPR

Myroshnychenko et al in their publication [189] presented the retardation effects caused by a particle of

finite size. In the calculations therein the phase delay between the charge distribution on two opposite

sides of a particle was taken into account. A simplified analytical equation for the polarizability of a gold

sphere was presented. Taking retardation effects into consideration the polarizability (α) can be written as

α ∝
1− (εm + εd)

X2

40

εm+2εd
εm−εd −

(
εm
10 + εd

)
X2

4 − i
2
3ε

3/2
d X3

(10.5)

where X = k0D/2 defines a shape factor with diameter D. Thus in effect the second and the

third term of the denominator represents the dipolar plasmon shift and the broadening of the resonance

line-width respectively. This relation can be used to approximate the resonance condition of the LSP in

the case of a gold sphere in a homogeneous medium. However the calculation using 10.5 does not fit

accurately the calculated LSPR using the FEM.

The extinction caused by a spherical particle in a homogeneous medium can also be calculated directly

using the Mie theory. We will describe the theory in brief and present the results we obtained by solving

the Maxwell’s equations using Mie theory [11].

For the solution of the Maxwell’s equations as proposed by G.Mie, a spherical particle is considered in

a homogeneous, isotropic medium. Both the particle and the medium are non-magnetic and the medium

is dielectric. At the surface of the sphere the tangential components of E andH are continuous and the

radial components of εE and H are also continuous. The total field of the system is considered to be

a linear sum of the incident field, the fields within the sphere and the scattered field in the surrounding

medium. Since the required solution applies only to spherical particles, the field vectors are transformed

from Cartesian coordinates to spherical polar coordinates.

It can be shown that the vector fields E andH written in spherical polar coordinates can be derived

from two independent scalar potentials known as Debye’s potentials which satisfy the wave equation.

Such a wave equation with the Debye’s potentials can be represented as a series expansion. Integrating

the corresponding equation reduces to a Bessel equation which can be solved by a linear combination of
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Bessel and Neumann functions. These functions were used to obtain solutions for the field components.

Detailed mathematical formulation used in this work for the Mie theory can be found in the following

reference [190]. Once the field components E andH were calculated using Mie theory, the extinction of

the spherical particle was calculated in the same method as described in equations 10.2 to 10.4.

TheWext calculated by Mie theory and by FEM is shown for a sphere with two different diameters

(D = 50nm and D = 150nm) in figure 10.4. The medium around the sphere is considered to be

water with index nh = 1.333. We see that the FEM and Mie results fit closely to each other.

Figure 10.4: The extinction (Wext) of a gold sphere of diameter (D) 50nm and 110nm in a homogeneous
medium of refractive index nh = 1.333. The calculation of the field components were done by Mie
theory (red) and FEM (black)

A comparison of the three methods described above, the FEM, Mie theory and the calculation of

polarizability by Myroshnychenko et al for a sphere in homogeneous medium with varying diameters

is shown in figure 10.5. Two different media with nh = 1.0 and nh = 1.333 is shown. The peak of

Wext was calculated for the Mie theory and FEM which gives the resonance wavelength for the LSP

(λLSP ). For the polarizability calculation the pole of α denotes the resonance wavelengths. We see that

for λLSP the Mie theory and FEM calculations give similar results.

Figure 10.5: Resonance wavelength (λLSP ) for a gold sphere in a homogeneous medium with refractive
index nh = 1.0 and nh = 1.333 as a function of sphere diameter. The calculations were done by Mie
theory (red), FEM (black) and the polarizability calculation reported by Myroshnychenko et al.
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The Mie theory is restricted to spherical particles, however the FEM method can be used for particles

with complex geometry. So we will use the FEM method to find λLSP for the nano-particles used in this

work.

For a sphere we aim to find a simple equation for the polarizability which can fit the FEM (and Mie

theory) results. The polarizability can be generalized for different particles simply with equation 10.1. It

may be a gross approximation, however it can be shown to fit rigorous results. The only free parameter in

the equation is the depolarization factor χ. By finding suitable analytical equations for χ we can obtain

approximate values for λLSP . We will call this method the χ formulation.

For most plasmonic structures the resonance wavelength is an important parameter when applying

them for various applications. Thus even though the λLSP may be an approximate value, it can help to

characterize plasmonic structures. For verification of the results found by the χ formulation we can use

FEM calculations which in turn are validated by experimental results. To find an approximate value for χ

in the case of a metallic sphere in a homogeneous medium with index nh we start from equation 10.5

where a shape factor X = k0D/2 is used as a correction to the calculation of α. We have seen that

the resonance wavelength undergo a red shift with increasing diameter and with index nh. So χ should

decrease with both diameter and nh. We choose to express the depolarization factor as

χ =

√
π

n2
h

(
1−
√
X
)

X =
k0D

2

(10.6)

Using the χ formulation as shown in figure 10.6 the resonance wavelengths for the sphere in a

homogeneous medium fits closely with Mie theory and rigorous FEM numerical calculations.

Figure 10.6: Resonance wavelength (λLSP ) for a gold sphere in a homogeneous medium with refractive
index nh. The calculations were done by Mie theory (red), FEM (black) and the polarizability calculation
with χ formulations (blue).
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10.1.3 Effect of substrate on LSPR

Presence of a substrate is known to shift the resonance frequency of LSPR [191, 192, 193, 194]. Once

we have obtained a simplified approximate formulation for the LSP resonance wavelength of a sphere in

homogeneous medium, we can proceed to describing the effect of a substrate on λLSP . Particle-substrate

interaction is generally treated by the concept of image charges. Such a treatment was reported by Vernon

et al [195] and we will use the approach presented therein.

The theory simply calculates the polarizability of a particle in a homogeneous medium with an

normalized in-plane wave-vector which accounts for the substrate. Without going into the details of the

formulations, it can be shown that for particle of permittivity εm in a homogeneous medium of εh placed

on a substrate with permittivity εb, the polarizability can be written as

α ∝ εm − εeff
εeff + χ(εm − εeff)

(10.7)

where the normalized in-plane wave-vector is given by

εeff = εh
1 + ηT/ (1 + γχ)

1 + ηT/ (1− γχ)

with

η =
εh − εb
εh + εb

γχ =
1

1− 2χ

(10.8)

The factor T includes the effect of the substrate on the LSP of the nano-particle. To calculate α for a

particle in a homogeneous medium, the surface charges induced by an exciting electromagnetic field is

taken into account. In the presence of a substrate, the electric field of the surface charges created on the

particle, polarize the surface of the substrate and induces additional surface charges at the interface. Such

induced surface charges are modeled by the method of image charges described above. In this model the

mirror image of the particle acts as a pseudo-particle and its effect on the LSP of the particle is treated by

a electrostatic coupled theory. This interaction of the electric field of the image charges with the dipole of

the particle is represented by the factor T . T depends primarily on the distribution of the surface charges

and thus on shape and dimensions of the particle. T also depends on the orientation of the surface charges

with respect to the substrate interface. It can be approximated to

T =
γχ
2π

3
(
~p · d̂p

)2
− ~p · ~p

dp
3 (10.9)

where d̂p represents the unit vector pointing from the image to the nanoparticle with a separation dp
between the two and ~p being proportional to the dipole moment.

The first important point to note here is that T depends on the component of the dipole moment of the

pseudo-particle along the unit vector pointing from the image to the particle (d̂p). So the value of T is

negligible when the effective dipole of the particle is oriented perpendicular to d̂p. Thus for a particle

polarized along the interface (thus for an incident electric field along the interface) the substrate can be

considered to have less effect on the polarizability of the particle. We can see this from figure 10.3 where
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for an incident electric field polarized along x the LSPR wavelengths are the same for the sphere in a

homogeneous medium and when a glass substrate is introduced.

Now the second term in equation 10.9 represents the interaction of the dipole moments of the particle

and its image. For an extended particle we can expect this term to depend strongly on the shape and

the aspect ratio of the particle. Such interaction also depends on the homogeneous medium surrounding

the dipole. The depolarization of the particle was approximated by χ presented in the previous section.

We will try to replace the term representing the dipole term in 10.9 with χ and expect to have an

approximation on the trend of the shift of λLSPR due to the presence of a substrate. Thus we can

approximate T = −γχ2π (πεh)χ to follow the effect of a substrate on the LSPR of a nano-particle.

The effect of a substrate with refractive index nb (permittivity εb) is shown in figure 10.7. The

calculation was done by rigorous FEM calculation as described in section 10.1.1 and with the analytical

model. We see that the LSP resonance wavelength undergoes a slight red shift when the substrate is

introduced with a component of the incident electric field along z axis (perpendicular to the interface and

thus parallel to d̂p). We checked that this shift is negligible for the field polarized along x as expected

(θ = 0).

Figure 10.7: The calculatedWext using FEM for a sphere in a homogeneous medium of refractive index
nh = 1.333 and that with a glass substrate of index nb = 1.513. The diameter of the sphere was
D = 70nm and the incident light was TM polarized with an angle of incidence of 60◦. Thus the
incident electric field has both Ex and Ez components. The analytical calculation of polarizability (α)
using the χ formulation and the formulation for effect of substrate is also shown.

Thus to formulate the LSPR condition for metallic nano-particles we can use FEM to calculate

precisely the extinction (Wext) of the particle. This method gives accurate results for complex geometries

such as particles of various shapes and the presence of a substrate. The results for a sphere in a homoge-

neous medium match closely the solution obtained by Mie theory. However to explain the various effects

of geometry and environment we developed an analytical model by using appropriate relations for the
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depolarization factor χ and thus approximating the LSPR condition by χ formulations.

The effect of a substrate can also be analytically approximated by the pseudo-particle image theory

and the results obtained for the LSPR condition follows a similar trend to the results obtained by FEM.

Having described such numerical and analytical models we will now describe the LSPR condition in the

case of a metallic cylinder.

10.2 LSPR condition for metallic nano-cylinders

For a nano-cylinder we will follow the same approach as described for a sphere in the last section. The

Mie theory in this case is not applicable. The extinction spectrum (Wext) for a single cylinder in a

homogeneous medium (with refractive index nh) was calculated by FEM. A plane TM polarized wave

was considered to be incident on the cylinder at an angle θ. The calculation is shown in figure 10.8 for

two diameters of the cylinders (D = 50nm andD = 150nm). Contrary to a sphere there is clearly a

difference in the LSPR condition with θ.

Figure 10.8: The calculatedWext using FEM for a nano-cylinder in a homogeneous medium of refractive
index nh = 1.333. The height of the cylinder was h = 50nm and the incident light was TM polarized
with an angle of incidence of θ. The calculated value is shown for two diameters of the cylinders
D = 50nm andD = 150nm.

To explain the results, we must first realize what the angle of incidence θ implies in this case. The
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incident field is TM polarized and thus at incidence of θ = 0◦ the incident electric field is polarized only

along the x axis. So the LSP excited in the cylinder in this case is oriented only along x. For θ = 60◦

we have both the x and z components of the incident electric field. So in this case a LSP oriented along z

is also excited. This is more evident from the calculation of the extinction forD = 150nm where for

θ = 0◦ we have only one peak while for θ = 60◦ we have two peaks. We will call them the LSPT and

LSPL for the one along x and z respectively where the subscripts L and T stand for longitudinal and

transverse respectively.

From figure 10.8 we also see that LSPT undergoes a red shift with increasing diameter. This is

similar to a sphere in a homogeneous medium. However the LSPL undergoes a blue shift with increasing

diameter. The variation of λLSP with diameter for the two incident angles θ was also calculated by FEM

and is shown in figure 10.9. We see the at θ = 0◦ the extinction peak and thus LSPT undergoes a red

shift with diameter. The maximum of extinction at θ = 60◦ for LSPL undergoes a blue shift.

We can simply explain this by the fact that LSPL is oriented along the axis of the cylinder and thus it

has opposite trend to LSPT which is oriented perpendicular to the axis of the cylinder. As we will show

in the following numerical model, the resonance wavelength of the LSP depends on the aspect ratio of the

nano-particles along the direction of its orientation which is orthogonal for LSPT and LSPL.

Figure 10.9: Resonance wavelengths (λLSP ) using FEM as a function of nano-cylinder diameter for
incident light at θ = 0◦ (LSPT ) and θ = 60◦ (LSPL). Two different media with nh = 1.333 and
nh = 1.513 were calculated. The calculated λLSP obtained by χ formulation for LSPT and LSPL
are also shown. The height of the cylinder was taken as h = 50nm.

To quantify the LSPR condition for the two LSPs we will use the χ formulation and use approximate

equations for χ to calculate the polarizability α of the cylinder. For the analytical calculation the χ for

the two cases is given as

χT/L =

√
π

2n2
h

(
1−

√
XT/L

)

XT =
k0D

2

XL =
h2

h2 +D2

(10.10)
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We see that the relation is similar to that obtained for a sphere. The shape factorX for LSPT is the

same as that for the sphere and this is because of the rotational symmetry of the cylinder in the transverse

(x−y) plane. The shape factor for LSPL however is different and this relation was derived from various

expressions for the depolarization factor of cylindrical structures found in the literature [196, 197].

The results shown for two different media with indices nh follow closely the trend as calculated by

FEM. However there are some discrepancies for D < 50nm for LSPL. This is because the height

of the cylinder was taken as h = 50nm and the formulation for χL does not work for the case when

D < h. It should be noted that for χ formulation, it is the aspect ratio of the particles that play a major

role and the calculations must be done with keeping the aspect ratio in consideration.

The effect of the substrate on the LSPR of the cylinders can be analytically calculated using the same

formulation described in section 10.1.3. The result obtained for the resonance wavelengths with FEM

calculations and χ formulation is shown in figure 10.10. We see that LSPT undergoes a red shift when a

substrate is introduced as obtained for the case of a spherical nano-particle. However a dielectric substrate

has negligible effect on the λLSP for LSPL. The results obtained by FEM calculations also match

closely the results obtained by χ formulation forD > h.

Figure 10.10: Resonance wavelengths (λLSP ) using FEM as a function of nano-cylinder diameter for
incident light at θ = 0◦ (LSPT ) and θ = 60◦ (LSPL) (scatter plots). The same is shown with χ
formulation (lines). The height of the cylinder was h = 50nm. The calculations were done with the
cylinder in a homogeneous medium of index nh = 1.333 and also with a glass substrate (nb = 1.513).

To conclude, the dimensions of the nano-particle plays a major effect on the LSPR condition and the

shift of λLSP depends on the type of localized plasmon excited in the sample. Presence of a substrate

generally causes red shift of λLSP . However this effect is not very prominent for dielectric substrates. In

later sections (Chapter 11) we will show that a metallic substrate has a major effect on the LSPR condition
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of the nano-particles and it can be treated with similar pseudo-particle concept and χ formulation.

10.3 Array of metallic cylinders on a glass substrate

Having described the LSPR condition for a single nano-particle with an underlying substrate we will now

study an array of metallic nano-cylinders placed on a glass substrate.

We will describe the plasmonic characteristic of the array of metallic nano-cylinders in terms of

plasmonic modes as done in the case of 2D gratings in chapter 9. In the case of a metallic nano-particle

array on a glass substrate we do not expect propagating plasmons as the dimensions of the particles are

much smaller than the wavelength of the PSP modes. The only possible modes that can be excited in such

structures are the WRAs. But the far field characteristics of the WRA are not very prominent.

The reflectivity and transmission as a function of (k0, (k///k0)) was calculated for the structure

(D = 70nm, h = 30nm, period Λ = 200nm) and shown in figure 10.11. An incident plane wave

from a medium with refractive index nb = 1.513 was incident of the structure at an angle θ. The

incident light was considered to be TM polarized. The refractive index of the medium surrounding the

cylinders was taken as nh = 1.333. In this case as explained earlier, we can excite the structure with the

photon normalized in-plane wave-vector values of (k///k0) = nbsinθ from 0 to nb with the critical

angle for nb − nh interface being (k///k0) = nh.

The analytically calculated curves for the WRAs ((k///k0)h and (k///k0)b) are also shown in the

figure. We see that the reflectivity drops at the (k0, (k///k0)) values where the WRAs are excited. Apart

from this there are not much features of interest in the study of reflectivity or transmission. The LSPR

condition (λLSP ) for LSPL and LSPT as calculated by the χ formulation with a glass substrate is also

shown. Here the condition was plotted in (k0, (k///k0)) map with k0 = 2π/λLSP . Though (k///k0)

has no significance for the LSP such a representation is useful to visualize and for comprehension. We

see a slight increase of reflectivity and a drop in transmission around the wavelengths where the LSPR

condition is satisfied.

Figure 10.11: The reflectivity (R) and transmission (T) of an array of metallic cylinders on a glass
substrate as a function of (k0, (k///k0)). The cylinder diameter (D) was 70nm, of height (h) of 50nm.
The periodicity of the array was taken as 200nm. The calculated values for the WRAs ((k///k0)h and
(k///k0)b) and the LSPR conditions for LSPT and LSPL are also shown. The incident plane wave
was TM polarized and the indices were nh = 1.333 and nb = 1.513.
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The most important property of the LSP is that at the resonance frequencies of the LSP the electro-

magnetic field is strongly confined at the surface of the nano-particles. Due to low dispersion of the LSP it

is not very efficient for sensor based applications as will be discussed in later (Part V). However the field

confinement that results from the LSP has paved its use for several applications. The electric field intensity

was calculated using a 3D periodic mesh. In this case the plane wave was considered to be incident along

the x− z plane. The incident field was TM polarized so as to assure the excitation of both LSPL and

LSPT along z and x axes respectively. We must mention here that for TE polarization the LSPT can

be excited along y axis and at the same λLSP as the LSPT excited for TM polarization. However the

LSPL which requires an incident field component along z axis cannot be excited for TE polarization.

The near field of the structure was calculated by FEM along x, y and z axes by applying periodicity

conditions in the x− y plane. The total electric field intensity was evaluated for each node (n) of the 3D

mesh as In = (E2
x +E2

y +E2
z)/I0 where I0 is the incident field intensity. We are mainly interested

in the field confined at the surface of the nano-cylinders, and such a high intensity of the confined field

indicates the excitation condition of the LSPs.

To quantify such confinement it is more useful to calculate the surface integral of the field intensity

over the surface of interest. In this case, the integral was calculated over the surface of the nano-cylinders

(Scyl) as.

Isurf =
1

Scyl

∫∫
Scyl

I(S)dS (10.11)

For the 3D mesh, first the mean field intensity (If ) is calculated from the values of In for each face

(fcyl) of the tetrahedral meshing elements that lie on the surface of the cylinder. Then the surface area

(Sf ) of those faces are also calculated. The total surface area of the cylinder was thus Scyl =
∑
fcyl

Sf .

Finally to evaluate the above integral, a discrete sum was carried out as shown below.

Isurf =
1

Scyl

∑
fcyl

(I(f)× Sf) (10.12)

Isurf was calculated as a function of (k0, (k///k0)) for each incident wavelength λ and angle of

incidence θ. Figure 10.12 shows the calculated field intensity for an incidence from the medium with

index nh. This is effectively same in terms of the LSPR condition, as the incidence from the medium nb.

However the field around the cylinders is somewhat more enhanced with an incidence from nh as in this

case we can directly excite the cylinders with the incident field.

We see clearly the presence of the two LSP. The LSPL is more intense for larger (k///k0) and

thus for larger angle (θ) when the z component of the incident field is stronger. The LSPR condition

(k0 = 2π/λLSP ) as obtained by χ formulation is also shown in the figure and matches closely to the

(k0, (k///k0)) values where we have strong field intensity enhancement on the cylinder surface. As

can be seen from figure 10.9 the two LSPR condition cross for some particular cylinder dimensions. We

can expect a much higher field confinement when the two LSPR conditions are satisfied simultaneously

as in the case of D = 50nm. This explains the higher Isurf value for D = 50nm as compared to

D = 110nm.

The spatial field intensity distribution for the two LSPs is are shown in figure 10.13. We see that the

field intensity for LSPL is asymmetric along the x axis as it is excited by the electric field component
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along z. For LSPT which is excited by the field along x axis, the field distribution is symmetric in the

x− y plane. We must mention here that we see a very high field intensity at the edges of the metallic

structures. This is true for all field calculations presented in this work. This is a well-known phenomenon

which rises due to the inability to calculate exactly the fields (thus showing a much higher amplitude of

the fields) at a sharp discontinuity (edges) and the effect is more pronounced when such a discontinuity

involves metals.

For both fields we see that the electric field is strongly confined close to the cylinder surface. Thus the

LSP can be considered as a confined plasmonic mode which has no dispersion and undergoes a resonance

with an enhancement of near-field intensity at certain frequencies when the LSPR condition is satisfied.

Having described the confined plasmons such as the LSP and the PSP, in chapter 11, we will describe the

coupling between the two, assured by adding a metallic substrate to the nano-particle array.
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Figure 10.12: Integrated electric field intensity (Isurf ) over the surface of the cylinder of height 50nm
for two different diameters (D = 50nm and D = 110nm) as a function of (k0, (k///k0)). The
periodicity of the array was taken as 200nm. The calculated LSPR condition for LSPT and LSPL for
the structure is also shown.

Figure 10.13: The electric field intensity in logarithmic scale for the two LSPs for cylinders of diameter
110nm and height 50nm with a periodicity of 200nm. The angle of incidence was θ = 60◦ (a) for LSPL
at k0 = 11.02/µm (λ = 570nm) (b) for LSPT at k0 = 9.70/µm (λ = 648nm)
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Chapter 11

Plasmonics of a metallic array on
metallic film

In the previous chapters we have described the various plasmonic modes and LSPR conditions of array of

metallic nano-structures on glass substrate. In this chapter we will follow the same approach to describe

the plasmonic modes of an array with a thin metallic film inserted between it and the glass substrate.

In such a structure the LSPR condition can be satisfied for the nano-particles. Owing to the thin

metallic film the PSP can also be excited in such structures. This provides the opportunity to obtain new

hybrid plasmonic modes that result from the coupling of the LSP and the PSP. Coupling of plasmonic

modes was described in brief in section 9.1.3. Any coupling of plasmonic modes results in band-gaps just

as in the case of the coupling of WRA and PSP (in this case it is a coupling of an extended mode and a

confined mode). However the coupling between two confined plasmons as in the case of LSP and PSP

also results in the phenomenon of anti-crossing and hybrid modes which retain some of the characteristics

of both the modes. Such plasmonic modes in similar structures were the basis of some of our recent

publications [198, 199]. They will be discussed in details in this work.

11.1 Metallic grating on gold substrate

Before going into the details of coupling between PSP and LSP, we will first describe another type of

plasmonic mode that can be excited in a metallic array with a gold film. The structure geometry is shown

in figure 11.1. The modes will be defined in terms of (k///k0) along the unit vector ~p as shown in the

figure.

The WRAs were described in section 9.1.1 and were shown to be the result of the change of momentum

wave-vector owing to the periodicity of the grating. In a periodic array with analogy to a crystal lattice

in solid state physics we can consider that the momentum of a photon (ninc) can undergo a maximum

change of np = ±mKB/k0 whereKB = 2π/Λ. Based on this concept, the relation for the WRAs as

given by equation 9.2 is derived.

The grating placed on a thin metallic film can support modes similar to the WRAs. However in

this case the plasmonic modes result from the modification of the normalized in-plane wave-vector

of the PSP mode of the thin film. For the PSP, the normalized in-plane wave-vector is defined as

(k///k0)PSPd =

√
(n2
dn

2
m)

(n2
d+n2

m)
when it propagates in a medium of refractive index nd. Thus the change
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Figure 11.1: A grating of width w1, height h2 and periodicity Λ placed on a thin metallic film of height
h1. The medium surrounding the grating has a refractive index nh and the metal with an index nm. p̂
defines the unit vector in the plane of the interface perpendicular to the grating ridges.

in normalized in-plane wave-vector of the PSP due to the periodicity of the structure can be written as

(k///k0)d =
∣∣(k///k0)PSPd − nP

∣∣.
We can define a cut-off condition for the modes when (k///k0)PSPd = nP . Writing in terms of

PSP wavelength λPSP , the cut off condition is given by λPSP :d = mΛ where the PSP is considered at

the metal-nd interface. At the cut-off the value of the normalized in-plane wave-vector of the mode is

zero.

The physical significance of the excitation of the modes can be explained with an analogy to the

Bragg diffraction condition for crystalline solids. In such crystals, the Bragg diffraction condition is

satisfied when there is a constructive interference between the light scattered by the periodic atomic lattice.

For plasmonic modes the condition can be considered as a constructive superposition of the PSP, which

propagate in each unit cell of the periodic array. The value of the PSP wavelength in this case is thus an

integer multiple of the optical path length between adjacent unit periods. We will call these modes the

Bragg Modes (BM) to differentiate them from the WRAs.

Such plasmonic modes have been reported before for different other structures such as nano-holes or

corrugated gratings [200, 201, 202]. We must mention here that to excite the BM we only need a thin

metallic film and a periodicity. The shape of the structures do not have any influence on the BMs. Inspite

of the analogy presented above, it should be noted that in reality the BMs (like the WRAs) are strictly

not the result of interference. These are rather plasmonic modes that can be supported by the periodic

structure.
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11.1.1 The Bragg Modes

For the structure shown above the Bragg Modes can be represented in (k0, (k///k0)) space as

(k///k0)BMh
=
∣∣(k///k0)PSPh − nP

∣∣
(k///k0)BMb

=
∣∣(k///k0)PSPb − nP

∣∣ (11.1)

where (k///k0)PSPh and (k///k0)PSPb are the PSP modes at the interface of the gold film and

medium with index nh and nb respectively.The dispersion of the BM for Λ = 800nm for different

orders m is shown in figure 11.2. We see from comparing this with figure 9.3, that the trend of dispersion

of the BMs are similar to the WRAs. Physically the BMs and the WRAs are similar modes, the former

being a result of diffraction of the PSP while the later is a result of diffraction of the incident photon.

The resonance frequencies of the BMs at (k///k0) = 0 which are the cut off frequencies for the

BMs with respect to the array period is shown in figure 11.3. The BMs like the WRAs depend purely on

the periodicity of the array. There is a red shift of the resonance frequencies of the BM with period of the

array.

Having described the dispersion of the BMs in terms of (k0, (k///k0)) we will now discuss their

near field and far field characteristics. The electric field intensity (I = E2
x + E2

z ) distribution was

calculated using a 2D mesh, for a TM polarized plane wave incident from the medium with index nh,

perpendicular to the grating-substrate interface. The BMs cannot be excited for TE polarization as in that

case the PSP is not excited.

The electric field was calculated for the resonance frequencies at cut-off for each BM and is shown in

figure 11.4. The field intensity is normalized to the incident intensity I0 and is represented in logarithmic

scale. We see that the distribution of field is similar to the WRAs as shown in figure 9.5. However the

field intensity is much more enhanced (up to an order of magnitude) with respect to I0 for the BM than in

the case of the WRAs. This is due to the fact that though the BMs are extended modes, they are derived

from the PSP which in turn is a confined plasmonic mode.

As the PSP component of the BMs serve to confine the field somewhat close to the metal surface, the

far field effects of the BM are more prominent in this case than for the WRAs. For the WRAs, a large

part of the energy is radiated into the far field even at the excitation condition of the modes and thus there

is not much observable difference at the resonance frequencies ((k0, (k///k0)) values) as compared

to other non-resonant conditions. However for the BM a considerable amount of electric field energy is

confined within a few hundreds of nano-meters from the metal-substrate interface and thus we observe the

difference directly at the resonance (k0, (k///k0)) values of the modes.

The reflectivity and transmission of the structure, with a plane wave incident from the medium

nh at an angle θ is shown in figure 11.5 and figure 11.6. Due to the presence of the gold film we

expect high reflectivity for the structure. However at the (k0, (k///k0)) values where the BMs are

expected to be excited we see a drastic loss of reflectivity. The analytically calculated dispersion of

the BMs ((k///k0)BMh
and (k///k0)BMb

) are also shown in the figures. We see an almost perfect

correspondence between the numerical and analytical calculations.

An interesting feature to note is in the transmission dispersion map. Due to the gold film we expect

low transmission from the structure. This is seen in the map where we have a transmission of less than

10% for most of the (k0, (k///k0)) space. However the transmission is drastically enhanced more than

60% at the (k0, (k///k0)) values where the BMh is excited. This can be explained by the fact that
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Figure 11.2: The calculated dispersion of the BM ((k///k0)BMh
dotted and (k///k0)BMb

solid) for
Λ = 800nm for different ordersm. The refractive indices were nh = 1.333 and nb = 1.513.

Figure 11.3: The cut off frequencies of the BMs (resonance frequencies k0 at (k///k0) = 0) as a
function of array period. The BM on nh ((k///k0)BMh

) side is shown as dashed and BM on nb side is
shown as solid lines.

the BMs are extended modes with the energy radiated to the far field. TheBMb is excited by the PSP

propagating on the nb side and thus the BM resulting from them do not interact directly with the grating

ridges. However theBMh can directly interact with the ridges and this may cause an enhanced scattering

of the energy to the far field resulting in the enhanced transmission. Such transmission will be further

observed for other plasmonic modes and structures in this work. We will show that the transmission

occurs whenever there is aBMh involved in the excitation of the plasmonic modes.
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Figure 11.4: The electric field intensity for a grating of width 200nm and height 30nm with a metallic
film of h1 = 30nm. Plane wave is incident along z axis from the medium nh = 1.333 and linearly
polarized with the electric field along x axis (TM). The intensity was calculated at (a)λ = 717nm
(k0 = 8.7/µm): BMh mode with m = 1. (b)λ = 810nm (k0 = 7.7/µm): BMb mode with
m = 1. The period of the array was Λ = 500nm.(c)λ = 610nm (k0 = 10.3/µm): BMh mode
withm = 2. (d)λ = 700nm (k0 = 8.9/µm): BMb mode withm = 2. The period of the array for
(c) and (d) was Λ = 800nm The gold-substrate interface is shown with solid lines and the vector p̂.

We can also note that the analytical calculation for the BM dispersion does not fit perfectly with the

reflectivity or transmission extrema for higher frequencies (k0 > 9/µm). This is because of the presence

of the LSPR condition which is satisfied around such frequencies for the metallic ridges. The excitation

of the LSP alters the dispersion of the BM. The result of the LSPR condition on the different plasmonic

modes of the system will be explained in details in the case of a metallic grating and with exact analytical

solutions for an array of metallic nano-particles with an underlying gold film.

11.2 The hybrid plasmonic modes: Basic introduction

With incidence from the medium of index nh we have access to the modes that have the normalized

in-plane wave-vector (k///k0) < nh. But the PSP cannot be excited in this situation. With a plane

wave incident from the medium of index nb we can excite the modes that have (k///k0) values between

the light line in the two media nh and nb. In this situation we can observe very interesting features in the

dispersion map.

The reflectivity and transmission for the same structures as shown in figure 11.5 and 11.6 respectively

was calculated with the incident plane wave from the medium with index nb = 1.513. The incident field

was TM polarized as the PSP cannot be excited for TE polarization.

The reflectivity for three different periods is shown in figure 11.7. The dispersion for (k///k0) < nh

is effectively the same as in the case of excitation from the medium nh. Here in this zone we can excite
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Figure 11.5: The reflectivity (R) of the structure for different periods (Λ) as a function of k0 =
2π/λ and (k///k0) = nhsin(θ) for incident plane wave from the medium nh = 1.333 at an
angle θ. The calculated dispersion for BMs are also shown in the figure ((k///k0)BMh

:dashed and
(k///k0)BMb

:solid) for different ordersm. The height of the grating ridges and the thin film was taken
as 30nm and nb = 1.513.

Figure 11.6: The transmission (T) of the same as in figure 11.5
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only the Bragg modes. However one must note here that the BMs excited in this configuration is much

weaker than those excited with incident light from the medium nh. This has important implications when

using the BMs for various applications. The BMs are always stronger, with higher values of electric field

intensity, when they are excited from the side of the particle arrays.

The interesting feature to note for excitation from the medium with higher refractive index nb is for

the values of (k///k0) > nh. This is the zone where the PSP can be excited in a metallic film. The PSP

is a confined and propagating mode and thus has the opportunity to couple with other modes of the system

over its propagation length. The propagation length of the PSP as shown in section 2.1.4 is of the order of

a few tens of micrometers. For efficient coupling we thus need array sizes larger than this length. One

such coupling of the PSP with the WRAs was described in section 9.1.3. We have shown that in arrays on

glass substrate the PSP can couple directly to the WRAs excited in such structures with the occurrence of

plasmonic band-gaps. In figure 9.11 the dispersion map of such a structure was shown, however for width

of the grating ridge as large as w1 = 1200nm.

With the metal film below the grating, we can excite the PSP in the film irrespective of the grating

widths. We have shown the calculations in this case for a grating width of w1 = 200nm. We see a

drastic drop of reflectivity close to the dispersion of the PSP. However in contrary to the grating on glass

substrate where the drop in reflectivity coincided with the PSP dispersion, in this case there is a slight shift

of the dispersion of the reflectivity minima from the PSPh dispersion. Thus the plasmonic mode in this

situation is not directly the PSP but another plasmonic mode which happens to have similar dispersion

characteristics as the PSPh. We will call this more the Hybrid Lattice Plasmon (HLP) and it will be

explained in details throughout this work.

The coupling of the HLP with the BM results in plasmonic bandgaps as mentioned for the coupling

of HLP and WRA. Thus we can generalize that such band-gaps occur whenever there is a coupling

of a confined plasmonic mode (PSP or HLP) and an extended plasmonic mode (BMs or WRAs). The

occurrence of band-gaps can be clearly observed in the reflectivity dispersion maps of figure 11.7 at the

positions of the BM dispersion.

To analyze the properties of the HLP we have shown the reflectivity (R), transmission (T) and

absorption (A=1-R-T) map for a grating of widthw1 = 200nm and period Λ = 300nm in figure 11.8.

For the BMs we see a weak drop in reflectivity and transmission as expected. We must recall that for the

excitation from the medium nh we had observed an increase in transmission forBMh and thus energy

was radiated in the medium nb. In this case (incident from nb) however we do not have such increase in

transmission as for this configuration, transmission signifies the energy radiated in the medium nh.

For absorption dispersion map, we do not observe much difference for the BMs. This is because the

BMs do not actually confine the electromagnetic field but redistribute it, in either reflection or transmission.

This retribution of energy to the far field is an important characteristic of extended modes (section 9.1.1).

For the HLP we also observe such transmission (and low absorption) for certain (k0, (k///k0)) where it

behaves as an extended mode. This is discussed in details in section 12.3.

The HLP dispersion resembles that of the PSPh, but for nano-structures there also exists the LSP

which undergoes resonance at certain frequencies. The LSPR condition as obtained by FEM calculations

for metallic strips is given in Appendix A. For the configuration under study with (k///k0) > nh, we

consider oblique incidence (θ > 45◦) and TM polarization, so the incident electric field component is

stronger along z axis than along x. So the LSPR condition satisfied in this case will be that for LSPL
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Figure 11.7: The reflectivity (R) of the structure for different periods (Λ) as a function of k0 = 2π/λ
and (k///k0) = nhsin(θ) for incident plane wave from the medium nb = 1.513 at an angle θ.
The calculated dispersion for BMs are also shown in the figure (black, (k///k0)BMh

:dashed and
(k///k0)BMb

:solid) for different ordersm. The height of the grating ridges and the thin film was taken
as 30nm and nh = 1.333. The dispersion of the PSPh is shown in blue dashed and the LSPR condition
for metallic strip in homogeneous medium (nh) is shown as blue solid.

excited along the height of the grating ridges. For a ridge of width w1 = 200nm in a homogeneous

medium of index nh = 1.333, we expect this condition to be satisfied at around λ = 530nm

(k0 = 11.9/µm). We will neglect the effect of metallic substrate on the LSPR condition. The LSPR

condition in this case is shown in figure 11.7 and 11.8. We note the dispersion of the HLP bends away

(further from PSPh dispersion) close to this LSPR condition. So the HLP can be considered as a result

of harmonic coupling between the PSP and the LSP. Before going into the details of such a coupling

between two confined plasmons, we would describe in brief the fundamentals of coupling in plasmonic

systems.
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Figure 11.8: The reflectivity (R), transmission (T) and absorption (A) of the structure for Λ = 300nm
and width w1 = 200nm as a function of k0 = 2π/λ and (k///k0) = nhsin(θ) for incident plane
wave from the medium nb = 1.513 at an angle θ. The calculated dispersion for BMs are also shown in
the figure (black, (k///k0)BMh

:dashed and (k///k0)BMb
:solid) for orderm = 1. The height of the

grating ridges and the thin film was taken as 30nm and nh = 1.333. The dispersion of the PSPh is
shown in blue dashed and the LSPR condition for metallic strip in homogeneous medium (nh) is shown
as blue solid.

11.2.1 Mode coupling in plasmonic systems: Fano resonance or not?

Plasmonic systems in principle can be defined as resonant systems. Such systems undergo an enhancement

at certain resonant frequencies in response to an external excitation. The resonant frequencies depend on

the system itself and on the environment. So far in this work we have defined such resonance frequencies

for

(a) the PSP which confines the external excitation along a metal-dielectric interface with the energy

propagating along the surface,

(b) the LSP for which at certain frequencies of the external excitation, a resonant oscillation of the

electrons at metallic surfaces takes place.

Classically resonant systems are described as harmonic oscillators which undergo a resonant enhance-

ment of their amplitude when the driving excitation frequency lies close to the eigen-frequency of the

oscillator. Such a description is applicable for plasmonic systems [203, 204, 205].
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The coupled modes in plasmonic systems exhibit asymmetric lineshapes and recently such coupling

have been described for different structures as Fano-resonances [127, 206]. However the coupling of PSP

and LSP to result in the HLP mode cannot be explained by the method described by Ugo Fano. We will

first describe the basics of Fano resonances and then proceed to explain the actual process of coupling that

results in the HLP mode.

The theory was developed by Ugo Fano to explain the narrow dark and bright bands from a metallic

diffraction grating which is described earlier in this work as Woods anomaly, and thereafter explained for

metallic gratings in terms of the WRAs [207, 8, 208, 209]. Fano explained the bands observed in metallic

gratings as the interference between the incident plane wave and the resonant excitation of "leaky" surface

waves near the surface of the gratings. The formulation presented for the WRAs in this work is effectively

a simpler approach to the same physical phenomenon.

The Fano resonance or interference thus described have been shown to be present in different other

configurations which involve a metallic structure and the excitation of surface plasmons [210, 211, 212,

144, 213]. However the basic mechanism of the Fano resonances in all the structures remains the same:

an interference between the incident excitation which is generally termed as the "Continuum" state and

leaky, evanescent waves excited in the structure which is termed as the "Discrete" state.

A classical approach to Fano resonances was reported by Joe et al [214] in terms of coupled harmonic

oscillators. Considering a system consisting of two coupled harmonic oscillators with eigen-frequencies

ω1 and ω2 respectively. The equation of motion (x1 and x2) of the two coupled oscillators can be written

as

ẍ1 + γ1ẋ1 + ω2
1x1 + Γ12x2 = a1e

iωt

ẍ2 + γ2ẋ2 + ω2
2x2 + Γ12x1 = 0

(11.2)

where γ1 and γ2 are the damping parameters, a1e
iωt is the external driving excitation and Γ12 is the

coupling parameter. The amplitudes c1 and c2 of the two oscillators can then be solved as

c1 =
ω2

2 − ω2 + iγ2ω(
ω2

1 − ω2 + iγ1ω
) (
ω2

2 − ω2 + iγ2ω
)
− Γ2

12

a1

c2 =
Γ12(

ω2
1 − ω2 + iγ1ω

) (
ω2

2 − ω2 + iγ2ω
)
− Γ2

12

a1

(11.3)

We must note that here in this example, the first oscillator c1 is considered to be driven by the external

excitation. This in turn drives the second oscillator at its eigen-frequency ω2. THe schematic of such a

coupled oscillator system where one acts as the forced oscillator and drives the other is shown in figure

11.9. Keeping the same notation as used elsewhere in this work to describe plasmonic modes, we will write

the resonance frequencies of the oscillators in terms of k0 = ω/c. The two oscillators were considered to

have the resonance frequencies at k1 = 7/µm(λ = 897.6nm) and k2 = 9/µm(λ = 698.1nm).

For the coupled system, oscillator 1 undergoes two resonances close to the individual resonances k1 and

k2 of the two separate oscillators. Due to the destructive interference of the oscillations of the external

excitation and the second oscillator (driven oscillator 2), there is a complete suppression of the amplitude

of the first oscillator at the eigen frequency k2 of the second oscillator. This is the characteristic fingerprint

of Fano resonances.
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Figure 11.9: Fano resonance: Schematic for the coupling of two harmonic oscillators with eigen frequen-
cies k1 = ω1/c = 7/µm and k2 = ω2/c = 9/µm. (a) The amplitude of the two separate systems
can be calculated as c1 = a1/(ω

2
1 − ω2 + iγ1ω) with the amplitude of the external excitation a1 = 1.

The damping parameters were taken as γ1 = 0.5 and γ2 = 0.1 (b)The amplitude of the forced oscillator
(c1) when coupled to the driven oscillator with the coupling parameter Γ12 = 20.

As can be seen from the above example, Fano resonances occurs for two systems where the external

excitation drives only one of the resonances, while the other is forced by the first resonant system. These

two resonant systems, the continuum and discrete states respectively are also commonly termed as

"Bright" modes, for the one which can be excited by the external excitation and "Dark" modes for the one

indirectly driven by the bright mode.[215, 216, 217, 218] Another trademark feature of Fano resonance is

the asymmetric line shape of the two resonances, more prominently the one close to the eigen frequencies

of the driven oscillator. A detailed description of Fano resonances in nano-structres was presented in the

review by Miroshnichenko et al.[210]

The fundamental question that is important for understanding the HLP mode is that if it is a result of

Fano resonances. We have mentioned before that the HLP mode results from the coupling of the PSP

and the LSP. The absorption (A) of the structure as shown in figure 11.8 with period Λ = 150nm and

grating width w1 = 50nm is shown in figure 11.10. A small period was taken to avoid the appearance

of the BMs. Thus the mode present in the (k0, (k///k0)) map is only the HLP mode.

The dispersion of the PSP is shown in figure. The height of the grating ridges was 30nm. We will

assume that the LSPR condition for a strip of height 30nm and width 50nm is satisfied at k0 = 9.0/µm

with λLSP = 698nm. The calculated LSPR condition for metallic strips of such dimensions in a

homogeneous medium was found to be λLSP = 535nm as shown in Appendix A. However a red

shift of the LSPR condition is expected when the nano-structures are placed on a metallic substrate as

mentioned in section 10.1.3. The value assumed here was found analytically for metallic cylinders of
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Figure 11.10: The absorption (A) of the structure for Λ = 150nm and widthw1 = 50nm as a function
of k0 = 2π/λ and (k///k0) = nhsin(θ) for incident plane wave from the medium nb = 1.513 at
an angle θ. The calculated dispersion of the PSP (blue) and the assumed LSPR condition (red) is also
shown in the figure.

Figure 11.11: Theabsorption (A) spectra in log scale of the same structure shown in figure 11.10 at three
different values of (k///k0) (black). The LSPR condition and PSP resonance is frequencies are shown
for each plot (red and blue respectively). The calculated amplitude of coupled oscillator undergoing Fano
resonance is shown (in logscale) for each with k1 = ω1/c for the PSP and k2 = ω2/c for the LSP.
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diameter D = 50nm and height h = 30nm and is shown in a later section (12.1). Thus for a basic

understanding we can assume this value.

In the dispersion map shown in figure 11.10 we do not observe a sharp suppression of absorption

close to the LSPR condition or rather at any particular value of k0. Absorption spectra at three different

values of (k///k0) is shown in figure 11.11. We have fitted equation 11.3 for the absorption curve

at (k///k0) = 1.39. The values for the fit were Γ/c2 = 48, γ1/c = 0.8 and γ2/c = 0.3. The

PSP was considered as the driven oscillator with its resonance frequency ω1 = k1c following the PSP

dispersion curve for each (k///k0) and the LSP was considered the discrete state with LSPR condition

at λLSP = 698nm being considered for ω2. We see that the amplitude c1 as calculated for the coupled

oscillator model (magenta in figure 11.11) has a sharp minima at the resonance frequency of the LSP while

the absorption spectra do not show any particular minima. The peak of c1 follow closely the absorption

peak for lower frequencies, however there exists marked discrepancy between the absorption maxima and

the maxima calculated by the oscillator model.

Such close resemblance of the absorption spectra of those coupled plasmonic structures to the

formulation of Fano resonances has prompted several reports in the literature to identify this coupling

between plasmonic modes as Fano resonances or Fano-like resonances [219, 220, 221, 222, 209] and

more recently in [223]. However most of these resonances are not at all Fano resonances. Furthermore

the surface lattice resonance (SLR) mentioned in [219, 128, 224, 225] can be identified as the WRAs

described in this work.

The reason that coupling between the PSP and LSPR is not a Fano resonance can be found in the

very basic condition for Fano resonances. Such resonances are necessarily a result of coupling between a

bright mode (continuum state) and a dark mode (discrete state). Plasmonic modes that can be excited

by an incoming photon are bright modes. Thus both PSP and LSP can be termed as bright modes. Dark

modes are such resonances which cannot be directly excited by an incoming photon, such as multipole

oscillations in metallic nano-particles or discrete states in photonic crystals [226, 227, 228]. Thus the

HLP is not a result of fano resonances or fano-like resonances.

However the same harmonic oscillator model, can be used to describe the coupling between two

bright plasmonic modes. In quantum systems, coupling is generally defined in terms of strong and weak

coupling [229]. In such a description we identify one of the components involved in the coupling as the

donor and the other as the acceptor. For weak coupling regime, there is energy transfer from the donor to

acceptor but no reversible energy transfer back to the donor from the acceptor can take place. This occurs

when the rate of energy coupling between the acceptor and donor is much smaller than the damping rate

of the donor. When the coupling increases and its rate becomes stronger than that of the damping rate of

the donor we have back flow of energy from the donor to the acceptor. This regime is called the strong

coupling regime and in this regime, the two resonators are indistinguishable. The characteristic resonance

of the coupled system must be evaluated considering that the two resonators are inseparable and as a

single resonant system.

A simple classical approach to strong coupling using the harmonic oscillator model was presented by

Lukas Novotny [230] and we will use the same approach to explain the harmonic coupling between the

PSP and LSP modes that result in the HLP. For the model let us assume as before, two coupled harmonic

oscillators with eigen frequencies ω1 and ω2 and damping parameters of γ1 and γ2 and a coupling

parameter of Γ12. Since the two oscillators are considered indistinguishable they will feel the same forces
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and thus have identical equations of motion. Here unlike the previous system, we will not introduce an

external excitation to solve for the amplitude. Using this model we are interested in finding solutions for

the eigen-frequencies of the system as a whole and thus no external excitation is necessary. The equation

of motions can be written as

ẍ1 + γ1ẋ1 + ω2
1x1 + Γ12(x1 − x2) = 0

ẍ2 + γ2ẋ2 + ω2
2x2 + Γ12(x2 − x1) = 0

(11.4)

The resulting characteristic equation can be solved to obtain the resonance frequencies of the combined

system as

ω2
± =

1

2

[
ω2

1 + ω2
2 ±

√(
ω2

1 − ω2
2

)2
+ 4Γ2

12

]
(11.5)

Writing in terms of wave-vector k0 = ω/c we can write the resonance frequencies of the HLP modes

(kHLP±) as

kHLP± =

√√√√1

2

[
k2
PSP + k2

LSP ±
√(
k2
PSP − k2

LSP

)2
+ 4

Γ2
12

c4

]
(11.6)

The amplitude of the resonant system with an external excitation a1e
iωt can thus be written in terms

of k0 = ω/c as

cHLP =
a1/c

4(
k2
HLP+ − k2

0 + iγ1c k0

) (
k2
HLP− − k2

0 + iγ2c k0

) (11.7)

The amplitude of resonance calculated using the harmonic coupling model was fitted to the absorption

spectra obtained for Λ = 150nm and widthw1 = 50nm. The conditions are identical to that of figure

11.10 and figure 11.11. The absorption spectra for three different values of (k///k0) are shown in figure

11.12. The values for the fit were taken as Γ/c2 = 46,γ1/c = γ2/c = 0.4 and a1 = 1. We see a

close fit of the amplitude thus calculated and the absorption of the structure. We will use this harmonic

coupling model to find the resonance-frequencies of the HLP. The only free parameter in the model is the

coupling constant Γ12 which will be evaluated for different structures.
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Figure 11.12: The absorption (A) spectra in log scale of the same structure shown in figure 11.11 at three
different values of (k///k0) (black). The calculated amplitude of harmonic coupling is shown (in log
scale) for each with kHLP calculated using equation 11.6 and λLSP = 698nm.
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Chapter 12

The Hybrid lattice plasmon (HLP)

The hybrid lattice plasmon (HLP) mode was introduced in the last section (section 11.2.1). We have

shown that the HLP is a result of harmonic coupling between the PSP and the LSP. In this chapter we will

present the plasmonic modes that can be excited for an array of metallic cylinders with an underlying thin

metallic film. The structure is similar to the grating structure presented in chapter 11. Thus the plasmonic

modes we expect in this structure will also be similar to the grating. Due to the periodicity of the structure

we will expect the BMs and also the HLP due to the coupling of the LSP of the cylinders and the PSP of

the thin metallic film. We will show that the harmonic oscillator model for such a coupling can be used to

describe the characteristics of the HLP mode.

12.1 Array of metallic cylinders on gold substrate

The structure geometry is shown in figure 12.1. The plasmonic modes of the structure will be defined

along the vector p̂. The dispersion of the PSP in the structure is given by (k///k0)PSP in equation 9.4.

The dispersion of the BMs in the structure can be defined by (k///k0)BM in equation 11.1.

For the LSPR condition we can use the analytical equations presented in section 10.2. We will use

the χ formulation with the value of χ given by equation 10.10. It should be noted that the resonance

wavelength obtained by this formulation is the λLSP when the cylinders is considered in a homogeneous

medium. In the actual situation we have an underlying gold film and the LSPR condition must be

modified to take into account the effect of a gold substrate. The skin depth as presented in section 1.3

is less than 30nm for wavelengths higher than λ = 550nm. Thus if the thickness of the gold film

is equal to or more than 30nm we can safely assume it to be a semi-infinite substrate in terms of the

analytical calculations. We see from figure 1.2 in section 1.3 that gold has a high absorption coefficient for

wavelengths less than 520nm (k0 > 12/µm). So for the calculations we will consider the excitation

wavelengths higher than this value.

To analytically calculate the LSPR condition for the metallic cylinders on gold substrate we will

use the formulation presented in section 10.1.3. Once the λLSP is thus calculated we can calculate

kLSP = 2π/λLSP . Then the dispersion of the HLP mode can be calculated using equation 11.6. It

should be noted that in the cylinders we have two possible LSPR conditions namely the LSPT along the

plane perpendicular to the axis of the cylinders and LSPL along the axis of the cylinders. For the HLP

and the BMs we will consider only TM polarized incident as they are dependent on the PSP which cannot
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Figure 12.1: An array of metallic cylinders of diameterD, height h2 and square packing with period Λ.
A thin metallic film of height h1 is placed below the array. The substrate has a refractive index of nb and
the medium surrounding the cylinders has an index nh. The modes are defined along the vector p̂.
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be excited for TE polarized light. Also the PSP is excited only for incidence from the medium of index

nb for angles of incidence θ that lie above the critical angle of nb − nh interface ((k///k0) > nh). In

this configuration the LSPL is more intense and we will only consider the LSPR condition for it for the

calculations of the HLP dispersion.

Thus we have all the calculation tools needed to analytically solve for the modes of the system. As a

recapitulation, we have presented the analytical equations used for modeling the modes of the system

along with figure 12.1. To use the same notation we will define (k///k0)LSP = 2π/(k0λLSP ) which,

however, do not have any physical significance. λLSP is calculated from the pole of α.

Figure 12.2: Left, the analytically calculated polarizability α for a nanocylinder of 30nm height and 50nm
diameter in a homogenous medium nh(in red). The same for the cylinder placed on a semi-infinite gold
medium (in blue). The calculated LSP frequency for the later configuration is k0 = 8.87/µm. Center,
the HLP mode (green) dispersion (k0, (k///k0)), which results from the harmonic coupling of the LSP
and PSP. Right, the calculated dispersion for the PSP in a gold film with plasmons propagating in the
medium nh. The resonance frequencies of the LSP (blue solid) and the PSP (blue dotted) are also shown.
For this scheme, the period of the array was taken as 180 nm.

To calculate the modes of the system in terms of (k0, (k///k0)) the only free parameter in the

model is the coupling parameter Γ12.The scheme of the coupling is shown in figure 12.2. The coupling

parameter Γ12 has a dimension of 1/τ 2 where τ has a unit of time. By rigorous simulations of the far

field characteristics of the structure (thus by following the dispersion of the HLP mode and fitting it to

the analytical results) we have found that the coupling parameter is inversely proportional to the period

of the structure and directly proportional to the diameter and height of the cylinders. By considering

Γ12 = (1/τ 2) × (h2 + D)/Λ we will show that the calculated analytical dispersion of the HLP
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fits closely the numerical calculations of the far field characteristics. The value of the free parameter

τ = 0.37± 0.03fs was found by fitting the analytical calculations to numerical results and was found

to be constant and independent of structural parameters.

We must mention here that the modes presented for the structure is not restricted only to nano-cylinders.

In fact we have presented the same modes for an array of metallic strips on a gold substrate. Thus the

calculation can be used for any arrayed structure on a metallic substrate. The only difference for different

shapes of the nano-structures is in the LSPR condition and thus the accurate calculation of λLSP . Once

we have the value for the LSPR condition of the metallic particle with an underlying metallic film, we can

use the model to calculate the dispersion of all the other plasmonic modes of the system.

12.2 Far field characteristics of the HLP

The absorption (A) of the structure with a plane wave incident from the medium with index nb is shown in

figure 12.3 for two different period (Λ) of the array. (For other periods see Appendix B). We see a strong

absorption for the (k0, (k///k0)) values close to the dispersion of the HLP. Thus the HLP is a confined

plasmonic mode in this regime. We see appearance of plasmonic band gaps at the (k0, (k///k0)) values

which correspond to the dispersion of the BMs. This is in effect similar to what we observed for the

coupling of the PSP with the WRAs in section 9.1.3. Here in this case these band gaps are a result of the

coupling of the HLP with the BMs.

Figure 12.3: (a)The absorption (A) dispersion map as a function of (k0, (k///k0)) for h2 = 30nm,
D = 50nm, and period Λ = 180nm with the medium around the nanocylinders of refractive index
nh = 1.333. Plane wave is incident from the medium with index nb = 1.513. The analytical
calculation of the dispersion of different modes of the system are also shown: LSP (blue solid), PSP (blue
dashed), HLP (green), and BMs (black solid and dashed). (b) Same as (a) for period Λ = 300nm.

From the expression of Γ12 we expect the coupling to be weaker for larger periods. The width of

plasmonic band gaps (the spectral separation of the two branches of the HLP at the resonance position of

the LSP) is proportional to the coupling parameter [230, 202]. Thus the dispersion curves of the HLP

will be expected to approach the resonance frequencies of the LSP and PSP as the coupling parameter

decreases for larger periods. This is exactly what we see in figure 12.3.
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Figure 12.4: (a)Dependence of Λ:The resonance frequencies (k0) of all the modes in the structure
(D = 50nm, h2 = 30nm) manifest as absorption maxima in the dispersion map calculated by rigorous
numerical method (red dots) as a function of array period for (k///k0) = 1.42. We have superposed the
analytically calculated frequencies of the modes as a function of period: LSP (blue), HLP (green), BMs
calculated forKB = 2π/(Λ) (black solid and dashed) and BMs forKB = 2π/(Λ +D) (red dashed
and solid). (The first and the second orders (m) of the BMs is shown in the figure)(b)Dependence of h2:
The same for Λ = 350nm, andD = 50nm for (k///k0) = 1.45. (c) The same for Λ = 350nm,
andD = 90nm for (k///k0) = 1.45.
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The dependence of the resonance frequencies of the modes with the structural parameters such as

the periodicity, height and diameter of the cylinders is shown in figure 12.4. For the figure the maxima

of absorption as a function of k0 (calculated by numerical simulations) was traced for each structural

parameter at a given value of (k///k0). (see Appendix B). These absorption maxima denotes the

resonance frequencies of the structures. The analytically calculated resonance frequencies of the BMs and

the HLP is also shown in the figure. For larger periods Λ > 300nm we also see the appearance of a

BM which can be calculated usingKB = 2π/(Λ +D). We see that each absorption maxima can be

represented by one of the plasmonic modes (BMs or HLP) as per calculated by the analytical model thus

validating the model.

Another important feature to note in the far field characteristics of the HLP is that at certain range of

values of (k0, (k///k0)) the structure transmits a portion of the incident flux. This is shown in figure

12.5. This is not generally expected as for the configuration we have a plane wave incident at angles

greater than the critical angle of nb − nh interface and moreover we have a thin metal film. This feature

can also be noted for metallic grating on metallic film as shown in figure 11.8.

Figure 12.5: The reflectivity (R) dispersion map as a function of (k0, (k///k0)) for h2 = 30nm,D =
50nm and period Λ = 340nm with an incident plane wave from medium with index nb = 1.513.
The analytical calculation of the dispersion of different modes of the system are also shown: LSP (blue
solid), PSP (blue dashed), HLP (green) and BMs (black and red solid and dashed same as figure 12.3). (b)
The transmission (T) for the same parameters.

The explanation of this phenomenon can be found in the very description of the plasmonic modes. We

have defined the modes either as confined (PSP, CPP, HLP) or as extended (WRA, BM). The extended

modes have such transmissions as shown in figure 11.6 for the BMs (section 11.1.1). In the present

configurations we see that we have transmission for the values of (k0, (k///k0)) when the BMh

dispersion cross that of the HLP. In this range there is a coupling of the HLP with BMh and thus the

characteristics of the HLP resembles more that of an extended mode than confined.

Such transmission has been reported for periodic arrays of various geometries and is termed as

extraordinary transmission [231, 232, 233, 234, 235, 236]. The explanation in terms of coupling of an

extended mode to a confined mode is also applicable for such reported extraordinary transmissions. This

same phenomenon will be revisited when studying the near field characteristics of the HLP.

Below (k///k0) < nh = 1.333 we expect high transmission. However a drop in T is observed
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for the k0 values corresponding to the analytically calculated LSPR condition thus validating the χ

formulation.

12.3 Near field characteristics of the HLP

To calculate the near field characteristics of the modes we will follow the approach described in section

12.1. The field intensity confined around the cylinders was calculated as Isurf given by equation 10.12.

An incident plane wave from the medium nb was considered at an angle of incidence θ. The Isurf as a

function of (k0, (k///k0)) is shown in figure 12.6 for Λ = 300nm and D = 50nm. The far field

absorption (A=1-R-T) is also shown in the figure to compare the distribution of the field intensity with the

various modes. A plot of the field intensity as a function of k0 for two different values of (k///k0) is

shown in figure 12.7.

First at the value of k0 where the LSPR condition is satisfied we see a weak maxima. The value of the

field intensity for the LSP at (k///k0) = 1.32 and k0 = 9.2/µm(λ = 683nm) is Isurf = 85.72.

This value is similar in magnitude to the value of field intensity obtained for the LSPL in an array of

metallic cylinders on a glass substrate (figure 10.12). However the LSPR wavelength is red shifted as

compared to the cylinders on a glass substrate owning to the metallic film.

The two small peaks that can be seen at (k///k0) = 1.32 for lower values of k0 in figure 12.7 are

due to the BMs. We see that the confined field intensity is much lower for the BMs than the LSP and this

is expected as the BMs are extended modes.

However the field confined around the cylinders for the HLP is even higher than the LSP with a value

of Isurf = 168.85 for (k///k0) = 1.42 and k0 = 8.38/µm(λ = 750nm). Thus the HLP has

far field characteristics similar to the PSP with high dispersion, but can also confine the electric field

intensity close to metallic nano-structures, a property similar to the LSP. This hybrid property of the HLP

can prove to be very useful for bio-detection. As will be shown later, for SPR detection a high dispersion

of the plasmonic modes is necessary for higher sensitivity. Thus the HLP mode can permit such high

sensitivities but with a much higher localization of the electric field than the PSP.

Another important far field characteristic as shown in figure 12.5 is high transmission when the

BMh couples to the HLP. Thus the HLP for certain values of k0 which are greater than the k0 values

of theBMh, have the properties of an extended mode. Thus in the dispersion map of the HLP we can

distinguish two regimes

(a) Confined HLP: for values of k0 less than the that ofBMh

(b) Quasi-extended HLP : for values of k0 more than that ofBMh.

The two regimes are distinctly shown in figure 12.8 for a cylinder array of diameter 50nm, height

30nm and period Λ = 300nm and also for varying period. To define the regime in terms of period

we have plotted absorption maxima for the structures with period Λ as a function of k0. This is similar

to figure 12.4(a) and on the same figure we have superimposed the transmission maxima as found by

numerical methods. We see that for the HLP we have transmission maxima only for those values of

(k0, (k///k0)) which correspond to the situation described above as Quasi-extended HLP.

Finally, the near field intensity distribution as shown in figure 12.9 for the two regimes clearly shows

the difference. The fields are shown for the same structure (Λ = 300nm,D = 50nm, h2 = 30nm)

and for the same HLP mode but at two different values of (k0, (k///k0)). We see that the field in the
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Figure 12.6: The absorption (A) dispersion map as a function of (k0, (k///k0)) for h2 = 30nm,D =
50nm and period Λ = 300nm with an incident plane wave from medium with index nb = 1.513.
The analytical calculation of the dispersion of different modes of the system are also shown: LSP (blue
solid), PSP (blue dashed), HLP (green) and BMs (black and red solid and dashed same as figure 12.3). (b)
Integrated electric field intensity (Isurf ) over the surface of the cylinder as a function of (k0, (k///k0)).
The medium surrounding the cylinders has a refractive index of nh = 1.333 and the metal an index of
nm.

Figure 12.7: Integrated electric field intensity (Isurf ) over the surface of the cylinder as a function of k0

for (k///k0) = 1.32 and (k///k0) = 1.42.
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Figure 12.8: (a)The transmission (T) dispersion map as a function of (k0, (k///k0)) for h2 = 30nm,
D = 50nm and period Λ = 300nm with an incident plane wave from medium with index nb =
1.513. (b)The resonance frequencies (k0) of all the modes in the structure (D = 50nm, h2 = 30nm)
manifest as absorption maxima (red dots) and transmission maxima (blue squares) in the dispersion
map calculated by rigorous numerical method as a function of array period for (k///k0) = 1.42. The
analytically calculated dispersion of the various modes namely the BMs, LSP and HLP are also shown

regime of confined HLP is more localized close to the cylinder surface, while that in the quasi-extended

regime penetrates more into the dielectric medium nh.
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Figure 12.9: (a)The electric field intensity distribution for the BM for the two regimes (a) Confined
HLP: (k///k0) = 1.39(θ = 67◦),k0 = 6.93(λ = 907nm) (b) Quasi-Extended HLP: (k///k0) =
1.46(θ = 75◦),k0 = 8.54(λ = 736nm). The structure dimensions are Λ = 300nm,D = 50nm,
h1 = h2 = 30nm. Plane wave is incident from the medium nb = 1.513 at an angle θ and
nh = 1.333. The structure geometry is shown in figure 12.6
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Conclusion of Part IV: Structures and
Modes

In this part, we have introduced different plasmonic modes that we have used in this work to identify

the dispersion characteristics of periodic structures. The structures are considered to be present in a

medium with refractive index nh and with an underlying substrate with index nb. The dispersion is

presented in terms of k0 = 2π/λ and (k///k0) = kx/k0. For a uniform metallic film we can excite

the propagating surface plasmon (PSP) along the metal-dielectric interface and the dispersion relation can

be written as

(k///k0)PSP(b/h)
=

√
(n2

(b/h)
n2
m)

(n2
(b/h)

+n2
m)

For a grating (or an array of metallic particles) with an incident light perpendicular to the grating

ridges (period Λ), the Wood’s Rayleigh anomaly (WRAs) condition can be satisfied when the diffracted

orders from the grating graze along the metal-dielectric interface. The dispersion relation is given as

(k///k0)WRA(b/h)
=
∣∣nb/h − nP ∣∣ with np = ±m(2π/Λ)/k0

.

For incident light parallel to the grating ridges, the Confined propagating plasmons (CPP) can be

excited effectively due to a truncation of the metallic film along the grating ridges (width w1). For these

modes the dispersion is given as

(k///k0)CPPb/h =
√

((k///k0)PSPb/h)2 − (mπ/k0w1)2

For an array of metallic particles with an underlying metallic film, modes similar to the WRAs can be

excited, which in this case is caused by the diffraction of the PSP excited at the thin film surface. These

were called the Bragg modes (BMs) and were represented as

(k///k0)BM(b/h)
=
∣∣∣(k///k0)PSP(b/h)

− nP
∣∣∣

Plasmonic modes were defined as (a) «Confined» modes where the electric field is confined close to

the metallic surface such as the PSP, CPP and the localized surface plasmon at its resonance condition
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(LSP) (b) «Extended» modes for those that do not have confined electric field distribution, but help to

redistribute the incident energy as reflection, transmission and diffraction. The WRAs and BMs belong

to the later type. All the above mentioned plasmonic modes are «Bright» modes or «Continuum» states.

Thus they cannot undergo Fano resonances when there is a coupling among them. However the coupling

of an extended mode with a confined modes gives rise to plasmonic band-gaps. This was shown for the

coupling of PSP with the WRAs and BMs.

The coupling of two confined modes gives rise to hybrid plasmonic modes which can be described by

harmonic coupling of two oscillators. One such coupling between the PSP and the LSP gives rise to the

Hybrid Lattice plasmon (HLP) mode which can be described as

(k///k0)HLP± = 1
2

[
(k///k0)2

PSPh
+ (k///k0)2

LSP

]
± 1

2

[√(
(k///k0)2

PSPh
− (k///k0)2

LSP

)2
+ 4

Γ2
12

c4k40

]

with appropriate coupling parameters. The hybrid modes can behave both as confined or extended

modes depending on the excitation conditions. In effect, the coupling of the LSP and PSP gives rise to a

confined HLP. However due to a secondary coupling of the HLP with the BMs, the HLP was shown to

have the characteristics of an extended mode with high transmission into the far-field and less confinement

of the incident electric field (quasi-extended HLP).

The resonance condition for the LSP (λLSP ) was calculated by the extinction of metallic particles

using FEM calculations. An approximate analytical model was developed called the χ formulation to

calculate the resonance conditions for nano-particles and the results were shown to fit closely to the

numerical methods. The effect of a substrate (metallic or dielectric) on the LSPR resonance condition can

also be calculated by the model.

The near and far field characteristics of the various modes were presented with incident plane wave

from either the medium nh or nb. Such field distributions are of paramount importance when using

various modes for applications in bio-detection. In the next part we will introduce the different bio-

detection techniques and the process of optimizing the structures based on the modal representation

presented in this part.
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Part V

Plasmonic modes for biodetection
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Chapter 13

Intrinsic sensitivity of plasmonic
modes for bulk refractive index

changes

SPR detectors were introduced in chapter 3 and their limitations were discussed in section 5.1.1. We

have shown that when using surface plasmons to detect refractive index changes in the bulk medium

or local molecular binding kinetics, the absolute resolution that can be achieved is limited by response

of the particular plasmonic mode to such refractive index changes. This was quantified by the term[
d(ksp/k0)

dn

]−1
. Following the description of the various plasmonic modes in the previous part (part IV)

we can simply identify this term for each plasmonic mode as
[
d((k///k0))

dn

]−1
. In this chapter we will

first discuss the characteristics of various modes in terms of their sensitivity to bulk (and local) refractive

index changes. Then we will introduce some criterion and also optimization of the structured bio-chip

surface for SPR affinity biosensing.

The response of the various structures (and modes) described in part IV to change of bulk refractive

index was calculated using rigorous numerical methods. For the calculations the light was considered to

be incident from the medium with higher refractive index (nb = 1.513) and the refractive index of the

medium surrounding the nano-structures (nh) was changed to mimic a step of bulk refractive index. This

configuration is effectively same as the conventional Kretschmann configuration used for SPR detectors.

In section 3.2.1 the various interrogation methods for SPR detection were described. In brief one

can either measure the change in reflectivity or measure the shift in the plasmon wavelength due to

bulk refractive index changes. The wavelength interrogation method is generally more robust as the

wavelength shift is less sensitive to the inhomogeneity over the biochip surface. This was explained in

the publication of Sereda et al [35] and the measurements therein were done on a similar SPR setup

as used in this work. The reflectivity interrogation method is also strongly dependent on the absolute

reflectivity value of the plasmon dip and the line-width of the resonance. However the wavelength shift

due to refractive index changes is independent of these parameters can thus can be quantified purely by

the drift of (k0, (k///k0)) of each mode.
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13.1 Bulk index sensitivity for the PSP

We will start with the simple uniform thin gold film. In such a structure we can excite the PSP. We are

interested in calculating the shift of the plasmon wavelength with respect to the refractive index changes

in the bulk medium. To quantify such shift we will measure the response in terms of reflectivity change

(∆R) or wavelength shift (∆λ in nm) due to a shift in bulk index (∆nh inRIU ). The sensitivity of

the system can then be written as SR = ∆R/∆nh (/RIU ) or Sλ = ∆λ/∆nh (nm/RIU ).

So far in this work, we have described the modes in terms of (k0, (k///k0)) to have a better

understanding of the physical aspects of the modes in terms of wave-vectors. However for practical

realization of bio-detectors a representation, in terms of (λ, (k///k0)) is more direct in terms of

experimental configurations. Thus the response of the systems will be characterized in terms of ∆λ,

∆θ ∝ ∆(k///k0) and so on. A simple conversion between the quantities can be carried out as

k0 = 2π/λ and (k///k0) = nincsin(θ) with ninc being the index of the incident medium.

Figure 13.1: (a)The reflectivity variation (SR) as a function of (λ, (k///k0)) for a thin metallic film in
Kretschmann configuration of height h = 50nm. (b) The analytically calculated dispersion of PSPh
with a change of bulk refractive index ∆nh = 10−2RIU : The dispersion in medium nh = 1.333

is shown in black, the calculated dispersion (k///k0) +
∂(k///k0)

∂nh
∆nh is shown in blue. (c) The

sensitivity Sλ as calculated analytically from (b) as a function of incident wavelength. The refractive
index of the substrate was nb = 1.513.

The reflectivity change (SR) as a function of (λ, (k///k0)) for a thin gold film of height 50nm is

shown for a refractive index change ∆nh = 10−2RIU in figure 13.1. The calculation was done with

Rouard method for nh = 1.333 and nb = 1.513. The reflectivity change is strongly dependent on the

line width of the plasmon mode. For detectors that use reflectivity interrogation, a conventional figure of

merit (FOM) can be defined as [237, 238, 239]
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FOM = S/FWHM (13.1)

where S is the sensitivity of the system in terms of change of reflectivity or wavelength shift per unit

refractive index change. However for spectral interrogation, the FWHM of the plasmon dip do not play

a major role and the intrinsic sensor response can be analytically calculated and depends purely on the

dispersion characteristics of the mode.

The dispersion of the PSPh mode is given by (k///k0)PSP (λ) =
√

nd2nm2

nd2+nm2 with nd = nh or

nd = nh + ∆nh. The shift of (k///k0) with change in refractive index is given as

∂(k///k0)PSP

∂nh
=

(k///k0)PSP

nh
−

(k///k0)3
PSP

nhn2
m

(13.2)

Thus for a refractive index change of ∆nh the dispersion of the PSP mode can be written as

(k///k0)PSP +
∂(k///k0)PSP

∂nh
∆nh. This relation is directly related to the response Sθ for a SPR

detector in angular interrogation mode with

∂θ

∂nh
=
∂(k///k0)

∂nh

1

ninccosθ
(13.3)

However the relation for Sλ is not trivial but can be calculated from the relation for
∂(k///k0)

∂nh
.

The analytical calculation of the dispersion of the PSPh for nh = 1.333 and for a medium with a

refractive index shifted by ∆nh = 10−2RIU is also shown in figure 13.1. We see that for all the three

interrogation methods, the sensitivity (SR, Sλ,Sθ) increases with incident wavelength. We also note that

the intrinsic sensitivity in spectral or angular interrogation can be directly calculated and is related to
∂(k///k0)

∂nh
. This is also applicable for all the other plasmonic modes presented in this work. This is one of

the major reasons for using (k///k0) representation to describe the plasmonic modes. The variation of

the sensitivity to bulk index changes with other parameters such as ∆nh and film height (h) is shown in

Appendix C. The variation of Sθ is also shown in in Appendix C.

13.2 Bulk index sensitivity for the WRAs

For the WRAs, the dispersion is given as (k///k0)WRA = nh − nP for the mode caused by the

diffraction in the medium nh. We will consider only this mode and not WRAb as the later does not

depend on the drift of nh. Thus for the WRAs the shift in dispersion for a drift of nh is given as

∂(k///k0)WRA

∂nh
= 1 (13.4)

Thus the sensitivity of the WRAs to bulk index changes is independent of the excitation wavelength.

The sensitivity of the structure presented in section 9.1.3 was calculated for ∆nh = 10−2RIU . The

reflectivity variation was calculated using numerical methods for a metallic grating of period Λ =

1400nm, ridge height h = 50nm and ridge width w1 = 1200nm. The dispersion of the WRAs due

to the shift of refractive index was calculated as (k///k0)WRA +
∂(k///k0)WRA

∂nh
∆nh and is shown

in figure 13.2. We see that the analytically calculated shift of resonance wavelength (∆λ) is almost

negligible for the WRAs as compared to that for the PSP. This is also reflected in the value of ∆R

calculated numerically and shown in figure 13.2. The WRA ordersm = 4,5,6 are shown. We also see
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that the reflectivity change is lower when there is coupling between the PSP and the WRAs. The spectral

shift of the WRAs was calculated analytically and the sensitivity Sλ was derived from it. The values are

independent of λ and was found to be 350nm/RIU , 280nm/RIU and 233.34nm/RIU for the

orders 4,5 and 6 respectively. This is much lower than the sensitivity for the PSPh, almost by an order

of magnitude. We also see that the sensitivity of the WRAs decreases with increasing orders and this is

because, even though the shift of (k///k0) is independent ofm, the values of (k///k0) depends onm

and thus the shift when translated to wavelength depends slightly on m. The same dependence on the

order (m) is also seen for the reflectivity sensitivity SR.

Figure 13.2: (Left) Reflectivity (R) for Λ = 1400nm and w1 = 1200nm as a function of
(λ, (k///k0)). The structure geometry and excitation in Kretschmann configuration is also shown.
The analytical dispersion of the PSP (black dashed) and that of the WRAh (black solid) for differ-
ent orders m is calculated for nh = 1.333. The same analytical calculation with a shift of index
∆nh = 10−2RIU (nh = 1.343) is shown in the figure (blue dashed and solid). (Right) Sensitivity of
the structure in reflectivity interrogation (SR) as a function of (λ, (k///k0)). The refractive index of the
substrate is nb = 1.513.

13.3 Bulk index sensitivity for the CPP modes

The CPP modes were described in section 9.2. The dispersion of the CPPs is given as (k///k0)CPP =√
((k///k0)PSP )2 − (mπ/k0w1)2 where the grating width is w1. The shift of (k///k0) for the

CPPh due to the confinement of the PSPh propagating in the medium nh is given as

∂(k///k0)CPP

∂nh
=

(k///k0)PSP

(k///k0)CPP

∂(k///k0)PSP

∂nh
(13.5)

We expect no drift of CPPb with nh as it is caused by the confinement of the PSPb which in turn

is not sensitive to the change of the refractive index nh.
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The reflectivity dispersion for an array of metallic strips of width w1 = 500nm and period

Λ = 1000nm in the Kretschmann configuration with incident light from the medium nb was calculated.

The direction of incidence was considered to be along the length of the grating ridges, thus assuring the

excitation of the CPPs. The reflectivity is shown in figure 13.3. The analytical calculation of the dispersion

of the 1st order (m) of CPPh and CPPb are also shown and we see reflectivity dips corresponding to

the two respective modes.

Figure 13.3: (a)The reflectivity (R) for Λ = 1000nm and w1 = 500nm as a function of
(λ, (k///k0)). The structure geometry and excitation in Kretschmann configuration is also shown.
The analytical dispersion of the CPPh(1) (red) and that of the CPPb(1) (black) is calculated
for nh = 1.333. (b) Sensitivity of the structure in reflectivity interrogation (SR) as a function of
λ − (k///k0). The analytical calculation with a shift of index ∆nh = 10−2RIU (nh = 1.343)
is shown in the figure for CPPh(1) (red dashed). (c) Reflectivity as a function of wavelength for
(k///k0) = 1.48 (θ = 78◦) for nh = 1.333 and nh = 1.343 calculated numerically. (d) Sensitivity
Sλ as calculated analytically forCPPh as a function of wavelength. The refractive index of the substrate
was nb = 1.513.

The dispersion of CPPh due to a refractive index shift of ∆nh = 0.01RIU was calculated as

(k///k0)CPP +
∂(k///k0)CPP

∂nh
∆nh. The sensitivity Sλ was also calculated and shown in figure 13.3.

The calculation shows a much lower spectral sensitivity for the CPPh to bulk refractive index changes

as compared to the PSPh. We also see that the reflectivity sensitivity calculated by numerical methods is

lower for the CPPh than the PSPh.

For CPPb we do not expect any intrinsic sensitivity to bulk refractive index changes as its (k///k0)

is not dependent on nh. This is seen in the reflectivity spectrum of figure 13.3(c) where no substantial
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shift of the spectrum is observed. The very slight shift of reflectivity observed, is because theCPPb does

confine a part of its electric field intensity in the medium nh. This will be discussed in details in a later

section.

13.4 Sensitivity of metallic array on metallic film to bulk index
changes: BM and HLP

The modes of the structures consisting of an array of metallic nano-particles with an underlying thin

metallic film were described in chapter 11. In brief, in such structures, the BMs are excited which are

similar in principle to the WRAs but caused by the diffraction of the PSP by the array. Thus, we expect to

have similar characteristics of the BMs to the WRAs with respect to bulk refractive index changes.

The dispersion of the BMs is given by (k///k0)BM = (k///k0)PSP −nP . The drift of dispersion

with change in the bulk refractive index nh is given as

∂(k///k0)BM

∂nh
=
∂(k///k0)PSP

∂nh
(13.6)

However unlike the WRAs, the sensitivity of the BMs are dependent on λ as can be seen from equation

13.6. In fact, for BMh, we expect the same sensitivity to refractive index changes as for PSPh. The

drift of (k///k0) of the BM is same and therefore only the sensitivity in angular interrogation (Sθ) is

equal to that of the PSP. However the spectral sensitivity (Sλ) is different and we expect it to be much

lower for the BM than that of the PSP owing to the dispersion of the BM.

In such hybrid structures we can also excite the HLP which was described in details in chapter 12.

The dispersion of the HLP is given by as

(k///k0)HLP± =√
1
2

[
(k///k0)2

PSP + (k///k0)2
LSP ±

√(
(k///k0)2

PSP − (k///k0)2
LSP

)2
+ 4

Γ2
12

c4k40

]
The drift of the HLP with refractive index changes will thus depend on the drift of both the PSP and

the LSP. The drift can be evaluated to be

∂(k///k0)HLP

∂nh
=

(k///k0)PSP

2(k///k0)HLP

∂(k///k0)PSP

∂nh
+

(k///k0)LSP

2(k///k0)HLP

∂(k///k0)LSP

∂nh

±
[

(k///k0)PSP

4CΓ(k///k0)HLP

∂(k///k0)PSP

∂nh
−

(k///k0)LSP

4CΓ(k///k0)HLP

∂(k///k0)LSP

∂nh

] (13.7)

where CΓ =

√(
(k///k0)2

PSP − (k///k0)2
LSP

)2
+ 4

Γ2
12

c4k40
.

The term
∂(k///k0)PSP

∂nh
is given by equation 13.3. However the derivation of the term

∂(k///k0)LSP
∂nh

which is not trivial signifies the shift of the resonance condition of the LSP with a change of refractive index

of the surrounding medium. To calculate this value analytically, we can use the notation (k///k0)LSP =

2π/(k0λLSP ). λLSP is calculated from the pole of α as found analytically by χ formulation or

numerically by FEM as described in chapter 10.
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We will consider an array of nano-cylinders of height h2 = 30nm and diameterD = 50nm. The

resonance condition for such a nano-cylinder placed on a gold substrate is given by λLSP = 693nm

with nh = 1.333 and λLSP = 703nm with nh = 1.343. Thus for such a cylinder the spectral

sensitivity is SR = 1000nm/RIU assuming that the shift in LSP condition is linear with nh which is

quite acceptable for small refractive index changes. In this case, the drift of (k///k0)LSP can found to

be equal to
∂(k///k0)LSP

∂nh
= 12.9/k0.

Figure 13.4: (a)The reflectivity (R) for Λ = 300nm andD = 50nm as a function of (λ, (k///k0)).
The structure geometry and excitation in Kretschmann configuration is also shown. The analytical
dispersion of theHLP (green), that of theBMh (black dashed) andBMb (black solid) is also shown
for nh = 1.333. (b) Sensitivity of the structure in reflectivity interrogation (SR) as a function of
(λ, (k///k0)). The analytical calculation with a shift of index ∆nh = 10−2RIU (nh = 1.343) is
shown in the figure for HLP (green dashed) and BMh (black dotted). (c) Reflectivity as a function
of wavelength for (k///k0) = 1.43 (θ = 71.5◦) for nh = 1.333 and nh = 1.343 calculated
numerically. (d) Sensitivity Sλ as calculated analytically forHLP− as a function of wavelength. The
refractive index of the substrate was nb = 1.513.

The reflectivity dispersion for the structure with the above mentioned array of cylinders placed on a

thin gold film of height h1 = 30nm in the Kretschmann configuration was calculated using numerical

methods. The analytical calculation of the dispersion of the HLP and the BM is shown along with the

reflectivity in figure 13.4 for nh = 1.333. We can identify the various modes as described in chapter

12. The reflectivity shift was calculated with ∆nh = 10−2RIU . In figure 13.4 the sensitivity in

reflectivity interrogation (SR) is also shown. We see a significant sensitivity for the HLP with change of

bulk refractive index but almost no appreciable sensitivity for the BMs.

It is clear that the sensitivity of the HLP for bulk refractive index changes is much smaller than that
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of the PSP. This is because the HLP has a much confined field distribution as compared to the PSP. The

spectral sensitivity Sλ for theHLP− was calculated by equation 13.7 and we see that it is a bit higher

than the LSP (which has a value of around 1000nm/RIU ). SR for the HLP is also smaller than that

for the PSP.

This property of the HLP (and for most confined modes) is useful for affinity based biosensing. For it,

we require a high sensitivity with respect to bound targets but low drift with changes in bulk refractive

index. This is treated in the next section where this criteria will be considered to introduce appropriate

figures of merit for such affinity based applications.
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Chapter 14

Enhancing detection limit for affinity
biodetection

Affinity biodetection was introduced in section 3.3. Though sensitivity of plasmonic modes to bulk index

changes may be useful in certain applications, for most applications, such changes cause drift and noise in

the signal owing to inhomogeneity or fluctuations of temperature for example. Thus affinity biosensors are

better characterized by shift in the interrogation quantity with respect to the amount of target molecules

bound to the substrate surface (for example to the size of the analyte molecules in nm) rather than to the

change in RIU.

The evaluation of the spectral shift for the plasmonic modes in the presence of a layer of bio-molecules

is not possible analytically. However for calculations using numerical methods, we can approximate the

effect of the target molecules by considering a layer with refractive index close to that of the molecule

in bulk. The effective scenario used to calculate the shift of the interrogation quantity in presence of an

analyte is shown in figure 14.1. As an example, the direct detection condition shown in figure 3.8 of

section 3.3 is considered.

Figure 14.1: Representation of the binding probe and target molecules (analyte) for numerical calculations
of reflectivity shift (∆R) and spectral shift (∆λ). For the inset the reflectivity of a gold film of height
h = 50nm is shown with and without the biolayer at (k///k0) = 1.4. The calculation was done by
the Rouard method.
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The reflectivity variation (in %) for 1nm of probe-analyte layer with a refractive indexna = 1.48 was

calculated using the Rouard method. For this we have considered a thin gold film of height h = 50nm

in the Kretschmann configuration. Thus here we calculate the properties of the PSP for affinity biosensing.

We can define reflectivity sensitivity Smol:R for affinity biosensors in terms of change of reflectivity

(∆R) due to thickness (e) of bio-layer (Smol:R = ∆R/e in %/nm). In the same way the spectral

sensitivity can be defined as Smol:λ = ∆λ/e in nm/nm for a spectral shift of ∆λ in nm.

The sensitivity of the PSP for a gold film of h = 50nm is shown in figure 14.2. We will use these

values as a reference to characterize the sensitivity of the various other modes. The variation of the

sensitivity of the PSP with the height of the gold film is shown in Appendix C.

Figure 14.2: (a) The reflectivity sensitivity Smol:R for 1nm of biolayer with refractive index na = 1.48.
The height of the gold film was h = 50nm. (b) Spectral sensitivity (Smol:λ) as a function of wavelength
(λ). The refractive index of the substrate is nb = 1.513 and surrounding medium nh = 1.333.

We can see from the results presented in Appendix C and the results for sensitivity for the plasmonic

modes, the spectral interrogation (or angular interrogation) is more robust as a detection method than the

reflectivity interrogation.

The sensitivity of a biochip depend directly on the amount of analyte bound to the biochip surface. We

have defined our sensitivities with respect to the biolayer thickness. However the volume of the biolayer

bound to the surface and thus the surface coverage plays a major role in the actual sensitivity of the

biochip.

To demonstrate this effect, calculations for an uniform gold film was done by changing the surface

coverage of the target biological layer on the surface. This is not possible by the Rouard method because

the method is suitable only for uniform layers in the x − y plane as shown in figure 14.3. However

such a calculation of reflectivity is possible with the hybrid numerical method. The scheme of the

calculation is shown in figure 14.3. A uniform gold film of height h = 50nm is considered in the

Kretschmann configuration with refractive index of the substrate nb = 1.513 and the surrounding

medium nh = 1.333. The thickness of the biolayer is taken as e and refractive index of the analyte and

probe is na = 1.48. We have considered the biolayer to cover a width of w on the surface and thus a
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surface coverage (molecular filling factor) of fmol = wmol/Λ where Λ is the width of the gold film.

The calculation was done by a 2D mesh of periodicity Λ. (It should be noted that here fmol was defined

for a 2D structure and is represented as a ratio of lengths, for 3D biochips fmol is expressed as a ratio of

areas.)

Figure 14.3: Dependence of the spectral sensitivity for target detection (Smol:λ) for an uniform gold film
of height h = 50nm with a surface coverage of target molecules (fmol). (Left) Sensitivity is shown
as a function of wavelength (λ). The scheme of the calculation done by numerical methods is shown.
The refractive indices were nh = 1.333, nb = 1.513 and probe-analyte index na = 1.48. The height
of the biolayer was taken as e = 3nm. The values of sensitivity as a function of surface coverage for
λ = 800nm is also shown (right).

The spectral shift in presence of the biological layer (∆λ) was calculated as a function of λ. The

plot for fmol = 1 is the same as that of figure 14.2(b). We see as expected, that the sensitivity to the

molecules on the surface (Smol:λ), drops linearly as surface coverage of the target molecule is decreased.

Generally the surface coverage is expressed in terms of mass (in pg/mm2). However we choose to

express it as a dimensionless quantity and thus as ratio of lengths or areas given by fmol.

Though this phenomenon is quite well known, however we present this calculation in this work

because this is one of the most important limitations of using the PSP for affinity biosensors, that we aim

to resolve using other plasmonic modes and nano-structures.

The sensitivity of the plasmonic modes to local refractive changes depends on the electric field

distribution of the modes. For the PSP the electric field is uniformly distributed over the entire surface of

the thin metallic film and decays exponentially far from the surface. Thus the sensitivity to molecules

bound to the surface results from the contribution of all the molecules present on the surface. So a fall in

filling factor of the molecules causes a drop in the sensitivity. However as we can see from part V, one can

excite various plasmonic modes where the electric field distribution is not uniform but confined to certain
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locations of the structured surface (electric field hotspots). Thus the sensitivity to bound molecules for

these modes result purely from the molecules present in such locations of high field confinement. We can

thus increase the overall sensitivity for affinity detectors by using such plasmonic modes and by selective

localization of target molecules in such electric field "hotspots". This will be explained in the next section.

14.1 Sensitivity enhancement factor (SEF) for affinity biosensors

For a uniform gold film, the sensitivity is shown to be directly proportional to the volume of the bio-

molecules functionalized on the biochip surface. Thus for such biochips we can normalize the sensitivities

with respect to the volume of functionalized molecules as

Smol:Q:PSP = Smol:Q × fmol (14.1)

whereQ is the quantity measured,R, λ or θ and fmol is the surface coverage of the molecules on the

biochip. Let us consider that for a certain mode in a period structure, we have a sensitivity Smodemol:Q for

an area Amol of biomolecules functionalized on the surface and periodicity Λ. Thus we can define a

relative sensitivity of the mode with respect to that of the PSP, considering the same surface coverage of

the molecules as

SEF =
Smodemol:Q/Amol

SPSPmol:Q/Λ

or

SEF =
Smodemol:Q

Smol:Q:PSP

(14.2)

SEF (Sensitivity Enhancement Factor) so defined above relates the sensitivity of a plasmonic mode

to the surface coverage of the molecules on the biochip surface. A mode which has higher sensitivity

with less amount of molecules functionalized on the surface will thus have a higher SEF. For the PSP

using an uniform gold film with complete surface coverage of molecules, the SEF = 1. Such a factor to

characterize plasmonic affinity biosensors can be found in the literature [240, 241] and we will use this

criteria to characterize the modes described in this work. To simplify the expression of the SEF we can

write it as SEF = Sfac/fmol where Sfac defines the ratio of the sensitivity of the mode to that of the

PSP using an uniform metallic film.

The physical significance of the SEF for affinity biosensors lies in the fact that surface coverage of the

analyte molecules depend on their concentration (Ca) present in the solution. For trace concentrations of

analyte, the surface coverage is expected to be lower as the amount of molecules present in the solution is

not enough to fully cover the surface. Thus for an uniform gold film we expect the sensitivity to decrease

for trace concentrations. For plasmonic modes with values of SEF > 1 this decrease in sensitivity with

concentration of the analyte will be less than the PSP which has SEF = 1. Thus SEF can be used to

characterize the sensitivity of the system with respect to analyte concentrations.

The main advantage of SPR bio-sensors is the ability to follow the binding kinetics of probe-analyte

molecules. For such sensors the evolution of the sensor signal (Q) with injection time of the analyte in

the fluidic cell is measured. Such a measurement can provide insight on the bio-molecular interactions

between the probe and the analyte. For such detectors the evolution of the signal is fitted with a binding

model, the simplest among them being the Langmuir model which follows a first-order kinetics [242, 243].

190



Assuming 1:1 interaction (one probe molecule interacts with one analyte), following the Languir model it

can be shown that

Q(t) =
QmaxCa
KD +Ca

[
1− e−(kaCa+kd)t

]
(14.3)

whereQmax is the maximum value of signal achieved at equilibrium with complete surface coverage

of probe-analyte, Ca is the analyte concentration, ka (in M−1s−1) and kd (in s−1) are the constants

defining rates of association and dissociation of the probe-analyte respectively andKD = kd/ka called

the equilibrium constant. We can identify the term Qmax to be inversely proportional to the surface

coverage of the molecules and thus directly proportional to SEF . Thus a high SEF can assure higher

sensitivity for detectors following binding kinetics.

14.2 Increasing SEF by selective target localization

One important factor to note for the SEF is that it is inversely proportional to the area of the bio-chip

covered by the molecules which cause the measurable signal. Thus to increase SEF, the plasmonic

structures must have higher signal (∆R or ∆λ) however with less amount of bound target molecules.

This is the main aim of using structured biochips and the calculations for their sensitivity would be carried

out by covering only the hotspots of the structures with the target biological layers.

We will start with the basic binary grating structure with the incident plane wave parallel to the grating

ridges. In such a structure we can excite the CPP as mentioned in sections 9.2.1 and 13.3. We have shown

that for large ridge widths the PSPh is excited however with a lower contrast owing to the lower surface

coverage of the metal. The reflectivity of the structure for large ridge widths was shown in figure 9.17.

In figure 14.4 the reflectivity of the same structure is shown for ridge width w1 = 3500nm, height

h = 50nm and period Λ = 7000nm and thus a filling factor of f = 0.5. The reflectivity is calculated

at (k///k0) = 1.46 (θ = 75◦) which is same as figure 9.17. We see the reflectivity dips in the spectrum

owing to the PSPh and the CPPb.

The reflectivity spectrum was also calculated by numerical methods for the same structure with a

bio-layer of e = 15nm and refractive index na = 1.48. For the calculation the biological layer

was considered to be present only around the grating ridge as shown in figure 14.4. Thus for the

structure the molecular filling factor can be written as fmol = (w1 + 2h)/(Λ). We see a spectral

shift with the biological layer for all the modes, though the shift for the PSPh is much larger than

that for the CPPs. The spectral shift was calculated to be ∆λ = 29nm. Thus the spectral sensitivity

in this case is Smol:λ = ∆λ/e = 1.93nm/nm at the reference wavelength λ = 597.1nm. The

spectral sensitivity for an uniform gold film using the PSPh at λ = 597.1nm as shown in figure

14.2 is SPSPmol:λ = 1.87nm/nm. Thus the sensitivity factor of the mode in the structured biochip

with respect to that of the PSP is Sfac = 1.93/1.87 = 1.03. The SEF can thus be calculated as

SEF = Sfac/fmol = 2.02.

Here in this example we see that the sensitivity of an affinity sensor can be enhanced by a factor of 2.

The PSP mode excited in the structure has its electric field confined only around the grating ridges and

almost negligible field in the gap between two ridges. This can be seen in the electric field distribution

shown in figure 9.21. Thus the molecules functionalized between the grating ridges do not contribute to

the overall sensitivity of the structure and almost the entire SPR signal (∆λ) is caused by the molecules
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bound to the grating ridges. Thus by selective localization of the molecules only in the locations where

they contribute significantly to the SPR signal we can enhance the overall sensitivity of the system with

respect to the amount of target molecules used.

Figure 14.4: (Top) The schematic of the structure for the excitation of the PSPh and the CPP .
The biolayer is shown in blue and is considered to be of thickness e and localized around the grating
ridges. (Bottom) The reflectivity of the structure with w1 = 3750nm,h = 50nm, Λ = 7000nm at
(k///k0) = 1.46 (θ = 75◦) and the refractive indices nh = 1.333 and nb = 1.513 (black). The
same structure considering the biolayer with e = 15nm and na = 1.48.

14.2.1 The CPP modes for increasing SEF

From the same figure 9.21 we also see that for the CPPb a major portion of the electric field is

concentrated on the sides of the grating ridges. We can thus use the CPP mode with selective target

localization on the grating sides to increase the SEF.

The reflectivity map for the structure with dimensionsw1 = 500nm and Λ = 1000nm is shown

in figure 13.3 in section 13.3. The two modes CPPh and CPPb can be excited in the structure. The

field distribution of the modes were discussed in section 9.2.2 for incidence from index nh. The field

distribution of the two modes in the Kretschmann configuration is shown in figure 14.5. The field was

calculated using a 3D mesh and the electric field intensity I = E2
x +E2

y +E2
z was normalized to the

incident intensity I0.
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Figure 14.5: The reflectivity spectrum as (k///k0) = 1.49 (θ = 80◦) for the grating with incident
plane wave parallel to the ridges. The dimensions are w1 = 500nm, h = 50nm, Λ = 1000nm and
the indices nh = 1.333 and nb = 1.513. The electric field intensity in logarithmic scale is also shown
for the two modes :CPPh(1) at λ = 583.4nm (k0 = 10.77/µm), CPPb(1) at λ = 701.7nm
(k0 = 8.95/µm).

Figure 14.6: The reflectivity of a binary grating of height h = 50nm, w1 = 500nm and period
Λ = 1000nm with incident plane wave parallel to the ridges in the Kretschmann configuration. The
indices were nb = 1.513 and nh = 1.333. The biological layer has a thickness e = 15nm and index
na = 1.48. The different biolayer localizations are shown as ’All’, ’Top’ and ’Side’.
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We see the field characteristic similar to figure 9.22 which had the incidence from nh. We have one

lobe for both the fields as they are both modes of the first order. We also see strong field confinement on

the sides of the grating ridges for CPPb.

The reflectivity spectrum with a biological layer of e = 15nm was calculated at (k///k0) = 1.49

(θ = 80◦) for the structure. The localization of the biolayer was selected as ’top’ for the layer only on

top of the ridges, ’side’ for that on the ridge sides and ’all’ for the layer covering the entire grating ridges.

The schematic and the reflectivity spectra are shown in figure 14.6.

For all modes, the spectral shift with three biolayer localizations and the spectral sensitivity is shown

in table 14.1. The calculation was done at (k///k0) = 1.49. For the two wavelengths of the CPP

modes, the sensitivity of the PSP from figure 14.2 is SPSPmol:λ = 1.63nm/nm at λ = 583.4nm and

SPSPmol:λ = 3.55nm/nm at λ = 701.7nm. The SEF for the modes were calculated using these values

for the CPPh and CPPb respectively.

Table 14.1: The spectral sensitivity of the CPP modes: w1 = 500nm, h = 50nm, Λ = 1000nm.
The thickness of the biological layer is e = 15nm.

CPPh: λ = 583.4nm

Localization and
fmol

∆λ nm Smol:λ
nm/nm

Sfac SEF

All:fmol = 0.6 17.1 1.14 0.70 1.16

Top:fmol = 0.5 14.9 0.99 0.60 1.20

Side:fmol = 0.1 4.2 0.28 0.17 1.70

CPPb: λ = 701.7nm

All:fmol = 0.6 14.2 0.94 0.26 0.43

Top:fmol = 0.5 9.7 0.64 0.18 0.36

Side:fmol = 0.1 8.6 0.57 0.16 1.6

From the table above, we see that for both the modes the SEF can be enhanced by a factor close

to 1.6 by localizing the molecules only on the sides of the grating ridges and making use of the fact

that the modes have a strongly confined field intensity within a height of 50nm of the ridges. It must be

noted that though the SEF is higher for the structures, the signal ∆λ and thus the sensitivity itself (Sfac)

remains quite low as compared to the PSP of an uniform thin film. This is a disadvantage of using the

CPP modes for practical applications where for trace concentrations the signal itself may fall below the

limit of detection of the system. In ideal situations we aim to have a Sfac close to 1 and then have high

SEF, which was the case for PSPh in a binary grating discussed in the last section (section 14.2).

The SEF was calculated with varying the structure period and width. The filling factor was kept as

f = 0.5, thus period Λ = 2w1. The biological layer was considered to be localized only on the sides of

the grating ridges so fmol = 2h/Λ. The variation of the CPP frequencies with the grating width was

shown in figure 9.20. For the calculation of SEF, the structure width was changed from 500− 1000nm.
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The SEF as a function of width is shown in figure 14.7. The calculation was done at (k///k0) = 1.49.

The resonance frequencies of the CPP modes with w1 are also shown in the figure.

Figure 14.7: (a) The CPP excitation wavelength as a function of grating width w1 at (k///k0) = 1.49
(θ = 80◦). The two modes correspond to CPPh(1) and CPPb(1). (b) The SEF for the two modes as
a function of w1. For the calculations period Λ = 2w1.

We see that the SEF of CPPb remains almost constant with w1, even though for the structures,

fmol = 2h/Λ decreases withw1, as we have considered Λ = 2w1. This is because, the Sfac which is

the ratio of the sensitivity of the mode to that of uniform gold film also decreases with increasing width.

We cannot simply increase the SEF just by increasing the periodicity of the structure (or decreasing

the amount of localized molecules fmol). This is because the dispersion of the CPP mode depends

on w1 and by changing it we also change the property of the mode, namely the field confinement and

the effective sensitivity of the mode. Thus if we wish to increase SEF by increasing the geometrical

dimensions of the structure (thus decreasing fmol) we must be careful to play with the dimensions that

do not affect the intrinsic dispersion of the mode.

Now we will demonstrate that the sensitivity ∆λ and thus Smol:λ is however not directly proportional

to the confined electric field intensity of the mode. This is shown in figure 14.8. The near field intensity

(I) normalized to the incident intensity, for the structures at the wavelength of the CPPb was calculated

using a 2D mesh for eachw1. Then the surface integral of the field intensity was calculated as Isurf :side

by the method described in section 10.3. For the calculation the bio-layer was considered to be present

only on the sides of the grating ridges and thus

Isurf :side =
2

h

h∫
0

I(l)dl (14.4)

We see that the calculated Smol:λ = ∆λ/e for molecule localization on the sides do not follow the

evolution of the electric field intensity on the sides of the cylinder. This is because the sensitivity is not

proportional to the absolute electric field intensity of the mode at the position of the localized molecules,

but rather is proportional to the change in the field intensity brought about by the localized molecules.

This is shown experimentally in section 15.2.1.
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Figure 14.8: The variation of the spectral sensitivity with biolayer of thickness e = 15nm and lo-
calization on the sides of the gratings as a function of grating width w1. The values were calculated
for CPPb(1) at (k///k0) = 1.49 and Λ = 2w1 (left axis). The corresponding integrated electric
field intensity (Isurf :side) was calculated at the wavelengths of the CPPb(1) mode (shown in figure
14.7(a))(right axis).

Having said this, it is also true that field confinement plays a major role in sensitivity enhancement.

As the sensitivity is proportional to the change of field intensity, selective target localization must assure

that the target molecules are bound to the electric field "hotspots" so that they can affect the maximum

possible change to the field intensity and thus assure higher sensitivity.

Another point to note from figure 14.7(b) is that the SEF increases for the CPPh at certain w1.

This is because for higher w1 the PSPh and the CPPh overlap (see figure 9.19), thus the sensitivity

obtained is different from both the PSP and CPPh considered separately.

14.2.2 Increasing SEF using the HLP mode

We have shown in the last section that molecular localization help to enhance SEF owing to the fact that

the signal is achieved using less amount of target molecules. For arrays of metallic structures on a thin

metallic film, we have the possibility to confine the electric field close to the structures with the HLP

mode. This was discussed in chapters 11 and 12. The field distribution of the HLP mode as discussed

in section 12.3 shows a high field confinement close to the cylinders and almost negligible field on the

surface of the underlying metallic film. Thus to enhance SEF, it is evident that we need to localize the

target molecules around the cylinders.
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The bulk index sensitivity for the HLP mode was shown in section 13.4. Such bulk sensitivity for

the HLP mode is much less as compared to that of the PSP. This is because the electric field of the HLP,

owing to its LSP component, is much more confined than that of the PSP. However this very property for

the HLP can serve to be useful for target induced detection where the local field confinement plays the

important role.

To characterize the spectral sensitivity of the HLP with target localization around the nanocylinders

we will consider the same structure as presented in figure 13.4. The reflectivity dispersion was calculated

using a biolayer of thickness e = 4nm of refractive index na = 1.48. The reflectivity sensitivity for

the structure Smol:R = ∆R/e in %/nm is shown in figure 14.9. Smol:R is lower for the HLP than

that for the PSP , the later shown in figure 14.2. However, the diameter of the cylinders isD = 50nm,

with height h2 = 30nm and periodicity of Λ = 300nm. Thus, with the biolayer considered only

around the cylinders, the surface coverage of the molecules is much lower in this case than for an uniform

metal film with complete coverage. The surface coverage (in this case defined as ratio of areas unlike the

2D case where it was a ratio of lengths) is given by

fmol =
πD2

4 + 2πDh2
2

Λ2
(14.5)

For the chosen structure the surface coverage is fmol = 0.074. We can define the reflectivity SEF in

the same way as the spectral SEF as

SEFR = Sfac/fmol

where

Sfac(λ) =
Smodemol:R(λ)

SPSPmol:R(λ)

(14.6)

For the calculation the Smol:R for the uniform gold film (PSP) was evaluated for each excitation wave-

length (λ) and was used to normalize that of the structure. The SEFR, as a function of (λ, (k///k0))

is shown in figure 14.9. We see that the SEF can reach values up to 12 using the HLP mode.

Similarly, the spectral shift (∆λ) was calculated for the HLP− mode as a function of period for

(k///k0) = 1.42. Cylinders of height h2 = 30nm and diameter D = 50nm was used for the

calculations. The biolayer layer thickness was considered to be e = 4nm and index of na = 1.48.

The excitation wavelength of the HLP− mode (reflectivity dip for the structure) as a function of

period is shown in figure 14.10. The analytical calculation for the dispersion of the HLP and the BMs are

also shown in the figure (same as figure 12.4(a)). The spectral sensitivity (Smol:λ) for the corresponding

reflectivity dip is shown in figure 14.10(b).

We must recall here the two regimes for the HLP modes introduced in section 12.3, namely the confined

regime and the extended regime. The two regimes were shown as a function of period for (k///k0) =

1.42 in figure 12.8. For the present results, the periodicity was varied from Λ = 160− 520nm with

steps of 40nm. For these periods the confined HLP is excited for Λ = 160− 240nm and the extended

HLP for Λ = 320− 520nm with theBM(Λ) being excited for Λ = 280nm at the (k///k0) used

for the calculation. For periods Λ > 440nm in the present calculation, the HLP comes under the

influence of theBM(Λ +D).

We clearly see these trends in the calculation of Smol:λ. As mentioned in the previous section, the

spectral sensitivity depend on the change brought about to local electric field intensity by the bound
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Figure 14.9: (a) The reflectivity sensitivity Smol:R calculated for an array of gold cylinders of D =
50nm, h2 = 30nm and Λ = 300nm on an uniform gold film of height h1 = 30nm. The refractive
indices were nh = 1.333 and nb = 1.513. A biolayer of thickness e = 4nm was considered around
the cylinders with refractive index na = 1.48. (b) The calculated SEFR for the structure as a function
of (λ− (k///k0)).

molecules. This field confinement and change to the field intensity is higher for the confined regime of

the HLP. Thus we have higher spectral sensitivity for the smaller periods. For Λ = 240nm the spectral

sensitivity is almost zero because of the BM, which is an extended mode. For higher periods we have

lower Smol:λ because the HLP excited for those periods at (k///k0) = 1.42 is extended. For Λ > 440

the field intensity around the cylinders and thus the Smol:λ is even lower because of the influence of

BM(Λ +D).

The SEF however is higher for larger periods because the surface coverage fmol decrease as the

square of the period (equation 14.5) thus increasing SEF rapidly with period. For effective affinity sensing

both the SEF and Smol:λ must be considered for optimizing the structures. Just a high SEF with very low

spectral shift may not be useful as then the detectable signal (∆λ) is too low for effective measurement.

As an example, for this present structure geometry with cylinder diameter of 50nm, the optimum period

for effective detection is Λ = 400nm at incident angle θ = 70◦ ((k///k0) = 1.42). However it may

well be different if other incident angle is considered. For such optimization the actual mode responsible

for the reflectivity dip must be studied and thus the detailed understanding of the excitation of the modes

presented in part IV is of paramount importance.

It is clear from the results that to have higher SEF we have to increase the periodicity of the structures

and decrease the area over which the molecules are functionalized. For the current example of cylinder

arrays we need to have smaller cylinder diameters and larger array periods. But with a square array,

increasing the period in turn causes a shift of the resonance frequencies of the modes and thus changes the

inherent sensitivity of the modes. As was stated in the previous section, if we need to increase the SEF by

increasing the period, we need to play with the dimension which does not affect the dispersion of the HLP

mode.

Recalling the concept of modes in terms of (k0, (k///k0)) (chapter 8), the dispersion was character-

ized along a certain direction called the vector ~p. For the HLP (chapter 12) this vector was defined along

x axis of the structure. The dispersion of the BMs and the HLP are defined along this particular axis
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Figure 14.10: (a) The wavelength of the reflectivity minima for the HLP mode as a function of the array
period (Λ) The structure geometry is same as figure 14.9. The analytical calculation of the HLP and
the BMs are also shown in the figure. (color code same as figure 12.4). (b) Spectral sensitivity of the
corresponding reflectivity dip shown in (a) as a function of period. The biological layer was considered
only around the cylinders and thickness e = 4nm. (c) The SEF of the same as a function of period.

and the period along the x axis plays the major role in the excitation condition of the modes. However

the dispersion (mainly that of the BM) should be almost independent of the periodicity along an axis

orthogonal to x (in this case y axis). We can then assume that an increase of the period along y (Λy) will

help to increase the SEF, however not affect the sensitivity (Smol:λ) of the modes.

The reflectivity was calculated with varying only the periodicity along y axis (rectangular array) and

is shown in figure 14.11. As before the biolayer was considered only around the cylinders. The period

along x was taken as Λx = 160nm.

The contrast of reflectivity and the resonance wavelengths of the BMs do not change with the period

along y. We only notice a slight blue shift of the HLP wavelength. We must recall that the coupling

parameter for the HLP was defined as Γ12 = (1/τ 2)× (h2 +D)/Λ in section 12.1 for square array. In

fact the dependence of the coupling parameter on the period is rather
√

ΛxΛy for a rectangular packing

when Λx 6= Λy. Thus as Λy is increased the coupling parameter decreases and thus there is blue shift of

theHLP− mode (the same trend for theHLP− with period of the square array).

The sensitivity (Smol:λ) of the mode also does not change with Λy. However the surface coverage of

the molecules which is now fmol ∝ 1/(ΛxΛy) decreases with Λy and thus we can effectively increase

the SEF of the structure. This is shown in figure 14.11(c) for Λx = 160nm.
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Figure 14.11: (a) Reflectivity as a function of wavelength λ for an rectangular array of cylinders with
dimensions h2 = 30nm, D = 50nm, Λx = 160nm for different periods along y (Λy). The
geometry is shown above. The curves with and without a biolayer of thickness e = 4nm localized
around the cylinders is shown. (b) Spectral sensitivity Smol:λ = §∆λ/e as a function of period along y.
(c) The spectral SEF in the same configuration.
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To conclude on the SEF, an even higher SEF than those values shown here can be achieved by playing

with the periods along the two axes and making certain that the working (λ, θ) is chosen so that we excite

the confined regime ofHLP−. It also assures a high enough signal Smol:λ which is comparable to that

of the PSP in an uniform metallic film with Sfac values close to 1.
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Chapter 15

Experimental excitation of the modes
in Kretschmann configuration

The SPR configuration used in this work was described in brief in section 3.2. In Kretschmann configura-

tion, a glass prism is used to couple the incident light to the plasmons. A monochromator allows to scan

the incident wavelength (λ) and a motorized platform helps to scan the angle of incidence (θ) of the light.

The incident light is collimated and polarized (TM or TE), thus we have an incident plane wave similar to

the condition used in the numerical calculations.

The experimental bench is shown in figure 15.1. The various parts of the experimental setup will be

described in brief.

Light source: A halogen lamp is used as the white light source. The lamp is coupled to a monochro-

mator (iHR 320, HORIBA Scientific) to scan the incident wavelengths within the range 500-1500nm. The

spectral width of the light can be adjusted by slits at the exit of the monochromator and was fixed to be

13nm to limit the speckle. The light from the monochromator is collected by an optical multimode fiber

with a core diameter of 365 µm.

Collimating system: The light from the fiber is collimated to obtain a beam of diameter 1cm and a

residual angular divergence of 0.23◦. A linear polarizer operated by a motor is used at the exit of the

collimator to select TM or TE polarization of the incident beam with respect to the biochip-flow cell

interface.

Imaging system: The light reflected from the biochip is collected by an objective and then imaged

with a CCD camera (Pixelfly QE, 1392×1024 pixels with a full well capacity of 18000 e−). The objective

has optical zoom to adapt to the size of the zone on the imaged biochip.

Motorized angle scanning system: The angle of incidence at the biochip-flow cell interface is

scanned using a motorized platform to rotate the collimating system and the imaging system. The

angle between the biochip-flow cell interface and the axis of the incident beam is considered to be the

external angle of incidence (θext). The internal angle of incidence θ is defined as the angle between

the incident beam and the axis perpendicular to the biochip-flow cell interface after refraction in the

prism. The relation between the external angle and internal angle of incidence is given by sin(θ−A) =

sin((π/2−A− θext)/npr) where A is the base angle and npr is the refractive index of the prism

used.

The angle between the axis of the camera objective and the axis perpendicular to the biochip-flow
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Figure 15.1: Picture of the SPR imaging sytem in Kretschmann configuration. The incident light from a
monochromator is collected by a multimode fiber and then collimated and polarized. The biochip along
with the prism is placed in the holder and the flow cell comprising of a Mylar film is attached to the
biochip surface. Light reflected from the biochip-flow cell interface is collected by the imaging system
comprising of an objective and a CCD camera.
The analyte solution is injected into the flow cell using a fluidic system. The temperature of the flow
cell is stabilized by a Peltier module. The collimating system and the imaging system are placed on a
motorized platform which permits the scanning of the incidence angle. Since for the setup, the angle of
incidence and the angle of collection by the imaging system is fixed to be equal, the system can only
record the specular reflection from the biochip.
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cell interface gives us the imaging angle. For the motorized platform the external incident angle and

the imaging angle are fixed to be equal and thus for the system only the specular reflection from the

biochip surface can be imaged. Light backscattered by diffraction from the biochip is thus not collected

by the camera. The external angle θext = 0 (θ = 79.29◦ with a 60◦ BK7 prism), is defined when the

collimator and the camera objection face each other. The scanning systems allows us to vary the angle of

incidence within a range of 0− 45◦ for the external angle ( internal angle θ = 50.16− 79.29◦ with a

60◦ BK7 prism).

Fluidic system: A fluidic system is used to inject the solution of target analyte. The solution is fed

into the flow cell by a peristaltic pump equipped with a degazer to avoid air bubbles in the flow cell. The

fluid from the pump is pushed into a solid block of titanium into which two holes are drilled which serve

as the entry and exit of the flow cell. A circle of 1cm diameter cut into a Mylar film of thickness 90 µm

serves as the flow cell and it is attached to the surface of the biochip.

For the measurements shown in this work, the water was injected into the flow cell and is the bulk

medium. Sucrose solution was used to study the sensitivity of the biochip to bulk index changes. For

affinity detection experiments the solution of the analyte was pumped into the flow cell for a fixed duration

of time (as required for the analyte to attach to the biochip surface) and then water was injected to wash

away the unbound analyte molecules.

Peltier module: The temperature of the flow cell is regulated with a precision of 0.01◦C using a

Peltier module. For the experiments shown in this work, the temperature was fixed at 22◦C.

Data processing: An image of the biochip surface acquired by the system at a particular wavelength

and incidence angle is shown in figure 15.2. Images taken with TM polarized are normalized to that taken

with TE polarization. The angle of incidence for all the experiments shown, is larger than the critical

angle of the prism-flow cell interface. Thus for TE polarization, considering that the plasmonic modes are

not excited for this configuration, the image results from total internal reflection of the incident light. This

normalization helps to correct the inhomogeneities caused by the illumination system.

Figure 15.2: Image of a structured biochip as obtained by the CCD camera at a given incident angle and
wavelength with TM polarized incidence.

Such value of reflectivity was calculated at the structured zone visible in figure 15.2. TM and TE

images were acquired at each value of λ and θ to obtain a complete dispersion map of the reflectivity as a

function of λ and θ. The acquisition was monitored by a home made Labview code.
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15.1 Experimental characterization of the CPP modes

The Confined Propagating Plasmons (CPP) were described in section 9.2.1. Such plasmonic modes can be

excited in a binary grating structure when light is incident parallel to the grating ridges. The dispersion of

the CPPs with grating width was shown in figure 9.20. To confirm the numerical results, a binary grating

was fabricated using e-beam lithography. The fabrication technique is briefly described in section 5.2.

For this experiment, the structure was fabricated on a BK7 (borosilicate glass) slide, with grating height

h = 50nm and width w1 = 700nm. The period of the grating was taken as Λ = 1400nm and thus

a filling factor of f = 0.5. The strucuture was fabricated by Anne-Lise Coutrot, Ingénieur de Recherche,

CNRS at the clean-room of Thales Research and Technology, Palaiseau.

The biochip was characterized using the SPR imaging system described in the last section. The image

of the biochip acquired is shown in figure 15.3. Multiple zones of the grating structure was fabricated on

the same biochip so that different zones of the biochip can be studied simultaneously. Scanning electron

microscope (SEM) images of the structured zone were acquired to verify the fabrication process. One such

image is shown in figure 15.3. The grating fabricated was homogeneous in dimensions with a precision of

about ±2nm on the width and period. An adhesion layer of 2nm titanium was used between the glass

and the grating ridges.

Figure 15.3: The image of a structured biochip as obtained by SPR imaging system. The edge of the
flow cell is visible in the image. Multiple zones of the grating structure were fabricated on the biochip.
The grating height was taken as h = 50nm, width of w1 = 700nm and period Λ = 1400nm. The
structure was fabricated on a BK7 glass substrate. An adhesion layer of 2nm titanium was used. A SEM
image of the structured zone is also shown (right).

Reflectivity value was extracted from the image obtained by the SPR setup for each wavelength and

angle of incidence. The reflectivity dispersion map is shown in figure 15.4. As expected no reflectivity

drop was observed for the TE polarized incidence. The angle of incidence was changed from θext = 1◦

to θext = 30◦ with a step of 1◦ which corresponds to the change of internal angle θ = 60◦ to θ = 79◦

with steps of 0.6◦. The wavelength was changed from λ = 550nm− 900nm with steps of 10nm.

The reflectivity map is shown as a function of λ and θ, which are the measured quantities. The existance

of the two modes, namely the CPPb(1) and the CPPh(1) are clearly visible in the reflectivity map,

which manifest as drops in reflectivity. The reflectivity calculated by numerical methods and shown
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elsewhere in this work (figures 9.19,13.3 and 14.5) however has a much higher contrast (ratio of maximum

and minimum of reflectivity) than that obtained in the experimental reflectivity.

Figure 15.4: The experimental reflectivity (R(expt)) of the binary grating structure as obtained by the
SPR imaging system. The flow cell was filled with water.

For the numerically calculated dispersion, the total light flux reflected by a structure was considered.

For the calculations of transmission, the total flux emitted on the side opposite to the incident side is

considered. However, for the experiment, only the specularly reflected light is collected. Thus the

experiment and the numerical calculations, match only when all the light from the biochip surface

undergoes specular reflection. This is true for a thin metallic film but for binary gratings, only the 1st

order of diffraction is reflected along an angle equal to the angle of incidence. But the higher orders,

depending on the periodicity of the grating, are diffracted along other angles which are not collected by

the objective and CCD camera used in the experimental setup. Thus, there is loss in intensity and the

maximum reflectivity value in the reflectivity dispersion map is less than that calculated numerically.

With the numerical model used in this work, we have calculated the reflectivity with the contribution

of different orders of diffraction (equation 6.5 of section 6.2 in terms of Rayleigh expansion). The

first diffraction order for reflectivity (R0) corresponds to the specular reflection and represents the flux

collected during the experiment. R0 for the structure is shown in figure 15.5 and we see that it matches

closely the reflectivity map obtained in the experiment. An additional loss of reflectivity as compared to

the calculated reflectivity shown elsewhere in this work is caused by the thin titanium adhesion layer used
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for the experimental biochip. This Ti layer was considered for the numerical calculation shown in figure

15.5.

Figure 15.5: Reflectivity of the binary grating structure calculated numerically as a function of λ and θ.
The total reflected flux is shown as R (top) and that for the 1st diffracted order is shown asR0 (bottom).
The refractive index of the medium surrounding the grating is nh = 1.333 and the substrate with index
nb = 1.513.

15.1.1 Measurement of bulk index sensitivity of CPP

Having validated the excitation of the CPP modes in the binary grating structure, we have measured the

sensitivity of the modes to local refractive index changes.

The sensitivity for the CPP with respect to bulk refractive index changes was discussed in section 13.3.

For the CPPh the spectral sensitivity Sλ to bulk index changes is much lower than that of the PSP and

CPPb is not sensitive to such index changes. For the experiment, sucrose solution was injected in the

flow cell to simulate the shift of bulk refractive index. Sucrose was dissolved in water in the ratio 6.9mg

of sucrose perml of water. This causes a refractive index shift of water of 10−3RIU . The reflectivity

spectrum was measured with the SPR imaging system with water in the flow cell and then by injecting the

sucrose solution. The spectrum is shown in figure 15.6.

As expected, there is no shift of the CPPb(1) wavelength with a change in bulk refractive index.

For the CPPh(1) the spectral shift is equal to ∆λ = 1.6nm. Thus considering an index shift of

∆n = 10−3RIU the spectral sensitivity at λ = 587.5nm is Sλ = 1600nm/RIU which is similar

to that obtained by numerical and analytical calculations for the CPPh (figure 13.3d).

208



Figure 15.6: The reflectivity as a function of λ for angle of incidence θ = 78.07◦ obtained experimentally
using the SPR imaging system. The reflectivity with water in the flow cell (black solid) and with the
sucrose solution (blue dashed) is shown in the figure. A zoom at the positions of the two reflectivity dips
which correspond to the modes CPPh and CPPb is shown (bottom).

15.1.2 Measurement of bio-molecular sensitivity of CPP

The sensitivity of CPP to the binding of a bio-layer was discussed in section 14.2.1. It was shown that to

increase the sensitivity of the CPP for such detection in terms of SEF, one need to localize the analyte

preferentially on the sides of the grating ridges. From figure 14.7 we see that such target localization

results in a SEF of 2.5 for CPPh and 1.7 for CPPb.

To realize such target localization experimentally we need to passivate the regions of the biochip

where we do not want the target to be adsorbed. This can be done by covering those regions with some

material to which the target molecules will not bind. In this experiment, we have used Bovine serum

albumin (BSA) molecules. Such protein molecules are known to bind on gold surfaces while it does not

bind to dielectric layers such as silica. This principle can be used for selective target localization of the

BSA molecules on the biochip to characterize the later in terms of SEF.

For selective binding of the BSA molecules to the sides of the grating ridges, the top of the grating

was covered with silica. This was done by controlled sputtering of pulverized silica, along the direction

perpendicular to the grating surface. Such method of selective silica deposition has already been reported

[244]. The schematic of the principle is shown in figure 15.7. The thickness of the deposited silica was

8± 2nm. With such a deposition we expect the sides of the grating ridges to be free of silica and thus

the BSA molecules to bind only to the sides.

The reflectivity of the biochip after silica deposition was measured using the SPR imaging system. The
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Figure 15.7: Schematic of silica deposition on the grating to cover the top of the ridges.

same structure characterized and shown in figure 15.6 was used with h = 50nm,w1 = 700nm and

Λ = 1400nm. In figure 15.8 the reflectivity spectra for the two modes, before and after the deposition

of silica is shown. The fluidic cell was filled with water. We clearly see a spectral shift of both the modes,

the shift being much larger for CPPh than CPPb, where for the later the shift is almost negligible.

For CPPh the spectral shift was ∆λCPPh = 14.7nm for the spectral dip at λ = 588.3nm. On

the same biochip a zone with a thin gold film of height 50nm was deposited to compare the sensitivity

of the CPP modes with respect to that of the PSP. For the gold film, the spectral shift before and after

silica deposition was found to be ∆λPSPh = 17.7nm for the spectral dip at λ = 600nm. Thus the

Sfac = ∆λCPP/∆λPSP was found to be Sfac = 0.8 for the CPPh.

The reflectivity spectra for h = 50nm, w1 = 700nm and Λ = 1400nm was calculated

numerically and a spectral shift of 1.05nm/nm for the CPPh at λ = 589.6nm was seen for a layer

of index na = 1.48, considered only on the top of the ridge. This gives a numerical Sfac = 0.63 which

is close to the value obtained experimentally.

Figure 15.8: The reflectivity as a function of λ for angle of incidence θ = 78.07◦ obtained experimentally
using the SPR imaging system before and after the deposition of 8nm silica layer perpendicular to the
grating surface. The flow cell was filled with water.

The two experiments with and without the silica layer were done on different days and so with slightly
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different experimental condition. The ∆λ measured for the modes in this method are therefore not very

accurate. However we have mentioned this result because it provides a gross indication that the silica

layer was indeed deposited on the top of the grating, justified by the Sfac value being close to that found

in the calculations with a layer of index na = 1.48 deposited on the top of the ridges. We however did

not notice appreciable spectral shift of the CPPb. This can be explained by the fact that for CPPb, the

∆λ is very small (table 14.1) and thus such a small spectral shift may be unperceived when the same

experimental conditions are not respected.

For accurate sensitivity measurement, BSA was used on the biochip with the deposited silica layer.

The reflectivity spectrum was first measured in water, at the angle of incidence θ = 78.07◦. The

wavelengths of the plasmon dips for the CPPh and CPPb were found to be λ = 602.5nm and

λ = 823.0nm respectively.

Figure 15.9: The reflectivity as a function of λ for angle of incidence θ = 78.07◦ obtained experimentally
using the SPR imaging system. The reflectivity with water in the flow cell (black solid) and with bound
BSA (blue dashed) is shown in the figure. A zoom at the positions of the two reflectivity dips which
correspond to the modes CPPh and CPPb is shown (bottom).

The BSA solution was prepared by dissolving BSA in a phosphate-buffered solution (PBS) of pH 9 in

the ratio of 1mg BSA per milliliter of PBS. The solution was then introduced into the flow cell and left to

flow for 10-12 minutes, to assure that the BSA molecules were bound to the gold surface. Then water,

was introduced into the flow flow cell and biochip rinsed for a few minutes. The reflectivity measurement

was carried out with the flow cell filled with water. Thus any spectral shift observed is only due to the

BSA molecules firmly bound to the biochip surface. The two reflectivity spectra, in water and with bound

BSA are shown in figure 15.9.
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The spectral shift with bound BSA molecules for the two modes are measured to be ∆λ = 2.1nm

for CPPh and ∆λ = 1.4nm for CPPb. To normalize the spectral sensitivity to that of the PSP, the

same experiment was carried out on a thin gold film of height h = 50nm. Although on the structured

biochip, we had a zone with uniform thin gold film, it cannot be used for BSA binding measurements as

no spectral shift was observed on that zone. This is because during the silica deposition the gold film was

also covered with silica and thus the BSA molecules did not bind to that zone. This result also confirms

that BSA molecules selectively bind to gold and not to silica.

For the reference gold film, the measurements were carried out at two values of the internal angles.

For θ = 78.1◦ the spectral shift with BSA was measured to be ∆λ = 7.0nm at λ = 595.25. For

θ = 65.9◦ it was measured to be ∆λ = 10.8nm at λ = 811.2. These two values were used

to normalize the values obtained for CPPh and CPPb respectively. We obtain the experimental

Sfac = 0.30 for CPPh and Sfac = 0.13 for CPPb. The values calculated numerically with "side"

target localization for the two modes are Sfac = 0.18 for CPPh and Sfac = 0.12 for CPPb. The

experimental value forCPPb is thus consistent with the numerical calculation. However the experimental

value for CPPh is higher than the numerical result and this can be due to the fact that the silica layer

was not considered for the numerical calculations, which affect the CPPh more than the CPPb.

For the grating of height h = 50nm, width w1 = 700nm and period Λ = 1400nm with target

localization on the sides of the ridges, the molecular filling factor is fmol = (2h)/(Λ) = 0.07. Thus

the SEF (= Sfac/fmol) for the structure in the experimental configuration presented above, can be

calculated to be 4.2 for CPPh and 1.85 for CPPb. Referring to figure 14.7 and the calculated SEF

of the two modes for width w1 = 700nm, we see that the experimental results for the CPPb match

closely to the calculated values. As predicted by the numerical calculation, we see the SEF for CPPh is

higher than that for CPPb.

15.2 Experimental characterization of the HLP and the BM modes

It was shown in chapter 12 that an array of metallic cylinders on a thin metallic film can support the Bragg

modes (BM) and the hybrid mode HLP resulting from the coupling of PSP and LSP. To experimentally

confirm these modes, arrays of gold nano-cylinders with an underlying gold film were fabricated using

e-beam lithography. All the experimental samples mentioned here after, were fabricated by Jean-François

Bryche as a part of his on-going PhD thesis at IEF, University Paris Sud and also within the framework of

the project ANR Piranex.

The reflectivity of the structure, calculated numerically was shown in section 12.2 and the evolution of

resonance frequencies of the modes with geometrical dimensions was shown in figure 12.4. Nano-cylinder

arrays of varying periodicity were fabricated to study the variation of excitation wavelength of the different

modes with period of the array.

For the fabricated structures the substrate was taken as BK7 glass and a gold film of height h1 =

30nm was deposited on it by electron beam evaporation (EBE) and attached to the glass substrate by a

2nm layer of titanium. The cylinder array was then realized on the gold film using EBL with cylinder

diameters of D = 50nm and height h2 = 30nm. The film and cylinder heights were verified by

ellipsometry-spectroscopy and X-ray measurements with a relative uncertainty of less than 10%. The

mean diameters of the cylinders were measured by statistical analyses of SEM images treated with Otsu’s

method and the uncertainty was found to be less than 3nm.
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On the same biochip, multiple zones with different periods ranging from Λ = 150nm to 400nm

were fabricated. This allows simultaneous reflectivity measurements of all the different periods with the

SPR imaging system. Thus treatment of all the zones under the same experimental conditions is assured.

The reflectivity from the biochip was recorded by the SPR imaging system with the flow cell filled with

water.

The image of the biochip as recorded by the SPR experimental setup is shown in figure 15.10. The

different zones with the corresponding periodicity is marked on the figure. SEM images of the zones with

cylinder arrays are also shown in the figure.

Figure 15.10: Image of the structured biochip as obtained by SPR imaging system (top). Multiple zones
of cylinder arrays of different periodicities were fabricated on the biochip. The structure was fabricated
on a BK7 glass substrate. An adhesion layer of 2nm titanium was used. The gold film height was
h1 = 30nm and the cylinder dimensions of h2 = 30nm and D = 50nm. The period was varied
from 150nm to 400nm. SEM images of the structured zones for periods Λ = 150nm, 250nm and
400nm is also shown (below).

The reflectivity as a function of the excitation wavelength and incident angle was recorded for each

zone. Reflectivity obtained with TM polarized light was normalized to that obtained with TE polarized

light. The result is shown in figure 15.11 for a period Λ = 200nm. In the same figure, the numerically

calculated reflectivity of the same structure is also shown. We see a close match between the calculated

and the experimental reflectivity map. For the calculated map, the titanium layer of 2nm was considered.

The numerical calculation shows the total reflectivity from the structure. Unlike the binary grating as

shown in figure 15.5, for the structure with the underlying gold film, the total reflectivity results only from
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the first diffracted order. Thus the total reflectivity (R) is equal to the first diffraction order (R0). For

such structures, no light intensity is lost in the higher diffraction orders even for larger periods.

Figure 15.11: (a) Reflectivity (R) for a cylinder array with dimensions h1 = 30nm, h2 = 30nm,
D = 50nm and Λ = 200nm in a medium of refractive index nh = 1.333. A titanium layer of 2nm
was considered between the substrate (index nb = 1.513) and the gold film. The analytical dispersion
of the HLP (green) and the BM (black) for the structure is also shown. (b) The experimental reflectivity
(R(expt)) of the structure as obtained by the SPR imaging system. The flow cell was filled with water.

The analytical calculation for the HLP and BM is also shown in the figure and thus we can identify the

different reflectivity dips in the map with the corresponding modes. The experimental reflectivity maps

for the other periods are shown as a function of k0 and (k///k0) in Appendix B (figure B.2).

The dependence of the resonance wavelengths of the modes (reflectivity dips) with the period of the

array were measured at incident angle θ = 71.1◦ and shown in figure 15.12. The reflectivity spectra at

the given incident angle, for each period is shown, with the various reflectivity dips marked by arrows.

The contrast (ratio of maximum and minimum of reflectivity) of all the dips is not the same: the dips

corresponding to the BMs are much weaker than those for the HLP.

The dips in reflectivity as a function of array period is shown in figure 15.12(b) along with the analytical

calculation for the dispersion of the various modes. This figure is comparable with the dispersion of the

modes shown in figure 12.4(a). We see that all the modes as described in section 12.2 can be excited

experimentally in the Kretschmann configuration.

Experimentally, the BM are generally not as strong in terms of reflectivity contrast as predicted by

the numerical calculations. This is also evident from the complete reflectivity dispersion map shown in

figure 15.11 and in figure B.2 of Appendix B. This can be explained by the fact that for the numerical

calculations, a homogeneous array extending to an infinite distance was considered. Thus to be closer to

the numerically predicted characteristics of the BM, the array needs to be homogeneous at-least up to the

propagation length of the PSP which is around a few tens of micrometers (figure 2.3). The HLP however

occurs due to the coupling of the PSP and the LSP and are thus results of a much more localized effect.

So gross inhomogeneities of the array dimensions are not critical for their excitations. But the shape
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and dimensions of the cylinders (or nano-particles in general) play a major role in the LSP resonance

wavelength and thus in turn effect strongly the resonance wavelength of the HLP. These points should be

noted during fabrication of the structures, in order to excite the different plasmonic modes.

Figure 15.12: (a) Normalized reflectivity spectra at θ = 71.14◦ for different period (Λ) of the structure.
Arrows show the reflectivity minima, which correspond to the various modes excited in the structure.
(b) The resonance wavelengths of all the modes (minima of reflectivity) are shown as red squares as a
function of array period. The error bars correspond to the minimum step of incident wavelength (10 nm)
used for the experiment. We have superposed the analytically calculated dispersion of the modes as a
function of period: HLP (green), BMs calculated for kB = 2π/(Λ) (black solid and dashed) and BMs
for kB = 2π/(Λ +D) (red dashed and solid).

15.2.1 Sensitivity measurements for the HLP

The sensitivity of the HLP for bulk index changes was discussed in section 13.4 and that for affinity

biosensing was discussed in section 14.2.2. We have shown that by selective target localization the SEF

for the HLP can be enhanced by more than an order of magnitude. However for such experiments, the

biochip must be orthogonally functionalized by covering a portion of the biochip surface by a material to

which the analyte cannot bind. This was successfully shown for the CPP in metallic grating structures in

section 15.1.2. Fabrication techniques used allowed us to cover the top of the grating ridges with a thin

silica layer and thus effectively enhance SEF. However to enhance SEF for the HLP mode, we need the

silica layer to be deposited in the gaps between the cylinders and leave the top of the cylinders available

for specific binding of the analyte. Current fabrication techniques and available methods were not able to

achieve this orthogonal deposition of silica layer to cover only the uniform gold surface.
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However in this section, we will present another very important experimental result for the HLP which

is also applicable to plasmonic modes in general. We will show that the behavior of the same mode,

with the same electric field distribution, in the presence of a molecular layer is very different from one

another and this is evident in the sensitivity of the mode. This difference is brought about by the chosen

interrogation method (choice of λ for spectral interrogation or θ for angular interrogation). The difference

is not observed by just a study of the field distribution of the mode, but is due to the its inherent dispersion

characteristics. In the following the experimental verification, two different periods of the cylinder array

was chosen to excite the HLP at the same wavelength (λ = 800nm) but at two different incident angles.

Fixing the wavelength also assures that the dispersion of the refractive index of the molecule used do not

effect our measurement. This is shown in figure 15.13. We will show that for Λ = 200nm where the

interrogation is done at a higher internal angle, the sensitivity is higher for smaller thickness of molecular

layer than that for Λ = 300nm where the interrogation is done at a lower angle of incidence.

Figure 15.13: Reflectivity calculated numerically as a function of λ and θ for cylinder arrays with period
Λ = 200nm (a) and Λ = 300nm (b). The analytical calculation of dispersion for the BM (black solid
forBMb and dashed for BMh ) and HLP (green) is shown. (c-d)The electric field intensity distribution
for the HLP at λ = 800nm for the two periods. The refractive index of the medium around the cylinders
was taken as nh = 1.333. For the calculation the plane wave was incident from the substrate of index
nb = 1.513

Arrays of nanocylinders of height h2 = 30nm and diameterD = 50nm with an underlying gold

film of height h1 = 30nm with varying periods (Λ) was used for the characterization. The fabricated

biochip is similar to the one presented in the last section (figure 15.10). The reflectivity dispersion map as

a function of wavelength and internal angle for Λ = 200nm and 300nm is shown in figure 15.13. The

analytical calculation for the BM and the HLP is also shown. For both the periods at λ = 800nm, the

HLP mode is excited, at θ = 75.1◦ for Λ = 200nm and at θ = 69.4◦ for Λ = 300nm. The electric
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field distribution for the two HLP modes is also shown in figure 15.13. We see that for both the periods,

the electric near-field distribution is almost similar, confirming that the same plasmonic mode is excited in

both the cases.

Figure 15.14: The numerically calculated reflectivity as a function of internal angle (θ) at λ = 800nm
for two periods (Λ) of the cylinder array with a molecular layer of thickness e. The schematic is also
shown. The angular shift per nanometer increase of thickness (∆θ/∆e) for the two periods is shown
below.

The reflectivity of the structure was then calculated numerically with a molecular layer around the

cylinders of thickness e and refractive index na = 1.49. The thickness of the layer was varied and

the reflectivity curves at λ = 800nm are shown in figure 15.14 for the two periods. We see that the

reflectivity curves for Λ = 200nm rapidly decrease in contrast (ratio of minimum and maximum of

reflectivity) while for Λ = 300nm the contrast remains the same and only an angular shift is observed

with increase of thickness (e). Thus the difference in behavior for the two periods is evident.

The angular sensitivity (∆θ/∆e) was calculated which represents the angular shift per nanometer of

increase of the molecular layer. This is also shown in figure 15.14. For Λ = 200nm the sensitivity for

small thickness e is higher than that for Λ = 300nm however we see a rapid loss in sensitivity for the

smaller period while the sensitivity is almost constant for Λ = 300nm. Thus for larger values of e the

sensitivity for Λ = 300nm becomes higher than that for Λ = 200nm. This can be explained by the

fact that for Λ = 200nm the interrogation angle is higher and so the slope of dispersion of the mode
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Figure 15.15: Electric field intensity (I/I0) with Λ = 200nm and Λ = 300nm at the center of the
cylinders (x = 0, y = 0) along the axis z for different molecular layer thickness e. The cylinders are
placed as z = 0 and are of height 30nm. The uniform gold film of 30nm was considered at z = −30nm
to z = 0nm. The refractive index of the medium for z > 30nm was taken as nh = 1.333. The
molecular layer of thickness e is marked in the figure in blue. (Bottom) The variation of the total field
intensity along z (∆(I/I0)) per nanometer increase of the thickness ∆e as a function of e.

with respect to incidence angle (figure 15.13(a)) is also higher which results in a higher ∆θ. But with

increasing molecular thickness, the interrogation angle approaches 90◦, close to which the sensitivity

drops rapidly.

We have shown in chapter 14 (figure 14.8) that the sensitivity (spectral shift) of the plasmon resonance

is not proportional to the absolute electric field intensity. Here we will show that the sensitivity is rather

proportional to the change in the field intensity caused by the deposited dielectric layer. This is an

important point to note for biosensing. A mode with a very high field confinement may not always be as

218



efficient for biosensing, if the molecular layer cannot cause a significant change to the confined field.

To validate this fact, the near field intensity distribution for the confined and extended HLP at the two

periods was calculated with increasing molecular layer thickness. This is shown in figure 15.15. The field

intensity at the center of the cylinders (x = 0, y = 0) along the axis of the cylinder (z) is shown for the

two periods. We see that the field distribution without the molecular layer (bare gold, e = 0) is almost the

same for the two periods confirming the fact that it is the same plasmonic mode (HLP). However by adding

a molecular layer the field distribution for the interrogation at higher angle of incidence (Λ = 200nm)

decreases rapidly while that for the interrogation at lower angle of incidence has almost insignificant

decrease. This is more evident in the curve showing the change of the total integrated intensity (∆I/I0)

along z as a function of molecular layer thickness (e). The trend of this curve with e follows closely the

trend of the angular sensitivity evolution with thickness. The fact that the field intensity changes rapidly

for higer incident angles, results in its higher sensitivity for lower values of e as compared to that at lower

incident angle. However for higher values of e owing to the large intensity change, the field is almost

negligible for Λ = 200nm and thus its sensitivity drops. This low field intensity for larger thickness e

also explains the low contrast of the reflectivity dips observed for Λ = 200nm.

The angular sensitivity for the two periods was measured experimentally using the SPR setup. For this

measurement the thickness of the molecular layer bound to biochip surface has to be changed in real time

and the corresponding reflectivity as a function of internal angle needs to be measured. For this purpose

two well known polyelectrolytes, Poly(allylamine hydrochloride) (PAH) and Poly(styrenesulfonate)

sodium salt (PSS) were used and their binding to the biochip surface was studied [245, 246]. As gold is

naturally electro-negatively charged, the positively charged PAH solution is first injected into the fluidic

cell and it is expected to form a SAM on the gold surface. The second injection of PSS, whose charge is

negative creates a PAH-PSS bilayer on the surface. The thickness of this PAH-PSS bilayer was measured

by calibrated SPR measurement using an uniform gold film and the average thickness was found to be

7.4nm. The refractive index of the bilayer was considered to be 1.5 at 25◦C. The process is repeated

multiple times and thus a change of molecular layer thickness (e) was achieved with a step of 7.4nm. In

this work, we will not go into the details of the bilayer deposition procedure and this experiment was done

as a part of the PhD thesis of Aurore Olivero at Laboratoire Charles Fabry. The results are summarized in

figure 15.16.

The reflectivity as a function of angle of incidence shows the same trend as calculated numerically

(figure 15.14). The loss of contrast for the reflectivity curves is observed for Λ = 200nm while for

Λ = 300nm the minimum of reflectivity remains the same. The sensitivity was calculated as the change

in the internal angle with each binding bilayer. This angular shift was normalized to that of the shift for an

uniform gold film which was also fabricated on the same biochip and measured simultaneously. This was

done to compensate for all the drifts and fluctuations during this long experiment. We see the sensitivity

for the smaller period is higher by a factor of 2 as compared to that for higher period for the first bilayer.

Then for consecutive bilayers the sensitivity for Λ = 200nm drops sharply and becomes less than that

of Λ = 300nm for roughly e = 20nm (considering each bilayer to be 7.4nm). This same trend is

observed for the numerically calculated sensitivity and the field intensity of the two modes.

This experiment thus validates that the sensitivity of a plasmonic mode depends on the change of

electric field intensity brought about the molecular layer and not on the absolute electric field intensity

confined by the mode. The same mode at different values of (λ, θ) can behave differently owing to the
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dispersion characteristics of the mode. Also the rapid drop in sensitivity for Λ = 200nm can be used

for other applications such as optical switching.

Figure 15.16: (a) The schematic for the binding of the polyelectrolytes bilayer to the biochip surface (b)
The thickness of each bilayer as obtained by calibrated SPR measurement with an uniform gold biochip.
(c) The experimentally measured reflectivity as a function of internal angle (θ) at λ = 800nm for
Λ = 200nm with each PAH-PSS bilayer. (d) The same for Λ = 300nm. (e) The measured angular
shift per nanometer increase of thickness (∆θ/∆e) for Λ = 200nm as a function of e (considering
each bilayer to have an average thickness of 7.4nm) (f) The same for Λ = 300nm.
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Chapter 16

Nano-structures for SERS detection

In section 5.4 the Piranex project to which this work was partially dedicated, was mentioned. The aim of

the project is to develop a bimodal instrument combining SERS and SPRI detection. The nano-structures

described in the preceding chapters and the consequent plasmonic modes can be used to enhance the

sensitivity of the detectors for both SERS and SPRI. The sensitivity of the modes for SPRI have been

explicitly discussed. The theoretical explanation of the phenomenon that leads to enhanced Raman

spectroscopy (SERS) was described in section 4.2. In the section we have mentioned that the SERS

enhancement results from two simultaneous enhancement processes,

(a) the enhancement of the incident field owing to excitation of plasmonic modes, occurring at the

frequency of the excitation,M(νi).

(a) the enhancement of the raman scattered field re-radiated by the metallic structure at the frequency

of emission,M(νs)

where νi and νs are the frequencies of excitation and emission respectively. The total enhancement

of the SERS intensity can then be written as ISERS ∝M(νi)
2 ×M(νs)

2.

The electromagnetic (EM) enhancement for the SERS intensity is thus proportional to the field

intensity enhancement caused by excitation of various modes in the system. In this chapter we will briefly

discuss with examples two such enhancements caused by the LSP in binary arrayed structures and by the

BM in arrays with underlying thin metallic film. In both the case we will show with experimental data,

that the SERS intensity is stronger by almost an order of magnitude whenever the excitation and Raman

emission conditions satisfy the presence of the plasmonic modes in the structures.

For the SERS experiments shown in this work, the configuration presented in figure 4.7 of section

4.2.2 is used (Raman microscope XploRA ONE TM from Horiba Scientific). All SERS measurements

and extinction spectra shown in this work were obtained by Raymond Gillibert as a part of his PhD

thesis at CSPBAT, University Paris 13. The structured biochips used for characterization were realized

on BK7 substrates by Jean-François Bryche at IEF, Orsay. For the SERS setup, the biochip is placed in

the sample holder, with the surrounding medium being air, and the exciting laser light is incident on the

biochip surface from air. SERS spectra of thiophenol obtained as a part of the PIRANEX project for gold

nano-structured biochips is shown in figure 16.1. We do not observe the Raman scattered peaks with

the molecules deposited on uniform glass or gold substrate. However strong peaks are recorded when

the molecules are deposited on the gold nano-structures validating the enhancement of Raman scattering

cross-section by metallic structures.
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Figure 16.1: Adapted from J.F.Bryche et al [247]: SERS intensity spectra obtained for thiophenol
molecules deposited on glass substrate; on a uniform gold film; on a cylinder array on glass; on a cylinder
array with an underlying gold film.

The experimental configuration used for SERS measurements is different from the Kretschmann

configuration presented so far in this part, in two important aspects as described below.

Recalling the concepts of plasmonic modes used in this work, (chapter 8), for describing the plasmonic

modes in the structures we have used the notation k0 and (k///k0) and the later depends index of the

medium of incidence. For the biochip, we denote the index of the medium surrounding the structured

surface by nh and the index of the substrate by nb. In this case nh = 1 while nb can be approximated to

1.513 for BK7. Thus for the Kretschmann configuration with incidence from glass, we could excite the

modes beyond (k///k0) > nh while in this case for SERS, with incidence from air we can access only

the values of (k///k0) < nh. Thus the first major difference between the Kretschmann configuration

and the SERS configuration used here is that in the later we cannot excite the PSP or the hybrid modes

with result from the PSP such as the CPP or the HLP.

The second difference, though not a major one is that the medium surrounding the structures in the

Kretschmann configuration was water while in this case it is air. Thus we may expect certain shifts of the

resonance conditions for the modes mainly the LSP for the SERS experiments as compared to the SPRI

experiments. Thus to analytically calculate the resonance conditions in terms of excitation wavelength

and incident angle, the proper values of the indices must be used. It must also be noted that a structure

optimized for a certain wavelength for SPRI may not have the same performance at that wavelength when

used in the SERS experiment.
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16.1 SERS enhancement by localized surface plasmons

To demonstrate the effect of field enhancement caused by excitation of the LSP in metallic particles on

SERS intensity, arrays of gold nano-cylinders were used. The LSP resonance condition for such arrays

was discussed in section 10.3.

The array of gold cylinders of height h = 50nm were fabricated on BK7 substrate using EBL.

For the experiment the diameter of the cylinders were varied between D = 70nm and 200nm. The

spacing between adjacent cylinders were kept constant at 200nm and thus the period of the array was

Λ = D + 200nm. Zones with different diameters were fabricated on the same biochip to allow

simultaneous measurements of the different structures. The SEM images of the fabricated structures are

shown in figure 16.2.

Figure 16.2: SEM images of gold nano-cylinder array on BK7 glass substrate. The cylinder heights
were 50nm and the period varied as Λ = D + 200nm where D is the diameter. Two zones of the
same biochip are shown, with intended diameters D = 100nm and 200nm. The uncertainty on the
fabricated lengths was around ±5nm.

The Raman microscope XploRA ONE TM from Horiba Scientific also allows the measurement of the

extinction spectra of the sample using a white light source and a spectrometer. Such extinction spectra

were recorded for the different diameters and shown in figure 16.3.

The LSPR condition (λLSP ) corresponds to the peak of extinction. We see that there is a red shift of

λLSP with diameter of the cylinders. This is the trend we expect for theLSPT mode described in section

10.2. The LSPR resonance condition can be analytically calculated using the χ formulation given by

equation 10.10. The resonance condition thus obtained analytically for the cylinders and experimentally

is also shown in figure 16.3. We see a small deviation of λLSP for the calculation and experiment and

this is probably because the diameters of the cylinders in the fabricated structure are not precisely the

values used for the calculation but have a uncertainty of around ±5nm.

To measure the SERS signal, thiophenol (C6H6S) is used as the analyte because of its high Raman

cross-section and due to the strong affinity of the thiol group to gold surfaces. The functionalization of

thiophenol on the biochip surface was done first by preparing a 0.1 mM solution of thiophenol in ethanol

and then dipping the biochip in the solution for about two hours. The biochip was then rinsed with ethanol

and dried in nitrogen.
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Figure 16.3: (a) The extinction spectra for the gold cylinder arrays on glass for different diameters. The
diameters were varied from 60nm to 200nm and are marked on the figure for each curve. (b) The LSPR
condition λLSP which corresponds to the peak of extinction as a function diameter (red dots). The
analytical calculation for λLSP using χ formulation is also shown (blue).

Raman shifts are measured in terms of wave-numbers and denoted by ∆SRaman = 1/λs − 1/λi

in cm−1 where λi and λs are the excitation and emission wavelengths respectively. This shift is

purely dependent on the type of molecule and independent of all experimental conditions. For Raman

measurements, the scattered intensity at the shifted wavelength is recorded. For thiophenol there are several

strong Raman peaks for shifts of 419cm−1, 1000cm−1, 1024cm−1, 1075cm−1 and 1575cm−1.

The peak at 1075cm−1 is the strongest and will be used for our measurements.

Three different lasers were used for the excitation with wavelengths λi = 633nm, 660nm and

785nm. The corresponding Raman emission wavelengths for the peak at 1075cm−1 areλs = 679nm,

710nm and 857nm. The laser was focused on the biochip using a microscope objective (100×,

N.A. = 0.9) over a zone of around 144µ2m. The backscattered light from the surface was collected by

the same objective and recorded using a spectrometer with spectral resolution of 4cm−1. The recorded

intensity spectra were normalized to the acquisition time and laser power. The intensity at 1075cm−1 is

used for the following discussions.

The measured SERS intensity for each cylinder diameter as a function of the corresponding exper-

imental λLSP for the array, is shown in figure 16.4 for the three excitation wavelengths. The values

are normalized to the maximum value for each curve. From the figure, we see that the SERS intensity

undergoes an enhancement with varying diameters and have an optimum value. This value corresponds

to the diameter of the cylinders for which we have λLSP close to the excitation wavelength of the

measurement. Thus we can conclude that the SERS intensity is enhanced if the incident light can excite a

plasmonic mode in the structure, in this case the LSP at the excitation wavelength.

For this configuration, the LSPT is excited in the cylinders. The electric field intensity distribution

of the mode with light incident from the medium surrounding the cylinders (which is true for our present
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Figure 16.4: Experimental SERS intensity at raman shift of 1075cm−1 for the arrays of varying diameters
as a function of measured λLSP for the corresponding array (red squares). The calculated ISERS given
by equation 16.1 is also shown (black) as a function of λLSP calculated by χ formulation for each given
cylinder diameter.

SERS configuration) was shown in figure 10.13. The field is enhanced around the edges of the cylinders.

To find a direct relation between the enhancement of SERS intensity and the electric field intensity around

the cylinders we have numerically calculated the field intensity for each cylinder array at λi and λs. Plane

wave with normal incidence from medium with index nh = 1 was considered for the calculation. The

field intensity was then integrated around the cylinder surfaces (Isurf ) by the method described in section

10.3 (equation 10.11 and 10.12). Here the integral was calculated only around the cylinders because we

expect the SERS intensity to result from only the thiophenol molecules bound on the gold surface.

As mentioned earlier, the SERS intensity is proportional to the product of the intensity enhancements

at the excitation and emission wavelengths. Thus to calculate the electromagnetic contribution to the

SERS intensity enhancement we will define

ISERS = Isurf(λi)× Isurf(λs) (16.1)

This calculated ISERS (normalized to the maximum value for each curve) is superposed in figure

16.4 for each pair of excitation and emission wavelengths. The calculated intensity is shown as a function

of λLSP calculated analytically for each cylinder diameter by χ formulation. The representation of the

SERS intensity and the calculated intensity with respect to λLSP , assures that the uncertainty on the

fabricated diameter values are avoided in the comparison.

We see a near perfect match for the variation of the SERS intensity and the calculated ISERS . This

result validates the principle of the two simultaneous processes for SERS enhancement described at the

start of this chapter. The incident light excites the plasmonic modes (in this case the LSPT ) in the

structure, the confined EM field of the modes causes the a part of the enhancement. The re-radiated light

from the molecules at Raman scattered wavelength re-excites plasmonic modes, the field confinement of
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which causes another enhancement of the SERS intensity. Thus a mathematical product of electric field

intensities at λi and λs can predict the tendency of the enhancement of SERS intensity.

We will now use the same principle and predict the SERS intensity enhancement with the excitation

of another plasmonic mode, the Bragg mode in an array of metallic cylinders with an underlying metallic

film.

16.2 SERS enhancement due to the Bragg Modes

The Bragg modes in a metallic array on a metallic film was described in details in chapter 11. The

dispersion of the BMs was shown in figure 11.2. The resonance condition of the Bragg mode given

by (k///k0)BM(b/h)
=
∣∣∣(k///k0)PSP(b/h)

− nP
∣∣∣ (equation 11.1) shows a strong dependence of the

condition of the mode with angle of incidence. For the SERS experiment considering incidence from air,

we can write the condition in terms of incidence angle as

θBM = sin−1


√√√√ (n2

b/hnm(λ)2)

(n2
b/h + nm(λ)2)

−mλ

Λ

 (16.2)

where the refractive indices of the substrate is nb and the surrounding medium nh is air. So for a

given incident wavelength, there are two possible BMs (BMh andBMb) excited at different angles of

incidence, for the PSP in medium nh and nb respectively.

The experimental excitation of the BMs in the Kretschmann configuration was demonstrated in section

15.2. However in the Kretschmann configuration for values of (k///k0) > nh the BMs are generally

eclipsed by the HLP mode. For the SERS experimental setup used in this work, the HLP are not excited

and the strongest modes in terms of extinction that can be excited are the BMs. Thus this setup can help

us study the dispersion characteristics of the BMs and also their performance for SERS.

We have shown before that the BMs do not depend on the shape of the structures comprising the

array and thus can be excited in grating structures as well as nano-cylinder arrays. For this purpose,

both the structures were fabricated using EBL. The array height (grating ridge height or cylinder height)

was taken as h2 = 30nm and the underlying gold film height as h1 = 30nm. Gratings with width

w1 = 100nm and cylinders with diameterD = 220nm were fabricated. The period of the cylinder

array was taken as Λ = 400nm while for the grating, three periods were fabricated, Λ = 300nm,

400nm and 500nm. The SEM images for the fabricated grating structure and one of the cylinder arrays

is shown in figure 16.5.

The Raman microscope was used to record the extinction spectra of the structures. To measure the

spectra for different angles of incidence, the biochip was tilted precisely using the sample holder. The

schematic of the experiment along with the exctinction spectra of the grating structure is shown in figure

16.6. Both the excitation and collection are carried out with a 10× microscope objective (N.A. = 0.25),

the spectra recorded in transmission configuration using white light illumination. For all experiments, the

excitation polarization was TM polarized with respect to the tilt of the biochip. This was assured by tilting

the biochip about the axis of the grating ridges (as shown in figure 16.6(a)) and by linearly polarizing the

incident light along the axis perpendicular to the grating ridges.

For the spectra shown in figure 16.6(b) we clearly see two peaks (a stronger one for lower wavelengths

and a weaker peak for higher wavelengths) and both the peaks undergo a red-shift with increasing angle of
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Figure 16.5: SEM image of (a) gold grating of width w1 = 100nm, period Λ = 400nm and height
h2 = 30nm on a metallic film of height h1 = 30nm. (b) array of metallic cylinders of diameter
D = 220nm and period 400nm. Both the structures are fabricated on BK7 glass substrate.

Figure 16.6: (a) Schematics of the experimental configuration to study the extinction spectra as a function
of angle of incidence θ. (b) The extinction spectra for different angles of incidence (marked for the curves)
for the grating structure of width 100nm and period 400nm.
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incidence. The two peaks can be identified asBMh for the lower wavelengths andBMb for the higher

wavelengths.

Figure 16.7: The wavelength of the extinction peaks as a function of incident angle θ for the grating
(three different periods) and the cylinder array (scatter plots). The analytical dispersion of theBMb and
BMh are superposed on the plots (solid lines). For the analytical calculation the indices were taken as
nh = 1 and nb = 1.513.

The resonance wavelength of the two peaks as a function of angle of incidence is shown in figure 16.7

for the three periods of the grating and the cylinder array of period 400nm. The analytically calculated

dispersion of the BMs as a function of wavelength and angle of incidence is also superposed in the

figure. We see that peaks for all the structures correspond to the excitation condition of the BMs. Another

important aspect of this experimental result is that the wavelength of the extinction peaks (or the resonance

condition of the BMs obtained experimentally) for Λ = 400nm is almost the same for the grating and

the cylinder array. This confirms that indeed the BM condition does not depend on the structure shape but

purely on the periodicity of the array.

16.2.1 Directional SERS intensity due to the Bragg modes

Conventionally the SERS substrates are excited and the emission from them are collected along the axis

perpendicular to the substrate surface (θ = 0). A major motivation of our SERS experiment was to study

the effect of excitation and collection of SERS signal at an oblique angle to the plane of the biochip.

This in the literature is generally called the directionality of the SERS signal. Different reports have
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demonstrated that the SERS signal undergoes an enhancement when such directional SERS signal is

collected for various types of nano-particle arrays [248, 249, 250].

In this section we will show that this effect is mainly due to excitation of certain plasmonic modes (in

our case the BM) for which the resonance condition is strictly dependent on the angle of incidence. It

must be noted that using isolated nano-particles will not produce such an effect as the resonance condition

of the LSP is not dependent on the angle of incidence.

The SERS intensity was measured using the same method as described in the preceding section.

The biochip was tilted and SERS intensity was recorded for each incident angle at the three excitation

wavelengths (633nm, 660nm and 785nm). One such SERS intensity spectrum is shown in figure

16.8 for the grating structure with period 400nm. The SERS intensity for normal incidence (θ = 0) and

for θ = 34◦ is shown. A clear enhancement of the SERS intensity at the oblique angle is observed for the

Raman spectra. It can be seen from figure 16.7 that for this particular structure, the condition forBMh at

λi = 660nm is fulfilled around θ = 34◦. This confirms that the enhancement of the SERS signal is

due to the excitation of the BM.

Figure 16.8: SERS intensity spectra of thiophenol recorded on the grating structure (w1 = 100nm and
Λ = 400nm) with excitation wavelength λi = 660nm. Two excitation angles θ = 0◦ (black) and
θ = 34◦ (red) are shown.

To validate the fact that the SERS enhancement observed at this particular angle of incidence is really

due to the local EM field enhancement caused by the excitation of the BM, the field intensity for the

structures were calculated using numerical methods. In the last section we have shown that the SERS

intensity is proportional to I(λi)× I(λs) where I is the near field intensity around the structures as a

function of wavelength.

For the present calculation the field distribution for the structures were calculated at the given θ for

both the incident and emission wavelengths. Then the corresponding ISERS was calculated as an integral

over the entire metal surface (Scyl) as following

I2
tot(θ) = I(λi, θ)× I(λs, θs)

ISERS(θ) = 1
Scyl

∫∫
Scyl

I2
tot(S)dS (16.3)
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The above equation is a generalized expression when the incident excitation and the collection angle

for the SERS emission are not the same (θ and θs respectively). However for our experiment the same

objective is used to excite and collect the SERS intensity and so for the present experiment θ = θs. The

calculated I2
tot for the grating and the cylinder array (both of period 400nm) at θ = 0◦ and θ = 34◦ is

shown in figure 16.9.

Figure 16.9: The calculated I2
tot at θ = 0◦ for the (a) grating (w1 = 100nm, Λ = 400nm) and the

(b) cylinder array (D = 220nm, Λ = 400nm). (c,d) The same at at θ = 34◦

A clear enhancement of the intensity distribution is observed at θ = 34◦ for both the structures. At

θ = 0◦ the plasmonic modes do not satisfy a resonance condition and thus the field intensity is weak

and concentrated only at the metallic edges. However when the BM undergoes resonance at θ = 34◦

the characteristic near field distribution of the BM is enhanced and thus results in a much stronger SERS

signal. A minor point to note here is that the as the BMs are extended modes, an appreciable portion of

the electric field intensity is also distributed on the gold film surface away from the structures.

The SERS intensity as a function of incident angle for all the structures (gratings for three periods

and the cylinder array of period 400nm) at the three excitation wavelengths for the Raman peak at

1075cm−1 is shown in figure 16.10. On the same figure vertical lines are shown for the values of θBM
as calculated by equation 16.2. For each structure geometry these values correspond to the angles for

BMh andBMb (also shown as a function of wavelength in figure 16.7) at the wavelengths of excitation

λi and emission λs. For the experimental SERS intensity we see the presence of local maxima close to

each of these values for almost all structure geometries and excitation wavelengths. This further validates

that the excitation of the BMs enhance the recorded SERS intensity.

ISERS was calculated by equation 16.3 for all the structures for the pairs of excitation and emission

wavelengths and the curves are superposed in each inset of figure 16.10. There are some interesting points
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Figure 16.10: Experimental SERS intensities (dots) and calculated ISERS(solid red lines) as a function of
angle θ for the three excitation wavelengths (λi = 633nm a,d,g,j, 660nm b,e,h,k and 785nm c,f,i,l)
on gratings (a-i) with grating periods Λ = 300nm (a-c), 400nm (d-f) and 500nm (g-i). The same
for the cylinder array (j-l) with period of Λ = 400nm. Vertical lines (black) indicate the analytically
calculated angles ofBMh orBMb excitation at λi (solid line) and λs (dashed).
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to note from these results.

First, we see that the calculated ISERS have local maxima close to θBM for each structure. However

the maxima are somewhat shifted from the analytically calculated resonance conditions of the BMs. This

is because ISERS is a measure of near-field confinement for the modes, while θBM represents the far

field excitation condition of the modes. Such shifts of the near field resonance condition and that for the

far field has been observed and reported before [251, 252, 253]. We will not go into the details of this

phenomenon.

The experimental SERS intensity follows the trend of ISERS in terms of the maxima at the position

of the calculated maxima for the BM excited at λi. However the linewidth of the peaks are much broader

for the experimental SERS intensity and furthermore the peaks for the BM at λs are almost non-existent

for the experiment. This can be attributed to the fact that the microscope objective used for the excitation

and collection has a N.A. = 0.25 and thus the angular divergence of the excitation beam and that of

the collected light is around ±7◦. For the calculation such a large angular divergence was not taken into

account. Due to the angular divergence the peaks tend to flatten out and this can explain the sharper peaks

of the calculated value compared to the experimental ones. The broader experimental peaks for λi and

λs almost overlap and thus we observe for most cases a single peak instead of the two peaks shown for

ISERS . However if the two peaks are sharp and well separated in terms of angle, as in the case of figure

16.10 (i) both the peaks can be observed in the experimental SERS intensity.

The last important aspect to note from figure 16.10 is that for Λ = 400nm we have almost the same

angular dependence of both the experimental SERS intensity and the calculated ISERS for the grating

structure and the cylinder arrays. Thus we can conclude that the angular dependence of the SERS intensity

is purely a result of the excitation and emission of the plasmonic modes in the structure (in this case the

BM which only depends on the periodicity of the array).
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General conclusion and perspectives
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What has been done in this work : Conclusions

In this work we have described the various plasmonic modes that can be supported by metallic nano-

structures. To study the resonance conditions in structures with complex geometries a numerical model

was developed during the course of this work. This hybrid numerical model is a combination of two

well-known methods namely the Fourier modal method (FMM) and the finite element methods (FEM).

The model takes advantage of the two, rather complimentary numerical methods to reduce the computation

times and memory requirements for near field calculations of structures with dimensions of the order of the

wavelength of light. Furthermore combining FMM with FEM overcomes the convergence problem faced

by FMM when metals are involved. We have shown in this work that the hybrid numerical model can give

accurate results, for different complex geometries involving metal, which are verified by experiments.

Using the numerical method he have simulated the near and far field responses of various structures.

Such simulations were useful to analytically calculate the resonance conditions of the different modes that

can be excited in such structures. In this work we have described the resonance frequency (ω) of each

plasmonic mode as a function of its momentum wave-vector in a given direction. This was quantified in

terms of the wave-vector in free space (k0 = ω/c with c being the velocity of light in free space) and

normalized in-plane wave-vector of the mode (k///k0). Such a description is useful to directly compute

the dispersion relation of the different modes and understand categorically the excitation mechanism of the

modes. The fundamental plasmonic mode is the propagating surface plasmon (PSP) which is excited in a

uniform metal-dielectric interface. This plasmonic mode is well-known. In this work we have shown that

by expressing the modes in terms (k0 − (k///k0)) we can quantify the various other modes, originating

from the PSP, that exist in nano-structures.

For metallic gratings on a glass substrate, owing to its periodicity, the Wood-Rayleigh anomaly (WRA)

are excited when the incident photon lies along the axis perpendicular to the gratings. In this work we

have analytically calculated the resonance condition for such modes. We have shown that the famous

Wood’s anomaly can be explained in terms of the WRAs.

When the photon is incident parallel to the grating ridges, the confinement of PSP by the finite width

of the grating, give rise to the Confined Propagating plasmon (CPP) modes. These resonance condition

for these modes, (as opposed to the WRAs which depend purely on the periodicity) depend purely on

the grating width. Such modes were introduced in our publication Sarkar et al, Sensors and Actuators B,

2014. This mode to our knowledge has never been described before in any other publications.

The calculated electric field intensity for the CPP were shown to be confined around the grating

ridges with a major portion on the sides of the gratings, which are a magnitude smaller in dimensions

compared to the wavelength of light. Such a property is useful for applications in bio-sensing, as such

strong confinement can effectively reduce the minimum amount of target molecules required to obtain a

detectable signal. This is quantified as Sensitivity Enhancement Factor (SEF) which serves as a figure of

merit for biosensors based on detection of probe-analyte binding events. We have shown that the CPP

modes can increase SEF up to a factor of two. Experimetal demonstration of the excitation of the CPP

and their application in bio-sensing in the Kretschmann configuration is also shown.

The second fundamental plasmonic mode, the localized surface plasmon (LSP) is excited in nano-

particles with dimensions much smaller than the wavelength of light. In this work we have introduced a

novel analytical model called the χ formulation to calculate the resonance condition for the LSP. This

model is shown to give accurate results for spherical particles and close approximations for complex
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geometries such as 3D nano-cylinders with or without the presence of a substrate. The electric field

enhancement caused by the LSP is numerically calculated and such numerical results are used to justify the

experimentally observed SERS intenty enhancement in arrays of gold nano-cylinders on glass substrate.

For arrays of metallic nano-particles with an underlying metallic film, modes similar to the WRAs,

called the Bragg modes (BM) are excited. These modes are excited due to the diffraction of the PSP of

the metallic film by the array of metallic particles. Complete analytical formulations for the excitation

conditions of the BMs in different excitation configurations are presented in this work. The BMs are not

useful for SPR detection, however the field enhancement caused by them are shown to enhance the SERS

intensity recorded for hybrid structures comprising of arrays of gold nano-particles with an underlying

gold film. The numerical calculations for the electric field intensity enhancement in such structures are

shown to follow the trend of directional SERS intensity enhancement recorded experimentally.

In such hybrid structures, the LSP of the nano-particles can also couple to the PSP of the metallic

film, to give rise to a new plasmonic mode, called the Hybrid Lattice Plasmon (HLP). This mode and its

application to bio-sensing has never been reported before. We had introduced the presence of the HLP

mode in Sarkar et al, ACS Photonics, 2015.

Though such coupling have been observed before and are generally termed as Fano-resonance or

Fano-like resonances in the literature. However we believe that such a classification of the HLP as Fano

resonance is erroneous. We have offered a complete description of the coupling mechanism of the LSP and

the PSP and have justified the fact that such a coupling cannot be explained in terms of Fano resonances.

It can rather be described as a harmonic coupling between oscillator systems and the resonance condition

of the mode can be calculated by a classical approach to strong coupling using the harmonic oscillator

model. This was the basis of our publication Sarkar et al, Optics Express, 2015.

This model along with the EM properties of the HLP is discussed in details for a 3D array of gold

nano-cylinders on a gold film. However the description presented here is not only restricted to gold

nano-cylinders and can be used to explain the plasmonic modes for metallic nano-particles with any shape

and dimensions. The resonance condition for the LSP, BMs and the HLP as a function of geometrical

parameters such as cylinder height or diameter and periodicity of the array is presented in details. The

experimental excitation of the different modes (HLP and BMs) in such structures is demonstrated and

shown to correspond closely to the numerical and analytically calculated results. With respect to bio-

sensing the HLP mode is shown to increase SEF by an order of magnitude for certain geometries and

excitation configurations with selective target localizations.

The sensitivity of the various modes to bulk refractive index change of the surrounding medium was

also calculated by numerical methods. Appropriate analytical formulations for the same were also derived

and shown in this work. The HLP mode is shown to have much lower bulk index sensitivity as compared

to the PSP mode. This property of the HLP is useful for biosensors which detect specific bindings of

target and probe molecules functionalized within a few nanometers from the metallic surface. For such

biosensing applications a high sensitivity with respect to bound targets are required with low drift with

changes in bulk refractive index.

Plasmonic modes are also classified as «Confined» modes such as the PSP, LSP and the CPP, or as

«Extended» modes such as the WRAs and BMs. The HLP is shown to behave as confined modes as it

results from the coupling of LSP and PSP. However when the (k0, (k///k0)) values for the HLP lies

close to that of the BMs, a secondary coupling of the HLP with the BM, causes the former to have certain
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characteristics of extended modes. This same principle can explain the famous phenomenon of extra-

ordinary transmission observed in nano-hole arrays, which is also seen for the HLP in its quasi-extended

regime.

The sensitivity of the HLP mode is experimentally shown to have different behaviors depending on the

interrogation angle of incidence, with respect to the thickness of the deposited molecular layer. For this pur-

pose two well known polyelectrolytes, Poly(allylamine hydrochloride) (PAH) and Poly(styrenesulfonate)

sodium salt (PSS) were used and their binding to the biochip surface was studied. Apart from the experi-

mental validation of the two behavior for the HLP, this measurement also proved that the sensitivity in

general for plasmonic modes is not proportional to the confined field intensity, but rather to the change of

the field intensity of the mode, brought about by the molecular layer.

What can be done : Perspectives

This work was done as a part of the ANR project PIRANEX which aims to combine SPR and SERS

detection in the same instrument, using the same biochip. The HLP was shown to enhance the sensitivity

of SPR detection. However such sensitivity enhancement is more useful when the target molecules can be

selectively localized around the nano-cylinders. Such selective localization was somewhat achieved for

the 2D metallic gratings by covering a portion of the structures by silica. But the same for 3D cylinder

array, by covering the uniform gold film between the cylinders with silica, could not yet be achieved.

Thus fabrication of such structures and the validation of an orthogonal chemistry have be done. The SEF,

numerically calculated for the HLP, shows an increase by an order of magnitude. This remains to be

validated experimentally.

Though the structures were optimized for SPR detection with a complete description and simple

analytical models for the resonance wavelength and incident angles, such an optimization for SERS

detection is still eluding. In this work a demonstration that certain modes (LSP and BM) can be used to

enhance the SERS intensity was shown. However a complete description of the exact SERS enhancement

and the role played by molecular localization on such enhancement must still be studied.

This work can be used to completely understand and analytically formulate the different plasmonic

modes excited in nano-structures. The near and far field properties of the various plasmonic modes

at resonance are harnessed for different applications. Though this work is based on applications to

bio-sensing, such description of the electromagnetic properties of the plasmonic modes can also be useful

for other domains where such modes are used. Metals owing to their high absorption, are often avoided

for many such applications. But the theoretical models developed in the course of this work can be applied

for other dielectric or meta-materials. Thus the application of the same theories of plasmonic modes can

be tried for such materials and the characteristics can be optimized for them with respect to corresponding

applications.

Finally the representation in terms of modes have been shown to be applicable for plasmon polaritons.

It is now interesting to see if such theories can be applied for other quasi-particles such as phonons or

exitons in hybrid nano-structures. That can then open new avenues for the theoretical basis presented in

this work.
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Appendix A

LSPR condition for metallic strips

The extinction spectrum (Wext) was calculated for a metallic strip in a homogeneous medium of refractive

index nh = 1.333. The width of the strip is w1 with the height h. The calculation was done by FEM

using a 2D mesh. The incident light was considered to be a plane wave with an angle of incidence θ with

the z axis and TM polarized. We observe the presence of two LSPR condition depending on the angle

of incident. The extinction peak (λLSP ) for θ = 0◦ undergoes a red shift with the width of the strips

and a blue shift with the height. The trend is opposite for the extinction peak with θ = 60◦ with a slight

blue shift with width and red shift with height. This can be explained as shown in section 10.2 by the fact

that one LSPR condition is satisfied at θ = 0◦ with the plasmons excited along the width of the strips (x

axis) while the other at θ = 60◦ with the plasmons excited along the height of the strips (z axis). The

plasmons along the width will be called LSPT while that along the height will be called LSPL.

Figure A.1: The calculatedWext using FEM for a metallic strip as a function of widthw1 for height h in
a homogeneous medium nh = 1.333. The incident angle for the plane wave is θ. At normal incidence
the LSP along x is excited and undergoes a red shift with w1. At θ = 60◦ the LSP along z is excited
and undergoes slight blue shift with w1.
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The dependence of the resonance wavelength (λLSP ) on the width and height of the strip is shown in

figure A.2. The electric field intensity (I = E2
x +E2

z ) distribution normalized to the incident intensity

(I0) was calculated and shown for the LSPT (θ = 0◦) and LSPL (θ = 60◦) for w1 = 150nm and

h = 50nm.

Figure A.2: (a) Resonance wavelengths (λLSP ) using FEM as a function of strip width (w1) for incident
light at θ = 0◦ (LSPT ) and θ = 60◦ (LSPL) for two heights h = 50nm and h = 70nm. (b-c)The
electric field intensity in logarithmic scale for the two LSPs for strips of width 150nm and height 50nm.
(b)θ = 0◦ (LSPT ) at k0 = 9.69/µm (λ = 648nm) (c) θ = 60◦ (LSPL) at k0 = 11.94/µm
(λ = 526nm)
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Appendix B

Dispersion maps for array of metallic
cylinders on metallic film

The model for the analytical calculation of the plasmonic modes in an array of metallic cylinders with

an underlying metallic film was described in chapter 12. The reflectivity (R), transmission (T) and the

absorption (A=1-R-T) as a function of (k0, (k///k0)) was also calculated using numerical methods. The

analytical model was verified using these results as well as experimental reflectivity maps obtained using

the SPR imaging setup working in Kretschmann configuration as described in part V. Here we present the

different absorption and reflectivity maps thus obtained by numerical methods and by experiments. The

dispersion of the various modes as obtained by the analytical model is also shown in the figures. We see a

close to near perfect fit of the analytical model to such results.
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Figure B.1: The normalized absorption (A) dispersion maps calculated by numerical methods with varying
period (Λ) as a function of (k0, (k///k0)) for h2 = 30nm,D = 50nm. The analytically calculated
dispersion of the various modes is also shown which fits accurately to the rigorously calculated numerical
results.

Figure B.2: The normalized reflectivity (R) dispersion maps obtained experimentally with varying period
(Λ) as a function of (k0, (k///k0)) for h2 = 30nm, D = 50nm. The analytically calculated
dispersion of the various modes is also shown and the color legend is same as figure B.1.
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Figure B.3: The normalized reflectivity (R) dispersion maps calculated by numerical methods with varying
h2 andD as a function of (k0, (k///k0)) for Λ = 350nm. The analytically calculated dispersion of
the various modes is also shown and the color legend is same as figure B.1.
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Appendix C

Sensitivity of gold film for bio-sensing

The sensitivity of a thin gold film in the Kretschmann configuration is defined as SR = ∆R/∆nh (in

/RIU ) for a change of bulk refractive index of ∆nh in reflectivity interrogation. In the same way for

spectral interrogation the sensitivity to bulk refractive index changes is given by Sλ = ∆λ/∆nh (in

nm/RIU ). Such values for a gold film of height h = 50nm was shown in figure 13.1 as a function of

λ− (k///k0). The dependence of sensitivity on change in the bulk refractive index (∆nh) is shown

in figure C.1. For the calculation done by the Rouard method, the film height of h = 50nm was

considered and the plasmon excitation wavelength for nh = 1.333 was taken to be λ = 800nm (thus

(k///k0) = 1.39 and θ = 66.5◦). The refractive index of the substrate was nb = 1.513. We see that

the sensitivity is not constant with change in ∆nh. For the calculations presented in section 13.1 the

index change was taken as ∆nh = 0.01RIU .

We see that for large refractive index variations the sensitivity of the PSP decreases for reflectivity

interrogation while increases for spectral interrogation. It should be noted that it is (k///k0) which

increases linearly with ∆nh and thus change of (k///k0)/∆nh is independent on ∆nh. However this

is not true for ∆λ which is not linear to ∆nh and thus the spectral sensitivity is not constant with ∆nh

(see section 13.1).

Figure C.1: The sensitivity of a thin gold film of height h = 50nm in reflectivity interrogation SR and
spectral interrogation Sλ as a function of the index shift. The reference refractive index was taken as
nh = 1.333 and the wavelength of the plasmon dip for reference was λ = 800nm. The substrate
refractive index was taken as nb = 1.513.

The angular sensitivity Sθ = ∆θ/∆nh to bulk refractive index changes as a function of excitation
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wavelength is shown in figure C.2. We see that angular sensitivity decreases with wavelength while the

spectral sensitivity shown in figure 13.1 increases with wavelength. The angular sensitivity is almost

independent of ∆nh as discussed above.

Figure C.2: (a) The sensitivity Sθ as a function of incident wavelength for a gold film of height h =
50nm. The index change was taken as ∆nh = 0.01RIU . (b) The sensitivity as a function of index
shift with excitation wavelength λ = 800nm.

The dependence of the sensitivity of the PSP to bulk refractive index as a function of the gold film

height (h) is shown in figure C.3. For the calculation a index shift of ∆nh = 0.01RIU was considered.

The sensitivity as a function of excitation wavelength is shown in the figure. We see that there is an

optimum height of the gold film which is required to have the maximum sensitivity for reflectivity

interrogation (SR) and this optimum value depends on the excitation wavelength (the wavelength of the

reference plasmon dip). However there exists no such optimum value in terms of height for sensitivity in

spectral interrogation (Sλ) and it increases with increasing wavelength. This is because ∆R is dependent

on the reference value of reflectivity while the spectral interrogation method is independent of it and is

rather an intrinsic property of the plasmonic mode dispersion.

Figure C.3: The sensitivity of a thin gold film as a function of height (h) in reflectivity interrogation SR
and spectral interrogation Sλ. The reference refractive index was taken as nh = 1.333 and index shift
of ∆nh = 0.01RIU was considered.

For affinity biosensors the sensitivity is defined as Smol:R = ∆R/e (in %/nm) for reflectivity
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interrogation and Smol:λ = ∆λ/e (in %/nm) for spectral interrogation for a biolayer thickness of e

as described in section 14. The values for a gold film of height h = 50nm and a bio layer of e = 1nm

and index na = 1.48 is shown in figure 14.2.

Figure C.4: The sensitivity of a thin gold film of height h = 50nm in reflectivity interrogation Smol:R
and spectral interrogation Smol:λ as a function of biolayer thickness (e). The reference refractive index
was taken as nh = 1.333 and the wavelength of the plasmon dip for reference was λ = 700nm with
biolayer index na = 1.48.

The dependence of sensitivity on the thickness of the biolayer (e) is shown in figure C.4. For the

calculation the film height of h = 50nm was considered and the plasmon excitation wavelength for

nh = 1.333 was taken to be λ = 700nm (thus (k///k0) = 1.41 and θ = 69◦). We see that the

reflectivity sensitivity Smol:R decrease exponentially with the biolayer thickness. This is a characteristic

feature of the PSP and the decay is related to the penetration depth of the PSP and described in section.

The absolute value of reflectivity is dependent on the biolayer size and the contrast of reflectivity at

the position of the plasmon dip decreases rapidly with the thickness of the biolayer. Thus the shift in

reflectivity (∆R) also decreases with the biolayer thickness. The spectral shift ∆λ however is not

dependent on the value of the absolute reflectivity and thus is not strongly dependent on biolayer thickness,

decreasing less rapidly with the thickness.

Figure C.5: (a) The sensitivity Smol:θ as a function of incident wavelength for a gold film of height
h = 50nm. The thickness of the biolayer was taken as e = 1nm. (b) The sensitivity as a function of e
at excitation wavelength λ = 800nm.

The angular sensitivity Smol:θ = ∆θ/e for affinity detection as a function of excitation wavelength
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is shown in figure C.5. We see that angular sensitivity decreases with wavelength which is inverse to the

trend of the spectral sensitivity as shown in figure 14.2 which increases with wavelength. The angular

sensitivity is also independent of e.

Figure C.6: The sensitivity of a thin gold film as a function of height (h) in reflectivity interrogation
Smol:R and spectral interrogation Smol:λ. The reference refractive index was taken as nh = 1.333 and
biolayer thickness of e = 1nm of index na = 1.48 was considered.

The dependence of the sensitivity of the PSP to target bio-layer as a function of the gold film height

(h) is shown in figure C.6. For the calculation a bio-layer of thickness 1nm was considered with an index

of na = 1.48. The sensitivity was calculated as a function of the excitation wavelength λ. We see the

variation of the sensitivity for target induced shift similar to that of the sensitivity for bulk index change.

There is an optimum value of the sensitivity for reflectivity interrogation with respect to film height while

no such dependence on the film height for the spectral shift caused by the target adsorption is observed.
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Hybrid surface plasmon modes in metallic nanostructures:
Theory, numerical analysis and application to bio-sensing.

Keywords : Surface Plasmons, Biosensing, Numerical methods, Plasmonic modes, Metallic nanostruc-

tures

Abstract

The surface plasmons on metallic surfaces are excited by the collective oscillations of free electrons.

They satisfy certain resonance conditions and their dispersion can be considered as modes of the system.

The plasmons at uniform metal-dielectric interfaces manifest as evanescent electromagnetic (EM) fields

confined to a few hundreds of nanometers from the metallic surface and propagate along the interface.

This mode is called the Propagating surface plasmon (PSP) and is a fundamental plasmonic mode. The

other fundamental modes, which are non-propagative, results from collective oscillations of free electrons

on curved surfaces of metallic nano-particles. They are called localized surface plasmon (LSP) modes. We

have shown that the polarizability of complex geometries with an underlying substrate can be calculated

analytically and the results obtained closely approximate the resonance conditions for such geometries.

In this work, various other plasmonic modes originating from the two fundamental modes were studied

in details and described by their corresponding analytical formulation. In a binary metallic arrays on glass

substrate, plasmonic modes are excited by diffraction orders, called the Wood-Rayleigh anomaly (WRA).

In metallic strips the PSP is confined by the finite edges of the strips and propagate along the length of the

strips, called the confined propagating plasmons (CPP).

For arrays of metallic nano-particles on a metallic film, the Bragg modes (BM) are excited by

diffraction of the PSP. In such structures the LSP of the nano-particles and the PSP of the film can undergo

a harmonic coupling to give rise to the hybrid lattice plasmon (HLP). The characteristics of the HLP mode

for an array of metallic nano-cylinders on a metallic film is presented in details.

The effect of the surrounding medium on the plasmonic modes is used in surface plasmon resonance

(SPR) detectors which probe the shift in resonance condition of the modes. Such shift is dependent on

the intrinsic dispersion of the modes. The aim of this work is to optimize the SPR detectors for affinity

biosensing where probe and analyte molecules are bound to the metallic surface. We have shown that by

selective functionalization of the metallic biochip surface, an enhancement of the performance of such

detection can be achieved in terms of the amount of analyte used. Also the near field enhancement plays a

major role in surface enhanced Raman scattering (SERS). We have shown that the presence of certain

modes in the system can enhance the recorded SERS intensity.

Rigorous numerical methods, adapted to the particular geometry under study, were developed to

compute the near and far field characteristics of different structures. The experimental excitation of the
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modes and their application in SPR detection was demonstrated using a setup based on a spectral scanning

modality operating in the Kretschmann configuration. The various structures were fabricated on a biochip

using e-beam lithography at IEF, University Paris Sud and the reflectivity dispersion from the biochip

was recorded. Such experimental results were shown to be in close agreement with the theoretical results.

SERS experiments were carried out in collaboration with CSPBAT at University Paris 13 and the results

were seen to fit closely the theoretically predicted trends.

Such detailed description of plasmonic modes can offer a complete understanding of the surface

plasmon resonance phenomenon in metallic structures and be optimized as per required for various

applications. The theories presented in this work can be used to effectively describe the EM properties of

different geometries and experimental configurations. From a comprehensive representation of plasmonic

modes, different aspects of the photon-plasmon interactions can thus be elucidated.
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Modes plasmoniques hybrides dans des nano-structures
metalliques: Théorie, simulation numérique et application à la
bio-capteurs.

Mots clés : Plasmons de surface, Biocapteur, Method numerique, Mode plasmoniques, Nanostructures

metalliques

Résumé

Les Plasmons de surface à l’interface d’un métal et d’un diélectrique sont des oscillations collectives

des électrons libres. Pour une interface plane, les plasmons se manifestent comme des champs électromag-

nétiques évanescents, confinée à quelques centaines de nanomêtres de la surface métallique et se propagent

le long de l’interface. Ce mode plasmonique, appelé plasmon propagatif de surface (PSP), est un mode

fondamental. D’autres modes fondamentaux, non-propagatifs, sont appelé plasmons localisés (LSP) et

apparaissent dans les nano-particules métalliques. Dans ce travail, nous avons calculé analytiquement

la polarisabilité de géométries métalliques complexes et les résultats obtenus permettent d’expliquer les

conditions de résonance des différents modes plasmoniques.

Parmi les divers modes plasmoniques, plusieurs modes fondamentaux ont été étudiés en détail et

décrits par une formulation analytique. Tout d’abord, dans un réseau binaire de lignes métalliques, des

plasmons propagatifs confinés par la dimension finie des lignes sont générés. Ce mode plasmonique est

appelé plasmons propagatifs confinée (CPP). D’autre part, dans des réseaux périodiques de nano-particules

métalliques, déposées sur un film métallique, des modes de Bragg (BM) sont excités par la diffraction des

PSP. De plus, dans de telles structures, un couplage harmonique entre les LSP des nano-particules et le PSP

du film métallique sous-jacent se traduit par l’apparition d’un mode hybride (HLP). Les caractéristiques

de ce mode hybride pour un réseau de nano-cylindres métalliques sur un film métallique sont présentées

en détails, en particulier son intérêt en bio-détection.

L’effet du milieu diélectrique environnant sur les modes plasmoniques est utilisé dans les détecteurs

basés sur la résonance des plasmons de surface (SPR). Ces systêmes mesurent le décalage de la résonance

d’un mode plasmonique, qui est fonction de l’indice de réfraction du milieu diélectrique. L’un des buts de

ce travail est d’optimiser les détecteurs SPR pour des expériences typiques sondes-cibles ou les molécules

sonde sont greffées à la surface du capteur. Nous avons montré que par une fonctionnalisation sélective

de la surface métallique, une amélioration de la performance de détection peut être obtenue en terme

de quantité de molécules cibles détectable. L’amélioration de champ proche joue aussi un rôle majeur

dans les techniques de diffusion Raman exaltée de surface (SERS). La présence de certains des modes
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plasmoniques étudiés dans les substrats nano-structurés permet d’augmenter significativement l’intensité

du signal SERS.

Pour réaliser ce travail, des méthodes numériques adaptées à la géométrie particuliêre des structures

étudiées ont été développés pour calculer les distributions des champs proches et lointains dans ces

structures. Les caractéristiques de ces modes plasmoniques ont été mesurés expérimentalement et

leurs performances en détection SPR ont été démontrées en utilisant une configuration basée sur une

interrogation angulo-spectrale en configuration de Kretschmann. Des expériences de SERS ont également

été réalisées en collaboration avec le CSPBAT à Paris 13. Les différentes structures ont été fabriquées par

lithographie électronique à l’IEF à Paris 11. Les résultats expérimentaux concordent avec les résultats

numériques et analytiques.

Cette description détaillée des modes plasmoniques offre une compréhension plus complête du

phénomêne de résonance des plasmons de surface dans les nanostructures métalliques et permet d’optimiser

les structures selon l’application souhaitée. Le modêle présenté dans ce travail est relativement général et

peut être utilisé pour décrire les propriétés électromagnétiques de différentes géométries et configurations

expérimentales. De la représentation complête des modes plasmoniques, différents aspects des interactions

photons-plasmons peuvent ainsi être étudiés.

283



List of publications

Publications included in this work

•Generalized analytical model based on harmonic coupling for hybrid plasmonic modes: com-
parison with numerical and experimental results. M.Sarkar, Jean-Francois Bryche, Julien Moreau,

Mondher Besbes, Grégory Barbillon, Bernard Bartenlian, Michael Canva, Optics Express, Volume

23(21), Pages 27376, 2015.

•Hybrid plasmonic mode by resonant coupling of localized plasmons to propagating plasmons
in a Kretschmann configuration. M.Sarkar, M Besbes, J Moreau, J.F. Bryche, A Olivéro, G Barbillon,

A.L. Coutrot, B Bartenlian, M. Canva, ACS Photonics, Volume 2, Pages 237, 2015.

• Introducing 2D confined propagating plasmons for surface plasmon resonance sensing using
arrays of metallic ribbons. M.Sarkar, M.Chamtouri, J.Moreau, M.Besbes, M.Canva, Sensors and
Actuators B, Volume 191, Pages 115-121, 2014.

• Directional Surface Enhanced Raman Scattering on gold nano-gratings. Raymond Gillibert,

M.Sarkar, Jean-Francois Bryche, Ryohei Yasukuni, Julien Moreau, Mondher Besbes, Grégory Barbillon,

Bernard Bartenlian, Michael Canva, Marc Lamy de la Chapelle, Nanotechnology, 2016.

Other publications

• Field enhancement and target localization impact on the biosensitivity of nano-structured
plasmonic sensors. M.Chamtouri, M.Sarkar, J.Moreau, M.Besbes, H.Ghalila, M.Canva, JOSA B, Vol-

ume 31, Pages 1223-1231, 2014.

• Waveguide structures for efficient evanescent field coupling to zero mode waveguides. M
Sarkar, A. J. H. Wachters, H. P. Urbach, J. J. H. B. Schleipen, P. J. van der Zaag, R. Wimberger-Friedl,

JEOS:RP, Volume 9, Pages 14019, 2014.

• Biosensor Comprising Waveguide. J. J. H. B. Schleipen, R. Wimberger-Friedl, P. J. van der Zaag,

H. P. Urbach, M Sarkar, Patent: WO/2015/082247 A1 , 2015.

•Density effect of gold nanodisks on the SERS intensity for a highly sensitive detection of chem-
ical molecules. Jean-Francois Bryche, Raymond Gillibert, Grégory Barbillon, M Sarkar, Anne-Lise

Coutrot, Frédéric Hamouda, Abdelhanin Aassime, Julien Moreau, Marc Lamy de la Chapelle, Bernard

Bartenlian, Michael Canva, Journal Of Materials Science, Volume 50(20), Pages 6601-6607, 2015.

284



Resumé en Français

Modes plasmoniques hybrides dans des nano-structures metalliques: Théorie, simulation numérique
et application aux bio-capteurs.

Ce travail est basé sur la compréhension des différents modes plasmoniques qui peuvent être excités

dans les structures métalliques. L’application de ces modes plasmoniques pour le bio-détection a été

étudiée. L’existence de plasmons de surface a été observée il y a plus d’un siècle par Robert Wood lors

de son étude des réseaux métalliques. Depuis, la capacité des structures métalliques pour confiner les

champs électromagnétiques a intrigué les chercheurs et cette capacité a trouvé son chemin dans diverses

applications.

Il est bien connu que les métaux absorbent le rayonnement EM et elle est traitée mathématiquement

par leur permittivité diélectrique complexe. Les plasmons de surface peuvent être décrits par le fait

que les structures métalliques subissent une résonance dans cette absorption du rayonnement EM. Cette

absorption de résonance est nommée comme les plasmons de surface parce que lorsque cette condition de

résonance est satisfaite, le champ EM est confiné à des distances de sous-longueur d’onde sur les surfaces

métalliques. La compréhension de base de plasmons de surface réside donc dans l’explication ou plutôt

prédire cette condition de résonance.

La condition dépend évidemment de la type de métal qui à son tour est mathématiquement exprimée

par la permittivité complexe du métal. Le premier chapitre est donc centré sur les différents modèles

actuellement disponibles pour décrire la permittivité diélectrique complexe. Le premier modèle a été

proposé par Paul Drude en 1900 basé sur des propriétés de gaz d’électrons libres. Ce modèle est considéré

à donner des résultats précis pour les grandes longueurs d’onde, mais pour des longueurs d’onde visibles,

l’effet des électrons liés doit être considéré et donc le modèle a ensuite été modifié par Arnold Sommerfeld.

Dans le domaine visible du spectre, les photons d’énergie plus élevés peuvent exciter les électrons des

couches inférieures de l’atome de métal au bande de conduction. Afin de répondre à cet effet, le modèle a

été développé pour inclure des transitions inter bandes dans les métaux réels. Beaucoup plus tard, en 1972,

Johnson et Christy mesuré expérimentalement les constantes optiques de divers métaux et ces valeurs sont

largement utilisés pour décrire les propriétés électromagnétiques des métaux.

La condition dépend aussi fortement de la géométrie des structures métalliques. Ceci est évident

du fait que les polaritons de plasmon sont confinés à la surface métallique et ainsi, les discontinuités

dans la surface jouent un rôle majeur dans la condition de résonance. Cependant jusqu’à ce jour, les

solutions analytiques pour de telles conditions ne sont disponibles que pour quelques géométries. Solutions

analytiques sont utiles non seulement pour la prédiction de la résonance mais aussi pour une explication

simple et intuitive du mécanisme d’excitation de plasmons de surface dans une géométrie donnée.

Le deuxième chapitre décrit brièvement les deux types de plasmons de surface qui sont excités dans

les structures métalliques pour lesquelles la condition de résonance peut être calculé analytiquement. La

géométrie très basique est une interface métal-diélectrique et les plasmons de surface sont connus pour se

propager le long d’une telle interface. La formulation mathématique pour l’excitation de ces plasmons est

décrite dans le chapitre. Le second type de plasmon de surface peut être supporté par des particules isolées

de dimensions beaucoup plus petites que la longueur d’onde de la lumière. L’excitation de ces plasmons

conduire à de forts champs électromagnétiques localisés près de la surface des particules métalliques.

Cependant formulation analytique de la condition de résonance est disponible seulement pour sphérique

ou dans une certaine mesure pour les particules elliptiques.
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La condition de résonance dépend aussi du milieu diélectrique entourant la surface du métal. Ce

facteur est utilisé dans le but de détection moléculaire. En fait, la condition de résonance de plasmons

de surface dépend fondamentalement sur l’indice de réfraction du milieu environnant. Ainsi molécules

liées à la surface du métal entraîne une modification de cet indice de réfraction et peuvent être détectées

en mesurant le changement dans la condition de résonance.Se agit du principe de base pour capteurs de

résonance de plasmons de surface qui sont décrits dans le chapitre 3. A la résonance, l’absorption de

structures métalliques est brusquement augmentée et cela se manifeste dans la réflectivité ou l’extinction

des spectres de ces structures, comme une chute ou le pic respectivement. Détecteurs SPR suivent le

changement dans ce chute de réflectivité ou pic d’extinction pour mesurer la cinétique d’interaction des

molécules sondes et analytes. Ainsi, afin d’optimiser la sensibilité de ces détecteurs, une compréhension

de base de la condition de résonance de plasmons de surface est très importante.

Un autre type de technique de détection plasmonique, la Surface Enhanced Raman Scattering (SERS)

décrit dans le chapitre 4, repose sur l’intensité du champ EM confiné autour des nanoparticules métalliques.

Diffusion Raman a été démontré dans les années 1920 et offre une empreinte spectrale des molécules.

Cependant technique d’identification de molécules n’a pas été pleinement exploité jusqu’à ce que les

années 1970, quand il a été montré que Diffusion Raman sont grandement améliorée lorsque les molécules

se trouvent à proximité de surfaces métalliques. Ce bien ouvert la voie à la SERS détections, le mécanisme

physique exacte derrière une telle amélioration est encore échappait.

Pour les deux techniques de détection mentionnées ci-dessus, SPR et la SERS, nano-structures

métalliques à améliorer leurs performances en termes de sensibilité et de la limite de détection. Cette

amélioration de la sensibilité est provoquée par les différents types de plasmons de surface qui peuvent

être excités dans ces géométries. De nombreux rapports peuvent être trouvés dans la littérature qui décrit

une telle amélioration de la performance et de nombreuses géométries de structures ont été étudiées à

cet effet. Cependant, une description complète des mécanismes d’excitation de ces types de plasmons de

surface sont presque rare. Dans le chapitre 5, les limitations de détecteurs SPR classiques et les différents

types de biopuces nanostructurés étudiés afin de surmonter ces limitations sont discutées. Une grande

partie de ce travail a été fait dans le cadre du projet ANR PIRANEX qui vise à développer un nouvel

instrument combinant la SERS et la détection SPR.

Ainsi, nous avons démontré l’importance de comprendre l’excitation de plasmons de surface dans

nanostructuré, destiné à leur application à biocapteurs. Comme déjà mentionné, la formulation analytique

de la condition de résonance n’est pas disponible pour de nombreuses configurations d’excitation plasmon.

Toutefois, les propriétés électromagnétiques de ces géométries peuvent être calculées en résolvant les

équations de Maxwell par des méthodes numériques. Ces méthodes calculent les champs électromagné-

tiques dans un domaine de calcul donné. Une brève introduction à ces différents modèles numériques est

présentée au chapitre 6. Dans ce travail, des simulations numériques rigoureuses ont été menées pour

évaluer les caractéristiques des champs proches et lointains de diverses structures métalliques. De telles

simulations une compréhension de l’excitation des plasmons de surface dans les structures métalliques a

été atteinte.

Le modèle numérique utilisé pour ce travail est une combinaison de deux méthodes bien connues,

la méthode de Fourier modale (FMM) et les méthodes d’éléments finis (FEM). Le champ électrique et

magnétique peut être calculé pour des structures périodiques en utilisant la formulation de matrice de

FMM. Un réseau à deux dimensions peut être découpé le long du plan parallèle au réseau, et les champs
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électriques et magnétiques le long de chaque tranche peuvent être liés à la tranche adjacente, par la

S-matrice en utilisant l’algorithme de propagation. Cependant, la formulation FMM ne convient pas à la

géométrie complexe et celles impliquant métal pose un problème de la convergence. FEM peut surmonter

ce problème en utilisant une maille fine pour représenter la géométrie de la structure, mais consomme

énormément de mémoire et de temps de calcul. Le code développé en Matlab pour ce travail, calcule la

matrice S (ou matrices liés qui concerne les champs électromagnétiques à différentes tranches) par FÉM

pour la section nanostructuré de la géométrie. Puis, en utilisant la formulation de matrice de FMM, nous

pouvons relier les champs calculés autour des nano-structures, à la transmission (T) et de réflexion (R)

de la structure complète en fonction de la longueur d’onde incidente et de vecteur d’onde. Ce modèle

hybride est décrit dans le chapitre 7 peut être utilisé pour différentes géométries complexes impliquant

métal et donner des résultats précis qui sont vérifiées par des expériences.

Après avoir décrit l’objectif de ce travail et l’outil numérique utilisé pour cela, nous avons ensuite décrit

l’excitation de divers types de plasmons de surface dans un certain nombre de géométries périodiques. À

notre connaissance, une telle description complète des mécanismes qui expliquent l’excitation plasmon

dans les structures métalliques n’ont jamais été publiés. Avec de nouvelles explications pour les types

déjà observés de plasmons de surface, dans ce travail, nous avons également introduit de nouveaux types

de plasmons de surface qui peuvent être excités dans les structures périodiques. Elles sont couvertes dans

la partie 4 de ce travail.

Pour expliquer le mécanisme de l’excitation des différents types de plasmons de surface dans les

structures métalliques, nous les avons classés en termes de modes plasmoniques. Le principe de base

réside dans la description de la fréquence de résonance (ω) pour les plasmons de surface en fonction de son

vecteur d’onde dans une direction donnée. Cela a été quantifiée en termes de vecteur d’onde dans l’espace

libre ( k0 = ω/c ou c est la vitesse de la lumière dans l’espace libre) et le vecteur d’onde du mode

(k///k0). L’indice est utilisé par analogie avec l’optique guidée. Le concept de modes plasmoniques a

été décrit dans le chapitre 8.

Le mode fondamental appelé le plasmon propagatifs (PSP) peut être excité à une interface métal-

diélectrique et se propage le long de l’interface avec un champ évanescent confinée à quelques centaines

de nanomètres dans la direction perpendiculaire à l’interface. Pour nanostructures, en fonction de sa

géométrie, le PSP peut se manifester aux diverses autres modes plasmoniques. Le mode PSP peut être

excité uniquement pour la lumière polarisée TM qui a une composante du champ électrique perpendiculaire

à l’interface. Ainsi, tous les modes plasmoniques étudiés dans ce travail, qui sont fondées sur la PSP sont

excités seulement pour la lumière incidente polarisée TM.

Pour réseaux métalliques sur un substrat de verre, en raison de sa périodicité, les modes Wood-

Rayleigh (WRM) sont excités lorsque le photon incident se trouve le long de l’axe perpendiculaire

aux réseaux. La condition de résonance de ces modes peut être analytiquement calculée en utilisant le

théorème de Bloch qui décrit la fonction d’onde d’une particule dans un réseau périodique. La dispersion

du mode dépend uniquement de la périodicité des structures. Le célèbre anomalie de Wood peut être

expliqué en termes de WRMS. Les propriétés électromagnétiques de ces modes sont décrites en détail

dans la section 9.1 du chapitre 9. Pour des largeurs des lignes plus grandes que la longueur d’onde, la PSP

excités sur les lignes peut se coupler aux WRMs pour provoquer des bandes interdites plasmoniques.

Lorsque le photon est incident parallèle aux lignes de réseau, le PSP peut se propager le long de la

longueur des lignes. Cependant en raison de la largeur finie de la ligne, les modes plasmon propagatifs
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confiné (CPP) peuvent être excités. La condition de résonance de ces modes, contrairement aux WRMS,

dépend uniquement de la largeur des lignes. L’intensité de champ électrique calculé pour ces modes sont

confinés autour des lignes de réseau avec une partie principale sur les côtés des lignes. Ces modes sont

décrits dans la section 9.2 du chapitre 9.

Un autre mode plasmonique fondamentale est excité dans des nano-particules de dimensions beaucoup

plus petites que la longueur d’onde de la lumière. Ces modes sont appelés modes de plasmons localisés

(LSP) et les champs électriques sont fortement confinés à quelques dizaines de nanomètres de la surface

métallique. La condition de résonance pour des particules sphériques peut être analytiquement calculée

par la théorie de Mie. Dans ce travail, nous avons introduit un modèle analytique simple appelé le χ

formulation pour calculer la condition de résonance pour le LSP. Ce modèle est basé sur l’expression de la

polarisabilité des charges de surface créées sur la surface métallique, en termes de facteur de dépolarisation

χ qui dépend de la forme des nano-particules. La condition de résonance est calculée par les pôles de

la fonction de polarisabilité. Ce modèle est représenté à donner des résultats précis pour les particules

sphériques et bonnes approximations pour des géométries complexes tels que 3D nano-cylindres avec ou

sans la présence d’un substrat. Ce procédé et sa comparaison avec la théorie de Mie et résultats obtenus

par calculs FEM est décrite dans le chapitre 10.

Pour des réseaux de nano-particules métalliques avec un film métallique sous-jacente, un mode

similaire à la WRM, appelés les modes de Bragg (BM) sont excités. Ces modes sont excités en raison de

la diffraction du PSP du film métallique par la matrice de particules métalliques. Elles sont décrites au

chapitre 11. Dans une telle structure, le LSP de nanoparticules peut également se coupler à la PSP du film

métallique, donner lieu à un nouveau mode plasmonique, dite Hybride Lattice Plasmon (HLP). Bien que

ces couplage ont été observés avant et sont généralement qualifié de Fano résonance dans la littérature,

une description complète de l’excitation de ce mode n’a jamais été rapportée. Cependant, nous croyons

qu’une telle classification du HLP que la résonance de Fano est erronée.

Dans la section 11.2, nous avons démontré une description complète du mécanisme de couplage de la

LSP et la PSP et avons justifié le fait qu’un tel couplage ne peut être expliqué en termes de résonances

de Fano. Il peut plutôt être décrit comme un couplage harmonique entre les systèmes d’oscillateurs et la

condition de résonance de la mode peut être calculée par une approche classique simple à couplage fort

en utilisant le modèle de l’oscillateur harmonique.

Ce modèle ainsi que les propriétés électromagnétiques de la HLP est abordée au chapitre 12 pour un

réseau 3D de nano-cylindres métalliques sur un film métallique. La condition de résonance pour le LSP,

BM et le HLP en fonction de paramètres géométriques tels que la hauteur ou le diamètre du cylindre et

de la périodicité du réseau a été étudiée par des méthodes numériques. La réflectivité et transmission

du réseau pour configuration d’excitation différent ont également été calculées. Formulation analytique

appropriée est introduite dans ce travail qui peut prédire avec précision la condition de résonance de tous

les modes plasmoniques qui sont excités dans ces types de nano-structures.

Modes plasmoniques sont également classés comme « modes confinés » tels que la PSP, LSP, et le

CPP, ou ceux de « modes étendus » tels que les WRM et BM. Le HLP est représenté de se comporter

comme modes confinés car il résulte du couplage des LSP et PSP. Cependant, lorsque la condition de

résonance pour le HLP se trouve proche de celle de la BM, un couplage secondaire du HLP avec la

BM, amène le premier à avoir certaines caractéristiques des modes étendus. Ce même principe peut être

utilisé pour expliquer le fameux phénomène de transmission extraordinaire observée dans des réseaux de
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nano-trous, qui est également observée pour le HLP dans son régime quasi-étendue.

Enfin dans la partie 5, les modes plasmoniques ont été étudiés pour leur application dans la bio-

détection. Tout d’abord la sensibilité des différents modes au changement d’indice de réfraction du milieu

environnant a été calculée par des méthodes numériques. Les formulations analytique appropriées pour

les mêmes ont été dérivées et présentées dans le chapitre 13. Pour le mode HLP la sensibilité à l’indice

est beaucoup plus faible par rapport au mode PSP, qui est classiquement utilisé pour les capteurs SPR

réservés aux détectant les changements d’indice de réfraction. Cette propriété du HLP est utile pour les

détecteurs SPR pour des expériences typiques sondes-cibles ou les molécules sonde sont greffées à la

surface du capteur. Pour de telles applications une sensibilité élevée par rapport à cibles liées est requis

avec une faible dérive avec les changements de l’indice de réfraction.

Dans le chapitre 14, la sensibilité des différents modes, pour bio détection sondes-cibles est calculée

par des méthodes numériques. Pour ces calculs, la couche moléculaire est simulée par une couche

uniforme homogène avec un indice de réfraction proche de celui de l’analyte. L’effet de la localisation

des molécules cibles dans les zones des structures où l’intensité du champ EM est améliorée en raison de

l’excitation des modes plasmoniques (appelés points chauds), a été calculée numériquement.

Pour la PSP en film métallique uniforme, la sensibilité décroît de façon linéaire avec la diminution

de la couverture de surface de molécules cibles. Mais pour les modes plasmoniques confinés tels que le

CPP ou le HLP, localisation sélective de molécules cibles à les points chauds peut produire une sensibilité

élevée même avec une diminution de la couverture de la surface moléculaire. Pour quantifier ce pour les

modes plasmoniques un facteur de mérite appelé SEF a été présenté comme le rapport de la sensibilité

du mode plasmoniques à celle de la PSP compte tenu de la même quantité de la couverture de la surface

moléculaire.

Les nano-structures ont été fabriqués par lithographie électronique pour valider les résultats numériques.

Un système d’imagerie SPR, basé sur une modalité de balayage spectral a été utilisé pour exciter les modes

plasmoniques expérimentalement dans les différents nano-structures. Ceci est couvert dans le chapitre

15. La longueur d’onde incidente a été fixée à l’aide d’une lampe halogène et d’un monochromateur et

l’angle d’incidence a été modifié par une plate-forme motorisée. Un polariseur est utilisé pour basculer

entre les polarisations TE et TM. La structure a été placée dans une micro-cellule contenant la solution

qui agit comme l’indice du milieu environnant et également pour injecter des molécules cibles pour les

expériences de détection moléculaire. La réflectivité de la surface de la biopuce structuré a été mesurée

dans la configuration Kretschmann. Les calculs numériques pour les différentes structures et les calculs

analytiques pour les différents modes plasmoniques correspond bien avec les résultats expérimentaux. La

SEF pour le CPP a également été évaluée expérimentalement.

Les modes plasmoniques pour SERS a également été étudiées expérimentalement et calculs pour

quantifier la contribution électromagnétique pour l’amélioration de l’intensité de la SERS ont été montré

dans le chapitre 16. Cette amélioration a été montrée pour être proportionnelle au produit de l’intensité du

champ à l’excitation et les longueurs d’onde d’émission Raman. Ceci est vérifié expérimentalement pour

le LSP dans des réseaux nano-cylindres sur des substrats de verre et pour les BM dans des réseaux avec

film métallique sous-jacente. Pour la BM, l’intensité de la SERS change avec l’angle d’incidence et ce

phénomène est qualifié comme SERS directionnelles dans la littérature. Les calculs numériques pour les

intensités de champs et des calculs analytiques pour la BM justifiées que cette SERS directionnelle est le

résultat de l’excitation de la BM dans de telles structures.

289


	General introduction
	Outline of the manuscript

	Introduction to plasmonics : Theoretical Foundations
	Electromagnetic properties of metals
	Electromagnetic wave propagation
	Fields and matter
	Time harmonic fields

	The complex dielectric function of metals
	Drude-Sommerfeld model of free electron gas
	Interband transitions in real metals

	Some typical values for bulk gold

	Excitation of surface plasmon polaritons in metals
	Surface plasmon polariton on planar surfaces
	The plasmon polariton
	The plasmon polariton surface waves
	Dispersion of the plasmon polariton
	Some typical length scales of the PSP

	Plasmon modes in metallic nanoparticles
	Theoretical models for LSP
	Typical LSP resonance in metallic sphere


	Conclusion of Part I

	Application of plasmonics for biosensing
	Introduction to plasmonic biosensors
	Surface plasmon resonance detectors
	Coupling of incident photons to plasmons
	Practical realization of SPR detectors
	Interrogation methods for SPR detectors

	Molecular detection using SPR detectors

	Detectors using particle plasmons
	Detection based on localized plasmon resonance
	Synthesis and functionalization of metal nano-particles
	LSPR detector configurations

	Surface enhanced Raman scattering
	Role of surface plasmons in SERS
	Instrumentation for SERS


	Biochip and nano-structuration
	Limitations of conventional detection systems
	Limitation of SPR detectors
	Limitation of detector systems using particle plasmons

	Structure fabrication techniques
	Detection using Nano-structured bio-chip
	ANR PIRANEX project

	Conclusion of Part II

	Numerical methods for electromagnetic modeling
	Computational electromagnetics
	Introduction to the numerical formulations
	Generalized Rouard method
	Fourier modal method (FMM)
	Formulation in Fourier space for 1D array 
	Formulation in Fourier space for 2D array 
	Gereralized Matrix formulation for 1D and 2D arrays

	Finite element method (FEM)
	The elements of Whitney
	FEM formulation for 1D array
	FEM formulation for 2D array


	Hybrid model for complex structures
	Formulations used for the hybrid numerical model
	Developing the G-matrix for the meshed domain

	Conclusion


	Plasmonics of Nano-structures
	The concept of plasmonic mode
	Uniform metallic film: the basic plasmonic mode

	Plasmonics of a metallic grating on glass substrate
	Plasmonic modes for binary metallic grating
	The Wood-Rayleigh anomaly (WRA)
	Far and near field characteristics of the WRAs
	Plasmonic Band Gaps in periodic structures

	Plasmonic modes in periodic metallic strips
	The Confined Propagating Plasmons (CPP)
	Near-field and Far-field properties of the CPP


	Plasmonics of nano-particles on glass substrate: The LSP resonance
	The LSP resonance condition
	Theoretical models for LSP resonance
	Effect of particle dimensions on LSPR
	Effect of substrate on LSPR

	LSPR condition for metallic nano-cylinders
	Array of metallic cylinders on a glass substrate

	Plasmonics of a metallic array on metallic film
	Metallic grating on gold substrate
	The Bragg Modes

	The hybrid plasmonic modes: Basic introduction
	Mode coupling in plasmonic systems: Fano resonance or not?


	The Hybrid lattice plasmon (HLP)
	Array of metallic cylinders on gold substrate
	Far field characteristics of the HLP
	Near field characteristics of the HLP

	Conclusion of Part IV: Structures and Modes

	Plasmonic modes for biodetection
	Intrinsic sensitivity of plasmonic modes for bulk refractive index changes
	Bulk index sensitivity for the PSP
	Bulk index sensitivity for the WRAs
	Bulk index sensitivity for the CPP modes
	Sensitivity of metallic array on metallic film to bulk index changes: BM and HLP

	Enhancing detection limit for affinity biodetection
	Sensitivity enhancement factor (SEF) for affinity biosensors
	Increasing SEF by selective target localization
	The CPP modes for increasing SEF
	Increasing SEF using the HLP mode


	Experimental excitation of the modes in Kretschmann configuration
	Experimental characterization of the CPP modes
	Measurement of bulk index sensitivity of CPP
	Measurement of bio-molecular sensitivity of CPP

	Experimental characterization of the HLP and the BM modes
	Sensitivity measurements for the HLP


	Nano-structures for SERS detection
	SERS enhancement by localized surface plasmons
	SERS enhancement due to the Bragg Modes
	Directional SERS intensity due to the Bragg modes



	General conclusion and perspectives
	What has been done in this work : Conclusions
	What can be done : Perspectives


	Appendix
	LSPR condition for metallic strips
	Dispersion maps for array of metallic cylinders on metallic film
	Sensitivity of gold film for bio-sensing
	Bibliography

	Epilogue
	Acknowledgments
	Abstract
	List of publications


