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General introduction 

A few decades ago, the products were designed mainly to answer the customer requirements and 

the possibilities of the manufacturers without taking into account the environmental aspects and 

those of recycling during the design process. However, with the implementation of new European 

and International standards and recommendations of environmental legislation, the problem of 

dismantling and thereafter of products recycling is increasingly important. The economical and 

environmental consequences of products disassembling and re-using at the end of their life cycle 

are also to be taken into account. Thus, today's designers need new tools allowing them in 

particular generating and evaluating disassembly operations.   

Preservation of the environment and the planet’s resources is currently being a great concern. 

Awareness of the heavy environmental impact of production has led to a new field of research 

concerning the recycling of the End–Of–Life (EOL) products. Two main methods are used in this 

field: shredding and disassembly. Shredding is a quick way of recycling materials but its main 

drawback is the impurity of the recovered (produced) material. Thus, in order to decrease the 

material's impurity and to reclaim higher value components, effective methods of dissembling the 

products appear very important. Nowadays and in a near future, the demand for high productivity 

and increasing labor cost are pushing designers to improve the effectiveness of disassembly 

processes.   

From the disassembly point of view, there are two main types of disassembly methods. One is 

complete disassembly which involves disassembling of all the components of an assembly. 

However, it is rarely the optimal solution due to the high costs of the disassembly process. 

Alternatively, selective disassembly is usually more appropriate for manufacturing applications, 

such as: maintenance, repairing or recycling. Currently, there are two types of disassembly 

environments for generating the disassembly sequences: interactive and automated. However, both 

of them have some limitations. Interactive environments, for instance, require extensive user input 

usually in the form of answering questions, whereas automated ones can only be used to generate 

disassembly processes for products with relatively simple component configuration and geometry 

because of the tremendous amount of computation resources required. The mostly used methods 

for disassembly sequence generation are heuristic searching algorithms, linear programming, 

wave propagation.  

Recently new Artificial Intelligence (AI) based methods such as: Expert Systems, Petris Nets, 
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Genetic Algorithms are proposed as well. Almost all these methods are used in special situations or 

need computation resources for complex products. Thus we need a general and complete model, 

able to describe the allowed movements for components during the simulations of disassembly 

operations of interactive, real-time or immersive types. 

Often, after generating the possible disassembly sequences, it is necessary to evaluate them. 

Virtual prototyping is quickly becoming an interesting strategy for the product development and 

Assembly/Disassembly (A/D) operations evaluation in recent years. Almost in all fields related to 

the product development process (PDP), virtual simulation using virtual representation models of 

the products are created in a virtual environment (VE). Thus, virtual prototyping (VP) is quickly 

becoming a strategy in the PDP. It allows understanding the application of virtual reality (VR) for 

the prototyping physical mock-up by using product and process data. Simulations closely related 

with VR environments represent important research subject. A major role is played by 

assembly/disassembly (A/D) operations in the initial stages of the product design, such as: 

production, ergonomics, training, health, service or recycling stages. VR technology plays a vital 

role in simulating such advanced 3D human-computer interaction by providing users with different 

kinds of sensations such as: visual, auditory, haptic. Virtual assembly simulations allow designers 

to evaluate the concepts in virtual environments during the early design stage. With virtual 

prototyping applications, optimizing the design for assembly process can be incorporated easily in 

the conceptual design stage. Using haptics or auditory technology allows designers to interact with 

the parts with the human basic motions. Thus, contact force for instance may be transmitted to the 

operator in real time.    

In recent years Ergonomic assessment of manufacturing industry in VR system is becoming 

increasingly globalized as well. The purpose of the Ergonomic assessment is to try to fit the task to 

the human and not the human to the task. The key point for an effective application is to gain a 

balance between the human body characters and the task demands.  

Research problematic 

As mentioned here above, integration of disassembly operations during product design is an 

important issue today. As known, the number of possible disassembly sequences significantly 

increases with the number of parts in a product. Thus, the generation of proper disassembly 

sequences order is critical. Most of existing methods often require tremendous computational 

resources while, at the same time, they often fail to find realistic and optimal solutions for complex 

products disassembly. 

Disassembly operations cover a broad range of the Product Life Cycle (PLC) regarding operations 

of disassembly during: production process, product maintenance and finally at the end of PLC. It is 
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estimated that at the earliest stages of product design, the cost of these operations almost represents 

30% of its total cost. Modelling these operations requires a lot of geometrical, kinematical, 

technological and ergonomical data and their synthesis in order to reduce the algorithmic 

complexity of the disassembly simulation process. Nowadays, disassembly operation simulation of 

industrial products finds a strong interest in interactive simulations through immersive and real-

time schemes.  

However, the available disassembly evaluation methods today seldom make disassembly as the 

preferred end-of-life solution for the reuse of parts or components in an economically sustainable 

way for lower value products. In virtual environment, for instance, a human model is often 

involved in a digital mock-up (DMU) model for assembly/disassembly evaluation. However, it has 

limited application areas because of its high cost investment.  

 

In this context, to meet some problems, a part of which were evoked here above, we define the 

objective of our research as follows: "The research aims to define novel and efficient methods, 

models and tools allowing designers and industrials to take into account the constraints of 

disassembly operations during the initial stage of product design and/or to automatically generate 

the selective disassembly sequences and their evaluation as well”.  

Disassembly operations covering a broad range of the PLC*, our research is particularly attached 

to answer the following questions:  

- How to define and formalize the disassembly of a product? 

- What are the product characteristics which affect its desassembility? 

- How to obtain the minimum number of possible disassembly sequences in the case of 

selective disassembling?  

- How to evaluate them in ergonomical and technological point view? 

- Which kind of criteria should we propose for this purpose? 

- How Virtual Reality may help in this way? 

Research contribution 

In this context our research attempts to develop new comprehensive methodology and tools 

enabling to establish a simplified model for the generation of disassembly sequences and their 

evaluation in a VR environment. Our objectives are not only to reduce the complexity of 

disassembly sequences generation model, but also to evaluate the disassembly sequences in virtual 

                                                           
* Product Life Cycle 
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reality environment (VRE) via automatic ergonomic evaluation.  

In the first place, the aim of this thesis is to develop a new method for generating selective 

disassembly sequences. When disassembling, it is important to eliminate the components which 

are unrelated to the target components prior to sequence generation. In order to address this 

configuration, this thesis presents a method for generating the feasible disassembly sequences for 

selective disassembly. The method is based on the lowest levels of a disassembly product graph. 

Instead of considering the geometric constraints for each pair of components, the proposed method 

considers the geometric contact and collision relationships among the components in order to 

generate the so called Disassembly Geometry Contacting Graph (DGCG). This graph is used for 

disassembly sequence generation thus allowing the number of possible disassembly sequences to 

be reduced by ignoring any components which are unrelated to the target. The method is applied 

for automatic generation of selective disassembly sequences for mechanisms with different degrees 

of complexity. The disassembly simulations can be performed either from an automated or 

interactive point of view using standard computer equipment or through immersive and real-time 

simulation schemes. In order to address this diversity of configurations, a simulation framework 

was developed integrated in a Virtual reality environment thus allowing generating the minimum 

number of possible disassembly sequences. 

As previously said, the available disassembly evaluation methods today seldom make disassembly 

as the preferred end-of-life solution for the reuse of parts or components in an economically 

sustainable way. In recent years Virtual Reality interface has been wildly used to simulate various 

processes and in particular assembly/disassembly operations during the initial stage of product 

design. Thus, in the second time, a method for disassembly operation evaluation by 3D geometric 

removability analysis in a Virtual environment is proposed. It is based on seven new criteria which 

are: visibility of a part, disassembly angles, number of tools’ changes, path orientation changing, 

sub-assembly stability, neck score and bending score. All the criteria are presented by 

dimensionless coefficients automatically calculated thus allowing evaluating disassembly 

sequences complexity. For this purpose, a mixed virtual reality disassembly environment (VRDE) 

is developed based on Python programming language, utilizing VTK (Visualization Toolkit) and 

ODE (Open Dynamics Engine) libraries. The framework is based on STEP, WRL and STL 

exchange formats.  The analysis results and findings demonstrated the feasibility of the proposed 

approach thus providing significant assistance for the evaluation of disassembly sequences during 

Product Development Process (PDP).  

Thus, this manuscript concerns: 

 • The development of a new method for generating selective disassembly sequences 
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capable of minimizing their number, as previously mentioned. Building the DGCG is based 

on a procedure consisting in: Contact identification, Set of directions of removal (SDR) and 

Collision detection. For this purpose three cases called micro units, which consider all the 

possible situations of relationships among the components in the DGCG, are proposed 

namely: Transition from No SDR (NS) to Collision (C); Transition from Collision (C) to 

Collision (C) and Transition from no SDR (NS) to no SDR (NS) 

• The development of a demonstrator, to generate the possible disassembly sequences in the 

case of selective disassembly and their evaluation as well. 

• Integration into the product development process (PDP) by: identifying contacts, Set of 

directions of removal and collisions detection; using different types of subsequent 

simulations based on the requirements imposed by a PDP. 

 

Application area(s) of this research 

Two major aspects are addressed here: 

- Concerning the generation of selective disassembly sequences, the results of this study 

may be useful for designers and industrials, allowing them to take into account of the constraints of 

disassembly operations during the initial stage of product design and/or to automatically generate 

the selective disassembly sequences, which cover a broad range of PLC.  

- Concerning the efficiency evaluation of disassembly sequences, the thesis provides a new 

way to assess the difficulty of disassembly sequences in VR environment instead. The resulting 

score values of the proposed criteria are a decision taking aid for designers to assess disassembly 

sequences efficiency evaluation for a product.  

 

The scientific repercussions of this work relates in particular to disassembly operation modeling 

and its integration with the PDP in the sector of manufacturing industry. From an industrial point 

of view, it is a question to bring brief replies to the current industrial needs (Renault, EADS,..) 

concerning the modeling and the simulation for disassembly operations and their evaluation. 

 

Structure of the memory 

The manuscript, retracing our three years of research activities, consists of five chapters. 

In Chapter 1, the state of art concerning the context of disassembly sequencing is presented. Some 

relevant methods, models and searching algorithm are discussed and analyzed. A critical 

assessment concludes this chapter evoking the need for new models and corresponding 

developments. 
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The context and previous work of Assembly/Disassembly operation simulations in virtual reality 

systems are introduced in Chapter 2. Relevant usual systems, devices, analysis methods and 

challenges related with VR technique are presented, followed by a critical analysis and assessment. 

In Chapter 3, a new method for selective disassembly sequences generation, based on the least 

levels of disassembly product graph, is proposed. Instead of considering the geometric constrains 

for each pair of components, the proposed method considers the geometric contact and collision 

relationships among the components in order to generate the disassembly geometry contacting 

graph (DGCG) for disassembly sequences generating.                     

The key technologies and devices of the created virtual environment for disassembly sequences 

generation are detailed in Chapter 4. A virtual reality disassembly environment (VRDE) is 

presented based on Python programming language, utilizing mixed VTK (Visualization Toolkit) 

and ODE (Open Dynamics Engine) libraries.  

In chapter 5, a new method for disassembly evaluation by 3D geometric removability analysis in 

VR environment is proposed. It introduces some new parameters such as: visibility of a part, 

disassembly angles, number of tools’ changes, path orientation changing, sub-assembly stability, 

neck score and bending score, thus allowing performing and evaluating disassembling task in a VR 

environment.     

 

This PHD thesis work was realised in Information system design Robust Products (ISDRP) team 

of G-SCOP Laboratory under the co-direction of Dr. Peter MITROUCHEV associate professor at 

University of Grenoble, France and prof. Lixin LU from the Department of Mechanical 

Manufacturing & Automation, Shanghai University, China. The experimental part, tests and 

simulations were conducted in Gi-Nova Plateforme Technoligique, Systèmes de Production, AIP-

PRIMECA, Dauphiné-Savoie, Grenoble, France. 
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1. Chapter 1                                                       

Disassembly sequences generation methods 

 

 

 

 

 

          

 

 

 

 

 

 

This chapter analyzes the results and remaining problems of existing research in the field of 

disassembly sequencing modeling. Detailed classification is done in the beginning of this 

chapter. Then, different methods such as: interactive and automatic are introduced. 

Automatic methods seems being the ideal for the sequences generation, some related 

algorithms based on Artificial Intelligence (AI) methods are also presented. These analyses 

highlight the need of appropriate method for reducing the complexity for product sequences 

calculation. 
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1.1  Introduction  

Disassembly processes are studied for a number of reasons as they cover a broad range of the 

Product Life Cycle (PLC) regarding operations of disassembly during: production process, 

product maintenance and finally at the end of product life cycle. Disassembly may be defined 

as: a systematic method for separating a product into its constituent parts, components and 

subassemblies [Gun 01].  

Disassembly sequencing involves searching all the possibilities to disassemble a product and 

often the selection of the optimal solution out of these. For the company, the improvement of 

the recyclability performance of the products is becoming an integral part of their product 

development process (PDP).  Let us note that there are two revolutionary key concepts related 

with the disassembly applications. The first one is the responsibility of the manufactures for 

the whole life of a product integrating assembly and disassembly in the same time. The other 

one is that disassembly is based on the concept of “selling use” instead of selling products. 

As mentioned in the general introduction, completed disassembly is not the preferred method, 

therefore, this thesis focus on the selective disassembly instead. Thus, in the next of this 

chapter, the detail survey of the presently available literature on the disassembly is presented 

involving existing methods, models, algorithms and tools.    

1.2    Generality about disassembly 

In the very beginning, the problem for generating disassembly sequences has been addressed 

by engineers, while aiming at the investigation of assembly process. In that time, the 

disassembly is assumed as the reverse of assembly. In fact, disassembly being the process of 

separating components can be classified according to the purposes of disassembly and the 

way for performing of such disassembly. Consequently, it is not completely the reverse of the 

assembly.  

1.2.1 The purposes of disassembly  

According to the life-cycle scenario of the product, the needs for disassembly include 

different stages such as: maintenance, repairing, remanufacturing, recycling and disposal. As 

mentioned in the General introduction, within the disassembly sequences, it is possible to 

distinguish between complete disassembly and selective disassembly. Complete disassembly 

involves disassembling all the components of a complex object. It has been mainly studied as 

a solution to assembly planning, since the reverse of a disassembly sequence is, in fact, an 
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assembly sequence according to Gottipolu et al. [Got 03]. A complete disassembly is rarely 

the optimal solution owing to the high costs of the disassembly [San 02].  

Selective disassembly, which requires only a portion of an assembly with high value to be 

disassembled, suggests that the most economical assembly sequences  is not  the most 

economical disassembly sequences [Sri 99a]. Therefore, the differences between assembly 

and disassembly analysis make a separate study of product disassembly important. Selective 

disassembly is usually more appropriate for demanufacturing application, such as 

maintenance, repairing or recycling.  

1.2.2 Methods for disassembly  

 Prior to present the new method for selective disassembly (Chapter 3) some different types of 

disassembly methods are presented here below. 

 From a disassembly view point, there are two main types of disassembly methods.  

- “destructive disassembly”, in which a component is removed from the product 

previously disassembled, by destroying or damaging some other components of the product. 

- “no-destructive disassembly”, in which each one of the components can be removed 

without affection any of the others [Pom 04].   

From the purpose of the disassembly and according to the end life-cycle scenario of the 

product, the no-destructive disassembly is more useful in some processes such as: 

maintenance, repairing, remanufacturing, recycling and disposal.  

The “no-destructive disassembly” method can be sub-classified also such as:  

- direct and indirect disassembly,  

- sequential and parallel disassembly,  

- monotonic and non-monotonic disassembly.  

Direct and indirect disassemblies are based essentially on the number of components that have 

to be removed in order to reach the target component. If the target components can be 

removed without removing other components, it is the direct disassembly. Otherwise it is 

indirect one.  

Sequential disassembly is based on the number of components that are disassembled at a time 

[Kan 01]. For example, if each time only one component can be disassembled it is called as 

the sequential disassembly. Otherwise it is parallel disassembly, which means that in the sub-

assembly, the components can be disassembled in a single group instead.  
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Monotonic disassembly depends upon whether it requires moving out the total of the 

component from the assembly. For example, if in a room, we can take out a bed through 

opening the door or disassembling the door. If it needs to disassemble the door, we call it as 

monotonic disassembly. Instead, if it is just necessary to open the door, but the components 

are not disassembled completely from the assembly, we call it as non-monotonic disassembly.  

As previously said (Section 1.2.1), that there are two kinds of disassembly planning which are: 

-  complete disassembly  

- selective disassembly. 

Complete disassembly involves disassembling of all the components of an assembly, but it is 

rarely the optimal solution owing to the high costs of the disassembly. Alternatively, selective 

disassembly is usually more appropriate for manufacturing applications, such as maintenance, 

repairing or recycling. 

Concerning the depth of disassembling, there are:  

- total disassembly,  

- partial disassembly (selective / targeted). 

Concerning the nature of disassembly: 

- linear disassembly,  

- parallel disassembly. 

Other classification defines the methods for generation of disassembly sequences in: 

Exact methods, which are:  

- Analysis of modularity [Kuo 00a, Kuo 01],  

- Branch and bound [Gun 01, Zha 10], 

- Wave propagation [Sri 98, Sri 00, Mas 03, San 02],  

Approximate methods, which are:  

- heuristics, [Kuo 00b]  

- metaheuristics : 

o  Genetic algorithm [Sri 98, Kon 06a, Giu 07, Tse 09],  

o Ant colonies [Wan 03, Tri 09],  

Methods based on the feedback: 
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- Case-based reasoning  [Zei 97],  

- Reasoning Knowledge Base [Vee 02],  

- Learning technique [Ale 11]. 

1.2.3 The disassembly character involved in the thesis  

In this thesis, considering disassembly as an aim in itself we would like to highlight its 

distinction from assembly. There are essential differences that have to be pointed out here. 

First, selective disassembly is often preferred as the research target in the disassembly field as 

stated by Lambert in [Lam 03], because not all the assembly process can be reversible. 

Therefore, the selective disassembly will be our research target. Second, the destructive 

disassembly is not our concern, even though; it may be useful for some valuable component 

recycling. Third, monotonic disassembly is not related within our work.  

1.3    Representative disassembly methods   

Let note, that disassembly sequencing is listings of subsequent disassemble actions, which 

involves the search for all possible disassembly sequences. There exists extensive research on 

disassembly sequences analysis and the disassembly sequence optimization. For the 

sequences generation, researchers have suggested several approaches to determine the 

disassembly/assembly sequences. The methods for the disassembly sequences generation can 

be classified into three groups as interactive, automatic and Artificial Intelligence (AI) 

methods. 

Interactive approaches require extensive user input usually in the form of answering questions, 

whereas automated approaches can be mainly used to generate disassembly processes for 

products with simple component configuration and geometry. In this thesis automated and 

interactive techniques are combined, using virtual reality environment (VRE) to generate and 

evaluate selective disassembly sequences in the process of product design.   

Disassembly sequences being a key element of the simulation of a product disassembly 

process, this chapter aims to present the main approaches adopted for disassembly sequences 

generation. Thus, a review of some deterministic and stochastic approaches is presented in the 

next. Note that deterministic methods produce sequences, while stochastic ones analyze the 

sequence generating process. Stochastic methods have to cope with the combinatorial 

complexity in most disassembly process simulations by using only geometric data as a 
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starting point or that do not bind the technological parameters of a product with its digital 

mode [Iac 10].  

1.3.1 Interactive methods 

 Interactive approaches can be used to handle with complex assemblies because information is 

not gathered from the geometry of the components. Instead, the information is gathered from 

designers. These approaches need that the designer or the operator should be very familiar 

with the product (assembly). Note that time and knowledge involved for answering questions 

about the assembly are the main disadvantage of the interactive approach.  

Bourjault was amongst the first, who in 1984 [Bou 84] proposed the definition of the so called 

assembly precedence relations (APRs). Based on these relationships, a liaisons diagram was 

proposed by him to represent the assembly. In this liaisons diagram, series of questions were 

needed to be answered by the users with ‘yes or no’. Later, Homem and Sanderson [Hom 91] 

applied the ‘cut-set’ analysis method in the assembly sequences planning and designed three 

simple rules. He count that the queries could be reduced by 95%, however, 111 questions in 

the sequences planning need to be answered for only 11 part assembly.  In order to reduce the 

number of the questions at the same year, Baldwin et al. [Bal 91] developed a method using 

the ‘what’ questions instead of ‘yes or no’. However, obviously it is more difficult for user to 

answer the ‘what’ questions correctly, especially when the products are relatively complex 

and the users are not familiar with the products. Other authors Johnson and Wang [Joh 98] 

enhanced the ‘cut-set’ analysis and a man-computer interactive method supported by 

assembly CAD draft, where the user has to indicate the interference parts if collision occurred 

in the disassembly.  

The interactive approaches base their reasoning process on the liaisons diagram. However, 

because the liaisons diagrams are too simple to get enough information for the sequences 

analysis, it requires user to answer a number of questions to tell the system how the assembly 

looks like. Let us note that, this method, classified as indirect approach by [Su 07], is rarely 

used nowadays.  

A deterministic approach for disassembly sequences generation based on the observations of 

industrial planning assemblies is proposed in [Bar 04]. It uses simultaneously Design for 

Assembly (DFA) and a conventional design process approach. The proposed tools and 

techniques allow generating disassembly sequences and defining assembly configurations, 

including assistance to build the sequence, choose the most relevant documents and to define 
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connection parameters. A constraints approach (CSP) is used to confirm that the resulting 

assembly sequence would be feasible thus providing a quality assessment of the sequence. 

1.3.2 Automatic methods 

    Today automatic methods are considered as ideal way for sequences generation. They can 

use the relationships among the components for the disassembly path calculation. However, 

for the disassembly sequences generation, the model has to be with relatively simple 

component geometry. There are lots of researches working on this field in order to reduce the 

computer resource for the generation of the disassembly sequences. Some basic concepts or 

algorithms should be clear in this domain. For this purpose some existing relevant and 

important works, in our knowledge, are presented here below.                                

(a) Graph for Disassembly Model 

With regards to automatic methods there are two major steps for disassembly planning 

generation, which are disassembly model creating and disassembly sequences generating. The 

model is usually presented by graphs and the sequences generations are based on the matrices 

which are converted from the graphs. Graph theory in the field of mathematics is very common 

way to show pair-wise relations among features in the graph. In order to model product’s 

topology and geometry information, a number of graph based modeling strategies are used for 

the disassembly sequences generation, such as And/Or graph, Liaison graphs, etc. 

 

• And /Or graph [Hom 90, Hom 91, Lee 94, Kan 01, Got 03, Zhu 13]      

In order to present all possible disassembly sequences, many methods are proposed. 

Among them, the And /Or Graph has been widely used to represent disassembly 

sequences (Fig. 1.1). 

  
 
   
 
  
 

                      
 
 

                                                            
                                                     Figure 1.1 An example of AND /OR graph 

In And / Or Graph, each node can be a product, a component or a subassembly 

the edges being the links among them. For disassembling a part if other 

components are involved, the link edges form the And relations. If more than one 
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paths can reach the target part, this will form the Or relationship. For an And/Or 

graph, G=(N, D), (where N stands for the nodes that denote a product, sub 

assembly, or part and D stands for hyper arcs, means the sets of feasible 

disassembly operations) if each node can have m (m≥1) possibilities for 

disassembly, it forms the ‘Or’ relationship in the graph. If one operation 

disassembles into more than one node in the precedent graph, it forms the And-

relation. As shown in Fig.1.1, N={(1,2,3,4,5), (2,3,4,5), (1,2,3,4), (4,5), (2,3)} 

and D={1,2,3,4}. For D1, N=(2,3,4,5), part 1 has to be disassembled. For D2, 

N=(1,2,3,4), part 5 has to be disassembled. Therefore this is the “Or” 

relationship. For D3, after getting the parts 4 and 5, the parts 2 and 3 will be 

moved automatically. Therefore this is the “And” relationship. One of the 

advantages of the And/Or graph is that it requires relatively small space for the 

storage. However, there are some information missing in the And/Or graph. For 

example, the relationship between operations D2 and D3 is not clear in Fig.1.1. 

Do we need to perform operation D2 before the D3? Note, that this approach 

does not contain any information about the subassemblies. 

 

• Precedence Graph [Joh 98, Gun 01, Lam 08] 
 
Precedence Graph methods, being a part of automatic methods, are focusing on 

the precedence relationships, which aim at the automatic generation of 

disassembly sequences. It is derived from the task precedence graph, which is 

commonly used in the task planning issues. Different with the And/Or graph, the 

operations are presented by nodes. The arcs are directed arcs pointing from one 

operation to another. The operation where the arc points from should be 

performed before the operation where the arc point to.  

As shown in Fig.1.2, arcs indicate the precedence relationships that exist 

between two subsequent operations. In this example, it is easy to distinguish the 

18 precedence relationships. 

In [Joh 98] authors used precedence graph to represent the products’ structure, 

which is hierarchically organized according to a Bill of Material (BOM). Some 

details for the various operations are considered in the costs and the profit of the 

disassembly operations. Compared to And/Or graphs, the disassembly 

precedence graph has less nodes. For this model, its cpu time is still 
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unmanageable for solving problems, as stated in [Lam 08].    

 
               
          

 

• Extended process graph  
Proposed by Kan et al. [Kan 01] extended process graph is obtained by 

transforming the And/Or graph using precedence relations. In the graph, a path 

from source to sink represents a disassembly sequences as well as the 

disassembly level (Fig. 1.3). Each node represents a source, a sink, an operation, 

a choice or a separation. In Fig. 1.3, a filled circle       means that there are more 

than one possible ways to disassembly a subassembly. An empty circle    means 

a separation node, each of which contains more than one part and requires more 

disassembly operations. All of them can be transformed from Or and And 

relationships in the And/Or graph respectively. Each solid arc represents a 

precedence relation between two operations. There are two dotted arcs, including 

the unidirectional arcs, which link each operation node to the sink node and the 

bidirectional dotted which represent two possible orders between two operations. 

In other words, the subassembly can be disassembled in parallel and there is no 

precedence relation between the operations.  

As seen from Fig.1.3, if the path can satisfy the precedence constrained by the 

solid arcs, the path is feasible for selection. 

 

Figure 1.2 Disassembly precedence graph [Joh 98]. 
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       Figure 1.3 Extended process graph [Kan 01] 

Note, that this graph successfully extends the method from the precedence graph 

to And / Or graphs (because of the increased number of nodes in the And/Or 

graph). However, the problem can be solved only at the expense of 

unmanageable cpu time even if moderately complex problems are considered as 

was discussed by Lambert in [Lam 08].  

 

• Liaison or connection graphs 

First developed by De Fazio and Whitney [Faz 87], liaison or connection graphs, 

are great different from the precedence graphs. Let us remember that, in a 

precedence graphs, the relations are not the components which are physically 

connected. The relations are the precedence order between the components. In a 

liaison graph, circles (vertexes) represent components in the assembly and edges 

physical connections between them. Therefore, the liaison analysis is performed 

by examining the geometric connection between the parts in the product, and the 

liaison diagram consists of a network of nodes and lines that represent the parts 

and the relationships between parts. If n is the number of parts, the possible 

number of liaisons ranges between (n2-n)/2 and (n-1). 

For each liaison, it is necessary to have the precedence rules in order to 

determine the optimal level of disassembly either for a single or multi objective 

criterion. For example Kara et al. [Kar 06] used liaison and precedence rules to 

generate the selective disassembly sequences of a washing machine as shown in 
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Fig1.4. Lee et al. [Lee 94] used the abstract liaison graph for the purpose of sub-

assembly identification to aid in automatic generation of assembly sequences. 

Later Dong et al. [Don 06] tried to use the liaison program in order to create a 

hierarchical attributed liaison graph for disassembly sequencing. Recently, in, 

[Ric 13] authors transformed a liaison graph in to weighted liaison graph (WLG) 

to show the disassembly precedent relations amongst all the components.  

 

 
 

                              Figure 1.4 Extended process graph [Kar 06]. 

However, the liaison graph cannot work itself for the sequences generation. The 

liaison sequence graph gives liaison sequences instead of assembly sequences. 

The states do not present a set of parts, but a set of relations between them.  The 

state has to work with precedence rules for each liaison which means that the 

questions for each liaison have to be answered for all the liaisons prior to 

sequences generation. The precedence rules are used as input formation for the 

disassembly sequences generation. However, there are two major drawbacks 

related with this methodology: the liaison graph has to be established by very 

experienced designer and the product must be relatively simple.  

                                                

(b) Matrix analysis  

For disassembly based on Matrix analyses method, there are two major steps which are: creating 

disassembly model and generating disassembly sequences. The model is usually presented by 
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graphs. The sequences generations are always based on the matrices which are converted from 

the graphs [Wil 94]. Combined use of graphs and matrices has been proposed by many authors 

[Kuo 00b, Got 03, Smi 11, Smi 12, Ou 13]. The disassembly graph can be represented by a 

transition matrix, in which the columns correspond to the possible disassembly actions, the rows 

to all the possible subassemblies or components. Note, that for automatic calculation, the matrix 

analyses method is one easy way to generate the possible disassembly sequences. In order to 

better understand the converting process from the graph to matrix, the relevant works of two 

researchers are presented with some details here below.  

 

i) Assembly sequences table (AST) [Got 03] 

                                   
 

(a) Exploded view       (b) Assembled view  
                           Figure 1.5 Example of assembly represented in tree-dimensional space [Got 03] 

Definition: 

One assembly in relational model is a two-tuples <P, U>, where P = {P1, P2…, Pn} is the set of 

symbols corresponding to one part (no two symbols’ correspond to the same part) and U = {U1, 

U2…, Um} the relations between components, m being the number of component ordered pairs 

with Ui=<Pa, Pb , Cab, Tab>. The contact function Cab, represents the contacts between the 

components a and b. The translation function Tab, represents translational motion between 

components a and b.  

 Function Cab= (C1, C2, C3, C4, C5, C6), presents the six directions of contacting information, 

where Ci= {0, 1}. Concerning the directions, they can be the coordinates (x+, y+, z+, x-, y-, z-) 

as shown in Fig.1.5 (a ).  

If Ci=0, there are no contact in the direction i. If Ci=1, there are contact in this direction. In the 

same way, the translation function Tab= (T1, T2, T3, T4, T5, T6) represents the translational motion 

between component a and b in six direction, where Ti= {0, 1}. If Ti=1, indicates the part b has 

freedom of translational motion with respect to the part a in the direction i. 
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Thus, according to this rule, it is very easy to build the functions C and T between every two 

components in the product. For the assembly in Fig. 1.5(b), the C and T functions are built as 

shown in Table 1.1.         

         

Table 1.1 Function C and T for the assembly shown in Fig.1.5 (b) [Got 03] 

 
 

From our understanding, C function determines the local feasibility for removing a component, 

while the T function determines the global feasibility. 

In this work, the six directions (x+-; y+-; z+-) are taken into consideration. Functions T and C 

are both 1x6 binary functions. PADL_2 software also was developed by the authors in order to 

extract these functions. Note, that the presence or absence of the contact cannot guarantee the 

free collision motion of the components. So, if the subassembly (a, b) is supposed to be a set, it 

needs to be added to another component (c). Thus, sets (a, c) and (b, c) should be both taken into 

consideration. If a contact exists in any direction and component c can be in contact with a or b, 

consequently c could be added in the subassembly. So the “or” operator is used in this situation. 

If c is planned to be disassembled, it has to be free related with both a and b, so the “and” 

direction is used in this situation. Finally, each assembly tasks is connected with the weight 

factors for the evaluation of the assembly plan. 

 Note, that Assembly sequences table (AST) method is a simple way to evaluate all the possible 

assembly sequences and provides a useful method to simplify their evaluation which has the 

principles for matrix calculation considering the six directions of assembly and disassembly. 

However, its limits are that C and T functions only take 6 directions into consideration. Since 

the logic works with Cartesian coordinates, it would be better to take all the C and T functions in 

cylindrical and spherical coordinate systems. As previously said, this method could be also used 

for disassembly evaluation. We think that it just needs to check T function and the stability of 
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the subassemblies. In our opinion, a new method is needed to be proposed in order to evaluate 

the stability of the subassemblies (see details in § 5.2.2, Chapter 5) prior to disassembly 

sequencing, which is an aim of our thesis. 

 

ii)  Disassembly sequence structure graph [Smi 11, Smi 12] 
 

A new disassembly sequence structure graph (DSSG) method was proposed by Smith and Chen 

in [Smi 11] to improve the solution quality, minimize the model complexity and reduce search 

time. Note, that graphs containing more information improve solution quality, while those 

containing less information reduce searching time. The DSSG model contains one graph, which 

only includes the nodes and links needed to remove the target components, and five matrices. 

Two of them are contact constraint matrices, two others are motion constraint matrices and one 

is a projection matrix. The authors divide the parts in a product into two categories as: 

components and fasteners. They assume that a fastener must be removed from a component, but 

a component cannot be removed from the fasteners. Thus, contact constraint matrix includes the 

contact constraint for components and contact constraint for fasteners. Motion constraint matrix 

includes the motion constraint for components and for fasteners. The projection matrix 

determines the removing direction of the target component with the rule of the least numbers of 

parts to remove.  

 
The contact constrain (CC) matrix for the components of an assembly is: 
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For a product with N components, the CC matrix has N rows. For this matrix, columns 

represent the +X, -X, +Y, -Y direction. For example, CC1 represents the component 1 in the 

Fig. 1.6.  

+X  -X   +Y  -Y  



 

 

21

 

 
legend:  f- fastener 

Figure 1.6 Example of assembly [Smi 12] 

 

In the +X, -X directions, there are not contact components. In the +Y, -Y directions, the 

contact components are ��, �� , 5  and 2 respectively. The motion constrain matrix is 

established in the same way.  

 The projection matrix records the blocking components of each component which are used 

for the optimization of the disassembly directions. The fewer the blocking components, the 

better the direction is. However, the Matrix analyses method is limited because it only takes 

into account a limited number of Disassembly/Assembly directions/translations (four or six) 

without rotations. Another difficulty is to build the matrixes automatically for complex 

assemblies. For building all the matrixes related with the product and finding the relationships 

among the components, a great search time is necessary because the number of possible 

disassembly sequences increases exponentially with the number of parts in the product.   

 

1.4    Searching algorithms   

  In order to generate the feasible disassembly sequences, after establishing the representative 

model (graph, matrix or others), a systematic analysis, based the time saving algorithms, is 

necessary to be performed. Some of the most useful algorithms are presented in the next. 
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1.4.1 Heuristic searching  

Let us remember, that in computer science, a heuristic is a technique designed to solve the 

problem more quickly when conventional methods are too slow, or to find an approximate 

solution when conventional methods fail to find an exact solution. Heuristic are based on a 

predefined set of rules used in the sequences generation of Disassembly or Assembly. The 

problem of finding optimal or even near-optimal disassembly sequences is known to have an 

exponential computational complexity.  

1.4.2 Wave propagation approach 

As we are aware, the most popular and applied determinist method for selective disassembly 

is the wave propagation algorithm [Sri 99a, Sri 99b, Sri 00]. This selective disassembly is 

particular convenient for maintenance and disassembly for recycling. Selective disassembly 

analysis of a product with n components and s selected target components (s<n), determines a 

disassembly sequence for s components considering the minimum number of components to 

remove. The wave propagation algorithm automatically reduces the computation complexity 

O (n2) by finding the shortest way to take out the target component from an assembly. 

There are three assumptions for the wave propagation approach.  

• First, the relative motions of components are determined without considering the tools 

and the fixtures.   

• Second, the assemblies are assumed to be polyhedral. 

• Third, the components have single linear motion allowing them to be removed from the 

assembly.  

 

 
Figure 1.7 Illustration of the wave 
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Two types of disassembly waves are defined. One is τ wave source from the targets which 

determines the disassembly ordering. The other one is β wave from the boundary of the 

assembly which determines the minimum number of components to be disassembled in order 

to reach the target. Based on these disassembly waves a disassembly sequences is 

automatically generated by the intersection events between them.  For every component c, the 

waves τc  and βc are defined. For every time step (from t=a to t=a+1), τc  propagates by one 

wave front.  As shown in Fig. 1.7, at t=1, β2 wave propagates from βo
 2  to β2

 2 , where C2 is 

disassembled after removing C1. Wave disassembly uses modeling component with reduced 

mobility only to translations and intersections of translational directions attached to each side 

of the contact surfaces to locally validate or not a disassembly operation. The components are 

geometrically defined by the faceted models and the contact areas between the components 

are considered as input data. 

Wave propagation method allows reducing the analysis of expensive-typically exponentially. 

However, it has two major drawbacks. One is that it does not show how to build the graph 

based on the real relationships among the components in an assembly. The second drawback 

is its limitation to generate efficient and optimal sequences for disassembly of complex 

products as mentioned in [Smi 12].   

1.4.3 Dijklstra’s algorithm with heap-based priority queues [Gar 04]  

This algorithm, proposed by Garcia et al. [Gar 04], is based on the precedence graph where 

each node represents a single component of the assembly. Its computational complexity is of 

O(nlog n), when s<<n, and O(sn) time when s≅n.  A simple example of an assembly 

containing 9 components, where 3 of them are exterior (C1, C8, C9) is shown in Fig.1.8. 

The directed edge from a certain node C1 to another node C2 indicates that if C2 has already 

been disassembled, the C1 can also be removed from the assembly. Component C5 has OR 

relationship with C4 and AND relationship with both C6 and C7. Which means that C5 can be 

removed right after extraction either C4 or both C6 and C7. The graph can be simplified if C1 is 

not exterior. In this case all the edges downwards in Fig. 1.8 would disappear. 

The algorithm consists in four stages: 

• Computing the shortest path between each exterior node and the rest of nodes of the 

precedence graph.   

• For each selected component, determining the shortest paths to its closest exterior 

components, by taking into account the edge labels computed in the first stage.  
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• Merging the partial disassembly sequences obtained above. 

• Sorting the sequences in descending order of selected components.  

 
Figure 1.8 Assembly and its corresponding precedence graph [Gar 04] 

The algorithm computes the minimum distances from the exterior components of the 

assembly to the rest of the components. Then, for each target, a set of partial disassembly 

sequences is obtained by finding minimum spanning trees in the precedence graph. The 

solution is found by sorting sequences from the head until all the selected components have 

been considered. However, the algorithm has a disadvantage. It concerns the determination of 

the external components. Note, that for an assembly, it is difficult to determine which 

component should be the external as there are many possibilities for that. (components 

C8,C9,C1 in Fig. 1.8, ) Note, that the author did not mention the method for building the 

precedent graph either. As from our knowledge, there is no automatic way to do it. 

1.4.4 Artificial Intelligence (AI) methods 

 AI methods focus on detecting the best sequences when a combinatorial explosion of 

sequences takes place. In order to obtain one or several sequences based on the profit of each 

sequence, the profit of all feasible sequences has to be calculated, which leads to unacceptable 

computing time. AI methods try to replace the traditional method with an objective to reduce 

searching time by searching the best sequences without analyzing all the possible alternatives. 

In the past years, AI techniques such as: Petri Nets, Genetic Algorithms, Neural networks, 

Fuzzy set, Bayesian networks have been used especially related with disassembly sequence 

optimization. 



 

 

25

• Petri nets (PNs) is the widely diffused method which has the advantage of taking into 

account of many factors (time, economic value, environment aspects etc.) for the 

disassembly planning and scheduling.  Four primitive elements (tokens, places, 

transitions and arcs) and certain rules are involved for controlling the operations. The 

tokes are conceptual entities appearing as small solid dots. The places are shown as 

circles and stand for the locations where objects await the processing or the condition 

of objects. The transitions are shown as bars or rectangles which present processes, 

events, or activities that may occur. The arcs present the paths of objects in the system.  

In our knowledge, the first PNs used in disassembly, was presented by Zussman et al. 

[Zus 95], who developed a disassembly Petri net (DPN) through the notion of an 

inverted assembly PN. Later, Moore et al. [Moo 98, Moo 01], presented an algorithm 

using a PN-Based approach to automatically generate the disassembly process plan 

(DNP), which considered the simple AND, OR, Complex AND/OR, and XOR 

relationships as shown in Fig. 1.9. Shiung Hsieh in [Hsi 08] set up a greedy algorithm 

to find a nominal optimal solution for the aforementioned problem and study the fault 

tolerant properties of the nominal system. Recently, Kuo C. Tsai [Kuo 13], proposed a 

PN approach to consider the economic value and environment pacts on the 

disassembly and recycling processes.  

 

 

Figure 1.9 Disassembly Petri net (DNP) for sample product [Moo 01]. 
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Note that Petri nets are often constructed when one needs to simulate systems that not 

only encompass sequences generation, but also include higher aggregated levels, such 

as task planning and extended process chain for more precise and successful analysis.  

• Genetic algorithms (GA) approach is often chosen to solve optimization problems due 

to its capability in solving large and complex models compared with the other 

heuristic methods. GA being of stochastic type, the generation of optimized sequences 

is obtained using tailored fitness functions which consider the geometrical constraints 

of the product, the minimization of disassembly time and cost, as well as the 

possibility of grouping assembly operation or the environmental impacts [Yi 07]. A 

fitness function of the GA depending on the increment in disassembly time is present 

by Go et al. in [Go 12]. GA based approaches for disassembly sequencing of End Of 

Life (EOL) products were proposed in [Kon 06b, Giu 07]. A  heuristic GA was 

developed in [Ric 13] in order to optimize partial disassembly sequences based on 

disassembly operation costs, recovery reprocessing costs, revenues and environmental 

impacts. Chen et al. proposed in [Che 01] a stochastic planning of assembly sequences 

using a two levels GA optimization where the chromosomes are the disassembly 

sequences which may be valid or not. GA Level 1 is used to generate an optimal 

assembly sequence using the current settings of GOPS corresponding to basic 

operators (crossover, mutation, selection). At Level 2 these probabilities are optimized 

by a second GA to generate new populations. The scheduling algorithm takes into 

account the geometrical constraints thus optimizing the physical constraints. The 

individuals (disassembly sequences) of each population have to be approved as to their 

trajectories.  

• Fuzzy logic being dealing with uncertainties, an example of Fuzzy Logic–Genetic 

Algorithm methodology for automatic planning of assembly and disassembly 

sequences of products is treated in Galantucci et al. [Gal 04]. The main goal is to find 

the optimal sequence requiring the minimum completion time, by taking into account 

the fuzzy model of the processes and the constraints in available tool, destruction 

models, etc.  

• Neural Networks viewed the disassembly sequence problem as a variant of the 

traveling salesman problem (TSP), which is to find a traveling sequence with the 

shortest distance to visits all the cities of the problem only once. A neural network 
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consists of a large number of processing elements or neurons and weighted connection 

among them. Thanks to the highly interconnected neurons, a neural network can 

perform rapid computations in parallel and solve the computation efficiently. In [Hua 

00] Huang presented a deterministic method for the economic analysis of disassembly 

process based on a method for the generation of disassembly sequences using a neural 

network. The later determines the best sequences of dimension n set by the user. As 

there is not 3D representation of components associated with this process, contact 

conditions, mobility and components’ accessibility are not related to component 

models. Thus, there are no guarantees that the obtained sequences are valid. The 

optimization function used is similar to the traveling salesman problem by adding 

precedence constraints specific to the problem of disassembly. The approach described 

is subjective in nature and has no link with the 3D digital model of the product. It 

contributes to assess the best disassembly sequences from the viewpoint of recycling 

material.  

• Note that the main disadvantages of Neural Networks are due to its lack of global 

searching capability and sensibility on the selection of the network parameters value 

and initial conditions. Bayesian networks are graphical models developed in the field 

of artificial intelligence as a framework that should assist researchers and practitioners 

in applying the theory of probability to inference problems of more substantive size 

and, thus, to more realistic and practical problems  [Tar 13]. They integrate perception 

and action and use the dependencies among various parts of a product to propagate 

uncertainty regarding their condition as sensed during the disassembly process [Gei 

96].   

• Ant colony algorithm has been inspired and consequently developed from the 

observation of the operating mechanism of food exploration in ant colonies. Indeed, 

despite their limited intelligence ants collectively manage to find the shortest path to a 

resource of food: the most borrowed path is always the shorter one. Thus, Tripathi et 

al. [Tri 09] proposed an ant colony algorithm based on a probabilistic model between 

each step (of the algorithm), that can facilitate the choice of paths most likely to be the 

ideal disassembly sequence. Authors claim that this model provides faster and more 

accurate results as those obtained by a genetic algorithm.  
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1.5 Assessment 

The bibliographical analysis shows that the existing methods for disassembly sequences 

generation developed so far, as we are aware, satisfy only partially the needs of designers end 

industrials. The majority of work contributes in one way or another in the modeling of these 

operations often based on simplifying assumptions and hypothesizes.  

Thus, almost all simulation methods are based primarily on translational movements in order 

to separate or extract / insert components without rotation even if a numerical model is used 

to automatically identify the mobility of the components. Most often, this restriction is 

justified by the reduction in the associated computational complexity, even if it is at the 

expense of feasible solutions that are not identified. 

Two large approaches for disassembly sequences generation based on the components’ 

mobility modeling emerge, namely stochastic and determinist: 

Most of the stochastic methods allow reduction of the combinatorial of disassembly 

operations thus defining a sequence. One of their major disadvantages is the impossibility of 

obtaining the same results when the input data is the same which does not allow to easily 

evaluating the influence of some input parameter on the simulation results. Some of these 

methods are limited by the combinatorial sequencing because they are based on geometrical 

information only. In one hand it generates a large number of possible sequences, then using 

technological criteria, contacts, etc, and in another hand a reduction of the number of 

solutions must be performed. 

Concerning the deterministic interactive methods for sequence generation they are often 

subject to the discretion of the user. The later must simultaneously control the design process 

and the DFA approach as well. These methods   reduce the combinatorial sequences but add 

the need to interactively specify a large number of parameters especially for complex products 

where many designers are involved. Waves propagation disassembly uses modeling 

component with reduced mobility. Only translations using the intersection of translational 

directions attached to each side of the contact surfaces to locally validate or not a disassembly 

operation. The Neural Networks approach described in [Hua 00] is also of subjective nature 

and has no link with the 3D digital model of the product. However, it allows assessing the 

best disassembly sequences from materials recycling viewpoint.  
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1.6  Summary synthesis and critical analysis 

According to the applied techniques three large groups of methods for the disassembly 

sequences generation emerge, namely: interactive, automatic and Artificial Intelligence (AI) 

methods. 

The review of current approaches, briefly presented here and other works we have studied, 

leads to the following remarks:  

- Interactive methods (Section 1.3.1) being classified as indirect approach in the 

sequences generation for complex assembly, instead of gathering information from 

geometry, these methods get information directly from the user. They allow generating 

reasonable sequences for disassembly operation. However, the problem is that the 

disassembly operator (user) is not always the designer of the product. Consequently 

he/she may have some difficulties to answer the questions related to the product 

design thus compromising the search process. 

- As mentioned in Section 1.3.2, automatic methods are preferred way for sequences 

generation. There will be no better way than generating the disassembly sequences 

automatically according to the geometry relationship among the components in a 

product. However, the ideal way is always the difficult way for sequences generation. 

How to find the easiest and simplest model for sequences generation in automatic way 

is still an issue. 

- Searching algorithms: The wave propagation algorithm has a computational 

complexity of O(sn2), Dijklstra’s algorithm method proposed by [Gar 04] has the 

computational complexity of O(nlog n), when s<<n, and O(sn) time when s≅n. 

- AI methods (section 1.4.4) are different of mathematical programming techniques, 

which are inspired by sophisticated methods thus allowing generating the possible 

disassembly sequences for a given product. They try to find the optimized way for 

sequences generation as well. However, they are always related with the expert system 

or online calculations for real application in industries and need relatively long 

execution times for sequence searching as mentioned in [Lam 03].  
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1.7 Objectives of the thesis 

After the analysis highlighting the need for appropriate method for reducing the complexity 

for product disassembly sequences generation this section presents the objectives of the thesis. 

Given the assessment, the summary synthesis and the critical analysis presented here above 

our aim is to establish a simplified model for selective disassembly sequence generation. As it 

was mentioned in the General Introduction, when disassembling, it is important to eliminate 

the components which are unrelated to the target components prior to sequence generation. In 

order to address this configuration, our aim is to propose a method for generating the feasible 

disassembly sequences for selective disassembly based on the lowest levels of a disassembly 

product graph. Our goal is also to generate the minimum number of possible disassembly 

sequences. Thus, the proposed method has to include optimization aspect as well. Thanks to 

the proposed disassembly product graph (see Chapter 3), the method allows generating the 

minimum number of possible disassembly sequences. For this purpose prior to sequence 

generation, all the unrelated components with the disassembly target(s) are eliminated from 

the graph and the process automatically stops when the target(s) is (are) reached thus reducing 

computational research time. 

We present also a set of support modeling software (see Chapter 4) for selective disassembly 

sequences generation thus allowing assisting designers in their work in the initial stage of a 

product design. This software is currently being integrated within the framework of a “trade 

application” to EUCLID-V5 Software. 

1.8  Conclusion 

In this introductive chapter, first the synthesis of the most recent literature survey, to our 

knowledge, of Disassembly sequencing was done. Note that the common point of all these 

methods is that they are often a combination of different methods for Disassembly sequences 

generation and methods for optimization. The principal common difficulties of all these 

methods are their limitations in motion presentation as often the translations only in some 

general directions are considered and the rotations are not taken into account. 

Automatic disassembly sequencing is an ideal way for the disassembly sequencing. However, 

there are two major problems in this field. One is the representing models for the product. 

There are many graphs or networks as presented above for representing the relationships 

among the parts in a product. However, the graph-based techniques for example, do not 

consider products geometrical information data bases. As we are aware, there are not works 
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mentioning that these graphs or networks can be built automatically according to 

parts‘ relationship in the product. The other problem is related with the calculation method. 

Basically, all the graphs can be translated into matrix calculation for sequences searching (or 

calculation). Many works, based on some simplifications hypotheses, only focus on four or 

six directions to disassembly the product which is easy to transfer the disassembly calculation 

into the matrix computation model. However, in the real situation, the components 

disassembly direction of translation cannot be just in four or six directions. The motions of 

rotations have to be taken into account as well.   

Searching algorithms allow reducing the computation resource for complex models. However, 

the 3D assembly corresponding graphs are often difficult to build. Thus, these algorithms are 

relatively difficult for real application in product disassembly. Most of them involve 

simplification in the assembly model of the product in order to avoid complex computation 

resources.  

Regarding the AI methods they do not only focus on the disassembly sequencing of the 

product. As previously said, they concern the optimization of the sequences as well. In most 

works, the sequences already exist and AI method tries to choose the best one under some 

constraint.   

In order to reduce the effect of these simplifications and to obtain a proper disassembly 

sequence planning, a complete removal model is required, which shows the importance of 

model processing for disassembly simulations. Thus a more general method is necessary 

including the movements of translation, rotation and the collision detection as well. 

On the other hand, this chapter aimed to provide arguments concerning additional scientific 

developments in order to propose new more suitable and effective models and methods than 

the existing ones. Thus, these elements represent an introduction to the following chapters 

which will focus more on the detailed description of the proposed models.  
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2 Chapter 2                   

Virtual reality for assembly/disassembly         

operation simulation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This chapter analyzes the results and some remaining problems of existing research in the 

field of Virtual Reality (VR) technology related with disassembly operations simulations. First 

an overview of the existing VR integration approaches is presented by insisting on the 

constrain-based and the physical-based.  The Haptic interaction and force feedback are also 

presented. Then some Virtual assembly platforms which incorporate Ergonomics analysis are 

presented, followed by a Critical analysis and assessment, thus allowing introducing the 

Proposed VR environment for Disassembly operation simulation: sequences generation and 

their evaluation. 
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2.1 Introduction  

In the today’s global context, virtual manufacturing become critical to increase the efficiency 

of Product Development Process (PDP). This manufacturing involves computer graphics and 

simulation methods to model the real world. Assembly and disassembly (A/D) operations are 

key components in many manufacturing processes. Consequently they should be also 

supported in a virtual manufacturing system as a realistic A/D process modeling can reduce 

cost and save time.  

        Virtual reality (VR), is defined as “a scientific and technical domain exploiting the 

possibilities of computers and behavioral interfaces to simulate in a virtual world the 

behaviors of 3D entities, which interact in real time with each other and one or more users in 

pseudo-natural immersion through sensorimotor channels” [Fuc 06]. VR technologies 

provide advanced methods of real time user interaction. Their realistic behaviors of animated 

bodies enhance the feeling of immersion and improve performance of the user. Today VR 

environments have significantly evolved towards A/D simulation, highlighting new needs for 

A/D simulation preparation, evaluation and their integration in PDP. In order to save time and 

improve PDP, many works focus on virtual reality simulation [Duv 13] and in particular on 

A/D process [Jun 03, Gar 07, Ash 09, Wan 06, Li 12, Pon 13a, Pon 13b, Iac 14]. All these 

simulations address different objectives such as: A/D sequencing, path planning, collision 

detection, operational time evaluation etc., which often are complementary to each other. 

Thus, VR is a new technology that creates a real-time visual/audio/haptic experience with 

computer systems. It provides a potential way for disassembly operation simulation. 

        In this context, recent work and techniques related with A/D operation simulations and 

evaluations in VR environment are presented in this chapter. Its goal is to assess the 

advantages and the shortcoming of this technology, and the remaining problems of the 

existing works in order to present our contribution in this field.  

2.2 VR integration approaches overview   

As mentioned here above, VR technology plays a vital role in simulating advanced 3D 

human-computer interaction by providing users with different kinds of sensations (visual, 

auditory, haptic, …). Virtual assembly simulations allow designer to evaluate the concepts in 

virtual environments during the early design stages. With virtual prototyping applications, for 

instance, the optimizing process for the design for assembly can be incorporated in the 

conceptual design stage. Using haptic or auditory technology, allows designers to interact 
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with the assembly parts through human basic motions. Thus, contact force may be transmitted 

to the operator in real time. 

In 2003 Kim and Vance [Kim 03] described Virtual assembly as “ability to assemble CAD 

models of parts using a three dimensional immersive user interface and natural human 

motion”. Later, Seth et al. [Set 11] defined virtual assembly as “the ability to assemble virtual 

representations of physical models through simulation realistic environment behavior and 

part interaction to reduce the need for physical assembly prototyping resulting in the ability 

to make more encompassing design/assembly decisions in an immersive computer-generated 

environment”. The applications scope of virtual assembly is large as shown in figure 2.1.   

  

 
Figure 2.1 Applications of a virtual assembly/disassembly simulation [Set 11] 

Let us remember, that VR systems for assembly can be roughly divided into two categories. 

The first one is the virtual assembly systems using relative technologies to improve the 

feeling of the operator. The other one is virtual assembly systems for immersive assembly 

modelers which additionally support the combination of CAD-based parts to novel assemblies. 

The first category purpose is to check the general assemblability of the design: part 

accessibility, tool usage, generation of sequences and trajectories of assembly operations, and 

so on. The second category focuses on some sort of snapping mechanism which automatically 

completes an assembly operation when two parts close enough (in the vicinity of the contact) 

are moved in a virtual environment.   
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In the most of today’s industrial applications, VR systems are still used as mere 

visualization tool for prototypes modeled in external CAD systems. It not only provides 

powerful modeling functionalities but also, in particular, can be easily instructed, e.g. by 

meanings of intuitive language and gesture-based instructions. Figure 2.2 shows, an example 

of virtual environments involving the assembly of CAD-based parts [Jun 03].  

 

 
 

                                          Figure 2.2 CAD-based assembly in Virtual environment [Jun 03]. 

Note, that there are two kinds of systems for virtual environment development. One is 

constrain-based modeling approaches system the other is physical- based system.   

2.2.1 The constraint-based   

Constraint based modeling approaches are using inter-part geometric constrains to 

determine the relationships among components in the assembly. It consists of writing each 

contact as a unilateral constraint and solving the resulting system of equations for the object 

positions. Compared to the physical based simulation (see Section 2.2.2), constrain based 

modeling has two advantages: less computationally intensive and available information in the 

CAD models [Mar 03]. Constrain based application can produce much more realistic results, 

without unwanted artifacts and with the possibility to computer contact friction correctly [Per 

13, Tch 10]. 

There are two types of constraints modeling, which are positional constraints and geometric 

constraints [Set 11]. Position constrain can be represented by a set of equations, which can be 

solved based on numeric, symbolic or graph based method [Gao 98]. Instead of translation 

position constraints into equations, a geometric constraint focuses on the rigid body 

transformations which satisfy a set of constraints presenting the prelateships among all 

components [Leu 13].  
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For the constraints based application, there are many systems developed which can support 

the constraints detection.  For assembly planning a non-immersive desktop and immersive 

CAVE environment were proposed by Cruz-Naira et al. in [Cru 92, Cru 93]. It provided the 

subjects with a more immersive sense of virtual assemblies by implementing with IRIS 

performer. The results from the immersive VR environments, non-immersive VR 

environment and traditional engineering environment were compared by the authors, which 

showed that the subjects, in virtual environments had better performance than the 

performance in the traditional engineering environments.  

 Luis Marcelino [Mar 03] implemented a geometric constraint manager designed to support 

physical realism and interactive A/D tasks within virtual environments. The key techniques 

for this application are direct interaction, automatic constraint recognition, constraint 

satisfaction and constrained motion. He described the development and the implementation of 

a Geometric Constraint Manager which is used in Real-time immersive virtual environments 

such as CAVE. The system architecture of the constraint manager includes constraint solver 

and constraint recognizer. The solver determines the transformations to be applied to unfixed 

objects. It also applies new constraints, removes existing ones and fixes objects in 3D 

environment. The recognizer focuses on identifying new possible constraints and validates 

existing ones. However, the constraint manager has two bottlenecks. One is the recognition 

process. The other is the transformation of objects, which results in the unacceptably low 

frame rate.  

Jayaram et al. [Jay 99, Jay 06, Jay 07] developed VADE (Virtual Assembly Design 

Environment) system for assembly simulation (Fig.2.3), which can support constrained 

motion simulations. The simple constraints such as: against, coincident, etc. can be detected 

automatically and the relative motions of the objects can be based on the available constraints. 

The system imports all the data information (transformation matrices, geometric constrain, 

assembly hierarchy etc.) from CAD model to perform the assembly simulation. In 2001, a 

physics-based algorithm was added to VADE by Wang et al. in order to perform more 

realistic part behavior [Wan 01]. The VADE system has been used for virtual assembly 

simulation in various applications some of which are presented in [Jay 07]. A CAD linked 

virtual assembly and maintenance simulation based on constraint-based modeling was 

presented by Wang et al. in [Wan 06]. A year later, Yan et al. [Yan 07] developed a system 

for assembly path planning based on the constraint-based modeling. However, as the number 

of contact points is large, the constraint-based methods are much more difficult to implement. 
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In fact they take a lot of time for computing and the results may not always be stable as 

pointed out by Leu et al. in [Leu 13].  

 
 

Figure 2.3 VADE environment [Jay 06]. 

2.2.2 Physics-based system   

Physics-based modeling simulates realistic behavior of parts in virtual scene, where parts 

are assembled with each other. This modeling is based on the simulation of physical 

interaction in time.  It is applied primarily in the interactive dynamic simulations with human 

operators involved. The method always accurate and fast collision detection thanks to the 

calculated velocities and forces at the contact points. The forces can be returned to the 

operator through force feedback devices. Note, that there are two Physic-based types 

modeling algorithms based on the used method. One is the Penalty force, the other is Impulse 

method [Leu 13].   

•  Penalty force method 

Penalty force uses a spring damper system for preventing interpenetration between 

models. Using Hooke’ law the penalty force is: 

F=-kdN,  

where k is the object stiffness, d is the shortest distance from the tool point to the 

object’ surface, and N the vector from tool point to the contact point. In the same 

time, the force value is affected by the elasticity of the object. For hard collision, k 
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will be the same whether the objects are approaching or receding. The penalty force 

methods are easily for implementation. However, if the spring stiffness is too high, 

the stiff equation is numerically intractable [Set 11].  A physics-based virtual 

assembly system was presented by Garbaya et al. in [Gar 07] (Fig. 2.4). The 

approach, mainly based on spring-damper model, focuses on part to part interfacing 

and contact force during mating phase of the parts assembly in the VE. The collision 

detection system is based on V_CLIP algorithm.  In this approach, each model is 

presented by two 3D models: tracked model and visual one. The Tracked model is 

created by VHT (Virtual Hand software toolkit) library. The visual model is created 

in PhysX engine, visualized by OpenGL render. During the mating phase of 

assembly operation, the spring-damper model is used to render realistic parts 

behavior and contact force sensation. The study concludes that the user performance 

increased when inter-part collision forces were rendered to him/her. Some other 

related works can be found in [Erl 05, Ale 11].     

 
Figure 2.4 Data glove in a six-sided CAVE. [Gar 07] 

• Impulse method 

The interaction among objects uses collision impulses for all types of contacts. The 

impulse from collision is calculated to find out the absolute velocity of an object at 

the contact point. In this approach, the static contacts are considered as the high-

frequency collision impulses. The method is more stable and robust compared with 

penalty force method. According to Seth et al. [Set 11] and Leu et al. [Leu 13] it 

cannot handle simultaneous and stable contacts like sliding and stack of blocks at 

rest. However, Renouf et al. [Ren 05] disagreed with them.  
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2.3 Virtual assembly platforms 

In last decades, different virtual assembly platforms using different assembly techniques 

have been proposed by many authors. Virtual reality platforms can be used to simulate the 

whole manufacturing process including the assembly and disassembly operations. All this 

platforms are   physics-based, constrains-based or a combination of both of them. Germanico 

et al. [Ger 13] presented a literature review of different VR platforms as shown in Table 2.1. 

Table 2.1 Key features of some virtual assembly platforms [Ger 13]. 

 

2.4 Ergonomics analysis in VR system 

In recent years Ergonomic assessment of manufacturing industry in VR system is 

becoming more globalized [Wil 99, Jay 06, Pon 13c, Pon 13d]. Ergonomic engineering deals 
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with human behavior capabilities and their limitations in workplace which have to be taken 

into account during the design of a product or a system. The philosophy of such engineering is 

to fit the task to the human and not the human to the task.  The key point for an effective 

application is to gain a balance between the human body characters and the task demands. 

Various commercial software systems are available today for ergonomic studies in general 

and for their evaluation in particular. The Car interiors evaluation for example the JACK, 

ANNIE-Ergo man, and RAMSIS, amongst others, have good performance [Wil 99]. 

In virtual reality, Jack’s Task Analysis Toolkit (TAT) for instance (Fig 2.5) is a tool for 

ergonomic analysis of virtual human movement. It allows analyzing the posture of Jack in 

order to detect and consequently resolve ergonomic issues.  

 
 

Figure 2.5 Jack ergonomic analysis tool [Jay 06]. 

Rapid Upper Limb Assessment (RULA) algorithm [McA 93] for ergonomic evaluation 

allows assessing the risk of upper limb disorders. It is based on some parameters such as: 

postures, muscles use and weight of loads. The data required by RULA worksheet includes: 

joints angles and twisting of the arms, wrist, neck, trunk and legs, as shown in Fig. 2.6.  
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Figure 2.6 RULA Sheet [McA 93] 

        However, there is still a low level of acceptance and limited application of ergonomic 

analysis in the manufacturing industries. The main problem is that ergonomic analysis always 

involves a 3D human model to replace the real human for the ergonomic condition simulation. 

There are two strong limits in this field. The first is leaving the human aspect out of the 

assembly planning which could result in incorrect or inefficient operations. The other one is 

that as the number of parts is increasing exponentially for complex products, consequently it 

becomes more difficult to characterize criteria for choosing the most suitable assembly 

sequence for a given product. Task performing is becoming too complicated for the 3D 

human manipulation in the VE, that it needs involving high investment.  Therefore, according 

to Atsuko et al. [Ats 13] due to the high cost investment, human model application areas are 

applied mostly to mass and highly cost product industries such as the automotive and aircraft 

industries. 
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2.5 Haptic interaction and force feed back  

Nowadays, with the commercialization of new haptic technologies and software 

development platforms, the simulation of force feedback in virtual environment applications 

started to become more widespread. A haptic device, also called feedback device, is a 

computer peripheral which provides the force to the hand of its user. The input information is 

the movement of the haptic device (called also effector), and the output is the force. The 

behavior of the object is controlled by the physics’ laws. (Rq. Here, the notion of “object” is 

used in the most general case, while the notion of “component” is used for the parts of an 

assembly). 

Haptic technology can be divided into two categories depending of the wearing way 

which are: non-portable haptic device and wearable haptic gloves.  

• Non portable haptic devices: 

Sensable Technologies PHANToM (http://geomagic.com/en/products-landing-

pages/sensable), 

Immersion’s CyberForce (http://www.immersion.com/), 

Haption Virtuose (http://www.haption.com/ ), 

Novint Falcon (http://www.novintfalcon.com/). 

• Wearable haptic devices: 

CyberTourTM, CyberGraspTM (http://www.immersion.com/), 

Rutgers Master II [Bou 02].  

 

In certain fields, such as the training skills for surgeons, it has been shown that the 

haptic feedback improved dramatically the performance [Pop 00, Sal 97, Ric 95]. The use of 

haptic interface to feel collisions of 3D models in assembly tasks is presented by Ladeveze et 

al.  in [Lad 10]. Haptic provides repulsive forces allowing preventing motion for the hand and 

realizing the path planning (Fig 2.7). However, the device has limitation of workspace which 

restricts the movement of the operator in the environment.   
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Figure 2.7 Assembly simulation using haptic device [Lad 10]. 

 

The question is whether the cost and associated effort of integrating the current haptic 

devices into a computer-generated simulation are worthwhile. Thus, for industrial assembly 

tasks, for instance, the question is whether the operator could benefit from the haptic feedback 

or not.  In this context Edwards et al. [Edw 04] investigate whether auditory cues would be as 

effective as force feedback cue for an assembly task and whether subjective evaluations of 

usability would differ as a function of the type of feedback information provided to the user. 

For this purpose 24 volunteers (males and females) were involved to assemble and 

disassemble five interconnecting virtual parts with either auditory, force, or no feedback cues 

provided.  The performance for the task was measured by completion time and the number of 

collisions between parts. Note that some of the factors that make difficult incorporating force 

feedback into virtual Environments are: high cost for devices with higher degrees of freedom, 

limited amount of fidelity provided with current haptic devices, large processing requirements 

and slow update rates of current devices. The last two factors are the causes that most of the 

devices can only provide the main types of haptic feedback, either kinesthetic or tactile 

sensations. The main objectives focused by the authors are divided in four items. The first one 

is to determine whether the force feedback increases performance and eases the interaction for 

a simulated assembly task performed within an immersive Virtual Environment (VE). The 

second item is to determine whether force feedback cues (selections) made the interaction 

more realistic for the users and potentially allow them to do their task more proficiently. The 

third one is to determine whether auditory cues provide an effective substitute for force 
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feedback. And finally, the fourth item is to establish whether having both auditory and force 

feedback cues would increase performance and subjective measures of user satisfaction.  

                                   

 
                                       

 
Figure 2.8 The mean number of collisions by condition and force feedback effect [Edw 04] 

    The results of this study (Fig. 2.8) show that the addition of force feedback actually 

decreased performance. The possible explanation is that the simulation is not realistic enough 

to benefit from force feedback. As for the second objective, the study found that male’s 

volunteers reported an increased sense of realism with the addition of force feedback, while 

females only showed a tendency to rank force feedback as more realistic. The study shows 

also the auditory cues neither increased or decreased completion time or the number or 

collisions. The sound may be an effective means of conveying collision information, since 

sound did not negatively affect manipulation performance while still slightly increasing use-

perceived realism and overall satisfaction. The results indicated also that participants rated the 

combination of sound and force feedback higher than all other conditions for perceived 

usefulness towards a real assembly task. As the results shown, the effect is not obviously as 
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expected, and the reason maybe the level of simulation. Level means the simulation precision 

of the involved sound and force feedback. In fact, authors forgot one thing that may affect the 

whole results: the precision of calculation for each simulation, especially for the feedback 

cues and the auditory.  

In all, haptic technology cannot improve the performance in the absence of high 

precision simulation. The Non portable haptic devices have limited workspace for interaction. 

The Wearable haptic devices, however, provide force feedback only to fingers and palm, 

which is limiting their application field.  

2.6 Critical analysis and assessment 

Most of the recent works on A/D related with VR technology focus on the simulation 

itself. They try to build an environment to assembly or disassembly products and to compare 

the simulation results with the results of real A/D process. Some works use VR as the A/D 

path planning [Ale 11]. Some commercial software tools were also proposed to perform 

ergonomic evaluation during assembly [Jay 06, Set 11]. However, for virtual A/D simulation, 

several challenges need to be overcome. 

•    Collision detection: Collision detection prevents part interpenetration 

during virtual simulation. The fast and robust 3D collision detection 

algorithms are always required in the applications of Computer Graphics. 

Foisy and Hayward [Foi 93] presented four groups of algorithms which are: 

space-time intersection, swept volume interference, multiple interference 

detection and trajectory parameterization. In our opinion, the so called 

Extrusion operation proposed by Cameron in [Cam 90] is the most general 

representation of collision detection problem. The collision between two 

objects occurs if, and only if, their extruded volumes intersect. The extruded 

volumes approach is partially occluded by the high cost of its practical 

implementation, whose bottleneck is the generation of the 3D extruded 

volumes themselves.  

For this reason, other approaches have been proposed aiming at avoiding this 

explicit computation. These approaches can be divided into two groups, 

namely: geometric and algebraic. 
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 For the geometric group approaches, two main alternatives have been 

proposed: projecting the extruded volume onto a lower-dimensional 

subspace leading to the swept volume approach and sampling along the 

trajectory. For the swept volume approach, the volume containing all the 

points occupied by a moving object during a time period is called the swept 

volume (see details in Chapter 3). If the swept volumes for the objects in a 

scene do not intersect, there is no collision happening. However, the 

generation of swept volume is too computationally expensive. Thus, many 

works adhering to this approach deal with convex approximation swept of 

volume instead. For example the object trajectories, concerning the multiple 

interference detection, the aim are to sample the object trajectories and 

repeatedly apply a static interference test. Of course, the sampling way is 

crucial for the success of the approach. The ideal way is that the next sample 

should be the earliest time at which the collision can really occur.  

Concerning the algebraic field approaches, the aim is to parameterize the 

trajectory. Thus, the approach called trajectory parameterization focuses on 

the objects trajectories functions depending of a parameter (time). However, 

depending on the trajectories, the degrees of the resulting polynomials may 

be arbitrarily high, and the determination of the collision instant can be 

computationally very expensive for arbitrary trajectories.  

Note, that the key issue here is the cost of the collision detection. Thus, the 

right time and place to apply the detection test become a key aspect of any 

polyhedral collision detection scheme. It is possible to bound the time 

interval when the collision occur if we know the objects’ moving direction 

and how far away they are from one another. In [Jim 01] authors mentioned 

that most of collision detection schemes only deal with polyhedral 

approximations. However, this is a great challenging problem for collision 

detection not only due to the nature of the objects’ motion but also because, 

in this case, a polyhedral approximation is inadequate.  

•    Constraint based or physical based models: As mention before, no matter 

constraint based or physical based model for inter-part detection, there are great 

challenges for both of them. The constraint based (position or geometric) modeling 
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always needs the predefined geometric constraints before the implantation in virtual 

simulation. Then the system can compute relative motion of the objects based on 

available constraints. Compared with physic-based modeling, constraint based 

method can reduce computing time when a lots of components are involved in the 

scene. However, the predefined task will be heavy. If the task is related with non-

linear systems, constraint based method still have difficulties handling over-

constrained situation. For complex constraints simulation, exhaustive computation 

requirement make it inappropriate for real world application.  

Concerning the physics-based modeling to simulate realistic behavior among 

complex parts interactively and accurately is still a challenging task.  Compared with 

constraint base method, this method needs more computation time, especially, when 

several contacts occur simultaneously. It can get more accurate force feedback 

results. In most works, this method focuses on simple two parts assembly simulation.   

Therefore, choosing a better algorithm for inter-part detection is still a great 

challenge at the present as well. 

•    Evaluation methods: How to evaluate the disassembly or assembly is the main 

concern of our thesis. Most of the recent works on A/D related with VR technology 

focus on the simulation itself. They try to build an environment to assembly or 

disassembly products and to compare the simulation results with the results of real 

A/D process. As previously said, its purpose is to try to fit the task to the human and 

not the human to the task. To evaluate some ergonomics parameters during 

simulation in VR environment, most works focus on using a human model in a 

digital mock-up (DMU) model [Wan 12, Lon 06].  

Thus, how to find a more realistic method for disassembly/assembly operation 

simulation and their evaluation in VR environment is still an issue.  

2.7 Proposed VR environment for Disassembly simulation 

When it is necessary to analyze the interaction between human and object, VR 

technology is a better choice. Especially for disassembly sequences evaluation there is a 

strong need to evaluate disassembly operation for immersive simulations with a larger set of 

possible movements and to get more realistic results.  However, for a complex product, the 

number of the possible disassembly sequences may be relatively large. If all the sequences 
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have to be evaluated in the virtual reality, it will be relatively costly on time. So, prior to 

evaluate, most of useless sequences need to be deleted.  

Thus, we propose a VR environment for A/D simulation particularly suited for scientific 

and industrial applications. The component models are acquired through a STEP file coming 

from a CAD software (see details in Chapter 4).                                                                                                                              

2.8 Conclusion 

Despite of their many advantages, the majority of the A/D methods related with VR 

technology, a part of which were described above, have certain shortcomings to make them 

convenient for industrial applications. 

Most of the recent works on A/D related with VR technology focus on the simulation 

itself. They try to build an environment to assembly or disassembly products and to compare 

the simulation results with the results of real A/D process. Some commercial software and 

tools were also proposed to perform ergonomic evaluation during A/D. However, as 

mentioned before, this evaluation is relatively expensive and often used only by mass 

production industries. Moreover, VR-based applications use real-time interactions and 

immersive techniques allowing enlarging the user perception of digital models. For 

disassembly operation simulations, relative mobility between components becomes also a 

major issue to reduce the simulation time and improve the efficiency of digital models. 

After reviewing some current approaches, a part of which was presented here above, it 

can be stated that the existing VR approaches still have limitations in evaluation of 

disassembly sequences complexity. So, there is a strong need to evaluate disassembly 

operation for immersive simulations with a larger set of possible movements and to get more 

realistic results. In addition, when haptic devices are used, penetrations due to collision 

detections can be avoided and the quality of the user’s feedback can be improved. For this 

purpose component mobility need to be characterized to specify constraints associated to 

haptic devices during the A/D process simulation.  

This chapter aimed to provide arguments concerning additional scientific developments 

in order to propose a new software tools more suitable and effective than the existing ones. 

These elements represent an introduction to Chapter 4 which will focus more on the detailed 

description of the proposed tool.  
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3 Chapter 3                                              

Method for disassembly sequences generation  

  

 

 

 

 

 

 

 

 

For disassembly it is important to eliminate the components unrelated to the target prior 

to sequence generation. In order to address this configuration, a method for generating the 

feasible disassembly sequences for selective disassembly is presented in this chapter. It is based 

on the lowest levels of a disassembly product graph. Instead of considering the geometric 

constrains for each pair of components, the proposed method considers the sets of disassembly 

for removal (SDR) and collisions among the components in order to generate the Disassembly 

Geometry Contacting Graph (DGCG). It is built according to proposed three micro units, which 

consider all the possible situations of relationships, among the components in the DGCG. The 

latter is after then used for disassembly sequence generation. The method allows reducing the 

number of possible disassembly sequence by ignoring the unrelated components with the target. 

It is applied for automatic generation of the selective disassembly sequences for different 

assemblies and is illustrated through two examples.   
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3.1 Introduction 

Disassembly sequencing involves the search for all possible ways for disassembling and 

often selecting the optimum solution out of these. For the company, the improvement of the 

recyclability performance of their products is becoming an integral part in the product 

development process (PDP).  Let us note that there are two major key concepts related with 

the disassembly applications. The first one is that considering the whole life of a product, 

designers have to integrate assembly and disassembly (A/D) operations in the earlier stage of 

a product design. The other concept is that today disassembly is based on the so called 

concept of “selling use” instead of selling products. 

According to the assessment, the summary synthesis and the critical analysis presented 

in Chapter 1 almost all the methods related with the disassembly sequencing in the literature 

have some shortcomings. Thus, the aim of our thesis is to establish a simplified model for 

disassembly sequence generation. Let us remember that for interactive methods for 

disassembly sequencing generation, the operator is not always the designer, and often is not 

familiar with the structure of the product which led to the interruption of product design 

information. Thus, it will be great trouble for the operator to answer questionnaires about the 

product.  For automatic methods, the graph based methods and Artificial Intelligence (AI) 

methods often focus on the theories development and have difficulties to consider complex 

products with multiple relationships among their components. Few other methods answer the 

question how to use the relationships in real product in order to automatically build the 

corresponding graph. In this chapter, a new method for selective disassembly based on the 

Disassembly Geometry Contacting Graph (DGCG) is presented. We claim that it is better 

than the method of DSSG proposed by [Smi 11, Smi 12] as it enables all the removing 

directions of the components to be taken into consideration. Instead of considering the 

disassembly direction, often limited in number of 4 or 6, our method focuses on the sets of 

disassembly for removal (SDR), including: both translation and rotation movements, and 

collision detection as well. The method is also better than the wave propagation method [Sri 

00, Sri 99b] as its computation complexity O(sm(n-1)) is lower than the computation 

complexity O(sm2) of the wave propagation method thus reducing the number of search 

iterations to generate the possible disassembly sequences ( m is the number of components in 

an assembly, s is the number of targets and n the number of level in the disassembly graph 

(see Sections 3.3) 
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Let note, that the method includes also optimization aspect as well because it converges 

to the minimum number of possible disassembly sequences. Thanks to the established DGCG 

graph, it allows generating the minimum number of possible disassembly sequences and 

rapidly converging to the solution. For this purpose prior to sequence generation, all the 

unrelated components with the target(s) are eliminated from the graph and the searching 

process automatically stops when the target(s) is (are) reached. The unrelated components are 

the set of components which remind in the assembly. They have not to be moved in order to 

reach the target(s) and consequently they do not appear in the graph. Our research is focused 

on selective non-destructive disassembling, rather than on destructive or complete 

disassembling (see Chapter1). 

3.2 Relative concepts and definitions 

Before presenting our methods, let us remember that disassembly models are often 

based on graph representation of the product where vertices represent parts, and edges 

constraints or contacts. Graphs can generally be converted into matrices for computation. In 

order to reduce the complexity of selective disassembly sequences generation, our approach 

uses the concept of the Gaussian sphere [Pom 04, Woo 91, Woo 94]. The related main issues 

for product disassembly are presented with some details in the following paragraphs.  

3.2.1 Contact identification   

  For contact identification the so called contact identification operator proposed in [Iac 

08, Iac10] is used. The realized simulation framework Simpoly [Iac 08, Iac 10] automates the 

contact identification and offers a more robust approach for further usage of haptic devices. 

Thanks to the developed software, the operator can identify the different types of contacts in 

the assembly. The user has to select the components in the assembly tree built from the 3D 

model (STEP format) file where contact identification should be performed. If two 

components at least are selected, Simpoly generates a List of Bodies intersecting each other. 

To achieve this, the bounding box of each component is used in order to check the 

intersection between the bodies and speed up the process.   

3.2.2 Set of directions for removal (SDR) 

In order to represent all possible movements of translation and rotation for a part, we 

applied the set of directions for removal (SDR) approach proposed by [Sid 97]. SDR 

represents all the possible separation directions of a component with regards to the other 
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components in the product. The basic idea of this approach is using the contact surfaces to 

determine the SDR. In [Woo 91] Woo and Dutta proposed an automated approache for 

disassembly path generation based on determining the pole vector of the Gauss unite 

hemisphere. Later the SDR method was modified by [Pom 04]. Authors described a method, 

based on the non-destructive disassembly plan, called modeling of assemblies, which allows 

determining the disassembly path and its optimization with adaptive planning after 

determining each movement of the components. The disassembly model is generated 

automatically from the CAD design of the product. The proposed model, not only facilitates 

the determination of the directions of removal for each component. It allows also capturing 

the necessary information for simulation of the disassembly process.  

To remove the target component from a product, each contact needs to be checked first 

in order to get its possible SDR. If a component is free in the space, it can be moved by 

translation, rotation and helical motions in any direction. So, for a free component, its SDR in 

Gaussian sphere presentation will be the full sphere. If a contact between two components 

exists, Plan Fit contact for instance (see Fig. 3.1a), the contact surface restricts the directions 

along which the component may be removed, thus reducing the Gaussian sphere to a half. 

Another example with two Plan Fit contacts reduces the Gaussian sphere to a quarter, as 

shown in Fig.3.1b. Note that SDR concept concerns both components and contacts. 

 

                  

                                                 (a)                                               (b) 

                                           Figure 3.1 SDR using Gaussian sphere based method. 

From Fig. 3.1(a) and (b), it is seen that there are one and two mating faces respectively. 

If considering a sphere of unit radius (Gauss unite sphere), a mating face divides the sphere 

into two hemispheres. The hemisphere, labeled Hi, which corresponds to the outward pointing 

unit normal of the mating face, conserves the sets of direction for removal (SDR).  

  !" = ∏ $%&%'�           (3-1) 

where N is the number of the mating faces for the components. If the foot of the normal to the i-
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th mating face is the pole, Pi (xi, yi, zi) of the hemisphere Hi, then: 

 	(%( + *%* + +%+ ≥ 0           (3-2) 

 

and the analytical equation of the hemisphere Hi, containing all the sets of direction for removal 

is: 

                                              x2+y2+z2=1                                 (3-3) 

 

Therefore, for the SDR, according the eq. (2-3) and (3-3), the function (1-3) can be calculated 

from the intersection of these hemispheres: 

 

 !" = - (� + *� + +� = 1	(�( + *�* + +�+ ≥ 0. ∩ - (� + *� + +� = 1	(�( + *�* + +�+ ≥ 0.	⋯∩ - (� + *� + +� = 1	(&( + *&* + +&+ ≥ 0.    
(3-4) 

 This can be represented as following: 

  !" = {23(, *, +4|(� + *� + +� = 1, 	(�( + *�* + +�+ ≥ 0, 6 = 1,2, … , 8}     (3-5) 

 

Siddique and Rosen [Sid 97] presented a four steps algorithm related with SDR determination. 

The algorithm consists in: 

• Step 1: Determination of the vectors in SDR.  

For any vector r (x, y, z) in the whole space, normalize the vector to satisfy the 

equation (3-4), then check whether the unite vector meets all the inequality 

conditions. For example, if in a point (x1,y1,z1), xix+yiy+ziz<0, vector r cannot be 

a feasible removal direction. This will just need O(n+1) time calculation for 

checking the feasibility of a direction.   

• Step 2: Determination of the bound of the removal space. 

For each pole, first normalize the pole (here pole stands for vector) and then find 

rotation to move pole away from the Oxy plane such that the points are still in 

the hemisphere that can determine the required rotations. Then use central 

projection to map all the points corresponding to the poles onto the z=1 plane, 

which can construct the largest convex containing all the poles based on the 

convex hull algorithm. At last, map the points that define the boundary of the 

convex hull back to the unit sphere.  
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• Step 3: Explicitly constructing the feasible removal direction space. 

First: for each plane, defined by Step 2, compute the intersection with adjacent 

plane which can be done by cross vector product of the normal vectors to the two 

planes.  

Second: the order of the intersection can be determined by traversing the planes 

in the same order as the convex hull, by using the Step 2.  

• Step 4: Feasible removal directions for fits mating conditions. 

First: gather the axes of all the fits mating conditions. 

Second: check if all the axes are parallel. If so, determine if the axes lie in SDR. 

According to the mating conditions of the target component with its surrounding 

parts, the SDR for this target component are computed.  If axes lie in SDR, the 

target component may be disassembled. 

 

A method for automatic generation of the disassembly path in a virtual environment was 

proposed by [Mo 02]. The method’s algorithm is similar to this of Siddique and Rosen [Sid 

97].   

 

 
 

 

Figure 3.2 Disassembly directionality [Mo 02] 
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3.2.3 Approximation of the shape 

In order to automatically get SDR from the CAD design of the product, its shape should 

be modeled as polyhedron. However, not all the 3D models are composed with only 

polyhedral shapes. Thus, a method for non-polyhedral shape using shape polyhedron 

approximation was proposed by Pomares et al. in [Pom 04]. Fig. 3.3 shows the approximation 

of the shape of a screw to a polyhedron taking different resolutions into consideration and 

using different qualities for the representation.  

 

Every polyhedron can be presented by a set of intersected flat surfaces. To each surface 

a normal vector v, directed outwards from the polyhedron is associated. Beside it, a point is 

required in order to get the complete equation for the polyhedron.  For any surface, Si, two 

parameters are necessary in order to define the plane which can be presented as	3v;�<<<<<=, P?�4, 
where 1 indicates the initial position of the surface of the polyhedron. Thus, for any 

translation matrix T, the new values for the assembly/disassembly removing direction of each 

surface are:  @v;�<<<<<=,						p?BCD = T ∙ 	 @v;�<<<<<=,						p?BC, where T represents the set of translation that the surface 

has undergone.  

 

With our method, the constraint directions are divided into two types. The first one is 

the SDR, which stands for the possible removing direction of the part in the assembly. The 

other one is collision detection during disassembly in the range of SDR. These two aspects are 

presented in the next. 

Figure 3.3 Approximation of the shape of a screw to a polyhedron [Pom 04]. 
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3.2.4 Geometric feasibility  

The set of direction for removal (SDR) concerns the freedom of the components in the 

assemblies. In order to disassemble a component from an assembly, after having its SDR, the 

component also needs free path for its disassembling without collision with other parts. If two 

subassemblies of components can be assembled or disassembled without collision this 

situation is called Geometric feasibility. The latter represents the free path of assembly and 

disassembly [Su 07]. In order to explain the concept of geometric feasibility, Fig. 3.4 shows 

some typical constraint directions. The arrows represent the limits of the possible removal 

directions of part B according to part A. 

 
Figure 3.4 Typical constraint directions 

a)  Basic notions and definitions  

The relationships among parts can be described using the following concept. Let consider 

a box composed by two parts (body B and cover A), and parts C, D and E inside thus defining 

the assembly N= {A,B,C,D,E} (see Fig. 3.5).   

 

 
 

Figure 3.5 An assembly’s draft  
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As shown in this figure the constraint directions that limit to remove E out of the box are 

d1 and d2 (limited by the Cover A) and d3 and d4 (limited by the body B). Thus, the relationships 

among parts can be described using the following definitions: 

Constraint directions (CD) are the set of possible moving directions of a part limited by 

the dimensions of another part. The CD of part E according to parts A and B for assembly N= 

{A,B,C,D,E} can be presented respectively as:  

                                   CDEB= (d�, d�4 
                                   CDEA= (d	, d
4 

Therefore, for an assembly, the constraint direction S= {A, B} of the assembly state to part 

E can be calculated as:  

                                  CDES= (d	, d
4 ∪	3d�, d�4 = [0, 2π) =I  

 

If the directions set I = [0, 2π), it implies that E is completely constrained in all the 

directions in S.  

  The constraint direction of certain assembly state S can be calculated by 

 

                                CD?L = ⋃ iϵsCD?B                      (3-6) 

 

Constraint assembly state (CAS) 

The constraint assembly state is the state that a part is completely blocked in an assembly. 

It allows to measure the sets of constrain direction for a particular part labeled,	CASS� = {A, B} 
where 1 means the minimal number of parts (here A and B) for the constraint assembly state of 

the particular part E.  If we consider the other parts which may bloc E (here C and D), the 

respective Constraint assembly states are: CASS� = {A, B, C}  and CASS	 = {A, B, C, D}      
It is easy to find out that CASS� is the smallest. Thus, it is called the minimal constraint 

assembly state of E. It can be used for the possibility evaluation of disassembly. If the minimal 

constraint assembly state of a part is less than the directions set I= [0, 2π] for a component in an 

assembly, this component can be disassembled. 

3.2.5 Collision detection  

After obtaining SDR, the next issue is the detection of collisions which may occur during 

the disassembly process. The Extrusion operation method, proposed by Cameron in [Cam 90], is 

one of the most common way for collision detection. The Extrusion operation involves 
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transforming the collision detection problem into an intersection detection problem over the 3D 

space. Note, that the disadvantage of this method is its high cost of explicit computation. In 

order to avoid this explicit computation, other methods use Projection calculation [Jim 01] 

instead of the extrusion operation. The projection calculation method, consists in projecting the 

volume of the parts onto a lower-dimensional subspace in a given projection direction.  This 

leads to swept volume approach as shown in Fig 3.6 [Jim 01]. If the swept volumes for the 

objects (parts) in a scene do not intersect in a given projection direction, there is no collision 

happening among them in this direction. Thus, the projection is defined as the direction of the 

extrusion. Projection allows the transition from 3D to 2D representation. Note, that the 

projection process is static, meaning that there is no motion of the parts. Only projections are 

done in order to pass from 3D to 2D representation. Thus, if there is collision in 2D this means 

that there will be a real collision between the 3D parts.   

  

X

Y

Z Projection

  

Swept volume
 

                                  Figure 3.6 Swept volumes for two components. 

As previously said, by using the projection method, a transition from 3D to 2D 

representation appears. Thus, for a product the lower (2D) dimensional subspace in this situation 

is like a convex hull, as shown in Fig.3.7. Only the components that can be moved out of the 

convex hull can be disassembled in a direction of SDR. If swept volume has no intersection with 

any other components when the projection reaches the convex hull, this component can be 

disassembled. This is the component N° 5 as shown in Fig.3.7. It is defined by its biggest 

dimension, here the distance AB, which limits the bandwidth of the projection area of the SDR.  

Let us note that a component in a product cannot be disassembled for two reasons. The 

first one is that there is no SDR. The second reason is the presence of collision with other 

components in the direction of projection. Those two aspects are integrated in the method 
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proposed in the next sections of this chapter.   
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Figure 3.7 Set of directions of removal (SDR) and Collision Detection 

 

3.3 Disassembly Geometry Contacting Graph definition 

Based on modular product design, the consideration of disassembly of modular units is 

important. In reality, sometimes it is possible to separate several modules and reach the target 

component instead of disassembling the components one by one. If this is the case, each module 

is considered as one component. Thus, the proposed method is based on two main steps. The 

first one consists in building the Disassembly Geometry Contacting Graph (DGCG) of the 

product. The second one consists in generating of disassembly sequences. 

3.3.1 Disassembly Geometry Contacting Graph (DGCG) 

It is assumed that if parts are welded they appear as one complex part in the graph. Thus, 

building the DGCG allows minimizing the complexity of the model for disassembly sequence 

generation.   

The DGCG aims to divide the components related with the targets into different 

disassembly levels according to their abilities to be disassembled. For example, if some 

components can be disassembled directly, without removing other components, we called them 

1-st-disassembly level components. Consider a product (assembly) containing m components. 

For each of the components, the SDR and the collision detection are checked. Then, after m 
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iterations, the 1st-disassembly level components1 are obtained. Again, recheck the remaining 

components on the condition of the 1st-disassembly components have been already removed. 

Thus, the 2-nd-disassembly components are obtained and so on.  

In order to generate the sequences according to DGCG graph, the reasons why some 

components cannot be disassembled in the preceding levels need to be checked as well. For 

example, in Fig 3.8, component 4 can be disassembled in level 2. Thus, the reason why 

component 4 cannot be disassembled in level 1 needs to be recorded. Component 7 can be 

disassembled in level 3. The reasons why it cannot be disassembled in the upper levels 2 and 1 

need to be recorded for the later sequences generation analysis and so on. When the target 

component is reached the process for building the DGCG stops automatically.  

Therefore, the key points of the proposed method are that not only it obtains the 

disassembly level for each related component but also involves the reasons why a component 

cannot be disassembled in the prior levels. 
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Figure 3.8 A general case of  DGCG. 

                                                           
1 In order to simplify the terminology the “i-th-disassembly level components” will be called simply “i-th-
disassembly components” 
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As shown in Fig 3.8, the edges between the 1-st-disassembly components and the other 

remaining components are cutting off in order to obtain a new SDR. However, the 1-

disassembly components need to be included in the collision detection as well. For example, if 

we want to get collision information about component 4, the edge between 4 and 1 is cut off. 

Thus, component 1 will be moved out and components 2 and 3 will still remain there for 

collision detection checking.  

The following notations are involved in the graph:  

- if component i cannot be disassembled in level n because of collision with the 

component j, it is labeled by �U%,V, 
- if component i cannot be disassembled in level n because of no SDR, it is labeled by  8 U% .   

Conventionally, the components from the same disassembly level are represented by the 

same color in the DGCG. In order to reduce the complexity, and consequently, the computational 

effort and time, it is supposed that the fasteners (specified by squares in the graph) can only move 

in one direction. They do not need to be involved in the calculation of SDR because, by definition, 

they are supposed to have SDR. So, for a fastener in the assembly, the SDR calculation results will 

only be in one direction along with the centre line of the fasteners (screw, bolt), as shown in Fig 

3.9. 

 

 

Figure 3.9 Set of direction for removal (SDR) of fasteners. 

Generally the fasteners should be the 1-st-disassembly components. If it is not the case, it 

means that they have collided with some other components. As seen from Fig.3.8, component 4 

cannot be disassembled in the first level because of the collision with component 1, labeled as 

(C�
,�4. Component 8 cannot be disassembled in level 1 because of no SDR, labeled as 3NS��4. It 
cannot be disassembled in level 2 either because of the collision with component 5 labeled as 3C��,�4. The detailed flow chart for generating the disassembly geometry contacting graph (DGCG) 

is shown in Fig. 3.10. It consists in three main steps: 
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yx
nC ,
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x
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   legend:   ODE Geoms (Open Dynamics Engine library) 

x, y, … stands for any component in the product 
                                  

Figure 3.10 Flow chart for DGCG generating 

- First, the 3D component models of the assembly are imported in the realized software 

through a XML file coming from a CAD software. Each model is followed by ODE (Open 
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Dynamics Engine) Geoms model which is used to detect the contacts among the components (see 

Chapter 4). Then the contacts’ arcs among the components are built.  

- Secondly, the analysis of the components’ type and the collisions are performed. If the 

component is not a fastener, check the SDR. If the component is a fastener, just the collision 

information is checked. If it has a collision with some parts, build the related collision arcs and 

record that the component cannot be disassembled in this level because of the collision. If there is 

no collision, the component can be disassembled in this level. 

- Third, removed components can be disassembled in the upper levels, cut off the arcs, 

recheck the remaining components again and so on.  

Note that the process for building the DGCG, stops when all the targets appear in it. Based 

on the flow chart presented in Fig. 3.10 a pseudo code associated to the method was developed for 

implementation (Table3.1) 

Table 3.1 Pseudo code of disassembly geometry contacting graph building 

Initialization 

n= 0: level  

x, y…: any component  

A : any product for disassembly 

∀ Target x∈A , following “Ode Geom”, then Building contact lines according to the contacting 

information. 

Loop:  x ==bolts or nuts?  

      Loop1:       If yes, collision with any other component (y)? 

                                     If  yes, record XUY�Z,[  

                                    Else, component x belongs to n+1 level            

                 Loop2:      All targets reached? 

                                              If yes, End  

                                           Else   the entire remaining components reached?   

                                                        If  not, x++, (go to loop)                                                     

                                                      Else, cutting components (n+1 level), x points to one of the remaining  

components,  

(go to loop ) 

                     Else,  SDR>=0? 

                                 If yes,  go to collision detection (go to loop1)                     

                               Else, record		8 UY�Z , go to the entire remaining components reached (go to loop2).  

3.3.2 Three Micro-units 

The next step consists in generating the disassembly sequences according to DGCG. For this 



 

 

64

purpose three cases, called micro units, which consider all the possible situations of relationships, 

among the components in the DGCG are addressed (Fig. 3.11). Suppose x is the target component.  

x
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vx
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                  a)                                                            b)                                                   c) 

 
                            Figure 3.11 Three types of Micro units for DGCG building. 

Case1: Micro-unit 1. Transition from No SDR (NS) to Collision (C). 

In micro-unit 1 (Fig. 3.11a), suppose the target component x is in collision with component 

w in level (i-1), labeled as C?\�],^. Suppose also it has no SDR, in level (i-2), labeled asNS?\�] . 

Component w has to be moved before the target component x because of	C?\�],^. Therefore the next 

target, called auxiliary target, should be component w. However, if the component w is in the 

lower level instead (means that component w cannot be disassembled before component x), in this 

case, component y should be the auxiliary target because it connects with component x. Although 

x has a collision with w, but after removing component y, component x can change its direction of 

disassembly. Therefore, the component y removing cancels the collision between x and w.  As 

seen from Fig 3.11, component x has changed its status from 	NS?\�]   in level (i-2) to C?\�],^ in level 

(i-1). It means that component x cannot be disassembled in level (i-2) because of no SDR. After 

removing the components in level (i-2), component x cannot be disassembled because of collision 

in (i-1) level (C?\�],^). Therefore, the components in level (i-2) connected with the target component 

x are responsible for this change (called also transition). Thus, component z should be 

disassembled first to reach component x.  

In order to illustrate this case, a relatively simple example is shown in Fig. 3.12a. The target 

component x is connected with component y by two fasteners z. Component w is the ground 

component defined as the components upon which, stands the rest of the assembly. In order to 

obtain SDR, fasteners z should be moved first. Then component x will have a collision with 

component w. However, it is not possible to remove w before component x because component w 

is the ground part. Therefore component y, being in contact with x, should be disassembled instead. 

After removing component y, component x will have new SDR thus avoiding collision with 
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component w. Consequently, the disassembly sequence is x→{z,y,x}. In this notation, x is the 

target component, {z,y,x} is the feasible disassembly sequence. 

      

                                                            

                                          a)                                                                                 b)                       

                                               Figure 3.12  Examples for micro-units. 

 

Case 2: Micro-unit 2. Transition from Collision (C) to Collision (C)  

   In micro-unit 2 (Fig. 3.12b.), suppose target x is in collision with w in level (i-1) labeled as C?\�],^  .  

Suppose it has also collision with component v, in level (i-2), labeled as C?\�],_  in . (Rq. Component 

v, which stands for any component in the product, is not shown in the figure). If component v is 

supposed to be component w, the auxiliary target should be w. If component v is distinct from w 

and its disassembly level is the same or upper than the level w (it means the component v can be 

disassembled before or at the same time with the component w), v should be the next disassembled 

component. For example, in Fig. 3.12b, target x will have collision with component v after 

removing fasteners z between x and y. In the same way, according to the relationships between y 

and x, after removing y, component x will have collision with w. After removing component y, the 

collision of x will change into collision with w. As the removal of component y causes this 

transition, it should be disassembled before w. If the disassembly level of component v is lower 

than the level w, component v will be ignored. The components connected with the target x in 

level (i-2) should be responsible for this transition from  C?\�],^  to C?\�],_ . Both y and w should be the 

targets in order to get x. Component y should be the auxiliary target before x. Thus, the 

disassembly sequence is: x→{z, y, w, x}. 

Case 3: Micro-unit 3.  Transition from no SDR (NS) to no SDR (NS) 

If the target component x (in level i) cannot be disassembled in level i-1 because of no SDR 

labeled NS?\�] , all the components connected with x in the upper levels should be the next auxiliary 
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targets. Because x cannot get SDR, it is necessary to move its surrounding components (to get the 

SDR). As shown in micro-unit 3 (Fig. 3.11c), components y and z should be the next auxiliary 

targets. This means that if the target does not have collision with any components, the components 

in the upper levels connected with the target should be disassembled in order to get the SDR.  

The pseudo codes for the three types of Micro units are shown in Table 3.2. 

Let us note that there is no case of transition from Collision (C) to no-SDR (NS). In fact, 

when collision happens, it means that the moving component already had its SDR in the 

considered level, and consequently it is not possible for it to change into No SDR in the lower 

levels. Let us note also that, for any target component connected with fasteners, the latter should be 

disassembled first, if it is possible of course. If fasteners cannot be the 1-st-disassembly 

components, it means that they have collision with some other components. Consequently, these 

collision components should be disassembled before the fasteners. 

 

Table 3.2 Three micro-unit pseudo codes 

Micro-unit 1 Micro-unit 2 Micro-unit 3 
A: stands for any product for disassembly 
y: stands for component connected  with component  x in i-2 level  
For  ∀ Target x ∈A , in i level 
take 	�%\�Z,a, 
    If level (w)<level(x), 
        return target component w, y
    else: return target components 
y 
end for 

For  ∀ Target x ∈A , in i level  
Take,�%\�Z,a and �%\�Z,b , 
 If w==v, return w, 
else if level(v)<=level(w), return v 
else return targets components  
        connected with x in (i-2) level 
end for 

For  ∀ Target x ∈A , in i level  
    For j=0 to i: 
Return target components        
connected  
with x in j level  
        J++ 
   end for 
end for 

Legend:  level (x):  the level of part x 

 

According to the proposed three cases the disassembly sequences can be performed. For 

instance, if component 8 is the target component (see Fig. 3.8) it cannot be disassembled because 

of no SDR in level 1 (NS��). It also has collision with component 5 at level 2 (	C��,�). This situation 

belongs to case 1. As component 1 is fastener connected with 8, it should be moved first to get 

SDR. Then component 5 must be moved according to case 1. But, in order to get component 5, 

component 2 must be moved first according to case 3. Thus, the sequences will be {1,2,5,8} or 

{2,1,5,8}. As components 1 and 2 belong to the same (here first) level, both sequences (1,2) or (2,1) 

are possible. Consequently, the sequences order for target component 8 is 8→{(1,2),5,8}. In this 

notation, the components in brackets mean that they can be disassembled in any order, here (1,2)  

or (2,1). 
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Based on the three cases, addressed here above, the flow chart for determination of the 

feasible disassembly sequences is shown in Fig.3.13. 

The proposed method gives the feasible disassembly sequences, according to the least level 

of disassembly, which may result in many sequences if there are two or more components lying in 

the same level. For example, if two components are connected by fasteners, any of them may be 

disassembled firstly if they have not collision with some other components of course. For this 

situation, it is difficult even meaningless to decide the bolts disassembling order.  

Compared with other methods, our method is more efficient. It may be evaluated by its 

complexity O(sm(n-1)) which is lower than the computation complexity O(sm2) of the wave 

propagation method  as mentioned in §3.1. Our method removes the useless sequences as the 

problem for product disassembly is transferred from an invert tree search problem. For a complex 

product, for instance, if the target component is in the upper level of disassembly, the lower level 

components can be deleted directly thus reducing the computational effort and time for sequences 

generation. Based on the Flow Chart for Disassembly sequences generation presented in Fig. 3.13 

a pseudo code associated to the method was developed for implementation (see Table 3.3). 
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                                                                                    Figure 3.13 Flow Chart for Disassembly sequences generation 
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Table 3.3 Pseudo code for sequences generation. 

B:  stands  for the targets list 
x,v : any component  
For  ∀ Target x ∈B , 
i= level (x) > 2?: 
              If yes,  �%\�Z,[ or8 %\�Z ? 
If  �%\�Z,[:   �%\�Z,c  or 8 %\�Z ? 
                                            If   �%\�Z,c :    Micro-unit 2 (Table 2)  
                                           Else   8 %\�Z : Micro-unit 1(Table 2)  
                           Else  8 %\�Z : Micro-unit 3 (Table 2) 
            Else, i==2?: 
                    If yes :��Z,[or 8 �Z 
If  ��Z,[:  level(component y)==1? 
                                           If yes: component y is first (target components order) 
                                           Else: components in level 1 connected with x (target components 
order),  
                               Else: 	8 �Z: components in level 1 connected with x (target components 
order),end 
                  Else:  target components order 
End for 
 

3.4 Cases studies 

The proposed method was tested for disassembly operations simulation of mechanical and 

electromechanical assemblies with different degrees of complexity. Two examples: electrical 

motor (Fig. 3.14) and the wrist of a five degrees of freedom robot arm (Fig. 3.15) are presented 

here below.  

 
Figure 3.14 An example of electrical motor with sixteen components 
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As previously said, the fasteners connecting two parts are counted as one connection. Thus, 

in Fig.3.14 screw 11, for example, stands for all the screws connecting Cover 5 and Box 2. In Fig. 

3.15 bolt 3, for example, stands for all the bolts connecting coupling 4 and cover 2.  

 

Figure 3.15 Five degree of freedom robot arm with eighteen components 

          If the target components are respectively cover 5 for the electrical motor (Fig. 3.14) 

and the Motors 5 and 13 for the robot arm, thanks to the proposed method the disassembly 

process is performed by the following two steps: 

3.4.1 Building the Disassembly Geometry Contacting Graph (DGCG) 

 

Figure 3.16 DGCG for Cover 5 of the electrical Motor. 
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According to the relations among the components in the assembly, and the flow chart for 

disassembly geometry contacting graph (DGCG) generating (Fig. 3.10), the realized computer 

application allows building the associated DGCGs. Thus, the two five levels DGCG for the 

electrical motor and the robot arm are built as shown in Fig. 3.16 and  Fig 3.17 respectively.   
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Figure 3.17 DGCG for Motors 5 and 13 of the five degrees of freedom robot arm. 

3.4.2 Sequences generation for one target of electrical motor  

As previously said, the associate DGCG (Fig. 3.16) is assimilated like an inverted tree. From 

the graph, it is seen that the target component 5 can be disassembled in level 5.  It cannot be 

moved in level 4 because of the collision with component 13 3C
�,�	4. Therefore, according the case 

1, the next target component should be component 13.  

In levels 3, 2 and 1, the component 5 does not have SDR, therefore, according the case 3, 

components 3, 4 and 6 (connected with the target) should be disassembled first.  

Then, component 13 is the target. From the DGCG in Fig.3.16 is seen that component 13 

cannot be disassembled in the upper level because on No SDR. Therefore, the next target should 

be 14 (connected with 13). The reason that target 14can not be disassembled in the upper levels is 

the same as the component 13, namely No SDR. Therefore, the next targets should be components 

2 and 1. 

For component 3 disassembling, according to the case 3, components 2 and 11, connected 

with 3 should be removed previously. For component 6 disassembling, component 11 should be 

disassembled first. All these relationships amongst the parts in the DGCG are presented as 

disassembly order graph (DOG) in Fig. 3.18. DOG is generated manually. It allows generating the 
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disassembly order for the target component in the inverse arrow side. 

 

 

Figure 3.18 Disassembly order graph for component Cover 5 (see Fig. 3.14). 

        The twenty four possible disassembly sequences generated by the realized Python 

computer program, based on the proposed DGCG method are presented in Fig. 3.19. According 

to the relationships amongst the components, all these sequences are possible. However at this 

stage of the study we cannot evaluate the best one.  

 

Figure 3.19 Possible Disassembly Sequences for Cover 5. 

3.4.3 Sequences generation for two targets of robot arm  

Let us start by the first target component, namely Motor 5 in Fig. 3.15. The reason that it 

cannot be moved in level 3 is its collision with component 1 3C	�,�4. In the upper levels (number of 

level smaller than 4), there is no component 1. Therefore, according to case 1, the next target 

component should be component 2, which is connected with 5. In this case, removing the contact 

between 2 and 5 provides the other direction for disassembling component 5 allowing to stop the 

collision between 5 and 1, as described in case 1. Therefore component 5 cannot be disassembled 

in level 3 because of component 2 which cancels the collision between component 5 and 

component 1 3C	�,�4. Component 5 cannot be disassembled in level 2 either because of the No 
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SDR	3NS�� ). The transition from 3NS�� ) to 3C	�,�4 happens after removing components 4 and 8. 

Note that only component 4 has contact with the target component 5. Therefore component 4 is 

responsible for this change and its removal provides the SDR for component 5. Consequently, the 

disassembly sequence for component 5 is 5→ {2,4,5}.   

Then, component 2 is the target, called auxiliary target, because its level is lower than the 

level of component 4. Thus, component 2 can be disassembled in level 2. According to the DGCG 

(see Fig. 3.17), it has No SDR in the 1-st and 2-nd levels (NS��, NS��), which belongs to the Micro-

unit 3 described in case 3. Therefore, all components connected with component 2 in the upper 

levels should be the auxiliary targets. Bolts 3 and 6 in level 1 are connected with component 2. 

Therefore they need to be removed firstly. After removing these bolts, component 4 moving 

provides SDR for component 2. Thus, the sequence should be 2→{(3,6),4,2}.(3,6)}.     

Then component 4 becomes the auxiliary target, which can be disassembled in level 2 as 

seen in Fig. 3.17. Note that it cannot be disassembled in level 1 because of the No SDR (NS�
4. 
According to case 3, component 3 removal can provide the SDR. Therefore, the sequence is 

4→{3,4}.  

According to the above description, the DOG for target component Motor 5 is built as shown 

in Fig. 3.20(a). Note that it can be simplified in the so called reduced graph by drawing out, in the 

lower level, components 3 and 4 as shown in Fig. 3.20(b). Thus, the disassembly sequence for 

target 5 is 5→{(3,6),4,2,5}. 

 

 

 

Figure 3.20 Disassembly order graph for component 5( a) and its reduced graph (b). 

 

The same analysis can be done for the other target component, namely Motor 13, which has: 

collision with component 18 in level 4 (C
�	,��4 and No SDR in level 33NS	�	4 as shown in Fig. 

3.17. The component 18 is not shown in the DGCG, because the calculation algorithm for DGCG 
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building stops when the targets, here components 5, and 13, are reached. Which means that 

component’s 18 disassembly level is much lower than the targets level. According to case 1, 

component 10 removal gives the SDR for component 13. Component 12 removal provides free of 

collision movement for component 13. Consequently, the sequence should be 13→{12,10,13}. 

Concerning the auxiliary target 12, it cannot be disassembled because of No SDR in levels 1, 

2, and 3 3NS���, NS���, NS	��4 . According to case 3 and case 4, the sequence should be 

12→{10,(11,15),12}.  

Concerning the auxiliary target 10, it cannot be disassembled in levels 1 and 2 because of No 

SDR 3NS���, NS���4. According to case 3 the sequence should be 10→ {8, (9,11),10}. 

Finally, for the auxiliary target 8, it cannot be disassembled in level 1 because of No SDR 3NS��4. Thus, the sequence should be 8→ {(7,9),8}.  

 

         Figure 3.21 . Disassembly order graph for component 13 a). and its associate reduced graph b). 

 

Consequently, for target 13, the disassembly order graph and its associate reduced graph are 

shown in Fig.3.21 (a) and Fig.3.21 (b) respectively. Thus, the sequences for disassembly of 

component 13 is (see Fig. 3.21 b): 13→{(7,9),8,11,10,15,12,13}.  

 

The input 3D assembly models are based on VTK (Visualization Toolkit) library and 

acquired through a VRML files coming from CAD software. The contact identification is based on 

ODE Geom (Open Dynamics Engine) libraries (see Chapter4). The results of generating the 

feasible sequences for target components 5 and 13 for the five degrees of freedom robot arm are 

shown in Fig. 3.22. Note, that there are three possible sequences for target component 5 (Fig. 3.22a) 

and forty eight for target component 13 (Fig. 3.22b). 

 

According to the proposed method only the related components with the target are 
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considered, and the process stops automatically when the target component is reached. For target 5 

for instance, only components 2, 4, 3 and 6 appear in the sequences, all of its unrelated 

components are removed from the graph thus minimizing the model complexity and search time. It 

may be noted, that the computation resource and consequently cpu time are related with the 

number of components (m) in an assembly, and the number of targets (s) to be disassembled. 

 

 

(a) disassembly sequences for target Motor 5 

 

(b) disassembly sequences for target Motor 13 

                             Figure 3.22 Possible disassembly sequences for Motors 5 and 13. 

 

For example, the wave propagation algorithm of Srinivasan and Gadh [Sri, 99a] is of 

complexity O(sm2). However, our method’s complexity is O(sm(n-1)),where n is the number of 

level in the graph allowing reaching the target. The disassembly level n is far less than the number 

of components m (n<m) thus allowing reducing computational effort and time as we claimed in the 

Introduction of this Chapter (Section 3.1).   

3.4.4 Summary  

The disassembly order graph is like a problem of inverted tree containing a minimum set 

of components related with the target component disassembly. Thus, the unrelated components 

are eliminated in order to reduce calculation resources. For the example of Cover 5 (Fig. 3.14) 

there are 15 components involved in the DGCG. If components 10 or 6, for instance, are 

supposed to be the targets, there will be only 8 components involved in the DGCG. Thus, the 

twenty four possible sequences are generated according to the DGCG, based on the least level of 

disassembly method.  

The reason for these different possible sequences generated is the presence of more 

components in the same disassembly level that can be removed in any order. However, in the 
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real disassembly process, the purpose of the upper level components disassembly is to get the 

lower level component, which means if there is a chance to disassemble the lower level 

component, it should be disassembled first. Thus, for Cover 5 it took 30ms CPU for its 

sequences generation.  

3.5 Conclusion 

In this Chapter a new method for disassembly sequences generation, we called “least level 

of disassembly graph method” is presented. Sequences’ generation is based on the notion of 

disassembly geometry contacting graph DGCG. The graph is built on the collision and SDR 

detection analyses for each given component in an assembly. With the investigated three cases, 

the method eliminates all the components unrelated with the targets.   

The DGCG model contains a minimum set of components related with the target. Thus, 

the unrelated components are eliminated in order to reduce the computational resource. Our 

method can generate the sequences for any kinds of complexity of products. With DGCG, the 

possible sequences are easily to be generated considering the least level of disassembly.  

As we previously said, if some of the components are grouping in modular units (modules)  

every module can be considered as one component thus simplifying the DGCG graph and 

consequently reducing sequencing search time. 
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4 Chapter 4                                         

Virtual Reality Environment for disassembly 

simulation: sequences generation and evaluation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This chapter presents the basic concept of the virtual reality environment upon which 

the application for disassembly operations simulation (generation and evaluation) is realized.   

First, the 3D graphics pipeline in general is presented. Then, the key technologies and 

devices of the developed virtual reality disassembly environment (VRDE) based on Python 

programming language and utilizing mixed VTK (Visualization Toolkit) and ODE (Open 

Dynamics Engine) libraries are detailed. 
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4.1 Introduction 

       Virtual reality (VR) technology plays a vital role in simulating advanced 3D human-

computer interaction by providing users with different kinds of sensations (visual, auditory, 

haptic, …). Virtual disassembly simulations allow designer to evaluate concepts in virtual 

environments during the early stages of product design. With virtual prototyping applications, 

the optimal design process for design for assembly (DFA) can be incorporated easily in the 

conceptual design stage. Using haptic or auditory technology, allows designers to interact 

with the parts with the human basic emotions. Thus, collision detection and contact force are 

transmitted to the operator in real time.  

4.2 3D graphics pipeline in general 

In order to present the 3D graphic systems the basic and some more important concepts 

related with 3D graphics are addressed here below.  Various transformations in 3D graphics 

consist in taking an object in 3D and displacing it on the screen while keeping the illusion of 

depth in the scene.  The common way to perform these transformations for each step of the 

pipeline is to use vectors or matrix calculation, which are presented here below.  

4.2.1  Right-Handed and Left-Handed coordinate systems 

                                       

In VTK library (see Section 4.3) all the rotations and translations are depending on the 

utilized coordinate systems. For this purpose the later are recalled briefly. 

 

Figure 4.1  Left-Handed coordinate systems. 

For 3D objects visualization most of the existing 3D graphic Systems use the classical 

“Cartesian Coordinate System” which main property is that the cardinal axes are 

perpendicular. It consists in. 
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• Stretch left Arm and form a 90° angle with Elbow.                           

• Point with Thumb to the right side (+x). 

• Point with Pointing Finger up (+y). 

• Point with Middle Finger in z direction. 

 

If the middle finger is pointed to the +z direction, the hand is forming a left-handed coordinate 

system as shown as Fig. 4.1. On the contrary, if the direction is the –z direction, it forms the 

right hand coordinate system. The coordinate system is very important concept for 3D 

graphics, because all the matrix calculations related with transformations (rotations and 

translations) are based on the coordinate system. For example, positive rotation is clockwise 

about the axis of rotation in the left hand coordinate systems.  Positive rotation is counter-

clockwise about the axis of rotation in the right hand coordinate systems. 

 

Most of typical 3D graphic libraries for example OPEGL and VTK based are using right hand 

coordinate system.  Normally Direct 3D library uses the left hand coordinate system instead.  

4.2.2 Coordinate systems in 3D scene 

 

• Graphical overview of the Transformation 

        The process of displaying a 3D scene in computer graphics is assimilated like taking a 

photo with a camera. There are four matrix transformations among four different coordinate 

spaces as shown in Fig.4.2. The transformation process consists in: 

1. Put the objects (or models, or avatar) in the world (Model Transformation or World 

transformation). 

2. Define the Position and orientation of the camera (View transformation). 

3. Select the camera lens (wide angle, normal or telescopic), adjust the focus length and 

zoom factor to set the camera's field of view (Projection transformation). 

4. Showing the image on a selected area of the object (Viewport transformation)   

In computer graphics, the transform for a vertex V from one coordinate space to another space 

V' is carried out by multiplying the vector with a transformation matrix M, i.e., V' = M V. 
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Figure 4.2 Transformation pipeline overview 

4.2.3 Model or World transformation 

 

       Each object in a 3D scene is defined by its own coordinate system, named as its model 

space. Model (or World) transformations allow to place an object anywhere within the 3D 

world. They can change the position (translation), orientation (rotation) or size (scaling) of an 

object as shown in Fig. 4.2. This figure shows a cube that has to be first rotated about its 

center, and then translated to the position in the world frame. This is known as the model 

transformation of world transformation.  The latter consists in scaling, rotation and 

translation of an object in order to match the dimension of the world. Note that the 

transformation is presented by the basic movements of translation, rotation and scaling. 

• Translation  
        Let us consider the example for the transformation of a vertex v. In (x, y, z), coordinate 

system, the vertex can be presented as a vector: 

                                                      d = e(*+f                                     (4-1)     
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 This classical presentation is based on the right hand coordinate. Note, that for left hand 

coordinate, it can be presented as row vector. In the next, all the calculations, if not specified, 

are based on right hand coordinate system.  

 Let us suppose to move vertex v to a distance	g = hi�i�i	j. Its new position is:	 
                    Lv   =  h( + i�* + i�+ + i�j                                         (4-2) 

 

For matrix calculation there is no properly matrix that can be used directly. Therefore, 

homogenous coordinates representing of a 4-coordinates vector is used.  

The vertex				d′ = l(*+1m  has an additional forth w-component of 1. If w≠1, then (x, y, z, w) 

corresponds to Cartesian coordinates (x/w, y/w, z/w). If w=0, it represents a vector, instead of 

a point (or vertex). If the vertices are represented in the 4-component homogeneous 

coordinates (x, y, z, 1) the homogeneous matrix is:  

                                       T= n1 00 1 0 i�0 i�0 00 0 1 i	0 1o                                                              (4-2)            

 
Therefore,              

                    p ∙ dq = n1 00 1 0 i�0 i�0 00 0 1 i	0 1o 	 ∙ l
(*+1m = ni� + (i� + *i	 + +1 o                                             (4-3)            

 

where the last column of matrix T:  g = ni�i�i	1o is the translation vector.  

• Rotation 
 
For the unit circle ( Fig.4.3):   
 
x1=cos (a1), y1=sin (a1), x2=cos(a1+a2), y2=sin(a1+a2). 

           x2=cos (a1+a2)=cosa1cosa2 - sina1sina2=x1cosa2-y1sina2 

           y2=sin (a1+a2) = sina1cosa2 + cosa1sina2 = x1sina2+y1cosa2   
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Figure 4.3 Rotation in the unit radius cycle 

 
The rotation matrix around z axis is: 
 

"c 	= ncos t� −sin t�sin t� 		cos t� 0 00 00 											00 											0 1 00 1o    
         
 

So,		"c ∙ d′=ncos t� −sin t�sin t� 		cos t� 0 00 00 											00 											0 1 00 1o ∙ l
(*+1m=n

(Xwxt2 − *x6yt2	*	Xwxt2	 + 	(	x6yt2+1 o 
 

For 3D rotations about y and x axes the rotation matrices are respectively: 
 

"[ 	= lcos t� 			00 			1 − sin t� 00 0sin t� 			00 			0 	cos t� 00 1 m 
 

"Z 	= n1 								00 								cos t� 0 0− sin t�	 00 								sin t�0 					0 	cos t� 			00 		1 o 
 

• Scaling  
 

The purpose of scaling transformation is to either increase or decrease the size of the object. A 

3D scaling can be represented in a 3x3 matrix: 

S=	lxZ 0 00 x[ 00 0 xcm 
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where sx, sy and sz represent the scaling factors in x, y and z directions, respectively. If all the 

factors are the same, it is the so called uniform scaling. 

The transformed result V'  of vertex V can be obtained via matrix multiplication, as follows: 

                                            S.v=	lxZ 0 00 x[ 00 0 xcm 	 ∙ e
(*+f = h(. xZ*. x[+. xc j       

        

• Combination of the transformations  
 

In most cases it is necessary to scale the object in order to fit it with the 3D world: rotate it 

into the required orientation, move it somewhere, etc. In order to perform the above series of 

transformations  the vertex position have to by multiplied by the first transformation matrix 

and then the obtained result to be multiplied by the next transformation and so on.  

Thus, a successive affine transformations (R1, R2, T1, T2, T3 ...) operating on a vertex V can be 

computed via concatenated matrix multiplications V' = ...T3T2T1R1R2R1 V.  Note, that the 

order of matrices is influencing the results of the position of 3D object. In 3D graphics it is 

common to scale the object first, then to rotate it and following by a translation then apply 

camera transformation and finally project it to 2D.  

 

                                
          

(a)  Translation first.                                    (b)  Rotation first. 
 

                                                                  Figure 4.4 Rotations and translations. 

Let us consider the translation first. In this case, it is difficult to set the object position in 

the world. In fact, when moving the object away from the origin and then rotate it, it goes 

around the origin which actually means that we translate it again as shown in Figure 4.4(a).  

By rotating first and then translating we disconnect the dependency between the two 

operations as shown in Fig.4.4 (b). This is why it is always better to model around the origin 
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as symmetrically as possible. That way when later we scale or rotate there is no side effect 

and the rotated or scaled object remains symmetrical as before.  

4.2.4  View transformation 

After arranging the objects in the 3D world, the next task is to define the camera 

position in the World space. This process is called view transformation (see  Fig.4.2 ○2 ).  

In the most application cases, there are two ways for moving one object in the virtual 

environment. One is moving the object itself as presented in Section 4.2.5 here above. The 

other way is moving the position of the camera. In reality, we want to have freedom to place 

the camera anywhere in the world and project the vertices in a 2D plane in front of it. This 

will reflect the correct relation between the camera and the object on the screen. So, if it is 

necessary to move the camera, there are two steps to do it.   

The first one is to translate the camera to the original position of world space which is 

easy to realize. If the camera position is (d1, d2, d3) and the translation transformation is (-d1,-

d2,-d3), the associate homogenous matrix of the view is: 

pb%{a = n1 00 1 0 −|�0 −|�0 00 0 1 −|	0 1 o 
In this way, the camera is in the original position of world space.  

The next step consists in rotating the camera toward the target in world space coordinates. In 

fact, it is necessary to find out the location of the vertices in the new coordinate system that 

the camera defines. Therefore, x2= }�<<<<<~ ∙ 	0(�<<<<<<~. 
 

 
 

Figure 4.5 Coordinate transformations 
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In 3D graphics, the camera is positioned onto the world space by specifying three 

vectors in world space. For this solution, called UVN camera the position of the camera is 

defined by the following vectors (Fig. 4.6): 

 

• N(Nx, Ny, Nz) - The vector from the camera position to the target. This vector 

corresponds to the Z axis (labeled by N “Normal”). 

• V(Vx,Vy,Vz) - The upside vector from operator’s head to the sky if the camera is 

standing upright. This vector corresponds to the Y axis (labeled by V “Vertical”). 

• U(Ux, Uy, Uz) - The vector points from the camera to its "right" side" when the 

camera is pointed at the target, in such a way that N,V,U (here U corresponds to the X 

axis) form Direct-Ortho-Normal coordinate system. 

 

 

 
  
                                                                               Figure 4.6 Camera space 

 

The view homogenous matrix (in rotation only) is: 
 

Rview=n�(�( �*�* �+�+ 008(0 8*0 8+0 01o 
 
 Finally, the view homogenous matrix combining the two operations (rotation and translation) 
is: 
 

	�b%{a =RviewTview=n�(�( �*�* �+�+ 008(0 8*0 8+0 01o n
1 00 1 0 −|�0 −|�0 00 0 1 −|	0 1 o 
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4.2.5 Projection  

After moving the camera, the next issue is to define what can be seen from the scene. This is 

done by selecting a projection mode (perspective or orthogonal) and specifying a viewing 

volume or clipping volume. Objects outside this volume are clipped out of the scene and 

consequently cannot be seen. 

Before introducing the clipping volume, there are two notions that need to be defined namely: 

projection plane and projection window. The projection plane is a plane which is parallel to 

the Oxy plane in the camera space. Obviously, not the entire projection plane is visible. Only 

stuff in a rectangular area (called projection window) can be seen which has the same 

proportions of the screen.  

 

 

Figure 4.7 Projection plan and window 

In general, the height of the screen w is defined into the unit size. Therefore, the height of the 

window will be 2.  The distance between the projection planes and the camera is d. It is 

obviously that tan ���� = 1/| =>| = 1/tan	3��4.	 For a given point (x, y, z) in the 3D world 

we want to find its projected coordinates (xw, yw) on the projection plane. For the yw 

component,  y/z= yw/d   =>   yw= yd/z , therefore: *a=
[�������.c 

For the xw component, 

                        x/z= xw/d   =>   xw= xd/z,  therefore: (a=
Z�������.c 
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The size of the projection window has to be considered as well. Usually, the height of 

component (yw) is normalized, thus the projected Y component is ranging between (-1, +1).  

Concerning the component (xw), its width will be 2*scale. If the height of the window is (-1, 

+1), the width will range between (-scale, scale). For a common 1024x728 screen for 

example, the scale is 1.333. In this way, the division by the aspect ratio has the effect of 

condensing the points on the xw axis. Thus: 

 																			*a=
[�������.c                                                      (4-4) 

and 																			(a= 
ZL����∙�������.c																							                (4-5) 

 

In this way, the projection window position of the objects can be gotten from their position in 

3D world by eq. (4-4) and (4-5).  

 

 Note, that, z component should not influent the position of xw and yw. It should be used for the 

depth test in 3D model displaying process. The trick is to normalize the value z for all the 

vertices. Thus, all the positions in 3D world are divided by the z value. However, the original 

z value must be saved in order to perform the depth test later on. So the trick is to copy the 

original z value into the w value. 

In this way, the components’ position (x,y,z,w) in the projection window are: 

 

              l(a*a0� m =
���
���

�����{∙��U���� 0 0 							0
0 ���U����			 0 							000 00 0	0 						 00��

���
� ∙ l(*+�m    (4-6) 

 

 It is pointed out that, the components’ position in the projection window is not related with 

the z value. At the same time, the z value is saved into w value for later depth testing. 

However, the whole process is not finished yet. The remaining problem is how to use the 

value z in order to perform the depth testing. According to eq. (4-6), all the z will become 0. 

For depth testing, as shown in Fig.4.8, the z value should be in the view volume Z-near ≤Z ≤ 

Z-far. 
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Figure 4.8 Depth testing. 

After dividing all the positions of 3D model in 3D world by z, all the value should be mapped 

to [-1, 1] range. Let consider the function of projection  f(z)=Az +B, where A and B are 

arbitrary constants to be calculated such as A+B/s should be in [-1, 1]. Thus, the last problem 

is to find the right A and B. As seen from Fig.4.8, when z= Znear, A+B/z=-1. 

Therefore,  

    A+B/zNear=-1                          (4-7) 

 

Similarly, 

 

A+B/Z-far=1           (4-8) 

 

From equations (4-7) and (4-8) we have:  B=
�∙c���∙c&{��c&{��\c���   and   A=

\c&{��\c���c&{��\c��� . 

Consequently:  Xw=p.X, or  l (a*a+��x�1 m = 2 ∙ l(*+1m							 
 

where: p=

��
��
�� �����{∙��U���� 0 0 																			0

0 ���U����			 0 																			0
00 00 �∙c���∙c&{��	c&{��\c���		1 \c&{��\c���c&{��\c���0 ��

��
��
  is the projection  matrix.       
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4.2.6 Viewport Transformation  

 

Firstly, all 3D objects have to be imported into world space. Secondly, they have to be 

transformed into the camera space. Then all the positions of 3D model have to be projected 

into 2D computer screen. At last, all the positions have to be shown in a rectangular display 

area on the screen window. This area is called viewport which is measured in the screen’s 

coordinates. This viewport is defining the size and the shape of the displaying area for 

mapping the projected scene captured by the camera onto the window. This shape area can be 

or not the entire screen. 

 In 3D graphics, a viewport is 3D view to support z-ordering, which is needed for situations 

such as ordering of overlapping windows. The Viewport Transformation is calculated by the 

so called viewport matrix. This matrix is calculated by the product of the following three 

matrixes. The first one, called reflection of y –axis, is defined as: 

                                             M1=l1 			0 			0 							00 	−1	 			0 							000 			00 			1	0 						 00m 
Then, after reflecting of all the data, it has to be scaled according to the size of computer 

screen or the size we want to define. The scaling matrix is: 

        M2= n�/2 			0 															0 																			00 	ℎ/2	 																0							 												000 			00 			�t(� −�6y�	0 						 00o 
The third matrix represents the translation of the data origin to the center of the screen or the 

place we defined before. The translation homogenous matrix is: 

  M3= n1 			0 					0 								�6y� + �/20 				1	 				0 							�6y� + ℎ/200 			00 			1	0 																		 �6y�1 o 
 

Thus, the viewport matrix is M viewport= M3M2M1. 

  

4.3  Visualization Toolkit  

After presenting the general pipeline of the 3D graphic here above, the purpose of this section 

is to do an overview of the Visualization Toolkit (VTK) upon which the proposed application 

(in C++, Python) is built.  
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In the application, VTK library is used for displaying 3D model. It is an open-source, freely 

available software system for 3D computer graphics, image processing and visualization. The 

central structure of the Visualization Toolkit may be represented as a pipeline of data, starting 

from a source of information and arriving to an image rendered on the screen.  

4.3.1 Pipeline for VTK 

 
       VTK is freely available open-source system for 3D computer graphics, image processing 

and visualization. The object oriented VTK is rapidly becoming the standard for scientific 

visualization toolkits [Sch 96, Kok 07]. This is an open source class library containing a large 

number of functionalities for scientific data presentation.   

 

 

Figure 4.9 Pipeline for VTK library. 

 

The pipeline for VTK can be described as following (Fig 4.9): 

•  Sources 

         Sources are the data needed to be shown on the screen. Basically, two kinds of sources 

are available for application. First are the Readers, which are used for reading data out of files 

in a range of formats. The other kind of sources is generated by functions or other data flow 

based on the input parameters (e.g. a cone source, which generates information describing a 

cone by its radius and height). In general, any VTK component that does not receive a flow of 

data from some other VTK component can be considered as a source. 

• Filters 

          Before showing the 3D date (sources) on the screen, Filters may be used in order to 

modify the data in some way. For example, Filters may extract some portion of a large data 

set or subsample data sets from a coarser resolution to a finer resolution, and merge multiple 

data into a combined output. The key concept of Filters is that they can be optional 
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components of the VTK pipeline. Thus, VTK can include more than one filter, often three or 

more.  

• Mappers 

      After filtering, all data can be transferred to "Mappers".  “Map” the data from source file 

to a physical manifestation can be performed by the rendering engine. However, sometimes it 

is possible to confuse Mappers with the Filters.  An easy way to distinguish them is to divide 

the pipeline into two segments. First is the data processing segment including sources and 

filters. The second segment is the image processing segment which includes actors, renderers 

and windows. Mappers serve as the transition between the two segments. The data through 

the mappers is used as input for the Actors. Note, that Filters cannot be used as way for 

changing the sources data. The data through the filters can be used as input for the other 

Filters or other Mappers. 

• Actors 

       All the data from the Mappers is used as input for the Actors. We can consider that 

Actors are a physical representation of the data which control the adjustment and appearance 

properties of the physical manifestation of the data, for example color, transparency etc.  

 

•   Render 

       Render and windows are the last item of VTK pipeline, which are in charge of 

visualization on the screen.  

         Note that the data function for VTK is very powerful, allowing to display any kinds of 

shade function as shown in Figure 4.10. 

 

                     
                                                                                                     

                                                                           Figure 4.10 VTK examples 

        For interaction with the data, VTK employs the concepts of picking and 3D widgets. 

Picking is used to select objects in the visualization, while widgets to interact with objects in 
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specific ways. A widget has a visual representation within the 3D visualization. It defines 

the behavior that is executed when the widget is manipulated. Simple examples of 3D 

widgets are: the point widget for probing object information; the box widget for positioning, 

rotating, and scaling of objects, the spline widget for defining a spline by editing control 

points, etc. These entire characters of VTK are a good choice for the 3D model visualization 

in the virtual reality system we have developed (see Section 4.4.5).  

 

4.4  Collision Detection Based On VTK and ODE 

         Fast and robust 3D collision detection algorithms are always required in the applications 

of Computer Graphics. As we are aware, there are four groups of algorithms for collision 

detection namely: space-time intersection, swept volume interference, multiple interference 

detection and trajectory parameterization. All of them are intended to be of practical use. The 

simplest decisional collision detection problem usually is described as follows: A set of 

objects move over a certain time span, to determine whether any pair will come into contact. 

The more intricate version always needs to find the time and features involved in the collision.  

These aspects are presented in the following section. 

 

4.4.1 Open Dynamics Engine (ODE)   

        ODE is a free, industrial quality library for simulating rigid multi body dynamics, which 

is the invisible model for the collision detection and force feedback. In order to solve the 

problem of a polyhedral approximation, the constraint based modeling is proposed by ODE. 

ODE developed by Russell Smith, http://www.q12.org/ode/, is particularly good for 

simulating moving objects in changeable virtual reality environments. This is because it is fast, 

robust and stable, and the user has complete freedom to change the structure of the system 

even while the simulation is running. Those are the principal reasons for choosing ODE. In 

addition it has hard contacts, which means that a special no-penetration constraint is used 

whenever two bodies collide.  In ODE, the joint is a relationship that is enforced between two 

bodies so that they can only have certain positions and orientations relative to each other. This 

relationship is called a constraint. Note that words joint and constraint are often used 

interchangeably. Figure 4.11 shows six different constraint types. 
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                                       ODE “robot” joints: A ball joint, a hinge and a slider. 
 
                     

 

Figure 4.11 ODE’s special purpose joints.  Different constraint types. 

4.4.2 VTK actors connection with ODE models 

        In VTK, the 3D models are presented by Actors. During the disassembly process it is 

necessary to get the position and the orientation of the objects in ODE, and to resend them to 

the center of Actors in VTK in real time. In order to apply constraint forces to an object in the 

ODE world, a model called Body is created inside containing full information for the part 

such as: material, mass, dimensions, inertia, gravity center etc. At the same time, another 

model called Geometry is defined for presenting the shape information of the part. It is used 

to detect collisions between bodies and affect forces among them. In this way, the collision is 

detected in real time and the force feedback forces the moving path to change its directions. 

However, ODE does not have its own 3D objects rendering library. ODE has his own library 

for drawing the feature in the screen, called DrawStuff: 

  (http://robotics.naist.jp/~akihikoy/doxy/ode0.9/group__drawstuff.html#_details). 

Note, that DrawStuff cannot meet our requirements since it is not convenient for interaction 

with the objects. Therefore, we provide the VTK library for the interaction with the 3D 

models for the interaction parts. As previous said, in VTK, the 3D models are presented by 

Actors. What we need to do is to get the position and rotation of objects in ODE and resend 

them to the center of Actors in VTK in real time. The relationships of the objects in VTK and 

ODE are shown as in Fig. 4.12, where two followings are appearing. The center of GEOM is 

following with the position of the BODY. The center of Actor is following by the Position of 

the ODE object. In fact the purpose is to realize the interaction of ODE objects. The world 
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object is a container for rigid bodies and joints. Objects in different worlds cannot interact, for 

example rigid bodies from two different worlds cannot collide. 

 

         

 

Figure 4.12 Relationships between VTK and ODE 

In the first impression, this model is perfect for the interaction with the ODE model. However, 

when we try to realize the whole process, there are two loops in the flow chart (Figure 4.13) 

that have to be executed simultaneously. Loop1 is the interaction with the model performed 

with VTK. Loop2 is the collision detection performed with ODE. 

                                       

 
 

Figure 4.13  Flow Chart for Disassembly collision detection. 
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           In the disassembly process, these two loops affect the position of the parts’ models 

created by VTK. Two facts have to be considered during the disassembly simulation. The first 

one is that all the assembly parts components are connected to each other and the distances 

among them are zero (without gaps). So, during collision detection, if the distance is zero, all 

the parts are supposed to collide in the initial phase and the algorithm for collision detection 

will not be able to run. Sometimes it is even possible to cause the system crash. 

        The other fact is when the target part is colliding with other components. In this case the 

target has to change its original moving direction due to the feedback force. However, the 

other components of the assembly will remain in their initial position because of the friction.  

        In order to detect collisions, two methods are applied. The first one is the so called space 

collision detection algorithm. It consists in detecting the collision between parts in the 

different ODE spaces and ignoring the collision if the models belong to the same ODE space. 

When a 3D assembly is imported in the ODE (WRL format), all its parts are put in the same 

ODE space. Then, the collision detection is performed only between components belonging to 

different ODE spaces. When a component is disassembled, its ODE space changes, then space 

collision detection algorithm is called by clicking on ODE button on the disassembly 

simulation interface (see Section 4.4.5).  

    The other method for collision detection is using the so called Kinematic criteria of ODE 

mass method. For every ODE body, there is one mass associated to it. If the mass of the ODE 

Kinematic is active, the associated model is too heavy to be moved by the collision detection 

force feedback. Thus, the method can be used to simulate the unmovable characters of the 

components because of the friction influence (see Section 4.4.5).  

4.4.3  Stereo Rendering   

 

There are some techniques allowing simulating 3D graphic on a 2D display device such as: 

using perspective and scale, shading to confer depth, motion/animation to see all the sides and 

so on. However, the most effective way is binocular parallax, which is a result of viewing 3D 

objects with our two eyes. Since each eye receives a slightly different view (Fig.4.14), our 

mind interprets these differences to determine the depth of the picture. Most 3D movies take 

advantage this principle to realize the 3D vision (wearing special glasses when watching the 

movie). In the evaluation of sequences of disassembly, this effect can be valuable to provide 

the real disassembly environment for product disassembly evaluation and the stereo viewing 

can help in determining the relative positions of each component. In order to generate correct 
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left and right eye view differences, the proper method for rendering the binocular parallax is 

the key.         

 

Figure 4.14  . Binocular parallax technique for stereo rendering 

Most methods for Stereo Rendering are based on: time multiplexed or time parallel techniques. 

Time multiplexed techniques relay on the alternating images. When they are viewed with both 

eyes, they appear as one image that keeping jumping from left to right. A special glass is 

designed so that each lens consists for a liquid crystal shutter that can either be transparent or 

opaque. It makes sure the left eye image is being displayed, the user’s left eye can see and 

similarly for the right eye. This method requires viewing images on a television, not the 

monitor connected to computer. Time parallel techniques can display the images of two eyes 

in the same time. The two separate screens are generated for each of the eye. To generate the 

two video streams, the technique needs either two graphic cards or one cart able to generate 

separated outputs. The biggest disadvantage to this approach is the cost of the hardware 

required. There are still two other technologies for stereo rendering implemented using the 

above two techniques. The first one is red-bleu (red-green or red-cyan) stereo which is 

requiring to wear glasses that filter the entering light. Left eye can only see the image a red 

filter and the right through a blue filter. The benefits for this method are that all the images 

can be displayed on a monitor, paper or film, and all one needs to view them is an inexpensive 
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pair of glass. The second technique is to separate the different views by using polarized lights. 

In our application, we have chosen the techniques for stereo rendering using VTK library. 

Time multiplexed techniques images are shown as in Fig. 4.15.  

                              

                                                                       Figure 4.15  Stereo Rendering. 

 

4.4.4 Force feedback and Virtuose 6D35- 45 

In order to perform the disassembly operation simulations we choose Virtuose 6D35-45. It is 
a six degrees-of-freedom (DOF) haptic device, specifically designed for application in VR 
environment. It is especially recommended for scale 1 manipulation of virtual objects such as 
assembly/disassembly simulation, ergonomic studies or maintenance training. Modular in 
design, it can be purchased as a 3-DOF device, and later upgraded to 6-DOF. The main 
characteristics of the used Virtuose we uszd, available in GINOVA Platform, Grenoble INP 
are:  

• Workspace: 450 mm  

• Maximum force: 35 N  

• Continual force: 10 N  

• Maximum torque: 3 Nm  

• Continuous torque: 1 Nm 

The original library is on C++. Then C++ library is changed to Python.  And finally Python is 
used to connect with the Virtuose 6D35- 45 arm. 
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4.4.5 The whole VRDE environment 

The whole system is based on Python language. (part of the code is presented in Appendix A). 

The outputs are 3D sound and stereo displays. The interface is developed based on 

Visualization Toolkit (VTK) library. We provide VTK library for creation and interaction with 

the 3D models. In order to prevent interfering paths generation, the real time collision 

detection is developed based on the ODE (Open Dynamics Engine library). As previously 

said, ODE is particularly adapted for simulating moving objects in VR environments thanks 

to its advantages, namely: robustness and stability. At the same time the user may change the 

structure of the system in real time.    

The developed software can support WRL and STL format files. In the example presented 

here below, the Solidworks models were imported in the application in STL format (Fig.4.16). 

In order to count the pixel for visual score (VS) calculation, the target’s color (here in red) 

should be different from the other components (details are presented in Chapter 5).   

 

 

Figure 4.16 Virtual platform Interface 
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4.5  Conclusion 

      In this chapter, the related technique of 3D graphic pipeline and a new application for 

virtual simulation based on Python programming language associated with VTK and ODE 

libraries were introduced. The related device for the performed experiments and the collision 

detection algorithm was also introduced. The application is the principle software used for 

performing disassembly operation simulations and two examples for disassembly simulation 

are presented in Chapter 5. At this stage we can say, that the software can be naturally 

adopted by a variety of virtual environment applications for A/D sequences evaluation.    
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5 Chapter 5                                                        

Method for disassembly operations’ 

efficiency evaluation. Integration in Virtual 

reality environment  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This chapter presents a method for evaluation of disassembly sequences. The design of 

a virtual environment and the implementation of a computer application that supports the 

evaluation of disassembly sequences are presented as well. The main objective of such 

application is to help designers analyzing the difficulty of disassembly operation execution in 

a virtual reality environment (VRE).  For this purpose seven criteria, divided in two 

categories: for ergonomical and traditional processing evaluation are proposed. The criteria 

are presented by dimensionless coefficients automatically calculated by the realized 

application thus allowing evaluating disassembly sequences. 
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5.1 Introduction  

As discussed in Chapter 3, for disassembly it is important to eliminate the components 

which are unrelated to the target components prior to sequence generation.  Considering the 

least level of disassembly graph method for generating all the possible sequences, how to 

choose one with the least cost value in the real disassembly process is still an issue. Thus, the 

evaluation method within the virtual environment to value the disassembly sequences is 

proposed in this chapter. The proposed method for disassembly operation evaluation deals 

with the following two aspects:  

• Considering Ergonomic parameters in virtual reality environment (VRE). 

In the Design for manufacturability (DFM) principle and in particular in the Design for 

Disassembly (DFD), an operator is often involved in order to test two concerns namely: 

his/her posture and the visibility of the disassembly parts. One effective and common method 

for ergonomic evaluation of A/D operations is using a digital mock-up (DMU) in a VRE. 

DMU is a realistic computer simulation of a product containing all the required functionalities 

for design, manufacturing and product service environment. The methods for ergonomic 

evaluation in virtual environment (VE) often involve a human model. 

 At the same time, those methods are relatively costly and time consuming. Thus, their 

mainly application is limited in the expensive products’ development fields. This is the reason 

that lots of developments involved in VR with human models are limited mainly in big 

industries such as: automotive and aerospace. In order to address this limitation of using the 

human DMU, a more simplified method is proposed here allowing solving the disassembly 

evaluation in VR environment. In this chapter, we provide a new way to evaluate the 

difficulty to perform disassembly operation sequences in virtual environment instead.  

• Considering the traditional disassembly procedure evaluation method.  

 The traditional disassembly procedure evaluation is using a cost function presented in 

many works (for more details please referring to Chapter 2). The majority of disassembly 

evaluation research focuses on some criteria related to the disassembly process in 

manufacturing industry such as: the number of parts involved, the tools changes times, the 

stability of sub-assembly, the fixtures  etc.  
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5.2 Method for disassembly operations evaluation 

In the proposed method, we aim at dealing with various criteria related with disassembly 

operation evaluation.  The objective is to develop a VR based system enabling interactive 

analysis and evaluation of disassembly operation by considering the proposed Ergonomic 

Geometric Removability of the components and the traditional processing evaluation. Instead 

of ergonomics simulation with a human model, it introduces some new parameters such as:  

visibility, neck and bending scores, amongst others, thus allowing performing and evaluating 

disassembling task in a VR environment.  

5.2.1  Ergonomic Auto Evaluation method 

The purpose of disassembly Evaluation is to obtain approximate disassembly time for a 

product by using formulas derived from the information pertaining to connect parts instead of 

disassembling the product in reality.  As we mentioned in Chapter 2 (section 2.4), the purpose 

of Ergonomic engineering is trying to fit the task to the human and not the human to the task 

where the key point for an effective application is to gain a balance between the human body 

characters and the task demands. Thus, in this chapter we propose a method for disassembly 

evaluation in VR environment. Instead of focusing on the authenticity assessment by 

comparing the results of VR and real task in reality, the proposed Geometric Removability 

Analysis method is focusing on the evaluation of disassembly difficulty in VE which consists 

in:    

• Analysing the Physical position of the operator. 

In order to address the Geometric Removability Analysis of disassembly, first a study 

should be done on the physical position analysis when the operator disassembles the product 

in the VE. For this purpose four geometrical parameters related with the human operation 

convenient in the VR environment are proposed (Fig. 5.1): 

- the first parameter is angle c1 between the visual direction and the vertical direction, 

(less than 90°), if >90°, the operator have to rise his/here neck in order to carry out the task. 

The visual direction defines the eyes direction in the VE, 

- the second parameter is angle c2, between the visual direction and the component 

moving direction (around 45°, if more than 90°, the component cannot be operated properly),      

-  the two other parameters are the horizontal distance d1 between the operator's position 

and the center of component, and the distance d2 between the operator’s eye and the center of 
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the component. They measure whether the operator needs to bend over for completing the 

operation. For a disassembly operation, the least value of d1 is normally fixed by the 

workspace itself or the fixture. For better visibility d2 must be shorter. In this case the operator 

needs to bend over for completing the task.  

 

Figure 5.1 Four geometrical parameters related with the human operation. 

• Replacing the human eyes by a camera. 

Its principle idea consists in using a camera to replace the operator for automatic 

estimation of the ergonomic parameters. However, this method does not consider the VR 

environments and the interaction operation during the disassembly process. Here, we propose 

using a camera to replace the 3D human model and in particular the eyes of the operator. 

Then the analysis of the distance and angle related with the component disassembly operation 

direction, and the component position in the VE is used for the removability evaluation by 

considering the proposed ergonomic parameters (Fig.5.2).  
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Figure 5.2  Camera as the eyes of the operator. 

• Ergonomic Auto evaluation  

Three criteria for ergonomic disassembly evaluation are proposed: 
i) visibility  score (VS) 

Replacing the human eyes by a camera has limitations as the human physics is not taken 

into account. In order to address the visibility score, the method we propose have to consider 

the human physics as well. Thus, in the process of operation, the initial position of the camera 

should be the eyes of the operator by considering his/her height (Fig 5.2).   

In order to calculate the visibility score for a bolt for example (Fig.5.3 and Fig. 5.5a), 

firstly, the camera should be in the direction and the position of the human eyes. In this way, 

there are two images taken by a camera. One is the bolt itself noted by red pixels. The other 

image is the bolt in the assembly surroundings. The color pixels, here in red, stand for the 

visibility of the target part. Then, the numbers of pixels in the two images are counted 

automatically in time using open CV library. 

Thus, the operations’ ranges should be limited in the movements of human’s head and 

body.  

In the disassembly model, all previously disassembled parts are displayed in one image taken 

by the camera. The color pixels, in red in the sub-assembly (Fig 5.4.a) stand for the visibility 

of the target part. In another image, only the disassembly part is displayed (the other parts are 

hidden) which shows the maximum visibility for this part (Fig 5.4.b). 
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Figure 5.3  Visibility for a bolt. 

It must be noted that, for these two images, the distances between the camera and the 

part should be the same. Then, the number of pixels in the two images is automatically 

counted. In this way, the ratio of red pixels between the visible portion (Fig5.4.a) and the 

whole target part (Fig 5.4.b) is used for measuring the visibility of the concerning target part.  

                                          

 

                                     (a) Target part in the Sub-assembly          (b) Target part 

                                                Figure 5.4 Calculation of the visibility score (red highlighted areas). 

 

Thus, the proposed visibility score v is defined as the ratio between the number of red  

colored pixels in the current image va of the target part (Fig. 4.a) and the number of red 

colored pixels of its whole image vb  (Fig. 5.4.b) captured by the camera:    

                                                         
b

a

v

v
=v               (5-1) 

with  vb≠ 0.  
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If there is no obstacle part to hide the target, the visibility score is 1. If the target part is 

completely hidden by other parts, the visibility score is 0. Thus, the average visibility for the 

disassembly sequence is: 

                                      
∑

m

=i
iv

m
=V

0

1

       (5-2) 

where: m is the number of components in the assembly.              

The pixel counting is based on the OpenCV library (http://opencv.org/).  In order to 

calculate the visibility score and the pixels of the target, its color (here in red) must be 

different from the other components in the assembly. For this purpose the other components 

are becoming black colored in grey scale as shown in Fig. 5.5b.   

 

    
 

a) Mechanical assembly with disassembly targets. 
 

As a result, visibility scores v for the two targets are: Screw 1: v=0.249646393211 and 

for Screw 2: v=0.168912236542. Therefore, for human operation Screw 2 is more difficult to 

be disassembled in the VR environment as its score is smaller than the score of screw 1.  
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b) . Pixels for screw 

                                               Figure 5.5 Pixel calculation for target components. 

             
ii)  Neck score  (NS) 

Two types of Neck Score are usually used for ergonomic evaluation: component heads 

and text heads. Here, we use Rapid Upper Limb Assessment (RULA) algorithm proposed by 

McAtamney and Corlett [McA 93] in order to evaluate the exposure of workers to risk of 

upper limb disorders.  

 

 

                                                         Figure 5.6 Neck part from RULA sheet [McA 93]. 
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Neck score (NS) measures lateral and forward rotation angles of the neck. There are two 

angles susceptible to affect the neck fatigue. 

The first one is the forward rotation angle c1 (Fig. 5.1). The forward score F we propose 

is:   

                                                      F = 1 − 9  \�∗�¢�                       (5-3) 

According to RULA sheet (Fig. 5.6), if angle c1 is more than 90° or less than 70°, the 

forward score is 0 (zero). 

The other angle is the lateral rotation angle c3 of the neck as shown in Fig 5.7. If the 

value of c3 is between 0° and 20°, the lateral rotation score s we propose is:    

             s = 1 − 9X	/π                          (5-4) 

Thus the average Neck score NS we propose is: 

 

                                             NS=
�� 3f + s4=1 − �3�¢Y�¤4�                   (5-5) 

 

In the realized application, we consider that if the value of c3 is more than 20°, the side 

scores for lateral rotation is s=0, which implies that the side bending is too big for the operator.   

  Finally, the total neck score NS can be calculated as: 

NS=¥ 0																																							3	c1, c3 > 	π/94N = �� 3f + s4 = 1 − �3c1+c34�  3	c1, c3 ≤  �4      (5-6) 

 

 

     Figure 5.7 Neck lateral rotation. 



 

 

109 

iii)  Bending score (BS) 

Another parameter which is affecting the ergonomy of the disassembly operation is the 

bending score (BS). Its value is calculated from the trunk bending angle as shown in Fig.5.8.   

      

                  Figure 5.8 Bend over reference from RULA sheet [McA 93].        

If angle c2 ranges from 0° to 60°, BS is defined as: 
 
                           BS = 1 − 6X�/π                                   (5-7) 
 

Note that in the worst case (c2>60°), the bending score is 0.  

The three score (VS, NS, BS), proposed here above, formulate a strategy to create a 

simple analysis for ergonomics evaluation. However, the problem is how to use this approach 

in the absence of 3D human model.  For this purpose, as previously said, the proposed method 

consists in replacing the human model by a camera. The latter is used to detect all the angles 

and distance necessary to calculate the overall score of the proposed three ergonomic criteria. 

 

Figure 5.9 Ergonomic angles and Camera position relationship. 
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The proposed procedure using a camera for ergonomic evaluation consists in: 

- Define the work environment.   

First the target component is set in the OYZ plane (Fig 5.9). Then, the human operation 

plane is defined as the parallel plane with OYZ in positive x direction.  

 - Define the position of the camera.  

 According to the workspace and position of the target component, define the position 

of the camera. Note that, the initial position should consider the operator height (size) and the 

real distance between the operator and the camera. For example, distances d1 and d2 (Fig.5.1) 

should not be too small. Because we use camera, instead of human body, the suitable position 

for the camera is not known. Consequently it should be defined by the operator before the 

beginning of the disassembly operation.   

- Use the camera to detect the geometrical parameters namely: distances d1, d2 and 

angles c1, c2 and c3.  

 

                            tan	3c14 = [�\[¢	c�\c¢                 (5-8)       

   																																tan	3c24 = 	[�	c�                      (5-9)      

               																																tan	3c34 = 	[�	Z�                     (5-10)         

Then according to formulas (5-1), (5-5) and (5-7) the overall score OS for the 

ergonomic evaluation of disassembly operation is: 

 
                                 OS=VS+NS+BS            (5-11)   
 

It considers in the same time the ergonomic parameters of the operation environment 

and the visibility of the components. Note, that they are closely related. For instance, let us 

only consider the human comfort. If the visibility score is low, the operation will be difficult 

to realize even with high ergonomic score and vice-versa.   

•  Example of ergonomic disassembly operation evaluation  
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In order to demonstrate and validate the proposed method an example is presented here 

below. The case study involved a portion of bolts disassembly operation in the created VR 

environment. The original operation using 3D human model is shown as in the Fig.5.10. 

Instead, in order to avoid using of 3D human model, a camera is applied which replaces the 

eyes of the 3D human model as shown in (Fig.5.11). Experiment consisted on virtual 

disassembling two screws from a mechanical assembly (Fig. 5.5a).  

 

 

Figure 5.10 Disassembly operation case study. 

 As previously said, the initial position of the camera should be the eyes of the operator 

by considering his/her real height. The activities’ ranges should be limited in the human head 

and body’s movable ranges. Note, that this is a little awkward in the scene of the VRE.  This 

is because, in general, the camera has to observe the objects, and can be moved anywhere if 

the operator wants to. However, in our application, the movement of the camera is restricted 

in consideration of the human body dimensions.  

The mechanical assembly is imported from a CAD system in WRL formats.   

In order to prepare the pixel detection for the target components, after importing, the 

color of the other components (except the targets) are set into the same grey color as shown in 

the Fig.5.5.a.   

As presented here above (see Fig. 5.9), the positions of the camera and the object are 

first build. Note, that the position of the camera is related with the human height (here 175cm). 
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Figure 5.11 Original positions of the camera and the targets. 

Then, the operator may remove or rotate the camera in the convenient position for 

observation. When the target is selected, its pixel of image and position are record 

automatically for later analyses (Rq. The cursor of the tool is disappearing first in order to 

save the image pixels). 

Then, angles c1, c2 and c3 are calculated according to the position values of the camera 

and the targets (screws), by equations (5-8), (5-9) and (5-10) respectively.  

And finally get the overall score OS for the operation difficulty evaluation by eq. (5-11).  

Let us note that, the values for visibility of a part depend on the way that the operator is 

handling the components in the VRE. Two screws disassembly operation were involved in the 

performed experiments for disassembly simulations. According to the proposed method for 

disassembly operation evaluation (formulas for the three scores) the results for overall score 

(OS) for each disassembly operation (screw 1 and 2) are showing in Table 5.1.  

It is seen that screw2 is more painful for the operator neck as NS of Screw 2 is less than 

NS of Screw 1. Concerning bending score BS of Screw 2 is smaller than BS of Screw 1 which 

means that the operator needs to bend over more for disassembling screw 2.  

With regard to visibility score (VS); screw 2 is more difficulty to be seen compared 

with screw 1 as its VS is smaller than screw 1. 
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In conclusion, the overall score of Screw 1 is bigger than Screw 2 which indicates that it 

will be easier to be disassembled in ergonomic point of view.  

   Table 5.1 Overall score for screws disassembly operation 

Operations 

Geometric Removability Analysis  

Visibility  score 

VS 

Neck score 

NS 

Bending  

score 

BS 

Overall 

score 

OS 

Evaluation 

Screw1 0.654334 0.718317 1.0 2,372651 Easy 

Screw2 0.547912 0.369079 0.832401 1,749392 Diffcult 

 

5.2.2 Traditional processing evaluation method  

        The traditional called also processing disassembly evaluation procedure, instead of 

considering the ergonomic evaluation, considers some criteria related with the technological 

conditions for disassembly process execution. Thus, we propose four new parameters for 

disassembly evaluation presented by dimensionless criteria which are: 

• Stability of sub-assembly. 

Unlike assembly operations, the stability of the sub-assembly is an important property 

for the disassembly operations evaluation. The sub-assembly is defined as the remaining parts 

of an assembly (mechanism) after removing the current target part. Thus, sub-assembly 

stability is defined as the possibility of the remaining parts to be in steady state when a part is 

taken away from the assembly. For unstable sub-assembly disassembling, some extra fixtures   

and tools must be involved; otherwise the operation will be dangerous for the operator. For 

this purpose gravity is implemented in the proposed method in order to simulate the real 

gravitational environment. Thus, the stability score Sta of the sub-assembly is defined by:     

                                            
m

f
Sta −= 1             (5-12) 

 where: f is the number of the components falling, down in the gravitational field,                  

calculated by the developed software. The value of Sta ranges from 0 to 1. For f=0, the 

stability is maximum, consequently Sta=1. The worst situation is for f=m, when Sta=0. 

• Number of tools’ changes 
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During disassembly operation the number of tools’ changes is an important factor for 

the operation time estimation. For a product with m components, the worst situation for the 

number of tools’ changes (n) is when n=m-1. It means that for the disassembly of each part, 

the tool has to be changed independently on the number of parts. The dimensionless 

coefficient of tools’ changing T is defined as:  

                                      1
1

−
−=

m

n
T

                                                           (5-13) 
 

where  m≥2 and n≥0. The value of T ranges from 0 to 1. Obviously, the best situation is 

when it is not necessary to change the tool (n=0) to disassemble the components. This is the 

ideal situation and T=1. If n=m-1, as mentioned here above, this is the worst situation with 

T=0. 

 

• Set of directions for removal (SDR) 

As it was said in Chapter 3 (Section 3.2.2) the basic idea here is to use the contact 

surfaces of the components in order to determine the required set of directions for removal 

(SDR) (Pom 04). SDR represents the possible separation directions of a component with 

regard to its surrounding components. To remove the target component from a product, each 

of its contacts has to be identified in order to get the possible SDR. Concerning the contact 

identification for A/D simulation we used the method of Iacob (Iac 08) based on the analysis 

of the functional surfaces of the parts.  

For a component moving in 3D environment with 6 DOF, the disassembly directions 

are in the 4πr2 surface where r is the radius of the sphere (Fig. 5-12). This surface is the image 

of 360° volume angle. Therefore, for any SDR, the disassembly surface for a component is:    

 

                 φθθθφ
θφ

ddr=s ∫∫ 0

2

0
sin),(            (5-14) 

 

where: θ and φ  are polar  and azimuthal angles respectively. 
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                                                  Figure 5.12 Surface representation of the disassembly angle.             

 

 Consequently, the relative score for the disassembly angle C for a component can be 

calculated as the ratio between the disassembly surface angle and the whole surface of the 

sphere: 

φθθ
ππ

θφ θφ
dd

r

s
=C ∫∫=

002 sin
4

1

4

),(
       (5-15) 

We consider that C is the image of SDR in 3D space. The value of C ranges from 0 to 1. 

The best situation is when C=1 (all the possible movements are feasible) and the worst one 

when C=0 (there are no possible movements). 

•   Changes of the path orientation 

Another essential criterion to estimate the difficulty to disassemble a part is the changes 

of path orientation. Let us consider a path and a number of points A, B, C on it situated in 

equal distance (step) u mm chosen by the operator (Fig 5-13). At each point, a tangent vector 

on the path (curve) is defined. The first one is called referent vector, situated in the beginning 

of the curve (here in point A). 

Then, the angle α between the referent vector and the next tangent vector, called local 

vector, (here at point B) is calculated. If α is smaller than a limit, imposed by the operator, for 

example α<<π/3, it is considered that there is no Path orientation changing. Then angle α 

between the tangent local vector in point C and the referent vector is calculated. If α is bigger 

than the limit, it is considered that the direction has changed. In this case, the local vector 

(here in C) becomes the referent vector and so on.  
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Figure 5.13 Path orientation changing. 

A dimensionless coefficient P is proposed allowing estimating how many times the path 

changes its direction orientation. Thus, the proposed path orientation changing P is: 

                                    
∑

= +








 −

+

t

i

i

it
=P

0 1

1

1

1 π
α

                                                     (5-16) 

where: t is the number of times for orientation changing. The value of P ranges from 0 

to 1. The ideal path is when t=0, 0=iα , the path is a straight line, and consequently P=1. For

πα =i , P=0, which is the worst situation. The four criteria presented here above by 

dimensionless coefficient are integrated in a Virtual reality disassembly environment (VRDE), 

thus allowing to evaluate the disassembly sequences’ complexity. 

5.3  Implementation and results 

An application for disassembly simulation was developed running on the proposed 

virtual reality disassembly environment VRDE (Chapter 4). Here below it is illustrated by an 

example of a five-parts mechanism (mechanical assembly) disassembling (Fig. 5-14). The 

disassembly experiment consists in moving all the parts from the mechanical assembly to the 

destination vertical surface (wall) as shown in Fig. 5-14a. As said in Chapter 4, the collision 

detection is performed with ODE.  Note, that if a collision happens, the collision force 

changes the moving direction of the VTK model.   
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a) Cross section front view of the mechanical  assembly 

                  

                          b) 3D stereoscopic view  

                             Figure 5.14 Assembly view in virtual reality environment 

5.3.1 Simulation process 

The process for disassembly simulation evaluation consists in two main steps, namely: 

operation and calculation. 

(1) Operation (manipulation) of the camera: As previously said, the operator removes or 

rotates the camera in a convenient position for observation. As presented in the Visibility 

score paragraph and the Example of ergonomic disassembly operation evaluation of Section 

5.2.1, the environment coordinates for the camera position and the object position related to 

the human height (175cm) are first built. We call this the operation step of the process.  

(2) Calculation of the proposed four criteria for technological (tradition processing), 

disassembly evaluation namely: disassembly angles or Set of directions for removal (SDR), 
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stability of sub-assembly, time of tools’ changes and path orientation changing by calculating 

the proposed dimensionless coefficients. We call this the calculation stem of the process. 

 i). Disassembly angle: Set of directions for removal (SDR), 

First, SDR is calculated prior to disassembly operation simulation. It consists in detecting 

polar and azimuthal angles according to the assembly relationships amongst the corposants. 

Thus, the value of C can be gotten in real time by applying eq. (5.14)   

            ii). Stability of the sub-assembly 

Concerning the stability detection, note that component 5 (Fig. 5-14), being the base 

component, is not concerned by falling down under the effect of the gravity. After 

disassembling components 1 and 2, if component 5 is the auxiliary target, components 3 and 4 

will be in unstable state. In this case, to continue the simulation, additional fixtures for 

components 3 and 4 have to be added in order to ensure the stability of the sub-assembly. If a 

fixture is necessary to be added to a component, the assembly time will increase. For this 

reason, in the realized VR for disassembly sequences’ evaluation, a punishing time for this 

component is allocated by the operator.  

         iii). Number of tools’ changes 

In order to evaluate the criterion number of tools’ changes, it is assumed that for 

disassembling components 2 and 3, the same tool is used. However, for disassembling the 

other three components, three different tools are used for each of them. 

        iv). Change of the path orientation 

Concerning the path orientation change, the trajectories of components 3, 4 and 5 in the O,x,y 

world coordinate system are shown in Fig. 5.15. Therefore, in this situation, the sub-assembly 

(3,4) will be in an unstable state, which will need more fixtures in order to insure the stability. 

Note that collision force feedback leads to the turbulence of the path’ curves, as shown in Fig. 

5-15.  
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Figure 5.15 Trajectories for components 3 and 4 (unstable state) and the removing part 5 (causing this 
instability). (x and y axes are the coordinates of the parts’ center of gravity). 

5.3.2  Results    

In order to compare the trajectories of the different components, during the disassembly 

sequence, the path lines (trajectories) for parts 3, 4 and 5 in O,x,y plane are recorded (Fig. 

5.17). There are four possible disassembly sequences for this assembly, namely: {1,2,3,4,5}, 

{ 1,2,3,5,4}, { 1,2,5,3,4} and {1,2,5,4,3}. It is noted that parts 1 and 2 have the same order in 

all these sequences. Their trajectories are the same and consequently it is useless to compare 

them.  

The paths orientation change being one of the criteria to evaluate the disassembly 

operation, the best one, for part 4, belongs to sequences {1,2,5,4,3) (Fig.5.16d) as its path is 

nearly straight horizontal line. It may be pointed out that for sequences {1,2,3,5,4} (Fig.5.16b) 

and  {1,2,5,3,4} (Fig.5.16c) the paths orientation change is also almost in straight lines. 

However, the worst path change, for part 4, belongs to sequences {1,2,3,4,5} (Fig.5.16a), 

because it requires some steering to reach the destination surface.  

cm
 

cm 
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                                           (a)                                                              

 

                                           (b)                
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                                            (c)                                          

 

                                            (d)  

     Figure 5.16 Components’ 3, 4 and 5 disassembly paths for the possible disassembly sequences (x and y axes 
are the coordinates of the parts’ center of gravity). 

 

After performing the four disassembly sequences, the scores for the four proposed 

criteria are calculated (Table 5.2).  
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Table 5.2 Criteria scores for each sequence 

  
Ergonomic evaluation 

criteria  
Traditional disassembly criteria  SUM 

Sequences 
Visibility 
of a part 

Neck 
score  
(NS) 

   Bending 
score (BS) 

Disass-
embly angle 

Number of 
tools’ 
changes 

Path 
orientation 
change 

Sub-
assembly 
stability  

  

(1,2,5,3,4) 0.69857 0.55230 1.0 0.73333 0.0 0.52767  0.6 4.11187 

(1,2,5,4,3) 0.68685 0.55230 1.0 0.68499 0.0625 0.52670    0.6 4.11334 

(1,2,3,5,4) 0.66321 0.41563 1.0 0.71467 0.1667 0.77778 0.8 4.53799 

(1,2,3,4,5) 0.60232 0.32414 0.79550 0.63333 0.1667 0.52123 1 4,04322 

 

The latest column presents the sum of the seven criteria scores for each disassembly 

sequence. The higher the value is the better sequence is. Thus, the best one is for sequence 

{1,2,3,5,4} with SUM=4.53799. 

Let us note that, the values for visibility of a part and path changing depend on the way 

that the operator is handling the components in the virtual environment. However, the values 

of disassembly angles (SDR), the number of tools’ changes and the stability are not related to 

the operator’s abilities and consequently only depend on the mechanical assembly and the 

disassembly sequence itself. Two subjects were involved in the performed experiment for 

disassembly simulations. In order to improve the reliability of the proposed method, the 

average duration of the disassembly time for these two subjects were recorded as well. The 

results for average disassembly time for each sequence are shown in Table 5.3.  

Table 5.3 Duration time for each sequence 

Sequences 
Subject 1 time 
(seconds) 

Subject 2 time 
(seconds) 

Average time 
(seconds) 

(1,2,5,3,4) 48.4850001335 46.2220001221 47.3535001278 

(1,2,5,4,3) 46.2139999866 44.1860001087 45.2000000476  

(1,2,3,5,4) 40.4040000439 39.0890002011 39,7465001225 

(1,2,3,4,5) 44.3980000019 44.6011113981 44,4995557000 

The shortest time is 39.0890002011 sec for sequence {1,2,3,5,4} performed by Subject 2, 

which is consistent with the previous evaluation thus showing that this sequence is the best 

evaluated one according to the proposed criteria.  
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5.4 Conclusion  

This Chapter introduced a new method for evaluation of disassembly operations in 

Virtual Environment which combine ergonomic and traditional processing procedure 

evaluations.  

Ergonomic evaluation involved detecting the distance and angle between the camera 

and the target components in order to evaluate the ergonomic parameters instead of using a 

human DMU model. For this purpose three criteria namely: visibility score, neck score and 

bending score were proposed. Thus, the overall score of the proposed three criteria gives 

enough information about the operation efficiency evaluation from an ergonomic viewpoint.  

Concerning the traditional processing evaluation, it included a set of four criteria 

namely: disassembly angles, stability of the subassembly, number of tools’ changes and path 

direction change. It allows evaluating the disassembly operation complexity during the initial 

stage of product design or during the Product Life Cycle (PLC) in: production process, 

product maintenance and at the end of PLC. The performed tests, whose a case study was 

presented here, demonstrated the efficacy of the proposed method. The score results of the 

seven criteria, divided in two categories, allowed selecting the best disassembly sequence. It 

was confirmed by experimental test thus allowing validating the proposed method. The 

method is validated by developing an application for virtual simulation based on Python 

programming language associated with VTK and ODE libraries. The application was tested by 

performing disassembly operation simulations evaluation and two examples in the case of five 

components disassembly and two screws from a mechanical assembly were presented. Thus, 

the method can be naturally adapted to a variety of virtual environment applications for A/D 

sequences evaluation. For the traditional processing evaluation the test results showed that the 

values of three criteria namely: disassembly angles (SDR), number of tools’ changes and 

stability of the sub-assembly only depend on the complexity level of the mechanical assembly 

and consequently are not related to the operator’s abilities. On the contrary, the values of: 

visibilities of a part and path change strongly depend on the way that the operator is 

performing the handling of the components in the VE.  
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   General conclusions 

         Some limitations of the available techniques for disassembly operation simulations 

stimulated this thesis research on disassembly operations simulation including: sequences 

generation and evaluation. Different existing research methods in the field of disassembly 

sequencing were presented. We have pointed out that Automatic disassembly sequencing is 

an ideal way for the disassembly sequencing. However, there are two major problems in this 

field. One is the representing models for the product. There are many graph based methods or 

networks as presented above for representing the relationships among the parts in a product. 

However, the graph-based techniques for example, do not consider products geometrical 

information data bases. As we are aware, there are not works mentioning that these graphs or 

networks can be built automatically according to parts relationship in the product. The other 

problem is related with the calculation method. Basically, all the graphs can be translated into 

matrix calculation for sequences searching or calculation. Many works, based on some 

simplifications hypotheses, only focus on four or six directions to disassembly the product 

which is easy to transfer the disassembly calculation into the matrix computation model. 

However, in the real situation, the components disassembly direction cannot be just in four or 

six directions and the rotations have to be taken into account as well. After getting all the 

sequences of disassembly, the evaluation will be important for choosing the most efficiency 

of them. Thus, the aim of our work was to contribute to modeling of assembly/disassembly 

operations: sequences generation and their evaluation in a Virtual reality environment. 

1. First, we have presented a method for disassembly sequences generation. The method 

consists in setting up a new approach for the sequences’ generation called “lowest level of 

disassembly graph method”, which is based on the notion of disassembly geometry contacting 

graph (DGCG). The graph is built on collision and set of directions for removal (SDR) 

detection for each given component in an assembly. For this purpose three cases, called micro 

units, which consider all the possible situations of relationships, among the components in the 

DGCG were addressed. With the investigated cases, the proposed method eliminates all the 

components which are unrelated to the target. The disassembly order graph is like a problem 

of inverted tree containing a minimum set of components related with the target component 

disassembly. Thus, the unrelated components are eliminated which allows to reduce the 

number of iterations for disassembly sequence generation and consequently search time. 

Compared with other existing methods which can be used in some special situations, for 
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example, the direction of disassembly must be certain, or the products must be relatively 

simple, our  method can generate disassembly sequences for any kind of complexity of 

products as the process for DGCG generating automatically stops when the target 

component(s) is (are) reached. The efficiency of the proposed method was proved by its 

application, for disassembly sequences generation of different mechanical and 

electromechanical assemblies. 

2. Secondly, our thesis proposed a new method for the evaluation of disassembly 

operations. For this purpose two sets of criteria have been proposed. The first one considers 

the traditional processing evaluation and consists of four criteria: disassembly angles, stability 

of the subassembly, number of tools’ changes and path direction change. Then, the overall 

score, defined as the sum of them is automatically calculated by the realized application. It 

gives enough information about the operation efficiency evaluation from a technological 

(processing) viewpoint and allows evaluating the disassembly operation complexity by 

considering the real disassembly process. The second set of criteria concerns the ergonomic 

evaluation and consists of: visibility score, neck score and bending score. The purpose of the 

Ergonomical assessment being trying to fit the task to the human and not the human to the 

task, this evaluation is focusing on the convenient of human body while performing 

disassembly operations. Based on the proposed methods for disassembly sequences 

generation and disassembly operation evaluation an application for virtual simulation based 

on Python programming language associated with VTK and ODE libraries was developed. 

The key point for an effective application is to gain a balance between the human body 

features and the task demands.  Instead of the ergonomics simulation with a human model, the 

realized application introduces some new sources in performing disassembling task in a VR 

environment.  

Thus, the score result of the proposed two sets of criteria allowed to select the best 

disassembly sequence. It was confirmed by experimental tests thus allowing validating the 

proposed method. Consequently, it can be naturally used to a variety of virtual environment 

applications for A/D sequences evaluation. The proposed application can be implemented into 

any existing industrial software, or design tools in particular for product disassembly 

simulation. The analysis results and findings demonstrate the feasibility of the proposed 

approaches, thus providing significant assistance for the evaluation of disassembly sequences 

during Product Development Process. 
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Assessment and Prospects 

Modelling disassembly operations requires a lot of geometrical, kinematical, technological 

and ergonomical data and their synthesis in order to reduce the algorithmic complexity of the 

disassembly simulation process. Nowadays, disassembly operation simulation of industrial 

products finds a strong interest in interactive simulations through immersive and real-time 

schemes. 

The majority of the works related with disassembly sequences generation and disassembly 

operation evaluation often require tremendous computational resources while, they often fail 

to find realistic and optimal solutions for complex products disassembly. Virtual assembly 

simulations allow the designer to evaluate the concepts in virtual environments during the 

early design stage. With virtual prototyping applications, optimizing design process for the 

design for assembly can be incorporated easily in the conceptual design stage. Using haptics 

or auditory technology, allows designers to interact with the parts with the human basic 

motions.  

As known, the number of possible disassembly sequences increases significantly with the 

number of parts in a product. Thus, the generation of proper disassembly sequences order is 

critical.  

In the proposed method for disassembly sequence generation the created DGCG contains a 

minimum set of components related to the target. As previously said the unrelated 

components are eliminated in order to reduce the number of iterations and search time.  

At this stage, the proposed VR environment is not completed because the presented work is 

limited only for disassembly sequences generation and their evaluation. However, it is the 

base for further extensions and realizations. In a near future it could be the object of a 

continuation of studies.  

For improvements, we can extend the study in the following direction: 

- 1. Concerning the method for disassembly sequences generation in virtual reality 

environment; future work will consider the integration of the proposed method for 

disassembly process sequence generation and evaluation in a virtual reality (VR) system with 

perception model. Considering the lowest level of disassembly to generate the possible 
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sequences, how to choose the best one with lowest cost value in the real disassembly process 

is still an issue.   

- 2. Concerning the method for evaluation of disassembly sequences the score sums of the 

proposed two sets of criteria give enough information about the sequence’s efficacy 

evaluation. However at this stage our method does not consider the ranking of the criteria thus 

proposed, as they have the same weight. Thus, future work consists in ranking the criteria 

according to their importance. For this purpose moderation coefficients can be allocated to 

each of them thus allowing a more comprehensive evaluating method. 
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Appendix A  

Part of code of Interface, Virtual Reality Disassembly Environment (VRDE)  
 
Code in Python 
 

import vtk 

import wx,os,sys 

import wx.lib.buttons as buttons 

from vtkactors import * 

  

from pylab import* 

import areaReading 

import matplotlib.pyplot as plt 

import wx.lib.imagebrowser as ib 

 

def vtk_Camera_Arrow(): 

    #creat the arrow for the pic 

    arrowSource = vtk.vtkArrowSource() 

    mapper = vtk.vtkPolyDataMapper() 

    translation=vtk.vtkTransform() 

    translation.RotateZ(180) 

    translation.Translate(0.8,0,0) 

    translation.Scale(2.0,2.0,2.0) 

    transformFilter =vtk.vtkTransformPolyDataFilter()  

    transformFilter.SetInputConnection(arrowSource.GetOutputPort()) 

    transformFilter.SetTransform(translation) 

    mapper.SetInputConnection(transformFilter.GetOutputPort()) 

    actor = vtk.vtkActor() 

    actor.SetMapper(mapper) 

    actor.GetProperty().SetColor(1.0,0.0,0.0) 

    #creat the camera for the simulation  

    camCS = vtk.vtkConeSource() 

    camCS.SetHeight(1.5)  

    camCS.SetResolution(12)  

    camCS.SetRadius(0.4) 

    camCBS = vtk.vtkCubeSource() 

    camCBS.SetXLength(1.5)  

    camCBS.SetZLength(0.8)  

    camCBS.SetCenter(0.4, 0, 0) 

    camAPD = vtk.vtkAppendFilter() 

    camAPD.AddInput(camCS.GetOutput())  

    camAPD.AddInput(camCBS.GetOutput()) 

    camMapper = vtk.vtkDataSetMapper() 

    camMapper.SetInput(camAPD.GetOutput())  

    camActor =vtk.vtkLODActor() 

    camActor.SetMapper(camMapper) 

    #creat assembly 

    assembly=vtk.vtkAssembly() 
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    assembly.AddPart(camActor) 

    assembly.AddPart(actor) 

    assembly.SetScale(20,20,20) 

    return assembly 

def position2matrix(pos, scale) : 

    # pos is a vector x,y,z,qx,qy,qz,qw 

    x = pos[0]*scale 

    y = pos[1]*scale 

    z = pos[2]*scale 

    qx = pos[3] 

    qy = pos[4] 

    qz = pos[5] 

    qw = pos[6] 

    m0= 1 - 2 * ( (qy*qy) + (qz*qz) ) 

    m1=     2 * ( (qx*qy) - (qz*qw) ) 

    m2=     2 * ( (qx*qz) + (qy*qw) ) 

    m4=     2 * ( (qx*qy) + (qz*qw) ) 

    m5= 1 - 2 * ( (qx*qx) + (qz*qz) ) 

    m6=     2 * ( (qy*qz) - (qx*qw) ) 

    m8=     2 * ( (qx*qz) - (qy*qw) ) 

    m9=     2 * ( (qy*qz) + (qx*qw) ) 

    m10= 1 - 2 * ( (qx*qx) + (qy*qy) ) 

    m3=x  

    m7=y  

    m11=z  

    m12=m13=m14= 0  

    m15= 1   

    return ((m0,m1,m2,m3), 

    (m4,m5,m6,m7), 

    (m8,m9,m10,m11), 

    (m12,m13,m14,m15)) 

 

def Keypress(obj, event): 

    key = obj.GetKeySym() 

    if key == "e": 

        obj.InvokeEvent("DeleteAllObjects") 

        sys.exit() 

    elif key == "w": 

        Wireframe()       

    elif key =="s": 

        Surface() 

  

def vtk_Cube(x,y,z,r=0.5,g=0.5,b=0.5): 

    cyl=vtk.vtkCubeSource() 

    cyl.SetXLength(x) 

    cyl.SetYLength(y) 

    cyl.SetZLength(z) 

    mapper =vtk.vtkPolyDataMapper () 

    mapper.SetInputConnection(cyl.GetOutputPort()) 

    lxactor =vtk.vtkActor() 

    lxactor.SetMapper(mapper) 

    lxactor.GetProperty().SetColor (r, g, b) 
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    lxactor.flag="cube" 

    lxactor.SetScale(40,40,40) 

    return lxactor 

  

def vtk_cylinder(radius,h,resolution,r,g,b): 

    cy=vtk.vtkCylinderSource() 

    cy.SetRadius(radius)  

    cy.SetHeight(h)  

    cy.SetResolution(resolution) 

    translation =vtk.vtkTransform() 

    translation.RotateX (90.0) 

    transformFilter =vtk.vtkTransformPolyDataFilter() 

    transformFilter.SetInputConnection(cy.GetOutputPort())  

    transformFilter.SetTransform(translation) 

    mapper =vtk.vtkPolyDataMapper() 

    mapper.SetInputConnection(transformFilter.GetOutputPort()) 

    lxactor =vtk.vtkActor() 

    lxactor.SetMapper(mapper) 

    lxactor.GetProperty().SetColor (r, g, b) 

    return lxactor 

  

 

def vtk_sphere(radius,theta,phi,r,g,b): 

    sphereSource=vtk.vtkSphereSource() 

    sphereSource.SetRadius(radius) 

    sphereSource.SetThetaResolution (theta) 

    sphereSource.SetPhiResolution (phi) 

    actor1=vtk.vtkActor() 

    mapper=vtk.vtkPolyDataMapper() 

    mapper.SetInputConnection(sphereSource.GetOutputPort()) 

    actor1.SetMapper(mapper) 

    actor1.GetProperty().SetColor (r,g,b) 

    actor1.flag="sphere" 

    return actor1 

address=["C:\chenggang\ode\pics\Blue_Grey_Granite.bmp","C:\chenggang\ode\pics\Buff_Quartz.b

mp"] 

 

def bmpReader(address): 

    bmpReader = vtk.vtkBMPReader() 

    bmpReader.SetFileName(address) 

    C=vtk.vtkTexture() 

    C.SetInput(bmpReader.GetOutput()) 

    C.InterpolateOn() 

    return C 

 

def creat_Plane(): 

    plane = vtk.vtkPlaneSource() 

    plane.SetPoint1(300.0, 10.0, 300.0 )  

    plane.SetPoint2(-300.0, 10.0, 300.0 ) 

    plane.SetCenter(0.0, 1.0, 0.0)  

    plane.SetXResolution(100)  

    plane.SetYResolution(100)  
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    planeMapper = vtk.vtkPolyDataMapper() 

    planeMapper.SetInput(plane.GetOutput()) 

    planeActor = vtk.vtkActor() 

    planeActor.SetMapper(planeMapper) 

    planeActor.SetTexture(bmpReader(address[0])) 

    planeActor.PickableOff() 

    return planeActor 

 

class myFrame(wx.Frame):##  

    def __init__(self,parent,title): 

        wx.Frame.__init__(self,parent,title=title,size=(550,300))##  

        self.RenderWindow=vtk.vtkRenderWindow() 

        self.RenderWindow.StereoCapableWindowOn() 

        self.RenderWindow.SetSize(800, 800) 

        self.Renderer=vtk.vtkRenderer() 

        self.RenderWindow.AddRenderer(self.Renderer) 

        self.Renderer.TwoSidedLightingOn () 

        self.Renderer.LightFollowCameraOn () 

        self.Renderer.SetBackground(0.1,0.3,0.5) 

        self.Rotating = 0 

        self.Panning = 0 

        self.cameraRotating = 0 

        planeActor=creat_Plane() 

        #self.Renderer.AddActor(planeActor) 

        self.actor = None 

        self.iren=vtk.vtkRenderWindowInteractor() 

        self.iren.SetInteractorStyle(None) 

        self.iren.AddObserver("LeftButtonPressEvent", self.ButtonEvent) 

        self.iren.AddObserver("LeftButtonReleaseEvent", self.ButtonEvent) 

        self.iren.AddObserver("MiddleButtonPressEvent", self.ButtonEvent) 

        self.iren.AddObserver("MiddleButtonReleaseEvent",self.ButtonEvent) 

        self.iren.AddObserver("RightButtonPressEvent", self.ButtonEvent) 

        self.iren.AddObserver("RightButtonReleaseEvent", self.ButtonEvent) 

        self.iren.AddObserver("MouseWheelForwardEvent", self.ButtonEvent) 

        self.iren.AddObserver("MouseWheelBackwardEvent", self.ButtonEvent) 

        self.iren.AddObserver("MouseMoveEvent", self.MouseMove) 

        self.iren.AddObserver("KeyPressEvent", self.Keypress) 

        self.iren.SetRenderWindow(self.RenderWindow) 

        

        self.transform=((1.,0,0,0),(0,1.,0,0),(0,0,1.,0),(0.,0.,0.,1.)) 

        self.row=0 

        self.col=0 

        self.nbcol=2 

        self.mode=301 

        self.sphereX=[] 

        self.sphereY=[] 

        self.t2=0 

        self.CreateStatusBar()#   

        filemenu=wx.Menu()#  

        open=filemenu.Append(wx.ID_OPEN,"&Open","Open the program") 

        save=filemenu.Append(wx.ID_SAVE,"&Save","Save the program") 

        about=filemenu.Append(wx.ID_ABOUT, "&About","Information about this program") 
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        filemenu.AppendSeparator()# 不懂 

        exit=filemenu.Append(wx.ID_EXIT,"&Exit","Terminate the program") 

        

        self.Bind(wx.EVT_MENU,self.OnAbout,about)#选择 about将执行 onAbout函数 

        self.Bind(wx.EVT_MENU,self.OnExit,exit) 

        self.Bind(wx.EVT_MENU,self.OnOpen,open) 

        self.Bind(wx.EVT_MENU,self.OnSave,save) 

         

        ####菜单二 

        ID_MENU_TRA = wx.NewId() 

        ID_MENU_TIME = wx.NewId() 

        ID_MENU_CollISION = wx.NewId() 

        ID_MENU_TOOL = wx.NewId() 

        ID_MENU_REACH = wx.NewId() 

        filemenu2=wx.Menu()#菜单 

        Tar=filemenu2.Append(ID_MENU_TRA,"&Path orientation changing ","All the Trajectories for all 

the components") 

        TIME =filemenu2.Append(ID_MENU_TIME, "&The stability ","Recording times for the 

simulation") 

        visibility=filemenu2.Append(ID_MENU_CollISION , "&Visibility","anylize the collision for whole 

simulation") 

        TOOL =filemenu2.Append(ID_MENU_TOOL , "&Number of tools'changes","anylize the number 

of converting tools") 

        REACH =filemenu2.Append(ID_MENU_REACH , "&SDR Angle","anylize the Accessibility of each 

part") 

        self.Bind(wx.EVT_MENU,self.OnPath,Tar)#选择 about将执行 onAbout函数 

        self.Bind(wx.EVT_MENU,self.OnVisibility,visibility) 

         

 

         ####菜单 3 

        ID_MENU_1= wx.NewId() 

        ID_MENU_2 = wx.NewId() 

        ID_MENU_3 = wx.NewId() 

        ID_MENU_4 = wx.NewId() 

        ID_MENU_5 = wx.NewId() 

        filemenu3=wx.Menu()#菜单 

        T1=filemenu3.Append(ID_MENU_1,"&Next Target","All the Trajectories for all the components") 

        T2=filemenu3.Append(ID_MENU_2, "&Tool1","Recording times for the simulation") 

        T3=filemenu3.Append(ID_MENU_3 , "&Tool2","anylize the collision for whole simulation") 

        T4=filemenu3.Append(ID_MENU_4 , "&Tool3","anylize the number of converting tools") 

        T5=filemenu3.Append(ID_MENU_5 , "&Tool4","anylize the Accessibility of each part") 

        self.Bind(wx.EVT_MENU,self.clear,T1) 

 

        # 工具栏 1 

        ID_MENU_6= wx.NewId() 

        ID_MENU_7 = wx.NewId() 

        ID_MENU_8 = wx.NewId() 

        ID_MENU_9 = wx.NewId() 

        ID_MENU_10 = wx.NewId() 

        ID_MENU_11= wx.NewId() 

        ID_MENU_12= wx.NewId() 
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        ID_MENU_13 = wx.NewId() 

        ID_MENU_14 = wx.NewId() 

        ID_MENU_15 = wx.NewId() 

        toolbar1 = wx.ToolBar(self) 

        sphere=toolbar1.AddLabelTool(ID_MENU_6, '', wx.Bitmap(sys.path[0]+os.sep+'pixmaps-

menu'+os.sep+'stock_no_20.png')) 

        cube=toolbar1.AddLabelTool(ID_MENU_7, '', 

wx.Bitmap(sys.path[0]+os.sep+'pixmaps'+os.sep+'Object-GRCUBE.png')) 

        cylinder=toolbar1.AddLabelTool(ID_MENU_8, '', 

wx.Bitmap(sys.path[0]+os.sep+'pixmaps'+os.sep+'Object-GRCYLINDER1.png')) 

        haptic=toolbar1.AddLabelTool(ID_MENU_9, '', 

wx.Bitmap(sys.path[0]+os.sep+'pixmaps'+os.sep+'ico-haptic2.png')) 

        collision=toolbar1.AddLabelTool(ID_MENU_10, '', 

wx.Bitmap(sys.path[0]+os.sep+'pixmaps'+os.sep+'Device-CVEODE.png')) 

        D3D=toolbar1.AddLabelTool(ID_MENU_11, '', 

wx.Bitmap(sys.path[0]+os.sep+'pixmaps'+os.sep+'converted.png')) 

        colorChange =toolbar1.AddLabelTool(ID_MENU_12, '', 

wx.Bitmap(sys.path[0]+os.sep+'pixmaps'+os.sep+'color_picker.png')) 

        camera=toolbar1.AddLabelTool(ID_MENU_13, '', 

wx.Bitmap(sys.path[0]+os.sep+'pixmaps'+os.sep+'camer.png')) 

        screenShot=toolbar1.AddLabelTool(ID_MENU_14, '', 

wx.Bitmap(sys.path[0]+os.sep+'pixmaps'+os.sep+'Screenshot.png')) 

        toolbar1.AddSeparator() 

        toolbar1.Realize() 

         

        self.Bind(wx.EVT_TOOL,self.OnSphere,sphere)# 

        self.Bind(wx.EVT_TOOL,self.OnCube,cube) 

        self.Bind(wx.EVT_TOOL,self.OnCylinder,cylinder) 

        self.Bind(wx.EVT_TOOL,self.OnHaptic,haptic) 

        self.Bind(wx.EVT_TOOL,self.OnCollision,collision) 

        self.Bind(wx.EVT_TOOL,self.OnD3D,D3D) 

        self.Bind(wx.EVT_TOOL,self.OnOtherColor,colorChange) 

        self.Bind(wx.EVT_TOOL,self.OnCamera,camera) 

        self.Bind(wx.EVT_TOOL,self.OnScreenshot,screenShot) 

        ID_MENU_16= wx.NewId() 

        ID_MENU_17 = wx.NewId() 

        ID_MENU_18 = wx.NewId() 

        ID_MENU_19 = wx.NewId() 

        ID_MENU_20 = wx.NewId() 

        ID_MENU_21= wx.NewId() 

        ID_MENU_22= wx.NewId() 

        ID_MENU_23 = wx.NewId() 

        ID_MENU_24 = wx.NewId() 

        ID_MENU_25 = wx.NewId() 

        toolbar2 = wx.ToolBar(self) 

        cordinate = toolbar2.AddLabelTool(ID_MENU_16, '', 

wx.Bitmap(sys.path[0]+os.sep+'pixmaps'+os.sep+'Coordin.png')) 

        picture = toolbar2.AddLabelTool(ID_MENU_17, '', 

wx.Bitmap(sys.path[0]+os.sep+'pixmaps'+os.sep+'Pic.png')) 

        self.Bind(wx.EVT_TOOL,self.Oncordinate,cordinate) 

        self.Bind(wx.EVT_TOOL,self.Onpicture,picture) 

        toolbar2.AddSeparator() 
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        toolbar2.Realize() 

        vbox = wx.BoxSizer(wx.VERTICAL) 

        vbox.Add(toolbar1, 0, wx.EXPAND) 

        vbox.Add(toolbar2, 100, wx.EXPAND) 

          

        self.SetSizer(vbox) 

       

        #~ box.Add(s, 0, wx.ALL, 10) 

        #~ self.SetClientSize(self.sizer.GetSize()) 

        #self.SetSize((self.col*24,self.nbcol*24) 

        self.Fit() 

         

        self.Show(True) 

         

        menuBar=wx.MenuBar() 

        menuBar.Append(filemenu,"&File") 

        menuBar.Append(filemenu2,"&Analysis") 

        menuBar.Append(filemenu3,"&Tools") 

        self.SetMenuBar(menuBar) 

        self.Show(True) 

     

    def Keypress(self, obj, event): 

        key = obj.GetKeySym() 

        if key == "e": 

            obj.InvokeEvent("DeleteAllObjects") 

            sys.exit() 

        elif key == "w": 

            self.Wireframe()       

        elif key =="s": 

            self.Surface() 

 

    def Wireframe(self ): 

        actors =self.Renderer.GetActors() 

        actors.InitTraversal() 

        actor = actors.GetNextItem() 

        while actor: 

            actor.GetProperty().SetRepresentationToWireframe() 

            actor = actors.GetNextItem() 

        self.RenderWindow.Render() 

     

    def Surface(self ): 

        actors =self.Renderer.GetActors() 

        actors.InitTraversal() 

        actor = actors.GetNextItem() 

        while actor: 

            actor.GetProperty().SetRepresentationToSurface() 

            actor = actors.GetNextItem() 

        self.RenderWindow.Render() 

          

    def OnAbout(self,e): 

        dlg=wx.MessageDialog(self,"Disassembly simulation", "About this application", wx.OK) 

        dlg.ShowModal() 
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        dlg.Destroy() 

    def OnExit(self,e): 

        self.Close(True) 

        sys.exit() 

         

    def OnSave(self,e): 

        dlg=wx.FileDialog(self, "save file as...", os.getcwd(), "", " 

*.vtk",wx.SAVE|wx.OVERWRITE_PROMPT) 

        result=dlg.ShowModal() 

        inFile=dlg.GetPath() 

        if result==wx.ID_OK: 

            save(self,inFile) 

            return True  

        elif result==wx.ID_CANCEL: 

            return False 

         

    def importVrml(self,fileName): 

        importer=vtk.vtkVRMLImporter() 

        importer.SetFileName(fileName) 

        importer.Read() 

        importer.SetRenderWindow(self.RenderWindow)  

        importer.Update() 

        actors=importer.GetRenderer().GetActors() 

        c=actors.GetNumberOfItems () 

        print(c) 

        actors.InitTraversal() 

        self.RenderWindow.Render() 

        self.iren.Initialize() 

         

    def importStl(self,fileList): 

        for i in fileList: 

            reader = vtk.vtkSTLReader() 

            reader.SetFileName(i) 

            mapper =vtk.vtkPolyDataMapper() 

            mapper.SetInputConnection(reader.GetOutputPort()) 

            lxactor =vtk.vtkActor() 

            lxactor.SetMapper(mapper) 

            self.Renderer.AddActor(lxactor) 

            self.RenderWindow.Render() 

    def OnOpen(self,e): 

        self.dirname='' 

        dlg=wx.FileDialog(self,"choose a file",self.dirname,"","*.stl",wx.MULTIPLE) 

        if dlg.ShowModal()==wx.ID_OK: 

            fileList=dlg.GetPaths() 

            self.importStl(fileList) 

            #self.filename=dlg.GetFilename() 

            #self.dirname=dlg.GetDirectory() 

            #f=self.importStl(os.path.join(self.dirname,self.filename)) 

        dlg.Destroy() 

    def OnOtherColor(self,event): 

        self.dog=wx.ColourDialog(self) 

        self.dog.GetColourData().SetChooseFull(True) 
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        if self.dog.ShowModal()== wx.ID_OK: 

            colour_data = self.dog.GetColourData() 

            colour = colour_data.GetColour() 

            colour1=(colour[0]/255,colour[1]/255,colour[2]/255) 

            print colour 

            if  self.actor!= None: 

                self.actor.GetProperty().SetColor(colour1) 

                self.RenderWindow.Render() 

            #self.pickerActor.SetColor(dlg.GetColourData().GetColour()) 

        self.dog.Destroy() 

      

    def OnSphere(self,e): 

        cc=vtk_sphere(1,20,20,0.5,0.8,0.1) 

        self.Renderer.AddActor(cc) 

        self.RenderWindow.Render() 

  

    def OnCube(self,e): 

        dd=vtk_Cube(1,1,1,r=0.4,g=0.8,b=0.1) 

        self.Renderer.AddActor(dd) 

        self.RenderWindow.Render() 

        

    def OnCylinder(self,e): 

        self.ee=vtk_cylinder(1,1,20,0.1,0.5,0.2) 

        self.Renderer.AddActor(self.ee) 

        self.RenderWindow.Render() 

         

    def OnCamera(self,e): 

        cameraAssembly=vtk_Camera_Arrow() 

        self.Renderer.AddActor(cameraAssembly) 

        self.RenderWindow.Render() 

 

 

    def OnScreenshot(self,e): 

        import random 

        rangeLetter=('abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ') 

        newFileName = random.choice(rangeLetter)+ ".png" 

        windowToImageFilter=vtk.vtkWindowToImageFilter() 

        windowToImageFilter.SetInput(self.RenderWindow) 

        windowToImageFilter.SetMagnification(3) 

        windowToImageFilter.SetInputBufferTypeToRGBA() 

        writer=vtk.vtkPNGWriter() 

        writer.SetFileName(newFileName) 

        writer.SetInputConnection(windowToImageFilter.GetOutputPort()) 

        writer.Write() 

        os.system(newFileName) 

         

    def OnVisibility(self,e): 

        actors=self.Renderer.GetActors() 

        actors.InitTraversal() 

        actor = actors.GetNextItem() 

        while actor: 

            if  self.actor!= actor: 
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                actor.GetProperty().SetColor(0,0,0) 

            actor = actors.GetNextItem() 

        self.Renderer.SetBackground(0,0,0) 

        self.RenderWindow.Render() 

         

    def OnHaptic (self,e): 

        print(self.ha.HAPapiVersion()) 

        self.ha.HAPsetTimeStep(0.002)#default value is 0.002f.  

        self.ha.HAPsetIndexingMode(3.0) 

        self.ha.HAPsetForceFactor(3.0) 

        self.ha.HAPsetSpeedFactor(1.5) 

        tab=[0.0,0.0,0.0,0.0,0.0,0.0,1.0] 

        self.ha.HAPsetBaseFrame(tab) 

        self.ha.HAPsetObservationFrameSpeed(tab) 

        self.ha.HAPsetCommandType(5)#comannd type virtmech 

        self.ha.HAPconnect() 

        while(self.ha.isConnected==True):  

            transform=position2matrix(self.ha.posCT, 20) 

            if transform!=self.transform:            

                self.transform=transform 

                newTransform=vtk.vtkTransform() 

                newTransform.SetMatrix(self.Transform) 

                self.dd.SetPosition(newTransform.GetPosition())  

                self.dd.SetOrientation(newTransform.GetOrientation()) 

                self.RenderWindow.Render()   

    def OnCollision (self,e): 

        print('00000') 

 

    def OnD3D(self,e): 

        self.RenderWindow.StereoRenderOn() 

        self.RenderWindow.SetStereoTypeToInterlaced() 

        self.RenderWindow.Render() 

        self.iren.Start() 

    def clear(self,e): 

        self.sphereX=[] 

    def OnPath(self,e): 

        startPoints=[] 

        endPoints=[] 

        Points=[] 

        color=self.Dactor.GetProperty().GetColor() 

        print self.sphereX 

        for i in  range (0,len(self.sphereX)-1,2) : 

              

            Points.append((self.sphereX[i])) 

        for i in range(len(Points)-1): 

            startPoints.append(Points[i]) 

            endPoints.append(Points[i+1]) 

        for i in range (len(startPoints)): 

            sphereStartSource = vtk.vtkSphereSource() 

            lineSource=vtk.vtkLineSource() 

            lineSource.SetPoint1(startPoints[i]) 

            lineSource.SetPoint2(endPoints[i]) 



 

 

147 

            lineSource.Update() 

            lineMapper=vtk.vtkPolyDataMapper() 

            lineMapper.SetInputConnection(lineSource.GetOutputPort()) 

            lineActor=vtk.vtkActor() 

            lineActor.GetProperty().SetColor(0.0,0.0,0.0) 

            lineActor.SetMapper(lineMapper) 

            sphereStartSource.SetCenter(startPoints[i]) 

            sphereStartSource.SetRadius(5) 

            sphereStartMapper = vtk.vtkPolyDataMapper() 

            sphereStartMapper.SetInputConnection(sphereStartSource.GetOutputPort()) 

            sphereStart = vtk.vtkActor() 

            sphereStart.SetMapper(sphereStartMapper) 

            sphereStart.GetProperty().SetColor(color) 

            self.Renderer.AddActor(sphereStart) 

            self.Renderer.AddActor(lineActor) 

            self.RenderWindow.Render()   

         

############################################################################The 

own interactor style! 

    def ButtonEvent(self,Self,event): 

        global Rotating, Panning, cameraRotating 

        if event == "LeftButtonPressEvent": 

            self.Rotating = 1 

            XYpos=self.iren.GetEventPosition() 

            x= XYpos[0] 

            y= XYpos[1] 

            CurrentRenderer = self.iren.FindPokedRenderer(x,y) 

            picker=vtk.vtkPropPicker()   

            picker.Pick(x, y,0,CurrentRenderer) 

            self.actor=picker.GetActor() 

        elif event == "LeftButtonReleaseEvent": 

            self.Rotating = 0 

        elif event == "MiddleButtonPressEvent": 

            self.Panning = 1 

        elif event == "MiddleButtonReleaseEvent": 

            self.Panning = 0 

        elif event == "RightButtonPressEvent": 

            self.cameraRotating = 1 

        elif event == "RightButtonReleaseEvent": 

            self.cameraRotating = 0 

        elif event == "MouseWheelForwardEvent": 

            self.zooming() 

        elif event == "MouseWheelBackwardEvent": 

            self.shrinking() 

         

    def MouseMove(self,obj, event): 

        global Rotating, Panning, Zooming 

        global iren, renWin, ren 

        

        if self.Rotating: 

            self.Rotation()  

        if self.Panning: 
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            self.pan() 

        elif self.cameraRotating: 

            self.cameraRotation() 

 

    def pan(self): 

         

        XYpos=self.iren.GetEventPosition() 

        x= XYpos[0] 

        y= XYpos[1] 

        LastXYpos =self.iren.GetLastEventPosition() 

        CurrentRenderer = self.iren.FindPokedRenderer(x,y) 

        picker=vtk.vtkPropPicker()   

        picker.Pick(x, y,0,CurrentRenderer) 

        self.Dactor=picker.GetActor() 

        if (self.Dactor==None): 

            self.Dactor=picker.GetAssembly() 

            if(self.Dactor==None): 

                return 

        self.RenderWindow.Render() 

        def startPan(): 

            disp_obj_center =[]  

            new_pick_point =[] 

            old_pick_point =[] 

            motion_vector  =[] 

            obj_center=self.Dactor.GetCenter() 

            self.sphereX.append(obj_center) 

            CurrentRenderer.SetWorldPoint(obj_center[0],obj_center[1],obj_center[2],1.0) 

            CurrentRenderer.WorldToView() 

            display=CurrentRenderer.GetViewPoint() 

            CurrentRenderer.ViewToDisplay() 

            isp_obj_center=CurrentRenderer.GetDisplayPoint() 

            CurrentRenderer.SetDisplayPoint(XYpos[0],XYpos[1],0) 

            CurrentRenderer.DisplayToView() 

            CurrentRenderer.GetViewPoint() 

            CurrentRenderer.ViewToWorld() 

            new_pick_point=CurrentRenderer.GetWorldPoint() 

            CurrentRenderer.SetDisplayPoint(LastXYpos[0],LastXYpos[1],0) 

            CurrentRenderer.DisplayToView() 

            CurrentRenderer.GetViewPoint() 

            CurrentRenderer.ViewToWorld() 

            old_pick_point=CurrentRenderer.GetWorldPoint() 

            motion_vector.append(new_pick_point[0] - old_pick_point[0]) 

            motion_vector.append(new_pick_point[1] - old_pick_point[1]) 

            motion_vector.append(new_pick_point[2] - old_pick_point[2]) 

            if (self.Dactor.GetUserMatrix()!=None): 

                t=vtk.vtkTransform() 

                t.PostMultiply() 

                t.SetMatrix(Dactor.GetUserMatrix()) 

                t.Translate(motion_vector[0]*20,motion_vector[1]*20,motion_vector[2]*20) 

                self.Dactor.GetUserMatrix().DeepCopy(t.GetMatrix()) 

                self.Dactor.AddPosition(motion_vector[0],motion_vector[1],motion_vector[2]) 

            else: 
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                self.Dactor.AddPosition(motion_vector[0]*2,motion_vector[1]*2,motion_vector[2]*2) 

            CurrentRenderer.ResetCameraClippingRange() 

            #collision_detection(actors,n=len(actors),density=2000,r=0.5) 

            self.RenderWindow.Render() 

        startPan() 

     

    def Rotation(self): 

        XYpos=self.iren.GetEventPosition() 

        x= XYpos[0] 

        y= XYpos[1] 

        LastXYpos =self.iren.GetLastEventPosition() 

        CurrentRenderer = self.iren.FindPokedRenderer(x,y) 

        picker=vtk.vtkPropPicker()   

        picker.Pick(x, y,0,CurrentRenderer) 

        Dactor=picker.GetActor() 

        if (Dactor==None): 

            Dactor=picker.GetAssembly() 

            if(Dactor==None): 

                return 

        self.RenderWindow.Render()      

        def startRotation(): 

            cam=self.Renderer.GetActiveCamera() 

            center=Dactor.GetCenter() 

            boundRadius=Dactor.GetLength()*0.5#half of the diagonal of the bounding box 

            cam.OrthogonalizeViewUp()#force the viewup to be perpendicular to camera->focalpoint 

vector 

            cam.ComputeViewPlaneNormal() 

            view_up=list(cam.GetViewUp()) 

            c=vtk.vtkMath() 

            c.Normalize(view_up)#Unit Vectors 

            view_look=cam.GetViewPlaneNormal() 

            view_right=[0.0,0.0,0.0] 

            c.Cross(view_up,view_look,view_right) 

            c.Normalize(view_right)#Unit Vectors 

            outsidept=[] 

            outsidept.append(center[0] + view_right[0] * boundRadius) 

            outsidept.append(center[1] + view_right[1] * boundRadius) 

            outsidept.append(center[2] + view_right[2] * boundRadius)#pas compris 

            CurrentRenderer.SetWorldPoint(center[0],center[1],center[2],1.0) 

            CurrentRenderer.WorldToView() 

            CurrentRenderer.GetViewPoint() 

            CurrentRenderer.ViewToDisplay() 

            disp_obj_center=CurrentRenderer.GetDisplayPoint() 

            CurrentRenderer.SetWorldPoint(outsidept[0],outsidept[1],outsidept[2],1.0) 

            CurrentRenderer.WorldToView() 

            CurrentRenderer.GetViewPoint() 

            CurrentRenderer.ViewToDisplay() 

            outsidept=CurrentRenderer.GetDisplayPoint() 

            radius=math.sqrt(c.Distance2BetweenPoints(disp_obj_center,outsidept)) 

            nxf=(x-disp_obj_center[0])/radius 

            nyf=(y-disp_obj_center[1])/radius 

            oxf=(LastXYpos[0]-disp_obj_center[0])/radius 
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            oyf=(LastXYpos[1]-disp_obj_center[1])/radius 

    

            cc=nxf * nxf + nyf * nyf 

            dd=oxf * oxf + oyf * oyf 

      

            if (((nxf * nxf + nyf * nyf) <= 1.0)and((oxf * oxf + oyf * oyf) <= 1.0)): 

                 newXAngle = c.DegreesFromRadians( math.sin( nxf ) )  

                 newYAngle = c.DegreesFromRadians( math.sin( nyf ) )  

                 oldXAngle = c.DegreesFromRadians( math.sin( oxf ) )  

                 oldYAngle = c.DegreesFromRadians( math.sin( oyf ) ) 

                 scale=[1.0,1.0,1.0] 

                 rotate=[[0.0,0.0,0.0,0.0,0.0], [ 0.0,0.0,0.0,0.0,0.0]] 

                  rotate[0][0] = newXAngle - oldXAngle 

                 rotate[0][1] = view_up[0] 

                 rotate[0][2] = view_up[1] 

                 rotate[0][3] = view_up[2] 

                      rotate[1][0] = oldYAngle - newYAngle 

                 rotate[1][1] = view_right[0] 

                 rotate[1][2] = view_right[1] 

                 rotate[1][3] = view_right[2] 

                 self.Prop3DTransform(Dactor,center,2,rotate,scale) 

                #collision_detection(actors,n=len(actors),density=2000,r=0.5) 

                 self.RenderWindow.Render() 

        startRotation() 

    def Prop3DTransform(self,actor,center,Num,rotate,scale): 

          oldM=actor.GetMatrix() 

        orig=actor.GetOrigin() 

        newTransform=vtk.vtkTransform() 

        newTransform.PostMultiply() 

        if(actor.GetUserMatrix()!=None): 

            newTransform.SetMatrix(actor.GetUserMatrix()) 

        else: 

            newTransform.SetMatrix(oldM) 

              newTransform.Translate(-center[0],-center[1],-center[2]) 

            for i in range(Num): 

         newTransform.RotateWXYZ(rotate[i][0], rotate[i][1],rotate[i][2], rotate[i][3]) 

        newTransform.Translate(center[0],center[1], center[2]) 

        newTransform.Translate(-(orig[0]), -(orig[1]), -(orig[2]))  

        newTransform.PreMultiply()  

        newTransform.Translate(orig[0], orig[1], orig[2]) 

        if (actor.GetUserMatrix() != None): 

            newTransform.GetMatrix(actor.GetUserMatrix())  

        else:  

            actor.SetPosition(newTransform.GetPosition())  

            actor.SetScale(newTransform.GetScale())  

            actor.SetOrientation(newTransform.GetOrientation())  

        newTransform.Pop() 

    def cameraRotation(self): 

        XYpos=self.iren.GetEventPosition() 

        LastXYpos =self.iren.GetLastEventPosition() 
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        x= XYpos[0] 

        y= XYpos[1] 

        dx=XYpos[0]-LastXYpos[0] 

        dy=XYpos[1]-LastXYpos[1] 

        CurrentRenderer = self.iren.FindPokedRenderer(x,y) 

        size=CurrentRenderer.GetRenderWindow().GetSize() 

        delta_elevation = -20.0 / size[1] * 10 

        delta_azimuth = -20.0 / size[0]* 10 

        rxf = dx * delta_azimuth 

        ryf = dy * delta_elevation 

        camera =CurrentRenderer.GetActiveCamera()  

        camera.Azimuth(rxf)  

        camera.Elevation(ryf)  

        camera.OrthogonalizeViewUp() 

        CurrentRenderer.ResetCameraClippingRange() 

        self.RenderWindow.Render() 

    def zooming(self): 

        XYpos=self.iren.GetEventPosition() 

        LastXYpos = self.iren.GetLastEventPosition() 

        x= XYpos[0] 

        y= XYpos[1] 

        dy=XYpos[1]-LastXYpos[1] 

        CurrentRenderer = self.iren.FindPokedRenderer(x,y) 

        center= CurrentRenderer.GetCenter() 

        factor=pow(1.1,1) 

        print(factor) 

        camera = CurrentRenderer.GetActiveCamera() 

        if camera.GetParallelProjection(): 

            camera.SetParallelScale(camera.GetParallelScale()/factor)     

        else: 

            camera.Dolly(factor) 

        CurrentRenderer.ResetCameraClippingRange() 

        self.RenderWindow.Render() 

     

    def shrinking(self): 

        XYpos=self.iren.GetEventPosition() 

        LastXYpos =self.iren.GetLastEventPosition() 

        x= XYpos[0] 

        y= XYpos[1] 

        CurrentRenderer = self.iren.FindPokedRenderer(x,y) 

        center= CurrentRenderer.GetCenter() 

        factor=pow(1.1,-1) 

        camera = CurrentRenderer.GetActiveCamera() 

     

        if camera.GetParallelProjection(): 

            camera.SetParallelScale(camera.GetParallelScale()/factor)     

        else: 

            camera.Dolly(factor) 

        CurrentRenderer.ResetCameraClippingRange() 

        self.RenderWindow.Render() 

 

    def Button(self,text='',filename=None,bhelp='',Toggle=False,Popup=False): 
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        PUSH=True 

        tdir=sys.path[0] 

        if filename :  

            if not Toggle : item = wx.BitmapButton(self, -1, wx.Bitmap(tdir+os.sep+'pixmaps-

menu'+os.sep+filename)) 

            else :     

                bmp=wx.Bitmap(tdir+os.sep+'pixmaps-menu'+os.sep+filename)  

                item = buttons.GenBitmapToggleButton(self, -1, bmp) 

        else :  

            if not Toggle : 

                item = wx.Button( self, 10000, text, wx.DefaultPosition, wx.DefaultSize ) 

            else : 

                item = wx.ToggleButton( self, 10000, text, wx.DefaultPosition, wx.DefaultSize ) 

        self.sizer.Add( item ,  (self.row,self.col)) 

        self.row+=1 

        if self.row>=self.nbcol : 

            self.col+=1 

            self.row=0 

        return item 

 

    def Oncordinate(self,e): 

        axes=vtk.vtkAxesActor() 

        widget=vtk.vtkOrientationMarkerWidget() 

        widget.SetOutlineColor( 0.9300, 0.5700, 0.1300 ) 

        widget.SetOrientationMarker( axes ) 

        widget.SetInteractor(self.iren) 

        widget.SetViewport(0.0, 0.0, 0.4, .4) 

        widget.SetEnabled(1) 

        widget.InteractiveOn() 

        self.Renderer.ResetCamera() 

        self.RenderWindow.Render() 

    def Onpicture(self,e): 

        dir= os.getcwd() 

        initial_dir=os.path.join(dir,'png') 

        dlg=ib.ImageDialog(self,initial_dir) 

        dlg.Centre() 

        if dlg.ShowModal() == wx.ID_OK: 

            # show the selected file 

            areaReading.areaRead(dlg.GetFile()) 

        else: 

            print "You pressed Cancel" 

        dlg.Destroy()      

 

app=wx.App(False) 

frame=myFrame(None,"Disassembly simulation") 

app.MainLoop() 
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Appendix B  collision detection with ODE  

import vtk 

import ode 

import threading 

import sys 

import time 

import math 

  

def vtk_sphere(radius,theta,phi,r,g,b): 

    sphereSource=vtk.vtkSphereSource() 

    sphereSource.SetRadius(radius) 

    sphereSource.SetThetaResolution (theta) 

    sphereSource.SetPhiResolution (phi) 

    actor1=vtk.vtkActor() 

    mapper=vtk.vtkPolyDataMapper() 

    mapper.SetInputConnection(sphereSource.GetOutputPort()) 

    actor1.SetMapper(mapper) 

    actor1.GetProperty().SetColor (r,g,b) 

    return actor1  

 

def vtk_Cube(x,y,z,r=0.5,g=0.5,b=0.5): 

    cyl=vtk.vtkCubeSource() 

    cyl.SetXLength(x) 

    cyl.SetYLength(y) 

    cyl.SetZLength(z) 

    mapper =vtk.vtkPolyDataMapper () 

    mapper.SetInputConnection(cyl.GetOutputPort()) 

    lxactor =vtk.vtkActor() 

    lxactor.SetMapper(mapper) 

    lxactor.GetProperty().SetColor (r, g, b) 

    return lxactor 

 

def vtk_cylinder(radius,h,resolution,r,g,b): 

    cy=vtk.vtkCylinderSource() 

    cy.SetRadius(radius)  

    cy.SetHeight(h)  

    cy.SetResolution(resolution) 

   

 

    translation =vtk.vtkTransform() 

    translation.RotateX (90.0) 

    transformFilter =vtk.vtkTransformPolyDataFilter() 

    transformFilter.SetInputConnection(cy.GetOutputPort())  

    transformFilter.SetTransform(translation) 

    mapper =vtk.vtkPolyDataMapper() 

    mapper.SetInputConnection(transformFilter.GetOutputPort()) 

    lxactor =vtk.vtkActor() 

    lxactor.SetMapper(mapper) 
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    lxactor.GetProperty().SetColor (r, g, b) 

    return lxactor 

 

  

    #meshdata = ode.TriMeshData()  #create the data buffer 

    #meshdata.build(verts,faces)  #Put vertex and face data into the buffer 

    #mesh = ode.GeomTriMesh(meshdata,myspace) # 

 

#vtk models 

sources=[] 

actors=[]  

actor1 = vtk_sphere(0.5,20,20,1.0,0.5,0) 

actor2= vtk_Cube(0.5,0.5,1,r=1.0,g=0.5,b=0.5) 

actor3 = vtk_cylinder(0.5,1,20,0,0.8,1.0) 

 

c=vtk.vtkVersion() 

print(c.GetVTKVersion()) 

 

actor4= vtk_Cube(0.5,0.5,1,r=0.0,g=1.0,b=0.5) 

  

actor1.SetPosition(0,5,0) 

actor2.SetPosition(0,3,0)  

actor3.SetPosition(3,3,0)   

actor4.SetPosition(0,0,0) 

 

cy=vtk_cylinder(0.8,1.0,20,0.8,0.2,0.3) 

cy1=vtk_cylinder(0.5,1.0,20,0.8,0.2,0.4) 

cy.SetPosition(0,0,-0.5) 

cy1.SetPosition(0,0,0.5) 

ass=vtk.vtkAssembly() 

ass.AddPart(cy) 

ass.AddPart(cy1) 

ass.SetPosition(0,2,0) 

bounds=ass.GetBounds() 

size=[bounds[1]-bounds[0],bounds[3]-bounds[2],bounds[5]-bounds[4]]    

# define sources for later to use 

actors.append(actor1) 

actors.append(actor2) 

actors.append(actor3) 

actors.append(actor4) 

actors.append(ass) 

renderer=vtk.vtkRenderer() 

renderer.SetBackground(2/3, 1/2, 1) 

renderer.AddActor(actor1) 

renderer.AddActor(actor2) 

renderer.AddActor(actor3) 

renderer.AddActor(actor4) 

renderer.AddActor(ass) 

renWin=vtk.vtkRenderWindow() 

renWin.SetSize(600,300) 

xt=0.005 

renWin.AddRenderer(renderer) 
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#renWin.StereoCapableWindowOn() 

#renWin.StereoRenderOn() 

#renWin.SetStereoTypeToInterlaced()   

Rotating = 0 

Panning = 0  

cameraRotating = 0 

Num=0 

lasttime=0 

  

iren=vtk.vtkRenderWindowInteractor() 

iren.SetInteractorStyle(None) 

iren.SetRenderWindow(renWin) 

#define myown interaction style, still not finished, need to difine the other 

#it can be used to drag and rotate one piece. 

def ButtonEvent(Self,event): 

    global Rotating, Panning, cameraRotating 

    if event == "LeftButtonPressEvent": 

        Rotating = 1 

    elif event == "LeftButtonReleaseEvent": 

        Rotating = 0 

    elif event == "MiddleButtonPressEvent": 

        Panning = 1 

    elif event == "MiddleButtonReleaseEvent": 

        Panning = 0 

    elif event == "RightButtonPressEvent": 

        cameraRotating = 1 

    elif event == "RightButtonReleaseEvent": 

        cameraRotating = 0 

    elif event == "MouseWheelForwardEvent": 

        print("forward") 

        zooming() 

    elif event == "MouseWheelBackwardEvent": 

        print("backward") 

        shrinking() 

def MouseMove(obj, event): 

    global Rotating, Panning, Zooming 

    global iren, renWin, ren 

    if Rotating: 

        Rotation()  

    elif Panning: 

        pan() 

    elif cameraRotating: 

        print(cameraRotating) 

        cameraRotation() 

def Keypress(obj, event): 

    key = obj.GetKeySym() 

    if key == "e": 

        obj.InvokeEvent("DeleteAllObjects") 

        sys.exit() 

    elif key == "w": 

        Wireframe()       

    elif key =="s": 
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        Surface() 

    elif key =="c": 

        addCube() 

     

    elif key=="d": 

        addSphere() 

 

def addCube(): 

    actor= vtk_Cube(0.5,0.5,1,r=1.0,g=0.5,b=0.5) 

    actors.append(actor) 

    actor.SetPosition(0,0,0) 

    renderer.AddActor(actor)  

    renWin.Render() 

 

 

def addSphere(): 

    actor = vtk_sphere(0.5,20,20,1.0,0.5,0) 

    actors.append(actor) 

    actor.SetPosition(0,0,0) 

    renderer.AddActor(actor) 

    renWin.Render() 

 

def Wireframe():  

    actors = renderer.GetActors() 

    actors.InitTraversal() 

    actor = actors.GetNextItem() 

    while actor: 

        actor.GetProperty().SetRepresentationToWireframe() 

        actor = actors.GetNextItem() 

    renWin.Render() 

 

def Surface(): 

    actors = renderer.GetActors() 

    actors.InitTraversal() 

    actor = actors.GetNextItem() 

    while actor: 

        actor.GetProperty().SetRepresentationToSurface() 

        actor = actors.GetNextItem() 

    renWin.Render() 

  

#collision detection function 

def vtk_ode(mat): 

    position=(mat.GetElement(0,3), mat.GetElement(1,3),mat.GetElement(2,3)) 

    rotation=(mat.GetElement(0,0), mat.GetElement(0,1),mat.GetElement(0,2),mat.GetElement(1,0), 

mat.GetElement(1,1),mat.GetElement(1,2),mat.GetElement(2,1), 

mat.GetElement(2,2),mat.GetElement(2,3)) 

    return position,rotation 

  

def ode_vtk(position,rotation): 

    rot=[rotation[0],rotation[3],rotation[6],0.0, 

         rotation[1],rotation[4],rotation[7],0.0, 

         rotation[2],rotation[5],rotation[8],0.0, 
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         position[0],position[1],position[2],1.0] 

    return rot 

  

          

def collision_detection(actorss,n,density=2000,r=0.5): 

    global Dactor,actors,lasttime 

    world=ode.World() 

    world.setGravity((0,-9.8,0)) 

    world.setERP(0.8) 

    world.setCFM(1E-8) 

    contactgroup = ode.JointGroup() 

    space=ode.Space() 

    total_time=2 

    dt=0.1 

    body=[] 

    geom=[] 

    #body.setKinematic() 

    for i in range(n): 

        body.append(ode.Body(world)) 

        mass=ode.Mass() 

        if (actorss[i].GetClassName()=="vtkAssembly"): 

            mat=actorss[i].GetMatrix() 

            vv=actorss[i].GetPosition() 

            mm=actorss[i].GetCenter() 

          

            position,rotation=vtk_ode(mat) 

             

            body[i].setPosition(position) 

            body[i].setRotation(rotation) 

            body[i].setKinematic() 

            body[i].boxsize = (size[0],size[1],size[2]) 

 

            geom2=ode.GeomCylinder(None,0.8,1.0) 

            geom1=ode.GeomCylinder(None,0.5,1.0) 

            trans=ode.GeomTransform(space) 

            trans1=ode.GeomTransform(space) 

            trans.setGeom(geom2) 

            trans1.setGeom(geom1) 

            geom2.setPosition((0,0,-0.5)) 

            geom1.setPosition((0,0,0.5)) 

            geom.append(trans) 

           

            geom[i].setBody(body[i]) 

            trans1.setBody(body[i]) 

            if Dactor==actorss[i]: 

                mass.setBox(2000,size[0],size[1],size[2]) 

                body[i].setMass(mass)    

        else:     

            algo=actorss[i].GetMapper().GetInputConnection(0,0).GetProducer() 

            cc=algo.GetClassName() 

            if (cc=="vtkSphereSource"):#if it is the pick one. We need to set mass to it 

                mat=actorss[i].GetMatrix() 
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                position,rotation=vtk_ode(mat) 

                 

                body[i].setPosition(position) 

                body[i].setRotation(rotation) 

             

                body[i].setKinematic() 

                geom1=ode.GeomSphere(space,0.5) 

                geom.append(geom1) 

                geom[i].setBody(body[i]) 

                if Dactor==actorss[i]: 

                    mass.setSphere(2000,r) 

                    body[i].setMass(mass) 

                 

            if (cc=="vtkCubeSource"): 

                mat=actorss[i].GetMatrix() 

                position,rotation=vtk_ode(mat) 

                body[i].boxsize = (0.5,0.5,1) 

                body[i].setPosition(position) 

                body[i].setRotation(rotation) 

                body[i].setKinematic() 

                geom1=ode.GeomBox(space,lengths=body[i].boxsize) 

                geom.append(geom1) 

                geom[i].setBody(body[i]) 

                if Dactor==actorss[i]: 

                     mass.setBox(2000,0.5,0.5,1) 

                     body[i].setMass(mass) 

     

            if (cc=="vtkTransformPolyDataFilter"): 

                mat=actorss[i].GetMatrix() 

                position,rotation=vtk_ode(mat) 

                body[i].setKinematic() 

                body[i].setPosition(position) 

                body[i].setRotation(rotation) 

                geom1=ode.GeomCylinder(space,0.5,1.0) 

                geom.append(geom1) 

                geom[i].setBody(body[i]) 

                if Dactor==actorss[i]: 

                    mass.setCylinder(2000,2,0.5,2.0) 

                    body[i].setMass(mass) 

 

    def near_callback(args, geom1, geom2): 

           contacts = ode.collide(geom1, geom2) 

           world,contactgroup = args 

           for c in contacts: 

                c.setBounce(1) 

                c.setMu(10000) 

                j = ode.ContactJoint(world, contactgroup, c) 

                j.attach(geom1.getBody(),geom2.getBody()) 

 

    def simloop(): 

        simstep=0.001 

        space.collide((world,contactgroup), near_callback) 
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        world.step(simstep) 

        for i in range(n): 

            x,y,z=body[i].getPosition() 

            actorss[i].SetPosition(x,y,z)#when the loop beginning,it is not possible to change the                

#model rotation if no collision happening. For ode, the body is changing the 

            renWin.Render()              #rotation happens when the world is begining.                         #The 

problem is when the rotation will be feedback rotation.  

            contactgroup.empty() 

    dt=0.005 

    while(dt<0.1): 

        simloop() 

        dt+=dt 

#my own interaction style for disassembly products  

##################################################################################

#######    

def pan(): 

    global Rotating, Panning, Zooming,n,Num,Dactor,lasttime 

    global iren, renWin, ren, Dactor, CurrentRenderer,XYpos, LastXYpos     

    XYpos=iren.GetEventPosition() 

    x= XYpos[0] 

    y= XYpos[1] 

    LastXYpos =iren.GetLastEventPosition() 

     

    CurrentRenderer = iren.FindPokedRenderer(x,y) 

    picker=vtk.vtkPropPicker()   

    picker.Pick(x, y,0,CurrentRenderer) 

    Dactor=picker.GetActor() 

    if (Dactor==None): 

        Dactor=picker.GetAssembly() 

        if(Dactor==None): 

            return 

    iren.Initialize() 

    renWin.Render() 

    def startPan(): 

        disp_obj_center =[]  

        new_pick_point =[] 

        old_pick_point =[] 

        motion_vector  =[] 

         

        global Dactor, XYpos,LastXYpos,renWin 

        obj_center=Dactor.GetCenter() 

        CurrentRenderer.SetWorldPoint(obj_center[0],obj_center[1],obj_center[2],1.0) 

        CurrentRenderer.WorldToView() 

        display=CurrentRenderer.GetViewPoint() 

        CurrentRenderer.ViewToDisplay() 

        isp_obj_center=CurrentRenderer.GetDisplayPoint() 

        CurrentRenderer.SetDisplayPoint(XYpos[0],XYpos[1],0) 

        CurrentRenderer.DisplayToView() 

        CurrentRenderer.GetViewPoint() 

        CurrentRenderer.ViewToWorld() 

        new_pick_point=CurrentRenderer.GetWorldPoint() 

        CurrentRenderer.SetDisplayPoint(LastXYpos[0],LastXYpos[1],0) 



 

 

160 

        CurrentRenderer.DisplayToView() 

        CurrentRenderer.GetViewPoint() 

        CurrentRenderer.ViewToWorld() 

        old_pick_point=CurrentRenderer.GetWorldPoint() 

          

         

        motion_vector.append(new_pick_point[0] - old_pick_point[0]) 

        motion_vector.append(new_pick_point[1] - old_pick_point[1]) 

        motion_vector.append(new_pick_point[2] - old_pick_point[2]) 

         

        if (Dactor.GetUserMatrix()!=None): 

            t=vtk.vtkTransform() 

            t.PostMultiply() 

            t.SetMatrix(Dactor.GetUserMatrix()) 

            t.Translate(motion_vector[0]*10,motion_vector[1]*10,motion_vector[2]*10) 

            Dactor.GetUserMatrix().DeepCopy(t.GetMatrix()) 

         

            print(t) 

            Dactor.AddPosition(motion_vector[0],motion_vector[1],motion_vector[2]) 

        else: 

            Dactor.AddPosition(motion_vector[0]*2,motion_vector[1]*2,motion_vector[2]*2) 

        CurrentRenderer.ResetCameraClippingRange() 

        collision_detection(actors,n=len(actors),density=2000,r=0.5) 

        renWin.Render() 

    startPan() 

 

def Rotation(): 

     

    XYpos=iren.GetEventPosition() 

    x= XYpos[0] 

    y= XYpos[1] 

    LastXYpos =iren.GetLastEventPosition() 

    CurrentRenderer = iren.FindPokedRenderer(x,y) 

    picker=vtk.vtkPropPicker()   

    picker.Pick(x, y,0,CurrentRenderer) 

    Dactor=picker.GetActor() 

    if (Dactor==None): 

        Dactor=picker.GetAssembly() 

        if(Dactor==None): 

            return 

    iren.Initialize() 

    renWin.Render() 

     

    def startRotation(): 

        cam=renderer.GetActiveCamera() 

        center=Dactor.GetCenter() 

        boundRadius=Dactor.GetLength()*0.5#half of the diagonal of the bounding box 

        cam.OrthogonalizeViewUp()#force the viewup to be perpendicular to camera->focalpoint vector 

        cam.ComputeViewPlaneNormal() 

        view_up=cam.GetViewUp()  

        c=vtk.vtkMath() 

        c.Normalize(view_up)#Unit Vectors 
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        view_look=cam.GetViewPlaneNormal() 

       

        view_right=[0.0,0.0,0.0] 

        c.Cross(view_up,view_look,view_right) 

        c.Normalize(view_right)#Unit Vectors 

  

        outsidept=[] 

        outsidept.append(center[0] + view_right[0] * boundRadius) 

        outsidept.append(center[1] + view_right[1] * boundRadius) 

        outsidept.append(center[2] + view_right[2] * boundRadius)#pas compris 

        

        CurrentRenderer.SetWorldPoint(center[0],center[1],center[2],1.0) 

        CurrentRenderer.WorldToView() 

        CurrentRenderer.GetViewPoint() 

        CurrentRenderer.ViewToDisplay() 

        disp_obj_center=CurrentRenderer.GetDisplayPoint() 

 

        CurrentRenderer.SetWorldPoint(outsidept[0],outsidept[1],outsidept[2],1.0) 

        CurrentRenderer.WorldToView() 

        CurrentRenderer.GetViewPoint() 

        CurrentRenderer.ViewToDisplay() 

        outsidept=CurrentRenderer.GetDisplayPoint() 

    

        radius=math.sqrt(c.Distance2BetweenPoints(disp_obj_center,outsidept)) 

        print(radius) 

        nxf=(x-disp_obj_center[0])/radius 

        nyf=(y-disp_obj_center[1])/radius 

        print(x,y) 

        oxf=(LastXYpos[0]-disp_obj_center[0])/radius 

        oyf=(LastXYpos[1]-disp_obj_center[1])/radius 

 

        print(LastXYpos[0], LastXYpos[1]) 

    

        cc=nxf * nxf + nyf * nyf 

        dd=oxf * oxf + oyf * oyf 

        print(dd) 

        if (((nxf * nxf + nyf * nyf) <= 1.0)and((oxf * oxf + oyf * oyf) <= 1.0)): 

             newXAngle = c.DegreesFromRadians( math.sin( nxf ) )  

             newYAngle = c.DegreesFromRadians( math.sin( nyf ) )  

             oldXAngle = c.DegreesFromRadians( math.sin( oxf ) )  

             oldYAngle = c.DegreesFromRadians( math.sin( oyf ) ) 

             scale=[1.0,1.0,1.0] 

             rotate=[[0.0,0.0,0.0,0.0,0.0], [ 0.0,0.0,0.0,0.0,0.0]] 

              

             rotate[0][0] = newXAngle - oldXAngle 

             rotate[0][1] = view_up[0] 

             rotate[0][2] = view_up[1] 

             rotate[0][3] = view_up[2] 

     

             rotate[1][0] = oldYAngle - newYAngle 

             rotate[1][1] = view_right[0] 

             rotate[1][2] = view_right[1] 
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             rotate[1][3] = view_right[2] 

             Prop3DTransform(Dactor,center,2,rotate,scale) 

        collision_detection(actors,n=len(actors),density=2000,r=0.5) 

        renWin.Render() 

    startRotation() 

     

 

def Prop3DTransform(actor,center,Num,rotate,scale): 

     

    print("good") 

     

    oldM=actor.GetMatrix() 

    orig=actor.GetOrigin() 

    newTransform=vtk.vtkTransform() 

    newTransform.PostMultiply() 

    if(actor.GetUserMatrix()!=None): 

        newTransform.SetMatrix(actor.GetUserMatrix()) 

    else: 

        newTransform.SetMatrix(oldM) 

         

    newTransform.Translate(-center[0],-center[1],-center[2]) 

     

    for i in range(Num): 

         

        newTransform.RotateWXYZ(rotate[i][0], rotate[i][1],rotate[i][2], rotate[i][3]) 

         

    newTransform.Translate(center[0],center[1], center[2]) 

    newTransform.Translate(-(orig[0]), -(orig[1]), -(orig[2]))  

    newTransform.PreMultiply()  

    newTransform.Translate(orig[0], orig[1], orig[2]) 

    if (actor.GetUserMatrix() != None): 

        newTransform.GetMatrix(actor.GetUserMatrix())  

    else:  

        actor.SetPosition(newTransform.GetPosition())  

        actor.SetScale(newTransform.GetScale())  

        actor.SetOrientation(newTransform.GetOrientation())  

    newTransform.Pop() 

     

def cameraRotation(): 

     

    XYpos=iren.GetEventPosition() 

    LastXYpos =iren.GetLastEventPosition() 

    x= XYpos[0] 

    y= XYpos[1] 

    dx=XYpos[0]-LastXYpos[0] 

    dy=XYpos[1]-LastXYpos[1] 

    CurrentRenderer = iren.FindPokedRenderer(x,y) 

    size=CurrentRenderer.GetRenderWindow().GetSize() 

    delta_elevation = -20.0 / size[1] * 10 

    delta_azimuth = -20.0 / size[0]* 10 

    rxf = dx * delta_azimuth 

    ryf = dy * delta_elevation 
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    camera =CurrentRenderer.GetActiveCamera()  

    camera.Azimuth(rxf); 

    camera.Elevation(ryf); 

    camera.OrthogonalizeViewUp() 

    CurrentRenderer.ResetCameraClippingRange() 

    renWin.Render() 

 

def zooming(): 

    XYpos=iren.GetEventPosition() 

    LastXYpos =iren.GetLastEventPosition() 

    x= XYpos[0] 

    y= XYpos[1] 

    dy=XYpos[1]-LastXYpos[1] 

    CurrentRenderer = iren.FindPokedRenderer(x,y) 

    center= CurrentRenderer.GetCenter() 

    factor=pow(1.1,1) 

    print(factor) 

    camera = CurrentRenderer.GetActiveCamera() 

    if camera.GetParallelProjection(): 

        camera.SetParallelScale(camera.GetParallelScale()/factor)     

    else: 

        camera.Dolly(factor) 

    CurrentRenderer.ResetCameraClippingRange() 

    renWin.Render() 

     

def shrinking(): 

     

    XYpos=iren.GetEventPosition() 

    LastXYpos =iren.GetLastEventPosition() 

    x= XYpos[0] 

    y= XYpos[1] 

    CurrentRenderer = iren.FindPokedRenderer(x,y) 

    center= CurrentRenderer.GetCenter() 

     

    factor=pow(1.1,-1) 

  

    camera = CurrentRenderer.GetActiveCamera() 

     

    if camera.GetParallelProjection(): 

        camera.SetParallelScale(camera.GetParallelScale()/factor)     

    else: 

        camera.Dolly(factor) 

         

    CurrentRenderer.ResetCameraClippingRange() 

    renWin.Render() 

 

  

iren.AddObserver("LeftButtonPressEvent", ButtonEvent) 

iren.AddObserver("LeftButtonReleaseEvent", ButtonEvent) 

iren.AddObserver("MiddleButtonPressEvent", ButtonEvent) 

iren.AddObserver("MiddleButtonReleaseEvent", ButtonEvent) 

iren.AddObserver("RightButtonPressEvent", ButtonEvent) 
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iren.AddObserver("RightButtonReleaseEvent", ButtonEvent) 

iren.AddObserver("MouseWheelForwardEvent", ButtonEvent) 

iren.AddObserver("MouseWheelBackwardEvent", ButtonEvent) 

iren.AddObserver("MouseMoveEvent", MouseMove) 

iren.AddObserver("KeyPressEvent", Keypress) 

  

iren.Initialize() 

renWin.Render() 

iren.Start() 
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Summary: 
Integration of disassembly operations during product design is an important issue today. It is estimated that at the 
earliest stages of product design, the cost of disassembly operations almost represents 30 % of its total cost. Nowadays, 
disassembly operation simulation of industrial products finds a strong interest in interactive simulations through 
immersive and real-time schemes. In this context, in the first place, this thesis presents a method for generating the 
feasible disassembly sequences for selective disassembly. The method is based on the lowest levels of a disassembly 
product graph. Instead of considering the geometric constraints for each pair of components, the proposed method 
considers the geometric contact and collision relationships among the components in order to generate the so-called 
Disassembly Geometry Contacting Graph (DGCG). The latter is then used for disassembly sequence generation thus 
allowing the number of possible sequences to be reduced by ignoring any components which are unrelated to the target. 
A simulation framework was developed integrated in a Virtual reality environment thus allowing generating the 
minimum number of possible disassembly sequences. Secondly, a method for disassembly operation evaluation by 3D 
geometric removability analysis in a Virtual environment is proposed. It is based on seven new criteria which are: 
visibility of a part, disassembly angles, number of tools’ changes, path orientation changing, sub-assembly stability, 
neck score and bending score. All criteria are presented by dimensionless coefficients automatically calculated, thus 
allowing evaluating disassembly sequences complexity. For this purpose, a mixed virtual reality disassembly 
environment (VRDE) is developed based on Python programming language, utilizing VTK (Visualization Toolkit) and 
ODE (Open Dynamics Engine) libraries. The framework is based on STEP, WRL and STL exchange formats.  The 
analysis results and findings demonstrate the feasibility of the proposed approach thus providing significant assistance 
for the evaluation of disassembly sequences during Product Development Process (PDP). Further consequences of the 
present work consist in ranking the criteria according to their importance. For this purpose, moderation coefficients 
may be allocated to each of them thus allowing a more comprehensive evaluating method. 
 
Key words: disassembly sequences, disassembly product graph, geometric analysis, removability analysis, virtual 
reality. 
 

 

 

 

Résumé: 
De nos jours, l'intégration des opérations de désassemblage lors de la conception des produits est un enjeu crucial. On 
estime que dans la phase initiale de la conception d’un produit, le coût des opérations de désassemblage représente  
environ 30% de son coût total. Ainsi, la simulation des opérations de désassemblage de produits industriels trouve un 
fort intérêt pour des simulations interactives grâce à des programmes d'immersion et en temps réel. Dans ce contexte, 
dans un premier temps, cette thèse présente une méthode de génération  des séquences de désassemblage possibles 
pour le désassemblage sélectif. La méthode est basée sur les niveaux les plus bas du graphe de désassemblage des 
produits. Au lieu de considérer les contraintes géométriques pour chaque paire de composants, la méthode proposée 
tient compte des contacts (relations géométriques entre les composants) et des collisions afin de générer le Graphe 
Géométrique de Contacts et de Désassemblage (DGCG). Celui-ci est ensuite utilisé pour la génération des séquences 
de désassemblage permettant ainsi de réduite le nombre de séquences possibles en ignorant les composants non liés 
avec la cible. Une application de simulation a été développée, intégrée dans un environnement de réalité virtuelle (RV) 
permettant ainsi la génération du nombre minimum de séquences possibles de désassemblage. 
Dans un second temps, une méthode d'évaluation des opérations de désassemblage par analyse géométrique 3D de 
l'amovibilité dans un environnement RV est proposée. Elle est basée sur sept nouveaux critères qui sont: la visibilité 
d'une pièce, les angles de désassemblage, le nombre des changements d’outils, le changement d'orientation des 
trajectoires, la stabilité des sous-ensembles, les angles de rotation du cou et flexion du corps. Tous ces critères sont 
présentés par des coefficients sans dimension calculés automatiquement par l’application développée, permettant ainsi 
d'évaluer la complexité des séquences de désassemblage. A cet effet, un environnement mixte de réalité virtuelle pour 
le désassemblage (VRDE) est développé, basé sur le langage de programmation Python, en utilisant deux 
bibliothèques : VTK (Visualisation Toolkit) et ODE (Open Dynamics Engine), les formats d’échange étant fichiers: 
STEP, WRL et STL. L'analyse des résultats obtenus démontrent la fiabilité de l'approche proposée fournissant ainsi 
une aide non négligeable pour l'évaluation des séquences de désassemblage lors de processus de développement de 
produits (PDP). Les autres conséquences de ce travail consistent à classer les critères en fonction de leur importance. 
A cet effet, des coefficients de modération peuvent être attribués à chacun d'eux permettant ainsi une méthode 
d'évaluation plus complète. 
 
Mots-clés: séquences de désassemblage, graphe de désassemblage, analyse géométrique, analyse d’amovibilité, réalité 
virtuelle. 


