

Université Joseph Fourier / Université Pierre Mendès France /
Université Stendhal / Université de Savoie / Grenoble INP

THÈSE

Pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ DE GRENOBLE

Spécialité : Génie Industriel

Arrêté ministériel : 7 août 2006

Présentée par

Chenggang WANG

Thèse dirigée par Peter MITROUCHEV

Préparée au sein du Laboratoire G-SCOP
Dans l’Ecole doctorale I-MEP2 - Grenoble INP

Génération des séquences de
désassemblage et leur
évaluation. Intégration dans un
environnement de réalité
virtuelle

Thèse soutenue publiquement le 06.11.2014
devant le jury composé de :

M. Marc SARTOR
Professeur INSA Toulouse, Président
M. Georges DUMONT
Professeur ENS de Rennes, Rapporteur
M. Grigore GOGU
Professeur IFMA Clermont-Ferrand, Rapporteur
M. Michel TOLLENAERE
Professeur Grenoble INP, Membre
M. Lixin LU
Professeur Université de Shanghai, Co-directeur de thèse
M. Peter MITROUCHEV
MCF-HC, Université de Grenoble, Directeur de thèse

Dedication

To my parents,

my wife and my newborn daughter

Acknowledgment

Foremost, I would like to thank my advisor Dr. Peter Mitrouchev for the continuous support
of my PhD study and research, for his patience, motivation, enthusiasm and immense
knowledge. I would like to express my sincere gratitude to Grenoble INP for letting me fulfill
my dream of being a PHD student here. I would like to thanks the staff of G-SCOP
Laboratory for their good reception.

I wish to thank all members of the jury for the attention they have kindly given to this work:
Prof. SARTOR Marc for doing me honors to chair this jury, Prof. DUMONT Georges and
Prof. GOGU Grigore for accepting the burden to be Reviewers and Prof. TOLLENAERE
Michel for allowing me the honor to consider it. They find here my gratitude for having taken
some of their time to read this brief and give constructive criticism.

My sincere thanks also goes to Prof. Frédéric NOEL from Grenoble INP and his Visionair
team, for supporting me with the device for simulation, the valuable advice for the
development of the application, the software, and also for supporting the two international
conferences fees.

I would like to thank Dr. Guiqin LI, from Shanghai University, who provide an opportunity
for study here. Many thanks give to Prof. Lixin LU, from Shanghai University, who is always
willing to help when I need to.

I would like to thank the French Ministry of High Education for awarding me a scholarship
and providing me with the facilities to complete this thesis.

I would like to thank all the PHD students of GSCOP Laboratory for the exchanges of ideas
and advices during the last three years.

iii

List of the figures

Figure 1.1 An example of AND /OR graph .. 13

Figure 1.2 Disassembly precedence graph [Joh 98]. ... 15

Figure 1.3 Extended process graph [Kan 01] .. 16

Figure 1.4 Extended process graph [Kan 01]. ... 17

Figure 1.5 Example of assembly represented in tree-dimensional space [Got 03] 18

Figure 1.6 Example of assembly [Smi 12] .. 21

Figure 1.7 Illustration of the wave .. 22

Figure 1.8 Assembly and its corresponding precedence graph [Gar 04] ... 24

Figure 1.9 Disassembly Petri net (DNP) for sample product [Moo 01]. ... 25

Figure 2.1 Applications of a virtual assembly/disassembly simulation [Set 11] 34

Figure 2.2 CAD-based assembly in Virtual environment [Jun 03]. .. 35

Figure 2.3 VADE environment [Jay 06]. .. 37

Figure 2.4 Data glove in a six-sided CAVE. [Gar 07] .. 38

Figure 2.5 Jack ergonomic analysis tool [Jay 06]. .. 40

Figure 2.6 RULA Sheet [McA 93] .. 41

Figure 2.7 Assembly simulation using haptic device [Lad 10]. .. 43

Figure 2.8 The mean number of collisions by condition and force feedback effect [Edw 04] 44

Figure 3.1 SDR using Gaussian sphere based method. ... 52

Figure 3.2 Disassembly directionality [Mo 02] ... 54

Figure 3.3 Approximation of the shape of a screw to a polyhedron [Pom 04]. 55

Figure 3.4 Typical constraint directions .. 56

Figure 3.5 An assembly’s draft ... 56

Figure 3.6 Swept volumes for two components. ... 58

Figure 3.7 Set of directions of removal (SDR) and Collision Detection ... 59

Figure 3.8 A general case of DGCG. ... 60

Figure 3.9 Set of direction for removal (SDR) of fasteners. ... 61

Figure 3.10 Flow chart for DGCG generating ... 62

Figure 3.11 Three types of Micro units for DGCG building. .. 64

Figure 3.12 Examples for micro-units. ... 65

Figure 3.13 Flow Chart for Disassembly sequences generation ... 68

Figure 3.14 An example of electrical motor with sixteen components ... 69

Figure 3.15 Five degree of freedom robot arm with eighteen components ... 70

Figure 3.16 DGCG for Cover 5 of the electrical Motor. ... 70

Figure 3.17 DGCG for Motors 5 and 13 of the five degrees of freedom robot arm. 71

Figure 3.18 Disassembly order graph for component Cover 5 (see Fig. 3.14). 72

Figure 3.19 Possible Disassembly Sequences for Cover 5. ... 72

Figure 3.20 Disassembly order graph for component 5(a) and its reduced graph (b). 73

Figure 3.21 . Disassembly order graph for component 13 a). and its associate reduced graph b). 74

iv

Figure 3.22 Possible disassembly sequences for Motors 5 and 13. ... 75

Figure 4.1 Left-Handed coordinate systems. .. 78

Figure 4.2 Transformation pipeline overview ... 80

Figure 4.3 Rotation in the unit radius cycle .. 82

Figure 4.4 Rotations and translations. ... 83

Figure 4.5 Coordinate transformations .. 84

Figure 4.6 Camera space ... 85

Figure 4.7 Projection plan and window ... 86

Figure 4.8 Depth testing. ... 88

Figure 4.9 Pipeline for VTK library. ... 90

Figure 4.10 VTK examples ... 91

Figure 4.11 ODE’s special purpose joints. Different constraint types. .. 93

Figure 4.12 Relationships between VTK and ODE .. 94

Figure 4.13 Flow Chart for Disassembly collision detection. .. 94

Figure 4.14 Flow Chart for Disassembly collision detection. .. 96

Figure 4.15 Stereo Rendering. .. 97

Figure 4.16 Virtual platform Interface .. 98

Figure 5.1 Four geometrical parameters related with the human operation. 103

Figure 5.2 Camera as the eyes of the operator. .. 104

Figure 5.3 Visibility for a bolt. ... 105

Figure 5.4 Calculation of the visibility score (red highlighted areas). .. 105

Figure 5.5 Pixel calculation for target components. .. 107

Figure 5.6 Neck part from RULA sheet [McA 93]. .. 107

Figure 5.7 Neck lateral rotation. .. 108

Figure 5.8 Bend over reference from RULA sheet [McA 93]. .. 109

Figure 5.9 Ergonomic angles and Camera position relationship. .. 109

Figure 5.10 Disassembly operation case study. ... 111

Figure 5.11 Original positions of the camera and the targets. ... 112

Figure 5.12 Surface representation of the disassembly angle. .. 115

Figure 5.13 Path orientation changing... 116

Figure 5.14 Assembly view in virtual reality environment ... 117

Figure 5.15 Trajectories for components 3 and 4 (unstable state) and the removing part 5 (causing this
instability). ... 119

Figure 5.16 Components’ 3, 4 and 5 disassembly paths for the possible disassembly sequences. 121

v

List of the tables

Table 1.1 Function C and T for the assembly shown in Fig.1.5 (b) [Got 03] 19

Table 2.1 Key features of some virtual assembly platforms [Ger 13]. .. 39

Table 3.1 Pseudo code of disassembly geometry contacting graph building .. 63

Table 3.2 Three micro-unit pseudo codes ... 66

Table 3.3 Pseudo code for sequences generation. ... 69

Table 5.1 Overall score for screws disassembly operation ... 113

Table 5.2 Criteria scores for each sequence .. 122

Table 5.3 Duration time for each sequence ... 122

vi

List of the articles and the communications

I. Related with the PHD thesis

International Journals:

1. Chenggang Wang, Peter Mitrouchev, Guiqin LI. Disassembly operations’ efficiency
evaluation in virtual environment, International Journal of Computer Integrated
Manufacturing (under press).

2 Chenggang Wang, Peter Mitrouchev, Guiqin LI. Sequences planning for products
disassembly based on lowest levels disassembly graph method. International journal of
advanced manufacturing technology (22 pages, under review).

International Conferences:

1. Chenggang Wang, Peter Mitrcouchev. 3D Geometric Removability Analysis for Virtual
Disassembly Evaluation. AIM 2014, IEEE/ASME International Conference on Advanced
Intelligent Mechatronics. July 8-11, 2014 Besançon, France. 6 pages (CD-ROM, paper
N°DETC2014-34943).

2. Chenggang Wang, Peter Mitrouchev. Least Levels disassembly graph method for selective
disassembly planning. Proceedings of ASME 2014 International Design and Engineering
Technical Conferences& Computers and Information in Engineering Conference. IDETC/CIE
2014 August 17-20, 2014 in Buffalo, NY, USA. 10 pages (CD-ROM, paper N°#264).

II. Others

International Journals:

1. Zhang S., Li G., Lu L., Mitrouchev P., Wang C.-G. Numerical Analysis of Multi-layer
Continuous Diffusion Furnace Door Gas Curtain. Applied Mechanics and Materials Vol. 367
(2013). pp 462-465.

2. Li Qui-qin, Mitrouchev P., Wang C.-G., Brissaud D., Lu L. Evaluation of the logistics
model of Reconfigurable Manufacturing System based on Generalized Stochastic Petri Nets.
International Journal of Production Research, Volume 50, Issue 22, 2012, (TPRS-2011-IJPR-
0529), Ed. Taylor & Francis, ISSN 0020–7543 print/ISSN 1366–588X online.

National Journals:

1. Wang Cheng-gang, LI Gui-qin, Lu Li-in, Wang Yan. Uniform airflow Research on Plasma
Enhanced Chemical Vapor Deposition [J]. Computer simulation. ISSN 1006-9348/CN11-
3724/TP.

2. Jin Jie, Zhu Hongping, Wang Chenggang. Airflow field simulation analysis of PEVCD gas
distribution device. Modern Manufacturing Engineering. 12(2), 2012.

3. LI Gui-qin, LU Li-in, Wang Cheng-gang. Numerical simulation of the flow field in
PECVD reaction chamber, Vacuum, 49(3), 2012.

Table of contents

Dedication ... i

Acknowledgments .. ii

List of the figures .. iii

List of the tables ... v

List of the articles and the communications .. vi

General introduction ... 1

Chapter 1 Disassembly sequences generation methods ... 7

1.1 Introduction ... 8

1.2 Generality about disassembly .. 8

1.2.1 The purposes of disassembly .. 8

1.2.2 Methods for disassembly .. 9

1.2.3 The disassembly character involved in the thesis .. 11

1.3 Representative disassembly methods .. 11

1.3.1 Interactive methods .. 12

1.3.2 Automatic methods .. 13

1.4 Searching algorithms ... 21

1.4.1 Heuristic searching ... 22

1.4.2 Wave propagation approach ... 22

1.4.3 Dijklstra’s algorithm with heap-based priority queues [Gar 04] 23

1.4.4 Artificial Intelligence (AI) methods ... 24

1.5 Assessment .. 28

1.6 Summary synthesis and critical analysis ... 29

1.7 Objectives of the thesis .. 30

1.8 Conclusion ... 30

Chapter 2 Virtual reality for assembly/disassembly operation simulation............................... 32

2.1 Introduction ... 33

2.2 VR integration approaches overview .. 33

2.2.1 The constrain-based .. 35

2.2.2 Physics-based system ... 37

2.3 Virtual assembly platforms .. 39

2.4 Ergonomics analysis in VR system ... 39

2.5 Haptic interaction and force feed back .. 42

2.6 Critical analysis and assessment .. 45

2.7 Proposed VR environment for Disassembly simulation .. 47

2.8 Conclusion ... 48

Chapter 3 Method for disassembly sequences generation.. 49

3.1 Introduction ... 50

3.2 Relative concepts and definitions .. 51

3.2.1 Contact identification ... 51

3.2.2 Set of directions for removal (SDR) .. 51

3.2.3 Approximation of the shape ... 55

3.2.4 Geometric feasibility .. 56

3.2.5 Collision detection .. 57

3.3 Disassembly Geometry Contacting Graph definition .. 59

3.3.1 3.3.1 Disassembly Geometry Contacting Graph (DGCG) 59

3.3.2 Three Micro-units ... 63

3.4 Cases studies .. 69

3.4.1 Building the Disassembly Geometry Contacting Graph (DGCG) 70

3.4.2 Sequences generation for one target of electrical motor 71

3.4.3 Sequences generation for two targets of robot arm .. 72

3.4.4 Summary .. 75

3.5 Conclusion ... 76

Chapter 4 Virtual Reality Environment for disassembly simulation: sequences generation and
evaluation ... 77

4.1 Introduction ... 78

4.2 3D graphics pipeline in general ... 78

4.2.1 Right-Handed and Left-Handed coordinate systems ... 78

4.2.2 Coordinate systems in 3D scene ... 79

4.2.3 Model or World transformation ... 80

4.2.4 View transformation ... 84

4.2.5 Projection ... 86

4.2.6 Viewport Transformation ... 89

4.3 Visualization Toolkit ... 89

4.3.1 Pipeline for VTK .. 90

4.4 Collision Detection Based On VTK and ODE .. 92

4.4.1 Open Dynamics Engine (ODE) .. 92

4.4.2 VTK actors connection with ODE models ... 93

4.4.3 Stereo Rendering .. 95

4.4.4 Force feedback and Virtuose 6D35- 45 .. 97

4.4.5 The whole VRDE environment .. 98

4.5 Conclusion ... 99

5.1 Introduction ... 101

5.2 Method for disassembly operations evaluation ... 102

5.2.1 Ergonomic Auto Evaluation method .. 102

5.2.2 Traditional processing evaluation method ... 113

5.3 Implementation and results .. 116

5.3.1 Simulation process ... 117

5.3.2 Results .. 119

5.4 Conclusion ... 123

General conclusions ... 124

Assessment and Prospects .. 126

References .. 128

Appendix A .. 137

1

General introduction

A few decades ago, the products were designed mainly to answer the customer requirements and

the possibilities of the manufacturers without taking into account the environmental aspects and

those of recycling during the design process. However, with the implementation of new European

and International standards and recommendations of environmental legislation, the problem of

dismantling and thereafter of products recycling is increasingly important. The economical and

environmental consequences of products disassembling and re-using at the end of their life cycle

are also to be taken into account. Thus, today's designers need new tools allowing them in

particular generating and evaluating disassembly operations.

Preservation of the environment and the planet’s resources is currently being a great concern.

Awareness of the heavy environmental impact of production has led to a new field of research

concerning the recycling of the End–Of–Life (EOL) products. Two main methods are used in this

field: shredding and disassembly. Shredding is a quick way of recycling materials but its main

drawback is the impurity of the recovered (produced) material. Thus, in order to decrease the

material's impurity and to reclaim higher value components, effective methods of dissembling the

products appear very important. Nowadays and in a near future, the demand for high productivity

and increasing labor cost are pushing designers to improve the effectiveness of disassembly

processes.

From the disassembly point of view, there are two main types of disassembly methods. One is

complete disassembly which involves disassembling of all the components of an assembly.

However, it is rarely the optimal solution due to the high costs of the disassembly process.

Alternatively, selective disassembly is usually more appropriate for manufacturing applications,

such as: maintenance, repairing or recycling. Currently, there are two types of disassembly

environments for generating the disassembly sequences: interactive and automated. However, both

of them have some limitations. Interactive environments, for instance, require extensive user input

usually in the form of answering questions, whereas automated ones can only be used to generate

disassembly processes for products with relatively simple component configuration and geometry

because of the tremendous amount of computation resources required. The mostly used methods

for disassembly sequence generation are heuristic searching algorithms, linear programming,

wave propagation.

Recently new Artificial Intelligence (AI) based methods such as: Expert Systems, Petris Nets,

2

Genetic Algorithms are proposed as well. Almost all these methods are used in special situations or

need computation resources for complex products. Thus we need a general and complete model,

able to describe the allowed movements for components during the simulations of disassembly

operations of interactive, real-time or immersive types.

Often, after generating the possible disassembly sequences, it is necessary to evaluate them.

Virtual prototyping is quickly becoming an interesting strategy for the product development and

Assembly/Disassembly (A/D) operations evaluation in recent years. Almost in all fields related to

the product development process (PDP), virtual simulation using virtual representation models of

the products are created in a virtual environment (VE). Thus, virtual prototyping (VP) is quickly

becoming a strategy in the PDP. It allows understanding the application of virtual reality (VR) for

the prototyping physical mock-up by using product and process data. Simulations closely related

with VR environments represent important research subject. A major role is played by

assembly/disassembly (A/D) operations in the initial stages of the product design, such as:

production, ergonomics, training, health, service or recycling stages. VR technology plays a vital

role in simulating such advanced 3D human-computer interaction by providing users with different

kinds of sensations such as: visual, auditory, haptic. Virtual assembly simulations allow designers

to evaluate the concepts in virtual environments during the early design stage. With virtual

prototyping applications, optimizing the design for assembly process can be incorporated easily in

the conceptual design stage. Using haptics or auditory technology allows designers to interact with

the parts with the human basic motions. Thus, contact force for instance may be transmitted to the

operator in real time.

In recent years Ergonomic assessment of manufacturing industry in VR system is becoming

increasingly globalized as well. The purpose of the Ergonomic assessment is to try to fit the task to

the human and not the human to the task. The key point for an effective application is to gain a

balance between the human body characters and the task demands.

Research problematic

As mentioned here above, integration of disassembly operations during product design is an

important issue today. As known, the number of possible disassembly sequences significantly

increases with the number of parts in a product. Thus, the generation of proper disassembly

sequences order is critical. Most of existing methods often require tremendous computational

resources while, at the same time, they often fail to find realistic and optimal solutions for complex

products disassembly.

Disassembly operations cover a broad range of the Product Life Cycle (PLC) regarding operations

of disassembly during: production process, product maintenance and finally at the end of PLC. It is

3

estimated that at the earliest stages of product design, the cost of these operations almost represents

30% of its total cost. Modelling these operations requires a lot of geometrical, kinematical,

technological and ergonomical data and their synthesis in order to reduce the algorithmic

complexity of the disassembly simulation process. Nowadays, disassembly operation simulation of

industrial products finds a strong interest in interactive simulations through immersive and real-

time schemes.

However, the available disassembly evaluation methods today seldom make disassembly as the

preferred end-of-life solution for the reuse of parts or components in an economically sustainable

way for lower value products. In virtual environment, for instance, a human model is often

involved in a digital mock-up (DMU) model for assembly/disassembly evaluation. However, it has

limited application areas because of its high cost investment.

In this context, to meet some problems, a part of which were evoked here above, we define the

objective of our research as follows: "The research aims to define novel and efficient methods,

models and tools allowing designers and industrials to take into account the constraints of

disassembly operations during the initial stage of product design and/or to automatically generate

the selective disassembly sequences and their evaluation as well”.

Disassembly operations covering a broad range of the PLC*, our research is particularly attached

to answer the following questions:

- How to define and formalize the disassembly of a product?

- What are the product characteristics which affect its desassembility?

- How to obtain the minimum number of possible disassembly sequences in the case of

selective disassembling?

- How to evaluate them in ergonomical and technological point view?

- Which kind of criteria should we propose for this purpose?

- How Virtual Reality may help in this way?

Research contribution

In this context our research attempts to develop new comprehensive methodology and tools

enabling to establish a simplified model for the generation of disassembly sequences and their

evaluation in a VR environment. Our objectives are not only to reduce the complexity of

disassembly sequences generation model, but also to evaluate the disassembly sequences in virtual

* Product Life Cycle

4

reality environment (VRE) via automatic ergonomic evaluation.

In the first place, the aim of this thesis is to develop a new method for generating selective

disassembly sequences. When disassembling, it is important to eliminate the components which

are unrelated to the target components prior to sequence generation. In order to address this

configuration, this thesis presents a method for generating the feasible disassembly sequences for

selective disassembly. The method is based on the lowest levels of a disassembly product graph.

Instead of considering the geometric constraints for each pair of components, the proposed method

considers the geometric contact and collision relationships among the components in order to

generate the so called Disassembly Geometry Contacting Graph (DGCG). This graph is used for

disassembly sequence generation thus allowing the number of possible disassembly sequences to

be reduced by ignoring any components which are unrelated to the target. The method is applied

for automatic generation of selective disassembly sequences for mechanisms with different degrees

of complexity. The disassembly simulations can be performed either from an automated or

interactive point of view using standard computer equipment or through immersive and real-time

simulation schemes. In order to address this diversity of configurations, a simulation framework

was developed integrated in a Virtual reality environment thus allowing generating the minimum

number of possible disassembly sequences.

As previously said, the available disassembly evaluation methods today seldom make disassembly

as the preferred end-of-life solution for the reuse of parts or components in an economically

sustainable way. In recent years Virtual Reality interface has been wildly used to simulate various

processes and in particular assembly/disassembly operations during the initial stage of product

design. Thus, in the second time, a method for disassembly operation evaluation by 3D geometric

removability analysis in a Virtual environment is proposed. It is based on seven new criteria which

are: visibility of a part, disassembly angles, number of tools’ changes, path orientation changing,

sub-assembly stability, neck score and bending score. All the criteria are presented by

dimensionless coefficients automatically calculated thus allowing evaluating disassembly

sequences complexity. For this purpose, a mixed virtual reality disassembly environment (VRDE)

is developed based on Python programming language, utilizing VTK (Visualization Toolkit) and

ODE (Open Dynamics Engine) libraries. The framework is based on STEP, WRL and STL

exchange formats. The analysis results and findings demonstrated the feasibility of the proposed

approach thus providing significant assistance for the evaluation of disassembly sequences during

Product Development Process (PDP).

Thus, this manuscript concerns:

 • The development of a new method for generating selective disassembly sequences

5

capable of minimizing their number, as previously mentioned. Building the DGCG is based

on a procedure consisting in: Contact identification, Set of directions of removal (SDR) and

Collision detection. For this purpose three cases called micro units, which consider all the

possible situations of relationships among the components in the DGCG, are proposed

namely: Transition from No SDR (NS) to Collision (C); Transition from Collision (C) to

Collision (C) and Transition from no SDR (NS) to no SDR (NS)

• The development of a demonstrator, to generate the possible disassembly sequences in the

case of selective disassembly and their evaluation as well.

• Integration into the product development process (PDP) by: identifying contacts, Set of

directions of removal and collisions detection; using different types of subsequent

simulations based on the requirements imposed by a PDP.

Application area(s) of this research

Two major aspects are addressed here:

- Concerning the generation of selective disassembly sequences, the results of this study

may be useful for designers and industrials, allowing them to take into account of the constraints of

disassembly operations during the initial stage of product design and/or to automatically generate

the selective disassembly sequences, which cover a broad range of PLC.

- Concerning the efficiency evaluation of disassembly sequences, the thesis provides a new

way to assess the difficulty of disassembly sequences in VR environment instead. The resulting

score values of the proposed criteria are a decision taking aid for designers to assess disassembly

sequences efficiency evaluation for a product.

The scientific repercussions of this work relates in particular to disassembly operation modeling

and its integration with the PDP in the sector of manufacturing industry. From an industrial point

of view, it is a question to bring brief replies to the current industrial needs (Renault, EADS,..)

concerning the modeling and the simulation for disassembly operations and their evaluation.

Structure of the memory

The manuscript, retracing our three years of research activities, consists of five chapters.

In Chapter 1, the state of art concerning the context of disassembly sequencing is presented. Some

relevant methods, models and searching algorithm are discussed and analyzed. A critical

assessment concludes this chapter evoking the need for new models and corresponding

developments.

6

The context and previous work of Assembly/Disassembly operation simulations in virtual reality

systems are introduced in Chapter 2. Relevant usual systems, devices, analysis methods and

challenges related with VR technique are presented, followed by a critical analysis and assessment.

In Chapter 3, a new method for selective disassembly sequences generation, based on the least

levels of disassembly product graph, is proposed. Instead of considering the geometric constrains

for each pair of components, the proposed method considers the geometric contact and collision

relationships among the components in order to generate the disassembly geometry contacting

graph (DGCG) for disassembly sequences generating.

The key technologies and devices of the created virtual environment for disassembly sequences

generation are detailed in Chapter 4. A virtual reality disassembly environment (VRDE) is

presented based on Python programming language, utilizing mixed VTK (Visualization Toolkit)

and ODE (Open Dynamics Engine) libraries.

In chapter 5, a new method for disassembly evaluation by 3D geometric removability analysis in

VR environment is proposed. It introduces some new parameters such as: visibility of a part,

disassembly angles, number of tools’ changes, path orientation changing, sub-assembly stability,

neck score and bending score, thus allowing performing and evaluating disassembling task in a VR

environment.

This PHD thesis work was realised in Information system design Robust Products (ISDRP) team

of G-SCOP Laboratory under the co-direction of Dr. Peter MITROUCHEV associate professor at

University of Grenoble, France and prof. Lixin LU from the Department of Mechanical

Manufacturing & Automation, Shanghai University, China. The experimental part, tests and

simulations were conducted in Gi-Nova Plateforme Technoligique, Systèmes de Production, AIP-

PRIMECA, Dauphiné-Savoie, Grenoble, France.

Acknowledgment: The research leading to these results has received funding from the

European Community's Research Infrastructure Action - grant agreement VISIONAIR 262044 -

under FP7/2007.-2013 (http://www.infra-visionair.eu/)

7

1. Chapter 1

Disassembly sequences generation methods

This chapter analyzes the results and remaining problems of existing research in the field of

disassembly sequencing modeling. Detailed classification is done in the beginning of this

chapter. Then, different methods such as: interactive and automatic are introduced.

Automatic methods seems being the ideal for the sequences generation, some related

algorithms based on Artificial Intelligence (AI) methods are also presented. These analyses

highlight the need of appropriate method for reducing the complexity for product sequences

calculation.

8

1.1 Introduction

Disassembly processes are studied for a number of reasons as they cover a broad range of the

Product Life Cycle (PLC) regarding operations of disassembly during: production process,

product maintenance and finally at the end of product life cycle. Disassembly may be defined

as: a systematic method for separating a product into its constituent parts, components and

subassemblies [Gun 01].

Disassembly sequencing involves searching all the possibilities to disassemble a product and

often the selection of the optimal solution out of these. For the company, the improvement of

the recyclability performance of the products is becoming an integral part of their product

development process (PDP). Let us note that there are two revolutionary key concepts related

with the disassembly applications. The first one is the responsibility of the manufactures for

the whole life of a product integrating assembly and disassembly in the same time. The other

one is that disassembly is based on the concept of “selling use” instead of selling products.

As mentioned in the general introduction, completed disassembly is not the preferred method,

therefore, this thesis focus on the selective disassembly instead. Thus, in the next of this

chapter, the detail survey of the presently available literature on the disassembly is presented

involving existing methods, models, algorithms and tools.

1.2 Generality about disassembly

In the very beginning, the problem for generating disassembly sequences has been addressed

by engineers, while aiming at the investigation of assembly process. In that time, the

disassembly is assumed as the reverse of assembly. In fact, disassembly being the process of

separating components can be classified according to the purposes of disassembly and the

way for performing of such disassembly. Consequently, it is not completely the reverse of the

assembly.

1.2.1 The purposes of disassembly

According to the life-cycle scenario of the product, the needs for disassembly include

different stages such as: maintenance, repairing, remanufacturing, recycling and disposal. As

mentioned in the General introduction, within the disassembly sequences, it is possible to

distinguish between complete disassembly and selective disassembly. Complete disassembly

involves disassembling all the components of a complex object. It has been mainly studied as

a solution to assembly planning, since the reverse of a disassembly sequence is, in fact, an

9

assembly sequence according to Gottipolu et al. [Got 03]. A complete disassembly is rarely

the optimal solution owing to the high costs of the disassembly [San 02].

Selective disassembly, which requires only a portion of an assembly with high value to be

disassembled, suggests that the most economical assembly sequences is not the most

economical disassembly sequences [Sri 99a]. Therefore, the differences between assembly

and disassembly analysis make a separate study of product disassembly important. Selective

disassembly is usually more appropriate for demanufacturing application, such as

maintenance, repairing or recycling.

1.2.2 Methods for disassembly

 Prior to present the new method for selective disassembly (Chapter 3) some different types of

disassembly methods are presented here below.

 From a disassembly view point, there are two main types of disassembly methods.

- “destructive disassembly”, in which a component is removed from the product

previously disassembled, by destroying or damaging some other components of the product.

- “no-destructive disassembly”, in which each one of the components can be removed

without affection any of the others [Pom 04].

From the purpose of the disassembly and according to the end life-cycle scenario of the

product, the no-destructive disassembly is more useful in some processes such as:

maintenance, repairing, remanufacturing, recycling and disposal.

The “no-destructive disassembly” method can be sub-classified also such as:

- direct and indirect disassembly,

- sequential and parallel disassembly,

- monotonic and non-monotonic disassembly.

Direct and indirect disassemblies are based essentially on the number of components that have

to be removed in order to reach the target component. If the target components can be

removed without removing other components, it is the direct disassembly. Otherwise it is

indirect one.

Sequential disassembly is based on the number of components that are disassembled at a time

[Kan 01]. For example, if each time only one component can be disassembled it is called as

the sequential disassembly. Otherwise it is parallel disassembly, which means that in the sub-

assembly, the components can be disassembled in a single group instead.

10

Monotonic disassembly depends upon whether it requires moving out the total of the

component from the assembly. For example, if in a room, we can take out a bed through

opening the door or disassembling the door. If it needs to disassemble the door, we call it as

monotonic disassembly. Instead, if it is just necessary to open the door, but the components

are not disassembled completely from the assembly, we call it as non-monotonic disassembly.

As previously said (Section 1.2.1), that there are two kinds of disassembly planning which are:

- complete disassembly

- selective disassembly.

Complete disassembly involves disassembling of all the components of an assembly, but it is

rarely the optimal solution owing to the high costs of the disassembly. Alternatively, selective

disassembly is usually more appropriate for manufacturing applications, such as maintenance,

repairing or recycling.

Concerning the depth of disassembling, there are:

- total disassembly,

- partial disassembly (selective / targeted).

Concerning the nature of disassembly:

- linear disassembly,

- parallel disassembly.

Other classification defines the methods for generation of disassembly sequences in:

Exact methods, which are:

- Analysis of modularity [Kuo 00a, Kuo 01],

- Branch and bound [Gun 01, Zha 10],

- Wave propagation [Sri 98, Sri 00, Mas 03, San 02],

Approximate methods, which are:

- heuristics, [Kuo 00b]

- metaheuristics :

o Genetic algorithm [Sri 98, Kon 06a, Giu 07, Tse 09],

o Ant colonies [Wan 03, Tri 09],

Methods based on the feedback:

11

- Case-based reasoning [Zei 97],

- Reasoning Knowledge Base [Vee 02],

- Learning technique [Ale 11].

1.2.3 The disassembly character involved in the thesis

In this thesis, considering disassembly as an aim in itself we would like to highlight its

distinction from assembly. There are essential differences that have to be pointed out here.

First, selective disassembly is often preferred as the research target in the disassembly field as

stated by Lambert in [Lam 03], because not all the assembly process can be reversible.

Therefore, the selective disassembly will be our research target. Second, the destructive

disassembly is not our concern, even though; it may be useful for some valuable component

recycling. Third, monotonic disassembly is not related within our work.

1.3 Representative disassembly methods

Let note, that disassembly sequencing is listings of subsequent disassemble actions, which

involves the search for all possible disassembly sequences. There exists extensive research on

disassembly sequences analysis and the disassembly sequence optimization. For the

sequences generation, researchers have suggested several approaches to determine the

disassembly/assembly sequences. The methods for the disassembly sequences generation can

be classified into three groups as interactive, automatic and Artificial Intelligence (AI)

methods.

Interactive approaches require extensive user input usually in the form of answering questions,

whereas automated approaches can be mainly used to generate disassembly processes for

products with simple component configuration and geometry. In this thesis automated and

interactive techniques are combined, using virtual reality environment (VRE) to generate and

evaluate selective disassembly sequences in the process of product design.

Disassembly sequences being a key element of the simulation of a product disassembly

process, this chapter aims to present the main approaches adopted for disassembly sequences

generation. Thus, a review of some deterministic and stochastic approaches is presented in the

next. Note that deterministic methods produce sequences, while stochastic ones analyze the

sequence generating process. Stochastic methods have to cope with the combinatorial

complexity in most disassembly process simulations by using only geometric data as a

12

starting point or that do not bind the technological parameters of a product with its digital

mode [Iac 10].

1.3.1 Interactive methods

 Interactive approaches can be used to handle with complex assemblies because information is

not gathered from the geometry of the components. Instead, the information is gathered from

designers. These approaches need that the designer or the operator should be very familiar

with the product (assembly). Note that time and knowledge involved for answering questions

about the assembly are the main disadvantage of the interactive approach.

Bourjault was amongst the first, who in 1984 [Bou 84] proposed the definition of the so called

assembly precedence relations (APRs). Based on these relationships, a liaisons diagram was

proposed by him to represent the assembly. In this liaisons diagram, series of questions were

needed to be answered by the users with ‘yes or no’. Later, Homem and Sanderson [Hom 91]

applied the ‘cut-set’ analysis method in the assembly sequences planning and designed three

simple rules. He count that the queries could be reduced by 95%, however, 111 questions in

the sequences planning need to be answered for only 11 part assembly. In order to reduce the

number of the questions at the same year, Baldwin et al. [Bal 91] developed a method using

the ‘what’ questions instead of ‘yes or no’. However, obviously it is more difficult for user to

answer the ‘what’ questions correctly, especially when the products are relatively complex

and the users are not familiar with the products. Other authors Johnson and Wang [Joh 98]

enhanced the ‘cut-set’ analysis and a man-computer interactive method supported by

assembly CAD draft, where the user has to indicate the interference parts if collision occurred

in the disassembly.

The interactive approaches base their reasoning process on the liaisons diagram. However,

because the liaisons diagrams are too simple to get enough information for the sequences

analysis, it requires user to answer a number of questions to tell the system how the assembly

looks like. Let us note that, this method, classified as indirect approach by [Su 07], is rarely

used nowadays.

A deterministic approach for disassembly sequences generation based on the observations of

industrial planning assemblies is proposed in [Bar 04]. It uses simultaneously Design for

Assembly (DFA) and a conventional design process approach. The proposed tools and

techniques allow generating disassembly sequences and defining assembly configurations,

including assistance to build the sequence, choose the most relevant documents and to define

13

connection parameters. A constraints approach (CSP) is used to confirm that the resulting

assembly sequence would be feasible thus providing a quality assessment of the sequence.

1.3.2 Automatic methods

 Today automatic methods are considered as ideal way for sequences generation. They can

use the relationships among the components for the disassembly path calculation. However,

for the disassembly sequences generation, the model has to be with relatively simple

component geometry. There are lots of researches working on this field in order to reduce the

computer resource for the generation of the disassembly sequences. Some basic concepts or

algorithms should be clear in this domain. For this purpose some existing relevant and

important works, in our knowledge, are presented here below.

(a) Graph for Disassembly Model

With regards to automatic methods there are two major steps for disassembly planning

generation, which are disassembly model creating and disassembly sequences generating. The

model is usually presented by graphs and the sequences generations are based on the matrices

which are converted from the graphs. Graph theory in the field of mathematics is very common

way to show pair-wise relations among features in the graph. In order to model product’s

topology and geometry information, a number of graph based modeling strategies are used for

the disassembly sequences generation, such as And/Or graph, Liaison graphs, etc.

• And /Or graph [Hom 90, Hom 91, Lee 94, Kan 01, Got 03, Zhu 13]

In order to present all possible disassembly sequences, many methods are proposed.

Among them, the And /Or Graph has been widely used to represent disassembly

sequences (Fig. 1.1).

 Figure 1.1 An example of AND /OR graph

In And / Or Graph, each node can be a product, a component or a subassembly

the edges being the links among them. For disassembling a part if other

components are involved, the link edges form the And relations. If more than one

 1,2,3,4

4

 4,5

1,2,3,4,5

 2, 3,4,5

 2,3

1

2

3

14

paths can reach the target part, this will form the Or relationship. For an And/Or

graph, G=(N, D), (where N stands for the nodes that denote a product, sub

assembly, or part and D stands for hyper arcs, means the sets of feasible

disassembly operations) if each node can have m (m≥1) possibilities for

disassembly, it forms the ‘Or’ relationship in the graph. If one operation

disassembles into more than one node in the precedent graph, it forms the And-

relation. As shown in Fig.1.1, N={(1,2,3,4,5), (2,3,4,5), (1,2,3,4), (4,5), (2,3)}

and D={1,2,3,4}. For D1, N=(2,3,4,5), part 1 has to be disassembled. For D2,

N=(1,2,3,4), part 5 has to be disassembled. Therefore this is the “Or”

relationship. For D3, after getting the parts 4 and 5, the parts 2 and 3 will be

moved automatically. Therefore this is the “And” relationship. One of the

advantages of the And/Or graph is that it requires relatively small space for the

storage. However, there are some information missing in the And/Or graph. For

example, the relationship between operations D2 and D3 is not clear in Fig.1.1.

Do we need to perform operation D2 before the D3? Note, that this approach

does not contain any information about the subassemblies.

• Precedence Graph [Joh 98, Gun 01, Lam 08]

Precedence Graph methods, being a part of automatic methods, are focusing on

the precedence relationships, which aim at the automatic generation of

disassembly sequences. It is derived from the task precedence graph, which is

commonly used in the task planning issues. Different with the And/Or graph, the

operations are presented by nodes. The arcs are directed arcs pointing from one

operation to another. The operation where the arc points from should be

performed before the operation where the arc point to.

As shown in Fig.1.2, arcs indicate the precedence relationships that exist

between two subsequent operations. In this example, it is easy to distinguish the

18 precedence relationships.

In [Joh 98] authors used precedence graph to represent the products’ structure,

which is hierarchically organized according to a Bill of Material (BOM). Some

details for the various operations are considered in the costs and the profit of the

disassembly operations. Compared to And/Or graphs, the disassembly

precedence graph has less nodes. For this model, its cpu time is still

15

unmanageable for solving problems, as stated in [Lam 08].

• Extended process graph
Proposed by Kan et al. [Kan 01] extended process graph is obtained by

transforming the And/Or graph using precedence relations. In the graph, a path

from source to sink represents a disassembly sequences as well as the

disassembly level (Fig. 1.3). Each node represents a source, a sink, an operation,

a choice or a separation. In Fig. 1.3, a filled circle means that there are more

than one possible ways to disassembly a subassembly. An empty circle means

a separation node, each of which contains more than one part and requires more

disassembly operations. All of them can be transformed from Or and And

relationships in the And/Or graph respectively. Each solid arc represents a

precedence relation between two operations. There are two dotted arcs, including

the unidirectional arcs, which link each operation node to the sink node and the

bidirectional dotted which represent two possible orders between two operations.

In other words, the subassembly can be disassembled in parallel and there is no

precedence relation between the operations.

As seen from Fig.1.3, if the path can satisfy the precedence constrained by the

solid arcs, the path is feasible for selection.

Figure 1.2 Disassembly precedence graph [Joh 98].

16

 Figure 1.3 Extended process graph [Kan 01]

Note, that this graph successfully extends the method from the precedence graph

to And / Or graphs (because of the increased number of nodes in the And/Or

graph). However, the problem can be solved only at the expense of

unmanageable cpu time even if moderately complex problems are considered as

was discussed by Lambert in [Lam 08].

• Liaison or connection graphs

First developed by De Fazio and Whitney [Faz 87], liaison or connection graphs,

are great different from the precedence graphs. Let us remember that, in a

precedence graphs, the relations are not the components which are physically

connected. The relations are the precedence order between the components. In a

liaison graph, circles (vertexes) represent components in the assembly and edges

physical connections between them. Therefore, the liaison analysis is performed

by examining the geometric connection between the parts in the product, and the

liaison diagram consists of a network of nodes and lines that represent the parts

and the relationships between parts. If n is the number of parts, the possible

number of liaisons ranges between (n2-n)/2 and (n-1).

For each liaison, it is necessary to have the precedence rules in order to

determine the optimal level of disassembly either for a single or multi objective

criterion. For example Kara et al. [Kar 06] used liaison and precedence rules to

generate the selective disassembly sequences of a washing machine as shown in

17

Fig1.4. Lee et al. [Lee 94] used the abstract liaison graph for the purpose of sub-

assembly identification to aid in automatic generation of assembly sequences.

Later Dong et al. [Don 06] tried to use the liaison program in order to create a

hierarchical attributed liaison graph for disassembly sequencing. Recently, in,

[Ric 13] authors transformed a liaison graph in to weighted liaison graph (WLG)

to show the disassembly precedent relations amongst all the components.

 Figure 1.4 Extended process graph [Kar 06].

However, the liaison graph cannot work itself for the sequences generation. The

liaison sequence graph gives liaison sequences instead of assembly sequences.

The states do not present a set of parts, but a set of relations between them. The

state has to work with precedence rules for each liaison which means that the

questions for each liaison have to be answered for all the liaisons prior to

sequences generation. The precedence rules are used as input formation for the

disassembly sequences generation. However, there are two major drawbacks

related with this methodology: the liaison graph has to be established by very

experienced designer and the product must be relatively simple.

(b) Matrix analysis

For disassembly based on Matrix analyses method, there are two major steps which are: creating

disassembly model and generating disassembly sequences. The model is usually presented by

18

graphs. The sequences generations are always based on the matrices which are converted from

the graphs [Wil 94]. Combined use of graphs and matrices has been proposed by many authors

[Kuo 00b, Got 03, Smi 11, Smi 12, Ou 13]. The disassembly graph can be represented by a

transition matrix, in which the columns correspond to the possible disassembly actions, the rows

to all the possible subassemblies or components. Note, that for automatic calculation, the matrix

analyses method is one easy way to generate the possible disassembly sequences. In order to

better understand the converting process from the graph to matrix, the relevant works of two

researchers are presented with some details here below.

i) Assembly sequences table (AST) [Got 03]

(a) Exploded view (b) Assembled view
 Figure 1.5 Example of assembly represented in tree-dimensional space [Got 03]

Definition:

One assembly in relational model is a two-tuples <P, U>, where P = {P1, P2…, Pn} is the set of

symbols corresponding to one part (no two symbols’ correspond to the same part) and U = {U1,

U2…, Um} the relations between components, m being the number of component ordered pairs

with Ui=<Pa, Pb , Cab, Tab>. The contact function Cab, represents the contacts between the

components a and b. The translation function Tab, represents translational motion between

components a and b.

 Function Cab= (C1, C2, C3, C4, C5, C6), presents the six directions of contacting information,

where Ci= {0, 1}. Concerning the directions, they can be the coordinates (x+, y+, z+, x-, y-, z-)

as shown in Fig.1.5 (a).

If Ci=0, there are no contact in the direction i. If Ci=1, there are contact in this direction. In the

same way, the translation function Tab= (T1, T2, T3, T4, T5, T6) represents the translational motion

between component a and b in six direction, where Ti= {0, 1}. If Ti=1, indicates the part b has

freedom of translational motion with respect to the part a in the direction i.

19

Thus, according to this rule, it is very easy to build the functions C and T between every two

components in the product. For the assembly in Fig. 1.5(b), the C and T functions are built as

shown in Table 1.1.

Table 1.1 Function C and T for the assembly shown in Fig.1.5 (b) [Got 03]

From our understanding, C function determines the local feasibility for removing a component,

while the T function determines the global feasibility.

In this work, the six directions (x+-; y+-; z+-) are taken into consideration. Functions T and C

are both 1x6 binary functions. PADL_2 software also was developed by the authors in order to

extract these functions. Note, that the presence or absence of the contact cannot guarantee the

free collision motion of the components. So, if the subassembly (a, b) is supposed to be a set, it

needs to be added to another component (c). Thus, sets (a, c) and (b, c) should be both taken into

consideration. If a contact exists in any direction and component c can be in contact with a or b,

consequently c could be added in the subassembly. So the “or” operator is used in this situation.

If c is planned to be disassembled, it has to be free related with both a and b, so the “and”

direction is used in this situation. Finally, each assembly tasks is connected with the weight

factors for the evaluation of the assembly plan.

 Note, that Assembly sequences table (AST) method is a simple way to evaluate all the possible

assembly sequences and provides a useful method to simplify their evaluation which has the

principles for matrix calculation considering the six directions of assembly and disassembly.

However, its limits are that C and T functions only take 6 directions into consideration. Since

the logic works with Cartesian coordinates, it would be better to take all the C and T functions in

cylindrical and spherical coordinate systems. As previously said, this method could be also used

for disassembly evaluation. We think that it just needs to check T function and the stability of

20

the subassemblies. In our opinion, a new method is needed to be proposed in order to evaluate

the stability of the subassemblies (see details in § 5.2.2, Chapter 5) prior to disassembly

sequencing, which is an aim of our thesis.

ii) Disassembly sequence structure graph [Smi 11, Smi 12]

A new disassembly sequence structure graph (DSSG) method was proposed by Smith and Chen

in [Smi 11] to improve the solution quality, minimize the model complexity and reduce search

time. Note, that graphs containing more information improve solution quality, while those

containing less information reduce searching time. The DSSG model contains one graph, which

only includes the nodes and links needed to remove the target components, and five matrices.

Two of them are contact constraint matrices, two others are motion constraint matrices and one

is a projection matrix. The authors divide the parts in a product into two categories as:

components and fasteners. They assume that a fastener must be removed from a component, but

a component cannot be removed from the fasteners. Thus, contact constraint matrix includes the

contact constraint for components and contact constraint for fasteners. Motion constraint matrix

includes the motion constraint for components and for fasteners. The projection matrix

determines the removing direction of the target component with the rule of the least numbers of

parts to remove.

The contact constrain (CC) matrix for the components of an assembly is:

	�� =
��
��
��
��
���������	��
����������������

��
��
��
�
=
���
���
���
� 0														0										��, ��, 5									26														��										��, 1										�	, 3			0															0											2,4,7						�	,�
, ����, �										5	,8													0											��	,3�, 4												0														��														18											��, 	���, 2											0									�
, 7			0																	0															��,6,9								�
, 3��, 4												���, 6												��											90														0																	��, 8													7 ���

���
���
�

For a product with N components, the CC matrix has N rows. For this matrix, columns

represent the +X, -X, +Y, -Y direction. For example, CC1 represents the component 1 in the

Fig. 1.6.

+X -X +Y -Y

21

legend: f- fastener

Figure 1.6 Example of assembly [Smi 12]

In the +X, -X directions, there are not contact components. In the +Y, -Y directions, the

contact components are ��, �� , 5 and 2 respectively. The motion constrain matrix is

established in the same way.

 The projection matrix records the blocking components of each component which are used

for the optimization of the disassembly directions. The fewer the blocking components, the

better the direction is. However, the Matrix analyses method is limited because it only takes

into account a limited number of Disassembly/Assembly directions/translations (four or six)

without rotations. Another difficulty is to build the matrixes automatically for complex

assemblies. For building all the matrixes related with the product and finding the relationships

among the components, a great search time is necessary because the number of possible

disassembly sequences increases exponentially with the number of parts in the product.

1.4 Searching algorithms

 In order to generate the feasible disassembly sequences, after establishing the representative

model (graph, matrix or others), a systematic analysis, based the time saving algorithms, is

necessary to be performed. Some of the most useful algorithms are presented in the next.

22

1.4.1 Heuristic searching

Let us remember, that in computer science, a heuristic is a technique designed to solve the

problem more quickly when conventional methods are too slow, or to find an approximate

solution when conventional methods fail to find an exact solution. Heuristic are based on a

predefined set of rules used in the sequences generation of Disassembly or Assembly. The

problem of finding optimal or even near-optimal disassembly sequences is known to have an

exponential computational complexity.

1.4.2 Wave propagation approach

As we are aware, the most popular and applied determinist method for selective disassembly

is the wave propagation algorithm [Sri 99a, Sri 99b, Sri 00]. This selective disassembly is

particular convenient for maintenance and disassembly for recycling. Selective disassembly

analysis of a product with n components and s selected target components (s<n), determines a

disassembly sequence for s components considering the minimum number of components to

remove. The wave propagation algorithm automatically reduces the computation complexity

O (n2) by finding the shortest way to take out the target component from an assembly.

There are three assumptions for the wave propagation approach.

• First, the relative motions of components are determined without considering the tools

and the fixtures.

• Second, the assemblies are assumed to be polyhedral.

• Third, the components have single linear motion allowing them to be removed from the

assembly.

Figure 1.7 Illustration of the wave

23

Two types of disassembly waves are defined. One is τ wave source from the targets which

determines the disassembly ordering. The other one is β wave from the boundary of the

assembly which determines the minimum number of components to be disassembled in order

to reach the target. Based on these disassembly waves a disassembly sequences is

automatically generated by the intersection events between them. For every component c, the

waves τc and βc are defined. For every time step (from t=a to t=a+1), τc propagates by one

wave front. As shown in Fig. 1.7, at t=1, β2 wave propagates from βo
 2 to β2

 2 , where C2 is

disassembled after removing C1. Wave disassembly uses modeling component with reduced

mobility only to translations and intersections of translational directions attached to each side

of the contact surfaces to locally validate or not a disassembly operation. The components are

geometrically defined by the faceted models and the contact areas between the components

are considered as input data.

Wave propagation method allows reducing the analysis of expensive-typically exponentially.

However, it has two major drawbacks. One is that it does not show how to build the graph

based on the real relationships among the components in an assembly. The second drawback

is its limitation to generate efficient and optimal sequences for disassembly of complex

products as mentioned in [Smi 12].

1.4.3 Dijklstra’s algorithm with heap-based priority queues [Gar 04]

This algorithm, proposed by Garcia et al. [Gar 04], is based on the precedence graph where

each node represents a single component of the assembly. Its computational complexity is of

O(nlog n), when s<<n, and O(sn) time when s≅n. A simple example of an assembly

containing 9 components, where 3 of them are exterior (C1, C8, C9) is shown in Fig.1.8.

The directed edge from a certain node C1 to another node C2 indicates that if C2 has already

been disassembled, the C1 can also be removed from the assembly. Component C5 has OR

relationship with C4 and AND relationship with both C6 and C7. Which means that C5 can be

removed right after extraction either C4 or both C6 and C7. The graph can be simplified if C1 is

not exterior. In this case all the edges downwards in Fig. 1.8 would disappear.

The algorithm consists in four stages:

• Computing the shortest path between each exterior node and the rest of nodes of the

precedence graph.

• For each selected component, determining the shortest paths to its closest exterior

components, by taking into account the edge labels computed in the first stage.

24

• Merging the partial disassembly sequences obtained above.

• Sorting the sequences in descending order of selected components.

Figure 1.8 Assembly and its corresponding precedence graph [Gar 04]

The algorithm computes the minimum distances from the exterior components of the

assembly to the rest of the components. Then, for each target, a set of partial disassembly

sequences is obtained by finding minimum spanning trees in the precedence graph. The

solution is found by sorting sequences from the head until all the selected components have

been considered. However, the algorithm has a disadvantage. It concerns the determination of

the external components. Note, that for an assembly, it is difficult to determine which

component should be the external as there are many possibilities for that. (components

C8,C9,C1 in Fig. 1.8,) Note, that the author did not mention the method for building the

precedent graph either. As from our knowledge, there is no automatic way to do it.

1.4.4 Artificial Intelligence (AI) methods

 AI methods focus on detecting the best sequences when a combinatorial explosion of

sequences takes place. In order to obtain one or several sequences based on the profit of each

sequence, the profit of all feasible sequences has to be calculated, which leads to unacceptable

computing time. AI methods try to replace the traditional method with an objective to reduce

searching time by searching the best sequences without analyzing all the possible alternatives.

In the past years, AI techniques such as: Petri Nets, Genetic Algorithms, Neural networks,

Fuzzy set, Bayesian networks have been used especially related with disassembly sequence

optimization.

25

• Petri nets (PNs) is the widely diffused method which has the advantage of taking into

account of many factors (time, economic value, environment aspects etc.) for the

disassembly planning and scheduling. Four primitive elements (tokens, places,

transitions and arcs) and certain rules are involved for controlling the operations. The

tokes are conceptual entities appearing as small solid dots. The places are shown as

circles and stand for the locations where objects await the processing or the condition

of objects. The transitions are shown as bars or rectangles which present processes,

events, or activities that may occur. The arcs present the paths of objects in the system.

In our knowledge, the first PNs used in disassembly, was presented by Zussman et al.

[Zus 95], who developed a disassembly Petri net (DPN) through the notion of an

inverted assembly PN. Later, Moore et al. [Moo 98, Moo 01], presented an algorithm

using a PN-Based approach to automatically generate the disassembly process plan

(DNP), which considered the simple AND, OR, Complex AND/OR, and XOR

relationships as shown in Fig. 1.9. Shiung Hsieh in [Hsi 08] set up a greedy algorithm

to find a nominal optimal solution for the aforementioned problem and study the fault

tolerant properties of the nominal system. Recently, Kuo C. Tsai [Kuo 13], proposed a

PN approach to consider the economic value and environment pacts on the

disassembly and recycling processes.

Figure 1.9 Disassembly Petri net (DNP) for sample product [Moo 01].

26

Note that Petri nets are often constructed when one needs to simulate systems that not

only encompass sequences generation, but also include higher aggregated levels, such

as task planning and extended process chain for more precise and successful analysis.

• Genetic algorithms (GA) approach is often chosen to solve optimization problems due

to its capability in solving large and complex models compared with the other

heuristic methods. GA being of stochastic type, the generation of optimized sequences

is obtained using tailored fitness functions which consider the geometrical constraints

of the product, the minimization of disassembly time and cost, as well as the

possibility of grouping assembly operation or the environmental impacts [Yi 07]. A

fitness function of the GA depending on the increment in disassembly time is present

by Go et al. in [Go 12]. GA based approaches for disassembly sequencing of End Of

Life (EOL) products were proposed in [Kon 06b, Giu 07]. A heuristic GA was

developed in [Ric 13] in order to optimize partial disassembly sequences based on

disassembly operation costs, recovery reprocessing costs, revenues and environmental

impacts. Chen et al. proposed in [Che 01] a stochastic planning of assembly sequences

using a two levels GA optimization where the chromosomes are the disassembly

sequences which may be valid or not. GA Level 1 is used to generate an optimal

assembly sequence using the current settings of GOPS corresponding to basic

operators (crossover, mutation, selection). At Level 2 these probabilities are optimized

by a second GA to generate new populations. The scheduling algorithm takes into

account the geometrical constraints thus optimizing the physical constraints. The

individuals (disassembly sequences) of each population have to be approved as to their

trajectories.

• Fuzzy logic being dealing with uncertainties, an example of Fuzzy Logic–Genetic

Algorithm methodology for automatic planning of assembly and disassembly

sequences of products is treated in Galantucci et al. [Gal 04]. The main goal is to find

the optimal sequence requiring the minimum completion time, by taking into account

the fuzzy model of the processes and the constraints in available tool, destruction

models, etc.

• Neural Networks viewed the disassembly sequence problem as a variant of the

traveling salesman problem (TSP), which is to find a traveling sequence with the

shortest distance to visits all the cities of the problem only once. A neural network

27

consists of a large number of processing elements or neurons and weighted connection

among them. Thanks to the highly interconnected neurons, a neural network can

perform rapid computations in parallel and solve the computation efficiently. In [Hua

00] Huang presented a deterministic method for the economic analysis of disassembly

process based on a method for the generation of disassembly sequences using a neural

network. The later determines the best sequences of dimension n set by the user. As

there is not 3D representation of components associated with this process, contact

conditions, mobility and components’ accessibility are not related to component

models. Thus, there are no guarantees that the obtained sequences are valid. The

optimization function used is similar to the traveling salesman problem by adding

precedence constraints specific to the problem of disassembly. The approach described

is subjective in nature and has no link with the 3D digital model of the product. It

contributes to assess the best disassembly sequences from the viewpoint of recycling

material.

• Note that the main disadvantages of Neural Networks are due to its lack of global

searching capability and sensibility on the selection of the network parameters value

and initial conditions. Bayesian networks are graphical models developed in the field

of artificial intelligence as a framework that should assist researchers and practitioners

in applying the theory of probability to inference problems of more substantive size

and, thus, to more realistic and practical problems [Tar 13]. They integrate perception

and action and use the dependencies among various parts of a product to propagate

uncertainty regarding their condition as sensed during the disassembly process [Gei

96].

• Ant colony algorithm has been inspired and consequently developed from the

observation of the operating mechanism of food exploration in ant colonies. Indeed,

despite their limited intelligence ants collectively manage to find the shortest path to a

resource of food: the most borrowed path is always the shorter one. Thus, Tripathi et

al. [Tri 09] proposed an ant colony algorithm based on a probabilistic model between

each step (of the algorithm), that can facilitate the choice of paths most likely to be the

ideal disassembly sequence. Authors claim that this model provides faster and more

accurate results as those obtained by a genetic algorithm.

28

1.5 Assessment

The bibliographical analysis shows that the existing methods for disassembly sequences

generation developed so far, as we are aware, satisfy only partially the needs of designers end

industrials. The majority of work contributes in one way or another in the modeling of these

operations often based on simplifying assumptions and hypothesizes.

Thus, almost all simulation methods are based primarily on translational movements in order

to separate or extract / insert components without rotation even if a numerical model is used

to automatically identify the mobility of the components. Most often, this restriction is

justified by the reduction in the associated computational complexity, even if it is at the

expense of feasible solutions that are not identified.

Two large approaches for disassembly sequences generation based on the components’

mobility modeling emerge, namely stochastic and determinist:

Most of the stochastic methods allow reduction of the combinatorial of disassembly

operations thus defining a sequence. One of their major disadvantages is the impossibility of

obtaining the same results when the input data is the same which does not allow to easily

evaluating the influence of some input parameter on the simulation results. Some of these

methods are limited by the combinatorial sequencing because they are based on geometrical

information only. In one hand it generates a large number of possible sequences, then using

technological criteria, contacts, etc, and in another hand a reduction of the number of

solutions must be performed.

Concerning the deterministic interactive methods for sequence generation they are often

subject to the discretion of the user. The later must simultaneously control the design process

and the DFA approach as well. These methods reduce the combinatorial sequences but add

the need to interactively specify a large number of parameters especially for complex products

where many designers are involved. Waves propagation disassembly uses modeling

component with reduced mobility. Only translations using the intersection of translational

directions attached to each side of the contact surfaces to locally validate or not a disassembly

operation. The Neural Networks approach described in [Hua 00] is also of subjective nature

and has no link with the 3D digital model of the product. However, it allows assessing the

best disassembly sequences from materials recycling viewpoint.

29

1.6 Summary synthesis and critical analysis

According to the applied techniques three large groups of methods for the disassembly

sequences generation emerge, namely: interactive, automatic and Artificial Intelligence (AI)

methods.

The review of current approaches, briefly presented here and other works we have studied,

leads to the following remarks:

- Interactive methods (Section 1.3.1) being classified as indirect approach in the

sequences generation for complex assembly, instead of gathering information from

geometry, these methods get information directly from the user. They allow generating

reasonable sequences for disassembly operation. However, the problem is that the

disassembly operator (user) is not always the designer of the product. Consequently

he/she may have some difficulties to answer the questions related to the product

design thus compromising the search process.

- As mentioned in Section 1.3.2, automatic methods are preferred way for sequences

generation. There will be no better way than generating the disassembly sequences

automatically according to the geometry relationship among the components in a

product. However, the ideal way is always the difficult way for sequences generation.

How to find the easiest and simplest model for sequences generation in automatic way

is still an issue.

- Searching algorithms: The wave propagation algorithm has a computational

complexity of O(sn2), Dijklstra’s algorithm method proposed by [Gar 04] has the

computational complexity of O(nlog n), when s<<n, and O(sn) time when s≅n.

- AI methods (section 1.4.4) are different of mathematical programming techniques,

which are inspired by sophisticated methods thus allowing generating the possible

disassembly sequences for a given product. They try to find the optimized way for

sequences generation as well. However, they are always related with the expert system

or online calculations for real application in industries and need relatively long

execution times for sequence searching as mentioned in [Lam 03].

30

1.7 Objectives of the thesis

After the analysis highlighting the need for appropriate method for reducing the complexity

for product disassembly sequences generation this section presents the objectives of the thesis.

Given the assessment, the summary synthesis and the critical analysis presented here above

our aim is to establish a simplified model for selective disassembly sequence generation. As it

was mentioned in the General Introduction, when disassembling, it is important to eliminate

the components which are unrelated to the target components prior to sequence generation. In

order to address this configuration, our aim is to propose a method for generating the feasible

disassembly sequences for selective disassembly based on the lowest levels of a disassembly

product graph. Our goal is also to generate the minimum number of possible disassembly

sequences. Thus, the proposed method has to include optimization aspect as well. Thanks to

the proposed disassembly product graph (see Chapter 3), the method allows generating the

minimum number of possible disassembly sequences. For this purpose prior to sequence

generation, all the unrelated components with the disassembly target(s) are eliminated from

the graph and the process automatically stops when the target(s) is (are) reached thus reducing

computational research time.

We present also a set of support modeling software (see Chapter 4) for selective disassembly

sequences generation thus allowing assisting designers in their work in the initial stage of a

product design. This software is currently being integrated within the framework of a “trade

application” to EUCLID-V5 Software.

1.8 Conclusion

In this introductive chapter, first the synthesis of the most recent literature survey, to our

knowledge, of Disassembly sequencing was done. Note that the common point of all these

methods is that they are often a combination of different methods for Disassembly sequences

generation and methods for optimization. The principal common difficulties of all these

methods are their limitations in motion presentation as often the translations only in some

general directions are considered and the rotations are not taken into account.

Automatic disassembly sequencing is an ideal way for the disassembly sequencing. However,

there are two major problems in this field. One is the representing models for the product.

There are many graphs or networks as presented above for representing the relationships

among the parts in a product. However, the graph-based techniques for example, do not

consider products geometrical information data bases. As we are aware, there are not works

31

mentioning that these graphs or networks can be built automatically according to

parts‘ relationship in the product. The other problem is related with the calculation method.

Basically, all the graphs can be translated into matrix calculation for sequences searching (or

calculation). Many works, based on some simplifications hypotheses, only focus on four or

six directions to disassembly the product which is easy to transfer the disassembly calculation

into the matrix computation model. However, in the real situation, the components

disassembly direction of translation cannot be just in four or six directions. The motions of

rotations have to be taken into account as well.

Searching algorithms allow reducing the computation resource for complex models. However,

the 3D assembly corresponding graphs are often difficult to build. Thus, these algorithms are

relatively difficult for real application in product disassembly. Most of them involve

simplification in the assembly model of the product in order to avoid complex computation

resources.

Regarding the AI methods they do not only focus on the disassembly sequencing of the

product. As previously said, they concern the optimization of the sequences as well. In most

works, the sequences already exist and AI method tries to choose the best one under some

constraint.

In order to reduce the effect of these simplifications and to obtain a proper disassembly

sequence planning, a complete removal model is required, which shows the importance of

model processing for disassembly simulations. Thus a more general method is necessary

including the movements of translation, rotation and the collision detection as well.

On the other hand, this chapter aimed to provide arguments concerning additional scientific

developments in order to propose new more suitable and effective models and methods than

the existing ones. Thus, these elements represent an introduction to the following chapters

which will focus more on the detailed description of the proposed models.

32

2 Chapter 2

Virtual reality for assembly/disassembly

operation simulation

This chapter analyzes the results and some remaining problems of existing research in the

field of Virtual Reality (VR) technology related with disassembly operations simulations. First

an overview of the existing VR integration approaches is presented by insisting on the

constrain-based and the physical-based. The Haptic interaction and force feedback are also

presented. Then some Virtual assembly platforms which incorporate Ergonomics analysis are

presented, followed by a Critical analysis and assessment, thus allowing introducing the

Proposed VR environment for Disassembly operation simulation: sequences generation and

their evaluation.

33

2.1 Introduction

In the today’s global context, virtual manufacturing become critical to increase the efficiency

of Product Development Process (PDP). This manufacturing involves computer graphics and

simulation methods to model the real world. Assembly and disassembly (A/D) operations are

key components in many manufacturing processes. Consequently they should be also

supported in a virtual manufacturing system as a realistic A/D process modeling can reduce

cost and save time.

 Virtual reality (VR), is defined as “a scientific and technical domain exploiting the

possibilities of computers and behavioral interfaces to simulate in a virtual world the

behaviors of 3D entities, which interact in real time with each other and one or more users in

pseudo-natural immersion through sensorimotor channels” [Fuc 06]. VR technologies

provide advanced methods of real time user interaction. Their realistic behaviors of animated

bodies enhance the feeling of immersion and improve performance of the user. Today VR

environments have significantly evolved towards A/D simulation, highlighting new needs for

A/D simulation preparation, evaluation and their integration in PDP. In order to save time and

improve PDP, many works focus on virtual reality simulation [Duv 13] and in particular on

A/D process [Jun 03, Gar 07, Ash 09, Wan 06, Li 12, Pon 13a, Pon 13b, Iac 14]. All these

simulations address different objectives such as: A/D sequencing, path planning, collision

detection, operational time evaluation etc., which often are complementary to each other.

Thus, VR is a new technology that creates a real-time visual/audio/haptic experience with

computer systems. It provides a potential way for disassembly operation simulation.

 In this context, recent work and techniques related with A/D operation simulations and

evaluations in VR environment are presented in this chapter. Its goal is to assess the

advantages and the shortcoming of this technology, and the remaining problems of the

existing works in order to present our contribution in this field.

2.2 VR integration approaches overview

As mentioned here above, VR technology plays a vital role in simulating advanced 3D

human-computer interaction by providing users with different kinds of sensations (visual,

auditory, haptic, …). Virtual assembly simulations allow designer to evaluate the concepts in

virtual environments during the early design stages. With virtual prototyping applications, for

instance, the optimizing process for the design for assembly can be incorporated in the

conceptual design stage. Using haptic or auditory technology, allows designers to interact

34

with the assembly parts through human basic motions. Thus, contact force may be transmitted

to the operator in real time.

In 2003 Kim and Vance [Kim 03] described Virtual assembly as “ability to assemble CAD

models of parts using a three dimensional immersive user interface and natural human

motion”. Later, Seth et al. [Set 11] defined virtual assembly as “the ability to assemble virtual

representations of physical models through simulation realistic environment behavior and

part interaction to reduce the need for physical assembly prototyping resulting in the ability

to make more encompassing design/assembly decisions in an immersive computer-generated

environment”. The applications scope of virtual assembly is large as shown in figure 2.1.

Figure 2.1 Applications of a virtual assembly/disassembly simulation [Set 11]

Let us remember, that VR systems for assembly can be roughly divided into two categories.

The first one is the virtual assembly systems using relative technologies to improve the

feeling of the operator. The other one is virtual assembly systems for immersive assembly

modelers which additionally support the combination of CAD-based parts to novel assemblies.

The first category purpose is to check the general assemblability of the design: part

accessibility, tool usage, generation of sequences and trajectories of assembly operations, and

so on. The second category focuses on some sort of snapping mechanism which automatically

completes an assembly operation when two parts close enough (in the vicinity of the contact)

are moved in a virtual environment.

35

In the most of today’s industrial applications, VR systems are still used as mere

visualization tool for prototypes modeled in external CAD systems. It not only provides

powerful modeling functionalities but also, in particular, can be easily instructed, e.g. by

meanings of intuitive language and gesture-based instructions. Figure 2.2 shows, an example

of virtual environments involving the assembly of CAD-based parts [Jun 03].

 Figure 2.2 CAD-based assembly in Virtual environment [Jun 03].

Note, that there are two kinds of systems for virtual environment development. One is

constrain-based modeling approaches system the other is physical- based system.

2.2.1 The constraint-based

Constraint based modeling approaches are using inter-part geometric constrains to

determine the relationships among components in the assembly. It consists of writing each

contact as a unilateral constraint and solving the resulting system of equations for the object

positions. Compared to the physical based simulation (see Section 2.2.2), constrain based

modeling has two advantages: less computationally intensive and available information in the

CAD models [Mar 03]. Constrain based application can produce much more realistic results,

without unwanted artifacts and with the possibility to computer contact friction correctly [Per

13, Tch 10].

There are two types of constraints modeling, which are positional constraints and geometric

constraints [Set 11]. Position constrain can be represented by a set of equations, which can be

solved based on numeric, symbolic or graph based method [Gao 98]. Instead of translation

position constraints into equations, a geometric constraint focuses on the rigid body

transformations which satisfy a set of constraints presenting the prelateships among all

components [Leu 13].

36

For the constraints based application, there are many systems developed which can support

the constraints detection. For assembly planning a non-immersive desktop and immersive

CAVE environment were proposed by Cruz-Naira et al. in [Cru 92, Cru 93]. It provided the

subjects with a more immersive sense of virtual assemblies by implementing with IRIS

performer. The results from the immersive VR environments, non-immersive VR

environment and traditional engineering environment were compared by the authors, which

showed that the subjects, in virtual environments had better performance than the

performance in the traditional engineering environments.

 Luis Marcelino [Mar 03] implemented a geometric constraint manager designed to support

physical realism and interactive A/D tasks within virtual environments. The key techniques

for this application are direct interaction, automatic constraint recognition, constraint

satisfaction and constrained motion. He described the development and the implementation of

a Geometric Constraint Manager which is used in Real-time immersive virtual environments

such as CAVE. The system architecture of the constraint manager includes constraint solver

and constraint recognizer. The solver determines the transformations to be applied to unfixed

objects. It also applies new constraints, removes existing ones and fixes objects in 3D

environment. The recognizer focuses on identifying new possible constraints and validates

existing ones. However, the constraint manager has two bottlenecks. One is the recognition

process. The other is the transformation of objects, which results in the unacceptably low

frame rate.

Jayaram et al. [Jay 99, Jay 06, Jay 07] developed VADE (Virtual Assembly Design

Environment) system for assembly simulation (Fig.2.3), which can support constrained

motion simulations. The simple constraints such as: against, coincident, etc. can be detected

automatically and the relative motions of the objects can be based on the available constraints.

The system imports all the data information (transformation matrices, geometric constrain,

assembly hierarchy etc.) from CAD model to perform the assembly simulation. In 2001, a

physics-based algorithm was added to VADE by Wang et al. in order to perform more

realistic part behavior [Wan 01]. The VADE system has been used for virtual assembly

simulation in various applications some of which are presented in [Jay 07]. A CAD linked

virtual assembly and maintenance simulation based on constraint-based modeling was

presented by Wang et al. in [Wan 06]. A year later, Yan et al. [Yan 07] developed a system

for assembly path planning based on the constraint-based modeling. However, as the number

of contact points is large, the constraint-based methods are much more difficult to implement.

37

In fact they take a lot of time for computing and the results may not always be stable as

pointed out by Leu et al. in [Leu 13].

Figure 2.3 VADE environment [Jay 06].

2.2.2 Physics-based system

Physics-based modeling simulates realistic behavior of parts in virtual scene, where parts

are assembled with each other. This modeling is based on the simulation of physical

interaction in time. It is applied primarily in the interactive dynamic simulations with human

operators involved. The method always accurate and fast collision detection thanks to the

calculated velocities and forces at the contact points. The forces can be returned to the

operator through force feedback devices. Note, that there are two Physic-based types

modeling algorithms based on the used method. One is the Penalty force, the other is Impulse

method [Leu 13].

• Penalty force method

Penalty force uses a spring damper system for preventing interpenetration between

models. Using Hooke’ law the penalty force is:

F=-kdN,

where k is the object stiffness, d is the shortest distance from the tool point to the

object’ surface, and N the vector from tool point to the contact point. In the same

time, the force value is affected by the elasticity of the object. For hard collision, k

38

will be the same whether the objects are approaching or receding. The penalty force

methods are easily for implementation. However, if the spring stiffness is too high,

the stiff equation is numerically intractable [Set 11]. A physics-based virtual

assembly system was presented by Garbaya et al. in [Gar 07] (Fig. 2.4). The

approach, mainly based on spring-damper model, focuses on part to part interfacing

and contact force during mating phase of the parts assembly in the VE. The collision

detection system is based on V_CLIP algorithm. In this approach, each model is

presented by two 3D models: tracked model and visual one. The Tracked model is

created by VHT (Virtual Hand software toolkit) library. The visual model is created

in PhysX engine, visualized by OpenGL render. During the mating phase of

assembly operation, the spring-damper model is used to render realistic parts

behavior and contact force sensation. The study concludes that the user performance

increased when inter-part collision forces were rendered to him/her. Some other

related works can be found in [Erl 05, Ale 11].

Figure 2.4 Data glove in a six-sided CAVE. [Gar 07]

• Impulse method

The interaction among objects uses collision impulses for all types of contacts. The

impulse from collision is calculated to find out the absolute velocity of an object at

the contact point. In this approach, the static contacts are considered as the high-

frequency collision impulses. The method is more stable and robust compared with

penalty force method. According to Seth et al. [Set 11] and Leu et al. [Leu 13] it

cannot handle simultaneous and stable contacts like sliding and stack of blocks at

rest. However, Renouf et al. [Ren 05] disagreed with them.

39

2.3 Virtual assembly platforms

In last decades, different virtual assembly platforms using different assembly techniques

have been proposed by many authors. Virtual reality platforms can be used to simulate the

whole manufacturing process including the assembly and disassembly operations. All this

platforms are physics-based, constrains-based or a combination of both of them. Germanico

et al. [Ger 13] presented a literature review of different VR platforms as shown in Table 2.1.

Table 2.1 Key features of some virtual assembly platforms [Ger 13].

2.4 Ergonomics analysis in VR system

In recent years Ergonomic assessment of manufacturing industry in VR system is

becoming more globalized [Wil 99, Jay 06, Pon 13c, Pon 13d]. Ergonomic engineering deals

40

with human behavior capabilities and their limitations in workplace which have to be taken

into account during the design of a product or a system. The philosophy of such engineering is

to fit the task to the human and not the human to the task. The key point for an effective

application is to gain a balance between the human body characters and the task demands.

Various commercial software systems are available today for ergonomic studies in general

and for their evaluation in particular. The Car interiors evaluation for example the JACK,

ANNIE-Ergo man, and RAMSIS, amongst others, have good performance [Wil 99].

In virtual reality, Jack’s Task Analysis Toolkit (TAT) for instance (Fig 2.5) is a tool for

ergonomic analysis of virtual human movement. It allows analyzing the posture of Jack in

order to detect and consequently resolve ergonomic issues.

Figure 2.5 Jack ergonomic analysis tool [Jay 06].

Rapid Upper Limb Assessment (RULA) algorithm [McA 93] for ergonomic evaluation

allows assessing the risk of upper limb disorders. It is based on some parameters such as:

postures, muscles use and weight of loads. The data required by RULA worksheet includes:

joints angles and twisting of the arms, wrist, neck, trunk and legs, as shown in Fig. 2.6.

41

Figure 2.6 RULA Sheet [McA 93]

 However, there is still a low level of acceptance and limited application of ergonomic

analysis in the manufacturing industries. The main problem is that ergonomic analysis always

involves a 3D human model to replace the real human for the ergonomic condition simulation.

There are two strong limits in this field. The first is leaving the human aspect out of the

assembly planning which could result in incorrect or inefficient operations. The other one is

that as the number of parts is increasing exponentially for complex products, consequently it

becomes more difficult to characterize criteria for choosing the most suitable assembly

sequence for a given product. Task performing is becoming too complicated for the 3D

human manipulation in the VE, that it needs involving high investment. Therefore, according

to Atsuko et al. [Ats 13] due to the high cost investment, human model application areas are

applied mostly to mass and highly cost product industries such as the automotive and aircraft

industries.

42

2.5 Haptic interaction and force feed back

Nowadays, with the commercialization of new haptic technologies and software

development platforms, the simulation of force feedback in virtual environment applications

started to become more widespread. A haptic device, also called feedback device, is a

computer peripheral which provides the force to the hand of its user. The input information is

the movement of the haptic device (called also effector), and the output is the force. The

behavior of the object is controlled by the physics’ laws. (Rq. Here, the notion of “object” is

used in the most general case, while the notion of “component” is used for the parts of an

assembly).

Haptic technology can be divided into two categories depending of the wearing way

which are: non-portable haptic device and wearable haptic gloves.

• Non portable haptic devices:

Sensable Technologies PHANToM (http://geomagic.com/en/products-landing-

pages/sensable),

Immersion’s CyberForce (http://www.immersion.com/),

Haption Virtuose (http://www.haption.com/),

Novint Falcon (http://www.novintfalcon.com/).

• Wearable haptic devices:

CyberTourTM, CyberGraspTM (http://www.immersion.com/),

Rutgers Master II [Bou 02].

In certain fields, such as the training skills for surgeons, it has been shown that the

haptic feedback improved dramatically the performance [Pop 00, Sal 97, Ric 95]. The use of

haptic interface to feel collisions of 3D models in assembly tasks is presented by Ladeveze et

al. in [Lad 10]. Haptic provides repulsive forces allowing preventing motion for the hand and

realizing the path planning (Fig 2.7). However, the device has limitation of workspace which

restricts the movement of the operator in the environment.

43

Figure 2.7 Assembly simulation using haptic device [Lad 10].

The question is whether the cost and associated effort of integrating the current haptic

devices into a computer-generated simulation are worthwhile. Thus, for industrial assembly

tasks, for instance, the question is whether the operator could benefit from the haptic feedback

or not. In this context Edwards et al. [Edw 04] investigate whether auditory cues would be as

effective as force feedback cue for an assembly task and whether subjective evaluations of

usability would differ as a function of the type of feedback information provided to the user.

For this purpose 24 volunteers (males and females) were involved to assemble and

disassemble five interconnecting virtual parts with either auditory, force, or no feedback cues

provided. The performance for the task was measured by completion time and the number of

collisions between parts. Note that some of the factors that make difficult incorporating force

feedback into virtual Environments are: high cost for devices with higher degrees of freedom,

limited amount of fidelity provided with current haptic devices, large processing requirements

and slow update rates of current devices. The last two factors are the causes that most of the

devices can only provide the main types of haptic feedback, either kinesthetic or tactile

sensations. The main objectives focused by the authors are divided in four items. The first one

is to determine whether the force feedback increases performance and eases the interaction for

a simulated assembly task performed within an immersive Virtual Environment (VE). The

second item is to determine whether force feedback cues (selections) made the interaction

more realistic for the users and potentially allow them to do their task more proficiently. The

third one is to determine whether auditory cues provide an effective substitute for force

44

feedback. And finally, the fourth item is to establish whether having both auditory and force

feedback cues would increase performance and subjective measures of user satisfaction.

Figure 2.8 The mean number of collisions by condition and force feedback effect [Edw 04]

 The results of this study (Fig. 2.8) show that the addition of force feedback actually

decreased performance. The possible explanation is that the simulation is not realistic enough

to benefit from force feedback. As for the second objective, the study found that male’s

volunteers reported an increased sense of realism with the addition of force feedback, while

females only showed a tendency to rank force feedback as more realistic. The study shows

also the auditory cues neither increased or decreased completion time or the number or

collisions. The sound may be an effective means of conveying collision information, since

sound did not negatively affect manipulation performance while still slightly increasing use-

perceived realism and overall satisfaction. The results indicated also that participants rated the

combination of sound and force feedback higher than all other conditions for perceived

usefulness towards a real assembly task. As the results shown, the effect is not obviously as

45

expected, and the reason maybe the level of simulation. Level means the simulation precision

of the involved sound and force feedback. In fact, authors forgot one thing that may affect the

whole results: the precision of calculation for each simulation, especially for the feedback

cues and the auditory.

In all, haptic technology cannot improve the performance in the absence of high

precision simulation. The Non portable haptic devices have limited workspace for interaction.

The Wearable haptic devices, however, provide force feedback only to fingers and palm,

which is limiting their application field.

2.6 Critical analysis and assessment

Most of the recent works on A/D related with VR technology focus on the simulation

itself. They try to build an environment to assembly or disassembly products and to compare

the simulation results with the results of real A/D process. Some works use VR as the A/D

path planning [Ale 11]. Some commercial software tools were also proposed to perform

ergonomic evaluation during assembly [Jay 06, Set 11]. However, for virtual A/D simulation,

several challenges need to be overcome.

• Collision detection: Collision detection prevents part interpenetration

during virtual simulation. The fast and robust 3D collision detection

algorithms are always required in the applications of Computer Graphics.

Foisy and Hayward [Foi 93] presented four groups of algorithms which are:

space-time intersection, swept volume interference, multiple interference

detection and trajectory parameterization. In our opinion, the so called

Extrusion operation proposed by Cameron in [Cam 90] is the most general

representation of collision detection problem. The collision between two

objects occurs if, and only if, their extruded volumes intersect. The extruded

volumes approach is partially occluded by the high cost of its practical

implementation, whose bottleneck is the generation of the 3D extruded

volumes themselves.

For this reason, other approaches have been proposed aiming at avoiding this

explicit computation. These approaches can be divided into two groups,

namely: geometric and algebraic.

46

 For the geometric group approaches, two main alternatives have been

proposed: projecting the extruded volume onto a lower-dimensional

subspace leading to the swept volume approach and sampling along the

trajectory. For the swept volume approach, the volume containing all the

points occupied by a moving object during a time period is called the swept

volume (see details in Chapter 3). If the swept volumes for the objects in a

scene do not intersect, there is no collision happening. However, the

generation of swept volume is too computationally expensive. Thus, many

works adhering to this approach deal with convex approximation swept of

volume instead. For example the object trajectories, concerning the multiple

interference detection, the aim are to sample the object trajectories and

repeatedly apply a static interference test. Of course, the sampling way is

crucial for the success of the approach. The ideal way is that the next sample

should be the earliest time at which the collision can really occur.

Concerning the algebraic field approaches, the aim is to parameterize the

trajectory. Thus, the approach called trajectory parameterization focuses on

the objects trajectories functions depending of a parameter (time). However,

depending on the trajectories, the degrees of the resulting polynomials may

be arbitrarily high, and the determination of the collision instant can be

computationally very expensive for arbitrary trajectories.

Note, that the key issue here is the cost of the collision detection. Thus, the

right time and place to apply the detection test become a key aspect of any

polyhedral collision detection scheme. It is possible to bound the time

interval when the collision occur if we know the objects’ moving direction

and how far away they are from one another. In [Jim 01] authors mentioned

that most of collision detection schemes only deal with polyhedral

approximations. However, this is a great challenging problem for collision

detection not only due to the nature of the objects’ motion but also because,

in this case, a polyhedral approximation is inadequate.

• Constraint based or physical based models: As mention before, no matter

constraint based or physical based model for inter-part detection, there are great

challenges for both of them. The constraint based (position or geometric) modeling

47

always needs the predefined geometric constraints before the implantation in virtual

simulation. Then the system can compute relative motion of the objects based on

available constraints. Compared with physic-based modeling, constraint based

method can reduce computing time when a lots of components are involved in the

scene. However, the predefined task will be heavy. If the task is related with non-

linear systems, constraint based method still have difficulties handling over-

constrained situation. For complex constraints simulation, exhaustive computation

requirement make it inappropriate for real world application.

Concerning the physics-based modeling to simulate realistic behavior among

complex parts interactively and accurately is still a challenging task. Compared with

constraint base method, this method needs more computation time, especially, when

several contacts occur simultaneously. It can get more accurate force feedback

results. In most works, this method focuses on simple two parts assembly simulation.

Therefore, choosing a better algorithm for inter-part detection is still a great

challenge at the present as well.

• Evaluation methods: How to evaluate the disassembly or assembly is the main

concern of our thesis. Most of the recent works on A/D related with VR technology

focus on the simulation itself. They try to build an environment to assembly or

disassembly products and to compare the simulation results with the results of real

A/D process. As previously said, its purpose is to try to fit the task to the human and

not the human to the task. To evaluate some ergonomics parameters during

simulation in VR environment, most works focus on using a human model in a

digital mock-up (DMU) model [Wan 12, Lon 06].

Thus, how to find a more realistic method for disassembly/assembly operation

simulation and their evaluation in VR environment is still an issue.

2.7 Proposed VR environment for Disassembly simulation

When it is necessary to analyze the interaction between human and object, VR

technology is a better choice. Especially for disassembly sequences evaluation there is a

strong need to evaluate disassembly operation for immersive simulations with a larger set of

possible movements and to get more realistic results. However, for a complex product, the

number of the possible disassembly sequences may be relatively large. If all the sequences

48

have to be evaluated in the virtual reality, it will be relatively costly on time. So, prior to

evaluate, most of useless sequences need to be deleted.

Thus, we propose a VR environment for A/D simulation particularly suited for scientific

and industrial applications. The component models are acquired through a STEP file coming

from a CAD software (see details in Chapter 4).

2.8 Conclusion

Despite of their many advantages, the majority of the A/D methods related with VR

technology, a part of which were described above, have certain shortcomings to make them

convenient for industrial applications.

Most of the recent works on A/D related with VR technology focus on the simulation

itself. They try to build an environment to assembly or disassembly products and to compare

the simulation results with the results of real A/D process. Some commercial software and

tools were also proposed to perform ergonomic evaluation during A/D. However, as

mentioned before, this evaluation is relatively expensive and often used only by mass

production industries. Moreover, VR-based applications use real-time interactions and

immersive techniques allowing enlarging the user perception of digital models. For

disassembly operation simulations, relative mobility between components becomes also a

major issue to reduce the simulation time and improve the efficiency of digital models.

After reviewing some current approaches, a part of which was presented here above, it

can be stated that the existing VR approaches still have limitations in evaluation of

disassembly sequences complexity. So, there is a strong need to evaluate disassembly

operation for immersive simulations with a larger set of possible movements and to get more

realistic results. In addition, when haptic devices are used, penetrations due to collision

detections can be avoided and the quality of the user’s feedback can be improved. For this

purpose component mobility need to be characterized to specify constraints associated to

haptic devices during the A/D process simulation.

This chapter aimed to provide arguments concerning additional scientific developments

in order to propose a new software tools more suitable and effective than the existing ones.

These elements represent an introduction to Chapter 4 which will focus more on the detailed

description of the proposed tool.

49

3 Chapter 3

Method for disassembly sequences generation

For disassembly it is important to eliminate the components unrelated to the target prior

to sequence generation. In order to address this configuration, a method for generating the

feasible disassembly sequences for selective disassembly is presented in this chapter. It is based

on the lowest levels of a disassembly product graph. Instead of considering the geometric

constrains for each pair of components, the proposed method considers the sets of disassembly

for removal (SDR) and collisions among the components in order to generate the Disassembly

Geometry Contacting Graph (DGCG). It is built according to proposed three micro units, which

consider all the possible situations of relationships, among the components in the DGCG. The

latter is after then used for disassembly sequence generation. The method allows reducing the

number of possible disassembly sequence by ignoring the unrelated components with the target.

It is applied for automatic generation of the selective disassembly sequences for different

assemblies and is illustrated through two examples.

50

3.1 Introduction

Disassembly sequencing involves the search for all possible ways for disassembling and

often selecting the optimum solution out of these. For the company, the improvement of the

recyclability performance of their products is becoming an integral part in the product

development process (PDP). Let us note that there are two major key concepts related with

the disassembly applications. The first one is that considering the whole life of a product,

designers have to integrate assembly and disassembly (A/D) operations in the earlier stage of

a product design. The other concept is that today disassembly is based on the so called

concept of “selling use” instead of selling products.

According to the assessment, the summary synthesis and the critical analysis presented

in Chapter 1 almost all the methods related with the disassembly sequencing in the literature

have some shortcomings. Thus, the aim of our thesis is to establish a simplified model for

disassembly sequence generation. Let us remember that for interactive methods for

disassembly sequencing generation, the operator is not always the designer, and often is not

familiar with the structure of the product which led to the interruption of product design

information. Thus, it will be great trouble for the operator to answer questionnaires about the

product. For automatic methods, the graph based methods and Artificial Intelligence (AI)

methods often focus on the theories development and have difficulties to consider complex

products with multiple relationships among their components. Few other methods answer the

question how to use the relationships in real product in order to automatically build the

corresponding graph. In this chapter, a new method for selective disassembly based on the

Disassembly Geometry Contacting Graph (DGCG) is presented. We claim that it is better

than the method of DSSG proposed by [Smi 11, Smi 12] as it enables all the removing

directions of the components to be taken into consideration. Instead of considering the

disassembly direction, often limited in number of 4 or 6, our method focuses on the sets of

disassembly for removal (SDR), including: both translation and rotation movements, and

collision detection as well. The method is also better than the wave propagation method [Sri

00, Sri 99b] as its computation complexity O(sm(n-1)) is lower than the computation

complexity O(sm2) of the wave propagation method thus reducing the number of search

iterations to generate the possible disassembly sequences (m is the number of components in

an assembly, s is the number of targets and n the number of level in the disassembly graph

(see Sections 3.3)

51

Let note, that the method includes also optimization aspect as well because it converges

to the minimum number of possible disassembly sequences. Thanks to the established DGCG

graph, it allows generating the minimum number of possible disassembly sequences and

rapidly converging to the solution. For this purpose prior to sequence generation, all the

unrelated components with the target(s) are eliminated from the graph and the searching

process automatically stops when the target(s) is (are) reached. The unrelated components are

the set of components which remind in the assembly. They have not to be moved in order to

reach the target(s) and consequently they do not appear in the graph. Our research is focused

on selective non-destructive disassembling, rather than on destructive or complete

disassembling (see Chapter1).

3.2 Relative concepts and definitions

Before presenting our methods, let us remember that disassembly models are often

based on graph representation of the product where vertices represent parts, and edges

constraints or contacts. Graphs can generally be converted into matrices for computation. In

order to reduce the complexity of selective disassembly sequences generation, our approach

uses the concept of the Gaussian sphere [Pom 04, Woo 91, Woo 94]. The related main issues

for product disassembly are presented with some details in the following paragraphs.

3.2.1 Contact identification

 For contact identification the so called contact identification operator proposed in [Iac

08, Iac10] is used. The realized simulation framework Simpoly [Iac 08, Iac 10] automates the

contact identification and offers a more robust approach for further usage of haptic devices.

Thanks to the developed software, the operator can identify the different types of contacts in

the assembly. The user has to select the components in the assembly tree built from the 3D

model (STEP format) file where contact identification should be performed. If two

components at least are selected, Simpoly generates a List of Bodies intersecting each other.

To achieve this, the bounding box of each component is used in order to check the

intersection between the bodies and speed up the process.

3.2.2 Set of directions for removal (SDR)

In order to represent all possible movements of translation and rotation for a part, we

applied the set of directions for removal (SDR) approach proposed by [Sid 97]. SDR

represents all the possible separation directions of a component with regards to the other

52

components in the product. The basic idea of this approach is using the contact surfaces to

determine the SDR. In [Woo 91] Woo and Dutta proposed an automated approache for

disassembly path generation based on determining the pole vector of the Gauss unite

hemisphere. Later the SDR method was modified by [Pom 04]. Authors described a method,

based on the non-destructive disassembly plan, called modeling of assemblies, which allows

determining the disassembly path and its optimization with adaptive planning after

determining each movement of the components. The disassembly model is generated

automatically from the CAD design of the product. The proposed model, not only facilitates

the determination of the directions of removal for each component. It allows also capturing

the necessary information for simulation of the disassembly process.

To remove the target component from a product, each contact needs to be checked first

in order to get its possible SDR. If a component is free in the space, it can be moved by

translation, rotation and helical motions in any direction. So, for a free component, its SDR in

Gaussian sphere presentation will be the full sphere. If a contact between two components

exists, Plan Fit contact for instance (see Fig. 3.1a), the contact surface restricts the directions

along which the component may be removed, thus reducing the Gaussian sphere to a half.

Another example with two Plan Fit contacts reduces the Gaussian sphere to a quarter, as

shown in Fig.3.1b. Note that SDR concept concerns both components and contacts.

 (a) (b)

 Figure 3.1 SDR using Gaussian sphere based method.

From Fig. 3.1(a) and (b), it is seen that there are one and two mating faces respectively.

If considering a sphere of unit radius (Gauss unite sphere), a mating face divides the sphere

into two hemispheres. The hemisphere, labeled Hi, which corresponds to the outward pointing

unit normal of the mating face, conserves the sets of direction for removal (SDR).

 !" = ∏ $%&%'� (3-1)

where N is the number of the mating faces for the components. If the foot of the normal to the i-

53

th mating face is the pole, Pi (xi, yi, zi) of the hemisphere Hi, then:

 	(%(+ *%* + +%+ ≥ 0 (3-2)

and the analytical equation of the hemisphere Hi, containing all the sets of direction for removal

is:

 x2+y2+z2=1 (3-3)

Therefore, for the SDR, according the eq. (2-3) and (3-3), the function (1-3) can be calculated

from the intersection of these hemispheres:

 !" = - (� + *� + +� = 1	(�(+ *�* + +�+ ≥ 0. ∩ - (� + *� + +� = 1	(�(+ *�* + +�+ ≥ 0.	⋯∩ - (� + *� + +� = 1	(&(+ *&* + +&+ ≥ 0.
(3-4)

 This can be represented as following:

 !" = {23(, *, +4|(� + *� + +� = 1, 	(�(+ *�* + +�+ ≥ 0, 6 = 1,2, … , 8} (3-5)

Siddique and Rosen [Sid 97] presented a four steps algorithm related with SDR determination.

The algorithm consists in:

• Step 1: Determination of the vectors in SDR.

For any vector r (x, y, z) in the whole space, normalize the vector to satisfy the

equation (3-4), then check whether the unite vector meets all the inequality

conditions. For example, if in a point (x1,y1,z1), xix+yiy+ziz<0, vector r cannot be

a feasible removal direction. This will just need O(n+1) time calculation for

checking the feasibility of a direction.

• Step 2: Determination of the bound of the removal space.

For each pole, first normalize the pole (here pole stands for vector) and then find

rotation to move pole away from the Oxy plane such that the points are still in

the hemisphere that can determine the required rotations. Then use central

projection to map all the points corresponding to the poles onto the z=1 plane,

which can construct the largest convex containing all the poles based on the

convex hull algorithm. At last, map the points that define the boundary of the

convex hull back to the unit sphere.

54

• Step 3: Explicitly constructing the feasible removal direction space.

First: for each plane, defined by Step 2, compute the intersection with adjacent

plane which can be done by cross vector product of the normal vectors to the two

planes.

Second: the order of the intersection can be determined by traversing the planes

in the same order as the convex hull, by using the Step 2.

• Step 4: Feasible removal directions for fits mating conditions.

First: gather the axes of all the fits mating conditions.

Second: check if all the axes are parallel. If so, determine if the axes lie in SDR.

According to the mating conditions of the target component with its surrounding

parts, the SDR for this target component are computed. If axes lie in SDR, the

target component may be disassembled.

A method for automatic generation of the disassembly path in a virtual environment was

proposed by [Mo 02]. The method’s algorithm is similar to this of Siddique and Rosen [Sid

97].

Figure 3.2 Disassembly directionality [Mo 02]

55

3.2.3 Approximation of the shape

In order to automatically get SDR from the CAD design of the product, its shape should

be modeled as polyhedron. However, not all the 3D models are composed with only

polyhedral shapes. Thus, a method for non-polyhedral shape using shape polyhedron

approximation was proposed by Pomares et al. in [Pom 04]. Fig. 3.3 shows the approximation

of the shape of a screw to a polyhedron taking different resolutions into consideration and

using different qualities for the representation.

Every polyhedron can be presented by a set of intersected flat surfaces. To each surface

a normal vector v, directed outwards from the polyhedron is associated. Beside it, a point is

required in order to get the complete equation for the polyhedron. For any surface, Si, two

parameters are necessary in order to define the plane which can be presented as	3v;�<<<<<=, P?�4,
where 1 indicates the initial position of the surface of the polyhedron. Thus, for any

translation matrix T, the new values for the assembly/disassembly removing direction of each

surface are: @v;�<<<<<=,						p?BCD = T ∙ 	 @v;�<<<<<=,						p?BC, where T represents the set of translation that the surface

has undergone.

With our method, the constraint directions are divided into two types. The first one is

the SDR, which stands for the possible removing direction of the part in the assembly. The

other one is collision detection during disassembly in the range of SDR. These two aspects are

presented in the next.

Figure 3.3 Approximation of the shape of a screw to a polyhedron [Pom 04].

56

3.2.4 Geometric feasibility

The set of direction for removal (SDR) concerns the freedom of the components in the

assemblies. In order to disassemble a component from an assembly, after having its SDR, the

component also needs free path for its disassembling without collision with other parts. If two

subassemblies of components can be assembled or disassembled without collision this

situation is called Geometric feasibility. The latter represents the free path of assembly and

disassembly [Su 07]. In order to explain the concept of geometric feasibility, Fig. 3.4 shows

some typical constraint directions. The arrows represent the limits of the possible removal

directions of part B according to part A.

Figure 3.4 Typical constraint directions

a) Basic notions and definitions

The relationships among parts can be described using the following concept. Let consider

a box composed by two parts (body B and cover A), and parts C, D and E inside thus defining

the assembly N= {A,B,C,D,E} (see Fig. 3.5).

Figure 3.5 An assembly’s draft

57

As shown in this figure the constraint directions that limit to remove E out of the box are

d1 and d2 (limited by the Cover A) and d3 and d4 (limited by the body B). Thus, the relationships

among parts can be described using the following definitions:

Constraint directions (CD) are the set of possible moving directions of a part limited by

the dimensions of another part. The CD of part E according to parts A and B for assembly N=

{A,B,C,D,E} can be presented respectively as:

 CDEB= (d�, d�4
 CDEA= (d	, d
4

Therefore, for an assembly, the constraint direction S= {A, B} of the assembly state to part

E can be calculated as:

 CDES= (d	, d
4 ∪	3d�, d�4 = [0, 2π) =I

If the directions set I = [0, 2π), it implies that E is completely constrained in all the

directions in S.

 The constraint direction of certain assembly state S can be calculated by

 CD?L = ⋃ iϵsCD?B (3-6)

Constraint assembly state (CAS)

The constraint assembly state is the state that a part is completely blocked in an assembly.

It allows to measure the sets of constrain direction for a particular part labeled,	CASS� = {A, B}
where 1 means the minimal number of parts (here A and B) for the constraint assembly state of

the particular part E. If we consider the other parts which may bloc E (here C and D), the

respective Constraint assembly states are: CASS� = {A, B, C} and CASS	 = {A, B, C, D}
It is easy to find out that CASS� is the smallest. Thus, it is called the minimal constraint

assembly state of E. It can be used for the possibility evaluation of disassembly. If the minimal

constraint assembly state of a part is less than the directions set I= [0, 2π] for a component in an

assembly, this component can be disassembled.

3.2.5 Collision detection

After obtaining SDR, the next issue is the detection of collisions which may occur during

the disassembly process. The Extrusion operation method, proposed by Cameron in [Cam 90], is

one of the most common way for collision detection. The Extrusion operation involves

58

transforming the collision detection problem into an intersection detection problem over the 3D

space. Note, that the disadvantage of this method is its high cost of explicit computation. In

order to avoid this explicit computation, other methods use Projection calculation [Jim 01]

instead of the extrusion operation. The projection calculation method, consists in projecting the

volume of the parts onto a lower-dimensional subspace in a given projection direction. This

leads to swept volume approach as shown in Fig 3.6 [Jim 01]. If the swept volumes for the

objects (parts) in a scene do not intersect in a given projection direction, there is no collision

happening among them in this direction. Thus, the projection is defined as the direction of the

extrusion. Projection allows the transition from 3D to 2D representation. Note, that the

projection process is static, meaning that there is no motion of the parts. Only projections are

done in order to pass from 3D to 2D representation. Thus, if there is collision in 2D this means

that there will be a real collision between the 3D parts.

X

Y

Z Projection

Swept volume

 Figure 3.6 Swept volumes for two components.

As previously said, by using the projection method, a transition from 3D to 2D

representation appears. Thus, for a product the lower (2D) dimensional subspace in this situation

is like a convex hull, as shown in Fig.3.7. Only the components that can be moved out of the

convex hull can be disassembled in a direction of SDR. If swept volume has no intersection with

any other components when the projection reaches the convex hull, this component can be

disassembled. This is the component N° 5 as shown in Fig.3.7. It is defined by its biggest

dimension, here the distance AB, which limits the bandwidth of the projection area of the SDR.

Let us note that a component in a product cannot be disassembled for two reasons. The

first one is that there is no SDR. The second reason is the presence of collision with other

components in the direction of projection. Those two aspects are integrated in the method

59

proposed in the next sections of this chapter.

pr
oj
ec
tio
n

pr
eje
cti
on

Figure 3.7 Set of directions of removal (SDR) and Collision Detection

3.3 Disassembly Geometry Contacting Graph definition

Based on modular product design, the consideration of disassembly of modular units is

important. In reality, sometimes it is possible to separate several modules and reach the target

component instead of disassembling the components one by one. If this is the case, each module

is considered as one component. Thus, the proposed method is based on two main steps. The

first one consists in building the Disassembly Geometry Contacting Graph (DGCG) of the

product. The second one consists in generating of disassembly sequences.

3.3.1 Disassembly Geometry Contacting Graph (DGCG)

It is assumed that if parts are welded they appear as one complex part in the graph. Thus,

building the DGCG allows minimizing the complexity of the model for disassembly sequence

generation.

The DGCG aims to divide the components related with the targets into different

disassembly levels according to their abilities to be disassembled. For example, if some

components can be disassembled directly, without removing other components, we called them

1-st-disassembly level components. Consider a product (assembly) containing m components.

For each of the components, the SDR and the collision detection are checked. Then, after m

60

iterations, the 1st-disassembly level components1 are obtained. Again, recheck the remaining

components on the condition of the 1st-disassembly components have been already removed.

Thus, the 2-nd-disassembly components are obtained and so on.

In order to generate the sequences according to DGCG graph, the reasons why some

components cannot be disassembled in the preceding levels need to be checked as well. For

example, in Fig 3.8, component 4 can be disassembled in level 2. Thus, the reason why

component 4 cannot be disassembled in level 1 needs to be recorded. Component 7 can be

disassembled in level 3. The reasons why it cannot be disassembled in the upper levels 2 and 1

need to be recorded for the later sequences generation analysis and so on. When the target

component is reached the process for building the DGCG stops automatically.

Therefore, the key points of the proposed method are that not only it obtains the

disassembly level for each related component but also involves the reasons why a component

cannot be disassembled in the prior levels.

1,4
1C

5
1NS 2,6

1C

2,7
1C

4,7
2C

8
1NS

5,9
2C

2,9
1C

5,8
2C

XL
nC ,

1−

1
LNS

Figure 3.8 A general case of DGCG.

1 In order to simplify the terminology the “i-th-disassembly level components” will be called simply “i-th-
disassembly components”

61

As shown in Fig 3.8, the edges between the 1-st-disassembly components and the other

remaining components are cutting off in order to obtain a new SDR. However, the 1-

disassembly components need to be included in the collision detection as well. For example, if

we want to get collision information about component 4, the edge between 4 and 1 is cut off.

Thus, component 1 will be moved out and components 2 and 3 will still remain there for

collision detection checking.

The following notations are involved in the graph:

- if component i cannot be disassembled in level n because of collision with the

component j, it is labeled by �U%,V,
- if component i cannot be disassembled in level n because of no SDR, it is labeled by 8 U% .

Conventionally, the components from the same disassembly level are represented by the

same color in the DGCG. In order to reduce the complexity, and consequently, the computational

effort and time, it is supposed that the fasteners (specified by squares in the graph) can only move

in one direction. They do not need to be involved in the calculation of SDR because, by definition,

they are supposed to have SDR. So, for a fastener in the assembly, the SDR calculation results will

only be in one direction along with the centre line of the fasteners (screw, bolt), as shown in Fig

3.9.

Figure 3.9 Set of direction for removal (SDR) of fasteners.

Generally the fasteners should be the 1-st-disassembly components. If it is not the case, it

means that they have collided with some other components. As seen from Fig.3.8, component 4

cannot be disassembled in the first level because of the collision with component 1, labeled as

(C�
,�4. Component 8 cannot be disassembled in level 1 because of no SDR, labeled as 3NS��4. It
cannot be disassembled in level 2 either because of the collision with component 5 labeled as 3C��,�4. The detailed flow chart for generating the disassembly geometry contacting graph (DGCG)

is shown in Fig. 3.10. It consists in three main steps:

62

yx
nC ,

1+

x
nNS 1+

 legend: ODE Geoms (Open Dynamics Engine library)

x, y, … stands for any component in the product

Figure 3.10 Flow chart for DGCG generating

- First, the 3D component models of the assembly are imported in the realized software

through a XML file coming from a CAD software. Each model is followed by ODE (Open

63

Dynamics Engine) Geoms model which is used to detect the contacts among the components (see

Chapter 4). Then the contacts’ arcs among the components are built.

- Secondly, the analysis of the components’ type and the collisions are performed. If the

component is not a fastener, check the SDR. If the component is a fastener, just the collision

information is checked. If it has a collision with some parts, build the related collision arcs and

record that the component cannot be disassembled in this level because of the collision. If there is

no collision, the component can be disassembled in this level.

- Third, removed components can be disassembled in the upper levels, cut off the arcs,

recheck the remaining components again and so on.

Note that the process for building the DGCG, stops when all the targets appear in it. Based

on the flow chart presented in Fig. 3.10 a pseudo code associated to the method was developed for

implementation (Table3.1)

Table 3.1 Pseudo code of disassembly geometry contacting graph building

Initialization

n= 0: level

x, y…: any component

A : any product for disassembly

∀ Target x∈A , following “Ode Geom”, then Building contact lines according to the contacting

information.

Loop: x ==bolts or nuts?

 Loop1: If yes, collision with any other component (y)?

 If yes, record XUY�Z,[

 Else, component x belongs to n+1 level

 Loop2: All targets reached?

 If yes, End

 Else the entire remaining components reached?

 If not, x++, (go to loop)

 Else, cutting components (n+1 level), x points to one of the remaining

components,

(go to loop)

 Else, SDR>=0?

 If yes, go to collision detection (go to loop1)

 Else, record		8 UY�Z , go to the entire remaining components reached (go to loop2).

3.3.2 Three Micro-units

The next step consists in generating the disassembly sequences according to DGCG. For this

64

purpose three cases, called micro units, which consider all the possible situations of relationships,

among the components in the DGCG are addressed (Fig. 3.11). Suppose x is the target component.

x
iNS 2−
wx

iC ,
1−

wx
iC ,

1−

vx
iC ,

2−
x
iNS 2−
x
iNS 1−

 a) b) c)

 Figure 3.11 Three types of Micro units for DGCG building.

Case1: Micro-unit 1. Transition from No SDR (NS) to Collision (C).

In micro-unit 1 (Fig. 3.11a), suppose the target component x is in collision with component

w in level (i-1), labeled as C?\�],^. Suppose also it has no SDR, in level (i-2), labeled asNS?\�] .

Component w has to be moved before the target component x because of	C?\�],^. Therefore the next

target, called auxiliary target, should be component w. However, if the component w is in the

lower level instead (means that component w cannot be disassembled before component x), in this

case, component y should be the auxiliary target because it connects with component x. Although

x has a collision with w, but after removing component y, component x can change its direction of

disassembly. Therefore, the component y removing cancels the collision between x and w. As

seen from Fig 3.11, component x has changed its status from 	NS?\�] in level (i-2) to C?\�],^ in level

(i-1). It means that component x cannot be disassembled in level (i-2) because of no SDR. After

removing the components in level (i-2), component x cannot be disassembled because of collision

in (i-1) level (C?\�],^). Therefore, the components in level (i-2) connected with the target component

x are responsible for this change (called also transition). Thus, component z should be

disassembled first to reach component x.

In order to illustrate this case, a relatively simple example is shown in Fig. 3.12a. The target

component x is connected with component y by two fasteners z. Component w is the ground

component defined as the components upon which, stands the rest of the assembly. In order to

obtain SDR, fasteners z should be moved first. Then component x will have a collision with

component w. However, it is not possible to remove w before component x because component w

is the ground part. Therefore component y, being in contact with x, should be disassembled instead.

After removing component y, component x will have new SDR thus avoiding collision with

65

component w. Consequently, the disassembly sequence is x→{z,y,x}. In this notation, x is the

target component, {z,y,x} is the feasible disassembly sequence.

 a) b)

 Figure 3.12 Examples for micro-units.

Case 2: Micro-unit 2. Transition from Collision (C) to Collision (C)

 In micro-unit 2 (Fig. 3.12b.), suppose target x is in collision with w in level (i-1) labeled as C?\�],^ .

Suppose it has also collision with component v, in level (i-2), labeled as C?\�],_ in . (Rq. Component

v, which stands for any component in the product, is not shown in the figure). If component v is

supposed to be component w, the auxiliary target should be w. If component v is distinct from w

and its disassembly level is the same or upper than the level w (it means the component v can be

disassembled before or at the same time with the component w), v should be the next disassembled

component. For example, in Fig. 3.12b, target x will have collision with component v after

removing fasteners z between x and y. In the same way, according to the relationships between y

and x, after removing y, component x will have collision with w. After removing component y, the

collision of x will change into collision with w. As the removal of component y causes this

transition, it should be disassembled before w. If the disassembly level of component v is lower

than the level w, component v will be ignored. The components connected with the target x in

level (i-2) should be responsible for this transition from C?\�],^ to C?\�],_ . Both y and w should be the

targets in order to get x. Component y should be the auxiliary target before x. Thus, the

disassembly sequence is: x→{z, y, w, x}.

Case 3: Micro-unit 3. Transition from no SDR (NS) to no SDR (NS)

If the target component x (in level i) cannot be disassembled in level i-1 because of no SDR

labeled NS?\�] , all the components connected with x in the upper levels should be the next auxiliary

66

targets. Because x cannot get SDR, it is necessary to move its surrounding components (to get the

SDR). As shown in micro-unit 3 (Fig. 3.11c), components y and z should be the next auxiliary

targets. This means that if the target does not have collision with any components, the components

in the upper levels connected with the target should be disassembled in order to get the SDR.

The pseudo codes for the three types of Micro units are shown in Table 3.2.

Let us note that there is no case of transition from Collision (C) to no-SDR (NS). In fact,

when collision happens, it means that the moving component already had its SDR in the

considered level, and consequently it is not possible for it to change into No SDR in the lower

levels. Let us note also that, for any target component connected with fasteners, the latter should be

disassembled first, if it is possible of course. If fasteners cannot be the 1-st-disassembly

components, it means that they have collision with some other components. Consequently, these

collision components should be disassembled before the fasteners.

Table 3.2 Three micro-unit pseudo codes

Micro-unit 1 Micro-unit 2 Micro-unit 3
A: stands for any product for disassembly
y: stands for component connected with component x in i-2 level
For ∀ Target x ∈A , in i level
take 	�%\�Z,a,
 If level (w)<level(x),
 return target component w, y
 else: return target components
y
end for

For ∀ Target x ∈A , in i level
Take,�%\�Z,a and �%\�Z,b ,
 If w==v, return w,
else if level(v)<=level(w), return v
else return targets components
 connected with x in (i-2) level
end for

For ∀ Target x ∈A , in i level
 For j=0 to i:
Return target components
connected
with x in j level
 J++
 end for
end for

Legend: level (x): the level of part x

According to the proposed three cases the disassembly sequences can be performed. For

instance, if component 8 is the target component (see Fig. 3.8) it cannot be disassembled because

of no SDR in level 1 (NS��). It also has collision with component 5 at level 2 (C��,�). This situation

belongs to case 1. As component 1 is fastener connected with 8, it should be moved first to get

SDR. Then component 5 must be moved according to case 1. But, in order to get component 5,

component 2 must be moved first according to case 3. Thus, the sequences will be {1,2,5,8} or

{2,1,5,8}. As components 1 and 2 belong to the same (here first) level, both sequences (1,2) or (2,1)

are possible. Consequently, the sequences order for target component 8 is 8→{(1,2),5,8}. In this

notation, the components in brackets mean that they can be disassembled in any order, here (1,2)

or (2,1).

67

Based on the three cases, addressed here above, the flow chart for determination of the

feasible disassembly sequences is shown in Fig.3.13.

The proposed method gives the feasible disassembly sequences, according to the least level

of disassembly, which may result in many sequences if there are two or more components lying in

the same level. For example, if two components are connected by fasteners, any of them may be

disassembled firstly if they have not collision with some other components of course. For this

situation, it is difficult even meaningless to decide the bolts disassembling order.

Compared with other methods, our method is more efficient. It may be evaluated by its

complexity O(sm(n-1)) which is lower than the computation complexity O(sm2) of the wave

propagation method as mentioned in §3.1. Our method removes the useless sequences as the

problem for product disassembly is transferred from an invert tree search problem. For a complex

product, for instance, if the target component is in the upper level of disassembly, the lower level

components can be deleted directly thus reducing the computational effort and time for sequences

generation. Based on the Flow Chart for Disassembly sequences generation presented in Fig. 3.13

a pseudo code associated to the method was developed for implementation (see Table 3.3).

68

 Figure 3.13 Flow Chart for Disassembly sequences generation

x
iNS 1−

yx
iC ,

1−

x
iNS 1−

yx
iC ,

1−
zx

iC ,
2−

x
iNS 2−

zx
iC ,

2−

x
iNS 2−

yxC ,
1

xNS1

xNS1

yxC ,
1

69

Table 3.3 Pseudo code for sequences generation.

B: stands for the targets list
x,v : any component
For ∀ Target x ∈B ,
i= level (x) > 2?:
 If yes, �%\�Z,[or8 %\�Z ?
If �%\�Z,[: �%\�Z,c or 8 %\�Z ?
 If �%\�Z,c : Micro-unit 2 (Table 2)
 Else 8 %\�Z : Micro-unit 1(Table 2)
 Else 8 %\�Z : Micro-unit 3 (Table 2)
 Else, i==2?:
 If yes :��Z,[or 8 �Z
If ��Z,[: level(component y)==1?
 If yes: component y is first (target components order)
 Else: components in level 1 connected with x (target components
order),
 Else: 	8 �Z: components in level 1 connected with x (target components
order),end
 Else: target components order
End for

3.4 Cases studies

The proposed method was tested for disassembly operations simulation of mechanical and

electromechanical assemblies with different degrees of complexity. Two examples: electrical

motor (Fig. 3.14) and the wrist of a five degrees of freedom robot arm (Fig. 3.15) are presented

here below.

Figure 3.14 An example of electrical motor with sixteen components

70

As previously said, the fasteners connecting two parts are counted as one connection. Thus,

in Fig.3.14 screw 11, for example, stands for all the screws connecting Cover 5 and Box 2. In Fig.

3.15 bolt 3, for example, stands for all the bolts connecting coupling 4 and cover 2.

Figure 3.15 Five degree of freedom robot arm with eighteen components

 If the target components are respectively cover 5 for the electrical motor (Fig. 3.14)

and the Motors 5 and 13 for the robot arm, thanks to the proposed method the disassembly

process is performed by the following two steps:

3.4.1 Building the Disassembly Geometry Contacting Graph (DGCG)

Figure 3.16 DGCG for Cover 5 of the electrical Motor.

13
1NS

13
2NS

13
3NS

2
1NS

14
1NS
14
2NS

12
1NS

12
2NS

12,8
3C

16
1NS

6
1NS 10

1NS

3
1NS
3
2NS

4
1NS
4
2NS

8
1NS
8
2NS

5
1NS
5
2NS
5
3NS
13,5

4C

71

According to the relations among the components in the assembly, and the flow chart for

disassembly geometry contacting graph (DGCG) generating (Fig. 3.10), the realized computer

application allows building the associated DGCGs. Thus, the two five levels DGCG for the

electrical motor and the robot arm are built as shown in Fig. 3.16 and Fig 3.17 respectively.

13
1NS
13
2NS
13
3NS
18,13

4C

4
1NS 8

1NS

2
1NS
2
2NS

10
1NS

10
2NS

5
1NS
5
2NS
1,5

3C

12
1NS
12
2NS

12
3NS

1
1NS
5,1

2C
5,1

3C
5,1

4C

Figure 3.17 DGCG for Motors 5 and 13 of the five degrees of freedom robot arm.

3.4.2 Sequences generation for one target of electrical motor

As previously said, the associate DGCG (Fig. 3.16) is assimilated like an inverted tree. From

the graph, it is seen that the target component 5 can be disassembled in level 5. It cannot be

moved in level 4 because of the collision with component 13 3C
�,�	4. Therefore, according the case

1, the next target component should be component 13.

In levels 3, 2 and 1, the component 5 does not have SDR, therefore, according the case 3,

components 3, 4 and 6 (connected with the target) should be disassembled first.

Then, component 13 is the target. From the DGCG in Fig.3.16 is seen that component 13

cannot be disassembled in the upper level because on No SDR. Therefore, the next target should

be 14 (connected with 13). The reason that target 14can not be disassembled in the upper levels is

the same as the component 13, namely No SDR. Therefore, the next targets should be components

2 and 1.

For component 3 disassembling, according to the case 3, components 2 and 11, connected

with 3 should be removed previously. For component 6 disassembling, component 11 should be

disassembled first. All these relationships amongst the parts in the DGCG are presented as

disassembly order graph (DOG) in Fig. 3.18. DOG is generated manually. It allows generating the

72

disassembly order for the target component in the inverse arrow side.

Figure 3.18 Disassembly order graph for component Cover 5 (see Fig. 3.14).

 The twenty four possible disassembly sequences generated by the realized Python

computer program, based on the proposed DGCG method are presented in Fig. 3.19. According

to the relationships amongst the components, all these sequences are possible. However at this

stage of the study we cannot evaluate the best one.

Figure 3.19 Possible Disassembly Sequences for Cover 5.

3.4.3 Sequences generation for two targets of robot arm

Let us start by the first target component, namely Motor 5 in Fig. 3.15. The reason that it

cannot be moved in level 3 is its collision with component 1 3C	�,�4. In the upper levels (number of

level smaller than 4), there is no component 1. Therefore, according to case 1, the next target

component should be component 2, which is connected with 5. In this case, removing the contact

between 2 and 5 provides the other direction for disassembling component 5 allowing to stop the

collision between 5 and 1, as described in case 1. Therefore component 5 cannot be disassembled

in level 3 because of component 2 which cancels the collision between component 5 and

component 1 3C	�,�4. Component 5 cannot be disassembled in level 2 either because of the No

73

SDR	3NS��). The transition from 3NS��) to 3C	�,�4 happens after removing components 4 and 8.

Note that only component 4 has contact with the target component 5. Therefore component 4 is

responsible for this change and its removal provides the SDR for component 5. Consequently, the

disassembly sequence for component 5 is 5→ {2,4,5}.

Then, component 2 is the target, called auxiliary target, because its level is lower than the

level of component 4. Thus, component 2 can be disassembled in level 2. According to the DGCG

(see Fig. 3.17), it has No SDR in the 1-st and 2-nd levels (NS��, NS��), which belongs to the Micro-

unit 3 described in case 3. Therefore, all components connected with component 2 in the upper

levels should be the auxiliary targets. Bolts 3 and 6 in level 1 are connected with component 2.

Therefore they need to be removed firstly. After removing these bolts, component 4 moving

provides SDR for component 2. Thus, the sequence should be 2→{(3,6),4,2}.(3,6)}.

Then component 4 becomes the auxiliary target, which can be disassembled in level 2 as

seen in Fig. 3.17. Note that it cannot be disassembled in level 1 because of the No SDR (NS�
4.
According to case 3, component 3 removal can provide the SDR. Therefore, the sequence is

4→{3,4}.

According to the above description, the DOG for target component Motor 5 is built as shown

in Fig. 3.20(a). Note that it can be simplified in the so called reduced graph by drawing out, in the

lower level, components 3 and 4 as shown in Fig. 3.20(b). Thus, the disassembly sequence for

target 5 is 5→{(3,6),4,2,5}.

Figure 3.20 Disassembly order graph for component 5(a) and its reduced graph (b).

The same analysis can be done for the other target component, namely Motor 13, which has:

collision with component 18 in level 4 (C
�	,��4 and No SDR in level 33NS	�	4 as shown in Fig.

3.17. The component 18 is not shown in the DGCG, because the calculation algorithm for DGCG

74

building stops when the targets, here components 5, and 13, are reached. Which means that

component’s 18 disassembly level is much lower than the targets level. According to case 1,

component 10 removal gives the SDR for component 13. Component 12 removal provides free of

collision movement for component 13. Consequently, the sequence should be 13→{12,10,13}.

Concerning the auxiliary target 12, it cannot be disassembled because of No SDR in levels 1,

2, and 3 3NS���, NS���, NS	��4 . According to case 3 and case 4, the sequence should be

12→{10,(11,15),12}.

Concerning the auxiliary target 10, it cannot be disassembled in levels 1 and 2 because of No

SDR 3NS���, NS���4. According to case 3 the sequence should be 10→ {8, (9,11),10}.

Finally, for the auxiliary target 8, it cannot be disassembled in level 1 because of No SDR 3NS��4. Thus, the sequence should be 8→ {(7,9),8}.

 Figure 3.21 . Disassembly order graph for component 13 a). and its associate reduced graph b).

Consequently, for target 13, the disassembly order graph and its associate reduced graph are

shown in Fig.3.21 (a) and Fig.3.21 (b) respectively. Thus, the sequences for disassembly of

component 13 is (see Fig. 3.21 b): 13→{(7,9),8,11,10,15,12,13}.

The input 3D assembly models are based on VTK (Visualization Toolkit) library and

acquired through a VRML files coming from CAD software. The contact identification is based on

ODE Geom (Open Dynamics Engine) libraries (see Chapter4). The results of generating the

feasible sequences for target components 5 and 13 for the five degrees of freedom robot arm are

shown in Fig. 3.22. Note, that there are three possible sequences for target component 5 (Fig. 3.22a)

and forty eight for target component 13 (Fig. 3.22b).

According to the proposed method only the related components with the target are

75

considered, and the process stops automatically when the target component is reached. For target 5

for instance, only components 2, 4, 3 and 6 appear in the sequences, all of its unrelated

components are removed from the graph thus minimizing the model complexity and search time. It

may be noted, that the computation resource and consequently cpu time are related with the

number of components (m) in an assembly, and the number of targets (s) to be disassembled.

(a) disassembly sequences for target Motor 5

(b) disassembly sequences for target Motor 13

 Figure 3.22 Possible disassembly sequences for Motors 5 and 13.

For example, the wave propagation algorithm of Srinivasan and Gadh [Sri, 99a] is of

complexity O(sm2). However, our method’s complexity is O(sm(n-1)),where n is the number of

level in the graph allowing reaching the target. The disassembly level n is far less than the number

of components m (n<m) thus allowing reducing computational effort and time as we claimed in the

Introduction of this Chapter (Section 3.1).

3.4.4 Summary

The disassembly order graph is like a problem of inverted tree containing a minimum set

of components related with the target component disassembly. Thus, the unrelated components

are eliminated in order to reduce calculation resources. For the example of Cover 5 (Fig. 3.14)

there are 15 components involved in the DGCG. If components 10 or 6, for instance, are

supposed to be the targets, there will be only 8 components involved in the DGCG. Thus, the

twenty four possible sequences are generated according to the DGCG, based on the least level of

disassembly method.

The reason for these different possible sequences generated is the presence of more

components in the same disassembly level that can be removed in any order. However, in the

76

real disassembly process, the purpose of the upper level components disassembly is to get the

lower level component, which means if there is a chance to disassemble the lower level

component, it should be disassembled first. Thus, for Cover 5 it took 30ms CPU for its

sequences generation.

3.5 Conclusion

In this Chapter a new method for disassembly sequences generation, we called “least level

of disassembly graph method” is presented. Sequences’ generation is based on the notion of

disassembly geometry contacting graph DGCG. The graph is built on the collision and SDR

detection analyses for each given component in an assembly. With the investigated three cases,

the method eliminates all the components unrelated with the targets.

The DGCG model contains a minimum set of components related with the target. Thus,

the unrelated components are eliminated in order to reduce the computational resource. Our

method can generate the sequences for any kinds of complexity of products. With DGCG, the

possible sequences are easily to be generated considering the least level of disassembly.

As we previously said, if some of the components are grouping in modular units (modules)

every module can be considered as one component thus simplifying the DGCG graph and

consequently reducing sequencing search time.

77

4 Chapter 4

Virtual Reality Environment for disassembly

simulation: sequences generation and evaluation

This chapter presents the basic concept of the virtual reality environment upon which

the application for disassembly operations simulation (generation and evaluation) is realized.

First, the 3D graphics pipeline in general is presented. Then, the key technologies and

devices of the developed virtual reality disassembly environment (VRDE) based on Python

programming language and utilizing mixed VTK (Visualization Toolkit) and ODE (Open

Dynamics Engine) libraries are detailed.

78

4.1 Introduction

 Virtual reality (VR) technology plays a vital role in simulating advanced 3D human-

computer interaction by providing users with different kinds of sensations (visual, auditory,

haptic, …). Virtual disassembly simulations allow designer to evaluate concepts in virtual

environments during the early stages of product design. With virtual prototyping applications,

the optimal design process for design for assembly (DFA) can be incorporated easily in the

conceptual design stage. Using haptic or auditory technology, allows designers to interact

with the parts with the human basic emotions. Thus, collision detection and contact force are

transmitted to the operator in real time.

4.2 3D graphics pipeline in general

In order to present the 3D graphic systems the basic and some more important concepts

related with 3D graphics are addressed here below. Various transformations in 3D graphics

consist in taking an object in 3D and displacing it on the screen while keeping the illusion of

depth in the scene. The common way to perform these transformations for each step of the

pipeline is to use vectors or matrix calculation, which are presented here below.

4.2.1 Right-Handed and Left-Handed coordinate systems

In VTK library (see Section 4.3) all the rotations and translations are depending on the

utilized coordinate systems. For this purpose the later are recalled briefly.

Figure 4.1 Left-Handed coordinate systems.

For 3D objects visualization most of the existing 3D graphic Systems use the classical

“Cartesian Coordinate System” which main property is that the cardinal axes are

perpendicular. It consists in.

79

• Stretch left Arm and form a 90° angle with Elbow.

• Point with Thumb to the right side (+x).

• Point with Pointing Finger up (+y).

• Point with Middle Finger in z direction.

If the middle finger is pointed to the +z direction, the hand is forming a left-handed coordinate

system as shown as Fig. 4.1. On the contrary, if the direction is the –z direction, it forms the

right hand coordinate system. The coordinate system is very important concept for 3D

graphics, because all the matrix calculations related with transformations (rotations and

translations) are based on the coordinate system. For example, positive rotation is clockwise

about the axis of rotation in the left hand coordinate systems. Positive rotation is counter-

clockwise about the axis of rotation in the right hand coordinate systems.

Most of typical 3D graphic libraries for example OPEGL and VTK based are using right hand

coordinate system. Normally Direct 3D library uses the left hand coordinate system instead.

4.2.2 Coordinate systems in 3D scene

• Graphical overview of the Transformation

 The process of displaying a 3D scene in computer graphics is assimilated like taking a

photo with a camera. There are four matrix transformations among four different coordinate

spaces as shown in Fig.4.2. The transformation process consists in:

1. Put the objects (or models, or avatar) in the world (Model Transformation or World

transformation).

2. Define the Position and orientation of the camera (View transformation).

3. Select the camera lens (wide angle, normal or telescopic), adjust the focus length and

zoom factor to set the camera's field of view (Projection transformation).

4. Showing the image on a selected area of the object (Viewport transformation)

In computer graphics, the transform for a vertex V from one coordinate space to another space

V' is carried out by multiplying the vector with a transformation matrix M, i.e., V' = M V.

80

Figure 4.2 Transformation pipeline overview

4.2.3 Model or World transformation

 Each object in a 3D scene is defined by its own coordinate system, named as its model

space. Model (or World) transformations allow to place an object anywhere within the 3D

world. They can change the position (translation), orientation (rotation) or size (scaling) of an

object as shown in Fig. 4.2. This figure shows a cube that has to be first rotated about its

center, and then translated to the position in the world frame. This is known as the model

transformation of world transformation. The latter consists in scaling, rotation and

translation of an object in order to match the dimension of the world. Note that the

transformation is presented by the basic movements of translation, rotation and scaling.

• Translation
 Let us consider the example for the transformation of a vertex v. In (x, y, z), coordinate

system, the vertex can be presented as a vector:

 d = e(*+f (4-1)

81

 This classical presentation is based on the right hand coordinate. Note, that for left hand

coordinate, it can be presented as row vector. In the next, all the calculations, if not specified,

are based on right hand coordinate system.

 Let us suppose to move vertex v to a distance	g = hi�i�i	j. Its new position is:	
 Lv = h(+ i�* + i�+ + i�j (4-2)

For matrix calculation there is no properly matrix that can be used directly. Therefore,

homogenous coordinates representing of a 4-coordinates vector is used.

The vertex				d′ = l(*+1m has an additional forth w-component of 1. If w≠1, then (x, y, z, w)

corresponds to Cartesian coordinates (x/w, y/w, z/w). If w=0, it represents a vector, instead of

a point (or vertex). If the vertices are represented in the 4-component homogeneous

coordinates (x, y, z, 1) the homogeneous matrix is:

 T= n1 00 1 0 i�0 i�0 00 0 1 i	0 1o (4-2)

Therefore,

 p ∙ dq = n1 00 1 0 i�0 i�0 00 0 1 i	0 1o 	 ∙ l
(*+1m = ni� + (i� + *i	 + +1 o (4-3)

where the last column of matrix T: g = ni�i�i	1o is the translation vector.

• Rotation

For the unit circle (Fig.4.3):

x1=cos (a1), y1=sin (a1), x2=cos(a1+a2), y2=sin(a1+a2).

 x2=cos (a1+a2)=cosa1cosa2 - sina1sina2=x1cosa2-y1sina2

 y2=sin (a1+a2) = sina1cosa2 + cosa1sina2 = x1sina2+y1cosa2

82

Figure 4.3 Rotation in the unit radius cycle

The rotation matrix around z axis is:

"c 	= ncos t� −sin t�sin t� 		cos t� 0 00 00 											00 											0 1 00 1o

So,		"c ∙ d′=ncos t� −sin t�sin t� 		cos t� 0 00 00 											00 											0 1 00 1o ∙ l
(*+1m=n

(Xwxt2 − *x6yt2	*	Xwxt2	 + 	(x6yt2+1 o

For 3D rotations about y and x axes the rotation matrices are respectively:

"[= lcos t� 			00 			1 − sin t� 00 0sin t� 			00 			0 	cos t� 00 1 m

"Z 	= n1 								00 								cos t� 0 0− sin t�	 00 								sin t�0 					0 	cos t� 			00 		1 o

• Scaling

The purpose of scaling transformation is to either increase or decrease the size of the object. A

3D scaling can be represented in a 3x3 matrix:

S=	lxZ 0 00 x[00 0 xcm

83

where sx, sy and sz represent the scaling factors in x, y and z directions, respectively. If all the

factors are the same, it is the so called uniform scaling.

The transformed result V' of vertex V can be obtained via matrix multiplication, as follows:

 S.v=	lxZ 0 00 x[00 0 xcm 	 ∙ e
(*+f = h(. xZ*. x[+. xc j

• Combination of the transformations

In most cases it is necessary to scale the object in order to fit it with the 3D world: rotate it

into the required orientation, move it somewhere, etc. In order to perform the above series of

transformations the vertex position have to by multiplied by the first transformation matrix

and then the obtained result to be multiplied by the next transformation and so on.

Thus, a successive affine transformations (R1, R2, T1, T2, T3 ...) operating on a vertex V can be

computed via concatenated matrix multiplications V' = ...T3T2T1R1R2R1 V. Note, that the

order of matrices is influencing the results of the position of 3D object. In 3D graphics it is

common to scale the object first, then to rotate it and following by a translation then apply

camera transformation and finally project it to 2D.

(a) Translation first. (b) Rotation first.

 Figure 4.4 Rotations and translations.

Let us consider the translation first. In this case, it is difficult to set the object position in

the world. In fact, when moving the object away from the origin and then rotate it, it goes

around the origin which actually means that we translate it again as shown in Figure 4.4(a).

By rotating first and then translating we disconnect the dependency between the two

operations as shown in Fig.4.4 (b). This is why it is always better to model around the origin

84

as symmetrically as possible. That way when later we scale or rotate there is no side effect

and the rotated or scaled object remains symmetrical as before.

4.2.4 View transformation

After arranging the objects in the 3D world, the next task is to define the camera

position in the World space. This process is called view transformation (see Fig.4.2 ○2).

In the most application cases, there are two ways for moving one object in the virtual

environment. One is moving the object itself as presented in Section 4.2.5 here above. The

other way is moving the position of the camera. In reality, we want to have freedom to place

the camera anywhere in the world and project the vertices in a 2D plane in front of it. This

will reflect the correct relation between the camera and the object on the screen. So, if it is

necessary to move the camera, there are two steps to do it.

The first one is to translate the camera to the original position of world space which is

easy to realize. If the camera position is (d1, d2, d3) and the translation transformation is (-d1,-

d2,-d3), the associate homogenous matrix of the view is:

pb%{a = n1 00 1 0 −|�0 −|�0 00 0 1 −|	0 1 o
In this way, the camera is in the original position of world space.

The next step consists in rotating the camera toward the target in world space coordinates. In

fact, it is necessary to find out the location of the vertices in the new coordinate system that

the camera defines. Therefore, x2= }�<<<<<~ ∙ 	0(�<<<<<<~.

Figure 4.5 Coordinate transformations

85

In 3D graphics, the camera is positioned onto the world space by specifying three

vectors in world space. For this solution, called UVN camera the position of the camera is

defined by the following vectors (Fig. 4.6):

• N(Nx, Ny, Nz) - The vector from the camera position to the target. This vector

corresponds to the Z axis (labeled by N “Normal”).

• V(Vx,Vy,Vz) - The upside vector from operator’s head to the sky if the camera is

standing upright. This vector corresponds to the Y axis (labeled by V “Vertical”).

• U(Ux, Uy, Uz) - The vector points from the camera to its "right" side" when the

camera is pointed at the target, in such a way that N,V,U (here U corresponds to the X

axis) form Direct-Ortho-Normal coordinate system.

 Figure 4.6 Camera space

The view homogenous matrix (in rotation only) is:

Rview=n�(�(�*�* �+�+ 008(0 8*0 8+0 01o

 Finally, the view homogenous matrix combining the two operations (rotation and translation)
is:

	�b%{a =RviewTview=n�(�(�*�* �+�+ 008(0 8*0 8+0 01o n
1 00 1 0 −|�0 −|�0 00 0 1 −|	0 1 o

86

4.2.5 Projection

After moving the camera, the next issue is to define what can be seen from the scene. This is

done by selecting a projection mode (perspective or orthogonal) and specifying a viewing

volume or clipping volume. Objects outside this volume are clipped out of the scene and

consequently cannot be seen.

Before introducing the clipping volume, there are two notions that need to be defined namely:

projection plane and projection window. The projection plane is a plane which is parallel to

the Oxy plane in the camera space. Obviously, not the entire projection plane is visible. Only

stuff in a rectangular area (called projection window) can be seen which has the same

proportions of the screen.

Figure 4.7 Projection plan and window

In general, the height of the screen w is defined into the unit size. Therefore, the height of the

window will be 2. The distance between the projection planes and the camera is d. It is

obviously that tan ���� = 1/| =>| = 1/tan	3��4.	 For a given point (x, y, z) in the 3D world

we want to find its projected coordinates (xw, yw) on the projection plane. For the yw

component, y/z= yw/d => yw= yd/z , therefore: *a=
[�������.c

For the xw component,

 x/z= xw/d => xw= xd/z, therefore: (a=
Z�������.c

87

The size of the projection window has to be considered as well. Usually, the height of

component (yw) is normalized, thus the projected Y component is ranging between (-1, +1).

Concerning the component (xw), its width will be 2*scale. If the height of the window is (-1,

+1), the width will range between (-scale, scale). For a common 1024x728 screen for

example, the scale is 1.333. In this way, the division by the aspect ratio has the effect of

condensing the points on the xw axis. Thus:

 																			*a=
[�������.c (4-4)

and 																			(a=
ZL����∙�������.c																							 (4-5)

In this way, the projection window position of the objects can be gotten from their position in

3D world by eq. (4-4) and (4-5).

 Note, that, z component should not influent the position of xw and yw. It should be used for the

depth test in 3D model displaying process. The trick is to normalize the value z for all the

vertices. Thus, all the positions in 3D world are divided by the z value. However, the original

z value must be saved in order to perform the depth test later on. So the trick is to copy the

original z value into the w value.

In this way, the components’ position (x,y,z,w) in the projection window are:

 l(a*a0� m =
���
���

�����{∙��U���� 0 0 							0
0 ���U����			 0 							000 00 0	0 						 00��

���
� ∙ l(*+�m (4-6)

 It is pointed out that, the components’ position in the projection window is not related with

the z value. At the same time, the z value is saved into w value for later depth testing.

However, the whole process is not finished yet. The remaining problem is how to use the

value z in order to perform the depth testing. According to eq. (4-6), all the z will become 0.

For depth testing, as shown in Fig.4.8, the z value should be in the view volume Z-near ≤Z ≤

Z-far.

88

Figure 4.8 Depth testing.

After dividing all the positions of 3D model in 3D world by z, all the value should be mapped

to [-1, 1] range. Let consider the function of projection f(z)=Az +B, where A and B are

arbitrary constants to be calculated such as A+B/s should be in [-1, 1]. Thus, the last problem

is to find the right A and B. As seen from Fig.4.8, when z= Znear, A+B/z=-1.

Therefore,

 A+B/zNear=-1 (4-7)

Similarly,

A+B/Z-far=1 (4-8)

From equations (4-7) and (4-8) we have: B=
�∙c���∙c&{��c&{��\c��� and A=

\c&{��\c���c&{��\c��� .

Consequently: Xw=p.X, or l (a*a+��x�1 m = 2 ∙ l(*+1m							

where: p=

��
��
�� �����{∙��U���� 0 0 																			0

0 ���U����			 0 																			0
00 00 �∙c���∙c&{��	c&{��\c���		1 \c&{��\c���c&{��\c���0 ��

��
��
 is the projection matrix.

89

4.2.6 Viewport Transformation

Firstly, all 3D objects have to be imported into world space. Secondly, they have to be

transformed into the camera space. Then all the positions of 3D model have to be projected

into 2D computer screen. At last, all the positions have to be shown in a rectangular display

area on the screen window. This area is called viewport which is measured in the screen’s

coordinates. This viewport is defining the size and the shape of the displaying area for

mapping the projected scene captured by the camera onto the window. This shape area can be

or not the entire screen.

 In 3D graphics, a viewport is 3D view to support z-ordering, which is needed for situations

such as ordering of overlapping windows. The Viewport Transformation is calculated by the

so called viewport matrix. This matrix is calculated by the product of the following three

matrixes. The first one, called reflection of y –axis, is defined as:

 M1=l1 			0 			0 							00 	−1	 			0 							000 			00 			1	0 						 00m
Then, after reflecting of all the data, it has to be scaled according to the size of computer

screen or the size we want to define. The scaling matrix is:

 M2= n�/2 			0 															0 																			00 	ℎ/2	 																0							 												000 			00 			�t(� −�6y�	0 						 00o
The third matrix represents the translation of the data origin to the center of the screen or the

place we defined before. The translation homogenous matrix is:

 M3= n1 			0 					0 								�6y� + �/20 				1	 				0 							�6y� + ℎ/200 			00 			1	0 																		 �6y�1 o

Thus, the viewport matrix is M viewport= M3M2M1.

4.3 Visualization Toolkit

After presenting the general pipeline of the 3D graphic here above, the purpose of this section

is to do an overview of the Visualization Toolkit (VTK) upon which the proposed application

(in C++, Python) is built.

90

In the application, VTK library is used for displaying 3D model. It is an open-source, freely

available software system for 3D computer graphics, image processing and visualization. The

central structure of the Visualization Toolkit may be represented as a pipeline of data, starting

from a source of information and arriving to an image rendered on the screen.

4.3.1 Pipeline for VTK

 VTK is freely available open-source system for 3D computer graphics, image processing

and visualization. The object oriented VTK is rapidly becoming the standard for scientific

visualization toolkits [Sch 96, Kok 07]. This is an open source class library containing a large

number of functionalities for scientific data presentation.

Figure 4.9 Pipeline for VTK library.

The pipeline for VTK can be described as following (Fig 4.9):

• Sources

 Sources are the data needed to be shown on the screen. Basically, two kinds of sources

are available for application. First are the Readers, which are used for reading data out of files

in a range of formats. The other kind of sources is generated by functions or other data flow

based on the input parameters (e.g. a cone source, which generates information describing a

cone by its radius and height). In general, any VTK component that does not receive a flow of

data from some other VTK component can be considered as a source.

• Filters

 Before showing the 3D date (sources) on the screen, Filters may be used in order to

modify the data in some way. For example, Filters may extract some portion of a large data

set or subsample data sets from a coarser resolution to a finer resolution, and merge multiple

data into a combined output. The key concept of Filters is that they can be optional

91

components of the VTK pipeline. Thus, VTK can include more than one filter, often three or

more.

• Mappers

 After filtering, all data can be transferred to "Mappers". “Map” the data from source file

to a physical manifestation can be performed by the rendering engine. However, sometimes it

is possible to confuse Mappers with the Filters. An easy way to distinguish them is to divide

the pipeline into two segments. First is the data processing segment including sources and

filters. The second segment is the image processing segment which includes actors, renderers

and windows. Mappers serve as the transition between the two segments. The data through

the mappers is used as input for the Actors. Note, that Filters cannot be used as way for

changing the sources data. The data through the filters can be used as input for the other

Filters or other Mappers.

• Actors

 All the data from the Mappers is used as input for the Actors. We can consider that

Actors are a physical representation of the data which control the adjustment and appearance

properties of the physical manifestation of the data, for example color, transparency etc.

• Render

 Render and windows are the last item of VTK pipeline, which are in charge of

visualization on the screen.

 Note that the data function for VTK is very powerful, allowing to display any kinds of

shade function as shown in Figure 4.10.

 Figure 4.10 VTK examples

 For interaction with the data, VTK employs the concepts of picking and 3D widgets.

Picking is used to select objects in the visualization, while widgets to interact with objects in

92

specific ways. A widget has a visual representation within the 3D visualization. It defines

the behavior that is executed when the widget is manipulated. Simple examples of 3D

widgets are: the point widget for probing object information; the box widget for positioning,

rotating, and scaling of objects, the spline widget for defining a spline by editing control

points, etc. These entire characters of VTK are a good choice for the 3D model visualization

in the virtual reality system we have developed (see Section 4.4.5).

4.4 Collision Detection Based On VTK and ODE

 Fast and robust 3D collision detection algorithms are always required in the applications

of Computer Graphics. As we are aware, there are four groups of algorithms for collision

detection namely: space-time intersection, swept volume interference, multiple interference

detection and trajectory parameterization. All of them are intended to be of practical use. The

simplest decisional collision detection problem usually is described as follows: A set of

objects move over a certain time span, to determine whether any pair will come into contact.

The more intricate version always needs to find the time and features involved in the collision.

These aspects are presented in the following section.

4.4.1 Open Dynamics Engine (ODE)

 ODE is a free, industrial quality library for simulating rigid multi body dynamics, which

is the invisible model for the collision detection and force feedback. In order to solve the

problem of a polyhedral approximation, the constraint based modeling is proposed by ODE.

ODE developed by Russell Smith, http://www.q12.org/ode/, is particularly good for

simulating moving objects in changeable virtual reality environments. This is because it is fast,

robust and stable, and the user has complete freedom to change the structure of the system

even while the simulation is running. Those are the principal reasons for choosing ODE. In

addition it has hard contacts, which means that a special no-penetration constraint is used

whenever two bodies collide. In ODE, the joint is a relationship that is enforced between two

bodies so that they can only have certain positions and orientations relative to each other. This

relationship is called a constraint. Note that words joint and constraint are often used

interchangeably. Figure 4.11 shows six different constraint types.

93

 ODE “robot” joints: A ball joint, a hinge and a slider.

Figure 4.11 ODE’s special purpose joints. Different constraint types.

4.4.2 VTK actors connection with ODE models

 In VTK, the 3D models are presented by Actors. During the disassembly process it is

necessary to get the position and the orientation of the objects in ODE, and to resend them to

the center of Actors in VTK in real time. In order to apply constraint forces to an object in the

ODE world, a model called Body is created inside containing full information for the part

such as: material, mass, dimensions, inertia, gravity center etc. At the same time, another

model called Geometry is defined for presenting the shape information of the part. It is used

to detect collisions between bodies and affect forces among them. In this way, the collision is

detected in real time and the force feedback forces the moving path to change its directions.

However, ODE does not have its own 3D objects rendering library. ODE has his own library

for drawing the feature in the screen, called DrawStuff:

 (http://robotics.naist.jp/~akihikoy/doxy/ode0.9/group__drawstuff.html#_details).

Note, that DrawStuff cannot meet our requirements since it is not convenient for interaction

with the objects. Therefore, we provide the VTK library for the interaction with the 3D

models for the interaction parts. As previous said, in VTK, the 3D models are presented by

Actors. What we need to do is to get the position and rotation of objects in ODE and resend

them to the center of Actors in VTK in real time. The relationships of the objects in VTK and

ODE are shown as in Fig. 4.12, where two followings are appearing. The center of GEOM is

following with the position of the BODY. The center of Actor is following by the Position of

the ODE object. In fact the purpose is to realize the interaction of ODE objects. The world

94

object is a container for rigid bodies and joints. Objects in different worlds cannot interact, for

example rigid bodies from two different worlds cannot collide.

Figure 4.12 Relationships between VTK and ODE

In the first impression, this model is perfect for the interaction with the ODE model. However,

when we try to realize the whole process, there are two loops in the flow chart (Figure 4.13)

that have to be executed simultaneously. Loop1 is the interaction with the model performed

with VTK. Loop2 is the collision detection performed with ODE.

Figure 4.13 Flow Chart for Disassembly collision detection.

95

 In the disassembly process, these two loops affect the position of the parts’ models

created by VTK. Two facts have to be considered during the disassembly simulation. The first

one is that all the assembly parts components are connected to each other and the distances

among them are zero (without gaps). So, during collision detection, if the distance is zero, all

the parts are supposed to collide in the initial phase and the algorithm for collision detection

will not be able to run. Sometimes it is even possible to cause the system crash.

 The other fact is when the target part is colliding with other components. In this case the

target has to change its original moving direction due to the feedback force. However, the

other components of the assembly will remain in their initial position because of the friction.

 In order to detect collisions, two methods are applied. The first one is the so called space

collision detection algorithm. It consists in detecting the collision between parts in the

different ODE spaces and ignoring the collision if the models belong to the same ODE space.

When a 3D assembly is imported in the ODE (WRL format), all its parts are put in the same

ODE space. Then, the collision detection is performed only between components belonging to

different ODE spaces. When a component is disassembled, its ODE space changes, then space

collision detection algorithm is called by clicking on ODE button on the disassembly

simulation interface (see Section 4.4.5).

 The other method for collision detection is using the so called Kinematic criteria of ODE

mass method. For every ODE body, there is one mass associated to it. If the mass of the ODE

Kinematic is active, the associated model is too heavy to be moved by the collision detection

force feedback. Thus, the method can be used to simulate the unmovable characters of the

components because of the friction influence (see Section 4.4.5).

4.4.3 Stereo Rendering

There are some techniques allowing simulating 3D graphic on a 2D display device such as:

using perspective and scale, shading to confer depth, motion/animation to see all the sides and

so on. However, the most effective way is binocular parallax, which is a result of viewing 3D

objects with our two eyes. Since each eye receives a slightly different view (Fig.4.14), our

mind interprets these differences to determine the depth of the picture. Most 3D movies take

advantage this principle to realize the 3D vision (wearing special glasses when watching the

movie). In the evaluation of sequences of disassembly, this effect can be valuable to provide

the real disassembly environment for product disassembly evaluation and the stereo viewing

can help in determining the relative positions of each component. In order to generate correct

96

left and right eye view differences, the proper method for rendering the binocular parallax is

the key.

Figure 4.14 . Binocular parallax technique for stereo rendering

Most methods for Stereo Rendering are based on: time multiplexed or time parallel techniques.

Time multiplexed techniques relay on the alternating images. When they are viewed with both

eyes, they appear as one image that keeping jumping from left to right. A special glass is

designed so that each lens consists for a liquid crystal shutter that can either be transparent or

opaque. It makes sure the left eye image is being displayed, the user’s left eye can see and

similarly for the right eye. This method requires viewing images on a television, not the

monitor connected to computer. Time parallel techniques can display the images of two eyes

in the same time. The two separate screens are generated for each of the eye. To generate the

two video streams, the technique needs either two graphic cards or one cart able to generate

separated outputs. The biggest disadvantage to this approach is the cost of the hardware

required. There are still two other technologies for stereo rendering implemented using the

above two techniques. The first one is red-bleu (red-green or red-cyan) stereo which is

requiring to wear glasses that filter the entering light. Left eye can only see the image a red

filter and the right through a blue filter. The benefits for this method are that all the images

can be displayed on a monitor, paper or film, and all one needs to view them is an inexpensive

97

pair of glass. The second technique is to separate the different views by using polarized lights.

In our application, we have chosen the techniques for stereo rendering using VTK library.

Time multiplexed techniques images are shown as in Fig. 4.15.

 Figure 4.15 Stereo Rendering.

4.4.4 Force feedback and Virtuose 6D35- 45

In order to perform the disassembly operation simulations we choose Virtuose 6D35-45. It is
a six degrees-of-freedom (DOF) haptic device, specifically designed for application in VR
environment. It is especially recommended for scale 1 manipulation of virtual objects such as
assembly/disassembly simulation, ergonomic studies or maintenance training. Modular in
design, it can be purchased as a 3-DOF device, and later upgraded to 6-DOF. The main
characteristics of the used Virtuose we uszd, available in GINOVA Platform, Grenoble INP
are:

• Workspace: 450 mm

• Maximum force: 35 N

• Continual force: 10 N

• Maximum torque: 3 Nm

• Continuous torque: 1 Nm

The original library is on C++. Then C++ library is changed to Python. And finally Python is
used to connect with the Virtuose 6D35- 45 arm.

98

4.4.5 The whole VRDE environment

The whole system is based on Python language. (part of the code is presented in Appendix A).

The outputs are 3D sound and stereo displays. The interface is developed based on

Visualization Toolkit (VTK) library. We provide VTK library for creation and interaction with

the 3D models. In order to prevent interfering paths generation, the real time collision

detection is developed based on the ODE (Open Dynamics Engine library). As previously

said, ODE is particularly adapted for simulating moving objects in VR environments thanks

to its advantages, namely: robustness and stability. At the same time the user may change the

structure of the system in real time.

The developed software can support WRL and STL format files. In the example presented

here below, the Solidworks models were imported in the application in STL format (Fig.4.16).

In order to count the pixel for visual score (VS) calculation, the target’s color (here in red)

should be different from the other components (details are presented in Chapter 5).

Figure 4.16 Virtual platform Interface

99

4.5 Conclusion

 In this chapter, the related technique of 3D graphic pipeline and a new application for

virtual simulation based on Python programming language associated with VTK and ODE

libraries were introduced. The related device for the performed experiments and the collision

detection algorithm was also introduced. The application is the principle software used for

performing disassembly operation simulations and two examples for disassembly simulation

are presented in Chapter 5. At this stage we can say, that the software can be naturally

adopted by a variety of virtual environment applications for A/D sequences evaluation.

100

5 Chapter 5

Method for disassembly operations’

efficiency evaluation. Integration in Virtual

reality environment

This chapter presents a method for evaluation of disassembly sequences. The design of

a virtual environment and the implementation of a computer application that supports the

evaluation of disassembly sequences are presented as well. The main objective of such

application is to help designers analyzing the difficulty of disassembly operation execution in

a virtual reality environment (VRE). For this purpose seven criteria, divided in two

categories: for ergonomical and traditional processing evaluation are proposed. The criteria

are presented by dimensionless coefficients automatically calculated by the realized

application thus allowing evaluating disassembly sequences.

101

5.1 Introduction

As discussed in Chapter 3, for disassembly it is important to eliminate the components

which are unrelated to the target components prior to sequence generation. Considering the

least level of disassembly graph method for generating all the possible sequences, how to

choose one with the least cost value in the real disassembly process is still an issue. Thus, the

evaluation method within the virtual environment to value the disassembly sequences is

proposed in this chapter. The proposed method for disassembly operation evaluation deals

with the following two aspects:

• Considering Ergonomic parameters in virtual reality environment (VRE).

In the Design for manufacturability (DFM) principle and in particular in the Design for

Disassembly (DFD), an operator is often involved in order to test two concerns namely:

his/her posture and the visibility of the disassembly parts. One effective and common method

for ergonomic evaluation of A/D operations is using a digital mock-up (DMU) in a VRE.

DMU is a realistic computer simulation of a product containing all the required functionalities

for design, manufacturing and product service environment. The methods for ergonomic

evaluation in virtual environment (VE) often involve a human model.

 At the same time, those methods are relatively costly and time consuming. Thus, their

mainly application is limited in the expensive products’ development fields. This is the reason

that lots of developments involved in VR with human models are limited mainly in big

industries such as: automotive and aerospace. In order to address this limitation of using the

human DMU, a more simplified method is proposed here allowing solving the disassembly

evaluation in VR environment. In this chapter, we provide a new way to evaluate the

difficulty to perform disassembly operation sequences in virtual environment instead.

• Considering the traditional disassembly procedure evaluation method.

 The traditional disassembly procedure evaluation is using a cost function presented in

many works (for more details please referring to Chapter 2). The majority of disassembly

evaluation research focuses on some criteria related to the disassembly process in

manufacturing industry such as: the number of parts involved, the tools changes times, the

stability of sub-assembly, the fixtures etc.

102

5.2 Method for disassembly operations evaluation

In the proposed method, we aim at dealing with various criteria related with disassembly

operation evaluation. The objective is to develop a VR based system enabling interactive

analysis and evaluation of disassembly operation by considering the proposed Ergonomic

Geometric Removability of the components and the traditional processing evaluation. Instead

of ergonomics simulation with a human model, it introduces some new parameters such as:

visibility, neck and bending scores, amongst others, thus allowing performing and evaluating

disassembling task in a VR environment.

5.2.1 Ergonomic Auto Evaluation method

The purpose of disassembly Evaluation is to obtain approximate disassembly time for a

product by using formulas derived from the information pertaining to connect parts instead of

disassembling the product in reality. As we mentioned in Chapter 2 (section 2.4), the purpose

of Ergonomic engineering is trying to fit the task to the human and not the human to the task

where the key point for an effective application is to gain a balance between the human body

characters and the task demands. Thus, in this chapter we propose a method for disassembly

evaluation in VR environment. Instead of focusing on the authenticity assessment by

comparing the results of VR and real task in reality, the proposed Geometric Removability

Analysis method is focusing on the evaluation of disassembly difficulty in VE which consists

in:

• Analysing the Physical position of the operator.

In order to address the Geometric Removability Analysis of disassembly, first a study

should be done on the physical position analysis when the operator disassembles the product

in the VE. For this purpose four geometrical parameters related with the human operation

convenient in the VR environment are proposed (Fig. 5.1):

- the first parameter is angle c1 between the visual direction and the vertical direction,

(less than 90°), if >90°, the operator have to rise his/here neck in order to carry out the task.

The visual direction defines the eyes direction in the VE,

- the second parameter is angle c2, between the visual direction and the component

moving direction (around 45°, if more than 90°, the component cannot be operated properly),

- the two other parameters are the horizontal distance d1 between the operator's position

and the center of component, and the distance d2 between the operator’s eye and the center of

103

the component. They measure whether the operator needs to bend over for completing the

operation. For a disassembly operation, the least value of d1 is normally fixed by the

workspace itself or the fixture. For better visibility d2 must be shorter. In this case the operator

needs to bend over for completing the task.

Figure 5.1 Four geometrical parameters related with the human operation.

• Replacing the human eyes by a camera.

Its principle idea consists in using a camera to replace the operator for automatic

estimation of the ergonomic parameters. However, this method does not consider the VR

environments and the interaction operation during the disassembly process. Here, we propose

using a camera to replace the 3D human model and in particular the eyes of the operator.

Then the analysis of the distance and angle related with the component disassembly operation

direction, and the component position in the VE is used for the removability evaluation by

considering the proposed ergonomic parameters (Fig.5.2).

104

Figure 5.2 Camera as the eyes of the operator.

• Ergonomic Auto evaluation

Three criteria for ergonomic disassembly evaluation are proposed:
i) visibility score (VS)

Replacing the human eyes by a camera has limitations as the human physics is not taken

into account. In order to address the visibility score, the method we propose have to consider

the human physics as well. Thus, in the process of operation, the initial position of the camera

should be the eyes of the operator by considering his/her height (Fig 5.2).

In order to calculate the visibility score for a bolt for example (Fig.5.3 and Fig. 5.5a),

firstly, the camera should be in the direction and the position of the human eyes. In this way,

there are two images taken by a camera. One is the bolt itself noted by red pixels. The other

image is the bolt in the assembly surroundings. The color pixels, here in red, stand for the

visibility of the target part. Then, the numbers of pixels in the two images are counted

automatically in time using open CV library.

Thus, the operations’ ranges should be limited in the movements of human’s head and

body.

In the disassembly model, all previously disassembled parts are displayed in one image taken

by the camera. The color pixels, in red in the sub-assembly (Fig 5.4.a) stand for the visibility

of the target part. In another image, only the disassembly part is displayed (the other parts are

hidden) which shows the maximum visibility for this part (Fig 5.4.b).

105

Figure 5.3 Visibility for a bolt.

It must be noted that, for these two images, the distances between the camera and the

part should be the same. Then, the number of pixels in the two images is automatically

counted. In this way, the ratio of red pixels between the visible portion (Fig5.4.a) and the

whole target part (Fig 5.4.b) is used for measuring the visibility of the concerning target part.

 (a) Target part in the Sub-assembly (b) Target part

 Figure 5.4 Calculation of the visibility score (red highlighted areas).

Thus, the proposed visibility score v is defined as the ratio between the number of red

colored pixels in the current image va of the target part (Fig. 4.a) and the number of red

colored pixels of its whole image vb (Fig. 5.4.b) captured by the camera:

b

a

v

v
=v (5-1)

with vb≠ 0.

106

If there is no obstacle part to hide the target, the visibility score is 1. If the target part is

completely hidden by other parts, the visibility score is 0. Thus, the average visibility for the

disassembly sequence is:

∑

m

=i
iv

m
=V

0

1

 (5-2)

where: m is the number of components in the assembly.

The pixel counting is based on the OpenCV library (http://opencv.org/). In order to

calculate the visibility score and the pixels of the target, its color (here in red) must be

different from the other components in the assembly. For this purpose the other components

are becoming black colored in grey scale as shown in Fig. 5.5b.

a) Mechanical assembly with disassembly targets.

As a result, visibility scores v for the two targets are: Screw 1: v=0.249646393211 and

for Screw 2: v=0.168912236542. Therefore, for human operation Screw 2 is more difficult to

be disassembled in the VR environment as its score is smaller than the score of screw 1.

107

b) . Pixels for screw

 Figure 5.5 Pixel calculation for target components.

ii) Neck score (NS)

Two types of Neck Score are usually used for ergonomic evaluation: component heads

and text heads. Here, we use Rapid Upper Limb Assessment (RULA) algorithm proposed by

McAtamney and Corlett [McA 93] in order to evaluate the exposure of workers to risk of

upper limb disorders.

 Figure 5.6 Neck part from RULA sheet [McA 93].

108

Neck score (NS) measures lateral and forward rotation angles of the neck. There are two

angles susceptible to affect the neck fatigue.

The first one is the forward rotation angle c1 (Fig. 5.1). The forward score F we propose

is:

 F = 1 − 9 \�∗�¢� (5-3)

According to RULA sheet (Fig. 5.6), if angle c1 is more than 90° or less than 70°, the

forward score is 0 (zero).

The other angle is the lateral rotation angle c3 of the neck as shown in Fig 5.7. If the

value of c3 is between 0° and 20°, the lateral rotation score s we propose is:

 s = 1 − 9X	/π (5-4)

Thus the average Neck score NS we propose is:

 NS=
�� 3f + s4=1 − �3�¢Y�¤4� (5-5)

In the realized application, we consider that if the value of c3 is more than 20°, the side

scores for lateral rotation is s=0, which implies that the side bending is too big for the operator.

 Finally, the total neck score NS can be calculated as:

NS=¥ 0																																							3	c1, c3 > 	π/94N = �� 3f + s4 = 1 − �3c1+c34� 3	c1, c3 ≤ �4 (5-6)

 Figure 5.7 Neck lateral rotation.

109

iii) Bending score (BS)

Another parameter which is affecting the ergonomy of the disassembly operation is the

bending score (BS). Its value is calculated from the trunk bending angle as shown in Fig.5.8.

 Figure 5.8 Bend over reference from RULA sheet [McA 93].

If angle c2 ranges from 0° to 60°, BS is defined as:

 BS = 1 − 6X�/π (5-7)

Note that in the worst case (c2>60°), the bending score is 0.

The three score (VS, NS, BS), proposed here above, formulate a strategy to create a

simple analysis for ergonomics evaluation. However, the problem is how to use this approach

in the absence of 3D human model. For this purpose, as previously said, the proposed method

consists in replacing the human model by a camera. The latter is used to detect all the angles

and distance necessary to calculate the overall score of the proposed three ergonomic criteria.

Figure 5.9 Ergonomic angles and Camera position relationship.

110

The proposed procedure using a camera for ergonomic evaluation consists in:

- Define the work environment.

First the target component is set in the OYZ plane (Fig 5.9). Then, the human operation

plane is defined as the parallel plane with OYZ in positive x direction.

 - Define the position of the camera.

 According to the workspace and position of the target component, define the position

of the camera. Note that, the initial position should consider the operator height (size) and the

real distance between the operator and the camera. For example, distances d1 and d2 (Fig.5.1)

should not be too small. Because we use camera, instead of human body, the suitable position

for the camera is not known. Consequently it should be defined by the operator before the

beginning of the disassembly operation.

- Use the camera to detect the geometrical parameters namely: distances d1, d2 and

angles c1, c2 and c3.

 tan	3c14 = [�\[¢	c�\c¢ (5-8)

 																																tan	3c24 = 	[�	c� (5-9)

 																																tan	3c34 = 	[�	Z� (5-10)

Then according to formulas (5-1), (5-5) and (5-7) the overall score OS for the

ergonomic evaluation of disassembly operation is:

 OS=VS+NS+BS (5-11)

It considers in the same time the ergonomic parameters of the operation environment

and the visibility of the components. Note, that they are closely related. For instance, let us

only consider the human comfort. If the visibility score is low, the operation will be difficult

to realize even with high ergonomic score and vice-versa.

• Example of ergonomic disassembly operation evaluation

111

In order to demonstrate and validate the proposed method an example is presented here

below. The case study involved a portion of bolts disassembly operation in the created VR

environment. The original operation using 3D human model is shown as in the Fig.5.10.

Instead, in order to avoid using of 3D human model, a camera is applied which replaces the

eyes of the 3D human model as shown in (Fig.5.11). Experiment consisted on virtual

disassembling two screws from a mechanical assembly (Fig. 5.5a).

Figure 5.10 Disassembly operation case study.

 As previously said, the initial position of the camera should be the eyes of the operator

by considering his/her real height. The activities’ ranges should be limited in the human head

and body’s movable ranges. Note, that this is a little awkward in the scene of the VRE. This

is because, in general, the camera has to observe the objects, and can be moved anywhere if

the operator wants to. However, in our application, the movement of the camera is restricted

in consideration of the human body dimensions.

The mechanical assembly is imported from a CAD system in WRL formats.

In order to prepare the pixel detection for the target components, after importing, the

color of the other components (except the targets) are set into the same grey color as shown in

the Fig.5.5.a.

As presented here above (see Fig. 5.9), the positions of the camera and the object are

first build. Note, that the position of the camera is related with the human height (here 175cm).

112

Figure 5.11 Original positions of the camera and the targets.

Then, the operator may remove or rotate the camera in the convenient position for

observation. When the target is selected, its pixel of image and position are record

automatically for later analyses (Rq. The cursor of the tool is disappearing first in order to

save the image pixels).

Then, angles c1, c2 and c3 are calculated according to the position values of the camera

and the targets (screws), by equations (5-8), (5-9) and (5-10) respectively.

And finally get the overall score OS for the operation difficulty evaluation by eq. (5-11).

Let us note that, the values for visibility of a part depend on the way that the operator is

handling the components in the VRE. Two screws disassembly operation were involved in the

performed experiments for disassembly simulations. According to the proposed method for

disassembly operation evaluation (formulas for the three scores) the results for overall score

(OS) for each disassembly operation (screw 1 and 2) are showing in Table 5.1.

It is seen that screw2 is more painful for the operator neck as NS of Screw 2 is less than

NS of Screw 1. Concerning bending score BS of Screw 2 is smaller than BS of Screw 1 which

means that the operator needs to bend over more for disassembling screw 2.

With regard to visibility score (VS); screw 2 is more difficulty to be seen compared

with screw 1 as its VS is smaller than screw 1.

113

In conclusion, the overall score of Screw 1 is bigger than Screw 2 which indicates that it

will be easier to be disassembled in ergonomic point of view.

 Table 5.1 Overall score for screws disassembly operation

Operations

Geometric Removability Analysis

Visibility score

VS

Neck score

NS

Bending

score

BS

Overall

score

OS

Evaluation

Screw1 0.654334 0.718317 1.0 2,372651 Easy

Screw2 0.547912 0.369079 0.832401 1,749392 Diffcult

5.2.2 Traditional processing evaluation method

 The traditional called also processing disassembly evaluation procedure, instead of

considering the ergonomic evaluation, considers some criteria related with the technological

conditions for disassembly process execution. Thus, we propose four new parameters for

disassembly evaluation presented by dimensionless criteria which are:

• Stability of sub-assembly.

Unlike assembly operations, the stability of the sub-assembly is an important property

for the disassembly operations evaluation. The sub-assembly is defined as the remaining parts

of an assembly (mechanism) after removing the current target part. Thus, sub-assembly

stability is defined as the possibility of the remaining parts to be in steady state when a part is

taken away from the assembly. For unstable sub-assembly disassembling, some extra fixtures

and tools must be involved; otherwise the operation will be dangerous for the operator. For

this purpose gravity is implemented in the proposed method in order to simulate the real

gravitational environment. Thus, the stability score Sta of the sub-assembly is defined by:

m

f
Sta −= 1 (5-12)

 where: f is the number of the components falling, down in the gravitational field,

calculated by the developed software. The value of Sta ranges from 0 to 1. For f=0, the

stability is maximum, consequently Sta=1. The worst situation is for f=m, when Sta=0.

• Number of tools’ changes

114

During disassembly operation the number of tools’ changes is an important factor for

the operation time estimation. For a product with m components, the worst situation for the

number of tools’ changes (n) is when n=m-1. It means that for the disassembly of each part,

the tool has to be changed independently on the number of parts. The dimensionless

coefficient of tools’ changing T is defined as:

 1
1

−
−=

m

n
T

 (5-13)

where m≥2 and n≥0. The value of T ranges from 0 to 1. Obviously, the best situation is

when it is not necessary to change the tool (n=0) to disassemble the components. This is the

ideal situation and T=1. If n=m-1, as mentioned here above, this is the worst situation with

T=0.

• Set of directions for removal (SDR)

As it was said in Chapter 3 (Section 3.2.2) the basic idea here is to use the contact

surfaces of the components in order to determine the required set of directions for removal

(SDR) (Pom 04). SDR represents the possible separation directions of a component with

regard to its surrounding components. To remove the target component from a product, each

of its contacts has to be identified in order to get the possible SDR. Concerning the contact

identification for A/D simulation we used the method of Iacob (Iac 08) based on the analysis

of the functional surfaces of the parts.

For a component moving in 3D environment with 6 DOF, the disassembly directions

are in the 4πr2 surface where r is the radius of the sphere (Fig. 5-12). This surface is the image

of 360° volume angle. Therefore, for any SDR, the disassembly surface for a component is:

 φθθθφ
θφ

ddr=s ∫∫ 0

2

0
sin),((5-14)

where: θ and φ are polar and azimuthal angles respectively.

115

 Figure 5.12 Surface representation of the disassembly angle.

 Consequently, the relative score for the disassembly angle C for a component can be

calculated as the ratio between the disassembly surface angle and the whole surface of the

sphere:

φθθ
ππ

θφ θφ
dd

r

s
=C ∫∫=

002 sin
4

1

4

),(
 (5-15)

We consider that C is the image of SDR in 3D space. The value of C ranges from 0 to 1.

The best situation is when C=1 (all the possible movements are feasible) and the worst one

when C=0 (there are no possible movements).

• Changes of the path orientation

Another essential criterion to estimate the difficulty to disassemble a part is the changes

of path orientation. Let us consider a path and a number of points A, B, C on it situated in

equal distance (step) u mm chosen by the operator (Fig 5-13). At each point, a tangent vector

on the path (curve) is defined. The first one is called referent vector, situated in the beginning

of the curve (here in point A).

Then, the angle α between the referent vector and the next tangent vector, called local

vector, (here at point B) is calculated. If α is smaller than a limit, imposed by the operator, for

example α<<π/3, it is considered that there is no Path orientation changing. Then angle α

between the tangent local vector in point C and the referent vector is calculated. If α is bigger

than the limit, it is considered that the direction has changed. In this case, the local vector

(here in C) becomes the referent vector and so on.

116

Figure 5.13 Path orientation changing.

A dimensionless coefficient P is proposed allowing estimating how many times the path

changes its direction orientation. Thus, the proposed path orientation changing P is:

∑

= +

 −

+

t

i

i

it
=P

0 1

1

1

1 π
α

 (5-16)

where: t is the number of times for orientation changing. The value of P ranges from 0

to 1. The ideal path is when t=0, 0=iα , the path is a straight line, and consequently P=1. For

πα =i , P=0, which is the worst situation. The four criteria presented here above by

dimensionless coefficient are integrated in a Virtual reality disassembly environment (VRDE),

thus allowing to evaluate the disassembly sequences’ complexity.

5.3 Implementation and results

An application for disassembly simulation was developed running on the proposed

virtual reality disassembly environment VRDE (Chapter 4). Here below it is illustrated by an

example of a five-parts mechanism (mechanical assembly) disassembling (Fig. 5-14). The

disassembly experiment consists in moving all the parts from the mechanical assembly to the

destination vertical surface (wall) as shown in Fig. 5-14a. As said in Chapter 4, the collision

detection is performed with ODE. Note, that if a collision happens, the collision force

changes the moving direction of the VTK model.

117

a) Cross section front view of the mechanical assembly

 b) 3D stereoscopic view

 Figure 5.14 Assembly view in virtual reality environment

5.3.1 Simulation process

The process for disassembly simulation evaluation consists in two main steps, namely:

operation and calculation.

(1) Operation (manipulation) of the camera: As previously said, the operator removes or

rotates the camera in a convenient position for observation. As presented in the Visibility

score paragraph and the Example of ergonomic disassembly operation evaluation of Section

5.2.1, the environment coordinates for the camera position and the object position related to

the human height (175cm) are first built. We call this the operation step of the process.

(2) Calculation of the proposed four criteria for technological (tradition processing),

disassembly evaluation namely: disassembly angles or Set of directions for removal (SDR),

118

stability of sub-assembly, time of tools’ changes and path orientation changing by calculating

the proposed dimensionless coefficients. We call this the calculation stem of the process.

 i). Disassembly angle: Set of directions for removal (SDR),

First, SDR is calculated prior to disassembly operation simulation. It consists in detecting

polar and azimuthal angles according to the assembly relationships amongst the corposants.

Thus, the value of C can be gotten in real time by applying eq. (5.14)

 ii). Stability of the sub-assembly

Concerning the stability detection, note that component 5 (Fig. 5-14), being the base

component, is not concerned by falling down under the effect of the gravity. After

disassembling components 1 and 2, if component 5 is the auxiliary target, components 3 and 4

will be in unstable state. In this case, to continue the simulation, additional fixtures for

components 3 and 4 have to be added in order to ensure the stability of the sub-assembly. If a

fixture is necessary to be added to a component, the assembly time will increase. For this

reason, in the realized VR for disassembly sequences’ evaluation, a punishing time for this

component is allocated by the operator.

 iii). Number of tools’ changes

In order to evaluate the criterion number of tools’ changes, it is assumed that for

disassembling components 2 and 3, the same tool is used. However, for disassembling the

other three components, three different tools are used for each of them.

 iv). Change of the path orientation

Concerning the path orientation change, the trajectories of components 3, 4 and 5 in the O,x,y

world coordinate system are shown in Fig. 5.15. Therefore, in this situation, the sub-assembly

(3,4) will be in an unstable state, which will need more fixtures in order to insure the stability.

Note that collision force feedback leads to the turbulence of the path’ curves, as shown in Fig.

5-15.

119

Figure 5.15 Trajectories for components 3 and 4 (unstable state) and the removing part 5 (causing this
instability). (x and y axes are the coordinates of the parts’ center of gravity).

5.3.2 Results

In order to compare the trajectories of the different components, during the disassembly

sequence, the path lines (trajectories) for parts 3, 4 and 5 in O,x,y plane are recorded (Fig.

5.17). There are four possible disassembly sequences for this assembly, namely: {1,2,3,4,5},

{ 1,2,3,5,4}, { 1,2,5,3,4} and {1,2,5,4,3}. It is noted that parts 1 and 2 have the same order in

all these sequences. Their trajectories are the same and consequently it is useless to compare

them.

The paths orientation change being one of the criteria to evaluate the disassembly

operation, the best one, for part 4, belongs to sequences {1,2,5,4,3) (Fig.5.16d) as its path is

nearly straight horizontal line. It may be pointed out that for sequences {1,2,3,5,4} (Fig.5.16b)

and {1,2,5,3,4} (Fig.5.16c) the paths orientation change is also almost in straight lines.

However, the worst path change, for part 4, belongs to sequences {1,2,3,4,5} (Fig.5.16a),

because it requires some steering to reach the destination surface.

cm

cm

120

 (a)

 (b)

cm

cm

121

 (c)

 (d)

 Figure 5.16 Components’ 3, 4 and 5 disassembly paths for the possible disassembly sequences (x and y axes
are the coordinates of the parts’ center of gravity).

After performing the four disassembly sequences, the scores for the four proposed

criteria are calculated (Table 5.2).

122

Table 5.2 Criteria scores for each sequence

Ergonomic evaluation

criteria
Traditional disassembly criteria SUM

Sequences
Visibility
of a part

Neck
score
(NS)

 Bending
score (BS)

Disass-
embly angle

Number of
tools’
changes

Path
orientation
change

Sub-
assembly
stability

(1,2,5,3,4) 0.69857 0.55230 1.0 0.73333 0.0 0.52767 0.6 4.11187

(1,2,5,4,3) 0.68685 0.55230 1.0 0.68499 0.0625 0.52670 0.6 4.11334

(1,2,3,5,4) 0.66321 0.41563 1.0 0.71467 0.1667 0.77778 0.8 4.53799

(1,2,3,4,5) 0.60232 0.32414 0.79550 0.63333 0.1667 0.52123 1 4,04322

The latest column presents the sum of the seven criteria scores for each disassembly

sequence. The higher the value is the better sequence is. Thus, the best one is for sequence

{1,2,3,5,4} with SUM=4.53799.

Let us note that, the values for visibility of a part and path changing depend on the way

that the operator is handling the components in the virtual environment. However, the values

of disassembly angles (SDR), the number of tools’ changes and the stability are not related to

the operator’s abilities and consequently only depend on the mechanical assembly and the

disassembly sequence itself. Two subjects were involved in the performed experiment for

disassembly simulations. In order to improve the reliability of the proposed method, the

average duration of the disassembly time for these two subjects were recorded as well. The

results for average disassembly time for each sequence are shown in Table 5.3.

Table 5.3 Duration time for each sequence

Sequences
Subject 1 time
(seconds)

Subject 2 time
(seconds)

Average time
(seconds)

(1,2,5,3,4) 48.4850001335 46.2220001221 47.3535001278

(1,2,5,4,3) 46.2139999866 44.1860001087 45.2000000476

(1,2,3,5,4) 40.4040000439 39.0890002011 39,7465001225

(1,2,3,4,5) 44.3980000019 44.6011113981 44,4995557000

The shortest time is 39.0890002011 sec for sequence {1,2,3,5,4} performed by Subject 2,

which is consistent with the previous evaluation thus showing that this sequence is the best

evaluated one according to the proposed criteria.

123

5.4 Conclusion

This Chapter introduced a new method for evaluation of disassembly operations in

Virtual Environment which combine ergonomic and traditional processing procedure

evaluations.

Ergonomic evaluation involved detecting the distance and angle between the camera

and the target components in order to evaluate the ergonomic parameters instead of using a

human DMU model. For this purpose three criteria namely: visibility score, neck score and

bending score were proposed. Thus, the overall score of the proposed three criteria gives

enough information about the operation efficiency evaluation from an ergonomic viewpoint.

Concerning the traditional processing evaluation, it included a set of four criteria

namely: disassembly angles, stability of the subassembly, number of tools’ changes and path

direction change. It allows evaluating the disassembly operation complexity during the initial

stage of product design or during the Product Life Cycle (PLC) in: production process,

product maintenance and at the end of PLC. The performed tests, whose a case study was

presented here, demonstrated the efficacy of the proposed method. The score results of the

seven criteria, divided in two categories, allowed selecting the best disassembly sequence. It

was confirmed by experimental test thus allowing validating the proposed method. The

method is validated by developing an application for virtual simulation based on Python

programming language associated with VTK and ODE libraries. The application was tested by

performing disassembly operation simulations evaluation and two examples in the case of five

components disassembly and two screws from a mechanical assembly were presented. Thus,

the method can be naturally adapted to a variety of virtual environment applications for A/D

sequences evaluation. For the traditional processing evaluation the test results showed that the

values of three criteria namely: disassembly angles (SDR), number of tools’ changes and

stability of the sub-assembly only depend on the complexity level of the mechanical assembly

and consequently are not related to the operator’s abilities. On the contrary, the values of:

visibilities of a part and path change strongly depend on the way that the operator is

performing the handling of the components in the VE.

124

 General conclusions

 Some limitations of the available techniques for disassembly operation simulations

stimulated this thesis research on disassembly operations simulation including: sequences

generation and evaluation. Different existing research methods in the field of disassembly

sequencing were presented. We have pointed out that Automatic disassembly sequencing is

an ideal way for the disassembly sequencing. However, there are two major problems in this

field. One is the representing models for the product. There are many graph based methods or

networks as presented above for representing the relationships among the parts in a product.

However, the graph-based techniques for example, do not consider products geometrical

information data bases. As we are aware, there are not works mentioning that these graphs or

networks can be built automatically according to parts relationship in the product. The other

problem is related with the calculation method. Basically, all the graphs can be translated into

matrix calculation for sequences searching or calculation. Many works, based on some

simplifications hypotheses, only focus on four or six directions to disassembly the product

which is easy to transfer the disassembly calculation into the matrix computation model.

However, in the real situation, the components disassembly direction cannot be just in four or

six directions and the rotations have to be taken into account as well. After getting all the

sequences of disassembly, the evaluation will be important for choosing the most efficiency

of them. Thus, the aim of our work was to contribute to modeling of assembly/disassembly

operations: sequences generation and their evaluation in a Virtual reality environment.

1. First, we have presented a method for disassembly sequences generation. The method

consists in setting up a new approach for the sequences’ generation called “lowest level of

disassembly graph method”, which is based on the notion of disassembly geometry contacting

graph (DGCG). The graph is built on collision and set of directions for removal (SDR)

detection for each given component in an assembly. For this purpose three cases, called micro

units, which consider all the possible situations of relationships, among the components in the

DGCG were addressed. With the investigated cases, the proposed method eliminates all the

components which are unrelated to the target. The disassembly order graph is like a problem

of inverted tree containing a minimum set of components related with the target component

disassembly. Thus, the unrelated components are eliminated which allows to reduce the

number of iterations for disassembly sequence generation and consequently search time.

Compared with other existing methods which can be used in some special situations, for

125

example, the direction of disassembly must be certain, or the products must be relatively

simple, our method can generate disassembly sequences for any kind of complexity of

products as the process for DGCG generating automatically stops when the target

component(s) is (are) reached. The efficiency of the proposed method was proved by its

application, for disassembly sequences generation of different mechanical and

electromechanical assemblies.

2. Secondly, our thesis proposed a new method for the evaluation of disassembly

operations. For this purpose two sets of criteria have been proposed. The first one considers

the traditional processing evaluation and consists of four criteria: disassembly angles, stability

of the subassembly, number of tools’ changes and path direction change. Then, the overall

score, defined as the sum of them is automatically calculated by the realized application. It

gives enough information about the operation efficiency evaluation from a technological

(processing) viewpoint and allows evaluating the disassembly operation complexity by

considering the real disassembly process. The second set of criteria concerns the ergonomic

evaluation and consists of: visibility score, neck score and bending score. The purpose of the

Ergonomical assessment being trying to fit the task to the human and not the human to the

task, this evaluation is focusing on the convenient of human body while performing

disassembly operations. Based on the proposed methods for disassembly sequences

generation and disassembly operation evaluation an application for virtual simulation based

on Python programming language associated with VTK and ODE libraries was developed.

The key point for an effective application is to gain a balance between the human body

features and the task demands. Instead of the ergonomics simulation with a human model, the

realized application introduces some new sources in performing disassembling task in a VR

environment.

Thus, the score result of the proposed two sets of criteria allowed to select the best

disassembly sequence. It was confirmed by experimental tests thus allowing validating the

proposed method. Consequently, it can be naturally used to a variety of virtual environment

applications for A/D sequences evaluation. The proposed application can be implemented into

any existing industrial software, or design tools in particular for product disassembly

simulation. The analysis results and findings demonstrate the feasibility of the proposed

approaches, thus providing significant assistance for the evaluation of disassembly sequences

during Product Development Process.

126

Assessment and Prospects

Modelling disassembly operations requires a lot of geometrical, kinematical, technological

and ergonomical data and their synthesis in order to reduce the algorithmic complexity of the

disassembly simulation process. Nowadays, disassembly operation simulation of industrial

products finds a strong interest in interactive simulations through immersive and real-time

schemes.

The majority of the works related with disassembly sequences generation and disassembly

operation evaluation often require tremendous computational resources while, they often fail

to find realistic and optimal solutions for complex products disassembly. Virtual assembly

simulations allow the designer to evaluate the concepts in virtual environments during the

early design stage. With virtual prototyping applications, optimizing design process for the

design for assembly can be incorporated easily in the conceptual design stage. Using haptics

or auditory technology, allows designers to interact with the parts with the human basic

motions.

As known, the number of possible disassembly sequences increases significantly with the

number of parts in a product. Thus, the generation of proper disassembly sequences order is

critical.

In the proposed method for disassembly sequence generation the created DGCG contains a

minimum set of components related to the target. As previously said the unrelated

components are eliminated in order to reduce the number of iterations and search time.

At this stage, the proposed VR environment is not completed because the presented work is

limited only for disassembly sequences generation and their evaluation. However, it is the

base for further extensions and realizations. In a near future it could be the object of a

continuation of studies.

For improvements, we can extend the study in the following direction:

- 1. Concerning the method for disassembly sequences generation in virtual reality

environment; future work will consider the integration of the proposed method for

disassembly process sequence generation and evaluation in a virtual reality (VR) system with

perception model. Considering the lowest level of disassembly to generate the possible

127

sequences, how to choose the best one with lowest cost value in the real disassembly process

is still an issue.

- 2. Concerning the method for evaluation of disassembly sequences the score sums of the

proposed two sets of criteria give enough information about the sequence’s efficacy

evaluation. However at this stage our method does not consider the ranking of the criteria thus

proposed, as they have the same weight. Thus, future work consists in ranking the criteria

according to their importance. For this purpose moderation coefficients can be allocated to

each of them thus allowing a more comprehensive evaluating method.

128

References

[Ale 11] Aleotti J., Caselli S., Physics-based virtual reality for task learning and intelligent

disassembly planning. Virtual reality. 15:41-54, 2011.

[Ash 09] Ashvinikumar P., Dibakar, S., Haptics Aided kinematic Assembly Modeling and

Efficient Determination of Joint Ranges of Motion. 14-th National conference on

Machines and Mechanisms, NIT, Durgapur, India, December 17-18, pp. 68-75, 2009.

[Ats 13] Atsuko E., Noriaki Y., Tasuya S., Automatic estimation of the ergonomics

parameters of assembly operation. CIRP Annals-Manufacturing Technology.

62(1):13-16, 2013.

[Bal 91] Baldwin D.F., Abell T.E., Lui M.C., de Fazio T.L, Whitney D.E., An integrated

computer aid for generating and evaluating assembly sequences for mechanical

products. IEEE Trans Robot Automat 7(1):78–89, 1991.

[Bar 04] Barnes C.J., Jared G.E.M., Swift K.G., Decision support for sequence generation

in an assembly oriented design environment, Robotics and Computer Integrated

Manufacturing – RCIM, vol. 20, p. 289-300, Ed. Elsevier, 2004.

[Bou 84] Bourjault A., Contribution à une approche méthodologique de l’assemblage

automatise: élaboration automatique des séquences opératoires. Dissertation,

d’Etat Université de Franche-Comté, Besançon, France, 1984.

[Bou 02] Bouzit M., Popescu G., Burdea G.C., Boian R., The Rutgers master II-ND force

feedback glove. In HAPTICS 2002: haptic interfaces for virtual environment and

teleoperator systems. Orlando, FL, 2002.

[Cam 90] Cameron S., Collision detection by four-dimensional intersection testing. IEEE

Transactions on Robotics and Automation, 6 (3): 291-302, 1990.

[Che 01] Chen S.F., Liu Y.J., The application of multilevel genetic algorithms in assembly

planning, Journal of Industrial Technology, vol. 17, n°. 4, Ed. ATMAE, 2001.

[Cru 92] Cruz-Neira C., Sandin D.J., DeFanti T.A., Kenyon R., Hart J.C., The CAVE,

audiovisual experience automatic virtual environment. In: Communications of the

ACM, pp 64-72, 1992.

[Cru 93] Cruz-Neira C., Sandin D., De Fanti T., Surround-screen projection-based virtual

reality: the design and implementation of the CAVE. In: Proceeding of SIGGRAPH,

l93: 135-142, 1993.

[Don 06] Dong T., Zhang L., Tong R., Dong J., A hierarchical approach to disassembly

129

sequence planning for mechanical product, International Journal of Advanced

Manufacturing Technology, 30 (5–6):507–520, 2006.

[Duv 13] Duval T., Huyen Nguyen T.T., Fleury C., Chauffaut A., Dumont G., Gouranton V.,

Improving awareness for 3D virtual collaboration by embedding the features of

users’ physical environments and by augmenting interaction tools with cognitive

feedback cues. In Journal on Multimodal Interfaces (JMUI), 2013. doi:

10.1007/s12193-013-0134-z.

[Edw 04] Edwards G.W., Barfield W., Nussbaum M.A., The use of force feedback and

auditory cues for performance of an assembly task in an immersive virtual

environment. Virtual Reality, 7:112-119, 2004.

[Erl 05] Erleben K., Sporrting J., Henriksen K., Dohlmann H., Physics-based animation,

Carles River Media, Hingham, pp817, 2005.

[Faz 87] De Fazio T.L., Whitney D.E., Simplified Generation of All Mechanical Assembly

Sequences, IEEE Journal of Robotics and Automation, 3 (6) : 640–658, 1987.

[Foi 93] Foisy A., Hayward V., A safe swept volume method for collision detection. The Sixth

International Symposium of Robotics Research, Pittsburgh, PE, October, pp.61-8,

1993.

[Fuc 06] Fuchs P., Le traité de la réalité virtuelle, vol. 1: L’homme et l’environnement virtuel,

Presses de l’Ecole des Mines, Paris, 2006.

[Gal 04] Galantucci L.M., Percoco G., Spina R., Assembly and disassembly by using fuzzy

logic and genetic algorithms, International Journal of Advanced Robotics System, 1

(2): 67–74, 2004.

[Gao 98] Gao X.S., Chou S.C., Solving geometric constrain systems. II. A symbolic approach

and decision of re-constructability. Commuter-aided design 30(2):115-112, 1998.

[Gar 04] Garcia M.A., Larré A., Lopez B., Oller A., Reducing the complexity of Geometric

Selective Disassembly, In: Proceeding of the IEEE international Conference on

Intelligent Robots and Systems, p.1474-1479, Takamatsu, Japan, 2004.

[Gar 07] Garbaya S., Zaldivar-Colado, U., The effect of contact force sensations on user

performance in virtual assembly tasks. Virtual Reality, 11(4):287–299, 2007.

[Gei 96] Geigera D., Zussmannb E., Lenz E., Probabilistic Reactive Disassembly Planning.

CIRP Annals - Manufacturing Technology. 45(1): 49–52, 1996.

[Ger 13] Germanico G-B., Medellin-Castillo H., Lim T., Development of a Haptic Virtual

Reality System for Assembly Planning and Evaluation Procedia Technology, 7: pp.

265-272, 2013.

130

[Giu 07] Giudice F., Fargione G., Disassembly planning of mechanical systems for service

and recovery: A genetic algorithms based approach. Journal of Intelligent

Manufacturing, 18: 313-329, 2007.

[Go 12] Go T.F., Wahab D.A., Ab. Rahman M.N., Ramli R., Hussain A., Genetically

optimized disassembly sequence for automotive component reuse. Expert Systems

with Application 39:5409-5417, 2012.

[Got 03] Gottipolu R.B., Ghosh K., A simplified and efficient representation for evaluation

and selection of assembly sequences, Computers in Industry 50(3):251-264, 2003.

[Gun 01] Gungor A., Gupta S. M., Disassembly sequence plan generation using a branch-and-

bound algorithm. International Journal of Production Research, 39(3):481-509, 2001.

[Hom 90] Homem De mello L.S, Sanderson A.C., AND /OR graph representation of assembly

plan. IEEE Transactions on Robotics and Automation 6(2):188-99, 1990.

[Hom 91] Homem de Mello L.S, Sanderson A.C., A correct and complete algorithm for the

generation of mechanical assembly sequences. IEEE Trans Robot Automat 7(2):

228–240, 1991.

[Hsi 08] Hsieh F.S., Robustness analysis of holonic assembly/disassembly processes with

Petri nets. Automatuca 44:2538-2548, 2008.

[Hua 00] Huang H.H., Wang M.H, Johnson M.R., Disassembly sequence generation using a

neural network approach. Journal of Manufacturing Systems Volume 19(2), pp. 73–

82. 2000.

[Iac 08] Iacob R., Mitrouchev P., Léon J-C., Contact identification for assembly/disassembly

simulation with a haptic device. The Visual Computer, ISSN: 0178-2789, Ed.

Springer, 24 (11), 973-979, 2008.

[Iac 10] Iacob R., Modélisation cinématique des mobilités de composants pour des opérations

d’assemblage et de désassemblage, Thèse de Doctorat, Grenoble INP, Octobre 2010.

[Iac 14] Iacob R., Popescu D., Noel F., Louis T., Mitrouchev P., Larcher A., Assembly

simulation using haptic devices, MIT 2014 Conference Proceedings, Fiesa, Slovenia,

27.09-01.10 2014.

[Jay 99] Jayaram S., Jayaram U., Wang Y., Tirumali H., Lyons K., Hart P., VADE: A virtual

assembly design environment, IEEE Comput Graph Appl, 19(6):44-50, 1999.

[Jay 06] Jayaram U., Jayaram S., Shaikh I., Kim Y., Palmer C., Introducing quantitative

analysis methods into virtual environment for real-time and continuous ergonomic

evaluations. Computers in Industry 57:283-296, 2006.

[Jay 07] Jayaram S., Jayaram U., Kim A., De Chenne C., Lyons K., Palmer C., Mitsui T.,

131

Industry case studies in the use of immersive virtual assembly. Virtual reality

11(4):217-218, 2007.

[Jim 01] Jiménez P., Thomas F., Torras C., 3D collision detection: a survey, Computers and

Graphics, 25:269-285, 2001.

[Joh 98] Johnson M.R., Wang M.H., The economical evaluation of disassembly operations for

recycling, remanufacturing and reuse, Int. Jour. Prod. Research, 36 (12), 3227-3252,

1998.

[Jun 03] Jung B., Task-level Assembly Modeling in Virtual Environments. Computational

Science and its Applications, 2669:721-730, 2003.

[Kan 01] Kang J.G., Lee D.H., Xirouchakis P., Persson J.G., Parallel disassembly sequencing

with sequence-dependent operation times. Annals of CIRP 50(1):343-6, 2001.

[Kar 06] Kara S., Pornprasitpol P., Kaebernick H., Selective Disassembly Sequencing: A

Methodology for the Disassembly of End-of-Life Products, CIRP Annals, 55 (1):37–

40, 2006.

[Kim 03] Kim C.E., Vance J.M., Using Vps (Voxmap Pointshell) as the basis for interaction in

a virtual assembly environment. In: ASME design engineering technical conferences

and computers and information in engineering conference (DETC2003/CIE-48297).

ASME, Chicago, IL, 2003.

[Kok 07] Kok A.J.F, Van Liere R., A Multimodal Virtual Reality Interface for 3D Interaction

with VTK,Knowledge and Information Systems, Knowledge and Information

Systems, 2007

[Kon 06a] Kongar E., Gupta S.M., Disassembly sequencing using genetic algorithm. Int. Jour.

Adv. Manuf. Technol., 30, pp. 497–506, 2006.

[Kon 06b] Kongar E., Gupta, S.M., Genetic algorithm for disassembly process planning. In

Proceedings of the SPIE international conference on environmentally conscious

manufacturing (Vol. II) (pp.52-62). Newton: Massachusetts, 2006.

[Kuo 00a] Kuo T.C., Disassembly sequence and cost analysis for electromechanical products,

Robotics and Computer Integrated Manufacturing, 16:43-54, 2000.

[Kuo 00b] Kuo T.C., Zhang H.C., Huang S.H., Disassembly analysis for electromechanical

products: a graph-based heuristic approach. Int. J. Prod. Res., 38 (5), pp. 993- 1007,

2000.

[Kuo 01] Kuo T.C., Huang, S.H., Zhang, H.C., Design for manufacture and design for 'X':

concepts, applications, and perspectives, Computers & Industrial Engineering N°41,

pp. 241-260, 2001.

132

[Kuo 13] Kuo T.C., Waste electronics and electrical equipment disassembly and recycling

using petri net analysis: Considering the economic value and environmental impacts.

Computers &Industrial Engineering 65, 54-64, 2013.

[Lad 10] Ladeveze N., Fourquet J.Y, Puel B., Interactive path planning for haptic assistance

in assembly tasks. Computers &Graphics 34: 12-25, 2010.

[Lam 03] Lambert A.J.D., Disassembly sequencing: a survey, Int. Jour. of Prod. Res.,

41(16):3721-3759, 2003.

[Lam 08] Lambert A.J.D., Gupta M., Methods for optimum and near optimum disassembly

sequencing, Int. Jour. of Prod. Res., 46, 11, 2845-2865, (2008).

[Leu 13] Leu M.C., ElMaraghy, H.A., Nee, A.Y.C., Ong, S.K., Lanzetta M., Putz M., Zhu W.,

Bernard A., CAD model based virtual assembly simulation, planning and training.

CIRP Annals-Manufacturing Technology, 62(2):799-822, 2013.

[Lee 94] Lee S., Subassembly Identification and Evaluation for Assembly Planning. IEEE

Transactions on Systems Manufacturing, and Cybernetics, 24 (3):493–503, 1994.

[Li 12] Li J.R., Wang, Q.H. Huang P., An integrated disassembly constraint generation

approach for product design evaluation. International Journal of Computer

Integrated Manufacturing, 25(7):565-577, 2012.

[Lon 06] Longo F., Mirabelli G., Papoff. E., Effective Design of Assembly Line Using

Modelling & Simulation. Proceedings of the 2006 Winter Simulation Conference, pp.

1894–1898, 2006.

[Mar 03] Luis M., Norman M., Terrence F. A constraint manager to support virtual

maintainability. Computers & Graphics 27(1):19-26, 2003.

[Mas 03] Mascle C., Balasoiu B.A., Algorithmic selection of a disassembly sequence of a

component by a wave propagation method, Robotics and Computer-Integrated

Manufacturing, Vol. 19, Issue 5, October, pp. 439–448, 2003.

[McA 93] McAtamney L., Corlett E.N., RULA: a survey method for the investigation of work-

related upper limb disorders, Applied Ergonomics, 24(2):91-99, 1993.

[Moo 98] Moore K.E., Askiner G., Surendra M. Gupta. A., Petri Net Approach to disassembly

process planning. Computer Ind. Engng., 35(1-2):165-168, 1998.

[Moo 01] Moore K.E., Gungor A., Surendra M. Gupta A., Petri net approach to disassembly

process planning for products with complex AND/OR precedence relationships.

European Journal of Operational Research 135:428-449, 2001.

[Mo 02] Mo J., Zhang O., Gadh R., Virtual Disassembly, International Journal of CAD/CAM,

2(1), 29-37, 2002.

133

[Ou 13] Ou L.M, Xu X., Relationship matrix based automatic assembly sequence generation

from a CAD model, Computer-Aided Design 45:1053-1067, 2013.

[Per 13] Perret F., Kneschke C., Vance F., Dumont G., Interactive assembly simulation with

haptic feedback. Assembly Automation, Vol. 33 Iss: 3, pp.214 – 220, 2013.

[Pom 04] Pomares J., Puente S.T., Torres F., Candelas F.A., Gil P., Virtual disassembly of

products based on geometric models. Computers in Industry, 55(1):1-14, 2004.

[Pon 13a] Pontonnier C., Samani A., Badawi M., Madeleine P., Dumont G., Assessing the

Ability of a VR-based Assembly Task Simulation to Evaluate Physical Risk Factors,

In: IEEE Transactions on Visualization and Computer Graphics, Vol. 20, No. 5, 2014,

pp. 664-674.

[Pon 13b] Pontonnier C., Dumont G., Samani A., Madeleine P., Badawi M., Designing and

Evaluating a Workstation in Real and Virtual Environment: Toward Virtual Reality

Based Ergonomic Design Sessions, Journal on Multimodal Interfaces

http://www.springer.com/computer/hci/journal/12193 (JMUI), 2013.

http://link.springer.com/article/10.1007/s12193-013-0138-8.

[Pon 13c] Pontonnier C., Duval T., Dumont G., Sharing and Bridging Information in a

Collaborative Virtual Environment: Application to Ergonomics, Proceedings of 4-th

IEEE International Conference on Cognitive Infocommunications (CogInfoCom

2013), Budapest, Hungary, December 2013, pp.121-126., 10.1109/CogInfoCom.

2013. 6719226.

[Pop 00] Popescu V.G., Burdea G.C., Bouwit M., Hentz V.R., A virtual–reality–based

telerehabilitation system with force feedback. IEEE Inf. Technol. Biomed., 4(1):45-

51, 2000.

[Ren 05] Renouf M., Acary V., Dumont G., Comparison of Algorithms for collisions, contact

and friction in view of Real-time applications. Multibody Dynamics 2005 :

International Conference on Advances in Computational Multibody Dynamics,

ECCOMAS Thematic Conference, 21-24 June 2005.

[Ric 95] Richard P., Coiffet P. Human perceptual issues in virtual environments: sensory

substitution and information redundancy, Robot and Human Communication, 1995.

RO-MAN'95 TOKYO, Proceedings 4-th IEEE International Workshop on Robot

and Human Communication, pp.301-306, 1995.

[Ric 13] Rickli J., Camelio A., Multi-objective partial disassembly optimization based on

sequence feasibility. Journal of Manufacturing Systems, 32(1), pp. 281–293, 2013.

[Sal 97] Salisbury J.K., Srinivasan M.A., Projects in VR: phantom based haptic interaction

134

with virtual objects. IEEE Comp. Graph. Appl., Sept./Oct, 1997.

[San 02] Santochi M., Dini G., Failli F., Computer Aider Disassembly Planning: State of the

Art and Perspectives, CIRP Annals-Manufacturing Technology, 51(2):507-529, 2002.

[Sch 96] Schroeder W. J., Martin K. M. and. Lorensen W. E., The design and implementation

of an object-oriented toolkit for 3D graphics and visualization. IEEE

Visualization ’96, pages 93–100, 1996.

[Set 11] Seth A., Vance J.M., James H.O., Virtual reality for assembly methods prototyping:

a review. Virtual Reality 15: 5-20, 2011.

[Sid 97] Siddique Z., Rosen D.W., A virtual prototyping approach to product disassembly

reasoning, Computer-Aided Design, Vol. 29, p.847-860, 1997.

[Smi 11] Smith S.S., Chen W.H., Rule-based recursive selective disassembly sequence

planning for green design, Advanced Engineering Informatics, vol. 25, p. 77-87,

2011.

[Smi 12] Smith S., Smith G., Chen W.H., Disassembly sequence structure graphs: An optimal

approach for multiple-target selective disassembly sequence planning, Adv. Eng.

Informat, 26 (2) 306-316, 2012.

[Sri 98] Srinivasan H., Gadh R., A geometric algorithm for single selective disassembly using

wave propagation abstraction. Computer-Aided Design, Vol. 30, Issue 8, pp. 603-

613, 1998.

[Sri 99a] Srinivasan H., Gadh R., Selective disassembly: representation and comparative

analysis of wave propagation abstractions in sequence planning, Proceedings of the

1999 IEEE International Symposium on Assembly and Task Planning, Porto,

Portugal, pp.129-133, 1999.

[Sri 99b] Srinivasan H., Figueroa R., Gadh R., Selective disassembly for virtual prototyping as

applied to de-manufacturing, Robotics and Computer Integrated Manufacturing 15

(3) :231-245,1999.

[Sri 00] Srinivasan H., Gadh R., Efficient geometric disassembly of multiple components from

an assembly using wave propagation, Journal of Mechanical Design, 122 (2):179-

184, 2000.

[Su 07] Su Q., Computer aided geometric feasible assembly sequence planning and

optimizing, Int. Jour. Adv. Manuf. Technol., 33: 48-57, 2007.

[Tar 13] Taroni F., Vitae F., Biedermann A., Bayesian Networks Encyclopedia of Forensic

Sciences (Second Edition), pp. 351–356, 2013.

[Tch 10] Tching L., Dumont G. Perret J. Interactive simulation of CAD models assemblies

135

using virtual constraint guidance, Int. Jour. Des. Manuf. (2010), 4:95-102.

[Tri 09] Tripathi M., Agrawal S., Pandeyc M.K., Shankar R., Tiwari M.K., Real world

disassembly modeling and sequencing problem: Optimization by Algorithm of Self-

Guided Ants (ASGA), Robotics and Computer-Integrated Manufacturing 25,483–496,

2009.

[Tse 09] Tseng Y., Kaoa H., Huang F., Integrated assembly and disassembly sequence

planning using a GA approach. International Journal of Production Research, pp.1-

23, 2009.

[Vee 02] Veerakamolmal P. Gupta S.M., A case-based reasoning approach for automating

disassembly process planning. Journal of Intelligent Manufacturing 13(1): 47-60,

2002.

[Wan 01] Wang Y, Jayaram S., Jayaram U., Lyons K., Physically based modeling in virtual

assembly. In: ASME design engineering technical conferences and computers and

information in engineering conference (DETC2001/CIE-21259). Pittsburg, PA, 2001.

[Wan 12] Wang D., Zhang L., Wang M., Xiao T., Hou Z., Zou F., A simulation System

Based on OGRE and PhysX for Flexibal Aircraft Assembly. IEEE/SCS 26-th

Workshop on Principles of Advanced and Distributed Simulation, pp. 171-173, 2012.

[Wan 03] Wang J.F., Liu J.H., Li S.Q., Zhong Y.F., Intelligent selective disassembly using the

ant colony algorithm. Artificial Intelligence for Engineering Design, Analysis and

Manufacturing: AIEDAM, vol. 17, no. 4-5, pp. 325-333, 2003.

[Wan 06] Wang Q.H., Li J.R., Gong H.Q. A CAD-linked virtual assembly environment. Int.

Jour. Prod. Res., 44(3):467-486, 2006.

[Wil 94] Wilson R., Latombe J., Geometric reasoning about assembly, Artif. Intell. 71

(2):371-396, 1994.

[Wil 99] Wilson J.R., Virtual environments applications and applied ergonomics, Applied

Ergonomics, 30(1): 3-9, 1999.

[Woo 91] Woo T.C., Dutta D., Automatic disassembly and total ordering in three dimensions.

Journal of Engineering for Industry, 113 (2), 207-213, 1991.

[Woo 94] Woo T.C., Visibility maps and spherical algorithms, Computer-Aided Design

Journal. 26 (1), 6-16, 1994.

[Yan 07] Yang R., Wu D., Fax X., Yan J., Research on constraint-based virtual assembly

technologies. Front. Mech. Eng. China 2(2):243-249, 2007.

[Yi 07] Yi J., Yu B., Du L., Li C., Hu D., Research on the selectable disassembly strategy of

mechanical parts based on the generalized CAD model. The International Journal of

136

Advanced Manufacturing Technology, 37:599–604, 2007.

[Zei 97] Zeid I., Gupta S.M., Bardasz T., A case-based reasoning approach to planning for

disassembly. Journal of Intelligent Manufacturing 8, pp. 97–106, 1997.

[Zha 10] Zhang X., Zhang S. Y., Product cooperative disassembly sequence planning based

on branch-and-bound algorithm. Int Jour. Adv. Manuf. Technol., 19(4): pp. 91–103,

2010.

[Zhu 13] Zhu B.C, Sarigecili M.I, Roy U., Disassembly information model incorporating

dynamic capabilities for disassembly sequence generation. Robotics and Computer-

Integrated Manufacturing, 29(5):396-409, 2013.

[Zus 95] Zussman E., Scholz-Reiter G., Sharke H., Modelling and planning of disassembly

processes. In: Life-Cycle Modelling for Innovative Products Processes. Berlin,

Germany, pp. 221-232, 1995.

137

Appendix A

Part of code of Interface, Virtual Reality Disassembly Environment (VRDE)

Code in Python

import vtk

import wx,os,sys

import wx.lib.buttons as buttons

from vtkactors import *

from pylab import*

import areaReading

import matplotlib.pyplot as plt

import wx.lib.imagebrowser as ib

def vtk_Camera_Arrow():

 #creat the arrow for the pic

 arrowSource = vtk.vtkArrowSource()

 mapper = vtk.vtkPolyDataMapper()

 translation=vtk.vtkTransform()

 translation.RotateZ(180)

 translation.Translate(0.8,0,0)

 translation.Scale(2.0,2.0,2.0)

 transformFilter =vtk.vtkTransformPolyDataFilter()

 transformFilter.SetInputConnection(arrowSource.GetOutputPort())

 transformFilter.SetTransform(translation)

 mapper.SetInputConnection(transformFilter.GetOutputPort())

 actor = vtk.vtkActor()

 actor.SetMapper(mapper)

 actor.GetProperty().SetColor(1.0,0.0,0.0)

 #creat the camera for the simulation

 camCS = vtk.vtkConeSource()

 camCS.SetHeight(1.5)

 camCS.SetResolution(12)

 camCS.SetRadius(0.4)

 camCBS = vtk.vtkCubeSource()

 camCBS.SetXLength(1.5)

 camCBS.SetZLength(0.8)

 camCBS.SetCenter(0.4, 0, 0)

 camAPD = vtk.vtkAppendFilter()

 camAPD.AddInput(camCS.GetOutput())

 camAPD.AddInput(camCBS.GetOutput())

 camMapper = vtk.vtkDataSetMapper()

 camMapper.SetInput(camAPD.GetOutput())

 camActor =vtk.vtkLODActor()

 camActor.SetMapper(camMapper)

 #creat assembly

 assembly=vtk.vtkAssembly()

138

 assembly.AddPart(camActor)

 assembly.AddPart(actor)

 assembly.SetScale(20,20,20)

 return assembly

def position2matrix(pos, scale) :

 # pos is a vector x,y,z,qx,qy,qz,qw

 x = pos[0]*scale

 y = pos[1]*scale

 z = pos[2]*scale

 qx = pos[3]

 qy = pos[4]

 qz = pos[5]

 qw = pos[6]

 m0= 1 - 2 * ((qy*qy) + (qz*qz))

 m1= 2 * ((qx*qy) - (qz*qw))

 m2= 2 * ((qx*qz) + (qy*qw))

 m4= 2 * ((qx*qy) + (qz*qw))

 m5= 1 - 2 * ((qx*qx) + (qz*qz))

 m6= 2 * ((qy*qz) - (qx*qw))

 m8= 2 * ((qx*qz) - (qy*qw))

 m9= 2 * ((qy*qz) + (qx*qw))

 m10= 1 - 2 * ((qx*qx) + (qy*qy))

 m3=x

 m7=y

 m11=z

 m12=m13=m14= 0

 m15= 1

 return ((m0,m1,m2,m3),

 (m4,m5,m6,m7),

 (m8,m9,m10,m11),

 (m12,m13,m14,m15))

def Keypress(obj, event):

 key = obj.GetKeySym()

 if key == "e":

 obj.InvokeEvent("DeleteAllObjects")

 sys.exit()

 elif key == "w":

 Wireframe()

 elif key =="s":

 Surface()

def vtk_Cube(x,y,z,r=0.5,g=0.5,b=0.5):

 cyl=vtk.vtkCubeSource()

 cyl.SetXLength(x)

 cyl.SetYLength(y)

 cyl.SetZLength(z)

 mapper =vtk.vtkPolyDataMapper ()

 mapper.SetInputConnection(cyl.GetOutputPort())

 lxactor =vtk.vtkActor()

 lxactor.SetMapper(mapper)

 lxactor.GetProperty().SetColor (r, g, b)

139

 lxactor.flag="cube"

 lxactor.SetScale(40,40,40)

 return lxactor

def vtk_cylinder(radius,h,resolution,r,g,b):

 cy=vtk.vtkCylinderSource()

 cy.SetRadius(radius)

 cy.SetHeight(h)

 cy.SetResolution(resolution)

 translation =vtk.vtkTransform()

 translation.RotateX (90.0)

 transformFilter =vtk.vtkTransformPolyDataFilter()

 transformFilter.SetInputConnection(cy.GetOutputPort())

 transformFilter.SetTransform(translation)

 mapper =vtk.vtkPolyDataMapper()

 mapper.SetInputConnection(transformFilter.GetOutputPort())

 lxactor =vtk.vtkActor()

 lxactor.SetMapper(mapper)

 lxactor.GetProperty().SetColor (r, g, b)

 return lxactor

def vtk_sphere(radius,theta,phi,r,g,b):

 sphereSource=vtk.vtkSphereSource()

 sphereSource.SetRadius(radius)

 sphereSource.SetThetaResolution (theta)

 sphereSource.SetPhiResolution (phi)

 actor1=vtk.vtkActor()

 mapper=vtk.vtkPolyDataMapper()

 mapper.SetInputConnection(sphereSource.GetOutputPort())

 actor1.SetMapper(mapper)

 actor1.GetProperty().SetColor (r,g,b)

 actor1.flag="sphere"

 return actor1

address=["C:\chenggang\ode\pics\Blue_Grey_Granite.bmp","C:\chenggang\ode\pics\Buff_Quartz.b

mp"]

def bmpReader(address):

 bmpReader = vtk.vtkBMPReader()

 bmpReader.SetFileName(address)

 C=vtk.vtkTexture()

 C.SetInput(bmpReader.GetOutput())

 C.InterpolateOn()

 return C

def creat_Plane():

 plane = vtk.vtkPlaneSource()

 plane.SetPoint1(300.0, 10.0, 300.0)

 plane.SetPoint2(-300.0, 10.0, 300.0)

 plane.SetCenter(0.0, 1.0, 0.0)

 plane.SetXResolution(100)

 plane.SetYResolution(100)

140

 planeMapper = vtk.vtkPolyDataMapper()

 planeMapper.SetInput(plane.GetOutput())

 planeActor = vtk.vtkActor()

 planeActor.SetMapper(planeMapper)

 planeActor.SetTexture(bmpReader(address[0]))

 planeActor.PickableOff()

 return planeActor

class myFrame(wx.Frame):##

 def __init__(self,parent,title):

 wx.Frame.__init__(self,parent,title=title,size=(550,300))##

 self.RenderWindow=vtk.vtkRenderWindow()

 self.RenderWindow.StereoCapableWindowOn()

 self.RenderWindow.SetSize(800, 800)

 self.Renderer=vtk.vtkRenderer()

 self.RenderWindow.AddRenderer(self.Renderer)

 self.Renderer.TwoSidedLightingOn ()

 self.Renderer.LightFollowCameraOn ()

 self.Renderer.SetBackground(0.1,0.3,0.5)

 self.Rotating = 0

 self.Panning = 0

 self.cameraRotating = 0

 planeActor=creat_Plane()

 #self.Renderer.AddActor(planeActor)

 self.actor = None

 self.iren=vtk.vtkRenderWindowInteractor()

 self.iren.SetInteractorStyle(None)

 self.iren.AddObserver("LeftButtonPressEvent", self.ButtonEvent)

 self.iren.AddObserver("LeftButtonReleaseEvent", self.ButtonEvent)

 self.iren.AddObserver("MiddleButtonPressEvent", self.ButtonEvent)

 self.iren.AddObserver("MiddleButtonReleaseEvent",self.ButtonEvent)

 self.iren.AddObserver("RightButtonPressEvent", self.ButtonEvent)

 self.iren.AddObserver("RightButtonReleaseEvent", self.ButtonEvent)

 self.iren.AddObserver("MouseWheelForwardEvent", self.ButtonEvent)

 self.iren.AddObserver("MouseWheelBackwardEvent", self.ButtonEvent)

 self.iren.AddObserver("MouseMoveEvent", self.MouseMove)

 self.iren.AddObserver("KeyPressEvent", self.Keypress)

 self.iren.SetRenderWindow(self.RenderWindow)

 self.transform=((1.,0,0,0),(0,1.,0,0),(0,0,1.,0),(0.,0.,0.,1.))

 self.row=0

 self.col=0

 self.nbcol=2

 self.mode=301

 self.sphereX=[]

 self.sphereY=[]

 self.t2=0

 self.CreateStatusBar()#

 filemenu=wx.Menu()#

 open=filemenu.Append(wx.ID_OPEN,"&Open","Open the program")

 save=filemenu.Append(wx.ID_SAVE,"&Save","Save the program")

 about=filemenu.Append(wx.ID_ABOUT, "&About","Information about this program")

141

 filemenu.AppendSeparator()# 不懂

 exit=filemenu.Append(wx.ID_EXIT,"&Exit","Terminate the program")

 self.Bind(wx.EVT_MENU,self.OnAbout,about)#选择 about将执行 onAbout函数

 self.Bind(wx.EVT_MENU,self.OnExit,exit)

 self.Bind(wx.EVT_MENU,self.OnOpen,open)

 self.Bind(wx.EVT_MENU,self.OnSave,save)

 ####菜单二

 ID_MENU_TRA = wx.NewId()

 ID_MENU_TIME = wx.NewId()

 ID_MENU_CollISION = wx.NewId()

 ID_MENU_TOOL = wx.NewId()

 ID_MENU_REACH = wx.NewId()

 filemenu2=wx.Menu()#菜单

 Tar=filemenu2.Append(ID_MENU_TRA,"&Path orientation changing ","All the Trajectories for all

the components")

 TIME =filemenu2.Append(ID_MENU_TIME, "&The stability ","Recording times for the

simulation")

 visibility=filemenu2.Append(ID_MENU_CollISION , "&Visibility","anylize the collision for whole

simulation")

 TOOL =filemenu2.Append(ID_MENU_TOOL , "&Number of tools'changes","anylize the number

of converting tools")

 REACH =filemenu2.Append(ID_MENU_REACH , "&SDR Angle","anylize the Accessibility of each

part")

 self.Bind(wx.EVT_MENU,self.OnPath,Tar)#选择 about将执行 onAbout函数

 self.Bind(wx.EVT_MENU,self.OnVisibility,visibility)

 ####菜单 3

 ID_MENU_1= wx.NewId()

 ID_MENU_2 = wx.NewId()

 ID_MENU_3 = wx.NewId()

 ID_MENU_4 = wx.NewId()

 ID_MENU_5 = wx.NewId()

 filemenu3=wx.Menu()#菜单

 T1=filemenu3.Append(ID_MENU_1,"&Next Target","All the Trajectories for all the components")

 T2=filemenu3.Append(ID_MENU_2, "&Tool1","Recording times for the simulation")

 T3=filemenu3.Append(ID_MENU_3 , "&Tool2","anylize the collision for whole simulation")

 T4=filemenu3.Append(ID_MENU_4 , "&Tool3","anylize the number of converting tools")

 T5=filemenu3.Append(ID_MENU_5 , "&Tool4","anylize the Accessibility of each part")

 self.Bind(wx.EVT_MENU,self.clear,T1)

 # 工具栏 1

 ID_MENU_6= wx.NewId()

 ID_MENU_7 = wx.NewId()

 ID_MENU_8 = wx.NewId()

 ID_MENU_9 = wx.NewId()

 ID_MENU_10 = wx.NewId()

 ID_MENU_11= wx.NewId()

 ID_MENU_12= wx.NewId()

142

 ID_MENU_13 = wx.NewId()

 ID_MENU_14 = wx.NewId()

 ID_MENU_15 = wx.NewId()

 toolbar1 = wx.ToolBar(self)

 sphere=toolbar1.AddLabelTool(ID_MENU_6, '', wx.Bitmap(sys.path[0]+os.sep+'pixmaps-

menu'+os.sep+'stock_no_20.png'))

 cube=toolbar1.AddLabelTool(ID_MENU_7, '',

wx.Bitmap(sys.path[0]+os.sep+'pixmaps'+os.sep+'Object-GRCUBE.png'))

 cylinder=toolbar1.AddLabelTool(ID_MENU_8, '',

wx.Bitmap(sys.path[0]+os.sep+'pixmaps'+os.sep+'Object-GRCYLINDER1.png'))

 haptic=toolbar1.AddLabelTool(ID_MENU_9, '',

wx.Bitmap(sys.path[0]+os.sep+'pixmaps'+os.sep+'ico-haptic2.png'))

 collision=toolbar1.AddLabelTool(ID_MENU_10, '',

wx.Bitmap(sys.path[0]+os.sep+'pixmaps'+os.sep+'Device-CVEODE.png'))

 D3D=toolbar1.AddLabelTool(ID_MENU_11, '',

wx.Bitmap(sys.path[0]+os.sep+'pixmaps'+os.sep+'converted.png'))

 colorChange =toolbar1.AddLabelTool(ID_MENU_12, '',

wx.Bitmap(sys.path[0]+os.sep+'pixmaps'+os.sep+'color_picker.png'))

 camera=toolbar1.AddLabelTool(ID_MENU_13, '',

wx.Bitmap(sys.path[0]+os.sep+'pixmaps'+os.sep+'camer.png'))

 screenShot=toolbar1.AddLabelTool(ID_MENU_14, '',

wx.Bitmap(sys.path[0]+os.sep+'pixmaps'+os.sep+'Screenshot.png'))

 toolbar1.AddSeparator()

 toolbar1.Realize()

 self.Bind(wx.EVT_TOOL,self.OnSphere,sphere)#

 self.Bind(wx.EVT_TOOL,self.OnCube,cube)

 self.Bind(wx.EVT_TOOL,self.OnCylinder,cylinder)

 self.Bind(wx.EVT_TOOL,self.OnHaptic,haptic)

 self.Bind(wx.EVT_TOOL,self.OnCollision,collision)

 self.Bind(wx.EVT_TOOL,self.OnD3D,D3D)

 self.Bind(wx.EVT_TOOL,self.OnOtherColor,colorChange)

 self.Bind(wx.EVT_TOOL,self.OnCamera,camera)

 self.Bind(wx.EVT_TOOL,self.OnScreenshot,screenShot)

 ID_MENU_16= wx.NewId()

 ID_MENU_17 = wx.NewId()

 ID_MENU_18 = wx.NewId()

 ID_MENU_19 = wx.NewId()

 ID_MENU_20 = wx.NewId()

 ID_MENU_21= wx.NewId()

 ID_MENU_22= wx.NewId()

 ID_MENU_23 = wx.NewId()

 ID_MENU_24 = wx.NewId()

 ID_MENU_25 = wx.NewId()

 toolbar2 = wx.ToolBar(self)

 cordinate = toolbar2.AddLabelTool(ID_MENU_16, '',

wx.Bitmap(sys.path[0]+os.sep+'pixmaps'+os.sep+'Coordin.png'))

 picture = toolbar2.AddLabelTool(ID_MENU_17, '',

wx.Bitmap(sys.path[0]+os.sep+'pixmaps'+os.sep+'Pic.png'))

 self.Bind(wx.EVT_TOOL,self.Oncordinate,cordinate)

 self.Bind(wx.EVT_TOOL,self.Onpicture,picture)

 toolbar2.AddSeparator()

143

 toolbar2.Realize()

 vbox = wx.BoxSizer(wx.VERTICAL)

 vbox.Add(toolbar1, 0, wx.EXPAND)

 vbox.Add(toolbar2, 100, wx.EXPAND)

 self.SetSizer(vbox)

 #~ box.Add(s, 0, wx.ALL, 10)

 #~ self.SetClientSize(self.sizer.GetSize())

 #self.SetSize((self.col*24,self.nbcol*24)

 self.Fit()

 self.Show(True)

 menuBar=wx.MenuBar()

 menuBar.Append(filemenu,"&File")

 menuBar.Append(filemenu2,"&Analysis")

 menuBar.Append(filemenu3,"&Tools")

 self.SetMenuBar(menuBar)

 self.Show(True)

 def Keypress(self, obj, event):

 key = obj.GetKeySym()

 if key == "e":

 obj.InvokeEvent("DeleteAllObjects")

 sys.exit()

 elif key == "w":

 self.Wireframe()

 elif key =="s":

 self.Surface()

 def Wireframe(self):

 actors =self.Renderer.GetActors()

 actors.InitTraversal()

 actor = actors.GetNextItem()

 while actor:

 actor.GetProperty().SetRepresentationToWireframe()

 actor = actors.GetNextItem()

 self.RenderWindow.Render()

 def Surface(self):

 actors =self.Renderer.GetActors()

 actors.InitTraversal()

 actor = actors.GetNextItem()

 while actor:

 actor.GetProperty().SetRepresentationToSurface()

 actor = actors.GetNextItem()

 self.RenderWindow.Render()

 def OnAbout(self,e):

 dlg=wx.MessageDialog(self,"Disassembly simulation", "About this application", wx.OK)

 dlg.ShowModal()

144

 dlg.Destroy()

 def OnExit(self,e):

 self.Close(True)

 sys.exit()

 def OnSave(self,e):

 dlg=wx.FileDialog(self, "save file as...", os.getcwd(), "", "

*.vtk",wx.SAVE|wx.OVERWRITE_PROMPT)

 result=dlg.ShowModal()

 inFile=dlg.GetPath()

 if result==wx.ID_OK:

 save(self,inFile)

 return True

 elif result==wx.ID_CANCEL:

 return False

 def importVrml(self,fileName):

 importer=vtk.vtkVRMLImporter()

 importer.SetFileName(fileName)

 importer.Read()

 importer.SetRenderWindow(self.RenderWindow)

 importer.Update()

 actors=importer.GetRenderer().GetActors()

 c=actors.GetNumberOfItems ()

 print(c)

 actors.InitTraversal()

 self.RenderWindow.Render()

 self.iren.Initialize()

 def importStl(self,fileList):

 for i in fileList:

 reader = vtk.vtkSTLReader()

 reader.SetFileName(i)

 mapper =vtk.vtkPolyDataMapper()

 mapper.SetInputConnection(reader.GetOutputPort())

 lxactor =vtk.vtkActor()

 lxactor.SetMapper(mapper)

 self.Renderer.AddActor(lxactor)

 self.RenderWindow.Render()

 def OnOpen(self,e):

 self.dirname=''

 dlg=wx.FileDialog(self,"choose a file",self.dirname,"","*.stl",wx.MULTIPLE)

 if dlg.ShowModal()==wx.ID_OK:

 fileList=dlg.GetPaths()

 self.importStl(fileList)

 #self.filename=dlg.GetFilename()

 #self.dirname=dlg.GetDirectory()

 #f=self.importStl(os.path.join(self.dirname,self.filename))

 dlg.Destroy()

 def OnOtherColor(self,event):

 self.dog=wx.ColourDialog(self)

 self.dog.GetColourData().SetChooseFull(True)

145

 if self.dog.ShowModal()== wx.ID_OK:

 colour_data = self.dog.GetColourData()

 colour = colour_data.GetColour()

 colour1=(colour[0]/255,colour[1]/255,colour[2]/255)

 print colour

 if self.actor!= None:

 self.actor.GetProperty().SetColor(colour1)

 self.RenderWindow.Render()

 #self.pickerActor.SetColor(dlg.GetColourData().GetColour())

 self.dog.Destroy()

 def OnSphere(self,e):

 cc=vtk_sphere(1,20,20,0.5,0.8,0.1)

 self.Renderer.AddActor(cc)

 self.RenderWindow.Render()

 def OnCube(self,e):

 dd=vtk_Cube(1,1,1,r=0.4,g=0.8,b=0.1)

 self.Renderer.AddActor(dd)

 self.RenderWindow.Render()

 def OnCylinder(self,e):

 self.ee=vtk_cylinder(1,1,20,0.1,0.5,0.2)

 self.Renderer.AddActor(self.ee)

 self.RenderWindow.Render()

 def OnCamera(self,e):

 cameraAssembly=vtk_Camera_Arrow()

 self.Renderer.AddActor(cameraAssembly)

 self.RenderWindow.Render()

 def OnScreenshot(self,e):

 import random

 rangeLetter=('abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ')

 newFileName = random.choice(rangeLetter)+ ".png"

 windowToImageFilter=vtk.vtkWindowToImageFilter()

 windowToImageFilter.SetInput(self.RenderWindow)

 windowToImageFilter.SetMagnification(3)

 windowToImageFilter.SetInputBufferTypeToRGBA()

 writer=vtk.vtkPNGWriter()

 writer.SetFileName(newFileName)

 writer.SetInputConnection(windowToImageFilter.GetOutputPort())

 writer.Write()

 os.system(newFileName)

 def OnVisibility(self,e):

 actors=self.Renderer.GetActors()

 actors.InitTraversal()

 actor = actors.GetNextItem()

 while actor:

 if self.actor!= actor:

146

 actor.GetProperty().SetColor(0,0,0)

 actor = actors.GetNextItem()

 self.Renderer.SetBackground(0,0,0)

 self.RenderWindow.Render()

 def OnHaptic (self,e):

 print(self.ha.HAPapiVersion())

 self.ha.HAPsetTimeStep(0.002)#default value is 0.002f.

 self.ha.HAPsetIndexingMode(3.0)

 self.ha.HAPsetForceFactor(3.0)

 self.ha.HAPsetSpeedFactor(1.5)

 tab=[0.0,0.0,0.0,0.0,0.0,0.0,1.0]

 self.ha.HAPsetBaseFrame(tab)

 self.ha.HAPsetObservationFrameSpeed(tab)

 self.ha.HAPsetCommandType(5)#comannd type virtmech

 self.ha.HAPconnect()

 while(self.ha.isConnected==True):

 transform=position2matrix(self.ha.posCT, 20)

 if transform!=self.transform:

 self.transform=transform

 newTransform=vtk.vtkTransform()

 newTransform.SetMatrix(self.Transform)

 self.dd.SetPosition(newTransform.GetPosition())

 self.dd.SetOrientation(newTransform.GetOrientation())

 self.RenderWindow.Render()

 def OnCollision (self,e):

 print('00000')

 def OnD3D(self,e):

 self.RenderWindow.StereoRenderOn()

 self.RenderWindow.SetStereoTypeToInterlaced()

 self.RenderWindow.Render()

 self.iren.Start()

 def clear(self,e):

 self.sphereX=[]

 def OnPath(self,e):

 startPoints=[]

 endPoints=[]

 Points=[]

 color=self.Dactor.GetProperty().GetColor()

 print self.sphereX

 for i in range (0,len(self.sphereX)-1,2) :

 Points.append((self.sphereX[i]))

 for i in range(len(Points)-1):

 startPoints.append(Points[i])

 endPoints.append(Points[i+1])

 for i in range (len(startPoints)):

 sphereStartSource = vtk.vtkSphereSource()

 lineSource=vtk.vtkLineSource()

 lineSource.SetPoint1(startPoints[i])

 lineSource.SetPoint2(endPoints[i])

147

 lineSource.Update()

 lineMapper=vtk.vtkPolyDataMapper()

 lineMapper.SetInputConnection(lineSource.GetOutputPort())

 lineActor=vtk.vtkActor()

 lineActor.GetProperty().SetColor(0.0,0.0,0.0)

 lineActor.SetMapper(lineMapper)

 sphereStartSource.SetCenter(startPoints[i])

 sphereStartSource.SetRadius(5)

 sphereStartMapper = vtk.vtkPolyDataMapper()

 sphereStartMapper.SetInputConnection(sphereStartSource.GetOutputPort())

 sphereStart = vtk.vtkActor()

 sphereStart.SetMapper(sphereStartMapper)

 sphereStart.GetProperty().SetColor(color)

 self.Renderer.AddActor(sphereStart)

 self.Renderer.AddActor(lineActor)

 self.RenderWindow.Render()

##The

own interactor style!

 def ButtonEvent(self,Self,event):

 global Rotating, Panning, cameraRotating

 if event == "LeftButtonPressEvent":

 self.Rotating = 1

 XYpos=self.iren.GetEventPosition()

 x= XYpos[0]

 y= XYpos[1]

 CurrentRenderer = self.iren.FindPokedRenderer(x,y)

 picker=vtk.vtkPropPicker()

 picker.Pick(x, y,0,CurrentRenderer)

 self.actor=picker.GetActor()

 elif event == "LeftButtonReleaseEvent":

 self.Rotating = 0

 elif event == "MiddleButtonPressEvent":

 self.Panning = 1

 elif event == "MiddleButtonReleaseEvent":

 self.Panning = 0

 elif event == "RightButtonPressEvent":

 self.cameraRotating = 1

 elif event == "RightButtonReleaseEvent":

 self.cameraRotating = 0

 elif event == "MouseWheelForwardEvent":

 self.zooming()

 elif event == "MouseWheelBackwardEvent":

 self.shrinking()

 def MouseMove(self,obj, event):

 global Rotating, Panning, Zooming

 global iren, renWin, ren

 if self.Rotating:

 self.Rotation()

 if self.Panning:

148

 self.pan()

 elif self.cameraRotating:

 self.cameraRotation()

 def pan(self):

 XYpos=self.iren.GetEventPosition()

 x= XYpos[0]

 y= XYpos[1]

 LastXYpos =self.iren.GetLastEventPosition()

 CurrentRenderer = self.iren.FindPokedRenderer(x,y)

 picker=vtk.vtkPropPicker()

 picker.Pick(x, y,0,CurrentRenderer)

 self.Dactor=picker.GetActor()

 if (self.Dactor==None):

 self.Dactor=picker.GetAssembly()

 if(self.Dactor==None):

 return

 self.RenderWindow.Render()

 def startPan():

 disp_obj_center =[]

 new_pick_point =[]

 old_pick_point =[]

 motion_vector =[]

 obj_center=self.Dactor.GetCenter()

 self.sphereX.append(obj_center)

 CurrentRenderer.SetWorldPoint(obj_center[0],obj_center[1],obj_center[2],1.0)

 CurrentRenderer.WorldToView()

 display=CurrentRenderer.GetViewPoint()

 CurrentRenderer.ViewToDisplay()

 isp_obj_center=CurrentRenderer.GetDisplayPoint()

 CurrentRenderer.SetDisplayPoint(XYpos[0],XYpos[1],0)

 CurrentRenderer.DisplayToView()

 CurrentRenderer.GetViewPoint()

 CurrentRenderer.ViewToWorld()

 new_pick_point=CurrentRenderer.GetWorldPoint()

 CurrentRenderer.SetDisplayPoint(LastXYpos[0],LastXYpos[1],0)

 CurrentRenderer.DisplayToView()

 CurrentRenderer.GetViewPoint()

 CurrentRenderer.ViewToWorld()

 old_pick_point=CurrentRenderer.GetWorldPoint()

 motion_vector.append(new_pick_point[0] - old_pick_point[0])

 motion_vector.append(new_pick_point[1] - old_pick_point[1])

 motion_vector.append(new_pick_point[2] - old_pick_point[2])

 if (self.Dactor.GetUserMatrix()!=None):

 t=vtk.vtkTransform()

 t.PostMultiply()

 t.SetMatrix(Dactor.GetUserMatrix())

 t.Translate(motion_vector[0]*20,motion_vector[1]*20,motion_vector[2]*20)

 self.Dactor.GetUserMatrix().DeepCopy(t.GetMatrix())

 self.Dactor.AddPosition(motion_vector[0],motion_vector[1],motion_vector[2])

 else:

149

 self.Dactor.AddPosition(motion_vector[0]*2,motion_vector[1]*2,motion_vector[2]*2)

 CurrentRenderer.ResetCameraClippingRange()

 #collision_detection(actors,n=len(actors),density=2000,r=0.5)

 self.RenderWindow.Render()

 startPan()

 def Rotation(self):

 XYpos=self.iren.GetEventPosition()

 x= XYpos[0]

 y= XYpos[1]

 LastXYpos =self.iren.GetLastEventPosition()

 CurrentRenderer = self.iren.FindPokedRenderer(x,y)

 picker=vtk.vtkPropPicker()

 picker.Pick(x, y,0,CurrentRenderer)

 Dactor=picker.GetActor()

 if (Dactor==None):

 Dactor=picker.GetAssembly()

 if(Dactor==None):

 return

 self.RenderWindow.Render()

 def startRotation():

 cam=self.Renderer.GetActiveCamera()

 center=Dactor.GetCenter()

 boundRadius=Dactor.GetLength()*0.5#half of the diagonal of the bounding box

 cam.OrthogonalizeViewUp()#force the viewup to be perpendicular to camera->focalpoint

vector

 cam.ComputeViewPlaneNormal()

 view_up=list(cam.GetViewUp())

 c=vtk.vtkMath()

 c.Normalize(view_up)#Unit Vectors

 view_look=cam.GetViewPlaneNormal()

 view_right=[0.0,0.0,0.0]

 c.Cross(view_up,view_look,view_right)

 c.Normalize(view_right)#Unit Vectors

 outsidept=[]

 outsidept.append(center[0] + view_right[0] * boundRadius)

 outsidept.append(center[1] + view_right[1] * boundRadius)

 outsidept.append(center[2] + view_right[2] * boundRadius)#pas compris

 CurrentRenderer.SetWorldPoint(center[0],center[1],center[2],1.0)

 CurrentRenderer.WorldToView()

 CurrentRenderer.GetViewPoint()

 CurrentRenderer.ViewToDisplay()

 disp_obj_center=CurrentRenderer.GetDisplayPoint()

 CurrentRenderer.SetWorldPoint(outsidept[0],outsidept[1],outsidept[2],1.0)

 CurrentRenderer.WorldToView()

 CurrentRenderer.GetViewPoint()

 CurrentRenderer.ViewToDisplay()

 outsidept=CurrentRenderer.GetDisplayPoint()

 radius=math.sqrt(c.Distance2BetweenPoints(disp_obj_center,outsidept))

 nxf=(x-disp_obj_center[0])/radius

 nyf=(y-disp_obj_center[1])/radius

 oxf=(LastXYpos[0]-disp_obj_center[0])/radius

150

 oyf=(LastXYpos[1]-disp_obj_center[1])/radius

 cc=nxf * nxf + nyf * nyf

 dd=oxf * oxf + oyf * oyf

 if (((nxf * nxf + nyf * nyf) <= 1.0)and((oxf * oxf + oyf * oyf) <= 1.0)):

 newXAngle = c.DegreesFromRadians(math.sin(nxf))

 newYAngle = c.DegreesFromRadians(math.sin(nyf))

 oldXAngle = c.DegreesFromRadians(math.sin(oxf))

 oldYAngle = c.DegreesFromRadians(math.sin(oyf))

 scale=[1.0,1.0,1.0]

 rotate=[[0.0,0.0,0.0,0.0,0.0], [0.0,0.0,0.0,0.0,0.0]]

 rotate[0][0] = newXAngle - oldXAngle

 rotate[0][1] = view_up[0]

 rotate[0][2] = view_up[1]

 rotate[0][3] = view_up[2]

 rotate[1][0] = oldYAngle - newYAngle

 rotate[1][1] = view_right[0]

 rotate[1][2] = view_right[1]

 rotate[1][3] = view_right[2]

 self.Prop3DTransform(Dactor,center,2,rotate,scale)

 #collision_detection(actors,n=len(actors),density=2000,r=0.5)

 self.RenderWindow.Render()

 startRotation()

 def Prop3DTransform(self,actor,center,Num,rotate,scale):

 oldM=actor.GetMatrix()

 orig=actor.GetOrigin()

 newTransform=vtk.vtkTransform()

 newTransform.PostMultiply()

 if(actor.GetUserMatrix()!=None):

 newTransform.SetMatrix(actor.GetUserMatrix())

 else:

 newTransform.SetMatrix(oldM)

 newTransform.Translate(-center[0],-center[1],-center[2])

 for i in range(Num):

 newTransform.RotateWXYZ(rotate[i][0], rotate[i][1],rotate[i][2], rotate[i][3])

 newTransform.Translate(center[0],center[1], center[2])

 newTransform.Translate(-(orig[0]), -(orig[1]), -(orig[2]))

 newTransform.PreMultiply()

 newTransform.Translate(orig[0], orig[1], orig[2])

 if (actor.GetUserMatrix() != None):

 newTransform.GetMatrix(actor.GetUserMatrix())

 else:

 actor.SetPosition(newTransform.GetPosition())

 actor.SetScale(newTransform.GetScale())

 actor.SetOrientation(newTransform.GetOrientation())

 newTransform.Pop()

 def cameraRotation(self):

 XYpos=self.iren.GetEventPosition()

 LastXYpos =self.iren.GetLastEventPosition()

151

 x= XYpos[0]

 y= XYpos[1]

 dx=XYpos[0]-LastXYpos[0]

 dy=XYpos[1]-LastXYpos[1]

 CurrentRenderer = self.iren.FindPokedRenderer(x,y)

 size=CurrentRenderer.GetRenderWindow().GetSize()

 delta_elevation = -20.0 / size[1] * 10

 delta_azimuth = -20.0 / size[0]* 10

 rxf = dx * delta_azimuth

 ryf = dy * delta_elevation

 camera =CurrentRenderer.GetActiveCamera()

 camera.Azimuth(rxf)

 camera.Elevation(ryf)

 camera.OrthogonalizeViewUp()

 CurrentRenderer.ResetCameraClippingRange()

 self.RenderWindow.Render()

 def zooming(self):

 XYpos=self.iren.GetEventPosition()

 LastXYpos = self.iren.GetLastEventPosition()

 x= XYpos[0]

 y= XYpos[1]

 dy=XYpos[1]-LastXYpos[1]

 CurrentRenderer = self.iren.FindPokedRenderer(x,y)

 center= CurrentRenderer.GetCenter()

 factor=pow(1.1,1)

 print(factor)

 camera = CurrentRenderer.GetActiveCamera()

 if camera.GetParallelProjection():

 camera.SetParallelScale(camera.GetParallelScale()/factor)

 else:

 camera.Dolly(factor)

 CurrentRenderer.ResetCameraClippingRange()

 self.RenderWindow.Render()

 def shrinking(self):

 XYpos=self.iren.GetEventPosition()

 LastXYpos =self.iren.GetLastEventPosition()

 x= XYpos[0]

 y= XYpos[1]

 CurrentRenderer = self.iren.FindPokedRenderer(x,y)

 center= CurrentRenderer.GetCenter()

 factor=pow(1.1,-1)

 camera = CurrentRenderer.GetActiveCamera()

 if camera.GetParallelProjection():

 camera.SetParallelScale(camera.GetParallelScale()/factor)

 else:

 camera.Dolly(factor)

 CurrentRenderer.ResetCameraClippingRange()

 self.RenderWindow.Render()

 def Button(self,text='',filename=None,bhelp='',Toggle=False,Popup=False):

152

 PUSH=True

 tdir=sys.path[0]

 if filename :

 if not Toggle : item = wx.BitmapButton(self, -1, wx.Bitmap(tdir+os.sep+'pixmaps-

menu'+os.sep+filename))

 else :

 bmp=wx.Bitmap(tdir+os.sep+'pixmaps-menu'+os.sep+filename)

 item = buttons.GenBitmapToggleButton(self, -1, bmp)

 else :

 if not Toggle :

 item = wx.Button(self, 10000, text, wx.DefaultPosition, wx.DefaultSize)

 else :

 item = wx.ToggleButton(self, 10000, text, wx.DefaultPosition, wx.DefaultSize)

 self.sizer.Add(item , (self.row,self.col))

 self.row+=1

 if self.row>=self.nbcol :

 self.col+=1

 self.row=0

 return item

 def Oncordinate(self,e):

 axes=vtk.vtkAxesActor()

 widget=vtk.vtkOrientationMarkerWidget()

 widget.SetOutlineColor(0.9300, 0.5700, 0.1300)

 widget.SetOrientationMarker(axes)

 widget.SetInteractor(self.iren)

 widget.SetViewport(0.0, 0.0, 0.4, .4)

 widget.SetEnabled(1)

 widget.InteractiveOn()

 self.Renderer.ResetCamera()

 self.RenderWindow.Render()

 def Onpicture(self,e):

 dir= os.getcwd()

 initial_dir=os.path.join(dir,'png')

 dlg=ib.ImageDialog(self,initial_dir)

 dlg.Centre()

 if dlg.ShowModal() == wx.ID_OK:

 # show the selected file

 areaReading.areaRead(dlg.GetFile())

 else:

 print "You pressed Cancel"

 dlg.Destroy()

app=wx.App(False)

frame=myFrame(None,"Disassembly simulation")

app.MainLoop()

153

Appendix B collision detection with ODE

import vtk

import ode

import threading

import sys

import time

import math

def vtk_sphere(radius,theta,phi,r,g,b):

 sphereSource=vtk.vtkSphereSource()

 sphereSource.SetRadius(radius)

 sphereSource.SetThetaResolution (theta)

 sphereSource.SetPhiResolution (phi)

 actor1=vtk.vtkActor()

 mapper=vtk.vtkPolyDataMapper()

 mapper.SetInputConnection(sphereSource.GetOutputPort())

 actor1.SetMapper(mapper)

 actor1.GetProperty().SetColor (r,g,b)

 return actor1

def vtk_Cube(x,y,z,r=0.5,g=0.5,b=0.5):

 cyl=vtk.vtkCubeSource()

 cyl.SetXLength(x)

 cyl.SetYLength(y)

 cyl.SetZLength(z)

 mapper =vtk.vtkPolyDataMapper ()

 mapper.SetInputConnection(cyl.GetOutputPort())

 lxactor =vtk.vtkActor()

 lxactor.SetMapper(mapper)

 lxactor.GetProperty().SetColor (r, g, b)

 return lxactor

def vtk_cylinder(radius,h,resolution,r,g,b):

 cy=vtk.vtkCylinderSource()

 cy.SetRadius(radius)

 cy.SetHeight(h)

 cy.SetResolution(resolution)

 translation =vtk.vtkTransform()

 translation.RotateX (90.0)

 transformFilter =vtk.vtkTransformPolyDataFilter()

 transformFilter.SetInputConnection(cy.GetOutputPort())

 transformFilter.SetTransform(translation)

 mapper =vtk.vtkPolyDataMapper()

 mapper.SetInputConnection(transformFilter.GetOutputPort())

 lxactor =vtk.vtkActor()

 lxactor.SetMapper(mapper)

154

 lxactor.GetProperty().SetColor (r, g, b)

 return lxactor

 #meshdata = ode.TriMeshData() #create the data buffer

 #meshdata.build(verts,faces) #Put vertex and face data into the buffer

 #mesh = ode.GeomTriMesh(meshdata,myspace) #

#vtk models

sources=[]

actors=[]

actor1 = vtk_sphere(0.5,20,20,1.0,0.5,0)

actor2= vtk_Cube(0.5,0.5,1,r=1.0,g=0.5,b=0.5)

actor3 = vtk_cylinder(0.5,1,20,0,0.8,1.0)

c=vtk.vtkVersion()

print(c.GetVTKVersion())

actor4= vtk_Cube(0.5,0.5,1,r=0.0,g=1.0,b=0.5)

actor1.SetPosition(0,5,0)

actor2.SetPosition(0,3,0)

actor3.SetPosition(3,3,0)

actor4.SetPosition(0,0,0)

cy=vtk_cylinder(0.8,1.0,20,0.8,0.2,0.3)

cy1=vtk_cylinder(0.5,1.0,20,0.8,0.2,0.4)

cy.SetPosition(0,0,-0.5)

cy1.SetPosition(0,0,0.5)

ass=vtk.vtkAssembly()

ass.AddPart(cy)

ass.AddPart(cy1)

ass.SetPosition(0,2,0)

bounds=ass.GetBounds()

size=[bounds[1]-bounds[0],bounds[3]-bounds[2],bounds[5]-bounds[4]]

define sources for later to use

actors.append(actor1)

actors.append(actor2)

actors.append(actor3)

actors.append(actor4)

actors.append(ass)

renderer=vtk.vtkRenderer()

renderer.SetBackground(2/3, 1/2, 1)

renderer.AddActor(actor1)

renderer.AddActor(actor2)

renderer.AddActor(actor3)

renderer.AddActor(actor4)

renderer.AddActor(ass)

renWin=vtk.vtkRenderWindow()

renWin.SetSize(600,300)

xt=0.005

renWin.AddRenderer(renderer)

155

#renWin.StereoCapableWindowOn()

#renWin.StereoRenderOn()

#renWin.SetStereoTypeToInterlaced()

Rotating = 0

Panning = 0

cameraRotating = 0

Num=0

lasttime=0

iren=vtk.vtkRenderWindowInteractor()

iren.SetInteractorStyle(None)

iren.SetRenderWindow(renWin)

#define myown interaction style, still not finished, need to difine the other

#it can be used to drag and rotate one piece.

def ButtonEvent(Self,event):

 global Rotating, Panning, cameraRotating

 if event == "LeftButtonPressEvent":

 Rotating = 1

 elif event == "LeftButtonReleaseEvent":

 Rotating = 0

 elif event == "MiddleButtonPressEvent":

 Panning = 1

 elif event == "MiddleButtonReleaseEvent":

 Panning = 0

 elif event == "RightButtonPressEvent":

 cameraRotating = 1

 elif event == "RightButtonReleaseEvent":

 cameraRotating = 0

 elif event == "MouseWheelForwardEvent":

 print("forward")

 zooming()

 elif event == "MouseWheelBackwardEvent":

 print("backward")

 shrinking()

def MouseMove(obj, event):

 global Rotating, Panning, Zooming

 global iren, renWin, ren

 if Rotating:

 Rotation()

 elif Panning:

 pan()

 elif cameraRotating:

 print(cameraRotating)

 cameraRotation()

def Keypress(obj, event):

 key = obj.GetKeySym()

 if key == "e":

 obj.InvokeEvent("DeleteAllObjects")

 sys.exit()

 elif key == "w":

 Wireframe()

 elif key =="s":

156

 Surface()

 elif key =="c":

 addCube()

 elif key=="d":

 addSphere()

def addCube():

 actor= vtk_Cube(0.5,0.5,1,r=1.0,g=0.5,b=0.5)

 actors.append(actor)

 actor.SetPosition(0,0,0)

 renderer.AddActor(actor)

 renWin.Render()

def addSphere():

 actor = vtk_sphere(0.5,20,20,1.0,0.5,0)

 actors.append(actor)

 actor.SetPosition(0,0,0)

 renderer.AddActor(actor)

 renWin.Render()

def Wireframe():

 actors = renderer.GetActors()

 actors.InitTraversal()

 actor = actors.GetNextItem()

 while actor:

 actor.GetProperty().SetRepresentationToWireframe()

 actor = actors.GetNextItem()

 renWin.Render()

def Surface():

 actors = renderer.GetActors()

 actors.InitTraversal()

 actor = actors.GetNextItem()

 while actor:

 actor.GetProperty().SetRepresentationToSurface()

 actor = actors.GetNextItem()

 renWin.Render()

#collision detection function

def vtk_ode(mat):

 position=(mat.GetElement(0,3), mat.GetElement(1,3),mat.GetElement(2,3))

 rotation=(mat.GetElement(0,0), mat.GetElement(0,1),mat.GetElement(0,2),mat.GetElement(1,0),

mat.GetElement(1,1),mat.GetElement(1,2),mat.GetElement(2,1),

mat.GetElement(2,2),mat.GetElement(2,3))

 return position,rotation

def ode_vtk(position,rotation):

 rot=[rotation[0],rotation[3],rotation[6],0.0,

 rotation[1],rotation[4],rotation[7],0.0,

 rotation[2],rotation[5],rotation[8],0.0,

157

 position[0],position[1],position[2],1.0]

 return rot

def collision_detection(actorss,n,density=2000,r=0.5):

 global Dactor,actors,lasttime

 world=ode.World()

 world.setGravity((0,-9.8,0))

 world.setERP(0.8)

 world.setCFM(1E-8)

 contactgroup = ode.JointGroup()

 space=ode.Space()

 total_time=2

 dt=0.1

 body=[]

 geom=[]

 #body.setKinematic()

 for i in range(n):

 body.append(ode.Body(world))

 mass=ode.Mass()

 if (actorss[i].GetClassName()=="vtkAssembly"):

 mat=actorss[i].GetMatrix()

 vv=actorss[i].GetPosition()

 mm=actorss[i].GetCenter()

 position,rotation=vtk_ode(mat)

 body[i].setPosition(position)

 body[i].setRotation(rotation)

 body[i].setKinematic()

 body[i].boxsize = (size[0],size[1],size[2])

 geom2=ode.GeomCylinder(None,0.8,1.0)

 geom1=ode.GeomCylinder(None,0.5,1.0)

 trans=ode.GeomTransform(space)

 trans1=ode.GeomTransform(space)

 trans.setGeom(geom2)

 trans1.setGeom(geom1)

 geom2.setPosition((0,0,-0.5))

 geom1.setPosition((0,0,0.5))

 geom.append(trans)

 geom[i].setBody(body[i])

 trans1.setBody(body[i])

 if Dactor==actorss[i]:

 mass.setBox(2000,size[0],size[1],size[2])

 body[i].setMass(mass)

 else:

 algo=actorss[i].GetMapper().GetInputConnection(0,0).GetProducer()

 cc=algo.GetClassName()

 if (cc=="vtkSphereSource"):#if it is the pick one. We need to set mass to it

 mat=actorss[i].GetMatrix()

158

 position,rotation=vtk_ode(mat)

 body[i].setPosition(position)

 body[i].setRotation(rotation)

 body[i].setKinematic()

 geom1=ode.GeomSphere(space,0.5)

 geom.append(geom1)

 geom[i].setBody(body[i])

 if Dactor==actorss[i]:

 mass.setSphere(2000,r)

 body[i].setMass(mass)

 if (cc=="vtkCubeSource"):

 mat=actorss[i].GetMatrix()

 position,rotation=vtk_ode(mat)

 body[i].boxsize = (0.5,0.5,1)

 body[i].setPosition(position)

 body[i].setRotation(rotation)

 body[i].setKinematic()

 geom1=ode.GeomBox(space,lengths=body[i].boxsize)

 geom.append(geom1)

 geom[i].setBody(body[i])

 if Dactor==actorss[i]:

 mass.setBox(2000,0.5,0.5,1)

 body[i].setMass(mass)

 if (cc=="vtkTransformPolyDataFilter"):

 mat=actorss[i].GetMatrix()

 position,rotation=vtk_ode(mat)

 body[i].setKinematic()

 body[i].setPosition(position)

 body[i].setRotation(rotation)

 geom1=ode.GeomCylinder(space,0.5,1.0)

 geom.append(geom1)

 geom[i].setBody(body[i])

 if Dactor==actorss[i]:

 mass.setCylinder(2000,2,0.5,2.0)

 body[i].setMass(mass)

 def near_callback(args, geom1, geom2):

 contacts = ode.collide(geom1, geom2)

 world,contactgroup = args

 for c in contacts:

 c.setBounce(1)

 c.setMu(10000)

 j = ode.ContactJoint(world, contactgroup, c)

 j.attach(geom1.getBody(),geom2.getBody())

 def simloop():

 simstep=0.001

 space.collide((world,contactgroup), near_callback)

159

 world.step(simstep)

 for i in range(n):

 x,y,z=body[i].getPosition()

 actorss[i].SetPosition(x,y,z)#when the loop beginning,it is not possible to change the

#model rotation if no collision happening. For ode, the body is changing the

 renWin.Render() #rotation happens when the world is begining. #The

problem is when the rotation will be feedback rotation.

 contactgroup.empty()

 dt=0.005

 while(dt<0.1):

 simloop()

 dt+=dt

#my own interaction style for disassembly products

##

#######

def pan():

 global Rotating, Panning, Zooming,n,Num,Dactor,lasttime

 global iren, renWin, ren, Dactor, CurrentRenderer,XYpos, LastXYpos

 XYpos=iren.GetEventPosition()

 x= XYpos[0]

 y= XYpos[1]

 LastXYpos =iren.GetLastEventPosition()

 CurrentRenderer = iren.FindPokedRenderer(x,y)

 picker=vtk.vtkPropPicker()

 picker.Pick(x, y,0,CurrentRenderer)

 Dactor=picker.GetActor()

 if (Dactor==None):

 Dactor=picker.GetAssembly()

 if(Dactor==None):

 return

 iren.Initialize()

 renWin.Render()

 def startPan():

 disp_obj_center =[]

 new_pick_point =[]

 old_pick_point =[]

 motion_vector =[]

 global Dactor, XYpos,LastXYpos,renWin

 obj_center=Dactor.GetCenter()

 CurrentRenderer.SetWorldPoint(obj_center[0],obj_center[1],obj_center[2],1.0)

 CurrentRenderer.WorldToView()

 display=CurrentRenderer.GetViewPoint()

 CurrentRenderer.ViewToDisplay()

 isp_obj_center=CurrentRenderer.GetDisplayPoint()

 CurrentRenderer.SetDisplayPoint(XYpos[0],XYpos[1],0)

 CurrentRenderer.DisplayToView()

 CurrentRenderer.GetViewPoint()

 CurrentRenderer.ViewToWorld()

 new_pick_point=CurrentRenderer.GetWorldPoint()

 CurrentRenderer.SetDisplayPoint(LastXYpos[0],LastXYpos[1],0)

160

 CurrentRenderer.DisplayToView()

 CurrentRenderer.GetViewPoint()

 CurrentRenderer.ViewToWorld()

 old_pick_point=CurrentRenderer.GetWorldPoint()

 motion_vector.append(new_pick_point[0] - old_pick_point[0])

 motion_vector.append(new_pick_point[1] - old_pick_point[1])

 motion_vector.append(new_pick_point[2] - old_pick_point[2])

 if (Dactor.GetUserMatrix()!=None):

 t=vtk.vtkTransform()

 t.PostMultiply()

 t.SetMatrix(Dactor.GetUserMatrix())

 t.Translate(motion_vector[0]*10,motion_vector[1]*10,motion_vector[2]*10)

 Dactor.GetUserMatrix().DeepCopy(t.GetMatrix())

 print(t)

 Dactor.AddPosition(motion_vector[0],motion_vector[1],motion_vector[2])

 else:

 Dactor.AddPosition(motion_vector[0]*2,motion_vector[1]*2,motion_vector[2]*2)

 CurrentRenderer.ResetCameraClippingRange()

 collision_detection(actors,n=len(actors),density=2000,r=0.5)

 renWin.Render()

 startPan()

def Rotation():

 XYpos=iren.GetEventPosition()

 x= XYpos[0]

 y= XYpos[1]

 LastXYpos =iren.GetLastEventPosition()

 CurrentRenderer = iren.FindPokedRenderer(x,y)

 picker=vtk.vtkPropPicker()

 picker.Pick(x, y,0,CurrentRenderer)

 Dactor=picker.GetActor()

 if (Dactor==None):

 Dactor=picker.GetAssembly()

 if(Dactor==None):

 return

 iren.Initialize()

 renWin.Render()

 def startRotation():

 cam=renderer.GetActiveCamera()

 center=Dactor.GetCenter()

 boundRadius=Dactor.GetLength()*0.5#half of the diagonal of the bounding box

 cam.OrthogonalizeViewUp()#force the viewup to be perpendicular to camera->focalpoint vector

 cam.ComputeViewPlaneNormal()

 view_up=cam.GetViewUp()

 c=vtk.vtkMath()

 c.Normalize(view_up)#Unit Vectors

161

 view_look=cam.GetViewPlaneNormal()

 view_right=[0.0,0.0,0.0]

 c.Cross(view_up,view_look,view_right)

 c.Normalize(view_right)#Unit Vectors

 outsidept=[]

 outsidept.append(center[0] + view_right[0] * boundRadius)

 outsidept.append(center[1] + view_right[1] * boundRadius)

 outsidept.append(center[2] + view_right[2] * boundRadius)#pas compris

 CurrentRenderer.SetWorldPoint(center[0],center[1],center[2],1.0)

 CurrentRenderer.WorldToView()

 CurrentRenderer.GetViewPoint()

 CurrentRenderer.ViewToDisplay()

 disp_obj_center=CurrentRenderer.GetDisplayPoint()

 CurrentRenderer.SetWorldPoint(outsidept[0],outsidept[1],outsidept[2],1.0)

 CurrentRenderer.WorldToView()

 CurrentRenderer.GetViewPoint()

 CurrentRenderer.ViewToDisplay()

 outsidept=CurrentRenderer.GetDisplayPoint()

 radius=math.sqrt(c.Distance2BetweenPoints(disp_obj_center,outsidept))

 print(radius)

 nxf=(x-disp_obj_center[0])/radius

 nyf=(y-disp_obj_center[1])/radius

 print(x,y)

 oxf=(LastXYpos[0]-disp_obj_center[0])/radius

 oyf=(LastXYpos[1]-disp_obj_center[1])/radius

 print(LastXYpos[0], LastXYpos[1])

 cc=nxf * nxf + nyf * nyf

 dd=oxf * oxf + oyf * oyf

 print(dd)

 if (((nxf * nxf + nyf * nyf) <= 1.0)and((oxf * oxf + oyf * oyf) <= 1.0)):

 newXAngle = c.DegreesFromRadians(math.sin(nxf))

 newYAngle = c.DegreesFromRadians(math.sin(nyf))

 oldXAngle = c.DegreesFromRadians(math.sin(oxf))

 oldYAngle = c.DegreesFromRadians(math.sin(oyf))

 scale=[1.0,1.0,1.0]

 rotate=[[0.0,0.0,0.0,0.0,0.0], [0.0,0.0,0.0,0.0,0.0]]

 rotate[0][0] = newXAngle - oldXAngle

 rotate[0][1] = view_up[0]

 rotate[0][2] = view_up[1]

 rotate[0][3] = view_up[2]

 rotate[1][0] = oldYAngle - newYAngle

 rotate[1][1] = view_right[0]

 rotate[1][2] = view_right[1]

162

 rotate[1][3] = view_right[2]

 Prop3DTransform(Dactor,center,2,rotate,scale)

 collision_detection(actors,n=len(actors),density=2000,r=0.5)

 renWin.Render()

 startRotation()

def Prop3DTransform(actor,center,Num,rotate,scale):

 print("good")

 oldM=actor.GetMatrix()

 orig=actor.GetOrigin()

 newTransform=vtk.vtkTransform()

 newTransform.PostMultiply()

 if(actor.GetUserMatrix()!=None):

 newTransform.SetMatrix(actor.GetUserMatrix())

 else:

 newTransform.SetMatrix(oldM)

 newTransform.Translate(-center[0],-center[1],-center[2])

 for i in range(Num):

 newTransform.RotateWXYZ(rotate[i][0], rotate[i][1],rotate[i][2], rotate[i][3])

 newTransform.Translate(center[0],center[1], center[2])

 newTransform.Translate(-(orig[0]), -(orig[1]), -(orig[2]))

 newTransform.PreMultiply()

 newTransform.Translate(orig[0], orig[1], orig[2])

 if (actor.GetUserMatrix() != None):

 newTransform.GetMatrix(actor.GetUserMatrix())

 else:

 actor.SetPosition(newTransform.GetPosition())

 actor.SetScale(newTransform.GetScale())

 actor.SetOrientation(newTransform.GetOrientation())

 newTransform.Pop()

def cameraRotation():

 XYpos=iren.GetEventPosition()

 LastXYpos =iren.GetLastEventPosition()

 x= XYpos[0]

 y= XYpos[1]

 dx=XYpos[0]-LastXYpos[0]

 dy=XYpos[1]-LastXYpos[1]

 CurrentRenderer = iren.FindPokedRenderer(x,y)

 size=CurrentRenderer.GetRenderWindow().GetSize()

 delta_elevation = -20.0 / size[1] * 10

 delta_azimuth = -20.0 / size[0]* 10

 rxf = dx * delta_azimuth

 ryf = dy * delta_elevation

163

 camera =CurrentRenderer.GetActiveCamera()

 camera.Azimuth(rxf);

 camera.Elevation(ryf);

 camera.OrthogonalizeViewUp()

 CurrentRenderer.ResetCameraClippingRange()

 renWin.Render()

def zooming():

 XYpos=iren.GetEventPosition()

 LastXYpos =iren.GetLastEventPosition()

 x= XYpos[0]

 y= XYpos[1]

 dy=XYpos[1]-LastXYpos[1]

 CurrentRenderer = iren.FindPokedRenderer(x,y)

 center= CurrentRenderer.GetCenter()

 factor=pow(1.1,1)

 print(factor)

 camera = CurrentRenderer.GetActiveCamera()

 if camera.GetParallelProjection():

 camera.SetParallelScale(camera.GetParallelScale()/factor)

 else:

 camera.Dolly(factor)

 CurrentRenderer.ResetCameraClippingRange()

 renWin.Render()

def shrinking():

 XYpos=iren.GetEventPosition()

 LastXYpos =iren.GetLastEventPosition()

 x= XYpos[0]

 y= XYpos[1]

 CurrentRenderer = iren.FindPokedRenderer(x,y)

 center= CurrentRenderer.GetCenter()

 factor=pow(1.1,-1)

 camera = CurrentRenderer.GetActiveCamera()

 if camera.GetParallelProjection():

 camera.SetParallelScale(camera.GetParallelScale()/factor)

 else:

 camera.Dolly(factor)

 CurrentRenderer.ResetCameraClippingRange()

 renWin.Render()

iren.AddObserver("LeftButtonPressEvent", ButtonEvent)

iren.AddObserver("LeftButtonReleaseEvent", ButtonEvent)

iren.AddObserver("MiddleButtonPressEvent", ButtonEvent)

iren.AddObserver("MiddleButtonReleaseEvent", ButtonEvent)

iren.AddObserver("RightButtonPressEvent", ButtonEvent)

164

iren.AddObserver("RightButtonReleaseEvent", ButtonEvent)

iren.AddObserver("MouseWheelForwardEvent", ButtonEvent)

iren.AddObserver("MouseWheelBackwardEvent", ButtonEvent)

iren.AddObserver("MouseMoveEvent", MouseMove)

iren.AddObserver("KeyPressEvent", Keypress)

iren.Initialize()

renWin.Render()

iren.Start()

165

Summary:
Integration of disassembly operations during product design is an important issue today. It is estimated that at the
earliest stages of product design, the cost of disassembly operations almost represents 30 % of its total cost. Nowadays,
disassembly operation simulation of industrial products finds a strong interest in interactive simulations through
immersive and real-time schemes. In this context, in the first place, this thesis presents a method for generating the
feasible disassembly sequences for selective disassembly. The method is based on the lowest levels of a disassembly
product graph. Instead of considering the geometric constraints for each pair of components, the proposed method
considers the geometric contact and collision relationships among the components in order to generate the so-called
Disassembly Geometry Contacting Graph (DGCG). The latter is then used for disassembly sequence generation thus
allowing the number of possible sequences to be reduced by ignoring any components which are unrelated to the target.
A simulation framework was developed integrated in a Virtual reality environment thus allowing generating the
minimum number of possible disassembly sequences. Secondly, a method for disassembly operation evaluation by 3D
geometric removability analysis in a Virtual environment is proposed. It is based on seven new criteria which are:
visibility of a part, disassembly angles, number of tools’ changes, path orientation changing, sub-assembly stability,
neck score and bending score. All criteria are presented by dimensionless coefficients automatically calculated, thus
allowing evaluating disassembly sequences complexity. For this purpose, a mixed virtual reality disassembly
environment (VRDE) is developed based on Python programming language, utilizing VTK (Visualization Toolkit) and
ODE (Open Dynamics Engine) libraries. The framework is based on STEP, WRL and STL exchange formats. The
analysis results and findings demonstrate the feasibility of the proposed approach thus providing significant assistance
for the evaluation of disassembly sequences during Product Development Process (PDP). Further consequences of the
present work consist in ranking the criteria according to their importance. For this purpose, moderation coefficients
may be allocated to each of them thus allowing a more comprehensive evaluating method.

Key words: disassembly sequences, disassembly product graph, geometric analysis, removability analysis, virtual
reality.

Résumé:
De nos jours, l'intégration des opérations de désassemblage lors de la conception des produits est un enjeu crucial. On
estime que dans la phase initiale de la conception d’un produit, le coût des opérations de désassemblage représente
environ 30% de son coût total. Ainsi, la simulation des opérations de désassemblage de produits industriels trouve un
fort intérêt pour des simulations interactives grâce à des programmes d'immersion et en temps réel. Dans ce contexte,
dans un premier temps, cette thèse présente une méthode de génération des séquences de désassemblage possibles
pour le désassemblage sélectif. La méthode est basée sur les niveaux les plus bas du graphe de désassemblage des
produits. Au lieu de considérer les contraintes géométriques pour chaque paire de composants, la méthode proposée
tient compte des contacts (relations géométriques entre les composants) et des collisions afin de générer le Graphe
Géométrique de Contacts et de Désassemblage (DGCG). Celui-ci est ensuite utilisé pour la génération des séquences
de désassemblage permettant ainsi de réduite le nombre de séquences possibles en ignorant les composants non liés
avec la cible. Une application de simulation a été développée, intégrée dans un environnement de réalité virtuelle (RV)
permettant ainsi la génération du nombre minimum de séquences possibles de désassemblage.
Dans un second temps, une méthode d'évaluation des opérations de désassemblage par analyse géométrique 3D de
l'amovibilité dans un environnement RV est proposée. Elle est basée sur sept nouveaux critères qui sont: la visibilité
d'une pièce, les angles de désassemblage, le nombre des changements d’outils, le changement d'orientation des
trajectoires, la stabilité des sous-ensembles, les angles de rotation du cou et flexion du corps. Tous ces critères sont
présentés par des coefficients sans dimension calculés automatiquement par l’application développée, permettant ainsi
d'évaluer la complexité des séquences de désassemblage. A cet effet, un environnement mixte de réalité virtuelle pour
le désassemblage (VRDE) est développé, basé sur le langage de programmation Python, en utilisant deux
bibliothèques : VTK (Visualisation Toolkit) et ODE (Open Dynamics Engine), les formats d’échange étant fichiers:
STEP, WRL et STL. L'analyse des résultats obtenus démontrent la fiabilité de l'approche proposée fournissant ainsi
une aide non négligeable pour l'évaluation des séquences de désassemblage lors de processus de développement de
produits (PDP). Les autres conséquences de ce travail consistent à classer les critères en fonction de leur importance.
A cet effet, des coefficients de modération peuvent être attribués à chacun d'eux permettant ainsi une méthode
d'évaluation plus complète.

Mots-clés: séquences de désassemblage, graphe de désassemblage, analyse géométrique, analyse d’amovibilité, réalité
virtuelle.

