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Andrea Seppi

Thesis defended on December, 1st 2015

Advisor: Prof. Francesco Bonsante

Jury:
Prof. Pietro Rigo (President)

Prof. Roberto Frigerio (Member)
Prof. Paolo Stellari (Member and secretary)





Abstract

In this thesis are exploited several instances of the relationship between convex
Cauchy surfaces S in flat Lorentzian (2+1)-dimensional maximal globally hyperbolic
manifolds M and the tangent bundle of Teichmüller space T (S) of the topological
surface S. This relationship was first pointed out by Geoffrey Mess in the case of
closed surfaces.

The first case presented is the case of simply connected surfaces, and M is a
domain of dependence in R2,1. We prove a classification of entire surfaces of con-
stant curvature in R2,1 in terms of Zygmund functions on the circle, which represent
tangent vectors of universal Teichmüller space T (D) at the identity. An impor-
tant ingredient is the solvability of Minkowski problem for Cauchy surfaces in any
domain of dependence M contained in the future cone over some point of R2,1,
which is proved by analyzing the Dirichlet problem for the Monge-Ampère equation
detD2u(z) = (1/ψ(z))(1−|z|2)−2 on the disc, where ψ is a smooth positive function.
Moreover, when S is a surface of constant curvature, the principal curvatures are
bounded if and only if ϕ is in the Zygmund class.

The situation of S a closed surface, and M is a maximal globally hyperbolic
flat spacetime diffeomorphic to S × R, is next discussed. We provide an explicit
relation between the embedding data of any strictly convex Cauchy surface in M
and the holonomy of M , which was used by Mess to parametrize the moduli space
of manifolds M as above by means of the tangent bundle of T (S). The techniques
used in this thesis are amenable to be extended to the case of globally hyperbolic
flat spacetimes with n > 0 particles, namely cone singularities along timelike lines,
where the cone angle is assumed in (0, 2π). The analogue of Mess’ parametrization
is then proved, showing that the corresponding moduli space is parametrized by the
tangent bundle of Teichmüller space of the closed surface S with n punctures.

The above connections can be regarded as an infinitesimal version of the relation
of Teichmüller space T (S) and universal Teichmüller space T (D) with surfaces in
maximal globally hyperbolic Anti-de Sitter manifolds (either with the topological
type of a closed surface, or with trivial topology) and in quasi-Fuchsian hyperbolic
manifolds (or in H3 itself). In the last part of the thesis this perspective is discussed,
and the behavior of zero mean curvature surfaces in H3 and AdS3 close to the
Fuchsian locus is discussed. The main result in hyperbolic space is a sublinear
estimate of the supremum of principal curvatures of a minimal embedded disc in H3

spanning a quasicircle Γ in the boundary at infinity in terms of the norm of Γ in
the sense of universal Teichmüller space, provided Γ is sufficiently close to being the
boundary of a totally geodesic plane. As a by-product, there is a universal constant C

i



ii

such that if the Teichmüller distance between the ends of a quasi-Fuchsian manifold
M is at most C, then M is almost-Fuchsian, independently of the genus.

In Anti-de Sitter space, an estimate is proved for the principal curvatures of any
maximal surface with boundary at infinity the graph of a quasisymmetric homeomor-
phism φ of the circle. The supremum of the principal curvatures is estimated again
in a sublinear way, in terms of the cross-ratio norm of φ. This also provides a bound
on the maximal distortion of the quasiconformal minimal Lagrangian extension to
the disc of a given quasisymmetric homeomorphism.
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Introduction

The cornerstone of this thesis is the idea that the theory of convex surfaces in
Minkowski (2+1)-space is strongly interrelated with the infinitesimal theory of Te-
ichmüller spaces. A first instance of this fact was described by Geoffrey Mess in
his groundbreaking work [Mes07], in which the class of compact globally hyperbolic
manifolds locally modelled on Minkowski space was studied. These objects are flat
Lorentzian three-manifolds M , diffeomorphic to S × R where S is a closed surface
(assumed here to be of genus g ≥ 2), such that the horizontal slices are Cauchy
surfaces for the causal structure. Mess proved that every M as above is obtained
as the quotient of a convex domain in Minkowski space under the free and proper
discontinuous action of an affine deformation of a Fuchsian group. Using this con-
struction, the space of maximal globally hyperbolic flat Lorentzian manifolds (up to
isometries isotopic to the identity) was parametrized by the tangent bundle of the
Teichmüller space of the surface S. Further developments in this direction were then
exploited in [Bar05, Bon05].

The relation between Teichmüller spaces and hyperbolic three-manifolds con-
taining a closed surface of genus g ≥ 2 has been widely studied. Anti-de Sitter
space AdS3 is the model Lorentzian manifold of constant curvature −1, analogous
of hyperbolic space H3 in the Lorentzian setting, and its relations with Teichmüller
theory were largely investigated and appreciated after the pioneering work again by
Geoffrey Mess. Indeed, the parameter space of maximal globally hyperbolic Anti-de
Sitter spacetimes is diffeomorphic to T (S)×T (S), i.e. the cartesian product of two
copies of Teichmüller space of S. To some extent the latter result - first proved in
[Mes07] - is the analogue of Bers’ Simultaneous Uniformization Theorem ([Ber60]),
which enabled to parametrize the space of quasi-Fuchsian hyperbolic manifolds by
two copies of T (S).

One of the main themes of this work is the idea that the assumption that S is a
closed surface can be relaxed, in (at least) two different directions.

Employing the perspective of quasiconformal mappings for the theory of Teich-
müller spaces, it turns out that a very interesting object to consider in relation
with the geometry of convex surfaces is universal Teichmüller space T (D), which
can be thought of as the space of quasiconformal deformations of the disc D, as a
Riemann surface. This is an infinite-dimensional space which generalizes the no-
tion of Teichmüller space of a surface, in fact T (D) contains an embedded copy of
the Teichmüller space of any hyperbolic Riemann surface. Universal Teichmüller
space has been studied in relation with surfaces in hyperbolic space, for instance in
[Eps86, Eps87], and in Anti-de Sitter space, in [BS10, Sca12, SK13].
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2 Introduction

On the other hand, another generalization of the above correspondence between
geometric structures on three-manifolds of constant curvature and the Teichmüller
theory of surfaces comes from allowing certain types of singularities. As already
exploited in [KS07, BS09, BBS11, BBS14, Tou15] for the Anti-de Sitter case, and in
[KS07, MS09, LS14] for the hyperbolic case, Teichmüller space of a punctured surface
is a relevant object in relation with geometric structures on three-manifolds with cone
singularities. When dealing with Lorentzian manifold, the usual assumption is to
consider cone singularities along timelike lines, corresponding to the physical notion
of “particle”. The parametrizations of maximal globally hyperbolic/quasi-Fuchsian
manifolds discussed above, and other remarkable features of the theory for closed
surfaces, thus extend to the case of manifolds with cone singularities and lead to
interesting new constructions.

Part II of this thesis is mostly concerned with the study of convex surfaces in
Minkowski space R2,1 and in flat Lorentzian manifolds (possibly with particles), in
relation with the tangent space of, respectively, universal Teichmüller space and the
Teichmüller spaces of (punctured) surfaces.

The developments pursued in this thesis are often permeated with another no-
tion: the idea of geometric transition. Minkowski space is identified to the tangent
space at a fixed point of both de Sitter space - namely, the model space dS3 of
positive constant curvature Lorentzian manifolds - and Anti-de Sitter space. Hence,
Minkowski space can be thought of as a rescaled limit of Anti-de Sitter and de Sitter
geometries, by “zooming in” from a fixed point. When the scale of zooming gets
infinitely larger, any information around the fixed point blows up and is recorded
- at an infinitesimal level - in a copy of Minkowski space. Let us briefly remark
that dS3 is a dual space to H3: indeed, both spaces have a projective model, and
the duality arises from the projective duality of RP3. The analogous construction
provides a duality of AdS3 to itself.

In his PhD thesis ([Dan11]), Jeffrey Danciger described a different transition
procedure which can be regarded as the blow-up of a totally geodesic plane. This
transition involves both Anti-de Sitter space and hyperbolic space, while the limit
object is a three-manifold endowed with a degenerate metric, called half-pipe geom-
etry. See also [Dan13, Dan14, DGK13].

The underlying space of half-pipe geometry HP3 can be identified to H2 × R,
where H2 is the hyperbolic plane, while its degenerate metric only reads the first
component, where it coincides with the hyperbolic metric. It turns out that this
space is in a natural way the space which parametrizes spacelike planes in Minkowski
space. This produces a “duality” between R2,1 and HP3 which is naturally the
rescaled limit - in a projective sense - of the duality between dS3 and H3, and of the
self-duality of AdS3.

This transitional geometry gives an account for the fact that Minkowski space is
strictly interrelated with the infinitesimal theory of Teichmüller spaces. For instance,
when S is a closed surface, it is natural to regard the parameter space TT (S) for flat
Lorentzian maximal globally hyperbolic manifolds as a blow-up of the Anti-de Sitter
analogous parameter space, given by T (S)×T (S), close to the Fuchsian locus which
is represented by the diagonal. However, the assumption that S is a closed surface
is not essential here, and very often S will be replaced by the disc D, as a Riemann
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surface. Several geometric quantities associated to surfaces in R2,1, describing for
instance the curvature, or the asymptotic behaviour at infinity, are therefore the
mirror at first order of the analogous quantities in AdS3 or dS3. Such amount of
information is very often translated in simple terms in half-pipe geometry, by means
of the already mentioned duality.

In Part III of this thesis, we will consider the behaviour of surfaces in hyperbolic
space and Anti-de Sitter space which are topologically discs and are “close” to the
Fuchsian locus, i.e. close (in the sense of universal Teichmüller space T (D)) to being
a totally geodesic plane, with special interest towards the properties of curvature of
the surface.

Convex surfaces in Minkowski space

The first objects studied, in the presentation of this thesis, are convex surfaces in
Minkowski space - especially surfaces of constant curvature - and the tangent space
of universal Teichmüller space.

As first observed by Hano and Nomizu ([HN83]), the standard embedding of H2

into the hyperboloid of R2,1 is not the unique isometric embedding of H2. This is a
striking difference with the case of Euclidean geometry, where by a classical theorem,
any isometric embedding of the sphere of constant curvature into R3 is equivalent
to the standard embedding of the round sphere (i.e. up to post-composition with
an ambient isometry).

A strictly convex spacelike surface S in R2,1 gives rise, by means of the duality
between Minkowski space and half-pipe geometry, to a spacelike surface S∗ in HP3,
namely a surface in H2 × R which is a graph over an open connected domain of
H2. If S∗ is the graph of the function ū, it turns out that the inverse of the shape
operator of S can be expressed as Hess ū − ū E, where Hess denotes the covariant
hyperbolic Hessian and E is the identity operator. The function ū is the analogous in
the Lorentzian setting of the classical support function for Euclidean convex bodies.

This point of view enables to give an explanation for the difference with the
rigidity of the sphere in the Euclidean case. Indeed, in the Euclidean case, the
equation for a constant curvature surface in terms of the support function ū : S2 → R
is

det(Hess ū+ ū E) = 1 ,

where Hess now is the covariant Hessian on the sphere. By using the comparison
principle, it turns out that the difference of any two solutions must be the restriction
on S2 of a linear form on R3. This allows to conclude that every solution is of the
form ū(x) = 1 + 〈x, ξ〉 for some ξ ∈ R3. But this is exactly the support function of
the round sphere of radius 1 centered at ξ.

In the Minkowski case, the support function ū : H2 → R of a constant curvature
spacelike surface (with surjective Gauss map) satisfies the equation

det(Hess ū− ū E) = 1 .

Here the maximum principle cannot be directly used by the non-compactness of
H2. This is a general indication that some boundary condition must be taken into
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account to determine the solution and the isometric immersion of H2.
More generally, we will deal with the Lorentizian version of the classical Minkowski

problem in Euclidean space. Given a smooth spacelike strictly convex surface S in
R2,1, the curvature function is defined as ψ : G(S) → R, ψ(x) = −KS(G−1(x)),
where G : S → H2 is the Gauss map and KS is the scalar intrinsic curvature on S.
Minkowski problem consists in finding a convex surface in Minkowski space whose
curvature function is a prescribed positive function ψ. Using the support function
technology, the problem turns out to be equivalent to solving the equation

det(Hessū− ū E) =
1

ψ
. (1)

Using the Klein model of H2, Equation (1) can be reduced to a standard Monge-
Ampère equation over the unit disc D. In particular solutions of (1) explicitly
correspond to solutions u : D→ R of the equation

detD2u(z) =
1

ψ(z)
(1− |z|2)−2 . (MA)

The problem is going to be well-posed once a boundary condition is imposed, of the
form

u|∂D = ϕ . (BC)

The boundary value of the solution u has a direct geometric interpretation. Indeed,
as ∂D (regarded as the set of lightlike directions) parameterizes lightlike linear planes,
the restriction of the support function on ∂D gives the height function of lightlike
support planes of S, where u(η) = +∞ means that there is no lightlike support plane
orthogonal to η. Equivalently, when S is the graph of a convex function f : R2 → R,
the condition u|∂D = ϕ is also equivalent to requiring that

lim
r→+∞

(r − f(rz)) = ϕ(z)

for every z ∈ ∂D. This is the type of asymptotic condition considered for instance
in [Tre82] and [CT90], where the existence problem for constant mean curvature
surfaces is treated.

The first result of Chapter 4 concerns the solvability of Minkowski problem in
Minkowski space.

Theorem 4.A. Let ϕ : ∂D → R be a lower semicontinuous and bounded function
and ψ : D → [a, b] for some 0 < a < b < +∞. Then there exists a unique spacelike
entire graph S in R2,1 whose support function u extends ϕ and whose curvature
function is ψ.

We say that a convex surface is a spacelike entire graph if S = {(p, f(p)) | p ∈ R2},
where f : R2 → R is a C1 function on the horizontal plane such that ||Df(p)|| < 1
for all p ∈ R2.

In [Li95], Li studied the Minkowski problem in Minkowski space in any dimension
showing the existence and uniqueness of the solution of (MA) imposing u|∂D = ϕ,
for a given smooth ϕ. The result was improved in dimension 2+1 by Guan, Jian and
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Schoen in [GJS06], where the existence of the solution is proved assuming that the
boundary data is only Lipschitz. The solutions obtained in both cases correspond
to spacelike entire graphs.

A remarkable result in [Li95] is that under the assumption that the boundary
data is smooth, the corresponding convex surface S has principal curvatures bounded
from below by a positive constant. As a partial converse statement, if S has princi-
pal curvatures bounded from below by a positive constant, then the corresponding
function u : D→ R extends to a continuous function of the boundary of D.

A natural question to ask is whether the condition that the principal curva-
tures are bounded from below by a positive constant can be characterized in terms
of the boundary value of the support function. An indication that the results of
[Li95, GJS06] are not fully satisfactory comes from the solution of Minkowski prob-
lem in any maximal globally hyperbolic flat spacetime, due to Barbot, Béguin and
Zeghib ([BBZ11]). Their result can be expressed in the following way: given any
cocompact Fuchsian group G and any affine deformation Γ of G, for every posi-
tive G-invariant function ψ, there exists a unique Γ-invariant convex surface S with
curvature KS(x) = −ψ(x) for x ∈ H2.

Indeed, if u : D → R is the support function corresponding to some Γ-invariant
surface S, combining the result by Li and the cocompactness of Γ, it turns out that
u extends to the boundary of D. It is not difficult to see that the extension on the
boundary only depends on Γ and in particular it is independent of the curvature
function; on the other hand, the extension u|∂D is in general not Lipschitz although
the principal curvatures are bounded from below, by cocompactness.

The second result we obtain is the determination of the exact regularity class of
the extension on ∂D of functions u : D→ R corresponding to surfaces with principal
curvatures bounded from below.

Theorem 4.B. Let ϕ : ∂D→ R be a continuous function. There exists a spacelike
entire graph in R2,1 whose principal curvatures are bounded from below by a positive
constant and whose support function at infinity is ϕ if and only if ϕ is in the Zygmund
class.

A function ϕ : S1 → R is in the Zygmund class if there is a constant C such
that, for every θ, h ∈ R,

|ϕ(ei(θ+h)) + ϕ(ei(θ−h))− 2ϕ(eiθ)| < C|h| .

Functions in the Zygmund class are α-Hölder for every α ∈ (0, 1), but in general
they are not Lipschitz.

Universal Teichmüller space T (D) can be defined as the space of quasisymmetric
homeomorphisms of the circle up to Möbius transformations. It turns out that the
boundary value u|∂D = ϕ of the support function of a convex surface S in Minkowski
space can be identified in a natural way to a vector field on S1, and ϕ is in the
Zygmund class - which is equivalent to the boundedness from below of the principal
curvatures of S, by Theorem 4.B - if and only if such vector field is an element of
the tangent space of T (D) at the identity.

Hence Theorem 4.B can be thought of as the infinitesimal version of a statement
in Anti-de Sitter geometry, asserting that if a convex surface in AdS3 has principal
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curvatures bounded from below, then the boundary at infinity is the graph of a
quasisymmetric homeomorphism φ : S1 → S1. Vice versa, given φ quasisymmetric,
it is possible to construct convex surfaces with bounded principal curvatures and
with gr(φ) as asymptotic boundary. It is possible to give a precise meaning to the
above heuristic argument which compares the situation in Minkowski space to the
infinitesimal picture of the Anti-de Sitter case, by means of the notion of geometric
transition, and this will be the content of the last chapter of the thesis.

It is also possible, in AdS3, to give a third condition equivalent to the above.
Reinterpreting - in light of the work of Mess - a result anticipated by Thurston
([Thu86]) and later proved independently by Gardiner ([GHL02]) and Šarić ([Šar06]),
it turns out that φ : S1 → S1 is quasisymmetric if and only if the bending lamination
of the upper boundary of the convex hull of gr(φ) is a measured geodesic lamination
with finite Thurston norm.

In the Minkowski setting, there is a measured geodesic lamination associated
to any function ϕ : S1 → R, by considering the bending lamination of the convex
envelope of ϕ in D× R. Heuristically, the convex envelope of ϕ is a pleated surface
and is the graph of a piecewise affine function u. The bending lines provide a geodesic
lamination over H2, whereas a transverse measure encodes the amount of bending.
Moreover, it turns out that u is the support function of the so-called domain of
dependence of S, namely the largest convex domain in R2,1 for which S is a Cauchy
surface.

Given a support function at infinity ϕ, the domain of dependence D associated
to any surface S as above is uniquely determined by ϕ. Using again a theorem
proved in [GHL02] or [MŠ12, Appendix], we show that the condition that ϕ is in the
Zygmund class is also equivalent to the fact that the measured geodesic lamination
associated to D has finite Thurston norm. This interpretation will actually be very
useful in the proof of Theorem 4.B.

The solutions of the Minkowski problem in Theorem 4.B are obtained by ap-
proximation from solutions which are invariant for affine deformations of cocompact
Fuchsian groups, using the theorem of Barbot, Béguin and Zeghib.

We mention that another important step to the proof of Theorem 4.B is the use
of barriers, which enable to show that the surface we construct does not develop
singularities and is therefore a spacelike entire graph. To construct such barriers,
we consider constant curvature surfaces invariant under a one-parameter family of
isometries, thus reducing the partial differential equation (MA) to an ODE. Hano
and Nomizu in [HN83] studied the constant curvature surfaces invariant for a one-
parameter hyperbolic group fixing the origin, thus exhibiting for the first time non-
standard immersions of the hyperbolic plane in R2,1. Here are considered surfaces
invariant under a one-parameter parabolic group, which are suited to be used as
barriers in a more general context.

Theorem 4.B implies that spacelike entire graphs of constant curvature −1 and
with a uniform bound on the principal curvatures correspond to functions u whose
extension to ∂D is Zygmund. We prove that also the converse holds. This gives a
complete classification of such surfaces in terms of Zygmund functions.

Theorem 4.C. Let ϕ : ∂D → R be a function in the Zygmund class. For every
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K < 0 there is a unique spacelike entire graph S in R2,1 of constant curvature K
and with bounded principal curvatures whose corresponding function u extends ϕ.

Finally, we show - using again the fact that the same statement holds in maximal
globally hyperbolic flat spacetimes, as proved by Barbot, Béguin and Zeghib - that
all the surfaces of constant curvature in a domain of dependence D contained in the
future cone over a point provide a foliation of D.

Theorem 4.D. If D is a domain of dependence contained in the future cone of a
point, then D is foliated by surfaces of constant curvature K ∈ (−∞, 0).

The condition that D is contained in the cone over a point is easily seen to be
equivalent to the fact that the support function at infinity is bounded (while it might
be in general not continuous, but only lower semicontinuous).

Maximal globally hyperbolic flat spacetimes

The next aim of the thesis is a deeper understanding of the aforementioned rela-
tion between maximal globally hyperbolic flat spacetimes and Teichmüller spaces,
initiated by Mess. A different motivation for the study of these objects comes from
the observation that in dimension 2+1, Lorentzian metrics which are solutions of
Einstein equation are precisely metrics of constant curvature. If the cosmological
constant is 0, then the solutions reduce to flat metrics.

From the physical point of view ([Wit89]), a reasonable requirement to put on
flat metrics on a manifold M is global hyperbolicity. Choquet-Bruhat in [CB68]
proved that the embedding data (i.e. the first and the second fundamental form)
of any Cauchy surface determine a maximal globally hyperbolic flat spacetime. A
globally hyperbolic spacetime M is maximal if there is no isometric embedding of
M in a larger spacetime M ′, sending a Cauchy surface of M to a Cauchy surface of
M ′.

In dimension 2+1, the constraint equation reduce to the Lorentzian version of the
Gauss-Codazzi equations for a metric I (the first fundamental form) and a symmetric
2-tensor B (the shape operator). When the cosmological constant (and thus also
the ambient curvature) is 0, the Gauss-Codazzi equations can be written as:{

detB = −KI

d∇
I
B = 0 .

(GC-R2,1)

Here d∇
I
B denotes the exterior derivative of B with respect to the Levi-Civita con-

nection of I.
As already remarked, when S is a closed surface of genus g ≥ 2, Mess pro-

vided a parametrization of the space of maximal globally hyperbolic flat structures
on S × R, by means of the holonomy representation. In fact he showed that the
linear part of the holonomy is a discrete and faithful representation ρ : π1(S) →
Isom(H2), where Isom(H2) is the group of orientation-preserving isometries of hyper-
bolic plane, and is isometric to SO0(2, 1), the connected component of the identity
of SO(2, 1). This provides an element Xρ = [H2/ρ] of Teichmüller space T (S).
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On the other hand, the translation part is a cocycle t ∈ H1
ρ (π1(S),R2,1). Us-

ing the SO0(2, 1)-equivariant identification between R2,1 and so(2, 1) given by the
Lorentzian cross product, t can be directly regarded as an element of the cohomol-
ogy group H1

Ad◦ρ(π1(S), so(2, 1)) which is canonically identified to the tangent space
Tρ(R(π1(S),SO0(2, 1))//SO0(2, 1)) of the character variety, [Gol84].

By a celebrated result of Goldman (see for instance [Gol80]) the map which gives
the holonomy of the uniformized surface

hol : T (S)→ R(π1(S),SO0(2, 1))//SO0(2, 1) ,

is a diffeomorphism of T (S) over a connected component of the character variety
R(π1(S),SO0(2, 1))//SO0(2, 1). Through this map we identify H1

Ad◦ρ(π1(S), so(2, 1))
and TXρT (S), and consider t as a tangent vector of Teichmüller space.

One of the results we present is an explicit relation between the embedding data
(I,B) of any Cauchy surface S in a maximal globally hyperbolic flat spacetime M
and the holonomy ofM , which provides the correspondence with the parametrization
of Mess. We will work under the assumption that S inherits from M a spacelike
metric I of negative curvature, which, by the Gauss equation for spacelike surfaces
in Minkowski space, is equivalent to the fact that the shape operator B has positive
determinant and corresponds to a local convexity of S. This assumption will permit
the following convenient change of variables. Instead of the pair (I,B), one can in
fact consider the pair (h, b), where h is the third fundamental form h = I(B·, B·)
and b = B−1. The fact that (I,B) solves Gauss-Codazzi equations corresponds to
the conditions that h is a hyperbolic metric and b is a self-adjoint solution of Codazzi
equation for h.

It is simple to check that the holonomy of the hyperbolic surface (S, h) is the
linear part of the holonomy of M , so the isotopy class of h does not depend on
the choice of a Cauchy surface in M and corresponds to the element Xρ of Mess
parameterization. Recovering the translation part of the holonomy of M in terms
of (h, b) is subtler, and is based on the fact that b solves the Codazzi equation for
the hyperbolic metric h. Oliker and Simon in [OS83] proved that any h-self-adjoint
operator on the hyperbolic surface (S, h) which solves the Codazzi equation can be
locally expressed as Hessu− uE for some smooth function u. Using this result we
construct a short sequence of sheaves

0→ F → C∞ → C → 0 , (2)

where C is the sheaf of self-adjoint Codazzi operators on S and F is the sheaf of flat
sections of the R2,1-valued flat bundle associated to the holonomy representation of
h. Passing to cohomology, this gives a connecting homomorphism

δ : C(S, h)→ H1(S,F) .

It is a standard fact that H1(S,F) is canonically identified with H1
hol(π1(S),R2,1).

Under this identification we prove the following result.

Theorem 5.A. Let M be a globally hyperbolic spacetime and S be a uniformly
convex Cauchy surface with embedding data (I,B). Let h be the third fundamental
form of S and b = B−1. Then
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• the linear holonomy of M coincides with the holonomy of h;

• the translation part of the holonomy of M coincides with δb.

It should be remarked that the construction of the short exact sequence (5.1) and
the proof of Theorem 5.A are carried out just by local computations, so they hold
for any uniformly convex spacelike surface in any flat globally hyperbolic spacetime
without any assumption on the compactness or completeness of the surface.

In the case where S is closed, we also provide a 2-dimensional geometric inter-
pretation of δb. This is based on the simple remark that b can also be regarded as
a first variation of the metric h. As any Riemannian metric determines a complex
structure over S, b determines an infinitesimal variation of the complex structure X
underlying the metric h, giving in this way an element Ψ(b) ∈ T[X]T (S).

Theorem 5.B. Let h be a hyperbolic metric on a closed surface S, X denote the
complex structure underlying h and C(S, h) be the space of self-adjoint h-Codazzi
tensors. Then the following diagram is commutative

C(S, h)
Λ◦δ−−−−→ H1

Ad◦hol(π1(S), so(2, 1))

Ψ

y dhol
x

T[X]T (S) −−−−→
J

T[X]T (S)

(3)

where Λ : H1
hol(π1(S),R2,1) → H1

Ad◦hol(π1(S), so(2, 1)) is the natural isomorphism,
and J is the complex structure on T (S).

As a consequence we get the following corollary.

Corollary 5.C. Two embedding data (I,B) and (I ′, B′) correspond to Cauchy sur-
faces contained in the same spacetime if and only if

• the third fundamental forms h and h′ are isotopic;

• the infinitesimal variation of h induced by b = B−1 is Teichmüller equivalent
to the infinitesimal variation of h′ induced by b′ = (B′)−1.

The key point to prove Theorem 5.B is to relate δb to the first-order variation
of the holonomy of the family of hyperbolic metrics ht obtained by uniformizing the
metrics h((E + tb)·, (E + tb)·). This computation can be made explicit in the case
b = bq is a harmonic Codazzi tensor, in which case bq is the first variation of a family
of hyperbolic metrics. It turns out that the variation of the holonomy for Ψ(bq) is
Λδ(biq).

However in general b is not tangent to a deformation of h through hyperbolic
metrics, thus the proof uses the decomposition b = bq + Hessu− uE. Heuristically
uE is a conformal variation, whereas Hessu is trivial in the sense that correspond
to the Lie derivative of the metric through the gradient field gradu. So one has
Ψ(b) = Ψ(bq) and the commutativity of the diagram (5.2) follows by the computation
on harmonic differentials.
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In the last part of Chapter 5, we apply the commutativity of the diagram (5.2) to
hyperbolic geometry to obtain a new proof of the fact, proven by Goldman in [Gol84],
that the Weil-Petersson symplectic form on T (S) coincides up to a factor with the
Goldman pairing on the character variety through the map hol. In this proof, by
explicit computations we show that the pull-back of those forms through the maps
Λ ◦ δ and Ψ coincide (up to a factor) on C(S, h). The computation of the Weil-
Petersson metric is quite similar to that obtained by Fischer and Tromba [FT84b]
and the result is completely analogous. The computation of the Goldman pairing
follows in a simple way using a different characterization of self-adjoint Codazzi
tensors. The inclusion of H2 → R2,1 projects to a section ι of the flat R2,1-bundle
F associated with hol : π1(S)→ SO0(2, 1). The differential of this map provides an
inclusion ι∗ of TS into F corresponding to the standard inclusion of TH2 into R2,1.
Thus any operator b on TS corresponds to an F -valued one-form ι∗b; moreover b is
Codazzi and self-adjoint for h if and only if the form ι∗b is closed. From this point of
view the connecting homomorphism δ : C(S, h)→ H1(S,F) associated to the short
exact sequence in (5.1) can be expressed as δ(b) = [ι∗b], where we are implicitly using
the canonical identification between H1(S,F) and the de Rham cohomology group
H1
dR(S, F ). The fact that the Goldman pairing coincides with the cup product in

the de Rham cohomology proves immediately the coincidence of the two forms.

Flat spacetimes with massive particles

We then apply this machinery to study globally hyperbolic spacetimes containing
particles. Particles in a Lorentzian manifold of constant curvature are cone singular-
ities along timelike lines with angle in (0, 2π); we will focus here on the case of flat
metrics. In order to develop a reasonable study of Cauchy surfaces in a spacetime
with particles, some assumption are needed about the behavior of the surface around
a particle. Here the assumption we consider is very weak: we only assume that the
shape operator of the surface is bounded and uniformly positive (meaning that the
principal curvatures are uniformly far from 0 and +∞). We will briefly say that the
Cauchy surface is bounded and uniformly convex.

Under this assumption we prove that the surface is necessarily orthogonal to the
singular locus and intrinsically carries a Riemannian metric with cone angles equal
to the cone singularities of the particle - using the definition given by Troyanov
[Tro91] of metrics with cone angles on a surface with variable curvature. It turns
out that the third fundamental form of such a surface is a hyperbolic metric with
the same cone angles and b = B−1 is a bounded and uniformly positive Codazzi
operator for (S, h). More precisely we prove the following statement.

Theorem 6.A. Let us fix a divisor β =
∑
βipi on a surface with βi ∈ (−1, 0) and

consider the following sets:

• Eβ is the set of embedding data (I,B) of bounded and uniformly convex Cauchy
surfaces on flat spacetimes with particles so that for each i = 1, . . . , k a particle
of angle 2π(1 + βi) passes through pi.

• Dβ is the set of pairs (h, b), where h is a hyperbolic metric on S with a cone
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singularity of angle 2π(1 + βi) at each pi and b is a self-adjoint solution of
Codazzi equation for h, bounded and uniformly positive.

Then the correspondence (I,B)→ (h, b) induces a bijection between Eβ and Dβ.

We remark that, by Gauss-Bonnet formula, in order to have Dβ (and conse-
quently Eβ) nonempty one has to require that χ(S,β) := χ(S) +

∑
βi is negative.

The difficult part of the proof is to show that for (h, b) ∈ Eβ, the corresponding
pair (I,B) is the embedding data of some Cauchy surface in a flat spacetime with
particles. Clearly the regular part of S can be realized as a Cauchy surface in some
flat spacetime M ; it remains to prove that M can be embedded in a spacetime
with particles. Reducing to a local analysis, we first prove that a neighborhood of a
puncture pi can be realized as a surface in a small flat cylinder with a particle, and
then use some standard cut-and-paste procedure to construct the thickening of M .

As a by-product, the above construction allows to prove the following result
concerning Riemannian metrics with cone points, which might have an interest on
its own:

Theorem 6.B. Let h be a hyperbolic metric with cone singularities and let b be
a Codazzi, self-adjoint operator for h, bounded and uniformly positive. Then I =
h(b·, b·) defines a singular metric with the same cone angles as h.

Another goal of this part is to show the analogue of Theorem 5.B in the context
of cone singularities, proving that the relevant moduli space is the tangent bundle of
the Teichmüller space of the punctured surface, and in particular it is independent
of the cone angles.

To give a precise statement we use the Troyanov uniformization result [Tro91]
which ensures that, given a conformal structure on S, there is a unique conformal hy-
perbolic metric with prescribed cone angles at the points pi (notice we are assuming
χ(S,β) < 0). So once the divisor β is chosen we have a holonomy map

hol : T (S, p)→ R(π1(S \ p),SO0(2, 1))//SO0(2, 1) ,

where p = {p1, . . . , pk} is the support of β, and T (S, p) is the Teichmüller space of
the punctured surface.

As in the closed case fix a hyperbolic metric h on S with cone angles 2π(1 + βi)
at pi. Let X denote the complex structure underlying h. Any Codazzi operator b on
(S, h) can be regarded as an infinitesimal deformation of the metric on the regular
part of S. If b is bounded this deformation is quasiconformal so it extends to an
infinitesimal deformation of the underlying conformal structure at the punctures,
providing an element Ψ(b) in T[X]T (S, p).

Theorem 6.C. Let C∞(S, h) be the space of bounded Codazzi tensors on (S, h). The
following diagram is commutative

C∞(S, h)
Λ◦δ−−−−→ H1

Ad◦hol(π1(S \ p), so(2, 1))

Ψ

y dhol
x

T[X]T (S, p) −−−−→
J

T[X]T (S, p)

, (4)



12 Introduction

where Λ : H1
hol(π1(S \ p),R2,1) → H1

Ad◦hol(π1(S \ p), so(2, 1)) is the natural isomor-
phism, and J is the complex structure on T (S, p).

In order to repeat the argument used in the closed case, we show that also in
this context bounded Codazzi tensors can be split as the sum of a trivial part and a
harmonic part. More precisely we prove that any square-integrable Codazzi tensor on
a surfaces with cone angles in (0, 2π) can be expressed as the sum of a trivial Codazzi
tensor and a Codazzi tensor corresponding to a holomorphic quadratic differential
with at worst simple poles at the punctures. As a consequence we have the following
corollary.

Corollary 6.D. Two embedding data (I,B) and (I ′, B′) in Eβ correspond to Cauchy
surfaces contained in the same spacetime with particles if and only if

• the third fundamental forms h and h′ are isotopic;

• the infinitesimal variation of h induced by b = B−1 is Teichmüller equivalent
to the infinitesimal variation of h′ induced by b′ = (B′)−1.

It should be remarked that in this context, at least if the cone angles are in
[π, 2π), the holonomy does not distinguish the structures, so this corollary is not a
direct consequence of Theorem 6.C, but an additional argument is required.

It is a natural question to ask whether the condition of containing a uniformly
convex surface is restrictive. To point out some counterexamples, it is sufficient to
double a cylinder in Minkowski space based on some polygon on R2. However the
spacetimes obtained in this way have the property that Euler characteristic χ(S,β)
of its Cauchy surfaces is 0. In the last section we provide some more elaborate coun-
terexamples, with negative Euler characteristic, producing spacetimes with particles
which do not contain strictly convex Cauchy surfaces. The construction is based on
some simple surgery idea. In all those exotic examples at least one particle must
have cone angle in [π, 2π), and there exists a convex Cauchy surface, although not
strictly convex. Similar problems regarding the existence of spacetimes with certain
properties on the Cauchy surfaces have been tackled in [BG00].

To conclude Part II, we finally address the question of the coincidence of the
Weil-Petersson metric and the Goldman pairing in this context of structures with
cone singularities. Once a divisor β is fixed, the hyperbolic metrics with prescribed
cone angles allow to determine a Weil-Petersson product on T (S, p), as it has been
studied in [ST11]. In [Mon10], Mondello showed that also in this singular case
the Weil-Petersson product corresponds to an intersection form on the subspace of
H1

Ad◦hol(π1(S \ p), so(2, 1)) corresponding to cocycles trivial around the punctures.
Actually Mondello’s proof is based on a careful generalization of Goldman argument
in the case with singularity. Like in the closed case, we give a substantially different
proof of this coincidence by using the commutativity of (6.1).

Minimal surfaces in hyperbolic space

In Part III of the thesis, the main object of study are surfaces in hyperbolic space
and Anti-de Sitter space which are “close” to being a totally geodesic plane. An
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important focus will be on surfaces of zero mean curvature. The meaning of how
far a surface is from being totally geodesic is provided by the asymptotic curve in
the boundary at infinity, in relation with the theory of universal Teichmüller space.
We start by considering the case of minimal surfaces in hyperbolic space. Recall
that a surface embedded in a Riemannian manifold is minimal if its mean curvature
vanishes, i.e. the principal curvatures at every point x have opposite values λ = λ(x)
and −λ.

It was proved by Anderson ([And83, Theorem 4.1]) that for every Jordan curve Γ
in ∂∞H3 there exists a minimal embedded disc S such that its boundary at infinity
coincides with Γ. It can be proved that if the supremum ||λ||∞ of the principal
curvatures of S is in (−1, 1), then Γ = ∂∞S is a quasicircle, i.e. is the image of a
round circle under a quasiconformal homeomorphism of ∂∞H3.

However, uniqueness does not hold in general. Anderson proved the existence of
a curve at infinity Γ invariant under the action of a quasi-Fuchsian group (hence a
quasicircle) spanning several distinct minimal embedded discs, see [And83, Theorem
5.3]. More recently in [HW13a] invariant curves spanning an arbitrarily large number
of minimal discs were constructed. On the other hand, if the supremum of the
principal curvatures of a minimal embedded disc S satisfies ||λ||∞ ∈ (−1, 1) then, by
an application of the maximum principle, S is the unique minimal disc asymptotic
to the quasicircle Γ = ∂∞S.

By the classical work of Ahlfors and Bers, the space of quasicircles up to Möbius
transformations can be identified to universal Teichmüller space T (D). The main
purpose here is to study the supremum ||λ||∞ of the principal curvatures of a minimal
embedded disc, in relation with the norm of the quasicircle at infinity, in the sense
of universal Teichmüller space. The relations we obtain are interesting for “small”
quasicircles, that are close in T (D) to a round circle. The“size”of a quasicircle Γ can
be measured in different ways: the classical Bers norm is one possibility, which uses
the identification of T (D) with an open subset in the space of bounded holomorphic
quadratic differentials; another possibility is to take the optimal constant K such
that the Γ is the image of a K-quasiconformal mapping. In the latter case, Γ is
called a K-quasicircle.

Theorem 7.A. There exist universal constants K0 > 1 and C such that every
minimal embedded disc in H3 with boundary at infinity a K-quasicircle Γ ⊂ ∂∞H3,
with 1 ≤ K ≤ K0, has principal curvatures bounded by

||λ||∞ ≤ C logK .

There are two direct consequences of Theorem 7.A. The first is the following
corollary:

Corollary 7.B. There exists a universal constant K ′0 such that every K-quasicircle
Γ ⊂ ∂∞H3 with K ≤ K ′0 is the boundary at infinity of a unique minimal embedded
disc.

Corollary 7.B is obtained by choosing K ′0 < min{K0, e
1/C} and recalling that

the minimal disc with prescribed quasicircle at infinity is unique if ||λ||∞ < 1.
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A second application concerns almost-Fuchsian manifolds, namely quasi-Fuchsian
manifold contaning a closed minimal surface with principal curvatures in (−1, 1) (ac-
cording to the definition given in [KS07]). The minimal surface in an almost-Fuchsian
manifold is unique, by the above discussion, as first observed by Uhlenbeck ([Uhl83]).
As an application of Theorem 7.A, the following corollary is proved.

Corollary 7.C. If the Teichmüller distance between the conformal metrics at infin-
ity of a quasi-Fuchsian manifold M is smaller than a universal constant d0, then M
is almost-Fuchsian.

We remark that Theorem 7.A, when restricted to the case of quasi-Fuchsian
manifolds, is a partial converse of results presented in [GHW10], giving a bound
on the Teichmüller distance between the hyperbolic ends of an almost-Fuchsian
manifold in terms of the maximum of the principal curvatures.

The proof of Theorem 7.A is composed of several steps. By means of the tech-
nique of “description from infinity” (see [Eps84] and [KS08]), we construct a folia-
tion of H3 by equidistant surfaces, such that all the leaves of the foliation have the
same boundary at infinity, a quasicircle Γ. Using a theorem proved in [ZT87] and
[KS08, Appendix], which relates the curvatures of the leaves of the foliation with the
Schwarzian derivative of the map which uniformizes the conformal structure of one
component of ∂∞H3 \ Γ, we obtain an explicit bound for the distance between two
surfaces of this foliation, one concave and one convex, in terms of the Bers norm of
Γ. This distance goes to 0 when Γ approaches a circle in ∂∞H3.

A fundamental property of a minimal surface S with boundary at infinity a curve
Γ is that S is contained in the convex hull of Γ. Hence, by the previous step, every
point x of S lies on a geodesic segment orthogonal to two planes P− and P+ such that
S is contained in the region bounded by P− and P+. The length of such geodesic
segment is bounded by the Bers norm of the quasicircle at infinity, in a way which
does not depend on the chosen point x ∈ S.

The next step in the proof is then a Schauder-type estimate. Considering the
function u, defined on S, which is the hyperbolic sine of the distance from the plane
P−, it turns out that u solves the equation

∆Su− 2u = 0 . (L)

where ∆S is the Laplace-Beltrami operator of S. We then apply classical theory of
linear PDEs, in particular Schauder estimates, to prove that

||u||C2(Ω′) ≤ C||u||C0(Ω) ,

where Ω′ ⊂⊂ Ω and u is expressed in normal coordinates centered at x.
The final step is then estimating the principal curvatures at x ∈ S, by observing

that the shape operator can be expressed in terms of u and the first and second
derivatives of u. The Schauder estimate above then gives a bound on the principal
curvatures just in terms of the supremum of u in a geodesic ball of fixed radius
centered at x. By using the first step, since S is contained between P− and the
nearby plane P+, we finally get an estimate of the principal curvatures of a minimal
embedded disc in terms of the Bers norm of the quasicircle at infinity.
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All the previous estimates do not depend on the choice of x ∈ S. Hence the
following theorem is actually proved.

Theorem 7.D. There exist constants K0 > 1 and C > 4 such that the principal
curvatures ±λ of every minimal surface S in H3 with ∂∞S = Γ a K-quasicircle,
with K ≤ K0, are bounded by:

||λ||∞ ≤
C||Ψ||B√

1− C||Ψ||2B
, (5)

where Γ = Ψ(S1), Ψ : Ĉ → Ĉ is a quasiconformal map, conformal on Ĉ \ D, and
||Ψ||B denotes its Bers norm.

Observe that the estimate holds in a neighborhood of the identity (which rep-
resents circles in ∂∞H3), in the sense of universal Teichmüller space. Theorem 7.A
is then a consequence of Theorem 7.D, using the well-known fact that the Bers
embedding is locally bi-Lipschitz.

Maximal surfaces in Anti-de Sitter space

We then move to an application of similar techniques to maximal surfaces in Anti-
de Sitter space, which are the analogue of minimal surfaces in Riemannian man-
ifolds. The object of interest in the parametrization of maximal surfaces is here
again universal Teichmüller space T (D), which can be defined also as the space of
quasisymmetric homeomorphisms of the circle up to Möbius transformations.

The strong relation between these two objects was pointed out in [BS10], where
the authors tackled the classical problem of the existence of quasiconformal exten-
sions to the disc of quasisymmetric homeomorphisms of the circle. Based on a
construction of Krasnov and Schlenker, the proof is translated in terms of existence
and uniqueness of a maximal disc S in AdS3 with prescribed boundary at infinity.
For a spacelike surface in AdS3, the asymptotic boundary is regarded as the graph
of an orientation-preserving homeomorphism φ : S1 → S1, using the structure of
doubly ruled quadric of the boundary at infinity. The quasiconformality of the ex-
tension of φ is then directly related to the fact that the principal curvatures of S are
(in absolute value) uniformly smaller than 1.

The main result in the Anti-de Sitter context is an estimate of the maximal di-
latation of the minimal Lagrangian extension of a quasisymmetric homemomrphism
φ of the circle (whose existence was proved by Bonsante and Schlenker), in terms of
the cross-ratio norm ||φ||cr of φ. The latter measures the distortion of quadruple of
points, and vanishes on Möbius transformations, this providing a norm on universal
Teichmüller space T (D).

Theorem 8.A. There exist universal constants δ and C such that, for any qua-
sisymmetric homeomorphism φ of S1 with cross ratio norm ||φ||cr < δ, the minimal
Lagrangian quasiconformal extension ΦML : D→ D has maximal dilatation K(ΦML)
bounded by the relation

logK(ΦML) ≤ C||φ||cr .
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The maximal dilatation of classical quasiconformal extensions of a quasisymmet-
ric φ : S1 → S1 has been widely studied, and Theorem 8.A is similar to estimates
obtained for instance for the Beurling-Ahlfors extension in [BA56] (then improved in
[Leh83]) and for the Douady-Earle extension in [DE86] (see also [HM12] for further
developments).

The proof widely uses the geometry of Anti-de Sitter space and is composed
again of several steps. As pointed out already in [BS10], a very relevant quantity in
this problem is the width of the convex hull of S, which is defined as the supremum
of the length of timelike paths contained in the convex hull. Indeed, if S is a maximal
surface with boundary at infinity the graph of φ : S1 → S1, the convex hull of S has
width ≤ π/2, and it turns out that φ is quasisymmetric if and only if the width of
the convex hull of S is strictly smaller than π/2.

The first step of the proof is a more quantitative statement in this direction.

Proposition 8.B. Given any quasisymmetric homeomorphism φ, let w be the width
of the convex hull of the graph of φ in ∂∞AdS3. Then

tanh

( ||φ||cr
4

)
≤ tan(w) ≤ sinh

( ||φ||cr
2

)
.

In particular, the second inequality is used in the proof of Theorem 8.A. On
the other hand, the first inequality (that will be used to prove an inequality in the
opposite direction of Theorem 8.A, see Theorem 8.D below) is not interesting when
w is larger than π/4.

The second part of the proof of Theorem 8.A involves - as in the hyperbolic case
- Schauder estimates. Indeed the function u, now defined as the sine of the distance
from a support plane P− of the lower boundary of the convex hull of gr(φ), satisfies
again the equation

∆Su− 2u = 0 . (L)

We will use again an explicit expression for the shape operator of the maximal
surface S in terms of the value of u, the first derivatives of u, and the second
derivatives of u. Hence, using the Schauder-type estimate, the principal curvatures
are bounded in terms of the supremum of u on a geodesic ball BS(x,R). The latter
is finally bounded in terms of the width. The sketched construction will not depend
on the choice of the point x ∈ S, and thus will prove:

Theorem 8.C. There exists a constant C such that, for every maximal surface S
with bounded principal curvatures ±λ and width w = w(CH(∂∞S)),

||λ||∞ ≤ C tanw .

The differential of the minimal Lagrangian extension of φ can be expressed (as
noted in [BS10] and [KS07]) in terms of the shape operator of S. Using this relation,
together with Proposition 8.B and Theorem 8.C, the maximal dilatation of Φ is
finally estimated. We actually obtain - as in the hyperbolic case - a more precise
estimate, from which Theorem 8.A follows. This is stated in Theorem 8.E.
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We also obtain an estimate in the other direction, namely, a bound from below
of the quasiconformal distortion of the minimal Lagrangian extension of a quasisym-
metric homeomorphism, in terms of the cross-ratio norm of the latter. This is stated
in full generality in Theorem 8.F at the end of Chapter 8. A consequence is:

Theorem 8.D. There exist universal constants δ and C0 such that, for any qua-
sisymmetric homeomorphism φ of S1 with cross ratio norm ||φ||cr < δ, the minimal
Lagrangian quasiconformal extension Φ : D → D has maximal dilatation K(ΦML)
bounded by the relation

C0||φ||cr ≤ logK(ΦML) .

The constant C0 can be taken arbitrarily close to 1/2.

Although investigation of the best value of the constant C in Theorem 8.A was
not pursued in this work, this shows that C cannot be taken smaller than 1/2.

Geometric transition of surfaces

Finally, we will discuss in more detail how the above results are related to one
another through the idea of geometric transition. In particular, Theorem 4.B pro-
vided a characterization of the support function at infinity of convex surfaces in
Minkowski space with principal curvatures bounded from below by a positive con-
stant. The regularity of those support functions is the Zygmund regularity, namely,
the infinitesimal version of quasisymmetric homeomorphism.

Heuristically, this statement is the infinitesimal version of the following statement
in Anti-de Sitter space: an orientation-preserving homeomorphism of the circle φ :
S1 → S1 is quasisymmetric if and only if its graph is the asymptotic boundary in
AdS3 of a convex surfaces with bounded principal curvatures.

Indeed, Minkowski space is the zoom-in limit of Anti-de Sitter space, and Zyg-
mund fields are tangent vectors to smooth paths (for the smooth structure of uni-
versal Teichmüller space) of quasisymmetric homeomorphisms.

In the last part of the thesis a precise meaning will be given to this heuristic
idea. The support function at infinity u|∂D = ϕ of a convex entire graph S in R2,1

is identified, by means of the duality with half-pipe geometry HP3, to the boundary
at infinity of the convex surface in HP3 dual to S. We prove that, if φt is a smooth
path of quasisymmetric homeomorphisms, such that φ0 = id and the vector field φ̇ is
identified to the function ϕ : S1 → R, then the graph of φt in ∂∞AdS3 converges (up
to a factor) to the graph of ϕ in ∂∞HP3, under the transition to half-pipe geometry
obtained by a blow-up close to a totally geodesic plane.

On the other hand, we show that it is possible to have control also on the
degeneration of curvature. We introduce a natural connection on HP3 which enables
to define the second fundamental form of a surface in HP3. Now let St be a smooth
family of surfaces in AdS3, with S0 a totally geodesic plane. The aforementioned
blow-up transition provides a rescaled limit of the surfaces St for t → 0, which is a
surface S in HP3. By these definitions, the shape operator of the rescaled limit S,
is precisely the first-order variation at t = 0 of the shape operator of St.
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Finally, the self-duality of Anti-de Sitter space is well-behaved for the transitions
to HP3 (by blowing-up a plane) and to R2,1 (by blowing-up the dual point). Putting
these ingredients together, we obtain the following, which is the last result proved
in the thesis.

Proposition 9.A. Let σt : H2 → AdS3 be a C2 family of smooth embeddings with
image surface St = σt(H2). Suppose the boundary at infinity of St is the graph of
the quasisymmetric homeomorphism φt : S1 → S1, satisfying the following:

• For t = 0, σt is an isometric embedding of the totally geodesic plane {x3 = 0};

• The principal curvatures of St are λi(x) = O(t), for i = 1, 2, i.e. are uniformly
bounded by Ct, for small t, independently of the point x;

• The path φt is tangent at φ0 = id to a Zygmund field φ̇ on S1.

Then the rescaled limit in R2,1 of the surfaces S∗t dual to St is a spacelike entire
graph in R2,1, with principal curvatures bounded from below by a positive constant
and with support function at infinity the function ϕ (in the Zygmund class) which
corresponds to φ̇/2 under the standard trivialization of TS1.

This statement should make precise the idea that the geometry of surfaces in
Minkowski space is intimately related to the tangent space of (universal) Teichmüller
space, in a way which reflects at first order the connections of Anti-de Sitter space
(or hyperbolic space) with the theory of Teichmüller spaces.



Outline of the thesis

The thesis is organized as follows. Part I contains the preliminary notions which will
be used in the original contents. In particular, Chapter 1 introduces the geometric
three-dimensional models which will be treated, namely Minkowski, hyperbolic, de
Sitter and Anti de Sitter geometries.

Chapter 2 is a review of the theory of Teichmüller spaces of Riemann surfaces.
The cases of closed surfaces, punctured surfaces and the disc are mentioned.

Chapter 3 is meant to be a brief collection of known results on some partial
differential equations of interest in the thesis, in particular some type of linear elliptic
equations and Monge-Ampère equations.

In Part II are collected the results concerning Minkowski geometry. Chapter 4
deals with convex surfaces in Minkowski space, with special interest towards surfaces
of constant curvature, the Minkowski problem, and the boundedness of curvature in
relation with universal Teichmüller space. The material of this chapter can be found
in:

[BS15b] Francesco Bonsante and Andrea Seppi. Spacelike convex surfaces with pre-
scribed curvature in (2+1)-Minkowski space. ArXiv: 1505.06748v1, 2015 .

Chapter 5 is mostly concerned about maximal globally hyperbolic flat spacetimes
contaning a closed Cauchy surface, while Chapter 6 concerns the case of spacetimes
with particles. The material of these two chapters is contained in:

[BS15a] Francesco Bonsante and Andrea Seppi. On Codazzi Tensors on a Hyper-
bolic Surface and Flat Lorentzian Geometry. To appear on International
Mathematics Research Notices, 2015. ArXiv: 1501.04922 .

Part III deals with three-manifolds of negative constant curvature. Chapter 7 is
focused on minimal surfaces in hyperbolic space, while the purpose of Chapter 8 is
to treat maximal surfaces in Anti-de Sitter space and quasiconformal extensions of
quasisymmetric homeomorphisms. The content of Chapter 7 and 8 is essentially in:

[Sep14] Andrea Seppi. Minimal surfaces in Hyperbolic space and maximal surfaces
in Anti-de Sitter space. ArXiv: 1411.3412v1, 2014 .

Chapter 9 is concerned with geometric transitions in relation with the results of
the previous chapters, and is unpublished at the time of writing this thesis.
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Chapter 1

The geometric models

The main setting of this thesis are three-manifolds endowed with Riemannian or
Lorentzian metrics of constant curvature. In this chapter we give a description of
the models we are most interested in, by studying several properties which will
be of use. These will include the theory of embedding of surfaces, which will be
discussed case-by-case, trying to highlight the common features and the remarkable
differences. In each case, we will also consider some special classes of three-manifolds
locally modelled on the constant curvature models, which contain a closed surface
(spacelike, when the metric is Lorentzian).

1.1 Minkowski space and hyperbolic plane

The (2 + 1)-dimensional Minkowski space is the vector space R3 endowed with the
bilinear quadratic form

〈x, y〉2,1 = x1y1 + x2y2 − x3y3 . (1.1)

It will be denoted by R2,1 in this thesis. The group Isom0(R2,1) of orientation-
preserving and time-preserving isometries is isomorphic to

SO0(2, 1) oR2,1

where SO(2, 1) is the group of linear isometries of Minkowski product, SO0(2, 1) is
the connected component of the identity, and R2,1 acts on itself by translations.

Vectors in TxR2,1 ∼= R2,1 are classified according to their causal properties. In
particular:

v ∈ TxR2,1 is


timelike if 〈v, v〉2,1 < 0

lightlike if 〈v, v〉2,1 = 0

spacelike if 〈v, v〉2,1 > 0

A vector v is causal if it is either timelike or lightlike. By convention, such a v
is future-directed if the x3-component is positive. The set of future-directed causal
vectors at x0 ∈ R2,1 is the future cone at x0 and is denoted by I+(x0). Clearly I+(x0)
is the x0-translate of

I+(0) = {x ∈ R2,1 : (x1)2 + (x2)2 < (x3)2, x3 > 0} .

21
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A plane P is spacelike if its orthogonal vectors are timelike; an embedded differ-
entiable surface S in R2,1 is a spacelike surface if its tangent plane TxS is spacelike
for every point x ∈ S. In this case, the symmetric 2-tensor induced on S by the
Minkowski product is a Riemannian metric.

Example 1.1.1. An example of spacelike embedded surface is the hyperboloid

H2 = {x ∈ R2,1 : 〈x, x〉2,1 = −1, x3 > 0} ,

which is the analogue of the sphere of radius 1 in R3. It is easy to see that the
following parametrization in polar coordinates r ∈ (0,∞), θ ∈ [0, 2π],

(r, θ) 7→ (sinh r cos θ, sinh r sin θ, cosh r)

gives the induced first fundamental form

dr2 + (sinh r)2dθ2

which is a complete Riemannian metric. The Riemannian manifold H2 endowed
with this metric is called hyperbolic plane. It can be showed that in the hyperboloid
model the geodesics are the intersections of H2 with planes of R2,1 through the origin
(when this intersection is nonempty and contains more than one point).

Isometries of H2 are obtained as restrictions of linear isometries of the ambient
R2,1. Hence there is a natural description of Isom(H2), the group of orientation-
preserving isometries of H2, as

Isom(H2) ∼= SO0(2, 1) .

It is also useful to consider the projective model of hyperbolic plane, namely

{x ∈ R2,1 : 〈x, x〉2,1 < 0}/ ∼ ,

where x ∼ x′ if there exists λ such that x = λx′. This is an open domain in the
projective space RP2. Geodesics in the projective model are lines of RP2 which in-
tersect this domain. Considering the affine chart {x3 6= 0} and the affine coordinates
(x, y) = (x1/x3, x2/x3), one obtains the Klein model

{(x, y) : x2 + y2 < 1} .

We will always identify the Klein model to the open disc

D = {z ∈ C : |z| < 1} .

In this model, geodesics of hyperbolic space coincide with straight lines in C. Sev-
eral other models of hyperbolic space (and its higher dimensional analogue) will be
discussed later.

Analogously to the definition for spacelike planes, we say that a plane P is
lightlike if its orthogonal complement is composed of lightlike vectors. An example
of lightlike surface, for which the tangent plane is lightlike at every point, is the
following.
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Example 1.1.2. The null cone

N = ∂I+(0) \ {0} = {x ∈ R2,1 : 〈x, x〉2,1 = 0, x3 > 0}

is a lightlike surface in R2,1. Indeed, by means of the parametrization

(r, θ) 7→ (r cos θ, r sin θ, r) .

one can check that the induced bilinear form has the degenerate form r2dθ2.

The projectivization PN = N/ ∼, where again x ∼ x′ if and only if x = λx′ for
some λ > 0, is the boundary at infinity ∂∞H2 of H2, meaning that every complete
geodesic of H2 is asymptotic to two points in ∂∞H2. Conversely, every pair of
distinct points in ∂∞H2 uniquely determines a geodesic. In the Klein model, ∂∞H2

is identified to ∂D.

The boundary at infinity ∂∞H2 is naturally endowed with a structure of real
projective line. Under this identification ∂∞H2 ∼= RP1, every isometry acts as a
projective transformation, and conversely every projective transformation of RP1

uniquely extends to an isometry of H2. This provides a natural isomorphism

Isom(H2) ∼= PSL2R .

Finally, the reader can guess that a timelike plane is such that the orthogonal
complement is spacelike.

Example 1.1.3. An example of an embedded timelike surface is the double cover of
de Sitter space, namely

d̂S2 = {x ∈ R2,1 : 〈x, x〉2,1 = +1} .

Indeed, by the parametrization

(t, θ) 7→ (cosh t cos θ, cosh t sin θ, sinh t) ,

the induced metric on d̂S2 is of the form

−dt2 + (cosh t)2dθ2 .

It is now easy to see that d̂S2 parametrizes oriented geodesics of H2. Indeed,

for every point x in d̂S2, the orthogonal complement x⊥ is a timelike plane in R2,1,
which intersects H2 in a complete geodesic. The same geodesic is obtained as the

intersection of H2 with (−x)⊥. Using the orientation of R2,1, points x ∈ d̂S2 deter-
mine the orientation of the geodesic by ordering its endpoints at infinity. Hence the
quotient

dS2 = d̂S2/±1

is naturally identified to the space of geodesics of H2.
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1.1.1 The geometry of immersed surfaces in Minkowski space

In this section we discuss the theory of immersions of surfaces in Minkowski space,
which is a straightforward adaptation of the classical theory for Euclidean space.
First, let us remark that the Levi-Civita connection ∇R2,1

of the Lorentzian flat
metric (1.1), in the (x1, x2, x3)-coordinates, is simply

∇R2,1

v w = Dw(v) ,

for any pair of smooth vector fields v, w. Now, given a smooth immersion σ : S →
R2,1 with image a spacelike surface σ(S) in R2,1, recall that the first fundamental
form is the pull-back of the induced metric, namely

I(v, w) = 〈σ∗(v), σ∗(w)〉2,1 .
The Levi-Civita connection ∇S of the first fundamental form I of S is obtained from
the Levi-Civita connection of Minkowski space: given vector fields v, w on S, ∇Svw
is the orthogonal projection to the tangent space of S of ∇R2,1

σ∗v (σ∗w).
Let us denote by N the future unit normal vector field on S, namely for every

point x ∈ S, Nx is the future-directed timelike vector orthogonal to Tσ(x)σ(S) with
〈Nx, Nx〉2,1 = −1. By means of the flat metric on R2,1, we can identify all the
tangent spaces TxR2,1 ∼= R2,1 in a natural way, and this enables to define the Gauss
map G : S → H2, with values in the hyperboloid:

G(x) = Nx .

The second fundamental form II is a bilinear form on S defined by

∇R2,1

σ∗v (σ∗ŵ) = ∇Sv ŵ + II(v, w)N

where ŵ denotes any smooth vector fields on S extending the vector w. It turns
out to be symmetric, thus showing that it only depends on the vectors v and w,
not on the extension of any of them. The shape operator of S is the (1, 1)-tensor
B ∈ End(TS) defined as

B(v) = ∇R2,1

v N . (1.2)

The above equation is not quite correct, as by an abuse of notation we are identifying
TxS to Tσ(x)σ(S), by means of σ∗, which is an injective linear map. The more precise
expression should be

B(v) = (σ∗)
−1∇R2,1

σ∗v N .

Indeed, by applying the condition of compatibility of the metric of the Levi-Civita
connection to the condition 〈N,N〉2,1 = −1, it is easily checked that ∇R2,1

σ∗v N is

orthogonal to N , hence is in Tσ(x)σ(S). Therefore for every v ∈ TxS, ∇R2,1

σ∗v N can be
identified to the vector B(v) in TxS by means of σ∗. We will very often implicitly
adopt the above abuse of notation.

It turns out that B is self-adjoint with respect to I, namely

I(B(v), w) = I(v,B(w)) (1.3)

Moreover the expression in (1.3) coincides with the second fundamental form II(v, w).
Since B is self-adjoint with respect to I, it is diagonalizable at every point. The
eigenvalues of B are called principal curvatures.
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Example 1.1.4. The simplest example is, as usual, the hyperboloid H2. In this case,
the Gauss map is the identity, in the sense that

GH2(x) = x ∈ H2 .

Hence it turns out that the second fundamental form coincides with the first funda-
mental form, and the shape operator is the identity B = E : TS → TS.

The first fundamental form and the shape operator of an immersed spacelike
surface obey two very important relations. The first relation is provided by the
Minkowski version of Gauss Theorem, and is called Gauss equation:

KI = −detB (G-R2,1)

where KI is the curvature of the first fundamental form. The second relation is
Codazzi equation:

(∇IvB)(w)− (∇IwB)(v) = 0 (Cod)

The expression in (Cod) is usually called exterior derivative of B and can be ex-
pressed in the following way:

d∇
I
B(v, w) := (∇IvB)(w)− (∇IwB)(v) = ∇Iv(B(ŵ))−∇Iw(B(v̂))−B([v̂, ŵ]) ,

where v̂ and ŵ are arbitrary extensions of v and w to S.

Remark 1.1.5. For a spacelike immersion σ of a surface S in R2,1, it is easy to
compute the pull-back by the Gauss map of the hyperbolic metric of H2. Indeed,
for v ∈ TxS,

d(G ◦ σ)(v) = σ∗(B(v))

and therefore the 2-tensor obtained by pull-back is

〈d(G ◦ σ)(v), d(G ◦ σ)(w)〉2,1 = I(B(v), B(w)) .

The latter term is called third fundamental form:

III(v, w) = I(B(v), B(w)) .

If S is strictly convex, detB never vanishes, hence the third fundamental form is a
Riemannian metric on S. In this case the Gauss map is a diffeomorphism, and III is
clearly a hyperbolic metric. This can be seen also by applying the formulae for the
Levi-Civita connection and the curvature of the third fundamental form, see [Lab92]
or [KS07].

∇III = B−1∇IB (1.4)

KIII =
KI

detB
(1.5)

Indeed, by the Gauss Equation (G-R2,1), we have KIII = −1.
The fundamental theorem of the theory of immersed surfaces states that every

immersion of a simply connected surface is determined, up to isometries of the
ambient space, by its embedding data I and B. See for instance [Pet06].



26 Chapter 1. The geometric models

Theorem 1.1.6 (Fundamental theorem of immersed surfaces in Minkowski space).
Let S̃ be a simply connected surface. Given any pair (I,B), where I is a Riemannian
metric on S̃ and B is a (1, 1)-tensor self-adjoint for I, such that the Gauss-Codazzi
equations {

detB = −KI

d∇
I
B = 0

(GC-R2,1)

are satisfied, there exists a smooth immersion σ : S̃ → R2,1 such that the first
fundamental form is I and the shape operator is B. Moreover, given any two such
immersions σ and σ′, there exists R ∈ Isom(R2,1) such that σ′ = R ◦ σ.

1.1.2 The “dual” space of Minkowski space: half-pipe geometry

From the definition, H2 parametrizes spacelike planes in R2,1 through the origin.
Indeed, a point x ∈ H2 corresponds uniquely to the spacelike plane x⊥. We now
want to introduce the space of spacelike planes of R2,1, not necessarily containing the
origin. It should be clear to the reader that the natural parameter space is H2 ×R.

Let us make more precise this correspondence. We will define a map

{spacelike planes of R2,1} → H2 × R .

Let P = p+ x⊥ be a spacelike plane in R2,1, where p ∈ R2,1 and x ∈ H2. Clearly x
is the point of H2 which represents the image of P under its Gauss map. We define

P 7→ (x, 〈p, x〉2,1) , (1.6)

where p can be chosen arbitrarily in P . This map is bijective and explicitly parametrizes
spacelike planes of Minkowski space. The parameter space H2 × R can be obtained
in the following half-pipe model, first introduced by Danciger in [Dan11]. Let us
consider the following degenerate bilinear form on R4 = {x = (x1, x2, x3, x4)}.

〈x, y〉2,0,1 = (x1)2 + (x2)2 − (x4)2 .

The half-pipe geometry is defined as

HP3 = {x ∈ R2,0,1 : 〈x, x〉2,0,1 < 0, x4 > 0}

endowed with the degenerate metric induced by the bilinear form of R2,0,1. It is
clear that the half-pipe metric can be expressed on H2 × R as

gH2 + 0 · dt2 (1.7)

where gH2 is the metric of the hyperbolic plane and t is the coordinate of the second
component.

Also for half-pipe geometry, we can define a projective model, namely we consider

{x ∈ R2,0,1 : 〈x, x〉2,0,1 < 0}/ ∼ ,

where x ∼ x′ if there exists λ such that x = λx′. Thanks to this definition, we
have the notions of geodesics and planes in half-pipe geometry, which are just the
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intersections of the above domain with projective lines and planes of RP3. We say
that a line or a plane in HP3 is spacelike if its induced metric is a Riemannian metric.
By the form (1.7) of the metric, the induced metric on a spacelike plane P is always
the hyperbolic metric.

We now define the group Isom(HP3) of isometries of half-pipe geometry (which
preserve the orientation and the degenerate direction) as the group of projective
transformations mapping HP3 to itself, with unit determinant, which preserve the
degenerate metric (1.7).

The projective model of half-pipe geometry enables to define in a natural way
the boundary at infinity of HP3:

∂∞HP3 = {x ∈ R2,0,1 : 〈x, x〉2,0,1 = 0}/ ∼ .

Every spacelike line in HP3 is asymptotic to two points in ∂∞HP3.
Using the affine chart {x4 6= 0}, we obtain a Klein model for HP3, which is thus

identified to D× R. By the above discussion, it is clear that is this model spacelike
planes are graphs of affine functions over D, in the sense that

P = {(z, t) ∈ D× R : t = u(z)} ,

where u : D→ R is an affine function. See Figure 1.1. In this model, the boundary
at infinity of HP3 is identified to ∂D× R.

HP3

P1

P2

Figure 1.1: Two planes in HP3, in the affine model D× R.

We conclude this section by showing that the correspondence between R2,1 and
HP3 is a honest duality. So far we have associated to every spacelike plane of R2,1 a
point in HP3. We want to show:

• The vice versa holds, namely that points of R2,1 correspond in a natural way
to planes in HP3;

• Given a point p and a plane P in R2,1, and their dual plane p∗ and point P ∗

in HP3, p ∈ P if and only if P ∗ ∈ p∗;

• The correspondence is natural, in the sense that it preserves the actions of the
isometry groups of R2,1 and HP3.
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For the first point, let p ∈ R2,1. Recalling the definition (1.6), a point (x, t) in
H2 × R corresponds to a plane through p if and only if 〈x, p〉2,1 = t. It is clear that
this condition extends to a homogeneous equation in R2,0,1, hence it defines a plane
for the projective structure we defined on HP3. The second point follows directly.

The third point is also straightforward. Indeed, let p 7→ γ(p) = Ap + v an
isometry of R2,1, for A ∈ SO0(2, 1) and v ∈ R2,1. Given a plane P in R2,1 with
normal vector x ∈ H2, γ(P ) has normal vector Ax, while for every point p ∈ P ,

〈Ax, γ(p)〉2,1 = 〈Ax,Ap+ v〉2,1 = 〈x, p〉2,1 + 〈Ax, v〉2,1 .

Therefore, by the correspondence defined in (1.6), γ induces the following action on
HP3:

(x, t) ∈ H2 × R 7→ (Ax, t+ 〈x,A−1v〉2,1) .

This defines a projective transformation of HP3, which also preserves the degenerate
metric (1.7), hence is in Isom(HP3). Indeed the metric of H2 × R is simply the
hyperbolic metric on the first component, regardless of the second component, and
is preserved by A. The determinant of such transformation is 1, since the associated
matrix has the form 

0
A 0

0
? ? ? 1


and detA = 1. Moreover, it can be easily checked that this defines a group isomor-
phism Isom(R2,1) ∼= Isom(HP3).

1.1.3 The support function and duality for convex surfaces

The aim of this section is to discuss how the notion of duality between Minkowski
space and half-pipe geometry extends to a duality of convex surfaces, and how this
is related to the Lorentzian analogue of the support function of Euclidean convex
bodies. Roughly speaking, to a smooth spacelike strictly convex surface in R2,1 one
can associate the dual surface S∗ in HP3, which is defined as

S∗ = {X ∈ HP3 : X is dual to a plane in R2,1 tangent to S} .

It turns out that S∗ is a strictly convex surface in HP3 (where the notion of convexity
is well-defined, thanks to the projective structure) and is smooth if S is smooth.

Under the smoothness assumption, this construction also provides an immersion
of the dual surface S∗ in HP3. Let us define the map d : S → S∗ which associates
to x ∈ S the point in HP3 which represents the plane TxS of R2,1. Hence, given an
immersion σ : S → R2,1, we obtain the immersion d ◦ σ of the dual surface in HP3.
If we consider HP3 as H2 × R, by construction the first component of d ◦ σ(x) is
precisely the Gauss map G(x) ∈ H2. Therefore, by Remark 1.1.5 and the degenerate
form (1.7) of the metric of HP3, the first fundamental form of the immersion d ◦ σ
is precisely the third fundamental form

I∗(v, w) = III(v, w) = I(B(v), B(w)) .
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Before proceeding further, we prefer however to extend the theory of surfaces
in Minkowski space to the case of non-smooth convex surfaces. This will enable to
define a dual surface for this more general class of objects.

Remark 1.1.7. Mess proved [Mes07] that if the first fundamental form of a spacelike
immersion is complete, then the image of the immersion is a spacelike entire graph.
This means that it is of the form {(x1, x2, x3) |x3 = f(x1, x2)}, where f : R2 → R
is a convex function satisfying the spacelike condition ||Df || < 1, where Df is the
Euclidean gradient of f . Notice however that if S is an entire spacelike graph in
general it might not be complete.

We will consider the case of convex entire graphs which are not smooth and
possibly contain lightlike rays. Those correspond to convex functions f : R2 → R
such that ||Df || ≤ 1 almost everywhere. We will extend the notion of Gauss map
to this more general class.

A future-convex domain in R2,1 is a closed convex set which is obtained as the
intersection of future half-spaces bounded by spacelike planes. If f : R2 → R is
a convex function satisfying the condition ||Df || ≤ 1, then the epigraph of f is a
future-convex domain, and conversely the boundary of any future-convex domain is
the graph of a convex function as above. Basic examples of future-convex domains
are the future of any smooth convex surface, or, somehow on the opposite side of
the range of examples, I+(0).

A support plane for a future-convex domain D is a plane P = y + x⊥ such that
P ∩ int(D) = ∅ and every translate P ′ = P + v, for v in the future of x⊥, intersects
int(D). A future-convex domain can admit spacelike and lightlike support planes.
We define the spacelike boundary of D as the subset

∂sD = {p ∈ ∂D : p belongs to a spacelike support plane of D} .

It can be easily seen that ∂D \ ∂sD is a union of lightlike geodesic rays. So ∂D is
an entire spacelike graph if and only if it does not contain lightlike rays.

We can now define the Gauss map for the spacelike boundary of a future-convex
set. We allow the Gauss map to be set-valued, namely

G(p) = {x ∈ H2 : p+ x⊥ is a support plane of D} .

By an abuse of notation, we will treat the Gauss map as a usual map with values in
H2. The following fact, which is well-known, has to be interpreted in this sense.

Fact 1.1.8. Given a future-convex domain D in R2,1, the Gauss map of ∂sD has
image a convex subset of H2. If S is a strictly convex embedded spacelike surface,
then its Gauss map is a homeomorphism onto its image.

We can finally introduce the Lorentzian analogue of the support function of
Euclidean convex bodies. Roughly speaking, the support function encodes the in-
formation about the support planes of a future-convex domain.

Given a future-convex domain D in R2,1, the support function of D is the function
U : I+(0)→ R ∪ {∞} defined by

U(x) = sup
p∈D
〈p, x〉2,1 .
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Several properties of support functions can be straightforwardly deduced from
the definition and the above discussion.

• Given two future-convex domains D1 and D2 with support functions U1 and
U2, U1 ≥ U2 if and only if D1 ⊆ D2;

• Given the isometry p 7→ γ(p) = Ap + v, with A ∈ SO0(2, 1), the support
function of D′ = γ(D) is

U ′(x) = U(A−1x) + 〈x, t〉2,1 ; (1.8)

• U is lower semicontinuous, since it is defined as the supremum of continuous
functions;

• U is convex, hence it is continuous on I+(0);

• U is 1-homogeneous, namely U(λx) = λU(x) for every λ > 0.

The last property is quite important, as it ensures that the graph of U is a
well-defined projective subset of HP3. Indeed, it turns out that in RP3

[λx, U(λx)] = [λx, λU(x)] = [x, U(x)] ,

for every λ > 0.

Remark 1.1.9. It should now be clear that the dual surface associated to S = ∂D,
where D is a future-convex domain, can be defined as

S∗ = {X ∈ HP3 : X is dual to a support plane of D in R2,1} .
Moreover, if U : I+(0) → R ∪ {∞} is the support function on the interior of the
future cone of 0, then

S∗ = {[x, t] : x ∈ I+(0), t ∈ R, t = U(x)} ,
namely S∗ is the graph of U .

Conversely, a convex spacelike surface Σ in HP3 can be described locally as the
graph of a 1-homogeneous convex function U defined on a subset of I+(0). We will
say that Σ is entire if it is the graph of a function U defined over the whole I+(0).
(It will be in general useful to extend U to I+(0) by lower semicontinuity.) See
Figure 1.2. It was proved in [FV13, Lemma 2.21] that every such function defines a
future-convex domain D in R2,1 by means of

D = {p ∈ R2,1 : 〈p, x〉 ≤ U(x) for every x ∈ I+(0)} .
By construction, the support function of D is precisely U . Moreover, the surface
∂D is exactly the dual surface of Σ, namely

Σ∗ = {x ∈ R2,1 : x is dual to a support plane of Σ in HP3} ,
where the definition of support planes in HP3 is completely analogous. Hence we
have a duality between convex entire spacelike surfaces in half-pipe geometry and
future-convex domains in Minkowski space with surjective Gauss map, satisfying the
duality property that S∗∗ = S and Σ∗∗ = Σ.
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D

Σ

∂∞HP3

Figure 1.2: A spacelike surface Σ in HP3, in the affine model D× R.

Example 1.1.10. The support function of

D1 = I+(H2) ,

(which is the future of the hyperboloid H2) is

U1(x) = −
√
|〈x, x〉2,1| .

On the other hand, given a point p ∈ R2,1, consider the domain

D2 = I+(p) .

namely the future cone over p. Its support function, as in part we have already
discussed, is

U2(x) = 〈x, p〉2,1 .

Hence the surface in HP3 dual to ∂D2, if regarded in the D×R model, is the graph
of an affine function.

We now give a slightly more complicated example. Consider two points p, q ∈
R2,1 such that the segment [p, q] is spacelike. Consider the domain

D3 = I+([p, q]) ,

i.e. the set of points in the future of such segment. Then its support function is

U3(x) = max{〈x, p〉2,1, 〈x, q〉2,1} .

In other words, the surface dual to D3 is the graph of a piecewise affine function on
D. The geodesic [p, q]⊥ of H2 is such that U3 is affine on each half-plane bounded
by such geodesic.
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1.1.4 A special class of Minkowski manifolds containing a closed
spacelike surface: maximal globally hyperbolic manifolds

In this section we want to introduce a wide class of examples of three-manifolds con-
taining a closed (i.e. compact and without boundary) embedded spacelike surface.
We will consider a special case of three-manifolds, locally modelled on R2,1, whose
topology is S×R, containing a closed spacelike surface homotopic to S×{0}, called
maximal globally hyperbolic manifolds. First we need to introduce some definitions
from the causal geometry of Lorentzian manifolds.

The future of a point and of a spacelike segment in R2,1, discussed in Exam-
ple 1.1.10, are examples of future-convex domains with a special property, called
domains of dependence. These were introduced in [Bon05]. A future domain of de-
pendence is an open domain in R2,1 which is obtained as the intersection of at least
two future half-spaces bounded by lightlike planes.

A classical notion in Lorentzian geometry is the Cauchy development of a surface.
Let S be a spacelike surface in R2,1 (or more generally in a Lorentzian manifold M).
Its Cauchy development is

D(S) = {p ∈ R2,1 : every inextensible causal path from p intersects S in one point} .

The Cauchy development of S in R2,1 can be obtained as the intersection of the
future of all lightlike planes which do not intersect S. This shows that D(S) is a
domain of dependence.

Given a surface S in a Lorentzian three-manifold M , S is a Cauchy surface for
M if every inextensible causal path intersects S exactly once. Hence a surface S in a
domain of dependence D is a Cauchy surface if and only if the Cauchy development
of S coincides with D. A Lorentzian manifold M containing a Cauchy surface is
called globally hyperbolic.

Definition 1.1.11. A Lorentzian three-manifolds M is maximal globally hyperbolic
if M contains a Cauchy surface S and, for every isometric embedding of ι : M → M̂
in a Lorentzian manifold M̂ such that ι(S) is a Cauchy surface, ι is surjective.

An isometric embedding of a globally hyperbolic manifold to another globally
hyperbolic manifold, sending a Cauchy surface to a Cauchy surface, is called a
Cauchy embedding.

Maximal globally hyperbolic flat spacetimes (i.e. endowed with a flat Lorentzian
metric) were studied by Geoffrey Mess in this pioneering work [Mes07]. See also
[ABB+07]. We quickly review some important facts here. Mess described the clas-
sifying space for maximal globally hyperbolic spacetimes in terms of Teichmüller
spaces. We defer the description of these objects to Section 2.2.

By a classical theorem of Choquet-Bruhat, see [CB68], every flat globally hyper-
bolic spacetime admits an extension to a maximal globally hyperbolic spacetime,
unique up to global isometry. The meaning of this theorem in our context is that
the embedding data (I,B) (recall Subsection 1.1.1) of a Cauchy surface uniquely
determine the extension to the maximal globally hyperbolic spacetime. Let us make
this assertion more precise.
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Let (I,B) be the embedding data of the closed Cauchy surface S in M . Take
the universal cover π : S̃ → S and consider the lift (Ĩ , B̃) of (I,B) to S̃. Since the
Gauss-Codazzi equations (GC-R2,1) have a local nature, and S̃ is simply connected,
(Ĩ , B̃) satisfy the hypothesis of Theorem 1.1.6. Therefore there exists an immersion
σ : S̃ → R2,1 with embedding data (Ĩ , B̃).

However, for every deck transformation γ ∈ π1(S) of S̃, Ĩ and B̃ are clearly
invariant under the action of γ. Hence σ′ = σ ◦ γ is an isometric immersion of S̃
with the same embedding data as σ. By the uniqueness part of Theorem 1.1.6, there
exists an isometry

R(γ) ∈ Isom(R2,1)

such that

σ ◦ γ = R(γ) ◦ σ .
It can be easily checked that this defines a group representation

R : π1(S) ∼= π1(M)→ Isom(R2,1) ,

called the holonomy of S (or of M). A different choice of σ (which again differs by
post-composition with an isometry R0) corresponds to a different representation R
in the same conjugacy class.

Mess proved that the subgroupR(π1(S)) acts freely and properly discontinuously
on the Cauchy development D(S̃) of S̃. The quotient D(S̃)/R(π1(S)) is a maximal
globally hyperbolic spacetime and is the maximal extension provided by the Croquet-
Bruhat Theorem. Moreover, σ : S̃ → R2,1 is an embedding.

Let us write R(γ)(x) = ρ(γ)x+ tγ . It is easy to check that

ρ : π1(S)→ SO0(2, 1)

is a group representation, called linear part of the holonomy, while the translation
part

γ 7→ tγ ∈ R2,1

satisfies the relation

tαβ = ρ(α)tβ + tα (1.9)

A map t : π1(S)→ R2,1 satisfying the condition (1.9) is called a cocycle with respect
to the representation ρ.

Example 1.1.12. Simple examples of maximal globally hyperbolic flat spacetimes are
provided by the Fuchsian spacetimes. Given a discrete and faithful representation ρ :
π1(S)→ SO0(2, 1), where S is a closed surface, ρ can be thought as a representation
in Isom(R2,1) with trivial translation part. Hence ρ(π1(S)) preserves the origin in
R2,1 and preserves all the hyperboloids

H2(−t) := {〈x, x〉2,1 = −1/t2} .

Moreover, H2/ρ(π1(S)) is a hyperbolic surface, i.e. a surface endowed with a con-
stant curvature −1 Riemannian metric gρ. This point will be discussed further in
Chapter 2.
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Clearly the domain of dependence of the hyperboloid is the cone I+(0). The
quotient M = I+(0)/ρ(π1(S)) is a flat maximal globally hyperbolic spacetime. The
foliation by surfaces homeomorphic to S is provided by the quotient of the hyper-
boloids H2(−t) as t ∈ (0,∞). By a direct computation, the metric on M ∼= S × R
has the form

−dt2 + t2gρ .

We highlight that the embedding of S̃ is unique only up to an isometry of R2,1.
Post-composing the embedding σ (and thus also the domain of dependence) with an
isometry R0 of R2,1 changes the holonomy by conjugation by R0. In particular, if
we fix the linear part of the holonomy to be ρ, and we compose with a translation
by a vector t0 ∈ R2,1, we see that the new cocycle t′ differs from t by the coboundary

tα = ρ(α)t0 − t0 .

Given a representation ρ : π1(S) → SO0(2, 1), the first cohomology group
H1
ρ (π1(S),R2,1) is the vector space obtained as a quotient of cocycles over cobound-

aries. Mess proved that for every discrete and faithful representation ρ and every
cohomology class in H1

ρ (π1(S),R2,1), there exists a unique (up to translation) future
domain of dependence with holonomy R(γ)(x) = ρ(γ)(x) + tγ .

1.2 Hyperbolic space and de Sitter space

Let us consider (3+1)-dimensional Minkowski space, namely R3,1 = (R4, 〈·, ·〉3,1),
where the bilinear form of interest is

〈x, y〉3,1 = x1y1 + x2y2 + x3y3 − x4y4.

As in the 2-dimensional case (see Example 1.1.1), the hyperboloid model of hyper-
bolic 3-space is

H3 =
{
x ∈ R3,1 : 〈x, x〉3,1 = −1, x4 > 0

}
.

The group of orientation-preserving isometries of H3 is Isom(H3) ∼= SO0(3, 1),
namely the group of linear isometries of R3,1 which preserve orientation and do not
switch the two connected components of the quadric {〈x, x〉3,1 = −1}. It turns out
that H3 is homogeneous and isotropic. More precisely, Isom(H3) induces a transitive
action on oriented orthonormal triples in tangent spaces of H3.

Analogously to the lower-dimensional case, the induced metric is a complete
Riemannian metric of constant curvature −1. Actually, H3 is the simply connected
complete Riemannian manifold of constant curvature −1, in the sense that any
other simply connected complete Riemannian manifold of constant curvature −1 is
isometric to H3 (see for instance [Rat48, Theorem 8.6.2]).

Again, complete geodesics of H3 are intersections of H3 with 2-dimensional planes
of R3,1 through the origin (when nontrivial). By using this fact and the structure of
the isometry group Isom(H3), it is easy to compute formulae involving the distance
on H3 induced by the Riemannian metric, which will be denoted by dH3(·, ·). For
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instance, given a point p ∈ H3 and a tangent vector v ∈ TpH3 = p⊥, the unit speed
geodesic starting at p with initial vector v is parametrized by:

r 7→ γ(r) = cosh(r)p+ sinh(r)v .

It follows that, for p, q ∈ H3,

cosh(dH3(p, q)) = |〈p, q〉3,1| . (1.10)

It is natural to define a projective model of hyperbolic space:

{x ∈ R3,1 : 〈x, x〉3,1 < 0}/ ∼ ,

The usual affine coordinates (x, y, z) = (x1/x4, x2/x4, x3/x4), for the affine chart
{x4 6= 0}, provide the Klein model, namely the unit ball

B =
{

(x, y, z) : x2 + y2 + z2 < 1
}
.

In the projective model it is evident that H3 has a boundary at infinity ∂∞H3,
which is the projectivization of {x ∈ R3,1 : 〈x, x〉3,1 = 0}. Every geodesic in H3 is
asymptotic to points in this boundary at infinity. It is well-known that ∂∞H3 is a
2-sphere endowed with a natural conformal structure.

In the Klein model, the boundary at infinity is just the usual round sphere

∂B =
{

(x, y, z) : x2 + y2 + z2 = 1
}

and the conformal structure is the one induced by the round metric. Geodesics are
straight lines and totally geodesic planes (see next section) are the intersection of
B with an affine plane. We quickly mention that other useful models of H2 and H3

- which will be occasionally used also in this work - are the Poincaré model and
the half-plane/half-space model. More details can be found in various references, for
instance [Rat48, CFKP97, BP92].

As in the two-dimensional case, let us denote by d̂S3 the region

d̂S3 =
{
x ∈ R3,1 : 〈x, x〉3,1 = 1

}
and we call de Sitter space the projectivization of d̂S3,

dS3 = {〈x, x〉3,1 > 0} / ∼ .

De Sitter space is a constant curvature +1 Lorentzian manifold. Its geodesics, as
usual, are intersections of dS3 with projective lines of RP3; totally geodesic planes
are intersections with projective planes of RP3. Hence totally geodesic planes P
of dS3 are parametrized by the point P⊥ of H3 (here it is convenient to use the
projective model of H3). Vice versa, totally geodesic planes Q in hyperbolic space
are parametrized by the dual points Q⊥ in dS3 ⊂ RP3.
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1.2.1 The geometry of immersed surfaces in hyperbolic space

We briefly recall the theory of immersions of surfaces in hyperbolic space. The first
and second fundamental form are defined exactly as in Subsection 1.1.1, namely for
an immersion σ : S → H2 ⊂ R3,1,

I(v, w) = 〈σ∗(v), σ∗(w)〉3,1 .

and the second fundamental form is defined by

∇H3

σ∗v(σ∗ŵ) = ∇Sv ŵ + II(v, w)N

for v, w ∈ TxS, where N ∈ Tσ(x)σ(S) is the unit normal vector to S. Here ∇S is the
Levi-Civita connection of the first fundamental form I of S which can be obtained
as the induced connection of the ambient Levi-Civita connection ∇H3

(which is in
turn induced by ∇R3,1

). It turns out that

II(v, w) = I(B(v), w) = I(v,B(w))

where the shape operator B, which again satisfies Codazzi equation (Cod), is now
defined as (compare Equation (1.2) for Minkowski space)

B(v) = −∇H2
N .

Another remarkable difference with the Minkowski case is that Gauss equation
now is:

KI = −1 + detB (G-H3)

where KI is the curvature of the first fundamental form. This is indeed a very general
phenomenon: the constant −1 represents the curvature of the ambient manifold,
whereas when the ambient metric is Riemannian, the sign in front of the determinant
of B is positive.

Example 1.2.1. A totally geodesic plane in H3 (for which B ≡ 0) is nothing but an
isometric copy of H2, which has curvature −1 at every point.

In the setting of hyperbolic space, the role of the Gauss map defined for surfaces
in Euclidean or Minkowski space is replaced by two hyperbolic Gauss maps. This
notion and several properties which we will use are widely discussed in [Eps84],
[Eps86]. Given a smooth surface S in H3, and a choice N of a unit normal vector
field to S, we can define the maps

G± : S → ∂∞H3

which associate to x ∈ S the asymptotic limits of the geodesic orthogonal to S at x.
In other words,

G±(x) = lim
t→±∞

γx(t) ,

where γx is the unit speed parametrization of the geodesic such that γ(0) = x and
γ′(0) = Nx.

We conclude the section by stating the fundamental theorem of the theory of
immersed surfaces for hyperbolic space.
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Theorem 1.2.2 (Fundamental theorem of immersed surfaces in hyperbolic space).
Let S̃ be a simply connected surface. Given any pair (I,B), where I is a Riemannian
metric on S̃ and B is a (1, 1)-tensor self-adjoint for I, such that the Gauss-Codazzi
equations {

−1 + detB = KI

d∇
I
B = 0

(GC-H3)

are satisfied, there exists a smooth immersion σ : S̃ → H3 such that the first fun-
damental form is I and the shape operator is B. Moreover, given any two such
immersions σ and σ′, there exists R ∈ Isom(H3) such that σ′ = R ◦ σ.

We will be interested (especially in Section 7) in minimal surfaces in H3, which
are defined as surfaces for which the trace of the shape operator is zero. This amounts
to saying that the principal curvatures of S at every point are opposite, let’s say
λ and −λ. The definition is well-posed, since the trace of a matrix is invariant
by conjugacy and thus the condition trB = 0 does not depend on the choice of a
coordinate system. Moreover, it does not depend on the choice of the normal unit
vector field. Indeed, switching the direction of the normal vector field N replaces
B with −B. The condition trB = 0 is equivalent to the fact that the surface is a
critical point of the area functional (for compactly supported deformations of the
surface).

1.2.2 Some properties of convex surfaces and their duality

As in the already discussed case of Minkowski space and half-pipe geometry, the
duality between planes in H3 and points in dS3 (and vice versa, planes in dS3 and
points in H3) can be extended to convex surfaces. First, we remark again that the
notion of convex surface is well-defined in H3 and dS3, by means of the projective
structure they are endowed with. For instance, a surface in H3 is convex if it is in
the Klein model, in the Euclidean sense.

Given a smooth convex surface S in H3, we can define its dual surface as

S∗ = {x ∈ dS3 : x⊥ is a plane in H3 tangent to S} .

Of course, the dual surface of a smooth convex surface in dS3 is defined completely
analogously. We can also define a map d : S → S∗ by means of

d(x) = (TxS)⊥

namely, to a point of S we associate the point in dS3 which corresponds to the
tangent plane to S at x. If S is strictly convex, this map is injective. Then S∗ is a
strictly convex smooth spacelike surface and S∗∗ = S (see [Sch98, HR93]).

Moreover, we can also study the geometry of S∗ as an immersed surface. Given
an immersion σ : S → H3, with first fundamental form I and shape operator B, we
can describe the dual surface by means of the immersion

d ◦ σ : S → dS3 .
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It can be proved ([Sch98]) that the first fundamental form of the dual surface coin-
cides with the third fundamental form of S, namely

I∗(v, w) = III(v, w) = I(B(v), B(w))

where B = ∇N is the shape operator of S∗ in dS3. The shape operator of S∗, by
means of the parametrization d ◦ σ, is easily expressed as B∗ = B−1. The same
formulae hold when the roles of H3 and dS3 are exchanged.

It will be important in the following to define a notion of asymptotic boundary of
a surface. We say that the boundary at infinity of a surface S in H3 is the intersection
with ∂∞H3 of the closure of the surface in H3 ∪ ∂∞H3. In the Klein model, this is
the intersection of S̄ with the sphere at infinity, in the usual topology. Clearly the
same is defined also for de Sitter space (in the same affine chart as for the Klein
model, de Sitter space lies in the complement of the unit ball B). It turns out that,
given a smooth strictly convex surface S, which is an embedded disc with boundary
at infinity Γ, S∗ has Γ as boundary at infinity.

Such duality can be extended to non-smooth surfaces. Indeed, given a convex
surface in H3, we can again define the notion of support plane, as a plane such that
every translate in its normal direction - in the direction in which the surface is convex
- disconnects the surface. On the other hand, translates of the plane on the other
side are disjoint to the surface. Hence it is again possible to define the dual surface
of a convex surface S in H3 as

S∗ = {x ∈ dS3 : x⊥ is a support plane of S in H3}

and vice versa (assuming that the convex surface in dS3 is spacelike).

Example 1.2.3. Consider a convex surface S which is obtained as the intersection of
two totally geodesic planes P1, P2 in H3. The support planes of S are all the planes
containing the geodesic P1 ∩ P2 which do not disconnect S, including P1 and P2.
By composing with isometries in SO0(3, 1), we can assume P1 = p⊥1 and P2 = p⊥2 ,
where

p1 = [(1, 0, 0, 0)]

p2 = [(cos θ, sin θ, 0, 0)] .

By a direct observation, θ is the angle between the planes P1 and P2 in H3, and
coincides also with the length of the spacelike geodesic in dS3 connecting p1 and p2.
The other support planes of S are exactly the planes p⊥ where p is a point of the
form [(cos θ′, sin θ′, 0, 0)], with θ′ ∈ (0, θ). Hence the dual of S is very degenerate: it
is the geodesic spacelike segment l connecting p1 and p2. However, considering the
future of l, we obtain a convex surface (which is lightlike in some parts), sharing the
same boundary at infinity as S.

Given a Jordan curve Γ in the sphere at infinity ∂∞H3, the convex hull of Γ is the
smallest convex subset of H3∪∂∞H3 containing Γ. It can be defined, for instance, as
the intersection of all half-spaces bounded by totally geodesic planes P of H3 whose
boundary at infinity ∂∞P do not intersect Γ. We will denote the convex hull of a
curve Γ by CH(Γ).
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Example 1.2.3 can be generalized to pleated surfaces in H3, namely hyperbolic
surfaces which are bent along a measured geodesic lamination, as described in
[EM06]. See Definition 2.3.6 for the definition of measured geodesic laminations.
For instance, such surfaces arise as the boundaries of the convex hull of a Jordan
curve in ∂∞H3. More precisely, the boundary of CH(Γ) in H3 has two connected
components, one of which is a convex surface, and the other is concave (provided we
choose the direction of the normal vector field coherently). The induced distance on
pleated surfaces is well-defined and is a hyperbolic metric. If S is a pleated surface,
the above construction provides a spacelike connected set S∗ in dS3. The induced
metric endows S∗ with the structure of a real tree. This is exactly the real tree dual
to the bending lamination of S. See [Sca96] for more details. We will introduce
measured geodesic laminations in more detail in Chapter 2.

1.2.3 A special class of hyperbolic manifolds containing a closed
surface: quasi-Fuchsian manifolds

In this subsection we want to consider - similarly to Subsection 1.1.4 - a class of
hyperbolic three-manifolds containing a closed embedded surface. Observe that,
if a hyperbolic three-manifold M contains a closed embedded surface S, then by
taking the covering M̂ of M corresponding to the subgroup π1(S) < π1(M), we

obtain a hyperbolic three-manifold M̂ homeomorphic to S × R. We will consider
only manifolds whose topology is S × R in the present work.

Every complete hyperbolic three-manifold M is isometric to a quotient of H3.
In the language of (G,X)-structures (see for instance [Rat48, Thu97a, Thu97b]),
a complete hyperbolic manifold is a smooth manifold endowed with a complete
(Isom(H3),H3)-structure. Hence the developing map

dev : M̃ → H3 ,

which in general is only a local diffeomorphism, is a global diffeomorphism under
the completeness assumption. Then M is identified to H3/R(π1(S)), where

R : π1(S)→ Isom(H3)

is the holonomy representation. Compare also with Subsection 1.1.4.

The limit set of a discrete subgroup G < Isom(H3) is the set of accumulation
points in ∂∞H3 of orbits of the action of G on H3. We denote the limit set of a
discrete subgroup G < Isom(H3) by Λ(G).

Definition 1.2.4. A complete hyperbolic manifold M = H3/G is a quasi-Fuchsian
manifold if the limit set Λ(G) is a Jordan curve.

Given a quasi-Fuchsian manifold M = H3/G, the limit set Λ(G) can also be
thought as the asymptotic boundary of the lift to the universal cover H3 of any
embedded surface in M ∼= S×R homotopic to the standard inclusion S ↪→ S×{0}.

The convex hull of Λ(G) is invariant for the action of G on H3. The quotient
CH(Λ(G))/G is called convex core of M .
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Example 1.2.5. The most trivial example of quasi-Fuchsian manifolds is - of course -
provided by the Fuchsian ones. If a discrete and faithful representation R : π1(S)→
Isom(H3) preserves a totally geodesic plane P , then it also preserves all the surfaces
equidistant from P , which have the same boundary at infinity as P . Hence the
limit set is obviously ∂∞P . The convex hull is simply P . The image of R lies in a
subgroup of Isom(H3) which is an isomorphic copy of Isom(H2); hence R produces
a discrete and faithful representation

ρ : π1(S)→ Isom(H2) .

By a direct computation, the metric is of the form

dr2 + (cosh r)2gρ ,

where gρ is the hyperbolic metric of H2/ρ(π1(S)).

Quasi-Fuchsian representations can indeed be thought as quasiconformal defor-
mations of Fuchsian representations. We will employ this point of view in the
following chapters. It turns out, for instance, that the Hausdorff dimension of the
limit set is equal to 1 precisely in the case of Fuchsian manifolds.

The moduli spaces of quasi-Fuchsian manifolds will be discussed in Subsection
2.2. We conclude this section by giving a definition, which will be very important
in Section 7.

Definition 1.2.6. A quasi-Fuchsian manifold is almost-Fuchsian if it contains a
closed surface with principal curvatures in (−1, 1).

It was proved by Ben Andrews that an almost-Fuchsian manifold necessarily
contains a minimal surface with principal curvatures in (−1, 1). By an application
of the maximum principle, the minimal surface is unique in its homotopy class.

1.3 Anti-de Sitter space

Consider R2,2, the vector space R4 endowed with the bilinear form of signature (2,2):

〈x, y〉2,2 = x1y1 + x2y2 − x3y3 − x4y4

and define

ÂdS3 =
{
x ∈ R2,2 : 〈x, x〉2,2 = −1

}
.

The topology of ÂdS3 is that of a solid torus. We define Anti-de Sitter space as

AdS3 = ÂdS3/± I .

Then ÂdS3 is a double cover of AdS3. The pseudo-Riemannian metric induced on

ÂdS3 descends to a metric on AdS3 of constant curvature -1. The definition of
timelike/lightlike/spacelike/causal vectors, paths, planes, surfaces goes exactly like
in Section 1.1.
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As in the previous cases, the group of isometries of ÂdS3 which preserve ori-

entation and time-orientation is Isom(ÂdS3) ∼= SO0(2, 2), namely the connected
component of the identity in the group of linear isometries of R2,2. Therefore the
group of orientation-preserving and time-preserving isometries of AdS3 has a natural
isomorphism

Isom(AdS3) ∼= SO0(2, 2)/ {±I} .
Given a point p and a timelike vector v ∈ TpAdS3, the geodesic leaving p with initial
tangent vector v is parametrized by

r 7→ γ(r) = cos(r)p+ sin(r)v .

Hence timelike geodesics in AdS3 are closed (γ is a representative of the generator
of π1(AdS3, p) ∼= Z) and have lenght π. We will denote by dAdS3(·, ·) the timelike
distance in AdS3\Q, where Q is a totally geodesic spacelike plane. We underline that
this is actually not a distance, hence it does not endow AdS3 with a metric structure.
It is defined as follows: given points p and q ∈ I+(p), the distance between p and q
is the maximum lenght of timelike paths from p to q:

dAdS3(p, q) = sup
γ

∫
||γ̇||AdS3 .

The distance between two such points p, q is achieved along the timelike geodesic
connecting p and q. The timelike distance satisfies the reverse triangle inequality,
meaning that, if q ∈ I+(p) and r ∈ I+(q),

dAdS3(p, r) ≥ dAdS3(p, q) + dAdS3(q, r) .

Again, there are easy formulae (see also [BS10]) relating the distance between points
and the bilinear form of R2,2: for instance, if q ∈ I+(p),

cos(dAdS3(p, q)) = |〈p, q〉2,2| . (1.11)

If v ∈ TpAdS3 is a lightlike vector, a parametrization of the lightlike geodesic
whose tangent initial vector is v is provided by

r 7→ γ(r) = p+ rv .

In this case, it does not make sense to talk about unit-speed parametrization, since
the tangent vector to γ is always a null vector. Finally, if v is spacelike, then the
geodesic from p with initial velocity vector v is

r 7→ γ(r) = cosh(r)p+ sinh(r)v .

If p and q are connected by a spacelike line, the lenght l([p, q]) of the geodesic segment
connecting p and q is given by

cosh(l([p, q])) = |〈p, q〉2,2|. (1.12)

However, in this setting, it should be remarked that it is possible to find spacelike
paths connecting p and q with length arbitrarily small (by considering paths which
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are closer and closer to piecewise lightlike geodesics) or arbitrarily large (for instance,
by staying in a totally geodesic plane containing p and q).

We define the projective model of Anti-de Sitter space to be the projective domain{
x ∈ R2,2 : 〈x, x〉2,2 < 0

}
/ ∼ ,

which can be considered an open domain (not convex, though) of RP3.
In the affine chart {x4 6= 0}, AdS3 fills the domain

{
x2 + y2 < 1 + z2

}
, interior

of a one-sheeted hyperboloid; however AdS3 is not contained in a single affine chart.
Indeed in this description we are missing a totally geodesic plane at infinity. Since
geodesics in AdS3 are intersections of AdS3 with linear planes in R2,2, in the affine
chart geodesics are represented again by straight lines. Totally geodesic planes in
AdS3 arise as intersections with linear hyperplanes of R2,2. Every spacelike plane is
an isometric copy of H2. See Figure 1.3 for a picture of the light cone of a point in
the affine chart {x4 6= 0}.

P

Figure 1.3: The lightcone of future null
geodesic rays from a point and a totally
geodesic plane P .

ξ

πr(ξ)

πl(ξ)

Figure 1.4: Left and right projection
from a point ξ ∈ ∂∞AdS3 to the plane
P = {x3 = 0}

The boundary at infinity of AdS3 is defined as the topological frontier of AdS3

in RP3, namely the doubly ruled quadric

∂∞AdS3 =
{
x ∈ R2,2 : 〈x, x〉2,2 = 0

}
/ ∼ .

It is naturally endowed with a conformal Lorentzian structure, for which the lightlike
lines are precisely the left and right rulings. Given a spacelike plane P , which we
recall is obtained as intersection of AdS3 with a linear hyperplane of RP3 and is
a copy of H2, P has a natural boundary at infinity ∂∞P which coincides with the
usual boundary at infinity of H2. Moreover, ∂∞P intersects each line in the left or
right ruling in exactly one point. If a spacelike plane P is chosen, ∂∞AdS3 can be
identified with ∂∞H2 × ∂∞H2 by means of the following description: ξ ∈ ∂∞AdS3

corresponds to (πl(ξ), πr(ξ)), where πl and πr are the projections to ∂∞P following
the left and right ruling respectively (compare Figure 1.4).

Hence, given a map φ : ∂∞H2 → ∂∞H2, the graph of φ can be thought of as a
curve Γ = gr(φ) in ∂∞AdS3. The notion of spacelike curve is also well-defined, since
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∂∞AdS3 is endowed with a conformal Lorentzian structure. Even if we consider only
continuous curves, we say that a curve Γ is weakly spacelike if, for every ξ ∈ Γ, Γ is
contained in the region bounded by the lines through ξ in the left and right ruling
which is connected to ξ by spacelike paths. Weakly spacelike curves are precisely
graphs Γ = gr(φ), where φ is an orientation-preserving homeomorphism of ∂∞H2.
Moreover, it turns out that a weakly spacelike curve Γ = gr(φ) is the boundary at
infinity of a totally geodesic plane if and only if φ is in PSL(2,R).

It was proved in [Mes07] that every isometry in Isom(AdS3) extends to a diffeo-
morphism of ∂∞AdS3 acting as a projective transformation on every line in the left
and right rulings. This gives a natural identification

Isom(AdS3) ∼= PSL2R× PSL2R .

1.3.1 The geometry of immersed surfaces in Anti-de Sitter space

At this stage, it should be evident to the reader how the definitions given above
are extended for the case of Anti-de Sitter space. For instance, the correct form of
Gauss equation is

KI = −1− detB (G-H3)

To make the theory clear, it suffices to state the corresponding fundamental theorem
of immersions.

Theorem 1.3.1 (Fundamental theorem of immersed surfaces in Anti-de Sitter
space). Let S̃ be a simply connected surface. Given any pair (I,B), where I is
a Riemannian metric on S̃ and B is a (1, 1)-tensor self-adjoint for I, such that the
Gauss-Codazzi equations {

−1− detB = KI

d∇
I
B = 0

(GC-AdS3)

are satisfied, there exists a smooth immersion σ : S̃ → AdS3 such that the first
fundamental form is I and the shape operator is B. Moreover, given any two such
immersions σ and σ′, there exists R ∈ Isom(AdS3) such that σ′ = R ◦ σ.

As stated in Subsection 1.2.1 for H3, we will be interested in smooth surfaces
whose shape operator has zero trace, trB = 0. Surfaces satisfying this requirement
are called maximal surfaces. In fact, in the Lorentzian setting a surface with traceless
shape operator has the property that small deformations of the surface (supported
on a compact subset of S) decrease the area.

We are now going to introduce two maps which - in some sense - can play the
role of the hyperbolic Gauss maps in the context of Anti-de Sitter geometry. We
will call these maps left projection and right projection from the surface S to a fixed
totally geodesic plane P0 in AdS3. Recall that P0 is a copy of hyperbolic plane.
Given a point x ∈ S, we define two isometries Φx

l ,Φ
x
r ∈ Isom(AdS3) which map the

tangent plane TxS to P0. The first one Φx
l is obtained by following the left ruling of

∂∞AdS3: this means that every point of ∂∞(TxS) is mapped by Φx
l to the point of

∂∞P0 which lies on the same line in the left ruling of ∂∞AdS3. Analogously Φx
r is
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obtained by following the right ruling. This gives the left and right projections Φl

and Φr from S to P0, defined by

Φl(x) = Φx
l (x) ; (1.13)

Φr(x) = Φx
r (x) . (1.14)

1.3.2 Duality for convex surfaces

The construction performed in Subsection 1.2.2 can be repeated for Anti-de Sit-
ter geometry. Given a totally geodesic spacelike plane P in AdS3, the orthogonal
complement P⊥ in R2,2 defines a point which is again in AdS3, called dual point.
Conversely, for every point p ∈ AdS3, p⊥ defines a totally geodesic plane in AdS3.

There is an intrinsic geometric characterization of this duality. Indeed, given a
point p ∈ AdS3, by a direct computation one can see that p⊥ is the locus of points
in AdS3 which have timelike distance π/2 from p. In other words, p⊥ is composed
of the middle-points of all the timelike geodesics leaving from p, which we recall are
closed and have length π. Observing that every lightlike geodesic is asymptotic in
the future and in the past to the same point of ∂∞AdS3, the boundary at infinity
of p⊥ can be described as the set of asymptotic points of lightlike geodesics leaving
from p.

The duality between points in AdS3 and spacelike planes degenerates to a “du-
ality” between points in ∂∞AdS3 and lightlike planes. Given a lightlike plane Q,
its boundary at infinity is composed of two lines in ∂∞AdS3, one in the left ruling
and the other in the right ruling. Hence such two lines intersect in a single point at
infinity. When a sequence of spacelike planes degenerates to a lightlike plane Q, the
dual point tends exactly to the point in the boundary at infinity associated with Q.

Again, the dual surface of a smooth convex surface S is

S∗ = {x ∈ AdS3 : x⊥ is a plane in AdS3 tangent to S} ,

and the map

d : x 7→ (TxS)⊥

pulls back the first fundamental form of S∗ to the third fundamental form of S:

I∗(v, w) = III(v, w) = I(B(v), B(w)) .

It turns out that S and S∗ share the same boundary curve at infinity in ∂∞AdS3.

Given a weakly spacelike curve Γ = gr(ϕ) in ∂∞AdS3, the notion of convex hull
CH(Γ) can be again defined, as the smallest convex subset with asymptotic boundary
gr(ϕ). Although AdS3 is not convex in RP3, the convex hull is always contained in
AdS3. See [BS10, Lemma 4.8].

As for hyperbolic space, the connected components of ∂(CH(Γ))\Γ are a convex
and a concave surface, with induced metric a complete hyperbolic metric, pleated
along a measured geodesic lamination (see Definition 2.3.6 below) for the hyperbolic
metric. We call these surfaces upper boundary and lower boundary of the convex
hull.
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Another relevant notion is the domain of dependence of the curve Γ. Given a
spacelike surface S asymptotic to Γ, we say that the past domain of dependence of
S is the set of points p in the past of S such that every future causal path from p
intersects S. In other words, no future spacelike or lightlike geodesic leaving from p
intersects ∂∞AdS3 in the past of S. Analogously, the future domain of dependence
of S is the set of points p in the future of S such that every past causal path from
p must intersect S. If S is contained in the convex hull of Γ = ∂∞S, the reader can
convince him/herself that points in the convex hull and in the past (resp. future) of
S are contained in the past (resp. future) domain of dependence of S.

Given a weakly spacelike curve Γ in ∂∞AdS3, the domain of dependence D(Γ)
of Γ is the union of the past and future domains of dependence of any surface
asymptotic to Γ contained in CH(Γ).

As in the case of surfaces in hyperbolic and de Sitter space, the duality can be
extended to non-smooth convex surfaces, defining

S∗ = {x ∈ AdS3 : x⊥ is a spacelike support plane of S in AdS3} .

It is interesting to note the dual surface to the upper boundary ∂+CH(Γ) of the
convex hull of a weakly spacelike curve Γ is the past boundary of the domain of
dependenceD(Γ). This is very similar to the phenomenon we pointed out in Example
1.2.3 and in the following discussion. To be more precise, the dual S∗ of S =
∂+CH(Γ) is a degenerate set with the above definition, namely the subset of ∂−D(Γ)
of points which admit spacelike support planes. Indeed, by the description of duality
in Anti-de Sitter space at the beginning of this subsection, a totally geodesic plane P
disjoint (in the future) from Γ corresponds to a point p = P⊥ such that every future
spacelike geodesic from p intersects P at lenght π/2. The past domain of dependence
is obtained as union of such points. By defining the dual surface to ∂+CH(Γ) to be
the future of the degenerate set S∗, we obtain the entire past boundary of the domain
of dependence. The part which has been added is lightlike, and its lightlike support
planes are the duals - by the duality discussed above - to points of the boundary at
infinity Γ.

1.3.3 A special class of Anti-de Sitter manifolds containing a closed
spacelike surface: maximal globally hyperbolic manifolds

Again, we are going to discuss a special class of Anti-de Sitter manifolds whose
topology is S × R, where S is a closed surface. As in the Minkowski case, we are
interested in maximal globally hyperbolic manifolds, i.e. (recall Definition 1.1.11)
manifolds containing a (closed) Cauchy surface - which intersects every inextensible
causal path - and such that every Cauchy embedding into another globally hyperbolic
manifold is surjective.

We now sketch the construction of a maximal globally hyperbolic manifold, sim-
ilar to that explained in Subsection 1.1.4. Given the embedding data (I,B) of a
Cauchy surface S in a globally hyperbolic AdS3-manifold M0, by lifting to the uni-
versal cover S̃ of S we obtain the embedding data (Ĩ , B̃), which produce by Theorem
1.3.1 a unique (up to global isometries of AdS3) embedding σ : S̃ → AdS3. Moreover,
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the embedding σ is R-equivariant, with respect to a holonomy representation

R : π1(S)→ Isom(AdS3) .

We can define the limit set Λ(G) of a subgroup G < Isom(AdS3) - like for hyperbolic
geometry - as the set of accumulation points in ∂∞AdS3 of G-orbits of points in AdS3.
The limit set of R(π1(S)) coincides with the asymptotic boundary of S̃, which is a
weakly spacelike curve Γ.

Mess proved that the group R(π1(S)) acts freely and properly discontinuously
on the domain of dependence D of the limit set Λ(R(π1(S))). The quotient M =
D/R(π1(S)) is then a maximal globally hyperbolic AdS3-manifold, the maximal
extension of M0.

The convex hull of Λ(G) (defined in the previous subsections) is invariant for
the action of R(π1(S)). Therefore the quotient CH(Λ(G))/G is a submanifold of M ,
called convex core of M .

The identification Isom(AdS3) ∼= PSL2R × PSL2R (by means of the choice of a
fixed totally geodesic plane P ) provides the left and right holonomy,

ρl, ρr : π1(S)→ PSL2R

by projecting on the left and right factor. In Subsection 1.3.1 we defined the left
and right projections

Φl,Φr : S̃ → P ,

where P is a totally geodesic plane. The composition

Φl ◦ σ : S̃ → P

is ρl-equivariant, where we identify PSL2R ∼= Isom(H2) with the subgroup of Isom(AdS3)
fixing P . Analogously

Φr ◦ σ : S̃ → P

is ρr-equivariant.
Mess showed that ρl and ρr are discrete and faithful representations, and there-

fore endow S with a left and right hyperbolic metrics on S. Indeed H2/ρl(π1(S)) and
H2/ρr(π1(S)) are hyperbolic surfaces. We will go back to this point in Subsection
2.2.

Example 1.3.2. The obvious example of maximal globally hyperbolic AdS3-manifolds
is provided by the Fuchsian ones. If S is totally geodesic in a globally hyperbolic
manifold M0, then the first fundamental form is a hyperbolic metric and B ≡ 0.
The fact that M0 contains a totally geodesic plane is equivalent to the fact that the
left and right holonomies are conjugate in PSL2R. Indeed, in this case the limit set
of the holonomy R is the boundary at infinity of the totally geodesic plane P = S̃
in AdS3. The maximal globally hyperbolic manifold is foliated by the surfaces at
timelike distance t from S, where t ∈ (−π/2, π/2). Let p = P⊥ be the dual point
of P . The past domain of dependence of P is the region of points of I+(p) whose
timelike distance from p is in (0, π/2]. The same description holds for the future
domain of dependence. The convex core is the totally geodesic surface S.
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Finally, the metric of M is of the form

−dt2 + (cos t)2gρ ,

where ρ = ρl = ρr and gρ is the hyperbolic metric of H2/ρ(π1(S)).

We now sketch the reverse construction, also provided by Mess in [Mes07], avoid-
ing to do not give the details of the arguments. Given two discrete and faithful
representations

ρ1, ρ2 : π1(S)→ PSL2R ,

there exists an orientation-preserving homeomorphism ϕ of S1 ∼= RP1 which conju-
gates ρ1 and ρ2. The domain of dependence D of the weakly spacelike curve gr(φ)
is - almost by definition - invariant for the representation

R = (ρ1, ρ1) : π1(S)→ PSL2R× PSL2R

and therefore D/R(π1(S)) is a maximal globally hyperbolic spacetime whose left
and right holonomies coincide with ρ1 and ρ2.

1.4 Geometric transition

In this section we will consider the notion of geometric transition. Two different
transition procedures will be described: the first, introduced by Jeffrey Danciger
(see [Dan11, Dan13, Dan14]), is a rescaling procedure from AdS3 on one side, and
H3 on the other side having limit in half-pipe geometry HP3. Although the rescaling
procedures can be defined in every dimension, we will focus on three-dimensional
manifolds here.

The second is the Lorentzian version of a more classical transition, involving
spherical geometry, Euclidean geometry and hyperbolic geometry. Indeed, “zooming
in” from a point on the sphere, one obtains in the limit the flat geometry of Euclidean
spaces; the same can be obtained on the other side from hyperbolic geometry. Since
Minkowski space is the tangent space of both Anti-de Sitter space and de Sitter
space, a natural transition is defined from AdS3 and from dS3, with limit R2,1. Such
transition is described for instance in [DGK13].

We will then show that these two transition procedures are well-behaved with
respect to the dualities we defined in Subsections 1.1.2, 1.2.2 and 1.3.2. Some useful
conclusions will be drawn from this observation. Geometric transition, in relation
with the theory of immersed surfaces introduced in Subsections 1.1.1, 1.2.1 and 1.3.1,
will be the subject of Chapter 9.

1.4.1 The transition AdS3-HP3-H3: blow-up of a plane

Let us consider the linear transformation rt of R4:

rt(x
1, x2, x3, x4) =

(
x1, x2,

1

t
x3, x4

)
.
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For every t > 0, rt is an isometry between the quadratic form 〈·, ·〉3,1 we already
defined on R3,1 and the following quadratic form:

〈x, y〉t3,1 = (x1)2 + (x2)2 + t2(x3)2 − (x4)2 .

The transformation rt therefore maps the hyperboloid H3 to

rt(H3) = {x : 〈x, x〉t3,1 = −1} , (1.15)

and induces a projective transformation of RP3 which maps the projective model of
H3 to the following projective domain:

{x : 〈x, x〉t3,1 < 0}/ ∼ .

In the limit as t → 0, rt(H3) converges (in the Hausdorff convergence of R4, for
instance) to the half-pipe model

HP3 = {x ∈ R3,1 : 〈x, x〉2,0,1 < 0} .

Observe that 〈·, ·〉t2,2, for t > 0, endows rt(H3) with a metric which is isometric to

the standard metric of H3. In the limit, however, we obtain the degenerate metric
(1.7) of HP3. It is not difficult to see that the conjugate copies of SO0(3, 1) =
Isom(H3) acting on rt(H3) inside PGL3R, namely

(rt)SO0(3, 1)(rt)
−1 ,

converge to the group Isom(HP3) < PGL3R we defined in Subsection 1.1.2.

This transition can also be regarded as a projective convergence in RP3 of the
domain (1.15) to the projective model of half-pipe geometry (recall Subsection 1.1.2).

A similar rescaled limit is obtained “on the other side” from Anti-de Sitter space
to half-pipe geometry. Now rt is an isometry between the quadratic form 〈·, ·〉2,2 of
R2,2 and the quadratic form:

〈x, y〉t2,2 = (x1)2 + (x2)2 − t2(x3)2 − (x4)2 .

As t→ 0, it turns out that

rt(ÂdS3) = {x : 〈x, x〉t2,2 = −1}

converges to HP3. Recall ÂdS3 is the double cover {x ∈ R2,2 : 〈x, x〉2,2 = −1} of
AdS3. Again the convergence can also be considered as a projective limit in RP3.

As in the previous case, the rescaled copies rt(ÂdS3) are endowed with a metric
isometric to the usual metric of AdS3, which for t → 0 tends to the (degenerate)

metric gH2 + 0 · dt2 of HP3. The groups of isometries of rt(ÂdS3), namely

(rt)SO0(2, 2)(rt)
−1 ,

converge again to Isom(HP3).
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In [Dan11, Dan13, Dan14], Danciger studied the problem of degeneration and
regeneration of hyperbolic structures (with cone singularities) and Anti-de Sitter
structures (with tachyon singularities) on closed three-manifolds. We will discuss
here a much simpler phenomenon, namely the degeneration of surfaces.

Suppose σt is a pointwise-differentiable family of smooth embeddings of a disc in
H3 and/or in AdS3. In the latter case, we assume that the image of σt is spacelike
for every t. Suppose σ0 is a diffeomorphism to the totally geodesic plane obtained
by the condition x3 = 0 (it does not really make a difference whether in R3,1 or
R2,2). We identify this totally geodesic plane to H2. Write

σt(p) = (x1
t (p), x

2
t (p), x

3
t (p), x

4
t (p)) ,

with σ0(p) = (x1(p), x2(p), x3(p), x4(p)). Then x3(p) = 0. Rescaling by rt, we obtain

lim
t→0

(rt ◦ σt)(p) = (x1(p), x2(p),
d

dt

∣∣∣∣
t=0

x3
t (p), x

4(p)) .

Hence the limit is a spacelike embedded disc in HP3, namely the graph of the function
f : H2 → R defined by

f = ẋ3 ◦ (σ0)−1 =

(
d

dt

∣∣∣∣
t=0

x3

)
◦ (σ0)−1 .

1.4.2 The transition AdS3-R2,1-dS3: blow-up of a point

We now describe a second transition procedure which is essentially a blow-up of a
point in AdS3 or in dS3. We consider again the linear transformation

r∗t (x
1, x2, x3, x4) =

(
1

t
x1,

1

t
x2, x3,

1

t
x4

)
.

Observe that r∗t preserves the point (0, 0, 1, 0), which is the dual point - both in the
H3-dS3 and in the AdS3-AdS3 duality - of the totally geodesic plane {x3 = 0}. We
start by considering the AdS3 case. The transformation r∗t maps the double cover of
AdS3 to the set

r∗t (ÂdS3) = {t2(x1)2 + t2(x2)2 − (x3)2 − t2(x4)2 = −1} ,

which converges as t → 0 to {x3 = ±1}. If endowed with the metric induced from
〈·, ·〉3,1, these are two copies of Minkowski space R2,1 (where the metric takes the
form (dx1)2 +(dx2)2−(dx4)2). Again it is more natural to consider r∗t as a projective
transformation, which rescales AdS3 ⊂ RP3 to the affine chart {x3 6= 0}. Of course
a completely analogous procedure holds for dS3.

The remarkable difference with the blow-up of a plane we described in the pre-
vious section is that in this case, to obtain the Minkowski metric in the limit, the
domains r∗t (AdS3) have to be endowed with the induced metric from the ambient
space, not with a rescaled metric.

Let us compute what the limit is in this case. Suppose

ςt(p) = (x1
t (p), x

2
t (p), x

3
t (p), x

4
t (p))
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is a differentiable family of smooth maps from a disc with ς0(p) = (0, 0, 1, 0), defined
in a small right interval of t = 0. Then we obtain

lim
t→0

r∗t (ςt(p)) = (ẋ1(p), ẋ2(p), 1, ẋ3(p)) . (1.16)

Remark 1.4.1. The reader might consider more natural the procedure to blow-up
Anti-de Sitter/de Sitter space to Minkowski space by “homothety”, in such a way
that the curvature gets rescaled by t2. Although next section should convince that
the procedure we consider is very natural for the behaviour of duality, we want to
show that the limits obtained in the two cases are the same.

A simple way to blow-up AdS3 to R2,1 by keeping the curvature constant is the
following. Consider, for t > 0, the map

ct(x
1, x2, x3, x4) =

(
1

t
x1,

1

t
x2, 1 +

1

t
(x3 − 1),

1

t
x4

)
.

Observe that ct(ÂdS3), with the metric induced from R2,2, is a homothetic image

of ÂdS3 and has constant curvature −t2. For every time t, ct(AdS3) contains the

point (0, 0, 1, 0) and is tangent to the plane {x3 = 1}. The construction for d̂S3 is
completely analoguos. Let us compute the rescaled limit of a smooth path

γ(t) = (x1
t , x

2
t , x

3
t , x

4
t ) ∈ ÂdS3 or d̂S3

with γ(0) = (0, 0, 1, 0). Using that (x1)2 + (x2)2 ± (x3)2 − (x4)2, and thus at first
order ẋ3 = 0, one shows that

lim
t→0

ct(γ(t)) = (ẋ1, ẋ2, 1, ẋ3) ,

which is the same result as obtained in (1.16).

Figure 1.5: Heuristically, the rescling of dS3 and AdS3 is the analogous of the deformation
of a sphere towards its tangent plane at a fixed point.

1.4.3 Duality is preserved

In this subsection we will prove that the two transition procedures we described in
Subsection 1.4.1 and 1.4.2 preserve the natural dualities AdS3-AdS3 and H3-dS3 we
have already introduced. More precisely, in the AdS3 context, we prove the following
proposition:
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Figure 1.6: Another transition procedure of the sphere to Euclidean plane, by constant
curvature going to zero.

Proposition 1.4.2. Let σt : H2 → AdS3 be a C2 family of smooth strictly convex
embeddings for t ≥ 0, with σ0 an isometric embedding onto the totally geodesic plane
P0 = {x3 = 0}. Let σ∗t : H2 → AdS3 be the family of embeddings (for t 6= 0) dual to
σt, with σ0 ≡ P⊥0 = (0, 0, 1, 0). Then the rescaled limits

σ := lim
t→0

(rt ◦ σt) : H2 → HP3

and
σ∗ := lim

t→0
(r∗t ◦ σ∗t ) : H2 → R2,1

are convex surfaces dual to each other in the R2,1-HP3 duality.

Before proving Proposition 1.4.2, we consider the case of convergence of totally
geodesic planes.

Lemma 1.4.3. Let Pt : H2 → AdS3 be a C1 family of isometric embeddings onto
totally geodesic planes of AdS3, with P0 = {x3 = 0}. Let pt = P ∗t be the dual points
in AdS3. Then the rescaled limit

lim
t→0

(rt ◦ Pt) : H2 → HP3

has image a plane in HP3 dual to the point

p := lim
t→0

r∗t (pt) ∈ R2,1 .

Proof. Suppose Pt(q) = (x1
t (q), x

2
t (q), x

3
t (q), x

4
t (q)) for q ∈ H2, and pt = (p1

t , p
2
t , p

3
t , p

4
t ).

By assumption x3
0 = 0 and therefore p0 = (0, 0, 1, 0). Then we have

〈Pt(q), pt〉2,2 = 0 .

From this relation we obtain

x1
t (q)

p1
t

t
+ x2

t (q)
p2
t

t
− x3

t (q)

t
p3
t − x4

t (q)
p4
t

t
= 0 (1.17)

and taking the limit as t→ 0 one gets

ẋ3(q) = x1
0(q)ṗ1 + x2

0(q)ṗ2 − x4
0(q)ṗ4 = 〈P0(q), ṗ〉2,1 (1.18)
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where p = (ṗ1, ṗ2, ṗ4). This shows that the rescaled limit limt→0(rt ◦ Pt) in HP3 is
the graph of the support function of I+(p), i.e. the plane in HP3 dual to the point
p.

Proof of Proposition 1.4.2. Given the family σt, the rescaled limit limt→0(rt ◦ σt)
defines a convex surface in HP3. For every point q ∈ H2 we consider the C1 family
of planes Pt tangent to σt(H2) at σt(q). The points σ∗t (q) coincide with pt = P⊥t and
thus, by Lemma 1.4.3, limt→0 r

∗
t (pt) is the point of R2,1 dual to the tangent plane to

σ(H2) at σ(q) ∈ HP3.

The analogous proposition for the H3-dS3 duality is proved in the same way.

Proposition 1.4.4. Let σt : H2 → H3 be a C2 family of smooth strictly convex
embeddings for t ≥ 0, with σ0 an isometric embedding onto the totally geodesic plane
P0 = {x3 = 0}. Let σ∗t : H2 → dS3 be the family of embeddings (for t 6= 0) dual to
σt, with σ0 ≡ P⊥0 = (0, 0, 1, 0). Then the rescaled limits

σ := lim
t→0

(rt ◦ σt) : H2 → HP3

and
σ∗ := − lim

t→0
(r∗t ◦ σ∗t ) : H2 → R2,1

are convex surfaces dual to each other in the R2,1-HP3 duality.

The only difference is that here the two rescaled limits coincide up to a change of
sign. This is due to the fact that, while in Anti-de Sitter space the dual to a concave
surface is a convex surface, this is no longer true in the H3-dS3 duality. For instance,
choosing the normal unit vector field N to a convex surface (nearby the x3 = 0
totally geodesic plane) in H3 to have positive x3-component, the dual surface in dS3

is still convex when we choose its normal unit vector field N ′ coherently with N .
This means (nearby the point (0, 0, 1, 0)) that N ′ has negative x4-component. When
rescaling to Minkowski space, however, we consider convex surface with respect to
the future unit normal vector, which is the one with positive x4-component. This
explains why the sign has to be switched in Proposition 1.4.4. In the proof, the only
change arises from the signature in Equation (1.17) and thus in Equation (1.18).



Chapter 2

Teichmüller spaces

2.1 Riemann surfaces and hyperbolic geometry

In this section we want to describe the relation between Riemann surfaces and hyper-
bolic structures on a surface, and the deformation space of such objects. Recall that
a Riemann surface is a smooth surface S endowed with a complex atlas A (whose
elements are charts φi : Ui → C, for {Ui} is a covering of S), such that the changes
of coordinates are holomorphic.

It is a known fact that complex structures are equivalent to conformal structures
on a 2-dimensional surface. Recall that a conformal structure is a Riemannian metric
on S up to the equivalence relation of conformality : two Riemannian metrics g and
g′ are conformal if there exists a smooth function ϕ such that

g′ = e2ηg .

Given a Riemannian metric g on S, for a classical theorem ([Lic16, Che55a]) there
exist isothermal coordinates in a neighborhood of every point, namely a system of
coordinates in which the metric is conformal to the Euclidean metric of C ∼= R2.
In other words, there exist a covering {Ui} and charts φi : Ui → C so that the
pushforward of the metric g in φi(Ui) is of the form

e2ηi |dz|2 .

By a direct computation, one checks that a diffeomorphism ψ : C→ C is conformal
for the Euclidean metrics on C if and only if it is holomorphic. Hence isothermal
coordinates provide a complex atlas for S. Vice versa, given a complex structure A =
{φi : Ui → C} on S, one can put a Riemannian metric on every Ui by simply taking
the pull-back of the Euclidean metric (φi)

∗(|dz|2). Using a partition of unity, one
obtains a Riemannian metric on S whose underlying complex structure is compatible
with the original complex atlas A.

In is an even deeper occurrence of dimension 2 that complex structures on a
surface S are in bijection with almost-complex structures. Given a Riemann sur-
face, one can define a (1, 1)-tensor J on S, which acts on every tangent plane by
multiplication by i, in every coordinate chart φi : Ui → C. In other words,

J(v) = (φi)
∗(i(φi)∗(v)) ,

53
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where the tangent vector v is thought as a complex number. This definition does not
depend on the choice of charts compatible with the complex structure. The tensor
J has the property that

J2 = −E .
In general, however, not all almost-complex structures (i.e. (1, 1)-tensors J which
square to minus the identity) on a complex manifolds are integrable, namely they are
obtained from complex structures. The Newlander-Nirenberg Theorem ([NN57]) de-
scribes an obstruction for integrability. This obstruction is always trivial in complex
dimension 1, meaning that all almost-complex structures are integrable.

There is yet another interpretation of complex structures on a surface, in terms
of Riemannian metrics of constant curvature. This is a consequence of the Uni-
formization Theorem ([Poi08], [Koe09]; see [Jos06] for a modern treatment).

Uniformization Theorem. Every simply connected Riemann surface is confor-
mally equivalent to C, D or the Riemann sphere.

As a Corollary, every closed Riemann surface of genus g ≥ 2 (which is the case
we are interested in this thesis) admits a unique Riemannian metric of constant
curvature −1. Indeed, the group of conformal transformation of the disc D coincides
with the group of isometries of hyperbolic plane in the Poincaré disc model. The
same holds for the positive constant curvature metric on the sphere and the flat
metric on the plane. Thus, by Gauss-Bonnet, if the genus is at least two, the
universal cover of S is conformally equivalent to D and the surface S is endowed with
a unique metric of constant curvature −1, namely a hyperbolic metric, compatible
with the complex structure.

2.1.1 The definition of Fricke space of a closed surface

We will now introduce the notion of Fricke space of a closed surface.

Definition 2.1.1. Given a closed surface S of genus g ≥ 2, we define

T (S) = {hyperbolic metrics on S}/ ∼ ,

where two metrics h and h′ are equivalent for the relation ∼ if there exists an
isometry A : (S, h)→ (S, h′) isotopic to the identity.

Although the original Teichmüller viewpoint will be introduced later in this chap-
ter, we will adopt the denomination of Teichmüller space for T (S), instead of the
more precise Fricke space. By the above discussion, T (S) is also the space of complex
structures on S, up to conformal transformations isotopic to the identity.

By a well-known theorem, T (S) is homeomorphic to a ball of dimension 6g − 6.

2.1.2 Holonomy representations

Given a closed surface S with a hyperbolic metric h, the universal cover (S̃, h̃) is
isometric to H2. Indeed, H2 is the unique complete simply connected surface up to
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isometres. In a very similar way to what has been explained in the several examples
of Chapter 1, one obtains a developing map

dev : S̃ → H2 ,

which is ρ-equivariant, where

ρ : π1(S)→ Isom(H2)

is the holonomy representation. It turns out that ρ(π1(S)) acts freely and properly
discontinuously on H2 and H2/ρ(π1(S)) is isometric to the original hyperbolic sur-
face (S, h). The condition that ρ(π1(S)) acts freely and properly discontinuously is
equivalent to the fact that the representation ρ is discrete and faithful. It turns out
that this construction gives a well-defined map

hol : T (S)→ R(π1(S), SO0(2, 1))//SO0(2, 1) .

The object in the target of hol is the space of representations of π1(S) in SO(2, 1),
quotiented by the action of SO(2, 1) by conjugation. The space of representations
is endowed with a compact-open topology. The double quotient is a standard con-
struction to eliminate singular points, since this space is not a manifold in general
(it might not even be Hausdorff).

By a theorem of Goldman, hol is a homeomorphism onto a connected compo-
nent of R(π1(S),SO(2, 1))//SO(2, 1). More precisely, to every representation ρ in
R(π1(S),SO(2, 1)) one associates a flat bundle over S obtained by the quotient of
S̃ ×H2 by the diagonal action of π1(S):

α(x, y) = (αx, ρ(α)y) .

The Euler class of flat bundles descends to a continuous function

e : R(π1(S), SO(2, 1))//SO(2, 1)→ {2− 2g, . . . , 0, . . . , 2g − 2} .

Goldman ([Gol82, Gol80]) proved that the space of discrete and faithful representa-
tion coincides with e−1(2g−2) (or e−1(2−2g), depending on the orientation). Hence
T (S) can be identified to a connected component of R(π1(S), SO(2, 1))//SO(2, 1).

2.1.3 The tangent space to the space of representations

We can now give a description of the tangent space of T (S) at a given point [h].
We will use the description of Subsection 2.1.2 of Teichmüller space. See [Gol84] for
more details. Assume [h] corresponds to the representation ρ : π1(S)→ SO(2, 1).

Given a differentiable path of representations ρt such that ρ0 = ρ, we put

ρ̇(α)(x) =
d

dt

∣∣∣∣
t=0

ρt(α) ◦ ρ0(α)−1(x) ∈ so(2, 1) .

It turns out that ρ̇ defines a cocycle for the adjoint action of ρ:

ρ̇(αα′) = Adρ(α)(ρ̇(α′)) + ρ̇(α) .
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Moreover, if two such paths ρt and ρ′t differ by conjugation by a smooth family
ηt ∈ SO(2, 1), with η0 = id, then the associated cocycles ρ̇ and ρ̇′ differ by the
coboundary

ρ̇(α)− ρ̇′(α) = Adρ(α)η0 − η0 ,

for some fixed η0 ∈ so(2, 1). Hence the tangent space to the character variety
R(π1(S),SO(2, 1))//SO(2, 1) is canonically identified with the cohomology group
H1

Adρ(π1(S), so(2, 1)), i.e. the quotient of so(2, 1)-valued cocycles (for the action
of Adρ) by the subspace of coboundaries.

2.2 Moduli spaces of three-manifolds

In this section we will describe a striking relation between some spaces of three-
manifolds containing a closed surface, as described in Subsections 1.1.4 (maximal
globally hyperbolic flat manifolds), 1.2.3 (quasi-Fuchsian hyperbolic manifolds) and
1.3.3 (maximal globally hyperbolic Anti-de Sitter manifolds), and Teichmüller space
of the surface.

2.2.1 Maximal globally hyperbolic flat manifolds

Fix a topological surface S of genus g ≥ 2. We will consider here the space of flat
Lorentzian metrics on S×R such that the slices S×{∗} are Cauchy surfaces, which
cannot be embedded isometrically in a larger spacetime with the same properties.
As in the case of Fricke/Teichmüller space, the equivalence relation we put on this
huge space of metrics is g ∼ g′ if there exists an isometry between g and g′ isotopic
to the identity. In this way we obtain a space MGHR2,1(S) which classifies all flat
maximal globally hyperbolic structures on S × R.

Mess proved in [Mes07] that MGHR2,1(S) is homeomorphic to TT (S), the tan-
gent bundle of T (S). Let us give a sketch of how the correspondence is proved.

Given such a spacetime M , by analysing the action of the linear part of the
holonomy on the bundle of lightlike vectors tangent to M , Mess showed that the
linear part

ρ : π1(S)→ SO0(2, 1)

of the holonomy R : π1(S)→ Isom(R2,1) of M has maximal Euler class, in the sense
described in the previous section. Hence ρ is a Fuchsian representation. We have
already mentioned in Subsection 1.1.4 that the translation part of the holonomy
defines a cocycle in

H1
ρ (π1(S),R2,1) .

However, there is a natural isomorphism for the cohomology groups H1
ρ (π1(S),R2,1)

and H1
Adρ(π1(S), so(2, 1)). Indeed, the Minkowski cross product is defined by v �

w = ∗(v ∧ w), where ∗ : Λ2(R2,1) → R2,1 is the Hodge operator associated to the
Minkowski product. The map which associates to t ∈ R2,1 the linear map

v 7→ t� v
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is a vector space isomorphism between R2,1 and so(2, 1), which is equivariant for the
action of SO(2, 1) on R2,1 (the natural action) and on so(2, 1) (the adjoint action).
Hence there is a natural identification

H1
Adρ(π1(S), so(2, 1)) ∼= H1

ρ (π1(S),R2,1) .

Since the LHS - by the results in [Gol84] discussed in Subsection 2.1.3 - is the tangent
space to Teichmüller space at the point corresponding to the Fuchsian representa-
tion ρ, this construction uniquely associates an element in TT (S) to every class of
maximal globally hyperbolic flat spacetimes (up to isotopy). Mess proved (and in
Chapter 5 we will basically give another proof of this well-known fact) that pairs of a
Fuchsian representation ρ and a cocycle in H1

ρ (π1(S),R2,1) are in 1-1 correspondence
with the holonomies of maximal globally hyperbolic spacetimes, thus concluding the
claim on the structure of MGHR2,1(S).

2.2.2 Maximal globally hyperbolic AdS3 manifolds and quasi-Fuchsian
manifolds

We now give a brief description of analogous results for the spaces MGHAdS3(S) of
maximal globally hyperbolic Anti-de Sitter structures on S × R, up to isometries
isotopic to the identity. In Subsection 1.3.3 we have already mentioned that the left
and right holonomy of a maximal globally hyperbolic flat spacetimes are Fuchsian
representations in SO(2, 1). This was proved by Mess by showing again that the
Euler class is maximal. As sketched at the end of Subsection 1.3.3, by using the fact
that any two Fuchsian representations are topologically conjugate, Mess showed
that for every pair (ρl, ρr) of Fuchsian representations it is possible to construct a
maximal globally hyperbolic AdS3 spacetimes having the ρl and ρr as left and right
holonomy. In this was it was proved in [Mes07] that

MGHAdS3(S) ∼= T (S)× T (S) .

This parametrization is analogous to the classical parametrization of the space of
quasi-Fuchsian manifolds (again, up to isotopy), which we denote QF(S), by means
of two copies of Teichmüller space:

QF(S) ∼= T (S)× T (S) .

Given a quasi-Fuchsian, the limit set Λ of its holonomy representation is a Jordan
curve in ∂∞H3. Moreover, we have already remarked in Section 1.2 that ∂∞H3 is
endowed with a conformal structure and the group of isometries Isom(H3) acts on
∂∞H3 by conformal transformations. Hence each connected component of ∂∞H3 \Λ
is invariant for the holonomy representation and provides two complex structures
on S, by taking the quotient. In this way, two elements in Teichmüller space are
associated to every quasi-Fuchsian manifolds. The viceversa is a consequence of the
following famous theorem ([Ber60]).
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Bers’ Simultaneous Uniformization Theorem. Given every pair of complex
structures A1 and A2 on a closed surface S of genus g ≥ 2, there exists a quasi-
Fuchsian group Γ ∈ Isom(H3) such that

Ω+/Γ ∼= (S,A1) and Ω−/Γ ∼= (S,A2)

where Ω+ and Ω− are the two connected components of the complement of the limit
set of Γ in ∂∞H3.

2.3 Quasiconformal mappings and universal Teichmüller
space

The aim of this section is to introduce the theory of quasiconformal mappings and
universal Teichmüller space. We will give a brief account of the very rich and devel-
oped theory. Useful references are [Gar87, GL00, Ahl06, FM07] and the nice survey
[Sug07].

We start by recalling the definition of quasiconformal map.

Definition 2.3.1. Given a domain Ω ⊂ C, an orientation-preserving homeomor-
phism f : Ω → f(Ω) ⊂ C is quasiconformal if f is absolutely continuous on lines
and there exists a constant k < 1 such that

|∂zf | ≤ k|∂zf | .

Let us denote µf = ∂zf/∂zf , which is called complex dilatation of f . This is
well-defined almost everywhere, hence it makes sense to take the L∞ norm. Thus a
homeomorphism f : Ω → f(Ω) ⊂ C is quasiconformal if ||µf ||∞ < 1. Moreover, a
quasiconformal map as in Definition 2.3.1 is called K-quasiconformal, where

K =
1 + k

1− k .

It turns out that the best such constant K ∈ [1,+∞) represents the maximal dilata-
tion of f , i.e. the supremum over all z ∈ Ω of the ratio between the major axis and
the minor axis of the ellipse which is the image of a unit circle under the differential
dzf .

It is known that a 1-quasiconformal map is conformal, and that the composition
of a K1-quasiconformal map and a K2-quasiconformal map is K1K2-quasiconformal.
Hence composing with conformal maps does not change the maximal dilatation.

Actually, there is an explicit formula for the complex dilatation of the composi-
tion of two quasiconformal maps f, g on Ω:

µg◦f−1 =
∂zf

∂zf

µg − µf
1− µfµg

. (2.1)

Using Equation (2.1), one can see that f and g differ by post-composition with a
conformal map if and only if µf = µg almost everywhere. We now mention the clas-
sical and important result of existence of quasiconformal maps with given complex
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dilatation.

Measurable Riemann mapping Theorem. Given any measurable function µ on
C there exists a unique quasiconformal map f : C→ C such that f(0) = 0, f(1) = 1
and µf = µ almost everywhere in C.

The uniqueness part of Measurable Riemann mapping Theorem means that every
two solutions (which can be thought as maps on the sphere Ĉ) of the equation

(∂zf)µ = ∂zf

differ by post-composition with a Möbius transformation of Ĉ. Indeed, post-composing
with a Möbius transformation allows the freedom to choose the image of a triple of
points, and the statement of Measurable Riemann mapping Theorem above im-
plicitely assumes the normalization f(∞) =∞.

Given any fixed K ≥ 1, K-quasiconformal mappings have an important com-
pactness property. See [Gar87] or [Leh87].

Theorem 2.3.2. Let K > 1 and fn : Ĉ → Ĉ be a sequence of K-quasiconformal
mappings such that, for three fixed points z1, z2, z3 ∈ Ĉ, the mutual spherical dis-
tances are bounded from below: there exists a constant C0 > 0 such that

dS2(fn(zi), fn(zj)) > C0

for every n and for every choice of i, j = 1, 2, 3, i 6= j. Then there exists a subse-
quence fnk which converges uniformly to a K-quasiconformal map f∞ : Ĉ→ Ĉ.

2.3.1 Quasiconformal deformations of the disc

We are now ready to introduce the first model of universal Teichmüller space. It
turns out that every quasiconformal homeomorphisms of D to itself extends to the
boundary ∂D = S1. Let us consider the space:

QC(D) = {Φ : D→ D quasiconformal} / ∼

where Φ ∼ Φ′ if and only if Φ|S1 = Φ′|S1 . Universal Teichmüller space is then defined
as

T (D) = QC(D)/Möb(D) ,

where Möb(D) is the subgroup of Möbius transformations of D. Equivalently, T (D)
is the space of quasiconformal maps Φ : D→ D which fix 1, i and −1 up to the same
relation ∼.

Such quasiconformal homeomorphisms of the disc can be obtained in the fol-
lowing way. Given a domain Ω, elements in the unit ball of the (complex-valued)
Banach space L∞(D) are called Beltrami differentials on Ω. Let us denote Belt(D)
this unit ball. Given any µ in Belt(D), let us define µ̂ on C by extending µ on C \D
so that

µ̂(z) = µ(1/z) .
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Now let f : C → C be the quasiconformal map with Beltrami differential µ,
whose existence is provided by Measurable Riemann mapping Theorem. We assume
f fixes the three points 1, i and −1 on ∂D. It is not difficult to check that f and
g(z) = 1/f(1/z) both have µ as Beltrami coefficient (i.e. µ = µf = µg) and satisfy
the same normalization (i.e. fixing 1, i and −1). Hence by the uniqueness part of
Measurable Riemann mapping Theorem, f = g. This implies that f maps ∂D to
itself, and thus f restricts to a homeomorphism of D to itself.

The function f obtained in this way from µ ∈ Belt(D) will be usually denoted
by fµ.

The Teichmüller distance on T (D) is defined as

dT (D)([Φ], [Φ′]) =
1

2
inf logK(Φ−1

1 ◦ Φ′1) ,

where the infimum is taken over all quasiconformal maps Φ1 ∈ [Φ] and Φ′1 ∈ [Φ′].
It can be shown that dT (D) is a well-defined distance on Teichmüller space, and
(T (D), dT (D)) is a complete metric space.

2.3.2 Quasisymmetric homeomorphisms of the circle

We will introduce here another model of Teichmüller space, namely, the space of
quasisymmetric homeomorphism of the circle.

We think here at S1 as the boundary of H2, which is identified to D by means
of the Poincaré disc model. Given a homeomorphism φ : S1 → S1, we define the
cross-ratio norm of φ as

||φ||cr = sup
cr(Q)=−1

|ln |cr(φ(Q))|| ,

where Q = (z1, z2, z3, z4) is any quadruple of points on S1 and we use the following
definition of cross-ratio:

cr(z1, z2, z3, z4) =
(z4 − z1)(z3 − z2)

(z2 − z1)(z3 − z4)
.

According to this definition, a quadruple Q = (z1, z2, z3, z4) is symmetric (i.e. the
hyperbolic geodesics connecting z1 to z3 and z2 to z4 intersect orthogonally) if and
only if cr(Q) = −1.

Definition 2.3.3. An orientation-preserving homeomorphism φ : S1 → S1 is qua-
sisymmetric if and only if ||φ||cr < +∞.

Remark 2.3.4. If we consider the symmetric quadruple Q = (x − t, x, x + t,∞) on
R ∪ {∞} (which can be mapped to S1 by a Möbius transformation) and we assume
φ(∞) =∞, we have

cr(φ(Q)) = −φ(x+ t)− φ(x)

φ(x)− φ(x− t) . (2.2)

Hence, considering a lift φ̃ of φ to the universal cover R, so that φ(eiθ) = eiφ̃(θ),
one readily sees that the condition that φ is quasisymmetric is equivalent to the
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existence of a constant C such that

1

C
<

∣∣∣∣∣ φ̃(θ + h)− φ̃(θ)

φ̃(θ)− φ̃(θ − h)

∣∣∣∣∣ < C , (2.3)

for all θ, h ∈ R. Indeed, the boundedness of the expression in Equation 2.2 is a
condition invariant under smooth changes of coordinates.

The connection between quasiconformal homeomorphisms of D and quasisym-
metric homeomorphisms of the boundary of D is made evident by the following
classical theorem (see [BA56]).

Ahlfors-Beuring Theorem. Every quasiconformal map Φ : D → D extends to a
quasisymmetric homeomorphism of S1. Conversely, an orientation-preserving home-
omorphism φ : S1 → S1 is quasisymmetric if it admits a quasiconformal extension
to D.

Universal Teichmüller space is then equivalently defined as the space of quasisym-
metric homeomorphisms of the circle up to post-composition with Möbius transfor-
mations:

T (D) =
{
φ : S1 → S1 quasisymmetric

}
/Möb(S1) .

Again, T (D) can be identified to the space of quasisymmetric homeomorphisms of
S1 fixing 1, i and −1.

The topology of T (D) coincides with the topology induced by the distance in-
duced on the space of quasisymmetric homeomorphisms by the cross-ratio norm.
Namely, one can define the distance between two quasisymmetric homeomorphisms
φ, φ′ as ||φ−1 ◦ φ′||cr.

As we will see later, T (D) is also endowed with a smooth structure using the
Bers embedding. In the model discussed in this subsection, it turns out that the
differentiability of a continuous path φt of quasisymmetric homeomorphisms implies
that φt(z) is smooth for every z ∈ ∂D and ||φt ◦ ϕ0||cr ≤Mt for some constant M .

Theorem 2.3.5. Let k > 0 and φn : S1 → S1 be a family of orientation-preserving
quasisymmetric homeomorphisms of the circle, with ||φn||cr ≤ k. Then there exists
a subsequence φnk for which one of the following hold:

• The homeomorphisms φnk converge to a quasisymmetric homeomorphism φ :
S1 → S1, with ||φ||cr ≤ k;

• The homeomorphisms φnk converge on the complement of any open neighbor-
hood of a point of S1 to a constant map c : S1 → S1.

2.3.3 Relation with earthquakes and the infinitesimal theory

In this subsection we will discuss the relation of Teichmüller space introduced in
the previous subsection with the theory of earthquakes of H2. Moreover, we intro-
duce the notion of Zygmund field, which is a vector field with the regularity which
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corresponds to an infinitesimal deformation of quasisymmetric homeomorphisms in
Teichmüller space.

First, at this point we need to introduce the precise definition of measured
geodesic lamination. The definition we give here is different with the most usual
one, but is more suitable for our purposes, especially for Chapter 4. The equivalence
with the most common definition is discussed for instance in [MŠ12].

Let G be the set of (unoriented) geodesics of H2. The space G is identified to
((S1 × S1) \ diag)/ ∼ where the equivalence relation is defined by (a, b) ∼ (b, a).
Note that G has the topology of an open Möbius strip. Given a subset B ⊂ H2, we
denote by GB the set of geodesics of H2 which intersect B.

Definition 2.3.6. A geodesic lamination on H2 is a closed subset of G such that its
elements are pairwise disjoint geodesics of H2. A measured geodesic lamination is a
locally finite Borel measure on G such that its support is a geodesic lamination.

Elements of a geodesic lamination are called leaves. Strata of the geodesic lami-
nation are either leaves or connected components of the complement of the geodesic
lamination in H2.

Definition 2.3.7. A surjective map E : H2 → H2 is a left earthquake if it is an
isometry on the strata of a geodesic lamination of H2 and, for every pair of strata S
and S′, the composition

(E|S)−1 ◦ (E|S′)
is a hyperbolic translation whose axis weakly separates S and S′ and such that S′

is translated on the left as seen from S.

In general E is clearly not continuous. A measured geodesic lamination is called
discrete if its support is a discrete set of geodesics. A measured geodesic lamination
µ is bounded if

sup
I
µ(GI) < +∞ ,

where the supremum is taken over all geodesic segments I of lenght at most 1
transverse to the support of the lamination. The Thurston norm of a bounded
measured geodesic lamination is

||µ||Th = sup
I
µ(GI) .

Given an earthquake E, there is a measured geodesic lamination associated to E,
called the earthquake measure. See [Thu86]. The earthquake measure µ determines
E up to post-composition with an hyperbolic isometry (in other words, up to the
choice of the image of one stratum), and up to the ambiguity on the weighted leaves
of the lamination. Hence an earthquake whose earthquake measure is µ will be
denoted by Eµ. An earthquake is bounded if its earthquake measure is bounded.

The following theorem was proved by Thurston [Thu86].

Theorem 2.3.8. Any earthquake E : H2 → H2 extends to an orientation-preserving
homeomorphism of S1 = ∂∞H2. Conversely, every orientation-preserving homeo-
morphism of S1 is induced by a unique earthquake of H2.
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Moreover, in [Thu86] Thurston suggested the following characterization of qua-
sisymmetric homeomorphisms, which was later proved independently by Gardiner
([GHL02]) and Šarić ([Šar06]). See also [Šar08].

Theorem 2.3.9. Given an earthquake Eµ with earthquake measure µ, µ is bounded
if and only if the extension of Eµ to S1 is a quasisymmetric homeomorphism.

We are now going to discuss briefly the tangent space to Teichmüller space. We
will use the notation ϕ̂ for a vector field on S1 and ϕ for the function from S1 to R
which corresponds to ϕ̂ under the standard trivialization of TS1. In the following
definition, we regard tangent vectors to S1 as elements of C. Hence, ϕ̂(z) = izϕ(z)
for every z ∈ ∂D.

Definition 2.3.10. A vector field ϕ̂ on S1 is a Zygmund field if there is a constant
C such that

sup
Q
ϕ̂[Q] ≤ +∞ , (2.4)

where the supremum is taken over all quadruples Q = (a, b, c, d) with cr(Q) = −1
and

ϕ̂[Q] =

∣∣∣∣ ϕ̂(a)− ϕ̂(d)

a− d +
ϕ̂(b)− ϕ̂(c)

b− c − ϕ̂(a)− ϕ̂(b)

a− b − ϕ̂(d)− ϕ̂(c)

d− c

∣∣∣∣ .
We say the associated function ϕ : S1 → R such that ϕ̂(z) = izϕ(z) is in the
Zygmund class.

It has been proved that a function ϕ : S1 → R is in the Zygmund class if and
only if there exists a constant C such that

|ϕ(ei(θ+h)) + ϕ(ei(θ−h))− 2ϕ(eiθ)| < C|h| (2.5)

for all θ, h ∈ R. Equation (2.5) is basically the infinitesimal version of the condition
in Equation (2.3).

Functions in the Zygmund class are α-Hölder for any α ∈ (0, 1), but in general
they are not Lipschitz. Given a Zygmund field ϕ̂, we define the infinitesimal cross-
ratio norm of ϕ̂ by

||ϕ̂||cr = sup
Q
ϕ̂[Q] .

We say that a vector field on ∂D is a quadratic polynomial if it is of the form

ϕ̂(z) = p(z) = αz2 + βz + γ .

Clearly p has to satisfy the condition that ϕ̂(z) = izϕ(z) for some ϕ : S1 → R. By
a direct computation, vector fields on S1 for which ϕ(z) is a quadratic polynomial
of z correspond precisely to the derivative of a family of Möbius transformations of
S1, of the form

z 7→ atz + bt
ctz + dt

,

which is the identity at time t = 0. In other words, these are the traces on ∂H2

of Killing fields of H2. The tangent space of Teichmüller space is isomorphic to



64 Chapter 2. Teichmüller spaces

the quotient of the space of vector fields by the subspace of quadratic polynomials,
which will be denoted by Mob to emphasize that it is the subspace of infinitesimal
Möbius transformations. This fact can be expressed by the following isomorphism
(see [GL00]):

TidT (D) ∼= {Zygmund fields on ∂D}/Mob .

On the other hand, it is easy to show that for a Zygmund field ϕ̂, ||ϕ̂||cr vanishes
if and only if ϕ̂ = p is a quadratic polynomial. Hence ||·||cr defines a norm on the
tangent space at the identity of T (D).

We now state a result first proved by Gardiner-Hu-Lakic, which can be regarded
as the infinitesimal version of Theorem 2.3.9. Given a measured geodesic lamination
µ, the infinitesimal earthquake along µ is a vector field on ∂D obtained as

(Ėµ)(z) =
d

dt

∣∣∣∣
t=0

Etµ(z) .

In particular, when µ is composed by a single geodesic l with weight 1, Ėµ has an
easy expression. Indeed (up to choosing a suitable normalization) Ėµ vanishes on
one stratum of µ, and coincides on the other stratum with the Killing vector field in
sl(2,R) whose exponential is a one-parameter family of hyperbolic isometries fixing
l, which at time 1 translates (on the left) by unit lenght. We will denote this special
case of infinitesimal earthquake by Ėl. See Figure 2.1.

Ėl = 0

l

Figure 2.1: The infinitesimal earthquake along a single geodesic l.

Theorem 2.3.11. Given a bounded measured geodesic lamination µ and a fixed
point x0 which does not lie on any weighted leaf of µ, the integral

Ėµ(z) =

∫
G
Ėl(z)dµ(l) (2.6)

converges for every η ∈ ∂D and defines a Zygmund field ϕ̂ on S1, which corresponds
to the infinitesimal earthquake

Ėµ =
d

dt

∣∣∣∣
t=0

Etµ .

Conversely, for every Zygmund field ϕ̂ on S1 = ∂D, there exists a bounded measured
geodesic lamination µ such that ϕ̂ is the infinitesimal earthquake along µ, namely

ϕ̂ =
d

dt

∣∣∣∣
t=0

Etµ ,
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up to an infinitesimal Möbius transformation.

See [GHL02] or [MŠ12, Appendix] for a proof. Analogously to the case of earth-
quakes, although the infinitesimal earthquake Ėµ is not continuous in H2, its bound-
ary value is a continuous field.

2.3.4 Quasicircles and Bers embedding

We now want to discuss another interpretation of Teichmüller space, as the space of
quasidiscs, and the relation with the Schwartzian derivative and the Bers embedding.

Definition 2.3.12. A quasicircle is a simple closed curve Γ in Ĉ such that Γ = Ψ(S1)
for a quasiconformal map Ψ. Analogously, a quasidisc is a domain Ω in Ĉ such that
Ω = Ψ(D) for a quasiconformal map Ψ : Ĉ→ Ĉ.

Let us remark that in the definition of quasicircle, it would be equivalent to
say that Γ is the image of S1 by a K ′-quasiconformal map of Ĉ (not necessarily
conformal on D∗). However, the maximal dilatation K ′ might be different, with
K ≤ K ′ ≤ 2K. Hence we consider the space of quasidiscs:

QD(D) = {Ψ : Ĉ→ Ĉ : Ψ|D is quasiconformal and Ψ|D∗ is conformal}/ ∼ ,

where the equivalence relation is Ψ ∼ Ψ′ if and only if Ψ|D∗ = Ψ′|D∗ . We will again
consider the quotient of QD(D) by Möbius transformation.

Given a Beltrami differential µ ∈ Belt(D), one can construct a quasiconformal
map on Ĉ, by applying Measurable Riemann mapping Theorem to the Beltrami
differential obtained by extending µ to 0 on D∗ = {z ∈ Ĉ : |z| > 1}. The quasi-
conformal map obtained in this way (fixing the three points 0,1 and ∞) is denoted
by fµ. The key fact to show the equivalence of T (D) with this new model is the
following standard Lemma (see [Gar87, §5.4, Lemma 3]):

Lemma 2.3.13. Given µ, µ′ ∈ Belt(D), the following are equivalent:

• fµ|S1 = fµ
′ |S1;

• fµ|S1 = fµ′ |S1;

• fµ|D∗ = fµ′ |D∗.

Hence it can be shown that T (D) is identified to QD(D)/Möb(Ĉ), or equivalently
to the subset of those [Ψ] ∈ QD(D) which fix 0, 1 and ∞.

We will say that a quasicircle Γ is a K-quasicircle if

K = inf
Γ=Ψ(S1)
Ψ∈QD(D)

K(Ψ) .

This is equivalent to saying that the element [Φ] of the first model of universal
Teichmüller space, namely T (D) = QC(D)/Möb(D), which corresponds to [Ψ] has
Teichmüller distance from the identity dT (D)([Φ], [id]) = (logK)/2.

By using the model of quasidiscs for Teichmüller space, we now introduce another
norm on T (D). Given a quasidisc, which corresponds to a map Ψ : Ĉ → Ĉ which
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is conformal on D∗, the idea is to measure how far Ψ|D∗ is from being a Möbius
transformation. The necessary tool is therefore the Schwarzian derivative, of which
we give a brief account here.

Given a holomorphic function f : Ω → C with f ′ 6= 0 in Ω, the Schwarzian
derivative of f is the holomorphic function

Sf =

(
f ′′

f ′

)′
− 1

2

(
f ′′

f ′

)2

.

It can be easily checked that S1/f = Sf , hence the Schwarzian derivative can be
defined also for meromorphic functions at simple poles, and that the Schwarzian
derivative of a Möbius transformation vanishes. Moreover, the following transfor-
mation rule holds:

Sf◦g = (Sf ◦ g)(g′)2 + Sg . (2.7)

Equation (2.7) will be important for several reasons. A first consequence is that Sf
satisfies the transformation rule of a quadratic differential. Indeed, by choosing A a
Möbius transformation, we see that

Sf◦A = (Sf ◦A)(A′) , (2.8)

since SA = 0. As a byproduct, the relation (2.8) enables to define the Schwarzian
derivative for any locally injective holomorphic function of the Riemann sphere (for
instance choosing a change of coordinates w = 1/z). Analogously, one obtains that

SA◦f = Sf .

The basic fact for this theory is the following.

Proposition 2.3.14. If A is a Möbius transformation of Ĉ, then SA ≡ 0. Con-
versely, if a locally injective holomorphic function f : Ω→ Ĉ has Sf ≡ 0, then f is

the restriction of a Möbius transformation of Ĉ.

Let us now consider the space of holomorphic quadratic differentials on D.
We will consider the following norm, for a holomorphic quadratic differential q =
h(z)dz2:

||q||∞ = sup
z∈D

e−2η(z)|h(z)| ,

where e2η(z)|dz|2 is the Poincaré metric on D. Observe that ||q||∞ behaves like a
function, in the sense that it is invariant by pre-composition with Möbius transfor-
mations of D, which are isometries for the Poincaré metric.

We now define the Bers embedding of universal Teichmüller space. This is the
map βD which associates to [Ψ] ∈ T (D) = QD(D)/Möb(Ĉ) the Schwarzian derivative
SΨ. Let us denote by ||·||Q(D∗) the norm on holomorphic quadratic differentials on
D∗ obtained from the ||·||∞ norm on D, by identifying D with D∗ by an inversion.
Then

βD : T (D)→ Q(D∗)

is an embedding of T (D) in the Banach space (Q(D∗), ||·||Q(D∗)) of bounded holo-
morphic quadratic differentials (i.e. for which ||q||Q(D∗) < +∞). By means of the



Part I. Preliminaries 67

Bers embedding, universal Teichmüller space is endowed with a smooth and complex
structure. Finally, the Bers norm of en element Ψ ∈ T (D) is

||Ψ||B = ||βD[Ψ]||∞ = ||SΨ||Q(D∗) .

The fact that the Bers embedding is locally bi-Lipschitz will be used in the follow-
ing. See for instance [FKM13, Theorem 4.3]. In the statement, we again implicitly
identify the model of universal Teichmüller space by quasiconformal homeomor-
phisms of the disc (denoted by [Φ]) and by quasicircles (denoted by [Ψ]).

Theorem 2.3.15. Let r > 0. There exist constants b1 and b2 = b2(r) such that,
for every [Ψ], [Ψ′] in the ball of radius r for the Teichmüller distance centered at the
origin (i.e. dT ([Ψ], [id]), dT ([Ψ′], [id]) < R),

b1||βD[Ψ]− βD[Ψ]||∞ ≤ dT ([Ψ], [Ψ′]) ≤ b2||βD[Ψ]− βD[Ψ]||∞ .

We conclude this preliminary part by mentioning a theorem by Nehari, see for
instance [Leh87] or [FM07].

Nehari Theorem. The image of the Bers embedding is contained in the ball of
radius 3/2 in Q(D∗), and contains the ball of radius 1/2.

2.4 Teichmüller spaces of closed and punctured surfaces

In this section we will discuss the relation of the theory of quasiconformal mappings
with Teichmüller spaces of Riemann surfaces. We are most interested in the case of
closed surfaces (i.e. compact and without boundary) and punctured surfaces (i.e. a
closed surface to which a finite number of points has been removed).

The original definition of Teichmüller space is the following.

Definition 2.4.1. Given a Riemann surface S, the Teichmüller space of S is:

T (S) = {(S0, f : S → S0) : S0 is a Riemann surface, f is quasiconformal}/ ∼

where the equivalence relation ∼ is, for f : S → S0 and f ′ : S → S′0, f ∼ f ′ if and
only if there exists a conformal map g : S0 → S′0 which is homotopic to f ′ ◦ f−1.

Suppose S is a Riemann surface whose universal cover is conformal to D. Let
us fix holomorphic covering projections π : D → S and π0 : D → S0. Observe that
they are determined up to Möbius transformations of D. It is not difficult to see
that a map g0 from S0 to S0 is homotopic to the identity if and only if it lifts to
a map g̃0 : D → D, which commutes with the projection π0, whose extension to
∂D is the identity. Hence there is a well-defined embedding T (S) ↪→ T (D) which
maps a pair f : S → S0, where f is quasiconformal, to the class of the lift f̃ (which
is still quasiconformal) to the holomorphic universal cover. This shows that for a
Riemann surface S which is either closed with genus g ≥ 2 or punctured, satisfying
the condition that there are at least three punctures if g = 0, Teichmüller space
T (S) is embedded in universal Teichmüller space T (D). However, the embedding
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depends on the choice of the basepoint S, which is a surface endowed with a reference
complex structure.

By the Uniformization Theorem, when S is a closed surface, this definition of
Teichmüller space is equivalent to the definition of Fricke space given in Subsection
2.1.1. In Chapter 6 we will be interested in the analogous of Fricke space for hy-
perbolic metrics with cone singularities. Although the precise definition of metric
with cone singularities will be given at the beginning of that chapter (see Example
6.1.1), we remark here that the space of hyperbolic metrics on s surface S with fixed
cone singularities at n points is equivalent to the Teichmüller space of S with n
punctures. Again n has to be at least 3 if the genus of S is zero; there is also a
condition on the prescribed cone angles due to the Gauss-Bonnet theorem, which
will be explained below. This fact is a consequence of the following Uniformization
Theorem for hyperbolic cone metrics, see [Tro91].

Uniformization Theorem for hyperbolic cone surfaces. Given a closed Rie-
mann surface S, n points x1, . . . , xn on S and positive numbers θ1, . . . , θn such that

2πχ(S) +
n∑
i=1

(θi − 2π) < 0 ,

there exists a unique conformal metric on S of constant curvature −1 having cone
points of angle θi at xi.

2.4.1 The tangent space to Teichmüller space of a surface

We now give an interpretation of the tangent space of T (S), where S is a closed or
punctured surface as in the hypothesis above.

As we have just explained, T (S) can be embedded in universal Teichmüller space,
by considering quasiconformal homeomorphisms of the disc. Recall from Subsection
2.3.1 that such objects are determined by Beltrami differentials on the disc D, up
to some equivalence relation. It turns out from the transformation rule in Equation
(2.1) that a Beltrami differential µ which corresponds to the lift of a quasiconformal
map defined on S provides a section of the bundle K−1 ⊗ K̄ over S, where K is
the canonical bundle of S. This basically means that a Beltrami differential can be
regarded as a (0, 1)-form with value in the holomorphic tangent bundle of S. We
denote by B(S) the space of Beltrami differentials on the Riemann surface S.

Moreover, there is a natural pairing between quadratic differentials and Beltrami
differentials, given by the integration of the (1, 1) form obtained by contraction

〈q, µ〉 =

∫
S
q • µ , (2.9)

where in complex chart q • µ := q(z)µ(z)dz ∧ dz̄, if µ = µ(z)dz̄/dz and q = q(z)dz2.

We say that a Beltrami differential µ is trivial if 〈q, µ〉 = 0 for any holomorphic
quadratic differential. We will denote by B(S)⊥ the subspace of trivial Beltrami
differentials.



Part I. Preliminaries 69

The tangent space to the Teichmüller space of S at the reference complex struc-
ture is naturally identified with B(S)/B(S)⊥ as a complex vector space. See [Ahl06]
for more details. We want to remark here that an analogous construction holds for
a punctured surface, where one defines a Beltrami differential µ to be trivial when
〈q, µ〉 = 0 for every holomorphic quadratic differential with at most simple poles at
the punctures of S. This is indeed the condition that ensures that the integral in
Equation (2.9) is finite.

2.4.2 The Weil-Petersson form

We conclude the section by observing that the characterization of the tangent space
of Teichmüller space given in Subsection 2.4.1 and the expression in Equation (2.9)
enable to identity the cotangent bundle of Teichmüller space of S (possibly with
punctures) with the space of holomorphic quadratic differentials on S (with at most
simple poles at the punctures). By means of this technology, the Weil-Petersson
symplectic form gWP is defined by

gWP (q, q′) =

∫
S

fḡ

e2η
dx ∧ dy ,

where one observes that in conformal coordinates, if q(z) = f(z)dz2, q′(z) = g(z)dz2

and h(z) = e2η|dz|2, the 2-form
fḡ

e2η
dx ∧ dy

is independent of the coordinates. Again, in the case of punctured surfaces, the
condition that q and q′ have at most simple poles at the punctures ensures that the
integral is well-defined.



Chapter 3

Partial differential equations
related to the curvature of
surfaces

The purpose of this chapter is to give a brief overview of theorems on two types of
partial differential equations, which are related to the curvature of surfaces. Heuris-
tically, the curvature of a surface in a three-dimensional manifold is encoded in the
Hessian of some function. The simplest example of this fact is obtained from the
parametrizes a surface in R3 which is a graph over R2, or analogously a spacelike
graph in R2,1.

In this thesis, we are mostly concerned with the properties of the mean curvature
and the Gaussian curvature of surfaces. The former is the trace of the shape opera-
tor, hence in general it will be related to the trace of the Hessian of some function,
i.e. the Laplacian. The latter is in general more complicated, since it deals with the
determinant of the Hessian, which is a non-linear expression.

3.1 Linear elliptic PDEs

The first case we consider is the case of linear elliptic partial differential equations,
which in general are of the form

L(u) = f(x) (3.1)

for x ∈ Ω and L is a linear operator, where Ω ⊂ Rn. We will be interested in the
case n = 2. The linear operator is of the form

L(u) =
∑
i,j

aij(x)∂iju(x) +
∑
i

bi(x)∂iu(x) + (x)u(x) , (3.2)

where aij , bi, c : Ω→ R are such that there exists a constant λ > 0 for which∑
ij

aij(x)ξiξj ≥ λ|ξi||ξj | (3.3)
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for any ξi, ξj .
We will present a collection of results, without any pretension of completeness.

We first focus on the most basic example of this equation, in which the linear op-
erator L is the Euclidean Laplace operator ∆0, and collect some interior estimates,
which are called Schauder estimates, which are very important for the study of the
regularity of solutions. The proofs can be found in [GT83].

Theorem 3.1.1. Let Ω ⊂ Rn and let u : Ω → R be any solution, C2 up to the
boundary of Ω, of the equation

∆0u = f

for f ∈ L∞(Ω). Let α ∈ [0, 1). For any compact subdomain Ω′ compactly contained
in Ω, there exists a constant C only depending on Ω and Ω′ such that

||u||C1,α(Ω′) ≤ C
(
||u||C0(Ω) + ||f ||L∞(Ω)

)
.

Theorem 3.1.2. Let Ω ⊂ Rn and let u : Ω→ R be any C2,α bounded solution on Ω
of the equation

∆0u = f

for f ∈ Cα(Ω). Let α ∈ [0, 1). For any compact subdomain Ω′ compactly contained
in Ω, there exists a constant C only depending on Ω and Ω′ such that

||u||C2,α(Ω′) ≤ C
(
||u||C0(Ω) + ||f ||C0,α(Ω)

)
.

Theorem 3.1.1 can be generalized for general linear operators L, thus obtaining a
uniform bound which does not depend on L, provided the operators L are uniformly
strictly elliptic and have uniformly bounded coefficients.

Theorem 3.1.3. Let Ω ⊂ Rn and let u : Ω→ R be any C2,α bounded solution on Ω
of the equation

L(u) = f

where L is a linear operator of the form (3.2) and there exist constants λ,Λ > 0
such that (3.3) holds, and

||aij ||C0,α(Ω), ||bi||C0,α(Ω), ||c||C0,α(Ω) ≤ Λ .

Let α ∈ [0, 1). For any compact subdomain Ω′ compactly contained in Ω, there exists
a constant C only depending on Ω,Ω′,λ and Λ such that

||u||C2,α(Ω′) ≤ C
(
||u||C0(Ω) + ||f ||C0,α(Ω)

)
.

3.2 Monge-Ampère equations and the definition of gen-
eralized solution

We now move to Monge-Ampère equations, which will be important especially in
Chapter 4 for the formulation of Minkowski problem. As a reference, see [Gut01],
[TW08].
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In general, a Monge-Ampère equation is a partial differential equation of the form

detD2u(x) = f(x, u,Du) ,

where u is a function defined on a domain Ω ⊂ Rn, andD2u(x) denotes the Euclidean
Hessian of u at the point x. We are mostly interested in the case n = 2.

Given a convex function u : Ω→ R, for Ω a convex domain in R2, we define the
normal mapping or subdifferential of u as the set-valued function Nu whose value at
a point w̄ ∈ Ω is:

Nu(w̄) = {Df : f affine; gr(f) is a support plane for gr(u), (w̄, u(w̄)) ∈ gr(f)} .

Here Df denotes the Euclidean gradient of f (which is independent of the point
in Rn is f is affine). In general Nu(w̄) is a convex set; if u is differentiable at w̄,
then Nu(w̄) = {Du(w̄)}. We define the Monge-Ampère measure on the collection of
Borel subsets ω of R2 as:

MAu(ω) = L(Nu(ω))

where L denote the Lebesgue measure on Rn. Roughly speaking, when u is differen-
tiable, Nu(ω) is the Lebesgue measure of the image of ω by the gradient mapping.

It can be proved that, when u is C2, the Monge-Ampère measure corresponds
precisely to integration of the function obtained by the determinant of the Hessian
of u.

Lemma 3.2.1 ([Gut01, Theorem 1.1.5]). If u is a C2 convex function, then

MAu(ω) = L(Du(ω)) =

∫
ω
(detD2u)dL . (3.4)

Indeed, it can be shown that, when restricted to the subset

Ω0 = {x ∈ Ω : detD2u(x) > 0} ,

u is a diffeomorphism onto its image. Then by a simple change of variables, one
obtains

MAu(ω ∩ S0) =

∫
ω∩S0

(detD2u)dL .

But, by Sard’s Lemma, the image under the gradient mapping of the subset S0 has
zero measure. Hence the equality in Equation (3.4) holds. We now state a more
precise characterization of the Monge-Ampère measure.

Lemma 3.2.2 ([TW08, Lemma 2.3]). Given a convex function u : Ω → R, the
regular part of the Lebesgue decomposition of MAu(ω) is

∫
ω(∂2u)dL, where we set

∂2u(w̄) =

{
detD2u(w̄) if u is twice-differentiable at w̄

0 otherwise
.

Recall that, by Alexandrov Theorem, a convex function u on Ω is twice-differentiable
almost everywhere. We have now given sufficient motivation to state the definition
of generalized solution to Monge-Ampère equations.
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Definition 3.2.3. Given a nonnegative measure ν on Ω, we say a convex function
u : Ω→ R is a generalized solution to the Monge-Ampère equation

detD2u = ν (3.5)

if MAu(ω) = ν(ω) for all Borel subsets ω.

In particular, given an integrable function f : Ω→ R, u is a generalized solution
to the equation detD2u = f if and only if, for all ω,

MAu(ω) =

∫
ω
fdL .

3.3 Some known results and peculiarities of dimension
2

We collect here, without proofs, some facts which will be used in the following.
Unless explicitly stated, the results hold in Rn, although we are only interested in
n = 2. The first result shows the continuity of the Monge-Ampère measure with
respect to uniform convergence on compact sets on the space of convex functions,
and weak convergence of measures.

Lemma 3.3.1 ([Gut01, Lemma 1.2.3], [TW08, Lemma 2.2]). Given a sequence of
convex functions un which converges uniformly on compact sets to u, the Monge-
Ampère measure MAun converges weakly to MAu. Namely, for every continuous
function f with compact support in Ω,

lim
n→∞

∫
Ω
fdMAun =

∫
Ω
fdMAu .

We will be interested in solutions of Monge-Ampère equations with some bound-
ary condition on ∂Ω. We state a very important principle to compare functions
solving different Monge-Ampère generalized equations with different boundary data.

Theorem 3.3.2 (Comparison principle, [TW08, Gut01]). Given a bounded convex
domain Ω and two convex functions u, v defined on Ω, if MAu(ω) ≤ MAv(ω) for
every Borel subset ω, then

min
Ω

(u− v) = min
∂Ω

(u− v) .

A direct Corollary, obtained by applying Theorem 3.3.2 twice (reversing the roles
of u and v), is the following result about uniqueness:

Corollary 3.3.3. Given two generalized solutions u1, u2 ∈ C0(Ω) to the Monge-
Ampère equation detD2(ui) = ν on a bounded convex domain Ω, if u1 ≡ u2 on ∂Ω,
then u1 ≡ u2 on Ω.

The following Theorem gives an a priori bound on the second derivative of any
solution of Monge-Ampère equations with constant boundary value.
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Theorem 3.3.4 ([CY77, Lemma 3], [Pog71]). Given a bounded convex domain Ω,
let u be a C4 solution to detD2u = f defined on Ω which is constant on ∂Ω. There
is an estimate on the second derivatives of u at x ∈ Ω which depends only on

max
Ω

|u|, ||Du||2, ||D log(f)||2,
∑
i,j

∂ij(log(f))2


and on the distance of x to ∂Ω.

The following property will be used repeatedly in the paper, and is a peculiar
property of dimension n = 2.

Theorem 3.3.5 (Aleksandrov-Heinz). A generalized solution to detD2u = f on a
domain Ω ⊂ R2 with f > 0 must be strictly convex.

Theorem 3.3.4 and Theorem 3.3.5 can be used to prove the following property
of regularity of strictly convex solutions, which again holds in dimension n = 2.

Theorem 3.3.6 ([TW08, Theorem 3.1]). Let u be a strictly convex generalized
solution to detD2u = f on a bounded convex domain Ω with smooth boundary.
If f > 0 and f is smooth, then u is smooth.

We conclude by giving a characterization of generalized solutions of the equation

detD2u = 0 .

Theorem 3.3.7 ([Gut01, Theorem 1.5.2]). Given any bounded convex domain Ω ⊂
R2 and a continuous function ϕ : ∂Ω → R, the unique convex generalized solution
of the equation

detD2u = 0

with boundary condition
u|∂D = ϕ

is obtained as the convex envelope of ϕ, namely

u(z) = sup{f(z) : f is an affine function on Ω, f |∂Ω ≤ ϕ} .

This is in some sense the opposite situation from the Theorem 3.3.6. Indeed,
in dimension 2, Theorem 3.3.5 and Theorem 3.3.6 ensure that a solution of the
equation detD2u = f with f > 0 is automatically smooth and strictly convex. On
the other hand, the prototype of a solution of detD2u = 0, in light of Theorem
3.3.7, is a piecewise affine function. Namely, it is not strictly convex, and even not
differentiable at the bending locus.
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Chapter 4

Convex surfaces in Minkowski
space

The aim of this chapter is to study convex surfaces in Minkowski space which are
spacelike entire graphs, in relation with the curvature function. We say that a
convex surface in R2,1 is a spacelike entire graph if S = {(p, f(p)) | p ∈ R2}, where
f : R2 → R is a C1 function on the horizontal plane such that ||Df(p)|| < 1 for all
p ∈ R2.

The first result of the chapter concerns the Minkowski problem in Minkowski
2+1 space. Given a smooth spacelike strictly convex surface S in R2,1, the curvature
function is defined as ψ : G(S) → R, ψ(x) = −KS(G−1(x)), where G : S → H2 is
the Gauss map and KS is the scalar intrinsic curvature on S. Minkowski problem
consists in finding a convex surface in Minkowski space whose curvature function is
a prescribed positive function ψ, which is a Cauchy surface in a prescribed domain
of dependence. Using the support function technology, the problem turns out to be
equivalent to solving the equation

detD2u(z) =
1

ψ(z)
(1− |z|2)−2 . (MA)

with the boundary condition u|∂D = ϕ. Li proved in [Li95] the existence and unique-
ness of solutions of the Minkowski problem (also in dimension higher than 2 + 1) for
a C∞ boundary function ϕ. This was later improved by [GJS06] for ϕ Lipschitz. On
the other hand, in [BBZ11] the Minkowski problem was solved for maximal globally
hyperbolic flat spacetimes (which have been discussed in Subsection 1.1.4).

In this chapter we will also deal with the Minkowski problem for Cauchy surfaces
in domains of dependence with weaker assumptions on the regularity of ϕ. Namely,
we consider domains of dependence contained in the future cone over a point. The
following will be proved:

Theorem 4.A. Let ϕ : ∂D → R be a lower semicontinuous and bounded function
and ψ : D → [a, b] for some 0 < a < b < +∞. Then there exists a unique spacelike
graph S in R2,1 whose support function u extends ϕ and whose curvature function
is ψ.
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The proof of Theorem 4.A is given in Section 4.3, and relies on several prelimi-
nary constructions (introduced in Section 4.1) and on the existence of some explicit
constant curvature surfaces to be used as barriers. The latter are presented in Sec-
tion 4.2, which can be also read in order to have a family of explicit examples of the
previous theory.

The second goal of the chapter is to determine the exact regularity class of the
extension on ∂D of the support functions u : D → R corresponding to surfaces
with principal curvatures bounded from below. Recall that there is a direct relation
between the support function at infinity of a convex surface in R2,1 and the geometry
of the surface. Indeed, a lower semicontinuous function ϕ : ∂D → R uniquely
determines a domain of dependence D (this notion has been heuristically introduced
in Subsection 1.1.4 and will be discussed in detail in Subsection 4.1 below). In this
context, surfaces with support function at infinity equal to ϕ are precisely Cauchy
surfaces for D.

Theorem 4.B. Let ϕ : ∂D→ R be a continuous function. There exists a spacelike
entire graph in R2,1 whose principal curvatures are bounded from below by a positive
constant and whose support function at infinity is ϕ if and only if ϕ is in the Zygmund
class.

This is an improvement - in dimension (2+1) - of results obtained in [Li95], where
it is showed that the continuity of the support function ϕ = u|∂D is a necessary
condition for the existence of a Cauchy surface with principal curvatures bounded
from below by a positive constant. On the other hand, the existence of such a
Cauchy surface is guaranteed under the assumption that ϕ is smooth.

We will then restrict the study to the case of constant curvature surfaces. Namely,
we will prove the following:

Theorem 4.C. Let ϕ : ∂D → R be a function in the Zygmund class. For every
K < 0 there is a unique spacelike entire graph S in R2,1 of constant curvature K
and with bounded principal curvatures whose corresponding function u extends ϕ.

This makes also more precise the statement of Theorem 4.B. Indeed we prove
that if ϕ is in the Zygmund class, then the constant curvature surfaces in the do-
main of dependence described by ϕ (whose existence is guaranteed by Theorem 4.A)
have principal curvatures bounded from below. Finally, we show that the constant
curvature surfaces always foliate the domain of dependence:

Theorem 4.D. If D is a domain of dependence contained in the future cone of a
point, then D is foliated by surfaces of constant curvature K ∈ (−∞, 0).

Theorem 4.D is proved in Section 4.4. Theorem 4.B and Theorem 4.C are dis-
cussed in Section 4.5.

4.1 Constructions for convex surfaces in Minkowski space

Recall from Subsection 1.1.3 that we defined the support function U : I+(0)→ R of
a future-convex domain D in R2,1 as

U(x) = sup
p∈D
〈p, x〉2,1 .



78 Chapter 4. Convex surfaces in Minkowski space

We will mostly consider the restriction of U to the Klein projective model of
hyperbolic space, which is the disc

D = {(z, 1) ∈ R2,1 : |z| < 1} .
This restriction will be denoted by lower case letters, u = U |D, and uniquely

determines the 1-homogeneous extension U . We will generally write u(z) instead of
u(z, 1). Analogously, also the restriction of U to the hyperboloid, denoted ū = U |H2 ,
can be uniquely extended to a 1-homogeneous function, and will be often used in
the following.

Remark 4.1.1. It is easy to relate the restrictions u and ū of the support function to
D and H2 respectively. Let us consider the radial projection π : H2 → D defined by

π(x1, x2, x3) = (x1/x3, x2/x3, 1) .

Its inverse is given by

π−1(z, 1) =

(
z√

1− |z|2
,

1√
1− |z|2

)
.

Since U is 1-homogeneous, we obtain

u(z) =
√

1− |z|2 ū(π−1(z)) .

A 1-homogeneous convex function is called sublinear. We will now discuss in
more detail some important properties of support functions.

Lemma 4.1.2 ([FV13, Lemma 2.21]). Given a future-convex domain D in R2,1, the
support function U : I+(0)→ R is sublinear and lower semicontinuous. Conversely,
given a sublinear function Û on I+(0) (or equivalently every convex function u on
D), consider the lower semicontinuous extension U : I+(0)→ R, which is defined on
∂I+(0) as

U(x) = lim inf
y→x

Û(y) .

Then U is the support function of a future-convex domain, defined by

D = {p ∈ R2,1 : 〈p, x〉 ≤ U(x) for every x ∈ I+(0)} .
The support function of a future-convex domain D is finite on the image of the

Gauss map of ∂sD, since for every point x in G(∂sD) there exists a support plane
with normal vector x. Observe that ū(x) = ∞ if x ∈ H2 \ G(∂sD). We will call
support function at infinity the restriction of U to ∂D = {(z, 1) : |z| = 1}. Given
z ∈ ∂D, u(z) < +∞ if and only if there exists a lightlike support plane P orthogonal
to the lightlike vector (z, 1). In this case −u(z) is the intercept of P on the x3-axis.

Some explicit examples have been considered in Example 1.1.10. Some less ele-
mentary examples will be descibed in Section 4.2. See also Remark 4.3.10.

In this chapter, we are mostly concerned with domains of dependence for which
the support function at infinity is finite, and is actually bounded. Geometrically,
this means that the domain is contained in the future cone over some point.

The following lemma will be useful to compute the value of support functions at
infinity.
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Lemma 4.1.3 ([Roc70, Theorem 7.4,7.5]). Let U : I+(0) → R be a sublinear and
lower semincontinuous function. Let c : [0, 1] → I+(0) be a spacelike line such that
x = c(1) ∈ ∂I+(0). Then U(x) = limt→1 U(c(t)).

We define the hyperbolic Hessian of a function ū : H2 → R as the (1, 1)-tensor

Hessū(v) = ∇H2

v grad ū ,

where ∇H2
is the Levi-Civita connection of H2. We denote by D2u the Euclidean

Hessian of a function u defined on an open subset of R2. In the following, the identity
operator is denoted by E.

Some of the geometric invariants of ∂sD can be directly recovered from the
support function. This is the content of next lemma.

Lemma 4.1.4 ([FV13, §2.10, 2.13]). Let D be a future-convex domain in R2,1 and
let G : ∂sD → H2 be its Gauss map.

• If the support function is C1, then the intersection of ∂sD with any spacelike
support plane consists of exactly one point. The inverse of the Gauss map G
is well defined and is related to the support function of D by the formula

G−1(x) = grad ū(x)− ū(x)x , (4.1)

where ū : H2 → R is the support function restricted to H2.

• If the support function is C2 and the operator Hessū − ūI is positive definite,
then ∂sD is a convex C2-surface. The inverse of its shape operator and its
curvature are

B−1 = Hess ū− ū E , (4.2)

− 1

K(G−1(x))
= det(Hess ū− ū E)(x) = (1− |z|2)2 detD2u(z) , (4.3)

where z = π(x) is the point of D obtained from x by radial projection.

We will often abuse notation and write G−1(z) in place of G−1(π−1(z)) for z ∈ D.

4.1.1 The boundary value of the support function of an entire graph

In this subsection we will give another geometric interpretation of the support func-
tion at infinity of a future-convex entire graph in Minkowski space. This interpreta-
tion is much in the spirit of the theory of constant mean curvature surfaces in R2,1,
and is taken as a definition in several articles, for instance [Tre82] and [CT90]. Hence
the following proposition will clarify that the asymptotic conditions defined for in-
stance in [Tre82, CT90] coincide with those considered here and in [GJS06, Li95].

Proposition 4.1.5. Let S be the boundary of a future-convex domain in R2,1. De-
note by f : R2 → R the function defining S as a graph and u : D → R the support
function. Then

lim
r→∞

(f(rz)− r) = −u(z)

for every unitary vector z ∈ ∂D.
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Proof. First consider the case where D = I+(p) = graph(fp) where p = (w0, a0) and
fp(z) = |z − w0| + a0. In this case the support function is up(z) = 〈z, w0〉 − a0. A
simple computation shows

fp(rz)− r =
√
|w0|2 − 2r〈z, w0〉+ r2 − r + a0

=
−2r〈z, w0〉+ |w0|2√

|w0|2 − 2r〈z, w0〉+ r2 + r
+ a0 −→ −〈z, w0〉+ a0 = −up(z) .

Now consider the general case. Imposing that the point (rz, f(rz)) lies in the
future of the support plane {q ∈ R2,1 | 〈q, (z, 1)〉 = u(z)} we get f(rz)− r ≥ −u(z).
So it is sufficient to prove that lim sup(f(rz)− r) ≤ −u(z).

Fix ε > 0 and consider the lightlike plane P = {q ∈ R2,1 | 〈q, (z, 1)〉 = u(z)− ε}.
This plane must intersect the future of S. Let p = (w0, a0) be a point in this
intersection. The cone I+(p) is contained in the future of S, hence fp ≥ f , where fp
is the graph function for I+(p) as above.

In particular, using the computation above for I+(p),

lim sup
r→+∞

(f(rz)− r) ≤ lim
r→+∞

(fp(rz)− r) = −〈z, w0〉+ a0 .

Imposing that p lies on the plane P ,

−〈z, w0〉+ a0 = −〈(z, 1), p〉 = −u(z) + ε .

Therefore, for any ε > 0,

lim sup
r→+∞

(f(rz)− r) ≤ −u(z) + ε

and this concludes our claim, since ε is arbitrary.

4.1.2 Homogeneous functions and vector fields on S1

We have defined support functions as 1-homogeneous functions. However, Theorem
4.B and Theorem 4.C express a geometric property of convex surfaces in R2,1 in
terms of Zygmund regularity, which is a well-defined regularity for vector fields on
S1. The purpose of this section is to fill this gap, by showing that a vector field on
S1 defines a 1-homogeneous function on the boundary of the null-cone in a natural
way.

Let us consider the boundary at infinity ∂∞H2 of H2, as P(N) ∼= S1, where N =
∂I+(0) \ {0}. In particular, we will use vector fields on S1 to define 1-homogeneous
functions on ∂I+(0). We want to show that this is well-defined, i.e. does not depend
on the choice of a section S1 → N .

Lemma 4.1.6. There is a 1-to-1 correspondence between vector fields X on S1 and
1-homogeneous functions H : N → R satisfying the following property: if γ : S1 → N
is any C1 spacelike section of the projection N → S1 and v is the unit tangent vector
field to γ, then

γ∗(X(ξ)) = H(γ(ξ))v(γ(ξ)) . (4.4)
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Proof. Consider coordinates (x1, x2, x3) on R2,1 and z, θ on N given by

φ : (r, θ)→ (r cos θ, r sin θ, r) ∈ N.

In these coordinates, the restriction of the Minkowski metric to N takes the (degen-
erate) form

g = r2dθ2 (4.5)

We take γ1 to be the section γ1(θ) = (1, θ). Namely, the image of γ1 is N ∩{x3 = 1}.
Any other section γ2 is of the form γ2(θ) = (r(θ), θ) and is obtained as γ2 = f ◦ γ1

by a radial map f(1, θ) = (r(θ), θ). Let X be a vector field on S1. We define a
1-homogeneous function H such that (γ1)∗(X(θ)) = H(1, θ)v1 and compute

(γ2)∗(X(θ)) = f∗(H(1, θ)v1) = H(1, θ)f∗(v1).

Now f∗(v1) is a tangent vector to γ2(S1) whose norm (recall the form (4.5) of the
metric) is r(θ). Therefore

(γ2)∗(X(θ)) = H(1, θ)r(θ)v2 = H(r(θ), θ)v2

where v2 is the unit tangent vector. Conversely, given any 1-homogeneous function,
(4.4) defines a vector field on S1 which does not depend on the choice of γ.

In light of the theory of infinitesimal earthquakes explained in Subsection 2.3.3,
we give an explicit example of this relation between vector fields on S1 and 1-
homogeneous functions on N , the boundary of the null-cone. This is obtained
by computing the vector field which is an infinitesimal earthquake along a single
geodesic.

Example 4.1.7. Let µ be the measured geodesic lamination whose support consists
of a single geodesic l, with weight 1. Then, once a point x0 ∈ H2 \ l is fixed, it is
easy to describe the earthquake along µ:

El([η]) =

{
[η] if x0 and [η] are in the same component of (H2 ∪ ∂∞H2) \ l̄
[Al(1)(η)] otherwise

(4.6)
for any η ∈ N , where Al(t) ∈ SO(2, 1) induces the hyperbolic isometry of H2 which
translates on the left (as seen from x0) along the geodesic l by lenght t. Hence the
1-homogeneous function H associated to the Zygmund field

Ėl =
d

dt

∣∣∣∣
t=0

Etl

(as in Lemma 4.1.6) has the following expression, for any section γ : S1 → N :

H(γ(ξ)) =


0 if x0 and [γ(ξ)] are in the same

component of (H2 ∪ ∂∞H2) \ l̄
〈Ȧl(γ(ξ)), v(γ(ξ))〉 otherwise

(4.7)
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where v is any unit spacelike tangent vector field to N , in the counterclockwise
orientation. Under the standard identification of S1 with ∂D, we obtain, for η ∈ ∂D

Ėl(η) = 〈Ȧl(η), v〉v .

where v is now the unit tangent vector to ∂D.

The above explicit expression will be useful in the proof of Proposition 4.5.2,
given in Subsection 4.5.1.

4.1.3 Cauchy surfaces and domains of dependence

Given a future-convex domain D in R2,1, a Cauchy surface for D is a spacelike
embedded surface S ⊆ D such that every differentiable inextensible causal path in
D (namely, such that its tangent vector is either timelike or lightlike at every point)
intersects S in exactly one point. Given an embedded surface S in R2,1, the maximal
future-convex domain D(S) such that S is a Cauchy surface for D(S) is the domain
of dependence of S. It turns out that D(S) is obtained as intersection of future
half-spaces bounded by lightlike planes which do not disconnect S.

It is easy to prove the following lemma.

Lemma 4.1.8. Let h : D→ R be the support function of a future-convex domain D,
with h|∂D < ∞. Let S ⊆ D be a convex embedded surface and let u : D → R be the
support function of S. Then S is a Cauchy surface for D if and only if h|∂D = u|∂D.

Domains of dependence can be characterized in terms of the support function,
see [BF14, Proposition 2.21].

Lemma 4.1.9. Let D be a domain of dependence in R2,1, whose lightlike support
planes are determined by the function ϕ : ∂D→ R∪{∞}. Then the support function
h : D→ R of D is the convex envelope h = co (ϕ), namely:

h(z) = sup{f(z) : f is an affine function on D, f |∂D ≤ ϕ} .

An example of this phenomenon can be obtained by looking at the leaves of the
cosmological time. Observe that a timelike distance (compare the similar definitions
given in Section 1.3) can be defined for two points x1 and x2 ∈ I+(x) in R2,1, by
means of the definition

d(x1, x2) = sup
γ

∫
γ

√
|〈γ′(t), γ′(t)〉|dt ,

where the supremum is taken over all causal paths γ from x1 to x2. This is not a
distance though, because it satisfies a reverse triangle inequality; however, d(x1, x2)
is achieved along the geodesic from x1 to x2. Given an embedded spacelike surface
S, consider the equidistant surface

Sd = {x ∈ R2,1 : x ∈ I+(S), d(x, S) = d} ,

where of course d(x, S) = supx′∈S d(x, x′). If the support function of S restricted to
H2 is ū, then Sd has support function (see for instance [FV13])

ūd(x) = ū(x)− d .
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This can be applied also for ∂sD, instead of an embedded surface. In this way,
we obtain the level sets of the cosmological time, namely the function T : D → R
defined by

T (x) = sup
γ

∫
γ

√
|〈γ′(t), γ′(t)〉|dt ,

where the supremum is taken over all causal paths γ in D with future endpoint x.
If h̄ : H2 → R is the support function of D, the level sets Ld = {T = d} of the
cosmological time have support function on the disc h̄d(x) = h̄(x) − d. It can be
easily seen that all leaves of the cosmological time of D are Cauchy surfaces for D
(although only C1,1). Indeed, the support functions hd : D→ R can be computed:

hd(z) = h(z)− d
√

1− |z|2 .

Therefore they all agree with h on ∂D.

4.1.4 Dual lamination

In his groundbreaking work, Mess associated a domain of dependence D to every
measured geodesic lamination µ, in such a way that the support function h : D→ R
of D is linear on every stratum of µ. Although we do not enter into details here,
the measure of µ determines the bending of h. (Recall h is the convex envelope of
some lower semicontinuous function ϕ : ∂D→ R.) The domain D is determined up
to translation in R2,1, and µ is called dual lamination of D.

Given y0 ∈ R2,1 and x0 ∈ H2 , we will denote by D(µ, x0, y0) the domain of
dependence having µ as dual laminations and P = y0 + x⊥0 as a support plane
tangent to the boundary at y0.

We sketch here the explicit construction of D(µ, x0, y0). In the following, given
the oriented geodesic interval [x0, x] in H2, σ : G[x0, x]→ R2,1 is the function which
assigns to a geodesic l (intersecting [x0, x]) the corresponding point in dS2, namely,
the spacelike unit vector in R2,1 orthogonal to l for the Minkowski product, pointing
outward with respect to the direction from x0 to x. Then

y(x) = y0 +

∫
G[x0,x]

σdµ (4.8)

is a point of the regular boundary of D(µ, x0, y0) such that y(x) + x⊥ is a support
plane for D(µ, x0, y0), for every x ∈ H2 such that the expression in Equation (4.8)
is integrable. The image of the Gauss map of the regular boundary of D(µ, x0, y0)
is composed precisely of those x ∈ H2 which satifsy this integrability condition.

In the following proposition, we give an explicit expression for the support func-
tion of the domain of dependence D(µ, x0, y0) we constructed. By an abuse of
notation, given two points x0, x ∈ I+(0), we will denote by [x0, x] the geodesic in-
terval of H2 obtained by projecting to the hyperboloid H2 ⊂ R2,1 the line segment
from x0 to x.

Proposition 4.1.10. Suppose D is a domain of dependence in R2,1 with dual lam-
ination µ and such that the plane P = y0 + (x0)⊥ is a support plane for D, for
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y0 ∈ ∂sD and x0 ∈ H2. Then the support function H : I+(0)→ R of D is:

H(x) = 〈x, y0〉+

∫
G[x0,x]

〈x,σ〉dµ . (4.9)

Indeed, the expression in Equation (4.9) holds for x ∈ H2 by Equation (4.8).
Since the expression is 1-homogeneous, it is clear that it holds for every x ∈ I+(0).
Using Lemma 4.1.3, the formula holds also for the lower semicontinuous extension
to ∂I+(0).

It is easily seen from Equation (4.9) that the support function h : D→ R (which
is the restriction of H to D) is affine on each stratum of µ. In [Mes07] it was proved
that every domain of dependence can be obtained by the above construction. Hence
a dual lamination is uniquely associated to every domain of dependence.

The work of Mess ([Mes07]) mostly dealt with domains of dependence which are
invariant under a discrete group of isometries Γ < Isom(R2,1), whose linear part is
a cocompact Fuchsian group. We resume here some results.

Proposition 4.1.11. Let D be a domain of dependence in R2,1 with dual lamination
µ. The measured geodesic lamination µ is invariant under a cocompact Fuchsian
group G if and only if D is invariant under a discrete group Γ < Isom(R2,1) such
that the projection of Γ to SO(2, 1) is an isomorphism onto G. In this case, assuming
P = y0 + (x0)⊥ is a support plane for D, for y0 ∈ ∂sD and x0 ∈ H2, the translation
part of an element g ∈ G is:

tg =

∫
G[x0,g(x0)]

σdµ .

4.1.5 Relation to Monge-Ampère equations

Given a smooth strictly convex spacelike surface S in R2,1, let U : I+(0)→ R be the
support function of S and let u be its restriction to D = I+(0) ∩

{
x3 = 1

}
. Given a

point z ∈ D, let x = π−1(z) ∈ H2. The curvature of S is given by (see Lemma 4.1.4)

− 1

K(G−1(x))
= (1− |z|2)2 detD2u(z) ,

where G : S → H2 is the Gauss map, which is a diffeomorphism. For K-surfaces,
namely surfaces with constant curvature equal to K ∈ (−∞, 0), the support function
satisfies the Monge-Ampère equation

detD2u(z) =
1

|K|(1− |z|
2)−2 . (4.10)

More generally, the Minkowski problem consists of finding a convex surface with
prescribed curvature function on the image of the Gauss map. Given a smooth
function ψ : D→ R, the support function of a surface with curvature K(G−1(z)) =
−ψ(z) solves the Monge-Ampère equation

detD2u(z) =
1

ψ(z)
(1− |z|2)−2 . (MA)
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It will be useful for us to obtain an a priori estimate of the C2-norm of support
functions of surfaces of constant curvature in Minkowski space in terms of the C0-
norm. Although this result is well-known we sketch a proof here. The main tools
have been introduced in Chapter 3, especially Theorem 3.3.4 and Theorem 3.3.5.

Lemma 4.1.12. Let un : D → R be a sequence of smooth solutions of the Monge-
Ampère equation

detD2(un) =
1

|K|(1− |z|
2)−2

uniformly bounded on D. Then ||un||C2(Ω) is uniformly bounded on any compact
domain Ω contained in D.

Proof. Assume that the conclusion is false and that there is a subsequence (which
we still denote by un by a slight abuse of notation) for which the C2-norm goes to
infinity. Hence it suffices to show that there exists a further subsequence unk for
which ||unk ||C2(Ω) is bounded. Take Ω′ such that Ω ⊂⊂ Ω′ ⊂⊂ D. Using the uniform
bound on ||un||C0(D) and the convexity, one can derive that the C1-norms ||un||C1(Ω

′
)

are uniformly bounded by a constant C. By Ascoli-Arzelà theorem, we can extract
a subsequence which converges uniformly on compact subsets of Ω′. Let u∞ be the
limit function. By Lemma 3.3.1, u∞ is a generalized solution to

detD2(u∞) =
1

|K|(1− |z|
2)−2

and u∞ is strictly convex, by Theorem 3.3.5.
For any z ∈ Ω and n ≥ 0 we can fix an affine function fn,z such that vn,z =

un + fn,z takes its minimum at z and vn,z(z) = 0. We claim that there are ε0 > 0
and r0 > 0 such that

• min∂Ω′ vn,z ≥ 2ε0 for any n ≥ 0 and z ∈ Ω.

• maxB(z,r0) vn,z ≤ ε0 for any n ≥ 0 and z ∈ Ω.

First let us show how the claim implies the statement. Indeed for any z and n
consider the domain Un,z = {z ∈ Ω′ | vn,p(z) ≤ ε0}. We have that Un,z ⊂⊂ Ω′ by the
first point of the claim. In particular, vn,z is constant equal to ε0 along the boundary
of Un,z. On the other hand the second point of the claim implies that the distance
of z from ∂Un,z is at least r0. So by Theorem 3.3.4 there is a constant C ′ depending
on C and r0 such that ||D2un(z)|| = ||D2vn,z(z)|| < C ′ for all z ∈ Ω′ and n ≥ 0.

To prove the claim we argue by contradiction. Suppose there exist sequences
zn, z

′
n ∈ Ω such that, defining 2εn = min∂Ω′ vn,zn ,

• ||zn − z′n|| → 0;

• vn,zn(z′n) > εn.

Up to passing to a subsequence we may suppose that zn → z∞, so that z′n → z∞ as
well. As the C1-norm of un is bounded, the C1-norm of fn,z is uniformly bounded for
any z ∈ Ω and n ≥ 0, so we may suppose that fn,zn converges to an affine function
f∞. Therefore vn,zn converges to v∞ = u∞ + f∞.

As lim vn,zn(z′n) = v∞(z∞) = lim vn,zn(zn) = 0 we conclude that εn → 0, so that
min∂Ω′ v∞ = 0, but this contradicts the strict convexity of v∞.
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On the other hand, by considering a spacelike convex entire graph in R2,1, namely
a surface S obtained as

S = {(z, f(z)) : z ∈ R2}

for a function f : R2 → R with |Df | < 1, it turns out that the curvature K(z) of S
at the point (z, f(z)) is expressed by the following relation ([Li95]):

K(z) = − 1

(1− ||Df ||2)2
detD2f ,

which shows again that the problem of existence of surfaces of constant curvature in
Minkowski space is related to an equation of Monge-Ampére type. Indeed, when we
restrict to the case of constant Gaussian curvature K < 0, we obtain the following
equation:

detD2fK = |K|(1− ||Df ||2)2 ,

4.2 Some explicit solutions: surfaces with a 1-parameter
family of symmetries

In this subsection we construct some explicit solutions to the Monge-Ampère equa-
tion associated to surfaces with constant curvature K < 0, namely

detD2u(z) =
1

|K|(1− |z|
2)−2 . (4.11)

We study constant curvature surfaces invariant under a one-parameter subgroup
of Isom(R2,1).

4.2.1 Linear parabolic one-parameter group

Let us consider surfaces invariant for one-parameter parabolic subgroup. In order
to have such a surface, the subgroup must necessarily fix the origin.

Hence, let us denote by A• : R → Isom(R2,1) the representation associated to
the linear parabolic subgroup. Let us choose a basis {v0, v1, v2} of R2,1 such that v0

is the null vector fixed by the parabolic group, v1 is a null vector with 〈v0, v1〉 = −1,
and v2 is a spacelike unit vector orthogonal to both v0 and v1.

The parabolic group is acting by

At(v0) =v0 ;

At(v1) =(t2/2)v0 + v1 + tv2 ;

At(v2) =v2 + tv0 .

Let γ0(s) =
√

2
2 (esv0+e−sv1) be the unit speed geodesic of H2 with endpoints [v1]

(for s→ −∞) and [v0] (for s→ +∞). Let us consider the following parametrization
of H2:

σ(t, s) = At(γ0(s)) ,
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namely, the levels {s = c} are horocycles, while the levels {t = c} are geodesics
asymptotic to [v0]. In these coordinates, the metric of H2 takes the form ds2 +
(e−2s/2)dt2.

We consider support functions restricted to H2, which we denote as usual by
ū : H2 → R, corresponding to surfaces of constant curvature. Hence we want to find
solutions of the equation

det(Hess ū− ū E) =
1

|K| , (4.12)

where K is a negative constant. Since are imposing that the surface dual to ū
is invariant for the parabolic group (with no translation), recalling Equation (1.8)
for the transformation of support functions under isometries of R2,1, we look for a
solution which only depends on s, namely a solution of the form ū(t, s) = f(s).

By a direct computation, one can see that the gradient and the Hessian of ū for
the hyperbolic metric in this coordinate frame has the form:

grad ū =f ′(s)∂s

Hess(ū)(∂s) =f ′′(s)∂s

Hess(ū)(∂t) =− f ′(s)∂t ,

therefore the constant curvature condition (4.12) gives

(f ′′(s)− f(s))(−f ′(s)− f(s)) = 1/|K| . (4.13)

We now solve Equation (4.13). By convexity, we impose that both eigenvalues
(f ′′(s)−f(s)) and (−f ′(s)−f(s)) are positive. Let us perform the change of variables

g(s) = −f ′(s)− f(s) , (4.14)

so that Equation (4.13) becomes

g(s)(g(s)− g′(s)) = 1/|K| , (4.15)

whose general positive solution is, as C varies in R,

g(s) =
√
|K|−1 + Ce2s . (4.16)

Solutions for C = 0
We observe that the case C = 0 gives the trivial solution, namely the hyperboloid.

Indeed f can be recovered by integrating (4.14), hence obtaining

f(s) = e−s
(
D −

∫ s

0
exg(x)dx

)
. (4.17)

Observe that the term e−sD corresponds to a translation in the direction −
√

2Dv0.
Hence, as the parameter D varies over R, the corresponding surface varies by a
translation in the line spanned by v0. If C = 0, we have g ≡ 1/

√
|K|. By choosing

D suitably, we obtain the solution

f0,K(s) = − 1√
|K|

, (4.18)
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which is the support function of a hyperboloid of curvature K centered at the origin.
Solutions for C > 0

If C > 0, from Equation (4.17) we obtain the solution (for a constant D which
we will fix later)

fC,K(s) = −1

2

√
|K|−1 + Ce2s− 1

2|K|
√
C
e−s log

(√
C
√
|K|−1 + Ce2s + Ces

)
+e−sD .

(4.19)
We now describe some of the properties of the surface SC,v0(K) whose support
function is ūC,K(t, s) = fC,K(s), for any fixed curvature K < 0.

First, we want to determine the value on ∂D of the support function uC,K ,
namely the restriction to D of the 1-homogeneous extension of ūC,K . Let us denote
by σ(t, s)z the vertical component of σ(t, s). Then we have

uC,K(t, s) =
fC,K(s)

σ(t, s)z
.

Using the invariance for the parabolic group in Isom(R2,1), it suffices to consider the
case t = 0. We have

σ(0, s)z = −〈σ(0, s),
v0 + v1√

2
〉 = cosh(s) .

Observe that the term e−sD/ cosh(s) tends to 0 when s → ∞ and to 2D when
s→ −∞. By an explicit computation, choosing D suitably, we can obtain

lim
s→−∞

uC,K(t, s) = lim
s→−∞

fC,K(s)

σ(t, s)z
= 0 ,

while

lim
s→−∞

uC,K(t, s) = lim
s→+∞

fC,K(s)

σ(t, s)z
= −
√
C ,

hence the support function at infinity is

uC,K |∂D(z) =

{
−
√
C [z] = [v0]

0 [z] 6= [v0]
.

Geometrically, this means that the domain of dependence of the surface is the future
of a parabola, obtained as the intersection of the cone centered at the origin (whose
support function is identically 0) with a lightlike plane with normal vector v0 (whose
intercept on the z-axis is

√
C). See Figure 4.1.

It is easy to see that the dual lamination is the measured geodesic lamination of
H2 whose leaves are all geodesics asymptotic to [v0], with a measure invariant under
the parabolic group (a multiple of the Lebesgue measure, in the upper half-space
model, pictured in Figures 4.2 and 4.3).

The surface SC,v0(K) dual to uC,K can be described by an explicit parametriza-
tion, recalling that the inverse of the Gauss map of the surface is

G−1(x) = grad ūC,K(x)− ūC,K(x)x .
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I+(0)

Figure 4.1: The future of a parabola is a domain of dependence invariant for the parabolic
group. Its support function at infinity is lower-semicontinuous and is affine on the comple-
ment of a point of ∂D.

[v0]

Figure 4.2: The dual lamination to the
boundary of the domain of dependence,
which is the future of a parabola.

Figure 4.3: In the upper half space
model, with fixed point at infinity, the
measure is the Lebesgue measure.

In these coordinates,

G−1(σ(t, s)) = grad ūC,K(t, s)− ūC,K(t, s)σ(t, s) (4.20)

=

√
2

2
f ′(s)(esv0 − e−sAt(v1))−

√
2

2
f(s)(esv0 + e−sAt(v1)) (4.21)

=

√
2

2

(
(f ′(s)− f(s))esv0 − (f ′(s) + f(s))e−sAt(v1)

)
(4.22)

=

√
2

2

(
−(g(s) + 2f(s))esv0 + g(s)e−sAt(v1)

)
. (4.23)

We now want to show that the surface is an entire graph. For this purpose, we
will use the following criterion.

Lemma 4.2.1. Let u : D→ R be a C2 support function with positive Hessian, and
suppose that the inverse of the Gauss map G−1 : D → R2,1 is proper. Then the
boundary of the future-convex domain D defined by u is a spacelike entire graph.

Proof. As u is C1, we can use Equation (4.1) and get G−1(x) = grad ū(x)−ū(x)x for
every x ∈ H2. It can be readily shown that this implies that the vertical projection
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of G−1(x) is Du(z), where z = π(x) ∈ D, see Lemma 2.8 of [BF14]. As the Hessian
of u is positive, the image of the gradient map of u is an open subset of R2, so it
follows that ∂sD is open in ∂D. Since G−1 is proper, ∂sD is also closed in ∂D, and
this concludes the proof.

We will actually show that the height function given by

z(t, s) = −〈G−1(σ(t, s)),
v0 + v1√

2
〉

is proper. By a direct computation,

2z(t, s) = −(g(s) + 2f(s))es + g(s)e−s
(
t2

2
+ 1

)
=

1

|K|
√
C

log
(√

C
√
|K|−1 + Ce2s + Ces

)
+ e−s

√
|K|−1 + Ce2s

(
t2

2
+ 1

)
≥ 1

|K|
√
C
s+ e−s|K|−1/2

(
t2

2
+ 1

)
− C0 ,

for some constant C0. Observe that z(t, s) tends to infinity for s→ ±∞. It is easily
checked that on a sequence σ(tn, sn) which escapes from every compact, t2n+s2

n →∞,
and thus z(tn, sn)→∞. This concludes the claim that SC,v0(K) is a spacelike entire
graph, by Lemma 4.2.1.

Finally, we briefly discuss the isometry type of the induced metric. By an explicit
computation using the expression in Equation (4.20), we find the pull-back of the
induced metric via G−1:

(G−1 ◦ σ)∗(gR2,1) = (f ′′(s)− f(s))2ds2 +
1

2
e−2sg(s)2dt2 , (4.24)

where it turns out that

f ′′(s)− f(s) =
1

|K|
√
|K|−1 + Ce2s

By an explicit change of variables

r(s) =
1√
|K|

arctanh

(
1√

1 + |K|Ce2s

)
,

so that (r′(s))2 = (f ′′(s)− f(s))2, by computing

g(s)2 =
1

|K|(1 + |K|Ce2s) =
1

|K| tanh2(r
√
|K|)

and
e−2s = |K|C sinh2

(
r
√
|K|
)

one obtains that the induced metric is

dr2 +

(
C

2

)
cosh2

(
r
√
|K|
)
dt2 .
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Rescaling t, one obtains

dr2 + cosh2
(
r
√
|K|
)
dt2 ,

that is, the first fundamental form of SC,v0(K) is isometric to a half-plane of constant
curvature K, namely, to the region of a hyperboloid bounded by a geodesic l.

dev ◦G−1

Figure 4.4: A developing map dev : SC,v0(K) → H2 for the induced metric, composed
with the inverse of the Gauss map G−1 : H2 → SC,v0(K), in the Poincaré disc model of H2.

We resume the content of this subsection in the following proposition. Let us de-
note by H2(K) the rescaled hyperbolic plane, of curvature K < 0, and by H2(K)+ a
half-plane in H2(K). Observe that H2(K)+ has a one-parameter group of isometries
T (l) which consists of (the restriction of) hyperbolic translations along the geodesic
l which bounds H2(K)+.

Proposition 4.2.2. For every K < 0, C > 0 and every null vector v0 ∈ R2,1 there
exists an isometric embedding

iK,C,v0 : H2(K)+ → R2,1

with image a Cauchy surface SC,v0(K) in the domain of dependence whose support
function at infinity is

ϕ(z) =

{
−
√
C [z] = [v0]

0 [z] 6= [v0]
.

The surface SC,v0(K) is a spacelike entire graph and iK,C,v0 is equivariant with re-
spect to the group of isometries T (l) of H2(K)+ and the parabolic linear subgroup of
Isom(R2,1) fixing v0.

Solutions for C < 0

If C < 0, the function g(s) =
√
|K|−1 + Ce2s is only defined for

s ≤ 1

2
log

(
1

|CK|

)
.
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From Equation (4.17) we can explicitly write the solution (again D is a constant to
be fixed):

fC,K(s) = −1

2

√
|K|−1 + Ce2s − 1

2|K|
√
|C|

e−s arctan

( √
|C|es√

|K|−1 + Ce2s

)
+ e−sD .

(4.25)
Again, we study briefly the properties of the surface SC,v0(K) whose support function
is ūC,K(t, s) = fC,K(s). Observe that the solution (4.25) is only defined in the range

s ≤ 1
2 log

(
1
|CK|

)
, namely, in the complement of a horoball. Let us notice that, in

the same notation as before, the limit of the support function (which only makes
sense for s→ −∞) is

lim
s→−∞

uC,K(t, s) = lim
s→−∞

fC,K(s)

σ(t, s)z
= 0 ,

provided we choose D = 0. On the other hand, as s → 1
2 log

(
1
|CK|

)
, the function

fC,K(s) has the finite limit −(π/4)
√
|K|−1. We observe that ūC,K(t, s) = fC,K(s)

can be extended to a convex function defined on the whole H2 by declaring

fC,K(s) = −π
4

1

|K|
√
|C|

es

for s ≥ 1
2 log

(
1
|CK|

)
. We will now denote by ūC,K(t, s) = fC,K(s) the function

extended in this way. The surface SC,v0(K) is thus a constant curvature surface
which develops a singular point, namely it intersects the boundary of the domain of
dependence, which in this case is just I+(0). The inverse of the Gauss map sends

the whole horoball {s ≥ 1
2 log

(
1
|CK|

)
} to the point

√
2

2
1

|K|
√
|C|

π
4 v0.

We remark that uC,K is a generalized solution to the Monge-Ampère equation
on the disc detD2u = ν, where ν in this case is a measure which coincides with
(1/|K|)(1 − |z|2)−2L on the complement of the horoball (where L is the Lebesgue
measure), and is 0 inside the horoball.

By a computation analogous to the previous case, to compute the induced metric
we manipulate Equation (4.24): setting

r(s) =
1√
|K|

arctanh(
√

1 + |K|Ce2s) ,

and replacing

g(s)2 =
1

|K|(1 + |K|Ce2s) =
1

|K| tanh2(r
√
|K|)

and
e−2s = |K|C cosh2(r

√
|K|)

we obtain the expression for the metric

dr2 +

(
C

2

)
sinh2

(
r
√
|K|
)
dt2 ,
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or, after rescaling of t,

dr2 + sinh2
(
r
√
|K|
)
dt2 .

This shows that the first fundamental form of SC,v0(K) is isometric to the universal

cover of the complement of a point in H2(K), which we will denote by ˜H2(K) \ p. Let

R(p) the group of rotations of H2(K) fixing a point p and let R̃(p) be its universal
cover. We conclude by including all the information in the following proposition.

dev ◦G−1

Figure 4.5: Again, the developing map in the Poincaré disc model. In the case C < 0, the
inverse of the Gauss map G−1 : H2 → SC,v0(K) shrinks a horoball to a point.

Proposition 4.2.3. For every K < 0, C < 0 and every null vector v0 ∈ R2,1 there
exists an isometric embedding

iK,C,v0 : ˜H2(K) \ p→ R2,1

with image a Cauchy surface SC,v0(K) for I+(0). The closure of the surface SC,v0(K)
intersects the null cone ∂I+(0) in the point βv0, where

β =

√
2

2

1

|K|
√
|C|

π

4
.

The inverse of the Gauss map of the closure of SC,v0(K) maps a horoball of H2 to

βv0. Finally iK,C,v0 is equivariant with respect to the group of isometries R̃(p) of

˜H2(K) \ p and the parabolic linear subgroup of Isom(R2,1) fixing v0.

4.3 The Minkowski problem in Minkowski space

The aim of this section is to prove that, for every domain of dependence in R2,1 con-
tained in the cone over a point, there exists a unique smooth Cauchy surface with
prescribed (à la Minkowski) negative curvature, which is an entire graph. Equiva-
lently, the main statement is the following.
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Theorem 4.A (refined version). Given a bounded lower semicontinuous function
ϕ : ∂D → R and a smooth function ψ : D → [a, b] for some 0 < a < b < +∞, there
exists a unique smooth spacelike surface S in R2,1 with support function at infinity ϕ
and curvature K(G−1(x)) = −ψ(x). Moreover, S is an entire graph and is contained
in the past of the (1/

√
inf ψ)-level surface of the cosmological time of the domain of

dependence with support function h = co (ϕ).

The proof will be split in several steps. In Subsection 4.3.1 we construct a
solution to the Monge-Ampère equation

detD2u(z) =
1

ψ(z)
(1− |z|2)−2 (MA)

with the prescribed boundary condition at infinity

u|∂D = ϕ . (BC)

In Subsection 4.3.2 we study the behavior of Cauchy surfaces in terms of the support
functions, and we use this condition to prove uniqueness by applying the theory of
Monge-Ampère equations. Finally, in Subsection 4.3.3 we prove that the surface is
not tangent to the boundary of the domain of dependence, and hence is a spacelike
entire graph.

4.3.1 Existence of solutions

The surface S will be obtained as a limit of surfaces SΓ invariant under the action
of discrete groups Γ < Isom(R2,1), isomorphic to the fundamental group of a closed
surface, acting freely and properly discontinuously on some future-convex domain
in R2,1 for which SΓ is a Cauchy surface. Indeed, such a surface SΓ can be obtained
as the lift to the universal cover of a closed Cauchy surface SΓ/Γ in a maximal
globally hyperbolic spacetime D(SΓ)/Γ, and the existence of surfaces with prescribed
curvature in such spacetimes is guaranteed by results of Barbot-Béguin-Zeghib in
[BBZ11].

In this subsection we prove the following existence result for the Monge-Ampère
equation (MA).

Theorem 4.3.1. Given a bounded lower semicontinuous function ϕ : ∂D→ R and
a smooth function ψ : D → [a, b] for some 0 < a < b < +∞, there exists a smooth
solution u : D→ R to the equation

detD2u(z) =
1

ψ(z)
(1− |z|2)−2 (MA)

such that u extends to a lower semicontinuous function on D with

u|∂D = ϕ . (BC)

Moreover, u satisfies the inequality

h(z)− C
√

1− |z|2 ≤ u(z) ≤ h(z) , (CT)

where h is the convex envelope of ϕ and C = 1/
√

inf ψ.
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There are several notions of convergence of measured geodesic laminations, as
discussed for instance in [MŠ12]. Recall in Definition 2.3.6 we defined a measured
geodesic lamination as a locally finite Borel measure on the set of (unoriented)
geodesics G of H2, with support a closed set of pairwise disjoint geodesics. We
denote by GB the set of geodesics of H2 which intersect the subset B ⊆ H2.

Definition 4.3.2. A sequence {µn}n of measured geodesics laminations converges
in the weak* topology to a measured geodesic lamination, µn ⇀ µ, if

lim
n→∞

∫
G
fdµn =

∫
G
fdµ

for every f ∈ C0
0 (G).

We are going to approximate a measured geodesic lamination in the weak* topol-
ogy by measured geodesic laminations which are invariant under the action of a co-
compact Fuchsian group. A stronger notion of convergence is given by the Fréchet
topology on the space of measured geodesic laminations, see [MŠ12].

Lemma 4.3.3. Given a measured geodesic lamination µ, there exists a sequence
of measured geodesic laminations µn such that µn is invariant under a torsion-free
cocompact Fuchsian group Gn < Isom(H2) and µn ⇀ µ.

Proof. We construct the approximating sequence in several steps.
Step 1. We show there is a sequence of discrete measured geodesic laminations

µn which converge to µ in the weak* topology. In [MŠ12, §7] it was proved that, if µ
is bounded, there exists a sequence of discrete measured geodesic laminations which
converge to µ in the Fréchet topology, which implies weak* convergence. So, assume
µ is not bounded. We define νn by νn(A) = µ(A ∩ GB(0,n)), i.e. the support of νn
consists of the geodesics of µ which intersect B(0, n). By the results in [MŠ12, §7],
for every n, there exists a sequence (νn,m)m which converges to νn in the Fréchet
sense. As a consequence of Fréchet convergence, for every n we can find m = m(n)
such that

sup
f∈C0

0 (GB(0,n))

∣∣∣∣∫
G
fdνn −

∫
G
fdνn,m(n)

∣∣∣∣ ≤ 1

n
.

It follows that, for every f compactly supported in G, if supp(f) ⊂ GB(0,n0), then
for n ≥ n0 ∣∣∣∣∫

G
fdµ−

∫
G
fdνn,m(n)

∣∣∣∣ =

∣∣∣∣∫
G
fdνn −

∫
G
fdνn,m(n)

∣∣∣∣ n→∞−−−→ 0 .

Hence µn := νn,m(n) gives the required approximation.
Step 2. We now modify the sequence µn to obtain a sequence µ′n ⇀ µ of fi-

nite measured laminations with ultraparallel geodesics. We can assume the discrete
laminations µn construncted in Step 1 are finite (namely they consist of a finite
number of weighted geodesics), by taking the intersection with GB(0,n). Let dG be
a Riemannian metric on G. Suppose the leaves of µn are ln1 , . . . , l

n
p(n) with weights

an1 , . . . , a
n
p(n). Then we construct a finite lamination ν ′n,m by replacing ln1 , . . . , l

n
p(n)

by leaves kn1 , . . . , k
n
p(n) so that
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• kni and knj are ultraparallel for every i 6= j;

• dG(lni , k
n
i ) ≤ 1/m;

• The weight of kni is ani .

Let us show that, defining µ′n = ν ′n,n, (µ′n)n converges weak* to µ. For this pur-
pose, fix a function f with supp(f) ⊂ GB(0,n0) and fix ε > 0. Since f is uniformly
continuous, there exists n1 such that if dG(l, k) < 1/n1, then |f(l) − f(k)| < ε. We
have ∣∣∣∣∫

G
fdµ−

∫
G
fdµ′n

∣∣∣∣ ≤ ∣∣∣∣∫
G
fdµ−

∫
G
fdµn

∣∣∣∣+

∣∣∣∣∫
G
fdµn −

∫
G
fdν ′n,n

∣∣∣∣ .
By construction, there exists n2 such that the first term in the RHS is smaller than
ε provided n ≥ n2. Now for every n, if m ≥ max {n0, n1},∣∣∣∣∫

G
fdµn −

∫
G
fdν ′n,m

∣∣∣∣ =

p(n)∑
i=1

(f(lni )− f(kni )) ani ≤ εµn(G(B(0,n0))) .

Since µn ⇀ µ, there exists a constant C such that µn(G(B(0,n0))) ≤ C for n ≥ n3. In
conclusion, if n ≥ max {n0, n1, n2, n3}, then∣∣∣∣∫

G
fdµ−

∫
G
fdµ′n

∣∣∣∣ ≤ (1 + C)ε .

Step 3. We claim it is possible to find a polygon Pn with the following properties:

• Pn contains the ball B(0, n);

• The angles of Pn are π/2;

• Pn intersects the leaves of µ′n orthogonally.

We construct the polygon Pn in the following way. For every point z ∈ ∂D which is
limit of a leaf kni of µ′n, we pick a geodesic orthogonal to kni which separates z from
B(0, n) and from all the other limit points of µ′n. Let {g1, . . . , gp} be the geodesics
obtained in this way. Replacing the gi by other geodesics further from B(0, n), we
can assume the geodesics g1, . . . , gp are pairwise ultraparallel. See Figures 4.6 and
4.7.

We extend the family of geodesics {g1, . . . , gp} to a larger family {g′1, . . . , g′p′}
satisfying:

• {g1, . . . , gp} ⊂ {g′1, . . . , g′p′};

• g′1, . . . , g′p′ are contained in H2 \B(0, n)

• g′1, . . . , g′p′ are pairwise ultraparallel;

• No geodesic g′i separates two geodesics g′j and g′k in the family (so we can
assume the indices in {g′1, . . . , g′p′} are ordered counterclockwise);
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kni

z

Figure 4.6: Start from a finite geodesic
laminations with leaves kni .

Figure 4.7: The construction of the
geodesics g1, . . . , gp.

Figure 4.8: The geodesics in
{g′1, . . . , g′p′} \ {g1, . . . , gp}.

Figure 4.9: The geodesics h1, . . . , hp′ or-
thogonal to g′1, . . . , g

′
p′ .

• The geodesics hi orthogonal to g′i and g′i+1 (if the indices i are considered
mod p′) are contained in H2 \B(0, n).

The reader can compare with Figures 4.8 and 4.9. It is clear that the polygon
Pn (Figure 4.10) given by the connected component of H2 \ {g′1, . . . , g′p′ , h1, . . . , hp′}
containing B(0, n) satisfies the given properties.

Step 4. We finally construct a sequence µ′′n ⇀ µ with µ′′n invariant under the
action of a torsion-free cocompact Fuchsian group. We consider the discrete group
of isometries of H2 generated by reflections in the sides of the polygon Pn constructed
in Step 3. The index 2 subgroup Gn of orientation-preserving isometries is a discrete
cocompact group and it is well-known that Gn contains a finite index torsion-free
cocompact Fuchsian group Gn. We define µ′′n as the Gn-orbit of µ′n. µ′′n is a measured
geodesic lamination since the leaves of µ′n intersect the sides of Pn orthogonally. Note
that µ′′n is obtained by modifying µ′n only in the complement of B(0, n), since by
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Figure 4.10: The polygon Pn.

construction B(0, n) ⊂ Pn. Hence it is clear that, if supp(f) ⊂ GB(0,n0), then∫
G
fdµ′n =

∫
G
fdµ′′n

for n > n0, and thus µ′′n ⇀ µ.

Lemma 4.3.4. Given a sequence µn of measured geodesic laminations converging to
µ in the weak* sense, let Dn = D(µn, x0, y0) and D = D(µ, x0, y0) be the domains of
dependence having µn and µ respectively as dual laminations, and P = y0 + x⊥0 as a
support plane tangent to the boundary at y0, where x0 does not belong to a weighted
leaf of µ. Let hn and h be the support functions of Dn and D. Then hn converges
uniformly on compact sets of D to h.

Proof. It suffices to prove that the convergence is pointwise, since the functions
hn and h are convex on D, and therefore pointwise convergence implies uniform
convergence on compact sets. In fact, it suffices to prove pointwise convergence for
almost every point.

We will actually prove that the support functions h̄n restricted to H2 converge
pointwise to h̄ almost everywhere, which is clearly equivalent to the claim. Let us
assume x0 and x are points which do not lie on weighted leaves of the lamination
µ. Let G[x0, x] be the set of geodesics which intersect the closed geodesic segment
[x0, x] and σ : G[x0, x] → R2,1 be the function which assigns to a geodesic l the
corresponding point in dS2, namely, the spacelike unit vector in R2,1 orthogonal to l
with respect to Minkowski product, pointing outward with respect to the direction
from x0 to x. The support function of D can be written as (compare expression
(4.9) in Proposition 4.1.10):

h̄n(x) = 〈x, y0〉+

∫
G[x0,x]

〈x,σ〉dµn .

We thus want to show that∫
G[x0,x]

〈x,σ〉dµn n→∞−−−→
∫
G[x0,x]

〈x,σ〉dµ .
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Note that G[x0, x] is compact in G; define ϕi a smooth function such that ϕi(l) = 1
for every l ∈ G[x0, x] and supp(ϕi) ⊂ G(x0 − 1

i , x+ 1
i ). Here (x0 − 1

i , x+ 1
i ) denotes

the open geodesic interval which extends [x0, x] of a lenght 1/i on both sides. Hence
we have:∣∣∣∣∫

G
〈x,σ〉χG[x0,x]dµn −

∫
G
〈x,σ〉χG[x0,x]dµ

∣∣∣∣ ≤ ∣∣∣∣∫
G
〈x,σ〉χG[x0,x]dµn −

∫
G
〈x,σ〉ϕidµn

∣∣∣∣
(?)

+

∣∣∣∣∫
G
〈x,σ〉ϕidµn −

∫
G
〈x,σ〉ϕidµ

∣∣∣∣ (??)

+

∣∣∣∣∫
G
〈x,σ〉ϕidµ−

∫
G
〈x,σ〉χG[x0,x]dµ

∣∣∣∣ .
(? ? ?)

Let F = G(x0 − 1
i , x+ 1

i ) \ G[x0, x]. Since we have assumed x and x0 are not on
weighted leaves of µ, we have (? ? ?) ≤ Kµ(F) ≤ Kε if i ≥ i0, for some fixed i0.
By definition of weak* convergence, the term numbered (??) converges to zero as
n → ∞ for i = i0 fixed, so (??) ≤ ε for n ≥ n0. Finally, lim supn→∞ µn(F) ≤ µ(F)
by Portmanteau Theorem (which in this case can be easily proved again by an
argument of enlarging the interval and approximating by bump functions). Hence
there exists n′0 such that (?) ≤ Kµn(F) ≤ 2Kε if n ≥ n′0 and i ≥ i0. Choosing
n ≥ max {n0, n

′
0}, the proof is concluded.

Let us now consider an arbitrary measured geodesic lamination µ and take the
sequence µn ⇀ µ constructed as in Lemma 4.3.3. Let D(µn, x0, y0) be the domain of
dependence having dual lamination µn and P = y0 + x⊥0 as a support plane tangent
at y0. Since µn is invariant under the action of a Fuchsian cocompact group Gn,
D(µn, x0, y0) is a domain of dependence invariant under a discrete group Γn. The
linear part of Γn is Gn and the translation part is determined (up to conjugacy)
by µn (see Proposition 4.1.11). This means that D(µn)/Γn is a maximal globally
hyperbolic flat spacetime.

Theorem 4.3.5 ([BBZ11]). Let G0 be a Fuchsian cocompact group and µ0 be a
G0-invariant measured geodesic lamination. Let ψ0 : H2 → (0,∞) be a G0-invariant
smooth function. Let Γ0 be a subgroup of Isom(R2,1) whose linear part is G0 and
whose translation part is determined by µ0. Then there exists a unique smooth
Cauchy surface S0 of curvature K(G−1(x)) = −ψ0(x) in the maximal future-convex
domain of dependence D0 invariant under the action of the group Γ0.

We will construct a Cauchy surface S for D = D(µ, x0, y0) with prescribed
curvature as a limit of Cauchy surfaces Sn in Dn = D(µn, x0, y0). Let hn be the
support function of Dn. By Lemma 4.3.4, hn converges uniformly on compact sets
of D to h, the support function of D. Let un be the support function of Sn.

Lemma 4.3.6. Let S0 be a smooth strictly convex Cauchy surface in a domain of
dependence D0 invariant under the action of a discrete group Γ0 < Isom(R2,1), such
that D0/Γ0 is a maximal globally hyperbolic flat spacetime. Let K : S0 → (−∞, 0)
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be the curvature function of S0. Then the support functions u0 of S0 and h0 of ∂sD0

satisfy

h0(z)− C
√

1− |z|2 ≤ u0(z) ≤ h0(z) (4.26)

for every z ∈ D. Moreover, one can take C = 1/
√

inf |K|.

Proof. Since S0 ⊂ I+(∂sD0), it is clear that u0 ≤ h0. For the converse inequality,
recall that we denote by ū0 the restriction to H2 of the 1-homogeneous extension U0 of
u0, and analogously for h̄0. Let us consider x ∈ H2 and show that ū0(x) ≥ h̄0(x)−C,
for C = 1/

√
inf |K|. The inequality (4.26) then follows, since u0(z) = U0(z, 1) =√

1− |z|2ū0(x) and h0(z) = H0(z, 1) =
√

1− |z|2h̄0(x), for x ∈ H2 which projects
to (z, 1). Let us consider the foliation of D0 by leaves of the cosmological time,
namely the surfaces LT whose support function is h̄T (x) = h̄0(x)−T if x ∈ H2, with
T ∈ (0,∞). The surface S0 descends to a compact surface in D0/Γ0 and therefore
the time function T on S0 achieves a maximum Tmax at a point p (actually, a full
discrete Γ0−orbit) on S0. It follows that the level surface LTmax is entirely contained
in the future of S0 and tangent to S0 at p.

The level surface LT is obtained by grafting a hyperboloid of constant curvature
−1/T 2 according to the lamination µ0. More precisely, LT is obtained by inserting a
flat piece (whose principal curvatures are 0 and 1/T ) on the leaves of the lamination,
where the lenght of each flat piece is determined by the measure of the lamination.
By this construction, it is clear that LT might fail to be smooth; however for any
point p ∈ LT there exists a hyperboloid of curvature −1/T 2 which is tangent to LT
and contained in the future of LT .

Hence, the surface S0 is contained in the past of a hyperboloid of curvature
−1/T 2, and tangent to such hyperboloid at some point, which implies that inf |K| ≤
1/T 2. Therefore T ≤ C for C = 1/

√
inf |K|. This shows that the surface S0 is

contained in the past of the level surface LC and its support function on H2 satisfies
h̄0(x)− C ≤ ū0(x).

We are now ready to conclude the proof.

Proof of Theorem 4.3.1. Given the lower semicontinuous function ϕ : ∂D → R, let
us consider the dual lamination µ of the domain of dependence D defined by ϕ.
Hence D = D(µ, x0, y0) for some x0, y0 and the support function h of D is the
convex envelope of ϕ.

By Lemma 4.3.3, there exist measured geodesic laminations µn, invariant under
the action of torsion-free cocompact Fuchsian groups Gn, which converge weakly
to µ. Recall from the proof of Lemma 4.3.3 that the Fuchsian group Gn has a
fundamental domain P ′n which contains the ball B(0, n) for the hyperbolic metric.
Let us define a Gn-invariant function ψn : H2 → R, which approximates ψ. We take
a partition of unity {ρn, %n} subordinate to the covering {B(0, n), P ′n \B(0, n/2)} of
P ′n. We define

ψn(x) = ρn(x)ψ(x) + %n(x)(inf ψ)

and we extend ψn to H2 by invariance under the isometries in Gn. It is clear that the
sequence ψn converges to ψ uniformly on compact sets of H2, since ψn agrees with
ψ on B(0, n/2). Since ψn is constant on P ′n \B(0, n/2), the Gn-invariant extension



Part II. Flat Lorentzian geometry 101

is smooth. Finally, inf ψn = inf ψ. Applying Theorem 4.3.5, we obtain a solution un
to the equation

detD2un(z) =
1

ψn(z)
(1− |z|2)−2

for every n.
Let Dn = D(µn, x0, y0) be the domain of dependence associated with µn, so that

y0 + x⊥0 is a support plane of the domain Dn. We can assume x0 is a point of H2

which does not belong to a weighted leaf of any µn. Let Hn be the extended support
function of Dn and let hn be its usual restriction to D. By Lemma 4.3.4, hn converges
uniformly on compact sets of D to h. Moreover by inequality (4.26) of Lemma 4.3.6,
the convex functions un are uniformly bounded on every compact set of D. Hence,
by convexity, the un are equicontinuous on compact sets of D and therefore, by the
Ascoli-Arzelà Theorem, there exists a subsequence converging uniformly on compact
sets to a convex function u. The limit function u is a generalized solution of the
equation

detD2u(z) =
1

ψ(z)
(1− |z|2)−2 . (MA)

By Theorem 3.3.5, u is strictly convex and therefore is smooth by Theorem 3.3.6.
Moreover, the functions un satisfy the inequality in (4.26) for every z ∈ D:

hn(z)− C
√

1− |z|2 ≤ un(z) ≤ hn(z) ,

hence for the limit function u we have

h(z)− C
√

1− |z|2 ≤ u(z) ≤ h(z) , (CT)

where h is the limit of the support functions hn of Dn and is the support function of
D by Lemma 4.3.4. Since both u and h, extended to D, are lower semicontinuous and
convex functions, and the value on a point z ∈ ∂D coincides with the limit along a
radial geodesic (see Lemma 4.1.3), we have the boundary condition u|∂D = h|∂D = ϕ.
This shows that the condition (BC) holds, and concludes the proof.

4.3.2 Uniqueness of solutions

In this subsection, we discuss the uniqueness of the solution of Equation (MA), for
which the existence was proved in Theorem 4.3.1. More precisely, we prove the
following:

Proposition 4.3.7. Given a bounded lower semicontinuous function ϕ : ∂D → R
and a smooth function ψ : H2 → [a, b] for some 0 < a < b < +∞, the smooth
solution u : D→ R to the equation

detD2u(z) =
1

ψ(z)
(1− |z|2)−2 (MA)

satisfying
u|∂D = ϕ . (BC)

is unique.
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The claim in Proposition 4.3.7 holds if ϕ is continuous, by a direct application
of Theorem 3.3.2. The rest of this subsection will be devoted to the proof of the
claim when ϕ is only assumed to be lower semicontinuous. The key property is that
every solution of (MA) with boundary value ϕ, for ψ > a > 0, satisfies the condition
(CT). Geometrically, this means that every Cauchy surface with curvature bounded
away from zero has bounded cosmological time.

Proposition 4.3.8. Given a smooth function ψ : D → [a, b] for some 0 < a < b <
+∞, any smooth solution u : D→ R to the equation

detD2u(z) =
1

ψ(z)
(1− |z|2)−2 (MA)

with
u|∂D = ϕ . (BC)

satisfies
h(z)− C

√
1− |z|2 ≤ u(z) ≤ h(z) , (CT)

for some constant C > 0, where h = coϕ.

Proof. The statement is true if ϕ is continuous, as we have already observed that in
that case the solution is unique, and in Theorem 4.3.1 we have proved the existence
of a solution satisfying the required condition. Let us now consider the general case.
Since u is convex, it is clear that u ≤ h. We show the other inequality. Let r ∈ (0, 1]
and ur : D→ R be defined as

ur(z) = u(rz) .

Since u is continuous (actually, smooth) on D, ur converges uniformly on compact
sets of D to u as r → 1. Let ψr be such that

detD2ur(z) =
1

ψr(z)
(1− |z|2)−2 .

We have

detD2ur(z) = r4 detD2u(rz) =
r4

ψ(rz)
(1− r2|z|2)−2 ≤ 1

inf ψ
(1− |z|2)−2

and therefore ψr(z) ≥ inf ψ. Since ur is continuous on D, by the continuous case
and the above inequality we obtain

hr(z)−
1√

inf ψ

√
1− |z|2 ≤ ur(z) , (4.27)

where hr = co (ur|∂D).
Fix a point z0 ∈ D. We claim that h(z0) ≤ lim infr hr(z0). Indeed, given an

arbitrary affine function f : D → R such that f |∂D < ϕ, the set {z : u(z) ≤ f(z)}
is compact in D. Since ur converges to u uniformly on compact sets, ur(z) ≥ f(z)
outside of a compact set, for r close to 1. Hence hr(z0) is definitevely larger than
f(z0), namely f(z0) ≤ lim infr hr(z0), and the claim follows since f is arbitrary.
Taking limits in Equation (4.27), we conclude that h(z0)−C

√
1− |z0|2 ≤ u(z0) for

C = 1/
√

inf ψ. As the point z0 is arbitrary, we conclude the proof.
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Proof of Proposition 4.3.7. Let u1, u2 be two solutions with u1|∂D = u2|∂D = ϕ. By
Proposition 4.3.8, there exists a constant C such that

−C
√

1− |z|2 ≤ u1(z)− u2(z) ≤ C
√

1− |z|2 .

Hence the function u1−u2 extends continuously to zero at the boundary ∂D. There-
fore u1 − u2 has a minimum on D. By Theorem 3.3.2, the minimum cannot be
achieved at an interior point. Therefore the minimum is achieved on ∂D, which
means that u1 ≥ u2. By exchanging the roles of u1 and u2, one can conclude that
u1 ≡ u2.

4.3.3 The solution is an entire graph

In this subsection we prove that the solutions constructed in Theorem 4.3.1 are the
support functions of entire graphs in R2,1. We will make use of barriers which are
constant curvature surfaces invariant under a parabolic group, as constructed in
Subsection 4.2.1.

In order to use the surface SC,v0(K) (described in Proposition 4.2.2) as a barrier,
we need to prove a technical lemma.

Lemma 4.3.9. Let ϕ1, ϕ2 : ∂D→ R be two bounded lower semicontinuous functions
and let ψ1, ψ2 : H2 → [a, b] be two smooth functions, for some 0 < a < b. If ϕ1 ≤ ϕ2

and ψ1 ≤ ψ2, then the smooth solutions ui : D→ R (for i = 1, 2) to the equation

detD2ui(z) =
1

ψi(z)
(1− |z|2)−2

with

ui|∂D = ϕi

satisfy u1 ≤ u2 on D.

Proof. Suppose first ϕ1 is continuous. Therefore also the solution u1 is continuous
on D, since it satisfies the condition

h1(z)− C
√

1− |z|2 ≤ u1(z) ≤ h1(z) ,

where h1 is the convex envelope of ϕ1. Then the function u2 − u1 is lower semi-
continuous and is positive on the boundary, therefore it achieves a minimum. By
Theorem 3.3.2, the minimum has to be on the boundary, hence u2 ≥ u1 on D.

Now for the general case, let ϕ1 be lower semicontinuous and let ϕn, n ≥ 3, be
a sequence of continuous functions which converge to ϕ1 monotonically from below,
namely ϕn ≤ ϕn+1 and ϕn ≤ ϕ1 for every n ≥ 3. Let un be the solution of the
equation

detD2un(z) =
1

ψ1(z)
(1− |z|2)−2

with

un|∂D = ϕn .
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By the previous case, we know (if n ≥ 3) that un ≤ un+1 and un ≤ u1. Hence the
un are uniformly bounded and convex, thus by convexity the sequence un converges
uniformly on compact sets (up to a subsequence) to a generalized solution u∞ of the
same equation:

detD2u∞(z) =
1

ψ1(z)
(1− |z|2)−2 .

It is clear that u∞ ≤ u1. Let z ∈ ∂D. Recall the value of u∞ on z coincides with the
limit on radial geodesics. Hence we have u∞(z) = limr→1 u∞(rz) ≥ limr→1 un(rz) =
ϕn(z) for every n. Therefore u∞|∂D ≡ ϕ1. By the uniqueness proved in Proposition
4.3.7, u∞ ≡ u1. Since un(z) ≤ u2(z) for n ≥ 3 and for every z ∈ D, we conclude
that u1 ≤ u2.

We are finally ready to conclude the proof of Theorem 4.A.

Proof of Theorem 4.A. We have showed in Theorem 4.3.1 and Proposition 4.3.7 that
there exists a unique solution u to Equation (MA), hence having the required cur-
vature function. Moreover, the solution satisfies Equation (CT), which ensures that
the surface S with support function u is a Cauchy surface and satisfies the estimate
on the cosmological time.

It only remains to show that S is a spacelike entire graph. Suppose it is not.
Therefore S is tangent to the boundary of the domain of dependence and develops
a lightlike ray R at the tangency point. Suppose the lightlike ray is parallel to the
null vector v0 of R2,1. Let α be such that ϕ(z) ≤ α for every z ∈ ∂D.

We consider the function

ϕ0(z) =

{
ϕ(z) [z] = [v0]

α [z] 6= [v0]
.

From Proposition 4.2.2, there exists a K0-surface S0 with support function at infinity
ϕ0, for K0 = inf K = − sup |K|, which is obtained by translating vertically in R2,1

a suitably chosen surface SC,v0(K0). Geometrically, this is equivalent to choosing
the domain of dependence whose boundary is the future of a parabola (see Figure
4.1). The parabola is obtained by intersecting the plane containing the lightlike ray
R with a cone I+(p) over a point p on the z-axis, sufficiently in the past, so as to
contain the original surface S.

Applying Lemma 4.3.9, we see that S is in the future of S0. However, S0 is
an entire graph (see Proposition 4.2.2) and both S and S0 have the same lightlike
support plane with normal vector v0. This gives a contradiction and concludes the
claim that S is an entire graph.

Remark 4.3.10. In the above proof of Theorem 4.A, we have actually showed that
every smooth convex bounded solution u : D→ R of

detD2u(z) =
1

ψ(z)
(1− |z|2)−2 (MA)

with ψ : D→ (0,∞), supψ <∞, corresponds to a spacelike entire graph in R2,1 with
curvature K(G−1(z)) = −ψ(z). On the other hand, the hypothesis that supψ <
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∞ is essential. We give an explicit counterexample. Let us consider the function
u : D → R defined by u(z) = |z|2/2. It is easily checked that the dual surface S
defined by u is the graph of u itself, and is only defined over D. One can see that S
is tangent to the lightcone centered at (0, 0,−1/2) and that its curvature function
is K(G−1(z)) = −ψ(z) = − 1

(1−|z|2)2 , hence is unbounded. See also Figure 4.11.

Figure 4.11: A Cauchy surface in the cone over a point, of unbounded negative curvature,
which is not a spacelike entire graph. The surface (red) is obtained by revolution around
the vertical axis.

4.4 Foliations by constant curvature surfaces

In this section we prove that every domain of dependence defined by a bounded
support function at infinity is foliated by K-surfaces, as K varies in (−∞, 0). The
main statement is the following.

Theorem 4.D. Every domain of dependence D, with bounded support function
at infinity ϕ : ∂D → R, is foliated by smooth spacelike entire graphs of constant
curvature K ∈ (−∞, 0).

The existence of such K-surfaces follows from Theorem 4.A, by choosing the
constant function ψ ≡ |K|. We now show that the K-surfaces foliate the domain of
dependence D.

Lemma 4.4.1. Let Sn = graph(fn) and S∞ = graph(f∞) be spacelike entire graphs
in R2,1 with C1 support functions un : D → R and u∞ : D → R. If un converges to
u∞ uniformly on compact sets, then fn converges uniformly on compact sets to f∞.

Proof. By a slightly abuse of notation, we consider here the Gauss map Gn : Sn → D
using the canonical identification π : H2 → D. As by convexity we have that
Dun(z)→ Du(z) for any z ∈ D, Formula (4.1) implies that

G−1
n (z)→ G−1

∞ (z)

for all z ∈ D. Let us set G−1
n (z) = (pn(z), fn(pn(z)), where pn(z) is the vertical

projection to R2. We have that

pn(z)→ p∞(z) and fn(pn(z))→ f∞(p∞(z)) . (4.28)
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Using that fn’s are 1-Lipschitz, by a standard use of Ascoli-Arzelà Theorem, we get
that up to a subsequence, fn converges uniformly on compact subset of R2 to some
function g.

In order to prove that g = f∞, let us use again (4.28). We get that f∞(p∞(z)) =
lim fn(pn(z)) = g(p∞(z)). So f and g coincide on the image of p∞. As we are
assuming that S∞ is a spacelike entire graph we conclude that they coincide every-
where.

Recall that a K0-surface S(K0) in D is constructed as limit of K0-surfaces Sn(K0)
invariant under the action of a surface group. By the work of [BBZ11], theK-surfaces
Sn(K) foliate the domain of dependence Dn of Sn(K0), as K varies in (−∞, 0).

Theorem 4.4.2 ([BBZ11]). Let G0 be a Fuchsian cocompact group and let Γ0 be a
discrete subgroup of Isom(R2,1) whose linear part is G0. Then the Cauchy surfaces
S0(K) of constant curvature K ∈ (−∞, 0) foliate the maximal domain of dependence
D0 invariant under the action of the group Γ0, in such a way that if K1 < K2, then
S0(K2) is contained in the future of S0(K1).

Proof of Theorem 4.D. The proof is split in several steps. First we prove the con-
stant curvature surfaces are pairwise disjoint, then that the portion contained be-
tween two constant curvature surfaces is filled by other constant curvature surfaces,
and finally that one can find a constant curvature surface arbitrarily close to the
boundary of the domain of dependence and to infinity.

Step 1. Let us show that, if K1 < K2, then the constant curvature surfaces
S(K1) and S(K2) are disjoint, and S(K2) is in the future of S(K1). Let Sn(K1)
and Sn(K2) be approximating sequences as in the proof of Theorem 4.3.1, and let
un(K1) and un(K2) be the corresponding support functions. From Theorem 4.4.2 of
[BBZ11], we know that un(K2) < un(K1). Hence in the limit u(K2) ≤ u(K1), where
u(Ki) is the support function of S(Ki). Hence S(K1) and S(K2) do not intersect
transversely. Moreover S(K1) is in the closure of the past of S(K2). Finally S(K1)
and S(K2) cannot be tangent at a point, since |K1| > |K2| and thus at least one of
the eigenvalues of the shape operator of S(K1) is larger than the largest eigenvalue
of S(K2).

Step 2. We show that, given two Cauchy surfaces S(K1), S(K2) in D of constant
curvature K1 < K2, every point between S(K1) and S(K2) lies on a Cauchy surface
of constant curvature. Let x be a point in R2,1 contained in the past of S(K2) and
in the future of S(K1). For n large, x is in the past of Sn(K2) and in the future of
Sn(K1). Therefore there exists a surface Sn(Kn) through x, with K1 < Kn < K2.
Up to a subsequence, let us assume Kn → K∞. Using the same argument we gave
in the proof of Theorem 4.3.1, the support functions un(Kn) converge (up to a
subsequence) uniformly of compact sets to u∞(K∞), which is the support function
of the K∞-surface S(K∞) in D. Since x ∈ Sn(Kn) for every n, Lemma 4.4.1 implies
that x ∈ S(K∞).

Step 3. We show that for every point x nearby the boundary of the domain of
dependence there is a constant curvature Cauchy surface S(K0) such that x ∈ S(K0).
This follows from Equation (CT), which states that the K-surface S(K) in D is
contained in the past of the (1/

√
|K|)-level surface of the cosmological time. Since
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the level surfaces LC = {T = C} of the cosmological time get arbitrarily close to
the boundary of the domain of dependence as C gets close to 0, it is clear that x is
in the future of S(K0) if |K0| is large enough. The claim follows by Step 2.

Step 4. Finally, we show that every point far off at infinity lies on some constant
curvature Cauchy surface. By contradiction, suppose there is a point x which is in
the future of every K-surface S(K). Let S(K) be the graph of fK : R2 → R. Then
the fK are uniformly bounded (they are all smaller than the function which defines
I+(x)) and convex. Up to a subsequence fK → f∞ uniformly on compact sets. The
function f∞ defines a surface S∞ contained in the domain of dependence D.

Now, fK satisfies (see for instance [Li95])

detD2fK = |K|(1− ||Df ||2)2 .

Therefore, taking the limit as K → 0, detD2f∞ = 0 in the generalized sense. The
following Lemma states that f∞ is affine along a whole line of R2, and this gives a
contradiction, since S∞ would contain an entire line and thus could not be contained
in the domain of dependence D.

Lemma 4.4.3. Let f : R2 → R be a convex function which satisfies the equation
detD2f = 0 in the generalized sense. Then there exist a point x0 ∈ R2, a vector
v ∈ R2, and α ∈ R such that f(x0 + tv) = f(x0) + αt for every t ∈ R.

Proof. By Theorem 3.3.7 for any bounded convex domain Ω ⊂ R2, f |Ω coincides with
the convex envelope of f |∂Ω. It follows that for any x ∈ R2 there is v = v(x) ∈ R2 and
α = α(x) ∈ R such that f(x+ tv) = f(x) +αt for t ∈ (−ε, ε), for some ε = ε(x) > 0.

Fix a point x1, and set v1 = v(x1). Up to adding an affine function we may
assume that α(x1) = 0 and that f(x) ≥ f(x1) for any x ∈ R2. If f is affine along
the whole line x1 + Rv1, we have done. Otherwise take the maximal t1 such that
f(x1 + t1v1) = f(x1) and put x0 = x1 + t1v1. Let v0 = v(x0), clearly v0 6= v1. As
f(x) ≥ f(x0) = f(x1) for every x ∈ R2, necessarily α(x0) = 0. See Figure 4.12.

x1
v1

x0 = x1 + t1v1

v0

Figure 4.12: The setting of the proof of Lemma 4.4.3. Composing with an affine map, we
can assume f is constant on the drawn segments.

We claim that f(x) > f(x0) on the half-plane P0 bounded by x0 + Rv0 which
does not contain x1. Otherwise we should have that f ≡ f(x0) on the triangle with
vertices x, x0 + εv0, x0 − εv0, but then f would be constant equal to f(x1) on some
segment [x1, x0 + ηv1], violating he maximality of t1. See Figure 4.13.
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Now suppose that f(x0 + tv0) > f(x0) for some t and take the maximal t0 for
which f(x0 + t0v0) = f(x0). Define x2 = x0 + t0v0. As before we have that v2 is
different form v0 and that f ≡ f(x0) on some segment of the form [x2−εv2, x2 +εv2]
(see Figure 4.14). As this segment contains points of P0 we get a contradiction.

x1
x0

x
x0 + ǫv0

x0 − ǫv0

Figure 4.13: We have f(x) > f(x1) on
the right halfplane bounded by the line
x0 + Rv0, for otherwise f would be con-
stant on the ruled triangle, contradicting
the maximality of t1.

x1
x0

x2
v2

Figure 4.14: By a similar argument, f
has to be constant on the entire line x0 +
Rv0.

4.5 Constant curvature surfaces and boundedness of prin-
cipal curvatures

In this section we give a characterization of K-surfaces with bounded principal cur-
vatures. The following statement contains a series of equivalences which basically
include the statements of Theorem 4.B and Theorem 4.C.

Theorem 4.5.1. Let D be a the domain of dependence in R2,1. The following are
equivalent:

i) The measured geodesic lamination µ dual to ∂sD is bounded, i.e. ||µ||Th < +∞.

ii) The support function at infinity h = H|∂D : ∂D → R of D is in the Zygmund
class.

iii) The domain of dependence D contains a convex Cauchy surface with principal
curvatures bounded below by some constant d > 0.

iv) The domain of dependence D is foliated by complete convex Cauchy surfaces of
constant curvature K with principal curvatures bounded below by some constant
d = d(K) > 0, where K ∈ (−∞, 0).

We will give the proof in several steps. It is obvious that iv)⇒ iii). In Subsection
4.5.1 we prove that i)⇔ ii). The existence part of ii)⇒ iv) follows by Theorem 4.D;
in Subsection 4.5.2 we complete the proof by showing that, if the dual lamination
has finite Thurston norm, then the principal curvatures are bounded and the surface
is complete. Finally, in Subsection 4.5.3 we give a proof of the last step. Indeed, we
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will show directly iii)⇒ i), by giving an explicit estimate of Thurston norm of the
dual lamination in terms of the supremum of the principal curvatures, which holds
for any convex Cauchy surface.

4.5.1 Zygmund fields and bounded measured geodesic laminations

In this part, we discuss the equivalence between i) and ii). We prove here the key
fact for this equivalence. Given a function ϕ : S1 → R, we denote by ϕ̂ the vector
field on S1 associated to ϕ by means of the standard trivialization.

Proposition 4.5.2. Given an infinitesimal earthquake ϕ̂ = d
dt

∣∣
t=0

Etµ, the function
ϕ : S1 → R is the support function at infinity on ∂D = S1 of a domain of dependence
D with dual lamination µ.

Proof. By composing ϕ̂ with infinitesimal Möbius tranformation, (compare Section
2.3.3) we can suppose the point x0 ∈ H2 lies in a stratum of µ which is fixed by the
earthquakes Etµ, for t ∈ R. By Proposition 4.1.10, the support function at infinity
of the domain of dependence D = D(µ, x0, 0) which has dual lamination µ and x⊥0
as a support plane is

H(η) =

∫
G[x0,η)

〈η,σ〉dµ , (4.29)

for every η in ∂I+(0). Here [x0, η) denotes the geodesic ray obtained by projecting
to H2 the line segment connecting x0 and η (recall the convention introduced before
Proposition 4.1.10).

By Lemma 4.1.6, the vector field ϕ̂ on S1 defines a 1-homogeneous function Φ
on ∂I+(0). Since H is 1-homogeneous, it suffices to check that H and Φ agree on
∂D = ∂I+(0) ∩ {x3 = 1}. Let η ∈ ∂D and let v be the unit vector tangent to ∂D in
the counterclockwise orientation. By Lemma 4.1.6, under the standard identification
of ∂D with S1, we have

ϕ(η) = 〈ϕ̂(η), v〉 = Φ(η) .

We now compute the infinitesimal earthquake ϕ at a point η. If l is a leaf of µ,
the infinitesimal earthquake along the lamination composed of the only leaf l (as in
Example 4.1.7) is

Ėl(η) = 〈Ȧl(η), v〉v = 〈η � σ(l), v〉v ,

where Ȧl = d
dt

∣∣
t=0

Al(t) ∈ so(2, 1) is the infinitesimal generator of the 1-parameter

subgroup of hyperbolic isometries Al(t) which translate on the left (as seen from x0)
along the geodesic l by lenght t. In the second equality we have used the fact that
Ȧl(η) = η � σ(l) (see for instance [BS12, Appendix B]).

Using Equation (2.6) in Theorem 2.3.11, we obtain

〈ϕ̂(η), v〉 =

∫
G[x0,η)

Ėl(η)dµ =

∫
G[x0,η)

〈η � σ, v〉dµ . (4.30)

We will show that 〈η,σ(l)〉 = 〈η � σ(l), v〉, from which the claim follows, by com-
paring Equations (4.29) and (4.30). For this purpose, let p = (0, 0, 1) and η = p+w,
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so that (p, w, v) gives an orthonormal oriented triple. Suppose σ(l) = ap+ bw+ cv.
Then

〈η,σ(l)〉 = a〈p, p〉+ b〈w,w〉 = b− a
whereas

η � σ(l) = b(p� w) + a(w � p) + c(p� v + w � v)

and in conclusion 〈η � σ(l), v〉 = b− a = 〈η,σ(l)〉.

Remark 4.5.3. We observe that if a different base point x′0 (out of any weighted leaf
of µ) is chosen, we obtain the 1-homogeneous function H ′ such that

H ′(η) =

∫
G[x′0,η)

〈η,σ〉dµ =

∫
G[x′0,x0]

〈η,σ〉dµ+

∫
G[x′0,η)

〈η,σ〉dµ

where this equality follows from the fact that µ is a measured geodesic lamination,
and hence in Equation (4.29) the interval [x0, x] can be replaced by any path from
x0 to x transverse to the support of the lamination (see also [Mes07]). Clearly, if a
suitable normalization is chosen, also the infinitesimal earthquake ϕ̂′ changes in the
same way. Therefore H ′ agrees with the function Φ′ obtained from ϕ̂′.

Finally, recall that a tangent element to Universal Teichmüller space is defined
as a vector field on S1 satisfying the Zygmund condition (2.4) up to a first-order
deformation by Möbius transformations. Therefore a different representative ϕ̂′ in
the same equivalence class of ϕ̂ differs by

ϕ̂′(η) = ϕ̂(η) +
d

dt

∣∣∣∣
t=0

A(t)(η) = ϕ̂(η) + Ȧ(η) = ϕ̂(η) + η � y0

where A(t) ∈ Isom(R2,1), A(0) = I and Ȧ = d
dt

∣∣
t=0

A(t) ∈ so(2, 1). By the same
computation as above, 〈ϕ̂′(η), v〉 = H ′(η) where H ′ is the support function of the
domain of dependence D(µ, x0, y0).

By applying Proposition 4.5.2 and results presented in [GHL02] or [MŠ12] on
the convergence of the integral in Equation (2.6), one deduces that, if D is a domain
of dependence whose dual lamination has finite Thurston norm, then the support
function at infinity of D is finite. We will give a quantitative version of this fact
in Proposition 4.5.6 - which will be useful because it gives a uniform bound on the
support function in terms of the Thurston norm. Here we draw another consequence
of Proposition 4.5.2, namely the equivalence of conditions i) and ii).

Corollary 4.5.4. Given a domain of dependence D, the dual lamination µ has finite
Thurston norm if and only if the support function h of D extends to a Zygmund field
on ∂D.

Proof. If ||µ||Th < +∞, from Proposition 4.5.2 we know that h|∂D coincides with
the infinitesimal earthquake along µ, hence is a Zygmund field. Viceversa, if h|∂D is
a Zygmund field, by Theorem 2.3.11 there exists a bounded lamination µ such that
h|∂D is the infinitesimal earthquake along µ, and we conclude again by Proposition
4.5.2.
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4.5.2 Boundedness of curvature

To prove the implication i)⇒ iv), we have showed in Theorem 4.A the existence of
constant curvature Cauchy surfaces S(K), while in Theorem 4.D we proved that the
surfaces S(K) foliate the domain of dependence as K ∈ (−∞, 0). It remains to show
that the principal curvatures of the Cauchy K-surfaces S(K) we constructed are
bounded provided the dual measured geodesic lamination has finite Thurston norm.
This will also imply that S(K) is complete, since (by boundedness of the curvature
and of the principal curvatures) the Gauss map is bi-Lipschitz with respect to the
induced metric on S and the hyperbolic metric of H2.

Proposition 4.5.5. Given a K-surface S, if the lamination µ dual to the domain
of dependence D(S) has finite Thurston norm, then the principal curvatures of S
are uniformly bounded.

We will prove the proposition by contradiction. If the statement did not hold,
there would exist a sequence of points xn ∈ S such that the principal curvatures
diverge (since the product of the principal curvatures is constant, necessarily one
principal curvature will tend to zero and the other to infinity). Roughly speaking,
we will choose isometries An so that the points xn are sent to a compact region
of R2,1, and consider the surfaces Sn = An(S). Essentially, a contradiction will
be obtained by showing that the sequence Sn contains a subsequence converging
to a constant curvature smooth surface S∞ - using the boundedness of the dual
lamination - and that this gives bounds on the principal curvatures at xn. Hence it
is not possible that principal curvatures diverge.

In order to apply the above argument, we need to prove a uniform bound on the
support functions, depending only on the Thurston norm of the dual lamination.

Proposition 4.5.6. Let D0 = D(µ0, x0, y0) be a domain of dependence whose dual
lamination µ0 has Thurston norm ||µ0||Th < M , such that P = y0 +x⊥0 is a support
plane tangent to ∂sD0 at y0. Let h0 be the support function of D0. Then h0 ≤ C on
D for a constant C which only depends on M,x0, y0.

Proof. The support function of D0 restricted to H2, under the hypothesis, is given
by (see Proposition 4.1.10):

h̄0(x) = 〈x, y0〉+

∫
G[x0,x]

〈x,σ〉dµ0 .

It is harmless to assume that x0 = (0, 0, 1) and y0 = 0; indeed, composing with an
isometry of R2,1, the support function h changes by an affine map on D. Hence we
give an estimate of the integral term in h̄0. Let γ be a unit speed parametrization of
the geodesic segment [x0, x]. Note that if γ(s) is on a geodesic l, for every x ∈ H2,

|〈x,σ(l)〉| = sinh dH2(x, l) ≤ sinh dH2(x, γ(s)).

Hence, consider the partition γ(0) = x0, γ(1), . . . , γ(N), γ(dH2(x0, x)) = x, for N the
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integer part of dH2(x0, x). We have∣∣∣∣∣
∫
G[x0,x]

〈x,σ〉dµ0

∣∣∣∣∣ ≤
N+1∑
i=1

sinh(i)µ0([γ(i− 1), γ(i)])

≤
N+1∑
i=1

M

2
ei =

M

2
e
eN+1 − 1

e− 1
≤ M

2

e2

e− 1
edH2 (x0,x) .

We can finally give a bound for the support function h0 on D. If π(x) = z ∈ D,

h0(z) =
h̄0(x)

cosh dH2(x0, x)
≤ M

2

e2

e− 1

edH2 (x0,x)

cosh dH2(x0, x)
≤M e2

e− 1
.

This shows that the function h0 is bounded by a constant which only depends on
M and on x0, y0. By Lemma 4.1.3, the bound also holds on ∂D.

Proof of Proposition 4.5.5. Let An ∈ SO0(2, 1) be a linear isometry of R2,1 such that
An(G(xn)) = (0, 0, 1), where G : S → H2 is the Gauss map of S. Let D′n be the
domain of dependence of the surface An(S). Now let tn ∈ R2,1 be such that the
tn-translate of ∂sD

′
n has a support plane with normal vector (0, 0, 1) with tangency

point the origin.

Let Sn = An(S) + tn. Let un be the support function on D of Sn and hn be the
support function of its domain of dependence Dn = D′n + tn.

The support functions un are uniformly bounded on any Ω with compact closure
in D, since we have hn − (1/

√
|K|)

√
1− |z|2 ≤ un ≤ hn and by Proposition 4.5.6

the support functions hn of Dn are uniformly bounded on Ω. Hence ||un||C0(D) < C
for some constant C. Let Bn be the shape operator of Sn. Equation (4.2) in Lemma
4.1.4, for z = 0, gives B−1

n = Hess(un). Applying Lemma 4.1.12, the inverse of the
principal curvatures of Sn, which are the eigenvalues of B−1

n , cannot go to infinity at
the origin. This concludes the proof that principal curvatures of Sn cannot become
arbitrarily small.

4.5.3 Cauchy surfaces with bounded principal curvatures and the
Thurston norm of the dual lamination

In this part, we will show that a Cauchy surface S with principal curvatures bounded
below, λi ≥ d for some d > 0, are such that the measured geodesic lamination µ
dual to D(S) has finite Thurston norm. This shows the implication iii)⇒ i). More
precisely, we prove:

Proposition 4.5.7. Let B be the shape operator of a convex spacelike surface S in
R2,1 such that the Gauss map is a homeomorphism. Let µ be the measured geodesic
lamination dual to D(S), where D(S) is the domain of dependence of S. Then

||µ||Th ≤ 2
√

2(1 + cosh(1))||B−1||op (4.31)

where ||B−1||op = sup{||B−1(v)||/||v|| : v ∈ TS} is the operator norm.
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Note that ||B−1||op is the supremum of the inverse of the principal curvatures
of S; alternatively, it is the inverse of the infimum of the principal curvatures of S.
To prove Proposition 4.5.7, we consider x1, x2 ∈ H2 with dH2(x1, x2) ≤ 1 and take
points y1, y2 on ∂sD(S) such that P1 = y1 +x⊥1 and P2 = y2 +x⊥2 are support planes
of D. Recall µ(G[x1, x2]) denotes the value taken by the dual lamination µ on the
geodesic segment [x1, x2] which joins x1 and x2. We will also denote ||v||− =

√
〈v, v〉

if v ∈ R2,1 is spacelike.

Lemma 4.5.8. Let y1, y2 ∈ ∂sD(S) and P1 = y1 + x⊥1 and P2 = y2 + x⊥2 be support
planes for ∂sD(S) tangent to ∂sD(S) at y1 and y2. If x1 and x2 do not lie on any
weighted leaf of the dual lamination µ of D(S), then

µ(G[x1, x2]) ≤ ||y1 − y2||− .

Proof. Assume first suppµ∩G[x1, x2] determines a finite lamination, i.e. µ restricted
to G[x1, x2] is composed of a finite number of weighted leaves g1, . . . , gp with weights
a1, . . . , ap. Then we have (compare Proposition 4.1.10)

y2 − y1 =

∫
G[x1,x2]

σdµ =

p∑
i=1

aiσ(gi).

Since the geodesics g1, . . . , gp are pairwise disjoint, the unit oriented normal vectors
σ(g1), . . . ,σ(gp) are such that 〈σ(gi),σ(gj)〉 ≥ 1. Hence

〈y2 − y1, y2 − y1〉 =

p∑
i=1

a2
i + 2

∑
i<j

aiaj〈σ(gi),σ(gj)〉 ≥
(

p∑
i=1

ai

)2

= µ(G[x1, x2])2.

This shows that the following inequality holds for a finite lamination µ:(∫
G[x1,x2]

dµ

)2

≤ 〈
∫
G[x1,x2]

σdµ,

∫
G[x1,x2]

σdµ〉 . (4.32)

In general, if µ restricted to G[x1, x2] is not a finite lamination, we can approximate
in the weak* topology the lamination µ by finite laminations µn (compare Lemma
4.3.3). As in Lemma 4.3.4, one can show∫

G[x1,x2]
σdµn

n→∞−−−→
∫
G[x1,x2]

σdµ = y2 − y1 (4.33)

and ∫
G[x1,x2]

dµn
n→∞−−−→

∫
G[x1,x2]

dµ = µ(G[x1, x2]) . (4.34)

Since (4.32) holds for the finite laminations in the LHS of Equations (4.33) and
(4.34), the proof is complete.

Lemma 4.5.9. Let S be a convex surface in R2,1 such that the principal curvatures
λi of S are bounded below, λi ≥ d > 0. For every point p ∈ S, the surface S
is contained in the future of the hyperboloid through p, tangent to TpS and with
curvature −d2.
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Proof. Let u : D → R and ū : H2 → R, as usual, denote the support function of S
restricted to D and to H2. Analogously, let v : D→ R and v̄ : H2 → R be the support
function of the hyperboloid p + (1/d)H2, as in the hypothesis. Composing with an
isometry, we can assume p = (0, 0, 1/d) and TpS is the horizontal plane x3 = 1/d.
Hence v̄ ≡ −1/d, while from Equation (4.1) in Lemma 4.1.4 for the inverse of the
Gauss map of S

G−1(x) = grad ū(x)− ū(x)x ,

one can deduce ū((0, 0, 1)) = −1/d and grad ū((0, 0, 1)) = 0. From the hypothesis,
the eigenvalues of the shape operator of S are larger than d at every point. On the
other hand the shape operator of the hyperboloid of curvature −d2 is dI. Therefore
Hessū− ūI < Hessv̄ − v̄I and it follows that v − u is a convex function on D with a
minimum at 0 ∈ D, where (v − u)(0) = 0. Therefore v − u is positive on D, which
shows that v ≥ u and thus proves the statement.

The following Lemma is a direct consequence.

Lemma 4.5.10. Let S be a convex spacelike surface in R2,1 such that the principal
curvatures of S are bounded below, λi ≥ d > 0, and that the Gauss map G is a
homeomorphism. Then for every p ∈ S, D(S) ⊂ I+(rd(p)), where

rd(p) = p− 1

d
G(p).

Proof. By Lemma 4.5.9, S ⊂ I+(rd(p)) for every p ∈ S. It follows that the entire
domain of dependence of S is contained in I+(rd(p)).

Proof of Proposition 4.5.7. Assume the principal curvatures of S are bounded below
by d > 0, and d is the infimum of the principal curvatures of S. Hence ||B−1||op =
1/d.

Let us take x1, x2 ∈ H2, which do not lie on any weighted leaf of the dual
lamination µ of D(S), with dH2(x1, x2) ≤ 1. Suppose y1, y2 ∈ ∂sD(S) are such that
P1 = y1 + x⊥1 and P2 = y2 + x⊥2 are tangent planes for ∂sD(S). We will show that
||y1−y2||− ≤ 2

√
2(1 + cosh(1))/d and thus the estimate (4.31) will follow by Lemma

4.5.8.
Suppose moreover p1, p2 ∈ S are such that p1 + x⊥1 and p2 + x⊥2 are tangent

planes for S. Let us denote Ui = I+(rd(pi))∩ I−(TpiS) and Vi = I+(rd(pi))∩ I−(Pi),
for i = 1, 2. See Figure 4.15 and 4.16. Note that y1, y2 ∈ I+(rd(pi)), for i = 1, 2, by
Lemma 4.5.10.

By construction, y1 ∈ V1 ⊂ U1 and y2 ∈ V2 ⊂ U2. Let us consider separately
three cases:

Case 1 : y2 ∈ V1. Then both y1 and y2 are contained in U1. Since U1 can
be mapped isometrically to the region

{
(x1, x2, x3) : x2

3 ≥ x2
1 + x2

2, x3 ≤ 1/d
}

(see
Figure 4.17), it is easy to see that a spacelike segment contained in U1 can have
lenght at most 2/d, which gives the statement in this particular case.

Case 2 : y1 ∈ V2. The estimate ||y1 − y2||− ≤ 2/d is obtained in a completely
analogous way.

Case 3 : y1 /∈ V2 and y2 /∈ V1. We claim that in this case P1 ∩ P2 contains a
point y3 in I+(rd(p1)) ∩ I+(rd(p2)). Indeed, if P1 ∩ P2 did not contain such a point,
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x1

y1

p1

rd(p1)

U1

V1 P1

TP1S

S

Figure 4.15: The setting of the proof and the definitions of the sets U1 and V1.

then the line P1 ∩P2 would be disjoint from I+(rd(p1))∩ I+(rd(p2)) and there would
be two possibilities. Either P2 ∩ I+(rd(p1)) ∩ I+(rd(p2)) is contained in I+(P1) ∩
I+(rd(p1)) ∩ I+(rd(p2)), which is not possible since by assumption y1 ∈ P1 is not in
V2, or P1 ∩ I+(rd(p1)) ∩ I+(rd(p2)) is contained in I+(P2) ∩ I+(rd(p1)) ∩ I+(rd(p2)),
which contradicts y2 /∈ V1.

Consider now the geodesic segments y3 − y1 and y2 − y3. Since y3 and y1 are
both contained in V1, we have ||y3 − y1||− ≤ 2/d. Analogously ||y2 − y3||− ≤ 2/d. If
the plane Q containing y1, y2, y3 is spacelike or lightlike, then

||y2 − y1||− ≤ ||y2 − y3||− + ||y3 − y1||− ≤
4

d
.

If Q is timelike (meaning that the induced metric on Q is a Lorentzian metric), then

〈y2 − y1, y2 − y1〉 = ||y2 − y3||2− + ||y3 − y1||2− + 2〈y2 − y3, y3 − y1〉 .

Let v1 and v2 be the future unit vectors in Q orthogonal to y3 − y1 and y2 − y3.
It is easy to check that

|〈y2 − y3, y3 − y1〉| = ||y2 − y3||−||y3 − y1||−|〈v1, v2〉|
= ||y2 − y3||−||y3 − y1||− cosh dH2(v1, v2) .

We claim that vi is the orthogonal projection in H2 of xi to the geodesic determined
by Q (namely, the geodesic through v1 and v2). Composing with an isometry, we
can assume y3 = 0, the direction spanned by y3 − y1 is the line x2 = x3 = 0 and
Q = {x2 = 0}. Then v1 = (0, 0, 1) and x1 = (0, sinh t, cosh t), where t = dH2(v1, x1),
and thus the claim holds. Of course the proof for x2 and v2 is analogous. This
concludes the proof by Lemma 4.5.8, since

||y2 − y1||2− ≤
4

d2
(2 + 2 cosh(1)) ,
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x1

y1

p1

rd(p2)

Tp2Sx2

p2

y2y3

P2

U2

V2

P1

rd(p1)

Figure 4.16: Analogously, the definitions of U2 and V2. The case pictured is for y1 /∈ V2
and y2 /∈ V1, hence there is a point y3 in P1 ∩ P2, which lies in I+(rd(p1)) ∩ I+(rd(p2)).

P1

U1
I+(0) 1

d

Figure 4.17: An isometric image of U1.

where we have used that y3 and y2 are contained in P2 ⊂ U2, y1 and y3 are contained
in P1 ⊂ U1 and so ||y2− y3||−, ||y3− y1||− ≤ 2/d as above, and (since the projection
to a line in H2 is distance-contracting) dH2(v1, v2) ≤ dH2(x1, x2) ≤ 1.



Chapter 5

Maximal globally hyperbolic flat
spacetimes

The purpose of this chapter is to study convex surfaces in maximal globally hyper-
bolic flat spacetimes. We have already explained (see Subsection 2.2.1) that, by the
pioneering work of Mess, such three-manifolds are parametrized by the holonomy
representation, which consists of a Fuchsian representation and a cocycle represent-
ing the translation part. Hence this provides a parametrization of the moduli space
of MGHF spacetimes whose topology is S × R (where S has genus at least 2) by
means of the tangent bundle TT (S) of Teichmüller space. The first result of the
chapter is an explicit description of the holonomy of a maximal globally hyperbolic
flat spacetime in terms of the embedding data of a strictly convex Cauchy surface
(recall the description of embedding data in Subsection 1.1.1).

The reason why we assume the strict convexity of S is that it permits a convenient
change of variables. Instead of the pair (I,B), one can in fact consider the pair (h, b),
where h is the third fundamental form h = I(B·, B·) and b = B−1. The fact that
(I,B) solves Gauss-Codazzi equations corresponds to the conditions that h is a
hyperbolic metric and b is a self-adjoint solution of Codazzi equation for h.

It is simple to check that the holonomy of the hyperbolic surface (S, h) is the
linear part of the holonomy of M , so the isotopy class of h does not depend on the
choice of a Cauchy surface in M and corresponds to the basepoint in T (S) for Mess’
parameterization. Our first theorem gives a recipe to recover the translation part of
the holonomy of M in terms of (h, b), by using the fact that ([OS83]) every h-self-
adjoint operator on the hyperbolic surface (S, h) which solves the Codazzi equation
can be locally expressed as Hessu − uE for some smooth function u. Using this
result we construct a short sequence of sheaves

0→ F → C∞ → C → 0 , (5.1)

where C is the sheaf of self-adjoint Codazzi operators on S and F is the sheaf of flat
sections of the R2,1-valued flat bundle associated to the holonomy of h. Passing to
cohomology, this gives a connecting homomorphism

δ : C(S, h)→ H1(S,F) ∼= H1
hol(π1(S),R2,1) ,

where hol : π1(S)→ SO0(2, 1) is the holonomy of h.

117
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Theorem 5.A. Let M be a globally hyperbolic spacetime and S be a uniformly
convex Cauchy surface with embedding data (I,B). Let h be the third fundamental
form of S and b = B−1. Then

• the linear holonomy of M coincides with the holonomy of h;

• the translation part of the holonomy of M coincides with δb.

In the case where S is a closed surface, we also provide a 2-dimensional geometric
interpretation of δb. This is based on the simple remark that b can also be regarded
as a first variation of the metric h. As any Riemannian metric determines a complex
structure over S, b determines an infinitesimal variation of the complex structure X
underlying the metric h, giving in this way an element Ψ(b) ∈ T[X]T (S).

Theorem 5.B. Let h be a hyperbolic metric on a closed surface S, X denote the
complex structure underlying h and C(S, h) be the space of h-self-adjoint Codazzi
tensors. Then the following diagram is commutative

C(S, h)
Λ◦δ−−−−→ H1

Ad◦hol(π1(S), so(2, 1))

Ψ

y dhol
x

T[X]T (S) −−−−→
J

T[X]T (S)

(5.2)

where Λ : H1
hol(π1(S),R2,1) → H1

Ad◦hol(π1(S), so(2, 1)) is the natural isomorphism,
and J is the complex structure on T (S).

Here hol is the map which associates to a point in Teichmüller space T (S) its
(conjugacy class of) holonomy representation in R(π1(S),SO0(2, 1))//SO0(2, 1). A
consequence of Theorem 5.B is the following corollary.

Corollary 5.C. Two embedding data (I,B) and (I ′, B′) correspond to Cauchy sur-
faces contained in the same spacetime if and only if

• the third fundamental forms h and h′ are isotopic;

• the infinitesimal variation of h induced by b = B−1 is Teichmüller equivalent
to the infinitesimal variation of h′ induced by b′ = (B′)−1.

Finally, we give an application of the commutativity of the diagram (5.2) to hy-
perbolic geometry. Goldman proved in [Gol84] that the Weil-Petersson symplectic
form on T (S) coincides up to a factor with the Goldman pairing on the character va-
riety R(π1(S), SO0(2, 1))//SO0(2, 1) through the map hol. We give a new Lorentzian
proof of this fact. It directly follows by the commutativity of (5.2): we show by an
explicit computation that the pull-back of those forms through the maps Λ◦δ and Ψ
coincide (up to a factor) on C(S, h). While Goldman’s proof highly relies on the com-
plex analytical theory of Teichmüller space, our proof is basically only differential
geometric.
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5.1 Cauchy surfaces and Codazzi operators

5.1.1 Codazzi operators on a hyperbolic surface

Let (S, h) be any hyperbolic (possibly open and non-complete) surface. Denote by

hol : π1(S)→ SO0(2, 1)

the corresponding holonomy. The only assumption we will make on h is that hol is
not elementary.

We will consider the Codazzi operator on the space of linear maps on TS

d∇ : Γ(T ∗S ⊗ TS)→ Γ(Λ2T ∗S ⊗ TS)

defined in the following way. Given a linear map b : TS → TS, and given v1, v2 ∈
TxM we have

d∇b(v1, v2) = (∇v1b)(v2)− (∇v2b)(v1) = ∇v1(b(v̂2))−∇v2(b(v̂1))− b([v̂1, v̂2]) ,

where ∇ is the Levi Civita connection of h and v̂1 and v̂2 are local extensions of v1

and v2 in a neighborhood of x.

Given a representation ρ : π1(S) → SO0(2, 1), the first cohomology group
H1
ρ (π1(S),R2,1) is the vector space obtained as a quotient of cocycles over cobound-

aries. A cocycle is a map t : π1(S) → R2,1 satisfying tαβ = ρ(α)tβ + tα. Such a
cocycle t is a coboundary if tα = ρ(α)t− t for some t ∈ R2,1. In this section we will
show that self-adjoint operators b satisfying the Codazzi equation d∇b = 0 naturally
describe the elements of the cohomology group H1

hol(π1(S),R2,1).

Let us recall that associated with h there is a natural flat R2,1-bundle F → S,
whose holonomy is hol. Basically, F is the quotient of S̃×R2,1 by the product action
of π1(S) as deck transformation on the first component and through the representa-
tion hol on the second one. Since S̃ is contractible, the group H1

hol(π1(S),R2,1) can
be canonically identified with the first cohomology group H1(S,F) of the sheaf F
of flat sections of F .

The relation between Codazzi tensors and the cohomology groupH1
hol(π1(S),R2,1) =

H1(S,F) relies on the construction of a short exact sequence of sheaves

0→ F → C∞ → C → 0 ,

where C is the sheaf of self-adjoint Codazzi tensors on S.

First we construct a map H : C∞ → C. This is is based on the following simple
remark. In this chapter, we will usually denote by u functions defined on H2, or
more generally on a hyperbolic surface, although those were previously denoted by
ū. Indeed, in the following it will be not important to consider the restriction of
such functions to the Klein model, as in the previous chapters.

Lemma 5.1.1. Let U be any hyperbolic surface. For every u ∈ C∞(S), b = Hessu−
uE is a self-adjoint Codazzi operator with respect to h. Here E denotes the identity
operator and Hessu = ∇ gradu is considered as an operator on TS.
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Proof. The fact that b is self-adjoint is clear. Let us prove that b satisfies the Codazzi
equation. By a simple computation d∇(uE) = du∧E. On the other hand, since by
definition Hessu = ∇(gradu) we get d∇Hessu = R(·, ·) gradu. As for a hyperbolic
surface R(v1, v2)v3 = h(v3, v1)v2 − h(v3, v2)v1, we get d∇Hessu = du ∧ E, so the
result follows.

Hence we define
H(u) = Hessu− uE .

The second step is to construct a map V : F → C∞ whose image is the kernel of
H. Notice that the developing map dev : S̃ → H2 ⊂ R2,1 induces to the quotient
a section ι : S → F called the developing section. Using the natural Minkowski
product on F , for any section σ of F the smooth function V (σ) is defined by taking
the product of σ with ι:

V (σ) = 〈σ, ι〉 .

Theorem 5.1.2. The short sequence of sheaves

0 −−−−→ F V−−−−→ C∞
H−−−−→ C −−−−→ 0 (5.3)

is exact.

Since the statement is of local nature, it suffices to check exactness on an open
convex subset U of H2. The surjectivity of the map H : C∞(U) → C(U, h) follows
by the general results in [OS83].

Notice that F(U) is naturally identified with R2,1. On the other hand, by iden-
tifying H2 with a subset of R2,1, the developing section is the standard inclusion.
So the exactness of the first part of the sequence (5.3) is proved by the following
Proposition.

Proposition 5.1.3. Let U be a convex neighborhood of H2. For any vector t0 ∈ R2,1

the corresponding function v = V (t0)

v(x) = 〈t0, x〉

satisfies the equation H(v) = 0. Conversely, if u is a smooth function on U such
that H(u) = 0, there exists a unique vector t ∈ R2,1 such that u(x) = 〈t, x〉 for any
x ∈ U .

Proof. We start by showing that for any fixed t0 ∈ R2,1 the function v(x) = 〈t0, x〉
satisfies H(v) = 0. Note that, for w ∈ TxH2,

dvx(w) = 〈t0, w〉 = 〈tTx0 , w〉 (5.4)

where tTx0 is the projection of t0 to TxH2. Thus grad v(x) = tTx0 . Note that TxH2

coincides with the orthogonal plane to x. So t0 = tTx0 −〈t0, x〉x = grad v(x)−v(x)x .
We will denote by ∇ the covariant derivative in the ambient R2,1 and by ∇ that
of H2 and use the fact that the second fundamental form of H2 coincides with the
metric. Upon covariant differentiation in R2,1,

0 = ∇w grad v(x) + 〈w, grad v(x)〉x− dvx(w)x− v(x)w = (Hess v − v E)(w) .
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Since elements of U , regarded as vectors of R2,1, generate the whole Minkowski
space, the map

V : R2,1 → C∞(U)

is injective and the image is a subspace of dimension 3 contained in the kernel of H.
In order to conclude it is sufficient to prove that the dimension of kerH is 3.

To this aim it will suffice to show that any u satisfying Hessu−uI = 0 such that
u(xi) = 0 on three non-collinear points x1, x2, x3 vanishes everywhere.

Let γ : R→ H2 be a unit-speed geodesic in U connecting two points γ(s1), γ(s2)
where u(γ(s1)) = u(γ(s2)) = 0. We claim that u◦γ ≡ 0. Using that Hessu−uE = 0,
one gets that y = u ◦ γ satisfies the linear differential equation y′′ = y. Since
y(s1) = y(s2) = 0, for a standard maximum argument, y ≡ 0 on the interval [s1, s2]
and, by uniqueness, y ≡ 0 on R.

Then u ≡ 0 on any geodesic connecting two points where u takes the value 0.
By hypothesis, u takes the value 0 on three non-collinear points of U . By convexity
of U , it is easy to see that the geodesics on which u ≡ 0 exaust the whole U , and
this concludes the proof.

Let us stress that in general the sequence (5.3) is not globally exact. The fol-
lowing example shows a family of Codazzi tensors which cannot be expressed as
Hessu− uE.

Example 5.1.4. Suppose S is a closed surface. As observed by Hopf, see also [KS07],
a self-adjoint Codazzi operator b : TS → TS is traceless if and only if the symmetric
form g(v, w) = h(b(v), w) on S is the real part of a holomorphic quadratic differential
q on S. This gives an isomorphism of real vector spaces between the space of
holomorphic quadratic differentials on S and the space of traceless Codazzi tensors.
We denote the image of q under this isomorphism by bq. So traceless Codazzi tensors
form a vector space of finite dimension 6g − 6 where g is the genus of S.

On the other hand, if Hessu − uE is traceless, then u satisfies the equation
∆u − 2u = 0. A simple application of the maximum principle shows that the only
solution of that equation is u ≡ 0. It follows that non-trivial traceless Codazzi
tensors on S cannot be expressed as Hessu− uE.

The next Proposition shows that however the examples above are in a sense the
most general possible. Although the proof is contained in [OS83], we give a short
argument.

Proposition 5.1.5. Let S be a closed surface. Given b ∈ C(S, h) self-adjoint tensor
satisfying Codazzi equation with respect to the hyperbolic metric h, a holomorphic
quadratic differential q and a smooth function u ∈ C∞(S) are uniquely determined
so that b = bq + Hessu− uE.

Proof. The subspaces {b ∈ C(S, h) : b is traceless} and {b ∈ C(S, h) : b = Hessu− uE}
have trivial intersection by Example 5.1.4. Now, let b ∈ C(S, h) and f = tr(b) ∈
C∞(S). Again, since ∆ − 2id is invertible, there exists some function u such that
f = ∆u − 2u = tr(Hessu − uE). Therefore b − (Hessu − uE) is traceless. This
concludes the proof of the direct sum decomposition.
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From the exact sequence (5.3) we have a long exact sequence in cohomology

0→ H0(S,F)→ H0(S,C∞)→ H0(S, C)→ H1(S,F)→ H1(S,C∞) . (5.5)

Since the holonomy representation hol is irreducible, then H0(S,F) is trivial. More-
over, H1(S,C∞) vanishes since C∞ is a fine sheaf. So we have a short exact sequence

0 −−−−→ C∞(S)
H−−−−→ C(S, h)

δ−−−−→ H1(S,F) −−−−→ 0 . (5.6)

Since S̃ is contractible, the cohomology group H1(S,F) is naturally identi-
fied with the group H1

hol(π1(S),R2,1). The identification goes as follows. Take a
good cover U of S and let Ũ be its lifting on S̃. By Leray Theorem H1(S,F) =
H1(Č•(U ,F)).

The pull-back π∗F of the sheaf F on the universal cover is isomorphic to the
sheaf R2,1 of R2,1-valued locally constant function. Moreover there is a natural left
action of π1(S) on Čk(Ũ ,R2,1) given by

(α ? s)(i0, . . . , ik) = hol(α)s(α−1i0, . . . , α
−1ik) ,

where we are using the fact that π1(S) permutes the open subsets in Ũ .

Now, the complex Č•(U ,F) is identified by pull-back with the sub-complex of
Č•(Ũ ,R2,1), say Č•(Ũ ,R2,1)π1(S), made of elements invariant by the action of π1(S).

Since H1(S̃,R2,1) = 0, given a π1(S)-invariant cocycle s ∈ Ž•(Ũ ,R2,1)π1(S), there
is a 0-cochain r ∈ Č0(Ũ ,R2,1) such that ď(r) = s, that is s(i0, i1) = r(i1)− r(i0) for
any pair of open sets in Ũ which have nonempty intersection.

Although in general r is not π1(S)-invariant, for any α ∈ π1(S) we have that
ď(α?r−r) = 0, so there is an element tα ∈ R2,1 such that hol(α)r(α−1i0)−r(i0) = tα
for every i0.

It turns out that the collection (tα) verifies the cocycle condition, so it determines
an element ofH1

hol(π1(S),R2,1). This construction provides the required isomorphism

H1(Č•(Ũ ,R2,1)π1(S))→ H1
hol(π1(S),R2,1) .

Using this natural identification we will explicitly describe the connecting homo-
morphism δ : C(S, h)→ H1

hol(π1(S),R2,1). Let b ∈ C(S, h) and let b̃ : TH2 → TH2 be
the lifting of b to the universal cover. By Proposition 5.1.3, there exists û ∈ C∞(S̃)
such that b̃ = Hessû− ûI. By the equivariance of b, for every α ∈ π1(S), û ◦ α−1 is
again such that b̃ = Hess(û ◦ α−1)− (û ◦ α−1)I. By the exactness of (5.3) there is a
vector tα ∈ R2,1 such that

(û− û ◦ α−1)(x) = 〈tα,dev(x)〉

where dev : S̃ → H2 is a developing map for the hyperbolic structure on S̃. The
map α→ tα gives a cocyle. Since the definition depends on the choice of û, it is easy
to check that t· : π1(S)→ R2,1 is well-defined up to a coboundary. The cohomology
class of t· in H1

hol(π1(S),R2,1) coincides with δ(b).
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5.1.2 Geometric interpretation

Definition 5.1.6. Let S be a C2 Cauchy surface in a flat spacetime M and denote
by B its shape operator computed with respect to the future-pointing normal vector.
We say that S is strictly future convex if B is positive.

In this section we fix a topological surface S of genus g ≥ 2. We consider
pairs (M,σ) where M is a maximal globally hyperbolic flat spacetime (we will use
the acronym MGHF hereafter) and σ : S → M is an embedding onto a strictly
future-convex Cauchy surface. Recall M is homeomorphic to S × R; we will always
implicitly consider embeddings σ : S → M which are isotopic to the standard
embedding S ↪→ S × {0}.

By a classical result of [CB68], those pairs are parameterized by the embedding
data of σ which are the Riemannian metric I induced by σ on S and the shape
operator B of the immersion (computed with respect to the future-pointing normal
vector). Pairs (I,B) are precisely the solutions of the so Gauss-Codazzi equations,
as explained for Theorem 1.1.6: {

detB = −KI

d∇
I
B = 0

(GC-R2,1)

We consider the set of embedding data of strictly convex Cauchy surfaces in a
MGHF spacetime, namely:

D =

(I,B) :

I Riemannian metric on S

B : TS → TS positive, self-adjoint for I

(I,B) solves equations (GC-R2,1)

 .

Observe that the Riemannian metric I in a pair (I,B) ∈ D is necessarily of negative
curvature. First of all we want to show that the space D can be naturally identified
with the space

E =

{
(h, b) :

h hyperbolic metric on S

b : TS → TS self-adjoint for h, d∇h b = 0, b > 0

}
.

Proposition 5.1.7. Let (I,B) be an element of D. Then the metric h(v, w) =
I(Bv,Bw) is hyperbolic and the operator b = B−1 satisfies the Codazzi equation for
h. Conversely if (h, b) ∈ E then I(v, w) = h(bv, bw) and B = b−1 are solutions of
(GC-R2,1).

Proof. Using the formula ∇h = B−1∇IB which relates the Levi-Civita connection
of h and I (see [Lab92] or [KS07]), it is easy to check that b is an h-Codazzi tensor,
and the same implication with the roles of h and I switched. We also have Kh =
KI/detB when h = I(B,B), where Kh and KI are the curvatures of h and I.
Therefore Kh = −1. Vice versa, starting from (h, b), one obtains the Gauss equation
KI = −1/det b = −detB.
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Remark 5.1.8. The group Diffeo(S) naturally acts both on E and D. It is important
to remark here that the identification given by Proposition 5.1.7 commutes with
those actions.

The following theorem shows the relation between the embedding data (I,B) of
a convex Cauchy embedding S into M and the holonomy of M .

Theorem 5.A. Let M be a globally hyperbolic spacetime and S be a uniformly
convex Cauchy surface with embedding data (I,B). Let h be the third fundamental
form of S and b = B−1. Then

• the linear holonomy of M coincides with the holonomy of h;

• the translation part of the holonomy of M coincides with δb.

The rest of this section is devoted to the proof of this theorem. We first give a
more geometric meaning to the correspondence between D and E. The key ingre-
dient is the Gauss map. Given a Cauchy immersion σ : S → M we can consider
the equivariant immersion of the universal cover of S, σ̃ : S̃ → R2,1 obtained by
composing the inclusion of S̃ into M̃ with the developing map of M . Notice that
the holonomy of σ̃ coincides with the holonomy of M .

The Gauss map of the immersion is then the map G : S̃ → H2 sending a point x
to the future normal of the immersion σ̃. Notice that dσ(TxS̃) = 〈G(x)〉⊥ = TG(x)H2.

Denote by B̃ and Ĩ the lifting of B and I to the universal cover. Using that B̃ is
the covariant derivative of the future normal field by the flat R2,1-connection, it is
immediate to see that

dGx(v) = dσ(B̃(v)). (5.7)

This identity shows that the pull-back of the hyperbolic metric through G is the
metric h(v, w) = I(Bv,Bw) so G is a local isometry between (S̃, h̃) and H2. This
implies that G is the developing map of h.

Proposition 5.1.9. Let (I,B) be the embedding data of a strictly convex spacelike
Cauchy surface in some MGHF spacetime M , and denote by (h, b) the pair in E
corresponding to (I,B). If σ̃ : S̃ → R2,1 is the space-like immersion corresponding
to the data (I,B), then the corresponding Gauss map G : S̃ → H2 is a developing
map for h.

We now want to compute the translation part of the holonomy of M , once the
embedding data (I,B) are known. In particular we want to show that the translation
part of the holonomy equals δb where (h, b) is the pair corresponding to (I,B).

To this aim we need to construct a function û : S̃ → R such that b̃ = Hessh̃û−û E.

Proposition 5.1.10. Let (I, s) ∈ D and (h, b) ∈ E be the corresponding pair. Let
σ̃ : S̃ → R2,1 be an embedding whose first fundamental form is Ĩ and whose shape
operator is B̃, and denote by G : S̃ → H2 its Gauss map. Let us define û : S̃ → R
as û(x) = 〈σ̃(x), G(x)〉. Then B̃−1 = b̃ = Hessh̃û− û E.

Proof. Notice that the statement is local so we may suppose that G is an isometry
between S̃ and an open subset U of H2. So we can identify (S̃, h̃) to U through
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the map G. Under this identification we have û(x) = 〈σ̃(x), x〉 and (5.7) becomes
dσ̃x(v) = bx(v). By a computation we have

dûx(v) = 〈dσ̃x(v), x〉+ 〈σ̃(x), v〉 = 〈σ̃(x)Tx , v〉 ,

where we are using that dσ̃x(v) = bx(v) ∈ TxH2 = x⊥. This shows that grad û(x) =
σ̃(x)Tx and concludes that σ̃(x) = grad û(x)− û(x)x. Furthermore,

b̃x(v) =dσ̃x(v) = ∇v grad û+ 〈grad û, v〉x− dûx(v)x− û(x)v

=(Hessû(x))(v)− û(x)v .

The argument of the proof shows that in general the map σ̃ can be reconstructed
using G and û by the formula

σ̃(x) = dG(grad û(x))− û(x)G(x) . (5.8)

Remark 5.1.11. By a result of Mess, if the metric Ĩ on S̃ is complete (that is the
case if it comes from a metric I on the closed surface S), then the immersion σ̃ is in
fact an embedding on a space-like surface of R2,1.

It turns out that S is future strictly convex iff the future F of σ̃(S̃) in R2,1 is
convex. The function û◦G−1 : H2 → R coincides with the support function of F (see
[FV13] for details on the support function of convex subsets in Minkowski space).

We can now conclude the proof of Theorem 5.A.

Lemma 5.1.12. Let (I,B) ∈ D and (b, h) the corresponding pair in E. Denote by
σ̃ : S̃ → R2,1 the space-like immersion corresponding to (I,B) and by G : S̃ → H2

the corresponding Gauss map. Consider the function û : S̃ → R defined by û(x) =
〈σ̃(x), G(x)〉. Then

(û− û ◦ α−1)(x) = 〈tα, G(x)〉 ,
where tα is the translation part of the holonomy of the immersion σ̃.

Proof. We have
σ̃(α−1x) = hol(α−1)σ̃(x)− hol(α)−1tα ,

and
G(α−1x) = hol(α−1)(G(x)) .

So
û(α−1x) = 〈G(α−1x), σ̃(α−1x)〉 = û(x)− 〈tα, G(x)〉 .

and this concludes the proof.

Remark 5.1.13. If S is a closed surface of genus g ≥ 2, the holonomy distinguishes
MGHF structures on S × R containing a convex Cauchy surface. So Theorem 5.A
implies that that two elements of E, say (h, b), and (h′, b′), correspond to isotopic
Cauchy immersions into the same spacetime if and only if

• there is an isometry F : (S, h)→ (S, h′) isotopic to the identity.
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• δ(b) = δ(b′) (this makes sense as the holonomies of h and h′ coincide for the
previous point).

Let us denote by S+(S) the set of isotopy classes of MGHF structures on S ×R
containing a future convex surface. Then, S+(S) can be realized as the quotient of
E up to the identify (h, b) and (h′, b′) if the previous conditions are satisfied.

5.1.3 A de Rham approach to Codazzi tensors

We want to give a different description of the connection homomorphism

δ : C(S, h)→ H1(S,F) .

Let us denote by D the flat connection over F → S, and let Ωk(S, F ) be the
space of F -valued k-forms over S, namely the space of smooth sections of the bundle
ΛkT ∗S ⊗ F . The exterior differential is the operator

dD : Ωk(S, F )→ Ωk+1(S, F )

defined on simple elements by dD(ω ⊗ t) = d(ω)⊗ t+ (−1)kω ∧Dt.
As F is flat, dD ◦dD = 0 and the de Rham cohomology of the bundle F is defined

as the cohomology of the complex (Ω•(S, F ), dD). As

0→ F → Ω0(−, F )→ Ω1(−, F )→ . . .

is a fine resolution of F , by de Rham theorem H1(F) is naturally identified with
H1

dR(S, F ).
The first aim of this section is to give a characterization of Codazzi operators over

S in terms of de Rham complex. Recall that we have a developing section ι : S → F
obtained as the projection of the developing map. The covariant derivative of ι
provides a natural monomorphism ι∗ : TS → F , where ι∗(v) = Dvι. If S = H2,
then ι corresponds to the natural inclusion H2 → R2,1, and ι∗ corresponds to the
inclusion of tangent spaces of H2 in R2,1.

Now, given any operator b : TS → TS we can consider the composition ι∗b as an
F -valued 1-form on S. The following simple computation gives a characterization
of self-adjoint Codazzi tensors:

Proposition 5.1.14. Let b : TS → TS be any operator. Then b is self-adjoint and
Codazzi if and only if ι∗b is closed.

Proof. The usual splitting of the flat connection of R2,1 into the Levi-Civita connec-
tion of H2 and second fundamental form gives in this setting the following formula

Dv(ι∗X) = ι∗(∇vX) + h(X, v)ι(x)

for any vector field X over S and any tangent vector v at x. Given two vector fields
X,Y on S we get

dD(ι∗b)(X,Y ) =DX(ι∗(bY ))−DY (ι∗(bX))− ι∗b[X,Y ]

=ι∗(∇X(bY )−∇Y (bX)− b[X,Y ]) + (h(X, bY )− h(Y, bX))ι(x)

=ι∗(d
∇b(X,Y )) + (h(X, bY )− h(Y, bX))ι(x)
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As the image of ι∗ at TxS is the orthogonal complement of ι(x) in Fx, the previous
computation proves the statement.

We can now give a description of the connection homomorphism δ under the
usual identification between H1(S,F) and H1

dR(S, F ).

Proposition 5.1.15. The connecting homomorphism δ : C(S, h) → H1
dR(S, F ) of

the short exact sequence (5.6) is expressed by the formula

δ(b) = [ι∗b] .

Before proving the Proposition, we give a preliminary Lemma.

Lemma 5.1.16. Given a function u ∈ C∞(S) and b ∈ C(S, h), we have b = Hessu−
uI if and only if ι∗b = dD(ι∗ gradu− uι).

Proof. By an explicit computation,

dD(ι∗ gradu− uι) =D(ι∗ gradu)− (du)ι− uDι

=ι∗(Hessu) + h(gradu, ·)ι− (du)ι− uι∗
=ι∗(Hessu− uE) .

Remark 5.1.17. If b is positive and (I,B) ∈ D are the embedding data associated
with (h, b), the corresponding map σ̃ : S̃ → R2,1, considered as a section of the
trivial flat R2,1-bundle on S̃, solves the equation

dDσ̃ = ι∗b ,

so Lemma 5.1.16 is a generalization of Formula (5.8).

Proof of Proposition 5.1.15. The construction of the operator δ works as follows.
Take a good cover {Ui} of S (namely, such that all the Ui and their finite intersections
are contractible). On each Ui there is a function ui such that b|Ui = Hessui − uiE.
Now ui1 − ui0 = V (ti0i1) for some flat sections ti0i1 of F on Ui0 ∩ Ui1 . The family
{ti0i1} forms an F -valued 1-cocyle. Since Ω0(−, F ) is fine, there are smooth (but in
general non flat) sections ηi over Ui such that

ti0i1 = ηi1 − ηi0 . (5.9)

The differentials of ηi glue to a global F -valued closed form which represents δb in
the de Rham cohomology. We claim that ηi = ι∗(gradui)−uiι satisfy the condition
(5.9). From the claim and Lemma 5.1.16 we easily get that δb = [ι∗b].

To prove the claim it is sufficient to check the following formula

ui1(x)− ui0(x) = 〈(ηi1 − ηi0)(x), ι(x)〉 ,

which is immediate once one recalls that the image of ι∗ is orthogonal to ι.
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5.2 Relations with Teichmüller theory

In this section we will consider symmetric Codazzi tensors as infinitesimal deforma-
tions of a metric, inducing in this way an infinitesimal deformation of the conformal
structure.

We will see that in the closed case the first order variation of the holonomy map

hol : T (S)→ R(π1(S), SO(2, 1))//SO(2, 1)

which associates to a conformal structure the holonomy of the hyperbolic structure in
its conformal class, can be explicitly computed in terms of the coboundary operators
δ we already considered.

As a by-product we will see that the corresponding map E → TT (S), induces
to the quotient a bijective map between the space S+(S) of MGHF structures on
S × R and TT (S).

5.2.1 Killing vector fields and Minkowski space

The Lie algebra so(2, 1) is naturally identified to the set of Killing vector fields on
H2, so it is realized as a subalgebra of the space of smooth vector fields X(H2) on
H2. There is a natural action of SO(2, 1) on X(H2) that is simply defined by

(A∗X)(x) = dA(X(A−1x)) .

This action restricts to the adjoint action on so(2, 1).

The Minkowski cross product is defined by v�w = ∗(v∧w), where ∗ : Λ2(R2,1)→
R2,1 is the Hodge operator associated to the Minkowski product. As in the Euclidean
3D case, it leads to a natural identification between R2,1 and so(2, 1) which commutes
with the action of SO(2, 1). Basically any vector t ∈ R2,1 is associated with the
Killing vector field on H2 defined by Xt(x) = t � x. This identification will be
denoted by Λ : R2,1 → so(2, 1).

Notice that any hyperbolic surface S is equipped with a SO(2, 1)-flat bundle
Fso(2,1) whose flat sections correspond to Killing vector fields on S. Elements of
Fso(2,1) are germs of Killing vector fields on S, so an evaluation map ev : Fso(2,1) →
TS is defined.

On the other hand, the isomorphism Λ provides a flat isomorphism, that with
a standard abuse we still denote by Λ, between the R2,1-flat bundle F and Fso(2,1).
Under this identification the developing section ι : S → F corresponds to the section
sending each point to the infinitesimal generator of the rotation about the point.

We recall that the Zariski tangent space at a point ρ : π1(S) → SO(2, 1) to
the character variety R(π1(S),SO(2, 1))//SO(2, 1) is canonically identified with the
cohomology group H1

Adρ(π1(S), so(2, 1)) ([Gol84]). The identification goes in the
following way. Given a differentiable path of representations ρt such that ρ0 = ρ, we
put

ρ̇(α)(x) =
d

dt

∣∣∣∣
t=0

ρt(α) ◦ ρ0(α)−1(x).
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5.2.2 Deformations of hyperbolic metrics

We fix a hyperbolic surface (S, h) – that in this subsection we will not necessarily
assume complete – with holonomy hol : π1(S) → SO(2, 1). We still make the
assumption that hol is not elementary.

It is well known that if ht is a family of hyperbolic metrics on S which smoothly
depend on t and such that h0 = h, then the h-self-adjoint operator b = h−1ḣ satisfies
the so called Lichnerowicz equation (see [FT84a])

L(b) = −(∆− 1/2)trb+ δhδhb = 0 ,

where δhb is the 1-form obtained by contracting ∇b namely, δh(b)(v) = tr(∇•b)(v),
whereas the second δh is the divergence on 1-forms, δ(ω) = trh−1∇ω.

If X is a vector field on S with compact support, and ft : S → S is the flow
generated by X, then putting ht = f∗t (h), we have that h−1ḣ = 2S∇X, where S∇X
denotes the symmetric part of the operator ∇X. It follows that S∇X is a solution of
Lichnerowicz equation. Being L a local operator, we deduce that S∇X is a solution
of Lichnerowicz equation for any vector field X.

Conversely, as any deformation of a hyperbolic metric is locally trivial, it can be
readily shown that any solution of Lichnerowicz equation can be locally written as
S∇X for some vector field X.

Denoting by X the sheaf of smooth vector fields and by L the sheaf of solutions
of Lichnerowicz equation, the sheaf morphism S∇ : X→ L, defined by X 7→ S∇X,
is surjective. On the other hand the kernel of this morphism is the subsheaf of X of
Killing vector fields. This is simply the image of the sheaf Fso(2,1) of flat sections of
Fso(2,1) through the evaluation map ev : Fso(2,1) → X.

So we have a short exact sequence of sheaves

0→ Fso(2,1) → X→ L → 0

that in cohomology gives a sequence

0 −−−−→ X(S) −−−−→ L(S)
d−−−−→ H1

hol(π1(S), so(2, 1)) −−−−→ 0 , (5.10)

where hol is the holonomy of h and again we are using the canonical identification

H1(S,Fso(2,1)) = H1
hol(π1(S), so(2, 1)).

We claim that if b is the first order deformation of a family of hyperbolic metrics,
namely b = h−1ḣ, then d coincides with the derivative of the holonomy map (which
we still denote by hol)

hol :M−1 → R(π(S),SO(2, 1))//SO(2, 1)

along the family of metrics.
More precisely we will prove the following result.

Proposition 5.2.1. Let ht be a family of hyperbolic metrics on a surface S, not
necessarily complete, and suppose that h depends smoothly on t. Then we can find
a family of representations holt so that
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• holt is a representative of the holonomy of ht in its conjugacy class.

• holt smoothly depends on t.

Moreover we have
2 ˙hol = d(h−1ḣ) . (5.11)

Remark 5.2.2. A simple way to understand the operator d is the following. Given
b ∈ L(S), on the universal covering there is a field T such that b̃ = S∇T . As b̃
is π1(S)-invariant, it turns out that T − α∗T is a Killing vector field on S̃ for any
α ∈ π1(S). Thus there is an element τα ∈ so(2, 1) such that ddev(T − α∗T )(x) =
τα(dev(x)) and d(b) coincides with the cocycle τ·.
Proof. Notice that the exponential maps expt of ht define a differentiable map on
an open subset Ω of (−ε, ε)× T S̃

exp : Ω→ S̃

such that exp(t, x, v) = expt(x, v).
Now, let devt be the developing map of ht normalized so that devt(p0) = dev0(p0)

and d(devt)(p0) = d(dev0)(p0), and consider the map

dev : (−ε, ε)× S̃ → H2

defined by dev(t, p) = devt(p). As devt commutes with the exponential map

devt(expt(x, v)) = expH2((devt)∗(x, v)) ,

one readily sees that dev is differentiable.
As a representative for the holonomy representation holt of ht can be chosen so

that
devt ◦ α = holt(α) ◦ devt ,

it turns out that the map hol : (−ε, ε)→ R(π1(S),SO(2, 1) is differentiable as well.
Now differentiating the identity

ht(v, w) = 〈ddevt(v), ddevt(w)〉

one sees that on the universal covering

h−1ḣ = 2S∇ ˙dev ,

where we have put ˙dev = d(dev0)−1 ddevt
dt |t=0. On the other hand, for any α ∈ π1(S),

differentiating the identity

devt(αx) = holt(α)devt(x)

one gets that

(ddev0) ˙dev(αx) = (ddev0)(dα) ˙dev(x) + ˙hol(α)dev0(αx) .

It can be checked (compare Remark 5.2.2) that d(h−1ḣ)α = 2ddev0( ˙dev − α∗ ˙dev),
hence the conclusion follows.
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5.2.3 Codazzi tensors as deformations of conformal structures on a
closed surface

In this section we restrict to the case S closed. We fix a hyperbolic metric h with
holonomy hol and denote by J : TS → TS the almost-complex structure induced
by h.

We remark that in general a Codazzi tensor b for h is not an infinitesimal defor-
mation of a family of hyperbolic metrics, unless b is traceless. Indeed the following
computation holds.

Lemma 5.2.3. If b is a self-adjoint Codazzi tensor of a hyperbolic surface (S, h)
then L(b) = tr(b)/2 .

Proof. Notice that (δhb)(v) = tr(∇·b)(v) = tr∇vb, where the last equality holds as
b is Codazzi. As the trace commutes with ∇, (δhb)(v) = (dtrb)(v) so δhb = dtrb, and
δhδhb = ∆(trb). The conclusion follows immediately.

We may consider b as an infinitesimal deformation of the conformal structure.
Indeed for small t the bilinear form

ĥt(v, w) = h((E + tb)v, (E + tb)w)

defines a path of Riemannian metrics which smoothly depends on t.

So for each t, there is a uniformization function ψt : S → R such that ht = e2ψt ĥt
is the unique hyperbolic metric conformal to ht. It is well known that the conformal
factor ψt smoothly depends on t (compare [FT84a]), so the path of holonomies [holt]
defines a smooth path in the character variety.

The following proposition computes the first order variation of holt (that is an
element of H1

Ad◦hol(π1(S), so(2, 1)) in terms of b.

Proposition 5.2.4. Let h be a hyperbolic metric on S, Xh ∈ T (S) be its complex
structure and let b ∈ C(S, h). Let b = bq + Hessu− uE the decomposition of b given
in Proposition 5.1.5. Then

dholXh([b0]) = −Λ(δ(Jbq))

where Λ : H1
hol(π1(S),R2,1)→ H1

Ad◦hol(π1(S), so(2, 1)) is the isomorphism induced by
the SO(2, 1)-equivariant isomorphism Λ : R2,1 → so(2, 1).

Remark 5.2.5. As bq is traceless and self-adjoint, Jbq is traceless and self-adjoint as
well, and it turns out that Jbq = biq.

Proof. Let devt be a family of developing maps of ht depending smoothly on t and
denote by holt the holonomy representative for which devt is equivariant.

By Proposition 5.2.1, 2 ˙hol = d(h−1ḣ), where d : L(S) → H1
Ad◦hol(π1(S), so(2, 1))

is the connecting homomorphism defined in (5.10).

By differentiating the identity ht(v, w) = e2ψth((E + tb)v, (E + tb)w) one gets

ḣ(v, w) = 2h((ψ̇E + b)v, w)
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that is
1

2
h−1ḣ = (ψ̇ − u)E + Hessu+ bq .

Now h−1ḣ, bq and Hessu = S∇(gradu) are solutions of Lichnerowicz equation, so by
linearity L((ψ̇−u)E) = 0. An explicit computation shows that this precisely means
that the function φ = ψ̇−u must satisfy the equation ∆φ−φ = 0. As φ is a regular
function on S and we are assuming S is closed, we deduce that φ ≡ 0.

Thus h−1ḣ = 2Hessu+ 2bq. Notice that d(Hessu) = 0 as Hessu = S∇(gradu) on
S. So we get

2 ˙hol = d(h−1ḣ) = 2d(bq) .

To compute d(bq) we have to find a vector field T on the universal covering, such
that bq = S∇T , and d(bq) is determined by the equivariance of T .

Now as Jbq is still a symmetric Codazzi tensor, on the universal cover we can find
a function v such that Jbq = Hessv − vE. This implies that bq = −JHessv + Jv =
−∇(J grad v) + Jv. That is, the field T = −J grad v satisfies the property we need.
It follows that

(ddev0)−1( ˙hol(α)) = (−J grad v)− α∗(−J grad v) , (5.12)

where dev : S̃ → H2 is the developing map for h.

The conclusion then follows by comparing Equation (5.12) with the formula
proved in the following Lemma, that we prove separately as it does not depend on
the fact that S is closed.

Lemma 5.2.6. Let b a Codazzi tensor on any hyperbolic surface S and let v be a
function on the universal cover such that b = Hessf − fE. Then for any α ∈ π1(S)
and x ∈ S̃ we have that

J grad f − α∗(J grad f) = −(ddev)−1Λ(δb)α ,

where dev : S̃ → H2 is the developing map.

Proof. Let us put tα = (δb)α. As Λ(t)(·) = t� ·, we have to prove that for any x in
S̃

ddevx(J grad f(x)− α∗(J grad f))(x) = −tα � dev(x) .

The point is that (f − f ◦ α−1)(x) = 〈tα,dev(x)〉 for any x ∈ S̃. Thus

ddevx(grad f − α∗ grad f) = tα + 〈tα,dev(x)〉dev(x) .

As for any v ∈ TxS̃ we have that ddevx(Jv) = JH2ddevx(v) = dev(x)� ddevx(v) we
get

ddevx(J(grad f − α∗ grad f)) = dev(x) � ddevx(grad f − α∗ grad f) = dev(x) � tα ,

and the conclusion follows.
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Remark 5.2.7. We want to emphasize the reasons we restricted Proposition 5.2.4 to
the case of closed surfaces.

There are some technical issues. For instance the metric ĥt is not well defined
if the eigenvalues of b are not bounded and one should use E + χtb, where χt is a
function going sufficiently fast to 0 at infinity for each t and such that ∂tχt(0) = 1.
Moreover the uniformization factor ψt on t is well defined only if we restrict on some
classes of hyperbolic metrics (e.g. complete metrics, metrics with cone singularities)
and its smooth dependence on the factor is more complicated.

More substantial problems are related to the splitting of b as traceless part and
trivial part. The splitting is related to the solvability of the equation ∆u−2u = tr(b).
Now in the non closed case to get existence and uniqueness of the solution, some
asymptotic behavior of tr(b) must be required.

A related problem is that on an open surface there are smooth non trivial so-
lutions of the equation ∆φ − φ = 0. So in order to prove that φ ≡ 0, φ is needed
to have some good behavior at infinity (which can be obtained only requiring some
extra hypothesis on the behavior of b in the ends).

We will discuss the case of hyperbolic metrics with cone singularity in Chapter
6, where these problems will become evident.

5.2.4 A global parameterization of MGHF spacetimes with closed
Cauchy surfaces

We consider the space E introduced in Section 5.1. We know that this space pa-
rameterizes embedding data of uniformly convex surfaces in some MGHF spacetime,
and we have already remarked that the space S+(S) of MGHF structures on S ×R
containing a closed convex Cauchy surface is the quotient of E by identifying (h, b)
and (h′, b′) if h and h′ are isotopic and δb = δb′ (see Remark 5.1.13)

We want to use results of the previous section to construct a natural bijection
between S+(S) and the tangent bundle of the Teichmüller space of S. Let us briefly
recall some basic facts of Teichmüller theory that we will use. See [Gar87] for more
details.

Elements of T (S) are complex structures on S, say X = (S,A), up to isotopy. In
the classical Ahlfors-Bers theory, the tangent space of T (S) at a point [X] ∈ T (S)
is identified with a quotient of the space of Beltrami differentials B(X). Recall that
a Beltrami differential is a L∞ section of the bundle K−1 ⊗ K̄, where K is the
canonical bundle of X, that simply means that a Beltrami differential is a (0, 1)-
form with value in the holomorphic tangent bundle of X. There is a natural pairing
between quadratic differentials and Beltrami differentials, given by the integration
of the (1, 1) form obtained by contraction

〈q, µ〉 =

∫
S
q • µ ,

where in complex chart q • µ := q(z)µ(z)dz ∧ dz̄, if µ = µ(z)dz̄/dz and q = q(z)dz2.
We say that a Beltrami differential µ is trivial if 〈q, µ〉 = 0 for any holomorphic

quadratic differential. We will denote by B(X)⊥ the subspace of trivial Beltrami
differentials.
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The tangent space T[X]T (S) is naturally identified with B(X)/B(X)⊥ as a com-
plex vector space. The identification goes as follows: suppose to have a C1-path
γ : [0, 1] → T (S) such that γ(0) = [X]. Then it is possible to choose a family of
representatives γ(t) = [Xt] such that the Beltrami differential µt of the identity map
I : X → Xt is a C1 map of [0, 1] in B(X). It is a classical fact that µ̇(0) does not
depend on the choice of the representatives Xt up to a trivial differential, and thus
one can identify γ̇(0) with the class of [µ̇] in B(X)/B(X)⊥. Smooth trivial Beltrami
operators can be expressed as ∂̄σ, where σ is a section of K−1.

In order to link this theory with our construction it seems convenient to identify
the holomorphic tangent bundle K−1 of a Riemann surface X = (S,A) with its real
tangent bundle TS. Basically if z = x+ iy is a complex coordinate one identifies the
tangent vector a ∂∂x + b ∂∂y with the holomorphic tangent vector (a + ib) ∂∂z . Notice

that under this identification the multiplication by i on K−1 corresponds to the
multiplication by the almost-complex structure J associated with X. Moreover
Beltrami differentials correspond to operators m on TS which are anti-linear for J :
mJ = −Jm. By some simple linear algebra this is equivalent to tr(m) = 0 and
tr(Jm) = 0, or analogously Beltrami differentials correspond to traceless operators
which are symmetric for some conformal metric on (TS, J).

More explicitly, if in local complex coordinate µ = µ(z)dz̄/dz, the corresponding
operator in the real coordinates is

m =

(
<(µ) =(µ)
=(µ) −<(µ)

)
. (5.13)

We recall that T (S) is a complex manifold. Its almost-complex structure J corre-
sponds in the complex notation to the multiplication by i of the Beltrami differential.
In the real notation, this is the same as J ([m]) = [Jm].

Now we denote by X = Xh the complex structure determined by a hyperbolic
metric h. Given a Codazzi operator for the metric h, we have considered a smooth
path of metrics ĥt = h(E + tb, E + tb), which determines a smooth path in the
Teichmuller space [Xt], where Xt is the complex structure on S determined by ĥt.

It turns out that the tangent vector of this path is simply the class of the Beltrami
differential b0, where b0 = b− (trb/2)E is the traceless part of b.

The main theorem we prove in this section is the following:

Theorem 5.B. Let h be a hyperbolic metric on a closed surface S, X denote the
complex structure underlying h, and C(S, h) be the space of self-adjoint h-Codazzi
tensors. Then the following diagram is commutative

C(S, h)
Λ◦δ−−−−→ H1

Ad◦hol(π1(S), so(2, 1))

Ψ

y dhol
x

T[X]T (S) −−−−→
J

T[X]T (S)

(5.14)

where Λ : H1
hol(π1(S),R2,1) → H1

Ad◦hol(π1(S), so(2, 1)) is the natural isomorphism,
and J is the complex structure on T (S).
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Remark 5.2.8. In order to prove this Theorem, we need to link the Levi-Civita
connection on S with the complex structure X.

Let X = (S,A) be a Riemann surface with underlying space S, and let h be
a Riemannian metric on S which is conformal in the complex charts of A. Then
through the canonical identification between TS and K−1, h corresponds to a Her-
mitian product over K−1.

Being K−1 a holomorphic bundle over S, there is a Chern connection D on K−1

associated with h. As in complex dimension 1 any Hermitian form is Kähler, the
connection D corresponds to the Levi Civita connection of h (regarded as a real
Riemannian structure on S), through the identification K−1 ∼= TS (see Proposition
4.A.7 of [Huy05]).

Now if in a conformal coordinate z the metric is of the form h = e2η|dz|2, then
the connection form of D is simply

ω = 2∂η , (5.15)

where ∂η = ∂η
∂zdz. Thus a simple computation shows that the connection form of ∇

with respect to the real conformal frame ∂x, ∂y is

A = dη ⊗ I− (dη ◦ J)⊗ J . (5.16)

Finally, as the ∂̄-operator on K−1 corresponds to the (0, 1)-part of D, holomorphic
sections of K−1 correspond to vector fields Y such that (∇Y ) commutes with J .
This means that S∇Y must be a multiple of the identity, i.e. ∇Y = λI + µJ for
some functions λ and µ.

Proof of Theorem 5.B. The proof is based on the computation in Proposition 5.1.5.
Using the decomposition b = bq+Hessu−uE, we see that Jb0 = Jbq+S∇(JHessu) =
Jbq + ∂̄(J gradu), where we are using that the ∂̄-operator on K−1 coincides with
the anti linear part of ∇X (under the identification K−1 = TS). In particular
[Jb0] = [Jbq] as elements of TXT (S). As dhol([Jb0]) = Λδ(bq) = Λδ(b) by Proposi-
tion 5.2.4 we conclude that the diagram is commutative.

Corollary 5.C. Two embedding data (I,B) and (I ′, B′) correspond to Cauchy sur-
faces contained in the same flat globally hyperbolic spacetime if and only if

• the third fundamental forms h and h′ are isotopic;

• the infinitesimal variation of h induced by b is Teichmüller equivalent to the
infinitesimal variation of h′ induced by b′.

In particular the map induces to the quotient a bijective map

Ψ̄ : S+(S)→ TT (S) .

Proof. As it is known ([Gol84]) that

dhol : TXT (S)→ T[hol] (R(π1(S), SO(2, 1))//SO(2, 1))
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is an isomorphism, and that the holonomy distinguishes maximal globally hyper-
bolic flat spacetimes with compact surface ([Mes07]), the result follows by the
commutativity of (5.14). The only point to check is that the restriction of the
map Λ ◦ δ : C(S, h) → H1

hol(π1(S), so(2, 1)) on the subset of positive Codazzi ten-
sors C+(S, h) = {b ∈ C(S, h) : b > 0} is surjective. This follows from the fact that
δ : C(S, h)→ H1

hol(π1(S),R2,1) is surjective and that for any smooth Codazzi tensor
we can find a constant M such that b+ME is positive.

5.3 Symplectic forms

We fix a hyperbolic metric h on a closed surface S and use the same notation
as in the previous section. We consider the Goldman symplectic form ωB on
H1

Ad◦hol(π1(S), so(2, 1)), which depends on the choice of a non-degenerate Ad-invariant
symmetric form B on so(2, 1), and the Weil-Petersson symplectic form ωWP on
TT (S). In [Gol84], Goldman proved that

dhol : (T[Xh]T (S), ωWP )→ (H1
hol(π1(S), so(2, 1)), ωB)

is symplectic up to a multiplicative factor (which depends on the choice of B).

In this section we give a different proof of this fact. We will compute in a
simple way the pull-back of the forms ωB and ωWP respectively through the maps
Λ ◦ δ : C(S, h)→ H1

hol(π1(S), so(2, 1)) and Ψ : C(S, h)→ TXhT (S) introduced in the
previous section and show that they coincide up to a factor. The thesis will directly
follow by the commutativity of (5.14).

In the definition of the Goldman form ωB given in [Gol84], the model sl(2,R) of
the algebra so(2, 1) is considered, and in that model the following Ad-invariant form
is taken:

B(X,Y ) = tr(XY ) .

With this choice we can compute B in terms of the Minkowski product on the bundle
F .

Lemma 5.3.1. Let B be the form on so(2, 1) obtained by identifying so(2, 1) with
sl(2,R). Then B(Λ(t),Λ(s)) = (1/2)〈t, s〉.

Proof. As the space of Ad-invariant symmetric forms on so(2, 1) is 1-dimensional,
there exists λ0 such that B(Λ(t),Λ(s)) = λ0〈t, s〉.

In order to compute λ0, let us consider an isometry Γ between H2 and the upper
half-space H+, sending t0 = (1, 0, 0) to i. As Λ(t0) is a generator of the elliptic
group around t0, we have that ΓΛ(t0)Γ−1 is a multiple of the matrix

X0 =

(
0 −1
1 0

)
.

Using that exp(tΛ(t0)) is 2π periodic, whereas exp(tX) is π-periodic in PSL(2,R)
we deduce that ΓΛ(t0)Γ−1 = ±(1/2)X0, so B(Λ(t0),Λ(t0)) = −1/2 = 1/2〈t0, t0〉
and λ0 = 1/2.
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To define the symplectic form ωB, the cohomology group H1
Ad◦hol(π1(S), so(2, 1)) is

identified with H1
dR(S, Fso(2,1)). Then we set

ωB(σ, σ′) =

∫
S

B(σ ∧ σ′) ,

where B(σ ∧ σ′) is obtained by alternating the real 2-form B(σ(·), σ′(·)).
Analogously a symplectic form ωF is defined on H1

dR(S, F ) by setting

ωF (s, s′) =

∫
S
〈s ∧ s′〉 ,

where s, s′ are F -valued closed 1-forms.

By Lemma 5.3.1 one gets that ωB(Λ(s),Λ(s′)) = (1/2)ωF (s, s′).

Proposition 5.3.2. Let δ : C(S, h)→ H1
dR(S, F ) be the connecting homomorphism.

Then

ωF (δ(b), δ(b′)) =
1

2

∫
S

tr(Jbb′)ωh , (5.17)

or analogously

ωB(Λ(δ(b)),Λ(δ(b′))) =
1

4

∫
S

tr(Jbb′)ωh . (5.18)

Proof. By Proposition 5.1.15, δ(b) = [ι∗b] and δ(b′) = [ι∗b
′], where ι∗ : TS → F

is the inclusion induced by the developing section. In particular if {e1, e2} is an
orthonormal frame on S we have

〈(δb) ∧ (δb′)〉 =
1

2

(
〈ι∗b(e1), ι∗b

′(e2)〉 − 〈ι∗b(e2), ι∗b
′(e1)〉

)
=

1

2

(
h(be1, b

′e2)− h(be2, b
′e1)
)

=
1

2

(
h(be1, b

′Je1) + h(be2, b
′Je2)

)
=

1

2
tr(Jbb′) .

Formula (5.17) immediately follows.

Remark 5.3.3. A consequence of the previous proposition is that if b and b′ are
Codazzi operators, then ∫

S
tr(Jbb′)ωh = 0

whenever one of the two factors is of the form Hessu − uE. This could also be
deduced by a direct computation.

We now consider the computation of the Weil-Petersson symplectic form ωWP .
In conformal coordinates, if q(z) = f(z)dz2, q′(z) = g(z)dz2 and h(z) = e2η|dz|2,
then the 2-form

fḡ

e2η
dx ∧ dy
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is independent of the coordinates. Recall that the Codazzi tensor bq is defined as
the h−1<(q). A simple computation shows that in the conformal basis {∂x, ∂y} the
operator bq is represented by the matrix

e−2η

(
<(f) −=(f)
−=(f) −<(f)

)
. (5.19)

The Weil-Petersson product is defined as

gWP (q, q′) =

∫
S

fḡ

e2η
dx ∧ dy .

A local computation, using expression (5.19) of the matrices bq and bq′ shows that

gWP (q, q′) =
1

2

∫
S

tr(bqbq′)ωh +
i

2

∫
S

tr(Jbqbq′)ωh . (5.20)

This expression is at the heart of the following computation.

Proposition 5.3.4. Given b, b′ ∈ C(S, h), the following formula holds:

ωWP (Ψ(b),Ψ(b′)) = 2

∫
S

tr(Jbb′)ωh . (5.21)

Proof. Let q be a holomoprhic quadratic differential. By a local computation, using
Equations (5.13) and (5.19) which relate the expression in complex charts of the
Beltrami differential Ψ(b) = [b0] and the holomorphic quadratic q differential to
their expression as operators on the real tangent space TS, the contraction form of
Ψ(b) and q equals

q •Ψ(b) = −(tr(Jb0bq) + itr(b0bq))ωh .

It follows that

〈q,Ψ(b)〉 = −
∫
S

(tr(Jb0bq) + itr(b0bq))ωh . (5.22)

Comparing this equation with (5.20) we see that the antilinear map K2(S) →
TXhT (S) defined by the Weil-Petersson product is

q → Ψ

(
Jbq
2

)
.

So we have dually that

gWP (Ψ(bq),Ψ(b′q)) = 4gWP (Ψ(Jbq/2),Ψ(Jb′q/2)) = 4gWP (q, q′)

and using (5.20) we see that

ωWP (Ψ(bq),Ψ(b′q)) = 2

∫
S

tr(Jbqb
′
q)ωh .

To get the formula in general, notice that, if b = bq + Hessu − uE and b′ = bq′ +
Hessu′ − u′E,
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ωWP (Ψ(b),Ψ(b′)) =ωWP (Ψ(bq),Ψ(bq′))

=2

∫
S

tr(Jbqbq′)ωh

=2

∫
S

tr(Jbb′)ωh .

where the last equality holds by Remark 5.3.3.

Corollary 5.3.5. The Weil-Petersson symplectic form ωWP and the Goldman sym-
plectic form ωB are related by:

hol∗(ωB) =
1

8
ωWP .

The proof, which is a new proof of Goldman’s Theorem presented in [Gol84],
follows directly by the commutativity of diagram (5.14) and formulae (5.18) and
(5.21).



Chapter 6

Flat spacetimes with massive
particles

In this chapter we apply a machinery similar to Chapter 5 to study globally hyper-
bolic spacetimes containing particles, that is, cone singularities along timelike lines.
To develop the study of Cauchy surfaces in a spacetime with particles, we will need
to make the assumption that the shape operator of the surface is bounded and uni-
formly positive (meaning that the principal curvatures are uniformly far from 0 and
+∞). We will briefly say that the Cauchy surface is bounded and uniformly convex.
Moreover, we will assume that the cone singularity of every particle is in (0, 2π).

Under this assumption we prove that the surface is necessarily orthogonal to the
singular locus and intrinsically carries a Riemannian metric with cone angles equal
to the cone singularities of the particle (here we use the definition given by Troyanov
[Tro91] of metrics with cone angles on a surface with variable curvature). We will
show that the third fundamental form of such a surface is a hyperbolic surface with
the same cone angles and b = B−1 is a bounded and uniformly positive Codazzi
operator for (S, h). Hence the first result of this chapter is the following:

Theorem 6.A. Let us fix a divisor β =
∑
βipi on a surface with βi ∈ (−1, 0) and

consider the following sets:

• Eβ is the set of embedding data (I,B) of bounded and uniformly convex Cauchy
surfaces on flat spacetimes with particles such that for every i = 1, . . . , k a
particle of angle 2π(1 + βi) passes through pi.

• Dβ is the set of pairs (h, b), where h is a hyperbolic metric on S with a cone
singularity of angle 2π(1 + βi) at each pi and b is a self-adjoint solution of
Codazzi equation for h, bounded and uniformly positive.

Then the correspondence (I,B) → (h = I(B,B), b = B−1) induces a bijection be-
tween Eβ and Dβ.

By Gauss-Bonnet formula, in order to have Dβ (and consequently Eβ) non empty
one has to require that χ(S,β) := χ(S) +

∑
βi is negative. We will always make

this assumption.

140
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A consequence of the construction which will be used in the proof of is the
following, which might have an independent interest.

Theorem 6.B. Let h be a hyperbolic metric with cone singularities and let b be
a Codazzi, self-adjoint operator for h, bounded and uniformly positive. Then I =
h(b·, b·) defines a singular metric with the same cone angles as h. Moreover if
I = e2ξ|w|2β|dw|2 in a conformal coordinate w around a singular point p, the factor
ξ extends to a Hölder continuous function at p.

The second main theorem is the analogue of Theorem 5.B in the context of
cone singularities, proving that the moduli space of maximal globally hyperbolic
flat spacetimes with particles is the tangent bundle of the Teichmüller space of the
punctured surface. In particular it does not depend on the cone angles.

To give a precise statement we use the Troyanov uniformization result [Tro91]
which ensures that, given a conformal structure on S, there is a unique conformal hy-
perbolic metric with prescribed cone angles at the points pi (notice we are assuming
χ(S,β) < 0). So once the divisor β is chosen we have a holonomy map

hol : T (S, p)→ R(π1(S \ p),SO0(2, 1))//SO0(2, 1) ,

where p = {p1, . . . , pk} is the support of β, and T (S, p) is the Teichmüller space of
the punctured surface.

As in the closed case fix a hyperbolic metric h on S with cone angles 2π(1 + βi)
at pi. Let X denote the complex structure underlying h. Any Codazzi operator b on
(S, h) can be regarded as an infinitesimal deformation of the metric on the regular
part of S. If b is bounded this deformation is quasiconformal so it extends to an
infinitesimal deformation of the underlying conformal structure at the punctures,
providing an element Ψ(b) in T[X]T (S, p).

Theorem 6.C. Let C∞(S, h) be the space of bounded Codazzi tensors on (S, h). The
following diagram is commutative

C∞(S, h)
Λ◦δ−−−−→ H1

Ad◦hol(π1(S \ p), so(2, 1))

Ψ

y dhol
x

T[X]T (S, p) −−−−→
J

T[X]T (S, p)

, (6.1)

where Λ : H1
hol(π1(S \ p),R2,1) → H1

Ad◦hol(π1(S \ p), so(2, 1)) is the natural isomor-
phism, and J is the complex structure on T (S, p).

A consequence is the following theorem on the classification of maximal globally
hyperbolic flat spacetimes, in terms of the embedding data of a Cauchy surface:

Theorem 6.D. Two embedding data (I,B) and (I ′, B′) in Eβ correspond to Cauchy
surfaces contained in the same spacetime with particles if and only if

• the third fundamental forms h and h′ are isotopic;

• the infinitesimal variation of h induced by b = B−1 is Teichmüller equivalent
to the infinitesimal variation of h′ induced by b′ = (B′)−1.
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It should be remarked that in this context, at least if the cone angles are in
[π, 2π), the holonomy does not distinguish the structures, so Theorem 6.D is not a
direct consequence of Theorem 6.C. Indeed we believe that for the same reason, the
direct application of Mess’ arguments to this context is not immediate. In Anti-de
Sitter case in [BS09] a generalization of Mess’ techniques has been achieved, at least
if cone angles are in (0, π).

In Section 6.3 we address the question of the coincidence of the Weil-Petersson
metric and the Goldman pairing in this context of structures with cone singularities.
Once a divisor β is fixed, the hyperbolic metrics with prescribed cone angles allow to
determine a Weil-Petersson product on T (S, p), as it has been studied in [ST11]. In
[Mon10], Mondello showed that also in this singular case the Weil-Petersson product
corresponds to an intersection form on the subspace of H1

Ad◦hol(π1(S \ p), so(2, 1))
corresponding to cocycles which are trivial around the punctures. Actually Mon-
dello’s proof is based on a careful generalization of Goldman argument in the case
with singularity. Like in the closed case, we give a substantially different proof of
this coincidence by using the commutativity of Equation (6.1).

In the last section of the chapter we discuss to what extent the condition of
containing a uniformly convex surface is restrictive. Indeed, a natural question is
whether there are globally hyperbolic spacetimes with particles with negative char-
acteristic which do not contain uniformly convex surfaces. Some simple counterex-
amples can be obtained by doubling a cylinder in Minkowski space based on some
polygon on R2. However the spacetimes obtained in this way have the property
that Euler characteristic χ(S,β) of its Cauchy surfaces is 0. Hence, in Section 6.4
we construct some counterexamples in this direction, based on simple surgery ideas,
showing some spacetimes which do not contain any uniformly convex Cauchy sur-
face. Similar problems regarding the existence of spacetimes with certain properties
on the Cauchy surfaces have been tackled in [BG00]. In all those exotic examples at
least one particle must have cone angle in [π, 2π).

6.1 Metrics with cone singularities

We now consider more deeply the case of surfaces with cone singularities. Let us fix a
closed surface S of genus g and a finite set of points p = {p1, . . . , pk} on S. Finally fix
θ1, . . . θk ∈ (0, 2π). Recall by [Tro91] that a singular metric on S with cone angles θi
at pi is a smooth metric h on S \p such that for any i = 1 . . . , k. there is a conformal
coordinate z in a neighborhood Ui of pi such that h|Ui\{pi} = |z|2βie2ξi(z)|dz|2, where

βi = θi
2π − 1 ∈ (−1, 0) and ξi is a continuous function on Ui. We will denote

by β =
∑
βipi the divisor associated with the metric h. We will always assume

χ(S,β) := χ(S) +
∑
βi < 0.

Example 6.1.1. The local model of a hyperbolic metric with cone singularity of angle
θ0 is obtained by taking a wedge in H2 of angle θ0 and glueing its edges by a rotation.
See Figure 6.1 below, in the Poincaré disc model.

More formally one can consider the universal cover H of H2 \ {p}. Its isometry
group is the universal cover of the stabilizer of p in Isom(H2). Indeed we can consider
on H ∼= (0,+∞) × R the coordinates (r, θ) obtained by pulling back the polar
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l1

l2

Figure 6.1: The model of a hyperbolic surface with a cone point. The wedge in H2 is
the intersection of the half-planes bounded by two geodesic l1, l2. The edges are glued by a
rotation fixing l1 ∩ l2.

coordinates of H2 centered at p. If we take p = (0, 0, 1) the projection map is simply

d(r, θ) = (sinh r cos θ, sinh r sin θ, cosh r) .

We have d∗(hH2) = dr2 + sinh 2(r)dθ2. The isometry group of H coincides with the
group of horizontal translations τθ0(r, θ) = (r, θ0 + θ). For a fixed θ0, the completion
Hθ0 of the quotient of H by the group generated by τθ0 is the model of a hyperbolic
surface with cone singularity θ0.

According to the definition given in [JMR11], polar coordinates on Hθ0 are ob-
tained by taking r and φ = (2π/θ0)θ ∈ [0, 2π] and the metric takes the form

dr2 +

(
θ0

2π

)2

(sinh r)2dφ2.

To construct a conformal coordinate on Hθ0 it is convenient to consider the
holomorphic covering of π : H → H2 \ {p}. Taking the Poincaré model of the hyper-
bolic plane centered at p, we can realize H as the upper half plane with projection
π(w) = exp(iw). In this model the pull-back metric is simply

π∗
(

4|dz|2
(1− |z|2)

)
=

4e−2y

(1− e−2y)2
|dw|2 ,

and isometries are horizontal translations. It can be readily shown that the depen-
dence of coordinates (r, θ) on the conformal coordinate w = x + iy is of the form

r = log 1+e−y

1−e−y , θ = x. In particular the map τθ0 in this model is still of the form
τθ0(w) = w + θ0.

Now we have a natural holomorphic projection πθ0 : H → D \ {0} given by
πθ0(w) = exp(ikw) where k = 2π/θ0. The automorphism group of πθ0 is generated
by the translation τθ0 . So a conformal metric hθ0 is induced on D \ {0} that makes
D a model of Hθ0 . Putting z = exp(ikw) and w = x+ iy it turns out that |z| = e−ky

so e−y = |z|1/k and as dz = ik exp (ikw)dw one gets that

hθ0 =
4

k2

|z|2(1/k−1)

(1− |z|2/k)2
|dz|2 = 4(1 + β)2 |z|2β

(1− |z|2(1+β))2
|dz|2 , (6.2)
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where we have put β = θ0/2π − 1.
Analogously, one can construct the models of Euclidean and spherical singular

points. In polar coordinates the flat cone metric takes the form

dρ2 +

(
θ0

2π

)2

ρ2dφ2 .

In the conformal coordinate the flat metric is simply |z|2β|dz|2.

We mainly consider the case where h is a hyperbolic metric with cone singular-
ities. In particular we denote by H(S,β) the set of singular hyperbolic metrics on
S with divisor β. We will endow a neighborhood of a cone point of a hyperbolic
surface with a Euclidean metric with the same cone singularity, that we call the
Klein Euclidean metric associated with h. The construction goes as follows.

Take a point p ∈ H2 and consider the radial projection of H2 to the affine plane
P tangent to H2 at p,

π : H2 → P .

The map π is frequently used to construct the Klein model of H2. The pull-back of
the Euclidean metric gP of P to H2 is invariant by the whole stabilizer of p. Hence
the pull-back of this metric on the universal cover H of H2 \ {p} is a Euclidean
metric invariant by the isometry group of H. The latter metric thus projects to a
Euclidean metric gK on Hθ0 , still having a cone singularity of angle θ0 at the cone
point. We observe that h and gK are bi-Lipschitz metrics in a neighborhood of the
singular point.

Remark 6.1.2. On a surface with cone singularity, the metric gK is defined only in
a regular neighborhood of a cone point.

One of the reasons we are interested in this metric is that there is a useful
relation between the Hessian computed with respect to the metric h and the Hessian
computed with respect to the metric gK .

Lemma 6.1.3 (Lemma 2.8 of [BF14]). Let S be a hyperbolic surface with a cone
point at p. Let u be a function defined in a neighborhood of p and r the the hyperbolic
distance from p. Consider the function ū = (cosh r)−1u, then

D2ū(·, ·) = (cosh r)−1h((Hessu− uE)·, ·) , (6.3)

where D2ū is the Euclidean Hessian of ū for the metric gK , considered as a bilinear
form.

The computation in [BF14] was done only locally in H2, but as the result is of
local nature it works also in the neighborhood of a cone point.

6.1.1 Codazzi tensors on a hyperbolic surface with cone singulari-
ties

A Codazzi operator on the singular hyperbolic surface (S, h) is a smooth self-adjoint
operator b on S \p which solves the Codazzi equation d∇h b = 0. It is often convenient
to require some regularity of b around the singularity.
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We basically consider two classes of regularity. We say b is bounded if the
eigenvalues of b are uniformly bounded on S, and denote by C∞(S, h) the space of
bounded Codazzi operators. We say that b is of class L2 (with respect to h) if∫

S
tr(b2)ωh < +∞ ,

where ωh is the area form of the singular metric. We denote by C2(S, h) the space of
L2-Codazzi tensors. Since tr(b2) = ||b||2, b is in C2(S, h) if and only if ||b|| ∈ L2(S, h).
Notice that if u ∈ C∞(S\p), then the operator b = Hessu−uE is a Codazzi operator
of the singular surface. We have that b ∈ C2(S, h) if u and ||Hessu|| are in L2(S, h).

As in the general case, given a holomorphic quadratic differential q on S \ p,
the self-adjoint operator bq defined by <q(u, v) = h(bq(v), w) is a traceless Codazzi
operator of the singular surface (S, h). The regularity of bq close to the singular
points can be easily understood in terms of the singularity of q. In particular we
have

Proposition 6.1.4. The Codazzi operator bq is in C2(S, h) if and only if q has at
worst simple poles at the singularities. Moreover if θi ≤ π then bq is bounded around
pi, and if θi < π then bq continuously extends at pi.

For the sake of completeness we prove an elementary Lemma, that will be used
in the proof of Proposition 6.1.4.

Lemma 6.1.5. Let D be a disc in C centered at 0 and f be a holomorphic function
on D \ {0}. If |z|a|f |p is integrable for some a ∈ (0, 2) and p ∈ [1, 2], then f has at
worst a pole of order 3 at 0. If moreover 2p − a ≥ 2, then the pole at 0 is at most
simple.

Proof. First we notice that with our assumption f̂(z) = z2f(z) ∈ L1(D, |dz|2). As
the function |f̂(z)| is subharmonic, the value at a point z of |f̂ | is estimated from
above by the mean value of |f̂ | on the ball centered at z with radius |z|

|f̂(z)| ≤ 1

2πi|z|2
∫
B(z,|z|)

|f̂(ζ)|dζ ∧ dζ̄ .

As the integral is estimated by the norm L1 of f̂ we get that |z|2|f̂(z)| ≤ C. Thus f̂
has a pole of order at worst 2. As 1/z ∈ L1(D, |dz|2), whereas 1/z2 /∈ L1(D, |dz|2),
the pole in 0 cannot be of order 2.

This implies that f has at most a pole of order 3. Suppose f has a pole of order
2 or 3, then close to 0 we have |f(z)| > C|z|−2 where C is some positive constant.
Thus |z|a|f(z)|p ≥ Cp|z|a−2p, that implies 2p− a < 2.

Proof of Proposition 6.1.4. The problem is local around the punctures. Let us fix
a conformal coordinate z in a neighborhood of a puncture pi, so that the metric
takes the form h = e2ξ|z|2β|dz|2 where ξ is a bounded function, whereas q = f(z)dz2

where f is a holomorphic function on the punctured disc {z | 0 < |z| < ε}. Using the
expression (5.19) for the operator bq in real coordinates, we get

||bq||2 = tr(b2q) = 2e−4ξ|z|−4β|f |2 .
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On the other hand the area form is ωh = e2ξ|z|2βdx ∧ dy, so the problem is reduced
to the integrability of the function |z|−2β|f(z)|2. As −2β ∈ (0, 2), Lemma 6.1.5
implies that this happens if and only if f has at worst a simple pole at 0.

The same computation shows that ||bq||2(z) < C|z|−4β−2. In particular if β ∈
(−1,−1/2] (that is if the cone angle is θ ≤ π) the operator bq is bounded around pi,
whereas if β < −1/2 the operators continuously extends at pi with bq(pi) = 0.

We want to prove now that δb is a continuous function of b with respect to the
L2-distance.

Proposition 6.1.6. The map δ : C2(S, h)→ H1
hol(π1(S),R2,1) is continuous for the

L2-distance on C2(S, h).

We premise to the proof an elementary lemma.

Lemma 6.1.7. Let fn be a sequence of smooth functions defined on a planar disc
U of radius R such that

• fn(0)→ 0 and dfn(0)→ 0 as n→ +∞;

• ||D2fn||L2(U) → 0.

then dfn → 0 and fn → 0 in L2(U).

Proof. By Taylor expansion along the path γ(t) = ty, we write

dfn(y) = dfn(0) +

∫ 1

0
D2(fn)ty(y, ·)dt ,

so by applying Cauchy-Schwartz inequality we deduce that

||dfn(y)− dfn(0)||2 < C

∫ 1

0
||D2(fn)ty||2dt ,

where C is a constant depending on R. By integrating, using Fubini-Tonelli Theorem
we get ∫

U
||dfn(y)− dfn(0)||2 < C||D2fn||2L2(U) .

Using that dfn(0) → 0 we conclude that dfn → 0 in L2(U). A similar computation
shows that fn → 0 in L2(U).

Proof of Proposition 6.1.6. Let bn be a sequence of Codazzi operators on (S, h) such
that ||bn||L2(h) → 0. We have to prove that δbn → 0.

Lifting bn on the universal covering we have a family of functions un : S̃ → R
such that

b̃n = Hessun − unE ,
and un(x) − un(α−1x) = 〈dev(x), δ(bn)α〉 for every α ∈ π1(S). We claim that we
can choose un such that un(x)→ 0 almost everywhere on S̃. The claim immediately
implies that δ(bn)α → 0 for every α ∈ π1(S).
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In order to prove the claim we fix a point x0 ∈ S̃ and normalize un so that
un(x0) = 0 and dun(x0) = 0 (this is always possible by adding some linear function
to un).

Consider now the Klein Euclidean metric gK on S̃ obtained by composing the
developing map with the projection of H2 to the tangent space Tdev(x0)H

2. (Notice

that covering transformations are not isometries for gK .) Take the function ūn =
(cosh r)−1un where r(x) is the hyperbolic distance between dev(x) and dev(x0). Let
U be any bounded subset of S̃. Combining the hypothesis on bn and Lemma 6.1.3,
we have that ||D2ūn||h → 0 in L2(U, h). As h and gK are bi-Lipschitz over U we
have that ||D2ūn||L2(U,gK) → 0.

By Lemma 6.1.7 there is a neighborhood U0 of x0 where ūn → 0 and dūn → 0.
So the set

Ω = {x ∈ S̃ : ∃U neighborhood of x such that ||ūn||L2(U,gK) → 0, ||dūn||L2(U,gK) → 0}

is open and non-empty. Again Lemma 6.1.7 implies that this set is closed so Ω = S̃.
The claim easily follows.

We are now ready to prove that the decomposition of Codazzi tensors for closed
surfaces described in Proposition 5.1.5 holds for singular surfaces, when the correct
behavior around the singularity is considered. For a singular metric h, we need
to introduce the Sobolev spaces W k,p(h) of functions in Lp(h) whose distributional
derivatives up to order k (computed with the Levi-Civita connection of h) lie in
Lp(h).

Proposition 6.1.8. Given b ∈ C2(S, h), a holomorphic quadratic differential q and
a function u are uniquely determined so that

• b = bq + Hessu− uE;

• q has at worst simple poles at p;

• u ∈ C∞(S \ p) ∩W 2,2(h).

Such decomposition is orthogonal, in the sense that

||b||2L2 = ||bq||2L2 + ||Hessu− uI||2L2 .

Moreover, if θi < π and b is bounded then u ∈W 2,∞(h).

Again we premise an elementary Lemma of Euclidean geometry.

Lemma 6.1.9. Let (U, g) be a closed disc equipped with a Euclidean metric with a
cone angle at p0. Let f be a smooth function on U \ {p0} such that ||D2f || is in
L2(U, g) (resp. L∞(U, g)). Then f and || grad f || lie in L2(U, g) (resp. L∞(U, g)).

Proof. Let us consider coordinates r, θ on U . We may suppose that U coincides
with the disc of radius 1. The Taylor expansion of f along the geodesics c(t) =
(1− (1− r)t, θ) is

f(r, θ) = f(1, θ)−(1−r)〈grad f(1, θ), ∂r〉+(1−r)2

∫ 1

0
(1−t)D2f(1−(1−r)t,θ)(∂r, ∂r)dt .
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Now the function f̂(r, θ) = f(1, θ)− (1− r)〈grad f(1, θ), ∂r〉 is bounded and we can
estimate

(f(r, θ)− f̂(r, θ))2 <

∫ 1

0
||D2f(tr, θ)||2dt .

If D2f is bounded this formula shows that f ∈ L∞(U, g). By integrating the in-
equality above on U we also see that if ||D2f || ∈ L2(U, g) then f is in L2(U, g) as
well.

Cutting U along a radial geodesic we get a planar domain. We can find on this
domain two parallel orthogonal unitary fields e1, e2 and basically one has to prove
that fi = 〈grad f, ei〉 ∈ L2(U, g) (resp. L∞(U, g)). This can be shown by a simple
Taylor expansion as above noticing that grad fi = (D2f)ei, and so || grad fi|| ∈
L2(U, g) (resp. L∞(U, g)).

Proof of Proposition 6.1.8. The proof is split in three steps:

Step 1 We prove that if Hessu−uE is in C2(S, h) (resp. C∞(S, h)) then u ∈W 2,2(S, h)
(resp. W 2,∞(S, h)).

Step 2 Denote by Ctr(S, h) the space of trivial Codazzi tensors in C2(S, h). We prove
that Ctr(S, h)⊥ coincides with the space of traceless Codazzi tensors.

Step 3 We prove that the orthogonal splitting holds

C2(S, h) = Ctr(S, h)⊕ Ctr(S, h)⊥ .

(This is not completely obvious as C2(S, h) is not complete.)

To prove Step 1 first suppose Hessu−uE ∈ C2(S, h). We check that u and ||du||h
lie in L2(S, h). Notice that we only need to prove integrability of u2 and ||du||2h in
a neighborhood U of a puncture pi. Consider the function ū = (cosh r)−1u, where
r is the distance from the puncture. By Lemma 6.1.3, the Hessian of ū computed
with respect to the Klein Euclidean metric gK is simply

D2ū(·, ·) = (cosh r)−1h((Hessu− uE)·, ·) ,
so we see that ||D2ū||gK is in L2(U, gK). By Lemma 6.1.9 we conclude that u
and ||du||gK lie in L2(U, gK). As gK and h are bi-Lipschitz we conclude that u
and ||du||h are in L2(U, h). The proof of Step 1 easily follows by noticing that
Hessu = (Hessu− uE) + uE.

The case where Hessu−uE is in C∞(S, h) can be proved adapting the argument
above in a completely obvious way.

Let us prove Step 2. Imposing the orthogonality with the trivial Codazzi tensor
corresponding to u = 1 we see that Ctr(S, h)⊥ is contained in the space of traceless
Codazzi tensors.

To prove the reverse inclusion it suffices to show that∫
S

tr(bq(Hessu− uE))ωh = 0 .



Part II. Flat Lorentzian geometry 149

for any holomorphic quadratic differential q with at worst simple poles at the punc-
tures and for any u ∈W 2,2(h).

As bq is Codazzi, bqHessu = ∇(bq gradu) −∇gradubq. Using that tr(bq) = 0, we
get ∫

S
tr(bq(Hessu− uE))ωh =

∫
S

tr(bqHessu)ωh =

∫
S

div(bq gradu)ωh .

So if Br is a neighborhood of the singular locus formed by discs of radius r we have∫
S

tr(bq(Hessu− uE))ωh = lim
r→0

∫
∂Br

h(bq gradu, ν)d`r , (6.4)

where d`r is the length measure element of the boundary whereas ν is the normal to
the boundary pointing inside Br. Now we claim that there exists a sequence rn → 0
such that ∫

∂Brn

||bq gradu||hd`rn → 0

as n→ +∞. Using this sequence in Equation (6.4) we get the result.
In order to prove the claim, notice that as u ∈ W 2,2(h), gradu ∈ W 1,2(h). By

Sobolev embedding, || gradu||h ∈ Lp(h) for any p < +∞. On the other hand as in
the proof of Proposition 6.1.4, ||bq|| ∼ |z|−2βi |f |, where z is a conformal coordinate
on U with z(pi) = 0 and we are putting q(z) = f(z)dz2. As the area element of
h is ∼ |z|2βidxdy, using that |f | < C|z|−1 we see that ||bq||h lies in L2+ε(U, h) for
ε < 2|βi| for i = 1, . . . k.
So by a standard use of Hölder estimates we get f = ||bq gradu||h lies in L2(S, h).
Now suppose that there exists a singular point p and some number a such that∫

∂Br

fd`r > a

for any r ∈ (0, r0). By Schwarz inequality we get

a < `(∂Br)
1/2

(∫
∂Br

f2

)1/2

.

As `(∂Br) < Cr for some constant C, we have∫
∂Br

f2 >
a2

Cr
.

Integrating this inequality and using Tonelli Theorem we obtain

||f ||2L2 >

∫ r0

0
dr

∫
∂Br

f2 >
a2

C

∫ r0

0

dr

r
.

which gives a contradiction.
Finally we prove Step 3. Considering the completion of C2(S, h) we have an

orthogonal decomposition

C2(S, h) = Ctr(S, h)⊕ Ctr(S, h)⊥ ,
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where we used a bar to denote the completed space. By Step 2 and Proposition 6.1.4
the subspace Ctr(S, h)⊥ is finite dimensional, so it coincides with its completion. This
implies that the splitting above induces a splitting

C2(S, h) = (Ctr(S, h) ∩ C2(S, h))⊕ Ctr(S, h)⊥ .

By Proposition 6.1.6 we notice that Ctr(S, h) = δ−1(0) is closed in C2(S, h), so the
first addend is actually Ctr(S, h), and the proof is complete.

Now we want to show that if b ∈ C2(S, h) then the cocycle δb is trivial around
all the punctures, that means that for every peripheral loop α there exists t0 ∈ R2,1

such that (δb)α = hol(α)t0 − t0.

Remark 6.1.10. As hol(α) is an elliptic transformation, proving that δb is trivial
around α is equivalent to proving that the vector (δb)α is orthogonal to the axis
of hol(α). The importance of this condition will be made clear in next subsection.
Basically, it corresponds to being the translation part of the holonomy of a MGHF
manifold with particles. Moreover, it can be checked that a cocycle trivial around
the punctures, if regarded as an element in H1

Ad◦hol(π1(S), so(2, 1)) by means of the
isomorphism Λ, corresponds to a first-order deformation of hyperbolic metrics which
preserves the cone singularity. This clarifies how Theorem 5.B can be extended to
the case of manifolds with particles, which is the aim of Section 6.2.

By Proposition 6.1.8, in order to prove that δb is trivial around the punctures, it
is sufficient to consider the case b = bq where q is a holomorphic quadratic differential
with at most a simple pole at singular points.

Lemma 6.1.11. Let U be a neighborhood of a cone point p in a hyperbolic surface
of angle θ0 ∈ (0,+∞) and let b a Codazzi operator on U such that ||b(x)|| < C0r(x)α

where r(x) is the distance from the cone point and α is some fixed number bigger
than −2. Then δb is trivial.

Moreover, there exists a function u ∈ W 1,2(h) ∩ C0,α(U), smooth over U \ {p},
such that b = Hessu− uI. If α > −1, then u is Lipschitz continuous around p.

Proof. As in Example 6.1.1, let H be the universal cover of H2 \ {x0}, and (r, θ)
be global coordinates on H obtained by pulling back the polar coordinates on H2

centered at x0. We can assume x0 = (0, 0, 1). The cover d : H → H2 is then of the
form

d(r, θ) = (sinh r cos θ, sinh r sin θ, cosh r) .

Up to shrinking U , we may suppose that U is the quotient of the region Ũ =
{(r, θ) | r < r0} by the isometry τθ0(r, θ) = (r, θ + θ0).

If b̃ is the lifting of U , there is some function u on Ũ such that b̃ = Hessu− uI.
Moreover, t = (δb)α is such that

(u− u ◦ τ−1
θ0

)(r, θ) = u(r, θ)− u(r, θ − θ0) = 〈d(r, θ), t〉 .

Integrating du on the path cr(θ) = (r, θ) with θ ∈ [0, θ0] we get∫
cr

du = cosh (r)〈x0, t〉+O(r) .
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So, in order to conclude it is sufficient to prove that∫
cr

du→ 0 as r → 0 . (6.5)

To this aim we consider the Klein Euclidean metric gK on U introduced in
Subsection 6.1. Notice that gK is equivalent to the hyperbolic metric h in U . In
particular if ρ is the Euclidean distance from p, we have that ρ ∼ r. Let ū =
(cosh r)−1u. By Lemma 6.1.3 we have D2ū(·, ·) = (cosh r)−1h((Hessu − uI)·, ·) as
bilinear forms, so we get ||D2ū||gK ∼ ρα on Ũ . A simple integration on vertical lines
shows that ||dū||gK (r, θ) ≤ C0 + C1ρ

α+1 < C0 + C2r
α+1 for any θ ∈ [0, θ0] and r ∈

[0, r0], where C0, C1 and C2 are constant depending on α, r0, sup0≤θ≤θ0 ||du||(r0, θ).
In particular |

∫
cr
dū| ≤ C3(1 + rα+1)`gK (cr) ≤ C4(1 + rα+1)r. So if α > −2 this

integral goes to 0 as r → 0. As
∫
cr
du = cosh r

∫
cr
dū, (6.5) follows.

We conclude that 〈x0, t〉 = 0, or equivalently t can be decomposed as t =
hol(α)t0 − t0 for some vector t0 ∈ R2,1, and up to adding the linear function
f(r, θ) = 〈d(r, θ), t0〉, we may suppose that u is τθ0-periodic. Hence u projects to a
function on U , that with some abuse we still denote u, such that b = Hessu− uE.

By the estimate on dū we also deduce that ū is uniformly continuous around the
singular point. More precisely the following estimate holds:

|ū(r1, θ1)− ū(r2, θ2)| ≤ |ū(r1, θ1)− ū(r1, θ2)|+ |ū(r1, θ2)− ū(r2, θ2)|

≤ C3(1 + rα+1)r|θ1 − θ2|+ C0|r1 − r2|+
C2

α+ 2
|rα+2

1 − rα+2
2 | .

So ū extends to a continuous function on U and the same holds for u.
Writing u = cosh (r)ū we get du = sinh (r)ūdr + cosh (r)dū. As ū is bounded it

results that ||du|| < C5 +C6r
α+1 and this estimate shows that ||du|| ∈ L2(U, h) and

u is Lipschitz if α > −1.

Proposition 6.1.12. Let (U, h) be a disc with a hyperbolic metric with a cone
singularity of angle θ0 ∈ (0, 2π) at p. Let q be a holomorphic quadratic differential
with at most a simple pole in p. Then δbq is trivial. Moreover there exists a Lipschitz
function u over U that is smooth over U \ {p} such that b = Hessu− uE.

Proof. If z is a conformal coordinate on U with z(p) = 0 and r is the distance from
the singular point, we know that r ∼ |z|β+1. On the other hand if q = f(z)dz2 and
h = e2ξ|z|2β|dz|2 we have ||bq||2 = e−4ξz−4β|f(z)|2, so by the assumption ||bq||2 <
C|z|2(−1−2β). In particular ||bq|| < Crα with α = −1−2β

1+β . As α > −1 for any
β ∈ (−1, 0) we can apply Lemma 6.1.11 and conclude.

Remark 6.1.13. If cone angles are in bigger than 2π (but different from integer
multiples of 2π) the same argument shows that bq is trivial around the puncture as
well. The main difference is that the exponent α lies in (−2,−1] so Lemma 6.1.11
ensures that the function u is Hölder continuous at the puncture and du is only
L2-integrable over U \ {p}.

A simple corollary of Proposition 6.1.12 is that if q is a quadratic differential on
(S, h) with at most simple poles at the punctures then the cohomology class of δbq
can be expressed as δ(b) for some operator b ∈ C∞(S, h)
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Corollary 6.1.14. Let q be a quadratic differential on S with at most simple poles
at punctures. There exists a Lipschitz function u on S, smooth on S \ p such that
b = bq − (Hessu− uE) is bounded. Moreover u can be chosen so that b is uniformly
positive definite, i.e. b ≥ aI for some a > 0.

Proof. By Proposition 6.1.12 around each puncture pi there exists a function ui such
that bq = Hessui − uiE. By a partition of the unity it is possible to construct a
smooth function u such that u coincides with ui is some smaller neighborhood of
pi. In particular the support of b′ = bq − Hessu − uE is compact in S \ p, so b′ is
bounded.

In order to get b uniformly positive it is sufficient to consider the constant func-
tion v = ||b′||∞ + a. Then b = b′ − Hess v + v E = bq − Hess(u + v) + (u + v)E is
uniformly positive since b′ −Hess v + v E = b′ + v E > aE.

6.1.2 Flat Lorentzian spacetimes with particles

We now consider maximal globally hyperbolic flat manifolds with cone singularities
along timelike lines.

Definition 6.1.15. We say that a Lorentzian spacetime M has cone singularities
along timelike lines (which we call also particles) if there is a collection of lines
s1, . . . , sk such that M∗ = M \ (s1 ∪ . . . ∪ sk) is endowed with a flat Lorentzian
metric and each si has a neighborhood isometric to a slice in R2,1 of angle θi < 2π
around a timelike geodesic, whose edges are glued by a rotation around this timelike
geodesic.

P2

P1

Figure 6.2: The model of a flat particle. The slice in R2,1 is the intersection of the half-
spaces bounded by two timelike planes P1, P2. The edges of the slice are glued by a rotation
fixing P1 ∩ P2.

By definition it is immediate that in a neighborhood of a point pi ∈ si there
are coordinates (z, t) ∈ D × R, for D a disc, such that si corresponds to the locus
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{z = 0} and the metric g takes the form

g = |z|2βi |dz|2 − dt2, (6.6)

where βi = θi
2π−1. Notice that the restriction of the metric g to the slices {t = const}

are isometric Euclidean metrics with cone singularities θi.

By definition the holonomy of a loop surrounding a particle of angle θ is con-
jugated with a pure rotation of angle θ, so the translation part of the holonomy is
orthogonal to the axis of rotation.

A closed embedded surface S ⊂ M is space-like if S ⊂ M∗ is space-like and for
any point p0 ∈ S ∩ si, in the coordinates (z, t) defined in a neighborhood of p0, S
is the graph of a function f(z). We will say that the surface is orthogonal to the
singular locus at p0 if |f(z)− f(z0)| = O(r2) where r is the intrinsic distance on D
from the puncture. As r = 1

β+1 |z|β+1 this condition is in general not equivalent to
requiring that the differential of f at z0 (computed with respect to the coordinates
x, y) vanishes.

If S is a space-like surface in a flat spacetime with cone singularity, then the
intersection of S with the singular locus is a discrete set and a Riemannian metric
I is defined on S∗ = S \ (s1 ∪ . . . ∪ sn). Clearly the first fundamental form and the
shape operator on S∗, say (I,B), satisfy the Gauss-Codazzi equation.

A notion of globally hyperbolic extension of S makes sense even in this singular
case and the existence and uniqueness of the maximal extension can be proved by
adapting verbatim the argument given for the Anti de-Sitter case in [BBS11].

Like the previous section, we fix a topological surface S and k points p =
{p1 . . . , pk} and study pairs (I,B) on S \ p corresponding to embedding data of
a Cauchy surface S in a globally hyperbolic spacetime with particles of cone angles
θ1, . . . , θk, so that the point pi lies on the particle with cone angle θi. The divisor
of (I,B) is by definition β =

∑
βipi, where we have put βi = θi

2π − 1. Again, we
consider embeddings which are isotopic to S ↪→ S × {0} ⊂M ∼= S × R.

As in the closed case we consider uniformly convex surfaces, but we also consider
an upper bound for the principal curvatures. More precisely we will assume that
B is a bounded and uniformly positive operator: that means that there exists a
number M such that 1

M E < B < M E; in other words we require the eigenvalues
of B at every point to be bounded between 1/M and M .

We now want to show that the set

Dβ =

(I,B) :

(I,B) embedding data of a closed uniformly convex Cauchy surface

in a flat Lorentzian manifold with particles of angles θ1, . . . , θk

orthogonal to singular locus, B bounded and uniformly positive


is in bijection with

Eβ =

{
(h, b) :

h hyperbolic metric on S with cone singularities of angles θ1, . . . , θk

b : TS∗ → TS∗ self-adjoint, bounded and uniformly positive, d∇h b = 0

}
.

More precisely, we show the following relation.
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Theorem 6.A. The correspondence (I,B) → (h, b), where h = I(B,B) and b =
B−1, induces a bijection between Eβ and Dβ.

This is a more precise version of Proposition 5.1.7, which additionally deals with
the condition that I and h have cone singularities. The fact that the hyperbolic
metric associated to (I,B) ∈ Dβ has a cone singularity at the singular points is a
simple consequence of the fact that its completion is obtained by adding a point.
In the opposite direction things are less clear and we will give a detailed proof of
the fact that given (h, b) as in the hypothesis of the theorem, the surface S can be
embedded in a singular flat spacetime with embedding data (I,B).

We first prove two Lemmas which will be used in the proof of Theorem 6.A.

Lemma 6.1.16. Let g be a Euclidean metric on a disc D with a cone point of angle
θ0 ∈ (0, 2π) at the point 0. Suppose u to be a C2 function on the punctured disc D∗ =
D \{0} such that the Euclidean Hessian Hessgu is bounded with respect to g, namely
there exists a constant a1 > 0 such that Hessgu < a1E. Then || gradg u(x)|| ≤
a1dg(0, x) and u extends at 0.

If moreover, Hessgu is uniformly positive, i.e. there is a constant a2 such that
a2E < Hessgu, then the metric g′(v, w) = g(Hessgu(v),Hessgu(w)) is a Euclidean
metric on D with a cone point of angle θ0 at 0.

Proof. Let D̃∗ be the universal cover of the punctured disc D∗, and let ũ be the
lifting of u on D̃∗. Let dev be a developing map for the Euclidean metric on D; we
can assume 0 is the fixed point of the holonomy of a path winding around 0 in D.
Then we define the map ϕ : D̃∗ → R2 given by

ϕ(x) = (dev)∗(gradg ũ(x)) ,

where with a standard abuse we denote by g also the lifting of the Euclidean metric
to D̃∗.

By the hypothesis
||dϕ(v)||R2 < a1||v||g

for any tangent vector v. In particular this estimate implies that ϕ is a1-Lipschitz,
so it extends to the metric completion of D̃∗, which is composed by one point 0̃ fixed
by the covering transformations. As ϕ conjugates the generator of the covering
transformations D̃ → D with the rotation of angle θ0 in R2, we must have ϕ(0̃) = 0,
as ϕ(0̃) must be fixed by the action of the holonomy. This implies that

|| gradg ũ(x)|| = ||ϕ(x)|| = dR2(ϕ(x), ϕ(0)) ≤ a1dg(0̃, x) . (6.7)

From the boundedness of gradu we also obtain that u is Lipschitz hence u extends
with continuity to the metric completion D. This concludes the first part.

Suppose now that Hessgu is uniformly positive. By construction, the pull-back
ϕ∗gR2 = g(Hessgũ(·),Hessgũ(·)) is a Euclidean metric for which ϕ is a developing
map, and has the same holonomy as dev. We claim that ϕ (suitably restricted if
necessary to the lift of a smaller neighborhood of 0, which we still denote by D), is
a covering on U \ {0}, where U is a neighborhood of 0 in R2. This will show that ϕ
lifts to a homeomorphism ϕ̃ from D̃∗ and the universal cover of U \ {0} conjugating
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the generator of π1(D∗) to an element of the isometry group S̃O(2) of this covering.
Therefore ϕ̃ descends to an isometric homeomorphism between D equipped with the
metric g′ and a model of a Euclidean disc with a cone singularity.

To show the claim, observe that ϕ is a local homeomorphism. Moreover, since
Hessgu is bounded by a2I and a1I, we have

a2||v||g < ||dϕ(v)||R2 < a1|v||g (6.8)

for any tangent vector v.
We prove now that ϕ(x) 6= 0 for any x 6= 0̃. Consider the geodesic path γ :

[0, t0] → D̃∗ joining x to 0̃ parametrized by arc length: it is simply the lifting of a
radial geodesic in D∗. Then we have that

g(gradg u(x), γ̇(t0))− g(gradg u(γ(ε)), γ̇(ε)) =

∫ t0

ε
g(Hessg(γ̇(t)), γ̇(t))dt .

Notice that |g(gradg u(γ(ε)), γ̇(ε))| ≤ || gradg u(γ(ε))|| = ||ϕ(γ(ε))||. So, using that
ϕ(γ(ε))→ 0 as ε→ 0, we get

g(gradg u(x), γ̇(t0)) =

∫ t0

0
g(Hessg(γ̇(t)), γ̇(t))dt ,

and the integrand in the RHS is bigger than a2t0. We deduce that

||ϕ(x)|| = || gradg u(x)|| ≥ a2t0 = a2d(x, 0̃) . (6.9)

To conclude that ϕ is a covering of U \ {0} for some neighborhood of 0 in R2,
it suffices to show that ϕ has the path lifting property. Given any path γ : [0, 1]→
U \ {0}, take a small ρ0 so that γ is contained in U \ B(0, ρ0). Therefore by (6.7)
a local lifting of γ is contained in a region of D̃∗ uniformly away from 0̃, hence
metrically complete for the metric g. Equation (6.8) ensures that any local lifting
of γ has finite lenght and thus by standard arguments the lifting can be defined on
the whole interval [0, 1].

To complete the second point, we need to show that g′ has the same cone angle
as g. By construction g and g′ have the same holonomy, hence the cone angle can
only differ by a multiple of 2π. Consider the one-parameter family of functions
us : D̃∗ → R,

us(x) = su(x) +
1

2
(1− s)dg(0, x)2.

The metrics gs(v, w) = g(Hessgus(v),Hessgus(w)), constructed as above, form a one-
parameter family of Euclidean metrics with cone singularities, depending smoothly
on s. Moreover g0 = g and g1 = g′. All the metrics gs have the same holonomy on a
path around 0, for the same construction. Therefore, by discreteness of the possible
cone angles {θ0 + 2kπ}, all metrics gs must have the same cone angle θ0.

Lemma 6.1.17. Let S be a surface embedded in a flat spacetime with particles.
Suppose that in a cylindrical neighborhood C = D × (a, b) of a particle where the
metric is of the form g = |z|2βi |dz|2 − dt2 as in (6.6), S is the graph of a function
f : D → (a, b). If the shape operator of S satisfies a2E < s < a1E, then
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• There are constants A1 and A2 such that A2E < Hessgf < A1E, where g is
the Euclidean singular metric on D.

• |f(x) − f(x0)| = O(ρ2) where ρ is the Euclidean distance from the singular
point x0.

Remark 6.1.18. This lemma implies that any surface with shape operator bounded
and uniformly positive is automatically orthogonal to the singular locus.

Proof. Let SC be the disc S ∩C = graph(f). Let dev be the developing map on the
universal cover of C. We may assume that p0 = (0, 0, 1) is fixed by the holonomy of
C, so dev(x, t) = dev0(x)+(0, 0, t), where dev0 is the developing map of the singular
disc (D, g).

Let G : S̃C → H2 be the Gauss map of the immersion dev|S̃C . First we notice that
G is locally bi-Lipschitz by our hypothesis, and since the diameter of SC is bounded,
then the image through G of a fundamental domain of the covering S̃C → SC is
contained in a hyperbolic ball B(p0, r0). As the holonomy of G is an elliptic group
fixing p0 we get that G(S̃C) is entirely contained in B(p0, r0).

Now let π : H2 → R2 be the radial projection π(x, y, z) = (x/z, y/z). Notice
that the restriction of π over the disc B(p0, r0) is a bi-Lipschitz diffeomorphism onto
a Euclidean disc B(p0, ρ0) where ρ0 = tanh r0. Let A = A(r0) be the bi-Lipschitz
constant of π|B(p0,r0).

Observe that, at a point (x, f(x)), the vector gradg f(x) + ∂t is a multiple of the

normal vector of SC . Hence the normal vector of the immersion dev : S̃C → R2,1 at
(x̃, f̃(x̃)) is parallel to the vector (dev0)∗(gradg f̃(x̃)) + (0, 0, 1). Then it is easy to

check that π(G(x̃, f̃(x̃))) = (dev0)∗(gradg f̃(x̃)). So we get

g(Hessgf̃(v),Hessgf̃(v)) = 〈(π ◦G)∗(v
′), (π ◦G)∗(v

′)〉 ,

where v′ = v + df(v)∂t. Using that π is A-bi-Lipschitz and that 〈G∗(v′), G∗(v′)〉 =
I(sv′, sv′) we get on D

a2
1

A
I(v′, v′) < g(Hessg(f)v,Hessg(f)v) < Aa2

2I(v′, v′) . (6.10)

Now I(v′, v′) = g(v, v)− (df(v))2 so it turns out that g(Hessg(f)·,Hessg(f)·) is uni-
formly bounded. By the first part of Lemma 6.1.16 there is a0 such that || gradg f(x)|| <
a0ρ, where ρ is the distance from the singular point x0. In particular, in a small
neighborhood of the singular point we have (1−ε)g(v, v) ≤ I(v′, v′), for a fixed small
ε. By (6.10) we conclude the proof of the first part of the lemma.

Finally, as || gradg f(x)|| < a0ρ, a simple integration along the geodesic connect-
ing x to x0 shows that |f(x)− f(x0)| < (a0/2)ρ2.

Proof of Theorem 6.A. We start by showing that I = h(b·, b·) and B = b−1 define
an embedding in a flat manifold with particles. The key point is to prove that a
neighborhood U of a singular point p0 ∈ p can be immersed as a graph in the model
of the cone singularity with embedding data (I,B). Once this has been proved, by
a standard application of the uniqueness of the extension one sees that S can be
globally immersed in a spacetime with cone singularity as in Definition 6.1.15.
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Let D be a small disc centered at p0 and let D̃∗ be the universal cover of the
punctured disc D∗ = D \ {p0}. Suppose the cone angle at p0 is θ0. Now we denote
by d : D̃∗ → H2 the restriction of the developing map of h to D̃∗; we can assume
(0, 0, 1) is the fixed point for the holonomy of a path winding around p0. Consider
the radial projection π : H2 → R2 from hyperbolic plane to the horizontal plane
{(x, y, z) | z = 1} in R2,1, namely π(x, y, z) = (x/z, y/z). Let dev = π ◦ d, which is a
developing map for the Klein Euclidean metric gK on D∗ introduced in Subsection
6.1, which will be denoted simply by g in the following.

Now let u be a function on D∗ such that b̃ = Hesshu − uE, that exists by
Proposition 6.1.12. We consider the function ū on D∗ as ū(x) = u(x)/cosh r
where we have put r = dh(p0, x). We know that σ̃ : D̃∗ → R2,1 given by σ̃(x) =
d∗(gradh u(x)) − u(x)d(x) gives an immersion of D̃∗ with the required embedding
data. Here with some abuse we denote by u also the lifting of u to the universal
cover. By [BF14, Lemma 2.8] it turns out that the orthogonal projection of σ̃(x)
onto the horizontal plane R2 ⊂ R2,1 (where again we are supposing that the vertical
direction is fixed by the holonomy of a loop around p0) is exactly

ϕ(x) = (dev)∗(gradg ū(x)) ,

Thus σ̃(x) = ϕ(x) + f(x)(0, 0, 1), for some function f : D̃∗ → R. Notice that the
holonomy of σ is simply the elliptic rotation around the vertical line of angle θ0, so
it turns out that f is invariant by the action of covering transformation of D̃∗ so it
projects to a function still denoted by f on D∗.

Now we claim that ϕ is the developing map for a Euclidean structure with cone
singularity θ0 over D∗. In fact by Lemma 6.1.3 we know that for v, w ∈ TxD∗

g(Hessgū(v), w) =
1

cosh r
h(b(v), w) . (6.11)

Therefore, Hessgū is bounded and uniformly positive. Indeed b and the factor
1/ cosh r appearing in Equation (6.11), as well as the metric h compared to g, are
bounded on D∗. Applying Lemma 6.1.16, g′ = g(Hessgû(·),Hessgû(·)) is a Euclidean
metric with cone angle θ0 and ϕ coincides with its developing map.

As a consequence, if we consider on M = D∗×R the flat Lorentzian metric with
particle g′− dt2, its developing map is Dev(x, t) = ϕ(x) + t(0, 0, 1). In particular we
have that Dev(x, f(x)) = σ̃(x). So we have shown that the map σ(x) = (x, f(x))
is an immersion of D∗ into the spacetime with particles M with embedding data
(I, s). The fact that the immersion is orthogonal to the singular locus follows from
Lemma 6.1.17.

We prove now the opposite implication showing that if (I,B) are the embedding
data of a Cauchy surfaces in a spacetime M with singularities of angle θi, then
h = I(B·, B·) is a hyperbolic metric with cone points of angle θi.

We know h = I(B·, B·) is a hyperbolic metric, with holonomy a rotation of angle
θi around each cone point pi of I. Moreover s is bounded and uniformly positive,
hence h admits a one-point completion as I does, and this is sufficient to show that
h has cone singularity. As I = h(b, b), by applying the first part of the proof to the
pair (h, b) one sees that the cone angles of h coincide with the cone angles of M .
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6.1.3 A Corollary about metrics with cone singularities

We write here a consequence of the previous discussion, which might be of interest
independently of Lorentzian geometry.

Theorem 6.B. Let h be a hyperbolic metric with cone singularities and let b be
a Codazzi, self-adjoint operator for h, bounded and uniformly positive. Then I =
h(b·, b·) defines a singular metric with the same cone angles as h. Moreover if
I = e2ξ|w|2β|dw|2 in a conformal coordinate w around a singular point p, the factor
ξ extends to a Hölder continuous function at p.

To prove Theorem 6.B, we consider the uniformly convex surface constructed in
Theorem 6.A, with first fundamental form I. We must show that this metric has
cone singularities. For every puncture of S, consider the singular Euclidean metric
on the disc D, provided by Lemma 6.1.16. We now call this metric g instead of g′.
Suppose the embedding in the chart D∗ ×R with the metric g − dt2 is the graph of
a function f : D∗ → R. Hence if z is a conformal coordinate for the metric g, the
metric I can be written in this coordinate as

I = |z|2β|dz|2 − df ⊗ df = |z|2β
(
|dz|2 − df ⊗ df

|z|2β
)
,

where g = |z|2β|dz|2.

Lemma 6.1.19. The coefficients of the metric

I ′ = |dz|2 − df ⊗ df
|z|2β = |z|−2βI

extend to Hölder functions defined on D.

Proof. It suffices to show that the functions |z|−β∂xf and |z|−β∂yf are Hölder func-
tions. We will give the proof for the first function, which we denote

F (z) = |z|−β ∂f
∂x
.

We split the proof in three steps. Recall from Lemmas 6.1.17 and 6.1.16 that we have
||Hessgf || ≤ C and || gradg f ||g ≤ Cρ for some constant C, where ρ = 1

1+β |z|1+β is
the intrinsic Euclidean distance.

First, consider the path γ1(t) = %eit for t ∈ [φ0, φ1], so that |γ1(t)| = % is
constant. We claim that

|F (γ1(φ1))− F (γ1(φ0))| ≤ C1%
β+1|φ1 − φ0|

for some constant C1. Consider

F (γ1(φ1))− F (γ1(φ0)) =

∫ φ1

φ0

d(F ◦ γ1(t))

dt
dt

=

∫ φ1

φ0

%−β
(
g

(
Hessgf(γ̇1),

∂

∂x

)
+ df

(
∇γ̇1

∂

∂x

))
.

(6.12)



Part II. Flat Lorentzian geometry 159

Now we have
|g (Hessgf(γ̇1), ∂x) | ≤ C||γ̇1||g||∂x||g = C%2β+1. (6.13)

On the other hand, a computation (using Equation (5.16) in Remark 5.2.8) shows
∇γ̇1∂x = β∂y, hence

|df (∇γ̇1∂x) |g ≤ β|| gradg f ||g||∂x||g ≤ (|β|/β + 1)C%2β+1. (6.14)

Using (6.13) and (6.14) in (6.12), we get

|F (γ1(φ1))− F (γ1(φ0))| ≤ C1%
β+1|φ1 − φ0|

As a second step, we consider the path γ2(t) = tz0 with |z0| = 1, for t ∈ [t0, t1].
We claim that

|F (γ2(t1))− F (γ2(t0))| ≤ C2|t1 − t0|β+1.

Since |γ2(t)| = t, we have

d(F ◦ γ2(t))

dt
= −βt−β−1∂f

∂x
+ t−β

(
g

(
Hessgf(γ̇2),

∂

∂x

)
+ df

(
∇γ̇2

∂

∂x

))
. (6.15)

From || gradg f || ≤ Cρ, we get |∂f/∂x| ≤ (C/(β + 1))t2β+1, hence the first term in

(6.15) is bounded by (|β|/β + 1)Ctβ. For the second term we have as above

|g (Hessgf(γ̇2), ∂x) | ≤ C||γ̇2||g||∂x||g = Ct2β , (6.16)

whereas in this case ∇γ̇2∂x = (β/t)∂x, from which we get

|df (∇γ̇2∂x) |g ≤ |β/t||| gradg f ||g||∂x||g ≤ (|β|/β + 1)Ct2β . (6.17)

By integrating we get

|F (γ2(t1))− F (γ2(t0))| ≤
∫ t1

t0

∣∣∣∣d(F ◦ γ2(t))

dt

∣∣∣∣ dt ≤ C2|tβ+1
1 − tβ+1

0 | ≤ C2|t1 − t0|β+1.

We can now conclude the proof. Given two points z0 = %0e
iφ0 , z1 = %1e

iφ1 ∈ D,
assuming %1 ≥ %0, consider the point z2 = %0e

iφ1 . We have

|F (z1)− F (z0)| ≤ |F (z1)− F (z2)|+ |F (z2)− F (z0)|
≤ C2|%1 − %0|β+1 + C1%

β+1
0 |φ1 − φ0|

≤ C3(|z1 − z0|β+1 + %β+1
0 |φ1 − φ0|β+1)

≤ C4|z1 − z0|β+1.

In the second line we have used that |%1 − %0| ≤ |z1 − z0| and the constant C3

involves C1, C2 and a factor which bounds |φ1 − φ0|β+1 in terms of |φ1 − φ0|, since
|φ1 − φ0| ∈ [0, 2π]. In the last line, we have used %0|φ1 − φ0| ≤ (π/2)|z1 − z0|.

Proof of Theorem 6.B. By a classical theorem of Korn and Lichtstein (see [Che55b]
for a proof), Lemma 6.1.19 implies that there exists a C1,α conformal coordinate
w = w(z) for the metric I ′ in a neighborhood of the point p. Now I = |z|2βI ′ =
e2ξ|w|2β|dw|2 where ξ is some continuous function on a neighborhood of the puncture.
This concludes the proof that I has a cone point of the same angle as h.
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6.1.4 Cauchy surfaces in MGHF spacetimes with particles

The purpose of this subsection is to prove a step towards the parametrization of
MGHF structures with particles on S × R by means of the tangent bundle of Te-
ichmüller space of the punctured surface S. The parametrization will be completely
achieved in Theorem 6.D.

Given two uniformly convex Cauchy surfaces in a MGHF spacetime M , we al-
ready know from Theorem 5.A that the holonomy of the third fundamental form of a
Cauchy surface coincides with the linear holonomy of M . However, differently from
the closed case, this is not sufficient to guarantee that the two hyperbolic metrics
obtained as third fundamental form correspond to the same point in Teichmüller
space. We prove this separately in Proposition 6.1.20, by using techniques similar
to those developed in [Bel14].

Next, we prove a converse statement in Proposition 6.1.23. Namely, if two pairs
of embedding data (I,B) and (I ′, B′) are such that the third fundamental forms h =
I(B·, B·) are isometric via an isometry isotopic to the identity, and the translation
parts of the holonomy are in the same cohomology class, then (I,B) and (I ′, B′) are
embedding data of uniformly convex Cauchy surfaces in the same spacetime.

Proposition 6.1.20. Let (I,B), (I ′, B′) ∈ Dβ be embedding data of uniformly con-
vex Cauchy surfaces in the same spacetime with particles M . Then h = I(B·, B·)
and h′ = I ′(B′·, B′·) are isotopic.

We first give an observation which will be used several times in the proof.

Remark 6.1.21. Given a uniformly convex surface S with embedding data (I,B), let
(h, b) ∈ Eβ the corresponding pair. Let S(t) be the surface obtained by the future
normal flow of S at time t. It is known that S(t) corresponds to the pair (h, b+ tI),
namely, the third fundamental form is constant along the normal flow. Moreover,
as the first fundamental form of S(t) is It = h((b + tI)·, (b + tI)·), h can also be
recovered as h = limt→∞

1
t2
It.

We will also use the following lemma concerning the properties of flat globally
hyperbolic spacetimes.

Lemma 6.1.22. Let S1 and S2 be uniformly convex surfaces in a MGHF spacetime
with particles. If S2 is contained in the future of S1 and in the past of S1(a), then
S2(t) is contained in the future of S1(t) and in the past of S1(a+ t) for every t > 0.

Proof. We claim that a point x is in the future of S1(t) if there is a timelike path
with future endpoint in x, of length at least t, entirely contained in the future of S1.
From this claim, the thesis follows directly.

To prove the claim, assume x is in the past of S1(t). The pull-back of the
Lorentzian metric of M using the normal flow takes the form −ds2 + gs , where gs
are Riemannian metrics. Hence every causal path contained in the future of S1 and
with endpoint x has length at most t.

Proof of Proposition 6.1.20. Let σ1 : S → M and σ2 : S → M be embeddings
of uniformly convex Cauchy surfaces S1 and S2 with embedding data (I,B) and
(I ′, B′) respectively. Assume first that S2 is contained in the future of S1 and in
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the past of S1(a). Applying Lemma 6.1.22 and [Bel14, Proposition 4.2], one sees
that the projection from S2(t) to S1(a + t) obtained by following the normal flow
of S1 is distance-increasing, and is a diffeomorphism by the property of Cauchy
surfaces. Hence we obtain a one-parameter family of 1-Lipschitz diffeomorphisms
(which clearly extend to the punctures) ft : S1(a+ t)→ S2(t).

Recall that by Remark 6.1.21, for the first fundamental form It of S2(t), It/t
2

converges to the third fundamental form h1, and analogously for h2. Hence by Ascoli-
Arzelà Theorem we obtain a 1-Lipschitz map f∞ : (S1, h1)→ (S2, h2) homotopic to
f0. Since the areas of (S1, h1) and (S2, h2) coincide by Gauss-Bonnet formula, f∞ is
necessarily an isometry. Moreover, by construction it is clear that (σ2)−1 ◦ f∞ ◦ σ1

is isotopic to the identity.
In the general case, given S1 and S2 uniformly convex, it suffices to replace S2

by S2(k) for k to reduce to the previous case. Indeed, we have already observed that
the third fundamental forms coincide for S2 and S2(k).

We now move to the proof of a Proposition 6.1.23, which is a converse statement.

Proposition 6.1.23. Let h be a hyperbolic metric on S with cone singularities
and let b, b′ ∈ C∞(S, h) be bounded and uniformly positive Codazzi operators. If
δ(b) = δ(b′), then the pairs (I,B) and (I ′, B′) corresponding to (h, b) and (h, b′) are
embedding data of uniformly convex Cauchy surfaces in the same MGHF spacetime
with particles.

Recall from Theorem 5.A that, under the hypothesis, δ(b) is the translation part
of the holonomy of the spacetime M provided by the embedding data (I,B), and
the linear part is the holonomy of h. The idea of the proof is to show that any small
deformation of b which leaves the holonomy invariant gives an embedding into the
same spacetime M . Then, we use connectedness of the space{

b′ ∈ C∞(S, h) : b′ is uniformly positive and δ(b′) = δ(b)
}
.

So we prove the first assertion, by a standard argument.

Lemma 6.1.24. Let b ∈ C∞(S, h) be uniformly positive, and ḃ ∈ C∞(S, h) be such
that δ(ḃ) = 0. Let M be the MGH spacetime obtained from the embedding data
(h, b). Then there exists ε > 0 such that for s ∈ (−ε, ε) every pair (h, b + sḃ) gives
an embedding of a uniformly convex spacelike surface into the spacetime M .

Proof. Let σ̃ : S̃ → R2,1 be the embedding constructed as in Proposition 5.1.10. We
can choose a smooth path of developing maps devs : S̃ → R2,1 having embedding
data (h, b + sḃ), for s ∈ (−ε, ε). Since by linearity δ(b + sḃ) = δ(b) for all s, devs
all have the same holonomy. We can also assume dev0 extends to a developing map
Dev0 for M defined on the lifting of a tubular neighborhood T̃ ∼= S̃ × (−a, a) of S
in M and there is a covering {Uα} of S such that, for every α, either Dev0 is an
isometry on its image when restricted to Uα × (−a, a) (if Uα does not contain any
singular point) or there is a chart for Uα × (−a, a) to a manifold (D × R, g − dt2)
where g is a Euclidean metric on the disc D with a cone point at 0. Restricting to
a smaller ε if necessary, and using the fact that all devs have the same holonomy,
we see that devs provides an embedding of S̃ into the spacetime obtained by gluing
the charts {Uα × (−a, a)}, for s ∈ (−ε′, ε′). This concludes the proof.
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Proof of Proposition 6.1.23. Given b and b′ as in the hypothesis, let v = ||b′||∞ be
a constant function and let bs = b + svI for s ∈ [0, 1]. Since b is modified by
adding svI = −Hess(sv) + (sv)I, δ(bs) = δ(b) for every s. Clearly, bs is bounded
and uniformly positive for every s. By Lemma 6.1.24, (h, b) and (h, b1) correspond
to embeddings of uniformly convex surfaces in the same spacetime M . Now the
same argument can be applied to b′s = b′ + s(b1 − b′), which is again bounded and
uniformly positive for every s, since by construction the eigenvalues of b1 at every
point are larger than the largest eigenvalue of b′, and δ(b′s) = δ(b′) by linearity of δ.
Therefore, b and b′ correspond to embeddings in the same spacetime M .

6.2 Relation with Teichmüller theory of a punctured
surface

Let us fix a topological surface S, and a divisor β =
∑
βipi, where βi ∈ (−1, 0), and

put p = {p1, . . . , pk}. Recall we are assuming χ(S,β) < 0.

We denote by H(S,β) the space of hyperbolic metrics on S with cone singularity
θi = 2(1+βi)π at pi. On the other hand, we consider the space of MGHF structures
containing a uniformly convex Cauchy surface orthogonal to the singular locus with
bounded second fundamental form, which we denote as follows:

S+(S,β) =


MGHF structures on S × R with particles on p× R of angles θi

containing a convex Cauchy surface orthogonal to p× R
having bounded and uniformly positive shape operator

 /∼

where two structures are equivalent for the relation ∼ if and only if they are related
by an isometry of S × R isotopic to the identity fixing each particle.

In Theorem 6.A we have seen that the pairs (h, b), where h ∈ H(S,β) and b is
a bounded and positive h-Codazzi tensor on S, bijectively correspond to immersion
data of convex Cauchy surfaces in a MGHF spacetime, orthogonal to the singular
locus. Moreover the spacetimes corresponding to (h, b) and (h′, b′) are in the same
equivalence class in S+(S,β) if and only if there is an isometry from (S, h) to (S, h′)
isotopic to the identity in Homeo+(S, p) and δ(b) = δ(b′).

In this section we want to use this characterization to construct a natural bijective
map between S+(S,β) and the tangent space of Teichmüller space of the punctured
surface T (S, p).

Let us recall that elements of T (S, p) are complex structures on S, say X =
(S,A), where A is a complex atlas on S, considered up to isotopies of S which
point-wise fix p. Dealing with complex structures associated with singular metrics on
S \ p makes important to clarify the regularity of the complex atlas. In the classical
Teichmüller theory one can deal with complex atlas whose charts are only quasi-
conformal with respect to a base smooth complex structure on S. In this framework
the group acting on this space of complex structures is the space of quasiconformal
homeomorphisms of S, which does not depend on the complex structure chosen. We
have the following lemma:



Part II. Flat Lorentzian geometry 163

Lemma 6.2.1. Let h be a hyperbolic metric with cone singularities on S, and b ∈
C∞(S, h). Then there is a complex structure X on S such that the metric ĥt =
h((E + tb)·, (E + tb)·) is conformal for X.

Proof. Clearly there is a smooth complex structure A∗t on S \ p for which ĥt is
conformal. We have to prove that A∗t extends to a complex atlas over S.

If t = 0 then this basically follows from the definition of metric with cone singu-
larities.

Consider now the general case. Notice that I : (S \ p,A∗0) → (S \ p,A∗t ) is
quasiconformal. In particular this implies that a neighborhood U of any puncture
pi with the structure inherited by A∗t is quasiconformal to a punctured disc. So it is
biholomorphic to a punctured disc, that is there is a biholomorphic map

ζ : (U \ pi,A∗t )→ D∗ ,

where D∗ = {z ∈ C | 0 < |z| < 1}.
It is not difficult to show that ζ extends by continuity to a homeomorphism

ζ : U → D. This proves that the atlas A∗t extends to S. Finally notice that the
function ζ in general is not smooth at pi, but, as the map

ζ : (U,A0)→ D

is quasiconformal, it has the requested regularity.

At a point [X] ∈ T (S, p) , the tangent space of T (S, p) is identified with a quo-
tient of the space of Beltrami differentials B(X). We say that a Beltrami differential
µ is trivial if 〈q, µ〉 = 0 for any holomorphic quadratic differential with poles of order
at worst 1 at pi (equivalently with for any holomorphic section of K2(p)). We will
denote by B(X, p)⊥ the subspace of trivial Beltrami differentials. The tangent space
T[X]T (S, p) is naturally identified with B(X)/B(X, p)⊥. The identification works as
in the case of a closed surface. The main difference is that the derivative of the Bel-
trami differential of the map I : X → Xt is well-defined up to this more restrictive
relation as we only consider homotopies which point-wise fix p. It turns out that if
σ is a smooth section on K−1, then ∂̄σ is trivial iff σ vanishes at punctures.

The main theorem we prove in this section is the analogue of Theorem 5.B in
the closed case. Given a hyperbolic metric h ∈ H(S,β) and b ∈ C∞(S, h), the family
of Riemannian metrics ĥt = h((E + tb)·, (E + tb)·) induces a smooth family Xt

of complex structures by Lemma 6.2.1. As in the closed case treated in Section
5.2.4, the derivative of Xt coincides with the Beltrami differential corresponding to
the traceless part b0 = b − (trb/2)I. This leads again to the definition of a map
Ψ : Eβ → TT (S, p).

Theorem 6.C. Let C∞(S, h) be the space of bounded Codazzi tensors on (S, h). The
following diagram is commutative

C∞(S, h)
Λ◦δ−−−−→ H1

Ad◦hol(π1(S \ p), so(2, 1))

Ψ

y dhol
x

T[X]T (S, p) −−−−→
J

T[X]T (S, p)

, (6.18)
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where Λ : H1
hol(π1(S \ p),R2,1) → H1

Ad◦hol(π1(S \ p), so(2, 1)) is the natural isomor-
phism, and J is the complex structure on T (S, p).

As in the closed case the proof of this theorem is based on the computation of
the differential of the holonomy map, where in this case

hol : T (S, p)→ R(π1(S \ p), SO(2, 1))//SO(2, 1)

is the map sending the marked Riemann surface [X] to the holonomy of the unique
hyperbolic conformal metric on S \ p with cone singularities θi at pi. The existence
of such a metric is a corollary of a more general result [Tro91].

In [ST11] it has been proved that if t 7→ [Xt] is a smooth path in T (S, p), then
there is a smooth family of hyperbolic metrics ht on S \p whose underlying complex
structure is isotopic to Xt. By Proposition 5.2.1 it turns out that the holonomy map
is smooth. Now we want to compute precisely the differential of hol. In particular
we prove the analogue of Proposition 5.2.4. Then, the proof of Theorem 6.C follows
exactly as in the closed case.

Proposition 6.2.2. Let h be a hyperbolic metric in H(S,β), Xh ∈ T (S, p) its
complex structure and let b ∈ C∞(S, h). Let b = bq+Hessu−uE be the decomposition
of b given in Proposition 6.1.8. Then

dholXh([b0]) = −Λδ(Jbq) ,

where Λ : H1
hol(π1(S \ p),R2,1) → H1

Ad◦hol(π1(S \ p), so(2, 1)) is the isomorphism
induced by the SO(2, 1)-equivariant isomorphism Λ : R2,1 → so(2, 1).

The proof of this proposition follows the same line as in the closed case, but some
technicalities come up. We consider the hyperbolic metric ht with cone singularities
and ht = e2ψt ĥt, where ĥt = h((E + tb)·, (E + tb)·). By Proposition 5.2.1,

˙hol =
1

2
d(h−1ḣ) .

Since h−1ḣ = 2((ψ̇ − u)E + bq + Hessu), putting φ = ψ̇ − u one gets ∆φ− φ = 0 as
in the closed case. Then proving that φ ≡ 0, one concludes as in the closed case.

Notice that respect to the closed case there are two technical points.

• One has to prove that the conformal factor ψt smoothly depends on t on S\{p}.
The idea is to use the result of [ST11], but we emphasize that we cannot
apply directly it, as the conformal structure induced by ht is not constant in
a neighborhood of the punctures. So we need to use an isotopy to fix the
conformal structures around the punctures.

• The second point is that the proof that φ is zero is not immediate. In fact φ is
defined only on the regular part S \ p which is not compact. Actually we will
prove that φ continuously extends to the punctures and conclude by adapt-
ing the maximum principle to the context of surfaces with cone singularity.
The proof that φ continuously extends to the disc needs some careful analysis
around the singular points.
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In the following lemma we summarize the technical construction of the isotopy
Ft.

Lemma 6.2.3. There is a smooth map F : [0, ε]× (S \ p)→ (S \ p) such that

• For any t the map Ft(·) = F (t, ·) extends to a quasiconformal homeomorphism
fixing p.

• F0 is the identity.

• There is a neighborhood U of p such that Ft : (U,A0) → (U,At) is conformal
for any t.

• The variation field Y = dFt(x)
dt

∣∣∣
t=0

extends to a continuous field on S with

Y (pi) = 0.

Proof. First we construct the isotopy F
(i)
t on a small neighborhood Ui of a puncture

pi. Notice that the Beltrami coefficient µt of the identity (S,A0) → (S,At) corre-
sponds to the symmetric traceless tensor tb0

1+t(trb/2) under the usual identification, so
µt smoothly depends on t. By the classical theory of Beltrami equation we can find

on a disc around the puncture a family of quasiconformal maps G
(i)
t : (Ui,A0) →

(Ui,A0) with Beltrami coefficient µt, such that the map G(i) : (−ε, ε) × Ui → Ui

is smooth in t. We may moreover suppose that G
(i)
t (pi) = pi for every t. Re-

garding G
(i)
t as a map G

(i)
t : (Ui,At) → (Ui,A0), it is holomorphic, so the map

defined by F
(i)
t = (G

(i)
t )−1 satisfies the requirements. Notice that the variation field

Y
(i)
t = dF (i)

dt

∣∣∣
t=0

is defined on the whole Ui, is smooth outside the punctures and

Yt(pi) = 0.

Now take a neighborhood U ′i of pi such that U
′
i ⊂ Ui and choose a smaller

neighborhood U ′′i such that F
(i)
t (U ′′i ) ⊂ U ′i for every t. Take a smooth function χ on

S which vanishes on S \ (
⋃
Ui) and is constantly 1 over

⋃
U ′i . Let Yt be the field

defined by Yt = χY
(i)
t over Ui and Yt ≡ 0 over S \ (

⋃
Ui). It can be readily shown

that Yt generates a flow of maps Ft ∈ Homeo(S, p)∩Diffeo(S \ p) and Ft ≡ F (i)
t over

U ′′i . It is easy to check that Ft verifies the requirements we need.

Proof of Proposition 6.2.2. We consider the metrics kt = F ∗t (ht) conformal to F ∗t (ĥt).
By [ST11] we know that they smoothly depend on the parameter t. It follows that
ht also smoothly depends on t. Moreover we have

h−1k̇ = h−1ḣ+ 2S∇Y .

As h−1ḣ = (2ψ̇ − 2u)E + 2bq + 2Hessu = 2φE + 2bq + 2Hessu, one deduces that
∆φ− φ = 0 as in the closed case.

We claim that φ ≡ 0. From the claim the proof follows exactly as in the closed
case. To prove the claim we first check that φ continuously extends to the punctures,
then we use the maximum principle adapted to the case of surfaces with cone points
that we prove separately in the next Lemma (notice that here φ solves the equation
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∆φ−φ = 0 on S \p but this does not imply that it is a weak solution of the equation
on the closed surface).

The proof of the continuity of φ around a puncture pi is articulated in the
following steps:

Step 1 We will show that around pi there exists a smooth vector field V such that
h−1k̇ = 2S∇V .

Step 2 Writing bq = JHessv − vJ we have that

φI = S∇(Y1) ,

where Y1 = V −Y − J grad v− gradu. This implies that ∂̄Y1 = 0, that is Y1 is
a holomorphic vector field on U \ {pi} (see Remark 5.2.8). We will prove that
Y1 extends at pi and Y1(pi) = 0.

Step 3 As 2φ is the divergence of Y1, the continuity of φ will be deduced by an
explicit computation where we use that Y1 is analytic around the puncture
with Y1(pi) = 0 (as the Christoffel symbols of the metric h diverge around the
puncture, the condition Y1(pi) = 0 will play a key role in the computation).

Step 1:

As kt smoothly depends on t we can construct a smooth family of isometric
embeddings

st : (U, kt)→ (U ′, h)

where U and U ′ are fixed neighborhoods of pi. Up to shrinking U we may suppose
that on U the metric kt is conformal to h for every t, so from the conformal point
of view we have a smooth map

s : (−ε, ε)× U → U ′

such that the restriction st(·) = s(t, ·) is holomorphic for every t. It follows that
V = dst

dt

∣∣
t=0

is a holomorphic field defined on the whole U . As st(pi) = pi we get

that V (pi) = 0. Finally notice that as s∗t (h) = kt we have that 2S∇V = h−1k̇.

Step 2:

As we know that Y (pi) = 0 and V (pi) = 0, it is sufficient to prove that grad v
and gradu vanish at pi.

More generally we will prove that if f is a function on U such that ||Hessf −
f E|| < Crα for some α > −1, then grad f extends to 0 at pi. This general fact
implies the extendability of grad v, because Hessv−v E = −biq satisfies this condition
as we noted in the proof of 6.1.4. On the other hand u can be regarded as the
difference of the functions u1−u2 where b = Hessu1−u1E and bq = Hessu2−u2E.
As b is bounded and bq satisfies the condition above, we conclude that gradu extends
as well.

Let g be the Klein Euclidean metric on U . As in the proof of Lemma 6.1.16,
let us put f̄ = (cosh r)−1f , where r is the hyperbolic distance from the cone
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point. By Lemma 6.1.3, f̄ satisfies the equation D2
g f̄(·, ·) = (cosh r)−1h((Hess f −

f E)·, ·), so ||D2
g f̄ ||g < Crα. Consider on the universal cover the gradient map

ϕ̃ = (dev)∗(gradg f̄) : ˜U \ {pi} → R2. If ρ denotes the Euclidean radial coordinate
and θ is the pull-back of the angular coordinate, we have

||ϕ̃(ρ1, θ1)− ϕ̃(ρ2, θ2)|| ≤ ||ϕ̃(ρ1, θ1)− ϕ̃(ρ1, θ2)||+ ||ϕ̃(ρ1, θ2)− ϕ̃(ρ2, θ2)||
≤ C(ρα1 ρ1||θ1 − θ2||+ ||ρα+1

2 − ρα+1
1 ||) .

This shows that on each radial line there exists the limit limρ→0 ϕ(ρ, θ) = ξ.
Moreover this limit does not depend on θ, and the convergence is uniform as far as θ
lies in some compact interval of R. As in the proof of Lemma 6.1.16, ϕ(ρ, θ + θ0) =
Rθ0ϕ(ρ, θ), we deduce that ξ is a fixed point of the rotation, that is ξ = 0. It turns
out that || gradg f̄ ||g → 0 at pi. As the hyperbolic metric h is equivalent to g we
conclude that also || gradh f ||h → 0 at the puncture pi.

Step 3:

Under the identification K−1 = TS we have Y1 = f(z) ∂∂z and 2φ = divY1. As in
complex notation the connection form (compare Remark 5.2.8) is

ω = 2
∂η

∂z
dz ,

where η is the conformal factor of the hyperbolic metric h = e2η|dz|2. It turns out
that φ = <(f ′(z) + 2∂zηf(z)). Notice that η = β log |z|+ ξ where ξ is a C1 function
on D such that ||dξ|||z| → 0 (compare the explicit expression in Equation (6.2) for
the hyperbolic metric in the conformal coordinate). So we get

lim
z→0

φ = (1 + β)<f ′(0) ,

and in particular φ extends to a continuous function on S.

Lemma 6.2.4. Let h ∈ H(S,β). If φ is a continuous function on S, and on S \ p
is a smooth solution of ∆hφ− φ = 0, then φ ≡ 0.

Proof. From the equation we know that if the maximum of φ is realized at an interior
point, then it must be nonpositive. We claim that the same holds if the maximum is
realized at a puncture pi. From the claim we can conclude that the maximum must
be nonpositive and analogously the minimum nonnegative, that is φ ≡ 0.

To prove the claim we consider the function F : [0, ε)→ R such that F (r) is the
average of φ over the circle centered at pi of radius r. We fix ε so that all those circles
are embedded in S. Notice that by continuity of φ we have limr→0 F (r) = φ(pi) and
the assumption that pi is a maximum point for φ implies that F (r) ≤ F (0) for r ≥ 0.

Now using coordinates r, θ in a neighborhood of pi we have

F (r) =
1

θ0

∫ θ0

0
φ(r, θ)dθ ,
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so

Ḟ (r) =
1

θ0

∫ θ0

0
h(gradφ(r, θ), ν)dθ =

1

θ0sinh r

∫
∂Br

h(gradφ(r, θ), ν)d`r ,

where ν is the normal field on ∂Br pointing outside.
Putting G(r) =

∫
∂Br

h(gradφ(r, θ), ν)d`r, the Divergence Theorem implies that
for s < r

G(r)−G(s) =

∫
Br\Bs

∆hφωh =

∫
Br\Bs

φωh .

As φ is bounded we have |G(r) − G(s)| ≤ K(r2 − s2) for some constant K. This
implies that G extends to 0 and, putting C0 = G(0)

|G(r)− C0| ≤ Kr2 . (6.19)

Let us show that C0 = 0. If C0 6= 0, up to changing the sign of φ we may suppose
C0 > 0. Then by (6.19) we get∣∣∣∣θ0Ḟ (r)− C0

sinh r

∣∣∣∣ ≤ K ′r .
This implies that θ0Ḟ ≥ C0

sinh r−K ′r, but this contradicts the fact that Ḟ is integrable

on [0, ε). Thus C0 = 0 so |Ḟ (r)| < K ′r, that implies that Ḟ (r)→ 0 as r → 0.
Now

θ0(Ḟ (r)− Ḟ (s)) =
1

sinh r
(G(r)−G(s)) +

(
1

sinh r
− 1

sinh s

)
G(s) =

=
1

sinh r

∫
Br\Bs

∆hφωh +
sinh s− sinh r

sinh s sinh r
G(s) .

Notice that the last addend tends to 0 as s→ 0, so we deduce

Ḟ (r) =
1

θ0sinh r

∫
Br

∆hφωh =
1

θ0sinh r

∫
Br

φωh .

Now as F (r) ≤ F (0) we get that Ḟ (r) must be nonpositive for small r, and this
implies that φ(0) cannot be positive. Analogously one shows that if the minimum
is achieved at a puncture, then it must be nonnegative and this concludes that
φ ≡ 0.

Theorem 6.D. Two embedding data (I,B) and (I ′, B′) in Eβ correspond to Cauchy
surfaces contained in the same spacetime with particles if and only if

• the third fundamental forms h and h′ are isotopic;

• the infinitesimal variation of h induced by b = B−1 is Teichmüller equivalent
to the infinitesimal variation of h′ induced by b′ = (B′)−1.

The map Ψ induces to the quotient a bijective map

Ψ̄ : S+(S,β)→ TT (S, p).
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Proof. The first part directly follows by Proposition 6.1.23. The fact that Ψ̄ is well-
defined and injective is then a consequence of commutativity of (6.18). Notice that
Ψ : C(S, h)→ T[X](S, p) is surjective by a simple dimensional argument. As for any
b ∈ C∞(S, h) we may find a constant M so that b + M E is positive. Like in the
closed case we conclude that Ψ̄ is surjective.

6.3 Symplectic structures in the singular case

In the singular case it is also possible to construct a Goldman intersection form ωB

on the image of dhol in H1
Ad◦hol(π1(S), so(2, 1)). Mondello [Mon10] proved that the

map dhol is symplectic up to a factor. We will give here a different proof of that
result in the analogy of the proof of Corollary 5.3.5 given in Subsection 5.3.

First let us recall some basic facts on the construction of ωB. We denote by
H•c (S, Fso(2,1)) the de Rham cohomology of the complex of Fso(2,1)-valued forms on
S with compact support, and let

I∗ : H1
c (S, Fso(2,1))→ H1

dR(S, Fso(2,1))

be the map induced by the inclusion. The image of I∗ will be denoted byH1
0 (S, Fso(2,1))

and contains the cohomology classes in H1
dR(S, Fso(2,1)) which admit a represen-

tative with compact support. Under the isomorphism H1
Ad◦hol(π1(S), so(2, 1)) ∼=

H1
dR(S, Fso(2,1)), elements of H1

0 (S, Fso(2,1)) correspond to cocycles which are trivial
around the punctures.

Let B be the Ad-invariant product on so(2, 1) defined in Subsection 5.3. It
induces a well-defined pairing

ω̄B : H1
c (S, Fso(2,1))×H1

dR(S, Fso(2,1))→ R

given as in the closed case by

ω̄B([ς], [σ]) =

∫
S
B(ς ∧ σ) .

This pairing is nondegenerate by Poincaré duality. Notice that if ς, ς ′ are forms with
compact support ω̄B([ς], I∗[ς

′]) = −ω̄B([ς ′], I∗([ς])), showing that ker I∗ coincides
with the orthogonal subspace of H1

0 (S, Fso(2,1)).

Thus the form ω̄B induces a symplectic form on H1
0 (S, Fso(2,1)), defined by

ωB([σ], [σ′]) =

∫
S

B(σ ∧ σ′) ,

where σ and σ′ are representatives with compact support.

In a similar way we can define the subspace H1
0 (S, F ) and a symplectic form ω̄F

on it, analogous to the one constructed in Subsection 5.3

By Proposition 6.1.12, the coboundary operator δ : C2(S, h) → H1
dR(S, F ) takes

values in H1
0 (S, Fso(2,1)). The following proposition computes ω̄B(Λδb,Λδb′) in anal-

ogy with Proposition 5.3.2.
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Proposition 6.3.1. Let δ : C2(S, h)→ H1
0 (S, F ). Then

ω̄F (δ(b), δ(b′)) =
1

2

∫
S

tr(Jbb′)ωh . (6.20)

or analogously

ω̄B(Λ(δ(b)),Λ(δ(b′))) =
1

4

∫
S

tr(Jbb′)ωh . (6.21)

Proof. Since δ is continuous for the L2-norm by Proposition 6.1.6, both LHS and
RHS in (6.20) and (6.21) are continuous on C2(S, h) × C2(S, h). So by density it is
sufficient to prove that (6.20) holds for b and b′ with compact support. But in that
case, the proof is the same given in the closed case, recalling that δb = [ι∗b].

Now we compute the Weil-Petersson form in terms of the map Φ. Let us denote
by K2(p) the space of holomorphic quadratic differentials with at worst simple poles
at p. Recall that if q, q′ ∈ K2(p) then as in the closed case one can define gWP (q, q′)
by integrating the form that in a local chart is

fḡ

e2η
dx ∧ dy ,

for q = f(z)dz2, q′(z) = g(z)dz2 and h = e2η|dz|2. In fact the integrability of that
form relies on the fact that q and q′ have at worst simple poles. We have the same
result as in the closed case:

Proposition 6.3.2. Given b, b′ ∈ C∞(S, h), the following formula holds:

ωWP (Ψ(b),Ψ(b′)) = 2

∫
S

tr(Jbb′)ωh . (6.22)

The computation is done as in the closed case up to a simple technical difficulty.
The point is that strictly speaking if b ∈ C∞(S, h), then bq is only C2(S, h), so in
order to use the splitting b = bq + Hessu − uE we need to extend the map Ψ to
C2(S, h).

The reason this is possible is that the pairing

C∞(S, h)×K2(p)→ C , 〈q,Ψ(b)〉 =

∫
S
q •Ψ(b)

continuously extends to a pairing C2(S, h) × K2(p) → C. In fact as the proof of
Equation (5.22) was only local, it holds also in this singular case and we have

〈q,Ψ(b)〉 = −
∫
S

(tr(Jb0bq) + itr(b0bq))ωh .

Moreover, the antilinear map K2(p) → TXhT (S, p) given by the Weil-Petersson
product is

q 7→ Ψ(
Jbq
2

)

as in the closed case, which allows to recover the result. This concludes also the
alternative proof of the result of Mondello ([Mon10]).
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Corollary 6.3.3. The Weil-Petersson symplectic form ω̄WP and the Goldman sym-
plectic form ω̄B for hyperbolic surfaces with cone points are related by:

hol∗(ω̄B) =
1

8
ω̄WP .

6.4 Exotic structures

We now want to discuss flat Lorentzian manifolds which do not satisfy the hypothesis
we considered so far.

6.4.1 The existence of a strictly convex Cauchy surface

Recall we are considering MGHF spacetimes on S×R, where S is a possibly singular
surface of genus g and the cone angles correspond to a divisor β =

∑k
i=1 βipi with

βi ∈ (−1, 0). We have always assumed χ(S,β) < 0. In [Mes07], Mess proved that in
the case of a closed surface (i.e. no cone points), every MGHF spacetime contains
a strictly convex Cauchy surface provided χ(S) < 0. We now show that this is not
true in general if cone singularities are allowed.

Example 6.4.1. Let M be a MGHF spacetime with a particle s of angle θ < π
which contains a uniformly convex Cauchy embedding orthogonal to the singular
lines. Such spacetimes are classified in Theorem 6.C. It is easy to find another
Cauchy embedding σ : S → M which is is flat (and thus not strictly convex) in a
neighborhood of its intersection with the particle s. Hence there is a neighborhood
U of the singular point p such that σ(U) lies in the orthogonal plane to s at σ(x),
so that the induced metric is Euclidean. By taking U sufficiently small, we suppose
σ(U) does not intersect any other particle.

Hence we find a neighborhood σ(U) × (−ε, ε) where the metric takes the form
gU − dt2, for gU is a Euclidean metric on U with a cone point p of angle θ. We
are now going to cut this neighborhood of σ(U) and glue a germ of flat spacetime
containing two cone points.

p

W

U

p

W

p1
p2

p′1

U ′

Figure 6.3: Replacing a neighborhood of a cone point on a Euclidean structure by a disc
with two cone points. The cone angles satisfy the relation θ1 + θ2 = 2π + θ.
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Our construction is two-dimensional Euclidean geometry; see also Figure 6.3.
Consider a wedge W in R2 of angle θ, which represents a model of the cone point.
We choose two points p1 and p2 in U (which will represent the new cone points), p1

in the boundary of the wedge and p2 in the line bisecting W . Let p′1 be the image
of p1 by the rotation of angle θ, namely the point identified to p1 on the other edge
of W . Connect p2 to p1 and p′1 by geodesic segments. We remove the quadrilateral
Q = p1pp

′
1p2 from W and glue the segments p1p2 and p′1p2 by a rotation around p2.

We keep the same gluing as before between the two edges of W outside Q. This
gives a Euclidean structure on a disc U ′, obtained from W \ Q by the gluing we
defined, containing two cone points of angle θ1 and θ2. Observe that at least one of
θ1 and θ2 has angle between π and 2π. By some simple Euclidean geometry we have
that θ

2π − 1 = θ1
2π − 1 + θ2

2π − 1.
We extend this operation to U ′ × (−ε, ε) in the obvious way and glue the new

structure to a tubular neighborhood of σ(S) \ σ(U) in M \ (σ(U) × (−ε, ε)). By
taking the maximal extension, we obtain a spacetime M ′ with two particles s1 and
s2 of angles θ1 and θ2. Notice that the Euler characteristic of M ′ equals that of M
so it is negative. It is also clear that M ′ cannot contain any strictly convex Cauchy
surface, as the requirement of being orthogonal to the singularities forces a spacelike
surface to be flat (i.e. the shape operator has a null eigenvalue) at some points.
More precisely, s1 and s2 are connected by a geodesic segment entirely contained in
S.

Observe that the holonomy of M ′ of a path winding around both s1 and s2 is
the same as the holonomy of M of a path around s. Moreover, on peripheral paths
around s1 and s2, the linear part of the holonomy of M ′ fixes the same point in H2.
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Chapter 7

Minimal surfaces in hyperbolic
space

In this chapter we will study minimal surfaces in H3 in relation with the Teichmüller
theory of its asymptotic boundary, which will be supposed to be a quasicircle. A
special case of this setting is the lifting to the universal cover of a minimal surface in
a quasi-Fuchsian manifolds (the latter were introduced in Subsection 1.2.3). Indeed,
an application of the results we are going to present is obtained by restricting to the
case of quasi-Fuchsian manifolds, and is the content of Section 7.D.

It was proved by Anderson ([And83, Theorem 4.1]) that for every Jordan curve Γ
in ∂∞H3 there exists a minimal embedded disc S such that its boundary at infinity
coincides with Γ. It can be proved that if the supremum ||λ||∞ of the principal
curvatures of S is in (−1, 1), then Γ = ∂∞S is a quasicircle. The reader can compare
with [Eps86] and also Remark 8.2.2 later.

However, uniqueness does not hold in general. For instance, countexamples were
constructed in the case of the lift to the universal cover of quasi-Fuchsian manifolds.
Anderson proved the existence of a curve at infinity Γ invariant under the action
of a quasi-Fuchsian group (hence a quasicircle) spanning several distinct minimal
embedded discs, see [And83, Theorem 5.3]. More recently in [HW13a] invariant
curves spanning an arbitrarily large number of minimal discs were constructed. On
the other hand, if the supremum of the principal curvatures of a minimal embedded
disc S satisfies ||λ||∞ ∈ (−1, 1), by an application of the maximum principle, then
S is the unique minimal disc asymptotic to the given quasicircle Γ.

The aim of Section 7.1 is to study the supremum ||λ||∞ of the principal curvatures
of a minimal embedded disc, in relation with the norm of the quasicircle at infinity,
in the sense of universal Teichmüller space (as discussed in Subsection 2.3.4). The
relations we obtain are interesting for “small” quasicircles, that are close in universal
Teichmüller space to a circle. The main result of Section 7.1 is the following:

Theorem 7.A. There exist universal constants K0 and C such that every minimal
embedded disc in H3 with boundary at infinity a K-quasicircle Γ ⊂ ∂∞(H3), with
K ≤ K0, has principal curvatures bounded by

||λ||∞ ≤ C logK .

174
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Since the minimal disc with prescribed quasicircle at infinity is unique if ||λ||∞ <
1, we can draw the following consequence, by choosing K ′0 < min{K0, 1/C}:
Corollary 7.B. There exists a universal constant K ′0 such that every K-quasicircle
Γ ⊂ ∂∞(H3) with K ≤ K ′0 is the boundary at infinity of a unique minimal embedded
disc.

Moreover, in the case of quasi-Fuchsian manifold, we obtain the following Corol-
lary.

Corollary 7.C. If the Teichmüller distance between the conformal metrics at infin-
ity of a quasi-Fuchsian manifold M is smaller than a universal constant d0, then M
is almost-Fuchsian.

7.1 Minimal surfaces in H3

We recall here some know properties of minimal surfaces. First, the definition of
minimal surface, which has been given in Subsection 1.2.1.

Definition 7.1.1. An embedded surface S in H3 with shape operator B is minimal
if tr(B) = 0. Equivalently, the principal curvatures are opposite to one another, and
they will be denoted by λ > 0 and −λ.

The shape operator is symmetric with respect to the first fundamental form of
the surface S; hence the condition of minimality and maximality amounts to the fact
that the principal curvatures (namely, the eigenvalues of B) are opposite at every
point.

An embedded disc in H3 is said to be area minimizing if any compact subdisc
is locally the smallest area surface among all surfaces with the same boundary. It
is well-known that area minimizing surfaces are minimal. The problem of existence
for minimal surfaces with prescribed curve at infinity was solved by Anderson; see
[And83] for the original source and [Cos13] for a survey on this topic.

Theorem 7.1.2 ([And83]). Given a simple closed curve Γ in ∂∞H3, there exists a
complete area minimizing embedded disc S with ∂∞S = Γ.

The following property is a well-known application of the maximum principle.

Proposition 7.1.3. If a simple closed curve Γ in ∂∞H3 spans a minimal disc S
with principal curvatures in [−1+ε, 1−ε], then S is the unique minimal surface with
boundary at infinity Γ.

A key property used in this paper is that minimal surfaces in H3 with boundary
at infinity a Jordan curve Γ are contained in the convex hull of Γ. Although this
fact is known, we prove it here by applying maximum principle to a simple linear
PDE describing minimal and maximal surfaces.

Definition 7.1.4. Given a curve Γ in ∂∞H3 (or ∂∞AdS3), the convex hull of Γ,
which we denote by CH(Γ), is the intersection of half-spaces bounded by planes P
such that ∂∞P does not intersect Γ, and the half-space is taken on the side of P
containing Γ.
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Hereafter Hessu denotes the Hessian of a smooth function u on the surface S,
i.e.the (1,1) tensor

Hessu(v) = ∇Sv grad(u).

Sometimes the Hessian is also considered as a (2,0) tensor, which we denote (in the
rare occurrences) with

∇2u(v, w) = 〈Hessu(v), w〉.
Finally, ∆S denotes the Laplace-Beltrami operator of S, which can be defined as

∆Su = tr(Hessu).

Proposition 7.1.5. Given a minimal surface S ⊂ H3 and a plane P , let u : S → R
be the function u(x) = sinh dH3(x, P ), let N be the unit normal to S and B = −∇N
the shape operator. Then

Hessu− uE =
√

1 + u2 − || gradu||2B (7.1)

as a consequence, u satisfies
∆Su− 2u = 0 . (L)

Proof. Consider the hyperboloid model for H3. Let us assume P is the plane dual
to the point p ∈ dS3, meaning that P = p⊥ ∩ H3. Then u is the restriction to S of
the function U(x) = sinh dH3(x, P ) = 〈x, p〉, for x ∈ H3 ⊂ R3,1. Let N be the unit
normal vector field to S; we compute gradu by projecting the gradient ∇U of U to
the tangent plane to S:

∇U = p+ 〈p, x〉x (7.2)

gradu(x) = p+ 〈p, x〉x− 〈p,N〉N (7.3)

Now Hessu(v) = ∇Sv gradu, where ∇S is the Levi-Civita connection of S, namely
the projection of the flat connection of R3,1, and so

Hessu(x)(v) = 〈p, x〉v − 〈p,N〉∇SvN = u(x)v + 〈∇U,N〉B(v).

Moreover, ∇U = gradu+ 〈∇U,N〉N and thus

〈∇U,N〉2 = 〈∇U,∇U〉 − || gradu||2 = 1 + u2 − || gradu||2

which proves (7.1). By taking the trace, (L) follows.

Corollary 7.1.6. Let S be a minimal surface in H3, with ∂∞(S) = Γ a Jordan
curve. Then S is contained in the convex hull CH(Γ).

Proof. If Γ is a circle, then S is a totally geodesic plane which coincides with the
convex hull of Γ. Hence we can suppose Γ is not a circle. Consider a plane P−
which does not intersect Γ and the function u defined as in Proposition 7.1.5, with
respect to P−. Suppose their mutual position is such that u ≥ 0 in the region close
to the boundary at infinity (i.e. in the complement of a compact set). If there exists
some point where u < 0, then at a minimum point ∆Su = 2u < 0, which gives
a contradiction. The proof is analogous for a plane P+ on the other side of Γ, by
switching the signs. Therefore every convex set containing Γ contains also S.
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7.1.1 A sketch of the proof of Theorem 7.A

The goal of this section is to prove Theorem 7.A. The proof is divided into several
steps, whose general idea is the following:

1. Given Ψ ∈ QD(D), if ||Ψ||B is small, then there is a foliation of a convex
subset C of H3 by equidistant surfaces, which extends to ∂∞H3 with boundary
at infinity the quasicircle Γ = Ψ(S1). Hence the convex hull of Γ is trapped
between two parallel surfaces, whose distance is estimated in terms of ||Ψ||B.

2. As a consequence of point (1), given a minimal surface S in H3 with ∂∞(S) = Γ,
for every point x ∈ S there is a geodesic segment through x of small length
orthogonal at the endpoints to two planes P−,P+ which do not intersect C.
Moreover S is contained between P− and P+.

3. Since S is contained between two parallel planes close to x, the principal
curvatures of S in a neighborhood of x cannot be too large. In particular,
we use Schauder theory to show that the principal curvatures of S at a point
x are uniformly bounded in terms of the distance from P− of points in a
neighborhood of x.

4. Finally, the distance from P− of points of S in a neighborhood of x is estimated
in terms of the distance of points in P+ from P−, hence is bounded in terms
of the Bers norm ||Ψ||B.

It is important to remark that the estimates we give are uniform, in the sense that
they do not depend on the point x or on the surface S, but just on the Bers norm
of the quasicircle at infinity. The above heuristic arguments are formalized in the
following subsections.

7.1.2 Description from infinity

The main result of this part is the following. See Figure 7.1.

Proposition 7.1.7. Let A < 1/2. Given an embedded minimal disc S in H3 with
boundary at infinity a quasicircle ∂∞S = Ψ(S1) with ||Ψ||B ≤ A, every point of S
lies on a geodesic segment of length at most arctanh(2A) orthogonal at the endpoints
to two planes P− and P+, such that the convex hull CH(Γ) is contained between P−
and P+.

We review here some important facts on the so-called description from infinity of
surfaces in hyperbolic space. For details, see [Eps84] and [KS08]. Given an embedded
surface S in H3 with bounded principal curvatures, let I be its first fundamental
form and II the second fundamental form. Recall we defined B = −∇N its shape
operator, for N the oriented unit normal vector field (we fix the convention that N
points towards the x4 > 0 direction), so that II = I(B·, ·). Denote by E the identity
operator. Let Sρ be the ρ-equidistant surface from S (where the sign of ρ agrees
with the choice of unit normal vector field to S). For small ρ, there is a map from
S to Sρ obtained following the geodesics orthogonal to S at every point.
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P−

P+

x0

Γ

S

Figure 7.1: The statement of Proposition 7.1.7. The geodesic segment through x0 has
length ≤ w, for w = arctanh(2||Ψ||B), and this does not depend on x0 ∈ S.

Lemma 7.1.8. Given a smooth surface S in H3, let Sρ be the surface at distance ρ
from S, obtained by following the normal flow at time ρ. Then the pull-back to S of
the induced metric on the surface Sρ is given by:

Iρ = I((cosh(ρ)E − sinh(ρ)B)·, (cosh(ρ)E − sinh(ρ)B)·) . (7.4)

The second fundamental form and the shape operator of Sρ are given by

IIρ = I((− sinh(ρ)E + cosh(ρ)B)·, (cosh(ρ)E − sinh(ρ)B)·) (7.5)

Bρ = (cosh(ρ)E − sinh(ρ)B)−1(− sinh(ρ)E + cosh(ρ)B) . (7.6)

Proof. In the hyperboloid model, let σ : D → H2 be the minimal embedding of the
surface S, with oriented unit normal N . The geodesics orthogonal to S at a point x
can be written as

γx(ρ) = cosh(ρ)σ(x) + sinh(ρ)N(x) .

Then we compute

Iρ(v, w) =〈dγx(ρ)(v), dγx(ρ)(w)〉
=〈cosh(ρ)dσx(v) + sinh(ρ)dNx(v), cosh(r)dσx(w) + sinh(ρ)dNx(w)〉
=I(cosh(ρ)v − sinh(ρ)B(v), cosh(ρ)w − sinh(ρ)B(w)) .

The formula for the second fundamental form follows from the fact that IIρ = −1
2
dIρ
dρ .

It follows that, if the principal curvatures of a minimal surface S are λ and −λ,
then the principal curvatures of Sρ are

λρ =
λ− tanh(ρ)

1− λ tanh(ρ)
λ′ρ =

−λ− tanh(ρ)

1 + λ tanh(ρ)
.
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In particular, if −1 ≤ λ < 1, then Iρ is a non-singular metric for every ρ and the
foliation extends to all of H3.

We now define the first, second and third fundamental form at infinity associated
to S. Recall the second and third fundamental form of S are II = I(B·, ·) and
III = I(B·, B·).

I∗ = lim
ρ→∞

2e−2ρIρ =
1

2
I((E −B)·, (E −B)·) =

1

2
(I − 2II + III) (7.7)

B∗ = (E −B)−1(E +B) (7.8)

II∗ =
1

2
I((E +B)·, (E −B)·) = I∗(B∗·, ·) (7.9)

III∗ = I∗(B∗·, B∗·) (7.10)

We observe that the metric Iρ and the second fundamental form can be recovered
as

Iρ =
1

2
e2ρI∗ + II∗ +

1

2
e−2ρIII∗ (7.11)

IIρ = −1

2

dIρ
dρ

=
1

2
I∗((eρE + e−ρB∗)·, (−eρE + e−ρB∗)·) (7.12)

Bρ = (eρE + e−ρB∗)−1(−eρE + e−ρB∗) (7.13)

The following relation can be proved by some easy computation:

Lemma 7.1.9 ([KS08, Remark 5.4 and 5.5]). The embedding data at infinity (I∗, B∗)
associated to an embedded surface S in H3 satisfy the equation

tr(B∗) = −KI∗ , (7.14)

where KI∗ is the curvature of I∗. Moreover, B∗ satisfies the Codazzi equation with
respect to I∗:

d∇I∗B∗ = 0 . (7.15)

A partial converse of this fact, which can be regarded as a fundamental theorem
from infinity, is the following theorem. This follows again by the results in [KS08],
although it is not stated in full generality here.

Theorem 7.1.10. Given a Jordan curve Γ ⊂ ∂∞H3, let (I∗, B∗) be a pair of a metric
in the conformal class of a connected component of ∂∞H3\Γ and a self-adjoint (1, 1)-
tensor, satisfiying the conditions (7.14) and (7.15) as in Lemma 7.1.9. Assume the
eigenvalues of B∗ are positive at every point. Then there exists a foliation of H3 by
equidistant surfaces Sρ, for which the first fundamental form at infinity (with respect
to S = S0) is I∗ and the shape operator at infinity is B∗.

We want to give a relation between the Bers norm of the quasicircle Γ and the
existence of a foliation of (part of) H3 by equidistant surfaces with boundary Γ,
containing both convex and concave surfaces. We identify ∂∞H3 to Ĉ by means
of the stereographic projection, so that D correponds to the lower hemisphere of
the sphere at infinity. The following property will be used, see [ZT87] or [KS08,
Appendix A].
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Theorem 7.1.11. Let Γ ⊂ ∂∞H3 be a Jordan curve. If I∗ is the complete hyperbolic
metric in the conformal class of a connected component Ω of ∂∞H3 \ Γ, and II∗0 is
the traceless part of the second fundamental form at infinity II∗, then −II∗0 is the
real part of the Schwarzian derivative of the isometry Ψ : D∗ → Ω, namely the map
Ψ which uniformizes the conformal structure of Ω:

II∗0 = −Re(SΨ) . (7.16)

We now derive, by straightforward computation, a useful relation.

Lemma 7.1.12. Let Γ = Ψ(S1) be a quasicircle, for Ψ ∈ QD(D). If I∗ is the
complete hyperbolic metric in the conformal class of a connected component Ω of
∂H3 \ Γ, and B∗0 is the traceless part of the shape operator at infinity B∗, then

sup
z∈Ω
| detB∗0(z)| = ||Ψ||2B . (7.17)

Proof. From Theorem 7.1.11, B∗0 is the real part of the holomorphic quadratic dif-
ferential −SΨ. In complex conformal coordinates, we can assume that

I∗ = e2η|dz|2 =

(
0 1

2e
2η

1
2e

2η 0

)
and SΨ = h(z)dz2, so that

II∗0 = −1

2
(h(z)dz2 + h(z)dz̄2) = −

(
1
2h 0
0 1

2 h̄

)
and finally

B∗0 = (I∗)−1II∗0 = −
(

0 e−2ηh̄
e−2ηh 0

)
.

Therefore |detB∗0(z)| = e−4η(z)|h(z)|2. Moreover, by definition of Bers embedding,
B([Ψ]) = SΨ, because Ψ is a holomorphic map from D∗ which maps S1 = ∂D to Γ.
Since

||Ψ||2B = sup
z∈Ω

(e−4η(z)|h(z)|2) ,

this concludes the proof.

We are finally ready to prove Proposition 7.1.7.

Proof of Proposition 7.1.7. Suppose again I∗ is a hyperbolic metric in the conformal
class of Ω. We can write B∗ = B∗0 + (1/2)E, where B∗0 is the traceless part of B∗,
since tr(B∗) = 1 by Lemma 7.1.9. The symmetric operator B∗ is diagonalizable;
therefore we can suppose its eigenvalues at every point are (a+1/2) and (−a+1/2),
where a is a positive number depending on the point. Hence ±a are the eigenvalues
of the traceless part B∗0 .

By using Equation (7.17) of Lemma 7.1.12, and observing that |detB∗0 | = a2,
one obtains ||Ψ||B = ||a||∞. Since this quantity is less than A < 1/2 by hypothesis,
at every point a < 1/2, and therefore B∗ is positive at every point.
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By Theorem 7.1.10 there exists a smooth foliation of H3 by equidistant surfaces
Sρ, whose first fundamental form and shape operator are as in equations (7.11) and
(7.13) above. We are going to compute

ρ1 = inf {ρ : Bρ is non-singular and negative definite}

and

ρ2 = sup {ρ : Bρ is non-singular and positive definite} .
Hence Sρ1 is concave and Sρ2 is convex; by Corollary 7.1.6, it suffices to consider
ρ1 − ρ2, since a minimal surface S is necessarily contained between Sρ1 and Sρ2 .
From the expression (7.13), the eigenvalues of Bρ are

λρ =
−2e2ρ + (2a+ 1)

2e2ρ + (2a+ 1)

and

λ′ρ =
−2e2ρ + (1− 2a)

2e2ρ + (1− 2a)
.

Since a < 1/2, the denominators of λρ and λ′ρ are always positive; one has λρ < 0 if
and only if e2ρ > a+ 1/2, whereas λ′ρ < 0 if and only if e2ρ > −a+ 1/2. Therefore

ρ1 − ρ2 =
1

2

(
log

(
A+

1

2

)
− log

(
−A+

1

2

))
=

1

2
log

(
1 + 2A

1− 2A

)
= arctanh(2A) .

This shows that every point x on S lies on a geodesic orthogonal to the leaves of the
foliation, and the distance between the concave surface Sρ1 and the convex surface
Sρ2 , on the two sides of x, is less than arctanh(2A).

Remark 7.1.13. The proof relies on the observation - given in [KS08] and expressed
here implicitly in Theorem 7.1.10 - that if the shape operator at infinity is positive
definite, then one reconstructs the shape operator Bρ as in Equation (7.13), and
for ρ = 0 the principal curvatures are in (−1, 1). Hence from our argument it
follows that, if the Bers norm ||Ψ||B is less than 1/2, then one finds a surface S
with ∂∞S = Ψ(S1), with principal curvatures in (−1, 1). This is a special case of
the results in [Eps86], where the existence of such surface is used to prove (using
techniques of hyperbolic geometry) a generalization of the univalence criterion of
Nehari.

7.1.3 Boundedness of curvature

Recall that the curvature of a minimal surface S is given by KS = −1 − λ2, where
±λ are the principal curvatures of S. We will need to show that the curvature of
a complete minimal surface S is also bounded below in a uniform way, depending
only on the complexity of ∂∞S. This is the content of Lemma 7.1.16.

We will use a conformal identification of S with D. Under this identification the
metric takes the form gS = e2f |dz|2, |dz|2 being the Euclidean metric on D. The
following uniform bounds on f are known (see [Ahl38]).
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Lemma 7.1.14. Let g = e2f |dz|2 be a conformal metric on D. Suppose the curvature
of g is bounded above, Kg < −ε2 < 0. Then

e2f <
4

ε2(1− |z|2)2
. (7.18)

Analogously, if −δ2 < Kg, then

e2f >
4

δ2(1− |z|2)2
. (7.19)

Remark 7.1.15. A consequence of Lemma 7.1.14 is that, for a conformal metric
g = e2f |dz|2 on D, if the curvature of g is bounded from above by Kg < −ε2 < 0,
then a Euclidean ball B0(0, R) of radius R centered at 0 is contained in the geodesic
ball of radius R′ centered at the same point, where R′ only depends from R. This
can be checked by a simple integration argument, and R′ is actually obtained by
multiplying R for the square root of the constant in the RHS of Equation (7.18).
Analogously, a lower bound on the curvature, of the form −δ2 < Kg, ensures that the
geodesic ball of radius R centered at 0 is contained in the conformal ball B0(0, R′),
where R′ depends on R and δ.

Lemma 7.1.16. For every K0 > 1, there exists a constant Λ0 > 0 such that all
minimal surfaces S with ∂∞S a K-quasicircle, K ≤ K0, have principal curvatures
bounded by ||λ||∞ < Λ0.

We will prove Lemma 7.1.16 by giving a compactness argument. It is known
that a conformal embedding σ : D→ H3 is harmonic if and only if σ(D) is a minimal
surface, see [ES64]. The following Lemma is proved in [Cus09] in the more general
case of CMC surfaces. We give a sketch of the proof here for convenience of the
reader.

Lemma 7.1.17. Let σn : D→ H3 a sequence of conformal harmonic maps such that
σ(0) = x0 and ∂∞(σn(D)) = Γn is a Jordan curve, Γn → Γ in the Hausdoff topology.
Then there exists a subsequence σnk which converges C∞ on compact subsets to a
conformal harmonic map σ∞ with ∂∞(σ∞(D)) = Γ.

Sketch of proof. Consider the coordinates on H3 given by the Poincaré model, namely
H3 is the unit ball in R3. Let σln, for l = 1, 2, 3, be the components of σn in such
coordinates. Fix R > 0 for the moment.

Since the curvature of the minimal surfaces σn(D) is less than −1, from Lemma
7.1.14 (setting ε = 1) and Remark 7.1.15, for every n we have that σn(B0(0, 2R))
is contained in a geodesic ball for the induced metric of fixed radius R′ centered at
x0. In turn, the geodesic ball for the induced metric is clearly contained in the ball
BH3(x0, R

′), for the hyperbolic metric of H3. We remark that the radius R′ only
depends on R.

We will apply standard Schauder theory (compare also similar applications in
Sections 7.1.4 and 8.1.4) to the harmonicity condition

∆0σ
l
n = −

(
Γljk ◦ σ

)(∂σji
∂x1

∂σki
∂x1

+
∂σji
∂x2

∂σki
∂x2

)
=: hln (7.20)
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for the Euclidean Laplace operator ∆0, where Γljk are the Christoffel symbols of the
hyperbolic metric in the Poincaré model.

The RHS in Equation (7.20), which is denoted by hln, is uniformly bounded on
B0(0, 2R). Indeed Christoffel symbols are uniformly bounded, since σn(B0(0, 2R))
is contained in a compact subset of H3, as already remarked. The partial derivatives
of σln are bounded too, since one can observe that, if the induced metric on S is
e2f |dz|2, then 2e2f = ||dσ||2, where ||dσ||2 equals:

4

(1− Σi(σin)2)2

((
∂σ1

n

∂x

)2

+

(
∂σ2

n

∂x

)2

+

(
∂σ3

n

∂x

)2

+

(
∂σ1

n

∂y

)2

+

(
∂σ2

n

∂y

)2

+

(
∂σ3

n

∂y

)2
)
.

Hence from Lemma 7.1.14 and again the fact that σn(B0(0, 2R)) is contained in a
compact subset of H3, all partial derivatives of σn are uniformly bounded.

The Schauder estimate of Theorem 3.1.1 for the equation ∆0σ
l
n = hln give (for

every α ∈ (0, 1)) a constant C1 such that:

||σln||C1,α(B0(0,R1)) ≤ C1

(
||σln||C0(B0(0,2R)) + ||hln||C0(B0(0,2R))

)
.

Hence one obtains uniform C1,α(B0(0, R1)) bounds on σln, where R < R1 < 2R,
and this provides C0,α(B0(0, R1)) bounds on hln. Then the following estimate of
Schauder-type, recall Theorem 3.1.2, provide

||σln||C2,α(B0(0,R2)) ≤ C2

(
||σln||C0(B0(0,R1)) + ||hln||C0,α(B0(0,R1))

)
provide C2,α bounds on B0(0, R2), for R < R2 < R1. By a boot-strap argument
which repeats this construction, uniform Ck,α(B0(0, R)) for σln are obtained for every
k.

By Ascoli-Arzelà theorem, one can extract a subsequence of σn converging uni-
formly in Ck,α(B0(0, R)) for every k. By applying a diagonal procedure one can find
a subsequence converging C∞. One concludes the proof by a diagonal process again
on a sequence of compact subsets B0(0, Rn) which exhausts D.

The limit function σ∞ : D → H3 is conformal and harmonic, and thus gives a
parametrization of a minimal surface. It remains to show that ∂∞(σ∞(D)) = Γ.
Since each σn(D) is contained in the convex hull of Γn, the Hausdorff convergence
on the boundary at infinity ensures that σ∞(D) is contained in the convex hull of Γ,
and thus ∂∞(σ∞(D)) ⊆ Γ.

For the other inclusion, assume there exists a point p ∈ Γ which is not in the
boundary at infinity of σ∞(D). Then there is a neighborhood of p which does not
intersect σ∞(D), and one can find a totally geodesic plane P such that a half-space
bounded by P intersects Γ (in p, for instance), but does not intersect σ∞(D). But
such half-space intersects σn(D) for large n and this gives a contradiction.

Proof of Lemma 7.1.16. We argue by contradiction. Suppose there exists a sequence
of minimal surfaces Sn bounded by K-quasicircles Γn, with K ≤ K0, with curvature
in a point KSn(xn) ≤ −n. Let us consider isometries Tn of H3, so that Tn(xn) = x0.

Using the fact that the point x0 is contained in the convex hull of Tn(Γn) for
every n, it is easy to see that the quasicircles Tn(Γn) can be assumed to be the
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image of K0-quasiconformal maps Ψn : Ĉ → Ĉ, such that Ψn maps three points of
S1 (say 1, i and −1) to points of Tn(Γn) at uniformly positive distance from one
another. By the compactness property in Theorem 2.3.2, there exists a subsequence
Tnk(Γnk) converging to a K-quasicircle Γ∞, with K ≤ K0. By Lemma 7.1.17, the
minimal surfaces Tnk(Snk) converge C∞ on compact subsets (up to a subsequence)
to a smooth minimal surface S∞ with ∂∞(S∞) = Γ∞. Hence the curvature of
Tnk(Snk) at the point x0 converges to the curvature of S∞ at x0. This contradicts
the assumption that the curvature at the points xn goes to infinity.

It follows that the curvature of S is bounded by −δ2 < KS < −ε2, where δ is
some constant, whereas we can take ε = 1.

Remark 7.1.18. The main result of this section, Theorem 7.A, is indeed a quantita-
tive version of Lemma 7.1.16, which gives a control of how an optimal constant Λ0

would vary if K0 is chosen close to 0.

7.1.4 Schauder estimates

By using equation (7.1), we will eventually obtain bounds on the principal curvatures
of S. For this purpose, we need bounds on u = sinh dH3(·, P−) and its derivatives.
Schauder theory plays again an important role: since u satisfies the equation

∆Su− 2u = 0 . (L)

we will use uniform estimates of the form

||u||C2(B0(0,R
2

)) ≤ C||u||C0(B0(0,R))

for the function u, written in a suitable coordinate system. This will follow from
Theorem 3.1.3. The main difficulty is basically to show that the operators

u 7→ ∆Su− 2u

are strictly elliptic and have uniformly bounded coefficients.

Proposition 7.1.19. Let K0 > 1 and R > 0 be fixed. There exist a constant C > 0
(only depending on K0 and R) such that for every choice of:

• A minimal embedded disc S ⊂ H3 with ∂∞S a K-quasicircle, with K ≤ K0;

• A point x ∈ S;

• A plane P−;

the function u(·) = dH3(·, P−) expressed in terms of normal coordinates of S centered
at x, namely

u(z) = sinh dH3(expx(z), P−)

where expx : R2 ∼= TxS → S denotes the exponential map, satisfies the Schauder-type
inequality

||u||C2(B0(0,R
2

)) ≤ C||u||C0(B0(0,R)) . (7.21)
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Proof. This will be again an argument by contradiction, using the compactness
property.

Suppose our assertion is not true, and find a sequence of minimal surfaces Sn
with ∂∞(Sn) = Γn a K-quasicircle (K ≤ K0), a sequence of points xn ∈ Sn, and a
sequence of planes Pn as in the third hypothesis, such that the functions un(z) =
sinh dH3(expxn(z), Pn) have the property that

||un||C2(B0(0,R
2

)) ≥ n||u||C0(B0(0,R)) .

We can compose with isometries Tn of H3 so that Tn(xn) = x0 for every n and the
tangent plane to Tn(Sn) at x0 is a fixed plane. Let S′n = Tn(Sn), Γ′n = Tn(Γn) and
P ′n = Tn(Pn). Note that Γ′n are again K-quasicircles, for K ≤ K0, and the convex
hull of each Γ′n contains x0.

Using this fact, it is then easy to see - as in the proof of Lemma 7.1.16 - that
one can find K0-quasiconformal maps Ψn such that Ψn(S1) = Γ′n and Ψn(1), Ψn(i)
and Ψn(−1) are at uniformly positive distance from one another. Therefore, us-
ing Theorem 2.3.2 there exists a subsequence of Ψn converging uniformly to a
K0-quasiconformal map. This gives a subsequence Γ′nk converging to Γ′∞ in the
Hausdorff topology.

By Lemma 7.1.17, considering S′n as images of conformal harmonic embeddings
σ′n : D → H3, we find a subsequence of σ′nk converging C∞ on compact subsets to
the conformal harmonic embedding of a minimal surface S′∞. Moreover, by Lemma
7.1.16 and Remark 7.1.15, the convergence is also C∞ on the image under the ex-
ponential map of compact subsets containing the origin of R2.

It follows that the coefficients of the Laplace-Beltrami operators ∆S′n on a Eu-
clidean ball B0(0, R) of the tangent plane at x0, for the coordinates given by the ex-
ponential map, converge to the coefficients of ∆S′∞ . Therefore the operators ∆S′n−2
are uniformly strictly elliptic with uniformly bounded coefficients. Using these two
facts, one can apply Schauder estimates (Theorem 3.1.3) to the functions un, which
are solutions of the equations ∆S′n(un) − 2un = 0. See again for a reference. We
deduce that there exists a constant c such that

||un||C2(B0(0,R
2

)) ≤ c||un||C0(B0(0,R))

for all n, and this gives a contradiction.

7.1.5 Principal curvatures

We can now proceed to complete the proof of Theorem 7.A. Fix some w > 0.
We know from Section 7.1.2 that if the Bers norm is smaller than the constant
(1/2) tanh(w), then every point x on S lies on a geodesic segment l orthogonal to
two planes P− and P+ at distance dH3(P−, P+) < w. Obviously the distance is
achieved along l.

Fix a point x ∈ S. Denote again u = sinh dH3(·, P−). By Proposition 7.1.19, first
and second partial derivatives of u in normal coordinates on a geodesic ball BS(x,R)
of fixed radius R are bounded by C||u||C0(BS(x,R)). The last step for the proof is an
estimate of the latter quantity in terms of w.
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We first need a simple lemma which controls the distance of points in two parallel
planes, close to the common orthogonal geodesic. Compare Figure 7.2.

Lemma 7.1.20. Let p ∈ P−, q ∈ P+ be the endpoints of a geodesic segment l
orthogonal to P− and P+ of length w. Let p′ ∈ P− a point at distance r from p and
let d = dH3((π|P+)−1(p′), P−). Then

tanh d = cosh r tanhw (7.22)

sinh d = cosh r
sinhw√

1− (sinh r)2(sinhw)2
. (7.23)

Proof. This is easy (2-dimensional) hyperbolic trigonometry; however we give a short
proof as this formula will be extended to the AdS3 context later on. In the hy-
perboloid model, we can assume P− is the plane x3 = 0, p = (0, 0, 0, 1) and the
geodesic l is given by l(t) = (0, 0, sinh t, cosh t). Hence P+ is the plane orthogonal to
l′(w) = (0, 0, coshw, sinhw) passing through l(w) = (0, 0, sinhw, coshw). The point
p′ has coordinates

p′ = (cos θ sinh r, sin θ sinh r, 0, cosh r)

and the geodesic l1 orthogonal to P− through p′ is given by

l1(d) = (cosh d)(p′) + (sinh d)(0, 0, 1, 0) .

We have l1(d) ∈ P+ if and only if 〈l1(d), l′(w)〉 = 0, which is satisfied for

tanh d = cosh r tanhw ,

provided cosh r tanhw < 1. The second expression follows straightforwardly.

p

q

P−

P+

π

BP−(p, r)
p′

q′

Figure 7.2: The setting of Lemma 7.1.20. Here dH3(p, p′) = r and q′ = (π|P+
)−1(p′).

We are finally ready to prove Theorem 7.D. The key point for the proof is that
all the quantitative estimates previously obtained in this section are independent on
the point x ∈ S.
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Theorem 7.D. There exist constants K0 > 1 and C > 4 such that the principal
curvatures ±λ of every minimal surface S in H3 with ∂∞S = Γ a K-quasicircle,
with K ≤ K0, are bounded by:

||λ||∞ ≤
C||Ψ||B√

1− C||Ψ||2B
(7.24)

where Γ = Ψ(S1), for Ψ ∈ QD(D).

Proof. Fix K0 > 1. Let S a minimal surface with ∂∞S a K-quasicircle, K ≤ K0.
Let x ∈ S an arbitrary point on a minimal surface S. By Proposition 7.1.7, we find
two planes P− and P+ whose common orthogonal geodesic passes through x, and
has length w = arctanh(2||Ψ||B).

Now fix R > 0. By Proposition 7.1.19, applied to the point x and the plane P−,
we obtain that the first and second derivatives of the function

u = sinh dH3(expx(·), P−)

on a geodesic ball BS(x,R/2) for the induced metric on S, are bounded by the supre-
mum of u itself, on the geodesic ball BS(x,R), multiplied by a universal constant
C = C(K0, R).

Let π : H3 → P− the orthogonal projection to the plane P−. The map π
is contracting distances, by negative curvature in the ambient manifold. Hence
π(BS(x,R)) is contained in BP−(π(x), R). Moreover, since S is contained in the
region bounded by P− and P+, clearly sup{u(x) : x ∈ BS(0, R)} is less than the
hyperbolic sine of the distance of points in (π|P+)−1(BP−(π(x), R)) from P−. See
Figure 7.3.

p

q

x

P−

P+

π

BP−(p,R)

Figure 7.3: Projection to a plane P− in H3 is distance contracting. The dash-dotted ball
schematically represents a geodesic ball of H3.

Hence, using Proposition 7.1.20 (in particular Equation (7.23)), we get:

||u||C0(BS(x,R)) ≤ coshR
sinhw√

1− (sinhR)2(sinhw)2
, (7.25)
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where we recall that w = arctanh(2||Ψ||B).

We finally give estimates on the principal curvatures of S, in terms of the com-
plexity of ∂∞(S) = Ψ(S1). We compute such estimate only at the point x ∈ S; by
the independence of all the above construction from the choice of x, the proof will
be concluded. From Equation (7.1), we have

B =
1√

1 + u2 − || gradu||2
(Hessu− uE) .

Moreover, in normal coordinates centered at the point x, the expression for the
Hessian and the norm of the gradient at x are just

(Hessu)ji =
∂2u

∂xi∂xj
, || gradu||2 =

(
∂u

∂x1

)2

+

(
∂u

∂x2

)2

.

It then turns out that the principal curvatures ±λ of S, i.e. the eigenvalues of B,
are bounded by

|λ| ≤
C1||u||C0(BS(x,R))√

1− C1||u||2C0(BS(x,R))

. (7.26)

The constant C1 involves the constant C of Equation (7.21) in the statement of
Proposition 7.1.19. Substituting Equation (7.25) into Equation (7.26), with some
manipulation one obtains

||λ||∞ ≤
C1(coshR)(tanhw)√

1− (1 + C1)(coshR)2(tanhw)2
. (7.27)

On the other hand tanhw = 2||Ψ||B. Upon relabelling C with a larger constant, the
inequality

||λ||∞ ≤
C||Ψ||B√

1− C||Ψ||2B
is obtained.

Remark 7.1.21. Actually, the statement of Theorem 7.D is true for any choice of
K0 > 1 (and the constant C varies accordingly with the choice of K0). However, the
estimate in Equation (7.24) does not make sense when ||Ψ||2 ≥ 1/C. Indeed, our
procedure seems to be quite uneffective when the quasicircle at infinity is “far” from
being a circle - in the sense of universal Teichmüller space. Applying Theorem 2.3.15,
this possibility is easily ruled out, by replacing K0 in the statement of Theorem 7.D
with a smaller constant.

Observe that the function x 7→ Cx/
√

1− Cx2 is differentiable with derivative
C at x = 0. As a consequence of Theorem 2.3.15, there exists a constant L (with
respect to the statement of Theorem 2.3.15 above, L = 1/b1) such that ||Ψ||B ≤
LdT ([Ψ], [id]) if dT ([Ψ], [id]) ≤ r for some small radius r. Then the proof of Theorem
7.A follows, replacing the constant C by a larger constant if necessary.
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Theorem 7.A. There exist universal constants K0 and C such that every minimal
embedded disc in H3 with boundary at infinity a K-quasicircle Γ ⊂ ∂∞H3, with
K ≤ K0, has principal curvatures bounded by

||λ||∞ ≤ C logK .

Remark 7.1.22. With the techniques used in this paper, it seems difficult to give
explicit estimates for the best possible value of the constant C of Theorem 7.A. In
our argument, this constant actually depends on several choices, one of which is the
choice of the radius R in Subsection 7.1.4 (see Proposition 7.1.19).

7.2 A consequence for quasi-Fuchsian manifolds

A quasi-Fuchsian manifold contaning a closed minimal surface with principal curva-
tures in (−1, 1) is called almost-Fuchsian, according to the definition given in [KS07].
The minimal surface in an almost-Fuchsian manifold is unique, as first observed by
Uhlenbeck ([Uhl83]). Hence, applying Theorem 7.A to the case of quasi-Fuchsian
manifolds, the following Corollary is proved.

Corollary 7.C. If the Teichmüller distance between the conformal metrics at infin-
ity of a quasi-Fuchsian manifold M is smaller than a universal constant d0, then M
is almost-Fuchsian.

Proof. Choose d0 = (1/2) logK ′0 where K ′0 is the universal constant of Corollary 7.B.
(see the beginning of this chapter). Under the hypothesis, the Teichmüller map from
one hyperbolic end of M to the other is K-quasiconformal for K ≤ K ′0, hence the lift
to the universal cover H3 of any closed minimal surface in M is a minimal embedded
disc with boundary at infinity a K-quasicircle (again with K ≤ K ′0), namely the
limit set of the corresponding quasi-Fuchsian group. It follows from Theorem 7.A
that the principal curvatures of such closed minimal surface are in (−1, 1).

Remark 7.2.1. We remark that Theorem 7.A, when restricted to the case of quasi-
Fuchsian manifolds, is a partial converse of results presented in [GHW10], giving
a bound on the Teichmüller distance between the hyperbolic ends of an almost-
Fuchsian manifold in terms of the maximum of the principal curvatures. Another
invariant which has been studied in relation with the properties of minimal surfaces
in hyperbolic space is the Hausdorff dimension of the limit set. Theorem 7.A and
Corollary 7.C can be compared with the following Theorem given in [San14]: for
every ε and ε0 there exists a constant δ = δ(ε, ε0) such that any stable minimal
surface with injectivity radius bounded by ε0 in a quasi-Fuchsian manifold M are in
(−ε, ε) provided the Hausdorff dimension of the limit set of M is at most 1 + δ. In
particular, M is almost Fuchsian if one chooses ε < 1. Conversely, in [HW13b] the
authors give an estimate of the Hausdorff dimension of the limit set in an almost-
Fuchsian manifold M in terms of the maximum of the principal curvatures of the
(unique) minimal surface.



Chapter 8

Maximal surfaces in Anti-de
Sitter space

In this chapter we will discuss an application of similar techniques of Chapter 7
to Anti-de Sitter geometry. Consider a maximal surface S in AdS3 with boundary
at infinity the graph of a quasisymmetric homeomorphism φ : S1 → S1. We will
prove the following inequality for the supremum of the principal curvatures of a
maximal surface in AdS3 with boundary at infinity the graph of a quasisymmetric
homeomorphism φ : S1 → S1.

||λ||∞ ≤ C(sinh ||φ||cr/2) (8.1)

The cross-ratio norm ||φ||cr of φ was introduced in 2.3.2. To some extent, this
result can be considered the analogue of Theorem 7.A in the Anti-de Sitter setting.
The proof of the inequality (8.1) is the content of Section 8.1.

Recall that a maximal surface S provides a minimal Lagrangian extension Φ :
D→ D of φ. Such minimal Lagrangian map is obtained by composition (Φl)

−1 ◦Φr

of the left and right projections Φl,Φr : S → H2, defined in Subsection 1.3.1. This
observation is used by Bonsante and Schlenker to prove the existence and uniqueness
of a minimal Lagrangian quasiconformal extension to the disc of any quasisymmetric
homeomorphism of S1. In Section 8.2 we then apply inequality (8.1) to obtain an
estimate of the maximal dilatation of the minimal Lagrangian extension of φ : S1 →
S1 which only depends on the cross-ratio norm of φ.

Theorem 8.A. There exist universal constants δ and C such that, for any qua-
sisymmetric homeomorphism φ of S1 with cross ratio norm ||φ||cr < δ, the minimal
Lagrangian quasiconformal extension Φ : D → D has maximal distortion K(Φ)
bounded by the relation

logK(Φ) < C||φ||cr .

As for Theorem 7.A, the proof is composed of several steps. Given a convex
subset C in AdS3 spanning a curve in the boundary at infinity, the width of C is
defined as the supremum of the lenghts of all timelike curves entirely contained in
C (see Definition 8.1.8). The first step towards the proof is the following relation:

190
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Proposition 8.B. Given any quasisymmetric homeomorphism φ, let w be the width
of the convex hull of the graph of φ in ∂∞AdS3. Then

tanh

( ||φ||cr
4

)
≤ tan(w) ≤ sinh

( ||φ||cr
2

)
.

The second part is a use of Schauder estimates, as in the hyperbolic case, to
provide bounds on the principal curvatures of the maximal surface S.

Theorem 8.C. There exists a constant C such that, for every maximal surface S
with bounded principal curvatures ±λ and width w = w(CH(∂∞S)),

||λ||∞ ≤ C tanw .

The differential of the minimal Lagrangian extension of φ can be expressed (as
noted in [BS10] and [KS07]) in terms of the shape operator of S. This fact is used
in Section 8.2 to finally obtain the proof of Theorem 8.A.

By applying opposite estimates at each step, we obtain also an opposite inequal-
ity, giving a uniform bound from below of the maximal dilatation of the quasicon-
formal minimal Lagrangian extension.

Theorem 8.D. There exist universal constants δ and C0 such that, for any qua-
sisymmetric homeomorphism φ of S1 with cross ratio norm ||φ||cr < δ, the mini-
mal Lagrangian quasiconformal extension Φ : D → D has maximal dilatation K(Φ)
bounded by the relation

C0||φ||cr ≤ logK(Φ) .

The constant C0 can be taken arbitrarily close to 1/2.

Although investigation of the best value of the constant C in Theorem 8.A was
not pursued in this work, this shows that C cannot be taken smaller than 1/2.

8.1 Maximal surfaces in AdS3

The definition of maximal surface in AdS3 is the analogue of Definiton 8.1.1 for H3.

Definition 8.1.1. An embedded surface S in AdS3 with shape operator B is max-
imal if tr(B) = 0.

An existence result for maximal surfaces in AdS3 was given by Bonsante and
Schlenker.

Theorem 8.1.2 ([BS10]). Given a spacelike curve Γ in ∂∞AdS3, there exists a
complete maximal embedded disc S in AdS3 such that ∂∞S = Γ.

Moreover, when the curve at infinity Γ is the graph of a quasisymmetric home-
omorphism (see Definition 2.3.3 below), boundedness of curvature and uniqueness
were proved.
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Theorem 8.1.3 ([BS10]). Given a quasisymmetric homeomorphism φ : S1 → S1,
there exists a unique maximal embedded compression disc S in AdS3 with bounded
principal curvatures such that ∂∞S = gr(φ). Moreover, the principal curvatures are
in [−1 + ε, 1− ε] for some ε > 0.

Remark 8.1.4. A consequence of the results proved in [BS10] is that the maximal
surface S with bounded principal curvatures, spanning the graph of a quasisymmetric
homeomorphism, is complete. In fact, there is a bi-Lipschitz homeomorphism from
S to H2, and H2 is complete. Such homeomorphism is described also in Subsection
8.2.

The following proposition can be proved in a very similar fashion of Proposition
7.1.5, with little adaptations to the AdS3 case. Compare also [BS10, Lemma 4.1]
and the proof of Lemma 8.1.15 below.

Proposition 8.1.5. Given a maximal surface S ⊂ AdS3 and a plane P , let u : S →
R be the function u(x) = sin dAdS3(x, P ), let N be the future unit normal to S and
B = ∇N the shape operator. Then

Hessu− uI =
√

1− u2 + || gradu||2B (8.2)

as a consequence, u satisfies
∆Su− 2u = 0 . (L)

This is an important property to show that a maximal surface with boundary at
infinity a weakly spacelike curve Γ (the graph of a homeomorphism of S1) is con-
tained in the convex hull of Γ. We give here the definition of convex hull, completely
similar to Definition 7.1.4.

Definition 8.1.6. Given a weakly spacelike curve Γ in ∂∞AdS3, the convex hull of
Γ, which we denote by CH(Γ), is the intersection of half-spaces bounded by planes
P such that ∂∞P does not intersect Γ, and the half-space is taken on the side of P
containing Γ.

It can be proved that the convex hull of Γ, which is well-defined in RP 3, is contained
in AdS3 ∪ ∂∞AdS3.

Corollary 8.1.7. Let S be a minimal surface in AdS3, with ∂∞(S) = Γ a graph.
Then S is contained in the convex hull CH(Γ).

It will also be important to use the notion of width of the convex hull, as defined
in [BS10]. We introduce the definiton and give a short discussion about its properties,
which will be of use in the following.

Definition 8.1.8. Given a homeomorphism φ : S1 → S1, we define the width of
the convex hull CH(gr(φ)) as the supremum of the lenght of a timelike geodesic
contained in CH(gr(φ)).

Remark 8.1.9. Recall from the Preliminaries that for totally geodesic spacelike plane
Q, time distances in AdS3\Q (which we denote bt dAdS3) satisfy the inverse triangular
inequality and the distance between two points p and q ∈ I+(p) is achieved along
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the geodesic line passing through p and q. The width can be defined as (setting
C = CH(gr(φ)))

w(CH(gr(φ))) = sup
p∈∂−C,q∈∂+C

dAdS3(p, q) = sup
γ

∫
||γ̇||AdS3 . (8.3)

where the supremum in the RHS is taken over all timelike curves γ connecting ∂−C
and ∂+C. In particular, we note that

w(C) = sup
x∈C

(dAdS3(x, ∂−C) + dAdS3(x, ∂+C)) . (8.4)

To stress once more the meaning of this equality, note that the supremum in (8.4)
cannot be achieved on a point x such that the two segments realizing the distance
from x to ∂−C and ∂+C are not part of a unique geodesic line. Indeed, if at x the
two segments form an angle, the piecewise geodesic can be made longer by avoiding
the point x, as in Figure 8.1. We also remark that if the distance between a point
x and ∂±C is achieved along a geodesic segment l, then the maximality condition
imposes that l must be orthogonal to a support plane to ∂±C at ∂±C ∩ l.

x

Figure 8.1: A path through x which is not geodesic does not achieve the maximum distance.

8.1.1 A sketch of the proof of the inequality (8.1)

Again, the proof is divided into several steps, in a similar way to the hyperbolic case
treated in the previous section. We resume here the main steps:

1. Given a quasisymmetric homeomorphism φ ∈ T (D), we can estimate the width
w = w(CH(gr(φ))) in terms of the cross-ratio norm ||φ||cr.

2. Given a maximal surface S in AdS3 with ∂∞(S) = gr(φ), for every point
x ∈ S there are two geodesic timelike segments starting from x orthogonal to
two planes P−,P+ which do not intersect CH(gr(φ)); the sum of the lengths
of the two segments is less than the width w of CH(gr(φ)). Moreover S is
contained between P− and P+.

3. Since S is contained between two disjoint planes close to x, the principal
curvatures of S in a neighborhood of x cannot be too large. In particular, we
use Schauder theory to show that the principal curvatures of S at a point x
are bounded in terms of the distance from P− of points in a neighborhood of
x.
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4. The distance from P− of points in a neighborhood of x is estimated in terms
of the width w.

5. Finally, we estimate the quasiconformal coefficient of the minimal Lagrangian
extension of φ in terms of the principal curvatures of S.

8.1.2 Cross-ratio norm and width

In this subsection, we will prove a relation between the cross-ratio norm of a qua-
sisymmetric homeomorphism φ and the width w(CH(gr(φ))).

Proposition 8.B. Given any quasisymmetric homeomorphism φ, let w = w(CH(gr(φ)))
the width of the convex hull of gr(φ). Then

tanh

( ||φ||cr
4

)
≤ tan(w) ≤ sinh

( ||φ||cr
2

)
. (8.5)

Proof. We first prove the upper bound on the width. Suppose the width of the
convex hull C of gr(φ) is w ∈ (0, π/2); let k = ||φ||cr. We can find a sequence of
pairs (pn, qn) such that dAdS3(pn, qn)↗ w, with pn ∈ ∂−C, qn ∈ ∂+C. We can assume
the geodesic connecting pn and qn is orthogonal to ∂−C at pn; indeed one can replace
pn with a point in ∂−C which maximizes the distance from qn, if necessary. Let us

now apply isometries Tn so that Tn(pn) = p = [p̂] ∈ AdS3, for p̂ = (0, 0, 1, 0) ∈ ÂdS3,
and Tn(qn) lies on the timelike geodesic through p orthogonal to P− = (0, 0, 0, 1)⊥.

The curve at infinity gr(φ) is mapped by Tn to a curve gr(φn), where φn is
obtained by pre-composing and post-composing φ with Möbius transformations (this
is easily seen from the description of Isom(AdS3) as PSL(2,R)×PSL(2,R)). Hence
φn is still quasisymmetric with norm ||φn||cr = ||φ||cr = k.

It is easy to see that φn cannot converge to a map sending the complement of a
point in RP 1 to a single point of RP 1. Indeed, the curves gr(φn) are all contained
between P− and a spacelike plane Pn disjoint from P−, which contains the point
Tn(qn). Moreover the distance of p from Tn(qn) ∈ Pn is at most w. This shows that
the curves gr(φn) all lie in a bounded region in an affine chart of AdS3; this would
not be the case if φn were converging on the complement of one point to a constant
map. See Figure 8.2.

Hence, by the convergence property of k-quasisymmetric homeomorphisms (The-
orem 2.3.5), φn converges to a k-quasisymmetric homeomorphism φ∞, so that w =
w(CH(gr(φ∞))). Denote C∞ = CH(gr(φ∞)).

We will mostly refer to the coordinates in the affine chart {x3 6= 0}, namely
(x, y, z) = (x1/x3, x2/x3, x4/x3). Our assumption is that the point p has coordinates
(0, 0, 0) and P− = {(x, y, 0) : x2 + y2 < 1} is the totally geodesic plane through
p which is a support plane for ∂−C∞. The geodesic line l through p orthogonal
to P− is {(0, 0, z)}. By construction, the width of C∞ equals dAdS3(p, q), where
q = (0, 0, h) = l ∩ ∂+C∞. It is then an easy computation to show that h = tanw.
Hence the plane P+ = {(x, y, h) : x2 + y2 < 1 + h2}, which is the plane orthogonal
to l through q, is a support plane for ∂+C∞. See Figure 8.3.

Since ∂−C∞ and ∂+C∞ are pleated surfaces, ∂−C∞ contains an ideal triangle T−,
such that p ∈ T− (possibly p is on the boundary of T−). The ideal triangle might
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P−

gr(φn)

Figure 8.2: The curves gr(φn) are contained in a bounded region in an affine chart, hence
they cannot diverge to a constant map.

p

q

P−

P+
l

Figure 8.3: The setting of the proof of
Proposition 8.B.

P−

P+

q

p

T+

T−

Figure 8.4: The point p is contained in the
convex envelope of three (or two) points in
∂∞(P−); analogously q in P+.

also be degenerate if p is contained in an entire geodesic, but this will not affect the
argument. Hence we can find three geodesic half-lines in P− connecting p to ∂∞AdS3

(or an entire geodesic connecting p to two opposite points in the boundary, if T− is
degenerate). Analogously we have an ideal triangle T+ in P+, compare Figure 8.4.
The following Lemma will provide constraints on the position the half-geodesics in
P+ can assume. See Figure 8.5 and 8.6 for a picture of the “sector” described in
Lemma 8.1.10.

Sublemma 8.1.10. Suppose ∂−C∞ ∩ P− contains a half-geodesic

g = {t(cos θ, sin θ, 0) : t ∈ [0, 1)}

from p, asymptotic to the point at infinity η = (cos θ, sin θ, 0). Then ∂+C∞ ∩ P+

must be contained in P+ \ S(η), where S(η) is the sector {x cos θ + y sin θ > 1}.
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P−

P+

S(η)

gη

Figure 8.5: The sector S(η) as in
Sublemma 8.1.10.

p, q
η

S(η)
P−

P+

Figure 8.6: The (x, y)-plane seen from
above. The sector S(η) is bounded by the
chord in P+ tangent to the concentric circle,
which projects vertically to P−

Proof. The computation will be carried out in the double cover ÂdS3 of AdS3. It
suffices to check the assertion when θ = π, since in the statement there is a rotational

symmetry along the vertical axis. The half-geodesic g is parametrized in ÂdS3 ⊂ R2,2

by g(t) = (sinh(t), 0, cosh(t), 0), for t ∈ (−∞, 0]. Since the width is less than π/2,
every point in ∂+C∞ ∩P+ must lie in the region bounded by P− and the dual plane
g(t)⊥. Indeed for every t, g(t)⊥ is the locus of points at timelike distance π/2 from
g(t). We have

P+ = {(cosα sinh r, sinα sinh r, cosw cosh r, sinw cosh r) : r > 0, α ∈ [0, 2π)} .

Hence the intersection P+ ∩ g(t)⊥ is given by the condition

sinh(t) cos(α) sinh(r) = cosh(t) cos(w) cosh(r)

and thus is composed (in the affine coordinates of {x3 6= 0}) by the points of the
form (

1

tanh(t)
,

tan(α)

tanh(t)
, tan(w)

)
.

Therefore, points in ∂+C∞ ∩ P+ need to have x ≥ 1/ tanh(t), and since this holds
for every t ≤ 0, we have x ≥ −1.

By the previous Sublemma, if p is contained in the convex envelope of three
points η1, η2, η3 in ∂∞(P−), then any point at infinity of ∂+C∞ ∩ P+ is necessarily
contained in P+ \ (S(η1)∪S(η2)∪S(η3)). We will use this fact to choose two pairs of
points, η, η′ in ∂∞(P−) and ξ, ξ′ in ∂∞(P+), in a convenient way. This is the content
of next sublemma. See Figure 8.7.

Sublemma 8.1.11. Suppose p is contained in the convex envelope of three points
η1, η2, η3 in ∂∞(P−). Then gr(φ∞) must contain (at least) two points ξ, ξ′ of ∂∞(P+)
which lie in different connected components of ∂∞(P+) \ (S(η1) ∪ S(η2) ∪ S(η3)).
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Proof. The proof is simple 2-dimensional Euclidean geometry. Recall that the point
q, which is the “center” of the plane P+, is in the convex hull of gr(φ∞). If the
claim were false, then one connected component of ∂∞(P+) \ (S(η1)∪S(η2)∪S(η3))
would contain a sector S0 of angle ≥ π. But then the points η1, η2, η3 would all be
contained in the complement of S0. This contradicts the fact that p is in the convex
hull of η1, η2, η3.

Remark 8.1.12. If p is in the convex envelope of only two points at infinity, which
means that P− contains an entire geodesic, the previous statement is simplified, see
Figure 8.8.

η1

∂∞P+

S0

η2

η3

p, q

Figure 8.7: The proof of Sublemma 8.1.11.
Below, the choice of points η, η′, ξ, ξ′.

η′

S(η′)

P−

P+

S(η)

η

ξ

ξ

P−

ξ′

S(η)

pη

ξ

q

Figure 8.8: The same statement of Sub-
lemma 8.1.11 is simpler if p is contained
in an entire geodesic line contained in P−.

Let us now choose two points η, η′ ∈ ∂∞(P−) among η1, η2, η3, and ξ, ξ′ ∈ ∂∞(P+)
in such a way that ξ and ξ′ lie in two different connected components of ∂∞(P+) \
(S(η1) ∪ S(η2)). The strategy will be to use this quadruple to show that the cross-
ratio distortion of φ∞ is not too small, depending on the width w. However, such
quadruple is not symmetric in general. Hence ξ′ will be replaced later by another
point ξ′′. First we need some tool to compute the left and right projections to ∂∞H2

of the chosen points.

We use the plane P− to identify ∂∞AdS3 with ∂∞H2 × ∂∞H2. Let πl and πr
denote left and right projection to ∂∞(P−), following the left and right ruling of
∂∞AdS3. In what follows, angles like θl, θr and similar symbols will always be
considered in (−π, π].
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Sublemma 8.1.13. Suppose ξ ∈ ∂∞(P+), where the length of the timelike geodesic
segment orthogonal to P− and P+ is w. If πl(ξ) = (cos(θl), sin(θl), 0), then πr(ξ) =
(cos(θl − 2w), sin(θl − 2w), 0).

Proof. By the description of the left ruling (see Section 1.3), recalling h = tan(w),
it is easy to check that

ξ =(cos(θl), sin(θl), 0) + h(sin(θl),− cos(θl), 1)

=(cos(θl) + h sin(θl), sin(θl)− h cos(θl), h)

=(
√

1 + h2 cos(θl − w),
√

1 + h2 sin(θl − w), h) .

By applying the same argument to the right projection, the claim follows.

We can assume η′ = (−1, 0, 0), namely η′ corresponds to (−1,−1) ∈ ∂∞H3 ×
∂∞H3. Let η = (eiθ0 , eiθ0); by symmetry, we can assume θ0 ∈ [0, π); in this case we
need to consider the point ξ = (eiθl , eiθr) constructed above, with θr ∈ [θ0, π). More
precisely, Sublemma 8.1.13 shows θr = θl − 2w; by Sublemma 8.1.10 we must have
θl −w /∈ (θ0−w, θ0 +w)∪ (π−w, π)∪ (−π,−π+w) and thus, by choosing ξ in the
correct connected component (i.e. switching ξ and ξ′ if necessary), necessarily θl ∈
[θ0 + 2w, π] (see Figure 8.9). We remark again that the quadruple Q = πl(ξ

′, η, ξ, η′)
will not be symmetric in general, so we need to consider a point ξ′′ instead of ξ′

so as to obtain a symmetric quadruple. However, if θ0 ∈ (−π, 0), then one would
consider the point ξ′ in the connected component having θr ∈ (−π, θ0) - and then a
point ξ′′ in the other connected component so as to have a symmetric quadruple -
and obtain the same final estimate.

So let ξ′′ = (eiθ
′′
l , eiθ

′′
r ) be a point on gr(φ) so that the quadrupleQ = πl(ξ

′′, η, ξ, η′)
is symmetric; we are going to compute the cross-ratio of φ(Q) = πr(ξ

′′, η, ξ, η′). How-
ever, in order to avoid dealing with complex numbers, we first map ∂∞H3 = ∂∞(P−)
to R ∪ {∞} using the Möbius transformation

z 7→ z − 1

i(z + 1)

which maps eiθ to tan(θ/2) ∈ R if θ 6= π, and −1 to ∞. We need to compute

|log |cr(φ(Q))|| =
∣∣∣∣log

∣∣∣∣ tan(θr/2)− tan(θ0/2)

tan(θ0/2)− tan(θ′′r/2)

∣∣∣∣∣∣∣∣ (8.6)

and in particular we want to show this is uniformly away from 1. By construction
θr < θl (see also Figure 8.10), and since P− does not disconnect gr(φ), also θ′′r < θ′′l .
We have

tan(θ0/2)− tan(θ′′r/2) ≥ tan(θ0/2)− tan(θ′′l /2) . (8.7)

The condition that (θ′′l , θ0, θl,∞) forms a symmetric quadruple translates on R to
the condition that

tan(θ0/2)− tan(θ′′l /2) = tan(θl/2)− tan(θ0/2) . (8.8)
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P−

P+

η′
η

ξ

πl(ξ)

πr(ξ)

Figure 8.9: The choice of points η, ξ, η′

in ∂∞AdS3, endpoints at infinity of
geodesic half-lines in the boundary of the
convex hull.

tan(θ02 )

tan(θ02 )

∞

∞

tan(θl2 )tan(
θ′′l
2 )

tan(θr2 )

tan(θ
′′
r
2 )

η

ξ′′

ξ

Figure 8.10: We give an upper bound on the
ratio between the slopes of the two thick lines.
The dotted line represents the plane P−.

Using (8.7) and (8.8) in the argument of the logarithm in (8.6), we obtain:

tan(θr/2)− tan(θ0/2)

tan(θ0/2)− tan(θ′′r/2)
≤ tan((θl/2)− w)− tan(θ0/2)

tan(θl/2)− tan(θ0/2)
=: S(θl).

Note that S(θl) < 1 on [θ0 + 2w, π] and S(θl)→ 0 when θl → θ0 + 2w or θl → π:
this corresponds to the fact that gr(φ∞) tends to contain a lightlike segment. On
the other hand S(θl) is positive on [θ0 + 2w, π] and the maximum Smax is achieved
at some interior point of the interval. A computation gives

|cr(φ(Q))| ≤ Smax =

(
cos(θ0/2 + w)

cos(θ0/2) + sin(w)

)2

.

The RHS quantity depends on θ0, but is maximized on [0, π− 2w] for θ0 = 0, where
it assumes the value (1− sin(w))/(1 + sin(w)). This gives

e||φ∞||cr ≥
∣∣∣∣ 1

cr(φ(Q))

∣∣∣∣ ≥ 1 + sin(w)

1− sin(w)
.

From this we deduce

sin(w) ≤ e||φ∞||cr − 1

e||φ∞||cr + 1
= tanh

||φ∞||cr
2

or equivalently

tan(w) ≤ sinh
||φ∞||cr

2
.

Since ||φ∞||cr ≤ ||φ||cr, the first part of the proof is concluded.
It remains to show the other inequality. This will follow more easily from the

above construction. Suppose ||φ||cr > k. Then we can find a quadruple of symmetric
points Q such that |cr(φ(Q))| = ek. Consider the points ξ′, η, ξ, η′ on ∂∞AdS3 such
that their left and right projection are Q and φ(Q), respectively.
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Recall that the isometries of AdS3 act on ∂∞(AdS3) ∼= S1 × S1 as a pair of
Möbius transformations, therefore they preserve the cross-ratio of both Q and φ(Q).
Thus we can suppose Q = (−1, 0, 1,∞) and φ(Q) = (−ek/2, 0, e−k/2,∞) when the
quadruples are regarded as composed of points on R ∪ {∞}.

Passing to the coordinates in S1 (by the map θ ∈ S1 7→ tan(θ/2) ∈ R) for this
quadruple of points at infinity, it is easy to see that - in the affine chart {x3 6= 0} -
the position of the four points has an order 2 symmetry obtained by rotation around
the z-axis. See Figure 8.11. This is ensured by the special renormalization chosen
for Q and φ(Q).

Hence the geodesic line g1 with endpoints at infinity η and η′ is contained in the
plane P− as in the first part of the proof. More precisely, in the usual affine chart
{x3 6= 0},

g1 = {(tanh(t), 0, 0) : t ∈ R} .
The geodesic line g2 connecting ξ and ξ′ has the form

g2(s) =

{(
cos(α) tanh(s)

cos(w′)
,
sin(α) tanh(s)

cos(w′)
, tan(w′)

)
: s ∈ R

}
.

The lines g1 and g2 are in CH(gr(φ)) and have the common orthogonal segment l
which lies in the z-axis in the usual affine chart (Figure 8.11), the feet of l being
achieved for t = 0 and s = 0.

The distance between g1 and g2 is achieved along this common orthgonal geodesic
and its value is w′. Recalling Sublemma 8.1.13 and the computation in its proof,
we find α = θl − w′ = π/2 − w′ and θr = θl − 2w′. Since tan(θr/2) = e−k/2 and
θl = π/2, one can compute

w′ = π/4− arctan(e−k/2) .

It follows that

tan(w) ≥ tan(w′) =
1− e−k/2
1 + e−k/2

= tanh

(
k

4

)
.

Since this is true for an arbitrary k ≤ ||φ||cr, the inequality tan(w) ≥ tanh(||φ||cr/4)
holds.

8.1.3 Uniform gradient estimates

Let S a maximal surface in AdS3. Let P− be a spacelike plane which does not
intersect the convex hull. As in the hyperbolic setting, we now want to use the fact
that the function u(x) = sin dAdS3(x, P−), satisfies the equation

∆Su− 2u = 0 . (L)

given in Proposition 8.1.5. This will enable us to use Equation (8.2) to give esti-
mates on the principal curvatures of S. Note that, by Gauss equation in the AdS3

setting, a maximal surface with principal curvatures ±λ has curvature given by
KS = −1 + λ2. It is proved in [BS10] that, if ∂∞(S) is the graph of a quasisym-
metric homeomorphism and the principal curvatures of S are bounded, then KS is
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p

q

P−

P+

η′ η

ξ

ξ′

g

g′

Figure 8.11: The distance between the two lines g and g′ is achieved along the common
orthogonal geodesic.

uniformly negative, which means that ||λ||∞ < 1. This is a substantial difference
with the case of hyperbolic minimal surfaces, where the principal curvatures can be
larger than 1.

From this point, we will always assume that S is a maximal surface spanning
the graph of a quasisymmetric homeomorphism, which is a compression disc for
AdS3, with bounded principal curvatures; hence S is complete (recall Remark 8.1.4)
and the curvature is bounded by −1 ≤ KS < 0. However, when ||λ||∞ approaches
1, the curvature becomes close to 0. Therefore we will not be able to use uniform
bounds on the metric provided by upper bound on the curvature, as in the hyperbolic
case (Subsection 7.1.3). Instead, we will use uniform estimates on the norm of the
gradient of u.

Lemma 8.1.14. The universal constant L =
√

2(1 +
√

2) is such that, for every

point x on a maximal surface in AdS3 with nonpositive curvature, || gradu|| < L.

Proof. Let γ be a path on S obtained by integrating the gradient vector field; more
precisely, we impose γ(0) = x and

γ′(t) = − gradu

|| gradu|| .

Observe that

u(γ(t))− u(x) =

∫ t

0
du(γ′(s))ds =

∫ t

0
−〈gradu(s),

gradu(s)

|| gradu(s)|| 〉ds

=−
∫ t

0
|| gradu(s)||ds .

We denote y(s) = || gradu(s)||. We will show that y(0) is bounded by a universal
constant, since u(γ(t)) cannot become negative on S (recall Corollary 8.1.7). We



202 Chapter 8. Maximal surfaces in Anti-de Sitter space

have

d

dt

∣∣∣∣
t=0

y(t)2 = 2〈∇γ′(t) gradu(γ(t)), gradu(γ(t))〉 = 2∇2u(γ′(t), gradu(γ(t))) (8.9)

Since, by equation (7.1), ∇2u− uI =
√

1− u2 + || gradu||2II and ||B(v)|| ≤ ||v||,

− d

dt

∣∣∣∣
t=0

y(t)2 ≤
∣∣∣∣ ddt
∣∣∣∣
t=0

y(t)2

∣∣∣∣ ≤ 2
(
u(γ(t) +

√
1− u(γ(t))2 + y(t)2

)
y(t)

and therefore

− d

dt

∣∣∣∣
t=0

y(t) ≤
√

2
√

1 + y(t)2. (8.10)

It follows that
y(t) ≥ y(0) cosh(

√
2t)−

√
1 + y(0)2 sinh(

√
2t) (8.11)

since the RHS of (8.11) is the solution of (8.10) with inequality replaced by equality.
Now

u(γ(t))−u(x) = −
∫ t

0
y(s)ds ≤ 1√

2

(
−y(0) sinh(

√
2t) +

√
1 + y(0)2(cosh(

√
2t)− 1)

)
.

Let us define F (t) the RHS of the above inequality. We must have u(γ(t)) ≥ 0 for
every t; so we impose that F (t) ≥ −u(x) for every t. The minimum of F is achieved
for

tanh(
√

2tmin) =
y(0)√

1 + y(0)2
.

Therefore

F (tmin) = − 1√
2

(
1 +

√
1 + y(0)2

)
≥ −u(x)

which is equivalent to y(0)2 ≤ 2(u(x)2+
√

2u(x)). Recalling u ∈ [−1, 1], || gradu(x)||2 ≤
2(1+

√
2) independently on the maximal surface S and on the support plane P−.

We now apply the above uniform gradient estimate to prove a fact which will
be of use shortly. Given two unit timelike vectors v, v′ ∈ TxAdS3, we define the
hyperbolic angle between v and v′ as the number α ≥ 0 such that coshα = 〈v, v′〉.
Compare with Figure 8.14 below.

Lemma 8.1.15. There exists a constant ᾱ such that the following holds for every
maximal surface S in AdS3 and every totally geodesic plane P− in the past of S which
does not intersect S. Let l be a geodesic line orthogonal to P− and let x = l ∩ S.
Suppose x is at distance less than π/4 from P−. Then the hyperbolic angle α at x
between l and the normal vector to S is bounded by α ≤ ᾱ.

Proof. We use the same notation as Proposition 7.1.5 and 8.1.5. It is clear that the
tangent direction to l is given by the vector ∇U , where U(x) = sin dAdS3(x, P−) =
〈x, p〉 is defined on the entire AdS3 and p is the point dual to P−. Recall u is the
restriction of U to S. In the AdS3 setting, we have the formulae ∇U(x) = p+〈p, x〉x
and 〈∇U,∇U〉 = −1 + u2 = || gradu||2 − 〈∇U,N〉2. It follows that the angle α at x
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between the normal to the maximal surface S and the geodesic l can be computed
as

(coshα)2 = 〈 ∇U(x)

||∇U(x)|| , N〉
2 =

1− u(x)2 + || gradu(x)||2
1− u(x)2

and so α is bounded by Lemma 8.1.14 and the assumption that u(x)2 ≤ 1/2.

8.1.4 Schauder estimates

As in Subsection 7.1.4 for the hyperbolic case, we now want to give Schauder-type
estimates on the derivatives of the function u = sin dAdS3(·, P−), expressed in suitable
coordinates, of the form

||u||C2(B0(0,R
2

)) ≤ C||u||C0(B0(0,R))

where the constant does not depend on S and P−. We again prove this estimate by
using a compactness argument.

The following Lemma is proved in [BS10, Lemma 5.1]. Given a spacelike plane
P0 in AdS3 and a point x0 ∈ P0, let l be the timelike geodesic through x0 orthogonal
to P0. We define the cylinder Cl(x0, P0, R0) of radius R0 above P0 centered at x0

as the set of points x ∈ AdS3 which lie on a spacelike plane Px orthogonal to l such
that dPx(x, l ∩ Px) ≤ R0. See also Figure 8.12.

P0

x0

Figure 8.12: The cylinder Cl(x0, P0, R0) (blue) and its intersection with I+(x0) and I−(x0)
(red).

Lemma 8.1.16 ([BS10]). There exists a radius R0 such that, for every spacelike
plane P0 and every point x0 ∈ P0, every sequence Sn of maximal surfaces tangent
to P0 at x0 admits a subsequence converging C∞ on the cylinder Cl(x0, P0, R0) to a
maximal surface.

Denote by w = w(∂∞S) the width of the convex hull of the asymptotic boundary
of S; we have w(∂∞S) ≤ π/2 (see [BS10, Lemma 4.16]). Let x be a point of
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S; by Remark 8.1.9, we have that dAdS3(x, ∂−C) + dAdS3(x, ∂+C) ≤ w, therefore
one among dAdS3(x, ∂−C) and dAdS3(x, ∂+C) must be smaller than π/4. Composing
with an isometry of AdS3 (which possibly reverses time-orientation), we can assume
dAdS3(x, ∂−C) ≤ dAdS3(x, ∂+C), which implies that x has distance less than π/4 from
P−. This assumption will be very important in the following.

Proposition 8.1.17. There exists a radius R > 0 and a constant C > 0 such that
for every choice of:

• A maximal surface S ⊂ AdS3 with ∂∞S the graph of an orientation-preserving
homeomorphism;

• A point x ∈ S;

• A plane P− disjoint from S with dAdS3(x, P−) ≤ π/4,

the function u(·) = dH3(·, P−) expressed in terms of normal coordinates centered at
x, namely

u(z) = sin dAdS3(expx(z), P−)

where expx : R2 ∼= TxS → S denotes the exponential map, satisfies the Schauder-type
inequality

||u||C2(B0(0,R
2

)) ≤ C||u||C0(B0(0,R)) . (8.12)

Proof. Let R0 be the universal constant appearing in Lemma 8.1.16. First, we show
that there exists a radius R such that the image of the Euclidean ball B0(0, R) under
the exponential map at every point x ∈ S, for every surface S, is contained in the
cylinder Cl(x, TxS,R0). Indeed, suppose this does not hold, namely

inf
x∈S

sup {R : expx(B0(0, R)) ⊂ Cl(x, TxS,R0)} = 0 . (8.13)

Then one can find a sequence Sn of maximal surfaces and points xn such that the
supremum Rn of radii R for which expxn(B0(0, R)) is contained in the respective
cylinder of radius R0 goes to zero. We can compose with isometries of AdS3 so
that all points xn are sent to the same point x0 and all surfaces are tangent at x0

to the same plane P0. By Lemma 8.1.16, there exists a subsequence converging
inside Cl(x0, P0, R0) to a maximal surface S∞. Therefore the infimum in the LHS
of Equation (8.13) cannot be zero, since for the limiting surface S∞ there is a radius
R∞ such that expx(B0(0, R∞)) ⊂ Cl(x, TxS,R0).

We use a similar argument to prove the main statement. We can consider P− a
fixed plane, and a point x ∈ S lying on a fixed geodesic l orthogonal to P−. Suppose
the claim does not hold, namely there exists a sequence of surfaces Sn in the future
of P− such that for the function un(z) = sin dAdS3(expxn(z), Pn),

||un||C2(B0(0,R
2

)) ≥ n||u||C0(B0(0,R)) .

Let us compose each Sn with an isometry Tn ∈ Isom(AdS3) so that S′n = Tn(Sn)
is tangent to a fixed plane P0 at a fixed point x0, whose normal unit vector is N0.
We claim that the sequence of isometries Tn is bounded in Isom(AdS3), since T−1

n
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maps the element (x0, N0) of the tangent bundle TAdS3 to a bounded region of
TAdS3. Indeed, by our assumptions, T−1

n (x0) = xn lies on a geodesic l orthogonal
to P− and has distance less than π/4 (in the future) from P−; moreover by Lemma
8.1.15 the vector (dTn)−1(N0) forms a bounded angle with l. By Lemma 8.1.16, up
to extracting a subsequence, we can assume S′n → S′∞ on Cl(x0, P0, R0) with all
derivatives. Since we can also extract a converging subsequence from Tn, we assume
Tn → T∞, where T∞ is an isometry of AdS3. Therefore Tn(P−) converges to a totally
geodesic plane P∞.

Using the first part of this proof and Lemma 8.1.16, on the image under the
exponential map of S′n of the ball B0(0, R) the coefficients of the Laplace-Beltrami
operators ∆S′n (in normal coordinates on B0(0, R)) converge to the coefficients of
∆S′∞ . As in the hyperbolic case, the operators ∆S′n−2 are uniformly strictly elliptic
with uniformly bounded coefficients. By the Schauder estimate of Theorem 3.1.3,
using the fact that un solves the equation ∆S′n(un)−2un = 0, there exists a constant
c such that

||un||C2(B0(0,R
2

)) ≤ c||un||C0(B0(0,R)) ,

for every n. This gives a contradiction.

Remark 8.1.18. The statements of Lemma 8.1.15, Lemma 8.1.16 and Proposition
8.1.17 (and also Proposition 8.1.19 below) could be improved so as to be stated in
terms of the choice of any radius R > 0, any number w0 < π/2 (replacing π/4),
where the constant C would depend on such choices. However, these details would
not improve the final statement of Theorem 8.C and thus are not pursued here. The
reader can compare with Proposition 7.1.19 and the lemmata used in the proof.

Let us remark that in Anti-de Sitter space the projection from a spacelike curve
or surface to a totally geodesic spacelike plane is not distance-contracting. Hence
we need to give an additional computation in order to ensure (by substituting the
radius R in Proposition 8.1.17 by a smaller one if necessary) that the projection
from the geodesic balls BS(x,R) to P− has image contained in a uniformly bounded
set - which was obtained for free in the case of hyperbolic geometry. This is proved
in the next Proposition, see also Figure 8.13.

Proposition 8.1.19. There exist constant radii R′0 and R′ such that for every max-
imal surface S in AdS3, every point x0 ∈ S and every totally geodesic plane P−
which does not intersect S, such that the distance of x0 from P− is at most π/4, the
orthogonal projection π|S : S → P− maps S ∩ Cl(x0, Tx0S,R

′
0) to BP−(π(x0), R′).

Proof. We can suppose Tx0S is the intersection of the plane {x4 = 0} with AdS3 ⊂
RP 3 and x0 = [x̂0] with x̂0 = (0, 0, 1, 0). Therefore - doing as usual the compu-

tation in the double cover ÂdS3 inside R2,2 - the points x in Cl(x0, Tx0S,R
′
0) have

coordinates

x = (cos θ sinh r, sin θ sinh r, cosm cosh r, sinm cosh r)

for r ≤ R′0. Let us denote by I+(p) (resp. I−(x0)) the future (resp. past) of a point
p in AdS3 \Q, where Q is the plane at infinity in the affine chart.
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Since S is spacelike, S∩Cl(x0, Tx0S,R
′
0) is contained in Cl(x0, Tx0S,R

′
0)\(I+(x0)∪

I−(x0)). Hence |〈x, x0〉| > 1 (recall Equation (1.12) in the Prelimiaries), which is
equivalent to

| cosm| > 1

cosh r
. (8.14)

Let l be the geodesic through x0 orthogonal to P−. We can assume l has normal
vector at x0 given by l′(0) = (sinhα, 0, 0, coshα), where of course α is the angle
between l and the normal to S at x0. Therefore

l(t) = (cos t)x0 + (sin t)l′(0) = (sin t sinhα, 0, cos t, sin t coshα) .

Let w1 = dAdS3(x0, P−), so P− = p⊥ is the plane orthogonal to

p = l′(−w1) = (cosw1 sinhα, 0, sinw1, cosw1 coshα) .

The projection of x to P− is given by

π(x) =
x+ 〈x, p〉p√

1− 〈x, p〉2

provided 〈x, p〉2 < 1, which is the condition for x to be in the domain of dependence
of P−. The distance d between π(x) and π(x0) = l(−w1) is given by the expression

cosh d = |〈π(x), l(−w1)〉| =
∣∣∣∣∣ 〈x, l(−w1)〉√

1− 〈x, p〉2

∣∣∣∣∣ . (8.15)

Now, we have

|〈x, p〉| =| cos θ sinh r cosw1 sinhα− cosm cosh r sinw1 − sinm cosh r cosw1 coshα|

≤ sinh r sinhα+

√
2

2
cosh r + sinh r coshα =

√
2

2
cosh r + (sinh r)eα .

In the last line, we have used that | sinm| =
√

1− (cosm)2 ≤ tanh r, by Equation
(8.14), and that sinw1 <

√
2/2. Since the hyperbolic angle α is uniformly bounded

by Lemma 8.1.15 (Figure 8.14), it follows that if r ≤ R′0 for R′0 sufficiently small,√
1− 〈x, p〉2 is uniformly bounded below. Moreover,

|〈x, l(−w1)〉| =
= | − cos θ sinh r sinw1 sinhα− cosm cosh r cosw1 + sinm cosh r sinw1 coshα|

≤ sinh r sinhα+ cosh r + sinh r coshα

is uniformly bounded. This shows, from Equation (8.15), that cosh d ≤ coshR′ for
some constant radius R′ (depending on R′0). This concludes the proof.

Therefore, replacing R0 in Lemma 8.1.16 with min {R0, R
′
0}, we have that the

geodesic balls of radius R (R as in Proposition 8.1.17) on S centered at x project
to P− with image contained in BP−(π(x), R′). The radii R and R′ are fixed, not
depending on S.
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P0

x0

P−

x

Figure 8.13: Projection from points in
Cl(x0, Tx0

S,R′0) which are connected to x0
by a spacelike geodesic have bounded im-
age.

P0

x0

P−

α

S

Figure 8.14: The key point is that the
hyperbolic angle α is uniformly bounded,
by Lemma 8.1.15.

8.1.5 Principal curvatures

In this subsection we will prove the estimate on the supremum of the principal
curvatures of S in terms of the width. In particular, we prove the following theorem.

Theorem 8.C. There exists a constant C such that, for every maximal surface S
with bounded principal curvatures ±λ and width w = w(CH(∂∞S)),

||λ||∞ ≤ C tanw .

Remark 8.1.20. Of course, the result in Theorem 8.C does give a new estimate only
for w ≤ w0 for some w0, as it is already known that every maximal surface with
bounded principal curvatures has curvatures in [−1, 1]. However, this gives a good
description of the behavior of principal curvatures for a maximal surface “close” to
being a totally geodesic plane.

We take an arbitrary point x ∈ S. By Remark 8.1.9, we know that there are two
disjoint planes P− and P+ with dAdS3(x, P−) + dAdS3(x, P+) = w1 + w2 ≤ w where
w is the width. As in the previous subsection, we will assume P− is a fixed plane in
AdS3, upon composing with an isometry. Figure 8.15 gives a picture of the situation
of the following lemma.

Lemma 8.1.21. Let p ∈ P−, q ∈ P+ be the endpoints of geodesic segments l1 and
l2 from x ∈ S orthogonal to P− and P+ of length w1 and w2, with w1 ≤ w2. Let
p′ ∈ P− a point at distance R′ from p and let d = dAdS3((π|P+)−1(p′), P−). Then

tan d ≤ (1 +
√

2) coshR′ tan(w1 + w2). (8.16)

Proof. As usual, we do the computation in ÂdS3. We assume x = (0, 0, 1, 0) and l1
is the geodesic segment parametrized by l1(t) = (cos t)x − (sin t)(0, 0, 0, 1), so that
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the plane P− is dual to p− = (0, 0, sinw1, cosw1). Points on the plane P− at distance
R′ from π(x) = l1(w1) = (0, 0, cosw1,− sinw1) have coordinates

p′ = (cos θ sinhR′, sin θ sinhR′, coshR′ cosw1,− coshR′ sinw1) .

We also assume l2 has initial tangent vector l′2(0) = (sinhα, 0, 0, coshα), where α is
the hyperbolic angle between (0, 0, 0, 1) and l′2(0), so that

l2(t) = (cos t)x+ (sin t)(sinhα, 0, 0, coshα) .

Note that

l′2(w2) = (cosw2 sinhα, 0,− sinw2, cosw2 coshα) =: p+

is the unit vector orthogonal to P+, by construction.
We derive a condition which must necessarily be satisfied by α, because P− and

P+ are disjoint. Indeed, we must have

|〈p−, p+〉| = − sinw1 sinw2 + cosw1 cosw2 coshα ≤ 1

which is equivalent to

coshα <
1 + sinw1 sinw2

cosw1 cosw2
. (8.17)

Let us now write

(tanhα)2 =

(
1 +

1

coshα

)(
1− 1

coshα

)
≤ 2(coshα− 1)

and therefore, using (8.17),

(tanhα)2 < 2

(
1− cos(w1 + w2)

cosw1 cosw2

)
≤ 2

(
1− (cos(w1 + w2))2

cosw1 cosw2

)
≤ 2

(sin(w1 + w2))2

cosw1 cosw2
.

(8.18)
To compute d, we now write explicitly the geodesic γ starting from p′ and or-

thogonal to P−. We find d such that γ(d) ∈ P+ and this will give the expected
inequality. We have

γ(d) = (cos d)p′ + (sin d)(0, 0, sinw1, cosw1)

and γ(d) ∈ P+ if and only if 〈γ(d), p+〉 = 0, which gives the condition

cos d(coshR′(cosw1 sinw2 + cosw2 sinw1 coshα) + sinhR′(cos θ cosw2 sinhα))

+ sin d(sinw1 sinw2 − cosw1 cosw2 coshα) = 0 .

We express

tan d = coshR′
cosw1 sinw2 + cosw2 sinw1 coshα

cosw1 cosw2 coshα− sinw1 sinw2

+ sinhR′
cos θ cosw2 sinhα

cosw1 cosw2 coshα− sinw1 sinw2
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The first term in the RHS is easily seen to be less than coshR′ tan(w1 + w2). We
turn to the second term. Using (8.18), it is bounded by

sinhR′ tanhα
cosw2

cos (w1 + w2)
≤
√

2 sinhR′ tan(w1 + w2)

(
cosw2

cosw1

) 1
2

.

In conclusion, having assumed w1 ≤ w2, we can put cos(w2)/ cos(w1) ≤ 1, sum the
two terms and get

tan d ≤ (1 +
√

2) coshR′ tan(w1 + w2) .

This concludes the proof.

P+

x0

P−

π

p

p

l2

l1

Figure 8.15: The setting of Lemma 8.1.21. We assume w1 = dAdS3(x0, p) < dAdS3(x0, q) =
w2.

Proof of Theorem 8.C. Let x ∈ S and consider the point x− of ∂−C which minimizes
the distance from x, where C is the convex hull of S. Let P− be the plane through
x− orthogonal to the geodesic line containing x and x− (recall Remark 8.1.9). The
plane P− is then a support plane of ∂−C. We construct analogously the support
plane P+ for ∂+C. As discussed in Remark 8.1.9,

dAdS3(x, P−) + dAdS3(x, P+) ≤ w .

Moreover, we can assume (upon composing with a time-orientation-reversing isome-
try, if necessary) that dAdS3(x, P−) ≤ dAdS3(x, P+). As a consequence, dAdS3(x, P−) ≤
π/4.

Let us now consider the function

u = sinh dAdS3(expx(·), P−) .

By Equation (8.2), we have the following expression for the shape operator of S:

B =
1√

1− u2 + || gradu||2
(Hessu− uE) .
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In normal coordinates at x the Hessian of u is given just by the second derivatives
of u; in Proposition 8.1.17 we showed the second derivatives of u are bounded, up
to a factor, by ||u||C0(BS(x,R)). By Proposition 8.1.19, ||u||C0(BS(x,R)) is smaller than
the supremum of the hyperbolic sine of the distance d from P− of points of S which
project to BP−(π(x), R′). Therefore we have the following estimate for the principal
curvatures at x:

|λ| ≤ C2
||u||√

1− ||u||2
≤ C2 tan

(
sup{dAdS3(p, P−) : p ∈ (πS)−1(BP−(π(x), R′))}

)
.

The quantity in brackets in the RHS is certainly less than(
sup{dAdS3(p, P−) : p ∈ (πP+)−1(BP−(π(x), R′))}

)
.

Thus, applying Lemma 8.1.21 we obtain:

||λ||∞ ≤ C tanw .

The constant C2 involves the constant which appears in Equarion (8.12) in Propo-
sition 8.1.17. The constant C then involves C2 and coshR′. Such inequality holds
independently on the point x and thus concludes the proof.

To conclude the subsection, we prove a converse estimate, in fact we express an
upper bound on the width when a bound on the principal curvatures is known. The
following is the AdS3 analogue of Lemma 7.1.8; see [KS07].

Lemma 8.1.22. Given a smooth spacelike surface S in AdS3, let Sρ be the surface
at timelike distance ρ from S, obtained by following the normal flow. Then the
pull-back to S of the induced metric on the surface Sρ is given by

Iρ = I((cos(ρ)E + sin(ρ)B)·, (cos(ρ)E + sin(ρ)B)·) . (8.19)

The second fundamental form and the shape operator of Sρ are given by

IIρ = I((− sin(ρ)E + cos(ρ)B)·, (cos(ρ)E − sin(ρ)B)·) , (8.20)

Bρ = (cos(ρ)E + sin(ρ)B)−1(− sin(ρ)E + cos(ρ)B) . (8.21)

Proof. Compare also the proof of Lemma 7.1.8. The geodesics orthogonal to S at a
point x can be written as

γ(x)(ρ) = cos(r)σ(x) + sin(ρ)N(x) .

One obtains the thesis since in this case B = ∇N . The formula for the second
fundamental form follows from the fact that IIρ = 1

2
dIρ
dρ .

It follows that, if the principal curvatures of a maximal surface S are λ ∈ [0, 1)
and λ′ = −λ, then the principal curvatures of Sρ are

λρ =
λ− tan(ρ)

1 + λ tan(ρ)
= tan(ρ0 − ρ) ,
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where tan ρ0 = λ, and

λ′ρ =
−λ− tan(−ρ)

1− λ tan(ρ)
= tan(−ρ0 − ρ) .

In particular λρ and λ′ρ are non-singular for every ρ between −π/4 and π/4.
It turns out that Sρ is convex at every point for ρ < −||ρ0||∞, and concave for

ρ > ||ρ0||∞. Observe that the surfaces Sρ all have the same boundary at infinity, say
Γ = gr(φ), and foliate the domain of dependence of Γ. The following is then proved:

Proposition 8.1.23. Let S be a maximal surface in AdS3 with principal curvatures
±λ and ||λ||∞ ≤ 1. Then

w(CH(∂∞S)) ≤ 2 arctan ||λ||∞ .

8.2 An application: Minimal Lagrangian extensions of
quasisymmetric homeomorphisms

In this section we will give a relation between the principal curvatures of S and the
quasiconformal coefficient of Φ. First, we prove an easy proposition.

The key observation here, given in [BS10], is that, for φ ∈ T (D) a fixed qua-
sisymmetric homeomorphism of the circle, the (unique) maximal surface in AdS3

with ∂∞S = gr(φ) corresponds to the minimal Lagrangian extension Φ of φ. Such
extension is given geometrically as

Φ = (Φl)
−1 ◦ Φr .

where Φl and Φr are the projections defined in Subsection 1.3.1
In [KS07, Lemma 3.16] it is shown that the pull-back of the hyperbolic metric h

of P on S by means of Φr and Φl is given by

Φ∗l h = I((E + JB)·, (E + JB)·) , (8.22)

and by
Φ∗rh = I((E − JB)·, (E − JB)·) , (8.23)

where I is the first fundamental form of S, J is the almost-complex structure of
S, B the shape operator and E the identity. We are now ready to give a relation
between the principal curvatures of S and the quasiconformal distortion of Φ:

Proposition 8.2.1. Given a maximal surface S in AdS3, with principal curvatures
±λ, the quasiconformal distortion of the minimal Lagrangian map Φ : H2 → H2 at
a point x is given by

K(Φl(x)) =

(
1 + λ(x)

1− λ(x)

)2

.

Therefore, by taking K = supxK(Φl(x)), namely K is the maximal dilatation of Φ,
the following holds:

K =

(
1 + ||λ||∞
1− ||λ||∞

)2

.
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Proof. Let h be the hyperbolic metric of P ; it follows from the above description
that

Φ∗h = h((E + JB)−1(E − JB)·, (E + JB)−1(E − JB)·).
The quasiconformal distortion of Φ at a fixed point x can be computed as the ratio
between sup ||Φ∗(v)|| and inf ||Φ∗(v)|| where the supremum and the infimum are
taken over all tangent vectors v ∈ TxP with ||v|| = 1. Since B is diagonalizable with
eigenvalues ±λ, (E + JB)−1(E − JB) can be diagonalized to be of the form(1−λ

1+λ 0

0 1+λ
1−λ

)
hence the quasiconformal distortion is given by

K(Φl(x)) =

(
λ(x) + 1

λ(x)− 1

)2

.

Remark 8.2.2. The same relation holds in H3 for S a minimal surface and Φ is
obtained by composing the hyperbolic Gauss maps from the surface to the two
connected components of ∂∞H3 \ ∂∞S. Indeed, we have analogue formulae for the
pull-back by Φ, where E ± JB is replaced by E ± B, recall the definition of first
fundamental form at infinity in Subsection 7.1.2. This gives a quantitative proof of
the fact that a minimal surface S with principal curvatures in [−1 + ε, 1 − ε] has
boundary at infinity a quasicircle.

This concludes the proof of Theorem 8.A. More precisely, putting together the
inequalities in Proposition 8.B, Theorem 8.C and Proposition 8.2.1, we obtain the
following:

Theorem 8.E. There exists a constant C such that the minimal Lagrangian qua-
siconformal extension Φ : D→ D of a quasisymmetric homeomorphism φ of S1 has
quasiconformal coefficient

K(Φ) ≤
(

1 + C sinh( ||φ||cr2 )

1− C sinh( ||φ||cr2 )

)2

provided ||φ||cr is sufficiently small so that 1− C sinh( ||φ||cr2 ) > 0.

Indeed, by studying the behaviour of the RHS of the inequality of Theorem 8.E,
we prove the main result of Section 8.1:

Theorem 8.A. There exist universal constants δ and C such that, for any qua-
sisymmetric homeomorphism φ of S1 with cross ratio norm ||φ||cr < δ, the mini-
mal Lagrangian quasiconformal extension Φ : D → D has maximal dilatation K(Φ)
bounded by the relation

logK(Φ) < C||φ||cr .
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As in the hyperbolic case, the arguments of this paper do not provide any explicit
value of the constant C in Theorem 8.A.

On the other hand, by using the inequalities in Proposition 8.B, Proposition
8.1.23 and Proposition 8.2.1, we obtain the following estimate in the other direction:

Theorem 8.F. If the quasiconformal coefficient K = K(Φ) of the minimal La-
grangian extension Φ : D → D of a quasisymmetric homeomorphism φ of S1 is in
[1, (1 +

√
2)2), then

||φ||cr ≤ 2 log

(
(
√
K + 1−

√
2)(
√
K + 1 +

√
2)

(
√
K − 1 +

√
2)(1 +

√
2−
√
K)

)
.

Let us observe that the function

K 7→ 2 log

(
(
√
K + 1−

√
2)(
√
K + 1 +

√
2)

(
√
K − 1 +

√
2)(1 +

√
2−
√
K)

)
,

which appears in the RHS of Theorem 8.F, is differentiable with derivative at 0 equal
to 2. Hence the following holds:

Theorem 8.D. There exist universal constants δ and C0 such that, for any qua-
sisymmetric homeomorphism φ of S1 with cross ratio norm ||φ||cr < δ, the mini-
mal Lagrangian quasiconformal extension Φ : D → D has maximal dilatation K(Φ)
bounded by the relation

C0||φ||cr ≤ logK(Φ) .

The constant C0 can be taken arbitrarily close to 1/2.

In particular, any constant C satisfying the statement of Theorem 8.A cannot
be smaller than 1/2.



Chapter 9

Geometric transition of surfaces

The aim of this Chapter is to give a relation of the results presented in Part II,
especially in Chapter 4, with those of Chapters 7 and 8. This relation will use in
more detail the geometric transition we discussed in Section 1.4.

In Section 9.1 we introduce a connection for half-pipe geometry, show that it
coincides with the rescaled limit of the usual connections of Anti-de Sitter and hy-
perbolic space, and use this connection to define a notion of second fundamental form
of a spacelike surface in HP3. We discuss some of its natural properties, and the
behaviour under the geometric transition of [Dan11]. This is stated in Proposition
9.1.13.

We then discuss the rescaling of a family of spacelike curves in ∂∞AdS3 (namely,
the graphs of orientation-preserving homeomorphisms φt) under the transition to
HP3. Proposition 9.2.1 shows that the rescaled limit is a curve in ∂∞HP3 which can
be essentially identified to the vector field obtained by differentiating φt at t = 0.

Putting together these ingredients, in Propisition 9.A we show that the statement
of Theorem 4.B in Minkowski geometry (namely, a convex spacelike entire graph in
R2,1 has principal curvatures bounded from below by a positive constant if and only
if its support function at infinity is in the Zygmund class) is the rescaled version of
the analogous statement in Anti-de Sitter space (a convex spacelike surface in AdS3

has bounded principal curvatures if and only if its boundary at infinity is the graph
of a quasisymmetric homeomorphism). More precisely, we show that given a family
St of surfaces in AdS3 satisfying the second pair of equivalent conditions, converging
to a totally geodesic plane (for which the principal curvatures are identically zero,
and the boundary at infinity is the graph of the identity) in a reasonable way, the
dual surfaces S∗t , when rescaled from a point, converge to a surface in R2,1 as in
Theorem 4.B.

9.1 Connection and curvature in HP3

In this section we will introduce a connection on HP3, and consequently a notion
of curvature for immersed spacelike surfaces. We will show that this notion is the
rescaled limit of the known connections and curvatures for AdS3 and H3 under the
transitional procedures we discussed in Section 1.4. See for instance [Lee04] for more

214
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details about the standard theory in Riemannian geometry.

Definition 9.1.1 (Half-pipe connection). Given two vector fields V,W in HP3, we
define the covariant derivative

∇HP3

V W = (DVW )T ,

where DVW is the usual flat connection of the ambient R2,0,1 obtained by differ-
entiating each component, and (·)T denotes the projection on the half-pipe model
determined by the splitting

R2,0,1 = TxHP3 ⊕ Rx . (9.1)

We will denote by M the vector field on HP3 defined by (0, 0, 1, 0) in R2,0,1.
It is a degenerate future-directed vector field invariant for the group Isom(HP3) of
projective isometries with unit determinant, as one can easily see from the expression
of elements of Isom(HP3) discussed in Subsection 1.1.2.

Proposition 9.1.2. The connection ∇HP3
defined above is the unique connection

on HP3 which is:

• Symmetric;

• Compatible with the degenerate metric of HP3;

• Preserving every spacelike plane of HP3, namely for V,W vector fields on a
spacelike plane P , ∇HP3

V W is tangent to P ;

• Such that ∇HP3
M = 0.

Proof. It is straightforward to check that ∇HP3
defines a connection on HP3. Sym-

metry follows from the observation that

∇HP3

V W −∇HP3

W V = (DVW −DWV )T = [V,W ]T = [V,W ] .

Also compatibility is very simple: for every vector Z tangent to HP3,

Z〈V,W 〉2,0,1 =〈DZV,W 〉2,0,1 + 〈V,DZW 〉2,0,1
=〈∇HP3

Z V,W 〉2,0,1 + 〈V,∇HP3

Z W 〉2,0,1 .

For the third point, let P be a plane of HP3 obtained as intersection of HP3 with a
linear plane P ′ of R2,0,1. Given vector fields V,W on P (it suffices to define them
at points of P ), DVW is tangent to P ′ and thus the projection to HP3 (using the
splitting of Equation (9.1)) is still in P . Finally, it is clear from the construction
that the derivative of M in any direction vanishes.

Let us now assume the four conditions hold. In the coordinate system provided
by H2×R, the restriction of the half-pipe connection to every plane H2×{∗} preseves
the plane itself (by the third point) and coincides with the Levi-Civita connection
of H2, by the second point. Hence it is easily seen that the Christoffel symbols
Γkij are those of the Levi-Civita connection when i, j, k correspond to coordinates

of H2. Otherwise, using the first and fourth hypothesis, the Γkij vanish. Hence the
connection is uniquely determined.
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Corollary 9.1.3. The half-pipe connection ∇HP3
is invariant for the group Isom(HP3).

Proof. Given an isometry R ∈ Isom(HP3), define

∇′VW = (R∗)−1∇HP3

R∗V (R∗W ) .

It is not difficult to check that ∇′ fulfills all the four conditions of Proposition 9.1.2,
hence it coincides with ∇HP3

.

Corollary 9.1.4. Geodesics for the half-pipe connection ∇HP3
coincide with lines

of HP3.

Proof. Given a spacelike line l of HP3, using the action of Isom(HP3) we can assume
l is contained in the slice H2 × {0}. Since the connection on such slice coincides
with the Levi-Civita connection, and lines of HP3 are geodesics for this copy of H2,
l is a geodesic for ∇HP3

. If l is not spacelike, then it is of the form {∗} × R. Since

∇HP3

M M = 0, it is clear by construction that l is geodesic, provided it is parametrized
in such a way that its tangent vector is a fixed multiple of M for all time.

Since there is a line of HP3 through every point of HP3 with every initial velocity,
this shows that all geodesics for the connection ∇HP3

are lines of HP3.

We are now ready to define the second fundamental form of any spacelike surface
in HP3. Recall that a spacelike surface in HP3 is locally the graph of a function
ū : Ω→ R, for Ω ⊆ H2, and the first fundamental form is just the hyperbolic metric
on the base H2.

Given a spacelike immersion σ : S → HP3 and two vector fields v̂, ŵ on S,
using symmetry and compatibility with the metric it is easy to prove that the tan-
gential component of ∇HP3

σ∗v (σ∗ŵ) in the splitting (9.1), which we denote again by

(∇HP3

σ∗v (σ∗ŵ))T , coincides with the Levi-Civita connection of the first fundamental
form.

Definition 9.1.5. Given a spacelike immersion σ : S → HP3, the second funda-
mental form of S is defined by

∇HP3

σ∗v (σ∗ŵ) = (∇HP3

σ∗v (σ∗ŵ))T + II(v, w)M ,

for every pair of vectors v, w ∈ TxS, where ŵ is any extension on S of the vector
w ∈ TxS.

It is easy to check, as in the classical Riemannian case, that II is linear in both
arguments, and thus defines a 2-tensor.

Definition 9.1.6. The shape operator of σ : S → HP3 is the (1, 1)-tensor such that
II(v, w) = I(B(v), w) for every v, w ∈ TxS, where I is the first fundamental form of
S. The extrinsic curvature of S is the determinant of the shape operator.

As usual the second fundamental form is symmetric and thus the definition does
not depend on the extension of any of the vectors v and w.
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Lemma 9.1.7. Given a spacelike embedded graph S in HP3, consider the embedding
σ : Ω→ HP3 ∼= H2 × R defining S as a graph:

σ(x) = (x, ū(x))

for ū : Ω→ R and Ω ⊆ H2. Then the shape operator of S for the embedding σ is

B = Hess ū− ū E , (9.2)

where Hess ū = ∇H2
grad ū denotes the hyperbolic Hessian of ū.

Proof. Fix a point x0 ∈ Ω. By composing with an element in Isom(HP3) of the form
(x, t) 7→ (x, t + f(x)), where f(x) = 〈x, t0〉2,1, we can assume S is tangent to the
horizontal plane H2 × {0} at x0 (i.e. obtained as {x4 = 0} in R2,0,1). Indeed, since
Hessf − fE = 0, it suffices to prove the statement in this case.

We consider H2×{0} inside the copy of R2,1 obtained as {x4 = 0} in R2,0,1. Let
v̂, ŵ two vector fields on Ω ⊆ H2. Then at x0 ∈ H2 one has

Dv̂ŵ = ∇H2

v̂ ŵ + I(v̂, ŵ)x0 ,

since x0 is the normal vector to H2 at x0 itself and the first and second fundamental
form of H2 coincide.

Consider now the vector fields σ∗(v̂) = v̂+dū(v̂)M and σ∗(ŵ) = ŵ+dū(ŵ)M on
S. We choose extensions V and W in a neighborhood of S which are invariant for
translations t 7→ t+ t0 in the degenerate direction of H2 ×R. We can now compute

DVW = Dv̂ŵ +Dv̂(dū(ŵ)M) + dū(v̂)DMW

= ∇H2

v̂ ŵ + I(v̂, ŵ)x0 + v̂〈grad ū, ŵ〉H2M

= ∇H2

v̂ ŵ + I(v̂, ŵ)x0 +
(
〈Hessū(v̂), ŵ〉H2 + 〈grad ū,∇H2

v̂ ŵ〉H2

)
M ,

where in the first equality we have substituted the expressions for V and W , and in
the second equality we have used that DM = 0 and that the chosen extension W is
invariant along the direction of M . Since grad ū vanishes at x0 by construction, we
get at x0:

∇HP3

V W = ∇H2

v̂ ŵ + I(Hessū(v), w) .

By Proposition 9.1.2, ∇H2

v̂ ŵ is tangent to the slice H2 × {0} itself, and thus the
second fundamental form is:

II(v, w) = I(Hessū(v), w) .

Since ū(x0) = 0, this concludes the proof.

Corollary 9.1.8. A spacelike surface in HP3 is totally geodesic if and only if B ≡ 0.

Proof. Totally geodesic planes are graphs of functions of the form ū(x) = 〈x, p〉2,1,
which (as showed in Proposition 5.1.3) are exactly the functions such that Hess ū−
ū E vanishes.
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Remark 9.1.9. We have already showed that, given a surface endowed with a hyper-
bolic metric h, namely

Kh = −1 (G-HP3)

the tensor B = Hessū− ūE, where ū : S → R, satisfies Codazzi equation

d∇hB = 0 (Cod)

for the hyperbolic metric h.

The above two equations (G-HP3) and (Cod) can be interpreted as a baby-version
of the Gauss-Codazzi equations for half-pipe geometry. Of course this is a very
simple version, since the two equations are not really coupled: the first equation is
independent on B. Indeed, the proof of the fundamental theorem of immersions is
going to be very simple.

Proposition 9.1.10 (Fundamental property of immersed surfaces in half-pipe ge-
ometry). Let S̃ be a simply connected surface. Given any pair (h,B), where h is a
Riemannian metric on S̃ and B is a (1, 1)-tensor self-adjoint for h, such that the
equations {

Kh = −1

d∇
h
B = 0

(GC-HP3)

are satisfied, there exists a smooth immersion σ : S̃ → HP3 such that the first
fundamental form is h and the shape operator is B. Moreover, given any two such
immersions σ and σ′, there exists R ∈ Isom(HP3) such that σ′ = R ◦ σ.

Proof. As a consequence of [OS83], there exists a function ū : S̃ → R such that
B = Hess ū− ū E. Let dev : S̃ → H2 be a developing map for the hyperbolic metric
h on S̃. Then we define

σ : S̃ → HP3 ∼= H2 × R
by means of

σ(x) = (dev(x), ū(x)) .

Since dev is a local isometry, and the metric of HP3 has the degenerate form gH2 +
0 · dt2, the first fundamental form of σ is h. By Lemma 9.1.7, the shape operator is
B.

Given any other immersion σ′ with embedding data (h,B), the projection to the
first component is a local isometry, hence it differs from dev by postcomposition by
an isometry A of H2. By composing with an isometry of HP3 which acts on H2 by
means of A and leaves the coordinate t invariant, we can assume the first component
of σ and σ′ in H2 × R coincide.

Hence we have σ′(x) = (dev(x), v̄(x)) where v̄ is such that B = Hess v̄ − v̄ E.
Therefore Hess(ū− v̄)− (ū− v̄)E = 0, which implies (again by Proposition 5.1.3)

ū(x)− v̄(x) = 〈dev(x), t0〉2,1
for some vector t0 ∈ R2,1. This shows that σ and σ′ differ by the isometry

(x, t) 7→ (x, t+ 〈x, t0〉2,1)

which is an element of Isom(HP3). This concludes the proof.
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We now compute the embedding data of the dual surface to a strictly convex
surface. The formulae we will obtain are exactly the same as in the AdS3-AdS3

duality and in the H3-dS3 duality.

Corollary 9.1.11. Given a spacelike strictly convex immersion in R2,1 (resp. HP3)
with embedding data (I,B), the dual immersion in HP3 (resp. R2,1) has embedding
data (III,B−1).

Proof. Clearly it suffices to show the statement for the dual of an immersion σ in R2,1.
Moreover, the statement is local, hence we can assume S is embedded. Therefore
we assume S is a graph over an open subset Ω of H2. We have already showed (see
Subsection 1.1.3) that the first fundamental form of the dual embedding σ∗ = d ◦ σ
is the third fundamental form. Moreover, we have showed that the inverse of the
shape operator of S, by means of the inverse of the Gauss map G−1 : H2 → S ⊂ R2,1,
is B−1 = Hess ū − ū E, where ū : H2 → R is the support function. Since the dual
surface of S is precisely the graph of ū, this concludes the proof.

Pushing the analogy with the Anti-de Sitter and hyperbolic case further, we can
prove the following result concerning the existence of surfaces of zero mean curvature
in half-pipe geometry.

Proposition 9.1.12. Given any continuous function ϕ : S1 → R, there exists a
unique complete zero mean curvature smooth spacelike surface S in HP3 such that
∂∞S = gr(ϕ).

Proof. Observe that taking the trace in the expression

B = Hessu− uE

for the shape operator of a spacelike surface, one obtains that a surface has zero
mean curvature if and only if

∆u− 2u = 0 , (9.3)

where ∆ denotes the hyperbolic Laplacian. Hence the proof follows straightforwardly
from the existence and uniqueness of solutions to the linear PDE (9.3).

Let us remark that the results of Chapter 4 can be interpreted as results of
existence and uniqueness of surfaces of constant curvature in HP3 with a given
asymptotic boundary.

We will now show that the notion of curvature in half-pipe geometry is the
rescaled limit of the usual notions in hyperbolic space and Anti-de Sitter space.

Proposition 9.1.13. Suppose σt is a C2 family of smooth immersions of a simply
connected surface S̃ into AdS3 or H3, such that σ0 is contained in the totally geodesic
plane {x3 = 0}. Let

σ = lim
t→0

(rt ◦ σt)

be the rescaled immersion in HP3. Then:
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• The first fundamental form of σ coincides with the first fundamental form of
σ0:

I(v, w) = lim
t→0

It(v, w) ;

• The second fundamental form of σ is the first derivative of the second funda-
mental form of σt:

II(v, w) = lim
t→0

IIt(v, w)

t
;

• The shape operator B of σ is the first derivative of the shape operator Bt of
σt:

B(v) = lim
t→0

Bt(v)

t
;

• The extrinsic curvature Kext of σ is the second derivative of the Gauss-Kronecker
curvature Kext

t = detBt of σt:

Kext(x) = lim
t→0

Kext
t (x)

t2
.

Proof. The first point is clear, since we have already showed in Subsection 1.4.1
that σ(x) = (σ0(x), ū(x)) for some function ū which encodes the derivative of the
x3-component of σt.

For the second point, we will focus on the case of H3 for definiteness. Consider the
second fundamental form of σt. Given two vectors v, w ∈ TxS̃, consider extensions
v̂ and ŵ on a neighborhood of x. As t → 0, the connection of H3 converges to the
connection of HP3. Indeed, recall rt maps H3 isometrically to

H3
t := rt(H3) = {x : 〈x, x〉t3,1 = −1}

and the connection of rt(H3) can be obtained by projecting the flat connection Dvŵ
of the ambient space tangentially to rt(H3). As t → 0, rt(H3) converges to the
half-pipe model, hence the tangent projection converges exactly to that of HP3.

Now, consider the unit normal vector fields Nt to σt(S̃), chosen so that at time
t = 0 the vector field is (0, 0, 1, 0) and Nt varies continuously with t. Again the
computation is local, so we may assume the σt are embeddings on a subset of S̃.
Let us write, using that rt acts as a projective transformation which is an isometry
between H3 and H3

t :

∇H3
t

(rtσt)∗v
((rtσt)∗ŵ)− (∇H3

t

(rtσt)∗v
((rtσt)∗ŵ))T = IIt(v, w)rt(Nt) =

IIt(v, w)

t
rt(Nt)t .

Where in the LHS (·)T denotes the projection to the tangent plane Tσt(x)σt(S̃).

Thus by the above claim, the LHS converges to (∇HP3

σ∗v (σ∗ŵ))T . On the other hand,
if

Nt = (N1
t , N

2
t , N

3
t , N

4
t ) ,

with N0 = (0, 0, 1, 0), we have

rt(Nt) = (N1
t , N

2
t ,
N3
t

t
,N4

t ) ,
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and therefore

rt(Nt)t = (tN1
t , tN

2
t , N

3
t , tN

4
t )

t→0−−→ (0, 0, 1, 0) = M .

This shows that IIt(v, w)/t converges to the second fundamental form of σ in HP3.
The case of rescaling from Anti-de Sitter space is analogous of course.

Since IIt(v, w) = It(Bt(v), w) and II(v, w) = I(B(v), w), the third point follows
from the first two statements. The last point is a consequence of the third point and
the fact that Kext

t = detBt and Kext = detB.

9.2 The rescaling of the boundary at infinity

In this section we describe the behaviour of the asymptotic boundary of embedded
surfaces in AdS3 under the rescaling to HP3. In this work, we have always considered
spacelike surfaces in AdS3 whose boundary at infinity is a weakly spacelike curve.
Equivalently, the boundary at infinity can be regarded as the graph of an orientation-
preserving homeomorphism φ : S1 → S1.

Recall in Subsection 1.1.2 we introduced the boundary at infinity ∂∞HP3 of
half-pipe geometry.

Proposition 9.2.1. Let φt : S1 → S1 be a differentiable family of orientation-
preserving homeomorphisms of S1 ∼= RP1, such that φ0 = id. Then the rescaled
limit of gr(φt) ⊂ ∂∞AdS3 in ∂∞HP3 ∼= ∂D × R is the graph of the function ϕ/2,
where ϕ : S1 → R is corresponds to the vector field

φ̇(z) =
d

dt

∣∣∣∣
t=0

φt(z)

under the standard trivialization of S1, namely φ̇(z) = izϕ(z) for z ∈ ∂D.

Proof. It suffices to prove the statement in the affine charts of AdS3 and HP3 given
by {x4 6= 0}. We will identify S1 with the boundary at infinity of the totally geodesic
plane {x3 = 0} by means of θ 7→ (cos θ, sin θ, 0). We claim that gr(φt) is composed
of points of the form

(cos θ − ht(θ) sin θ, sin θ + ht(θ) cos θ, ht(θ)) , (9.4)

where

ht(θ) = tan

(
φt(θ)− θ

2

)
. (9.5)

Indeed (compare Lemma 8.1.13) the point corresponding to (θ, φt(θ)) in ∂∞AdS3 ∼=
S1 × S1 is obtained as the intersection of the left ruling through the point θ ∈ S1,
and the right ruling through φt(θ). The left ruling is parametrized by

(cos θ − x sin θ, sin θ + x cos θ, x) = (
√

1 + x2 cos(θ + β),
√

1 + x2 sin(θ + β), x) ,

where tanβ = x, while the right ruling is parametrized by

(cosφt(θ) + x sinφt(θ), sinφt(θ)− x cosφt(θ), x)

= (
√

1 + x2 cos(φt(θ)− β),
√

1 + x2 sin(φt(θ)− β), x) .
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Of course at the intersection point the value of x - which will provide the desired
value of ht(θ)) - has to be the same. Hence one obtains

φt(θ) = θ + 2β

and thus the expression (9.5).
We are finally ready to compute the rescaled limit of gr(φt). In the affine chart

we consider, the rescaling rt acts as (x, y, z) 7→ (x, y, z/t). Hence we have, for the
point at infinity expressed by (9.4)

lim
t→0

rt(cos θ − ht(θ) sin θ, sin θ + ht(θ) cos θ, ht(θ)) = (cos θ, sin θ,
d

dt

∣∣∣∣
t=0

ht(θ)) .

By computing (under the standard identification of R to the tangent line of S1)

d

dt

∣∣∣∣
t=0

ht(θ) =
1

2

d

dt

∣∣∣∣
t=0

φt(θ) ,

the proof is concluded.

ϕt1(θ) θϕt2(θ)

Figure 9.1: As t→ 0, the curve gr(φt) tends
to the boundary of the totally geodesic plane
{x3 = 0}.

θ

{x3 = 0}

Figure 9.2: The rescaling towards half-
pipe geometry.

9.3 Degeneration of convex surfaces

Already at the beginning of this thesis, we stated that Theorem 4.B is an infinitesimal
version of the analogous phenomenon in Anti-de Sitter space. Recall that Theorem
4.B shows that a continuous function ϕ : S1 → R is in the Zygmund class if and
only if it is the support function at infinity of a convex surface in Minkowski space
with principal curvatures bounded from below by a positive constant. We discussed
that this condition is also equivalent to the fact that the dual measured geodesic
lamination associated to the domain of dependence defined by ϕ has finite Thurston
norm.

The corresponding statement in Anti-de Sitter space is the following.
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Proposition 9.3.1. Let φ : S1 → S1 an orientation-preserving homeomorphism of
the circle. Then the following are equivalent:

i) The homeomorphism φ is quasisymmetric;

ii) The curve gr(φ) is the boundary at infinity of a convex surface in AdS3 with
principal curvatures bounded from above;

iii) The curve gr(φ) is the boundary at infinity of a convex surface in AdS3 of
constant curvature with principal curvatures bounded from above;

iv) The bending laminations of the boundary of the convex hull of gr(φ) are bounded.

We provide here a sketch of the proof, for convenience of the reader.

Sketch of proof. It is obvious that iii) implies ii). The equivalence between i) and iv)
follows from the construction of Mess in AdS3, which associates an earthquake map
extending φ to the pleated surface having boundary at infinity gr(φ). Hence, using
Theorem 2.3.9, the bending lamination is bounded if and only if φ is quasisymmetric.

The fact that ii) implies i) follows from a direct computation of the quasiconfor-
mal dilatation of the map Φ = (Φl)

−1 ◦ (Φr), which is an extension of φ. Using the
expression (8.22) and (8.22), one sees easily that if the eigenvalues of B are bounded
from above, then the maximal dilatation of Φ is bounded.

Finally, we show that, if φ is quasisymmetric, then there exists a surface S in
AdS3 with bounded principal curvatures and with boundary at infinity gr(φ). Let
us consider the surface at distance π/4 from the maximal surface S0 bounded by
gr(φ). In [BS10] it was proved that the principal curvatures of S0 are in [−1+ε, 1−ε]
since φ is quasisymmetric. Then using equation (8.21), by a simple computation one
notices that the principal curvatures of S are bounded from above, and moreover
that S has constant curvature −2. This shows i)⇒ iii) and concludes the proof.

Remark 9.3.2. If S is a strictly convex surface in Anti-de Sitter space, the dual
surface S∗ has the same boundary at infinity of S and the shape operator of S∗ is
the inverse of the shape operator of S. Hence, if the principal curvatures of S are
λ1, λ2, the principal curvatures of S∗ are 1/λ1, 1/λ2. Hence the existence of a convex
surface with principal curvatures bounded from above is equivalent to the existence
of a concave surface with principal curvatures bounded from below.

The following Proposition shows that the situation of Theorem 4.B is the rescaled
limit of Proposition 9.3.1.

Proposition 9.A. Let σt : H2 → AdS3 be a C2 family of smooth embeddings with
image surface St = σt(H2). Suppose the boundary at infinity of St is the graph of
the quasisymmetric homeomorphism φt : S1 → S1, satisfying the following:

• For t = 0, σt is an isometric embedding of the totally geodesic plane {x3 = 0};

• The principal curvatures of St are λi(x) = O(t), for i = 1, 2, i.e. are uniformly
bounded for small t by some function Ct independently of the point x;

• The path φt is tangent at φ0 = id to a Zygmund field φ̇ on S1.
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Then the rescaled limit in R2,1 of the surfaces S∗t dual to St is a spacelike entire
graph in R2,1, with principal curvatures bounded from below by a positive constant
and with support function at infinity the function ϕ (in the Zygmund class) which
corresponds to φ̇/2 under the standard trivialization of TS1.

Proof. The proof follows from the previous results. From Propositon 9.2.1 we know
that St converges to a surface in half-pipe geometry whose boundary at infinity is the
graph of (1/2)φ̇, under the usual correspondence between vector fields and functions
on S1. Moreover, we know from Propositon 9.2.1 that the rescaled limit of St is a
surface S in HP3 with shape operator

B = lim
t→0

Bt
t
.

Hence the principal curvatures of S - in the sense of half-pipe geometry - are bounded
from above by a constant C.

On the other hand, in Proposition 1.4.2 we showed that the surfaces S∗t in AdS3

converge to the surface S∗ in R2,1 which is dual - in the R2,1-HP3 duality - to S. Since
the shape operator of S∗ is the inverse of the shape operator of S, S∗ has principal
curvatures bounded from below by 1/C and has support function at infinity the
Zygmund function associated to the Zygmund field φ̇/2.

Remark 9.3.3. An analogous statement could be considered by replacing the smooth
surfaces St with pleated surfaces. The rescaled convergence of pleated surfaces Pt
and their bending lamination, with limit in half-pipe geometry, was discussed in
[DMS14]. The role of the shape operator is replaced by the bending lamination.

The dual object to a pleated surface in AdS3 turns out to be a real tree, which
we denote by P ∗t . Assume for instance the bending lamination of Pt is tµ, where µ
is a measured geodesic lamination. It follows from the arguments in [DMS14] that
the rescaled limit of Pt in HP3 is a pleated surface P with bending lamination µ.
When considering the rescaled convergence of P ∗t under the blow-up of the point
(P0)⊥ dual to the totally geodesic plane P0, the limit is a real tree in R2,1 which is
precisely the dual object to the pleated surface P of HP3.



Possible developments

In this thesis, several instances of the link between the infinitesimal theory of Teich-
müller spaces and the geometry of surfaces in Minkowski spaces have been studied.
Through the idea of geometric transition, results expressed in terms of Minkowski
geometry have been related to other results in hyperbolic geometry and Anti-de
Sitter geometry.

To the opinion of the author, there is still a number of interesting questions
which are left for future developments.

Convex surfaces in Minkowski space

Theorem 4.B provides a characterization of convex spacelike entire graphs in R2,1

with principal curvatures bounded from below in terms of the regularity of the
support function at infinity. An interesting open problem is to characterize complete
spacelike entire graphs. It seems a challenging problem to express the condition of
completeness in terms of the regularity of the boundary value of the support function.

From Theorem 4.C we know that the surface is complete if this regularity is Zyg-
mund. For the case of surfaces of constant curvature, there exist noncomplete entire
graphs, as constructed in Section 4.2. The principal curvatures will obviously be
unbounded in this case, and the support function at infinity is not even continuous.
This is a striking difference with the case of constant mean curvature surfaces: it is
indeed known that a CMC entire graph in R2,1 is complete.

Another interesting question is to solve Minkowski problem for domains of de-
pendence which are not contained in the future of a point. This would include the
case of domains of dependence whose support function is finite only on some subset
of D which is obtained as the convex hull of a subset E of ∂D. It is simple to check
that there is no solution for the constant curvature problem when E contains 0, 1
or 2 points (the corresponding domains are the whole space, the future of a lightlike
plane, or the future of a spacelike line). An existence result in case where E is an
interval is given in [GJS06] with some assumption on the smoothness of the support
function on E. It seems that the construction of the support function solving the
relevant Monge-Ampère equation is not difficult to generalize in this setting, but the
barriers used to prove that the corresponding surfaces are entire graph seem to be
ineffective.
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Surfaces in Anti-de Sitter space

In Minkowski space, Theorem 4.C characterized spacelike surfaces with constant
curvature and bounded second fundamental form, which are essentially parametrized
by the tangent space of universal Teichmüller space. In light of the degeneration
of convex surfaces discussed in Chapter 9, it seems a natural question to ask if for
any orientation-preserving homeomorphism φ of S1 there exists a spacelike convex
surface S in AdS3 of constant curvature K, with boundary at infinity the graph of
φ, for every K < −1. For K = −2, this was already observed by noticing that the
surface at distance π/4 from the maximal surface satisfies the requirement.

If the above is true, it would be natural to show that the principal curvatures
of S are bounded exactly when φ is quasisymmetric, and that such K-surfaces pro-
vide a foliation of the complement of the convex hull of the domain of dependence
determined by gr(φ), as K varies in (−∞,−1). When the curve at infinity gr(φ) is
invariant for the action of the fundamental group of a closed surface, acting by two
Fuchsian representations in the two copies of PSL(2,R), these results were proved
in [BBZ11].

This would be an interesting step towards results of regeneration of convex sur-
faces in Minkowski space. Indeed, in Chapter 9 the degeneration of surfaces of
constant curvature in AdS3 to surfaces of constant curvature in R2,1 was studied un-
der some assumptions. It would be interesting to show that every K-surface which
is an entire graph in R2,1 is the rescaled limit of surfaces of constant curvature in
AdS3.

Regarding maximal surfaces in AdS3, we have already remarked that Theorem
8.A is interesting only for quasisymmetric homeomorphisms with small cross-ratio
norm (“close” to being a totally geodesic spacelike plane). The author believes an
interesting problem is showing that there is an estimate holding for all quasisym-
metric homeomorphisms, even with large cross-ratio norm, in which case the width
approaches π/2. In the special case of maximal globally hyperbolic Anti-de Sitter
manifolds, such estimate would provide a direct comparison between the Teichmüller
distance between the left and right hyperbolic metrics which determine the globally
hyperbolic manifold M , and the width of the convex hull of M .
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vexes. J. Differential Geom., 48(2):323–405, 1998.

[Sep14] Andrea Seppi. Minimal surfaces in Hyperbolic space and maximal sur-
faces in Anti-de Sitter space. ArXiv: 1411.3412v1, 2014.

[SK13] Carlos Scarinci and Kirill Krasnov. The universal phase space of AdS3

gravity. Comm. Math. Phys., 322(1):167–205, 2013.

[ST11] Georg Schumacher and Stefano Trapani. Weil-Petersson geometry for
families of hyperbolic conical Riemann surfaces. Michigan Math. J.,
60(1):3–33, 2011.

[Sug07] Toshiyuki Sugawa. The universal Teichmüller space and related topics. In
Quasiconformal mappings and their applications, pages 261–289. Narosa,
New Delhi, 2007.

[Thu86] William P. Thurston. Earthquakes in two-dimensional hyperbolic ge-
ometry. In Low-dimensional topology and Kleinian groups (Coven-
try/Durham, 1984), volume 112 of London Math. Soc. Lecture Note Ser.,
pages 91–112. Cambridge Univ. Press, Cambridge, 1986.

[Thu97a] William P. Thurston. Three-Dimensional Geometry and Topology.
Princeton University Press, 1997.

[Thu97b] William P. Thurston. Three-dimensional geometry and topology. Vol. 1,
volume 35 of Princeton Mathematical Series. Princeton University Press,
Princeton, NJ, 1997. Edited by Silvio Levy.
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