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NON-A (Villeneuve-d’Ascq, FR)
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Thèse preparé dans le laboratoire CRIStAL UMR 9189
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Preface

Abstract

This dissertation work addresses the obstacle avoidance for wheeled mobile robot.

The considered scenarios vary from the control of a single robot avoiding obstacles to

the formation control in a leader-follower configuration avoiding collision between the

members of the formation and external obstacles. The literature regarding the subject

is huge and finds its roots in the second half of the last century; nevertheless new

technologies, sensors and the rapid increase of the use of robots in several fields (as

defense, agricolture and every-day needs) makes the topic still interesting and open to

further developments as the ones proposed.

Obstacle avoidance is a part of the the navigation problem in robotics, which is the

union of several sub-tasks to obtain a smooth a rapid path to the destination: the robot

has to sense the environment through the sensor, elaborate the information to build

a map, extract a trajectory to follow and be able to act by consequence when some

unexpected events occur, applying a smart and efficient control law, which has to be

the result of a tailored solution based on the robot model.

Indeed, modelling the robot is a crucial part of the chain of decisions to make.

The choice of a particular model influences the way each behaviour is represented and

treated. In this work, due to the scenarios and the class of robot treated, the standard

kinematic model is used with the addition of input disturbances, which help to charac-

terize some neglected dynamics.

The supervisory control framework coupled with the output regulation technique

allowed to solve the obstacle avoidance problem and to formally prove, as the first

contribution of this dissertation, the existence of an effective solution: stabilization

of two outputs for two objectives, reaching the goal and avoiding the obstacles. To

have fast, reliable and robust results with respect to the introduced perturbation the

designed control laws are finite-time, a particular class very appropriate to the purpose.

The novelty of the approach lies in the easiness of the geometric approach to avoid

the obstacle and on the formal proof provided under some assumptions. The solution

has been thus extended to control a leader-follower formation which, sustained from

the previous result, uses two outputs but three controls to nail the problem. The Leader

role is redesigned to be the reference of the group and not just the most advanced agent,

moreover it has a active role slowing down the formation in case of collision avoidance

manoeuvre for some robots. The proposed method, formally proven, makes the group

move together and allows each agent to avoid obstacles or collision in a decentralized

way.

In addition, a further contribution of this dissertation, it is represented by a modifi-

cation of the well known potential field method to avoid one of the common drawback
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of the method: the appearance of local minima. Control theory tools help again to pro-

pose a solution that can be formally proven: the application of Input-to-State Stability

(ISS) for decomposable sets allows to treat separate obstacles adding a perturbation

which is able to move the trajectory away from a critic point.

The two collision avoidance strategies have been successfully implemented on a

Turtlebot II robot, reference platform for the Robotic Operating System (ROS) while

the formation control is under testing for final validation.

To conclude, the dissertation includes, in the appendix, two works in which finite-

time and homogeneous techniques are applied to the extension link of a robotic arm to

gather information about non-measurable data and to control it compensating a dead-

zone of the control input.
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C.4.1 Bounds of ẍ . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

C.4.2 Simulations and Experimental results . . . . . . . . . . . . . 141

C.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

D Lie Algebra 147

D.1 Frobenius applied to distributions . . . . . . . . . . . . . . . . . . . 148

Bibliography 151

Finite Time Deployment and Collision Avoidance for Wheeled Mobile Robots ix





List of Figures

1.1 A photo from the play R.U.R. in the Billy Rose Theatre, New York

1922 as it appears in [59]. . . . . . . . . . . . . . . . . . . . . . . . . 16

1.2 General control scheme for a mobile robot . . . . . . . . . . . . . . . 19

1.3 Visual representation of the WMR posture and working frames GR, G 20

1.4 Visual representation of fixed conventional wheels and centered ori-

entable wheels parameters . . . . . . . . . . . . . . . . . . . . . . . 21

1.5 Visual representation of Off-centered orientable wheel parameters and

variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.6 Visual representation of a sweedish wheel parameters and variables . 23

1.7 Visual representation of a 2 wheeled robot . . . . . . . . . . . . . . . 24

1.8 Visual representation of the Istantaneous Center of Rotation (ICR) for

a 2 wheels WMR . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.9 Exemples of different ICRs . . . . . . . . . . . . . . . . . . . . . . . 26

1.10 Different values of degree of mobility . . . . . . . . . . . . . . . . . 27

1.11 Fields of Contribution of this Dissertation Work . . . . . . . . . . . . 40

2.1 Definition of the angles for the Stabilization Control Law . . . . . . . 49

2.2 Circles used in the definition of the B−, Blim and then the B points

with the “tangent” approach . . . . . . . . . . . . . . . . . . . . . . 53

2.3 Circles used in the definition of the B−, Blim and then the B points

with the “circles” approach . . . . . . . . . . . . . . . . . . . . . . . 54

2.4 Stabilization of the unicycle with three obstacles . . . . . . . . . . . . 59

2.5 Evolution of angles α and γ . . . . . . . . . . . . . . . . . . . . . . 60

2.6 a) State evolution b) Outputs . . . . . . . . . . . . . . . . . . . . . . 60

2.7 Left: Real scenario with coarse soil (moquette). Right: Zoom on tra-

jectories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

2.8 Left: Real scenario with smooth soil (linoleum). Right: Zoom on tra-

jectories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

2.9 Outputs evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.1 The continuous field in the case of a single obstacle with ν = 0.3,

Ψ = 0.5, ζ1 = (2, 2), d1 = 0.8 and α = 4 . . . . . . . . . . . . . . . 67

3.2 Gradient Lines in the case of a single obstacle with ν = 0.3, Ψ = 0.5,

ζ1 = (2, 2), d1 = 0.8,α = 4 and ǫ = 0.1 . . . . . . . . . . . . . . . . 73

3.3 The results of the system (3.4) simulation . . . . . . . . . . . . . . . 74

3.4 Position of the Ψ point. . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.5 The result of simulations for the three different modifications of the PF

method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Finite Time Deployment and Collision Avoidance for Wheeled Mobile Robots xi



LIST OF FIGURES

3.6 Evolution of the WMR orientation qθ and desired angle θd and respec-

tive error variable dynamic γ . . . . . . . . . . . . . . . . . . . . . . 77

3.7 Input Signals for the different methods . . . . . . . . . . . . . . . . . 77

3.8 Results on complex environment . . . . . . . . . . . . . . . . . . . . 79

3.9 The trajectories followed by the WMR in a real environment . . . . . 80

3.10 Evolution of the qxand qyvariables. . . . . . . . . . . . . . . . . . . . 80

4.1 Graphical explanation of the presented sets . . . . . . . . . . . . . . 86

4.2 The path followed in an environment with obstacles, where the blue

one is the leader WMR . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.3 Distances of each agent from the leader and relative ∆i values . . . . 95

6.1 Scheme general pour un robot mobile a roues . . . . . . . . . . . . . 106

B.1 Series cascade of e-subsystem, ǫ-subsystem and x-subsystem . . . . . 123

B.2 Dead zone input nonlinearity. . . . . . . . . . . . . . . . . . . . . . . 125

B.3 Industrial hydraulic forestry crane. . . . . . . . . . . . . . . . . . . . 126

B.4 Experimental results on the telescopic link with controller (B.19) with

sample time ts = 1ms, a1 = 2, λ = 45, l = 80 , ω = 0.3 varying α1.

(x-axis in samples, y-axis in meter) . . . . . . . . . . . . . . . . . . . 129

B.5 Comparison between the Homogeneous controller and the PI approach.

(x-axis in samples, y-axis in meter) . . . . . . . . . . . . . . . . . . . 130

C.1 Hydraulic Forestry Crane. . . . . . . . . . . . . . . . . . . . . . . . 139

C.2 An estimation of the L(t) function in red with γ0 = 5 γ1 = 0.0011
γ2 = 0.0035 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

C.3 Measured and smoothed position / off-line derivative. . . . . . . . . 142

C.4 Interval differentiators performances for Homogeneus Differentiator

(HOMD), High Gain Differentaitor (HGD) and Super Twisting (ST)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

C.5 Interval differentiators performances (zooming) . . . . . . . . . . . . 144

xii Matteo GUERRA



List of Tables

1.1 Positiong parameter for the two wheels . . . . . . . . . . . . . . . . . 24

1.2 The five nonsingular types of WMR . . . . . . . . . . . . . . . . . . 27

1.3 Comparison of Obstacle Avoidance Methods . . . . . . . . . . . . . 37

2.1 Stabilization Controller Gains . . . . . . . . . . . . . . . . . . . . . 58

2.2 Collision Avoidance Controller Gains . . . . . . . . . . . . . . . . . 58

2.3 Comparison between FTOA method and DWA on coarse soil . . . . . 63

2.4 Comparison between FTOA method and DWA on smooth soil . . . . 64

B.1 Physical parameters of the link . . . . . . . . . . . . . . . . . . . . . 126

C.1 Comparison between the three Interval Observer performances . . . . 142

Finite Time Deployment and Collision Avoidance for Wheeled Mobile Robots xiii





Chapter 1

Introduction

1.1 The origin of the word Robot

“The year was 1920 when old Rossum, a great philosopher [...] discovered a

substance which behaved exactly like living matter although it was of a different

chemical composition. [...] Old Rossum wrote among his chemical formulae :

”Nature has found only one process by which to organize living matter. There is,

however, another process, simpler, more moldable and faster, which nature has not hit

upon at all. [...]

Imagine, he took it into his head to manufacture everything just as it is in the human

body, right down to the last gland. The appendix, the tonsils, the belly button all the

superfluities. It took him ten years. [...]”

And then young Rossum, an engineer, the son of the old man, came here. An ingenious

mind. When he saw what a scene his old man was making he said : ”This is nonsense!

Ten years to produce a human being?! If you can’t do it faster than nature then just

pack it in.” And he himself launched into anatomy.[...]

It was only young Rossum who had the idea to create living and intelligent labor

machines from this mess.[...]

Young Rossum was of a new age. The age of production following the age of

discovery. When he took a look at human anatomy he saw immediately that it was too

complex and that a good engineer could simplify it. [...] A human being is something

that feels joy, plays the violin, wants to go for a walk, and in general requires a lot of

things which are, in effect, superfluous. [...] Manufacturing artificial workers is

exactly like manufacturing gasoline engines. Production should be as simple as

possible and the product the best for its function. What do you think? Practically

speaking, what is the best kind of worker? [...] The cheapest. The one with the fewest

needs. Young Rossum did invent a worker with the smallest number of needs, but to do

so he had to simplify him. He chucked everything not directly related to work, and

doing that he virtually rejected the human being and created the Robot. Robots are

not people. They are mechanically more perfect than we are, they have an astounding

intellectual capacity, but they have no soul. The product of an engineer is technically

more refined than the creation of nature.”

The passage above is from R.U.R, Rosumovi Univerzálnı́ Roboti (Rossum’s Universal

Robots), a 1920 science fiction play from the Czech author Karel Cǎpek which pre-
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Figure 1.1: A photo from the play R.U.R. in the Billy Rose Theatre, New York 1922

as it appears in [59].

miered in 1921. The play was a success at the point that, at the end of 1923, it was

already been translated in thirty languages. It describes a world in which robots, close

to the today’s idea of cyborgs or androids, were massively produced to help humans.

The word robots has been introduced in English after this play and comes from the

Czech word robota (slave), that is the word Cǎpek uses to call the workers Doctor

Rossum creates. Although in the play the robot idea was different from the one we

have, it introduced several concepts that characterise robotics nowadays: a robot must

be as easy as possible to produce, must help with several tasks and more important it

must be autonomous and smart.

1.2 Robotics today

The data from the International Federation of Robotics (IFR) [65] are quite clear:

the world is facing an economic crisis but this crisis did not affect the industrial robotic

market. In 2013, the number of industrial units sold is 178132, increasing of 12% the

amount of the previous year. This growth is something that is increasing since 2008

with an average of the 9.5% per year, leading the amount of working robots sold since

1960 up to one and a half million (each one with and average life time of 15 years).

For the period 2014-2017 the previsions foresee a further increase that could reach the

15% (averaged). The increase has been registered in general industry especially among

the automotive parts suppliers that aim to the modernisation, keeping an eye on energy

efficiency and new materials along with human machine collaboration.

Previous data refer to industrial robots, nonetheless the market of service robots is

increasing too, 4% compared to the 2013 data. In 2012 the IFR released a document

which provided four definitions that characterize service robots [66]:

• A robot is an actuated mechanism programmable in two or more axes with a

degree of autonomy, moving within its environment, to perform intended tasks.

Autonomy in this context means the ability to perform intended tasks based on

current state and sensing, without human intervention.
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• A service robot is a robot that performs useful tasks for humans or equipment

excluding industrial automation application. 1

• A personal service robot or a service robot for personal use is a service robot

used for a non-commercial task, usually by lay persons. Examples are domes-

tic servant robot, automated wheelchair, personal mobility assist robot, and pet

exercising robot.

• A professional service robot or a service robot for professional use is a service

robot used for a commercial task, usually operated by a properly trained opera-

tor. Examples are cleaning robot for public places, delivery robot in offices or

hospitals, fire-fighting robot, rehabilitation robot and surgery robot in hospitals.

In this context an operator is a person designated to start, monitor and stop the

intended operation of a robot or a robot system.

Almost half of this market is represented by service robots utilised in defense appli-

cations, nevertheless a consistent increase of service robots sales cover a variety of

application fields: not only milking robots, barn cleaners or automatic fencers, to men-

tion the farming field, but also automated vehicles operating in manufacturing environ-

ments registered an increase of sales along with the medical field with robots employed

in surgeries and therapies. A category more known to the general audience, that has to

be treated in a stand-alone way is the one represented by the domestic robots: vacuum

and floor cleaning, lawn mowing, entertainments and leisure robots but also handicap

assistance robots2. The increase of sales for such a robots has been of 15% from 2012

to 2013 with a total of 2.7 million units sold. The projections for the period 2014-2017

foreseen a further increase robotic goods sales.

1.3 Mobile Robotics

This dissertation work focuses on motion for ground robots, and the first step when

designing a ground robot is to decide the solution to adopt to realize the motion itself:

which kind of actuators should the robot have?

Nowadays biological inspired solutions allow robots, especially in the research

field, to realize any kind of motion, but practically the choice is often made among

wheeled and legged robot. Both have advantages and shortcomings but wheeled robot

has been proven to be more effective on flat grounds; they are indeed the most widespread

robots in the market of service robotics with their adaptability to carry out a large va-

riety of task in a stand alone or cooperative way. But how can a wheeled mobile robot

sense the environment around it? How can it decide how to safely move in that environ-

ment? One of the easiest solution is teleoperation in which an operator is in charge to

”sense” (i.e. interpreting data from dedicated sensors) the environment and of the deci-

sion making process; the reader can think about the Fukushima nuclear plant accident

in Japan, 2011 where a mobile robot designed by the Japan Atomic Energy Research

Institute was used to monitor the overall situation inside de damaged buildings, in par-

ticular the amount of radiations, [64]. Even though very interesting teleoperation is not

enough for researchers which aim to give robots the complete autonomy, equipping

1The classification of a robot into industrial robot or service robot is done according to its intended

application.
2The handicap assistance robots is the category that registered the most impressive step up with an in-

crease of 345%
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them with sensors to give the capability to sense the environment and localize them-

selves. Nowadays, localization can be achieved with a huge variety of sensing devices

depending on the situation: in outdoors mission positioning is often based on satellite

systems [71], like the American GPS , the Russian GLONASS (or the upcoming Eu-

ropean GALILEO) and related sensors, which give a precise localization. When these

systems are not reliable (like in indoor missions) or for local detection, equipment like

sonars, laser range finders, cameras or smart piece of equipment taking cue from ani-

mal kingdom are designed (like robotic whiskers [132]) to operate where other devices

have serious difficulties. Once equipped with the right sensor, a robot must have the ca-

pability to localize itself and tackle the navigation problem which means recognize the

environment properties, building a map and navigate in it avoiding obstacles. Bringing

the problem to a higher level, once a robot is able to navigate, it could be asked to share

its information with other robots and find a way to cooperate with them. It is easy for

the reader to understand that a robot is indeed the integration of a variety of different

systems assembled together to deliver the best behaviour as it is easy to infer that a lot

of disciplines are involved. A roboticist has to deal with signal processing, because the

robot has to gather data from a huge variety of sensors and transmit them in a proper

way. A roboticist must be an expert in computer science and probability theory to take

the most from the gathered data, reconstruct them and deliver the best localization and

path planning result. A roboticist must be able to describe the kinematics and dynam-

ics of the robot find out a model, deal with the incertitude in it, and use control theory

to give appropriate commands to follow the path specified by the planner and react to

unexpected events. A roboticist must be trained in mechanics and electronics to prop-

erly convert the commands obtained and transmit them to the motors that power the

robot actuators. The chain of events, just described, that occur during a mobile robot

activation is represented in Fig. 6.1.

The roboticist writing this dissertation, along with the people working with him,

belongs to the kind which uses control theory trying to give his contribution in the

field. The idea is to conceive algorithms to deploy one or more mobile robots toward

a destination while avoiding obstacles. These solutions should be easy to implement

in any circumstance and for any kind of mobile robot given the model. To do that the

acquisition of knowledge in several fields was necessary.

Section 1.4 presents briefly the wheeled mobile robots modelling, or rather, how

the mechanical design, under some working assumptions, affect the behaviour of the

mobile robot and consequently the way to control it in case of a particular task and

why in this work the use of a particular implementation of the kinematic model is pre-

ferred to others. Section 1.5 exposes the navigation problem and the most common

solutions utilised in robotics to move the robot from a starting point to a destination in

a (partially-)known environment avoiding obstacles in a smart way. Finally Section 1.6

gives a review of the strategies adopted to realize a formation of generic agents; every

strategy can be, of course, adapted to be used in robotics to make mobile robots to co-

operate performing various missions previously not doable or increasing the efficiency

with respect to the same mission conducted by a single robot.

1.4 The modeling of Wheeled Mobile Robot

The modelling of wheeled mobile robots (WMRs) is a crucial aspect when dealing

with the huge amount of tasks they have been devoted in the last thirty years. Knowing

how the system reacts, and its properties, allows to design specific solutions to achieve
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Figure 1.2: General control scheme for a mobile robot

the task is the best way. The diffusion of mobile robotics due to technical innovations

and the interesting characteristics of this kind of robots encouraged a lot of researchers,

from different fields, to give a formal formulation that could be used to represent these

systems. Several works [19],[107],[128] came to different formulations that have re-

sulted to be equivalents. Two are the models typology one can use when working with

WMR, dynamic one and kinematic one: the first represents all the forces and torques

that act on the robot, and takes into account the mass and the center of mass giving a

precise description of the system, while the second one is simpler giving information

just about the posture and the basic characteristics which describes the robot motion.

Following the work presented by Campion et al. in [19], the WMRs kinematic repre-

sentations will be exposed along with several concepts used to classify mobile robots.

The WMRs will be classified introducing the concept of degree of mobility and degree

of steerribility, combining these two characteristics all WMRs can be assigned to one

of five classes. The five classes can be modelled with a state space representation em-

phasizing the kinematic or dynamic properties using the posture representation, useful

to analyse the control properties of the system, or the configuration representation,

which highlights movement constraints of the WMR. The usual hypothesis when one

deals with wheeled robots is to assume the robot frame to be rigid and the wheels to

be non deformable. Once defined a fixed global reference frame, the plane of motion,

represented by the base G = {I1, I2}, the easiest way to represent a mobile robot is

to define its position with respect to G. Consider the base GR = {X1, X2} attached

to the robot frame, Fig. 1.3. Being P = (qx, qy) the position of a chosen point of the

robot frame (typically the center of mass) and qθ the orientation of the GR frame with
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Figure 1.3: Visual representation of the WMR posture and working frames GR, G

respect to G one can define:

Definition 1. [19] The Posture of a mobile robot is the vector:

p ,





qx
qy
qθ



 (1.1)

1.4.1 The Wheels Typology

A lot of the properties of the mobile robot are in a strict relationship with the num-

ber of wheels, because as it is easy to guess, they define the characteristic of the robot

itself. Making the assumption that during the motion each wheel spins around its hor-

izontal axis staying in vertical position, with a single contact point with the soil, a

classification of wheel types can be given. A first one divides them in conventional or

swedish (omnidirectional). For conventional wheels it is supposed the rolling to hap-

pen without slipping or skidding, this hypothesis usually called pure rolling condition

which implies that the velocity in the contact point between the wheel and the ground

has zero value both in its orthogonal and parallel components with respect to the plane

of the wheel itself. To summarize the pure rolling condition by points:

• the WMR must not slide in the orthogonal direction with respect to the wheel

plane;

• it must not be skidding between the wheel and the ground;

• the WMR wheel is non-deformable (i.e. the radius r is constant);

• the ground is supposed to be flat.

The Swedish wheel differs from the conventional one because just one of the mentioned

velocity components has zero value. In the following, the R(qθ) matrix that appears is
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wheels parameters

the classical rotation matrix

R(qθ) =





cos qθ sin qθ 0
− sin qθ cos qθ 0

0 0 1



 . (1.2)

According to the assumption made, conventional wheels can be sorted in three sub-

category and, for each of them, constraints regarding the velocities components can be

derived explicitly:

• Fixed wheels: firstly one can describe the position of the wheel with respect to

the robot frame with an l distance and an α angle, then the orientation β of the

wheel plane with respect of the position just defined; a visual explanation of the

three parameters is shown in Fig. 1.4. The ϕ(t) function represents the rotation

angle of the wheel around is horizontal axle and r is the wheel radius. Once

defined the four parameters (α, β, ϕ, r) and the function ϕ(t) one can define the

two constraints, along the wheel plane and on the orthogonal plane, respectively:

[− sin(α+ β) cos(α+ β) l cos(β)]R(qθ)ṗ+ rϕ̇ = 0 (1.3)

[cos(α+ β) sin(α+ β) l sin(β)]R(qθ)ṗ = 0. (1.4)

• Centered orientable wheels: The main difference between the centered ori-

entable wheel and the fixed one (Fig. 1.4) stays in the fact that the wheel plane

orientation β(t) is a time varing function; in the light of this difference the con-

straints have, finally, the same equations (in the following β is to be considered

as β(t), the dependence on time has been removed to keep the notation lighter):

[− sin(α+ β) cos(α+ β) l cos(β)]R(qθ)ṗ+ rϕ̇ = 0 (1.5)

[cos(α+ β) sin(α+ β) l sin(β)]R(qθ)ṗ = 0. (1.6)

• Off-centered orientable wheels (castor wheels): along with the possibility to

move the wheel plane with respect to the frame, a castor wheel has the capability
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Figure 1.5: Visual representation of Off-centered orientable wheel parameters and vari-

ables

to change also its position; the rotation does not happen around the wheel plane

though (see Fig. 1.5). To describe a castor wheel an additive parameter d is

needed, giving the length of a rod which connects the robot frame (point A in

Fig. 1.5) to the center of the wheel; the rod can rotate around the A point. The

parameters which describe a castor wheel are (α, d, ϕ, r) with two time varying

function ϕ(t) and β(t) generating the following constraints:

[− sin(α+ β) cos(α+ β) l cos(β)]R(qθ)ṗ+ rϕ̇ = 0 (1.7)

[cos(α+ β) sin(α+ β) d+ l sin(β)]R(qθ)ṗ+ dβ̇ = 0. (1.8)

The Swedish wheel has a peculiarity, it is able to move in any direction in any time. It

is required to add a parameter, the angle γ (Fig. 1.6), to derive the motion constraint:

[− sin(α+ β + γ) cos(α+ β + γ) l cos(β + γ)]R(qθ)ṗ+ r cos γϕ̇ = 0. (1.9)

It is worth to remark that for a Swedish wheel the value γ = π/2 corresponds to the

zero value velocity on the orthogonal plane of the wheel, in such a condition this kind

of wheel loose the advantage to be mounted on a mobile robot being subject to the

same constraints of the conventional wheels in case the non slipping one.

1.4.2 Degree of mobility and degree of steeribility

The definition of the movement constraints for each wheel typology is the base to

introduce further properties which will lead to the characterization of different classes

of WMRs. First of all, one can consider a generic mobile robot with a generic num-

ber of wheels N ; to differentiate them, four different subscripts will be used: f for

conventional fixed, c for conventional centered, oc for conventional off-centered and

sw for swedish wheels. Consequently the number N of wheels of the generic mobile

robot will be the sum of each kind of wheel: N = Nf +Nc +Noc +Nsw. To define

the robot configuration one can use the posture pθ, Definition 1, the angular coordi-

nates depending on the wheels βc(t) or βoc(t) and the information about the rotation
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Figure 1.6: Visual representation of a sweedish wheel parameters and variables

coordinates ϕ(t) = [ϕf (t), ϕc(t), ϕoc(t), ϕsw(t)]
T

. The set of posture, angular and

rotation coordinates is called configuration coordinates set. Moreover one can express

the motion constraints with:

J1(βc, βoc)R(qθ)ṗ+ J2ϕ̇ = 0 (1.10)

C1(βc, βoc)R(qθ)ṗ+ C2
˙βoc = 0. (1.11)

where

J1(βc, βoc) ,









J1f
J1c(βc)
J1oc(βoc)
J1sw









(1.12)

includes the constraints (1.5), (1.3), (1.7), (1.9), J2 is a diagonal matrix which has the

radii on the main diagonal (for Swedish wheels the radii are multipied by cos γ).

C1(βc, βoc) ,





C1f

C1c(βc)
C1oc(βoc)



 , C2 ,





0
0

C2oc



 (1.13)

In C1 one can find the constraints (1.4), (1.6) and (1.8), while the component C2oc of

C2 is the diagonal matrix which contains the d values of the off centered wheels. Let

us consider equation (1.11) in case of fixed and centered wheels (N = Nf +Nc):

C1fR(qθ)ṗ = 0 (1.14)

C1c(βc)R(qθ)ṗ = 0 (1.15)

it is straightforward to state that the product R(qθ)ṗ belongs to the null space of

C∗
1 (βc) ,

(

C1f

C1c(βc)

)

(1.16)

and that if the rank of such a matrix is full, then R(qθ)ṗ = 0 and no movement is

possible. From (1.14) and (1.15) we can infer that at each instant the WMR moves

around a point which is the intersection of all the straight lines passing from all the
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Wheels α β L radius

Fixed (lower) 0 0 l r1
Fixed (upper) π 0 l r1
Orientable 3π

2 β(t) l r2

Table 1.1: Positiong parameter for the two wheels

wheels center and orthogonal to the wheel planes, this point is called Instantaneous

Center of Rotation (ICR) and it is shown in Fig.1.8 for a two wheels robot while figure

1.9 shows three other scenarios, two degenerate robots in which the motion is not

possible Fig. 1.9(b) and Fig. 1.9(c) and the ICR for a car-like robot Fig. 1.9(a). Of

course the position of the ICR with respect to the frame can be time-varying depending

on the wheel type and robot design.

Example 1. Let us see how the matrices look like in the case of a WMR with three

wheels: two conventional fixed ones and a conventional centered orientable wheel.

The α, β, l, parameters and the radii for the three wheels are represented in Table 1.1.

 I
1

I
2

O X
1

 X
2

l

Figure 1.7: Visual representation of a 2 wheeled robot

First we derive the condition (1.3), (1.4), (1.5) and (1.6):

• for the first (lower in Fig. 1) conventional fixed wheel:

[0 1 l]R(qθ)ṗ+ r1ϕ̇ = 0

[1 0 0]R(qθ)ṗ = 0;

• for the second (upper in Fig. 1) conventional fixed wheel:

[0 − 1 l]R(qθ)ṗ+ r1ϕ̇ = 0

[−1 0 0]R(qθ)ṗ = 0;
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• for the conventional orientable centered wheel:

[cos(β) sin(β) l cos(β)]R(qθ)ṗ = 0

[sin(β) − cos(β) l sin(β)]R(qθ)ṗ+ r2ϕ̇ = 0.

It follows that the matrices J1, J2, C1 and C2 are the following:

J1(βf , βc) =





0 1 l
0 −1 l

cos (β(t)) sin (β(t)) l cos (β(t))



 , J2 = diag(ri) (1.17)

C1(βf , βc) =





1 0 0
−1 0 0

sin (β(t)) − cos (β(t)) l sin (β(t))



 , C2 = 0. (1.18)
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Figure 1.8: Visual representation of the Istantaneous Center of Rotation (ICR) for a 2

wheels WMR

One can easily understand that the rank of the C∗
1 (βc) gives information about the

mobility of the robot and the following definitions can be given:

Definition 2. The degree of mobility δm of a WMR is defined as:

δm = dimN [C∗
1 (βc)] = 3− rank [C∗

1 (βc)] . (1.19)

Definition 3. A wheeled mobile robot is non-degenerate if:
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ICR

(a) ICR in case of car-like robot (b) Degenerate robot:

no ICR, no motion pos-

sible

(c) Degenerate robot: dou-

ble ICRs, no motion possi-

ble

Figure 1.9: Exemples of different ICRs

• rank [C1f ] ≤ 1;

• rank [C∗
1 (βc)] ≤ 2.

The first condition in Definition 3 implies that if the robot has more than one fixed

wheels, these must be on the same axle; moreover, following Definition 3 if the robot

has fixed and center orientable wheels, the center of centered orientable wheels do not

belong to the common axle of the fixed ones and that the rank of the matrix C1c(βc)
is the number of centered orientable wheels that can be oriented independently to steer

the robot.

Definition 4. The degree of steeribility δs of a WMR is defined as:

δs = rank [C1c(βc)] . (1.20)

The number δs ≤ 2 of steering wheels is a design parameter but of course if it is

higher than 2 the behavior of the wheels must be appropriate and must guarantee the

existence of the ICR for any instant of time.

Example 2. Looking at the Example 1, with the robot configuration showed in Fig.

1.7, we can try to evaluate the degree of mobility and steeribility in the presented case

and to verify that it is not a degenerate robot. Having the robot one convetional fixed

wheel and one convention cantered orientable wheel the matrix C∗
1 (βc) results to be

equal to the defined C1 matrix and it follows that the degree of mobility results to be:

δm = dimN [C1] = 3− rank [C1] = 3− 2 = 1, (1.21)

while the degree of steeribility:

δs = rank [C1c(βc)] = 1, (1.22)

having just 1 conventional centered orientable wheel. It is straightforward to verify the

condition of Definition 3 and conclude that the presented example is not a degenerate

robot.
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(a) Degree Of Mobility 0:

NO motion capability;

(b) Degree Of Mobility

1: Motion possible on a

fixed radius arc;

(c) Degree Of Mobility

2: Motion possible on a

variable radius arc;

(d) Degree Of Mobility 3: Motion pos-

sible in any direction;

Figure 1.10: Different values of degree of mobility

From the definition of degree of mobility and degree of steeribility just five nonsin-

gular classes of WMR can be defined (see Table 1.2).

Table 1.2: The five nonsingular types of WMR

δm 3 2 2 1 1

δs 0 0 1 1 2

The following inequality applies:

2 ≤ δs + δm ≤ 3. (1.23)

The degree of mobility has a lower bound of 1 because the obvious choice it is to

consider only robot that can actually move. Concerning the degree of steeribility the

upper bound implies the absence of fixed wheels while the lower one can be achieved

only without centered orientable wheels. Let us take a look at the five typologies and

their properties:

• Type (3,0)3, also called omnidirectional robots, they don’t have fixed or centered

3For each typology the first term in the parenthesis represents the degree of mobility δm and the second

one the degree of steeribility δs.
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orientable wheels and can move in any direction in any instant of time.

Type (3,0) WMR

• Type (2,0), also known as unicyle-like robots, they do not have centered ori-

entable wheels but one fixed wheel or several fixed wheels on the same axle (if

not so the rank[C1f ] would be greater than 1); they have restricted mobility since

characterized by velocity constraints that deny the possibility to orientate the ve-

locity vector in any direction at any time.

Type (2,0) WMR

• Type (2,1), also robots with restricted mobility, have no conventional fixed wheels

and at least one centered orientable wheel.

Type (2,1) WMR

• Type (1,1), characterized by several conventional fixed wheels on the same axle

and one or several centered orientable wheels that must not be on the same

axle of the fixed ones. The centered orientable wheels must behave such that

rankC1c(βc) = δs = 1. The velocity constraint on this restricted mobility robot

is parametrized by the orientation of one of the orientable centered wheels. They

are frequently called car-like WMR.

Type (2,0) WMR

• Type (1,2), no fixed wheels for this type of WMR but at least two conventional

centered orientable wheels. If more than two then the behavior must satisfy the

condition rankC1c(βc) = δs = 2. The velocity constraint for these robots is

parametrized using the orientation of two of the centered orientable wheels.

Type (1,2) WMR
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1.4.3 The Posture Kinematic Model

In control theory, to analyse system properties, it is useful to give a state space

representation. Starting from the definition given above, we will present such a repre-

sentation and some properties for the Type (2,0) WMR since the works in the following

chapters will focus on this model (or a modification of it). Each mobile robot has con-

straints because of which at any time the velocity belongs to the distribution ∆c defined

as

ṗ(t) ∈ ∆c , span{colRT (qθ)Σ(βc)} ∀t (1.24)

where the columns of Σ(βc) form a basis of N [C∗
1 (βc)] = span{col Σ(βc)}, thus we

can write that:

ṗ = RT (qθ)Σ(βc)η (1.25)

where η is a vector that has the dimension of the degree of mobility δm and can be

considered as a velocity input vector for the system. In case of absence of centered

orientable wheels (δs = 0) the matrix Σ is constant while in case of presence of such a

wheels (δs ≥ 1) the βc variables become state variables:

ṗ = RT (qθ)Σ(βc)η (1.26)

β̇c = ζ. (1.27)

The representation obtained this way with (1.26) and (1.27) is called posture kinematic

model. To simplify the notation let us define

q ,

(

p
βc

)

, G(q) ,

(

RT (qθ)Σ(βc) 0
0 I

)

, u ,

(

η
ζ

)

(1.28)

and obtain:

q̇ = G(q)u. (1.29)

For any non-degenerate WMR (see Definition 3 ), it is possible to prove that choosing a

reference frame attached to the robot for which the kinematic model represents exactly

the robot typology [19].

Example 3. Willing to conclude the modelling of Example 1, for the mobile robot with

the configuration showed in Fig 1.7, the null space of the matrix Σ(βc) assumes the

value

Σ(βc) =





0
l sin(β)
cos(β)



 . (1.30)

It follows from (1.26), that

ṗ = RT (qθ)Σ(βc)η =





−l sin(β) sin(qθ)
l sin(β) cos(qθ)

l cos(β)



 η (1.31)

For such a robot with a centered orientable wheel the state need do be represented with

more then the posture as depicted in (1.28) so the final kinematic model for the Type

(1,1) robot taken into account is, following (1.29):

q̇ =

(

ṗ

β̇

)

=









−l sin(β) sin(qθ) 0
l sin(β) cos(qθ) 0

l cos(β) 0
0 1









(

η
ζ

)

(1.32)
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Example 4. For instance for a type (2,0) robot, the unicycle like WMR, the origin of

the robot reference frame is placed on the axle which connects the two driving wheels

as shown in Fig. 1.3; this placement brings to a posture kinematic model in the form:

q̇ =





q̇x
q̇y
q̇θ



 =





cos(qθ) 0
sin(qθ) 0

0 1





(

v
ω

)

=





cos(qθ)
sin(qθ)

0



 v +





0
0
1



ω, (1.33)

where the inputs vector u = η = (v ω)T consists of the linear, v, and angular, ω,

velocities of the WMR while the G(q) matrix specified in (1.29) is:

G(q) = [g1(q) g2(q)] =





cos(qθ) 0
sin(qθ) 0

0 1



 (1.34)

1.4.4 WMR constraints and controllability

The main characteristic of the system (1.29) in the form (1.33) is to be subject of

motion constraints of non-holonomic type. A holonomic constraints can be expressed

as a function of the position parameters (p, ϕ), while a non-holonomic one depends

on the motion parameters, thus the derivatives (ṗ, ϕ̇), furthermore, a non-holonomic

constraints cannot be integrated. WMR with reduced mobility have non-holonomic

constraints and that is due to the pure rolling hypothesis made while deducting the

models (Section 1.4.1). Let us define C ∈ R
n as the configuration space of all the pos-

sible configurations (i.e. postures) of the WMR, q ∈ C. A non-holonomic constraint,

can be written in the Pfaffian form [128]:

a(q, q̇) = 0 (1.35)

or in the matrix form

AT (q)q̇ = 0. (1.36)

Definition 5. The degree of freedom is the difference between the number of general-

ized coordinates and the number of independent constraints.

DOF = n−m. (1.37)

Consider the system as in (1.29), with k Pfaffian constraints in the form (1.36), it

follows that all the admissible velocities belong to the n− k dimensional N
[

AT (q)
]

.

Being {g1(q), . . . , gn−k(q)} a basis of N
[

AT (q)
]

all the admissible trajectories are

described by the solution of

q̇ = G(q) =

m
∑

j=1

gj(q)uj , m = n− k (1.38)

The holonomy or non-holonomy of the constraints are related to the controllabilty prop-

erty of the model [73]:

1. If the system (1.38) is controllable, given two configurations qi and qj in the

configuration space C, one can find a control u(t) that brings the WMR from qi
to qj (i.e. it exist a trajectory which joins the two configurations satisfying the

constraint (1.36)).
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2. If the system (1.38) is not controllable the constraint (1.36) reduces the set of ad-

missible configuration in C that implies that the constraints are totally or partially

integrable depending on the dimension ν of the accessible space:

• if m < ν < n, the constraints are partially integrable but the system is still

non-holonomic;

• if ν = m, the constraints are integrables and the system is holonomic.

The same conclusions could be deducted using the accessibility rank condition:

dim∆A(q) = n, (1.39)

where ∆A(q) is called accessibility distribution associated to system, namely the in-

volutive closure of ∆ = {g1(q), . . . , gm(q)} (please refer to Appendix D for more

details); it follows:

1. If (1.39) holds, the system (1.38) is controllable and the constraints are non-

holonomic;

2. If (1.39) does not hold, the system (1.38) is not controllable and the constraints

are partially or totally integrable, being dim∆A(q) = ν < n:

• if m < ν < n, the constraints are partially integrable but the system is still

non-holonomic;

• if ν = m, the constraints are integrable and the system is holonomic.

For the Unicycle-like WMR described as in (1.33), the pure rolling constraint can be

written as:

q̇x sin qθ − q̇y cos qθ = [sin qθ cos qθ]q̇ = 0, (1.40)

note that, as in (1.33):

G(q) =





cos(qθ) 0
sin(qθ) 0

0 1



 with g1(q) =





cos(qθ)
sin(qθ)

0



 g2(q) =





0
0
1



 (1.41)

where g1(q) and g2(q) represent a basis of the null space of the Pfaffian constraint.

Following the theory to verify the controllability for non linear systems [73], the Lie

Brackets of the two input vector field is

[g1, g2](q) =

(

∂g2
∂q

g1 −
∂g1
∂q

g2

)

=







− cos(qθ)

sin(qθ)

0






. (1.42)

It follows that the matrix

(g1(q), g2(q), [g1, g2](q)) =





cos(qθ) 0 − cos(qθ)
sin(qθ) 0 sin(qθ)

0 1 0



 (1.43)

has maximum rank, which implies that

dim∆A = dim span{g1(q), g2(q), [g1, g2](q)} = 3, (1.44)
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meaning that a WMR of type (2, 0) modeled as (1.33) is controllable and has non-

holonomy degree k = 2 and that the constraint (1.41) is non-holonomic. A result

presented by Brockett in 1983 [18] established that a mobile robot, which has non-

holonomic constraints, even though controllable, cannot be stabilized by a continuous

state-feedback control law. Thus stabilizing WMRs has been seen as a challenging

problem and drawn attention of the control community. The stabilization of a non-

holonomic robots is presented in many papers and books [128],[129], [32], [25], us-

ing time-varying , hybrid [99], discontinuous [29], [4],[43], backstepping [110], and

switched [35],[111] control laws.

1.4.5 More than the Kinematic Representation?

As it is obvious the kinematic model for WMR cannot fit all the needs and some-

times it is useful to adopt a model more tied to the dynamics of the robot in use: it is

the case of outdoor application in which this model allows to handle the field properties

and how the dynamics of the robots would react to uncertain conditions. The dynamic

model represents all the forces and the masses and relates them via the accelerations

involved [19]. It gives more information and allows the representation that cannot be

represented by the use of velocities (Kinematic Modelling) but requires the accelera-

tions; however these information come with a cost, using a dynamical model requires

the knowledge of several parameters like masses, inertial constants and gravity center

of the various systems forming the robot, and not always these values are available;

the second drawback is, of course, that any strategy design and implementation be-

comes more complex to treat. The dynamic model of the WMR could be generalized

ad follows:

J(q)u̇+ C(q, u)u = D(q)τ +AT (q)λ (1.45)

where: J(q) is an inertia matrix, C(q, u) is the centripetal and coriolis matrix, D(q)
is the input matrix and τ is the input vector; A(q) is the matrix associated with the

kinematic constraints, and λ is a Lagrange multipliers vector.

As mentioned above the choice of the dynamic or kinematic model is based on the

needs, and not just the property of the field in indoor or outdoor scenarios but also

the desired performances for the specified task. A lot of factors must be taken into

account, how the masses vary during the task and if these variations could endanger

the robot itself, or the velocities one wants to reach during the mission and how to

reach them, since this could cause the breaking of the assumption of Section 1.4. It has

to be said that if the robot is not under-actuated (with respect to the mobility degree)

it is possible to find a feedback linearization which allows to control the WMR with

velocity commands, having, thus the same adavantages of the Kinematic model.

This work of thesis considers small mobile robots working in an indoor environ-

ment, the velocities reached and the manoeuvres realized along with the scenarios con-

sidered are not such to justify the increase of difficulties due to the employment of

a dynamic model. Therefore, the kinematic model (1.33) can be modified to handle

some perturbation of interest. A first example can be found in [26] and [85] in which

perturbation are added to the model to allow the robot to break the pure-rolling and

not-skidding constraints to test the robustness of some control algorithms. Other ap-

proaches consider the skidding property governed by linear velocity command sent to

the wheel and product of wheel radius and angular velocity [86],[151]. The unicycle

model (1.33) in the following will be considered perturbed too but the disturbances

taken into account have as purpose to model different kinds of unmodeled dynamics
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better treated in Section 2.1

1.5 Navigation Problem

The navigation problem in robotics has been thoroughly studied in the last forty

years. The first attempt to propose a collision free path date back to the beginning of

second half of the last century but it is in the 80’s that the research increased and pro-

duced results which are used up to the present day [63, 135]. One of them describes

obstacles as polyhedral object can be found in [95], and very early the robotic com-

munity realized that the navigation problem was indeed the union of two separate task

[97]: the motion planning which starts from a complete or partial knowledge of the en-

vironment and allows the mobile robot to plan the movements to arrive to destination

and the reacting part, which is in charge to identify changes in the a-priori knowledge

and gives instructions to deal with them. In the following a brief review of the path

planning algorithms and collision avoidance algorithms is carried out.

1.5.1 Path Planning Algorithms

Usually for path planning the WMR is considered to be holonomic or even a point

in 2D dimension; this is due to the fact that one of the most widespread type of WMR

is the differential type (Type (2,0)) robot, which can rotate in place if necessary. The

path planning algorithms starts from a map that can be represented geometrically or be

the results of a decomposition4, and gives a suitable trajectory to get to the destination.

The ways to analyse the map data and convert them to a path can be divided in two

different kind strategies: graph search strategies, that build a connectivity graph and

then perform, usually offline, algorithms to extract the motion plan, and potential field

strategies based on rigorous mathematical functions whose gradient brings the WMR

to the destination.

Building the graphs

When a representation of the working space is given, the first step to realize is the

construction of a graph able to connect any free points of the environment. Of course

there are several ways to define nodes and edges, one of them is to build a visibility

graph [81] which tends to place nodes and edges to realize the shortest path in the

free space: each edge connects two vertices that have a free path between them with

a straight line (i.e. the shortest path). The easiness of implementation of the visibility

graph is counterbalanced by the complexity it gets when the obstacles number increases

and by the fact that, with such a graph, the solution obtained tends to prefer the path

closest to the obstacles. A second approach which puts first the maintenance of the

distance from the obstacle is based on the Voronoi diagram [5]. For each point in the

space it is computed the distance to the nearest obstacle, points that are equidistant from

two or more obstacles represent nodes and in case of polygonal obstacles the edges are

either straight lines or quadratic functions. This approach is useful to find the optimal

path with respect of the length of the path, but it has a drawback tied to the sensors used

for the localization, since the better the sensor range the better the localization and thus

the evaluation of the map due to the fact that the diagram is based on the maximization

of obstacles distance. Another approach is called exact cell decomposition, it consists

4For the different kinds of map representations we refer the reader to [129], chapter 5
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on a division of the working space based on the vertices of the obstacles, resulting in

cells that are either free or occupied; the path to follow is, obviously, chosen to pass

trough the free ones. Again, the complexity of this kind of graph increases as the

density of the obstacles does so, for that reason a more common representation used in

robotics is the approximate cell decomposition in which the size of the cell is fixed a

priori and the representation said just if the cell is occupied or not and it is actually the

most common map representation [105].

The algorithms

Given the graph that represents the environment it is necessary to find a nice algo-

rithm to find the best path available to move in the working space. Of course the best

path is the one that minimize/maximize the property that has more weight for the user

and it depends thus on the optimization criteria. As it is possible to guess the solution is

not unique and it depends on how the graph is read, for instance one could give weight

or not to the edges giving to the graph complete different meanings.

Among the algorithms which do not consider weighted edged one can find the

breadth-fist search and the depth first search. The first one [22] performs a node ex-

pansion (it visits all nodes to check for a free path) marking at each iteration the less

number of edge to cover the path to the farther node to finally get to the final destina-

tion. With the hypothesis of equal cost for each edge it gives the optimal path. The

depth-first search performs a different kind of visit which visits the graph up to the

deepest level then going back to previously visited nodes to expand again in a new

direction. The drawback of this method consists in the presence of redundant path due

to the multiple visits of the same nodes, but this inconvenient can be avoided with a

cautious implementation. Definitely more renowned are the algorithms which include

some heuristics to find the more suitable path, like a weight for the edges to find out

if the crossing could be convenient or not, or a distance to the final destination. Di-

jkstra’s algorithm [31], is conceived to find the shortest path between two nodes of a

weighted graph: similar to the breadth-first, it expands all the nodes but giving a key to

each node, the key is the results of the expansion taking into account the cost to arrive

in that node, once the node key is the minimum possible the node is marked and not

visited again. In robotics Dijkstra algorithm is used backward starting from the goal

position to have the best path for each starting position of the WMR.

Nowadays the A∗ algorithm [60] is one of the most widespread, that is a conse-

quence of the large use of the occupancy grip map representation. In fact the heuristic

utilized in this algorithm assign to each grid cell a value that represents the distance

from the goal point. The expansion is thus carried on following the path given by the

neighbours of the nodes that have the smallest value till the goal. It has been proved

that this representation improves a lot the performances compared with the Dijkstra

algorithm. A modification of the A∗ algorithm called dynamic A∗, D∗ [78], [94], is

able to evaluate in real time the changes that could happen in the map and starting from

the solution given from a previousA∗ execution re-evaluate the (sub-)optimal solution.

Within the algorithms able to deal with high complex environment in which the

Dijkstra algorithm or the A∗ / D∗ would provide a slow solution it is useful to use

methods that visiting the graph in a random way, could give better results. In this case

the Rapidly exploring Random Trees (RRTs) algorithms [83, 82] build a graph start-
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ing from the obstacle map representation while visiting the environment; following the

robot model, at each iteration a new couple node-edge is added to a graph (that at the

beginning could be empty) in a collision free point of the space, until a pre-defined

condition is verified. The method may speed up proceeding at the same time from the

starting and ending point building partial trees and merging them at the end.

Changing completely the approach, Potential Field (PF) relies on a formal mathe-

matical definition of the working space and on a function, i.e. the field, whose gradient

is used as a reference to bring the WMR to the destination point. The method has

been firstly developed for robotic manipulator by Khatib [76] and then has found a

lot of users among the mobile robotic community. The goal point, the minimum of

the function, attracts the robots while each obstacle acts as a repulsive force on the

WMR to keep it away from the obstacle itself. The main advantage of this technique

is represented by the easiness with which the gradient trajectories can be used as a

reference for a control law to apply to the WMR. It has been shown that this solution,

even though mathematically elegant and quite effective practically, has some draw-

backs when special events occur [79]. The main inconvenient with the method is the

appearance of local minima which block the robot due to particular obstacle configura-

tions. Koditschek et al. in [121] proposed a modification of the PF based on navigation

functions: in an n-dimensional spherical space the adopted field had no other local

minima than the target specified, supposing though the complete environment to be

known a priori. Other solutions use a harmonic potential field proposed in [24, 126],

and more recently in [98], in which the method computes solutions to Laplace’s Equa-

tion in arbitrary n-dimensional domains to have local minima free field, and results in

a weak form of [121]. In [150], a different field formulation and obstacle representa-

tion is considered: the potential field includes two super-quadratic functions, one for

the obstacle avoidance and one for the approaching resulting in a elliptic isopotential

contour of the obstacles to model a large variety of shapes. Last flaw of the method

is the possibility to miss the target in case of an obstacle too close to it. This problem

called Goals Non-Reachable with Obstacles Nearby (GNRON), treated in [48], deals

with the case in which the repulsive force generated by an obstacle close to the tar-

get generate a force higher than the attractive one, preventing the robot to accomplish

the task. There are also methods which do not eliminate unwanted equilibriums but

generate local forces, Virtual Hill, to escape the disturbing minimum as in [113].

1.5.2 Obstacle Avoidance

After the planners detected the suitable path (optimal or not as it has been stated

above) the WMR can start its mission, it can happen though that some changes hap-

pened in the map after the planning of the motion. It is in these moments that local

planners become active relying on the most recent sensors information and eventually

on the previous knowledge of the map and a set of previous informations.

The Bug Algorithms

The first approaches used in robotics are the Bug algorithms [96], which basically

were based to react just using the most recent sensor data. It is the simplest method

that one can think: basically it just follows the contour of the encountered obstacle; in

the very early version the robot would complete a tour around the obstacle also if a free

path to the goal would be possible, that is why the Bug 2 removed this flaw interrupting
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the contour following when a free path to the destination would be detected. A modifi-

cation, called Tangent bug presented in 1996 by Kamon et al. [70] implements a local

representation of the environment which forces the robot to move on a local tangent

graph to avoid obstacles to go back to the global path when the avoidance is achieved.

Vector Field Histogram, (VFH)

Within the local planners directly derived from the PF approach, as mentioned

above, the VFH method firstly presented in [15] (see also its more recent modifications

[145, 144]) represents also a widely used solution to real-time obstacle avoidance. The

first experiments ran on WMRs showed the shortcomings of the bug algorithms and

the ones inherited after the PF approach: the possibility for the WMR to get stuck in

traps, usually represented by non convex obstacle which corresponds to local minima

in the field. Thus, hybrid modifications like VFH+ or VFH*, were proposed: at each

iteration a new grid map is created locally for a subset of active cells, then it is filled

with recent data from the equipped sensors. The method first evaluates the PF for the

updated cells, builds an obstacle histogram and reduces it to a polar form. This polar

form gives information about the most suitable direction to take to continue the motion

avoiding obstacles; this information is thus coupled with the previous desired direction

in a cost function which takes into account (if possible) also the robot type. In particu-

lar the WMR type and kinematic constraints (refer to Sec.1.4.4) are taken into account

in the VFH+ variant of the algorithm.

Dynamic Windows Approach

The Dynamic Windows Approach (DWA), presented by Fox et al. in [45], relies

on the kinematic model of the WMR (Sec. 1.4.3) and it defines a velocity space of

the linear v and angular ω velocities. Based on the sample period and on the current

speed of the robot, the method makes an estimation of all the possible positions the

robot can assume with the admissible velocity commands within the next sampling

period. At a later stage it keeps just the couple (v, ω) that guarantee a safe stop before

any obstacle is hit, the set of the couples kept is the set of the admissible velocities;

once the set is defined the DWA method chooses the couple evaluating a cost function

to minimize a function of the heading to the goal, the linear velocity and the distance

from the destination. The highest priority is given to the heading which keeps the robot

farther from any obstacle while trying to head to the goal anyway. The DWA has also

a global variant presented by Brock and Khatib [17], what it does, it is to add in the

cost function mentioned above a term which takes into account the results of a breadth-

fist search algorithm (Sec. 1.5.1) evaluated on a local map around the actual WMR

position. The peculiarity is that the dimension of the local map is not fixed but it may

vary (augment) if due to the robot constraints no solution is found.

Curvature Velocity Approach (CVA)

This approach, presented by Simmons in [130], also takes into account the vehicle

kinematics constraints, like the DWA it defines a velocity space considering the possi-

ble velocities one can apply to the robot and making the hypothesis the WMR moves

on curves c = v/ω where v is the linear velocity and ω is the angular one. The dif-

ference with the DWA is that the CVA consider the obstacle in a Cartesian space with

respect to the WMR and totally contained in a circle and removes all the curves that
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Table 1.3: Comparison of Obstacle Avoidance Methods

Obstacle Avoidance Methods

Obstacle

shape

Kinematics Dynamics Map Remarks

T-BUG point local

graph

robust, not always ef-

ficient

VFH+ circle basic generic histogram

grid

suffer local minima,

fast exectution

VFH* circle basic generic histogram

grid

suffer local minima,

slow execution

CV circle exact basic histogram

grid

suffer local minima,

slow exectution

DWA circle exact basic obstacle

line field

suffer local minima,

ductile

would made the WMR collide with it. At the end the choice will be made in a set of

curves from which the velocities command can be gathered. This very local approach

to avoid the obstacle could lead to local minima which could make the robot to stuck

in traps.

1.5.3 Contrasting the methods

A real comparison for the presented obstacle avoidance methods it is not easy to

carry out because the techniques have essential differences. What it can be done is to

compare them depending on the needs and the applications. As specified in Section

1.4.5, depending on the task, the scenario and the way the environment is represented,

one has to choose an appropriate model; the choice forces the user toward a collision

avoidance method or another. Using a dynamic model one should opt for a strategy

able to handle such a model as the DWA [45] and its modifications since among the

presented methods it is the one which uses at least a basic dynamic representation to

achieve the avoidance. If the application is (as in the case of this dissertation) oriented

to indoor small differential drive WMR, the kinematic model is the usual choice so

DWA must be compared with the other methods. One can consider the complexity

and the robustness, then the choice could be the tangent bug, but as highlighted above

the method it is not the most efficient one using just points to represent obstacles;

therefore, it is better to deal with PF based methods and, again, the DWA, both of them

suffer from local minima problems, being local strategies, but just the DWA takes into

account the non-holonomic constraints of the vehicle. It could seem that DWA easily

outperforms the other strategies but the potential field methods as VFH+ or VFH*

result less complex to implement and (usually) demand less computational power when

it is possible to reduce the kinematic model at the basic level: that is the case of slow

velocity application in which a point can be used to define the trajectory and a control

law is in charge to follow that trajectory in a reliable way. A visual comparison of the

characteristics of the different algorithms is given in Table 1.3
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1.6 Formation Control

Being mobile robotics a very thoroughly investigated field, the community has be-

gun to look for more stimulating approaches that could bring to achieve tasks in a more

efficient and rapid solution [91]. The idea is simple, implementing multi-agent sys-

tems, one can seek to optimized solutions, like in exploring application, where using

multiple robots which share data can improve the overall results and cut the operation

time. Moreover multiple agents increase the reliability solving the problem of failures

due to single agent utilization. In addition several robots could cooperate to achieve

what it is impossible for a single one, like manipulating the environment. Therefore,

one can think about designing several WMRs, each one specialized in one task, rather

than realizing a single one, more complex and difficult to manage. When more than

one agent takes part in a mission it must have directives to follow to work with others

without interfering and obviously colliding; that is the difficult part form the engineer-

ing point of view: to coordinate all the aspects guaranteeing a satisfactory result. To

coordinate a group of WMR two approaches became very popular, the first one is based

on self organization in which each agent has a set of instructions to react to different

situation and they are often inspired by natural behaviours, the second type is based

on a geometric approach and each WMR has not a fully autonomous behaviour but is

more tied to directives that force it to stay in a formation with strict rules. It follows a

brief overview of the different kinds of approaches used in robotic to control a group

of WMR.

1.6.1 Behavior Based Formation

Usually in this approach each agent follows predefined rules for each basic be-

haviour as obstacle avoidance, formation keeping and goal seeking while the final ac-

tion is defined giving a weight to each rule and averaging the result [8]; in [33] they

define the social potential fields: simple artificial force laws between the robots of the

group. The force laws are inverse-power force laws, incorporating both attraction and

repulsion, the result of the forces applied give the overall behaviour of the formation.

Other solutions rely on behaviour inspired by physics as in [9], where agents follow the

way molecular covalent bonding is realized in crystals5. In this approach each robot

has particular spots in the zone around itself that can be taken by other robots creating

a bond that characterize the final formation since the created link will influence the

agents future actions. One can consider in this category also flocking and consensus

based formation strategy. Indeed, one of the first work in the field can be retrieved in

[119] in which a model to simulate consensus is derived starting from the behaviour of

a herd of animals in which each agent tries to avoid collision with neighbours and to

assume the same ”velocity profile”; a model derived from [119] is used in [149] to real-

ize a efficient graphic simulation for elements called boids. A deep analysis of flocking

strategy has been carried out by Tanner et al. in [137, 138] in which the authors in-

vestigates the stability properties of a system of multiple mobile agents with double

integrator dynamics first in the case of fixed topology, then in the case of dynamic one.

5Covalent bonding occurs when pairs of electrons are shared by atoms. Atoms will covalently bond with

other atoms in order to gain more stability, which is gained by forming a full electron shell. By sharing their

outer most (valence) electrons, atoms can fill up their outer electron shell and gain stability.
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1.6.2 The Leader-Follower

As suggested by the name, the leader-follower techniques are based on a leader

whether physical [30],[47],[80],[49] or virtual [20],[87]; in these structures, the leader

agent leads the formation while all the others follow it, according to a predefined rule.

These rules may vary and follow a more classical scheme, [30] in which a follower

has to respect distances and angles (l − l scheme in case of two distances, l − ϕ in

case of a distance and an angle) or like in [87] the strategy may be hybrid and utilise

an artificial potential field to define interaction control forces between neighbouring

vehicles and to enforce a desired inter-vehicle spacing; the leader (in the cited work

virtual) acts as moving reference point that influences vehicles close to it. Furthermore,

the paper [140] introduces the concept of leader-to-formation stability based on input-

to-state stability [133] and its invariance properties [67] under cascading; it describes

the relation between the errors of the formation leader and the interconnection errors

observed inside the formation characterizing how leader inputs and disturbances affect

the stability of the group.

1.6.3 Virtual Structures

In this kind of formation, introduced by Lewis and Tan in 1997 [92] strict rules

about the shape of the formation are given and each agent has to respect its role dur-

ing the motion. Following Lewis the definition of virtual structure is the following:

a virtual structure is a collection of elements (robots) which maintain a (semi-) rigid

geometric relationship to each other and to a frame of reference. In particular each

agent has a reference that could be a point of the structure or, similarly to the virtual

leader in the leader-follower approach, a virtual point. The virtual structure approach

for a WMR group has the advantage of employing relatively uncomplicated behaviour

coordination. The main flaw of this approach is that it treats all the WMR as a unique

rigid structure that can result in a common point of failure for the whole system. The

implementation can be realized in several ways, giving distance and angle with respect

to a virtual point obtaining a trajectory to follow and tracking it with a appropriate con-

trol laws [101] or modelling each robot as an electric charge [120], and due to repulsive

forces between the identical charges, regular polygon formations can be achieved. This

approach has been also popular in the control of spacecraft, or satellite formation [10,

118]

1.7 Contribution

In Fig. 1.11 the reader can recognize Fig. 6.1 in which the highlighted parts rep-

resent where this dissertation intents to place its contribution: the blocks Local Path

Planning and High Level Control. In light of what has been considered in Section

1.4.5 and Section 1.5.3, the following chapters present obstacle avoidance strategies

(Local path planning) for WMRs represented by a kinematic model, modified to con-

sider a class of perturbation additive on the input, realized by the use of finite time

control laws (High Level Control)

Firstly (Chapter 2), starting from the results in [35] a novel solution to local ob-

stacle avoidance problem is proposed for unicycle-like wheeled mobile robots using a

simple geometric approach. Moreover a particular formulation of the kinematic model
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Figure 1.11: Fields of Contribution of this Dissertation Work

is adopted aiming to compensate for the neglected dynamics of the robot; the idea

of having disturbances additive on the robot inputs relies on the intuition that, com-

manding the velocities, when the robot is not moving no disturbances can perturb it.

The obstacle avoidance is achieved in two steps: the definition of a goal position and

the avoidance itself combined thanks to the supervisory control framework. Each step

is regulated via robust finite time controllers formally proven with Lyapunov based

proofs. The contribution is thus twofold, a novel technique to avoid obstacles in a easy

en effective way and the proven robustness with respect to the considered disturbances

for the kinematic model of a unicycle-like robot. The analysis demonstrated a nice

behaviour in a real environment when tested on an actual mobile platform and when

compared with the well known DWA algorithm (Section 1.5.2).

Secondly, (Chapter 3), a modification of the standard Potential Field method has

been designed. The PF is widely used in many research areas, in particular in robotics

for both path planning and obstacle avoidance purposes. It suffers of a main flaws

though: the mathematical elegance of the method is counterbalanced by the appear-

ance of local minima that cause the robot to stuck. Supported by a novel field definition

and recent control theory results [2], a new method to avoid local minima is proposed.

Starting from a double variable integrator, a complete proof of the theoretical precision

of the method is provided: the system has an attracting equilibrium at the target point,

repelling equilibriums in the obstacles centers and saddle points on the borders. Those

unstable equilibriums are avoided capitalizing on the established Input-to-State Sta-

bility (ISS) property of this multistable system: the ISS property is not lost for small
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perturbation and properly designing a small disturbance the global attractivity of the

target point is proven and the avoidance achieved. Simulation for the double variables

integrator are provided showing the failure of the standard method and the exactness

of the proposed one. The trajectories of the two variables integrator are thus used to

guide an Unicycle-like mobile robot to the destination point avoiding obstacles; to do

that two different controls are designed and formally proven convergent. The first is

a classical solution which is not able to control the orientation, the second and most

relevant one is a finite time control realization which drives the robot to the goal. The

two methods are thus compared in simulation with the standard one and discussed. A

real implementation of the method is also provided to show the capabilities in a real

scenario.

Lastly, (Chapter 4), summarizing the experience obtained, a solution to the leader-

follower formation problem is proposed combining finite-time identification and con-

trol techniques and the supervisory control framework. The goal is to direct a group of

autonomous robots to a destination point following a leader and maintaining a pre-

defined distance to it. During the mission, it is assumed the robots to know each

other position and orientation. As for the other works of this dissertation the model

is perturbed so the solution must be robust with respect to the additive disturbance

considered on the input. The supervisory control algorithm that solves the problem

take the most of finite-time differentiators used to estimate the leader velocities, then

it orchestrates three control algorithms responsible for the following, rendezvous and

collision avoidance manoeuvres. Respectively the controllers must regroup the robots

(rendevous), make them move together following the leader (following) and in case of

collision threat avoid it (collision avoidance) and go back to the more suitable of the

two previous modes. Everything is realized in a decentralized way: each robot takes

its own decision depending on two distances, the one from the leader that define the

following or rendezvous status, and the one from agents or obstacles around, which de-

fine if the collision avoidance controller must be activated. It is shown that all controls

ensure a finite-time regulation for the robots orientation and a finite-time fulfilment of

the required performance constraints and everything is then sustained by numerical ex-

periments.

To conclude, let the author mention two works (reported in Appendix C and B)

that due to the faced topics are not in line with the dissertation but which represent a

part of the path which brought to the end of this academic itinerary. In the first one

the problem of gathering information which are not available with the equipped sensor

measurements is tackled for a robotic crane used in forestry. An interval observer is

proposed for on-line estimation of differentiation errors in some class of high-order

differentiators (like a high-gain differentiator from [146], or homogeneous nonlinear

differentiator from [115], or super-twisting differentiator [89]). The results are verified

and validated on the telescopic link of a robotic arm mentioned above in which is

common to measure the extension with encoder sensors and the mentioned approaches

are used to estimate the extension velocity while the interval observer gives bounds to

this estimation.

The second one addresses another problem for the same platform, that is the sta-

bilization of dynamical systems in presence of uncertain bounded perturbations using

ǫ-invariance theory. Under some assumptions, the problem is reduced to the stabiliza-

tion of a chain of integrators subject to a perturbation and is treated in two steps. The

evaluation of the disturbance and its compensation. Homogeneous observer and control
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[13],[115] are the tools utilized to achieve a global asymptotic stability and robustness.

The result is formally proven and, to validate the theory, it is applied to the control the

same link of the robotic crane and compared with standard techniques.

42 Matteo GUERRA



Chapter 2

Finite Time Supervisory Control:

Collision Avoidance with Distur-

bance Rejection

As previously mentioned in Chapter 1.3, nonholonomic mechanical systems are

characterized by kinematic non-integrable constrains and a well-known result by [18]

states that it is not possible to stabilize such systems via a smooth time-invariant static

state feedback. Several strategies have been proposed in the literature, like continuous

time-varying feedback control, discontinuous feedback control laws, hybrid/switched

control laws and optimal control laws to tackle the stabilization problem ([25], [110],

[1], [29], [153]) while one of the first work on the stabilization using a finite-time tech-

nique can be found in [54].

The collision avoidance problem has been largely treated in the previous chapter, in

which well known algorithms are presented and compared; nonetheless a variety of

switching control strategies has been proposed addressing the stabilization and the

collision avoidance for WMR by [35], [125], [139] also taking into account exter-

nal disturbances (for instance in submarine applications [111]). In addition, to deal

with model inaccuracies in literature various types of perturbations are considered; in

[142], for instance, a constant input additive disturbance is studied and compensated

with an adaptive approach. In [27] a most rigorous study is carried out where slip-

ping and skidding behaviours are characterized and a study on the controllability is

illustrated; [123] uses the formulation of [27] and compensates the effects of matched

and unmatched perturbations with an integral sliding mode approach. In the present

work, perturbations are added to the classic kinematic model to compensate neglected

dynamics. These perturbations are additive to the inputs, that comes from the intuition

that if no command is given to the WMR, then the robot will not move and, thus, no

perturbations have to be considered independently of the control. Such a kind of dis-

turbances could come from the settling time of the PID controller, that translates the

velocity commands in current inputs and sends them to the motors.

In this chapter the obstacle avoidance is realized using a supervisory switching control

technique to regulate two outputs in order to guarantee a robust result. The capability

to switch between two different non-linear systems allows us to tackle the two tasks
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separately. The first objective is the stabilization of the system by regulating the first

output, the second objective, and thus the second output to regulate, is related to the

proximity of eventual obstacles while trying to complete the main task. A supervisor

has been designed to oversee the switches between the two components of the control

deriving from [35] and relaxing it without the need of dwell time and adding input

disturbances. The result is presented taking into account the notions of stability for

switched system ([93]) and the definition of input-to-output stability ([134], [61]).

2.1 Problem Formulation

Let us consider a non-holonomic system, a unicycle-like WMR as presented in

((1.33)), in which the input is affected by the kind of additive input disturbances de-

picted above:

q̇x = (1 + d1)v cos(qθ),

q̇y = (1 + d1)v sin(qθ), (2.1)

q̇θ = (1 + d2)ω,

where q = [qx qy qθ]
T is the state space vector and (qx, qy) ∈ R

2, define the Cartesian

position of the robot, and qθ ∈ [0, 2π) is the orientation of the robot with respect of

the world reference frame, v and ω are the control inputs, the linear velocity and the

angular velocity respectively. The additive disturbances on the inputs are unknown,

but supposed to be bounded, −1 < dmin ≤ di ≤ dmax, i = 1, 2. The lower bound,

dmin > −1, ensures that the disturbance does not induce a change of control sign

(a constraint satisfied in practice). To achieve the tasks the robot has to be driven

to the origin avoiding obstacles that it could, eventually, encounter during the path.

As a solution, two independent controllers can be designed to reach the goals (i.e.

stabilization in the origin and collision avoidance) with their posterior uniting ([35]).

These controls can be designed in order to regulate two different outputs:

z1(qx, qy) =
√

q2x + q2y, (2.2)

z2(qx, qy) = min

[

Y, max
1≤i≤N

(

√

(qx − xoi)
2 + (qy − yoi)

2

)−1
]

(2.3)

where z1 is the distance from the origin and z2 is the inverse of the distance from the

closest obstacle represented by its Cartesian position (xoi , yoi)i,...,N , with N is a finite

number of obstacles, Y > 0 is a parameter ensuring global boundedness of z2 and

related with dimensions of the obstacles. Clearly, driving z2 to a sufficiently small

value means to move away from an obstacle avoiding it. Under the assumption that

between the obstacles there were enough space we can consider one obstacle each time

without loosing generality. We will also assume that z2(0, 0) > Y , i.e.the origin is not

occupied by an obstacle.

Therefore, the problem we want to solve is to stabilize the system (2.1) regulating the

output z1 to reach the desired position, and z2 to realize the collision avoidance. In

addition, we want to cancel the effects of the disturbances acting on the control inputs.

In the following section a supervisory control solution is proposed.
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2.2 Theoretical Formulation

Consider the following system (a non-holonomic WMR model):

ẋ = f(x, u, d), z1 = h1(x), z2 = h2(x), (2.4)

where x ∈ R
n is the state, u ∈ R

m is the control input and d ∈ R
m is a disturbance,

with d ∈ Ω = {d ∈ L∞
m : ||d|| ≤ D} for some D ∈ R+.

We want to regulate the outputs z1 ∈ R
p1 and z2 ∈ R

p2 assuming that the functions

f , h1 and h2 are continuous and locally Lipschitz. It is needed to design a control

u : Rn → R
m that will provide the uOS1 property with respect to the output z1, and

will keep the second output z2 in a predefined limit. In other words, to achieve the

desired tasks it is needed that for all initial conditions x0 ∈ R
n, d ∈ Ω and t ≥ t0 ≥ 0:

|z1(t, x0, d)| ≤ β(|h1(x0)|, t− t0), (2.5)

|z2(t, x0, d)| ≤ σ(max(∆, |h2(x0)|)), (2.6)

the value of ∆ is given, β is a KL2 function whereas σ is a function from class K. It

can be noted that (2.5) is exactly the definition of the uOS property. The second output

must be smaller than σ(∆). In the case |h2(x0)| > ∆ the trajectory should converge

to a subset where |h2(x)| ≤ σ(∆). In addition, to solve the problem we need that the

intersection between the sets h1(x) = 0 and |h2(x)| ≤ σ(∆) would be not empty, thus

we assume the existence of a function ρ of class K and a scalar 0 < ρ0 < σ(∆) such

that:

|h2(x)| ≤ ρ(|h1(x)|) + ρ0. (2.7)

2.2.1 Description of independent controls

Thus the problem consists in an output uniform stabilization under constraints im-

posed on another output. Following [35], assume that two right-continuous controls

ui : R
n → R

m, i ∈ {1, 2} are given guaranteeing an independent stabilization for the

corresponding output zi, i.e. the system

ẋ = f(x, ui(x), d), zi = hi(x),

is forward complete and has continuous solutions x(t, x0, d), in addition the system is

uOS with respect the output zi and disturbance d ∈ Ω. We also assume that during an

activation of u2 for all t ≥ 0

|z1(t, x0, d)| ≤ |h1(x0)|.

Next subsection is devoted to uniting of these controls in order to solve the posed

problem.

1A forward complete system ẋ = f(x, u, d), y = h(x) is called uniformly Output-Stable (uOS) with

respect to output y and input d, if for all x0 ∈ R
n and d ∈ Ω there exists a function β ∈ KL such that

|y(t, x0, d)| ≤ β(|h(x0)|, t− t0) for all t ≥ t0.
2A continuous function g : R+ → R+ belongs to class K if it is strictly increasing and g(0) = 0; a

continuous function h : R+ × R+ → R+ belongs to class KL, if h(·, t) ∈ K for any t ∈ R+, and h(s, ·)
is strictly decreasing to zero for any s ∈ R+ for t → ∞.
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2.2.2 Supervisory control

Under the assumption of having two controls which solve the output regulation

for z1 and z2 independently, a supervisor is proposed to oversee the activation of the

controls to achieve both required condition (2.5) and (2.6) simultaneously. The idea is

that the controller u2 is activated when |z2(x)| reaches a threshold ∆ and remains active

until the constraint |z2(x)| ≤ δ is satisfied, where 0 < δ < ∆ is a given parameter. For

this reason we define two sets

X1 = {x ∈ R
n : |h2(x)| ≤ δ}

X2 = {x ∈ R
n : |h2(x)| ≤ ∆}

X1 ⊂ X2.

Then the control

U(t) = ui(t)(x(t)), i : R+ → {1, 2} (2.8)

is ruled by

t0 = 0, i(t0) =

{

1 if x(t0) ∈ X2,

2 otherwise,

while i(t) = i(tj) for t ∈ [tj tj+1), and

i(tj+1) =

{

1 if x(tj+1) ∈ X1

2 if x(tj+1) 6∈ X2

, (2.9)

where tj is the generic switching instant defined as follows:

tj =











arg inf
t≥tj

x(t) 6∈ X2 if i(tj) = 1

arg inf
t≥tj

x(t) ∈ X1 if i(tj) = 2
.

A similar supervisor has been presented in [35], but in the present work a dwell time

condition is not imposed. The control U has the u1 part active if |z2| < ∆, which

means that we are stabilizing the output z1 according to condition (2.5). If |z2| be-

comes greater or equal than ∆, then u2 will be activated driving z2 to a value less than

δ according to condition (2.6). Inside the set H = X2\X1 the control will not be

switched, this set acts as a hysteresis zone being helpful to avoid a chattering phenom-

ena of switching between u1 and u2.

Assumption 1. supx∈H,d∈Ω,i∈{1,2} |f(x, ui(x), d)| = F < +∞.

This assumption states that the system velocity on the set H is finite, which holds

for example if f is C0 and ui is piecewise continuous because of the compactness of

Ω×H then since F < +∞ and d ∈ Ω there exists a dwell-time delay τD > 0 between

any two switches, i.e. tj+1 − tj ≥ τD for all j ≥ 0. The conditions for solution of the

posed problem using the supervisory control algorithm (2.8), (2.9) are described in the

following theorem.
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Theorem 1. Let Assumption 1 be satisfied and β1(s, τD) = λs for all s ∈ R+ and

some 0 ≤ λ < 1. Then the system (2.4) with supervisor (2.9) and control (2.8) is

forward complete and for all initial conditions x0 ∈ R
n, d ∈ Ω and t ≥ 0:

|z1(t, x0, d)| ≤ β1(|h1(x0))|, 0),
|z2(t, x0, d)| ≤ σ(max{∆, |h2(x0)|}),

lim
t→+∞

|z1(t, x0, d)| = 0,

where σ(s) = β2(s, 0).

Proof. The existence of dwell-time τD > 0 implies right-continuity of the switching

signal i(t), the same property for the right-hand side of the system (2.4), (2.8), (2.9)

(due to composition limit rule) and continuity of the system solutions with the absence

of chattering. Since for both ui, i ∈ {1, 2} the solutions of the system are well defined

for all t ≥ 0, then a finite-time escape phenomenon is impossible and solutions of the

switched system (2.4), (2.8), (2.9) are well defined for all t ≥ 0.

By definition of a function from class KL, there exists 0 < T2 < +∞ such that δ =
β2(∆, T2). For both controls the following inequalities are satisfied for the outputs:







i(t) = 1 ∀t ∈ [tj , tj+1),
|z1(t, x(tj), d)| ≤ β1(|h1(x(tj))|, t− tj),

|h2(t, x(tj), d)| ≤ ρ ◦ β1(|h1(x(tj))|, t− tj) + ρ0,
(2.10)







i(t) = 2 ∀t ∈ [tj , tj+1),
|z2(t, x(tj), d)| ≤ β2(|h2(x(tj))|, t− tj),

|z1(t, x(tj), d)| ≤ |h1(x(tj))|.
(2.11)

Therefore, the following scenarios are possible. First, x(0) ∈ Ξ = {x ∈ R
n : ρ ◦

β1(|h1(x)|, 0) + ρ0 ≤ ∆}, then x(0) ∈ X2, i(0) = 1 and, according to (2.10),

i(t) = 1 with |z2(t, x(0), d)| ≤ ∆ for all t ≥ 0. Second, x(0) ∈ X2 \ Ξ and there

exists 0 < t1 < +∞ such that (2.10) is satisfied for t ∈ [t0, t1) and

|h2(x(t1))| = ∆,

|z1(t1)| ≤ β1(|h1(x(t0))|, t1 − t0)

≤ β1(|h1(x(t0))|, τD)

= λ|h1(x(t0))| < |h1(x(t0))|.

Note that if t1 = +∞, then this case is identical to the first scenario. Thus according

to (2.11)

|z2(t, x(t1), d)| ≤ β2(∆, t− t1) ∀t ∈ [t1, t2),

|z2(t2, x(t1), d)| = δ,

|z1(t, x(t1), d)| ≤ |z1(t1)| ≤ λ|h1(x(t0))| ∀t ∈ [t1, t2),

where t1 < t2 ≤ t1 + T2. Summarizing these estimates we get

|z1(t, x(t0), d)| ≤ β1(|h1(x(t0))|, 0) ∀t ∈ [t0, t2),

|z2(t, x(t0), d)| ≤ β2(∆, 0) ∀t ∈ [t0, t2),

|z1(t2, x(t0), d)| ≤ λ|h1(x(t0))|.
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Next, there exists a sequence of time instants t2k, 0 ≤ k ≤ K ≤ +∞ with i(t) = 1 for

all t ∈ [t2k, t2k+1) and i(t) = 2 for all t ∈ [t2k+1, t2k+2). Repeating the arguments

above we obtain

|z1(t, x(t0), d)| ≤ β1(|h1(x(t0))|, 0) ∀t ∈ [t0, t2k+2),

|z2(t, x(t0), d)| ≤ β2(∆, 0) ∀t ∈ [t0, t2k+2), (2.12)

|z1(t2k+2, x(t0), d)| ≤ λk|h1(x(t0))|

for any 0 ≤ k ≤ K. Assume thatK < +∞, then it means that i(t) = 1 for all t ≥ t2K
(the control u2 can be active on a finite interval only by its definition) and from (2.10)

|z1(t, x(t0), d)| ≤ β1(|h1(x(t2K))|, 0)
≤ β1(|h1(x(t0))|, 0) ∀t ≥ t2K ,

|z2(t, x(t0), d)| ≤ ∆ ≤ β2(∆, 0) ∀t ≥ t2K ,

lim
t→+∞

|z1(t, x(t0), d)| = 0,

i.e. it is a situation similar to the first scenario. If K = +∞, then from (2.12) with

k → +∞ we have the same properties, consequently

|z1(t, x(t0), d)| ≤ β1(|h1(x(t0))|, 0) ∀t ≥ t0,

|z2(t, x(t0), d)| ≤ β2(∆, 0) ∀t ≥ t0, (2.13)

lim
t→+∞

|z1(t, x(t0), d)| = 0.

Third, x(0) /∈ X2 and in this case there is a time instant t1 > t0 such that the estimates

(2.11) are satisfied for all t ∈ [t0, t1)

|z2(t, x(t0), d)| ≤ β2(|h2(x(t0))|, t− t0),

|z1(t, x(t0), d)| ≤ |h1(x(t0))|

and |z2(t1, x(t0), d)| = δ. Since x(t1) ∈ X2 the following system behavior is similar

to the second scenario and from (2.13) we obtain

|z1(t, x(t0), d)| ≤ β1(|h1(x(t0))|, 0) ∀t ≥ t0,

|z2(t, x(t0), d)| ≤ β2(max{∆, |h2(x(t0))|}, 0) ∀t ≥ t0,

lim
t→+∞

|z1(t, x(t0), d)| = 0.

Therefore, these estimates are satisfied in all three possible scenarios for all t ≥ 0.

2.3 Control Tasks

In this section two finite-time controllers (ui, i ∈ {1, 2}) are designed for (2.1); the

former one is designed to regulate the output z1 in (2.2), for the stabilization part, and

the second one is to regulate the output z2 in (2.3), providing the collision avoidance.

The main feature of these controls is that all control tasks are solved not asymptotically,

but in a finite time.
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Figure 2.1: Definition of the angles for the Stabilization Control Law

2.3.1 Stabilization

As mentioned above, the first control u1 is designed in order to drive the robot to the

desired point (the origin in this formulation without loss of generality, thus stabilize z1).

Following control theory, let us consider the following Lyapunov function: V1 = 0.5z21 .

Its derivative has the form

V̇1 = ż1z1 (2.14)

=
√

q2x + q2y
qxq̇x + qy q̇y
√

q2x + q2y

(2.15)

= qxq̇x + qy q̇y; (2.16)

following easy trigonometric rules, one can rewrite qx = z1 cos θ0 and qy = z1 sin θ0 ,

it follows that

V̇1 = v(1 + d1)z1 (cos qθ cos θ0 + sin qθ sin θ0) (2.17)

= cos(θ0 − qθ)v(1 + d1)z1, (2.18)

where θ0 = arctan (qy/qx). Define α = qθ−θ0−π, α ∈ [−π, π), which implies the

deviation from the robot’s current orientation qθ to its desired final orientation θ0 + π,

then we have

V̇1 = − cos(α)v(1 + d1)z1.

In order to ensure the negative definiteness (or semi-definiteness) of V̇1, the following

control is proposed:

v =

{

k1z1 if |α| ≤ kπ

0 otherwise
,

with k1 positive and 0 < k ≤ 0.5, with which the semi-definiteness of V̇1 can be
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ensured (Fig. 2.1 shows a visual description of the WMR and of the listed angles),

since
{

V̇1 ≤ − cos(α)(1− dmin)k1z
2
1 if |α| ≤ kπ

V̇1 = 0 otherwise
.

then we have

V̇1 ≤ −2c1V1 for |α| ≤ kπ,

where c1 = k1 cos(kπ)(1− dmin).
Then let us consider the regulation of the robot’s orientation to its desired one, i.e.

stabilization of α to 0. Following the definition of α, its dynamics can be expressed as

follows:

α̇ = ω(1 + d2) + sin(α)z−1
1 (1 + d1)v.

By choosing the following Lyapunov function V2 = 0.5α2, we obtain its derivative as:

V̇2 = ωα(1 + d2) + α sin(α)v(1 + d1)z
−1
1

which can be separated into two cases, depending on v when it is equal to zero (most

of the time) or not (for |α| ≤ kπ). Thus it can written as:

V̇2 =

{

ωα(1 + d2) + k1α sin(α)(1 + d1) if |α| ≤ kπ

ωα(1 + d2) otherwise
.

In order to guarantee the negative definiteness of V̇2, we propose the control ω in the

following form:

ω = −k2ζ(α)sign(α), k2 ≥ (1 + dmax)k1 + 2−3/4η1
1− dmin

,

ζ(α) = max{|α|0.5, |α|}, η1 > 0, (2.19)

which yields

V̇2 ≤











−k2|α|ζ(α)(1− dmin)

+k1α
2(1 + dmax) if |α| ≤ kπ

−k2|α|ζ(α)(1− dmin) otherwise.

Since |α|ζ(α) ≥ α2, we always have:

V̇2 ≤ −η1 max{V2, V 3/4
2 },

Let us remark that the term k2 allows us to compensate the disturbances. Based on the

above inequality, we can conclude that the α(t) admits the following upper estimate:

|α(t)| ≤



















|α0|e−0.5η1(t−t0) if t ∈ [t0, t1],√
2[min{1, 2−1/4

√

|α0|}
−2−2η1(t− t1)]

2 if t ∈ (t1, t2],

0 if t > t2,

(2.20)

t1 = t0 +max{0, η−1
1 ln(0.5α2

0)},
t2 = t1 + 2−2η−1

1 min{1, 2−1/4
√

|α0|},

50 Matteo GUERRA



2.3. Control Tasks

where t0 ≥ 0 is the instant when this control has been activated and α0 = α(t0) ∈
[−π, π) is the initial condition. Therefore there exists 0 ≤ T1(α0) < ∞ for all α0 ∈
[−π, π) such that |α(t)| < kπ for all t ≥ t0 + T1(α0). For simplicity, we can use the

dynamics of α with v = 0 to compute T (α0), which is as follows:

T1(α0) ≤















max

{

0, 2
η1

ln

( |α0|
kπ

)}

if kπ ≥ 1,

t1 + 4η−1
1 [min{1, 2−1/4

√

|α0|}
−2−1/4

√
kπ] otherwise.

Since |α0| ≤ π we finally obtain

T1(π) = η−1
1

{

−2 ln(k) if kπ ≥ 1,

ln(0.5π2) + 4(1− 2−1/4
√
kπ) otherwise.

Thus it follows that

z1(t) ≤ z1(t0)min{1, e−c1(t−T1(π)−t0)} ∀t ≥ t0, (2.21)

which implies that the first output z1 is exponentially stabilized by using the designed

controls v and ω. Thus the first control u1 can be summarized as follows:

u1 =











v =

{

k1z1 if |α| ≤ kπ

0 otherwise
,

ω = −k2ζ(α)sign(α).

(2.22)

The above arguments are equivalent to the following lemma.

Lemma 1. In the system (1.33) with control (2.22) the estimates (2.21) and (2.20) are

satisfied (a uniform exponential stabilization for z1 and a uniform finite-time stabiliza-

tion for α).

Remark: It deserves to be precised that despite the fact that the convergence of the

z1 output is exponential, a zone around the origin can be always reached in a finite

time.

2.3.2 Collision Avoidance

The first controller u1 can drive the robot to the desired position, if no obstacle will

be encountered during the navigation. This is however not the real case in practice. In

order to take into account the obstacle, we need to construct another controller, named

u2, which needs to achieve the following two tasks:

• driving the robot away from the encountered obstacle (i.e. collision avoidance);

• keeping the distance z1 between the robot and the desired final position not in-

creasing (i.e. still approaching to the desired final position).

In order to design such a controller, we consider each obstacle as a point in the plane

and then define an associated safe distance to be maintained. Each obstacle is an ele-

ment of the setO = {(xoi , yoi , ρi,min)}i=1,...,N , withN number of possible obstacles,

Y = 1/min1≤i≤N{ρi,min}. It is assumed in this work that each obstacle is entirely
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contained in the circle of radius ρi,min which is a designed distance considering the

radius of the obstacle itself and a distance equal to the radius of the circle in which the

robot can be inscribed. Moreover, in order to augment the safety, the collision avoid-

ance controller u2 will be activated when the robot reaches a distance ρi > ρi,min,

which adds an additional safety level to the collision avoidance manoeuvre. Then, the

goal of the control u2 is to ensure the avoidance by augmenting the distance from ρi
to a predefined Ri > ρi. In terms of the output z2, it is equivalent to decrease z2 from

∆i = ρ−1
i to δi = R−1

i . Moreover, during this manoeuvre, it is required that the con-

trol u2 will not make the output z1 increasing.

Before stating collision avoidance controller u2, for the sake of simplicity, let us make

the following assumptions:

Assumption 2. Assume that max1≤i≤N 1/
√

x2oi + y2oi < min1≤i≤N δi, i.e. the origin

is well separated from an obstacle.

Assumption 3. Assume that Υi ∩ Υj = ∅ for any i 6= j ∈ {1, . . . , N}, where Υi =
{(qx, qy) ∈ R

2 : (qx−xoi)2+(qy−yoi)2 ≤ R2
i } = {(qx, qy) ∈ R

2 : z2(qx, qy) ≥ δi}
(i.e. any two obstacles are separated and the collision avoidance problem can be

addressed for an isolated obstacle).

In order to design the control u2, we need to plan a strategy to move the robot from

the distance ∆i to δi. For this, when the robot reaches a distance ρi > ρi,min, we define

an intermediate point B = (xB , yB), and the goal of u2 is to control the robot moving

from current position to this new point B such that z1(xB , yB) ≤ z1(qx(tca), qy(tca))
and z2(xB , yB) ≤ δi, where tca is the instant of time in which the control u2 is

switched on, i.e. z2(qx(tca), qy(tca)) = ∆i. The following details the algorithm for

the choice of the point B.

Choice of point B

Let us firstly define a preliminary point B− as an intersection point of the circle

centered in (xoi , yoi) of radiusRi and the tangent line to the circle centered at (xoi , yoi)
of radius ∆i (see the red one in Fig. 2.2). Using this approach, the coordinate of the

point B− can be calculated as follows:

xB− =
1

m
(mx− y + yB) ,

yB− =
y +mxoi −mx+m2yoi ± C1

m2 + 1
,

C1,1 =m(Rim+Ri −mxoi + 2mxxoi −mx+ 2mxoiyoi
− 2mxoiy − 2mxyoi + 2mxy − yoi + 2yoiy − y),

m =− [tan(θi)]
−1
, θi = tan−1

(

y − yoi
x− xoi

)

.

Although this approach is very efficient, under a special situation it cannot provide the

second requirement of the control, i.e. ż1(t) ≤ 0, that is the case when the obstacle

center, the robot and the origin are on the same straight line (see Fig. 2.3). In this case,

the preliminary B− point will be in the intersection of two circles: the first centered

in (xoi , yoi) of radius Ri (the green one in Fig. 2.3) and the second circle centered at

the origin of radius |z1(tca)| (the blue one in Fig.2.3). Following this approach, we can

obtain the following coordinate for B−:
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Figure 2.2: Circles used in the definition of the B−, Blim and then the B points with

the “tangent” approach

xB− =
x2oi −R2

i + y1 + yoi − 2yoid
2
oi

2xoi
,

yB− =
x2oiyoi −R2

i yoi + y1yoi + y3oi ± C1,2

2d2oi
,

C1,2 =xoi [(−Ri + 2Riy1 + xoi − y1 + yoi)

(Ri + 2Riy1 − xoi + y1 − yoi)],

doi =
√

x2oi + y2oi .

In order to determine the final coordinates of B for both cases, let us define the

distance ρi,min as a limit not to be crossed, represented in Fig. 2.2 and Fig. 2.3 by

the purple circle. Then we can determine the point Blim, which is an intersection of a

straight line initiated at the robot position and tangent to the circle centered at (xoi , yoi)
with radius ρi,min. Thus we can freely choose a point B′ on the circle of radius Ri

between the pointsBlim andB− taking a safe distance from them proportional to dmax

(in order to avoid the risk of being steered backward due to a disturbance). Finally, the

point B = (xB , yB) can be selected on the line passing the current robot position and

the point B′ with the condition that z2(xB , yB) < δ (outside the set Υi, green circle

in both Fig. 2.2and 2.3). With such a selection of the point B, it is possible to achieve

the avoidance and to keep, in addition, the condition ż1(t) ≤ 0. Once the point B is

defined, we can then design a control u2, which should drive the robot from current

position to this point, which will be detailled in the next section.

Collision avoidance controller

The collision avoidance problem can be solved by using a similar approach as the

stabilization problem in the previous section, which needs only to replace the origin
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in the stabilization problem by the chosen point B. For this, let us define the robot

distance to the point B as

DB(x, y) =
√

(qx − xB)2 + (qy − yB)2,

in such a formulation the imposed restriction z2(xB , yB) < δ becomes crucial and the

point B will not be reached during the collision avoidance manoeuvre. It is important,

since in a stabilized point the robot loses controllability (in our case this corresponds

to division on the distance DB in the equation (2.25) below). Focusing on the function

DB(x, y), after differentiation:

ḊB =
(qx − xB)q̇x + (qy − yB)q̇y

DB
(2.23)

=
(qx − xB) cos qθv(1 + d1) + (qy − yB) sin qθv(1 + d1)

DB
, (2.24)

Following the same argument used in the stabilization section, let us define the an-

gle of desired orientation of the robot towards the pointB as θg = tan−1

(

qy − yB
qx − xB

)

,

and define the deviance from the desired angle for the collision avoidance control as

γ = θg − qθ. Using basic trigonometry rules we obtain that:

(xB − qx) = DB cos θg
(yB − qy) = DB sin θg

,

it follows that

ḊB = − [cos θg cos qθ + sin θg sin qθ] v(1 + d1)

thus, being cos θg cos qθ + sin θg sin qθ = cos(θg − qθ), it follows:
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ḊB = − cos(γ)v(1 + d1).

Define ϑ = inf(qx,qy)∈Υi
DB(qx, qy) the distance from the point B to the set Υi. In

order to stabilize DB , we propose the following controller for v:

v =

{

k3DB if cos(α) ≥ 0 and |γ| ≤ ǫπ

0 otherwise
,

where k3 > 0 and 0 < ǫ < 0.5. Since this control has to be applied into the set Υi only,

then v ≥ k3ϑ. For the designed control v, a Lyapunov function W1(DB) = 0.5D2
B

has the following derivative:

Ẇ1 ≤
{

−2c2W1 if cos(α) ≥ 0 and |γ| ≤ ǫπ

0 otherwise
,

where c2 = k3 cos(ǫπ)(1− dmin), and it can be seen that the designed v can exponen-

tially stabilize DB .

Then γ has the following dynamics:

γ̇ = −ω(1 + d2) +
sin γ

yB
v(1 + d1). (2.25)

Using the Lyapunov function W2 = 0.5γ2, we obtain:

Ẇ2 = −ωγ(1 + d2) + γ
sin γ

DB
v(1 + d1)

Setting ζ(γ) = max{|γ|0.5, |γ|}, the proposed expression for the control ω has the

form:

ω = kdγ̇ +
sin γ

DB
v + kcaζ(γ)sign(γ), kd > 0,

kca ≥ k3

√
π(dmax − dmin)[1 + kd(1 + dmax)]

(1− dmin)[1 + kd(1− dmin)]
(2.26)

+2−3/4η2
1 + kd(1 + dmax)

1− dmin
, η2 > 0.

A straightforward calculation shows that Ẇ2 ≤ −η2 max{W2,W
3/4
2 }, then

|γ(t)| ≤



















|γ0|e−0.5η2(t−tca) if t ∈ [tca, t3],√
2[min{1, 2−1/4

√

|γ0|}
−2−2η2(t− t3)]

2 if t ∈ (t3, t4],

0 if t > t4,

(2.27)

t3 = tca +max{0, η−1
2 ln(0.5γ20)},

t4 = t3 + 2−2η−1
2 min{1, 2−1/4

√

|γ0|},
where tca ≥ 0 is an instant of activation of the control u2 and γ0 = γ(tca). Thus the

proposed control steers the robot in a finite time to the desired orientation, indeed there

exists 0 < T2 <∞ such that γ(tca + T2) < ǫπ for all γ ∈ [−π, π):

T2 = η−1
1

{

−2 ln(ǫ) if ǫπ ≥ 1,

ln(0.5π2) + 4(1− 2−1/4
√
ǫπ) otherwise.
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As we can note, the controls (2.19) and (2.26) used for regulation of α and γ respec-

tively are rather similar and have analogous stability properties, so a kind of control

(2.26) can be used for stabilization of α, and vice versa.

Following the geometric construction of the point B, the inequality cos(α)|γ=0 > 0 is

verified, then there is a time instant tca ≤ t ≤ T2 such that the conditions cos(α(t)) ≥
0 and |γ(t)| ≤ ǫπ (involved in the control v activation) are satisfied for t ≥ t. Start-

ing from the instant t the robot starts to move without an interruption since v ≥ k3ϑ.

Therefore, with the decreasing properties of γ, the distance yB is decreasing and admits

an estimate:

DB(t) ≤ DB(t0)e
−c2(t−T2−tca) ∀t ≥ tca.

Since the point B is located outside the set Υi, then there exists a finite time Tca > tca
such that z2(Tca) = δ, hence the collision avoiding is accomplished. It is worth to

stress that it is possible to have a local increment of the regulated output z2 due to the

geometric construction of the point B. On the other hand, after a certain amount of

time the output z2 decreases with the controller v. In addition, as it has been shown

above, it is not possible to steer the robot toward the obstacle, and the robot itself will

not enter the circle of radius ρi,min. The output z1 does not increase during the colli-

sion avoiding manoeuvre since the constraint cos(α) ≥ 0 has been introduced in the

control v (and v is positive).

The controller u2 for the two control inputs v and ω pushes the robot in a finite time

toward a point far from the obstacle, while keeping the distance z1, and it can be sum-

marized as follows:

u2 =











v =

{

k3DB if cos(α) ≥ 0 and |γ| ≤ ǫπ

0 otherwise
,

ω = kdγ̇ + sin γ
DB

v + kcaζ(γ)sign(γ).

(2.28)

The following properties have been substantiated.

Lemma 2. The system (1.33) with control (2.28) has the properties for tca ≥ 0:

1. Uniform finite-time stability with respect to the variable γ(t) (the estimate (2.27)).

2. There exists Tca > tca such that δi ≤ z2(t) < ρ−1
i,min for all t ∈ [tca, Tca] and

y2(Tca) = δ.

3. V̇1(t) ≤ 0 for all t ∈ [tca, Tca].

Following the presented strategy for the choice of point B when encountering an

obstacle, the item 1 of the above lemma implies that the control u2 can orient the robot

in the direction of the chosen point B in finite time. The second and the third item of

the above lemma state that this control u2 can drive the robot away from the obstacle,

at the same time it will not increase the distance between the robot and the desired final

point.

2.3.3 Supervision

As presented in the previous section, the proposed control u1 can drive the robot

directly to the desired final position if it will not encounter any obstacle. If it does

encounter one, when approaching to the obstacle at a certain distance, the robot will

intelligently choose an intermediate point B, and switch to the second control u2. This

second control will navigate the robot away from the obstacle to this point, by keeping

the distance z1 between the robot and the desired final point decreasing. When the
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robot feels safe, i.e. far enough away the obstacle, it will then switch back to u1 to con-

tinuously approach the desired final point. This intelligent strategy on the commutation

between the controls (2.22) and (2.28) can be formulated by the following supervisor:

U(t) = ui(t)[qx(t), qy(t), qθ(t)], i : R+ → {1, 2} (2.29)

t0 = 0, i(t0) =

{

1 if (qx(t0), qy(t0)) ∈ X2,

2 otherwise,

i(t) = i(tj) ∀t ∈ [tj tj+1),

i(tj+1) =

{

1 if q(tj+1) ∈ X1

2 if q(tj+1) 6∈ X2

, (2.30)

tj =











arg inf
t≥tj

q(t) 6∈ X2 if i(tj) = 1

arg inf
t≥tj

q(t) ∈ X1 if i(tj) = 2
,

where:

X1 :
{

(qx, qy) ∈ R
2 : R2 \ ∪N

j=1Υj

}

,

X2 :
{

(qx, qy) ∈ R
2 : R2 \ ∪N

j=1Ξj

}

,

Ξj = {(x, y) ∈ R
2 : (qx − xoj )

2 + (qy − yoj )
2 ≤ ρ2i }.

Thus the control u1 is applied if z2 < δj and the control u2 has to be activated if

z2 = ∆j for some j ∈ {1, . . . , N}. The stability properties of the WMR (2.1) with the

control (2.29) and the supervisor (2.30) can be then achieved.

2.3.4 Application to unicycle

We will now provide the main result for the unicycle considering the supervisory

control described in this section.

Corollary 1. Consider the system (2.1) with the supervisor (2.30) and control (2.29),

then:

z1(t) ≤ z1(0) ∀t ≥ 0,

lim
t→∞

z1(t) = 0,

z2(t) ≤ σ(max{∆, z2(0)}) ∀t ≥ 0,

where ∆ = max1≤i≤N ∆i and σ(s) = s/(∆Y ).

Proof. According to definitions of z1 and z2, define

ρ0 = z2(0, 0) = max
1≤i≤N

1/
√

x2oi + y2oi ,

by assumptions ρ0 < δ. Since N and Y are finite, then there exists a function ρ ∈ K
such that |h2(q)| ≤ ρ(|h1(q)|) + ρ0 for all x ∈ R

n. Assumption 1 is satisfied since

Finite Time Deployment and Collision Avoidance for Wheeled Mobile Robots 57



2. FINITE TIME SUPERVISORY CONTROL: COLLISION AVOIDANCE WITH DISTURBANCE REJECTION

the controls (2.22), (2.28) are right-continuous functions of time (only one switch is

possible for an activation due to uniform finite-time stability of α and γ achieved in

lemmas 1 and 7). From Lemma 1, β1(s, r) = ec1T1(π)se−c1r ∈ KL, but additionally

z1(t) ≤ z1(t0) for all t ≥ t0, therefore the estimates (2.10) are satisfied. In addition,

z1 preserves its value during steering, and while moving the distance z1 is always

decreasing, therefore the condition β1(s, τD) = λs is valid for some λ ∈ [0, 1). From

Lemma 7 the estimates (2.11) are satisfied. Therefore, all conditions of Theorem 1

have been verified. The estimates stated in the corollary can also be checked by a

straightforward calculations.

2.4 Simulation Results

For simulations purpose, the number of obstacles is N = 3, the sample time used

is ts = 0.1, this value is a further proof of the robustness of the proposed control law

since the lower the sampling time, the fewer are the information received to evaluate

the control action. The disturbances have form di = χ sin(t) + 0.1 ∗ rand where

rand is a pseudo-random values drawn from the standard uniform distribution on the

open interval (0, 1) with i ∈ {1, 2} and |χ| ≤ 0.5. For the collision avoidance part the

distances were defined as follows: let r be the generic obstacle radius, ρi,min = r+0.3,

ρi = ρi,min + 0.3 Ri = ρi + 0.35. The ǫ and k values are equal to 1/30.

The values of control gains are listed in tables 2.1 and 2.2. They were carefully

tuned to avoid any saturation in the control input signal for the real robot utilised in

Section 4.1.2.

Table 2.1: Stabilization Controller Gains

Gain Value

k1 0.5

η 0.5

Table 2.2: Collision Avoidance Controller Gains

Gain Value

k3 0.5
η2 0.5
kd 0.05
kca 1.015

As it can be seen in Fig. 2.4, each time the robot enters the zone where z2 ≥ ∆,

it starts the maneuver to reach the point B making collision avoidance. Once it enters

the zone z2 ≤ δ it continues to move toward the origin. The center of the robot, red

star in Fig. 2.4, never enters the circle of radius ρi,min preventing the robot to collide.

This explains us better why in Section 2.3 the radius of the robot has been considered

as a design parameter ρi,min; indeed the two figures showed in 2.3.2 ( Fig. 2.2 and Fig.

2.3) display the behavior of the algorithm to choose the B point in the two activations

of the controller. In Fig. 2.5 and 2.6 the vertical black lines represent the switching

instants and it is shown that all controlled variables behave as wanted. In particular

in Fig. 2.5 it is shown how the variables α and γ are stabilized both in finite time by
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Figure 2.4: Stabilization of the unicycle with three obstacles

the controllers to steer the robot facing the desired point. The angle γ appears in the

plot only when the controller u2 is active. In the same plot the value of cosα is shown

(in order to demonstrate that the condition for the v part of the controller under the

collision avoidance maneuver is always kept).

It is also shown the behavior of the two outputs, z2 indeed increases the value during

the collision avoidance maneuver in all the activations, but before the successive switch

the value is always less than the starting one. We would like to remark that z1 never

increases.

2.5 Experimental Results

The presented strategy has been implemented on a Turtlebot2 (http://www.

turtlebot.com/) mobile robot. The WMR was equipped with a Hokuyo R© (http:

//www.hokuyo-aut.jp) UTM-30LX LIDAR device. The necessary libraries to

communicate with the WMR were found on Robotic Operating System (ROS), “Groovy”

release (www.ros.org). An easy LIDAR based obstacle detection algorithm has been

implemented to get obstacle(s)’ positions (xoi , yoi) and radius ri used to define also

the values of ρi,min = ri + 0.3, ρi = ρi,min + 0.3 and Ri = ρi + 0.35. The values

of ǫ and k are equal to 1/30, the control gains are k1 = η = 0.5 for the stabilization

controller and k3 = kp = 1.5, kca = 0.1 , kd = 0.05 for the collision avoidance one.

Several scenarios have been tested for the presented Finite Time Obstacle Avoidance

(FTOA) technique, in addition the performances have been compared with the well

know DWA [45] which is included in the ROS.
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Figure 2.5: Evolution of angles α and γ
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The implementation of the algorithm can be divided in two main parts. Firstly, Al-

gorithm 1 translates in pseudo-code the supervisor (2.30) which regulates the switching

between the two controls. The if statement determines the activation of the collision

avoidance control and it can be noticed that such controller is kept active until the

condition in the elseif statement is verified, that is when the WMR exits the circle of

radius Ri. The function getbp(state,z2) follows the instructions presented in Section

2.3.2 to determine the B point, while the variable Flag assures that the controller is

not switched when the WMR is in the zone between ∆i and δi. Secondly, Algorithm

2 represents the complete proposed algorithm where firstly the laser scans are used to

localize the robot in a map (getpos(laser scan)) then to evaluate the presence of an

eventual obstacle (getz 2(laser scan)). As can be seen by analyzing the two algorithms

the FTOA method is also very simple to implement requiring very few steps and, as a

result, very low computational power.

Algorithm 1 Supervisor

Flag = Supervisor(z2,Flag) {
if z2 ≥ ∆ && Flag == 1

B = getbp(state, z2);#section 2.3.2

Flag = 2;

elseif z2 ≤ δ

Flag = 1;

end

}

Algorithm 2 Main Code

Flag = 1;

(x, y) = getpos(laser scan);

z2 = getz 2(laser scan);

while||(x, y)|| ≤ ǫ1
#Not arrived at the origin

Flag = Supervisor(z2, Flag);

if Flag ==2

(v, ω) = U2(state,B);#eq.(2.28)

else

(v, ω) = U1(state); #eq.(2.22)

end

state update(v, ω);

(x, y) = getpos(laser scan);

z2 = getz 2(laser scan);

end

2.5.1 Experimental Behaviour

Fig. 2.7 and Fig. 2.8 show the different trajectories followed by the WMR using

two different methods on different soil’s condition. The decision to run tests on two

different soils has been taken for two main reasons: firstly, to justify the choice of the
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Figure 2.7: Left: Real scenario with coarse soil (moquette). Right: Zoom on trajecto-

ries

perturbed model (2.1), then to show the robustness of the controller designed in section

2.1 with respect to this change. Without adapting the PID gains which translates the ve-

locities commands in current inputs, the soil properties represent a real perturbation for

the system, because for the same velocity input the WMR reacts differently following

different trajectories. It can be seen how the proposed method handles these pertur-

bations in a better way than traditional strategies producing repeatable trajectories. In

Fig. 2.7, for a coarse soil (moquette), it can be noticed that all the trajectories generated

by the FTOA are close to each other and that they change (even if not much) for the

DWA. Repeating the experiment on a smooth soil (linoleum), Fig. 2.8, the changes

in the trajectories are more clear, that it is given by the reduced friction between the

wheels and the soil that caused grip issues for the WMR. Again, the FTOA method

gives better results (repeatability, time spent, distance traveled) than the DWA.

The comparison between FTOA and DWA for the scenarios showed in Fig. 2.7 and

Fig. 2.8, with equal maximal linear and angular velocities, based on 10 trials, showed

that the FTOA can achieve the avoiding in a faster (wrt time) and shorter (wrt distance)

way; detailed results are presented in Tables 2.3 and 2.4.

In addition, Fig. 2.9 shows how the outputs behave in a typical stabilization execu-

tion from a point to the origin; the vertical black lines represent the switching instants.

The data comes from an execution for the scenario shown in Fig. 2.7. The z2 out-

put (2.3) decreases between two successive switches and it is worth to remark that z1
output (2.2) never increases, not even during the collision avoidance maneuver; that is

exactly how the controllers (2.22) and (2.28) overseen by the supervisor (2.30) should

work.

2.5.2 Discussion

Trying not to increase the distance from the target point (in this work the origin

with any loss of generality) over the complete maneuver causes the robot having tra-

jectories less smooth than other methods but, as it has been proven, this behavior does
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Figure 2.9: Outputs evolution

DWA FTOA

Time (s) min max average min max average

22.43s 26.30s 24.41s 14.2s 19.2s 16.47s

Distance (m) min max average min max average

4.23m 4.39m 4.32m 3.83m 3.92m 3.86m

Table 2.3: Comparison between FTOA method and DWA on coarse soil
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DWA FTOA

Time (s) min max average min max average

25.36s 42.95s 32.00s 16.2s 19.1s 18.4s

Distance (m) min max average min max average

5.42m 6.10m 5.79m 4.36m 4.86m 4.59m

Table 2.4: Comparison between FTOA method and DWA on smooth soil

not worsen the overall performances. The smoothness of the trajectories can be ad-

justed augmenting the parameters k for (2.22) and ǫ for (2.28) that will cause a decay

in the performances wrt time spent and distance traveled as it is obvious. Moreover,

under the assumption to deal with the single obstacle, the proposed method has no is-

sues related to small non-convex obstacles because of the way the collision avoidance

is realized and the obstacle described, nevertheless, being a reactive (local) method,

there is a high probability that it fails if the WMR is trapped in a U-shaped trap, like

others local approaches. Other inconvenient could appear if the obstacle has a very

long shape (a wall), that could cause an unwanted oscillatory behavior. All the issues

listed above could be solved integrating the algorithm in a global planner which gives

suitable points as targets to stabilize progressively.

2.6 Conclusion

This chapter presented a switching based solution to stabilize a unicycle-like WMR,

locally avoiding obstacles and rejecting disturbances due to neglected dynamics. A

supervisor orchestrates two different controls to regulate two respective outputs. It has

been shown how the cooperation of the two controls leads to a practically finite-time

robot deployment, while the collision avoidance is always achieved in a finite time. In

addition, the results of this work have been proven and tested on a real platform to show

the effectiveness of the method also comparing it with a well-known method as the

DWA. The presented solution treats the case of static obstacles but several experiments

have been run with slow moving obstacles with preliminary results; it is in the intention

of the authors to extend the results for moving obstacles. Future work will also involve

the integration of the proposed strategy in a global planner as specified in Section 2.5.2

to overcome the limitations of the method and to relax the hypothesis of circular shaped

obstacles.
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Chapter 3

Input-to-State Stability to improve

the classical Potential Field Method

It is in the spirit of the research to find out new way to solve problems and trying

to ameliorate the existing ones. In Section 1.5, the Potential Field method has been

presented along with its advantages and drawbacks; the appearance of local minima,

which causes the WMR to stop and not accomplish the task, is one of these drawbacks.

In this chapter, a recent control theory result [2], is used to presents a new approach

to avoid local minima in the Potential Field (PF) method to realize 2D real time ob-

stacles avoidance (a summary of the results present in [2] can be found in Appendix

A). Starting from the hypothesis of disjoints obstacles, very common in literature for

the method [75], a new potential field is designed and the gradient of such a field is

used as input for a two variables integrator. Under proper assumptions, the system is

shown to be Input-to-State-Stable (ISS) with respect to decomposable invariants sets

[2]. The Input-to-State Stability (ISS) property is the key of the proposed modification.

It allows to deal with local minima in an effective way, suggesting thus a novel solution

to the problem which is easy and elegant and that guarantees, thanks to some manip-

ulations, the collision avoidance for the WMR without the risk to remain blocked in a

local minimum.

The new formulation of the PF and its properties are used to avoid local minima is

thus applied to drive a unicycle like Wheeled Mobile Robot (WMR) subject to additive

input disturbances to a target (i.e. the origin). It is necessary to take into account the

non-holonomic constraints whose the robot is subject which preclude certain move-

ments. The aim is to have the WMR to track the movement of the 2D particle. The

tracking problem for non-holonomic WMR has been previously treated in literature

[75, 124, 111, 55], often in obstacles free scenario. This chapter will present 2 ap-

proaches: the former one applies an output linearization technique [128, 110] and it is

indeed the simplest. The controls obtained for the particle case may be applied, with

a simple change of coordinates, to the mobile robot; this approach does not allow the

control of the orientation of the robot though. A second one is, thus, designed to con-

trol both linear velocity and orientation of the WMR. This controller assigns for the

linear velocity the norm of the field gradient while the angular velocity command is

regulated with a finite-time control similar to the one used in [55]. It is formally shown

that the finite time control robustly guarantees the convergence of the robot orientation

to the gradient lines direction and simulations have been carried to show the very sat-
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isfying result. The experimental part sees a Turtlebot 2 WMR avoiding obstacles in

an office-like environment. Usually, obstacle avoidance methods (as the PF one) relied

on ultrasonic sensor [148] or infrared ones [114] while the actual trend is to use cam-

era devices or laser range finders; in this work we use a LIDAR device to localize the

WMR in a map and to realize the avoidance.

3.1 Potential field method with static obstacles

First, let us consider a simplified model of a mobile agent represented by doubled

integrator dynamics:

ẋ = ux, (3.1)

ẏ = uy,

where x ∈ R and y ∈ R are the coordinates of the agent in the plane, z = [x y]T , ux ∈
R and uy ∈ R are the corresponding controls. It is necessary to design the controls

ux, uy providing the agent regulation to the origin under avoidance of collisions with

isolated point-wise obstacles, which are defined by their coordinates ζi = (xi, yi) and

safe distances di around them for i = 1, . . . , N , where N > 0 is a finite number

of obstacles. We will assume that |ζi − ζj | > max{di, dj} and |ζi| > di for all

1 ≤ i 6= j ≤ N , i.e. the obstacles are separated and the origin is not occupied by an

obstacle.

The problem will be solved using the potential field method, whose idea consists in

defining a repulsion potential Ur with respect to the obstacles and attraction potential

Ua with respect to the origin, next the controls can be designed proportional to the

“forces” generated by the total potential U [128, 121]. The main drawback of that

approach consists in appearance of local conditional extrema, which theoretically do

not allow a global problem solution to be guaranteed by the method. In this work

we will use the results presented in the previous section to design the agent dynamics

that is C1 and ISS with respect to the set W composed by equilibriums, among them

the equilibrium at the origin is attractive, the equilibriums related to the obstacles are

repulsing, while ones corresponding to the local extrema are saddle. Next, applying

specially designed small perturbations to that ISS system we will avoid the unstable

equilibriums.

To design the attraction potential Ua we would like to impose the followin con-

straints:

• it should be twice continuously differentiable with respect to x and y;

• its gradient should be globally bounded (the velocity of movement out the origin

in the collision-free case should be approximately constant in a robotic applica-

tion).

The following potential yields these constraints:

Ua(z) =











|z|2 if |z| ≤ υ,

|z| if |z| ≥ Υ,

λ(|z|)|z|2 + [1− λ(|z|)]|z| otherwise,

λ(s) =

(

2s3 − 3(υ +Υ)s2 + 6Υυs+Υ2(Υ− 3υ)

Υ2(Υ− 3υ) + υ2(3Υ− υ)

)2

,
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Figure 3.1: The continuous field in the case of a single obstacle with ν = 0.3, Ψ = 0.5,

ζ1 = (2, 2), d1 = 0.8 and α = 4

where 0 < υ < Υ < +∞ are the design parameters. Thus, the potential Ua is

quadratic in z close to the origin, it has a linear growth rate far enough and the function

λ ensures a smooth transition between these zones.

The repulsion potential Ur should be also twice continuously differentiable with

respect to x and y, and it should be active only on a small zone around the obstacle

(the agent can detect the obstacle presence only locally in an uncertain environment in

a robotic application, for example):

Ur(z) = α

N
∑

i=1

max{0, d2i − |z − ζi|2}2,

where α > 0 is a tuning parameter.

The total potential U , Fig.3.1, has the form:

U(z) = Ua(z) + Ur(z), (3.2)

with the gradient

∇zU(z) = ∇zUa(z) +∇zUr(z),

∇zUa(z) =











2z if |z| ≤ υ,

z|z|−1 if |z| ≥ Υ,

ϕ(z) otherwise,

∇zUr(z) = −4α

N
∑

i=1

(z − ζi)max{0, d2i − |z − ζi|2},

where ϕ(z) = ∇z

(

λ(|z|)|z|2 + [1− λ(|z|)]|z|
)

is the corresponding C1 function

ensuring a continuous transition between 2z and z|z|−1. Note that by construction

∇zU(z) is a C1 function of z. As usual in the potential field method we assign:

[

ux
uy

]

= −∇zU(z) + v, (3.3)
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where v ∈ R
2 is an auxiliary bounded input to be designed later, then the closed-loop

system (3.1), (3.3) takes the gradient form:

ż = −∇zU(z) + v. (3.4)

Next, we are going to show that for v = 0 this system has an attracting equilibrium

at the origin, repulsing equilibriums in a vicinity of ζi for each i = 1, . . . , N and a

saddle equilibrium in the border of the repulsion zone around ζi for each i = 1, . . . , N .

Therefore, a compact invariant set W containing all α- and ω-limit sets1 of (3.4) for

v = 0 is decomposable (in the sense of Definition 12 appendix A), and that Theorem

7 in Appendix A can be applied to establish ISS with respect to the set W for the input

v.

3.1.1 Equilibrium at the origin

Under the restrictions |ζi| > di for all 1 ≤ i ≤ N , the system (3.4) is reduced to

ż = −2z

for |z| ≤ υ̃ for some 0 < υ̃ ≤ υ, which is obviously locally attractive. For simplicity

of presentation below we will assume that the constants υ and Υ are selected in a way

to provide |ζi| ≥ Υ+ di for all 1 ≤ i ≤ N .

3.1.2 Equilibriums around the obstacles

Since the obstacles are separated from one another and from the origin, around each

obstacle the system (3.4) takes a reduction (|z| ≥ Υ):

ż = −z|z|−1 + 4α(z − ζi)max{0, d2i − |z − ζi|2}+ v

for some 1 ≤ i ≤ N . Clearly, if di < |z − ζi| then ż = −z|z|−1 and there is no

equilibrium, thus we may restrict attention to the case |z − ζi| ≤ di and

ż = −z|z|−1 + 4α(z − ζi)(d
2
i − |z − ζi|2) + v.

On this set the equilibriums of (3.4) satisfy the vector equation

z = 4α(z − ζi)(d
2
i − |z − ζi|2)|z|

or the corresponding scalar equation

|z|2 − 8α(d2i − |z − ζi|2)|z| zT (z − ζi)

+16α2|z − ζi|2(d2i − |z − ζi|2)2|z|2 = 0.

Introducing parametrization z = κζi + η, where κ ∈ R and η ∈ R
2, and substituting

it in the last equation it is tedious but straightforward to obtain that for any |η| 6= 0 the

equality is not satisfied. Therefore setting η = 0, then under substitution z = κζi we

have:

1For the definition of α- and ω-limit sets refer to Appendix A
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κ2|ζi|2 − 8α[d2i − (κ − 1)2|ζi|2]κ|ζi|κ(κ − 1)|ζi|2 + 16α2κ2(κ − 1)2|ζi|2[d2i −
(κ− 1)2|ζi|2]2|ζi|2 =

κ2|ζi|2{1−8α[d2i−(κ−1)2|ζi|2]|ζi|(κ−1)+16α2(κ−1)2[d2i−(κ−1)2|ζi|2]2|ζi|2} =

κ2|ζi|2{1−8α[d2i−(κ−1)2|ζi|2]|ζi|(κ−1)+16α2(κ−1)2[d2i−(κ−1)2|ζi|2]2|ζi|2} =

κ2|ζi|2{1− 4α[d2i − (κ− 1)2|ζi|2]|ζi|(κ− 1)}2 = 0,

the equation for equilibriums is reduced to

1− 4α[d2i − s2|ζi|2]|ζi|s = 0

for s = κ− 1, or

s2 − d2i
|ζi|2

s+
1

4α|ζi|3
= 0

that is a depressed cubic equation, which by the Cardano’s method has only real roots

if

αd3i >
3
√
3

8
. (3.5)

Next, by the Routh–Hurwitz stability criterion the equation has 2 roots with positive

real parts. Therefore, for |z − ζi| ≤ di the system (3.4) has two equilibriums zi,10 and

zi,20 under the condition (3.5). The Cardano’s method also provides the expressions of

exact solutions and, hence, the coordinates of the equilibriums zi,10 , zi,20 (both equilib-

riums are located farther from the origin than the obstacle ζi on the line connecting the

origin and the point (xi, yi)). Finally, the system (3.4) is continuously differentiable,

then the linearization shows that the equilibrium zi,10 (closer to ζi) is purely repulsing,

and another one zi,20 is saddle (the corresponding local minimum).

To evaluate the zone of repulsion around ζi a Lyapunov function for linearization

around zi,10 can be used, or let us consider a Lyapunov function V (e) = |e|2 for e =
z − ζi and v = 0:

V̇ = 2eT [−z|z|−1 + 4αe(d2i − |e|2)]
= −2eT z|z|−1 + 8αV (d2i − V )

≥ −2|e|+ 8αV (d2i − V ).

Note that |e| =
√
V then

V̇ ≥ [4α
√
V (d2i − V )− 1]2

√
V .

The Cardano’s method can be used to find the solutions of the equation 4α
√
V (d2i −

V ) = 1, which determines the sign definiteness of V̇ . The expression in the square

brackets 4α
√
V (d2i −V )−1 reaches its maximum 2√

3

(

8
3
√
3
αd3i − 1

)

di for V = 1
3d

2
i ,

which is positive if the condition (3.5) is fulfilled (note that since the value of di is

constrained by the physical dimensions of the agent, then (3.5) is a condition for α
to satisfy). Thus the repulsion zone around the obstacle exists and it can be easily

estimated.
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3.1.3 Robustness with respect to v

The conditions on existence of the equilibriums, established above, are as follows:

Assumption 4. Let the condition (3.5) be satisfied, |ζi−ζj | > max{di, dj} and |ζi| ≥
Υ+ di for all 1 ≤ i 6= j ≤ N .

Now we would like to show that the set

W = {{0}, z1,10 , z1,20 , . . . , zi,10 , zi,20 , . . . , zN,1
0 , zN,2

0 },

which is composed by the equilibrium at the origin andN pairs of equilibriums zi,10 , zi,20

associated with each obstacle, contains all α- and ω-limit sets of (3.4) for v = 0 and

it is decomposable in the sense of Definition 12 in Appendix A. The system (3.4) has

a Lyapunov function U(z), by construction α1(|z|) ≤ U(z) ≤ α2(|z|) for all z ∈ R
2

and some α1, α2 ∈ K∞, whose derivative has the form:

U̇ = −|∇zU(z)|2 +∇T
z U(z)v

≤ −0.5|∇zU(z)|2 + 0.5|v|2 (3.6)

and the total potential stops to decrease for v = 0 only on the set where ∇zU(z) = 0,

but by consideration above it is W: i.e. there exist γ1, γ2 ∈ K∞ such that γ1(|z|W) ≤
|∇zU(z)| ≤ γ2(|z|W) for all z ∈ R

2. There is no cycle in the decomposition of W
due to the same property U̇ ≤ 0 for v = 0 (indeed the obstacles are separated and

to pass from one saddle equilibrium around the obstacle ζi to another one around ζj
it is necessary to cross the zone where ∇zU(z) = ∇zUa(z) and U̇ < 0, therefore

a trajectory cannot return back). Thus, W is decomposable and contains all α- and

ω-limit sets of (3.4) for v = 0. Further,

U̇ ≤ −0.5γ21(|z|W) + 0.5|v|2,

and by compactness of W and since 0 ∈ W

|z|W ≤ |z| ≤ |z|W +R

for all z ∈ R
2 and some R > 0 (diameter of the set W). Next, by the properties of

functions from the class K∞

γ21(0.5|z|W + 0.5R) ≤ γ21(|z|W) + γ21(R)

then:

U̇ ≤ −0.5γ21(0.5[|z|W +R]) + 0.5γ21(R) + 0.5|v|2

≤ −0.5γ21(0.5|z|) + 0.5γ21(R) + 0.5|v|2

≤ −0.5γ21 [0.5α
−1
2 (U)] + 0.5γ21(R) + 0.5|v|2

then U is an ISS Lyapunov function and by Theorem 7 Appendix A, the following

result has been proven.

Lemma 3. Under Assumption 4 the system (3.4) is ISS with respect to the set W for

the input v.
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3.1.4 Design of the input v to escape local minima

The advantage of the ISS property is that appearance of any bounded disturbance

v does not lead to the system instability. In our case the total potential function U
is also an ISS Lyapunov function for the system (3.4). If v = 0 and the agent in

(3.4) is approaching an unstable equilibrium, then according to the expression of U̇ the

velocity of the agent is decreasing proportionally to |∇zU(z)|. Thus, if |∇zU(z)| ≤ ǫ
for some predefined ǫ > 0 and we are far from the origin, it can be a signal of closeness

to a saddle equilibrium, then an input v 6= 0 can be generated to shift the movement

direction.

The input v can be selected bounded and pushing the system in an arbitrary di-

rection with a uniform distribution, by ISS property the solutions asymptotically will

stay close to W and it is possible to show that the origin will be globally attractive.

However, using the Lyapunov function U the input v always can be designed in order

to additionally guarantee a decreasing of U . From (3.6)

v =











ρ

[

∇yU(z)

−∇xU(z)

]

if |∇zU(z)| ≤ ǫ and |z| > υ,

0 otherwise,

(3.7)

ρ = sgn

(

y − yi
xi
x

)

, i = arg inf
1≤j≤N

|z − ζj |,

sgn(s) =

{

1 if s ≥ 0,

−1 otherwise

ensures that U̇ ≤ 0 for all t ≥ 0 (U̇ = −|∇zU(z)|2 while v 6= 0) and for U = 0
as well, and for the case of agent velocity dangerous decreasing (|∇zU(z)| ≤ ǫ) far

from the origin (|z| > υ) the proposed input v generates an orthogonal disturbance

to the current direction of movement. The variable ρ defines the orientation of this

orthogonal perturbation, in (3.7) it points out from the line connecting the origin and

the point (xi, yi) (that is the coordinate of the closest obstacle) and where we have the

unstable equilibriums.

Theorem 2. Under Assumption 4 the system (3.4) with the avoidance control (3.7) has

the origin attractive from all initial conditions z(0) /∈ W \ {0}.

Usually, for a robotic application, it is assumed that the robot starts in the collision-

free conditions, i.e. z(0) /∈ D = ∪N
i=1Di where Di = {z ∈ R

2 : |z − ζi| ≤ di}.

Therefore, in this case definitely z(0) /∈ W \ {0} since W \ {0} ⊂ D.

Proof. Considering the ISS Lyapunov function U for the system (3.4) with the avoid-

ance control (3.7) we obtain:

U̇ = −|∇zU(z)|2

since ∇T
z U(z)v = 0 always. In addition, by construction v shifts the system trajecto-

ries out from the line y = yi

xi
x that contains the unwanted equilibriums zi,10 , zi,20 , then

the only point to stop is the origin.

Formally the control (3.7) does not use ISS property of the set W , it is designed

from a pure Lyapunov approach. We may modify (3.7) as follows in order to make the
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attractiveness of the origin global:

v =











ρ ε
|z|

[

y

−x

]

if |∇zU(z)| ≤ ǫ and |z| > υ,

0 otherwise,

(3.8)

ρ = sgn

(

y − yi
xi
x

)

, i = arg inf
1≤j≤N

|z − ζj |,

sgn(s) =

{

1 if s ≥ 0,

−1 otherwise

where ε > 0 is a design parameter. It is easy to check that vT z = 0 for all z ∈ R
2 and

|v| = ε if |∇zU(z)| ≤ ǫ and |z| > υ in (3.8).

Theorem 3. Under Assumption 4 the system (3.4) with the avoidance control (3.8) has

the origin globally attractive provided that ε > 2ǫ and ǫ > 0 is selected sufficiently

small.

Proof. From Lemma 3 the system (3.4) is ISS with respect to the set W for the input

v. By Theorem 7 in Appendix A, we known that in this case all solutions in the system

remain bounded since |v| ≤ ε, and due to the asymptotic gain property (Appendix A)

we have

lim sup
t→+∞

|z(t)|W ≤ η(ε)

for some η ∈ K. If the value of ǫ has been selected sufficiently small, then the set

A = {z ∈ R
2 : |z|W ≤ η(ε)} is a union of separated sets A1

i and A2
i contained only

one equilibrium point zi,10 and zi,20 respectively, and a neighborhood A0 of the origin,

i.e. A = A0 ∪
⋃N

i=1(A1
i ∪ A2

i ). In A0 the system is converging to the origin. Assume

that |z(t)|W ∈ A1
i or |z(t)|W ∈ A2

i for some 1 ≤ i ≤ N , then for |∇zU(z)| ≤ ǫ and

|z| > υ the input v is always acting from zi,10 , zi,20 by construction, then U is strictly

decreasing. Indeed, for all cases ∇zUa(z) is proportional to z, then vT∇zUa(z) = 0
for all z ∈ R

2. Next,

∇zUr(z) = 4α(z − ζi)(d
2
i − |z − ζi|2)for z ∈ Di,

then vT∇zUr(z) = −4α(d2i −|z−ζi|2)vT ζi where 4α(d2i −|z−ζi|2) ≥ 0 for z ∈ Di.

Due to selection of ρ we have vT ζi > 0, then

U̇ = −|∇zU(z)|2 + vT∇zU(z)

with vT∇zU(z) ≤ 0 for all |∇zU(z)| ≤ ǫ and z ∈ Di. Therefore, U is not increasing.

Note that vT∇zU(z) = 0 only if d2i = |z − ζi|2, i.e. z belongs to the border of

Di. By selection ǫ (and ε) sufficiently small it is possible to ensure that intersections

of A1
i and A2

i with the set where |∇zU(z)| ≤ ǫ belongs to the interior of Di, then

vT∇zU(z) < 0 always for all |∇zU(z)| ≤ ǫ and |z| > υ, thus U is strictly decreasing

to zero. In addition, from (3.4):

|ż|2 = (v −∇zU(z))T (v −∇zU(z)) = |∇zU(z)|2 − 2vT∇zU(z) + |v|2

and for |∇zU(z)| ≤ ǫ and |z| > υ we have

|ż|2 ≥ −2εǫ+ ε2 > 0,

then there is no new equilibrium point induced by v (as can be seen also in Fig. 3.2).
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Figure 3.2: Gradient Lines in the case of a single obstacle with ν = 0.3, Ψ = 0.5,

ζ1 = (2, 2), d1 = 0.8,α = 4 and ǫ = 0.1

3.1.5 More complex situations

Of course in reality the assumption about separation between obstacles may be not

satisfied, but even for this case the approach can be easily extended. Application of per-

turbation v with the amplitude ε do not destroy boundedness of the system trajectories

by ISS property. If ε has been selected sufficiently small, then asymptotically z(t) en-

ters A, as it has been defined above, whose separated subsets contain a single isolated

extreme point of U . The function |∇zU(z)| is C1 by construction, then ∇z|∇zU(z)|
can be calculated and locally v can be selected proportional to ∇z|∇zU(z)| in order to

maximize |∇zU(z)|, which is equivalent of the extreme point avoidance. In the simple

case presented above the calculation of ∇z|∇zU(z)| may be avoided.

3.1.6 Results of simulation

For υ = 0.1, Υ = 0.5, α = 2, N = 1 and (x1, y1) = (2, 2) with d1 = 1, the results

of the system (3.4) simulation for different initial conditions with v = 0 are shown in

Fig. 3.3a. The results of the system (3.4) simulation with (3.7) and (3.8) are shown in

Fig 3.3b (the difference between the controls (3.7) and (3.8) is not visible in this scale).

As we can conclude, for v = 0 the potential field method sticks in the local extreme for

some initial conditions, while with the proposed modifications (3.7) or (3.8) the origin

is attractive under provided restrictions.

3.2 WMR obstacle avoidance

Consider a wheeled mobile robot whose kinematic model is perturbed like in 2.1,

following the same considerations about such a kind of perturbations:

q̇x = cos(qθ)u(1 + δ1),

q̇y = sin(θ)u(1 + δ1), (3.9)

q̇θ = ω(1 + δ2),

where (qx, qy) ∈ M is the robot position and M ⊂ R
2 is a compact set containing the

origin, qθ ∈ (−π, π] is the robot orientation, |u| ≤ umax and |ω| ≤ ωmax are linear
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Figure 3.3: The results of the system (3.4) simulation

and angular velocities of the robot respectively (umax and ωmax are given bounds),

δk ∈ [δmin, δmax], k = 1, 2 are exogenous bounded disturbances [53], −1 < δmin <
δmax < +∞.

The easiest way to apply the strategy to an unicycle-like WMR would be to linearize

the system [128] considering the dynamics of a point Ψ on the x axis of the robot

reference frame (Fig. 3.4) and apply the control (3.3) to it. In particular the point

Ψ = (Ψx,Ψy)
T = (qx + ψ cos qθ , qy + ψ sin qθ)

T , with ψ the distance between the

robot center and Ψ, has the following dynamics:

[

Ψ̇x

Ψ̇y

]

= R

[

u(1 + δ1)
ω(1 + δ2)

]

, R =

[

cos qθ −ψsinqθ
sin qθ ψ cos qθ

]

. (3.10)

The expression (3.10) can be rewritten as

[

Ψ̇x

Ψ̇y

]

= R

[

u

ω

]

+R

[

uδ1
ωδ2

]

. (3.11)

Let us consider R

[

u

ω

]

=

[

ux

uy

]

of (3.3) and (3.8), the following theorem will apply:

Theorem 4. Let Assumption 1 to be satisfied. The system (3.11) with control (3.3)

and (3.8), where ε > 2, ǫ > 0 sufficiently small, has the origin globally attractive,

provided that ||δ|| < max
{

ψ, ψ−1
}

.

Proof. Let us consider that

∣

∣

∣

∣

R

[

uδ1
ωδ2

]∣

∣

∣

∣

≤ |d| |R|
∣

∣

∣

∣

[

u
ω

]∣

∣

∣

∣

. Being

[

ux
uy

]

= −∇ΨU(Ψ)+

v = R

[

u
ω

]

, and considering V = U(Ψ) as a Lyapunov function, with U(Ψ) defined

as (3.2), then:

V̇ = ∇ΨU(Ψ)

(

−∇ΨU(Ψ) + v +R

[

uδ1
ωδ2

])

≤ − |∇ΨU(Ψ)|2 + |∇ΨU(Ψ)| v + |R|
∣

∣R
−1

∣

∣ |d| |∇ΨU(Ψ)|2

≤
(

|R|
∣

∣R
−1

∣

∣ |d| − 1
)

|∇ΨU(Ψ)|2 + |∇ΨU(Ψ)| v
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Figure 3.4: Position of the Ψ point.

it follows that if |R|
∣

∣R−1
∣

∣ |δ| < 1 the stability is proven using the results of Lemma 3

and Theorem 3.

The value |R|
∣

∣R−1
∣

∣ |δ| can be rewritten as max
(

ψ, ψ−1
)

|δ|, it means that select-

ing ψ carefully the condition is always verified.

Such a technique is easy and effective as can be seen in Fig. 3.5 (blue path), but

it doesn’t allow the direct control on the WMR orientation and on the positivity of the

linear velocity, resulting for instance in backward maneuvers (this happens when the

initial conditions are not ideal, like the WMR non facing the target point). We would

like to avoid this kind of movements for practical reasons.

For this purpose, to control both linear velocity and orientation of the WMR the

trajectory generated by (3.4), (3.8) (or with (3.7)) can be used as a reference for (3.9),

defining θd = arctan2 (∇yU(z),∇xU(z)) and γ = θd − q:

u =
umax

1 + ε

√

u2x + u2y, (3.12)

ω =
(

ωmax

√

|γ|+ k
)

sign(γ).

Theorem 5. Let Assumption 4 hold. The control (3.12) stabilizes the γ(t) variable in

finite-time orienting the robot as the gradient ∇zU(z) of the field , it follows that the

system (3.9) with control (3.12) has the origin globally attractive.

Proof. Let us consider the variable γ(t), and consider the Lyapunov function V =
1
2γ

2, then:

V̇ = γ [γ̇ − ω (1 + δ2)] .

As specified in section 3.1, the U(z) field is a C1 function therefore the derivative

of γ(t) exists, is continuous and bounded because of the construction of the field U(z).
Such a derivative is bounded, then it is possible to find a

k ≥
(

d

dt
(arctan2 (∇yU(z),∇xU(z)))

)

/ (1− δmin)

to have V̇ ≤ 0. Since, of consequence, ∃ T ≥ t0 time in which the robot orientation is

aligned with one of the gradient lines, under Assumption 4 and Theorems 2 and 3, the

controller u in (3.12) asymptotically stabilizes the WMR.
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Figure 3.5: The result of simulations for the three different modifications of the PF

method.

3.2.1 Simulations

The results of simulation for the system (3.11) with control (3.3) and (3.8) and for

the system (3.9), (3.12) are shown in Fig. 3.5. The bounds for the inputs are umax = 1
and ωmax = 3. Two cases are presented: single obstacle (Fig.3.5(a)) and multiple

obstacles (Fig. 3.5(b)). In both parts of Fig. 3.5 the obstacle is the zone filled in

violet, while the distance of influence is the black circle around the obstacle itself. The

proposed methods are called Apf-R matrix and NON-Apf, the latter to emphasize the

non asymptotic (finite time) behavior of the controller acting on the orientation of the

WMR. Moreover the proposed modifications have been compared with the standard

APF [121].

In both figures of Fig. 3.5 the comparison with the standard APF has been made

for 2 values of k̄, when using the NON-Apf control, to show how it affects the control

inputs and the overall performances.

The unwanted behavior of the controller Apf-R matrix method discussed in the

previous section is visible both in Fig. 3.5 and Fig. 3.7; the path followed by the WMR

(Fig. 3.5) using this method clearly shows a backward maneuver, as it is confirmed

from Fig. 3.7, where it is shown the negative linear velocity input.

Fig. 3.6 shows the orientation of the robot qθ with respect to the direction of the

field θd, the desired angle, as the k̄ gain changes (not controlling the orientation of the

WMR the Apf-R matrix method has been omitted from the plot). The second column

of Fig. 3.6 shows how the controlled variable γ evolves. As it can be gathered from

the plots, as the value of k̄ increases the WMR reacts faster to the change of direction

of the field due to the obstacles presence, decreasing also the instantaneous value of

the γ error variable. Nevertheless, these improvements come with a drawback, increas-

ing k̄ (see k̄ = 0.5, Fig. 3.6 and Fig.3.7) could cause a bit of chattering around the

stabilization point due to the increased control effort as it can be noticed also in Fig.

3.7.
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Figure 3.6: Evolution of the WMR orientation qθ and desired angle θd and respective

error variable dynamic γ

0 20 40 60 80 100 120

−1

−0.5

0

0.5

1

Linear Velocity Input

 

 

NON−Apf k=0.5

NON−Apf k=0.1

Apf R matrix

Standard − APF

0 20 40 60 80 100 120
−3

−2

−1

0

1

2

3

Angular Velocity Input

 

 
NON−Apf k=0.5

NON−Apf k=0.1

Apf R matrix

Standard − APF
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3.2.2 More complex scenarios

Several simulations were run also for more complex scenarios, in which the features

of the equipped sensor for the implementation are taken into account. In the case the

real WMR has a LIDAR laser ranger finder. In Fig. 3.8(b) is shown the path followed

by the WMR using the proposed modification of the potential field, while in Fig. 3.8(a)

the strategy to decide which is the “point” to use as reference for the obstacle. Basically,

the chosen point ζ, green star in Fig. 3.8(a), is the averaging on the x and y coordinates

of the LIDAR sensed points in a predefined range; the radius is the distance among

ζ itself and the farthest sensed point of the scan, which leads to the definition of the

influence distance d that is the radius augmented of the diameter of the robot.

3.2.3 Implementation

The presented strategy has been implemented on a Turtlebot2 (http://www.

turtlebot.com/) mobile robot. The WMR was equipped with a Hokuyo R© (http:

//www.hokuyo-aut.jp) UTM-30LX LIDAR device. The necessary libraries to

communicate with the WMR were found on Robotic Operating System (ROS), “Groovy”

release (www.ros.org). The same strategy used in Section 3.2.2 to simulate the LIDAR

based obstacle detection algorithm has been implemented to get obstacles positions

ζi = (xi, yi) in real time. The WMR showed an excellent behavior avoiding obstacles

without any previous knowledge of the environment, nevertheless some oscillations

have been noticed while moving in narrow corridors. The trajectories followed in an

office-kind environment are shown in Fig.3.9(a), the WMR objective is to reach the

origin of the global frame in the lower-right corner, a plot of the trajectories in the

Cartesian plane is given in Fig. 3.9(b) while Fig. 3.10 shows the evolution of the qx
and qy through the origin. As it can be seen the robot avoids the obstacles and passes

trought a narrow passage (80cm) to finally arrive to its destination (it is useful to remark

that the robot has no knowledge of the obstacles a priori).

3.3 Conclusions

This chapter presented a novel formulation of the PF method in which the field

is continuous everywhere and the ISS property of the system guarantees the global

attractiveness of the origin avoiding local minima. It has been formally shown how the

introduction of a small perturbation v as input does not introduce new equilibriums for

the system; the goal remains the only attractive point.

To make a unicycle-like WMR to follow the reference created by the two variable

integrator two strategies have been proposed: the first strategy linearises the output to

directly apply the results synthesized for the particle case, without having the capability

to control the orientation of the robot. A second strategy is, thus, presented which uses

the particle case results as a base to design a control. The control steers the robot in

the direction of the field lines in finite time to achieve the task. Both formulations are

presented in simulations for a unicycle-like WMR, showing nice behaviours avoiding

standing alone and multiple obstacles and in complex environments. Real experiments

with a Turtlebot II platform in an office environment gave nice results, with some is-

sues noticed in presence of narrow passages and target excessively close to an obstacle

which did not prevent to reach the goal.

In the next future the intention is to improve the method to cancel any oscillations,
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to augment the dimension to the 3D case and to extend it to be used in the case of

multi-agent systems.
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Chapter 4

Leader-Follower Formation using

Supervisory Control

Chapter 1, along with the modelling and the navigation problem, treated the most

common formation strategies for mobile robots since multi-agent systems have been

deeply treated in the last decade with different approaches [91]. This chapter deals with

the Leader-Follower formation problem, where the leader, either physical or virtual

[30],[47], [49], [80], is the most advanced agent in the formation and it has the role to

lead the formation and acts as reference for all other robots which follow it according

to a predefined rule.

The aim of this chapter is to present an original leader-follower approach for a

group of wheeled mobile robots (WMRs). The goal is to move the leader and the

followers to a destination point without sharing the leader velocity, and being able to

avoid collision between the agents and external obstacles. Despite the classical l − l
and l − φ schemes ([49]), where an angle and one or more distances were given to the

agents to achieve the formation and avoid collisions, in the proposed solution just a

desired distance to the leader is given to each agent, which means that the leader does

not represent the most advanced robot of the formation but more a reference to follow.

To reach such a goal the solution makes use of the output stabilization and the

supervisory control frameworks taking into account the notions of stability for switched

systems [93] and output-to-state stability property definition [134]: each agent, except

for the leader, switches between three controllers which regulate two different outputs

proportional to the distance to the leader and the distance between robots/obstacles

respectively; a specifically designed supervisor similar to the one proposed in Chapter

2 (in its turn, inspired by [35]) orchestrates the switches.

The first controller is in charge of achieving the rendezvous1 with the leader, i.e.

the agent has to approach the leader. The second one, called the following control,

assures the follower to maintain the heading and the velocity of the leader (which, as it

has been specified, is not shared on the network but it is obtained using a homogeneous

differentiator [115]). The third controller regulates a second output designed to avoid

collisions between agents and obstacles.

As for the previous chapters the synthesis of the controllers is carried out to be

robust with respect to additive input disturbances. The supervisor oversees the switches

1From the French expresison rendez-vous, that means appointment
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between the three controls.

In the following two approaches are presented: in the former one, the leader acts

just as a reference to follow, it is completely autonomous and it is not aware of the

status of the other members of the formation. This approach is showed to be efficient

via simulation and some conjectures. The latter sees the leader participating to the

manoeuvre actively, waiting in case one or more agents to be involved in the collision

avoidance manoeuvre; this modification to the problem allowed a formal verification

of the method via the control theory tools.

4.1 Leader Follower - Autonomous Leader

Let us consider a group of N ∈ R+ unicycle WMRs, in which the input is affected

by additive disturbances (each robot has the same model presented in the two previous

chapters):

q̇x,i = cos(qθ,i)(1 + d1,i)vi ,

q̇y,i = sin(qθ,i)(1 + d1,i)vi , (4.1)

q̇θ,i = (1 + d2,i)ωi ,

where (qx,i, qy,i) ∈ R
2 define the Cartesian position of each robot, and qθ,i ∈ [0, 2π)

is the orientation of the robots with respect to the world reference frame, vi and ωi

are the control inputs (the linear velocity and the angular velocity respectively). The

additive disturbances on the inputs are unknown, but supposed to be bounded as:

−1 < dmin ≤ dk,i ≤ dmax, k = 1, 2, i = 1, . . . , N . The aim is to design control

laws providing the rendezvous and leader-following (the robots must create a forma-

tion around the leader) with collision/obstacle avoidance capability for the specified

group of unicycle WMRs. The proposed solution uses a supervisor which articulates

the activation of three controls (designed below) depending on the needs. To achieve all

the tasks just information about the leader state and other follower positions are used,

this forces the use of a derivative estimator to retrieve the information about leader lin-

ear and angular velocity. The communication topology considered is fixed, it means

it does not change during the mission. In order to define rendezvous, leader-following

and obstacle avoidance goals, two outputs to regulate are defined using the accessible

information:

z1i =

√

(qx,L − qx,i)
2
+ (qy,L − qy,i)

2
, (4.2)

z2i = max

{

0,
1 + Λi

1 + dci
− 1

}

, Λi > 0, (4.3)

where z1i being the distance from the leader (i.e. (qx,L, qy,L) is the leader Cartesian po-

sition), and z2i is an output function of the distance dci =
√

(xc − qx,i)
2
+ (yc − qy,i)

2

from a point with the coordinates (xc,yc) (defined in Section 4.2.1, and dependent on

other robot positions). The first output z1i is used to manage the switch between the

rendezvous and following controllers, while the second output z2i is the one designed

to tackle the collision/obstacle avoidance part and design the dedicated controller. To

proceed, several assumptions must be introduced. Firstly the maximum leader velocity

must be smaller than the maximum followers velocities, i.e. ωL,max ≤ ωi,max and

vL,max ≤ vi,max, where the suffix max defines the maximum velocity. Then each fol-

lower enters the following mode when it reaches a distance δi from the leader, which
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can be different for different robots and bounded: δmin < δi < δmax, where δmin

is tied to the collision avoidance minimum distance and δmax is proportional to the

number N of robots. There is a safe distance around each robot λi, which ensures

absence of collisions. We will also assume that the linear velocity of the leader vL is

nonnegative (i.e. it is moving forward).

Theoretical Problem Formulation

The problem can be generalized as follows. Consider N ∈ R+ dynamical systems

q̇i = f(qi, ui, di), z1i = h1(qi), z2i = h2i(qi), (4.4)

where qi ∈ R
n is the state, q = [qT1 , . . . , q

T
N ]T , ui ∈ R

m is the control input and

di ∈ R
m is a disturbance, with di ∈ Ω = {di ∈ L∞

m : ||di|| ≤ D} for some D ∈ R+

(L∞
m denotes the set of essentially bounded functions di : R+ → R

m). We want to

regulate the outputs z1i ∈ R
p1 and z2i ∈ R

p2 assuming that the functions f , h1 and h2i
are continuous and locally Lipschitz. It is needed to design the controls ui : R

n → R
m

guaranteeing that both outputs z1i and z2i will be kept under certain thresholds: i.e. for

all 1 ≤ i ≤ N and all initial conditions qi0 ∈ R
n, q0 = [qT10, . . . , q

T
N0]

T , all di ∈ Ω
and t ≥ t0 ≥ 0:

|z1i(t, q0, di)| ≤ σ1i(max(∆i, |h1(q0i)|)), (4.5)

|z2i(t, q0, di)| ≤ σ2i(max(Υi, |h2i(q0)|)), (4.6)

where the values of ∆i and Υi are given (they are related with δi and λi), whereas

σji, j = 1, 2, are functions from the class K (continuous strictly increasing functions,

σ(0) = 0). The first output, (4.5), must be smaller than σ1i(∆i), in the case |h1(q0i)| >
∆i the trajectory should converge to a subset where |h1(qi)| ≤ σ1i(∆i). In the same

way (4.6) must be smaller than σ2i(Υi). In the case |h2i(q0)| > Υi the trajectory

should converge to a subset where |h2i(q)| ≤ σ2i(Υi). For the designed outputs, the

restriction (4.5) implies that all robots should find their positions sufficiently close to

the leader (on the distance σ1i(∆i)), and a safe distance should be preserved between

the robots and obstacles (σ2i(Υi)).

4.1.1 The Supervisory Control

In this section , firstly, the Supervisor scheme is presented, then it is shown how to

derive the controllers and how to prove their stability properties.

The Supervisor

To proceed the following sets have to be defined:

Xδi = {qi ∈ R
n : |h1(qi)| ≤ δi} ,

X∆i
= {qi ∈ R

n : |h1(qi)| ≤ ∆i}

Xλi
=

{

j ∈ {1, . . . , N} \ {i} :
√

(qx,j − qx,i)
2 + (qy,j − qy,i)

2 ≤ λi

}

∪
{

j ∈ {1, . . . , No} :
√

(qx,jo − qx,i)
2 + (qy,jo − qy,i)

2 ≤ λi

}

XΛi =

{

j ∈ {1, . . . , N} \ {i} :
√

(qx,j − qx,i)
2 + (qy,j − qy,i)

2 ≤ Λi

}

∪
{

j ∈ {1, . . . , No} :
√

(qx,jo − qx,i)
2 + (qy,jo − qy,i)

2 ≤ Λi

}
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Figure 4.1: Graphical explanation of the presented sets

where No is the number of (static) obstacles with the coordinates (qx,jo, qy,jo) (the

number No could be considered finite), {λi,Λi, δi,∆i} ∈ R
4
+ are given values of pa-

rameter (λi < Λi and δi < ∆i), whose meaning will be explained below. Once defined

those sets, one can describe the switching sequence: the controller U1i (following) is

activated when qi /∈ Xλi
and the distance from the leader is less than the threshold δi

and it is kept active while the output h1i(qi) remains less than ∆i (this is a safety mea-

sure to avoid continuous switching between U1i and U2i controllers); the controller

U2i (rendezvousing) is active when qi /∈ Xλi
and the output h1i(qi) is greater than

δi. The third controller U3i (collision/obstacle avoiding) becomes active as soon as

qi ∈ Xλi
and it is kept active until qi /∈ XΛi

; also in this case a hysteresis is added to

avoid continuous switching, or chattering, between the controllers [93]. Therefore, the

supervisory control law ui for all i = 1, . . . N can be summarized as follows

ui(t) = Upi(t)i(q(t)), pi : R+ → {1, 2, 3} (4.7)

with the initial conditions

t0 = 0, pi(t0) =











1 if qi(t0) ∈ Xδiand q(t0) /∈ Xλi
,

2 if qi(t0) /∈ Xδiand q(t0) /∈ Xλi
,

3 if qi(t0) ∈ Xλi
,

and pi(t) = pi(tj) for t ∈ [tj tj+1), where

pi(tj+1) =











1 if qi(tj+1) ∈ Xδiand q(tj+1) /∈ Xλi

2 if qi(tj+1) /∈ Xδiand q(tj+1) /∈ Xλi

3 if qi(tj+1) ∈ Xλi

, (4.8)

with tj is the generic switching instant defined as follows:

tj+1 = arg inft≥tj



















q(t) ∈ Xλi
if pi(tj) ∈ {1, 2} ,

q(t) /∈ XΛi
and qi(t) ∈ Xδi if pi(tj) ∈ {2, 3} ,

q(t) /∈ XΛi
and qi(t) /∈ Xδi if pi(tj) ∈ {3} ,

q(t) /∈ XΛi
and qi(t) /∈ X∆i

if pi(tj) ∈ {1} .

Now let us define the estimators and all Uki, k = 1, 2, 3.
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The Homogeneous Estimator

As specified in the introductive paragraph each follower can access just the position

and the orientation of the leader robot; to gather information about the leader velocities

vL and ωL, linear and angular, an observer is necessary. We will assume that the leader

has the following dynamics:

q̇x,L = cos(qθ,L)vL ,

q̇y,L = sin(qθ,L)vL ,

q̇θ,L = ωL ,

where the terms vL and ωL may contain perturbations with respect to some reference

controls, but for the cooperation objective we need to estimate not the reference con-

trols applied to the leader, but its real inputs vL and ωL. If q̇x,L, q̇y,L and q̇θ,L would

be available for all followers, then

vL =
√

q̇2x,L + q̇2y,L, ωL = q̇θ,L.

Thus since qx,L, qy,L and qθ,L are only available, then the estimates of the deriva-

tives of these variables have to be calculated. To estimate the derivatives the following

homogeneous finite-time differentiator [115] has been adopted:

ξ̇1 = −α|e|0.75sign(e) + ξ2,

ξ̇2 = −β|e|0.5sign(e), f̂ = ξ2,

e = ξ1 − f,

where ξ1, ξ2 are the states of the differentiator, f is the measured signal to be differ-

entiated (i.e qx,L, qy,L or qθ,L),
ˆ̇
f = ξ2 is the estimate of derivative we are looking

for (i.e. ˆ̇qx,L, ˆ̇qy,L and ˆ̇qθ,L). The use of this kind of observer helps also to filter the

disturbances and to have a better estimation of both velocities. It has been proven in

[115] that max{|ηv|, |ηω|} ≤ η̄ where ηv = vL− v̂L, ηω = ωL− ω̂L are the estimation

errors and

v̂L =
√

ˆ̇q2x,L + ˆ̇q2y,L, ω̂L = ˆ̇qθ,L.

Therefore, in all calculations below the estimates v̂L, ω̂L can be used assuming pres-

ence of bounded errors ηv and ηω .

Following

The Following control U1i= (vi, ωi) should be activated when a follower reaches

the circle of radius δi around the leader, it forces the orientation of the ith robot to track

the leader’s one. Defining a deviation angle ǫf = qθ,L−qθ,i, the dynamics of this error

can be easily derived from the WMR model (4.1):

ǫ̇f = q̇θ,L − q̇θ,i = ω̂L + ηω − ωi(1 + d2i). (4.9)

Select a Lyapunov function Vf = 1
2ǫ

2
f with

V̇f = ǫf [ω̂L + ηω − ωi(1 + d2i)],
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then the following control can be proposed:

ωi =
ω̂L + [Kf |ǫf |+ ρf + ρ0]sign(ǫf )

1− dmin
, (4.10)

where Kf and ρf are the design parameters,

ρ0 = |ω̂L|
dmax − dmin

1− dmin
+ η̄.

Then:

V̇f ≤ −2KfVf − ρf
√

2Vf ,

which yields the following upper estimate for ǫf :

|ǫf (t)| ≤
{
(

|ǫ0|+ ρf

Kf

)

eKf (t0−t) − ρf

Kf
if t < t0 + T̄ f

ǫ0 ,

0 if t ≥ t0 + T̄ f
ǫ0 ,

(4.11)

where t0 is the instant in which the control is switched on and ǫ0 = ǫf (t0) is the value

of the angle error at t0 with ǫ0 ∈ [−π, π],

T̄ f
ǫ0 = −K−1

f ln
ρf

Kf |ǫ0|+ ρf
.

Thus the control (4.10) stabilizes the orientation of the robot in a finite time, and this

time has the upper bound

T̄f = sup
ǫ0∈[−π,π]

T̄ f
ǫ0 = K−1

f ln

[

1 +
Kfπ

ρf

]

.

The velocity part vi of the Following control U1i cannot be a simple estimation of the

leader velocity v̂L because of the disturbance d1i acting on the follower. To explain the

idea of the control used in this case, consider the Lyapunov function Wf = z1i with

Ẇf = −(1 + d1i)vi cos(αi − qθ,i) + (v̂L + ηv) cos(αi − qθ,L),

where αi = atan
(

qy,L−qy,i

qx,L−qx,i

)

is the angle between the leader and the follower robots.

For the sake of simplicity hereafter, denote Cα = cos(αi − qθ,L) and Sα = sin(αi −
qθ,L), then:

Ẇf = −(1 + d1i)vi [Cα cos(ǫf )− Sα sin(ǫf )] + (v̂L + ηv)Cα.

From (4.11) ǫf (t) = 0 for all t ≥ t0 + T̄f , then

Ẇf = −Cα(1 + d1i)vi + Cα(v̂L + ηv)

that leads to the chosen linear velocity control:

vi =

{

ζi(z1i)sign (Cα)
η̄+dmaxv̂L
1−dmin

+ v̂L if ǫf = 0,

0 otherwise,

where

ζi(z1) =











0 z1 ≤ δi
1 z1 ≥ δi
z1−δi
δi−δi

δi < z1 < δi
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with design parameters δi, δi such that δi < δi ≤ δi ≤ ∆i. Substitution of this control

gives:

Ẇf < 0 ∀z1i ≥ δi

if ǫf = 0. While the error ǫf goes to zero in the finite time T̄f , then the distance z1i
may increase/decrease its value by vmaxT̄f . Therefore, since z1i(t0) ≤ δi, then the

control assures the follower to stay in the zone

z1i(t) ≤ δi + vmaxT̄f (4.12)

for all t ≥ t0. To prevent unnecessary switching to the rendezvousing control U2i it is

necessary to assume that δi + vmaxT̄f ≤ ∆i. From another side, in order to avoid a

collision with the leader we have to impose that δi − vmaxT̄f > λi.
The Following control can be summarized as follows:

U1i =











vi =

{

ζi(z1i)sign (Cα)
η̄+dmaxv̂L
1−dmin

+ v̂L if ǫf = 0,

0 otherwise,

ωi =
ω̂L+[Kf |ǫf |+ρf+ρ0]sign(ǫf )

1−dmin
.

(4.13)

We have proven the following result.

Lemma 4. The control (4.13) for the system (4.1) provides an uniform finite-time stabi-

lization for the variable ǫf = θL−θi (with an upper estimate (4.10)) and boundedness

of the output z1i (4.12).

In other words the control (4.13) ensures the resolution of the leader following

problem in the absence of collisions with other robots and obstacles.

Rendezvous

The Rendezvous control, U2i = (vi, ωi), assures the robot to approach the leader.

Define a desired orientation angle as ǫrdv = θi − αi, where αi = atan
(

qy,L−qy,i

qx,L−qx,i

)

.

Consider a Lyapunov function Wrdv = z1i, whose derivative admits the estimate:

Ẇrdv = Cα(v̂L + ηv)− cos(ǫrdv)vi(1 + d1i).

To preserve the semi-definitiveness of the function Ẇrdv the proposed control vi has

the form:

vi =

{

cos(ǫrdv)[Cα(v̂L+ηv)+ρrdv ]
1−dmin

if |ǫrdv| ≤ κπ
2 ,

0 otherwise,
(4.14)

where 0 < κ < 1, ρrdv >
v̂L+η̄

cos2(κπ
2
)+ρ1 and ρ1 > 0 are design parameters. Substitution

of (4.14) gives

Ẇrdv ≤ (v̂L + η̄)− cos2(ǫrdv)ρ1
1 + d1i
1− dmin

≤ −ρ1
for |ǫrdv| ≤ κπ

2 . Then we define the Lyapunov function Vrdv = 1
2ǫ

2
rdv and evaluate its

derivative:

V̇rdv = ǫrdv

{

ωi +
Sα(v̂L + ηv) + sin(ǫrdv)vi[1 + d1i]

z1i

}

,
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which leads to the following expression for ωi:

ωi = −
Sαv̂L + |Sα|η̄ + sin(ǫrdv)[1 + dmax]vi

z1i
(4.15)

−ρrdvsign(ǫrdv)−

(

Krdv +
[dmax − dmin]|vi|

z1i

)

ǫrdv,

where Krdv > 0 and ρrdv > 0 are design parameters. Applying this control, the

Lyapunov function derivative V̇rdv can be rewritten as follows:

V̇rdv ≤ −2KrdvVrdv − ρrdv
√

2Vrdv.

Therefore, the proposed control stabilizes the variable ǫrdv heading the robot toward

the leader in a finite time, and as for the previous controller the time of orientation can

be evaluated referring to the ǫrdv variable dynamics. The estimation for ǫrdv is

|ǫrdv(t)| ≤
{
(

|ǫ0|+ ρrdv

Krdv

)

eKrdv(t0−t) − ρrdv

Krdv
if t < t0 + T̄ rdv

ǫ0 ,

0 if t ≥ t0 + T̄ rdv
ǫ0 ,

(4.16)

where t0 is the instant in which the control is switched on and ǫ0 = ǫrdv(t0) is the

value of the angle error at t0 with ǫ0 ∈ [−π, π],

T̄ rdv
ǫ0 = −K−1

rdv ln
ρrdv

Krdv|ǫ0|+ ρrdv
.

Thus the the upper bound of the orientation time is

T̄rdv = sup
ǫ0∈[−π,π]

T̄ rdv
ǫ0 = K−1

rdv ln

[

1 +
Krdvπ

ρrdv

]

.

Then for any 0 < κ < 1 and any initial orientation ǫ0, the time of reaching the zone

where |ǫrdv| ≤ κπ
2 is less than T̄rdv .

The controller can be resumed as:

U2i =























vi =

{

cos(ǫrdv)[Cα(v̂L+ηv)+ρrdv ]
1−dmin

if |ǫrdv| ≤ κπ
2 ,

0 otherwise,

ωi = −Sαv̂L+|Sα|η̄+sin(ǫrdv)[1+dmax]vi
z1i

−ρrdvsign(ǫrdv)−
(

Krdv +
[dmax−dmin]|vi|

z1i

)

ǫrdv,

(4.17)

From the inequality Ẇrdv ≤ −ρ1 obtained above for the case |ǫrdv| ≤ κπ
2 it follows

that for t ≥ t0 + T̄rdv the distance z1i is uniformly decreasing to zero in a finite time.

The distance z1i may increase on the value vmaxT̄rdv during the orientation phase,

and z1i(t1) ≤ z1i(t0) + vmaxT̄rdv where the instant t1 ∈ [t0, t0 + T̄rdv] such that

|ǫrdv(t1)| ≤ κπ
2 for the first time, then:

z1i(t) ≤











z1i(t0) + vmaxT̄rdv if t0 ≤ t ≤ t1,

z1i(t1)− ρ1(t− t1) if t1 ≤ t ≤ t1 + T1,

0 if t ≥ t1 + T1,

(4.18)

T1 =
z1i(t1)

ρ1
≤ z1i(t0) + vmaxT̄rdv

ρ1
.
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In the rendezvous task the robot has to reach the distance δi from the leader. The

necessary time to travel till this distance is

t̄rdv =
z1i(t1)− δi

ρ1
≤ z1i(t0) + vmaxT̄rdv − δi

ρ1
.

Considering the worst case scenario the time in which the control (4.17) will achieve

his task would be Trdv = t̄rdv + T̄rdv . Thus the following claim has been proven.

Lemma 5. The control (4.17) provides for the system (4.1):

1. Uniform finite-time stability with respect to the variable ǫrdv (see (4.16));

2. Uniform boundedness and finite-time convergence with respect to the variable

z1i (see (4.18));

3. ∃Trdv = Trdv(z1i(t0)) ∈ R+ such that z1i(Trdv) ≤ δi.

Thus the control (4.17) guarantees a solution of the rendezvous problem in the

finite-time Trdv in the absence of collisions/obstacles.

Collision/Obstacle Avoidance

The Collision/Obstacle Avoidance control becomes active when either the leader or

other robots of the group (or an external obstacle, or all of them) enter the safety zone

around a robot, which is specified by the circle of radius λi. This control is kept active

until all the robots exit a bigger circle of radius Λi; the annulus delimited the two radii

can be considered as a hysteresis to avoid Zeno/chattering phenomena. To achieve the

task, an effective strategy has been designed. Firstly, each robot who finds itself in a

collision avoidance condition, evaluates a point (xc, yc) as follows:

xc =
1

M

M
∑

j=1

qx,j , yc =
1

M

M
∑

j=1

qy,j ,

where (xc, yc) ∈ Xλi
is the medium point among all robots/obstacles participating

in the collision avoidance maneuver, with Xλi
defined as in Section 4.1.1, 0 < M ≤

N +No is the number of robots and obstacles. The point (xc, yc) represents the point

from which the robot has to go away to exit the collision avoidance conditions. In

order to maximize the distance dci from the point (xc, yc) for all participating robots,

the following Lyapunov function is introduced

Wca(x) = z2 = max

{

0,
1 + Λi

1 + dci
− 1

}

.

Let γ̄i = atan
(

yc−qy,i

xc−qx,i

)

be the angle between the robot and the point (xc, yc). The

derivative Ẇca = 0 if dci > Λi (the avoiding is performed), and for dci ≤ Λi it has the
form:

Ẇca =
vi cos(qθ,i − γ̄i){1 + d1i} − 1

M

∑M
j=1 vj cos(qθ,j − γ̄i){1 + d1j}

(Λ + 1)−1(1 + dci)2
. (4.19)

Let us introduce the desired orientation that the robot has to reach to go away from the

point (xc, yc). It is given by the angle γi = qθ,i − (γ̄i + π), where π is the natural

choice to get away from that point. Evaluating the derivative of the Lyapunov function

Vca = 1
2γ

2
i :

V̇ca = γiωi(1 + d2i)− γi

dc
vi(1 + d1i) sin γi

− γi

dcM

∑M
j=1 vj sin(qθ,j − γ̄i)(1 + d1j)

. (4.20)
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The proposed controller has the form:

U3i =











vi =

{

vmax if |γi| ≤ kπ,

0 otherwise,

ωi =
−[ρca+ρ2]sign(γi)

1−dmin

, (4.21)

where ρca ≥ vmax(1+dmax)
dci

and ρ2 > 0. Substituting the control (4.21) in the equation

(4.20) we obtain:

V̇ca ≤ −ρ2
√

2Vca,

which gives us a finite time convergence on the variable γi(t). This time can be evalu-

ated from the estimation of γi(t):

|γi(t)| ≤ |γ0| − ρ2(t− t0), (4.22)

where γ0 ∈ [−π, π] is the initial value of γi at the instant t0 when the collision avoid-

ance control has been switched on. Thus the time, when the condition |γi| ≤ kπ can

be verified, is

tγ0

ca =
max{0, |γ0| − kπ}

ρ2
,

and for the worst case scenario

tca = sup
γ0∈[−π,π]

tγ0

ca =
(1− k)π

ρ2
.

Following this result and (4.21), the value of λi has to satisfy λi > tcavmax (the

maximal movement velocity for the point (xc, yc) is vmax). Denote Ckπ = cos(kπ),
then (4.19) with the control (4.21) satisfies the estimate:

Ẇca ≤ vmax
Λ + 1

(1 + dci)2
[−M − 1

M
Ckπ{1− dmin}+

M − 2

M
{1 + dmax}],

where the upper bound M − 2 on the number of terms in the sum appears since one

term leaves for j = i and at least one (in the worst case) has a negative value of

cos(qθ,j − γ̄i). If we can assure that the quantity in the square brackets is negative,

then we can assure decreasing Wca. It can be shown that there exist sufficiently small

values dmin, dmax and k close to 1 such that this term is negative (it is easy to see that

it is true for dmin = dmax = 0 and Ckπ >
M−2
M−1 , next it will be true by continuity for

sufficiently small values of dmin, dmax and some k). To conclude, z2i may increase

during the orientation phase tca (due to constraint λi > tcavmax a collision is not

possible), but next is decreasing to zero, thus this distance is bounded and there is a

finite time Tca > 0 such that z2i(t) becomes sufficiently small for t ≥ t0 + Tca and

q(t0 + Tca) /∈ XΛi
, thus the collision avoiding is finished.

Lemma 6. The system (4.1) with the control (4.21) admits the properties:

1. Uniform finite-time stability with respect to the variable γi (see the estimate (4.22));

2. ∃dmin, dmax and k such that the variable z2i is bounded and there exists Tca > 0
such that q(t0 + Tca) /∈ XΛi

.

A static obstacle is considered as a robot, which has zero linear and angular veloc-

ities.
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Supervisory control

Summarizing the results obtained so far and using the results of [35, 53], the fol-

lowing statement can be obtained.

Conjecture 1. The system (4.4) with the supervisor (4.8) and controls (4.28) is forward

complete and for all q0 ∈ R
n, d ∈ Ω

|z1i(t, q0i, di)| ≤ max(∆i, |h1(q0i)|),
|z2i(t, q0i, di)| ≤ max(Υi, |h2i(q0i)|)

for t ≥ 0, Υi =
1+Λi

1+λi−tcavmax
− 1.

4.1.2 Simulations

In the simulations the number of WMRs is N = 4, with sampling time ts = 0.01
[sec]; the maximum velocity for the leader is set to vL,max = 0.5 while the maximum

velocity for the followers is vi,max = 2. The disturbances have form di = χ sin(t) +
0.1 ∗ rand where rand is a pseudo-random values drawn from the standard uniform

distribution on the open interval (0, 1) with i ∈ {1, 2} and |χ| ≤ 0.5. The Following

controller has δi ∈ {x ∈ R : 0.7 < x < 0.9 + 0.1N}, Kf = 5 and ρf = 0.01; for

the rendezvous control the values are: ρ1 = 2, ρrdv = 0.1. For the obstacle avoidance

ρ2 = 0.1. Fig. 4.2 and Fig. 4.3 represent how the agents behave when the presented

strategy is implemented. The leader follows a predefined path, while the followers are

placed randomly with random orientation at t = 0. Indeed, each agent reaches the

Following controller and the formation movement is accomplished. The distance of

each robot from the leader is shown in Fig. 4.3 and the straight horizontal lines of the

same colors represent the corresponding values of ∆i while the black line represents

the limit distance beyond which the collision/obstacle avoidance is activated. When

the collision avoidance control is not active, the followers reach the Following mode

and remain in it if no external perturbation are applied (as an obstacle could be). If

necessary, at the end of the collision avoidance maneuver, they switch back to the

rendezvous control to reach again the minimum distance, which is necessary to switch

back in the Following mode. Thoroughly analyzing Fig. 4.3 though, it can be noticed

that the activation of the collision avoidance controller not always forces the WMR to

switch back to the rendez-vouz one once the maneuver is accomplished switching back

directly to the Following one.

4.2 Leader-Follower: Active Leader

In this modification of the solution the leader as specified at the beginning of the

chapter takes an active role to assure the maintenance of the formation. The group of

N ∈ R+ unicycle WMRs, has the same model (4.1):

q̇x,i = cos(qθ,i)(1 + d1,i)vi ,

q̇y,i = sin(qθ,i)(1 + d1,i)vi ,

q̇θ,i = (1 + d2,i)ωi ,

Denote the state vector Xi = [xi, yi, θi]
T for a robot and the corresponding control

vector ui = [vi, ωi], then X = [XT
1 , . . . , X

T
N ]T is the state of the robot formation.
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Figure 4.2: The path followed in an environment with obstacles, where the blue one is

the leader WMR

Assuming the leader to have the following dynamics:

q̇x,0 = cos(qθ,0)v0 ,

q̇y,0 = sin(qθ,0)v0 , (4.23)

q̇θ,0 = ω0 ,

where the terms v0 and ω0 may contain perturbations with respect to some “reference”

controls (like dk,i, k = 1, 2 in (4.1)), but for this particular cooperative control we

need to know the leader real inputs v0 and ω0 only. Denote X0 = [qx,0, qy,0, qθ,0]
T

and u0 = [v0, ω0].

Let No be the number of (static) obstacles with the coordinates Xo
k = (xko, yko)

for k = 1, 2, . . . , No. The number No could be considered finite. In addition, if

we assume that all obstacles are sufficiently isolated, then the choice No = 1 is

reasonable and simplifies the consideration without any loose of generality, denote

Xo = [(Xo
1 )

T , . . . , (Xo
N )T ]T .

As for the previous problem, it is wanted to realise a supervisor able to articulate

the activation three different controls depending on the needs. The hypothesis of not

knowing the leader velocities is maintained, of consequence just information about

the leader state X0 and other follower positions Xi are used, the coordinates Xo are

also assumed available when necessary. Thus, it is not possible to access the robot

controls ui and u0, which forces the use the homogeneous estimator [115] to retrieve

the information about linear and angular velocities.

In this formulation of the problem the two outputs to regulate are redefined as
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Figure 4.3: Distances of each agent from the leader and relative ∆i values

follows using the accessible information:

z1i = h1(X0, Xi) =
√

(qx,0 − qx,i)2 + (qy,0 − qy,i)2, (4.24)

z2i = h2i(X0, X,X
o) = min{Dci,max{z−1

1i , (4.25)

max
1≤j 6=i≤N

1
√

(qx,j − qx,i)2 + (qy,j − qy,i)2
,

max
1≤k≤No

1
√

(xko − qx,i)2 + (yko − qy,i)2
}},

where z1i being the distance from the leader, and z2i is a function of the distances

to other robots (qx,j , qy,j) and obstacles (xko, yko), Dci > 0 is a constant ensuring

finiteness of z2i. Again, the first output z1i gives information about the collective mo-

tion manoeuvre, i.e. how to switch between the rendezvous and following controllers,

while the second output z2i is designed to tackle the collision/obstacle avoidance part

and design the dedicated controller.

To proceed, several assumptions must be introduced dealing with technical restric-

tions. Firstly, as in the previous formulation the maximum leader velocity must be

smaller than the maximum followers velocities, i.e. ω0,max ≤ ωi,max = ωmax and

v0,max ≤ vi,max = vmax, where the suffix max define the maximum velocity. Sec-

ondly, we will assume the the linear velocity of the leader v0 is non-negative (i.e. it is

moving in forward direction only).

Theoretical Formulation

It is needed to design the controls ui : R
n → R

m guaranteeing that both outputs

z1i and z2i will be kept under certain thresholds: for all 1 ≤ i ≤ N and all initial

conditions Xi0 ∈ X = R
2 × [0, 2π) (denote X0 = [XT

10, . . . , X
T
N0]

T ), all di ∈ Ω and
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t ≥ 0:

z1i(t) ≤ max{Ψi, σ1i ◦ h1(X00, Xi0)}, (4.26)

z2i(t) ≤ max{Υi, σ2i ◦ h2i(X00,X0, X
o)}, (4.27)

where the values of Ψi and Υi are given, whereas σji, j = 1, 2, are functions from the

class K (continuous strictly increasing functions, σ(0) = 0). The first output, (4.26),

must be smaller than Ψi, in the case σ1i(h1(X00, Xi0)) > Ψi the trajectory should

converge to a subset where h1(X0, Xi) ≤ Ψi. In the same way (4.27) must be smaller

than Υi. In the case σ2i(h2i(X00,X0, X
o)) > Υi the trajectory should converge to

a subset where h2i(X0, X,X
o) ≤ Υi. The restriction (4.26) implies that all robots

should find their positions sufficiently close to the leader (on the distance Ψi), while

(4.27) means that a safe distance, characterizes by Υi, should be preserved between the

robots and obstacles in Xo.

4.2.1 The Supervisory Control

In this section the three control algorithms U1i, U2i, U3i will be presented again

and, if necessary, the design will be proposed to achieve the control goal (4.26), (4.27),

i.e. leader following U1i, rendezvousing U2i and collision avoiding U3i.

The Supervisor

Considering the given values {λi,Λi, δi,∆i} ∈ R
4
+ (Fig. 4.3) with λi < Λi and

δi < ∆i, we can describe the switching sequence: the controller U1i (leader following)

becomes active when z2i < λ−1
i and the distance from the leader z1i ≤ δi and it is kept

active while z1i ≤ ∆i (the same safety measure to avoid continuous switching between

U1i and U2i controllers specified for the first supervisor definition); the controller U2i

(rendezvousing) is active while z2i < λ−1
i and z1i > δi. The third controller U3i

(collision/obstacle avoiding) becomes active as soon as z2i ≥ λ−1
i and it is kept active

until z2i < Λ−1
i (also in this case a hysteresis is added to avoid continuous switching,

or chattering, between the controllers [93]). We will also ask a right orientation of the

robot after avoidance manoeuvre with heading on the leader, i.e. it should be qθ,i =

αi, where αi = atan
(

qy,0−qy,i

qx,0−qx,i

)

. Therefore, the supervisory control law ui for all

i = 1, . . . N can be summarized as follows

ui(t) = Upi(t)i(X0(t), X(t), Xo), pi : R+ → {1, 2, 3} (4.28)

with the initial conditions

t0 = 0, pi(t0) = Fi(X0, X00, X
o),

Fi(X,X0, X
o) =











1 if h1(X0, Xi) ≤ δi and h2i(X0, X,X
o) < λ−1

i ,

2 if h1(X0, Xi) > δi and h2i(X0, X,X
o) < λ−1

i ,

3 if h2i(X0, X,X
o) ≥ λ−1

i

and pi(t) = pi(tj) for t ∈ [tj tj+1), where

pi(tj+1) = Fi(X(tj+1), X0(tj+1), X
o), (4.29)
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with tj is the generic switching instant defined as follows:

tj+1 = arg inft≥tj



















h2i(X0(t), X(t), Xo) ≥ λ−1
i if pi(tj) ∈ {1, 2} ,

h2i(X0(t), X(t), Xo) ≤ Λ−1
i if pi(tj) ∈ {3} ,

and θi(t) = αi(t)

h1(X0, Xi(t)) ≤ δi if pi(tj) ∈ {2} .

Now let us define the estimators and all Uki, k = 1, 2, 3.

The Following

For the Following controller the same used in Sec. 4.1.1, with analogues results,

can be used:

U1i =











vi =

{

ζi(z1i)sign (Cα)
η̄+dmaxv̂0

1−dmin
+ v̂0 if ǫf = 0,

0 otherwise,

ωi =
ω̂0+[Kf |ǫf |+ρf+ρ0]sign(ǫf )

1−dmin
.

(4.30)

The Rendez-vous Control

As for the Following, the rendez-vous controller is the same used in Sec. 4.1.1

U2i =























vi =

{

cos(ǫrdv)[Cα(v̂0+ηv)+ρrdv ]
1−dmin

if |ǫrdv| ≤ κπ
2 ,

0 otherwise,

ωi = −Sαv̂0+|Sα|η̄+sin(ǫrdv)[1+dmax]vi
z1i

−ρrdvsign(ǫrdv)−
(

Krdv +
[dmax−dmin]|vi|

z1i

)

ǫrdv,

(4.31)

Collision/Obstacle Avoidance

The Collision/Obstacle Avoidance control becomes active when either the leader or

other robots of the group (or an external obstacle, or all of them) enter the safety zone

around a robot, which is specified by the circle of radius λi. This control is kept active

until all robots exit a bigger circle of radius Λi. The annulus delimited the two radius

can be considered as a hysteresis to avoid chattering phenomena.

Solving the avoidance problem it is desirable to ensure simultaneously the absence

of collisions and decreasing the distances z1i for each robot after the avoidance maneu-

vers.

Assume that the leader is not in the collision conditions and it is not moving dur-

ing the avoidance maneuver (v0(t) = 0). The case, when the goal point (the leader

position) is fixed and there is only one obstacle and one moving robot that performs

the avoidance maneuver, has been considered in Chapter 2. The idea of the collision

avoidance consists in selection of a pointB = (xB , yB) moving to that the robot avoids

the obstacle and ensure that z1i(t) ≤ z1i(t0) during all the maneuver (the coordinates

(xB , yB) should be selected such that z2i < Λ−1
i , then the avoidance maneuver has to

be finished before the pointB is reached). The following control is a mild modification
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of one given in 2.3.2:

U3i = [vi ωi]
T , (4.32)

vi =











kcadB if |γi| < κπ

and z2i < λ−1
o

0 otherwise

, κ ∈ (0, 0.5),

ωi = kdγ̇i + sin(γi)
vi
dB

+ρca max{|γi|0.5, |γi|}sign(|γi|),
dB =

√

(xi − xB)2 + (yi − yB)2, kca > 0,

ρca ≥ kca

√
π(dmax − dmin)[1 + kd(1 + dmax)]

(1− dmin)[1 + kd(1− dmin)]

+2−3/4ρ2
1 + kd(1 + dmax)

1− dmin
, ρ2 > 0, kd > 0

and γi = γ̄i − qθ,i where γ̄i = atan
(

yB−qy,i

xB−qx,i

)

is the angle between the robot and the

point B. The value of λo is introduced in the following result that has been proven in

2.3.2:

Proposition 1. Let v0(t) = 0 for all t ≥ t0 ≥ 0 and N = No = 1. Then there is a

point B = (xB , yB) such that for (1.33), (4.32):

1. The system is uniformly finite-time stable with respect to the variable γi and there is

tca > 0 such that |γi(t)| ≤ κπ for all t ≥ t0 + tca for any γi(t0) ∈ (−π, π].
2. There are 0 < λo ≤ λi and Tca > 0 such that Λ−1

i ≤ z2i(t) < λ−1
o for all

t ∈ [t0, t0 + Tca) and z2i(t0 + Tca) < Λ−1
i .

3. z1i(t) ≤ z1i(t0) for all t ∈ [t0, t0 + Tca].

A detailed explanation, how the point B can be selected, is given in 2.3.2. Fol-

lowing Proposition 1 we can assign Dci > λ−1
o . As in [53] we will assume that

O > 2Λmax where Λmax = max1≤i≤N ′ Λi and

O = min
1≤k 6=r≤No

√

(xko − xro)2 + (yko − yro)2

is the minimum distance between the obstacles. Under such a restriction the obstacles

are sufficiently isolated and the consideration given for one obstacle with the control

(4.32) in Proposition 1 is essential.

Now, let us return to the general case, then remarks have to be done about the rules

of inclusion/exclusion of robots from the group performing the avoidance. To simplify

notation in this section we will denote 1 ≤ N ′ ≤ N+1 and 0 ≤ N ′
o ≤ No the numbers

of robots and obstacles participating in the manoeuvre respectively, and

2 ≤M = N ′ +N ′
o ≤ N +No + 1

is the total number of participants. Without loosing generality assume that the first

N ′(N ′
o) robots (obstacles) are in the collision conditions. If there exist three distinct

indexes 1 ≤ i1 < i2 < i3 ≤ N ′, such that the distances between robots i1, i2 and

i2, i3 are less than λi2 while the distance between i1, i3 is bigger than max{λ1, λ3},

then anyway all of them form the same group for the avoidance. If during fulfilment
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of the manoeuvre a robot arrives to the collision conditions, then the procedure of col-

lision/obstacle avoidance has to be re-initiated following the algorithm (if a robot exits

the safety zone then there is no re-initialization for the rests according to (4.8)):

Collision avoidance:

Let N = {1 ≤ i ≤ N ′} and I = {i ∈ N : z1i(t0) ≤ λi},

N = N \ I.
1. The closest robot to the leader is found with the index i′ = argmini∈N z1i(t0).

If i′ is not unique, then an auxiliary sorting can be performed,

N = N \ {i′}.
2. Assign vi(t) = 0 for all N ∪ I and let the robot i′ to perform the collision

avoidance maneuver using the control (4.32) while Λ−1
i ≤ z2i′(t) < λ−1

o .

3. If Λ−1
i ≤ z2i′(t), then apply the rendezvous orientation control (4.15) until

θi = αi.

4. The procedure is repeated for the robots in N starting from the Step 1 while

N 6= ∅.

The algorithm is accompanied by an assumption that the leader is not moving dur-

ing the avoidance maneuver if I = ∅ (this condition can be easily realized in practice):

Assumption 5. Let v0(t) = 0 if there is a group of robots in the collision conditions

with the indexes in the set J ⊂ {1, . . . , N} such that z1j(t0) > λj and pj(t) = 3 for

all j ∈ J .

Roughly speaking this assumption means that the leader waits while some of robots

in the group are in the collision conditions if they are far enough. And it can move only

if all robots in collision form a unique group which is close to the leader. In fact, the

geometrical construction presented in Proposition 1 and in 2.3.2 can be performed for

a moving leader (in its frame) but with increased complexity of presentation, which we

would like to avoid here.

In the step 3 the rendezvous orientation is performed for the robots, the role of this

orientation will be explained in the next section considering the supervisory control

and switching among Uk,i.

If z1i(t0) > λi for all 1 ≤ i ≤ N ′ and the set I is empty, then the leader is not mov-

ing as assumed. Since O > 2Λmax and the closest to the leader robot starts to move,

then i′ is always in the conditions of Proposition 1 (an “obstacle” there can be presented

by an obstacle (xko, yko) or a not moving robot with the index j ∈ {1, . . . , N ′} \ {i′}
with z1i′ ≤ z1j and it is not on the way for i′). Therefore, for each i′ there is a time

instant T i′

ca such that z2i′(t0 + T i′

ca) < Λ−1
i′ and the robot exits the collision conditions.

Obviously after t ≥ t0 +
∑N ′

i=1 T
i
ca all robots will finish the avoidance maneuver. The

following result has been proven.

Lemma 7. Let Assumption 5 be satisfied, O > 2Λmax, z1i(t0) > λi for all 1 ≤ i ≤
N ′, and Ṁ(t) ≤ 0 for almost all t ≥ t0 (there is no other robot joining the avoidance

maneuver), then the system (4.1) with the presented algorithm admits the properties:

1. Uniform finite-time stability with respect to the variables γi, 1 ≤ i ≤ N ′;
2. There exists T ca > 0 such that Λ−1

i ≤ z2i(t) < λ−1
o for all t ∈ [t0, t0 + T ca] and

z2i(t0 + T ca) < Λ−1
i′ , θi(t0 + T ca) = αi(t0 + T ca) for all 1 ≤ i ≤ N ′;

3. z1i(t) ≤ z1i(t0) for all t ∈ [t0, t0 + T ca] and all 1 ≤ i ≤ N ′.
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If the set I is not empty, then those robots in I are not moving, for the rest robots

in N application of the avoidance strategy from 2.3.2 and the control (4.32) may lead

to a fail, in this case for an index i′ the condition z2i′(t
′) = λ−1

o is satisfied and the

robot stops (the collision avoidance maneuver is finished in this way). Anyway in such

a group the maximum distance to the leader would be bounded as

z1i ≤
N ′

∑

i=1

λi

and it is independent in the number of obstacles since if there is a robot with an index

j which has distance to other robots more than λj but they all are close to a common

obstacle, then the robot j forms an independent group of collision avoidance. The

leader will be able to move if all robots are in the collision around it and it will stop as

soon as it exits from the collision conditions with any robot in that group, thus even in

this case the distance to the leader stay bounded as

z1i ≤
N ′

∑

i=1

λi + Λmax.

Lemma 8. Let Assumption 5 be satisfied, O > 2Λmax, z1i(t0) ≤ λi for some i ∈
{1, . . . , N ′}, and Ṁ(t) ≤ 0 for almost all t ≥ t0, then the system (1.33) with the

proposed algorithm admits the properties:

1. Uniform finite-time stability with respect to the variables γi, 1 ≤ i ≤ N ′;
2. z2i(t) ≤ λ−1

o for all t ≥ t0 and all 1 ≤ i ≤ N ′;

3. z1i(t) ≤ max{z1i(t0),
∑N ′

i=1 λi + Λmax} for all t ≥ t0 and all 1 ≤ i ≤ N ′.

Supervisory control

Summarize the restrictions obtained so far as follows:

Assumption 6. Let δi + vmaxT̄f ≤ ∆i, δi − vmaxT̄f > λi, λi < Λi < δi and

O > 2Λmax for all i = 1, . . . , N .

Following the results in Chapter 2, [53] and [35]:

Theorem 6. Let assumptions 5 and C.3 be satisfied for N ≥ 1 and No ≥ 1. For all

d ∈ Ω and all X0 ∈ XN , X00 ∈ X such that h1(X00, Xi0) ≥ δi, h2i(X00,X0, X
o) ≥

λi, i = 1, . . . , N in the robot group (4.1), (4.23) under the supervisor (4.29) and the

control (4.28), the estimates

|z1i(t)| ≤ max(Ψi, |h1(X00, X1i0)|),
|z2i(t)| ≤ max(Υi, |h2i(X00,X0, X

o)|)

hold for all t ≥ 0, where Ψi = max{∆i,
∑N

i=1 λi + Λmax} and Υi = λ−1
o .

Proof. Two different initial scenarios are possible: pi(0) = 1 or pi(0) = 2 for all i =
1, . . . , N (the case pi(0) = 3 is excluded by the condition h2i(X00,X0, X

o) ≥ λi).
First, let pi(0) = 2, then from Lemma 5 the variable z1i is bounded and converging, and

there is a time instant Trdv = Trdv(z1i(t0)) such that z1i(Trdv) ≤ δi and pi(Trdv) = 1
provided that there is no collision. If there is a collision and pi(t

′) = 3 for some

t′ > 0, then the robot is either in the conditions of Lemma 7 or Lemma 8. In the
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former ones, always there is an instant that the avoidance maneuver is accomplished,

z2i < Λ−1
i and θi = αi, while the leader was not moving during all the maneuver.

Then returning to pi = 2 is performed under the conditions that ǫrdv = 0 and from

Lemma 5 the distance z1i is not increasing. In the conditions of Lemma 8 the distance

to the leader is bounded (z1i(t) ≤ max{z1i(t′),
∑N

i=1 λi + Λmax}) and z2i ≤ λ−1
o .

Note that if z1i(t
′) >

∑N
i=1 λi + Λmax, then it should be that case of Lemma 7 (the

robot is sufficiently far from the leader), thus z1i(t) ≤
∑N

i=1 λi + Λmax in this case.

Next, the consideration is similar to the second initial scenario with pi(0) = 1, then

according to Lemma 4 z1i ≤ ∆i in a finite time provided that there is no collision. If

there is a risk of collision and pi(t
′) = 3 for some t′ > 0, then according to lemmas 7,

8 the variable z2i is bounded (in the worst case z2i ≤ Υi) and

z1i(t) ≤ max{z1i(t′),
N
∑

i=1

λi + Λmax}.

However, in this case z1i(t
′) ≤ ∆i, then

z1i(t) ≤ max{∆i,

N
∑

i=1

λi + Λmax}.

Therefore, the developed supervisory control solves the posed problem of collective

motion coordination with collision avoidance under rather mild assumptions.

4.2.2 Conclusion

This chapter presented two switching-based solutions to the leader-follower forma-

tion problem for a group of WMR in the presence of additive input disturbances with

obstacle/collision avoidance. Both solutions rely on a supervisor able to regulate two

different outputs orchestrating three different controls: one to regroup the robots (ren-

dezvous controller), a second one to make them follow the leader (Following controller)

and the latter in charge of the collisions/obstacles avoidance when necessary during the

motion.

It is worth to remark that in both cases no assumption have been made about a

priori knowledge of the positions of obstacles or leader velocities. In the first case the

leader does not participate the manoeuvre and the follower agents are the responsible

to the formation maintenance. In the second approach the leader has an active role

in the formation participating in the collision avoidance manoeuvre slowing down the

formation to allow the agents to accomplish that and move again right after. The main

advantage of the second approach is that with the proposed modification we were able

to formally prove the stability of the formation regulated by the three controllers and

the supervisor.

Anyway, in both cases it has been formally shown that each control robustly achieves

the task it is designed for and, in addition, the robots orientations are provided in a

finite-time. Simulations are performed for a group of 4 WMRs to prove the effective-

ness of the strategy in the first case while a formal proof is given in the second case.
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Chapter 5

Conclusions and Perspectives

In this dissertation we have addressed the problem of the obstacle avoidance for

wheeled mobile robots both in the case of a lonely robot or in the case of a formation

deployment. Different solutions have been proposed that cover different scenarios. The

vehicles control always took advantage of the finite time control framework; the intent

is to have reliable results and disturbance rejection for the perturber kinematic model.

The perturbations are introduced to deal with some unmodeled dynamics. The author,

along with the people who participated in this dissertation work, aimed to proposed

efficient solutions, characterised by an easy implementation, that could be adapted to

different kinematic model and, of consequence, WMRs; that is indeed something that

represents one of the future directions for the three different approaches presented.

The main results and contributions of the study presented in this dissertation may be

summarized as follows.

5.1 Contributions

The first contribution of this dissertation is a simple but effective obstacle avoid-

ance reactive algorithm for WMRs which relies on a geometric approach to find a

suitable point to avoid eventual obstacles when these are encountered. The algorithm,

in addition, uses a control law able to reject disturbances added to describe unmodeled

dynamics. The framework which allows a satisfactory result to be presented is the su-

pervisory control one: two outputs regulated by just as many controls. The first control

is in charge of the goal seeking (i.e. stabilization, in the proposed solution), the second

one able to avoid obstacles. The solution is formally proven using the control theory

tools and sustained by simulations and extensive experiments in which the method is

compared with the well known and widespread DWA approach.

Then, a modification of the standard Potential Field method has been presented.

Again control theory and its evolution came in help to propose a novel field defini-

tion along with a new method to avoid local minima, which are the most annoying

drawbacks of the PF method. A complete theoretical treatise has been carried out to

expose how the control theory tools are applied to get the result. Under some, not too

restrictive assumptions, capitalizing on the Input-to-State Stability (ISS) property for

multi-stable systems, the global attractivity of the target point is proven and the avoid-

ance is achieved. The result is thus utilised to generate the trajectory that is tracked by

a wheeled mobile robot, a Unicycle-like WMR in the case. Both, a classic approach
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and a specifically designed one are firstly treated theoretically, and proved convergent

using control theory tools, then simulated and compared to the standard PF method.

The most efficient of the two, based on a finite-time control for the orientation, which

provides finite-time completion of the task is thus implemented on a Turtlebot II WMR

to test the method in a real environment and verify the theoretical result obtained.

The last part of the dissertation presented a leader-follower formation algorithm

which is an evolution of the first part of this work of thesis. The framework is again

the supervisory one; in this application two outputs are regulated via three controls to

regroup the robots (rendezvous), to make them move together following the leader (fol-

lowing) and to avoide eventual obstacle or collision between agents (collision avoid-

ance). The novelty lies in the formation definition, the leader acts as a reference and

it is not the most advanced agent of the formation but more a reference to follow. The

realization is completely decentralized: each robot takes its own decision depending on

two distances, the one from the leader that define the following or rendezvous status,

and the one from agents or obstacles around, which define if the collision avoidance

controller must be activated. Two modifications have been presented, the first in which

the leader act just as a reference and it is completely autonomous not participating in

the manoeuvre and the second one in which it is actually active and slows down the

formation in case of one or more agents have to avoid obstacles or collisions. The

second approach presented allowed to formally prove the stability of the formation.

5.2 Future Directions

The three contributions presented could be enhanced, each one in its own way.

The finite time collision avoidance presented in Chapter 2 must be incorporated in

a complete navigation system to make it cooperate with a global planner; that should

avoid the appearance of situation that could make the approach to fail. That is the usual

step that one has to make when dealing with local planners. With the aim to make the

algorithm more suitable for complex applications the case in which the obstacles are

not stationary should be considered along with the generalization for other classes of

WMRs. It has to be said that preliminary experiments have been run with this purpose

and gave promising results.

The eventual extensions of the new formulation of the PF are at least two one can

easily see: the first is to extend the application on a three dimensional level (for instance

for flying or underwater robots), since the presented experiments where basically car-

ried out in 2D; that is possible since the theory which motivated the work is presented

in a n dimensional space. The second extension concern the use of the presenter mod-

ification in a formation scenario since as mentioned in Chapter 1, the potential field

method is often a base to realize robots formation.

Lastly, the leader-follower approach presented has as major flaw the fact of not

to have been implemented in real platform to test the effectiveness in a real scenario,

some tests have been carried to propose a final implementation. The evolution of the

method could see a hierarchical organization of several formations coordinated by sev-

eral leaders to achieve tasks of increasing complexity.
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Chapter 6

Resumé en Français

Le mot robot a été utilisé pour la première fois dans la langue anglais dans les

années vingts après avoir été utilisé dans une comédie théâtrale intitulée Rosumovi Uni-

verzálnı́ Roboti. Le mot vient du tchèque esclave, parce que dans la pièce de théâtre les

robots, proche de ce qu’on appelle androı̈des, sont dénués de sensibilité et doués d’une

intelligence très développée, en plus ils doivent être faciles à produire et autonomes,

pour remplacer les ouvriers humains.

Dans le même esprit, les modernes robots mobiles doivent avoir les mêmes car-

actéristiques pour être classés dans une de typologie indiquées par la Fédération Inter-

national de la Robotique. Elle définit le robot de service comment une machine capable

de exécuter de tâches de façon autonome en utilisant le données disponibles sans l’aide

d’un opérateur extérieur. On peut retrouver deux différentes typologies de robots de

service: service à la personne et service aux professionnels. Les premiers aident les

gens dans les besoins quotidiens, comment pour exemple les futailles roulants ou plus

simplement les robots aspirateurs. Les deuxièmes sont les robots qui ont des applica-

tions professionnels ou commerciaux, comment les robots utilisés dans la chirurgie et

la rééducation, ou pour des opérations de secours en cas de catastrophes naturelles. Les

données rendues publique par la Fédération International de la Robotique décrivent un

marché de la robotique qui n’arrête pas croissance avec une augmentation des ventes

du 15 en 2014 et une prévision de croissance positive aussi sur le période 2014-2017.

Ce travail de thèse traite de la commande pour de robots mobile à roues en par-

ticulier. Ces robots trouvent plein d’applications dans plusieurs domaines, mais les

problématiques de base qui doivent affronter sont les mêmes pour chaque tâche: com-

ment arriver à la destination en évitant les obstacles qui puissent eux s’opposer de la

façon la plus intelligent possible selon des paramètres décidés à priori. Pour faire ça,

la chaine d’évènements qui se produit est la suivent: il faut équiper le robot avec un

capteur apte à la localisation, comme une antenne GPS pour de mission à l’extérieur

où une caméra, un sonar où un capteur LIDAR (laser) pour les missions à l’intérieur,

où le GPS ne marche pas; une fois que le capteur est choisi, un algorithme dois lui

permettre de se localiser dans une carte (si disponible où de la créer), se deplacer dans

l’espace et éviter les obstacles et si nécessaire partager des informations avec des autres

robots pour accomplir la tâche. En particulier dans ce travail on va présenter des lois

de commande qui vont permettre au robot mobile à roues d’éviter des obstacles; on

va présenter une amélioration d’une stratégie existante, celle des champs de potentiels,

et une nouvelle stratégie conçue en utilisant la technique du Supervisory Control. On
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Figure 6.1: Scheme general pour un robot mobile a roues

va après comparer les deux avec les stratégies plus diffusées pour montrer l’efficacité

de les solutions proposées. La deuxième technique et aussi étendue pour traiter les

cas d’un groupe de robots mobiles qui se déplace selon le schème Leader-Follower.

Dans toutes les solutions presentées, pour être le plus proche possible à la réalité, sans

vouloir rendre les problèmes trop compliqué du point de vue du modèle, la choix plus

logique a été l’utilisation du modèle cinématique à la place de celui dynamique, en

ajoutant pourtant de perturbations aptes à modeler les dynamiques négligées.

6.1 Évitement d’obstacle en temps finit

La première contribution de ce travail de thèse est représentée par la synthèse

d’une méthode d’évitement d’obstacle pour un robot mobile à rues de type unicy-

cle. La particularité de ce type de modèle est l’appartenance à la classe des systèmes

non-holonomes qui imposent des contraintes par rapport à la stabilisation. Dans la

littérature plusieurs technique ont étés utilisées: de la commande par rétroaction qui

varie dans le temps, discontinue, hybride/switch ou optimal pour aborder le problème

de la stabilisation. En effet, dans la solution proposée, le problème d’évitement d’obstacle

est divisé en deux sous-tâches, qui vont résoudre deux différentes problèmes de stabil-

isation avec la technique du Supervisory Control et de lois de commande en temps

finit. Pendant l’exécution, la tâche du robot mobile est toujours d’arriver dans point de

destination en évitant les obstacles. Deux différentes sorties sont définies: la première

sortie donne la distance de la destination alors que la deuxième donne des informations

par rapport à la distance de un éventuel obstacle trop proche du robot mobile et, donc, à
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éviter. Le superviseur a la tâche de tenir sous contrôle la deuxième sortie et commuter

entre les deux systèmes: si aucun obstacle n’est plus proche d’une distance de sécurité,

définie à priori, une première commande s’occupe de régulation de la première sortie

pour arriver à destination. Dans le cas que la distance entre le robot mobile et un ob-

stacle soit inférieure à la limite imposée, un nouveau point de destination temporaire

est défini alors que le superviseur commande le switch pour permettre la régulation de

la deuxième sortie en utilisant une commande en temps finit appropriée. Le problème

est traité d’ailleurs de façon théorique pour un système non-holonome générique et

après mis en pratique pour un robot mobile à roues. Le modèle considéré pour le robot

mobile à roues de types unicycle est le suivant :

q̇x = (1 + d1)v cos(qθ),

q̇y = (1 + d1)v sin(qθ), (6.1)

q̇θ = (1 + d2)ω.

Les entrés pour commander le robot mobile sont, respectivement v, vitesse linéaire, et

ω, vitesse angulaire. Les deux sorties dont on a besoin pour les deux tâches sont :

z1(qx, qy) =
√

q2x + q2y, (6.2)

z2(qx, qy) = min

[

Y, max
1≤i≤N

(

√

(qx − xoi)
2 + (qy − yoi)

2

)−1
]

(6.3)

où z1 est la distance de l’origine et z2 est l’inverse de la distance de l’obstacle le plus

proche, défini avec ses cordonnées Cartésiennes (xoi , yoi). Avec l’hypothèse d’avoir

assez d’espace entre deux obstacles séparés on peut considérer un obstacle à la fois.

Pour le deux différentes tâches on considère deux différentes commandes : u1 pour la

stabilisation de la première sortie qui amène le robot mobile à sa destination et u2 pour

l’évitement d’obstacle et donc pour la deuxième sortie.

u1 =











v =

{

k1z1 if |α| ≤ kπ

0 otherwise
,

ω = −k2ζ(α)sign(α).

(6.4)

Le régulateur u2 pour l’évitement d’obstacle guide le robot mobile en temps finit

vers un point à une distance de sécurité de l’obstacle sans faire augmenter la distance

de l’origine :

u2 =











v =

{

k3DB if cos(α) ≥ 0 and |γ| ≤ ǫπ

0 otherwise
,

ω = kdγ̇ + sin γ
DB

v + kcaζ(γ)sign(γ).

(6.5)

Le superviseur peut être formulée de la façon suivante :

U(t) = ui(t)[qx(t), qy(t), qθ(t)], i : R+ → {1, 2} (6.6)

t0 = 0, i(t0) =

{

1 if (qx(t0), qy(t0)) ∈ X2,

2 otherwise,

i(t) = i(tj) ∀t ∈ [tj tj+1),
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i(tj+1) =

{

1 if q(tj+1) ∈ X1

2 if q(tj+1) 6∈ X2

, (6.7)

tj =











arg inf
t≥tj

q(t) 6∈ X2 if i(tj) = 1

arg inf
t≥tj

q(t) ∈ X1 if i(tj) = 2

Le superviseur gère deux différents régulateurs pour stabiliser deux sorties. La

coopération de les deux régulateurs permit de conduire le robot mobile en temps fini

vers sa destination; en plus, l’évitement de les obstacles est toujours atteint dans un

temps fini. Les performances de ce travail ont été démontrées et testées sur un banc

d’essai pour montrer l’efficacité de la méthode. La stratégie a été aussi comparé avec

une méthode bien connue comme le Dynamic Windows Approach.

6.2 Méthode de champs de potentiels : modification

avec la propriété de stabilité éntre-état

La méthode des champs potentiels, très utilisées pour la navigation et l’évidement

d’obstacle en robotique a été présenté dans le Chapitre 1, avec ses avantages et ses in-

convénients. Parmi les inconvénients, il y a l’apparition de minima locaux, qui causent

l’arrêt du robot mobile et donc il lui ne permettent pas d’accomplir sa tâche. On va

présenter une modification de l’approche, inspirée par de nouveau résultats sur la sta-

bilité entré-état [2], pour éviter les minima locaux (dans le cas de deux dimensions).

On fait l’hypothèse des obstacles disjoints, très fréquent dans la littérature, et on pro-

pose un nouveau champ de potentiel; le gradient du champ est utilisé comme entrée

pour un système de deux intégrateurs. Avec des hypothèses appropriées, le système

possède la propriété de stabilité entré-état (ISS) à l’égard des ensembles invariants et

décomposables [2]. La propriété de stabilité entré-état (ISS) est la clé de la modifica-

tion proposée. Elle nous permet de traiter les minima locaux d’une manière efficace,

suggérant ainsi une nouvelle solution simple et élégante et qui garantit l’évitement des

obstacles pour un robot mobile à roues, sans risque de rester bloqué dans un mini-

mum local. Le robot mobile à roues considéré est de type unicycle et on ajoute de

perturbations sur les entrées. Le but est de faire suivre au robot le mouvement de la

particule 2D décrite par les deux intégrateurs. On va présenter deux approches, d’abord

une technique de linéarisation plus simple: la commande obtenue pour le système

d’intégrateurs peut être appliquée, avec un changement de coordonnées, au robot mo-

bile; le problème est que cette approche ne permet pas de contrôler l’orientation du

robot. Une seconde approche est, donc, conçu pour contrôler soit la vitesse linéaire

soit l’orientation du robot mobile à roues. Le régulateur assigne pour le vitesse linéaire

la norme du gradient du champ de potentiel, alors que la commande de vitesse angu-

laire est réalisée avec une commande en temps fini similaire à celle utilisée dans [55].

Il est formellement éprouvé que la commande en temps fini est robuste par rapport aux

perturbations considérées et elle garantit la convergence de l’orientation du robot, en

plus des simulations ont été réalisées et ont montré des résultats très satisfaisant. La

partie expérimentale voit la méthode développée mise en pratique sur un robot mobile

à roues de type unicycle (Turtlebot 2) qui se déplace dans un environnement en évitant

des obstacles (dont il ne connessait pas la présence à priori) et aussi la comparaison

avec la méthode classique. Quelques problèmes a été relevés en présence des passages
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étroits et en cas de point de destination trop près d’un obstacle, mais ça n’a pas empêché

d’atteindre l’objectif.

6.3 Contrôle d’une Formation avec la méthode Leader-

Follower

La mise en œuvre des systèmes multi-agents permit de chercher des solutions op-

timisées, comme par exemple dans des applications d’exploration des endroits incon-

nues, où l’aide des plusieurs robots qui partagent des données peut améliorer la fiabilité

et donc les résultats et réduire le temps pour atteindre la tâche. Plusieurs robots pour-

raient, aussi, coopérer pour réaliser des tâches impossibles pour un seul robot, comme

la manipulation de l’environnement. On peut, aussi, penser au concept de l’utilisation

de plusieurs robots mobiles, chacun spécialisé dans une tâche, plutôt que d’en utiliser

que un, plus complexe et difficile à gérer. Lorsque plus d’un agent prend part à une

mission, il doit avoir des directives à suivre pour travailler avec d’autres sans interférer

et, évidemment, en évitant les collisions; celle la est la partie la plus difficile à gérer

dans le point de vue de l’ingénierie: coordonner tous les aspects garantissant un résultat

satisfaisant. Deux typologies d’approches sont devenues très populaire pour cordonner

un groupe de robots mobiles: la première est basé sur l’auto-organisation, chaque agent

a un ensemble d’instructions pour réagir à de différents situations. Ces approches sont

souvent inspirés par des comportements naturels. La deuxième typologie est basée sur

une approche géométrique où chaque robot mobile n’a pas un comportement totale-

ment autonome, mais ses réactions sont liées à des directives qui les obligent à rester

dans une formation avec des règles prédéfinies.

On va traiter le problème de la formation leader-follower, où le leader, soit physique

(donc un vrai robot) ou virtuel, est l’agent le plus avancé de la formation et il agit

comme référence pour tous les autres robots qui lui suivent. Le but est de présenter une

approche leader-follower original pour un groupe de robots mobiles à roues. On veut

déplacer le leader et les autres agents vers un point de destination sans que le leader soit

obligé à partager sa vitesse; en plus on veut être capable d’éviter les collisions entre

les agents et les obstacles externes. La solution proposée donne à chaque agent une

distance souhaitée du leader, ce signifie que le leader ne représente pas le robot le plus

avancé de la formation, mais plutôt une référence à suivre.

Pour atteindre un tel objectif on utilise la technique de la régulation de sortie, où

plusieurs sorties sont gérés par un superviseur, tous en tenant compte de la notion de

stabilité pour les systèmes switch et la définition de la propriété de stabilité sortie-

état: chaque agent, à l’exception du leader, commute entre trois lois de commande

qui vont régler deux sorties différentes. Une sortie proportionnelle à la distance du

leader et une deuxième proportionelle à la distance entre l’agent et les autres robots

ou obstacles; un superviseur, spécifiquement conçu, similaire à celui proposée pour la

méthode d’évitement d’obstacle simple orchestre les activations de les différentes lois

de commande.

Dans les trois lois de commande, le premier régulateur prend en charge la réalisation

du rendez-vous, c’est-à-dire comment l’agent doit approcher le leader. Le deuxième,

assure que les agents qui suivent maintenaient le même cap et vitesse du leader (qui ne

partagé pas ces vitesses sur le réseau, elles sont obtenue en utilisant un dérivateur ho-

mogène [115]). La troisième lois de commande, agisse sur la deuxième sortie, destinée

à éviter les collisions entre les agents et/ou les obstacles. Le modèle utilisé pour chaque
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robot mobile à roues est, encore une fois, le modèle cinématique de l’unicycle avec de

perturbations sur les entrées. Le superviseur surveille les commutations entre les trois

lois de commande qui sont robustes par rapport aux perturbations considerées. En gar-

dant la même idée de solution, deux approches différentes sont présentées: en premier,

le leader est une référence à suivre, il est totalement autonome et il n’a pas connais-

sance de l’état des autres membres de la formation. Ensuite, le leader participe à la

manœuvre activement, attendant dans le cas d’un ou plusieurs agents impliqués dans

une manœuvre d’évitement de collision ou obstacle; cette modification au problème a

permis une épreuve formelle de la méthode avec les outils de la théorie du contrôle.
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Appendix A

Input-to-State Stability with re-

spect to decomposable invariant

sets

For an n-dimensional C2 connected and orientable Riemannian manifold M with-

out boundary (0 ∈ M ), let the map f : M × R
m → TxM be of class C1 (TxM is the

tangent space), and consider a nonlinear system of the following form:

ẋ(t) = f(x(t), d(t)) (A.1)

where the state x ∈ M and d(t) ∈ R
m (the input d(·) is a locally essentially bounded

and measurable signal) for t ≥ 0. We denote by X(t, x; d(·)) the uniquely defined

solution of (A.1) at time t fulfilling X(0, x; d(·)) = x. Together with (A.1) we will

analyze its unperturbed version:

ẋ(t) = f(x(t), 0). (A.2)

A set S ⊂ M is invariant for the unperturbed system (A.2) if X(t, x; 0) ∈ S for

all t ∈ R and for all x ∈ S. For a set S ⊂ M define the distance to the set

|x|S = mina∈S δ(x, a) from a point x ∈ M , where the symbol δ(x1, x2) denotes

the Riemannian distance between x1 and x2 in M , |x| = |x|{0} for x ∈ M or a usual

euclidean norm of a vector x ∈ R
n. For a signal d : R → R

m the essential supremum

norm is defined as ‖d‖∞ = ess supt≥0 |d(t)|.
Definition 6. The point x̄ is called an omega limit point of the solution of (A.2)

x(t, x0) if there exists a sequence of time instants t1, . . . , tl, . . . such that tk → ∞
as k → ∞, for which the following holds:

x(tk, x0) → x̄, k → 0 (A.3)

The set of all such point of x(tk, x0) is called ω-limit set of x(tk, x0) (or orbit γ(x0))
and denoted ω(x0).

Definition 7. The point x is called an alpha limit point of the solution of (A.2) x(t, x0)
if there exists a sequence of time instants t1, . . . , tl, . . . such that tk → −∞ as k → ∞,

for which the following holds:

x(tk, x0) → x, k → 0 (A.4)
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The set of all such point of x(tk, x0) is called α-limit set of x(tk, x0) and denoted

α(x0).

Definition 8. A heteroclinic orbit γ1 between two equilibria ζ1 and ζ2 of a continuous

dynamical system as (A.2), is a trajectory x(t, x0) that is backward asymptotic to ζ1
and forward asymptotic to ζ1.

Definition 9. A heteroclinic cycle is an invariant topological circleX consisting of the

union of a set of equilibria ζ1, . . . , ζk and orbits γ1, . . . , γk, where γi is a heteroclinic

orbit between ζ1 and ζi+1; and ζk+1ζ1. If k = 1 then the single equilibrium and

connecting orbit form a homoclinic cycle.

A.1 Decomposable sets

Let Λ ⊂M be a compact invariant set for (A.2).

Definition 10. [109] A decomposition of Λ is a finite and disjoint family of compact

invariant sets Λ1, . . . ,Λk such that

Λ =
k
⋃

i=1

Λi.

For an invariant set Λ, its attracting and repulsing subsets are defined as follows:

W s(Λ) = {x ∈M : |X(t, x, 0)|Λ → 0 as t→ +∞},
Wu(Λ) = {x ∈M : |X(t, x, 0)|Λ → 0 as t→ −∞}.

Define a relation on W ⊂M and D ⊂M by W ≺ D if W s(W) ∩Wu(D) 6= ⊘.

Definition 11. [109] Let Λ1, . . . ,Λk be a decomposition of Λ, then

1. An r-cycle (r ≥ 2) is an ordered r-tuple of distinct indices i1, . . . , ir such that

Λi1 ≺ . . . ≺ Λir ≺ Λi1 .

2. A 1-cycle is an index i such that [Wu(Λi) ∩W s(Λi)]− Λi 6= ⊘.

3. A filtration ordering is a numbering of the Λi so that Λi ≺ Λj ⇒ i ≤ j.

As we can conclude from Definition 11, existence of an r-cycle with r ≥ 2 is

equivalent to existence of a heteroclinic cycle for (A.2) [52]. And existence of a 1-

cycle implies existence of a homoclinic cycle for (A.2) [52].

Definition 12. The set W is called decomposable if it admits a finite decomposition

without cycles, W =
⋃k

i=1 Wi, for some non-empty disjoint compact sets Wi, which

form a filtration ordering of W , as detailed in definitions 10 and 11.

Let a compact set W ⊂M be containing all α- and ω-limit sets of (A.2) [14].

A.2 Robustness notions

The following robustness notions for systems in (A.1) have been introduced in [2].
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Definition 13. We say that the system (A.1) has the practical asymptotic gain (pAG)

property if there exist η ∈ K∞ 1and a non-negative real q such that for all x ∈M and

all measurable essentially bounded inputs d(·) the solutions are defined for all t ≥ 0
and the following holds:

lim sup
t→+∞

|X(t, x; d)|W ≤ η(‖d‖∞) + q. (A.5)

If q = 0, then we say that the asymptotic gain (AG) property holds.

Definition 14. We say that the system (A.1) has the limit property (LIM) with respect

to W if there exists µ ∈ K∞ such that for all x ∈ M and all measurable essentially

bounded inputs d(·) the solutions are defined for all t ≥ 0 and the following holds:

inf
t≥0

|X(t, x; d)|W ≤ µ(‖d‖∞).

Definition 15. We say that the system (A.1) has the practical global stability (pGS)

property with respect to W if there exist β ∈ K∞ and q ≥ 0 such that for all x ∈ M
and all measurable essentially bounded inputs d(·) the following holds for all t ≥ 0:

|X(t, x; d)|W ≤ q + β(max{|x|W , ‖d‖∞}).

It has been shown in [2] that to characterize (A.5) in terms of Lyapunov functions

the following notion is appropriate:

Definition 16. A C1 function V : M → R is a practical ISS-Lyapunov function for

(A.1) if there exists K∞ functions α1, α2, α and γ, and scalar q ≥ 0 and c ≥ 0 such

that

α1(|x|W) ≤ V (x) ≤ α2(|x|W + c),

the function V is constant on each Wi and the following dissipative property holds:

DV (x)f(x, d) ≤ −α(|x|W) + γ(|d|) + q.

If the latter inequality holds for q = 0, then V is said to be an ISS-Lyapunov function.

Notice that the existence of α2 and c follows (without any additional assumptions)

by standard continuity arguments.

The main result of [2] connecting these robust stability properties is stated below:

Theorem 7. Consider a nonlinear system as in (A.1) and let a compact invariant set

containing all α and ω limit sets of (A.2) W be decomposable (in the sense of Definition

12). Then the following facts are equivalent.

1. The system admits an ISS Lyapunov function;

2. The system enjoys the AG property;

3. The system admits a practical ISS Lyapunov function;

4. The system enjoys the pAG property;

5. The system enjoys the LIM property and the pGS.

A system in (A.1), for which this list of equivalent properties is satisfied, is called

ISS with respect to the set W [2].

1A continuous function h : [0, a) → [0,∞) belongs to class K if it is strictly increasing and h(0) = 0;

it is said to belong to class K∞ if a = ∞ and h(r) → ∞ as r → ∞ [73].
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Appendix B

Output Stabilization of a Hydraulic

Crane via ε-Invariant Homoge-

neous Approach with Dead Zone

Compensation

B.1 Introduction

The problem of uniform stabilization of dynamical systems in the presence of un-

certain bounded inputs has a rather long history [143]. By uniformity in this context

we understand invariance (exact or approximate) of the closed-loop system with re-

spect to disturbing inputs (disturbance rejection or cancellation are another names

of that problem). Initiated by a French engineer Jean-Victor Poncelet [116], these

ideas received a large attention in Soviet Union following the theory developed by

Georgy Vladimirovich Shipanov [127], which is called the theory of ε-invariance (it

was supposed to provide invariance up to ε > 0 deviations caused by disturbances of

a given class). Next, many different solutions for ε-invariant stabilization have been

proposed: time delay control [155], active disturbance rejection [57], universal inte-

gral controls [72, 46], various sliding-mode control algorithms [90, 41] converging in

a finite time, model-free control [42] (just to mention a few, there are also many other

adaptive/fuzzy/neural control solutions).

The statement of ε-invariant control design problem can be given following a recent

development [42] (model-free control). Consider a SISO uncertain nonlinear system,

whose model is given in the implicit form (it is not resolved with respect to the highest

derivative):

f [y(t), ẏ(t), . . . , y(n)(t), u(t), d(t)] = 0, t ≥ 0,

where y(t) ∈ R is the measured output, u(t) ∈ R is the control input, d(t) ∈ R
m is

the vector of uncertain parameters/signals, n ≥ 1 is the system dimension, which may

be unknown, f : Rn+m+1 → R is an unknown nonlinear function ensuring existence

of the system solutions at least locally. Fixing k ≥ 1, a local model can be extracted:

y(k)(t) = u(t) + F (t),
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where F (t) ∈ R is a new unknown input including y, y(1), . . . , y(n), u and d. If f is

unknown such model can be obtained under mild assumption from the implicit func-

tion theorem. This model may have sense only locally, but under assumption that the

dynamics of y(k+1), . . . , y(n) are stable (i.e. the system is minimum phase with relative

degree k [72, 42]) the original stabilization problem for uncertain nonlinear system can

be reduced to uniform (ε-invariant) stabilization of a chain of k integrators subjected

by unknown matched input F . Frequently, some assumptions that F is bounded and it

has a bounded derivative (at least locally) are additionally imposed.

There are many solutions to this problem, which are based on the idea that if it is

possible to estimate y(k)(t) then F (t) = y(k)(t)− u(t) can be evaluated and compen-

sated by the control. The difference is mainly in the tools used for estimation of y(k)(t)
(high-gain observers in [72, 46], sliding-mode differentiators in [90, 41] or algebraic

ones in [42]). Time delay is frequently introduced to break the algebraic loop [155, 7,

56, 62], which appears when using the estimate y(k)(t)−u(t) in the control u(t) itself.

Another difference between [41, 42, 46, 72, 90] consists in the type of feedback

used for the system stabilization. Theoretically sliding-mode controls provide a finite-

time exact cancellation of matched disturbances [90, 41], which is better than ε-invariance

provided by linear feedbacks from [42, 46, 72, 155]. But in practice the sliding-mode

controls suffer from chattering that returns them back to ε-invariance setting. A related

difference is robustness with respect to different nonlinearities of y, y(1), . . . , y(n) hid-

den in F (for example, linear feedback treats only Lipschitz or linear perturbations).

In order to improve robustness and to avoid chattering, an intermediate solution should

be proposed between linear and sliding modes.

Homogeneous high-gain controls [13] and observers [115] are nice candidates for

such an improvement. Due to homogeneity, local asymptotic stability of this systems

implies global one, and robustness with respect to disturbances is inherited next [11].

Adjusting nonlinear gains in control and estimation algorithms from [13, 115] it is

possible to get a needed degree of robustness with respect to F .

A development of ε-invariant output control based on [13, 115] is presented in this

work and it can be considered in the family of model free controls. This kind of control

is widely used in several fields, from industrial processes [152] to robotics in which

is applied for many applications, from motion control [136] to tracking problems for

robotic arms [21, 84, 69]. Several works propose to increase the level of automation

for hydraulic platforms [112, 154]; the approach developed is thus applied to control

a specific link of an actuated industrial crane used in forestry. The aim is to achieve

precision and smooth extension and retraction in a way that standard PID controller

cannot guarantee [58] as it is shown in the experiments presented. In the treated exam-

ple the telescopic link of the crane must track a reference trajectory using the proposed

approach to compensate incertitudes due to a dead zone of the control input modeled

as in [141] along with other perturbations.

B.2 Preliminaries

The following notations is used:

• R+ = {x ∈ R : x ≥ 0}, where R is the set of real number.

• | · | denotes the absolute value in R, ‖ · ‖ denotes the Euclidean norm on R
n.

• For a (Lebesgue) measurable function d : R+ → R
m define the norm ||d||[t0,t1) =

ess supt∈[t0,t1)
‖d(t)‖, then ||d||∞ = ||d||[0,+∞) and the set of d(t) with the
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property ||d||∞ < +∞ we further denote as L∞ (the set of essentially bounded

measurable functions).

• A continuous function α : R+ → R+ belongs to the class K if α(0) = 0
and the function is strictly increasing. The function α : R+ → R+ belongs

to the class K∞ if α ∈ K and it is unbounded. A continuous function β :
R+ ×R+ → R+ belongs to the class KL if β(·, t) ∈ K∞ for each fixed t ∈ R+

and limt→+∞ β(s, t) = 0 for each fixed s ∈ R+.

• ⌈·⌋α denotes the following operation | · |αsign(·).

• The notation DV (x)f(x) stands for the directional derivative of a continuously

differentiable function V with respect to the vector field f evaluated at point x.

Following [28], consider a nonlinear system

ẋ(t) = f [x(t), d(t)], (B.1)

where x(t) ∈ R
n is the state, d(t) ∈ R

m is the external input, d ∈ L∞, and f :
R

n+m → R
n is a locally Lipschitz (or Hölder) continuous function, f(0, 0) = 0. For

an initial condition x0 ∈ R
n and input d ∈ L∞, define the corresponding solutions by

x(t, x0, d) for any t ≥ 0 for which the solution exists.

Definition 17. The system (B.1) is called input-to-state practically stable (ISpS), if for

any input d ∈ L∞ and any x0 ∈ R
n there are some functions β ∈ KL, γ ∈ K and

c ≥ 0 such that

‖x(t, x0, d)‖ ≤ β(‖x0‖, t) + γ(||d||[0,t)) + c ∀t ≥ 0.

The function γ is called nonlinear asymptotic gain. The system is called ISS if c = 0.

Definition 18. A smooth function V : Rn → R+ is called ISpS Lyapunov function for

the system (B.1) if for all x ∈ R
n, d ∈ R

m and some r ≥ 0, α1, α2, α3 ∈ K∞ and

θ ∈ K:

α1(‖x‖) ≤ V (x) ≤ α2(‖x‖),
DV (x)f(x, d) ≤ r + θ(‖d‖)− α3(‖x‖).

Such a function V is called ISS Lyapunov function if r = 0.

Note that an ISS Lyapunov function can also satisfy the following equivalent con-

dition for some χ ∈ K:

‖x‖ > χ(‖d‖) ⇒ DV (x)f(x, d) ≤ −α3(‖x‖).

Theorem 8. [28] The system (B.1) is ISS (ISpS) iff it admits an ISS (ISpS) Lyapunov

function.

B.2.1 Weighted homogeneity

Following [6], for fixed strictly positive numbers ri, i = 1, . . . , n called weights

and λ > 0, one can define:

• the vector of weights r = (r1, . . . , rn)
T , rmax = max1≤j≤n rj and rmin =

min1≤j≤n rj ;
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• the dilation matrix function Λr(λ) = diag{λri}ni=1, note that ∀x ∈ R
n and

∀λ > 0 we have Λr(λ)x = (λr1x1, . . . , λ
rixi, . . . , λ

rnxn)
T .

Definition 19. A function g : R
n → R is r–homogeneous with degree µ ∈ R if

∀x ∈ R
n and ∀λ > 0 we have:

λ−µg(Λr(λ)x) = g(x).

A vector field f : Rn → R
n is r–homogeneous with degree ν ∈ R, with ν ≥ −rmin

if ∀x ∈ R
n and ∀λ > 0 we have:

λ−νΛ−1
r (λ)f(Λr(λ)x) = f(x),

which is equivalent for i-th component of f being a r–homogeneous function of degree

ri + ν.

The system (B.1) with d = 0 is r–homogeneous of degree ν if the vector field f is

r–homogeneous of degree ν.

Theorem 9. [122] For the system (B.1) with d = 0 and r–homogeneous and continu-

ous function f the following properties are equivalent:

• the system (B.1) is (locally) asymptotically stable;

• there exists a continuously differentiable r–homogeneous Lyapunov function V :
R

n → R+ such that

α1(‖x‖) ≤ V (x) ≤ α2(‖x‖), DV (x)f(x, 0) ≤ −α(‖x‖),
λ−µV (Λr(λ)x) = V (x), µ > rmax,

∀x ∈ R
n and ∀λ > 0, for some α1, α2 ∈ K∞ and α ∈ K.

Define

f̃(x, d) = [f(x, d)T 0m]T ∈ R
n+m,

it is an extended auxiliary vector field for the system (B.1), where 0m is the zero vector

of dimension m.

Theorem 10. [11] Let the vector field f̃ be homogeneous with the weights r = [r1, . . . , rn] >
0, r̃ = [r̃1, . . . , r̃m] > 0 with a degree ν ≥ −rmin, i.e. f(Λr(λ)x,Λr̃(λ)d) =
λνΛr(λ)f(x, d) for all x ∈ R

n, d ∈ R
m and all λ > 0. Assume that the system

(B.1) is globally asymptotically stable for d = 0, then the system (B.1) is ISS.

Therefore, for homogeneous system (B.1) its ISS property follows asymptotic sta-

bility for d = 0 (as for linear systems [28]). The nonlinear asymptotic gain function

has been also estimated in [11].

B.2.2 Homogeneous stabilizing control

Consider a nonlinear system

ξ̇i = ξi+1, i = 1, . . . , n− 1, (B.2)

ξ̇n = −
n
∑

i=1

ai ⌈ξi⌋αi ,

where ξ = [ξ1, . . . , ξn] ∈ R
n is the state vector, αi and ai are real parameters. For

ri = 1 + (i − 1)ν and αi = 1+nν
1+(i−1)ν , i = 1, . . . , n, where ν > − 1

n−1 , the system

(B.2) is r–homogeneous of degree ν.
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Theorem 11. [13] Let a1, . . . , an form a Hurwitz polynomial, then there exists 0 <
̺ < 1

n−1 such that for any ν ∈ (− 1
n−1 + ̺, 0) the system (B.2) with αi =

1+nν
1+(i−1)ν ,

i = 1, . . . , n is globally finite-time stable.

Definition of finite-time stability can be found in [13, 106], roughly speaking it

is a usual global asymptotic stability with convergence to the origin in a finite time

dependent on initial conditions.

B.2.3 Homogeneous observer

Consider a nonlinear system

ξ̇i = ξi+1 − λi ⌈ξ1⌋βi , i = 1, . . . , n− 1, (B.3)

ξ̇n = −λn ⌈ξ1⌋βn ,

where ξ = [ξ1, . . . , ξn] ∈ R
n is the state vector, λi and βi are real parameters. For

ri = 1 + (i − 1)µ and βi = 1 + iµ for all i = 1, . . . , n, where µ > − 1
n , the system

(B.3) is r–homogeneous of degree µ.

Theorem 12. [115] Let λ1, . . . , λn form a Hurwitz polynomial, then there exists 0 <
̺ < 1

n such that for any µ ∈ (− 1
n+̺, 0) the system (B.3) with βi = 1+iµ, i = 1, . . . , n

is globally finite-time stable.

B.3 Problem statement

The following state-space representation will be considered in this work:

ẋi(t) = xi+1(t), i = 1, . . . , k − 1, (B.4)

ẋk(t) = u(t) + F (t), y(t) = x1(t),

where x(t) = [x1(t), . . . , xk(t)]
T ∈ R

k is the state space vector of the system (B.4)

at time instant t ≥ 0; u(t) ∈ R and F (t) ∈ R are the control and disturbance inputs,

respectively; y(t) ∈ R is the measured output. Since (B.4) is linear, then the measure-

ment noise can be transferred to the input and included in F . The following restrictions

are introduced for (B.4). Let F ∈ L∞ and Ḟ ∈ L∞, in addition a constant f > 0 is

given such that

||F ||∞ ≤ f, ||Ḟ ||∞ ≤ f.

It is required to design a dynamical output feedback u such that for the given ε > 0
and all initial conditions x0 ∈ R

k,

lim
t→+∞

‖x(t)‖ ≤ ε

for all F satisfying Assumption C.3. The conditions of that assumption can also be

relaxed supposing that F is a nonlinear function of x and asking for a semi-global

ε-invariance.
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B.4 Control design

First, the vector x has to be estimated. Due to the system structure this problem

is equivalent to the estimation of the derivatives y(1)(t), . . . , y(k−1)(t) for the output

y(t), for this purpose the following linear filter can be designed

żi = zi+1 + li(y − z1), i = 1, . . . , k − 1, (B.5)

żk = lk(y − z1) + u,

where z = [z1, . . . , zk]
T ∈ R

k and high-gain tuning parameters li > 0 for i = 1, . . . , k
form a Hurwitz polynomial (more precise restrictions on li will be given later). Denote

ŷ(i) as an estimate of y(i) = xi+1, then we can select ŷ(i) = zi+1 for i = 0, . . . , k − 1
and the filter estimation error e = x− z has dynamics:

ėi = ei+1 − lie1, i = 1, . . . , k − 1,

ėk = −lke1 + F.

From the last equation the following estimate

F̂ = ˆ̇ek + lke1

of F can be calculated, where ˆ̇ek is an estimate of ėk. In order to calculate ˆ̇ek a second

filter/differentiator should be designed that has to converge faster than exponentially

(the rate of decay in the linear one (B.5)). For this purpose a homogeneous high-gain

differentiator can be used:

ζ̇i = ζi+1 − lie1 + λi ⌈e1 − ζ1⌋βi , i = 1, . . . , k, (B.6)

ζ̇k+1 = λk+1 ⌈e1 − ζ1⌋βk+1 + lkl1,

where ζ = [ζ1, . . . , ζk]
T ∈ R

k+1 and the tuning parameters βi > 0 and λi > 0 for

i = 1, . . . , k + 1 will be derived later. Denote ē = [eT ek+1]
T , where

ek+1 = −lke1 + F,

ėk+1 = −lkė1 + Ḟ = −lk(e2 − l1e1) + Ḟ ,

then we can select ˆ̇ek = ζk+1 and the estimation error ǫ = ē− ζ has dynamics:

ǫ̇i = ǫi+1 − λi ⌈ǫ1⌋βi , i = 1, . . . , k,

ǫ̇k+1 = −λk+1 ⌈ǫ1⌋βk+1 − lke2 + Ḟ ,

which is r–homogeneous of order µ > − 1
k+1 for ri = 1 + (i − 1)µ and βi = 1 + iµ

for all i = 1, . . . , k+1 (if µ = − 1
k+1 then βk+1 = 0 and (B.6) reduces to a high-order

sliding mode observer, while for all µ > − 1
k+1 the filter (B.6) stays continuous), i.e. a

perturbed version of (B.3). Therefore,

F̂ = ζk+1 + lke1. (B.7)

Second, the control u can be introduced

u = −
k−1
∑

i=0

ai+1

⌈

ŷ(i)
⌋αi+1

− F̂ = −
k

∑

i=1

ai ⌈zi⌋αi − F̂ , (B.8)
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Figure B.1: Series cascade of e-subsystem, ǫ-subsystem and x-subsystem

where the coefficients ai, i = 1, . . . , k form a Hurwitz polynomial and αi > 0, i =
1, . . . , k will be defined in the next section.

To conclude, the proposed model-free invariance control algorithm includes two

filters (B.5) and (B.6) (one for differentiation and another for decoupling the control u
and the estimate of F appearing into the same equation), the unknown input F estimate

(B.7) and the stabilizing control (B.8).

B.5 Stability analysis

The dynamics of system (B.4) in closed loop with (B.5), (B.6), (B.7) and (B.8) can

be analyzed in the coordinates (x, e, ǫ) ∈ R
3k+1:

ẋi = xi+1, i = 1, . . . , k − 1,

ẋk = −
k

∑

i=1

ai ⌈xi − ei⌋αi + F − F̂

= −
k

∑

i=1

ai ⌈xi − ei⌋αi + F − ζk+1 − lke1

= −
k

∑

i=1

ai ⌈xi − ei⌋αi + ǫk+1;

ǫ̇i = ǫi+1 − λi ⌈ǫ1⌋βi , i = 1, . . . , k,

ǫ̇k+1 = −λk+1 ⌈ǫ1⌋βk+1 − lke2 + Ḟ ;

ėi = ei+1 − lie1, i = 1, . . . , k − 1,

ėk = −lke1 + F.

Note that, for e = 0 and ǫk+1 = 0, x-subsystem is r–homogeneous of degree ν >
− 1

k−1 for ri = 1 + (i − 1)ν and αi =
1+kν

1+(i−1)ν , i = 1, . . . , k, i.e. a version of (B.2).

Therefore, considering (F, Ḟ ) as an extended input, we have above a series cascade of

e-subsystem, ǫ-subsystem and x-subsystem (Fig. B.1).

Denote

l = [l1, . . . , lk]
T , Ak =











0 1 0 . . . 0 0
...

...
. . .

...

0 0 0 . . . 0 1
0 0 0 . . . 0 0











∈ R
k×k,

ck = [1 0 . . . 0] ∈ R
k, bk = [0 0 . . . 1]T ∈ R

k,
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if there exist l ∈ R
k and a matrix Pl = PT

l > 0 satisfying the inequality

(Ak − lck)
TPl + Pl(Ak − lck) + γ−1

l Plbkb
T
k Pl + Ik < 0

for some γl > 0 with identity matrix Ik ∈ R
k×k, then e-subsystem is asymptotically

stable and has L∞ gain of the transfer F → e less than γl (the system is ISS with the

asymptotic gain γ(s) = γls).

Similarly, denote

λ = [λ1, . . . , λk+1]
T
R

k+1, a = [a1, . . . , ak]
T ∈ R

k,

let λ and a are selected in such a way that the inequalities

(Ak+1 − λck+1)
TPλ + Pλ(Ak+1 − λck+1)

+γ−1
λ Pλbk+1b

T
k+1Pλ + Ik+1 < 0,

(Ak − ack)
TPa + Pa(Ak − ack) + γ−1

a Pabkb
T
k Pa + Ik < 0

are satisfied for Pλ = PT
λ > 0, Pa = PT

a > 0 and some γλ > 0, γa > 0. The

ǫ-subsystem subsystem for e2 = 0 and Ḟ = 0 has the form of (B.3), thus there exists

a choice of µ > − 1
k+1 and βi following the recommendations of Theorem 12 such

that it is globally finite-time (asymptotically) stable. Next, it is easy to check applying

Theorem 10 that it is also ISS with respect to e2 and Ḟ . Decreasing the value of γλ and

recalculating λ it is possible to adjust the asymptotic gain of ǫ-subsystem.

For x-subsystem, since for e = 0 and ǫk+1 = 0 it has the form of (B.2), applying

Theorem 11 we can conclude that there exists a selection of ν > − 1
k−1 and αi such

that this subsystem is globally finite-time (asymptotically) stable for e = 0 and ǫk+1 =
0. Then similarly from Theorem 10 we can substantiate ISS property with respect to

inputs e and ǫk+1. Adjusting γa and a it is possible to decrease the asymptotic gain of

x-subsystem. Finally, the global stability and ISS follows due to the serial structure of

interconnection of these subsystems [28], see Fig. B.1.

Therefore, the following result has been proven.

Theorem 13. Let Assumption C.3 be satisfied. Then for any given ǫ > 0 there exist

l ∈ R
k, λ ∈ R

k+1, a ∈ R
k, µ ∈ (− 1

k+1 , 0), ν ∈ (− 1
k−1 , 0), βi = 1 + iµ for

i = 1, . . . , k + 1, αi =
1+kν

1+(i−1)ν for i = 1, . . . , k, such that in the system (B.4) with

the output regulator (B.5)–(B.8) for all initial conditions

lim
t→+∞

‖x(t)‖ ≤ ε,

and x ∈ Lk
∞, z ∈ Lk

∞, ζ ∈ Lk+1
∞ . Moreover, the system (B.4), (B.5)–(B.8) is ISS with

respect to the input (F, Ḟ ).

Since dynamics of all variables, x(t), ǫ(t) and e(t), are homogeneous, their asymp-

totic gains can be evaluated as it is proposed in [3] and using the parameters γl, γλ
and γa. Finally, for given f the value of ε(t) can be estimated. Since (B.6) and (B.8)

contain nonlinear gains, then the asymptotic gain of (B.4), (B.5)–(B.8) (see [11] for an

algorithm of its estimation) close to the origin is better than in a pure linear system (i.e.

replacing (B.6) and (B.8) by linear filter and feedback, respectively).
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B.6 Dead zone compensation

We are going to present the compensation of an input nonlinearity, known as a dead

zone, which is depicted in Fig. B.2. This dead zone model is a static representation

of diverse physical phenomena with negligible fast dynamics, see [141]. One well-

known example is the model of an industrial electro-hydraulic valve in which the spool

occludes the orifice with some overlap. In this case, system (B.4) should be rewritten

as below:

ẋi(t) = xi+1(t), i = 1, . . . , k − 1, (B.9)

ẋk(t) = D(u(t)) + F (t), y(t) = x1(t),

where the dead zone input is represented by D(u(t)) and it has the following structure:

D(u(t)) =







mr(u− br) if u ≥ br,
0 if −bl ≤ u ≤ br,
ml(u− bl) if u ≤ −bl.

(B.10)

where mi = m0 + ∆mi and bi = b0 + ∆bi, with i = l, r; the subscript l stands

for “left” and r for “right”, m0 and b0 are the nominal values while ∆mi and ∆bi are

uncertain terms.

Figure B.2: Dead zone input nonlinearity.

Let u0(t) be the control signal from a model-free invariance control design. Then,

our approach is based on the design of a nominal dead zone inverse, DI(u0(t)), where

the remaining uncertain terms ∆mi and ∆bi will be canceled by the invariance control

algorithm. For this aim the nominal parameters m0 and b0 are assumed to be known

and they are used for the construction of a static nominal dead zone inverse:

u(t) = DI(u0(t)) = m−1
0 (u0(t) +m0 b0 sign(u0)). (B.11)

Substituting (B.11) in (B.9) we obtain the following dynamics:

ẋi(t) = xi+1(t), i = 1, . . . , k − 1, (B.12)

ẋk(t) = u0(t) + F0(t), y(t) = x1(t),

where u0(t) is the final control input and F0(t) represents a perturbation containing

new terms related with the uncertain parameters of a dead zone. Note that the inverse

of a dead zone is a relay-type discontinuity that can be canceled if the inverse is exact,

see [141]. Besides, with a nominal dead zone inverse the structure of system (B.4) is

recovered and the uncertain terms are to be compensated by a model free invariance

controller.
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B.7 Hydraulic Actuator Case Study

The experimental setup is the telescopic link of a laboratory prototype of a typical

industrial hydraulic forestry crane. Such industrial equipment is widely used in forestry

and is a subject of many researches aimed at automation of these systems, see [112].

Figure B.3: Industrial hydraulic forestry crane.

Some physical parameters of the link are given in Table B.1.

Table B.1: Physical parameters of the link

Aa, m
2 Ab, m

2 Va0, m
3 Vb0, m

3

1.26 · 10−3 0.76 · 10−3 0.012 · 10−3 1.19 · 10−3

pt, Pa ps, Pa q̄, l/min β, Pa

5 · 105 180 · 105 90 17 · 108

m, kg f̄h, N x̄p, m x̄v , m/s

200 8000 1.55 0.94

The telescopic link of the crane, see Fig. B.3, consists of a double-acting single-

side hydraulic cylinder and a solid load, which is attached to a piston of the cylinder.

Position of the link, x, varies from 0 to 1.55m; positive velocity ẋ corresponds to

extraction of the cylinder. This link can be described as a restricted 1-DOF mechanical

system actuated by a hydraulic force, and the equation of motion is

mẍ = fh − fgrav − ffric, (B.13)

where m is the mass, fh is the force generated by the hydraulics, fgrav is the gravity

and ffric is the friction force. The force generated by the hydraulics is controlled via a

current signal to the valve of the cylinder and it is given by

fh =

{

paAa − pbAb, if variables are inR,

funcertain, otherwise,
(B.14)

where the validity region

R = {x ∈ (0, x̄p), |ẋ| < x̄v, pa, pb ∈ (pt, ps)} , (B.15)

is defined by certain constant bounds, see Table B.1; ps is the pump pressure, and pt is

the return (exit) pressure; the piston areas Aa and Ab are known geometric parameters;

pa and pb are the measured pressures in chambers A and B of the cylinder.
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The friction and gravity terms are considered as unknown perturbations.

Note that the position of the link, x, is limited by geometrical constrains, the ve-

locity is limited by the maximum achievable flow from a pump, pressures are limited

through a set of service anti-cavitation and pressure-relief valves, which, in particular,

ensure pt ≤ pi ≤ ps, i = a, b. These devices play a fault-preventing role and do not

influence a normal operation. Moreover, the initial conditions are within the region R
and funcertain prevent from leaving the region.

The dynamics of the pressures can be modeled, see [102, Sec. 3.8], by:

ṗa = β
Va(x)

(−ẋ Aa + qa) , if variables are inR,

ṗb =
β

Vb(x)
(ẋ Ab − qb) , if variables are inR,

ṗi = puncertain, i = a, b otherwise,

(B.16)

and initial conditions pa,b(0) ∈ (pt, ps); Va(x) = Va0 +xAa and Vb(x) = Vb0 −xAb

are volumes of the chambers A and B at the given piston position x, Va0 and Vb0 are

known geometric constants, β is a known bulk modulus, qa and qb are flows to the

chamber A and from the chamber B. The flow qa is positive when the oil goes into

chamber A, and the flow qb is positive when the oil goes out of chamber B.

Following [102, 108], the nonlinear equations describing the fluid flow distribu-

tion in the valve can be written, in their simplest forms, as: qa = ca Sa(xs)
√
ps − pa

and qb = cb Sb(xs)
√
pb − pt for xs ≥ 0; qa = −ca Sa(xs)

√
pa − pt and qb =

−cb Sb(xs)
√
ps − pb for xs < 0. Here ca and cb are constant coefficients which de-

pend on physical values (fluid density, discharge coefficient and other), Sa(xs) and

Sb(xs) are (non-negative) areas of orifices for the ports A and B, xs is a displace-

ment of a spool inside a valve, this spool is actuated by an electromagnetic actu-

ator where an input (current) signal u is applied, u ∈ [−u−, u+]. Assuming that

the valve is symmetric, i.e. ∀xs : Sa(xs) = Sb(xs), we introduce the signed area

function S(xs) given by S(xs) = Sa(xs) sign(xs) = Sb(xs) sign(xs). The absolute

value of this function is equal to the area of the orifices and the sign indicates direc-

tions of the flows. Then, the flow equations can be rewritten as: qa = caϕaS(xs)

and qb = cbϕbS(xs), with: ϕa =
√
ps − pa

(sign(xs)+1)
2 − √

pa − pt
(sign(xs)−1)

2 and

ϕb =
√
pb − pt

(sign(xs)+1)
2 − √

ps − pb
(sign(xs)−1)

2 . Note that in industrial hydraulic

systems a nonzero pressure difference through the valve is ensured by a set of service

valves, i.e. ϕa ≥ 0 and ϕb ≥ 0. Taking into account a high-response servo valve

and assuming that the spool displacement is proportional to the input signal, the signed

area can be modeled as defined by the input signal u through a nonlinear static re-

lation S(xs) = D(u). The shape of the function D strongly depends on a type of

the valve; for industrial heavy-duty systems a dead-zone due to a leakage-preventing

closed-center spool and a saturation due to limiting screws are common, see [3] and

references therein. Taking the derivative of (B.14) and substituting (B.16), one obtains:

ḟh = −ϕ0ẋ+ ϕ1D(u), (B.17)

where ϕ0 = β(
A2

a

Va(x)
+

A2
b

Vb(x)
) and ϕ1 = β( caAaϕa

Va(x)
+ cbAbϕb

Vb(x)
) with 0 < ϕi ≤ ϕi ≤ ϕi

for i = 0, 1. Besides, the nonlinear function D(u) can be represented by (B.10). Since

ḟh is bounded, sytem (B.17) can be rewritten as:

ẋ = ϕD(u)− ϕ−1
0 ḟh, (B.18)
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where ϕ = ϕ1

ϕ0
and ϕ = ϕ̄ + ∆ϕ̄. Given an appropriate desired trajectory for (B.15),

xref , with Lipschitz continuous second derivative, ẍref , the objective of this section is

to design a control law for u to achieve the tracking of the cylinder position x.

B.7.1 Control Design for a First Order System

Let us consider a first order case, k = 1, together with the inverse dead zone

compensation (B.11), u = D−1(u0). Let xd be the desired trajectory, defining the

tracking error ed = x− xd:

ėd = ϕ̄u0 + F1 − ẋd.

Now consider the control input u = ϕ̄−1(v+ ẋd), where v is to be designed. Then, the

estimation of ed is given by a high-gain observer:

ż = le+ v,

where e = ed − z and ė = −le + F1. Setting e1 = e and e2 = ė, we obtain

ė2 = −le2 + Ḟ1. In order to estimate ė, the next homogeneous high gain differentiator

is proposed:

ζ̇1 = ζ2 − λ1 ⌈ǫ1⌋β1 − l1ǫ1,

ζ̇2 = −λ2 ⌈ǫ1⌋β2 − l2ǫ2,

where ǫ1 = e1 − ζ1and ǫ2 = e2 − ζ2, obtaining the following error dynamics:

ǫ̇1 = ǫ2 − λ1 ⌈ǫ1⌋β2 − l1ǫ1,

ǫ̇2 = −λ2 ⌈ǫ1⌋β2 − l2ǫ2 − le2 + Ḟ1.

Finally the estimate F̂1 is obtained: F̂1 = ζ2 + le1, and the control law for the first

order system is constructed as follows:

v = −a1 ⌈z⌋α1 − F̂1. (B.19)

B.7.2 Experiments

In this subsection the performances of the proposed approach will be implemented

on the robotic crane presented above.

The experiments are carried out using a real-time platform dSpace 1401 with sam-

ple time of 1ms using forward Euler integration method. The position of the telescopic

link is measured with a wire-actuated encoder which provides 2381 counts for the range

from 0 to 1.55m with a quantization interval of Q = 0.651mm. The desired trajectory

is selected as a sinusoidal signal: xd = 0.8 + 0.4 sin(ωt). In the experiments the val-

ues used for the dead zone compensation (B.11) are m0 = 1 and b0 = 0.3; being such

values the nominal ones, the controller should be able to compensate the gap between

nominal and real values, namely compensate the remaining uncertain terms ∆mi and

∆bi along with other perturbations. Firstly (Fig. B.4), after tuning the a1, λ1 and l
coefficients, let us examine the performances of the controller varying the parameter

α1 which determines the non-linearity of the controller and evaluating the effect of

the F̂0 estimate. It can be seen how the error in the tracking is smaller decreasing α1
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Figure B.4: Experimental results on the telescopic link with controller (B.19) with

sample time ts = 1ms, a1 = 2, λ = 45, l = 80 , ω = 0.3 varying α1. (x-axis in

samples, y-axis in meter)

and even smaller adding the F̂0 compensation, which proves clearly the efficiency of

the method; it is worth to remark thought that a high frequency oscillatory behavior

present in the error (and control input) for α1 < 1 which is not desirable in the applica-

tion considered. An α1 equal or close to one had to be chosen to avoid it. The closest

α1 to 1 the faster the oscillations, which are not propagated from the control input to

the telescopic link guaranteeing a smooth extension or retraction. To lay stress on the

good performances of the method, Fig. B.5 shows the behavior of the controller (B.19)

in comparison with a standard PI approach often used to regulate such a system. It can

be seen that although the integral action applied, the link could not follow the reference

as well as the homogeneous control which does not have what appears to be a static

error with respect to the reference; that it could be caused by the nominal values used

for the dead zone compensation. As stated above the homogeneous controller is able

to handle the error between nominal and real values, that’s not achieved with the PI

control despite the tuning to have the best behavior possible.

B.8 Conclusion

This paper presented the synthesis of a control method for system which can be

described as in (B.4). A linear filter allows the decoupling of the control variables

and the disturbances, which are afterward estimated starting from the estimation er-

ror using a homogeneous high gain observer. The estimation of perturbations is then

included in the controller to compensate them. The approach is fully proven theoreti-
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Figure B.5: Comparison between the Homogeneous controller and the PI approach.

(x-axis in samples, y-axis in meter)

cally then applied on the telescopic link of a hydraulic actuated robotic crane used in

forestry. To deal with such a platform an easy but effective dead zone compensation

technique has been implemented; such a compensation relies just on nominal param-

eters. The proposed controller behaves as expected, compensating perturbations and

dead zone incertitudes, and outperforming the standard PI control as it is shown with

experiments.

130 Matteo GUERRA



Appendix C

On-line Differentiation: Error Es-

timation using Interval Observer

C.1 Introduction

State estimation is an important problem in many areas of the control engineer-

ing science dealing with plant regulation, synchronization or fault detection [12, 103,

44]. In many cases, if the model of the system is highly uncertain, then a design of

conventional Luenberger-like observers is not possible and various model-free estima-

tion techniques can be used [42]. Many of them are based on estimation of derivatives

since a large class of systems can be transformed in output canonical forms where

the state is represented as the output and its derivatives. That is why many differen-

tiation algorithms are proposed in the literature [51], some of them have a form of

nonlinear (Luenberger-like) observer [89, 115, 146]. One of the main characteristics

of differentiators is their sensitivity or robustness with respect to measurement noise,

for almost all existing differentiation techniques there exist estimates providing quali-

tative [89, 115], and sometimes quantitative [146], estimates of errors caused by a non-

differentiable noise presence. Even existent, these estimates are a kind of “worst-case

asymptotic” bounds, and more accurate derivations are appreciated in applications.

Interval observers, proposed in [50] and developed for instance in [39, 23, 36, 38,

100, 104], follow the ideas of set-membership estimation theory [68, 77], where for

each instant of time a set of admissible values for the state vector is evaluated. The di-

ameter of this set is proportional to the system uncertainty. Thus, the interval observers

generate the estimate of the state and simultaneously evaluate the current error of this

estimation.

The objective of this work is to propose an interval observer for estimation error of

differentiators from [89, 115, 146], Super Twisting (ST), Homogeneous Differentiator

(HOMD) and High Gain Differentiator (HGD) respectively. The coefficients of these

nth order differentiators have to be tuned taking into account the maximum value of

the n + 1 derivative of the signal to be differentiated, which is a kind of uncertain

signal in the differential equations of estimation error. Another source of uncertainty is

the measurement noise, which is supposed to be almost bounded with a known upper

and lower bound (i.e. bounded for all t for a set of zero Lebesgue measure). Taking

all these constraints, the interval observer has to evaluate on-line the set of admissible
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values for the error of differentiation.

To show the effectiveness of the proposed approach an on-line estimation of the

extension velocity is carried out for the telescopic link of a hydraulic actuated industrial

crane in which just the position can be measured. Such industrial equipment is widely

used in forestry and the automation of tasks is the subject of many researches [112].

C.2 Preliminaries

Euclidean norm for a vector x ∈ R
n will be denoted as |x|, and for a measurable

and locally essentially bounded input u : R+ → R (R+ = {τ ∈ R : τ ≥ 0}) the

symbol ||u||[t0,t1] denotes its L∞ norm:

||u||[t0,t1] = ess sup{|u(t)|, t ∈ [t0, t1]},

if t1 = +∞ then we will simply write ||u||. We will denote as L∞ the set of all inputs

u with the property ||u|| < ∞. Denote the sequence of integers 1, ..., k as 1, k. The

symbols In, En×m andEp denote the identity matrix with dimension n×n, the matrix

with all elements equal 1 with dimensions n×m and p× 1 respectively. For a matrix

A ∈ R
n×n the vector of its eigenvalues is denoted as λ(A).

For two vectors x1, x2 ∈ R
n or matrices A1, A2 ∈ R

n×n, the relations x1 ≤ x2
and A1 ≤ A2 are understood elementwise. The relation P ≺ 0 (P ≻0) means that the

matrix P ∈ R
n×n is negative (positive) definite. Given a matrix A ∈ R

m×n, define

A+ = max{0, A}, A− = A+ − A (similarly for vectors) and denote the matrix of

absolute values of all elements by |A| = A+ +A−.

Lemma 9. [37] Let x ∈ R
n be a vector variable, x ≤ x ≤ x for some x, x ∈ R

n.

(1) If A ∈ R
m×n is a constant matrix, then

A+x−A−x ≤ Ax ≤ A+x−A−x. (C.1)

(2) If A ∈ R
m×n is a matrix variable and A ≤ A ≤ A for some A,A ∈ R

m×n,

then

A+x+ −A
+
x− −A−x+ +A

−
x− ≤ Ax (C.2)

≤ A
+
x+ −A+x− −A

−
x+ +A−x−.

A matrixA ∈ R
n×n is called Hurwitz if all its eigenvalues have negative real parts,

it is called Metzler if all its elements outside the main diagonal are nonnegative. Any

solution of linear system

ẋ = Ax+Bω(t), ω : R+ → R
q
+, (C.3)

y = Cx+Dω(t),

with x ∈ R
n, y ∈ R

p and a Metzler matrix A ∈ R
n×n, is elementwise nonnegative

for all t ≥ 0 provided that x(0) ≥ 0 and B ∈ R
n×q
+ [40, 131]. The output solution

y(t) is nonnegative if C ∈ R
p×n
+ and D ∈ R

p×q
+ . Such dynamical systems are called

cooperative (monotone) or nonnegative if only initial conditions in R
n
+ are considered

[40, 131].

The L1 and L∞ gains for nonnegative systems (C.3) have been studied in [16, 34],

for this kind of systems these gains are interrelated.
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Lemma 10. [16, 34] Let the system (C.3) be nonnegative (i.e. A is Metzler, B ≥ 0,

C ≥ 0 and D ≥ 0), then it is asymptotically stable if and only if there exist λ ∈
R

n
+\{0} and a scalar γ > 0 such that the following Linear Programming (LP) problem

is feasible:
[

Aλ+BEq

Cλ− γEp +DEq

]

< 0.

Moreover, in this case the L∞ gain of the operator ω → y is lower than γ.

The conventional results and definitions on L2/L∞ stability for linear systems can

be found in [74].

C.3 Interval differentiator

The differentiators from [89, 115, 146] can be presented in the following general-

ized form:

ẋi(t) = −χi[t, x1(t)− y(t)] + xi+1(t), i = 1, n;

ẋn+1(t) = −χn+1[t, x1(t)− y(t)], (C.4)

y(t) = f(t) + v(t), t ≥ 0,

x1(0) = y(0), xk(0) = 0, k = 2, n+ 1,

where x(t) = [x1(t), . . . , xn+1(t)] ∈ R
n+1 is the differentiator state; y(t) ∈ R is

the signal available for measurements, f(t) ∈ R is the signal to be differentiated n
times and it is supposed that it has n + 1 derivatives; v(t) ∈ R is the measurement

noise, v ∈∞; the locally bounded functions χi : R2 → R are varying depending on

the differentiator. It is supposed that xi(t) corresponds to an estimate of f (i−1)(t) for

i = 1, n+ 1, and also the following assumptions are adopted in this work. There is a

known V > 0 such that |v(t)| ≤ V for almost all t ≥ 0.

There are known functions f (j), f
(j) ∈∞, j = 0, n such that for almost all t ≥ 0

f (j)(0) ≤ f (j)(0) ≤ f
(j)

(0).

f (n+1)(t) ≤ f (n+1)(t) ≤ f
(n+1)

(t).

Under these assumptions we are going to design an interval observer for differenti-

ation errors

ei(t) = xi(t)− f (i−1)(t), i = 1, n+ 1,

first for a generic order n, and next this solution will be detailed for n = 1. Define

e = [e1, . . . , en+1].

C.3.1 High order case

The dynamics of differentiation errors can be presented as follows:

ėi(t) = −χi[t, e1(t) + v(t)] + ei+1(t), i = 1, n;

ėn+1(t) = −χn+1[t, e1(t) + v(t)]− f (n+1)(t),

e0 ≤ e(0) ≤ e0,

e0 = [−V,−f (1)(0) . . . ,−f (n)(0)],
e0 = [V,−f (1)(0) . . . ,−f (n)(0)],
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where the signal ψ(t) = e1(t) + v(t) is available for measurements, or equivalently

ėi(t) = ρi[t, ψ(t)]− aie1(t) + aiv(t) + ei+1(t), i = 1, n;

ėn+1(t) = ρn+1[t, ψ(t)]− an+1e1(t) + an+1v(t)− f (n+1)(t),

where ρi[t, ψ(t)] = aiψ(t) − χi[t, ψ(t)] for i = 1, n+ 1 and the coefficients a =
[a1, . . . , an+1] satisfy the following requirement. The matrix

A =













−a1 1 0 . . . 0 0
...

...
. . .

...

−an 0 0 . . . 0 1

−an+1 0 0 . . . 0 0













is Hurwitz and there exists a nonsingular matrix S ∈ R
(n+1)×(n+1) such that the matrix

R = S−1AS is Metzler. The conditions of existence of such a S for a Hurwitz matrix

A are studied in [117], a time-varying similarity transformation S(t) is proposed in

[100]. In the vector representation e = [e1, . . . , en+1] we obtain

ė(t) = Ae(t) + ρ[t, ψ(t)] + av(t) + bf (n+1)(t), (C.5)

where ρ(t, ψ) = [ρ1(t, ψ), . . . , ρn+1(t, ψ)] and b = [0, 0, . . . , 0,−1]. To design an

interval observer for (C.5) we need to transform this system to its positive counterpart

[117], for this purpose introduce new coordinates ǫ = S−1e, then

ǫ̇(t) = Rǫ(t) + η[t, ψ(t)] + αv(t) + βf (n+1)(t), (C.6)

where η[t, ψ(t)] = S−1ρ[t, ψ(t)], α = S−1a and β = S−1b. Using (C.1) we obtain:

βf (n+1)(t) ≤ βf (n+1)(t) ≤ βf (n+1)(t),

βf (n+1)(t) = β+f (n+1)(t)− β−f
(n+1)

(t),

βf (n+1)(t) = β+f
(n+1)

(t)− β−f (n+1)(t),

−|α|V ≤ αv(t) ≤ |α|V.

Then an interval observer for (C.6) takes the form:

ǫ̇(t) = Rǫ(t) + η[t, ψ(t)]− |α|V + βf (n+1)(t), (C.7)

ǫ̇(t) = Rǫ(t) + η[t, ψ(t)] + |α|V + βf (n+1)(t),

ǫ(0) = [S−1]+e0 − [S−1]−e0,

ǫ(0) = [S−1]+e0 − [S−1]−e0,

where ǫ(t) and ǫ(t) are lower and upper estimates for the vector ǫ(t), and

e(t) = S+ǫ(t)− S−ǫ(t), (C.8)

e(t) = S+ǫ(t)− S−ǫ(t).

Theorem 14. Let assumptions C.3–C.3.1 be satisfied. Then in the differentiator (C.4)

the differentiation errors ei(t), i = 1, n+ 1 satisfy the inequalities:

e(t) ≤ e(t) ≤ e(t) ∀t ≥ 0 (C.9)

and ǫ, ǫ, e, e ∈n
∞ in (C.7), (C.8) provided that e1 ∈∞.
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Proof. The interval estimation can be easily substantiated for ǫ(t) by introducing the

errors ε(t) = ǫ(t)− ǫ(t) and ε(t) = ǫ(t)− ǫ(t):

ε̇(t) = Rε(t) + αv(t) + |α|V + βf (n+1)(t)− βf (n+1)(t), (C.10)

ε̇(t) = Rε(t) + |α|V − αv(t) + βf (n+1)(t)− βf (n+1)(t).

According to assumptions C.3 and C.3, αv(t) + |α|V ≥ 0, |α|V − αv(t) ≥ 0,

βf (n+1)(t)−βf (n+1)(t) ≥ 0 and βf (n+1)(t)−βf (n+1)(t) ≥ 0 for all t ≥ 0, ε(0) ≥ 0
and ε(0) ≥ 0 by construction, and the matrixR is Metzler from Assumption C.3.1, then

ε(t) ≥ 0 and ε(t) ≥ 0 for all t ≥ 0 that implies the estimates:

ǫ(t) ≤ ǫ(t) ≤ ǫ(t) ∀t ≥ 0.

Then from (C.1) the expressions (C.8) implies (C.9). Boundedness of all variables fol-

lows from boundedness of v(t), e1(t) and derivative fn+1(t) claimed in assumptions

C.3 and C.3.

In general just boundedness of estimates is not enough, and some optimality in

(C.9) should be obtained using, for example, result of Lemma 10. However, it is easy

to see that the solving problem is highly nonlinear, and to propose some LMIs for its

solutions some constraint have to be imposed or some variables have to be fixed, as in

the following result.

Property 1. Giving a Metzler matrixR ∈ R
(n+1)×(n+1), let there exist λ ∈ R

n+1
+ \{0}

and a scalar γ > 0 such that the following LP problem is feasible:

[

Rλ+Xb

λ− γEn+1

]

< 0, Xb ≥ 0,

RX = XA0 − wc, c = [1, 0, . . . , 0],

A0 =













0 1 0 . . . 0 0
...

...
. . .

...

0 0 0 . . . 0 1

0 0 0 . . . 0 0













,

where X ∈ R
(n+1)×(n+1) is a nonsingular matrix and w ∈ R

n+1, then S = X−1

and a = X−1w satisfy Assumption C.3.1. In addition, the L∞ gain of the operator

f (n+1) → ǫ is lower than γ in (C.6).

Proof. The proof follows Lemma 10 by a direct substitution (A = A0 − ac).

Note that β = S−1b ≥ 0 under conditions of Proposition 1, then βf (n+1)(t) =

βf (n+1)(t) and βf (n+1)(t) = βf
(n+1)

(t), therefore theL∞ gains of operators f (n+1)(t) →
ǫ, f (n+1)(t) → ǫ, f (n+1) − f (n+1) → ε and f (n+1) − f (n+1) → ε are optimized and

lower than γ in (C.7) and (C.10), which improves accuracy of the interval estimation

by (C.7), (C.8).
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C.3.2 First order derivative estimation

Let us consider with more details the case of the first derivative estimation, then

ẋ1(t) = −χ1[t, x1(t)− y(t)] + x2(t),

ẋ2(t) = −χ2[t, x1(t)− y(t)], (C.11)

y(t) = f(t) + v(t), t ≥ 0,

x1(0) = y(0), x2(0) = 0,

and let assumptions C.3 and C.3 be satisfied. To check Assumption C.3.1 note that

A =

[

−a1 1

−a2 0

]

and for any a1 > 0 and a2 > 0 it is Hurwitz and has eigenvalues

λ(A) =
1

2

[

−a1 +
√

a21 − 4a2

−a1 −
√

a21 − 4a2

]

,

which are real and distinct for a1 ≥ 2
√
a2. The corresponding eigenvectors form the

matrix for given r1 > 0, r2 > 0,

S =

[

a1+
√

a2
1−4a2

2r1a2

√
a2
1−4a2−a1

2r2a2

r−1
1 −r−1

2

]

,

which admits the conditions of Assumptions C.3.1:

S−1AS = R =
1

2

[

−a1 −
√

a21 − 4a2 0

0 −a1 +
√

a21 − 4a2

]

.

Since

S−1 =









a2r1√
a2
1−4a2

r1
2

(

1− a1√
a2
1−4a2

)

a2r2√
a2
1−4a2

− r2
2

(

1 + a1√
a2
1−4a2

)









,

then

β = S−1b =









r1
2

(

a1√
a2
1−4a2

− 1

)

r2
2

(

1 + a1√
a2
1−4a2

)









≥ 0

and the pair (R, β) forms a nonnegative system. According to Lemma 10, this system

has L∞ gain of the transfer function f (n+1) → ǫ less than γ > 0 if for some λ ∈ R
2,

λ > 0 we have
[

Rλ+ β

λ− γEp

]

< 0,

but this LP problem has always a solution if the following restrictions on r1 and r2 are

satisfied:

r1 <
√

a21 − 4a2
a1 +

√

a21 − 4a2

a1 −
√

a21 − 4a2
γ,

r2 <
√

a21 − 4a2
a1 −

√

a21 − 4a2

a1 +
√

a21 − 4a2
γ
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for a given γ > 0.

From (C.8), it is necessary to minimize L∞ norms of S+ and S− to ensure a good

L∞ gain for the transfer [f (n+1) f
(n+1)

] → [e e]. For this purpose, define

r1 = ς1

√

a21 − 4a2
a1 +

√

a21 − 4a2

a1 −
√

a21 − 4a2
γ,

r2 = ς2

√

a21 − 4a2
a1 −

√

a21 − 4a2

a1 +
√

a21 − 4a2
γ

for some ς1, ς2 ∈ (0, 1), then

S+ =
a1 −

√

a21 − 4a2

γς1
√

a21 − 4a2

[

1
2a2

0
1

a1+
√

a2
1−4a2

0

]

,

S− =
a1 +

√

a21 − 4a2

γς2
√

a21 − 4a2

[

0 1
2a2

0 1

a1−
√

a2
1−4a2

]

and

||S+||∞ =
a1 −

√

a21 − 4a2

γς1
√

a21 − 4a2
max

{

1

2a2
,

1

a1 +
√

a21 − 4a2

}

,

||S−||∞ =
a1 +

√

a21 − 4a2

γς2
√

a21 − 4a2
max

{

1

2a2
,

1

a1 −
√

a21 − 4a2

}

.

In order to minimize these norms it is necessary to take ς1 = ς2 ≃ 1 and since for

ς1 = ς2
||S−||∞ > ||S+||∞,

then the problem of minimization of the function

̟(a1, a2) = max {̟1(a1, a2), ̟2(a1, a2)}

̟1(a1, a2) =
1

a2

a1 +
√

a21 − 4a2

2
√

a21 − 4a2
,

̟2(a1, a2) =
2

a1 −
√

a21 − 4a2

a1 +
√

a21 − 4a2

2
√

a21 − 4a2

can be posed. Computing the partial derivatives of ̟i, i = 1, 2 we obtain that ∂̟1

∂a1
and

∂̟2

∂a1
are always negative and ∂̟1

∂a2
= 0 for

a2 =
3

16
a21,

∂̟2

∂a2
= 0 for

a2 =
1 +

√
2

6 + 4
√
2
a21.

Both these solutions correspond to minimums of̟i, i = 1, 2. After substitution of this

optimal selection of a2 in ̟i we obtain

̟(a1) = a−1 max

{

5
√
2 + 7

√

2
√
2 + 3

, 8a−1
1

}

,
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then

a2 = a21

{

3
16 if a1 ≤ 8

√
2+1

5
√
2+7

,
1+

√
2

6+4
√
2

otherwise.
(C.12)

Therefore, increasing the value of a1 and taking a2 from (C.12) minimize the L∞ gain

for the transfer [f (n+1) f
(n+1)

] → [e e], but increasing a1 and a2 augments the same

gain with respect to the noise v(t). To evaluate the gain with respect to noise, note that

α = S−1a = γ
a2
2









ς1

(

a1+
√

a2
1−4a2

)2

a1−
√

a2
1−4a2

ς2

(

a1−
√

a2
1−4a2

)2

a1+
√

a2
1−4a2









is a nonnegative vector, thus L∞ gain γv > 0 of the transfer v → ǫ can be evaluated

using Lemma 10 as follows:

[

Rλ+ α

λ− γvEp

]

< 0, λ > 0,

where λ ∈ R
2. This LP problem has a solution if

γa2ς1
a1 +

√

a21 − 4a2

a1 −
√

a21 − 4a2
< λ1 < γv,

γa2ς2
a1 −

√

a21 − 4a2

a1 +
√

a21 − 4a2
< λ2 < γv

that implies

γv = γa2
a1 +

√

a21 − 4a2

a1 −
√

a21 − 4a2
.

Thus, L∞ gain of the error ǫ(t) with respect to the noise v(t) is higher (worse) than

that with respect to f (n+1)(t). Substituting (C.12) we obtain

γv = γa21

{

9
16 if a1 ≤ 8

√
2+1

5
√
2+7

,

0.5 otherwise.

Normally in applications ||v|| ≪ ||f (n+1)||, thus it is reasonable to limit the value of

a1 using the last expression assuming that the influence of the noise v(t) on the errors

should not exceed the influence of f (n+1)(t), i.e. 0.5γa21V ≤ γ||f (n+1)||, then

a1 ≤
√

2
||f (n+1)||

V
. (C.13)

Let us check the performance of the proposed interval differentiator in numerical ex-

periments.

C.4 Forestry-Standard Mobile-Hydraulic crane

The on-line velocity estimation problem is an important issue in mobile hydraulics

where instrumentation is limited. It follows the construction of a first order interval dif-

ferentiator that can be applied for this purpose. The system under study is the telescopic
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Figure C.1: Hydraulic Forestry Crane.

link of an industrial hydraulic forestry crane. Such industrial equipment is widely used

in forestry and the automation is a subject of many researches, see [112].

The method is applied to the telescopic link of the crane, see Fig. C.1, however

similar results can be easily obtained for different joints. The telescopic link consists

of a double-acting single-side hydraulic cylinder and a solid load which is attached to

a piston of the cylinder. Position of the link x varies from 0 to 1.55m; positive velocity

ẋ corresponds to extraction of the cylinder. This link can be described as a 1-DOF

mechanical system actuated by a hydraulic force, and the equation of the motion is

mẍ = fh − fg − ffric, (C.14)

where m is the mass, fh is the generated hydraulic force, fg is the gravity force and

ffric is the friction force. The friction is modeled as a Coulomb friction plus a viscous

friction: ffric = fc sign(ẋ) + fv ẋ. The force generated by the hydraulics is presented

below:

fh = PaAa − PbAb, (C.15)

where the piston areas Aa and Ab are known geometric parameters, Pa and Pb are

the measured pressures in chambers A and B of the cylinder. The dynamics of the

pressures is given, see [102, Sec. 3.8], by

Ṗa = β
Va(x)

(−ẋAa + qa) , Ṗb =
β

Vb(x)
(ẋAb − qb) , (C.16)

where Va(x) = Va0 + xAaand Vb(x) = Vb0 − xAb are volumes of the chambers A
and B at the given piston position x, Va0 and Vb0 are known geometric constants, β is

a known bulk modulus, qa and qb are flows to the chamber A and from the chamber B.

C.4.1 Bounds of ẍ

Differentiating (C.15) and substituting (C.16) leads to

ẋ = η0(x, qa, qb)− η1(x) ḟh,

where
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η0(x, qa, qb) =
Aa Vb(x) qa +Ab Va(x) qb
A2

a Vb(x) +A2
b Va(x)

,

η1(x) =
Va(x)Vb(x)β

−1

A2
a Vb(x) +A2

b Va(x)
.

Note that since x is bounded, η0 and η1 are bounded. Substituting the equation above,

ẋ, in (C.14) it follows

ẍ = −c0(x, ẋ, qa, qb) + c1fh + c2(x) ḟh − fg, (C.17)

with c0(·) = fc
m signẋ + fv

m η0, c1 = 1
m , c2(·) = − fv

m η1. The pressures are mea-

sured with installed pressure transducers that allow the hydraulic force to be estimated,

equation (C.15), and precisely this measurement in conjunction with equation (C.17)

provides the lower and upper bounds for the second derivative as follows:

−L(t) ≤ ẍ ≤ L(t)

where L(t) is a continuous positive function

L(t) = γ0 + γ1|fh|+ γ2ζ(fh),

where parameters γ0, γ1 and γ2 are positive constants; the rate of variation of fh, is

given by ζ(fh), which is a positive function that depends on the available pressure

measurements. One option is:

ζ(fh) =
|fh(t− τ1)− fh(t− τ2)|

τ2 − τ1
,

with τ2 > τ1 > 0. The values of physical parameters for the considered crane are given

in Table I.

Table I: Physical parameters of the link

Aa, m
2 Ab, m

2 Va0, m
3 Vb0, m

3

1.26 · 10−3 0.76 · 10−3 0.012 · 10−3 1.19 · 10−3

Pt, Pa Ps, Pa q̄, l/min β, Pa

5 · 105 180 · 105 90 17 · 108
m, kg f̄h, N fc, N fv , N·s/m
200 8000 750 6500

Both pressures Pa and Pb are bounded by the tank pressure Pt and the supply

pressure Ps. However it is not a realistic practical situation when both pressures have

extreme contrary values simultaneously. Due to internal restrictions the practical bound

is |fh| ≤ f̄h. Both flows qa and qb are bounded by a factory-set level of a maximum

flow through a valve, |qa,b| ≤ q̄. Moreover, the flows cannot go in the same direction

simultaneously, i.e. they always are of the same sign. A practical bound of the velocity

is |ẋ| ≤ 1.1m/s, obtained by experiments. From measurements an off-line estimation

of ẍ is obtained (black in Fig. C.2), and L(t) is computed as shown in red in Fig. 2

that indeed overcomes ẍ.
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Figure C.2: An estimation of the L(t) function in red with γ0 = 5 γ1 = 0.0011
γ2 = 0.0035

C.4.2 Simulations and Experimental results

The proposed interval observer (C.7) has been tested for three differentiators, The

first one proposed in [88] by Levant (ST),

ζ̇1(t) = −1.5L(t)|e(t)|0.5(e(t)) + ζ2(t)

ζ̇2(t) = −1.1L(t)(e(t))
, (C.18)

the second one proposed by Vázquez et al. [147] (HGD),

ζ̇1(t) = −ᾱ1e(t) + ζ2(t)

ζ̇2(t) = −ᾱ2e(t)− 1.1L(t)(e(t))
, (C.19)

the last one presented in [115] by Perruquetti et al. (HOMD) has the form

ζ̇1(t) = −α1|e(t)|0.75(e(t)) + ζ2(t)

ζ̇2(t) = −α2|e(t)|0.5(e(t))
. (C.20)

The differentiators have clearly the structure presented in (C.4), in each of them e(t) =
ζ1(t) − y(t); they should process position data from the robotic platform Forestry-

Standard Mobile-Hydraulic crane. The position of the telescopic link is measured with

a wire-actuated encoder. The encoder provides 2381 counts for the range from 0 to

1.55m; the quantization interval is Q = 0.651mm. The measured signal x represents

the position signal with an additive uniform noise with a variance Q2

12 . Such a signal is

smoothed by spline method then differentiated off-line to obtain an idea of the velocity

profile (Fig. C.3); it is worth to remark that the proposed method works on-line and the

differentiation by spline is just a priori step which allows to characterize the variables

V = 0.0005 and |ẍ| ≤ 104 adopted in the experiments.
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Figure C.3: Measured and smoothed position / off-line derivative.

µ
Γ− σ

Γ− µ
Γ+ σ

Γ+

Levant [88] 0.1776 0.1193 0.0229 0.0937

Vázquez [147] 0.1776 0.1193 0.0099 0.0761

Perruquetti [115] 0.1776 0.1193 0.0235 0.0893

Table C.1: Comparison between the three Interval Observer performances

Then, a1 and a2 are chosen following (C.12) and (C.13), for this particular set

of experiments a1 = 150. It is worth to remark that the coefficients for the three

differentiators must be chosen to achieve the best performances from the differentiators

themselves. In the experiments the coefficients are ᾱ1 = 165, ᾱ2 = 5638, α1 = 45
and α2 = 12α1. In Fig. C.4 the behavior of the three differentiators are presented in

black and the performances of the interval differentiator are shown for each of them for

the entire length of the dataset that is 120s (ē(t) in red and e(t) in blue (C.8)) . Two

different zooming options are shown in Fig. C.5 for particular parts of the dataset in

which the change of velocity is abrupt, it can be clearly seen that the interval observer

gives the upper and lower bound to the estimation following the velocity profile keeping

the actual estimation in between as desired.

To quantify the performances of the interval observer let us introduce two variables

Γ−(t) = |ǭ(t)− ǫ(t)| /2 and Γ+(t) = |ǭ(t) + ǫ(t)| /2, with the respective means and

standard deviations whose values are shown in Table C.1. The variable Γ− reveals that

the proposed Interval Observer is independent from the differentiator used as soon it

has the form specified in (C.4), indeed the values for µΓ− and σΓ− are equals for the

three different techniques. Moreover, Γ+ gives information about the quality of the

interval observer: the lower µΓ+ the better the overall differentiator quality, the lower

σΓ+ the better is the behavior with respect to the oscillation.
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C.4. Forestry-Standard Mobile-Hydraulic crane
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Figure C.4: Interval differentiators performances for Homogeneus Differentiator

(HOMD), High Gain Differentaitor (HGD) and Super Twisting (ST)
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Figure C.5: Interval differentiators performances (zooming)

144 Matteo GUERRA



C.5. Conclusion

C.5 Conclusion

This work presents the construction of an interval observer for the estimation er-

ror for differentiation techniques. The main results are presented for the high order

case whereas, for the application and experiments, a first order derivative estimation is

carried out considering three different techniques.

The method has been applied on the velocity estimation on the telescopic link of

a hydraulic actuated robotic crane used in forestry. The results obtained show the

efficiency of the proposed method which bounds the error of estimation and it is shown

to be independent with respect to the differentiation method chosen.
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Appendix D

Lie Algebra

Given a scalar function h(x) and a vector field f(x) one can define a new scalar

function Lfh called Lie derivative of h with respect to f

Definition 20. Let h : Rn −→ R be a smooth scalar function and f : Rn −→ R
n

a smooth vector field on R
n, then the Lie Derivative of h with respect to f is a scalar

function defined by

Lfh = ∇hf (D.1)

Definition 21. Let f and g be two vector fields on R
n. The Lie Bracket of f and g is

a third vector defined by:

[f, g] = ∇gf −∇fg

The Lie Bracket have the following properties:

• bilinearity:

[α1f1 + α2f2, g] = α1[f1, g] + α2[f2, g] (D.2)

[f, α1g1 + α2g2] = α1[f, g1] + α2[f, g2] (D.3)

where f , g, f1, f2, g1 and g2 are smooth vector fields and α1 and α2 are constant

scalars;

• skew-commutativity:

[f, g] = −[g, f ]

• Jacobi identity:

L[f,g]h = LfLgh− LgLfh

where h(x) is a smooth scalar function of x

Definition 22. A function φ : Rn −→ R
n, defined in a region Ω, is called a diffeomor-

phism if it is smooth, and if its inverse exists and is smooth.

If the region Ω in the whole space Rn, then φ(x) is called a global diffeomorphism.
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Lemma 11. Let φ(x) be a smooth function defined in a region Ω ∈ R
n. If the Ja-

cobian matrix ∇φ is non-singular at a point x = x0 of Ω, then φ(x) defines a local

diffeomorphism in a subregion of Ω.

A diffeomorphism can be used to transform a nonlinear system into another non-

linear system in terms of a new set of states, similarly to what is commonly done in the

analysis of linear systems.

Definition 23. A linearly independent set of vector fields {f1, f2, ldots, fm} on R
n

is said to be completely integrable if, and only if, there exist n|m scalar functions

(hi(x), h2(x), . . . , hn−mx) satisfying the system of partial differential equations:

∇hifj = 0 (D.4)

where 1 < n|m, 1 < j < m, and the gradients ∇hi are linearly independent.

Note that with the number of vectors being m and the dimension of the associated

space being n, the number of unknown scalar functions hi involved is (n−m) and the

number of partial differential equations is m(n−m).

Definition 24. A linearly independent set of vector fields {f1, f2, . . . , fm} is said to

be involutive if, and only if, there are scalar functions aijk : Rn −→ R such that

[fi, fj ](x) =
m
∑

k=1

aijl(x)fk(x)∀i, j (D.5)

Involutivity means that if one forms the Lie bracket of any pairs of vector fields

from the set {f1, f2, ..., fm}, then the resulting vector field can be expressed as a

linear combination of the original set of vector fields. Note that

• Constant vector fields are always involutive. Indeed, the Lie bracket of two con-

stant vectors is simply the zero vector, which can be trivially expressed as linear

combination of the vector fields.

• A set composed of a single vector f is involutive. Indeed, [f, f ] = ∇ff−∇ff =
O.

• Checking whether a set of vector fields {f1, f2, ..., fm} is involutive amounts to

checking whether

rank (f1(x) . . . fm(x)) = rank (f1(x) . . . fm(x)) [fi, fj ](x)

for all x and all i, j.

Theorem 15. Frobenius Theorem: Let {f1, f2, ..., fm} be a set of linearly indepen-

dent vector fields. The set is completely integrable if, and only if, it is involutive.

D.1 Frobenius applied to distributions

Let M be an m-dimensional manifold, TpM the tangent space to p ∈M , and TM
the tangent bundle of M .

Definition 25. A k-dimensional (tangent) distribution onM is a choice of k-dimensional

linear subspace Dp ⊂ TpM at each point p ∈M .
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D.1. Frobenius applied to distributions

Definition 26. An immersed submanifold S is an integral manifold of the distribution

D if TsS = Ds for all s ∈ S, and D is integrable if each point of M is contained in

an integral manifold of D.

Lemma 12. Frobenius : If D is an integrable distribution, then D is necessarily invo-

lutive.
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Titre: Le Déploiement et l’Évitement d’Obstacles en Temps Fini pour Robots

Mobiles à Roues

Résumé:Ce travail traite de l’évitement d’obstacles pour les robots mobiles à roues.

D’abord, deux solutions sont proposées dans le cas d’un seul robot autonome. La

première est une amélioration de la technique des champs de potentiel afin de contraster

l’apparition de minima locaux. Le résultat se base sur l’application de la définition de l’

Input-to-State Stability pour des ensembles décomposables. Chaque fois que le robot

mobile approche un minimum local l’introduction d’un contrôle dédié lui permet de

l’éviter et de terminer la tâche. La deuxième solution se base sur l’utilisation de la

technique du Supervisory Control qui permet de diviser la tâche principale en deux

sous tâches : un algorithme de supervision gère deux signaux de commande, le pre-

mier en charge de faire atteindre la destination, le deuxième d’éviter les obstacles. Les

deux signaux de commande permettent de compléter la mission en temps fini en as-

surant la robustesse par rapport aux perturbations représentant certaines dynamiques

négligées. Les deux solutions ont été mises en service sur un robot mobile Turtlebot

2. Pour contrôler une formation de type leader-follower qui puisse éviter collisions et

obstacles, une modification de l’algorithme de supervision précédent a été proposée ;

elle divise la tâche principale en trois sous-problèmes gérés par trois lois de commande.

Le rôle du leader est adapté pour être la référence du groupe avec un rôle actif : ralen-

tir la formation en cas de manœuvre d’évitement pour certains robots. La méthode

proposée permet au groupe de se déplacer et à chaque agent d’éviter les obstacles, ou

les collisions, de manière décentralisée. Mot Clefs:Robotique, Evidement d’obstacle,

Commande en temps fini, Supervisory Control, Leader-Follower formation, Champs

de potentiel.

Title: Finite Time Deployment and Collision Avoidance for Wheeled Mobile

Robots

Abstract: This dissertation work addresses the obstacle avoidance for wheeled mo-

bile robots. The supervisory control framework coupled with the output regulation

technique allowed to solve the obstacle avoidance problem and to formally prove the

existence of an effective solution: two outputs for two objectives, reaching the goal

and avoiding the obstacles. To have fast, reliable and robust results the designed con-

trol laws are finite-time, a particular class very appropriate to the purpose. The novelty

of the approach lies in the easiness of the geometric approach to avoid the obstacle and

on the formal proof provided under some assumptions. The solution have been thus ex-

tended to control a leader follower formation which, sustained from the previous result,

uses two outputs but three controls to nail the problem. The Leader role is redesigned

to be the reference of the group and not just the most advanced agent, moreover it has

a active role slowing down the formation in case of collision avoidance manoeuvre for

some robots. The proposed method, formally proven, makes the group move together

and allow each agent to avoid obstacles or collision in a decentralized way. In addition,

a further contribution of this dissertation, it is represented by a modification of the well

known potential field method to avoid one of the common drawback of the method:

the appearance of local minima. Control theory tools helps again to propose a solution

that can be formally proven: the application of the definition of Input-to-State Stability

(ISS) for decomposable sets allows to treat separate obstacles adding a perturbation

which is able to move the trajectory away from a critic point.

Key-words: Robotics, Obstacle avoidance, Finite time control, Supervisory control,

Leader Follower formation, Potential field.


