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2 Chapter 1. Introduction

1.1 Introduction to Soft Errors and System Reliability

Electronic systems based on complex silicon devices play an increasingly critical role

in our lives and it is extremely important that they function reliably. Faults induced

by the effects of natural radiation are a significant source of failure and there exists a

vast body of research devoted to analyzing and mitigating these effects. Much of the

academic work has focussed on achieving accurate results when analyzing relatively

small circuits. In industry, the size of circuits continues to grow and integrated

circuits with over ten million flip-flops are very common.

The focus of this thesis is on soft error analysis and mitigation techniques for

very large circuits. The main contributions consist of improvements in fault-injection

simulations, a technique to identify critical flip-flops in large circuits, a technique to

perform a high-level analysis of the effect of Single Event Transients (SETs) and a

new modeling language, called Reliability Information Interchange Format (RIIF),

which can be used to model the propagation of faults through complex circuits.

The manuscript is organized as follows. The first chapter provides an overview of

soft error effects, including a review of their causes, a brief history of their discovery

and a discussion of the basic masking mechanisms. Chapter 2 presents an overview

and comparison of the numerous hardened latch and flip-flop designs which have

been proposed to mitigate faults. This review includes cells targeted to mitigate

both radiation-induced faults and timing faults. Although timing faults are fun-

damentally different from radiation induced faults, the choice to include both was

intentional as there are many similarities between the techniques to mitigate tran-

sients and those to mitigate timing faults. It is well known that the vast majority

of faults do not propagate and in chapter 3, a review of the existing techniques to

analyze fault propagation is presented. The second half of chapter 3 presents a case

study of the analysis of soft error effects for three large design blocks from a network

processor.

In chapter 4, a technique to identify functionally critical flip-flops in large designs

is presented. The technique is based on grouping together similar flip-flops in order

to reduce the complexity of the analysis. The results of applying these techniques

to the design blocks studied in chapter 3 are then presented. Chapter 5 describes a

hierarchical approach for quickly computing the effect of SETs in large combinatorial

circuits. Then, in chapter 6, a new modeling language called RIIF is described. This

language is designed to provide a standard means to specify the rate of occurrence

of faults as well as how faults propagate in complex circuits. This is followed, in

chapter 7, by the conclusions and a discussion of plans for future work.

In addition to the main topics of the thesis, additional work performed in the

context of three collaborative projects is presented in the appendices. In appendix A

and appendix C, two different approaches to protect a special type of memory,

Ternary Content Addressable Memorys (TCAMs), against errors are described. The

first technique is based on using a parallel data-structure called a Bloom Filter.

The second technique is based on using a Built-In Current Sensor (BICS) to detect

the actual radiation induced fault when it occurs. In appendix B, an algorithm to
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synthesize approximate logic functions that can mask both transient and permanent

faults is presented.

Overall, the work presented in this thesis seeks to apply abstraction in order to

enable coarser grained and hierarchical analysis of the effect of faults. The initial

work in chapter 4 shows how large sets of flip-flops can be grouped together in

order to simplify the process of selective mitigation. In chapter 5, the focus shifts

to SETs and a hierarchical analysis approach is presented which can be applied

at the Register Transfer Language (RTL) or even architectural level. Finally, the

RIIF modeling language provides a framework for combining failure models for

smaller blocks into complete models for chips or even systems. Taken together,

these techniques facilitate the analysis and mitigation of radiation induced faults in

complex integrated circuits.

1.2 Soft Error Effects

1.2.1 Sources of Natural Radiation

In terrestrial applications, the three main sources of energetic particles that in-

duce soft error effects are alpha particles, high-energy neutrons and thermal neu-

trons [Baumann 2005]. New work has recently highlighted an emerging risk of upsets

induced directly by muons [Sierawski 2011, Ibe 2012] and potentially in the future

from electrons and gamma rays. In space applications, the radiative environment is

much harsher and soft errors can be induced directly by high energy cosmic particles

including protons and heavy nuclei.

1.2.1.1 Alpha Particles

An alpha particle has the structure of a helium atom nucleus, consisting of two

protons and two neutrons. Alpha particles typically have energies in the range

of 4-9 MeV and travel at low speeds (5% of the speed of light). Alpha particles are

created through the decay of unstable isotopes such as 238U, 232Th, 210Po, 210Pb and
212Pb. Trace amounts of these isotopes may be found in the packaging materials

that are in close contact to the die, typically in the solder bumps, ceramic package

materials or aluminum interconnect. These particles do not penetrate very deeply

into materials; in silicon, the penetration of a 10MeV alpha particle is less than

100µm, thus only the materials that are in direct contact with the die are of concern

[Baumann 2005].

It has become common practice to select Ultra Low Alpha (ULA) packaging

materials for integrated circuits used in applications where reliability is a concern.

ULA implies an alpha emission rate below 0.002α/cm2/hour. Undesirable elements,

such as uranium, can be chemically removed. However, removing specific isotopes

(e.g. 210Pb) of an element such as lead is challenging and this is sometimes achieved

by ‘aging’ the materials in order to allow sufficient time for the unstable isotopes to

decay. The fact that the unstable isotopes decay over time, makes the measurement
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of alpha emissivity very challenging. For example, 210Pb has lower alpha emissivity

than 210Po, one of the by-products on its decay chain. This evolution of alpha

emissivity over time makes it difficult to implement consistent quality controls.

1.2.1.2 Cosmic Radiation

The second source of soft errors results from the interactions between cosmic rays

and the atmosphere. In outer space, there are primary cosmic rays consisting of

[Heald 2005] :

• 92% protons

• 6% alpha particles

• 1% heavy nuclei

In the outer atmosphere, these particles have a flux of approximately 1600m2/s

and energies up to 100 GeV [Ziegler 1996]. These particles interact with the earth’s

atmosphere producing complex chains of secondary and tertiary particles. At ground

level, the flux of particles consists of muons, protons, neutrons and pions [Ziegler 1981].

The typical spectrum of neutron flux at ground level as well as at some accelerated

test facilities is reproduced from [JEDEC 2006] in figure 1.1. It is important to

note that this spectrum varies significantly based on altitude and location due to

the effect of the earth’s magnetic field. A comprehensive study of the neutron spec-

trum at ground level was performed by [Gordon 2004, Gordon 2005] and for higher

altitudes by [Normand 1996].

The earth’s atmosphere blocks most cosmic particles, however, when these par-

ticles strike atoms in the atmosphere, they produce high-energy neutrons which can

travel freely through air. When these high-energy neutrons strike the nucleus of

a silicon atom, they can produce either elastic or inelastic collisions. Most elastic

collisions result in only a small amount of energy being released. Inelastic colli-

sions result in a fission reaction and in two or more recoil fragments which can

include protons, neutrons, ions and heavy recoil nuclei. This can result in the de-

position of a large amount of charge in a small volume [Seifert 2010a]. Figure 1.2

illustrate the collision of a neutron with a silicon nuclei and lists some of the more

frequently occurring by-products. A full study of neutron-silicon interactions is pre-

sented in [Wrobel 2000]. Although the majority of soft error effects are induced by

interactions between neutrons and silicon, the interactions with other atoms includ-

ing oxygen in Silicon on Insulator (SOI) technologies must be taken into account

[Wrobel 2003].

1.2.1.3 Thermal Neutrons

The third source of terrestrial soft errors is from low energy neutrons (En � 1MeV ).

These are neutrons that have lost kinetic energy until they reach a state where they

are in thermal equilibrium with their environment. Certain nuclear fission reactions
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become much more probable with these low-energy neutrons and result in reactions

yielding charged particles. The most common such reaction is with the 10
B isotope

of boron. Boron is used as a p-type dopant and is also used as an implant in

insulating layers formed of Boron Doped Phosphosilicate Glass (BPSG). The natural

distribution of the two boron isotopes is 11
B (80.1%) and 10

B (19.9%), however,

BPSG typically has a higher fraction of 10
B. When a low energy neutron strikes 10

B,

it results in an alpha particle (1.47 MeV) and a lithium nucleus (equation 1.1). Both

of these cause charge to be deposited and can induce soft errors [Baumann 2005].

10
B+ n −→ 14

Li+ α (1.1)

Recent work on thermal neutrons [Wen 2010a, Wen 2010b, Zhang 2011, Fang 2013]

has shown that even when BPSG is not used in the fabrication process, devices can

have a sensitivity to thermal neutrons. These works also highlight the challenges in

consistently testing the sensitivity to thermal neutrons due to the lack of a standard

test procedure analogous to [JEDEC 2006].

1.2.2 Brief History of Soft Error Effects

A proper understanding of the effects of radiation on electronics started to emerge in

the late 1970’s and the history is well outlined in [Ziegler 1996] and [Nicolaidis 2011].

As early as the 1950’s, there had been anecdotal reports of problems with electronic

equipment during nuclear weapons tests. The electronics used in early satellites were

known to be unreliable and redundancy thus error detection had become common

practice. The first publication about the effect of space radiation on satellites was

published in [Binder 1975].

In the following year, the first study was published on ground-level soft error

effects observed in a Cray-1 computer and this paper was recently republished in

[Normand 2010]. In the following two years, errors due to alpha-particles in DRAMs

were studied by Intel [May 1978, May 1979]. It is interesting to note that these

first observations were on DRAM cells. Today, however, due to technology scaling,

DRAM cells are among the most robust types of storage cells.

At about the same time, Ziegler (IBM) and Lanford (Yale) realized that nu-

clear interactions between cosmic rays and silicon materials might cause secondary

particles and trigger errors. These results were first published in [Ziegler 1979].

Later in 1979, Kolasinski (Aerospace Corporation) performed the first heavy-ion

tests on electronics at Lawrence Berkeley Laboratory using iron and kyrpton ions

[Kolasinski 1979] to simulate the radiative conditions experienced by satellites. In

the same year, [Guenzer 1979] published the first results from accelerated neutron

testing and provided an improved analysis of the interactions between neutrons and

silicon.

Already in 1979, researchers at IBM had started to develop a framework for

modeling the diffusion and collection of charge induced by energetic particles. By

1983, IBM had started to publish on SEMM, their internal Monte Carlo tool for
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simulating radiation effects [Sai-Halasz 1983]. The second generation of this tool

(SEMM2) is still in use by IBM today [Tang 2004].

About this time, there were high-profile incidents at Intel and at IBM [Ziegler 1996]

where radioactive contamination of production materials resulted in memory devices

with excessively high soft error rates. The publicity associated with these events in-

creased the awareness of soft error phenomena both in industry and in the academic

community.

In 1983, the first evidence of soft errors produced by muons and pions was

published [Dicello 1983]. Around the same time, internal studies by IBM showed

that Soft Error Rate (SER) was dependent on altitude. These included studies

using special test-boards, as well as the analysis of the logs of systems installed at

high-altitude locations such as Denver, Colorado [Ziegler 1996]. In the following

years, IBM continued to test 25 different chips under neutron and proton beams

and studied the effect of voltage, temperature, angle of incidence, process variation

and logic-state. The comprehensive results were compiled in an internal IBM report

published in 1986.

In the early 1990’s IBM developed the first ion micro beam which made it pos-

sible to study the effect of charge deposition at exact positions on a chip with an

accuracy of approximately 1 micron [Geppert 1991, Heidel 1993]. A few years later,

Baumann demonstrated the first evidence of soft errors induced by thermal neu-

trons [Baumann 1995].

From this brief outline of the early research into soft error effects, it can be seen

that all of the fundamental concepts related to the physics of soft error phenomena

as well as the accelerated test methodologies that are used today have been well

understood for nearly twenty years. Currently, the outstanding challenges relate to

computing the net effect of soft errors in very large circuits which is the focus of the

research in this thesis.

1.2.3 Taxonomy of Radiation Effects

When an ionizing particle strikes a circuit, it can produce many different effects

depending on the type of circuit, the energy of the particle and the nature of the

strike. This section provides an overview of the different effects.

1.2.3.1 SEUs

A Single Event Upset (SEU) is an inversion in the stored value in a flip-flop, latch

or memory cell as the result of radiation induced charge. In this work, the term

SEU refers only to an upset that directly occurs in a sequential cell. Note that in

some work [Shuler 2009], the authors also use the term SEU to refer to a SET that

has been sampled in a flip-flop or latch.
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1.2.3.2 SETs

A Single Event Transient (SET) occurs when a radioactive event causes charge to

be deposited around a combinatorial logic gate producing a current pulse. For this

pulse to become an error, it must propagate through the combinatorial network and

then arrive at the input of a sequential element just at the sampling point. Due to

the low probability of a pulse being captured, the majority of SETs do not propagate

and until recently it has been assumed that for terrestrial applications, the overall

SER contribution from SETs is very minor.

1.2.3.3 SEFI

Single Event Functional Interrupt (SEFI) is a broad term that refers to the loss

of some major functionality in a complex device due to a radiation induced event.

Typically, a SEFI is caused by a SEU in critical control logic. The effect of a SEFI

is detectable and it does not result in permanent damage. A SEFI can be recovered

by resetting the device.

1.2.3.4 SEL

A Single Event Latchup (SEL) event occurs when the charge deposited by an ener-

getic particle causes the parasitic thyristor (PNPN), formed by the P-drain, N-well,

P-well and N-drain, to be triggered, creating a short circuit path from power to

ground (see figure 1.3 and 1.4). Once latchup has occurred, the only way to re-

store normal operation is to cut the power to the circuit. Typically, a SEL event

results in increased current consumption and if this current is too high, the effect

can be destructive. A destructive SEL is sometimes referred to as a Single Event

Burnout (SEB). Decreasing operating voltage makes modern process technologies

less sensitive and even immune to SEL.

1.2.3.5 SEGR

Single Event Gate Rupture (SEGR) occurs in MOS power transistors. When the

additional carriers produced by the strike of an energetic particle are accelerated

through the electric field, the field is increased, potentially causing the dielectric to

breakdown and the transistor to be permanently damaged. SEGR is of growing

concern as power transistors are being increasingly used in electric vehicles.

1.2.3.6 Clock Network Faults

Energetic particles can affect the operation of circuitry in the clock distribution

network of a chip. This includes PLLs [Sondon 2013, Fujita 2014] as well as in

the buffers in the clock tree [Seifert 2005]. In the latter work, the authors identify

two main effects due to upsets in the clock network : radiation-induced jitter and

radiation-induced race. Jitter occurs if an upset causes the clock edge to move

forward causing a setup violation. A race condition occurs if an upset causes a latch
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Figure 1.3: Parasitic Thyristor (PNPN)

Figure 1.4: Thyristor

Formed by PNPN Junc-

tion

that is closed to become open allowing data to ‘race’ through to the next stage. The

authors find that the contribution of radiation induced race can be on the order of

20% of the total effective SER for a full chip. Simulation based analysis of the clock

network in smaller designs [Ebrahimi 2014] shows the contribution from the clock

network to be much smaller. In both works, however, it is reported that the SER

contribution of the clock network is dominated by the buffers at the leaf level of the

clock tree.

1.2.3.7 Power Supplies

Beyond standard digital logic, radiation effects can perturb the operation of periph-

eral circuits including switching power supplies. In [Ren 2014], it is shown that the

band-gap reference circuit in a particular commercial power “brick” is very sensitive

to radiation. Under alpha, neutron and laser radiation upsets to the band-gap ref-

erence would cause the power monitor to trigger a shut-down of the power supply.

When performing a system-level SER analysis, it is important to consider the po-

tential risk due to the power supplies, especially since these faults typically produce

high-impact outages.

1.2.3.8 Dose Effects

Electronics used in space or highly radioactive environments may be degraded due

to the cumulative effect of exposure to radiation. The first mechanism is due to

the Total Ionizing Dose (TID) which results from charge being trapped in the oxide

layer and causing a shift in the switching characteristics of the transistor. A second

mechanism is caused by the displacement of silicon atoms in the regular crystalline
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Figure 1.7: Simulated Results of TDR in Latches and Flip-Flops [Seifert 2004]

is proportional to the ratio of the induced pulse width to the clock period as shown

in equation 1.3. Extensive test results have shown that at higher frequencies, the

TDR factor increases and the effect of SETs is more severe [Nguyen 2005, Gill 2009,

Mahatme 2011].
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Figure 1.8: Temporal Masking of SETs

TDRSET =

� w=maxPW
w=minPW w dw

Tclk
(1.3)

In figure 1.9, all of the possible alignments of a pulse compared to the sampling

clock edge are shown, including both the case when the pulse is longer and when

it is shorter than the setup-hold window. For the cases of PW > tsetup + thold, the

overlaping width, OW , is defined to be the extent that the pulse lies within the setup-

hold window. As with the SEU analysis, the error capture probability is assumed to

be proportional to the ratio of OW to the full setup-hold window: OW
thold+tsetup

. For

the cases of PW < tsetup+thold, the two violation cases are considered together, and

the error latching probability is also taken to be linear with the overlapping width

ratio as before. Since the arrival time of SETs is uniform over time, both cases can

be averaged over a full clock period. The calulated error probablity for each case is

shown in table 1.1 and it turns out that the overall error latching probability across

a full clock cycle is given by PW/Tclk.

It is important to note that in this analysis, the pulse width of interest is that at

the input to the sampling flip-flop. The shape of a radiation induced pulse may be
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Figure 1.9: SET Pulse Alignment Cases

distorted as it propagates through a combinatorial network. This effect is referred to

as Propagation Induced Pulse Broadening (PIPB) and has been extensively studied

in [Cavrois 2008].

1.3.3 Electrical Masking

Digital logic is based on signals crossing a switching threshold to discriminate be-

tween zero and one values. When a weak SET is created, the voltage on the affected

node may not cause the switching threshold to be crossed and the fault is thus

masked electrically. Due to their inherent capacitance and limited slew rate, all

digital logic gates inherently act as low pass filters, blocking very narrow pulses.

This ability to block narrow SETs is referred to as Electrical De-Rating (EDR). The

effect of EDR is best analyzed using SPICE simulations where the true, post-layout

capacitances have been included, however, in practice this is not feasible for large

circuits. EDR can also be modelled in digital simulators by associating an inertial

delay to individual gates.

1.3.4 Functional Masking

It is quite possible for a SEU or SET to significantly change the state sequence of

a circuit, however, due to the function of the actual application, the effect may be

benign. Some obvious examples, would be an SEU that causes a single pixel in a

video stream to be modified or that causes a very small delay in the delivery of

packet data, as shown in figure 1.10. If we consider the example of a delayed packet,

on the output pins of the device, at the vector level, the output sequences may

appear highly divergent, despite the fact that the functional effect is very minor.

The additional de-rating provided by the function of the circuit is referred to

as Functional De-Rating (FDR). As will be seen in the case study presented in
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Table 1.1: SET Pulse Alignment and Capture Probabilities

Pulse Width Case Case Error Probability Comments

PW > tsetup + thold

a 0.0 correct value latched

b 1
Tclk

·
� tsetup
0

OW
thold+tsetup

dOW set-up time violation

c 1
Tclk

·
� tsetup+th
tsetup

OW
thold+tsetup

dOW hold time violation

d
PW−tsetup−thold

Tclk
wrong value latched

e 1
Tclk

·
� tsetup+th
thold

OW
thold+tsetup

dOW set-up time violation

f 1
Tclk

·
� th
0

OW
thold+tsetup

dOW hold time violation

g 0.0 correct value latched

PW < tsetup + thold

h 0.0 correct value latched

i 2 · 1
Tclk

·
� PW
0

OW
thold+tsetup

dOW metastability, partially overlapped

j
PW ·(thold+tsetup−PW )

Tclk·(thold+tsetup)
metastability, totally overlapped

k 0.0 correct value latched

Overall - PW
Tclk

-

section 3.2, this de-rating is significant and must not be ignored. Unlike the other

de-ratings, FDR does require an understanding of the application and requires that

the effects of errors be divided into classes based on their system-level severity.
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Figure 1.10: SEU Causing a Minor Delay in Packet Delivery

1.3.5 Computing the Overall SER

Given that the intrinsic technology FIT rates and de-rating factors are available,

then a full chip FIT rate can be calculated based on the following equations:

SERchip = SERsequential + SERcombo + SERclock (1.4)

SERsequential =
�

i∈FF

FITSEU
i · LDR(i) · TDR(i) (1.5)

SERcombo =
�

i∈G

� w=max

w=min
FITSET

i (w) · TDRi(w) · LDRi · EDRi(w) dw (1.6)

In the above equations, FITSEU
i is the intrinsic rate of occurrence of SEUs for

the given flip-flop instance and FITSET
i (w) is the rate of occurrence of SETs of

width w in the instance of the specific combinatorial gate. The above equations
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raised [Ibe 2012, Sierawski 2011], however, it does not appear that these particles

significantly contribute to the SER at current technology nodes. At some point, the

critical charge may become sufficiently small that this will change.

Independent of the per-cell SER, certain broad trends can be identified:

1. The total number of integrated circuits is growing driven by larger data centers,

the Internet of Things (IoT) and the proliferation of mobile devices.

2. The total number of transistors per integrated circuits continues to grow

(Moore’s Law [Moore 1965]).

3. Computers are increasingly used in critical applications such as autonomous

driving and in medical devices.

4. Operating frequencies are roughly constant and performance increases are

coming from additional parallelism (more gates).

5. The terrestrial radiative environment (≈ 14 n/cm2/hr) remains constant al-

though the sensitivity of devices to different particles (e.g. alpha, muons,

protons) may evolve.

To illustrate the impact of the growing number of transistors per die, in fig-

ure 1.12, we plot the transistor counts for recent processors based on data gathered

by [Wikipedia 2014]. Based on the assumption that 90% of the die area of a pro-

cessor is covered by cache-memory and that there are approximately 16 transistors

in a latch, we can estimate the latch counts. From this graph, it appears that de-

signs with a hundred million latches will appear by 2016. Even if the per-cell SER

rate continues to decrease, given the broad trends (points 1..3 identified above), it

appears that radiation-induced soft errors will continue to be a concern.

1.4.1 Combinatorial SER

The SER threat from memories has been well known for over fourty years and

can be effectively mitigated using Error Correcting Code (ECC). As will be seen

in chapter 2, there exist many cell designs for SER hardened flip-flops and using

techniques such as those presented in chapter 4, it is possible to selectively harden

flip-flop and thus manage the sequential component of SER.

Historically, the contribution of soft errors from combinatorial logic has been

quite small, due to the numerous de-rating factors that were outlined in section 1.3.

However, given that memory and flip-flop SER can be well managed, the relative

contribution of combinatorial SER is increasing, as illustrated in figure 1.13. In a

well known paper [Shivakumar 2002], it was predicted that by the 50nm technology

node, combinatorial SER would equal sequential SER. It appears that this predic-

tion was over-stated, however, more recent research [Mahatme 2011, Ebrahimi 2014]

continues to highlight this trend.
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During accelerated radiation testing of complex devices such as processors, it

is difficult to differentiate the sequential and combinatorial components. Due to

the complexity of the de-rating analysis for combinatorial SER, it is also difficult

to accurately compute the combinatorial contribution at the full-chip level. The

methodology presented in chapter 5 describes a new approach to estimate the con-

tribution of SETs.

This chapter has provided a brief overview of the causes of soft errors and the

basic mechanisms that prevent their propagation. Assuming ECC is used to protect

memories, then the largest contribution to the overall SER comes from flip-flops

or latches. In the following chapter, we present a survey of the SER hardened

sequentials that have been proposed in the literature.
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2.1 Introduction

In the early 1990s, due to the growing awareness of soft errors, there was interest in

developing flip-flop and latch designs that were resistant to radiation-induced upsets.

Some of the earliest designs were the HIT cell [Bessot 1993] and the Dual-Interlocked

storage Cell (DICE) [Calin 1996]. The DICE circuit remains the basis for many

hardened flip-flops. Layout optimizations have been proposed and are typically

applied in industrial DICE implementations to provide increased robustness (e.g.

LEAP-DICE [Lee 2010]).

In space applications, SETs have historically been a concern and there is ev-

idence that they are also becoming an issue in high-end terrestrial applications

[Mahatme 2011, Evans 2013]. Mitigation of SETs is generally more complex than

protection against SEUs and there exist many techniques including those presented

in appendix B. Although transients occur in combinatorial logic, one way to to

protect against them is to detect when they reach the input of a flip-flop or latch.

Special sequential cells can be designed to detect, and even filter, transients when

seen their at their data input.

Starting around the year 2000, there was interest in sequential cells that could

detect timing violations. Multiple factors drove this new interest, including emerging

concerns about the parametric degradation of logic cells through aging effects such as

Negative Bias Temperature Inversion (NBTI) and Hot Carrier Injection (HCI) which

result in increased transistor switching delays. In industry, the standard approach

to mitigate aging effects had been to introduce additional margins into the timing

budget. Smaller process geometries fundamentally result in increased variation as

the switching characteristics of transistors are now affected by defects consisting

of only a few atoms. Furthermore, the increase in the number of transistors per

die, requires tighter statistical variance in order to achieve a given level of yield

or reliability per die. These factors are driving up the timing margins that must

be budgeted to guarantee devices operate correctly over their entire lifetime. It

is, however, possible to design sequential cells that can detect timing violations.
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By detecting timing violations during operation, the voltage or frequency can be

dynamically adjusted to enable correct circuit operation without the need for large,

up-front timing margins.

Finally, as concerns about power dissipation have continued to grow, the ability

to use Dynamic Voltage Scaling (DVS) to reduce voltage, and benefit from the

quadratic reduction in active power, has become attractive. The use of sequential

cells that can detect timing violations allows DVS to dynamically adapt to the

circuit’s operating conditions including the workload.

To summarize, sequential cells can be designed to mitigate three classes of faults:

(i) SEUs - Upsets that directly affect the storage node or the clock nodes within

the storage cell.

(ii) SETs - Upsets in the upstream combinatorial logic that propagate to the input

of a sequential cell.

(iii) Timing Faults - Increased delay in the upstream combinatorial logic causing

the setup constraints to be missed and incorrect data to be sampled.

To further complicate matters, in the event of any of the above classes of errors,

the goal may be to simply detect and signal its occurrence or it may be to actually

correct or mask the error.

In section 2.2, we review some of the better known protected sequential designs.

Each design is presented and its ability to mitigate each of the three types of faults

is analyzed. This analysis includes a careful review of the additional overheads and

system constraints that are imposed by the design.

The focus of this chapter is on circuit-level techniques for hardened sequentials.

In many cases, transistor layout plays a critical role in the level of SER protection

of the cell and some data about the extent of the impact of layout is presented.

However, it is beyond the scope of this thesis to provide an in-depth study of layout

techniques.

Certain sequentials are able to detect errors but not correct them. How a given

system recovers from a detected error quickly becomes very application specific. Cer-

tain techniques, such as instruction replay and pipe-line counterflow, are commonly

used in processor pipelines. In this chapter, the emphasis is on the circuit-level error

detection mechanisms and not on the architectural or micro-architectural recovery.

It is important to note that all of the robust sequentials that are described in

this chapter rely on two basic principles. Robustness is achieved either through

spatial redundancy, temporal redundancy or a combination of the two. These basic

principles have been well understood for a long time and their application to robust

sequentials was described in detail in [Nicolaidis 1999]. It remains important, how-

ever, to study each proposed design in detail, as there is significant variation in the

implementation cost and robustness, as will be seen.
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There are fundamental trade-offs between area, performance and radiation ro-

bustness [Rennie 2012]. In section 2.3, we compare the different designs that were

studied based on the types of faults they are able to mitigate and the penalties that

they introduce (area, timing and to a lesser extent power).

2.2 Survey of Hardened Sequentials

2.2.1 DICE

The DICE cell is well known and the circuit diagram is reproduced from [Calin 1996]

in figure 2.1. The design consists of redundant latches which are coupled together

to form a feedback loop. If an upset occurs at any of the storage nodes (X0..X3), it

will propagate only in one direction, depending on its polarity, but the state of the

upset node is restored by the feedback from the other direction. In this way, the

DICE cell provides strong immunity against an upset in any single storage node. Of

course, the DICE was not designed to provide detection of SETs or timing faults.

(a) Circuit Diagram (b) Transistor Level

Figure 2.1: Circuit Diagrams of DICE Cell

2.2.1.1 SEU Robustness

The DICE cell does provide SEU robustness, however, there are intrinsic limitations

to its SEU resilience. The first order concern is the fact that if two sensitive nodes

are struck, the stored value can be upset [Baze 2008]. Even in 90nm technologies,

multi-node upsets were a concern. This problem can be mitigated by increasing the

separation between the sensitive nodes and test results presented in [Seifert 2010b]

show that SER decreases exponentially with node separation. Figure 2.2 is repro-

duced from [Seifert 2010b] and illustrates this effect1.

[Hazucha 2003], and more recently in [Berg 2013], point out one of the main

shortcomings of the DICE design. When an upset occurs, it takes some time for the

1Due to the test methodology, the reported data only includes upsets to the storage nodes (i.e.

clock node upsets are not considered).



2.2. Survey of Hardened Sequentials 23

Figure 2.2: Effect of Node Separation on the SER of DICE Latch

state to be restored and as a result, a transient pulse may be seen at the output.

When DICE is used to build a master-slave flip-flop, if an ionizing particle affects a

transistor in the slave stage when it is opaque, even if the correct value is restored,

a transient is visible at the Q output and can propagate downstream. Similarly,

when the slave latch is transparent and the master is opaque, the glitch that comes

out of the master will propagate to the flip-flop output. With increased operating

frequency, there is less TDR and the effect of SETs induced in latches is becoming

more significant [Alexandrescu 2013].

The pass transistors driven by the clock are not protected in the DICE cell thus

upsets to these transistors can cause the stored value to be corrupted. Essentially

an upset in the clock transistors can either (i) cause the cell to become transparent

too early and latch the incorrect value or (ii) cause the cell output transition to

be delayed causing a setup violation in the downstream stages [Seifert 2005]. In

[Seifert 2010a], data is presented showing that without protection of clock nodes,

the maximum reduction in SER that can be achieved with redundancy techniques

does not exceed ≈30x.

2.2.2 SEUT

In the literature, especially in publications from Intel, a hardened cell called Single

Event Upset Tolerant (SEUT) is frequently cited. Circuit diagrams for SEUT are

found in [Hazucha 2003] and [Seifert 2010b] and reproduced in figure 2.3. The SEUT

latch is very similar to the DICE latch in that four redundant storage nodes are

configured in a feedback loop. The difference lies in the write logic. In the SEUT

latch, two of the storage nodes have clock transistors in series in order to facilitate

the write process. In terms of SER robustness, however, the SEUT is very similar

to DICE.
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Figure 2.5: Graal Timing Diagram

downstream from the latch, the latest point in time at which an SEU can occur and

affect the downstream logic is (tclk · (1− α)−MIN(tCC)) where MIN(tCC) is the

delay on the shortest combinatorial path. This region of susceptibility is labelled

‘L2 susceptible to SEUs’ in figure 2.5.

For an SEU to be detected by the XOR gate, there must be time for the error

to propagate through the XOR gate, through the tree of OR gates and be sampled

by the error flip-flop. Thus, the error must occur (tXOR + tOR + tsetup) before the

falling edge of the clock. By ensuring that (tXOR + tOR + tsetup) < MIN(tCC) full

SEU protection is possible. This may be achieved through a combination of padding

constraints on the logic (e.g. increasing MIN(tCC)) and a reduction the depth of

the OR tree (e.g. minimizing tOR).

2.2.3.2 SET Detection

Transient pulses due to SETs in the combinational logic can be detected by the XOR

gate during the time interval from when the input of the latch is stable up to the

point when the error capture flip-flop samples the error signal. Therefore, transients

up to (12 · tclock − tXOR − tOR − tsetup) in duration can be detected.

2.2.3.3 Timing Fault Detection

Similar to SETs, Graal can detect timing faults up to (12 ·tclock−tXOR−tOR−tsetup)

in duration. Due to this ability to detect timing faults, Graal can be used for near

threshold operation, assuming the circuit has a micro-architectural means to recover

from the detected errors.
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shadow latch will falsely activate the correction mechanism causing the incorrect

data in the shadow latch to be copied to the main flip-flop. Consequently, the

Razor-I design does not provide protection against SEUs.

2.2.5.2 SET Detection

Depending on the duration of the transient pulse, the Razor-I technique may or may

not detect the SET. The following situations are possible:

(a) If a SET is captured in the main flip-flop and the pulse is no longer present

when the shadow latch samples its input, then the error will be detected and

corrected in the same fashion as timing faults.

(b) A transient pulse that is longer than the delay between the sampling of the main

flip-flop and the shadow latch can obviously not be detected.

(c) A SET that arrives after the sampling of the main flip-flop and that is sampled

by the shadow latch will falsely trigger the correction mechanism. The incorrect

value from the SET will be captured by the shadow latch and then transferred

to the main flip-flop.

(d) A narrow transient pulse that occurs between the sampling of the main flip-flop

and the sampling of the shadow latch will not be detected, however, such a

transient is benign.

To summarize, the Razor-I design does not provide robust detection of SETs.

2.2.5.3 Timing Fault Detection

The Razor-I topology intrinsically detects and corrects timing errors that manifest

themselves inside the monitoring window.

2.2.6 Razor-II

In an attempt to address the shortcomings of Razor-I, the team at the University

of Michigan developed an improved version of Razor, called Razor-II [Blaauw 2008,

Das 2009]. Because of the redundant latch, the area and power penalties of the

Razor-I design are quite high. Furthermore, Razor-I provides no protection against

radiation induced errors. The metastability detector, an integral part of Razor-I, is

a difficult circuit to design correctly in the presence of process variation.

The Razor-II latch is based on a positive level-sensitive latch for the main stor-

age. A simplified circuit diagram is shown in figure 2.9. The underlying design

assumption is that the output of the latch should only transition shortly after the

rising edge of the clock. A transition detection circuit is added to the output of

the latch in order to detect timing faults, SEUs and SETs. To avoid false firing,

the transition detector is disabled by a pulsed clock (DC) which goes low during

a window from the rising edge of CLK through to the maximum CLK→Q delay of
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Figure 2.10: Razor-II Timing Diagram

2.2.7 TDTB and DSTB

Two variants of double sampling flip-flops were investigated by Intel and described

in [Bowman 2008]. The first, called Transition Detector with Time Borrowing

(TDTB), is conceptually similar to the Razor-II design. It consists of a latch that

is augmented with a transition detector as shown in figure 2.11(a). The transition

detector flags any input transitions during the high-period of the clock, thus requir-

ing the input to the latch be stable during the high phase of the clock. This can

be achieved by adjusting the duty-cycle of the clock or by padding the short paths.

This timing constraint is identical to that required for Razor-II (see section 2.2.6).

In Razor-I, the main storage element is an edge-triggered flip-flop and the shadow

copy is stored in a latch. Douple Sampling with Time Borrowing (DSTB) is a variant

of Razor-I where the main storage element is a pulsed latch and the shadow copy is

captured using an edge-triggered flip-flop (see figure 2.11(b)). The SET and timing

fault detection capabilities of TDTB and DSTB are similar.

In the published work, a small, three stage pipeline is implemented using both

types of sequentials. It appears that the error signals from all the sequentials in the

design are OR’ed together, fed to the first stage of the pipeline (Input Buffer) and

caused the in-flight instruction to be re-issued with a half-speed clock. There are

obvious scalability issues if the error signals fan into a single point in the design.

It is interesting to note, that the Razor-I design team required the use of a

dedicated metastability detector in order to achieve robust operation [Das 2009]

when the setup/hold constraints of the main flip-flop were not met. However, in the

published work on DSTB and TDTB [Bowman 2008], metastability was apparently
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Figure 2.13: Bubble-Razor Timing Diagram

error recovery is not specific to a given design architecture (e.g. micro-processor

pipelines, etc.).

The prototype design for Bubble-Razor was an ARM Cortex-M core imple-

mented in a 45nm technology. The original flip-flop based design was converted

automatically by a tool into a latch based design. On average each flip-flop was

mapped into ≈3.29 latches and the area overhead for this transformation was 8%3.

The overall area overhead for the Bubble-Razor implementation was 21%. For a

typical process conditions, the Bubble-Razor techniques enables a performance in-

crease of 22% at a given, fixed voltage. Alternatively, an energy reduction of 54%

is possible at a fixed level of performance.

2.2.8.1 SEU Detection

The Bubble-Razor technique does not provide protection against SEUs. The XOR

gate which compares the outputs is only active when the master latch is transparent

and during this time, the latch is not susceptible to SEUs. During the time when

the clock is low (G = 0), the dynamic XOR gate is being pre-charged and thus does

not detect errors.

2.2.8.2 SET Detection

The Bubble-Razor technique can detect SETs. If a SET is present on the rising edge

of the clock, the incorrect value will be sampled in the shadow latch. Later, when

the transient has expired, the output of the master latch will assume the correct

3Ideally each flip-flop would map to two latches. In practice, when the flip-flop circuit is re-

timed, the cut-point can be wider and additional latches are required.
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value and the error detection logic will be triggered. The maximum width of SET

than can be detected is equal to the high-phase of the clock less the propagation

time for the error signals.

2.2.8.3 Timing Fault Detection

Bubble-Razor does effectively detect timing faults. The maximum timing fault that

can be detected, is limited by the fraction of the cycle the clock is high, less the

propagation time of the error signal through an OR tree.

2.2.9 EDC Flip-Flop

The Error Detection Correction (EDC) flip-flop [Valadimas 2010] consists of a main

flip-flop, an XOR gate, a redundant latch and a multiplexer. The XOR gate com-

pares the input and the output of the main flip-flop and this result is sampled by the

latch as shown in figure 2.14. The idea is that the data at the input to the flip-flop

must remain stable for a period of φ so that the main flip-flop and the redundant

latch sample the same value.

The latch is clocked with a locally generated pulsed clock that is delayed from

the main clock by a delay φ as shown in figure 2.14. The width of the pulsed clock

is α and it must be large enough to meet the minimum pulse-width requirements

of the latch, under all operating conditions. The logic to generate the pulsed clock

can be shared amongst a group of flip-flops. Increasing the value of φ is costly both

in terms of area, due to the additional delay elements, but more importantly in

terms of active power because the delay gates on the clock generation circuitry are

toggling at the full clock rate.

If a timing error is detected, then the Error signal causes the clock to be globally

gated to the entire circuit for one cycle. During this time, the inverted (Qbar)

output of the main flip-flop is output and thus the correct computation occurs.

This approach imposes a tight timing constraint: in less than one cycle, the Error
signal must be generated at every EDC flip-flop and then propagated to the clock

input of every flip-flop in order to perform the clock gating. This constraint limits

the operating frequency and the size of the circuit.

2.2.9.1 SEU Detection

A SEU that occurs in the main flip-flop between the rising edge of the clock and

the falling edge of C_Pulse will be detected by the XOR gate. A SEU that occurs

later in the clock cycle will go undetected. Therefore the overall fraction of SEUs

that are detected is φ+α
tclock

. In practice, due to the requirement that all combinatorial

paths be padded to a minimum delay of φ and due to the power cost in generating

the delayed clock, this fraction will be small and overall the EDC flip-flop provides

only limited SEU protection.
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deisgned to cover the worst case CLK → Q delay which may be significantly longer

than the actual delay.

When an SEU occurs, during the window of time it takes for the correction to

occur, the incorrect value will propagate. The intended use of the SET flip-flop is

that when an error is detected, the clock is gated, and extra time is allowed for

correct computation to occur using the corrected value.

2.2.10.2 SET and Timing Fault Detection

The SET flip-flop does not provide a mechanism for detecting or correcting SETs

or timing faults.

2.2.11 TMR

When the highest level of robustness is required, Triple Modular Redundancy (TMR)

techniques are typically used. In the most common form of TMR, at the circuit level,

just the flip-flops are triplicated as shown in figure 2.17(a). This approach only pro-

vides protection against SEUs and is often used when hardening Field Programmable

Gate Array (FPGA) designs.
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(b) Triple Clock TMR

Figure 2.17: Use of TMR For Flip-Flop Protection

Since the clock network is not replicated, it remains a weak point, and any

transients on the clock will affect all the flip-flops. In space applications, this is

addressed by replicating the clocks as shown in figure 2.17(b). If the phase difference

on the replicated clocks is at least tSET , then any transients of less than this duration

will be filtered as the transient is then only sampled by a single flip-flop. Of course,

this comes at a penalty in timing performance equal to twice the transient pulse

width.

Having three clock distribution networks is very costly and recently techniques

to achieve the same robustness using only two clocks have been developed as shown
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in figure 2.18 [Nicolaidis 2013]. With this approach, the third temporal sampling

point is obtained by adjusting the duty-cycle of the clocks.
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Figure 2.18: Flip-Flop TMR Using Two Clocks

2.2.12 Parity Codes

Parity codes have been used to protect data since the earliest computers. In some

situations, they can be very effective at protecting flip-flops against SEUs. In fig-

ure 2.19, it is shown how parity can be calculated over a set of data bits and the

parity stored in an additional flip-flop. On the output of the flip-flops, the parity

is checked and errors are detected. The major drawback to parity codes is that the

additional delay to compute the parity directly affects the critical path.

For parity generation, the cost is half an XOR gate, per bit. On the checking

side, the parity must be re-computed, which also costs half an XOR gate per bit

plus a final XOR to compare the result with the stored parity. The cost of the extra

flip-flop for the parity, is amortized across the N flip-flops that are being protected.

To combine the error indications from multiple groups of parity bits, an OR tree is

required which is an additional overhead.

Parity codes can, however, be very effective when data moves through several

stages of flip-flops without being modified. In this case, the parity can be calculated

at the front of the pipe and checked at the end. The overhead of the parity calcula-

tion and checking circuitry is amortized over the M stages, as shown in figure 2.20.

Only an extra parity bit needs to accompany the data bits through the intermediate

stages. In this case, per-bit the area overhead is approximately AXOR

M + AFF

N .
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appear on the data-path. One could thus say that parity logic does provide detection

of timing faults, although this comes at the cost of a significant timing overhead.

2.3 Comparison of Robust Sequentials

As seen in the above sections, there exist a large number of robust sequential cells,

each with specific error detection capabilities, different overheads and specific usage

constraints. In this section, the objective is to compare the different techniques and

put them in context.

It is often difficult to assess the implementation cost of a cell without complet-

ing the transistor-level design. The overheads are technology specific and even for

a given type of cell, multiple implementations with different drive strengths and

speeds are possible. However, it is clear that certain circuit designs have intrinsi-

cally higher overhead than others. The approach taken to compare the area of the

different circuits is based on counting the number of additional transistors required

to implement the robust cell, compared to a minimum-sized implementation of ei-

ther a standard latch or flip-flop. It is true that transistor widths vary greatly, so

this measure has limitations, however, to correctly size the transistors requires a full

implementation of each design, which is beyond the scope of this thesis.

The Nangate Open Cell Library [Nangate 2008] was used to facilitate the com-

parison. The transistor count and area of different standard cells is shown in ta-

ble 2.1. The library does not include a C-element, but from a schematic it is known

that a C-element can be implemented with 12 transistors.

Table 2.1: Transistor Counts for Basic Design Elements

Description Cell Transistor Count

INV gate INV_X1 2

BUF gate BUF_X1 4

OR gate OR2_X1 6

XOR gate XOR2_X1 10

NAND2 gate NAND2_X1 4

2-input mux gate MUX2_X1 12

Latch DLH_X1 16

D Flip-Flop DFF_X1 28

D Flip-Flop w SET,CLR SDFFRS_X1 52

C-element 12

For some of the robust sequentials, there is extra circuitry that can be shared

across multiple flip-flops. Specifically, this is the case of the pulsed clock generators

used in the EDC and the SET flip-flop. Also, for those designs that provide detec-

tion, there is an OR tree which combines the error signals and terminates at an error

flip-flop. For the purposes of this comparison, it is assumed that these structures

are shared amongst 32 flip-flops. In this way, a per bit overhead is calculated in
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terms of the number of additional transistors. Using this approach, the area and

timing overheads for the robust sequentials studied in this chapter are summarized

in table 2.2.

Table 2.2: Comparison of Hardened Sequentials

Circuit
Timing Impact

Area
Detection Correction

setup hold CLK→Q Padding SEU SET TF SEU SET TF

Single Phase Latches

DICE ≈0e ≈0 ≈0 No 10T �

Biser tSET 0 tCelem No 36T � �

Razor-II 0 0 0 Yes 31Tb
�

f
� �

TDTB ≈0 0 0 Yes 30T � �

DSTB ≈0 0 0 Yes 38T �
a

� �

Two Phase Latches

Graal ≈0 ≈0 ≈0 Yes 14T �
a

� �

B-Razor ≈0 ≈0 ≈0 No 30Td
� �

Flip-Flops

Razor-I tMUX 0 0 Yes 48Tc
� �

EDC 0 tSET tmux Yes 44T � � � �

parity N · tXOR 0 0 No 12T �

SET FF 0 0 ≈0 No 53T � �

SET FF det 0 0 ≈0 No 21T �

a The extent of SEU detection depends on timing constraints. See section 2.2.3.2 or

section 2.2.7.1 for details.
b Reported transistor count of Razor-II is 47. Basic latch assumed to have 16 transistors.

Overhead is thus 31=47-16.
c Reported transistor count of Razor-I is 76. Basic flip-flop assumed to have 28 transistors.

Overhead is thus 48=76-28.
d Overhead for bubble-Razor consists of a shadow latch (16), a dynamic XOR gate (10) and at

least one dynamic OR gate (6).
e In [Hazucha 2003] timing overheads for a DICE implementation are presented and are under

2%.
f The SEU detection of Razor-II is limited by the fact that the low period of the DC clock

must span the worst case CLK→Q delay. See section 2.2.6.1.

2.4 Conclusions

To provide a simple summary of the protection capabilities of the different tech-

niques, the cells have been grouped into three sets based on whether they mitigate

SEUs, SETs or timing faults. A Venn Diagram showing these capabilities is shown

in figure 2.21. Cells which provide only detection are shown with a dark, red square

and those that provide correction are shown with a light, blue square.

For SEU robustness alone, the DICE cell is well established, including variants

with improved layout (e.g. LEAP-DICE [Lee 2010]). However, it is important to

remember, as pointed out in section 2.2.1.1, when an upset occurs in a DICE cell, it

takes some time to recover and a glitch can propagate into the downstream logic. At

higher frequencies, there is less TDR and thus an increased risk that such a glitch

will be sampled downstream.

When looking for protection against both SEUs and short SETs, the Biser cell
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Figure 2.21: Venn Diagram Showing Properties of Robust Sequentials

is attractive. For a cost slightly higher than a redundant latch, through the use of

a C-element, the Biser can block SEUs and SETs. In order to detect wider SETs,

the length of the delay chain (τ delay) at the front of the cell must be increased.

We identify three cells (Graal, DSTB and Razor-2) which, in principle provide

detection of SEUs, SETs and timing faults. All three are latch based designs and

have special timing constraints. Using two-phase, non-overlapping clocking, Graal

ensures that the inputs to each latch remain stable after the latch is opaque. To

achieve SEU protection during the full window of temporal susceptibility, either

the short paths must be padded or the depth of the OR tree must be very shallow

(see section 2.2.3.1). Razor-2 achieves SEU detection using a transition detector

that is disabled around the active edge of the clock. The disabling of the transition

detector creates a window when SEUs may not be detected. Razor-2 imposes the

requirement that short paths be padded to ensure that the inputs to the latches

are stable during high period of the clock. The timing requirements for DSTB are

similar to those of Razor-2, thus requiring short paths to be padded.

Although designs exist that can detect all three classes of errors, they impose

specific timing constraints and have some limitations on the extent of SEU detection.
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3.1 Overview of Analysis Techniques

Analyzing the effect of faults induced by soft errors in complex integrated circuits

remains challenging. The vast majority of faults do not propagate due to the various

de-rating factors that were identified in section 1.3. Without an accurate charac-

terization of the fault propagation probabilities, the failure rate of the system may

be grossly misestimated. Usually the raw soft error rate of basic cells (e.g. memory

cells, flip-flops) can be characterized accurately and error bars of under 10%-15%
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are typical. Achieving the same level of accuracy in the effects analysis is difficult

and often the accuracy of the full system-level analysis is limited by the accuracy of

the effects analysis.

A high-level view of the propagation from faults to system level failures is shown

in figure 3.1. Shown on the left are the faults that can be induced in flip-flops, logic

gates and memories. Due to de-rating effects, Temporal De-Rating (TDR), Logical

De-Rating (LDR), Electrical De-Rating (EDR) and Memory De-Rating (MDR),

many of these faults do not propagate. After applying these de-ratings, the effective

rate of visible errors is calculated. The next step is to analyze the effect of each

error on the system. This comes from the FDR analysis and the result is the rate

of occurrence for a defined set of system-level failures.
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Figure 3.1: Soft Error Effects Analysis

The most common approaches to evaluate fault propagation centre around fault-

injection analysis. Many faults are injected into a model of the circuit and the effect

is observed. Depending on the accuracy of the model (e.g. gate-level, RTL, etc.)

only some of the de-rating factors may be taken into account. There exist many

different fault injection techniques and a brief review is presented in section 3.1.2.

Often FPGA-based platforms are used to accelerate fault-injection and these are

discussed in 3.1.2.2.

Analytical approaches are an alternative to fault injection. These approaches use

a mathematical or abstracted model of the circuit to evaluate the effect of faults.

Microprocessors have been studied in depth and a widely used analytical approach

is based on the notions of Architectural Vulnerability Factor (AVF) and Program
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Vulnerability Factor (PVF) and these are discussed in section 3.1.3.

Analytical techniques also exist for circuit level fault effect analysis. Some of

these use special data-structures such as Binary Decision Diagrams (BDDs) or Al-

gebraic Decision Diagrams (ADDs) to represent the circuit and reason about fault

propagation. Other techniques are based on a formal representation of the circuit

as well as the properties it must meet. Using tools for model checking or symbolic

simulation, it can be verified whether the properties hold in the presence of faults.

These techniques are discussed in section 3.1.4 and 3.1.5 respectively. Another set

of approaches is based on associating probability distributions to the nodes in a

circuit and then using these to compute the probability that faults on a given node

will propagate to an output. These techniques are reviewed in section 3.1.6.

We conclude the first half of the chapter with a qualitative comparison of the

different techniques in terms of their accuracy, speed, the types of faults that can

be modeled and the types of masking that can be analyzed. In the second half of

the chapter (section 3.2), a detailed case study of the soft error effects for several

large design blocks in a Network Processor (NP) is presented.

In practice, no single technique can be applied to an entire System on Chip

(SoC). Instead hierarchical and hybrid approaches must be developed. In chapter 5,

a hierarchical technique for analyzing the effects of SETs is presented. The RIIF

modeling language which is described in chapter 6, is intended to facilitate such

hierarchical analysis by providing a means to encapsulate the results of a block-

level analysis and make them available for an analysis at the next higher level of

hierarchy.

3.1.1 Objectives of Soft Error Effects Analysis

The goal of any soft error effects analysis is to assess the probability that radiation

induced faults result in the occurrence of a chip or system-level error. The list of chip

or system-level failures must be clearly enumerated prior to the analysis. In proces-

sor applications, the two main effects that are typically identified are Silent Data

Corruption (SDC) and Detected Uncorrected Errors (DUEs) [Mukherjee 2008]. A

common taxonomy for processor effects is reproduced from [Weaver 2004] in fig-

ure 3.2. SDC occurs when a bit has no protection and its value affects the program

execution. DUE occurs when there is a fault in a bit which has only detection,

regardless of whether it affects the program outcome, or not. A well known con-

sequence of the latter observation is that by simply adding error detection to a

processor, the SDC rate may be reduced, but this comes at the expense of increased

DUE. Leading processor manufacturers characterize the SDC and DUE rates of

their designs and communicate these values to their customers, usually under strict

Non-Disclosure Agreements (NDAs).

In core networking applications (routers and switches), a different approach to

classifying the effects of faults is proposed in [Silburt 2008, Silburt 2009]. The spec-

ification that is presented defines outage classes based on the duration of time the

network is unavailable. A very short outage, affecting only a small number of pack-
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Figure 3.2: Classification of Faults in Processors

ets, may go undetected, even by the neighbouring network elements. Such low

severity outages can occur relatively frequently without impacting the network op-

eration. As the duration of the outage increases, so does the severity. Using Quality

of Service (QoS) specifications for packet traffic, card-level hardware reliability tar-

gets and network availability requirements (e.g. five 9’s), the authors establish

bounds on the rate of occurrence of different classes of system failures and these are

summarized in table 3.1. Defects per Million (DPM) is an availability metric.

Table 3.1: Outage Classes and FIT Rate Targets for Internet Core Routers

Maximum Maximum Maximum

Class Outage Outage Rate DPM Down Time

Time (s) (FITx1000) (s/year)

No outage 0 Unlimited 0 N/A

Low 0.01 30 0.000 0.00

Medium 3 10 0.008 0.26

High 180 1 0.050 1.58

Unrecoverable 1000 1 0.278 8.77

Total 0.336 10.61

When analyzing an ASIC used in networking applications, it is necessary to

ensure that these system level targets are met for each outage class. As part of the

FDR analysis, each fault must be classified based on the class of outage it produces.

Then the total failure rate for each outage class is summed for the entire system. To

summarize, the goal of a soft error effects analysis is to compute the rate of system

level failures starting from the rate of technology level faults due to soft errors.
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3.1.2 Fault Injection

Fault injection analysis consists of injecting a number of faults into a model of a

system to evaluate how it behaves in the presence of these faults. Models with

different abstraction levels can be used. Obviously, there is a trade-off between the

level of abstraction versus the speed of the analysis and the accuracy of the results.

The main challenge with any fault injection analysis is managing the number of

faults that must be evaluated. This number grows with:

(i) Number of fault types (e.g. SEUs, SETs).

(ii) Design size (e.g. number of gates).

(iii) Number of workloads or stimulus patterns to analyze.

(iv) Duration in cycles of each workload or stimulus pattern.

The review presented in [Yu 2005] exposes the fact that exhaustive fault sim-

ulation is not possible for commercial circuits. For example, in [Valderas 2010] an

exhaustive fault injection analysis was performed on a small micro-processor with

596 flip-flops and required 80 million fault injections. Many techniques to accelerate

fault-injection simulations have been proposed and are discussed in section 3.1.2.1.

An enhancement to existing acceleration techniques is presented as part of the case

study in section 3.2 of this chapter.

When the objective of the analysis is to compute system-level failure rates, it

is only necessary to evaluate a relatively small number of faults in order to obtain

accurate estimates of the system level error rates. In section 3.3, error bounds

for statistical fault injection are discussed. When the objective is fault grading

(e.g. identification of which circuit elements are most critical), new techniques are

required to identify the critical elements in large designs and this is the topic of

chapter 4.

3.1.2.1 Simulation Based Fault Injection

Independent of reliability concerns, digital simulation is used extensively to verify

the functional correctness of modern designs. The environment used for functional

simulation can be reused for fault simulation. A simple approach for simulating

faults is shown in figure 3.3(a). With this approach, the Device Under Test (DUT)

is instantiated twice. A fault is injected in one instance while the other serves as a

‘golden’ reference and the output vectors from both instances are compared clock

by clock. In practice, as long as the input vector sequence remains fixed, it is not

necessary to actually simulate the golden version of the DUT during each run as the

output vectors can simply be recorded in advance. It is, however, only possible to

assess whether the output vectors diverge. This approach provides no insight into

the actual effect of the divergence.
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The advantage of this simple approach is that it can be applied to almost any

design and does not require an understanding of the application. The corollary is

that this approach provides no insight into FDR.
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Figure 3.3: Fault Injection Simulation Environments

Figure 3.3(b) shows a more complete view of a modern functional simulation

environment. The stimulus is generated in terms of transactions (e.g. packets,

video frames, numeric data, etc.) which are converted to low-level vectors by Bus

Functional Models (BFMs). On the output side, the raw vectors from the DUT are

parsed into transactions which are checked by intelligent checkers. The stimulus

generator and the checker communicate via a scoreboard which is a data-structure

that tracks the transactions currently being processed by the DUT. As the intelligent

checker works at a high level of abstraction, it detects and reports errors at the

transaction level (e.g. missing packets, corrupted video frames, numerical errors,

etc). Typically, these errors are written to a log file and it is possible to map

the various error messages to the system-level impact they have. Essentially, the

intelligent checkers provide an automated means to evaluate the system level effect

of faults.

The challenge with simulation based fault injection is the relatively low speed of

digital simulators. Fortunately, the problem of fault-injection is easily parallelized.

By the 1970’s [Chang 1974] techniques for parallel fault simulation had been de-

veloped and already at this time, it was possible to evaluate thousands of faults

per second on mainframe computers for circuits with hundreds of gates. Below, we

discuss a few of the numerous techniques that have been developed to accelerate

fault simulations.

Recently, [Alexandrescu 2012] presented the implementation of an acceleration

technique based on exploiting the fact that modern processors typically have a 64-bit

word width. On the host processor, instead of running simulations sequentially, up

to 64 simultaneous fault injections can be performed, where each bit in the data-path

of the host processor is used to evaluate a different scenario. A tool was developed
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which can compile an RTL description into C code which, when executed, evaluates

64 faults in parallel. The combination of the parallel simulation and the optimized

C code, results in a performance increase of over 500X compared to a commercial

event based simulator. The downside is that it can only be used to implement

simple fault injection, as shown in figure 3.3(a) and it does not provide a means to

parallelize the intelligent testbench bench components shown in figure 3.3(b), thus

limiting its applicability to evaluating LDR.

Another approach to reducing simulation time is presented in [Berrojo 2002a,

Berrojo 2002c]. Through the use of rules derived from the structure of the design

certain faults can be shown to be equivalent to others faults or to be dominated

by other faults. For example, a fault that affects an upstream flip-flop directly

feeding a downstream flip-flop through a shift register of N stages, is equivalent to

a fault in the downstream flip-flop, N cycles later. Faults that affect flip-flops on

primary outputs need not be evaluated, as they obviously propagate. Additional

rules can be derived based on the stimulus patterns. For situations where read and

write operations can be clearly identified, any faults injected between two writes

with no intervening reads can be eliminated, as they will not propagate. When

these techniques were applied to a circuit used in a spatial application, the static

techniques allowed the total fault list to be collapsed to ≈13% and the dynamic

techniques allowed a further reduction to ≈4.7%. Fault collapsing techniques are

attractive to prune the number of faults; the remaining faults can then be executed

in an intelligent simulation environment. In the cited work, checkpoint techniques

are also described which avoid repeatedly running the portion of the simulation

prior to the time when the fault is injected as well as avoiding simulating beyond

the point when the system returns to its golden state.

3.1.2.2 Emulation Based Fault Injection

FPGA emulation techniques are used to accelerate fault injection campaigns [Lopez-Ongil 2007,

Valderas 2007, de Andres 2008, Mohammadi 2012]. The advantage of FPGA based

techniques is that the circuit can run orders of magnitude faster than in simulation.

Care must be taken to ensure that the fault-injection platform does not introduce

bottlenecks that limit the effective fault-injection performance. Common sources of

bottlenecks are in the communication with the host computer and also in the time

required to actually inject the fault.

One of the drawbacks with emulation based techniques is that it is more difficult

to assess the effect of the fault. As discussed in section 3.1.2.1, an intelligent test-

bench can assess the type of error and classify it based on its system-level effect. On

an emulation platform, it is possible to match the bit-level state of the device under

test against the state of a golden design. It is thus possible to determine if there

are latent faults in the design. It is, however, more challenging to perform run-time,

high-level fault-classification as this must be performed in the FPGA hardware.

As will be seen in 3.2.6, an important fraction of faults may result in an ongoing

perturbation of the circuit state without causing a serious error.
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Another drawback of emulation based fault-injection lies in its scalability for

large designs. A full ASIC today typically has between 5-20M flip-flops and can

not be mapped into a single FPGA. The routing resources available in an ASIC

far exceed those of FPGAs, thus congestion and management of large-fanouts may

become serious issues in an FPGA implementation, requiring extensive engineering

effort to resolve. Furthermore, it is common for ASICs to have hundreds of megabits

of embedded memory, well beyond what is available in FPGAs. Techniques do exist

for mapping large designs into FPGAs and these involve mapping embedded RAMs

to external RAMs and scaling some aspects of the design (e.g. reduced bus-widths,

reduced cache-sizes, etc.). Overall, emulation techniques are best suited to designs

where the full circuit under test can be comfortably mapped into a single FPGA

device.

Different techniques can be used to inject faults on an FPGA-based system.

One approach is to instrument the original circuit [Civera 2001]. To inject SEUs,

the flip-flops where faults are to be injected in the original circuit are mapped

to instrumented flip-flops. The instrumented flip-flops have additional ports that

enable faults to be injected and for the results of the fault injection to be observed

or checked.

To fully exploit the potential of emulation based fault-injection, the controller

that injects the faults must be implemented in hardware and run natively on the

card with the circuit under test. The autonomous emulation platform presented

in [Lopez-Ongil 2007] has all of these characteristics and fault-injection rates of 4.2

µsec per fault are reported for test benches that require 600 clocks to execute. The

largest circuits that were studied in this work had approximately 2,300 flip-flops.

A fundamentally different approach to FPGA-based fault injection is based on

dynamic re-configuration of the FPGA. With this type of approach, the original

circuit is not modified when it is mapped. Instead, at the point when the fault

is to be injected, the clock is stopped, the FPGA is reconfigured so that the new

configuration models the effect of the injected fault and then the circuit is resumed.

Because the host-controller is involved in the fault injection, there is an inherent

speed penalty with this approach. Results presented in [Antoni 2002] report that it

takes approximately 1 msec per experiment.

There is growing concern about the effects of SETs, even in terrestrial appli-

cations. Emulating the effect of SETs is significantly more difficult than for SEUs.

First, the actual gates in the target circuit implementation do not exist in the FPGA

but are instead implemented using Look Up Tables (LUTs). Secondly, the delays

in the FPGA implementation are completely different from those in the target im-

plementation. These issues were addressed by researchers at Carlos III University

through a quantized time approach [Entrena 2009]. The Standard Delay Format

(SDF) file for the gate-level netlist is analyzed and a minimum time-step is identi-

fied. In the target FPGA, the circuit is then mapped with shift-registers replacing

wires and by selecting the correct stage on the shift register, arbitrary delays can be

emulated, with a resolution down to the selected time quantum. Transient pulses

of arbitrary width can be injected by changing the value on the delay chain, for
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the required number of time quanta. The fine-grained temporal emulation is only

required to propagate the effect of the SET until it reaches one (or many) sequential

elements. In [Entrena 2012], the AMUSE system is presented where both an RTL

and a gate-level implementation of the circuit under test coexist in the FPGA. The

RTL model runs nearly one hundred times faster than the gate-level model and is

used prior to the fault-injection and after the SET has reached the memory ele-

ments. The gate-level version, is used for the short window in time when the SET

is injected. Using this platform, SET fault injections can be performed on a full

Leon2 processor at a rate of approximately 3000 faults per second.

These techniques require additional engineering effort. The limited size of FP-

GAs makes it challenging to deal with large designs and the level of analysis that

can be performed when a failure occurs is limited by the “intelligence” embedded in

the emulation platform.

3.1.2.3 Software Based Fault Injection

When studying processor based systems and when the actual hardware is avail-

able, it is possible to use code running on the processor to inject faults that model

the effect of SEUs. This technique is referred to as Software Implemented Fault

Injection (SWIFI) or Code Emulated Upset (CEU). The execution sequence of a

typical software based fault injection platform is reproduced from [Valderas 2007]

in figure 3.4.

Figure 3.4: Execution Flow for Software Based Fault Injection

The normal application is run on the processor and then, at a randomly selected

time, the processor is interrupted, typically using a Non-Maskable Interrupt (NMI),

so that faults can be injected at any instruction in the program. The interrupt

routine then selects a bit to be flipped, amongst those that are accessible to software.

Typically these include bits in the register file, the cache, the program counter as

well as the code, data and stack segments. The interrupt routine terminates and
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execution of the application resumes. When designing a SWIFI experiment, the set

of bits to inject must be carefully considered. For example, if the cache is ECC

protected, it does not make sense to inject faults in it.

When performing SWIFI experiments, multiple Error Detection Mechanisms

(EDMs) can be used [Arlat 2003]. Of course, at the end of the application, the

final output of the program must be checked. Additionally, processors also include

embedded hardware checks such as the detection of bus errors or illegal op-codes.

Depending on the system, external hardware checking may be also present in the

form of watchdog timers. The operating system and firmware are also able to detect

certain errors through protocol checks and checksums on packets. When designing

the experiment, the failures detected by the EDMs must be mapped to meaningful

categories, based on the application.

An alternative approach to injecting software faults is used in [Arlat 2003] and

consists in modifying the compiled program (code segment or static data segment)

prior to its execution. This approach has the advantage that the program flow is

not interrupted.

Overall, the key advantage of SWIFI or CEU techniques is in the ease of im-

plementation and the fact that the application can run at real time in its target

environment. In this way, the interactions with the overall system are accurately

modeled. The main disadvantage is that not all state bits are directly accessible by

software, thus only a subset of all of the real faults can be studied.

3.1.2.4 Comparison of Fault Injection Techniques

Given the variety of Fault Injection (FI) techniques, it is critical to understand

how the results obtained with different techniques compare. In an early study

[Stott 1998], SWIFI techniques were compared with bit-level fault injection on a

cycle accurate processor model. The application was a network interface card where

the main component was a processor running a program called MCP. In these ex-

periments, the faults were specifically targeted at the instruction currently being

executed. Exactly the same set of faults was injected in both the SWIFI and the

simulation platform. The results of this study are reproduced in the table 3.2. The

second and third columns show the number of faults that resulted in each category

using the simulation and SWIFI techniques. The column on the right shows the

percentage of times that the two techniques produced the same result.

The results are interesting in that both techniques are effective at identifying

which faults produce no error (99.5% correlation). The correlation is also quite

good for less severe failures such as dropped messages and corrupted data. For

the more severe errors, the correlation is much weaker. Given the relatively small

number of faults that were analyzed in this study, the errors bars are significant and

broad conclusions can not be drawn.

Other studies [Cardarilli 2002] on small designs have shown a very high correla-

tion between CEU techniques, flip-flop level fault injection and radiation test results.

In this work, two application programs were run on an 8051 micro-controller and the
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Table 3.2: Breakdown of Number of Errors By Category

Fault Injection Result Simulation SWIFI Match

MCP Hang 14 51 19.6%

Hang Remote MCP 0 5 0.0%

MCP Restart 14 15 33.3%

Message Dropped 58 54 94.4%

Data Corruption 29 19 78.9%

No Error 270 241 99.5%

Total 385 385 83.5%

error rates obtained from CEU and from simulation based fault injection matched

to within a few percent.

In [Arlat 2003], an in-depth comparison of errors produced by radiation, pin-level

forcing and electromagnetic interference versus SWIFI techniques was performed for

an application running on a 68070 processor. This work showed that bit-flips in the

code-segment are able to produce error profiles similar to the hardware injection

mechanisms, however, certain hardware level EDMs were not able to be triggered

by SWIFI. Furthermore, when the application was protected with dual execution,

SWIFI underestimated the fraction of silent failures compared to the actual radiation

testing.

A recent study [Cho 2013] compares the results of fault injection at the micro-

architectural and program level versus direct fault injection in the flip-flops. In the

micro-architectural level simulations, either a random bit is flipped in a register file

(RegU) or a random bit is flipped on a write operation to the register file (RegW).

For the application level faults, either a single bit error is injected into the value of

a program variable (VarU) stored in memory or a single bit error is injected into a

piece of data being written to memory (VarW).

Figure 3.5: Results of Different Types of Fault Injection
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The target system was a Leon3 processor and multiple complex applications

were used as workloads running for billions of clock. An excerpt of the results is

reproduced in figure 3.5. From these results, a difference of a factor of three is

observed in the mean rate of hangs. The authors conclude that high-level fault

injection can be highly inaccurate compared to flip-flop error injection.

Overall, care must be taken when using SWIFI to predict the actual rate of

errors induced by soft error effects. First, we note that there are many different

approaches to SWIFI and there is are significant variations in the error effects they

produce. In some cases, SWIFI can provide a reasonable indication of the overall

error rate, however, there is evidence that it can not predict the distribution of the

types of errors actually produced by SEUs.

3.1.3 Analytical Techniques for Processors

An analytical technique for assessing the sensitivity of processor designs was in-

troduced in [Mukherjee 2003] and further developed in [Mukherjee 2008]. This ap-

proach classifies the bits in a processor based on whether they are necessary for

Architecturally Correct Execution (ACE). A bit that is ACE is important for the

program to produce correct output. The notion of Architectural Vulnerability Factor

(AVF) is defined as the ratio of ACE bits to the total number of bits in a hardware

structure. To some extent, AVF is a term, introduced at Intel that has the same

meaning as LDR. A structure with an AVF of ‘1’ or a LDR factor of ’1’ is sensitive

to all upsets.

Many bits in a processor can quickly be classified as un-ACE. For example, units

used for branch-prediction are inherently un-ACE as mis-predicting a branch does

not affect the program’s results. Certain instructions are inherently un-ACE such as

NOPs and instructions used only to pre-fetch data into the cache. In addition, the

results of many instruction are never actually consumed. These results represent

First-level Dynamically Dead (FDD) data and are un-ACE.

Architectural and performance models for a processor are usually used for AVF

analysis and can provide results about the sensitivity of the different functional units

(e.g. re-order unit, ALU, etc.). These models run very quickly, and it is possible to

evaluate the AVF of real applications that run for millions of cycles.

The occupancy of the queues, such as an instruction queue, plays an important

role. When a queue is nearly empty, upsets to its memory locations have a low

probability of propagating. Conversely, when a queue is full, almost all of its bits

are sensitive. For this reason, Little’s Law1 is sometimes used to estimate the

steady-state AVF of structures containing queues.

One of the drawbacks with AVF analysis is that there is no distinction between

the masking that is intrinsic in the hardware, and the portion of the masking that

is introduced by the application. In [Sridharan 2009], the notion of Program Vul-

nerability Factor (PVF) was introduced to separately capture that portion of the

1Little’s Law states that the long-term average depth of a queue depends on the average arrival

rate and the average waiting time.
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in the circuit including each combination of input patterns for the gate. Based on

the condition being evaluated, the BDD for the impacted gate is updated and then

the BDD for the upstream portion of the full network is rebuilt. An example of

an updated network BDD is shown in figure 3.6(b). The delays on each gate of

the network are considered, so cases where reconvergent paths cause a pulse to be

cancelled out are correctly evaluated. The authors claim that the correct modeling

of reconvergent paths is essential for the accuracy of the results, however, no actual

data is provided to justify the claim. In order to process larger circuits, this tool

partitions the network and treats each partition separately. The authors show strong

correlation between the results of FASER analysis with fault injections performed

using SPICE for the full network and claim a huge speedup compared to SPICE

simulation. However, the FASER algorithm still involves an exhaustive evaluation

of the propagation of each fault for each input state. Inherently, the accuracy of

FASER is no better than that which would be obtained using SDF annotated gate-

level event-driven simulation and it is not clear that the use of BDDs is faster than

gate-level simulation. Due to the exhaustive evaluation of all faults, this approach

is not scalable to large circuits.

The MARS-C tool, described in [Miskov-Zivanov 2006], uses a combination of

BDDs and ADDs to simultaneously model LDR, TDR and EDR. The authors start

by identifying a temporal window during which a transient must arrive at the circuit

output in order to meet the setup/hold window and be sampled.

For each gate, an initial ADD is created representing the duration and amplitude

of a SET occurring in that gate. Models developed by [Omana 2003] are used to

define how the amplitude and duration of a transient are modified as they propagate

through intermediate gates. Using the initial ADD, representing the faults, and the

pulse transformation rules, a full set of ADDs are generated to model the propa-

gation of faults in each gate to each output. A terminal value of ‘0’ in the ADD

represents all the cases where the transient is completely masked (either electrically

or logically). In figure 3.7, an ADD showing the propagation of a fault occurring in

gate G2 through to the output of G5 is shown. In this figure, D235 represent the

transformation of the initial pulse at G2 as it passes through G3 and G5.

Figure 3.7: ADD Representing the Path from G2 to G3
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An algorithm to accurately model the effect of reconvergent paths when building

the ADDs is used and it takes into account the arrival times of the pulses on each

path and the controlling values of the reconvergent gate. Once the ADDs have been

built, the total error rate for the entire circuit can be calculated. The complexity

of the algorithm grows with the product of the number of outputs and the number

of gates in the circuit. This tool is able to evaluate circuits with approximately

500 gates in a few minutes of CPU time, which is impressive given that all of the

relevant de-rating factors are considered and the reported accuracy is very close to

that obtained using SPICE.

3.1.5 Formal Techniques

Formal techniques consisting of model-checking and symbolic simulation are in-

creasingly used in the context of functional verification. A model checker is able to

exhaustively explore all the states that are reachable from a set of initial states. In

the context of verification, a typical application of these techniques is to ensure that

a design respects a certain formal property such as being free of deadlock. Several

researchers [Seshia 2007, Shazli 2008, Darbari 2008, Baarir 2009] have looked at us-

ing these techniques to assess the effect of faults on circuits as well as to identify

critical flip-flops.

In [Seshia 2007], a SpaceWire communication circuit with 130 latches is ana-

lyzed. The Verilog description of the circuit was manually translated into a format

readable by the SMV tool [Cadence 1998]. The authors then analyzed the english

specification for the SpaceWire protocol and translated the requirements into 39

formal assertions that define the correct operation. The initial model was first val-

idated to conform to the specification in the absence of faults. A formal model for

a SEU was created. The model expresses that a given bit can change state at an

arbitrary cycle. The model checker was then rerun repeatedly, each time with the

formal model for a SEU in each of the latches. The authors found that upsets in

only 28 of the 130 latches would cause a violation of the specification. A single

run of the model-checker required less than 4 minutes. The approach is interesting

because after protecting the 28 critical latches, the design is known to operate cor-

rectly under all situations. Unfortunately, the engineering effort required to create

the formal specifications is quite high and requires experts familiar with SMV.

The approach presented in [Seshia 2007] makes it possible to determine whether

a given state bit is critical for correct operation. It does not, however, provide a

means to rank the critical state bits. In [Baarir 2009], the authors introduce the

notion of repairing states. When a fault is introduced in the formal model, after

some number of incorrect states, it may return to the correct state. The ratio of

the number of repairing states to the total number of reachable states provides an

indication of the criticality of a state bit. The design considered in this work is a

single state-machine with six states and small number of inputs and outputs.

Formal techniques for the analysis of SEU are certainly of academic interest,

however, it does not appear that they can be applied to industrial scale designs,
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such as those considered in the second half of this chapter.

3.1.6 Probabilistic Techniques

Probabilistic techniques for analyzing fault propagation through combinatorial net-

works have been well studied and two early tools to perform this type of analysis were

PROTEST [Wunderlich 1985] and STAFAN [Jain 1985]. The approach is based on

first computing the probability, P (i), that each signal in the network has the value

‘1’. Next, the probability that a fault on any signal will propagate to the outputs

is evaluated. Typically, a probability of 0.5 is assigned to the primary inputs of

the circuit. Then working forward through the network, the signal probabilities,

P(i) are propagated from the inputs to the outputs of the gates using, the relations

shown in figure 3.8.
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Figure 3.8: Forward Propagation of Signal Probabilities

Next, the detection probability of faults is calculated. These are computed

separately for faults causing a signal to transition to ‘1’, denoted DP1(i), and

those causing a signal to transition to ‘0’, denoted DP0(i) . This is done working

backwards from the primary outputs. The detection probabilities, DP0(Y ) and

DP1(Y ) of a primary output, Y , are simple P (Y ) and 1 − P (Y ), respectively.

Then, using the relations shown in figure 3.9, the detection probabilities can be

propagated backward through the network.
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Figure 3.9: Backward Propagation of Detection Probabilities

The classic problem with probabilistic approaches is how to handle reconvergent

paths as shown in figure 3.10. In this example, at E, conflicting detection probabil-

ities are propagated backward from D and from C. To handle this case, a common

assumption is to take the maximum of the detection probabilities from the upstream

nodes, although this overestimates the detection probability.

Beyond simply using probabilistic analysis techniques to compute the LDR of the

gates in a network, recent work [Hayes 2007, Polian 2008] has studied how to rank
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Figure 3.10: Reconvergent Paths

gates for selective hardening. In the first paper, exact solutions for computing which

gates to harden are presented for small circuits. In the followup, a faster approximate

technique is presented which is able to rank gates for selectively hardening and

handle large circuits with over 2 million gates.

3.1.7 Comparison of Analysis Techniques

In the first half of this chapter, many techniques for analyzing the effects of soft

errors have been reviewed. In order to compare the techniques a set of qualitative

criteria have been identified.

1. SEU indicates whether the technique can evaluate the effect of SEUs.

2. SET indicates whether the technique can evaluate the effect of SETs.

3. Abstraction indicates the abstraction level of the model being analyzed.

4. Scale provides an indication of the technique’s ability to process large designs.

5. Speed indicates how quickly the technique can complete an analysis.

6. Domain indicates the type of designs that can be analyzed with the technique.

7. FDR indicates whether the functional effect of faults can be taken into account.

8. TDR indicates whether the technique can assess the masking effects of tem-

poral delays.

Eight different techniques were compared based on these criteria and the results

are summarized in table 3.3. The row labelled ‘Sim. Basic’ refers to the simple

fault simulation approach that is illustrated in figure 3.3(a) and the row labelled

‘Sim. Adv.’ refers to the simulation approach shown in figure 3.3(b). The difference

between these techniques lies in how the results are analyzed. Through the use

of an intelligent test-bench, it is possible to assess the functional effect of faults.

Although simulation based fault injection runs slowly, there is no hard limit on the

size of designs that can be simulated.

To conclude, simulation based fault injection provides the most general means

to evaluate the effect of faults. Emulation is attractive when the scale limitations
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are acceptable. Analytical techniques have an important role in specific cases; for

example AVF is valuable when evaluating processors at the architectural level.

Table 3.3: Comparison of Soft Error Effects Analysis Techniques

Technique SEU SET Abstraction Scale Speed Domain FDR TDR

Sim. Basic � � RTL/Gate High Slowc General �b

Fault Sim. Adv. � � RTL/Gate High Slowc General � �b

Inject Emulation � �a RTL/Gate Medium Fast General �a

Software � Hardware High Faster Processor �

Analysis

AVF � Arch. High Fast Processor �e

BDD/ADD � � Gate Low Medium General �

Probabilistic � � RTL/Gate High Fast General
Formal � RTL/Gate Low Medium General

a Most approaches to fault emulation do not consider temporal delays. Recent work has shown

techniques to model SETs [Entrena 2012] and to consider the effect of TDR [Ebrahimi 2014]

in emulation.
b TDR can only be modeled in simulation with a gate-level netlist and a SDF file.
c Through acceleration techniques, the speed of fault injection simulations can be improved.
d Most research on probabilistic fault propagation is at the gate level, but recent

work [Chen 2011] has studied RTL-level propagation.
e In some work using formal techniques, [Seshia 2007], the requirements are expressed

formally. In this way, only faults that cause the functional specification to be violated are

flagged as errors and FDR is thus taken into account.
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3.2 Networking Case Study

In this section, the results of a detailed analysis of the effects SEUs in flip-flops for

three large design blocks totalling over a half million flip-flops taken from a 40nm

commercial NP ASIC is presented. The objective of the analysis is to determine the

expected rate of specific classes of system failures when a large population of routers

is deployed in a network. The RAMs in these designs were fully protected by ECC

and memories with large interleaving were selected to avoid MBUs so flip-flop SEUs

were the dominant SER failure mechanism. Table 3.4 shows the flip-flop counts and

major function of the three blocks that were studied.

Table 3.4: Summary of Design Blocks

Name Function Number Flops

epsilon Output data-path 102 559

gamma On-chip packet storage 341 615

omega Packets re-assembly from DRAM 184 552

3.2.1 Temporal De-Rating

The concept of TDR was introduced in section 1.3.2. Given the scale of the design

blocks, performing fault-injections with a gate-level netlist is not practical. In RTL

level simulation, there are no delays thus the effect of TDR is not modelled. For

this reason, the TDR analysis is done separately from the fault-injection analysis.

The TDR values for the flip-flops in all three blocks were calculated using Static

Timing Analysis (STA) with Synopsys Primetime to extract the post-route timing.

For each flip-flop, the delay to all end-points was obtained and the ratio of the path

with the greatest slack to the clock period was used to calculate the TDR. This

process was repeated for all flip-flops both at the fastest and the slowest timing

corners and histograms of the results for epsilon, omega and gamma are shown in

figure 3.11. The TDR value is shown on the abscissa and the number of paths with

that TDR value is shown vertically. Table 3.5 shows the average temporal de-rating

factors for the three blocks. At the slow process corner, the TDR is numerically

lower because the fraction of time that the flip-flops are vulnerable is smaller. The

three blocks being studied are all located in the same clock domain. It is interesting

to note, that even at the slow timing corner, the effect of TDR is less than a factor

of two.

3.2.2 Classifying Failure Effects

A classification of soft errors effects for micro-processors is proposed in [Nguyen 2005]

based on the following categories: 1) masked errors , 2) correctable errors, 3) DUE

and 4) SDC. This classification was adapted to the networking application.
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Figure 3.11: TDR Distribution in Epsilon, Omega and Gamma

It is important to make a distinction between two cases. A SEU may be logically

masked, meaning that after 1..N clock cycles, the errored state is over-written and

the design returns to the logical state which it would have had if the error had not

occurred (e.g. golden state). An error can also be functionally masked, meaning

that the circuit state remains permanently altered, however, the resulting output

sequence still meets all the system level requirements. This could be because the

upset occurs in a piece of circuitry that is not active and has no effect or because

the output sequence is slightly modified, but is still correct. In some work, these

cases are viewed as latent faults [Berrojo 2002b], since it is possible that some set

Table 3.5: Summary of Average TDR Values

Block Average TDR Average TDR

(Slow) (Fast)

epsilon 0.71 0.90

gamma 0.49 0.85

omega 0.59 0.85
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of stimuli might eventually sensitize the modified state and produce a failure. From

manual analysis of the simulations that produced functionally masked outcomes in

the circuits under study, it was observed that these cases typically corresponded to

upsets in debug-type circuitry not used in mission mode. It is interesting to note

that a fault analysis technique that only looks at the structure of a circuit, without

knowledge of the intended function would not be able to identify the functionally

masked scenarios.

Some SEUs are corrected due to ECC logic. This is the case of flip-flops on

a memory data-path after the ECC generation and prior to the ECC check and

correct logic. The corrected case is distinguished from the logically masked case,

because in the blocks under study, correctable ECC errors result in an interrupt

being flagged. This interrupt causes the testbench to “fail”, as it does not expect

to see these interrupts during the simulation. In the field, however, upsets in these

flip-flops would be indistinguishable from SEUs in the actually RAM.

Some SEUs are explicitly detected through mechanisms such as parity. These

errors are not correctable and require a reset to bring the device back into normal

operation. Such failures are classified as being detected explicitly since it is clear that

they are the result of a soft error effect. Sometimes, however, a SEU may provoke a

detectable error through a side-effect which is classified as being detected indirectly.
For example, if a FIFO pointer is corrupted, it may trigger the overflow detection

logic for the FIFO. In the system, such an interrupt would result in a chip reset and

traffic would resume after an outage. In these cases, it is not possible to attribute

the cause of the interrupt to a soft error effect and in the field such an event might

be misdiagnosed as defective hardware or as the occurrence of a rare hardware or

software bug.

The remainder of the failures are deemed silent errors, however, the special

case where the effect is a one time corruption of a packet or a statistics counter is

explicitly called out. Although this is not a desirable outcome, it may go unnoticed

in a core network application. The other silent error cases are more serious, where

internal hardware state such as pointers, linked-lists, etc. are corrupted and where

the chip is likely to start operating in an unpredictable fashion. In certain cases, the

packet traffic ceases to flow, resulting in a testbench timeout, and these are classified

as silent lockups. Table 3.6 summarizes the fault classifications.

3.2.3 Testbench Environment

The functional verification of blocks within an ASIC is normally done using a test-

bench environment with random stimulus and scoreboard-based result checking.

Since the result checking is done at a high level of abstraction (e.g. packets, trans-

actions), the testbench is tolerant of minor changes in the output sequence, provided

the functional requirements are still met. If the testbench determines that the de-

sign is behaving incorrectly, an error message is reported in the simulation log file

and usually the simulation is terminated.

In order to associate test-bench failures to the resulting system effect, each of the
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Table 3.6: Classification of SEU Effects for Networking Application

Category Sub-Category System

Outage

Description

Masked
Logically None Upset state is overwritten after

one or more clocks.

Functionally None Upset state remains but has no

functional effect.

Corrected None Error is corrected (e.g. ECC).

Detected
Explicitly Medium Explicit mechanism detected the

error (e.g. parity).

Indirectly High Error detected due to a side-

effect. (e.g. FIFO overflow).

Silent

Minor Low Operation is silently affected, but

impact is contained (e.g. single

corrupted packet).

Major Unknown Internal state is affected causing

unpredictable effects (e.g. linked

list corruption).

Lockup Unknown Packet traffic ceases to flow.

error messages reported by the testbench environment must be manually mapped

to one of the categories in table 3.6. For example, if an injected SEU triggers

a testbench error due to an unexpected FIFO overflow interrupt, then it would

classified as an indirectly detected SEU effect. This mapping is performed by building

a set of rules using regular expressions that matched the error messages in the

simulation log files. In this way, one rule can be used to match a series of similar

error messages. Using these rules, the result of a fault injection campaign can be

analyzed to determine the likelihood of occurrence of different SEU effects.

3.2.4 Simulation Speedup and CPU Efficiency

In a typical functional verification environment, the RTL description of the block

is simulated using a testcase that goes through a series of timeline steps in order

to reset the device, perform configuration, apply stimulus, stop the stimulus and

then audit the state of the design (e.g. check all FIFOs are empty, check the value

of all packet counters, etc.). It must be ensured that the SEU injections occur

during the window of time when the design is fully active and processing data so

that the results are representative of a system operating in the field. It is wasteful

to re-simulate the entire reset and configuration sequence for each fault simulation

and the first optimization consists of storing the simulator state just prior to the
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It is well known that a large fraction of SEUs are logically masked because they

are either not captured in a downstream flip-flop during the cycle of the upset or be-

cause after some number of cycles, the errored state is overwritten [Berrojo 2002b].

After this occurs, the internal design state has returned to the golden state. Con-

tinuing to run the simulation beyond this point is wasteful. In order to determine

that the design has returned to the golden state, we need a means to compare the

golden state with the state during a fault simulation. Storing the full design state

over a large number of clocks requires significant disk space and accessing the data

introduces an I/O bottleneck. Instead, we propose a new technique where a Cyclical

Redundancy Check (CRC) is calculated over the entire design state (both flip-flops

and memories) and stored in a text file file during a series of initial golden simulation

runs. During the fault simulation, periodically after the SEU injection, the same

CRC is computed over the design state and compared with the value stored in the

text file during the golden simulation. If the values match, the design has returned

to the golden state and the simulation can be terminated, with the knowledge that

the outcome would have been a PASS, had it run to completion as illustrated in

figure 3.12. If multiple state bits in the fault simulation differ with the golden simu-

lation, there is a small risk that the CRC-32 could alias and produce a false match.

The probability of an alias never exceeds 1 in 232 and thus represents a much smaller

source of error than that which is intrinsic from the statistical sampling of the faults.

There is a compute overhead to calculating the CRC over the design state. Since

we know a large fraction of the faults disappear quickly, we chose to compute the

CRC every clock cycle for the first 100 clocks and then only every 100th clock cycle

for the remainder of the simulation. By initially checking the state every clock, we

are able to accurately determine how quickly faults are overwritten in the window

after the fault injection. Beyond this initial window of time after the fault, there is

little to be gained from frequently comparing the design state. In the worst case, a

simulation will continue to run 99 clocks after its state has re-converged, before the

next comparison. In [Berrojo 2002b], a similar approach was used and the period

for performing the checking was increased exponentially after the fault injection.

The combination of both techniques (checkpointing and early termination on

state matching) provides an average speed-up for fault injection simulation ranging

between 8x to 12x. Faults simulations that produce a testbench failure as well as

those that re-converge to the golden state terminate early and therefore require less

CPU time. In fact, during a fault injection campaign, a large fraction of the CPU

time is devoted to simulating faults that don’t re-converge to the golden state but

which produce no error as shown in table 3.7. Although the passing cases with no

golden match represent between 7%-15% of the simulation runs, they account for

between 40%-55% of the CPU time.

3.2.5 Logical De-Rating Results

Logical de-rating occurs when the corrupted value resulting from an SEU is over-

written. This can occur in the clock cycle of the upset, which we refer to as LDR1,
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Table 3.7: CPU Usage During Simulation Campaigns

Epsilon Gamma Omega

Category Runs CPU Runs CPU Runs CPU

% % %

Fail 2102 26.5 1536 32.4 3312 33.8

Pass
Matched 7148 32.6 7439 25.0 4858 10.8

No Match 750 40.9 1025 42.6 1427 55.4

or it can occur after N clock cycles, LDRN . Our simulation environment gives

us visibility into the full design state so we know LDRN for different values of N.

The abscissa of the graph in figure 3.13 is the number of clock cycles after the

upset event. On the vertical axis, the cumulative percentage of simulation runs

that have converged with the golden state is shown for each of the three blocks.

It can be observed that a significant number of upsets never get sampled (N=1)

and it is interesting to note that this percentage varies significantly between omega
(23%) and epsilon (45%). A second observation is that some upsets remain present

for thousands of clock cycles before being overwritten. The cases where the upset

persists for an extended period of time require more time to simulate.

3.2.6 Summary of Simulation Results

Table 3.8: Observed Effect of SEUs (as percentages)

Category Sub-Category Epsilon Gamma Omega

Masked
Logically 71.5 ± 0.8 74.4 ± 0.9 60.7 ± 3.2

Functionally 7.5 ± 0.5 10.3 ± 0.6 13.9 ± 2.2

Corrected 0.9 ± 0.2 0.6 ± 0.2 0.8 ± 0.6

Detected
Explicitly 0.1 ± 0.1 6.1 ± 0.5 6.7 ± 1.6

Indirectly 13.1 ± 0.6 1.0 ± 0.2 0.3 ± 0.4

Silent

Minor 5.6 ± 0.4 3.0 ± 0.3 11.6 ± 2.1

Major 1.3 ± 0.2 4.7 ± 0.4 4.1 ± 1.3

Lockup 0.0 ± 0.0 0.0 ± 0.0 2.0 ± 0.9

The results of the fault injection simulations are summarized in table 3.8. The

confidence intervals were computed using equation 3.3. The distribution of SEU

effects between the blocks is fairly similar, however, it is clear that epsilon is, overall,

a less sensitive design. Gamma and omega manipulate complex data-structures such
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Figure 3.13: Logical Re-Convergence Versus Time After Fault Injection

as linked lists and free-pools and it is thus more likely that SEUs will have a serious

effect. These blocks also have some parity-protected flop-based structures, thus a

larger fraction of SEUs are explicitly detected.

3.2.7 Combining the Results

Returning to the Internet router system level specification [Silburt 2009], the most

critical outage category are those failures that produce an unknown effect which have

been classified as silent major and silent lockup in table 3.6. From the results of

the fault injection simulation campaign, we know the fraction of SEUs that produce

such failures. As a safe bound, we know this fraction can be further reduced by the

TDR at the fast timing corner and these results are summarized in table 3.9.

Table 3.9: Percentage of SEUs Producing Serious Outages

Name
Percentage SEUs Producing

a Serious Impact

epsilon 1.2 %

gamma 6.5 %

omega 5.2 %
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These results, combined with the technology soft error rate, can be used to

predict the expected types of failures in the field. The data in table 3.9, also suggests

that only a small fraction of flip-flops produce serious outages and thus selective

hardening of this small set of flip-flops could produce a significant improvement

in the rate of serious failures. Extension of this work to select critical flip-flops is

discussed in chapter 4.

3.3 Statistical Analysis of Fault Injection Results

Statistical Fault Injection (SFI) provides a means to estimate the probability that

faults cause errors. The variance of this estimate depends on the number of ex-

periments that are performed and when presenting results of SFI campaigns, it is

essential to report the error bars.

When we perform a series of fault-injection simulation runs in order to estimate

the probability, p, of a given outcome, we are performing a series of Bernoulli trials.

A Bernouilli trial is a random experiment that can have one of two outcomes. If

the ith simulation run produces the given outcome, we define the random variable

Xi = 1 otherwise Xi = 0. It is intuitively clear that, p̂, the best estimator of p,

after n trials, is given by equation 3.1. After each simulation we can compute p̂n
and plot the value to observe the convergence trend.

p̂n =
1

n

n�

i=1

Xi (3.1)

In our experiments, the full sample space consists of all the flip-flops in the block

(≈ 105) sampled over a temporal window of 100 clocks considered for nine workloads

and is thus large (N ≈ 108) compared to the number of simulation runs (n = 105)

and therefore we assume an infinite population size2.

The variance of a Bernoulli random variable is p · (p − 1). There are different

ways to estimate a confidence interval for a given value of α which is the level of

confidence. α = 0.05 for a 95% confidence interval. A very loose confidence interval

which does not depend on the central limit theorem is given by Hoeffding’s inequality

[Wasserman 2005, p. 65] as shown in equation 3.2.

p̂n ±

�
1

2n
log(

2

α
) (3.2)

If we assume that the distribution of p̂n is normal, which for large values of n is

true due to the central limit theorem, then a tighter confidence interval [Wasserman 2005,

p. 130] is given by equation 3.3. The interval depends on p̂n, the current estimate

of p after n simulations. zα/2 is the abscissa value where the area under standard

normal distribution, up to that point, is equal to 1 − α/2 and can easily be found

2We can apply a finite population correction factor of
�

N−n

N−1
to the confidence intervals, how-

ever, for a large sample space this is ≈ 1.
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in standard tables [Trivedi 1982]. zalpha/2 is 1.96, 1.65 and 1.28 for 95%, 90% and

80% confidence intervals, respectively.

p̂n ± zα/2

�
p̂n(1− p̂n)

n
(3.3)

For small values of n, this bound is tighter if the student-T distribution [Johnson 2000,

p. 213-214], is used in equation 3.3 instead of zα/2 as shown in equation 3.4. For

large values of n, the student-T distribution converges to the normal distribution.

p̂n ± tα,n

�
p̂n(1− p̂n)

n
(3.4)

The disadvantage with these two confidence bounds is that the interval depends

on the estimated value of p. In [Leveugle 2009], it is observed that the largest interval

occurs when p = 0.5, and thus a conservative confidence interval is proposed by

always substituting p = 0.5 in equation 3.3, instead of the current estimated value

of p.

In order to evaluate the different confidence intervals, we plotted p̂n versus the

number of simulations, with each of the confidence intervals. The analysis was only

performed for n ≥ 10 since with fewer than 10 samples it is difficult to draw accurate

conclusions.

Since we only ran a finite number of simulations, we take the final estimate

of p after 10,000 to be the “correct” value. In figure 3.14, we plot the estimated

value of p̂i through the course of 10,000 simulation runs, where p is the probability

that an SEU will be logically masked in epsilon. We see that most of the time the

confidence interval does indeed cover the final estimated value of 71.45%, although

for n between 30 and 50, the upper bound falls below the final estimate.

This analysis was performed for each of the SEU effects identified in table 3.6

for each of the three design blocks. For each confidence interval, we computed

the percentage of the time the final estimate of p is captured within the given

confidence interval, through the course of the simulation campaign. These results

are summarized in table 3.10.

Table 3.10: Results of Different 95% Confidence Intervals for Epsilon

Hoefding Normal with Normal Student T

Inequality p = 0.5 with p = p̂n with p = p̂n

epsilon 100% 99.6% 98.4% 97.6 %

gamma 100% 100% 99.1% 96.8 %

omega 100% 100% 98.9% 96.8 %

In figure 3.15, we plot all four intervals for the estimated probability that an

SEU is Indirectly Detected in epsilon. From the results, we see that all four intervals

do indeed provide a 95% confidence interval for the estimated value of p. The
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Figure 3.14: Normal Confidence Interval with p = p̂n for Epsilon

Hoefding inequality provides a very weak bound, but in all cases it covers the final

estimate. Using a normal distribution with p = 0.5 provides a tighter bound that

nearly always covers the estimated value. The student-T distribution provides the

tightest interval and it is still correct over 95% of the time.

3.4 Conclusions

There is a very broad body of work that addresses the problem of analyzing whether

faults manifest themselves as errors, and if so, as what type of errors. In this chapter,

we presented a brief overview of the existing work on fault effect analysis as well as

a detailed case study of the effect of faults on large design blocks taken from a NP.

Part of the simulation based analysis included the development of a new, fast

technique to quickly determine when a faulty simulation has re-converged with the

golden trace, in order to avoid unnecessary simulation cycles. An analysis of the

CPU time usage during the simulations showed that the majority of the CPU time

is devoted to simulating cases where a latent fault persists until the end of the sim-

ulation. The case study also included an analysis and comparison of different error

bounds on the estimate error rates. Most importantly, this case study presented a

detailed SER analysis for design blocks much larger than those typically studied in

the published literature.
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4.1 Introduction

As seen in the case study presented in chapter 3, flip-flops are a major contributor

to the overall soft error budget of large integrated circuits. It is well known that

selectively hardening a small percentage of the flip-flops can significantly reduce the

effective error rate. In commercial processors used in server applications, selective

hardening is common practice and this has been well documented for the Itanium

family of processors [Naffziger 2005, Stackhouse 2008]. The challenge is to identify

the best set of flip-flops to harden.

Current process technologies make it possible to integrate tens of millions of

flip-flops into a single SoC and within a few years, chips will have over a hundred

million flip-flops, as shown by the trends illustrated in section 1.4. Thus, the effects
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Table 4.1: Summary of Design Blocks

Name
Functional Number

Description Flip-Flops

10GE MAC Simple 10G Ethernet MAC. 1,138

Epsilon Data-path with header processing. 102,559

Omega Complex packet assembly from DRAM. 184,552

the RTL level employing the environment used for functional verification making it

possible to evaluate the system-level impact of errors. For the industrial designs,

a selection of three testcases (e.g. workloads) was used and for the 10GE MAC,

the supplied Verilog testbench was used. The focus of this analysis is on SEUs in

flip-flops, so the fault injection mechanism consisted of inverting the value stored

in a flip-flop (Verilog reg) using a simulator VPI routine. The list of flip-flops

was obtained from a synthesized gate-level net-list and projected back onto the

corresponding RTL signals. The time of the fault was randomized uniformly over

the active region of the test-case. For the flat simulation campaign, the selection of

the flip-flops was uniform.

Different networking applications have different reliability requirements. In the

public Internet, important data is protected with strong checksums, thus an infre-

quent payload corruption can be tolerated. If the effect of the SEU causes the circuit

to stop forwarding data or to start continuously corrupting data, then it is deemed

critical. The latter failures are highly problematic and the goal of mitigation is to

reduce their rate of occurence.

When routers and switches are used in private data-centres or in High Perfor-

mance Computing (HPC) systems, the reliability constraints are different. Here,

SDC is not acceptable, as the packets are carrying data between compute nodes

and there are not necessarily application level checks on the data.

The designs studied in this section are from Internet networking applications

and the results of the simulations are classified into three categories as shown in

table 4.2. In these applications, if the effect of the SEU is a one-time corruption of

a packet, it is deemed minor.

The results of the flat fault-injection campaign are presented in table 4.3. 90%

confidence intervals are computed using equation 4.1 where n is the number of

simulations and p̂n is the estimated probability [Wasserman 2005, p. 130]. It was

also confirmed visually that the error rates had converged. The probability of critical
outcomes is low, but the absolute rate of critical failures remains unacceptably high.

The focus of the mitigation effort is to minimize the critical failure rate.

p̂n ± zα/2

�
p̂n(1− p̂n)

n
(4.1)
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Table 4.2: Simulation Result Classification

Pass Test-bench passes. The upset was masked.

Minor
Impact

Test-bench fails. Error messages show the effect is a one-time

payload corruption or there is a detectable interrupt.

Critical
Impact

Test-bench fails and the error messages indicate that packets

have stopped flowing or are being continuously corrupted.

Table 4.3: Sensitivity of Original Design Blocks

Name Number Percentage Percentage Percentage

Faults Masked Minor Critical

10GE MAC 10 000 76.1±0.8% 21.9±0.8% 2.2±0.4%

Epsilon 10 000 79.1±0.8% 19.6±0.7% 1.4±0.2%

Omega 5 000 69.1±1.3% 19.1±1.1% 11.7±0.9%

4.2 Static Clustering Techniques

Real-world designs are structured and contain buses, module hierarchy and often

have repeated instances of the same module. This information is extracted through

analysis of the RTL code and exploited to group the flip-flops into clusters likely

to have similar functions and thus a similar sensitivity to errors. Three clustering

techniques are outlined below followed by the results of targetted SFI campaigns.

4.2.1 Bus Based Clustering

In the HDL description of large circuits, most registers are declared as a bus or

vector (e.g. reg[31:0] PC) and have a similar function. For example, all the bits

within the program counter of a processor would be equally sensitive to upsets. In

the designs under study, over 90% of the flip-flops are part of a bus and the average

bus size is between 14 and 20 bits. Table 4.4 shows the number of buses extracted

from each design. The size of the clusters is not uniform and it is observed that a few

large clusters dominate, therefore, the number of clusters that must be considered

to cover 80% of the flip-flops is presented as an indication of the number of large

clusters.

The main problem with this approach is the discrete flip-flops which are not part

of a bus. In all the designs, these represent less than 10% of the flip-flops, however,

these are often control signals and thus critical.
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Table 4.4: Bus Based Clustering

Design
Number Average Clusters Flops Not

Clusters Size for 80% in a Bus

10GE MAC 59 18.6 22 37 (3.3%)

Epsilon 5,314 20.2 1,580 2,883 (2.6%)

Omega 12,737 14.1 5,427 18,409 (9.3%)

4.2.2 Hierarchical Clustering

In large designs, certain modules implement functions related to the control path

while others contain large data-paths. It is considered good design practice to sep-

arate control logic from data-path logic to customize synthesis constraints. It is

important to note that certain modules contain non-mission mode logic for debug

and thus have a low sensitivity to SEU effects. For these reasons, it is possible to

cluster the flip-flops based on the module instance they belong to, as different in-

stances may have different functions. The results of applying hierarchical clustering

are summarized in table 4.5. Not surprisingly, there are fewer, larger clusters.

Table 4.5: Hierarchy Based Clustering

Design
Number Average Clusters

Clusters Size for 80%

10GE MAC 10 114 3

Epsilon 580 190 111

Omega 1285 154 401

4.2.3 Hybrid Clustering

The third clustering scheme is an extension of the two previous ones. A distance

function is defined to evaluate the “proximity” of two flip-flops. The function is

defined so that flip-flops in the same bus and flip-flops which have the same signal

name, but which are in different instance hierarchies (e.g. a.b.c.block_enable and

d.e.f.block_enable) have a small distance. Pairs of flip-flops whose names differ by

only one or or two characters (e.g. a.b.c.r_ptr and a.b.c.w_ptr) also have a small

distance. This heuristic makes it possible to group signals differing only in their

suffix (e.g. wr_en_a and wr_en_b) that likely have similar functions. As the

differences in hierarchy and signal name increase, so does the inter-flop distance

function.

Using the distance function, clustering is performed using an agglomerative clus-



4.3. Simulation Results 81

tering algorithm [Everitt 1993]. Initially, there is one flip-flop per cluster; then those

clusters whose distance is minimal are iteratively merged until a specified number of

clusters is achieved. Currently, the target number of clusters was selected manually

to ensure that similar signals were combined but to prevent unrelated signals being

clustered. For example, read and write pointers from multiple FIFOs were com-

bined into a single cluster. The results of applying the hybrid clustering algorithm

are shown in table 4.6 and it is seen that large clusters are acheived for the industrial

designs.

Table 4.6: Hybrid Clustering

Design
Number Average Clusters

Clusters Size for 80%

10GE MAC 93 12.2 23

Epsilon 209 527 37

Omega 409 485 82

4.3 Simulation Results

A clustered fault injection campaign was performed using each technique on the

three designs. To both ensure that large clusters are classified accurately and to

avoid running excessive simulations for small clusters, the following policy was es-

tablished: for a cluster containing N flip-flops, N/5 fault-injections were performed,

with a minimum of 3 and a maximum of 15 runs. This policy allocates more simu-

lation runs to larger clusters in order to minimize the risk of mis-classifying a large

cluster. With 15 fault injections, the risk of mis-classification is very low, thus by

establishing a ceiling, unnecessary runs are avoided.

4.3.1 Bus Based Clustering

The bus-based fault-injection campaign on the 10GE MAC required 266 simulations

and the clusters were sorted based on the number of critical failures that were

observed. Eight clusters produced at least one critical failure and these clusters

represented 167 flip-flops. The results are shown in the histogram in figure 4.3. The

clusters are binned based on the fraction of simulations that produced a critical

failure, which is a measure of the sensitivity and shown on the horizontal axis. The

black bars on the histogram show the number of clusters having a given sensitivity

and the grey bars on the right show the number of flip-flops contained in these

clusters. The climbing line indicates the cumulative number of flip-flops contained

in the clusters starting with the most sensitive clusters on the left side. Note the

number of flip-flops is shown on a log scale.



82 Chapter 4. Techniques for Clustering Critical Flip-Flops

 
!
"
#
$
% 
%!
%"
%#
%$
! 
!!
!"
!#
!$
& 
&!
&"
&#
&$
" 
"!
""
"#
"$

 % ! & " ' # ( $ ) %  
%

% 

%  

%   

*
+,

-.
/
0
1+
23
./
2

*
+,

-.
/
4
156
74
18
62

9:
;
<
=

01+23./ >.?2535@53A

*+,-./ 01+23./2
*+,-./ 4156741862

0+,+1B35@. 4156741862

Figure 4.3: Bus Based Clustering for

10GE MAC

 

!  

"   

"!  

#   

#!  

$   

$!  

%   

 " # $ % ! & ' ( ) "  
"

" 

"  

"   

"    

"     

*
+,

-.
/
0
1+
23
./
2

*
+,

-.
/
4
156
74
18
62

9:
;
<
=

01+23./ >.?2535@53A

*+,-./ 01+23./2
*+,-./ 4156741862

0+,+1B35@. 4156741862

Figure 4.4: Bus Based Clustering for

Epsilon

A similar fault-injection campaign was performed on Epsilon, with bus-based

clustering. 12,324 simulations were required and the results are shown in figure 4.4.

There are many buses in Epsilon that are sensitive, producing a critical simulation

outcome on nearly every fault.

4.3.2 Hierarchical Clustering

The results of hierarchical clustering on the 10GE MAC (see figure 4.5), show that

the design is too small to use module hierarchy to cluster critical flip-flops. However,

with hierarchical clustering on Epsilon (see figure 4.6), after 4,284 simulations it

was found that only 59 out of 580 module instances, representing 14,471 flip-flops

(14.1%), resulted in any critical failures.
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for Epsilon

4.3.3 Hybrid Clustering

When hybrid clustering was applied to the 10GE MAC, only 11 of the 93 clusters

had critical failures and these represented 188 flip-flops (16%) as shown in figure 4.7.
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When hybrid clustering was applied to Epsilon, after only 2,100 simulations, it was

found that just 24 of the 209 clusters, representing 4,248 flip-flops (4.1%), resulted

in a critical failure, as shown in figure 4.8. The results for Omega are presented in

figure 4.9. This design unit processes data-structures based on linked-lists, so it is

expected that many sensitive clusters are observed.
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Figure 4.7: Hybrid Clustering for 10GE MAC
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4.4 Selective Mitigation

The results from the clustered fault-injection runs can now be used to develop mit-

igation policies. A policy consists of selecting an approach to protect a set of flip-

flops. The protection could be achieved by substitution with hardened cells, TMR

or other other types of hardened sequentials discussed in chapter 2. For simplicity,

it is assumed that after mitigation, the SEU sensitivity is zero, but this assumption

is easily relaxed.

The sensitivity of the hardened design can now be evaluated without any further

simulations by re-analyzing the results from the original flat campaign. Where one of
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the mitigated flip-flops was randomly selected in the original campaign, the analysis

is updated as if the outcome had been a pass. This approach is valid because the flat

campaign has run without any knowledge of the clustering and thus the sampling

is uniform across the design.

In order to clearly validate the new approach, an independent flat analysis was

performed. In fact, the flat analysis is not strictly necessary and it is possible to

simply perform a single, clustered fault injection campaign. The results of this

campaign can be used to both assess the initial design sensitivity and to assess the

sensitivity of the mitigated design. This simplification comes at the expense of an

independent verification of the results.

4.4.1 Full Mitigation

The simplest policy is to just protect all the flip-flops in all the clusters which showed

any critical failures. This provides an upper bound on the level of improvement

that can be obtained. Table 4.7 shows the reduced critical sensitivity (the new

percentage and the factor reduction compared to the original results in table 4.3)

and the percentage of protected flip-flops to obtain the improvement.

Table 4.7: Reduction in Sensitivity with Full Mitigation

Design

Bus Based Hierarchy Hybrid

Critical Flops Critical Flops Critical Flops

10 GE 1.12±0.17% 0.39±0.10% 0.70±0.14%

MAC 2.0x 15% 5.5x 84% 3.1x 16%

Epsilon
0.44±0.16% 0.30±0.15% 0.18±0.10%

3.5x 1.9% 4.3x 14% 7x 4.1%

Omega
3.15±0.49% 1.47±0.28% 0.74±0.24%

3.7x 13.8% 7.8x 36% 14.9x 39%

4.4.2 Partial Mitigation

In practice, the goal is to achieve a reliability target with a minimum cost so it may

be unnecessary to protect all clusters. The effect on the sensitivity of the designs

was evaluated with various percentages of flip-flops being protected. The flip-flops

to protect were selected starting with the most sensitive clusters first. The results

for Epsilon and Omega are shown in figures 4.10 and 4.11. The error bars show the

90% confidence interval for the mitigated design. It is clearly possible to trade-off

soft error sensitivity with the number of protected flip-flops and the steeper slope

on the left shows that the most critical clusters were identified. It is important to

note that these multiple design points were obtained from the analysis of a single

clustered fault-injection campaign.
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Figure 4.11: Partial Mitigation in Omega

Bus-based clustering provides policies with the lowest cost due to the smaller

cluster sizes, however, there is a limit to the improvement that can be achieved

because the discrete signals are excluded from the analysis. Due to the larger cluster

sizes, hierarchical clustering provides more costly mitigation policies than the hybrid

clustering.
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4.5 Discussion

When performing fault injections, the fault space is three dimensional with the

axes being : time, space and work-load (simulation trace), as shown in figure 4.12.

Certain flip-flops are critical every clock-cycle (e.g. reset signals, interrupts, etc.)

while others are only critical when specific transactions are being processed.
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Figure 4.12: Three Dimensional Fault Space

If flip-flops are considered individually, multiple fault-injections are required to

assess if there are times when they are critical. Identifying flip-flops that are sensitive

at least 20% of the time, requires about five simulations per flip-flop, which is

a prohibitive number. It is thus difficult to compare the current results with an

optimal solution through exhaustive simulation.

With this technique, only a small number of fault-injections per cluster are

needed to determine that some flips-flops in the cluster are critical. With cluster

sizes of several hundred flip-flops, this represents a significant reduction. However,

with larger clusters, there is a risk that the elements are heterogeneous and that

some non-critical flip-flops are protected unnecessarily. This is seen by the higher

cost associated with the policies from hierarchical clustering. Hybrid clustering was

better able to group flip-flops with similar sensitivity.

The bus-based clusters are smaller but exclude flip-flops that are not bussed

(10% of the flip-flops in the examples). With Epsilon, a maximum of 3x reduction

in critical failures was possible with bus-based clustering compared to a 7x reduction

with hybrid clustering. In figure 4.10, it is seen that with the finer granularity of the

bus-based clustering, a slightly better reliability improvement is obtained, for a given

number of protected flip-flops, but this comes with the cost of more simulations.

The proposed techniques are based on heuristics and the quality of the results

is subject to implementation style, however, interesting results have been obtained
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on both small and large designs. Without simplifying assumptions, the problem

of identifying critical flip-flops in a large design remains overly compute intensive.

The circuits selected here are from networking applications, however, other types of

designs such as processors have similar characteristics : presence of buses, module

hierarchy and reasonable signal naming conventions, thus it is expected comparable

results would be obtained.

4.6 Conclusions

In this chapter, it has been shown how clustering techniques based on design struc-

ture combined with limited fault injection simulations can be used to identify sen-

sitive nodes. No assumptions are made about the design other than the availability

of a functional test-bench used to assess the impact of SEU faults. The techniques

were applied to sequential circuits with hundreds of thousands of flip-flops. Using

the results from a single, clustered, fault-injection campaign, a range of mitigation

policies can be developed.

Future work in this area will focus on identifying improved clustering approaches

that exploit the connectivity and data-flow within the design as well as applying the

techniques to a broader class of circuits. Another direction of future work relates to

better optimizing the number of simulations.
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5.1 Introduction

In section 1.4.1, it was shown that due to both design trends and technology scaling,

SETs represent an increasing fraction of the overall SER of large SoCs. Accurately

estimating this component is important but remains a challenging problem for full

designs with tens or hundreds of millions of gates.

The majority of the existing work on SET analysis starts from a gate-level circuit

representation, however, in an industrial design cycle, by the time a gate-level net-list

is available, it is too late to make significant design changes. The hierarchical SET

analysis methodology described in this chapter can be applied at the RTL level. This

methodology, was initially published in [Evans 2013] using SER results obtained for

the NanGate 45nm library. An extended version of the methodology was then

developed under contract to a major networking company and was delivered in

the form of a spreadsheet that can be used to estimate combinatorial SER. The

commercial implementation used SER data obtained from simulations performed

on a commercial 28nm cell library.

In this methodology, the SET sensitivity of the cell library and the masking char-

acteristics of standard combinatorial design blocks are pre-characterized and stored



90 Chapter 5. Hierarchical Single Event Transient Analysis

in compact models. Then, the SET sensitivity of a complex circuit is calculated

by decomposing it into blocks that have been pre-characterized. These block-level

models are combined taking into account the data flow, to estimate the overall SET

sensitivity. Experimental results for an ALU implemented in the NanGate 45nm

library as well as partial results from the analysis of a commercial 28nm cell library

are presented.

The starting point for this approach is to simulate the SET sensitivity of the

combinatorial cells in the library, or at least for a representative subset. These

simulations are done using a SER simulation tool and, for each cell, the result is a

histogram showing the FIT rate for pulses of different widths. This step is important

as the sensitivity of different cell types (INV, AND2, XOR3) can vary significantly.

Due to the fact that the final analysis is done at the RTL level, this large data set

is then distilled into a compact summary of the SET sensitivity for different classes

of cells.

Separately, the circuit and masking characteristics of standard combinatorial

blocks of the type inferred by an RTL synthesis engine (e.g. muxes, adders, etc.)

are evaluated.

 !"#$%%
&$#'(")"*+

 !"#$%&#'()
*((+,-,
./#0(1(+(23

,$))
-./!0!+

,"12)$3
,"1/.(04"!.0)

,.!#5.4%

45*,.(1/+

 !"#$%%
6$%2"(%$78"9$)

,$))7-$:$)
;<&78"9$)

,"1/.(04"!.0)
=$4>"!?78"9$)

&,@A7;.15)04."(%=5#)$0!
A040/0%$

&BC&7;.15)04."(%

DB05)47C(E$#4."(
DF$($!.#7;+(4'$%.%

Figure 5.1: Modeling of SETs at Different Levels of Abstraction

Using the proposed methodology, the block-level models are combined with the

library models to estimate the SET sensitivity of a complex combinatorial network.

The proposed models are part of a chain of abstractions, as shown in figure 5.1.

It is possible to output and store these models in a standard format such as RIIF

[Evans 2012] which is described in chapter 6. With a standard format, it becomes

possible for the intermediate models to be shared between Electronic Design Au-

tomation (EDA) tools thus automating the analysis flow.



5.1. Introduction 91

5.1.1 Review of SET Masking

There are three reasons why SETs may not propagate and be sampled at a flip-

flop : LDR, TDR and EDR. These are outlined in section 1.3.

LDR measures the likelihood that the pulse will propagate through the logic

network from a boolean perspective and is technology independent. For example,

an upset at the input of an adder, will propagate to the output as the sum always
depends on the inputs. In contrast, an upset at the input to a wide multiplexer, will

only propagate if the affected input is selected, thus the error propagation probability
is much lower.

In a ripple-adder implementation, upsets on any of the gates inside the adder

will always propagate. This probability of faults on the internal gates of a circuit

is referred to as the internal LDR. If we consider a Carry Lookahead Adder (CLA),

however, upsets in the carry prediction logic may not propagate, if there is no carry.

It is not necessary to have a gate-level implementation in order to assess the first

order effects of LDR.

In [Limbrick 2011], it is shown that the LDR, referred to as Error Propagation

Probability (EPP), of a given circuit can vary based on the synthesis constraints

that are applied. This work studied the effect of constraints on LDR but did not
consider the variation in the intrinsic SER of the circuit. For example, the authors

show a variation in LDR of between 0.14 and 0.20 (30%) based on varying timing

constraints. However, the same constraint variations cause the cell count, and thus

most likely the raw SET sensitivity, to vary by 500%. Therefore, the first order ef-

fect of synthesis constraints on SETs is the effect they have on the total gate count.

The main reason for the variation, both in LDR and gate count, is certainly due

to the synthesis engine selecting different circuit architectures based on the target

frequency (e.g. CLA versus ripple adder). In the proposed methodology, this de-

pendence on synthesis constraints is taken into account as different implementations

of the same high-level logic function (e.g. adder) are considered to have different

intrinsic SER rates and different LDR values.

To propagate, a transient must arrive at the input to one or more sequential

elements when it is being sampled. TDR quantifies this probability and it was

shown in section 1.3.2 that it can be effectively estimated as:

TDRSET =

� w=maxPW
w=minPW w dw

Tclk
(5.1)

EDR relates to the analog propagation of the pulse and is more difficult to

analyze. One aspect of EDR is accounted for by considering how the induced analog

pulse is mapped to a digital pulse. The shape of a radiation induced pulse is shown

in figure 5.2 and based on the logic threshold voltage, it can be modeled as a digital

pulse of width PW . Pulses whose amplitude never reaches V th can be ignored. The

second aspect of EDR relates to the fact that when the pulse travels through the

network, it may be attenuated or it may be stretched [Cavrois 2008] and this is not

currently incorporated in the proposed methodology.
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Figure 5.2: Conversion of a SET Pulse into a Digital Pulse

5.1.2 State of the Art

Many works have studied the effect of SETs, however, none has proposed an esti-

mation methodology that starts from the RTL and that relies on pre-characterized

models for high-level design blocks.

Some approaches are based on probabilistic techniques to estimate whether tran-

sients propagate due to LDR. In [Polian 2008] such a probablistic technique that

consider re-convergence is presented and applied to very large circuits but neither

TDR, EDR nor the intrinsic rate of SETs occuring is considered.

Other approaches are based on using on a gate-level event based simulator to

evaluate the transient propagation. Algorithms to significantly accelerate gate-level

transient fault simulations [Alexandrescu 2002] have been presented and applied to

moderate size circuits.

A very different approach is implemented in the MARS-C platform described in

[Miskov-Zivanov 2006]. The authors propose a unified circuit representation that

considers LDR, TDR, EDR using a combination of BDDs and ADDs to represent

the sensitive paths to the outputs. The circuits that are evaluated include ISCAS

benchmarks and the results are compared with SPICE analysis. The proposed data-

structures can not scale to very large circuits and this work does not consider the

variation in the intrinsic SET sensitivity of different gates.

The SEAT-DA and SEAT-LA platforms described in [Rajaramant 2006] have

similarities to the work in this chapter. The SEAT-DA platform is used to calculate

the neturon SET sensitivity of individual gates. The SEAT-LA tool uses SPICE

to pre-characterize the pulse deformation and logic masking of indidivudal gates

(LDR,EDR). The two tools are combined and used to perform SET analysis on IS-

CAS benchmarks (≈ 1200 gates) and the results are compared to SPICE simulation.

The SEAT-LA platform requires 1.4 min of CPU time to analyze the SER of a 4-bit

ripple adder. This framework is further extended in [Ramakrishnan 2008], where

the Hierarchical Soft Error Estimation Tool (HSEET) tool is presented. Instead of

characterizing the logic masking and pulse transformation for individual gates, the

idea is extended to small blocks (e.g. muxes). However, with HSEET the basic
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analysis still involves evaluating the propagation of pulses through a netlist and the

results are presented for small circuits.

Other authors [Zhang 2006a, Rao 2006, Wang 2011, Ramanarayanan 2009] have

presented accelerated SET analysis techniques but they all work at the gate level.

At the RTL level, soft errors are modeled as bit flips and their effects can be

analyzed using fault injection [Gracia 2008, Wang 2004] or analytical techniques

[Li 2005, Mukherjee 2005]. Some techniques [Devadas 1996, Lin 2012] have been

proposed for error propagation analysis at the RTL level but they do not estimate

the intrinsic rate of occurrence of SETs nor do they account for the TDR and EDR.

The remainder of the chapter is organized as follows: in section 5.2 the SET sen-

sitivity of individual cells is analyzed. In section 5.3, the LDR of small circuit blocks

is analyzed then in section 5.4 we present a complex circuit and perform a canon-

ical analysis of its SET sensitivity. In section 5.5 we compute the SET sensitivity

using the hierarchical approach and compare the results to the canonical analysis.

In section 5.6 we summarize and consider future extensions to this technique.

5.2 Cell Level SET Characterization

5.2.1 Technology, Cell and Library Modeling

The first step in the methodology is to characterize the SET sensitivity of the

process technology and cell library. In this work, the cell-level SER analysis is

performed using TFIT [Alexandrescu 2011], however, the overall methodology is

not tied to this tool. With TFIT, the process technology is characterized using 3D

TCAD simulations to yield a technology response model. Based on the radiative

environment (atmospheric neutrons for terrestrial applications), a nuclear database

is consulted to analyze the energy distribution of the particles and the nuclear

interactions that occur with the materials to obtain a distribution of the different

charge depositions that can occur. Separately, using the net-list and the layout

for the cell, specifically-tailored transient current sources are added to the circuit

netlist and simulated in Spice and the response of the cell is observed. This process

is repeated for all the transistors in the circuit and all the possible circuit states.

Using knowledge of the frequency of occurence of the underlying nuclear events and

the circuit response obtained by Spice, a FIT rate for SETs of specific widths is

computed.

Figure 5.3 shows the absolute FIT rates for pulses of different widths for four

different cells taken from the 45nm NANGate Open cell library, including both the

neutron and alpha contribution. In figure 5.4, the sensitivity of two different gates

from a commercial 28nm library are shown. For confidentiality reasons, this data

is presented with arbitrary units. In both cases, it is clear that the SET sensitivity

can vary significantly between different gate types. This is further illustrated in

figure 5.5 which compares the sensitivity of five different gates. Overall, in terrestrial

applications, the upsets are dominated by short pulses (<=50ps).

In order to create a more compact model of the SET sensitivity of the library, the
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Data: FIT_Table[G,PW ]

Compute Cumulative FIT
totalF it ←− 0 /* Compute Cumulative FIT */

foreach G in GateInstances do

foreach PW in PulseWidths do

totalF it ←− totalfit+ FIT_TABLE[G,PW ]

end

CumFitPerGate[G] ←− totalF it

end

/* Perform Fault Injection */

while ErrorInterval ≥ Threshold do

/* Pick uniformly over all cases */

R ←− URandom(0..totalF it)

G ← 0 /* Lookup Gate */

while R > CumFitPerGate[G] do

G ← G+ 1

end

R ←− R− CumFitPerGate[G]

PW ←− minPW /* Lookup PW */

while R > FIT [G,PW ] do

R ←− R− FIT_TABLE[G,PW ]

PW ←− PW + PWStepSize

end

Offset ←− Urandom(0..Tclk) /* In cycle */

Result ←− FaultInject(G,PW, TempOffset)

end
Algorithm 1: Weighted SET Fault Injection



5.4. Flat SET Analysis of Complex Circuit 99

Table 5.2: Gate Count and LDR for Combinatorial Blocks

Block Cell Internal Error

Count LDR Propagation

Ripple adder 8 bit 8 1.000 1.000

Rippler adder 16 bit 16 1.000 1.000

CLA adder 8 bit 41 0.878 1.000

CLA adder 16 bit 125 0.759 1.000

DX Multiplier 8 bit 387 0.928 0.960

DX multiply 16 bit 971 0.939 0.994

Equality comparator 16 bit 0.02 0.020

Equality comparator 32 bit 0.090 0.0632

ECC encoder 32 bit 61 1.000 1.000

ECC decoder 32 bit 165 0.778 0.921

ECC encoder 64 bit 128 1.000 1.000

ECC decoder 64 bit 308 0.772 0.949

MUX 8 to 1 7 0.748 0.135

MUX 16 to 1 21 0.705 0.069

MUX 64 to 1 0.621 0.018

Control Register Logic 0.478 0.260
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Figure 5.8: Block Diagram of ALU Circuit

incorrect value.

The total raw FIT rate of the gates was calculated to be 0.2173 FIT and then

de-rated using the results of the fault injection campaign, shown in the column

De-rated FIT.
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Table 5.3: Simulation Results for Flat Injection Campaign

Simulation Num. Num. Setup/ Not PW De-Rated
Accuracy Runs Errors Hold Blocked Ratio FIT

Zero Delay 25 000 75 0 3272 1.0 0.65e-3

Zero Delay, S&H Checks 25 000 28 85 3272 1.0 0.61e-3

Delays, S&H Checks 25 000 45 77 2546 1.5 0.73e-3

Using the observability of the simulator, the D-input to the output flops was

monitored to see how many of the faults actually reached the output of the com-

binatorial network (after LDR and EDR) and this is reported in the column ‘Not

Blocked’. The pulses that are blocked in the runs without timing delays are blocked

solely due to LDR. The additional pulses that are blocked with the SDF simulations

are the result of EDR filtering of short pulses. Based on digital simulation, the

average or statistical EDR for this circuit is approximately 2546/3272 = 0.78.

The width of the pulses exiting the combinatorial network could be longer or

shorter than the original pulse, due to the reconvergence effects in the combinatorial

logic. The column ‘PW Ratio’ shows the average ratio of the output pulse width to

the original error pulse width. For those pulses that are not masked, on average the

output pulse is about 50% longer.

5.5 Hierarchical Analysis of the Complex Circuit

In this section, we show how the effective SET FIT rate of the ALU circuit can

be computed directly from the RTL using the methodology shown in figure 5.9.

First the ALU circuit is decomposed into small combinatorial blocks, of the type

that can be directly inferred by an RTL synthesis engine. Each of these blocks was

synthesized using a generic (GTECH) library and the gate count and distribution

of gate types obtained. The internal LDR of each of the small blocks was computed

using fault injection and the resulting models for each block are shown in table 5.4.

The generation of these models for standard logic blocks is a task that can be done

in advance, as it is technology independent.

Combining the gate count and type distribution for each block with the results

of the SET characterization of the target library (see table 5.1), an estimate of the

raw intrinsic FIT rate for each of the small blocks was calculated, for different pulse

widths. This is shown in the columns labelled ‘Raw Intrinsic FIT’ in table 5.4.

The raw intrinsic FIT of each block must be de-rated for LDR and TDR. The

instrinc LDR has been pre-computed and is shown in the table. The SET intrinsic

sensitivity has been pre-computed for different pulse widths (<50ps,50..75ps,>75ps)

thus equation 1.3 can be applied as a discrete sum for each block to compute the

de-rated, intrinsic FIT for each sub-block.

Now we must address the question of how the combinatorial SET models for the

small networks can be combined to estimate the SER of the entire ALU. Consider

a more general network as shown in figure 5.10.
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Figure 5.9: Methodology for SET Estimation from RTL
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Figure 5.10: Complex Combinatorial Network

Each block has its own de-rated, intrinsic SET contribution. The SETs in the

final block (D) propagate directly to the outputs. The SETs in the upstream blocks

may be logically masked, thus their internal contribution is reduced by the error

propagation probability (EPP) along the path to the output. The EPP is com-

puted for each path to the outputs and the resulting propagation model is shown in

equation 5.2. Since the computed LDRs are averages over many input vectors, the

correlation of vectors on reconvergent paths need not be considered.

SERNetwork =(IntSERA ∗ EPPB ∗ EPPD1) +

(IntSERA ∗ EPPC1 ∗ EPPD2) +

(IntSERB ∗ EPPD1) +

(IntSERC ∗ EPPD2) +

(IntSERD)

(5.2)

This approach was applied to the example ALU where the propagation prob-

abilities of the branches are not equal due to the encoding of the op-codes which

control the mux. The final estimated SET FIT rate for the ALU circuit, working

from the RTL, is computed to be 0.76e-3 FIT which is only 15% higher than the

value of 0.65e-3 FIT obtained from a fault-injection campaign on the flat-circuit

without timing annotation as shown in table 5.3.
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Table 5.4: Results of Block Level SET Characterization

Block Gate INV AND OR XOR CMPLX Intrinsic Raw Intrinsic FIT

Name Count BUF LDR <50ps 50..75ps >75ps

Bitwise AND 32 0 32 0 0 0 1.0 1.3e-3 4.6e-4 8.1e-5

Bitwise OR 32 0 0 0 0 0 1.0 1.0e-3 3.5e-4 1.4e-4

Bitwise XOR 32 0 0 0 32 0 1.0 3.3e-3 1.8e-3 1.7e-4

EQ Compare 46 1 12 1 30 2 0.02 3.9e-3 2.0e-3 2.7e-4

LT Compare 96 47 1 14 0 34 0.43 6.1e-3 2.5e-3 1.4e-3

Mux 1 32 0 0 0 0 32 1.0 4.5e-3 2.0e-3 1.2e-3

Mux 2 32 0 0 0 0 32 1.0 4.5e-3 2.0e-3 1.2e-3

Adder 204 6 38 70 70 58 0.86 1.9e-2 8.9e-3 2.9e-3

Multiplier 496 0 256 0 0 240 0.98 4.4e-2 1.8e-2 9.6e-3

Shift Left 160 0 32 0 0 129 0.70 1.9e-2 8.4e-3 4.8e-3

Shift Right 196 6 69 11 0 107 0.66 1.8e-2 7.8e-3 4.2e-3

Output Mux 182 5 42 2 0 133 0.72 2.0e-2 8.9e-3 5.1e-3

Currently, the methodology does not model the pulse deformation due to EDR.

It is possible to apply the EDR ratio and pulse stretching ratio obtained from the

gate-level simulations to the estimated FIT rate : 0.76e-3 * 0.78 * 1.5 = 0.9e-3 which

is slightly higher than the results obtained from flat simulation with SDF (0.73e-3).

This is only valuable if it is expected the the EDR effects do not vary across circuits.

It may appear that the absolute FIT rate of the example circuit is extremely

small and one might assume the effect of SETs is not significant. However, the ALU

being studied has approximately 1800 gates. If we scale the computed SET FIT

rate of 0.76e-3 FIT up to a circuit with 100M gates and reduce the TDR effect by

3.3x, based on an assumed operating frequency of 1 GHz instead of 300 MHz, the

absolute FIT rate would become approximately 140 FIT. This value is not negligible

and would definitely need to be carefully considered in a SER analysis. Note, that

even after a SET is captured in one or more flip-flops, it is still subject to the

de-rating factors that affect SEUs and thus this value must be further de-rated.

5.6 Conclusions

In this chapter, a hierarchical methodology to estimate the effect of SETs was pre-

sented. The approach started with a simulation-based characterization of the sen-

sitivity of a cell-library. This was distilled into a compact summary. An approach

to pre-characterize the LDR of common building-block circuits was presented. The

LDR is not technology dependent and can thus be computed in advance. A method-

ology to decompose a large circuit into smaller blocks, to compute the SER of each

block and then to combine the results was presented. When applied to the Open-

RISC ALU, this methodology showed good correlation with the results obtained

using fault-injection on a flat net-list.
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As presented, the approach does not consider the impact of input vectors. Input

vectors do play a role. The challenge is that the number of input states grows

exponentially with the number of inputs. One practical approach to reduce the

complexity would be to focus on the impact of control signals. In the example ALU

circuit, it would have been relatively easy to extend the methodology to compute

the SER sensitivity for any ALU operation. Thus, instead of a single SER response,

there would be one per-operation or eight in the case of this circuit. This remains

a tractable number, however, to make use of a more refined model, requires the

ability to write-out the model and to propagate it upwards to the next level of

design hiearchy. This is where RIIF models can play a role.

As presented, the methodology does not propose a predective EDR model. Of

course this is important, but it is not clear to what level of accuracy EDR can be

predicted at the RTL level.
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6.1 Introduction

As seen in the introductory chapters, there exists an enormous body of work devoted

to analyzing radiation effects and the propagation of faults to errors. However, there

remains a significant gap between the state of the art in the research community

and the best practices in industry, especially in terrestrial applications. One of the

hurdles is the fact that there exists no framework for integrating the data about

the rates of faults and de-rating factors. As a result, spreadsheets are commonly

used to exchange such information [Wong 2012]. For example, foundries and library

providers often use spreadsheets to communicate the FIT rates of memory and logic

cells. Fault-injection simulations are frequently used to evaluate the sensitivity of

a design to faults and the results of such analysis is often archived in the form of

spreadsheets [Arlat 2011]. Unfortunately, every spreadsheet is unique and combin-

ing data from multiple spreadsheets is a manual and error-prone process.

In this chapter, we review the propagation of low-level faults upwards through a

system hierarchy and in the process, we identify the information that is required to
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model faults and how they propagate. The environment must be considered, as the

operating conditions of a circuit (e.g. voltage, temperature, workload, etc.) play a

key role in the determining the rate of occurence of faults as well as how the resulting

errors eventually impact the system. The Domain-Specific Language [Fowler 2011]

called Reliability Information Interchange Format (RIIF) is then presented. Three

worked examples of systems modeled with RIIF are then presented.

The goals of the RIIF language are to:

• Enumerate the failure modes for components

• Specify the probability of the failure modes

• Specify the effect of operating parameters (e.g. voltage )

• Build composite components from simpler components

• Scale from cell level through to system-level

• Remain general purpose and not be tied to a single application domain

• Provide templates which standardize the specification of failures in commodity

components (e.g. DRAMs, SRAMs).

• Specify standard operating conditions and environments for components

In industry, this type of reliability model has numerous direct applications, some

examples of which are enumerated here.

1. When a component supplier provides a memory (e.g. SRAM, DRAM, TCAM)

to a system company, they must deliver information about the soft error rates (e.g.

SBU, MBU, SEFI, etc.). The rate of these events varies with parameters such as

voltage, temperature, neutron flux and packaging options. It is beneficial for the

system company to receive this information in a standard format so that they can

quickly evaluate the reliability impact of selecting functionally equivalent compo-

nents from different suppliers.

2. Cell library providers run simulations (e.g. SPICE or TCAD ) and perform

accelerated tests in order to determine the soft error susceptibility of the cells in

their library. The number of cells in libraries is growing. For example, a frequently

used commercial 28nm library contains hundreds of sequential cells and thousands of

combinatorial cells. This information must be communicated in a machine readable

format so that designers can compute the soft error rate of their circuits. Soft

error rates vary significantly with voltage and the alpha contribution depends on

the packaging options. There is also a strong correlation with voltage and a weaker

correlation with process. To illustrate the importance of accurately characterizing

each cell in a library, the simulated FIT rate (alpha plus neutron) of fourty different

flip-flops from a commercial library are presented in figure 6.1. From this graph,

it is clear that there is a large variation between the different cells in the same

library. Furthermore, the SER of the master and slave stages can vary significantly



6.1. Introduction 107

as shown by the results for CK = 0 and CK = 1. This need to perform accurate

SER analysis which considers the SER characteristics of each cell was highlighted

in [Alexandrescu 2013].
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Figure 6.1: Variation of Flip-Flops SER for Cells from a 28nm Library

In many ways, the problem is analagous to that of specifying the timing char-

acteristics of standard cells which also depend on process, temperature and volt-

age. In the case of timing information, standard file formats, such as the Lib-

erty [Synopsys 2006], already exist.

3. When an IP provider delivers a complex block (e.g. processor core, Ether-

net controller, etc.), there is a need for them to specify the failure modes and

errors that can occur. This need for soft error models for IP blocks was identified

in [Aitken 2005]. A simplified view of the design flow for an automotive IC is shown

in figure 6.2 and highlights the complexity of the industrial relationships. The SoC

integrator needs to show compliance with reliability standards even though a large

fraction of the IC design content comes from third parties. Therefore, they must

have the means to produce an accurate reliability model for the SoC.

For example, if an IP block has parity protected structures, then there is a

DUE failure mode whose rate of occurence depends on the number of bits that are

protected and the LDR of the structure, both of which are technology independent.

When this IP is mapped to a given technology, this information can be combined

with the library soft error models to compute an absolute FIT rate. An example of

this flow is presented in section 6.3.2.

4. When a system company designs a board which has multiple chips (as well as

other components), there is a need to develop a comprehensive failure model for

the board which includes both intermittent and permanent failure modes. Certain
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Figure 6.2: Simplified Design Flow of an Automotive SoC

component level failure modes may not impact system reliability due to redundancy

or error correction - so it is not possible to simply sum the FIT rates. There are

different ways in which the board can fail (e.g. reboot, performance degradation,

permanent failure), and it is necessary to individually compute the probability of

each failure mode. It is important to preserve the relationship with the underlying

component models so that the impact of changes to operating parameters (e.g.

voltages and temperature) can be assessed. Although, there do exist industrial

standards for evaluating the reliability of circuit cards [Telecordia 2011], they do

not take into account fault mitigation techniques and they use a very simple model

of failures in complex ICs based on a single FIT rate computed from the number of

transistors. As a result, the Mean Time Between Failure (MTBF) values predicted

by these standard techniques are often unnecessarily pessimistic.

6.2 Elements of the RIIF Language

6.2.1 Components and Parameters

The basic unit of enapsulation in RIIF is the component which is similar to a VHDL

entity or a Verilog module and it can represent either a low-level circuit such as a

logic gate or a complex entity such as a full SoC. Of course, a given circuit can

operate under different conditions, and thus components have parameters which are

similar to generics in VHDL. The parameters are typed (integer, float) and they may

optionally have a value assigned when they are declared. The value of a parameter

can be over-ridden when the component is used. RIIF also supports constants
which are like parameters, with the difference that a value must be assigned when

the constant is declared and this value can not be changed.
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6.2.2 Failure Modes

With RIIF, the intent is to only model the faults in the system but not to model

its normal functionality. The user declares failure_modes within the components.
A failure_mode represents an event that can occur and the purpose of RIIF is to

calculate the rate of these events. In its current form, the language does not make the

distinction between faults, errors and failures. The lack of such a distinction comes

from the fact that the goal of the language is to be generic and span multiple layers

of abstraction. A modification to the language to make this distinction explicit, is

described in section 6.4.

Examples of common failure modes in a memory component would be a SBUs

while in a CPU, SDC would be a failure_mode. Associated with each failure mode
is a rate of occurence. Figure 6.3 shows examples of failure modes at different levels

in a silicon system.
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Figure 6.3: Failure Modes at Different Levels of Silicon Systems

6.2.3 Complex Components

A complex component is built from one or more child components. The complex

component has its own failure modes, whose rate of occurence is expressed as a

function of the rates of the failure modes in the child components as well as the

parameters in the complex component. The function which maps the rate of lower

level failure modes to higher level failure modes can take into account the effects

of error mitigation, error masking and redundancy as shown by the three examples

which follow.

In figure 6.4(a), a SRAM is the child component of a Single Error Correct,



110 Chapter 6. Reliability Modeling with RIIF

Double Error Detect (SECDED) memory. In this case, the SBU faults from the

SRAM do not propagate and the MBU faults map directly to uncorrectable errors

in the SECDED memory. In figure 6.4(b), a simple example of a model for SDC in

a CPU is shown. The sum of the SEU rate in the N flip-flops is scaled by a single

AVF factor to obtain the rate of SDC.
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(c) Modeling Redundancy

Figure 6.4: Computing Rates of Failure Modes in Complex Components

Redundancy is often used to improve reliability and availability. In figure 6.4(c),

the structure of a RIIF model for a RAID-1 disk array is shown. In this system, data

is replicated across the N drives. As long as one of the drives is operational, the data

can be retrieved, thus the probability of the array failing is the product of the rate

of failure of each disk. The reliability of series, parallel and combined series parallel

systems has been extensively studied. Well known, closed form expressions exist

for simple systems and techniques to obtain bounds for complex systems have also

been developed [Gertsbakh 1989, Chapter 1]. In RIIF, there are built-in functions

(agg_single_fail, agg_gt_n_fail) which compute these relationships. The RIIF

code for the RAID example is shown in figure 6.5.

6.2.4 Environments

The operating environment of an integrated circuit greatly impacts its reliability.

The fact that RIIF components are parameterized provides a first step towards man-

aging this dependence. However, maintaining models with a long list of parameters

is not scalable. Furthermore, if different users define different sets of parameters for

the same class of device, then they are no longer modular. There is thus a need to

encapsulate a set of related parameters to define an environment. Essentially, an

environment is similar to a ‘C’ struct and serves to encapsulate a set of parameters.
Going forward, RIIF implementations of standard environments can be defined,
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component RAID_1_ARRAY;
parameter N : int := 2; // number of disks

child_component HARD_DISK[1:N]; // instantiate child components

fail_mode : ARRAY_FAIL; // failure mode in the array

// Array only fails if greater than (N−1) disks fail
assign ARRAY_FAIL’rate = agg_gt_n_fail( (N−1), HARD_DISK[1:N]’DISK_FAIL ) ;

endcomponent

Figure 6.5: RIIF Code for RAID-1 Disk Array

standardized and used across multiple models.

environment NEUTRON_ENV;
input parameter LOCATION : enum { NYC, LOS_ALAMOS, TOKYO } := NYC;
input parameter SOLAR_ACTIVITY : enum { LOW, PEAK, AVG } := AVG;

output parameter REL_FLUX : float;

assign REL_FLUX = ( LOCATION == NYC ) ?
( ( SOLAR_ACTIVITY == AVG ) ? 1.0 :

( SOLAR_ACTIVITY == LOW ) ? 0.927 : 1.073 ) :
( LOCATION == LOS_ALAMOS ) ?

( ( SOLAR_ACTIVITY == AVG ) ? 5.6 :
( SOLAR_ACTIVITY == LOW ) ? 5.15 : 5.70 ) :

( LOCATION == TOKYO ) ?
( ( SOLAR_ACTIVITY == AVG ) ? 0.66 :

( SOLAR_ACTIVITY == LOW ) ? 0.62: 0.64 ) : NaN ;

endenvironment

Figure 6.6: Example of a RIIF Environment

In figure 6.6, we present the RIIF code for an environment construct that

captures a small subset of the neutron model presented in [JEDEC 2006]. An en-
vironment construct has a list of parameters (e.g. location) and it provides a list

of generated or output parameters (e.g. neutron flux). Typically, an environment
construct is used to encapsulate the operating conditions in a specific product (e.g.

temperature, voltage range in an automotive application) and then to consistently

apply these parameters to a set of components.

6.3 Worked Examples

6.3.1 Board Level Example

The first example developed with RIIF was based on a circuit board with one CPU

and with N + 1 memory components. We assume that the data in each RAM is
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protected with SECDED ECC so that single-bit errors have no impact. When there

is an intermittent multi-bit error (MBE), the board is rebooted, but continues op-

eration. Due to N +1 : N redundancy on the memory parts, if there is a permanent

failure on one RAM, the board can continue to operate with N components, al-

though the switch-over requires a reboot. If two or more RAMs fail, then the board

must be replaced. The structure of the system is shown in figure 6.7.
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Figure 6.7: Structure of Board with CPU and RAMs

First, the RIIF code for the SRAM is presented in figure 6.8. In this model,

the SRAM has three failure modes : SBU, MBU and CHIP_FAIL. The equation

for the SBU rates is taken from [Seifert 2006] and the MBU rate is computed as a

fixed ratio of the SBUs. Then, the rate of permanent chip failues is calculated as

a function of the operating temperature. It is important to note, that the purpose

of RIIF is not to propose specific models for silicon failure mechanisms. This topic

has been extensively studied and standard equations exist for known silicon failure

mechanisms [JEDEC 2010]. Instead the purpose of RIIF, is to provide a scalable,

machine-readable format for such models.

Next the model for the board is created, as shown in figure 6.9. The failure
modes at the board level are reboots and board replacements. The board is rebooted

if there is an MBU in one of the active memories or if a permanent memory error

causes a switch-over to the spare memory part. The board must be replaced if either

the CPU fails or if more than one memory part fails.
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component SRAM;
// Design parameters (geometry)
parameter WIDTH : int := 32; // word width
parameter M : int := 1024; // number of words
parameter SIZE: int := M ∗ WIDTH;
// Parameters related to the environment
parameter TEMP : float; // kelvin
parameter VOLTAGE : float;
// Technology Constants
constant Ea : float := 0.6; // activation energy
constant BASE_TEMP : float := 298; // base temperature for hard FIT rate (K degree)
constant BASE_FAIL : float := 5; // hard−FIT rate at base temperature
constant A_DIFF : float := 3.2; // constant obtained from layout
constant Q_COL_EFF : float := 0.6; // represent Qcrit/Qcoll
constant MBU_RATIO : float := 0.25; // Simplified model for MBUs

// Failure Modes
fail_mode SBU; // SBU obtained from (Seifert 2006)
assign SBU’unit = FIT;
assign SBU’rate = SIZE ∗

NEUTRON_ENV.RELATIVE_FLUX ∗

A_DIFF ∗ EXP( −VOLTAGE / Q_COLL_EFF );
assign MBU’rate = SBU’rate ∗ MBU_RATIO;

fail_mode CHIP_FAIL; // Failure rate scaled based on Arrhenius equation
assign CHIP_FAIL’unit = FIT;
assign CHIP_FAIL’rate = BASE_FAIL ∗ exp( ( Ea / k ) ∗ ( 1/TEMP − 1/BASE_TEMP) ) ;

endcomponent // SRAM

Figure 6.8: RIIF Model for a Generic SRAM

component CPU_BOARD;
// −−−−−−−−−−−−−−−− Constant Declaration −−−−−−−−−−−−−−−−−−−−−−−−

constant NUM_RAMS : integer := 17;
parameter CHIP_VOLTAGE : float := 1.0;
constant MEMORY_UTILIZATION : float := 0.75; // Used for memory de−rating
// −−−−−−−−−−−−−−−− Instantiate Components −−−−−−−−−−−−−−−−−−−−−−

child_component CPU CPU0; // Single CPU
assign CPU0.VOLTAGE = CHIP_VOLTAGE; // Propagate parameters to children
child_component SIMPLE_SRAM MEM[1:NUM_RAMS]; // 17 memory chips
assign MEM[1..NUM_RAMS].VOLTAGE = CHIP_VOLTAGE;
// −−−−−−−−−−−−−−−−− Define Failure Modes for the Board −−−−−−−−−−−−−−−−−−−−−−

// If there is an MBU in any memory or if the card must fail−over on a permanent RAM failure.
fail_mode REBOOT;
assign REBOOT’rate = MEMORY_UTILIZATION ∗

agg_single_fail( MEM[1:NUM_RAMS]’MBU ) + agg_single_fail( MEM[1:(NUM_RAMS−1)]’CHIP_FAIL );

// Board is replaced if more than 1 memory chip fails or if CPU fails
fail_mode REPLACE_BOARD;
assign REPLACE_BOARD’rate = agg_single_fail( CPU’CHIP_FAIL,

agg_gt_n_fail( 1, MEM[1:NUM_RAMS]’CHIP_FAIL ) );

endcomponent // CPU_BOARD

Figure 6.9: RIIF Model CPU Board
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6.3.2 Soft IP Example

The example in this section illustrates how a model for a soft processor core can be

specified. The high-level failure modes of interest for this core are SDC and DUE.

The SoC integrator is interested in determining the absolute FIT rate for SDC and

DUE in their implementation technology. These FIT rates can then be fed into a

system level reliability or safety analysis.

The SoC integrator, through their relationship with the foundry and the mem-

ory IP provider, has access to the technology failure rate (e.g. FIT/Mbit for memo-

ries, flip-flops) but they lack detailed knowledge of the processor core architecture.

We show how the IP provider can deliver a technology-independent RIIF model of

the core. This model is then extended with the models for the technology failure

rates to compute the absolute FIT rates.

In this example, we assume there are four technology level faults :

• SBUs in the cache memory

• MBUs in the cache memory

• SEUs in the normal flip-flops

• SEUs in the hardened flip-flops

As is the case with many IPs, the core is configurable. The user can choose

from different protection strategies for the cache SRAM : (i) none, (ii) parity or

(iii) SECDED ECC. The selection is represented as a parameter in the RIIF model

and the setting of these parameters influences how faults map to SDC or DUE. The

model is illustrated in figure 6.10. On the bottom are the four technology level faults

which feed into the model for the model for the CPU core.

It is assumed that the IP provider has performed fault-grading on the flip-flops

and divided them into two sets : critical and non-critical. The AVF for SDC events

has been determined for each set through techniques such as those discussed in

chapter 3. The user of the IP may chose to map the critical set of flip-flops to

a robust cell. For this reason, the model has separate parameters for the FIT of

critical and non-critical flip-flops.

The rates of SDC and DUE can be calculated using the following equations:

FITSDC = CacheSDC + FFSDC (6.1)

FITDUE = CacheDUE + FFDUE (6.2)

CacheSDC = NBITS ·CacheUtilization·





FITSBU + FITMBU No Cache Protection

FITMBU Parity Protection

0 SECDED ECC

(6.3)
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Figure 6.10: Fault Propagation Through a Soft CPU Core

CacheDUE =





0 No Cache Protection

FITSBU Parity Protection

FITMBU SECDED ECC

(6.4)

FFSDC = AV FCRIT_FF ·NCRIT_FF · FITCRIT_FF +

AV FNORM_FF ·NNORM_FF · FITNORM_FF

(6.5)

FFDUE = AV FDUE · (NCRIT_FF · FITCRIT_FF +

NNORM_FF · FITNORM_FF )
(6.6)

The code to implement these equations as a component is presented in fig-

ure 6.11. There is a component declaration, followed by a set of parameter dec-

larations. The first set of parameters specifies how the IP has been configured,

specifically the cache protection scheme. Next, there is a parameter to represent the

utilization of the cache. This is a MDR factor and can be set based on application

profiles. The next four parameters are the FIT rates for the technology level faults

and these have no values assigned to them.
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The failure modes for the processor are defined and the equations above are

used to calculate the SDC and DUE rates. The RIIF language is not procedural,

thus the ternary operator (?:) is used to conditionally select which faults contribute

to SDC or DUE based on the chosen cache protection scheme.

component SOFT_CPU_CORE;
// Define Design Parameters
parameter CACHE_EN : int := 1; // Cache enabled in application? (1=TRUE)
parameter CACHE_ECC_EN : int := 1; // ECC enabled on the cache? (1=TRUE)
parameter CACHE_PARITY_EN : int := 0; // Parity enabled on the cache? (1=TRUE)

// Define Application Parameters
parameter CACHE_UTIL : float := 0.5; // Cache utilization. Affects cache SBE/MBE rate

// Declare Technology Failure Rate Parameters (Values assigned when model is mapped )
parameter SRAM_SBU_FIT : float; // FIT/MBIT
parameter SRAM_MBU_FIT : float; // FIT/MBIT
parameter FF_NORM_FIT : float; // FIT/MBIT of FFs used for normal FFs
parameter FF_CRIT_FIT : float; // FIT/MBIT of FFs used for critical FFs

// Architectural Design Constants Pertaining to the CPU Core
constant NUM_CACHE_LINES : int := 16∗1024;
constant NUM_BITS_CACHE : int := NUM_CACHE_LINES ∗ ( 72 + 16 ); // data + TAGs
constant NUM_CRIT_FFS : int := 8000; // based on AVF
constant NUM_NON_CRIT_FFS : int := 50000; // based on AVF
constant CRIT_FF_SDC_AVF : float := 0.4; // AVF of critical FFs.
constant NON_CRIT_FF_SDC_AVF : float := 0.1; // AVF of non−critical FFs.
constant ALL_FF_DUE_AVF : float := 0.3; // DUE AVF of FFs

// Define Failure Modes
fail_mode CACHE_CORR_ERR; // Correctable Cache Errors
assign CACHE_CORR_ERR’rate = ( CACHE_EN && CACHE_ECC_EN ) ?

( NUM_BITS_CACHE ∗ CACHE_UTIL ∗ SRAM_SBU_FIT / 1000000 ) : 0;

fail_mode CACHE_UNCORR_ERR; // Uncorrectable Cache Errors
assign CACHE_UNCORR_ERR’rate = ( CACHE_EN && CACHE_PARITY_EN ) ?

( NUM_BITS_CACHE ∗ CACHE_UTIL ∗ SRAM_SBU_FIT / 1000000 ) :
( CACHE_EN && CACHE_ECC_EN ) ?

( NUM_BITS_CACHE ∗ CACHE_UTIL ∗ SRAM_MBU_FIT / 1000000 ) : 0;

fail_mode CACHE_SDC; // Silent Data Corruption in the Cache
assign CACHE_SDC’rate = ( CACHE_EN && !CACHE_PARITY_EN && !CACHE_ECC_EN ) ?

( NUM_BITS_CACHE ∗ CACHE_UTIL ∗ ( SRAM_SBU_FIT + SRAM_MBU_RATE ) / 1000000 ) :
( CACHE_EN && CACHE_PAR_EN ) ?

( NUM_BITS_CACHE ∗ CACHE_UTIL ∗ SRAM_MBU_FIT / 1000000 ) : 0 ;

fail_mode DUE; // Detectable Uncorrectable Errors
assign DUE’rate = ALL_FF_DUE_AVF ∗

( ( FF_NORM_FIT ∗ NUM_NON_CRIT_FFS ) + ( FF_CRIT_FF ∗ NUM_CRIT_FFS ) ) +
CACHE_UNCORR_ERR’rate; // Cache uncorrectable produces DUE

fail_mode SDC; // Silent Data Corruption
assign SDC’rate = ( ( FF_NORM_FIT ∗ NUM_NON_CRIT_FFS ∗ NON_CRIT_FF_SDC_AVF ) +

( FF_CRIT_FIT ∗ NUM_CRIT_FFS ∗ CRIT_FF_SDC_AVF ) ) +
CACHE_SDC’rate; // SDC from cache

endcomponent // SOFT_CPU_CORE

Figure 6.11: RIIF Model of a Soft CPU Core
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6.3.2.1 Technology Mapping

The model presented in figure 6.11 is technology independent and must now be com-

bined with technology models to compute absolute FIT rates. A second way of com-

bining models in RIIF is through an Object Oriented (OO) approach [Meyer 1997].

A new component may be derived from an existing one by extending it, similar to

other OO languages such as C++ or SystemVerilog. All of the elements (parameters,

failure modes) in the original component are visible in the extended component1.

A RIIF model for a generic SRAM was already seen in figure 6.8. This generic

component can be extended to create a technology specific model, as shown in

figure 6.12 where FIT rates are specified for a specific technology. For the purpose of

this example, the SBU and MBU FIT rates are obtained by a lookup from assumed

radiation test-results and coded using the ternary operator (?:). The full object

inheritance hierarchy is shown in figure 6.14.

component SRAM_45NM extends SRAM;
assign SBU’rate = ( VOLTAGE < 0.7 ) ? 400 :

( VOLTAGE < 0.8 ) ? 350 : 300;
fail_mode MBU;
assign MBU’rate = ( VOLTAGE < 0.7 ) ? 35 :

( VOLTAGE < 0.8 ) ? 20 : 10;
endcomponent // SRAM_45NM

Figure 6.12: RIIF Model for a Technology Specific SRAM

Finally, these models can be combined to yield a model for the soft core imple-

mented in a specific technology. This is done using OO extension. In the compact

model, shown in figure 6.13, the technology FIT rates are mapped to the parameters

in the model of the soft-core.

component CPU_CORE_45NM extends SOFT_CPU_CORE, DICE_FF_45NM, STD_FF_45NM, SRAM_45M;
parameter SOFT_CPU_CORE::SRAM_SBU_FIT = SRAM_45NM::SBU’rate;
parameter SOFT_CPU_CORE::SRAM_MBU_FIT = SRAM_45NM::MBU’rate;
parameter SOFT_CPU_CORE::FF_NORM_FIT = STD_FF_45NM::SEU’rate;
parameter SOFT_CPU_CORE::FF_CRIT_FIT = DICE_FF_45NM::SEU’rate;

endcomponent // CPU_CORE_45NM

Figure 6.13: Combining CPU and SRAM Models
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Figure 6.14: Object Inheritance Diagram for Soft CPU Core Example

1Currently RIIF does not have public or private data, but this is an obvious extension.
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6.3.3 Scrubbed Memory Example

Correctly modeling the effective failure rate even of a simple system can quickly

become complicated when multiple failure modes are considered and when mitiga-

tion techniques mask some of the errors. In [Sanchez-Macian 2013], the authors

developed a RIIF model for an SRAM with M words. The model assumes that the

memory is subject to transient SBUs at a rate of λSBU and to permanent Single Bit

Hard Errors (SHEs) at a rate of λSHE . It is assumed that this memory is protected

by a Single Error Correct (SEC) ECC. If two bits in a word are wrong (two SBUs,

two SHEs or an SBU and an SHE), the result is Silent Data Corruption (SDC).

SBUs accumulate in the memory starting from the time the system is powered-

up, t. Hard errors (SHEs) accumulate in the memory starting at the time the system

was built, t�. [Sanchez-Macian 2013] show that the rate of data corruption with this

system is:

λSDC =
λ2
SBU · t

M
+

λ2
SHE · t�

M
+ λSBU ·

λSHE · t�

M
+ λSHE ·

λSBU · t

M
(6.7)

It is common practice to use scrubbing [Saleh 1990] to prevent error accumu-

lation. Through scrubbing, the time period during which SBUs can accumulate is

limited to Ts rather than the time since power-up, t. With scrubbing enabled, the

rate of data corruption is given by:

λSDC =
λ2
SBU · TS

2 ·M
+

λ2
SHE · t�

M
+ λSBU ·

λSHE · t�

M
+ λSHE ·

λSBU · TS

M
(6.8)

These equations can be coded in RIIF as shown in figure 6.16. First, the base

component for the SRAM used in this example is shown in figure 6.15. This model

is nearly identical to that in 6.12, except for the inclusion of the SHE failure mode.

Clearly, it is undesirable to have inconsistent sets of failure modes for the same

component, thus there is a need to establish, libraries of base components which

will be standardized. The base model defines the rates of SBUs and SHEs as a

function of voltage and temperature.

A new compoment is declared which extends the base component and which

models the effects of ECC and scrubbing. The code for this extension is shown in

figure 6.16. This model can be processed by the RIIF processor and the results of

simulating the models have been plotted in figure 6.17. From the results, we see

that with scrubbing, the SDC rate grows slowly with time, as the probability of an

SBU and SHE occurring in the same word is small. Without scrubbing, of course,

the SDC rate grows quickly with the time since power-up, as the SBUs accumulate

in the memory (red/crosses, blue/star lines). With scrubbing enabled, the SDC rate

due to SBUs is flat with time. However, due the the fact that the SHE rate increases

with time, the total SDC rate is higher after ten years (green/Xs, purple/boxes lines)

than during the first year.

This example shows that even a simple system requires a time-variant model

that represents the effect of mitigation schemes such as scrubbing and ECC.
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component SRAM; // SRAM with two failure modes
// Define Parameters
parameter SIZE: int := 512 ∗ 1024 ∗ 1024;
parameter WIDTH : int := 32;
parameter M = ( SIZE / WIDTH );
// Operating Parameters
parameter TEMPERATURE: float;
parameter VOLTAGE : float;
// Parameter associate with time
parameter BUILD_T : time; // manufacturing time
parameter POWERUP_T : time; // power−up time
// Failure modes
fail_mode : SBU; // soft error
assign SBU’unit = FIT;

fail_mode : SHE; // hard error
assign SHE’unit = FIT;

endcomponent

Figure 6.15: RIIF Model for SRAM Model with SEC ECC and Scrubbing

component SEC_PROTECTED_SRAM extends SRAM;
parameter T_SCRUB : time; // scrub interval
assign T_SCRUB=express_time("hours",24);
fail_mode SDC; // data corruption
assign SDC’rate = ( pow(SBU’rate,2) ∗ get_time_since( POWERUP_T, "hours" )/M +

pow(SHE’rate,2) ∗ get_time_since (BUILD_T, "hours" )/M +
(SBU’rate ∗ SHE’rate / M) ∗ ( get_time_since( POWERUP_T, "hours" ) +

get_time_since( BUILD_T, "hours" ) ) );
endcomponent

Figure 6.16: RIIF Model for SRAM Model with SEC ECC and Scrubbing
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Figure 6.17: Results of Simulating SRAM RIIF Model
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6.4 Extensions to RIIF

6.4.1 Faults versus Errors

In its current form, the RIIF language makes no distinction between faults, errors

and failures. The notion of a failure mode is general and can cover any type of

event that occurs. When the RIIF model is flattened, these events form a Directed

Acyclical Graph (DAG), and the rate of the events is propagated from the leaf-level

upwards. This approach is flexible, but may lead to ambiguity for the users. A more

formal approach, shown in figure 6.18 has been considered where this distinction is

explicit. A special technology component would be used to model faults. This type

of component would define faults and their rate of occurence and would explicitely

be at the bottom of the hierarchy.
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Figure 6.18: Formalizing the Difference Between Faults, Errors and Failures

Next in the hierarchy would be device components. Semantically, these would

require as input, a set of technology components for the known faults. Based on

these fault models, the device component would compute the rate of specific errors.

Then, at the top of the hierarchy, system components would take as input specific

errors from the technology components and calculate failure rates.
It seems the key distinctions with this approach are twofold. First, technology

components only define faults but take no other input about incoming event rates.

At elaboration time, it would be verified that technology components are at the

leaf-level of the tree. Secondly, the device and system components would explicitely
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declare which faults or errors are required as inputs from the level below. This

would ensure there is no mismatch between the set of faults that exist, and those

which are analyzed.

6.4.2 Mission Profiles and Timelines

Correctly modeling the environment and the mission profile of a system is critical

in order to assess its reliability. Many systems do not operate continously with a

homogenous workload. This is clearly the case of automotive or avionic systems

where there are distinct states of operation. RIIF does not yet address this issue,

although it is recognized as an important future contribution. In the following

paragraphs, some early considerations about this aspect are presented.

Many system companies have extensive historical data on actual usage profiles.

For example car manufacturers collect data on the number of hours and distances

that are driven. For the purposes of reliability modeling, the goal is not necessarily to

apply a specific historical profile, but rather to identify one or more typical profiles.

One approach consists in using a probablistic model of the system state (Markov

model). The duration of each state and the transition probabilities are determined

based on actual profiles.

As a simple example, we consider an airplane which can be in one of three

states : take-off, cruise, landing. The cruise state may be further de-composed as

shown in figure 6.19.
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Figure 6.19: Example State Sequence for an Airplane

This type of Markov state model could be represented in RIIF using the notion

of a timeline, as shown in figure 6.20. Once the time-line is defined, a set of envi-
ronments can be defined. During each operational state, the environment in that

state would determine operating parameters such as the workload, radiation flux

and temperature.

This brief example is presented to highlight the need to model mission-profiles

and show that this could be done through extensions to RIIF. Detailed definition of

this aspect of RIIF remains future work.
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timeline FLIGHT;

initial state : TAKEOFF;
assign TAKEOFF’duration = express_time( 5, "minutes" );
assign TAKEOFF’next = CRUISE;

state : CRUISE;
assign CRUISE’duration = distribution {

50 : express_time( 1, "hours" ),
50 : express_time( 3, "hours" ) };

assign CRUISE’next = distribution {
99 : LANDING,
1 : ABORTED_LANDING };

terminal state : LANDING;
terminal state : ABORTED_LANDING;

endtimeline

Figure 6.20: Code for a Timeline

6.5 Conclusion

The RIIF language does not contribute new concepts to reliability theory nor to

the theory of modeling failures in ICs. Instead, it is a framework for expressing

the existing theory in a standard, machine-readable format. This remains a key

contribution, because in the absence of such a format, it is difficult to develop EDA

tools which can analyze the reliability of complex SoCs. Today, models are built by

manually entering data into spreadsheets; a process that is error-prone and which

is not scalable.

It is clear, that the RIIF language is in an early state of development. Working

through the set of examples presented in this chapter has identified certain issues

which have been addressed. For example, the need to model time and to distinguish

between a component’s life-time and the time since it was powered-up was identified

in section 6.3.3.

The examples also illustrate how the use of OO techniques allows the complexity

of lower level models to be hidden. Significant effort is required to correctly model

the rate of cell level upsets at different voltage conditions. Similarly, evaluating the

AVF of structures in a processor is a challenging task. Today, these tasks are often

performed by different types of engineers and rarely are the full models combined.

RIIF provides a frame-work enabling detailed models to be developed by experts.

These detailed models can then be combined to create a compact model of an entire

chip, without compromising the modeling accuracy.
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There exists an enormous body of scientific work devoted to the analysis and

mitigation of soft error effects and the topic continues to attract the attention of

many researchers. The physics behind soft error phenomena are well understood

although the impact of new process technologies such as FINFETs and FDSOI are

still being studied. Despite this research, assessing the effect of soft errors on a

complex SoC remains a challenging task and the approaches taken in industry of-

ten involve large approximations. The selective replacement of critical flip-flops is

common practice, however, in industry the selection is often made based on simple

heuristics and may be highly sub-optimal. The techniques proposed in this thesis

make a modest contribution to better addressing these problems. As with any re-

search, this document provides a snapshot of the current state of the work, however,

additional research is required to further develop the techniques that have been

proposed.

7.1 Simulation Analysis and Selective Mitigation

The first contribution of this thesis (section 3.2.4) involves using a CRC as a signa-

ture for the state of a digital system. When performing fault injection simulations,

this CRC can be used to identify when the system with the fault has returned to

its golden state. The advantage of the CRC is that it is compact. As presented in

chapter 3, the CRC was calculated over the entire system, including the state of the

flip-flops and the memories. In this way, the CRC provided a strong check of the

full system, however, the calculation of the CRC required every bit in the design to

be accessed.

The compute cost of the CRC can be reduced by calculating separate CRCs

for different portions of the system. As shown in figure 7.1, a separate CRC trace

can be created for each module in the design hierarchy. When a SEU is injected in

a flip-flop in a specific module, such as B, then after the fault injection, the first
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check is to see whether the CRC of module B matches the golden value. Assuming B
represents only a small fraction of the design, this is much less costly than computing

a CRC over the full system. If the CRC over B does not match, then it is certain

the fault is still present and the simulation must be continued. If the CRC over

module B matches, then either the fault has been masked, or it has propagated

beyond B. At this point, the CRCs of the other modules can be checked, starting

with those that are logically adjacent to B. In order to ensure the fault has been

completely over-written, the CRCs of all modules must be checked, but this will

occur only once, after the fault has disappeared. It is exepected that this extension

would significantly reduce the cost of the CRC calculation. Furthermore, it would

make it possible to study the propagation of faults through the design hierarchy.

Development is underway to implement this enhancement and to quantify the benefit

in terms of reduced simulation time.
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Figure 7.1: Calculation of Separate CRCs per Design Hierarchy

In chapter 4, techniques to cluster flip-flops were presented. By analyzing clus-

ters, rather than individual flip-flops, far fewer fault-injections are required in order

to identify which flip-flops to harden. Three different techniques for clustering were

identified and compared. The technique that worked best consisted of heuristics

that considered signal naming and module hierarchy. Since the original work in

chapter 4 was performed, the proposed clustering techniques have been applied to a

full networking ASIC. Through this work, several observations have come to light.

The first is that the sizes of the clusters can vary significantly with some large clus-

ters containing over ten thousand flip-flops. When these flip-flops are homogenous

and have the same function, this is highly beneficial. In some rare cases, based on

insights provided by designers, large clsuters were found to be heterogeneous and

had to be manually split. This typically occurred when not all the bits within a
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bus had the same function (some bits are used as control while others hold data).

It would be beneficial if the algorithms could be extended to analyze whether the

effect of the faults injected within a cluster are homogenous. In the event that they

are not, this information could be used to propose an improved clustering.

Despite these challenges, clustering techniques have made it possible to effec-

tively identify flip-flops for hardening on a large networking ASIC targeted to an

application where an extremely low SDC rate is required. These techniques have

provided a speedup of about two orders of magnitude and without them, it would

be virtually impossible to use fault-injection simulations to identify critical flip-flops

in a design of this scale.

7.2 Hierarchical SET Analysis

In chapter 5, a high-level methodology to quickly compute the effect of SETs in large

ASICs was propoed. Following the initial work [Evans 2013], a simplified version of

the methodology was implemented as a spreadsheet tool which estimates the contri-

bution of SETs based on high-level design information (e.g. gate-count, distribution

of gate-types, distribution of types of circuits). Unfortunately, the accuracy of such

estimations is not well understood. When complex devices are tested under radia-

tion, while executing real workloads, it is very difficult to distinguish between faults

induced by SEUs and SETs. Most of the radiation test data for SETs is from simple

structures such as chains of inverters or very basic circuits such as 4-bit adders.

Extrapolating this data to a full chip and validating the result remains challenging.

To make progress, more test data is required on the actual contribution of SETs

in circuits of moderate complexity. As part of a research project with the European

Space Agency and the University of Saskatchewan, a test-chip is being developed

which will include several medium sized combinatorial circuits (e.g. state-machines,

arithmetic circuits, etc.). The combinatorial structures on the chip will be tested

under radiation including under laser and heavy-ion micro beam. The measured

data from the test-chip will be correlated both with aggregate and detailed (e.g.

per-gate) SET estimations and in this way, the uncertainties will be quantified. A

part of this work will also include extensions to better model the effect of EDR

which was not considered in the methodology presented in chapter 5.

Although SETs have not traditionally been a concern in terrestrial applications,

there is now a clear need to accurately estimate their contribution when performing

chip-level SER analysis for high-end applications.

7.3 RIIF

Of the contributions of this thesis, the RIIF language is the one that has the potential

to have the most impact. At the RIIF workshop held at DATE 2013, as well as at

subsequent presentations, there has been genuine interest from industry in having

a standard file format for specifying and exchanging the reliability data used in the
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chip-design process. Based on the initial work presented in chapter 6, it appears

that RIIF can be used to model radiation induced faults. However, there exist

many other failure mechanisms for silicon devices [JEDEC 2010] and further work

is required to investigate how RIIF can be extended to incorporate these. Some

failure mechanisms such as Electro-Migration (EM) result in an explicit failure event,

similar to radiation induced failures. Other mechanisms such as NBTI and HCI

result in a shifting of device parameters. This shift may, or may not, provoke a

failure. It remains to be seen whether this progressive degradation can be modeled

in RIIF or whether it is better modeled through existing approaches such as aged

SPICE models. Work is underway, in the context of the Modelling Reliability under

Variability (MoRV) European FP7 project, to investigate new techniques to model

these failure mechanisms and how to integrate these models into a design flow.

Beyond the question of the scope of RIIF, is the critical question of standard-

ization. Even if the proposed language is able to model the occurence and the

propagation of faults, it is of little value if there is no uptake of the language. There

is thus a need to develop a formal specification of the RIIF language and then to

work with multiple partners from industry to review the specification and move

towards standardization. One of the challenges in proposing a new file-format is

that it is only attractive when there is a critical mass of tools that can process files

in that format. Therefore, another key component of the work ahead consists in

improving the proto-type tool and, in parallel, working with other EDA companies

to provide support for RIIF.

7.4 Summary

Without a doubt, in the years to come, electronics will play an increasingly critical

role in all aspects of modern life. This is especially true as autonomous vehicules

become a reality and as implantable medical devices incorporate new functonal-

ity. In these applications, the highest level of reliability is essential and there is a

great need for techniques to evaluate complex systems and evaluate the impact of

technology level faults. Analysis of complex systems requires abstraction in order

to hide unnecessary details and hierarchical decomposition in order to scale. Both

are widely employed in the silicon design process, whether it be design, functional

verification, layout or timing analysis. To some extent, reliability analysis has been

slow to adopt these approaches. The key contribution of this thesis is to show how

abstraction and hierarchical decomposition can be applied to better analyze and mit-

igate the effect of faults in large, complex designs. Subsequent to the initial work,

many of the techniques have been applied to production designs.



Appendix A

Use of Bloom Filters to Protect

TCAMs

This appendix presents the results of a collaborative research project between Uni-

versity Rome ‘Tor Vergata’, TIMA Laboratory and Cisco Systems. The content is

based on a paper which was presented at DATE 2013 [Pontarelli 2013b].

A.1 Introduction

A Content Addressable Memory (CAM) memory is capable of comparing a word of

input data against all the data words stored in the memory, and provides as output

the address of the first stored word which matches the input data. In a binary

CAM, the memory entries are composed only of 0’s and 1’s. A TCAM also allows

the entries stored in the memory to contain ‘X’ bits which represent a don’t care
value. This provides a compact means to store a large set of match patterns. For

example an entry 10XX1 in a TCAM matches the following four patterns 10001,

10011, 10101, 10111. The typical implementation of the don’t care bits is obtained

by defining a mask string for each entry of the TCAM. In the previous example

the mask string would be 00110 while the actual entry is 10--1 where - can be

either 0 or 1. TCAMs are widely used in high speed network systems to implement

features such as classification and access control [Chao 2002]. In fact, their ability to

perform massive comparisons with O(1) complexity makes them extremely appealing

for searching large tables with very low latency. The use of the X’s makes it possible

to apply admission or quality of service (QoS) policies to classes of traffic using a

modest number of table entries.

Currently, the use of nanometer scale technology, the reduction in operating

voltages and the increase in the overall number of stored bits have caused a con-

sequent increase in the rate of occurrence of SEUs. ECC is highly effective at

protecting regular memories. It is difficult to apply techniques based on informa-

tion redundancy to TCAMs because all entries are accessed simultaneously, thus

the actual checking circuitry must also be replicated for each entry. Networking

systems based on TCAMs require high reliability and new approaches are required

to mitigate the effects of SEUs.

In the literature different techniques have been proposed to mitigate the effects

of SEUs in TCAMs. Most techniques operate at the circuit level and require mod-

ifications to the CAM architecture [Krishnan 2009] or are based on a background

parity scan which has a long detection latency.
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The proposed technique does not require modifications to the internal structure

of the TCAM since this is often a discrete component designed in a full custom

design flow to minimize power consumption and optimize the density of memory

cells. The proposed technique can be implemented as a stand-alone module that

operates in parallel with the TCAM and checks the correctness of the results of

each access. Error detection is immediate, unlike techniques based on background

parity scans. Moreover, the proposed solution is particularly well suited to TCAM

applications with wide word sizes, like the ones used in modern network systems,

since the overhead is independent on the TCAM word size.

In previous work [Pontarelli 2013a], a technique to add a Bloom Filter in parallel

to a binary CAM was described. The technique described in this chapter extends

the technique to TCAMs.

A.2 Existing TCAM Protection Techniques

In industry, the standard technique to protect TCAMs against radiation induced

errors is to protect each word with a parity code. It is not practical to simultane-

ously check the parity of all entries and it is not sufficient to only check the parity of

the matching entry, since an error on a higher priority entry can create an incorrect

match. Therefore, a parity scan engine runs in the background and sequentially

reads through each of the entries, checking the parity and triggering an error in-

dication if there is a mismatch. When an error is found, software intervenes and

re-writes the corrupted TCAM entry. The drawback to this method is that there

can be a significant latency between when an error occurs and when it is detected

and then fixed by software. During this window of time, incorrect decisions are

occurring. Multiple interleaved parity bits are used to protect against upset events

which corrupt adjacent cells which is an increasing concern.

In [Krishnan 2009], error correcting codes for TCAMs are proposed, however,

these require a 200% overhead in order to correct single bit errors. In [Azizi 2006],

a hardened TCAM cell with cross coupled feedback loops is proposed. A SER re-

duction of about 30% is achieved with an area penalty of 15%. US Patent 7254,748

describes a technique to duplicate TCAM cells to provide error detection and cor-

rection, however, this represents and area and power overhead of 200%. None of

the existing solutions provide strong, on-line error detection with a modest area

overhead.

A.3 Background on Bloom Filters

A Bloom Filter [Bloom 1970] is a probabilistic data structure based on hashes and

used to check the membership of an element in a set. A Bloom Filter performs

two tasks: 1) stores a set of items in its memory, and 2) quickly responds to a

query about the presence of an item. The drawback of using this structure lies in

its probabilistic nature which can return false positives. With a certain probability
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(called the false positive rate), the Bloom Filter can report a data element as being

present when in fact it was not inserted into the Bloom Filter. A false positive

occurs when the hash functions alias. However, when a Bloom Filter signals that a

data is not present, this is always the case ( i.e. a false negative never occurs in a

Bloom Filter).

A Bloom Filter is implemented as a bit array of m bits accessed via k hash

functions H1(x)...Hk(x). Each hash function maps a set member x to one of the m

bits within the bit array. We denote as v(i) the value of bit i within the bit array.

Figure A.1 illustrates the structure of a Bloom Filter.
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Figure A.1: Structure of a Bloom Filter

Two operations are possible with a Bloom Filter:

1. Insertion: An element x is inserted into the filter by setting to one all the

indexes of the bit array addressed by the k hash functions. In a mathematical

notation this corresponds to:

∀i ∈ {1..k}, v(Hi(x)) ← 1

2. Querying : An element is reported as present in the filter if all the values of

the bit array addressed by the k hash functions are equal to 1.

result ← min{v(Hi(x))}, i ∈ {1..k}

In other words, when a word x is inserted, the bits corresponding to the result

of hashing x with all the hash functions are set to 1. An element is then said to be

in the set if all the bit positions to which it is hashed are set to 1. Clearly, there

can be no false negatives. It is, however, possible that the bits set by two or more

words actually stored in the array correspond to the bits of another word x which

is being queried but which is not stored in the set, resulting in a false positive.

For a Bloom Filter in which n elements are stored, the probability p(n) that a

given bit in the filter is zero is given by:

p(n) =
�
1−

1

m

�kn
≈ e−n k

m (A.1)
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If we test membership of an element that is not in the set, each of the k bit

array values indexed by the hash is 1 with probability 1− p(n). The probability of

all of them being 1, which would cause the false positive, is then:

Pfp(n) = (1− p(n))k ≈
�
1− e−

kn
m

�k
(A.2)

The probability of false positives decreases as m, the number of bits in the array,

increases. The probability of false positives increases as n, the number of words

stored in the filter, increases. For a given m and n, the value of k (the number of hash

functions) that minimizes the probability of false positives is: k = m
n · ln2 ≈ 0.7 · mn .

Using equation A.2, we can size the Bloom Filter according to a required number

of elements to be stored and a required minimum false positive rate.

A.4 Application Aware Hashing

A trivial method of inserting don’t care bits in a Bloom Filter is to fully expand

each of the don’t care bits. This is not scalable as the number of insert operations

and the size of the Bloom filter grows exponentially with the number of don’t care
bits and essentially this consists of treating the TCAM as a binary CAM.

From a purely hardware perspective a TCAM can have don’t cares in any bit of

any entry. However, some practical considerations can be used to identify patterns

within the entries based on how TCAMs are used in industrial applications. In

networking systems, a single large TCAM is used to support multiple features or

applications. Examples of such applications are packet classification, Access Control

Lists (ACLs), traffic sampling (Netflow) and QoS - to cite the most common. The

entries in the TCAM are divided based on the applications and a small number of

bits within the lookup word are used to select which set of entries to match when a

given lookup is performed for a specific application. For a given feature, a specific

set of fields from the packet header are looked up. The usage of fields within an

application is regular and there are patterns in where don’t care bits appear for

each application. This regularity of the don’t care bits can be exploited to avoid the

explosion that would result from a naïve expansion of don’t care bits.

TCAM entries can be divided into fields of which we identify three types:

1. Fully Unmasked This type of field corresponds to groups of N bits which

must match exactly. These entries correspond to a binary CAM.

2. Prefix This represent any field of size N bits where the most significant M

bits are unmasked (must match) and the least significant (N − M) bits are

masked (don’t care).

3. Generic This represents an arbitrary field of N bits where any combination

of bits within the field may be masked or unmasked and the combination of
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don’t care bits can appear anywhere.

TCAM configurations are usually computed by algorithms that transform clas-

sification rules based on port ranges, IP addresses and other packet header fields

into a set of TCAM entries [Lakshminarayanan 2005]. For each rule, the algorithm

generates a set of similar entries. The packet fields that are relevant for classification

vary from one feature to the next (e.g. QoS, ACLs, etc.) thus different similarities

occur depending on the feature. For this reason, an application aware approach to

building the Bloom Filter is proposed. The key idea to avoid state explosion is to

select a different set of hash functions for each feature in order minimize the don’t
care bits. This approach is called application aware hashing.

In particular, for fields that operate on a longest prefix match1, we use the

approach proposed in [Dharmapurikar 2006]. This method partially masks the least

significant bits, hashing only a variable prefix part of the field. The hash functions

are grouped with respect to an interval of the prefix length. During the insertion

phase, the field is masked following the given prefix don’t care configuration, and

is inserted in the Bloom Filter using the whole set of hash functions. During the

search phase, the item to be searched, is progressively masked and queried in the

Bloom Filter, as depicted in figure A.2). The example in the figure illustrates an

old, classful networking hierarchy, however, the approach in [Dharmapurikar 2006]

also works for arbitrary prefix lengths.

Finally, for generic fields, we propose a hashing methodology aimed at compact-

ing the number of don’t care bits. The regularity of TCAM configurations allows us

to define some rules, that can be applied to perform the application aware hashing.
The most significant bits of the TCAM entry identify the feature and define the

format of the subsequent fields of the entry. The following rules are applied:

1. Unmasked fields can be used directly as input of the hash functions.

2. Fields that are always masked can be ignored in all the hash functions.

3. Fields of prefix type can be managed using the longest prefix match algorithm.

4. Otherwise masked bits are compressed in order to reduce the number of don’t
care bits (e.g. XORing contiguous bits).

1Routing tables consist of an address and a subnet mask. When a packet address is looked up,

the routing table entry with the longest match, based on the subnet mask, is selected. Normally,

TCAMs are not used to store the main routing tables, as more efficient data structures exist,

however, sometimes smaller address tables are stored in TCAMs. In this case, they contain entries

sorted by the length of the subnet mask.
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Figure A.2: Masking of Bits for Longest Prefix Match

In order to illustrate the method, a sample 16-bit wide TCAM configuration is

shown in table A.1. In this example, the TCAM contains four features:

• Feature 1: In this feature, the TCAM is configured to act as a binary CAM.

The entries for this feature are composed of three fields. The first field (00)

identifies the feature. The second field represents bits that are not used and

is always masked and the third field is always unmasked. This feature acts as

a 10 bit binary CAM. Based on the above rules, only bits in[9..0] of the input

data is hashed.

• Feature 2: The feature is composed of four fields. The first two bits (01) iden-

tify the feature, the second field, composed of two bits, is always unmasked.

The third field is generic (i.e. can be masked or unmasked), while the last field

is not used and is always unmasked. For this feature, the input to the hash

function is the concatenation of three bit vectors: {in[13..12], (in[11]
�

in[10]
�

in[9]
�

in[8]), in[7..0]

Using this vector as input for the Bloom Filter, when the third field presents

unmasked entries, a regular item is inserted in the Bloom Filter. For the

masked entries (e.g. the entries with the X’s ) the XOR compression reduces

the number of X’s in the input to the Bloom Filter to a single bit. At this

stage we can expand the don’t care, inserting the two items corresponding to

‘0’ and ‘1’ into the Bloom Filter. This type of compression works well for

generic fields where the values of this fields often present some regularities

that are repeated among the different entries.



A.4. Application Aware Hashing 133

• Feature 3: This feature is similar to feature 1 using this part of the TCAM as

a binary CAM. The first field (10), identifies this feature, the second field is

unmasked and the third field is always masked. In this case, the input for the

Bloom Filter are the bits in[13...8] of the original input data.

• Feature 4: This feature is composed of three fields. The first field identifies

the feature (11) and the second is a 6 bits unmasked field which functions as a

binary CAM. The third field uses longest prefix match. Applying the rules for

application aware hashing, the full input vector is given to the longest prefix
matching algorithm, iteratively setting the range for bit masking for the bits

from 0 to 7.

Table A.1: Example TCAM Configuration

TCAM

Index Feature Key

Feature 1 - Binary CAM

Always Masked Unmasked

0 00 XXXX 01_0000_0001

1 00 XXXX 10_0010_0001

2 00 XXXX 01_0001_0111

Feature 2 - Generic Patterns

Unmasked Generic Unmasked

3 01 00 0001 1110_1111

4 01 01 0010 1010_1110

5 01 01 0000 1010_0011

6 01 11 0101 1010_0001

7 01 11 XXXX 0011_1001

8 01 00 XXXX 1100_1100

9 01 00 XXXX 0000_0110

10 01 00 XXXX 0001_0011

Feature 3 - Binary CAM

Unmasked Always Masked

11 10 00_0000 XXXX_XXXX

12 10 00_0011 XXXX_XXXX

Feature 4 - Longest Prefix

Unmasked Prefix

13 11 10_0010 01XX_XXXX

14 11 01_0000 1101_XXXX

15 11 11_0000 1100_00XX
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A.5 Error Detection Architecture

In this section, two architectures for detecting errors in TCAMs are described. Both

architectures use application aware hashing to insert and query items in a set of

Bloom Filters. The first architecture (figure A.3) uses two Bloom Filters, one that

take as input the same key that is applied to the TCAM, while the other takes as

input the concatenation of the tuple key, entry, where entry is the response of the

TCAM to the key input. The first Bloom Filter detects the occurrence of a SEU

causing a pseudo-MISS [Pontarelli 2010], i.e. the TCAM reports that the searched

key is not present. If this type of error occurs, the output of the first Bloom Filter

and that of the TCAM are discordant, the TCAM gives a MISS, while the Bloom

Filter gives a HIT. The second Bloom Filter detects the occurrence of pseudo-HIT

or multi-HIT errors [Pontarelli 2010], i.e. the TCAM returns an erroneous entry

or a MISS condition. This error is detected by the second Bloom Filter, which

signals that the tuple {key, entry} in not present in the TCAM. If, due to hash

collision, a false positive occurs in the Bloom Filter the error is undetected. The

experimental data presented later shows that the occurrence of both an error in the

TCAM and a false positive in the Bloom Filter are very low, even with a small

Bloom Filter. The experimental data shows up to 100% error detection, when the

Bloom Filters are large enough to avoid most false positives. The two Bloom Filters

detect disjoint types of errors and the fraction of errors detected by the two Bloom

Filters strictly depends on the TCAM configuration and on the input keys applied

to the TCAM. In particular, when the TCAM is configured to be used as a full

classifier [Lakshminarayanan 2005], the first Bloom Filter becomes useless, since

there are never any misses in the error-free TCAM.
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Figure A.3: Architecture Using Two Bloom Filters

The second architecture shown in figure A.4 uses M Bloom Filters and splits the

content stored in the TCAM into M different subsets. Each item is inserted in only

the ith Bloom Filter, corresponding to the condition i = entrymodM . Since the false

positive rate of Bloom Filters depends on the ratio between the number of inserted

items and the size of the Bloom Filter, the false positive rate is independent of M,

the number of sets into which the TCAM configuration set is divided. Unlike the
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first architecture, this architecture presents a lower error detection latency, because

the query to the M Bloom Filters can all be done in parallel with the TCAM lookup.

The TCAM output is only used to select which of the M responses from the Bloom

Filters should be considered. The drawback of this architecture is that undetected

errors can be caused both by hash collision, like in the previous architecture, or

when an erroneous entry (i.e. the response of a TCAM affected by a SEU) and the

correct one (i.e. the one stored in the Bloom Filter set) have the same value modulo

M. The use of M = 16 or M = 32 allows us to reduce this aliasing probability to 6%

or 3%. When no false positive occurs, the set of Bloom Filters provides a one-hot

encoded word as output, while with the occurrence of a false positive in some of

the Bloom Filters that do not correspond to the requested key, the output word

has multiple bits to 1. If a false positive occurs simultaneously with an error in

the TCAM, the error is undetected if the ith index given by the modular operation

selects one of the Bloom Filters affected by the false positive.
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Figure A.4: Modular Detection Architecture

The algorithm for error detection using the second architecture is shown in

figure A.5. First the algorithm checks if all the Bloom Filters are zero. This cor-

responds to the condition of a MISS in the TCAM. If the TCAM gives MISS as a

response, then no error has occurred. Otherwise, if the TCAM responds with an en-

try we assume that a pseudo HIT error has occurred. Instead, if some of the Bloom

Filters give 1 as a response, we select the Bloom Filter with index i, where i is the

entry number returned by the TCAM modulo M. If the ith Bloom Filter returned 1,

we assume that no error has occurred, otherwise an error in the TCAM is reported.

The condition of BF(i) = 1 can be caused by the simultaneous occurrence of a false

positive in the Bloom Filter and by an error in the TCAM. The experimental results

show that this is very unlikely.

A.6 Experimental Results

In order to evaluate the effectiveness of the proposed methods, a set of simulations

have been performed. A C++ software model of TCAM and Bloom Filters was

designed and both the TCAM and the Bloom Filters were configured using a real
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Figure A.5: Detection Algorithm with Modular Bloom Filters

data set provided by Cisco Systems. Ten thousand simulations were run where a

fault was injected into the TCAM for each run. The activation of the fault was

determined by comparing the output of the TCAM under test, with the output

from a golden TCAM. For the activated faults, the number of faults detected by the

proposed architectures is reported. We compute the area overhead as the number

of bits of storage in the Bloom Filter with respect to the number of configuration

bits of the TCAM. This is a somewhat pessimistic, as the real silicon area required

to implement a glsTCAM cell is roughly twice the area of an SRAM cell, since the

glsTCAM cell also contains matching logic. We do not evaluate the logic required

to implement the hash function of the Bloom Filters, since it is composed of only

a modest number of XOR gates and is small compared to the area required for

the memory. The two architectures presented in the previous section have been

simulated, and the size of the Bloom Filters has been varied, in order to study the

impact of false positives on the efficiency of the proposed methods. For the second

architecture the analysis is limited to M = 4, since the TCAM configuration was

too small to benefit from a larger value of M.

The results reported in table A.2 show that the errors in the TCAM are detected

by one of the two Bloom Filters used in the first architecture (see figure A.3). As

expected, the set of errors detected by the two Filters is disjoint, and the two Filters

are able to detect 100% of injected faults when the size of the Bloom Filters is

sufficiently large. Even without considering that SRAM memory cells are smaller

than TCAM cells, the ratio 8% is less than the nominal 12.5% overhead that would

be required for byte-wise parity. When the overhead is further reduced to 4% or 2%

the effect of false positives in the Bloom Filters produces some undetected errors,

decreasing the error coverage to 98.7% and 89.1% respectively.

In table A.3, the results for the second architecture (see figure A.4) are reported.

As expected, even with a large Bloom Filter, the error coverage is less than 100%,

due to the aliasing of the modular operation. However, the ratio of undetected
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Table A.2: Simulated Results Using Two Bloom Filter Architecture

Size of Single Errors Errors Total

Bloom Filter Detected Detected Error Total

(bits) by Filter #1 by Filter #2 Coverage Overhead

2K 2013 1307 100% 32%

1K 2332 1306 100% 16%

512 2343 1242 100% 8%

256 2068 1342 98.7% 4%

128 1911 1168 89.1% 2%

errors is less than expected, (should be 25%, since M = 4), since the aliasing does

not occur when a fault inside the TCAM produces a pseudo-HIT. In fact, in this

case, all the Bloom Filters give 0 as response, while the TCAM signals the presence

of the key in an erroneous entry. The condition that all Bloom Filters are equal

to 0 allows the error to be detected without any modular operation, and therefore

without the issue of aliasing. Aliasing still remains an issue for multi-HIT errors.

When the size of the filters is sufficiently large, no false positives occur, and the

error coverage is independent of the size of the Bloom Filters.

Table A.3: Simulated Results Using Modular Bloom Filter Architecture

Size of Single Number of Total Total

Bloom Filter Errors Number of Error Total

(bits) Detected Errors Coverage Overhead

2K 3211 3662 87.6% 32%

1K 2908 3326 87.4% 16%

512 3010 3461 86.9% 8%

256 3130 3669 85.3% 4%

128 4276 3507 82% 2%

A.7 Conclusions

The result of the work presented in this chapter is a technique that can effectively

detect errors in TCAMs. The method is attractive because it can be implemented

as a circuit that operates in parallel with an existing TCAM device, thus it can

be applied to discrete TCAM memories. With the standard approach to TCAM

error detection, based on a background scrub process, there is a long error detection

latency, however, the proposed approach detects errors when they occur. Further-

more, the technique works even if many bits in the TCAM memory are upset and

is not limited to detecting single bit errors.

The core of the proposed technique is an application aware hashing algorithm
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that, for practical configuration patterns, enables the don’t care bits in the entries

to be effectively stored in the Bloom Filter. This technique is not only attractive

for error detection, but it also has applications for reducing power consumption.

Commercial TCAM devices are physically divided into banks and when a search

request is issued, in addition to the search key, a bank mask is provided, indicating

which banks should be enabled for that search. Of course, the fewer banks that are

enabled, the less energy that is consumed. A set of Bloom Filters can be placed

on-chip, as shown in figure A.6. Each on-chip Bloom Filter stores the contents of the

corresponding bank in the off-chip TCAM. Before a search key is issued externally,

the on-chip Bloom Filters can be queried. For those filters which indicate that

the key is not present in the corresponding bank, the external bank need not be

searched. In this way, only a small number of banks need be enabled. There are no

false negatives, so the correct bank is always searched. Of course, false positives can

occur, but the only drawback is that the corresponding bank in the external TCAM

is searched unnecessarily. Further research is underway to quantify the power saving

benefits and to potentially implement this technique on a commercial ASIC.

 !"#$%&

 !"#$%'

()*

+,-./"!0$1*23
244056!-5)"
27!/.$8!9:

 0));$<50-./$%&

===
===

>+?

 
!"
#$
3
!9
#

 <$1*23$3!"!@./

8A1&
8A1'

8A1B

8A1CD'
(.!/6:
E.FG.9-

 !"#$%CD'

===

*05."-

 0));$<50-./$%'
 0));$<50-./$%B

 0));$<50-./$%CD'

Figure A.6: Use of Bloom Filters to Reduce TCAM Power Consumption



Appendix B

Approximate Logic Functions for

Protection of Combinatorial Logic

This appendix presents the results of a collaborative research project between the

University of Saskatchewan (Canada), iROC Technologies and Cisco Systems. The

content is based on a paper which was presented at SELSE 2014 [Xie 2014].

B.1 Introduction to Logic Repair

In chapter 1, it was identified that faults in combinatorial logic are more difficult

to analyze and mitigate than those in memories or sequential elements. In modern

technologies, permanent faults are a growing concern and it is now standard to

implement in-field repair techniques for memories. Equivalent repair techniques do

not exist for combinatorial logic, although different approaches have been proposed.

Redundant logic is a technique that can mask both transient and permanent faults

in combinatorial logic. Generally, the approaches to manage faults in combinatorial

logic can be divided into three categories : approaches based on coding, approaches

using on-line test and approaches based on defect aware synthesis.

Many authors have studied extending the coding techniques used for memo-

ries (Hamming, Berger, weight-based codes) to detect errors in combinatorial logic [Das 2000,

Leveugle 2002]. In [Dutta 2008], a selective error correction technique is proposed

with area overheads from 49% to 153%, however, it results in many additional layers

of logic and is thus not applicable to high-speed designs.

Another approach to manage faults in combinatorial logic is through on-line

self test and selective hardware sparing. On-line testing is possible when portions of

a circuit can be periodically taken off-line for test. For example, in [Li 2008], N+1

sparing is implemented on a 16 channel DMA controller to achieve an 87% repair

coverage with a small (6.3%) area overhead. Approaches based on on-line testing

can be highly effective; however, they remain application specific. Special tech-

niques exist for specific types of circuits such as arithmetic circuits [Nicolaidis 1997,

Nicolaidis 1998] and digital filters [Bayraktaroglu 2000] but there do not exist gen-

eral techniques to add on-line testing and sparing to a generic digital circuit. Nor-

mally, the goal of logic synthesis algorithms is to produce a circuit with minimum

area within a given timing constraint, thus redundant logic is eliminated. In fault-

tolerant synthesis, the mapped circuit intentionally contains redundancy in order

to mitigate faults. Redundant logic functions [Mohanram 2003, Sierawski 2006,

Sanchez-Clemente 2012, Adeleke 2012, Yuan 2013, Choudhury 2013] fall into this
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category. Similar work in this area also includes [Zheng 2009], where the au-

thors propose a technique for mapping logic to PLAs that have known defects.

In [Almukhaizim 2008], redundant wires are inserted in a combinatorial circuit,

specifically to reduce the sensitivity to transients.

In early work on approximate logic functions [Sierawski 2006], a BDD represen-

tation of the circuit was built and then pruned to produce approximate functions.

In [Sanchez-Clemente 2012], the authors perform a unate decomposition of the orig-

inal function and then simplify this by eliminating those lines with a testability

metric below a given threshold. The coverage of the resulting circuit is evaluated

with stuck-at and fixed-width transient faults. Other authors [Choudhury 2008,

Choudhury 2013] have used a Sum of Products (SOP) representation to build the

approximate logic function, which is the same representation used in this work.

In [Choudhury 2008], the authors use approximate logic for Concurrent Error De-

tection (CED) and extend this work in [Choudhury 2013] to the masking of stuck-at

and timing faults. Their algorithm does not consider the actual per-gate failure

rates. The primary contribution of the algorithm proposed in this chapter is the

fact that it considers the per-gate failure rates. This is achieved by incrementally

performing fault injection simulations as the sequence of approximate functions is

generated. Through careful consideration of the statistical confidence intervals, the

number of fault injections is kept to the minimum number required to identify the

next best cube to select. For several circuits, we illustrate the trade-off between

masking and increased area/power and for some circuits, we show higher quality

results than those obtained in previous work.

B.2 Overview of Approximate Logic Functions

The basic idea behind redundant logic is that any combinatorial logic function, G,

can be augmented with a simpler approximation of the min-terms (F) and the max-

terms (H), as in figure B.1. For any input vector for which F is true, G is also

true. In this way, if there is a fault causing G to incorrectly be false, then it may

be corrected by F. In a similar way, H may fix faults where G is incorrectly true.

Potentially, F or H can be empty (e.g. H=1, F=0). The maximum added delay is

two gates, and if either F or H is empty, the delay is a single gate. The challenge

is to generate F and H such that they mask a maximum number of faults while

minimizing the area and power overhead.

The failure rates of gates can vary significantly. Clearly, an inverter consisting of

two transistors is less prone to stuck-at faults than a complex gate with 10 transistors

like an XOR, as seen in figure B.2. For this reason, it is important to consider the

actual technology failure rates when synthesizing redundant logic functions. We

assume that the per-gate FIT rate, fi, has been characterized in advance.

Due to logical masking effects1, a fault in a given gate has a probability of

1We primarily consider the effect of logical masking. However, since the approach is based on

gate-level fault injections, the effect of electrical masking or pulse stretching would be taken into
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Figure B.4: Algorithm for Generating Redundant Logic

imate function (F or H). After selecting one cube, the FR metric for the remaining

cubes is re-calculated, in a lazy fashion described below. The cubes are then re-

sorted to identify the next best candidate.

The EPP is determined using statistical fault injection performed on the gate-

level circuit using a digital simulator. Random input vectors, within the scope of

the cube, are generated based on the distribution of vectors in V (a set of vectors

taken from an input trace). For each fault-injection, one gate is randomly chosen,

weighted by the per-gate FIT rates, fi. A stuck at fault (0 or 1) is injected on the

selected gate and it is determined if the fault propagates to a primary output. This

biased fault injection approach was chosen in order to take into account the actual

expected failure rates of the gates in the mapped circuit. This ensures that the

redundant logic functions are optimized to cover the faults that are most likely to

occur.

The objective is to perform the minimum number of fault injections necessary

in order to identify the next best term to select. To avoid running more simulations

than necessary, the simulations are launched in small batches of size Nbatch. After

the first batch of simulations, the value of EPP is estimated (�eppn), based on the

fraction of simulations where the fault propagates to an output. If we assume

that the distribution of �eppn is normal, then the confidence interval is given by

equation B.3 [Wasserman 2005, p. 130], as discussed in section 3.3.

�eppn ± zα/2

�
�eppn(1−�eppn)

n
(B.3)
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Using the number of cubes and the estimated EPP, the FR is computed for

each cube and the cubes are ranked. Due to the error bars, at the top of the list,

there may be multiple overlapping best candidates. In this case, additional fault-

injections are performed, in groups of Nstep, in order to further reduce the error

bars. Additional simulations are only run for those cubes that are potentially the

best candidate, based on their error bars. A maximum of Nmax simulations are

performed and if there are still multiple candidates, the term with the best FR is

simply selected, disregarding the other candidates whose FR estimate may overlap.

In these cases, there is little difference between the best candidates.

Consider the example logic function shown in figure B.3. After the first round

of the algorithm, with 20 fault-injections, the results are shown in table B.2 .

The term 0——1 has the highest FR metric, however, there are three other terms

(—11—,——10,11——) with FR metrics that could overlap, due to the error bars. The

remaining ten terms (shown in grey) can be eliminated as their FR metric is too

low, even considering the error bars, which are calculated using equation B.3.

Table B.2: Results after First Round

Inputs Output Type Num Terms Num FI FR Error Bar

0——1 G0 Max 4 20 2.6 0.546

—11— G1 Min 4 20 1.8 0.5696

——10 G1 Min 4 20 1.8 0.5696

11—— G0 Min 4 20 1.8 0.5696

1——1 G0 Min 4 20 1.4 0.546

0—1— G0 Max 4 20 1.4 0.546

11—— G1 Min 4 20 1.2 0.5248

1—1— G0 Min 4 20 1.2 0.5248

1—1— G1 Min 4 20 1.0 0.4956

0—00 G0 Min 2 20 0.8 0.2804

00—1 G1 Max 2 20 0.7 0.273

1000 G0 Max 1 20 0.7 0.1312

—00— G1 Max 4 20 0.6 0.4088

0—0— G1 Max 4 20 0.4 0.3436

After additional fault injections, the term 0——1 is selected as the first term to

add to F. Before proceeding to the next round, the table of min/max-terms must

be updated to reflect the overlap between 0——1 and the other terms. For example,

the number of terms for the cube 0—1— is reduced to 2 (0011 and 0111).

For the next round, new fault injections must be performed to reflect the cov-

erage provided by the redundant logic that has been added. Note, however, that

this is only necessary for terms that overlap with the newly added, redundant term.

Furthermore, the new FR can only be lower than the FR metric from the previ-

ous round, thus the previous FR estimate serves as a valid upper bound. Additional

fault-injections are only performed for those terms which are potentially the next
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best-candidate in the following round. In this way, a sequence of F, H functions

are generated with each one providing increasingly better coverage of G, taking into

account the actual failure rates of the library gates over a set of actual input vectors.

B.4 Experimental Results

Selected LGsynth93 and ISCAS benchmark circuits were synthesized into the 45nm

Nangate Library [Nangate 2008] using Synopsys DCTM. For both the original and

the protected circuits, the FIT rate was evaluated using equation B.1. For the

purpose of evaluating the initial circuit-level FIT rate, 10,000 fault-injections were

performed, to ensure small error bars. An arbitrary FIT rate (fi), was assigned to

each gate, proportional to the number of transistors in the gate.

We present the results as the FIT rate reduction which is the ratio of the

protected FIT rate to that of the original circuit. It is important to note that

this metric reflects the fact that failures can occur in the redundant logic and thus

represents a net FIT rate reduction. If the original FIT rate was 10 and the FIT

rate with the redundant logic is 5, the reduction is 2x.

The algorithm described in section B.3 was implemented using a Ruby script.

The parameter Nbatch was set between 20 and 100 based on the size of the circuit.

Nmax was set to 200 and Nstep was set to 10. An 80% confidence interval was

used (zα/2 = 1.28) when evaluating the error bars. The cubes were generated

with Espresso and the fault-injection simulations were performed with Mentor’s

ModelsimTM. The redundant logic functions (F, H) produced by the script were

synthesized with Synposys DCTM.

Table B.3: Summary of FIT Rate Improvement for Benchmark Circuits

Num. Num. FIT Area Power Num.

Circuit PI/PO Gates Cubes Reduction (%) (%) FIs

sao2 10/4 70 167 2x 5 3 13 270

alu4 14/8 469 2066 2x 46 51 358 410

5xp1 7/10 65 153 2x 100 111 13 160

ex5p 8/63 188 652 2x 69 49 106 130

f51m 8/8 73 155 2x 103 91 14 280

inc 7/9 69 142 2x 52 57 13 450

S386 13/13 64 163 2x 34 32 24 140

S1488 14/25 297 1639 2x 38 44 326 930

S1484 14/25 298 1636 2x 38 50 248 570

During synthesis, the tool was allowed to share logic between the F and H func-

tions across multiple outputs but it was ensured there was no logic sharing with the

original function G. We note that this approach is different from [Sanchez-Clemente 2012]

where sharing between F and H was explicitly prevented during synthesis. When

logic sharing is prevented, faults in one of the approximate functions are fully
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blocked because the original function and the other approximation are correct (see

figure B.1). Of course, this benefit comes with the downside that the area of the

shared logic is increased. In future work, we intent to compare the results obtained

with and without logic sharing between F and H.

In figure B.5 the area and power overhead required to achieve increasing levels

of stuck-at fault masking for four different circuits are shown. Each data point

was produced after 5 additional cubes were added to the redundant logic and the

connecting lines show the order of cube selection. It is interesting to note that in

some cases there are points where adding an additional cubes reduces the area and

power, presumably because the extra cubes enables new logic simplification. Two

data points are plotted comparing published results on the same circuits. We note

however, that with our fault model, the per-gate failure rate varies, whereas in the

previous work it was fixed.
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Figure B.5: Area, Power Overhead versus FIT Rate Reduction

Table B.3 summarizes the area, power and timing overhead for ten circuits,

showing the first generated result providing at least a 2x reduction in FIT rate. It is

interesting to note that the required overhead to achieve a 2x reduction in the FIT

rate varies from 5% to over 100%. We believe this is partly due to the SOP circuit

representation, however, it suggests that, we may be far from the optimal solution.
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B.5 Conclusions

Protecting random, combinatorial logic from faults is a challenging problem. The

proposed approach based on a SOP representation, uses a fault model that accounts

for different gates having different failure rates and shows promising results for

selected, small circuits. It is true that the overheads are significant compared to

those for protecting memories or other regular structures. However, given that the

hard and soft FIT rates due to combinatorial logic are no longer trivial and that

random logic represents a small fraction of most dies, they may be acceptable. In

an industrial context, generic solutions are required which can be applied directly

to a gate-level netlist, however this is not the case of many on-line test techniques.

The proposed technique can be applied automatically to any combinatorial circuit

and the number of fault injection simulations is carefully managed.

Additional work is underway to extend the fault model to include SETs and

to account for the power overhead during the minimization process. In the imple-

mentation described here, the synthesis tool was allowed to share logic between the

F and H functions. A study is underway to evaluate whether better results are

obtained with or without such sharing. In addition, a method to decompose large

circuits is also required in order to process industrial scale designs.





Appendix C

Protection of FPGA CRAM or

TCAMs using BICS

C.1 Overview of SRAM Based FPGAs and TCAMs

FPGAs are programmable devices that can be configured to implement a specific

logic function. The configuration information for an FPGA is stored in a memory

called a Configuration RAM (CRAM) and there are three broad types of CRAMs :

SRAM-based, flash-based and anti-fused based. Currently, SRAM-based FPGAs

have significantly higher density and performance than flash or anti-fuse based

FPGAs and there is significant interest in using them in aerospace applications.

Unfortunately, the CRAM in SRAM-based FPGAs is sensitive to soft errors and

upsets in the CRAM change the implemented logic function.

Clearly, not all bit-flips result in a change in the logic function and Xilinx clas-

sifies CRAM bits as shown in figure C.1. The essential bits are the ones that are

actually used to control the logic in the design. Amongst these bits, the ones that

control logic that the designer deems to be important are classified as prioritized
essential bits. Finally, the critical bits are those which, when they are upset, actu-

ally cause a system-level error. This taxonomy is reproduced from [Xilinx 2012] in

figure C.1.

Figure C.1: Classification of CRAM Bits
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Traditional ECC techniques are not easily applicable to the CRAM of an FPGA

because all the bits of the entire memory are continuously read to control the logic

array. A common technique to detect errors in the CRAM uses a scan engine. The

scan engine cycles through the addresses of the CRAM, reading them and detecting

whether there is an error. The detection can be performed using an error detecting

or correcting code (e.g. parity or ECC). Typically the scan engine reads the CRAM

in a linear pattern and the worst case error detection time can be on the order of

several milliseconds for modern FPGAs. During the window of time between the

occurrence of the upset and the detection of the error by the scan engine, the logic

array is not performing the correct function. Even after the error in the CRAM

is corrected, the effect of the incorrect logic function may persist. The smaller

the window of time during which the fault is present, the less the risk that there

will be a persistent system level effect. Scan-based techniques can be accelerated

through the use of multiple, parallel scan engines, however, additional scan engines

required additional area and power. In this section, we propose a technique that can

significantly reduce the detection latency for SEUs in the CRAM of FPGAs with

minimal area and power overhead.

C.2 Overview of BICS

A BICS is a circuit that can directly detect the current induced by the strike of an

ionizing particle. BICS designs have been proposed for the detection of SEUs in

memories [Vargas 1994, Gill 2005] as well as in logic [Zhang 2010, Zhang 2013]. An

example BICS circuit is reproduced from [Wirth 2008] in figure C.2. Although these

circuits are attractive for detecting Single Event Effects (SEEs), they suffer from two

common shortcomings. First, a BICS circuit must be tuned so that it only detects

current impulses that correspond to actual particle strikes. With increased process

variability, this can be challenging. Second, BICS are subject to a high-rate of false
positives. Frequently, a BICS will detect a current pulse that does not actually

cause a bit-flip. These false positives may actually result in reduced availability,

depending on the error recovery mechanism.

Figure C.2: Sample BICS Implementation
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C.3 Use of BICs to Protect CRAMs

The idea proposed in this section consists of using a series of BICS circuits embedded

in the CRAM of an FPGA to detect the ionizing particle when it strikes, as shown

in figure C.3. Each BICS circuit detects upsets that correspond to a small range of

logical addresses in the memory.
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Figure C.3: Scan Engine Guided by BICS

When an ionizing event occurs, it is detected by one of the BICS and this is

immediately communicated to the scan engine. Upon such an event, the scan engine

interrupts its normal scan process and immediately starts scanning the small range

of addresses within the array that are covered by the BICS that detected the strike.

When the address with the error is located, it can be corrected immediately.

With the standard scan-based approach, the detection and correction interval

depends on the time required by the scan engine to read the entire CRAM. With

the proposed approach, the interval is bounded by the time for the scan engine to

react to the BICS and then to read the small region of the CRAM that is covered

by a single BICS. This time can be made small by increasing the number of BICS.

The difference between the two approaches is illustrated in figure C.4.

BICS circuits must be tuned and they are prone to false positives. In the

proposed application, such false positives are not a concern. If the BICS incorrectly

interrupts the normal scan process and directs it to a region of the memory where

there is no error, this is benign. At worst, this occasionally causes a small increase

in the regular scan interval. The fact that the scan engine remains active ensures

that if an ionizing event occurs that is not detected by the BICS, it will eventually

be detected by the background scan.
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Figure C.4: Reduced Scan Interval due to BICS

C.4 Extension to TCAMs

A TCAM is a specialized memory which matches an incoming key against a set of

stored entries where each entry contains a string of zeroes, ones or don’t care bits.

Storage cells in a TCAM are subject to soft errors and traditional ECC are not

easily applicable because all the bits of the entire memory are continuously read to

match against the incoming search key. A common technique to mitigate errors in

TCAMs is to use a scan engine, conceptually similar to the type used for SRAM-

based FPGAs. During the window of time between the occurrence of the error and

the detection of the error by the scan, the TCAM may return incorrect responses.

In networking applications, TCAMs are used for packet classification including the

implementation of security features such as Access Control Lists. During the window

of time between when an error occurs and when it is detected, packets may be mis-

classified and potentially this could represent a security threat.

Exactly the same approach that is described for FPGA CRAM can be applied to

TCAM. Specifically, when a BICS embedded in the TCAM array detects a potential

ionizing radiation event, the existing scan engine is directed to scan the memory

region where the event occurred. In this way, the average error detection time is

greatly reduced.

C.5 Summary

The idea of using BICS to protect memories is quite old [Vargas 1994]. However,

to the best of the author’s knowledge, the idea of coupling a BICS circuit with

a background scan engine in order to reduce error detection latency is new. The

combination of these techniques is attractive because the false positives from the

BICS are not an issue. At the same time, if there are events that are not detected

by the BICS, they will be detected by the background scan.
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Abstraction Techniques for Scalable Soft Error Analysis and

Mitigation

Abstract: The main objective of this thesis is to develop techniques that can be

used to analyze and mitigate the effects of radiation-induced soft errors in industrial

scale integrated circuits. To achieve this goal, several methods have been developed

based on analyzing the design at higher levels of abstraction. These techniques

address both sequential and combinatorial SER.

Fault-injection simulations remain the primary method for analyzing the effects

of soft errors. In this thesis, techniques which significantly speed-up fault-injection

simulations are presented. Soft errors in flip-flops are typically mitigated by selec-

tively replacing the most critical flip-flops with hardened implementations. Selecting

an optimal set to harden is a compute intensive problem and the second contribu-

tion consists of a clustering technique which significantly reduces the number of

fault-injections required to perform selective mitigation.

In terrestrial applications, the effect of soft errors in combinatorial logic has

been fairly small. It is known that this effect is growing, yet there exist few tech-

niques which can quickly estimate the extent of combinatorial SER for an entire

integrated circuit. The third contribution of this thesis is a hierarchical approach

to combinatorial soft error analysis.

Systems-on-chip are often developed by re-using design-blocks that come from

multiple sources. In this context, there is a need to develop and exchange reliability

models. The final contribution of this thesis consists of an application specific

modeling language called RIIF (Reliability Information Interchange Format). This

language is able to model how faults at the gate-level propagate up to the block and

chip-level. Work is underway to standardize the RIIF modeling language as well as

to extend it beyond modeling of radiation-induced failures.

In addition to the main axis of research, some tangential topics were studied in

collaboration with other teams. One of these consisted in the development of a novel

approach for protecting ternary content addressable memories (TCAMs), a special

type of memory important in networking applications. The second supplemental

project resulted in an algorithm for quickly generating approximate redundant logic

which can protect combinatorial networks against permanent faults. Finally an

approach for reducing the detection time for errors in the configuration RAM for

Field-Programmable Gate-Arrays (FPGAs) was outlined.

Keywords: Single-event effects, single-event upsets, single-event transients,

reliable systems, fault-injection
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