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Résumé en Français

Cette thèse de doctorat porte sur ma recherche doctorale sur la diffusion molécu-
laire sur des surfaces dematériaux carbonés. Ces travaux de recherche ont été effec-
tués sous forme d’études de spectroscopie neutronique et d’hélium. Des modèles
théoriques ont été développés pour l’analyse et l’interprétation des données ex-
périmentales. Dans une première partie, la méthode de croissance épitaxiale d’une
couchedegraphène sur une surface (111) d’un cristal de nickel est décrite. Basés sur
des études de spectroscopie à écho de spin d’hélium, des modèles d’adsorption et
dediffusiond’eau et debenzène sur la surfacedegraphèneont ensuite été élaborés.
L’objectif est de décrire précisément la structure de l’adsorbât et la diffusionmolécu-
laire sur la surface. Dans une deuxième partie des études portant sur la diffusion
d’hydrogène moléculaire adsorbé dans un aérogel de carbone, dans un carbone
poreux, et dans un graphite exfolié sont présentés. Les résultats expérimentaux de
spectroscopie en temps-de-vol neutronique nous permettent d’établir le rapport en-
tre la mobilité des molécules d’hydrogène et les propriétés spécifiques aux matéri-
aux de carbone.

Abstract

This thesis presents my PhD work about molecular diffusion on surfaces of carbon
materials. Themain research has been undertaken in the formof neutron and helium
spectroscopy studies and theoretical models have been developed for an interpre-
tation of experimental data. In the first part, the growth procedure of an epitaxial
graphene layer on the (111) surface of a nickel crystal is described and the adsorp-
tion and diffusion of water and of benzene on the graphene surface are discussed.
Results from helium spin-echo spectroscopy studies are presented with the aspira-
tion to obtain a detailed qualitative and quantitative description of the structure of
the adsorbate and the molecular diffusion on the surface. In the following chapters,
the diffusion of molecular hydrogen adsorbed in carbon aerogel, in a novel porous
carbon D-96-7, and in exfoliated graphite is discussed, based on results from neu-
tron time-of-flight spectroscopy. The aim is a detailed understanding of the connec-
tion between porosity, surface chemistry, and the molecular diffusion.
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1 Introduction en Francais

L’adsorption physique des molécules de carbone joue un rôle prépondérant dans
différents domaines technologiques, par exemple le développement des piles à
combustible, le stockage d’énergie et le dopage moléculaire de graphène. D’un
point de vue plus fondamental, l’étude de diffusion moléculaire sur une surface de
carbone est primordiale pour la compréhension détaillée du frottement à la surface
et de la lubrification [1, 2, 3, 4].

L’adsorption d’hydrogène dans desmatériaux poreux en carbone a été étudiée avec
grand intérêt durant la dernière décennie, puisque le carbone est vu de plus en
plus comme un matériau prometteur pour le stockage d’hydrogène, en particulier
à bord de véhicules légers [5]. La possibilité de créer des structures de grande
porosité et de surface spécifique très élevée, combinée avec un faible poids spé-
cifique, a mené à la création d’un grand nombre de matériaux poreux en carbone,
dont le but est d’adsorber des grandes quantités d’hydrogène [2, 6, 7]. La majorité
des études expérimentales sur ces systèmes ont pour objectif de définir des capac-
ités d’adsorption. Bien que l’adsorption et les propriétés chimiques sont profondé-
ment reliées au taux de diffusion, il existe relativement peu d’études sur la diffusion
d’hydrogène adsorbé.

Le graphène a attiré un grand intérêt durant les dernières années et beaucoup
d’applications potentielles sont en discussion. Suite à études théoriques depuis les
années 1940, des progrès significatifs ont été réalisés pendant la dernière décen-
nie en ce qui concerne l’isolation et la croissance de graphène [8]. Le dopage de
graphène avec des molécules adsorbées a été montré et il ouvre des perspectives
pour des applications potentielles [9, 10]. Un dopage non intentionnel à cause
d’eau adsorbée a mené à la première observation [11] et depuis, l’effet a été montré
sur différentes molécules de gaz [10, 12]. Dans ce contexte, la diffusion moléculaire
sur la surface de graphène devient très intéressante, en particulier en raison de la
possibilité de déterminer avec une très bonne précision les forces d’interaction à
partir des taux de diffusion [13].
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1 Introduction en Francais

L’objectif de cette recherche doctorale est l’investigation des propriétés d’adsorp-
tion, de structure et de dynamique d’une série de molécules adsorbées sur des
surfaces de matériaux carbonés. Les molécules étudiées sont l’hydrogène molécu-
laire, l’eau, et le benzène. Les substrats de carbone sont: une couche de graphène
sur la surface (111) de nickel, un graphite exfolié, un aérogel de carbone et un
carbone poreux. Dans ce but, une série d’expériences de spectroscopie neutron-
ique et d’hélium a été effectuée et des modèles théoriques ont été développés afin
d’expliquer les données expérimentales avec le plus de détails possibles.

Plan du manuscrit

Dans le chapitre 3, le lecteur est introduit aux concepts généraux de la diffusion
neutronique et d’hélium. Un résumé des théories respectives de diffusion est donné
et lesméthodes de spectroscopie en temps-de-vol neutronique, de spectroscopie à
écho de spin neutronique (NSE), et de spectroscopie à écho de spin d’hélium (HeSE)
sont expliquées. Le but est de présenter le cadre théorique et conceptuel, qui est
nécessaire pour apprécier l’analyse de données, ainsi que les modèles théoriques,
qui sont appliqués dans les chapitres suivants.

Dans le chapitre 4, la croissance d’une couche de graphène épitaxiale à la sur-
face (111) d’un cristal de nickel par dépôt chimique en phase vapeur est expliquée.
Le chapitre développe ensuite des études structurales de diffusion d’hélium (HAS),
lesquelles confirment une concordance entre le réseau hexagonal de graphène et
le réseau fcc de nickel. Une haute réflectivité et une inertie chimique sont observées,
ainsi qu’une très faible ondulation de densité électronique. Finalement, des spec-
tres de phonons dans le régime de basse énergie, obtenus par spectroscopie HeSE,
sont présentés. Ils montrent les mêmes modes qu’à la surface vierge de nickel, no-
tamment le mode Rayleigh et la résonance longitudinale.

Le chapitre 5 a pour sujet l’adsorption d’eau à la surface de graphène/Ni(111). Des
études HAS d’adsorption et de désorption sont présentées, où il est montré que la
formation d’îlots domine l’adsorption à basse température, tandis que de la désorp-
tion se produit à haute température à partir des surfaces d’îlots. Des valeurs précises
pour la section efficace de diffusion d’hélium de la molécule d’eau et pour l’énergie
de désorption sont dérivées. Les résultats d’une étude structurale HAS montrent
l’existence de glace amorphe à basse température, ainsi qu’un dé-mouillage de la
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surface de graphène sous réchauffement. La partie principale du chapitre est focal-
isée sur la diffusion des molécules de H2O à la surface de graphène. A partir des
résultats d’expériences HeSE, nous proposons un procès de diffusion par sauts en-
tre des sites d’adsorption situés au-dessus du centre de l’hexagone de graphène.
Des valeurs pour le taux et la barrière de potentiel pour la diffusion sont calculés à
partir des données expérimentales. Des phonons Rayleigh du graphène et de glace
sont également observés, ainsi qu’un processus rapide, auquel nous attribuons une
diffusion rotationelle des molécules à la surface du graphène.

Dans le chapitre 6, des études structurales du benzène adsorbé à la surface de base
(0001) de graphite sont présentées incluant des mesures de diffraction neutronique
sur un substrat de graphite exfolié. Dans le régime sous-monocouche, l’existence
d’une structure proportionnelle (

√
7 x

√
7)R19° est confirmée. Des mesures à cou-

verture plus grande révèlent la formation d’îlots 3D au lieu d’une deuxième couche.
Les îlots multicouches présentent la structure du benzène cristallin.

Dans le chapitre 7, des investigations structurales et dynamiques de benzène ad-
sorbé à la surface de graphène/Ni(111) sont présentées. Dans une première partie,
des études d’adsorption sont illustrées, lesquelles montrent la formation de couche
jusqu’à la couverture complète par une monocouche. Des études de désorption
thermique et isothermique montrent la désorption en un seul pic, ce qui nous
permet de déduire une valeur pour l’énergie de désorption. Dans une deuxième
partie, des résultats des mesures HAS structurales sont présentés, qui confirment
l’existence d’une structure proportionnelle (

√
7 x

√
7)R19°. La partie principale du

chapitre présente ensuite des résultats d’une série d’expériences HeSE, lesquels
montrent la coexistence d’une diffusion lente et d’une diffusion rapide. La diffusion
rapide est constituée en partie d’une diffusion de type Brownien et en partie de
diffusion balistique. La dernière montre une asymétrie directionnelle, que l’on at-
tribue à la géométrie de la surface d’énergie potentielle. La diffusion lente porte la
signature d’une diffusion par sauts, son origine reste encore inexpliquée.

Dans le chapitre 8, les résultats des mesures de spectroscopie neutronique en
temps-de-vol (TOF) d’hydrogène moléculaire adsorbé dans un carbone poreux
D-96-7 et dans du graphite exfolié sont présentés. Une caractérisation de D-96-7
est donnée, à partir d’études d’adsorption isothermique et de diffusion aux petits
angles. Des études structurales de diffusion neutronique pour les deux matériaux
sont ensuite exposées. La partie principale du chapitre se concentre sur des études
de diffusion neutronique quasi-élastique (QENS), où la coexistence de deux types

3



1 Introduction en Francais

de diffusion a été observée, une diffusion par sauts et une diffusion Brownienne.
L’application d’un modèle de disques durs rugueux (RHD) permet le calcul des
contributions de frottement cinétique et de frottement de surface. Finalement,
les résultats sont comparés avec ceux des études préalables des systèmes de
carbone.

Dans le chapitre 9, nous présentons des études d’hydrogène moléculaire adsorbé
dans un aérogel de carbone. Dans une première partie, une caractérisation du
matériel est donnée à partir de mesures d’adsorption isothermique et de diffusion
aux petits angles. Dans la partie principale, nous discutons l’analyse des données
et les résultats d’une mesure neutronique TOF. Nous avons observé que l’aérogel
de carbone est un catalyseur fort de conversion d’états de spin de la molécule
d’hydrogène. Nous proposons un lien entre la conversion incomplète et un con-
finement rotationnel des molécules dans des ultra-micropores. Finalement, nous
présentons des résultats d’études QENS, avec lesquels nous montrons une diffu-
sion activée des molécules d’hydrogène, puis nous comparons les résultats avec
des études préalables sur d’autres systèmes de carbone.
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2 Introduction

The pvhysical adsorption of molecules on carbon surfaces plays an important role in
very different aspects of our everyday life. From fuel cell and energy storage tech-
nologies, over molecular doping of graphene, to a basic understanding of surface
friction and lubrication: understanding theway howamolecule adsorbs anddiffuses
on a carbon surface is of fundamental interest [1, 2, 3, 4].

Hydrogen adsorption in porous carbon materials has been studied with great inter-
est during the last decade since carbon is increasingly seen as a promising candi-
date for hydrogen storage, especially on-board light vehicles [5]. The possibility to
create highly porous structures with very large specific surface areas together with
a low specific weight has led to the creation of a large number of highly porous
carbon materials, where the hope is to adsorb high quantities of hydrogen in a re-
versible process [2, 6, 7]. The majority of experimental studies on these systems
aims at defining adsorption capacities; even though adsorption and chemical prop-
erties are deeply connected with surface diffusion rates, relatively few experimental
studies on the diffusion of adsorbed hydrogen exist.

Graphene, a pure carbon material that consists of a single sheet of hexagonal car-
bon, has received an enormous attention in the last years, with many potential ap-
plications being discussed. While it has been studied theoretically since the 1940s,
large progress in its production by isolation or growth has been achieved in the last
decade [8]. Doping of graphene by single molecules has been proven to work and
opens perspectives for potential applications [9, 10]. Its first observation was un-
intentional, when accidental doping was caused by adsorbed water molecules [11]
and since then, the effect has been shownondifferent gases and aromaticmolecules
[10, 12]. In this context, the diffusion of water and benzene on the graphene surface
becomes highly interesting, especially because of the ability to precisely determine
interaction strengths from diffusion rates [13].
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2 Introduction

The goal of this PhD work is to investigate the adsorptive, structural, and dynamical
properties at an atomic length scale of water, benzene, and hydrogen on the sur-
face of carbon materials, such as epitaxially grown graphene on a Ni(111) surface,
exfoliated graphite, a novel highly porous carbon D96, and carbon aerogel. For
that purpose, a series of neutron and helium spectroscopy experiments have been
undertaken and theoretical models have been developed that aim at explaining the
experimental data to the greatest possible extend.

Outline of the manuscript

In chapter 3, the reader is introduced to the general concepts of neutron and helium
scattering. An outline of the respective scattering theories is given and the exper-
imental methods of neutron time-of-flight (TOF) spectroscopy, neutron spin-echo
(NSE) spectroscopy, and helium spin-echo (HeSE) spectroscopy are explained with
a focus on the relevance to this PhD work. The goal is to supply the reader with the
theoretical and conceptual framework, which is necessary to fully appreciate thedata
analysis and the validity of the theoretical models that are applied in the following
chapters.

In chapter 4, the growth of an epitaxial graphene layer on a Nickel (111) surface by
chemical vapour deposition is described and structural heliumatomscattering (HAS)
studies are discussed, which confirm a matching of the hexagonal graphene lattice
with the Nickel fcc lattice. A high reflectivity and inertness are observed, as well as
a very small electron density corrugation. Finally, phonon spectra in the low energy
region obtained by HeSE studies are presented, which show the same modes as on
the pristine Ni surface, namely the Rayleighmode and the longitudinal resonance.

In chapter 5, we discuss the structural and dynamical properties of water adsorbed
on the graphene/Ni(111) surface. HAS adsorption and desorption studies are pre-
sented, where it is shown that island formation governs low temperature adsorption,
while desorption at higher temperatures happens from ice islands. Accurate values
for the helium scattering cross section of the H2O molecule and for the desorption
energy are derived. The results from a structural HAS study then show the existence
of amorphous ice at low temperaturewith ade-wettingof thegraphene surface upon
heating. Themain part of the chapter focusses on the diffusion of H2Omolecules on
the graphene surface. Based on HeSE measurements, we suggest a jump diffusion
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process between adsorption sites that are located above the centre of a graphene
hexagon and derive values for the rates and the potential barrier of diffusion. A sec-
ond, fast diffusion is observed, which we attribute to a uni-axial rotational diffusion
of single water molecules on the graphene surface. Furthermore, the persistence of
the graphene phonon modes is discussed.

In chapter 6, structural studies of benzene adsorbed on the (0001) basal plane of
graphite are presented, based on neutron diffractionmeasurements with a substrate
of exfoliated graphite. In the sub-monolayer regime, the existence of a commensu-
rate (

√
7 x

√
7)R19° over-structure is confirmed and a melting at high temperature is

observed. Measurements at higher coverage reveal formation of 3D islands instead
of a second layer, which exhibit the structure of solid, crystalline benzene.

In chapter 7, structure and dynamics investigations of benzene adsorbed on the
surface of graphene/Ni(111) are presented. In a first part, adsorption studies are
discussed that reveal a layer formation up to the monolayer. Thermal and isother-
mal desorption studies exhibit a single peak that enables us to deduce a value for
the desorption energy. In a second part, the results of structural HASmeasurements
that confirm the existence of a commensurate (

√
7 x

√
7)R19° over-structure, are pre-

sented. The main part of the chapter then presents a series of HeSE measurements,
which reveal the coexistence of a fast and slow diffusion. The fast diffusion consists
partly of Brownian-type diffusion and partly of ballistic diffusion. The suggestion is
made that the ballistic motion occurs along a preferential direction, which we link
to the structure of the potential energy surface (PES). The slow diffusion exhibits the
signature of activated jump diffusion, the exact nature and origin of which is unclear
up to this point.

In chapter 8, neutron TOF studies of molecular hydrogen adsorbed in exfoliated
graphite and in a novel highly porous carbon are presented. A characterisation
of D-96-7, based on isothermal adsorption measurements, is given and structural
neutron scattering investigations on both materials are discussed. The main part of
the chapter focusses on quasi-elastic neutron scattering (QENS) studies of adsorbed
hydrogen in the two materials, where a coexistence of two diffusion processes has
been observed: jump diffusion and Brownian-type diffusion. Applying the rough
hard disk (RHD) model allowed us to calculate the contributions from collisional and
from surface friction, respectively. Finally, the results are compared to results on
other carbon systems.

7



2 Introduction

In chapter 9, we present studies of molecular hydrogen adsorbed in a carbon aero-
gel. In a first part, a characterisation of the carbon aerogel is given and results from
isotherm adsorption measurements and their implications on an expected pore size
distribution are discussed. In a second part, large scale as well as atomic length
scale structures of the carbon aerogel are presented. In the main part, we discuss
the analysis and results of experimental data obtained from a neutron backscatter-
ing measurement. In the first part of the analysis of the neutron scattering data we
focus on the conversion of the spin states in the hydrogen molecule and on our ob-
servations of the carbon aerogel being a strong conversion catalyst. We discuss the
suggestion that an incompleteness of the conversion is linked to rotational confine-
ment ofmolecules in ultra-micropores. Finally, we present results fromQENS studies
where we show that a two-dimensional jump diffusion process governs the hydro-
gen dynamics and we compare the observed activation energy for diffusion and the
diffusion constant to existing results on other carbon systems.
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3 Methods

3.1 Adsorption and Desorption

The aim of this section is to give a brief overview over the main concepts of adsorp-
tion on surfaces. Adsorption is the association of an atom or a molecule to a sur-
face. The surface is here referred to as the adsorbent, while the impinging particle is
given the name adsorbate or adparticle, or, depending on its exact nature, adatom
or admolecule. Adsorption can is commonly classified by two different regimes,
chemisorption and physisorption. In a chemisorption process, a covalent bond is
formed between the adsorbent and the surface, giving rise to an adsorption energy
in the order of an electronvolt (eV). Physisorption, on the other hand, refers to a pro-

a) b)
Figure 3.1: Illustration of the possible adsorption processes of hydrogen with a

graphene surface. a) Chemisorption of a hydrogen atom to the surface
by chemical bonding. The large interaction energy distorts the surface
structure. b) Physisorption of a hydrogenmolecule to the surface via van
der Waals interaction.

cesswhere the adsorbate is boundby theweak vanderWaals (vdW) interaction, with
adsorption energies in the range of tens to hundreds ofmilli-electron volt (meV). This
interaction results from permanent, spontaneous or induced electric dipoles or mul-
tipoles. In the case of two molecules, the electric dipole moment of each molecule
scales with r−3, therefore the strength of the vdW interaction scales with r−6. The
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3 Methods

potential energy of the system is often described by the Lennard-Jones potential,
which consists of a r−12 term for the strong repulsive interaction stemming from the
orthogonality of the electron wave functions and a r−6 term for the attractive vdW
interaction. In the case of physisorption, this term scales with r−3 due to the large
two-dimensional extension of the surface (Fig. 3.2).

Figure 3.2: Illustration of the Lennard-Jones potential for the description of a ph-
ysisorption process. V0 denotes the potential minimum, z0 denotes the
distance of the adsorbate to the surface at minimum interaction poten-
tial.

3.1.1 Kinetics of Phisysorption on a Surface

The surface exposure E is defined as the impinging flux of adsorbate molecules on
the surface integrated over the time of exposure. Its unit is the Langmuir, defined as
1 L = 1 torr ·µs = 1.33mbar ·µs. The Langmuir model allows us to relate the surface
coverage θ with the exposure through the kinetic theory of gases [14]:

θ =
E

√

2πmkBTgas

=

∫

p dt
√

2πmkBTgas

, (3.1)
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3.1 Adsorption and Desorption

with the gas temperature Tgas , the Boltzmann constant kB , the mass of the adpar-
ticle m, and the pressure p. This rather simple model does not take into account
desorption or multilayer adsorption and assumes a sticking coefficient of unity.

In a more detailed picture, the adsorbate can undergo different processes after ad-
sorption on the surface, such as subsequent desorption, formation of flat or 3D
islands, or ordering due to long range repulsive interaction between adparticles.
Especially in the physisorption regime, adparticles are highly mobile. Depending
on the inter-particle and the adparticle-surface interaction, the adsorbate can form
three-dimensional islands or gradually cover the surface, forming a monolayer (the
adsorbate wets the surface).

Isothermal Desorption

The reverse process of the adsorption is desorption, in which an adparticle leaves
the surface. This is generally an activated process, where the desorption constant kd

follows an Arrhenius-type law:

kd = A exp

(

− Ed

kBT

)

, (3.2)

where A is a pre-exponential factor and Ed is the desorption energy [14, 15]. The
desorption rate r = dθ/ dt is given by;

r =
dθ

dt
= −kdθ

m, (3.3)

wherem is the order of desorption. A direct desorption of singlemolecules from the
surface would correspond to a first order desorption process (m =1), while recom-
binative desorption of e.g. two atoms into a dimer yields a second order process
(m =2). The case where the desorption rate is limited (e.g. multilayer desorption),
coverage-independent zeroth-order desorption is observed (m =0). For isothermal
desorption (i.e. at constant temperature) and in the case of first order desorption,
the surface coverage decays exponentially with time (at high enough temperatures).
By measuring the decay rate at different temperatures, the activation energy of des-
orption Ed of a system can be established (see e.g. Sec. 5.2.2).
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Thermal Desorption Spectroscopy

A common technique to establish binding energies is the thermal desorption spec-
troscopy (TDS). Hereby, the adsorbate covered surface is heated at a constant rate
β while the flux of desorbed adparticles is monitored via the signal of a mass spec-
trometer or indirectly by observing the specular helium reflectivity (see Sec. 3.3).
The desorption rate r depends on β = dT

dt
by dr

dT
= −kd

β rm. Combining this with Eq.
3.2 yields:

dθ

dT
= −θm A

β
exp (−Ed/kBT ) (3.4)

The temperature Tp , where the maximum of the desorption peak is situated, is re-
lated to Ed :

Ed

kBT 2
d

=
A

β
exp (−Ed/kBTp) (3.5)

The Redhead equationmakes the assumption that the activation energy and the pre-
exponential factor are coverage-independent and gives an approximative solution
[16]:

Ed = kBTp

[

ln

(

ATp

β

)

− 3.64

]

. (3.6)

The Redhead equation is commonly applied for first order kinetic processes but it
can also be used for fractional or zero order kinetics if the initial coverage for which
TD traces are analysed corresponds to one complete monolayer [15].

3.2 Neutron Scattering

Neutron scattering has been highly successful in condensedmatter research, mainly
due to the fact that neutrons penetrate matter and scatter within the sample, reveal-
ing information about the inner structure and dynamics of the sample. Since the
neutron is one of the fundamental building blocks of matter, thermal and cold neu-
trons fulfil two important criteria at once, that is their wavelength and energy cor-
respond to typical inter-atomic distances and vibrational energies, respectively. In
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3.2 Neutron Scattering

Source Energy [meV] Temperature [K] Wavelength [Å] Velocity [m/s]
cold 0.1–10 1–120 30–3 140–1400
thermal 5–100 60–1000 4–1 1000–4400
hot 100–500 1000–6000 1–0.4 4400–10000

Table 3.1: Approximate energy, temperature and wavelength ranges for the three
main kinds of neutrons produced in a research reactor (from [17]).

order to produce a neutron beam with sufficient flux for a typical condensed matter
experiment, either a nuclear reactor or a spallation neutron source are required. The
neutron scattering experiments that have contributed to this thesis have been car-
ried out in both types of sources. We have performed a number of measurements at
the research reactor Institut Laue-Langevin (ILL) in Grenoble, France, whose reactor
is designed in a way that aims at maximising the production of neutrons. A nuclear
fuel element of highly enriched uranium produces a high flux of fast neutrons that
are moderated by a surrounding pool of heavy water and by a vessel filled with liq-
uid hydrogen. Neutronguides, evacuated tubeswithwalls coatedwith supermirrors
that reflect neutrons, point out from the centre of the reactor to scientific instruments
situated some tens of meters away from the reactor pool. At the ISIS neutron source
in Didcot, UK, neutrons are created by spallation. Here, a synchrotron accelerates a
proton beam to 160 kW and orders the protons into small bundles. The proton bun-
dles collide with a tungsten target that is rotating to dissipate the large amount of
heat. Because of the high energy impact, the tungsten nuclei become excited and
emit high energy neutrons. As in a research reactor, neutron guides lead from the
target to instruments in a nearby experimental hall. For most instruments, includ-
ing the ones that we used for the measurements presented here, thermal and cold
neutrons are needed. This requires a substantial slowing down of the fast neutrons,
which is achieved in a reactor by moderation in the heavy water reactor pool, and
in the case of a spallation source and for the production of cold neutrons in gen-
eral, by further collisional cooling in a bath of liquid hydrogen or deuterium at 20K.
Tab. 3.1 gives a comparison of typical neutron energies andwavelengths at different
temperatures.

Situated at the end of the neutron guides are a range of different research instru-
ments. To study condensed matter, the existing instruments can be categorised
into two main groups. The diffractometers exploit neutron diffraction phenomena
that occur in the elastic scattering process of a neutron with the nuclei of a sample.
Elastic coherent scattering from repeating structures gives rise to interference that
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returns structural information of a sample. In this thesis, measurements from the
high-intensity two-axis diffractometer D20 and from the small-angle neutron scat-
tering (SANS) diffractometer D22, both situated at ILL will be discussed. Neutron
spectrometers exploit the energy transfer of a neutron with the sample in the event
of inelastic neutron scattering to gain information about ordered and chaotic dynam-
ics. We will discuss in this thesis results from experiments at the TOF spectrometer
IN6 at ILL, from the neutron backscattering (BS) spectrometerOSIRIS at ISIS and from
the NSE spectrometer IN11 at ILL.

3.2.1 Neutron Scattering Theory

In this section, we will give a brief introduction into the basic neutron scattering the-
ory that is necessary to understand the interpretation of the experimental results.
The section follows closely H. Schober’s introductory article [18] and to somedegree
the introductory books by G.L. Squire [17] and by M. Bée [19]. In our experiments,
neutrons have been scattered from condensed matter in order to gain information
about the system of interest by analysing the energy and directional momentum of
the scattered neutrons. In the energy range used in these investigations, the neu-
tronsmove non-relativistically and their only internal degree of freedom is their spin.
The neutron is uncharged and the scattering process with nuclei involves only nu-
clear forces. Quantum-mechanically, the neutron wave function can be described
by its wave-vector k , and its spin S , φ = |k, S⟩. The neutron is a lepton, i.e. S = ±1

2

[18]. For a neutron with mass m and velocity v , the de Broglie relation states that
its momentum p is related to its wave-vector k via p = mv = ℏk and its angular fre-
quency ω to its energy E via ℏω = E , where ℏ is the reduced Planck constant. This
also relates E to the neutron wavelength λ:

E =
m

2
v2 =

ℏ
2k2

2m
=

h2

2mλ2
, (3.7)

where h is the Planck constant. A neutron temperature T can also be defined be-
cause of the fact the neutron beam follows a Maxwell–Boltzmann velocity distribu-
tion, with the Boltzmann constant kB [17]:

E =
3

2
kBT . (3.8)
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3.2 Neutron Scattering

The Neutron Scattering Cross Section

The scattering of a particle is described by the transition of the particle from its initial
into its final state. Before and after the scattering process, the particle is considered
free, the transition is described mathematically by an operator. The projection of
initial and final state of the particle onto the transition operator yields the scattering
probability [18]:

Sf ,i = ⟨kf , Sf |U(t → +∞, t → −∞) |ki , Si⟩ . (3.9)

In a measurement, detectors are placed at a certain distance and cover a certain
solid angle. The number of neutrons counted in these detectors depends on the
detector size and its distance to the sample, as well as on the incoming neutron flux.
In order to correct for these external parameters, one expresses scattering in form
of the differential scattering cross section:

dσ =
flux scattered into solid angle dΩ

incoming flux = r2 dΩ
Jf (r , θ,φ, t)

Ji(t)
, (3.10)

with the scattering angles θ and φ and the distance r . The wave function uk(r) de-
scribes a neutron with a momentum ℏk at a position r . Let us assume that it scatters
from a static potential V (r), then it has to obey the stationary Schrödinger equa-
tion:

[

− ℏ
2

2m
∆ + V (r)

]

uk(r) = E (k)uk(r). (3.11)

The general solution in the asymptotic regime (r → ∞) is given by the linear com-
bination of a plane wave and a radial wave, corresponding to the unperturbed and
the scattered wave, respectively:

uk(r) −→ 1√
VB

(

eik.r + fk(θ,φ)
eik.r

r

)

, r → ∞, (3.12)
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with the scattering amplitude fk(θ,φ) and a normalisation by a volume VB . The scat-
tering cross section then reads:

dσ

dΩ
= r2 dΩ

Jf (r , θ,φ, t)

Ji(t)
= |fk(θ,φ)|2, (3.13)

with the flux of incoming neutrons Ji(t) and the flux Jf (r , θ,φ, t) of neutrons scattered
into the radial coordinates r , θ,φ at a time t.

Partial Wave Expansion and the Scattering Length

The scattering amplitude expresses the angular dependency of the scattering prob-
ability. For an isotropic and static potential, it can be expanded into partial waves:

fk(θ) =
1

2ik

∞
∑

l=0

√

4π(2l + 1)(e2iδl − 1)Y 0
l (θ), (3.14)

with the spherical harmonicsYl0(θ) andaphase shift δl of thepartial waveof lth order.
Since a thermal neutron has a wavelength in the order of ångströms (1Å=10−10m)
and scatters from a nucleus of a size of about 10−15m, the scattering basically occurs
in form of s-wave scattering, which means that only the l =0 term contributes. The
limit k →0 of f (θ) is known as the scattering length b:

b = lim
k→0

fk(θ) = lim
k→0

e2iδ0 − 1

k
= − lim

k→0

δ0(k)

k
. (3.15)

The Born Approximation

In order to find a general solution to the Schrödinger equation (3.11) via a Green’s
function, a perturbation treatment yields several important results. This is accom-
plished by an integral representation of the Schrödinger equation:

uk(r) = u0
k(r) +

∫

d3rG0(r , r ′)V (r ′)uk(r ′) (3.16)
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3.2 Neutron Scattering

with the Green’s function

G0(r , r ′) = − 1

4π

2m

ℏ2

∫

d3r ′
exp(ik · |r − r ′|)

|r − r ′| . (3.17)

Replacing uk(r ′) by the unperturbed wave u0
k(r ′) in the integral is called the Born

approximation, it means that only the linear term in the Born series is kept:

uk(r) = u0
k(r) − 1

4π

2m

ℏ2

∫

d3r
exp(ik · |r − r ′|)

|r − r ′| V (r ′)u0
k(r ′). (3.18)

The Fermi Pseudo-Potential

Since nuclear scattering is extremely short range, the potential can be expressed as
a point potential, the Fermi pseudo-potential:

V (r) =
2πℏ2

m
bδ(r). (3.19)

The form factor is the Fourier transformed potential:

V (Q) =

∫

d3rV (r)e−iQ.r =
2πℏ2

m
b. (3.20)

It is a constant that is proportional to b. Making use of Fermi’s golden rule, the dif-
ferential cross section can be expressed in a double differential form:

d2σ

dΩ dE
= m2 (2π)4

ℏ4

kf

ki
| ⟨kf ,λf |V |ki ,λi⟩ |2, (3.21)

with the initial (i ) and final (f ) wave-vector k and wavelength λ of the neutron, and its
massm. By inserting the pseudo potential into the above equation, the cross section
becomes a projection of the initial onto the final state:

d2σ

dΩ dE
=

kf

ki

1

2πℏ

N
∑

j,j ′=1

bjb
∗
j′

∫

dt ⟨e−iQ.Rj′ (0)eiQ.Rj (t)⟩ e−iωt , (3.22)
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where the sum is made over all combinations of scatterers j ,j ′ at positions Rj ′(0) and
Rj(t), and themomentum transfer Q = ki −kf has beendefined. Energy conservation
is expressed by an integral over the time t of e−iωt , with the energy transfer ℏω =

Ei − Ef .

Scattering Functions and Correlations

The differential scattering cross section can be expressed in a simple form:

d2σki→kf

dΩ dEf

=
kf

ki
S(Q,ω) (3.23)

where the dynamic structure factor (DSF) S(Q,ω) has been defined:

S(Q,ω) =
1

2πℏ

N
∑

j,j′=1

bjb
∗
j′

∫

dt ⟨e−iQ.Rj′ (0)eiQ.Rj (t)⟩ e−iωt . (3.24)

Since scattering in an experiment is a statistical process that involves a large number
of scattering events, ensemble averaging of all scattering events is necessary. This
results in the distinction of two different types of scattering. In the case of coherent
scattering, phase information of the neutron wave function is maintained during the
scattering event, in the case of incoherent scattering this phase information is lost:

Scoh(Q,ω) =
1

2πℏ

N
∑

j,j ′=1

bjb
∗
j ′

∫

dt ⟨e−iQ.Rj′ (0)eiQ.Rj (t)⟩ e−iωt (3.25)

Sinc(Q,ω) =
1

2πℏ

N
∑

j=1

(b2
j − bj

2
)

∫

dt ⟨e−iQ.Rj (0)eiQ.Rj (t)⟩ e−iωt (3.26)

where the coherent DSF is determined by averaging over the scattering lengths bj ,
while the incoherent DSF corresponds to the statistical variance of the scattering
lengths.
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3.2 Neutron Scattering

Correlation Functions in Nuclear Scattering

The DSF forms a Fourier pair with two functions. A Fourier transformation of (3.24)
between time and energy space yields the intermediate scattering function (ISF):

I(Q, t) =
1

N

∑

jj ′

⟨exp{−iQ.Rj′(0)} exp{iQ.Rj′(t)}⟩ . (3.27)

A further Fourier transformation of the ISF between real andmomentum space yields
the Van Hove correlation function (VCF):

G(r , t) =
1

N

∑

jj ′

⟨exp{−iQ.Rj′(0)} exp{iQ.Rj′(t)}⟩ . (3.28)

It expresses time-dependent pair-correlations between scatters. The Fourier rela-
tions are depicted in Fig. 3.3. In analogy to the DSF, these functions are also con-
stituted by a coherent and an incoherent part. Looking again at the Fourier rela-
tions and at the definition of the DSF (Eq. (3.24)), it becomes evident that dynami-
cal neutron scattering measures the Fourier transform of the time evolution of pair-
correlations, or in the case of incoherent scattering, of self-correlations of particles.
This relation between the scattering cross section and the positional correlation over
time is of paramount importance for studying molecular diffusion.

G(R, t)

KS

ω

��

ks R +3 I(Q, t)

S(Q,ω)

w�
R,ω
✇
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✇
✇
✇
✇

7?
✇
✇
✇
✇
✇
✇

Figure 3.3: Diagram that illustrates the Fourier relations between S(Q,ω), G(R, t),
and I(Q, t). Double arrows stand for Fourier transformation with respect
to the noted vector space.
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Scattering Length and Nuclear Spin Scattering

As we have seen in Eq. (3.20), the form factor in neutron scattering is expressed via
the scattering length b, which is independent of Q. However, b is highly dependent
of the isotope, from which the neutron scatters. This gives rise to incoherent scatter-
ing from a material that consists of different isotopes. For a given element with an
isotopic composition, a coherent and incoherent scattering cross section σ can thus
be defined. Tab. 3.2 lists the experimental values for the coherent and incoherent
scattering cross section for the case of hydrogen (H), deuterium (D) and carbon (C),
together with the absorption cross section. Evidently, H exhibits a very high incoher-
ent scattering cross section while scattering from D and from C is mainly coherent.

Z σcoh [barn] σinc [barn] σabs [barn]
1H 1 1.8 80.2 0.3

(D) 2H 1 5.6 2.0 0.0005
C 6 5.6 0.001 0.003

Table 3.2: List of the neutron scattering cross sections of the element carbon (C)
and the hydrogen isotopes (H) and (D). Z: atomic number; σcoh: coher-
ent cross section; σinc : incoherent cross section; σabs : absorption cross
section (1barn=10−10m2).

The existence of incoherent scattering from a single isotope stems from spin scatter-
ing. Since the neutron is a spin 1

2 particle, during scattering from a nucleus with spin
I the interacting system has a combined spin I ± 1

2 . These two processes have dif-
ferent scattering lengths b, which gives rise to coherent and incoherent scattering,
even for a single isotope. The probability with which a neutron scatters to a certain
combined spin state can be calculated by comparing the total number of states as-
sociated with that spin state. For scattering from a single isotope with nuclear spin
I , there are two combined states. The number of states with spin I + 1

2 are:

2(I +
1

2
) + 1 = 2I + 2, (3.29)

and the states associated with spin I − 1
2 :

2(I − 1

2
) + 1 = 2I. (3.30)
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3.2 Neutron Scattering

Isotope Combined spin b [fm]
1H 1 10.85
1H 0 -47.50
2H 3

2 9.53
2H 1

2 0.98

Table 3.3: Scattering lengths b for combined spin states of a neutron with hydrogen
isotopes (from [17]).

The relative frequencies for these states to occur are thus obtained by dividing
through the total number of possible states 4I + 2:

f+ =
2I + 2

4I + 2
=

I + 1

2I + 1
(3.31)

f− =
2I

4I + 2
=

I

2I + 1
. (3.32)

The coherent and incoherent neutron scattering cross sections are proportional to
the mean square and the statistical variance of the scattering lengths b+ and b−,
respectively:

σcoh = 4πb̄2 = 4π[
∑

i=+,−

fibi ]
2 = 4π[f+b+ + f−b−]2 (3.33)

σinc = 4π
(

b̄2 − b̄2
)

= 4π

(

∑

i=+,−

fib
2
i − [

∑

i=+,−

fibi ]
2

)

. (3.34)

The hydrogen atom exhibits a large negative scattering length b for a combined
spin of zero (Tab. 3.3). This gives rise to an extremely high incoherent scattering
cross section, as listed in Tab. 3.2. Deuterium, on the other hand, exhibits a larger
coherent scattering cross section. Deuteration of samples is therefore a common
technique in situations, where the large incoherent cross section of hydrogen would
pose a problem.

3.2.2 Elastic Neutron Scattering – Difraction

In neutron diffraction, the angular distribution of neutrons that scatter from a sample
is measured. In a periodic structure, coherent diffraction occurs under the Bragg
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condition

nλ = 2d sin θ, (3.35)

where n is an integer number, d is the distance between repeating elements in the
structure, and θ is the scattering angle. From the angular distribution of the scatter-
ing signal, information of the structure of a system can thus be retrieved. The Bragg
law is equal to the condition that the vectorial transfer Q between initial and final
neutron momentum equals a vector τ that connects two lattice elements in recip-
rocal space Q = k − k ′ = τ [17]. In a typical neutron scattering experiment, where
a detector bank counts scattered neutrons over a range of angles, a periodic struc-
ture will thus scatter neutrons only into certain angles, namely the direction of the
outgoing scattering vector. The scattering angle is therefore directly related to the
occurrence of a periodic structure, and a determination of a whole angular spectrum
permits e.g., the reconstruction of the positions of atoms in a material. In a single
crystal, Bragg diffraction creates scattering peaks in certain well-defined solid an-
gles. It happens that the sample consists of a powder of small, randomly oriented
crystal lattices. In this case, the outgoing wave-vector k ′ lies on the so-calledDebye-
Scherrer cone. Only the information about the absolute value |τ | can be extracted
in this case.

The Neutron Difractometer D20

In this thesis, I present the analysis of data obtained from the two-axis neutron spec-
trometer D20 at ILL. Fig. 3.4 shows an illustration of the instrument. The neutron
beam first passes a collimator that strips off diverging parts of the beam. Monochro-
matisation is then achieved by (002) Bragg reflection from a highly ordered pyrolytic
graphite (HOPG) or a Cu crystal. After a second collimation stage, the beam scatters
from the sample into a detector bank consisting of 48 detector plates, each contain-
ing 32 cells. Each cell spans 0.1°, the entire detector spans an angular range of
160°.

The sample, an exfoliated graphite named Papyex, exhibits random orientation of
graphite crystal planes in two dimensions and a finite angular spread in the third
dimension. The obtained angular spectra correspond highly to a powder diffraction
spectrum. The experiment and the results are discussed in detail in Chap. 6.
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Figure 3.4: Illustration of the neutron diffractometer D20 at ILL. From [20].

3.2.3 Inelastic Neutron Scattering - Time-of-Flight Spectroscopy

Time-of-Flight (TOF) spectrometers measure velocity changes upon scattering from
a sample of a pulsed, monochromatic neutron beam. Monochromatisation is nec-
essary in order to know the incoming neutron velocity vi . Pulsation of the beam,
which is achieved either by a pulsed neutron source, or by a beam chopper, allows
calculation of the outgoing neutron velocity vf from the time of arrival at the detec-
tor. From this, the energy transfer ω and momentum transfer Q of the neutron can
be calculated [19]. By normalizing the signal distribution in ω and Q with an instru-
mental resolution function, usually obtained from a measurement of an incoherent
scatterer, the DSF S(Q,ω) can be retrieved. Here, we will briefly introduce the TOF
spectrometers, at which we have performed measurements which contribute to this
thesis.

The Neutron Time-of-Flight Spectrometer IN6

IN6 is a TOF spectrometer at ILL that operates with a continuous white beam of cold
neutrons. Monochromatisation is achieved by three composite graphite monochro-
mators that select only neutrons of a defined wavelength in the range 4.1 – 5.9 Å via
Bragg diffraction [21] (details in Sec. 8.2.3). The beam is then cut into pulses by a
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chopper and collimated before scattering from the sample. A large panel of detec-
tors is placed in an array that spans about 120°, enabling measurement of a huge
momentum transfer range at once. This kind of instrument is referred to as a direct
geometry spectrometer, sincemonochromatisation and chopping take place before
the beam scatters from the sample. Fig. 3.5 shows an illustration of the instrument.

Figure 3.5: Schematic drawing of the instrument IN6 at ILL. From [20].

The Neutron Backscattering Spectrometer OSIRIS

OSIRIS is a backscattering spectrometer at ISIS that makes use of the TOF principle.
Since it is operated at a pulsed source of cold neutrons, it does not require a priori
beamchopping. There is, however, a set of choppers for selecting awavelengthwin-
dow. Monochromatisation is achieved by Bragg reflection from a graphite analyser
bank that spans 170°. The selected wavelength is reflected back towards a detector
assembly that is situated beneath the sample. Since the beam is monochromatised
after scattering from the sample, OSIRIS is classified as an inverted geometry spec-
trometer. The large analyser bank allows scattering over a large Q-range (details in
Sec. 9.2.3). Fig. 3.6 shows an illustration ofOSIRIS. The energy resolution obtainable
with OSIRIS is twice as high as the highest resolution of IN6.

24



3.2 Neutron Scattering

Figure 3.6: Schematic drawing of the instrument OSIRIS at ISIS. From [22]

3.2.4 Neutron Spin-Echo Spectroscopy

The drawback of the above described conventional TOF techniques is the huge loss
in neutrons due to the choppers and monochromatisers, or more general, the nec-
essary compromise between flux and energy or momentum resolution which stems
from the equal distribution of the neutrons in their available phase space as pre-
dicted by the fundamental Liouville theorem. A closer look at the neutron phase
space in a TOF experiment reveals that it spreads over the six dimensions of the in-
dependently measured variables vi and vf . However, only four variables, namely ω
and the three components of Q, are being used to interpret the acquired data. This
exhibits the reason for the high loss in neutrons, as two dimensions of the phase
space have to be ”cut out” and it also lets the question for a possible different mea-
surement technique arise. Since no technique is known that measures in a global
manner directly the variables of interest Q and ω, we demand this condition to be
satisfied at least locally, i.e. we are looking for a measurement that is locally a func-
tion of Q and ω:

δϕ = αδQ + βδ ω, (3.36)
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where α and β are constants. Q and ω are connected to vi and vf via: :

ℏQ = m(vf − vi) (3.37)

ℏω =
m

2
(v2

f − v2
i ), (3.38)

therefore the measurement would need to determine the vectorial and the squared
change in neutron velocity independently of the velocity of the incoming neutron.

Allowing for a velocity spreadmeans that even if an initial beam chopping was used,
neutrons would be continuously detected. A change in velocity therefore has to be
measured using an internal ”clock” of the neutron. In the energy range discussed
here, the only internal degree of freedom of the neutron is its spin and the only
way for it to evolve with time is by Larmor precession in a magnetic field. In order
for a velocity change of the neutron while scattering at a sample to be registered
by Larmor precession, magnetic fields have to act on the neutron before and after
scattering in such a way that equation (3.36) is satisfied. The straightforward way is
to identify ϕ as the Larmor precession angle, it will later become evident that this is
justified. It follows directly that β has the dimension of time; it is referred to as the
spin-echo (SE) time or Fourier time t.

Larmor precession describes the precession of themagnetic moment of a particle in
an external magnetic field. The classical spin vector S experiences a torque that acts
perpendicularly on the magnetic field H and on S. If a polarised neutron (i.e. with
a measured spin) travels through a magnetic field H over a distance l , it will precess
by an angle ϕ:

ϕ = γ
Hl

v
, (3.39)

with the neutron velocity v and γ the gyro-magnetic ratio γ = -1.8324·108s−1 T−1.

Polarisation analysis selects only one component of the neutron polarisation. With
respect to the initial direction x , this selects the component Px :

Px = ⟨cosϕ⟩ =

∫

f (v) cos(
γHl

v
) dv , (3.40)

where the average has been taken over the neutron velocities v with distribution
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f (v). This is effectively the Fourier transform of the distribution function for the in-
verse velocity 1

v
since f (v) dv = f (v)v2 d 1

v
= f ( 1

v
)′ d 1

v
. With λ = h

mv
it becomes evident

that this is the wavelength spectrum [23]. When the neutron beam travels through
the field by an increasing length l , more and more polarisation is lost due to a finite
wavelength distribution (A to B in Fig. 3.7).

The Spin-Echo Principle

In order to recover the information that seems to be lost in the dephased neutron
wave, the precession process has to be inversed by passing the neutron beam
through a second magnetic field H1 that is opposite to H0 after scattering. The
effective precession angle for a given velocity v is then:

ϕ = ϕAB − ϕBC = γ(H0l0 − H1l1)/v , (3.41)

where the distancesAB andBC are indicated in reference to Fig. 3.7. When the field
integrals are exactly of opposite and equal strength, i.e. H0l0 = H1l1, the precession
is exactly reversed independently of the velocity (B to C in Fig. 3.7). The dephasing
is therefore reversed and a spin echo is obtained. In the region close to this ”spin-
echo point”, polarisation is partly recovered, this is the so-called spin-echo group.
As pointed out before, it is the Fourier transform of the inverse velocity distribution.
The average velocity v defines the oscillation frequency, while the spread of the v

distribution determines how fast the spin-echo group decays when moving away
from the spin-echo point.

Our aim is to measure interaction of the neutron beam with a sample. The only rea-
sonable configuration would be to let the beam scatter from a sample between the
two precession fields (point B in Fig. 3.7). Inelastic scattering changes the neutron
velocity from v0 to v1 resulting in a precession angle:

ϕ = γ

[

l0H0

v0
− l1H1

v1

]

. (3.42)

As pointed out before, the goal is to find a measurement that depends locally only
on the velocity change, not on the absolute velocities. For an average incoming
neutron velocity v̄0 and a given energy transfer ℏω0, the average outgoing neutron
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Figure 3.7: Basic illustration of dephasing of the neutron spin through Larmor pre-
cession and spin echo from [23]. A precession field H0 between A and
B causes dephasing. After passing through an inverse but equal preces-
sion field H1, a spin echo is obtained around point C.

velocity v̄1 is defined by equation (3.38). We require equation (3.36) to be fulfilled
locally, i.e.:

ϕ− ϕ̄ = t(ω − ω0), (3.43)

with ϕ̄ = ϕ(v̄0, v̄1) and t being a constant. Small variations in the neutron velocity
cause a variation in ϕ:

ϕ− ϕ̄ = γ

[

− l0H0

v̄2
0

δv0 +
l1H1

v̄2
1

δv1

]

, (3.44)

with variations in velocity δvi = vi − v̄i . For the energy change this small variation
yields:

ω − ω0 =
m

ℏ
v̄1δv1 −

m

ℏ
v̄0δv0 (3.45)
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Combining these two equations yields, independently for vi = v0, v1:

γli
Hi

v̄2
i

= t
m

ℏ
v̄i . (3.46)

This gives the necessary magnetic fields H0, H1 to perform a measurement at the
Fourier time t.

It is important to note that the spin echo condition can generally be fulfilled for any
energy change ω0, not just for the elastic case. Required is simply an appropriate
tuning of the magnetic field.

Combining equation (3.40) and equation (3.43) yields:

PNSE = PS ⟨cos(ϕ− ϕ̄)⟩ = PS

∫

S(Q,ω) cos[t(ω − ω0)] dω
∫

S(Q,ω) dω
, (3.47)

where the integral is now running over ω instead of the velocity v and therefore f (v),
the probability that a neutron has a velocity v has become a function of the energy
transfer f (ω). It describes the probability that (for a given Q) a neutron scatters with
an energy change ω. It is thus nothing else but the scattering function S(Q,ω). PS

accounts for scattering events that change the neutron polarisation such as spin or
magnetic scattering. For themoment we assume PS =1. The spin-echo Signal PNSE

is thus the cosine Fourier transform of the scattering function. This is the real part
of the ISF, ℜI(Q, t). This identity holds only for a restricted range since the locality
condition of small velocity changes requires a certain monochromatisation of the in-
coming neutron beam. In general, a velocity distribution of dv/v =15% is sufficient
for most spectrometers. Since S(Q,ω) is the double Fourier transform of the par-
ticle correlation function S(R, t) and the Fourier transform in time of the measured
polarisation I(Q, tNSE ), the Fourier time can be identified as real, physical time.

The Spin-Echo Spectrometer IN11

Here, we will describe the technical application of the spin-echo principle using the
NSE spectrometer IN11 at ILL as an example. The instrumental layout is illustrated
in Fig. 3.8. The numbers correspond to the different parts of the instrument, which
play a role for the measurement.
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Figure 3.8: Schematic drawing of the instrument IN11 at ILL. The neutron beam is
depicted by a red arrow. The numbers highlight parts of the instrument
that are explained in the text. From [20].

1. Polarisation: Reflections from supermirrors polarise the neutron beam paral-
lel to a magnetic guide field with 99% efficiency. A guide field is maintained
through the whole trajectory of the neutron, to ”shield” it from magnetic per-
turbations like the Earth’s magnetic field that would otherwise change the po-
larisation and thus destroy the information that is encoded in it.

2. π/2 Flip #1: A thin, flat coil placed perpendicular to the beam causes a Larmor
precession of π/2 (or 90 degrees), turning the neutron spin perpendicular to
the guide field. This ”switches on” the Larmor precession of the neutron.

3. Larmor Precession #1: A first main solenoid creates a tunable magnetic field
H . A neutron travelling through the solenoid with a velocity v will experience
a precession through an angle φ = γHl/vi . The initial velocity vi is therefore
encoded in the polarisation phase φ.

4. Scattering From the Sample: The neutron scatters from the sample with a mo-
mentum transfer ℏQ = mvi − mvf and energy transfer ℏω ≈ mvi(vi − vf ). The
sample is usually embedded in a sample environment, a so-called “orange”
ILL cryostat or cryo-furnace that allows controlled cooling and heating of the
sample [20].

5. π Flip: Similar to the π/2 flipper, this small flat coil causes a precession by π (or
180 degrees) of the spin in a direction perpendicular to the precession plane.
This adds a phase of π to only one component of the precession, having the
effect that the phase angle φ is inverted.

6. Larmor Precession #2: A second main solenoid with a comparable field
strength causes a precession φ′. Since the initial precession angle φ has been
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inverted by the π flipper, the total precession angle after the second field
consists of the difference:

φ− φ′ = γHl/vi − γHl/vf ≈ γHl
vi − vf

v2
i

≈ γHl

mv3
i

ℏω = tω, (3.48)

where use has been made of the definition of the Fourier time t (Eq. (3.46)).

7. π/2 Flip #2: A second π/2 flipper turns a component of the polarisation parallel
to the guide field, the precession is stopped.

8. Polarisation Analysis: A polarisation analyser (supermirror or 3He analyser)
projects the spin on the parallel axis.

9. Detection: In an array, 41 3He detectors are distributed over an angle of 30°.
This array allows to collect data simultaneously for different Q.

In practice, to account for instrumental effects, the spectrometer is calibrated by per-
forming a measurement on a sample that produces only elastic, spin-coherent and
isotope-incoherent scattering. Any deviations in this measurement stem from finite
polarisation efficiency and dephasing effects in the magnetic fields. Since the over-
all function is the product of this resolution function with the ”clean” ISF, one simply
has to divide the measured polarisation by this resolution measurement to recover
the response to the physics in the system.

3.2.5 Neutron Scattering Signatures of Difusion

QENS spectroscopy is a powerful tool for the investigation of surface diffusion. In
contrast to inelastic scattering from excitations, the energy transfer of a neutron that
scatters from a diffusing molecule is small (in the order of µeV to a few meV), orig-
inating from typical time-scales of diffusion in the order of picoseconds. In a spec-
troscopy experiment, this causes a quasi-elastic broadening of the elastic line [19].
Many different models exist for the various kinds of diffusion, we will present here,
in brief, a summary of those diffusion models, which are relevant to this thesis. Most
of these diffusion models express the self-diffusion of a particle, in contrast to chem-
ical transport-diffusion, which assumes a concentration gradient. The connection
between the motion of a diffusing particle and the neutron measurement lies in the
Van Hoove self-correlation function Ginc(R, t). It expresses on the one hand in the
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classical approximation the probability of finding a particle at a time t displaced by
r , given it is at the (arbitrary) origin at t = 0. On the other hand, it is connected via
Fourier transformation to the incoherent scattering cross section (see Fig. 3.3 and
Eq. 3.23). For comparison, coherent scattering is connected in the same way to
the cross-correlation function Gcoh(R, t), which expresses the probability of finding
a particle at a position r at time t, given that any particle is found at the origin at time
t =0. It expresses thus a relaxation of the structural configuration of particles [19].

Brownian Motion and Anomalous Difusion

A common type ofmolecular diffusion on surfaces is the Einstein diffusion caused by
Brownian motion [24, 19]. In this model, point-like particles perform random walks
on the surface bymoving freely along straight lines between singular collisions. This
system is described by a second order differential equation named Fick’s law:

τ
∂Gs(r , t)

∂t
=

⟨l2(τ)⟩
6

∇2Gs(r , t). (3.49)

If subsequent steps are uncorrelated (no memory), then Eq. (3.49) yields a simple
solution, the diffusion constant D:

D =
⟨l2⟩
4τ

=
kBT

mη
, (3.50)

where m is the particles mass, kB is the Boltzmann constant and η is the kinetic fric-
tion. The factor 1/4 holds for two-dimensional diffusion and would be replaced by
1/6 in the 3D case. The latter equation is referred to as Einstein’s equation of diffu-
sion.

Modern microscopical and spectroscopy techniques have made it possible to study
adparticle diffusion at its proper length scale, i.e. the angstrom range. The momen-
tum transfer Q is the conjugate variable of the vector R of the displacement of an
adparticle, and thus a neutron scattering response at a certain Q corresponds to the
observation of a certain conjugate length scale R . Depending on the system, the
momentum transfer Q may be smaller or bigger than the value that corresponds to
the mean free path l of a diffusing adparticle. In the range of Q that corresponds
to distances that are larger than the mean free path of a diffusing particle, and the
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macroscopic observation of Eq. (3.50) that D is a constant, holds. Eq. (3.49) can be
solved and a Fourier transformation yields the ISF:

I(Q, t) = exp(−DQ2|t|). (3.51)

For higher values of Q, collision free motion of the adparticle is observed. Diffusion
in this length scale is in general described by super-diffusion, i.e. diffusion with a
faster than linear increase of the mean square displacement with time. The special
case of a free flight gives rise to a quadratic time dependence and is referred to as
ballistic diffusion [25]:

⟨l2⟩ =
kBT

2m
τ2, (3.52)

wherem is themass of the diffusing particle. Neutron scattering from ballistically dif-
fusing particles gives rise to a QENS broadening that follows a Gaussian distribution
[17]:

I(Q, t) = exp[−1

2
Q2 2kBT

m
t2]. (3.53)

If the character of the diffusivemotion is not ad hoc known, amore generalmodel ex-
ists, that contains a shape parameter χ(Q) =

√

⟨v2⟩Q/ηT [26, 27]. The mean square
velocity ⟨v2⟩ is determined by the system temperature via Maxwell-Boltzmann statis-
tics. Depending on the friction parameter ηT , the incoherent DSF varies its shape
continuously between a Lorentzian shape in the case of purely Brownian diffusion to
a Gaussian shape in the case of a “ideal 2D gas” of freely moving adparticles. This
is achieved by developing the incoherent DSF as a series of Lorentzian distributions
[28]:

S(Q,ω) = eχ
2(Q)

∞
∑

n=0

[−χ2(Q)]n

πn!

[n + χ2(Q)]ηT

[n + χ2(Q)]2 + (ℏω)2
. (3.54)

The QENS broadening gives, depending on a dimensionless parameter ν, the half
width at half maximum (HWHM) of a Lorentzian distribution (ν =1) or that of a Gaus-
sian distribution (ν = 0).

Γ (Q) = ℏ[νηTχ
2(Q) + (1 − ν)

√
2 ln 2ηTχ(Q)] (3.55)
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The Rough Hard Disc Model

It has been shown that for the case of a non-negligible exchange of angular mo-
mentum between two molecules during collision, this exchange has to be taken
into account because the kinetic friction is in this case substantially increased. This
led to the development of a model of colliding rough hard spheres by Chandler
[29, 30, 31]. Based on this model, we developed a corresponding two dimensional
model of colliding disks, the RHDmodel [32]. This model yields a collisional friction
parameter ηcoll :

ηcoll(θ, T ) =
3κ + 2

2κ + 2

dgd(d+)θ

A

√
2π

√

kBT

µ
, (3.56)

where κ = 2I/µd2 is a dimensionless indication for the distribution of mass in a col-
liding sphere with 0≤ κ ≤1. d is the colliding disk diameter, it corresponds to the
distance between the centre of mass (CoM) of two colliding disks at the moment
of impact and gd(d+) corresponds to the radial distribution function evaluated at d .
This accounts for the apparent number density from the disks view and the resulting
collision probability. A corresponds to the surface area that is occupied by a single
adparticle at monolayer coverage and θ is the relative surface coverage in ML. The
derivation of Eq. (3.56) is developed in the Appendix of [32].

Activated Jump Difusion

For the case that the adparticle motion is governed by the interaction of the particle
with a strongly corrugated surface, its motion can be well described by the Chudley-
Elliott (CE) model of jump diffusion [33, 19]. It assumes that a particle rests adsorbed
for a time τ at an adsorption site, before it moves instantaneously to another adsorp-
tion site. In the most simple case, motion happens on a Bravais lattice. The system
can then be described by a rate equation:

∂

∂t
P(r , t) =

1

nτ

∑

li

[P(r + li , t) − P(r , t)] , (3.57)

with the probability P(r , t) of finding an adparticle at a position r at a time t and
the probability P(r + li , t) of finding it at r + li , where li is the jump vector, which
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connects the initial with the final position of a jump. P(r , t) is identical to the self
correlation function, Ginc(r , t) = P(r , t). The differential rate equation can be solved
by Fourier transformation, where the Fourier transform of Ginc(r , t) is identified with
the incoherent ISF Iinc(Q, t):

∂

∂t
Iinc(Q, t) =

1

nτ

∑

li

Iinc(Q, t)[e−iQ.li − 1]. (3.58)

The solution is then given by an exponentially decaying ISF:

Iinc(Q, t) = Iinc(Q, 0)e−∆ω(Q)t , (3.59)

where the exponential decay rate ∆ω(Q) has been defined as:

∆ω(Q) =
1

nτ

∑

li

[1 − e−iQ.li ] =
1

nτ
[n − 2

∑

li>0

cos(Q.li)] =
4

nτ

∑

li>0

sin2(
Q.li
2

), (3.60)

where use has been made of the fact that forward and backward jumps are equiv-
alent. This result relates the diffusion to the neutron scattering signal measured in
an experiment. In a spin-echo experiment, where the ISF is measured via the beam
polarisation, a single exponential decay is observed. In a TOF experiment, the mea-
surement in energy space yields its Fourier transform. The DSF thus becomes a
Lorentzian function:

S(Q,ω) =
1

π

∆ω(Q)

∆ω(Q)2 + ω2
. (3.61)

In the case that hopping occurs on a non-Bravais lattice, more complexmodels have
to take into account energetical and geometrical site inequivalences [34, 35]. An
illustration of the possible jumps on the graphene/Ni(111) and on the Ni(111) lattice
can be seen in Fig. 3.9. Jumps between hollow sites on graphene and top sites on
Ni(111) are geometrically identical and form a Bravais lattice. Jumps between top
sites on graphene and hollow sites on Ni(111) form two Bravais sub-lattices that may
be energetically non-degenerate, giving rise to two different diffusion rates.

If the scattered sample is not a single crystal, isotropic angular averaging has to be
performed since the scattered neutron signal “sees” the jumping adparticle from
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Figure 3.9: Illustration of possible jumps between adsorption sites on the (0001)
basal plane of graphene/Ni(111). Red: hollow–hollow jumps on the
graphene surface; Green: top–top jumps on Ni(111); Dark Orange and
Purple: Two possibilities of top–top jumps on graphene; Light Orange
and Purple: Two possibilities of hollow–hollow jumps on Ni(111).

all possible directions. A common approach to this averaging consists in angular
averaging of Eq. (3.60). In the case of 3D isotropy, this integration yields [36, 34]:

∆ω(Q) =
1

4π

∫

dsin θ dφ
1

τ
[1− e−iQl sinφ sin θ] =

1

τ
[1− sin Ql

Ql
] =

1

τ
[1− J1/2(Ql)], (3.62)

where J1/2(Ql) is the zeroth order spherical Bessel function of the first kind. In the
case of 2D isotropy, integration over φ yields:

∆ω(Q) =
1

2π

∫

dφ
1

τ
[1 − e−iQl sinφ sin θ] =

1

τ
[1 − J0(Ql sin θ)], (3.63)

where J0(Ql sin θ) is the zeroth order cylindrical Bessel function. However, even in the
early publications it has been pointed out that this approach is approximative in the
sense that inserting the averaged∆ω(Q) into Eq. (3.61) assumes a single Lorentzian
broadening, while the “correct” way to average directly Eq. (3.61) over all angles,
results in general in a non-Lorentzian QENS broadening [36]. This calculation has to
be performed numerically, such a calculation is discussed in detail in Sec. 9.3.
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3.3 Helium Atom Scattering

3.3.1 Thermal Helium Atom Scattering Theory

Helium atoms with thermal kinetic energies are well suited for studying surfaces for
several reasons (see Fig. 3.10 for a comparison of the spectral range of several sur-
face science techniques): Thermal energy helium atoms have a wavelength that cor-
responds roughly to the normal inter-atomic spacing. Their low kinetic energy per-
mits a highly non-destructive observation and allows a very high energy resolution
which permits studying very slow processes. The helium atoms are chemically inert
and uncharged and therefore interact with the surface only through electrostatic and
Van der Waals interactions. This makes the helium atom an entirely surface sensitive
particle.

He-Surface Interaction Potential

The interaction of a helium atom with the substrate is attractive at large distances
due to dipole-dipole interactions (London dispersion force) that decay with the dis-
tance from the surface z by z−3 (see Fig. 3.11). At short distances, overlapping of the
helium electron cloud with the substrate valence (or conduction) electrons causes a
strong, short ranged repulsion [38]. Fig. 3.11 a) illustrates the different possibili-
ties for the interaction of a helium atom with the surface. It may either scatter elas-
tically (1), inelastically (2), undergo a selective adsorption process (3), or become
trapped at the surface (4). The latter two processes do not play a role in this work
and are only mentioned for completeness. The repulsive part of the interaction po-
tential V (R) can be approximated by the charge density ρ(R) at the surface [39]:

V (R) ∝ ρ(R). (3.64)

In order to describe in a simplified way the refractive effect of the interaction poten-
tial on scattering dynamics, a laterally averaged surface potential is assumed [40].
The effect of an attractive surface potential of well-depth V on the incident energy
Ei and incident momentum ki of the helium atom is expressed by replacing Ei with
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Figure 3.10: Comparative illustration of a selection of different techniques for mea-
suring surface dynamics with regard to length and time scales of the
dynamic system: microscopic techniques are scanning tunnelling mi-
croscopy (STM), field emission microscopy (FEM), field ion microscopy
(FIM) and photoemission electron microscopy (PEEM); optics based
techniques are laser induced thermal desorption spectroscopy (LITD),
fluorescence correlation spectroscopy (FCS), linear optical diffraction
(LOD) and second-harmonic diffraction (SHD); scattering based tech-
niques are Quasi-elastic helium atom scattering (QHAS) and neutron
scattering (QENS). Figure from [37].

E ′
i = Ei + V [41] (this is the so-called Beeby correction). This implies for the perpen-
dicular component of the incoming momentum ki ,⊥:

k ′
i ,⊥ =

√

k2
i ,⊥ + 2mV /ℏ, (3.65)

where m is the mass of the helium atom and ℏ is the Planck constant. The corrected
perpendicular momentum transfer ∆k ′

⊥ = k ′
i ,⊥ − k ′

f ,⊥ now reads:

∆k ′
⊥ = ki

[

√

cos2 θi +
V

Ei
+

√

cos2 θf +
V

Ei

]

, (3.66)
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with the incoming and outgoing angles θi and θf , respectively, relative to the sur-
face normal. To adopt the common notation for helium scattering, the momentum
transfer will be denoted by∆k in the chapters that discuss helium scattering studies,
even if the physical meaning is the same as that of Q in neutron scattering.

a) b)
Figure 3.11: Illustration of a helium atom scattering from an ordered surface. a) Pos-

sible scattering processes. 1: elastic scattering; 2: inelastic scattering;
3: selective adsorption; 4: trapping. From [42]. b) Illustration of the
equipotential lines of the helium-surface interaction and the potential
well depth D as a function of the distance z to the surface at two posi-
tions A and B. From [43].

Assuminga rigid surface, scattering is purely elastic andoccurs only under diffraction
condition, resulting in distinct diffraction peaks. By far the brightest signal stems
from 0th order diffraction, or specular reflection (kf = ki ). However, a sample at a
finite temperature is never fully rigid; atom vibrations in the lattice cause inelastic
scattering of the He atom. This behaviour is in many cases well described by the
Debye-Waller law [44]. A reduction of the elastic signal is referred to as attenuation;
its observation is a common approach to study e.g. the adsorption of adparticles.

He-Adsorbate Interaction Potential

An isolated adparticle causes a large geometrical perturbation of the otherwise very
flat interaction potential of the graphene substrate surface that we have used in
this study. Attractive dispersion force between the He atom and the adparticle is
felt even at relatively large distances, giving rise to diffuse scattering over a wide
area [38] (illustrated in Fig. 3.12). This area is referred to as giant scattering cross
section, it is usually denoted as Σ . Since an adparticle is not a flat object, scattering
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at a finite angle increases the zone of influence even further, giving rise to a larger
apparent scattering cross section. For scattering at an incoming angle θi with respect
to the surface normal, the apparent scattering cross section Σ ′ is given in a rough
approximation by [38]:

Σ ′ = Σ/ cos(θi). (3.67)

In our studies, we used an incoming angle of 22.2°, for which the above approxima-
tion is largely sufficient.

Figure 3.12: Illustration of the giant helium scattering cross section, caused by long
range attractive forces. From [45].

Monitoring Adsorption with Specular Relection

The high sensitivity to surface perturbationsmakes elastic helium scattering a very ef-
fective probe for the adsorption of adparticles. If, in a first approximation, we assume
the adparticles as perfect diffusive scatterers that are randomly distributed over the
surface (in contrast to attractive or repulsive rearrangement), an exponential decay
of the specular reflected signal I is observed [38]:

I/I0 = e−θΣns , (3.68)

where θ is the relative surface coverage, Σ is the helium scattering cross section of
the adparticle, and ns is the surface area that an adparticle occupies at monolayer
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coverage. The exponential law stems from the fact, that the probability of an incom-
ing adparticle to encounter an already occupied part of the surface is proportional
to the surface coverage.

For adsorption that happens exclusively on lattice sites of the substrate, a power law
is observed instead [38]:

I/I0 = (1 − Θ)Σns . (3.69)

In the case of strong repulsion between the adparticles, overlap of the scattering
cross sections is minimised. Specular attenuation thus happens at a much faster
rate for increasing coverage since each adparticle covers a maximum surface area.
A faster-than-exponential decay of I is observed. In the case of strong attraction
between adparticles, scattering cross section overlap, giving rise to a slower-than-
exponential decay of i . For large enough islands, Σ approaches the area A that an
adparticle occupies within the island, Σ → A.

Quasi-Elastic Helium Scattering

Since the helium interaction potential is rather complex in contrast to the Fermi
pseudo potential applied in neutron scattering, establishing a relation between the
differential scattering cross section and particle correlation functions is not a simple
proportionality. The scattered intensity R(∆k,ω) depends on the DSF S(∆k,ω) as
well as on the form factor F (∆k,ω), represents the Fourier transform of the spatial
density of an adparticle, as seen by the helium atom. The determination of F (∆k, t)

is in general quite complex, however in the case of scattering from a dilute phase
of adparticles of a single type, the kinematic approximation can be made, which
separates the form factor and the structure factor [46]:

Ĩ(∆k,ω) = |F (∆k,ω)|2 · S(∆k,ω). (3.70)

3.3.2 The Cavendish 3He Spin-Echo Spectrometer

Detailed descriptions of the HeSE instrument have been published by P. Fou-
quet [47] and A. P. Jardine [13]. This subsection will only give a brief overview over
the basic functioning of the instrument.
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Figure 3.13: Schematic drawingof theHeSE instrument at theCavendish Laboratory.
Explanations of the different parts are given in the text. From [48].

Beam Production and Detection

The helium beam is created using a high pressure (50 – 80bar) of helium. Contrar-
ily to the helium TOF spectrometer, the 3He isotope is used since its half-integer
nuclear spin is necessary for beam polarisation. In order to create a beam of high
collimation (and thus intensity) and high monochromaticity, it is expanded super-
sonically through a 10µm wide Cambridge type nozzle into a low pressure vacuum
chamber. The nozzle is cooled to low temperature in order to create a low energy
beam (normally 37K for an 8meV beam). The beam is collimated using a 0.5mm
wide skimmer (point A in Fig. 3.13). Differential pumping stages throughout the
entire experimental setup reduce the background pressure. The world wide short-
age of 3He and the resulting high price make a hermetically sealed recycling system
necessary that passes the 3He from the pumping stages to a cleaning system and
re-compresses the recycled 3He.

Switching to the far end of the instrument, the 3He atoms enter a custom built detec-
tor, where they become ionised through solenoidal, magnetically confined electron
bombardment [49], aiming at high detection efficiency and low multiple ionisation
(point F in Fig. 3.13).
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3.3 Helium Atom Scattering

Figure 3.14: Scattering geometry at the HeSE spectrometer for specular scattering
(a) and off-specular scattering (b). The total scattering angle is fixed at
44.4° andmomentum transfer is achievedby tilting the scatteringplane.
From [50].

Scattering Geometry

The central part of the instrument consists of a rotatable sample mount in the centre
of a ultra high vacuum (UHV) chamber, where scattering from a sample takes place.
The incoming and outgoing beam are fixed at an angle of 44.4°, while a momentum
transfer ∆p = ℏ∆k is achieved by rotating the sample plane (see Fig. 3.14). For
elastic scattering, the parallel and perpendicular momentum transfer,∆k∥ and∆k⊥,
can be calculated from simple trigonometry:

∆k∥ = |ki | sin θi |kf | sin θf = |ki | sin θi |kf | sin(θtotalθi) (3.71)

∆k⊥ = |ki | cos θi |kf | cos θf = |ki | cos θi |kf | cos(θtotalθi). (3.72)

Furthermore, the sample can be rotated in the surface plane, allowing to direct the
momentum transfer towards different crystal directions. As mentioned before, the
momentum transfer is commonly denoted by∆k , in contrast toQ in neutron scatter-
ing. Furthermore, we will refer by ∆k to the parallel contribution of the momentum
transfer only, since we are studying structure and dynamics at a flat substrate sur-
face, ∆k := ∆k∥. Also, the perpendicular contribution ∆k⊥ is in our instrumental
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setup very high, but almost constant. Assuming a 7meV attractive potential and
beam energy of 8meV, in the accessible angular range of about ±45 ° off-specular
scattering, the perpendicular momentum transfer is limited to 8≤ ∆k⊥ ≤9Å−1.

Spin-Echo Creation

The helium beam passes a 1.1 T hexapole magnet with a linear field gradient that
focusses one spin component of the beam and defocusses the other one (point B in
Fig. 3.13). The 3He atoms of the defocussed beam are pumped away and what
remains is a highly focussed, spin polarised 3He beam. Spin precession is then
achieved by two precession solenoids of 0.75m length each in the incoming and
outgoing beam, that create a maximum field of 0.15 T at a maximum electrical cur-
rent of 8A (point C and D in 3.13). Finally, the beam passes a hexapole analyser that
uses the same functioning as the polariser (point E in 3.13).

Helium Spin-Echo Spectroscopy

The spin-echo principle for helium scattering works in analogy to its counterpart in
neutron scattering (see Sec. 3.2.4), expect for the discussed differences in the scat-
tering process.

The measured polarisation amplitude at the spin-echo point corresponds, ignoring
for the moment the form factor, to the real part of the normalised ISF ℜ(I(∆k, t)).
By introducing an additional phase shift of π/2, the imaginary part ℑ(I(∆k, t)) can
be measured as well. The two contributions correspond to the symmetrical and
anti-symmetrical contributions in ω of S(∆k,ω), respectively. While surface diffu-
sion processes are entirely symmetric in ω, adsorbate vibrational modes or substrate
phonons may introduce asymmetric contributions. The full S(∆k,ω) can be recon-
structed by Fourier transformation from both parts [48].

3.3.3 De Gennes Narrowing in Helium Spin-Echo

DeGennes, after whom the effect was named, was the first to give an explanation for
an apparent narrowing of the QENS broadening of the DSF S(Q,ω), which mirrored
S(Q). By calculating higher order moments of S(Q,ω), he showed that in the case of
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diffraction, velocity correlations of neighbouring atoms result in a slower decorrela-
tion in diffusion, and thus a narrowing of S(Q,ω) for the case of coherent scattering
[51]. Pusey found a similar result in dynamic light scattering, a technique that basi-
cally measures the ISF I(Q, t) [52]. He stated that for Brownian-type diffusion, where
the ISF is given by I(Q, t) = I(Q, 0) exp(−DQ2t) with the diffusion constant D, an ef-
fective diffusion constant Deff is observed with Deff = D/I(Q, 0).

Since thermal helium atoms scatter coherently, an ISF measured in a HeSEmeasure-
ment is subject to de Gennes narrowing. With regard to surface diffusion, this fact
complicates data analysis, since most diffusion models assume incoherent scatter-
ing. If the structure factor S(∆k) is known, an incoherent diffusion constant, cor-
rected by the structural effects from de Gennes narrowing, can be calculated by
simple multiplication with S(∆k). However, in helium scattering the form factor has
an important effect on the scattering amplitude, which complicates a determination
of S(∆k).

What we will discuss in the following is a preliminary correction procedure, which
we have not yet understood in detail, but which seems to allow us to calculate the
incoherent exponential decay rate αinc(∆k) of a surface diffusion process from its
coherent counterpart, α(∆k), which is obtained by measurements.

In the HeSE measurements that are discussed in this thesis, namely in the system
of diffusing benzene molecules on graphene/Ni(111) (Chap. 7) and in the system of
diffusing H2Omolecules on graphene/Ni(111) (Chap. 5), an increase of the decorre-
lation rateα(∆k)was observed, that is proportional to the quasi-elastic ISF Iqe(∆k, t),
a behaviour which seems at first glance to be the inverse of a de Gennes narrowing
(a narrowed S(∆k,ω) would correspond to a decrease in α(∆k)). We have the idea
that this apparent inversion of the de Gennes effect stems from normalisation of the
ISF.

Let us assume a system that consists of diffusing molecules on a surface, where the
diffusion causes an exponential decay of the ISF with a∆k-dependent coherent de-
cay rate αcoh(∆k), then the ISF is in general given by:

Ĩ(∆k, t) = Ĩqe(∆k) exp[αcoh(∆k) · t] + Ĩel ,ad(∆k) + Ĩel ,su(∆k), (3.73)

where Ĩqe(∆k) is the quasi-elastic amplitude that stems from scattering fromdiffusing
molecules, and Ĩel ,ad(∆k) is the elastic amplitude that stems from scattering from
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immobile adsorbate molecules. Ĩel ,su(∆k) is the elastic amplitude from scattering
of the substrate. The decay rate is subject to de Gennes narrowing, which relates
the incoherent to the coherent decay rate, αcoh(∆k) = αinc(∆k)/Sad(∆k), with the
structure factor of the adsorbate:

Sad(∆k) = Sqe(∆k) + Sel ,ad(∆k), (3.74)

whereweassume that Ĩqe(∆k) = |Fad(∆k,ω)|2 ·Sqe(∆k) and Ĩel ,ad(∆k) = |Fad(∆k,ω)|2 ·
Sel ,ad(∆k), with the form factor of the adsorbate Fad(∆k,ω) (Eq. (3.70)).

In a HeSE measurement, the polarisation corresponds to an ISF that is normalised
by I(∆k, t) = Ĩ(∆k, t)/̃I(∆k, 0):

I(∆k, t) = Iqe(∆k) exp[αeff (∆k) · t] + Iel ,ad(∆k) + Iel ,su(∆k). (3.75)

with the normalised amplitudes Iqe(∆k), Iel ,ad(∆k) and Iel ,su(∆k). Further, we note
that:

Iqe(∆k) =
Ĩqe(∆k)

Ĩ(∆k, 0)
=

Sqe(∆k)|Fad(∆k,ω)|2
Sad(∆k, 0)|Fad(∆k,ω)|2 + Ssu(∆k, 0)|Fsu(∆k,ω)|2 , (3.76)

with the substrate form factor Fsu(∆k,ω). For the coherent decay rate αcoh(∆k), re-
arranging the above equation implies for the de Gennes narrowing:

αinc(∆k) = αcoh(∆k) ·
(

Sqe(∆k)

Iqe(∆k)
− |r |2 · Sel ,su(∆k)

)

, (3.77)

with the ratio between the form factors r = Fsu(∆k,ω)/Fad(∆k,ω). This result could
explain our observations: in regions, where we assume the contribution of the sub-
strate Sel ,su(∆k) to be negligible, i.e. everywhere except for small regions around
diffractionpeaks, the exponential decay is alteredby a factor that is the ratio between
the normalised quasi-elastic amplitude and its structure factor. For a disordered, di-
lute adsorbate phase, that undergoes the simplest forms of surface diffusion, i.e.
Brownian-type diffusion, ballistic diffusion, or jump diffusion on a Bravais lattice,
Sqe(∆k) would be independent of ∆k . In these cases, αinc(∆k) can be calculated
by dividing αcoh(∆k) by the measured amplitude of the exponential decay, Iqe(∆k)

and subsequent rescaling of αinc(∆k) by a constant such that αcoh(∆k) = αinc(∆k)
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in regions where no structural contribution is expected. However, this result does
not apply in the vicinity of substrate diffraction peaks (where an additional correction
by |r |2 · Sel ,su(∆k) would be necessary).

To obtain a rough approximation of the form factors of the studied adsorbate
molecules H2O and benzene, we have the Fraunhofer scattering intensity in the
hard hemisphere approximation (see Fig. 3.15). Its hull function follows approxi-
mately a ∆k−3 dependence. The calculation follows the description in [53], where
we have assumed a CoMdistance at the turn-over point of 2.65Å for H2Oand 3.65Å
for benzene. The form factor of the substrate, a graphene/Ni(111) surface can be
seen in a diffraction scan in Fig. 4.5.

Figure 3.15: Calculated Fraunhofer intensity versus ∆k in the hard hemisphere ap-
proximation for H2Oand benzene. Grey dashed line: ∆k−3 approxima-
tion.
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4 Epitaxial Graphene Growth on the (111)
Surface of a Nickel Crystal

4.1 Introduction

Graphene as a truly two dimensional material exhibits unique properties that have
attracted large attention in the last decade. It is a single layer of carbon atoms that
arrange in a hexagonal honeycomb lattice structure with a C-C bond distance of
1.42Å. In this plane, one 2s and the 2px ,y orbitals hybridize to form strong Σ bonds
betweenCatoms. The2pz orbital forms aπ band that is half filled, where the conduc-
tion band and the valence band meet at the Fermi level [54]. This makes graphene
a zero-gap semiconductor.

Figure 4.1: View of the periodic table of transition metals that allow epitaxial graph-
ene growth. Orange and green highlighted panels: strongly and weak-
ly interacting graphene, respectively. Blue and red labelled elements:
lattice matched and lattice mismatched systems, respectively. From [55].

Graphene can be grown epitaxially on several metal surfaces by chemical vapour
deposition, where the metal surface acts as a catalyst on carbohydrate precursors,
which leave carbon behind at the surface [56]. Epitaxial graphene growth on the
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Ni(111) surface has been reported as early as 1983 [57, 58]. Since then, epitaxial
graphene growth by chemical vapour deposition has been successful on a dozen
of transition metal surfaces. They differ in general in two qualities, by which each
system can be classified: The graphene and metal system can interact weakly or
strongly, which for a strongly interacting system results in a shift of the Fermi level and
the appearance of a band gap, while for a weakly interacting system, the properties
of free standing graphene are largely preserved [55]. In general, the quality of these
graphene layers is very high, with a very large structural coherence [59]. The second
classification is structural. Thegraphene layermay either bematchedormismatched
with respect to themetal surface, depending on the unit cell size of themetal surface
and the interaction strength. Fig. 4.1 shows a comparison of the known transition
metal – graphene systems. Since graphene/Ni(111), is a strongly binding system
and the lattice constants of free-standing graphene and the Ni(111) surface differ
only by 1.2%, the graphene layer matches the metal surface [56, 55]. (The lattice
constants of the hexagonal unit cell are aNi =2.49Å and aGR = 2.46Å, respectively.)
The strong interaction also causes the graphene layer to be located relatively close
to the Ni surface, with a separation of 2.1Å, compared to 3.3Å inter-layer distance
in graphite.

Fig. 4.2 illustrates the geometry of the graphene/Ni(111) surface. The graphene unit
cell is indicated by red arrows (a1 = a2 =2.49Å). The reciprocal space unit vectors
b1 and b2 are drawn in purple (b1 = b2 = 4π/

√
3a). The Brillouin zone (BZ) is rotated

by 30° with respect to the orientation of the real space graphene hexagon. The two
principal azimuthal directions in Brillouin zone are denoted by ΓM and ΓK connect-
ing the Γpoint with theM and theK points, respectively. In terms of directions, along
which helium scattering is performed, ΓM corresponds to scattering along the [110]

direction in real space, and ΓK corresponds to the [11̄0] direction. Since the geom-
etry of the HeSE instrument is fixed to 44.4° and the sample is tilted for diffraction
measurements, at 8meV beam energy, a range in∆k up to about±5Å−1 is accessi-
ble. In this range, we can access only one diffraction condition, the first order Bragg
diffraction (see Fig. 4.4 and 4.5 in the next section). The orange lines in Fig. 4.2
illustrate the scattering planes that correspond to this Bragg condition.

Since the interaction between an organic molecule and the substrate is typically
weak, conventional techniques such as X-ray scattering and high-energy electron
diffraction can often become destructive. Due to the low energies (5 – 100meV),
neutral He atoms are perfectly suited to probe these systems in an inert, completely
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Figure 4.2: Illustration of real space and reciprocal space geometry of the graph-
ene/Ni(111) surface. Dark red: unit cell in real space; Purple: unit cell
in reciprocal space; BZ: first Brillouin zone; The green arrows indicate
the principal directions in real space, [11̄0] and [110], and in reciprocal
space, ΓM and ΓK. The orange lines indicate the scattering planes of
the first order diffraction peak that is situated in the [110] ΓM direction at
2.93Å−1.

non-destructive manner [60, 61, 41].

In this chapter, we will discuss our growth procedure of an epitaxial graphene on
the (111) surface of a Ni crystal. We will then present structural studies from helium
diffraction. Finally, we will discuss the spectra of two observed surface excitations
in the very low energy regime, namely the longitudinal resonance mode and the
Rayleigh mode. These modes hold important information about the thermal con-
ductivity of graphene which is dominated by contributions from acoustic phonons
near room temperature. It also shows the importance of the graphene-substrate
interaction which can easily modify the corresponding dispersion curves.

4.2 Experimental Details

The Ni(111) single crystal used in the study was a disc with a diameter of 10mm and
a thickness of 1mm. Fig. 4.3 shows the single crystal sample mounted on a sample
holder (see Fig. 4.3). The sample holder can be heated using a radiative heating
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from a filament on the backside of the crystal. For cooling, heat is transferred from
the sample via a sapphire crystal and a subsequent stack of flexible copper bands to
a reservoir of liquid nitrogen or liquid helium, which allow cooling to 100K and 75K,
respectively. Sapphire exhibits a very good heat conductivity at low temperatures
and a flexible heat conductor is necessary to rotate the sample holder. The sam-
ple temperature was measured using a chromel-alumel thermocouple. Prior to the

a) b)
Figure 4.3: The Ni(111) single crystal mounted on a sample holder. a) Top view. The

crystal surface reflects the lens of the camera. b) side view.

measurements the surface was cleaned by Ar+ sputtering and annealing to 870K.
A monolayer of graphite on Ni(111) was then grown by dosing ethene (C2H4) while
heating the Ni crystal (730K) over several hours [62]. This process gives rise to an
epitaxial graphene layer which is not rotated with respect to the substrate. The for-
mation of a single domain of the graphitic lattice causes a diffraction pattern which
exhibits the same symmetry as the hexagonal Ni(111) surface.

4.3 Structure of Graphene/Ni(111)

We have performed helium diffraction studies on the prepared graphene/Ni(111)
surface. Fig. 4.4 shows a three-dimensional polar plot of the scattered intensity.
Here, the radial coordinate corresponds to the incident angle θi and the polar angle
corresponds to the azimuthal orientation of the crystal. The z-axis indicates the scat-
tered intensity which is plotted on a logarithmic scale. The two first order diffraction
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peaks which are contained in the scanned azimuthal range are clearly visible. They
are located at the same position as the peaks of the Ni substrate, which suggests a
(1 x 1) structure on the underlying Ni(111) surface.
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Figure 4.4: a) Top and side view of the graphene/Ni(111) surface structure (accord-
ing to [63]). b) Three-dimensional polar plot of the scattered He intensity
for graphene/Ni(111) where the z-axis corresponds to the scattered in-
tensity on a logarithmic scale. The scan was taken with an incident beam
energy of Ei =8meV and the surface at 150K. The two diffraction peaks
which are contained in the scanned azimuthal range are clearly visible.
The specular peak is not shown in the plot due the high intensity com-
pared to the diffraction peaks.

Several possible configurations exist for the position of the carbon atoms in the
graphene layer, relative to the Ni(111) substrate. Recent density functional the-
ory (DFT) calculations have shown that the energetically most favourable graph-
ene/Ni(111) configuration is the top-fcc one (see Fig. 4.4a) ) followed by the top-
hcp structure [64, 65, 66]. The energy difference between these two structures has
been reported to be quite small and domains with both configurations have been
observed in experiments [65, 66]. Unfortunately we cannot distinguish the two
configurations from diffraction. However, based on about 20% He reflectivity of
the graphene covered surface and the small width of the specular peak, we expect
to have predominantly one configuration since the number of defects and domain
boundaries must be small in order to achieve the high observed reflectivity [41].

Note in particular that the specular reflectivity for He is similar to the reflectivity of
the graphene/Ru(0001) system where a reflectivity of up to 23% was reported [67,
61]. Not only exhibits graphene/Ni(111) a high He reflectivity as recently predicted
[61], its reflectivity remains also unchanged after O2 exposure at 2 ·10−7mbar for
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15 minutes similar to the graphene/Ru(0001) system [67].

In Fig. 4.5 the scattered intensity versus ∆k is plotted for both graphene/Ni(111)
and Ni(111) along the ΓM direction. On the graphene covered surface the intensity
of the diffraction peak is increased by two orders of magnitude indicating a larger
corrugation of the surface electron density compared to the clean Ni(111) surface.
According to the peak area, the intensity of the first order diffraction peak is only
0.003% of the specular intensity for Ni(111) and 1% for graphene/Ni(111), respec-
tively.

Figure 4.5: Comparison of the scattered intensities for graphene/Ni(111) and clean
Ni(111) versus∆k . Both scanswere taken along the ΓMdirectionwith the
crystal at room temperature and a beamenergy of 8meV. The intensity of
the diffraction peak is increased on the graphene covered surface which
indicates a larger corrugation of the surface electron density compared
to the pristine Ni surface.

We used purely elastic close-coupling calculations to determine the corrugation
of the surface electron density quantitatively. In the close-coupling approach, the
surface is considered to be statically corrugated and periodic and helium atoms
are viewed as structureless [68]. The surface potential was approximated by a
corrugated Morse potential, which is a common approach in combination with
close-coupling calculations. With this approach, the electronic corrugation can be
calculated by solving the Schrödinger equation with the corrugated Morse poten-
tial iteratively, to match the experimental diffraction peak intensities [68]. We thus
found that the peak-to-peak height of the surface electron density corrugation for
graphene/Ni(111) is 2.5% of the Ni surface lattice constant and 0.22% in case of
the pristine Ni surface, respectively. While the surface electron density corrugation
for graphene/Ni(111) is considerably larger than on clean Ni, this corresponds to a
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peak to peak height of 0.06Å. This is still comparable to the findings of some metal
surfaces [41]. It is also smaller than the corrugation on graphite [69]. Compared to
graphene/Ru(0001) (0.15Å [70]) and graphene/Rh(111) (0.9Å [71]) this is the small-
est surface electron density corrugation that has been reported for graphene/metal
systems so far.

We used the fact that the graphene covered surface has a larger electron density
corrugation than theNi(111) surface tomonitor thegraphenegrowth. Fig. 4.6 shows
the intensity of the first order diffraction peak during graphene growth. The intensity
first drops upon formation of nickel carbide domains [62]. Upon conversion into
graphene the intensity increases again and finally reaches a value above the initial
intensity when the graphene layer is completed, due to the higher corrugation.
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Figure 4.6: The growth of graphene on Ni(111) can be followed by monitoring the
first order diffraction peak while dosing ethene (C2H4). Here the time
t =0 on the abscissa corresponds to starting the dosing of ethene. First
nickel carbide forms and the intensity drops. As soon as this converts to
graphene the intensity increases since graphene exhibits a larger corru-
gation than Ni(111). The whole growth process continuous over several
hours.

4.4 Phonon Spectra for Graphene/Ni(111)

In the HeSE instrument, the two precession coils for the incoming and the outgo-
ing beam can be steered by two independent power supplies. In this configuration,
they can thus be seen as energy analysers that allow us to select the wavelength
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of the incoming and outgoing 3He atoms independently (see [72] for details). We
have measured several energy analysed scattering spectra along the ΓM direction.
Fig. 4.7 shows the 2D wavelength intensity map for graphene/Ni(111) at an incident
angle θi =18.2°. The only noticeable feature except for the elastic peak at λf = λi

is the Rayleigh mode of Ni(111) on the phonon creation side (at larger λf ). This sug-
gests that there is no significant difference in the surface phonon dispersion relation
for Ni(111) and the graphene covered surface within the energy range accessible
with a 8meV beam.

Figure 4.7: 2Dwavelength intensity matrix for graphene/Ni(111) along ΓM recorded
at θi =18.2 °, a beam energy of 8meV and a sample temperature of
150K. The plot shows themeasured probability for detecting a scattered
He atom with wavelength λf versus the incoming wavelength λi . The
only two visible features are the elastic peak (at λf = λi ) and the Rayleigh
mode on the creation side (at larger λf ).

At first glance, one might expect to detect phonon modes similar to the ones in
graphite [73, 74] or free-standing graphene [75, 76] on graphene/Ni(111). The three
acoustic modes (ZA, TA and LA) should be at a detectable energy within the vicin-
ity of the Γ-point. However, previous measurements of the graphene/Ni have only
covered phonon events at energies greater than 20meV [77, 78, 59, 56].

The experiments presented in this work have been performed for in plane scattering
along the ΓM azimuth of the crystal. In this case the scattering plane, defined by
the incoming and scattered He beam, coincides with a mirror plane of the surface.
Hence the TA mode cannot be excited since it is anti-symmetric with respect to the
scattering plane [79, 80]. As shown by de Juan et al. [79] this symmetry is not broken
by bonding of the graphene layer to the substrate in the case of Ni(111). However,
the bonding to a perfectly commensurate triangular substrate gives rise to a lifting
of the ZA mode [79] which brings the ZA mode out of the detectable energy range

56



4.4 Phonon Spectra for Graphene/Ni(111)

of our instrument.

Hence the LA mode is the only phonon mode present in graphene/Ni(111) that
would be experimentally accessiblewithin the framework of this study. Yet thismode
has the largest slope of the acoustic phonon modes and would only be detectable
close to Γ. While in the current spectra there are no indications for thismode it would
require a more thorough investigation at specific scattering conditions to make any
sound conclusions regarding this. In particular, since on other graphene/metal sys-
tems low energy phonon modes have been found [81, 82, 61].

Nevertheless, an important result of this study is that the Rayleighmode and the lon-
gitudinal resonance of theNi(111) substrate [83, 84] are observable on the graphene
covered surface, even though the Ni atoms are screened out by the graphene sheet.
An exemplary phonon spectrum is shown in Fig. 4.8 together with a spectrum taken
on Ni(111) under the same experimental conditions.
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Figure 4.8: Comparison of the phonon spectra for graphene/Ni(111) and Ni(111).
The spectrum was taken along the ΓM azimuth at an incident angle
θi =18.2°, Ei =8meVand the samplewas cooleddown to 150K.Despite
the diffuse elastic peak at 0 energy transfer both the Rayleigh mode at -
2.7meV and the longitudinal resonance at -3.6meV can clearly be seen.
The intensity of the Rayleigh mode is smaller on the graphene covered
surface.

Both spectra have been normalised so that the intensity of the diffuse elastic compo-
nent at zero energy transfer corresponds to one. Despite the diffuse elastic compo-
nent the Rayleighmode and the longitudinal resonance can be seen on the creation
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side. The intensity of the Rayleigh mode is clearly reduced on the graphene cov-
ered surface with respect to the intensity on Ni(111). This seems to be a general
effect when comparing intensities of several spectra throughout the ΓM direction.

Since the inelastic scattering of 3He atoms due to phonons involves scattering by
phonon-induced charge density oscillations it has been shown that subsurface
phonon modes are accessible for HAS due to the electron-phonon coupling. The
electron-phonon coupling parameters found for graphite and graphene/metal sys-
tems have been reported to be close to 1 [85] which is similar to the value reported
for other systems where subsurface phonon modes could be detected with HAS
[86, 87].

Moreover, the observation of the Rayleigh mode from the substrate is consistent
with measurements of graphene/Ru(0001) where a strong intensity of the Rayleigh
mode from the Ru(0001) substrate was found [61]. Maccariello at el. demonstrated
that surface charge density oscillations are themain contribution for this observation
on graphene/Ru, although the graphene layer also oscillates with the underlying Ru
surface due to the strong bonding to the substrate [61].

When performing HeSE measurements, ISFs at low Fourier times (about <1 ps) in-
clude contributions from low energy surface phonons. This will be discussed in de-
tail in chapter 5, where in the same Fourier time range, a decay of the Rayleighmode
and a fast diffusion process are observed.

4.5 Summary and Conclusion

In this chapter, we have discussed the preparation of a graphene/Ni(111) layer by
chemical vapour deposition. By comparing specular and diffraction peak intensities,
we found that the epitaxial graphene layer exhibits an electron density corrugation
with a peak to peak height of 0.06Å upon scattering of 3He with a beam energy of
8meV. This corrugation is smaller than the values reported for graphene/Ru(0001).
The graphene/Ni(111) surface shows a similar reflectivity of ≈20%.

Measurements of the surface phonons modes in the low energy region basically
show the samemodes as on the pristineNi surface. While 2 of the acoustic graphene
modes are not accessible in our setup, the observation of the Ni(111) surfacemodes
is ascribed to the ability of HAS to detect subsurface phonon modes due to the
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electron-phonon coupling. The intensity of the Rayleigh mode is generally smaller
on the graphene coated surface compared to the Ni surface. The similarity of these
findings with atom scattering results from graphene/Ru[61] perfectly confirms the
theory that strongly interacting graphene-metal systems should give rise to a high
He reflectivity.
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5.1 Introduction and State of Current Research

H2O adsorbed on graphene and graphite surfaces can be regarded as a fundamen-
tal system for studying physisorption. The system shows electrostatic, van derWaals,
and hydrogen bonding interactions in a complex way and the existence of strong
hydrogen bonds makes it an interesting adsorbate to study cluster formation on
the graphene surface [88]. In general, H2O is expected to behave much differently
on the strongly hydrophobic graphene surface [89, 90, 91] in comparison to its be-
haviour in bulk liquid water or ice. The adsorption properties of water on graphene
have attracted much attention since resistivity measurements have shown the exis-
tence of a tunable band-gap of 0.2 eV in graphene on a SiO2 substrate by exposition
of the surface to humidity [92]. The exact structure of the adsorbed H2Omight play
an important role for the influence of the adsorbate on the electronic properties in
graphene, as DFT calculations suggest [54].

In order to simplify the discussion of water adsorption on graphene in terms of ge-
ometry, it is helpful to introduce abbreviations: possible adsorption sites are on top
of a C atom (T), above a bridge site between two C atoms (B), and above the hol-
low centre of the graphene hexagon (H). Furthermore, the water molecule might
be oriented in different ways: both h atoms pointing symmetrically upward (u) or
downward (d), lying flat parallel to the surface (f), or with one H atom parallel to the
surface and the second pointing downward (v).

Experimental investigations

The experimental investigations so far have been limited mostly to macroscopic in-
vestigations, such as calorimetric and thermal desorption measurements. For com-

61



5 H2O Adsorbed on Graphene/Ni(111)

parison, we also include results from H2O on the surface of graphite, as well as from
H2O on graphene with different metal substrates.

The only experimental value for the binding energy of H2O to a graphite surface
stems from micro-calorimetric measurements, where a differential heat of adsorp-
tion of 156meV at the zero coverage limit was observed [93]. Several groups have
conducted TDS measurements of water on the (0001) basal plane of graphite. Con-
sistently, a single desorption peak was observed that corresponds to a desorption
energy in the range of 0.4 to 0.5 eV. (Chakarov et al.: (0.48±0.03) eV [94, 95], Ul-
bricht et al.: ( eV [15], Bolina et al.: (0.416±0.003) eV [96]). This value is close to
the sublimation enthalpy of ice at 0K, 0.49 eV [94]. This energy was observed not
to change with coverage, indicating de-wetting of the graphene surface [15]. Fur-
thermore, sub-monolayer desorption seems to be of approximately 0th order and
the sticking coefficient seems to be coverage independent [94, 96]. For coverages
approaching the monolayer, 1st order desorption has been observed [94]. On the
surfaces of graphene/Ni(111) and of graphene/Li(111), TDS spectra reveal pseudo-
zeroth order desorption (see Fig. 5.1). Desorption energies of (356±23)meV in the
first case, and (585±31)meV in the latter case, respectively, were found.

Figure 5.1: Thermal desorption spectroscopy of H2O adsorbed on the surfaces of
graphene/Ni(111) and of graphene/Li(111). From [55].

From LEED and rare-gas adsorption/desorption measurements, a metastable ice Ih
bilayer on graphene/Pt(111) has been reported at 125K that de-wets and forms 3D
ice Ic islands upon heating to 135K [89].

HREELS studies of H2O on HOPG revealed the formation of hydrogen bonded clus-
ters that exhibit the same vibrational spectra as bulk ice for coverages in the sub-
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monolayer range [97]. For H2O on the surface of graphene/Pt(111), an almost iden-
tical spectrumwas found, with an additional sharp O–H vibrational band at 457meV,
which is seen as evidence for non-H-bondedwatermolecules at thewater/graphene
interface [88].

On graphene/Ru(0001), intercalation of water has been observed with STM mea-
surements [98]. We have observed no comparable phenomena, but it has to be
noted that graphene is more strongly bound to the Ni(111) surface than to the
Ru(0001) surface.

The formation of a amorphous ice layers on surfaces, commonly named amorphous
solid water (ASW) has been observed since the 1960s [99]. In the bulk state, at
≈135K ASW undergoes a glass transition to a viscous liquid, where a coexistence
of amorphous and cubic crystalline regions have been observed [100]. In isother-
mal desorption measurements of H2O on HOPG at ≈100K, the glass transition was
observed by a change in desorption rate and a growth of 3D water islands rather
than a wetting of the graphite surface [101, 102]. TDS measurements over a large
range of surface coverages of H2O on HOPG revealed the existence of four desorp-
tion peaks corresponding to desorption from 2D and 3D islands, as well as from two
ice structures, ice Ih and potentially ice Ic , as can be seen in Fig. 5.2.

Figure 5.2: TDS spectra of water on HOPG, from [96]. Spectra following exposures
A: from 0.04 – 2 L; B: from 2 – 15 L; C: from 15 – 275 L. Peak A: desorption
from 2D islands or the edges of 3D islands; Peak B: desorption from the
surface of 3D islands; Peak C and D: desorption from ice Ic and Ih, re-
spectively after phase transition.

HAS measurements of water on HOPG revealed the formation of an ice layer on the
surface in a temperature range or 100 – 140K and the formation of 3D structures in
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the range 140 – 180K. For higher temperatures, an onset of mobility was observed,
corresponding to the formation of a quasi-liquid water layer [103, 104]. In quasi-
elastic helium atom scattering (QHAS) measurements of a 1000Å thick ice Ih crystal
grown on a Pt(111) surface, a Rayleigh surface mode was observed, as well as a
dispersion-less phonon branch at ℏω =5.4meV, which was attributed to frustrated
translational vibrations of isolated water molecules [105].

Angle-resolved photoelectron spectroscopy of GR/Ni(111) revealed the existence
of interface states, originating from the strong hybridization of the graphene π and
spin-polarized Ni 3d valence band states [54]. Adsorption of 0.5ML H2O on the
GR/Ni(111) surface resulted in p-doping, although the electronic structure of the
graphene π and Ni 3d states remained in this case mostly intact. The structural
change could be interpreted in terms of a preferential adsorption on either hollow
or bridge adsorption sites.

Molecular dynamics and density functional theory calculations

A large number of calculations have been performed in the last ten years to deter-
mine to sufficient precision the adsorption location andenergyof single andmultiple
H2Omolecules on graphene and graphite surfaces, as well as on acenes, serving as
“miniature graphene”.

Most calculations have hereby been done using the DFT approach. However, it
has been pointed out that DFT often fails to describe physisorption correctly, since
contrary to the local chemical interaction, the dispersion interactions originate from
long-range electron correlation effects and they are not captured by the standard
DFT approach because of the local character of commonly used functionals [106].
Several calculations used an exchange-correlation functional named the van der
Waals-density functional (vdW-DF) developed by Dion et al [107], in order to im-
prove accuracy.

Single molecule adsorption

Molecular dynamics calculations indicate that the binding energies of water with a
single graphene layer are comparable to those of water bound on graphite [108].
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Furthermore, the similarity of water adsorbed on graphene and on other hydropho-
bic surfaces suggests that the hydrophobicity plays a more important role than the
detailed structure of the surface [108].

The density functional approach has been applied a number of times, showing a
strong hydrophobicity of the graphene layer [109, 90]. The influence on the elec-
tronic structure of the graphene is rather small and highly oriented water clusters
can lead to the doping of graphene [110, 90]. The DFT calculations generally agree
that the potential energy surface is rather flat and that the binding energy depends
more on the orientation than on the position of the adsorbent [110, 90, 111].

A summary of the results from DFT calculations by various groups is shown in Tab.
5.1. The table shows the preferential adsorption site (H: hollow, T: top) together with
themost favourable orientation (d: H both atoms pointing downward, v: oneH atom
parallel to the surface, and the second one pointing downward). Most calculations
predict a preferential H adsorption with a d orientation. An adsorption energy Ea in
the range of about 130meV is calculated, but results vary considerably. A general
agreement on an adsorption distance of about 3.3Å can be observed.

Site orientation Ea [meV] d [Å] Reference
H v 47 3.50 [112]
H d 123 2.55 [54]
H d 144 3.23 [113]
H d 156 3.26 [114]
H d 70–98 3.4–4.0 [115]
T d 135 3.23 [106]
H d 130 3.36 [116, 111]
H d 183 2.31 [117]∗

∗ Values for graphene/Ni(111)

Table 5.1: Summary of DFT calculation results for a single H2O molecule on a
graphene surface. Ea: adsorption energy; d adsorption distance.

Cluster adsorption

The structure of H2O clusters adsorbed on graphite has been calculated by several
groups. The results agree in finding that almost no structural change happens in the
cluster-graphite system in comparison to the free cluster. The association energy to
the cluster is in the range of 450 – 500meV, while the binding energy of a molecule
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to the graphene surface is much lower, and also lower than for a single molecule
(70meV [109], 15meV [90]). It was further predicted that single molecules, clusters
up to 5 molecules and a single layer of ice Ih do not cause doping of the graphene
[110, 112, 90]. However, bilayers and four layers of ice Ih would cause a band gap
tuning [110]. Thedifference is causedby theorientations of theH2Omolecules in the
ice clusters. MD simulations of a large number of molecules on a graphene surface
at room temperature suggest the distinct existence of an ordering into layers with
roughly 3Å distance [108]. The interaction between an ice-bilayer and a Ni(111)
supported graphene layer has been calculated with DFT by Li et al., exhibiting a
small band gap opening of ≈40meV around the Fermi level [117].

Dynamics

The diffusion of water on graphene has been studied bymeans of molecular dynam-
ics (MD) simulations. Ab initio MDby Tocci et al. predict a substantially lowermacro-
scopic friction coefficient in comparison to adsorption on a hexagonal boron nitride
surface [118]. A fast diffusion with diffusion constant D =2.6Å2/ps is suggested at
room temperature by calculations from Park et al. This fast diffusion is suggested
to be connected with preferential ordering of the molecules into an ice Ih structure
where first layer molecules are situated above the hollow graphene sites [119]. MD
simulations at 100K by Ma et al. predict a diffusion constant D =0.6Å2/ps. The au-
thors further stated that observation of diffusing H2Omolecules would be very diffi-
cult to achieve, as due to the ”ultra-fast diffusion”, H2Omolecules would very rapidly
agglomerate into clusters [115].

Outline of this chapter

In the present chapter, we present results of HeSE studies on the structural and dy-
namical properties of water adsorbed on the surface of graphene/Ni(111).

The results from adsorption and diffraction studies show that water adsorbs at low
temperature (< 105K) as amorphous ice, while upon heating, it rearranges into clus-
ters, de-wetting the graphene surface. Above about 120K, desorption occurs. Ther-
mal and isothermal studies allowedus to determine adesorption energy of 515meV,
which suggests that we are observing desorption from the clusters.
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Spin-echo measurements revealed a jump diffusion of H2Omolecules between hol-
low adsorption sites over a diffusion barrier Ea = (51±12)meV with a hoppingate of
η = (1.81±0.07)·10−2 ps−1 at 125K. Furthermore, the existence of Rayleigh phonon
modes from the graphene/Ni(111) surface, as well as from islands has been ob-
served.

5.2 Adsorption and Desorption

5.2.1 Isothermal Adsorption

We have carried out isothermal adsorption measurements of H2O on a graph-
ene/Ni(111) surface (preparation described in Chap. 4) with the HeSE spectrometer
by monitoring the specular reflected helium signal while dosing H2O onto the sur-
face through a ≈1m dosing arm with length at a 50mm distance from the opening
to the surface. Partial pressure at the surface has been estimated with the use of a
correction factor from a previous calibration measurement. In this calibration, ad-
sorption measurements obtained while using the dosing arm were compared with
the same measurements while dosing by back filling the vacuum chamber [120].
Taking into account a change in the distance of the dosing arm after installation
of an alignment segment, we could interpolate a multiplication factor to convert
from the measured background pressure to the actual surface pressure at 50mm
distance. This calculation risks the introduction of a systematic error, that we can
only estimate to about 10%. In addition, the monitored pressure readings from
the ionisation gauge need to be corrected by a factor of 1.12 to account for the
ionization efficiency of the H2Omolecule [121]. A precise pressure control has been
obtained with the use of a leak valve that is attached to the top of the dosing arm.
The leak valve itself was usually regulated by a feedback control system in order
to maintain a constant pressure. Adsorption has been monitored at 100, 110, 125,
130, and 150K at a dosing pressure at the surface of about 6 ·10−8mbar. The water
sample used for the experiments was created in-house by an extensive series of
distillation and de-ionization cycles, ensuring a very high water purity. Prior to every
series of adsorption, diffraction, or HeSE measurements, the water contained in a
glass sample support was purified by several freeze-thaw cycles. In addition, at reg-
ular intervals a mass spectrometer signal was monitored to exclude a contamination
of the water sample.
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Since we expect water not to wet the graphene surface, we cannot technically speak
of a monolayer. However, in literature, a monolayer equivalent has been defined
in several cases for water on graphite and graphene, where 1ML corresponds to
0.115 molecules/Å2 =0.603 molecules/uc (uc: graphene unit cell), which is equiv-
alent to the density of an ice Ih over-layer [94, 122]. With the theory of kinetic
gases (Eq. 3.1), we can relate the exposure to the expected surface coverage,
making use of: the gas temperature T =289.15K, the mass of the water molecule
m =18.0153g/mol, and the pressure p. An exposure of 1 L corresponds therefore
to a surface coverage equivalent of 0.0486Å−2 = 0.422ML, assuming a sticking
coefficient of unity.

Adsorption in the range of 100 K – 120 K

a) b)
Figure 5.3: Normalized specular helium signal I/I0 versus exposure for the adsorp-

tion of H2O onto the GR/Ni(111) surface at three temperatures 100K,
110K, and 120K. I/I0 is shown on a logarithmic scale. Dashed lines indi-
cate the initial signal attenuation with the corresponding helium scatter-
ing cross section Σ1. Dotted lines show an exponential fit to the helium
signal at higher coverage, where a lower helium scattering cross section
Σ2 is found.

At 100K, the specular signal drops exponentially up to an exposure of about 0.6 L,
where a second, slower exponential decay sets in. The signal decays to full attenu-
ation and does not recover when the dosing pressure is decreased, which is in ac-
cordance with the growth of an amorphous layer. At 110K and 120K, the same two
decays are observed, but the signal does not fully attenuate. The normalized spec-
ular intensity as a function of coverage for measurements at these temperatures is
shown in Fig. 5.3 a).
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The rapid initial decay of the specular signal, which happens in the very low cov-
erage regime, is characteristic of the adsorption of a non-interacting gas. We have
fitted an exponential law I/I0 = exp(−Σ · n · θ/ cos(ϑi)) (Eq. (3.68)), as expected for
random adsorption, and a power-law I/I0 = (1 − θ)Σ ·n·/cos(ϑi ) (Eq. (3.69)), as for the
case of lattice adsorption, to the data. Both models worked equally well and pro-
duced the same results within the statistical uncertainty, thus we cannot conclude
which description is more appropriate. Here, Σ1 is the helium scattering cross sec-
tion, n =8.69Å2 is the surface area that an H2Omolecule occupies at (hypothetical)
monolayer coverage, and the term cos(ϑi) corrects for the increase of the apparent
scattering cross section since scattering happens at an initial angle ϑ =22.2° with re-
spect to the surface normal. By assuming the relation between exposure and surface
coverage equivalent described above and assuming a sticking coefficient of unitywe
can determine the helium scattering cross section by fitting an exponential function
to the data. We repeated the procedure for the high coverage regime, where a sec-
ond exponential decay is observed. The results are summarized in Tab. 5.2. The

Temperature [K] Σ1 [Å2] Σ2 [Å2] final I/I0

100 144±1 23.5±0.5 0
110 (84±1) 10.0±0.2 (7.2±0.4)·10−4

125 (17.4±0.4) – (5.80±0.01)·10−2

Table 5.2: Helium scattering cross sections and sticking coefficients determined by
the slope of specular helium uptake curves. Σ1 is the scattering cross sec-
tion of the initial adsorption process, the values for 110K and 125K are
in brackets since they are apparent cross sections due to a lower sticking
coefficient. Σ2 is the scattering cross section attributed to the second ad-
sorption process at lower coverage. final I/I0 is the extrapolated value for
the final specular signal.

scattering cross section of H2O has been observed not to change with temperature
[38] and this assumption would seem unreasonable. The apparent change in cross
section could rather express either a change in sticking probability, an onset of des-
orption, or an onset of island formation. In the literature, the scattering cross section
of H2O has been measured to be 130Å2 (no uncertainty was given) [123], which is
lower than the (144±1)Å2 obtained here, but still in reasonable agreement, if an
estimated 10% uncertainty of the dosing pressure at the surface are taken into ac-
count. We thus assume the initial sticking coefficient at 100K to be close to unity.
The dramatic change in the apparent scattering cross section at 110K and 120K is
unlikely to be due to a change in the initial sticking coefficient. Desorption is still
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very slow at 110K and 120K. We thus expect the apparent cross section to reflect
an onset of island formation that we have observed to start at 105K, and that would
accelerate with higher temperature due to faster surface diffusion. Fig. 5.3 b) shows
the specular signal at 110K and 125K in comparison to 100K after rescaling of the
surface coverage to account for the change in the apparent scattering cross sec-
tion.

At 100K and 110K, a distinct kink is observed in the specular signal at an exposure of
about 1 L, which corresponds to about 0.3ML surface coverage. The apparent scat-
tering cross sections drop by a factor of 6 and 8.4 at 100K and 110K, respectively. At
higher coverages, an arriving molecule would statistically have a very high chance
to adsorb in the direct neighbourhood of at least one other molecule. Since their
cross sections overlap, the effective cross section is reduced. The apparent cross
section of 10Å2 at 110K is close to the surface area covered by a single molecule,
8.7Å2. This indicates the formation of islands. At 100K, the cross section is higher
by a factor of three. Diffraction measurements suggest that at this temperature, an
amorphous ice layer grows on the surface, as will be discussed in the next section.
This means that, instead of island formation, a formation of oligomers is more prob-
able.

Adsorption above 120 K

Figure 5.4: Normalized specular helium signal I/I0 and dosing pressure versus mea-
surement time t at 125K. The lower, blue curve indicates I/I0, the upper,
red curve the dosing pressure.

At 130K and 125K, the specular signal also drops with increasing dosing pressure,
indicating adsorption. However, in contrast to sample temperatures below 120K,
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when reducing pressure, the signal recovers at a very fast rate. The system is, thus, in
an adsorption-desorption equilibrium. Fig. 5.4 shows an example for the response
of specular reflectivity to a change in pressure. At 150K, no adsorption has been
observed even when dosing up to 1.5 ·10−7mbar.

5.2.2 Thermal and Isothermal Desorption

Figure 5.5: Mass spectrometer signal and derivative of the specular helium signal
dI/ dT versus temperature T during thermal desorption of water from
graphene/Ni(111), dosed at 100K. The applied heating rate in the range
130 – 180K was β =0.11K/s. Orange solid line: mass spectrometer sig-
nal. Blue solid line: derivative of specular signal dI/ dT . Grey dashed
line: specular signal.

Thermal desorption spectroscopy has been performed while monitoring the
m/z =18 peak on a mass spectrometer and simultaneously measuring the specular
reflected signal. Fig. 5.5 shows a typical desorption measurement. Clearly visible
are two distinct mass spectrometer peaks with maxima at 136K and 153K, which
coincide with a rapid recovery of the specular signal. The mass peaks at higher
temperatures must stem from desorption from other surfaces, such as the sample
holder, since no change in specular signal is observed during desorption.

Heating rate [K/s] Tmax ,1 Tmax ,2 Ed1 [meV] Ed2 [meV]
0.11 137±2 151±5 444±6 494±16
0.21 144±4 166±5 463±13 536±17

Table 5.3: Desorption energies calculated from the maximum gradient of specu-
lar intensity from thermal desorption spectra using the Redhead formula.
The measurement uncertainty is based on the peak width.
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In order to estimate the desorption energy Ed , we relied on the estimation from Ul-
bricht et al. [15] for thepre-exponential factor ν =9 ·1014 s−1. Applying the Redhead
equation [16] to the temperatures at the two peak maxima of the specular intensity
gradient yields estimates for desorption energies around 450meV and 510meV, re-
spectively. The exact values can be found in Tab. 5.3. The lower energy peak would
unlikely stem from desorption from the graphene surface, since calculations predict
a much lower desorption barrier of about 100meV. More likely is the case of des-
orption from the edge and from the centre of islands, respectively, for the first and
second desorption peak.

a) b)
Figure 5.6: Isothermal desorption of water fromgraphene/Ni(111). a) Surface cover-

age versus time at 125K. After 350 s, the dosing valve was closed. Yellow
dashed line: Exponential fit to the coverage. b) Logarithm of initial des-
orption rate versus inverse temperature in an Arrhenius plot. Solid blue
line: Linear fit in the range 125 – 130K. The slope indicates a desorption
barrier of 515meV.

For the isothermal desorptionmeasurement, weexposed the surface to 6 ·10−8mbar
H2Ooverpressure andwaited until the systemwas in equilibrium. We then turnedoff
the exposure and monitored the specular signal recovery. From this we calculated
the corresponding surface coverage as a function of time. An example is shown
in Fig. 5.6 a): the surface coverage first rises during exposure and then decays
exponentially after exposure has been stopped after about 300 s. Unfortunately,
we have only measured this desorption rate at 125K and at 130K. At 110K, no
desorption was observed and at 150K, a substantial drop in specular signal could
not be observed in the technically available pressure range. The initial desorption
rate, which is identical to the exponential decay rate, exhibits an activated temper-
ature dependence at 125K and at 130K. Fig. 5.6 b) shows an Arrhenius plot of the
desorption rate. The slope of the Arrhenius law corresponds to an activation energy
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a) Heat to 110 K−−−−−−−−−−−→ b)

Figure 5.7: Helium diffraction patterns of water adsorbed on a graphene/Ni(111)
surface. a) When dosed at 100K, H2O forms amorphous ice on the
graphene surface; all diffraction signal is lost. b) When heated to 105K,
the original graphenediffraction pattern is recovered (pattern shownwas
measured at 110K), showing only the first order (110) diffraction peak
and its equivalents in the hexagonal symmetry.

of desorption of (510±3)meV. Since this analysis relies on only two measurement
points, the result needs to be viewed with a critical eye. The uncertainty in the en-
ergy was established based on the uncertainties of the measured desorption rates
and is certainly underestimated.

The results from both desorption studies are higher than the (356±23)meV pre-
viously measured by TDS on the graphene/Ni(111) surface, where only a single
desorption peak was observed [55] (see Fig. 5.1). They are rather in the range
of the reported results from TDS measurements on graphite ((414±80)meV [96],
(450±30)meV [94], (480±30)meV [15]).

5.3 Adsorbate Structure

Wehaveperformedheliumdiffractionmeasurements on the graphene/Ni(111) sam-
ple with approximately 1ML of water adsorbed at different temperatures. Fig. 5.7
shows a comparison between the diffraction pattern of water/graphene at 100K and
at 110K, where the radial coordinate corresponds to an inclination of the surface
plane away from specular geometry and the angular component corresponds to
the azimuthal angle of the surface plane (see Sec. 3.3.2 for illustration). After ad-
sorption of H2O at 100K, the diffraction scan exhibits no diffraction signal except for
specular reflection. We interpret this as being due to the formation of amorphous
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solid water (ASW) at the surface. After heating the surface to 110K, diffraction scans
reveal peaks at the same position as the 1st order diffraction of graphene. From
subsequent thermal desorption measurements, we can conclude that no desorp-
tion occurs at this temperature. The diffraction pattern could thus stem only from a
perfect (1 x 1) H2O over-structure, or from de-wetting of the graphene surface upon
melting, which would expose free graphene to the helium atoms. Comparison with
the structures of ice Ih and ice Ic , which would be the only reasonable assumptions
here, shows that a structure that is closer packed than a (

√
3 x

√
3) over-structure, can-

not be assumed. We thus conclude in accordance with the strong hydrophobicity
of graphene and graphite, that de-wetting occurs at 105K, as revealed by a subse-
quent monitoring of the diffraction peak during slow heating.

5.4 Adsorbate Dynamics

We measured intermediate scattering functions for a range of momentum transfers
∆k at a temperature of 125K along the twoprincipal axes of the hexagonal graphene
surface, ΓK and ΓM. In both directions, measurements have been performed over
a momentum transfer range from 0 to 3.2Å−1. A first series of measurements was
obtained using a power supply that delivers a current of up to 10A, allowing us to
access a Fourier time range from 0.6 to 600ps. Measurements were then repeated
under the same conditions with a different power supply that delivers up to 1A, but
at higher precision, allowing us to focus on smaller Fourier times in the range from
5 ·10−2 to 60ps.

We monitored the specular signal before each measurement to ensure a constant
surface coverage of H2O on the graphene surface. The surface coverage was con-
trolled throughout themeasurements by applying a constant H2Ooverpressure. The
specular attenuations and corresponding calculated surface coverages, at which
spin-echo measurements have been performed, are shown in Tab. 5.4. We gen-
erally observed the existence of two exponential decays, a faster one with decay
rates in the order of several ps−1 and a slower one with decay rates in the order of
0.01ps−1.
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I/I0 θ [ML]
1/3 0.06
1/5 0.09
1/40 0.20

Table 5.4: Relative specular reflectivities I/I0 and corresponding surface coverages
θ, at which HeSE measurements have been performed.

Figure 5.8: Normalized polarization versus Fourier time t at ∆k =0.38Å−1 in ΓM di-
rection. Blue crosses: ISF of 0.06ML H2O on the graphene surface at
125K. Red line: single exponential decay fitted to the experimental data.
Orange crosses: Residuals. Grey dashed line: lower threshold at 45ps.

5.4.1 Surface Difusion

We have analysed the SE measurements by MATLAB (using the built-in non-linear
least squares, trust-region algorithm) fitting a single exponential decay to the real
part of the ISF:

I(∆k, t) = Iqe(∆k) · exp[−α(∆k)t] + Iel(∆k), (5.1)

with the elastic andquasi-elastic polarization amplitudes Iel(∆k) and Iqe(∆k), respec-
tively, and an exponential decay rateα(∆k). An example for ameasured ISF is shown
in Fig. 5.8, depicting the measurement points as crosses, together with a solid line
that represents the fitted model function from Eq. (5.1). Values at lower times than a
certain threshold have not been taken into account in the fitting to avoid inference
of a second, rapid decay. The threshold has been decided individually for each ISF
by analysing the distribution of the residuals. It lies in general in a range from 20 to
50ps.
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a) b)

c) d)
Figure 5.9: Quasi-elastic and elastic amplitudes of different H2O coverages at 125K

versus∆k . a) and c) relative and absolute elastic polarization amplitudes
Iel(∆k) and Ĩel(∆k), respectively; b) and d) relative and absolute quasi-
elastic polarization amplitudes Iel(∆k) and Ĩel(∆k), respectively.

The resulting quasi-elastic and elastic amplitudes, Iqe(∆k) and Iel(∆k), respectively,
are relative contributions due to the normalisation of the ISF. Multiplication with
Ĩ(∆k, t = 0) yields the absolute amplitudes. Both are shown in Fig. 5.9 for differ-
ent surface coverages and along the two principal directions. Iel(∆k) is depicted
in Fig. 5.9 a); it exhibits sharp peaks at the positions of specular reflection and first
order diffraction from graphene, as well as broader peaks at about 1Å−1 in the ΓM

direction and 0.5Å−1 in the ΓK direction. Looking at the absolute elastic amplitude
in c) leads to the suspicion that instead of separate peaks, rather a very broad peak
around ∆k =0 is seen here. The reason for the occurrence of this peak will be dis-
cussed again at a later point in this section.

Fig. 5.9 b) shows Iqe(∆k), which exhibits asymmetrical peaks that seem to be po-
sitioned on the edges of the mentioned diffraction peaks. Strangely, there is no
linear dependence of the amplitudes on the surface coverage. At 0.20ML, Iel(∆k)
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is higher than at 0.06ML, but lower than at 0.09ML coverage. The opposite be-
haviour is found for Iqe(∆k). The absolute amplitude shown in d) makes it clear that
this strange shape stems from the normalization of broadpeaks around specular and
first order diffraction; in the relative amplitude, the sharp elastic peak has been “cut
out”, giving rise to this peculiar shape. The broad peaks in the absolute amplitude
can be interpreted as the form factor of the H2Omolecule, as approximately shown
in Fig. 3.15.

The exponential decay rate α(∆k) is shown in Fig. 5.10 a); except for 0.20ML the
decay rates exhibit a steep initial rise, whichwe expect to be linked to deGennes nar-
rowing. As discussed in Sec. 3.3.3, we can tentatively calculate the incoherent decay
rate αinc(∆k). Since αinc(∆k) contains only information about the self-correlation
function of a diffusing molecule, this simplifies a comparison to incoherent self-
diffusion models considerably. The calculation of αinc(∆k) follows Eq. (3.77). Ne-
glecting effects of substrate diffraction, which plays a role only locally around the
diffraction peaks, we divide α(∆k) by Iqe(∆k) and subsequently need to multiply
by the quasi-elastic structure factor Sqe(∆k). We have no experimental measure-
ment of the (pure) structure factor, however, we expect that in regions, where no
diffraction from substrate or ordered over-structures appears, the coherent and the
incoherent decay rates are approximately the same, α(∆k) = αinc(∆k), from which
follows that in these regions Iqe(∆k) = Sqe(∆k). Looking again at Fig. 5.9 b), we
observe that Iqe(∆k) is flat except for the regions around diffraction peaks. We thus
used a constant value derived from averaging the flat region of Iqe(∆k) to re-scale
α(∆k)Iqe(∆k). We refer to the result as αinc(∆k), even if it is not an incoherent de-
cay rate. It still contains a contribution by Sqe(∆k), but for an dilute adsorbate phase
without significant structural ordering, it approaches αinc(∆k). The results need thus
to be interpreted with care.

The incoherent decay rate αinc(∆k) is shown in Fig. 5.10 b). It exhibits a sinusoidal
∆k dependence that is characteristic of jump diffusion; the periodicity of about
2.9Å−1 in ΓM direction suggests a jump distance that corresponds to the size of
the graphene unit cell. In the measured ∆k-range, the decay rate is in the order of
0.01ps−1 at 125K. This temperature corresponds to a mean kinetic energy in the
order of 10 meV. As discussed in the introduction, the adsorption energy of an H2O
molecule in an ice cluster is predicted to be in the order of 500meV [90, 109], while
for the adsorption energy of a molecule on the graphene surface, values in the or-
der of 100meV have been calculated (see. Tab. 5.1). We thus expect to observe the
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a) b)
Figure 5.10: Exponential decay rate of H2O on graphene at 125K versus ∆k . Blue

and red: 0.06ML coverage; green: 0.09ML coverage; yellow: 0.20ML
coverage; a) Observed decay rate when fitting Eq. (5.1). b) Decay rate
at 0.06ML coverage after correction as described in Sec. 3.3.3. Grey
dashed line: uncorrected decay rate for comparison.

diffusion of H2O on graphene, rather than on the surface of an ice cluster.

Fig. 5.11 shows α(∆k) in comparison to the decay rate of hopping on a hexag-
onal Bravais lattice with a =2.49Å hopping distance. Fitting a sum of jumps to
nearest, next-nearest, and next-next-nearest neighbours produced a most probable
fit with a hopping rate τ−1 = (1.81±0.07) ·10−2 ps−1 and a relative contribution of
pn = (57±6)%, pnn = (31±7)%, and pnnn = (12±6)% for nearest, next-nearest, and
next-next-nearest neighbour jumps, respectively. For an illustration of these three
jumps, see Fig. 5.12. For each distance, jumps to six positions are possible, as indi-
cated by the coloured dots. Also significant is the occurrence of a ∆k-independent
offset C = (1.1±0.1) ·10−3 ps−1. We interpret this as a motion of the molecules in
the z-direction since the parallel component of∆k vanishes in the specular reflection
condition. However, it has to be kept in mind, that the correction, which has been
applied to the exponential decay rates, is not valid in regions very close to substrate
diffraction peaks (i.e. at (0±0.2) Å−1 and at (2.9±0.2) Å−1).

We assume that hopping occurs between hollow adsorption sites on the graphene
surface. However, jumps from top to top, as well as from bridge to bridge adsorp-
tion sites are also important options to consider since they bear a very similar signa-
ture. Looking at the first case, the top adsorption sites are in general not degener-
ate because of the Ni(111) surface that lies below the graphene layer (see Fig. 3.9);
instead the geometry can be described by two hexagonal Bravais lattices with dif-
ferent adsorption energies. A generalized jump diffusion model for non-equivalent
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a) b)
Figure 5.11: Corrected exponential decay rate of H2O on graphene at 125K versus

∆k . Blue and red: 0.06ML coverage; green: 0.09ML coverage; yellow:
0.20ML coverage. a) Black solid line: CE model with possible jumps to
the three closest sites. Green dashed line: CEmodel with jumps to only
neighbouring sites; b) Comparison of decay rates at different surface
coverages.

adsorption sites has been established by Tuddenham et al. [35]. We would only ex-
pect a small non-degeneracy between the sites since hydrogen atoms adsorbed on
the pure Ni(111) layer show almost perfect degeneracy [50] and since we expect the
additional highly symmetric graphene layer not to increase the energetical asymme-
try between sites. For the degenerate case, the observed decay rate is by a factor
two larger along the ΓK-direction than along the ΓM-direction. For non-degenerate
sites, a second, faster decay appears, with an amplitude that is very low up to about
1.5Å−1, and then rises steeply (see Figs. 6 and 7 in [35]). We do not observe such
a contribution, however the existence of surface phonons and a fast rotational diffu-
sionmake a judgement difficult. Bridge tobridge jumps bear a similar geometry top
jumps. By the same reasoning, we do not expect this to be an option, since for the
case of very small non-degeneracies, the decay rate in ΓK-direction is significantly
higher. However, further investigation are needed to test our assumption that the
observed process corresponds to jumps between hollow sites.

HeSE measurements at different temperatures revealed an activated temperature
dependence of α(∆k) (see Fig. 5.13). To ensure a constant surface coverage of
0.06ML at all temperatures, an over-pressure was applied for each measurement,
which corresponded to I/I0 =1/3 specular reflected signal. The observed activa-
tion energy, which is given by the slope of the logarithm versus inverse tempera-
ture, seems to differ between the two momentum transfers ∆k , at which measure-
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n

nnnnn

Figure 5.12: Illustration of nearest (n), next-nearest (nn) and next-next-nearest neigh-
bour jumps between hollow adsorption sites on the graphene/Ni(111)
lattice.

ments have been performed. This might be linked to a change in the relative con-
tributions of elastic and quasi-elastic amplitudes, which is connected to α(∆k) by
the de Gennes narrowing discussed above. It has to be noted that a calculation
of αinc(∆k), as applied before over a momentum transfer range, has not been ap-
plied here, as measurements at two ∆k points do not contain sufficient structural
information. In the lack of means for further investigation, we take the average value
Ea = (51±12)meV as an approximative result for the activation barrier of jump diffu-
sion. In the case of the expected jump diffusion between hollow sites, this activation
energy would correspond to the potential energy difference between a hollow and
a bridge adsorption site, which would need to be overcome during a jump. This
value is quite high in comparison to what is expected from DFT calculations. As dis-
cussed in the introduction of this chapter, adsorption energies are predicted to be
in the range of 130meV (see Tab. 5.1). The calculated differences of adsorption
energies between hollow and bridge sites are in most studies in the order of only a
few meV (e.g. 10meV [54], 13meV [113], 7meV [117]).

5.4.2 Surface Phonon Decay and Rotational Difusion

We have repeated the SE measurements at 0.06ML surface coverage at 110K and
at 125K with the use of a different power supply for the precession coils, which de-
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Figure 5.13: Arrhenius plot of α(∆k) versus inverse surface temperature of 0.06ML
H2O on graphene at ∆k =0.22Å−1 and ∆k =0.55Å−1. The straight
solid lines indicate fits to an Arrhenius-type model function.

livers a lower current at a higher precision, which enabled us to measure at a range
of Fourier times from 5 ·10−2 to 60ps. In this time range, the fast decay of the polar-
ization is well resolved.

We have calculated a DSF from each ISF measurement at different off-specular an-
gles γ by Fourier transformation. This can be used to create a map of the DSF along
γ and along ∆E . Since HeSE measurements had been undertaken using an expo-
nential spacing between the Fourier time points, interpolation of the ISF prior to
Fourier transformation was necessary. This procedure could in general introduce
non-physical artefacts. We varied the sampling rate of the interpolation to test for
thepossible appearanceof such artefacts, but nonewereobserved in the lowenergy
range that we are interested in. The final results were obtained by interpolating 28

linearly spaced query points. Furthermore, a Hann window function [124] was used
for the Fourier transformation, which was carried out by using a standard fast Fourier
transform (FFT) algorithm.

Fig. 5.14 shows the S(γ, ∆E ) map that was extracted from the measurements. The
Rayleigh mode and the longitudinal resonance, which we had previously observed
on the bare graphene surface are clearly visible. Rough estimates of the initial slopes
are shown in Fig. 5.14 b) for the Rayleigh mode (yellow dashed line) and for the
longitudinal resonance (grey dotted line).

The inelastic peak of a phonon at∆E for a given∆k appears in I(∆k, t) in the form of
oscillations of exponentially decaying amplitude with frequency ω = ∆E

ℏ
. The expo-

nential decay rate is linked to the physical decay rate of the coherence of a phonon,
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a) b)
Figure 5.14: Colour plots of S(γ, ∆E ) of 0.06ML H2O on GR at 110K along ΓK and

ΓM; Heights and colours are scaled logarithmically and in the 3D view,
smoothing has been applied for a better elucidation. a) 3D colour plot
to emphasize the existence of the specular reflection peak and of the
phonon branches. b) The same plot in 2D view. The bright horizontal
line corresponds to elastic scattering; Yellow dashed line: initial slope
of the graphene/Ni(111) Rayleigh mode. Grey dotted line: initial slope
of the ice Rayleigh mode.

but depends on the slope of the phonon dispersion line relative to the direction of
the measurement in the ∆E–∆k plane. This would theoretically allow us to include
an oscillating term in themodel function for the fitting procedure. However, the high
oscillation frequency and the fact that contributions from two surface phononmodes
occur, makes this process too unstable to be successful. At short Fourier times we
observed the coexistence of a fast exponential decay, and of decaying oscillations
from the surface phonons. We have not succeeded in separating the two, instead
an approximative approach turned out to work, which includes the use of a sum of
two exponential decays together with a constant term as a model function:

I(∆k, t) = If a(∆k) · exp[−αf a(∆k)t] + Iqe(∆k) · exp[−αqe(∆k)t] + Iel(∆k), (5.2)

where If a(∆k) and Iqe(∆k) are the amplitudes of the fast and of the slow exponential
decay, respectively. Iel(∆k) is the elastic amplitude. αf a(∆k) is the decay rate of the
fast exponential decay and αqe(∆k) is the decay rate of the slow quasi-elastic com-
ponent, which stems from the jump diffusion that we have already observed in the
long Fourier-time measurements. In this approach, the first, faster decaying expo-
nential function needs to be seen as an approximation that allows us to identify the
nature of the fast decay. Fig. 5.15 a) shows an exemplary ISF of the clean graphene
surface in comparison with the ISF of 0.06ML H2O coverage at the same ∆k . The
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a) b)
Figure 5.15: Examples of ISFs for H2O covered and clean graphene. a) normal-

izedpolarization versus Fourier time,∆k =0.33Å−1; Yellow ”x” symbols:
Clean graphene at 150K; Blue ”+” and diamond symbols: 0.06ML H2O
on graphene at 125K. b) normalized polarization versus Fourier time,
for 0.06ML H2O on graphene at 125K, ∆k =0.27Å−1. Lines show fit
parameters from fitting Eq. (5.2). Yellow dashed line: elastic contribu-
tion; green dotted line: Slow decay plus elastic contribution; purple
solid line: Entire fitted function, including fast decay.

ISF of the clean graphene surface decays rapidly to a low, constant polarization, due
to surface phonons. Fig. 5.15 b) shows an ISF of 0.06ML H2O coverage at a similar
∆k , together with the results from fitting Eq. (5.2). It is important to notice that the
time scale is plotted logarithmically in both figures, in order to visualise both decays,
which are separated by two orders of magnitude in terms of the decay rate. This is
also the reason why an exponential Fourier time spacing was chosen for the mea-
surements: in order to be able to measure over a very large time range and with a
high resolution in time, but still at reasonable data acquisition times. The different
components of Eq. (5.2) as a result of the fitting are shown separately in the figure.
The oscillations are clearly visible, with a seemingly increasing frequency due to the
logarithmic time scale.

The fast decay rate αf a(∆k) is shown in Fig. 5.16. At both temperatures and in both
crystal directions, it exhibits a steep initial rise up to about 0.7Å−1, where a distinct
kink is visible. At higher ∆k , a sort of sinusoidal shape follows. A comparison with
S(∆k, ∆E ) (Fig. 5.14) shows that it is at the momentum transfer, where the kink is
found, that the graphene Rayleigh mode reaches an energy at the limit on the cre-
ation side, givenby the energyof the incomingheliumatoms (or rather by the Fourier
time spacing of the measurement, which determines the maximum observable en-
ergy by the Fourier relation between time and energy space).
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Figure 5.16: Fast decay rate αf a(∆k) of 0.06ML H2O on graphene versus ∆k . Blue
and green: temperature 125K; yellow: temperature 110K.

Fig. 5.17 a) shows the relative amplitude If a(∆k) of the fast decay. It rises steeply
up to about 0.4Å−1, where it drops up to about 0.9Å−1. We interpret this as the
contribution from the surface phonons by the same reasoning as for αf a(∆k). For
∆k above 0.9Å−1, the amplitude rises again and drops sharply at the position of the
first order diffraction peak. We tentatively attribute this behaviour to a contribution
from rotational diffusion of the H2O molecules. For uni-axial rotational diffusion in
the surface plane, the incoherent ISF is given by [125]:

Iinc,rot(∆k, t) =

∞
∑

l=0

j2
l (∆k · R) exp[−l2DRt], (5.3)

where jl is the cylindrical Bessel function of the first kind, R is the radius of rotation
and DR is a rotational diffusion constant. DR is ∆k-independent, but the relative
contributions of the Bessel functions in the summation depend on ∆k . For R , we
have chosen the distance of the hydrogen atoms in the H2O molecule to its centre
ofmass, R =0.912Å. This would be exactly correct for the case of neutron scattering,
but can only serve as an approximation here, since the helium atom scatters from the
valence electron cloud of themolecule. The amplitudes j2

l (∆k ·R) for l = 1 . . . 4 from
Eq. (5.3) are also plotted in Fig. 5.17 a). From the plots it can be seen, that only the
first four terms in the summation contribute in the∆k range that we are studying. For
the case of isotropic rather that uni-axial rotation, a law similar to Eq. (5.3) is found,
but with spherical Bessel functions, which seem to agree less with If a(∆k) than the
cylindrical ones (see grey dashed line in Fig. 5.17 a) for the l =1 contribution of
isotropic rotations). Here, we made the comparison between rotational diffusion
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a) b)
Figure 5.17: Fast decay amplitude of 0.06MLH2Oon graphene versus∆k . Blue and

green: temperature 125K; yellow: temperature 110K. a) relative ampli-
tude If a(∆k). b) absolute amplitude Ĩf a(∆k). Solid lines: expected con-
tributions from rotational diffusion, as explained in the text. Bright red
line: l =1; purple line: l =2; blue line: l =3; dark red line: l =4; grey
dashed line: first order spherical Bessel function for isotropic rotations.

and the relative decay amplitude. This has to be viewed with suspicion, since rela-
tive contributions from the slow exponential decay and from the elastic signal might
interfere. However, in the ∆k range of interest, i.e., 1 – 2.7Å−1, the observed slow
decay amplitude and the elastic amplitude are rather constant in ∆k . Fig. 5.17 b)
shows the absolute amplitude of the fast decay. It is very flat in comparison to the
elastic and the slow decay amplitudes, but the form factor makes a comparison with
rotational diffusion impossible. A straightforward procedure to test the idea of ro-
tational diffusion would be to fit Eq. (5.3) to the measured ISFs. This idea should be
tested as a next step in future research.

Rotational diffusion also gives rise to an elastic contribution, which corresponds to
the l =0 term of Eq. (5.3):

Iel ,rot(∆k) = j2
0 (∆k · R). (5.4)

Fig. 5.18 shows the sum of Iqe(∆k) and Iel(∆k), from the measurements at long
Fourier times, together with a plot of Eq. (5.4), incorporating an offset of 0.2 to ap-
proximately match the data (relative to the short time scales of the fast decay, the
slow decay needs also to be treated as elastic). While it does not exactly match the
data, it may serve as an explanation of the observed broad peaks around 1Å−1. This
interpretation might at first seem contradictory to the absence of rotational diffusion
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Figure 5.18: Sum of slow quasi-elastic amplitude Iqe(∆k) and elastic amplitude
Iel(∆k) versus ∆k . Blue and red: 0.06ML coverage; green: 0.09ML
coverage; yellow: 0.20ML coverage. Grey and yellow lines: zeroth or-
der Bessel function j2

0 (∆k ·R) with an arbitrary amplitude plus an offset
of 0.2 to match the experimental data.

in the benzene/graphene data discussed in Chap. 7. Our idea is that, since the ben-
zene molecule exhibits a de-localized π-band, rotations might not be visible to the
helium atom. The H2O molecule, on the other hand, exhibits a significant dipole
moment and a scattered helium atom would thus be sensitive to rotations.

5.5 Conclusions

We have studied the adsorption, structure and dynamics of sub-monolayer H2O ad-
sorbed on a graphene/Ni(111) surface.

Specular 3He reflection measurements of the adsorption of H2O on the graphene
surface revealed an initial adsorption with low interaction between molecules that
allowed us to determine a helium scattering cross section for the benzenemolecule,
Σ = (144±1)Å2. No formation of an H2O monolayer was observed, indicating that
the H2O does not wet the graphene surface. Instead, a decrease of the apparent
helium scattering cross section was observed at high sub-monolayer coverage, in-
dicating the formation of islands.

Isothermal desorption measurements of sub-monolayer coverages exhibit an expo-
nentially decaying surface coverage. The initial desorption rate obeys an activated
temperature dependence with an activation energy of desorption of (510±5)meV.
TDS measurements revealed the existence of two desorption peaks. Analysis of the
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dependence of desorption temperature with heating rate via the Redhead formula
yields activation energies of desorption of about 450meV and 510meV from the
two desorption peaks. We tentatively attribute them to desorption from the edge
and the surface of an island.

We have performed helium diffraction measurements of about 1ML of H2O at 100K
and at 110K. At 100K, no diffraction was observed and the graphene diffraction
peak was completely suppressed. We attribute this to the formation of amorphous
ice. At 110K, a recovery of the graphene diffraction peaks was observed, with no
additional diffraction. This has been interpreted as a de-wetting of the graphene
surface upon heating, resulting in island formation.

HeSE measurements at 125K in the coverage range 0.06 – 0.12ML revealed the
existence of a slow activated diffusion with an activation energy for diffusion
Ea = (51±12)meV. Applying a tentative calculation of the incoherent ISF de-
cay rate revealed jump diffusion between hollow adsorption sites. At 125K, we
found a hopping rate τ−1 = (1.81±0.07)·10−2 ps−1 and a relative contribution of
pn = (57±6)%, pnn = (31±7)%, and pnnn = (12±6)% for nearest, next-nearest, and
next-next-nearest neighbour jumps, respectively.

At short Fourier times, a fast decay was observed, which we tentatively attribute to
uni-axial rotational diffusion of H2Omolecules on the graphene surface. In addition,
oscillations are visible, which stem from the Rayleigh surface phonon and from the
longitudinal resonance of the graphene surface.
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6 The Structure of Deuterated Benzene
Adsorbed on the Graphite (0001) Basal
Plane

6.1 Introduction

The purpose of this chapter is to discuss the structure of benzene adsorbed on the
graphite plane at coverages below and above the monolayer. While no dynamics
are studied in this chapter, the implications of the adsorbed structure on surface
diffusion are quite important. In the following chapter (Chap. 7), we will then discuss
surface diffusion of benzene on the graphene/Ni(111) layer.

The neutron data, on which this chapter is based, have beenmeasured by H. Hedge-
land, A.P. Jardine and P. Fouquet some years ago. They have been included in the
doctoral thesis of H. Hedgeland togetherwith abasic structural discussionon the raw
data [126]. This chapter is based on the same data, but my analyses carry the struc-
tural discussion to a significantly more detailed level and draws conclusions hitherto
undiscovered. We have also published the work of this chapter in 2014 [127].

The structure of adsorbed benzene has been studied for several decades and yet
continues to be of active interest [128, 129]. From a fundamental point of view, ben-
zene is of great importance as it represents the smallest building block of a layered
hexagonal carbon system and in spite of its high symmetry it gives rise to complex
structures and dynamics [130, 131, 132, 133, 134, 135, 136].

A detailed understanding of benzene physisorption is also important for the devel-
opment and improvement of filtering systems. Benzene is a highly toxic and car-
cinogenic aromatic carbohydrate that occurs naturally in crude oil and coal deposits
and its safe removal is thus of great concern for petrochemistry [137, 138]. Finally,
benzene on carbon surfaces has been considered as an important prototype for
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6 The Structure of Deuterated Benzene Adsorbed on the Graphite (0001) Basal Plane

studying elementary dynamic processes and friction in view of the development of
nanometre size motorization systems [135, 139].

The structure of bulk crystalline benzene has been studied for more than fifty years
[140, 141, 142]. The benzene’s multipole moments cause a perpendicular relative
orientation of adjacent molecules (the symmetry of the molecule suppresses net
charge and dipolemoment). Recently, the structure of liquid benzene has also been
investigated in detail [143].

The sub-monolayer structure of benzene adsorbed on graphite has been the subject
of much debate. Whilst authors using nuclear magnetic resonance (NMR) [130, 144]
and QENS measurements [131] suggested that the molecules stood upright on the
graphite surface, neutron diffraction studies suggested flat lying molecules and a
commensurate (

√
7 x

√
7)R19° monolayer structure [132]. The flat adsorption ge-

ometry was confirmed several years later by low-energy electron diffraction (LEED)
[145, 146], X-ray diffraction [147], and further NMRmeasurements [148, 149]. These
heterogenous results were also reflected in the theoretical work on benzene on
graphite: First MD simulations produced a structure that consisted mainly of flat ly-
ing molecules, but contained also a non-negligible fraction of upright molecules
[150, 151, 152, 153, 154, 155].

A recent Grand Canonical Monte Carlo (GCMC) simulation in the liquid phase (273 –
373K) produced a monolayer consisting of mostly flat lying molecules [156]. It is
worth noting that in the latter publication the importance of including a quadrupole
interaction in the calculation is discussed. This is to be expected in view of the alter-
nating structure of the benzene crystal that is mainly due to dominant quadrupole
interactions [140]. The existence of a second surface layer has been discussed at
several occasions. Whilst, to our knowledge, no experiment before has aimed to
study it, several simulations on this question have been performed [150, 152, 153,
155, 156]. The results differ, but suggest in their majority the existence of a disor-
dered, liquid-like second layer [156, 155, 153]. Finally, there have been structural
studies using a density functional theory (DFT) approach [157]. The latter do not
consider, however, lateral interactions.

Here, we report on neutron diffraction measurements on fully deuterated benzene,
C6D6 adsorbed on the basal plane surface (0001) of exfoliated graphite. Thesemea-
surements cover for the first time relative surface coverages between 0.15 and 2ML
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in a coherent experiment. This represents a full overview of the structure from iso-
lated molecules to a dense double layer. Our data indicate the transition to a three-
dimensional liquid at coverages of more than 1ML. The structure was followed from
low temperature across the melting transition up to 250K.

This chapter is organised as follows: After this general introduction, we describe the
sample preparation procedure and the instrument parameters used for the mea-
surements. In the subsequent section, we present the experimental results and the
analysis. We finish the chapter with a discussion of the results in view of past results
and future research.

6.2 Experimental

6.2.1 Sample Preparation

As explained in the introduction, the sample preparation and the experimental pro-
cedure have not been undertaken by me, but by H. Hedgeland, A. P. Jardine and
P. Fouquet. For completeness, I will nevertheless include their description in this
sub-section.

Neutron and x-ray diffraction experiments of hydrocarbon molecules adsorbed on
graphite require the use of high surface density substrates due to the small sur-
face signal. Here, chemically exfoliated graphite has been used, which is a widely
used high surface density material that typically has a specific surface area of about
20m2g−1 and retains a sufficiently low defect density [158, 159]. In addition, exfo-
liated graphite samples show a preferential orientation of the basal plane surfaces.
This was exploited by orienting the basal planes parallel to the scattering plane of
the neutrons. 25g of Papyex exfoliated graphite of grade N998 (>99.8% C, Car-
bone Lorraine, Gennevilliers, France) was prepared in the formof exfoliatedgraphite
disks of 2 cm diameter that were heated to 973K under vacuum for 4 days and sub-
sequently transferred to a cylindrical aluminium sample holder under protective at-
mosphere. The sample holder was sealed by a lid with a steel knife edge and con-
nected to a gas sorption system via a heated steel capillary. The surface density of
the sample was measured in-situ by Brunauer-Emmett-Teller (BET) nitrogen adsorp-
tion isotherms that were obtained using a high precision absolute pressure gauge
(Baratron 690A, MKS Instruments). A specific surface area of 23m2g−1 was found.
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Fully deuterated benzene (99.6% D, CEA Saclay) was used in this experiment to en-
hance coherent scattering. Here, the relative surface coverage, θ, is defined by the
ratio of the molecular density, ρ, divided by the density of the (

√
7 x

√
7)R19° struc-

ture (ρML =1/36.7Å−2, [146]): θ = ρ/ρML. The density, ρ, was given by the change
in pressure of the benzene during adsorption (exploiting the finite vapour pressure
of benzene at room temperature) and by the known surface area of the sample.

6.2.2 Difraction Measurement

Neutron diffraction measurements were carried out using the high intensity powder
diffractometer D20 at ILL (see Sec. 3.2.2), using a wavelength of λ = 2.4Å [160].
Data were taken in a range of momentum transfers Q = |kf − ki | from 0.2 to 5.1Å−1,
where ki and kf are the neutron wave-vectors before and after scattering from the
sample, respectively. Measurements were performed at relative surface coverages
of 0.15ML, 0.5ML, 0.8ML, and 1.3ML, respectively, and at temperatures in the range
from 80 to 250K. The temperature was controlled using a standard liquid helium
cryostat (’orange’ cryostat, [161]). Additional diffraction measurements of the clean
graphite sample were performed at all temperatures. The graphite substrate and
its orientation remained the same throughout all measurements. Subsequently, the
clean graphite data were subtracted from the diffraction data of the adsorbate sys-
tems at equal temperature (see Fig. 6.1). Five regions in the data show very strong
signal from the graphite substrate that masks the signal from the benzene adsorbate
and makes a meaningful interpretation of the benzene signal impossible. These re-
gions, as well as the low Q region, are marked by a grey shadowing in Fig. 6.1 and
excluded in our further data analysis.

6.2.3 Neutron Spin-Echo Measurement

Supplemental NSE measurements were performed on the neutron spin echo spec-
trometer IN11 at ILL using the high signal 30degree detector set-up IN11C [162].
Here, we used a wavelength of λ =5.5Å for maximum signal. The spectra were nor-
malized using a standard procedure: All data were divided by a spectrum obtained
at the cryostat base temperature of 1.5K, where the system can safely be assumed
to be static in the dynamic window of the spectrometer. The experiment covered a
range of momentum transfers of Q =0.2 to 0.7Å−1.
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Figure 6.1: Diffraction data at 110K for the empty graphite sample and a coverage of
0.5ML are shown together with the subtracted data. Regions with strong
graphite signal are indicated by a grey pattern. These regions are omit-
ted in the analysis in this paper.

6.3 Results and Discussion

Fig. 6.2 displays an overview of the coverage dependence of the diffraction pat-
terns of benzene/graphite at a temperature of 110K. The graphs show significant
structural differences between the sub-monolayer and themulti-layer regime as new
peaks appear above 1ML. Hence, for the sake of clarity of the description, we will
describe the data from these two regimes in separate sections.

6.3.1 Difraction Data and Structural Reinement - Sub-Monolayer Regime

The diffraction pattern of the monolayer of benzene/graphite at low tempera-
ture has been studied many times before and there exists general agreement
on a (

√
7 x

√
7)R19° pattern with respect to the graphite (0001) surface structure

[145, 146, 147, 148]. However, the capabilities of neutron powder diffractometers
and the corresponding data treatment methods have advanced tremendously since
the last data where published and we can now study the structural changes upon
heating up to the monolayer desorption temperature of 150K [163]. In addition,
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6 The Structure of Deuterated Benzene Adsorbed on the Graphite (0001) Basal Plane

the strong signal of the D20 diffractometer allows us to study several sub-monolayer
coverages.

We start our analysis with the lowest measured coverage of 0.15ML (see Fig. 6.2).
At 0.15ML, no diffraction peaks are observed, which signifies that no long range
order arises. The graphs of the two higher sub-monolayer coverages 0.5ML and
0.8ML show four strong peaks outside of the regions that are dominated by graphite
peaks. These peaks remain at the same position up to 1ML coverage and have an
asymmetrical shape that is typical for diffraction patterns of two-dimensional (poly)-
crystalline systems that show random domain orientation with respect to the surface
normal [164, 165].
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Figure 6.2: Diffraction patterns for varying coverages at 110K. Regions with strong
graphite signal are omitted in the graph. At a coverage of 0.15ML no
structural peaks are seen. At a coverage of more than 1ML additional
peaks appear, which cannot be explained in the framework of a flat ben-
zene structure.

For amoredetailed analysis of the sub-monolayer andmonolayer structureswehave
simulated neutron diffraction patterns of a flat lying monolayer using the software
package nxpattern, which allowed us to adjust a number of parameters manually
[166]. The results of such a manual structural refinement are displayed in Fig. 6.3.
The positions of the atoms in the deuterated benzene molecule were calculated
based on results from neutron diffraction data [142] to account for the bond length
difference between hydrogenated and deuterated benzene molecules. We have
then adjusted the lattice parameters and found clear consistency with the model of
a monolayer of densely packed flat lying benzene molecules. In a next step we have
simulated results for out-of-plane tilting of molecules and in-plane rotations. We can
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exclude a rotation greater than 1 degree and a tilt greater than 10 degrees, due to
the subsequent mismatch of the calculated and the measured peak positions.

Further information could be drawn from the line-shape: in-plane neutron scattering
from a flat, two dimensional layer of ordered islands that are randomly oriented pro-
duces diffraction peaks that drop sharply for lower angles and exhibit a Lorentzian
decay for higher angles [164]. Even better results were obtained in our case by using
a squared Lorentzian peak shape that has been theoretically shown to be an indica-
tion of random layer lattices that undergo strain effects [167]. The peak width of
the simulated diffraction patterns depends on the size of the islands. For the 110K
data we obtained an average island diameter of (200±50)Å. The graphite layers in
the compressed exfoliated graphite exhibit a preferred orientation in the plane with
a mosaic spread of the surface normal of 20 – 30 degrees full width half maximum
(FWHM) [168, 169]. This also influences the peak shape and has been taken into
account in the simulation of the pattern. The width of the diffraction peaks is mainly
determined by the correlation length, which is given by the average ordered island
size after the instrument resolution effects from the diffractometer D20 have been
corrected for with the instrumental resolution function. Finally the Debye-Waller fac-
tor, given by DW F = exp[−Q2 ⟨u2⟩ /3] (⟨u2⟩ is the mean square displacement of the
atoms) has a significant influence on the relative amplitudes of the measured peaks
(see Fig. 6.3): the intensity of the diffraction peaks drops with increasingmomentum
transfer.
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Figure 6.3: Diffraction patterns for varying temperatures at a coverage of 0.8ML. The
calculated diffraction pattern for a commensurate (

√
7 x

√
7)R19° mono-

layer is shown by the (dotted) line.

Thediffractiongraph resulting from the structural refinement for the coverage0.8ML
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Index Measured Position Simulated Position
(0,1) 1.124 ± 0.011 1.116
(1,2) hidden 1.933
(0,2) 2.220 ± 0.022 2.232
(1,3) hidden 2.953
(0,3) hidden 3.486
(2,4) hidden 3.867
(1,4) 4.042 ± 0.040 4.024
(0,4) hidden 4.465
(2,5) 4.894 ± 0.049 4.865

Table 6.1: Measured and calculated positions of the diffraction peaks of the sub-
monolayer structure at a coverage of 0.8ML. All values are in units of Å−1.

is shown in Fig. 6.3. The agreement with the measured diffraction data confirms
the formation of a (

√
7 x

√
7)R19° structure up to a temperature of 150K. Above this

temperature, desorption sets in. The measured diffraction peak positions and the
simulated peak positions in the Q-range of our data are compared in Tab. 6.1. The
four available peaks are reproduced well within the experimental error bar. The
(
√

7 x
√

7)R19° structure is depicted in Fig. 6.4. Here, we propose two possible vari-
ants. The structure in Fig. 6.4 a) assumes the positions of the benzene hydrogen
atoms on top of the underlying carbon atoms. This structure has been preferred
recently by other authors [157]. In the structure of Fig. 6.4b) the hydrogen atoms
are turned to take a maximum distance from the top layer carbon atoms. Since the
scattering plane is concomitant with the surface planes our diffraction data cannot
distinguish between the two orientations, but orientation b) is preferred by our MD
simulations [136], where the orientation of the benzene rings with respect to the
carbon structure is found to be turned by about 20° with respect to the graphite top
layer. An I-V analysis of low intensity LEED measurements might resolve this issue,
but it has to be kept in mind that the benzene islands remain highly dynamic even
at temperatures of 60K as shown by recent spectroscopy data [32].

6.3.2 Comparison to Neutron Spin-Echo Data

NSE spectroscopymeasures the decay of structural correlation with time. NSE spec-
tra for temperatures between 120 and 150K are shown in Fig. 6.5. The NSE spectra
show a decay that can be expressed by a simple exponential decay that reaches
a plateau value A at large time whose value strongly depends on temperature:
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a)

a
)

b)

a
)

b
)

Figure 6.4: Illustrations of the commensurate (
√

7 x
√

7)R19° structure. a) The hydro-
gen atoms are positioned on top of first layer carbon atoms. b) The hy-
drogen atoms are turned away from the carbon atom positions. This ori-
entation agrees with our recent MD calculations [136].

I(Q, t)/I(Q, 0) = (1 − A) × exp[−t/τ(Q)] + A, where τ(Q) is the decay time of the
structural correlation function. The plateau represents the scattering from the static
fraction of the sample, i.e., from the graphite substrate and from immobile clusters
of benzene. The change of the level of the plateau indicates a gradual melting of
the layer, which should also influence the diffraction signal. In the diffraction data
we observe a change of the peak intensities with temperature, which is most pro-
nounced for the higher diffraction orders, and we see that the peak positions do not
shift with temperature. In Fig. 6.5, we compare the area of the (0,2) and (1,4) peaks
(averaged to decrease the size of the experimental error bar) with the A parameter
extracted from fitting the NSE data at a momentum transfer Q =0.4Å−1. From our
diffraction and NSE data we can, thus, deduce that islands are formed at 0.5 and
0.8ML coverages below 150K that are ordered in the (

√
7 x

√
7)R19° monolayer

structure and that increase in size with decreasing temperature.

6.3.3 Difraction Results and Structural Reinement - Coverage Exceeding
1 ML

Diffraction data for a coverage of 1.3ML are shown in Fig. 6.6. Up to a temperature
of 160K additional peaks are clearly visible and the peaks that are found for the sub-
monolayer structure remain. We have performed structural refinement by assum-
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a) b)
Figure 6.5: a) Neutron spin echo spectra of an 0.5ML benzene layer on exfoliated

graphitemeasured at temperatures between 120 and 150K at amomen-
tum transfer of Q =0.4Å−1. The solid lines are exponential function fits
to the data.b) Comparison of the total area of the (0,2) and (1,4) diffrac-
tion peaks (blue circles) to the static scattering A parameter from NSE
spectroscopy at a momentum transfer Q =0.4Å−1(black squares). The
signal from the two diffraction peaks has been integrated to reduce the
experimental error bar.

ing either flat double layers or compressed layers with alternating flat and upright
molecules in various geometries. None of these models reproduced the observed
additional lines for the 1.3ML coverage. Furthermore, we observed that the addi-
tional peaks that appear above 1ML coverage (see Fig. 6.6) disappear at around
200K and thus at a temperature that is 50K above the monolayer desorption tem-
perature. We conclude, that a second layer formation is not found here. Instead, we
propose the formation of bulk crystalline benzene when the first layer is complete.
In Fig. 6.6 we also compare our data with neutron diffraction data from bulk benzene
by Craven et al. measured at the instrument D2B at ILL [141]. The similarity to the
bulk data provides clear evidence that the additional structure at above monolayer
coverage is bulk crystalline benzene. The creation of the bulk structure at coverages
with a relatively modest excess over 1ML is at odds with the widely spread picture
of structure creation in the low coverage regime [170].

6.4 Conclusions

In this chapter, the analysis of neutron diffraction studies of benzene mono- and
multilayers on exfoliated graphite was presented. For a low coverage of 0.15ML no
ordered structure was observed. For coverages between 0.5ML and 1ML, the exis-
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Figure 6.6: Diffraction patterns for varying temperatures at a relative benzene cov-
erage of 1.3ML. Due to the subtraction of very intense peaks, the noise
has increased substantially. The black line shows a neutron diffraction
pattern from bulk benzene at 105K that has been inserted into the figure
and has originally been obtained by Craven et al. [141].

tence of a flat (
√

7 x
√

7)R19° structure has been observed that can be shown to be
caused by ordered islands of at least 200Å diameter. The structure does not com-
press, within the experimental error bar, upon increasing the coverage. At a cov-
erage of 1.3ML, a bulk crystalline benzene structure appears rather than a second
layer. This structure differs strongly from a compressed ordered structure suggested
recently [170].
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7 Benzene Adsorbed on Graphene/Ni(111)

7.1 Introduction

The interaction of aromatic carbohydrates with the graphene and graphite surface
displays a model system for the fundamental research on friction [171, 172, 173,
174]. Graphite has since long been known as an excellent lubricant, but recently
super-lubricity, i.e., negligible friction of graphene sheets on a graphite surface has
been discovered by scanning force microscopy [175, 176]. Technological interest
in the field of nano-robotics exists in the search of low friction building blocks [135,
139].

The adsorption of benzene on the graphite surface has already been discussed in
detail in the preceding chapter. Benzene adsorption on graphene has been studied
in a series of DFT calculations in recent years [177, 178, 179, 180, 181, 182]. In gen-
eral, an energetic preference of adsorption in the stack configuration, i.e. the centre
of the benzene molecule atop of a C atom has been predicted, with an adsorption
configuration above a hollow centre being the least favourable one. Reported en-
ergy differences between the two configurations are roughly 80meV [177], 50meV
[178], and 40meV [180]. The distance of the molecule to the surface in the stack
configuration was calculated to be 3.34Å [179], 3.2Å [180], 3.5Å [178], and 3.17Å
[177]. Only a very small charge transfer has been calculated, resulting in an almost
intact graphene band structure with an intact zero-gap at 0K [177, 178]. On the
other hand, considerable influence of adsorbed benzene on the electronic struc-
ture of graphene has been observed by Raman spectroscopy [183]. MD forcefield
simulations on a graphite surface have been conducted to calculate the potential
energy surface and diffusional dynamics of single and multiple benzene molecules.
A very low potential barrier of only a few meV has been found for a single molecule,
evaluation of diffusion calculations bear a potential barrier at 0.5ML surface cover-
age of only 11meV and predict Brownian-type diffusion rather than jump diffusion
[136].
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From HeSE and NSE studies of benzene on an HOPG substrate, under compara-
ble conditions to the ones presented here, a Brownian-type diffusion has been re-
ported, where the friction consists of both, static and kinetic friction [136, 4].

The kinetic friction η was first related to the diffusion constant D in the Einstein rela-
tion of diffusion [24], which is a fluctuation-dissipation relation. It can be restated in
the fluctuation-dissipation theorem by Kubo [184]:

D =
kBT

mη
, (7.1)

where kB is the Boltzmann constant, T the temperature and m the mass of the par-
ticle. The observed friction can be either caused by the kinematic viscosity ν via
η = 2πdν/m, where d is the diameter of an atom in a liquid [185]. The friction η

could, on the other hand, be caused by energy dissipation via surface phonons (sur-
face friction). Neutron TOF andNSEmeasurements at different surface coverages of
benzene on exfoliated graphite have shown a large part of the kinetic friction could
be successfully described by a RHDmodel, where coupling of translational and rota-
tional momentum are described by a system of colliding disks and that only a small
part of the friction is caused by surface friction.

In this chapter, we present HeSE studies of low coverages of adsorbed benzene on
the surface of graphene/Ni(111). Section 7.2 discusses specular reflectivity stud-
ies of the adsorption and desorption of the adsorbate, where we observe a wetting
of the graphene surface with a possible simultaneous adsorption on top of the first
layer. Thermal and isothermal desorption studies let us determine aprecise value for
the desorption barrier. In section 7.3, we discuss helium diffraction studies that con-
firm the existence of a (

√
7 x

√
7)R19° over-structure, as previously observed on the

basal plane of graphite. Section 7.4 presents extensive HeSE studies which allow us
to identify two distinct diffusional processes, separated by two orders of magnitude
in diffusion rate. A fast Brownian/ballistic diffusion is found that suggests a substan-
tial surface friction. The exact nature of the slow jump-like diffusion is unclear, but
we can derive characteristic dimensions of the process and propose several possible
mechanisms.
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7.2 Adsorption and Desorption

7.2.1 Isothermal Adsorption

We have carried out isothermal adsorption measurements of at the HeSE spectrom-
eter, as already described for the adsorption of H2O in Chap. 5. We chose a correc-
tion factor of 4.3 for the ionization efficiency, as has been used before at the same
instrument [186, 126], but this factor introduces another potential source of error in
the calculation of the surface exposure.

Benzenewets the graphene surface and forms a commensurate (
√

7 x
√

7)R19° struc-
ture in the sub-monolayer regime, as our adsorption and diffraction measurements
confirm. We can therefore relate the monolayer coverage to a certain areal density,
1ML=1/7molecules/uc=0.0273molecules/Å2 (uc: graphene unit cell). This allows
us to relate the surface coverage θ to the exposure E through kinetic theory of gases
[14]:

θ =
E

√

2πmkBTgas

=

∫

P dt
√

2πmkBTgas

, (7.2)

with the gas temperature T =289.15K, the Boltzmann constant kB , the mass of the
benzene molecule m =78.11g/mol=12.971 ·10−26 kg, and the pressure P . This
means that an exposure of 1 L corresponds theoretically to a surface coverage of
1 L=2.33 ·10−2 Å−2 =0.854ML, if we assume a sticking coefficient of unity.

We have performed a series of isothermal adsorption measurements in the temper-
ature range 100 – 150K while monitoring the specular reflected helium signal.

Adsorption in the range 100 – 120 K

The specular signal curves at temperatures below 120K reveal a quite complex pic-
ture of benzene adsorption. Fig. 7.1 shows the observed intensities, which con-
sist all of five regimes, named A – E. The rapid initial decay of the specular signal
seen in A is characteristic for the adsorption of a non-interacting gas, as is expected
in the very low coverage regime. If the decay exhibits an exponential behaviour
I/I0 = exp(−Σ · n · θ/ cos(ϑi)), as expected for random adsorption, or a power-law
I/I0 = (1−θ)Σ ·n·/cos(ϑi ), as for the case of lattice adsorption, can not be distinguished
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Figure 7.1: Specular reflected signal versus exposure during isothermal adsorption
of benzene at 100K, 110K, and 120K. Inset: close view of small peak
of the 100K curve after subtraction of linear baseline. Letters A through
E: Adsorption regimes. Dark green dash-dotted line: Slope of the initial
adsorption; Light green and red dashed lines: interference model for
reflective adsorbates.

in this case, both models work equally well. Here, Σ is the helium scattering cross
section, n the surface area that is occupied by a single molecule at monolayer cov-
erage, and the term cos(ϑi)) corrects for an apparent change of the scattering cross
section since scattering happens at an initial angle ϑ =22.2° with respect to the sur-
face normal. At this point, we can not yet establish values for the dimensions, since
we lack a calibration of the surface coverage with exposure. This initial decay is fol-
lowed by a substantial slowing of the decay rate in zone B. We interpret this to be
a sign of island formation, in which case an additional adsorbed molecule does not
accommodate a surface area that corresponds to its large scattering cross section,
but rather one that corresponds to itsmolecular size. The origin of the additional fast
decay of the specular signal in zone C is not entirely clear to us. The most probable
case is that at high surface coverage, a substantial part of the arriving molecules
adsorbs on top of the first layer, which is itself reflective. They would thus cause
an attenuation of the monolayer reflections that corresponds to the adsorption of
a free gas. The second possibility would be that, upon growing, islands saturate at
a certain size, since the constant association rate of molecules to the island, which
depends on the flux of incoming molecules, is matched by an equal dissociation
rate of molecules from the island, which scales with the island’s circumference. The
saturated islands would then find themselves in equilibrium with a surrounding 2D
gas, which causes again a large signal decay rate. Independently of this interpreta-
tion, the local maximum at point D can be interpreted as the completion of the first
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layer. For the measurement at 100K, the maximum is tiny, it is shown as an inset in
Fig. 7.1 after subtraction of a baseline to enhance visibility. We now have the infor-
mation to calibrate the surface coverage from exposure. If the sticking probability
was constant and all molecules adsorbed in the first layer, then surface coverage
would scale linearly from 0 to 1ML at point D. However, since we expect a strong
decrease in the adsorption rate to the first layer at high coverages, the exposure that
corresponds to 1ML, is lower. As a lower estimate for this value served the kink of
the 100K between B and C. The above described processes in zone C would pre-
sumably only happen at very high surface coverage. As an estimate of the exposure
equivalent of 1ML, we thus propose EML = (0.43±0.09) L, with the centre of zone C
as the proposed value and its width as an uncertainty. This allows us to determine
the scattering cross section of the benzene molecule. Assuming an initial sticking
coefficient close to unity (as also done by Zacharia et al. [163]), a helium scattering
cross section of the benzene molecule of Σinit = (630±120)Å2 is obtained at 100K.
This is a remarkably large scattering cross section that we can only tentatively explain
by the very large polarisability of the benzene molecule, which is six times larger in
comparison with, e.g., CO [187, 188].

We have reproduced the high coverage development of the specular signal to a
good match by applying a model developed by Comsa et al. [38]. In this model,
reflective scattering fromboth the substrate and the adsorbate is taken into account,
as well as interference between the two layers due to a height difference h. The
total scattering amplitude is the sum of the two contributions A = AS + AAeiϕ, with a
phase difference ϕ and the substrate and adsorbate scattering amplitudes AS , and
AA, respectively. The specular reflected signal is the square of the total scattering
amplitude A:

I

I0
=

(

A

A0

)2

= [A2
S + 2ASAA cosϕ + A2

A]/A2
0, (7.3)

where the interference term in the middle is determined by ϕ = 2π 2h cos γi

λ , with the
angle γi of the incoming helium beam and the helium wavelength λ. We assumed
different expressions forAS andAA, corresponding to no adparticle interaction,max-
imum attraction and maximum repulsion. The experimental data could only be rea-
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sonably reproduced under the assumption of lattice gas adsorption,i.e.:

AS

A0
= (1 − θ)

ΣA
2

ns (7.4)

AA

A0
= (θ)

ΣV
2

ns , (7.5)

with the scattering cross sectionsΣA andΣV for an adparticle and a vacancy, respec-
tively. The resulting curves obtained by fitting the described model can be seen as
the bright green and red dashed lines in Fig. 7.1. The assumption of a lattice ad-
sorption is not reasonable in this high coverage range, especially not after the ob-
servation of island formation. Furthermore, we made an important assumption that
is not straightforward to justify, namely that the surface coverage θ depends linearly
on the exposure. It is thus important to note that the obtained results have to be in-
terpreted with care, as their only justification lies in their ability to reproduce the line
shape. The parameters that were obtained from the fitting are listed in Tab. 7.1. At

T [K] Σinit [Å2] AS [%] AA [%] ΣA [Å2] ΣV [Å2] h [Å]
100 K 630±120 – – – – –
110 K 640±130 33.56±0.07 4.47±0.02 199±1 25±2 3.387±0.004
120 K 550±110 43.0±0.2 4.84±0.01 275±2 6.9±0.5 3.380±0.001

Table 7.1: Uptake isotherms of benzene on GR at different temperatures.

both temperatures, the specular reflectivity of the benzene monolayer AA is about
4.5% of the graphene reflectivity, which itself we have determined to 20%. The ap-
parent helium scattering cross section of the adsorbate, ΣA, is three times smaller
than the Σinit , indicating a strong overlap of cross sections. The helium scattering
cross section of a vacancy, ΣV , is very low, since it reflects the additional area that
is freed for specular scattering upon removal of a benzene molecule. The height
difference, h, contributes to Eq. (7.3) in a periodic manner, producing the same re-
sults with a periodicity of 0.97Å. We thus had first to make the assumption that the
height difference corresponds rather closely to the adsorption height of a benzene
molecule, and second, rely on DFT results on the adsorption height of a benzene
molecule, which predict values from 3.2 to 3.4Å [179, 180]. The obtained 3.38Å
are in good consistency with calculations and a difference of ±0.97Å to the next
possible solution let this value seem to be the most reasonable one.
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7.2 Adsorption and Desorption

Adsorption above 120 K

At temperatures above, an equilibrium between adsorption and desorption was
quickly reached. 150K was the highest temperature, at which a significant change
in reflectivity was barely observed at partial pressures up to 10−7mbar, which is an
upper limit for pressure that can be safely imposed on the UHV system of the instru-
ment.

7.2.2 Thermal and Isothermal Desorption

a) b)
Figure 7.2: a) Exponential decay of surface coverage at 130K after benzene expo-

sure is stopped at t =800 s. b) Arrhenius plot of exponential decay rate
(errorbars are barely visible). The point at 150K seems to deviate from
the activated behaviour and has been excluded from the fitting.

For the isothermal desorption measurements, we exposed the graphene surface to
7 ·10−9mbar benzene overpressure and waited until the system was in equilibrium.
We then turned off the exposure and monitored the specular signal recovery. From
this we calculated the corresponding surface coverage as a function of time. An
example is shown in Fig. 7.2 a), the surface coverage first rises during exposure
and then decays exponentially after exposure has been interrupted after 800 s. We
repeated this process for several temperatures in the range 120 – 150K. The initial
desorption rate, which is identical to exponential decay rate, exhibits an activated
temperature dependence up to about 135K. Fig. 7.2 b) shows an Arrhenius plot
of the desorption rate. The slope of the Arrhenius law corresponds to an activa-
tion energy of desorption of (392±12)meV. This is slightly lower than the value ob-
tained by Zacharia et al. on graphite, employing thermal desorption measurements
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((500±80)meV) [163].

Figure 7.3: Thermal desorption at different heating rates. Solid lines: Derivative
of specular signal during thermal desorption at constant heating rate.
Dashed line: Specular signal during desorption at 0.33K/s heating rate
for comparison.

We monitored the specular signal while heating a benzene coverage in the mono-
layer range at a constant heating rate r . The specular signal exhibited a sharp rise at
a certain temperature. The derivative of the specular signal with respect to tempera-
ture exhibits a sharp peakwith itsmaximumat the temperature of highest desorption
rate, in analogy to the commonly measured mass spectrometer signal in TDS. We
applied the Redhead formula [16] (Eq. (3.6)) to calculate the activation energy for
desorption, using an estimated attempt rate ν =1012 s−1, based on the result for a
surface friction that we obtained from HeSE, studies, as will be discussed later in this
chapter. Zacharia et al. have determined a much larger attempt rate ν =5 ·1015 s−1

from isothermal desorption [163], however, this high value contradicts our findings
on isothermal desorption and on surface friction. The results are listed in Tab. 7.2,
where the uncertainty of the maximum desorption temperature Tmax is based on
the peak width. The results show large discrepancies and a general rise with heat-
ing rate. This lets us doubt if the Redhead formula is a justified approach to calculate
the activation energy of desorption from our measurements.
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7.3 Adsorbate Structure

r [K/s] Tmax [K] Ea [meV]
0.05 148±2 408±7
0.33 204±3 536±11
0.52 241±7 626±15

Table 7.2: Activation energy of desorption calculated by the Redhead formula at dif-
ferent hating rates r .

7.3 Adsorbate Structure

Wehave performed diffraction scans along the inclination angle γ and the azimuthal
angle α of a monolayer coverage of benzene on the graphene surface at 110 K.
We observed a large number of well defined diffraction peaks. The positions of the
diffraction peaks seem to confirm the existence of a (

√
7 x

√
7)R19° commensurate

overlayer, as observed on the basal plane of graphite. Fig. 7.4 shows the diffrac-
tion data together with the unit cell vectors of the overlayer. The diffraction pattern
is consistent with LEED results obtained by Bardi [145]. The illustration shows well,
how the seemingly complex diffraction is actually made up of two hexagonal repeat-
ing structures, that are rotated by +19° and -19°, respectively, with respect to the
graphene surface. This coexistence of two diffraction patterns stems from the fact
that the same ±19° rotation is possible for the (

√
7 x

√
7)R19° structure, and both

types coexist. The radial component corresponds to a momentum exchange ∆k in
the range of 0 to about 4 Å−1. Comparison of the peak position with the neutron
powder diffraction results discussed in Chap. 6 shows good agreement (compare
with Fig. 6.3). The peak orders are numbered in both plots in the same manner to
simplify identification.

7.4 Difusion of Benzene on Graphene/Nickel(111)

7.4.1 Slow Jump Difusion

We have performed HeSE measurements on three different surface coverages of
benzene on the graphene surface at 110K. Along the two principal axes of the
hexagonal graphene surface, ΓK and ΓM, measurements have been performed
over a momentum transfer range from 0 to 3.2Å−1. A first series of measurements
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Figure 7.4: Polar colour-plot of heliumdiffraction signal frommonolayer benzene on
the surface of graphene/Ni(111) at 110 Kwith∆k along the radial coordi-
nate and the azimuthal angle along the angular coordinate. Grey dashed
arrows: Unit cell vectors of the reciprocal graphene lattice. Orange and
purple arrows: Unit cell vectors of the reciprocal (

√
7 x

√
7)R19° benzene

overstructure, with selected repetitions indicated by dotted lines.

was obtained with the use of a power supply that delivers up to 10A current, allow-
ing us to access a Fourier time range from 0.6 to 600ps. Measurements were then
repeated under the same conditions with a different power supply that delivers up
to 1A current, but at higher precision, allowing us to focus on smaller Fourier times
in the range from 5 ·10−2 to 60ps. The coverages at which measurements have
been undertaken can be seen in Tab. 7.3.

I/I0 θ [ML]
1/1.3 0.02
1/3 0.06
1/10 0.12

Table 7.3: Relative specular intensities I/I0 and corresponding surface coverages θ,
at which HeSE measurements have been performed.

Fig. 7.5 shows an example ISF in the form of the real polarization amplitude as a
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function of the SE time. The solid red line shows the results from fitting the sum of
an exponential decay and a constant term to the polarization amplitude:

I(∆k, t) = Iqe(∆k) · exp[−α(∆k)t] + Iel(∆k), (7.6)

with the elastic andquasi-elastic polarization amplitudes Iel(∆k) and Iqe(∆k), respec-
tively, and the exponential decay rate α(∆k). In order to exclude the influence of a
second, faster, exponential decay, data below a threshold in the range of 30 – 45ps
were excluded from the fitting since simultaneous fitting of a sum of exponential de-
cays has turned out to be too unstable. The exact position of the threshold has been
decided for each measurement based on the distribution of the residuals that are
statistically spread around zero only if the influence of the faster decay is negligible.

a) b)

Figure 7.5: ISF at 110K and θ =0.06ML, ∆k =0.22Å−1. A second, fast, exponen-
tial decay made it necessary to exclude data at low Fourier times. The
red solid lines shows a least squares fit of Eq. 7.6. The orange crosses
show the fitting residuals. If the lower threshold is chosen too low, the
fast decay influences the fitting. Although hard to judge by the eye, this
can be observed by observing statistical distribution of the residuals: a)
The threshold has been chosen too low (15ps), the residuals exhibit an
asymmetrical behaviour. b) If a threshold is set to 45ps, the influence
of the fast decay becomes negligible, the residuals are homogeneously
spread around zero.

Comparing the exponential decay rate at ∆k =0.17Å−1 and ∆k =0.33Å−1 at four
different temperatures in the range 100 – 120K reveals an activated dependence of
the decay rate on temperature. Fig. 7.6 shows an Arrhenius plot of the decay rate.
A linear fit to the logarithm of the decay rate versus the inverse temperature returns
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Figure 7.6: Arrhenius plot of the decay rate as a function of inverse temperature.
Depicted in blue are data measured at∆k =0.17Å−1; depicted in green
are data measured at ∆k =0.33Å−1

an activation energy at both momentum transfers of about (35±5)meV. Since these
results stem from coherent scattering, but models of activated self-diffusion are in
general based on the assumption of incoherent scattering, a systematic error might
exist in this result, due to a possible structural change with temperature.

Fig. 7.7 a) shows the resulting relative elastic contribution Iel(∆k). Multiplication
with the absolute scattering amplitude Ĩ(∆k, t = 0) yields the absolute elastic con-
tribution Ĩel(∆k) (Fig. 7.7 c)). In addition to the specular reflection and first order
diffraction peaks, it also contains additional widespread peaks with a maximum
at about 0.75Å in both ΓM and ΓK direction. This might indicate an ordering of
the benzene molecules with an average distance d =2π/0.75Å−1 =8.4Å. This is
quite close to the inter-molecular distance in the commensurate (

√
7 x

√
7)R19°

over-structure (2.46Å ·
√

7=6.59Å). Assuming ordering due to repulsive interaction
scales the inter-molecular distance with the inverse of the square-root of surface
coverage. This would result in a distance d =27.6Å at 0.06ML coverage. If these
additional features stem from surface ordering, it is thus plausible to assume that
they are related to an attractive interaction and resulting island formation. The
width of these peaks can be estimated from the relative elastic amplitude to about
0.3Å−1, which would correspond to an island diameter in the order of 20Å, or three
benzene molecules.

Fig. 7.7 b) and d) show the relative and absolute quasi-elastic contributions, respec-
tively. As for the case of H2O on graphene/Ni(111), the relative amplitude exhibits
asymmetric peaks at the shoulders of the specular and first order diffraction peak,
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a) b)

c) d)
Figure 7.7: Quasi-elastic and elastic amplitudes of different surface coverages of

benzene at 110K. a) and c) Normalized and absolute elastic polariza-
tion amplitudes, Iel(∆k) and Ĩel(∆k), respectively b) and d) Normalized
and absolute quasi-elastic polarization amplitudes, Iqe(∆k) and Ĩqe(∆k),
respectively.

while the absolute amplitude, exhibits simply broadened diffraction peaks. The ob-
served peaks in the relative amplitude are thus merely the relative difference be-
tween broad quasi-elastic and the narrow elastic peaks.

The observed exponential decay rates are shown in Fig. 7.8 a). They exhibit a
steep initial rise. As discussed in Sec. 3.3.3, we suspect a link between the ob-
served enhancement of the decay rate and de Gennes narrowing. In analogy to the
procedure described in Sec. 5.4.1, we tentatively calculated the incoherent decay
rates αinc(∆k) by division by Iqe(∆k) and subsequent rescaling such that α(∆k) =

αinc(∆k) in regions where no diffraction is expected. The incoherent decay rates
are shown in Fig. 7.8 b), they exhibit a sinusoidal behaviour as expected for jump
diffusion.

The results from fitting the CE model with possible jumps to nearest, next-nearest
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a) b)
Figure 7.8: Decay rates versus ∆k of different benzene surface coverages at 110K.

a) Coherent decay rate α(∆k). b) Incoherent decay rate αinc(∆k). Grey
solid line: CE model of jump diffusion.

and next-next-nearest neighbours are presented in Fig. 7.8 b). It seems to re-
produce well the data at most momentum transfers, except for a discrepancy
around 2Å−1. The parameters that were obtained by the fitting are: the jump
rate η = (14.1±0.4) ·10−3 ps−1, the offset c = (0.6±0.1) ·10−3 ps−1, the proba-
bilities for jumping to nearest, next-nearest and next-next-nearest neighbours,
pn = (82±6)%, pnn = (2±10)% and pnnn = (13±8)%, respectively, and the jump
distance l = (2.46±0.05)Å.

TheCEmodel only applies to jumpdiffusion on aBravais lattice, whichwould only be
the case for jumps between hollow sites in the graphene/Ni(111) surface. Benzene
molecules are in general expected to adsorb in a stacked configuration, as discussed
earlier, i.e. on top of a C atom. We would therefore expect jump diffusion to occur
between top sites, a process which would bear a different signature [35]. A non-
degeneracy between the two different adsorption sites atop a carbon atom would
introduce a second, faster exponential decay. The search for this faster decay is
complicated by the fact, that in addition, we observe a very fast decay that stems
from Brownian-type diffusion, as will be discussed later in this section. In general,
we would expect a rather weak degeneracy between the two adsorption sites, since
hydrogen atoms on the Ni(111) surface have exhibited a very low degeneracy [50]
and since the additional symmetric graphene layer is not expected to increase the
non-degeneracy between sites.

It seems reasonable to assume that the observed jump diffusion stems from jumps
between top sites, but a more detailed analysis is necessary to come to a definite
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conclusion. It might thus be of interest to investigate other options of motion to ex-
plain the above discussed data. One option would be a jump rotationmodel, where
a molecule turns in discrete steps of 60° in a sudden motion, just as for translational
jump diffusion. The fact that the distance between two neighbouring H atoms in a
benzene molecule is 2.5Å as well as the fact that Fouquet at al. have calculated the
energy barrier for rotation of a molecule at the edge of a cluster to 35meV, under-
mines this assumption [136]. However, rotational diffusion would result in a quasi-
elastic amplitude that rises with ∆k , which is not what we observe. Also we do not
expect rotations of a benzenemolecule to be visible by HeSE andmolecules outside
of a cluster would exhibit continuous rotations at much faster rates than what we ob-
serve here [32]. Another model would be that of a discrete, jump-like association
or dissociation of a molecule to or from an island. These two additional approaches
might explain the occurrence of the slow exponential decay, and need further inves-
tigations in the future.

As can been seen in Fig. 7.8 b), the incoherent decay rate seems not to change with
surface coverage for θ =0.02ML and θ =0.06ML coverage. At θ =0.012ML, a cer-
tain divergence can be observed, however, it is difficult to judge if this corresponds
to a change in the diffusion rate.

7.4.2 Fast Brownian-Type Difusion

Further measurements at θ =0.02ML and θ =0.06ML coverage at 110K have been
undertaken, focussing on smaller Fourier times in the range 5 ·10−2 to 60ps. In this
range, both exponential decays are well resolved. We have calculated a map of the
DSF S(γ, ∆E ) along the off-specular angle γ and the energy transfer ∆E by Fourier
transformation of ISFs at different angles γ. A Hann window function [124] was used
for the Fourier transformation, which was carried out by a standard FFT algorithm.
A colour-map of the DSF is shown in Fig. 7.9. To increase visibility of faint features,
the colour scaling is logarithmic and the elastic line has been cut off above a certain
intensity. The Rayleigh phonon mode is faintly visible, but largely suppressed (grey
dashed line in Fig. 7.9). An intense quasi-elastic broadening is visible, indicating that
the observed fast exponential decay stems from a surface diffusion process, rather
than from phonon decay.

We fitted a model function to the data that consists of the sum of two exponentially
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Figure 7.9: Colour map of S(γ, ∆E ) at 0.06ML coverage and 110K; colouring on a
logarithmic scale. Grey dashed line: Initial slope of the Rayleigh phonon
mode.

decaying quasi-elastic contributions, as well as an elastic contribution:

I(∆k, t) = If qe(∆k) · exp[−αf (∆k)|t|] + Isqe(∆k) · exp[−αs(∆k)|t|] + Iel(∆k), (7.7)

where If qe(∆k) and αf (∆k) are the amplitude and the exponential decay rate of the
fast contribution, respectively, and Isqe(∆k) and αs(∆k) are the amplitude and the
exponential decay rate of the slow contribution, respectively. Here, absolute values
of the Fourier time t have been used, since the measurements have been under-
taken for positive and negative Fourier times. Surface diffusion processes bear a
symmetric behaviour with respect to t, while surface phonons and adsorbate vibra-
tions would introduce asymmetrical contributions. An example ISF together with the
different contributions from the fitting procedure can be seen in Fig. 7.10.

The relative amplitudes of the elastic and the slow quasi-elastic contribution Iel(∆k)

and Isqe(∆k) are shown in Fig. 7.11 a) and b), respectively. They are plotted as
coloured points with error-bars, the corresponding results from the preceding mea-
surement over large Fourier times are drawn as grey lines. The elastic contribution
coincides well between the two measurements, the quasi-elastic contribution ex-
hibits broader andmore intense asymmetrical peaks at the shoulders of the specular
and first order diffraction peak in the second measurement. This difference might
either stem from a change in surface coverage between the two measurements, or
from a second decay as for the case of non-degenerate jump diffusion.

The relative and absolute amplitudes of the fast exponential decay If qe(∆k) and
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Figure 7.10: ISF at 110K and θ =0.06ML, ∆k =0.17Å−1, direction ΓM. The mea-
sured data are indicated by blue crosses. Yellow line: elastic contribu-
tion; green line: sum of elastic contribution and slow quasi-elastic con-
tribution; Purple line: sum of elastic and fast quasi-elastic contribution;
red line: sum of all three contributions.

Ĩf qe(∆k) are depicted in Fig. 7.12 a) and b), respectively. A very broad contribution
is seen with a much broadened specular peak, and a suppressed diffraction peak.

The coherent decay rate αf (∆k) of the fast quasi-elastic contribution is shown in Fig.
7.13 a). Calculating the incoherent decay rate αf ,inc(∆k), as discussed in Sec. 3.3.3
and earlier in this section, yields the results shown in Fig. 7.13 b), a quadratic de-
pendence on ∆k , as the case for Brownian-type diffusion is clearly visible. Fitting
αf (∆k) = D · (∆k)2 in the range 0 – 1.0Å−1 in both crystal directions gives as a result
a diffusion constant D = (1.8±0.2) Å2/ps, where an uncertainty of about 10% from
the calculation of the incoherent decay rate has been assumed. This gives a fric-
tion η = kBT

mD
= (0.65±0.07) ps−1. The fact that the same diffusion rate is observed

at 0.12ML surface coverage indicates that, at these low coverages, it stems entirely
from surface friction, i.e. energy dissipation via surface phonons. The RHD model
predicts a collisional friction η =0.13ps−1 at 0.06ML and η =0.26ps−1 at 0.12ML.
Such an increase in friction with coverage should thus be observable, but the differ-
ence is not far above the experimental uncertainty. What can be concluded, is that
the observed friction is significantly lower than what has been observed on HOPG,
where a surface friction of (1.7±0.2) ps−1 has been obtained [4], but slightly higher
than results found on exfoliated graphite, η = (0.3±1) ps−1 [32].

In the ΓK direction, a clear deviation from the parabolic dependence is visible and
instead a linear rise in the decay rate can be observed in the range 1.0 – 2.5Å−1, as
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a) b)
Figure 7.11: Comparison of relative quasi-elastic and elastic contributions at 110K

between measurements. Blue and green: 0.06ML coverage in ΓM and
ΓK direction, respectively. a) Elastic contribution from short-time mea-
surements in colours; grey dashed line: elastic contribution from long-
time measurement. b) Quasi-elastic contribution from short-time mea-
surements in colours; grey dashed line: elastic contribution from long-
time measurement.

indicated by an orange straight line. We interpret this as an onset of ballistic diffu-
sion, in which a molecule follows a straight line at a length scale where the prob-
ability of encountering another molecule is negligible. The slope corresponds to
the root of the mean square velocity of the ballistically diffusing molecules, from the
observed data we obtain a slope of (1.6±0.2) Å/s. By making use of the Boltzmann
law, we obtain a root mean square velocity for a 2D gas

√

⟨v2⟩, and relate it to the
observed slope via

√

⟨v2⟩ =
√

2 ln 22kBT
m

=1.8Å/s [27]. The results are just in agree-
ment within the uncertainty. It has to be mentioned that the ISFs in this range have
been fitted by a single exponential decay, while in the case of ballistic diffusion, a
Gaussian time-dependence is expected. Additional fits indicate a general trend to
such a time-dependence in this region, but due to what might be slight contribu-
tions from surface phonons at very short times, such a detailed analysis of the exact
shape of the decay is rather involved and would extend beyond this PhD work.

The twoblue arrow indicate themomentum transfers that correspond to thedistance
d between two adjacent molecules on the (

√
7 x

√
7)R19° commensurate over struc-

ture, projected in the two crystal directions (ΓM: d =6.19Å; ΓK: d =6.44Å). It serves
as an indicator for the mean free path of a molecule in an island. For higher momen-
tum transfers, i.e. shorter distances, a molecule will statistically not encounter an-
other molecule and follow a straight flight path. The purple arrow indicates the size
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a) b)
Figure 7.12: Amplitudes of the fast quasi-elastic contribution at 110K. a) Relative

amplitude If qe(∆k), grey dashed line: relative elastic contribution at
0.06ML. b) Absolute amplitude Ĩf qe(∆k).

of the unit cell of graphene/Ni(111), d =2.49Å. Within this range, a molecule needs
to overcome the walls of the PES. In the ΓM-direction, a ballistic flight seems not to
occur. We interpret this as an indication that surface friction is asymmetrical. Fou-
quet et al. found from Forcefield MD simulations, that a diffusing benzene molecule
experiences a very flat PES when moving along the ΓK-direction, while potential en-
ergy barriers in the order of several meV have to be overcome when moving along
the ΓM-direction [136]. Finally, two data points close to the first order diffraction
peak show a dramatically decreased decay rate. However, the calculation of the in-
coherent decay rate is not correct in the close vicinity of diffraction peaks (Sec. 3.3.3),
and thus these data points (as well as those very close to∆k =0) should not be taken
into account. The purple arrow indicates the momentum transfer that corresponds
to the size of the graphene unit cell, i.e. the distance between to adjacent hollow
adsorption sites. The abrupt ending of the ballistic ”regime” at this point, raises the
idea that the potential barriers, even if very small, might influence diffusion at length
scales below the unit cell size.

7.5 Conclusions

Wehave studied the adsorption, structure and dynamics of sub-monolayer benzene
adsorbed on a graphene/Ni(111) surface.

Specular 3He reflection measurements of the adsorption of benzene on the graph-
ene surface revealed an initial adsorption with low interaction between molecules
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a) c)
Figure 7.13: Fast decay rate versus ∆k at 110K. Blue and green: 0.06ML coverage

in ΓM and ΓK direction, respectively; Yellow: 0.12ML coverage in ΓK
direction. a) Fast coherent decay rate αf (∆k) as obtained from the
measurements. b) Fast incoherent decay rate αf ,inc(∆k). Grey solid
line: Brownian-type diffusion. Orange line: ballistic diffusion in ΓK di-
rection in the range 1.0 – 2.5Å−1. Blue arrows: momentum transfers
that correspond to the distance between two adjacent molecules on
the (

√
7 x

√
7)R19° over-structure, projected in the two crystal directions.

Purple arrow: momentum transfer that corresponds to the size of the
graphene unit cell.

that allowed us to determine a helium scattering cross section for benzene of
Σ = (630±120)Å2. The initial adsorption is then followed by a condensation of
molecules into 2D islands up to monolayer completion. The clustered benzene
molecules exhibit a reflectivity of 5% of the reflectivity of the graphene surface
and a height difference between the adsorbed layer and the graphene surface of
(3.38±0.02)Å. No second layer formation is observed, we expect the formation of
3D islands above the monolayer.

Isothermal desorption measurements of sub-monolayer coverages exhibit an expo-
nentially decaying surface coverage. The initial desorption rate obeys an activated
temperature dependencewith an activation energy of desorption of (293±12)meV.
TDS measurements revealed the existence of a single desorption peak. Analysis
of the dependence of desorption temperature with heating rate via the Redhead
formula yield inconsistent activation energies of desorption between 400 and
600meV.

We have performed helium diffraction measurements of a benzene monolayer at
110K that confirmed theexistenceof a commensurate (

√
7 x

√
7)R19° over-layer. The
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visible diffraction peaks could be identified by comparison with LEED and neutron
scattering data.

HeSE measurements at 110K and at three different coverages in the range 0.06 –
0.12ML revealed the coexistence of three different types of molecular diffusion.
A slow activated diffusion was observed, whose nature is not clear. We found
good agreement with a translational jump diffusion model at a hopping rate
η = (14.1±0.4) ·10−3 ps−1 at 110K, but rotational jump diffusion or a jump-like con-
figurational change of islandsmight be possible explanations aswell. A fast diffusion
which consists of regimes of Brownian-type diffusion and of ballistic diffusion has
been found. The ballistic part seems to exhibit an asymmetrical behaviour which can
be linked to the PES. The Brownian-type diffusion is governed by static friction from
interaction with the substrate, the measured friction is η = (0.65±0.07) ps−1.
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8 H2 on Exfoliated Graphite and on Highly
Porous Carbon

8.1 Introduction

The role of hydrogen as a potential energy carrier is being more and more rec-
ognized, however its storage still suffers difficulties, especially with regard to the
search for a lightweight mobile storage medium on board of vehicles. Due to their
very large specific surface area and low specific weight, porous carbons and carbon
nano-structures are being considered as serious candidates for hydrogen storage
and a large number of investigations has been conducted on these materials in re-
cent years [189, 190, 191]. Various specific carbon systems have been studied ex-
perimentally, such as nanofibers [192], nanotubes [193, 189, 194], nanohorns [195],
porous carbons [196], and carbon aerogels [197]. The ability of a material to adsorb
gases depends on its total pore volume and on its specific surface area, but also on
the pore size distribution, i. e. the differential pore volume as a function of the pore
diameter. It is commonly measured by isothermal adsorption of a light gas, where
the gas pressure is gradually increased at constant temperature while monitoring
the adsorbed volume until saturation.

The structure of an adsorbed layer of molecular hydrogen on the basal plane of
graphite exhibits at temperatures below 22K a commensurate (

√
3 x

√
3)R30° struc-

ture for coverages up to a full monolayer and an incommensurate dense layer at
higher coverages as evidenced by early diffraction measurements [198, 199]. Fur-
ther neutron scattering studies showed a more complex picture, revealing several
intermediate structural phases for H2 and D2 [200, 201, 202].

Diffusion of hydrogen in carbon materials has been studied intensely by means of
quasi-elastic neutron scattering in recent years. The investigated carbon systems
have been varied, including graphite [203], single wall carbon nanotubes (SWNT)
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[204], carbon nanohorns [205], porous carbons [206, 207, 208], potassium interca-
lated graphite [209, 210], and platinum containing porous carbon [211]. Nguyen et
al. observed different diffusion rates for H2 and D2 at low temperatures in a carbon
molecular sieve (CMS) [212].

Two diffusion models were assumed in the interpretation of most of the above data:
jump diffusion models of a discrete geometry [207, 210] and jump diffusion models
over a continuous distribution of jump distances, as for liquids [205, 204, 203, 206,
208, 211].

To our knowledge, Brownian-type diffusion of adsorbed molecular hydrogen has
not been observed yet by neutron scattering at large momentum transfers (at low
momentum transfers, all types of translational diffusion approach Brownian-type dif-
fusion).

The goal of thework presented in this chapter was to study and compare the adsorp-
tion and the diffusional dynamics of molecular hydrogen adsorbed on the surfaces
of a novel highly porous carbon (from now on referred to as D-96-7) and on exfoli-
ated graphite Papyex [158, 159]. We have observed a combination of Brownian-type
and jump diffusion over a large temperature and momentum transfer range in both
systems.

This chapter is organised as follows: In section 8.2 we give a brief overview of the
synthesis of D-96-7 and we describe the experimental methods of the conducted
diffraction and spectroscopy measurements. In section 8.3 we present and discuss
the experimental results. We first show results from adsorption measurements on
D-96-7 (sec. 8.2.1). We then discuss neutron and X-ray scattering results and their
implications on the structure of the material (sec. 8.3.1). We finally present our find-
ings on the diffusion rates and activation energies and their implications on static
and kinetic friction of hydrogen in both materials and compare them to results from
other carbon materials.
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8.2 Experimental

8.2.1 Sample Characterization

The synthesis and characterisation of D-96-7 have been entirely conducted by L.
Hoyos and will be published in the future. Because of their relevance to the inter-
pretation of the experimental data, they are nevertheless briefly described here: The
D-96-7 has been synthesised via direct route assembly using pluronic F-127 as sur-
factant and with tetraethyl-orthosilicate (TEOS), aniline served as a carbon source.
It exhibits a micro- and mesoporous structure and a very high specific surface area.
Due to the carbonization temperature and the source of carbon used, the material
contains both short range ordered graphitic regions aswell as regions of amorphous
carbon.

Initially, a reaction mixture was prepared by dissolving 1.05mol aniline in a 5% F-
127 (Sigma) solution. Then, 1mol TEOS were added and the pH was adjusted to
5.0 with 1MHCl. The clear solution was heated to 95 °C for 96h. The material was
carbonized in inert atmosphere (60ml/minN2), at 750 °C. The final material was put
in contact with 40%HF to dissolve the silica and obtain a pure carbon.

Nitrogen adsorption/desorption isotherms of D-96-7 were measured in a Micro-
meritics ASAP 2020 instrument at 77K. Prior to the measurement, the samples had
been activated under vacuumat 250 °C for 12h. Thepercentageof residual nitrogen
in D-96-7 was determined using elemental analysis (CHN LECO, Truspec Micro).

The N2 sorption isotherm of D-96-7 is shown in Fig. 8.1 a). The pore size distribu-
tion has been calculated by using the software of the instrument (Micromeritics Data
Master V 4.03). Themicroporous,mesoporous and total areaweredeterminedusing
the t-plot model [213] at a relative pressure (P/P0) from 0.1 to 0.6, the Barrett-Joyner-
Halenda (BJH) model [214] at P/P0 from 0.3 to 1.0 and the BET model [215] at P/P0

from 0.05 to 0.3, respectively.

A concave isotherm curve is obtained for D-96-7. The presence of a hysteresis at
high relative pressure has been associated with a type IV isotherm. The change in
slope at high pressures indicates amultilayer pore fillingmechanism, which is typical
for mesoporous materials and for a strong interaction between the adsorbate and
the pore walls. The presence of a type H3 hysteresis loop has been associated with
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Figure 8.1: a) Nitrogen adsorption/desorption isotherms of D-96-7 measured at
77K. Increasing pressure is indicated by blue triangles, decreasing pres-
sure by green squares. b) Pore size distribution of D-96-7 obtained from
the 77K N2 adsorption measurements.

micro- and mesopores with a slit shape pore morphology. The microporous, meso-
porous, and total pore volumeand sizeweredeterminedusing theHorvath-Kawazoe
(HK) model [216], the BJH model [214], and the BET model [215], respectively. The
resulting pore size distribution is shown in Fig. 8.1 b). A range of parameters de-
duced from the adsorption/desorption measurements are summarised in Tab. 8.1.
D-96-7 has a high specific area surface of 1712m2/g, and pore volume of 2.75 cm3/g
with primary contribution of the mesopore volume and with relatively low microp-
orosity.

t-plot/HK BET BJH
Vmicro Dmicro Vmeso Dmeso SBET Vtotal SBJH

[cm3/g] [A] [cm3/g] [A] [m2/g] [cm3/g] [m2/g]
N2 2.75 19 2.34 167 1711.88 2.75 1971.24
Vmicro: microporous pore volume; Dmicro: microporous pore size; Vmeso:
mesoporous pore volume; Dmeso: mesoporous pore size; SBET : specific
surface area from the BET model; Vtotal : total pore volume; SBJH : specific
surface area from the BJH model.

Table 8.1: Characteristic parameters of adsorption and morphology of D-96-7 from
N2, CO2 and H2 vapour adsorption measurements.

Papyex is an exfoliated and re-compressed graphite that consists mainly of (0001)
basal graphite planes with an average size of several hundredÅ [158]. These planes
are partially oriented with about 75% exhibiting orientation around a plane with a
HWHM of its mosaic spread of 15°, and about 25% being completely randomly ori-
ented, the basal planes are stacked in about 30% as α graphite and in about 70%
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as β graphite [217, 218]. BET analysis reveals a Type II sorption isotherm, indicat-
ing that Papyex contains a negligible amount of micropores and has a total surface
area of about 20m2/g. SANS experiments employing contrast variation show that
the voids in Papyex are connected and fillable [158].

8.2.2 Neutron Small-Angle Scattering Measurements

To examine the structure of our Papyex sample, SANS measurements have been
performed on the D22 diffractometer at ILL [20] at a neutron wavelength λ =6Å
and at detector distances 11.2m and 2m (with a rectangular collimation of length
of 11.2m and 21.8m, respectively). These set-ups cover a total Q-range of 0.004≤
Q ≤0.45Å−1. The beam size at sample position was 7 x 10mm2 and the sample
thickness was 1mm. Measurement time at each set-up was 120 s. Prior to the mea-
surement, a 6 x 10mm2 chip of Papyexwith a thickness of 1mmhadbeenout-gassed
under vacuum at a temperature of 1000K over 24h and filled into a standard Quartz
SANS sample holder under argon atmosphere.

The structure of D-96-7 has been studied by SANS on the PAXY diffractometer at
LLB, Saclay, France at three set-ups of neutron wavelength λ and detector distance l :
λ =4Å, l =1.245m; λ =10Å, l =3.194m; λ =12Å, l =6.807m. Combining these
set-ups covers a total Q-range of 0.004≤ Q ≤0.47Å−1. Prior to the measurement,
the fine powder of D-96-7 was filled into pockets of aluminium foil of approximately
10 x 20mm2 width and 1mm thickness.

8.2.3 Neutron Time-of-Flight Measurements

Neutron TOF spectroscopymeasurementswere performedon the IN6 spectrometer
at ILL [21] using a set-up of three composite pyrolytic graphite monochromators at
a neutron wavelength λ =5.12A. The scattering functions from neutron TOF spec-
troscopy, S(Q,ω), covered a momentum transfer range of 0.1≤ Q ≤2.0Å−1 and
an energy transfer range of -6≤ ℏω ≤2meV. The data were grouped into windows
of ∆Q =0.1Å−1 and ∆(ℏω) =50µeV in momentum transfer and energy transfer,
respectively. All data were treated using the LAMP software package [219]. Prior
to the measurement, D-96-7 was crushed to a fine powder and filled into a hollow,
cylindrical aluminium sample holder with an annular width of 1mm. The sample was
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heated in vacuum at 350 °C for 20h to remove volatile contaminants from the sur-
face. The Papyex sample was cut into disks of 18mm diameter. About 30 disks were
then stacked flat-lying in a cylindrical aluminium sample holder of 2 cm diameter.
The temperature was controlled using a standard liquid helium cryostat (“orange”
cryostat [161]). Both samples were cooled to 1.5K and the quantity corresponding
to 0.5monolayer (ML) of hydrogen gas was dosed through a stainless steel capillary
that was connected to a pressure control monitor. Throughout the entire experi-
ment, connection to a 500 cm3 reservoir at room temperature was maintained for
security reasons. In our set-up any desorbed hydrogen rises to the reservoir, where
the desorbed quantity can be deduced through pressuremonitoring. A listing of the
relative coverages obtained at sample temperatures between 5 and 80K is given in
Tab. 8.2. For the neutron scattering experiments, an elastic scattering resolution
measurement was performed at 1.5 K. Spectra were then measured at temperatures
between 5 K and 80K.

Sample Relative coverage Relative coverage
temperature [K] D-96-7 [ML] Papyex [ML]

5 0.5 0.5
8 0.5 –
10 – 0.5
12 0.5 –
17 0.46 0.5
22 0.39 0.5
30 0.33 –
40 0.29 0.48
50 0.26 –
60 0.22 0.39
80 – 0.27

Table 8.2: Relative coverages in fractions of amonolayer (ML) used in the experiment
at sample temperatures between5 and80K. The values arededuced from
the hydrogen pressure in a security reservoir connected to the sample.
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8.3 Data Analysis and Results

8.3.1 Neutron Scattering – Structure

Fig. 8.2 shows the energy-integrated scattered intensities S(Q) of the TOFmeasure-
ments of D-96-7 and Papyex at different temperatures, as well as themeasured SANS
and diffraction response. Both substrates exhibit a strong small angle scattering that
is commonly found for materials with a hierarchical structure. The Papyex substrate
exhibits a bright peak at about 1.8Å−1, D-96-7 shows no diffraction signal at highQ.

a)

In
te

g
ra

te
d
 In

te
n
si

ty

21.510.50
Q [Å

-1
]

-1

0

1

2

3

lo
g

1
0
N

S
 R

e
sp

o
n
se

0.001 0.01 0.1 1
Q [Å

-1
]

slope -2.8

slope -0.8

 60 K
 22 K
1.5 K

 SANS Response

b)

In
te

g
ra

te
d
 In

te
n
si

ty
 [

ar
b
. 
u
n
.]

21.510.50

Q [Å
-1

]

10
-2
 

10
0
 

10
2
 

10
4
 

lo
g

1
0
S
A

N
S
 R

e
sp

o
n
se

0.01 0.1

Q [Å
-1

]

Slope -3.75
(002)

 60 K
 22 K
1.5 K

 Neutron Diffraction
 SANS Response

Figure 8.2: Energy-integrated intensities S(Q) obtained at IN6 for D-96-7 and Papyex
after hydrogen adsorption at 1.5 K (crosses), 22K (triangles) and 60K (cir-
cles). The data are compared to SANS measurements (solid and dashed
lines) and to neutron diffraction measurements (dotted line). a) D-96-7
b) Papyex. The (002) Bragg reflection at 1.87Å−1 is clearly visible for the
Papyex sample. Insets: log-log plot of SANS response.

Over a range of about 0.1 – 0.01Å−1, the SANS response of the Papyex substrate
follows a power law scaling, I ∝ Q−α with α = (3.751±0.006). This is in the range of
the value found by Gilbert et al., α ≈3.5 [158] (see Inset of Fig. 8.2). Although this
might be interpreted in terms of a generalised Porod type scaling, I(Q) ∝ Q−(6−d),
which would yield a fractal dimension d =2.25, this is not easily justified (as has been
discussed in detail by Gilbert [158]). The SANS response of D-96-7 follows a power
law scaling as well, over a range of about 0.2 – 0.02Å−1. Here, we find an exponent
α = (2.81±0.02). In terms of interpretation of this exponent as a fractal dimension,
this would yield an unreasonable result of d =3.2. An in-depth analysis of the SANS
data is unfortunately beyond the scope of this work.
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Now looking at the structure factor S(Q), obtained by energy integration of the spec-
tra from the TOFmeasurements (Fig. 8.2), we find that the signal ismostly flat for both
substrates. Papyex however, exhibits a strong peak at about 1.8Å−1 in both the IN6
and the D20 data, which stems from the (002) Bragg reflection from the basal planes
of graphite. NoBraggpeakof theBasal plane is found for theD-96-7 substratewithin
the Q range of the present experiments. This is interpreted in terms of an absence
of long-range order. For both samples, the scattering signal rises with temperature
at most values of Q (see inset of Fig. 8.2 b)). This is due to a higher amount of the
ortho-hydrogen spin state at higher temperatures (see Chap. 9), which yields amuch
higher neutron scattering cross section than the para-state. It is interesting to notice
that this effect is stronger than the concurring loss in signal that stems from a des-
orption of hydrogen with increasing temperature (see Tab. 8.2).

8.3.2 Neutron Spectroscopy – Dynamics

Wewill now discuss the dynamic scattering functions, S(Q,ω), which were extracted
from the IN6 neutron time-of-flight spectra. An example of a scattering function at
a momentum transfer of Q =1.0Å−1 is shown in Fig. 8.3. To extract the dynamic
information, the TOF spectra for a given momentum transfer were fitted to a test
function using a least-square algorithm. For both activated diffusion processes and
Brownian-type diffusion, we generally expect a broadening of the elastic line, the
QENSbroadening aroundω =0, that obeys a Lorentzian shape [19]. Hence, we used
a convolution of the resolution function, R(Q,ω) (that was obtained from the clean
substrate at 1.5 K), with a delta function (elastic scattering) and a single Lorentzian
distribution that represents the quasi-elastic broadening, as well as a constant back-
ground, C :

S(Q,ω) =

[

Iel · δ(ω) + Iinel ·
ℏ

π

Γ

ω2 + Γ 2

]

∗ R(Q,ω) + C , (8.1)

where Γ is the HWHM of the Lorentzian distribution.

We used the reduced χ2 as a representation of the goodness-of-fit. It showed no
improvement upon adding a flat or sloped background. Also, no sign of a second
Lorentzian broadening was found within the energy range and resolution of the in-
strument. Furthermore, we did not find a deviation from the Lorentzian shape, such
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Figure 8.3: A representative slice of the scattering function S(Q,ω) at a momentum
transfer of Q =1.0Å−1 and a temperature of 40K of the Papyex sam-
ple. The green line shows the data of the hydrogen containing sample
at 40K. The dark blue line shows the measured data points of the Pa-
pyex sample at a temperature of 1.5 K (resolution function). The green
solid line is the fitted model function and the light blue dashed line is
the Lorentzian distribution that was extracted by the fit. The lower panel
shows the residuals of the fit function.

as a Gaussian or a Voigt shape of the quasi-elastic broadening. The residuals of
the fits show no systematic errors and only an increase in absolute statistical error is
observed in close vicinity of the elastic peak at ω =0 (Fig. 8.3).

The fitting parameters Iel and Iinel in equation (8.1) correspond to the elastic and
inelastic scattering contributions of the entire sample relative to the signal of the
empty sample at a temperature of 1.5 K. The elastic and inelastic intensities Sel(Q)

and Sinel(Q), respectively, were obtained by multiplication of Iel and Iinel with S(Q).
The Q-dependence of Sel(Q) and Sinel(Q) is shown for both substrates in Fig. 8.4.
For further analysis, we have omitted the region above Q =1.75Å−1 (indicated in
Fig. 8.4 by a grey dashed line) to avoid contributions from a graphite Bragg peak,
even though for the D-96-7 sample, there seems to be no sign of it.

Sel(Q) is for both samples almost identical to the integrated intensity (upper panels
in Fig. 8.4). This is due to the fact that the carbon sample itself is a much stronger
neutron scatterer than the relatively small amount of adsorbed hydrogen.

Sinel(Q) exhibits no substantial Q-dependence for either system. We have averaged
Sinel(Q) over Q in order to analyse the temperature dependence (Fig. 8.5). It de-
creases with temperature, reflecting an activation barrier. We find activation ener-
gies of EA = (9.19±0.05)meV for the Papyex substrate and EA = (7.67±0.09)meV
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Figure 8.4: Elastic and inelastic intensities as a function of momentum transfer, Q at
different temperatures. Values to the right of the dashed grey line have
not been taken into account for analysis of the quasi-elastic broadening.
a) Results for the D-96-7 substrate. b) Results for the Papyex substrate.
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Figure 8.5: Inelastic intensity as a function of temperature.

for D-96-7 (Fig. 8.5). At temperatures below 20K, the inelastic signal becomes too
weak to be distinguished from instrumental background. We interpret this drop of
signal as a freezing of the hydrogen diffusive dynamics, in consistency with neu-
tron diffraction measurements of hydrogen on graphite that discovered a transition
between an ordered commensurate layer below 22K and a liquid state above this
temperature [200, 202].

The QENS broadening Γ (Q) exhibits a strong temperature dependence and rises in
general with increasing Q ( Fig. 8.6). We found that Γ (Q) consists of the sum of a
parabolic part and a sinusoidal part:

Γ (Q) = ℏηJD

∫

[1 − J0(Q · l sin θ)] f (θ)d θ
∫

f (θ)d θ
+ ℏDBRQ2, (8.2)
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Figure 8.6: The quasi-elastic line broadening Γ as a function of momentum transfer,
Q, for a range of sample temperatures. The error bars are too small to be
visible for most data points. The continuous lines show the results from
fitting Eq. (8.2) to the broadening. Both contributions to the broadening
have been shown separately for the 80K data: the dashed red line shows
the contribution from collisional diffusion and the dotted red line show
the contribution from jump diffusion.

where the first part of the right hand side corresponds to jump diffusion from hop-
ping between adsorption sites on a Bravais lattice, and the second part of the right
hand side corresponds to Brownian-type diffusion. Here, ℏ denotes the reduced
Planck constant. ηJD and l are the hopping rate and distance, respectively, of jump
diffusion. J0 denotes the 0th order cylindrical Bessel function and f (θ) describes the
angular distribution of planes in the substrate along the angle of inclination θ with
respect to the normal of the scattering plane. DBR denotes the diffusion constant of
the Brownian part.

The CEmodel of jump diffusion has been discussed in Sec. 3.2.5. For the case of two
dimensional diffusion on a surface in a multi-crystalline system, the jump vectors l ,
connecting initial and final adsorption site of a jump, need to be averaged isotrop-
ically [220]. This produces a zeroth order Bessel function J0. The distribution f (θ)

of inclination angles θ is different for both systems. While D-96-7 is completely 3-D
isotropic, Papyex consists of planes with an inclination that is normally distributed
around θ =90° with a HWHM of about 15° [218]. This has been taken into account
by numerical integration of Eq. (8.2). It has to be noted that the isotropic averaging
is only an approximation that omits the fact that the correct isotropic averaging of
Eq. (8.1) produces in general a non-Lorentzian QENS broadening. This matter is
discussed in detail in Sec. 9.3, where the correct averaging is applied, which neces-
sitates a rather involved global fitting of the entire spectrum. Here, the approximate
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solution produces very good results, and we will therefore rely on it. An exemplary
result of fitting Eq. (8.2) can be seen in Fig. 8.6. In a), both contributions of the equa-
tion have been plotted separately for the result from 80K. The dotted red line shows
the contribution from jump diffusion and the dashed red line the contribution from
Brownian-type diffusion.

The second term of Eq. (8.2), ℏDBRQ2, stems from continuous Brownian motion, the
origin of which is in general twofold. It may stem on the one hand from interaction
with the surface, which is expressed by a surface friction ηsur . On the other hand, it
may also stem from a collisional friction ηcoll , which arises from collisions between
particles. The diffusion constant DBR is related to the collisional and surface friction
viaDBR = ⟨v2⟩/(ηsur +ηcoll), where ⟨v2⟩ = 2

m
kBT is the thermally averaged velocity of

the diffusing molecule. The collisional friction has been observed by us for diffusion
of benzene molecules on a graphite surface, where we successfully calculated the
collisional frictionby a RHDmodel. This parameter-freemodel takes into account the
exchangebetween angular and rotationalmomentumbetween collidingmolecules,
aswell as collisionprobabilities basedon thedistributionofmolecules on the surface
[32]. The collisional friction is calculated by:

ηcoll(θ, T ) =
κ

κ + 1

(

3

2
+

1

κ

)

dgd(d+)

Auc

√
2πθ

√

kBT

µ
, (8.3)

where µ = m/2 =1.008g/mol is the reduced mass of the colliding molecules,
d =3.6Å is the collision distance. gd(d+) =1.75 is the value of the radial distribu-
tion function at the distance of collision d , i.e. at its first maximum. We extracted
these values from path-integral calculations for liquid hydrogen, as can be seen
in Fig. 8.7 [221]. The value of the collision distance d agrees well with the inter-
molecular distance at the completion of an incommensurate monolayer d =3.53Å,
as measured by neutron scattering [200]. κ = 2I/µd2 =0.044 is the moment of
inertia of the molecule, normalised by 2µd2. For the hydrogen molecule, κ is very
small since the mass is situated very close to the centre of mass of the molecule.
This means that the exchange between angular and rotational momentum between
colliding molecules is negligible in this case. Auc =15.7Å2 is the surface area that
is covered by a single molecule at full monolayer coverage i.e. the unit cell size of a
(
√

3 x
√

3)R30° over-structure. θ is the relative surface coverage inML, it depends on
the sample temperature and has been calculated from the hydrogen pressure in the
reservoir; the exact values can be found in Tab. 8.2. kB is the Boltzmann constant

134



8.3 Data Analysis and Results

and T the sample temperature.

Figure 8.7: Radial distribution function g(r) of liquid para-hydrogen versus distance
r , calculated by path integral simulations, from [221] (Solid line). Blue
arrows: values for g(d) and d of the first maximum, which we used to
calculate the collisional friction. The dashed line is of no importance for
this work.

T [K] l [Å] η [ps−1] DJD [m2/s] DBR [m2/s] ηcoll [ps−1] ηsur [ps−1]
×10−8 ×10−8

5–17 – – – – – –
22 6.1 ± 0.6 0.13 ± 0.03 1.2 ± 0.4 0.20 ± 0.02 2.19 42 ± 4
40 4.7 ± 0.1 0.19 ± 0.01 1.0 ± 0.1 0.77 ± 0.01 2.83 18.7 ± 0.2
60 4.49 ± 0.07 0.70 ± 0.02 3.5 ± 0.1 1.44 ± 0.02 2.82 14.3 ± 0.2
80 4.38 ± 0.07 1.35 ± 0.03 6.5 ± 0.3 2.36 ± 0.04 2.25 11.8 ± 0.2

Table 8.3: Papyex substrate: diffusion parameters extracted from fitting equation
(8.2) to the experimental data. T : surface temperature; l : jump distance,
η: jump rate; DJD diffusion constant of jump diffusion; DBR diffusion con-
stant of Brownian-type diffusion; ηcoll : collisional friction from the RHD
model; ηsur : surface friction. In the range from 5 – 17K, statistical error of
the experimental data was too large and the data have been omitted.

The results from the RHD model are compared to the fitted parameters in Tab. 8.4
for D-96-7 and in Tab. 8.3 for Papyex. The obtained jump length l is in the or-
der of 6Å for the D-96-7 substrate, in good agreement with results from other sys-
tems, such as on carbon-aerogel (Chap. 9), or other porous carbon materials [207].
For the Papyex substrate, the distance is rather of the order of 4.5Å at most tem-
peratures. This corresponds to the inter-molecular distance within the commen-
surate structure a=4.26Å, but assuming repulsive interaction, the distance should
scale inversely with the root of the surface coverage, i.e. at 0.5ML, a=6.03Å. The
calculated distance might be slightly influenced by the approximate isotropic av-
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8 H2 on Exfoliated Graphite and on Highly Porous Carbon

T [K] l [Å] η [ps−1] DJD [m2/s] DBR [m2/s] ηcoll [ps−1] ηsur [ps−1]
×10−8 ×10−8

5–12 – – – – – –
17 7.3 ± 0.6 0.02 ± 0.01 9 ± 3 0.36 ± 0.05 1.77 18 ± 3
22 5.8 ± 0.5 1.18 ± 0.01 10 ± 2 0.66 ± 0.07 1.70 12 ± 1
30 6.0 ± 0.3 1.14 ± 0.06 10 ± 1 0.90 ± 0.05 1.68 12.1 ± 0.6
40 6.4 ± 0.2 1.13 ± 0.03 10.2 ± 0.8 1.02 ± 0.03 1.71 14.4 ± 0.4
50 6.0 ± 0.1 1.29 ± 0.03 11.6 ± 0.5 1.34 ± 0.02 1.71 13.6 ± 0.2
60 5.8 ± 0.1 1.47 ± 0.03 13.2 ± 0.6 1.53 ± 0.03 1.59 14.6 ± 0.3

Table 8.4: D-96-7 substrate: diffusion parameters extracted from fitting equation
(8.2) to the experimental data. T : surface temperature; l : jump distance,
η: jump rate; DJD diffusion constant of jump diffusion; DBR diffusion con-
stant of Brownian-type diffusion; ηcoll : collisional friction fromRHDmodel.
In the range from5 – 12K, statistical error of the experimental data was too
large and the data have been omitted.

eraging of Γ (Q), but further analysis would be necessary to investigate this issue.
From the jump rate ηJD , a diffusion constant DJD has been calculated by the rela-
tion DJD = ηLD

l2

4 for each measurement [207]. For both substrates, the diffusion
constants are shown in an Arrhenius plot in Fig. 8.8. Above about 20K, DJD ex-
hibits an activated behaviour (blue dots and lines). DBR follows approximately a√

T -dependence, the experimental data are shown as red dots. By matching the
theoretical diffusion constant DBR = 2kBT

m
/(ηsur + ηcoll) to the experimental results,

we obtain a value for ηsur . For the D-96-7 substrate, ηsur seems not to change with
temperature and we thus assume a constant averaged value ηsur = (13.9±0.1) ps−1.
For the Papyex substrate, a temperature dependence seems to exist, with an in-
creasing surface friction for lower temperatures. Up to this point, we have not un-
derstood the reason for this change in surface friction in detail. Averaging over all
temperatures gives ηsur = (14.7±0.1) ps−1, which is close to the findings on D-96-
7. The calculated surface friction is immense in comparison to e.g. values below
1ps−1 for the case of benzene on graphite and graphene [32]. The slope of DJD

in the Arrhenius plot shown in Fig. 8.8 produces for the Papyex substrate an acti-
vation energy of jump diffusion Ea = (12.6±0.1)meV and a pre-exponential factor
D0,JD = (4.1±0.1) ·10−7m2/s. For the D-96-7 substrate we find Ea = (2.7±0.6)meV
and D0,JD = (2.2±0.3) ·10−7m2/s. In Fig. 8.9, we compare DJD to results from stud-
ies on similar carbon systems. Our finding for the Papyex substrate are very close
to what has been found before on the same substrate at lower temperatures [203],
on a highly porous commercial carbon black XC-72 [206, 208], and on single walled
nanotubes [204]. It is very surprising that D-96-7 exhibits an activation energy that
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Figure 8.8: Arrhenius plots of the logarithm of the diffusion constant D versus in-
verse temperature. Blue dots: Experimental jump diffusion constant;
blue line: Linear Fit to high temperature data; orange dots: Experimen-
tal Brownian-type diffusion constant; orange line: Theoretical Brownian-
type diffusion of combined surface and collisional friction. a) Results for
Papyex substrate. b) Results for D-96-7 substrate.

is significantly lower than what has been found on all carbon materials that we are
aware of. It is by almost a factor 5 lower than the activation energy on Papyex, and
even lower than in liquid hydrogen (3.9±0.1)meV [222]. The results are, however,
corroborated by the fact that the same experimental and analytical procedure has
been applied to both systems and by the fact that the results for Papyex are in line
with prior studies by Bienfait et al. [203]. Furthermore, the diffusion constant of D-
96-7 seems to level off at low temperatures. This might be a sign of diffusion via
quantum-tunneling, but a better general understanding of the observed diffusion
processes and further investigations are necessary, to test this rather unlikely hy-
pothesis.

The fact that only one single Lorentzian contribution has been observed which ex-
hibits a broadening that is the sum of these two processes, is very intriguing. It indi-
cates that both processes occur to the samemolecule, but in a uncorrelatedmanner.
If molecules would exhibit either one process, or the other, depending, e.g. on the
local structure and hydrogen density, then a sum of the two Lorentzian contribu-
tions would be observed in S(Q,ω). The fact that the sum is found in the width of
the Lorentzian broadening, suggests that S(Q,ω) contains the convolution of two
Lorentzian functions, which means that its Fourier transformed in time and space,
the Van Hoove correlation function G(R, t), is constituted of the product of two ex-
ponential decays, as it does arise for two uncorrelated processes, exhibited by the
samemolecule. This suggests that, in the accessible time range of about 13ps, that
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Figure 8.9: Comparison of the diffusion constants obtained here with the results
from earlier measurements on liquid hydrogen [222] and on a variety
of carbon systems: Papyex [203] (in brackets for distinction), single-
walled nanotubes (SWNT) [204], single-walled nanohorns (SWNH) [205],
commercial ultra-microporous carbon (UMC) [207], polyfurfuryl alcohol-
derived activated carbon (PFAC) [207], carbon black XC-72 (XC72) [206,
208], Pt-containing microporous carbon (PTMC) [211], carbon molecu-
lar sieve (CMS) [212]. The results from this work are depicted by black
(D-96-7) and yellow (Papyex) dots.

is given by the instrumental resolution, a molecule would undergo both diffusion
processes, in contrast to the picture that, depending on the local environment, it
exhibits only one of the two processes.

8.4 Conclusions

In this chapter, we have presented neutron TOF studies of molecular hydrogen dif-
fusion in a novel highly porous carbon D-96-7 and on exfoliated graphite Papyex.

Structural studies by SANS and neutron diffraction show that both materials exhibit
a small angle response that obeys a power-law behaviour over a large range. At
higher momentum transfers, no diffraction was observed for D-96-7, and only the
(002) graphite Bragg peak at 1.8Å−1 for Papyex. The scattered intensity of adsorbed
hydrogen is much weaker than the carbon substrate and rises with temperature due
to conversion of the hydrogen spin states.

The neutron spectroscopy measurements exhibit a Lorentzian QENS broadening
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8.4 Conclusions

that reveals two diffusion processes: 1. An activated jump diffusion mechanism
with jump lengths that are of the order of 4 – 6Å has been discovered, with an
activation energy of diffusion Ea = (2.7±0.6)meV for hydrogen on D-96-7 and
Ea = (12.6±0.1)meV for hydrogen on Papyex. 2. A Brownian type diffusion that
is caused by contributions of collisional and of surface friction, was identified. The
collisional friction stems from inter-molecular collisions, which we have described
by a RHDmodel, while the surface friction stems from interaction with the substrate.
We could deduce an averaged surface friction ηsur = (13.9±0.1) ps−1 for hydrogen
on D-96-7 and ηsur = (14.7±0.2) ps−1 for hydrogen on Papyex. Furthermore, both
diffusion processes seem to occur to the same molecule, but in an uncorrelated
manner.
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9 H2 on Carbon Aerogel

9.1 State of Current Research and Interest

The reasoning for diffusion studies of H2 in porous carbonmaterials has alreadybeen
laid out in Chap. 8. In this chapter, we present a study of the adsorption, dynamics
and ortho-para conversion of hydrogen in a carbon aerogel (CG) [223]. CGs have
high specific surface area and their three-dimensional structure and electric prop-
erties can be tuned, e.g. by addition of dopants [197]. The CG used in the present
study serves us as a “standard” aerogel, which we aim to tune in future studies for
different pore geometries and surface chemistry. We have recently submitted the
results of this study to Carbon journal [224].

The role of carbon substrates in the conversion from ortho- to para-hydrogen has
been the subject of numerous studies. An exhaustive review of research on the
ortho-para conversion has been published by Ilisca in 1992 [225]. The review fo-
cused on the different conversion channels that had been discussed theoretically,
the main ones being paramagnetic and ferromagnetic interaction, as well as chemi-
cal dissociation at a metal surface. First measurements on the conversion were per-
formed in 1929 [226]. In these first experiments, already, activated carbon helped
to obtain a rapid ortho-para conversion. A systematic investigation of the activity
of different substrates was performed in 1932 [227], where it was shown that the
conversion mechanism on carbon, in contrast to metal substrates, involves a bi-
molecular interaction. Neutron scattering on ortho- and para-hydrogen has been
investigated theoretically [228, 229] and experimentally [230, 231, 232, 233]. NMR
measurements of the conversion have been performed on solid hydrogen [234] and
in the confined geometry of a zeolite adsorbate [235]. The latter study also showed
a change in conversion rates. The conversion has been measured also in activated
nanoporous carbon [207] and carbon nanotubes [236]. While in both cases a rapid
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9 H2 on Carbon Aerogel

conversion was observed, Contescu et al. observed an incompleteness of the con-
version that was suggested to be due to hindered rotations caused by narrow con-
finement in ultra-micropores [207]. This assumption was corroborated by calcula-
tions of the dynamics of H2 in single walled carbon nanotubes (SWNT) [237].

This chapter is organised as follows: In sec. 9.2wegive abrief overviewof the synthe-
sis of this carbon aerogel and we describe the experimental methods. In sec. 9.3 we
present and discuss the experimental results. We first show results from adsorption
measurements on the carbon aerogel (sec. 9.3.1). We thendiscuss neutron andX-ray
scattering results and their implications on the structure of the material (sec. 9.3.2).
We finally present our findings on the ortho-para conversion of the hydrogen spin
states (sec. 9.3.3) and on the diffusion of hydrogen in the material (sec. 9.3.4). The
chapter finishes with a concluding section that summarises the major results of the
study.

9.2 Experimental

The CG sample preparation and characterisation was conducted by K. László and B.
Nagy from the Budapest University of Technology and Economics and a detailed de-
scription of the preparation of the carbon aerogel has been published [223]. Here,
a brief description will be given because of its relevance for the study.

9.2.1 Synthesis of the Carbon Aerogel

For the synthesis of the CG, Resorcinol (R)-formaldehyde (F) hydrogel, with an
R/catalyst ratio of 50 was prepared in a first step. After one week of curing the gels
were supercritically dried according to the method described in [238]. The dry
aerogel rods were converted into carbon aerogel by heat treatment in a high purity
nitrogen atmosphere (99.996 %, Linde) in a rotary quartz reactor at a temperature
of 1173K for 1 h in a 25ml/min nitrogen flow.

9.2.2 Sample Characterisation

Nitrogen adsorption/desorption isotherms were measured at 77K with a Nova
2000e (Quantachrome) computer controlled surface area and pore size analyser.
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9.2 Experimental

The apparent surface area, SBET , was calculated using the BET model [215]. The to-
tal pore volume, V0.95, was derived from the amount of vapour adsorbed at relative
pressure 0.95, assuming that the pores are then filled with liquid adsorbate. The
micropore volume, W0−DR , and the adsorption energy, EDR , were derived from the
Dubinin–Radushkevich plot [239]. The pore size distribution in themicro- andmeso-
pore regions was calculated using density functional theory [240]. Carbon dioxide
and hydrogen adsorption/desorption isotherms were measured at 273K with an
Autosorb-1 surface area and pore size analyser and at 77K with an Autosorb-1C
(both from Quantachrome), respectively. Transformation of the primary adsorption
data was performed by the Quantachrome software ASiQwin version 3.0.

The submicroscopic structure of the carbon aerogel was explored by small and wide
angle X-ray scattering (SAXS/WAXS) on the BM02-D2AM beamline at the European
Synchrotron Radiation Facility (ESRF), Grenoble, France at 19.8 keV. The powdered
sample was placed in a glass capillary tube of diameter 1.5mm. The scattered inten-
sity was collected in the wave vector transfer range 0.006< q <10Å−1. Intensities
were normalised with respect to a standard sample (lupolen).

The elemental analyses of C, H, O, N and S were carried out in a LECO TruspecMicro
CHNS microanalysis apparatus with a LECO Truspec Micro O accessory for O analy-
sis. The amounts of C, H, S and N were determined from the amounts of CO2, H2O
and NO2 produced in the combustion of a portion of the sample (1mg of sample
was used for each assay, with two repetitions). The oxygen fraction was determined
from the amounts of CO and CO2 released in a pyrolysis at very high temperature,
in a different portion of sample.

X-ray photoelectron spectroscopy (XPS) measurements were made on a powdered
sample in a SPECS spectrometer with a Phoibos 100 hemispherical analyser. The
base pressure in the UHV chamber was about 1.0 ·10−7 Pa. The X-ray radiation
source delivered non-monochromatic Mg Kα (1253.6 eV) at 100W X-ray power
and an anode voltage of 11.81 kV. The photo-excited electrons were analysed in
constant pass energy mode, using a pass energy of 50eV for the survey spectra
and 10 or 30eV for the high resolution core level spectra, respectively. Spectra
were recorded at a take-off angle of 90°. No binding energy correction was done
because the sample did not exhibit any charging effects. CasaXPS software was
used for data processing.
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9 H2 on Carbon Aerogel

9.2.3 Neutron Scattering

Neutron TOF spectroscopy was performed on the backscattering spectrometer
OSIRIS at the ISIS neutron source, UK, [22] using a pyrolytic graphite (002) analyser
set-up. The scattering functions from neutron TOF spectroscopy, S(Q,ω), where
Q = |ki − kf | is the momentum transfer and ℏω = Ei − Ef is the energy transfer,
covered a momentum transfer range of 0.2≤ Q ≤1.8Å−1 and an energy transfer
range of -0.2≤ ω ≤1.0meV. The data were grouped into windows with widths of
∆Q =0.2Å−1 and ∆ω =5µeV in momentum transfer and energy transfer, respec-
tively. All OSIRIS data were extracted using the Mantid software package [241]. The
instrument resolution function was measured with a vanadium sample and with the
sample itself at the base temperature of the cryostat. The latter resolution function
was used for the data interpretation to exclude the introduction of systematic errors
caused by minor discrepancies between the scattering geometry of the vanadium
and the sample. We note also that the elastic line of OSIRIS is not symmetric in
energy and cannot be approximated easily by a smooth standard function.

The powdered carbon aerogel was filled into a hollow, cylindrical aluminium sample
holder with an annular width of 1mm. Prior to the neutron scatteringmeasurements,
the sample was out-gassed for 60hours in vacuum at a temperature of 393K to re-
move volatile contaminants from the surface. The temperature was controlled using
a standard liquid helium cryostat (“orange” cryostat [161]). For the neutron scatter-
ing experiments the samplewas first cooled to 1.7K in order to obtain an elastic scat-
tering resolution measurement of the clean carbon sample. Afterwards, the sample
was heated to 20K and the quantity corresponding to 0.5ML of hydrogen gas was
dosed through a stainless steel capillary that was connected to a pressure control
monitor. The hydrogen coverage was calculated from the amount of injected hy-
drogen molecules, the BET specific surface area of the sample and the surface area
of a single hydrogen molecule of 15.6Å2 [198]. Throughout the entire experiment,
connection to a 500 cm3 reservoir at room temperature was maintained for secu-
rity reasons. In our set-up any desorbed hydrogen rises to the reservoir, where the
desorbed quantity can be deduced through pressure monitoring. A listing of the
relative coverages obtained at sample temperatures between 10 and 80K is given
in Tab. 9.1. The sample temperature was equilibrated for at least 30min prior to all
neutron measurements.

The polarisation analysis (PA)measurements were performed on the IN11NSE spec-
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9.3 Results and Discussion

Sample temperature [K] Relative coverage [ML]
10 0.5
20 0.5
40 0.49
50 0.46
60 0.38
80 0.24

Table 9.1: Relative coverages in fractions of amonolayer (ML) used in the experiment
at sample temperatures between 10 and 80K.

trometer at ILL [20], using polarised neutrons with a wavelength of 5.5Å.

9.3 Results and Discussion

The pore structure and the surface area of the final carbon gel depend not only on
the initial conditions of synthesis but also on the drying and carbonizing techniques.
From among the three kinds of drying techniques (ambient drying, freeze-drying
and supercritical drying) the last one proved to be the most advantageous for car-
bons with high surface area and controlled pore structure [223, 238]. The SEM and
TEM images (Fig. 9.1) show the loose interconnected and complex porosity of the
CG. The high resolution TEM image reveals that the nanostructure of the carbonma-
trix is made of disordered graphene layers occasionally showing a certain graphite-
and onion-like assembly. The extension of these microcrystalline regions however
does not exceed tens of nanometers.

Figure 9.1: SEM a) and TEM b) image of the CG used in the experiment.
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9 H2 on Carbon Aerogel

9.3.1 Isothermal Adsorption Measurements

T SBET SDR W0−DR EDR V0.95

K m2/g m2/g cm3/g kJ/mol cm3/g
N2 77 808 915 0.326 17.9 0.952
CO2 273 – 232 0.077 26.6 –
H2 77 – 323 0.012 9.6 –

T : Temperature of the adsorption measurement; SBET :
specific surface area; SDR : surface area from theDRmodel;
W0−DR : micropore volume from the DR model; EDR : ad-
sorption energy from the DR model; V0.95: pore volume
from the N2 adsorption isotherm at p/p0 =0.95.

Table 9.2: Characteristic parameters of adsorption and morphology of the CG from
N2, CO2 and H2 vapour adsorption measurements.

The texture of the CG was explored by adsorption of N2, CO2 and H2, respec-
tively. The low temperature (77K) N2 adsorption/desorption isotherm is of type
IV [242] (Fig. 9.2 a)). The hysteresis loop of the N2 data reveals a slit-shape pore
morphology in the mesopore range [242]. On the contrary, the 77K hydrogen ad-
sorption/desorption isotherm (Fig. 9.2 b)) reveals the reversible nature of hydrogen
adsorption under the examined conditions. The BET specific surface area of the
CG is of the order of 800m2/g. In agreement with the electron microscope images
above the sample has a well developed porosity with a pore volume of 0.952 cm3/g
at a relative pressure p/p0 =0.95. The steep uptake above this p/p0 is a sign of
wide mesopores – narrow macropores. A range of parameters deduced from the
adsorption/desorption measurements are summarised in Tab. 9.2.

The results of complementary adsorption isotherm measurements of CO2 on the
CG sample are shown in Fig. 9.3. Comparison of the different adsorption isotherms
demonstrates the role of the size as well as the kinetic energy of the probemolecules
in sorption processes [242]. The combination of pore size distributions based
on CO2 and N2 isotherm measurements reveals the co-existence of mesopores
and ultra-micropores in the CG. Pore size distribution functions were derived by
quenched solid density function theory (QSDFT) for N2 and non-local DFT (NLDFT)
for CO2, respectively, with slit/cylinder geometry.
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Figure 9.2: Nitrogen a) carbon dioxide (green squares) and hydrogen (red circles)
b) adsorption/desorption isotherms of the carbon aerogel.

9.3.2 Neutron and X-ray Scattering - Structural Information

Fig. 9.4 displays structural data of the CG that were obtained from neutron TOF and
NSE spectroscopy as well as from X-ray scattering. The neutron data for the clean
CG are compared to the data from the hydrogen loaded sample at different tem-
peratures. Neutron and X-ray scattering show both a strong small angle signal of
the CG, a feature that is commonly found for materials with a hierarchical structure.
The neutron data do not reach a sufficiently small angle to allow for an in-depth
analysis. The surface area derived from small angle X-ray scattering (SAXS) results
(1630m2/g) also confirms the presence of ultra-micropores, as was revealed by the
adsorption measurements. The radius of the spherical elementary beads units was
found to be 60Å, similar to earlier findings [243]. No graphite Bragg peak is found
in the neutron and X-ray data within theQ-range of the present experiments. This in-
dicates an absence of long-range order in the carbon network, although it does not
exclude graphitic short range order as seen in the electron microscope images.

The scattering signal from the hydrogen filled sample is higher than the signal from
the empty sample, as expected. However, raising the temperature to 80K leads to a
loss of scattered signal. This loss can be attributed to the gradual desorption of the
adsorbed hydrogen, which is also indicated by a rise of pressure in the expansion
volume linked to the sample (Tab. 9.1).

At Q >0.5Å−1 the X-ray scattering signal decays by several orders of magnitude,
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Figure 9.3: a) Cumulative pore size distribution (triangles) and surface area (squares)
and b) incremental pore size distribution of the carbon aerogel obtained
from the 77KN2 (blue open symbols) and room temperature CO2 (green
closed symbols) adsorption measurements derived by QSDFT (N2) and
NLDFT (CO2) models, respectively, with slit/cylinder geometry. Arrows
indicate thepore volume,V , and surface area, S, of poreswith porewidth
w < 7Å.

whereas the neutron spectrometers observe a constant signal that is typical for inco-
herent scattering. The origin of the constant neutron scattering signal at high Q was
validated by PA measurements on the neutron spin-echo spectrometer IN11 [162].
Neutron PA measurements exploit neutron spin flips to differentiate the scattering
processes: coherent scattering leaves the neutron spin unchanged upon sample in-
teraction, whereas incoherent scattering leads to spin flips that result in a net final
beampolarisation of 1/3 and a 180° turn of the polarisation. The PA data from a 1ML
hydrogen/CG sample is shown in the lower panel of Fig. 9.4. It shows predominant
coherent scattering in the small angle regime but reveals also substantial incoher-
ent scattering in the higher Q-range. The incoherent scattering is mainly caused by
scattering from the hydrogen molecules, because hydrogen has a large incoherent
scattering cross section compared to other elements and in comparison to carbon
in particular [244].
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Figure 9.4: (upper panel) Energy-integrated neutron spectroscopy signal S(Q) ob-
tained atOSIRIS for theCGbefore hydrogen adsorption at 1.7 K (rhombi)
and for the hydrogen loaded CG at 10K (crosses), 50K (triangles) and
80K (circles), respectively. The data are compared to SAXS/WAXS mea-
surements (dashed line) and the integrated intensity obtained on the
neutron spin-echo spectrometer IN11 (dotted green line: coherent sig-
nal, dash-dotted red line: incoherent signal). Thedash-dotted line shows
the (constant) signal that stems from incoherent neutron scattering. The
inset shows a magnification of the OSIRIS signal. (lower panel) Rela-
tive incoherent and coherent scattering contribution to the neutron spin-
echo signal as function of momentum transfer Q.

9.3.3 Ortho-Para Conversion

The neutron structural data of the hydrogen filled sample that are shown in Fig. 9.4
were collected several hours after preparation of the sample. During these mea-
surements the signal was stable. In the period immediately after dosing of hydro-
gen, however, we observed a strong decrease of the neutron scattering intensity
(Fig. 9.5), which we attribute to the conversion from ortho- to para-hydrogen, since
no desorption of hydrogen was observed. At a neutron wavelength of 6.6Å, as used
in the present TOF experiments, the ratio between the scattering cross sections
of ortho- and para-hydrogen can be safely assumed to be at least 50:1 (Tab. 9.3)
[229, 245]. This allows us to convert the integrated scattered intensity directly to
the relative abundance of ortho- and para-hydrogen. We note that the wavelength
dependence of the ratio of the scattering cross sections does not influence our re-
sults significantly, because almost all detected signal stems from elastic scattering.
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9 H2 on Carbon Aerogel

scatterer scattering absorption
cross section cross section

[10−28m2/atom] [10−28 m2/atom]
para-H2 <0.9 1.2
ortho-H2 80 1.2

C 5.55 0.01

Table 9.3: Total neutron scattering cross sections and absorption cross sections for
hydrogen and carbon at a neutron wavelength of about 6.6Å and 5Å for
hydrogen and carbon, respectively. The data are taken from refs. [244,
245].

Furthermore, we do not expect any significant conversion induced by the imping-
ing neutrons because the sample contains of the order of 1020 hydrogenmolecules,
whereas the neutron flux is of the order of 108 s−1. The initial percentage of ortho-
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Figure 9.5: Fraction of ortho-hydrogen obtained from the integrated neutron scat-
tering intensity of 0.5ML hydrogen in CG at 20K versus time after hydro-
gen dosing (red circles). A decay in signal due to ortho-para conversion
is clearly visible. Dashed red line: fit of an exponential decay. Blue solid
line: asymptotic value of the exponential fit; green dotted line: expected
final ortho-hydrogen fraction in liquid hydrogen at 20K: 1% [246].

hydrogen in a gas at room temperature is 75%. Upon cooling pure hydrogen to
20K this percentage decreases to 1% (liquid hydrogen) with a very slow conversion
rate of 0.7% per hour [246]. Different catalysts can speed up this process and the
first observation of such a catalytic activation was, indeed, made on activated carbon
[226]. Fig. 9.5 shows a very fast decay for the CG sample with a half-time of (80±18)
minutes in comparison to about 100hours for liquid hydrogen.
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9.3 Results and Discussion

Two main routes are considered for the accelerated conversion in carbon systems:
the first one proceeds throughmolecular dissociation and recombination in a differ-
ent spin state [227]. The second possibility is through interaction with a local mag-
netic field gradient [236]. The latter conversion channel has been preferred recently
for activated carbon since the mobility at low temperature is suggested to be rela-
tively small. In this model, the ortho-para conversion is mediated by the paramag-
netism of unpaired electrons, which exist either at the edge of graphitic planes or
at chemisorbed oxygen atoms that are part of surface functional end groups [236].
As discussed above, our SAXS/WAXS measurements also show that the CG has an
amorphous structure at atomic length scales (Fig. 9.4), which means that the overall
structure of the CG is heavily distorted compared to, e.g., graphite. Moreover, XPS
measurements of the bulk CG revealed the presence of about 5wt% oxygen. XPS
also showed that 60% of the remaining carbon is in sp2 form. Similar O content and
about 0.5wt% hydrogen were detected in the bulk carbon by CHNS microanalysis
showing the homogeneity of the sample. The presence of oxygen atoms as well as
the large quantity of unpaired electrons at the edges and defect-points will help to
accelerate the ortho-para conversion as observed here.

The data in Fig. 9.5 are well represented by an exponential decay fit, which is con-
verging at an ortho-hydrogen abundance of about 18% (resulting in 25% scattering
intensity). This asymptotic value is much higher than the 1% that are observed as
equilibrium value in liquid hydrogen at 20K [246], which indicates that the conver-
sion mechanism is fast, but hindered. Such a hindered decay has been observed
before for other nanoporous carbon materials [207]. Calculations suggest that a
strong confinement in ultramicropores can lead to hindered rotations of the hy-
drogen molecule, inhibiting the conversion of the spin state [207, 235, 247, 237].
Contescu et al. proposed that the percentage of unconverted ortho-hydrogen re-
flects the fraction of hydrogen that is adsorbed in pores with w <7Å, although their
study found no direct proportionality between the amount of unconverted ortho-
hydrogen and the volume of ultramicropores: Studying two types of activated car-
bons, they found 26% and 8% of remaining neutron scattering signal, respectively,
and a corresponding fraction of 25% and 19% of pore volume in a range of w <7Å.
In our CG system the CO2 vapour adsorption measurement revealed only a small
ultramicropore volume (Fig. 9.3): the volume of pores with w <7Å is 0.04 cm3/g,
equivalent to 4% of the total pore volume (V0.95), whereas we have observed amuch
higher ratio of remaining ortho-hydrogen. However, if we consider that the adsorp-
tion takes place on the surface, it is more reasonable to employ the fraction of the
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9 H2 on Carbon Aerogel

available surface area in the ultramicropore regime rather than the ultramicropore
volume. As can be seen in Fig. 9.3 a), the cumulative surface area of the pores
with w <7Å is about 155m2/g, which represents 20% of the total accessible sur-
face, which is in good agreement with the observed remaining signal at the neutron
scattering measurements. Thus, we propose that the relative surface area in ultrami-
cropores is linked to the hindered ortho-para conversion.

9.3.4 Neutron Spectroscopy - Dynamics

Now we will discuss the dynamic scattering functions, S(Q,ω), which were extracted
from the OSIRIS neutron TOF spectra. In a first treatment step, the data were nor-
malised by a standard vanadium sample and then grouped into 8Q groups. Fig. 9.6
a) shows S(Q,ω) for the hydrogen filled CG sample at 80K. A cut of the scattering
function at a momentum transfer of Q =1.5Å−1 is shown in Fig. 9.7. The spectrum
shows a strong elastic peak around ω = 0meV and a weak, but clearly discernible
quasi-elastic broadening, which appears at the base of the elastic peak. In our dy-
namic rangewe found no additional inelastic features caused by vibrations or rotons
(see Fig. 9.6 a)). Fig. 9.6 b) demonstrates, that the quasi-elastic signal is caused by
the adsorbed hydrogen and not by the carbon gel substrate itself, since no substan-
tial quasi-elastic broadening is observed without adsorbed hydrogen.

The dynamic information in the TOF spectra for a given momentum transfer was
extracted by fitting test functions using a least-square algorithm. For each spectrum,
the QENS broadening of the elastic line resembled closely a Lorentzian shape, as in
the case of activated jump diffusion on a Bravais lattice [19]. In this case, the Q-
dependence of the HWHM of the Lorentzian broadening, Γ (Q), is of the form:

Γ (Q) =
1

Nτ

N
∑

j=1

[1 − exp(iQ · lj)] , (9.1)

where τ is the residence time of the hydrogen molecule between two jumps (1/τ
is the jump rate) and lj is the j-th jump vector. Although the sample is highly dis-
ordered, the TEM pictures (Fig. 9.1) show that a short range graphitic order still
exists and a strong sp2 contribution can be seen in the XPS spectra. For this rea-
son and since at a fairly high density of 0.5ML as in the case studied here, hydrogen
molecules on a surface would arrange in a close-packed pattern, a planar hexagonal
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9.3 Results and Discussion

a) b)
Figure 9.6: a) 2D colour map of the TOF spectra of the hydrogen containing sam-

ple at a temperature of 80K. The spectral window shows a strong elastic
peak with a quasi-elastic broadening and a signature of frame overlap at
maximum energy transfer. No inelastic features are found in the spectral
window. b) Temperature dependence of the normalised scattering func-
tions, S(Q,ω), of the empty carbon gel sample. Blue dotted line: clean
sample at 2K; green solid line: clean sample at 80K; orange dashed line:
hydrogen containing sample at 80K.

geometry ofN =6 jump vectors seems to be themost likely structure. The sample is
isotropically orientated, therefore the quasi-elastic scattering function SQENS(Q,ω)

(QENS signifies quasi-elastic neutron scattering) needs to be averaged spherically
[248]:

SQENS(Q,ω) =
1

4π

∫

1

π

Γ (Q)

ω2 + Γ (Q)2
d Ω, (9.2)

where d Ω is the infinitesimal solid angle in the direction of Q. We have performed
this integration numerically by summing over N =400 Lorentzian distributions with
isotropically randomised orientations. For the fittingwe used a test function, which is
a convolution of the resolution function R(Q,ω) (which was obtained from the clean
CG substrate at 1.7K) with a delta function δ(ω) (elastic scattering) and SQENS(Q,ω)

that represents the quasi-elastic broadening, as well as a constant background, C :

S(Q,ω) = [(1 + Iel · e−
1
3
Q2<u2>) · δ(ω)

+ Iinel ·
N
∑

n=1

1

Nπ

Γ (Q)n

ω2 + Γ (Q)2
n

] ∗ R(Q,ω) + C ,

(9.3)
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9 H2 on Carbon Aerogel

Figure 9.7: A representative slice of the normalised scattering function S(Q,ω) at a
momentum transfer of Q = 1.5Å−1 and a temperature of 80K. The or-
ange solid line shows the experimental data of the hydrogen containing
sample at 80K. The blue solid line shows the data of the cleanCG sample
at a temperature of 1.7 K (resolution function). The green solid line is the
fitted function and the grey dotted line is the quasi-elastic broadening
that was extracted by the fit. The green dash-dotted line represents the
equivalent broadening that would be created using a single Lorentzian
function without spatial integration. The lower panel shows the residuals
of the fit function.

where Γ (Q)n is the HWHM of the n-th Lorentzian distribution and< u2 > is the mean
square atom displacement in the Debye-Waller factor −1

3Q2 < u2 >. The fitting pa-
rameters Iel and Iinel in equation (9.3) correspond to the elastic and inelastic scatter-
ing contributions of the entire sample relative to the signal of the empty sample at a
temperature of 1.7K.

For each temperature, all spectra were fitted at once. For the fitting, Iinel(Q) and
C(Q) aredescribedby a linear polynomial inQ and thepowder averaged summation
of Lorentzian distributions is a function of τ and l . Thus, in total eight degrees of
freedom were fitted to the measured data.

Weused the reducedχ2 as a representationof thegoodness-of-fit. χ2 showedno im-
provement upon adding a sloped background in addition to a flat background. Fur-
thermore, no additional Lorentzian broadening was found within the energy range
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9.3 Results and Discussion

and resolution of the OSIRIS spectrometer. We also tested deviations of the quasi-
elastic broadening from the Lorentzian shape, such as a Gaussian or a Voigt shape,
but the alternative shapes did not lead to an improvement of the fit. The residu-
als of the fits show no systematic errors and only an increase in absolute statistical
error is observed in the vicinity of the elastic peak at ω =0 (Fig. 9.7). Hence, we con-
clude that we only observe a single diffusion process in the resolution window of the
OSIRIS spectrometer. On the other hand, we observe a temperature dependence of
the background, which indicates the existence of a fast diffusion process that cannot
be resolved with the OSIRIS spectrometer.

The Q-dependence of the elastic and inelastic intensities, SH,el(Q) and SH,inel(Q), is
shown in Fig. 9.8. These have been obtained by multiplication of Iel and Iinel with
the integrated scattering intensity R(Q) of the resolution measurement.
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Figure 9.8: Elastic and inelastic intensities as a function of momentum transfer, Q.
The data were obtained for a hydrogen coverage of the equivalent of
0.25 – 0.5ML on CG (Tab. 9.1).

The inelastic intensity SH,inel(Q) remains fairly constant in the temperature range
from 40 to 80K, but exhibits a substantial decrease at temperatures below 20K
(Fig. 9.8). We attribute this sudden loss of the quasi-elastic contribution to a freez-
ing of the hydrogen diffusive dynamics, in consistence with neutron diffraction mea-
surements of hydrogen on graphite that discovered a transition between an ordered
commensurate layer below 22K and a liquid state above this temperature [202]. Fur-
thermore, at all temperatures the inelastic intensity dropsmonotonically withQ. The
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9 H2 on Carbon Aerogel

latter finding might be an indication for a rotational diffusive contribution that could
not be resolved in the present study as it falls outside of the spectral window of the
OSIRIS instrument. In addition, the constant background shows an increase with Q

and with temperature. This hints strongly towards a fast rotational diffusion that is so
broad, as to appear in form of a constant contribution.

The elastic intensity SH,el(Q)obeyed theDebye-Waller law, when each spectrumwas
fitted independently with a single Lorentzian contribution. In the global fitting pro-
cedure, we therefore assumed a Debye-Waller behaviour. The results of the global
fitting are shown in Tab. 9.4 and Fig. 9.8. The mean square atom displacement is of
the order of (2.3Å)2 and rises slightly with temperature, which is too high for rota-
tions or molecular vibrations. Therefore, we tentatively attribute these dynamics to
confined motion of hydrogen molecules in the ultra-micropores.
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Figure 9.9: QENS broadening Γ versus Q, for a range of sample temperatures.
The symbols show the HWHM obtained from fitting a single Lorentzian
function as inelastic contribution to each spectrum independently. The
dashed line shows the least-squares fit of an isotropically averaged
broadening. The continuous lines show an approximation to the re-
sults from a global, powder averaged, approach, where the Lorentzian
distribution is isotropically averaged. In the latter approach, a single
Lorentzian was fitted to the powder averaged distribution of Lorentzians
at each Q. The green lines show fits corresponding to the dynam-
ics on non-hexagonal lattices. The green dotted line corresponds to a
quadratic two-dimensional lattice and the green dash-dotted line corre-
sponds to a three-dimensional cubic arrangement.
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9.3 Results and Discussion

Fig. 9.9 displays the quasi-elastic broadenings that were obtained for sample tem-
peratures of 10, 50 and 80K, respectively. No significant broadening was observed
for the sample at 10K and 20K, which agrees with a picture of a frozen hydrogen
layer [202]. The data between 40 and 80K were fitted with a powder averaged
Chudley-Elliott (CE) jump diffusion model [19, 33].

T [K]
√
< u2 > [Å] d [Å] Iel [arb. u.] Iinel(×10−3) [arb. u.]

10 1.85 ± 0.01 4.48 ± 0.06 9.4 ± 0.2 –
20 2.15 ± 0.02 5.19 ± 0.07 10.3 ± 0.3 –
40 2.26 ± 0.02 5.44 ± 0.08 10.5 ± 0.3 5.7 ± 0.4
50 2.23 ± 0.02 5.37 ± 0.08 10.8 ± 0.3 5.7 ± 0.3
60 2.31 ± 0.02 5.57 ± 0.08 9.6 ± 0.2 6.3 ± 0.2
80 2.39 ± 0.02 5.87 ± 0.08 7.0 ± 0.1 4.6 ± 0.1

T [K] l [Å] η [ps−1] D (×10−10) [m2/s]
40 5.15 ± 0.02 0.026 ± 0.001 11.6 ± 0.6
50 4.96 ± 0.03 0.046 ± 0.002 18.9 ± 0.9
60 5.02 ± 0.02 0.058 ± 0.002 24.2 ± 0.8
80 4.98 ± 0.04 0.064 ± 0.002 26.3 ± 0.8

Table 9.4: Fit parameters extracted from fitting equation (9.3) to the experimental
spectra.

√
< u2 > is the square-root of the mean-square atom displace-

ment from the Debye-Waller factor, d is the sphere diameter of a confined
diffusion model, Iel is the absolute elastic intensity at Q = 0, Iinel is the ab-
solute inelastic intensity at Q = 0, l the jump distance, η is the hopping
rate and D is the diffusion constant.

Theprocedure for thepowder averaginghas beendiscussed in detail by Jobic [248]:
He demonstrates, that a simple angular averaging of the broadening (Eq. (9.1)), as
suggested by Chudley and Elliott for the case of a liquid [33], is in general insuffi-
cient, since deviations of the line-shape from a Lorentzian distribution are not taken
into account. In the case of two-dimensional diffusion, angular averaging leads to a
singularity for Q ⊥ l , that needs to be avoided by convolving with a finite resolution
[220]. As Jobic points out, a more intricate but also more accurate analysis of the
line-shape consists in averaging SQENS(Q,ω) over the entire angular space, leading
in general to a non-Lorentzian line-shape as shown in Fig. 9.7. In our analysis, we
have applied both methods for comparison, a 3D isotropic averaging of Γ (Q) and a
3D isotropic averaging of SQENS(Q,ω). The results are shown in Fig. 9.9: the symbols
represent the HWHMof a single Lorentzian broadening for each spectrum, while the
dashed line gives the least-squares fit of the isotropically averaged broadening and
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9 H2 on Carbon Aerogel

the solid lines represent the result from the application of the angular averaging of
SQENS(Q,ω). In the latter averaging, a single residence time τ and jump distance l

define the shape of the quasi-elastic scattering function SQENS(Q,ω) and the inte-
grated broadening is in general non-Lorentzian (Fig. 9.7). Up to about 0.8Å−1, the
line shape is close to a Lorentzian distribution. For larger values ofQ however, signif-
icant deviations arise that produce an apparent ”narrowing” of the single Lorentzian
broadening (points in Fig. 9.9). 3D isotropic averaging of Γ (Q) is obviously not
able to reproduce this (dashed line in Fig. 9.9). A residual analysis of the spectral
fits with the powder averaged SQENS(Q,ω) validated this approach over the whole
Q-range. Fig. 9.10 shows the temperature dependence of the diffusion constant D

Material Ea [meV] D0 [m2/s](×10−8)
PFAC 18.9 28.5
UMC 15.4 12.6
(Papyex) 31±2 64±7
SWNT 11.6±0.4 52±7
Liquid 3.9±0.2 9±1
SWNH 6.18 –
PTMC 6.6±0.8 2.1±0.3
XC72 9.6±0.4 35±9
CMS 6.4±0.9 (estimated) 3.5±0.5 (estimated)
Papyex 12.6±0.1 41±1
D-96-7 2.7±0.6 22±3
CG 7.5±0.6 1.6±0.2

Table 9.5: Tabular comparison of the diffusion activation energies, Ea, and the pref-
actors, D0, obtained here with the results from earlier measurements
on liquid hydrogen [222] and on a variety of carbon systems: Grafoil
[203], single-walled nanotubes (SWNT) [204], single-walled nanohorns
(SWNH) [205], commercial ultra-microporous carbon (UMC) [207], poly-
furfuryl alcohol-derived activated carbon (PFAC) [207], carbon black XC-
72 (XC72) [206, 208], Pt-containing microporous carbon (PTMC) [211],
carbon molecular sieve (CMS) [212]. Errors are indicated when they were
provided by the authors. The data for CMS were not explicitly given the
authors of the original study, but extracted by us from a graph.

in an Arrhenius plot. In this representation, i.e., ln(D) vs. 1/T , an activated diffusion
appears as a straight line, since it is described by the equationD = D0 exp[−EA/kBT ],
where EA is an activation barrier and kB is the Boltzmann constant. For the CG sys-
tem we obtain a pre-exponential diffusion constant D0 = (1.6±0.2) ·10−8m2/s and
an activation energy EA = (7.5±0.6)meV. In Fig. 9.10 we display the diffusion con-
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9.4 Conclusions

stants of hydrogen that were recently obtained by other authors on carbon systems
[203, 204, 205, 206, 207, 211, 212], as well as the diffusion of liquid hydrogen [222].
Tab. 9.5 shows a comparison of the extracted pre-exponential factors and activation
energies of the materials in Fig. 9.10. The comparison shows that the activation en-
ergies differ only weakly between most of the carbon materials. The prefactor of
our CG sample, however, is an order of magnitude lower than prefactors observed
on the studied activated carbon materials [206, 207, 208]. The prefactor obtained
here is similar to the prefactors observed for a carbon molecular sieve [212] and for
a Pt-containing microporous carbon [211].
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Figure 9.10: Comparison of the diffusion constants obtained here with the results
from earlier measurements on liquid hydrogen [222] and on a variety of
carbon systems: Grafoil [203], single-walled nanotubes (SWNT) [204],
single-walled nanohorns (SWNH) [205], commercial ultra-microporous
carbon (UMC) [207], polyfurfuryl alcohol-derived activated carbon
(PFAC) [207], carbon black XC-72 (XC72) [206, 208], Pt-containing mic-
roporous carbon (PTMC) [211], carbon molecular sieve (CMS) [212].

9.4 Conclusions

In this chapter, we have presented hydrogen diffusion studies in a standard carbon
aerogel. Neutron and X-ray scattering analyses show no graphitic ordering in the
material, but a hierarchical structure above the nanometre length scale.
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9 H2 on Carbon Aerogel

We have observed a highly accelerated ortho-para conversion of the spin isomer
states of the hydrogen molecule, which can be explained by the large number of
available electron donors at the CG surface. We have also observed a partial hin-
drance of the conversion that we link to hindered rotations due to the narrow con-
finement in ultramicropores with a pore diameter of less than 7 Å. The percentage of
non-converted hydrogen agrees well with the relative available surface area in these
ultramicropores.

Hydrogen desorbs from the CG at much higher temperatures than for some other
recently studied porous carbons, such as polyfurfuryl alcohol-derived activated car-
bon or ultramicroporous carbon [207], which allowed us to follow the diffusion up
to 80 K. The neutron spectroscopy data showed an activated jump diffusion mech-
anism with jump lengths that are of the order of the inter-molecular distance in the
(
√

3 x
√

3)R30° hydrogen monolayer structure. The rather common approach of as-
suming a single Lorentzian quasi-elastic broadening of the scattering signal showed
to be insufficient to describe our data in the high Q-range. An isotropic angular av-
eraging of the quasi-elastic line was needed to obtain satisfactory results.

The hopping rate is in the ps range, like in other porous carbons. The obtained diffu-
sion constants are similar to recent data from Pt-containingmicroporous carbon.
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10 Discussion and Outlook

The aim of this PhD work was to study molecular diffusion on the surfaces of carbon
materials by neutron and helium spectroscopy. For this purpose, we investigated a
series of systems: water and benzene adsorbed on the surface of graphene/Ni(111),
as well as molecular hydrogen adsorbed on the surfaces of exfoliated graphite, on a
novel highly porous carbon, and on carbon aerogel. All these systems have in com-
mon, that relatively small molecules undergo weak physisorption on the (in most
cases) hexagonal carbon surface. A detailed comprehension of these systems has
both a fundamental interest, regarding an understanding of surface friction and po-
tential energy surfaces, as well as a large technological interest, be it a molecular
doping of graphene or the search for energy storage materials.

The questions regarding these systems were in general threefold: they aimed at an
understanding of the adsorption/desorption process, the growth and structure of
the adsorbate layer, and the type of surface diffusion. A point of emphasis was also
the characterisation of the studied carbonmaterials, in terms of small and large scale
structure, as well as surface chemistry.

Graphene Growth on a Ni(111) Surface

We started by a characterisation of the graphene/Ni(111) surface and discussed
the growth procedure by chemical vapour deposition. Helium diffraction showed
a first order diffraction peak of the graphene layer that is by two orders of magni-
tude larger compared to that of the Ni(111) surface, but found at the same posi-
tion, indicating the creation of a commensurate (1 x 1) structure. From diffraction
peak intensities we calculated an electron density corrugation with a peak to peak
height of 0.06Å upon scattering of 3He at a beam energy of 8meV. Inelastic scatter-
ing revealed the persistence of the two low energy surface phonons of the pristine
Ni(111) surface, the Rayleigh mode and the longitudinal resonance, which indicates
a strong electron-phonon coupling of the graphene-nickel system. These findings
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confirm that graphene/Ni(111) can be created with very high quality and forms an
ideal support system for the study of interactions betweenmetals, carbon and even-
tually adsorbate atoms.

Water on the Graphene/Ni(111) Surface

We then discussed the behaviour of adsorbed water on the graphene/Ni(111) sur-
face. Adsorption studies revealed an initial low-coverage adsorption regime with
weak interaction between the water molecules. We deduced a helium scattering
cross section of the H2O molecule of (144±1)Å2. An amorphous ice layer forms
at temperatures of up to 105K, while at higher temperatures and at a coverage of
about 0.25ML, condensation sets in, resulting in island formation. From 125K on-
wards, we observed water desorption. Thermal and isothermal desorption revealed
two desorption processes with activation energies of 450 and 510meV, respectively,
which we attribute to desorption from the edges and the surfaces of islands. Spin-
echo studies revealed a slow jumpdiffusion between presumably hollow adsorption
sites with an activation energy of diffusion of (51±12)meV. At short Fourier times,
the persistence of the two graphene surface phonons and a fast diffusion process
were observed which we assume to stem from uni-axial rotational diffusion of water
molecules on the graphene surface.

To our knowledge, this is the first detailed observation of water diffusion on a
graphene surface. Surface diffusion being in itself a highly interesting and techno-
logically important feature, it also serves as a very precise measure of the interaction
energies between the substrate and the adsorbate. If the fast diffusion proves to
stem from rotating H2Omolecules, then a rotational friction can be established from
the experimental results. From the combined results of the two diffusion processes,
a detailed picture of the potential energy surface can be established. The question
then arises, how the electronic structure of the graphene surface influences the dif-
fusion of H2O molecules, especially since H2O is regarded as a potential graphene
dopant. Therefore, it would be highly interesting to perform a systematic compari-
son of this system with an HOPG surface with a weakly interacting graphene/metal
system that is lattice-matched (e.g. Cu(111)) and with a strongly interacting, but
lattice mismatched graphene/metal system (e.g. Ru(0001)).
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Benzene on the Graphene/Ni(111) and on a Graphite Surface

We then moved on to the adsorption of benzene on graphite and graphene. Neu-
tron scattering studies allowed us to confirm the (

√
7 x

√
7)R19° structure in the sub-

monolayer range, except for very low coverage, where no structural ordering was
observed. Above the monolayer, we proved experimentally that benzene forms 3D
islands of crystalline benzene rather than a second flat layer.

On the surface of graphene, we could also observe the (
√

7 x
√

7)R19° structure at
coverages of up to 1 monolayer by helium scattering. Adsorption studies revealed
a very large helium scattering cross section of (630±120)Å2. At very low cover-
age, adsorption with weak interaction between adsorbates was observed, with a
formation of islands at about 0.25ML. At high sub-monolayer coverage, an adsorp-
tion regime was observed, which we attribute either to adsorption on top of the
benzene layer, or to a saturation of island growth. Monolayer completion was ob-
served, but no growth of a second layer, in accordance with the results from neutron
diffraction on graphite. Above 120K, desorption sets in with an activation barrier of
(392±12)meV. At 110K, we observed two diffusion processes: a slow activated dif-
fusion might be attributed, whose nature is yet unclear, with possible explanations
being: jumps between adsorption sites, discrete jump rotations, or a jump-like asso-
ciation/dissociation to and from islands, respectively. Simultaneously, a fast Brown-
ian diffusion exists, which is dominated by a surface friction of (0.65±0.07) ps−1. At
length scales shorter than the inter-molecular distance in the commensurate struc-
ture, ballistic diffusion is found in only one of the two principal crystal directions,
which we link to the asymmetry of the potential energy surface, resulting in direc-
tions of high and low surface friction.

Our observations appear to match with those from earlier studies on similar sys-
tems [4, 136, 32]. A comparison with a weakly interacting graphene/metal system
would be highly interesting with regard to the question about the influence of the
electronic graphene structure. Furthermore, the observed asymmetrical ballistic dif-
fusion might be linked to the super-lubricity of graphene that has been observed
using scanning force microscopy [175, 176, 75]. A systematic study of polycyclic
aromatic hydrocarbons of increasing size (e.g., coronene) on the graphene surfaces
could bridge the gap between the two cases.
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Molecular Hydrogen in Porous Carbons

We studiedmolecular hydrogen adsorbed on the surfaces of a porous carbon and a
carbon aerogel, as well as on exfoliated graphite. The question was, how the porous
structure influences hydrogen diffusion.

For this purpose, we performed neutron TOF scattering on three systems: The first
is exfoliated graphite Papyex, a material that consists of graphitic islands with struc-
tural coherence length of several hundred Å2. It can be regarded as a substitute for
graphite. The two porous structures, a carbon aerogel and a highly porous carbon
called D-96-7, contain a high amount of ultra-micropores, which we expect to cause
confinement of hydrogenmolecules. In fact, we observed an incomplete conversion
of the hydrogen spin states in the carbon-aerogel, which we linked to a rotational
confinement in ultra-micropores. In all three systems we observed jump diffusion of
a comparable length scale, but with large differences in the activation energy and
in the pre-exponential factor of the diffusion constant. While Papyex and carbon
aerogel compare well with other carbon systems, D-96-7 exhibits an extremely low
activation energy. In addition, Brownian surface diffusion was observed on Papyex
and on D-96-7, which we estimate to stem from a small contribution of collisional
friction and a large contribution of surface friction.

We are not aware of any previous findings of Brownian hydrogen diffusion on carbon
surfaces and we do not yet understand the reason for a coexistence of two diffusion
processes in this system, nor for the existence of the immensely high observed sur-
face friction. Further neutron time-of-flight studies of the discussed systems at addi-
tional surface coverages would allow to test the applicability of the RHD model as a
description of the kinetic friction. Numerical calculations could also provide an esti-
mate for surface friction. Furthermore, the carbon aerogel can be tuned in terms of
surface chemistry and porosity. Systematic neutron studies of hydrogen in different
versions of the carbon aerogel are planned. Last, but not least, characterisation of
the porous carbons as potential hydrogen storagematerials would be of great inter-
est and might even provide a link between sorption properties under technological
conditions and our observations on the surface diffusion. A technological use of our
studies, especially in such an extremely important field as energy storage, would be
a great outcome of this research.

164



11 Discussion et Perspectives en Français

L’objectif de cette recherche doctorale était l’investigation de la diffusion molécu-
laire sur des surfaces de matériaux carbonés par spectroscopie neutronique et
d’hélium. Dans ce but, nous avons étudié une série de systèmes: de l’eau et du
benzène adsorbés à la surface de graphène/Ni(111), ainsi que de l’hydrogène
moléculaire aux surfaces de graphite exfolié, d’un nouveau carbone poreux et
d’un aérogel de carbone. Tous ces systèmes ont en commun, que des molécules
relativement petits subissent une physisorption faible à la surface hexagonale de
carbone. Une étude détaillée de ces systèmes est d’un intérêt fondamental en ce
qui concerne une compréhension du frottement et des surfaces d’énergie poten-
tielle, ainsi que d’un intérêt technologique, qu’il s’agisse du dopage moléculaire de
graphène ou de la quête pour des matériaux de stockage d’énergie.

La question concernant ces systèmes comportait en général trois volets: elle visait à
une compréhension du processus d’adsorption/désorption, de la croissance et de
la structure du couche d’adsorbat et du type de diffusion à la surface. Un accent
était aussi mis sur la caractérisation des matériaux de carbone étudiés, en termes
des structures à petite et à grande échelle, ainsi que sur la chimie de surface.

La Croissance de Graphène à la Surface (111) de Nickel

Nous avons commencé avec une caractérisation de la surface graphène/Ni(111)
et discuté la procédure de croissance par déposition chimique en phase vapeur.
Diffraction d’hélium a montré un pic de diffraction de premier ordre, lequel est
par deux ordres de grandeur plus intense, comparé au pic de diffraction de la
surface Ni(111). Par contre, il et situé à la même position, ce qui nous indique la
création d’une structure proportionnelle (1 x 1). Nous avons calculé une hauteur
de l’ondulation en densité électronique de 0.06Å à partir des intensités des pics
de diffraction d’hélium avec une énergie du faisceau de 8meV. Par diffusion in-
élastique nous avons montré que deux phonons de surface de la surface vierge
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Ni(111), notamment le mode Rayleigh et la résonance longitudinale, persistent
après la croissance du couche de graphène à cause d’un couplage fort du sys-
tème graphène-nickel. Ces observations confirment que du graphène/Ni(111) de
très haute qualité peut être créé et qu’il constitue un système idéal pour l’étude
de l’interaction entre des métaux, du carbone et éventuellement des atomes et
molécules d’adsorbat.

L’eau à la Surface de Graphène/Ni(111)

Nous avons ensuite discuté le comportement d’eau adsorbée à la surface de graph-
ène/Ni(111). Des études d’adsorption ont montré un régime d’adsorption initiale à
basse couverture avec une faible interaction entre les molécules d’eau. Ceci nous
a permit de déduire une section efficace de diffusion d’hélium pour le molécule
H2O de (144±1)Å2. Une couche de glace amorphe se forme durant adsorption
à des températures au dessous de 105K, alors qu’au dessus la condensation com-
mence à une couverture d’environ 0.15ML, ce qui aboutit à la formation d’îlots. A
partir de 125K, nous avons observé la désorption d’eau. Des études de désorption
thermique et isothermique ont révélé deux processus de désorption avec des én-
ergies d’activation de 450 et de 510meV, respectivement, lesquels nous attribuons
à la désorption à partir des bords et des surfaces d’îlots. Par des études de diffu-
sion à écho de spin nous avons découvert une diffusion par sauts entre des sites
d’adsorption creux avec une énergie d’activation de (51±12)meV. A des temps de
Fourier courts, les deux phonons de surface et un processus de diffusion rapide ont
été observé, le dernier nous assumons de résulter d’une diffusion rotationnelle uni-
axiale des molécules d’eau à la surface de graphène.

A notre connaissance, celle-ci est la première observation détaillée de diffusion
d’eau à la surface de graphène. La diffusion de surface elle-même étant un aspect
très intéressant et technologiquement important, elle constitue aussi une mesure
très précise des énergies d’interaction entre le substrat et l’adsorbat. Si le processus
rapide se confirme de provenir d’une diffusion rotationnelle, un frottement rota-
tionnel pourra être établi a partir des résultat expérimentales. Avec les résultats
combinés de ces différents processus de diffusion, un image détaillé de la surface
d’énergie potentielle peut être formé. La question se lève, comment la diffusion
des molécules d’H2Oest influencée par la structure électronique de la surface de
graphène, spécialement puisque H2O est vue comme un dopant potentiel de
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graphène. Il serait donc très intéressant d’effectuer une comparaison systématique
de ce surface avec une surface HOPG, avec un système graphène/métal à interac-
tion faible et avec la même constante de réseau (par exemple Cu(111)) et avec un
système graphène/métal à interaction forte, mais avec une décalage en constante
de réseau (par exemple Ru(0001)).

Benzène aux Surfaces de Graphène/Ni(111) et de Graphite

Nous avons ensuite discuté l’adsorption de benzène à la surface de graphite et de
graphène/Ni(111). Des études de diffusion neutronique nous ont permit de con-
firmer la structure proportionnelle (

√
7 x

√
7)R19° au régime sous-monocouche, sauf

à très basse couverture, auquel cas aucun ordre structurale a été observé. Au-dessus
de la monocouche, nous avons montré expérimentalement que le benzène forme
des îlots cristallines trois-dimensionnelles plutôt qu’une deuxième couche.

Pour le cas de benzène à la surface de graphène, nous avons aussi observé la struc-
ture (

√
7 x

√
7)R19° à des couvertures sous-monocouche par diffusion d’hélium.

Des études d’adsorption ont révélé une très grande section efficace de diffusion
d’hélium de (630±120)Å2. Une adsorption à interaction faible a été observé à
des couvertures très basses, ainsi que la formation d’îlots à partir d’une couver-
ture de 0.25ML. A grande couverture sous-monocouche, un régime particulier
d’adsorption a été observé, lequel nous attribuons soit à une adsorption au dessus
du monocouche, soit à une saturation de la croissance d’îlots. Une complétion du
monocouche a été observé, mais aucun croissance d’une deuxième couche, con-
formément aux résultats de la diffraction neutronique sur graphite. Au-dessus de
120K, la désorption commence avec une énergie d’activation de (392±12)meV.
A 110K, nous avons observé deux processus dynamiques: une diffusion lente et
activée avec des explications possibles étant des sauts entre des sites d’adsorption,
des rotations par sauts ou des associations discrets à un îlot; le deuxième processus
observé est une diffusion Brownienne rapide, laquelle est dominée par un frotte-
ment de la surface de (0.65±0.07) ps−1. A des échelles de longueur plus petites
que la distance inter-moléculaire dans la structure proportionnelle, la diffusion bal-
istique a été observé dans seulement un des deux directions principales. Nous
relions cette observation à la symétrie de la surface d’énergie potentielle, ce qui
résulte dans une direction de frottement fort et une direction de frottement faible.
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Nos observations semblent de concorder avec ceux des études antérieurs sur des
systèmes similaires [4, 136, 32]. Une comparaison avec un système graphène/métal
à interaction faible serait très intéressant en ce qui concerne la question sur
l’influence de la structure électronique de graphène. En outre, la diffusion balis-
tique asymétrique que nous avons observé pourrait être liée avec la super-lubricité
de graphène, laquelle a été observé en utilisant de la microscopie à effet de force
[175, 176, 75]. Une étude systématique des hydrocarbures aromatiques polycy-
cliques de tailles différentes (par exemple coronène) à la surface de graphène
pourrait combler l’écart entre les deux cas.

Hydrogène Moléculaire dans des Carbones Poreux

Nous avons étudié l’hydrogène moléculaire adsorbé aux surfaces d’un carbone
poreux et d’un aérogel de carbone, ainsi que du graphite exfolié. L’objectif était
d’étudier l’influence de la structure poreuse sur la diffusion d’hydrogène. Dans ce
but, nous avons effectué des expériences de diffusion neutronique en temps-de-
vol sur ces trois systèmes: le premier est un graphite exfolié nommé Papyex, un
matériel qui consiste d’îlots de graphite avec une longueur de cohérence struc-
turale de plusieurs centaines d’Å2. Il peut être considéré comme substitut pour
le graphite. Les deux structures poreux, un aérogel de carbone et un carbone
poreux nommé D-96-7, contiennent une grande quantité de micropores, lesquels
nous assumons de causer un confinement des molécules d’hydrogène. Nous avons
observé une conversion incomplète d’états de spin d’hydrogène dans l’aérogel de
carbone, lequel nous lions à un confinement rotationnel dans les ultra-micropores.
Dans les trois systèmes, nous avons observé une diffusion par sauts d’une échelle de
longueur comparable, mais avec des grands différences dans l’énergie d’activation
et dans le facteur pré-exponentiel de la constante de diffusion. Pendant que Papyex
et l’aérogel de carbone se comparent bien avec des autres systèmes de carbone,
D-96-7 montre une énergie d’activation extrêmement basse. En outre, une diffu-
sion Brownienne a été observé sur Papyex et sur D-96-7, ce qui nous estimons de
provenir d’une forte contribution de frottement de la surface.

Nous ne sommes pas conscients des observations antérieurs de diffusion Browni-
enne d’hydrogène sur des surfaces de carbone et nous ne comprendrons pas en-
core toute a fait la raison pour la coexistence de deux processus de diffusion dans ce
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système, ni pour l’existence du frottement fort de la surface observé. Des études ad-
ditionnels de diffusion neutronique en temps-de-vol sur les systèmes discutés à des
couvertures additionnels nous permettraient de tester l’applicabilité dumodèle RHD
commedescriptionpour le frottement cinétique. Des calculs numériquespourraient
aussi fournir une estimation pour le frottement de la surface. En outre, l’aérogel de
carbone peut être ajusté en termes de chimie de surface et porosité. Des études
systématiques de diffusion neutronique sur l’hydrogène dans des versions différents
d’aérogel de carbone sont déjà prévu. Finalement, une caractérisation des carbones
poreux commematériels potentiels pour le stockage d’hydrogène serait d’un grand
intérêt et pourrait même fournir un lien entre des propriétés de sorption sous des
conditions technologiques et nos observations sur la diffusion de surface. Un usage
technologique de nos études serait, spécialement dans une domaine d’une telle im-
portance comme le stockage d’énergie, un résultat favorable de cette recherche.
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