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Abstract

Transport barriers (TB) are a key element in controlling turbulent transport and achieving
high performance burning plasmas. In the experimental procedures such self-organized
structures are routinely obtained but appear to exhibit a variety of behavior and im-
pact on the confinement improvement. Theoretical studies are addressing the turbulence
self-regulation as a possible explanation for transport barrier formation but a complete
understanding of such complex dynamics is still missing. In this context, we address
self-organized turbulent transport in fusion plasmas with the aim of presenting a novel
understanding of transport barriers dynamics. The numerical tools we use span simula-
tions from the most complex gyrokinetic turbulence to simpler 2D fluid turbulence and
predator-prey like models.

Two main features of turbulence self-organizations, avalanches and zonal flows, appear to
control large scale transport. In the SOL (Scrape Off Layer) region, intermittent avalanche
events do not allow for any time or space scale separation between mean fields and fluc-
tuation terms. In the edge, where magnetic surfaces are closed, the generation of long
living double shear layers in the profiles of the velocity tangent to the magnetic surfaces
reduces radial turbulent transport. Such radially distributed barriers govern profile cor-
rugations, namely a radial structure of localised increase of temperature gradient. A rich
zonal flow and turbulence interplay has been observed and studied both in gyrokinetic
and fluid model. The role of criticality has been further investigated for the latter case,
proving that the so-called DIMITS shift is not driven by specific kinetic effects.

A 2D turbulent model for pedestal generation, which is not specific of Tokamak plas-
mas, has been developed, the pedestal being localized at the interface between regions
with different zonal flow damping: the edge region, where zonal flows are weakly damped
by collisions, and the SOL region characterized by zonal flow damping due to bound-
ary conditions. Quasi-periodic relaxation events are studied reducing the model to three
modes coupling to identify the interplay between streamers and zonal flows and the role of
Reynolds stress in the generation and saturation of TBs. A 0D predator-prey model is de-
veloped that recovers the interaction between turbulence and zonal flows has been defined.

Finally, several generic properties of transitions from Low to High confinement has been
identified in the model: (1) the generation of a pedestal at the separatrix location, (2)the
occurrence of a gap in the turbulent spectrum between zonal flows and microturbulence
and (3) the global quasi-periodic relaxation events governed by the collisional erosion.
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Résumé

Les barrières de transport sont un élément clé dans le contrôle du transport turbulent,
afin d’atteindre de hautes performances dans les plasmas de fusion. De telles structures
auto-organisées sont régulièrement observées dans les expériences, mais semblent présenter
une large variété de comportements et d’impacts sur l’amélioration du confinement. Des
études théoriques suggèrent l’auto-organisation de la turbulence comme une explication
possible pour la formation de barrières de transport, mais une compréhension complète de
ces dynamiques complexes reste à développer. Dans ce contexte, nous traitons de l’auto-
organisation du transport turbulent dans les plasmas de fusion dans le but d’améliorer
la compréhension de la dynamique des barrières de transport. Les outils numériques que
nous utilisons vont de simulations gyrocinétiques complexes de la turbulence, à des sim-
ulations numériques plus simples utilisant un modèle fluide 2D, ainsi que des modèles
proie-prédateur.

Deux principales caractéristiques de la turbulence auto-organisée, les avalanches et les
écoulements zonaux, semblent contrôler le transport à grande échelle. Dans la région
à lignes de champs ouvertes (SOL, Scrape Of Layer), les avalanches, intermittentes,
ne permettent pas une séparation d’échelles – en temps et en espace - entre champs
moyens et fluctuations. Dans le bord, où les surfaces magnétiques sont fermées, la
génération de couches de cisaillement doubles dans les profils de vitesse tangente aux
surfaces magnétiques radiales réduisent le transport turbulent. Une riche interaction en-
tre écoulements zonaux et turbulence a été observée et étudiée à la fois dans les modèles
gyrocinétique et fluide. Le rôle de la criticité a été étudié de façon approfondie dans
ce dernier cas, prouvant que le ‘DIMITS shift’ n’est pas généré par des effets cinétiques
spécifiques.

Un modèle turbulent 2D pour la génération de piédestal, qui n’est pas spécifique aux
plasmas de tokamak, a été mis au point, le piédestal étant localisé à l’interface entre les
régions présentant différents niveaux d’amortissement des écoulement zonaux : la zone
de bord, où les écoulements zonaux sont faiblement amortis par les collisions, et la SOL,
caractérisée par un amortissement des écoulement zonaux en raison des conditions limites.
Les événements de relaxation quasi-périodiques sont étudiés en réduisant le modèle à trois
couplages entre modes afin d’identifier l’interaction entre les streamers et les écoulements
zonaux, ainsi que le rôle du tenseur de Reynold dans la génération et la saturation des
barrières de transport. Un modèle proie-prédateur 0D a été développé, permettant de
retrouver l’interaction entre la turbulence et les écoulements zonaux.

Enfin, plusieurs propriétés génériques des transitions d’un régime de confinement faible
(L-mode) à élevé (H-mode) ont été identifiées dans le modèle: (1) la génération d’un
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piédestal à l’emplacement de la séparatrice, (2) l’apparition d’un vide dans le spectre
turbulent entre les écoulements zonaux et la microturbulence et (3) les événements de
relaxation quasi-périodiques globaux régis par l’érosion due aux collisions.

viii



Acknowledgements

First off, I would like to thank the members of the jury, starting with the referees: Pas-
cale Hennequin, who gave me a new perspective on this work thanks to her experimental
background; Steve Tobias, who appreciated the effort of this work to go beyond the fusion
plasma discipline. Thanks! I thank Alain Pocheau for presiding the jury and for his inter-
est in the topic. I thank George Tynan to come from so far to participate to my defence
and for his interest in my work and the fruitful conversations we had in EPS conference.
I thank Alberto Loarte for his ITER oriented comments, his interest in the Dimits shift
result and his point of view on the LH transition. I thank Guilhem Dif-Pradalier, that
was not just a jury member but also a valuable help in these years (I will never forget his
first explanations of turbulence self-organization). Finally Domiziano Mostacci, my uni-
versity supervisor that proposed this first fruitful collaboration between the fusion group
of Cadarache and Bologna University.

I would like to thank Philippe Ghendrih, in these years he gently led my research and
helped me to become a young and curious researcher. He gave me the right freedom to
express my ideas without feeling lost in such new and complex domain as plasma fusion.
I hope I will keep his enthusiasm towards research always with me!

In addition, I thank the IRFM Institute. Particularly I am very grateful to the SIPP
service, the chief Philippe Magaud who always supported my work and the secretaries
Natalie and Laurance who helped to go through these three years full of bureaucratic
challenges.

I would also like to acknowledge the GP2B group, I enjoy participating at the group
meeting and I deeply appreciate the help and the ”Italianità” of our chief Guido Ciraolo.
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Introduction

ITER is being built in Cadarache by seven partners China, Europe, India, Japan, Korea,
Russia, United States. ITER is a large-scale scientific experiment intended to demon-
strate the operation and control of a burning plasma, namely to reach a state such that
most of the energy used to sustain the burning conditions is brought by the nuclear fu-
sion reactions themselves. The project is extremely ambitious in all aspects, international
organization, technology and physics. The physics basis of ITER stems from more than
50 years of worldwide research. With respect to JET, the European largest machine, the
extrapolation in size is typically a factor two which is expected to drive an enhancement
of performance by a factor 10 and open a novel era of nuclear fusion experiments. Three
main challenges must be overcome to reach ITER nominal performance.

High temperatures and plasma conditions. To be a viable energy source, the
fusion reactions require temperatures of the order of 150, 000, 000 Kelvin to overcome the
Coulomb repulsion between reacting nuclei. Although this corresponds to modest energies
(in the range of 10 keV) when compared to present accelerators, such a temperature is
larger than that of the sun. Under such conditions, electrons are separated from the nuclei,
the lighter ions being fully stripped above some 100, 000 Kelvin. Such a state of matter is
called a plasma.

Confinement performance: the energy confinement time τE . The plasma tem-
perature has to be sustained by confining and controlling it in order to avoid excessive
power losses. Following a fusion reaction, the ions must remain at high temperature at
least until they can undergo a fusion reaction. Given the reaction probability, and the
energy that can be transferred to the ions by the fusion reaction, this bounds the energy
loss of the plasma under such burning conditions. The confinement time τE characterizes
this energy loss: it is the characteristic decay time of the temperature once the heating
is switched-off. A confinement time at least a factor five above present achievements is
required in ITER. This figure of merit is crucial since its value governs the efficiency of
the entire system. Moreover, the operational domain of ITER is very sensitive to small
changes in τE . It appears that the confinement performance is controlled by turbulence.
This turbulence governs transport from the hot core plasma to the outer plasma regions.
Such turbulence degrades the very large insulation properties that have been reached when
using large magnetic fields to confine the charged plasma particles.

Scrape-Off-Layer (SOL), its width and Plasma-Wall Interaction. No material
can withstand the continuous exposure to hot plasma in burning conditions. Furthermore,
despite plasma turbulence, the contact between the plasma and the solid state vessel that
contains the plasma leads to a very thin boundary layer, the Scrape-Off Layer or SOL,
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where all the power coupled to the plasma circulates to the Plasma Facing Components.
Such a local power deposition is also a challenge for the cooling technology and solid state
armor material. In that respect, the SOL width is a key parameter. Conversely to the
core plasma, increasing the SOL width by reducing the confinement performance in the
boundary layer is another challenge to be addressed on ITER.

Key aspects of ITER operation are thus governed by both plasma turbulence and the
consequent turbulent transport. When designing ITER such an issue as been fully taken
into account and empirical scaling laws have been used to determine ITER key parameters
such as its size. However, changing operation conditions bring new insight and questions
regarding such scaling laws. Furthermore, recent experiments, in particular in JET, in-
dicate unexpected decrease in the confinement performance. A strong effort to better
understand and control turbulent transport is thus mandatory to prepare experiments on
ITER and achieve the nominal performance of this device. The present work aims at
such a task. Our ambition has been to question key issues and concepts that underlie our
present understanding of plasma turbulence.

How self-organization of turbulence in fusion plasmas occurs? Turbulence is
characterized by the interplay between many different scales. There lies its complexity
and the difficulty to represent it both in science and art. In the scientific point of view
the various scales are understood as independent modes that interact following given laws.
The transfer of energy between two modes can rely on two different mechanisms. The first
involves the scale-by-scale transfer of energy. The second relies on direct transfer of energy
from small to large scale or viceversa. We refer to this second mechanism as turbulence
self-organization that appears to control the formation of large scale patterns observed
in the fusion plasmas, such as avalanches and zonal flows (these will be described later).
It has been observed both experimentally and numerically that avalanches govern the
transport in the SOL. Conversely, in the confined region of the plasma, a strong interplay
between avalanches and zonal flows occurs, which can eventually lead the formation of
transport barriers that control the plasma confinement time. Two intuitive sketches of
avalanches and zonal flows interplay in nature and in plasma are shown in fig.1

Can one define the turbulence threshold? The onset of turbulence is generally
the balance between a drive and a damping mechanism. This is clearly illustrated in the
Reynolds number Re = UL/ν where the system of size L is immersed in a fluid driven
with a velocity U given a viscous damping ν. A transition to turbulence is observed when
Re exceeds a critical value, the threshold to turbulence. Similarly, in plasma, different
turbulent regimes have been observed by increasing the system forcing above the critical
threshold. An intuitive picture, also sketched in fig.2, is used to explain these regimes: once
the instability grows hence above the threshold, unstable modes (streamers) are excited;
streamers transfer then their energy towards ZFs via a non linear coupling mechanism;
turbulence is then damped, the zonal flows are excited. A specific role of the zonal flows
is to inhibit turbulent transport and sometimes quench turbulence for instance by closing
the valley followed by the avalanche, sketch on fig.1(b). Two possible regimes can then be
observed. On one hand, turbulence is modified by the zonal flows but passes through. On

2



CHAPTER 0. INTRODUCTION

Figure 1: intuitive sketch on the role of zonal flows on the avalanche dynamic in nature
(a) and in plasma (b)

the other hand turbulence is suppressed by the zonal flow, turbulence is quenched! One
can then consider that a transport barrier has appeared, alternatively that the threshold
to reach the turbulence regime has changed.

Figure 2: an intuitive sketch of the possible ZF and streamers dynamics

Which mechanism controls the barriers dynamics? Transport barriers do not
appear to be stable. In particular they are prone to quasi-periodic relaxation effects. Tur-
bulent transport bursts pass through the barriers and decrease the barrier efficiency. The
dynamics of this relaxation appears to be controlled by an independent mechanism. By
identifying the relaxation mechanism, it could be possible to determine a mean of control-
ling the resilience of transport barriers.

3



Are kinetics effects driving turbulence self-organization? Magnetically con-
fined plasmas are characterized by very low density. As a consequence the collision mean
free path is very long. The weak collision limit is therefore appropriate for these plasmas.
Regarding the description of turbulence, kinetic description then appears to be better
suited than the usual set of Navier Stokes equations. Although fluid and kinetic simu-
lations appear to differ quantitatively, the understanding of these differences is unclear.
Furthermore, one can ask oneself if fluid and kinetic simulations can exhibit qualitative
similarity so that fluid simulations could be quite an effective reduced model allowing one
to investigate plasma turbulence.

How the SOL width should be defined? In order to control plasma-wall inter-
action, defining transport in the Scrape Off Layer region, namely the region of open field
lines, where the plasma touches the wall, is mandatory. Strong signatures of avalanche
like behavior dominating the large scale transport have been observed in this region of
the plasma. However the typical SOL width definition is usually associated to small steps
random walk and not to avalanches that can propagate with ballistic motion over several
SOL widths. Moreover the time associated to such long range radial transport can be
shorter than the parallel transport time scale. These features thus contradict the proper-
ties usually attached to the common understanding of the SOL width.

Which are the key ingredient for the H-mode? The spontaneous generation of
transport barriers via turbulence self-organization is a promising operational regime for
future fusion reactors. In ITER, the reference scenario to achieve the nominal perfor-
mance is based on an H-mode confinement characterized by a barrier. Achieving a fully
self-consistent simulation able to address the turbulent transport at the interface between
edge and SOL is crucial in order to answer to the many questions concerning the H-mode
regime and the plasma wall interaction.

A sketch is presented on fig.9.1 to summarize the perspective of our work and identify
their relevance in the context of ITER physics.

4



CHAPTER 0. INTRODUCTION

Figure 3: Thesis objectives
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0.1. MANUSCRIPT OUTLINE

0.1 Manuscript outline

In Chapter 1, we introduce some basic aspects of fusion devices and the role of turbulent
transport with respect to the operation and performance of these experiments.

In Chapter 2, we present the models we are going to use to study the turbulence of toka-
mak plasmas1. The equations solved by the numerical codes GYSELA and TOKAM2D,
respectively based on the gyrokinetic and fluid model, are introduced.

In Chapter 3, we describe different self-organization patterns observed in turbulent trans-
port simulations and their signature in terms of large scale feature. The consequence of
such structures and the departure from the standard diffusive paradigm is presented.

In Chapter 4, the role of boundary condition and source driving the system out of equi-
librium is addressed in order to identify the impact on turbulence self-organization in the
SOL region.

In Chapter 5, the role of criticality on turbulence self-organization is discussed in detail.
A study of the linear instability growthrate is presented and different regimes are observed
depending on the distance from the threshold. The so-called Dimits shift has been recov-
ered in the fluid framework.

In Chapter 6, the transport barriers generation and saturation dynamics is further ana-
lyzed in order to understand how the barriers interplay with the turbulence. The problem
is reduced to three modes coupling model in order to investigate the zonal flows and
streamer interplay. Comparison with the non linear simulations are then presented in
order to define the role of non linear coupling in the transport barrier formation.

Finally, in Chapter 7, the formation of a transport barrier at the interface between open
and closed field lines is presented. Such results are then compared with some experimental
observation done in the transition from the LH regime. It is shown that such a behavior
is not specific of tokamak plasmas and can be observed in numerous fields with quasi 2D
turbulence.

1Although most of the properties of plasma turbulence are not specific of tokamaks, and can thus
be relevant for stellarators or reversed field pinches, the two codes GYSELA & TOKAM2D have been
developed for the tokamak geometry, hence the restriction to tokamak plasmas.
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Chapter 1

Fusion basic concepts

The present chapter aims to introduce main fusion terminologies used throughout the the-
sis and to identify key issues related to turbulent transport.

Nuclear fusion reaction. Nuclear fusion is based on the production of energy
through the fusion of two or more atomic nuclei. The mass of the resulting nucleus is
lower than the sum of the separated nuclei. This mass difference is released in kinetic
energy, according to Einstein’s law E = mc2. On fig.1.1 the binding energy per nucleus is
shown. In the first portion of the graph, i.e. nuclei with lower mass than iron, the binding
energy per nucleon increases on average with the mass number. The binding energy of
the resulting nucleus is greater than the binding energy of each of the nuclei that fused to
produce it. Hence, for light nuclei the fusion reaction is an esoenergetic process, i.e. energy
is released. Note the remarkable peak for He that provides the largest gain when fusing
neighboring nuclei. Conversely, for heavy nuclei the binding energy decreases. The energy
can be released by the opposite nuclear reaction, nuclear fission. A heavy nucleus is split
in two or more lighter nuclei with higher binding energy. Fusion process is more favorable
than the fission process from an energetic point of view when measured per nuclei (hence
per mass) and not per reaction.

Figure 1.1: the binding energy per nucleon in function of the mass number
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The hydrogen isotopes are currently considered to be the best candidates for physical
reasons (released energy, cross section..) and practical ones (potential availability on the
earth). As shown in fig.1.2 the most efficient fusion reaction is the Deuterium Tritium
reaction, D-T fusion reaction.

2
1D +3

1 T −→4
2 He(3.5MeV ) +1

0 n (1.1)

The D-T fusion reaction produces the highest energy gain at the ’lowest’ temperatures. It

Figure 1.2: the reaction rate in function of temperature for the three most efficienfusion
reactions (D-T,D-D,D-He3)

requires nonetheless temperatures of 150, 000, 000 Kelvin to take place. The corresponding
thermal energy is in the 10 keV range, hence much larger than the hydrogen ionization
energy (13.6 eV).

Plasma magnetic confinement. At such extreme temperatures, it is no longer
possible to confine the plasma solely with material walls, since no material would withstand
the continued exposure to the hot plasma. Instead, plasma consists of charged particles,
whose motion can be influenced by magnetic fields. By placing coils around the plasma,
a strong magnetic field is imposed, which confines the plasma particles to helical orbits
around the field by means of the Lorentz force. In a uniform magnetic field, the motion
of a particle can be described by

• a free streaming motion in the direction parallel to the magnetic field lines

• a rapid cyclotron rotation around the magnetic field. All particles of a given species
s will perform this rotation at the same gyrofrequency (or cyclotron frequency)
Ωs = esB/ms, where B is the intensity of the magnetic field, es andms are the species
mass and charge. The radius of the cyclotron motion is the Larmor radius ρc =
msv⊥/(esB), where v⊥ is the velocity of the particle in the direction perpendicular
to the magnetic field.

To contain the particles also along the field lines, a straightforward approach would be
to close the magnetic field in a ring. Unfortunately, the resulting inhomogeneity of the

8



CHAPTER 1. FUSION BASIC CONCEPTS

field leads to particle drifts, which make such a configuration unstable. By twisting the
field lines into a helical shape, it is possible to overcome this problem and confine the hot
plasma by a set of closed, toroidally nested, magnetic flux-surfaces.

This additional twisting of the field lines can be achieved by driving a current in the
plasma, which induces an additional (poloidal) magnetic field Bθ, adding to the external
(purely toroidal) field Bφ. To drive the current, usually the transformer principle is em-
ployed by placing the primary coil in the center of the plasma ring, and using the plasma
itself as secondary coil. This approach is called the tokamak principle.

Magnetic configuration. Because of the pitch of the magnetic field lines B =
B θ +B φ, a field line which breaks the poloidal plane at one poloidal location will, on the
next toroidal pass around the torus, usually cut that plane at a different poloidal location.

Figure 1.3: The toroidal direction φ is the long way around the polidal direction θ the
short way

Although they remain on a given magnetic flux surface, most magnetic field lines never
close on themselves, thus eventually mapping out the entire flux surface. A resonance exists
if the safety factor q, :

q(r) =
B · ∇φ
B · ∇θ (1.2)

takes on rational values for a particular flux surface. Eq.(1.2) is the definition of safety
factor q in the approximation of the circular concentric magnetic flux surfaces.

Plasma burning and ignition condition. The so-called Lawson criterion, is estab-
lished in order to reach an energetically ”profitable” nuclear fusion reaction. The Lawson
criterion is a general measure that defines the conditions needed for a fusion reactor to pro-
duce more energy than it absorbs. The triple product of plasma temperature Ti, density
n and confinement time τE has to exceed a critical value

nTiτE > 3.1021keV.s.m−3 (1.3)

where the confinement time τE = W
Eloss

is the energy content W divided by the power
loss Eloss and is defined as the necessary time for the plasma to cool down when all heat
sources are switched off. The evaluation of τE is a crucial step in the ITER project since
its value governs the efficiency of the entire system.
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The energy gain factor Q is the ratio of fusion power produced in a nuclear fusion
reactor Pfus to the power coming from external sources Pheat

1:

Q = Pfus/Pheat (1.4)

can be rewritten as function of the confinement time. Considering the energy balance
equation inside the system in steady state condition

Pheat + Pα =
W

τE
(1.5)

where Pα is equal to
Pfus

5 , i.e. the fraction of the fusion power contained in the α-particles.
4
5Pfus is transfered to the neutrons, which are not confined by the magnetic field but are
absorbed in a surrounding walls (blanket) and are the key energy source when producing
electrical power. Dividing each term per Pheat, the energy gain factor can be recovered as
function of τE as

Q =
5

τL
τE
− 1

(1.6)

where τL = W · (Pfus

5 )−1 = 5 · 3nTV/Pfus. Q equal to 1 represents the equilibrium condi-
tion, namely the power coming from external sources is equal to fusion power produced in
a nuclear fusion reactor, but the process is not energetically profitable. The energy gain
factor Q increases with the confinement time, until the ideal condition τE = τL. Q tends
to infinity, namely it is no more necessary an external source, defined as ignition condition.
Q > 10 is the goal of ITER, i.e. Pα is two times the power coming from external sources.
One operates in condition of self-organized burning plasma. The ignition condition is
not required in practical reactors. An external source power is used to control the fusion
process. Q > 40 is the necessary condition to have economical profit by magnetic fusion
[SGA+10].

Turbulence and scaling laws. Historically the first mechanism imagined to de-
scribe the perpendicular transport was based on existence of columbian collisions between
particles. If two particles interact, we could observe a modification of their trajectory
along the magnetic field lines. In this framework, taking in account of the curvature of
the magnetic field lines, the so called neoclassical theory [HH76] has been developed to
predict the transport in radial direction. Conversely, experimental observations demon-
strated that the neoclassical theory could not explain the diffusion coefficient of several
order of magnitudes larger than the theory, see fig.1.4. It has been claimed that the cause
of this deviation can be explained via turbulent transport. Understanding the mechanism
that drives the turbulence is then crucial to control the transport and therefore the con-
finement time.

At present, ITER reactor design studies rely on extrapolations of turbulent transport
properties from present-day tokamak experiments to larger devices. These estimates are
based in large part on some forms of empirical scaling, particularly device size scaling,
for the global energy confinement time. In its standard form τE is expressed in terms of

1Note that in this definition Pheat is the plasma heating power and not the power required to operate
these heating systems
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CHAPTER 1. FUSION BASIC CONCEPTS

Figure 1.4: dashed lines, represents the transport diffusion coefficient predicted by the
linear analysis, while the square and circle line represents respectively the diffusion trans-
port coefficients recovered in the experiments fro electrons and ions obtained in Tore Supra
experiments

products of so-called engineer parameters at some power:

τE = τ0 Iαi

MA nαn
19 P

−αp

MW Rαr

SI A−αa καk
a Mαm Bαb

SI (1.7)

Table 1.1: Exponents of the energy confinement time scaling

τ0 αi αn αp αr αa αk αm αb

0.0562 0.93 0.41 0.69 1.97 0.58 0.78 0.19 0.15

the values of the various exponents are given in table 1.1 and the subscripts indicate
the normalisation of the various terms. Strangely enough, some parameters are already
dimensionless such as the plasma elongation κa, the plasma aspect ratio A and the mass
number M which is the mass of the ion species normalised by the nucleon mass. In this
formulation, the various exponents, the α’s, are defined in such a way that they are pos-
itive. The chosen parameters for this scaling law are the plasma current I, the plasma
density n, the heating power P , the major radius R and the magnetic field amplitude B.
As shown in fig.1.5, the value of τE is determined in ITER, according to the scaling law.
One finds that τE is mostly dependent on the size of the toroidal fusion device.

The scaling law can be expressed in terms of dimensionless control parameters, namely
ρ∗, β, i.e. the ratio of the plasma pressure to the magnetic pressure, and ν∗, i.e. collision-
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Figure 1.5: the scaling law of confinement time in function of machine size

ality. These parameters being defined as:

ρ∗ =
ρp
a

=
(T/mp)

1/2

a Ωp
(1.8)

ν∗ ∝
1

 Lcoll
(1.9)

β =
〈p〉

B2/2µ0
(1.10)

where a is the plasma minor radius, a = R/A, and where ρp, mp and Ωp are the proton
Larmor radius, mass and cyclotron frequency respectively. The mass effect is not taken
into account in this definition. The temperature T is the volume-average thermal energy
per particle. Lcoll is the particle mean free path. < p > is the mean plasma pressure, and
B the mean total field strength. When switching to dimensionless parameters, one finds:

ΩpτE ∝ ναν
∗ ρ

−αρ
∗ βαβ q

αqcyl

cyl AαA (q/qcyl)
αq κaακ MαM (1.11)

In this expression the dependence on qcyl the cylindrical value of the safety factor essen-
tially accounts for the plasma current dependence and directly impacts the dependence on
the aspect ratio A. The dependence on (q/qcyl) is related to shaping properties similarly to
that on the elongation κ. Here we concentrate on the leading dependence, namely the ρ∗
dependence [MCT+07, SCM+07], one finds αρ ≈ 2.68, therefore ΩpτE ∝ ρ−3

∗ [GDPN+14].

Turbulence modeling: local versus global. First theories [Hor99] and simulations
(flux-tube)[DWBC96] used to predict the burning plasmas confinement time are based on
the local assumption, i.e. fluctuations are assumed at microscopic scale and pressure gra-
dient profile variations is ignored. This approach invokes a random walk type of picture
for diffusive processes using the scale length of turbulent eddies as the step size and the
linear growth time of the instability as the step time, hence local diffusion coefficient is
defined as χ = λ2c/τ

2
c , where λc, τc are respectively the correlation time and space. One

finds that λc scales with ρc and τc with a/cs. The local diffusion can be rewritten as
χGB = ρ∗ρcs, also referred to as the gyro-Bohm scale. If τE can be rewritten by assuming
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CHAPTER 1. FUSION BASIC CONCEPTS

that the transport is gyro-Bohm, hence ωiτE = ωia
2/χGB, one finds ωiτE = ρ−3

∗ and can
conclude that the scaling law based on the empirical fitting used to define τE , eq.(1.11),
exhibits a gyro-Bohm scaling.

Conversely, experimental evidences have been accumulated about the breakdown of
local approach. First observations of the violation of local gradient-flux relations have re-
ported already in 1987 via a tracer encapsulated Solid pellet (TESPEL) injections[Gro87,
GRB+95, ZGG+00]. Through these investigations, it has been shown that there are sig-
nificant contributions of heat flux due to off-diagonal effects in the transport matrix and
due to the non-local transport, which is not included in the local framework. Further-
more, global gyrokinetic simulations of electrostatic ion temperature gradient turbulence
have shown that the fluctuation scale length is microscopic and independent of device size
(gyro-Bohm), while the transport coefficient exhibits a gradual transition from a Bohm-
like scaling, χB = ρscs, for device sizes corresponding to present-day tokamak experiments
to gyro-Bohm scaling for future larger devices [LEHT02, SGA+11, ITT+13], as shown in
fig.1.6. If the confinement time is recalculated for the presents machine using the Bohm

Figure 1.6: the transport coefficient in function of the Bohm scale compared for three
different global ITG codes: GYSELA, GENE,ORB5

scaling, one finds that τE dependence of ρ∗ is ωiτE = ρ−2
∗ . The scaling law predicts a ρ∗

dependence ωiτE = ρ−2.8
∗ in between Bohm and gyro-Bohm scaling.

A clear understanding of the role of non-local transport on the macroscopic transport
is still missing. The study of meso- and macro-scale fluctuations, that appear to govern
the turbulent transport in the global simulations[DPDG+10, GDPN+14], like avalanches
and zonal flows, appear crucial to explain the contradictions between the local and global
models.

Edge/SOL boundary layer and the pedestal formation. If we consider a
poloidal cross section of the tokamak, two regions separated by the last closed flux-surface
(LCFS) can be identified. As the name indicates the LCFS represents the transition be-
tween the regions of closed and open magnetic field lines, i.e. between the edge and SOL
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regions. In general, the main plasma in a tokamak is confined within the LCFS (closed
field lines region), but is surrounded by a relatively cold plasma, known as the scrape-
off layer (SOL), which extends slightly beyond the LCFS (open field lines region). This
surface can be created either by inserting a solid object, known as the limiter, into the
plasma, or by shaping the poloidal magnetic field with external current carrying coils to
create a poloidal field null, or X-point, and a magnetic separatrix , and thus to divert the
SOL plasma into a specifically designed structure, known as the divertor.

Figure 1.7: a schematic view of the pressure profile evolution during the LtoH transition

Studying and modeling the turbulent transport at the interface between edge and SOL
is crucial in order to answer to the many questions concerning the dynamic of the H-mode
(High-confinement) regime. The H-mode, which the plasma enters when the external
heating power exceeds a given threshold value[WBB+82], represents a significant progress
in the context of turbulence control. In this regime, the energy confinement time τE is
roughly twice as large as in the Low-confinement regime, ’L-mode’. The improved con-
finement results from the formation of a transport barrier at the very edge of the plasma,
which permits extremely steep temperature and density gradients in that region. The gen-
erally accepted picture of the H-mode barrier is that fast, sheared plasma flows suppress
large-scale turbulence in the barrier region, which in turn leads to substantially reduced
heat and particle transport, a schematic view of the LH transition is presented in fig.1.7.
Conversely, in the SOL physics framework, turbulence is beneficial for broadening the de-
position profiles and consequently reduces the power density load on the limiter/divertor
plates.

Collisionality The collisionality term defines the interaction between the plasma par-
ticle. We define the typical particle mean free path, in the simplification assumption that
there are no trapped particles, as

Lcoll =
LogΛ

nλ2L
=

LogΛ

n(Ze2/4πǫ)
(1.12)

where Λ = λD/λL is the plasma parameter, λD is Landau distance and λl the Debye
length. We can define an adimensional collisionality term as the ratio between L‖ and
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CHAPTER 1. FUSION BASIC CONCEPTS

Lcoll, L‖ is the parallel connection length defined as πqR, i.e. ν∗ = L‖/Lcoll.
By knowing the temperature and the density radial profile in the perpendicular direc-

Figure 1.8: the collisional profile in TS (black line) and GYSELA (dashed line) and
the η = LT /Ln, where LT = −∇T/T, Ln = −∇n/n profiles in the TS (blue line) and
GYSELA(red line)

tion, we can define the collisionality radial distribution. In fig.1.8, one can observe ν∗
extrapolated by the experimental profiles of T and n for the machine TORESUPRA (TS)
and reproduced by the GYSELA code. It has been observed that at the edge, where the
density and temperature drop, the collisionality is increased.

Fluid versus kinetics. Two approaches are mainly used to model the turbulent
transport in the fusion plasmas: (a) the kinetic approach, where the 6D distribution func-
tion Fs(x, v, t) describes the probability to find a particle at given position and velocity;
(b) the fluid model, derived by the so-called moments of the distribution function, cal-
culated as the integer of f along the velocity space. The fluid model is reduced to 3
dimensions. In collisional media, fluid theories are robust and well established, because of
the distribution function in the velocity space can be assumed Maxwellian, corresponding
to the notion of local thermodynamical equilibrium. In low collisional media, fluid models
have no universal validity. Kinetic description of particles position and velocity is a priori
preferable but numerically more demanding. Fluid models can still be used in many cir-
cumstances, with some precautions, e.g. in the plasma edge.

First effort to compare the two approaches has been made by Dimits[DBB+00]. The
comparison is carried out in the assumption that, at large scale, a Fourier law of diffusion
can describe the macroscopic transport, i.e. the flux at large scale is proportional to the
opposite of the pressure gradient −∇P , more specifically −∇T for the ITG instability
(or −∇n, in the interchange case). The proportionality coefficient χeff quantifies the
microturbulence effect on the large scale transport (see fig.5.1(b)). According to Dimits
paper, the fluid and kinetic prediction of the transport present strong discrepancies. Such
difference in the prediction of turbulent transport between the two models appears to be
related the presence of a non linear threshold, called Dimits upshift.
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Figure 1.9: The turbulent trnasport in function of the pressure gradient xompared between
the fluid(blue line) and kinetic models(red line)

16



Chapter 2

Turbulent transport models
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2.1. PLASMA MODELING APPROACHES

This chapter introduces models which are used during the study of plasma turbulence
in view of burning plasma conditions as foreseen in the tokamak ITER. We will address
from a theoretical point of view GYSELA[GAB+15] code which is based on gyrokinetic
description and TOKAM2D[SG98] code which is based on fluid description.

2.1 Plasma modeling approaches

Several approaches have been defined to model the plasma response to the dynamics of
the electromagnetic fields. The three modeling approaches are listed here:

• Particle model. The trajectory of each particle is described by the classical motion
equation for a charged particle, mαdv/dt = qα(E +v α×B ), where E & B are the
external fields and the fields generated by plasma particles. To model the plasma
response is then necessary to model the trajectory of 1023 particles. In case of ITER,
such approach is numerically inaccessible, but the analytic study of the particle
trajectory is important in defining the particle drifts and adiabatic invariants.

• Kinetic model. Using statistical description of the particle via probability distri-
bution function, as it is not feasible to describe all particles trajectory, e.g. ITER.
Using kinetic approach, the model can be reduced to six dimensions plus time as
Fs(x, v, t) describes the probability to find a particle at given position and velocity
at a given time. Gyrokinetic model, which is based on kinetic approach, is reducing
the model to five dimensions rather than six. Such an approach is based on the idea
that scale separation can be performed in time between the cyclotronic frequency
and the slow motion aligned with the magnetic field lines and the drifts.

• Fluid model. It describes the so-called moments of the distribution function, cal-
culated as integrals of f along the velocity space. This model is then reduced to
three dimensions plus time but the number of fields that account for the information
in v-space is infinite. Reducing the number of coupled fields leads to the difficult
problem of closure. When three moments are considered, closing the system to the
Navier-Stokes equations, namely particle, momentum and energy balance, leads to
the fluid description of the plasma. Disadvantage is that the change in particle re-
sponse with particle energy, such as the specific effect of particle trapping or the
change in the collision efficiency cannot be taken into account. Fluid model assumes
that a system is highly collisional because the distribution of particle in velocity
space is Maxwellian, hence defined by the density, mean velocity and temperature.
Conversely, if the plasma is weakly collisional, the fluid description cannot capture
the complexity of the various classes of particles. It is still the matter of discussion
when it comes to the closure assumption required to truncate the fluid model.

It is then most important to quantify the information loss when stepping to a fluid
model versus the difference in computer resources that are required and in terms of the
efficiency to communicate the results [CM15]. The focus of the manuscript is on the de-
scription and understanding of the universal aspects of turbulence self-organization.

In the fusion community the fluid and kinetic models are addressed as incompatible
scientific tools. However an appropriate analysis of model reduction leads to posing the
problem as a trade-off between benefit and cost. Results, differences and similarities
between the two models will be presented from the following chapters.
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CHAPTER 2. THE FLUID MODEL

2.2 GYSELA: Gyrokinetic model

GYSELA uses gyrokinetic model. Advantage is that it reduces the kinetic model to five
dimensions from six. Disadvantage is that the complexity of the equations increases. We
will look into the analytical derivation of the gyrokinetic reduction in the context of particle
trajectory. Then the GYSELA equations will be introduced. Finally, the modeling choices
of the code are explained.

2.2.1 The scale separation on particle trajectories

In the non relativistic framework, we can determine the trajectory of particles of species
α, charge qα and mass mα in an electromagnetic field as

dv

dt
= v × qαB

mα
+
qαE

mα
(2.1)

where E and B are respectively the electric and magnetic field. In the case of a strongly
magnetized plasma we further assume that the magnetic field evolves slowly in time and
space compared to the cyclotron motion frequency and scale. We define two time scales:
a ’slow’ time scale Ω = ∂tB ≈ ∂tE and a ’fast’ one Ωc = qαB/mα, i.e. the cyclotron
frequency. And two space scales: a ’large’ scale B

∇B and a ’small’ scale ρc = mαv⊥/qαB,
i.e. the Larmor radius.

v

ρc
≈ Ωc (2.2)

v

a
≈ 1

τ‖
(2.3)

Ωcτ‖ ≫ 1 (2.4)

If we assume such scale separation, we can rewrite the physical quantities such as v ,B ,E
as the sum of low frequency terms, the gyroaveraged (averaged along the cyclotron phase
ϕG) component v G,BG,EG, and the high frequency motion term, ṽ , B̃ , Ẽ .

Let us first focus on the high frequency motion. If we rewrite eq.2.1 in function of
the fast dynamics ṽ , we assume that the magnetic field is the leading order contribution.
Therefore we assume the electric field to be of order 0 compared to B of order 1. At lowest
order, the equation is reduced to the high frequency dynamics:

mα
dṽ

dt
= qαṽ ×B . (2.5)

where, in first approximation, B ≈ BG. Since BG does not depend on the high frequency
component of the particle position. We can integrate the equation and define ρc such that
ṽ = ρc × Ωc which defines the cyclotron motion.

Let us now focus on averaged motion, we rewrite the eq.2.1 as

mα
dv G

dt
= qα(EG + v G ×BG+ < ṽ × B̃ >) (2.6)

where in the last term < ṽ × B̃ > we take into account self-correlation of the cyclotron
motion. It can be rewritten as µ∇BG where µ = 1/2mv2⊥/B is an adiabatic invariant.
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2.2. GYSELA: GYROKINETIC MODEL

If we split the low frequency velocity in parallel and perpendicular component v G =
v‖B /B + v G,⊥, we can define the velocity of the particles aligned with the magnetic
field lines (parallel) and the transverse drifts (perpendicular) that cause the turbulent
transport. The perpendicular contribution to the velocity can be rewritten as

v G⊥ = v E + v G,S =
E ×B

B2
+
mαv

2
‖ + µαB

qαB3
B ×∇B +

mαv
2
‖

qαB2
∇ ×B |⊥ (2.7)

where v E corresponds to the electric drift while v G,S is the magnetic contribution and is
made of the so called grad-B and curvature drifts in the low β limit (the ratio β between
the kinetic and the magnetic energy is typical of the order of few percents in tokamks).
The first drift takes in account the effect of the electric field on particles. This term does
not depend on the charge or mass of the particles therefore cannot generate current. The
second term takes into account the variation of the magnetic filed in the radial direction.
Because of such gradient the particle moves vertically and in opposite directions depending
on charge sign. This leads to a vertical charge separation.

2.2.2 Equations in GYSELA

The scale separation and the gyroaveraged quantities defined in the framework of particle
trajectories is then used in the kinetic description. Therefore, the original 6D distribution
function fα is gyro-averaged along the fast cyclotron motion scale F̄G [BH07]. The problem
is reduced to a 5D one, four slow variables and an adiabatic invariant F̄G(xG, vG, v‖, µ).
The reduced kinetic equation can be expressed as

dF̄S
dt

= ∂tF̄S + (v G⊥ · ∇⊥ + v‖∇‖)F̄S + v̇‖∂v‖F̄S = C(F̄S) (2.8)

where the term C(F̄S) on the right hand side is the gyro-averaged colllisions operator. In
order to close the gyrokinetic system, the electric potential, that appears in the definition of
the transverse drift has to be computed using Maxwell-Gauss equation. In the electrostatic
limit we can rewrite the Poisson equation as

∇2φ =
1

ǫo

∑

nαqα (2.9)

In the quasi-neutrality limit this equation is reduced to
∑

nαqα = 0 (2.10)

where nα is the density of particles of species α. It is important to realize here that the
densities appearing in Maxwell’s equations are the densities of particles, rather than the
densities of gyro-centers, namely the first moment of the distribution function evolved
by the gyrokinetic Vlasov equation. By adding the polarization density npol,α we can
calculate the density of particles nα. This leads to nα = nG,α + npol,α where nG,α is an
integral in gyro-center phase-space and the polarization density npol,α is a function of the
electric potential φ. The calculation of these two terms, not presented here but extensively
detailed in [YSBOOK], leads to

nG,α =

∫

JvdµdvG‖J · F̄α (2.11)

npol,α = ∇ ·
(neq,αmα

qαB2
∇⊥φ

)

(2.12)

20



CHAPTER 2. THE FLUID MODEL

where Jv = 2πB∗
||/mα is the Jacobian in gyro-center velocity-space and J is the gyro-

averaging operator.

Furthermore, one can assume that the electron parallel motion is fast enough for
the electrons to have reached a Boltzmann equilibrium, they do not need to be treated
kinetically. This approximation of the electron dynamic is often referred to as adiabatic
electron response. Thus, the perturbed electron density in the quasi-neutrality equations
reads as δneq = δΦ/Te. Moreover only one ion species is considered in the following. The
gyrokinetic quasi-neutrality equation eq.2.11 can be rewritten in the form as ni−neq = δne,
such as:

∇ · (neqm
B2
∇⊥φ) + e

∫

JvdµdvG‖J · (F̄ − F̄eq) = −neqe
T

(φ− < φ >F.S.) (2.13)

where F̄eq is the equilibrium gyrocenter distribution function associated with a van-
ishing potential and < · >F.S. is the flux surface averaged electric potential.

2.2.3 Modeling choices behind the GYSELA code

In the context of gyrokinetic codes, some modeling choices can be made. The codes can
be then distinguished in different classes: ’local’ or ’global’, ’full-f ’ or ’δf ’ and ’flux’ or
’gradient’ driven. GYSELA is a global, full-f, flux-driven code. We describe here the
advantage and drawbacks of the different classes:

• global versus local. An important modeling choice is how to take into account the
toroidal geometry. On one hand, we can take the advantage of the strong anisotropy
between the perpendicular and parallel direction, k‖ ≪ k⊥. In this context, if we use
field aligned coordinate with the magnetic field line, we can reduce the simulation to
the region in the neighborhood of the field line, such model is defined as local or ’flux
tube’[CW03, GIVW10]. In such assumption we consider the mean gradient profile
constant in time and we assume the radial perturbation periodic in time. In the flux
tube approach we can reduce the numerical cost, but an implicit scale separation
between mean profile and fluctuations is taken into account. On the other hand, in
order to take into account the global aspect of transport, the global codes have been
developed. With GYSELA, the simulation region can extend to all the core plasma,
inside the last closed flux surface.

• full-f versus δf . Historically the distribution function is separated between equi-
librium part and fluctuating perturbation, “ deltaf “. This procedure is based on
the assumption that the equilibrium term of the distribution function evolves much
slower than the fluctuating parts. Such constraint is relaxed in GYSELA, where no
separation is made between the fluctuating and equilibrium profile. This method is
defined as full-f. If the scale separation assumption presents a clear advantage from
a computational point of view, it has some drawbacks such as keeping the turbulence
drive constant, hence ruling out the feedback the fluctuations on the mean profile.

• flux- versus gradient driven. Another key difference between the different model
describing the turbulent transport concerns the turbulent forcing. Two options are
here detailed the flux driven and gradient driven assumption. In the gradient driven
assumption, we consider the mean background profile as an input parameter. In
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2.3. TOKAM2D: FLUID MODEL

this way the constant gradient of the equilibrium profile drives the instabilities. The
success of this approach is based on the idea that the temperature or density profile
are known from experiments and this considered as input parameters, making easier
a comparison between simulation and experiments. As second point is the fact
that one can simulate steady state condition, skipping all the transient phase where
the profile builds-up. The other possible forcing is the flux driven one. Forcing
corresponds to a more realistic one, for a heat or particle source. In this case the
profile is self-consistently generated. This leads to higher computational costs. On
the other hand the mean profile is not constrained. In the gradient driven case to
avoid profile relaxation, a Krook type of source is taken into account and the impact
of such a constrain on the turbulence self-organization is open [GLB+11, IUAT09].
More details on the role of the driving terms will be discussed in Chapter 4.

The modeling choices taken in GYSELA, that strongly impact on the computational
costs, give us the possibility of studying turbulence self-organization with no a priori as-
sumption on fluctuation and equilibrium scales.

Here are the physical assumptions taken into account in order to simplify the model:

• gyrokinetic ordering, the reduction of phase-space from 6D to 5D by the gyro-center
transform

• simplified magnetic geometry, we consider circular flux surfaces with a magnetic field
given by an analytical expression 1

• low plasma β limit (small ratio between kinetic and magnetic energy) leading to a
simplified expression of the curvature drift,

• adiabatic electrons response, the electron follow a Boltzman response to the pertur-
bation in the direction of the magnetic field,

• electrostatic turbulence, time variations of the magnetic field are ignored.

2.3 TOKAM2D: fluid model

TOKAM2D is a two-dimensional model for turbulent particle transport. TOKAM2D sim-
ulates the turbulent transport for the closed and open field lines region, i.e. the edge and
the SOL. Benefit of TOKAM2D is that it reduces the computing time through simplified
physic mechanism and providing sufficient overview of the turbulence organization in short
amount of time. Also, some of the disadvantages due to simplification will be described.

2.3.1 TOKAM2D equations

TOKAM2D equation can be derived from the two first moments of the distribution func-
tions2. The main assumptions of the model are:

• Flute hypothesis. Perturbations are constant along the field lines. This allows
one to reduce the model to two dimensions, the radial direction x, x = (r − a)/ρs
where a is the plasma minor radius, r the radius of the considered magnetic surface

1the analytical expression of the magnetic field in GYSELA is treated in session 5.1.1
2In the Annex A, the derivation of TOKAM2D is treated in details
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and ρs the hybrid Larmor radius, and an angle that describes the poloidal angle on
the magnetic surface y, y = aθ/ρs where θ is the actual poloidal angle. The angle
coordinate is periodic so that the average of any particle flux on a given magnetic
surface yields the mean radial component of the flux.

• Isothermal closure. Assuming the temperature constant, we can close the fluid
problem rewriting the third moment, the pressure tensor, in function of the density,
i.e. P = Tn ∝ n

• Cold ion limit. We assume that the ion temperature is much lower than the
electron one τ = Ti Te = 0.

As in GYSELA, we assume the drift ordering that allows us to solve the momentum bal-
ance equation in term of the drift velocities.

The equations that govern the model are the particle balance equation for the electron
density n and the charge conservation equation in the quasi-neutral asymptotic limit,
which then restricts to div(j) = 0, j being the total current.

In the flux driven approach we assume that the density and the potential profile can
fluctuate at all scales, i.e. the fluctuation size can be comparable to the size of the box.
Such an assumption implies that the driving of the system is a particle source that is
localized radially. In this way the initial profile is null and it will build-up through the
source a density gradient that drives the bursts in the box. The equations solved by
TOKAM2D are

∂tn + [φ, n] = D⊥∆⊥n− Γ + S (2.14)

∂tW + [φ,W ] + g
∂yn

n
= ν⊥∆⊥W + j (2.15)

where:

W = ∇2
⊥φ (2.16)

The particle balance equation Eq.(2.14) includes the leading order particle flux due
to the electric drift velocity, which takes the form of the Poisson bracket, i.e. [Φ, f ] =
∂x(f(−∂yΦ)) + ∂y(f(∂xΦ)) between the normalized electric potential φ and the density
f = n, together with a source term S, the parallel particle sink Γ and a small transverse
diffusion D⊥.

The charge balance equation Eq.(2.15) takes the form of the evolution equation of the
vorticity W defined in eq.2.16, with an electric drift convection, the Poisson bracket term
between the electric potential and the vorticity, i.e. f = W , together with a diffusive
damping of the convective motion with diffusion coefficient ν⊥. Charge sources and sinks
are due to the curvature drift, here simplified to a constant interchange term g. This
g-term is the standard gravity term when addressing buoyancy effects in a neutral fluid.
A similar term should be included in the density equation, however this term is a lower
order term than the drift convection term that is only retained in the charge conservation
equation because the latter only includes terms of this order, polarization current and
parallel loss current J .
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2.3.2 Closed and open field lines regions in TOKAM2D

The original version of TOKAM2D simulations address the turbulent transport only for
the Scrape Off Layer region[SG98].

In the SOL region, we can consider the Bohm criterion to define the parallel particle
and current losses and rewrite the sink terms such as:

Γ = σn

(

n exp(Λ− φ)
)

(2.17)

J = σφ

(

1− exp(Λ− φ)
)

(2.18)

where σn is the particle lifetime in the SOL and σφ is the normalized sheath conduc-
tivity σφ = ρs/L‖, L‖ is the connection length 3 and Λ is the floating potential.

A linearized version of the sink terms is used in this work, i.e. Γ = σnn, j = σφφ,
where Λ is set to zero, simplifying the σ-term to a linear drag term for the density and
the vorticity[NGC+15].

In order to model the turbulent transport at the interface between open and closed
field lines, the parallel loss terms (Γ and j) have been modified for the edge region. In
this region the plasma is confined and moves in parallel direction along closed magnetic
surface. One can then assume that the parallel particles transport do not contribute in
the evolution of the density, the lines are closed in a loop, namely the particle will ideally
move for an infinite time in the same region. Therefore we assume that if we average along
the parallel direction, there is no loss of particles. The sink term for the density equation
is set at zero in the edge, Γ = 0. For the parallel current, to take into account the closed
field lines property, we assume that no net current can be generated along a closed field
line, therefore the sink term j averaged along a given flux surface, namely the θ, φ plane,
is set to zero. We redefine the sink terms for the TOKAM2D equations taking in account
such constrains:

Γ = 0 (2.19)

j = σφ(φ− < φ >y) (2.20)

where σφ = 1/η represents the plasma conductivity.

In this work we do not consider different value of σφ for the SOL or edge region to
avoid increasing the number of plasma parameters.

The new sink term is define such that

Γ → ΓE,S = (1− χ(x))σn (2.21)

j → jE,S = σ(φ− χ(x) < φ >y) (2.22)

where χ(x) is a mask function, χ(x > xSep) = 0 and χ(x ≤ xSep) = 1, that accounts the
for change in field line properties at the separatrix xsep.

3In the SOL, the connection length associated with a given point is defined as the shortest distance
from that point to any material surface measured along the field line through that point.
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The edge and SOL difference is twofold. First the particle loss is localized in the SOL
region. This has rather little effect on the turbulence but organizes the overall stratification
of the system in the x direction Second, the change in j modifies the evolution equation
for the zonal flow Vz = ∂x < φ >y. The latter is governed by a balance between the non
linear Reynolds stress source, and the loss terms: viscous damping at small scales, sink
term < J >y at large scales. The edge constraint < j >y= 0 favors the large scale zonal
flow structures. Conversely, in the SOL, the current loss term < j >y= σφ < φ >y, is
observed to damp the zonal flows.

2.3.3 Cons and pros of a reduced model

Various assumptions have been made to reduce the model. Let’s look into the simplification
assumptions and their impacts:

• Fluid description. The energy distribution function is assumed maxwellian, such
assumption is not true for weakly collisionality plasma, but is considered valid for
the edge;

• cold ions limit, we assume the ion temperature much smaller than the electron one.
Only the electrons transport is modeled;

• Particle transport only. We assume a constant temperature as closure condition
for the fluid model, the heat flux is assumed proportional with the particle flux;

• Flute assumption. We assume that the parallel transport periodic, this hypothesis
is only true if the particles move in parallel direction much faster than in the perpen-
dicular one (τ‖ ≫ τ⊥), where τ‖ and τ⊥ are respectively the parallel and transverse
crocheters scales of turbulence;

• Periodic boundary conditions. In order to use a pseudo spectral method to
numerically solve the problem, we consider the system periodic;

The strong simplifications adopted should not be seen as a limitation, but as an advantage.
(1) the model presents strong analogies to other non linear dynamical systems, comparisons
with other domains result easier. (2) Computing time reduces significantly due to the
simplified equations. One can acquire results relatively quickly and grasp the idea of the
turbulence self organization. (3) The model is suited to be used as reduced turbulent
model to understand which are the key mechanism of plasma self-organization. Once
the basic ideas are proven, then they can be implemented in more complex code such as
GYSELA in order to see the more detailed analysis.
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Turbulence self-organization

impact on plasma transport
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3.1. NON DIFFUSIVE TRANSPORT IN A SYSTEM DRIVEN AWAY
FROM EQUILIBRIUM

The description of turbulent transport at large scale represents together with the un-
derstanding of turbulence a major scientific challenge. The problem is characterized by a
large number of degrees of freedom with the strong interplay between all scales as exem-
plified by the turbulence spectra and our understanding of universal aspects associated to
their slope in wave vector space. In such a framework, plasma turbulence appears to share
some of the complexity of neutral fluid turbulence, combined so specific features such as
weak collisions and the occurrence of instabilities as the main drive for turbulence.
A standard approach to separate microscopic and macroscopic properties is to introduce
an averaging process. Such a step for a media that exhibits fluctuations appears quite
natural. However, when considering its experimental counterpart, one finds that it is a
very complex step, especially when investigating transport usually associated with inho-
mogeneity in time and space. Assuming that such a procedure can be determined, then
microscopic and macroscopic scales can be identified, respectively for the fluctuating field
f̃ and the averaged one f̄ . The conventional approach used to study turbulent transport
is based on the assumption of a gap between these two scales, the evolution of f̄ and f̃
can be studied separately, i.e. ∂xf̃ / f̃ ≪ ∂xf̃ / f̃ ←→ kLf̄ ≪ 1, where k is the charac-
teristic wave-vector of the fluctuations and Lf̄ the characteristic gradient length scale of
the average field f̄ . In such a framework, the impact of the fluctuations on the mean-field
evolution is usually reduced to an effective diffusion, Deff . Once this effective diffusion
coefficient is determined, most often based on empirical transport analysis, the dynamics
of average profiles can be predicted.

In magnetic fusion plasmas, the scale separation assumption and its consequence in
terms of diffusive transport properties, cannot be reconciled with experimental results
[TFR87, GRB+95], where several transient transport phenomena appear to depart signif-
icantly from diffusive like transport.

Striking features of self-organization such as avalanches [DH95], staircases [DPDG+10]
and transport barriers [SSZ+13], have been identified in plasma turbulence theory, via
gyrokinetic models [CLL+15, GNCM+14, DPHG+15], like GYSELA, and reduced fluid
models [CNLD96, SG98, Nau07], like TOKAM2D, have also been observed experimen-
tally. Although transport barriers have been triggered in experiments, since the 1980’s for
external transport barriers, the H-mode [WBB+82], and the 90’s for internal transport
barriers [KKM+94], and easily identified due to their bifurcation nature and consequent
improved confinement, measurements of other features are quite difficult to set-up and
interpret [DPHG+15]. In this chapter, we describe different self-organization patterns
observed in turbulent transport simulations and their signature in terms of large scale
features, namely transport properties. The consequence of such structures and the depar-
ture from the standard diffusive paradigm they govern is the ultimate goal of this work.
Since a global steady state averaged regime can always be reduced to an effective diffusive
transport, linear by essence, our interest is to investigate the dynamics and non-linear
features.

3.1 Non diffusive transport in a system driven away from

equilibrium

In this Section, the aim of our analysis of turbulent models is to analyze the impact of
turbulence non-linearity on large scale transport. According to a ”local expression” of
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the gradient-flux relation (see introduction), diffusive processes, Fourier law for heat, Fick
law for particles, can describe the macroscopic transport, i.e. the flux at large scale is
proportional to the opposite of the pressure gradient −∇P , more specifically −∇T for
heat (hot plasma ITG instability), or −∇n for particles. In the thermodynamical frame-
work we thus seek the relationship between the driving forces, here the gradients, and the
restoring fluxes that tend to remove the gradients. In such a picture, the gradients are
imposed to the system so that the latter is out of equilibrium, and consequently a flux
is generated. A system in contact with two thermal baths with different temperatures is
the idealized example of such a thermodynamical machine. In practice, and in particular
for plasmas, such thermal baths must be replaced by a source, a driving flux, so that the
gradients develop as a consequence of a form of resistivity of the media to transport. The
proportionality coefficients χeff and Deff between the flux and gradients, quantify in all
cases the effect of micro-turbulence on large scale transport[DBB+00].

Given Γ = −Deff ∂rn, where Γ is the particle flux and ∂rn the density gradient, one
can write that Γ/n = G with G = G(L−1

n ), where L−1
n = −∂rn/n. Via Taylor expansion,

G can be rewritten as G = G0 + L−1
n G(1) + 1

2!L
−2
n G(2) + ... If G is amenable to the two

first terms, which is consistent with a weak departure from equilibrium, G(0) and G(1),
one has a local linear fit. Furthermore, if these two terms are close to constants, one
obtains a relevant thermodynamical information namely a mean field diffusion coefficient.
In most cases, it is argued that one cannot sustain a flux for a system in thermodynamical
equilibrium so that G → 0 when 1/Ln → 0, which enforces that G(0) = 0 unless G(0)

depends on another non-vanishing thermodynamical force present in the system.

Figure 3.1: particle flux Γ/n in function of density gradient 1/Ln (black line) analyzed in
term of diffusion coefficient Dincr and pinch velocity V (blue dotted line) or in term of a
single point Dbal

For systems with a threshold for turbulence to grow, as is usually the case for plasma
instabilities, the response is different see fig.3.1. Transport can then be analyzed in
terms of incremental diffusion coefficients Dincr associated to a pinch velocity Γ/n =
−Dincr (−∂rn/n) + V , where V , the pinch velocity can be determined by extrapolating
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FROM EQUILIBRIUM

Figure 3.2: (a) particle flux Γ/n in function of density gradient 1/Ln in the SOL, y-
averaged blue line, y- and t-averaged black dots, y-,x-,t-averaged red point, (b) heat flux
Q/T in function of temperature gradient 1/LT in the core, θ- and φ-averaged blue line,
θ-, φ- and t-averaged black dots, θ-, φ-, t-, r-averaged red point

the linear fit to the axis R/Ln = 0, see fig.3.1. However, such a pinch velocity does not
indicate that other thermodynamical forces are driving the system. There is also a clear
difference with the value that would be defined knowing a single point (R/Ln,Γ/n), the
so-called balance determination Dbal = −Γ/∂rn, fig.3.1. Using GYSELA and TOKAM2D
data, a comparable analysis has been carried out to define effective diffusion coefficients.
The results summarized on fig.3.2 are difficult to reconcile with such a transport model:

• As shown in fig.3.2(a), no linear correlation between flux and pressure gradient can
been defined, although both quantities are averaged on the flux surface (y-averaged
in the TOKAM2D case). When one time-averages, the scatter of points is reduced,
but one still cannot recover a monotonic linear correlation between flux and density
gradient. Only when the quantities are averaged also in the radial direction, can one
recover an effective diffusion coefficient. But the whole simulation region has been
coarse-grained by the successive averaging procedures to a single point. Transport
in such a region cannot be reduced to a linear diffusive transport model since a
single scalar then characterizes the coarse grained transport. This characterization
of transport is then equivalent to the use of the confinement time of the energy τE ,
as unique figure of merit. The coarse grained system is considered as a reservoir
with global transport property and no insight on the existence of barriers, peaked
profiles etc. that all contribute to the overall performance[GNH+12].

• The same analysis is performed with the GYSELA data, fig.3.2(b), here the x and
y axes are respectively Q/T and R/LT . The conclusion is then quite comparable.
However, unlike the TOKAM2D case, a threshold in temperature gradient is readily
observed. The boundary value for the region with transport corresponds to that
predicted by the linear analysis, R/LT ≈ 4. The scatter in the heat flux exceeds a
factor 5 while R/LT changes by a factor 2 at most. Like for the TOKAM2D data, the
time average considerably reduces the scatter, but a monotonic relationship is not
obtained so that the incremental values of the transport coefficient have no meaning.
It is interesting to see that the behavior with negative slop coincides with the Dimit’s
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shift region. In the core, as in the edge region, a linear diffusive transport relation
can therefore only be defined by reducing the system to a single point.

The description of transport in terms of a diffusive process appears rather artificial
since a strong coarse-graining procedure is required to recover a linear relation between
the flux and gradients. Such a representation can be appropriate to describe steady states
or adiabatic evolution. However, it does not yield any insight in the behavior of the
system during transients nor on the underlying transport mechanisms when based on such
an analysis, the Bohm or gyro-Bohm transport property can then be purely fortuitous.
Finally most operating states that are presently foreseen for burning plasmas are associated
to relaxation events such as sawtheet by ELMs so that the use of steady-state reduced
features can be quite inappropriate.

3.2 Avalanche transport

3.2.1 Avalanche transport in the SOL

The non-diffusive feature of transport at macroscales appears to be governed by the
avalanche like transport events. These are poloidally localized over-dense regions extend-
ing along the field lines. On average, these exhibit ballistic motion in the radial direction.
Such intermittent events are observed in the Scrape Off Layer region of tokamaks, stellara-
tors reversed field pinches, toroidal devices, etc. They appear to be propagating plasma
filaments [Zwe89], [GHP+06, FLP+08] and have quite often been analyzed as ”blobs”
[MWS+03, RBM+02] following the theoretical investigation of a single over-dense region
with radial displacement driven by interchange [KDM08].

Figure 3.3: (a) < n >y,t profile, (b) 2D plot of n(t0, x, y) at arbitrary time t0 in the
non-linear region in function of x = ((r − a)/(Nxρs)) and y = θ/2π,(c) ñ(t0, x, y)/n̄

When analyzing the density fields in the SOL region determined by TOKAM2D
(fig.3.3(b)), one can identify overdense patterns. Subtracting consecutive snapshots of
the density fields allows one to identify front displacements. Analyzing the displacement
of the fronts indicates that the latter move radially outward with ballistic motion (fig.3.4).
One can then calculate the velocity of the front vfront since the radial displacement is
typically of 1/ρs during time interval of 50/ωi, hence vfront = 0.02cs, a factor two smaller
than the electric drift velocity in the radial direction vEx = −∂yΦ = 0.04. These structures
appear to be rather homogeneously distributed in the poloidal direction in line with the
symmetry of the equation with respects to y. However, very long simulations are required
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Figure 3.4: (a) n(t1), n(t0) − n(t1), n(t2) − n(t1) in function of x = ((r − a)/(Nxρs)) and
y = θ/2π, at t0 = t0 the fronts color is blue, at t1 = t0 + 25/ωi red, at t2 = t1 + 25/ωi
white, (b) zoom of a single front displacement,(c) plot of a front displacement at y = 0.45

to achieve y-independent statistics. Two aspects govern such a feature. On the one hand,
successive avalanches can propagate in the wake of the previous event, and, on the other
hand very rare large avalanches occur. In both cases, such overloading events are rare
but are so strong that they lead to long lasting distortion of the statistics. In the radial
direction the symmetry is broken by the presence of a source, that is localized close to the
origin1. Averaging the density distribution in time and poloidal direction, see fig.3.3(a),
yields a near exponential radial profile. The instantaneous profile is markedly different
from the mean one: i) it is non-monotonic, ii) the gradient length scales are much shorter
that the e-folding length for both positive and negative gradients, iii) the departure from
the mean profile is of the same order of magnitude as the mean value, see fig.3.3(c).

Considering the relative density fluctuation field, ñ/n̄ where ñ = (n − n̄), one finds
that the fluctuation magnitude is uniformly distributed along the radial direction (until
the non turbulent region is reached) as well as in the y-direction. The departure from the
mean profile is quite significant since, one finds that ñ/n̄ ranges from −0.6 to 0.8. The
magnitude of the density fluctuations is thus comparable to the average value, fig.3.3(c).
This property is recovered when considering the PDF of the density field at a given radial
position, fig. 3.5. One finds that the PDF is close to a lognormal distribution as would be
expected with large fluctuation to mean ratio. The width of the lognormal distribution is
n+−n− = 2 nx sinh(∆) where nx is the most probable value of the density and ∆ = 0.612.
Considering the lognormal fit one can compute the mean density < n > = 1.196 and the
characteristic ratios for this PDF: n+/ < n > = 1.4 and n−/ < n > = 0.4.

The radial turbulent particle flux is Γx = nvEx , where the electric drift velocity in the
radial direction is vEx = −∂yΦ. One then finds that the maximum radial particle flux
then favors the contribution of a maximum of the density at a maximum of the radial
electric drift velocity. It is to be noted that vEx = −∂yΦ changes sign depending on the
sign of the poloidal slop of the electric potential Φ. Furthermore, due to the fact that y
is an angular quantity, one readily expects that < vEx >y= 0, which is exactly obtained
in the simulation where periodicity in y is considered. The mean radial particle flux

1The fluctuation regime being periodic, the source term is also periodic.
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Figure 3.5: the PDFs of the density fluctuations

thus builds-up due to constructive interferences between the density and electric potential
fluctuations.

Figure 3.6: (a) turbulent flux < Γx >y /n̄ in function of radius x = ((r − a)/(Nxρs)) and
time t/τ‖, (b)-(c) < Γx >y /n̄ for two different radial intervals, (d) zoom of < Γx >y /n̄

In fig.3.6(a), where the 2D map of < Γx >y /n̄ is plotted versus the radial coordi-
nate x, horizontal axis and time, vertical axis, one can readily notice that maxima of
the particle flux are organized in a set of lines, which seem to appear quasi-periodically,
and extend radially with a near constant slope. This corresponds to a ballistic motion
with quasi-constant velocity < va >. Given the typical traces on fig.3.6(a), radial excur-
sion of δr = 256ρs, the box width, during δτ = b τ‖, with b = 2, one then estimates
< va >= 128ρs/τ‖ = 0.02 cs, where τ‖ = 1/σn = 1.510−5Ωi. This value is to be compared
to the typical radial drift velocity < |vEx | >= 0.04.

One can also observe that the avalanche apparent frequency, at a given radial surface,
exhibits a decrease with the distance from the source, see fig.3.6(c). This feature indicates
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that the number of avalanches decreases radially and that the avalanche pattern appears
to reorganize and to exhibit a slower averaged pace as the number of events decreases.
As also show in fig.3.6(d), the avalanche transport is extremely rich: avalanches can move
inward and outward, decay to smaller scale, or merge with other events. Only a few
avalanches identified when considering < Γx >y /n̄ appear to cross the whole SOL. It
is however to be underlined that the richness that is described here is simplified by the
averaging process along y when compared to the local behavior of Γx/n̄. This difference
is quantified by the PDFs of Γx and < Γx >y that are analyzed in the following Section.

3.2.2 Quantifying avalanche transport

To further quantify the self-organization features, we use autocorrelations, namely the
cross-correlation of a signal with itself at different points in time and space. This math-
ematical tool helps identifying repeated patterns, such as the presence of intermittent
turbulent bursts observed in the flux Γx. In this particular case, we utilize a two di-
mensional autocorrelation in time and radial direction. One can then define and compare
characteristic radial and time scales of avalanche transport. We define a limit for the auto-
correlation, clim = 0.3, such that below clim a structure will not be considered as coherent.
Given this 2D correlation function, fig.3.7(a), one can determine some statistical proper-
ties of avalanche transport. A first feature is the existence of a coherence between time
and radial autocorrelation that is supported by the elongation of the correlation function
along an axis in the δx, δt plane. We identify a coherent structure with characteristic cor-
relation δt = 800 Ω−1

i and δx = 32 ρs in time and radial direction respectively. However,
the correlation scale of Γx, δx = 32, is much smaller than the correlation that one iden-
tifies with the eye for < Γx > on fig.3.6(a). Furthermore, the autocorrelation threshold
clim = 0.3 that we have used to identify δx is rather low. At higher values of clim, the
elongation pattern is less clear. This feature, combined to the long range transport identi-
fied on fig.3.6(a) indicates that the avalanche motion is not aligned on the radial direction.

As shown on the sketch fig.3.8, an estimate of the mean angle made by the avalanche
trajectory in the (x, y) plane is then θa ≈ 17◦ assuming that the width of the avalanche
is determined by half the wave length of the most unstable mode, typically 0.5(256/10).
This geometrical analysis would then indicate that the correlation time is determined by
the extent of the avalanche structure at any given time, which is quite different from the
length and duration of the avalanche coherent motion. Given < va > and δt one then
obtains λa =< va > δt ≈ δx which indicates that the overdense region of the avalanche
is rather symmetric in x and y. In this framework, the radial autocorrelation function is
not a measure of the coherence of the avalanche motion in the radial direction, but that of
the avalanche width, i.e. one is not measuring the length of the snake but its section, see
sketch fig.3.8. As expected from the typical scaling of the interchange instability, the two
correlation measurements can exhibit a scaling in ρs, while the mesoscale trajectory can
have rather different dependencies, eventually a dependence on the minor radius a. As a
consequence, the correlation length would exhibit the characteristic ρ∗ scaling, consistently
with gyroBohm confinement scaling, while the avalanche trajectory features could depart
from the ρ∗ scaling and govern Bohm scaling, eventually even degraded confinement with
respect to Bohm.

Let us now consider the PDF of Γx, fig.3.7 (black curve). First, the negative values
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of the particle flux account for a significant part of the data, hence driving particles from
the sink towards the source. This result is in fact consistent with the properties of E ×B
eddy convection that does not discriminate directions. More unexpected is the fact that
the most likely particle flux is negative, on the left hand side of the zero line (vertical
dash-dot line). Second, one finds a heavy tail towards the large positive values of the
particle flux. Since the small magnitude events are both positive and negative with high
but nearly symmetric probability density, they tend to cancel out when addressing the
mean value of the radial particle flux. From that point of view, one can state that the
effective particle flux (the mean value) is essentially sustained by the heavy tail part of
the PDF. This property is specific of flux driven system where the only constraint on the
system is to ensure a balance, on average only, between the source and the sink. Regarding
the negative particle flux events, only an averaging procedure allows one to recover the
thermodynamically expected sign of the particle flux. In fact the y-average is found to
be sufficient for this process as exemplified by the PDF of < Γx >y on fig.3.7(b), blue
histogram upper scale. Only positive values are found for < Γx >y so that the PDF can
be fitted with a lognormal PDF. More importantly is the strong change in the range of
the fluctuations, typically a factor 10 between the lower and upper scale. For convenience
the two PDF are centered at the same location of their mean value (which is of course
identical). Despite the sharp drop in the fluctuation level, this PDF still exhibits a heavy
tail. Consistently with the discussion of the PDF of Γx, one can consider that most of the
data contributing to the PDF of < Γx >y must therefore stem from avalanche-like events.
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3.2. AVALANCHE TRANSPORT

Figure 3.7: (a) 2D autocorrelation function of Γx, (b) PDF of the particle flux, black
histogram Γx lower scale, blue histogram < Γx >y upper scale

Figure 3.8: intuitive sketch of avalanche motion
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3.3 Transport barriers

The transport barriers together with avalanche like transport events are clear signature of
self-organization of turbulent transport. Their spontaneous generation is addressed both
with GYSELA and TOKAM2D simulations. The turbulence transfers its energy via non
linear coupling, Reynold Stress, (see Chapter 6) towards bigger and much more stable
channels, zonal flows, where turbulent energy is stored. The key role of zonal flows as
a stabilization mechanism leading to turbulent transport reduction has been proposed to
improve plasma confinement[DIIH05, jKD03]. We distinguish here two different kinds of
barriers: micro and macro barriers.

The micro barriers damp the transport in a weak fashion. They have been reported
in core plasma simulations [DPDG+10, VAB+04] and observed to strongly interact with
the avalanches dynamics. They are also observed to merge, and to be destroyed by a
violent turbulent burst. Should the micro barrier structure scale a ρ∗, these would then
ensure that the avalanche scaling would also exhibit this ρ∗ scaling hence ensuring a global
gyro-Bohm scaling for confinement. However, from an experimental point of view the ob-
servation of these structures is extremely challenging because of their small radial extent
with respect to machine size and rich dynamics: micro barriers move radially, merge and
fade away via interaction with the turbulent bursts. Recent analysis of well resolved ra-
dial correlations in Tore Supra plasmas appear to have been reported very recently by
[DPHG+15], here provided the first experimental evidence of such barriers.

A second class of transport barrier are reported in magnetic fusion experiments, the
macro barriers. They are characterized by the development of very strong gradients. In
the core plasma they are referred to as Internal Transport Barriers (ITB) [CFG+04], while
at the interface between open and closed field lines they are called External Transport Bar-
riers (ETB) and are associated to H-mode confinement, [Wag07, CFG+04]. The latter case
is considered as the reference scenario for ITER [SCM+07]. These barriers strongly damp
turbulent transport. For the ETB, it causes the formation of a characteristic pedestal at
the separatrix.

A strong difference between the macro and micro barriers is on the way the two kinds
of barriers relax.

• Regarding macro barriers, the self-consistent generation and sustainment is still a
matter of strong scientific debate. We have addressed this issue, Chapter 7. However,
to study the dynamics between the turbulence and the barriers, artificial barriers
can be triggered either by imposing an artificial shear flow, as shown in fig.3.9(a)
[BBFC+07] or by suppressing the turbulence [FCG+13]. Beyer et al. have shown
that artificial macro barriers quench the turbulence and then relax in a quasi periodic
fashion. Consequently, the pedestal formed at the shear position relax (fig.3.9-(b)),
and the temperature gradient drops (fig.3.9-(b)). This dynamics can be captured
via a predator prey model: (1) the transport barriers are fed by the turbulence via
Reynold stress, (2) consequently turbulence is quenched by the TB; (3) hence the TB
can no more pump the energy from the turbulence and the TB eventually relaxes.
Such relaxation dynamic is reminiscent of the ELMs (Energetic Localized Mode) 2.
Two possible damping mechanism control the relaxation: collisions or KH instability.

2 For the ELMS case the role of magnetic field perturbation has to be taken into account.
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The relation between collisionality and ELMs has been reported experimentally be
Loarte[LSS+03]. The role of KH, a tertiary instability driven by the shear is less clear
[DIIH05]. Very promising experimental results have shown that ELM-free regimes
can be accessed during the H-mode confinement[SMC+03]. However, a consistent
theory able to explain and predict the barriers self-organization and consequently
ELM control is still lacking.

Figure 3.9: (a) artificial shear effect on the potential fluctuations (b) pressure profile
during the barrier mode (red line) and relaxation (blue line), (c) quasi periodic transport
barrier generation and relaxation: when the barrier relaxes the turbulent flux increases.
Pictures from P. Beyer [BBFC+07]

• Micro barrier regimes have been observed in global ITG gyrokinetic simulation,
where ExB shear flows self-organize in quasi regular patterns, as shown on fig.3.10(a).
To identify the stopping capability of the micro-barriers, one can analyze the heat
flux through the barrier, splitting it into the convective contribution dominated by
the drift velocity vx, Qturb = vxT and the diffusive contribution Qneo = χ⊥∇⊥T ,
averaged along the flux surface in order to reduce the fluctuation range. The crite-
rion Rb is then defined as the ratio of the surface averaged turbulent flux and the
total flux, namely Rb = Qturb/Qtot with Qtot = Qturb + Qneo. One identifies two
limits, the turbulent transport regime, Rb → 1, and the quenched turbulence regime,
Rb → 0, where transport is neoclassical, i.e. via collisions, as shown in fig.3.10(c).
Following Rb in time, one can observe that the turbulence is quenched at high val-
ues of the ExB shear, see fig.3.10(d). Furthermore no strong relaxation event is
observed. Micro-barrier regimes appear favorable for the transport control, because
turbulence is reduced by a series of barriers, hence with a distributed volumetric
effect. Furthermore the relaxation events do not seem to effect all the barriers at a
time so that a change in transport is moderate.
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Figure 3.10: (a) the E×B shear distribution in time and radial direction (b) a zoom on a
E × B staircase, the radial interval upstream this barrier is define as ∆ru, (c) the profile
of turbulent Qturb, neoclassical Qneo and total Qtot heat flux (d) Rb distribution in time
and radial direction with the maxima of ExB shear superimposed (red lines)
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Chapter 4

Non local transport properties of

the SOL
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4.1. BREACKDOWN OF THE QUASILINEAR THEORY IN THE SOL

We focus here on SOL physics characterized by large fluctuation levels in the range of
100%. The role of sources and boundary conditions (BC) is addressed in order to identify
the non local properties of SOL transport. The concept of SOL width is questioned given
the known properties of turbulence.

4.0.1 Definition of SOL width

The SOL transport governs the energy load on the first wall and defines the peak power
density at the divertor plates. In that respect determining the exponential power fall-off
length, λq, in the radial direction would be a crucial input. To define λq we consider the
Bohm boundary conditions. The parallel heat flux at the divertor q‖ ∝ nT 3/2, therefore
1/λq = −∂rq/q can be defined as

λ−1
q = − n

∂rn
− 3

2

T

∂rT
= λ−1

n + 3/2λ−1
T . (4.1)

λq can then be determined given the typical SOL widths for the density λn and tem-
perature λT profiles. When assuming that the particle density and temperature pro-
files are described by an exponential fall-off, i.e. f = f0e

−x/Lf , λ−1
f can be defined as

λ−1
f = −∂rf/f = L−1

f , where f = n, T .

The SOL width is thus governed by the SOL transport. Furthermore, the standard
definition is consistent with the concept of profiles, hence mean fields with only radial
dependence, and its definition is still matter of discussion. In the TOKAM2D case, the
temperature is assumed constant in the model, hence only λn can be defined. The density
SOL width λn overestimates λq, λq < λn. The purpose of this work is then to investigate
the typical transport features of the SOL and that are the main contribution to the physics.

In this chapter the definition of λn in a fluctuating media and the consequences on λq
predictions are examined.

4.1 Breackdown of the Quasilinear theory in the SOL

The quasilinear (QL) theory describes with describing the slow evolution of < f >, taking
in account the fluctuations feedback, f̃ , via an effective diffusion like term. QL theory is,
in some sense, the simplest possible theory of plasma turbulence and the methodology is
broadly applied. In this section we are going to identify:

• the key assumptions that pave the way towards determining an effective diffusive
transport;

• the issues related to QL theory in the SOL transport description, where the QL
key assumptions are questioned.

To address the QL theory1, a generic transport equation, akin to the particle balance
equation of TOKAM2D, is used:

∂f

∂τ
+
[

φ, f
]

−D∆f = −σf (4.2)

1In the Annex B a more detailed version of quasi linear theory is presented
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For the sake of simplicity we consider 2D turbulent transport in the plane transverse to
the magnetic field, the parallel transport being taken into account via the small loss term
proportional to σ. The equation is normalised, time to 1/Ωi, transverse scale to ρs and
the potential to Te/e so that the diffusion coefficient is normalised by the Bohm diffusion
coefficient DB = ρ2sΩi. The equation is homogeneous in f so that the normalisation of f
is arbitrary.
Average procedure. In a first step one assumes that f can be split into a mean and
fluctuating part, f = f̄ + f̃ . It leads to two coupled equations replacing (4.2).

∂f̄

∂τ
+
[

φ̄, f̄
]

+
〈

[

φ̃, f̃
]

〉

−D∆f̄ = −σf̄ (4.3a)

∂f̃

∂τ
+
[

φ̄, f̃
]

+
[

φ̃, f̄
]

+
[

φ̃, f̃
]

−
〈

[

φ̃, f̃
]

〉

−D∆f̃ = −σf̃ (4.3b)

Ordering of the fluctuations. We introduce the parameter ε = f̃ |/|f̄ | where the symbol
|f | is an appropriate norm allowing one to characterise the magnitude of the fluctuations
with respect to the mean. It is usually assumed that ε is small, however, in the SOL, one
observes in the experiments [Zwe89, GHP+06], as well as in our simulations (see Section
3.2) that ε is of order one. Introducing ε in (4.3) to characterise the magnitude of all the
fluctuating terms with respect to the mean terms, one obtains:

∂f̄

∂τ
+
[

φ̄, f̄
]

+ ε2
〈

[

φ̃, f̃
]

〉

−D∆f̄ = −σf̄ (4.4a)

ε
∂f̃

∂τ
+ ε
[

φ̄, f̃
]

+ ε
[

φ̃, f̄
]

+ ε2
[

φ̃, f̃
]

− ε2
〈

[

φ̃, f̃
]

〉

− εD∆f̃ = −εσf̃ (4.4b)

Multiscale and averaging We now define the averaging process as an average over the
high frequency variables, namely t, x, y, so that the mean fields only depend on T,X, Y ,
where τt is the relevant time scale of turbulent fluctuations τt = a/cs, hence ρ∗ = 1/(Ωiτt)
and τT is the relevant time scale of the diffusive transport.

In order to complete this ordering, one must determine the appropriate scaling proper-
ties of the diffusion coefficient D and of the parallel loss term σ. Regarding σ = 1/(Ωiτf )
where τf is the characteristic life-time, one thus obtains:

σ =
1

Ωiτf
=

a

τfcs
ρ∗ (4.5a)

D = νDρ
α
∗Dc (4.5b)

Since the diffusion coefficient D is normalised by the Bohm diffusion coefficient DB, α = 0
corresponds to a Bohm-like diffusive transport while α = 1 will lead to a gyro-Bohm like
diffusive contribution to the transport. The parameter νD takes into account the smallness
of the diffusive transport process. For collisional diffusion one has νD = ν∗ and α = 1.
Since τt = a/cs as determined by the turbulence growth rate, the mean transport equation
takes the form:

∂f̄

∂T
+

ε2

τt/τT

(

− ∂X

〈

f̃ ∂yφ̃
〉

+ ∂Y

〈

f̃ ∂xφ̃
〉

)

+
ρ∗

τt/τT

(

− ∂X
(

f̄ ∂Y φ̄
)

+ ∂Y

(

f̄ ∂X φ̄
)

)

− νDρ
1+α
∗

τt/τT
Dc∆X,Y f̄ = − τt/τf

τt/τT
f̄ (4.6)
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One can then identify two transport regimes:

1. Small fluctuations: ε2 ≪ ρ∗ ≪ 1, so that one can set τt/τT = ρ∗, and conse-
quently:

∂f̄

∂T
− ∂X

(

f̄∂Y φ̄
)

+ ∂Y

(

f̄∂X φ̄
)

− νDρα∗ Dc∆X,Y f̄ = −τt/τf
ρ∗

f̄ (4.7)

In this regime the mean fields are decoupled from the fluctuations. The characteristic
time scale of the parallel transport τf must be large enough, τT ≤ τf , so that the
transverse transport is adiabatic with respect to the parallel transport.

2. Large fluctuations: ρ
1/2
∗ ≪ ε so that one can set τt/τT = ε2. The order one mean

transport equation is then:

∂f̄

∂T
− ∂X

〈

f̃∂yφ̃
〉

+ ∂Y

〈

f̃∂xφ̃
〉

− νDρ
1+α
∗

ε2
Dc∆X,Y f̄ = −τt/τf

ε2
f̄ (4.8)

with the same condition on τf , τT ≤ τf . In this regime, the mean field convective
transport is governed by the coherent interferences between the fluctuations of f and
of the electric drift velocities.

3. Order one fluctuation transport: ε2 = 1. This case is in the same regime than
defined by the previous item, however the condition τt/τT = 1 means that one cannot
make a separation between turbulent and transport time scales t ≡ T . The lowest
order mean transport equation then takes the form:

∂f̄

∂t
− ∂X

〈

f̃ ∂yφ̃
〉

+ ∂Y

〈

f̃ ∂xφ̃
〉

− νDρ1+α∗ Dc∆X,Y f̄ = − τt
τf
f̄ (4.9)

Quasilinear framework, small amplitude fluctuations. Within the quasilinear
framework, one neglects the quadratic terms with respect to the fluctuations. One thus
requires that ε≪ ρ∗. Furthermore, to avoid issues regarding the ordering of the diffusive
transport we shall assume that α = 1, namely that the diffusion is gyro-Bohm. At lowest
order one then obtains:

∂f̃

∂t
+ ∂X φ̄∂yf̃ − ∂Y φ̄∂xf̃ + ∂xφ̃∂Y f̄ − ∂yφ̃∂X f̄ − νDDc∆x,yf̃ = − τt

τf
f̃ (4.10)

which is by construction linear with respect to the fluctuations and can therefore conve-
niently be Fourier expanded with respect to the high frequency variables, with no mode
coupling. One can then determine f̃ in terms of φ̃.

f̂ω,kx,ky = − ky∂X f̄ − kx∂Y f̄
ω + kxV̄Ex + kyV̄Ey + i

(

νDDck2 + τt
τf

) φ̂ω,kx,ky (4.11)

In this expression we have introduced the following notations: k2 = k2x + k2y and V̄Ex =
−∂Y φ̄, V̄Ey = ∂X φ̄ so that kxV̄Ex + kyV̄Ey = k · V̄E and therefore:

f̂ω,kx,ky = − ω + k · V̄E − i η
(

ω + k · V̄E
)2

+ η2

(

ky∂X f̄ − kx∂Y f̄
)

φ̂ω,kx,ky (4.12)

with η = νDDck
2 + τt/τf .
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One then find the quasilinear expression of the fluxes:

Γ = DQL ·∇f̄ (4.13)

DQL =
∑

ω,kx,ky

|φ̂ω,kx,ky |2
η

(

ω + k · V̄E
)2

+ η2

(

k2y −kxky
−kxky k2x

)

(4.14)

The mean field evolution equation is then:

∂f̄

∂T
−∇ ·

(

DQL ·∇f̄
)

= −τt/τf
ε2

f̄ (4.15)

Given the evolution with T the diffusion coefficient is normalised by ρ∗DB and is therefore
gyro-Bohm.

One finds that for the SOL case, such that τf = τt, one must have ε of order 1,
hence very large fluctuations which contradicts the quasilinear assumption regarding the
quadratic contribution to the fluctuation evolution. Conversely, if the fluctuations are
small, one must ensure that τt ≪ τf , hence adiabatic transverse transport with respect to
a slow parallel transport contribution.

Consequently: in the SOL case, one cannot apply a scale separation between fluctua-
tions and mean profile, the QL theory is not valid.

4.2 The role of source and boundary conditions in SOL

modeling

Different approaches can be used to drive the system out of equilibrium. We present here
the sources and boundary conditions implemented in TOKAM2D used to study if turbu-
lent transport in the SOL depends on them.

Two main approaches can be distinguished to model the turbulence: flux driven (FD)
and gradient driven (GD) approach, already introduced in Session 2.2.3.

In the FD the turbulence is driven via a localized particle source that builds-up the
steady state profile. In this FD case, no constraint or assumption is made on the mean
profile.

The GD approach is a simplified version used to model the turbulence transport based
on the assumption that, the mean profile evolution time is much slower compared to the
characteristic fluctuations time see Section 4.1. This assumption requires the possibility
of scale separation to model turbulence. Only the fluctuating terms are studied while the
mean profile is considered to be constant. The advantages of this approach are:

• Comparison between GD models and experiments is more straightforward.
Since the profiles extracted from the experimental measurements can be applied as
input of GD simulation.
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• Turbulent time scale. A GD system is assumed in steady state condition with
respect to the mean field, reducing the computation times. The characteristic time
needed to reach the confinement in FD simulations scale that is relevant in these
simulations is that of turbulence.

Conversely, the drawback is that the key assumption of scale separation in the GD ap-
proach, however convenient, must be carefully assessed. Furthermore, considering the
results obtained with the QL theory, in the previous section, one can consider that such a
framework cannot hold for SOL physics.

Figure 4.1: Computation procedure to compare FD and GD simulations

To compare the two approaches, we decide to follow the same process as applied to
the comparison between experimental and numerical results. Namely one takes the steady
state experimental density profile as input for the simulation in order to compare the flux
produced by the two and benchmark the code. In this specific case we are supposing
that the flux driven simulation will be compared to the fixed gradient one with the same
approach, namely we run long FD simulation in order to define a steady state condition,
then we calculate the mean density profile averaged in time and poloidal direction to
smooth out the fluctuations. Such profiles or gradients of such profiles are the control
parameters for GD simulations with zero source term, fig.4.1

4.2.1 FD: Source and periodic boundary condition

The equation solved in the FD approach, presented in Session 2.3.1, are here reintroduced.

∂tn + [φ, n] = D⊥∆⊥n− Γ + S (4.16)

∂tW + [φ,W ] + g
∂yn

n
= ν⊥∆⊥W + j (4.17)

where:

W = ∇2
⊥φ (4.18)
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The source is localized at the origin x = 0 and is homogeneous in y. The boundary
conditions are periodic. The typical mean density profile produced by the FD simulations
is shown in fig.4.2.

Figure 4.2: (a) mean density profile, (b) < 1/Ln >t in FD simulation of the SOL

In the FD case, the turbulent transport in the SOL is governed by avalanches. The
analysis of the avalanches presented in the previous chapter has been achieved in FD
TOKAM2D simulations.

4.2.2 GD: Profile driven and flux tube conditions

The gradient driven definition is often unclear. We present here two different kinds of
approach: profile driven and flux tube.

Profile driven

In the profile driven (PD) case, a constant mean profile is defined as initial profile and
enforced throughout the simulation. Different ways can be used to constrain the profile,
either (1) removing the fluctuations feedback or (2) using a restoring term such as a Krook
term [MJT+08]. We present here the modification made in the TOKAM2D equations to
switch from FD to PD by removing the fluctuations feedback on the mean field.

In order to show how the model is modified from the flux driven to the gradient driven
version, we first need to separate TOKAM2D equations in equilibrium and fluctuation
equations. As in the previous section the fields are split into mean field and fluctuating
field, namely f̄ =< f >y and f̃ = f − f̄ . We further assume < Φ >y is constant in time
and radial direction and equal to Φ̄ = Λ and < n >y is constant in time and decreasing
exponentially in the radial direction with an e-folding length equal to 1/Ln.

Rewriting the TOKAM2D equations for the FD version averaged in the poloidal di-
rection to define φ̄ and n̄, one recovers the two following equations:

∂tn̄+
〈[

φ̃, ñ
]〉

−D⊥∆⊥n̄− σnn̄ = 0 (4.19)

∂tW̄ +
〈

[φ̃, W̃
]

〉 − ν⊥∆⊥W̄ + σφJ̄ = 0 (4.20)
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Figure 4.3: Density profile for GD (a) and FD case (c) < 1/Ln >t profile for GD (b) and
FD case (d), (e) comparison between 1/Ln profiles for FD (red line) and GD (black line)
simulation

One can readily observe that removing the poloidally averaged Poisson brackets term
〈[

φ̃, ñ
]〉

from the first equation, one decouples the evolution of the mean density from

that of the fluctuations. Furthermore defining the source term S̄ such that:

−D⊥∆⊥n̄− σnn̄ = S̄(n̄) (4.21)

then the mean density field is a steady state of:

∂tn̄−D⊥∆⊥n̄− σnn̄ = S̄(n̄) (4.22)

Modifying the density field equation in TOKAM2D to:

∂tn̄+ [φ, n]− < [φ, n] > −D⊥∆⊥n̄− σnn̄ = S̄(n̄) (4.23)

then allows the evolution of the full electric potential while the mean density field remains
constant. Therefore, in the PD case, the density gradient profile set by the user will be
constant during the simulation.

For this case we here define the density profile analytically. Using two hyperbolic tan-
gent functions, we define the widths of unstable and stable regions as well the slope of
the density field. As shown in fig.4.3, the value of Ln is chosen according to the results
achieved by FD simulations.

Macroscopically, we recover similar results, namely in both case we obtain an avalanche
like transport. However, we can observe that the turbulent flux structures do not have
the same resilience in time and space, see fig.4.4(a)-(b). As introduceD before (Section
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Figure 4.4: (a)< Γ >y,t in function of radius and time for the FD case, (b) for the GD
case and the 2d correlation function of Γ for FD (c) and GD case (d)

3.2.2) in the definition on the typical scales in SOL region, a powerful tools to identify
coherent structures is based on autocorrelation function. The result, that we can observe
in fig.4.4(c)-(d), is characterized by clear differences in the pattern reorganization between
the two models. In the GD case, the structures tend to last on longer time intervals,
conversely they exhibit a more homogeneous structure compared to the FD case. One can
identify that the characteristic velocity of such turbulent patterns in the radial direction
is decreased by a factor 2 in the PD case, i.e vFD = 0.02cs and vGD = 0.01cs.

Additionally, we can compare the density fluctuations via the PDF distribution at
different radial positions for the two approaches, see fig.4.5. In both cases, we can observe
a long tail on the positive side of the PDF that represents a signature of avalanche like
intermittent behavior. Such long tails become more dominant far from the source. The
skewness (measure of the asymmetry of the PDF) is reduced in the gradient driven case.
This suggests a reduction of the ballistic transport when feedback loop of fluctuations of
the mean density profile is removed. To conclude, on the one hand, the characteristic
inhomogeneous turbulence distribution appears also in the PD case, on the other hand
the effect of avalanche is underestimated with respect to the FD case.

Flux tube case

In the flux tube case, the profile is constrained by assuming that the density gradient is
fixed not only in time but also in space. Namely we fix 1/Ln to a scalar value.

While this model should only solve the fluctuations fields, it is in practice generalized
to the complete field. However the source is a volumetric term that corresponds to the
Poisson bracket [φ,− x

Ln
n0]. We rewrite then the TOKAM2D equations of density and
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Figure 4.5: the PDFs of density fluctuations for FD (red) and GD (black) at r/a = 0.1
(line) and r/a = 0.5 (dots)

potential in function of f̃ , where f = n, φ. The equations solved by the code are then:

∂tn+ [φ, n] + [φ, n̄] = D⊥∆⊥n− σnn+ σnφ (4.24)

∂tW + [φ,W ] = −g ∂ynn0
+ ν⊥∆⊥W + σφφ. (4.25)

given n̄ = n0(−x/Ln).

This approach is named flux tube, because it models the transport inside a small
tube aligned with the magnetic field lines, where the gradient is considered constant and
periodic BCs are imposed. This approach is then based on local assumption: namely
that microturbulence only impacts locally the transport and not on macroscopic scales.
The flux tube adds a further advantage to the FD approach since it introduces periodic
boundary conditions in the radial direction and also more homogeneous radial properties
due to the volumetric source. The setting is then particularly well suited for pseudo-
spectral codes which also considerably simplifies the numerical solution of the Poisson
equation W = ∆φ

4.3 Approaches to define the SOL transport

As observed in the previous chapter (Section 3.2.1), the SOL transport is governed by
avalanches and the fluctuations effects are a constitutive features of the SOL concept. We
have developed different approaches to reduce the SOL transport to macroscopic diffusion
coefficient that would be consistent with the Fick and Fourier laws.

4.3.1 The modulation approach

With TOKAM2D, a source modulation has been used to quantify the turbulent transport.
Experimental works have shown that the response of the turbulence to source modulation
favor the identification of large scale transport parameters. The modulated source is
localised in the same region as the main source, it is also constant along the y-direction and
narrower in the x-direction, hence yielding a broad kx spectrum. With the chosen value of
the magnitude of the modulated source one identifies very well the density response at the
source frequency ωs, fig.4.6(a) [GNH+12]. One can then consider the transport equation
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Figure 4.6: (a) the frequency spectrum for the density, (b) zoom of the frequency spectrum
and (c) the ratio between source and density kx spectrum

in Fourier space:

σn − iωs + (Deffk
2
x + iVeffkx) =

Ŝ

n̂
(4.26)

where we have assumed the macroscopic, or effective, transport to be of the standard
form, Γ = −Deff∇xn+ Veffn. In such a framework the real part of the ratio Ŝ/n̂ should
be a quadratic function of kx while the imaginary part should be linear 2. The frequency
ωs must be small enough to allow the transport wave to propagate from the source to a
sufficiently large distance, but not that small that it only drives an adiabatic response of the
system at quasiconstant profile but slowly varying particle content. A value comparable
to σn thus appears to be optimum. At any rate, as exemplified on fig.4.6(a)-(b), it is not
possible to find a frequency outside the broad range of the turbulence spectrum, since
there is no obvious time separation between turbulence and transport. No correlation
between the source and density kx-spectra has been observed, see fig.4.6(c). In particular,
a signature of diffusive transport would govern a quadratic shape of nk for the small
values of k, which is clearly not the case on fig.4.6(c), where the density spectrum is more
exponential like.

4.3.2 Steady state versus fluctuating SOL

As shown in Session 3.1, a coarse graining approach with flux surface averages and long
time averaging is required to determine large scale transport Deff with an appropriate
behavior. Furthermore, describing the large scale transport with Deff reduced to a sin-
gle value would require further coarse graining in the radial direction. Another possible
transport law can be considered by combining a diffusion Dincr and a pinch velocity V ,
see Section 3.1.

< Γturb >t,y
n̄

= −Dincr
1

Ln
+ V (4.27)

From fig.(4.7) one can define three different regions, already introduced in ref.[NGCM+14]

• Flat top region, namely region I, localized immediately after the source, in this
region the flux is maximum and close to constant. In region I macroscopic transport
is predominantly convective

2This procedure has been verified via a one dimensional code [HRG+15] where the transport is simply
defined by a convection and diffusion term, where the exact values of Veff and Deff are recovered.
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Figure 4.7: (a) Radial profiles of < 1/Ln >t, (b) < Γ >t,y / < n >t,y in radial direction,
(c)< Γ >t,y / < n >t,y in function of < 1/Ln >t, the dashed lines identify two different
regions,The turbulent flux Γ is normalized by Nx/(2π) with Nx = 128

• Main SOL. Region II connects the first turbulent region to the stable last region.
The flux starts decaying proportionally to −1/Ln.

• Stable region. Region III is necessary to maintain periodic profiles, the gradient of
density is positive, turbulence stable and transport governed by the diffusion terms.
This region does not have a physical relevance for SOL transport.

One can identify the incremental transport coefficients, in region I from ix1 = 15 to
ix2 = 30, width dI = 15, DI ≈ 0.076 and the outward pinch velocity VI ≈ 0.008, while in
region II from ix2 to ix3 = 80, width dII = 50, DII ≈ 0.44 and the outward pinch velocity
is VII ≈ 0.001. Here the radial units are units of ρs, the pinch velocity in units of cs,
corresponding therefore to Mach numbers, and the diffusion coefficients are normalized to
the Bohm diffusion coefficient, i.e. ρscs. The ratio D/(dV ) allows one to determine the
dominant transport mechanism (since both act in the same direction). Hence, in region
I, DI/(dIVI) ≈ 0.625 while in region II DII/(dIIVII) ≈ 8.8; in the first region transport
is governed by convection while in the second one the transport appears predominantly
diffusive.

4.4 The issues of a fluctuating SOL

However via such a coarse graining procedure, the information retrieved through this
approach can appear misleading. A difference should be made between steady SOL
and a fluctuating SOL. If we define the SOL width as the radial distance such that
Γ(rSOL) =< Gamma >max /e and compare λSOL and < λSOL > clear differences ap-
pear. Namely the value of < λSOL > is approximately close to 15ρs, however SOL width
can actually oscillate from 0 to 60ρs, hence four time the averaged calculated value, as
shown in fig.4.8(a)-(b).

Three main issues can be identified with the definition of the SOL width based on the
coarse grained profile:

• Heat transport. One can conclude that for an actively cooled component like
the ITER divertor with time constant of about 5 seconds, the mean SOL width
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Figure 4.8: (a) λSOL flctuations in time and space, (b) λSOL time trace compare to steady
< λSOL >

< λSOL >is relevant, hence the coarse grained λq. However, for a component at
1 λq from the separatrix such that the mean heat flux is strongly reduced, one
can still have significant deposition, hence cycling of the surface temperature. This
will become a problem if the chosen Plasma Facing Component has a much shorter
thermal time constant or if the material is more sensitive to surface temperature
excursions, for instance ITER main chamber wall with Berylium. Furthermore,
when fluctuations are large, even if the component integrates the heat deposition,
the fluctuations will govern important surface temperature excursions (the problem
with ELMs). There is then a risk of exceeding critical surface temperatures as well
as enhanced fatigue of the material during constant thermal cycling. However, it
could also be that this constant temperature massaging of the surface has positive
impact like self healing of cracks and Tritium extraction from the cracks [SCM+07].

• Particles transport. The problem can be more serious for particle transport since
a significant fraction of the particles will recycle in the main chamber, out of reach
of the divertor and the pumping system. This can have severe issues during long
pulse operation with the loss of density control, drop out of the H-mode and possible
ending in a disruption. Finally, ion heat transport can follow particle transport and
lead to spurious energy deposition in the main chamber [GPR+11].

• Divertor. The SOL plasma acts as a lid that confines the neutral within the divertor
volume. For a strongly fluctuating SOL, the lid can be on average closed. But most
of the time it is open. Since the neutral characteristic time (time of flight) can be
comparable to the turbulence time scale, the plasma lid can be considered to be
ineffective.
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Turbulence self-organization close

to criticality
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Turbulent transport inside the tokamks is driven by instabilities. We focus here on in-
stabilities of the interchange family, which govern both TOKAM2D and GYSELA models.
The instability exists whenever there is a combination of a high plasma pressure gradient
and magnetic field curvature. This instability presents a threshold that results from a
balance between the force driving the system out of equilibrium and damping terms. By
marginal stability or criticality, one defines the case where forcing and damping terms
balance out so that the growthrate is equal to zero γ = 0.

It has been observed that close to criticality, large scale self-organized patterns develop
in the case of flux driven simulations [NGCM+14, DPDG+10]. These large scale struc-
tures disappear when increasing the forcing. A plausible explanation for this transition
is that an increase of the forcing corresponds to an increase of the number of unstable
modes: (1) close to threshold, only few modes are unstable and the system has reduced
number of degrees of freedom and regular patterns can appear; (2) far from criticality, the
number of degrees of freedom of the system increases so that no clear signatures of regular
reorganization can be observed.

In GD gyrokinetic simulations, by scanning the forcing, a new region has been identified
close to criticality where, even if the system is linearly unstable, turbulence is quenched.
In this region, the so-called Dimits shift region, it has been observed that ZFs quench the
turbulence so that the radial transport is reduced to very low values,[DBB+00, RDK00].

The role of criticality in the interplay between streamers and ZF and in the turbulence
self-organization appears to be crucial but still not fully understood. We present here
a possible explanation to reconcile the Dimits shift observation for flux tube gyrokinetic
collisionless models with other results obtained with FD codes, like GYSELA, or fluid
codes, like TOKAM2D.

5.0.1 The Dimits upshift of turbulence threshold

In 2000 Dimits[DBB+00] presents an overview adressing turbulent transport at large scale
and comparing the results of different types of turbulent transport models, gyrofluid and
gyrokinetics, based on ITER relevant parameters (also known as CYCLONE base case
parameters). The models that are compared are gradient driven and δf , flux tube models
(see chapter 2). The aim of such a benchmark is to quantify linear and non linear turbu-
lent transport prediction in an ITER like scenario.

From the linear analysis (see fig.5.1(a)), one can retrieve and compare the perturba-
tion instability growthrate and frequency at given poloidal mode number. Via the linear
analysis, one can obtain crucial information on the instability, such as the linear threshold,
i.e. the minimum values of forcing for the perturbation to be linearly unstable, and the
identification of the most unstable mode, often related with the characteristic turbulence
size. In the next session, a comparable analysis is carried also for the TOKAM2D code.

In the non linear framework, the comparison is carried out taking for granted that,
at large scale, a Fourier law of diffusion can describe the macroscopic transport, i.e. the
flux at large scale is proportional to the opposite of the pressure gradient −∇P , more
specifically −∇T for the ITG instability (or −∇n, in the TOKAM2D case). The propor-
tionality coefficient χeff quantifies the microturbulence effect on large scale transport (see

56



CHAPTER 5. FLUID SELFORGANIZATION

fig.5.1(b)). In the GD simulation case, where the pressure profile is an input parameter,
it is possible to recover a clear dependence between turbulent flux and the forcing of the
turbulence.

Figure 5.1: Figures from the paper of Dimits[DBB+00]

An outstanding result is the presence of an upshift observed in many different gy-
rokinetic codes, also defined as Dimits shift, between the linear threshold 1/LTc (the
minimum value of temperature gradient required for the perturbation to be linearly ex-
cited) and the non linear threshold (the value of 1/LTnl where the turbulent flux grows
with the forcing). The Dimits region is of particular interest considering that in ITER,
the temperature gradient 1/LTexp should be close to the non linear threshold value 1/LTnl.

The presence of this upshift is due to the transfer of energy from turbulence to the
zonal flows. In the Dimits region, undamped zonal flows build-up until they quench
the turbulence by ExB shear. When the forcing increases above another critical value
(1/LT > 1/LTnl), the shear of the zonal flows is no more capable to quench the turbu-
lence, the ITG modes are then driven unstable so that a further increase of the temperature
gradient governs an enhancement of the turbulent flux. 1

Interestingly, such upshift is not reported in the fluid codes framework, where the on-
set of turbulent transport takes place at the linear threshold. It appears, from Dimits
comparison, that the impact of zonal flows on turbulence is negligible in fluid simulations.
The shift is driven by specific kinetic effects, in other words, according to such observa-
tions, a kinetic description is needed in order to observe the self-organized generation of
patterns able to macroscopically quench the turbulence. Such results, that strongly influ-
enced modeling choices, have been contradicted by the benchmark of European turbulent
codes,[FSA+08], where the non linear upshift has been observed also for the fluid code
ETAI3D[OM99].

The conditions for the appearance of the Dimits shift are still ambiguous and questions

1 It is important to remind that the Dimits shift was observed in the collisionless configuration, the role
of collisions is crucial in the Zonal flows dynamic and it will be treated extensively in Chapter 6.
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on the general validity of this results and its relevance in predicting the transport have
arose. We define here with the two models, GYSELA (kinetic, flux driven, simulating the
close field line region only) and the reduced model TOKAM2D (fluid, flux and gradient
driven, simulating open and close field lines region), which are the conditions required
to recover the Dimits shift. In particular we focus on the two main constrains of Dimits
result:

• Fluid vs Kinetics. According to Dimits results, the upshift appears only for
kinetics codes, however new results contradict this constrain;

• Flux Driven vs Gradient Driven. In the flux driven models, evidence of the
shift have not been found yet. However, the neighborhood of criticality for FD
codes appears to favor turbulence self-organization, i.e. coalescence of stable and
turbulent regions, leading to the micro barrier formation [DPDG+10]

5.1 Streamers and zonal flows: what do we learn from linear

analysis?

To identify the conditions for which the transition to turbulence occurs, we first study
how the instability driving the system can be linearly excited.

In the two models TOKAM2D and GYSELA the instabilities driving the system are re-
ferred as respectively the interchange[GLRS91] and ITG (Ion Temperature Gradient)[RB90].
Both instabilities are interchange-like instabilities. In TOKAM2D the magnetic field cur-
vature is reduced to a scalar, namely the g-term, while in GYSELA the complete operator
is considered. In the present analysis a simplified magnetic geometry is taken into account.

We compare here the results obtained by linear analysis in the two models. In partic-
ular, we focus on the streamers, linearly excited, and zonal flows, linearly or marginally
stable. A point of interest is to understand if TOKAM2D contains all the features that
are required to be a reduced model of GYSELA.

5.1.1 Linear analysis: The Ion Temperature Gradient instability in a

global code

In the global gyrokinetic case, the linear reference value cannot be defined analytically,
because the linear growthrate is influenced by global quantities, such as the temperature,
density, safety factor profile or simulation size. Therefore a possible verification can be
carried out only by comparing results coming from different gyrokinetic codes. We present
here the results obtained in the effort of validating several European gyrokinetic codes,
such as Eulerian Vlasov, Lagrangian PIC, and Semi-Lagrange codes.

In a global full-f code the definition of linear growthrate is still a quite complex proce-
dure.

Here we present the comparison between the growthrate in function of the poloidal
wave vector kθρs for GENE and GYSELA. A good agreement is found between the two
codes, see fig.5.2. In this case the physical parameters used are those presented in the
Cyclone Base Case framework, CBC, detailed in Lapillone paper [LMG+10] and in the
Annex D, where more technical information on the growthrate definition are detailed. The
circular concentric magnetic equilibrium is defined with an aspect ratio of R = 2.78a and
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Figure 5.2: comparison between GENE (black line) and GYSELA (blue line) linear
growthrate (a) and frequency (b)

a safety factor profile q(r) = 0.86 − 0.16(r/a) + 2.526(r/a)2, as shown in fig.5.4(a). This
corresponds to a local safety factor q(rpeak) = 1.4 and a local magnetic shear s(rpeak) = 0.8
with rpeak = rmin+0.5(rmax−rmin). The initial density and temperature are defined with
the radial form function f(r) = exp(κx∆rxtanh((r− rpeak)/∆rx). The parameters κx and
∆rx are chosen to obtain peaked gradient profiles at rpeak, the middle of the radial box
rpeak with ∆ns0 = ∆Ts0 = 0.04, κns0 = 2.2 and κTs0 = 7.1, as shown in fig.5.4(b). To be
consistent with the DIII-D reference shot of the initial Cyclone Base Case, ρ∗ is chosen
equal to 1/180.

The difficulty for GYSELA is that the CBC benchmark was historically designed for
local δf code. Indeed, the first difficulty with a full-f code is that the separation between
linear and non-linear terms is not trivial. Therefore the linear phase is extremely short
because of non linear coupling between the modes. To increase the duration of the linear re-
gion, two possible methods are used. First, all the toroidal mode numbers n are filtered ex-
cept the mode n0 initialized as perturbation FS(t = 0) = (1+ǫ

∑mmax

m=0 cos(mθ+nφ+δmn)).
Second, the initial size of the perturbation is set to ǫ ≈ 10−6 to avoid any impact on the
initial profile that should stay constant. Additionally if the perturbation amplitude grows
above a given critical value, fixed at 10−4, the perturbation is reinitialized with smaller
magnitude. Besides, the global aspect of the code implies that large toroidal mode num-
bers n are hardly accessible because a large mesh discretization is then necessary. For
these reasons, the linear analysis is limited to values of n ranging from 5 to 30.

However, the advantage of using a global description to study the linear benchmark is
related to the other information we can get besides from the growthrate and the frequency.
Namely, identifying the radial mode structure can be a good tool to verify the ballooning
theory and provide a basis for some non-linear theories and simulations.
To investigate the three dimensional evolution of the perturbation and in particular the
resonant featueres, a change of the poloidal coordinate is required from the geometrical
poloidal coordinate θ to the straight field-line coordinates θ∗ [DHCS91, X.L].

Global eigenmode

In the case of concentric, circular magnetic flux surfaces, corresponding to the geometry
used in GYSELA, one can rewrite the magnetic field in toroidal coordinates according to
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the following equation

~B0 =
R0Bref
R

[~eϕ +
r

R0q̄
~eθ], (5.1)

where Bref is the magnetic field at the magnetic axes, q̄ is called the cylindrical safety
factor and ~eϕ and ~eθ are the unit vectors respectively in toroidal and poloidal direction. We

can see that the magnetic field ~B has a toroidal and a poloidal component. The toroidal
magnetic field decreases with R = R0 + r cos θ while the poloidal one with r. The safety
factor that characterizes the helical winding of field lines on a given magnetic surface is
defined as:

q(r) =
1

2π

∫ 2π

0

~B0 · ~∇Φ

~B0 · ~∇θ
dθ =

q̄(r)

2π

∫ 2π

0

R0dθ

R0 + r cos θ
=

q̄(r)√
1− ǫ2

(5.2)

where ǫ = r/R0 is the inverse of the aspect ratio. The safety factor is averaged along the
poloidal direction, since the ratio between ~B0 · ~∇ϕ and ~B0 · ~∇θ depends on θ. Defining a
new coordinate θ∗, straight field line coordinate, such that the safety factor can be written

directly as
~B0·~∇Φ
~B0·~∇θ∗

= q, it is not necessary to average along the poloidal direction, since

q will be uniform along θ∗ by definition. One can rewrite the relation between θ and θ∗

according to dθ∗/dθ = ~B0 · ~∇Φ/(q ~B0 · ~∇θ). Integrating over θ then yields:

θ∗(r, θ) =
1

q

∫ θ

0

~B0 · ~∇ϕ
~B0 · ~∇θ

dθ =
q̄

q

∫ θ

0

dθ

1 + ǫ cos θ
= 2atan(

√
1− ǫ2√
1 + ǫ2

tan
θ

2
) (5.3)

Once the potential Φ(r, θ, ϕ) is expressed in function of the new coordinates system
Φ(r, θ∗, ϕ), one can identify the contribution of each poloidal mode m = ak∗θ , that satisfies
the resonance condition m = n/q.

Figure 5.3: (a) the evolution in time of potential < Φ >θ,φ at the midplane in logarithmic

scale, (b)-(e) the poloidal modes Φ̂n,m±∆m distribution in the radial direction for different
time step corresponding to the red dots in the fig.5.3(a), where n = 5,m = 7,∆m = 3

We present here, the global mode evolution for n = 5. We excite a band of modes with
(n,m) = (5, 7±∆m), where ∆m = 3 with random amplitude between 0− ǫ. If we watch

60



CHAPTER 5. FLUID SELFORGANIZATION

at the linear growth rate of
∫

Φd3xd3v from the initialization to the end of linear phase in
fig.5.3(a), we can identify three regions:

1. position-reorganization region, damping proportional to k‖ is very effective.
This tends to localise the excited mode in the neighborhood of k‖ = R−1(n+m/q) =
0 surfaces (resonant surfaces), in fig.5.3(c).

2. amplitude-reorganization region, each mode grows at different speed to converge
towards a characteristic envelope with a characteristic growthrate, i.e. the global
eigenmode of the system (see fig.5.3(e))

3. saturation phase, if the perturbation amplitude is big enough the perturbation
modifies the mean profile and non linear effect should be taken into account (see
fig.5.3(d)). The complexity of this problem is to ensure a long time window for the
envelope to form. If phase(3) starts before phase (2), we cannot define a proper
envelope growthrate.

The Cyclone Base case, on the other hand, takes into account only a specific set of
parameters (safety factor, temperature, as shown in fig.5.4(a)-(b))), that often do not
capture the ensemble of possible experimental results that are understood to be relevant
for ITER operation. In order to understand how much the choice of the parameters can
impact on the linear analysis, a comparison is carried out between the standard CBC (A)
and two other cases, where the safety factor (B) or the temperature gradient profile (C) is
modified. The envelope growthrate and shape vary with q and LT profile, despite q(rpeak)
and LT (rpeak) is not varied from the reference case. However, the detailed comparison
between the three cases is detailed in the Annex D.

The streamers: ITG unstable modes

The linear analysis is a powerful tool in the context of code verification, but also when
analyzing nonlinear simulation.

One can observe that radially elongated structures, also called streamers, are linearly
excited on the outboard midplane, see fig.5.4(a). The streamers orientation in the θ-plane
is not uniform due to the magnetic shear effect[FGH+13]. The magnetic shear induces a
continuous stretching of flux tubes following the parallel direction. On fig.5.4(b) one can
notice that the structure of the electric potential has features that are similar to that of the
most unstable eigenmode. A possible explanation is that in such flux driven simulations
the system cycle from under to above the linear threshold. Accordingly it will experience
the linear sequence as the temperature gradient increases above the critical value.

5.1.2 The Zonal Flows: marginaly stable modes

In contrast with the streamers modes, zonal flows are not linearly excited by the ITG
instability. To study the ZF dynamic in GYSELA, we rewrite the Vlasov equation as:

dF̄S
dt

= ∂tF̄S + (v G⊥ · ∇⊥ + v‖∇‖)F̄S + v̇‖∂v‖F̄S = C(F̄S) (5.4)

the system is driven by the electric and vertical drift velocities v G⊥ = v E + v G,S , by
the parallel force v‖ and by collisions C(F̄S) ( as first approximation we assume that the
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Figure 5.4: (a) safety factor q (b)R/LT , (c) envelope distribution in the CBC case for
n = 20 (b)the potential distribution along r − θ

collisions term is equal to zero C(F̄S) = 0).

Note that both for the drift and the parallel force one must consider J0φ, hence a
function of µB. Neglecting this aspect (J0 ≈ 1) and integrating along the velocity space,
one recovers the fluid density conservation n

∂tn+ [φ, n] +∇
∫

v Gfdv‖ = 0 (5.5)

Given the quasi neutrality condition eq.2.13, the guiding center density n can be rewritten,
assuming neq, B constant, as

n

neq
=

m

eB2
∆φ+

1

T
(φ− < φ >F.S.) + 1 (5.6)

. Using the gyrokinetic equation and averaging along on flux surface, one can recover the
zonal flow equations:

∂t∆ΦZF+ < [Φ,∆Φ] >F.S.= 0 (5.7)

where ΦZF =< Φ >F.S . On a flux surface, the current due to the curvature drift must
vanish for symmetry reasons. The ZF variation is governed by the non linear term. In
the Dimits framework, the plasma is collisionless so that the zonal flows will only decay
if < [Φ,∆Φ] >F.S.< 0. Since the only variation is governed by non linear term, one thus
find that Vz is marginal. The ZF are marginally stable: they are not excited by the linear
instability but no linear damping acts to these structures, therefore once they are gener-
ated, they tend to live for longer time interval.

However, it has been observed that collisions act as ZF damping [RH98, HR99]. In
the fluid model, such an effect is taken into account via viscosity term proportional to the
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collisions frequency [DIIH05]. The zonal flows equation, where ∆ΦZF = ∂ΨVZF , can be
then rewritten as:

∂tVZF = ∂ψ < RS > −ν∆VZF (5.8)

.

Figure 5.5: poloidal spectrum of potential fluctuations without (blue line) and with (green
line) imposed ZFs, during the linear phase

To study the impact of ZF on the linear streamer like structure, we impose a constant
ZF in the linear simulation. Without ZFs, if we excite the toroidal mode n = 20, a
corresponding peak at poloidal mode m = 28 can be observed, see fig.5.5 (blue line).
With ZFs the poloidal spectrum is changed, one can observe a peak for m = 0, i.e.
the ZF mode, and a broad band of excited modes for m > 28. The ITG eigenmode is
changed and now depends on higher mode numbers. ZFs quench the streamer like modes
favoring smaller scale modes, that can grow in the reduced space bounded by the zonal
flow structure and the boundary conditions.

5.1.3 TOKAM2D: a reduced model for streamers and ZFs dynamics

The advantage of using TOKAM2D is that a linear growthrate can be derived analyti-
cally and compared to the simulations results. A proper comparison can be done, when
TOKAM2D is used as a flux tube code, see Section 4.2.2. In flux tube version, the driving
term g/Ln is constant in time and space.

Analytical calculation of interchange growthrate for TOKAM2D

In TOKAM2D the growthrate in function of the radial and poloidal modes is known
analytically for given value of density gradient at equilibrium state. Namely we define
the equilibrium the density profile, only depending on the radial position, n̄ = n(x) =
n0exp(−x/Ln), and the electric potential profile constant in all directions and equal to Λ,
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Φ̄ = Λ. To study the linear growthrate of the interchange instability, one perturbs this
reference equilibrium state with respect to

ñk = ñkx,ky exp(i(kxx+ kyy)) exp(Ωkt) + cc (5.9)

Φ̃k = Φ̃kx,kye
iψk exp(i(kxx+ kyy)) exp(Ωkt) + cc (5.10)

where ψk represents the phase shift between ñk and Φ̃k, ’cc’ means ’complex conjugates’
and γk represents the real part of Ωk. The perturbations will be excited if γk is positive,
namely the system is unstable. We rewrite then the TOKAM2D equations of density and
potential in function of f = f̄ + f̃ , where f̄ =< f >y, f̃ = f− < f >y and f = n,Φ:

∂tn̄+
〈[

φ̃, ñ
]〉

+D⊥∆⊥n̄− σnn̄ (5.11)

∂tW̄ +
〈

[φ̃, W̃
]

〉 = ν⊥∆⊥W̄ + σφJ̄ (5.12)

∂tñ+
[

φ̃, ñ
]

−
〈[

φ̃, ñ
]〉

+
[

φ̃, n̄
]

= D⊥∆⊥ñ− σnñ+ σnφ̃ (5.13)

∂tW̃ +
[

φ̃, W̃
]

−
〈

[φ̃, W̃
]

〉 = −g∂yñ+ ν⊥∆⊥W̃ + σφφ̃. (5.14)

In the linear analysis framework, we assume that the perturbation are much smaller
than the equilibrium terms f̃/f̄ ≈ ε, therefore one neglects the quadratic contributions in
the fluctuation equations, eqs.(5.13-5.14). The equations are then further simplified and
rewritten as:

∂tñ−
∂yφ

Ln
= D⊥∆⊥ñ− σnñ+ σnφ̃ (5.15)

∂tW̃ = −g∂yñ+ ν⊥∆⊥W̃ + σφφ̃. (5.16)

given n̄ = n0(−x/Ln). Substituting eq.5.9-eq.5.10 in eq.5.15-eq.5.16, one obtains the
following coupled equations:

(Ωk +Dk2 + σ)ñ+ (i
ky
Ln
− σ))φ̃ = 0 (5.17)

−ig ky
k2
ñ+ (Ωk + νk2 +

σ

k2
)ñ = 0 (5.18)

Note that to obtain this expression, one neglects the coupling between the equilibrium
modes and the perturbations. Eq.5.17-eq.5.18 have a trivial solution ñ = 0 and φ̃ = 0.
This solution is unique unless the determinant of this non linear system must vanish. This
yields to a second order equation in function of Ωk:

Ω2
k +BkΩk + Ck = 0 (5.19)

where Bk = (D+ ν)k2 +σn +σjk
−2 and Ck = (Dk2 +σn)(νk2 +σjk

−2)− gk2y
Lnk2

− iσjg kyk2 .

As shown in fig.5.6(a), where the growthrate is plotted in function of ky at kx = 0,
hence in the fixed gradient case, one finds that the most unstable mode corresponds to
(ky = k̄, kx = 0). The mode is extended in the radial direction with given poloidal width
Ly = 1/k̄. It exhibits the expected streamer like structure, with no radial structure due
to the calculation for TOKAM2D in the flux tube geometry.

64



CHAPTER 5. FLUID SELFORGANIZATION

Figure 5.6: benchmark between the growthrate calculated analitically (black lines) and the
results determined by TOKAM2D in the SOL for fixed 1/Ln (a) and edge (b) configuration
(green dots)

The effect of the control parameters on the linear instability

Having an analytical expression for the linear growthrate allows one to: (1) verify im-
plementation of the model in the code, at least regarding the linearised contribution, (2)
analyze the impact of each control parameter on the linear growthrate, (3) investigate the
geometrical effects introduced by boundary conditions when using TOKAM2D in standard
condition (not flux tube). Obviously such results do not take into account the non linear
terms, but a first picture of the effect of these parameters is useful for further analysis. In
figure 5.7, we show how the growthrate changes with g, Ln, σ, ν,D:

• forcing terms (fig.5.7(a),(b)), we consider here two parameters, g and Ln, that
act on the magnitude of the growthrate but with opposite effects. If one sets the
damping terms equal to zero γ ∝

√

g/Ln, the damping terms, when taken into
account, introduce a threshold on g/Ln. Regarding the comparison to experiments,
one can consider that a variation of g ∝ ρs/R0 term will corresponds to a variation
on the machine size R0. As already discussed, Ln cannot be considered as a free
control parameter in the FD framework.

• small scales damping terms (fig.5.7(c),(d)), the diffusivity and viscosity terms
are acting in the same way on the growthrate, damping the small scale modes: in
the asymptotic limit of k → +∞ the growthrate varies like γ = −max(D, ν)k2. The
viscosity effect on large scale perturbations is small. For large values of D, one can
observe a stabilizing effect also at the large scales due to the contribution (DσΦ) in
Ck, eq.5.19.

• drag terms (fig.5.7(e),(f)), these terms are actually acting on the large scale, in
the asymptotic limit of k → 0 γ = −σn − σφk−2 for the SOL or γ = 0 for the edge.
The magnitude of γ is observed to vary with σn, while σφ plays a role both in the
magnitude and the location of the maximum of γ. σn or σφ/k

2 are the characteristic
evolution times. They should be used to normalize γ rather than Ωi, hence γ ∝ σn
or γ ∝ σφk2.
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Figure 5.7: the linear dispersion relation in function of ky for different values of g (a), Ln
(b), ν (c), D (d), σφ (e), σn (f)

The role of these parameters on the behavior of turbulence is crucial in order to control
the size and time scale of the turbulent structures. In annex C, we introduce a renormal-
ization of the TOKAM2D equation to reduce the total number of independent control
parameters, in case of linearised sheath loss terms.

ZF dynamic and drag term

When analyzing ZF dynamics in TOKAM2D, one can observe that the ZF are linearly
damped by σφ in the SOL. In the new version of TOKAM2D, where the edge is modeled,
the specific condition on σφ is changed so that zonal flows are marginally stable. The
large scale damping is therefore set to zero. The viscous damping of zonal flows is kept to
mimic collisional damping. It plays a role at small sales. With this choice of parameters
in TOKAM2D, one can control the zonal flows to exhibit a comparable dynamics in GY-
SELA at non-vanishing collisionality.

The analytical study already presented for TOKAM2D does not take into account
the changes of the σ terms in the edge region. Namely, if we consider no particle loss
(σn = 0) and no current loss on the flux surface (σφ(ky = 0) = 0), the growthrate at
ky = 0 is changed, as shown in fig.5.6(b). Specifically, in the SOL case for ky = 0, we
expect γSOL = −σn− σφ/k2x, while in the edge case γedge = 0. The change in parallel sink
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terms is therefore:

Γ = σnn = 0 (5.20)

J = σΦ(Φ− < Φ >y) = 0 (5.21)

This yields the zonal flow equation:

∂tvz + ∂x < RS >y −ν∆xvz = 0 (5.22)

where < RS >y= − < ∂xφ∂yφ >y is the Reynold stress non-linear contribution to the
evolution of vz. In the edge configuration, the streamer like modes are linearly excited,
while the ZF modes are marginally stable (at first approximation the viscosity effect can
be neglected for small kx), the modes are not excited linearly or damped. The energy to
the zonal flow can come from the non linear coupling only, the Reynold stress term. The
latter is thus a key element in the interplay between turbulence and zonal flows.

In order to compare the numerical results with the analytical ones, we use a GD version
of TOKAM2D, where the density gradient length is kept constant and equal to Ln, a free
parameter. The equations solved by the code are eq.5.15-5.16, where the source is set to
zero and the instability is driven directly by the Ln term2. A broad range of modes in
kx, ky are inserted at small amplitude 10−4 as initial condition and the parameters used
for the comparison are listed in the table below 5.1.

Table 5.1: parameter used in the following simulation both for flux and gradient driven
case

1/Ln g D ν σn σφ Nx Ny Lx Ly tdiag
0.03 5E-4 1E-2 10E-2 6.1E-5 6.1E-5 128 128 128 128 32

The green points in fig.5.6(a)-(b) represent the growthrate of the excited modes for
different values of ky, given kx = 0. A perfect agreement is found with the linear analysis
both in the edge (a) and SOL (b) cases.

5.2 Recovering the Dimits shift

We first analyze FD and GD simulations both for GYSELA and TOKAM2D SOL-version,
in order to compare how the two systems differ close to marginal stability. We then con-
sider the edge version of TOKAM2D. In these simulations one recover the Dimits shift
which thus tends to indicate that the Dimits shift is not a specific signature of kinetic
problems. The impact of criticality on the self-organization dynamic can be investigated
in the SOL and edge region and for gradient driven (flux tube) and flux driven versions of
TOKAM2D.

The driving term in TOKAM2D directly depends on the density gradient and on the
curvature term, via the combination g

Ln
. In the GD framework, where the particle source

is set to zero and Ln is a parameter, both values can actually be controlled by the user,
while in the FD case, the control of the different regimes can only be achieved via the
g-term.

2the GD approach is extensively explained in chapter 3
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5.2.1 Gradient driven versus Flux driven

To study the Dimits shift, we first present the results obtained with GYSELA. The effective
diffusion coefficient χ of FD global simulations are compared to the Dimits results. Even if
the definition of linear threshold is unclear in the framework of global codes like GYSELA,
the transition region from laminar to turbulent transport can be obtained by reducing the
source amplitude [SGA+10] or increasing the machine aspect ratio. In the GYSELA case,
it has been observed that a decrease of the heat source, that actually controls indirectly
the temperature gradient, enhances the microbarriers [DPDG+10].

Figure 5.8: Dots: χ =< Qturb >θ,φ / < ∇T >θ,φ in function of R/LT where 1/LT = − <
∇T >θ,φ / < T >θ,φ. (blue dots: for 0.1 < ρ < 0.35; cyan dots: for 0.35 < ρ < 0.4; black
dots: for 0.4 < ρ < 0.8; yellow dots: for 0.8 < ρ < 1). Green line: < χ >t in function of
< R/LT >t; Red and black line: fit of the flux tube data from gyrokinetic (red line) and
fluid (black line) codes proposed in Dimits reference paper [DBB+00].

We now insert the GYSELA non linear simulation data, where microbarriers are
present, in the plot < Qturb >θ,φ /(n(ψ) < ∇T >θ,φ) = χ versus R/LT where 1/LT = − <
∇T >θ,φ / < T >θ,φ, fig.5.8. Note that both χ and R/LT are function of radial position
and time, as can be observed on the time traces and radial profiles of < Qturb >θ,φ and
R/LT of fig.5.9-5.10.

In the FD framework different transport regimes observed with different conditions in
the flux tube simulation are recovered in a single simulation with self-consistent organi-
zation in time and space. However, no abrupt transition of the turbulent transport takes
place at a critical value of R/LT . The phenomenology of the Dimits shift does not occur
in global FD simulations.
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Figure 5.9: (a) R/LT in function of time and radius averaged in φ, θ, (b) < R/LT >t
&R/LT (t0) (blue & green dashed lines)) radial profiles, (c) < R/LT >r &R/LT (ρ = 0.5)
time traces (blue & green dashed lines)

Figure 5.10: < Qturb >θ,φ in function of time and radius, (b) < Qturb >θ,φ,t & < Qturb >θ,φ
(t0) (blue & green dashed lines) radial profiles, (c) < Qturb >θ,φ,r & < Qturb >θ,φ (ρ = 0.5)
(blue & green dashed lines) time traces

To localize and compare the different transport regimes of GYSELA, one can separate
the data plotted in fig.5.8 in four radial intervals: core region (blue dots), for 0.1 < ρ <
0.35, corrugation I & II region (respectively cyan and black dots), for 0.35 < ρ < 0.8, and
edge region (yellow dots), for 0.8 < ρ < 1. The main features of these regions are:

• Core, turbulence is mostly localized below the ITG linear threshold.

• Corrugation I, for ρ < 0.5. Turbulence is controlled by quasi-periodically radial
bursts that transport the particles efficiently from the core to corrugation II, as
displayed in fig.5.10.
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• Corrugation II, for ρ > 0.5. The microbarriers govern the transport. The flux is
decreasing while R/LT exhibits a corrugated profile, fig.5.9-5.10. The bursts coming
from corrugation I region appears to be confined here.

• Edge, R/LT grows radially and the heat flux can be quantified by a constant large
scale diffusion coefficient χ.

5.2.2 Fluid versus kinetic

To study if the role of ZF can be identified also for fluid models, the results obtained
with TOKAM2D in two regions with different ZFs dynamics, edge and SOL region, are
presented here.

The ’reverse-Dimits’ shift in the SOL

Let us first investigate the transition from stable to unstable state in the SOL region.
There, transport is governed by avalanche like ballistic events. GD and FD are compared
through the transition.
In the first case, the g parameter is set at g = 2. 10−4, while the other parameters are
unchanged and given in table 5.1. In the GD case the gradient 1/Ln for each simulation
is assumed constant in the domain, therefore we perform a scan also in 1/Ln, with 1/Ln
varying from 0.015 to 0.04, where 1/L∗

n = 0.0197 is the critical threshold given by the
linear analysis. The chosen range of 1/Ln values set by the minimum and maximum value
reached by 1/Ln in the corresponding FD simulation.

In fig.5.11(c) the two coarse grained curves of turbulent flux < Γx >CG versus the
driving term < 1/Ln >CG are displayed. For the FD case, the coarse graining proce-
dure consists of averaging the flux and density gradient on poloidal direction and time,
(< Γx >y / < n >y,t and < 1/Ln >y,t) to filter out the fluctuations. The curves with
and without coarse graining are displayed in fig.5.11(a). For the GD case, each points of
the coarse grained curve is calculated by averaging the radial flux in all directions, i.e.
< Γx >x,y,t. The level of fluctuations of < Γx >y at given 1/Ln is displayed in fig.5.11(b).

One finds an unexpected feature of the local (fixed gradient) approach. Just above the
threshold, in the region that would correspond to the Dimits region [DBB+00], the system
is linearly unstable but the flux is not governed by the conventional Fick’s law since it
first decays as the drive is increased. The system only recovers the standard behavior with
increasing 1/Ln when the latter exceeds 2.5 10−4.

In this ’Dimits region’, the turbulent flux exhibits a maximum. At given 1/Ln, the
flux evolution presents a quasi-periodic behavior: the flux grows with time and then col-
lapse to zero close to a cyclic fashion. This cycle can be analyzed in terms of predator
prey mechanism. Let us consider that in the critical region only a few modes are linearly
excited, hence elongated structures in the radial direction. These streamers are the ’prey’.
They grow until they couple non linearly with other modes, in particular the zonal flow
mode. This mode is linearly stable and acts as a ’predator’. The energy of the streamers is
transferred to the zonal flow, causing the flux collapse. This cyclic pattern can be under-
stood as a signature of a secondary instability, which governs the zonal flows generation.
The existence of a cycle is strongly linked to the zonal flows damping. This is one of the
key parameters of the overall behavior. Changing the distance to criticality allows one to
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Figure 5.11: (a) FD case: < Γx >y / < n >y,t in function of the forcing < 1/Ln >y,t
(coarse grained curve, red line), < Γx >y / < n >y in function of the forcing < 1/Ln >y
(black +), (b) GD case: < Γx >y,x,t in function of different1/Ln (coarse grained curve,
red line), with the errorbar the minimum and maximum fluctuations of < Γx >y for each
simulation at given 1/Ln, (c) the two coarse grained curves for FD and GD case are
compared

control the other characteristic time scale. In fig.5.15 such predator-prey mechanism can
be observed (until t = 5000cs/ρs).

Further increasing 1/Ln generates more linearly unstable modes until the interchange
instability becomes dominant and the system is fully turbulent. Increasing the range of
unstable modes generates multiple cycles zonal flows-turbulence with enhanced frequency,
until the latter can no more be identified as specific relaxation event.

To explain the flux discontinuity at 1/Ln = 2.8, fig.5.11(c), we propose here a pre-
liminary study on the interplay between the interchange instability (first instability) that
excites the streamers favoring the increase of radial flux with the forcing, and the secondary
instability that grows from a developed nonlinear state and depends on the magnitude of
the linear perturbation, fig.5.12. The zonal flow mode φZF (0, kx) is generated by the cou-
pling between two modes, a streamer mode φs(ky1, 0) and a turbulent mode φT (−ky1, kx).
Such a turbulent mode can be excited by the primary or the secondary instability according
to the value of 1/Ln:

• 1/Ln < 1/Lnnl
region. Only the streamer mode is linearly excited, the turbu-

lent mode can be excited non linearly by the secondary instability that is propor-
tional with streamer magnitude, fig.5.12(a)-(b). Once φs grows higher than a critical
threshold φ∗s, the turbulent mode starts growing and the energy is transferred from
the streamer to zonal flow mode. By increasing the forcing, the primary instability
magnitude grows and the time for the secondary instability to become unstable is
reduced. The predator-prey cycle frequency increases and the flux is reduced.
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• 1/Ln > 1/Lnnl
region. Streamer and turbulent modes are linearly excited. The

zonal flow couples with streamer modes immediately, fig.5.12(c). There is no more
a time interval governed by streamer modes only. The predator-prey mechanism
cannot be distinguished. By further increasing the forcing, we favor the turbulence
driven by interchange instability.

Figure 5.12: Study of instabilities governing GD simulations at (a)1/Ln = 0.22, (a)1/Ln =
0.25, (a)1/Ln = 0.3. The three coupled modes (φZF , φS , φT ) are identified by a red frame.

This particular behavior of the threshold region is not observed in the flux driven
simulations, see fig 5.11(c). The behavior in the vicinity of the threshold is altogether
different in the flux driven case. First, a non vanishing flux is obtained below the critical
density gradient length L∗

n. This reduced flow can be related to turbulence spreading into
stable region. Above the threshold the mean particle flux exhibits a sharp increases and
the flattens out at the largest values of 1/Ln in region II.

Figure 5.13: (a)the potential averaged in y versus time and radial direction,(b) the Rb
quantity in the same interval in time and space, (c) & (d) time traces of Rb at different
radial position

In the FD case, one can readily observe that close to criticality the system reorganizes
with structures that resembles staircases, see fig.5.13(a). A predator-prey cycle between
turbulence and zonal flows can be identified only close to the linear threshold. Even if
a clear separation between the streamers and the zonal flows regime as in the GD case
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cannot be observed, however one can still identify the generation of intermittent patterns
in the potential: signature of a zonal flows cycle.

In order to study the actual impact of zonal flows on the turbulent transport, we are
going to use Rb criteria, as previously introduced, Section 3.3. Although the electric po-
tential exhibits a structure that is reminiscent of the microbarriers, the amplitude of these
zonal flow patterns is too small to actually stop the avalanches, fig.5.13(b),(c),(d). When
considering the pattern of the Rb index, it appears that the regions with reduced transport
do not constrain the avalanches. On the contrary, it seems that the avalanches drag the
small region of transport barriers. The latter are then slaved to the avalanches and in
continuous reshaping.

Dimits shift in the plasma edge

In the closed field lines region, the zonal flows dynamics is modified by changing their
drag term. The large scale loss term is set to zero just for the zonal flows. In the fusion
machines, such variation can be related to the different condition on the parallel current
between open and closed field lines (see Chapter 1).

In order to understand how the transport is impacted in this specific zonal flow regime,
we first analyze the local flux tube case. The parameter g/Ln driving force term for the
interchange instability is then controlled. This parameter can be then used to monitor the
zonal flow generation.

Let us now analyze the difference in bahavior between the SOL σφ 6= 0 for ky = 0 and
the edge such that σφ = 0 for ky = 0, see figure 5.15:

• Until time step t = 5000cs/ρs, open field line conditios are used and one recovers
a quasi-periodic predator-prey behavior. The streamers turbulence pattern transfers
its energy to the zonal flows. The ZFs have no source of energy once the turbulence
is damped away. They are then damped also allowing he onset of new cycle. When
analyzing the predator-prey cycle, most of the time is spent in the streamers regime.
This time appears to increase as 1/Ln is reduced towards the critical value

• At time t = 5000cs/ρs, the TOKAM2D equations are changed to the closed field
line configuration. The system then locks in the zonal flow configuration. The sink
of the zonal flows is strongly reduced since we set σΦ = 0 for ky = 0. Once ZFs are
the dominating modes, turbulence is quenched. A drop of the turbulent flux then
occurs, due to the stopping capability of the shear layer.

The analysis of the turbulent flux and density gradient shown in the previous section,
different from the results obtained by Dimits, is performed again, see fig.5.14(a). A com-
parable upshift is then observed between the linear prediction and the nonlinear results.

As shown in fig.5.14(b)-(d), there is more then a change in transport. Indeed the
electric potential patterns characteristic time and size are also increased.

The shearing rate of the zonal flows tends to reorganize the transport in staircases and
the width of the transport barrier can be controlled by the forcing parameter,[CMGS+14]:
increasing g/Ln, the width of the barrier is decreased. It becomes less efficient and tur-
bulent bursts can pass through. If one scans the turbulent flux in function of 1/Ln, where
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Figure 5.14: Particle flux in function of density gradient in the GD simulation.The
potential averaged along y in time and radius direction for different values of Ln, i.e. (b)
1/Ln = 0.03, (c) 1/Ln = 0.04 and (d) 1/Ln = 0.08

1/Ln > 1/Lnnl
, one recovers a direct dependence as already observed in the SOL. Con-

versely, in the range 1/Lnc < 1/Ln < 1/Lnnl
, the flux is constant and does not depend on

the density gradient. This region corresponds to the Dimits shift region, where the impact
of the zonal flows on the transport is so strong that no bursts can cross the transport
barriers.

The dynamics of these patterns is quite rich and complex, they can vary with the
forcing term and also move in time and space. Comparing the case in fig.5.14(c)-(d), we
observe that

• the number of staircase is proportional to the density gradient amplitude,
the number of zonal flows doubles from 2 to 4, once increasing 1/Ln from 1/Ln = 0.04
to 0.08.

• two staircases can merge and collapse in one, see fig.5.14(b)

• the position is independent from the number of staircases, in fig.5.14(b)
and (c), for a given number of staircases, their position and width is changed.
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5.3 Dimits shift: a limit case

We can conclude that we are now able to retrieve the Dimits shift in the framework of fluid
model, identifying the key role of the zonal flows. Namely we found that the transition re-
gion from laminar to turbulent transport is always dominated by a predator-prey dynamic.

Such mechanism is clearer in GD simulations where the instability drive is constrained
to a constant value in time and space. In the FD case the dynamic is more complex be-
cause of the variation of the effective density gradient driving the system is both in time
and space.

Such predator-prey cycle is strongly linked to the zonal flow damping that is governed
by the drag term σφ. Therefore, in the SOL, where the zonal flows are damped by σφ,
most of time is spent in the streamers, i.e. prey, regime. Conversely, in the edge, where
σφ is equal to zero for ky = 0, most of the time is spent in the ZF, i.e. predator, regime.

Finally, in the FD version, we cannot obtain the same behavior because the system
is not locked in one of the two scenarios. The two regions below and above the Dimits
non-linear threshold interact. The Dimits shift cannot be recovered in the experiments
since the pressure profile changes in time and space. However it gives us useful information
on the streamer and ZF dynamics close to criticality. The analysis of the system near the
threshold proves to be most important to isolate the various aspects of the mechanisms
that come to play in the model from quasi-periodic relaxation to barrier formation.
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5.3. DIMITS SHIFT: A LIMIT CASE

Figure 5.15: the time lapse of potential: for t < t = 5000cs/ρs the system is in the SOL
configuration, for t > t = 5000cs/ρs in the edge configuration
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6.1. MECHANISM DRIVING THE ZF DYNAMICS

In this chapter we present a novel understanding of the mechanism regulating the en-
ergy transfer between turbulence and zonal flow. The parameters controlling such mech-
anism and consequently the transition from the ZF-dominated, strong ZF and weak tur-
bulence, to turbulence-dominated regime, weak ZF and strong turbulence are identified.
The transition observed in TOKAM2D is then compared with the one observed in other
fluid-dynamical systems, based on the Hagesawa-Mima model (HMB).

The evolution of zonal flows is governed by two mechanisms, linear damping and three
waves coupling via the divergence of the Reynold stress. The latter can be a sink, typically
by Kelvin-Helmoltz (KH) instability [GFC+99, DIIH05] or a source by constructive inter-
ferences of turbulent modes. To study under which condition the sign of ∂xRS changes, we
present a three modes model where the energy transfer between zonal flows and streamers
is addressed analytically.

The turbulence injection scale k̄ is identified as the control parameter for the transition
from the ZF-dominated to turbulence-dominated regime. Two types of modes are defined:
B-modes (Big scale modes) and S-modes(Small-scale modes). If the B-modes dominate,
the system is governed by turbulence, otherwise if S-modes dominate, the turbulence is
quenched and the ZFs govern the transport.

Comparison between TOKAM2D and Hagesawa-Mima models exhibits many simi-
larities. However the mechanism driving the transition between the ZF-dominated and
turbulence-dominated regime appears to be different. In the framework of HMB mod-
els, one refers to ZF-dominated and turbulence-dominated respectively as zonation and
friction-dominated regime. These regimes are identified via a non-dimensional parameter
Rβ , defined by Galperin as the zonostrophy index [GSD08, GSD10]. The zonostrophy
criteria can be redefined in the framework of TOKAM2D, but it does not govern a com-
parable change in regime.

6.1 Mechanism driving the ZF dynamics

In this section the mechanism that controls the ZF generation and relaxation is explained
in the context of TOKAM2D. The aim is to identify how the energy is exchanged between
turbulence and ZF.

The ZF relaxation can be controlled by: (1) KH instability, a tertiary instability
driven by the ZF, that controls the transfer of energy from zonal flow to turbulence; (2)
by collisions,[LHL+99, KR12], taken into account by a viscosity term ν, that acts as a
damping term for the ZF.

The sign of the divergence of RS, ∂xRS, is crucial to identify if RS is acting as a source
or as a sink for zonal flow. However, its sign fluctuates in time and space, see fig.6.1 1.
One cannot clearly identify in which conditions the RS term favors or disfavors the zonal

1∂xRS plotted in fig.6.1 is defined as

∂xRS = VRS(KZF ) =
∑

kx,ky

ikykxkZFφ(kZF − kx, ky)φ(kx,−ky) (6.1)

in order to study the effect of RS at given zonal flow mode
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CHAPTER 6. TURBULENCE AND ZF

flow generation.

Figure 6.1: (a) ∂xRS in function of time and zonal flows modes kZF ,if ∂xRS > 0 is colored
in black, if ∂xRS < 0 in black, (b) ∂xRS at given time in function of kZF

6.1.1 KH instability and collisions in the ZF relaxation process

We prove here the dominant role of collisions compared to KH instability in the ZF re-
laxation. To tackle this topic we need first to identify under which conditions the KH
instability is excited and then compare the role of KH and collisions term in a ZF relax-
ation.

Through the study of the growth rate of two perturbed modes k1 = (kx, ky), k2 =
(kx − κ, ky) coupled to the zonal flow κ, one defines a dispersion relation that takes
into account the contribution of both interchange and Kelvin Helmoltz instability. Let
us consider an equilibrium density profile equivalent to the one defined in the previous
chapter in the interchange linear analysis framework n̄ = n(x) = n0exp(−x/Ln) and a
potential profile fluctuating along x such as Vz = ∂x < Φ >y= ∂x(Φz cos(κx)).To study the
linear growthrate of the two instabilities, we insert in the system two small fluctuations
in density and potential field coupled to the zonal flow mode, n1(kx, ky), n2(kx − κ, ky),
Φ1(kx, ky), Φ2(kx − κ, ky). Linearizing the TOKAM2D equations around the equilibrium,
one obtains the following linear system of equations









Ωn
1 Vzky 1/Ln1

0
−Vzk′y Ωn

2 0 1/Ln2

kyg 0 ΩW
2 V1Vzky

0 kyg V ′
1VZky ΩW

2

















nl
n2
W1

W2









= 0

where Ωl = γ+γ
l with l corresponding to n or W , respectively γni = Dk2i , and γWi =

νk2i + σ/k2i , V1 =
(

k21 − κ2
)

/k22, V ′
1 =

(

k22 − κ2
)

/k21 for the two coupled instabilities
modes 1, 2. The dispersion relation, a fourth order equation for γ is then:

(Ωn
1Ωw

1 − kyG1)(Ω
n
2Ωw

2 − kyG2)+

+ky2V 2
z [ΩW

1 ΩW
2 + k2yV

2
z V1V

′
1 + Ωn

1Ωn
2V1V

′
1+

+kyV
′
1G1 + kyV1G2] = 0 (6.2)
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6.1. MECHANISM DRIVING THE ZF DYNAMICS

Figure 6.2: the interchange (dashed black line) and KH growthrate for different values of
Vz at given κ = 0.1 in function of ky

From eq.6.1.1 three different contributions to the growthrate can be distinguished:

• Interchange terms. The terms on the first line, red font, are related to the stan-
dard interchange instability. If one assumes that there are no zonal flows Vz = 0,
the interchange forcing term defined as Gi = (kyg)/(k2Lnσ) controls the growthrate
instability.

• KH terms. The terms on the second line, black font, identify the terms related
to the pure KH instability, i.e. in case Vz 6= 0 and GI = 0. One can readily
observe that the KH instability growthrate depends on the amplitude of the ZF,
Vz = κΦz(kx) and only the region of the spectrum, where the condition V1V

′
1 < 0 is

true, is Kelvin-Helmoltx unstable.

• Interchange + KH terms. The terms on the third line take into account the
interplay between the interchange and KH instabilities. Interchange mechanism,
G terms, can actually destabilize the ZF if the Gi < 0, namely on the high field
side of the tokamak, where both the curvature force and pressure gradient are point
outward of the plasma. In this region, the standard interchange modes are stable.

We present in fig.6.2 how the growthrate in function of ky is changed, if the interchange
or KH alone is the driving instability. The growthrate due to interchange instability is
calculated using the reference parameters (tab.5.1) and the equation presented in Section
5.1.3. The KH instability growthrate is calculated for different values of Vz. If Vz < 0.2
the KH instability appears to be negligible compared to interchange. If Vz > 0.2, a new
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region of the spectrum is linearly excited by the KH instability contribution, i.e. the region
ky < κ.

From the definition of KH instability growthrate, one expects that if KH modes are
destabilized during the relaxation, a signature of KH instability on the potential fluctua-
tions spectra can be identified. As predicted by the linear analysis, shown in fig.6.2, a peak
at largest scale, ky < κ, should appear. Conversely, in fig.6.3, where the spectrum of the
potential fluctuations are compared during the generation and relaxation of the barrier, no
increase of the KH modes is observed during the relaxation phase. The spectrum shrinks
and expands respectively before and during the turbulent burst, as an ’umbrella effect’.
It appears that when the barrier is ON, the spectrum shrinks transferring its energy to
the zonal flows. Additionally, by calculating the KH growthrate, taking into account the
simulation parameters (tab 5.1) and the maximum value of VZF , VZF = 0.06, one finds
that the KH modes are linearly stable, see fig.6.2 (blue line)

Figure 6.3: (a) Rb in function of time and radial direction. (b) Potential spectrum in
function of ky during the the barrier relaxation (TB OFF, red line) and generation (TB
ON, blue line)

Finally, two different limit cases have been defined in order to better identify the role
of KH instability.

1. Collisionless ZF: one assumes that viscosity ν is set to zero only for the ZF modes,
i.e. νky=0 = 0. The only possible way for the zonal flow to relax is via KH instability.

2. Quenched interchange: the curvature term g is set equal to zero before the trans-
port barrier relaxation, in such a way that the impact of the interchange and KH on
the potential spectrum can be separated.

In both cases, we can conclude that the role of KH in damping the ZF is negligible.

For case (1), i.e. collisionless ZF, if the viscosity term is set to zero, νky=0 = 0, the
system is locked in the zonal flow regime until the turbulence is totally suppressed. For
the chose case, the ZF sink is controlled by the viscosity term. The resilience time of the
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6.1. MECHANISM DRIVING THE ZF DYNAMICS

zonal flows is defined by the viscosity term.

For case (2), i.e. quenched interchange, once the driving force is switched off, g = 0,
turbulence starts decaying. When the turbulence is linearly suppressed, one can observe
that the most excited modes in the spectrum corresponds to the one excited by KH, as
foreseen by the linear analysis (see fig.6.4). The KH instability impact on the spectrum is
negligible compared to that of interchange instability. Only by suppressing the interchange
drive, can one observe the KH modes appearing.

Figure 6.4: (a) the KH instability growthrate calculated by the linear analysis in function
of kx, ky, (b) the potential spectrum in function of kx, ky after switching off the turbulence
driving

6.1.2 RS sink or source of ZF: study of three modes coupling

In this section, we address the role of non linear coupling as zonal flows source and sink.

Starting from the TOKAM2D equations and assuming the absence of interchange
forcing, the vorticity equation is derived as following

∂tW + [φ,W ] + g∂yn = ν⊥∆⊥W + j (6.3)

where W is the vorticity W = ∆⊥Φ, x and y, the space coordinates corresponds to the
poloidal angle and radial direction, g is the curvature term and j is the parallel current
loss. The convective turbulent transport [Φ,W ] = ∂x(W (−∂yΦ)) + ∂y(W (∂xΦ)) competes
with the small scale diffusive transport with coefficient ν. The loss term is defined such
that < j >y= 0. Averaging along the flux surfaces, there is no current loss in parallel
direction and the zonal flows Vz = ∂x < Φ >y evolution can than be rewritten as

∂tVz + ∂xRS − ν∆xVz = 0 (6.4)

where RS(x) =< ∂xΦ̃∂yΦ̃ >y is the Reynold stress term and Φ̃ = Φ− < Φ >y is the
potential fluctuations.

The interplay between zonal and turbulent modes can be addressed in the framework
of non linear three mode coupling: the zonal flow, the streamer and the more homogeneous
turbulent mode, respectively Φz(κ, 0),Φs(0, ks),Φt(κ, ks).

Two cases of study are proposed, comparable to the regimes previously mentioned:
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(a) The condensation of the ZF. In the case where the streamer Φs represents
the equilibrium profile and Φz,Φt are the small amplitude perturbations. If the
growthrate is positive the turbulence is transferring energy to ZFs.

(b) The Kelvin Helmoltz (KH) instability. The ZF mode is the equilibrium pro-
file and Φz,Φt are the perturbations. Positive growthrate means that the ZF is
transferring energy to turbulence.

Let us first consider the case (b) where the Kelvin Helmoltz instability is the primary
focus. We can study such instability in a more general way defining the perturbations
as φl(kxl, ky), φl+1(kxl+1, ky), where kxl = lκ with l = [0, inf] with l ∈ N, the dispersion
relation can be rewritten as

[γ +
γl + γl+1

2
]2 = −VlV ′

l k
2
yκ

2|Φz|2 − γlγl+1 +
(γl + γl+1)

2

4
(6.5)

where γi = νk2i + σ/k2i , k
2
i = k2xi + k2y with i = l, l + 1 and coupling terms are Vl =

(

k2l − κ2
)

/k2l+1, V
′
l =

(

k2l+1 − κ2
)

/k2l . The instability condition is then −VlV ′
l k

2
yκ

2|Φz|2−
γ1γl+1 > 0. If we define Rl = −VlV

′
l k

2
yκ

2|Φz |2

γlγl+1
, then Rl > 1 is the instability condition,

which leads to define three new variables Xl, Yl, Zl such that X2 =
k2xl+k

2
y

K2 , Yl = kxl
κ

and Z2
l = X2

l − Y 2
l =

k2yl
κ2

. Let be k̄ such that νk̄2 = σ
k̄2

. In this way we rewrite

Rl = h2F (x, y, l)/H(X, y, l) such that

F = −VlV ′
l

( |Φz|κ4
klkl+1

)2
= (X2

l − Y 2
l )(X2

l − 1)(X2
l + 2Yl) (6.6a)

H = γ1γ2

( σ

klkl+1

)2
=
(k4l
k̄4

+ 1
)(k4l+1

k̄4
+ 1
)

; h2 = |Φz|2
κ8

σ2
(6.6b)

By definition H and h2 are positive and X2
l ≥ Y 2

l , therefore Rl is positive if (X2
l −1)(X2

l +
2Yl) < 0, which corresponds to two possible cases

Y 2
l + Z2

l < 1 ∩ (Yl + 1)2 + Z2
l > 1 or Y 2

l + Z2
l > 1 ∩ (Yl + 1)2 + Z2

l < 1 (6.7)

In fig.6.5(a) the growthrate amplitude in function of the perturbation wave number is
plotted. Additionally, more one couple of modes can be taken into account. The following
linear system is derived set of coupled equations then describes the system:











Ω1 V1 0 · · · 0
−V ′

1 Ω2 V2 · · · 0

0
. . .

. . .
. . . Vn
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n Ωn





















Φl

Φ2
...

Φn











= 0

Solving the dispersion relation, one observes that the unstable spectrum region is ex-
pands in kx the number of coupled perturbations increases. Conversely, the condition
γ > 0 => |ky|/|κ| < 1 still holds (see fig.6.5(b)-(d), where γτ‖ is plotted in function of
kx, ky respectively in the case of three, four and five modes contribution).

If the same procedure is repeated but considering the streamers as equilibrium condi-
tion and Φz,Φt as perturbations (case (a)), the opposite condition is recovered: the region
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TURBULENCE-DOMINATED TO ZF-DOMINATED REGIME

Figure 6.5: (a)the linear growthrate γτ‖ in function of ky and kx in case of 2 coupled
modes, (b) 3 modes, (c) 4 modes and (d) 5 modes

Figure 6.6: (a) evolution in time of the poloidal spectrum ky if a streamer Φs1 or (b) Φs2

is perturbed,(c) evolution in time of the radial spectrum kx if a zonal flow Φz1 or (d) Φz2

is perturbed.

of spectrum of positive growthrate is constrained by |ky|/|κ| > 1.

To verify the analytical observation, the two regimes are now modeled. For (b) case,
a equilibrium profile Φz(κ = 0.024, 0) is assumed and two cases with different streamer
perturbation are considered Φl = Φs1(0, κ/2),Φl+1 = Φs2(0, 7/4κ). From fig.6.6(a)-(b) we
can observe that the perturbation Φl is growing according to the linear analysis predic-
tion, i.e. the growthrate is approximately γτ‖ ≈ 4 · 10−8. Conversely, the streamers with
poloidal size smaller than the ZF radial width is damped.

If one considers the streamers like mode Φs(0, ks = 0.024) as equilibrium condition and
two cases with different zonal flows perturbations, respectively Φz1(ks/2, 0),Φz2(7/4ks, 0).
One can observe that the zonal flow is excited only if its radial width is larger than the
poloidal width of the streamer, fig.6.6(c)-(d).

One can then separate the streamers modes into two different groups, the ’B-modes
region’ and ’S-modes region’. ’B-modes’ represent the big scales structures, i.e. the modes
such that ky < κ. The B-modes cannot act as a source for zonal flows. The ’S-mode’
represent the small scale structures, such that ky > κ, the S-modes transfer energy to the
zonal flows and cannot act as a sink for zonal flows.

6.2 Control of the transition from turbulence-dominated to

ZF-dominated regime

We present here the transport regimes accessed by the TOKAM2D model, namely turbulence-
dominated and ZF-dominated regime. The key parameter controlling the transition is
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defined.

Figure 6.7: potential spectrum variation for the standard case (black line), case(1) (red
line) and case(2)(red dotted line)

Departing from the analytical works, detailed in the previous section, one can now
identify in TOKAM2D the impact of B-modes and S-modes in the interplay between
zonal flows and turbulence. The respective importance of the S-modes and B-modes re-
gions can be controlled via k̄ = (σ/2ν)1/4, the least damped mode. If the S-modes, namely
the source for zonal flows, is dominant, the zonal flows govern the transport properties.
Conversely, if the B-modes are dominant, turbulence then characterizes transport.

Two extreme cases from the standard case, where the value of σ has been varied in
order to modifies the size of the most unstable mode, are compared with the reference
case. In case (1), we increase the value of σ such that σ1 = σstd · 16 and the most unstable
wave vector is varied from k̄std to k̄1 = k̄std · 2, where std stands for reference (standard)
case defined in the table 5.1. The potential fluctuations spectrum is plotted on in fig.6.7
(black line).

In case (2), σ is reduced such that σ2 = σstd/16, so that the most unstable wave vector
is decreased to k̄2 = k̄std/2. Comparing the potential fluctuation spectrum with case (1),
the typical turbulence size is increased as well as the ratio between B and S modes. From
the definition of B-modes and S-modes, one expects that in case (1) the transfer of energy
from turbulence to ZF is increased from standard case, while decreasing for case (2).

A good agreement is found between the simulation and the analytical work. The y-
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6.2. CONTROL OF THE TRANSITION FROM
TURBULENCE-DOMINATED TO ZF-DOMINATED REGIME

Figure 6.8: (a) 1/Ln, (b) W, (c) Rb (withe color corresponds to Rb = 1, black to Rb = 0)
for the standard case, (d) 1/Ln, (e) W, (f) Rb at large injection scale (case 2), (g) 1/Ln,
(h) W, (i) Rb at small injection scale (case 1).

averaged density gradient 1/Ln, fig.6.8(a)-(d)-(g), and the y-averaged vorticity < W >=
−∂xVz, fig.6.8(b)-(e)-(h), of the three cases are shown. One can readily observe how
the resilience time of the barrier is strongly effected. In case where S modes dominate
(case 1), one can identify the large scale patterns that govern the transport properties.
One turbulent burst event is detected and stable jets develop. The position of the latter
does not vary in time. On the contrary for case (2), when the B modes dominate, no
sharp variation of the density gradient can be identified and the ExB shear patterns are
continuously reorganized, so that no isolated relaxation event can be identified. Even if
signatures of large scale reorganization still appear, one can observe that these resilient
structures are not able to deplete all the turbulence energy. Finally comparing the barrier
efficiency Rb, fig.6.8(c)-(f)-(i), we can see that, in the regime dominated by the S modes,
the turbulence is suppressed by the ZF stopping capability, while in the other case the
turbulence is the main feature of transport.
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6.3 TOKAM2D versus Hagesawa Mima

Hagesawa Mima Based model and TOKAM2D models present strong similarities in terms
of large scale pattern formation. However a proper comparison of these models has not
been undertaken yet. In this section, we address the mechanism controlling the transition
from turbulence-dominated to ZF-dominated.

In the astrophysics and geophysics framework, the jets-like dynamics [MBS05, VS05,
PK13, TM13, SP08] are often studied via two dimensional equations based on the Hage-
sawa Mima model. Such equations present also strong similarities with the TOKAM2D
model, if we assume that the density and electric potential fields are proportional to each
other, i.e. n ∝ φ, which is the case for adiabatic electrons.

Let us consider the case with energy injection at small scales, linear damping by
friction, barotropic, 2D vorticity for a fluid on a rotating sphere,

∂tW + [Φ,W ] + β∂x(∇−2W ) = D + ξ (6.8)

where W is the vorticity, D the sink term, including large- and small-scale and ξ is a forc-
ing at prescribed wavelength. Considering that a coupling term with the pressure equation
is not included in the model, an ad-hoc forcing is used to inject energy into the system.
In most of cases D = ν∇2ζ + λζ, namely the large scale drag is linear (i.e. comparing
the following equation with the TOKAM2D vorticity equation, one can recover that the
small scale friction λ corresponds to σ∇−2). The β-term, representing the gradient of
the Coriolis parameter, corresponds to the curvature term g in TOKAM2D. With this
notation the x axis corresponds to the y axis in TOKAM2D and viceversa.

In such model that can be seen as a simplified version of TOKAM2D, the system
can shift between two regimes: friction-dominated regime and zonation or zonostrophic
regime, dominated respectively by isotropic turbulence and by jet-like patterns.

Given the energy spectrum defined by:

E(n) =

n
∑

m=−n

ε(n,m) =
n(n+ 1)

4

n
∑

m=−n

< |φmn |2 > (6.9)

where ε(n,m) the energy density spectrum for mode (n,m), being n the zonal wavenum-
ber and m the total wavenumber, respectively kx, ky in TOKAM2D. The energy density
spectrum for zonal flow modes is defined by EZ = ε(n, 0) (zonal energy), hence the energy
for the non zonal or residual mode as ER(n) = E(n)− EZ (residual energy).

Two different energy spectra have been identified for the zonation and friction-dominated
regime. On one hand, the energy spectrum of the zonostrophic regime presents two differ-
ent slopes describing the inverse cascade, which are labeled the isotropic and anisotropic
slopes (see fig.6.9) [SGD02]. The two slopes are due to different dominant modes in the
two regions of the spectrum, namely the zonal Ez and residual modes Er.
On the other hand, if the spectrum follows the classical Kolgomorow power law n−5/3, the
system is in the friction dominated regime.
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Figure 6.9: the Galperin energy spectrum for the zonostrophic regime [GSD10]

In order to move from one regime to the other, three key dimensional parameters de-
pending on the input parameters are defined: the Rhines scale nR, the β-scale nβ and the
source scale nξ.

nR characterizes the large-scale flow, i.e. in the zonostrophic regime it would corre-
spond to the typical width of the zonal jets. It is defined as nR =

√

β/(2vrms and thus
gives the ratio between the non linear and the linear β term. Such a definition does not
take into account the large scale dissipation that actually is a key parameter in setting an
upper bound to the inverse cascade. One can then redefine vrms =

√
2E, where the energy

level can be rewritten in function of the control parameter such as E = ǫ/2λ, being ǫ the
energy injection rate, and the Rhines number [VM93] as

nR = β1/2(λ/4ǫ)1/4 (6.10)

Another important scale is nβ that characterizes the anisotropization threshold of the
inverse cascade, defined as

nβ = 0.5(β3/ǫ)1/5 (6.11)

Finally nξ represents the scale of the injected energy, in this case an input parameter.

An accurate criteria is used to define the transport regime: if RB = nβ/nR, named as
Zonostrophy index, is larger than 2.5, corresponds to the zonostrophic regime or zonation,
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i.e. governed by zonal flows. Such a necessary condition can be rewritten as nR < nβ < nξ,
namely the energy is injected at small scales, then by inverse cascade it yields the isotropic
spectrum from nβ to nξ. It is there necessary a range of modes in the zonostrophic range,
the anisotropic region(nR − nβ), to access the zonation regime.

6.3.1 Comparison between Hagesawa Mima Based models and TOKAM2D

To analyze the TOKAM2D results given the analysis of the HMB model, we present here
a comparison between the zonation and friction-dominated regimes observed in the HMB
context and the ZF-dominated and turbulence-dominated regimes in TOKAM2D.

We first present the energy spectrum and the zonostrophic index as introduced in
the previous section. We choose the two simulations that characterize the turbulence-
dominated and ZF-dominated (fig.6.8).

Figure 6.10: the zonal (red) and residual (black) energy spectrum for zonation (a) and
fully turbulent (b) regime in the edge in function of the zonal wave number n, i.e. kx

Splitting the energy spectrum in zonal flow EZ(kx) and residual Er(kx) contributions,
fig.6.10(a)-(b), one can observe how the zonal and residual energy spectra change with σ.
In the first case, fig.6.10(a), the energy in the zonal flow spectrum slope becomes larger
than that of the residual at large scale, as predicted for the zonation regime. In the sec-
ond case, fig.6.10(b), reducing σ, the residual energy remains larger than Ez(kx) until the
largest scale kx = 2π/Lx.

On one hand, we can observe a good agreement between the spectrum predicted by
Sukoriansky [SGD02] for the HMB case and the TOKAM2D case. For the ZF-dominated
regimes, the spectrum is governed by two different slopes. For the turbulence-dominated
regime, a single slope governs the transport.

On the other hand, one can observe that at largest scale the zonal energy spectrum is
higher than the residual one in both cases in the limit of kx → 0. Such result is due to
the fact that, in the edge, no damping term is acting on the ZF mode.

We list here the differences between TOKAM2D and HMB model that have to be
taken into account in order to rewrite nR, nβ and the consequent zonostrophic index Rβ :
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• Drag term. It is not linear, the so-called hypofriction term does not act in the
same way for all modes, but act selectively on the smallest modes of the system and
then yields to a dissipation free region.

• No ad-hoc vorticity source. The energy is injected via the g∂yn term, which
couples the vorticity with the density equation. The energy injection rate ǫ is not a
free parameter.

• No large scale damping for the ZF. The Rhines scale, controlling the halting
scale of the inverse cascade is equal to zero for the ZFs, nR = 0.

• Anysotropic injection scale. We need to take into account that the energy in-
jection nξ = k̄ typical scale is much larger that the one used in the HMB model,
additionally the forcing is already anisotropic. Therefore we assume that nβ can be
defined as nβ = nξ = 1/k̄ = (ν/2σ)1/4, the energy injection scale

The Rhines scale is calculated near marginal instability as the balance between g and
dissipation scale, i.e. nR = (νσφ)/g. The zonostrophic index can be then calculated as
Rβ = gσ−3/4ν−5/4. The transition from turbulent to zonation regime should then be
achieved either by decreasing the g term or increasing the dissipation.

According to the Rβ definition, by increasing σ, the zonation index is decreased and
the system moves towards a fully turbulent regime. Conversely, the transition observed
in TOKAM2D shows that the fully turbulent regime can be accessed only by decreasing
σ. The definition of Rβ is not valid to classify the different regimes accessed in TOKAM2D.

One can expect that such contradiction is related to the ZF condition: by varying σ,
both the anysotropization scale and Rhines scale are changed, except for the ZFs, where
the Rhines scale is constrained to be zero. Considering nR as constant, we expect to con-
trol the transition by varying nβ . Such observation is consistent with the energy transfer
mechanism we previously presented and the definition of the B and S-modes: by increasing
nβ , which corresponds to increasing σ, the inverse cascade region that favors the transfer
of energy from turbulence to zonal flows, is larger and the zonal flows dominate transport.
Even if Rβ cannot be used as valid index to identify the two regimes, an agreement on the
crucial role of nβ for our model is found.

6.3.2 Zonation vs ZF-dominated regime

The transition from turbulence- to ZF-dominated can be achieved in the edge and is con-
trolled by the typical forcing scale k̄. If the forcing scale is decreased, the confinement
is improved and the ZF-dominated regime is accessed. Conversely, decreasing the forcing
scale, the system is governed by turbulence.

The Rβ index definition appears no more valid in the framework of TOKAM2D model
both in the edge and SOL (detailed in the Annex E). Such classification appears then to
be correct only in the framework of an ad-hoc forcing term, decoupled by the system. In
TOKAM2D model, the drag term controls not only the large scales damping, as in the
Hagesawa Mima case, but also the injection scale nξ = k̄ =

√

σ/2ν. The forcing is not
decoupled from the system. However, for the edge region, the zonal flows are no more
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dependent on σ. Hence, the zonation regime is achieved only by constraining the zonal
flow drag term to zero, i.e. σ(Φ− < Φ >y).

An ad-hoc forcing should be implemented in TOKAM2D in order to properly verify
the zonostrophic index and better identify the role of the forcing in accessing the zonation
regime.
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7.1. CAN A 2D MODEL BE SUFFICIENT TO SIMULATE THE
PEDESTAL FORMATION?

It has been observed that a transport barrier can self-generate at the edge of the
plasma, improving the confinement property of the machine [WBB+82]. The pressure is
confined by the barrier inside the separatrix, i.e. at the interface between open and closed
field lines. A steep gradient of the pressure profile, also known as pedestal, appears there.
This regime is named H-mode, where H stands for High confinement. Compared to the
L-mode regime, Low confinement regime, where no barrier appears at the separatrix, the
confinement time is doubled.

The transition from L- to H-mode appears to be controlled by the injected power. The
power threshold is defined by an empirical scaling law. A complete understanding of the
mechanism driving the transition is still missing. It has been admitted within the fusion
community that the pedestal development should be addressed by taking into account the
real geometry of a Tokamak and accurate particle sources. These considerably increase
the complexity of the model and the computational effort and narrow the relevance of this
physics to Tokamak plasmas.

We present here a self-organized pedestal formation in order to seek for the simplest
possible model isolating the crucial elements of the underlying mechanism. The result is a
universal transition from turbulent (L-mode) to ZF-dominated regime (H-mode). In the
H-mode, the pedestal is localized at the interface between regions where different zonal
flow damping appears, i.e. between edge and SOL. The model provides the key elements
to understand the mechanism of LH transition and gives a new tool to answer some of the
main questions related to the H-mode, such as:

Can a 2D model be sufficient to simulate the pedestal formation? We identify
the necessary elements to model the pedestal via a 2D turbulent code. A rich dynamics
is observed in the model, with turbulence and transport barrier interplay.

Can the LH transition be accessed by the model? The conditions for the barrier
to be generated are identified and the parameters that govern the energy exchange from
turbulence to the ZF are defined. The pedestal height and width are analyzed, one finds
in particular that the barrier expands on both sides of the interface.

Are the numerical results comparable with experimental observations? Char-
acteristic properties of the LH transition observed experimentally are found in TOKAM2D
model. The power threshold scaling is rewritten in function of the model parameters to
identify if the LH transition controlling parameters found in the model agrees with the
empirical law.

7.1 Can a 2D model be sufficient to simulate the pedestal

formation?

The key features that make TOKAM2D suitable for the study of the pedestal formation
are presented here. The dynamics of pedestal generation and saturation are introduced.
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Figure 7.1: (a) pedestal formation in density profile for different positions of the separatrix,
plain xSep = 110, dashed xSep = 140, desh-dotted xSep = 180(b) the density gradient
profile of the shifterd radius ,(c)a zoom on the pedestal region

7.1.1 The pedestal at edge-SOL interface

TOKAM2D can model the transport in the edge and SOL regions. The change in field line
properties at the separatrix is taken into account by a mask function χ(x), χ(x > xSep) = 0
and χ(x ≤ xSep) = 1, acting on the parallel transport terms, see Section 2.3.

We present here the first simulations of TOKAM2D edge & SOL, where closed (edge)
and open filed lines (SOL) region are simulated together. A barrier is readily observed at
the interface between the two regions, fig.7.1(a).

In order to verify the consistency of the pedestal position, three different density pro-
files averaged in time and poloidal direction are shown on fig.7.1(a)) where only the posi-
tion of the separatrix xSep is modified in the simulations, i.e. xSep = 0.6 xa (continuous
line), xSep = 0.8 xa (dashed line) and xSep = xa, (dash-dot line). One readily observes
4 common features for the different simulations: (1) the barrier characterized by a steep
gradient is localized at the separatrix (2) the density e-folding length in the SOL is un-
changed, (3) the pedestal region with increased density gradient at the separatrix extends
both in the edge and in the SOL region, (4) other regions in the density profile exhibits
corrugations (enhanced gradients) in the edge region which drive staircase like profiles
[DPDG+10, DPHG+15]. In order to quantify the extent of the barrier in the edge &
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SOL regions, we shift the profiles to the same separatrix position and compare the density
gradient profiles 1/Ln = −∂xn / n, fig.7.1(b). The strong density drop observed in the
pedestal leads to a marked peak in the profile of 1/Ln localized at the separatrix. The
barrier extends into both the edge and SOL region and its width is observed to range
between 5 % and 10 % of the minor radius in these simulations, fig.7.1(c).

SOL-transport with the present model is comparable to that previously reported when
only the SOL region was addressed [SG98, GNH+12] and described in Chapters 3&4. It is
characterized by avalanche transport, hence ballistic propagation of fronts and holes, the
so-called ’blobs’ or filaments. Density and potential fluctuations are large but the mean
value of the latter weakly departs from the equilibrium value.

Conversely, transport in the edge region appears to be controlled by the zonal flows.
These generate transport barriers (TBs), where the transverse turbulent avalanches are
damped and where the background diffusive transport governs a larger fraction of the
particle outflux. Regions with large zonal flows shear are correlated with the corruga-
tion of the profile, see fig.7.2(a)&(b). They are characterized by a stopping capability of
most of the avalanches both overdense from uphill and holes from downhill. The simula-
tion is characterized by a slow reorganization of the zonal flow pattern as readily observed
on the contour plot of the zonal flow shear superimposed on the 2D plot of 1/Ln, fig.7.2(b).

Figure 7.2: (a) 1/Ln (gray colormap) and ExB shear (red contour) reorganization in time
and space and (b) time and y-averaged profile of the ExB shear (plain black) and density
gradient 1/Ln (red circles)

Two features are outstanding, the evolution towards a dipolar structure of < Φ >y in
the edge region while the structure of the maximum value at the separatrix weakly evolves.
When a statistical steady state is reached, one can average the profiles over time, fig.7.2(b)
and fig.7.3(b). One can see that the total flux Γtot is radially constant in the edge and
decays in the SOL. The turbulent contribution Γturb exhibits well defined minima, and
conversely large values of the diffusive flux Γdif , of 1/Ln and of the zonal flow shear.
Narrow regions with strong turbulent transport are localized in the vicinity of the zero
shear of zonal flow layers.
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Figure 7.3: (c) parameter Rb used as figure of merit for the transport barriers (white
corresponds to Rb = 1, no barrier, black to Rb = 0, barrier),(d) Radial flux profiles of
total flux (black plain line), turbulent flux (blue line & diamonds) and diffusive flux (red
line & circles)

7.1.2 Quasi periodic barrier relaxation

In steady state condition, a quasi periodic relaxation of the barriers is observed. We ana-
lyze here the barrier relaxation dynamic in time and space.

To quantify the transport barriers stopping capabilities, one defines the ratio between
the y-averaged particle fluxes Rb = Γturb/Γtot [FCG+13]. Rb varies between 0 and 1 in
steady state and is a measure of the effectiveness of the barrier in reducing turbulent trans-
port. One readily observes on fig.7.3(c) that Rb changes in time and space (x-direction).
In space, one finds a dipolar structure with four transport barrier regions, a pedestal
at the separatrix that is relatively narrow, two broad barriers in the edge and finally a
small transport barrier towards the source region that is strongly linked to the bound-
ary conditions of the model. In time, one can observe quasi-periodic relaxation events
characterized by strong turbulent transport across all the barriers. While these events
are globally quasi-periodic, the detailed time evolution is specific of each event made of
consecutive avalanches that do not extend throughout the edge region[KDK+14, RM11].

The relaxation processes in the edge are also correlated with the large transport bursts
in the SOL region, see fig.7.4(a). As can be observed on the time traces, the edge region
exhibits a sawtooth structure corresponding to storage and release process by the TB
while the SOL region exhibits a pulse-like variation since the SOL acts as the sink for the
particles released at each relaxation, fig.7.4(b)&(c).

7.2 Can the LH transition be accessed by the model?

We present here (1) which are the parameters controlling the pedestal height. Furthermore,
(2) via a 0-D model, the dynamics of turbulence and zonal flows is characterized and impact
of the control parameters on the transition from L to H regimes is investigated.

7.2.1 The condition for pedestal generation

An intuitive scheme to understand how the turbulence interacts with the zonal flows is in-
troduced in fig.7.5. It summarizes the main features observed in the previous chapter and
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Figure 7.4: (a) 1/Ln evolution in time and radial direction: the different transport reor-
ganization in SOL and edge region, evolution of 1/Ln in time at given radial positions in
the edge (b), and SOL (c).

describes the energy transfer between turbulence and ZFs. The driving of the turbulence
drive is controlled by the density gradient (Ln). Increasing the density gradient, turbu-
lence is increased and consequently the Reynolds stress term, responsible for the energy
transfer between turbulent and zonal modes. Here a bifurcation appears, the turbulence
can be dominated by the large scale B modes or the small scale S modes. One one hand,
the S modes act as source of zonal flows, the exchange energy is then from S modes to
ZF, the S modes are damped by the transport barrier and the zonal flow energy increases.
On the other hand, the B-modes energy cannot be transferred to ZF modes, but only an
inverse exchange is allowed, i.e. from ZF to B modes. In our simulation we do not observe
the latter energy exchange, because it requires very large ZF shear that do not develop.
This is due to two different aspects. The ZF source saturates prior to the threshold and
the viscosity governs a large enough damping of the ZF to prevent a gradual build up of
the ZF amplitude. The 0-D model also requires that, one determines the interaction rule
between the ZF and B-modes, the two classes of modes having comparable size in the
radial direction. One can show that the shearing rate capability requires larger and larger
shearing rate as the mode to be stabilized is more extended. One can then define the S
modes as the class of modes that are stabilized by the zonal flows and thus set therefore
the energy gained by the zonal flows, by definition too small to stabilize the B modes.
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Figure 7.5: Intuitive scheme to explain the exchange of energy from the interchange
driven turbulence to the zonal flows

The pedestal generation appears to be connected with the turbulence dominating scale:

• S modes dominating. If the spectrum (black line in fig.7.6(b))is characterized
by a gap between S and ZF modes, hence with weak B-modes turbulence. The S-
region transfers energy via non linear coupling towards the ZF, which tends to store
the energy and quench the turbulent transport dominated by S-modes. The ZF are
gradually damped by the viscosity, until a relaxation event is triggered and the TB
relaxes. ZFs are regenerated by the S-modes turbulent activity and the TBs relax
in a quasi-periodic fashion. In this regime, ZF-dominated, the ZF damping rate is
much smaller than the ZF growth rate. Averaging along several relaxation events,
one can observe that turbulence is quenched by the ZF and a pedestal is formed at
the separatrix, fig.7.6(a).

• B modes dominating. If the gap between S and ZF regions is reduced, hence
increasing the B-modes amplitude, (red line in fig.7.6(b)), the system enters in the
turbulence-dominated regime. The B-modes turbulent activity is not affected by ZF
shearing. There is then an increase of the frequency of the turbulent bursts to the
point where they cannot be isolated from the steady state transport activity and the
pedestal is smeared-out.

If in the edge the ZF-dominated regime can be accessed, the pedestal is formed. One
can then identify this regime comparable to the H-mode. Conversely, if the edge regime is
turbulence-dominated, the pedestal is not formed, the regime is L-mode like. The pedestal
appears at the interface between two regions with different ZFs dynamic: edge, where ZF
can govern the transport, and SOL, where ZF are damped and turbulence governs the
transport properties. When turbulence governs the transport also in the edge, no clear
interface between edge and SOL can be defined, no pedestal is formed. To move from one
regime to the other we need then to control the ratio between S and B modes, namely the
turbulence injection scale that is defined by k̄ = (σ/ν)1/4.
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Figure 7.6: (a) Density gradient profile and (b) electric potential spectrum : zonation-
dominated regime (black plain) and turbulent-dominated regime (red circles).

7.2.2 A reduced model to identify the key feature of the transition

The dynamics between zonal flows and turbulence energy exchange is conventionally cap-
tured by a 0-D predator-prey model [KD03].As shown in fig.7.10(a), in TOKAM2D sim-
ulations such predator-prey dynamics between turbulence and ZF can be also identified.

Figure 7.7: Time trace of zonal flows ZF = |FT (VZ)| (green line) and turbulence T =
√

|FT (RS)|(blue line), FT stands for Fourier Transform

The predator prey approach is equivalent to a reservoir model. Each reservoir, and
similarly each species, are then assigned a particular function in the overall pattern of
exchange. The basic model is an interplay between turbulence T and the gradient ∇n in
the case of TOKAM2D. Since the zonal flows are generated by the turbulence and control
the turbulence, we add them as particular species, ZF. Finally we split the turbulence
T into two subspecies S and B that have a different interaction with the ZFs. Indeed,
the interplay with the ZF is restricted to S, the B modes being the turbulent modes that
weakly interact with the ZF. The model thus couples the gradient ∇n, the ZF and the
S and B modes. The gradient ∇n is governed by a balance between the source P and
transport, both turbulent T = B + S and collisional T ∗. The growth rates for S and B
modes are γs and γb respectively and exhibit a threshold in the gradient, ∇n∗. Non-linear
saturation of these modes are used, proportional to αs and αb. The control parameter of
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Figure 7.8: Limit cycles: (a) 2D simulation, (b) 0-D model

ZF generation by S is β. The B modes take part in the saturation mechanisms given the
1/T dependence of ZF generation and ZF shearing capability. The ZF sink is governed by
the viscosity ν.

∂t∇n
∇n =

P

∇n − (T + T ∗) (7.1a)

∂tZF

ZF
= β

S

T
− ν (7.1b)

∂tS

S
= γs(∇n−∇n∗)(1− αsS)− βZF

T
(7.1c)

∂tB

B
= γb(∇n−∇n∗)(1− αbB) (7.1d)

The limit cycles of the ZF-T interplay in simulations and 0-D model are compared in the
ZF − T plane, fig.7.8. ZF and T are readily determined by eq.(7.1) for the 0-D model.
For the simulation output of the interchange turbulence, we define ZFi = |FT (Vz)| and
T 2
i = |FT (RS)|, where FT is the 2D Fourier mode energy of the zonal flow velocity Vz

and Reynolds stress RS respectively.

The different positions of the cycles in the ZF-T plane are determined by the control
parameters: from a reference case, blue trace, increasing the curvature term g, red trace,
or decreasing σ, black trace, fig.7.8(a). Increasing g in the simulation leads to an increase
of both turbulence and zonal flows. The latter increase being more important, the ratio
of ZFi/Ti also increases, fig.7.8(a) (red line)). A comparable behavior is obtained by in-
creasing γs and γb, namely the growth rate of the interchange instability -governed by g -
fig.7.8(b) (red line). Decreasing σ governs a decrease of k̄ so that the spectrum maximum
shifts towards the low ky values, reducing the ZF-S gap. The turbulence amplitude is
increased as well as the ratio between B and S modes, fig.7.8(a) (black line). Consistently,
this behavior is recovered in the 0-D model by reducing αs and αb, the non-linear turbu-
lence saturation, as well as the critical gradient ∇n∗. A similar effect can be obtained by
reducing the critical gradient, ∇n∗
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7.3 Are numerical results comparable with experimental

observations?

We compare here some features of the LH transition observed both in the model and in
experiments, such as (1) the spectrum condensation and (2) the LCO cycle. Finally (3)
a comparison between the parameters governing the transition found empirically and in
TOKAM2D model is carried out.

7.3.1 The spectrum gap

Let us considered here the observation made on the H1 stellarator at a transition from L
to H confinement [SXP05]. As shown in fig.7.9, the system reorganizes spontaneously from
the L-mode (1) broad spectrum of fluctuations, which extends from small to large scale,
to H-mode, the turbulence spectrum shrinks towards a unique injection energy scale and
the energy is stored at largest scale possible (ZF). These changes present strong similarity
with that observed in TOKAM2D regarding the transition from no-pedestal to pedestal.
Indeed, in the latter case, large scale of zonal flows only occurs if a gap between the fluc-
tuation spectrum and that of the the poloidal flows is observed.

Figure 7.9: Spectrum of the electric potential in function of k in the L-mode (blue line)
and H-mode with the evidence of the characteristic gap (red line) [SXP05]

7.3.2 LCO regime: predator-prey dynamics between turbulence and ZF

Predator-prey dynamics between turbulence and ZF have been observed in NSTX, AUG
[CAR+11], in TJ-II [EHH+10], DIII-D [SZR+12] and EAST [XSL+14]. In these experi-
ments, the temporal dynamics of the turbulence-flow interaction is defined as Limit Cycle
Oscillation (LCO) regime. This regime is observed at transition between L and H mode
and is defined as I-phase [XSL+14].
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Figure 7.10: (a) turbulent flux normalized by the density in function of time and radius,
(b) time interval from t/τ‖ = 8 to 10, with turbulence propagating from separatrix towards
the edge and viceversa, (c) from t/τ‖ = 16 to 18, where flux is moving only from the edge
towards the separatrix

The LCO observation made by the gas puff imaging in EAST [XSL+14] shows that the
turbulence recovery appears to originate in the vicinity of the separatrix with clear wave
fronts propagating both outwards into the far scrape-off layer (SOL) and inwards into the
core plasma. In TOKAM2D simulations, fig.7.10, a peak of turbulence originating from
the vicinity of the separatrix has also been observed. It appears that the turbulence from
the separatrix can move outwards into the SOL. However it can only propagate inward
once the barrier has relaxed. The turbulent burst generated at the separatrix does not
appear to generate a barrier relaxation from its position. Rather, it appears to trigger the
barrier disruption further into the plasma edge. However, the breaking point can change
from relaxation to relaxation, as shown in fig.7.10(b)-(c), where the two relaxation events
present different dynamics.

7.3.3 Impact of plasma resistivity on the power threshold

The issue is now understanding how the condition for the pedestal appearance can be
achieved in fusion machines. In experiments the transition from L to H regime is mostly
characterized by an power input threshold.

In TOKAM2D, the transition from L- to H-mode appears to be controlled via an in-
crease of σν = k̄4. The resistivity 1/σ and viscosity ν are a simplified measure of the
collisionality respectively in the parallel and perpendicular directions 1. By decreasing the
collisionality, i.e. increasing k̄, the transition from L to H is favored. Such observations
goes along with the experimental results. The injected power is increased to access the H
mode, therefore the temperature is increased and consequently the collisionality decreased.

In the experiments, several empirical laws to determine the power threshold required

1One can assume that ν is experimentally much smaller than the one used in the model, the amplitude of
this term is constrained by numerical reasons. To study the LH transition, we focus only on the resistivity
term.
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for the LH transition in multi-machines have been found. We present here two such scaling
laws. In the first case the dependence of power threshold on the effective charge, Zeff ,
is studied [mPTDWGpbTT04]. While in the second scaling, a fitting expression for the
input power in function of various parameters has been obtained [MTtICHmTDWG08].

The Zeff scaling

The role of Zeff in the power threshold scaling have been studied, because of the surpris-
ing results obtained in several machines, such as JET [MDH+12] and AUG [RRO+13].
Once the carbon walls of the machines have been replaced with Tungsten, a decrease of
power threshold to achieve the LH transition has been observed. Hence, a dependence be-
tween the effective charge Zeff and the LH power threshold has been found: Pthr ∝ Z0.7

eff

[mPTDWGpbTT04]. In the plasma the resistivity η = 1/σ into parallel direction is pro-
portional to Zeff , η ∝ Zeff [ZMB+90]. This experimental result thus seems to suggest that
lowering the plasma resistivity tends to also lower the H-mode power threshold. However,
it does no explain why the confinement improvement of these H-modes is reduced com-
pared to the experiments with carbon target plates.

7.3.4 Power threshold derivation from TOKAM2D vorticity equation

We consider the vorticity equation for the edge region

∂t∆φ+ [φ,∆φ] − ν⊥∆2φ+ g∂yn− σφ(φ− < φ >) = 0 (7.2)

, i let us assume a scale separation such as φ = (φ̃+ φ̄), where φ̄ =< φ >y and φ̃ = φ− φ̄
, consequently the velocity can be rewritten as ∇φ̄ = vZ and∇φ̃ = vF , where F and Z
stands respectively for fluctuation and zonal component. We define the kinetic energy of
the fluctuation and zonal component as εZ = v2Z and εF = v2F . The vorticity equation can
be rewritten as

∂tvZ = ∂x < RS >y −ν⊥∆vZ (7.3)

∂t∇vF = [φ̃, W̃ ]− ν⊥∆∇vF − g∂yn− σφ̃ (7.4)

where RS = −∂xφ∂yφ. If one multiply the eq.7.3-7.4 respectively for vZ and vF , one can
rewrite the two equations in function of εZ and εF

∂tεZ = ∂x < RS >y vZ − ν⊥∆εZ (7.5)

∂tεF = −PF→Z − (γ − γW )εF (7.6)

where if we assume ∂yn = ∂yφ, the forcing term vF g∂yn can be rewritten as γεF con-
sidering γ =

√
g, while γW = ν∆ +σ/∇ includes the damping terms. The non linear term

are defined by PF→Z but I do not have any idea what is inside.

If we assume a gap between the zonal flow and fluctuation scale as observed during
the H mode (a gap appears between fluctuation and zonal mode and represent a necessary
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condition for the sustainability of H mode ) one can solve the two equations independently.
We define the conditions for the H mode to be stable as:

∂tεZ = 0 (7.7)

∂tεF < 0 (7.8)

with the first condition ∂tεZ = 0 the zonal flow energy to be stable (damping and forcing
tem are balancing out) and with the second condition ∂tεF < 0 we assume that flucutations
should dissipate. One can rewrite the H mode condition as

∂x < RS >y vZ = ν⊥∆εZ (7.9)

−PF→Z > (γ − γW )εF (7.10)

If we assume that −PF→Z = ∂x < RS >y vZ one can reduce the conditions to one

ν⊥∆εZ > (γ − γW )εF (7.11)

ρ2∗ > ν∗
a γcs
a2κ2

(7.12)

where
a γ
cs

a2κ2
is of order one. This condition is in agreement with the experimental power

threshold law of Suttrop and Martin, if we rewrite the law in function of ν∗ and ρ∗ one
obtain

P

Pthr
∝ ρ0.9085∗ β1.856ν∗−0.5018 (7.13)

Considering that in our model the magnetic effects are not taken into account, if we neglect
the β effect one can recover a comparable relation between ρ∗, ν

∗ with the theoretical one
ρ∗ > ν∗0.55.

7.4 Pros and Cons of reduced model

In Chapter 2, where TOKAM2D model have been introduced, pros and cons of such a
reduced model have been listed. Here, in the last chapter, we present the same section
with the target of summarize the results achieved, the advantages and disadvantages of
such a reduced model in the context of LH transition study.

The role of two regions interface with different ZF dynamics appears to be crucial to
explain the pedestal generation during the LH transition. The TB dynamics is quite com-
plex, namely the barriers can merge, move and finally condense. In space we can observe
the coalescence of different transport regimes, turbulent and diffusive regions alternate.
Also in time a quasi periodic relaxation of barriers appears to be controlled by a predator-
prey mechanism.

With the advantage of using a reduced modes, we are now able to compare our results
with a 0-D model, taking in account the role of turbulence either as sink or source of
ZF. A new mechanism is described to explain the role of RS in ZF cycle. The dynamic
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observed in TOKAM2D gives us a new understanding of the transition. A comparison
with experiments are carried out, in particular strong similarities are found by comparing
the spectrum of potential fluctuations between L and H mode.

However, TOKAM2D does not fit for a comprehensive comparison with experiments.
New ideas can be developed in TOKAM2D to be then implemented in more complex
models. In this framework, the implementation of new boundary conditions taking into
account SOL physics is progressing in GYSELA.
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Chapter 8

Conclusions

In this thesis, we have studied the self-organization of turbulent transport to understand
and control confinement performance in fusion devices, with a strong emphasis towards
the understanding of transport barrier generation.

On the nature of turbulent transport. A standard approach to model the turbu-
lence in fusion plasmas is based on scale separation between microscopic and macroscopic
properties, according to the underlying assumption that a gap exists between these two
scales. Their evolution can then be studied separately, taking into account the impact
of the fluctuations on the mean-field evolution via an effective diffusion, Deff . A first
aspect of the work is to investigate the validity of such an assumption using GYSELA, a
gyrokinetic model of ion heat transport in the core plasma, and TOKAM2D, a reduced
fluid model used to investigate particle transport in the edge plasma. Both models are
dedicated to global and flux driven simulations. The definition of a large scale effective
diffusion coefficient appears then rather artificial for both models, since a strong coarse-
graining procedure is required to recover a linear relation between the flux and gradients.
Furthermore, such a representation does not yield any insight in the behavior of the sys-
tem during transients nor on the underlying transport mechanisms.
A diffusive description does not contain the sufficient information to model the turbulent
transport contribution on the overall confinement time.

Self-organization of turbulence in fusion plasmas. The different self-organization
patterns observed in turbulent transport simulations and their signature in terms of large
scale features, namely transport properties, have been described. Striking features of
self-organization such as (1) avalanches and (2) transport barriers have been investigated
via GYSELA and TOKAM2D. A key aspect of the work is to investigate the role of the
boundary conditions, understood here as the means to drive the system out of the equi-
librium, in the self-organized properties. Regarding the transport barriers it is clear that
self-generated flows are a key aspect that should be addressed in a global configuration
without prescribed gradients, therefore flux driven. The case of avalanches is different
since these are reported in flux tube simulations. We have thus developed TOKAM2D
simulations with two different kinds of gradient driven turbulence: profile driven, such
that a prescribed profile is imposed in the system, and flux tube. In the former case
the equations are modified so that the chosen profile is an equilibrium solution, while in
the flux tube case periodic radial boundary conditions are assumed and linear volumetric
source drives the turbulence. We have shown that avalanches in flux driven are different
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from those in gradient driven simulations.
The symmetry breaking that governs the transport from a source to a sink leads to a strat-
ified media such that the turbulent burst of the avalanche is not homogeneous and exhibits
faster dynamics with shorter life time at a given radius.

Turbulence threshold definition. In gradient driven simulations, by scanning the
forcing, a new region has been identified close to criticality where, even if the system is lin-
early unstable, turbulence is quenched. In this region, the so-called Dimits shift region, it
has been observed that zonal flows quench the turbulence so that the radial transport is re-
duced to very low values. We investigate here the role of criticality in the interplay between
turbulence and zonal flows and in turbulence self-organization in the framework of flux
driven simulation. In the flux driven case, the pressure gradient evolves self-consistently
in time and space via the turbulence feedback. Hence, a more complex dynamics is found
close to criticality: different transport regimes observed with different conditions in the
flux tube simulation are recovered in a single simulation with self-consistent organization
in time and space. No abrupt transition of the turbulent transport takes place at a critical
value of R/LT .
The phenomenology of the Dimits shift is not relevant in global FD simulations and most
likely in experiments where the gradients are not monitored.

The SOL width definition. In the SOL region, transport is governed by avalanches
that exhibit ballistic motion in the radial direction. The transport is then driven by such
large scale events. We then show that the Quasi Linear theory, where the underlying as-
sumption is that fluctuations scale is much smaller than the mean profile, is no more valid
for the SOL. Furthermore, a difference should be made between steady SOL < λSOL >
and a fluctuating SOL λSOL. The standard definition of < λSOL > can be still relevant
for an actively cooled component like the ITER divertor, but is an issue for the physics
that exhibit a comparable time scale.
The definition of SOL width must be associated with a characteristic time scale, the steady-
state SOL does not give sufficient information to properly address the plasma wall inter-
action issues.

The kinetics effects driving turbulence self-organization. Turbulence self-
organization is being investigated with the gyrokinetics code GYSELA. Spontaneous gen-
eration of large scale flow shears occurs. These persistent and coherent structures damp
most of the turbulent bursts and form small barriers that govern a local increase of the
radial temperature gradient, so called corrugations, and lead to a staircase like tempera-
ture profile. If the complexity of the 5D gyrokinetic models give us (1) the advantage of
mimicking realistic plasma parameters of the tokamak, it also present some limitations,
(2) large computational effort are required for these studies and (3) the identification of
the non linear dynamics driving the self-organization is extremely challenging. In the
TOKAM2D framework, the circumstance is inverted. We do not aim at realistic simula-
tion of the plasma transport in the fusion device but at the simplest possible model in
order to isolate the crucial elements of the self-organized dynamics of transport barrier
formation. The result is that avalanches and barriers interplay can then be studied via
such a reduced models, where a rich non linear dynamics is observed by properly taking
into account the impact of collisions on the zonal flows evolution.
There is no evidence that self-organized turbulence is a specific kinetic effect.
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The mechanism controlling the barriers dynamics. The energy transfer between
turbulence and zonal flows have been identified and a general mechanism controlling the
barriers relaxation and generation is proposed. An effort is done towards the definition
and identification of the Reynolds Stress as zonal flows source and sink. The transfer
of energy from turbulence to zonal flows and viceversa has been investigated via a three
modes coupling model where the energy transfer between zonal flows and streamers is
addressed analytically. Two different groups of turbulent modes has been individuated:
Big scale modes and Small scale modes. One one hand, the Small modes act as source of
zonal flows, the exchange energy is then from Small modes to zonal flow, the Small modes
are damped by the transport barrier and the zonal flow energy is increased. On the other
hand, the Big modes energy cannot from the zonal flow modes. Large scale turbulent
structures (Big modes) are not quenched by zonal flows, but zonal flows can be quenched
by the Big modes. By varying the forcing scale, one varies the turbulence dominating
scale, namely the ratio between Big and Small modes.
A transition from turbulence dominated to zonal flows dominated regime is achieved and
controlled by the typical forcing scale.

The key ingredient for the H-mode. A novel understanding of transport barri-
ers associated to the interface between two regions with different zonal flows regimes is
proposed. This model captures the universal features of the H-mode regime in tokamak
plasmas and relates it to other fields where turbulence self-organization yields zonal flows
dominated regimes. The zonal flow dominated regime is shown to be controlled by the
occurrence of a gap in the turbulent spectrum between the wave vector of the peak of
the spectrum and that of the zonal flow. Such a regime develops in the closed field line
region, leading to small transport barriers. A large pedestal region is found to build-up
overlapping the edge region, where zonal flows are weakly damped by collisions, and the
SOL region characterized by large scale zonal flow damping. Indeed, the latter is gov-
erned by plasma-wall interaction, that constrains the plasma current pattern. Further
in the SOL the turbulent transport is weakly modified by the pedestal. Although the
TOKAM2D model is not fit for a comprehensive comparison to experimental evidence,
it is characterized by several generic properties of such transitions: (1) the occurrence of
a gap in the turbulent spectrum has been reported in the investigation of the enhanced
plasma confinement of a stellarator, (2) this mechanism bridges the various fields where
the zonal flow-dominated regime is discussed, (3) the edge-SOL interface is found to gen-
erate a strong barrier with large gradients, (4) this explains the specific location of the
pedestal, (5) in this flux-driven model, the barrier gradients build-up until a relaxation
burst of turbulence reinitiates the process, (6) the onset of this quasi-periodic relaxation
is governed by the collisional erosion of the zonal flows which thus control the relaxation
frequency and stored energy in the barrier.
A novel understanding of the pedestal generation at the interface between edge and SOL
is presented.

Generic features of transport barrier at the interface between different
zonal flow damping regions Barriers and zonation regimes, namely the spontaneous
generation of a low turbulence regime with well-established patterns of large scale flows,
the zonal flows, appear in many dynamical systems including geophysics (1) oceans, (2)
planetary atmospheres as well as (3) plasmas. However, it has been admitted within the
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fusion community that the pedestal development, the edge transport barrier (or H-mode),
should be addressed by taking into account the real geometry of a tokamak and accurate
particle sources. These considerably increase the complexity of the model and the compu-
tational effort and narrow the relevance of this physics to tokamak plasmas. We present
a novel point of view developing a minimum model of pedestal generation, which is not
specific of tokamak plasmas. The result is a universal transition from turbulent to zona-
tion regimes, the pedestal being localized at the interface between regions with different
zonal flow damping.
In a two-dimensional fluid model comparable to that of the Rayleigh Bénard instability,
we introduce (1) the main ingredients to simulate plasma confinement and (2) appropriate
drive out of equilibrium to allow turbulence self-organization.

My point of view on the future work

Two are then the main conclusions of this work: (1) It is not mandatory to increase the
codes complexity to identify the turbulence self-organization. Such results represent then
a major improvement, considering the numerical constrains of the more complex codes.
(2) The key aspects that control the barrier dynamics have been identified via such a
reduced model. By controlling the barrier, hence the plasma confinement, new scaling law
relevant for ITER design, not only based on the empirical laws, can be now proposed.

The biggest achievement of this work is to open new perspectives on the exploitation
of reduced models to study complex non linear dynamics. The art of empirical science like
physics is to capture large body of experimental facts with the same model and allow the
model to be simple enough to be taught in standard university training so that it can be
used practically.

In this spirit I am going to address my future work, namely by using my understanding
of self-organization to investigate the experimental observations and hopefully improve the
machine performances. In particular, a consistent technique to identify the signatures of
self-organized large scale patterns, such as avalanches and transport barriers, and their
impact on the turbulent transport is still missing. Small tokamak machines devoted on
the identification of turbulent transport through many different diagnostics (Langmuir
reciprocating probes, Gas Puff Imaging) represent a perfect platform to develop new tools
and validate the results we obtained via turbulent models. The idea is to build a minimum
turbulent model with all the key ingredients to predict and understand the transport inside
the machine. To do so, I first need to identify the key issues to be addressed for a conclusive
comparison between the model and experimental results:

• Characterize the SOL width. Quantifying the steady and fluctuating SOL width
represents my first objective. Via such analysis, one can calibrate the coefficients
used in the model equations with the experimental ones and verify if the model
predictions can be exported to the experiments. This has also very strong engineering
consequences regarding the design of Plasma Facing Components.

• Characterize the transport barriers and large scale flows. How to identify
large scale patterns in the experimental results represents still an open issue. How-
ever, with reciprocating probes, the Reynold stress can be quantified. By studying
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how the Reynold stress varies in space and in time (during barrier relaxation and
generation) one can characterize the barriers time and space scales.

• Characterize the LH transition. The main control parameter for the transition
from turbulence to zonal flows dominated regime appears to be related to the tur-
bulence characteristic scale. It would be interesting to verify if the parameters that
control the turbulence injection scale and consequently the Big and Small modes
dynamic are found in the experiments. Once the turbulence injection scale is con-
trolled, one can finally verify if, by reducing the poloidal size of turbulent structures,
the transition from L to H mode is favored.

• Characterize the barrier relaxations. It is crucial to better identify the barriers
relaxation mechanism. In my opinion, it would be interesting to find a mean to
generate numerous small relaxation driven by turbulence that avoid the MHD ELMs.
If the procedure is efficient one would be able to do without RMPs and use the H-
mode in DEMO.

The final aim is to furnish a more complete understanding and experimental studying of
turbulent transport self-organization in Big & Small devices to the fabulous and demanding
experiment of ITER.

.
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Chapter 9

Résumé étendu

Le Tokamak International ITER est en construction à Cadarache. Le projet est porté par
sept partenaires, la Chine; la Corée, l’Europe, l’Inde, le Japon, la Russie et les Etats-Unis.
ITER est un très grand équipement destiné à apporter une démonstration expérimentale
de l’opération et du contrôle des plasmas en combustion. A cette fin, .il faut que les con-
ditions obtenues dans ITER soient telles que l’essentiel de l’énergie nécessaire à entretenir
cette phase de combustion soit dû aux réactions de fusion nucléaires elles-mêmes. Ce
projet est extrêmement ambitieux sur tous les plans, l’organisation internationale, la tech-
nologie ainsi que la physique des plasmas mise en œuvre. La base physique d’ITER repose
sur plus de 50 années de recherche à travers le monde. Par rapport à JET, le tokamak
européen situé au Royaume-Uni, et la plus grande machine en opération, l’extrapolation
en rayon est typiquement d’un facteur 2. Cette augmentation de taille doit se traduire par
une augmentation des performances d’un facteur 10 pour atteindre le régime de combus-
tion thermonucléaire et ainsi ouvrir une nouvelle phase dans la recherche sur l’utilisation
de la fusion thermonucléaire à des fins pacifiques. Trois défis devront être surmontés pour
qu’ITER atteigne son régime de performance nominal.

Le défi des fortes températures du plasma. Le régime des plasmas en com-
bustion doit atteindre des températures de l’ordre de 150.000.000 Kelvins afin de vaincre
avec une probabilité suffisante les répulsions coulombiennes entre les noyaux. Bien que les
énergies en jeu, de l’ordre de 10 keV, soient très modestes au regard de celles atteintes
par les accélérateurs de particules, cette énergie thermique correspond à une température
supérieure à celle du soleil. Ce point donne en lui-même une bonne mesure du défi que
représente ITER. Dans ces conditions, les électrons ne sont plus liés aux noyaux. En effet,
pour les isotopes de l’hydrogène le seuil d’ionisation bien connu est de 13,6 eV, ce qui
correspond à une énergie thermique inférieure à 10 eV, typiquement 7 eV, car il faut alors
prendre en compte le pouvoir ionisant important des électrons suprathermiques. Cet état
de la matière constitué d’un gaz d’électrons et d’ions est appelé plasma, terme introduit
par Langmuir en 1928 en s’inspirant du terme médical. Il est à noter que dans ITER les
atomes les plus légers seront totalement ionisés au cœur du plasma alors que les éléments
lourds comme le tungstène, numéro atomique 74, ne seront que partiellement ionisé avec
un état d’ionisation supérieur à 60%.

Performance de confinement : le temps de confinement de l’énergie τE.
Pour atteindre ces températures le plasma doit être chauffé pour équilibrer les pertes
d’énergie due au pouvoir d’isolation fini qui peut être mis en œuvre. Pour atteindre un
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régime de réactions de fusion autoentretenues avec un faible apport d’énergie extérieur,
les ions doivent maintenir leur énergie thermique jusqu’à subir une réaction de fusion. En
combinant l’énergie produite par réaction, le temps caractéristique des réactions de fu-
sion nucléaire et l’énergie interne du plasma, on peut évaluer le pouvoir isolant nécessaire
à travers le temps de confinement de l’énergie τE . Ce temps donne un critère de per-
formance des dispositifs de confinement. Dans la pratique, ce temps correspond au
temps caractéristique de décroissance de la température du plasma lorsque la puissance de
chauffage est arrêtée. Une amélioration du temps de confinement d’un facteur 5 par rap-
port aux expériences actuelles est nécessaire dans ITER. Pour les dispositifs de confinement
magnétique, il est important de remarquer que ce temps est court par rapport à la durée
de la phase de combustion. De ce point de vue, on se rapproche ainsi d’un fonctionnement
en continu. Dans les dispositifs tels que les tokamaks, la limitation des performances
de confinement est dominée par la turbulence. Cette dernière assure un transport entre
le cœur thermonucléaire et la périphérie du plasma. Déclenchée par l’important écart à
l’équilibre qui est réalisé, elle tend à limiter l’accroissement des performances au-delà d’un
seuil de l’écart à l’équilibre.

La couche limite appelée Scrape-Off-Layer (SOL), sa largeur et l’interaction
plasma-paroi. L’interaction du plasma avec un solide en régime stationnaire, conduit
à un processus d’équilibre dynamique où le solide neutralise continuellement le flux de
plasma qui l’atteint et où l’énergie cédée par le plasma à sa surface du solide est évacuée.
Le régime d’interaction peut conduire à une érosion de la surface du solide et donc à une
détérioration graduelle de ce dernier. Dans les conditions du plasma en combustion aucun
solide ne peut être maintenu durablement en contact avec le plasma. L’interaction ne
peut être maintenue que dans des conditions de plasma à plus faible température ce qui
fait que l’écart à l’équilibre thermodynamique déjà évoqué doit se faire pour l’essentiel
dans le plasma. Malgré la turbulence qui se développe dans un tel scénario, l’écart en-
tre les conditions plasma et celles du solide est réalisé dans une couche limite de très
faible extension par rapport à l’échelle du plasma. Cette région cruciale pour le contrôle
de l’interaction plasma-paroi est appelée Scrape-Off puis Scrape-Off Layer ou SOL. La
traduction à acronyme constant, Section à l’Ombre du Limiteur, ne rend pas compte du
rôle de cette région du plasma et restreint l’usage de cette notion à l’existence d’un limi-
teur. En fait on peut considérer que la SOL est une couche limite dans laquelle le plasma
dépose tout le flux d’énergie sortant aux éléments solides, les Plasmas Facing Components
ou PFC qui l’entourent. La largeur de la SOL est un paramètre clef. Si l’épaisseur est très
faible, la concentration du dépôt d’énergie est extrême et il devient très difficile de réaliser
des composants pouvant fonctionner sans élévation continuelle de leur température. La
mâıtrise de l‘interaction plasma-paroi avec la mise en œuvre d’une largeur de SOL effective
compatible avec les limites technologiques actuelles que ce soit pour le refroidissement ou
la tenue du matériau de protection en contact avec le plasma, est un enjeu important dans
ITER. A l’inverse des contraintes du plasma central, les conditions de bord conduisent à
rechercher une baisse des performances de confinement dans la couche limite.

La turbulence média des performances dans ITER. La turbulence, et en conséquence
le transport turbulent, apparaissent comme des éléments clefs dans plusieurs des défis qui
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attendent la physique dans ITER. Elle apparait d’ailleurs comme un élément décisif dans
le dimensionnement d’ITER à travers la loi d’échelle empirique qui relie le temps de con-
finement de l’énergie aux principaux paramètres qui définissent la machine. C’est le cas en
particulier du volume d’ITER qui d’après la loi d’échelle est l’élément le plus déterminant
pour augmenter les performances. Il faut cependant constater que les changements dans
les conditions d’opération des tokamaks apportent un nouvel éclairage et conduisent à
s’interroger sur le sens de ces lois d’échelle. Ainsi, les expériences récentes de JET avec du
tungstène comme matériaux de surface indiquent une baisse inattendue des performances
en termes de confinement de l’énergie. Un effort pour mieux comprendre et contrôler la
turbulence reste à l’ordre du jour pour préparer les expériences dans ITER et permet-
tre d’atteindre avec efficacité le régime de plasmas en combustion. Notre ambition a été
d’étudier les éléments clefs et les concepts qui fondent notre compréhension de la turbu-
lence dans les plasmas de fusion.

Comment se développe l’auto-organisation de la turbulence dans les plas-
mas de fusion ? La turbulence se caractérise par l’interaction entre de très nombreuses
échelles couvrant un grand domaine de taille. C’est cet aspect qui conduit à sa complexité
et aux difficultés de représentation aussi bien dans les arts que dans les sciences. Du
point de vue scientifique, les différentes échelles sont comprises comme autant de modes
indépendants qui interagissent selon des lois spécifiques. On peut montrer que le trans-
fert d’énergie entre deux modes se fait selon deux mécanismes. Le premier correspond
à un transfert entre échelles voisines. Le second est basé sur un transfert direct entre
échelles différentes, des petites échelles vers les grandes échelles ou vice-versa. Par auto-
organisation de la turbulence nous désignons essentiellement ce second mécanisme qui
permet le couplage entre des échelles lointaines. L’auto-organisation se traduit alors par
la formation de structures à grandes échelles. Ila été montré aussi bien numériquement
qu’expérimentalement que le transport par avalanche est prépondérant dans la SOL. A
l’inversement dans la région confinée du plasma, in existe une interaction forte entre
écoulement zonaux et avalanches, ce qui peut dans certains cas se traduire par la formation
de barrières de transport. Ces dernières conduisent à une augmentation significative du
temps de confinement (facteur pouvant atteindre 2, nettement supérieur aux dégradations
des lois d’échelle évoquées ci-dessus, de l’ordre de 20%).

Peut-on prédire et définir le seuil de transport turbulent ? Le seuil d’apparition
de la turbulence est en général défini comme résultant de la compétition entre les forces
tendant à générer la turbulence et les mécanismes d’amortissement. Cet aspect est claire-
ment illustré par le nombre de Reynolds Re = UL/ν caractérisant un système de taille L
plongé dans un fluide porté à une vitesse U dont la viscosité est ν. Une transition vers la
turbulence est observée lorsque Re dépasse une valeur critique, le seuil de la turbulence.
De manière identique, différents phases de turbulence sont observées lorsque l’on augmente
le forçage du système, en pratique l’écart à l’équilibre thermodynamique, au-dessus d’un
seuil. Une image intuitive du processus dans les plasmas est la suivante :

1. Au-delà du seuil une instabilité croit dans tout le domaine où le forçage est appliqué.
Cette instabilité est caractérisée par un nombre d’onde qui indique la formation d’une
structure périodique là où préexistait un milieu constant. Le système perd ainsi une
symétrie initiale (rupture de symétrie). Ces structures, dont la géométrie est proche
des modes propres de la phase linéaire de l’instabilité sont appelés ’streamers’.
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2. Dans la phase non-linéaire du développement de ces streamers, le couplage entre
écoulements opposés génère un écoulement transverse aux streamers, et constant
dans la direction de symétrie initiale. Cet écoulement appelé écoulement zonal ou
’zonal flow’ tend ainsi à régénérer l’équilibre avant l’apparition de la turbulence. Il
conduit à une baisse de la turbulence et un affaiblissement du transport turbulent.
Ce deuxième stade peut lui-même bifurquer vers deux états :

• La turbulence bien que modifiée par les écoulements zonaux maintient un trans-
port turbulent qui s’oppose à l’écart à l’équilibre. Le système se stabilise alors
dans un état d’équilibre statistique entre des événements de transport et des
évènements renforçant les écoulements zonaux.

• Les écoulements zonaux se renforcent jusqu’à supprimer la turbulence et blo-
quer le transport turbulent. Ce stade correspond à l’apparition d’une barrière
de transport. L’augmentation du forçage conduira à terme à une nouvelle in-
stabilité, et ainsi à un phénomène de relaxation. Si l’énergie libérée lors de la
relaxation reste faible, et donc les relaxations fréquentes, le système peut se
maintenir dans ce système cyclique, au contraire si la relaxation est trop forte,
prenant donc la forme d’un évènement rare, le système n’est plus contrôlé et
un changement d’état peut intervenir.

Quels mécanismes contrôlent la dynamique des barrières ? Dans de nom-
breuses situations, les barrières présentent des instabilités conduisant à une dynamique
turbulente et le déclanchement de transport turbulent à travers la barrière. L’origine de ce
phénomène de relaxation semble dans bien des cas indépendant du mécanisme conduisant
à l’apparition de la barrière. En identifiant ces mécanismes, on peut espérer introduire
un contrôle des barrières de transport, soit pour les renforcer, soit pour déclencher des
relaxations quasi-périodiques de faibles amplitudes et éviter ainsi des relaxations fortes
qui posent inévitablement des problèmes de recyclage et de contrôle.

Quel est le rôle des effets cinétiques dans l’auto-organisation de la turbu-
lence ? Les plasmas magnétisés sont caractérisés par de faibles densités. Le libre parcours
moyen est alors très grand, de loin supérieur aux tailles du dispositif de confinement. La
limite dite de faible collisionnalité doit alors être considérée pour décrire ces plasmas. En
pratique, les équations cinétiques semblent donc préférables pour étudier la turbulence
plasma par rapport à la description fluide de type Navier-Stokes où l’on considère im-
plicitement une réduction du nombre de champs indépendants liée à des effets collisionnels.
Bien que les descriptions fluides et cinétiques de la turbulence plasma diffèrent quantita-
tivement, la compréhension et la signification de ces différences restent incertaines. Par
ailleurs, on peut s’interroger sur la possibilité d’un accord qualitatif entre ces approches
permettant de les réconcilier par un ajustement empirique des fermetures inhérentes à
la description fluide. Le bénéfice en termes de coûts numériques et d’interprétation des
résultats est suffisamment important pour donner toute sa place à cette interrogation, sans
compter avec la finalité objective de la physique qui est d’établir des moyens d’agir sur
notre environnement sur la base d’une description la plus concise et efficace possible.

Comment définir la largeur de la SOL ? Pour contrôler l’interaction plasma-paroi,
il est impératif de réguler le transport dans la région de lignes de champ ouvertes, la SOL,
où le plasma entre en contact avec la paroi en suivant un écoulement parallèle aux lignes
de champ. Ce transport n’est pas réguler par le champ magnétique autrement que par
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la géométrie des lignes de champ. De ce fait, le temps de confinement dans la SOL est
très court et son volume restreint. Dans le sens transversal aux lignes de champ l’écart
à l’équilibre thermodynamique peut alors être considérablement amplifié les paramètres
plasmas comme la densité ou l’énergie interne devenant très faible sur une distance très
courte. Les signatures d’un transport dominé par des avalanches, donc balistique dans
la direction transverse aux lignes de champ ainsi que des niveaux de fluctuations ap-
prochant de l’unité sont observés dans la SOL. Malgré cela, le paradigme dominant dans
la SOL est celui d’une marche au hasard constitué de pas transverses microscopiques en
compétition avec un transport parallèle très rapide et rapidement dominant. A l’opposé
de ce paradigme, on constate que le transport balistique est suffisamment rapide pour
couvrir des distances mésoscopiques sur des temps courts par rapport aux temps du trans-
port parallèle au champ magnétique. Ces approches contradictoires font de l’analyse de
la largeur de la SOL, la fine couche limite du plasma, un enjeu de recherche considérable
dont les enjeux sont cruciaux pour ITER.

Quels sont les éléments déterminants dans l’établissement du mode-H, le
mode de confinement de référence dans ITER ? L’apparition spontanée d’une
barrière de transport, par auto-organisation de la turbulence est le régime de référence
pour l’opération d’ITER. La réalisation de simulations auto-consistantes conduisant au
développement d’une barrière de transport à l’interface du bord du plasma, où les sur-
faces magnétiques sont fermées, et la SOL est cruciale pour déterminer les propriétés
essentielles du mode-H et améliorer son contrôle. Ceci est d’autant plus important que
la proximité entre la barrière du mode-H et de la SOL modifie considérablement les pro-
priétés de l’interaction plasma-paroi. Concilier l’amélioration du confinement du plasma
central et la maitrise de l’interaction plasma-paroi est un enjeu considérable dont la mise en
œuvre sera grandement simplifié si les mécanismes clefs de cette transitions sont identifiés.

Le sketch suivant reprend les interrogations qui président à ce travail de recherche et
qui font l’objet des chapitres de thèse résumés dans la suite. Les implications pour ITER
sont au cœur de notre démarche.

117



Figure 9.1: Thesis objectives
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Les principaux objectifs scientifiques sont associés à l’étude du transport turbulent
et l’auto-organisation de la turbulence. Le but est la compréhension et le contrôle que
celle-ci permet de mettre en œuvre. Les enjeux apparaissent dans plusieurs facettes de la
recherche de performance dans ITER où la turbulence est le média entre différentes régions
du plasma. L’étude de ces phénomènes non-linéaire fait appel à deux outils numériques, le
code TOKAM2D utilisant un formalisme fluide en dimension réduite et le code GYSELA,
un code cinétique 5D qui est un outil complet pour l’étude de la turbulence mais dont
l’utilisation et l’interprétation des résultats demandent un investissement considérable.

Dans le Chapitre 1, nous introduisons les éléments de base des dispositifs de fu-
sion magnétique et le rôle du transport turbulent dans l’opération et les performances des
expériences en cours ainsi que projetées dans ITER.

Dans le Chapitre 2, les deux outils numériques, GYSELA et TOKAM2D, sont
présentés. Les principaux choix présidant aux différences entre ces deux approches de la
modélisation des plasmas sont mis en avant. Les forces et faiblesses de chacune des ap-
proches sont analysées. Le modèle utilisé dans le code cinétique GYSELA est l’approche
la plus directe. Elle est basée sur un minimum d’hypothèse et vise à réduire au maxi-
mum les paramètres libres pour se rapprocher des conditions de simulations ab-initio. Les
limites de cette approche sont le coût de ces simulations, qui limitent en conséquence les
domaines étudiés. Par ailleurs, l’identification et l’analyse des dynamiques non-linéaires
qui conduisent à l’auto-organisation est particulièrement difficile, rejoignant par certains
aspects les conditions expérimentales où seule une information parcellaire est réellement
accessible. Dans le cas de TOKAM2D, les attendus sont inversés. Le modèle ne vise pas
une simulation complète, potentiellement réaliste du transport plasma dans les tokamaks.
Au contraire, nous avons recherché la simplification maximale qui contienne encore les
éléments cruciaux de l’auto-organisation de la turbulence. Cette démarche nous permet
d’aborder le problème dans une plus grande généralité et de retrouver des problèmes et
des comportements génériques à d’autres champs de la physique comme l’océanographie
ou la physique des atmosphères.

Dans le Chapitre 3, les modèles d’auto-organisation à grande échelle, observés
expérimentalement et par l’intermédiaire des simulations du transport turbulent, sont
présentés. Leur impact sur le transport à grande échelle est quantifié.

L’approche standard pour modéliser la turbulence dans les plasmas de fusion est basée
sur la description par un transport diffusif de la turbulence. Un premier point de question-
nement est celui de la validité d’un tel principe en utilisant GYSELA et TOKAM2D. Ces
deux modèles sont dédiés à des simulations globales, permettant de ne pas faire d’hypothèse
de séparation d’échelle et dans des conditions de forçage par le flux, c’est-à-dire avec comme
seule contrainte de stationnarité celle d’assurer le transport d’un flux moyen, en temps et
en espace, identique au flux de forçage. Dans ces conditions de réalisation, la définition
d’un coefficient de diffusion effectif à grande échelle apparâıt assez artificielle pour ces
deux modèles. En effet, pour retrouver un comportement en accord avec le principe d’un
transport diffusif, nous sommes conduits à une procédure de moyenne à gros grains. C’est
seulement dans cette limite que l’on retrouve une relation linéaire entre les flux et les
gradients. En outre, une telle représentation ne donne aucune indication sur le comporte-
ment du système lors des transitoires, ni sur les mécanismes de transport sous-jacents.
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On arrive alors à une description analogue à celle conduisant au temps de confinement de
l’énergie des lois d’échelle, sans gains significatifs permettant de construire une description
plus fine basée sur la dynamique des profils.

Les avalanches et les barrières de transport sont caractéristiques de l’auto-organisation
de la turbulence. Les propriétés de ces motifs auto-organisés sont décrites et quantifiées.
Nous retrouvons que les avalanches régissent le transport SOL (où les lignes de champ
sont ouvertes). Dans cette région, le transport est dominé par ces événements de grande
amplitude. Pour leur analyse nous avons eu recours à différents d’outils mathématiques,
telles que les densités de probabilité et les fonctions d’autocorrélation. Dans la région
’bord’ où les lignes de champ sont fermées, une forte synergie entre la turbulence et les
écoulements zonaux est identifiée. Elle peut conduire à la formation de barrières de trans-
port. La dynamique de formation et d’évolution des différentes barrières de transport
observées, les macro-barrières et les micro-barrières, est présentée. Les macro-barrières
modifient globalement les propriétés de confinement. En revanche, elles sont régies par un
comportement de relaxations quasi-périodiques potentiellement incompatible avec les con-
ditions d’opération souhaitées. Les micro-barrières, sont essentiellement locales et peuvent
évoluer rapidement par micro-relaxation, déplacement, voire fusion ou disruption définitive
ou temporaire. Cette dynamique rapide, associée à une densité radiale assez importante,
instaure une amélioration volumique du confinement avec une réorganisation régulière sans
évènement de relaxation majeur. Cependant, nous n’avons pas pu établir les conditions
favorisant un type de barrière plutôt qu’un autre.

Dans le Chapitre 4, nous étudions l’impact du transport intermittent sur la notion
de largeur de SOL.

La définition de la largeur caractéristique de la SOL dépend fortement du problème
que l’on souhaite traiter. En effet, dans un système où les fluctuations sont de l’ordre de
l’unité, l’échelle de temps caractéristique joue un rôle crucial. Un des points importants
de la physique de l’interaction plasma paroi est celui du dépôt d’énergie. On est alors
amené à considérer deux régimes en fonction du temps de mise à l’équilibre thermique
des composants face au plasma, typiquement 6 secondes dans ITER. Du point de vue de
l’extraction de chaleur, la notion de largeur de SOL intègre donc les propriétés du trans-
port turbulent sur des temps longs par rapport aux temps de la turbulence. On peut alors
considérer une largeur moyenne malgré l’importance des fluctuations. En revanche, si l’on
s’intéresse au cyclage thermique de la surface du composant, une analyse plus fine des
fluctuations induites par la turbulence devra être considérée.

Dans la SOL, l’analyse du transport par la théorie quasilinéaire permet de montrer que
la séparation entre parti fluctuante et partie moyenne n’est pas possible. En effet, le temps
de confinement de la SOL, qui permet de définir la notion de moyenne est comparable au
temps caractéristique d’évolution de la turbulence. Le développement en échelle multiple
dans ce cas de figure montre que les fluctuations sont d’ordre 1, ce qui ne permet pas de
poursuivre l’analyse quasilinéaire et la dérivation d’un coefficient de diffusion du transport
turbulent.

Par ailleurs, les conditions de forçage du système hors équilibre influent sur le transport
turbulent dans la SOL. Deux types de forçage par un gradient ont été développés pour
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analyser ce point. Dans le cas le plus simple et le plus généralement considéré, on suppose
qu’un gradient fixe est imposé dans tout le système. Cette solution, combinée à des
conditions périodiques dans la direction radiale, correspond aux conditions de simulation
appelées flux tube. Ce type de forçage n’est pas cohérent avec les conditions de la SOL.
Par ailleurs, le transport généré par la turbulence n’est pas pris en compte et le gradient de
forçage est invariant. Cela nous amené à un deuxième type de forçage où l’on prescrit un
profil et l’on modifie les équations de telle sorteque ce profil soit une solution stationnaire
des équations. Le comportement de ces deux types de forçage est difficilement comparable.
En effet les simulations flux tube génère des conditions de forçage volumiques, homogènes
dans le temps et l’espace, totalement indépendantes de la réponse plasma. En revanche,
les simulations à profils stationnaires fixés introduisent plus de contraintes dans le système.
Nous avons comparé le transport à flux fixé au régime à profil fixé en introduisant comme
profil de forçage le profil moyen obtenu dans le cas du forçage par le flux. Dans les deux
cas on observe un transport par avalanche. Cependant celui à profil fixé est caractérisé
par une dynamique plus lente et un transport radial moins efficace.

Chapitre 5, l’étude des instabilités est approfondie dans ce chapitre. Deux types de
conditions initiales, supposées varier de façon adiabatique, sont considérés. Le premier
cas est le cas linéaire usuel où l’équilibre est la solution stationnaire homogène dans la
direction angulaire. Dans le second cas on considère comme état de départ un régime de
streamer ou de zonal flow développé caractérisé par un nombre d’onde donné. Le couplage
avec d’autres modes, à travers les termes non-linéaires, produit également des instabilités.

L’instabilité d’interchange à l’origine des modes ITG pour Ion Temperature Gradi-
ent est étudiée dans GYSELA. Nous avons développé une procédure de fonctionnement
du code qui permet d’étudier les modes propres et les valeurs propres dans le cadre des
simulations globales propres à GYSELA. On retrouve ainsi des modes globaux dont la
structure est ballonnée dans la direction polöıdale du tokamak et où la structure radiale
dépend fortement des profils de température et du paramètre de sécurité. Cette étude
permet de connaitre la structure des modes linéaires et donc celle des streamers qui peu-
vent se développer pendant les différentes phases d’évolution de la turbulence.

L’étude linéaire de TOKAM2D est présentée pour analyser le couplage à trois modes
entre streamer, écoulement zonaux et mode turbulent. Un choix des modes est effectué en
utilisant les contraintes propres aux streamer et aux écoulements zonaux. L’analyse peut
alors être menée soit dans le cas de streamers développés, permettant le développement
des perturbations de turbulence et d’écoulements zonaux, soit dans le cas d’écoulements
zonaux développés soutenant le développement de streamers et de modes turbulents. Un
accord qualitatif est trouvé sur la dynamique des écoulements zonaux et de la turbulence.

Dans les simulations flux tube gyrocinétiques, un nouveau régime de transport a été
identifié juste au-dessus du seuil de turbulence. Dans cette région, appelé Dimits shift
region, le développement des écoulements zonaux est tel que la turbulence ne peut se
développer. Au-dessus du seuil linéaire de turbulence, les écoulements zonaux générés par
la turbulence déplacent le seuil de transport turbulent vers des gradients de température
plus élevés. Ce résultat a été considérés comme très positif pour ITER dans la mesure où
le gradient de température attendu se trouve dans cette zone sans transport turbulent. Le
rôle de cette région proche du seuil de la turbulence a été étudié avec soin. En premier
lieu, les simulations flux tube avec le code TOKAM2D ont permis de retrouver le régime
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de Dimits indiquant clairement que cette propriété n’est pas liée à des effets cinétiques.
Par ailleurs dans le cas d’un forçage par un gradient, on observe aussi bien dans GYSELA
que dans TOKAM2D que cette région de gradient de température sans transport turbu-
lent n’existe pas. Les simulations sont alors caractérisées par dans l’espace gradient de
température transport turbulent dès que le seuil linéaire est franchi. Le Dimits shift en
tant que région sans transport turbulent n’est donc pas un régime cohérent avec le mode de
fonctionnement d’une machine. En revanche, on observe que le régime de micro-barrières
tend à se développer au voisinage du seuil de la turbulence.

Dans le Chapitre 6, le mécanisme contrôlant la dynamique des barrières de trans-
port et le transfert d’énergie entre la turbulence et les écoulements zonaux est étudié avec
le modèle de couplage 3 modes afin de déterminer analytiquement le rôle de l’instabilité de
Kelvin-Helmholtz dans l’amortissement des écoulements zonaux qui détermine les cycles
de relaxation turbulente observées dans les barrières de transport.

L’étude nous conduit à considérer deux groupes de modes turbulents en fonction de
leur échelle et des spécificités de leur couplage aux écoulements zonaux. Les petits modes
’S-modes’ agissent comme source de flux zonaux. Ce transfert d’énergie entre échelles
disjointes détermine un amortissement des S-modes. D’autre part, les grands modes ’B-
modes’ trouvent leur énergie soit directement par les instabilités soit par couplage avec
les petits modes de manière consistante avec les cascade d’énergie dans les spectres. En
revanche les B-modes de tailles comparables aux écoulements zonaux ne sont pas stabilisés
par ces derniers. La transition d’un régime dominé par les écoulements zonaux à un régime
turbulent est alors déterminée par l’échelle contrôlant la source d’énergie dans le spectre,
soit directement par l’échelle d’injection d’énergie soit par l’échelle limitant la cascade
inverse.

Une comparaison est effectuée avec d’autres modèles réduits utilisés pour étudier
les systèmes turbulents (océanographie, physique des atmosphères) où des transitions
comparables ont été observées. Le mécanisme de contrôle des régimes dominés par les
écoulements zonaux obtenus dans TOKAM2D diffère de ceux étudiés avec le modèle
d’Hagesawa-Mima dans la mesure où dans ce dernier modèle l’échelle d’injection de l’énergie
n’est pas auto-consistant mais correspond à un paramètre libre du modèle. Le phénomène
de limitation de la cascade inverse devient alors l’élément crucial dans la description du
régime dominé par les écoulements zonaux.

Chapitre 7. La formation d’un piédestal à l’interface entre les lignes de champ fermées
et ouvertes est étudiée avec TOKAM2D en lien notamment avec la physique du mode-H.

Bien que le modèle ne soit pas adapté à une comparaison exhaustive avec les expériences,
il est caractérisé par plusieurs propriétés génériques des transitions vers des régimes avec
barrières de transport. On peut citer l’apparition d’un creux dans le spectre turbulent
entre le pic de turbulence et la composante des écoulements zonaux. Cette signature a été
observée dans l’étude des régimes de confinement d’un stellarator. L’interface bord-SOL
sépare la région SOL où le profil de potentiel électrique moyen est fortement contraint par
les conditions limites de gaine, et le bord du plasma où le potentiel électrique est quasi-libre
avec cependant une double contrainte. D’abord la contrainte physique de conservation de
l’impulsion qui impose une structure dont la moyenne est nulle, structure dipolaire si la
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cascade inverse permet d’atteindre cette échelle. La courbure du potentiel électrique à
l’interface de la SOL et du bord génère spontanément une barrière de transport à cet en-
droit. Le modèle de barrière est également caractérisé par des relaxations consécutives à
l’érosion collisionnelle des écoulements zonaux. Les phases de turbulence qui caractérisent
ces relaxations permettent de régénérer les écoulements zonaux.
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Appendix A

Derivation of TOKAM2D

equations

A.1 Fluid equations

The two first moments of the distribution function for species s are essentially definitions:

∂ ns
∂t

+ ∇ · (nsus) = 0 (A.1)

∂ (msnsus)

∂t
+ ∇ · Ps = qsns (E + us ×B) (A.2)

where the particle flux Γs and momentum flux Ps are defined as:

Γs = nsus (A.3)

Ps = p⊥sI + (p‖s − p⊥s)b⊗ b +msnsus ⊗ us + Πs (A.4)

For a two species plasmas, one can introduce the charge balance equation and the total
plasma momentum balance:

∂ ρc
∂t

+ ∇ · j = 0 (A.5)

∂ (miniui +meneue)

∂t
+ ∇ · (Pi + Pe) = ρcE + j×B (A.6)

In the quasineutral limit with ρc = 0, one obtains therefore:

∇ · j = 0 (A.7)

∂ (min ui +men ue)

∂t
+ ∇ · (Pi + Pe) = j×B (A.8)

In the vanishing mass ratio limit and drift ordering one then obtains for the total plasma
momentum balance:

∂ (min ui)

∂t
+ ∇ ·

(

p⊥I + (p‖ − p⊥)b⊗ b +minui ⊗ ui + Π
)

= j×B (A.9a)

p⊥ = p⊥i + p⊥e ; p‖ = p‖i + p‖e ; Π = Πi + Πe (A.9b)
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A.2 Diamagnetic cancellation

We consider the fluid hierarchy given the Vlasov-Landau kinetic equation.

∂tf + ∇ ·
(

vf
)

+
q

M
∂v ·

(

(

E + v ×B
)

f
)

= C(f) (A.10)

where C(f) stands for the collision operator. We then consider the moment of G(v) defined
by:

∫

d3v f G(v) =
〈

G
〉

(A.11)

In the large magnetic field approximation, i.e. in the drift approximation, the magnetic
field dependent term in (A.10) is the largest the contribution so that

〈

vi∂vjG
〉

can be
determined from:

∂

vj

(

ǫijk Bkvif
)

= ∂tf + ∇ ·
(

vf
)

+
q

M
∂v ·

(

Ef
)

− C(f) (A.12)

One then obtains the drift-like expression of
〈

G
〉

:

〈

vi
∂

∂vj
G
〉

= − M

q B2
ǫijk Bk

(

K(G) + P(G)
)

(A.13)

where one can readily identify the operators L and N :

K(G) = ∂t
〈

G
〉

− q

M
Em

〈 ∂

∂vm
G
〉

−R(G) (A.14)

P(G) = ∇m
〈

vm G
〉

(A.15)

and where the collisional contribution is defined by:

R(G) =

∫

d3v C(f) G(v) (A.16)

The drift-like expression of G is thus characterised by 2 contributions: the operator K
depending on polarisation aspects with the time derivative (A.14) and the drift induced
by the applied forces, the electric field and collision term, as well as a the diamagnetic
like operator P that depends on the gradient and on a higher moment vm G, (A.15). It
is to be noted that the diamagnetic contribution is expressed in fact in terms of a higher
moment in the fluid hierarchy. A proper closure, consistent with the drift expansion must
therefore be considered.

Let us now be more specific regarding the structure of the function G by defining it
as:

G =

3
∏

m=1

vαm
m (A.17)

One then readily obtains the identity:

vi G =
vi

αj + 1
∂vj

(

vj G
)

= vj
∂

∂vj
F (A.18)
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with F = vj G/(αj + 1). One can then rewrite the diamagnetic contribution ∇m
〈

vm G
〉

in (A.13) as:

P(G) = ∇m
〈

vm G
〉

= ∇m
〈

vm
∂

∂vj
F
〉

= ε Cn K
(

vn G
)

+ ε Cn P
(

vn G
)

(A.19)

where we have introduced the vector operator:

Cn =
M

q

ǫnmr
αn + 1

∇m
Br
ε B2

(A.20)

Given P
(

vn G
)

(A.19):

P
(

vn G
)

= ∇s
〈

vs (vnG)
〉

= ε Cℓ K
(

vℓvn G
)

+ ε Cℓ ∇s
〈

vsvℓvn G
〉

(A.21)

In this expression we use the parameter ε such that ε B ∼ 1 to underline the large B
expansion that is automatically generated when higher and higher moments of the fluid
hierarchy are considered. One can then expand

(

L+N
)

(G) (A.13):

(

K + P
)

(G) = K(G) + ε CnK(vnG) + ε2 CnCtK(vtvnG)

+ε2 CnCℓP(vsvℓvn G) (A.22)

so that one readily obtains:

(

K + P
)

(G) =
+∞
∑

ℓ=0

εℓ
(

ℓ
∏

k=0

Cmk

)

K
(

(

ℓ
∏

k=0

vmk

)

G

)

(A.23)

As a consequence one can write the moment of G, (A.13) solely in terms of the operator
K with no diamagnetic contribution due to the operator P.

〈

vi
∂

∂vj
G
〉

= −ε M
q
ǫijk

Bk
ε B2

+∞
∑

ℓ=0

εℓ
(

ℓ
∏

k=0

Cmk

)

K
(

(

ℓ
∏

k=0

vmk

)

G

)

(A.24)

The way of solving the fluid equations using the Laplace large force to compute directly
explicit contributions, in the spirit of the drift ordering, does not drive diamagnetic can-
cellations but rather leads to an expression that does not dependent on these diamagnetic
effect as readily observed in (A.24). To be fully consistent with this approach we must
assume that the contribution depending on the ∂t in the operator K is small typically of
order ε. We thus extend (A.24) by introducing an expansion of K of the form:

K = K(0) + ε K(1) (A.25)

So that can write the general expression of the moment vi ∂G/∂vj .

〈

vi
∂

∂vj
G
〉

= −ε M
q
ǫijk

Bk
ε B2

+∞
∑

ℓ=0

εℓ
(

ℓ
∏

k=0

Cmk

)

K(0)

(

(

ℓ
∏

k=0

vmk

)

G

)

− ε2 M
q
ǫijk

Bk
ε B2

+∞
∑

ℓ=0

εℓ
(

ℓ
∏

k=0

Cmk

)

K(1)

(

(

ℓ
∏

k=0

vmk

)

G

)

(A.26)
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Let us now address the specific case of G = vj , hence 〈vi ∂
∂vj
G
〉

= 〈vi〉 = nu⊥i.

nu⊥i = −ε M
q
ǫijk

Bk
ε B2

+∞
∑

ℓ=0

εℓ
(

ℓ
∏

k=0

Cmk

)

K(0)

(

(

ℓ
∏

k=0

vmk

)

vj

)

− ε2 M
q
ǫijk

Bk
ε B2

+∞
∑

ℓ=0

εℓ
(

ℓ
∏

k=0

Cmk

)

K(1)

(

(

ℓ
∏

k=0

vmk

)

vj

)

(A.27)

At lowest order in ǫ, namely at order 1, one then finds the very straightforward result:

nu
(1)
⊥i = − M

q
ǫijk

Bk
ε B2

K(0)
(

vj
)

=
M

q
ǫijk

Bk
ε B2

(

q

M
Em

〈 ∂

∂vm
vj

〉

+R(vj)

)

=
n

ε B2
ǫijk

(

Ej +
M

n q
R(vj)

)

Bk (A.28)

Summing the transverse current over all species a one recovers the ambipolarity constraint

∑

a

qanau
(1)
⊥i,a =

∑

a

qana
1

ε B2
ǫijk Ej Bk

+
1

ε B2
ǫijk

∑

a

Ma Ra(vj) Bk (A.29)

where both term are equal to zero, the former via the quasineutrality limit and the latter
via the action-reaction balance of collisional momentum exchange. The order 2 in ε is also
readily determined:

nu
(2)
⊥i = − M

q
ǫijk

Bk
ε B2

K(1)
(

vj
)

− M

q
ǫijk

Bk
ε B2

CmK(0)
(

vmvj
)

(A.30)

and therefore:

nu
(2)
⊥i = − 1

q
ǫijk ∂t

(

n M u
(1)
⊥j

) Bk
ε B2

+
M

q
ǫijk

Bk
ε B2

(

M

q

ǫnmr
αn + 1

∇m
( Br
ε B2

q

M
Em

〈 ∂

∂vm
vnvj

〉)

)

+
M

q
ǫijk

Bk
ε B2

(

M

q

ǫnmr
αn + 1

∇m
( Br
ε B2

R(vnvj)
)

)

(A.31)

For simplicity, the collisional contribution is neglected from now on so that:

nu
(2)
⊥i = − M

q
ǫijk ∂t

(

ǫjℓm
n

ε B2
EℓBm

) Bk
ε B2

+
M

q
ǫijk

Bk
ε B2

(

ǫnmr
1 + 1

∇m
(n Br
ε B2

(

Enuj + Ejun
)

)

)

(A.32)
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APPENDIX A. DERIVATION OF TOKAM2D EQUATIONS

A.3 Ordering of the main terms of the conservation equa-

tions

We introduce characteristic time scale τ , perpendicular length scale L⊥, parallel length
scale L‖, perpendicular velocity V⊥ and parallel velocity V‖. Similarly, N, T, U, B are the
characteristic density, temperature, electric potential and magnetic field respectively, so
that:

{

N

τ

}

∂ ns
∂t

+

{

NV⊥
L⊥

}

∇⊥ · (nsu⊥s) +

{

NV‖

L‖

}

∇‖ ·
(

nsu‖s

)

= 0 (A.33)

⊥
{

mims/miNV⊥
τ

}

∂ (msnsus)

∂t
+

{

NT

L⊥

}

∇ · Ps

=

{

eNU

L⊥

}

qsnsE + {eNV⊥B} qsnsus ×B (A.34)

‖
{

mims/miNV‖

τ

}

∂ (msnsus)

∂t
+

{

NT

L‖

}

∇ · Ps

=

{

eNU

L‖

}

qsnsE + {0} qsnsus ×B (A.35)

The terms in brackets {} indicate the order of the associated contributions. Since these
equations are written without collisional contributions or source terms, they are homoge-
neous in the density N . In the drift ordering, one considers that:

NT

L⊥
=

eNU

L⊥
= eNV⊥B

U =
T

e

V⊥ =
T

e B L⊥
= ρ∗C (A.36)

where miC
2 = T , ρ∗ = ρc/L⊥ and ρcC = T/(eB). It is to be noted that this expression

is species independent. Combining these expressions and definitions, one then finds that:

mims/miNV⊥
τeNV⊥B

=
ms

mi

1

Ωiτ
(A.37)

Since Ωe ≫ Ωi ≫ 1/τ for all relevant transport times τ , one thus finds that the transverse
momentum evolution term is small compared to the other terms. Hence all species are
in quasi mechanical equilibrium in the transverse direction. This is the well known force
balance condition.
Let us now consider the ordering of the particle balance:

N

τ
=

NV⊥
L⊥

=
NV‖

L‖

Ωiτ =
ΩiL⊥

V⊥
=

ΩiL‖

V‖
= ρ−2

∗

L‖ = L⊥M‖ρ
−1
∗ (A.38)
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A.4. ORDERING OF THE CONTRIBUTIONS TO THE TOTAL
PRESSURE TENSOR

Since one considers that in the drift ordering k‖ ≈ 1/L‖ ≈ k⊥ρ∗ ≈ 1/L⊥, one finds that
in the low Mach number limit, M‖ ≪ 1, the parallel contribution to the particle balance
is small. This would correspond to a case in the core plasma. For the edge plasma, one
usually considers that M‖ is of order unity so that the parallel transport is comparable to
the transverse transport, this possible balance then governs the equilibrium SOL width.
The evolution contribution to the parallel momentum balance equation is determined by:

mims/miNV‖

τ
=

ms

mi

NCM‖

Ωiτ
miΩi

=
NT

L‖

ms

mi

CM‖

Ωiτ

ΩiL‖

C2
=
NT

L‖

ms

mi
M2

‖ (A.39)

One thus finds that the evolution contribution is negligible for electrons due to the mass
ratio as well as for the ions in the low Mach number limit. In these cases the parallel
mechanical equilibrium is reached. This is the case for the ions in the core plasma. The
condition is generally met for the electrons: this is the so-called adiabatic electron limit
that yields the generalised Ohm’s law.

A.4 Ordering of the contributions to the total pressure ten-

sor

The pressure tensor Eq.( A.4) is split in four different contributions with the following
ordering:

1

NT
Ps =

p⊥s
NT

I +
(p‖s − p⊥s)

NT
b⊗ b

+
{ms/miNV V

′mi}
NT

msnsus ⊗ us +
1

NT
Πs

= {1} p⊥s
NT

I + {1}
(p‖s − p⊥s)

NT
b⊗ b

+
{

ms/miMM ′
}

msnsus ⊗ us +
1

NT
Πs (A.40)

One thus finds that the two first contributions are of order one, except the second one
which is equal to zero in the limit p‖s = p⊥s. In the third contribution V and V ′ stand for
the characteristic values of the components of us. When normalised by C they yield the
Mach numbers M and M ′ with values ρ∗ and M‖ for the transverse and parallel compo-
nents respectively. For the ions, the perpendicular-perpendicular component then yields a
contribution of order ρ2∗NT/L⊥, which is comparable to that of the evolution term in the
transverse direction. The parallel-parallel ion component leads to a contribution of order
M2

‖NT/L‖ which is again comparable to that of the evolution term in the parallel direc-

tion. The parallel-perpendicular component is of order ρ∗M‖NT/L‖ ≈ ρ2∗NT/L⊥ and thus
leads to the same order as the perpendicular-perpendicular contribution in the transverse
balance equation. The perpendicular-parallel component, ρ∗M‖NT/L⊥ ≈ M2

‖NT/L‖, is
therefore also found to be of the same order as the evolution contribution of the parallel me-
chanical balance equation. Finally, the tensor Π depending on the correlation of different
components of the fluctuating velocities will be considered to be small, {Π} /(NT )≪ 1.

130



APPENDIX A. DERIVATION OF TOKAM2D EQUATIONS

A.5 Transverse current

Equation (A.9a) allows one to determine the plasma current j that will be inserted in
Eq.( A.7):

j⊥ =
B

B2
×
(

∂ (min ui)

∂t
+ ∇ · (minui ⊗ ui)

)

+
B

B2
×
(

∇p⊥ + b (b ·∇) (p‖ − p⊥)
)

+
B

B2
×
(

(p‖ − p⊥) (b ·∇)b + (p‖ − p⊥)b (∇ · b)
)

(A.41)

In this expression the cross product by B of colinear terms drop out so that one obtains:

j⊥ =
B

B2
×
(

∂ (min ui)

∂t
+ ∇ · (minui ⊗ ui)

)

+
B

B2
×∇p⊥ +

B

B2
×
(

(p‖ − p⊥) (b ·∇)b
)

(A.42)

The ordering of the various contribution yields:

j⊥ {eNCρ∗} =
B

B2
×
(

∂ (min ui)

∂t
+ ∇ · (minui ⊗ ui)

){

ρ2∗
NT

BL⊥

}

+
B

B2
×∇p⊥

{

1× NT

BL⊥

}

+
B

B2
×
(

(p‖ − p⊥) (b ·∇)b
)

{

L⊥

R

NT

BL⊥

}

(A.43)

where eNCρ∗ = NT/(BL⊥). At this stage, terms of various orders are retained. Let us
now proceed to a couple of operator permutations:

j⊥ = ∂t

(min

B2
B× ui

)

+ ∇ ·
(min

B2
ui ⊗ (B× ui)

)

+B× ∇p⊥
B2

+
1

B
(p‖ − p⊥) (b× (b ·∇)b)

+ (min ui)×
(

∂t

(

B

B2

)

+ (ui ·∇)

(

B

B2

))

(A.44)

A.6 Divergence of the transverse current

The divergence of the transverse current is then given by:

∇⊥ · j⊥ = ∂t∇⊥ ·
(min

B2
B× ui

)

+ (∇⊥ ⊗∇) :
(min

B2
ui ⊗ (B× ui)

)

+∇⊥ ·
(

B× ∇p⊥
B2

)

+∇⊥ ·
(

1

B
(p‖ − p⊥) (b× (b ·∇)b)

)

+∇⊥ ·
(

(min ui)×
(

∂t

(

B

B2

)

+ (ui ·∇)

(

B

B2

)))

(A.45)
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A.6. DIVERGENCE OF THE TRANSVERSE CURRENT

We then split the second term to obtain the divergence of a flux:

∇⊥ · j⊥ = ∂t

(

∇⊥ ·
(min

B2
B× ui

))

+∇ ·
(

ui

(

∇⊥ ·
(min

B2
B× ui

)))

+∇ ·
(((min

B2
B× ui

)

·∇⊥

)

ui

)

+∇⊥ ·
(

B× ∇p⊥
B2

)

+∇⊥ ·
(

1

B
(p‖ − p⊥) (b× (b ·∇)b)

)

+∇⊥ ·
(

(min ui)×
(

∂t

(

B

B2

)

+ (ui ·∇)

(

B

B2

)))

(A.46)

We then introduce the vorticity W as the divergence of the polarisation density n σ⊥

defined as:

σ⊥ =
mi

B2
B× ui ; W = ∇⊥ ·

(

n σ⊥

)

(A.47)

so that one obtains:

∇⊥ · j⊥ = ∂tW + ∇ · (ui W ) + ∇⊥ ·
(

B

B2
×∇p⊥

)

+∇ · ((nσ⊥ ·∇⊥)ui)

+∇⊥ ·
(

(p‖ − p⊥)

(

B

B2
× (b ·∇)b

))

+∇⊥ ·
(

(min ui)×
(

∂t

(

B

B2

)

+ (ui ·∇)

(

B

B2

)))

(A.48)

Taking into account the relations in Appendix ??, we now reconsider the divergence of
the transverse current:

∇⊥ · j⊥ = ∂tW + B×
(

−E⊥ +
∇p⊥i
qin

)

·∇
(

W

B2

)

+ ∇ ·
(

bu‖i W
)

+

(

W

B2

)

∇ · (E⊥ ×B) +

(

W

B2

)

∇ ·
(

B×
(

∇p⊥i
n qi

))

+
µ0
B2

j ·∇p⊥ + B ·
(

∇p⊥ ×∇
1

B2

)

+∇ · ((nσ⊥ ·∇⊥)ui)

+∇⊥ ·
(

(p‖ − p⊥)

(

B

B2
× (b ·∇)b

))

+∇⊥ ·
(

(min ui)×
(

∂t

(

B

B2

)

+ (ui ·∇)

(

B

B2

)))

(A.49)
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In the electrostatic limit E = −∇Φ, one can then write:

∇⊥ · j⊥ = ∂tW + B×
(

∇⊥Φ +
∇p⊥i
qin

)

·∇
(

W

B2

)

+ ∇ ·
(

bu‖i W
)

+
Wµ0
B2

j ·∇Φ

+
W

n qi

µ0
B2

j ·∇p⊥i +
W

n2 qi

B

B2
· (∇n×∇p⊥i)

+
µ0
B2

j ·∇p⊥ + B ·
(

∇p⊥ ×∇
1

B2

)

+∇ · ((nσ⊥ ·∇⊥)ui)

+∇⊥ ·
(

(p‖ − p⊥)

(

B

B2
× (b ·∇)b

))

+∇⊥ ·
(

(min ui)×
(

∂t

(

B

B2

)

+ (ui ·∇)

(

B

B2

)))

(A.50)

It is then convenient to introduce the Poisson Bracket defined as:

[F,G] =
B

B2
· (∇⊥F ×∇⊥G) (A.51)

so that:

∇⊥ · j⊥ = ∂tW +B2

[

Φ,
W

B2

]

+
B2

qin

[

p⊥i,
W

B2

]

+ ∇ ·
(

bu‖i W
)

+
W

qin2
[n, p⊥i] +B2

[

p⊥,
1

B2

]

+
µ0
B2

j ·
(

W∇Φ +
W

n qi
∇p⊥i + ∇p⊥

)

+∇ ·
(

(nσ⊥ ·∇⊥)

(

u‖ib +
1

mi
σ⊥ ×B

))

+
(p‖ − p⊥)µ0

B2
j · (b ·∇)b− B

B2
·
(

∇⊥(p‖ − p⊥)× (b ·∇)b
)

+(p‖ − p⊥)B ·
(

(b ·∇)b×∇⊥
1

B2

)

+(p‖ − p⊥)
B

B2
(∇⊥ × (b ·∇)b)

+∇⊥ ·
(

(min ui)×
(

∂t

(

B

B2

)

+ (ui ·∇)

(

B

B2

)))

(A.52)
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A.7. SIMPLIFIED EXPRESSIONS OF THE DIVERGENCE OF THE
TRANSVERSE CURRENT

This expression can then be written as: Retaining only the contributions with power 1 in
ρ∗ and power zero in β, one obtains a strong simplification of the expression of ∇⊥ · j⊥:

∇⊥ · j⊥ =

{

NeCρ∗
L⊥

}(

∂tW +B2

[

Φ,
W

B2

]

+
B2

qin

[

p⊥i,
W

B2

])

+

{

NeCρ∗
L⊥

}

W

qin2
[n, p⊥i] +

{

NeCρ∗L⊥

RL⊥

}

B2

[

p⊥,
1

B2

]

−
{

NeCρ∗L⊥

L⊥R

}

B

B2
·
(

∇⊥(p‖ − p⊥)× (b ·∇)b
)

+

{

NeCρ∗L
2
⊥

L⊥R2

}

(p‖ − p⊥)B ·
(

(b ·∇)b×∇⊥
1

B2

)

+

{

NeCρ∗L
2
⊥

L⊥R2

}

(p‖ − p⊥)
B

B2
(∇⊥ × (b ·∇)b) (A.53)

A.7 Simplified expressions of the divergence of the trans-

verse current

Expression Eq.( A.53) at order ρ∗ and in the asymptotic limit of vanishing β is already
strongly simplified. Considering that the three last terms are derived from a single term,
that allows one to weigh its contribution in terms of the inverse aspect ratio L⊥/R, a more
compact expression of ∇⊥ · j⊥ is readily obtained by stepping back with respect to that
expansion.

∇⊥ · j⊥ =

(

∂tW +B2

[

Φ,
W

B2

]

+
B2

qin

[

p⊥i,
W

B2

]

+
W

qin2
[n, p⊥i]

)

+B2

[

p⊥,
1

B2

]

+∇⊥ ·
(

(p‖ − p⊥)

(

B

B2
× (b ·∇)b

))

(A.54)

When comparing this expression to Eq.( A.43), one can readily see where the three different
contributions in Eq.( A.54) stem from. In particular one can see that the lowest order
contribution to j⊥ now contributes at the same order of magnitude as the two diamagnetic
contributions (the currents driven by the two pressure terms), see Eq.( A.53). This justifies
the fact that all contributions have been retained in the calculation at that initial step.
In order to recover the TOKAM2D equation for the vorticity we first assume pressure
equipartition, hence p⊥ = p‖ so that:

∇⊥ · j⊥ = ∂tW +B2

[

Φ,
W

B2

]

+
B2

qin

[

p⊥i,
W

B2

]

+
W

qin2
[n, p⊥i]

+B2

[

p⊥,
1

B2

]

(A.55)

In the cold ion limit Ti ≪ Te, hence p⊥i ≪ p⊥, and neglecting B2W [Φ, 1/B2] with respect
to [Φ,W ], which holds in the large aspect ratio limit L⊥ ≪ R, one then obtains finally:

∇⊥ · j⊥ = ∂tW + [Φ,W ] +B2

[

p⊥,
1

B2

]

(A.56)
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where the vorticity is also simplified with respect to Eq.( A.47), since ui ≈ ∇Φ × B/B2

in the cold ion approximation, so that:

σ⊥ =
mi

B2
∇⊥Φ ; W = ∇⊥ ·

(n mi

B2
∇⊥Φ

)

(A.57)

A.8 Particle balance equation at lowest order in ρ∗

The analysis of the particle balance equation is readily obtained by considering Eq.( A.1)
for the electrons at lowest order in u⊥e

∂ n

∂t
+ ∇⊥ · (nu⊥e) + ∇‖ ·

(

nu‖e

)

= 0 (A.58)

In this expression, we thus consider:

u⊥e =
1

B2

(

E⊥ +
∇p⊥e
en

)

×B =
1

B2

(

−∇⊥Φ +
∇p⊥e
en

)

×B (A.59)

so that the calculation of the divergence of the transverse particle flux is very similar
to that of the divergence of the transverse current, except that the evolution terms are
squeezed out in the limit of a small aspect ratio.

∇⊥ · (nu⊥e) = ∇⊥

(

1

B2
(−n∇⊥Φ×B)

)

+
1

e
∇⊥ ·

(

1

B2
∇p⊥e ×B

)

= n
µ0
B2

j ·∇⊥Φ +
B

B2
B2 ·

(

∇⊥Φ×∇⊥
n

B2

)

−1

e

µ0
B2

j ·∇p⊥e +
B

B2

B2

e
·
(

∇⊥
1

B2
×∇p⊥e

)

= B2
[

Φ,
n

B2

]

− B2

e

[

p⊥e,
1

B2

]

+
µ0
B2

j ·
(

n∇⊥Φ− 1

e
∇⊥p⊥e

)

(A.60)

In the zero β asymptotic limit, one then obtains:

∇⊥ · (nu⊥e) = B2
[

Φ,
n

B2

]

− B2

e

[

p⊥e,
1

B2

]

(A.61)

Finally, in the large aspect ratio limit, hence for:

B2

e

[

p⊥e,
1

B2

]

≪ [Φ, n] (A.62a)

nB2
[

Φ,
1

B2

]

≪
[

Φ, n
]

(A.62b)

one recovers the particle balance equation used in TOKAM2D.

∇⊥ · (nu⊥e) = [Φ, n] (A.63)

and therefore:

∂ n

∂t
+ [Φ, n] + ∇‖ ·

(

nu‖e

)

= 0 (A.64)
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Appendix B

Quasilinear analysis

Using a generic transport equation, akin to the particle balance equation of TOKAM2D,
in the quasilinear framework allows one to identify the key assumptions that pave the way
towards determining an effective diffusive transport to describe turbulent transport.

∂f

∂τ
+
[

φ, f
]

−D∆f = −σf (B.1)

For the sake of simplicity we consider 2D turbulent transport in the plane transverse to
the magnetic field, the parallel transport being taken into account via a small loss term
proportional to σ. The equation is normalised, time to 1/Ωi, transverse scale to ρs and
the potential to Te/e so that the diffusion coefficient is normalised by the Bohm diffusion
coefficient DB = ρ2sΩi. The equation is homogeneous in f so that the normalisation of f
is arbitrary.

B.1 Average procedure.

In a first step one assumes that f can be split into a mean and fluctuating part, f = f̄+ f̃ .
This initial procedure is never discussed in terms of its actual implications, the usual
trick being to invoke an averaging procedure based on a series of independent realisations
of the same experiment. However, in actual experiments or large simulation runs, this
procedure is not applicable. Furthermore, in simulations, the same run conditions will
lead to the same simulation unless one allows generating independent realisations of the
same numerical experiment via a stochastic process amplified by chaotic sensitivity to
initial conditions. The averaging procedure is then governed by the chosen stochastic
process and not some ”Deus ex machina” determination of independent realisations. The
averaging process, symbolised by brackets, f̄ =

〈

f
〉

, which governs the separation will be
further discussed in the following. It leads to two coupled equations replacing (B.1).

∂f̄

∂τ
+
[

φ̄, f̄
]

+
〈

[

φ̃, f̃
]

〉

−D∆f̄ = −σf̄ (B.2a)

∂f̃

∂τ
+
[

φ̄, f̃
]

+
[

φ̃, f̄
]

+
[

φ̃, f̃
]

−
〈

[

φ̃, f̃
]

〉

−D∆f̃ = −σf̃ (B.2b)

sectionOrdering of the fluctuations. We introduce the parameter ε = f̃ |/|f̄ | where the
symbol |f | is an appropriate norm allowing one to characterise the magnitude of the
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B.2. MULTISCALE AND AVERAGING

fluctuations with respect to the mean. Introducing ε in (B.2) to characterise the magnitude
of all the fluctuating terms with respect to the mean terms, one obtains:

∂f̄

∂τ
+
[

φ̄, f̄
]

+ ε2
〈

[

φ̃, f̃
]

〉

−D∆f̄ = −σf̄ (B.3a)

ε
∂f̃

∂τ
+ ε
[

φ̄, f̃
]

+ ε
[

φ̃, f̄
]

+ ε2
[

φ̃, f̃
]

− ε2
〈

[

φ̃, f̃
]

〉

− εD∆f̃ = −εσf̃ (B.3b)

Multiscale analysis. It is now important to introduce appropriate scaling factors for
the parameters and variables τ, x, y in this set of equations to obtain consistent results.
Given a variable S we introduce two dimensionless variables z and Z characterised by the
scales ℓz and LZ so that:

S = ℓzz + LZZ ; s =
S

ℓs
=
ℓz
ℓs
z +

LZ
ℓs
Z (B.4)

where ℓs is the chosen normalisation scale of the variable S that defines the normalised
variable s in (B.4). Let us now assume that the variables z and Z are independent, one
then has the chain rule for the derivative:

ℓs
∂

∂S
=

∂

∂s
=
∂z

∂s

∂

∂z
+
∂Z

∂s

∂

∂Z
=
ℓs
ℓz

∂

∂z
+
ℓs
ℓZ

∂

∂Z
(B.5)

Consistently, for the normalised time variable one then has:

∂

∂τ
=

1

Ωiτt

∂

∂t
+

1

ΩiτT

∂

∂T
(B.6)

where τt is the relevant time scale of the turbulent fluctuations, hence ρ∗ = 1/(Ωiτt),
and τT is the relevant time scale of the diffusive transport determined by this quasilinear
analysis.

Regarding the length scales one proceeds in a similar fashion with ρs the turbulent
length scale, which is also used as normalising parameter, and a for the transport scale
one must then replace ∂x and ∂y by ∂x + ρ∗∂X and ∂y + ρ∗∂Y respectively. We reuse the
variables x and y to simplify the writing. This ordering modifies the Poisson bracket [.]
and Laplacian ∆ operators.

[

.
]

=
[

.
]

x,y
+ ρ∗

[

.
]

X,y
+ ρ∗

[

.
]

x,Y
+ ρ2∗

[

.
]

X,Y
(B.7a)

∆ = ∆x,y + 2 ρ∗

(

∂x∂X + ∂y∂Y

)

+ ρ2∗∆X,Y (B.7b)

B.2 Multiscale and averaging

We now define the averaging process as an average over the high frequency variables,
namely t, x, y, so that the mean fields only depend on T,X, Y . One then obtains for the
mean field equation:

ρ∗
τt
τT

∂f̄

∂T
+ ρ2∗

[

φ̄, f̄
]

X,Y
+ ε2

〈

[

φ̃, f̃
]

〉

−Dρ2∗∆X,Y f̄ = −σf̄ (B.8)

Given the expression of the Poisson bracket:

[

φ, f
]

= ∂x

(

f
(

− ∂yφ
)

)

+ ∂y

(

f ∂xφ
)

(B.9)
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One readily obtains:
〈

[

φ, f
]

〉

= −ρ∗∂X
〈

f
(

∂y + ρ∗∂Y
)

φ
〉

+ ρ∗∂Y

〈

f
(

∂x + ρ∗∂X
)

φ
〉

(B.10)

hence,

ρ∗
τt
τT

∂f̄

∂T
+ ρ2∗

[

φ̄, f̄
]

X,Y
− ε2ρ∗ ∂X

〈

f̃ ∂yφ̃
〉

+ ε2ρ∗ ∂Y

〈

f̃ ∂xφ̃
〉

−ε2ρ2∗ ∂X
〈

f̃ ∂Y φ̃
〉

+ ε2ρ2∗ ∂Y

〈

f̃ ∂X φ̃
〉

−Dρ2∗∆X,Y f̄ = −σf̄ (B.11)

In order to complete this ordering, one must determine the appropriate scaling properties
of the diffusion coefficient D and of the parallel loss term σ. Regarding σ = 1/(Ωiτf )
where τf is the characteristic life-time, one thus obtains:

σ =
1

Ωiτf
=

a

τfcs
ρ∗ (B.12a)

D = νDρ
α
∗Dc (B.12b)

Since the diffusion coefficient D is normalised by the Bohm diffusion coefficient DB, α = 0
corresponds to a Bohm-like diffusive transport while α = 1 will lead to a gyro-Bohm like
diffusive contribution to the transport. The parameter νD takes into account the smallness
of the diffusive transport process. For collisional diffusion one has νD = ν∗ and α = 1.
Since τt = a/cs as determined by the turbulence growth rate, the mean transport equation
takes the form:

∂f̄

∂T
+

ε2

τt/τT

(

− ∂X

〈

f̃ ∂yφ̃
〉

+ ∂Y

〈

f̃ ∂xφ̃
〉

)

+
ε2ρ∗
τt/τT

(

− ∂X
〈

f̃ ∂Y φ̃
〉

+ ∂Y

〈

f̃ ∂X φ̃
〉

)

+
ρ∗

τt/τT

(

− ∂X
(

f̄ ∂Y φ̄
)

+ ∂Y

(

f̄ ∂X φ̄
)

)

− νDρ
1+α
∗

τt/τT
Dc∆X,Y f̄ = − τt/τf

τt/τT
f̄ (B.13)

One can then readily show that the convective contribution of the second line, proportional
to ε2ρ∗τT /τt will be negligible at order one. One can then identify two transport regimes:

1. Small fluctuations: ε2 ≪ ρ∗ ≪ 1, so that one can set τt/τT = ρ∗, and consequently:

∂f̄

∂T
− ∂X

(

f̄∂Y φ̄
)

+ ∂Y

(

f̄∂X φ̄
)

− νDρα∗ Dc∆X,Y f̄ = −τt/τf
ρ∗

f̄ (B.14a)

In this regime the mean fields are decoupled from the fluctuations. The characteristic
time scale of the parallel transport τf must be large enough, τT ≤ τf , so that the
transverse transport is adiabatic with respect to the parallel transport.

2. Large fluctuations: ρ
1/2
∗ ≪ ε so that one can set τt/τT = ε2. The order one mean

transport equation is then:

∂f̄

∂T
− ∂X

〈

f̃∂yφ̃
〉

+ ∂Y

〈

f̃∂xφ̃
〉

− νDρ
1+α
∗

ε2
Dc∆X,Y f̄ = −τt/τf

ε2
f̄ (B.14b)
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FLUCTUATIONS.

with the same condition on τf , τT ≤ τf . In this regime, the mean field convective
transport is governed by the coherent interferences between the fluctuations of f and
of the electric drift velocities.

3. Order one fluctuation transport: ε2 = 1. This case is in the same regime than defined
by the previous idem, however the condition τt/τT = 1 means that one cannot make
a separation between turbulent and transport time scales t ≡ T . The lowest order
mean transport equation then takes the form:

∂f̄

∂t
− ∂X

〈

f̃ ∂yφ̃
〉

+ ∂Y

〈

f̃ ∂xφ̃
〉

− νDρ1+α∗ Dc∆X,Y f̄ = − τt
τf
f̄ (B.14c)

Note that when the large scale fields do not depend on the poloidal coordinate Y one only
finds the large fluctuation regime, however with no constraint on ε. Let us now consider
the evolution equation for the fluctuating field:

∂f̃

∂t
+ ∂X φ̄∂yf̃ − ∂Y φ̄∂xf̃ + ∂xφ̃∂Y f̄ − ∂yφ̃∂X f̄

+
ε

ρ∗

[

φ̃, f̃
]

x,y

+ ε
(

[

φ̃, f̃
]

X,y
+ ∂X

〈

f̃∂yφ̃
〉)

+ ε
(

[

φ̃, f̃
]

x,Y
− ∂Y

〈

f̃∂xφ̃
〉)

+ ε ρ∗

(

[

φ̃, f̃
]

X,Y
−
〈

[

φ̃, f̃
]

X,Y

〉)

− νDρα−1
∗ Dc∆x,yf̃ − 2 νDρ

α
∗Dc

(

∂X∂x + ∂Y ∂y
)

f̃ − νDρα+1
∗ Dc∆X,Y f̃

= − τt
τf
f̃ (B.15)

B.3 Quasilinear framework, small amplitude fluctuations.

Within the quasilinear framework, one neglects the quadratic terms with respect to the
fluctuations. One thus requires that ε ≪ ρ∗. Furthermore, to avoid issues regarding the
ordering of the diffusive transport we shall assume that α = 1, namely that the diffusion
is gyro-Bohm. At lowest order one then obtains:

∂f̃

∂t
+ ∂X φ̄∂yf̃ − ∂Y φ̄∂xf̃ + ∂xφ̃∂Y f̄ − ∂yφ̃∂X f̄ − νDDc∆x,yf̃ = − τt

τf
f̃ (B.16)

which is by construction linear with respect to the fluctuations and can therefore conve-
niently be Fourier expanded with respect to the high frequency variables, with no mode
coupling, so that one can determine f̃ in terms of φ̃.

f̂ω,kx,ky = − ky∂X f̄ − kx∂Y f̄
ω + kxV̄Ex + kyV̄Ey + i

(

νDDck2 + τt
τf

) φ̂ω,kx,ky (B.17)

In this expression we have introduced the following notations: k2 = k2x + k2y and V̄Ex =
−∂Y φ̄, V̄Ey = ∂X φ̄ so that kxV̄Ex + kyV̄Ey = k · V̄E and therefore:

f̂ω,kx,ky = − ω + k · V̄E − i η
(

ω + k · V̄E
)2

+ η2

(

ky∂X f̄ − kx∂Y f̄
)

φ̂ω,kx,ky (B.18)
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with η = νDDck
2 + τt/τf .

This expression can then be used to compute the non-linear contribution in (B.14b),
hence the fluxes

ΓX =
〈

f̃∂yφ̃
〉

=
∑

ω′,k′x,k
′
y

∑

ω′′,k′′x ,k
′′
y

f̂ω′,k′x,k
′
y
(i k′′y)φ̂ω′′,k′′x ,k

′′
y

〈

ei(ϕ
′+ϕ′′)

〉

(B.19a)

ΓY = −
〈

f̃∂xφ̃
〉

= −
∑

ω′,k′x,k
′
y

∑

ω′′,k′′x ,k
′′
y

f̂ω′,k′x,k
′
y
(i k′′x)φ̂ω′′,k′′x ,k

′′
y

〈

ei(ϕ
′+ϕ′′)

〉

(B.19b)

where:

ϕ′ + ϕ′′ = t(ω′ + ω′′) + x(k′x + k′′x) + y(k′y + k′′y) (B.20)

The average on the high frequency phases then readily yields:

ΓX = −i
∑

ω,kx,ky

ky φ̂
∗
ω,kx,ky f̂ω,kx,ky (B.21a)

ΓY = i
∑

ω,kx,ky

kx φ̂
∗
ω,kx,ky f̂ω,kx,ky (B.21b)

Given the expression of f̂ (B.18), one then finds the fluxes:

ΓX =
∑

ω,kx,ky

|φ̂ω,kx,ky |2
i
(

ω + k · V̄E
)

+ η
(

ω + k · V̄E
)2

+ η2

(

+ k2y∂X f̄ − kxky∂Y f̄
)

(B.22a)

ΓY =
∑

ω,kx,ky

|φ̂ω,kx,ky |2
i
(

ω + k · V̄E
)

+ η
(

ω + k · V̄E
)2

+ η2

(

− kxky∂X f̄ + k2x∂Y f̄
)

(B.22b)

The symmetry in the sum when changing ω, kx, ky to −ω,−kx,−ky then yields the quasi-
linear expression of the fluxes:

Γ = DQL ·∇f̄ (B.23a)

DQL =
∑

ω,kx,ky

|φ̂ω,kx,ky |2
η

(

ω + k · V̄E
)2

+ η2

(

k2y −kxky
−kxky k2x

)

(B.23b)

The mean field evolution equation is then:

∂f̄

∂T
−∇ ·

(

DQL ·∇f̄
)

= −τt/τf
ε2

f̄ (B.24)

Given the evolution with T the diffusion coefficient is normalised by ρ∗DB and is therefore
gyro-Bohm. One also finds that for the SOL case, such that τf = τt, one must have ε of
order 1, hence very large fluctuations which contradicts the quasilinear assumption regard-
ing the quadratic contribution to the fluctuation evolution. Conversely, if the fluctuations
are small, one must ensure that τt ≪ τf , hence adiabatic transverse transport with respect
to a slow parallel transport contribution.
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Appendix C

The rescaled equation of

TOKAM2D

C.1 Linearized sheath losses

We consider here the following set of equations where the sheath terms have been linearized
in such a way as to retain the key physics. Modifying the sheath expression provides
significant margin to determine a new normalization of the system. We have included
explicitly the linear term −∂yφ∂xn̄ to see how gradient driven systems vary with respect
to flux driven systems with a radially localized source S = S0S(x) where the radial integral
of S(x) and S0 is therefore the magnitude of the source term.

∂tn+ [φ, n]− ∂yφ∂xn̄−D⊥∆⊥n+ σnn = S0S(x) (C.1a)

∂tW + [φ,W ] + g∂yn− ν⊥∆⊥W − σφφ = 0 (C.1b)

C.2 Normalization coefficients

Let An, Aφ, At, AL be the normalization constants, we then have:

∂tn+
At Aφ An

An A2
L

[φ, n]− At Aφ
An AL

∂yφ ∂xn̄−D⊥
At An
An A2

L

∆⊥n

+
At An
An

σnn =
At
An

S0S(AL x) (C.2a)

∂tW +
At A

2
φ A

2
L

Aφ A
4
L

[φ,W ] +
At An A

2
L

Aφ AL
g∂yn−

At Aφ A
2
L

Aφ A
4
L

ν⊥∆⊥W

− At Aφ A
2
L

Aφ
σφφ = 0 (C.2b)

C.3 Universal transport equation

Normalizing-out the parameters of the transport equation

As a rule for this normalization we choose to remove coefficients from the particle balance
equation. The Poisson bracket control term can be set to 1 with the constraint At Aφ = A2

L.
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hence:

∂tn+ [φ, n]− At Aφ
An AL

∂yφ ∂xn̄−D⊥
At
A2
L

∆⊥n+Atσnn =
At
An

S0S(AL x) (C.3a)

∂tW + [φ,W ] +
At An AL

Aφ
g ∂yn−

At
A2
L

ν⊥∆⊥W −AtA2
Lσφ φ = 0 (C.3b)

Setting D⊥At = A2
L then leads to:

∂tn+ [φ, n]− AL
An

∂yφ ∂xn̄−∆⊥n+
A2
Lσn
D⊥

n =
A2
L S0

D⊥ An
S(AL x) (C.4a)

∂tW + [φ,W ] +
An A

3
L

D2
⊥

g ∂yn−
ν⊥
D⊥

∆⊥W −
σφA

4
L

D⊥
φ = 0 (C.4b)

Finally, in the SOL, σn 6= 0, so that one can set: A2
Lσn = D⊥, At = 1/σn, and Aφ = D⊥.

∂tn+ [φ, n]− (D⊥σn)1/2

An σn
∂yφ ∂xn̄−∆⊥n+ n =

S0
σn An

S(AL x) (C.5a)

∂tW + [φ,W ] +
An

(D⊥σn)1/2 σn
g ∂yn−

ν⊥
D⊥

∆⊥W −
σφD⊥

σ2n
φ = 0 (C.5b)

Universal transport, flux driven SOL equations

Considering the flux driven case, S0 6= 0 and ∂xn̄ = 0, one can then define An such that
Anσn = S0.

∂tn+ [φ, n]−∆⊥n+ n− S(AL x) = 0 (C.6a)

∂tW + [φ,W ] +Gf ∂yn− Sc ∆⊥W − Σφ φ = 0 (C.6b)

where:

Gf =
S0 g

(

σn D⊥

)1/2
σ2n

(C.6c)

Sc =
ν⊥
D⊥

(C.6d)

Σφ =
σφ D⊥

σ2n
(C.6e)

This system depends on 4 control parameters to be compared to the 7 control parameters
in Eq.(C.1). It is also to be noted that all control parameters have not been removed from
the particle balance equation given the radial dependence of the source term. the other
three control parameters are: Gf that characterizes the instability and its magnitude, as
well as Sc, Σφ, Eq.(C.6d, C.6e), that control the instability spectrum via the long wave
length damping governed by the Schmidt number and the short wave length damping via
Σφ.

Universal transport, gradient driven SOL equations

Considering now the gradient driven case, S0 = 0 and ∂xn̄ 6= 0, one can then define An
such that Anσn = −(D⊥ σn)1/2 ∂xn̄.

∂tn+ [φ, n]− ∂yφ−∆⊥n+ n = 0 (C.7a)

∂tW + [φ,W ] +Gg ∂yn− Sc∆⊥W − Σφ φ = 0 (C.7b)
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where:

Gg =
−∂xn̄ g
σ2n

(C.7c)

In this case 3 control parameters are retained, Gg that characterizes the instability and
its magnitude, as well as Sc, Σφ, Eq.(C.6d, C.6e), that control the instability spectrum
via the long wave length damping governed by the Schmidt number and the short wave
length damping via Σφ.

C.4 Universal vorticity equation

Normalizing-out the parameters of the vorticity equation

An alternative is to remove the control parameters from the vorticity equation, hence
given Eq.(C.2), one now sets: Atν⊥ = A2

L = At Aφ so that Aφ = ν⊥ and At = A2
L/ν⊥.

Therefore:

∂tn+ [φ, n]− AL
An

∂yφ ∂xn̄−
D⊥

ν⊥
∆⊥n+At σn n =

A2
L S0

An ν⊥
S(AL x) (C.8a)

∂tW + [φ,W ] +
An A

3
L

ν2⊥
g ∂yn−∆⊥W −

A4
L σφ
ν⊥

φ = 0 (C.8b)

Let k̄ = 1/AL = (σφ/ν⊥)1/4, At = 1/(ν⊥σφ)1/2, one then has:

∂tn+ [φ, n]− ∂xn̄

k̄ An
∂yφ−

D⊥

ν⊥
∆⊥n+

σn

(ν⊥σφ)1/2
n =

S0

An (ν⊥σφ)1/2
S(AL x) (C.9a)

∂tW + [φ,W ] +
k̄ An g

ν⊥σφ
∂yn−∆⊥W − φ = 0 (C.9b)

In a last step one sets An = ν⊥σφ/(gk̄) so that:

∂tn+ [φ, n]− g ∂xn̄

σφ ν⊥
∂yφ−

D⊥

ν⊥
∆⊥n+

σn

(ν⊥σφ)1/2
n =

g k̄ S0

(ν⊥σφ)3/2
S(AL x) (C.10a)

∂tW + [φ,W ] + ∂yn−∆⊥W − φ = 0 (C.10b)

Universal vorticity, flux driven SOL equations

Considering the flux driven case, S0 6= 0 and ∂xn̄ = 0, one readily finds:

∂tn+ [φ, n]− 1

Sc
∆⊥n+ Σn n = Zs S(AL x) (C.11a)

∂tW + [φ,W ] + ∂yn−∆⊥W − φ = 0 (C.11b)

where:

Σn =
σn

(ν⊥σφ)1/2
(C.11c)

Zs =
g k̄ S0

(ν⊥σφ)3/2
(C.11d)
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CONTRIBUTION

Universal vorticity, gradient driven SOL equations

Considering the gradient driven case, S0 = 0 and ∂xn̄ 6= 0, one readily finds:

∂tn+ [φ, n] +
1

Λn
∂yφ−

1

Sc
∆⊥n+ Σn n = 0 (C.12a)

∂tW + [φ,W ] + ∂yn−∆⊥W − φ = 0 (C.12b)

where:

1

Λn
= − g ∂xn̄

σφ ν⊥
(C.12c)

C.5 Universal transport equation with sheath contribution

Normalizing-out the parameters of the transport equation with sheath

∂tn+ [φ, n]− (D⊥σn)1/2

An σn
∂yφ ∂xn̄−∆⊥n+ n exp(−D⊥ φ) =

S0
σn An

S(AL x)(C.13a)

∂tW + [φ,W ] +
An

(D⊥σn)1/2 σn
g ∂yn−

ν⊥
D⊥

∆⊥W −
σφ
σ2n

(

1− exp(−D⊥ φ)
)

= 0(C.13b)

Universal transport, flux driven SOL equations with sheath

Considering the flux driven case, S0 6= 0 and ∂xn̄ = 0, one can then define An such that
Anσn = S0.

∂tn+ [φ, n]−∆⊥n+ n exp(−D⊥ φ)− S(AL x) = 0 (C.14a)

∂tW + [φ,W ] +Gf ∂yn− Sc ∆⊥W −
Σφ

D⊥

(

1− exp(−D⊥ φ)
)

= 0 (C.14b)

where Gf , Sc and Σφ are defined in Eq.(C.6c, C.6d, C.6e).

Universal transport, gradient driven SOL equations with sheath

Considering now the gradient driven case, S0 = 0 and ∂xn̄ 6= 0, one can then define An
such that Anσn = −(D⊥ σn)1/2 ∂xn̄.

∂tn+ [φ, n]− ∂yφ−∆⊥n+ n exp(−D⊥ φ) = 0 (C.15a)

∂tW + [φ,W ] +Gg ∂yn− Sc∆⊥W −
Σφ

D⊥

(

1− exp(−D⊥ φ)
)

= 0 (C.15b)

In this case 3 control parameters are retained, Gg Eq.(C.7c) that characterizes the insta-
bility and its magnitude, as well as Sc, Σφ, Eq.(C.6d, C.6e), that control the instability
spectrum via the long wave length damping governed by the Schmidt number and the
short wave length damping via Σφ.
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Universal transport, SOL scaling with fixed length scale

The length scale appears the less convenient parameter to change since it modifies both
the box size and the source radial dependence. To maintain the length scale, one must
keep A2

L = D⊥/σn constant. Let us recall the control parameters used in the linearized
case, removing the dependence on D⊥ that is replaced by A2

L σn.

Gf =
S0 g

ALσ3n
; Gg =

−∂xn̄ g
σ2n

; Σφ =
σφ A

2
L

σn
(C.16)

A scan of the SOL width at constant box size and source width will thus depend on three
parameters, the Schmidt number, either Gf or Gg depending on the driving mechanism
and Σφ. It is interesting to note that these three parameters have a well known impact on
the turbulence spectrum so that a scaling law would readily be interpreted as the synergy
between changes in the spectrum properties and the characteristic SOL scale.
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Appendix D

Linear benchmark in GYSELA

The calculation of the linear perturbation is carried out for different modes keeping con-
stant all the parameters as in Lapillone paper [LMG+10]. GYSELA coordinates are not
field-alligned and that requires a more fine mesh in order to describe the modes in the
θ − φ plane. In the table below, the number of points used in the mesh grid for each
simulation is listed.

Table D.1:

n 5 10 15 20 25 30 35 40

Nθ 256 256 256 256 512 512 512 512
Nφ 128 128 128 128 256 256 256 256

Regarding the number of point in radial direction Nr, in parallel velocity Nv and
in µ, there were no changes in the simulations, therefore the fixed parameter of all the
simulations are

Table D.2:

Nr Nv Nµ eps

256 64 16 10−6

other parameters that were set constant for all the simulation are 1/ρ∗ = 180, the
aspect ratio a = 0.36 and the mass of the element. In this case it is Hidrogen, ms = 1,
we can therefore define the quantities cs, ωs and ρs. Their definition is crucial for the
normalization between the different codes.

D.1 The different procedure to define growth rate

Here we show how the growthrate has been computed for the case n = 30, fig.D.1.

The fit method is the most used but it strongly depends on the interval of time taken
in account, fig.D.2(a). The steps to calculate the instability growthrate via the fitting
procedure are:
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D.1. THE DIFFERENT PROCEDURE TO DEFINE GROWTH RATE

Figure D.1: growth of the potential

Figure D.2: the two approach to define the growth rate

• t0 = (tmax−tmin)/2 and the interval of time ∆t where γ is calculated, i.e. t1 = t0−∆t
to t2 = t0 + ∆t, is defined.

• the growth rate γ is defined as γ =< ∂tΦ
2 >∆t /2.

• the errorbar is defined as σ(∂tΦ
2)∆t/2, where σ is the standard deviation

The only problem relative to this method is the definition of ∆t, that can strongly impact
on the value of γ and on the size of the errorbar. Another approach is using the probability
distribution function to define γ, fig.D.2(b). The steps to calculate γ are:

• the maximum and minimum value reached by γ = ∂tΦ
2/2 and the number of intervals

between these two points are defined.

• γ is defined as the highest probable point of the PDF.

• by definition the errorbar is represented by the size of the chosen interval.

The disadvantage is that to have a statistically meaningful results, a good time resolution
is needed.
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APPENDIX D. LINEAR BENCHMARK IN GYSELA

In the fig.D.2(b), the two approaches are compared. It looks clear that in the PDF
approach, the size of the errorbar can be strongly reduced. On the other hand, we can
still notice that the results are sensitive to:

• The chosen interval t1, t2.

• The size of the PDF intervals, such sensitivity should strongly decrease if we increase
the diagnostic time

In fig.D.3, the time evolution of φ and the PDF distribution for different poloidal wave
vectors kθ are displayed. The table below summarizes the growthrate and frequency.

Figure D.3: (a)φ2 in function of time, (b)γ PDFs

Table D.3:

n0 -5. -10. -15. -20. -25. -30.
kθ -0.078 -0.156 -0.233 -0.311 -0.389 -0.467

γ 0.045 0.158 0.217 0.257 0.271 0.253
err 0.00258 0.00690 0.00123 0.00127 0.00468 0.00200

ω 0.106 0.238 0.476 0.636 0.827 0.978

D.1.1 Higher toroidal modes growthrate: can be really significant?

For the mode n = 40, it was not possible to recover a linear growthrate. In the mode
evolution, one can observe this characteristic biting. Such results give us a series of problem
in the definition of the linear phase that is why we focused our analysis to the modes below
n = 40. It will be interesting to understand why a second mode is interfering with the
mode n = 40.
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D.2. ENVELOPE DEPENDENCE ON SHEAR AND TEMPERATURE
PROFILE

D.2 Envelope dependence on shear and temperature profile

In order to understand how much the choice of the parameters can impact on the linear
analysis, a comparison is carried out between the standard CBC (A) and two other cases,
where the safety factor (B) or the temperature gradient profile (C) is modified. The en-
velope growthrate and shape vary with q and LT profile, despite q(rpeak) and LT (rpeak) is
not varied from the reference case.

In fig.5.4, the potential distribution for the three cases is compared. In the no shear
case (case B), the eddy structures tend to keep the same size, while in the standard
case (case A), we can see a clear difference in size between the low and high field side.
Additionally, one can readily observe that the shear also causes the structures different
orientation between the top and bottom, while in the slab-like configuration, they all have
the same orientation. For the case C, one can observe a different radial distribution of the
potential modes.

Figure D.4: the potential distribution along r − θ

Case B: q profile variation

In fig.D.5(g)(h) we compare how the envelope for a fixed toroidal mode n = 20 changes
if we consider a parabolic (fig.D.5(a))or flat q (fig.D.5(b)).We can observe that for flat-
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q case, i.e. case with no shear, the eigenmode is mostly defined by a single poloidal
contribution that spread on the all unstable region, namely from r = 0.4 to r = 0.6,
its size is constrained by the temperature gradient profile and boundary condition, in
agreement with the uniformity of the structures. On the parabolic-q case, the eigenmodes
is formed by many poloidal contributions and each mode is localized around the resonance
surface, because of the shear effect.

Figure D.5: (a) R/LT , (d) safety factor profile, (g) envelope distribution in the CBC
case for n = 20,(b) R/LT , (e) safety factor profile, (i) envelope distribution for the flat-q
profile case for n = 20,(c) R/LT , (l) safety factor profile, (c) envelope distribution for the
asymmetric 1/LT case for n = 5,

Case C: temperature profile variation

To study the dependence of the envelope growthrate and shape from the temperature
distribution, we consider another possible initial temperature profile from the standard
CYCLONE case (fig.D.5(f)), where at the midplane the temperature gradient is equiva-
lent to the standard case and the maximum value of 1/LT is localized at the edge.Changing
the temperature gradient maximum position, we firstly can observe a clear response on
the shape of the global eigen-mode despite the same initial condition, see fig.D.5(i).

If we compare the growthrate at the midplane with the standard case, even if the
reorganization time interval is increased, the two cases converge to the same order of
growthrate. Such observation rise new questions in the definition of the growthrate. If
from one side, we can see that the system reorganizes to find the most unstable eigenval-
ues, it appears that the growthrate of this eigenmode is not impacted by the change of
shape, suggesting that the drive is not influenced by a localised variation of the profile:
if in a region of the profile temperature gradient is stable, the envelope growthrate could
not be influenced by the region. The peak of the temperature gradient localised on the
edge seems not to influence the growthrate amplitude of the envelope, but it impacts its
shape, a clear correspondence between the temperature gradient profile and the envelope
is confirmed.
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Appendix E

The ZF-dominated regime in the

SOL

In the TOKAM2D SOL region, one can observe that, increasing the forcing, the system
moves from (1) a regime dominated by large scale structures recalling a jet like patterns
to (2) a turbulence dominated regime.

Figure E.1: (a)-(d) potential averaged along y in function of time and radial direction for
different value of g ((a)g = 1.5 10−4, (b)g = 2. 10−4,(c)g = 5 10−4, (d) g = 10 10−4),
(e)-(h) the potential spectrum of the zonal and turbulence modes in function of ky for
different value of g ((e)g = 1.5 10−4, (f)g = 2. 10−4,(g)g = 5 10−4, (h) g = 10 10−4)

Watching at the energy spectrum slope in TOKAM2D defined as EZ(kx), Er(kx) in
fig.E.1(e)-(h), one can observe how the zonal and residual energy spectra change with the
forcing.

The system access the zonostrophic regime only for the case where g = 1.5 10−4, where
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we could observe the presence of big convective cells and the turbulence is extremely re-
duced.
Criticality plays a key role in favoring the self organization, namely the large scale struc-
tures dominate the system only close to the marginal stability.
Decreasing the g-term, we actually damp the turbulence linearly in order to access the
zonation regime (first case) and the two characteristic slopes of residual and zonal modes
are observed. For the other cases, the residual modes dominate the spectrum.
Let us affirm one can access the zonation regime only if the turbulence is linearly sup-
pressed acting on the curvature term.

One can readily understand that also in this region our results are in conflict with the
HMB case, namely we can observe that increasing g, we move towards higher values of
Rβ , but we depart from the zonation regime moving towards a fully turbulent regime. The
index to define the transition from turbulence to zonation regime in the HMB framework
is no more consistent with the transition also in the SOL.

This discrepancy can be related to the different kinds of forcing used in the two models.
On one hand, by defining Rβ , Galperin assumes that the injection scale is much smaller
and independent from the spectrum, this assumption appears to be crucial to define Rβ
and favor the anysotropization of the inverse cascade. on the other hand, in our model the
forcing is coupled with the density equation and the energy rate ǫ is not an independent
parameter but is controlled by the interchange instability and can vary in time and space.

156



Bibliography

[BBFC+07] P Beyer, S Benkadda, G Fuhr-Chaudier, X Garbet, Ph Ghendrih,
and Y Sarazin. Turbulence simulations of transport barrier relax-
ations in tokamak edge plasmas. Plasma Physics and Controlled
Fusion, 49(4):507, 2007.

[BH07] A. J. Brizard and T. S. Hahm. Foundations of nonlinear gyrokinetic
theory. Rev. Mod. Phys., 79:421–468, Apr 2007.

[CAR+11] G. D. Conway, C. Angioni, F. Ryter, P. Sauter, and J. Vicente.
Mean and oscillating plasma flows and turbulence interactions
across the l-h confinement transition. Phys. Rev. Lett., 106:065001,
Feb 2011.

[CFG+04] J.W. Connor, T. Fukuda, X. Garbet, C. Gormezano, V. Mukho-
vatov, M. Wakatani, the ITB Database Group, the ITPA Topi-
cal Group on Transport, and Internal Barrier Physics. A review
of internal transport barrier physics for steady-state operation of
tokamaks. Nuclear Fusion, 44(4):R1, 2004.

[CLL+15] G M Cao, Y D Li, Q Li, X D Zhang, P J Sun, G J Wu, L Q Hu,
and the EAST Team. Characterization of core microturbulence in
l-mode and h-mode regimes on the east superconducting tokamak.
Physica Scripta, 90(2):025603, 2015.

[CM15] Thomas Cartier-Michaud. PhD Thesis ”Verification de Codes et
Reduction de Modeles : Application au Transport dans les Plasmas
Turbulents”. 2015.

[CMGS+14] T Cartier-Michaud, P Ghendrih, Y Sarazin, G Dif-Pradalier,
T Drouot, D Esteve, X Garbet, V Grandgirard, G Latu, C Norscini,
and C Passeron. Staircase temperature profiles and plasma trans-
port self-organisation in a minimum kinetic model of turbulence
based on the trapped ion mode instability. Journal of Physics:
Conference Series, 561(1):012003, 2014.

[CNLD96] B. A. Carreras, D. Newman, V. E. Lynch, and P. H. Diamond.
A model realization of self-organized criticality for plasma confine-
ment. Physics of Plasmas (1994-present), 3(8):2903–2911, 1996.

[CW03] J. Candy and R.E. Waltz. An eulerian gyrokinetic-maxwell solver.
Journal of Computational Physics, 186(2):545 – 581, 2003.

157



BIBLIOGRAPHY

[DBB+00] A. M. Dimits, G. Bateman, M. A. Beer, B. I. Cohen, W. Dorland,
G. W. Hammett, C. Kim, J. E. Kinsey, M. Kotschenreuther, A. H.
Kritz, L. L. Lao, J. Mandrekas, W. M. Nevins, S. E. Parker, A. J.
Redd, D. E. Shumaker, R. Sydora, and J. Weiland. Comparisons
and physics basis of tokamak transport models and turbulence sim-
ulations. Physics of Plasmas (1994-present), 7(3):969–983, 2000.

[DH95] P. H. Diamond and T. S. Hahm. On the dynamics of turbu-
lent transport near marginal stability. Physics of Plasmas (1994-
present), 2(10):3640–3649, 1995.

[DHCS91] W. D. D’haeseleer, W. N. G. Hitchon, J. D. Callen, and J. L.
Shohet. Flux Coordinates and Magnetic Field Structure. Springer-
Verlag, Berlin, 1991.

[DIIH05] P H Diamond, S-I Itoh, K Itoh, and T S Hahm. Zonal flows in
plasma:a review. Plasma Physics and Controlled Fusion, 47(5):R35,
2005.

[DPDG+10] G. Dif-Pradalier, P. H. Diamond, V. Grandgirard, Y. Sarazin,
J. Abiteboul, X. Garbet, Ph. Ghendrih, A. Strugarek, S. Ku, and
C. S. Chang. On the validity of the local diffusive paradigm in
turbulent plasma transport. Phys. Rev. E, 82(2):025401–, August
2010.

[DPHG+15] G. Dif-Pradalier, G. Hornung, Ph. Ghendrih, Y. Sarazin, F. Clairet,
L. Vermare, P.H. Diamond, J. Abiteboul, T. Cartier-Michaud,
C. Ehrlacher, D. Esteve, X. Garbet, V. Grandgirard, O.D. Gurcan,
P. Hennequin, Y. Kosuga, G. Latu, P. Maget, P. Morel, C. Norscini,
R. Sabot, and A. Storelli. Finding the elusive E × B staircase in
magnetized plasmas. Phys. Rev. Lett., 114:085004, Feb 2015.

[DWBC96] A. M. Dimits, T. J. Williams, J. A. Byers, and B. I. Cohen. Scalings
of ion-temperature-gradient-driven anomalous transport in toka-
maks. Phys. Rev. Lett., 77:71–74, Jul 1996.

[EHH+10] T. Estrada, T. Happel, C. Hidalgo, E. Ascaśıbar, and E. Blanco.
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