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La couche limite et l’hydrodynamique 2D à grande échelle de
la zone de surf : une étude numérique.

Résumé :

Ce travail porte sur les processus hydrodynamiques en zone littorale.

Deux principaux thèmes sont abordés. Le premier concerne la couche

limite oscillante provoquée par l’interaction entre les vagues et le fond

à l’approche des côtes. Le second traite de l’évolution de la circulation

et la vorticité induite par la bathymétrie et/ou le forçage des vagues.

Un modèle de couche limite turbulente a été élaboré et utilisé pour

observer l’évolution de la couche limite oscillante sous l’effet de vagues

non-linéaires, en s’appuyant sur une modélisation physique menée

dans le canal à houle du LEGI. Les profils expérimentaux de vitesse

et positions du fond fixe instantanés permettent de définir l’évolution

des non-linéarités induites par les vagues au sein de la couche limite.

Le modèle numérique couplé à une modélisation du mouvement du

lit mobile est capable de reproduire l’évolution de ces non-linéarités,

et explique que la diffusion verticale observée expérimentalement

est principalement due au mouvement vertical du lit causé induit

par les vagues. Pour l’étude de la circulation et de la vorticité en

zone côtière, un modèle numérique 2D moyenné sur la verticale de

type Shallow Water est validé avec les données d’une expérience

menée dans le basin à vagues du Laboratoire Hydraulique de France

(ARTELIA). La formation de courants sagittaux a été forcée par

un front de vagues avec un déficit d’énergie au centre du bassin. Le

modèle numérique est validé par des mesures de surface libre, de

vitesse, ainsi que de circulation et vorticité. En utilisant ensuite

l’équation de vorticité potentielle comme outil de diagnostic, avec un

forçage monochromatique on prédit un équilibre entre la génération

de vorticité et son advection par l’écoulement moyen.

Mots clés : circulation moyenne, vorticité, non-linéarités des vagues,

dissipation, modèlisation numérique, couche limite turbulente, mod-

élisation en eaux peu profondes.



Surf zone boundary layer and 2D large scale hydrodynamics

Abstract:

This work is about the hydrodynamic processes in the nearshore

zone. They are of great importance to estimate the overall dynamics

of the coastal zone. This thesis is divided into two main parts; the

first one investigates the coastal bottom boundary layer induced by

the interaction of the waves and the bottom when approaching the

coast; the second one is about the evolution of the mean circulation

and vorticity induced by an inhomogeneity in the bathymetry or

the wave forcing. A turbulent boundary layer numerical model has

been developed and used to simulate the evolution of the oscillating

boundary layers under non-linear waves, of a flume experiment at the

Laboratoire des Ecoulements Géophysiques et Industriels (LEGI) in

Grenoble, France. The experimental instantaneous velocity profiles

and still bed positions, allow defining the non-linear velocity distribu-

tions induced by the waves within the boundary layer. The numerical

model coupled with a ad-hoc modeling of the mobile bed motion

is able to reproduce the vertical distribution of the non-linearities,

and also indicates that the vertical diffusion observed experimentally

is mainly caused by the mobile bed motion induced by the passing

waves. A 2D depth-averaged nonlinear shallow water numerical

model is used to study the circulation and vorticity in the nearshore

zone. This model is validated on a mobile bed experiment in the

wave basin of the Laboratoire Hydraulique de France (ARTELIA).

The formation of rip currents is forced by a damped wave forcing in

the middle of the wave basin. The numerical model is validated with

free surface and velocity measurements, and by the circulation and

vorticity. Using the potential vorticity balance as a diagnosis tool

and with a monochromatic wave forcing, an equilibrium between the

vorticity generation and advection is observed in the nearshore zone.

Key words : mean circulation, vorticity, wave non-linearities, dissi-

pation, numerical modeling, turbulent boundary layer, shallow-water

modeling.



Capa límite e hidrodinámica 2D a gran escala en la zona de
surf: un estudio numérico

Abstract:

Este trabajo trata de los procesos hidrodinámicos en la zona litoral,

de grande importancia para la dinámica global del flujo costero. Dos

temas principales son estudiados. El primero trata de la capa límite

oscilante provocada por la interacción entre el oleaje y el fondo al

acercarse a la costa. El segundo tema trata de la evolución de la

circulación y la vorticidad inducida por la batimetría y/o el oleaje.

Un modelo de capa límite turbulenta ha sido elaborado y validado

para analizar la evolución de la capa límite oscilante bajo la influencia

de oleaje no-lineal, apoyándose en una modelación física, realizada en

el canal de olas del LEGI. Los perfiles experimentales instantáneos de

velocidad y posición del fondo fijo, permiten definir la evolución de

las no-linealidades inducidas por las olas dentro de la capa límite. El

modelo numérico acoplado a una modelación del movimiento del fondo

móvil es capaz de reproducir la evolución de estas no-linealidades, y

explica también que la difusión vertical observada experimentalmente

es principalmente debida al movimiento vertical del fondo inducido

por el oleaje. El estudio de la circulación y de la vorticidad en zonas

costeras se hace mediante un modelo numérico 2D promediado en

la vertical de tipo Shallow Water que es validado con los datos de

una experiencia llevada a cabo en la piscina de olas del Laboratoire

Hydraulique de France (ARTELIA). La formación de corrientes rip

se realiza a través de frentes de olas con un déficit de energía en el

medio de la piscina. El modelo numérico es validado con mediciones

de superficie libre, de velocidades, y de circulación y vorticidad.

Utilizando la ecuación de vortcidad potencial como herramienta de

diagnóstico, con un oleaje monocromático se predice un equilibrio

entre la generación de vorticidad y su advección por las corrientes.

Palabras Claves: circulación promedio, vorticidad, no-linealidad del

oleaje, disipación, modelación numérica, capa límite turbulenta, mod-

elación en aguas someras.
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Chapter 1

Introduction

1.1 General Context

The coast represents the interface between the land and the sea, with great importance

as 44 % of the world population lives within 150 km of the coast, and 8 of the 10

most populated cities are found near the coast, according to the UN atlas of the

Oceans (http://www.oceansatlas.org/) . In a context of global commerce, most

of the products are exchanged from ports to ports, producing a natural migration of

population toward coastal areas.

As the interest for coastal areas keeps growing, also sustained by increasing tourism

activities, the stress on the coastal habitat is also higher. This produces changes in

the habitat and ecosystems that are of great importance, and calls for an integrated

management of these strategic zones. Another matter that has to be acknowledged is

the pollution of the coastal areas, as an increasing amount of waste water is discharged

to the coast, due to the coastal areas being more populated, leading to more and more

ecological issues, like eutrophication of the littoral zone, which can produce population

health hazard.

Another important issue concerning the coastal areas is the global warming, that

seems to induce a constant water level rise in the oceans. While this raise of the

water level is mild, if we compare it to the total volume of water mass in the planet,

the consequences in the long term are still uncertain. A sustained raise in the water

level could lead to coastal erosion in some areas, lowland flooding or ground water

salinisation [Paskoff, 2004]. The erosion in the coast can be affected by the amount

of sediment available, but also by hydrodynamical and climatic factors, such as the

water level, the incoming waves and the nearshore circulation associated to it. In

Chile though, the coastal erosion is not the main concern [Del Canto et Paskoff, 1983
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; Martínez et Salinas, 2009].

Another concern for the Chilean beaches concern tsunamis generated by earth-

quakes, the last one in February 2010 [Fritz et al., 2011]. Moreover the seismic displace-

ment produced subsidence and uplift in some coastal areas leading to a morphological

response influenced by the local hydro-climatic forcing and land level change [Villagran

et al., 2013]. The coastal ecosystems response to an earthquake is also very dependent

on the local land-level changes [Jaramillo et al., 2012].

Therefore, the coastal management will take a growing importance for countries

with coastal areas, and the knowledge of the physical processes that occur near the

coast will be important to take wise decisions and to sustain the wealth that can be

found in these areas.

One of the main issues concerning the understanding of the physical processes in

the coastal areas is the widespread range of space and time scales involved in these

processes (Figure 1.1).

Figure 1.1 – Space-time scales of morphology in the nearshore [Thornton et al., 2000].

As it is difficult to cover all the time and space spectra, in this study we restrain

ourselves to some space and time scales processes in the nearshore zone. The sediment

transport processes are a product of the nearshore hydrodynamics, hence it is necessary
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to get a precise understanding of the hydrodynamics. In our case, we study wave

propagation and related processes at two space-time scales:

• at a time scale of wave period and a length scale of centimetres, we study the

coastal bottom boundary layer.

• at a time-scale of minutes to hours and a length scale of tens of meters, we study

the circulation and vorticity dynamics in the nearshore zone.

1.2 Main concepts

1.2.1 The coastal bottom boundary layer

The knowledge of the coastal bottom boundary layer is essential for the estimation of

the sediment transport induced by the bottom shear stress. When waves approach the

coast, they feel the influence of the bottom as they propagate, becoming increasingly

non-linear. The interactions between the waves and the bottom occur within the

turbulent boundary layer, which is why its study represents a mean to understand the

evolution of these non-linearities near the coast.

The longshore sediment transport is relatively well understood, being forced by the

angle between the wave forcing and the shoreline, producing longshore currents parallel

to the shoreline which are able to transport sediments.

The cross-shore sediment transport, normal to the shoreline, is more complicated

to estimate due to the sloping bed, the currents, the wave non-linearities, the turbu-

lence induced by wave braking, the presence of bed forms, etc. Several experiments

have shown an influence of the wave non-linearities such as velocity and acceleration

skewed waves, on the net sediment transport produced by waves leading to an onshore

or offshore sand bar migration depending on the waves non-linearities [Dibajnia et

Watanabe, 1992 ; Dohmen-Janssen et al., 2002 ; Hsu et Hanes, 2004 ; Grasso et al.,

2011 ; King, 1991 ; Elgar et al., 2001 ; Ruessink et al., 2011].

1.2.2 Vorticity and circulation in the nearshore zone

To estimate the sediment transport in the nearshore zone, it is also important to know

the evolution of the mean currents produced by either a differential wave breaking or an

inhomogeneous bathymetry. These spatio-temporal non-uniformities in wave breaking

induce dissipation gradients, that generates currents. These wave-generated currents
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produce vorticity, that acts at a much lower time-scale than the waves. These currents

are relevant in terms of mixing, dispersion and also for sediment transport.

Among the types of generated circulation, rip-currents are offshore oriented jets

that originate in the surf zone (Figure 1.2). These currents constitute a hazard for

swimmers as they can be ejected seaward, far from the coast rapidly, and they represent

one of the main mechanisms responsible for the mixing and circulation in the surf zone.

These currents result from the vorticity generated by the differential wave breaking,

generating eddies that travel longshore until two of these eddies meet, creating a dipole

that generates these rip currents [Peregrine, 1998].

Figure 1.2 – Nearshore current system, from Shepard et Inman [1950]

In nature, these rip currents are always evolving, as natural wave conditions do,

and the seabed is also changing due to sediment transport. Hence, there is a feedback

between the wave forcing, the beach bathymetry and rip vorticity dynamics, which has

not been completely understood so far.

1.3 Objectives

The main objective of this thesis consist in getting an in-depth understanding of the

nearshore hydrodynamics, in terms of cross-shore wave propagation and generated

circulation by the wave breaking. To this end, the specific objectives are:
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• To investigate the mechanisms involved in a turbulent boundary layer under

non-linear waves, with a mobile bed. Recent experiments from Berni et al. [2013]

on a wave flume, under a mobile bed, allowed to observe the evolution of the

coastal bottom boundary layer under non-linear waves. Using a k − ω boundary

layer numerical model [Wilcox, 2006], we intend to retrieve some of the main

characteristics of the experiment and understand the mechanisms involved in the

vertical distribution of these non-linearities.

• to understand the evolution of the circulation and vorticity under a shore-normal

wave forcing, on an uneven bathymetry using a 2D depth-averaged Non-linear

Shallow Water numerical model [Marche et al., 2007 ; Guerra et al., 2014]. To

that purpose, the numerical model is validated using data obtained during the

wave basin experiment in ARTELIA (Grenoble) supervised by H. Michallet in

the framework of the MODLIT project coordinated by P. Bonneton. These ex-

periment consisted of wave basin with a mobile bed, where a rip current was

generated by an alongshore non-uniformity in the wave forcing [Michallet et al.,

2010 2013].

1.4 Thesis outline

Chapter 2 presents the numerical model used to investigate the coastal bottom bound-

ary layer. It consist in a 1-D vertical turbulent boundary layer k − ω model [Wilcox,

2006], which is validated for oscillatory flows.

Chapter 3 presents the results obtained with the k−ω numerical model compared to

experimental measurements [Berni et al., 2013], concerning non-linear waves on a mo-

bile bed, which provide velocity profiles and bed position in a coupled way. These data

suggest a transformation within the boundary layer, with a non-dimensional skewness

increasing and a non-dimensional asymmetry diminishing as we approach the bottom.

Using the k − ω numerical model, we get a better representation of the non-linear ve-

locity profile distribution inside the turbulent boundary layer. The numerical model is

able to determine the velocity within the boundary layer on a fixed bed; by including

the bed mobility and coupling it with the k − ω model, we are able to improve the

numerical representation of observed experimental results. The latter is an indication

that the bed mobility is responsible for a vertical diffusion within the boundary layer.

The numerical model also reproduces the linear relationship between the non-linearities

outside the boundary layer and near the bed observed in the experiment.

Chapter 4 presents the 2D depth-averaged numerical model used to obtain the
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circulation in the nearshore zone [Marche et al., 2007 ; Guerra et al., 2014]. This

numerical model is then validated in terms of free surface, velocities, circulation and

vorticity using experimental data [Michallet et al., 2010 2013].

Chapter 5 presents a study of the evolution of vorticity and circulation on an uneven

bathymetry that has been validated in chapter 4. Using a JONSWAP wave forcing,

representative of the natural state of the sea, as well as monochromatic and bichromatic

wave forcing, and using the potential vorticity balance as a diagnostic tool, we aim at

understanding the influence of the friction, the wave period, and the wave grouping on

the vorticity generation and decay at the nearshore zone.

Finally, Chapter 6 presents the conclusions of this work, along with some perspec-

tives.
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Chapter 2

Numerical modelling of oscillatory

turbulent boundary layers

2.1 Introduction

2.1.1 Physical processes

Sediment transport in the nearshore is of great importance, as it determines processes

such as erosion or accretion on a beach. It is caused by the waves and current, that

forces the bed and initiate the sediment transport. This process mainly occurs in the

coastal bottom boundary layer, a region usually extending up to 10 cm above the

seabed, where friction is predominant. The knowledge of this region is therefore one

of the main aspects of the sediment transport, as the non-linear processes occurring in

this region can affect the direction of the sediment transport, seaward or shoreward.

The study of turbulence in the boundary layer is then a key aspect to understand the

processes that take place in the nearshore. We first need to know what is turbulence,

then study the different turbulence models that exists, and then determine the use of

these turbulence models for coastal bottom boundary layers.

Although the characteristics of turbulence are well known, there is not a clear

definition of it, a regime flow where the motion is unsteady and complex, with random

changes in velocity or pressure, highly diffusive and dissipative. One of the main

characteristic of turbulence is the energy cascade phenomenon. Richardson defined

this in 1922 by the following sentence: "Big whorls have little whorls, which feed on

their velocity; And little whorls have lesser whorls, And so on to viscosity". This energy

transfer keeps on until the eddies are so small that they can only dissipate into heat

through molecular viscosity.

25



Chapter 2 Numerical modelling of oscillatory boundary layers

Kolmogorov [1941] universal equilibrium theory states that the smallest scales of the

eddies does not depend on the larger eddies or the mean flow, as time scales between

those two phenomena have different orders of magnitude. Therefore the rate at which

the smaller eddies receive energy from the larger eddies should be equal to the rate

at which the smallest eddies dissipate energy to heat, and thus at the smallest scale

the motion only depend on the rate at which eddies dissipate energy to smaller eddies,

ǫ = −dk/dt, k being the kinetic energy per unit mass of the fluctuating turbulent

velocity, and the kinematic viscosity, ν .

For very large Reynolds number, he assumed that there is a separation of scales

that implies that for some range in eddies size, the energy transferred by inertial effects

is predominant. We define the energy spectral density E(κe) related to the turbulence

kinetic energy k:

k =
∫ ∞

0
E(κe)dκe (2.1)

κe being the wavenumber. Using the hypotheses of scale separation, and through

dimensional analysis, we obtain an expression for E(κe) for a certain range:

E(κe) = Cκǫ2/3κ−5/3
e ,

1
l

≪ κe ≪ 1
η

(2.2)

where Cκ is the Kolmogorov constant, l is the turbulence length scale, and η the

Kolmogorov length scale, at which viscosity dominates. The range for κe defined in

(2.2) is identified as the inertial subrange, i.e. where the inertial transfer of energy

dominates. This -5/3 slope can be seen in Figure 2.1.

To obtain the efforts sustained by a turbulent flow over a solid boundary, there is a

need to know the interaction between the two. The mean velocity profile near a solid

boundary can be determined by the law of the wall [Von Karman, 1930]. This law

states that there is a region near the solid boundary where the streamwise velocity has

a logarithmic profile.

Let the surface shear stress be τw, the friction velocity of the flow near the solid

boundary uτ is then defined as :

uτ =
√

τw

ρ
(2.3)

The law of the wall describe the mean crosswise velocity distribution close to the

boundary:
U

uτ

=
1
κ

ln
z

z0

(2.4)

where κ ≈ 0.41 is the von Kàrmàn constant, z is the distance from the wall and z0

is the distance from the boundary at which the velocity is zero. z0 depends on the
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Figure 2.1 – Energy spectrum of a turbulent flow

laminar sublayer thickness δv and the characteristic roughness length-scale ks, found

in the boundary Reynolds number Rew = uτ ks/ν.

• if ks < δv (Rew < 3) the flow is considered hydraulically smooth, and z0 is defined

as:

z0 =
ν

9uτ

(2.5)

• if ks > δv (Rew > 100) the flow is considered hydraulically rough, and z0 is

defined as:

z0 =
ks

30
(2.6)

• if ks ≈ δv, the flow is considered transitional.

A velocity profile of a smooth boundary layer under a turbulent flow is shown in

Figure 2.2, where the dimensionless velocity u+ = U/uτ , with U the mean velocity

streamwise component, is plotted as a function of the dimensionless distance to the

boundary z+ = uτ z/ν. We can distinguish three different regions in the velocity profile

near the boundary layer, the viscous sublayer where u+ = z+, the log layer where the

velocity complies the law of the wall, and the velocity defect layer where the viscosity

can be neglected.
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Figure 2.2 – Typical velocity profile of a turbulent flow. The constant C depends on the
roughness characteristics.

2.1.2 Turbulence modelling

In most practical situations turbulent flows are very complex. The numerical simula-

tions of flows are required to obtain the characteristics of the flows. One of the most

used model turbulence is the Reynolds Averaged Navier-Stokes (RANS) equations. The

Reynolds time-averaging consists of splitting the instantaneous variables, for example

the velocity u(x, t), in its mean U(x) and its fluctuating part u′(x, t):

u(x, t) = U(x) + u′(x, t) (2.7)

The mean part U(x) is defined as:

U(x) =
1
T

∫ t+T

t
u(x, t)dt, T1 ≪ T ≪ T2 (2.8)

where T is the time period at which the averaging is done, T1 is the time scale of the

turbulent fluctuations, and T2 is the time scale of the slow variations in the flow.
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Using this method, we can obtain the RANS:

∂Ui

∂xi

= 0 (2.9)

ρ
∂Ui

∂t
+ ρUj

∂Ui

∂xj

= −∂P

∂xi

+
∂

∂xj

(
2µSji − u′

ju
′
i

)
(2.10)

with P the mean pressure, µ the molecular viscosity, and Sij the strain-rate tensor,

defined as:
1
2

(
∂Ui

∂xj

+
∂Uj

∂xi

)
(2.11)

The fundamental problem of these equations is that there is no simple way to

determine the correlation term u′
ju

′
i, defined as the specific Reynolds stress tensor τij,

and this where the turbulence model is used.

The turbulence models can be separated in four distinct categories:

• the algebraic model or zero-equation model of turbulence, based on the mixing

length hypothesis,

• the one-equation models of turbulence, which introduce a partial differential equa-

tion approximating the exact equation for the turbulent kinetic energy k,

• the two-equation models of turbulence, which use an additional differential equa-

tion, such as the dissipation rate ǫ or the specific rate of dissipation of energy in

unit volume and time ω,

• the Stress-Transport models, using a differential equation for the Reynolds-stress

tensors.

For additional information on the different types of turbulence models, an extensive

overview can be found in Wilcox [2006].

2.1.3 Turbulence modelling for oscillatory flows

The laminar boundary layer for oscillatory flow is found from the linear equation of

motion:

ρ
∂

∂t
(U − U∞) =

∂τ

∂z
(2.12)

where U is the mean part of the horizontal velocity, U∞ is the free-stream velocity and

τ(z, t) = ρν ∂U
∂z

is the viscous shear stress. By assuming a complex representation for

U∞:

U∞(t) = Aσeiσt (2.13)
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with A the water particle semi excursion, σ = 2π/T the radian frequency, T the wave

period. The wave formulation for the bed shear stress τ(0, t) can be deduced ([Nielsen,

1992]):

τ(0, t) = ρ
√

σνAσei(σt+π/4) (2.14)

This indicates that the bed shear stress in smooth, laminar oscillatory flow leads the

free-stream velocity by π/4 radians or 45 degrees.

For oscillatory flows, δ =
√

2ν
σ

is the boundary layer thickness, also known as the

Stokes length, which allows to define a Reynolds number for oscillatory flows Reδ = Uδ
ν

.

When the Reynolds number increases, during one period the velocity covers a wide

range of values. This lead to a transition from laminar to turbulent, as well as a

relaminarization during one period. The pressure gradient also changes in one period,

going from favourable to adverse, and inversely.

As stated by Wilcox [2006], k − ǫ models are inadequate for flows with adverse

pressure gradient, which is not the case for the k − ω models. This is confirmed

by Sana et Tanaka [2000], which compares five Low Reynolds number k − ǫ models

on periodic flows. Although the Low Reynolds Number modifications provide better

predictions for the transition, none of the models succeeded in capturing the overall

dynamics of the oscillatory boundary layer.

The high Reynolds number version is not able to predict the transition from laminar

to turbulent regime. We then need to use a Low Reynolds Number version of the

turbulent model to correctly reproduce this transition. The main change of the Low

Reynolds number version, is that some closure coefficients of the turbulence model

equations, which are constant for fully turbulent flows, now depend on the turbulence

Reynolds number ReT , defined as:

ReT =
k

ων
(2.15)

As ReT → ∞, the closure coefficients tend to their fully turbulent values.

The two-equations RANS models of turbulence have been used to observe the evo-

lution of the turbulent bottom boundary layer under oscillatory flows, and its relation

with the sediment transport. Suntoyo et Tanaka [2009] studied the influence of the bed

roughness under asymmetric waves, showing that the roughness influenced mostly the

inner boundary layer, by increasing the turbulence kinetic energy k and the bottom

shear stress, and decreasing the mean velocity distribution. The wave non-linearity

also has an influence on the bottom shear stress. Recently, Kranenburg et al. [2012]

observed the influence of the streaming (or net current) on the coastal bottom bound-
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ary layer using a k − ǫ model which includes advection terms, showing the influence of

the relative water depth and relative bed roughness on the streaming velocity and the

shear stress. Moreover, by adding a sediment concentration to its turbulence closure

model, he determined the importance of the progressive wave streaming, but also of

the sediment advection in the estimation of the sediment transport rate [Kranenburg

et al., 2013]. [Fuhrman et al., 2013] uses a k − ω turbulence closure model coupled

with bed and suspended load transport to study the sheet flow sediment transport pro-

cesses. The boundary layer streaming due to the convective terms causes an increase

of onshore sediment transport in the case of medium sand, and in the case of fine sand

they could reverse the the direction of the net transport.

2.2 The k − ω turbulence model

2.2.1 Governing equations

For clarity purposes, from now on we refer to u, k and ω instead of U , K and Ω as the

Reynolds averaged values of the instantaneous velocity, the turbulence kinetic energy

and the specific dissipation rate.

Our study focus on the k − ω model of Wilcox [2006]. This set of equation contains

three principal equations, one for the velocity u, one for the turbulence kinetic energy

k, and one for the specific dissipation rate ω.

Using the Boussinesq approximation, we have the Reynolds stress tensor τij:

τij = 2νT Sij − 2
3

kδij (2.16)

where νT is defined as the turbulence eddy viscosity and δij is the Kronecker delta.

If we sum the three normal Reynolds stresses and multiply by 1/2, we have the

turbulence kinetic energy, which we denote by the symbol k. Thus, by definition,

k =
1
2

(
u′2 + v′2 + w′2

)
=

1
2

u′
iu

′
i (2.17)

k represents the kinetic energy of the turbulent fluctuations per unit mass, also called

the specific turbulence kinetic energy. We can derive an equation for k using the

Reynolds-stress equation.

Concerning ω, Kolmogorov [1942] defined it as "the rate of dissipation of energy in

unit volume and time". The dimension of ω is (time)−1, and its reciprocal represents

the time scale on which dissipation of turbulence energy occurs. There exist several
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interpretations of this quantity. Saffman [1970] related ω to the vorticity of the "energy

containing eddies", and k to the kinetic energy of the motion induced by this vortic-

ity. Others define ω as the RMS fluctuating vorticity, and ω2 is twice the enstrophy

[Launder et Spalding, 1972], or as the ratio of ǫ to k [Wilcox et Rubesin, 1980].

Although the Wilcox [2006] formulation is the version we use, we implemented

several versions of the k − ω model to obtain a better accuracy in the validations of

the model. We assume furthermore that the mass density ρ is constant.

For all these models, we have three main equations, one for the horizontal velocity

u, one for the turbulent kinetic energy k, one for the specific dissipation rate ω.

The first equation corresponds to the conservation of momentum:

∂ui

∂t
+ uj

∂ui

∂xj

= −1
ρ

∂p

∂xi

+
∂

∂xj

(2νSji + τji) (2.18)

The second equation corresponds to the turbulent kinetic energy k:

∂k

∂t
+ uj

∂k

∂xj

= τij
∂ui

∂xj

− β∗kω +
∂

∂xj

[(
ν + σk

k

ω

)
∂k

∂xj

]
(2.19)

The third equation corresponds to the specific dissipation rate ω, and is different

according to various versions:





∂ω

∂t
+ uj

∂ω

∂xj

= α
ω

k
τij

∂ui

∂xj

− βω2 +
∂

∂xj

[(
ν + σω

k

ω

)
∂ω

∂xj

]

[Wilcox, 1998 ; Guizien et al., 2003]
∂ω

∂t
+ uj

∂ω

∂xj

= α
ω

k
τij

∂ui

∂xj

− βω2 +
∂

∂xj

[(
ν + σω

k

ω

)
∂ω

∂xj

]
+

σd

ω

∂k

∂xj

∂ω

∂xj

[Wilcox, 2006]

(2.20)

The kinematic eddy viscosity, present in the Reynolds stress tensor, reads:





νT = α∗ k

ω
[Wilcox, 1998 ; Guizien et al., 2003]

νT =
k

ω̃
, ω̃ = max

[
ω,Clim

√
2SijSij

β∗

]
, Clim =

7
8

[Wilcox, 2006]

(2.21)

The mean rotation tensor Ωij is defined as:

Ωij =
1
2

(
∂ui

∂xj

− ∂ui

∂xj

)
(2.22)
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Wilcox 1998 Wilcox 2006
σk 0.5 0.6
σω 0.5 0.5
β∗

0 0.09 -
β∗ β∗

0fβ∗ 0.09

fβ∗





1 for (χk ≤ 0)
1+680χ2

k

1+400χ2
k

for (χk > 0)
-

χk
1
ω3

∂k

∂xj

∂ω

∂xj

-

α 13/25 13/25
β β0fβ β0fβ

β0 9/125 0.0708

fβ
1 + 70χω

1 + 80χω

1 + 85χω

1 + 100χω

χω

∣∣∣∣∣
ΩijΩjkSki

(β∗
0ω)3

∣∣∣∣∣

∣∣∣∣∣
ΩijΩjkŜki

(β∗ω)3

∣∣∣∣∣

Ŝki - Ski − 1
2

∂um

∂xm

δki

σd -





0 , for (
∂k

∂xj

∂ω

∂xj

≤ 0)

1
8

for (
∂k

∂xj

∂ω

∂xj

> 0)

Table 2.1 – Closure coefficients and auxiliary relations.
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The main differences in the closure coefficients between the versions can be seen

in Table 2.1. The Wilcox [2006] formulation introduces a "cross-diffusion term" and

a "stress-limiter" modification that makes the eddy viscosity depend on the ratio of

turbulence-energy production to turbulence-energy dissipation.

The cross-diffusion term has been added to remove the boundary-condition sensi-

tivity to the free-stream value of ω, by reducing the net production of k and thus the

spreading rate for free shear flows. This term becomes zero when approaching the solid

boundary, as k increases and ω decreases, and performs well in predicting effects of

pressure gradient on attached boundary layers. [Kok, 2000 ; Wilcox, 2008].

The stress-limiter introduced in the eddy viscosity, limits its magnitude when the

turbulence energy production exceeds the dissipation, and is more useful for supersonic

and hypersonic separated flows [Wilcox, 2008], which is not our case.

2.2.2 Unidimensional version of the k − ω model

From now on, we assume very large horizontal characteristic flow scales, and use from

now on a 1D vertical framework for the k−ω model. Therefore, the following hypotheses

are used:

• the transverse velocity v and vertical velocity w are not taken into account:

v = w = 0. Only in the case where we incorporate the advection terms, we

suppose that there exist a vertical velocity w, but it depends on u, and is not

calculated by an equation.

• there is no variation in the x direction and the y direction: ∂
∂x

= ∂
∂y

= 0. In the

case of the advection terms, the gradients ∂
∂x

are non negligible, and we estimate

them using a temporal derivative.

• the mass density is considered constant: ρ = cte

The only non-zero terms of the Strain rate tensor Sij and Reynolds stress tensor

τij are:

Sxz =
1
2

∂u

∂z
(2.23)

τxz = νt
∂u

∂z
(2.24)

For the Wilcox [2006] formulation, the stress limiter is reduced to:

ω̃ = max

[
ω,Clim

√
α∗

2β∗

∣∣∣∣∣
∂u

∂z

∣∣∣∣∣

]
(2.25)
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Wilcox 2006 Wilcox 1998 Guizien 2003
LRN LRN LRN

σk 0.6 0.5 0.375
σω 0.5 0.5 0.8

β∗ 9
100

100β0/27 + (ReT /Rβ)4

1 + (ReT /Rβ)4

9
100

4/15 + (ReT /Rβ)4

1 + (ReT /Rβ)4

α
13
25

α0 + ReT /Rω

1 + ReT /Rω

(α∗)−1

α∗ α∗
0 + ReT /Rk

1 + ReT /Rk

ReT
k

νω
RK 6 6 20
Rβ 8 8 27
Rω 2.61 2.95 2.95
α0 1/9
α∗

0 β0/3
β0 0.0708

νt α∗ k

ω

ω̃ max

[
ω,Clim

√
2SijSij

β∗
0/α∗

]
- -

(
ν + σk

k

ω

) (
ν + σkα∗ k

ω

)

(
ν + σω

k

ω

) (
ν + σωα∗ k

ω

)

Table 2.2 – Closure coefficients and auxiliary relations
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The horizontal velocity u(z, t), the turbulence kinetic energy k(z, t) and the specific

dissipation rate ω(z, t), are described in a 1D framework:

∂u

∂t
= −1

ρ

∂p

∂x
+

∂

∂z

(
(ν + νT )

∂u

∂z

)
(2.26)

The second equation corresponds to the turbulent kinetic energy k:

∂k

∂t
= νT

(
∂u

∂z

)2

− β∗kω +
∂

∂z

[(
ν + σkα∗ k

ω

)
∂k

∂z

]
(2.27)

Notice no vertical advection of k is present, turbulence only diffuses vertically.

The third equation corresponds to the specific dissipation rate w, and is different

in the versions:




∂ω

∂t
=

αω

k
νt

(
∂u

∂z

)2

− βω2 +
∂

∂z

[(
ν + σωα∗ k

ω

)
∂ω

∂z

]

[Wilcox, 1998 ; Guizien et al., 2003]
∂ω

∂t
=

αω

k
νt

(
∂u

∂z

)2

− βω2 +
∂

∂z

[(
ν + σωα∗ k

ω

)
∂ω

∂z

]
+

σd

ω

∂k

∂z

∂ω

∂z

[Wilcox, 2006]

(2.28)

The closure coefficients and auxiliary relations in the case of the 1D Low Reynolds

Number versions of the k − ω model can be found in Table 2.2.

2.2.3 Boundary conditions

Condition at the bed

We can define boundary conditions for smooth and rough surface conditions.

Rough Conditions

For rough surface conditions, we have the no-slip condition for the horizontal ve-

locity u , defined at the first grid point z0, the closest point to the solid boundary

:

u(z0) = 0 (2.29)

Concerning the boundary condition for the turbulence kinetic energy k, there are two

conditions that can be used. The first one is called the no-slip condition, and imposes

the following condition:

k(z0) = 0 (2.30)
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This condition is applicable to smooth boundaries but not consistent with rough bound-

aries, where turbulence fluctuations can still be present in the wake of the roughness

elements. A more physically consistent wall boundary condition for the turbulence

kinetic energy k is prescribed by Fuhrman et al. [2010]:

(
∂k

∂z

)

z0

= 0 (2.31)

In the case of smooth walls, using this condition allows to directly integrate through the

viscous sublayer, and for rough walls, to avoid the viscous sublayer that is completely

disrupted for fully rough conditions [Fuhrman et al., 2010]. The near bed resolution

in the rough case can then be deduced from the roughness length, and not the viscous

length scale, allowing to reduce the computational cost in terms of necessary nodes

near the boundary.

Concerning the specific dissipation rate ω boundary condition, the value is depen-

dent on the friction velocity uτ near the wall:

ω(z0) = ωwall (2.32)

With ωwall defined by:

ωwall =
u2

τ

ν
SR (2.33)

where the dimensionless surface-roughness function SR is defined as:





SR =
(

200
k+

N

)2

if k+
N ≤ 5

SR = Kr

k+

N

+

[(
200
k+

N

)2

− Kr

k+

N

]
e5−k+

N if k+
N > 5

(2.34)

The variable k+
N is defined as k+

N = kN
uτ

ν
, where kN is the Nikuradse roughness pa-

rameter, uτ =
√

τ/ρ is the friction velocity and τ = ρ(ν + νT (z0))
(

∂u
∂z

)
z=z0

is the

bottom shear stress. Wilcox [2006] prescribes a value Kr = 100 for its base version and

Kr = 60 for its low Reynolds number version, and Fuhrman et al. [2010] uses a value

Kr = 180, to respect the law of the wall for rough profiles.

The expression of SR for the Wilcox [1998] and Guizien et al. [2003] model is

expressed below:





SR =
(

50
k+

N

)2

if k+
N < 25

SR = 100
k+

N

if k+
N > 25

(2.35)
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Smooth Conditions

For perfectly-smooth walls, the specific dissipation rate varies in the sublayer when

approaching the wall as z−2 . To obtain smooth conditions, we need to specify the

value of ω near the wall boundary:

ω(z) =
6νT (z)
β0z2

, z+ < 2.5 (2.36)

Condition at the top of the boundary layer

On the upper boundary z = zh, we have the following conditions for the turbulent

kinetic energy and the specific dissipation rate :

(
∂k

∂z

)

zh

= 0 (2.37a)

(
∂ω

∂z

)

zh

= 0 (2.37b)

Concerning the horizontal velocity u, we also have two conditions:

• Either we consider that the velocity outside the boundary layer is constant, which

gives:

u(zh) = U∞ (2.38)

with U∞ the free stream velocity.

• Or we express the boundary condition assuming that the velocity gradient is

equal to zero at the boundary:

(
∂u

∂z

)

zh

= 0 (2.39)

The forcing term for the equation then corresponds to the horizontal pressure

gradient, assumed to be constant in the boundary layer. This pressure gradient

is defined as:

− 1
ρ

∂p

∂x
=

∂U∞

∂t
(2.40)

or

− 1
ρ

∂p

∂x
=

∂U∞

∂t
+ U∞

∂U∞

∂x
+ W∞

∂U∞

∂z
≈ ∂U∞

∂t
+ U∞

∂U∞

∂x
(2.41)

if we add the advection terms.
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2.2.4 Additional terms: advection

Influence of the advection terms

The momentum fluxes in the boundary layer should also be considered, as they might

play a role in the non-linear processes occurring in the coastal bottom boundary layer,

which impact on the sediment transport direction, seaward or shoreward [Henderson

et al., 2004]. These momentum fluxes are weak, provided that the ratio of the horizontal

linear wave velocity amplitude to the wave celerity is small. Therefore the inclusion of

the advection terms can induce a difference in the resolution of the boundary layer.

Estimation of the vertical velocity

The advection terms depend on the horizontal gradient ∂/∂x and the vertical gradient

∂/∂z. As we want to remain with a unidimensional model in z of the velocity in x for

simplicity, the horizontal gradient need to be replaced by another term, and a specific

equation for the vertical velocity w is not introduced.

We use the relation:
∂

∂x
= − 1

cp

∂

∂t
(2.42)

valid for weakly decreasing waves [Holmedal et Myrhaug, 2009]. In relation (2.42), cp

is the wave celerity propagation.

The vertical velocity w is related to the horizontal velocity u by the conservation

of mass:
∂u

∂x
+

∂w

∂z
= 0 (2.43)

Using relation (2.42), the spatial and temporal derivatives of u are linked by:

∂u

∂x
= − 1

cp

∂u

∂t
(2.44)

by combining equation 2.43 and equation 2.44, we obtain:

∂w

∂z
=

1
cp

∂u

∂t
(2.45)

And finally, by integration, we obtain the vertical velocity w:

w(z) =
1
cp

∫ z

z0

∂u

∂t

∣∣∣∣∣
z

dz + w(z0) (2.46)
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For fixed bottom, the relation becomes:

w(z) =
1
cp

∂

∂t

∫ z

z0

u(z) dz + w(z0) (2.47)

advection terms

The advection terms are present in the three equations of the velocity, turbulent kinetic

energy and specific dissipation rate.

For the horizontal velocity equation, the advection terms are simplified to:

∂

∂xj

(ujui) =
∂

∂x
(u2) +

∂

∂z
(uw)

= u
∂u

∂x
+ w

∂u

∂z

= −u

c

∂u

∂t
+ w

∂u

∂z
(2.48)

For the turbulent kinetic energy equation, the advection term is:

∂

∂xj

(ujk) =
∂

∂x
(uk) +

∂

∂z
(wk)

= u
∂k

∂x
+ w

∂k

∂z
+ k

∂u

∂x
+ k

∂w

∂z︸ ︷︷ ︸
=0

= −u

c

∂k

∂t
+ w

∂k

∂z
(2.49)

For the specific dissipation rate equation, the advection term is:

∂

∂xj

(ujω) =
∂

∂x
(uω) +

∂

∂z
(wω)

= u
∂ω

∂x
+ w

∂ω

∂z
+ ω

∂u

∂x
+ ω

∂w

∂z︸ ︷︷ ︸
=0

= −u

c

∂ω

∂t
+ w

∂ω

∂z
(2.50)

40



Chapter 2 Numerical modelling of oscillatory boundary layers

2.3 Numerical Resolution

2.3.1 Resolution scheme

We solve the system of equations using the implicit finite control volume method of

Patankar [1980] which is described hereafter, on an exponential grid. We improve this

method by determining the turbulence kinetic energy k, the specific dissipation rate ω

and the turbulent viscosity νT in the staggered grid, between the velocity nodes.

The numerical resolution is presented here summarized. For a more detailed version,

please refer to Appendix A.

The geometric grid is determined by defining the initial conditions z0 the bottom

boundary, and zh the upper boundary, and also the number of nodes N0.

We define the grid with the equation 2.51:





(z)1 = z0

(z)j+1 = (z)j + z0R
j ∀j ≥ 1

(2.51)

where R represent the common ratio of the geometric series, which is not known be-

forehand. To determine R we use the properties of a geometric series:

(z)N0
= z0

N0∑

i=0

Ri = zh (2.52)

The midpoints are located at the center of each cell, as shown in Figure 2.3:

zj+1/2 = zj +
zj+1 − zj

2
(2.53)

We also define two points that will be used as ghost points in the boundaries:

z− 1

2

=
z0

2

zN0+ 1

2

= zh +
z0R

N0−1

2
(2.54)

2.3.2 Discretization of the equations

Horizontal Velocity equation

To solve the system of equation, we discretize and integrate them over a control volume.

We integrate the equation (2.26) over a control volume centered in the point j, and
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Figure 2.3 – Computational grid sketch. The horizontal velocity u is determined at point
j, while the turbulence kinetic energy k and the specific dissipation rate ω are determined
on the midpoints j + 1/2 and j − 1/2.

over a time step ∆t:

∫ j+ 1

2

j− 1

2

∫ t+∆t

t

∂u

∂t
dt dz =

∫ j+ 1

2

j− 1

2

∫ t+∆t

t

(
∂U

∂t
− 1

ρ

∂P̄

∂x

)
dt dz

+
∫ j+ 1

2

j− 1

2

∫ t+∆t

t

∂

∂z

(
(ν + νt)

∂u

∂z

)
dt dz (2.55)

For time integration, we will use a fully implicit method:

∫ t+∆t

t
uj dt = ut+∆t

j ∆t (2.56)

For readability purpose, we will drop the superscript t + ∆t, and assume that u, k

and ω stand for the new values that are unknown at step t + ∆t:

ut+∆t ≡ u , kt+∆t ≡ k , ωt+∆t ≡ ω (2.57)

The non-linear terms are linearised using the variables at the previous iteration.

In the end, we obtain the following linear system, where the velocity is the unknown

variable, for points j ∈ [2 : N0 − 1]:

AN(j)uj+1 + AP (j)uj + AS(j)uj−1 = Du(j) (2.58)
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The subscript P refers to the central point considered, while the N subscript refers to

the point directly above (or "North") and the S subscript refers to the point directly

below ("South"). The coefficients are defined as:

AN(j) = − ∆t

∆zj




(Γu)j+ 1

2

∆zj+ 1

2


 (2.59a)

AS(j) = − ∆t

∆zj




(Γu)j− 1

2

∆zj− 1

2


 (2.59b)

AP (j) = 1 − AN(j) − AS(j) (2.59c)

Du(j) = −1
ρ

∂P̄

∂x
∆t + ut

j + U − U t (2.59d)

Where (Γu)j = ν + (νT )j.

Boundary conditions

Lower boundary condition: at the bottom boundary, z = z0, corresponding to

j = 0 (Figure 2.4), the horizontal velocity u is set to zero. The discrete equation for u

is straightforward, as it is defined on the regular grid:

AN(1)u1 + AP (1)u0 = 0 (2.60)

with

AN(1) = 0 , AP (1) = 1 (2.61)

Upper boundary condition: at the upper boundary, z = zh, corresponding to j = N0

(Figure 2.5), we can define two different kind of boundary conditions for the horizon-

tal velocity u, the velocity at the boundary can be equal to the velocity outside the

boundary layer, or the gradient of velocity in this point can be equal to zero.

• If we define the horizontal velocity at the top boundary to be equal to the velocity

outside the boundary layer U∞, we obtain the following discrete equation for point

N0:

AP (N0)uN0
+ AS(N0)uN0−1 = Du(N0) (2.62)
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Figure 2.4 – Grid point sketch at the bottom boundary.

Where:

AS(N0) = − ∆t

∆zN0

(Γu)t
N0− 1

2

∆zN0− 1

2

(2.63a)

AP (N0) = 1 (2.63b)

Du(N0) = −1
ρ

∂P̄

∂x
∆t + U∞(1 + AS(N0)) (2.63c)

• If we define the boundary condition as
∂u

∂z

∣∣∣∣∣
N0

= 0, the resulting equation is quite

similar:

AP (N0)uN0
+ AS(N0)uN0−1 = Du(N0) (2.64)

with:

AS(N0) = − ∆t

∆zN0

(Γu)t
N0− 1

2

∆zN0− 1

2

(2.65a)

AP (N0) = 1 − AS(N0) (2.65b)

Du(N0) = −1
ρ

∂P̄

∂x
∆t + U∞ − U t

∞ + ut
N0

(2.65c)
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Figure 2.5 – Grid point sketch at the upper boundary z = zh.

Additional terms: advection

We first need to discretize the vertical velocity w. From equation 2.46, we evaluate

the integral discretely:

wj =
1
cp

∫ z(j)

z(1)

∂u

∂t

∣∣∣∣∣
y

dy

=
1
cp

j−1∑

m=1

∫ z(m+1)

z(m)

∂u

∂t

∣∣∣∣∣
y

dy

∼ 1
cp

j−1∑

m=1

∂u

∂t

∣∣∣∣∣
m+ 1

2

∆zm+ 1

2

∼ 1
cp

j−1∑

m=1

ut
m+ 1

2

− ut−∆t
m+ 1

2

∆t
∆zm+ 1

2

(2.66)

The sum starts at m = 1 because the vertical velocity is zero at the bottom:

w(z0) = 0. The temporal derivative is estimated using the previous time steps t and

t − ∆t, as the terms at time step t + ∆t are unknown, and since it is an implicit

discretization, the linear system to be solved would not involve a tridiagonal matrix,

making the problem more complicated.

The discretization of the advection terms affect the terms AP and Du in equation
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2.58:

AP (j) = 1 − AN(j) − AS(j) − ut
j

c
(2.67a)

Du(j) = −1
ρ

∂P̄

∂x
∆t + ut

j + Uj − U t
j − (ut

j)
2

c
− wt

j

∆t

∆zj

(ut
j+ 1

2

− ut
j− 1

2

) (2.67b)

In the lower boundary, the equation is similar to equation 2.60. In the upper boundary,

the equation changes with the chosen boundary condition:

• In the case where the boundary condition is uN0
= U∞, we obtain:

Du(N0) = − 1
ρ

∂P̄

∂x
∆t + U∞(1 + AS(N0))

+
1
c
U∞(U∞ − U t

∞) − wt
N0

∆t

2∆zN0

(U∞ − ut
N0−1) (2.68)

The terms AP (N0) and AS(N0) remain the same as equations 2.65c and 2.63a

• In the case where the velocity gradient is equal to 0, we have:

N0+ 1

2∫

N0− 1

2

t+∆t∫

t

w
∂u

∂z
dtdz = 0 (2.69)

and the coefficients of the discrete equation are changed to:

AP (N0) = 1 − AS(N0) − ut
N0

c
(2.70)

Du(N0) = −1
ρ

∂P̄

∂x
∆t + U∞ − U t

∞ + ut
N0

− (ut
N0

)2

c
(2.71)

Turbulent Kinetic Energy equation

Original terms

We define the turbulent kinetic energy k at the mid-points of the control volume,

to insure a better precision in the system. By doing so, we do not need to interpolate

the values at the midpoints. The equation (2.27) is integrated over a control volume
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centered in the point j + 1
2
, and over a time step ∆t:

∫ j+1

j

∫ t+∆t

t

∂k

∂t
dt dz =

∫ j+1

j

∫ t+∆t

t


νT

(
∂u

∂z

)2

− βkω


 dt dz

+
∫ j+1

j

∫ t+∆t

t

∂

∂z

(
(ν + σk

k

ω
)
∂k

∂z

)
dt dz (2.72)

We integrate over time using a first order fully implicit control volume scheme. We

obtain the following equation, for point j + 1
2
, with j ∈ [2 · · · N − 2]:

BN(j)kj+ 3

2

+ BP (j)kj+ 1

2

+ BS(j)kj− 1

2

= Dk(j) (2.73)

With the terms defined as:

BN(j) = − ∆t

∆zj+ 1

2

(Γk)t
j+1

∆zj+1

(2.74a)

BS(j) = − ∆t

∆zj+ 1

2

(Γk)t
j

∆zj

(2.74b)

BP (j) = 1 − BN(j) − BS(j) + (β∗)t
j+ 1

2

ωt
j+ 1

2

∆t (2.74c)

Dk(j) = kt
j+ 1

2

+ (νT )t
j+ 1

2


ut

j+1 − ut
j

∆zj+ 1

2




2

∆t (2.74d)

where (Γk)j = ν + σk
kj

ωj

. As k and ω are defined at the mid-points, the turbulent

viscosity νT is also defined at those points. Therefore to calculate (Γk)j we need to use

an interpolation (linear or cubic).

Boundary conditions

Lower boundary condition The turbulent kinetic energy is defined at the point

j = 1
2
, therefore we have to find discretization equation in j = 1

2
. There are two kinds

of boundary condition for k:

• If we define the boundary condition is k(z = z0) = k0 = 0, we obtain the following

equation for the boundary condition j = 1
2
:

BN(1)k 3

2

+ BP (1)k 1

2

= Dk(1) (2.75)
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where

BN(1) = − ∆t

∆z 1

2

(Γk)1

∆z1

(2.76a)

BP (1) = 1 − BN(1) +
∆t

∆z 1

2

ν

∆z0

+ (β∗)t
1

2

ωt
1

2

∆t (2.76b)

Dk(1) = kt
1

2

+ (νT )t
1

2


 ut

1

∆z 1

2




2

∆t (2.76c)

• If we consider the boundary condition with a zero-gradient, the coefficients at

point j = 1
2

becomes:

BN(1) = − ∆t

∆z 1

2

(Γk)1

∆z1

(2.77a)

BP (1) = 1 − BN(1) + (β∗)t
1

2

ωt
1

2

∆t (2.77b)

Dk(1) = kt
1

2

+ (νT )t
1

2


 ut

1

∆z 1

2




2

∆t (2.77c)

Upper boundary condition

The upper boundary condition for the turbulent kinetic energy k is
∂k

∂z

∣∣∣∣∣
N0

= 0 We

obtain the following equation for the boundary condition j = N0 − 1
2
:

BP (N0 − 1)kN0− 1

2

+ BS(N0 − 1)kN0− 3

2

= Dk(N0 − 1) (2.78)

where

BN(N0 − 1) = 0 (2.79a)

BS(N0 − 1) = − ∆t

∆zN0− 1

2

(Γk)N0−1

∆zN0−1

(2.79b)

BP (N0 − 1) = 1 − BS(N0 − 1) + (β∗)t
N0− 1

2

ωt
N0− 1

2

∆t (2.79c)

Dk(N0 − 1) = kt
N0− 1

2

+ (νT )t
N0− 1

2


U t

∞ − ut
N0−1

∆zN0− 1

2




2

∆t (2.79d)
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Advection terms

• For the turbulent kinetic energy equation, we integrate the terms between the

points j and j + 1:

j+1∫

j

t+∆t∫

t

w
∂k

∂z
dtdz = wt

j+ 1

2

∆t

j+1∫

j

∂k

∂z
dz

= wt
j+ 1

2

∆t(kt
j+1 − kt

j) (2.80)

j+1∫

j

t+∆t∫

t

−u

c

∂k

∂t
dtdz = −

ut
j+ 1

2

c
∆zj+ 1

2

t+∆t∫

t

∂k

∂t
dz

= −
ut

j+ 1

2

c
∆zj+ 1

2

(kj+ 1

2

− kt
j+ 1

2

) (2.81)

The coefficients BP and Dk from equation 2.73 are then changed to:

BP (j) = 1 − BN(j) − BS(j) + (β∗)t
j+ 1

2

ωt
j+ 1

2

∆t −
ut

j+ 1

2

c
∆zj+ 1

2

(kj+ 1

2

− kt
j+ 1

2

) (2.82)

Dk(j) = kt
j+ 1

2

+ (νT )t
j+ 1

2


ut

j+1 − ut
j

∆zj+ 1

2




2

∆t − wt
j+ 1

2

∆t

∆zj+ 1

2

(kt
j+1 − kt

j) (2.83)

The values kt
j and kt

j+1 are estimated by linear interpolation.

• In the lower boundary layer, with the boundary condition kz0
= 0, there is one

additional term to the equation:

1∫

0

t+∆t∫

t

w
∂k

∂z
dtdz = wt

1

2

∆t

1∫

0

∂k

∂z
dz

= wt
1

2

∆t(kt
1 − kt

0)

= wt
1

2

∆tkt
1 (2.84)

Dk(1) is then changed to:

Dk(1) = kt
1

2

+ (νT )t
1

2


 ut

1

∆z 1

2




2

∆t − wt
1

2

∆t

∆z 1

2

kt
1 (2.85)
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• In the upper boundary, the boundary condition is
∂k

∂z

∣∣∣∣∣
N0

= 0, Dk(N0 − 1) is

changed to:

Dk(N0−1) = kt
N0− 1

2

+(νT )t
N0− 1

2


ut

N0
− ut

N0−1

∆zN0− 1

2




2

∆t−wt
N0− 1

2

∆t

∆zN0− 1

2

(kt
N0

−kt
N0−1)

(2.86)

2.3.3 Specific dissipation rate equation

Original terms

We define the specific dissipation rate ω at the mid-points of the control volume, like

the turbulent kinetic energy k. We first discretize the equation for the Wilcox [1998]

formulation, and then add the terms for the Wilcox [2006] formulation.

We need to integrate the equation (2.28) over a control volume centered in the point

j + 1
2
, and over a time step ∆t:

∫ j+1

j

∫ t+∆t

t

∂ω

∂t
dt dz =

∫ j+1

j

∫ t+∆t

t


γ

ω

k
νT

(
∂u

∂z

)2

− βω2


 dt dz

+
∫ j+1

j

∫ t+∆t

t

∂

∂z

(
Γω

∂ω

∂z

)
dt dz (2.87)

we obtain the following equation for point j + 1
2

with j ∈ [2 : N − 2]:

CN(j)ωj+ 3

2

+ CP (j)ωj+ 1

2

+ CS(j)ωj− 1

2

= Dω(j) (2.88)

with

CN(j) = − ∆t

∆zj+ 1

2

(Γω)t
j+1

∆zj+1

(2.89a)

CS(j) = − ∆t

∆zj+ 1

2

(Γω)t
j

∆zj

(2.89b)

CP (j) = 1 − CN(j) − CS(j) + βωt
j+ 1

2

∆t (2.89c)

Dω(j) = ωt
j+ 1

2

+ γ
ωt

j+ 1

2

kt
j+ 1

2

(νT )j+ 1

2


ut

j+1 − ut
j

∆zj+ 1

2




2

∆t (2.89d)

where Γω = ν + σω
k

ω
. This system is valid for the Wilcox [1998] formulation. If we
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want the Wilcox [2006] formulation, we need to add the cross-diffusion term, which has

an impact on Dω:

Dω(j) =ωt
j+ 1

2

+ γ
ωt

j+ 1

2

kt
j+ 1

2

(νT )j+ 1

2


ut

j+1 − ut
j

∆zj+ 1

2




2

∆t

+
σd

ωt
j+ 1

2

kt
j+1 − kt

j

∆zj+ 1

2

ωt
j+1 − ωt

j

∆zj+ 1

2

∆t (2.90)

Boundary conditions

Lower boundary condition

The specific dissipation rate ω is also defined at the point j = 1
2
. We use the same

method as with the turbulent kinetic energy k, and obtain the following equation:

CN(1)ω 3

2

+ CP (1)ω 1

2

= Dω(1) (2.91)

with:

CN(1) = − ∆t

∆z 1

2

(Γω)1

∆z1

(2.92a)

CP (1) = 1 − CN(1) +
∆t

∆z 1

2

ν

∆z0

+ βωt
1

2

∆t (2.92b)

Dω(1) = ωt
1

2

+ γ
ωt

1

2

kt
1

2

(νT ) 1

2


 u1

∆z 1

2




2

∆t +
∆t

∆z 1

2

νωwall

∆z0

(2.92c)

If we consider the Wilcox [2006] formulation, the term Dω(1) is changed to:

Dω(1) =ωt
1

2

+ γ
ωt

1

2

kt
1

2

(νT ) 1

2


 u1

∆z 1

2




2

∆t +
∆t

∆z 1

2

νωwall

∆z0

+
σd

ωt
1

2

kt
1

∆z 1

2

ωt
1 − ωt

wall

∆z 1

2

∆t (2.93)

Upper boundary condition

The upper boundary condition for the specific dissipation rate ω is:
∂ω

∂z

∣∣∣∣∣
N0

= 0 .

The resulting equation is then:

CP (N0 − 1)ωN0− 1

2

+ CS(N0 − 1)ωN0− 3

2

= Dω(N0 − 1) (2.94)
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with:

CS(N0 − 1) = − ∆t

∆zN0− 1

2

(Γω)N0−1

∆zN0−1

(2.95a)

CP (N0 − 1) = 1 − CS(N0 − 1) + βωt
N0− 1

2

∆t (2.95b)

Dω(N0 − 1) = ωt
N0− 1

2

+ γ
ωt

N0− 1

2

kt
N0− 1

2

(νT )N0− 1

2


U∞ − uN0−1

∆zN0− 1

2




2

∆t (2.95c)

If the upper boundary condition for the horizontal velocity is ∂u
∂z

= 0, we have to

replace the term U∞ by uN0
in equation 2.95c.

If we consider the Wilcox [2006] formulation, we add the cross diffusion term in Dω:

Dω(N0 − 1) =ωt
N0− 1

2

+ γ
ωt

N0− 1

2

kt
N0− 1

2

(νT )N0− 1

2


U t

∞ − ut
N0−1

∆zN0− 1

2




2

∆t

+
σd

ωt
N0− 1

2

(
∂k

∂z

)t

N0− 1

2

(
∂ω

∂z

)t

N0− 1

2

∆t (2.96)

Advection term

If we add the advection terms, The term Dω in equation 2.90 is then changed to:

Dω(j) =ωt
j+ 1

2

+ γ
ωt

j+ 1

2

kt
j+ 1

2

(νT )j+ 1

2


uj+1 − uj

∆zj+ 1

2




2

∆t

+
σd

ωt
j+ 1

2

kt
j+1 − kt

j

∆zj+ 1

2

ωt
j+1 − ωt

j

∆zj+ 1

2

∆t

− wt
j

∆t

∆zj+ 1

2

(ωt
j+1 − ωt

j) (2.97)

The values ωt
j and ωt

j+1 are estimated by linear interpolation.

2.3.4 Numerical algorithm

Algorithm used to advance in time

The system of resulting equations consists of three tridiagonal matrices. We can now

use the scheme presented in Figure 2.6 to estimate ut+∆t, kt+∆t, ωt+∆t from ut, kt, ωt.

We first define the matrices and vectors used for the resolution.
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For the horizontal velocity equation, we define A, Du and u :

A =




AP (N0) AN(N0) 0 . . . 0

AS(N0-1) AP (N0-1) AN(N0-1)
. . .

...

0
. . . . . . . . .
. . . . . .

...
. . . . . . . . . 0

... AS(2) AP (2) AN(2)

0 . . . 0 AS(1) AP (1)




Du =




Du(N0)
...

...

Du(1)




u =




ut+∆t
N0

...

...

ut+∆t
1




For the turbulent kinetic energy equation we define B, Dk and k:

B =




BP (N0 − 1) BN(N0 − 1) 0 . . . 0

BS(N0 − 2) BP (N0 − 2) BN(N0 − 2)
. . .

...

0
. . . . . . . . .
. . . . . .

...
. . . . . . . . . 0

... BS(2) BP (2) BN(2)

0 . . . 0 BS(1) BP (1)




Dk =




Dk(N0 − 1)
...

...

Dk(1)




k =




kt+∆t
N0− 1

2

...

...

kt+∆t
1

2



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For the specific dissipation rate equation we define C, Dω and ω:

C =




CP (N0 − 1) CN(N0 − 1) 0 . . . 0

CS(N0 − 2) CP (N0 − 2) CN(N0 − 2)
. . .

...

0
. . . . . . . . .
. . . . . .

...
. . . . . . . . . 0

... CS(2) CP (2) CN(2)

0 . . . 0 CS(1) CP (1)




Dω =




Dω(N0 − 1)
...

...

Dω(1)




ω =




ωt+∆t
N0− 1

2

...

...

ωt+∆t
1

2




The values for u, k and ω at t + ∆t can be estimated by solving the three linear

systems:

A · u = Du (2.98)

B · k = Dk (2.99)

C · ω = Dω (2.100)

In the case we use inner iterations, we need to define new matrices and vectors that

will depend, on the variables at time t, but also on variables at a intermediate time t0.

We define these matrices A1, B1, C1 and vectors Du1
, Dk1

, Dω1
, that will depend on
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new coefficients. For the horizontal velocity equation we have:

AN1
(j) = − ∆t

∆zj




(Γu)t0
j+ 1

2

∆zj+ 1

2


 (2.101a)

AS1
(j) = − ∆t

∆zj




(Γu)t0
j− 1

2

∆zj− 1

2


 (2.101b)

AP1
(j) = 1 − AN0

(j) − AS0
(j) − ut0

j

c
(2.101c)

Du1
(j) = −1

ρ

∂P̄

∂x
∆t + ut

j + Uj − U t
j − ut

ju
t0
j

c
− wt0

j

∆t

∆zj

(ut0
j+ 1

2

− ut0
j− 1

2

) (2.101d)

For the turbulent kinetic energy equation, the coefficients are changed to:

BN1
(j) = − ∆t

∆zj+ 1

2

(Γk)t0
j+1

∆zj+1

(2.102a)

BS1
(j) = − ∆t

∆zj+ 1

2

(Γk)t0
j

∆zj

(2.102b)

BP1
(j) = 1 − BN0

(j) − BS0
(j) + (β∗)t0

j+ 1

2

ωt0
j+ 1

2

∆t (2.102c)

Dk1
(j) = kt

j+ 1

2

+ (νT )t0
j+ 1

2


ut0

j+1 − ut0
j

∆zj+ 1

2




2

∆t − wt0
j+ 1

2

∆t

∆zj+ 1

2

(kt0
j+1 − kt0

j ) (2.102d)

For the specific dissipation rate equation, the coefficients are changed to:

CN1
(j) = − ∆t

∆zj+ 1

2

(Γω)t0
j+1

∆zj+1

(2.103a)

CS1
(j) = − ∆t

∆zj+ 1

2

(Γω)t0
j

∆zj

(2.103b)

CP1
(j) = 1 − CN0

(j) − CS0
(j) + (β)t0

j+ 1

2

ωt0
j+ 1

2

∆t (2.103c)

Dω1
(j) = ωt

j+ 1

2

+ γ
ωt0

j+ 1

2

kt0
j+ 1

2

(νT )j+ 1

2


ut0

j+1 − ut0
j

∆zj+ 1

2




2

∆t

+
σd

ωt0
j+ 1

2

kt0
j+1 − kt0

j

∆zj+ 1

2

ωt0
j+1 − ωt0

j

∆zj+ 1

2

∆t

− wt0
j

∆t

∆zj+ 1

2

(ωt0
j+1 − ωt0

j ) (2.103d)

Concerning the advection terms, the vertical velocity is also estimated at each time
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step:

wt0
j ∼ 1

c

j∑

k=1

ut0
k − ut

k

∆t
∆zk (2.104)

The variables with the superscript t0 are temporal variables that are used to iterate

and get better accuracy.

Iteration steps

The proposed scheme incorporates a loop to improve convergence at each time step.

This is required by the non-linear nature of the equations. This scheme is illustrated

in the Figure 2.6.

We first define two operators Mu and Mu0
:

Mu(ut, kt, ωt) = A−1 · Du (2.105)

Mu0
(ut0 , kt0 , ωt0 , ut) = A−1

1
· Du1

(2.106)

The operators Mk, Mk0
, Mω and Mω0

are defined similarly.

The different steps required to obtain the values at the time step t + ∆t that can

also be seen in Figure 2.6 are described hereafter:

1. we start with the values at time step t: ut, kt and ωt

2. the values ut0 , kt0 and ωt0 are calculated from the values ut, kt and ωt

3. the values ut1 , kt1 and ωt1 are initialized to begin the loop. The pointer is is set

to 1.

4. The loop initiates. The values ut0, kt0 and ωt0 are estimated from the values ut0,

ut1, kt0, kt1, ωt0, ωt1 using a relaxation coefficient α. This coefficient ranges from

0 to 1, and affects the rate of convergence.

5. The new values ut1, kt1 and ωt1 are calculated using the previous values ut0, kt0

and ωt0, and the values from the initial time step, ut, kt and ωt.

6. the relative error of u, k and ω are calculated.

7. if the maximum of the relative errors is higher than the required precision p0,

and the number of iteration is is lower than the maximum number of iterations

allowed ms, we continue the loop and, add 1 to the pointer is, and return at step

4.
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8. when the maximum relative error is lower than the precision, or the number of

iteration reaches the maximum iterations allowed, we get out of the loop.

9. The variables ut+∆t, kt+∆t and ωt+∆t are obtained from ut1, kt1 and ωt1.

It is possible to obtain the results without iteration, in that case, the scheme stops

at step 2. The convergence of the numerical model is estimated considering that the

time-series input length as a pseudo-period. The numerical model is iterated computing

its results within the entire time series and pseudo-period, the velocity relative error

between 2 pseudo-periods is estimated as:

erru0
=

||u1 − u0||2
||u0||2

=

√√√√
∑

z

∑
t(u1(z, t) − u0(z, t))2

∑
z

∑
t u0(z, t)2

(2.107)

where u0(z, t) represents the solution of the previous pseudo-period, and u1(z, t) the

solution of the current pseudo-period. The convergence is reached by iterating the

entire time-series until erru0
is lower than the desired precision taken as 10−6.
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Figure 2.6 – scheme to obtain the values of u, k and ω at time step t + ∆t from the values
at time step t. ut, kt and ωt correspond to the variables at time t, ut+∆t, kt+∆t and
ωt+∆t to the variables at time t+∆t; α is the relaxation coefficient; is is an internal loop
pointer; p0 is the precision required to advance to the next step; ms is the maximum
number of iterations.
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2.4 Model validation

2.4.1 Validation with sinusoidal flows

The experiments of Jensen et al. [1989] are oscillatory flows in a U-tube, on smooth

and rough beds. The forcing consist in a sinusoidal velocity in time (Figure 2.7), with

a varying Reynolds number defined as Re = aU0m/ν, with a the amplitude of the free-

stream motion, U0m the maximum value of the free-stream velocity and ν the kinematic

viscosity, ranging from a laminar regime (Re = 3.3 × 104) to a fully turbulent regime

(Re = 6.0 × 106). The bed shear stress is obtained using a hot-film probe, mounted

in the middle of the working section. The probe is calibrated using the theoretical

solution for the bed shear stress on a laminar boundary layer flow.

The experimental conditions of the different experiments are given in Table 2.3.

For all the experiments considered, the kinematic viscosity is ν = 1.14 × 10−6 m2.s,

and the period is T = 9.72 s.

Test U0m a Re = boundary ks

no. (m/s) (m) aU0m/ν mm
1 0.073 0.113 7.5 × 103 smooth -
2 0.152 0.235 3.3 × 104 smooth -
3 0.23 0.36 7.5 × 104 smooth -
4 0.34 0.53 1.6 × 105 smooth -
5 0.45 0.70 2.9 × 105 smooth -
7 0.68 1.05 6.5 × 105 smooth -
8 1.02 1.58 1.6 × 106 smooth -
9 1.55 2.4 3.4 × 106 smooth -
10 2.0 3.1 6 × 106 smooth -
13 2.0 3.1 6 × 106 rough 0.84

Table 2.3 – Experimental conditions for [Jensen et al., 1989] experiments. U0m is the max-
imum value of the free-stream velocity, a is the amplitude of the free-stream motion.

The experimental bed shear stress are compared with the following numerical model,

with the Wilcox [2006] formulation, in its normal and Low Reynolds Number version

and the Guizien et al. [2003] formulation.

For the numerical model, the bed shear stress is defined as:

τ = ρu2
τ = ρ(ν + νT (z0))

∂u

∂z

∣∣∣∣∣
z=z0

(2.108)

In the experiments from Jensen et al. [1989] the bed shear stress was measured with
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a hot-film probe, calibrated in a laminar boundary layer flow for the smooth conditions,

and using a logarithmic fit of the velocity profile to obtain the friction velocity uτ and

the bed shear stress for the rough conditions.

0 45 90 135 180 225 270 315 360
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Figure 2.7 – Phase φ definition along the oscillatory part of the outer flow velocity (−)
and corresponding pressure gradient (−−)

If we compare the bed shear stress obtained for various Reynolds number on a

smooth bed, in Figure 2.8, we observe that the numerical model results are coherent

with the experimental results, in terms of bed shear stress magnitude. The experi-

mental results show that the flow is fully laminar for Re = 3.3 × 104, Re = 7.5 × 104

and Re = 1.6 × 105. For Re = 2.9 × 105, the bed shear stress shows sign of transition

from laminar to turbulent regime, at φ = 90o and φ = 270o, and τ/ρ reaches maxi-

mum values of 5 cm2/s2 in the turbulent regime, compared to 4 cm2/s2 in the laminar

regime. As we keep increasing the Reynolds number, the transition from laminar to

turbulent regime occurs sooner. For Re = 6.5 × 105, the transition occurs at φ = 60o

and φ = 240o and for Re = 1.6 × 106, the transition occurs at φ = 30o and φ = 210o.

For higher Reynolds numbers, Re = 3.4 × 106 and Re = 6.0 × 106, the flow is fully

turbulent over the whole period. Noteworthy, in the experiments where a transition

from laminar to turbulent regime occurs, we also observe a relaminarization process

during the decelerating phase, that is less apparent in the experimental results, as there

is no sudden change in the bed shear stress.

The numerical model is not able to reproduce correctly the right transition from

laminar to turbulent. For the Wilcox [2006] formulation, the baseline version shows a
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slight transition at Re = 3.3×104 at φ = 110o and φ = 290o, and the LRN version shows

one at Re = 3.3 × 104 at φ = 100o and φ = 280o. As we increase the Reynolds number,

the transition begins sooner, and the maximum shear stress is not well reproduced

for Re = 7.5 × 104, Re = 1.6 × 105 and Re = 2.9 × 105. For Re > 2.9 × 105 the

model indicates a fully turbulent regime, and the maximum bed shear stress is of the

same order of magnitude than the experimental results, although at high Reynolds

numbers, namely Re = 3.4 × 106 and Re = 6.0 × 106, the bed shear stress is slightly

overestimated.

The Guizien et al. [2003] formulation is better at predicting the transition between

the laminar and the turbulent regime. The model is laminar at lower Reynolds number,

at Re = 3.3 × 104 and Re = 7.5 × 104, and the first transition is observed at Re =

1.6 × 105, for φ = 110o and φ = 290o. For intermediate Reynolds numbers, the

model is able to reproduce the transition at the correct phase, for Re = 2.9 × 105,

Re = 6.5 × 105 and Re = 1.6 × 106, with peaks values similar to the experiment. At

higher Reynolds number, at Re > 3.4 × 106, the model reproduces a slight transition,

for φ = 110o and φ = 290o, that is not apparent in the experimental results. The model

also underestimates the shear stress for the higher Reynolds number.

We can observe from these experiments on a smooth bed that the exact time of the

transition is difficult to obtain for the k −ω model, however for almost all experiments,

the model reproduces the magnitude of the bed shear stress which is key to estimate

the sediment transport.

The mean velocity profiles for the smooth case under a fully turbulent regime, are

shown in Figure 2.9.

We observe the experimental log-law region, that starts to develop at φ = 15o, and

increases in height, up to φ = 135o, then start decreasing to disappear at φ = 160o,

near flow reversal. For φ = 15o and φ = 160o, the velocity profile does not follow a law

of the wall because of the strong favourable (respectively adverse) pressure gradients

existing at these phases.

Concerning the numerical model, Wilcox [2006] formulation is close to the exper-

imental results, at all phases and we observe a logarithmic region similar to the ex-

perimental one. The velocity profile under a favourable pressure gradient is fairly well

reproduced, and for the adverse pressure gradient, the velocity is slightly under esti-

mated. Guizien et al. [2003] formulation has some discrepancies with the experimental

results. As explained before, the numerical model still shows a transition from lami-

nar to turbulent at this Reynolds number, which explain the difference in the velocity

profile at φ = 15o. After that, starting from φ = 60o, the velocities are over-estimated

in the logarithmic region.
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If we now look at the same experiment from Figures 2.8 and 2.9, but with a rough

bed with ks = 0.84 mm, we can also compare the bed shear stress and the velocity

profiles. In the rough bed case, the experimental friction velocity has been estimated

when possible, i.e. when a logarithmic region existed, and was obtained by logarithmic

fitting (figure 2.10). The Wilcox [2006] formulation tend to obtain similar friction

velocities for 150 < φ < 1350, but over-estimates them after the flow reversal. On

the contrary, Guizien et al. [2003] formulation tend to under-estimate the the friction

velocity for φ < 1350, but after the flow reversal, the results are close to the logarithmic

fit. We also observe a region of relaminarization, at 1600 < φ < 1900.

Concerning the mean velocity profiles with a rough bed, the observations are similar

to the smooth bed case. The logarithmic region is well reproduced by the Wilcox [2006]

formulation, and over-estimated by the Guizien et al. [2003] formulation.

From these experiments, we can conclude that the k − ω model in its different

formulations reproduces fairly well the evolution of a periodic flow in a U-tube. If

Wilcox [2006] formulation reproduces better the logarithmic region, Guizien et al. [2003]

formulation is able to better predict the transition from laminar to turbulent.
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Figure 2.8 – Bottom shear stress over one period, over a smooth bed, for different Reynolds
number. Grey dots: experimental measurements [Jensen et al., 1989]; line: Wilcox [2006]
k − ω model, LRN version; dashed line: line: Wilcox [2006] k − ω model; dot-dashed
line: Guizien et al. [2003] k − ω model, LRN version.
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Figure 2.10 – Friction velocity over a rough bed. Grey dots: logarithmic fit, Test 13
[Jensen et al., 1989]; line: Wilcox [2006] k − ω model, LRN version; dashed line: line:
Wilcox [2006] k − ω model; dot-dashed line: Guizien et al. [2003] k − ω model, LRN
version.
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Figure 2.11 – Mean velocity distribution in semi-log plot, over a rough bed. Grey dots:
experimental measurements, Test 13 [Jensen et al., 1989]; black line: Wilcox [2006]
k − ω model, LRN version; dashed line: line: Wilcox [2006] k − ω model; dot-dashed
line: Guizien et al. [2003] k − ω model, LRN version; grey line: theoretical log-law for
rough beds.
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2.4.2 Validation with DNS results

The k − ω model is also compared to Direct Numerical Simulation (DNS) results ,

as shown in Guizien et al. [2003]. Indeed DNS results provide detailed information

on turbulent kinetic and Reynolds Stress vertical distributions. The details from the

DNS results, which are phase-averaged, can be found in Vittori et Verzicco [1998]. The

hydrodynamical conditions are: U0 = 1.1 m/s, T = 4 s, Rδ = 1241 and δ = 1.128 ×
10−3 m, with δ =

√
νT/π the viscous boundary layer thickness, and Rδ = U0δ/ν is the

boundary layer Reynolds number for steady flows. The wave forcing and corresponding

pressure gradient are sinusoidal in time as defined in the Figure 2.7, and the bottom

is considered smooth.

The DNS results are compared to three formulations of the k−ω model, the [Wilcox,

2006] formulation in its baseline and LRN version, and the [Guizien et al., 2003] for-

mulation.

If we look at the velocities at 4 distinct phases (Figure 2.12), the k − ω model is

similar to the DNS model for φ = −45o and φ = 0o, with an adverse pressure gradient

and a negative velocity. For φ = 45o, we are after the flow reversal, with positive

velocities and an adverse pressure gradient, at this phase the [Wilcox, 2006] formulation

has some discrepancies, while the [Guizien et al., 2003] formulation responds quite well

compared to the DNS. At φ = 90o, we have positive velocities and no pressure gradient,

and we observe that both the DNS results and the k−ω model reproduce a logarithmic

region in the boundary layer.

The differences observed at φ = 45o for the velocity profiles can be clearly explained

if we look at the bed shear stress evolution (Figure 2.13). The DNS results show a

transition from the laminar to the turbulent regime starting at φ = 50o up to φ = 70o.

There is also a period of relaminarization, near the flow reversal at φ = 180o that

cannot be clearly distinguished as there is no abrupt change in the bed shear stress.

We also observe a second transition from laminar to turbulent starting at φ = 230o up

to φ = 250o.

The [Guizien et al., 2003] formulation is able to predict the transition from laminar

to turbulent, at around φ = 50o which is similar to the DNS results, however the

transition is much faster. Concerning the [Wilcox, 2006] formulation, the transition is

far less important in terms of bed shear stress, and out of phase with the DNS results,

as the transition occurs around φ = 20o. For all the formulations of the k − ω model

considered, the maximum shear stress is under-estimated.

Concerning the turbulent kinetic energy at 4 different phases (Figure 2.14), the

variation showed by the DNS results are reproduced by the k − ω model, the [Wilcox,
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Figure 2.12 – Velocity vertical profiles at different phases; Grey dots : DNS results; black
line: [Wilcox, 2006] LRN model (−); dashed line: [Wilcox, 2006] model; dot-dashed
line: [Guizien et al., 2003] LRN model.

2006] LRN formulation obtaining the best results in terms of shape and peak values.

The Reynolds stress tensor is also plotted for the same 4 phases (Figure 2.15). The

profiles obtained by the k − ω model present a vertical structure similar to the DNS

results. From the comparisons with the DNS numerical modelling and the shear stress

experimental data at different Reynolds number, we can conclude that the three formu-

lations (Wilcox [1998], Wilcox [2006],Guizien et al. [2003]) are able to reproduce fairly

well the evolution of the bottom boundary layer, however with slight differences. Al-

though the transition from laminar to turbulent is better reproduced with the Guizien

et al. [2003] formulation, from now on we choose the Wilcox [2006] formulation, as

the vertical profiles at different phases are better reproduced, and additional terms for

cross-diffusion and stress limiters are included.
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Figure 2.13 – Bottom shear stress time evolution over one period. ; Grey dots : DNS
results; black line: [Wilcox, 2006] LRN model (−); dashed line: [Wilcox, 2006] model;
dot-dashed line: [Guizien et al., 2003] LRN model. τ0 is the reference shear stress,
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Figure 2.12.

68



Chapter 2 Numerical modelling of oscillatory boundary layers

−6 −4 −2 0 2 4 6

x 10
−3

0,05

1

10

30

z
/
δ

−6 −4 −2 0 2 4 6

x 10
−3

0,05

1

10

30

−6 −4 −2 0 2 4 6

x 10
−3

0,05

1

10

30

u′w′/U2
0

z
/
δ

−6 −4 −2 0 2 4 6

x 10
−3

0,05

1

10

30

u′w′/U2
0

φ = −45o φ = 45o

a) c)

φ = 0o

b) d)

φ = 90o

Figure 2.15 – Reynolds stress vertical profiles at different phases; symbols: see figure 2.12.
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2.4.3 Asymmetric propagating wave on a fixed uniform slope

Lin et Hwung [2002] experiment

The streaming and horizontal pressure gradients are also important in the bottom

boundary layer in the surf zone. To observe the ability of the numerical model to

reproduce these features, it is compared to an experiment from Lin et Hwung [2002].

This experiment contains several important aspects of the oscillatory bottom boundary

layer in the nearshore zone. The presence of the slope and the wave breaking induces a

mean pressure gradient, and it is interesting to observe if this mean pressure gradient

is more related to a set-up induced by the waves, or to advection caused by the slope.

The experiment took place in a glass-walled wave flume located at Tainan Hydraulic

Laboratory, National Chen Kung University, China. The wave flume had a fixed hori-

zontal smooth bottom of length 3.77 m, followed by a fixed smooth bed, with a slope

of 1/15 (see Figure 2.16).

Monochromatic waves of height H = 0.053 m and period T = 1.14 s were generated

over this fixed bathymetry. Velocity profile measurements were made using a one

component Laser Doppler Velocimetry. The Stokes length is δ = 0.67 mm for this

experiment. Due to the limitations of the experimental facility, all the profiles are

obtained in the pre-breaking zone and the bottom boundary layer flow is laminar [Lin

et Hwung, 2002].

We focus on three distinct profiles, located at P4, P8 and P10. The still water depth

at these three positions are d = 15.7 cm, d = 11.0 cm and d = 8.5 cm respectively.

The mean horizontal pressure gradient for these three profiles were 0.002 m/s2, 0.005

m/s2 and 0.010 m/s2 respectively.

Figure 2.16 – Sketch of wave flume from Lin et Hwung [2002]. Hc is the wave height, d is
the still water depth. The generated waves are monochromatic.
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Numerical model

We use Wilcox [2006] in its LRN version and compare the results and observe the

influence of the mean pressure gradient and the advection on the numerical results.

Three different velocity profiles were calculated at three distinct positions, P4 (Figure

2.17), P8 (Figure 2.18) and P10 (Figure 2.19). The velocity at the upper boundary in

the numerical model is set to the free-stream velocity, U∞. The advection terms are

deduced from the vertical velocity, w, estimated by equation (2.47), assuming that the

vertical velocity at z = z0 is zero, the z-axis being vertical.

The experimental results show that, as the waves come closer to the shoreline,

the free-stream velocity becomes increasingly non-linear. In the accelerating phase

(profiles a, b, c), we observe a strong overshoot in velocity at z ≈ 2δ for the three

gauges considered. We also note that the boundary layer thickness is roughly 8δ,

around 5 mm for the three velocity profiles, showing that the bottom boundary layer

is restricted to a thin layer near the bottom.

The numerical results show that this overshoot of velocity in the accelerating part

is in part due to the mean pressure gradient and the advection produced by the beach

slope, as when these terms are incorporated in the model, the velocity profiles are closer

to the experimental ones. However, the effects of the sloping bed are not entirely ac-

counted for, explaining the differences in the overshoot. As explained by Fuhrman et al.

[2009b], the averaged velocity profile over the diverging half period and the converging

half period are different, producing a slope-related streaming. This streaming induces

an onshore mean velocity near the bottom boundary and an offshore velocity higher

in the boundary layer, as shown experimentally by Sumer et al. [1993] and validated

numerically by Fuhrman et al. [2009b]. These mean velocity profiles are similar to the

ones from Lin et Hwung [2002] experiment, as we note that in the three profiles con-

sidered, the mean velocity profile have a strong similarity, the effect from the bed slope

being more important than the streaming induced by the waveform. The streaming

induces a translation of the mean vertical profile as it is constant within the bottom

boundary layer, which is not the case for the advection terms induced by the slope.

Near the flow reversal (profile e) the numerical model has difficulties in adjusting

the experimental velocity profile, probably due to the boundary layer separation that

occurs at this phase, that is not modelled.

Except for the maximum velocity and the flow reversal, the numerical velocity

profiles matches quite well the experimental results, and the addition of a mean pressure

gradient and the advection terms improves the performance of the model. The bed

slope effects are harder to match, due to the fact that with a 1D-vertical model the
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converging-divergent effects are harder to account for.
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Figure 2.17 – Comparison of instantaneous velocity profiles at gauge P4. Upper panel:
free-stream velocity at gauge P4, the circles indicate the time of the velocity profiles.
Lower panel: Velocity profiles at the chosen times. (· · · ): Lin et Hwung [2002] exper-
imental results; (− · −): k − ω model without the mean pressure gradient; (− − −):
k −ω model with the mean pressure gradient; (−): k −ω model with the mean pressure
gradient and the advection terms.

Concerning the mean velocity profiles in Figure 2.20 , we observe that without

mean pressure gradient the velocity profiles are negative in the whole boundary layer,

whereas the experimental results shows a positive mean velocity for z < 6δ. This

positive mean velocity is in part due to the mean pressure gradient and the advection

terms, as when incorporating them in the model, the mean velocity profiles improve,

and we obtain positive mean velocities near the bottom boundary. There are still some

discrepancies, due to the converging-diverging effect of the bed slope, as these terms

are not modelled in a 1D vertical model, but the model shows a similar behaviour to

the experimental results.
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Figure 2.18 – Comparison of instantaneous velocity profiles at gauge P8. Captions, see
Figure 2.17.
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Figure 2.17.
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Figure 2.20 – Comparison of mean velocity profiles at gauges P4 (left panel), P8 (middle
panel) and P10 (right panel). (o): Lin et Hwung [2002] experimental results; (− · −):
k − ω model without the mean pressure gradient; (− − −): k − ω model with the mean
pressure gradient; (−): k −ω model with the mean pressure gradient and the advection
terms.
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2.5 Conclusion

An unidimensional k −ω model has been proposed and validated on smooth and rough

bottoms, against experimental and numerical results. The validation gives confidence

in the model to study the evolution of the coastal bottom boundary layer under periodic

flows. The incorporation of the advective terms, as well as the mean pressure gradient,

improves the model capacity to reproduce the variations of the bottom boundary layer

under periodic flows on the beach.

In the next chapter, the k − ω model is used to study the coastal bottom boundary

layer subject to a bichromatic forcing under a mobile bed, and the subsequent evolution

of non-linearities in the boundary layer.
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Chapter 3

Evolution of non-linearities in the

boundary layer

3.1 Introduction

Understanding sediment transport processes that occur in the nearshore zone are fun-

damental to understand the evolution of beaches. The longshore sediment transport

is relatively well understood, but the cross-shore sediment transport remains hard to

predict, due to the various non-linear processes occurring in the oscillatory bound-

ary layer, such as the conventional streaming, the bed slope for the gravitational and

converging-diverging effects, the shoaling, the wave skewness and asymmetry, the wave

breaking, the wave drift and return currents, the undertow, the turbulence, the bottom

roughness, the bed forms and percolation [Fuhrman et al., 2009a].

Figure 3.1 – Wave non-linearities. a) sinusoidal wave; b) skewed wave; c) asymmetric wave

In deep water, waves are essentially sinusoidal. When they approach the coast, due

to the influence of the bottom, they become increasingly non-linear, showing skewed

and asymmetric shapes. In Figure 3.1 we can see the difference between a sinusoidal

wave, a skewed and an asymmetric one.
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Chapter 3 Non-linearities in the boundary layer

The skewness Sk0 in free surface displacement which also gives a skewness in hori-

zontal velocity, is characterized by waves with a pinched crest and a wide trough. They

are common in the shoaling zone, where the influence of the bottom on the mass flux

of water changes the shape of the waves. It is defined as [Nielsen, 2006]:

Sk0 =
(η(t) − η)3

η3
rms

(3.1)

where the root-mean square of the free surface ηrms is defined as:

ηrms = (η(t) − η)2
1/2

(3.2)

with η the free surface displacement and an overbar stands for a mean value.

The asymmetry As0 can be understood as a skewness in fluid horizontal accelera-

tion, and is characterized by waves with steeper front, also known as saw-tooth shape

waves. Asymmetric waves are mostly found in the inner surf zone, where broken waves

have this shape. The asymmetry As0 is defined as:

As0 =

(
∂η

∂t
− ∂η

∂t

)3

(
∂η

∂t
− ∂η

∂t

)21/2
(3.3)

The asymmetry can also be defined using the third order moment of the Hilbert trans-

form [Elgar, 1987]:

As0 = −ℑ(H(η))3

η3
rms

(3.4)

with the overbar denoting a time-average over the studied interval, H(η) is the Hilbert

transform of η and ℑ the imaginary part. The skewness and asymmetry of the wave

can also be determined by its velocity time-series.

These non-linearities are an important mechanism for sediment transport. In ab-

sence of streaming, when the wave is purely sinusoidal, the onshore sediment flux

induced by crest velocities balances exactly the offshore flux of the trough velocities.

When the waves becomes skewed due to the wave shoaling, the difference of velocities

between crests and troughs, as well as the time lapses between crests and troughs, will

generate an onshore sediment transport [Dibajnia et Watanabe, 1992 ; Dohmen-Janssen

et al., 2002 ; Hsu et Hanes, 2004 ; Grasso et al., 2011]. Concerning non skewed but

asymmetric waves, although the onshore velocities balances the offshore velocities over
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Chapter 3 Non-linearities in the boundary layer

one period, an onshore sediment transport has also been reported [King, 1991 ; Elgar

et al., 2001 ; Ruessink et al., 2011]. One interesting feature outlined by recent labora-

tory experiments [van der A et al., 2010 ; Ruessink et al., 2011] is that an asymmetric

wave shape induces a skewed shear stress in the boundary layer. According to Nielsen

[1992] this feature is related to the boundary layer thickness, that grows differently in

the rapidly accelerated half cycle, and in the less accelerated one, producing vertical

gradients in the flow that lead to an enhanced shear stress. This relation between an

asymmetric wave and a skewed shear stress has been observed with a k − ω numerical

model by Fuhrman et al. [2009a], and in U-tube laboratory experiments [van der A

et al., 2011 ; Abreu et al., 2013].

A theoretical predictor of the relation between the free flow non-linearities and

boundary layer ones was suggested by Henderson et al. [2004], following a work on

bi-spectrum analysis by Elgar [1987], assuming that the phase shift depended on the

frequency, thus changing the shape of the wave from asymmetric to skewed. He also

found the existence of a linear relation between the near-bed skewness and the free-

stream asymmetry.

Another important feature of the bottom boundary layer on beaches is that the

bed is mobile and sediment is transported as the waves affect the bottom. It is very

common to apprehend boundary layers on mobile beds with the tools of boundary

layers on fixed bottom [Sleath, 1987 ; Jensen et al., 1989]. [Dohmen-Janssen et al.,

2001] observed the evolution of a mobile bed for oscillatory sheet-flows (when large

amounts of sand are transported in a thin layer close to the bed) with an oscillatory

water tunnel, and deduced from the measurements that the sheet-flow layer led to an

increased resistance in the outer flow and the reduction of the turbulence and sediment

mixing in the suspension layer. Sparrow et al. [2012] showed that a permeable bed

modifies the wave boundary layer dynamics, leading to an increase in the friction and

a dependence of the friction on the Reynolds number.

The first part of this chapter has been accepted for publication in La Houille

Blanche, International Water Journal [Suarez et al., 2014]. This work investigates

the influence of the bed mobility on the bottom boundary layer during a bichromatic

wave forcing, inducing a vertical diffusion of the boundary layer [Berni et al., 2013]. In

this experiment, the velocity profiles were obtained using an Acoustic Doppler Velocity

Profiler (ADVP). The upper limit of the boundary layer was chosen where the root

mean square velocity remained constant.

Concerning the vertical distribution of the skewness and the asymmetry in the

bottom boundary layer, the linear relation between the near-bed skewness and the

free-stream asymmetry Berni et al. [2013] has been validated both experimentally and
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Chapter 3 Non-linearities in the boundary layer

using the k − ω numerical model.

To obtain a wide range of skewed and asymmetric waves, the theoretical formula

of Abreu et al. [2010] has been used. This formula reproduces fairly well the type of

waves that occur in the nearshore zone. The velocity related to the wave forcing is

defined as:

U(t) = Uwfr

sin(σt + r sin φ

1+
√

1−r2
)

1 − r cos(σt + φ)
(3.5)

where Uw is the amplitude of the orbital velocity, σ = 2π/T the angular frequency, r

the index of skewness and φ the waveform parameter. The variable fr is a dimensionless

factor function of r, fr =
√

1 − r2, used to obtain a velocity amplitude equal to Uw.

By allowing the index of skewness r to vary between 0 and 0.75 and the waveform

parameter φ to vary between −π/2 and 0, numerous different types of waves were used

in the numerical model to relate the near-bed skewness to the free-stream asymmetry.

The linear dependence obtained is similar to the one obtained with the experimental

results from Berni et al. [2012]. This part has resulted in a communication at the

International Conference on Coastal Engineering in July 2012 [Berni et al., 2012].
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As the waves approach the coast, non-linearities become increasingly stronger. The interactions between the
waves and loose bottoms then generate complex features within the turbulent boundary layer, which are difficult
to measure and model. Experiments involving non-linear wave propagation over a mobile bed with detailed
boundary layer velocity measurements and bottom elevations are presented. These data suggest a transformation
in velocity time series as they are measured closer to the bed within the boundary layer with an increase in
velocity skewness and a reduction in asymmetry. Additionally the vertical diffusion of momentum within the
boundary layer is shown to be one order of magnitude larger than that over fixed beds. A k−ω model accounting
for the measured bed level variations is used to mimic the flow in the boundary layer. In this work we present
a strategy to combine bottom level variations with a k − ω model and show that it is possible to reproduce
the observed experimental results. The bed vertical mobility is shown to be largely responsible for additional
vertical diffusion of momentum within the boundary layer.
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Distribution verticales d’asymétrie et de skewness dans une couche limite sur18

fond mobile. Une comparaison expériences - modèle k − ω19

Lorsque les vagues se rapprochent de la côte, leurs non linéarités augmentent. Les interactions entre les vagues
et un fond mobile produisent des effets complexes sur la couche limite turbulente pariétale qui sont difficiles à
mesurer et à modéliser. Des mesures réalisées dans un modèle physique de propagation de vagues non-linéaires
sur fond mobile sont présentées. L’analyse conjointe des profils de vitesse et d’évolution du fond suggère une
transformation au sein de la couche limite, par laquelle l’asymétrie horizontale des vitesses (skewness) augmente
au fur et à mesure que l’asymétrie (skewness de l’accélération) diminue en se rapprochant du fond. De plus on
constate que la diffusion verticale dans cette couche limite est plus importante sur fond mobile que sur fond fixe.
Dans ce travail nous présentons une stratégie pour combiner les variations verticales du fond avec un modèle
k−ω et montrons que celle-ci permet de reproduire les mesures expérimentales. Nous montrons que la mobilité
verticale du fond est responsable de l’augmentation de la diffusion verticale de quantité de mouvement dans la
couche limite.
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I INTRODUCTION32

Complex flow-sediment interactions are observed within the turbulent boundary layer produced under33

nearshore waves propagating over loose bottoms. When approaching the coast, the shoaling waves34

undergo non-linear transformations and dissipation during breaking that impact the boundary layer35

dynamics. Since the pioneering work by [Bailard, 1981] it is of common understanding that free stream36

velocity skewness is a key parameter for estimating the rate of sediment transport. In the last decade37
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it has been suggested that asymmetric waves also produce net sediment transport (see for instance38

[Ruessink et al., 2009]). Bottom velocity skewness and asymmetry depend on how the boundary layer39

develops. In this paper we will focus on the study of the turbulent boundary layer resulting from surf40

zone wave propagation over a mobile bed.41

Using the experiments over a scaled sandy bottom of Berni et al. [2013], we attempt to characterize42

the near bed evolution of velocity profiles and its relation with free stream velocities. The experiments43

also showed an intriguing strong vertical momentum diffusion in the turbulent boundary layer. Vertical44

diffusion of momentum is easily quantified by computing the boundary layer thickness defined, for45

instance, as the height where the defect velocity is 5 % of the free stream velocity.46

The laminar boundary layer thickness is a function of the Stokes length δ which reads,47

δ =
√

ν T/π (1)

where ν is the water viscosity and T is the wave period. The laminar boundary layer thickness is48

roughly 3 δ and is generally very small. For the experimental conditions studied by Berni et al. [2013]49

its value is of ≃ 3 mm. For rough turbulent boundary layers on fixed sand beds the boundary layer50

thickness δt can be estimated empirically as [Sleath, 1987],51

δt
ks

= 0.27

(
A

ks

)0.67

(2)

where A is the fluid particle excursion at the bottom, ks the Nikuradse equivalent roughness. Sleath52

[1987] recommends the use of ks = 2.5 d50, d50 being the median grain diameter. In the case of53

the T = 2.5 s experiments of Berni et al. [2013] the value of the turbulent boundary layer thickness54

estimated by (2) is δt ≃ 6 mm. None of the two previous estimators pertain to mobile bed boundary55

layers (as discussed further in section III). Experiments of Berni et al. [2013] indicate that the boundary56

layer thickness can be as thick as 20 δ (nearly 2 cm), exceeding the predicted value given by (2). This57

seems to indicate that vertical momentum diffusion in the case of a mobile bed is stronger than in the58

fixed bed case.59

The aim of this paper is to develop a novel strategy to take into account the effect of loose bottom60

vertical motions on the near bed velocity profiles and vertical momentum diffusion through a 1D k−ω61

RANS model.62

II METHODS63

II.1 Experimental set-up and wave conditions64

The experiments took place in the LEGI wave flume, with nonlinear waves propagating over a scaled65

beach profile made of loose material (figure 1). The flume is 36 m long, 55 cm wide and 1.30 m high.66

The bottom granular material is made of plastic particles of low density (ρs = 1, 180 g L−1) and of67

median diameter d50 = 0.64 mm, ensuring a Froude and Shields similitude [see extensive details in68

Grasso et al., 2009]. The elementary wave forcing used in the experiments is the combination of two69

single bichromatic wave packets of carrier period T = 2.5 s and T = 3 s respectively, combined in70

one wave sequence. In the present paper we will only analyze the dynamics of the boundary layer71

induced by the 2.5 s wave train (figure 2). The effective experimental forcing consists in 50 repetitions72

of the wave sequence described above. Before the wave sequence’s run, in order to perform reliable73

phase averages on the free surface and velocity measurements, the experiment was run until the beach74

profile reached a quasi-equilibrium [Berni et al., 2013]. Phases averages were performed over the last75

29 wave trains. Furthermore, in the subsequent analysis we have selected a specific 10 s interval in76

each of these 29 wave trains. This interval is made out of four waves of similar amplitude and shape77

in the middle of the wave packet (see figure 3). The average breaking point was roughly stationary78

at x ≃ 9 m. Velocity time series were verified so that spikes associated to the presence of air bubbles79

(specially in the surf zone) did not represent more than 3 to 5 % of the measured points.80
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Figure 1: Experimental cross-shore bed profiles. Smoothed cross-shore profile of the bed ele-
vation. Solid and dashed black lines correspond to bed profiles separated by 50 wave trains of wave
action. The horizontal dashed grey line represents the still water level. The black crosses indicate the
mean wave height H of the wave train. The ADVP was located at x = 13 m, indicated by the red
vertical line.
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Figure 2: The wave forcing. Prescribed bichromatic free surface displacement η at the wavemaker.
The carrier wave period is T = 2.5 s.

Figure 3: Free stream velocity. Phase averaged velocity records of the 2.5 s wave packet at the
cross-shore position x = 13 m and at an elevation of z = 3.6 cm above the mean bed elevation. The
grey-tinted box bounds the waves used in the analysis.
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Figure 4: Schematic of the bed evolution. z = 0 is the average position of the still bed and zb is
the position in time of the still bed level. a) near-bed configuration prior to wave forcing; b) bottom
configuration during wave action. δs represents the sheet flow layer thickness.

II.2 Bed level measurements81

Since the waves propagate on a loose bed, we define the instantaneous still bed position, zb(t), as the82

elevation of the limit between the moving fluid-sediment mixture and the motion-less sediment bed83

(see figure 4). The moving fluid-sediment mixture contains the sheet flow layer. The instantaneous84

position of the still bed and the evolution of the horizontal cross-shore velocity vertical profile were85

obtained with a vertical spatial resolution close to 3 mm by using an Acoustic Doppler Velocity86

Profiler (ADVP). The mean water depth at the location of the velocity measurements (at x = 13 m)87

was h = 0.125 m. The procedure for collecting the data presented here has been described thoroughly88

in Berni et al. [2013]. The ADVP is able to detect the top of the sheet-flow layer as well as the bottom89

of the sheet flow layer representative of the still bed [Berni et al., 2012]90

An example of measured instantaneous still bed position is plotted in figure 5. A filtered time91

series is computed by applying a low-pass filter with a cut-off at 5 Hz. The filtered time series of92

still bed elevations shows a still bed evolution qualitatively consistent with the external wave velocity93

forcing: still bed lowering at phases close to the wave crests at the same time as the sheet flow layer94

develops with an increase in δs.95

The evolution of the still bed position zb can be described by a probability density function (pdf).96

The mean value of zb is zero. The standard deviation of the instantaneous still bed elevation is97

σzb = 3.6 ×10−3 m. We show in figure 6 two estimations of the still bed elevation pdf. One is directly98

the pdf of the raw measurements and the other is deduced from a low-pass filtering of zb. In figure 699

a standard Gaussian distribution, with this same standard deviation σzb is also plotted. It appears to100

be close to the experimental pdf of the non-filtered still bed elevation. The still bed positions are seen101

to essentially remain in a strip of width ±5 δ ≃ ±5 mm (δ being the Stokes length (1)).102

II.3 Velocity measurements103

As indicated previously the ADVP provides instantaneous velocity measurements at 50 Hz. A clip104

of the instantaneous velocity time series is shown in figure 5. This clip is a part of the 29 clips used105

for the ensemble averaging given in figure 3. Notice that the record shows the signature of turbulent106

fluctuations some of which are stronger at flow reversal (see also the −5/3 slope in the power spectra107

shown in [Berni et al., 2013]). Instantaneous velocities at x = 13 m also show pinched crests and108

secondary crests velocities associated to highly non linear wave propagation inside the surf zone also109

evidenced by the spectral analysis presented by [Berni et al., 2013]. Waves are also asymmetric with110

steep wave fronts and gentle seaward slopes. These last features are a consequence of wave breaking111

occurring a few meters before the measurement point.112

4



120 121 122 123 124 125 126 127 128 129 130
−0.4

−0.2

0

0.2

0.4
U
e
x
t

(m
/
s)

120 121 122 123 124 125 126 127 128 129 130
−10

−5

0

5

10

z b
(m

m
)

120 121 122 123 124 125 126 127 128 129 130
0

5

10

15

20

time (s)

δ s
(m

m
)

Figure 5: Instantaneous velocities, still bed levels and sheet-flow layer thickness. Top panel :
one of the 29 records of instantaneous free stream velocity at z = 3.6 cm; middle panel : still bed
displacements phased with the velocities in the top panel . Bottom panel : sheet flow layer thickness
δs also phased with the velocities. Thin grey line: instantaneous still bed elevations; Thin black line:
low-pass filtered still bed elevations.
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Figure 6: Cumulative frequency distribution. dashed line: instantaneous still bed pdf;
dot/dashed line: low-pass filtered still bed pdf; plain line: gaussian pdf with the same standard
deviation as the instantaneous still bed displacements.
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The skewness and the asymmetry are key tools to analyze the nonlinear characteristics of the113

flow characteristics. The dimensional skewness Sk vertical profile and the dimensional asymmetry As114

vertical profile of the velocity time series are computed from measured time series using formula (3–4):115

Sk(z) = (u(z, t)− u)3 (3)

As(z) = −ℑ(H(u))3 (4)

where u(z, t) is the cross-shore horizontal velocity, with the overbar denoting a time-average over116

the studied interval, H(u) is the Hilbert transform of u and ℑ the imaginary part.117

The time averaging of velocity measurements at vertical positions that can be alternatively in the118

flow or inside the bed requires a specific treatment. Indeed some measuring volumes of the ADVP119

can at some instances be below the still bed level. When this happens the ADVP does not provide120

a reliable velocity value. It is decided to prescribe a 0 value of the velocity for this cases. It is121

physically sound to do so since the Eulerian velocity of the sediment/fluid mixture can be reasonably122

approximated to 0 when the latter occurs. Such a procedure was applied to the data of [Berni et al.,123

2013] presented here. As the z = 0 elevation, corresponding to the mean still bed level, is 50 % of124

the time below the still bed level, 50 % of the time series is padded with zeros. Moreover the point125

at z ≃ −4 δ (see fig. 7) is found to be in the moving sediment/fluid mixture roughly 20% of the time126

and therefore about 80 % of the time series is padded with zeros.127

The effect of this procedure can be evaluated for the root mean square velocity urms, computed as:128

urms(z) =

√
(u(z, t)− u)2 (5)

where the time series is padded with zeros following the procedure explained above. The vertical129

profile of urms is given in figure 7 and note that below z = 0, urms is very small. The velocity series130

padded with zeros are also used to compute Sk and As according to equations (3) and (4), respectively.131

II.4 Numerical model132

The horizontal mean velocities near the bed are numerically computed with a 1DV k − ω turbulent133

boundary layer model in a Low Reynolds Number version ([Guizien et al., 2003; Wilcox, 2006]). The134

turbulent kinetic energy k equation includes cross-correlation terms between the gradient of k and the135

gradient of ω (specific dissipation rate) to accommodate for adverse pressure gradients. The bottom136

boundary condition on the turbulent kinetic energy k is dk
dz = 0 as suggested by [Fuhrman et al., 2010]137

in order to specifically mimic a rough bottom boundary instead of k = 0 that inevitably forces a138

viscous sub-layer whatever the Reynolds number is. Additionally the boundary Nikuradse equivalent139

roughness ks is prescribed in the wall boundary condition for ω.140

The nonlinear equations for the horizontal velocity u, the turbulent kinetic energy k and the specific141

dissipation rate ω are solved using an implicit finite control volume method [Patankar, 1980], with a142

staggered grid for k and ω.143

The model is forced with the time series of the measured (free-stream) velocity at elevation z = 2 cm144

where urms is maximum. The computational grid on the vertical is a classic geometric grid of 200 nodes145

from z0 = 10−6 m to z = 2 cm. The convergence of the numerical model is estimated considering that146

the time-series input length as a pseudo-period. The numerical model is iterated computing its results147

within the entire time series and pseudo-period, the velocity relative error between 2 pseudo-periods148

is estimated as:149

erru =
||u1 − u0||2

||u0||2
=

√∑
z

∑
t(u1(z, t)− u0(z, t))

2

∑
z

∑
t u0(z, t)

2
(6)

where u0(z, t) represents the solution of the previous pseudo-period, and u1(z, t) the solution of the150

current pseudo-period. The convergence is reached by iterating the entire time-series until erru is151

lower than the desired precision taken as 10−6.152

Stratification effects have been neglected in this paper as sediment particles can be considered as153

massive, the ratio of their settling velocity to the shear velocity is of order unity or lower, therefore154
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a low suspension is observed. Stratification effects are clearly observed with fine sand (i.e. high ratio155

of settling velocity to shear velocity) but not with medium sand [O’Donoghue and Wright, 2004].156

The processes responsible for the damping of turbulence in the dense sheet-flow layer is still an open157

question and it is thought that stratification is not the key mechanism.158

III RESULTS159

Simulations with the k−ω numerical model on a fixed bed placed at z = 0, are plotted in figure 7 and160

8. On these plots two different runs with two roughness height ks are given. One is the parametrization161

by [Wilson, 1989] for uniform steady sheet flows:162

ks = 5 θ d50 (7)

and the other is the one provided by [Nielsen, 2005] related to measurements on flat sand mobile bed:163

ks ≃ 70
√
θ d50 (8)

where θ is the Shields number of the flow.164

The numerical results obtained using relation (8) show a larger vertical diffusion of momentum as165

expected compared to the simulation with the relation (7) but the maximum computed urms is located166

at z = 5 δ, while the maximum experimental urms is at z = 23 δ. The vertical shape is also qualitatively167

different. Indeed the fixed bed computations show an over-shoot in orbital velocity not evidenced in168

the experiments. The dimensional skewness and asymmetry vertical profiles are also qualitatively169

very different. Moreover maximum skewness value is over-predicted by the model computations on170

fixed bed. The non-dimensional values of the skewness Sk∗ (Sk∗ = Sk/u3rms) and asymmetry As∗171

(As∗ = As/u3rms) are plotted in figure 7. Because urms decreases towards the bottom more rapidly172

than the skewness, the Sk∗ strongly increases closing up on the bottom. This result already shown173

by [Berni et al., 2013] is in line with those of [Henderson et al., 2004] for in-situ measurements.174

Experimental profiles show a much stronger vertical spreading than numerical results not to mention175

that the model cannot predict velocities below z = 0 even though fluid flows there from time to time.176

Above z = 0 all experimental dimensional values are smaller than the model predicted ones.177

To explain such qualitative behavior we hypothesize that the upward vertical motions of the still178

bed is producing an upward flux of small horizontal momentum in regions of higher momentum while179

the opposite occurs for downward motions of the still bed. This induces velocities larger than 0 below180

z = 0 and velocities smaller than on a fixed bed above z = 0. This effect acts as a supplementary181

vertical diffusion that cannot be accounted for even when choosing very strong bed roughnesses. To182

quantitatively reproduce this phenomenon we combine vertical still bed motion information with the183

k − ω computations.184

Associated to the free stream velocity time series the model computes times series of the velocity185

u(z, t) at different elevation. Moreover synchronized with the free stream velocity time series, the186

experimental data provides zb(t) which is used to define a new velocity time series as,187

u′(z, t) = u(z − zb(t), t) for z > zb (9)

u′(z, t) = 0 for z ≤ zb (10)

For this new times series the still bed elevation zb can either be the low pass filtered or the instantaneous188

one (fig.6). In replacing the original time series by this new one it is implicitly assumed that the189

boundary layer adapts instantaneously to each still bed position.190

Substituting u′ for u in (3), (4) and (5) defines post-processed urms, skewness and asymmetry.191

These new estimates are also plotted in figure 7. Dimensional skewness and asymmetry are plotted in192

8 along with the mean velocity. The improvement on all quantities is obvious. The novel technique193

is particularly effective for the mean velocity u and the skewness. The improvement on the vertical194

profile of the asymmetry is not as good. However the qualitative shape is close. The mean velocity195

u vertical profile shows that an undertow is present in the experiments compensating for the Stokes196

mass flux drift and roller induced mass flux. This undertow is present in the free stream velocity and197

what the novel 1DV model reproduces is the correct vertical structure within the boundary layer.198
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Figure 7: Orbital velocity, dimensionless asymmetry and dimensionless skewness. Left
panel: orbital velocity; middle panel non-dimensional velocity asymmetry; right panel: non-
dimensional velocity skewness. Grey bullets: experimental data; black lines: computations with (8);
grey lines: computations with (7); Thick lines: fixed bed computations; thin lines: computations with
the low-pass filtered still bed positions in (9); dashed thin lines: computations with the instantaneous
still bed positions in (9).
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Figure 8: Mean velocity, dimensional asymmetry and skewness. Left panel: mean velocity;
middle panel dimensional velocity asymmetry; right panel: dimensional velocity skewness. For the
rest, same legend as fig. 7.

IV CONCLUSION199

A post-processing combining the results of the improved version of a RANS 1DV k − ω model and200

data of bottom vertical displacements was successfully used to retrieve vertical profiles at different201

phases of the horizontal velocity (root mean square velocity, asymmetry and skewness). The enhanced202

vertical diffusion was found to be due to the vertical motion of the (still bed) boundary rather than203

to an increase in roughness height. The vertical displacement of the bottom boundary contributes204

to momentum transfer within the mobile bed and just above. Future work will be focused on the205

modeling of such vertical bottom motions within the k − ω framework.206
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ASYMMETRY AND SKEWNESS IN THE BOTTOM BOUNDARY LAYER : SMALL SCALE
EXPERIMENTS AND NUMERICAL MODEL

Céline Berni1, 2, Leandro Suarez1, Hervé Michallet1 and Eric Barthélemy1

This study investigates the non-linearities of wave boundary layers in the surf zone. It mainly focuses on the acceleration skewness

or asymmetry. Experiments [e.g. Grasso et al., 2011] show that asymmetry influences the sediment transport. Its influence lies

in the fact that asymmetry in velocity (acceleration skewness) tends to transform into velocity skewness within the boundary

layer. Analysis by Henderson et al. [2004] predicts a linear relation between Skb/Sk∞ and As∞/Sk∞ where Skb is the

dimensionless skewness near the bed, Sk∞ the free-stream dimensionless skewness and As∞ the free-stream dimensionless

asymmetry. Numerous experiments were carried out in the LEGI wave flume over a mobile bed composed of lightweight sediments.

The quasi-random forcing is a repetition of 2 concatenated bichromatic wave packets. Vertical profiles of velocity are measured in

the surf zone. A clear linear relation is shown between these two ratios. The experimental results are compared with the numerical

results. A linear relation between skewness and asymmetry is also obtained.

Keywords: non linearities, transformation, k-ω model, mobile bed

INTRODUCTION

This study investigates the non-linearities of a wave boundary layer in the surf zone. It mainly focuses on the

acceleration skewness or asymmetry. Experiments [e.g. Grasso et al., 2011] show that asymmetry influences the

sediment transport. Its influence can be interpreted in different ways. Ruessink et al. [2011] listed several physical

processes that can explain this influence, out of which asymmetry in velocity (acceleration skewness) tends to

transform into velocity skewness within the boundary layer.

This transformation can be explained as follows: an asymmetric wave is an addition of components of different

frequencies that are phase-shifted in order to produce steep fronts. If the phase lead of the near-bed velocity is

independent of the frequency, the time shift of each component is proportional to its period. Thus, the time

shift between components varies when approaching the bed and asymmetry can transform into skewness in the

boundary layer.

This simple model explains qualitatively how non linearities transform through the boundary layer. Further

analysis by Henderson et al. [2004] quantifies this transformation. Following his arguments, it can be shown,

considering a phase lead φ and a velocity amplitude damping between the near-bed velocity and the free-stream

velocity independent of the frequency, that [Berni et al., submitted]:

Skb
Sk∞

= cos(φ) + sin(φ)
As∞
Sk∞

(1)

where Skb is the dimensionless skewness near the bed, Sk∞ the free-stream dimensionless skewness and As∞
the free-stream dimensionless asymmetry.

The purpose of this paper is to study this transformation, both experimentally and numerically.

NUMERICAL MODEL

The behavior of the wave bottom boundary layer is analyzed using a k-ω turbulence closure model [Wilcox,

2006 ; Guizien et al., 2003]. The low Reynolds number version of the model is chosen. In this model, the hori-

zontal velocity u, the kinetic energy k and the energy dissipation rate ω are solutions of the following equations :

∂u

∂t
= −1

ρ

∂P̄

∂x
+

∂U

∂t
+

∂

∂z

(
(ν + νt)

∂u

∂z

)
(2)

∂k

∂t
= νt

(
∂u

∂z

)2

− β∗kω +
∂

∂z

(
(ν + σkνt)

∂k

∂z

)
(3)

∂ω

∂t
= ανt

ω

k

(
∂u

∂z

)2

− βω2 +
∂

∂z

(
(ν + σωνt)

∂ω

∂z

)
(4)

where ∂P̄/∂x is the mean pressure gradient of the flow, ν the water viscosity, νt the turbulent viscosity. The

other coefficients and boundary conditions are defined in Guizien et al. [2003]. x is the horizontal direction, z the

vertical direction. U is the input velocity of the model.

As we want to study the behaviour of the boundary layer under a non-linear wave, we need to validate the

model for such conditions. The results of our model is compared to measurements of Suntoyo et al. [2009] in U-

tube. The agreement with measurements is good, attesting the capability of the model to reproduce the dynamic

of the wave bottom boundary layer under non-linear waves.

1LEGI UMR 5519, Domaine universitaire, BP 53, 38041 Grenoble cedex 9, France
2irstea, UR HHLY, Lyon, France
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Figure 1: Model validation. Top: time series of the velocity. Bottom: Velocity profiles: comparison between the k-ω

model presented in this article (–), experiments of Suntoyo et al. [2009] (o) and a k-ω model of Menter [1994] (- -).

This model will be used in this study to compute the bottom velocity skewness for different free-stream veloc-

ities. The bottom velocity skewness is evaluated at approximately 1/10 of the wave boundary layer thickness over

the bed. The free-stream skewness and asymmetry are computed at the maximum value for the orbital velocity. To

simulate a wide range of skewness and asymmetries, the formula of Abreu et al. [2010] will be used to compute

the input velocity that then will writes:

U(t) = Uw fr
sin(ωt) + r sinφ

1+
√
1−r2

1− r cos (ωt+ φ)
(5)

where Uw is the amplitude of orbital velocity, ω = 2π/T the angular frequency, r the index of skewness ranging

from 0 to 0.75 and φ the waveform parameter ranging from −π/2 to 0. The variable fr is a dimensionless factor,

function of r, fr =
√
1− r2, allowing the velocity amplitude to be equal to Uw.

EXPERIMENTS

Experimental facility

The experiments took place in a wave flume of 36 m long, 55 cm wide (the LEGI wave flume, see figure

2). The flume is filled with PMMA sediment of low density (1.19 g cm−3) forming a beach. The sediment

median diameter is d50 = 0.64 mm. The corresponding settling velocity is 2.1 cm s−1 [see Grasso et al., 2009,

for more details on the experimental facility]. The wave forcing is produced by a computer controlled piston-type

wave-maker. There is neither wave absorption nor second-order correction on the wave maker motion.

Capacitive wave gauges are placed in the cross-shore direction of the beach to measure free-surface elevations.

Beach profiles are recorded between wave series using an acoustic profiler mounted on a motorized trolley. Cross-

shore velocity profiles are measured at X = 13m of the wave maker with an acoustic Doppler velocity profiler

(ADVP) [Hurther, 2001]. The vertical resolution is 3mm. The sampling frequency for both velocity and free-

surface elevation is 50Hz.

Experimental conditions

The wave climate is a repetition of a specific wave sequence of duration Ts = 53 s. It results of the concatena-

tion of two bichromatic packets with a carrier wave period of 2 s and 2.5 s respectively (see figure 3).
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Figure 3: Wave climate: wave maker input data (solid line) and measurements with a capacitive wave gage at X = 2m
(dashed line).

The free-surface elevation η for each bichromatic packets writes:

η(x, t) = A cos (ω1t− k1x) +A cos (ω2t− k2x) (6)

= 2A cos

(
ω1 − ω2

2
t− k1 − k2

2
x

)
× cos

(
ω1 + ω2

2
t− k1 + k2

2
x

)
(7)

where A = 4 cm for both packets and x is the cross-shore direction. The angular frequencies for the packet with

a wave period of 2 s are ω1 = 3.0 rad s−1 and ω2 = 3.3 rad s−1; for the packet with a wave period of 2.5 s,

ω1 = 2.4 rad s−1 and ω2 = 2.7 rad s−1. The wave numbers k1 and k2 are given by the dispersion relation:

ω2
i = gki tanh(kih) (8)

where h is the water depth, h ∼ 15 cm in the experiments presented here. The significant wave height at the wave

maker is 16 cm for both groups.

The initial, intermediate (after 1350 wave sequences of 53 s) and final (after 4100 wave sequences) beach

profiles are plotted in figure 4. During the experiments a bar progressively formed and migrated onshore. The root

mean square wave height Hrms for the initial and final profiles are plotted in the top plot. The break point was

overall stationary at a distance of roughly 8m from the wave maker. The surf zone extends from there up to the

bar trough (X ∼ 20m). The measurements analyzed in this paper are all recorded within the surf zone at 13m.

At this specific position, the different experimental parameters can be summarized as follow:

• the bottom Reynolds number Reb ranges between 24 000 and 45 000, computed as Reb = Ubh/ν where ν
is the water viscosity and Ub is the near-bed velocity measured at the wave crest.

• the orbital amplitude a varies between 5 and 10 cm,

• the Shields number is the order of 0.5, estimated by

θ =
1

2
fw

U2

g(s− 1)d50
, (9)

where U is the amplitude of the free-stream velocity (U ∼ 0.2m s−1), s is the relative density of the

sediment (s = 1.19), d50 the median diameter and fw is the friction coefficient estimated according to

Swart [1974] by:

fw = exp

[
5.213

(
2.5 d50

a

)0.194

− 5.977

]
(10)

• the sheet-flow thickness δs is the order of 3mm, estimated by the Wilson [1987] parameterization

δs = 10 θ d50 , (11)
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Figure 5: Examples of the time series of the instantaneous free-stream velocity (top) and the instantaneous near-bed
velocity (bottom) along with the corresponding ensemble averages (thick light color lines).

• the equivalent roughness length ks is the order of 2mm, estimated by the Wilson [1989] parameterization

ks = 5 θ d50 . (12)

Velocity measurements

Cross-shore velocity profiles are measured over the bar with an acoustic Doppler velocity profiler (ADVP)

[Hurther, 2001]. The vertical resolution is 3mm. Simultaneously with the velocity profile, the ADVP instrument

detects the position of the still bed level [Silva et al., 2009 ; Hurther and Thorne, 2011]. The near-bed velocity ub

is defined as the velocity measured in the first sampling volume above the mean position of this still bed level. It

is thus measured at an elevation zb between 0 and 3mm above the mean still bed level.

Examples of instantaneous velocities at both free-stream and near-bed elevations are given on figure 5. The

two groups can be distinguished, the first between t = 1 s and t = 25 s the second between t = 25 s and t = 53 s.

The data presented in this article are provided by ensemble averaging over a set of 30 to 50 sequences in a row.

The ensemble average on N realizations is computed as :

ũ(t) =
1

N

N∑

n=1

u(t+ (n− 1) Ts), (13)
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Figure 6: Examples of root-mean-square velocity Urms, mean velocity U , skewness Sk and asymmetry As profiles
computed from ensemble averaged velocity, for the two studied intervals specified in figure 3 corresponding to the two
wave forcing: (+): T = 2s; (o): T = 2.5 s. The vertical axes is the dimensionless elevation, Z/h = −1 stands for the
mean position of the bed, Z/h = 0 for the still free-surface elevation, with the water depth h = 14cm at the measuring
location.

where Ts is the duration of the sequence. For clarity, we simplify the notation by using u for ũ. During each set

of sequences (∼ 45minutes) the bottom does not evolve significantly in the mean. Within a sequence it-self, the

maximum erosion detected is one volume sampling, i.e. 3 mm.

Ensemble averaging reduces the noise and allows reliable velocity measurements. It is superimposed on the

instantaneous velocities, on figure 5, as a thin gray line.

Non linearities

Time series of the ensemble average of the free-stream and the bottom velocities at the measurement loca-

tion are shown in figure 5. These data correspond to one representative example amongst the whole set of 41

experiments. The shape of the waves is typical of the surf zone waves, with pinched crests, long troughs, and

pitched-forward waves.

The bottom velocity in figure 5 is in contrast highly skewed. Note that the bottom velocity and the free-stream

velocity at each crest are almost of the same value while the near-bed troughs velocities are more than 50% smaller

than their counter parts in the free-stream velocities.

In the following analysis of the non-linearities, we chose to only study the four middle waves of each group,

identified by a box on the time series in figure 3. The two time bounds of the box are times with zero-up crossing

of the free-stream orbital velocity (without infragravity components). Both intervals are analyzed and studied

separately as they correspond to two different periods and therefore to two different forcings. Note that for the

example shown on figure 5, asymmetry and skewness are indeed different for both groups. The second group with

the 2.5 s period present a larger asymmetry and a smaller skewness of the free-stream velocity.

For this specific experiment, the vertical profiles of the root-mean-square velocity Urms, the mean velocity

U = 〈u〉, the skewness and the asymmetry are plotted in figure 6 for both bichromatic groups. The root mean

square value of the velocity, which offers a quantification of the orbital velocity, decreases down to the bed in the

wave boundary layer. The mean velocity U is negative in the upper part of the profile, distinctive of the presence of

an undertow. It decreases deeper down in the boundary layer. The profile surprisingly concaves downwards but it

is probably due to the mobile bed. Indeed, O’Donoghue [2004] found similar profiles over a mobile bed. Besides,

the measurements of Sparrow et al. [2012] over impermeable and permeable bed also suggest that permeability

induces an inflexion in the velocity profiles. Both forcing of different periods show similar behaviour although

the free-stream values of the rms and mean velocity are different. In the third panel of the figure is plotted the

dimensionless skewness Sk of the velocity. It increases down to the bed while the asymmetry decreases as shown

in the last panel. The increase of the skewness is larger for the wave period of 2.5 s that presents a greater free-

stream asymmetry.

For all the experiments (41 groups of at least 30 sequences), dimensionless skewness and asymmetry were

computed at the free-stream (z = ∞) and the near-bed (z = zb) elevations, corresponding to the upper and lower

measure presented on figure 6. The wave boundary layer represents approximately 10 % of the water column and

the near-bed elevation is between 1/5 and 1/10 of the wave boundary layer thickness over the bed.

RESULTS

As the beach shape evolves during the 41 experiments, a large range of values for the free-stream skewness and



6 COASTAL ENGINEERING 2012

0 2 4 6
0

1

2

3

4

5

6

S
k
b
/
S
k
∞

As∞/Sk∞
0 2 4 6

0

1

2

3

4

5

6

S
k
b
/
S
k
∞

As∞/Sk∞

Figure 7: near-bed and free-stream skewness ratio as a function of the ratio between free-stream asymmetry and skew-
ness; left: experimental data (⋄ T = 2.5 s; x T = 2 s) and right: numerical data (� T = 2.5 s; ⋆ T = 2 s).

large values of the asymmetry are obtained. In our experiments, the waves of period 2.5 s are more asymmetric

and less skewed than the waves of period 2 s.

The ratios appearing in equation (1) are plotted on figure 7. In the experimental case (left), a clear linear

relation is shown between these two ratios no matter the forcing. On the right of figure 7, the results of the

numerical model also show a clear linear relation with the same slope. This slope can be interpreted as sin(φ)
according to the relation (1) and leads to φ = 44 degrees. The scatter is similar to the experimental scatter, and

larger for the greater period. The y-intercept is quite different between the numerical model and the experiment.

Being greater than one in the first case, it can not be interpreted as cos(φ) where φ is the phase lead. Thus, the

analytical relation (1) does not hold for turbulent flow such as the one simulated by the model. Indeed, neither the

phase lead nor the attenuation at the bed elevation are independent of the frequency. The linear relation yet holds,

offering a way to predict bottom velocity skewness.

The process transforming asymmetry to skewness within the boundary layer is numerically and experimentally

confirmed and understood. This transformation results in skewed velocities near the bed that lead directly to net

sediment transport.
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Chapter 4

Circulation in the nearshore zone

4.1 Introduction

4.1.1 Physical processes

Mean nearshore circulation are mean currents driven by the wave motion. A well known

example ins the longshore current forced by the breaking of oblique waves Longuet-

Higgins et Stewart [1964]. Waves create mean-currents by transferring momentum

to these currents. The most efficient pathway is the breaking of waves. They lose

momentum during breaking transferred to other fluid motions. In the case of shore

normal waves this transfer can only occur on alongshore non-uniform bathymetries or

with non uniform wave forcing. Wave breaking is a process that builds on the shoaling

of waves.

In deep waters, the wave shape is roughly sinusoidal. As they approach the nearshore

zone, which is the region where the waves are affected by the bottom (Figure 4.1), the

waves start feeling the influence of the bottom and their shape becomes non-linear in

the shoaling zone. The wave height increases and the wave shape becomes skewed,

with a pinched crest and a wide trough. When the wave height is coming close to the

water depth under the travelling wave, the wave breaks. As the wave height is different

for each wave, the wave breaking does not necessarily occur at the same location, and

the breaking zone is defined as the region where the wave breaking occurs.

The wave breaking type can be determined by the Irribaren number ξ0:

ξ0 =
tan β0

(H0/L0)
1/2

(4.1)

with β0 the beach slope, H0 the wave height, L0 = gT 2/2π the deep-water wave length,
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Chapter 4 Circulation in the nearshore zone

Figure 4.1 – Schematic representation of the nearshore zone, with the wave shape transfor-
mation as it propagates toward the shore

Figure 4.2 – Classification of breaking wave types

T the wave period and g the gravitational acceleration.

For a wave with a specific period and wave height, its wave breaking type then

depends on the beach slope. For ξ0 < 0.5, the wave breaking type is spilling, for

0.5 < ξ0 < 3.3 it is plunging and for ξ0 > 3.3 it is surging (Figure 4.2). In the case

of a spilling wave breaking, the wave crest becomes unstable, white foam appearing

on the crest and spilling down the face of the wave. In a plunging wave breaking,

the wave crest becomes vertical and then curls over and drop onto the trough of the

wave, creating a strong vertical jet that dissipate a great amount of the wave energy.

The surging wave breaking corresponds to a wave breaking on the beach itself and

the disappearance of the wave crest. The wave breaking is the main source of energy

dissipation of the wave energy in the nearshore zone.

After they break, waves keep on propagating in the inner surf zone, in the form of
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Figure 4.3 – from [Bonneton et al., 2010]

smaller broken waves known as bores, similar to a propagating hydraulic jump. They

also dissipate energy as the water becomes shallower, due to the friction of the bottom,

resulting in a decrease in the wave height. When these bores reach the beach, the water

is pushed towards the beach and then retreats, in the region defined as the swash zone.

There also exist longshore wave transformation processes. The wave celerity in

shallow waters is dependent on the water depth, waves propagating slower as the water

becomes shallower. In the case of oblique waves, this results in a change of orientation

of propagation, the wave front adjusting to the depth contours. The oblique waves

also generates longshore currents that can also interact with incoming waves creating

circulation patterns, with time and space greater than the wave scales. The waves also

generate cross-shore and longshore sediment transport, which changes the bathymetry

and modify the circulation patterns.

One important nearshore circulation pattern, is the rip current, which is an off-

shore oriented water jet, that can occur on a wide variety of beaches under different

wave and tidal conditions. The term rip current was first defined by Shepard [1936]

as flows travelling "outward almost at right angles to the shore". The rip current is

constituted of a feeder region, a ripe neck and a rip head [Shepard et al., 1941]. For a

more detailed description of the rip current see the review from Dalrymple et al. [2011]

and MacMahan et al. [2006].

Many theoretical models use the momentum flux induced by the waves called the
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Radiation stress as formulated by Longuet-Higgins et Stewart [1964], to explain the

appearance of these rip currents: an alongshore variation of wave height introduces a

variation in the excess flux of momentum due to the presence of waves, that develops

a steady circulation pattern in the nearshore zone [Bowen, 1969]. This wave height

alongshore variation can be originated by a wave-wave interaction, by an incoming

alongshore heterogeneous wave forcing or by the bathymetry heterogeneity that induces

changes in the wave height by shoaling, refraction and wave breaking.

The importance of the vorticity in the generation of rip currents was shown by

Peregrine [1998]. Using a discrete wave group forcing, he evidenced the formation of

eddies from the longshore currents, and the rip currents originated where two eddies of

opposite sign met. The non-linear evolution of these eddies is further studied in Buhler

et Jacobson [2001], from its initial generation by wave breaking, until its dissipative

decay due to bottom friction. From the vorticity equation, Bonneton et al. [2010]

obtained a vorticity forcing term related to differential broken-wave energy dissipation

(Figure 4.3).

4.1.2 Experiments and models

The nearshore circulation has been studied with a wide variety of numerical models.

There are two main types of wave models:

• The phase averaged models, based on the energy balance equation with sources

and sinks, that uses the wave spectra statistics and their propagation to the

nearshore. They usually use the full radiation stress gradients as driving force.

Some examples of these type of models are SWAN [Holthuijsen, 2007] and X-

beach [Roelvink et al., 2009]. Bruneau et al. [2011] use a vertically integrated

time-averaged coupled model, the spectral wave module SWAN coupled with the

non-linear shallow water module MARS, using a spatially constant time-varying

breaking parameter, to reproduce the nearshore circulation on a well-developed

bar and rip morphology. The model correctly reproduces the main evolving

behaviours of the rip current.

• the phase-resolving models, which compute at each time-step the free-surface and

velocities in the spatial domain, giving access to the intra-phase wave evolution.

These models are based on non-linear sets of equation to describe the evolution

of the free-surface and velocities in the nearshore zone.

The phase-resolving models are able to compute the non-linear wave transformation

processes in the nearshore zone. As stated in the previous chapters concerning the
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turbulent boundary layer, the wave skewness and asymmetry during the propagation

evolves, and influences the sediment transport [Grasso et al., 2011 ; Elgar et al., 2001 ;

Ruessink et al., 2011], hence the need of models able to accurately reproduce the wave

non-linearities as well as the wave breaking and run-up.

Numerical models based on the Navier-Stokes equations, such as Direct Numerical

simulation (DNS) that resolve all the spatial and temporal scales of the turbulence,

or the Large Eddy Simulation (LES) which incorporates a turbulence model for the

subgrid scales of the flow allow for a detailed evolution of the wave breaking [Lubin

et al., 2003 2006]. However these simulations are very demanding computationally, and

are not able to reproduce all the spatial and temporal scales of a realistic nearshore

zone.

The vertical scale in the nearshore zone is the water depth, and is little compared

to the horizontal scales involved such as the wave length, we can then reduce the

complexity by depth-averaging the equations, thus reducing the computational cost

with fairly good results. We can distinguish the models using the Boussinesq-type

(thereafter BT) equations and the ones using the Non-linear Shallow Water (thereafter

NSW) equations.

The BT equations include dispersive terms which provide an accurate description of

non-breaking wave transformation. If we note a the order of the free surface amplitude,

h0 the characteristic water depth and L0 the characteristic horizontal scale, we can

define two non-dimensional parameters:

µ =

(
h0

L0

)2

(4.2)

ε =
a

h0

(4.3)

the parameter µ is characteristic of the non-hydrostatic and dispersive effects and the

parameter ε is characteristic of the non-linearity of the flow.

Boussinesq [1872] used a perturbation method on these two non-dimensional param-

eters to obtain a set of equations. The first assumption is the shallow water condition,

implying µ ≪ 1. The second assumption is that the dispersion and non-linearities are

weak, and that there is a balance between non-linearity and dispersion: ε = O(µ) ≪ 1.

These assumptions does not hold on the entire nearshore zone, as the wave shoaling

occurs when the wavelength is comparable with the depth (µ ∼ 1) and waves break

when their amplitude is comparable with the water depth (ε ∼ 1). It is therefore

necessary to use fully non-linear BT equations to overcome these difficulties. [Serre,

1953] first derived a set of fully non-linear (ε ∼ 1) weakly dispersive BT equations
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(see [Barthélemy, 2004] for a detailed review), Green et Naghdi [1976] extending these

equations to the 2D case on an uneven bottom. Chen et al. [1999] use the fully non-

linear Boussinesq equations developed by Wei et Kirby [1995] in the FUNWAVE model,

including wave breaking and a moving shoreline. They show a good agreement of the

numerical simulations with the fixed bar rip current experiments by Haller et al. [1997].

The major drawback of this set of equations is that the energy dissipation by wave

breaking and the run-up are not included, hence the need to introduce this dissipation

by a parametrization, adding extra-terms when the wave breaking is likely to occur

([Cienfuegos et al., 2010 ; Kennedy et al., 2000 ; Madsen et al., 1997a]).

The NSW models provide an accurate description of the broken waves, that are

represented as shocks, and of the run-up [Bonneton, 2007 ; Kobayashi et al., 1989 ;

Marche et al., 2007]. The main drawback of these models is that the dispersive effects

are neglected, restricting them to the inner-surf zone and the swash zone, as the wave

shoaling is not well reproduced.

Recently, new models have been developed that use both the BT equations and

the NSW equations. [Tissier et al., 2012] use the Serre Green-Naghdi equations, and

switch to the NSW equations when a wave is ready to break by removing the dispersive

terms, resulting in an appropriate evaluation of the energy dissipation by wave breaking

[Bonneton et al., 2011ab]. The FUNWAVE model has also been improved by Shi et al.

[2012] using a similar technique, the wave breaking being solved by the nonlinear

shallow water equations when the Froude number exceeds a threshold, the moving

shoreline with a wetting-drying algorithm, and the code parallelized.

These late models were not available at the beginning of this thesis. As we wanted

to access to the non-linearities induced by an alonghsore heterogeneous wave forcing,

we chose first to use a phase resolving model. The choice of a NSW equation model was

then dictated by the fact that we wanted to observe the evolution of the circulation and

vorticity, and this type of models does not need further parametrization for the wave

breaking dissipation or the run-up. Marche et al. [2007] developed a depth-integrated

model SURF_WB with a bed slope source term, a treatment for the moving shoreline

and accurate bore-capturing abilities.

We intend to simulate with this model the MODLIT experiments ([Michallet et al.,

2010 2013]) in order to validate the model in terms of cross-shore and alongshore profiles

of flow characteristics. We will also compare model outputs of mean 2D circulation

and vorticity with mean circulations determined by experimental Lagrangian drifter

motion. These experiments which consider an alongshore varying wave breaking on a

mobile bed is representative of an heterogeneous bathymetry of the nearshore zone, and

the experimental data provided allows for a comparison between the numerical model

104



Chapter 4 Circulation in the nearshore zone

and the experiment. Even though the numerical model is known to have difficulties

to reproduce the wave shoaling, the advantage of the MODLIT experiment is that the

shoaling zone is reduced, allowing to use a NSW equations model to reproduce the

circulation and vorticity in this zone.

4.2 Experiment and methods

4.2.1 Numerical model

Governing equations

The numerical model SURF_WB, from Marche et al. [2007] is based on the Non-linear

Shallow Water Equations (NSWE), valid for long waves. These equations are obtained

by averaging over the water column the Navier-Stokes equation for an homogeneous

and incompressible fluid assuming long wave motion.

With all these assumptions, the resulting equations are a system of three hyper-

bolic conservation laws, with the water depth and the depth-averaged velocities as the

variables.

The non-dimensional form of the NSWE can be written:

∂Q

∂t
+

∂F

∂x
+

∂G

∂y
= S(Q) (4.4)

where Q is the vector of the non-dimensional hydrodynamic variables, function of h

the water depth,u and v respectively the cross-shore and longshore depth-averaged

velocities, F and G represent the flux vectors in each Cartesian direction, and S is the

source term vector incorporating bed slope and friction. The terms of the equation are

defined as:

Q =




h

hu

hv


 , F (Q) =




hu

hu2 + 1
2F r2 h2

huv


 , G(Q) =




hv

huv

hv2 + 1
2F r2 h2


 (4.5)

S(Q) =




0

− h
F r2

∂z
∂x

− Sfx

− h
F r2

∂z
∂y

− Sfy




where Fr is the Froude number, ∂z
∂x

and ∂z
∂y

are the bed-slopes, Sfx and Sfy are the

friction source terms.
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Resolution of the equations

The non-dimensional form of the NSWE, given by Equations (4.5), are solved using

a finite volume well-balanced scheme, which incorporates separately the friction and

bed-slope in the momentum source terms [Marche et al., 2007] .

The numerical procedure consists of an initial step in which the friction source term

in the momentum equations is incorporated employing a semi-implicit method. [Liang

et Marche, 2009]. To that end, we solve the following ordinary differential equation:

dQ

dt
= Sf (4.6)

where the friction term Sf is written as:

Sf =




0

− τfx

ρ

− τfy

ρ


 (4.7)

with τfx and τfy the bed shear stress in the x and y direction, and ρ the water density.

The bed shear stress is estimated as:

τfx = ρCfu
√

u2 + v2 (4.8)

τfy = ρCfv
√

u2 + v2 (4.9)

where Cf is a non-dimensional bed friction coefficient, estimated using the Manning

formula, valid for uniform flow and ρ the water density.

In a second hyperbolic NSWE step, the variables are reconstructed at the cell inter-

faces and the fluxes are found through the solution of the Riemann problem at the cell

interfaces, using a non-conservative form of the governing equations. This methodol-

ogy gives the numerical model the well-balanced property by considering the bed-slope

in the spatial discretization schemes, using a MUSCL type reconstruction method to

reach a second order accuracy. The discretized form of the governing equations is

integrated in time using a multi-stage Runge-Kutta scheme.

The model includes a bore capturing method, which allows to dissipate the energy

by the wave breaking in the nearshore zone. It has also been improved by Guerra et al.

[2014] to use a curvilinear grid, suitable for highly variable topography, as can occur

in the nearshore zone.
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Absorption/generation boundary condition

The absorption/generation condition considers an incoming input wave height and

solves a Riemann problem at the boundary, between the incoming invariant "carrying"

the incoming wave height and the outgoing invariant, to find the proper wave height

at the boundary [Cienfuegos et al., 2007]. This condition is an open boundary as the

incoming waves can enter the domain, and the outgoing waves leave freely.

4.2.2 Experiment and model setup

Experiment description

Mobile bed

The experiment [Michallet et al., 2010 2013] took place in the LHF (ARTELIA)

wave basin (Figure 4.4), with dimensions of 30 × 30 m2. The waves originate from 60

parallel segmented piston-type wavemakers, of 50 cm width each and spanning the 30

m tank width, allowing to produce a differential wave forcing between the segments.

The measurement instruments are located on a sliding rail, which can move in the

alongshore direction. The cross-shore position of the instruments is fixed during the

experiment. The still water level at the wavemaker is h0 = 0.765 m. The experiments

where more or less designed to provide a length scale ratio of 1/10 with respect to

nature. This implies a time-scale ratio of 1/3 if a Froude scaling is assumed.

The mobile bed used in the experiment is made of sand, of density 2.65 and median

diameter d50 = 0.166 mm. With this type of sand, a Rouse scaling gives a prototype

grain size of d50 ≈ 0.3 mm. The Rouse number determines how the sediment is

transported in a flowing fluid. Note however that the Shields scaling is not fulfilled.

Indeed the experimental Shields is half that of the prototype conditions. The Shields

number is important in sediment mobility, and sediment transport regime, and as a

result, we observed sand ripples on the bed surface. For the simulation, we consider a

fixed bed therefore the Shields scaling is not relevant for our study.

Wave forcing

The wave climate consisted in irregular shore-normal waves with no directional

spreading complying with a JONSWAP spectrum. The JONSWAP (Joint North Sea

Wave Project) spectrum has been proposed by [Hasselman et al., 1973], using wave

data collected in the North Sea. This spectrum can be expressed as:

S(f) = αg2f−5(2π)−4 exp


−5

4

(
f

fp

)−4

 γ

exp

[−(f − fp)2

2σ2f 2
p

]

(4.10)
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Figure 4.4 – Schematic representation of LHF wave tank. The x axis corresponds to the
cross-shore position, the wavemaker is located at x = 0 m, the shoreline is at x ≈ 22
m. The y axis corresponds to the alongshore position. The circles represent wave gauge
locations.
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Figure 4.5 – Definition of wave height H, using the zero down-crossing method. The line
represents the time-series of the water surface elevation. The wave is defined by two
consecutive zero down-crossing, shown by the squares. The wave height can also be
defined with a zero up-crossing method, between two consecutive circles. The horizontal
axis represents the averaged wave height elevation over the full time series.

where g is the gravity acceleration, γ = 3.3 is the peak enhancement coefficient, fp

is the peak frequency, σ is the width of the spectrum base before (σA = 0.07) and

after (σB = 0.09) the peak frequency, α is the scale factor and is associated with the

total spectrum energy, and related to the significant wave height Hm0. The spectrum

is defined in the frequency band [0.5fp, 5fp].

The wave height is defined as explained in Figure 4.5, and can be defined with a

zero up-crossing or zero down crossing method. These two methods are equivalent if

the surface elevation is a Gaussian process. From the definition of the wave height, we

can define the mean wave height H over a sequence of N waves:

H =
1
N

N∑

i=1

Hi (4.11)

where i is the i-th wave in the sequence.

We can also define the root mean square of the wave height Hrms and the significant

wave height Hs as:

Hrms =

(
1
N

N∑

i=1

H2
i

)1/2

(4.12)

Hs = H1/3 =
1

N/3

N/3∑

j=1

Hj (4.13)
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where j is the index of the waves ranked by their wave height, meaning that the

significant wave height depends on the highest waves only. H1/3 is the mean height of

the third of the highest waves. By assuming that the probability density function of

the wave height is a Rayleigh distribution, it is possible to obtain estimations for H,

Hrms and Hs, using the zeroth-moment m0 [Holthuijsen, 2007]:

H =
√

2πm0 (4.14)

Hrms =
√

8m0 (4.15)

Hs = Hm0
= 4.004

√
m0 ≈ 4

√
m0 (4.16)

where

m0 =
∫ ∞

0
Sηη(f)df = E{η2} (4.17)

with Sηη(f) the variance density spectrum.

In this case, the relation between the significant wave height Hm0
and the root

mean square of the wave height is Hm0
= 1.416Hrms.

In order to create an alongshore non-uniformity in the incoming waves, the wave

amplitude in the center of the wave crest is damped, resulting in alongshore variations

of the wave height H. This alongshore non-uniformity triggered a rip instability. To

obtain an estimation of the wave damping in each experiment, we used the three fixed

wave gauges at x = 5 m. The damping is then calculated as the difference in significant

wave height Hm0
between the wave gauge located at y = 15 m, and the mean of the

two wave gauges located at y = 8.17 m, and y = 21.75 m.

The wave conditions were chosen considering a Dean number ΩD in the intermediate

range. The Dean number (ΩD = Hm0
/Tpws, where Hm0 is the significant wave height,

Tp is the peak period, ws is the settling velocity) can be interpreted as the ratio between

the uplifting velocity of sediment particle by waves and the settling velocity ws of the

bed sediment. The Dean number is a macroscopic Rouse number. This number is used

to characterize different types of beaches (reflective, dissipative, intermediate, etc.).

Different wave conditions were tested during the experiment, as summarized in

Figure 4.6. These wave conditions can be classified in three categories:

• A) An energetic condition A: Hm0
= 23 cm / Tp = 2.3 s / ΩD = 5, between

t=66:00 and t=100:40,

• B) moderate conditions with a longer period : Hm0
= 18 cm / Tp = 3.5 s / ΩD =

2.5, between t=9:40 and t=66:00,

• C) moderate conditions with a shorter period : Hm0
= 17 cm / Tp = 2.1 s / ΩD =
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Figure 4.6 – Upper panel: Significant wave height of the wave front Hm0
; Middle panel:

peak period Tp; Lower panel: wave damping at x = 5 m over the full duration of the
experiments.
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4, between t=4:00 and t=9:40.

The wave conditions at the beginning between 0:00 and 4:00 consisted of relatively

small waves (Hm0 = 11 cm) that served to smooth the bed and determine the best

positions for the measuring instruments.

In this chapter we focus on the moderate wave conditions with a larger period (B),

thus restraining the analysis to the period between t=9:40 and t=66:00, concerning

the bed evolution.

Bed evolution

The bed evolution is detailed and discussed in Michallet et al. [2013], we therefore

briefly comment the mobile bed evolution during the wave forcing considered.

As we focus on the B wave conditions, we look at the bed evolution between t=9:40

and t=66:00. We consider the initial beach at t=9:40, when the B wave forcing starts.

This original bathymetry is relatively uniform alongshore, with a bar at x ≈ 13m. The

wave condition lasts for 50 hours, with a wave sequence of 20 minutes complying a

JONSWAP spectrum, repeated continuously. Every 20 minutes the sliding rail was

moved alongshore to gather data in the whole survey area.

There are two phenomena that explain the bathymetric evolution. The first one

consists in the wave non-uniformity alongshore, which creates rip channels and an

heterogeneity alongshore. The second one is related to the moderate wave conditions,

and consists in an onshore sediment transport (Figure 4.7). Therefore, during this

experiment, the beach never reached a quasi-steady state. The characteristic time of

this two phenomena are different, the accretion occurring at a longer time scale than

the alongshore non-uniformity.

The alongshore wave forcing non-uniformity results in an alongshore non-uniformity

in the bathymetry, and the formation of rip channels (Figure 4.8). At t=9:40 (Figure

4.7 a), we observe two slope change at x = 13 m and x = 22 m in the alongshore

averaged bathymetric profile, with three slopes well defined, one between x = 8 m and

x = 13 m another one between x = 13 m and x = 22 m and the third one for x > 22

m. At t=21:00 (Figures 4.7 b and 4.8 b), we observe an onshore migration of the

bar, as well as the formation of rip channels at y = 10 m and y = 25 m, and shallow

shoals. From t=31:20 onward, (Figures 4.7 c and 4.8 c) we observe the filling of the

rip channels previously formed, as the accretion phase continues, until the end of the

wave condition, at t=66:00.

Choice of the bathymetry and the wave forcing

We want to observe the behaviour of the model for an heterogeneous bathymetry,

with a rip current. We then choose the bathymetry corresponding to experiment that

112



Chapter 4 Circulation in the nearshore zone

8 10 12 14 16 18 20 22
−0.6

−0.4

−0.2

0

0.2

<
z
>

y
(m

) a)

8 10 12 14 16 18 20 22
−0.6

−0.4

−0.2

0

0.2

b)

8 10 12 14 16 18 20 22
−0.6

−0.4

−0.2

0

0.2

<
z
>

y
(m

) c)

8 10 12 14 16 18 20 22
−0.6

−0.4

−0.2

0

0.2

d)

8 10 12 14 16 18 20 22
−0.6

−0.4

−0.2

0

0.2

<
z
>

y
(m

)

x (m)

e)

8 10 12 14 16 18 20 22
−0.6

−0.4

−0.2

0

0.2

x (m)

f)

Figure 4.7 – Alongshore averaged bathymetric profiles at different times. a) bathymetry at
t=9:40; b) bathymetry at t=21:00; c) bathymetry at t=31:20; d) bathymetry at t=40:00;
e) bathymetry at t=51:40; f) bathymetry at t=59:40.
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Figure 4.8 – Bathymetry evolutions: bathymetric surveys at different times. The wave-
makers are at x=0. a) bathymetry at t=9:40; b) bathymetry at t=21:00; c) bathymetry
at t=31:20; d) bathymetry at t=40:00; e) bathymetry at t=51:40; f) bathymetry at
t=59:40.
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starts at t=21:00 with the largest alongshore non-uniformity. The conditions for this

experiment are presented in table 4.1.

starting time 21:00
ending time 26:00

Tp (s) 3.5
Hm0 (cm) 18

Positions of the rail 15

Table 4.1 – Conditions for the numerical validation.

The bathymetry during this period is non-uniform alongshore, with 2 rip-channels

formed at y = 10 m and y = 25 m. The wave forcing is also moderate, but with a

larger period as explained in the previous subsection.

Measurements and model setup

Bathymetry

The beach morphology is measured by means of a laser mounted on a motorized

trolley, located on the sliding rail (Figure 4.4). The basin was emptied every night in

order to measure the bathymetry. The emptying was slow enough to prevent mobile

bed motion during this draining phase.

The resolution of the bathymetry data is of 1 mm vertically, and respectively 10 cm

and 1 cm in the alongshore and cross-shore direction. The complete basin bathymetry

could not be surveyed due to the configuration of the sliding rail, and the available

surveyed zone is restricted to the area 7.84 m < x < 22.84 m in the cross-shore

direction, and 3.12 m < y < 28.02 m in the alongshore direction.

The resulting bathymetry is made of 250 cross-shore profiles, each containing 1501

points.

As stated earlier, the bathymetric survey zone did not cover the entire area of the

basin, hence we need to extrapolate the bathymetry for the numerical model. We

extrapolate the bathymetry from the area 7.84 m ≤ x ≤ 22.84 m in the cross-shore

direction, 3.12 m ≤ x ≤ 28.02 m in the alongshore direction, to the area covered by

the wave basin, 0 m < x < 30 m in the cross-shore direction, 0 m ≤ x ≤ 30 m in the

alongshore direction.

We define the value z = −0.765 m as the position of the fixed bed at the wavemakers.

The position z = 0 m corresponds to the still water level in the experiment.

The following processing is applied in order to obtain the bathymetry used in the

numerical model:
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• the bathymetry is filtered from its extreme values, defined as the points where

the bed gradient is higher than a given threshold, and replaced by nearby values,

• the bathymetry is spatially smoothed, using a convolution with a 50 cm × 50 cm

mask, in order to remove the ripples,

• The zone between 0 m ≤ x ≤ 7.84 m in the cross-shore direction is extrapolated

by imposing a flat bottom located at z = −0.765 m for x ≤ 5 m, and a linear

extrapolation between x = 5 m and x = 7.84 m, to reach the value z = −0.765 m

at x = 5 m.

• For x > 22.84 m, we estimate the mean slope in the portion 22.35 m < x <

22.84 m, and we extrapolate linearly with these slope in the portion 22.84 m <

x < 25.0 m

• The alongshore extrapolation considers the two bands 0 m < y < 3.12 m and

28.02 m < y < 30.0 m. For each lateral boundaries, we consider the mean

bed gradient in the 2 meters near the boundary, and consider these gradient to

extrapolate linearly a cross-shore profile. We then smooth the resulting profile,

and extrapolate linearly from the known profile to the smoothed profile.

The differences between the raw bathymetry and the smoothed one used as an input

for the model can be seen in Figure 4.9.

In the experiment, the bed is made of mobile sand and evolves in time with the

wave forcing that generates sediment transport. According to Michallet et al. [2013],

the bottom evolution velocity presents a peak of 1.5 cm/hr located at the rip neck in

the bathymetry at t=21:00, with values near 0.5 cm/hr elsewhere. As the numerical

simulations last for 20 minutes (unless stated otherwise), we then suppose that the bed

variations during each experiment are small enough to use a fixed bathymetry during

the numerical simulation.

Surface elevation

To access the water surface elevation, 18 high-accuracy capacitive gauges, designed

by Sogreah Consultants were used. The wave gauges are constituted of a conducting

wire, whose capacitance is related to the length of the immersed wire, that is converted

to a voltage. The acquisition frequency of the wave gauges is set to 50 Hz.

Three of these gauges were installed on a fixed position, at x = 5.01 m, y = 8.17

m, x = 5.03 m, y = 15.0 m and x = 5.05 m, y = 21.75 m. These fixed gauges are

located 5 meters onshore from the wavemakers, and allow to observe that the forcing

116



Chapter 4 Circulation in the nearshore zone
x
(m

)

y (m)

5

10

15

20

25
0 5 10 15 20 25 30

−0.8

−0.6

−0.4

−0.2

0

0.2

x
(m

)

y (m)

 

 5

10

15

20

25
0 5 10 15 20 25 30

−0.8

−0.6

−0.4

−0.2

0

0.2
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for the model (lower panel). The white dashed box represents the limits of the origi-
nal bathymetry. The isolines are set every 5 cm, the thick black line representing the
shoreline.
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wave condition remains similar between each run, where a run is defined as a 20 minute

sequence of a time-series complying a JONSWAP spectrum.

The remaining 15 wave gauges were fixed on the moving sliding rail at a constant

cross-shore distance from the wave maker. The sliding rail could move in the long-

shore direction, thus allowing to observe cross-shore and longshore profiles of surface

evolution. The cross-shore position of these wave gauges is presented in Table 4.2.

Wave gauge 4 5 6 7 8 9 10 11
x (m) 7.300 8.305 9.310 10.310 11.300 12.305 13.325 14.320

Wave gauge 12 13 14 15 16 17 18
x (m) 15.315 16.315 17.335 18.330 19.335 20.345 21.325

Table 4.2 – Cross-shore position of the wave gauges present on the sliding rail. The position
x = 0 m corresponds to the position of the wavemaker. The cross-shore position of these
wave gauges, the longshore position y is variable as the sliding rail changes position

Velocity

The Acoustic Doppler Velocimeter (ADV) provides the three components of the

velocity at a fixed elevation in the water column approximately located at 4-8 cm

above the bed for the different measurement positions. The measurement volume is

approximately of 1 cubic centimetre and the sampling frequency is set to 64 Hz.

During the experiment, 4 ADVs were used, three on the moving sliding rail, and

one at a fixed location (Table 4.3).

ADV 1 2 3 4
x (m) 10.28 8.50 13.09 14.71
y (m) 15 variable variable variable

Table 4.3 – Position of the ADVs

Instrument positions

For these experiment, the instrument positions are shown in Figure 4.10. The

sliding rail position covers a wide area of the experiment for the chosen run, and the

fixed wave gauges are representative of the wave forcing, as the bed position between

x = 0 m and x = 5 m is constant.

Boundary conditions

The model boundary conditions are shown in Figure 4.11: the boundaries 2 (y = 0

m) and 3 (y = 30 m) correspond to closed boundaries, since the basin is closed. The

boundary 4 (x = 25 m) corresponds to a moving shoreline, with a dry/wet interface
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Figure 4.10 – Experiment 30 (t = 21 : 00 − 26 : 00) - position of the wave gauges and the
ADV. Circles: mobile wave gauges; diamond: fixed wave gauges; square: mobile ADVs;
Triangle: fixed ADV. The lines represent the isobaths, the thick line corresponds to
the shoreline where the free surface intersects the bathymetry.

[Marche et al., 2007]. The boundary 1 (x = 5 m) considers an absorption/generation

condition [Cienfuegos et al., 2007 ; Mignot et Cienfuegos, 2009].

For the wave height input, the wave height near the wavemaker was not available.

Therefore we considered the closest wave gauges to the wavemaker, three static wave

gauges located at 5 meters from the wavemaker, precisely at x = 5 m, and y = 8.17 m,

y = 15 m, y = 21.75 m respectively. The wave input at each node is then interpolated

alongshore using the three wave gauges, and assuming at y = 0 m and y = 30 m the

wave forcing are identical to the ones at y = 8.17 m and y = 21.75 m respectively. The

resulting wave forcing is shown in Figure 4.12.

The wave statistics at the three fixed wave gauges at x = 5 m varies little during

each run. For each run, we then consider the averaged wave forcing over all the 20-

minutes time-series in the numerical model.

Wave forcing

The wave forcing for the chosen experimental conditions is shown in Figure 4.12.

The wave forcing at the wave-maker is moderate: Hm0 = 0.18 m, with a period T = 3.5

s and the damping is of approximately 10 %.

We observe at x = 5 m that the wave energy alongshore variation is relatively

symmetric, the significant wave height Hm0 being similar at 8.17 m and x = 21.75 m.

At x = 7.30 m the significant wave height alongshore variation is asymmetric, Hm0

being higher in the region 10 m < y < 15m than in the region 15 m < y < 20m.
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Figure 4.12 – Alongshore variation in significant wave height Hm0 of the experimental fixed
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wave gauge located at x = 7, 30 m (dots). The thin line represents the wave forcing
input prescribed in the numerical model at x = 5m.
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The asymmetry in the wave forcing is due to the bathymetry heterogeneity, as a

rip channel is formed that increases the circulation toward the band 0 m < y < 15m.

This feature can be seen using the mean circulation, as explained in section 4.4.3.

Concerning the incident wave condition, there is a difference between the exper-

imental data, and the numerical model. The absorption/generation condition is an

open boundary, and the wave basin is a closed one. The latter implies that reflection

at the wavemaker is not included in the numerical model, so that resonant conditions

due to the enclosed basin in the experiments will not be amplified in the simulations.

The influence of the wavemaker can be seen mostly in the resonant modes of the basin,

occurring at low frequencies in a frequency range below the JONSWAP range.

The wave basin resonant modes can be seen in Figure 4.13. We observe two peaks

at f = 0.04 Hz (T = 25 s), and f = 0.08 Hz (T = 12.5 s), which can be considered

as the resonant modes of the wave basin. In the same Figure are shown the results of

the numerical model with and without high-pass filtering for the input. The numerical

results obtained with the wave input without filtering show a resonant mode amplifica-

tion for the low frequencies, with two peaks at f = 0.04 Hz (T = 25 s) and f = 0.083

Hz (T = 12.05 s), however the same frequencies are three times more energetic than

the experimental results. If we look at the numerical model results with high-pass fil-

tering, we observe that the model is able to transfer energy to the low frequency band,

without the appearance of resonant mode amplification.

Following these results, we prefer to use a high-pass filter and not to force incident

wave conditions with infragravity energy. The infragravity band contains energy of

the wave basin modes, that are not reproduced in the model, due to the open absorp-

tion/generation condition that is not a resonant condition for the wave basin. The

model is able to transfer energy from the short-wave band to the low frequency band,

without resonant mode amplification. For that reason, we can obtain information on

the infragravity band generated by the model, without the disturbance of the basin

seiching modes.

We observe a difference in wave energy between the wave input and the wave gauges

at x = 5 m in Figure 4.12. This difference is due to the wave forcing filtering, as the

energy in the Infragravity band is not taken into account. Resonant modes also named

seiching modes will be analysed in more details.

Theoretical seiching modes

As we intend to analyse low frequency motions in the wave basin, we need to determine

the wave basin seiching. Seiches occur on enclosed or partially enclosed bodies of
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Figure 4.13 – Free surface spectral density for experiment 30 (t=21:00-26:00), at x = 5 m,
y = 8.17 m. The grey line corresponds to the theoretical Jonswap spectrum (equation
4.10) which served as an input for the experiment, the black line to the experimental
free surface measured by the wave gauge, the dash-dotted line to the numerical model
with experimental results (black line) as input, the dashed line to the numerical model
with high-pass filtered input, with a cut-off frequency fc = 1.7 · 10−2 Hz.

water. This body of water resonates to its natural frequencies when excited, allowing

the development of a standing wave.

The wave forcing in an enclosed basin produces seiches due to the wave reflection

and the wave grouping, allowing a transfer of wave energy to lower frequencies. It is

therefore important to estimate these natural frequencies, since they are amplified.

The MODLIT wave basin seiches are determined as explained in Haller et Dalrymple

[2001], using the two-dimensional shallow water equation for variable depth:

ηtt − (ghηx)x − (ghηy)y = 0 (4.18)

with η the water surface elevation, h the water depth, and subscripts representing

derivatives.

The details concerning seiching modes can be found in Appendix B. Table 4.4 lists

the periods of the waves corresponding to these modes. We observe that the main

seiche modes are located in the infragravity band.
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T (s) n = 0 n = 1 n = 2
m = 0 33.26 20.28
m = 1 25.97 19.48 12.50
m = 2 12.42 11.64 9.70

Table 4.4 – Period of the lowest frequency modes. m: cross-shore mode number, n: long-
shore mode number.

4.3 Model validation

4.3.1 Set up/Set down and wave height

To observe the differences between the numerical model and the experiment, we will

first focus on experiment 30, that starts at t=21:00 and finishes at t=26:00.We will

compare cross-shore distribution of flow characteristics along three cross-shore profiles,

that are close to the three fixed wave gauges in the alongshore position, at y = 8.17 m,

y = 15 m, y = 21.75 m. Thus we can compare the mean values from x = 5 m, which

is the position of the first gauge, to x = 21.325 m, the cross-shore position of the last

wave gauge.

We will first look at the differences in wave height. To that end we use the mean

water level η, and the mean wave trough Hmin and wave crest Hmax , averaged over

a period of 20 minutes. These levels are defined in Figure 4.14, · is defined as an

average over the waves, estimated with the zero down-crossing method, during 1200

seconds.

The results are shown in Figure 4.15, over three cross-shore profiles starting at x = 5

m from the wave maker, and finishing at x = 21.325 m, just offshore of the swash zone.

The numerical values of the mean water level η compare well with the experimental

values with errors lower than 0.01 m. Mean water level profiles show similar behaviour

to the other experiments [Michallet et al., 2011]. They all show a set-down followed

by a setup. In the numerical model, the mean water level is relatively constant until

x = 11 m, and then start to increase, results that are consistent with the linear theory,

that predicts a mean water level decrease before the breaking and an increase after

the breaking. The differences observed in the experimental results could be due to the

resonant modes, however the differences are small enough.

If we look at Hmin and Hmax, we observe larger differences. The experimental results

show an increase in the wave crest level from 0.05 m to 0.10m, until approximately

x = 12 m, due to the wave shoaling, and after the breaking, the wave crest level

decreases, until reaching values of approximately 0.05 m above the still water level
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Figure 4.14 – Definition sketch of the wave height H, wave trough Hmin, wave crest Hmax

and period T of one wave.

at x = 21.325 m, before the swash. The wave trough level remains constant in the

shoaling zone, with a value of approximately −0.05 m, and after the breaking, the

trough level increases, to reach a value of −0.02 m before the swash zone.

Concerning the numerical model results, the wave crest level remains nearly con-

stant at +0.06 m in the shoaling zone, instead of increasing. After the breaking, at

x ≈ 13 m, the wave crest level decreases until a value of +0.03 m before the swash

zone. The wave trough level increases in the nearshore zone, and after the breaking, it

decreases from −0.06 m to −0.02 m.

The wave breaking index γ0 = H/h where H is the averaged wave height and h

the water depth, is an important non-dimensional number. It is often used in wave

averaged models to predict the wave height evolution inside the surf zone [Bruneau

et al., 2011]. We observe that the spatial distribution of γ0 in Figure 4.16 is similar in

the model and in the experiment, with the peak values in the breaking zone lower in

the numerical model, around 0.5 instead of 0.6 in the experiment. This difference is

also due to the absence of wave shoaling in the numerical model.

As stated before, there are some differences between the experiment and the nu-

merical model. This can be explained by the fact that the model does not account for

dispersive terms effects, hence the wave shoaling does not occur, and the wave crest

do not increase in the shoaling zone. Despite this difference, we observe that the wave

decrease gradient in the surf zone after the breaking is similar in the numerical model

and in the experiments. These gradients are important for the energy balance, the
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Figure 4.15 – Averaged wave height, over three cross-shore profiles for experiment 30
(t=21:00-26:00). The square correspond to the experimental results, the line to the
numerical model. The upper line and square refer to the mean wave crest Hmax, the
middle line and squares refer to the mean water level η, the lower line and squares refer
to the mean wave trough Hmin. a) profile at y = 8.17 m, b) profile at y = 15 m, c)
profile at y = 21.75 m. The zero altitude corresponds to the still water level.

Figure 4.16 – Spatial distribution of the wave breaking index γ0 for experiment 30 (t=21:00
- 26:00). a) experimental results for experiment 30 (t=21:00-26:00); b) numerical sim-
ulation. Line are the isobaths (every 5 cm). Colours for γ0.
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Figure 4.17 – Asymmetry As at profiles a) y = 8.17 m , b) y = 15 m, c) y = 21.75 m
and Skewness Sk at profiles d) y = 8.17 m , e) y = 15 m, f) y = 21.75 m. Squares:
experimental results; plain line: numerical model.

wave dissipation and current generation.

4.3.2 Non-linearities

We can also compare the asymmetry, As, and skewness, Sk, cross-shore evolution in

Figure 4.17. The skewness and the asymmetry are key tools to analyse the nonlinear

characteristics of the waves. The skewness and the asymmetry of the free surface time

series are estimated using formula (4.19–4.20):

Sk(x) =
(η(x, t) − η)3

η3
rms

(4.19)

As(x) = −ℑ(H(η(x, t)))3

η3
rms

(4.20)

where η(z, t) is the free surface time series, ηrms = (η − η)rms the root mean square of

the free surface η , with the overbar denoting a time-average over the studied interval,

H(η) is the Hilbert transform of η and ℑ the imaginary part.

The asymmetry increases slightly in the experiment, from 0.3 at x = 5 m to 0.5 at

x = 9 m, then the increase is stronger, and As goes from 0.5 to 1.3 between x = 9 m

and x = 14 m, just after the breaking. After that, As decreases, and reaches values
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between 0.4 and 0.6 at x = 21 m.

The skewness in the experiment also increases steadily between x = 5 m and x = 15

m, from 0.5 to 1.3. After the breaking, Sk decreases in the three profiles, reaching values

between 0.6 and 0.8 at x = 21 m.

In the numerical model, As increases strongly from x = 5 m, with a similar gradient

as in the experiment, but not in the same cross-shore position. The maximum As is

higher than in the experiment, between 1.6 and 1.8 depending on the profile, and is

reached before, at x = 11 m. Then As decreases steadily, to reach values between 0.4

and 0.6 at x = 21 m.

The skewness decreases, to reach values close to 0.2 before the breaking at x = 11

m, and then varies from 0.2 to 0.6. The skewness is related to the wave shoaling and

the dispersive terms, and is not well reproduced by the model.

These differences can be explained by the discrepancies in the free surface elevation

time series between the simulation and the experimental data as shown for a cross-shore

profile, in Figure 4.18. The absence of dispersion terms in the numerical model lowers

the wave height peaks, and does not produce secondary peaks, which are responsible

for the decrease of the period as waves approach the coast. However wave fronts with

bores are relatively well simulated providing asymmetry estimations of better quality

than for the skewness.

4.3.3 Significant wave height

We validate the numerical model by checking the free surface elevation spectral prop-

erties. To that end, we compare the free surface spectra in a cross-shore profile, located

at the middle of the basin alongshore, at y = 15 m. The spectra were calculated over a

20 minute sequence, at a 50 Hz frequency for both the wave gauges and the numerical

data. The first spectrum (Figure 4.19 a), at a distance x = 5 m from the wavemaker,

corresponds to the absorption/generation boundary condition of the numerical model.

The spectrum indicates that the numerical model is able to reproduce the input wave

height in the frequency band between 0.15 Hz and 1 Hz. In the frequency band be-

low 0.15 Hz, the differences in peak frequencies have been explained by the numerical

boundary condition, where the reflection by the wavemaker is not included (see section

4.2.2).

The second spectrum (Figure 4.19 b), at a distance x = 10.31 m, shows a good

concordance in the frequency band between 0.15 Hz and 1 Hz, with some discrepancies

under 0.15 Hz. The spectrum at x = 15.31 m is located after the wave breaking,

and even though the frequency band around the peak frequency, between 0.15 Hz and
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Figure 4.18 – Free surface elevation time-series in a cross-shore profile at y = 10 m for
6 different wave gauges located at different cross-shore positions for experiment 30
(t=21:00-26:00). Experimental results (line) and numerical model (dashed line)
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Figure 4.19 – Free surface wave spectra Sηη of experimental wave gauges for experiment
30 (t=21:00-26:00) (grey line) and of the numerical model (black line) at distances (a)
x = 5.01m, (b) x = 10.31m, (c) x = 15.31m,(d) x = 20.34m, from the wavemaker. The
alongshore distance is y = 15m, at the center of the basin.
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Figure 4.20 – Wave height evolution for experiment 30 (t=21:00-26:00) in three cross-shore
profiles at a) y = 8.17 m , b) y = 15 m, c) y = 21.75 m. Grey circle: experimental
significant wave height (Hm0)exp estimated using the wave energy; plain line: modelled
significant wave height (Hm0)mod.

0.4 Hz is well reproduced, over 0.4 Hz the numerical model shows more energy than

the wave measurements. The infragravity mode at 0.1 Hz is fairly well reproduced

by the model. The spectrum at x = 20.34 m is located near the shoreline, and the

peak frequency band of the numerical model is also concordant with the experimental

data. The numerical model reproduces energy transfer to the low frequencies near the

shoreline, even though the peaks are not well reproduced.

We can also compare the spectral significant wave height Hm0
= 4

√
m0, as this

measure is proportional to the square root of the integral of the wave height spectrum,

and is related to the energy dissipated by wave breaking. The cross-shore evolution of

the significant wave height in 3 cross-shore profiles is shown in Figure 4.20.

The experimental results show that in the shoaling zone, until x = 13 m, (Hm0)exp

remains constant in the y = 15 m and y = 21.75 m profiles, and increase in the y = 8.17

m profile. The significant wave height then decreases after the wave breaking, as the

dissipation occurs. In the first profile at y = 8.17 m, the wave height increases from

0.17 m, to 0.21 m at the breaking, and then decreases steadily to reach 0.12 m before

the swash zone. For the two other profiles, (Hm0)exp remains constant, between 0.18

m and 0.19 m, and then decreases after the breaking.

The numerical model shows some similarities with a slight increase before the break-

ing for y = 15 m profile, and a constant wave height for the two other profiles, and then
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a decrease in wave height, reaching 0.08 m at x = 21 m. The decrease in (Hm0)mod

occurs at x ≈ 11 m, before than in the experiment. The decrease in wave energy

corresponds to energy dissipation by wave breaking, and the observed gradient in the

spectral Hm0 decrease is similar in both cases.

4.3.4 Velocities

The numerical model is also validated using velocity observations from ADVs. During

the experiment, 3 Acoustic Doppler Velocimeters mounted on the sliding rail, measured

the three components of the instantaneous velocities at a frequency of 64 Hz. The ADV

was located at a fixed elevation in the water column an therefore in average at roughly 5

cm from the bottom. The numerical model provides cross-shore and alongshore depth

averaged velocities, therefore we can only compare the experimental and numerical

velocities qualitatively, by assuming that the ADV is outside of the boundary layer

and its measurements are representative of depth-averaged velocities.

We compare the averaged cross-shore velocity u, the averaged longshore velocity v

and the averaged velocity magnitude U over 1200 seconds in two alongshore profiles, at

a distance x = 13.09 m and x = 14.71 m of the wavemaker, where the wave breaking

has already occurred. We observe (Figure 4.21) that the numerical model reproduces

the velocity variations.

Concerning the cross-shore velocity u, the experiment shows a maximum off-shore

velocity located at approximately y = 9 m where the rip channel is located. For both

profiles, we observe almost null averaged cross-shore velocity between 0 m < y < 5 m,

and then a strong increase, to reach off-shore velocities of −0.15 m/s and −0.19 m/s

for the alongshore profiles at x = 13.09 m and x = 14.71 m respectively. The velocity

magnitude decreases slowly, to near-zero values at y ≈ 17 m for both profiles.

The numerical model also present low velocity intensities in the region 0 m < y <

5 m, and then a strong increase where the rip channel is located, with peak values

of −0.14 m/s and −0.16 m/s, for the two alongshore profiles. These peak values are

lower than the experimental one, however they are very close. The off-shore velocity

decreases also slowly, similar to the experiment, but with a positive peak, not present

in the experimental results.

The longshore averaged velocity v present lower peaks in the two profiles. For the

x = 13.09 m profile, v decreases from y = 0 m to y = 7 m, from 0 to −0.03 m/s,

then increases steadily until y = 15 m at 0.05 m/s, the decreases again. The numerical

model reproduces the same tendency with stronger peak values, −0.1 m/s at y = 7

m and 0.09 m/s at y = 15 m. For the x = 14.71 m profile, the longshore averaged
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velocities are low for both the experiment and the numerical model, with the same

tendencies in increasing and decreasing.

If we look at the averaged velocity magnitude U , with U defined as U =
√

u2 + v2,

the profiles are similar between the model and the experiment for the x = 13.09 m

profile. U is around 0.21 m/s at y = 0 m, then increases to reach values of 0.25 m/s at

y = 7 m in the experiment (0.28 m/s in the model) then decreases to a value of 0.19

m/s in the experiment at y = 10 m (0.17 m/s in the model). It then increases again

to reach a peak value at y = 15 m, of 0.22 m/s and 0.25 m/s in the experiment and

the model respectively. Between 15 m < y < 30 m, the velocity magnitude remain in

a band of 0.2 − 0.22 m/s.

For the x = 14.71 m profile, the velocity magnitude presents similar behaviour, al-

though the peak velocity at y = 9 m is under-estimated in the model as the experiment

reaches a value of 0.27 m/s and the model a value of 0.23 m/s.

From these alongshore averaged profiles, we can conclude that there is reasonable

qualitative agreement between measured and modelled results, concerning the averaged

velocities over 1200 seconds.

4.3.5 Model skill

Definition of the model skill

The numerical model will be compared to the experimental results using the model

skill σk from [Gallagher et al., 1998]. This parameter is defined as:

σk = 1 −
√∑i=N

i=1 (Qc,i − Qm,i)2

√∑i=N
i=1 (Qm,i)2

(4.21)

with the subscripts c and m corresponding to computed and measured quantities re-

spectively, evaluated at all observed instances i. Here the variable Q is replaced by

ηrms, or Urms, with η the free surface, U =
√

u2 + v2 the velocity magnitude and u, v

the cross-shore and longshore velocities respectively.

The model skill is estimated from spectral density distribution on a specific fre-

quency band. MacMahan et al. [2004] defined an infragravity band with a low-

frequency cut-off at 0.004 Hz and a high-frequency cut-off at 0.04 Hz, and a sea/swell

band, with a low cut-off frequency at 0.04 Hz, and a high cut-off frequency at 0.35 Hz.

As there is a 1/3 time-scaling factor for the Froude similarity, we need to multiply

these cut-off frequencies by 3. However, if we look at the free surface spectra at

x = 5 m, y = 8.17 m (Figure 4.13), we observe that the infragravity band in the
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Figure 4.21 – Time-averaged cross-shore velocity u, longshore velocity v and velocity mag-
nitude U over two alongshore profiles for experiment 30. Left panels: alongshore profile
at x = 13.09 m; Right panels: alongshore profile at x = 14.71 m. The negative cross-
shore velocity represents a seaward oriented velocity, the negative longshore velocity
represents velocity towards y = 0m.
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experiment has a high frequency cut-off of 0.17 Hz, which is the frequency chosen to

be the cut-off frequency between Infra-Gravity and sea/swell. The frequency limits

between the different bands are then defined for the experiment as:

• the limit between the Very Low Frequency band and the InfraGravity band is

fc0 = 0.012 Hz,

• the limit between the Infragravity band and the sea/swell band is fc1 = 0.17 Hz,

• the upper limit for the sea/swell band is fc2 = 1.05 Hz.

The root mean squared values on these bands is then defined as:

Qrms,hi =
∫ fc2

fc1

SQQ(f) df (4.22)

Qrms,lo =
∫ fc1

fc0

SQQ(f) df (4.23)

Qrms,tot =
∫ fc2

fc0

SQQ(f) df (4.24)

where Q and EQ are replaced by the free-surface η or the velocity magnitude U and

the free-surface spectral energy Eη or the velocity magnitude spectral energy EU re-

spectively.

Concerning the mobile wave gauges located on the sliding rail, most of the time,

we only possess one occurrence of the time-series at a specific location, however the

cross-shore distance to the wavemaker remains the same. Therefore, we define a skill

function σk,η for each wave gauge:

σk,η,hi(i) = 1 −

√√√√√√√√√

Nrun∑
j=1

((ηrms,hi)c,i,j − (ηrms,hi)m,i,j)2

Nrun∑
j=1

(ηrms,hi)2
m,i,j

i ∈ [1 : Ng] (4.25)

Where Nrun represents the number of repetition of the 20 minute sequence in each

experiment and Ng the number of mobile gauges on the sliding rail. We define the

model skill for the other frequency band σk,η,lo and σk,η,tot in a similar way.

The skill σk,η,hi is then defined as an average of the differences between the model

and the experiment of all the mobile gauges σk,η(i, j):

σk,η,hi =
1

Ng

Ng∑

j=1

σk,η,hi(j) (4.26)
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Using the same considerations, we define skills for the ADVs on the mobile rail:

σk,U,hi(i) = 1 −

√√√√√√√√√

Nrun∑
j=1

((Urms,hi)c,i,j − (Urms,hi)m,i,j)2

Nrun∑
j=1

(Urms,hi)2
m,i,j

i ∈ [1 : Ng] (4.27)

σk,U,hi =
1

Ng

Ng∑

j=1

σk,U,hi(j) (4.28)

Model skill cross-shore evolution

The model skill for the cross-shore evolution of the free surface displacement is plotted

in Figure 4.22. We do not use the fixed gauges at x = 5 m, as they are located in the

open boundary, and the last gauge at x = 21.325 m as it is close to the swash zone.

For the sea/swell band, we observe that the model skill σk,η,hi is high from x = 7

m to x = 11 m, around 0.9, and then decreases, until reaching a value of around 0.65

between x = 13 m and x = 20 m. This is explained by the difference in the position

of wave breaking between the model and the experiment; before the breaking, the

model is consistent with the experimental results, and after the wave breaking the skill

decreases, but remains acceptable, of the same order of magnitude as [Reniers et al.,

2006b].

Concerning the Infragravity band, the model skill σk,η,lo is low before the breaking,

with values between 0.5 and 0.6 before x = 12 m and then after the breaking increases

to reach values of 0.75 between x = 14 m and x = 21 m. The low model skill is

explained by the wave forcing filtering, as mentioned earlier, as the model does not

reproduce the wave basin seiching modes, which are present in the infragravity band.

However, the energy in the infragravity band is well reproduced by the model after the

breaking. One of the possible reasons could be the natural modes correctly simulated

that exist between the wave breaking and the surf zone (see section B.2).

The total model skill σk,η,tot is consistent with the sea/swell model skill σk,η,hi, as

the majority of the energy is contained in this frequency band.

The averaged free surface model skill is σk,η,tot = 0.81 consistent with the model

skill reported by Reniers et al. [2006b]. Concerning the velocity model skill σk,U , since

there is only three mobile ADV (Figure 4.10), cross-shore skill profiles make little sense.

Nonetheless velocity measurements where shown to be close the simulations in Figure

4.21. The velocity model skill is quantified by the computation of the averaged skill

which is σk,U,tot = 0.74. This gives confidence in the model capabilities to capture the
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Figure 4.22 – Model skill for free surface and velocity, for the experiment 30. σk.a) Cross-
shore evolution of the alongshore averaged skill ©: σk,η,tot; ▽: σk,η,lo; △: σk,η,hi. b)
Averaged model skill for the free surface σk,η,tot (circle) and velocity σk,U,tot (square).

overall kinetic energy distribution which is closely related to the average circulation.

4.4 Results

4.4.1 free surface spectral profile

We look at the free surface spectral profiles, in two cross-shore profiles at y = 6 m and

y = 10 m, and an alongshore profile at x = 16 m for experiment 30 (t=21:00-26:00)

(Figure 4.23). The cross-shore profile at y = 6 m is passes through the rip current

recirculation cell center at x = 16 m, y = 6 m. The cross-shore profile at y = 10 m is

located near the center of the rip current channel, between the two recirculation cells.

The alongshore profile passes through the two recirculation cell centres, at x = 16 m,

y = 6 m and x = 16 m, y = 15 m.

Using this spectral profiles we intend to observe the differences in free surface and

velocity in the recirculation cells and in the rip channel.

For that reason we perform a simulation of 1,200 s, forcing the offshore boundary

with the measured free surface time series (at x = 5 m) and the interpolation procedure

already described. Model results are compared with free surface time series measured

by wave gauges, and velocity values recorded with ADVs.
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Figure 4.23 – Time averaged circulation (arrows) and vorticity (color) for experiment 30
(t=21:00-26:00), using a JONSWAP wave forcing. The dashed lines represents the two
cross-shore profiles at y = 6 m and y = 10 m, and the alongshore profile at x = 16 m
used to observe spectral evolution. The black lines represent the isobaths of the bottom
with a line every 5 cm.

Alongshore profile

In the longshore spectral distribution of Figure 4.24, we observe that the signature of

the JONSWAP spectrum is present in all the positions of the profile, in good agreement

with experimental data. We also observe a trough in the spectrum at y = 15 m, at

a frequency of 0.055 Hz (T ≈ 18.2 s), and three bumps alongshore, at a frequency of

0.125 Hz (T ≈ 8 s). The numerical model succeeds in reproducing these features. We

observe that the longshore distribution of the free surface spectra is relatively homo-

geneous, which indicates that the hypothesis for the theoretical seiching modes that

the bathymetry is alongshore uniform is not far from the numerical and experimen-

tal results. In the numerical model, we observe more energy for lower frequencies for

f < 2 · 10−2 Hz, that does not appear in the experiment.

Cross-shore profile

Concerning the cross-shore spectral distribution of Figure 4.25, the experimental results

show clearly the basin cross-shore seiching, with a fundamental mode at frequency 0.04

Hz (T = 25 Hz), lying in the infra-gravity band. This mode does not appear in the

numerical model results since an absorbing/generating boundary condition is employed

offshore, but overall the spectral distribution is similar in the experiment and in the

numerical results. We also observe both, in the data and the model, a modal structure
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Figure 4.24 – Free surface longshore spectral distribution in m2.Hz−1, at x = 16 m. Left
panel: Experimental spectral distribution; Right panel: numerical model spectral dis-
tribution. The dashed lines represent the frequency limits between the VLF, IG and
JONSWAP bands (fc0 = 1.2e − 2 Hz, fc1 = 1.7e − 1 Hz, fc2 = 1.05 Hz).

at a frequency of 0.07 Hz (T ≈ 14.3 s). This quasi-standing mode is confined between

x = 12 m (the breaking point) and the shoreline. It exhibits anti-nodes at the breaking

point and the shoreline and a node at x = 18 m. It might correspond to a quasi-

standing long-wave oscillating between the breaking point and the shoreline.

If we look at the cross-shore velocity spectral distribution (see Figure 4.26), we

observe that the some part of the energy is contained in the infragravity band and the

VLF band for both profiles. For the y = 6 m profile, we observe two peaks in the

infragravity band, one at x = 16 m at the center of the recirculation cell, and one at

x = 11 m, in the breaking zone. The energy is contained mainly in frequencies below

0.07 Hz (T > 14.3 s), and some energy is contained in the JONSWAP frequency band

at a frequency of 0.29 Hz (T = 3.5 s).

For the y = 10 m profile, we also identify two peaks in the infragravity band, one

at x = 11 m corresponding to the wave breaking, and another one at x = 14 m, in the

head of the rip current. In the JONSWAP band, the energy is one order of magnitude

lower than in the y = 6 m profile, probably due to the strong signature of the rip

current. There is energy present in the VLF band, but we require simulations with a

longer duration to obtain more information at these frequencies.

Main seiching modes

From the study of the seiching modes, we can conclude that although the model does

not reproduce well the basin seiching modes, excepting the main longshore mode, due
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Figure 4.25 – Free surface cross-shore spectral distribution in m2.Hz−1, at y = 6 m. Upper
panel: Experimental spectral distribution; Lower panel:model spectral distribution.
The dashed lines represent the frequency limits between the VLF, IG and JONSWAP
bands (fc0 = 1.2e − 2 Hz, fc1 = 1.7e − 1 Hz, fc2 = 1.05 Hz).
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Figure 4.26 – Cross-shore velocity spectral distribution in a cross-shore profile. Upper
panel: model spectral distribution at y = 6 m. Lower panel: model spectral distri-
bution at y = 10 m. The dashed lines represent the frequency limits between the VLF,
IG and JONSWAP bands (fc0 = 1.2e − 2 Hz, fc1 = 1.7e − 1 Hz, fc2 = 1.05 Hz).
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to the open boundary condition at x = 5 m, we still observe some seiching modes

resonating between the shoreline and the breaking point, explaining the presence of

energy in the infragravity band. We can observe some of these seiching modes by

looking at the free surface spectral profiles, in the previous section. This could be the

reason why the numerical model shows some modal structure, even though there is an

open boundary condition at x = 5 m.

For further details on seiching modes, the reader is referred to Appendix B.

4.4.2 Spectral maps

To understand the spatial distribution of the different spectral range motions, we com-

pute the energy content of free surface displacements, velocities and vorticity. The vor-

ticity is related to kinetic energy of these motions. We focus on the infragravity in the

band 0.012 Hz < f < 0.17 Hz and the JONSWAP in the band 0.17 Hz < f < 1.05 Hz,

as these band contain the most part of the energy. The values of ση, Urms and ωrms in

each spectral range (Figure 4.27) are estimated as follows:

ση =

√√√√
∫

band

Sηη(f)df (4.29)

Urms =

√√√√
∫

band

SUU(f)df (4.30)

qrms =

√√√√
∫

band

Sqq(f)df (4.31)

where Sηη is the power density spectrum of the free surface displacements, Suu and

Svv are the power density spectra of the cross-shore and alongshore velocity respectively,

Sqq is the power density spectrum of the vorticity q and f is the frequency. We also

estimate the total ση = m0 and Urms, and obtain a spatial map of the total energy

content in this variables (Figures 4.27).

In the energy map of the free surface displacements restricted to the JONSWAP

band ση (Figure 4.27 a) and b)) we observe the wave damping in the middle, at x = 5

m and y = 15 m. At x ∼ 12 m the differential breaking produced by the bathymetry

combined with the wave forcing is clearly evidenced as the gradients have different

cross-shore positions alongshore. This is the source of the vortices generation, that

will be explained in detail in the next Chapter. The infragravity band motion shows

a spatial structure of Urms with higher amplitudes at the horns of the shore-attached

bars located near x = 18 − 19 m. This could be explained by wave amplification over
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Figure 4.27 – Spectral maps of ση, Urms and qrms obtained with equations 4.29, 4.30 and
4.31 respectively. a), c), e): respectively ση, Urms and qrms integrated in the JONSWAP
high-frequency spectrum range . b), d), f): respectively ση, Hrms and qrms integrated
in the InfraGravity range.
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the shoal, since at the same location Urms is also maximum (Figure 4.27 c) and d)).

The Urms maps are plotted in Figure 4.27 c) and d). The shoaling of the waves is

evidenced in the JONSWAP Urms map where Urms is the strongest near the breaking

point. There are peaks near the breaking point, at y = 10 m and y = 27 m. The

peaks at y = 10 m and y = 27 m correspond to strong off-shore averaged velocities, as

evidenced by the mean circulation in Figure 4.23. We also observe two peaks at (x = 18

m, y = 3 m) and (x = 18 m, y = 19 m), located at the horns. In the Infragravity band,

we also observe peaks at the horns, and a band of energy between 8 m < x < 11 m.

In the qrms maps (Figure 4.27 e) and f)), we observe localized peaks, both in the

JONSWAP band and in the infragravity band. In the JONSWAP band, there is one

peak at x = 13 m, y = 9 m, and another at x = 19 m, y = 25 m. In the infragravity

band, we observe two strong peaks, one located at x = 13 m, y = 9 m, and another

located at x = 15 m, y = 16 m. These two peaks correspond to the maximum vorticity

in the two recirculation cells of the rip current located at y = 10 m.

4.4.3 Averaged circulation

During the LHF experiment, rip currents characteristics were investigated with the use

of drifters measurements [Castelle et al., 2010]. Those drifters consisted in balloons

filled with water, of diameter 5-10 cm deployed in the surf zone during the different

runs, that lasted between 30 and 60 minutes which is a smaller time period than the

morphological time scales of few hours. It can therefore be assumed that the measured

drifter pattern is associated with a given bathymetry.

A shore-mounted video-camera was used to track the drifters during the wave forc-

ing (see Figure 4.28). The images obtained were then rectified to obtain the Cartesian

coordinates of the drifters. The drifters motions were obtained by a semi-automatic

method, by pointing manually the drifter position every 6 seconds on the video records.

Cross-shore and alongshore drifter velocities were estimated from a linear interpo-

lation in position and time of each sequential position of the drifter at a 1 s time step

over a 30 s duration.

The mean currents were estimated at eight different moments, therefore with eight

different bathymetries, shown in table 4.5. The mean flow patterns of the lagrangian

estimation using the drifters and the numerical model, as well as the estimated and

modelled vorticity can be seen in Figure 4.29 and Figure 4.30.

For the lagrangian drifters, the vorticity is estimated from the curl of the mean flow

velocity, and computed discretely with a weighted central difference scheme detailed

in [MacMahan et al., 2010]. For the numerical model, the vorticity is also estimated
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Figure 4.28 – Sample of captured video images with drifters (from Castelle et al. [2010]).

Simulation time
27 15:40-18:00
30 21:00-26:00
31 26:00-31:20
33 31:20-37:20
36 40:00-45:40
37 45:40-51:40
38 51:40-59:40
41 59:40-66:00

Table 4.5 – Experiments considered for the estimation of the circulation with the drifters.

from the mean flow velocity, using a 4th order centered difference scheme to compute

the curl of the velocity.

For experiments 27-30-31-33 (Figure 4.29), we observe a strong rip current at the

alongshore position y = 10 m, with strong offshore currents exceeding 0.1 m/s. A

smaller rip is positioned on the far right of the basin at an alongshore position of

roughly y = 25 m. The two recirculation cells of the rip current at y = 10 m reach

their maximum area for the experiments 30 and 31, with strong vorticity values and

then start to decrease.

The vorticity estimated from the lagrangian drifters is fairly well reproduced by

the numerical model. For experiment 27 (Figure 4.29 a) and b)) we observe a patch of

negative vorticity at x = 17 m, y = 10 m, that is reproduced by the model. At this time,

we observe that the recirculation cells are starting to develop near the breaking zone,

but they do not reach the shoreline yet, as the vortices are found in the area 11 m <
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x < 17 m. For experiments 30, 31 and 33 (Figure 4.29 c-h)), the two recirculation

cells of the rip channel at y = 10 m are well reproduced, both in terms of area and

magnitude. Noteworthy, for experiment 33 (Figure 4.29 g-h)) the weaker dipole located

at y = 22 m shown by the lagrangian drifters is also visible in the same region in the

numerical model.

For experiments 36-37-38-41 (Figure 4.30), we observe a decrease in the vorticity

field for the rip current located at y = 10 m, as the rip channel is filled by the accretion

process due to the wave forcing. We start to observe an onshore jet, at y = 18 m, as

two rip currents are about the same strength, at y = 10 m and y = 23 m. The rip

channels were initiated by the wave forcing damping, and enhanced by the currents.

However, at a much larger scale we observe that the beach is not in equilibrium with

the wave forcing, causing this accretion phenomenon.

Looking at the vorticity, we still observe the two recirculation cells, but with reduced

occupied area. For experiment 37 (Figure 4.30 c-d)) the secondary dipole at y = 25 m

is also visible in the numerical model.

The qualitative agreement between the numerical model and the flow patterns de-

termined with the drifters is quite good, as it shows similar positions for the rip cur-

rents, and the recirculation cells. The comparison of the vorticity also shows a similar

structure, both in spatial distribution and in magnitude, giving confidence in using the

numerical model to investigate the vorticity and circulation in the nearshore zone.
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Figure 4.29 – Mean circulation: time averaged velocity magnitude over 3600 s (experiment)
and 1200 s (model), and time averaged vorticity. Left panels (a-c-e-g): experimental
results [Castelle et al., 2010]; Right panels (b-d-f-h): numerical model; a-b)experiment
27 (t = 15 : 40); c-d)experiment 30 (t = 21 : 00); e-f) experiment 31 (t = 26 : 00); g-h)
experiment 33 (t = 31 : 20). The blue line in a) represents a net velocity of 0.2 m/s.
Colours are for vorticity, units in s−1.
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Figure 4.30 – Mean circulation: time averaged velocity magnitude over 3600 s (experiment)
and 1200 s (model), and time averaged vorticity. Left panels (a-c-e-g): experimental
results [Castelle et al., 2010]; Right panels (b-d-f-h): numerical model; a-b)experiment
36 (t = 44 : 40); c-d)experiment 37 (t = 50 : 40); e-f) experiment 38 (t = 58 : 40); g-h)
experiment 41 (t = 65 : 00). The blue line in a) represents a net velocity of 0.2 m/s.
Colours are for vorticity, units in s−1.
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4.5 Conclusion

The model hydrodynamics have been validated with a wide set of data, of free surface

and velocity evolution. The model is able to reproduce the energy dissipation gradients

related to wave breaking, as well as the energy transfer from the JONSWAP band to

the infragravity band. These energy dissipation gradients are an important proxy for

vorticity generation [Brocchini et al., 2004 ; Bonneton et al., 2010] . The numerical

model is also accurate in estimating the nearshore circulation and vorticity associated,

compared to the lagrangian drifters [Castelle et al., 2010]. The model also reproduces

some of the seiching modes that occur between the breaking point and the shoreline.

In the next chapter, we start from the equations of the potential vorticity in the

nearshore zone, and then observe the spatial evolution of the different terms of these

equation. We then try to observe the time evolution of enstrophy related to vorticity

in the nearshore zone.
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Mean circulation and vorticity

dynamics in the nearshore zone.

5.1 Introduction

The circulation and vorticity are important in the nearshore region, as it they influence

the evolution of the dispersion and mixing in this region, as well as the transport of

sediment. These processes are important in several aspects of the nearshore zone man-

agement, for example in terms of pollution, benthic life, and tourism. The knowledge

of this circulation is thus primordial if we want to predict the beaches evolution due

to sediment transport or the contamination of the nearshore due to one pollutant.

In the nearshore and surf zone the horizontal scales are larger than the vertical

scales, hence the vorticity possesses some similarities with 2D turbulent fluid [Chavanis

et Sommeria, 2002]. The vorticity q, considered as a pseudo-scalar in 2D flows, can be

defined as the rotation or curl of the vertically integrated averaged horizontal velocity

field:

q =
∂v

∂x
− ∂u

∂y
(5.1)

In a 2D flow, the energy that is injected at a specific length scale cascades to other

length scales, either by vortex merging which creates vortices of larger length scale, or

by inviscid processes that transfer energy from vortex to vortex of lower dimensions.

The latter energy cascade called the inverse-energy cascade with an energy spectrum

slope E ∼ k−5/3 is the classic transfer cascade. The former is the enstrophy cascade,

with an energy slope E ∼ k−3 [Kraichnan et Montgomery, 1980].

Using Lagrangian drifter dispersion analysis, both numerically and experimentally,

Spydell et Feddersen [2009] showed that the circulation nearshore under directionally
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spread and normally incident waves is similar to a 2D turbulent flow field. Furthermore,

by separating the rotational from the irrotational part they observed that the dispersion

is mainly due to the rotational part. They also show that, similarly to 2D turbulence

flow field, the vorticity is generated at a single length scale (approximately 10-20 m)

and then cascade to other length scales, an enstrophy cascade for 5-10 m length scales,

and an inverse energy cascade for 20-100 m length scales.

To study the nearshore circulation, we have access to experimental data, and nu-

merical modelling. The experimental data is of great interest, however the nearshore

zone can be at times highly energetic, complicating the data extraction. Furthermore,

these data are most of the time limited to a few positions in space and time, which

makes it difficult to understand the overall dynamic. To study the nearshore circula-

tion, in addition to eulerian data, that is available on fixed points, the use of lagrangian

data by the means of drifters has been taking importance [Castelle et al., 2010 ; Reniers

et al., 2006a ; Spydell et Feddersen, 2009 ; MacMahan et al., 2010]. However even using

the eulerian and lagrangian observations, it is difficult to obtain instantaneous data of

the whole field. For this reason, numerical modelling of the nearshore zone has been

increasingly used to understand the evolution of the circulation.

The numerical modelling is an idealization of the physics that occurs in the nearshore

zone, however some set of equations allow for a fairly good representation of the phe-

nomenons, for example with the Boussinesq equations [Wei et Kirby, 1995] or the

Non-linear Shallow Water Equations (N.S.W.E.) [Marche et al., 2007].

There are two identified mechanisms for the generation of circulation and vorticity

in the nearshore zone, that is caused by inhomogeneities either in the wave forcing or in

the bathymetry, for normal incident or oblique wave forcing. [Peregrine, 1998]. Bruneau

et al. [2011] observed that for topography controlled circulation, the spatial gradients

in the breaking wave energy dissipation are the major source of vorticity generation.

Buhler et Jacobson [2001] also observed that the mean vorticity generation is due to a

dissipative force induced by non-uniform or differential wave breaking.

Bonneton et al. [2010] obtained from the vertically-integrated and time-averaged

momentum equations an expression for the vorticity forcing term, that depends on the

energy dissipation by wave breaking and the direction of the wave rays. This forcing

term appears when the energy dissipation due to wave breaking is non-collinear with

the wave rays, producing vorticity locally.

This vorticity forcing term generates vorticity locally near the wave breaking that

is advected by the circulation induced by the bathymetry, and merge into large scale

dipoles to create a rip current. The motion of this dipole is then dictated by mutual

advection and self-advection due to the sloping topography [Buhler et Jacobson, 2001]
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The bottom dissipation by friction in the nearshore zone is also an important mecha-

nism, one of the main sink of vorticity [Bowen, 1969]. However, the life span of a vortex

group is not dictated by the friction but is the result of the sequence of the passing

wave group, which increase or decrease the vortices, depending on their direction of

propagation [Long et Ozkan-Haller, 2009].

The friction term also dictates the stability of the rip current. Yu [2006] observed

that the instability of the rip current is related to the rate of vorticity generation and

the rate of dissipation by bottom friction. Using a pseudospectral 2D Navier-Stokes

solver Geiman et Kirby [2013] showed that the frequency oscillations of an out of

equilibrium asymmetric vortex dipole on a plane beach are related to a frictional time

scale and an advective time scale.

In this chapter, we focus on understanding the mechanisms of generation, sustain-

ability and decay of vorticity in the nearshore zone, using the model from Marche et al.

[2007] and improved by Guerra et al. [2014] alongside with the exact formulation for

the vorticity production by Bonneton et al. [2010]. The equations of Bonneton et al.

[2010] are also used as a diagnostic tool to study the potential vorticity balance from

the numerical results.

The numerical shallow water model is first used to understand vorticity generation

and dynamics in the conditions of the MODLIT experiment [Michallet et al., 2010

2013], then with monochromatic wave forcing, to analyse the influence of the friction

coefficient and the period of the waves and the spatial variation of the potential vorticity

balance terms. Using a scaling law, we find an equilibrium between the vorticity

advection and the vorticity production with a monochromatic wave forcing. Finally,

the wave groupiness role on the vorticity dynamics and spatial variation is investigated

using a bichromatic wave forcing.

5.2 Diagnosis equations

5.2.1 Vorticity equation

Definitions

To understand the dynamics of the vorticity in the nearshore zone, we first need to

define the variables involved. The definition of the variables in the surf zone in Figure

5.1 shows the space variables. The axis x represent the cross-shore direction, the axis

y the longshore direction, and the axis z the vertical direction. The bottom b(x, y) is

the interface between the water and the sediment, and is supposed here fixed in time.
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Figure 5.1 – Definition sketch of the surf zone

η represents the free surface displacement, and h = η − b represents the water depth.

Concerning the velocity fluctuations, we need to define spatial variables and inte-

grated variables over the water depth. The spatial velocities are defined with a subscript

"0": u0(x, y, z, t), v0(x, y, z, t), w0(x, y, z, t). The integrated variables over depth h are

defined as u(x, y, t), v(x, y, t). The velocity vectors associated are u0 = [u0, v0, w0] and

u = [u, v] = [|u| cos θ, |u| sin θ], with θ the direction of the wave propagation.

The time averaging need also to be defined, as we use different kinds of time aver-

aging:

• the time averaging over one wave period T is defined as:

(.) =
1
T

∫ t+T

t
(.) dτ (5.2)

Using this time averaging, we can deduce for each variable a steady and fluctu-

ating part, for example:

η = η̄ + η̃ (5.3)

where η̃ = 0.

• the time-averaging over n0 periods is defined as:

< . >n0
=

1
n0T

∫ t+n0T

t
(.) dτ (5.4)

• the time-averaging over a time period t1 is defined as:

< . >t=t1
=

1
t1

∫ t+t1

t
(.) dτ (5.5)
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• the time-averaging over the duration of one simulation, typically 1200 seconds,

is defined as:

< . >=
1

1200

∫ t=1200

t=0
(.) dτ (5.6)

The spatial averaging is defined as:

< . >x,y=
1

LxLy

∫ x2

x1

∫ y2

y1

(.) dx dy (5.7)

where x1,x2 and y1,y2 are respectively the cross-shore and longshore boundaries, and

Lx = x2 − x1, Ly = y2 − y1.

Conservation of mass

Drawing upon Bonneton et al. [2010] analysis, we start from the conversation of mass

in an incompressible fluid:

∇ · u0 =
∂u0

∂x
+

∂v0

∂y
+

∂w0

∂z
= 0 (5.8)

The kinematic boundary conditions at the free surface η and the bottom b are defined

as:

∂η

∂t
+ u0

∂η

∂x
+ v0

∂η

∂y
− w0 = 0 at z = η (5.9)

u0
∂b

∂x
+ v0

∂b

∂y
+ w0 = 0 at z = −b (5.10)

We now integrate equation 5.8 over water depth and time-average over one period:

∇ ·
∫ η

−b
u0 dz = 0 (5.11)

The horizontal terms of this equation are split into a mean part and fluctuating part:

∂

∂x

∫ η

−b
u0 dz =

∂

∂x

(∫ η̄

−b
u0 dz +

∫ η

η̄
u0 dz

)
(5.12)

The first term of this equation is the mean current continuity, and assuming that the

horizontal velocity is depth uniform, we obtain:

∂

∂x

∫ η̄

−b
u0 dz = h̄

∂ū

∂x
(5.13)
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The second term of equation 5.12 is the net wave momentum and represents the Stokes

transport induced by waves. By using a Taylor expansion from the mean surface η̄, we

obtain an estimation of this term:

∫ η

η̄
u0 dz ≈ η̃ũ (5.14)

For the vertical velocity, the integration and time-averaging gives:

∂

∂z

∫ η

−b
w0 dz =

∫ η

−b

∂w0

∂z
dz = [w0]

η
−b =

∂η

∂t
+ u0

∂η

∂x
+ v0

∂η

∂y
− u0

∂b

∂x
− v0

∂b

∂y

=
∂η̄

∂t
+ u · ∇h̄

=
∂h̄

∂t
+ u · ∇h̄ (5.15)

We finally obtain the equation for mass conservation, integrated over water depth and

time-averaged over one period:

∂h̄

∂t
+ ū · ∇h̄ = −∇ · M̃ (5.16)

where M̃ = [η̃ũ, η̃ũ] is the wave mass-induced flux also called Stokes drift.

Vorticity equation

To obtain the vorticity equation, we start from the Nonlinear Shallow Water Equations

with friction and bed slope source term used by the model SURF-WB, in its dimensional

form (equations 5.17 - 5.18 - 5.19) :

∂η

∂t
+

∂

∂x
(hu) +

∂

∂y
(hv) = 0 (5.17)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ g

∂h

∂x
= −g

∂b

∂x
− 1

h
Sfx

(5.18)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ g

∂h

∂y
= −g

∂b

∂y
− 1

h
Sfy

(5.19)

Using the Lorentz linearisation of Mei [1989], the friction source term Sf = [Sfx
, Sfy

]

can be defined as:
1
h

Sf ≈ 8
3π

cf

h
urmsu ≈ cf

h
urmsu ≈ βu (5.20)

The variable β = cf

h
urms is the linearised friction coefficient, urms is called the orbital
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velocity due to the wave component of the motion, and is defined as:

urms =
√

ũ2 + ṽ2 (5.21)

We now time-average equation 5.18 over one period T:

1
T

∫ t+T

t

∂u

∂t
dτ +

1
T

∫ t+T

t
u

∂u

∂x
dτ +

1
T

∫ t+T

t
v

∂u

∂y
dτ +

1
T

∫ t+T

t
g

∂h

∂x
dτ

= − 1
T

∫ t+T

t
g

∂b

∂x
dτ − 1

T

∫ t+T

t

1
h

Sfx
dτ (5.22)

In the inner surf zone, the broken-wave solution can be approximated by represent-

ing wave fronts as a discontinuity [Bonneton, 2007]. This discontinuity satisfies the

jump conditions, with the conservation of the mass and momentum across the shock:

− cb[h] + [hu = 0 (5.23)

− cb[hu] + [hu2 +
1
2

gh2] = 0 (5.24)

where the brackets [] indicate a jump in the quantity, cb = [cb cos θ, cb sin θ] is the shock

velocity, θ is the angle of the propagation of the wave front with θ = 0 defined as the

normal direction to the shoreline.

We obtain the following equation for the time-averaged vorticity originally derived

by Bonneton et al. [2010]:

∂q̄

∂t
+ ū · ∇q̄ = ∇ × (D̄ek) · ez − ∇ · (q̃ũ) − βq̄ (5.25)

where D̄ is determined using shock conditions.

5.2.2 Potential vorticity equation

The potential vorticity ζ defined by ζ = q/h is a quantity that is conserved along a

streamline, in absence of friction. Therefore, as a vortex moves offshore into deeper

water, the vorticity increases, but the area of the vortex decreases, because the potential

vorticity is conserved. The potential vorticity has been widely used to describe the

evolution of the circulation in the nearshore [Arthur, 1962 ; Peregrine, 1998 ; Buhler

et Jacobson, 2001 ; Johnson et Pattiaratchi, 2006 ; Long et Ozkan-Haller, 2009].

The averaged potential vorticity equation is obtained, by multiplying equation
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(5.16) by (q̄/h̄2), equation (5.25) by (1/h̄) and summing them, resulting in:

∂ζ̄

∂t
+ ū

∂ζ̄

∂x
+ v̄

∂ζ̄

∂y︸ ︷︷ ︸
advection

=
ζ̄

h
∇M̄

︸ ︷︷ ︸
Stokes drift

advection

− 1
h

∇(q̃ũ)
︸ ︷︷ ︸
wave scale

vorticity

diffusion

+
1
h

∇ × (D̄ek).ez

︸ ︷︷ ︸
vorticity

production

− βζ̄︸︷︷︸
friction

dissipation

(5.26)

where the averaged flow potential vorticity over one period is ζ̄ = q̄/h̄.

The terms of equation (5.26) can be interpreted in this manner:

• The vorticity production term is directly related to potential vorticity generation

induced by the differential wave breaking. The advantage of this set of equation

is that we can directly determine this term.

• The friction dissipation term is the term linked to the dissipation of potential

vorticity by the bottom. When the wave forcing ceases, which means that no

more energy is introduced to the system, this term is responsible for the potential

vorticity decay.

• the advection term does not generate potential vorticity, and transport it with

the averaged circulation,

• the Stokes drift advection is the flux induced by the waves. This term arises from

the mass conservation equation, to balance the extra flux induced by the waves.

This flux represents a potential vorticity transport term.

• the wave scale vorticity diffusion term is related to the diffusion of the potential

vorticity gradients, it is the diffusion of the potential vorticity by the wave induced

motions.

Estimation of the dissipative force

The dissipative force D in equation (5.26) is related to the wave energy dissipation by

breaking. This force is defined as

D =
Dbm

ch̄
(5.27)

with c the norm of the phase velocity, and Dbm the broken-wave energy dissipation. We

estimate Dbm using two different techniques, by analogy with an hydraulic jump or by

the energy flux gradients dissipation. The hydraulic jump analogy is used to estimate

Dbm with the experimental data, as the energy spatial gradients cannot be estimated
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easily. In the numerical model, as the energy fluxes can be estimated at each point, we

use the energy flux gradients to estimate Dbm. The first one is by analogy between the

breaking wave and a hydraulic jump Thornton et Guza [1983] ; Bonneton et al. [2010],

and Dbm is expressed as:

Dbm =
g

4T

H3

h̄
(5.28)

with H the wave height. In this case, if we assume the shallow water, we have c =
√

gh̄

and the dissipative force is defined as:

D =
g

4cT

H3

h̄2
=

√
g

4T

H3

h̄5/2
(5.29)

Dissipation can also be estimated from the energy fluxes on an elementary control

volume dx · dy. At this end the NSW equations can be written in non-conservative

form:

∂η

∂t
+

∂

∂x
(hu) +

∂

∂y
(hv) = 0 (5.30)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ g

∂η

∂x
= 0 (5.31)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ g

∂η

∂y
= 0 (5.32)

with h = η − b̄ the total water depth.

By multiplying equation 5.30 by (gη + u2+v2

2
), equation 5.31 by (hu), equation 5.32

by (hv) we obtain:

gη

(
∂η

∂t
+

∂

∂x
(hu) +

∂

∂y
(hv)

)
+

u2 + v2

2

(
∂η

∂t
+

∂

∂x
(hu) +

∂

∂y
(hv)

)
= 0 (5.33)

hu
∂u

∂t
+ hu2 ∂u

∂x
+ huv

∂u

∂y
+ ghu

∂η

∂x
= 0 (5.34)

hv
∂v

∂t
+ huv

∂v

∂x
+ hv2 ∂v

∂y
+ ghv

∂η

∂v
= 0 (5.35)

By adding these three terms, we obtain an equation for the conservation of energy. If

we look at the terms containing the time derivative, we have:

gη
∂η

∂t
+

u2 + v2

2
∂η

∂t
+ hu

∂u

∂t
+ hv

∂v

∂t
=

∂

∂t

[
gη2 + h

u2 + v2

2

]
(5.36)
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The terms containing a x spatial derivative can be simplified:

gη
∂(hu)

∂x
+

u2 + v2

2
∂(hu)

∂x
+ghu

∂η

∂x
+hu2 ∂u

∂x
+huv

∂v

∂x
=

∂

∂x

[
ghηu + hu

u2 + v2

2

]
(5.37)

We operate similarly with the terms containing the y derivative:

gη
∂(hv)

∂y
+

u2 + v2

2
∂(hv)

∂y
+ghv

∂η

∂y
+huv

∂u

∂y
+hv2 ∂v

∂y
=

∂

∂y

[
ghηv + hv

u2 + v2

2

]
(5.38)

We finally obtain an equation for the conservation for energy:

∂Ft

∂t
+

∂Fx

∂x
+

∂Fy

∂y
= 0 (5.39)

with the energy fluxes Fx, Fy, Ft defined as

Ft = gη2 + h
u2 + v2

2
(5.40)

Fx = ghηu + hu
u2 + v2

2
(5.41)

Fy = ghηv + hv
u2 + v2

2
(5.42)

If no dissipation occurs, equation 5.39 is valid and the spatial flux gradients are exactly

balanced with the temporal flux gradient. In our case, there exist energy dissipation

through breaking, therefore the equation reads:

∂Ft

∂t
+

∂Fx

∂x
+

∂Fy

∂y
= −Dbm (5.43)

In the case of a regular wave forcing, by time-averaging over several periods the equation

5.43, the first term disappear and we can obtain the averaged dissipation by estimating

the averaged energy flux gradients:

< Dbm >n= −∂ < Fx >n

∂x
− ∂ < Fy >n

∂y
(5.44)

In the case of an irregular forcing, the temporal flux gradient cannot be neglected,

hence we estimate the dissipation over a time duration t1, supposed greater than the

wave peak period:

< Dbm >t=t1
= −∂ < Ft >t=t1

∂t
− ∂ < Fx >t=t1

∂x
− ∂ < Fy >t=t1

∂y
(5.45)
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We then suppose that this averaged dissipation is similar to the time-averaged dissipa-

tion over one period as we have a monochromatic wave forcing:

Dbm ≈< Dbm >n≈< Dbm >t=t1
(5.46)

Refraction map

To estimate the vorticity production terms in (5.26) also require the estimation of the

waves rays, as the vector ek is collinear with the wave rays. To obtain the refraction

map necessary to obtain the direction of the wave rays, we use the hypothesis that the

wave propagation is co-linear with the energy fluxes:

−→c ∝ (Fx, Fy) (5.47)

These fluxes are averaged over a time duration t1 , and the refraction angle is then

estimated as:

θr = arctan

(
< Fy >t=t1

< Fx >t=t1

)
(5.48)

where ek = [cos θr, sin θr] is the vector collinear with the wave rays.

Estimation of the potential vorticity balance terms

The terms of the potential vorticity balance require gradient estimations. Sensitivity

analysis have showed us that it is necessary to use a 4th order central finite difference

scheme. For any function f(x,y) this reads:

∂f(xi, yj)
∂x

=
1

12∆x
(−f(xi+2, yj) + 8f(xi+1, yj) − 8f(xi−1, yj) + f(xi−2, yj)) (5.49)

In the case of a regular wave forcing (monochromatic), the mean part is the averaged

quantity over the wave period considered, and the fluctuating part is the difference

between the signal and its mean.

In the case of an irregular wave forcing, the mean part of the variable, denoted

by a bar (̄.) is the high-pass filtered variable, with a cut-off frequency fc, while the

fluctuating part is denoted by a tilde (̃.), and represents the low-pass filtered variable,

with the same cut-off frequency fc.
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Figure 5.2 – Potential vorticity field for a JONSWAP wave forcing of significant wave height
Hm0

= 0.18 m and peak period T = 3.5 s, with an alongshore energy damping at y = 15
m (simulation J0). The black lines represent the isocontours of the bathymetry, the
arrows the averaged circulation over 800 s, between t = 300 s and t = 1100 s. The
dotted line represents the cross-shore section used to do the vorticity time-stack.

Enstrophy

If we define the system composed by the bathymetry and the wave forcing, we define

the enstrophy ǫ as:

ǫ(t) =
∫

S
q(t)2dS (5.50)

Where S represents the area defined as 7 m < x < 20 m and 1 m < y < 29 m. This

area starts before the breaking zone located at x ≈ 11 m, and stops before the swash

zone located at x ≈ 22 m.The vorticity present near the lateral boundaries is also not

included. This quantity is directly related to the kinetic energy in the flow and is used

to estimate the spin-up and decay time of the mentioned system.

5.3 Model set-up and analysis methods

5.3.1 circulation cells position

The evolution of the circulation cells also provides valuable information for the evo-

lution of the vorticity in the nearshore zone, especially in term of wave grouping.

We then define two delimited regions, corresponding to the circulation cells (Figure

5.2). We choose the boundaries to detect the circulation cells at 12 m < x < 21 m,
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2 m < y < 10 m and 12 m < y < 19 m for the positive and negative vortices respec-

tively.

For each circulation cell, we define at each time step the vorticity averaged over

one wave period, and find the vortices extrema. For the positive vortex, the vorticity

extrema is:

q+
m = max (q(x, y)), x ∈ [12, 21], y ∈ [2, 10] (5.51)

For the negative vortex we have:

q−
m = min (q(x, y)), x ∈ [12, 21], y ∈ [10, 19] (5.52)

To estimate the center of mass of the circulation cells, we define the vortices boundaries

as the points where the value is higher (respectively lower) than 0.25 of the maximum

(respectively minimum) value for the positive vortex (respectively negative vortex),

similarly to Long et Ozkan-Haller [2009]. The center of mass coordinates of the positive

vortex [x+
v , y+

v ] and the negative vortex [x−
v , y−

v ] are then estimated as:

x+
v =

∑

q>0.25q+
m

q(x, y)x

∑

q>0.25q+
m

q(x, y)
, x ∈ [12, 21], y ∈ [2, 10] (5.53)

y+
v =

∑

q>0.25q+
m

q(x, y)y

∑

q>0.25q+
m

q(x, y)
, x ∈ [12, 21], y ∈ [2, 10] (5.54)

x−
v =

∑

q<0.25q−

m

q(x, y)x

∑

q<0.25q−

m

q(x, y)
, x ∈ [12, 21], y ∈ [10, 19] (5.55)

y−
v =

∑

q<0.25q−

m

q(x, y)y

∑

q<0.25q−

m

q(x, y)
, x ∈ [12, 21], y ∈ [10, 19] (5.56)

The distance between the two centres of mass dv is defined as:

dv =
√

(x+
v − x−

v )2 + (y+
v − y−

v )2 (5.57)
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5.3.2 rip current velocities

One of the main feature of the rip current are the rip current ejections, which are

unsteady velocity increase seaward oriented, a great hazard for swimmers. To observe

the variation in the rip current velocity, we focus on point at x = 15 m, y = 10 m.

This point is located in the center of the rip channel, visible in the averaged circulation

in Figure 5.2. The cross-shore and longshore velocities at this point are defined as

[urip, vrip].

5.3.3 numerical simulations considered

Concerning the numerical modelling, all the simulations considered in this chapter use

the same bathymetry from the experiment at t = 21 : 00. This bathymetry has been

used in the previous chapter to validate the model, therefore we can have confidence

in the simulation results.

We first consider the results in terms of vorticity with wave forcing similar to the

experiment. This wave forcing consists of a JONSWAP spectrum of duration 1200 s,

with significant wave height Hm0 = 0.18 m, peak period T = 3.5 s, and a wave energy

damping in the middle.

We then use monochromatic and bichromatic alongshore uniform wave forcing, to

observe the evolution of vorticity in these cases. As we want to obtain a similar wave

forcing energy in all the cases considered, we use the same significant wave height

Hm0 = 0.18 m. When the wave height distribution can be approximated by a Rayleigh

distribution [Longuet-Higgins, 1952], the significant wave height Hm0 can be approxi-

mated by [Holthuijsen, 2007]:

Hm0 = 4 ση (5.58)

where ση represents the free surface variance. Although this relation is only valid in

the case of a Rayleigh distribution, we use it to determine the significant wave height

in a monochromatic case or bichromatic case, in order to compare the wave forcing

energy in all these cases.

The numerical simulations considered are expressed in Table 5.1. All the simulations

were performed using a grid step ∆x = ∆y = 0.1 m, which led to a variable time step

of approximately ∆t ≈ 0.01 s, determined at each time step to ensure a Courant-

Friedrich-Lewy condition.

The considered monochromatic wave forcing time-series of period T0 s corresponding
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Simulation wave Alongshore T Cf Hm0 A Tg

name forcing variation (s) (cm) (cm) (s)
J0 JONSWAP damped 3.5 2.1 · 10−2 18 5.56 -
M1 monochrome uniform 3.5 1.6 · 10−2 18 6.36 -
M2 monochrome uniform 3.5 2.1 · 10−2 18 6.36 -
M3 monochrome uniform 3.5 2.6 · 10−2 18 6.36 -
M4 monochrome uniform 2.5 2.1 · 10−2 18 6.36 -
M5 monochrome uniform 4.5 2.1 · 10−2 18 6.36 -
M6 monochrome uniform 3.5 2.1 · 10−2 12.6 5.56 -
M7 monochrome uniform 2 2.1 · 10−2 18 6.36 -
M8 monochrome uniform 4 2.1 · 10−2 18 6.36 -
B1 bichromatic uniform 3.5 2.1 · 10−2 18 8.99 35
B2 bichromatic uniform 3.5 2.1 · 10−2 18 8.99 70
B3 bichromatic uniform 3.5 2.1 · 10−2 18 8.99 105
B4 bichromatic uniform 3.5 2.1 · 10−2 18 8.99 140
B5 bichromatic uniform 3.5 2.1 · 10−2 18 8.99 175
B6 bichromatic uniform 3.5 2.1 · 10−2 18 8.99 210
B7 bichromatic uniform 3.5 2.1 · 10−2 18 8.99 245
B8 bichromatic uniform 3.5 2.1 · 10−2 18 8.99 280

Table 5.1 – Simulation conditions for the JONSWAP, the monochromatic and the bichrom-
natic cases.
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to simulation M2 is determined as

η0(t) = A sin(σ0t) (5.59)

where σ0 = 2π/T0 and A = 6.36 cm is the amplitude of the waves.

If we consider a simulation with the same averaged wave height over 1200 seconds

as the JONSWAP run, we obtain a different wave amplitude, as < H >= 0.112 m,

with H the wave heights determined by a zero-down-crossing method. Therefore, for

the simulation M5 we have A = 5.56 cm.

For the bichromatic case, we define the wave group period Tg as the time between

two nodes of the group, and obtain the following expression:

η1(t) =
A

2
(sin(σ1t) + sin(−σ2t)) (5.60)

where:

σ1 =
π(2Tg + T0)

T0Tg

(5.61)

σ2 =
π(2Tg − T0)

T0Tg

(5.62)

The coefficient A = 8.99 cm is determined to ensure that the wave forcing contains the

same significant wave height Hm0
, and compare the monochromatic forcing with the

bichromatic and the JONSWAP ones.

5.4 Potential vorticity in the LHF experiment

5.4.1 Vorticity

The potential vorticity equation (5.26) is just a consequence of the NSWE on which

the numerical model is also based. Using the methods described in section 5.2 we can

diagnose the importance of the different terms and determine their spatial distribution.

We first estimate the enstrophy on the numerical simulation J0, with the parameters

from the experiment. The evolution of enstrophy (Figure 5.3) reveals three distinct

phases. The first one corresponds to the spin-up of the system starting from a rest

state and lasts for the first 200 seconds approximately. After the spin-up phase, we

observe a quasi equilibrium regime where the enstrophy varies with time, but around a

mean value of 1 m2.Hz2 in our case. During this phase, we can see an arrangement of

vorticity, as enstrophy variations present semi-periodic behaviour with periods of the
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order of 100 seconds, induced by the wave groupiness of the wave forcing. The third

phase corresponds to the decay, when the wave forcing ceases. We observe that the

decay rate is high at the beginning, losing 50 % of its value before decay in 30 seconds,

and this rate starts decreasing, as it takes 200 seconds to reach 10% of its value before

decay.

If we compare the results obtained with the JONSWAP forcing (simulation J0) with

the ones obtained with monochromatic wave forcing different wave amplitudes. The

M2 simulation with an amplitude of A = 6.36 cm provides the same significant wave

height as the JONSWAP. The monochromatic wave is energetically equivalent. The

M6 simulation for A = 5.56 cm gives a wave height equal to the JONSWAP mean wave

height. We observe a spin-up time of about 75 seconds for both simulations, then the

enstrophy decreases to reach a quasi-equilibrium state. We note that the enstrophy

for the JONSWAP simulation seems to oscillate near a value of 1 m2.s−2, close to the

monochromatic simulation with the same wave height, while the monochromatic sim-

ulation with an equivalent significant wave height reaches a higher value of enstrophy,

around 1.3 m2.s−2. This could be due to the fact that in the JONSWAP simulation,

the breaking occurs at varying cross-shore positions, hence the vortices have to adapt

constantly to the incoming waves, whereas in the monochromatic case the forcing is

constant and the vorticity generated by the differential wave breaking occurs at the

same position, maximizing the vorticity generation.

The averaged circulation and vorticity are estimated on a duration of 800 s, between

t = 300 s and t = 1100 s, to avoid the spin-up period and the decay. We can see in

Figure 5.2 the rip channel at y = 10 m, with the two circulation cells, the positive with

a center near x = 16 m, y = 6 m, and the negative one with a center near x = 16

m, y = 16 m. The averaged circulation shows a strong offshore oriented jet between

these two cells. We also observe another dipole near y = 24 m, however the circulation

near this dipole seems to be affected by the lateral boundary, therefore we will focus

our analysis to the dipole on the left. Concerning this dipole, we also note that the

peak averaged vorticity is not found in the center of the vortex, where the averaged

circulation is zero, but rather in the vortices edges.

We can also observe the evolution of the potential vorticity compared to the wave

forcing in one cross-shore profile (Figures 5.4-5.5). We time-stack instantaneous po-

tential vorticity profile on a cross-shore transect that goes roughly through the center

of the positive vortex (red). In Figure 5.4 middle panel we observe that free surface

waves have periods close to the peak period, but wave height and wave groupiness are

more widely distributed. in the top panel of Figure 5.4 the propagation of the waves is

observed as thin lines with a negative slope, and we see that the generation of vorticity

165



Chapter 5 Nearshore mean circulation and vorticity dynamics

0 300 600 900 1200 1500 1800 2100 2400

−0.1

0

0.1

η
(m

)

0 300 600 900 1200 1500 1800 2100 2400
0

0.5

1

1.5

ε

time (s)

Figure 5.3 – Wave forcing time-series (upper panel) and low-pass filtered enstrophy time-
series with a cut-off frequency of 10 s (lower panel). The black line represents a Jonswap
wave forcing, of significant wave height Hm0 = 0.18 m and peak period T = 3.5 s
(simulation J0). The wave forcing ceases at t = 1200 s to observe the enstrophy decay.
The grey line represents a monochromatic wave forcing with the significant wave height
Hm0 = 0.18 m and period T = 3.5 s (simulation M2), the grey dashed line represents a
monochromatic wave forcing with the same amplitude as the JONSWAP wave forcing
A = 0.056 m (simulation M6). In the upper panel related to free surface evolution η(t),
the grey line and dashed line represent the monochromatic wave envelope.
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Figure 5.4 – Cross-shore vorticity time stack at y = 7 m (upper panel), corresponding free
surface water height at x = 5 m (middle panel) and potential vorticity evolution at
x = 15 m (lower panel) for simulation J0 (Jonswap wave forcing). The dashed line in
the upper panel represents the vorticity time series shown in the lower panel.

within the vortex for each wave is different: for 920 s < t < 940 s the vorticity reaches

peaks of 2 Hz.m−1 with each passing wave at x = 15 m, and for 870 s < t < 900 s the

peaks in vorticity are closer to the value 0.5 Hz.m−1.

The positive shoreward boundary of the vortex moves at a lower period than the

waves, as we can see some modulations of period 10 s and 20 s in the time-stack. This

is due to the fact that the vorticity generated by each wave is proportional to the power

of 3 of the wave height.

By doing a close-up on a 50 second period (Figure 5.5) and with a lower time step,

we note that the passing waves generate a peak in potential vorticity. These peaks does

not seem to correlate with an enhanced potential vorticity in the vortex, as between

t = 825 s and t = 835 s, we observe an increased vorticity, but the peaks are not

relatively high.
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Figure 5.5 – Cross-shore vorticity time stack at y = 7 m (upper panel), corresponding free
surface water height at x = 5 m (middle panel) and potential vorticity evolution at
x = 15 m (lower panel) for simulation J0 (Jonswap wave forcing). The dashed line in
the upper panel represents the vorticity time series shown in the lower panel.
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5.4.2 Dissipative force estimations: hydraulic jump and en-

ergy gradients

As stated in the previous section, The dissipation induced by the wave breaking can

be estimated in different ways. We can then compare the dissipation term estimated

using a hydraulic jump analogy both for the numerical model and the experiment.

Hydraulic jump analogy

Using an analogy between the wave breaking and an hydraulic jump, the results from

the experiment and from the numerical model with the same conditions can be found

in Figure 5.6.

We observe that the dissipative force in the numerical model and in the experiment

are found approximately in the same region, between x = 12 m and x = 15 m for the

experiment. At y = 10 m, where the rip channel exits, the dissipative force is stronger

at x = 12 m, with a maximum of 0.04 , whereas at y = 5 m or y = 20 m, the dissipative

force occurs at x = 15 m in the experiment. The numerical model dissipative force

term shows a similar behaviour, but the magnitude of the dissipative force is different,

as the maximum dissipative force, at the rip channel exit is about 0.02, a half of the

experimental result.

The wave height H is determined by a zero-downcrossing method to determine

the waves and then averaging over all the waves. The period is determined with the

significant wave period T1/3. As noted by Holthuijsen [2007], for swell wave forcing with

narrow spectrum, T1/3 ≈ Tpeak, where Tpeak is the peak wave period of the JONSWAP.

In our case, we observe that the significant wave period is slightly lower around T = 3.2

s at x = 5 m. However, we focus on the period evolution when approaching the

shoreline, and not the exact values. If we compare the spatial variation of wave height

and period , we observe that the significant wave period decreases in the experiment,

from T = 3.2 s at x = 5 m, to T = 2.7 s at x = 15 m, and the wave height increases

from H = 0.11 m at x = 5 m, to H = 15 m at x = 15 m. The numerical model

shows a different behaviour concerning the significant wave period, as the period is

approximately T = 3.2 s at x = 5 m, and increases to T = 4 s at X = 20 m. The wave

height increases before the breaking, but the maximum water height is H = 0.13 m,

lower than the experimental results.

These differences can be explained if we look at the free-surface elevation time-series

in a cross-shore profile, in Figure 5.7. The absence of dispersion terms in the numerical

model lowers the wave height peaks, and does not produce secondary peaks, which are

responsible for the increase in wave height and decrease of the period as we approach
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Figure 5.6 – Spatial distribution of the dissipative force D estimated with a hydraulic jump
analogy (Upper panels), of the wave height (Middle panels), and of the significant wave
period T1/3 (Lower panels). The left panels corresponds to experimental results, from
experiment 30 (t=21:00-26:00), using a JONSWAP spectrum, damped in the middle .
The right panels corresponds to the numerical model, using a similar forcing (simulation
J0).
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Figure 5.7 – Free surface elevation time-series in a cross-shore profile at y = 10 m, differ-
ence between the experimental results for experiment 30 (t=21:00-26:00) (line) and the
numerical simulation J0 (dashed line)

the shoreline. The estimation of the dissipative force using an hydraulic jump analogy

is lower than expected, mainly due to the reduced wave height before breaking, and

the different period evolution in the domain, that also tends to decrease the dissipative

force. However, the spatial distribution of the dissipative force is fairly good.

Energy fluxes gradient

If we use the energy flux gradients, we can also estimate the dissipative force. We

suppose that for a long enough duration, here 60 wave periods (210 s), the flux gradient

are equal to the dissipative force. If we look at the dissipative force estimated by

the energy fluxes (Figure 5.8), we see that the values and spatial distribution of the

dissipative force is similar to the experimental dissipative force estimated with the

hydraulic jump analogy. The areas where the dissipative force is high consist in the
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Figure 5.8 – Averaged dissipative force and vorticity production term estimated over 60
wave period. The black lines represent the isocontours of the bathymetry. a) arrows:
averaged circulation over 60 wave period; colors: dissipative force estimated using the
energy fluxes for the numerical simulation J0; b) Experimental dissipative force estimated
with the hydraulic jump analogy for experiment 30 (t=21:00-26:00). c) arrows: direction
of the wave ray vector ek for simulation J0; d) colors: vorticity production term 1/h∇ ∧
Dek for simulation J0, arrows: averaged circulation over 60 wave period.;
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breaking zone, between x = 12 m and x = 14 m. For the region of the rip channel,

for 9 m < y < 15 m, the dissipative force is moved seaward, at x = 12 m, as the

bathymetry induces an earlier wave breaking.

Vorticity production

The refraction map estimated with the energy fluxes (Figure 5.8) shows that the re-

fraction angles are lower than 10 degrees up to x = 14 m, and lower than 15 degrees

up to x = 18 m. For x > 18 m, the refraction angles increase rapidly.

We estimate the vorticity production term, from the equation 5.26:

∇ × (Dek).ez ≈ (∇D × ek).ez ≈ ∂D

∂x
sin θ − ∂D

∂y
cos θ (5.63)

In the breaking zone, where the dissipative force is important, we showed that the

refraction angles are lower than 10 degrees, therefore the vorticity generation comes

mainly from the alongshore dissipative force gradient
∂D

∂y
, and not so much on the cross-

shore dissipative force gradient, corresponding to the wave energy. This is consistent

with Peregrine [1998], who showed that the lateral gradients were responsible for the

vorticity generation.

We observe that the peak values of the vorticity production term are near the rip

neck at x = 13 m, y = 7 m, where the wave breaking is more intense, and in the horns

at x = 20 m, y = 17 m, where the water depth is lower.

Chapter 4 has provided a sound validation of the mean circulation and mean vortic-

ity fields. In this section we have gained insight on the transient spin-up under jonswap

forcing compared to the monochromatic wave forcing. Moreover, we have gained a first

understanding of the different time scales of the vorticity production by wave breaking

by analysing vorticity time-stacks, at the scale of the waves and at large time scales

related to the advection by the mean circulation.

5.5 Potential vorticity under a monochromatic wave

forcing

In the present section we aim at understanding what controls the vorticity production

in a bathymetry with a rip channel and rip bar head. At this end we will use a

alongshore uniform monochromatic wave forcing. The circulation in this configuration

is entirely controlled by the bathymetry, as the wave forcing is alongshore uniform.
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The differential wave breaking, motor of the vorticity generation, is caused by the

bathymetry heterogeneity. With the monochromatic wave forcing, we will observe the

influence of several parameters:

• we will as previously analyse the different time scales involved in the vorticity

evolution.

• we will see how friction changes the vorticity spin-up and spin-down.

• we will also analyse the influence of the wave period at constant wave height.

5.5.1 Vorticity

Averaged circulation and vorticity

We now use simulations with the same bathymetry from experiment 30 (t=21:00-26:00),

but with an alongshore uniform monochromatic forcing. This way, the circulation

reaches a quasi-equilibrium after the spin-up period, oscillating with the wave period

and we can estimate the terms of the potential vorticity balance by averaging over a

period.

The averaged potential vorticity for simulation M2, with the same significant wave

height than the JONSWAP simulation J0, can be seen in Figure 5.9. The rip channel at

y = 10 m is the main feature, with two circulation cells marked with opposite vorticity.

The centres of the cells which correspond the the averaged vorticity maximum, are

at x = 16 m, y = 7 m and x = 17 m, y = 16 m for the positive and the negative

vortex respectively. There is little vorticity within the rip channel, except at the rip

neck, at x = 13 m, where the two cells meet. Due to the bathymetry heterogeneity,

where the bed gradients are higher in the region 5 m < y < 10 m than in the region

10 m < y < 20 m, the circulation cells are asymmetric. The positive vortex is closer to

the rip channel with a strong maximum, whereas the negative vortex is further from

the rip channel with an expanding arm reaching the rip neck.

If we compare this Figure with the JONSWAP simulation J0 (Figure 5.2), we ob-

serve that the vorticity values are stronger in the recirculation cells in the monochro-

matic case. This is probably due to the smoothing induced by the irregular wave

forcing: as waves do not break exactly at the same position, the averaged quantities

are spatially smoothed, and the values are lower than in the monochromatic case.

If we look at the potential vorticity time-stack for simulation M2 in a cross-shore

profile at y = 7 m (Figure 5.10) we observe that the potential vorticity is in quasi-

equilibrium, oscillating with the wave period. Each wave generates potential vorticity,
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Figure 5.9 – Time-averaged potential vorticity field and circulation with the bathymetry
from experiment 30 (t=21:00) and a monochromatic wave forcing (simulation M2) over
a duration of 800 s. The black lines represent the isocontours of the bathymetry, the
arrows the averaged circulation. The dotted boxes represents the region used to estimate
the center of mass of each vortex.

175



Chapter 5 Nearshore mean circulation and vorticity dynamics

Figure 5.10 – Cross-shore potential vorticity time stack at y = 7 m (upper panel), corre-
sponding free surface water height time series at x = 5 m (middle panel) and potential
vorticity time-series at x = 15 m, y = 7 m (lower panel) corresponding to the black
dashed line in the potential vorticity time-stack, for a monochromatic wave forcing
(simulation M2)
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Figure 5.11 – Averaged Vorticity production term estimated over 60 wave period for a
monochromatic wave forcing (simulation M2). The black lines represent the isocontours
of the bathymetry. a) arrows: direction of the wave ray vector ek; b) arrows: averaged
circulation over this 60 wave period, colors: Dissipation estimated using the energy
fluxes; c) colors: Vorticity production term 1/h∇ ∧ Dek; arrows: averaged circulation
over this 60 wave period.

with a peak at x = 15 m, but the vortex boundaries are only affected by the passing

waves, and do not modulate at a larger period.

5.5.2 Potential vorticity balance

For the estimation of the different terms of the potential vorticity equation, we focus

on the time range 900 s < y < 1110 s. The system is considered in quasi equilibrium,

and we have approximately 60 wave periods, to estimate the averaged quantities.

If we look at the potential vorticity production term (Figure 5.11), we clearly ob-

serve a peak, at x = 14 m, y = 9 m, located near the rip neck, where the bottom

gradients are the strongest, and the longshore dissipation gradient is significant. We

also note that the vorticity production term is not symmetric, as it is stronger in one

of the two vortices.

Having estimated the vorticity production term, we compare it with the remaining

terms of the potential vorticity balance (equation 5.26). The spatial evolution of these
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terms can be seen in Figure 5.12. We focus on the two circulation cells between y = 1

m and y = 20 m. We define the positive vortex as the circulation cell with positive

potential vorticity with a center at x = 16 m, y = 7 m, and the negative vortex the

circulation cell with a center at x = 16 m, y = 15 m. Concerning the different terms

of the potential vorticity balance, we observe that the peak values are located near the

rip neck, at x = 12 m, y = 10 m, except for the friction that is more widely spread,

near the regions of strong vorticity.

We also observe the rip asymmetry as the advection , the wave induced mass flux,

the wave scale vorticity diffusion and the vorticity production are stronger in the pos-

itive vortex than in the negative vortex. For the positive vortex, the mentioned terms

are strong near the ripple neck, and form a line toward the center of the vortex. For

the negative vortex, we also observe that the extrema form a line, which starts in the

ripple neck at x = 13 m, y = 10 m, and extend through the negative vortex arm up to

x = 15 m, y = 19 m.

In terms of peak values, the stronger values are observed in the advection and wave

scale vorticity diffusion, with 0.1 m−1.s−2. The vorticity production term shows a peak

value of 0.04 m−1.s−2 and the wave induced mass flux shows a peak value of -0.03

m−1.s−2 near the ripple neck.

The friction dissipation shows lower extrema values, at 0.02 m−1.s−2 but it is more

uniformly distributed. Whereas all the other terms are important in the breaking zone,

the friction term is important near the shoreline, as it increases with decreasing depth.

The areas where most of the term are relevant correspond to the seaward boundaries

of the vortices, where the circulation and the wave breaking occur. From the spatial

organization of these terms, we can deduce an organization of the potential vorticity

under monochromatic wave. Starting the numerical experiment from rest and imposing

a monochromatic wave forcing, the following steps occur:

1. at first the potential vorticity is negligible, therefore the only important term is

the vorticity production term, dependent of wave breaking dissipation gradient

and the water depth h. If there is no such gradient, for example with an along-

shore uniform beach with alongshore uniform normal wave forcing, no vorticity

is created. In our case, the vorticity is generated near the rip neck, for both

vortices, and at the horns, where the water depth is lower, at x = 17 m, y = 3 m

and x = 17 m, y = 17 m. The vorticity generated at the horns has lower values,

but contribute to the global vorticity generation

2. The vorticity generated near the rip neck and the horns is then moved in the

system by advection or diffusion. These two terms are also important in the rip
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Figure 5.12 – Importance of the terms of the potential vorticity balance for a monochro-
matic wave forcing (simulation M2). The black lines represent the isocontours of the
bathymetry, the arrows the averaged circulation over this 60 wave period. The scale
color can be different. The potential vorticity unit is m−1.s−1 and the unit for the
potential vorticity balance terms is m−1.s−2
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neck, as it is the region where the vorticity is generated.

3. The circulation induced by the bathymetry create a rotational circulation that

has a positive feedback on the generated vorticity. The vorticity generated at the

rip neck is of the same sign as the vortices of the recirculation cells, therefore the

vorticity adds up to the greater vortices.

4. as vorticity keeps increasing, the wave induced mass flux and the friction terms

are no longer negligible. The friction term spatial distribution is very similar to

the distribution of the mean circulation. This points at a general equilibrium

between bottom friction and the mean circulation. As for the wave induced

mass flux it seems to have a negative feedback on vorticity, which would tend

to decrease the vorticity levels, however the magnitude is much lower than the

other terms.

5. in its equilibrium state, the two vortices have well defined boundaries close to

elliptic shapes, with maximum vorticity at the edges of the vortices. The vor-

ticity in the system is at equilibrium, being generated near the rip neck and at

the lateral horns, being advected and diffused in the whole system, and being

dissipated by friction in the whole area.

If we now focus on the order of magnitude of the terms of the potential vorticity

equation restricted to the the area of the positive and negative vortex, we obtain an

estimation of the relative importance of these terms in the vortex by averaging spatially

over the area occupied by the whole vortices.

For the positive vortex (Figure 5.13) we observe that the production term has an

area-averaged value of 6.08 ·10−3 m−1.s−2 with peak values at 0.15 m−1.s−2. is the main

source of vorticity with and the friction is the main sink of vorticity with −5.85 · 10−3

m−1.s−2. Even though the area-averaged value of the advection is an order of magnitude

less than that of the production, the peak values are of same magnitude. Moreover an

interesting feature is that the color patterns of these advection and production terms

have similar shapes. All these characteristics indicate that advection redistributes

vorticity to produce an equilibrium. In this system bottom friction is the only sink of

energy. We probably can state that the rate of production of vorticity at wave scale is

compensated by the rate at which it is destroyed by friction at the scale of the mean

circulation.

For the negative vortex (Figure 5.14), we also observe a similar behaviour, the

area-averaged potential vorticity production term and the friction term being the main
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−1/h < ∇q̃ũ >x,y=-1.63·10−4

 

 

−0.1

−0.05

0

0.05

0.1

12

14

16

18

20

2 4 6 8 10

Friction
< friction >x,y=-5.85·10−3

 

 

−0.04

−0.02

0

0.02

0.04 12

14

16

18

20

2 4 6 8 10

ζ production term
< ∇×D >x,y=6.08·10−3

 

 

−0.1

−0.05

0

0.05

0.1

0.15 12

14

16

18

20

2 4 6 8 10
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Figure 5.13 – Potential vorticity balance (5.26) terms for a monochromatic wave forcing
(simulation M2), for the positive vortex located at 12 m < x < 21 m, 2 m < y < 10 m.
The black lines represent the isobaths. The potential vorticity unit is m−1.s−1 and the
unit for the potential vorticity balance terms is m−1.s−2

contributors to the potential vorticity balance. The patterns of the spatial distribution

of the advection and the production are also similar.

5.5.3 Influence of friction

The friction is important as it is the only sink of the energy of the mean circulation

in the nearshore zone. Yu et Slinn [2003] using a linear bottom friction with normal

incident wave forcing observes that it has only a slight influence on the flow patterns,

as the offshore extent and the width of the rip current are barely affected by a change in

the bottom friction. Long et Ozkan-Haller [2009] observed that the friction coefficient

does not dictate the temporal variability of the vortical motions.

In our study the influence of friction in the vorticity field is estimated using a

monochromatic wave forcing with significant wave height Hm0
= 0.18 m and period

T = 3.5s, and different friction coefficients: cf = 1.6 · 10−2, cf = 2.1 · 10−2, cf =
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Figure 5.14 – Potential vorticity balance (5.26) terms for a monochromatic wave forcing
(simulation M2), for the negative vortex located at 12 m < x < 21 m, 12 m < y <
19 m. The black lines represent the isocontours of the bathymetry. The scale color
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Figure 5.15 – Time evolution of high-pass filtered enstrophy for a uniform monochromatic
wave forcing, for different friction coefficients. (−−): cf = 1.6 · 10−2 (simulation M1);
(−): cf = 2.1 · 10−2 (simulation M2); (− · −): cf = 2.6 · 10−2 (simulation M3).

2.6 ·10−2 (respectively simulations M1, M2, M3). The evolution of the low-pass filtered

enstrophy for the monochromatic wave forcing is shown in Figure 5.15 for these friction

coefficients. We observe a spin-up time of about t = 75 during which the enstrophy

increases with a steady rate. This rate does not really depend on the friction coefficient,

meaning that the friction is not the important factor in the spin-up. After this period

of spin-up, the enstrophy decreases and reaches a quasi-steady state at approximately

t = 200 s.

To analyse how friction influences vorticity decay, we run the simulation for t = 1200

seconds in order to reach a quasi-equilibrium state and set the wave forcing to zero at

t = 1200 seconds, and observe the evolution of enstrophy (Figure 5.16). To compare

the decay with different friction coefficients, we define the equilibrium enstrophy ǫeq as

the enstrophy reached after a duration of 1200 s and normalize the enstrophy with this

value.

We observe that the enstrophy decay is directly related to the friction coefficient, as

the time to reach half of the equilibrium enstrophy in the system is of approximately

50 seconds for cf = 2.6 · 10−2, 70 seconds for cf = 2.1 · 10−2 and 100 seconds for

cf = 1.6 · 10−2. For the simulation with the lower friction, we observe after 100

seconds that the enstrophy decrease accelerates, whereas the two other simulations

have a relatively smoother behaviour, with no sudden change in the rate of enstrophy

decay. The spatial and temporal evolution of the enstrophy decay are shown at several

instants after the wave forcing ceases in Figure (5.17). For the early stage of decay,

between 1200 and 1350 seconds we first observe that the enstrophy is higher when the

friction coefficient is lower, due to the potential vorticity balance at equilibrium where

the friction is the main sink.
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Figure 5.16 – Time evolution of enstrophy decay for a uniform monochromatic wave forcing,
for different friction coefficients. (−−): cf = 1.6 · 10−2 (simulation M1); (−): cf =
2.1 · 10−2 (simulation M2); (− · −): cf = 2.6 · 10−2 (simulation M3).

For the three simulations, after the wave forcing ceases, there is a self-advection

of the two vortices, reducing their distance and advecting themselves seaward. The

advection is slowed when increasing the friction, which in turn reduces vorticity, giving

a negative feedback to the vortices. Concerning the dipole at y = 25 m, the positive

vortex (red) is stronger than the negative one (blue) and is advected with a greater

velocity seaward, the negative vortex circling around it. This positive vortex moves

seaward due to the velocity induced by its image with respect to the close right lateral

boundary. This vortex is probably the reason of the increased decay in Figure 5.16)

for cf = 1.6 · 10−2, as the vortex goes near the boundaries, and part of it goes out of

the integration zone for the vorticity (Figure 5.17 a-d).

For the latter stages between t = 1400 s and t = 1550 s, we observe that the

dipole is slowly advected seaward for cf = 2.1 · 10−2 (m-p) and cf = 2.6 · 10−2 (u-x).

For cf = 1.6 · 10−2 (e-h), we observe that the positive vortex (red) is trapped by the

bathymetry, staying in the trough, while the negative vortex (blue) is still advected

seaward. This has been reported by Buhler et Jacobson [2001], who stated that the

favourite positions for the vortices were at bar trough, as it is difficult for them to

"climb" out of these bathymetric troughs.

If we focus on the motion of the dipole defined by the vortices at y = 7 m and

y = 15 m, we can look at the trajectories of the center of mass of these vortices for

different friction coefficient (Figure 5.18). We see that the displacement of the vortices
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Figure 5.17 – Potential vorticity snapshots during the decay, for different friction coeffi-
cients cf . (a-h) cf = 1.6 · 10−2 (simulation M1); (i-p) cf = 2.1 · 10−2 (simulation M2);
(q-x) cf = 2.6 · 10−2 (simulation M3); t = 1200 s corresponds to the moment where
the wave forcing ceases; the left vertical axis corresponds to the time of the snapshots,
every 50 seconds ; The color scale changes for t > 1350 s to observe the evolution of
the vortices, the potential vorticity unit is Hz.m−1.
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Figure 5.18 – Trajectories of the center of mass of the vortex dipole during the decay over
1200 seconds, for different friction coefficients cf . a) cf = 1.6 · 10−2 (simulation M1);
b) cf = 2.1 · 10−2 (simulation M2); c) cf = 2.6 · 10−2 (simulation M3); d) Evolution
of the center of mass cross-shore position for the positive vortex x+

v (red) and negative
vortex x−

v (blue) for different frictions; (−−): cf = 1.6 · 10−2 (simulation M1); (−):
cf = 2.1 · 10−2 (simulation M2); (− · −): cf = 2.6 · 10−2 (simulation M3).
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Figure 5.19 – Estimation of the Stokes Drift for a monochromatic wave forcing (simulation
M2). The arrows represent the averaged circulation over the simulation, the lines the
isocontour of the bathymetry.

center of mass is influenced by the friction, as the friction slows them and reduce their

strength. For cf = 1.6 · 10−2 (a), we observe that the positive vortex (red) is trapped

for some time in the trough or the rip neck and as a result the negative vortex (blue)

starts moving around this position. When the negative vortex is far enough, the dipole

separates and each vortex starts moving freely.

For cf = 2.1 · 10−2 (b) and cf = 2.6 · 10−2 (c), we observe that the vortices start

moving closer, and then the mutual advection start to drive them seaward. For these

two cases, the vortices are advected toward y = 0, as the positive vortex (red) is

stronger than the negative one (blue), the negative vortex is slowly rotating around

the red one.

If we look at the evolution of the cross-shore position of the vortices, we also observe

the influence of the friction on the displacement of the vortices. From these positions,

we can estimate an order of magnitude of the vortices displacement velocity, between

1 cm/s and 4 cm/s. These velocities are of the order of magnitude of the Stokes

drift (Figure 5.19) indicating that the seaward motion of the self-advected vortices is

countered by the Stokes drift who traps them between the shoreline and the breaking

zone. We observe that the Stokes drift produces high velocities in the breaking zone

of approximately 7 cm/s, preventing the vortices to move seaward.

5.5.4 Influence of period

The enstrophy present in the system also depends on the period of the wave. To

observe this dependence, we use monochromatic simulations with the same significant
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Figure 5.20 – Time evolution of enstrophy for a uniform monochromatic wave forcing, with
different wave periods. (· · · ): T = 2.5 s (simulation M7); (−−): T = 3 s (simulation
M4); (−): T = 3.5 s (simulation M2); (− · −): T = 4 s (simulation M8); (−): T = 4.5
s (simulation M5).

wave height Hm0
= 0.18 m and periods ranging from T = 2.5 s to 4.5 s. The time

evolution of enstrophy indicates that the spin-up is similar for all the simulations, and

that a quasi-equilibrium state is reached in all cases, after approximately 400 seconds.

If the value of the enstrophy at the equilibrium increases with the period, for the

spin-up, we observe that for the wave forcing with T = 3.5 s, the maximum value

reached during the spin-up is higher than the one for the T = 4 s simulation and

similar to the T = 4.5 s simulation (simulations M8 and M5 respectively). This is

probably caused by the influence of the incident and reflected wave field. By using

a radon transform [Almar et al., 2013] to separate these wave fields (Figure 5.21) we

see that the reflected wave field has an influence on the local wave height for longer

periods, as it creates patches for the wave height and the wave breaking index, which

can increase the vorticity generation locally. By looking now at vorticity time-stacks

at y = 7 m (5.22), near the positive vortex center, we also observe that the vorticity

generated by each passing increases with the period. The boundaries of the vortex in

this cross-shore profiles are quite steady. The reason for the increase of enstrophy in the

system with longer wave periods, is due to the increase in the vorticity production term

(Figure 5.23). An increase in the wave period induces an increase in the dissipation,

which in turn generates higher vorticity.
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Figure 5.21 – Estimation of the averaged wave height H̄ and the averaged wave breaking
index γ̄ for a monochromatic wave forcing of period T = 4.5 s (simulation M5). Left
panels: Total wave field; Right panel: incident wave field, separated using the radon
transform
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Figure 5.22 – Vorticity time-stack of a cross-shore profile at y = 7 m for a monochromatic
wave forcing, with different wave periods. a) T = 2.5 s (simulation M7); b) T = 3 s
(simulation M4); c) T = 3.5 s (simulation M2); d) T = 4 s (simulation M8); e) T = 4.5
s (simulation M5);

5.5.5 Scaling law of the mean vorticity

Concerning the mean vorticity on the nearshore zone, averaged in space and over a long

period of time, Bowen [1969] suggested an equilibrium between the production and the

dissipation due to the friction. If we admit that the inverse-energy non-linear cascade is

dominant in the equilibrium, as noted by Chavanis et Sommeria [2002], we can assume

that the mean vorticity is the result of the equilibrium between the production and the

advection by the mean currents.

In equation 5.26, this equilibrium writes:

u · ∇
(

q

h

)
∼ 1

h
∇ × (Dek) · ez (5.64)

we now suppose that the orders of magnitude for the variables are defined as:

q ∼ Q u ∼ U0
∂

∂x
∼ ∂

∂y
∼ 1

Ly

h ∼ h0 (5.65)

where Ly is the length scale of the energy deficit which in the experiment is Ly ∼ 5

m, and h0 is the characteristic the water depth near the breaking point taken here

as h0 ∼ 0.2 m. The dissipative force is estimated using the hydraulic jump analogy

defined in equation 5.29. The gradients of the production term are mainly alongshore
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Figure 5.23 – Estimation of the averaged wave height H̄, the averaged wave breaking index
γ̄, the dissipative force D and the vorticity production term, with monochromatic wave
forcing with different periods. Left panels: T=2.5 s (simulation M4); Middle panels:
T=3.5 s (simulation M2); Right panels: T=4.5 s (simulation M5).
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and therefore associated to either the energy deficit length scale or the bathymetry

alongshore gradients as shown in the previous analysis. The advection term is associ-

ated to gradients in the potential vorticity which are on the scale of the vortex radius

R.

We then obtain the following order of magnitude relation:

U0
1
R

Q

h0

∼ 1
h0Ly

g

4cT

H3

h2
0

(5.66)

If we suppose that the velocity magnitude is related to the vortices and that these are

of the Rankine type, the velocity increases with vortex radius as U1(r) ≈ r
R

U0, with U1

the velocity in the vortex, r the distance from the vortex center, R the vortex radius.

The order of magnitude for the vorticity Q is then

Q ∼ 1
r

∂(rU1)
∂r

∼ U0

R
(5.67)

The relationship 5.66 the becomes:

Q2 ∼ gh0

4cTLy

γ3 (5.68)

where γ = H/h0 is the wave breaking index. By integrating in the surf zone represented

by the area S and time-averaging we obtain an equivalence for the mean enstrophy:

< ǫ >∼ gh0

4cTLy

∫

S
< γ >3≡ Γr (5.69)

Using the scaling law between the vorticity generation and the vorticity advection,

we observe that for Γr there is a linear relationship with the enstrophy, indicating the

quasi-equilibrium between the vorticity generation and the vorticity advection.
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Figure 5.24 – Scaling law of the mean enstrophy < ǫ > versus Γr (·) using simulations with
a monochromatic wave forcing and different periods. The line represents the linear
relationship. The colours represent the period of the monochromatic wave forcing.
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5.6 Bichromatic wave forcing

5.6.1 Vorticity

Using the bichromatic simulations we want to observe the influence of the wave group-

ing on the evolution of vorticity in the nearshore zone. The bichromatic wave forcing

allows to observe the spin and decay of the vorticity for each wave group, and to observe

the evolution of vorticity for wave groups with different wave group periods.

To that end, we perform simulations with the same significant wave height Hm0
=

0.18 m and same wave period T = 3.5 s, but with a different wave grouping ranging

from Tg = 35 s, with 10 wave periods between two nodes (simulation B1), to Tg = 280 s

with 80 wave periods between two nodes (simulation B8). We observe that the averaged

circulation and potential vorticity are similar for the bichromatic simulations, allowing

to compare the variations forced by the wave grouping. The two vortices are located

in the same areas and the point where the rip velocity is estimated is located within

the rip channel for all the simulations.

The averaged quantities being similar, we can compare the different simulations.

We first look at the evolution of the enstrophy in the system, in Figure 5.26. The

wave envelope at x = 5 m shows the wave groups for the monochromatic case, and the

different bichromatic cases. The main difference apart from the wave grouping is that

the monochromatic wave amplitude is of 0.0636 m, whereas the maximum amplitude

in the bichromatic case is of 0.09 m, to obtain the same significant wave height Hm0
for

all the simulations considered. Concerning the enstrophy, in the monochromatic case

the spin-up has already been commented in Figure 5.15, with an increase up to t = 70

s, then a decrease to the quasi equilibrium value, at t = 200 s. The bichromatic wave

forcing shows a similar enstrophy gradient in the spin-up, with a time-lag between the

different cases, due to the fact that the greater the wave group period, the longer the

time to attain the sufficient wave amplitude to break and generate vorticity. After that,

all the bichromatic case reach an oscillatory state, where the modulation in enstrophy

is directly related to the modulation in the wave group.

For the shorter wave group period Tg = 35 s (simulation B1), the enstrophy reaches

an oscillatory state lower than in the monochromatic case (simulation M2). This limit

could be related to the spin-up time of the monochromatic case, around 70 s, and if

the wave group period is lower than this limit, then the circulation does not oscillate

around the equilibrium value of the monochromatic case. For the other bichromatic

cases, the oscillatory phase in enstrophy is modulated around the equilibrium enstrophy

value of the monochromatic case. We also note that the longer the wave group period,
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Figure 5.25 – Averaged Potential vorticity field and circulation over one to several wave
group periods, depending on the simulation for a bichromatic wave forcing. The black
lines represent the isocontours of the bathymetry, the arrows the averaged circulation
over one group period Tg. The boxes represent the areas where the center of mass of the
vortices is searched. The circle represent the position of the point where urip and vrip

are estimated. a) Tg = 35 s (simulation B1); b) Tg = 70 s (simulation B2); c) Tg = 105
s (simulation B3); d) Tg = 140 s (simulation B4); e) Tg = 175 s (simulation B5); f)
Tg = 210 s (simulation B6); g) Tg = 245 s (simulation B7); h) Tg = 280 s (simulation
B8).
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Figure 5.26 – a) and c) Time evolution of the wave group envelope at x = 5 m for the
bichromatic simulations, only the upper part of the wave envelope is shown, for clarity
purpose. ; b) and d) low-pass filtered enstrophy for the corresponding simulations.
(—): monochromatic forcing, T0 = 3.5 s (simulation M2). (· · · ): Tg = 35 s (simulation
B1); (− · −): Tg = 70 s (simulation B2); (−−): Tg = 105 s (simulation B3); (−):
Tg = 140 s (simulation B4). (· · · ): Tg = 175 s (simulation B5); (− · −): Tg = 210 s
(simulation B6); (−−): Tg = 245 s (simulation B7); (−): Tg = 280 s (simulation B8).
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the higher the enstrophy maximum during a group period, however the enstrophy is

modulated by the wave group and oscillates around the same mean value which is the

equilibrium enstrophy of the equivalent monochromatic wave.

If we focus now on the bichromatic case with a longer wave group period Tg = 140

s, we observe a slight asymmetry in the enstrophy modulation around the equilibrium

value. Looking at the modulation between two trough t = 450 s and t = 590 s,

the maximum enstrophy is reached at t = 505 s, which means that the increasing

phase lasts 55 s, and the decreasing phase lasts 85 s. This is due to the different

mechanisms involved in the vorticity generation and the vorticity decay. In the case of

the vorticity generation, as the wave amplitude grows, the vorticity generated by wave

breaking interacts with the vorticity field already present, with a positive feedback

that increases further the vorticity. On the contrary, when the wave amplitude is

decreasing, the feedback decreases too, and the dissipation by friction becomes strong.

As evidenced in the previous section the spin-up is more rapid while the enstrophy

decrease monitored by friction has much larger time scales.

For longer wave group periods (Tg > 175 s, simulations B5 − B8), we observe that

the enstrophy in the oscillatory state present three phases. At first when the wave

amplitude start increasing, the enstrophy start increasing with the same growth rate

for these 4 simulations for approximately the first 50 seconds of the wave group. Then

the enstrophy keeps increasing, but with a lower growth rate. Finally when the wave

amplitude in the group start decreasing, the enstrophy decreases too with a constant

rate, similar in the 4 simulations.

This indicates that the circulation in the nearshore zone reaches a quasi-equilibrium

after some time, related to the spin-up time, when the enstrophy reaches a value of

approximately 1.5 Hz2.m2.

The vorticity time-stack for different wave group periods are plotted in Figures

5.27 and 5.28. For the bichromatic wave forcing with wave group period Tg = 35 s

(simulation B1), we observe that the cross-shore position of the vortex is modulated

by the wave group. When the wave amplitude is low the vortex is found in the band

11 m < y < 17 m and when the wave amplitude increase, the vortex position changes

abruptly, passing to the band 14 m < y < 18 m. This abrupt change is due to the fact

the waves with the lower amplitude of the group do not break, and do not generate

significant vorticity, to influence the vortex. The vorticity generation in the vortex

center also increases with the wave of higher amplitude.

For the bichromatic with a wave group period Tg = 70 s, the behaviour is similar, the

vortex moving slowly seaward when the wave amplitude decreases, and going shoreward

when the wave amplitude increases and the wave start breaking again. The vorticity
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evolution at x = 15 m, y = 7 m shows that the evolution is asymmetric, when the

wave amplitude increases the vorticity increases slowly for 45 seconds and when the

wave amplitude start decreasing, the vorticity decreases to reach its minimum in only

15 seconds. This caused by the different terms that are preponderant in the increasing

phase it is the vorticity generation due to dissipation by wave breaking and the vorticity

advection, and in the decreasing phase it is the dissipation by friction that becomes

important.

We also notice that when the wave amplitude decreases, negative vorticity is gen-

erated at the off-shore boundary. When the wave forcing increases, the vortices are

stronger and the shear between the two vortices in the rip channel increases too. This

shear advects vorticity from the negative vortex toward the rip neck, and is later found

in the seaward boundary of the positive vortex.

For the other bichromatic wave forcing with wave period ranging from Tg = 105

s to Tg = 280 s (simulations B3-B8)the evolution is similar hence we can explain the

dynamics one time for all these simulations. At first when the wave amplitude starts

increasing the vorticity is not affected by the waves due to the low amplitude and we

observe that the vortex is moving shoreward. When the wave amplitude is high enough

to generate vorticity by dissipation due to wave breaking, the vortex starts moving sea-

ward, with high vorticity in the center of the vortex. After approximately 70 seconds,

the vorticity starts decreasing, even though the wave amplitude keeps increasing. This

behaviour is similar to the one observed for the spin-up in the monochromatic simula-

tions and lasts for the same period of 70 seconds. After this spin-up time, the vorticity

decreases rapidly to a value oscillating near 0.2 s−1 and when it reaches this value,

the vorticity keeps increasing, but a slower pace. With the vorticity decrease is also

associated an expansion of the vortex from the band 12 m < y < 16 m to the band

12 m < y < 18 m. When the wave amplitude starts decreasing the vorticity at first

does not decrease, as the wave amplitude is still high and generates enough vorticity

to remain in quasi-equilibrium. When the wave amplitude is low enough, the vorticity

starts to decrease and the vortex start expanding.

5.6.2 Evolution of the circulation cells

The evolution of the center of mass averaged over one wave period (Figure 5.29) are

different for the JONSWAP, the monochromatic and the bichromatic simulations. For

the JONSWAP wave forcing (simulation J0) the two vortices center move constantly

to adapt to the wave forcing, spreading toward a center position at x = 16 m, y = 7

m for the positive vortex (red) and x = 16.5 m, y = 15.5 m for the negative vortex

198



Chapter 5 Nearshore mean circulation and vorticity dynamics

Figure 5.27 – Cross-shore vorticity time stack at y = 7 m, corresponding free surface water
height time series at x = 5 m (η5) and vorticity time-series at x = 15 m, y = 7 m (q15)
corresponding to the black dashed line in the vorticity time-stack, for a bichromatic
wave forcing. Upper left panels: Tg = 35 s (simulation B1). Upper right panels:
Tg = 70 s (simulation B2). Lower left panels: Tg = 105 s (simulation B3). Lower right
panels: Tg = 140 s (simulation B4).
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Figure 5.28 – Cross-shore vorticity time stack at y = 7 m, corresponding free surface water
height time series at x = 5 m (η5) and vorticity time-series at x = 15 m, y = 7 m (q15)
corresponding to the black dashed line in the vorticity time-stack, for a bichromatic
wave forcing. Upper left panels: Tg = 175 s (simulation B5). Upper right panels:
Tg = 210 s (simulation B6). Lower left panels: Tg = 245 s (simulation B7). Lower right
panels: Tg = 280 s (simulation B8).
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Figure 5.29 – Trajectories for the averaged center of mass over one period of the positive

vortex [x+
v , y+

v ] (red) and negative vortex [x−
v , y−

v ] (blue). a) JONSWAP wave forcing
(simulation J0) b) monochromatic wave forcing T = 3.5 (simulation M2); (c-i) bichro-
matic wave forcing: b) Tg = 35 s (simulation B1); d) Tg = 70 s (simulation B2); e)
Tg = 105 s (simulation B3); f) Tg = 140 s (simulation B4); g) Tg = 175 s (simulation
B5); h) Tg = 210 s (simulation B6); i) Tg = 245 s (simulation B7); j) Tg = 280 s
(simulation B8).
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(blue). Their positions respect to the mean position does not change too much, as

they move less than 2 meters in the cross-shore or the longshore direction. For the

monochromatic wave forcing (simulation M2) the vortices remain in the same position

in a state of quasi-equilibrium.

For the bichromatic wave forcing, we observe that the vortices center start to move

due to the wave grouping. For the wave group period Tg = 35 s (simulation B1) the

motion of the vortices is essentially cross-shore, moving by roughly 2 meters during

one wave group. As shown in the previous section, for this simulation the wave group

period is lower than the spin-up time, hence the vortices move freely with the wave

group and the vortices do not reach a quasi-equilibrium.

As the wave group period increases, the motion of the vortices changes too. The

trajectory of the positive vortex (red) changes to a longshore oscillation of approxi-

mately 2 meters, and the negative vortex (blue) trajectory moves in the cross-shore

and the longshore position. For Tg > 135 s (simulations B5-B8), the trajectory of the

vortices is very similar. This also shows the importance of the spin-up time, as when

the wave group period is large than this spin up time, the behaviour of the vortices

does not change drastically.

The evolution of the distance between the vortex centres dv over one group period

also changes with the group period. For the bichromatic wave forcing with Tg = 35

s (simulation B1) the distance between the vortex centres is relatively constant, this

is explained due to the cross-shore movement of the vortices, and they seem to move

at the same pace seaward or shoreward. When the wave group period increases we

observe that the distance between the two vortices start to evolve with the wave group

period. When the wave amplitude is low, the two vortices come closer to one another,

as the waves do not generate significant vorticity, the mutual advection of the vortices

moves them closer. As the wave amplitude increases, the distance starts increasing

as the vortices move toward their equilibrium position. When the wave amplitude

decreases, at first the distance remains constant, and when the wave amplitude is low,

the vorticity generated by the waves is not significant and the vortices start to move

closer again. We also note that the motion of the vortex centres due to the wave forcing

is slower than the motion of the vortices due to mutual advection.

The distance spectra (Figure 5.31) shows that the vortices motion is dictated by

the wave group period, as for the bichromatic forcing considered, the peak in frequency

is found at the wave group period, consistent with the time evolution of the vortices.
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Figure 5.30 – Upper panel: Evolution of the wave group envelope over one group period
Tg. Lower panel: Evolution of the distance between the center of mass of the vortices
dv over one group period. (· · · ): Tg = 35 s (simulation B1); (− · −): Tg = 70 s
(simulation B2); (−−): Tg = 105 s (simulation B3); (−): Tg = 140 s (simulation B4);
(· · · ): Tg = 175 s (simulation B5); (−·−): Tg = 210 s (simulation B6); (−−): Tg = 245
s (simulation B7); (−): Tg = 280 s (simulation B8).
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Figure 5.31 – Spectra of the distance between the center of mass of the two vortices dv for
the bichromatic cases. (· · · ): Tg = 35 s (simulation B1); (− · −): Tg = 70 s (simulation
B2); (−−): Tg = 105 s (simulation B3); (−): Tg = 140 s (simulation B4); (−): Tg = 175
s (simulation B5).

5.6.3 Rip current velocities

One of the main feature of the rip current is the rip current ejection that is a great

hazard for swimmers. Using the monochromatic case and the bichromatic cases, we

intend to understand the evolution of the rip current velocities. To observe the variation

in the rip current velocity, we focus on point at x = 15 m, y = 10 m, in the center of

the rip channel.

The rip current evolution are plotted in Figure 5.32. We observe that the rip current

velocity is mainly cross-shore oriented, as it ranges from -0.4 m/s to 0.3 m/s in the

cross-shore direction, and from -0.05 m/s to 0 m/s in the longshore direction. If we

look at the spatial distribution of the rip current velocity, the most probable case is of

seaward oriented cross-shore velocity, with low longshore velocity vrip. The observation

of the velocities time series explains this distribution, as the cross-shore velocity urip is

clearly skewed, being more time seaward oriented than shoreward oriented in a wave

period. During a wave period, urip becomes positive with the passing of the wave, but

0.7 s after the wave, the velocity in the rip current becomes negative, and decreases

until the next wave comes. This explain that the wave-averaged rip current velocity is

urip ≈ −0.15 m/s.

As the longshore rip current velocity vrip is one order of magnitude lower compared
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Figure 5.32 – Upper panel: spatial distribution of the cross-shore and longshore velocities
urip, vrip inside the rip channel, at x = 15 m, y = 10 m for a monochromatic wave
forcing (simulation M2). Lower panel: Time-series of urip (−), vrip (−−) over 10
seconds. For urip, the positive velocity is shoreward oriented, for vrip the positive
velocity is oriented toward y = 30 m.

to the cross-shore velocity urip, we focus on the cross-shore velocity urip for the bichro-

matic wave forcing simulations. For Tg = 35 s (simulation B1) we observe a skewed

cross-shore velocity profile with most of the values negative over one group period,

explaining the negative averaged velocity (Figure 5.33). The cross-shore velocity aver-

aged over one group period < urip >Tg
is shown in Figure 5.34. The strongest averaged

velocity in the rip current is obtained for the monochromatic case (a negative cross-

shore velocity corresponds to a seaward oriented velocity), as with the bichromatic

cases, the averaged cross-shore velocity is lower. We also note that the averaged cross-

shore velocity reaches an equilibrium value, around -0.125 m/s that does not change

for Tg > 105 s. This is another indication that for long enough wave group periods,

the nearshore circulation reaches a quasi-equilibrium state.
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Figure 5.33 – Evolution of urip (−) for the bichromatic Tg = 35 s case (simulation B1), at
x = 15 m, y = 10 m, in the center of the rip channel. The dashed line represents the
averaged cross-shore velocity < urip >Tg over a group period in the same position.
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Figure 5.34 – Evolution of the cross-shore velocity averaged over a group period < urip >Tg

with the wave group period Tg. Tg = 0 s corresponds to the monochromatic case.
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5.7 Conclusion

Using the numerical model from [Marche et al., 2007 ; Guerra et al., 2014] that has been

validated for the bathymetry and wave forcing considered, we studied the evolution

of the circulation and vorticity in the nearshore zone. Using the potential vorticity

balance equation in the case of a monochromatic wave forcing, we studied the relative

importance of each term, in term of vorticity generation, displacement or dissipation.

We observe that the enstrophy, related to the vorticity present in the nearshore

zone is related to the friction and the vorticity production term. The potential vorticity

balance allowed to understand the mechanisms of vorticity generation and advection

with a monochromatic normally incident wave forcing.

For a monochromatic wave forcing, we observed using a scaling law, that the mean

vorticity results from the equilibrium between the vorticity production by wave break-

ing and the vorticity advection by the mean currents.

The friction also influences the vorticity in the nearshore zone, as when the friction

decreases, the enstrophy increases. The friction is also responsible for the vorticity

decay, and the decay rate increases with an increased friction.

For the bichromatic wave forcing, we observed that the nearshore zone reaches an

equilibrium when increasing the wave group period, and that the enstrophy reaches a

threshold for large wave group periods, the time to reach this threshold being similar

to the spin-up of the vorticity in our case.
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Conclusion

6.1 Coastal bottom boundary layer

A unidimensional k − ω model has been proposed and validated on smooth and rough

bottoms, against experimental and numerical results. The incorporation of the ad-

vective terms, as well as the mean pressure gradient, improves the model capacity to

reproduce the variations of the bottom boundary layer under oscillatory flows on the

beach.

Using the wave forcing from an experiment on a wave flume in the LEGI with a

mobile bed and a bichromatic wave forcing, the k − ω numerical model reproduces the

vertical distribution of non-linearities in the boundary layer.

The decrease in asymmetry and increase in skewness as we approach the still bed

predicted by the model is well observed in the experiment. The numerical results show

however a variation in a much smaller vertical scale than the experiment. By ad-hoc

coupling of the numerical results on a fixed bed with the vertical displacements of the

still bed, we observe a similar vertical diffusion, implying that this diffusion is caused

by the still bed vertical motion, and not by an increased roughness height caused by

the sheet-flow layer.

Using a theoretical formula [Abreu et al., 2010] to estimate the relationship between

the asymmetry outside the boundary layer and the skewness near the bottom over a

wide range of skewed and asymmetric waves, a linear correspondence between this two

quantities is found, that is similar to the experiment by [Berni et al., 2013]. We can

state that the process that transforms asymmetry into skewness in the coastal bottom

boundary layer is a general feature of oscillatory boundary layers, that could lead to a

better prediction of the sediment transport.
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6.2 Vorticity and circulation in the nearshore zone

The 2D depth-averaged numerical model based on the Non Linear Shallow Water

equations ([Marche et al., 2007],[Guerra et al., 2014]) has been validated with a wide set

of data, of free surface and velocity evolution from the MODLIT experiment [Michallet

et al., 2010 2013]. The model is able to reproduce the energy dissipation gradients

related to wave breaking, as well as the energy transfer from the JONSWAP band to

the infragravity band. These energy dissipation gradients are an important proxy for

vorticity generation [Brocchini et al. [2004]; Bonneton et al. [2010]]. The numerical

model is also accurate in estimating the nearshore circulation and vorticity associated,

compared to the lagrangian drifters ([Castelle et al., 2010]). The model also reproduces

some of the seiching modes that occur between the breaking point and the shoreline.

Using this numerical model and the potential vorticity balance derived from the

vorticity equation of Bonneton et al. [2010] as a diagnosis tool, we studied the evolution

of the circulation and vorticity in the nearshore zone, for a JONSWAP wave forcing,

as well as monochromatic and bichromatic ones.

We observe that the enstrophy, related to the vorticity present in the nearshore

zone is controlled by friction and vorticity wave generation. The potential vorticity

balance allowed to understand the mechanisms of vorticity generation and advection

with a monochromatic normally incident wave forcing.

For a monochromatic wave forcing, we observed that the mean vorticity results from

the equilibrium between the vorticity production by wave breaking and the vorticity

advection by the mean currents that can be summarized with a scaling law that predicts

vorticity levels in the surf zone.

The friction also influences the vorticity in the nearshore zone, as when the friction

decreases, the enstrophy increases. The friction is also responsible for the vorticity

decay, and the decay rate increases with an increased friction.

For the bichromatic wave forcing, we observed that the nearshore zone reaches an

equilibrium when increasing the wave group period, and that the enstrophy reaches a

threshold for large wave group periods, the time to reach this threshold being similar

to the spin-up of the vorticity in our case.

6.3 Perspectives

The coastal bottom boundary layer is important to obtain better predictions of the

sediment transport in the surf zone. The influence of the mobile bed on this boundary

layer is an important topic, and the mechanisms involved with this bed mobility is
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still under investigation. Future work will be focused on the modelling of such vertical

bottom motions within the k−ω framework, by incorporating the bed mobility directly

into the equations.

The mechanisms of generation and decay of the potential vorticity in the nearshore

zone can be further developed by coupling the numerical hydrodynamic model with La-

grangian drifters through the incorporation of the Lagrangian Particle Tracking model

from Escauriaza et Sotiropoulos [2011] to the numerical model. Lagrangian drifters

can be used to observe the nearshore dispersion on a rip current, for different wave

forcing over an uneven bathymetry.
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Appendix A

Turbulence modelling - Numerical

resolution

A.1 1D version of the k − ω equations

The horizontal velocity u(z, t), the turbulence kinetic energy k(z, t) and the specific

dissipation rate ω(z, t), are described in a 1D framework:

∂u

∂t
= −1

ρ

∂p

∂x
+

∂

∂z

(
(ν + νT )

∂u
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)
(A.1)

∂k
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= νT
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− β∗kω +
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ω

)
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]
(A.2)
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[Wilcox, 1998 ; Guizien et al., 2003]
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[Wilcox, 2006]

(A.3)

A.2 Numerical Resolution

A.2.1 Resolution scheme

We solve the system of equations using the implicit finite control volume method of

Patankar [1980] which is described hereafter, on an exponential grid. We improve this
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method by determining the turbulence kinetic energy k and the specific dissipation

rate ω in the staggered grid.

Determination of the computational grid

We can choose the type of the grid, depending on the area where we want the more

points

Geometric grid

to describe the geometric grid, we use the initial conditions z0 the bottom boundary,

and zh the upper boundary, and also the number of nodes N0

We define the grid with the equation A.4:





(z)1 = z0

(z)j+1 = (z)j + z0R
j ∀j ≥ 1

(A.4)

where R represent the common ratio of the geometric series, which is not known

beforehand. To determine R we use the properties of a geometric series:

(z)N0
= z0

N0∑

i=0

Ri = zh (A.5)

Figure A.1 – Computational grid sketch. The horizontal velocity u is determined at point
j, while the turbulence kinetic energy k and the specific dissipation rate ω are determined
on the midpoints j + 1/2 and j − 1/2
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the midpoints are located at the center of each cell, as shown in figure A.1:

(z)j+1/2 = zj +
(z)j+1 − (z)j

2
(A.6)

We also define two points that will be used as ghost points in the boundaries:

z− 1

2

=
z0

2

zN0+ 1

2

= zh +
z0R

N0−1

2
(A.7)

Regular grid

The regular grid is a grid where all points are evenly spaced:

(z)j+1 =
j

N
(zh − z0) + z0 (A.8)

mixed grid

the mixed grid is partly geometric at the bottom, and regular at the top. For this

type of grid, and to avoid discrepancies at the frontier, the frontier is located where

∆zgeom = ∆zregular

Geometric grid at the boundaries

the geometric grid at the boundaries is used when we need more resolution at the

top and bottom boundaries. We use two geometric grid of length (zh − z0)/2.

Comparison different grid types In the figure A.2, we see the difference between

the different types of grid.

We see that the regular grid has low resolution at the bottom boundary, and there-

fore is seldom used. From now on, unless stated otherwise, the grid will be geometric.

A.2.2 Horizontal Velocity equation

original terms

The following step is to derive the discretization equation and to integrate them over

a control volume.

We integrate the equation (A.1) over a control volume centered in the point j, and

over a time step ∆t:

∫ j+ 1

2

j− 1

2

∫ t+∆t

t

∂u

∂t
dt dz =

∫ j+ 1

2

j− 1

2

∫ t+∆t

t

(
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∂t
− 1

ρ

∂P̄

∂x

)
dt dz+

∫ j+ 1

2

j− 1

2

∫ t+∆t

t

∂

∂z

(
(ν + νt)

∂u

∂z

)
dt dz

(A.9)
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Figure A.2 – Grid point distribution. The grid span from z0 = 10−6 m to zh = 0.4 m, with
N0 = 50 grid points. a) geometric grid, b) regular grid, c) mixed grid with a geometric
grid between 2.5 · 10−6 < z/zh < 1/3 and a regular grid between 1/3 < z/zh < 1, d)
geometric grid at the boundaries. The left panel represents the grid in regular scale,
the right panel shows the same grids on logarithmic scale.

For time integration, we will use a fully implicit method:

∫ t+∆t

t
uj dt = ut+∆t

j ∆t (A.10)

For readability purpose, we will drop the superscript t + ∆t, and assume that u, k

and ω stand for the new values that are unknown at step t + ∆t:

ut+∆t ≡ u , kt+∆t ≡ k , ωt+∆t ≡ ω (A.11)

Therefore: ∫ j+ 1

2

j− 1

2

∫ t+∆t

t

∂u

∂t
dt dz = (uj − ut

j)∆zj (A.12)

230



∫ j+ 1

2

j− 1

2

∫ t+∆t

t

(
∂U

∂t
− 1

ρ

∂P̄

∂x

)
dt dz = (U − U t)∆zj − 1

ρ

∂P̄

∂x
∆t∆zj (A.13)

∫ j+ 1

2

j− 1

2

∫ t+∆t

t

∂

∂z

(
(ν + νt)

∂u

∂z

)
dt dz =


(Γu)j+ 1

2

(
∂u

∂z

)

j+ 1

2

− (Γu)j− 1

2

(
∂u

∂z

)

j− 1

2


∆t

(A.14)

Where (Γu)j = ν + (νT )j. To calculate the derivatives at the points j − 1
2

and j + 1
2
,

we use the nearby points:
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)

j+ 1

2
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)
(A.15)
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we then obtain:
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By defining the terms:

AN(j) = − ∆t

∆zj




(Γu)j+ 1

2

∆zj+ 1

2


 (A.18a)

AS(j) = − ∆t

∆zj




(Γu)j− 1

2

∆zj− 1

2


 (A.18b)

AP (j) = 1 − AN(j) − AS(j) (A.18c)

Du(j) = −1
ρ

∂P̄

∂x
∆t + ut

j + U − U t (A.18d)

(A.18e)

we obtain the following discrete equation for points j ∈ [2 : N0 − 1]:

AN(j)uj+1 + AP (j)uj + AS(j)uj−1 = Du(j) (A.19)

The subscript P refers to the central point considered, while the N subscript refers to

the point directly above (or "North") and the S subscript refers to the point directly
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below ("South").

Boundary conditions

Lower boundary condition

At the bottom boundary z = z0 corresponding to j = 0 (figure A.3) the horizon-

tal velocity u and the turbulent kinetic energy k are equal to zero and the specific

dissipation rate is set to the value ωwall, as defined in chapter 2.

Figure A.3 – Grid point sketch at the bottom boundary

The discrete equation for u is straightforward, as it is defined on the normal grid:

AN(1)u1 + AP (1)u0 = 0 (A.20)

with

AN(1) = 0 , AP (1) = 1 (A.21)

Upper boundary condition

At the upper boundary z = zh corresponding to j = N0 (figure A.4) the vertical

gradient of turbulent kinetic energy k and specific dissipation rate ω are equal to zero.

We can define two boundary conditions for the horizontal velocity u, the velocity at

the boundary can be equal to the velocity outside the boundary layer, or the gradient
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of velocity in this point can be equal to zero.

Figure A.4 – Grid point sketch at the upper boundary

• If we define the horizontal velocity at the top boundary to be equal to the velocity

outside the boundary layer U∞, the integration between the points j = N0 − 1
2

and j = N0 + 1
2

gives:

∫ N0+ 1

2

N0− 1

2

∫ t+∆t

t

∂u

∂t
dt dz = (uN0

− ut
N0

)∆zN0
= (uN0

− U t
∞)∆zN0

(A.22)

∫ N0+ 1

2

N0− 1

2

∫ t+∆t

t

(
∂U

∂t
− 1

ρ

∂P̄

∂x

)
dt dz = (U∞ − U t

∞)∆zN0
− 1

ρ

∂P̄

∂x
∆t∆zN0

(A.23)

∫ N0+ 1

2

N0− 1

2

∫ t+∆t

t

∂

∂z

(
Γu

∂u

∂z

)
dt dz =


(Γu)N0+ 1

2

(
∂u

∂z

)

N0+ 1

2

− (Γu)N0− 1

2

(
∂u

∂z

)

N0− 1

2


∆t

(A.24)

We suppose that the velocity outside the boundary layer is constant, therefore
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(
∂u
∂z

)
N0+ 1

2

= 0.

∫ N0+ 1

2

N0− 1

2

∫ t+∆t

t

∂

∂z

(
Γu

∂u

∂z

)
dt dz = −(Γu)t

N0− 1

2

(
∂u

∂z

)

N0− 1

2

∆t

= −(Γu)t
N0− 1

2

(
uN0

− uN0−1

∆zN0−1/2

)
∆t

= −(Γu)t
N0− 1

2

(
U∞ − uN0−1

∆zN0−1/2

)
∆t (A.25)

By defining the terms:

AS(N0) = − ∆t

∆zN0

(Γu)t
N0− 1

2

∆zN0− 1

2

(A.26a)

AP (N0) = 1 (A.26b)

Du(N0) = −1
ρ

∂P̄

∂x
∆t + U∞(1 + AS(N0)) (A.26c)

we obtain the following discrete equation for point N0:

AP (N0)uN0
+ AS(N0)uN0−1 = Du(N0) (A.27)

• If we define the boundary condition as
∂u

∂z

∣∣∣∣∣
N0

= 0, the resulting equation is

similar to the other boundary condition, except that the term U t
∞ is replaced by

the term ut
N0

in equations A.22 and A.25.

By defining the terms:

AS(N0) = − ∆t

∆zN0

(Γu)t
N0− 1

2

∆zN0− 1

2

(A.28a)

AP (N0) = 1 − AS(N0) (A.28b)

(A.28c)

Du(N0) = −1
ρ

∂P̄

∂x
∆t + U∞ − U t

∞ + ut
N0

(A.28d)

we obtain the following discrete equation for point N :

AP (N0)uN0
+ AS(N0)uN0−1 = Du(N0) (A.29)
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additional terms: advection

discretization of the vertical velocity

We first need to discretize the vertical velocity w. We evaluate the integral dis-

cretely:

wj =
1
c

∫ z(j)

z(1)

∂u

∂t

∣∣∣∣∣
y

dy

=
1
c

j−1∑

m=1

∫ z(m+1)

z(m)

∂u

∂t

∣∣∣∣∣
y

dy

∼ 1
c

j−1∑

m=1

∂u

∂t

∣∣∣∣∣
m+ 1

2

∆zm+ 1

2

∼ 1
c

j−1∑

m=1

ut
m+ 1

2

− ut−∆t
m+ 1

2

∆t
∆zm+ 1

2

(A.30)

The sum starts at m = 1 because the vertical velocity is zero at the bottom:

w(z0) = 0. The temporal derivative is estimated using the previous time steps t and

t − ∆t, as the terms at time step t + ∆t are unknown, and since it is an implicit

discretization, the linear system to be solved would not involve a tridiagonal matrix,

making the problem more complicated.

When using an iteration loop, we can estimate a new value for the vertical velocity

at each iteration step:

wj ∼ 1
c

j−1∑

k=1

u1
k+ 1

2

− ut
k+ 1

2

∆t
∆zk+ 1

2

(A.31)

Where u1 is the iterated value for the horizontal velocity

Discretization of the advection terms

• For the horizontal velocity equation, we integrate the terms between the points

j − 1
2

and j + 1
2
:

j+ 1

2∫

j− 1

2

t+∆t∫

t

−u

c

∂u

∂t
+ w

∂u

∂z
dtdz = −1

c
ut

j∆zj

t+∆t∫

t

∂u

∂t
dt + wt

j∆t

j+ 1

2∫

j− 1

2

∂u

∂z
dz

∼ −1
c
ut

j∆zj(uj − ut
j) + wt

j∆t(ut
j+ 1

2

− ut
j− 1

2

) (A.32)
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the terms AN and AS remain unchanged, the terms AP and Du are modified:

AP (j) = 1 − AN(j) − AS(j) − ut
j

c
(A.33a)

Du(j) = −1
ρ

∂P̄

∂x
∆t + ut

j + Uj − U t
j − (ut

j)
2

c
− wt

j

∆t

∆zj

(ut
j+ 1

2

− ut
j− 1

2

) (A.33b)

The values ut
j+ 1

2

and ut
j− 1

2

are estimated by linear interpolation. The linear system

remains the same as the one in equation A.19

• In the lower boundary, the equation is similar to equation A.20.

• In the upper boundary, the equation changes with the chosen boundary condition.

In the case where the boundary condition is uN0
= U∞, the integration of the

advection terms gives:

N0+ 1

2∫

N0− 1

2

t+∆t∫

t

−u

c

∂u

∂t
dtdz ∼ −1

c
ut

N0
∆zN0

(uN0
− ut

N0
)

∼ −1
c
U t

∞∆zN(U∞ − U t
∞) (A.34)

N0+ 1

2∫

N0− 1

2

t+∆t∫

t

w
∂u

∂z
dtdz ∼ wt

N0
∆t(ut

N0+ 1

2

− ut
N0− 1

2

) (A.35)

The values ut
N0+ 1

2

is set to U∞, and ut
N0− 1

2

is estimated by linear interpolation:

ut
N0− 1

2

=
U∞ + ut

N0−1

2
(A.36)

Therefore

ut
N0+ 1

2

− ut
N0− 1

2

=
1
2

(U∞ − ut
N0−1) (A.37)

and
N0+ 1

2∫

N0− 1

2

t+∆t∫

t

w
∂u

∂z
dtdz ∼ wt

N0

∆t

2
(U t

∞ − ut
N0−1) (A.38)
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The terms of the linear system are then:

Du(N0) = − 1
ρ

∂P̄

∂x
∆t + U∞(1 + AS(N0))

+
1
c
U∞(U∞ − U t

∞) − wt
N0

∆t

2∆zN0

(U∞ − ut
N0−1) (A.39)

The terms AP (N0) and AS(N0) remain the same as equations 2.65c and A.26a

• In the case where the velocity gradient is equal to 0, we have:

N0+ 1

2∫

N0− 1

2

t+∆t∫

t

w
∂u

∂z
dtdz = 0 (A.40)

and the coefficients of the discrete equation are changed to:

AP (N0) = 1 − AS(N0) − ut
N0

c
(A.41)

Du(N0) = −1
ρ

∂P̄

∂x
∆t + U∞ − U t

∞ + ut
N0

− (ut
N0

)2

c
(A.42)

A.2.3 Turbulent Kinetic Energy equation

Original terms

We define the turbulent kinetic energy k at the mid-points of the control volume, to

insure a better precision in the system. By doing so, we do not need to interpolate the

values at the j points. The equation (A.2) is integrated over a control volume centered

in the point j + 1
2
, and over a time step ∆t:

∫ j+1

j

∫ t+∆t

t

∂k

∂t
dt dz =

∫ j+1

j

∫ t+∆t

t


νT

(
∂u

∂z

)2

− βkω


 dt dz

+
∫ j+1

j

∫ t+∆t

t

∂

∂z

(
(ν + σk

k

ω
)
∂k

∂z

)
dt dz (A.43)

We integrate over time using a first order fully implicit control volume scheme:

∫ j+1

j

∫ t+∆t

t

∂k

∂t
dt dz = (kj+ 1

2

− kt
j+ 1

2

)∆zj+ 1

2

(A.44)
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∫ j+1

j

∫ t+∆t

t
νT

(
∂u

∂z

)2

dt dz ∼ (νT )t
j+ 1

2

(
∂u

∂z

)2

j+ 1

2

∆t∆zj+ 1

2

∼ (νT )t
j+ 1

2


uj+1 − uj

∆zj+ 1

2




2

∆t∆zj+ 1

2

∼ (νT )t
j+ 1

2


ut

j+1 − ut
j

∆zj+ 1

2




2

∆t∆zj+ 1

2

(A.45)

∫ j+1

j

∫ t+∆t

t
β∗kωdt dz ∼ (β∗)t

j+ 1

2

kj+ 1

2

ωt
j+ 1

2

∆t∆zj+ 1

2

(A.46)

by defining (Γk)j = ν + σk
kj

ωj

, we have:

∫ j+1

j

∫ t+∆t

t

∂

∂z

(
Γk

∂k

∂z

)
dt dz ∼


(Γk)t

j+1

(
∂k

∂z

)

j+1

− (Γk)t
j

(
∂k

∂z

)

j


∆t

∼
[
(Γk)t

j+1

kj+ 3

2

− kj+ 1

2

∆zj+1

− (Γk)t
j

kj+ 1

2

− kj− 1

2

∆zj

]
∆t

(A.47)

As k and ω are defined at the mid-points, the turbulent viscosity νT is also defined at

those points. Therefore to calculate (Γk)j we need to use an interpolation (linear or

cubic).

By defining the terms:

BN(j) = − ∆t

∆zj+ 1

2

(Γk)t
j+1

∆zj+1

(A.48a)

BS(j) = − ∆t

∆zj+ 1

2

(Γk)t
j

∆zj

(A.48b)

BP (j) = 1 − BN(j) − BS(j) + (β∗)t
j+ 1

2

ωt
j+ 1

2

∆t (A.48c)

Dk(j) = kt
j+ 1

2

+ (νT )t
j+ 1

2


ut

j+1 − ut
j

∆zj+ 1

2




2

∆t (A.48d)

we obtain the following equation for point j + 1
2
, with j ∈ [2 · · · N − 2]:

BN(j)kj+ 3

2

+ BP (j)kj+ 1

2

+ BS(j)kj− 1

2

= Dk(j) (A.49)
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Boundary conditions

Lower boundary condition

• the turbulent kinetic energy is defined at the point j = 1
2
, therefore we have to find

discretization equation in j = 1
2
, as the boundary condition is k(z = z0) = k0 = 0

:

∫ 1

0

∫ t+∆t

t

∂k

∂t
dt dz =

∫ 1

0

∫ t+∆t

t


νT

(
∂u

∂z

)2

− βkω


 dt dz

+
∫ 1

0

∫ t+∆t

t

∂

∂z

(
(ν + σk

k

ω
)
∂k

∂z

)
dt dz (A.50)

We integrate over time using a first order fully implicit control volume scheme:

∫ 1

0

∫ t+∆t

t

∂k

∂t
dt dz = (k 1

2

− kt
1

2

)∆z 1

2

(A.51)

∫ 1

0

∫ t+∆t

t
νT

(
∂u

∂z

)2

dt dz = (νT )t
1

2

(
∂u

∂z

)2

1

2

∆t∆z 1

2

= (νT )t
1

2


ut

1 − ut
0

∆z 1

2




2

∆t∆z 1

2

= (νT )t
1

2


 ut

1

∆z 1

2




2

∆t∆z 1

2

(A.52)

∫ 1

0

∫ t+∆t

t
β∗kωdt dz = (β∗)t

1

2

k 1

2

ωt
1

2

∆t∆z 1

2

(A.53)

∫ 1

0

∫ t+∆t

t

∂

∂z

(
Γk

∂k

∂z

)
dt dz =

[
(Γk)1

(
∂k

∂z

)

1

− (Γk)0

(
∂k

∂z

)

0

]
∆t

=

[
(Γk)1

k 3

2

− k 1

2

∆z1

− (Γk)0

k 1

2

− k− 1

2

∆z0

]
∆t

(A.54)

At the bottom boundary layer, we consider that k is equal to 0 below z0, therefore
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k− 1

2

= 0. The discretization is then:

∫ 1

0

∫ t+∆t

t

∂

∂z

(
Γk

∂k

∂z

)
dt dz =

[
(Γk)1

k 3

2

− k 1

2

∆z1

− ν
k 1

2

∆z0

]
∆t

(A.55)

By defining the terms:

BN(1) = − ∆t

∆z 1

2

(Γk)1

∆z1

(A.56a)

BP (1) = 1 − BN(1) +
∆t

∆z 1

2

ν

∆z0

+ (β∗)t
1

2

ωt
1

2

∆t (A.56b)

Dk(1) = kt
1

2

+ (νT )t
1

2


 ut

1

∆z 1

2




2

∆t (A.56c)

we obtain the following equation for the boundary condition j = 1
2
:

BN(1)k 3

2

+ BP (1)k 1

2

= Dk(1) (A.57)

• If we consider the boundary condition with a zero-gradient, the second term in

equation A.54 is equal to zero, and the coefficients at point j = 1
2

becomes:

BN(1) = − ∆t

∆z 1

2

(Γk)1

∆z1

(A.58a)

BP (1) = 1 − BN(1) + (β∗)t
1

2

ωt
1

2

∆t (A.58b)

Dk(1) = kt
1

2

+ (νT )t
1

2


 ut

1

∆z 1

2




2

∆t (A.58c)

Upper boundary condition

The upper boundary condition for the turbulent kinetic energy k is:
∂k

∂z

∣∣∣∣∣
N

= 0

We integrate between the points N − 1 and N :

∫ N

N−1

∫ t+∆t

t

∂k

∂t
dt dz = (kN− 1

2

− kt
N− 1

2

)∆zN− 1

2

(A.59)
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∫ N

N−1

∫ t+∆t

t
νT

(
∂u

∂z

)2

dt dz = (νT )t
N− 1

2

(
∂u

∂z

)2

N− 1

2

∆t∆zN− 1

2

= (νT )t
N− 1

2


ut

N − ut
N−1

∆zN− 1

2




2

∆t∆zN− 1

2

= (νT )t
N− 1

2


U∞ − ut

N−1

∆zN− 1

2




2

∆t∆zN− 1

2

(A.60)

∫ N

N−1

∫ t+∆t

t
β∗kωdt dz = (β∗)t

N− 1

2

kN− 1

2

ωt
N− 1

2

∆t∆zN− 1

2

(A.61)

∫ N

N−1

∫ t+∆t

t

∂

∂z

(
Γk

∂k

∂z

)
dt dz =



(Γk)N

(
∂k

∂z

)

N︸ ︷︷ ︸
=0

−(Γk)N−1

(
∂k

∂z

)

N−1




∆t

=

[
−(Γk)N−1

kN− 1

2

− kN− 3

2

∆zN−1

]
∆t

(A.62)

By defining the terms:

BN(N − 1) = 0 (A.63a)

BS(N − 1) = − ∆t

∆zN− 1

2

(Γk)N−1

∆zN−1

(A.63b)

BP (N − 1) = 1 − BS(N − 1) + (β∗)t
N− 1

2

ωt
N− 1

2

∆t (A.63c)

Dk(N − 1) = kt
N− 1

2

+ (νT )t
N− 1

2


U t

∞ − ut
N−1

∆zN− 1

2




2

∆t (A.63d)

we obtain the following equation for the boundary condition j = N − 1
2
:

BP (N − 1)kN− 1

2

+ BS(N − 1)kN− 3

2

= Dk(N − 1) (A.64)

If the boundary condition for u is ∂u
∂z

= 0, the term U∞ in equation A.60 is replaced

by ut
N .

241



advection terms

• For the turbulent kinetic energy equation, we integrate the terms between the

points j and j + 1:

j+1∫

j

t+∆t∫

t

w
∂k

∂z
dtdz = wt

j+ 1

2

∆t

j+1∫

j

∂k

∂z
dz

= wt
j+ 1

2

∆t(kt
j+1 − kt

j) (A.65)

j+1∫

j

t+∆t∫

t

−u

c

∂k

∂t
dtdz = −

ut
j+ 1

2

c
∆zj+ 1

2

t+∆t∫

t

∂k

∂t
dz

= −
ut

j+ 1

2

c
∆zj+ 1

2

(kj+ 1

2

− kt
j+ 1

2

) (A.66)

The coefficients BP and Dk from equation A.49 are then changed to:

BP (j) = 1−BN(j)−BS(j)+(β∗)t
j+ 1

2

ωt
j+ 1

2

∆t−
ut

j+ 1

2

c
∆zj+ 1

2

(kj+ 1

2

−kt
j+ 1

2

) (A.67)

Dk(j) = kt
j+ 1

2

+ (νT )t
j+ 1

2


ut

j+1 − ut
j

∆zj+ 1

2




2

∆t − wt
j+ 1

2

∆t

∆zj+ 1

2

(kt
j+1 − kt

j) (A.68)

The values kt
j and kt

j+1 are estimated by linear interpolation.

• In the lower boundary layer, with the boundary condition kz0
= 0 there is one

additional term to the equation:

1∫

0

t+∆t∫

t

w
∂k

∂z
dtdz = wt

1

2

∆t

1∫

0

∂k

∂z
dz

= wt
1

2

∆t(kt
1 − kt

0)

= wt
1

2

∆tkt
1 (A.69)

Dk(1) is then changed to:

Dk(1) = kt
1

2

+ (νT )t
1

2


 ut

1

∆z 1

2




2

∆t − wt
1

2

∆t

∆z 1

2

kt
1 (A.70)
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• If the boundary condition is
∂k

∂z

∣∣∣∣∣
z0

= 0, we need to find k0.

∂k

∂z

∣∣∣∣∣
z0

= 0 ⇒ k 1

2

= k− 1

2

⇒ k 1

2

= k0 (A.71)

The additional term is then:

1∫

0

t+∆t∫

t

w
∂k

∂z
dtdz = wt

1

2

∆t(kt
1 − kt

1

2

) (A.72)

• In the upper boundary layer, there is also one additional term to the equation:

N∫

N−1

t+∆t∫

t

w
∂k

∂z
dtdz = wt

N− 1

2

∆t

N∫

N−1

∂k

∂z
dz

= wt
N− 1

2

∆t(kt
N − kt

N−1) (A.73)

Dk(N − 1) is then changed to:

Dk(N − 1) = kt
N− 1

2

+ (νT )t
N− 1

2


ut

N − ut
N−1

∆zN− 1

2




2

∆t − wt
N− 1

2

∆t

∆zN− 1

2

(kt
N − kt

N−1)

(A.74)

A.2.4 Specific dissipation rate equation

Original terms

We define the specific dissipation rate ω at the mid-points of the control volume,the

same way we do with the turbulent kinetic energy k. We first discretize the equa-

tion for the [Wilcox, 1998] formulation, and then add the term for the [Wilcox, 2006]

formulation.

[Wilcox, 1998] formulation

We need to integrate the equation (A.3) over a control volume centered in the point

j + 1
2
, and over a time step ∆t:

∫ j+1

j

∫ t+∆t

t

∂ω

∂t
dt dz =

∫ j+1

j

∫ t+∆t

t


γ

ω

k
νT

(
∂u

∂z

)2

− βω2


 dt dz

+
∫ j+1

j

∫ t+∆t

t

∂

∂z

(
Γω

∂ω

∂z

)
dt dz (A.75)
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We integrate over time using a first order fully implicit control volume scheme:

∫ j+1

j

∫ t+∆t

t

∂ω

∂t
dt dz = (ωj+ 1

2

− ωt
j+ 1

2

)∆zj+ 1

2

(A.76)

∫ j+1

j

∫ t+∆t

t
γ

ω

k
νT

(
∂u

∂z

)2

dt dz = γ
ωt

j+ 1

2

kt
j+ 1

2

(νT )j+ 1

2

(
∂u

∂z

)2

j+ 1

2

∆t∆zj+ 1

2

= γ
ωt

j+ 1

2

kt
j+ 1

2

(νT )j+ 1

2


ut

j+1 − ut
j

∆zj+ 1

2




2

∆t∆zj+ 1

2

(A.77)

∫ j+1

j

∫ t+∆t

t
βω2dt dz = βωj+ 1

2

ωt
j+ 1

2

∆t∆zj+ 1

2

(A.78)

by defining Γω = ν + σω
k

ω
, we have:

∫ j+1

j

∫ t+∆t

t

∂

∂z

(
Γω

∂ω

∂z

)
dt dz =


(Γω)j+1

(
∂ω

∂z

)

j+1

− (Γω)j

(
∂ω

∂z

)

j


∆t

=

[
(Γω)j+1

ωj+ 3

2

− ωj+ 1

2

∆zj+1

− (Γω)j

ωj+ 1

2

− ωj− 1

2

∆zj

]
∆t

(A.79)

(Γω)j is defined by interpolation(linear, cubic or [Patankar, 1980]).

By defining the terms:

CN(j) = − ∆t

∆zj+ 1

2

(Γω)t
j+1

∆zj+1

(A.80a)

CS(j) = − ∆t

∆zj+ 1

2

(Γω)t
j

∆zj

(A.80b)

CP (j) = 1 − CN(j) − CS(j) + βωt
j+ 1

2

∆t (A.80c)

Dω(j) = ωt
j+ 1

2

+ γ
ωt

j+ 1

2

kt
j+ 1

2

(νT )j+ 1

2


ut

j+1 − ut
j

∆zj+ 1

2




2

∆t (A.80d)

we obtain the following equation for point j + 1
2

with j ∈ [2 : N − 2]:

CN(j)ωj+ 3

2

+ CP (j)ωj+ 1

2

+ CS(j)ωj− 1

2

= Dω(j) (A.81)
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[Wilcox, 2006] formulation

If we consider the [Wilcox, 2006] formulation, we have to discretize the cross diffu-

sion term:

∫ j+1

j

∫ t+∆t

t

σd

ω

∂k

∂z

∂ω

∂z
dt dz =

σd

ωt
j+ 1

2

(
∂k

∂z

)t

j+ 1

2

(
∂ω

∂z

)t

j+ 1

2

∆t∆zj+ 1

2

(A.82)

The partial derivatives of k and ω are estimated using the nearby points:

(
∂k

∂z

)t

j+ 1

2

=
kt

j+1 − kt
j

∆zj+ 1

2

(A.83)

(
∂ω

∂z

)t

j+ 1

2

=
ωt

j+1 − ωt
j

∆zj+ 1

2

(A.84)

the new formulation of term Dω(j) is then:

Dω(j) = ωt
j+ 1

2

+ γ
ωt

j+ 1

2

kt
j+ 1

2

(νT )j+ 1

2


ut

j+1 − ut
j

∆zj+ 1

2




2

∆t

+
σd

ωt
j+ 1

2

kt
j+1 − kt

j

∆zj+ 1

2

ωt
j+1 − ωt

j

∆zj+ 1

2

∆t (A.85)

Boundary conditions

Lower boundary condition

The specific dissipation rate ω is also defined at the point j = 1
2
, we use the same

method as with the turbulent kinetic energy k:

∫ 1

0

∫ t+∆t

t

∂ω

∂t
dt dz =

∫ 1

0

∫ t+∆t

t


γ

ω

k
νT

(
∂u

∂z

)2

− βω2


 dt dz

+
∫ 1

0

∫ t+∆t

t

∂

∂z

(
Γω

∂ω

∂z

)
dt dz (A.86)

∫ 1

0

∫ t+∆t

t

∂ω

∂t
dt dz = (ω 1

2

− ωt
1

2

)∆z 1

2

(A.87)
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∫ 1

0

∫ t+∆t

t
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ω

k
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dt dz = γ
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(A.88)

∫ 1

0

∫ t+∆t

t
βω2dt dz = βω 1

2

ωt
1

2

∆t∆z 1

2

(A.89)

∫ 1

0

∫ t+∆t

t

∂

∂z

(
Γω

∂ω

∂z

)
dt dz =

[
(Γω)1

(
∂ω
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)

1
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)
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]
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ω 3
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2

∆z1

− ν
ω 1
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2

z 1

2

− z− 1

2


∆t (A.90)

At the bottom boundary, we have ω0 = ωwall and (Γω)0 = ν. At the point j = −1
2
, we

assume that the value is equal to the one at j = 0:

ω− 1

2

= ωwall (A.91)

the discretized term is then:

∫ 1

0

∫ t+∆t

t

∂

∂z

(
Γω

∂ω

∂z

)
dt dz =

[
(Γω)1

ω 3

2

− ω 1

2

∆z1

− ν
ω 1

2

− ωwall

∆z0

]
∆t (A.92)

By defining the terms:

CN(1) = − ∆t

∆z 1

2

(Γω)1

∆z1

(A.93a)

CP (1) = 1 − CN(1) +
∆t

∆z 1

2

ν

∆z0

+ βωt
1

2

∆t (A.93b)

Dω(1) = ωt
1

2

+ γ
ωt

1

2

kt
1

2

(νT ) 1

2


 u1

∆z 1

2


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2

∆t +
∆t

∆z 1

2

νωwall

∆z0

(A.93c)

we obtain the following equation for the boundary condition at the point j = 1
2
:

CN(1)ω 3

2

+ CP (1)ω 1

2

= Dω(1) (A.94)
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If we consider the [Wilcox, 2006] formulation, we have to discretize the cross diffu-

sion term: ∫ 1

0

∫ t+∆t

t

σd

ω

∂k

∂z

∂ω

∂z
dt dz =

σd

ωt
1

2

(
∂k

∂z

)t

1

2

(
∂ω

∂z

)t

1

2

∆t∆z 1

2

(A.95)

The partial derivatives of k and ω are estimated using the nearby points:

(
∂k

∂z

)t

1

2

=
kt

1 − kt
0

∆z 1

2

=
kt

1

∆z 1

2

(A.96)

(
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2

=
ωt

1 − ωt
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∆z 1

2

=
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1 − ωt
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∆z 1

2

(A.97)

and the resulting coefficient for Dω(1) is then:

Dω(1) = ωt
1
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∆z 1

2




2

∆t +
∆t

∆z 1

2

νωwall

∆z0

+
σd

ωt
1

2

kt
1

∆z 1

2

ωt
1 − ωt

wall

∆z 1

2

∆t (A.98)

Upper boundary condition

The upper boundary condition for the specific dissipation rate ω is:
∂ω

∂z

∣∣∣∣∣
N

= 0

We integrate between the points N − 1 an N :

∫ N
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∂t
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(A.99)
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2
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(A.100)

∫ N

N−1

∫ t+∆t

t
βω2dt dz = βωN− 1

2

ωt
N− 1

2

∆t∆zN− 1

2

(A.101)
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∫ N
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∆t (A.102)

By defining the terms:

CS(N − 1) = − ∆t

∆zN− 1

2

(Γω)N−1

∆zN−1

(A.103a)

CP (N − 1) = 1 − CS(N − 1) + βωt
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2

∆t (A.103b)
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2




2

∆t (A.103c)

we obtain the following equation for the boundary condition at the point j = N − 1
2
:

CP (N − 1)ωN− 1

2

+ CS(N − 1)ωN− 3

2

= Dω(N − 1) (A.104)

If the upper boundary condition for the horizontal velocity is ∂u
∂z

= 0, we have to

replace the term U∞ by uN in equation A.100.

If we consider the [Wilcox, 2006] formulation, we have to discretize the cross diffu-

sion term:

∫ N
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∫ t+∆t

t

σd

ω
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∂z
dt dz =
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2
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2

(A.105)

The spatial derivatives of k and ω are estimated using the nearby points:

(
∂k

∂z

)t

N− 1

2

=
kt

N − kt
N−1

∆zN− 1

2

(A.106)

(
∂ω

∂z

)t

N− 1

2

=
ωt

N − ωt
N−1

∆zN− 1

2

(A.107)

We interpolate linearly the values kN−1 and ωN−1. For the values kN , and ωN we

have:

kN− 1

2

= kN + (zN − zN− 1

2

)
∂k

∂z

∣∣∣∣∣
N

= kN (A.108)
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ωN− 1

2

= ωN + (zN − zN− 1

2

)
∂ω

∂z

∣∣∣∣∣
N

= ωN (A.109)

The term defined in equation A.103c is changed to:
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N− 1

2
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∆t (A.110)

advection term

• For the specific dissipation rate equation, we integrate the terms between the

points j and j + 1:

j+1∫

j

t+∆t∫
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∂z
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2
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The term Dω in equation ?? is then changed to:
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2

(ωt
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j) (A.112)

The values ωt
j and ωt

j+1 are estimated by linear interpolation.

• In the lower boundary layer, there is one additional term in Dω to the equation:

1∫

0

t+∆t∫

t

w
∂ω

∂z
dtdz = wt

1

2

∆t

1∫

0

∂ω

∂z
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= wt
1

2

∆t(ωt
1 − ωt

0)

= wt
1

2

∆t(ωt
1 − ωwall) (A.113)

• In the upper boundary layer, there is also one additional term in Dω to the
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equation:

N∫

N−1

t+∆t∫

t

w
∂ω

∂z
dtdz = wt

N− 1

2
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N∫
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2
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N−1) (A.114)
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Appendix B

Seiching

B.1 Theoretical seiching modes

As we intend to analyse low frequency motions in the wave basin, we need to determine

the wave basin seiching. Seiches occur on enclosed or partially enclosed bodies of

water. This body of water resonates to its natural frequencies when excited, allowing

the development of a standing wave.

The wave forcing in an enclosed basin produces seiches due to the wave reflection

and the wave grouping, allowing a transfer of wave energy to lower frequencies. It is

therefore important to estimate these natural frequencies, since they are amplified.

The MODLIT wave basin seiches are determined as explained in Haller et Dalrymple

[2001], using the two-dimensional shallow water equation for variable depth:

ηtt − (ghηx)x − (ghηy)y = 0 (B.1)

with η the water surface elevation, h the water depth, and subscripts representing

derivatives. The seiche modes are assumed periodic in time and in the longshore

direction, and with an arbitrary distribution in the cross-shore direction:

η(x, y, t) = ζm(x) cos(
nπy

W
) cos(σt) (B.2)

where m is the cross-shore mode number associated to its cross-shore waveform ζm, n is

the longshore mode number, W is the width of the basin, and σ is the wave frequency.

If we substitute equation B.2 into equation B.1, and assuming a longshore uniform

bathymetry (hy = 0), we obtain an equation for the seiche modes:

− ghζmxx
− ghxζmx

+
ghn2π2

W 2
ζm = σ2ζm (B.3)
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T (s) n = 0 n = 1 n = 2
m = 0 33.26 20.28
m = 1 25.97 19.48 12.50
m = 2 12.42 11.64 9.70

Table B.1 – Period of the lowest frequency modes.

As mentioned in Haller et Dalrymple [2001], a variable transformation ξ = ζm · x and

a change in orientation such as x = 0 at the shoreline, and x = L at the wavemaker is

used, to implement the shoreline boundary condition of a finite wave amplitude. With

these changes, the equation governing the seiche modes in the wave basin is now:

− ghξxx +

(
2gh

x
− ghx

)
ξx +

(
ghx

x
− 2gh

x2
+

ghn2π2

W 2

)
ξ = σ2ξ (B.4)

with the boundary conditions:

ξ = 0 x = 0 (B.5)

ζx(L) = ξx(L) − ξ(L)
L

= 0 x = L (B.6)

Now, equation B.4 can be seen as an eigenvalue problem, with eigenvalues σ2. Note that

the arbitrary cross-shore wave form ζm is related to the eigenvector ξ of the eigenvalues

σ2. This eigenvalue problem is solved using a finite difference method. The derivatives

hx, ζx and ζxx are discretized using central differences (O(∆x2)), which lead to a matrix

form of the eigenvalue problem.

One of the hypotheses to find the seiching modes assumed an alongshore uniform

bathymetry. In our case, as the wave basin dimensions are larger than the longshore

non-uniformity, we consider the alongshore averaged bathymetry to obtain the natural

modes.

The eigenvalues corresponding to higher frequencies are more likely to be affected

by frictional damping, therefore we focus on the lowest frequency modes, which are

more energetic. These modes corresponds to n = [0, 1, 2], m = [0, 1, 2].

Table B.1 lists the periods of the waves corresponding to these modes. We observe

that the main seiche modes are located in the infragravity band.
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Figure B.1 – seiche, n=1, m=0. In the upper left panel are plotted the alongshore averaged
cross-shore profile as a black line, the still water level as a black dotted line and the
plain blue lines as the extreme free surface displacement at x = 15 m. The upper right
panel shows the isolines of the original bathymetry considered. The lower panel shows
the contour of the free surface η, the cross-shore velocity u and the longshore velocity v
as black line, and the isolines of the alongshore averaged bathymetry shown as vertical
lines.

B.2 Main seiching modes

The main seiching modes can be seen in Figures B.2, B.3, B.1, B.4, B.5. The mode

with the larger period corresponds to the mode n = 1, m = 0, with a theoretical

period T = 33.26 s, and it is the main longshore mode, with 1 longshore node, and no

cross-shore node.

The main cross-shore mode corresponds to the mode n = 0, m = 1, with 1 cross-

shore node and no longshore node, with a period T = 25.97 s. The second cross-shore

mode, with n = 0, m = 2 has a period T = 12.42 s, close to the half of the period of

the main cross-shore mode.

There are also two modes, with one longshore node, and one and two cross-shore

nodes, which are the modes n = 1, m = 1 and n = 1, m = 2, with periods of

respectively T = 19, 48 s and T = 11.64 s. The period of the latest is also close to the

half of the n = 1, m = 1 mode.
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Figure B.2 – seiche, n=0, m=1. Captions, see Figure B.1.
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Figure B.3 – seiche, n=0, m=2. Captions, see Figure B.1
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Figure B.4 – seiche, n=1, m=1. Captions, see Figure B.1
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Figure B.5 – seiche, n=1, m=2 Captions, see Figure B.1
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It has been suggested that nearshore dynamics fluctuations can be related to infra-

gravity wave motions [Fowler et Dalrymple, 1990]. In the experiments these low fre-

quency motions are generated by the selection of particular modal frequencies in the

wave grouping of the JONSWAP spectrum. The resonant frequencies selected by the

basin geometry and bottom topography appear as peaks in the free surface elevation

spectrum (Figures 4.13 and 4.19). The aim of this section is to understand the charac-

teristics of this low frequency spectrum and how much is reproduced by the numerical

model. We recall that the numerical model has an offshore absorption/generation

boundary that mimics what would be a real life beach.

We compare the theoretical seiching modes with the experimental results for ex-

periment 30 (t=21:00-26:00). We obtain the experimental spectral wave energy in a

cross-shore profile located at y = 10 m. To obtain these cross-shore profiles, we use

the following method:

1. we estimate for each point in the cross-shore profile the wave spectrum, with the

time series at 50 Hz for the experimental data, and the time-series interpolated

at the same frequency for the numerical model, in order to compare the spectra.

2. for each natural mode frequency determined by the theoretical model of Haller

et Dalrymple [2001], we extract from the spectra the amplitude aη corresponding

to these frequencies. The amplitude aη(x0, f0) in meters for a frequency f0 at a

cross-shore distance x0 from the wavemaker is estimated with the formula:

aη(x0f0) =
√

Sηη(x0, f0)∆f0 (B.7)

where ∆f0 is the frequency band around the chosen frequency f0. In our case,

we choose ∆f0 = 0.01 Hz.

3. To compare these amplitudes with the theoretical model, we use the cross-shore

waveform at these frequencies ζm(x). This amplitude is then multiplied by a

factor in order to obtain the same amplitude of the experimental wave gauge

located at x = 21.325 m, nearest to the shoreline. For the modes with n = 0

or n = 1 longshore mode, the profiles were taken at y = 8.17 m, to obtain

information from the wave gauges at x = 5 m. For the mode n = 2 with two

longshore nodes, the cross-shore profiles were taken at y = 15 m, where the

amplitude is high, and to obtain information on the wave gauge at x = 5 m also.

If we first compare the theoretical seiching modes with the experimental data in

Figure B.6 we observe that the main cross-shore seiching mode at T = 25.97 s (n = 0,
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m = 1) is well predicted by the theory, as well as the seiching mode with 2 cross-shore

nodes and one longshore node at T = 12.42 s (n = 1, m = 2) . The main theoretical

longshore mode at T = 33.26 s (n = 1, m = 0) is different in the experiment which

shows a cross-shore node at x = 14 m at this frequency. For the n = 1, m = 1 mode

at T = 19.48 s, the profiles are similar for x > 15 m, but the experiment shows a node

at x = 9 m, not present in the theory. The n = 1, m = 2 mode at T = 11.64 s shows

some similarities, as the position of the two cross-shore nodes are well predicted by the

theory but the theoretical wave amplitude over-estimates the one from the experiment.

The n = 2, m = 0 mode at T = 20.28 s is similar for x > 10 m, but different for x < 10

m as the experiment indicates that there is a node at x = 10 m at this frequency. For

the n = 2, m = 1 mode at T = 12.50 s, the experimental results are similar to the

theory. Finally for the n = 2, m = 2 mode at T = 9.70 s, the nodes at x = 11 m and

x = 19 m are the same, but for x < 10 m the behaviour is different.

The numerical results present some similarities with the experiment concerning the

two main cross-shore modes (n = 0, m = 1 and n = 0, m = 2), in terms of the

cross-shore position of the nodes however the amplitude is lower, and for x < 10 m the

wave amplitude does not increase in the model, due to the open boundary condition

that does not add cross-shore resonance. The main longshore mode n = 1, m = 0

is fairly well reproduced, probably due to the fact that the waves can resonate in the

model between the two closed boundaries. For the remaining modes, there are some

discrepancies between the model and the experiment at the theoretical seiching mode

frequencies, with still similar waveform for x > 10 m, but with lower amplitude for the

modes (n = 1, m = 2), (n = 2, m = 1) and (n = 2, m = 2).

Using the the theoretical approach it is possible to assess the importance of the

"natural" standing waves. By natural we mean those that would appear in a real

life beach for which there is no seaward boundary. These natural modes have been

thought to be standing waves resonating between the mean wave breaking point and the

shoreline, the shoreline being an antinode. Symonds et al. [1982] showed that the cross-

shore variation of the breakpoint caused by the wave grouping induces standing waves

between the breaking point and the shoreline. By introducing a partial transmission of

the wave grouping into the surf zone in addition to a varying breaking point, Shaffer

[1993] improved the prediction of these standing waves in a 1D cross-shore situation.

In the case of barred beaches, Baldock et al. [2004] found resonant modes between the

bar position and the shoreline, similar to seiche modes.

Most of Shaffer [1993]’s calculation assume that the bound wave transmission, which

can also be viewed as the high frequency wave groupiness transmission in the surf-zone,

was non-existent. The numerical work by Madsen et al. [1997b] on the Kostense [1984]
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Figure B.6 – Modal structure of the entire basin. Comparison between the theoretical
seiching modes, and the experimental wave energy for experiment 30 (t=21:00-26:00).
T represents the theoretical period of the seiching mode, n the number of longshore
nodes, m the number of cross-shore nodes. The cross-shore profile is chosen at y = 8.17
m for n = 0 and n = 1, and at y = 15 m for n = 2. Circles: experimental seiching modes
at the theoretical periods; line: theoretical seiching modes; dashed line: numerical model
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experiments seem to show that there is a certain amount of transmission in the case of

these experiments. They even show that in contrast to Symonds et al. [1982] theory the

break point is in the vicinity of the node of a standing wave between this location and

the shore line. Our experiments also exhibit partial groupiness transmission as seen

at x=13.3 on fig. 4.20. Kostense [1984] experiments are from a non-dimensional point

of view very close to the LHF ones. Indeed the non-dimensional parameter Shaffer

[1993] m0 ∗ fp/flo with m the beach slope, fp the peak JONSWAP frequency and flo

the characteristic frequency of the infragravity band, similar to the βb defined by van

Dongeren et al. [2007], is between 0.1 and 0.4 in the LHF experiments while ranging

between 0.2 and 0.5 for the bichromatic experiments on a plane beach of Kostense

[1984].

The theoretical modes are found supposing there exist a node at x = 11 m near

the wave breaking. This is equivalent to assuming that the break point acts as a

piston prescribing the velocity. The theoretical seiching modes are then compared to

the experimental results and the numerical model, in a cross-shore profile located at

y = 10 m. This comparison can be seen in Figure B.7.

The theoretical seiching modes can be separated in three different types. The first

type are the modes with 1 cross-shore nodes (m = 1) with periods of T = 10.75 s,

T = 10.47 s and T = 9.74 s (respectively n = 0, n = 1, n = 2), that are similar. The

second type with 2 cross-shore modes (m = 2) also have very similar periods , that

only slightly depend of the longshore modes, as their period are T = 6.58 s, T = 6.52 s

and T = 6.33 s (respectively n = 0, n = 1, n = 2). The third type corresponds to the

modes without alongshore nodes m = 0, and consist of the two modes with the larger

periods T = 25.76 s and T = 19.32 s (respectively n = 1 and n = 2).

The theoretical seiching modes between the wave breaking and the shoreline are

consistent with the experimental results for the m = 1 and m = 2 modes. For the

m = 1 modes, the peaks are located at x ≈ 15 m, close to the theoretical results, and

for the m = 2 modes, the peaks at x ≈ 13 m and x ≈ 18 m are well reproduced. The

amplitudes for the main cross-shore mode (n = 0, m = 1) are similar, although we

note that the period for the main longshore mode in this case is similar to the period of

the main cross-shore mode of the basin in Figure B.6. The modes with two cross-shore

nodes (m = 2) are fairly well reproduced in the experiment, as well as the (n = 1,

m = 1) mode. The longshore modes (m = 0) are not present in the experiment, as we

see that at these theoretical frequencies, the existing modes are modes of the complete

basin.

If we observe now the numerical model results at the theoretical period of the

seiching modes, the cross-shore profiles present similarities with the experiment in
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Figure B.7 – Modal structure of the part of the basin bound by x = 11 m and the shoreline.
Comparison between the theoretical seiching modes, and the experimental wave energy
for experiment 30 (t=21:00-26:00). T represents the theoretical period of the seiching
mode, n the number of longshore nodes, m the number of cross-shore nodes. The cross-
shore profile is chosen at y = 8.17 m for n = 0 and n = 1, and at y = 15 m for
n = 2. Circles: experimental seiching modes at the theoretical periods; line: theoretical
seiching modes; dashed line: seiching modes determined by the model.

260



terms of position of the cross-shore nodes. The m = 1 modes present a peak at x ≈ 15

m, with amplitudes close to the experimental ones. The m = 2 modes are also well

reproduced, with the two peaks at cross-shore positions similar to the experiment,

with a lower amplitude though. The longshore modes present discrepancies with the

experimental profiles and the theoretical ones.

From the study of the seiching modes, we can conclude that although the model

does not reproduce well the basin seiching modes, excepting the main longshore mode,

due to the open boundary condition at x = 5 m, we still observe some seiching modes

resonating between the shoreline and the breaking point, explaining the presence of

energy in the infragravity band. We can observe some of these seiching modes by

looking at the free surface spectral profiles, in the previous section. This could be the

reason why the numerical model shows some modal structure, even though there is an

open boundary condition at x = 5 m.
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RESUMEN:  

Para  estudiar  el  arrastre  de  sedimento  sobre  una  duna  de  arena,  modelamos  la  evolución 

morfológica de una duna bidimensional sometida a un flujo uniforme, de manera unidimensional, 

en un canal abierto. El transporte de sedimento se relaciona con la forma, la pendiente y la altura de  

la duna. Para poder estimar la evolución de la duna, utilizamos un esquema de tipo NOCS acoplado 

con  un  módulo  de  avalancha  localizado.  Comparamos  los  datos  experimentales  con  una 

parametrización del transporte de sedimento a partir de la pendiente de la duna (Rossi y Michallet,  

2003), y con un modelo que determina el transporte a partir de una parametrización del esfuerzo de 

corte (Coleman, 2006). 

La  parametrización  de  Rossi  y  Michallet(2003)  permite  tener  una  buena  representación  del 

movimiento de la duna bajo un flujo uniforme, pero es necesario conocer la altura crítica de inicio  

del arrastre de sedimento, lo que solamente un modelo que calcula el esfuerzo de corte local nos 

puede entregar.

ABSTRACT: 

Experiments were performed to examine the movement and transport of a two-dimensional sand 

dune of large dimensions in an open channel flow. The sediment discharge is related to the dune's 

shape, height and upstream slope. To model the dune evolution, we use a NOCS scheme coupled 

with an avalanche module. We compare experimental data with a parameterization of the sediment 

transport which depends on the slope of the stoss side of the dune (Rossi & Michallet, 2003) and 

with a parameterization of the local bed shear stress (Coleman, 2006).

Rossi & Michallet (2003) parameterization can provide good results for the dune evolution, but it is 

necessary to know the critical height of initiation of sediment transport, which only a model with 

local shear stress estimation can provide.

PALABRAS CLAVES:  

Morfodinámica, Esfuerzo de corte, transporte de sedimento 



INTRODUCCIÓN

La estimación de tasas de arrastre de sedimentos y la evolución morfodinámica de playas de arena 

bajo  el  efecto  de  corrientes  y  oleaje  es  un  problema  altamente  complejo.  En  este  trabajo 

pretendemos, por un lado contribuir a mejorar el entendimiento de los procesos asociados y por 

otro, desarrollar una herramienta numérica capaz de entregar una buena predicción de la evolución 

espacio-temporal de fondos de arena bajo el efecto de hidrodinámico.

Con el objeto de calibrar un modelo numérico morfodinámico, utilizaremos datos experimentales 

sobre la evolución de una duna de arena bidimensional en canal abierto en condiciones subcríticas. 

Estas  experiencias  se  llevaron  a  cabo  en  el  Laboratoire  des  Ecoulements  Geophysiques  et 

Industriels (LEGI) de Grenoble en Francia.  Mediante ultrasonido, se realizó un seguimiento del 

movimiento de la duna bajo el efecto de un flujo unidireccional determinándose sus parámetros 

geométricos importantes (altura, forma, pendientes, etc.). Además se cuenta con estimaciones de la 

velocidad de desplazamiento de la cresta de la duna. 

La información experimental sirve para calibrar un modelo de transporte de fondo unidmensional, 

que  permita  predecir  el  movimiento  de  la  duna.  La  hidrodinámica  se  resuelve  a  partir  de  las 

ecuaciones de Saint-Venant, y la evolución del fondo se resuelve a partir de un esquema de tipo 

NOCS  (Non  Oscillatory  Central  Scheme)  acoplado  con  un  módulo  de  avalancha  cuando  la 

pendiente de la duna supera la pendiente crítica. La tasa de transporte de fondo se calcula a partir de 

los esfuerzos de corte sobre el fondo, estimados con un modelo de capa límite turbulenta de tipo k-

ω, a partir de una parametrización del transporte de sedimento de Rossi (2003), y a partir de una 

parametrización del esfuerzo de corte de Coleman (2006).

Con este modelo esperamos obtener una mejor predicción del transporte de fondo sobre la duna al  

disponer de series de tiempo del esfuerzo de corte aplicado eliminando la necesidad de usar la 

velocidad media como estimador del transporte de sedimentos.

OBJETIVOS

Un escurrimiento sobre un lecho de arena puede generar formas de fondo, y a su vez éstas pueden 

modificar  el  escurrimiento.  Se trata  por lo  tanto de un proceso altamente acoplado.  El  flujo se 

comporta de distintas maneras al enfrentarse a una duna. Antes de entrar en contacto con ella, el 

flujo es uniforme, mientras  que al llegar al  pie de la duna,  se acelera hasta alcanzar  su cresta. 

Después de la cresta, tenemos una zona de recirculación debida al fenómenos de separación.  La 

Figura 1 nos muestra los distintos fenómenos que ocurren cuando el flujo pasa sobre una duna. A 

partir del experimento de Rossi y Michallet (2003), examinaremos el comportamiento de una duna 

de arena bidimensional bajo el efecto de un escurrimiento abierto. 

Las diferentes zonas del escurrimiento son las siguientes:

- aguas arriba (definido como AA) de la duna, el flujo es uniforme

- entre el pie de la duna y la cresta de la duna, el flujo se acelera

- entre la cresta de la duna y el punto donde el flujo vuelve a ocupar toda la columna de agua 

se produce una capa de mezcla debido a la separación del flujo

- aguas abajo (definido como aa) del punto de unión el flujo se re-establece transportando 

estructuras turbulentas coherentes producidas en la capa de mezcla

Los mecanismos de transporte de sedimento están íntimamente ligados a estos cuatro tipos de 

flujo que existen en presencia de una duna.



La aceleración del flujo permite aumentar el esfuerzo de corte hasta que en cierto punto de la duna 

se vuelve superior al esfuerzo de corte crítico necesario para transportar sedimentos. Aguas abajo de 

la cresta de la duna, la separación del flujo permite a la arena caer y avanzar produciendo una 

acumulación  de  sedimento  y  un  desplazamiento  general  de  la  duna  por  medio  de  avalanchas 

localizadas y sucesivas. 

Nuestro  objetivo  consiste  en  modelar  el  transporte  de  sedimento  de  fondo  sobre  la  duna.  El 

transporte  de sedimento  suspendido no se tomará  en  cuenta  en  este  caso  debido a  que en  los 

experimentos la velocidad del escurrimiento es muy cercana a la velocidad límite  de inicio del 

movimiento, por lo que el transporte de sedimento suspendido es poco relevante.

En el caso de una única duna de dimensiones importantes respecto de la profundidad del flujo, 

como  la  consideramos  en  este  artículo  (altura  inicial  de  la  duna  es  cercana  a  la  mitad  de  la 

profundidad del flujo AA), el espesor de la capa límite debe ser claramente diferente AA de la duna, 

y en la parte en donde el flujo se acelera. En la zona de aceleración, el transporte de sedimentos es 

impermanente debido a que la duna se encuentra en movimiento. Las observaciones experimentales 

de la duna realizadas por Rossi (2003) servirán evaluar la parametrización producida por él además 

de  otros  modelos  de  transporte  de  sedimento  que  utlizan  directamente  el  esfuerzo  de  corte 

producido por el flujo.

Descripción del Experimento

Los experimentos de Rossi y Michallet (2003), nos entregan datos, sobre el movimiento de una 

duna sometido a un flujo uniforme. Los experimentos se desarrollaron en un canal de PVC, de 350 

mm de ancho, 400 mm de alto, y 10 m de largo, con una sección de paredes de vidrio de 2 m. Para 

los experimentos, el canal se llena de agua y el sedimento se deposita uniformemente en todo el 

ancho para luego crear una duna triangular con una pendiente crítica de avalancha (de más o menos 

32 grados). Aguas abajo del canal, una compuerta vertical permite controlar el caudal y el nivel. El 

flujo modifica entonces la forma de la duna. Los perfiles del lecho fueron obtenidos con sonda de 

ultrasonido viajando a velocidad constante. Un pulso de frecuencia 2.25 MHz es reflejado por el 

fondo y la señal capturada. El tiempo de viaje de la pulsación ultrasónica es entonces convertido en 

Figura 2.- evolución de la morfología de una duna (Rossi, 2003)

Figura 1.- Ilustración de los mecanismos de transporte (Rossi 2003)



profundidad. Los perfiles de velocidad fueron obtenidos con un aparato de velocimetría acústica 

doppler (Acoustic Doppler Velocimeter). La velocidad media del flujo puede ser deducida con un 

margen de error de 10%. Nos enfocaremos en dos tipos de experimentos, el primero con una duna 

constituida de arena gruesa (d50=0.9 mm), y el segundo  con una duna hecha de arena más fina 

(d50=0.2 mm).

Modelación Hidrodinámica

Para la parte hidrodinámica,  se empleará un método basado en las ecuaciones de Saint-Venant. 

Consiste en calcular la superficie libre a partir  de las ecuaciones de Saint-Venant estacionarias, 

unidimensionales y despreciando la fricción.
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La ecuación de conservación [1] permite  expresar U a partir de H, U0 y H0, y se inyecta en la 

ecuación [2]:
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Por  lo  que  podemos  encontrar  H  resolviendo  [3],  y  a  partir  de  [2]  encontrar  U,  obteniendo 

directamente la altura de agua y la velocidad media en cada punto del dominio.  Elegimos este 

modelo  hidrodinámico  por  la  simplicidad  de  implementación  y  la  rapidez  de  cálculo.  Para 

determinar el transporte de sedimento debido al flujo, podemos utilizar la parametrización de Rossi 

y Michallet (2003) y compararla con fórmulas de transporte basadas en esfuerzos de corte en el 

fondo.

H0 
H(x) 

h(x) 

 

Figura 3.- Esquema de una duna al inicio de los experimentos. La pendiente de la duna corresponde al ángulo 

de estabilidad del sedimento (32°).



Parametrización de Rossi y Michallet (2003)

Existen muchas relaciones en la literatura para estimar la tasa de transporte de sedimento de 

fondo con lechos horizontales de arena. El aproche probabilístico (Einstein,  1942) o el  aproche 

energético (Bagnold, 1956), generalmente relacionan el transporte de sedimento con el exceso de 

esfuerzo de corte. Como el esfuerzo de corte en la duna no puede ser determinado directamente, el 

transporte de sedimento en la cresta de la duna se relaciona con la velocidad media del flujo sobre la 

cresta de la duna con la formula de Meyer-Peter and Müller (1948):

qs=A U top
3

                                                                                                                 [4]
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La ecuación [5] incluye la velocidad crítica asociada al umbral de esfuerzo de corte que se 

necesita  para  iniciar  el  transporte  de  arena  y  un  coeficiente  de  forma  Cf(α).  Este  coeficiente 

considera los efectos de la aceleración del flujo y la forma de la duna, y el coeficiente A solamente 

depende del diámetro del arena. 

Cf  α =  tan α n= h−hc

x−x
c

n

.                                                                                                                                     [6]

El efecto de la pendiente debe ser considerado para corregir levemente la estimación de la tasa 

de transporte de sedimento sobre fondos inclinados. La idea es que el transporte de sedimento se ve 

modificado por la gravedad. En nuestro caso, donde tenemos una gran estructura sedimentaria, las 

cosas son diferentes. En la parte posterior de la duna, el transporte de sedimento es controlado por 

un proceso de avalanchas, por lo que el transporte en esa parte es igual al que tiene lugar en la 

cresta. En la parte de la duna que enfrenta el flujo, la pendiente positiva aumenta el transporte de 

sedimento bajo el efecto del flujo la capa límite produce un aumento considerable en la velocidad 

de  corte  local.  Como la  aceleración  del  flujo  está  relacionada  con la  pendiente  de  la  duna,  la 

parametrización propuesta por Rossi y Michallet (2003) trata de tomar este efecto en cuenta.

Sand D50

(mm)

h0

(mm)

Uext

(mm/s)

U

(mm/s)

hw

(mm)

hc

(mm)

0.9 176 362 319 281 0

0.9 128 354 312 281 0

0.9 177 268 236 297 54.6

0.9 177 239 210 306 82.9

0.2 150 338 297 270 0

0.2 150 300 264 283 25.7

0.2 150 280 246 287 44.1

0.2
126.

5
275 242 290 48.5

0.2 150 265 233 295 58.1

0.2 134 28 218 304 75.8

0.2 150 240 211 304 82.9

Tabla  1: Condiciones experimentales de deformación de la duna:  h0 es la altura inicial de la duna,  Uext es la 
velocidad AA fuera de la capa límite,  U es la velocidad media AA,  hw es la profundidad AA, y  hc es la altura 
crítica para el inicio del transporte de sedimento sobre la duna.



Sand U  (mm/s) n A (s2/mm) σA (s2/mm) σA/A

Coarse all 1 3.4 10-6 5.2 10-7 16 %

Fine
≤ 246

4.

3
2.1 10-5 8.8 10−6 42 %

Fine
≥ 264

1.

4
2.5 10-6 5.1 10-7 21 %

Tabla 2: Valores de los coeficientes (5-6): n, A y la desviación estándar de A, para las diferentes arenas usadas.

Queremos a partir de esos datos experimentales y de la parametrización asociada, poder validar la 

metodología  de  simulación  propuesta  y  cuantificar  las  mejoras  obtenidas  respecto  a  enfoques 

tradicionales. En nuestro caso, el transporte de sedimentos se estimará a partir del esfuerzo de corte 

sobre el fondo calculado de dos maneras distintas: por un modelo convencional (Coleman 2006), y 

por un modelo de capa límite turbulenta de tipo k-ω (Wilcox, 1992).

Modelo de capa límite turbulenta de Wilcox (1992)

La velocidad de fricción se estima a partir de un modelo de capa límite turbulenta unidimensional 

de  tipo  k-ω  (Wilcox,  1992).  Para  encontrar  la  velocidad  de  fricción,  es  necesario  resolver  el 

siguiente sistema al interior de la capa límite turbulenta:

∂u

∂ t
=−

1

ρ
0

∂ p

∂ x


∂
∂ z  νν

t 
∂u

∂ z                                                                                                        [7]

∂k

∂ t
=ν

t  ∂u

∂ z 
2

−β∗kω
∂
∂ z  νσ∗ν

t 
∂k

∂ z                                                                                      [8]

∂ω

∂ t
=−ν

t  ∂u

∂ z 
2

−βω2
∂
∂ z  νσν

t 
∂ω

∂ z                                                                                        [9]

 
Donde u es la velocidad horizontal dentro de la capa límite, k es la energía cinética turbulenta, y ω 

la tasa de disipación de energía.

Tenemos también la relación siguiente:

∂ p

∂ x
=ρ

0
g
∂ h

∂ x                                                                                                                                  [10]

Por lo que a causa de la forma de la duna, el gradiente de presión va a cambiar, lo que influirá en el 

esfuerzo de corte.  Es posible entonces determinar la velocidad de fricción sobre todo el dominio a 

partir de la forma de la duna. Luego, podemos determinar la tasa de transporte de sedimento, a 

partir de la formula de Meyer Peter & Müller (1948). Para calcular la velocidad de fricción, nos 

enfocamos en la parte de pendiente positiva de la duna, donde el flujo se acelera. Entonces para 

cada punto calculamos el perfil de velocidad cerca del fondo a partir de un modelo k-ω. El modelo 

k-ω utiliza la velocidad media y del gradiente de presión para obtener la estimación del esfuerzo de 

corte sobre el fondo. El esfuerzo de corte se determina a partir de la relación:

τ 0= ρu¿0
2

                                                                                                                                         [11]

donde

u¿ 0
=ρνν

t

∂u

∂ z
                                                                                                                           [12]



Estimación del esfuerzo de corte en el fondo  (Coleman 2006)

Para poder evaluar los resultados, hemos utilizado la formula de Coleman (2006) para estimar los 

esfuerzos de corte sobre el fondo.

Las teorías de formación de duna reconocen que los cambios de fase entre el flujo, el lecho, y el  

transporte de sedimento son necesarios para que se modifique la forma de la duna. Para cada test, 

podemos evaluar el esfuerzo de corte local a partir de la ecuación [11] en cada punto de la parte 

anterior de la duna asumiendo un perfil logarítmico para la velocidad:

u
¿ 0
=u/ [2 .5 ln  z / z

0
 ] [13]

 y adoptando para la altura de rugosidad hidrodinámica el valor (Nikuradse, 1933): 

z
0
=d

50
/30 . [14]

Modelación de la evolución morfodinámica del fondo  (Marieu 2008)

Para estimar la evolución del fondo, vamos a utilizar las estimaciones de transporte de sedimento de 

fondo en la parte río arriba de la duna y resolver la siguiente ecuación de conservación de la masa 

para la fase sólida:

∂h

∂ t


1

1−n

∂q

∂ x
=0

     [15]

Donde n es la porosidad de la arena. 

Esta ecuación se resuelve a partir de un esquema de tipo NOCS (Non Oscillatory Central Scheme) 

utilizado por Marieu (2008). Este esquema  es una extensión natural de segundo orden del esquema 

de primer orden de Lax-Freidrich.

El cálculo de elevación de fondo  h al  paso de tiempo  n+1 se calcula a partir  de una etapa de 

corrección:

h
i
n1=

1

2
h

i1
n −h

i−1
n 

1

4
h

i−1
' −h

i1
' −

Δt

2Δx
q

i1

n
1

2−q
i−1

n
1

2                                [16]

donde h’ es la aproximación de la derivada de la elevación del fondo h, y q
i

n
1

2  es la aproximación 

de la derivada del flujo q en el punto i en el tiempo n+1/2:

q
i

n
1

2=q h
i

n
1

2                                                                                                                                 [17]

h
i

n
1

2=h
i
n−

Δt

2Δx
q

i
'                                                                                                                           [18]

Para calcular las aproximaciones de las derivadas de h y q, se utilizan los β-limitadores. Entonces, 

la aproximación de la derivada de una función φ  en el punto i se define de la siguiente manera:

φ
i
'=MinMod [ β φ

i
−φ

i−1
 ,

1

2
φ

i1
−φ

i−1
, β φ

i1
−φ

i
]                                                               [19]

donde β es el parámetro del limitador, y la función MinMod se define por:



MinMod {x1
, x

2
, x

3}={
min {x1

, x
2
, x

3} si x
k
0 ∀k=1,2,3

max {x1
, x

2
, x

3 } si x
k
0 ∀ k=1,2 ,3

0 si no

[20]

Cuando β=1, se trata del limitador MinMod, y cuando β=2, se habla  del limitador Superbee, más 

preciso que el limitador MinMod pero tiende a aplanar más las crestas.

A partir de la velocidad de fricción, se calcula una tasa de transporte a partir de la fórmula de Meyer 

Peter & Müller. Se determina el volumen de sedimento que pasa la cresta de la duna, y se aplica el 

modulo de avalancha para que se siga moviendo la duna.

Es una necesidad incluir un algoritmo para modelar las avalanchas de arena que se producen en la 

cresta de la duna. De no tener avalanchas,  después de la etapa morfológica,  algunas pendientes 

pueden tener pendientes superiores a la pendiente máxima que puede existir físicamente, por lo que 

se debe manejar con precaución el cálculo de estas pendientes. Marieu (2008) propone buscar las 

celdas de la grilla donde la pendiente local es superior a la pendiente crítica para corregirlas hasta 

llegar al ángulo de reposo del sedimento. La corrección se efectúa cambiando los dos nodos de la 

celda de tal manera que el volumen de sedimento quede constante. El algoritmo es entonces iterado 

hasta llegar a la convergencia.

Figura 4 dos iteraciones del algoritmo de avalancha descrito por Marieu (2007). (a) fondo inicial, (b) primera 
iteración, (c) segunda iteración. Las pendientes superiores al ángulo de estabilidad son corregidas, resultando 
una transferencia de sedimento de la cresta hacia la parte baja de la duna. Las líneas sólidas representan el 
fondo, y las líneas en puntos representan el ángulo de reposo del sedimento.

Evaluación de resultados

Queremos lograr modelar de manera satisfactoria los distintos fenómenos que ocurren cuando un 

flujo interactúa con una duna de arena. Los datos proporcionados permiten predecir la evolución de 

la cresta de la duna según el tipo de arena, y la altura de agua y velocidad AA, y esperamos poder 

llegar  a  una estimación precisa del  movimiento  de la  duna en el  tiempo.  Además nos interesa 

evaluar las diferencias respecto a los distintos modelos hidrodinámicos. Queremos también obtener 

series de tiempo del esfuerzo de corte para ver su evolución con el cambio morfológico de la duna 

debido al flujo.

 

Para  verificar  que  los  resultados  son  concordantes,  utilizamos  una  formula  de  transporte 

determinada por Rossi y Michallet (2003) respecto al movimiento de la duna.

No se lograron al momento de la redacción de este articulo resultados satisfactorios con el modelo 

de capa límite turbulenta k-ω. Las condiciones iníciales presentan gradientes de presión importantes 

en la zona de la pendiente de la duna que se encuentre al ángulo de reposo.  Por consiguiente, el  

esfuerzo de corte calculado es relativamente fuerte, y la tasa de transporte de sedimento resulta poco 

realista. Sin embargo, comparamos los resultados experimentales con la parametrización de Rossi y 

Michallet (2003) y la estimación del esfuerzo de corte de Coleman (2006).



El esfuerzo  de  corte  estimado  por  la  fórmula  de  Coleman  (2006) se  encuentra  en  la  figura  5. 

Notamos que el esfuerzo de corte tiende a aumentar cuando se acerca a la cresta de la duna, lo que 

concuerda con la realidad, donde la aceleración del flujo produce un aumento mayor del esfuerzo de 

corte.

Figura 5- Evolución del esfuerzo de corte, durante el tiempo. Experimento 1,
d50=0.9mm, h0=0.177 m, xc=0.134 m,  hc=0.0829 m; Uw=0.210 m/s, Hw=0.306 m

La primera observación es respecto a la evolución de la posición de la cresta de la duna (Figuras 6 y 

7). Los dos modelos tienden a desplazar la cresta de la duna más rápido que en los experimentos. 

También se nota que el modelo de Rossi y Michallet, a pesar de tener diferencias en la posición, 

llega a un límite después de cierto tiempo logrando un estado cuasi estable, mientras que en el 

modelo con esfuerzo de corte, la cresta de la duna sigue avanzando regularmente en el tiempo, lo 

que muestra que el equilibrio no se ha logrado aún.

El  hecho  que  los  modelos  aumenten  el  desplazamiento  real  de  la  duna  puede  deberse  a  la 

implementación  del  modulo  de  avalancha  en  la  etapa  morfodinámica,  ya  que  existen  distintas 

maneras de encontrar la cresta de la duna antes de utilizar el modulo de avalancha. Por lo visto, es 

necesario validar el modelo de avalancha comparando con otro modelo, tal como el de Paarlberg, 

(2007), donde el sedimento que pasa la cresta de la duna se distribuye sobre toda la parte posterior  

de la duna.



Figura 6- Evolución de la posición de la cresta de la duna en mm, durante el tiempo. Experimento 1,
d50=0.9mm, h0=0.177 m, xc=0.134 m,  hc=0.0829 m; Uw=0.210 m/s, Hw=0.306 m

Figura 7.- Evolución de la posición de la cresta de la duna en mm, durante el tiempo. Experimento 2,
d50=0.9mm, h0=0.177 m, xc=0.088 m,  hc=0.054 m; Uw=0.235 m/s, Hw=0.297 m

Cuando observamos la evolución de la altura de la cresta (Figuras 8 y 9), podemos notar que los 

modelos logran acercarse a los datos experimentales. Para el experimento 2, se nota igualmente que 

el modelo de Rossi y Michallet  llega a un cierto equilibrio,  para tiempos parecidos a los datos 

experimentales, mientras que el modelo de esfuerzo de corte sigue transportando más sedimento.



Figura 8.- Evolución de la altura de la cresta de la duna en mm, durante el tiempo. Experimento 1,
d50=0.9mm, h0=0.177 m, xc=0.134 m,  hc=0.0829 m; Uw=0.210 m/s, Hw=0.306 m

Figura 9.- Evolución de la altura de la cresta de la duna en mm, durante el tiempo. Experimento 2,
d50=0.9mm, h0=0.177 m, xc=0.088 m,  hc=0.054 m; Uw=0.235 m/s, Hw=0.297 m



CONCLUSIONES

Modelamos  la  evolución  morfológica  de  una  duna  sometida  a  un  flujo  uniforme,  de  manera 

unidimensional. El transporte de fondo en la parte AA de la duna es estimado a partir del esfuerzo 

de corte calculado a partir de una parametrización de Coleman (2006), y evolución morfodinámica 

de la duna se modela a partir de un esquema de tipo NOCS acoplado con un módulo de avalancha 

localizado. Comparamos los datos experimentales obtenidos con una parametrización del transporte 

de sedimento a partir de la pendiente de la duna (Rossi y Michallet, 2003), y con un modelo que 

determina el transporte a partir de una parametrización del esfuerzo de corte (Coleman, 2006). 

Cabe destacar que a pesar de los mejores resultados obtenidos por el modelo realizado a partir de la 

parametrización de Rossi y Michallet (2003), es necesario para que ese modelo funcione conocer la 

altura crítica donde se inicia el transporte de sedimento sobre la duna, lo que se puede determinar  

solamente por el esfuerzo de corte.  Es la razón por la cual un modelo que permita modelar de 

manera satisfactoria  el  esfuerzo de corte en fondos con pendientes fuertes permitiría  una mejor 

modelación del transporte de sedimente sobre una duna.
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Résumé : 

Lorsque les vagues se rapprochent du rivage, leurs non linéarités augmentent, et 
prennent une importance considérable dans l'interaction entre les vagues et le fond. Ces 
interactions se produisent principalement dans la couche limite turbulente. 
Des expériences sur un modèle physique de vagues non linéaires sur fond mobile 
(BERNI, 2011), nous permettent d'obtenir les profils de vitesse ainsi que l'évolution du 
fond de manière couplée. Les données expérimentales obtenues suggèrent une 
transformation au sein de la couche limite, le skewness adimensionnel augmentant et 
l’asymétrie adimensionnelle diminuant au fur et à mesure que l'on se rapproche du fond. 
Par ailleurs on constate (DICK & SLEATH, 1991) que l'échelle verticale de diffusion 
de cette couche limite est plus importante sur fond mobile que sur fond fixe. 
Notre objectif est de reproduire ces 2 aspects à partir d'un modèle de couche limite 
turbulente de type k-ω (WILCOX, 2006 ; GUIZIEN et al., 2003) et de pouvoir obtenir 
une meilleure description sur l'évolution des non-linéarités des vagues au sein de la 
couche limite. Le modèle numérique utilisé est capable de calculer la couche limite 
turbulente sur un fond fixe. En modélisant les mouvements du fond et en les couplant 
avec l'évolution de la couche limite, nous reproduisons les principales caractéristiques 
de l’évolution de la couche limite turbulente sur un fond mobile. 
Mots-clés : 

Couche limite turbulente – Non-linéarité – Fond mobile – Modèle numérique k-ω  
Abstract: 

As the waves approach the coast, non-linearities become increasingly important. The 
interactions between the waves and the bottom occur within the turbulent boundary 
layer, which is why its study represents a mean to understand the evolution of these 
non-linearities near the coast. 



Experimental measurements (BERNI, 2011), concerning non-linear waves on a mobile 
bed, provide velocity profiles and bed position in a coupled way. These data suggest a 
transformation within the boundary layer, with a non-dimensional skewness increasing 
and a non-dimensional asymmetry diminishing as we approach the bottom. 
We intend to reproduce this phenomenon with a k-ω numerical model (WILCOX, 2006; 
GUIZIEN et al., 2003), and get a better resolution on the non-linearities evolution 
inside the turbulent boundary layer. The numerical model is able to determine the 
velocity within the boundary layer on a fixed bed, by modeling the bed mobility and 
coupling it with the k-ω model, we are able to reproduce the experimental results 
observed, which would indicate that the bed mobility is responsible for a vertical 
diffusion within the boundary layer. 
Keywords: 

Turbulent boundary layer – Non linearity – Mobile bed – k-ω numerical model 
 
1. Introduction 

La couche limite turbulente sous les vagues est sujette à différents processus, et 
représente une zone importante pour déterminer la contrainte de cisaillement au fond 
ainsi que les processus de transport de sédiment. A l'approche de la côte, la levée des 
vagues produit des non-linéarités, qui, influent sur la contrainte de cisaillement sur le 
fond. La connaissance de cette contrainte est utile pour permettre d’estimer le transport 
sédimentaire, d’autant plus que celui-ci s’effectue sur fond mobile. 
Dans cet article, nous nous limiterons à l'étude de la couche limite turbulente sous des 
vagues non-linéaires et sur un fond mobile. De récentes expériences sur fond mobile 
(BERNI, 2011) ont permis de dégager d'intéressantes propriétés concernant les non-
linéarités dans la couche limite turbulente. Le but de cet article est de reproduire les 
comportements observés à l'aide d'un modèle numérique 1D de type k-ω (WILCOX, 
2006 ; GUIZIEN et al., 2003) qui donne des résultats sur fond fixe. 
 
2. Matériel et méthodes 

 
2.1 Expérience 
L'expérience s'est déroulée dans le canal à houle du Laboratoire des Écoulements 
Géophysiques et Industriels (LEGI) dont le schéma se trouve figure 1. Ce canal mesure 
36 m de long, 55 cm de large et 1,30 m de haut, et ses parois latérales sont constituées 
de verre. Le sédiment présent dans le fond du canal est en matière plastique (PMMA) de 
faible masse volumique (ρs=1190 g L-1), ce qui permet d'assurer une similitude des 
nombres de Froude et de Shields. 
 



 
Figure 1. Schéma du canal à houle du LEGI. Un batteur piston en x=0 engendre deux 

paquets d'ondes, bichromatiques. 

 
La houle utilisée pour l'expérience est de type bichromatique, i.e. la somme de deux 
ondes sinusoïdales de fréquence proche et d'amplitude égale, afin d'obtenir une onde de 
haute fréquence de période T=2,5 s modulée par une onde de basse fréquence (figure 2). 
Le forçage de l’expérience consiste en une série de 23 paquets d'onde, et nous nous 
focalisons sur une séquence de 10 secondes dans chaque paquet, correspondant à 4 
vagues passant au droit des capteurs, comme indiqué sur la figure 2. 
 

 
Figure 2. Vitesse moyenne sur les 23 réalisations du paquet d'ondes envoyé à chaque 

réalisation. En grisé, les 10 secondes prises en compte dans chaque réalisation. 

 
A l'aide d'un profileur acoustique ADVP, BERNI (2011) obtient la position du fond, 
ainsi que le profil de vitesse, avec une résolution spatiale verticale de l'ordre de 3 mm. 
Ce profil de vitesse permet de déterminer les valeurs de skewness Sk, caractérisant une 
dissymétrie en vitesse, ainsi que d'asymétrie As, qui caractérisent une dissymétrie 
d'accélération à toutes les altitudes. Le Skewness et l'Asymétrie sont calculés comme les 
moments d'ordre 3 de la vitesse et de l'accélération respectivement. 



Alors que l’asymétrie diminue au fur et à mesure que l'on se rapproche du fond, le 
skewness augmente avant de baisser à nouveau. Nous voulons voir si ce comportement 
est reproduit par un modèle numérique 1D de type k-ω, décrit ci-après. 
 

 
Figure 3. a) vitesse u à l'extérieur de la couche limite, pendant 10 secondes. 

b) positions du fond mesurées (traits tiretés) et filtrées (trait plein). 

 

 
Figure 4. Définition du lit initial et de la position du lit fixe d'après DICK & SLEATH 

(1991). La position z=0 correspond à la hauteur du lit initial. 

 
2.2 Modèle numérique 
Pour la partie numérique nous utiliserons une modèle de couche limite turbulente 1D de 
type k-ω (WILCOX 2006 ; GUIZIEN et al., 2003) dans sa version à bas nombre de 
Reynolds. La vitesse horizontale dans la couche limite u, l'énergie cinétique turbulente k 
et le taux de dissipation d'énergie ω sont solutions des équations (1-3) : 

 (1) 



 (2) 

 (3) 

Les coefficients et conditions aux limites à utiliser sont explicités dans (GUIZIEN et al., 
2003). La série temporelle de vitesse extérieure u∞(t) utilisée comme condition à la 
limite pour le modèle numérique, est la série de vitesse obtenue expérimentalement à la 
hauteur pour laquelle on observe le maximum de la vitesse Urms, qui correspond à 
z=3,6 cm. Cette vitesse est celle utilisée dans les 23 séquences, mises bout à bout, et on 
itère le modèle numérique jusqu'à obtenir une convergence suffisante. 
Concernant la rugosité équivalente ks utilisée dans le modèle, celle ci est prise égale à 
ks=5θd50, comme suggéré pour des écoulements de type sheet-flow par (WILSON, 
1989 ; DICK & SLEATH, 1991), où θ représente le nombre de Shields, et d50 le 
diamètre médian du sédiment. 
 
2.3 Caractéristiques des évolutions du lit fixe 
Grâce aux données fournies par l'ADVP, nous pouvons déterminer la position zf(t) du 
niveau du fond fixe (BERNI, 2011). La résolution verticale de l'ordre de 3 mm s'observe 
sur la figure 5. Néanmoins, la position aléatoire du fond zf peut être modélisée par une 
fonction de densité de probabilité, dont les paramètres statistiques sont ceux déterminés 
empiriquement. Nous pouvons voir sur la figure 5, une distribution normale obtenue 
avec la déviation standard de la position du fond, ainsi qu'une distribution de Pearson de 
type IV ayant les mêmes moments d'ordre 2, 3 et 4 que la distribution.  
 

 
Figure 5. fonctions de densité de probabilité p(zf) équivalente à la distribution des 

positions du fond, qui correspondent à une distribution normale (traits tiretés) et à une 

distribution de type Pearson (trait plein) avec les mêmes paramètres statistiques. 

L'histogramme représente la distribution des données expérimentales. 

 



3. Résultats 

 
3.1 Modèle numérique sur fond fixe 
Les résultats obtenus avec le modèle numérique k-ω sur fond fixe (figure 6) montrent 
que le modèle numérique reproduit le comportement observé lors de l'expérience, c'est à 
dire une augmentation de la skewness près du fond, ainsi qu'une diminution de 
l'asymétrie, mais le pic ne se situe pas à la même hauteur. En effet, en définissant 
=(2/)0,5 qui correspond à la longueur de Stokes, le modèle numérique sur fond fixe 
nous donne un maximum de skewness pour z=2δ, contre un maximum situé à z=25δ 
pour l'expérience, et la vitesse Urms prédit une vitesse maximale pour z=3.5δ, alors que 
les données expérimentales situent le pic à z=35δ. Il semble que le modèle numérique 
est capable de reproduire les phénomènes non-linéaires observés dans la couche limite, 
mais la diffusivité verticale n'est pas suffisante. Si on regarde les résultats obtenus avec 
une rugosité 10 fois supérieure aux valeurs théoriques pour des couches limites 
oscillantes sur fond mobile, on observe bien sur la figure 6 une diffusion verticale des 
valeurs moyennes de Urms, As et Sk, mais pas suffisantes pour pouvoir expliquer la 
diffusivité verticale des valeurs expérimentales. 
 
3.2 Effets de fond fixe variable 
Nous voulons donc vérifier si en couplant le modèle numérique, implémenté pour un 
fond fixe, avec les positions du fond zf, il est possible d'expliquer en partie cette 
diffusion verticale observée expérimentalement. 
Nous disposons de manière synchronisée d'une série temporelle de vitesse u∞(t) et de 
position du lit zf(t). On construit alors à l'aide du modèle numérique k-ω une série 
synchronisée de vitesse de u(z,t) pour toute altitude dans la couche limite. La moyenne 
d'ensemble sera alors : 

 
(4)

 
N étant le nombre total de points de la série de u∞(t). 
Comme nous pouvons le voir dans la figure 6, ce couplage nous donne des profils de 
vitesse, d'asymétrie et de skewness en escaliers, du fait de la résolution de l'ADVP qui 
ne nous permet pas de connaître la position du fond avec plus de précision. On 
remarque tout de même qu'aux hauteurs correspondantes aux points de mesures, les 
valeurs du modèle sont proches des valeurs expérimentales pour la vitesse, ainsi que 
pour le skewness pour des hauteurs inférieures à 20δ. 
De façon plus approximative et décorrélée dans le temps, nous pouvons approcher les 
profils verticaux déterminées expérimentalement par moyenne d'ensemble, comme la 
convolution du Urms0(z), Sk0(z) et As0(z) (profils verticaux sur fond fixe) par la densité 
de probabilité p(zf) des positions du fond, ainsi : 



 (5) 
Cette formulation est semblable au couplage avec la position du fond, avec la différence 
que les positions du lit et les profils de vitesses correspondants ne sont plus 
synchronisés dans le temps. Une formule similaire est mise en œuvre pour estimer As(z) 
et Sk(z). 
Les profils obtenus par convolution (figure 6) donnent des résultats proches des valeurs 
expérimentales, et ont des pentes semblables aux données expérimentales lorsque l'on se 
trouve près du fond, pour z<20δ. Ces résultats semblent indiquer que la diffusion 
verticale au niveau des profils moyens de vitesse, d'asymétrie et de skewness peut en 
partie s'expliquer par la mobilité du fond, qui agit comme un diffuseur pour les valeurs 
moyennes. Cependant, certaines caractéristiques des valeurs moyennes échappent à 
cette approche. En particulier le pic expérimental de skewness en z=25δ. 
 

 
Figure 6. Profils moyens de vitesse Urms, d'asymétrie As et de skewness Sk sur 

l'ensemble des réalisations. (●) représente les profils obtenus expérimentalement par 
moyenne d'ensemble à chaque altitude, (-) les profils Urms0, Sk0 et As0 du modèle 

numérique obtenus en considérant une rugosité de fond égale à 10 fois la rugosité 

théorique,(--) les profils obtenus par convolution décorrélée avec une distribution de 

type Pearson, (-.-.) les profils obtenus par couplage entre la position du fond et les 

profils de vitesses sur fond fixe. 

 



4. Conclusions 

Un post-traitement combinant des résultats d'un modèle numérique 1D de type k-ω avec 
une série temporelle de positions du niveau du lit fixe permet d'obtenir des profils 
d'asymétrie et de skewness semblables à ceux obtenus avec les données expérimentales, 
et permettent en partie d'expliquer une diffusivité verticale de ces paramètres sur fond 
mobile. 
L’aspect intéressant de la validation du modèle, est que les caractéristiques non linéaires 
au sein de la couche limite se retrouvent au niveau des ordres de grandeur. Il faudrait 
plus en avant étudier l’évolution des non-linéarités au sein de la couche limite, qui sont 
importantes dans l’estimation de la contrainte de cisaillement et de son déphasage par 
rapport à la vitesse extérieure à la couche limite. 
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LAGRANGIAN DRIFTER MODELLING OF AN EXPERIMENTAL RIP CURRENT

Leandro Suarez12, Rodrigo Cienfuegos2, Cristian Escauriaza2, Eric Barthélemy1 and Hervé Michallet1

Mean circulations on an experimental uneven bathymetry are studied using a numerical model. A non-uniform alongshore wave

forcing on a uneven mobile bathymetry create mean circulation on a rip channel. A 2D numerical hydrodynamic model integrates

the non-linear shallow-water equations taking intrinsically into account the energy dissipation by capturing broken waves in a

shock-capturing finite-volume framework, also considering friction losses and an accurate description of the moving shoreline in

the swash zone. The numerical model is validated with wave height and velocity experimental data.

Keywords: rip currents, non-linear shallow-water equations , lagrangian drifters

INTRODUCTION

When approaching the coast the propagation of random wave fields over uneven bathymetries triggers

spatio-temporal non-uniformities in wave breaking, inducing energy dissipation gradients in the surf zone.

These gradients generates mean currents, important for the nearshore, because of their influence in mixing,

dispersion sediment transport and beach morphology.

Under close to normal wave incidence conditions, we often observe the appearance of rip channels (figure

1), which are strong offshore directed jets, that can be hazardous for swimmers.

In this work we aim at investigating and characterizing with a numerical model the nearshore circulation

forced by a random wave field propagating over nonuniform bathymetry in comparison with 3D morphody-

namic laboratory experiments of rip channels.

METHODS

Laboratory Experiments

The experiments (Michallet et al. [2010]) took place in the LHF (Sogréah/Grenoble-INP) wave tank (figure

figure 2), with dimensions of 30 × 30m2. The waves originate from a 60 parallel segmented piston-type

wavemaker, of 50cm width each and covering the 30m tank width, allowing to produce a differential wave

forcing between the segments.

To access the water levels and velocities during the experiment, three fixed capacitive wave gauges located

at X = 5.01 m, Y = 8.17 m, X = 5.03 m, Y = 15.0 m and X = 5.05 m, Y = 21.75 m, a moving sliding

rail equipped with capacitive wave gauges can take cross-shore profile measures, and can provide information

about longshore profiles as we move it alongshore.

Velocity measurements were obtained with three Acoustic Doppler Velocimeter (ADV), one fixed at X =
10.00 m, Y = 15.00 m, and two located on the sliding rail. The ADV provides the three components of the

velocity at a fixed point located at 4-8 cm above the bed for the different measurement positions.

The acquisition frequency is set to 50 Hz for the capacitive wave gauges, and to 64 Hz for the ADV

velocities.

A laser profiler mounted on a motorized trolley located on the sliding rail measured the beach morphology

every day, in the bathymetric survey area, between 7.84 m < x < 22.84 m in the cross-shore direction, and

3.12 m < y < 28.02 m in the longshore direction, these area being limited by the sliding rail configuration.

The wave climate consisted in irregular shore-normal waves complying with a JONSWAP spectrum. Dif-

ferent wave conditions were tested during the experiment, but in this article we only focus on a wave sequence

of 20 minutes concerning the numerical modelling (Hm0 = 18cm, Tp = 3.5s).

In order to create an alongshore non-uniformity in the incoming waves, the wave amplitude in the center of

the wave flume was damped, resulting in alongshore variations of Hrms as can be seen in figure 3. This along-

shore non-unifomity enhanced a rip instability. We define Hrms as the root mean square of the wave sequence,

and Hm0 as the significant wave height estimated by integrating the wave spectrum in the full frequency range.

The relation between these two terms is Hm0 = 1.416Hrms.

1LEGI UMR 5519, Domaine universitaire, BP 53, 38041 Grenoble cedex 9, France
2Departamento de Ingenieria Hidráulica y Ambiental, Pontificia Universidad Católica de Chile,

Vicuña Mackenna, Chile



Figure 1: Rip currents in the Tunquen Beach, Chile (from Martínez & Salinas [2009])

Figure 2: Schematcis representation of LHF wave tank. the X axis corresponds to the cross-shore
postion, the wavemakeris located at X = 0 m, the shoreline is at X ≈ 22 m. The Y axis correponds to
the alongshore position



Figure 3: Incident wave climate: Hrms obtained by the capacitive wave gauges, located at X = 5m

from the wavemaker (blue X), and at X = 7.30m (red O). We clearly observe the diminution of Hrms in the
middle of the tank, result of the damped movement of the wavemaker located in the middle

Figure 4: Mean cross-shore bathymetric profiles at t = 0h00 (green line), t = 26h00 (blue dash) and
t = 51h40 (red dot dash). Still water level is represented in black dots.

We consider the initial beach at t = 00 : 00, when the wave forcing considered starts. This original

bathymetry is relatively uniform alongshore, with a bar at x ≈ 13m. The experiment we consider lasts for

51h40, with a wave sequence of 20 minutes, repeated continuously. Every 20 minutes the sliding rail was

moved alongshore to gather data in the whole survey area.

There are two phenomenons that explain the bathymetric evolution. The first one consist in the wave non-

uniformity alongshore, which create rip channels and an heterogeneity alongshore. The second one is related

to the mild wave conditions, and consist in an onshore sediment transport (figure 4). Therefore, during this

experiment, the beach never reached a quasi-steady state. The characteristic time of this two phenomenon are

different, the accretion occurring at a greater time scale than the alongshore non-uniformity.

The alongshore wave forcing non-uniformity result in an alongshore non-uniformity in the bathymetry,

and the formation of rip channels (figure 5). At t = 26h00, we observe an onshore migration of the bar, as well

as the formation of rip channels and shallow shoals. at t = 51h40, we observe the filling of the rip channels

previously formed, as the accretion phase continues.

During the LHF experiment, rip currents characteristics were investigated with the use of Drifters mea-

surements (Castelle et al. [2010]). Those drifters consisted in balloons filled with water, of diameter 5-10 cm



Figure 5: Beach Bathymetry at t = 0h00 (a), t = 26h00 (b) and t = 51h40 (c). The still water level is
marked by a thick black line

Figure 6: Sample of captured video images with drifters (from Castelle et al. [2010]).

deployed in the surf zone during the different runs, for a period of 30 to 60 minutes. The duration of the drifters

experiments compared to the morphological time-scale of the experiment allows to assume a fixed bed during

the drifters movement.

A shore-mounted video-camera was used to track the drifters during the wave forcing (see figure 6): The

images obtained were then rectified to obtain the Cartesian coordinates of the drifters. The drifters movement

were obtained by a semi-automatic method, by indicating manually the drifter position every 6 seconds.

Cross-shore and alongshore velocities were estimated from a linear interpolation in position and time of

each sequential position of the drifter position at a 1 s time step over a 30 s duration, and mean currents were

calculated.

NUMERICAL MODELLING

The numerical model is a 2D depth averaged model, using the Non-linear Shallow Water Equations

(NSWE), valid for long waves. The main hypotheses of this set of equations are incompressibility, homo-

geneous fluid and hydrostatic pressure distribution.

The non-dimensional form of the NSWE can be written:

∂Q

∂t
+

∂F

∂x
+

∂G

∂y
= S(Q) (1)

where Q is the vector of hydrodynamic variables, function of h the water depth,u and v respectively the

cross-shore and longshore depth-averaged velocities, F and G represent the flux vectors in each Cartesian



direction, and S is the source term vector considering bed slope and friction. The terms of the equation are

defined as:

Q =


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h
hu
hv


 , F (Q) =




hu
hu2 + 1
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S(Q) =




0
− h

F r2

∂z
∂x

− Sfx

− h
F r2

∂z
∂y
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with Fr as the Froude number, ∂z
∂x

and ∂z
∂y

as the bed-slope, Sfx and Sfy as the friction source term

The non-dimensional form of the NSWE, given by Equations (2), are solved using a finite volume well-

balanced scheme, which incorporates separately the friction and bed-slope in the momentum source terms

(Marche et al. [2007],Guerra et al. [2010]) . The numerical procedure consists of an initial step in which the

friction source term in the momentum equations is incorporated employing a semi-implicit method. (Liang &

Marche [2009])

In a second hyperbolic NSWE step, the variables are reconstructed at the cell interfaces and the fluxes are

found through the solution of the Riemann problem at the cell interfaces using a non-conservative form of the

governing equations. This methodology gives the numerical model the well-balanced property by considering

the bed-slope in the spatial discretization schemes using a MUSCL type reconstruction method to reach a

second order accuracy. The discretized form of the governing equations is integrated in time using a multi-

stage Runge-Kutta scheme.

The drifters movement was modelled by a Lagrangian Particle Tracking model (Escauriaza & Sotiropulos

[2011]). One assumption we make is that the drifters have no mass, and therefore no inertia forces, so they

follow exactly the water flow. The governing equation of the model to obtain the particle trajectory is the

following:
dxi

dt
= vi (3)

with xi and vi represent the ith component of the drifter position and velocity. Thanks to this Lagrangian

Particle Tracking model, we are able to follow particles of water during the wave forcing.

The model boundary conditions are shown in figure 7: the boundaries 2 (Y = 0 m) and 3 (Y = 30 m)

corresponds to closed boundaries, to reflect the closed basin. The boundary 4 (X = 25 m) corresponds to a

moving shoreline, with a dry/wet interface (Marche et al. [2007]). The boundary 1 (X = 5 m) consider an

absorption/generation condition (Cienfuegos et al. [2007], Mignot & Cienfuegos [2009])

For the present simulation, we considered a rectangular grid, with a regular spacing ∆x = ∆y = 0.10m,

leading to roughly 60, 000 nodes.

The absorption/generation condition considers an incoming input wave height and solve a Riemann prob-

lem at the boundary, between the incoming wave height and the outgoing wave height, to find the proper wave

height at the boundary. For the wave height input, the wave height near the wavemaker was not available.

Therefore we considered the closest wave gauges to the wavemaker, that consisted in three static wave gauges

located at 5 meters from the wavemaker, precisely at X = 5 m, and Y = 8.17 m, Y = 15 m, Y = 21.75 m re-

spectively. The wave input at each node is then interpolated alongshore, using the three wave gauges. Resulting

wave forcing is shown in figure 8.

Concerning the incident condition wave, there is a difference between the experimental data, and the

numerical model. The absorption/generation condition considers an open boundary, and the wave basin is

closed one. The latter implies that reflection at the wavemaker is not included in the numerical model, so

that resonant conditions due to the semi-enclosed basin in the experimental data will not be amplified in the

simulations. The influence of the wavemaker can be seen mostly in the resonant modes of the basin, occurring

at low frequency. For our numerical model, we prefer to use a high-pass filter and not to force incident wave

conditions with infragravity energy. The model should be able to transfer energy from the short-wave band to

the low frequency band, without resonant mode amplification.

MODEL VALIDATION



Figure 7: Boundary conditions of the numerical model. The red crosses mark the location of the
wave gauges used for estimating the wave input

Figure 8: Hrms of experimental wave gauges at a distance X = 5 m from the wavemaker (red
crosses), the thin blue line represent the Hrms of the interpolated input wave.



The model is validated with the bathymetry shown in figure 5 b) and represent a bathymetry with two rip

channels formed, at Y = 10 m and Y = 26 m.

We first validate the numerical model by checking the wave height statistical properties. To that end, we

compare Hrms in a cross-shore profile, located at the middle of the basin alongshore, at Y = 15 m. The

spectra were calculated over a 20 minute sequence,at a 50 Hz frequency for both the wave gauges and the

numerical data. The first spectrum 9 a), at a distance X = 5 m from the wavemaker, corresponds to the

absorption/generation boundary condition of the numerical model. The spectrum indicates that the numerical

model is able to reproduce the input wave height in the frequency band between 0.15 Hz and 1 Hz. In the

frequency band below 0.15 Hz, the differences in peak frequencies can be explained by the numerical boundary

condition, where the reflection by the wavemaker is not included.

The second spectrum (figure 9 b)), at a distance X = 10 m, shows a good concordance in the frequency

band between 0.15 Hz and 1 Hz, with some discrepancies under 0.15 Hz. The spectrum at X = 15 m
is located after the wave breaking, and even though the frequency band around the peak frequency, between

0.15 Hz and 0.4 Hz is well reproduced, over 0.4 Hz the numerical model shows less energy than the wave

measurements. The spectrum at X = 20 m is located near the shoreline, and the peak frequency band of the

numerical model is also concordant with the experimental data. The numerical model reproduce energy transfer

to the low frequencies near the shoreline, in term of values, even though the peaks are not well reproduced.

We then consider a spectral Hrms cross-shore profile located a Y = 15 m alongshore (figure 10). The

spectral Hrms represent the integral of the wave height spectrum, and is related to the energy dissipated by

wave breaking. The first thing to note is that the experimental spectral Hrms at the open boundary at X = 5 m
is reproduced by the numerical model. The numerical model shows an increase between X = 5 m and

X = 10 m, reaching its peak, and then decrease with a constant slope until X = 19 m. The decrease in

energy dissipation corresponds to energy dissipation by wave breaking. The experimental data show a slow

increase, until X = 12 m, and then a decrease with an almost constant slope. The main difference between the

experiment and the model is the wave breaking location, in the numerical model it occurs 2 m before, but the

observed gradient in the spectral Hrms decrease is similar in both cases.

The numerical model is also validated using velocity observations. During the experiment, an Acoustic

Doppler Velocimeter mounted on the sliding rail, measured the three component of the instantaneous velocities

at a frequency of 64 Hz. The ADV was located at approximately 5 cm from the bottom. The numerical model

provides cross-shore and alongshore depth averaged velocities, therefore we can only compare the experimental

and numerical velocities qualitatively, by assuming that the ADV is outside of the boundary layer and its

measurements are representative of depth-averaged velocities.

We compare the mean velocities in an alongshore profile, at a distance X = 14.71 m of the wavemaker,

where the wave breaking has already occurred. We observe (figure 11) that the numerical model reproduce the

velocity variations. Concerning the cross-shore mean velocity, the maximum off-shore velocity are located at

approximately Y = 10 m, and Y = 24 m where the rip channels are located, as can be seen in figure 5. The

alongshore velocities also present similarities in their variation, increasing between Y = 0 m and Y = 12 m,

and then decreasing for Y > 12 m.

The comparison gives confidence to the numerical results, although they are only qualitative.

RESULTS

Using the numerical model, we estimated the mean velocities over a 1200 s simulation, and compared these

circulations with experimental data. Using Lagrangian drifters, Castelle et al. [2010] obtained mean circulation

velocities for different bathymetries. We compare the results over the bathymetry at t = 26 : 00 in the middle

of the accretion phase, where the beach is relatively non-uniform, with two rip-channels (figure 12).

The mean circulations modelled for the first bathymetry clearly show the two circulation cells of the rip

current located at Y = 11 m, that correspond to the ones that can be seen with the drifters circulation. The

center of the circulation cells in the simulation, at X = 15 m, Y = 7 m for one, X = 16 m, Y = 15 m for

the other, are similar to the position found using drifters. The rip channel with strong offshore mean velocities,

of the order of 0.1 m/s, can be seen at Y = 10 m. The order of magnitude of the rip channel velocity in the

numerical model is equivalent to the drifter circulation speed in the rip channel.

In the region of the second rip channel at Y = 26 m, there is no data available to determine the drifter

circulation. The numerical model predicts in this area another rip, but the circulation cell is not clearly observed.



Figure 9: Spectral wave height of experimental wave gauges (black) and of the numerical model
(green) at distances (a) X = 5.01m, (b)X = 10.31m, (c)X = 15.31m,(d) X = 20.34m, from the wavemaker.
The alongshore distance is Y = 15m, at the center of the basin.

Figure 10: Cross-shore variation of Spectral Hrms from measured (black dots) and computed (green
line) free surface time series, at an alongshore distance Y = 15 m



Figure 11: Cross-shore and alongshore mean velocity over the alongshore profile Y = 15m

Figure 12: Mean velocity circulation over a 1200s simulation (left), and circulation estimated by
drifters circulation (from Castelle et al. [2010], over a bathymetry at t = 26 : 00). The red dots indicates
the position of the circulation cells center

Using the hydrodynamic results provided by the numerical model, we can model the movement of drifters

induced by the wave forcing on the bathymetry at t = 26 : 00. The particle trajectories are smoothed in time

over a 6s period, for clarity purpose:

x0(t) =
1

6

∫ t+3

t−3

x(t)dt , y0(t) =
1

6

∫ t+3

t−3

y(t)dt ,

where x(t),y(t) represent the drifter position at time t, and x0(t),y0(t) represent the drifter mean position over

6 seconds at time t.
The particles initial positions are near the shoreline, at X = 20 m, and between 4 m < Y < 16 m. This

correspond to the zone between the shoreline and the two cell circulations of the rip current. The smoothed

trajectories of the particles (figure 13) clearly shows that almost all particles enter the rip channel, which is a

preferred pathway. We then observe that some particles are caught in the recirculation cells, and realize several

revolutions during the 1200s simulation time. Some particles are ejected from the circulation when passing

through the rip channel.

CONCLUSION

A 2D numerical model can reproduce mean circulations on an uneven bathymetry, with a non-uniform

wave forcing. There exist an early breaking in the numerical model, but the energy dissipation due to wave

breaking is close to the experimental data, and the wave height spectra are well reproduced. There is a good

overall qualitative agreement between experimental and numerical Lagrangian drifters.

By incorporating dispersion in the hydrodynamic numerical model, we could reproduce the shoaling before

breking, and obatin better estimations of circulations. Concerning the Lagrangian drifters movement, by adding

inertia to the particle movement, we could compare their movement with the lagrangian drifters experimental

data, concerning drifters ejection in the rip channel.



Figure 13: Drifter smoothed trajectories for a 1200 second simulation, over a bathymetry at t = 26 :

00. The grey dots represent the drifters’ initial position, at t = 0s, the black dots represent their position
at t = 1200 s.
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VORTICITY EVOLUTION AND RELATED LOW-FREQUENCY MOTIONS ON A  

RIP-CURRENT WITH A NON-UNIFORM ALONGSHORE WAVE FORCING 

 
 

Leandro Suarez1,2, Rodrigo Cienfuegos1,3 Eric Barthélemy2, Hervé Michallet2 
 

Abstract 

 
Experimental results on a rip formed over a heterogeneous beach with a mobile sandy bed are analyzed using a 2D 
depth-averaged Non Linear Shallow Water Equations (NSWE) model. The numerical model is validated comparing 
results with measured wave height values and velocity time series recorded by Acoustic Doppler Velocimeters (ADV) 
showing good agreement with experimental data. The numerical model is then used to produce a much longer 
simulation under the same conditions in order to obtain  reliable information on the Very Low Frequency (VLF) band. 
By computing Hrms and Urms in this frequency band we are able to observe pulsations that correlate with the slow 
evolution of the rip current, and the contribution of the VLF to the vorticity dynamics. We also show that a peak of 
energy exists in the VLF range in the position of the center of the recirculation rip cell, and the rip-current offshore 
velocity. We analyze model results using time series and spectral analysis of free surface, velocities and vorticity. A 
large amount of energy in the VLF range is observed in the vorticity generated in the surf zone. By looking closer at 
one rip-vortex, we show that the position of the center of the recirculation cell moves with time scales in the VLF 
spectral range. The rip-current offshore velocity pulsates at VLF frequencies.  
 
 
Key words: Rip Current, Vorticity, Circulation, Very Low Frequency Motion 
 
 
1. Introduction 

 
Rip-currents are offshore oriented jets that originate in the surf zone, that constitute a hazard for 

swimmers, and represent one of the main mechanisms responsible for the mixing and circulation in the surf 
zone. The rips are created from the breaking of a low incident-angle random wave field over real 
topographies, which often enhance spatio-temporal variations of the breakpoint location due to the 
heterogeneity of beach bathymetry and/or the wave forcing. Under this situation, differential intensities in 
wave breaking energy dissipation can generate vertical vorticity at the scale of wave-averaged flows 
[Brocchini et al., 2004; Bonneton et al., 2010]. This wave generated vorticity then self-organizes in 
macrovortices with horizontal scales much larger than the local water depth. These macrovortices are 
responsible for producing these strong currents. In nature, the rips are always evolving, as natural wave 
conditions do, and the seabed is also changing due to sediment transport. Hence, there is a feedback 
between the wave forcing, the beach bathymetry and rip vorticity dynamics, which has not been completely 
clarified so far. 

In this work we intend to study and analyze the generation and spatio-temporal evolution of 
macrovortices in a numerical rip and their link with Very Low-Frequency (VLF) motions in the surf zone. 
To that end, results from a 2DH numerical model, validated with experimental data of an established rip 
current, will be used to understand the connection existing between vorticity and VLF waves. 
 
2. Methods 

 
2.1. Laboratory experiment 
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The experiment [Castelle et al., 2010; Michallet et al., 2013] took place in the LHF (“Laboratoire 
Hydraulique de France”) wave basin, of dimension 30m x 30m, with a still water level of h0=0.765m at the 
wavemakers. It is a scaled experiment, with a length similitude of 1/10, and a time similitude of 1/3 
according to the Froude similarity. 

The beach bathymetry was prepared with a mobile bed of fine sand sediment of median diameter 
d50=0.166mm. The scale of the experiment allowed to fulfill the Rouse similitude, but not the Shields one, 
resulting in the presence of sand ripples. At the end of each day, the wave basin was slowly emptied, so as 
not to alter the beach bathymetry, and the beach morphology was measured by means of a laser profiler 
mounted on a motorized trolley located on the sliding beam, at a resolution of 1 cm cross-shore and 10 cm 
longshore, with a vertical accuracy of 1 mm. The bathymetric survey zone was restricted by the movement 
of the sliding rail, to the area between 7.84m<x<22.84m in the cross-shore direction, and 3.12m<y<28.02m 
alongshore (see Figure 1). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 1. a) Schematic view of the wave basin from Michallet et al. [2013]. The capacitive wave gauges are 
represented as blue circles. The position x=0 corresponds to the position of the wavemakers. There are three fixed 
capacitive gauges, at x=5m. b) Hrms alongshore distribution, at x=5m (blue crosses) and at x=7.30m (red dots). The 
wave damping can be seen at the center of the wave basin at x=5m. 
 

The water height was measured by capacitive wave gauges, three of them located permanently at the 
cross-shore position x=5m, and respectively at y=8.17m, y=15.0m, y=21.75m. Other wave gauges were 
located on a sliding rail in order to measure cross-shore transects of wave height evolution. 

The basin is equipped on one side with 60 independent piston-type wavemakers that prescribe the 
shore-normal non-uniform alongshore-irregular wave forcing. The wave forcing is a mild wave climate 
JONSWAP spectrum with a significant wave height Hm0 =18 cm and a peak period of Tp=3.5s. A damped 
motion of the wavemakers at the center of the wave front (see figure 1b) imposed a non-uniform 
alongshore wave forcing in the experiment, 20 minutes wave series were considered, and repeated 
continuously during each experiment. The wave damping can be seen at x=5m, as well as the Hrms 
heterogeneity at x=7.30m, due to the heterogeneity of the bathymetry. 

At the beginning of the experiment, the bathymetry was relatively uniform, and the alongshore non-
uniformity of the wave forcing established a differential breaking, that led to circulations in the wave basin. 
These circulations led to sediment transport and beach evolution, resulting in a 3D heterogeneous 
bathymetry (see Michallet et al. [2013] for details on the bathymetric evolution). 

For the validation of the numerical model, we use the experimental results associated with a bathymetry 
that is relatively non-uniform alongshore, with the presence of two rip channels, located at y=10m and 
y=26m. We will specifically focus on the circulation cells and rip channel located at Y=10m (see figure 2 a). 
Even though after each run, the bathymetry was slightly modified in the experiment, for the numerical 
model we consider a fixed bathymetry, and observe the circulation induced by the wave forcing.  
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Figure 2. Left panel: bathymetry used for the validation of the numerical model. Right panel: mean alongshore profile 
as a thick line (-) and Still Water Level (SWL) represented as a dashed line (- -). 
 
2.2. Numerical modeling and validation 

 
The numerical simulations are performed using a 2D depth-averaged Non-linear Shallow Water Equations 
(NSWE) solver. The main hypotheses of this set of equations are incompressibility, homogeneous fluid and 
hydrostatic pressure distribution. This solver deals effectively with breaking energy dissipation, bed 
friction, and the run-up and run-down of waves and bores in the swash zone [Marche et al., 2007; Liang & 
Marche, 2009; Guerra et al., 2010]. 
The non-dimensional form of the NSWE can be written as: 
 

 
 

(1) 
 

 
where Q is the vector of hydrodynamic variables, function of h, the water depth, u and v respectively the 
cross-shore and longshore depth-averaged velocities, F and G represent the flux vectors in each Cartesian 
direction, and S is the source term vector considering bed slope and friction. The terms of the equation are 
defined as: 
 
 
 

 
 
 

(2) 
 
 
 
 
 
 
 
with Fr as the Froude number, z as the bed elevation, Sfx and Sfy as the friction source term. 
 
The numerical simulation was performed on a rectangular grid, with grid spacing of x = 0.10m and y = 
0.20m, leading to nearly 30,000 nodes. Concerning the bathymetry, the grid resolution is not sufficient to 
observe the ripples, therefore we smooth the bathymetry with a median mask of 50cmx50cm. This 
bathymetry is then interpolated to obtain a grid resolution of 0.1m x 0.2m. 
For the model boundary conditions we consider the following: the lateral boundaries (y=0m) and (y=30m) 
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are set to closed boundaries; at the shoreline (x=25 m) a wet/dry moving boundary condition is employed 
[Marche et al., 2007]; at the offshore limit of the numerical model (x=5 m) an absorption/generation 
boundary condition is considered [Cienfuegos et al., 2007; Mignot and Cienfuegos, 2009].It is important to 
note, that at the offshore boundary, the incoming JONSWAP wave climate is prescribed without any low 
frequency energy content and with a random phase distribution (see figure 3). 
 

 
Figure 3. Synthetic JONSWAP spectrum of the free surface, used as boundary condition at x=5m (blue line); spectrum 
of the experimental data measured at x=5 m, y=8.71 m (green line); spectrum of the data obtained by the numerical 
model at x=5m, y=8m (dashed red line). 
 

A complete recording of the measured free surface time series at the boundary of the domain was not 
available from the experiments. Hence for the boundary forcing, we consider the closest wave gauges to 
the wavemaker, precisely at x=5 m, and y=8.17 m, y=15 m, y=21.75 m respectively and interpolate the time 
series alongshore. The procedure also takes into account the signal prescribed to the wavemakers, which is 
a shore-normal JONSWAP spectrum with damped amplitude at the center (see figure 1b). 

Low frequency energy will appear as a consequence of the wave propagation processes and partial 
reflections. In the experimental wave basin, the reflection of long waves at the wakemakers is unavoidable, 
while in the numerical model, long waves exit the domain freely. The latter will explain some of the 
differences observed in the structure of infragravity waves and resonant modes as discussed later. 

To assess the confidence in the numerical model in reproducing wave propagation and low frequency 
motions, we perform a simulation of 1,200s, forcing the offshore boundary with the measured free surface 
time series (at x=5m) and the interpolation procedure already described. Experimental observations of 
wave gauges (free surface), and ADVs (velocities), are used for validation purposes. 

The model hydrodynamics has been validated for mean circulations comparing its results with wave 
height data and velocity measurements [Suarez et al., 2012] showing that it is able to reproduce the energy 
dissipation gradients which are an important proxy for vorticity generation [Brocchini et al., 2004; 
Bonneton et al., 2010]. 

We now complement the validation of the model results by analyzing the free surface spectrum 
distribution in the alongshore direction at x=16m and in the cross-shore direction at y=6m and y=9m. These 
profiles were also chosen to obtain information at the vortex center of the recirculation cell, located near 
x=16m, y=6m (figure 4). For that we perform a simulation of 1,200s, forcing the offshore boundary with 
the measured free surface time series (at x=5m) and the interpolation procedure already described. Model 
results are compared with free surface time series measured by wave gauges, and velocity values recorded 
with ADVs. 

In the longshore spectral distribution of figure 5, we observe that the signature of the JONSWAP 
spectrum is present in all the positions of the profile, in good agreement with experimental data. We also 
observe a trough in the spectrum at y=15m, at a frequency of 0.055 Hz, and three bumps alongshore, at a 
frequency of 0.125 Hz. This might correspond to the basin alongshore seiching but further analysis is 
required to confirm this. The numerical model succeeds in reproducing these features. 
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Figure 4. Mean circulation (arrows) and mean vorticity (color) in rad/s-1 induced by the non-uniform alongshore wave 
forcing and the bathymetry heterogeneity. The thin lines represent the isobaths, the wavemaker is located at the 
position x=0m. The dashed lines represent the cross-shore profile at y=6m (used in figure 6, 9, 10), y=9m (used in 
figure 10) and the longshore profile at x=16m (used in figure 5). 

 
 

 
Figure 5. Longshore evolution of the free surface spectra, at x=16m (see figure 4). The thick black lines represents the 
limits between the VLF band and the infra-gravity band (f1=2 10-2 Hz) and the limit between the infragravity band and 
the JONSWAP spectrum band (f2=1.7 10-1 Hz). Color scale is logarithmic. a) experimental results, computation 
duration 1,200s, b) numerical model results, computation duration 1,200s. 
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Concerning the cross-shore spectral distribution of figure 6, the experimental results show clearly the 

basin cross-shore seiching, with a fundamental mode at frequency 0.04 Hz, lying in the infra-gravity band. 
This mode does not appear in the numerical model results since an absorbing/generating boundary 
condition is employed offshore, but overall the spectral distribution is similar in the experiment and in the 
numerical results. We also observe both, in the data and the model, a modal structure at a frequency of 0.07 
Hz. This quasi-standing mode is confined between x=12m (the breaking point) and the shoreline. It exhibits 
anti-nodes at the breaking point and the shoreline and a node at x=18m. It might correspond to a quasi-
standing long-wave oscillating between the breaking point and the shoreline. 

Since the numerical model succeeds in representing the most important features of the complex wave 
and low frequency motion dynamics, we perform next simulations with longer time series using the same 
JONSWAP forcing, without energy content in the low frequencies and with a random phase distribution. 

 

 
Figure 6. Cross-shore evolution of the free surface spectra, at y=6m (see figure 4). The thick black lines are described 
in figure 5. a) Experimental results, computation duration 1,200s. b) Numerical model, computation duration 1,200s. 
Color scale is logarithmic. 
 
 
3. Analysis of VLF motions 

 

To study low frequency motions at the VLF range, we must first define the different spectral ranges. As 
suggested by MacMahan et al. [2006]: the infra-gravity band is limited at periods between 25s and 250s, 
which would correspond in the experiment to periods between 8.3 s and 83 s defining a frequency band of 
0.012 to 0.12 Hz. The VLF is limited to periods between 5-30 min, which in the experiment corresponds to 
periods between 100 and 600s defining a frequency band of 0.0017 to 0.01 Hz. In the present analysis, we 
choose the limit between the VLF spectral range and the infragravity one at f1=2.10-2 Hz (T=50 s), this is 
substantiated by the clear separation observed in the experiments (see figure 6). The limit between infra-
gravity and the JONSWAP spectrum is fixed at f2=1.7.10-1 Hz (T=6 s). 
 
3.1. Spatial distribution of ση and Urms 

 
Since we expect the rip currents to pulsate at frequencies lower than the wave period, in the infra-gravity-
band and in the very low frequency band we decided to run the model during longer time than the 
experiment in order to obtain a better resolution in the VLF spectral range. We use a seaward boundary free 
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surface elevation time series complying a JONSWAP spectrum,of duration 10,800s. 
To understand the spatial distribution of the different spectral range motions, we compute the energy 

content of free surface displacements and velocities. The latter is of course related to kinetic energy of 
these motions. The values of ση and Urms in each spectral range (figures 7 and 8) are estimated as follows: 

 
 

(3) 
 

(4) 
 
 

where Sηη is the power density spectrum of the free surface displacements, Suu and Svv are the power density 
spectra of the cross-shore and alongshore velocity respectively and f is the frequency. We also estimate the 
total ση and Urms, and obtain a spatial map of the total energy content in this variables (figures 7 and 8). 
 

 
Figure 7. Free surface standard deviation ση estimated with equation (3). Upper left panel: integration on the full 
spectrum, Upper right panel: integration on the VLF band. Lower left panel: integration on the infragravity band. 
Lower right panel: integration on the JONSWAP high-frequency spectrum range. 
 
In the total energy map of the free surface displacements ση (figure 7) we observe the wave damping in the 
middle, at x=5m and y=15m. At x~12m the differential breaking produced by the bathymetry combined 
with the wave forcing is clearly evidenced. This is the source of the vortices generation. In the VLF band, 
the free surface energy content is an order of magnitude lower and confined between the breaking point 
and the shoreline, between x=15m and y=21m. The JONSWAP high-frequency range is similar to the total 
spectral energy as one would expect. The infragravity band motion shows a spatial structure with higher 
amplitudes at the horns of the shore-attached bars located near x=18-19m. This could be explained by wave 
amplification over the shoal, since at the same location Urms is also maximum (figure 8). Note that the VLF 
range motions are spatially uniform with no modal structures. This means that the very slow modulations 
of the mean water level by the VLF motion is uniform over the entire surf zone. 

The Urms maps are plotted in figure 8. The shoaling of the waves is evidenced in the total Urms map 
where Urms is the strongest near the breaking point. As for the free surface displacements, the high 
frequency range contribution to the total energy is dominant with a very close spatial structure between the 
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two. The maps show a significant amount (50%) of kinetic energy present in the infragravity band. As for 
the free surface displacement, the maximum energy is located on the horns of the shore-connected bars. 
The VLF kinetic energy is spatially distributed very differently compared to the free surface energy 
spectrum. High kinetic VLF energy is located at strong mean vorticity locations (figure 4) and does not 
seem to be forced by large-scale vortex stretching. 

 

 
Figure 8. Urms estimated with equation (4). Upper left panel: integration on the full spectrum, Upper right panel: 
integration on the VLF band. Lower left panel: integration on the infragravity band. Lower right panel: integration on 
the Jonswap high-frequency spectrum. 
 
 
3.2. Vorticity motions and variations 

 
It is now clear that VLF energy is present in the velocity field. Using the numerical results, we analyze 
hereinafter the vorticity dynamics focusing in low-frequency motions (pulsations). 

Using the numerical model, we are able to observe the macrovortices formation and their evolution 
over 10,800 s. In Figure 4, the mean circulation and vorticity fields clearly show a strong dipole vortex and 
a rip current at x=16m, y=12m, and a smaller one at x=18m, y=25m. The rip current located at y=26 m is 
less obvious probably due to the interaction of the flow with the lateral boundary. 

In order to characterize the vorticity fluctuations within the rip, a time-stack of vorticity in the same 
cross-shore profile (y=6m) is plotted in figure 9. In this plot, the individual wave-attached vorticity 
propagation is visible. The trajectories show how the waves slow down as they propagate towards the shore. 
More interestingly, coherent patterns of fluctuating motions at a time scale of 50 s, much longer than the 
peak frequency of the wave forcing, are observed.  

Figure 9 shows the importance of low-frequency motions in the vorticity. A closer view in two cross-
shore profiles (figure 10) at y=6m and y=10m, indicates that the vorticity appears in the cross-shore profile 
after the breaking. At y=6m, corresponding to the cross-shore profile centered in the recirculation cell, we 
observe in the infragravity band three ridges with the higher vorticity energy at x=13m, x=15m and x=18m. 
These three bands correspond to the center of the vortex, and the two arms that rotate slowly around it. We 
also observe in the VLF band some energy, much stronger within the vortex.  

By using a 50 s low-pass filter to focus on the VLF motions (figure 11), we observe that the very slow 
modulations of the rip current velocity Urip are highly correlated with the cross-shore evolutions of the 
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vortex center distance Rvort. The vortex’s center position is defined as the location of the maximum vorticity 
within the region 14m<x<18m, 4m<y<7m, and Rvort represents the distance between this position to the 
mean vortex’s center position. On the other hand, the wave energy measured by computing the Hrms on a 50 
s running mean average does not seem to have a high correlation with the rip current cross-shore velocities. 
The latter would suggest to that the very slow motions of the macro-vortices are not caused by the 
modulation in the incident wave energy. 

 

 
Figure 9. Vorticity time-stacks over a cross-shore profile at y=6m (see figure 4), in rad/s.  
 

 
Figure 10. Cross-shore evolution of the vorticity spectra. Upper panel: profile at y=6m, passing through the center 

of the macro-vortex (see figure 4). Lower panel: y=9m, passing through the rip channel. Color scale is logarithmic. 
 

4. Conclusion 

 

After validating a 2DH numerical model on an experimental rip, we produce longer time series of free 
surface and velocities forcing the model with the same JONSWAP spectrum used in the experiment. This 
allows us to increase the spectral resolution in lower frequencies to investigate the VLF modulations of free 
surface, velocity and vorticity. The vorticity energy in the rip macro-vortices is mainly found in the VLF 
and infragravity bands. The numerical results also show that there is a slow modulation in the vortex 
position that is correlated with the VLF low-pass filtered cross-shore velocity. From time to time, a strong 
jump in offshore velocities in the rip channel is observed; the same behavior occurs in the time series of the 
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vortex position. Further investigation is required to better understand the link between wave forcing, 
bathymetric coupling, and the pulsations in the rip. On the other hand, the numerical results suggest that 
the low-pass filtered wave energy does not correlate with the very slow modulation of the macro-vortex. 

 

Figure 11. Upper panel: low-pass filtered (50 s running mean average) Hrms (m/s). Middle panel: 50 s low-pass filtered 
cross-shore position of the vortex center with regard to the mean cross-shore position center (m). Lower panel:  50 s 
low-pass filtered cross-shore velocity within the rip channel (m/s), x=16m, y=9m. Offshore values are negative. 
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