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La couche limite et I’hydrodynamique 2D a grande échelle de
la zone de surf : une étude numérique.

Résumé :

Ce travail porte sur les processus hydrodynamiques en zone littorale.
Deux principaux themes sont abordés. Le premier concerne la couche
limite oscillante provoquée par I'interaction entre les vagues et le fond
a ’approche des cotes. Le second traite de I’évolution de la circulation
et la vorticité induite par la bathymétrie et/ou le forcage des vagues.
Un modele de couche limite turbulente a été élaboré et utilisé pour
observer I’évolution de la couche limite oscillante sous 'effet de vagues
non-linéaires, en s’appuyant sur une modélisation physique menée
dans le canal a houle du LEGI. Les profils expérimentaux de vitesse
et positions du fond fixe instantanés permettent de définir I’évolution
des non-linéarités induites par les vagues au sein de la couche limite.
Le modele numérique couplé a une modélisation du mouvement du
lit mobile est capable de reproduire I’évolution de ces non-linéarités,
et explique que la diffusion verticale observée expérimentalement
est principalement due au mouvement vertical du lit causé induit
par les vagues. Pour I'étude de la circulation et de la vorticité en
zone coOtiere, un modele numérique 2D moyenné sur la verticale de
type Shallow Water est validé avec les données d’une expérience
menée dans le basin a vagues du Laboratoire Hydraulique de France
(ARTELIA). La formation de courants sagittaux a été forcée par
un front de vagues avec un déficit d’énergie au centre du bassin. Le
modele numérique est validé par des mesures de surface libre, de
vitesse, ainsi que de circulation et vorticité. FEn utilisant ensuite
I’équation de vorticité potentielle comme outil de diagnostic, avec un
forgcage monochromatique on prédit un équilibre entre la génération

de vorticité et son advection par I’écoulement moyen.

Mots clés : circulation moyenne, vorticité, non-linéarités des vagues,
dissipation, modelisation numérique, couche limite turbulente, mod-

élisation en eaux peu profondes.



Surf zone boundary layer and 2D large scale hydrodynamics

Abstract:

This work is about the hydrodynamic processes in the nearshore
zone. They are of great importance to estimate the overall dynamics
of the coastal zone. This thesis is divided into two main parts; the
first one investigates the coastal bottom boundary layer induced by
the interaction of the waves and the bottom when approaching the
coast; the second one is about the evolution of the mean circulation
and vorticity induced by an inhomogeneity in the bathymetry or
the wave forcing. A turbulent boundary layer numerical model has
been developed and used to simulate the evolution of the oscillating
boundary layers under non-linear waves, of a flume experiment at the
Laboratoire des Ecoulements Géophysiques et Industriels (LEGI) in
Grenoble, France. The experimental instantaneous velocity profiles
and still bed positions, allow defining the non-linear velocity distribu-
tions induced by the waves within the boundary layer. The numerical
model coupled with a ad-hoc modeling of the mobile bed motion
is able to reproduce the vertical distribution of the non-linearities,
and also indicates that the vertical diffusion observed experimentally
is mainly caused by the mobile bed motion induced by the passing
waves. A 2D depth-averaged nonlinear shallow water numerical
model is used to study the circulation and vorticity in the nearshore
zone. This model is validated on a mobile bed experiment in the
wave basin of the Laboratoire Hydraulique de France (ARTELIA).
The formation of rip currents is forced by a damped wave forcing in
the middle of the wave basin. The numerical model is validated with
free surface and velocity measurements, and by the circulation and
vorticity. Using the potential vorticity balance as a diagnosis tool
and with a monochromatic wave forcing, an equilibrium between the

vorticity generation and advection is observed in the nearshore zone.

Key words : mean circulation, vorticity, wave non-linearities, dissi-
pation, numerical modeling, turbulent boundary layer, shallow-water

modeling.



Capa limite e hidrodinamica 2D a gran escala en la zona de
surf: un estudio numeérico

Abstract:

Este trabajo trata de los procesos hidrodinamicos en la zona litoral,
de grande importancia para la dinamica global del flujo costero. Dos
temas principales son estudiados. El primero trata de la capa limite
oscilante provocada por la interaccién entre el oleaje y el fondo al
acercarse a la costa. El segundo tema trata de la evolucién de la
circulacién y la vorticidad inducida por la batimetria y/o el oleaje.
Un modelo de capa limite turbulenta ha sido elaborado y validado
para analizar la evolucién de la capa limite oscilante bajo la influencia
de oleaje no-lineal, apoyandose en una modelacion fisica, realizada en
el canal de olas del LEGI. Los perfiles experimentales instantaneos de
velocidad y posicién del fondo fijo, permiten definir la evolucion de
las no-linealidades inducidas por las olas dentro de la capa limite. El
modelo numérico acoplado a una modelacién del movimiento del fondo
movil es capaz de reproducir la evolucion de estas no-linealidades, y
explica también que la difusion vertical observada experimentalmente
es principalmente debida al movimiento vertical del fondo inducido
por el oleaje. El estudio de la circulacion y de la vorticidad en zonas
costeras se hace mediante un modelo numérico 2D promediado en
la vertical de tipo Shallow Water que es validado con los datos de
una experiencia llevada a cabo en la piscina de olas del Laboratoire
Hydraulique de France (ARTELIA). La formacién de corrientes rip
se realiza a través de frentes de olas con un déficit de energia en el
medio de la piscina. El modelo numérico es validado con mediciones
de superficie libre, de velocidades, y de circulacion y vorticidad.
Utilizando la ecuaciéon de vortcidad potencial como herramienta de
diagnoéstico, con un oleaje monocromatico se predice un equilibrio

entre la generacién de vorticidad y su adveccién por las corrientes.

Palabras Claves: circulacién promedio, vorticidad, no-linealidad del
oleaje, disipacion, modelacién numérica, capa limite turbulenta, mod-

elacién en aguas someras.
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Chapter 1

Introduction

1.1 General Context

The coast represents the interface between the land and the sea, with great importance
as 44 % of the world population lives within 150 km of the coast, and 8 of the 10
most populated cities are found near the coast, according to the UN atlas of the
Oceans (http://www.oceansatlas.org/) . In a context of global commerce, most
of the products are exchanged from ports to ports, producing a natural migration of
population toward coastal areas.

As the interest for coastal areas keeps growing, also sustained by increasing tourism
activities, the stress on the coastal habitat is also higher. This produces changes in
the habitat and ecosystems that are of great importance, and calls for an integrated
management of these strategic zones. Another matter that has to be acknowledged is
the pollution of the coastal areas, as an increasing amount of waste water is discharged
to the coast, due to the coastal areas being more populated, leading to more and more
ecological issues, like eutrophication of the littoral zone, which can produce population
health hazard.

Another important issue concerning the coastal areas is the global warming, that
seems to induce a constant water level rise in the oceans. While this raise of the
water level is mild, if we compare it to the total volume of water mass in the planet,
the consequences in the long term are still uncertain. A sustained raise in the water
level could lead to coastal erosion in some areas, lowland flooding or ground water
salinisation [Paskoff, 2004]. The erosion in the coast can be affected by the amount
of sediment available, but also by hydrodynamical and climatic factors, such as the
water level, the incoming waves and the nearshore circulation associated to it. In

Chile though, the coastal erosion is not the main concern [Del Canto et Paskoff, 1983
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; Martinez et Salinas, 2009].

Another concern for the Chilean beaches concern tsunamis generated by earth-
quakes, the last one in February 2010 [Fritz et al., 2011]. Moreover the seismic displace-
ment produced subsidence and uplift in some coastal areas leading to a morphological
response influenced by the local hydro-climatic forcing and land level change [Villagran
et al., 2013]. The coastal ecosystems response to an earthquake is also very dependent
on the local land-level changes [Jaramillo et al., 2012].

Therefore, the coastal management will take a growing importance for countries
with coastal areas, and the knowledge of the physical processes that occur near the
coast will be important to take wise decisions and to sustain the wealth that can be
found in these areas.

One of the main issues concerning the understanding of the physical processes in
the coastal areas is the widespread range of space and time scales involved in these

processes (Figure 1.1).
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Figure 1.1 — Space-time scales of morphology in the nearshore [Thornton et al., 2000].

As it is difficult to cover all the time and space spectra, in this study we restrain
ourselves to some space and time scales processes in the nearshore zone. The sediment

transport processes are a product of the nearshore hydrodynamics, hence it is necessary
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to get a precise understanding of the hydrodynamics. In our case, we study wave

propagation and related processes at two space-time scales:

o at a time scale of wave period and a length scale of centimetres, we study the

coastal bottom boundary layer.

» at a time-scale of minutes to hours and a length scale of tens of meters, we study

the circulation and vorticity dynamics in the nearshore zone.

1.2 Main concepts

1.2.1 The coastal bottom boundary layer

The knowledge of the coastal bottom boundary layer is essential for the estimation of
the sediment transport induced by the bottom shear stress. When waves approach the
coast, they feel the influence of the bottom as they propagate, becoming increasingly
non-linear. The interactions between the waves and the bottom occur within the
turbulent boundary layer, which is why its study represents a mean to understand the
evolution of these non-linearities near the coast.

The longshore sediment transport is relatively well understood, being forced by the
angle between the wave forcing and the shoreline, producing longshore currents parallel
to the shoreline which are able to transport sediments.

The cross-shore sediment transport, normal to the shoreline, is more complicated
to estimate due to the sloping bed, the currents, the wave non-linearities, the turbu-
lence induced by wave braking, the presence of bed forms, etc. Several experiments
have shown an influence of the wave non-linearities such as velocity and acceleration
skewed waves, on the net sediment transport produced by waves leading to an onshore
or offshore sand bar migration depending on the waves non-linearities [Dibajnia et
Watanabe, 1992 ; Dohmen-Janssen et al., 2002 ; Hsu et Hanes, 2004 ; Grasso et al.,
2011 ; King, 1991 ; Elgar et al., 2001 ; Ruessink et al., 2011].

1.2.2 Vorticity and circulation in the nearshore zone

To estimate the sediment transport in the nearshore zone, it is also important to know
the evolution of the mean currents produced by either a differential wave breaking or an
inhomogeneous bathymetry. These spatio-temporal non-uniformities in wave breaking

induce dissipation gradients, that generates currents. These wave-generated currents
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produce vorticity, that acts at a much lower time-scale than the waves. These currents
are relevant in terms of mixing, dispersion and also for sediment transport.

Among the types of generated circulation, rip-currents are offshore oriented jets
that originate in the surf zone (Figure 1.2). These currents constitute a hazard for
swimmers as they can be ejected seaward, far from the coast rapidly, and they represent
one of the main mechanisms responsible for the mixing and circulation in the surf zone.
These currents result from the vorticity generated by the differential wave breaking,
generating eddies that travel longshore until two of these eddies meet, creating a dipole

that generates these rip currents [Peregrine, 1998].
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Figure 1.2 — Nearshore current system, from Shepard et Inman [1950]

In nature, these rip currents are always evolving, as natural wave conditions do,
and the seabed is also changing due to sediment transport. Hence, there is a feedback
between the wave forcing, the beach bathymetry and rip vorticity dynamics, which has

not been completely understood so far.

1.3 Objectives

The main objective of this thesis consist in getting an in-depth understanding of the
nearshore hydrodynamics, in terms of cross-shore wave propagation and generated

circulation by the wave breaking. To this end, the specific objectives are:
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o To investigate the mechanisms involved in a turbulent boundary layer under
non-linear waves, with a mobile bed. Recent experiments from Berni et al. [2013]
on a wave flume, under a mobile bed, allowed to observe the evolution of the
coastal bottom boundary layer under non-linear waves. Using a k — w boundary
layer numerical model [Wilcox, 2006], we intend to retrieve some of the main
characteristics of the experiment and understand the mechanisms involved in the

vertical distribution of these non-linearities.

« to understand the evolution of the circulation and vorticity under a shore-normal
wave forcing, on an uneven bathymetry using a 2D depth-averaged Non-linear
Shallow Water numerical model [Marche et al., 2007 ; Guerra et al., 2014]. To
that purpose, the numerical model is validated using data obtained during the
wave basin experiment in ARTELIA (Grenoble) supervised by H. Michallet in
the framework of the MODLIT project coordinated by P. Bonneton. These ex-
periment consisted of wave basin with a mobile bed, where a rip current was
generated by an alongshore non-uniformity in the wave forcing [Michallet et al.,
2010 2013].

1.4 Thesis outline

Chapter 2 presents the numerical model used to investigate the coastal bottom bound-
ary layer. It consist in a 1-D vertical turbulent boundary layer £ — w model [Wilcox,
2006], which is validated for oscillatory flows.

Chapter 3 presents the results obtained with the £—w numerical model compared to
experimental measurements [Berni et al., 2013], concerning non-linear waves on a mo-
bile bed, which provide velocity profiles and bed position in a coupled way. These data
suggest a transformation within the boundary layer, with a non-dimensional skewness
increasing and a non-dimensional asymmetry diminishing as we approach the bottom.
Using the k — w numerical model, we get a better representation of the non-linear ve-
locity profile distribution inside the turbulent boundary layer. The numerical model is
able to determine the velocity within the boundary layer on a fixed bed; by including
the bed mobility and coupling it with the £ — w model, we are able to improve the
numerical representation of observed experimental results. The latter is an indication
that the bed mobility is responsible for a vertical diffusion within the boundary layer.
The numerical model also reproduces the linear relationship between the non-linearities
outside the boundary layer and near the bed observed in the experiment.

Chapter 4 presents the 2D depth-averaged numerical model used to obtain the
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circulation in the nearshore zone [Marche et al., 2007 ; Guerra et al., 2014]. This
numerical model is then validated in terms of free surface, velocities, circulation and
vorticity using experimental data [Michallet et al., 2010 2013].

Chapter 5 presents a study of the evolution of vorticity and circulation on an uneven
bathymetry that has been validated in chapter 4. Using a JONSWAP wave forcing,
representative of the natural state of the sea, as well as monochromatic and bichromatic
wave forcing, and using the potential vorticity balance as a diagnostic tool, we aim at
understanding the influence of the friction, the wave period, and the wave grouping on
the vorticity generation and decay at the nearshore zone.

Finally, Chapter 6 presents the conclusions of this work, along with some perspec-

tives.
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Chapter 2

Numerical modelling of oscillatory

turbulent boundary layers

2.1 Introduction

2.1.1 Physical processes

Sediment transport in the nearshore is of great importance, as it determines processes
such as erosion or accretion on a beach. It is caused by the waves and current, that
forces the bed and initiate the sediment transport. This process mainly occurs in the
coastal bottom boundary layer, a region usually extending up to 10 cm above the
seabed, where friction is predominant. The knowledge of this region is therefore one
of the main aspects of the sediment transport, as the non-linear processes occurring in
this region can affect the direction of the sediment transport, seaward or shoreward.
The study of turbulence in the boundary layer is then a key aspect to understand the
processes that take place in the nearshore. We first need to know what is turbulence,
then study the different turbulence models that exists, and then determine the use of
these turbulence models for coastal bottom boundary layers.

Although the characteristics of turbulence are well known, there is not a clear
definition of it, a regime flow where the motion is unsteady and complex, with random
changes in velocity or pressure, highly diffusive and dissipative. Omne of the main
characteristic of turbulence is the energy cascade phenomenon. Richardson defined
this in 1922 by the following sentence: 'Big whorls have little whorls, which feed on
their velocity; And little whorls have lesser whorls, And so on to viscosity"'. This energy
transfer keeps on until the eddies are so small that they can only dissipate into heat

through molecular viscosity.
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Kolmogorov [1941] universal equilibrium theory states that the smallest scales of the
eddies does not depend on the larger eddies or the mean flow, as time scales between
those two phenomena have different orders of magnitude. Therefore the rate at which
the smaller eddies receive energy from the larger eddies should be equal to the rate
at which the smallest eddies dissipate energy to heat, and thus at the smallest scale
the motion only depend on the rate at which eddies dissipate energy to smaller eddies,
¢ = —dk/dt, k being the kinetic energy per unit mass of the fluctuating turbulent
velocity, and the kinematic viscosity, v .

For very large Reynolds number, he assumed that there is a separation of scales
that implies that for some range in eddies size, the energy transferred by inertial effects
is predominant. We define the energy spectral density E(k.) related to the turbulence

kinetic energy k:
k= / E(ke)dr, (2.1)
0

ke being the wavenumber. Using the hypotheses of scale separation, and through

dimensional analysis, we obtain an expression for F(k.) for a certain range:

E(k.) = Che*3k7%/3, } K ke K 717 (2.2)
where C) is the Kolmogorov constant, [ is the turbulence length scale, and 7 the
Kolmogorov length scale, at which viscosity dominates. The range for k. defined in
(2.2) is identified as the inertial subrange, i.e. where the inertial transfer of energy
dominates. This -5/3 slope can be seen in Figure 2.1.

To obtain the efforts sustained by a turbulent flow over a solid boundary, there is a
need to know the interaction between the two. The mean velocity profile near a solid
boundary can be determined by the law of the wall [Von Karman, 1930]. This law
states that there is a region near the solid boundary where the streamwise velocity has
a logarithmic profile.

Let the surface shear stress be 7, the friction velocity of the flow near the solid

Uy = \/Z (2.3)

The law of the wall describe the mean crosswise velocity distribution close to the

boundary w., is then defined as :

boundary:
v 1, z

— = —In— 2.4
T (2:4)
where k &~ 0.41 is the von Karman constant, z is the distance from the wall and z

is the distance from the boundary at which the velocity is zero. z; depends on the
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Figure 2.1 — Energy spectrum of a turbulent flow

laminar sublayer thickness 6, and the characteristic roughness length-scale k,, found

in the boundary Reynolds number Re,, = u ks/v.

o if ks < d, (Rey, < 3) the flow is considered hydraulically smooth, and z is defined

as:
1%

- Yu.,

o if ks > 0, (Re, > 100) the flow is considered hydraulically rough, and zj is

defined as:
ks

== (2.6)

20

o if k, = 0,, the flow is considered transitional.

A velocity profile of a smooth boundary layer under a turbulent flow is shown in
Figure 2.2, where the dimensionless velocity u* = U/u,, with U the mean velocity
streamwise component, is plotted as a function of the dimensionless distance to the
boundary 2z = u,z/v. We can distinguish three different regions in the velocity profile
near the boundary layer, the viscous sublayer where u™ = 2™, the log layer where the
velocity complies the law of the wall, and the velocity defect layer where the viscosity

can be neglected.
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Figure 2.2 — Typical velocity profile of a turbulent flow. The constant C' depends on the
roughness characteristics.

2.1.2 Turbulence modelling

In most practical situations turbulent flows are very complex. The numerical simula-
tions of flows are required to obtain the characteristics of the flows. One of the most
used model turbulence is the Reynolds Averaged Navier-Stokes (RANS) equations. The
Reynolds time-averaging consists of splitting the instantaneous variables, for example

the velocity u(x,t), in its mean U(x) and its fluctuating part u'(z, t):
u(z,t) = U(z) + u'(z,t) (2.7)
The mean part U(z) is defined as:
1 4T
Uz) = T/ w(w,O)dt, Ty <T<Th (2.8)
t

where T is the time period at which the averaging is done, T7 is the time scale of the

turbulent fluctuations, and 75 is the time scale of the slow variations in the flow.
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Using this method, we can obtain the RANS:

ou;
aZL‘Z‘ N

0 (2.9)

ou; oU; oP 0

— 4 N 4+ —
p 82& p J 81’]' 81‘1 8xj
with P the mean pressure, p the molecular viscosity, and S;; the strain-rate tensor,
defined as: 5 5
1 [oU; U;
- 2.11
2 <axj * 8%) (2.11)

The fundamental problem of these equations is that there is no simple way to

determine the correlation term w/u;,

and this where the turbulence model is used.

defined as the specific Reynolds stress tensor 75,

The turbulence models can be separated in four distinct categories:

o the algebraic model or zero-equation model of turbulence, based on the mixing

length hypothesis,

o the one-equation models of turbulence, which introduce a partial differential equa-

tion approximating the exact equation for the turbulent kinetic energy k,

» the two-equation models of turbulence, which use an additional differential equa-
tion, such as the dissipation rate e or the specific rate of dissipation of energy in

unit volume and time w,

o the Stress-Transport models, using a differential equation for the Reynolds-stress

tensors.

For additional information on the different types of turbulence models, an extensive

overview can be found in Wilcox [2006].

2.1.3 Turbulence modelling for oscillatory flows

The laminar boundary layer for oscillatory flow is found from the linear equation of
motion: 5 5
-
— (U —Uyx) = =— 2.12
P )=, (2.12)
where U is the mean part of the horizontal velocity, U, is the free-stream velocity and
T(2,t) = pl/%—lz] is the viscous shear stress. By assuming a complex representation for

Us:
Uso(t) = Ace™! (2.13)
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with A the water particle semi excursion, o = 27 /T the radian frequency, T' the wave
period. The wave formulation for the bed shear stress 7(0, ) can be deduced ([Nielsen,
1992]):

7(0,t) = py/ovAge ot/ (2.14)

This indicates that the bed shear stress in smooth, laminar oscillatory flow leads the

free-stream velocity by 7/4 radians or 45 degrees.
2

Stokes length, which allows to define a Reynolds number for oscillatory flows Res =

For oscillatory flows, § = is the boundary layer thickness, also known as the

@.

When the Reynolds number increases, during one period the velocity covers a wide
range of values. This lead to a transition from laminar to turbulent, as well as a
relaminarization during one period. The pressure gradient also changes in one period,

going from favourable to adverse, and inversely.

As stated by Wilcox [2006], & — ¢ models are inadequate for flows with adverse
pressure gradient, which is not the case for the & — w models. This is confirmed
by Sana et Tanaka [2000], which compares five Low Reynolds number k — e models
on periodic flows. Although the Low Reynolds Number modifications provide better
predictions for the transition, none of the models succeeded in capturing the overall
dynamics of the oscillatory boundary layer.

The high Reynolds number version is not able to predict the transition from laminar
to turbulent regime. We then need to use a Low Reynolds Number version of the
turbulent model to correctly reproduce this transition. The main change of the Low
Reynolds number version, is that some closure coefficients of the turbulence model
equations, which are constant for fully turbulent flows, now depend on the turbulence
Reynolds number Rer, defined as:

Rer = * (2.15)

wvr

As Rep — 00, the closure coefficients tend to their fully turbulent values.

The two-equations RANS models of turbulence have been used to observe the evo-
lution of the turbulent bottom boundary layer under oscillatory flows, and its relation
with the sediment transport. Suntoyo et Tanaka [2009] studied the influence of the bed
roughness under asymmetric waves, showing that the roughness influenced mostly the
inner boundary layer, by increasing the turbulence kinetic energy k& and the bottom
shear stress, and decreasing the mean velocity distribution. The wave non-linearity
also has an influence on the bottom shear stress. Recently, Kranenburg et al. [2012]

observed the influence of the streaming (or net current) on the coastal bottom bound-
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ary layer using a k — e model which includes advection terms, showing the influence of
the relative water depth and relative bed roughness on the streaming velocity and the
shear stress. Moreover, by adding a sediment concentration to its turbulence closure
model, he determined the importance of the progressive wave streaming, but also of
the sediment advection in the estimation of the sediment transport rate [Kranenburg
et al., 2013]. [Fuhrman et al., 2013] uses a k — w turbulence closure model coupled
with bed and suspended load transport to study the sheet flow sediment transport pro-
cesses. The boundary layer streaming due to the convective terms causes an increase
of onshore sediment transport in the case of medium sand, and in the case of fine sand

they could reverse the the direction of the net transport.

2.2 The k£ — w turbulence model

2.2.1 Governing equations

For clarity purposes, from now on we refer to u, k and w instead of U, K and () as the
Reynolds averaged values of the instantaneous velocity, the turbulence kinetic energy
and the specific dissipation rate.

Our study focus on the & —w model of Wilcox [2006]. This set of equation contains
three principal equations, one for the velocity u, one for the turbulence kinetic energy
k, and one for the specific dissipation rate w.

Using the Boussinesq approximation, we have the Reynolds stress tensor 7;;:
2
Tij = QVTSZ‘]' — gk:éw (216)

where v is defined as the turbulence eddy viscosity and ¢;; is the Kronecker delta.
If we sum the three normal Reynolds stresses and multiply by 1/2, we have the

turbulence kinetic energy, which we denote by the symbol k. Thus, by definition,

k:;(zﬂ+1ﬂ2+w’2):;u;u; (2.17)
k represents the kinetic energy of the turbulent fluctuations per unit mass, also called
the specific turbulence kinetic energy. We can derive an equation for k using the
Reynolds-stress equation.

Concerning w, Kolmogorov [1942] defined it as "the rate of dissipation of energy in
unit volume and time'". The dimension of w is (time)™!, and its reciprocal represents

the time scale on which dissipation of turbulence energy occurs. There exist several
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interpretations of this quantity. Saffman [1970] related w to the vorticity of the "energy
containing eddies", and k to the kinetic energy of the motion induced by this vortic-
ity. Others define w as the RMS fluctuating vorticity, and w? is twice the enstrophy
[Launder et Spalding, 1972], or as the ratio of € to k [Wilcox et Rubesin, 1980].

Although the Wilcox [2006] formulation is the version we use, we implemented
several versions of the k — w model to obtain a better accuracy in the validations of
the model. We assume furthermore that the mass density p is constant.

For all these models, we have three main equations, one for the horizontal velocity
u, one for the turbulent kinetic energy k, one for the specific dissipation rate w.

The first equation corresponds to the conservation of momentum:

ou; ou; 1 0p 0

el : - - — (9US.. . 21
ot + 4 (9mj ,0813@ + 6%( VSJZ + Tﬂ) ( 8)

The second equation corresponds to the turbulent kinetic energy k:

ot 7 ox; T Ox; Oz, w /) Ox;

The third equation corresponds to the specific dissipation rate w, and is different

according to various versions:

Oow ow w  Ou,; 5 o |
[Wilcox, 1998 ; Guizien et al., 2003]

Ow Ow w  Ou; 5 o E\ Ow] o4 0k Ow
En +uja—xj = aETija—ajj — Pw® + 870] -<V + 0w> 87:13] + ;8—%8—%
[Wilcox, 2006]

(2.20)

The kinematic eddy viscosity, present in the Reynolds stress tensor, reads:

k
vr = of—
w

[Wilcox, 1998 ; Guizien et al., 2003]

k 55 (2.21)
vr = —, w max W,Clim SZ]SZJ ) Clim - z
w 5* 8

[Wilcox, 2006]

The mean rotation tensor );; is defined as:

=3 (axj a axj> (222)
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Wilcox 1998 Wilcox 2006
o, 0.5 0.6
0w 0.5 0.5
R 0.09 -
5 Bty 0.09
1 for (xx <0)
e+ { % for (xr > 0) i
1 0k Ow
Xk 587:]87] -
a 13/25 13/25
B Bofs Bofs
5o 9/125 0.0708
T+ 70x, T+ 85xw
Js 1+ 80y, 1+ 100y,
N ‘ Qi8% Sk ‘ ‘ Q358 x Sk
’ (Bow)? ( *g)?’
S - Ski — é]?z@: Oki
w
. _ 0, for (8 C?{%éixj <0)
£ for (8—%8—% 0)

Table 2.1 — Closure coeflicients and auxiliary relations.
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The main differences in the closure coefficients between the versions can be seen
in Table 2.1. The Wilcox [2006] formulation introduces a 'cross-diffusion term" and
a "stress-limiter" modification that makes the eddy viscosity depend on the ratio of
turbulence-energy production to turbulence-energy dissipation.

The cross-diffusion term has been added to remove the boundary-condition sensi-
tivity to the free-stream value of w, by reducing the net production of £ and thus the
spreading rate for free shear flows. This term becomes zero when approaching the solid
boundary, as k increases and w decreases, and performs well in predicting effects of
pressure gradient on attached boundary layers. [Kok, 2000 ; Wilcox, 2008].

The stress-limiter introduced in the eddy viscosity, limits its magnitude when the
turbulence energy production exceeds the dissipation, and is more useful for supersonic

and hypersonic separated flows [Wilcox, 2008], which is not our case.

2.2.2 Unidimensional version of the k£ — w model

From now on, we assume very large horizontal characteristic flow scales, and use from
now on a 1D vertical framework for the k—w model. Therefore, the following hypotheses

are used:

o the transverse velocity v and vertical velocity w are not taken into account:
v = w = 0. Only in the case where we incorporate the advection terms, we
suppose that there exist a vertical velocity w, but it depends on u, and is not

calculated by an equation.

 there is no variation in the z direction and the y direction: a% = a% = 0. In the
case of the advection terms, the gradients a% are non negligible, and we estimate

them using a temporal derivative.

o the mass density is considered constant: p = cte

The only non-zero terms of the Strain rate tensor S;; and Reynolds stress tensor

Tij are:
10u
Sy = —— 2.23
20z ( )
ou
T, vy P ( )

For the Wilcox [2006] formulation, the stress limiter is reduced to:

%
0z

a*
@ = max |w,Climt| ——

25"

1 (2.25)
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Wilcox 2006 Wilcox 1998 | Guizien 2003
LRN LRN LRN
Ok 0.6 0.5 0.375
Ow 0.5 0.5 0.8
g i 1008y/27 + (Rer/Rp)* i4/15 + (Rer/Rp)*
100 1+ (Rer/Rp)* 100 1+ (Rer/Rgp)*
13 ap + ReT/Rw( -1
o ——— («
25 1+ Rer/R,,
o Oéé + ReT/Rk
14 ReT/Rk
k
RGT E
Ry 6 6 20
Rg 8 8 27
R, 2.61 2.95 2.95
Q) 1/9
o Bo/3
5o 0.0708 .
V O{*;
25,55
w maz |w,Clim | oo . N
By /ar
(o) (o)
V+op— Voot —
w w
) [r+me])
VA Ou— v+ o0t —
w w

Table 2.2 — Closure coefficients and auxiliary relations
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The horizontal velocity u(z,t), the turbulence kinetic energy k(z,t) and the specific

dissipation rate w(z,t), are described in a 1D framework:

ou 10p 0 ou
D — 2.2
ot p Ox + 0z <(U + VT)@Z) (2:26)

The second equation corresponds to the turbulent kinetic energy k:

ok A 0 k' Ok

Notice no vertical advection of k is present, turbulence only diffuses vertically.
The third equation corresponds to the specific dissipation rate w, and is different

in the versions:

ow  aw <8u>2 5, 0 ( *k:> Ow |
—=—1|=| —pPw+—||Vv+to.,a'— ] —
w

ot k 0z 0z 9z |

[Wilcox, 1998 ; Guizien et al., 2003] (2.28)
aﬁw B % @ 2 N 6 2 + ﬁ [ + *E 870.}- ﬁ%aﬁ |
otk v 0z v 0z | v owa w) 0z w 0z 0z

[Wilcox, 2006]

The closure coefficients and auxiliary relations in the case of the 1D Low Reynolds

Number versions of the &k — w model can be found in Table 2.2.

2.2.3 Boundary conditions
Condition at the bed

We can define boundary conditions for smooth and rough surface conditions.
Rough Conditions
For rough surface conditions, we have the no-slip condition for the horizontal ve-

locity u , defined at the first grid point zy, the closest point to the solid boundary

u(zp) =0 (2.29)

Concerning the boundary condition for the turbulence kinetic energy k, there are two
conditions that can be used. The first one is called the no-slip condition, and imposes

the following condition:
k(zo) =0 (2.30)
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This condition is applicable to smooth boundaries but not consistent with rough bound-
aries, where turbulence fluctuations can still be present in the wake of the roughness
elements. A more physically consistent wall boundary condition for the turbulence

kinetic energy k is prescribed by Fuhrman et al. [2010]:

() - s

In the case of smooth walls, using this condition allows to directly integrate through the
viscous sublayer, and for rough walls, to avoid the viscous sublayer that is completely
disrupted for fully rough conditions [Fuhrman et al., 2010]. The near bed resolution
in the rough case can then be deduced from the roughness length, and not the viscous
length scale, allowing to reduce the computational cost in terms of necessary nodes

near the boundary.

Concerning the specific dissipation rate w boundary condition, the value is depen-

dent on the friction velocity u, near the wall:
w(20) = Wwanl (2.32)

With wyen defined by:

U2
Wyall = 7TSR (233)

where the dimensionless surface-roughness function Sy is defined as:

2
Sp = <io+0> if kij\} <5
N ) X (2.34)
Srp = f—ﬁ + [(?ﬁ)) - i{l} v if kY > 5
N N N

The variable kf; is defined as kjf; = ky%, where ky is the Nikuradse roughness pa-

rameter, u, = y/7/p is the friction velocity and 7 = p(v + vr(20)) (%) is the
z=2z0

bottom shear stress. Wilcox [2006] prescribes a value K, = 100 for its base version and

K, = 60 for its low Reynolds number version, and Fuhrman et al. [2010] uses a value

K, = 180, to respect the law of the wall for rough profiles.
The expression of Sk for the Wilcox [1998] and Guizien et al. [2003] model is

expressed below:

2
Sp = <5O> it k<25

=3
kN

Sp = 9 if ki >25

K

(2.35)
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Smooth Conditions

For perfectly-smooth walls, the specific dissipation rate varies in the sublayer when

2

approaching the wall as 272 . To obtain smooth conditions, we need to specify the

value of w near the wall boundary:

_ 6up(2)

w(z) = D 2t <25 (2.36)
0

Condition at the top of the boundary layer

On the upper boundary z = z5,, we have the following conditions for the turbulent

kinetic energy and the specific dissipation rate :

ok
(é’z)Zh =0 (2.37a)

ow
(%) - aoms

Concerning the horizontal velocity u, we also have two conditions:

o FEither we consider that the velocity outside the boundary layer is constant, which
gives:

u(zn) = Uso (2.38)

with U, the free stream velocity.

e Or we express the boundary condition assuming that the velocity gradient is

equal to zero at the boundary:

ou
<82>2h =0 (2.39)

The forcing term for the equation then corresponds to the horizontal pressure
gradient, assumed to be constant in the boundary layer. This pressure gradient

is defined as:

10p 0Ug
_F _ ZYx© 2.4
pox ot (240)
o 10p OU ou. oU.  oU oU.
p . o0 o o ~ oo o0
pOxr Ot Vs Ox T Weo 0z ot Vs Ox (241)

if we add the advection terms.
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2.2.4 Additional terms: advection
Influence of the advection terms

The momentum fluxes in the boundary layer should also be considered, as they might
play a role in the non-linear processes occurring in the coastal bottom boundary layer,
which impact on the sediment transport direction, seaward or shoreward [Henderson
et al., 2004]. These momentum fluxes are weak, provided that the ratio of the horizontal
linear wave velocity amplitude to the wave celerity is small. Therefore the inclusion of

the advection terms can induce a difference in the resolution of the boundary layer.

Estimation of the vertical velocity

The advection terms depend on the horizontal gradient 9/dz and the vertical gradient
0/0z. As we want to remain with a unidimensional model in z of the velocity in x for
simplicity, the horizontal gradient need to be replaced by another term, and a specific

equation for the vertical velocity w is not introduced.

We use the relation: 5 L5
= _ - 2.42
Ox cp Ot (242)

valid for weakly decreasing waves [Holmedal et Myrhaug, 2009]. In relation (2.42), ¢,
is the wave celerity propagation.

The vertical velocity w is related to the horizontal velocity u by the conservation

of mass:

ou Ow
5t o, =0 (2.43)

Using relation (2.42), the spatial and temporal derivatives of u are linked by:

ou 1 Ou
e i 2.44
Oz cp Ot (244)
by combining equation 2.43 and equation 2.44, we obtain:
ow 1 0du
Dt 2.45
0z ¢, 0t (245)
And finally, by integration, we obtain the vertical velocity w:
1 % ou
= — —| d 2.46
wz) = |5 e+ ule) (2.46)
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For fixed bottom, the relation becomes:

w(z) = Clpgt u(z) dz + w(z) (2.47)

advection terms

The advection terms are present in the three equations of the velocity, turbulent kinetic

energy and specific dissipation rate.

For the horizontal velocity equation, the advection terms are simplified to:

0 J 5 0
aTCj(“j“i) = %(U)JF@(UU’)
BT
N ”ax waz
u Oou ou

For the turbulent kinetic energy equation, the advection term is:

0 9, 0
87%(%@ = %(Uk)JF%(
ok ok ou ow

= U fwe b ke

wk)

ox 0z ox 0z
=0
u Ok Ok

D ) = () ()

8:16]-

(2.50)
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2.3 Numerical Resolution

2.3.1 Resolution scheme

We solve the system of equations using the implicit finite control volume method of
Patankar [1980] which is described hereafter, on an exponential grid. We improve this
method by determining the turbulence kinetic energy k, the specific dissipation rate w
and the turbulent viscosity vr in the staggered grid, between the velocity nodes.

The numerical resolution is presented here summarized. For a more detailed version,
please refer to Appendix A.

The geometric grid is determined by defining the initial conditions zy the bottom
boundary, and z;, the upper boundary, and also the number of nodes Nj.

We define the grid with the equation 2.51:

{ (2h =2 (2.51)

(Z)j—i-l = (Z)j + Z()Rj Vj Z 1

where R represent the common ratio of the geometric series, which is not known be-

forehand. To determine R we use the properties of a geometric series:

No
(2)vo =20 ) R =z (2.52)
i=0
The midpoints are located at the center of each cell, as shown in Figure 2.3:
Zjy1/2 = 2+ ZJHQJ (2.53)

We also define two points that will be used as ghost points in the boundaries:

2’7% = %
zoRNo—1
ZNg+d = 7 + OT (2.54)

2.3.2 Discretization of the equations
Horizontal Velocity equation

To solve the system of equation, we discretize and integrate them over a control volume.

We integrate the equation (2.26) over a control volume centered in the point j, and
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B it}
iTj 1 Ay
TAV:7 S SR N j—1

Figure 2.3 — Computational grid sketch. The horizontal velocity u is determined at point
7, while the turbulence kinetic energy k and the specific dissipation rate w are determined
on the midpoints j 4+ 1/2 and j — 1/2.

over a time step At:

i+1 At i+1 At D
ok a“dtdz:/“/ (aU—mP> dt dz
ot j t T

i—z Jt

For time integration, we will use a fully implicit method:

t+AL e tiAe
u; dt = u;" At (2.56)
t

For readability purpose, we will drop the superscript ¢t + At, and assume that u, k
and w stand for the new values that are unknown at step t + At:

WAt =g KA =k WAt = (2.57)

The non-linear terms are linearised using the variables at the previous iteration.
In the end, we obtain the following linear system, where the velocity is the unknown
variable, for points j € [2: Ny — 1]:

An(ujer + Ap(G)uj + As(G)uj-1 = Du(j) (2.58)
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The subscript p refers to the central point considered, while the n subscript refers to
the point directly above (or "North") and the g subscript refers to the point directly
below ("South'). The coefficients are defined as:

1—‘u j+1
ANU)__Zij(;;:f) (2.59%)
Lu)i1
As() = —AA; ((Az)f_j) (2.59b)
Ap(j) =1 - An(7) = As(9) (2.59¢)
. 1oP . .
[Mﬁ:—ﬁﬂm+%+U—U (2.59d)

Where (I',); = v + (vr);.
Boundary conditions

Lower boundary condition: at the bottom boundary, z = 2z, corresponding to
j = 0 (Figure 2.4), the horizontal velocity u is set to zero. The discrete equation for u

is straightforward, as it is defined on the regular grid:

with
Av(1)=0, Ap(1)=1 (2.61)

Upper boundary condition: at the upper boundary, z = zj,, corresponding to 5 = Ny
(Figure 2.5), we can define two different kind of boundary conditions for the horizon-
tal velocity u, the velocity at the boundary can be equal to the velocity outside the

boundary layer, or the gradient of velocity in this point can be equal to zero.

o If we define the horizontal velocity at the top boundary to be equal to the velocity
outside the boundary layer U,,, we obtain the following discrete equation for point
Npy:

Ap(No)un, + As(No)un,—1 = Dy(No) (2.62)
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2 1
Azs L. 3
2 2
Az 1
2 ~-TT--- -~ "§
l 0 === %0
_1
____________ 5

Figure 2.4 — Grid point sketch at the bottom boundary.

Where:
At (Fuxvo,;
Ag(Ny) = — z
s(No) Azne AZNO%
Ap(Ny) =1
10P
D,(Ny) = ———At + Uy (1 + Ag( N,
(Vo) = = 5 AL+ U1+ A (N0)

0
o If we define the boundary condition as gu
0z No

similar:
Ap(No)un, + As(No)un,—1 = Dy(No)

with:

At (Fu)g\fo—%
Azp, AZNO_%
Ap(Ng) =1 — Ag(Ny)
10P

Du(N()) - —;%At + Uoo - U;o + ullt\fo

AS(N()) =

44

(2.63a)

(2.63b)

(2.63¢)

= 0, the resulting equation is quite

(2.64)

(2.65a)

(2.65b)

(2.65¢)
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"""""" No+ 3
==
T
Azy, 77777 7h No—3
No =14 | Azng—1
___________ No—3

Figure 2.5 — Grid point sketch at the upper boundary z = zj.

Additional terms: advection

We first need to discretize the vertical velocity w. From equation 2.46, we evaluate
the integral discretely:

1 r2() Ou p
w,; — _ _
/ cp J=() Ot Y
1422 pa(mtl) 9y
Cp me1 z(m) 8t y
1320
~ Z = Azm—&-l
Cp m=1 at m+% 2
t t—At
QOIS R e |
~ — Az, 1 (2.66)
Cp m=1 At *
The sum starts at m = 1 because the vertical velocity is zero at the bottom:

w(zp) = 0. The temporal derivative is estimated using the previous time steps ¢ and
t — At, as the terms at time step ¢ + At are unknown, and since it is an implicit
discretization, the linear system to be solved would not involve a tridiagonal matrix,

making the problem more complicated.

The discretization of the advection terms affect the terms Ap and D, in equation
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2.58:
ul
Ap(j) =1 = An(j) = As(j) — =~ (2.67a)
, 10P (ul)? At
D,(j) = —;%At +ub+ U — Ul — s w;?Azj (ufy s =l ) (2.67D)

In the lower boundary, the equation is similar to equation 2.60. In the upper boundary;,

the equation changes with the chosen boundary condition:

e In the case where the boundary condition is uy, = U, we obtain:

10P
1 . . At ;
+ EUOO(UOO - Uoo) — Why, QAZNO (Uoo - uNU—l) (2-68)

The terms Ap(Ny) and Ag(Ny) remain the same as equations 2.65¢ and 2.63a

o In the case where the velocity gradient is equal to 0, we have:

No+3 t+At 5
u
/ w- dtdz =0 (2.69)
No—% ¢

and the coefficients of the discrete equation are changed to:

ut
Ap(No) =1 — As(No) — % (2.70)
D t \2
D, (No) = —j}giAt + U — UL, + uly, — () (2.71)

Turbulent Kinetic Energy equation

Original terms

We define the turbulent kinetic energy k at the mid-points of the control volume,
to insure a better precision in the system. By doing so, we do not need to interpolate

the values at the midpoints. The equation (2.27) is integrated over a control volume
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centered in the point j —i— =, and over a time step At:

J+l ptrAL O J+1 At ou\ >
/j /t o b dz = /J /t (W (az> —/Bkw) dt dz
j+1 pt+AL 8 k 0O
+/ / (V—l—ak)az> dtdz  (2.72)

We integrate over time using a first order fully implicit control volume scheme. We

obtain the following equation, for point j + 3, with j € [2--- N —2]:

BN(j)ijrg + BP(j)kj-i-% + BS(j)kj—% = Dk(]) (2-73)
With the terms defined as:
. At (Fk)t‘+l
Bn(j) = — . 2.74a
N( ) Azj_i_% AZj+1 ( )
. At (Th)]
Bs(j) = — ’ (2.74b)
AZ]-JF% AZJ'
Bp(j) =1 = By(j) = Bs(j) + (8)j, 1w 1 At (2.74c)
ub, ) — uf ’
t j j
D ( ) = k: 1 + (VT)]+2 (%) At (274d)

k.
where (I'); = v + ox—2. As k and w are defined at the mid-points, the turbulent
w.

j
viscosity v is also defined at those points. Therefore to calculate (I'y); we need to use

an interpolation (linear or cubic).

Boundary conditions

Lower boundary condition The turbulent kinetic energy is defined at the point
j = %, therefore we have to find discretization equation in j = % There are two kinds

of boundary condition for k:

o If we define the boundary condition is k(z = z) = ko = 0, we obtain the following

equation for the boundary condition j = %:

By(Dks + Bp(1)ks = Dy(1) (2.75)
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where
At (T
By(1) A An (2.76a)
Bp(1) = 1— By(1)+ 2LV 4 (3)ut At (2.76b)
P N Az% Az 194 '
2
D(l) = K + (wr)t [ ) A (2.76c)
k = % T% Az% .(0C

o If we consider the boundary condition with a zero-gradient, the coefficients at

point j = % becomes:

At (Ty)q
By(1 — 2.77
~(1) Azé Az (277a)
Bp(1) =1— By(1) + (B")iwi At (2.77b)
t uf i
Dy(1) = k% + (I/T)% A At (2.77¢)
2
Upper boundary condition
. o . Ok
The upper boundary condition for the turbulent kinetic energy k is 22l = 0 We
No
obtain the following equation for the boundary condition j = Ny — %:
Bp(Ny — 1)]?1\/07% + Bg(Ny — 1)]“1\/07% = Dy(Nog — 1) (2.78)
where
Bn(Ng—1)=0 (2.79a)
At (D) ng-1
Bs(Ng—1) = — 0 2.79b
s(No — 1) AZNO—% Ano 1 (2.79Db)
Bp(No — 1) =1 = Bs(No — 1) + (8", _ 10/, _1 At (2.79¢)
t t Ul — Uy ’
—_ > 0—
Dk(NO — 1) = kNO*% + (UT)NO*% m At (279d)
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Advection terms

o For the turbulent kinetic energy equation, we integrate the terms between the

points j and j + 1:

JH1t+At J+1

/ wgk dtdz = 1At/—dz
it :
- j+%At(k§+1 k;) (2.80)
i+1 ¢+ At t t+At
j/ /_u@k’ dtdz = —ujJr%Az- 1 / %dz
S c Ot c J+5t ot
J

t

uj-‘rl t
_ 2 _
= Azj+;(kj+% k

: s ) (2.81)

The coefficients Bp and Dy, from equation 2.73 are then changed to:

ut

y ; - * +§
Bo() = 1= Bu(d) = Bs(i) + ()L ) M = 22 Az (kK ) (282

2
. t t u§‘+1 — ué t At t t
Dr(j) = kjpn + (vr)j A At —w; Al (ki —kj)  (2.83)
i+l

i+
The values &} and k%, are estimated by linear interpolation.

e In the lower boundary layer, with the boundary condition k,, = 0, there is one

additional term to the equation:

1 t+At
/ / w— dtdz = wlAt/—dz
0t

= wiAtk! (2.84)
2

Dy(1) is then changed to:

2
! At
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ok
e In the upper boundary, the boundary condition is — =0, Dp(Ny — 1) is

8ZN

changed to:

2
uly —uly At
Dk(NO—].) = k?Vo—%—i_(VT)?V _% <w> At—w?vo_éAz]VO_é(k}tvo_k}t\[ol)
(2.86)
2.3.3 Specific dissipation rate equation

Original terms

We define the specific dissipation rate w at the mid-points of the control volume, like
the turbulent kinetic energy k. We first discretize the equation for the Wilcox [1998]
formulation, and then add the terms for the Wilcox [2006] formulation.

We need to integrate the equation (2.28) over a control volume centered in the point

J+ %, and over a time step At:

G At G JH1 At [ ou\ > )
/j /t Edtdz = / /t (’kaT (82) —ﬂw) dt dz
i+1 (A
+ /] / a( 8“’) dt dz (2.87)

we obtain the following equation for point j + £ with j € [2: N —2]:
On(f)wjz + Cp(flwjrr + Cs(flw;_1 = Du(j) (2.88)

with

At (Fw)§-+1

Cn(j) =— Aoy Aoy (2.89a)
L A (D))
Cs(j) = — Acys A (2.89D)
Cp(j) =1- CN< ) Cs( ) + 6&) 1At (2890)
t u _ ut 2
Do) =ty + 722 ()0 [T A (2.89d)
Jts kt % J+s3 Azj+l

k
where I',, = v 4 0,—. This system is valid for the Wilcox [1998] formulation. If we
w
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want the Wilcox [2006] formulation, we need to add the cross-diffusion term, which has

an impact on D,,:

w;+l Uy — U i
Dw(]) :w;+% + ’ykt j (UT)jJr% T At
Jjts3

9 ki TR @0 T (2.90)
. .
Wil Azj+% Azj+%

Boundary conditions

Lower boundary condition
The specific dissipation rate w is also defined at the point j = % We use the same

method as with the turbulent kinetic energy k, and obtain the following equation:

Cn(Lws + Cp(Dwy = Dy(1) (2.91)
with:
At (To),
1) = — 2.92
CN( ) AZ% AZl ( 9 a)
Cr(l) = 1— Cy(1) + 2L 1 gt A (2.92b)
PAV = N Az Dz Y3 '
2
Do(1) = wh + wé( [} At Al Ve (2.92¢)
wit) =Wy ¢ s Azy Az Az e

If we consider the Wilcox [2006] formulation, the term D, (1) is changed to:

t 2
Wi i At Vwan
D, (1) =uwh —Z At wa
(1) =wi T (vr)s (Azl) A As
2 2 2

R

— AL 2.93

wh Azy Az (293)
2

Upper boundary condition

0
The upper boundary condition for the specific dissipation rate w is: a—w =0.
z
N
The resulting equation is then: ’
CP(NO - 1)CUN0_% + Cs(No - 1>WN0—§ = DW(NO - 1) (294)
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with:
At (Ty)ng-1
Cs(Ng—1) = — . 2.95a
S( ° ) AZNO—% AZNo—1 ( )
Cp(Ng—1)=1-Cs(No— 1) + 5w§vo_%At (2.95b)
wt 2
ot No—3 Use — uny—1
D,(Ny—1) = Wiyt + V3 f (VT)NO*% (AZNT) At (2.95¢)
NO_§ 0~ 3

If the upper boundary condition for the horizontal velocity is %Z = 0, we have to
replace the term U, by uy, in equation 2.95c.

If we consider the Wilcox [2006] formulation, we add the cross diffusion term in D,

Wt Ut t 2
No—1 oo — Uy
Du(No = 1) =wfy 1 + 775 2(VT)N0_2( e 1) At
Ng—% No—3
ok\' w\"
+ 4 <> (“) At (2.96)
wNO_% 0z No—1 0z No—1

Advection term

If we add the advection terms, The term D, in equation 2.90 is then changed to:

t 2
W, 1 i _ .
. +5 Ujy1 — U
Dw(]) :w§+% +,y JTy (VT)]_i_l (W) At
1

k§+§ 2 AZ]-JF%
oq ki — kWi _wﬁAt
w§,+% Azjr Az
i At ¢

(2.97)

- Az (W1 —wj)

The values w} and w},, are estimated by linear interpolation.

2.3.4 Numerical algorithm
Algorithm used to advance in time

The system of resulting equations consists of three tridiagonal matrices. We can now

use the scheme presented in Figure 2.6 to estimate u!™2t, k4t w4 from ut, kf, wl.

We first define the matrices and vectors used for the resolution.
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For the horizontal velocity equation, we define A, D, and u :

AP(N[)) AN(NQ> 0 0
Ag(No-1) Ap(No-1) An(No-1) :
0
A=
0
As(2) Ap(2) An(2)
0 0 As(l) Ap()
Dy (Ny) ulA!
D, = u=
D.(1) s

For the turbulent kinetic energy equation we define B, Dy and k:

Bo(Np—1) Bu(Ny—1) 0 0
Bs(No —2) Bp(Ng—2) By(Ny—2) :
0 :
B =
0
Bs(2) Bp(2) By(2)
0 0 Bs(l) Bp(1)
A
Dy(No — 1) k?\;g—t%
Dy = k=
Dk(l) ktf_At
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For the specific dissipation rate equation we define C, D, and w:

Co(No—1) Cn(Ny—1) 0 .0
Cs(Ng—2) Cp(Ng—2) Cn(Ny—2) :
0 . .
C f—
0
Cs(2) Cp(2) Cn(2)
0 0 Cs(1) Cp(1)
Do (Ny — 1) Wil
D, = w =
D,(1) Wit

2

The values for u, k and w at t + At can be estimated by solving the three linear

systems:
A-u=D, (2.98)
B -k =Dy (2.99)
C-w=D, (2.100)

In the case we use inner iterations, we need to define new matrices and vectors that
will depend, on the variables at time ¢, but also on variables at a intermediate time .
We define these matrices Ay, By, C; and vectors Dy, , Dy, , D,,, that will depend on
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new coefficients. For the horizontal velocity equation we have:

. At (FU>t~0 1
An,(j) = AL ( s I*s (2.101a)
i .

i+s
At (Fu>§~0,;
As () = —+— : (2.101b)
AZ]' Azjié
. . Loul
Ap (j) = 1 = An, () — Asy (J) — 7] (2.101c)
; 1 6]5 t t ujug’ t0 At t0 t0
Dy, (j) = —;%At U= Uf = = — ATJ-(UH% —uf?y)  (2.101d)

For the turbulent kinetic energy equation, the coefficients are changed to:

At ()%,

Bn,(j) = — —= 2.102
N, (]) Azj+% AZJ’+1 ( a)
. At (Ty)?
B - _ J 2.102b
5 (7) Az, Az ( )
Br,(j) =1~ By (j) — Bsy(§) + (8 1w}, At (2.102c)

ufy —ul? ’ At

1 0

Dy, (j) = k§+% + (VT);O% jAzj+1 I At— wﬁ% A (K%, —K®)  (2.102d)
2 2

For the specific dissipation rate equation, the coefficients are changed to:

At (T)%0

Cn () = — 2.103a
N (j> A2j+% A2j+1 ( )
At (Fw)to
Co (7) = — j 2.103b
S0)= 5 (2.1030)
CPI (]) =1- C’No (]) - CSO (]) + (/B)ﬁ%Wﬁ%At (2'103C)
thO 1 uto — utp ?
Dw N o— ot J+3 ‘ j+1 j At
1(]) WJ_A,_% + ’Yk;i% (VT)g-‘r% ( Azj-i-%
o4 kit — K Wity — wy’ At
woA Az
Yirr S it
At
t0 t0 t0
— w} Aot (Wit —wj) (2.103d)

Concerning the advection terms, the vertical velocity is also estimated at each time
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step:

1 J o0 _ ot
w® ~ EZ%T;%AZ’C (2.104)
k=1

The variables with the superscript © are temporal variables that are used to iterate

and get better accuracy.

Iteration steps

The proposed scheme incorporates a loop to improve convergence at each time step.
This is required by the non-linear nature of the equations. This scheme is illustrated
in the Figure 2.6.

We first define two operators M, and M,,:

M,(u' k' W) = A~ D, (2.105)
My, (u' k" w u') = A7 - Dy, (2.106)

The operators My, My,, M, and M,, are defined similarly.
The different steps required to obtain the values at the time step ¢ + At that can

also be seen in Figure 2.6 are described hereafter:
1. we start with the values at time step t: u!, k! and w?
2. the values u', k' and w™ are calculated from the values uf, k* and w!

3. the values u't, k' and w™ are initialized to begin the loop. The pointer i, is set
to 1.

0 k1 and w™ are estimated from the values u!°,

4. The loop initiates. The values u
utt, KO ki Wt using a relaxation coefficient «v. This coefficient ranges from

0 to 1, and affects the rate of convergence.

tl tl t0 t0
, k , K

5. The new values u and w?! are calculated using the previous values u

and w', and the values from the initial time step, u!, k! and w?.
6. the relative error of u, k and w are calculated.

7. if the maximum of the relative errors is higher than the required precision py,
and the number of iteration 7, is lower than the maximum number of iterations
allowed my, we continue the loop and, add 1 to the pointer ¢, and return at step
4.
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8. when the maximum relative error is lower than the precision, or the number of

iteration reaches the maximum iterations allowed, we get out of the loop.

9. The variables u/t2f, kT2t and w'*2t are obtained from u'!, k*! and w'!.

It is possible to obtain the results without iteration, in that case, the scheme stops
at step 2. The convergence of the numerical model is estimated considering that the
time-series input length as a pseudo-period. The numerical model is iterated computing
its results within the entire time series and pseudo-period, the velocity relative error

between 2 pseudo-periods is estimated as:

e — woll _ J X Xilwi(z,t) — uo(2, 1)) (2.107)

erry, =
0 HU’OHQ Zz Ztu0<27t)2

where ug(z,t) represents the solution of the previous pseudo-period, and u;(z,t) the
solution of the current pseudo-period. The convergence is reached by iterating the

entire time-series until err,, is lower than the desired precision taken as 1075.
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ut, Kk, Wt

utO :Mu(ut kt, t)

ktO — Mk(ut, ]{Zt,wt)

Wwt0 — Mw(ut, kt’wt)

utl t0 ]ftl — ktO’ tl _ =t t0
1s =1
>
\
ul® = (1 — a)ut! + aut®

i

Ju’
kO = (1 - a)ktl + ak®®
Wi = (1 — a)w?t + aw?®

1 _ 10 1.t0  t0 . 1
utt = Myo(u', B, ™ u®)
ktl — Mk:O (utO’ ktO,wtO7 kt)

1 _ t0 1.t0 0 , .t
w = My (u®, k", 0w, W)

erry, = [utt — ut?]/|ut|
erry = |kt — k0] /|kt]
err, = |w — wi0|/|wt|

max(erry, errg, erry) < po

Uttt =t RHAL — Bt GtEAE

Figure 2.6 — scheme to obtain the values of u, k and w at time step t + At from the values
at time step t. u!, k' and w’ correspond to the variables at time ¢, u!t2?, kA% and
wtA to the Varlables at time t+ At; « is the relaxation coefficient; i is an internal loop
pointer; py is the precision required to advance to the next step; ms is the maximum

number of iterations.
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2.4 Model validation

2.4.1 Validation with sinusoidal flows

The experiments of Jensen et al. [1989] are oscillatory flows in a U-tube, on smooth
and rough beds. The forcing consist in a sinusoidal velocity in time (Figure 2.7), with
a varying Reynolds number defined as Re = alUy,, /v, with a the amplitude of the free-
stream motion, Uy, the maximum value of the free-stream velocity and v the kinematic
viscosity, ranging from a laminar regime (Re = 3.3 x 10?) to a fully turbulent regime
(Re = 6.0 x 10°). The bed shear stress is obtained using a hot-film probe, mounted
in the middle of the working section. The probe is calibrated using the theoretical
solution for the bed shear stress on a laminar boundary layer flow.

The experimental conditions of the different experiments are given in Table 2.3.
For all the experiments considered, the kinematic viscosity is v = 1.14 x 1076 m?.s,

and the period is T" = 9.72 s.

Test | Uym a Re = boundary | ks
no. | (m/s) | (m) | aUyn/v mm
1 0.073 | 0.113 | 7.5 x 10° | smooth -
2 0.152 | 0.235 | 3.3 x 10* | smooth -
3 0.23 0.36 | 7.5 x 10* | smooth -
4 0.34 | 0.53 | 1.6 x 10° | smooth -
5 0.45 0.70 | 2.9 x 10° | smooth -
7 0.68 1.05 | 6.5 x 10° | smooth -
8 1.02 1.58 | 1.6 x 10° smooth -
9 1.55 2.4 | 3.4x10°| smooth -
10 2.0 3.1 6 x 10° smooth -
13 2.0 3.1 6 x 10° rough 0.84

Table 2.3 — Experimental conditions for [Jensen et al., 1989] experiments. Up,, is the max-
imum value of the free-stream velocity, a is the amplitude of the free-stream motion.

The experimental bed shear stress are compared with the following numerical model,
with the Wilcox [2006] formulation, in its normal and Low Reynolds Number version
and the Guizien et al. [2003] formulation.

For the numerical model, the bed shear stress is defined as:

ou
7= pul = p(v+vr(z)) e (2.108)

2=20

In the experiments from Jensen et al. [1989] the bed shear stress was measured with
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a hot-film probe, calibrated in a laminar boundary layer flow for the smooth conditions,
and using a logarithmic fit of the velocity profile to obtain the friction velocity w, and

the bed shear stress for the rough conditions.

0.8
0.6
0.4
0.2

U/Upm

-0.2
-0.4
-0.6
-0.8

1 1 1
180 225 270

¢ (degrees)

Figure 2.7 — Phase ¢ definition along the oscillatory part of the outer flow velocity (—)
and corresponding pressure gradient (——)

1
0 45 90 135

If we compare the bed shear stress obtained for various Reynolds number on a
smooth bed, in Figure 2.8, we observe that the numerical model results are coherent
with the experimental results, in terms of bed shear stress magnitude. The experi-
mental results show that the flow is fully laminar for Re = 3.3 x 10%, Re = 7.5 x 10*
and Re = 1.6 x 10°. For Re = 2.9 x 10°, the bed shear stress shows sign of transition
from laminar to turbulent regime, at ¢ = 90° and ¢ = 270°, and 7/p reaches maxi-
mum values of 5 cm?/s? in the turbulent regime, compared to 4 cm?/s? in the laminar
regime. As we keep increasing the Reynolds number, the transition from laminar to
turbulent regime occurs sooner. For Re = 6.5 x 10°, the transition occurs at ¢ = 60°
and ¢ = 240° and for Re = 1.6 x 105, the transition occurs at ¢ = 30° and ¢ = 210°.
For higher Reynolds numbers, Re = 3.4 x 10° and Re = 6.0 x 10°, the flow is fully
turbulent over the whole period. Noteworthy, in the experiments where a transition
from laminar to turbulent regime occurs, we also observe a relaminarization process
during the decelerating phase, that is less apparent in the experimental results, as there
is no sudden change in the bed shear stress.

The numerical model is not able to reproduce correctly the right transition from

laminar to turbulent. For the Wilcox [2006] formulation, the baseline version shows a
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slight transition at Re = 3.3x10* at ¢ = 110° and ¢ = 290°, and the LRN version shows
one at Re = 3.3 x 10* at ¢ = 100° and ¢ = 280°. As we increase the Reynolds number,
the transition begins sooner, and the maximum shear stress is not well reproduced
for Re = 7.5 x 10*, Re = 1.6 x 10° and Re = 2.9 x 10°. For Re > 2.9 x 10° the
model indicates a fully turbulent regime, and the maximum bed shear stress is of the
same order of magnitude than the experimental results, although at high Reynolds
numbers, namely Re = 3.4 x 10° and Re = 6.0 x 10°, the bed shear stress is slightly
overestimated.

The Guizien et al. [2003] formulation is better at predicting the transition between
the laminar and the turbulent regime. The model is laminar at lower Reynolds number,
at Re = 3.3 x 10* and Re = 7.5 x 10*, and the first transition is observed at Re =
1.6 x 10°, for ¢ = 110° and ¢ = 290°. For intermediate Reynolds numbers, the
model is able to reproduce the transition at the correct phase, for Re = 2.9 x 107,
Re = 6.5 x 10° and Re = 1.6 x 10°, with peaks values similar to the experiment. At
higher Reynolds number, at Re > 3.4 x 10°, the model reproduces a slight transition,
for ¢ = 110° and ¢ = 290, that is not apparent in the experimental results. The model
also underestimates the shear stress for the higher Reynolds number.

We can observe from these experiments on a smooth bed that the exact time of the
transition is difficult to obtain for the k —w model, however for almost all experiments,
the model reproduces the magnitude of the bed shear stress which is key to estimate
the sediment transport.

The mean velocity profiles for the smooth case under a fully turbulent regime, are
shown in Figure 2.9.

We observe the experimental log-law region, that starts to develop at ¢ = 15°, and
increases in height, up to ¢ = 135°, then start decreasing to disappear at ¢ = 160°,
near flow reversal. For ¢ = 15° and ¢ = 160°, the velocity profile does not follow a law
of the wall because of the strong favourable (respectively adverse) pressure gradients
existing at these phases.

Concerning the numerical model, Wilcox [2006] formulation is close to the exper-
imental results, at all phases and we observe a logarithmic region similar to the ex-
perimental one. The velocity profile under a favourable pressure gradient is fairly well
reproduced, and for the adverse pressure gradient, the velocity is slightly under esti-
mated. Guizien et al. [2003] formulation has some discrepancies with the experimental
results. As explained before, the numerical model still shows a transition from lami-
nar to turbulent at this Reynolds number, which explain the difference in the velocity
profile at ¢ = 15°. After that, starting from ¢ = 60°, the velocities are over-estimated

in the logarithmic region.
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If we now look at the same experiment from Figures 2.8 and 2.9, but with a rough
bed with ks, = 0.84 mm, we can also compare the bed shear stress and the velocity
profiles. In the rough bed case, the experimental friction velocity has been estimated
when possible, i.e. when a logarithmic region existed, and was obtained by logarithmic
fitting (figure 2.10). The Wilcox [2006] formulation tend to obtain similar friction
velocities for 15° < ¢ < 135°, but over-estimates them after the flow reversal. On
the contrary, Guizien et al. [2003] formulation tend to under-estimate the the friction
velocity for ¢ < 135°, but after the flow reversal, the results are close to the logarithmic
fit. We also observe a region of relaminarization, at 160° < ¢ < 190°.

Concerning the mean velocity profiles with a rough bed, the observations are similar
to the smooth bed case. The logarithmic region is well reproduced by the Wilcox [2006]
formulation, and over-estimated by the Guizien et al. [2003] formulation.

From these experiments, we can conclude that the & — w model in its different
formulations reproduces fairly well the evolution of a periodic flow in a U-tube. If
Wilcox [2006] formulation reproduces better the logarithmic region, Guizien et al. [2003]

formulation is able to better predict the transition from laminar to turbulent.
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Figure 2.8 — Bottom shear stress over one period, over a smooth bed, for different Reynolds
number. Grey dots: experimental measurements [Jensen et al., 1989]; line: Wilcox [2006]
k — w model, LRN version; dashed line: line: Wilcox [2006] k£ — w model; dot-dashed
line: Guizien et al. [2003] k£ — w model, LRN version.
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Figure 2.9 — Mean velocity distributions in semi-log plot, at different phases. Smooth bed, Re = 6 x 10%. Gray dots: Jensen et al.
[1989] experiment, Test 10; black line: numerical model, Wilcox [2006] formulation, LRN version; black dashed line: numerical
model, Guizien et al. [2003] formulation, LRN version; black dashed-dotted line: numerical model, Wilcox [2006] formulation; grey
line: theoretical log-law for smooth beds.
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Figure 2.10 — Friction velocity over a rough bed. Grey dots: logarithmic fit, Test 13
[Jensen et al., 1989]; line: Wilcox [2006] k£ — w model, LRN version; dashed line: line:
Wilcox [2006] k£ — w model; dot-dashed line: Guizien et al. [2003] k — w model, LRN

version.
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Figure 2.11 — Mean velocity distribution in semi-log plot, over a rough bed. Grey dots:
experimental measurements, Test 13 [Jensen et al., 1989]; black line: Wilcox [2006]
k — w model, LRN version; dashed line: line: Wilcox [2006] k¥ — w model; dot-dashed
line: Guizien et al. [2003] k — w model, LRN version; grey line: theoretical log-law for

rough beds.
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2.4.2 Validation with DNS results

The k — w model is also compared to Direct Numerical Simulation (DNS) results ,
as shown in Guizien et al. [2003]. Indeed DNS results provide detailed information
on turbulent kinetic and Reynolds Stress vertical distributions. The details from the
DNS results, which are phase-averaged, can be found in Vittori et Verzicco [1998]. The
hydrodynamical conditions are: Uy = 1.1 m/s, T =4 s, Rs = 1241 and § = 1.128 X
1073 m, with § = |/vT/w the viscous boundary layer thickness, and Rs = Uyd/v is the
boundary layer Reynolds number for steady flows. The wave forcing and corresponding
pressure gradient are sinusoidal in time as defined in the Figure 2.7, and the bottom
is considered smooth.

The DNS results are compared to three formulations of the k—w model, the [Wilcox,
2006] formulation in its baseline and LRN version, and the [Guizien et al., 2003] for-
mulation.

If we look at the velocities at 4 distinct phases (Figure 2.12), the £ — w model is
similar to the DNS model for ¢ = —45° and ¢ = 0°, with an adverse pressure gradient
and a negative velocity. For ¢ = 45° we are after the flow reversal, with positive
velocities and an adverse pressure gradient, at this phase the [Wilcox, 2006] formulation
has some discrepancies, while the [Guizien et al., 2003] formulation responds quite well
compared to the DNS. At ¢ = 90°, we have positive velocities and no pressure gradient,
and we observe that both the DNS results and the &k —w model reproduce a logarithmic
region in the boundary layer.

The differences observed at ¢ = 45° for the velocity profiles can be clearly explained
if we look at the bed shear stress evolution (Figure 2.13). The DNS results show a
transition from the laminar to the turbulent regime starting at ¢ = 50° up to ¢ = 70°.
There is also a period of relaminarization, near the flow reversal at ¢ = 180° that
cannot be clearly distinguished as there is no abrupt change in the bed shear stress.
We also observe a second transition from laminar to turbulent starting at ¢ = 230° up
to ¢ = 250°.

The [Guizien et al., 2003] formulation is able to predict the transition from laminar
to turbulent, at around ¢ = 50° which is similar to the DNS results, however the
transition is much faster. Concerning the [Wilcox, 2006] formulation, the transition is
far less important in terms of bed shear stress, and out of phase with the DNS results,
as the transition occurs around ¢ = 20°. For all the formulations of the £ — w model
considered, the maximum shear stress is under-estimated.

Concerning the turbulent kinetic energy at 4 different phases (Figure 2.14), the
variation showed by the DNS results are reproduced by the k — w model, the [Wilcox,
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Figure 2.12 — Velocity vertical profiles at different phases; Grey dots : DNS results; black
line: [Wilcox, 2006] LRN model (—); dashed line: [Wilcox, 2006] model; dot-dashed
line: [Guizien et al., 2003] LRN model.

2006] LRN formulation obtaining the best results in terms of shape and peak values.
The Reynolds stress tensor is also plotted for the same 4 phases (Figure 2.15). The
profiles obtained by the k — w model present a vertical structure similar to the DNS
results. From the comparisons with the DNS numerical modelling and the shear stress
experimental data at different Reynolds number, we can conclude that the three formu-
lations (Wilcox [1998], Wilcox [2006],Guizien et al. [2003]) are able to reproduce fairly
well the evolution of the bottom boundary layer, however with slight differences. Al-
though the transition from laminar to turbulent is better reproduced with the Guizien
et al. [2003] formulation, from now on we choose the Wilcox [2006] formulation, as
the vertical profiles at different phases are better reproduced, and additional terms for

cross-diffusion and stress limiters are included.
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Figure 2.13 — Bottom shear stress time evolution over one period. ; Grey dots : DNS
results; black line: [Wilcox, 2006] LRN model (—); dashed line: [Wilcox, 2006] model;
dot-dashed line: [Guizien et al., 2003] LRN model. 79 is the reference shear stress,
defined as 19 = 2mwpUyd/T.
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Figure 2.14 — Turbulent kinetic energy vertical profiles at different phases; symbols: see
Figure 2.12.
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Figure 2.15 — Reynolds stress vertical profiles at different phases; symbols: see figure 2.12.
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2.4.3 Asymmetric propagating wave on a fixed uniform slope
Lin et Hwung [2002] experiment

The streaming and horizontal pressure gradients are also important in the bottom
boundary layer in the surf zone. To observe the ability of the numerical model to
reproduce these features, it is compared to an experiment from Lin et Hwung [2002].
This experiment contains several important aspects of the oscillatory bottom boundary
layer in the nearshore zone. The presence of the slope and the wave breaking induces a
mean pressure gradient, and it is interesting to observe if this mean pressure gradient

is more related to a set-up induced by the waves, or to advection caused by the slope.

The experiment took place in a glass-walled wave flume located at Tainan Hydraulic
Laboratory, National Chen Kung University, China. The wave flume had a fixed hori-
zontal smooth bottom of length 3.77 m, followed by a fixed smooth bed, with a slope
of 1/15 (see Figure 2.16).

Monochromatic waves of height H = 0.053 m and period 7' = 1.14 s were generated
over this fixed bathymetry. Velocity profile measurements were made using a one
component Laser Doppler Velocimetry. The Stokes length is 6 = 0.67 mm for this
experiment. Due to the limitations of the experimental facility, all the profiles are

obtained in the pre-breaking zone and the bottom boundary layer flow is laminar [Lin
et Hwung, 2002].

We focus on three distinct profiles, located at Py, Ps and Pyy. The still water depth
at these three positions are d = 15.7 cm, d = 11.0 cm and d = 8.5 c¢m respectively.
The mean horizontal pressure gradient for these three profiles were 0.002 m/s?, 0.005

m/s? and 0.010 m/s? respectively.
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Figure 2.16 — Sketch of wave flume from Lin et Hwung [2002]. H. is the wave height, d is
the still water depth. The generated waves are monochromatic.
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Numerical model

We use Wilcox [2006] in its LRN version and compare the results and observe the
influence of the mean pressure gradient and the advection on the numerical results.
Three different velocity profiles were calculated at three distinct positions, P4 (Figure
2.17), P8 (Figure 2.18) and P10 (Figure 2.19). The velocity at the upper boundary in
the numerical model is set to the free-stream velocity, Us. The advection terms are
deduced from the vertical velocity, w, estimated by equation (2.47), assuming that the

vertical velocity at z = zy is zero, the z-axis being vertical.

The experimental results show that, as the waves come closer to the shoreline,
the free-stream velocity becomes increasingly non-linear. In the accelerating phase
(profiles a, b, ¢), we observe a strong overshoot in velocity at z ~ 2§ for the three
gauges considered. We also note that the boundary layer thickness is roughly 89,
around 5 mm for the three velocity profiles, showing that the bottom boundary layer

is restricted to a thin layer near the bottom.

The numerical results show that this overshoot of velocity in the accelerating part
is in part due to the mean pressure gradient and the advection produced by the beach
slope, as when these terms are incorporated in the model, the velocity profiles are closer
to the experimental ones. However, the effects of the sloping bed are not entirely ac-
counted for, explaining the differences in the overshoot. As explained by Fuhrman et al.
[2009b], the averaged velocity profile over the diverging half period and the converging
half period are different, producing a slope-related streaming. This streaming induces
an onshore mean velocity near the bottom boundary and an offshore velocity higher
in the boundary layer, as shown experimentally by Sumer et al. [1993] and validated
numerically by Fuhrman et al. [2009b]. These mean velocity profiles are similar to the
ones from Lin et Hwung [2002] experiment, as we note that in the three profiles con-
sidered, the mean velocity profile have a strong similarity, the effect from the bed slope
being more important than the streaming induced by the waveform. The streaming
induces a translation of the mean vertical profile as it is constant within the bottom

boundary layer, which is not the case for the advection terms induced by the slope.

Near the flow reversal (profile e) the numerical model has difficulties in adjusting
the experimental velocity profile, probably due to the boundary layer separation that
occurs at this phase, that is not modelled.

Except for the maximum velocity and the flow reversal, the numerical velocity
profiles matches quite well the experimental results, and the addition of a mean pressure
gradient and the advection terms improves the performance of the model. The bed

slope effects are harder to match, due to the fact that with a 1D-vertical model the
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converging-divergent effects are harder to account for.

0.15 0.2 0.25 0.3

Figure 2.17 — Comparison of instantaneous velocity profiles at gauge P4. Upper panel:
free-stream velocity at gauge P4, the circles indicate the time of the velocity profiles.
Lower panel: Velocity profiles at the chosen times. (---): Lin et Hwung [2002] exper-
imental results; (— - —): k — w model without the mean pressure gradient; (— — —):
k —w model with the mean pressure gradient; (—): k—w model with the mean pressure
gradient and the advection terms.

Concerning the mean velocity profiles in Figure 2.20 , we observe that without
mean pressure gradient the velocity profiles are negative in the whole boundary layer,
whereas the experimental results shows a positive mean velocity for z < 6. This
positive mean velocity is in part due to the mean pressure gradient and the advection
terms, as when incorporating them in the model, the mean velocity profiles improve,
and we obtain positive mean velocities near the bottom boundary. There are still some
discrepancies, due to the converging-diverging effect of the bed slope, as these terms
are not modelled in a 1D vertical model, but the model shows a similar behaviour to

the experimental results.
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Figure 2.18 — Comparison of instantaneous velocity profiles at gauge P8. Captions, see
Figure 2.17.

Figure 2.19 — Comparison of instantaneous velocity profiles at gauge P10. Captions, see
Figure 2.17.
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Figure 2.20 — Comparison of mean velocity profiles at gauges P4 (left panel), P8 (middle
panel) and P10 (right panel). (0): Lin et Hwung [2002] experimental results; (— - —):

k —w model without the mean pressure gradient; (— — —): k —w model with the mean
pressure gradient; (—): k—w model with the mean pressure gradient and the advection
terms.
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2.5 Conclusion

An unidimensional £ —w model has been proposed and validated on smooth and rough
bottoms, against experimental and numerical results. The validation gives confidence
in the model to study the evolution of the coastal bottom boundary layer under periodic
flows. The incorporation of the advective terms, as well as the mean pressure gradient,
improves the model capacity to reproduce the variations of the bottom boundary layer
under periodic flows on the beach.

In the next chapter, the k —w model is used to study the coastal bottom boundary
layer subject to a bichromatic forcing under a mobile bed, and the subsequent evolution

of non-linearities in the boundary layer.
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Chapter 3

Evolution of non-linearities in the

boundary layer

3.1 Introduction

Understanding sediment transport processes that occur in the nearshore zone are fun-
damental to understand the evolution of beaches. The longshore sediment transport
is relatively well understood, but the cross-shore sediment transport remains hard to
predict, due to the various non-linear processes occurring in the oscillatory bound-
ary layer, such as the conventional streaming, the bed slope for the gravitational and
converging-diverging effects, the shoaling, the wave skewness and asymmetry, the wave
breaking, the wave drift and return currents, the undertow, the turbulence, the bottom
roughness, the bed forms and percolation [Fuhrman et al., 2009a).

n a) n b) n

Y-

Figure 3.1 — Wave non-linearities. a) sinusoidal wave; b) skewed wave; c) asymmetric wave

In deep water, waves are essentially sinusoidal. When they approach the coast, due
to the influence of the bottom, they become increasingly non-linear, showing skewed
and asymmetric shapes. In Figure 3.1 we can see the difference between a sinusoidal

wave, a skewed and an asymmetric one.
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The skewness Sky in free surface displacement which also gives a skewness in hori-
zontal velocity, is characterized by waves with a pinched crest and a wide trough. They
are common in the shoaling zone, where the influence of the bottom on the mass flux
of water changes the shape of the waves. It is defined as [Nielsen, 2006]:

(n(t) —m)®
Sky = ~——5—— (3.1)
where the root-mean square of the free surface 7.5 is defined as:
—1/2
Mems = (1(t) — 1) (3.2)

with 7 the free surface displacement and an overbar stands for a mean value.

The asymmetry Asg can be understood as a skewness in fluid horizontal accelera-
tion, and is characterized by waves with steeper front, also known as saw-tooth shape
waves. Asymmetric waves are mostly found in the inner surf zone, where broken waves

have this shape. The asymmetry Asg is defined as:
)
at ot
Asy = ——51/2
on _on
ot ot

The asymmetry can also be defined using the third order moment of the Hilbert trans-
form [Elgar, 1987]:

(3.3)

S(H(n))?
Mims

with the overbar denoting a time-average over the studied interval, #(n) is the Hilbert

ASO = — (34)

transform of 17 and & the imaginary part. The skewness and asymmetry of the wave

can also be determined by its velocity time-series.

These non-linearities are an important mechanism for sediment transport. In ab-
sence of streaming, when the wave is purely sinusoidal, the onshore sediment flux
induced by crest velocities balances exactly the offshore flux of the trough velocities.
When the waves becomes skewed due to the wave shoaling, the difference of velocities
between crests and troughs, as well as the time lapses between crests and troughs, will
generate an onshore sediment transport [Dibajnia et Watanabe, 1992 ; Dohmen-Janssen
et al., 2002 ; Hsu et Hanes, 2004 ; Grasso et al., 2011]. Concerning non skewed but

asymmetric waves, although the onshore velocities balances the offshore velocities over
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one period, an onshore sediment transport has also been reported [King, 1991 ; Elgar
et al., 2001 ; Ruessink et al., 2011]. One interesting feature outlined by recent labora-
tory experiments [van der A et al., 2010 ; Ruessink et al., 2011] is that an asymmetric
wave shape induces a skewed shear stress in the boundary layer. According to Nielsen
[1992] this feature is related to the boundary layer thickness, that grows differently in
the rapidly accelerated half cycle, and in the less accelerated one, producing vertical
gradients in the flow that lead to an enhanced shear stress. This relation between an
asymmetric wave and a skewed shear stress has been observed with a k£ — w numerical
model by Fuhrman et al. [2009a], and in U-tube laboratory experiments [van der A
et al., 2011 ; Abreu et al., 2013].

A theoretical predictor of the relation between the free flow non-linearities and
boundary layer ones was suggested by Henderson et al. [2004], following a work on
bi-spectrum analysis by Elgar [1987], assuming that the phase shift depended on the
frequency, thus changing the shape of the wave from asymmetric to skewed. He also
found the existence of a linear relation between the near-bed skewness and the free-
stream asymmetry.

Another important feature of the bottom boundary layer on beaches is that the
bed is mobile and sediment is transported as the waves affect the bottom. It is very
common to apprehend boundary layers on mobile beds with the tools of boundary
layers on fixed bottom [Sleath, 1987 ; Jensen et al., 1989]. [Dohmen-Janssen et al.,
2001] observed the evolution of a mobile bed for oscillatory sheet-flows (when large
amounts of sand are transported in a thin layer close to the bed) with an oscillatory
water tunnel, and deduced from the measurements that the sheet-flow layer led to an
increased resistance in the outer flow and the reduction of the turbulence and sediment
mixing in the suspension layer. Sparrow et al. [2012] showed that a permeable bed
modifies the wave boundary layer dynamics, leading to an increase in the friction and
a dependence of the friction on the Reynolds number.

The first part of this chapter has been accepted for publication in La Houille
Blanche, International Water Journal [Suarez et al., 2014]. This work investigates
the influence of the bed mobility on the bottom boundary layer during a bichromatic
wave forcing, inducing a vertical diffusion of the boundary layer [Berni et al., 2013]. In
this experiment, the velocity profiles were obtained using an Acoustic Doppler Velocity
Profiler (ADVP). The upper limit of the boundary layer was chosen where the root
mean square velocity remained constant.

Concerning the vertical distribution of the skewness and the asymmetry in the
bottom boundary layer, the linear relation between the near-bed skewness and the

free-stream asymmetry Berni et al. [2013] has been validated both experimentally and
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using the k — w numerical model.

To obtain a wide range of skewed and asymmetric waves, the theoretical formula
of Abreu et al. [2010] has been used. This formula reproduces fairly well the type of
waves that occur in the nearshore zone. The velocity related to the wave forcing is
defined as:

sin(ot + 11\8/1%)

Uw T
1 —rcos(ot + ¢)

U(t) = (3.5)

where U, is the amplitude of the orbital velocity, o = 27 /T the angular frequency, r
the index of skewness and ¢ the waveform parameter. The variable f, is a dimensionless
factor function of 7, f. = v/1 — 2, used to obtain a velocity amplitude equal to U,,.
By allowing the index of skewness r to vary between 0 and 0.75 and the waveform
parameter ¢ to vary between —m/2 and 0, numerous different types of waves were used
in the numerical model to relate the near-bed skewness to the free-stream asymmetry.
The linear dependence obtained is similar to the one obtained with the experimental
results from Berni et al. [2012]. This part has resulted in a communication at the

International Conference on Coastal Engineering in July 2012 [Berni et al., 2012].
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it has been suggested that asymmetric waves also produce net sediment transport (see for instance
[Ruessink et al., 2009]). Bottom velocity skewness and asymmetry depend on how the boundary layer
develops. In this paper we will focus on the study of the turbulent boundary layer resulting from surf
zone wave propagation over a mobile bed.

Using the experiments over a scaled sandy bottom of Berni et al. [2013], we attempt to characterize
the near bed evolution of velocity profiles and its relation with free stream velocities. The experiments
also showed an intriguing strong vertical momentum diffusion in the turbulent boundary layer. Vertical
diffusion of momentum is easily quantified by computing the boundary layer thickness defined, for
instance, as the height where the defect velocity is 5 % of the free stream velocity.

The laminar boundary layer thickness is a function of the Stokes length § which reads,

d=+\vT/n (1)

where v is the water viscosity and T is the wave period. The laminar boundary layer thickness is
roughly 36 and is generally very small. For the experimental conditions studied by Berni et al. [2013]
its value is of ~ 3 mm. For rough turbulent boundary layers on fixed sand beds the boundary layer
thickness d; can be estimated empirically as [Sleath, 1987],

(5t A 0.67
— =02 s 2
RO <k> @)

where A is the fluid particle excursion at the bottom, ks the Nikuradse equivalent roughness. Sleath
[1987] recommends the use of ks = 2.5d50, dso being the median grain diameter. In the case of
the T' = 2.5 s experiments of Berni et al. [2013] the value of the turbulent boundary layer thickness
estimated by (2) is ¢y ~ 6 mm. None of the two previous estimators pertain to mobile bed boundary
layers (as discussed further in section IIT). Experiments of Berni et al. [2013] indicate that the boundary
layer thickness can be as thick as 20 (nearly 2 cm), exceeding the predicted value given by (2). This
seems to indicate that vertical momentum diffusion in the case of a mobile bed is stronger than in the
fixed bed case.

The aim of this paper is to develop a novel strategy to take into account the effect of loose bottom

vertical motions on the near bed velocity profiles and vertical momentum diffusion through a 1D k£ —w
RANS model.

II METHODS

II.1 Experimental set-up and wave conditions

The experiments took place in the LEGI wave flume, with nonlinear waves propagating over a scaled
beach profile made of loose material (figure 1). The flume is 36 m long, 55 cm wide and 1.30 m high.
The bottom granular material is made of plastic particles of low density (ps = 1,180gL~!) and of
median diameter dsgp = 0.64 mm, ensuring a Froude and Shields similitude [see extensive details in
Grasso et al., 2009]. The elementary wave forcing used in the experiments is the combination of two
single bichromatic wave packets of carrier period T = 2.5 s and 1" = 3 s respectively, combined in
one wave sequence. In the present paper we will only analyze the dynamics of the boundary layer
induced by the 2.5 s wave train (figure 2). The effective experimental forcing consists in 50 repetitions
of the wave sequence described above. Before the wave sequence’s run, in order to perform reliable
phase averages on the free surface and velocity measurements, the experiment was run until the beach
profile reached a quasi-equilibrium [Berni et al., 2013]. Phases averages were performed over the last
29 wave trains. Furthermore, in the subsequent analysis we have selected a specific 10 s interval in
each of these 29 wave trains. This interval is made out of four waves of similar amplitude and shape
in the middle of the wave packet (see figure 3). The average breaking point was roughly stationary
at x ~ 9 m. Velocity time series were verified so that spikes associated to the presence of air bubbles
(specially in the surf zone) did not represent more than 3 to 5 % of the measured points.



Z, H (cm)

Figure 1: Experimental cross-shore bed profiles. Smoothed cross-shore profile of the bed ele-
vation. Solid and dashed black lines correspond to bed profiles separated by 50 wave trains of wave
action. The horizontal dashed grey line represents the still water level. The black crosses indicate the
mean wave height H of the wave train. The ADVP was located at x = 13 m, indicated by the red
vertical line.
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Figure 2: The wave forcing. Prescribed bichromatic free surface displacement n at the wavemaker.
The carrier wave period is T' = 2.5 s.
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Figure 3: Free stream velocity. Phase averaged velocity records of the 2.5 s wave packet at the
cross-shore position z = 13 m and at an elevation of z = 3.6 cm above the mean bed elevation. The
grey-tinted box bounds the waves used in the analysis.
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Figure 4: Schematic of the bed evolution. z = 0 is the average position of the still bed and zj is
the position in time of the still bed level. a) near-bed configuration prior to wave forcing; b) bottom
configuration during wave action. d5 represents the sheet flow layer thickness.

I1.2 Bed level measurements

Since the waves propagate on a loose bed, we define the instantaneous still bed position, z(t), as the
elevation of the limit between the moving fluid-sediment mixture and the motion-less sediment bed
(see figure 4). The moving fluid-sediment mixture contains the sheet flow layer. The instantaneous
position of the still bed and the evolution of the horizontal cross-shore velocity vertical profile were
obtained with a vertical spatial resolution close to 3 mm by using an Acoustic Doppler Velocity
Profiler (ADVP). The mean water depth at the location of the velocity measurements (at z = 13 m)
was h = 0.125 m. The procedure for collecting the data presented here has been described thoroughly
in Berni et al. [2013]. The ADVP is able to detect the top of the sheet-flow layer as well as the bottom
of the sheet flow layer representative of the still bed [Berni et al., 2012]

An example of measured instantaneous still bed position is plotted in figure 5. A filtered time
series is computed by applying a low-pass filter with a cut-off at 5 Hz. The filtered time series of
still bed elevations shows a still bed evolution qualitatively consistent with the external wave velocity
forcing: still bed lowering at phases close to the wave crests at the same time as the sheet flow layer
develops with an increase in Js.

The evolution of the still bed position z, can be described by a probability density function (pdf).
The mean value of z, is zero. The standard deviation of the instantaneous still bed elevation is
0., = 3.6 X 1072 m. We show in figure 6 two estimations of the still bed elevation pdf. One is directly
the pdf of the raw measurements and the other is deduced from a low-pass filtering of 2. In figure 6
a standard Gaussian distribution, with this same standard deviation o, is also plotted. It appears to
be close to the experimental pdf of the non-filtered still bed elevation. The still bed positions are seen
to essentially remain in a strip of width 56 ~ =5 mm (J being the Stokes length (1)).

II.3 Velocity measurements

As indicated previously the ADVP provides instantaneous velocity measurements at 50 Hz. A clip
of the instantaneous velocity time series is shown in figure 5. This clip is a part of the 29 clips used
for the ensemble averaging given in figure 3. Notice that the record shows the signature of turbulent
fluctuations some of which are stronger at flow reversal (see also the —5/3 slope in the power spectra
shown in [Berni et al., 2013]). Instantaneous velocities at * = 13 m also show pinched crests and
secondary crests velocities associated to highly non linear wave propagation inside the surf zone also
evidenced by the spectral analysis presented by [Berni et al., 2013]. Waves are also asymmetric with
steep wave fronts and gentle seaward slopes. These last features are a consequence of wave breaking
occurring a few meters before the measurement point.
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Figure 5: Instantaneous velocities, still bed levels and sheet-flow layer thickness. Top panel :
one of the 29 records of instantaneous free stream velocity at z = 3.6 cm; middle panel : still bed
displacements phased with the velocities in the top panel . Bottom panel : sheet flow layer thickness
ds also phased with the velocities. Thin grey line: instantaneous still bed elevations; Thin black line:
low-pass filtered still bed elevations.
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Figure 6: Cumulative frequency distribution. dashed line: instantaneous still bed pdf;
dot/dashed line: low-pass filtered still bed pdf; plain line: gaussian pdf with the same standard
deviation as the instantaneous still bed displacements.
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The skewness and the asymmetry are key tools to analyze the nonlinear characteristics of the
flow characteristics. The dimensional skewness Sk vertical profile and the dimensional asymmetry As
vertical profile of the velocity time series are computed from measured time series using formula (3-4):

Sk(z) = (u(z,t) —u)® (3)
As(z) = =S(H(u))? (4)

where u(z,t) is the cross-shore horizontal velocity, with the overbar denoting a time-average over
the studied interval, H(u) is the Hilbert transform of u and & the imaginary part.

The time averaging of velocity measurements at vertical positions that can be alternatively in the
flow or inside the bed requires a specific treatment. Indeed some measuring volumes of the ADVP
can at some instances be below the still bed level. When this happens the ADVP does not provide
a reliable velocity value. It is decided to prescribe a 0 value of the velocity for this cases. It is
physically sound to do so since the Eulerian velocity of the sediment/fluid mixture can be reasonably
approximated to 0 when the latter occurs. Such a procedure was applied to the data of [Berni et al.,
2013] presented here. As the z = 0 elevation, corresponding to the mean still bed level, is 50 % of
the time below the still bed level, 50 % of the time series is padded with zeros. Moreover the point
at z ~ —44 (see fig. 7) is found to be in the moving sediment/fluid mixture roughly 20% of the time
and therefore about 80 % of the time series is padded with zeros.

The effect of this procedure can be evaluated for the root mean square velocity u;m,s, computed as:

urms(2) = 4/ (u(z, 1) —u)? ()

where the time series is padded with zeros following the procedure explained above. The vertical
profile of uyys is given in figure 7 and note that below z = 0, uyys is very small. The velocity series
padded with zeros are also used to compute Sk and As according to equations (3) and (4), respectively.

I1.4 Numerical model

The horizontal mean velocities near the bed are numerically computed with a 1DV k& — w turbulent
boundary layer model in a Low Reynolds Number version ([Guizien et al., 2003; Wilcox, 2006]). The
turbulent kinetic energy k£ equation includes cross-correlation terms between the gradient of k£ and the
gradient of w (specific dissipation rate) to accommodate for adverse pressure gradients. The bottom
boundary condition on the turbulent kinetic energy k is % = 0 as suggested by [Fuhrman et al., 2010]
in order to specifically mimic a rough bottom boundary instead of k¥ = 0 that inevitably forces a
viscous sub-layer whatever the Reynolds number is. Additionally the boundary Nikuradse equivalent
roughness kg is prescribed in the wall boundary condition for w.

The nonlinear equations for the horizontal velocity u, the turbulent kinetic energy k and the specific
dissipation rate w are solved using an implicit finite control volume method [Patankar, 1980], with a
staggered grid for k and w.

The model is forced with the time series of the measured (free-stream) velocity at elevation z = 2 cm
where Uy, is maximum. The computational grid on the vertical is a classic geometric grid of 200 nodes
from zg = 107% m to z = 2 cm. The convergence of the numerical model is estimated considering that
the time-series input length as a pseudo-period. The numerical model is iterated computing its results
within the entire time series and pseudo-period, the velocity relative error between 2 pseudo-periods
is estimated as:

o = = wollz (30, 3 p(un(,t) — uo(2,1))*
‘ [luol |2 2. 2o uo(z,1)?

where ug(z,t) represents the solution of the previous pseudo-period, and wui(z,t) the solution of the
current pseudo-period. The convergence is reached by iterating the entire time-series until err, is
lower than the desired precision taken as 1076,

Stratification effects have been neglected in this paper as sediment particles can be considered as
massive, the ratio of their settling velocity to the shear velocity is of order unity or lower, therefore

(6)
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a low suspension is observed. Stratification effects are clearly observed with fine sand (i.e. high ratio
of settling velocity to shear velocity) but not with medium sand [O’Donoghue and Wright, 2004].
The processes responsible for the damping of turbulence in the dense sheet-flow layer is still an open
question and it is thought that stratification is not the key mechanism.

IIT RESULTS

Simulations with the k£ —w numerical model on a fixed bed placed at z = 0, are plotted in figure 7 and
8. On these plots two different runs with two roughness height k, are given. One is the parametrization
by [Wilson, 1989] for uniform steady sheet flows:

ks = 56 dso (7)
and the other is the one provided by [Nielsen, 2005] related to measurements on flat sand mobile bed:
ks ~ 700 dsg (8)

where 6 is the Shields number of the flow.

The numerical results obtained using relation (8) show a larger vertical diffusion of momentum as
expected compared to the simulation with the relation (7) but the maximum computed u,ns is located
at z = 5 d, while the maximum experimental u,s is at z = 23 §. The vertical shape is also qualitatively
different. Indeed the fixed bed computations show an over-shoot in orbital velocity not evidenced in
the experiments. The dimensional skewness and asymmetry vertical profiles are also qualitatively
very different. Moreover maximum skewness value is over-predicted by the model computations on
fixed bed. The non-dimensional values of the skewness Sk* (Sk* = Sk/ul,) and asymmetry As*
(As* = As/ul,,) are plotted in figure 7. Because s decreases towards the bottom more rapidly

rms
than the skewness, the Sk* strongly increases closing up on the bottom. This result already shown
by [Berni et al., 2013] is in line with those of [Henderson et al., 2004] for in-situ measurements.
Experimental profiles show a much stronger vertical spreading than numerical results not to mention
that the model cannot predict velocities below z = 0 even though fluid flows there from time to time.
Above z = 0 all experimental dimensional values are smaller than the model predicted ones.

To explain such qualitative behavior we hypothesize that the upward vertical motions of the still
bed is producing an upward flux of small horizontal momentum in regions of higher momentum while
the opposite occurs for downward motions of the still bed. This induces velocities larger than 0 below
z = 0 and velocities smaller than on a fixed bed above z = 0. This effect acts as a supplementary
vertical diffusion that cannot be accounted for even when choosing very strong bed roughnesses. To
quantitatively reproduce this phenomenon we combine vertical still bed motion information with the
k — w computations.

Associated to the free stream velocity time series the model computes times series of the velocity
u(z,t) at different elevation. Moreover synchronized with the free stream velocity time series, the
experimental data provides z,(¢) which is used to define a new velocity time series as,

W (z,t) = u(z—z(t),t) for 2> z 9)
W(z,t) = 0 for z<z (10)

For this new times series the still bed elevation z;, can either be the low pass filtered or the instantaneous
one (fig.6). In replacing the original time series by this new one it is implicitly assumed that the
boundary layer adapts instantaneously to each still bed position.

Substituting «’ for u in (3), (4) and (5) defines post-processed Uy, skewness and asymmetry.
These new estimates are also plotted in figure 7. Dimensional skewness and asymmetry are plotted in
8 along with the mean velocity. The improvement on all quantities is obvious. The novel technique
is particularly effective for the mean velocity u and the skewness. The improvement on the vertical
profile of the asymmetry is not as good. However the qualitative shape is close. The mean velocity
u vertical profile shows that an undertow is present in the experiments compensating for the Stokes
mass flux drift and roller induced mass flux. This undertow is present in the free stream velocity and
what the novel 1DV model reproduces is the correct vertical structure within the boundary layer.
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Figure 7: Orbital velocity, dimensionless asymmetry and dimensionless skewness. Left
panel: orbital velocity; middle panel non-dimensional velocity asymmetry; right panel: non-
dimensional velocity skewness. Grey bullets: experimental data; black lines: computations with (8);
grey lines: computations with (7); Thick lines: fixed bed computations; thin lines: computations with
the low-pass filtered still bed positions in (9); dashed thin lines: computations with the instantaneous
still bed positions in (9).
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Figure 8: Mean velocity, dimensional asymmetry and skewness. Left panel: mean velocity;
middle panel dimensional velocity asymmetry; right panel: dimensional velocity skewness. For the
rest, same legend as fig. 7.

IV . CONCLUSION

A post-processing combining the results of the improved version of a RANS 1DV k — w model and
data of bottom vertical displacements was successfully used to retrieve vertical profiles at different
phases of the horizontal velocity (root mean square velocity, asymmetry and skewness). The enhanced
vertical diffusion was found to be due to the vertical motion of the (still bed) boundary rather than
to an increase in roughness height. The vertical displacement of the bottom boundary contributes
to momentum transfer within the mobile bed and just above. Future work will be focused on the
modeling of such vertical bottom motions within the k£ — w framework.
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ASYMMETRY AND SKEWNESS IN THE BOTTOM BOUNDARY LAYER : SMALL SCALE
EXPERIMENTS AND NUMERICAL MODEL

Céline Berni" 2, Leandro Suarez', Hervé Michallet' and Eric Barthélemy’

This study investigates the non-linearities of wave boundary layers in the surf zone. It mainly focuses on the acceleration skewness
or asymmetry. Experiments [e.g. Grasso et al., 2011] show that asymmetry influences the sediment transport. Its influence lies
in the fact that asymmetry in velocity (acceleration skewness) tends to transform into velocity skewness within the boundary
layer. Analysis by Henderson et al. [2004] predicts a linear relation between Sky/Skoo and Asoo/Skoo Where Sk is the
dimensionless skewness near the bed, Skoo the free-stream dimensionless skewness and As.o the free-stream dimensionless
asymmetry. Numerous experiments were carried out in the LEGI wave flume over a mobile bed composed of lightweight sediments.
The quasi-random forcing is a repetition of 2 concatenated bichromatic wave packets. Vertical profiles of velocity are measured in
the surf zone. A clear linear relation is shown between these two ratios. The experimental results are compared with the numerical
results. A linear relation between skewness and asymmetry is also obtained.

Keywords: non linearities, transformation, k-w model, mobile bed

INTRODUCTION

This study investigates the non-linearities of a wave boundary layer in the surf zone. It mainly focuses on the
acceleration skewness or asymmetry. Experiments [e.g. Grasso et al., 2011] show that asymmetry influences the
sediment transport. Its influence can be interpreted in different ways. Ruessink et al. [2011] listed several physical
processes that can explain this influence, out of which asymmetry in velocity (acceleration skewness) tends to
transform into velocity skewness within the boundary layer.

This transformation can be explained as follows: an asymmetric wave is an addition of components of different
frequencies that are phase-shifted in order to produce steep fronts. If the phase lead of the near-bed velocity is
independent of the frequency, the time shift of each component is proportional to its period. Thus, the time
shift between components varies when approaching the bed and asymmetry can transform into skewness in the
boundary layer.

This simple model explains qualitatively how non linearities transform through the boundary layer. Further
analysis by Henderson et al. [2004] quantifies this transformation. Following his arguments, it can be shown,
considering a phase lead ¢ and a velocity amplitude damping between the near-bed velocity and the free-stream
velocity independent of the frequency, that [Berni et al., submitted]:

Sk
Skoo
where Sk; is the dimensionless skewness near the bed, Sk, the free-stream dimensionless skewness and As.,

the free-stream dimensionless asymmetry.
The purpose of this paper is to study this transformation, both experimentally and numerically.

= cos(¢) + sin(¢) ?,ZOO (1)

NUMERICAL MODEL

The behavior of the wave bottom boundary layer is analyzed using a k-w turbulence closure model [Wilcox,
2006 ; Guizien et al., 2003]. The low Reynolds number version of the model is chosen. In this model, the hori-
zontal velocity u, the kinetic energy k& and the energy dissipation rate w are solutions of the following equations :

ot~ por ot o\ T,

ok ou\? d ok

5= vy <8z> — B kw + 5 ((V+Ukyt)8z»> (3)
Ow w (ou\? 9 0 Ow

o7~y (&z) — fw” + 9z ((V + Uth)aZ) (4)

where OP/0x is the mean pressure gradient of the flow, v the water viscosity, v; the turbulent viscosity. The
other coefficients and boundary conditions are defined in Guizien et al. [2003]. x is the horizontal direction, z the
vertical direction. U is the input velocity of the model.

As we want to study the behaviour of the boundary layer under a non-linear wave, we need to validate the
model for such conditions. The results of our model is compared to measurements of Suntoyo etal. [2009] in U-
tube. The agreement with measurements is good, attesting the capability of the model to reproduce the dynamic
of the wave bottom boundary layer under non-linear waves.

TLEGI UMR 5519, Domaine universitaire, BP 53, 38041 Grenoble cedex 9, France
2irstea, UR HHLY, Lyon, France
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Figure 1: Model validation. Top: time series of the velocity. Bottom: Velocity profiles: comparison between the k-w
model presented in this article (), experiments of Suntoyo etal. [2009] (0) and a k-w model of Menter [1994] (--).

This model will be used in this study to compute the bottom velocity skewness for different free-stream veloc-
ities. The bottom velocity skewness is evaluated at approximately 1/10 of the wave boundary layer thickness over
the bed. The free-stream skewness and asymmetry are computed at the maximum value for the orbital velocity. To
simulate a wide range of skewness and asymmetries, the formula of Abreu et al. [2010] will be used to compute
the input velocity that then will writes:
sin(wt) + H_T\S/% )
1—r cos(wt+ ¢)

U(t) =Uy fr

where U, is the amplitude of orbital velocity, w = 27 /T the angular frequency,  the index of skewness ranging
from 0 to 0.75 and ¢ the waveform parameter ranging from — /2 to 0. The variable f, is a dimensionless factor,
function of 7, f,, = v/1 — r2, allowing the velocity amplitude to be equal to U.,,,.

EXPERIMENTS

Experimental facility

The experiments took place in a wave flume of 36 m long, 55 cm wide (the LEGI wave flume, see figure
2). The flume is filled with PMMA sediment of low density (1.19 g cm~3) forming a beach. The sediment
median diameter is dso = 0.64 mm. The corresponding settling velocity is 2.1cm s~! [see Grasso etal., 2009,
for more details on the experimental facility]. The wave forcing is produced by a computer controlled piston-type
wave-maker. There is neither wave absorption nor second-order correction on the wave maker motion.

Capacitive wave gauges are placed in the cross-shore direction of the beach to measure free-surface elevations.
Beach profiles are recorded between wave series using an acoustic profiler mounted on a motorized trolley. Cross-
shore velocity profiles are measured at X = 13 m of the wave maker with an acoustic Doppler velocity profiler
(ADVP) [Hurther, 2001]. The vertical resolution is 3 mm. The sampling frequency for both velocity and free-
surface elevation is 50 Hz.

Experimental conditions
The wave climate is a repetition of a specific wave sequence of duration Ty = 53 s. It results of the concatena-
tion of two bichromatic packets with a carrier wave period of 2s and 2.5 s respectively (see figure 3).
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Figure 2: The LEGI wave flume.

Figure 3: Wave climate: wave maker input data (solid line) and measurements with a capacitive wave gage at X = 2m
(dashed line).

The free-surface elevation 7 for each bichromatic packets writes:
n(xz,t) = A cos(wit — kiz) + A cos (wat — ko) (6)

o . w1 — W2 kl—k’g . w1 + w2 k‘1+k'2
= 2 Acos ( 5 t— 5 x) X COs < 5 t 5 m) (7)

where A = 4 cm for both packets and x is the cross-shore direction. The angular frequencies for the packet with
a wave period of 2s are w; = 3.0rad s~! and wy = 3.3rad s~!; for the packet with a wave period of 2.5s,
wi = 2.4rad s~! and wy = 2.7rad s~!. The wave numbers k; and ky are given by the dispersion relation:

w? = gk; tanh(k;h) (8)

where h is the water depth, h ~ 15 cm in the experiments presented here. The significant wave height at the wave
maker is 16 cm for both groups.

The initial, intermediate (after 1350 wave sequences of 53 s) and final (after 4100 wave sequences) beach
profiles are plotted in figure 4. During the experiments a bar progressively formed and migrated onshore. The root
mean square wave height H.,, for the initial and final profiles are plotted in the top plot. The break point was
overall stationary at a distance of roughly 8 m from the wave maker. The surf zone extends from there up to the
bar trough (X ~ 20 m). The measurements analyzed in this paper are all recorded within the surf zone at 13 m.

At this specific position, the different experimental parameters can be summarized as follow:

* the bottom Reynolds number Re;, ranges between 24 000 and 45 000, computed as Re, = Uyh/v where v
is the water viscosity and Uy, is the near-bed velocity measured at the wave crest.

¢ the orbital amplitude a varies between 5 and 10 cm,
* the Shields number is the order of 0.5, estimated by
1 U?
0 =3 fo——
277 g(s = Ddso

where U is the amplitude of the free-stream velocity (U ~ 0.2m s™1), s is the relative density of the
sediment (s = 1.19), dso the median diameter and f,, is the friction coefficient estimated according to

Swart [1974] by:
2. 0.194
fu = exp [5.213 ( 5ad50> — 5.977 (10)

(9)

* the sheet-flow thickness §; is the order of 3 mm, estimated by the Wilson [1987] parameterization

85 = 100dso, (11)
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Figure 4: Top: root mean square wave height for the initial ((+): 7" = 2s; (0): 7' = 2.5s) and the final ((x): 7" = 2s; (¢):
T = 2.5s) topography of the beach. Bottom: initial (bold solid line), intermediate (thin solid line) and final (dashed line)
topography of the beach. X = 0 is the mean position of the wave maker, Z = 0 is the still free surface (horizontal dotted
line). The vertical line indicates the measurement location.
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Figure 5: Examples of the time series of the instantaneous free-stream velocity (top) and the instantaneous near-bed
velocity (bottom) along with the corresponding ensemble averages (thick light color lines).

* the equivalent roughness length k is the order of 2 mm, estimated by the Wilson [1989] parameterization

s =50dsp. (12)

Velocity measurements

Cross-shore velocity profiles are measured over the bar with an acoustic Doppler velocity profiler (ADVP)
[Hurther, 2001]. The vertical resolution is 3 mm. Simultaneously with the velocity profile, the ADVP instrument
detects the position of the still bed level [Silva etal., 2009 ; Hurther and Thorne, 2011]. The near-bed velocity u
is defined as the velocity measured in the first sampling volume above the mean position of this still bed level. It
is thus measured at an elevation z; between 0 and 3 mm above the mean still bed level.

Examples of instantaneous velocities at both free-stream and near-bed elevations are given on figure 5. The
two groups can be distinguished, the first between ¢ = 1s and ¢t = 25 s the second between ¢t = 25s and ¢t = 53 s.

The data presented in this article are provided by ensemble averaging over a set of 30 to 50 sequences in a row.
The ensemble average on N realizations is computed as :

1 N
= > ult+(n—1)Ty), (13)
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Figure 6: Examples of root-mean-square velocity U..,s, mean velocity U, skewness Sk and asymmetry As profiles
computed from ensemble averaged velocity, for the two studied intervals specified in figure 3 corresponding to the two
wave forcing: (+): T = 2s; (0): T' = 2.5s. The vertical axes is the dimensionless elevation, Z/h = —1 stands for the
mean position of the bed, Z/h = 0 for the still free-surface elevation, with the water depth » = 14 cm at the measuring
location.

where T is the duration of the sequence. For clarity, we simplify the notation by using « for u. During each set
of sequences (~ 45 minutes) the bottom does not evolve significantly in the mean. Within a sequence it-self, the
maximum erosion detected is one volume sampling, i.e. 3 mm.

Ensemble averaging reduces the noise and allows reliable velocity measurements. It is superimposed on the
instantaneous velocities, on figure 5, as a thin gray line.

Non linearities

Time series of the ensemble average of the free-stream and the bottom velocities at the measurement loca-
tion are shown in figure 5. These data correspond to one representative example amongst the whole set of 41
experiments. The shape of the waves is typical of the surf zone waves, with pinched crests, long troughs, and
pitched-forward waves.

The bottom velocity in figure 5 is in contrast highly skewed. Note that the bottom velocity and the free-stream
velocity at each crest are almost of the same value while the near-bed troughs velocities are more than 50 % smaller
than their counter parts in the free-stream velocities.

In the following analysis of the non-linearities, we chose to only study the four middle waves of each group,
identified by a box on the time series in figure 3. The two time bounds of the box are times with zero-up crossing
of the free-stream orbital velocity (without infragravity components). Both intervals are analyzed and studied
separately as they correspond to two different periods and therefore to two different forcings. Note that for the
example shown on figure 5, asymmetry and skewness are indeed different for both groups. The second group with
the 2.5 s period present a larger asymmetry and a smaller skewness of the free-stream velocity.

For this specific experiment, the vertical profiles of the root-mean-square velocity U,.,s, the mean velocity
U = (u), the skewness and the asymmetry are plotted in figure 6 for both bichromatic groups. The root mean
square value of the velocity, which offers a quantification of the orbital velocity, decreases down to the bed in the
wave boundary layer. The mean velocity U is negative in the upper part of the profile, distinctive of the presence of
an undertow. It decreases deeper down in the boundary layer. The profile surprisingly concaves downwards but it
is probably due to the mobile bed. Indeed, O’Donoghue [2004] found similar profiles over a mobile bed. Besides,
the measurements of Sparrow etal. [2012] over impermeable and permeable bed also suggest that permeability
induces an inflexion in the velocity profiles. Both forcing of different periods show similar behaviour although
the free-stream values of the rms and mean velocity are different. In the third panel of the figure is plotted the
dimensionless skewness Sk of the velocity. It increases down to the bed while the asymmetry decreases as shown
in the last panel. The increase of the skewness is larger for the wave period of 2.5 s that presents a greater free-
stream asymmetry.

For all the experiments (41 groups of at least 30 sequences), dimensionless skewness and asymmetry were
computed at the free-stream (z = 00) and the near-bed (z = z3) elevations, corresponding to the upper and lower
measure presented on figure 6. The wave boundary layer represents approximately 10 % of the water column and
the near-bed elevation is between 1/5 and 1/10 of the wave boundary layer thickness over the bed.

RESULTS
As the beach shape evolves during the 41 experiments, a large range of values for the free-stream skewness and
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Figure 7: near-bed and free-stream skewness ratio as a function of the ratio between free-stream asymmetry and skew-
ness; left: experimental data (¢ 7' = 2.5 s; x T = 2 s) and right: numericaldata (/7 =2.5s; x T =2s).

large values of the asymmetry are obtained. In our experiments, the waves of period 2.5 s are more asymmetric
and less skewed than the waves of period 2s.

The ratios appearing in equation (1) are plotted on figure 7. In the experimental case (left), a clear linear
relation is shown between these two ratios no matter the forcing. On the right of figure 7, the results of the
numerical model also show a clear linear relation with the same slope. This slope can be interpreted as sin(¢)
according to the relation (1) and leads to ¢ = 44 degrees. The scatter is similar to the experimental scatter, and
larger for the greater period. The y-intercept is quite different between the numerical model and the experiment.
Being greater than one in the first case, it can not be interpreted as cos(¢) where ¢ is the phase lead. Thus, the
analytical relation (1) does not hold for turbulent flow such as the one simulated by the model. Indeed, neither the
phase lead nor the attenuation at the bed elevation are independent of the frequency. The linear relation yet holds,
offering a way to predict bottom velocity skewness.

The process transforming asymmetry to skewness within the boundary layer is numerically and experimentally
confirmed and understood. This transformation results in skewed velocities near the bed that lead directly to net
sediment transport.
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Chapter 4

Circulation in the nearshore zone

4.1 Introduction

4.1.1 Physical processes

Mean nearshore circulation are mean currents driven by the wave motion. A well known
example ins the longshore current forced by the breaking of oblique waves Longuet-
Higgins et Stewart [1964]. Waves create mean-currents by transferring momentum
to these currents. The most efficient pathway is the breaking of waves. They lose
momentum during breaking transferred to other fluid motions. In the case of shore
normal waves this transfer can only occur on alongshore non-uniform bathymetries or
with non uniform wave forcing. Wave breaking is a process that builds on the shoaling
of waves.

In deep waters, the wave shape is roughly sinusoidal. As they approach the nearshore
zone, which is the region where the waves are affected by the bottom (Figure 4.1), the
waves start feeling the influence of the bottom and their shape becomes non-linear in
the shoaling zone. The wave height increases and the wave shape becomes skewed,
with a pinched crest and a wide trough. When the wave height is coming close to the
water depth under the travelling wave, the wave breaks. As the wave height is different
for each wave, the wave breaking does not necessarily occur at the same location, and
the breaking zone is defined as the region where the wave breaking occurs.

The wave breaking type can be determined by the Irribaren number &g:

tan ﬁo

(HO/L0)1/2 (4.1)

o =

with S, the beach slope, Hy the wave height, Ly = gT? /27 the deep-water wave length,
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Figure 4.1 — Schematic representation of the nearshore zone, with the wave shape transfor-
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Figure 4.2 — Classification of breaking wave types
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T the wave period and ¢ the gravitational acceleration.

For a wave with a specific period and wave height, its wave breaking type then
depends on the beach slope. For & < 0.5, the wave breaking type is spilling, for
0.5 < & < 3.3 it is plunging and for £ > 3.3 it is surging (Figure 4.2). In the case
of a spilling wave breaking, the wave crest becomes unstable, white foam appearing
on the crest and spilling down the face of the wave. In a plunging wave breaking,
the wave crest becomes vertical and then curls over and drop onto the trough of the
wave, creating a strong vertical jet that dissipate a great amount of the wave energy.
The surging wave breaking corresponds to a wave breaking on the beach itself and
the disappearance of the wave crest. The wave breaking is the main source of energy

dissipation of the wave energy in the nearshore zone.

After they break, waves keep on propagating in the inner surf zone, in the form of
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Figure 4.3 — from [Bonneton et al., 2010]

smaller broken waves known as bores, similar to a propagating hydraulic jump. They
also dissipate energy as the water becomes shallower, due to the friction of the bottom,
resulting in a decrease in the wave height. When these bores reach the beach, the water
is pushed towards the beach and then retreats, in the region defined as the swash zone.

There also exist longshore wave transformation processes. The wave celerity in
shallow waters is dependent on the water depth, waves propagating slower as the water
becomes shallower. In the case of oblique waves, this results in a change of orientation
of propagation, the wave front adjusting to the depth contours. The oblique waves
also generates longshore currents that can also interact with incoming waves creating
circulation patterns, with time and space greater than the wave scales. The waves also
generate cross-shore and longshore sediment transport, which changes the bathymetry
and modify the circulation patterns.

One important nearshore circulation pattern, is the rip current, which is an off-
shore oriented water jet, that can occur on a wide variety of beaches under different
wave and tidal conditions. The term rip current was first defined by Shepard [1936]
as flows travelling "outward almost at right angles to the shore". The rip current is
constituted of a feeder region, a ripe neck and a rip head [Shepard et al., 1941]. For a
more detailed description of the rip current see the review from Dalrymple et al. [2011]
and MacMahan et al. [2006].

Many theoretical models use the momentum flux induced by the waves called the
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Radiation stress as formulated by Longuet-Higgins et Stewart [1964], to explain the
appearance of these rip currents: an alongshore variation of wave height introduces a
variation in the excess flux of momentum due to the presence of waves, that develops
a steady circulation pattern in the nearshore zone [Bowen, 1969]. This wave height
alongshore variation can be originated by a wave-wave interaction, by an incoming
alongshore heterogeneous wave forcing or by the bathymetry heterogeneity that induces
changes in the wave height by shoaling, refraction and wave breaking.

The importance of the vorticity in the generation of rip currents was shown by
Peregrine [1998]. Using a discrete wave group forcing, he evidenced the formation of
eddies from the longshore currents, and the rip currents originated where two eddies of
opposite sign met. The non-linear evolution of these eddies is further studied in Buhler
et Jacobson [2001], from its initial generation by wave breaking, until its dissipative
decay due to bottom friction. From the vorticity equation, Bonneton et al. [2010]

obtained a vorticity forcing term related to differential broken-wave energy dissipation
(Figure 4.3).

4.1.2 Experiments and models

The nearshore circulation has been studied with a wide variety of numerical models.

There are two main types of wave models:

o The phase averaged models, based on the energy balance equation with sources
and sinks, that uses the wave spectra statistics and their propagation to the
nearshore. They usually use the full radiation stress gradients as driving force.
Some examples of these type of models are SWAN [Holthuijsen, 2007] and X-
beach [Roelvink et al., 2009]. Bruneau et al. [2011] use a vertically integrated
time-averaged coupled model, the spectral wave module SWAN coupled with the
non-linear shallow water module MARS, using a spatially constant time-varying
breaking parameter, to reproduce the nearshore circulation on a well-developed
bar and rip morphology. The model correctly reproduces the main evolving

behaviours of the rip current.

o the phase-resolving models, which compute at each time-step the free-surface and
velocities in the spatial domain, giving access to the intra-phase wave evolution.
These models are based on non-linear sets of equation to describe the evolution

of the free-surface and velocities in the nearshore zone.

The phase-resolving models are able to compute the non-linear wave transformation

processes in the nearshore zone. As stated in the previous chapters concerning the
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turbulent boundary layer, the wave skewness and asymmetry during the propagation
evolves, and influences the sediment transport [Grasso et al., 2011 ; Elgar et al., 2001 ;
Ruessink et al., 2011}, hence the need of models able to accurately reproduce the wave
non-linearities as well as the wave breaking and run-up.

Numerical models based on the Navier-Stokes equations, such as Direct Numerical
simulation (DNS) that resolve all the spatial and temporal scales of the turbulence,
or the Large Eddy Simulation (LES) which incorporates a turbulence model for the
subgrid scales of the flow allow for a detailed evolution of the wave breaking [Lubin
et al., 2003 2006]. However these simulations are very demanding computationally, and
are not able to reproduce all the spatial and temporal scales of a realistic nearshore
zone.

The vertical scale in the nearshore zone is the water depth, and is little compared
to the horizontal scales involved such as the wave length, we can then reduce the
complexity by depth-averaging the equations, thus reducing the computational cost
with fairly good results. We can distinguish the models using the Boussinesq-type
(thereafter BT) equations and the ones using the Non-linear Shallow Water (thereafter
NSW) equations.

The BT equations include dispersive terms which provide an accurate description of
non-breaking wave transformation. If we note a the order of the free surface amplitude,
ho the characteristic water depth and L, the characteristic horizontal scale, we can

define two non-dimensional parameters:

= ) (42)

(4.3)

the parameter p is characteristic of the non-hydrostatic and dispersive effects and the
parameter ¢ is characteristic of the non-linearity of the flow.

Boussinesq [1872] used a perturbation method on these two non-dimensional param-
eters to obtain a set of equations. The first assumption is the shallow water condition,
implying p < 1. The second assumption is that the dispersion and non-linearities are
weak, and that there is a balance between non-linearity and dispersion: ¢ = O(u) < 1.
These assumptions does not hold on the entire nearshore zone, as the wave shoaling
occurs when the wavelength is comparable with the depth (@ ~ 1) and waves break
when their amplitude is comparable with the water depth (¢ ~ 1). It is therefore
necessary to use fully non-linear BT equations to overcome these difficulties. [Serre,

1953] first derived a set of fully non-linear (¢ ~ 1) weakly dispersive BT equations
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(see [Barthélemy, 2004] for a detailed review), Green et Naghdi [1976] extending these
equations to the 2D case on an uneven bottom. Chen et al. [1999] use the fully non-
linear Boussinesq equations developed by Wei et Kirby [1995] in the FUNWAVE model,
including wave breaking and a moving shoreline. They show a good agreement of the
numerical simulations with the fixed bar rip current experiments by Haller et al. [1997].

The major drawback of this set of equations is that the energy dissipation by wave
breaking and the run-up are not included, hence the need to introduce this dissipation
by a parametrization, adding extra-terms when the wave breaking is likely to occur
([Cienfuegos et al., 2010 ; Kennedy et al., 2000 ; Madsen et al., 1997al).

The NSW models provide an accurate description of the broken waves, that are
represented as shocks, and of the run-up [Bonneton, 2007 ; Kobayashi et al., 1989 ;
Marche et al., 2007]. The main drawback of these models is that the dispersive effects
are neglected, restricting them to the inner-surf zone and the swash zone, as the wave
shoaling is not well reproduced.

Recently, new models have been developed that use both the BT equations and
the NSW equations. [Tissier et al., 2012] use the Serre Green-Naghdi equations, and
switch to the NSW equations when a wave is ready to break by removing the dispersive
terms, resulting in an appropriate evaluation of the energy dissipation by wave breaking
[Bonneton et al., 2011ab]. The FUNWAVE model has also been improved by Shi et al.
[2012] using a similar technique, the wave breaking being solved by the nonlinear
shallow water equations when the Froude number exceeds a threshold, the moving
shoreline with a wetting-drying algorithm, and the code parallelized.

These late models were not available at the beginning of this thesis. As we wanted
to access to the non-linearities induced by an alonghsore heterogeneous wave forcing,
we chose first to use a phase resolving model. The choice of a NSW equation model was
then dictated by the fact that we wanted to observe the evolution of the circulation and
vorticity, and this type of models does not need further parametrization for the wave
breaking dissipation or the run-up. Marche et al. [2007] developed a depth-integrated
model SURF__WB with a bed slope source term, a treatment for the moving shoreline
and accurate bore-capturing abilities.

We intend to simulate with this model the MODLIT experiments ([Michallet et al.,
2010 2013]) in order to validate the model in terms of cross-shore and alongshore profiles
of flow characteristics. We will also compare model outputs of mean 2D circulation
and vorticity with mean circulations determined by experimental Lagrangian drifter
motion. These experiments which consider an alongshore varying wave breaking on a
mobile bed is representative of an heterogeneous bathymetry of the nearshore zone, and

the experimental data provided allows for a comparison between the numerical model
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and the experiment. Even though the numerical model is known to have difficulties
to reproduce the wave shoaling, the advantage of the MODLIT experiment is that the
shoaling zone is reduced, allowing to use a NSW equations model to reproduce the

circulation and vorticity in this zone.

4.2 Experiment and methods

4.2.1 Numerical model

Governing equations

The numerical model SURF_WB, from Marche et al. [2007] is based on the Non-linear
Shallow Water Equations (NSWE), valid for long waves. These equations are obtained
by averaging over the water column the Navier-Stokes equation for an homogeneous
and incompressible fluid assuming long wave motion.

With all these assumptions, the resulting equations are a system of three hyper-
bolic conservation laws, with the water depth and the depth-averaged velocities as the
variables.

The non-dimensional form of the NSWE can be written:

0Q OF 0G

P TRl v S(Q) (4.4)

where () is the vector of the non-dimensional hydrodynamic variables, function of A
the water depth,u and v respectively the cross-shore and longshore depth-averaged
velocities, F' and G represent the flux vectors in each Cartesian direction, and S is the
source term vector incorporating bed slope and friction. The terms of the equation are

defined as:

h hu hv
Q=1 hu |, F(Q)=| hu*+ 2;@ n? |, GQ) = huv (4.5)
hv huv hv? + 5 I}TQ h?
0
%% — Spy
where F'r is the Froude number, g—z and % are the bed-slopes, Sy, and Sy, are the
z Y

friction source terms.
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Resolution of the equations

The non-dimensional form of the NSWE, given by Equations (4.5), are solved using
a finite volume well-balanced scheme, which incorporates separately the friction and

bed-slope in the momentum source terms [Marche et al., 2007] .

The numerical procedure consists of an initial step in which the friction source term
in the momentum equations is incorporated employing a semi-implicit method. [Liang
et Marche, 2009]. To that end, we solve the following ordinary differential equation:

d@
— =5 4.6
where the friction term Sy is written as:
0
_ _Tfx
Sy = p (4.7)
Tfy

with 74, and 74, the bed shear stress in the x and y direction, and p the water density.

The bed shear stress is estimated as:
Tre = pCruvu? + v? (4.8)
Try = pCrovu? 4 v? (4.9)

where C is a non-dimensional bed friction coefficient, estimated using the Manning

formula, valid for uniform flow and p the water density.

In a second hyperbolic NSWE step, the variables are reconstructed at the cell inter-
faces and the fluxes are found through the solution of the Riemann problem at the cell
interfaces, using a non-conservative form of the governing equations. This methodol-
ogy gives the numerical model the well-balanced property by considering the bed-slope
in the spatial discretization schemes, using a MUSCL type reconstruction method to
reach a second order accuracy. The discretized form of the governing equations is

integrated in time using a multi-stage Runge-Kutta scheme.

The model includes a bore capturing method, which allows to dissipate the energy
by the wave breaking in the nearshore zone. It has also been improved by Guerra et al.
[2014] to use a curvilinear grid, suitable for highly variable topography, as can occur

in the nearshore zone.
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Absorption/generation boundary condition

The absorption/generation condition considers an incoming input wave height and
solves a Riemann problem at the boundary, between the incoming invariant "carrying"
the incoming wave height and the outgoing invariant, to find the proper wave height
at the boundary [Cienfuegos et al., 2007]. This condition is an open boundary as the

incoming waves can enter the domain, and the outgoing waves leave freely.

4.2.2 Experiment and model setup
Experiment description

Mobile bed

The experiment [Michallet et al., 2010 2013] took place in the LHF (ARTELIA)
wave basin (Figure 4.4), with dimensions of 30 x 30 m?. The waves originate from 60
parallel segmented piston-type wavemakers, of 50 cm width each and spanning the 30
m tank width, allowing to produce a differential wave forcing between the segments.
The measurement instruments are located on a sliding rail, which can move in the
alongshore direction. The cross-shore position of the instruments is fixed during the
experiment. The still water level at the wavemaker is hy = 0.765 m. The experiments
where more or less designed to provide a length scale ratio of 1/10 with respect to
nature. This implies a time-scale ratio of 1/3 if a Froude scaling is assumed.

The mobile bed used in the experiment is made of sand, of density 2.65 and median
diameter dso = 0.166 mm. With this type of sand, a Rouse scaling gives a prototype
grain size of dsg ~ 0.3 mm. The Rouse number determines how the sediment is
transported in a flowing fluid. Note however that the Shields scaling is not fulfilled.
Indeed the experimental Shields is half that of the prototype conditions. The Shields
number is important in sediment mobility, and sediment transport regime, and as a
result, we observed sand ripples on the bed surface. For the simulation, we consider a
fixed bed therefore the Shields scaling is not relevant for our study.

Wave forcing

The wave climate consisted in irregular shore-normal waves with no directional
spreading complying with a JONSWAP spectrum. The JONSWAP (Joint North Sea
Wave Project) spectrum has been proposed by [Hasselman et al., 1973|, using wave

data collected in the North Sea. This spectrum can be expressed as:

_(f B fp)2

S(f) = ag®f°(2m) " exp [—i (}f)_ ] wexplz‘ﬂfzgl (4.10)
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Figure 4.4 — Schematic representation of LHF wave tank. The z axis corresponds to the
cross-shore position, the wavemaker is located at x = 0 m, the shoreline is at x ~ 22
m. The y axis corresponds to the alongshore position. The circles represent wave gauge
locations.
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T
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Figure 4.5 — Definition of wave height H, using the zero down-crossing method. The line
represents the time-series of the water surface elevation. The wave is defined by two
consecutive zero down-crossing, shown by the squares. The wave height can also be
defined with a zero up-crossing method, between two consecutive circles. The horizontal
axis represents the averaged wave height elevation over the full time series.

where ¢ is the gravity acceleration, v = 3.3 is the peak enhancement coefficient, f,
is the peak frequency, o is the width of the spectrum base before (04 = 0.07) and
after (o5 = 0.09) the peak frequency, « is the scale factor and is associated with the
total spectrum energy, and related to the significant wave height H,,0. The spectrum
is defined in the frequency band [0.5f,,5f,].

The wave height is defined as explained in Figure 4.5, and can be defined with a
zero up-crossing or zero down crossing method. These two methods are equivalent if
the surface elevation is a Gaussian process. From the definition of the wave height, we

can define the mean wave height H over a sequence of N waves:

1 N

= ; H; (4.11)
where ¢ is the i-th wave in the sequence.

We can also define the root mean square of the wave height H,.,,s and the significant

wave height H, as:

Hyps = ( ZH2>1/2 (4.12)

N/3
H,=Hs; = N/3 Z H; (4.13)
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where 7 is the index of the waves ranked by their wave height, meaning that the
significant wave height depends on the highest waves only. H; /3 is the mean height of
the third of the highest waves. By assuming that the probability density function of
the wave height is a Rayleigh distribution, it is possible to obtain estimations for H,

H,s and Hg, using the zeroth-moment mq [Holthuijsen, 2007]:

H = /27my (4.14)

Hypns = V/8mg (4.15)
HS = Hmo = 4.004\/7’17,0 ~ 4\/m0 (416)

where .
mo= | Sy (Hdf = E{r’) (4.17)

with S, (f) the variance density spectrum.

In this case, the relation between the significant wave height H,,, and the root
mean square of the wave height is H,,, = 1.416H,.,.

In order to create an alongshore non-uniformity in the incoming waves, the wave
amplitude in the center of the wave crest is damped, resulting in alongshore variations
of the wave height H. This alongshore non-uniformity triggered a rip instability. To
obtain an estimation of the wave damping in each experiment, we used the three fixed
wave gauges at x = 5 m. The damping is then calculated as the difference in significant
wave height H,,, between the wave gauge located at y = 15 m, and the mean of the
two wave gauges located at y = 8.17 m, and y = 21.75 m.

The wave conditions were chosen considering a Dean number 2 in the intermediate
range. The Dean number (2p = H,,,/T,ws, where H,, is the significant wave height,
T, is the peak period, wy is the settling velocity) can be interpreted as the ratio between
the uplifting velocity of sediment particle by waves and the settling velocity w, of the
bed sediment. The Dean number is a macroscopic Rouse number. This number is used
to characterize different types of beaches (reflective, dissipative, intermediate, etc.).

Different wave conditions were tested during the experiment, as summarized in

Figure 4.6. These wave conditions can be classified in three categories:

e A) An energetic condition A: H,,, = 23 cm / T, = 2.3s/ Qp = 5, between
t=66:00 and t=100:40,

« B) moderate conditions with a longer period : H,,, =18 cm /T, =3.5s / Qp =
2.5, between t=9:40 and t=66:00,

 C) moderate conditions with a shorter period : H,,, =17 cm /T, =215 /Qp =
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Figure 4.6 — Upper panel: Significant wave height of the wave front H,,,; Middle panel:
peak period T),; Lower panel: wave damping at x = 5 m over the full duration of the
experiments.
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4, between t=4:00 and t=9:40.

The wave conditions at the beginning between 0:00 and 4:00 consisted of relatively
small waves (H,,0 = 11 cm) that served to smooth the bed and determine the best
positions for the measuring instruments.

In this chapter we focus on the moderate wave conditions with a larger period (B),
thus restraining the analysis to the period between t=9:40 and t=66:00, concerning
the bed evolution.

Bed evolution

The bed evolution is detailed and discussed in Michallet et al. [2013], we therefore
briefly comment the mobile bed evolution during the wave forcing considered.

As we focus on the B wave conditions, we look at the bed evolution between t=9:40
and t=66:00. We consider the initial beach at t=9:40, when the B wave forcing starts.
This original bathymetry is relatively uniform alongshore, with a bar at x ~ 13m. The
wave condition lasts for 50 hours, with a wave sequence of 20 minutes complying a
JONSWAP spectrum, repeated continuously. Every 20 minutes the sliding rail was
moved alongshore to gather data in the whole survey area.

There are two phenomena that explain the bathymetric evolution. The first one
consists in the wave non-uniformity alongshore, which creates rip channels and an
heterogeneity alongshore. The second one is related to the moderate wave conditions,
and consists in an onshore sediment transport (Figure 4.7). Therefore, during this
experiment, the beach never reached a quasi-steady state. The characteristic time of
this two phenomena are different, the accretion occurring at a longer time scale than
the alongshore non-uniformity.

The alongshore wave forcing non-uniformity results in an alongshore non-uniformity
in the bathymetry, and the formation of rip channels (Figure 4.8). At t=9:40 (Figure
4.7 a), we observe two slope change at * = 13 m and x = 22 m in the alongshore
averaged bathymetric profile, with three slopes well defined, one between x = 8 m and
x = 13 m another one between x = 13 m and z = 22 m and the third one for z > 22
m. At t=21:00 (Figures 4.7 b and 4.8 b), we observe an onshore migration of the
bar, as well as the formation of rip channels at y = 10 m and y = 25 m, and shallow
shoals. From t=31:20 onward, (Figures 4.7 ¢ and 4.8 c¢) we observe the filling of the
rip channels previously formed, as the accretion phase continues, until the end of the
wave condition, at t=66:00.

Choice of the bathymetry and the wave forcing

We want to observe the behaviour of the model for an heterogeneous bathymetry,

with a rip current. We then choose the bathymetry corresponding to experiment that
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Figure 4.7 — Alongshore averaged bathymetric profiles at different times. a) bathymetry at
t=9:40; b) bathymetry at t=21:00; c) bathymetry at t=31:20; d) bathymetry at t=40:00;
e) bathymetry at t=>51:40; f) bathymetry at t=59:40.
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Figure 4.8 — Bathymetry evolutions: bathymetric surveys at different times. The wave-
makers are at x=0. a) bathymetry at t=9:40; b) bathymetry at t=21:00; ¢) bathymetry
at t=31:20; d) bathymetry at t=40:00; e) bathymetry at t=51:40; f) bathymetry at
t=59:40.
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starts at t=21:00 with the largest alongshore non-uniformity. The conditions for this

experiment are presented in table 4.1.

starting time 21:00
ending time 26:00
T, (s) 3.5
H,o (cm) 18
Positions of the rail 15

Table 4.1 — Conditions for the numerical validation.

The bathymetry during this period is non-uniform alongshore, with 2 rip-channels
formed at y = 10 m and y = 25 m. The wave forcing is also moderate, but with a

larger period as explained in the previous subsection.

Measurements and model setup

Bathymetry

The beach morphology is measured by means of a laser mounted on a motorized
trolley, located on the sliding rail (Figure 4.4). The basin was emptied every night in
order to measure the bathymetry. The emptying was slow enough to prevent mobile
bed motion during this draining phase.

The resolution of the bathymetry data is of 1 mm vertically, and respectively 10 cm
and 1 cm in the alongshore and cross-shore direction. The complete basin bathymetry
could not be surveyed due to the configuration of the sliding rail, and the available
surveyed zone is restricted to the area 7.84 m < x < 22.84 m in the cross-shore
direction, and 3.12 m < y < 28.02 m in the alongshore direction.

The resulting bathymetry is made of 250 cross-shore profiles, each containing 1501
points.

As stated earlier, the bathymetric survey zone did not cover the entire area of the
basin, hence we need to extrapolate the bathymetry for the numerical model. We
extrapolate the bathymetry from the area 7.84 m < x < 22.84 m in the cross-shore
direction, 3.12 m < x < 28.02 m in the alongshore direction, to the area covered by
the wave basin, 0 m < z < 30 m in the cross-shore direction, 0 m < z < 30 m in the
alongshore direction.

We define the value z = —0.765 m as the position of the fixed bed at the wavemakers.
The position z = 0 m corresponds to the still water level in the experiment.

The following processing is applied in order to obtain the bathymetry used in the

numerical model:
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o the bathymetry is filtered from its extreme values, defined as the points where

the bed gradient is higher than a given threshold, and replaced by nearby values,

o the bathymetry is spatially smoothed, using a convolution with a 50 cm x 50 cm

mask, in order to remove the ripples,

e The zone between 0 m < x < 7.84 m in the cross-shore direction is extrapolated
by imposing a flat bottom located at z = —0.765 m for x < 5 m, and a linear
extrapolation between x = 5 m and x = 7.84 m, to reach the value z = —0.765 m

at x = 5 m.

o For z > 22.84 m, we estimate the mean slope in the portion 22.35 m < z <
22.84 m, and we extrapolate linearly with these slope in the portion 22.84 m <
r < 25.0 m

o The alongshore extrapolation considers the two bands 0 m < y < 3.12 m and
28.02 m < y < 30.0 m. For each lateral boundaries, we consider the mean
bed gradient in the 2 meters near the boundary, and consider these gradient to
extrapolate linearly a cross-shore profile. We then smooth the resulting profile,

and extrapolate linearly from the known profile to the smoothed profile.

The differences between the raw bathymetry and the smoothed one used as an input
for the model can be seen in Figure 4.9.

In the experiment, the bed is made of mobile sand and evolves in time with the
wave forcing that generates sediment transport. According to Michallet et al. [2013],
the bottom evolution velocity presents a peak of 1.5 cm/hr located at the rip neck in
the bathymetry at t=21:00, with values near 0.5 cm/hr elsewhere. As the numerical
simulations last for 20 minutes (unless stated otherwise), we then suppose that the bed
variations during each experiment are small enough to use a fixed bathymetry during
the numerical simulation.

Surface elevation

To access the water surface elevation, 18 high-accuracy capacitive gauges, designed
by Sogreah Consultants were used. The wave gauges are constituted of a conducting
wire, whose capacitance is related to the length of the immersed wire, that is converted
to a voltage. The acquisition frequency of the wave gauges is set to 50 Hz.

Three of these gauges were installed on a fixed position, at z = 5.01 m, y = 8.17
m, x = 5.03m, y = 15.0 m and = = 5.05 m, y = 21.75 m. These fixed gauges are

located 5 meters onshore from the wavemakers, and allow to observe that the forcing
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Figure 4.9 — Original bathymetry elevation (upper panel) and input bathymetry elevation
for the model (lower panel). The white dashed box represents the limits of the origi-

nal bathymetry. The isolines are set every 5 cm, the thick black line representing the
shoreline.
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wave condition remains similar between each run, where a run is defined as a 20 minute
sequence of a time-series complying a JONSWAP spectrum.

The remaining 15 wave gauges were fixed on the moving sliding rail at a constant
cross-shore distance from the wave maker. The sliding rail could move in the long-
shore direction, thus allowing to observe cross-shore and longshore profiles of surface

evolution. The cross-shore position of these wave gauges is presented in Table 4.2.

Wave gauge 4 5) 6 7 8 9 10 11
r (m) 7.300 | 8305 | 9.310 | 10.310 | 11.300 | 12.305 | 13.325 | 14.320
Wave gauge 12 13 14 15 16 17 18
z (m) 15.315 | 16.315 | 17.335 | 18.330 | 19.335 | 20.345 | 21.325

Table 4.2 — Cross-shore position of the wave gauges present on the sliding rail. The position
x = 0 m corresponds to the position of the wavemaker. The cross-shore position of these
wave gauges, the longshore position y is variable as the sliding rail changes position

Velocity

The Acoustic Doppler Velocimeter (ADV) provides the three components of the
velocity at a fixed elevation in the water column approximately located at 4-8 cm
above the bed for the different measurement positions. The measurement volume is
approximately of 1 cubic centimetre and the sampling frequency is set to 64 Hz.

During the experiment, 4 ADVs were used, three on the moving sliding rail, and
one at a fixed location (Table 4.3).

ADV 1 2 3 4
z (m) | 1028 | 850 | 13.00 | 14.71
y (m) 15 | variable | variable | variable

Table 4.3 — Position of the ADVs

Instrument positions

For these experiment, the instrument positions are shown in Figure 4.10. The
sliding rail position covers a wide area of the experiment for the chosen run, and the
fixed wave gauges are representative of the wave forcing, as the bed position between
x=0m and z = 5 m is constant.

Boundary conditions

The model boundary conditions are shown in Figure 4.11: the boundaries 2 (y = 0
m) and 3 (y = 30 m) correspond to closed boundaries, since the basin is closed. The

boundary 4 (z = 25 m) corresponds to a moving shoreline, with a dry/wet interface
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Figure 4.10 — Experiment 30 (¢t = 21 : 00 — 26 : 00) - position of the wave gauges and the
ADV. Circles: mobile wave gauges; diamond: fixed wave gauges; square: mobile ADVs;
Triangle: fixed ADV. The lines represent the isobaths, the thick line corresponds to
the shoreline where the free surface intersects the bathymetry.

[Marche et al., 2007]. The boundary 1 (z = 5 m) considers an absorption/generation
condition [Cienfuegos et al., 2007 ; Mignot et Cienfuegos, 2009].

For the wave height input, the wave height near the wavemaker was not available.
Therefore we considered the closest wave gauges to the wavemaker, three static wave
gauges located at 5 meters from the wavemaker, precisely at x =5 m, and y = 8.17 m,
y =15 m, y = 21.75 m respectively. The wave input at each node is then interpolated
alongshore using the three wave gauges, and assuming at y = 0 m and y = 30 m the
wave forcing are identical to the ones at y = 8.17 m and y = 21.75 m respectively. The
resulting wave forcing is shown in Figure 4.12.

The wave statistics at the three fixed wave gauges at x = 5 m varies little during
each run. For each run, we then consider the averaged wave forcing over all the 20-
minutes time-series in the numerical model.

Wave forcing

The wave forcing for the chosen experimental conditions is shown in Figure 4.12.
The wave forcing at the wave-maker is moderate: H,,g = 0.18 m, with a period T' = 3.5
s and the damping is of approximately 10 %.

We observe at * = 5 m that the wave energy alongshore variation is relatively
symmetric, the significant wave height H,,, being similar at 8.17 m and x = 21.75 m.
At © = 7.30 m the significant wave height alongshore variation is asymmetric, H,,g

being higher in the region 10 m < y < 15m than in the region 15 m < y < 20m.
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Figure 4.11 — Boundary conditions of the numerical model. The red crosses mark the
location of the wave gauges used for estimating the wave forcing input.
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Figure 4.12 — Alongshore variation in significant wave height H,,o of the experimental fixed
wave gauges at a distance x = 5 m from the wavemaker (squares), and of the mobile
wave gauge located at x = 7,30 m (dots). The thin line represents the wave forcing
input prescribed in the numerical model at x = 5m.

120



Chapter 4 CIRCULATION IN THE NEARSHORE ZONE

The asymmetry in the wave forcing is due to the bathymetry heterogeneity, as a
rip channel is formed that increases the circulation toward the band 0 m < y < 15m.
This feature can be seen using the mean circulation, as explained in section 4.4.3.

Concerning the incident wave condition, there is a difference between the exper-
imental data, and the numerical model. The absorption/generation condition is an
open boundary, and the wave basin is a closed one. The latter implies that reflection
at the wavemaker is not included in the numerical model, so that resonant conditions
due to the enclosed basin in the experiments will not be amplified in the simulations.
The influence of the wavemaker can be seen mostly in the resonant modes of the basin,
occurring at low frequencies in a frequency range below the JONSWAP range.

The wave basin resonant modes can be seen in Figure 4.13. We observe two peaks
at f =0.04 Hz (T = 25 s), and f = 0.08 Hz (T = 12.5 s), which can be considered
as the resonant modes of the wave basin. In the same Figure are shown the results of
the numerical model with and without high-pass filtering for the input. The numerical
results obtained with the wave input without filtering show a resonant mode amplifica-
tion for the low frequencies, with two peaks at f = 0.04 Hz (T'= 25 s) and f = 0.083
Hz (T = 12.05 s), however the same frequencies are three times more energetic than
the experimental results. If we look at the numerical model results with high-pass fil-
tering, we observe that the model is able to transfer energy to the low frequency band,
without the appearance of resonant mode amplification.

Following these results, we prefer to use a high-pass filter and not to force incident
wave conditions with infragravity energy. The infragravity band contains energy of
the wave basin modes, that are not reproduced in the model, due to the open absorp-
tion/generation condition that is not a resonant condition for the wave basin. The
model is able to transfer energy from the short-wave band to the low frequency band,
without resonant mode amplification. For that reason, we can obtain information on
the infragravity band generated by the model, without the disturbance of the basin
seiching modes.

We observe a difference in wave energy between the wave input and the wave gauges
at = 5 m in Figure 4.12. This difference is due to the wave forcing filtering, as the
energy in the Infragravity band is not taken into account. Resonant modes also named

seiching modes will be analysed in more details.

Theoretical seiching modes

As we intend to analyse low frequency motions in the wave basin, we need to determine

the wave basin seiching. Seiches occur on enclosed or partially enclosed bodies of
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Figure 4.13 — Free surface spectral density for experiment 30 (t=21:00-26:00), at x = 5 m,
y = 8.17 m. The grey line corresponds to the theoretical Jonswap spectrum (equation
4.10) which served as an input for the experiment, the black line to the experimental
free surface measured by the wave gauge, the dash-dotted line to the numerical model
with experimental results (black line) as input, the dashed line to the numerical model
with high-pass filtered input, with a cut-off frequency f, = 1.7 - 1072 Hz.

water. This body of water resonates to its natural frequencies when excited, allowing
the development of a standing wave.

The wave forcing in an enclosed basin produces seiches due to the wave reflection
and the wave grouping, allowing a transfer of wave energy to lower frequencies. It is
therefore important to estimate these natural frequencies, since they are amplified.

The MODLIT wave basin seiches are determined as explained in Haller et Dalrymple

[2001], using the two-dimensional shallow water equation for variable depth:

Nt — (ghN2 )z — (ghny>y =0 (4.18)

with 1 the water surface elevation, h the water depth, and subscripts representing

derivatives.
The details concerning seiching modes can be found in Appendix B. Table 4.4 lists
the periods of the waves corresponding to these modes. We observe that the main

seiche modes are located in the infragravity band.
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Table 4.4 — Period of the lowest frequency modes. m: cross-shore mode number, n: long-
shore mode number.

4.3 Model validation

4.3.1 Set up/Set down and wave height

To observe the differences between the numerical model and the experiment, we will
first focus on experiment 30, that starts at t=21:00 and finishes at t=26:00.We will
compare cross-shore distribution of flow characteristics along three cross-shore profiles,
that are close to the three fixed wave gauges in the alongshore position, at y = 8.17 m,
y =15 m, y = 21.75 m. Thus we can compare the mean values from x = 5 m, which
is the position of the first gauge, to x = 21.325 m, the cross-shore position of the last
wave gauge.

We will first look at the differences in wave height. To that end we use the mean
water level 77, and the mean wave trough H,,;, and wave crest H,,,, , averaged over
a period of 20 minutes. These levels are defined in Figure 4.14, — is defined as an
average over the waves, estimated with the zero down-crossing method, during 1200
seconds.

The results are shown in Figure 4.15, over three cross-shore profiles starting at x = 5
m from the wave maker, and finishing at x = 21.325 m, just offshore of the swash zone.
The numerical values of the mean water level 77 compare well with the experimental
values with errors lower than 0.01 m. Mean water level profiles show similar behaviour
to the other experiments [Michallet et al., 2011]. They all show a set-down followed
by a setup. In the numerical model, the mean water level is relatively constant until
x = 11 m, and then start to increase, results that are consistent with the linear theory,
that predicts a mean water level decrease before the breaking and an increase after
the breaking. The differences observed in the experimental results could be due to the

resonant modes, however the differences are small enough.

If we look at H,,;, and H,,,., we observe larger differences. The experimental results
show an increase in the wave crest level from 0.05 m to 0.10m, until approximately
x = 12 m, due to the wave shoaling, and after the breaking, the wave crest level

decreases, until reaching values of approximately 0.05 m above the still water level
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Figure 4.14 — Definition sketch of the wave height H, wave trough H,,;,, wave crest H,q.
and period T of one wave.

at x = 21.325 m, before the swash. The wave trough level remains constant in the
shoaling zone, with a value of approximately —0.05 m, and after the breaking, the
trough level increases, to reach a value of —0.02 m before the swash zone.

Concerning the numerical model results, the wave crest level remains nearly con-
stant at +0.06 m in the shoaling zone, instead of increasing. After the breaking, at
r ~ 13 m, the wave crest level decreases until a value of +0.03 m before the swash
zone. The wave trough level increases in the nearshore zone, and after the breaking, it
decreases from —0.06 m to —0.02 m.

The wave breaking index 75 = H/h where H is the averaged wave height and h
the water depth, is an important non-dimensional number. It is often used in wave
averaged models to predict the wave height evolution inside the surf zone [Bruneau
et al., 2011]. We observe that the spatial distribution of 75 in Figure 4.16 is similar in
the model and in the experiment, with the peak values in the breaking zone lower in
the numerical model, around 0.5 instead of 0.6 in the experiment. This difference is
also due to the absence of wave shoaling in the numerical model.

As stated before, there are some differences between the experiment and the nu-
merical model. This can be explained by the fact that the model does not account for
dispersive terms effects, hence the wave shoaling does not occur, and the wave crest
do not increase in the shoaling zone. Despite this difference, we observe that the wave
decrease gradient in the surf zone after the breaking is similar in the numerical model

and in the experiments. These gradients are important for the energy balance, the
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Figure 4.15 — Averaged wave height, over three cross-shore profiles for experiment 30
(t=21:00-26:00). The square correspond to the experimental results, the line to the
numerical model. The upper line and square refer to the mean wave crest H,,,;, the
middle line and squares refer to the mean water level 7, the lower line and squares refer
to the mean wave trough H,,;,. a) profile at y = 8.17 m, b) profile at y = 15 m, c)
profile at y = 21.75 m. The zero altitude corresponds to the still water level.

10 15

y (m)

Figure 4.16 — Spatial distribution of the wave breaking index 7 for experiment 30 (t=21:00
- 26:00). a) experimental results for experiment 30 (t=21:00-26:00); b) numerical sim-
ulation. Line are the isobaths (every 5 cm). Colours for 7p.
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Figure 4.17 — Asymmetry As at profiles a) y = 817 m , b) y = 15 m, ¢) y = 21.75 m
and Skewness Sk at profiles d) y = 817 m , e) y = 15 m, f) y = 21.75 m. Squares:
experimental results; plain line: numerical model.

wave dissipation and current generation.

4.3.2 Non-linearities

We can also compare the asymmetry, A, and skewness, S, cross-shore evolution in
Figure 4.17. The skewness and the asymmetry are key tools to analyse the nonlinear
characteristics of the waves. The skewness and the asymmetry of the free surface time

series are estimated using formula (4.19-4.20):

Skiz) = W (4.19)
As(z) = —%W;Q(g”’ D)y (4.20)

where 7(z,t) is the free surface time series, 7.,s = (7 — 77)rms the root mean square of
the free surface 7 , with the overbar denoting a time-average over the studied interval,
H(n) is the Hilbert transform of n and & the imaginary part.

The asymmetry increases slightly in the experiment, from 0.3 at x =5 m to 0.5 at
x = 9 m, then the increase is stronger, and As goes from 0.5 to 1.3 between x = 9 m

and x = 14 m, just after the breaking. After that, As decreases, and reaches values
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between 0.4 and 0.6 at z = 21 m.

The skewness in the experiment also increases steadily between x = 5 m and x = 15
m, from 0.5 to 1.3. After the breaking, Sk decreases in the three profiles, reaching values
between 0.6 and 0.8 at z = 21 m.

In the numerical model, As increases strongly from x = 5 m, with a similar gradient
as in the experiment, but not in the same cross-shore position. The maximum As is
higher than in the experiment, between 1.6 and 1.8 depending on the profile, and is
reached before, at x = 11 m. Then As decreases steadily, to reach values between 0.4
and 0.6 at x = 21 m.

The skewness decreases, to reach values close to 0.2 before the breaking at z = 11
m, and then varies from 0.2 to 0.6. The skewness is related to the wave shoaling and
the dispersive terms, and is not well reproduced by the model.

These differences can be explained by the discrepancies in the free surface elevation
time series between the simulation and the experimental data as shown for a cross-shore
profile, in Figure 4.18. The absence of dispersion terms in the numerical model lowers
the wave height peaks, and does not produce secondary peaks, which are responsible
for the decrease of the period as waves approach the coast. However wave fronts with
bores are relatively well simulated providing asymmetry estimations of better quality
than for the skewness.

4.3.3 Significant wave height

We validate the numerical model by checking the free surface elevation spectral prop-
erties. To that end, we compare the free surface spectra in a cross-shore profile, located
at the middle of the basin alongshore, at y = 15 m. The spectra were calculated over a
20 minute sequence, at a 50 Hz frequency for both the wave gauges and the numerical
data. The first spectrum (Figure 4.19 a), at a distance x = 5 m from the wavemaker,
corresponds to the absorption/generation boundary condition of the numerical model.
The spectrum indicates that the numerical model is able to reproduce the input wave
height in the frequency band between 0.15 Hz and 1 Hz. In the frequency band be-
low 0.15 Hz, the differences in peak frequencies have been explained by the numerical
boundary condition, where the reflection by the wavemaker is not included (see section
4.2.2).

The second spectrum (Figure 4.19 b), at a distance x = 10.31 m, shows a good
concordance in the frequency band between 0.15 Hz and 1 Hz, with some discrepancies
under 0.15 Hz. The spectrum at x = 15.31 m is located after the wave breaking,

and even though the frequency band around the peak frequency, between 0.15 Hz and
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Figure 4.18 — Free surface elevation time-series in a cross-shore profile at y = 10 m for
6 different wave gauges located at different cross-shore positions for experiment 30
(t=21:00-26:00). Experimental results (line) and numerical model (dashed line)
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Figure 4.19 — Free surface wave spectra Smnn of experimental wave gauges for experiment
30 (t=21:00-26:00) (grey line) and of the numerical model (black line) at distances (a)
x =5.0lm, (b) z = 10.31m, (¢) x = 15.31m,(d) = 20.34m, from the wavemaker. The
alongshore distance is y = 15m, at the center of the basin.
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Figure 4.20 — Wave height evolution for experiment 30 (t=21:00-26:00) in three cross-shore

profiles at a) y = 8.17m , b) y = 15 m, ¢) y = 21.75 m. Grey circle: experimental

significant wave height (Hy,0)esp estimated using the wave energy; plain line: modelled

significant wave height (H,0)mod-

0.4 Hz is well reproduced, over 0.4 Hz the numerical model shows more energy than
the wave measurements. The infragravity mode at 0.1 Hz is fairly well reproduced
by the model. The spectrum at x = 20.34 m is located near the shoreline, and the
peak frequency band of the numerical model is also concordant with the experimental
data. The numerical model reproduces energy transfer to the low frequencies near the
shoreline, even though the peaks are not well reproduced.

We can also compare the spectral significant wave height H,,, = 4,/myg, as this
measure is proportional to the square root of the integral of the wave height spectrum,
and is related to the energy dissipated by wave breaking. The cross-shore evolution of
the significant wave height in 3 cross-shore profiles is shown in Figure 4.20.

The experimental results show that in the shoaling zone, until x = 13 m, (Hn0)exp
remains constant in the y = 15 m and y = 21.75 m profiles, and increase in the y = 8.17
m profile. The significant wave height then decreases after the wave breaking, as the
dissipation occurs. In the first profile at y = 8.17 m, the wave height increases from
0.17 m, to 0.21 m at the breaking, and then decreases steadily to reach 0.12 m before
the swash zone. For the two other profiles, (H)ep remains constant, between 0.18
m and 0.19 m, and then decreases after the breaking.

The numerical model shows some similarities with a slight increase before the break-

ing for y = 15 m profile, and a constant wave height for the two other profiles, and then
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a decrease in wave height, reaching 0.08 m at = 21 m. The decrease in (H,0)mod
occurs at z ~ 11 m, before than in the experiment. The decrease in wave energy
corresponds to energy dissipation by wave breaking, and the observed gradient in the

spectral H,,q decrease is similar in both cases.

4.3.4 Velocities

The numerical model is also validated using velocity observations from ADVs. During
the experiment, 3 Acoustic Doppler Velocimeters mounted on the sliding rail, measured
the three components of the instantaneous velocities at a frequency of 64 Hz. The ADV
was located at a fixed elevation in the water column an therefore in average at roughly 5
cm from the bottom. The numerical model provides cross-shore and alongshore depth
averaged velocities, therefore we can only compare the experimental and numerical
velocities qualitatively, by assuming that the ADV is outside of the boundary layer
and its measurements are representative of depth-averaged velocities.

We compare the averaged cross-shore velocity %, the averaged longshore velocity ©
and the averaged velocity magnitude U over 1200 seconds in two alongshore profiles, at
a distance z = 13.09 m and = = 14.71 m of the wavemaker, where the wave breaking
has already occurred. We observe (Figure 4.21) that the numerical model reproduces
the velocity variations.

Concerning the cross-shore velocity @, the experiment shows a maximum off-shore
velocity located at approximately y = 9 m where the rip channel is located. For both
profiles, we observe almost null averaged cross-shore velocity between 0 m < y < 5 m,
and then a strong increase, to reach off-shore velocities of —0.15 m/s and —0.19 m/s
for the alongshore profiles at x = 13.09 m and =z = 14.71 m respectively. The velocity
magnitude decreases slowly, to near-zero values at y &~ 17 m for both profiles.

The numerical model also present low velocity intensities in the region 0 m < y <
5 m, and then a strong increase where the rip channel is located, with peak values
of —0.14 m/s and —0.16 m/s, for the two alongshore profiles. These peak values are
lower than the experimental one, however they are very close. The off-shore velocity
decreases also slowly, similar to the experiment, but with a positive peak, not present
in the experimental results.

The longshore averaged velocity T present lower peaks in the two profiles. For the
x = 13.09 m profile, T decreases from y = 0 m to y = 7 m, from 0 to —0.03 m/s,
then increases steadily until y = 15 m at 0.05 m/s, the decreases again. The numerical
model reproduces the same tendency with stronger peak values, —0.1 m/s at y = 7

m and 0.09 m/s at y = 15 m. For the z = 14.71 m profile, the longshore averaged
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velocities are low for both the experiment and the numerical model, with the same
tendencies in increasing and decreasing.

If we look at the averaged velocity magnitude U, with U defined as U = vu2 + v2,
the profiles are similar between the model and the experiment for the x = 13.09 m
profile. U is around 0.21 m/s at y = 0 m, then increases to reach values of 0.25 m/s at
y = 7 m in the experiment (0.28 m/s in the model) then decreases to a value of 0.19
m/s in the experiment at y = 10 m (0.17 m/s in the model). It then increases again
to reach a peak value at y = 15 m, of 0.22 m/s and 0.25 m/s in the experiment and
the model respectively. Between 15 m < y < 30 m, the velocity magnitude remain in
a band of 0.2 — 0.22 m/s.

For the x = 14.71 m profile, the velocity magnitude presents similar behaviour, al-
though the peak velocity at y = 9 m is under-estimated in the model as the experiment
reaches a value of 0.27 m/s and the model a value of 0.23 m/s.

From these alongshore averaged profiles, we can conclude that there is reasonable
qualitative agreement between measured and modelled results, concerning the averaged

velocities over 1200 seconds.

4.3.5 Model skill
Definition of the model skill

The numerical model will be compared to the experimental results using the model

skill oy, from [Gallagher et al., 1998]. This parameter is defined as:

\/ iijl\](QC,z - Qm,i)2

op=1-— (4.21)

with the subscripts ¢ and m corresponding to computed and measured quantities re-
spectively, evaluated at all observed instances i. Here the variable () is replaced by
Nrms, OF Upms, With 1 the free surface, U = Vu? + 02 the velocity magnitude and u, v
the cross-shore and longshore velocities respectively.

The model skill is estimated from spectral density distribution on a specific fre-
quency band. MacMahan et al. [2004] defined an infragravity band with a low-
frequency cut-off at 0.004 Hz and a high-frequency cut-off at 0.04 Hz, and a sea/swell
band, with a low cut-off frequency at 0.04 Hz, and a high cut-off frequency at 0.35 Hz.

As there is a 1/3 time-scaling factor for the Froude similarity, we need to multiply
these cut-off frequencies by 3. However, if we look at the free surface spectra at

x =5m,y = 817 m (Figure 4.13), we observe that the infragravity band in the
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Figure 4.21 — Time-averaged cross-shore velocity @, longshore velocity ¥ and velocity mag-
nitude U over two alongshore profiles for experiment 30. Left panels: alongshore profile
at z = 13.09 m; Right panels: alongshore profile at x = 14.71 m. The negative cross-
shore velocity represents a seaward oriented velocity, the negative longshore velocity

represents velocity towards y = Om.
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experiment has a high frequency cut-off of 0.17 Hz, which is the frequency chosen to
be the cut-off frequency between Infra-Gravity and sea/swell. The frequency limits

between the different bands are then defined for the experiment as:

o the limit between the Very Low Frequency band and the InfraGravity band is
f.0 = 0.012 Hz,

o the limit between the Infragravity band and the sea/swell band is f; = 0.17 Hz,
e the upper limit for the sea/swell band is f.o = 1.05 Hz.

The root mean squared values on these bands is then defined as:

fc2

Qrms hi = /f ) Soo(f) df (4.22)
fcl

Qrms,lo:/fo SQQ(f) df (423)
ch

Qrms,tot = /fo SQQ(f) df (424)

where ) and Eq are replaced by the free-surface n or the velocity magnitude U and
the free-surface spectral energy £, or the velocity magnitude spectral energy Fy re-
spectively.

Concerning the mobile wave gauges located on the sliding rail, most of the time,
we only possess one occurrence of the time-series at a specific location, however the
cross-shore distance to the wavemaker remains the same. Therefore, we define a skill

function oy, for each wave gauge:

NT’U/’I
Z:l ((nrms,hi>c,z’,j - (nrms,hi)m,i,j)2
Orani(i) =1 — | F————p— i€[l:N,] (4.25)
Z (nrms,hi)?—nﬂ‘,j
7j=1

Where N,., represents the number of repetition of the 20 minute sequence in each
experiment and N, the number of mobile gauges on the sliding rail. We define the
model skill for the other frequency band oy, 1, and oy, 10 in a similar way.

The skill 7, 7; is then defined as an average of the differences between the model

and the experiment of all the mobile gauges oy, (i, j):

1 Y ,
Tknhi = N~ > Okani(d) (4.26)

g j=1
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Using the same considerations, we define skills for the ADVs on the mobile rail:

Nryn
: ((Urms,hi)c,i,j - (Urms,hz’)m,i,j)Q
orupili) =1— | iel:N,] (4.27)
) (Urms,hi)?—mz‘J
7=1
L
TiUhi = 5 > okuni(d) (4.28)

g j=1

Model skill cross-shore evolution

The model skill for the cross-shore evolution of the free surface displacement is plotted
in Figure 4.22. We do not use the fixed gauges at x = 5 m, as they are located in the
open boundary, and the last gauge at x = 21.325 m as it is close to the swash zone.

For the sea/swell band, we observe that the model skill oy, 5; is high from =7
m to x = 11 m, around 0.9, and then decreases, until reaching a value of around 0.65
between x = 13 m and = = 20 m. This is explained by the difference in the position
of wave breaking between the model and the experiment; before the breaking, the
model is consistent with the experimental results, and after the wave breaking the skill
decreases, but remains acceptable, of the same order of magnitude as [Reniers et al.,
2006b].

Concerning the Infragravity band, the model skill oy, is low before the breaking,
with values between 0.5 and 0.6 before x = 12 m and then after the breaking increases
to reach values of 0.75 between x = 14 m and x = 21 m. The low model skill is
explained by the wave forcing filtering, as mentioned earlier, as the model does not
reproduce the wave basin seiching modes, which are present in the infragravity band.
However, the energy in the infragravity band is well reproduced by the model after the
breaking. One of the possible reasons could be the natural modes correctly simulated
that exist between the wave breaking and the surf zone (see section B.2).

The total model skill oy, 1o is consistent with the sea/swell model skill oy, 5, as
the majority of the energy is contained in this frequency band.

The averaged free surface model skill is 0,0t = 0.81 consistent with the model
skill reported by Reniers et al. [2006b]. Concerning the velocity model skill oy, 17, since
there is only three mobile ADV (Figure 4.10), cross-shore skill profiles make little sense.
Nonetheless velocity measurements where shown to be close the simulations in Figure
4.21. The velocity model skill is quantified by the computation of the averaged skill

which is 7 0t = 0.74. This gives confidence in the model capabilities to capture the
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Figure 4.22 — Model skill for free surface and velocity, for the experiment 30. o%.a) Cross-
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overall kinetic energy distribution which is closely related to the average circulation.

4.4 Results

4.4.1 free surface spectral profile

We look at the free surface spectral profiles, in two cross-shore profiles at ¥y = 6 m and
y = 10 m, and an alongshore profile at + = 16 m for experiment 30 (t=21:00-26:00)
(Figure 4.23). The cross-shore profile at y = 6 m is passes through the rip current
recirculation cell center at x = 16 m, y = 6 m. The cross-shore profile at y = 10 m is
located near the center of the rip current channel, between the two recirculation cells.
The alongshore profile passes through the two recirculation cell centres, at x = 16 m,
y=6mand r =16 m, y = 15 m.

Using this spectral profiles we intend to observe the differences in free surface and
velocity in the recirculation cells and in the rip channel.

For that reason we perform a simulation of 1,200 s, forcing the offshore boundary
with the measured free surface time series (at = 5 m) and the interpolation procedure
already described. Model results are compared with free surface time series measured

by wave gauges, and velocity values recorded with ADVs.
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Figure 4.23 — Time averaged circulation (arrows) and vorticity (color) for experiment 30
(t=21:00-26:00), using a JONSWAP wave forcing. The dashed lines represents the two
cross-shore profiles at y = 6 m and y = 10 m, and the alongshore profile at * = 16 m
used to observe spectral evolution. The black lines represent the isobaths of the bottom
with a line every 5 cm.

Alongshore profile

In the longshore spectral distribution of Figure 4.24, we observe that the signature of
the JONSWAP spectrum is present in all the positions of the profile, in good agreement
with experimental data. We also observe a trough in the spectrum at y = 15 m, at
a frequency of 0.055 Hz (T = 18.2 s), and three bumps alongshore, at a frequency of
0.125 Hz (T ~ 8 s). The numerical model succeeds in reproducing these features. We
observe that the longshore distribution of the free surface spectra is relatively homo-
geneous, which indicates that the hypothesis for the theoretical seiching modes that
the bathymetry is alongshore uniform is not far from the numerical and experimen-
tal results. In the numerical model, we observe more energy for lower frequencies for
f < 2-1072 Hz, that does not appear in the experiment.

Cross-shore profile

Concerning the cross-shore spectral distribution of Figure 4.25, the experimental results
show clearly the basin cross-shore seiching, with a fundamental mode at frequency 0.04
Hz (T = 25 Hz), lying in the infra-gravity band. This mode does not appear in the
numerical model results since an absorbing/generating boundary condition is employed
offshore, but overall the spectral distribution is similar in the experiment and in the

numerical results. We also observe both, in the data and the model, a modal structure
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Figure 4.24 — Free surface longshore spectral distribution in m?2.Hz™!, at © = 16 m. Left
panel: Experimental spectral distribution; Right panel: numerical model spectral dis-
tribution. The dashed lines represent the frequency limits between the VLF, IG and
JONSWAP bands (f.o = 1.2¢ — 2 Hz, fi = 1.7e — 1 Hz, f.o = 1.05 Hz).

at a frequency of 0.07 Hz (7" ~ 14.3 s). This quasi-standing mode is confined between
x = 12 m (the breaking point) and the shoreline. It exhibits anti-nodes at the breaking
point and the shoreline and a node at x = 18 m. It might correspond to a quasi-
standing long-wave oscillating between the breaking point and the shoreline.

If we look at the cross-shore velocity spectral distribution (see Figure 4.26), we
observe that the some part of the energy is contained in the infragravity band and the
VLF band for both profiles. For the y = 6 m profile, we observe two peaks in the
infragravity band, one at x = 16 m at the center of the recirculation cell, and one at
x = 11 m, in the breaking zone. The energy is contained mainly in frequencies below
0.07 Hz (T > 14.3 s), and some energy is contained in the JONSWAP frequency band
at a frequency of 0.29 Hz (7' = 3.5 s).

For the y = 10 m profile, we also identify two peaks in the infragravity band, one
at x = 11 m corresponding to the wave breaking, and another one at x = 14 m, in the
head of the rip current. In the JONSWAP band, the energy is one order of magnitude
lower than in the y = 6 m profile, probably due to the strong signature of the rip
current. There is energy present in the VLF band, but we require simulations with a

longer duration to obtain more information at these frequencies.

Main seiching modes

From the study of the seiching modes, we can conclude that although the model does

not reproduce well the basin seiching modes, excepting the main longshore mode, due
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Figure 4.25 — Free surface cross-shore spectral distribution in m?.Hz™!, at y = 6 m. Upper
panel: Experimental spectral distribution; Lower panel:model spectral distribution.
The dashed lines represent the frequency limits between the VLF, IG and JONSWAP
bands (f.o = 1.2e — 2 Hz, fog = 1.7e — 1 Hz, f.o = 1.05 Hz).
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Figure 4.26 — Cross-shore velocity spectral distribution in a cross-shore profile. Upper
panel: model spectral distribution at y = 6 m. Lower panel: model spectral distri-
bution at y = 10 m. The dashed lines represent the frequency limits between the VLF,
IG and JONSWAP bands (f. = 1.2¢ — 2 Hz, foq = 1.7e — 1 Hz, foo = 1.05 Hz).
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to the open boundary condition at x = 5 m, we still observe some seiching modes
resonating between the shoreline and the breaking point, explaining the presence of
energy in the infragravity band. We can observe some of these seiching modes by
looking at the free surface spectral profiles, in the previous section. This could be the
reason why the numerical model shows some modal structure, even though there is an
open boundary condition at x = 5 m.

For further details on seiching modes, the reader is referred to Appendix B.

4.4.2 Spectral maps

To understand the spatial distribution of the different spectral range motions, we com-
pute the energy content of free surface displacements, velocities and vorticity. The vor-
ticity is related to kinetic energy of these motions. We focus on the infragravity in the
band 0.012 Hz < f < 0.17 Hz and the JONSWAP in the band 0.17 Hz < f < 1.05 Hz,
as these band contain the most part of the energy. The values of 0,), Uyp,s and wy,s in

each spectral range (Figure 4.27) are estimated as follows:

ov=| | Sulf)dr (4.20)
band

Unms = | [ Svu(f)df (4.30)
band

Trms = /Sqq(f)df (4.31)
band

where S, is the power density spectrum of the free surface displacements, Sy, and
Sww are the power density spectra of the cross-shore and alongshore velocity respectively,
Sqq is the power density spectrum of the vorticity ¢ and f is the frequency. We also
estimate the total o, = mg and U,,,s, and obtain a spatial map of the total energy
content in this variables (Figures 4.27).

In the energy map of the free surface displacements restricted to the JONSWAP
band o, (Figure 4.27 a) and b)) we observe the wave damping in the middle, at + =5
m and y = 15 m. At x ~ 12 m the differential breaking produced by the bathymetry
combined with the wave forcing is clearly evidenced as the gradients have different
cross-shore positions alongshore. This is the source of the vortices generation, that
will be explained in detail in the next Chapter. The infragravity band motion shows
a spatial structure of U,.,,s with higher amplitudes at the horns of the shore-attached

bars located near x = 18 — 19 m. This could be explained by wave amplification over
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Figure 4.27 — Spectral maps of 0y, Upps and grpms obtained with equations 4.29, 4.30 and
4.31 respectively. a), c), e): respectively oy, Upms and g¢pm. integrated in the JONSWAP
high-frequency spectrum range . b), d), f): respectively o,, Hyms and ¢pms integrated
in the InfraGravity range.
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the shoal, since at the same location U, is also maximum (Figure 4.27 ¢) and d)).
The U,.,,s maps are plotted in Figure 4.27 ¢) and d). The shoaling of the waves is
evidenced in the JONSWAP U,.,,.; map where U,.,, is the strongest near the breaking
point. There are peaks near the breaking point, at ¥y = 10 m and y = 27 m. The
peaks at y = 10 m and y = 27 m correspond to strong off-shore averaged velocities, as
evidenced by the mean circulation in Figure 4.23. We also observe two peaks at (z = 18
m, y =3m)and (x = 18 m, y = 19 m), located at the horns. In the Infragravity band,
we also observe peaks at the horns, and a band of energy between 8 m < x < 11 m.
In the ¢ms maps (Figure 4.27 e) and f)), we observe localized peaks, both in the
JONSWAP band and in the infragravity band. In the JONSWAP band, there is one
peak at x = 13 m, y = 9 m, and another at z = 19 m, y = 25 m. In the infragravity
band, we observe two strong peaks, one located at x = 13 m, y = 9 m, and another
located at x = 15 m, y = 16 m. These two peaks correspond to the maximum vorticity

in the two recirculation cells of the rip current located at y = 10 m.

4.4.3 Averaged circulation

During the LHF experiment, rip currents characteristics were investigated with the use
of drifters measurements [Castelle et al., 2010]. Those drifters consisted in balloons
filled with water, of diameter 5-10 ¢m deployed in the surf zone during the different
runs, that lasted between 30 and 60 minutes which is a smaller time period than the
morphological time scales of few hours. It can therefore be assumed that the measured
drifter pattern is associated with a given bathymetry.

A shore-mounted video-camera was used to track the drifters during the wave forc-
ing (see Figure 4.28). The images obtained were then rectified to obtain the Cartesian
coordinates of the drifters. The drifters motions were obtained by a semi-automatic
method, by pointing manually the drifter position every 6 seconds on the video records.

Cross-shore and alongshore drifter velocities were estimated from a linear interpo-
lation in position and time of each sequential position of the drifter at a 1 s time step
over a 30 s duration.

The mean currents were estimated at eight different moments, therefore with eight
different bathymetries, shown in table 4.5. The mean flow patterns of the lagrangian
estimation using the drifters and the numerical model, as well as the estimated and
modelled vorticity can be seen in Figure 4.29 and Figure 4.30.

For the lagrangian drifters, the vorticity is estimated from the curl of the mean flow
velocity, and computed discretely with a weighted central difference scheme detailed

in [MacMahan et al., 2010]. For the numerical model, the vorticity is also estimated
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Figure 4.28 — Sample of captured video images with drifters (from Castelle et al. [2010]).

Simulation time
27 15:40-18:00
30 21:00-26:00
31 26:00-31:20
33 31:20-37:20
36 40:00-45:40
37 45:40-51:40
38 51:40-59:40
41 59:40-66:00

Table 4.5 — Experiments considered for the estimation of the circulation with the drifters.

from the mean flow velocity, using a 4th order centered difference scheme to compute
the curl of the velocity.

For experiments 27-30-31-33 (Figure 4.29), we observe a strong rip current at the
alongshore position y = 10 m, with strong offshore currents exceeding 0.1 m/s. A
smaller rip is positioned on the far right of the basin at an alongshore position of
roughly y = 25 m. The two recirculation cells of the rip current at y = 10 m reach
their maximum area for the experiments 30 and 31, with strong vorticity values and
then start to decrease.

The vorticity estimated from the lagrangian drifters is fairly well reproduced by
the numerical model. For experiment 27 (Figure 4.29 a) and b)) we observe a patch of
negative vorticity at x = 17 m, y = 10 m, that is reproduced by the model. At this time,
we observe that the recirculation cells are starting to develop near the breaking zone,

but they do not reach the shoreline yet, as the vortices are found in the area 11 m <
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x < 17 m. For experiments 30, 31 and 33 (Figure 4.29 c-h)), the two recirculation
cells of the rip channel at y = 10 m are well reproduced, both in terms of area and
magnitude. Noteworthy, for experiment 33 (Figure 4.29 g-h)) the weaker dipole located
at y = 22 m shown by the lagrangian drifters is also visible in the same region in the
numerical model.

For experiments 36-37-38-41 (Figure 4.30), we observe a decrease in the vorticity
field for the rip current located at y = 10 m, as the rip channel is filled by the accretion
process due to the wave forcing. We start to observe an onshore jet, at y = 18 m, as
two rip currents are about the same strength, at ¥y = 10 m and y = 23 m. The rip
channels were initiated by the wave forcing damping, and enhanced by the currents.
However, at a much larger scale we observe that the beach is not in equilibrium with
the wave forcing, causing this accretion phenomenon.

Looking at the vorticity, we still observe the two recirculation cells, but with reduced
occupied area. For experiment 37 (Figure 4.30 c-d)) the secondary dipole at y = 25 m
is also visible in the numerical model.

The qualitative agreement between the numerical model and the flow patterns de-
termined with the drifters is quite good, as it shows similar positions for the rip cur-
rents, and the recirculation cells. The comparison of the vorticity also shows a similar
structure, both in spatial distribution and in magnitude, giving confidence in using the

numerical model to investigate the vorticity and circulation in the nearshore zone.
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Figure 4.29 — Mean circulation: time averaged velocity magnitude over 3600 s (experiment)
and 1200 s (model), and time averaged vorticity. Left panels (a-c-e-g): experimental
results [Castelle et al., 2010]; Right panels (b-d-f-h): numerical model; a-b)experiment
27 (t = 15 : 40); c-d)experiment 30 (¢ = 21 : 00); e-f) experiment 31 (¢ = 26 : 00); g-h)
experiment 33 (t = 31 : 20). The blue line in a) represents a net velocity of 0.2 m/s.

Colours are for vorticity, units in s™7.
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Figure 4.30 — Mean circulation: time averaged velocity magnitude over 3600 s (experiment)
and 1200 s (model), and time averaged vorticity. Left panels (a-c-e-g): experimental
results [Castelle et al., 2010]; Right panels (b-d-f-h): numerical model; a-b)experiment
36 (t =44 : 40); c-d)experiment 37 (¢ = 50 : 40); e-f) experiment 38 (¢ = 58 : 40); g-h)
experiment 41 (¢ = 65 : 00). The blue line in a) represents a net velocity of 0.2 m/s.

Colours are for vorticity, units in s~1.
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4.5 Conclusion

The model hydrodynamics have been validated with a wide set of data, of free surface
and velocity evolution. The model is able to reproduce the energy dissipation gradients
related to wave breaking, as well as the energy transfer from the JONSWAP band to
the infragravity band. These energy dissipation gradients are an important proxy for
vorticity generation [Brocchini et al., 2004 ; Bonneton et al., 2010] . The numerical
model is also accurate in estimating the nearshore circulation and vorticity associated,
compared to the lagrangian drifters [Castelle et al., 2010]. The model also reproduces
some of the seiching modes that occur between the breaking point and the shoreline.
In the next chapter, we start from the equations of the potential vorticity in the
nearshore zone, and then observe the spatial evolution of the different terms of these
equation. We then try to observe the time evolution of enstrophy related to vorticity

in the nearshore zone.
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Chapter 5

Mean circulation and vorticity

dynamics in the nearshore zone.

5.1 Introduction

The circulation and vorticity are important in the nearshore region, as it they influence
the evolution of the dispersion and mixing in this region, as well as the transport of
sediment. These processes are important in several aspects of the nearshore zone man-
agement, for example in terms of pollution, benthic life, and tourism. The knowledge
of this circulation is thus primordial if we want to predict the beaches evolution due

to sediment transport or the contamination of the nearshore due to one pollutant.

In the nearshore and surf zone the horizontal scales are larger than the vertical
scales, hence the vorticity possesses some similarities with 2D turbulent fluid [Chavanis
et Sommeria, 2002]. The vorticity ¢, considered as a pseudo-scalar in 2D flows, can be
defined as the rotation or curl of the vertically integrated averaged horizontal velocity

field: 5 9
q=£—£ (5.1)
In a 2D flow, the energy that is injected at a specific length scale cascades to other
length scales, either by vortex merging which creates vortices of larger length scale, or
by inviscid processes that transfer energy from vortex to vortex of lower dimensions.
The latter energy cascade called the inverse-energy cascade with an energy spectrum
slope E ~ k~%/3 is the classic transfer cascade. The former is the enstrophy cascade,
with an energy slope F ~ k=3 [Kraichnan et Montgomery, 1980].
Using Lagrangian drifter dispersion analysis, both numerically and experimentally,

Spydell et Feddersen [2009] showed that the circulation nearshore under directionally
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spread and normally incident waves is similar to a 2D turbulent flow field. Furthermore,
by separating the rotational from the irrotational part they observed that the dispersion
is mainly due to the rotational part. They also show that, similarly to 2D turbulence
flow field, the vorticity is generated at a single length scale (approximately 10-20 m)
and then cascade to other length scales, an enstrophy cascade for 5-10 m length scales,
and an inverse energy cascade for 20-100 m length scales.

To study the nearshore circulation, we have access to experimental data, and nu-
merical modelling. The experimental data is of great interest, however the nearshore
zone can be at times highly energetic, complicating the data extraction. Furthermore,
these data are most of the time limited to a few positions in space and time, which
makes it difficult to understand the overall dynamic. To study the nearshore circula-
tion, in addition to eulerian data, that is available on fixed points, the use of lagrangian
data by the means of drifters has been taking importance [Castelle et al., 2010 ; Reniers
et al., 2006a ; Spydell et Feddersen, 2009 ; MacMahan et al., 2010]. However even using
the eulerian and lagrangian observations, it is difficult to obtain instantaneous data of
the whole field. For this reason, numerical modelling of the nearshore zone has been
increasingly used to understand the evolution of the circulation.

The numerical modelling is an idealization of the physics that occurs in the nearshore
zone, however some set of equations allow for a fairly good representation of the phe-
nomenons, for example with the Boussinesq equations [Wei et Kirby, 1995] or the
Non-linear Shallow Water Equations (N.S.W.E.) [Marche et al., 2007].

There are two identified mechanisms for the generation of circulation and vorticity
in the nearshore zone, that is caused by inhomogeneities either in the wave forcing or in
the bathymetry, for normal incident or oblique wave forcing. [Peregrine, 1998]. Bruneau
et al. [2011] observed that for topography controlled circulation, the spatial gradients
in the breaking wave energy dissipation are the major source of vorticity generation.
Buhler et Jacobson [2001] also observed that the mean vorticity generation is due to a
dissipative force induced by non-uniform or differential wave breaking.

Bonneton et al. [2010] obtained from the vertically-integrated and time-averaged
momentum equations an expression for the vorticity forcing term, that depends on the
energy dissipation by wave breaking and the direction of the wave rays. This forcing
term appears when the energy dissipation due to wave breaking is non-collinear with
the wave rays, producing vorticity locally.

This vorticity forcing term generates vorticity locally near the wave breaking that
is advected by the circulation induced by the bathymetry, and merge into large scale
dipoles to create a rip current. The motion of this dipole is then dictated by mutual

advection and self-advection due to the sloping topography [Buhler et Jacobson, 2001]

150



Chapter 5 NEARSHORE MEAN CIRCULATION AND VORTICITY DYNAMICS

The bottom dissipation by friction in the nearshore zone is also an important mecha-
nism, one of the main sink of vorticity [Bowen, 1969]. However, the life span of a vortex
group is not dictated by the friction but is the result of the sequence of the passing
wave group, which increase or decrease the vortices, depending on their direction of
propagation [Long et Ozkan-Haller, 2009].

The friction term also dictates the stability of the rip current. Yu [2006] observed
that the instability of the rip current is related to the rate of vorticity generation and
the rate of dissipation by bottom friction. Using a pseudospectral 2D Navier-Stokes
solver Geiman et Kirby [2013] showed that the frequency oscillations of an out of
equilibrium asymmetric vortex dipole on a plane beach are related to a frictional time
scale and an advective time scale.

In this chapter, we focus on understanding the mechanisms of generation, sustain-
ability and decay of vorticity in the nearshore zone, using the model from Marche et al.
[2007] and improved by Guerra et al. [2014] alongside with the exact formulation for
the vorticity production by Bonneton et al. [2010]. The equations of Bonneton et al.
[2010] are also used as a diagnostic tool to study the potential vorticity balance from
the numerical results.

The numerical shallow water model is first used to understand vorticity generation
and dynamics in the conditions of the MODLIT experiment [Michallet et al., 2010
2013], then with monochromatic wave forcing, to analyse the influence of the friction
coefficient and the period of the waves and the spatial variation of the potential vorticity
balance terms. Using a scaling law, we find an equilibrium between the vorticity
advection and the vorticity production with a monochromatic wave forcing. Finally,
the wave groupiness role on the vorticity dynamics and spatial variation is investigated

using a bichromatic wave forcing.

5.2 Diagnosis equations

5.2.1 Vorticity equation
Definitions

To understand the dynamics of the vorticity in the nearshore zone, we first need to
define the variables involved. The definition of the variables in the surf zone in Figure
5.1 shows the space variables. The axis = represent the cross-shore direction, the axis
y the longshore direction, and the axis z the vertical direction. The bottom b(x,y) is

the interface between the water and the sediment, and is supposed here fixed in time.
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—b(l‘, y)

Figure 5.1 — Definition sketch of the surf zone

7 represents the free surface displacement, and h = n — b represents the water depth.
Concerning the velocity fluctuations, we need to define spatial variables and inte-

grated variables over the water depth. The spatial velocities are defined with a subscript

"o,

o't ug(x,y, 2, t), vo(z,y, 2,t), wo(x,y,2,t). The integrated variables over depth h are
defined as u(z,y,t), v(x,y,t). The velocity vectors associated are ug = [ug, vg, wp| and
u = [u,v] = [Ju| cos @, |u|sin 0], with 6 the direction of the wave propagation.

The time averaging need also to be defined, as we use different kinds of time aver-
aging:

 the time averaging over one wave period 7T is defined as:

Q:;[”Qm- (5.2)

Using this time averaging, we can deduce for each variable a steady and fluctu-

ating part, for example:
n=n+n (5.3)
where 17 = 0.

o the time-averaging over ng periods is defined as:
1 t+noT d 5 4
< Sp=—— . .
=) Odr (5.4)

» the time-averaging over a time period t; is defined as:

1 t+1t1
<. >t:t1: ?/t () dr (55)
1
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o the time-averaging over the duration of one simulation, typically 1200 seconds,

is defined as:

1 £=1200 4 “ 6
L= . .
TR0 S U (5.6)
The spatial averaging is defined as:
L™ ") ded 5.7
< Sp= —— . .
Y LxLy - /yl ( ) T ay ( )

where x1,x5 and v,y are respectively the cross-shore and longshore boundaries, and

LI:SL’Q—Z'l,Ly:yQ—yl.

Conservation of mass

Drawing upon Bonneton et al. [2010] analysis, we start from the conversation of mass

in an incompressible fluid:

8u0 8110 8w0

M i T P

=0 (5.8)

The kinematic boundary conditions at the free surface  and the bottom b are defined

as:

on on on

a—i—uoa—i—voa—y—woz() at z=mn (5.9)
Ob ob
uoa—x+vga—y+wo =0 at 2= —b (5.10)

We now integrate equation 5.8 over water depth and time-average over one period:
7
V-/ wp dz =0 (5.11)
—b
The horizontal terms of this equation are split into a mean part and fluctuating part:

g [m 0 7 7
%/buo dz:ax</bu0dz—l—/ U dz) (5.12)
- - 7

The first term of this equation is the mean current continuity, and assuming that the

horizontal velocity is depth uniform, we obtain:

o [m__ - 0u
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The second term of equation 5.12 is the net wave momentum and represents the Stokes
transport induced by waves. By using a Taylor expansion from the mean surface 7, we
obtain an estimation of this term:

/n wo dz ~ 7 (5.14)

n

For the vertical velocity, the integration and time-averaging gives:

_ ["Owo —_on . on on _ 0b b
02/ wo dz = /b g, 2= [l = Gy g+ g — g — g
on
a—i—u Vh
_ oh

We finally obtain the equation for mass conservation, integrated over water depth and

time-averaged over one period:
— +u-Vh=-V-M (5.16)

where M = [7j@, 7j@i] is the wave mass-induced flux also called Stokes drift.

Vorticity equation

To obtain the vorticity equation, we start from the Nonlinear Shallow Water Equations
with friction and bed slope source term used by the model SURF-WB, in its dimensional
form (equations 5.17 - 5.18 - 5.19) :

o, 0 )
5 7, () + a*y(f”’) =0 (5.17)
ou ou ou oh ob 1
ot o ey T T o nh (5:18)
ov ov ov oh ob 1
ot o oy 99y = 98y T noh (>19)

Using the Lorentz linearisation of Mei [1989], the friction source term Sg¢ =[Sy, , Sy, |

can be defined as:

1 8
ESf ] ?gurmsu ~ C;qurmsu ~ /Bu (520)
The variable § = urms is the linearised friction coefficient, wu,,,, is called the orbital
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velocity due to the wave component of the motion, and is defined as:

Upms = \ U2 + 02 (5.21)

We now time-average equation 5.18 over one period T:

! /t+T E)u /t—',-T . @ i /t+T . @ i /t-',-T 8h

T 9b 1 t+T 1
- - 29
T Al A A (5-22)

In the inner surf zone, the broken-wave solution can be approximated by represent-
ing wave fronts as a discontinuity [Bonneton, 2007]. This discontinuity satisfies the

jump conditions, with the conservation of the mass and momentum across the shock:

— eofh] + [ =0 (5.23)
_ e[ + [hu? + ;ghQ] —0 (5.24)

where the brackets [] indicate a jump in the quantity, ¢, = [¢, cos 8, ¢, sin 6] is the shock
velocity, 6 is the angle of the propagation of the wave front with # = 0 defined as the
normal direction to the shoreline.

We obtain the following equation for the time-averaged vorticity originally derived
by Bonneton et al. [2010]:

dq

i u-Vg=V x (Dey)-e,— V- (qu)— Bq (5.25)

where D is determined using shock conditions.

5.2.2 Potential vorticity equation

The potential vorticity ¢ defined by ¢ = ¢/h is a quantity that is conserved along a
streamline, in absence of friction. Therefore, as a vortex moves offshore into deeper
water, the vorticity increases, but the area of the vortex decreases, because the potential
vorticity is conserved. The potential vorticity has been widely used to describe the
evolution of the circulation in the nearshore [Arthur, 1962 ; Peregrine, 1998 ; Buhler
et Jacobson, 2001 ; Johnson et Pattiaratchi, 2006 ; Long et Ozkan-Haller, 2009].

The averaged potential vorticity equation is obtained, by multiplying equation
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(5.16) by (q/h?), equation (5.25) by (1/h) and summing them, resulting in:

aC  _o¢  _oC C 1 1 _ _
—4+u—=4+v—= = =VM — =V(qu) + -V x (Dey).e, — 5.26
ot ox dy h h (q1) h (Dex) \ﬁ,./ (5.26)
—_— o v - friction
advection Stokes drift wave scale vorticity
. . . dissipation
advection vorticity production
diffusion

where the averaged flow potential vorticity over one period is ¢ = ¢/h.

The terms of equation (5.26) can be interpreted in this manner:

o The vorticity production term is directly related to potential vorticity generation
induced by the differential wave breaking. The advantage of this set of equation

is that we can directly determine this term.

o The friction dissipation term is the term linked to the dissipation of potential
vorticity by the bottom. When the wave forcing ceases, which means that no
more energy is introduced to the system, this term is responsible for the potential

vorticity decay.

« the advection term does not generate potential vorticity, and transport it with

the averaged circulation,

o the Stokes drift advection is the flux induced by the waves. This term arises from
the mass conservation equation, to balance the extra flux induced by the waves.

This flux represents a potential vorticity transport term.

» the wave scale vorticity diffusion term is related to the diffusion of the potential
vorticity gradients, it is the diffusion of the potential vorticity by the wave induced

motions.

Estimation of the dissipative force

The dissipative force D in equation (5.26) is related to the wave energy dissipation by
breaking. This force is defined as
D= D—lim (5.27)
ch
with ¢ the norm of the phase velocity, and Dy, the broken-wave energy dissipation. We
estimate Dy, using two different techniques, by analogy with an hydraulic jump or by
the energy flux gradients dissipation. The hydraulic jump analogy is used to estimate

Dy, with the experimental data, as the energy spatial gradients cannot be estimated
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easily. In the numerical model, as the energy fluxes can be estimated at each point, we
use the energy flux gradients to estimate Dy,,. The first one is by analogy between the
breaking wave and a hydraulic jump Thornton et Guza [1983] ; Bonneton et al. [2010],

and Dy, is expressed as:

Dy = 2= (5.28)

with H the wave height. In this case, if we assume the shallow water, we have ¢ = 1/gh

and the dissipative force is defined as:

g B _ Vg

T 4T R2 AT po2 (5.29)

Dissipation can also be estimated from the energy fluxes on an elementary control
volume dx - dy. At this end the NSW equations can be written in non-conservative

form:

0
— + —(hu) + By hv) = (5.30)
5 TV, TVa, T — =0 (5.31)

— tu—+v—+g5 =0 (5.32)
x

with h =7 — b the total water depth.

u+v

By multiplying equation 5.30 by (gn + ), equation 5.31 by (hu), equation 5.32

by (hv) we obtain:

<8n+a(hu)+§;(hv)> +U ‘2|'U (?Z+£(hu)+aa<hy)> =0 (5.33)

ot Oz
ou . ou du an _
ov (’9 5 OV 877

By adding these three terms, we obtain an equation for the conservation of energy. If

we look at the terms containing the time derivative, we have:

on  u?+v20n ou ov 5 o u? 40P
gty g gy g = atlgn” 2

(5.36)
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The terms containing a = spatial derivative can be simplified:

O(hu) +uz + v d(hu)

on ou ov
" ox 2 Ox

a 2 2
+ghu—+hu?—+huv— = — [ghnu + hu v

ox ox or O ] (5.37)

We operate similarly with the terms containing the y derivative:

2 2

2 4 .2
gnagw) +“ —;—v 8(;11) —l—ghv@—khuva—u—kth@ = 9 lghnv + ho”
Y Y

By By oy~ oy ] (5.38)

We finally obtain an equation for the conservation for energy:

OF, OF, OF,

=0 5.39
ot * ox + Jy (539)
with the energy fluxes F,, I, I} defined as
2, .2

Fo— g+ hY ;“” (5.40)

2, .2
Fy = ghnu + hu® ; v (5.41)

2, .2
F, = ghnv + ho™ ;U (5.42)

If no dissipation occurs, equation 5.39 is valid and the spatial flux gradients are exactly
balanced with the temporal flux gradient. In our case, there exist energy dissipation
through breaking, therefore the equation reads:

OF; n 0F, O0F,

ot Ox * dy ~Dom (5.43)

In the case of a regular wave forcing, by time-averaging over several periods the equation
5.43, the first term disappear and we can obtain the averaged dissipation by estimating

the averaged energy flux gradients:

O<Fy>, O0<F,>,
ox oy

< Dy >pn= — (5.44)
In the case of an irregular forcing, the temporal flux gradient cannot be neglected,
hence we estimate the dissipation over a time duration t;, supposed greater than the

wave peak period:

0 < Fy >y, B 0< Fp >y, B 0 < Fy >y,
ot ox oy

< Dym D=ty = — (545)
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We then suppose that this averaged dissipation is similar to the time-averaged dissipa-

tion over one period as we have a monochromatic wave forcing:

Dy =< Dy >n~< Dy >1—4, (5.46)

Refraction map

To estimate the vorticity production terms in (5.26) also require the estimation of the
waves rays, as the vector ey is collinear with the wave rays. To obtain the refraction
map necessary to obtain the direction of the wave rays, we use the hypothesis that the

wave propagation is co-linear with the energy fluxes:

@ « (F,, F,) (5.47)

These fluxes are averaged over a time duration ¢; , and the refraction angle is then
estimated as:

(5.48)

< F, >
0, = arctan <M>

< Py >4y

where ej, = [cos ,,sin 6, is the vector collinear with the wave rays.

Estimation of the potential vorticity balance terms

The terms of the potential vorticity balance require gradient estimations. Sensitivity
analysis have showed us that it is necessary to use a 4th order central finite difference

scheme. For any function f(x,y) this reads:

ox 12Az

(= f(Tit2, y5) + 8f (@iv1,v5) — 8f(wiz1,y5) + f(wiz2,y;))  (5.49)

In the case of a regular wave forcing (monochromatic), the mean part is the averaged
quantity over the wave period considered, and the fluctuating part is the difference

between the signal and its mean.

In the case of an irregular wave forcing, the mean part of the variable, denoted
by a bar (%) is the high-pass filtered variable, with a cut-off frequency f., while the
fluctuating part is denoted by a tilde (%), and represents the low-pass filtered variable,

with the same cut-off frequency f..
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Figure 5.2 — Potential vorticity field for a JONSWAP wave forcing of significant wave height
H,,, = 0.18 m and peak period T' = 3.5 s, with an alongshore energy damping at y = 15
m (simulation Jy). The black lines represent the isocontours of the bathymetry, the
arrows the averaged circulation over 800 s, between ¢t = 300 s and ¢ = 1100 s. The
dotted line represents the cross-shore section used to do the vorticity time-stack.

Enstrophy

If we define the system composed by the bathymetry and the wave forcing, we define
the enstrophy € as:

e(t) = /S g(1)2dS (5.50)

Where S represents the area defined as 7m < z < 20 m and 1 m < y < 29 m. This
area starts before the breaking zone located at x ~ 11 m, and stops before the swash
zone located at x &~ 22 m.The vorticity present near the lateral boundaries is also not
included. This quantity is directly related to the kinetic energy in the flow and is used

to estimate the spin-up and decay time of the mentioned system.

5.3 Model set-up and analysis methods

5.3.1 circulation cells position

The evolution of the circulation cells also provides valuable information for the evo-
lution of the vorticity in the nearshore zone, especially in term of wave grouping.
We then define two delimited regions, corresponding to the circulation cells (Figure
5.2). We choose the boundaries to detect the circulation cells at 12 m < z < 21 m,
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2m <y < 10mand 12 m < y < 19 m for the positive and negative vortices respec-

tively.

For each circulation cell, we define at each time step the vorticity averaged over
one wave period, and find the vortices extrema. For the positive vortex, the vorticity

extrema is:
qf, = max (q(z,y)), we€[12,21],  y€[2,10] (5.51)

For the negative vortex we have:

¢, =min (q(z,v)), x € [12,21], y € [10,19] (5.52)

To estimate the center of mass of the circulation cells, we define the vortices boundaries
as the points where the value is higher (respectively lower) than 0.25 of the maximum
(respectively minimum) value for the positive vortex (respectively negative vortex),
similarly to Long et Ozkan-Haller [2009]. The center of mass coordinates of the positive

vortex [z, yF] and the negative vortex [z, y, ] are then estimated as:

> qla,y)x

L+ 3>0.25¢%
xl}

- B ——, z€[12,21],  ye[2,10] (5.53)

7>0.25¢;

> qlz,y)y
+ _ 3>0.25¢%

= , € [12,21], €[2,10 5.54
Yo SETTR x € [12,21] y € [2,10] (5.54)

z; = . zell2,21], yell0,19] (5.55)

Yy = . xe[12,21],  ye[10,19] (5.56)

3<0.25¢,,,

The distance between the two centres of mass d, is defined as:

dy =\t — 272 + (g —yy)? (5.57)
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5.3.2 rip current velocities

One of the main feature of the rip current are the rip current ejections, which are
unsteady velocity increase seaward oriented, a great hazard for swimmers. To observe
the variation in the rip current velocity, we focus on point at * = 15 m, y = 10 m.
This point is located in the center of the rip channel, visible in the averaged circulation

in Figure 5.2. The cross-shore and longshore velocities at this point are defined as

[Urip 9 Urip] .

5.3.3 numerical simulations considered

Concerning the numerical modelling, all the simulations considered in this chapter use
the same bathymetry from the experiment at ¢ = 21 : 00. This bathymetry has been
used in the previous chapter to validate the model, therefore we can have confidence

in the simulation results.

We first consider the results in terms of vorticity with wave forcing similar to the
experiment. This wave forcing consists of a JONSWAP spectrum of duration 1200 s,
with significant wave height H,,p = 0.18 m, peak period T = 3.5 s, and a wave energy
damping in the middle.

We then use monochromatic and bichromatic alongshore uniform wave forcing, to
observe the evolution of vorticity in these cases. As we want to obtain a similar wave
forcing energy in all the cases considered, we use the same significant wave height
H,,0 = 0.18 m. When the wave height distribution can be approximated by a Rayleigh
distribution [Longuet-Higgins, 1952], the significant wave height H,,q can be approxi-
mated by [Holthuijsen, 2007]:

Hyo =4 oy (5.58)

where o, represents the free surface variance. Although this relation is only valid in
the case of a Rayleigh distribution, we use it to determine the significant wave height
in a monochromatic case or bichromatic case, in order to compare the wave forcing

energy in all these cases.

The numerical simulations considered are expressed in Table 5.1. All the simulations
were performed using a grid step Az = Ay = 0.1 m, which led to a variable time step
of approximately At ~ 0.01 s, determined at each time step to ensure a Courant-

Friedrich-Lewy condition.

The considered monochromatic wave forcing time-series of period Ty s corresponding
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Simulation wave Alongshore | T Cy H o A T,
name forcing variation | (s) (cm) | (cm) | (s)
Jo JONSWAP damped 3.5(21-1072 | 18 | 5.56 -
M, monochrome uniform 3.5 |1.6-1072 18 6.36 -
My monochrome uniform 3.5 21-1072 18 6.36 -
M5 monochrome uniform 3.5 |26-1072 18 6.36 -
My monochrome uniform 2.5 121-1072 18 6.36 -
M;5 monochrome uniform 45121-1072| 18 6.36 -
Ms monochrome uniform 3.5121-1072 | 12.6 | 5.56 -
M, monochrome | uniform 2 121-1072] 18 | 6.36 | -
My monochrome | uniform 4 121-107%2| 18 | 6.36 | -
B bichromatic uniform 3.5 21-1072 18 899 | 35
B, bichromatic uniform 3.5 21-1072 18 899 | 70
Bs bichromatic uniform 3.5 21-1072 18 8.99 | 105
By bichromatic uniform 3.5(21-1072 18 8.99 | 140
Bs bichromatic uniform 3.5121-1072 | 18 8.99 | 175
Bg bichromatic uniform | 3.5[21-1072| 18 | 899 | 210
By bichromatic uniform | 3.5 [2.1-1072 | 18 | 8.99 | 245
Bg bichromatic uniform 3.5(21-1072 | 18 8.99 | 280

Table 5.1 — Simulation conditions for the JONSWAP, the monochromatic and the bichrom-
natic cases.
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to simulation Ms is determined as
no(t) = Asin(oot) (5.59)

where 0y = 27/Ty and A = 6.36 c¢m is the amplitude of the waves.

If we consider a simulation with the same averaged wave height over 1200 seconds
as the JONSWAP run, we obtain a different wave amplitude, as < H >= 0.112 m,
with H the wave heights determined by a zero-down-crossing method. Therefore, for
the simulation M5 we have A = 5.56 cm.

For the bichromatic case, we define the wave group period T as the time between

two nodes of the group, and obtain the following expression:

A
m(t) = ) (sin(oyt) + sin(—oat)) (5.60)
where:

. 7T<2Tg + T())
0'1 = Tng (561)

(2T, — Tp)
= — .62
09 TOTg (5 6 )

The coefficient A = 8.99 c¢m is determined to ensure that the wave forcing contains the

same significant wave height H,,,, and compare the monochromatic forcing with the

bichromatic and the JONSWAP ones.

5.4 Potential vorticity in the LHF experiment

5.4.1 Vorticity

The potential vorticity equation (5.26) is just a consequence of the NSWE on which
the numerical model is also based. Using the methods described in section 5.2 we can
diagnose the importance of the different terms and determine their spatial distribution.

We first estimate the enstrophy on the numerical simulation Jy, with the parameters
from the experiment. The evolution of enstrophy (Figure 5.3) reveals three distinct
phases. The first one corresponds to the spin-up of the system starting from a rest
state and lasts for the first 200 seconds approximately. After the spin-up phase, we
observe a quasi equilibrium regime where the enstrophy varies with time, but around a
mean value of 1 m2.Hz? in our case. During this phase, we can see an arrangement of

vorticity, as enstrophy variations present semi-periodic behaviour with periods of the
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order of 100 seconds, induced by the wave groupiness of the wave forcing. The third
phase corresponds to the decay, when the wave forcing ceases. We observe that the
decay rate is high at the beginning, losing 50 % of its value before decay in 30 seconds,
and this rate starts decreasing, as it takes 200 seconds to reach 10% of its value before
decay.

If we compare the results obtained with the JONSWAP forcing (simulation .Jy) with
the ones obtained with monochromatic wave forcing different wave amplitudes. The
Mj simulation with an amplitude of A = 6.36 ¢cm provides the same significant wave
height as the JONSWAP. The monochromatic wave is energetically equivalent. The
Mg simulation for A = 5.56 cm gives a wave height equal to the JONSWAP mean wave
height. We observe a spin-up time of about 75 seconds for both simulations, then the
enstrophy decreases to reach a quasi-equilibrium state. We note that the enstrophy

2 close to the

for the JONSWAP simulation seems to oscillate near a value of 1 m2.s~
monochromatic simulation with the same wave height, while the monochromatic sim-
ulation with an equivalent significant wave height reaches a higher value of enstrophy,
around 1.3 m?.s72. This could be due to the fact that in the JONSWAP simulation,
the breaking occurs at varying cross-shore positions, hence the vortices have to adapt
constantly to the incoming waves, whereas in the monochromatic case the forcing is
constant and the vorticity generated by the differential wave breaking occurs at the
same position, maximizing the vorticity generation.

The averaged circulation and vorticity are estimated on a duration of 800 s, between
t =300 s and t = 1100 s, to avoid the spin-up period and the decay. We can see in
Figure 5.2 the rip channel at y = 10 m, with the two circulation cells, the positive with
a center near x = 16 m, y = 6 m, and the negative one with a center near x = 16
m, y = 16 m. The averaged circulation shows a strong offshore oriented jet between
these two cells. We also observe another dipole near y = 24 m, however the circulation
near this dipole seems to be affected by the lateral boundary, therefore we will focus
our analysis to the dipole on the left. Concerning this dipole, we also note that the
peak averaged vorticity is not found in the center of the vortex, where the averaged
circulation is zero, but rather in the vortices edges.

We can also observe the evolution of the potential vorticity compared to the wave
forcing in one cross-shore profile (Figures 5.4-5.5). We time-stack instantaneous po-
tential vorticity profile on a cross-shore transect that goes roughly through the center
of the positive vortex (red). In Figure 5.4 middle panel we observe that free surface
waves have periods close to the peak period, but wave height and wave groupiness are
more widely distributed. in the top panel of Figure 5.4 the propagation of the waves is

observed as thin lines with a negative slope, and we see that the generation of vorticity
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Figure 5.3 — Wave forcing time-series (upper panel) and low-pass filtered enstrophy time-
series with a cut-off frequency of 10 s (lower panel). The black line represents a Jonswap
wave forcing, of significant wave height H,,0 = 0.18 m and peak period T" = 3.5 s
(simulation Jp). The wave forcing ceases at t = 1200 s to observe the enstrophy decay.
The grey line represents a monochromatic wave forcing with the significant wave height
H,,0 = 0.18 m and period 7' = 3.5 s (simulation My), the grey dashed line represents a
monochromatic wave forcing with the same amplitude as the JONSWAP wave forcing
A =0.056 m (simulation M;g). In the upper panel related to free surface evolution 7(t),
the grey line and dashed line represent the monochromatic wave envelope.
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Figure 5.4 — Cross-shore vorticity time stack at y = 7 m (upper panel), corresponding free
surface water height at * = 5 m (middle panel) and potential vorticity evolution at
x = 15 m (lower panel) for simulation Jy (Jonswap wave forcing). The dashed line in
the upper panel represents the vorticity time series shown in the lower panel.

within the vortex for each wave is different: for 920 s < ¢ < 940 s the vorticity reaches
peaks of 2 Hz.m ™! with each passing wave at x = 15 m, and for 870 s < t < 900 s the

peaks in vorticity are closer to the value 0.5 Hz.m™!.

The positive shoreward boundary of the vortex moves at a lower period than the
waves, as we can see some modulations of period 10 s and 20 s in the time-stack. This
is due to the fact that the vorticity generated by each wave is proportional to the power
of 3 of the wave height.

By doing a close-up on a 50 second period (Figure 5.5) and with a lower time step,
we note that the passing waves generate a peak in potential vorticity. These peaks does
not seem to correlate with an enhanced potential vorticity in the vortex, as between
t = 825 s and t = 835 s, we observe an increased vorticity, but the peaks are not
relatively high.
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Figure 5.5 — Cross-shore vorticity time stack at y = 7 m (upper panel), corresponding free
surface water height at = 5 m (middle panel) and potential vorticity evolution at
x = 15 m (lower panel) for simulation Jy (Jonswap wave forcing). The dashed line in
the upper panel represents the vorticity time series shown in the lower panel.
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5.4.2 Dissipative force estimations: hydraulic jump and en-

ergy gradients

As stated in the previous section, The dissipation induced by the wave breaking can
be estimated in different ways. We can then compare the dissipation term estimated

using a hydraulic jump analogy both for the numerical model and the experiment.

Hydraulic jump analogy

Using an analogy between the wave breaking and an hydraulic jump, the results from
the experiment and from the numerical model with the same conditions can be found
in Figure 5.6.

We observe that the dissipative force in the numerical model and in the experiment
are found approximately in the same region, between z = 12 m and = 15 m for the
experiment. At y = 10 m, where the rip channel exits, the dissipative force is stronger
at z = 12 m, with a maximum of 0.04 , whereas at y = 5 m or y = 20 m, the dissipative
force occurs at * = 15 m in the experiment. The numerical model dissipative force
term shows a similar behaviour, but the magnitude of the dissipative force is different,
as the maximum dissipative force, at the rip channel exit is about 0.02, a half of the
experimental result.

The wave height H is determined by a zero-downcrossing method to determine
the waves and then averaging over all the waves. The period is determined with the
significant wave period T} /3. As noted by Holthuijsen [2007], for swell wave forcing with
narrow spectrum, 773 & Tjeqr, Where T)eqp is the peak wave period of the JONSWAP.
In our case, we observe that the significant wave period is slightly lower around 7" = 3.2
s at * = 5 m. However, we focus on the period evolution when approaching the
shoreline, and not the exact values. If we compare the spatial variation of wave height
and period , we observe that the significant wave period decreases in the experiment,
fromT =32sat x =5m, toT = 2.7Ts at x = 15 m, and the wave height increases
from H = 0.11mat x =5 m, to H = 15 m at x+ = 15 m. The numerical model
shows a different behaviour concerning the significant wave period, as the period is
approximately T'= 3.2 s at x = 5 m, and increases to T'= 4 s at X = 20 m. The wave
height increases before the breaking, but the maximum water height is H = 0.13 m,
lower than the experimental results.

These differences can be explained if we look at the free-surface elevation time-series
in a cross-shore profile, in Figure 5.7. The absence of dispersion terms in the numerical
model lowers the wave height peaks, and does not produce secondary peaks, which are

responsible for the increase in wave height and decrease of the period as we approach
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Figure 5.6 — Spatial distribution of the dissipative force D estimated with a hydraulic jump
analogy (Upper panels), of the wave height (Middle panels), and of the significant wave
period T3 (Lower panels). The left panels corresponds to experimental results, from
experiment 30 (t=21:00-26:00), using a JONSWAP spectrum, damped in the middle .
The right panels corresponds to the numerical model, using a similar forcing (simulation
Jo).
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Figure 5.7 — Free surface elevation time-series in a cross-shore profile at y = 10 m, differ-
ence between the experimental results for experiment 30 (t=21:00-26:00) (line) and the
numerical simulation Jy (dashed line)

the shoreline. The estimation of the dissipative force using an hydraulic jump analogy
is lower than expected, mainly due to the reduced wave height before breaking, and
the different period evolution in the domain, that also tends to decrease the dissipative

force. However, the spatial distribution of the dissipative force is fairly good.

Energy fluxes gradient

If we use the energy flux gradients, we can also estimate the dissipative force. We
suppose that for a long enough duration, here 60 wave periods (210 s), the flux gradient
are equal to the dissipative force. If we look at the dissipative force estimated by
the energy fluxes (Figure 5.8), we see that the values and spatial distribution of the
dissipative force is similar to the experimental dissipative force estimated with the

hydraulic jump analogy. The areas where the dissipative force is high consist in the
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Figure 5.8 — Averaged dissipative force and vorticity production term estimated over 60
wave period. The black lines represent the isocontours of the bathymetry. a) arrows:
averaged circulation over 60 wave period; colors: dissipative force estimated using the
energy fluxes for the numerical simulation Jy; b) Experimental dissipative force estimated
with the hydraulic jump analogy for experiment 30 (t=21:00-26:00). c) arrows: direction
of the wave ray vector e, for simulation Jy; d) colors: vorticity production term 1/AV A
Dey, for simulation Jy, arrows: averaged circulation over 60 wave period.;
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breaking zone, between x = 12 m and x = 14 m. For the region of the rip channel,
for 9m < y < 15 m, the dissipative force is moved seaward, at x = 12 m, as the

bathymetry induces an earlier wave breaking.

Vorticity production

The refraction map estimated with the energy fluxes (Figure 5.8) shows that the re-

fraction angles are lower than 10 degrees up to x = 14 m, and lower than 15 degrees
up to x = 18 m. For z > 18 m, the refraction angles increase rapidly.

We estimate the vorticity production term, from the equation 5.26:
oD oD

V x (Dey).e, ~ (VD x e).e, ~ —sinf — — cosf 5.63

(Dev.e. ~ (VD x ey).e. ~ G osinf - oo (5.63)

In the breaking zone, where the dissipative force is important, we showed that the

refraction angles are lower than 10 degrees, therefore the vorticity generation comes
oD
mainly from the alongshore dissipative force gradient 0 and not so much on the cross-

shore dissipative force gradient, corresponding to the wave energy. This is consistent
with Peregrine [1998], who showed that the lateral gradients were responsible for the
vorticity generation.

We observe that the peak values of the vorticity production term are near the rip
neck at x = 13 m, y = 7 m, where the wave breaking is more intense, and in the horns
at £ = 20 m, y = 17 m, where the water depth is lower.

Chapter 4 has provided a sound validation of the mean circulation and mean vortic-
ity fields. In this section we have gained insight on the transient spin-up under jonswap
forcing compared to the monochromatic wave forcing. Moreover, we have gained a first
understanding of the different time scales of the vorticity production by wave breaking
by analysing vorticity time-stacks, at the scale of the waves and at large time scales

related to the advection by the mean circulation.

5.5 Potential vorticity under a monochromatic wave

forcing

In the present section we aim at understanding what controls the vorticity production
in a bathymetry with a rip channel and rip bar head. At this end we will use a
alongshore uniform monochromatic wave forcing. The circulation in this configuration

is entirely controlled by the bathymetry, as the wave forcing is alongshore uniform.
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The differential wave breaking, motor of the vorticity generation, is caused by the
bathymetry heterogeneity. With the monochromatic wave forcing, we will observe the

influence of several parameters:

o we will as previously analyse the different time scales involved in the vorticity

evolution.
« we will see how friction changes the vorticity spin-up and spin-down.

« we will also analyse the influence of the wave period at constant wave height.

5.5.1 Vorticity

Averaged circulation and vorticity

We now use simulations with the same bathymetry from experiment 30 (t=21:00-26:00),
but with an alongshore uniform monochromatic forcing. This way, the circulation
reaches a quasi-equilibrium after the spin-up period, oscillating with the wave period
and we can estimate the terms of the potential vorticity balance by averaging over a
period.

The averaged potential vorticity for simulation M, with the same significant wave
height than the JONSWAP simulation Jy, can be seen in Figure 5.9. The rip channel at
y = 10 m is the main feature, with two circulation cells marked with opposite vorticity.
The centres of the cells which correspond the the averaged vorticity maximum, are
at x =16 m, y = 7m and z = 17 m, y = 16 m for the positive and the negative
vortex respectively. There is little vorticity within the rip channel, except at the rip
neck, at x = 13 m, where the two cells meet. Due to the bathymetry heterogeneity,
where the bed gradients are higher in the region 5 m < y < 10 m than in the region
10 m < y < 20 m, the circulation cells are asymmetric. The positive vortex is closer to
the rip channel with a strong maximum, whereas the negative vortex is further from
the rip channel with an expanding arm reaching the rip neck.

If we compare this Figure with the JONSWAP simulation J, (Figure 5.2), we ob-
serve that the vorticity values are stronger in the recirculation cells in the monochro-
matic case. This is probably due to the smoothing induced by the irregular wave
forcing: as waves do not break exactly at the same position, the averaged quantities
are spatially smoothed, and the values are lower than in the monochromatic case.

If we look at the potential vorticity time-stack for simulation Ms in a cross-shore
profile at y = 7 m (Figure 5.10) we observe that the potential vorticity is in quasi-

equilibrium, oscillating with the wave period. Each wave generates potential vorticity,
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Figure 5.9 — Time-averaged potential vorticity field and circulation with the bathymetry
from experiment 30 (t=21:00) and a monochromatic wave forcing (simulation Ms) over
a duration of 800 s. The black lines represent the isocontours of the bathymetry, the
arrows the averaged circulation. The dotted boxes represents the region used to estimate
the center of mass of each vortex.
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Figure 5.10 — Cross-shore potential vorticity time stack at y = 7 m (upper panel), corre-

sponding free surface water height time series at = 5 m (middle panel) and potential

vorticity time-series at * = 15 m, y = 7 m (lower panel) corresponding to the black

dashed line in the potential vorticity time-stack, for a monochromatic wave forcing
(simulation Mj)
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Figure 5.11 — Averaged Vorticity production term estimated over 60 wave period for a
monochromatic wave forcing (simulation Ms). The black lines represent the isocontours
of the bathymetry. a) arrows: direction of the wave ray vector ey; b) arrows: averaged
circulation over this 60 wave period, colors: Dissipation estimated using the energy
fluxes; c) colors: Vorticity production term 1/hAV A Dey; arrows: averaged circulation
over this 60 wave period.

with a peak at x = 15 m, but the vortex boundaries are only affected by the passing

waves, and do not modulate at a larger period.

5.5.2 Potential vorticity balance

For the estimation of the different terms of the potential vorticity equation, we focus
on the time range 900 s < y < 1110 s. The system is considered in quasi equilibrium,
and we have approximately 60 wave periods, to estimate the averaged quantities.

If we look at the potential vorticity production term (Figure 5.11), we clearly ob-
serve a peak, at x = 14 m, y = 9 m, located near the rip neck, where the bottom
gradients are the strongest, and the longshore dissipation gradient is significant. We
also note that the vorticity production term is not symmetric, as it is stronger in one
of the two vortices.

Having estimated the vorticity production term, we compare it with the remaining

terms of the potential vorticity balance (equation 5.26). The spatial evolution of these
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terms can be seen in Figure 5.12. We focus on the two circulation cells between y = 1
m and y = 20 m. We define the positive vortex as the circulation cell with positive
potential vorticity with a center at * = 16 m, y = 7 m, and the negative vortex the
circulation cell with a center at x = 16 m, y = 15 m. Concerning the different terms
of the potential vorticity balance, we observe that the peak values are located near the
rip neck, at z = 12 m, y = 10 m, except for the friction that is more widely spread,
near the regions of strong vorticity.

We also observe the rip asymmetry as the advection , the wave induced mass flux,
the wave scale vorticity diffusion and the vorticity production are stronger in the pos-
itive vortex than in the negative vortex. For the positive vortex, the mentioned terms
are strong near the ripple neck, and form a line toward the center of the vortex. For
the negative vortex, we also observe that the extrema form a line, which starts in the
ripple neck at z = 13 m, y = 10 m, and extend through the negative vortex arm up to
r=15m, y =19 m.

In terms of peak values, the stronger values are observed in the advection and wave
scale vorticity diffusion, with 0.1 m~!.s72. The vorticity production term shows a peak

-2

value of 0.04 m~'.s72 and the wave induced mass flux shows a peak value of -0.03

m~'.s72 near the ripple neck.

The friction dissipation shows lower extrema values, at 0.02 m~!.s™2 but it is more
uniformly distributed. Whereas all the other terms are important in the breaking zone,
the friction term is important near the shoreline, as it increases with decreasing depth.

The areas where most of the term are relevant correspond to the seaward boundaries
of the vortices, where the circulation and the wave breaking occur. From the spatial
organization of these terms, we can deduce an organization of the potential vorticity
under monochromatic wave. Starting the numerical experiment from rest and imposing

a monochromatic wave forcing, the following steps occur:

1. at first the potential vorticity is negligible, therefore the only important term is
the vorticity production term, dependent of wave breaking dissipation gradient
and the water depth h. If there is no such gradient, for example with an along-
shore uniform beach with alongshore uniform normal wave forcing, no vorticity
is created. In our case, the vorticity is generated near the rip neck, for both
vortices, and at the horns, where the water depth is lower, at x =17 m, y =3 m
and x = 17 m, y = 17 m. The vorticity generated at the horns has lower values,

but contribute to the global vorticity generation

2. The vorticity generated near the rip neck and the horns is then moved in the

system by advection or diffusion. These two terms are also important in the rip
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Figure 5.12 — Importance of the terms of the potential vorticity balance for a monochro-
matic wave forcing (simulation My). The black lines represent the isocontours of the
bathymetry, the arrows the averaged circulation over this 60 wave period. The scale
color can be different. The potential vorticity unit is m~'.s™! and the unit for the

potential vorticity balance terms is m™!.s72

179



C’hapter 5 NEARSHORE MEAN CIRCULATION AND VORTICITY DYNAMICS

neck, as it is the region where the vorticity is generated.

3. The circulation induced by the bathymetry create a rotational circulation that
has a positive feedback on the generated vorticity. The vorticity generated at the
rip neck is of the same sign as the vortices of the recirculation cells, therefore the

vorticity adds up to the greater vortices.

4. as vorticity keeps increasing, the wave induced mass flux and the friction terms
are no longer negligible. The friction term spatial distribution is very similar to
the distribution of the mean circulation. This points at a general equilibrium
between bottom friction and the mean circulation. As for the wave induced
mass flux it seems to have a negative feedback on vorticity, which would tend
to decrease the vorticity levels, however the magnitude is much lower than the

other terms.

5. in its equilibrium state, the two vortices have well defined boundaries close to
elliptic shapes, with maximum vorticity at the edges of the vortices. The vor-
ticity in the system is at equilibrium, being generated near the rip neck and at
the lateral horns, being advected and diffused in the whole system, and being

dissipated by friction in the whole area.

If we now focus on the order of magnitude of the terms of the potential vorticity
equation restricted to the the area of the positive and negative vortex, we obtain an
estimation of the relative importance of these terms in the vortex by averaging spatially
over the area occupied by the whole vortices.

For the positive vortex (Figure 5.13) we observe that the production term has an

1 2

area-averaged value of 6.08-1072 m~!.s~2 with peak values at 0.15 m~'.s72. is the main

source of vorticity with and the friction is the main sink of vorticity with —5.85 - 1073
m~!.s72. Even though the area-averaged value of the advection is an order of magnitude
less than that of the production, the peak values are of same magnitude. Moreover an
interesting feature is that the color patterns of these advection and production terms
have similar shapes. All these characteristics indicate that advection redistributes
vorticity to produce an equilibrium. In this system bottom friction is the only sink of
energy. We probably can state that the rate of production of vorticity at wave scale is
compensated by the rate at which it is destroyed by friction at the scale of the mean
circulation.

For the negative vortex (Figure 5.14), we also observe a similar behaviour, the

area-averaged potential vorticity production term and the friction term being the main
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Figure 5.13 — Potential vorticity balance (5.26) terms for a monochromatic wave forcing
(simulation Mj), for the positive vortex located at 12 m <z <21 m,2 m < y < 10 m.
The black lines represent the isobaths. The potential vorticity unit is m~'.s~! and the
unit for the potential vorticity balance terms is m~!.s™2

contributors to the potential vorticity balance. The patterns of the spatial distribution

of the advection and the production are also similar.

5.5.3 Influence of friction

The friction is important as it is the only sink of the energy of the mean circulation
in the nearshore zone. Yu et Slinn [2003] using a linear bottom friction with normal
incident wave forcing observes that it has only a slight influence on the flow patterns,
as the offshore extent and the width of the rip current are barely affected by a change in
the bottom friction. Long et Ozkan-Haller [2009] observed that the friction coefficient
does not dictate the temporal variability of the vortical motions.

In our study the influence of friction in the vorticity field is estimated using a
monochromatic wave forcing with significant wave height H,,, = 0.18 m and period
T = 3.5s, and different friction coefficients: ¢; = 1.6 - 1072, ¢, = 2.1 - 1072, ¢ =
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Figure 5.14 — Potential vorticity balance (5.26) terms for a monochromatic wave forcing
(simulation Mj), for the negative vortex located at 12 m < z < 21 m, 12m < y <
19 m. The black lines represent the isocontours of the bathymetry. The scale color
can be different. The potential vorticity unit is m~'.s~! and the unit for the potential

vorticity balance terms is m~!.s72
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Figure 5.15 — Time evolution of high-pass filtered enstrophy for a uniform monochromatic
wave forcing, for different friction coefficients. (——): ¢f = 1.6 - 1072 (simulation M;);
(=): ¢f =2.1-1072 (simulation Ms); (— - —): ¢y = 2.6 - 1072 (simulation M3).

2.6-1072 (respectively simulations My, My, M3). The evolution of the low-pass filtered

enstrophy for the monochromatic wave forcing is shown in Figure 5.15 for these friction

coefficients. We observe a spin-up time of about ¢ = 75 during which the enstrophy

increases with a steady rate. This rate does not really depend on the friction coefficient,

meaning that the friction is not the important factor in the spin-up. After this period

of spin-up, the enstrophy decreases and reaches a quasi-steady state at approximately
= 200 s.

To analyse how friction influences vorticity decay, we run the simulation for t = 1200
seconds in order to reach a quasi-equilibrium state and set the wave forcing to zero at
t = 1200 seconds, and observe the evolution of enstrophy (Figure 5.16). To compare
the decay with different friction coefficients, we define the equilibrium enstrophy e, as
the enstrophy reached after a duration of 1200 s and normalize the enstrophy with this

value.

We observe that the enstrophy decay is directly related to the friction coefficient, as
the time to reach half of the equilibrium enstrophy in the system is of approximately
50 seconds for ¢; = 2.6 - 1072, 70 seconds for ¢; = 2.1 - 1072 and 100 seconds for
¢; = 1.6 - 1072 For the simulation with the lower friction, we observe after 100
seconds that the enstrophy decrease accelerates, whereas the two other simulations
have a relatively smoother behaviour, with no sudden change in the rate of enstrophy
decay. The spatial and temporal evolution of the enstrophy decay are shown at several
instants after the wave forcing ceases in Figure (5.17). For the early stage of decay,
between 1200 and 1350 seconds we first observe that the enstrophy is higher when the
friction coefficient is lower, due to the potential vorticity balance at equilibrium where

the friction is the main sink.
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Figure 5.16 — Time evolution of enstrophy decay for a uniform monochromatic wave forcing,
for different friction coefficients. (——): ¢y = 1.6 - 1072 (simulation M;); (—): ¢ =
2.1-1072 (simulation Ma); (— - —): ¢f = 2.6 - 1072 (simulation Ms3).

For the three simulations, after the wave forcing ceases, there is a self-advection
of the two vortices, reducing their distance and advecting themselves seaward. The
advection is slowed when increasing the friction, which in turn reduces vorticity, giving
a negative feedback to the vortices. Concerning the dipole at y = 25 m, the positive
vortex (red) is stronger than the negative one (blue) and is advected with a greater
velocity seaward, the negative vortex circling around it. This positive vortex moves
seaward due to the velocity induced by its image with respect to the close right lateral
boundary. This vortex is probably the reason of the increased decay in Figure 5.16)
for ¢; = 1.6 - 1072, as the vortex goes near the boundaries, and part of it goes out of
the integration zone for the vorticity (Figure 5.17 a-d).

For the latter stages between ¢ = 1400 s and ¢ = 1550 s, we observe that the
dipole is slowly advected seaward for ¢; = 2.1-1072 (m-p) and ¢; = 2.6 - 1072 (u-x).
For ¢y = 1.6 - 1072 (e-h), we observe that the positive vortex (red) is trapped by the
bathymetry, staying in the trough, while the negative vortex (blue) is still advected
seaward. This has been reported by Buhler et Jacobson [2001], who stated that the
favourite positions for the vortices were at bar trough, as it is difficult for them to
"climb" out of these bathymetric troughs.

If we focus on the motion of the dipole defined by the vortices at y = 7 m and
y = 15 m, we can look at the trajectories of the center of mass of these vortices for
different friction coefficient (Figure 5.18). We see that the displacement of the vortices
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Figure 5.17 — Potential vorticity snapshots during the decay, for different friction coeffi-
cients cg. (a-h) ¢y = 1.6 - 1072 (simulation M ); (i-p) ¢y = 2.1- 1072 (simulation M>);
(q-x) ¢y = 2.6 - 1072 (simulation Ms); ¢ = 1200 s corresponds to the moment where
the wave forcing ceases; the left vertical axis corresponds to the time of the snapshots,
every 50 seconds ; The color scale changes for ¢ > 1350 s to observe the evolution of

the vortices, the potential vorticity unit is Hz.m ™.
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Figure 5.18 — Trajectories of the center of mass of the vortex dipole during the decay over
1200 seconds, for different friction coefficients cy. a) ¢y = 1.6 - 1072 (simulation M );
b) ¢f = 2.1-1072 (simulation Ms); ¢) ¢y = 2.6 - 1072 (simulation M3); d) Evolution
of the center of mass cross-shore position for the positive vortex z; (red) and negative
vortex x, (blue) for different frictions; (——): ¢y = 1.6 - 1072 (simulation M); (—):
cf =2.1-1072 (simulation Ms); (—- —): ¢y = 2.6 - 1072 (simulation Ms).
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Figure 5.19 — Estimation of the Stokes Drift for a monochromatic wave forcing (simulation
Ms). The arrows represent the averaged circulation over the simulation, the lines the
isocontour of the bathymetry.

center of mass is influenced by the friction, as the friction slows them and reduce their
strength. For ¢; = 1.6 - 1072 (a), we observe that the positive vortex (red) is trapped
for some time in the trough or the rip neck and as a result the negative vortex (blue)
starts moving around this position. When the negative vortex is far enough, the dipole
separates and each vortex starts moving freely.

For ¢; = 2.1-107% (b) and ¢; = 2.6 - 1072 (c), we observe that the vortices start
moving closer, and then the mutual advection start to drive them seaward. For these
two cases, the vortices are advected toward y = 0, as the positive vortex (red) is
stronger than the negative one (blue), the negative vortex is slowly rotating around
the red one.

If we look at the evolution of the cross-shore position of the vortices, we also observe
the influence of the friction on the displacement of the vortices. From these positions,
we can estimate an order of magnitude of the vortices displacement velocity, between
1 em/s and 4 cm/s. These velocities are of the order of magnitude of the Stokes
drift (Figure 5.19) indicating that the seaward motion of the self-advected vortices is
countered by the Stokes drift who traps them between the shoreline and the breaking
zone. We observe that the Stokes drift produces high velocities in the breaking zone

of approximately 7 cm/s, preventing the vortices to move seaward.
5.5.4 Influence of period

The enstrophy present in the system also depends on the period of the wave. To

observe this dependence, we use monochromatic simulations with the same significant
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Figure 5.20 — Time evolution of enstrophy for a uniform monochromatic wave forcing, with
different wave periods. (---): T = 2.5 s (simulation M7); (——): T = 3 s (simulation
My); (—): T = 3.5 s (simulation Ms); (—-—): T =4 s (simulation Mg); (—): T'=4.5
s (simulation Ms5).

wave height H,,, = 0.18 m and periods ranging from 7" = 2.5 s to 4.5 s. The time
evolution of enstrophy indicates that the spin-up is similar for all the simulations, and

that a quasi-equilibrium state is reached in all cases, after approximately 400 seconds.

If the value of the enstrophy at the equilibrium increases with the period, for the
spin-up, we observe that for the wave forcing with T" = 3.5 s, the maximum value
reached during the spin-up is higher than the one for the 7' = 4 s simulation and
similar to the T' = 4.5 s simulation (simulations Mg and Ms; respectively). This is
probably caused by the influence of the incident and reflected wave field. By using
a radon transform [Almar et al., 2013] to separate these wave fields (Figure 5.21) we
see that the reflected wave field has an influence on the local wave height for longer
periods, as it creates patches for the wave height and the wave breaking index, which
can increase the vorticity generation locally. By looking now at vorticity time-stacks
at y = 7 m (5.22), near the positive vortex center, we also observe that the vorticity
generated by each passing increases with the period. The boundaries of the vortex in
this cross-shore profiles are quite steady. The reason for the increase of enstrophy in the
system with longer wave periods, is due to the increase in the vorticity production term
(Figure 5.23). An increase in the wave period induces an increase in the dissipation,

which in turn generates higher vorticity.
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Figure 5.21 — Estimation of the averaged wave height H and the averaged wave breaking
index 7 for a monochromatic wave forcing of period 7' = 4.5 s (simulation Ms). Left
panels: Total wave field; Right panel: incident wave field, separated using the radon
transform
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Figure 5.22 — Vorticity time-stack of a cross-shore profile at y = 7 m for a monochromatic
wave forcing, with different wave periods. a) T' = 2.5 s (simulation M7); b) T' = 3 s
(simulation My); ¢) T'= 3.5 s (simulation Ms); d) T'= 4 s (simulation Mg); e) T'= 4.5
s (simulation Ms5);

5.5.5 Scaling law of the mean vorticity

Concerning the mean vorticity on the nearshore zone, averaged in space and over a long
period of time, Bowen [1969] suggested an equilibrium between the production and the
dissipation due to the friction. If we admit that the inverse-energy non-linear cascade is
dominant in the equilibrium, as noted by Chavanis et Sommeria [2002], we can assume
that the mean vorticity is the result of the equilibrium between the production and the
advection by the mean currents.

In equation 5.26, this equilibrium writes:

u-V (%) ~ %V x (Dey,) - e, (5.64)

we now suppose that the orders of magnitude for the variables are defined as:

where L, is the length scale of the energy deficit which in the experiment is L, ~ 5
m, and hg is the characteristic the water depth near the breaking point taken here
as hyg ~ 0.2 m. The dissipative force is estimated using the hydraulic jump analogy

defined in equation 5.29. The gradients of the production term are mainly alongshore
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Figure 5.23 — Estimation of the averaged wave height H, the averaged wave breaking index
7, the dissipative force D and the vorticity production term, with monochromatic wave
forcing with different periods. Left panels: T=2.5 s (simulation Mjy); Middle panels:
T=3.5 s (simulation M>); Right panels: T=4.5 s (simulation Ms).
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and therefore associated to either the energy deficit length scale or the bathymetry
alongshore gradients as shown in the previous analysis. The advection term is associ-
ated to gradients in the potential vorticity which are on the scale of the vortex radius
R.

We then obtain the following order of magnitude relation:

1Q 1 g i
Rho hQLy4CT h%

(5.66)

If we suppose that the velocity magnitude is related to the vortices and that these are
of the Rankine type, the velocity increases with vortex radius as Ui (r) ~ Uy, with Uy
the velocity in the vortex, r the distance from the vortex center, R the vortex radius.

The order of magnitude for the vorticity @ is then

la(TUl) %

¢ r o or R (5.67)
The relationship 5.66 the becomes:
ghO 3
Q* ~ v (5.68)
4cT'L,

where v = H/hq is the wave breaking index. By integrating in the surf zone represented

by the area S and time-averaging we obtain an equivalence for the mean enstrophy:

gho
4cT'L,

<e>n~ /S <y >3=T, (5.69)

Using the scaling law between the vorticity generation and the vorticity advection,

we observe that for I',. there is a linear relationship with the enstrophy, indicating the

quasi-equilibrium between the vorticity generation and the vorticity advection.
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Figure 5.24 — Scaling law of the mean enstrophy < € > versus I, (-) using simulations with

a monochromatic wave forcing and different periods. The line represents the linear
relationship. The colours represent the period of the monochromatic wave forcing.
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5.6 Bichromatic wave forcing

5.6.1 Vorticity

Using the bichromatic simulations we want to observe the influence of the wave group-
ing on the evolution of vorticity in the nearshore zone. The bichromatic wave forcing
allows to observe the spin and decay of the vorticity for each wave group, and to observe
the evolution of vorticity for wave groups with different wave group periods.

To that end, we perform simulations with the same significant wave height H,,, =
0.18 m and same wave period T = 3.5 s, but with a different wave grouping ranging
from T, = 35 s, with 10 wave periods between two nodes (simulation By), to T, = 280 s
with 80 wave periods between two nodes (simulation Bg). We observe that the averaged
circulation and potential vorticity are similar for the bichromatic simulations, allowing
to compare the variations forced by the wave grouping. The two vortices are located
in the same areas and the point where the rip velocity is estimated is located within
the rip channel for all the simulations.

The averaged quantities being similar, we can compare the different simulations.
We first look at the evolution of the enstrophy in the system, in Figure 5.26. The
wave envelope at z = 5 m shows the wave groups for the monochromatic case, and the
different bichromatic cases. The main difference apart from the wave grouping is that
the monochromatic wave amplitude is of 0.0636 m, whereas the maximum amplitude
in the bichromatic case is of 0.09 m, to obtain the same significant wave height H,,, for
all the simulations considered. Concerning the enstrophy, in the monochromatic case
the spin-up has already been commented in Figure 5.15, with an increase up to t = 70
s, then a decrease to the quasi equilibrium value, at ¢ = 200 s. The bichromatic wave
forcing shows a similar enstrophy gradient in the spin-up, with a time-lag between the
different cases, due to the fact that the greater the wave group period, the longer the
time to attain the sufficient wave amplitude to break and generate vorticity. After that,
all the bichromatic case reach an oscillatory state, where the modulation in enstrophy
is directly related to the modulation in the wave group.

For the shorter wave group period T, = 35 s (simulation By ), the enstrophy reaches
an oscillatory state lower than in the monochromatic case (simulation Ms). This limit
could be related to the spin-up time of the monochromatic case, around 70 s, and if
the wave group period is lower than this limit, then the circulation does not oscillate
around the equilibrium value of the monochromatic case. For the other bichromatic
cases, the oscillatory phase in enstrophy is modulated around the equilibrium enstrophy

value of the monochromatic case. We also note that the longer the wave group period,
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Figure 5.25 — Averaged Potential vorticity field and circulation over one to several wave
group periods, depending on the simulation for a bichromatic wave forcing. The black
lines represent the isocontours of the bathymetry, the arrows the averaged circulation
over one group period T,. The boxes represent the areas where the center of mass of the
vortices is searched. The circle represent the position of the point where wu,;, and v,
are estimated. a) T, = 35 s (simulation B1); b) T, = 70 s (simulation Bs); ¢) Ty = 105
s (simulation Bs); d) T, = 140 s (simulation By); e) T, = 175 s (simulation Bs); f)
T, = 210 s (simulation Bg); g) Ty = 245 s (simulation B7); h) T, = 280 s (simulation
Bg).
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Figure 5.26 — a) and c¢) Time evolution of the wave group envelope at x = 5 m for the
bichromatic simulations, only the upper part of the wave envelope is shown, for clarity
purpose. ; b) and d) low-pass filtered enstrophy for the corresponding simulations.
(+): monochromatic forcing, Ty = 3.5 s (simulation My). (---): T, = 35 s (simulation
By); (—-—): T, = 70 s (simulation By); (—=—): T, = 105 s (simulation Bs); (—):
T, = 140 s (simulation By). (---): T, = 175 s (simulation Bs); (— - —): T, = 210 s
(simulation Bg); (——): T, = 245 s (simulation By); (—): T, = 280 s (simulation Bg).
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the higher the enstrophy maximum during a group period, however the enstrophy is
modulated by the wave group and oscillates around the same mean value which is the
equilibrium enstrophy of the equivalent monochromatic wave.

If we focus now on the bichromatic case with a longer wave group period T, = 140
s, we observe a slight asymmetry in the enstrophy modulation around the equilibrium
value. Looking at the modulation between two trough ¢ = 450 s and ¢t = 590 s,
the maximum enstrophy is reached at ¢ = 505 s, which means that the increasing
phase lasts 55 s, and the decreasing phase lasts 85 s. This is due to the different
mechanisms involved in the vorticity generation and the vorticity decay. In the case of
the vorticity generation, as the wave amplitude grows, the vorticity generated by wave
breaking interacts with the vorticity field already present, with a positive feedback
that increases further the vorticity. On the contrary, when the wave amplitude is
decreasing, the feedback decreases too, and the dissipation by friction becomes strong.
As evidenced in the previous section the spin-up is more rapid while the enstrophy
decrease monitored by friction has much larger time scales.

For longer wave group periods (7, > 175 s, simulations B5 — B8), we observe that
the enstrophy in the oscillatory state present three phases. At first when the wave
amplitude start increasing, the enstrophy start increasing with the same growth rate
for these 4 simulations for approximately the first 50 seconds of the wave group. Then
the enstrophy keeps increasing, but with a lower growth rate. Finally when the wave
amplitude in the group start decreasing, the enstrophy decreases too with a constant
rate, similar in the 4 simulations.

This indicates that the circulation in the nearshore zone reaches a quasi-equilibrium
after some time, related to the spin-up time, when the enstrophy reaches a value of
approximately 1.5 Hz%?.m?.

The vorticity time-stack for different wave group periods are plotted in Figures
5.27 and 5.28. For the bichromatic wave forcing with wave group period T, = 35 s
(simulation Bj), we observe that the cross-shore position of the vortex is modulated
by the wave group. When the wave amplitude is low the vortex is found in the band
11 m < y < 17 m and when the wave amplitude increase, the vortex position changes
abruptly, passing to the band 14 m < y < 18 m. This abrupt change is due to the fact
the waves with the lower amplitude of the group do not break, and do not generate
significant vorticity, to influence the vortex. The vorticity generation in the vortex
center also increases with the wave of higher amplitude.

For the bichromatic with a wave group period T, = 70 s, the behaviour is similar, the
vortex moving slowly seaward when the wave amplitude decreases, and going shoreward

when the wave amplitude increases and the wave start breaking again. The vorticity
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evolution at x = 15 m, y = 7 m shows that the evolution is asymmetric, when the
wave amplitude increases the vorticity increases slowly for 45 seconds and when the
wave amplitude start decreasing, the vorticity decreases to reach its minimum in only
15 seconds. This caused by the different terms that are preponderant in the increasing
phase it is the vorticity generation due to dissipation by wave breaking and the vorticity
advection, and in the decreasing phase it is the dissipation by friction that becomes
important.

We also notice that when the wave amplitude decreases, negative vorticity is gen-
erated at the off-shore boundary. When the wave forcing increases, the vortices are
stronger and the shear between the two vortices in the rip channel increases too. This
shear advects vorticity from the negative vortex toward the rip neck, and is later found
in the seaward boundary of the positive vortex.

For the other bichromatic wave forcing with wave period ranging from 7, = 105
s to T, = 280 s (simulations Bj-Bg)the evolution is similar hence we can explain the
dynamics one time for all these simulations. At first when the wave amplitude starts
increasing the vorticity is not affected by the waves due to the low amplitude and we
observe that the vortex is moving shoreward. When the wave amplitude is high enough
to generate vorticity by dissipation due to wave breaking, the vortex starts moving sea-
ward, with high vorticity in the center of the vortex. After approximately 70 seconds,
the vorticity starts decreasing, even though the wave amplitude keeps increasing. This
behaviour is similar to the one observed for the spin-up in the monochromatic simula-
tions and lasts for the same period of 70 seconds. After this spin-up time, the vorticity

decreases rapidly to a value oscillating near 0.2 s=*

and when it reaches this value,
the vorticity keeps increasing, but a slower pace. With the vorticity decrease is also
associated an expansion of the vortex from the band 12 m < y < 16 m to the band
12m < y < 18 m. When the wave amplitude starts decreasing the vorticity at first
does not decrease, as the wave amplitude is still high and generates enough vorticity
to remain in quasi-equilibrium. When the wave amplitude is low enough, the vorticity

starts to decrease and the vortex start expanding.

5.6.2 Evolution of the circulation cells

The evolution of the center of mass averaged over one wave period (Figure 5.29) are
different for the JONSWAP, the monochromatic and the bichromatic simulations. For
the JONSWAP wave forcing (simulation .Jy) the two vortices center move constantly
to adapt to the wave forcing, spreading toward a center position at x = 16 m, y = 7

m for the positive vortex (red) and x = 16.5 m, y = 15.5 m for the negative vortex
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Figure 5.27 — Cross-shore vorticity time stack at y = 7 m, corresponding free surface water
height time series at x = 5 m (75) and vorticity time-series at x = 15 m, y =7 m (¢15)
corresponding to the black dashed line in the vorticity time-stack, for a bichromatic
wave forcing. Upper left panels: T, = 35 s (simulation Bj). Upper right panels:
Ty =70 s (simulation Bs). Lower left panels: T, = 105 s (simulation Bs). Lower right

panels: T, = 140 s (simulation By).
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Figure 5.28 — Cross-shore vorticity time stack at y = 7 m, corresponding free surface water
height time series at = 5 m (1;) and vorticity time-series at x = 15 m, y = 7 m (q15)
corresponding to the black dashed line in the vorticity time-stack, for a bichromatic
wave forcing. Upper left panels: T, = 175 s (simulation Bs). Upper right panels:
T, = 210 s (simulation Bg). Lower left panels: T, = 245 s (simulation By7). Lower right
panels: T, = 280 s (simulation Byg).
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Figure 5.29 — Trajectories for the averaged center of mass over one period of the positive
vortex [z, yd] (red) and negative vortex [zy, 3y | (blue). a) JONSWAP wave forcing
(simulation Jy) b) monochromatic wave forcing 7' = 3.5 (simulation Ms); (c-i) bichro-
matic wave forcing: b) T, = 35 s (simulation By); d) Ty, = 70 s (simulation Bs); e)
Ty = 105 s (simulation Bsg); f) Ty = 140 s (simulation By); g) Ty = 175 s (simulation
Bs); h) T, = 210 s (simulation Bg); i) T, = 245 s (simulation Br); j) Ty = 280 s
(simulation Bg).
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(blue). Their positions respect to the mean position does not change too much, as
they move less than 2 meters in the cross-shore or the longshore direction. For the
monochromatic wave forcing (simulation M;) the vortices remain in the same position

in a state of quasi-equilibrium.

For the bichromatic wave forcing, we observe that the vortices center start to move
due to the wave grouping. For the wave group period 7, = 35 s (simulation B;) the
motion of the vortices is essentially cross-shore, moving by roughly 2 meters during
one wave group. As shown in the previous section, for this simulation the wave group
period is lower than the spin-up time, hence the vortices move freely with the wave

group and the vortices do not reach a quasi-equilibrium.

As the wave group period increases, the motion of the vortices changes too. The
trajectory of the positive vortex (red) changes to a longshore oscillation of approxi-
mately 2 meters, and the negative vortex (blue) trajectory moves in the cross-shore
and the longshore position. For T, > 135 s (simulations Bs-Bs), the trajectory of the
vortices is very similar. This also shows the importance of the spin-up time, as when
the wave group period is large than this spin up time, the behaviour of the vortices

does not change drastically.

The evolution of the distance between the vortex centres d, over one group period
also changes with the group period. For the bichromatic wave forcing with 7, = 35
s (simulation Bj) the distance between the vortex centres is relatively constant, this
is explained due to the cross-shore movement of the vortices, and they seem to move
at the same pace seaward or shoreward. When the wave group period increases we
observe that the distance between the two vortices start to evolve with the wave group
period. When the wave amplitude is low, the two vortices come closer to one another,
as the waves do not generate significant vorticity, the mutual advection of the vortices
moves them closer. As the wave amplitude increases, the distance starts increasing
as the vortices move toward their equilibrium position. When the wave amplitude
decreases, at first the distance remains constant, and when the wave amplitude is low,
the vorticity generated by the waves is not significant and the vortices start to move
closer again. We also note that the motion of the vortex centres due to the wave forcing

is slower than the motion of the vortices due to mutual advection.

The distance spectra (Figure 5.31) shows that the vortices motion is dictated by
the wave group period, as for the bichromatic forcing considered, the peak in frequency

is found at the wave group period, consistent with the time evolution of the vortices.
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Figure 5.30 — Upper panel: Evolution of the wave group envelope over one group period
T,. Lower panel: Evolution of the distance between the center of mass of the vortices
d, over one group period. (---): Tg = 35 s (simulation B;); (— - —): Ty = 70 s
(simulation Bs); (——): T, = 105 s (simulation Bs); (—): T, = 140 s (simulation By);
(+++): T, =175 s (simulation Bs); (—-—): Tg = 210 s (simulation Bg); (——): Ty = 245
s (simulation Br); (—): T, = 280 s (simulation Byg).
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Figure 5.31 — Spectra of the distance between the center of mass of the two vortices d, for
the bichromatic cases. (---): T, = 35 s (simulation B); (—-—): Ty = 70 s (simulation
By); (——): Ty = 105 s (simulation Bs); (—): T, = 140 s (simulation By); (—): Tg = 175
s (simulation Bs).

5.6.3 Rip current velocities

One of the main feature of the rip current is the rip current ejection that is a great
hazard for swimmers. Using the monochromatic case and the bichromatic cases, we
intend to understand the evolution of the rip current velocities. To observe the variation
in the rip current velocity, we focus on point at x = 15 m, ¥y = 10 m, in the center of
the rip channel.

The rip current evolution are plotted in Figure 5.32. We observe that the rip current
velocity is mainly cross-shore oriented, as it ranges from -0.4 m/s to 0.3 m/s in the
cross-shore direction, and from -0.05 m/s to 0 m/s in the longshore direction. If we
look at the spatial distribution of the rip current velocity, the most probable case is of
seaward oriented cross-shore velocity, with low longshore velocity v,,. The observation
of the velocities time series explains this distribution, as the cross-shore velocity ., is
clearly skewed, being more time seaward oriented than shoreward oriented in a wave
period. During a wave period, u,;, becomes positive with the passing of the wave, but
0.7 s after the wave, the velocity in the rip current becomes negative, and decreases
until the next wave comes. This explain that the wave-averaged rip current velocity is
Urip ~ —0.15 m/s.

As the longshore rip current velocity v,;, is one order of magnitude lower compared
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Figure 5.32 — Upper panel: spatial distribution of the cross-shore and longshore velocities
Urip, Urip inside the rip channel, at z = 15 m, y = 10 m for a monochromatic wave
forcing (simulation Ms). Lower panel: Time-series of upip (—), vrip (——) over 10
seconds. For wu,;, the positive velocity is shoreward oriented, for v,;, the positive
velocity is oriented toward y = 30 m.

to the cross-shore velocity w,,, we focus on the cross-shore velocity w,;, for the bichro-
matic wave forcing simulations. For T, = 35 s (simulation B;) we observe a skewed
cross-shore velocity profile with most of the values negative over one group period,
explaining the negative averaged velocity (Figure 5.33). The cross-shore velocity aver-
aged over one group period < u,;, >7, is shown in Figure 5.34. The strongest averaged
velocity in the rip current is obtained for the monochromatic case (a negative cross-
shore velocity corresponds to a seaward oriented velocity), as with the bichromatic
cases, the averaged cross-shore velocity is lower. We also note that the averaged cross-
shore velocity reaches an equilibrium value, around -0.125 m/s that does not change
for T, > 105 s. This is another indication that for long enough wave group periods,

the nearshore circulation reaches a quasi-equilibrium state.
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Figure 5.33 — Evolution of u,s, (—) for the bichromatic T; = 35 s case (simulation B;), at
=15 m, y = 10 m, in the center of the rip channel. The dashed line represents the
averaged cross-shore velocity < i >7, over a group period in the same position.
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Figure 5.34 — Evolution of the cross-shore velocity averaged over a group period < u.j, >,
with the wave group period Ty. Ty, = 0 s corresponds to the monochromatic case.
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5.7 Conclusion

Using the numerical model from [Marche et al., 2007 ; Guerra et al., 2014] that has been
validated for the bathymetry and wave forcing considered, we studied the evolution
of the circulation and vorticity in the nearshore zone. Using the potential vorticity
balance equation in the case of a monochromatic wave forcing, we studied the relative
importance of each term, in term of vorticity generation, displacement or dissipation.

We observe that the enstrophy, related to the vorticity present in the nearshore
zone is related to the friction and the vorticity production term. The potential vorticity
balance allowed to understand the mechanisms of vorticity generation and advection
with a monochromatic normally incident wave forcing.

For a monochromatic wave forcing, we observed using a scaling law, that the mean
vorticity results from the equilibrium between the vorticity production by wave break-
ing and the vorticity advection by the mean currents.

The friction also influences the vorticity in the nearshore zone, as when the friction
decreases, the enstrophy increases. The friction is also responsible for the vorticity
decay, and the decay rate increases with an increased friction.

For the bichromatic wave forcing, we observed that the nearshore zone reaches an
equilibrium when increasing the wave group period, and that the enstrophy reaches a
threshold for large wave group periods, the time to reach this threshold being similar

to the spin-up of the vorticity in our case.
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Chapter 6

Conclusion

6.1 Coastal bottom boundary layer

A unidimensional £ — w model has been proposed and validated on smooth and rough
bottoms, against experimental and numerical results. The incorporation of the ad-
vective terms, as well as the mean pressure gradient, improves the model capacity to
reproduce the variations of the bottom boundary layer under oscillatory flows on the
beach.

Using the wave forcing from an experiment on a wave flume in the LEGI with a
mobile bed and a bichromatic wave forcing, the £ — w numerical model reproduces the

vertical distribution of non-linearities in the boundary layer.

The decrease in asymmetry and increase in skewness as we approach the still bed
predicted by the model is well observed in the experiment. The numerical results show
however a variation in a much smaller vertical scale than the experiment. By ad-hoc
coupling of the numerical results on a fixed bed with the vertical displacements of the
still bed, we observe a similar vertical diffusion, implying that this diffusion is caused
by the still bed vertical motion, and not by an increased roughness height caused by

the sheet-flow layer.

Using a theoretical formula [Abreu et al., 2010] to estimate the relationship between
the asymmetry outside the boundary layer and the skewness near the bottom over a
wide range of skewed and asymmetric waves, a linear correspondence between this two
quantities is found, that is similar to the experiment by [Berni et al., 2013]. We can
state that the process that transforms asymmetry into skewness in the coastal bottom
boundary layer is a general feature of oscillatory boundary layers, that could lead to a

better prediction of the sediment transport.
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Chapter 6 CONCLUSION

6.2 Vorticity and circulation in the nearshore zone

The 2D depth-averaged numerical model based on the Non Linear Shallow Water
equations ([Marche et al., 2007],[Guerra et al., 2014]) has been validated with a wide set
of data, of free surface and velocity evolution from the MODLIT experiment [Michallet
et al., 2010 2013]. The model is able to reproduce the energy dissipation gradients
related to wave breaking, as well as the energy transfer from the JONSWAP band to
the infragravity band. These energy dissipation gradients are an important proxy for
vorticity generation [Brocchini et al. [2004]; Bonneton et al. [2010]]. The numerical
model is also accurate in estimating the nearshore circulation and vorticity associated,
compared to the lagrangian drifters ([Castelle et al., 2010]). The model also reproduces
some of the seiching modes that occur between the breaking point and the shoreline.

Using this numerical model and the potential vorticity balance derived from the
vorticity equation of Bonneton et al. [2010] as a diagnosis tool, we studied the evolution
of the circulation and vorticity in the nearshore zone, for a JONSWAP wave forcing,
as well as monochromatic and bichromatic ones.

We observe that the enstrophy, related to the vorticity present in the nearshore
zone is controlled by friction and vorticity wave generation. The potential vorticity
balance allowed to understand the mechanisms of vorticity generation and advection
with a monochromatic normally incident wave forcing.

For a monochromatic wave forcing, we observed that the mean vorticity results from
the equilibrium between the vorticity production by wave breaking and the vorticity
advection by the mean currents that can be summarized with a scaling law that predicts
vorticity levels in the surf zone.

The friction also influences the vorticity in the nearshore zone, as when the friction
decreases, the enstrophy increases. The friction is also responsible for the vorticity
decay, and the decay rate increases with an increased friction.

For the bichromatic wave forcing, we observed that the nearshore zone reaches an
equilibrium when increasing the wave group period, and that the enstrophy reaches a
threshold for large wave group periods, the time to reach this threshold being similar

to the spin-up of the vorticity in our case.

6.3 Perspectives

The coastal bottom boundary layer is important to obtain better predictions of the
sediment transport in the surf zone. The influence of the mobile bed on this boundary

layer is an important topic, and the mechanisms involved with this bed mobility is
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still under investigation. Future work will be focused on the modelling of such vertical
bottom motions within the k —w framework, by incorporating the bed mobility directly
into the equations.

The mechanisms of generation and decay of the potential vorticity in the nearshore
zone can be further developed by coupling the numerical hydrodynamic model with La-
grangian drifters through the incorporation of the Lagrangian Particle Tracking model
from Escauriaza et Sotiropoulos [2011] to the numerical model. Lagrangian drifters
can be used to observe the nearshore dispersion on a rip current, for different wave

forcing over an uneven bathymetry.
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Appendix A

Turbulence modelling - Numerical

resolution

A.1 1D version of the k¥ — w equations

The horizontal velocity u(z,t), the turbulence kinetic energy k(z,t) and the specific

dissipation rate w(z,t), are described in a 1D framework:

ou_ 1op 0 (0
o pdx 0Oz 0z

%_ % 2_5*]{; _|_g + *E %
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[Wilcox, 1998 ; Guizien et al., 2003]
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A.2 Numerical Resolution

A.2.1 Resolution scheme

We solve the system of equations using the implicit finite control volume method of

Patankar [1980] which is described hereafter, on an exponential grid. We improve this
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method by determining the turbulence kinetic energy k and the specific dissipation

rate w in the staggered grid.

Determination of the computational grid

We can choose the type of the grid, depending on the area where we want the more
points
Geometric grid

to describe the geometric grid, we use the initial conditions z; the bottom boundary,

and z, the upper boundary, and also the number of nodes Ny

We define the grid with the equation A.4:

(2)1 =<0 (A.4)
(Z)j-i-l = (Z)] + Z()Rj \V/j 2 1 ‘

where R represent the common ratio of the geometric series, which is not known

beforehand. To determine R we use the properties of a geometric series:

No
(2)vg =20 R =2 (A.5)
i=0

AZjpy-mmmabonye- i+
lTj 1 |2y
Azjgo ooy j—1

Figure A.1 — Computational grid sketch. The horizontal velocity u is determined at point
7, while the turbulence kinetic energy k and the specific dissipation rate w are determined
on the midpoints j +1/2 and j — 1/2
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the midpoints are located at the center of each cell, as shown in figure A.1:

(Z)j-i-l - (Z)j (A.G)

(2)j41/2 = 2 + 5

We also define two points that will be used as ghost points in the boundaries:

20
Z_% = 5
2o RNo—1
INo+l = A0t OT (A7)

Regular grid

The regular grid is a grid where all points are evenly spaced:

(2)j+1 = ]{[(Zh — 20) + 20 (A.8)

mixed grid

the mixed grid is partly geometric at the bottom, and regular at the top. For this
type of grid, and to avoid discrepancies at the frontier, the frontier is located where
AZgeom = Azregular

Geometric grid at the boundaries

the geometric grid at the boundaries is used when we need more resolution at the
top and bottom boundaries. We use two geometric grid of length (z5, — z0)/2.

Comparison different grid types In the figure A.2, we see the difference between
the different types of grid.

We see that the regular grid has low resolution at the bottom boundary, and there-

fore is seldom used. From now on, unless stated otherwise, the grid will be geometric.

A.2.2 Horizontal Velocity equation
original terms

The following step is to derive the discretization equation and to integrate them over
a control volume.
We integrate the equation (A.1) over a control volume centered in the point j, and

over a time step At:

gty AL Oy dtd jts ptHAt QU 10P it d jtg (AL 9 ou
o = (at‘pag) S az<<”+”t>az>

[NIES

(A.9)
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Figure A.2 — Crid point distribution. The grid span from zy = 107 m to z; = 0.4 m, with
Ny = 50 grid points. a) geometric grid, b) regular grid, ¢) mixed grid with a geometric
grid between 2.5 - 1070 < z/2;, < 1/3 and a regular grid between 1/3 < z/z, < 1, d)
geometric grid at the boundaries. The left panel represents the grid in regular scale,
the right panel shows the same grids on logarithmic scale.

For time integration, we will use a fully implicit method:

/t t U dt ut tAt (A 10)
j = U .
t

For readability purpose, we will drop the superscript ¢ + At, and assume that u, k

and w stand for the new values that are unknown at step ¢t + At:

uTA = KA =k WA =0 (A.11)
Therefore:
J+3 AL Oy .
/J—é /t E dt dz = (uj — uj)Az; (A.12)
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+1 At P p
/J / <6U — 18P> dt dz = (U — U") Az — L 8PAtAzj (A.13)
i t

p O
jts At 9 ou ou ou
— — = (). 1| — —(T,). —
/j /t 0z <<V+Vt)az> " {( ot (az>g’+é (- <3Z>g‘—§
(A.14)

Where (I',); = v+ (vr);. To calculate the derivatives at the points j — 3 and j + 3,
8u Ujy1 — Uj>

— == A.15

<82>]~+1 ( Azji1/s (A1)

ou U; — U]’1>
— =|——— A.16
<3Z> i ( Azj1/2 (A.16)

At

N

we use the nearby points:

we then obtain:

du ou
[<Fu>j+% <a> R (a) ]
Jt3 J—3
(Fu)j+l (Fu)j—l (Pu)j+l (Fu)j—l
= At 2 s 2 a0l 4 — 2 2 ; A7
Azj+% Uit + Azj_% i1 Azj+% * Azj_% 4 ( )
By defining the terms:
At (FU)j—‘,-l
An(j) = —— = Al
At [(Tu);2
A =—— = A.18b
Ap(j) =1— An(j) — As(j) (A.18c¢)
1P
D,(j)=—=—A b Nk Al
w(7) o t+u; +U—-U (A.18d)
(A.18e)
we obtain the following discrete equation for points j € [2: Ny — 1]:
An(J)ujr + Ap(f)u; + As(f)uj—1 = Du(j) (A.19)

The subscript p refers to the central point considered, while the n subscript refers to

the point directly above (or "North") and the g subscript refers to the point directly
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below (*South').

Boundary conditions

Lower boundary condition
At the bottom boundary z = 2, corresponding to j = 0 (figure A.3) the horizon-
tal velocity v and the turbulent kinetic energy k are equal to zero and the specific

dissipation rate is set to the value w,q;, as defined in chapter 2.

9 4
T

Az% ___________ %
Az1 1

Figure A.3 — Grid point sketch at the bottom boundar