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Introduction générale 

L’ensemble des terminaux à conteneurs représente un nœud très important dans la chaîne 

internationale de transport de marchandises et agit directement sur l’économie mondiale. Vue 

l’évolution rapide du commerce mondial, la productivité des terminaux est mise à l’épreuve et 

l’optimisation des temps de stockage et de transfert de conteneurs, de l’espace de stockage et des 

coûts de stockage en nombre d’équipements devient un besoin primordial.  

L’optimisation de stockage de conteneurs dans un terminal portuaire est un problème 

logistique très important qui a attiré l’attention des chercheurs depuis plusieurs décennies. Deux 

grands axes d’optimisation de stockage sont généralement étudiés : l’optimisation du temps de 

stockage et l’optimisation de l’espace de stockage. Ces deux problèmes sont souvent traités 

séparément. Quelques travaux traitent de la minimisation de la flotte de véhicules dans un 

terminal à conteneurs. La minimisation du nombre de véhicules utilisés dans un terminal à 

conteneurs et la minimisation du temps de déplacements des cavaliers sont les objectifs 

d’ordonnancement de tâches attribuées aux cavaliers.  

Les systèmes de véhicules à guidage automatique (AGVS) ont connu ces dernières années 

une évolution sans précédente poussant les décideurs à mettre en œuvre des processus assez 

pointus permettant d’une part d’optimiser leur rentabilité, et d’autre part, de respecter des 

contraintes de plus en plus nombreuses. 

De nombreuses analyses et études approfondies ont traité l’optimisation des AGVS. L'étude 

d’un AGVS commence avant même sa conception. En effet, des simulations assez pointues 

permettent de vérifier les trajectoires et le nombre de tâches à exécuter ainsi que le nombre de 

véhicules nécessaires pour réaliser le travail dans les meilleurs délais fixés par les décideurs. Vue 

la multitude des fonctions et des types de véhicules automatiques (transport d'engins lourds, 

transport de box à rouleaux et/ou de caisses-palettes de stockage, transport des palettes en fin de 

ligne, transport de produits alimentaires, transport de conteneurs, etc.) des études appropriées ont 

traité chaque cas en s’adaptant à sa particularité et son contexte. Les résultats généraux ou 

spécifiques des études des systèmes de véhicules à guidage automatique restent une référence 



 

 

 
 

dans l’étude de chaque cas particulier. 

Dans cette thèse nous nous sommes intéressés à un cas très particulier d’AGVS, il s’agit des 

terminaux à conteneurs automatisés, qui en plus des véhicules autoguidés, sont souvent équipés 

de grues de stockage automatiques (grues de cour), ce qui pousse souvent les scientifiques à 

considérer les problèmes d’ordonnancement intégré dans les terminaux automatisés ou semi-

automatisés.  

Nous traitons dans ce travail l’optimisation de plusieurs objectifs pour stocker les conteneurs 

avec une stratégie efficace et productive. Nous étudions le problème d’ordonnancement intégré 

considérant les trois équipements d’un terminal à conteneurs automatisé à savoir : les véhicules 

autoguidés, les grues à quai et les grues de baie. Nous étudions aussi le problème d’allocation 

d’emplacements de stockage aux conteneurs, à l’import, en intégration avec le problème 

d’ordonnancement des cavaliers. L’objectif principal de ce travail est la minimisation du coût 

opérationnel de stockage. Tous nos résultats pour les terminaux automatisés sont adaptés à 

plusieurs  cas de terminaux non automatisés et de terminaux hybrides. 

Nous abordons deux aspects d’optimisation des systèmes de stockages dans les terminaux 

automatisés, l’optimisation mono-objective du temps de manutention des conteneurs et 

l’optimisation multi-objective du coût opérationnel global.  

Ce qui suit n’est pas une étude comparative des différents terminaux maritimes automatisés ni 

de l’impact du type du terminal sur sa productivité mais une proposition de solutions réalistes et 

efficaces adaptées à la nature de l’équipement utilisé et aux choix de routage des véhicules 

autoguidés. Nous qualifions les solutions que nous proposons de réalistes vu les nombreuses 

contraintes prises en compte dans nos modélisations ainsi que dans nos algorithmes de 

résolution, et nous les qualifions d’efficaces vu les avantages qu’offrent les résultats théoriques 

que nous avons développé ou présenté en termes de facilitation de résolution pour le problème 

d’ordonnancement de routage de véhicules et d’évaluation numérique et graphique de la qualité 

des décisions proposées pour le problème multi-objectif d’ordonnancement de véhicules 

autoguidés et d’allocation de conteneurs. 

En effet, les principaux objectifs de cette étude sont: l’évaluation de coûts opérationnels 



 

 

 
 

réalistes, le choix de routages avantageux pour des considérations pratiques et théoriques, 

l’évaluation de bornes inférieures pour la qualification des solutions proposées par l’optimisation 

multi-objective, le développement d’algorithmes adaptés à la complexité des problèmes 

considérés et la proposition d’outils efficaces pour la prise d’une décision suffisamment justifiée 

pour l’optimisation multi-objective.           

D’ailleurs, ce travail représente un effort ambitieux pour la réalisation prochaine d’un outil 

logistique basé sur l’optimisation mathématique et la programmation informatique afin d’offrir 

une aide à la décision efficace et réaliste dans les terminaux maritimes automatisés.  
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Introduction 

The main objective of this thesis is to build modeling and optimization efficient approaches 

dedicated to Automated Handling System (AHS) in Maritime Container Terminals (MCT) 

considering particularly the case of import. Many studies have been devoted to such a problematic, 

however, optimization of Maritime Automated Container Terminals (MACT) needs more global 

view and realistic approaches considering the importance of the relationship between mathematical 

results, computing processes and the realistic needs of the operators at MACT. In relieved state of 

art, despite the theoretical efficiency of many studies, applying their results needs the consideration 

of additional realistic constraints, the evaluation of economic operational cost with multi-criteria 

aspect and appropriate tools to facilitate the operator decision. 

In our work, we develop modeling, mathematical and computing tools for MACT. We study and 

propose different terminal layouts by considering the vehicle traffic. Moreover, we consider all 

MACT kinds: MACT with Automated Straddle Carriers (Auto-Strad), MACT with Automated 

Guided Vehicles (AGV) and MACT with Automated Lifting Vehicles (ALV).  Two problems are 

considered here in: Vehicle Scheduling Problem and Location Assignment Problem. Firstly, we 

study the Vehicle Scheduling Problem in MACT. We consider locations to use for container storage 

initially known. Realistic modeling is developed, mathematical results of the state of art are 

considered and ILOG CPLEX JAVA code is implemented for efficient resolution of large instances 

of the problem. We consider then the Integrated Problem of Location Assignment and Vehicle 

Scheduling (IPLAVS) in MACT, at import. We study two variants of this problem: a mono-

objective variant that is minimizing the operating time of handling system and a Multi-Objective 

variant that is minimizing minimizing the operating cost which we evaluate considering eight 

objectives. Different tools are proposed to help operator decision, in particular, 2D-projections of 

Approximated Pareto Front and different indicators of efficiency. 

Automated Container Terminals in Supply Chain 

Supply Chain Management deals with the organization of different activities such as sourcing 

and procurement, conversion, and all logistics management activities. Moreover, it concerns the 

manufacturing operations. Not only it drives the coordination of processes and activities with and 
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across marketing, sales, product design, finance and information technology, but also it includes the 

coordination with partners, which can be suppliers, intermediaries, third-party service providers and 

customers. The accompaniment of efficient transportation processes insures the realization of 

world-class operations at the point of supply, production, and customer locations. Maritime 

transportation has been a catalyst of economic development and has provided the main vehicle for 

imports and exports. In Europe, almost 90% of the EU external freight trade is seaborne, whereas 

40% of the intra-EU exchanges is represented by short sea shipping.  

On August 15
th

, 1962, the Port Authority of New York and New Jersey opened the world’s first 

container port, Elizabeth Marine Terminal. The concept had been developed by the McLean 

Trucking Company in 1956. Container terminals represent an essential element in the supply chain 

management where cargo containers are transshipped between different vehicles, for onward 

transportation. A container terminal is said to be a maritime container terminal if the transshipment 

occurs between container ships and land vehicles such as trains or trucks. The main maritime 

container terminals are located around major harbors.  

New generation of maritime container terminals using high technology for the handling 

operations represents a remarkable progress in the field of container transportation system.  Such a 

generation is said to be automated container terminal. The competition between major international 

ports enriches the choice of automation, which is also explained by its guaranteed security, ease of 

organization and traceability and higher productivity due to 24 work hours per day. We can 

distinguish the following automated container terminals, CTA in the port of Hamburg (Germany), 

ECT in Rotterdam (Netherlands), Automated Container Terminal of Ottawa (Canada), Brisbane 

Container Terminals and Sydney International Container Terminal (Australia).      

The benefits for terminal operators are essentially: 

 An enormous increase in handling performance and improvements in terminal 

performance 

 A reduction of wage cost 

 An improved utilization of existing stack areas 

 An increased productivity and a competitive cost reduction per move  

http://en.wikipedia.org/wiki/Port_Authority_of_New_York_and_New_Jersey
http://en.wikipedia.org/wiki/Harbours
http://www.hutchisonports.com.au/announcements/official-opening-marks-seismic-shift-on-australian-waterfront
http://www.hutchisonports.com.au/announcements/official-opening-marks-seismic-shift-on-australian-waterfront
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 Automated vehicles and automated stacking cranes  efficient work together. 

In recent years, methodological progress regarding container terminal operations have 

considerably bean improved. However, mathematical optimization with more global point of views 

and multi-criteria objective are rare in the literature. In our study, we consider two optimization 

problems in automated container terminals at import; the first is the vehicle scheduling problem; 

and the second is the integrated problem of location assignment and vehicle scheduling. In the first 

part of our study, we propose different traffic layout adapted to the two studied problems and to 

every kind of automated container terminal. We also introduce relevant literature reviews studying 

the optimization of container handling systems at maritime terminal, the optimization of general 

automated guided vehicle system and the multi-objective optimization in general, and finally, in a 

particular context of maritime container terminals. In the second part, we solve the planning of QC-

AV-ASC (Quay Cranes-Automated Vehicles - Automated Stacking Cranes). We present an 

effective model for every kind of traffic layout. Moreover, we propose an efficient bi-objective 

model which is important to determine the optimal storage time and the minimal number of 

required AVs. CPLEX resolutions are used to prove the efficiency of our modeling approach. 

In the third part of this thesis, we explore a problem which has not been studied yet: the 

integrated problem of location assignment and vehicle scheduling (IPLAVS), in Maritime 

Automated Container Terminal (MACT) at import. This part represents a new and realistic 

approach of MACT optimization considering both mono-objective and multi-objective variants.  

In this thesis, the multi-objective integrated problem of location assignment and vehicle 

scheduling is studied for the first time considering all the state of art. 

  

http://www.terex.com/port-solutions/en/products/automated-guided-vehicles/index.htm
http://www.terex.com/port-solutions/en/products/stacking-cranes/automated-stacking-cranes/index.htm
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Chapter 1  

Maritime Automated Container Terminals 

Problematics, equipment and traffic layout 

1.1 Introduction 

Maritime Container Terminals (MCT) plays a crucial role in global logistic networks. Because of 

the ever-increasing quantity of cargo, terminal operators need solutions for different decisional 

problems. In the maritime terminal, at the boat arrival or departure, we observe five main problems: 

the assignment of berths, the assignment of query cranes, the allocation of storage space, the 

optimization of stacking cranes work load and the scheduling and routing of vehicles. A good 

cooperation between the different equipments in the terminal is important in order to optimize the 

productivity of Container Handling System (CHS). In an automated container terminal, numerical 

solutions have become essential to optimize the operators decisions. Many recent researches have 

discussed the optimization of equipment scheduling in Maritime Automated Container Terminal 

(MACT).  

We identify three kinds of MACT, considering their equipment; MACT using Automated 

Guided Vehicles (AGVs), Automated Stacking Cranes (ASCs) and Quay Cranes (QCs), MACT 

using ALVs, ASCs and QCs and MACT using Auto-Straddle-Carriers and QCs (without ASCs). In 

our study, we consider these three cases in Maritime Automated Container Terminal (MACT) at 

import. 

1.1.1 Word container traffic evolution 

In this part, we give some statistics about word container traffic evolution in the last years to 

understand why terminal operators need more and more efficiency for their handling tasks. We 

consider the data bases of World Bank and French Center of Maritime Studies (French Ministry of 

Development and Transport). 
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The world container port traffic grew from 300 million TEUs (Twenty Equivalent Units) in 2003 

to more than 601 million TEUs in 2012 and the world container fleet capacity grew from 1.7 

million TEUs in 1990 to 16 million TEUs in 2008. If we compare the number of orders for 

container ships to the number of container ship deliveries in 2007 (see Table 1), we can conclude 

that the world container traffic requires more and more ships and especially ships with a capacity of 

more than 10 000 TEUs. Notice that in 2007, 134 of these container ships were recorded in order 

books and only 7 were delivered. In the same year, the orders of container ships that can carry more 

than 7500 TEUs represented 34 % of the container ships ordered.  

World container port traffic between 2003 and 2013 

 

  M TEUs: Million Twenty Foots Equivalent Units 

Figure 1 

Data source: www.worldbank.com 

Considering this important evolution of the world container traffic, maritime terminals need new 

organizational strategies in order to insure more efficiency for their Container Handling Systems 

(CHS). Many analyses and mathematical works treat the optimization of handling operations in 

maritime container terminals. However, the multi-objective aspect of CHS optimization is not 

sufficiently considered in these works.  

 

http://www.worldbank.com/
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Container-Ships commands and deliveries in 2007 

 

ship 

capacity(TEUs) 

Commands 

Number of ships / 

total capacity (TEUs) 

Deliveries 

Number of ships / 

total capacity 

>10 000 134/ 1 659 092 7 / 96 124 

7500 / 10 000 78 / 673 778 34 / 300 516 

6 000/7500 39 / 257 014 27 /181 630 

5250 / 6000 9 / 49 950 5 / 29 112 

4000 / 5250 130 / 576 015 65 / 305 169 

3 000 / 3 999 31 / 108 374 25 / 88 670 

2  000 / 3 000 63 / 160 465 43 / 113 481 

1 000 / 2 000 126 / 177 116 115 / 161 241 

<1000 62 / 51 359 13 / 11 732 

All ship 606 / 3 637 957 400 / 1 362 881 

Table 1 

Data source: French Center of Maritime Studies, Ministry of Development and Transport 

 

In next table we present some statistics about the Evolution of World Container-Fleet Capacity 

(WCFC) between 1990 and 2011.  
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Evolution of World Container-Fleet Capacity (WCFC) 

Year WCFC Number of Container Ships Average ship capacity 

1990 1.7 Million TEUs 1236 1389 TEUs 

2000 4.5 Million TEUs 2611 1733 TEUs 

2008 10.9 Million TEUs 4318 2530 TEUs 

2011 16 Millions TEUs 5537 2897 TEUs 

Table 2 

Data source: French Center of Maritime Studies,  

Ministry of Development and Transport 

1.1.2 Handling tasks at Maritime Container Terminal  

At import, MCT guarantees especially three tasks: unloading containers from ships, 

stacking containers in storage space and finally delivering containers to shippers and 

consignees. At export, MCT guarantees the same tasks but in the opposite order. These 

three tasks are composed by other tasks which represents important optimization problems: 

berth allocation, yard planning, stowage planning, quay crane scheduling, vehicle 

scheduling and routing (straddle carriers, Automated Guided Vehicle, Automated Lifting 

Vehicle etc.), yard crane scheduling, logistics planning of operations. Logistic planning 

provides an efficient coordination between the different equipments and decisions at MCT. 

Many kinds of handling systems are used at maritime container terminal, in this thesis we 

study the case of CHS (Container Handling System) using Automated Vehicles (AVs) to 

transfer containers between the quay and the storage space. We identify three kind of AV 

used at Maritime Automated Container Terminals: Automated Guided Vehicle (AGV), 

Automated Lifting Vehicle (ALV) and Auto-Straddle-Carrier (Auto-Strad). Different blocks 
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compose the storage space, every block is a set of storage bays and each bay is composed by 

different storage locations (figure 2). Using Auto-Strad in MCT, there's no stacking crane, 

the vehicles (Auto-Strads) directly access to the storage bays. If the terminal is equipped 

with AGVs or ALVs, the transfer of container in storage bay is insured by Automated 

Stacking Cranes (ASCs). 

In an automated container terminal (ACT), the time of handling operations depends on the 

interactions between the different storage equipments. Different researches are established to 

improve the handling systems performance. 

 

 

 

Storage block in MACT with AGVs or ALVs 

 

Figure 2 
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Storage block in MACT with Auto-Strads 

 

Figure 3 

The problem of AGV scheduling was treated in the general context of AGVS and in the 

particular context of ACT. AGVS is a materials handling system that uses automated vehicles 

which are programmed to achieve tasks between different manufacturing and warehouse stations. It 

represents a very important innovation in international transport and logistics. ACT is one of the 

most famous examples of AGVS. Studies of AGVS optimization have different objectives: 

maximizing the throughput, maximizing the vehicle utilization, minimizing the inventory level, 

minimizing the transportation costs, and maximizing the space utilization. Approaches that are 

used in AGVS optimization can be classified in two types: analytical approaches and 

simulation-based approaches. Analytical methods are mathematical techniques such as 

queuing theory, integer programming, heuristic algorithms, and Markov chains. A number 

of analytical approaches to AGVS optimization have been proposed in the literature. 

 In the next sections, we describe the most important studies treating optimization of 

handling system of MCT (Maritime Container Terminal). 
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1.2 Literature review 

1.2.1 Problems of minimizing AGV fleet size in AGVS and ACT 

Historically AGVS have not been produced in high volume. Then in AGVS determining the 

minimum number of required vehicles is crucial to improve the global system productivity.  

Muller [2] used rough estimates of total AGV travel times and transport frequency to solve the 

AGV system case. Maxwell and Muckstadt [3] discussed the deterministic case of the problem. 

They considered the random aspect of the problem:  variation of arrival pattern of jobs and vehicles 

speed and they developed an integer programming model to minimize the number of required 

AGVs. In the study of Rajota et al., [4] other parameters are considered: load handling times, empty 

travel time… The authors developed a mixed integer programming model to solve the problem. 

Sinriech and Tanchoco [5] have developed a multi-objective model which keep the total cost of 

AGV system down and increases the system utilization. The problem is treated by I FA Vis [6], in 

the ACT context he developed new planning concepts to minimize the AGV fleet size and he 

applied it to the container terminal case considering a deterministic model with defined time 

windows for each container load. He proposed two methods to solve the problem: an integer 

programming model and a formulation of the problem as a set of partitioning sub problem. 

1.2.2 Minimizing vehicle fleet size in other contexts 

Two similar problems are discussed in the literature. The first problem is to determine the 

minimum number of operators required to accomplish a known schedule of tasks. This problem was 

treated by Phillips and Garcia-Diaz [7]. They used a bipartite network where the maximum flow 

indicates pairs of tasks assigned to the same operator. Then they proposed to determine the arcs of 

the maximum flow to obtain the list of tasks for each operator. Ford and Fulkurson [8] discussed 

this problem and used a partial order of tasks: tasks i precedes task j if the start time of i is earlier 

than the start time of j and if the two tasks can be achieved by the same operator. They solved the 

problem with the determination of minimum chain decomposition. The second analog problem is 

the tanker scheduling. Dantizig and Fulkerson [9] described a deterministic model to solve the 

tanker scheduling problem with linear programming formulation and simplex algorithm. Ahuja et 
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al., [10] proposed another approach to solve the same problem: they introduced a minimum cost 

flow formulation of the problem and used a minimum cost flow algorithm to minimize the fleet size 

of the main problem. 

1.2.3 Minimizing the makespan in AGVS and ACT 

The problem of minimizing the makespan is treated in the general AGVS context. In 1984 

Ebeglu and Tanchoco [11] developed a dispatching rules method for AGVs scheduling. Tanchoco 

et al., [12] discussed real-time control strategies for multiple-load AGVs. The models and methods 

applied to AGVS seem to be generally applicable and need to be adjusted for more specific 

contexts. Research works of minimizing makespan in ACT are recent, especially with the integrated 

aspect of QC-AGV-ASC problem (AGV or ALV). Chen et al., [13] treated the scheduling of 

AGVs. They developed a dispatching approach and simplified the QC task considering it available 

to AGV loading or unloading which cannot ensure the solution optimality for the multiples QCs 

case. Kim and Bae[14] developed a model with fixed pick up time for each container and they 

proposed heuristic solution for more general cases. To our knowledge Meersman [1] was the first 

researcher to consider the integrated QCs, AGV and ASC scheduling problem. He showed that this 

problem is NP-Hard and developed theoretical results for the problem of scheduling ASC-AGV-QC 

tasks. He studied static traffic layout (layout with one fixed path for the set of tasks) and multiple 

paths traffic layout (layout with different possible paths for the set of tasks). Meersman used branch 

and bound and beam search algorithms to solve the problem using theoretical results to establish 

valid inequalities. Bae et al., [15] developed a dynamic berth scheduling method for minimizing the 

cost of the vehicles travel during the loading or unloading of the ship. The approach takes into 

account many constraints and real dynamic situations.  

1.2.4 Storage space optimization at maritime container terminals 

In 1997, Kim [16] evaluated the number of re-handles in container yards. The author discussed a 

set of equations to estimate this number. In 1999, Kim and Kim [17] developed a beam search 

algorithm for the straddle carrier routing problem at export. The approach comprises the container 

location problem and the carrier routing problem. The authors treated only one objective, 
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minimizing the total travel distance of straddle carriers in the yard. In another paper, Kim and Kim 

[18] developed a segregating space allocation modeling for import container inventories in port 

container terminals. The objective is to minimize the expected total number of re-handles. The 

authors discussed different procedures to solve the problem. In 2000 Kim et al., [19] discussed 

driving decision rules to solve the storage space allocation problem. They considered the goal of 

minimizing the number of relocation movements expected for the loading operation. The authors 

developed a dynamic programming model. To solve the real time problem, they used a decision tree 

considering the optimal solutions of the dynamic programming model. In 2007, Chen et al., [20] 

presented a Tabu search algorithm to solve the integrated scheduling problem of container handling 

systems in a maritime terminal. The authors presented and discussed the problem as a hybrid flow-

shop scheduling problem. 

1.2.5 Multi-criteria AGVS scheduling models 

With the increasing automation of manufacturing systems, the use of efficient and multi-criteria 

decision systems is very important to optimize productivity. AGV systems seem to be the most 

famous example. A good evaluation of AGVS cost must take into account different characteristics: 

vehicle dispatch, load and unload, central controller, complex host interface, product tracking, 

multiple path layout etc.  

Dahlstrom and Maskin [21] and Muller [22] have addressed the economical aspects of AGVS; 

the two papers compared the cost of different material handling systems. Sinriech and Tanchoco 

[23] have developed a multi-objective model which keep the total cost of AGVS down and 

increases the system utilization. They assumed that the AGVS cost is a formulation of operating 

costs (maintenance, energy...) and design costs (vehicle supervisory controller, vehicles, batteries, 

chargers, communication links etc). Another case is studied by Vu D N and Kap H.K [24]; we can 

describe this case as a multiple fixed paths layout. Maxwell and Muckstadt [25] discussed the 

deterministic case of the problem. They considered the random aspect: variation of arrival pattern of 

jobs and vehicle speed. They developed an integer programming formulation to minimize the 

number of required AGVs. In Rajotia et al., [26] other parameters were considered: load handling 

times and empty travel time. Golias et al. [27] formulated and solved the discrete space and 
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dynamic vessels arrival time (DDBSP). The novelty was to consider the multi-criteria aspect of the 

problem.  Two objectives are maximized: the customer satisfaction and the reliability of the berth 

schedule. Authors used a multi-objective genetic algorithm to solve the problem. Giallombardo et 

al., [28] studied the integrated problem of berth allocation and QC (Quay Crane) scheduling. Two 

objectives are considered, the first is to maximize the total value of chosen QC profiles and the 

second is to minimize the housekeeping costs of the transshipment flow. An economic analysis of 

the value of QC assignment profiles and of yard-related costs in a transshipment context is 

discussed. To our knowledge, Bish et al., [29] studied for the first time, the problem of location 

assignment and AGV (Automated Guided Vehicle) scheduling in automated container terminal. The 

authors proved the NP-Hardness of the integrated problem. The problem was studied as a mono-

objective optimization problem with the objective of minimizing the handling time. The vehicle 

schedule and location assignment are optimized but the waiting-times in bay entry (AGV wait for 

stacking crane in bay entry) were not considered in this work.  

The different approaches proposed analyze only limited parts of the MCT handling system and 

do not sufficiently cover the set of handling operations in the terminal. Some approaches consider a 

combination between two chronologically successive optimization problems in MCT, but a limited 

set of researches considers the multi-objective aspect of these integrated problems. The multi-

objective approaches propose at most three-objective optimization models treated generally as a 

mono-objective problem using a linear function of the different studied objectives. The multi-

objective problems at maritime terminal are, at the most of the time, non convex problems, then if 

we solve them using a linear function of the considered objectives some efficient solutions (non-

dominated solutions) will never be proposed, even if we use a large number of linear objective 

function.  

MOOP are not sufficiently studied in the general context of MCT and the particular context of 

container terminal managed by straddle carriers, especially if we consider the number of studied 

objectives and the approaches of resolution. In our study, we propose a multi-objective 

modeling and resolution approach with eight objectives. To solve the problem, we 

http://www.academia.edu/4761020/1_A_Simulation_based_model_for_the_berth_allocation_and_quay_crane_assignment_problem
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developed a new Multi-Objective Tabu Search Algorithm (MOTSA) that we will develop 

later in this thesis. 

1.2.6 Multi-objective optimization in general context 

1.2.6.1 Continuous multi-objective optimization 

As the name suggests, Multi-Objective Optimization (MOO) considers different goals in only 

one global problem. In industry and logistics, the first resolutions of Multi-Objective Optimization 

Problems (MOOP) have transformed these problems to Single-Objective Optimization Problems 

(SOOP) in order to solve them. However, there are many differences between these two cases. In 

fact, decision-making for MOOP needs a new generation of Multi-Objective Algorithms (MOA).  

After resolution of MOOP, the result is generally a set of solutions and the operators have to 

choose one of them. To select one efficient solution, different methods are proposed. We describe 

these methods as Multi-Objective Election Methods (MOEM). The most used MOA in the literature 

are meta-heuristic algorithms. Genetic Algorithm (GA), Evolution Strategies (ES), Simulated 

Annealing (SA) and (TSA) are particularly used. The most used meta-heuristic for MOOP is 

Genetic Algorithm (GA).  

Deb et al., [30] developed multi-objective GA named (NSGA-II). NSGA-II is a non-dominated 

sorting genetic multi-objective evolutionary algorithm. Authors compared NSGA-II to different 

effective variants of GA. NSGA-II performed the other algorithms for nine test problems. NSGA-II 

highlights three famous difficulties concerning multi-objective evolutionary approach: the O(MN
3
) 

computational complexity (where M is the number of objectives and N is the population size), the 

non-elitism and the determination of sharing parameters. In fact, the algorithm is a O(MN
2
) 

computational complexity. For each generation, the best N solutions from parent and offspring 

populations are selected, giving the approach an elitist factor. NSGA-II is a generic algorithm and 

can be implemented for different continuous or binary problems. Jaeggy et al. [31] developed 

MOTSA for continuous optimization problems. Inspired by path relinking strategies in discrete 

optimization, the authors developed a resolution approach. The objective was to keep the overall 

MOTSA computational cost at a minimum threshold.  
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Hansen [32] developed MOTSA using parallel searches. Each Tabu search algorithm uses 

variable objective weights and considers a total variable objective equal to a linear weighted sum of 

the multiple objectives. Each search (thread in practice) performs these weights during the run time 

with dynamic update. This strategy is effective if the Region of Pareto Front (PFR) is convex. 

Otherwise, some Pareto optimal solutions cannot be found by a weighted sum method. Jaeggy et al., 

[33] developed parallel MOTSA for continuous optimization problems. They compare MOTSA and 

NSGA-II (developed by Deb et al., [30]) to test parallel MOTSA efficiency. Considering the 

authors experiments, parallel MOTSA performs NSGA-II on five test functions out of nine. Jaeggy 

et al. [34] adapted MOTSA for real-world optimization problems considering its handling 

constraint. 

1.2.6.2 Multi-objective combinatorial optimization  

Considering Multi-Objective Combinatorial Problems, exact methods have very limited 

performance. MOSA (Multi-Objective Simulated Algorithm) is used in literature to solve different 

problems. The method is particularly used to solve assignment problems [35], production 

scheduling problems [36] and packing problems [37]. Gandibleux and Fréville [38] developed 

MOTSA (Muti-Objective Tabu Seach Algorithm) for combinatorial problems, they use dynamic 

weights updated at each iteration of the neighborhoods’ exploration. The algorithm updates each 

weight proportionally to the deviation of associated objective. After every update, the current list of 

weight is put tabu. Hansen [39] developed MOTSA using distance between Pareto-optimal 

solutions to evaluate the update of every weight at each iteration of the algorithm. 
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1.3 Terminal equipment 

If we consider container terminal equipment, and particularly the type of Automated Vehicles 

(AVs) used, we can identify clearly three kinds of MACT: MACT with Automated Guided 

Vehicles (AGVs), MACT with Automated Lifting Vehicles and MACT with Auto-Straddle-

Carriers (Auto-Strads). Quay Cranes are common handling equipment in maritime container 

terminals. 

 

 

Quay Cranes in MCT 

 

Figure 4 

Source: hugercrane.com 
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1.3.1 Maritime container terminals with AGVs  

AGV is not able to load or unload containers. This particularity causes some waiting times at bay 

entry. In fact, when AGV is at the bay entry, the ASC unload the AGV and transfer container to its 

storage location. AGV can move to transfer next container when ASC picks up the container 

(unload AGV), but often, when an AGV x, is at bay entry, ASC is transferring some container and 

may be, the ASC has to serve others AGVs before serving x. For the same raisons waiting times are 

caused under QC, when AGV has to be served by QC, which has to unload a container from the 

ship and load it on the AGV. 

 

AGVs waiting for ASC 

 

Figure 5 

Source: www.ebanataw.com 

 

1.3.2 Maritime container terminals with ALVs 

ALV is able to load and unload container, then it has not to wait for ASC to unload container or 

for QC to load it. When ALV is at bay entry, it unloads container and moves to load next container 

under QC. There is no waiting time under the cranes (ASCs and QCs). 

 

http://www.ebanataw.com/
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Automated Lifting Vehicle (ALV) transferring container 

 

Figure 6 

Source: http://www.sectormaritimo.com 

1.3.3 Maritime container terminals with Auto-Strads  

Auto-Strad is able to load and unload container, but it enters to the bay, stores container in its 

exact location and then moves to pick-up next container to transfer under QC. When an Auto-Strad 

enters to a bay, the access to that bay will be blocked for the others Auto-Strads during a given 

security time. This security particularity causes waiting time at bay entry.  

Auto-Strad Acceding to storage bay 

 

Figure 7 

Source: www.kalmar.com 

http://www.sectormaritimo.com/
http://www.kalmar.com/
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1.4 Traffic layouts for the vehicle scheduling problem 

Different automated container terminal layouts can be considered. Meersman [1] presents two 

possible architectures: a simple layout with static AGV traffic and a complex layout with multiple 

fixed paths and a common return point for all the AVs. Vu D. Nand Kap H.K [24] studied the 

second case also. Note that Maritime Automated Container Terminal (MACT) using Automated 

Guided Vehicles (AGVs) or Automated Lifting Vehicles (ALVs) as Automated Vehicles (AVs) use 

also Automated Stacking Cranes (ASCs), while, MACT using Auto-Straddle-Carriers (Auto-Strads) 

as AVs (Automated Vehicles) don’t use ASCs because Auto-Strad enters the bay and stores 

container in its storage location. Note also that we use the notion of ASC Points for terminals using 

ASCs, and QC Points: ASC Points are the places where ASCs pick up containers and QC Points are 

the places where QCs unload containers from the ship and where AVs start the transfer of 

containers to ASC points (these notions will be used in the next parts). For the two first models, we 

consider also Point A as a final position in the path for every task. We consider next, three terminal 

layout possibilities.  

1.4.1 One-path layout for AGVs 

The model supposes static AGV traffic and does not take into account traffic security. We 

consider that all AGVs have the same path for each task. We can describe this case as a one-path 

layout. We consider the import case and the export case as symmetric and the scheduling problem is 

the same. Point A is the final point of every task. All AGVs have the same task path. We assume 

that the terminal’s routes have one possible direction and that many AVs can use the same path at 

the same time without risks. The AGVs start under QC, then go to point B, then to the ASC point 

(where there is a possible waiting time for AGV) and finally they return to point A. Before starting 

its task, every AGV has to wait until the end of the last QC task.  

With this model of terminal layout, the optimization can minimize only the sum of waiting times 

at the QC and ASC points, because routing path is initially known for each container. This layout is 

treated by Chang Ho Yang and all [40]. For the decision, only the vehicles schedule is to be 

identified because in each case we can choose the first AGV returning to Point A for the next task. 



Chapter 1 - MACT – Problematics, equipment and traffic layout 

 

 

21 
 

                                             One-Path layout 

 

Figure 8 

1.4.2 Multiple fixed paths layout for AGVs 

Point A (see Fig.9) is the final point of every task. All AGVs have a known task path; they start 

under QC then choose the shortest path to the ASC Point, finally going to point A. The paths are not 

the same for all tasks but each path is initially known, they depend only on the ASC and QC 

positions. Before starting its tasks, every AGV has to wait enough time so that to not cause an 

accident with the predecessor AGV at QC buffer space. 
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                                              Multiple fixed paths layout  

 

Figure 9 

 

With this model of terminal architecture, we have to minimize only the sum of waiting times at 

the QC and ASC Points, because routing path is initially known for each container. We assume that 

the terminal’s routes have one possible direction and that many AGVs can use the same path at the 

same time without any risk. For decision, only the vehicles schedule is to be identified because in 

each case, we can choose the first AGV returning to Point A for the next task. For the two first 

cases (one-path and multiple fixed paths layouts), we optimize the AGV scheduling problem with 

the same linear model.  

1.4.3 Multiple variables paths layout for AGVs 

This third case is the most complex architectural model. The travel times are unknowns because 

for each task, the AGV does not return to a common final point (Point A in FIG.2 and FIG.1) but 

moves directly to its next task. The travel time between the current task and the next one is 

unknown and depends on the choice of the next task.  
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                                    Multiple variables paths layout 

 

Figure 10 

We assume that the terminal’s routes have two possible directions and that many AGVs can use 

the same path at the same time without risks. In the static and the multiple fixed paths traffic 

models, when we optimize container handling time, we have only to identify container transfer 

schedule because in each case, we can choose the first AGV (returned to Point A) for the next task. 

In this traffic case, the choice of AGV for some tasks is important because AGVs do not terminate 

their tasks at the same point. Thus choosing the first free AGV for the next task is not a good idea: 

we have to release a double scheduling (Container, AGV). 

1.4.4 Traffic layouts for ALVs 

For MACT with ALVs, we consider the same particularities of traffic layouts as in part 1.4.1, 

1.4.2 and 1.4.3, except the fact that ALV does not wait for ASC. 
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1.4.5 Traffic layouts for Auto-Strads 

For MACT with Auto-Strads, we consider the same particularities of traffic layouts as in part 

1.4.1 and 1.4.2, except the fact that  Auto-Strad does not wait for ASC at bay entry, but it waits for 

the end of storage bay occupation by other vehicles, then enters the bay, stores the container and 

moves to the next position.  

In the next two figures, we present two possible traffic layouts for MACT with Automated 

Straddle Carriers (Auto-Strad). In the first one, two common point of vehicle routing are considered 

(Point A and point B). In the second traffic layout, only one common point of vehicle routing is 

considered, that point is a return point for every vehicle, in other words, it represents the final point 

of each transfer task. 

Traffic layout with two common point of vehicle routing 

 

Figure 11 
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Traffic layout with on common point of vehicle routing 

 

Figure 12 

 

1.4.6 Traffic layouts for IPLAVS 

1.4.6.1 The case of IPLAVS for AGVs 

For a general traffic layout without the points A and B, as presented in figure 10, considering the 

Integrated Problem of Location Assignment and Vehicle Scheduling, we have to determine for 

every task the container to transfer, the vehicle to use and the exact location of storage. For a traffic 

layout with return point A and without the point B as presented in figure 9, we have to determine 

for every task the container to transfer and the storage location. The AGV to be used is the first 

vehicle arriving to point A (start point). For a simple traffic layout with the points A and B, as 

presented in figure 9, we have to determine for every task only the storage location. The AGV to be 

used is the first vehicle arriving to point A. The container to be transferred is one of the first 



Chapter 1 - MACT – Problematics, equipment and traffic layout 

 

 

26 
 

containers that were unloaded by QCs. This decisional particularity does not change the optimality 

of IPLAVS considering the minimization of operating time. 

We propose a fourth traffic layout with two particularities; firstly, the points A and B as in static 

layout presented in figure 8 are considered; secondly, AGV take short cut path to move from 

storage bay to point A (common return point) and from point B to storage bay.  

Considering the first particularity, to solve IPLAVS, we have only to determine for each task the 

storage location as for the static layout. The second particularity ensures more fluidity to vehicle 

traffic. 

                                                 Proposed traffic layout 

 

Figure 13 
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1.4.6.2 The case of IPLAVS for ALVs 

For MACT using ALVs, we consider the same particularities as in part 1.4.4.1, excepting the 

fact that ALV does not wait for ASC. 

1.4.6.3 The case of IPLAVS for Auto-Strads 

For MACT using Auto-Strad, we consider next traffic layout. 

 

Figure 14 

 Only one quay is considered. Then, for multiple quays terminal, we consider the 

problem for only the container ships allocated to the same quay.  

 Considering QC (Quay Crane) scheduling, the container-unloading schedule is initially 

known for each QC. In fact, we have to determine only straddle carrier schedule and storage 

location assignment. Considering our layout choices, when storage location assignment is 

determined, the straddle carrier assignment and schedule are naturally identified (see the end 

of this part). 

 Our modeling supports multiple container-ship unloading operations considering 

compatible arrival times. To support multiple-ship instances, it is crucial to know the exact 
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date of container ship arrivals, the number of QCs used, and the schedule of container 

handling for each QC. 

 The vehicle routing in the quay has to respect a unique direction. 

 Straddle carriers picks up containers under QCs respecting a known global schedule. 

This schedule is based on the sub-schedules of containers unloading from ships (QC 

schedule). If n is the number of QCs used, for every n successive transfer tasks, straddle 

carriers have to serve all QCs; in other words, QCs are served successively by the fleet of 

vehicles (note that vehicles are straddle carriers for all this paper). QCs operate loading tasks 

in parallel and do not wait for vehicles arrivals. Theoretically, this scheduling constraint 

influences the problem feasibility and optimality. However, numerical results show that it 

does not affect the problem for a general configuration of storage space. 

 We consider that vehicles are initially in the preloading position near QCs.  

 Every handling task begins when a straddle carrier picks up the container under QC.  

 Every handling task ends when astraddle carrier stacks the container in the associated 

location.  

 Considering the straddle carrier traffic, we define the quay entry (Point A in figure 14) 

and the quay exit (Point B in figure 14) as the entry and the output of the part of the quay 

reserved for QCs used. 

 After picking up containers under quay cranes, the straddle carrier moves to quay 

output, then it moves to the entry of the bay where the storage location associated to the 

container is. It waits sufficiently to avoid an accident with the last vehicle entering the same 

bay and finally it transfers the container to its storage location in the bay. After the end of this 

handling task the vehicle moves to the quay entry and then it moves to the position of the next 

container picking up task under QC.  

 At anytime of the process, it is easy to determine which straddle carrier to use for the 

next container-handling task. In fact we only have to choose the first vehicle returning to the 
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quay entry (Point A in figure 14). 

 Considering the storage space, the set of free storage locations is initially known, 

however, we have to determine the storage locations to use for stacking containers. The free 

storage bays are naturally determined by the free storage locations and the storage bays to be 

used are determined by the storage locations to be used for each solution to the problem. 

 With the chosen layout, each handling task is naturally identified by the associated 

container. 

Research outputs 

In the first part of this thesis, for each type of ACT, we propose mathematical models and an 

exact resolution of handling tasks planning, the problem of tasks in an automated container 

terminal. Our first objective is to minimize the makespan (the time when the last task is achieved). 

The second objective is to minimize the number of required automated vehicles. In the second part 

of the thesis, we propose new and efficient Mono-Objective and Multi-Objective Optimization 

approaches (M.O.O) applied to the Integrated Problem of Location Assignment and Automated 

Vehicles Scheduling (IPLAVS) in MCT at import. First, we present the problem and we 

demonstrate its NP-Hardness, then we introduce a modeling approach for the problem and finally 

we introduce a new cooperative Tabu search to solve the mono-objective problem and Multi-

Objective Tabu Search Algorithm (MOTSA) adapted to solve efficiently combinatorial MOOP in 

general and Multi-objective IPLAVS in particular. We consider the three types of MACT. 
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Chapter 2 

Vehicle Scheduling Problem in Automated Maritime 

Container Terminals   

2.1. Introduction  

Container terminals play a crucial role in global logistic networks. Because of the ever-

increasing quantity of cargo, terminal operators need solutions for different decisional problems. In 

the maritime terminal, at boat arrival or departure, we observe five main problems: the allocation of 

berths, the allocation of query cranes, the allocation of storage space, the optimization of stacking 

cranes work load (or storage bay organization) and the scheduling and routing of vehicles. A good 

cooperation between the different installations in the terminal is important in order to minimize the 

container handling time. 

2.2. AGV Scheduling Problem 

2.2.1. Introduction  

In an automated container terminal using Automated Guided Vehicles (AGVs) Query Cranes 

(QCs) and Automated Stacking Cranes (ASCs), numerical solutions have become essential to 

optimize the operators’ decisions. Many recent researches have discussed the optimization of ACT 

equipment scheduling using different approaches. In this paper, we propose three mathematical 

models and an exact resolution method for the QC-AGV-ASC planning, the problem of tasks in 

Maritime Automated Container Terminal (MACT). Our first objective is to minimize the makespan 

(the time when the last task is achieved), and the second is to minimize the number of required 
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vehicles.  

In an automated container terminal (ACT), the time of handling operations depends on the 

interactions between the different storage equipments. Different researches are established to 

improve the handling systems performance. We deal in the following with the problems which 

consider our two objectives (minimizing the makespan and minimizing the AGV fleet size). These 

two objectives are treated in the AGV scheduling problem. The problem of AGV scheduling was 

treated in the general context of AGVS and in the particular context of ACT. AGVS is a materials 

handling system that uses automated vehicles which are programmed to achieve tasks between 

different manufacturing and warehouse stations . It represents a very important innovation in 

international transport and logistics. ACT is one of the most famous examples of AGVS.  

Studies of AGVS optimization have different objectives: maximizing the throughput, 

maximizing the vehicle utilization, minimizing the inventory level, minimizing the transportation 

costs, and maximizing the space utilization.  

AGVS mathematical models have to respect some conditions to eliminate the traffic problems. 

Approaches used in AGVS optimization can be classified into two kinds: analytical approaches and 

simulation-based approaches. Analytical methods are mathematical techniques such as queuing 

theory, integer programming, heuristic algorithms, and Markov chains. A number of analytical 

approaches to AGVS optimization have been proposed in the literature. 

In the next parts, we propose solutions for three terminal layouts and we use Meersman’s results 

[1] to improve the mathematical modeling and the quality of our numerical solutions. We propose a 

model with two objectives: the optimization of operating time for the QC-AGV-ASC handling tasks 

and the minimization of the number of vehicles to be used. We use Meersman’s mathematical 

results to perform our modeling and resolution and we propose new models for the scheduling 

problem using a partial containers’ order and resolving large problem instances. Different layouts of 

MACT can be studied. Meersman presents two possible port architectures: a simple layout with 

http://www.businessdictionary.com/definition/manufacturer.html
http://www.businessdictionary.com/definition/warehouse.html
http://www.businessdictionary.com/definition/station.html
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static AGV traffic and a complex layout with multiple variables paths. The traffic layouts 

considered in this part are presented in chapter 1. 

2.2.2. Data construction 

Data construction is based on terminal architecture and the handling speed of the equipment. We 

use next parameters to generate data: The quay length, the bay (named also yard) length and the 

distance between quay and storage zone.  

The AGV and ASC transfer speed combined with the terminal dimensions give a clear idea 

about the data that we need for our modeling and simulations. 

2.2.3 Theoretical result 

Meersman [1] used a strategy of partial order to solve large instances of the scheduling problem: 

the tasks of each ASC are totally ordered. The author has supposed a sufficient quantity of AGVs 

which can ensure an optimal schedule and he has concluded an important theorem. 

“Define the assignment order Π as the order in which the containers are assigned to the AGVs as 

they pass the common point. Moreover, define a suborder Πs as a subset of Π, such that if i is 

ordered before j in Πs, then i is ordered before j in Π, for all i, j Є Πs.  

Theorem: For each ASC s Є S, consider an optimal schedule. Let Πs denote the order in which 

ASC s handles its containers. Then there exists an optimal assignment order Π, such that Πs is a 

suborder of Π.”.  

In next parts of this section, we consider that the number of AGVs is sufficient to complete an 

optimal schedule. 

2.2.4 Mathematical models 

We consider a total order for each set of ASC handling tasks and another total order for each set 

of QC handling tasks (we use models with buffer space of QC equal to 1). In other terms, for any 
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QC loading task or ASC unloading task, the successor and the predecessor are initially known. In 

the next part, we consider that the matrices ASCi,j and QCi,j are constant. 

We define the following data for all the models of this part. 

2.2.4.1 Constants 

All data presented in this part are initially known. 

V: The set of vehicles (Automated Guided Vehicles in this section) 

|V|: The vehicle fleet size. 

ASC: The set of ASCs (Automated Stacking Crane) 

QC: The set of QCs (Query Crane) 

|QC|: The number of QCs used. 

C: The set of containers. C is also equal to the set of handling tasks considering that every container 

is associated to one and only one handling task such that a global handling task is composed of 

loading-unloading tasks, transfer tasks and stacking task. 

|C|: The numbers of containers to transfer and store. |C| is also equal to the number of handling 

tasks.  

QC( i ): Quay Crane initially assigned to unload container i from the ship. 

ASC( i ): Automated Stacking Crane initially assigned to unload container i from the associated 

AGV and load it in its storage location. 

QCi,j: If container j is unloaded directly after container i by the same QC, QCi,j = 1 else QCi,j = 0. 

We consider this data initially known. 

ASCi,j : If container j is unloaded from AGV and transferred to its storage location directly after 

container i by the same ASC, ASCi,j = 1 else ASCi,j = 0. We consider this data initially known. In 
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fact, we apply Meersman’s theorem and we choose the order of tasks for every ASC (ASC order 

must respect QC order) without changing makespan optimality. 

TQC(i),BE(i): The travel time between the QC unloading position (QC unloading point) and bay entry 

associated with storage location of container i. 

TBE(i),A: The travel time between the entry of storage bay of container i and the final position at 

quay entry (point A). 

TA,QC(i): The travel time between point A (quay entry) and unloading position under QC associated 

with container i. 

Si: The ASC transfer time of task i depending on ASC speed and on distance between ASC transfer 

point (at the bay entry) and the exact storage location where container i will be stacked.  

SQC: The time that QC needs to unload container from the ship. 

SASC: The time that ASC needs to pick up container from AGV. 

Ss: Safety waiting time to be respected by AGVs near QC loading position. 

t0: Start time. 

2.2.4.2 Variables 

All the data introduced in this part are variables. 

AGVi,j: Decision variable, if container j is handled directly after container i by the same AGV 

AGVi,j =1 else AGVi,j = 0.  

t1(i): The start time of task i. 

t2(i): The completion time of task i. 
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2.2.4.3 Formulation of the number of used vehicles 

Consider |C| the number of tasks and |V| the number of Vehicles (AGVs), then:    

|C| −∑∑AGVi,j
j∈Ci ∈C

= |V| 

Proof: ∑ ∑ AGVi,jj∈Mi ∈M  is equal to the number of containers (or tasks) having direct predecessor 

considering AGV transfer task, then |C| − ∑ ∑ AGVi,jj∈Ci ∈C  is equal to the number of containers or 

tasks not having a direct successor. A task with no direct successor is a first task for some AGV, 

then the number of those tasks is equal to the number of AGVs. 

2.2.4.4 One-path and multiple fixed paths Mathematical Model  

min max {t2(i)|i ∈ C}  (1) 

Subject to: 

∑ AGVi,jj∈C ≤ 1, ∀i ∈ C  (2) 

∑ AGVj,ij∈C ≤ 1, ∀i ∈ C  (3) 

∑ ∑ AGVi,jj∈Ci ∈C = |C| − |V|  (4) 

AGVi,i = 0,   ∀i ∈ C  (5) 

t1(i) ≥ t0 , ∀i ∈ C  (6) 

t1(j) + G(1 − AGVi,j) ≥ t2(i) + TA,QC(j)  , ∀i, j ∈ C (7) 

t2(i) ≥ t1(i) + SQC + TQC(i),BE(i) + SASC + TBE(i),A ,   ∀i ∈ C (8) 

t2(j) ≥ t2(i) − TBE(i),A + TBE(j),A + si,   ∀i, j ∈ C \ ASCi,j = 1 (9) 

t1(j) ≥ t1(i) + SQC + Ss, ∀i, j ∈ C \ QCi,j = 1  (10) 
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Line 1: The objective is to minimize the completion time of the last task. That objective is generally 

named makespan and is equal to the operating time. 

Constraints 2 and 3: Limit the number of direct successors and direct predecessors, every container 

has one or zero direct successor and one or zero direct predecessor. 

Constraint 4: If we use k AGVs , k containers will have exactly zero successors and k containers 

will have exactly zero predecessors because every AGV will have a first task and a last task(final 

task for it).Then for n containers, only (n-k) tasks will be succeeded and only (n-k) tasks will be 

preceded. 

Constraint 5: No container can precede or succeed itself. 

Constraint 6: No task can start before t0. 

Constraint 7: Relation between two successive tasks of an AGV. If container j is handled directly 

after containers i with the same AGV, then AGVi,j = 1 and we have: 

t1(j) ≥ t2(i) + TA,QC(j)  

else the relation will be: 

t1(j) + G ≥ t2(i) + TA,QC(j)  

and that is true because G is sufficiently large. 

Constraint 8: t2 ( i )  ≥  t1 ( i ) + SQC +TQC(i),BE(i) + SASC + TBE(i),A : the final time of any task is equal 

or greater than the start time of the task plus the travel time between QC and ASC plus the QC 

loading time plus the ASC loading time. 

Constraint 9: For every i, j in C if ASCi,j = 1 then we have 

t2 ( j ) – TBE(j),A – SASC ≥  t2( i ) – TBE(i),A  + Si   

t2 ( j ) – TBE(j),A – SASC   is the date when AGV transferring container j is served by ASC.  
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t2 ( i ) – TBE(i),A + Si     is the date when ASC terminates the transfer of container i and reaches the 

ASC unloading position to wait next container transfer task.  

In other terms, if the two vehicles transferring containers i and j are served successively by the 

same ASC (ASCi,j = 1), then the vehicle transferring container j has to wait for ASC until it 

terminates the transfer of container i and returns to the unloading position at bay entry.  

Constraint 10: the difference between 2 successive QC tasks is greater than or equal to the 

loading time under QC plus the safety time. 

2.2.4.5 Multiple variables paths mathematical model  

TBE(i),QC(j) is the travel time between the bay entry of location associated with container i (where 

container i is unloaded from AGV by ASC) and the QC loading position at the quay considering 

QC associated with container j (where container j is loaded on AGV by QC). If we consider the first 

model presented in part 2.2.4.4, we replace constraints (7), (8) and (9) respectively by constraints 

(11), (12) and (13), presented next, to obtain the following modelling which is adapted to the layout 

of multiple variables paths.  

min max {t2(i)|i ∈ C} 

Subject to:  

Constraints (2), (3), (4), (5), (6) and (10) of the static traffic model 

t1(j) + G(1 − AGVi,j) ≥ t2(i) + TBE(i),QC(j), ∀i, j ∈ C  (11) 

t2(i) ≥ t1(i) + SQC + TQC(i),BE(i) + SASC , ∀i ∈ C  (12) 

t2(j) ≥ t2(i) + Si + SASC , ∀i, j ∈ C \ASCi,j =1  (13) 
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2.2.4.6 Bi-objective model  

To solve correctly the scheduling problem using the theorem of sub-orders, we need to use a 

sufficient number of AGVs for the optimal schedule. This number will depend on the routing path 

distances, the AGV transfer speed, ASC transfer speed and QC unloading speed. For our 

optimization approach, we consider that the makespan has higher priority than AGV fleet size, then 

in our modelling we can naturally use the theorem of sub-orders proved by Meersman because the 

minimal numbers of AGVs that we search has to satisfy the operating time optimality.  

In 2001, IFA’s team developed a minimum flow algorithm to determine the number of AGVs 

required at a semi-automated container terminal [6]. Our bi-objective model is a good alternative to 

solve the scheduling problem in a short run time giving small numbers of required AGVs. 

Considering multiple variables paths model, we replace (1) by (14) and (4) by (15), and then we 

obtain a new model which is more efficient and more intelligent. This model has two objectives: 

minimize the completion time of the last task and minimize the number of AGVs necessary to 

complete the optimal scheduling. Constraints (2), (3), (5), (6), (10), (11), (12) and (13) of multiple 

variables paths layout are used in this model.  

min  ( Gmax{t2(i)|i ∈ C} + (|C| − ∑ ∑ AGVi,jj∈Ci ∈C ) )  (14) 

Subject to: 

Constraints (2), (3), (5), (6), (10), (11), (12) and (13) 

∑ ∑ AGVi,jj∈Ci ∈C ≤ |C| − 1  (15) 

G is a sufficiently large number which insures that makespan has higher priority than the number 

of AGVs in the optimization process. 
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2.3 Auto-Strad scheduling problem 

2.3.1 Introduction  

In this part, we propose three mathematical models and an exact resolution of QC-Auto-Strad 

planning, the problem of tasks in MACT with Automated Straddle-Carriers (Auto-Strad).  

We use Meersman’s results [1], as in part 2.2, to improve the mathematical modeling and resolution 

efficiency. We suggest modeling with two objectives: the optimization of operating time and the 

minimization of Auto-Strad fleet size. We consider models of terminal architecture presented in 

figures 11 and 12 using the same partial containers’ order and solving equivalent problem instances 

as in part 2.2.  

2.3.2 Data construction 

Data generation is based on terminal architecture and handling speed of equipment. The main 

difference between the data considered in part 2.2 and data considered in part 2.3 concerns 

essentially routing paths and vehicle speed. 

2.3.3 Theoretical result 

Theoretical result (Meersman’s theorem) of part 2.2.3, is considered in this part. Naturally, 

security waiting time, at bay entry, is not dependent on storage locations.    

In the following part of current section, we assume that the number of Auto-Strads is sufficient 

to complete an optimal schedule.  

2.3.4 Mathematical Models 

We consider a total order for each set of storage tasks in common bay and another total order for 

each set of QC tasks (we use models with buffer space of QC equal to 1). We consider that the 

matrices Bi,j and QCi,j are constant. We define the following data for all the models. 
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2.3.4.1 Constants 

All the data introduced in the following are initially known. 

C, V, QC, QCi,j, QC(i), TQC(i),BE(i),TBE(i),A, TA,QC(i), SQC, Ss and t0 are defined as in section 2.2 

B: The set of storage bays  

Bi,j: If container j is stored directly after container j in the same bay Bi,j= 1, else Bi,j =0. This data is 

initially known. In fact, we apply Meersman’s theorem and we choose the order of transfer tasks for 

every bay (the order of entering the storage bay must respect QC unloading order). 

BE(i): The entry of storage bay where is the location associated with container i.  

Si: The Auto-Strad routing time between bay entry and storage location assigned to container i. 

SV: The time that Auto-Strad needs to load or unload container. 

S2: Safety waiting time near bay entry. 

2.3.4.2 Variables 

All data presented in this part are variable. 

Vi,j: Decision variable, if container j is handled directly after container i by the same Auto-Strad  Vi,j 

=1, else Vi,j = 0  

t1(i): The start time of handling task i 

t2(i): The completion time of handling task i such that task i is composed of loading task under QC, 

routing task and stacking task at storage location. 

2.3.4.3 Formulation of the number of used vehicles 

We consider the same formulation of part 2.2.4.3. 
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2.3.4.4 One-path and multiple fixed paths mathematical Model   

We present next the mathematical model of the Auto-Strad scheduling problem considering the 

modelling of part 2.2.4.4. 

Min max {t2(i)|i ∈ C}  (01) 

Constraints (2) to (7) and constraint (10) of section 2.2.4.4  

t2(i) ≥ t1(i) + 2 SV + TQC(i),BE(i) + TBE(i),A,∀i ∈ C (16) 

t2(j) ≥ t2(i) − TBE(i),A + SV + S2 + TBE(j),A, ∀i, j ∈ C\ Bi,j = 1 (17) 

Constraint 16: the final time of any task is equal or greater than its start time plus the travel time 

between QC and storage location plus the Auto-Strad loading time under QC plus the Auto-Strad 

stacking time at storage location. 

Contraints 17: ∀i, j ∈ C| Bi,j = 1: t2(j) − TBE(j),A ≥ t2(i) − TBE(i),A + SV + S2 

t2(j) − TBE(j),A  is the date when Auto-Strad transferring container j enters the storage bay. t2(i) −

TBE(i),A is the date when Auto-Strad transferring container i enters the storage bay. If the two 

vehicles enters successively the same storage bay ( Bj,i = 1), then vehicle transferring container i has 

to respect a waiting time of SV + S2 seconds at bay entry. In fact when an Auto-Strad accesses a 

storage bay, that one is blocked during SV + S2 seconds and the next vehicle cannot access the bay 

before the end of that period.  

For the one-path and multiple variables paths mathematical model we do exactly the same 

modifications as in section 2.2.3.5 with SB instead of Sj and Sv instead of SASC. Considering the bi-

objective modelling of section 2.2.4.6, we do exactly the same changes to obtain the bi-objective 

model for MACT using Auto-Strads. 
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2.4 ALV scheduling problem 

We consider all results of part 2.2 with nil waiting time at ASC unloading position (Si = 0). For 

new modelling, constraint 9 in part 2.3 is removed and the ASC loading time SASC in constraint 8 is 

replaced by the ALV unloading time SALV.  

2.5 Numerical results  

We choose CPLEX optimizer to test the performance of our models. The application of the sub-

orders theorem combined with the use of constraint (4) give the possibility to solve instances of 

hundreds of containers but with a use of a number of vehicles more than 10 percent of the 

containers number. Using the third model, we can solve the scheduling problem with a small 

number of vehicles because the model has two objectives: minimize containers handling and 

transfer time and minimize the number of vehicles to be used. We solve problem instances of 10 to 

500 containers with a GAP of 0.15 to 0 percent. One of our most important results is the resolution 

of the bi-objective problems (minimizing handling time and vehicle resources) of 500 containers, 3 

QCs and 8 ASCs (or storage bays for straddle carrier case). The GAP is not stable, the vehicle and 

crane speeds and the paths routing time for some instances can increase the GAP value. With the 

first presented model, using sufficient number of AVs (between 10 and 15 percent of the tasks 

numbers) we resolve small and big problem instances with optimal solution. The third model (two-

objective model) is more efficient for the instance with a limited number of vehicles. Results 

depend on the layout model: for the static traffic layout problem instances with less than 150 

containers are generally easily solved and the two objectives are reached with double optimality.  
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2.5.1 Results for MACT with AGVs 

Results of bi-objective modeling in the static traffic case  

Instance* Makespan GAP Fleet size  GAP Total GAP Run time 

150/3/6 0% 0% 0% 4 s 

250/4/12 0% 0% 0% 6 s 

300/4/12 0% 0% 0% 6 s 

500/3/8 0% 0% 0% 25 s 

500/4/8 0% > 0% 0.11% 60 s 

(*) Instance: number of containers / number of QCs / number of ASCs 

Table 3 

Results of bi-objective modeling with the multiple variables paths layout 

Instance* Makespan gap Fleet size gap Total gap Run time 

150/3/6 0% 0% 0% 10 s 

150/4/12 0% 0% 0% 10 s 

 200/4/12 0% 0% 0% 12 s 

300/4/8 0% 0% 0% 15 s 

300/4/12 0% > 0% 0.15% 70 s 

Table 4 
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Comparison of presented bi-objective model to Meersman’s model 

 Presented Modelling Meersman’s model 

Objective(s) Two objectives:  

minimizing makespan  

minimizing AGV fleet size 

One objective: 

minimizing makespan  

Equipment QC-AGV-ASC QC-AGV-ASC 

Performance A gap of 0 % for instances up to 

500 containers, 4 QCs and 12 ASCs. 

For these instances the runtime is 

between 0 seconds and 60 seconds. 

A gap of 0 % to 8 % for 

instances up to 170 

containers 27 ASCs and 24 

AGVs. For these instances 

the runtime is between 0 

seconds and 658 seconds. 

Conditions Consider a sufficient resource of 

AGVs. 

Consider the QC handling task as a 

unique constant independent from 

container location in the ship. 

 

Consider the QC 

handling task as a constant 

dependent on container.  

 

Table 5 
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2.5.2 Results for MACT with ALVs 

Results of bi-objective modeling in the static traffic case  

Instance* Makespan GAP Fleet size  GAP Total GAP Run time 

150/3/6 0% 0% 0% 3 s 

250/4/12 0% 0% 0% 5 s 

300/4/12 0% 0% 0% 10 s 

500/3/8 0% 0% 0% 40 s 

500/4/8 0% > 0% 0.02% 80 s 

Table 6 

(*) Instance: number of containers / number of QCs / number of ASCs 

Results of bi-objective modeling with the multiple variables paths layout 

Instance* Makespan gap Fleet size gap Total gap Run time 

150/3/6 0% 0% 0% 4 s 

150/4/12 0% 0% 0% 20 s 

 200/4/12 0% 0% 0% 18 s 

300/4/8 0% 0% 0% 32 s 

300/4/12 0% > 0% 0.05% 30 s 

Table 7 

 

 



Chapter 2 – Vehicle Scheduling Problem In MACT  

 

 

47 
 

2.5.3 Results for MACT with Auto-Strads 

Results of bi-objective modeling with single path layout 

Instance* Makespan GAP Fleet size  GAP Total GAP Run time 

150/3/6 0% 0% 0% 2 s 

250/4/12 0% 0% 0% 9 s 

300/4/12 0% 0% 0% 10 s 

500/3/8 0% 0% 0% 44 s 

500/4/8 0% > 0% 0.01% 59 s 

Table 8 

(*) Instance: number of containers / number of QCs / number of storage bays 

Results of bi-objective modeling with multiple paths layouts 

Instance* Makespan 

gap 

Fleet size 

gap 

Total 

gap 

Run time 

150/3/6 0% 0% 0% 6 s 

150/4/12 0% 0% 0% 22 s 

200/4/12 0% 0% 0% 31 s 

300/4/8 0% 0% 0% 48 s 

300/4/12 0% > 0% 0.03% 30 s 

Table 9 
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2.6 Conclusion 

 A new generation of terminal using automated container handling equipment needs 

solutions to optimize task scheduling and operating costs. Many storage strategies, statistical 

studies, mathematical models and algorithms are proposed by researchers. To solve the planning of 

QC-AV-ASC, we present an effective model for every kind of traffic layout. We propose an 

efficient bi-objective model, which is important to determine the optimal storage time and the 

minimal number of AVs (Automated Vehicles) required. The bi-objective model can solve large 

instances (until 500 containers) with double optimality (giving the optimal makespan and the 

minimum number of required AVs) in reasonable run time (less than 60 s). To the most of our 

knowledge, our bi-objective model is the first model optimizing in one time the makespan and the 

AV fleet size in automated container terminal. Our models consider three handling equipments (AV, 

QC and ASC) which is an efficient approach. We treat the three existing AVs at MACT: AGVs, 

ALVs and Auto-Strads. 
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Chapter 3 

 

Integrated Problem of Location Assignment and Vehicle 

Scheduling in Automated Maritime Container 

Terminals at Import  

 

In this part we propose a new integrated modeling by considering the import case in Maritime 

Automated Container Terminals (MACT). We consider combination between two known problems, 

the first is the storage location assignment problem and the second is the straddle carrier scheduling 

problem. In fact, we study the Multi-Objective Integrated Problem of Location Assignment and 

Vehicle Scheduling (IPLAVS) in MACT at import. This approach which combines two 

chronologically successive problems leads to the use of multi-objective optimization (MOO).  

The objective is to minimize the operating cost which we evaluate by considering eight 

components: the date of last task noted "makespan", the total vehicle operating time, the total 

storage bay occupation time, the number of vehicles used, the number of storage bays used, the 

number of storage locations used, and two different costs of storage location assignment. The 

location assignment costs are evaluated in order to facilitate the containers transfer for deliveries. 

We assume that the operating cost is a function of these components and that the influence of each 

component is variable and dependent on different parameters. These parameters are essentially: the 

number of quays in the terminal, the straddle carrier traffic layout, the number of container ships to 

serve in the terminal, the influence of concurrent operations in the terminal, the storage space 

configuration, the number of free storage bays, the number of free straddle carriers, the number of 

free quay cranes (QCs), the mobility of quay cranes; etc. 
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In this part, we study an integrated problem, which combines the equipment allocation, and 

scheduling and the location assignment in MACT at import. These two problems are generally 

treated separately. This combination improves the productivity of the handling system due to better 

theoretical optimality. The only study of the integrated problem of storage space allocation and 

vehicle scheduling, in the general context of container terminals, was the study of Bish et al. [20] 

which treats the problem for automated container terminals (AGV handling system). In this work, 

the vehicle schedule and location assignment are optimized in order to minimize one objective, 

which is the handling time. However, the waiting-times in bay entry (AGV wait for stacking crane 

in bay entry), which is a crucial constraint of the real problem, is not considered.  In other studies, 

the optimization of storage location assignment in container terminal considers total vehicle routing 

distance. However, vehicle scheduling, waiting time in bay entries, as well as the interaction 

between the different equipment and others parameters are not considered. 

In our study, we consider the multi-objective aspect of the problem with eight realistic objectives 

to optimize, in which it is a new and efficient approach considering the state of art. We treat with 

the following objectives: the makespan (date of last task or operating time), the number of straddle 

carriers used, the sum of straddle carrier operating times, the sum of storage bay occupation times, 

the number of storage bays used, the number of storage locations used and two location costs. 

3.1 Integrated Problem of Location Assignment and Straddle Carrier 

Scheduling in Automated Maritime Container Terminals at Import  

3.1.1 Operating process 

In this section we consider the Integrated Problem of Location Assignment and Straddle Carrier 

Scheduling in Maritime Container Terminal at import (IPLASS). The layout of a container terminal 

influences seriously the straddle carrier productivity.  In fact, the number and the dimensions of 

storage bays, the number and the length of quays and the number of quay cranes affects the quality 

of vehicle traffic, specifically when considering the routing time.  
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The traffic layout is another parameter, which influences the straddle carrier operating time. This 

parameter has a second impact, which concerns the complexity of the problem. Figure 14 presents 

the terminal layout considered in our study. 

In this work, we present a new model for IPLASS. We consider general terminal layout 

regarding the following properties: 

 Only one quay is considered. Then, for multiple quays terminal, we consider the problem only 

for container ships allocated to the same quay.  

 Considering QC (Quay Crane) scheduling, the container-unloading schedule is initially 

known for each QC. In fact, we have to determine only straddle carrier schedule and storage 

location assignment. Considering our layout choices, when storage location assignment is 

determined, the straddle carrier assignment and schedule are naturally identified (see the end 

of this part). 

 Our modeling supports multiple container-ship unloading operations considering compatible 

arrival times. To support multiple-ship instances, it is crucial to know the exact date of 

container ship arrivals, the number of the QCs used and the schedule of container handling for 

each QC. 

 The vehicle routing in the quay must respect a unique direction. 

 Straddle carriers picks up containers under QCs respecting a known global schedule. This 

schedule is based on the sub-schedules of containers unloading from ships (QC schedule). If n 

is the number of QCs used, for every n successive transfer tasks, straddle carriers have to 

serve all QCs; in other words, QCs are served successively by the fleet of vehicles (note that 

vehicles are straddle carriers for all this chapter). QCs operate loading tasks in parallel and do 

not wait for vehicles arriving. Theoretically, this scheduling constraint influences the problem 

feasibility and optimality.  

 We consider that the vehicles are initially in the preloading position near QCs.  

 Every handling task begins when a straddle carrier picks up the container under QC.  
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 Every handling task ends when a straddle carrier stacks the container in the associated 

location.  

 Considering the straddle carrier traffic, we define the quay entry (Point A in figure 14) and 

the quay exit (Point B in figure 14) as the entry and the output of the part of the quay reserved 

for QCs used. 

 After picking up containers under quay cranes, the straddle carrier moves to quay output, then 

it moves to the entry of the bay where the storage location associated to the container is. It 

waits enough to avoid an accident with the last vehicle entering the same bay, and finally it 

transfers the container to its storage location in the bay. After the end of this handling task, 

the vehicle moves to the quay entry and then it moves to the position of the next container 

picking up task under QC.  

 At anytime of the process, it is easy to determine which straddle carrier to use for the next 

container-handling task. In fact, we only have to choose the first vehicle returning to the quay 

entry (Point A in figure 14). 

 Considering the storage space, the set of free storage locations is initially known, however, 

we have to determine the storage locations to use for stacking containers. The free storage 

bays are naturally determined by the free storage locations, and the storage bays used are 

determined by the storage locations used for each solution to the problem. 

 With the chosen layout, each handling task is naturally identified by the associated container. 

For experiments we use real databases of "Terminal de Normandie" in the Maritime Port of Le 

Havre. The terminal is presented in Figure 15.  
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Figure 15 - CT "Terminal de Normandie" « source: Google Maps »  

3.1.2 Mathematical modeling 

In the following, we present the mathematical model of the multi-objective IPLASS in maritime 

terminal at import. It integrates new and realistic constraints which reflect the real functioning of 

the terminal. We develop constraint formulations to insure an efficient location for the set of 

containers in order to facilitate some tasks, like the next transportation, the deliveries or the storage 

of next arriving containers. These constraints are associated to the evaluation of two location 

assignment costs. The constraints that are associated with the first location assignment cost are 

essential to facilitate the container transfer to the next transporter (or the delivery) minimizing the 

total distance among containers of same customer or of same delivery date, while those associated 

to the second one are used to maximize for each storage location its possibilities to receive 

containers taking into account their delivery dates and the delivery date of the last container stored 

in that location. 

Our objective is to solve the problem considering the real need of the decision maker which is 

the minimization of the real global operating cost. This quantity is mostly considered as a linear 

function of different components. In some situations, weighted sum methods are efficient to solve 

MOOP. Concerning the case of multi-objective combinatorial problems, using linear objective 

function, we cannot propose some efficient solutions to the user because the Pareto Front Region 

(PFR) is non-convex. 

Many parameters can influence the operating cost, but the eight chosen objectives represent the 

most important cost components in the IPLASS in a maritime terminal at import. Operating cost in 
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the general context of MCT concerns essentially storage space resources, equipment resources and 

operating time resources. Consider now the handling system in container terminal managed 

by straddle carriers. Storage space resources are bays and locations. Equipment resources are the 

quay cranes and the straddles carriers. Operating time resources concerns firstly the makespan, 

which is the date of the last container-handling task (picking up, transfer and storage); secondly the 

sum of storage bay occupation times and thirdly the sum of straddle carrier-operating times. 

Considering these resources, there is concurrence between the different operations in the terminal 

and especially for the multi-quay terminals and when operators have to serve many container ships 

or other transport vehicles at one time. This concurrence influences the weight of the different 

operating cost components. A global approach can be a good response to this problem of operating 

cost evaluation. In fact, we can solve the problem for many container ships at one time considering 

a global weighted cost. For the number of free straddle carriers, we can consider that the terminal 

uses a sufficient number of vehicles to satisfy every container ship. However, the waiting times 

under QCs make the total number of straddle carriers used in the terminal limited by an upper 

bound which we evaluate in part 3.1.5. Considering this limit, operator decision has to take into 

account the concurrence between container ships for QC resource. If the terminal has a limited 

number of Straddle Carriers, the concurrence between container ships for vehicles is significant for 

MOO. 

The initial storage space configuration is another parameter which influences the operating cost. 

It is also an important factor determining the density of feasible solutions in the solution space and 

the lower bound of the number of storage bay used. The lower bound of storage bays resource is a 

very important factor influencing the makespan lower bounds and the resolution hardness. In fact, 

with a small number of storage bays used, the total straddle carriers waiting time at the bay entry 

increases considerably. The number of free storage bays in the terminal at the container ship(s) 

arrival influences directly the cost of storage space resources and the adequate objective weight.  

In our approach, we consider that the operating cost is a vector of eight objective evaluations. 
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3.1.2.1 Data 

QC: The set of Quay Cranes used. 

QC(i): The Quay Crane associated to container i. For each container i, QC(i) is initially known. 

C: The set of tasks (or containers). We can identify each task by its container by considering the 

known total order of container picking up process. 

B: The set of free storage bays available for use for stacking containers. 

B(p): The bay of storage location p.  

BE(p): Bay entry of storage location p. 

P: The set of storage locations. Every location has an initial capacity. 

w(p): The initial storage capacity of location p. It is the number of free levels of p. The storage 

capacity at every location depends on the initial configuration of the storage space. Consider a 

terminal with a storage space of k levels, if the storage location p contains n containers, then for the 

next handling operation at container ship arrival or departure, the capacity of p is equal to k – n.  

SQC: QC unloading time. It is the time that QC needs to unload container from the ship. SQC is 

considered static. 

Sv: Container storage time. When Auto-Strad arrives to the storage location, Sv is the static time 

which the straddle carrier needs to stack the container in the associated storage location. It is also 

considered as the time which Auto-Strad needs to load container under QC.   

SB: Maximal security waiting time in bay entry. SB is static security parameters. Every straddle 

carrier has to wait for at most SB seconds in the bay entry. The condition (SB >Sv) is crucial to 

eliminate accidents between vehicles entering the same storage bay with an arrival difference less 

than Sv.  

succQC(i): The direct successor of container i considering picking up task under QC. 
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Tp,QC(i): Straddle carrier routing time from storage location p to QC associated with container i. 

TQC(i),BE(p): Straddle carrier routing time from QC associated with container i to bay entry of 

storage location p. 

Tp: Transfer time between the entry of the bay, where is the storage location p, and the exact 

position of p. 

di: Delivery date of container i to its next transporter (or customer). 

dp: Delivery date of the last container stored in location p. 

G: a sufficiently big number. 

C(i): the set of containers having the same next transporter or the same delivery date (considering 

the day of delivery) as container i. 

T(x,y): Routing time between the entry of storage bay x and the entry of storage bay y. This 

parameter is used to evaluate the first location assignment cost fi,j,x,y. 

fi,j,x,y: The containers allocation cost associated with the decision which stacks container i in storage 

bay x and container j in storage bay y. fi,j,x,y is initially known data. Note that fi,j,x,y is defined for i 

ЄC and j Є C(i). 

fi,j,x,y  = T(x,y) if (x≠y) 

fi,j,x,y   = (|QC|-1) SB if (x=y) 

3.1.2.2 Variables 

V: The set V represents vehicles used (vehicles are straddle carriers in this section). It is an order 

used to specify every vehicle. |V| is the straddle carrier fleet’s size. We consider that |V| can be as 

large as necessary. |V| is an objective to minimize in the optimization problem. 

V = {1, 2, …, |V|}. 

B
*
: The set of storage bays used for stacking containers. We have to use exactly all these bays. B

*
 is 

determined by the storage locations decision. |B
*
| is the size of B

*
, and it is an objective to minimize 
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in the optimization problem.  

P
*
: the set of storage location used for storing container after decision.  

vi: Straddle carrier assigned to container i. vi Є V.  

Xi,p is equal to1 if container i is stacked in storage location p, else Xi,p is equal to 0. 

X’i,p is equal to 1 if container i is the first container stored in location p considering the current 

handling operation, otherwise X’I,p is equal to 0. 

Vi,j is equal to1 if container j is transferred directly after the container i by the same vehicle, 

otherwise Vi,j is equal to 0. This variable is defined for i ∈ C and i ≠ j. 

Pi,j: 1 if container j is stored directly after i in the same location (in others terms, container j is 

stored on container i). 

P’i,j: Binary variable, equal to1 if and only if container j is stored in the same location as container i, 

directly or indirectly after i (container j is stored on container i, but other containers can be stored  

between i and j). P’i,j is defined for i ≠ j. 

Bi,j: 1 if containers i and j are stacked in the same bay and container j is stacked directly after i 

considering the stacking order in the bay. Bi,j is defined only for i≠j. 

t1(i): Start time of task i. The date when the associated straddle carrier picks up container i under 

QC. 

t2(i): The date when straddle carrier assigned to container i accesses the storage bay of chosen 

location. 

t3(i): Completion time of task i. The date when associated straddle carrier stores container i in its 

storage location. 

tv: Termination time of vehicle v (straddle carrier v) considering all containers associated to v. 

tb: Termination time of container storage in bay b. We consider all containers assigned to storage 

bay b. 
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CMax: The makespan which is the date of the last handling task.  

Ip: If the storage location p is used Ip is equal to 1, otherwise Ip is nil. 

Ib: If the storage bay b is used Ib is equal to 1, otherwise Ib is nil. 

hi,j: Equal to dj - di if container j is stored on container i, 0 else. 

gi,p: Equal to dp- di if container i is the first container stored in p after making decision, 0 else. 

Fi,j
7 : a function which evaluates partially the first location assignment cost, equal to zero if 

containers i and j have note the same client, else equal to the routing time between locations 

assigned to i and j. 

Zi,j: Equal to 1 if the location decision assigned to containers i and j will cause an unproductive 

move, 0 else. These variables are used to evaluate the number of unproductive moves to be caused 

by location assignment decision, considering all containers except those to be stored in first free 

levels of each location. 

Z′i,j: Equal to 1 if i is the first container stored in location p and causes an unproductive move 

considering the initial storage space configuration. These variables are used to evaluate the number 

of unproductive moves to be caused by location assignment decision, considering only containers to 

be stored in the first free levels of each location. 

3.1.2.3 Modeling 

Objective 

Minimize     

(

 
 
 
 
 
 
 

𝐂𝐌𝐚𝐱
|𝐂| − ∑ ∑ 𝐕𝐢,𝐣𝐣∈

𝐂

𝐢
𝐢∈𝐂

∑ 𝐈𝐛𝐛∈𝐁

∑ 𝐈𝐩𝐩∈𝐏

∑ 𝐭𝐯𝐯∈𝐕

∑ 𝐭𝐛𝐛∈𝐁
∑ ∑ 𝐅𝐢,𝐣𝐣∈𝐂 ,𝐣≠𝐢 / |𝐂(𝐢)|𝐢∈𝐂

|𝐂 |

∑ ∑ 𝐙𝐢,𝐣𝐣∈𝐂 ,𝐣≠𝐢 + ∑ ∑ 𝐙𝐢,𝐩𝐩∈𝐏  𝐢∈𝐂𝐢∈𝐂 )
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Location constraints 

 ∀ 𝐢 ∈ 𝐂:  ∑ 𝐗𝐢,𝐩𝐩∈𝐏 = 𝟏        (01)    

 ∀ 𝐩 ∈ 𝐏: ∑ 𝐗𝐢,𝐩𝐢∈𝐂 ≤ 𝐰(𝐩)        (02)  

Vehicle scheduling constraints 

 ∀ 𝐢 ∈ 𝐂 ∑ 𝐕𝐢,𝐣𝐣∈𝐂/𝐢 ≤ 𝟏        (03)   

 ∀ 𝐢 ∈ 𝐂: ∑ 𝐕𝐣,𝐢𝐣∈𝐂/𝐢 ≤ 𝟏        (04)   

  |𝐂| − ∑ ∑ 𝐕𝐢,𝐣𝐣∈𝐂/𝐢𝐢∈𝐂 ≥ 𝟏         (05)   

Constraints about schedule of container transfer in storage bay 

 ∀ 𝐢 ∈ 𝐂: ∑ 𝐁𝐢,𝐣 ≤𝐣∈𝐂\𝐢 𝟏        (06) 

 ∀ 𝐢 ∈ 𝐂: ∑ 𝐁𝐣,𝐢 ≤𝐣∈𝐂/𝐢 𝟏        (07)     

∀(𝐩, 𝐢) ∈ 𝐏 × 𝐂:  𝐈𝐩 ≥ 𝐗𝐢,𝐩        (08) 

∀𝐛 ∈ 𝐁, 𝐈𝐛 ≤ ∑ 𝐈𝐏𝐩∈𝐛          (09) 

∀𝐩 ∈ 𝐏: 𝐈𝐁(𝐩) ≥ 𝐈𝐩         (10)   

|𝐂| − ∑ 𝐁𝐢,𝐣(𝐢,𝐣)∈𝐂\𝐢≠𝐣 = ∑ 𝐈𝐛𝐛∈𝐁          (11) 

∀ 𝐛 ∈ 𝐁, ∀ (𝐢, 𝐣) ∈ 𝐂𝟐:  𝐁𝐢,𝐣 + 𝐁𝐣,𝐢 ≤ 
∑ 𝐗𝐢,𝐩

𝐩∈𝐛
+ ∑ 𝐗𝐣,𝐟

𝐟∈𝐛

𝟐
    (12) 

Transfer time constraints 

∀(𝐢, 𝐣) ∈ 𝐂𝟐, 𝐣 = 𝐬𝐮𝐜𝐜𝐐𝐂(𝐢): 𝐭𝟏(𝐣) ≥ 𝐭𝟏(𝐢) + 𝐒𝐐𝐂                                   (13) 

∀(𝐢, 𝐩) ∈ 𝐂 × 𝐏:  𝐭𝟐(𝐢) ≥ 𝐭𝟏(𝐢) + 𝐒𝐕 + 𝐓𝐐𝐂(𝐢),𝐁𝐄(𝐩) + 𝐆(𝐗𝐢,𝐩 − 𝟏)      (14) 

∀(𝐢, 𝐣) ∈ 𝐂𝟐, 𝐢 ≠ 𝐣:  𝐭𝟐(𝐣) ≥ 𝐭𝟐(𝐢) + 𝐒𝐁 + 𝐆(𝐁𝐢,𝐣 − 𝟏)                             (15) 
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∀(𝐢, 𝐞) ∈ 𝐂 × 𝐏: 𝐭𝟑(𝐢) ≥ 𝐭𝟐(𝐢) + 𝐓𝐞 + 𝐒𝐯 + 𝐆(𝐗𝐢,𝐞 − 𝟏)                         (16) 

∀(𝐢, 𝐣) ∈ 𝐂𝟐, ∀𝐩 ∈ 𝐏: 𝐭𝟏(𝐣) ≥ 𝐭𝟑(𝐢) + 𝐓𝐩,𝐐𝐂(𝐣) + 𝐆(𝐕𝐢,𝐣 + 𝐗𝐢,𝐩 − 𝟐)         (17) 

∀𝐢 ∈ 𝐂: 𝐂𝐌𝐚𝐱 ≥ 𝐭𝟑(𝐢)              (18) 

Constraints about vehicle attributions and termination time 

∀𝐢 ∈ 𝐂, 𝟏 ≤ 𝐯𝐢 ≤ |𝐂| − ∑ ∑ 𝐕𝐢,𝐣𝐣∈𝐂/𝐢𝐢∈𝐂                    (19)          

∀(𝐢, 𝐣)  ∈ 𝐂𝟐,     𝐯𝐢 − 𝐯𝐣 ≤ 𝐆(𝟏 − 𝐕𝐢,𝐣)                     (20)    

∀(𝐢, 𝐣)  ∈ 𝐂𝟐,     |𝐯𝐢 − 𝐯𝐣| ≥ 𝟏 − 𝐕𝐢,𝐣                         (21)                      

∀(𝐯, 𝐢) ∈ 𝐕 × 𝐂, 𝐭𝐯 ≥ 𝐭𝟑(𝐢) − 𝐆|𝐯 − 𝐯𝐢|                  (22) 

Constraint about storage bay termination time 

∀𝐛 ∈ 𝐁, 𝐭𝐛 ≥ 𝐭𝟑(𝐢) − 𝐆(𝟏 − ∑ 𝐗𝐢,𝐩𝐩∈𝐛 )               (23) 

Constraint about location costs 

∀𝐢 ∈ 𝐂, 𝐣 ∈ 𝐆(𝐢), ∀(𝐛𝟏, 𝐛𝟐) ∈ 𝐁
𝟐: 𝐅𝐢,𝐣

𝟕 ≥ 𝐟𝐢,𝐣,𝐛𝟏,𝐛𝟐 − 𝐆(𝟐 − ∑ 𝐗𝐢,𝐩 −∑ 𝐗𝐣,𝐥𝐥∈𝐛𝟐𝐩∈𝐛𝟏 )    (24) 

∀(𝐢, 𝐣) ∈ 𝐂𝟐, 𝐢 ≠ 𝐣, 𝐩 ∈ 𝐏 , 𝐏𝐢,𝐣 + 𝐏𝐣,𝐢 ≤ (𝐗𝐢,𝐩 + 𝐗𝐣,𝐩) 𝟐⁄                                     (25)  

∀𝐢 ∈ 𝐂, ∑ 𝐏𝐢,𝐣 ≤ 𝟏𝐣∈𝐂\𝐢                                                                                        (26) 

∀𝐢 ∈ 𝐂, ∑ 𝐏𝐣,𝐢 ≤ 𝟏𝐣∈𝐂\𝐢          (27)                       

|𝐂| − ∑ 𝐏𝐢,𝐣(𝐢,𝐣)∈𝐂\𝐢≠𝐣 = ∑ 𝐈𝐩𝐩∈𝐏        (28)   

∀(𝐢, 𝐣) ∈ 𝐂𝟐\𝐢 ≠ 𝐣:  𝐭𝟑(𝐣) > 𝐭𝟑(𝐢) + 𝐆(𝐏𝐢,𝐣 − 𝟏)     (29)         

∀(𝐢, 𝐣) ∈ 𝐂𝟐, 𝐢 ≠ 𝐣, 𝐝𝐣 > 𝐝𝐢 ∶   𝐙𝐢,𝐣 ≥ 𝐆(𝐏′𝐢,𝐣 − 𝟏)     (30) 

∀(𝐢, 𝐩) ∈ 𝐂 × 𝐏, 𝐝𝐢 > 𝐝𝐩: 𝐙′𝐢,𝐩 ≥ 𝟏 + 𝐆(𝐗𝐢,𝐩 − 𝟏)     (31) 

∀(𝐢, 𝐣) ∈ 𝐂𝟐, 𝐢 ≠ 𝐣:  𝐏′𝐢,𝐣 = 𝐏𝐢,𝐣 + ∑ ⌊
𝐏𝐢,𝐤+𝐏𝐤,𝐣

𝟐
⌋   +   ∑ ∑ ⌊

𝐏𝐢,𝐟+𝐏𝐟,𝐡+𝐏𝐡,𝐣

𝟑
⌋𝐡∈𝐂𝐟∈𝐂𝐤∈𝐂  (32)                             

⌊ X ⌋ : Integer part of real X.  
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3.1.2.4 Objectives  

a) Straddle Carriers’ Makespan  

The straddle carriers’ makespan is the date of completion of the last vehicles task. We denote 

this objective by CMax. The straddle carriers’ makespan is a crucial parameter to qualify the Pareto 

solutions. The straddle carrier makespan is the global makespan of the handling system. The last 

straddle carriers’ task is operated when the last container is stored in the storage space. Considering 

realistic data, high quality or optimality of QC-makespan is insured by straddle carrier makespan 

optimality. 

Consider solution S, Tlast its last routing time and Slast its last waiting time at bay entry. Consider 

Tmin and Tmax, the minimal and the maximal routing time for each container transfer task 

respectively. 

Makespan(S) = QC Makespan(S) + Tlast + Sv + Slast 

Slast the Straddle Carrier’s waiting time in bay entry considering the last storage task. Slast is equal 

at least to 0 and at most to (|QC|-1) SB. 

Tmin + Sv ≤ Tlast + Sv + Slast ≤ Tmax + Sv + (|QC| − 1) × SB 

QC Makespan (S) ≥ Makespan(S) − (Tmax + Sv + (|QC| − 1) × SB) 

QC Makespan (S) ≤ Makespan(S) − (Tmin + Sv) 

The variation of QC Makespan(S) is equal to Tmax + Smax − (Tmin + Smin ).  

When Makespan(S) is optimal, QCs’ Makespan(S) has good quality. In fact, with Straddle Carrier 

makespan optimality, QC makespan is equal at most to: 

Makespan(S) − (Tmin + Sv). 

We can optimize QCs’ makespan considering its natural minimization with straddle carriers’ 

makespan minimization.We can also attribute a particular location for the last container stored to 

insure optimality of QCs’ makespan when straddle carriers’ makespan is optimal. We denote by Llast 
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this location. The routing path associated to Llast must be minimal and its storage bay cannot be used 

for other container storage. With these conditions, we insure the equation "QC Makespan(S) =

Makespan(S) − (Tmin + Sv)"and the optimality of straddle carriers’ makespan and QCs’ makespan 

are equivalent. 

b) The number of vehicles used 

The number of vehicles to be used is denoted by |V|. When we optimize IPLASS, we consider 

that the terminal has a large resource of straddle carriers, and can use for each handling operation at 

container ship arrival a sufficiently large number of vehicles to insure makespan high quality or 

optimality. The only one upper bound, which concerns the number of straddle carriers used, is the 

natural parameters of QC productivity (showed in part 3.1.5). We evaluate |V| as below: 

|𝑽| = |𝑪| − ∑ ∑ 𝑽𝒊,𝒋𝒋∈𝑪/𝒊𝒊∈𝑪  (part 3.1.3.4). 

If makespan optimality has highest priority, the optimal straddle carrier fleet size is the smallest 

number which satisfies next condition:  

For an optimal solution of the problem, when QC finishes unloading a container from a ship, at 

least one vehicle is ready to pick it up under the QC.  

Determining this optimal straddle carrier fleet size is studied by IRIS F.A. VIS [18].   

c) The number of storage bays used  

The number of storage bays is an important parameter to qualify the operator decision in SCMT. 

In fact, at multi-ship arrival, the work in the terminal is organized in different handling operations, 

and the goal of everyone is to transfer containers from a specific part of the quay to the storage 

space. Considering our modeling, every handling operation concerns one or many container ships 

but a unique part of the quay. Every handling operation is specified by the associated part of the 

quay and its entry and exit points (Point A and Point B in Figure 14).     

 A concurrence between the handling operations concerns especially the storage locations’ 

assignment. When the operator assigns a set of storage locations to containers, a set of storage bays 

is used. Handling operations cannot use storage bays at the same time without communication. If 
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the frequency of storage bay occupation by straddle carriers is high, the operator cannot use the 

same storage bays for different handling operations at the same time. Then, it is important to 

minimize the number of storage bays used for every handling operation. We denote this variable by 

|B*| and we evaluate it as below: 

 |𝑩∗| = ∑ 𝑰𝒃𝒃∈𝑩  

The number of storage bays used must respect next equation: 

 |𝑩∗| = |𝑪| − ∑ ∑ 𝑩𝒊,𝒋𝒋∈𝑪/𝒊𝒊∈𝑪  

d) The number of storage locations used 

When different handling operations can use the same storage bays, may be they cannot use the 

same storage locations in each common bay. The use of a common storage location by different 

handling operations during a common operating time depends on communication quality and 

storage strategy. However, the minimization of the number of locations used is an efficient 

parameter to qualify the operator’s decision. We denote this quantity by |P*| and we evaluate it as 

below:  

 |𝑷∗| = ∑ 𝑰𝒑𝒑∈𝑷  

The number of storage locations used has to respect the next equation. 

 |𝑪| − ∑ ∑ 𝑷𝒊,𝒋𝒋∈𝑪/𝒊 = |𝑷∗|𝒊∈𝑪  

e) The total operating time of straddle carriers - ∑ 𝒕𝒗𝒗∈𝑽  

When we minimize the makespan, the operating time is globally optimized. However, if we 

consider the operating time of every straddle carrier, we have to add another objective which is the 

sum of vehicles’ operating time. That objective is evaluated as below: 

 ∑ 𝒕𝒗𝒗∈𝑽  

f) The total occupation time of storage bays - ∑ 𝒕𝒃𝒃∈𝑩  

When a storage bay is used for a handling operation, the decider has to consider its occupation 
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time. After this time the storage bay can be easily used for another handling operation. Then we 

consider the objective of minimizing the sum of storage bay occupation time by the current 

operation. That objective is noted and evaluated as below: 

 ∑ 𝒕𝒃𝒃∈𝑩  

g) The first Location Assignment Cost (LAC1) 

Consider the known data C(i) ,which is the set of containers having the same delivery date and 

the same next transporter as container i. We evaluate F7(i) as an average cost considering every 

container j in C(i), fi,j,x,y and |C(i)| the size of C(i). 

 ∀𝒊 ∈ 𝑪 , 𝑭𝟕(𝒊) = ∑ 𝑭𝒊,𝒋
𝟕

𝒋∈𝑪\𝒊 /|𝑪(𝒊)|. 

Considering F7(i) for every container i and the number of containers |C|,  we evaluate the first 

Location Assignment Cost 𝐹7(𝐶). 

 𝑭𝟕(𝑪) = (∑ 𝑭𝟕(𝒊)𝒊∈𝑪 )/|𝑪|. 

For a real instance of the problem, average evaluation of location cost gives a better idea about 

the quality of the global location decision. The optimization of the first Location Assignment Cost 

is essential to promote the facilitation of container transfer to the next transporter.  

h) The second Location Assignment Cost (LAC2) 

The second Location Assignment Cost is equal to the number of unproductive moves caused by 

location decision. These unproductive moves will disadvantage the facility of container deliveries. 

An unproductive move is caused when a container with some delivery date is stored on another 

container with earlier delivery date. 

3.1.2.5) Constraints 

(01) Each container i is to be stacked in exactly one storage location.  

(02) The number of containers to stack in each storage location p is less than or equal to the initial 

capacity of this location considering the beginning of the current handling operation. 
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(03) Every container has at most one direct successor considering straddle carrier handling task. 

(04) Every container has at most one direct predecessor considering straddle carrier handling task. 

(05) The number of straddle carriers used is at least equal to one. 

(06) Every container has at most one direct successor considering transfer and stacking tasks in the 

same bay. 

(07) Every container has at most one direct predecessor considering transfer and stacking tasks in 

the same bay. 

(08) For each storage location p if at least for one container the location decision variable Xi,p is 

equal to 1 then Ip is equal to 1 and p is used. Then, the storage bay p is used if and only if at least 

one location decision variable Xi,p is equal to 1. In other terms, the storage location p is used if and 

only if at least one container is stored in p.  

(08) If no storage location contained by the storage bay b is used, then b is not used. 

(09) If storage location p is used, then the storage bay B(p) which contains p is used. 

(09)+(10) Storage bay b is used if and only if at least one storage location in b is used. 

(11) The number of used storage bays is equal to the sum of Ib. This constraint fixes the number of 

variable Bi,j equal to 0, which is the number of used bays. 

(12) Antecedence and succession for transfer and stacking tasks in storage bays concern only 

containers stacked in storage locations of the same bay. 

(13) Suppose that container j is the direct successor of container i considering straddle carrier 

picking up task under QC, then the start time of handling operations of j (denoted by t1(j))  is at 

least equal to start time of handling tasks of i (denoted by t1(i)) added to the picking up time of 

container under QC denoted by SQC.      

(14) The date when straddle carrier associated to container i enters the associated storage bay (the 

storage bay access date) denoted by t2(i) is at least equal to the start date of handling tasks of i noted 

by t1(i) plus the time that Auto-Strad needs to load container plus the period of routing from the QC 
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which unloaded i to the entry of associated storage bay  noted by TQC(i),BE(p) . 

(15) Consider a container i and its direct successor for storage task in the same bay. Then the 

storage bay access date of j denoted by t2(j) is at least equal to the storage bay access date of i t2(i) 

added to security time SB. This constraint insures the condition of possible waiting time when 

straddle carrier enters the storage bay. It is a security constraint used to eliminate accidents in bays. 

(16) The termination time of handling tasks of container i denoted by t3(i)  is equal to the date when 

straddle carrier accesses the storage bay entry added to Te,  the routing time between the bay entry 

and the storage location e associated to i, plus the container loading time Sv.    

(17) If container j is the direct successor of container i considering straddle carrier picking up task, 

then the start date of handling tasks of j (t1(j)) is at least equal to the completion time of handling 

tasks of i (t3(i)) added to the straddle carrier routing time between the storage location p associated 

to i (Tp,QC(j)) and the QC associated to  j (QC(j)).    

(18)  The makespan is superior to completion time of every handling task. 

(19) Determination of the index set which represents the set of straddle carriers used. If V is the set 

of vehicles used, then for each container i: vi Є { 1 , 2 ,…, |V| } (vi is the vehicle assigned to 

container i). 

(20) If the straddle carrier precedence variable Vi,j is equal to one then the containers i and j are 

transferred by the same vehicle (vi=vj). 

(19) If the straddle carrier precedence variable Vi,j is equal to zero then the straddle carrier 

associated to i is not the same as the one associated to j. 

(20)and (21) For every container i and j, vehicle vi is equal to vehicle vj if and only if  Vi,j is equal 

to 1. 

(22) Termination date of vehicle v (straddle carrier v), denoted by tv, is higher than termination date 

of each container storage task, considering the containers transferred by v. 

(23)Termination date of storage task in each bay b is upper than termination date of storage of each 

container stacked in b. 
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(24) Evaluation of location cost fi,j,x,y considering location decisions and their associated storage 

bays. 

(25) For each container i and j stored in different locations, the variable Pi,j is nil. 

(26) Each container i has at least one direct successor considering stacking task in the same storage 

location. 

(27) Each container i has at least one direct predecessor considering stacking task in the same 

storage location. 

(28) The number of containers which have no predecessor (or the number of containers which have 

no successor) considering the stacking tasks in the same storage location is equal to the number of 

storage locations used. In fact, the first (or the last) container stored in each storage location has no 

predecessor (or successor) considering the current handling operation. 

(29) If the decision variable Pi,j is equal to one, the container i is stored before the container j in the 

same location  ( t3(j) > t3(i) ). 

(30) Zi,j is binary number equal to one if and only if container j is stored on container i and will be 

delivered after container i. 

(31) Z’i,p is binary number equal to one if and only if  container i is stored in location p before any 

other container (we take into account containers to unload for current ship arrivals), and will be 

delivered after the last container stored in p during precedent storage operations (considering 

precedent ship arrivals). 

(32) P’i,j is binary number equal to one if and only if container j is stored on container i directly or 

indirectly. That variable is used to evaluate the number of unproductive moves to be caused by 

location decision. Note that at most four containers can be stored in the same storage location at 

MACT using Straddle-Carriers.  
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3.1.3 NP-Completeness of IPLASS  

In this part, we prove the NP-Hardness of IPLASS. Consider the instance I of IPLASS: 

    00,:,,:,, 22  BQCfpji SandSBBPfpddCjiPC  

For this instance, containers have the same delivery date, then they are identical considering the 

final storage space configuration which determines the second Location Assignment Cost for next 

operations. The sum of free storage location is equal to the number of containers, and then the 

number of bays to use is initially known. The number of free straddle carriers is less than the 

optimal number of straddle carriers, then all straddle carriers are necessary to insure makespan 

optimality. Considering this instance, IPLASS can be modeled as: 

1,

,

,

,













Vv

pv

Max

Pp

ppv

Max

XPp

CtXVv

CMinimize

 

Xv,p is equal to 1 if the vehicle v has to transfer a container to the storage location p. 

tp is the routing time of a vehicle which has to transfer a container to the storage location p. tp 

depends only on p. 

Consider now the parallel machines problem (PMP) modeled as next: 

1,

,

,

,













Mm

sm

Maxs

Ts

sm

Max

YTs

CYMm

CMinimize

  

M: set of parallel machines. T: set of tasks. s : processing time of task s. 

Ym,s: equal to 1 if  task s is assigned to machine m and equal to 0 else. 

Each feasible schedule of instance I can be translated to a feasible schedule of the PMP with the 

same makespan. In fact, the set of vehicles of instance I corresponds to the set of parallel machines 
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because there is no interaction between straddle carriers. In others terms, the total routing time of 

every vehicle does not depend on any other straddle carrier.  

Every vehicle of instance I is associated to a machine of the PMP. For each transfer task, the 

routing time of the vehicle depends only on the storage location associated to the container. Routing 

time of vehicle v is the processing time of the machine associated to v in parallel machine problem. 

Every feasible schedule of I can be translated to a feasible schedule of PMP with the same 

makespan. 

Consider now the parallel machine problem. We construct a particular instance I of the IPLASS. 

    00,:,,:,, 22  BQCfpji SandSBBPfpddCjiPC  

Every machine in parallel machine problem is associated to a vehicle in I. Every task s in parallel 

machine problem is associated to a storage location p in I. The processing time of task s is equal to 

vehicle routing time necessary to transfer a container to the associated location p.  

Reciprocally, every feasible schedule of PMP can be translated to a feasible schedule of i with 

the same makespan. We conclude that the instances I are NP-Completes. Then we know that the 

problem is NP-Complete considering handling operation using many straddle carriers. We will 

prove now that IPLASS is NP-Complete even for instances using only one vehicle. 

Consider next instance of IPLASS (instance J): 

|𝑉| = 1, |𝑃| = |𝐶|, ∀(𝑥, 𝑦) ∈ 𝑃: 𝐵𝑥 ≠ 𝐵𝑦 

The problem is now modeled as follows: 

𝑀𝑖𝑛 ∑ ∑ (𝑓𝑖,𝑗,𝑥,𝑦 × 𝑋𝑖,𝑥 × 𝑋𝑗,𝑦)

𝑗∈𝐺(𝑖)
𝑦∈𝑃

𝑖∈𝐶
𝑥∈𝑃

 

∀𝑖 ∈ 𝐶,∑𝑋𝑖,𝑝
𝑝∈𝑃

= 1 

∀𝑝 ∈ 𝑃,∑𝑋𝑖,𝑝
𝑖∈𝐶

= 1 
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For this instance of IPLASS, we have only to solve the containers allocation problem minimizing 

the first Location Assignment Cost. In fact, we obtain a quadratic assignment problem. The new 

problem has some particularities compared to the known quadratic allocation problems. To prove 

NP-Hardness of instances J, we use polynomial reduction of J to a known NP-Complete problem 

which is the Traveling Salesman Problem (TSP). 

Firstly we add to instance J next properties: the vehicle speed is equal to 1 unity.  

Let’s consider the set of containers C = {Ci: 1≤ i ≤ n}, n=|C|. Containers are listed as following: 

(C1, C2, …, Cn). For each i ≤ n, we have the next relationship: Ci and Ci+1 have the same delivery 

date or the same customer, but we cannot have the two relationships at the same time. In fact, if Ci 

and Ci+1 have the same delivery date, they have not the same customer. On the other hand, if they 

have the same customer they have not the same delivery date. Then, for every container Ci we have: 

C(i) = {Ci-1, Ci+1}. The new problem is to assign, for every container Ci, a storage location P (Ci) 

minimizing the sum of quantities   T (P(Ci,), P(Ci+1)), 

with i ≤ n-1.(T(x,y) is the routing time between the locations x and y). 

∑ 𝑇(𝑃(𝐶𝑖), 𝑃(𝐶𝑖−1))

1≤𝑖≤𝑛−1

 

For the chosen instance, vehicle speed is equal to 1 and all used storage bays are different. Then 

T(P(Ci),P(Ci+1)) is equal to the distance between P(Ci) and P(Ci+1) for every container i ≤ n-1. 

Minimizing the sum of distances between every container location and the location of its successor 

considering the chosen assignment leads to solving the Traveling Salesman Problem (TSP). In fact 

every storage location in instance J can be considered as a city in TSP. The decision P(Ci) in 

instance J is equivalent to choose the next city to visit after i-1 decisions in TSP. 

Reciprocally, each instance of TSP is equivalent to an instance J2 (instance having the properties 

of J). Actually, we can associate the set of cities in TSP to a set of storage location in J2 considering 

a fictive container terminal where the distance between every two free storage locations is equal (or 

proportional) to the distance between the two corresponding cities. The traveler in TSP is associated 

to the vehicle in J and we have |V|=1. In TSP, the cities are different and the storage locations in J2 
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are in different bays:  

∀(𝑥, 𝑦) ∈ 𝑃: 𝐵𝑥 ≠ 𝐵𝑦 

In TSP, the traveler visits each city exactly one time, then the associated vehicle in J loads (visit) 

every storage location exactly one time. In other words, instance J2 has the two next properties:  

|𝑃| = |𝐶| 

Then instance J2 has all the properties of J and each instance of TSP is equivalent to an instance 

in J. 

We conclude that instances J of IPLASS are NP-Complete and then IPLASS is NP-Complete 

even considering a straddle carrier resource limit of 1 vehicle. The problem is NP-Complete 

considering large part of its instances. 

NP-Completeness of IPLASS is a direct result of NP-Completeness of two IPLASS sub-

problems which are the location assignment problem and the straddle carrier scheduling problem. 

3.1.4 Evaluation of solution quality 

3.1.4.1 Evaluation of |V| Upper Bound and |V| Lower Bound 

|V| is the straddle carrier fleet size. We define the routing cycle as the vehicle routing path 

including routes from point A to QC, from QC to storage location and from storage location to 

point A. The maximal number of vehicles used depends on two factors. The first factor is the 

maximal productivity of loading tasks under QCs which depends on their speed and their number. 

The second is the maximal operating cycle, which is the sum of the pick-up time under QC, the 

maximal routing cycle, and the maximal waiting time in the bay entry. We note TMax the maximal 

operating cycle and SMax the maximal waiting time in bay entry. SMax depends on the number of 

QCs and on SB. SB is the maximal waiting time between each straddle carrier and its direct 

predecessor vehicle operating in the same bay. When a straddle carrier v arrives in bay entry, the 

bay can be blocked by one or more vehicles which preceded v in that bay. When v enters the 

storage bay, the bay is blocked for SB fixed security time. We consider now that SQC, the pick-up 

time under QCs, is bigger than SB. We denotes by S(v1,v2) the waiting time in bay entry between  a 
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vehicle v1 and its direct predecessor v2. We notes tB(v1) and tB(v2) the respective arrival times of v1 

and v2 in bay entry.    

S(v1,v2) =  max ( 0, SB - ( tB(v1)- tB(v2) ) 

Then, there is no waiting time in bay entry between vehicles coming from the same QC. In fact, if 

v1 and v2 are served by the same QC, tB(v1)- tB(v2) > SQC>SB than S(v1,v2)=0. The result is that the 

waiting time in bay entry exists only between vehicles coming from different QCs with equivalent 

routing starting times from QCs. Consider tQC(v1) and tQC(v2) these routing starting times from QCs.  

S(v1,v2) =  max ( 0, SB - ( tQC(v1)- tQC(v2) ) 

Consider now a vehicle v and all straddle carriers which proceeded v in the same storage bay. If a 

vehicle v1 coming from QC1 affects the total waiting time of v in bay entry no other vehicle coming 

from QC1 can affect it because of pick-up delay under QC1 which results from the last equation. 

Then, at most |QC|-1 predecessor can affect the total waiting time of v in bay entry. We note it S(v) 

and we note { vi / i< |QC| } the set of straddle carriers which preceded v in the same storage bay and 

come from different QCs. 

𝑆(𝑣) = ∑ 𝑆(𝑣, 𝑣𝑖)

1≤𝑖<|𝑄𝐶|

 

𝑆(𝑣) ≤ (|𝑄𝐶| − 1) × 𝑆𝐵 

We conclude that maximal waiting in bay entry SMax is equal to (|𝑄𝐶| − 1) × 𝑆𝐵.  

𝑇𝑀𝑎𝑥 = 𝑆𝑄𝐶 +𝑀𝑎𝑥{𝑇𝐴,𝑝 + 𝑇𝑝,𝐴: 𝑝 ∈ 𝑃 } + 𝑆𝑀𝑎𝑥 

We have finally an evaluation of the vehicle fleet size upper bound.  

|𝑉| ≤
𝑇𝑀𝑎𝑥
𝑆𝑄𝐶

× |𝑄𝐶| 

We note that with sufficiently large stacking capacity under QCs the QCs’ productivity is maximal. 

In other terms, this condition insures the fact that when the QC unloads container from ship, it does 

not wait for the straddle carriers to unload containers from the stacking space under it. 

Suppose now two conditions: 
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The stacking space under QCs is sufficiently large and QCs productivity is maximal. 

The CMax Optimality is an absolute priority. 

Considering these two conditions, we can evaluate a lower bound for the number of straddle carriers 

used considering solutions with optimal makespan. Consider Sopt a solution having an optimal 

makespan, the minimal number of vehicles used for Sopt depends on three factors: the QCs handling 

speed, which depends on SQC, the number of QCs and   the minimal operating cycle TMin. We 

evaluate TMin as: 

𝑇𝑀𝑖𝑛 = 𝑀𝑖𝑛{𝑇𝐴,𝑝 + 𝑇𝑝,𝐴: 𝑝 ∈ 𝑃 } + 𝑆𝑄𝐶 

Considering these conditions, we have next the inequality: 

|𝑉(𝑆𝑜𝑝𝑡)| ≥
𝑇𝑀𝑖𝑛
𝑆𝑄𝐶

× |𝑄𝐶| 

Consider now the last two conditions added to the next proprieties.  

We suppose the existence of CMax-Optimal solution Sopt with nil waiting times in bay entries. 

There is no possibility of short cut paths between the quay entry (point A) or the quay exit (point B) 

and the storage bay. All storage bays have the same length. In other terms, all straddle carrier 

routing paths are equal.  

With these conditions, the inequality becomes an equality and we obtain a strict evaluation of 

|V(Sopt)|-Optimality. 

|𝑉(𝑆𝑜𝑝𝑡)| =
𝑇𝑀𝑖𝑛
𝑆𝑄𝐶

× |𝑄𝐶| 

3.1.4.2 Evaluation of CMax Lower-Bound 

For this part we note Makespan(S) the value of CMax considering solution S. It is the date of the 

last task for the decision S. Consider V* the minimal set of vehicles sufficient to insure makespan 

optimality.  

In our modeling, for each vehicle, the routing path includes the routing path from the QC 
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unloading the container, to the storage location and the routing path from the storage location to the 

QC associated with the next container to transfer. In this part, we consider that routing path include 

the routing path from point A (quay entry) to the storage location and the routing path from the 

storage location to point A. This consideration does not affect the nature of the problem and its 

optimality. Consider p0 the storage location with the shortest routing cycle. We note T0 the routing 

time of the shortest routing cycle added to loading time at QC and unloading and stacking time at 

storage location. We note N0 the maximal number of containers which the largest fleet of straddle 

carriers can transfer in the routing time TMin. In mathematical terms we can note:  

𝑇𝑀𝑖𝑛 = 𝑀𝑖𝑛{𝑇𝐴,𝑝 + 𝑇𝑝,𝐴: 𝑝 ∈ 𝑃 } + 𝑆𝑄𝐶 + 𝑆𝐵 

𝑁0 = |𝑄𝐶|
𝑇0
𝑆𝑄𝐶

 

With |QC| the cardinal of QCs set, A the point at quay entry and TA,p the routing time between A 

and storage location p and Tp,A the routing time between p and A.    

We consider the storage location p associated to the minimal total routing path: 

𝑀𝑖𝑛{𝑇𝐴,𝑘 + 𝑇𝑘,𝐴: 𝑘 ∈ 𝑃 }. 

We consider w(v,i) the vehicle waiting time in bay entry. It is exactly the waiting time for vehicle 

v when it transfer container i.  

V
* 

is the minimal set of vehicles which insure maximal productivity for the speed of containers 

picking up under QCs. V
* 

is evaluated considering that waiting times in bay entry are nil. Then we 

can conclude that |V
*
|=N0. 

Consider a solution S, we have: 

𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛(𝑆) ≥
|𝐶|

|𝑉∗|
× 𝑇𝑀𝑖𝑛 
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Proof 
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Consider now that the stacking space under QCs has sufficiently large capacity to insure QCs’ 

operating time optimality. With that condition we can evaluate the date of the last QC handling task 

with the next formulation. We denote this quantity Makespan(QCopt) and we note C(q) the set of 

containers associated to QC q.   

𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛(𝑄𝐶𝑜𝑝𝑡) = 𝑀𝑎𝑥{ |𝐶(𝑞)| ×  𝑆𝑄𝐶  , 𝑞 ∈ 𝑄𝐶} 

Considering the same conditions we evaluate another lower bound for the makespan of the 

global QC-SC handling system. Suppose that all routing paths correspond to the same routing time 

T. S is a feasible solution to the problem. 

𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛(𝑆) ≥ 𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛(𝑄𝐶𝑜𝑝𝑡) + 𝑇 

In our modeling, we consider a regular QC unloading task with a static container unloading time 

less than the straddle carrier picking up time SQC. A total container picking up schedule is initially 
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considered. For the most general context, we evaluate the next inequality for each solution S and for 

each QC handling situation. 

𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛(𝑆) ≥
|𝑪|

|𝑸𝑪|
× 𝑆𝑄𝐶 + (|𝐶|𝑚𝑜𝑑|𝑄𝐶|) × 𝑆𝑄𝐶 

Consider now the set of storage bays used B
*
. We note b the storage bay in B

*
 containing the 

largest set of storage locations used. We suppose the productivity of straddle carriers maximal. We 

note T, the routing time associated with each container transfer to b. In these conditions we have the 

following equation: 

𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛(𝑆) = (|𝑏| − 1) × 𝑆𝐵 + 𝑇 

B
*
 and b are initially unknown. At least b contains |C|/|B

*
| + |C| mod |B

*
| containers. Suppose that 

all routing paths correspond to the same routing time T. Then, for each solution S, we have next 

inequality. 

𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛(𝑆) ≥ (
|𝐶|

|𝐵∗|
− 1) × 𝑆𝐵 + |𝐶|𝑚𝑜𝑑|𝐵

∗| + 𝑇 

3.1.4.3 Evaluation of |B*| Lower Bound 

The lower bound, considering the number of bays used, is equal to the cardinal of the smallest 

set of bays which contains a set of free locations with a total storage capacity equal to the number of 

containers to stack. In mathematical terms we note the next evaluation of |B
*
|-Lower Bound. 

 𝐿. 𝐵(|𝐵∗|) = 𝑀𝑖𝑛 { |𝐹|; 𝐹 С 𝐵 𝑎𝑛𝑑 ∑∑𝑤(𝑝)

𝑝∈𝑏

= |𝐶|

𝑏∈𝐹

  }  

3.1.4.4 Evaluation of |P*| Lower Bound 

The lower bound, considering the number of used storage locations, is equal to the cardinal of 

the smallest set of locations having a total storage capacity equal to the number of containers to 

stack. In mathematical terms we note next the evaluation of |P
*
|-Lower Bound. 

 𝐿. 𝐵(|𝑃∗|) = 𝑀𝑖𝑛 { |𝐻|;𝐻 С 𝑃 𝑎𝑛𝑑 ∑𝑤(𝑝) = |𝐶|

𝑝∈𝐻

  }  
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3.1.4.5 Evaluation of ∑tv Lower Bound  

Consider P
*
Min the set of storage locations to be used. We suppose that P

*
Min contains the |C| 

storage locations which corresponds to the |C| shortest routing paths. For each solution S we have 

the following inequality:  

 

∑ 𝑡𝑣
𝑣∈𝑉

≥ ∑ (𝑇𝐴,𝑝 + 𝑇𝑝,𝐴
𝑝∈𝑃𝑀𝑖𝑛

∗

+𝑆𝑄𝐶 + 𝑆𝑣) 

Suppose that every routing path have the same length T, then we obtain the next result. 

 

∑ 𝑡𝑣
𝑣∈𝑉

≥ |𝐶| × (𝑇 + 𝑆𝑄𝐶 + 𝑆𝑣) 

3.1.4.6 Evaluation of ∑tb Lower Bound                                                              

We note Tb the routing time between the entry of the bay b and the quay entry (Point A). 

Consider the storage bay b in B*, we know that 𝑡𝑏 ≥ (|𝑏| − 1) × 𝑆𝐵 + 𝑇𝑏 (part 3.1.5) then we can 

conclude next inequality. 

∑ 𝑡𝑏
𝑏∈𝐵∗

≥ (|𝐶| − |𝐵∗|) × 𝑆𝐵 + ∑ 𝑇𝑏
𝑏∈𝐵𝑀𝑖𝑛

∗

 

Suppose that all routing paths have the same length which corresponds to the operating time T. 

We obtain the next result. 

∑ 𝑡𝑏
𝑏∈𝐵∗

≥ (|𝐶| − |𝐵∗|) × 𝑆B + |𝐵
∗| × 𝑇 

3.1.4.7 Evaluation of Lower Bound for the first Location Assignment Cost  

The minimal distance between two different storage locations is a lower bound of the first 

Location Assignment Cost. 
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3.1.4.8 Evaluation of Lower Bound of the second Location Assignment Cost  

Considering the second Location Assignment Cost, the lower bound is equal to zero.  

3.2 Integrated Problem of Location Assignment and ALV Scheduling 

in Maritime Container Terminal at import 

3.2.1 Operating process 

Compared to the case of Auto-Strad traffic, operating process in MACT using AGVs has next 

particularities: 

 AGV cannot access the storage bays, it is the ASC which unloads the container from the 

vehicle (the AGV) and transfers it to its exact storage location. 

 At bay entry, the waiting times of vehicles are dependent on ASC handling operations; in 

fact the ASC cannot serve any AGV until finishing the transfer of last served container to its 

storage location, storing it and back to the unloading position at bay entry. 

 When the ASC unloads the container from AGV, the vehicle (the AGV) returns the quay 

entry to begin the next transfer task.   

3.2.2 Mathematical modeling 

3.2.2.1 Data 

All data defined in this part are initially knowns. 

We define QC, QC ( i ), C, P, w ( p ), SQC, di, G, TQC(i),BE(p) and C ( i ) as in part 3.1.2.1. 

ASC: The set of free Automated Stacking Cranes available for use to transfer and stack containers.  

𝑆𝐴𝑆𝐶: Container storage time. When an ASC arrives to the storage location, SASC is the static time 

which the ASC needs to stack the container in the associated storage location.  

𝑆𝑝: The time which the ASC needs to transfer a container from the transfer point (ASC unloading 

point at bay entry) to the storage location p, store the container in the associated location and 
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return from the location p to the transfer point. 

𝑠𝑢𝑐𝑐𝑄𝐶(𝑖): The direct successor of container i considering picking up task under QC. 

𝑇𝐵𝐸(𝑝),𝑄𝐶(𝑖): ALV routing time from ASC unloading position at bay entry associated with storage 

location p to QC associated with container i. 

3.2.2.2 Variables 

All data defined in this part are variables. 

V, Vi,j,vi, Xi,p, X’i,p, Pi,j, P’i,j, Zi,j, Z’i,j, Ip, tv and Cmax are defined as in part 3.1.2.2. 

ASC
*
: The set of ASCs used for stacking containers. We have to use exactly all these ASCs. ASC

*
 

is included in ASC. ASC
*
 is determined by the location decision. |ASC

*
| is the size of ASC

*
 and is 

an objective to minimize in Multi-Objective IPLAVS.  

ASCi,j: 1 if containers i and j are stacked by the same ASC and container j is stacked directly after 

i. ASCi,j is defined only for i≠j. 

t1(i): Start time of task i. The date when the ALV picks up container i under QC (considering our 

chosen layout, we can also consider the date when the ALV move from point A without changing 

the optimality of the problem). 

t2(i): The date when ALV assigned to container i releases i at the bay entry and exactly at the 

unloading position of associated ASC . 

th : Termination time of  ASC h. We consider all containers assigned to storage bay b. 

Ih: If ASC h is used Ih is equal to 1, otherwise Ih is nil. 

L(h): The set of storage locations associated with ASC h. 

We consider the same model as in part 3.1 with some modifications: 

 Instead of B, the set of storage locations we consider ASC, the set of Automated Stacking 

Cranes.   

 Instead of SB, the static blocking period in the case of Auto-Strad traffic, we consider Se 
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which is a waiting time dependent on the storage location e assigned to the considered 

container. 

 Instead of Te,QC(i) the routing time between storage location e and QC associated with 

container i, we consider   

3.2.2.3 Modelling 

In this part, we present mathematical modeling of multi-objective IPLAVS in automated 

maritime terminal with ALVs at import.  It integrates new and realistic constraints which reflect the 

real functioning of the terminal.  

For mathematical modelling of IPLAVS in the case of MACT using ALVs as vehicles, we 

consider constraints (01) to (15) and (19) to (32) of section 3.1.2.3 with minor modifications: 

 For constraints (06) and (07), we consider ASCi,j instead of Bi,j, where ASCi,j is binary 

variable equal to one if and only if container j is transferred directly after container i with the 

same ASC (Automated Stacking Crane). 

 In constraints (10) and (11), instead of B the set of storage bay we consider ASC the set of 

Automated Stacking Cranes and instead of Ib we use Ih which is a decision variable equal to 

one if and only if the ASC h is used. We use also the relation 𝑝 ∈ 𝐿(ℎ) instead of 𝑝 ∈ 𝑏, 

where L(h) is a given data equal to the set of storage locations associated with the ASC h. 

 For constraints (12) and (13), we consider ASC instead of B, ASCi,j instead of Bi,j and 

𝑝 ∈ 𝐿(ℎ) instead of 𝑝 ∈ 𝑏. 

 For constraint (19), the makespan denoted Cmax is evaluated with t2( i ) instead of t3( i ).  

 In constraints (24), instead of tb and t3( i ) we consider, respectively, th, the date of operating 

termination of ASC h and tASC ( i ), the date when ASC terminates transfer task of container i 

and return to loading position at bays’ entry.  In addition, we consider the relation 𝑝 ∈ 𝐿(ℎ) 

instead of 𝑝 ∈ 𝑏. 

 In constraint (25), we consider (ℎ1, ℎ2) ∈ 𝐴𝑆𝐶
2 instead of (𝑏1, 𝑏2) ∈ 𝐵

2, 𝑝 ∈ 𝐿(ℎ1) instead 
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of 𝑝 ∈ 𝑏1 and 𝑙 ∈ 𝐿(ℎ2) instead of 𝑝 ∈ 𝑏2.    

 For constraint (30), we consider 𝑡𝐴𝑆𝐶(𝑖) and 𝑡𝐴𝑆𝐶(𝑗) instead of  𝑡3(𝑖) and 𝑡3(𝑗).We add also 

next constrains instead of constrains (16), (17) and (18): 

∀(𝒊, 𝒋) ∈ 𝑪𝟐, 𝒊 ≠ 𝒋:  𝒕𝑨𝑺𝑪(𝒋) ≥ 𝒕𝑨𝑺𝑪(𝒊) + 𝑺𝒑 + 𝑮(𝑨𝑺𝑪𝒊,𝒋 + 𝑿𝒋,𝒑 − 𝟐)  (33)                                    

∀(𝒊, 𝒆) ∈ 𝑪 × 𝑷: 𝒕𝑨𝑺𝑪(𝒊) ≥ 𝒕𝟐(𝒊) + 𝑺𝒑 + 𝑮(𝑿𝒊,𝒑 − 𝟏)    (34)                                                     

∀(𝒊, 𝒋) ∈ 𝑪𝟐, ∀𝒑 ∈ 𝑷: 𝒕𝟏(𝒋) ≥ 𝒕𝟐(𝒊) + 𝑻𝑨𝑺𝑪(𝒑),𝑸𝑪(𝒋) + 𝑮(𝑽𝒊,𝒋 +𝑿𝒊,𝒑 − 𝟐) (35)    

(33) Consider a container i and its direct successor j considering transfer task by the same ASC. The 

date of ASC transfer termination for j is at least equal to the date of ASC transfer termination of i 

added to the ASC transfer and return times considering storage location assigned to container j.  

(34) The termination time of ASC handling tasks of container i (denoted by 𝑡𝐴𝑆𝐶(𝑖)) is at least equal 

to the date when ALV accesses ASC loading point added to the routing time between that point and 

the storage location assigned to i and the ASC return time from the storage location to the unloading 

position (ASC transfer point).    

(35) If container j is the direct successor of container i considering ALV transfer task, then the start 

date of ALV transfer task of j is at least equal to the completion time of ALV transfer task of i 

added to the ALV routing time between the unloading position of ASC assigned to i and the QC 

associated with j.    

3.2.3 NP-Hardness of IPLAVS - case of ALV 

We use the same demonstration as in part 3.1 (case of MACT using straddle-carriers) with minor 

modifications which concern essentially waiting time (naturally nil in the case of MACT using 

ALV) and routing paths (for MACT using ALV, routing path are determined considering the 

associated traffic layout presented in chapter 2). 

3.2.4 Evaluation of Lower-Bounds 

For Lower-Bound evaluations, we consider all results of part 3.1 taking into account traffic 

layout particularities in the case of Handling System using ALV and especially the associated 
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routing paths.  

3.3 Integrated problem of location assignment and AGV scheduling 

For MACT using AGVs, we consider the same theoretical results of part 3.2 considering waiting 

time at ASC unloading position. NP-Completeness of IPLAVS (Integrated Problem of Location 

Assignment and Vehicles Scheduling) in the case MACT with AGV is proved using the same 

demonstration of part 3.1 treating the problem for handling system with Auto-Strad. The lonely 

difference between the two demonstrations is the fact that for the case of AGV it is necessary to 

consider a nil waiting time at ASC unloading position to construct the polynomial reduction; in 

other terms we consider instances with storage locations positioned at bay entries and negligible 

ASC unloading time. 

For modelling, we consider constraints (1) to (37) of mathematical model in part 3.2 added to 

next constraint. 

∀(𝒊, 𝒑) ∈ 𝑪 × 𝑷:  𝒕𝟐(𝒊) ≥ 𝒕𝑨𝑺𝑪(𝒊)   (38)     

Constraint (38) insures interaction condition between AGV and ASC which is a particularity of 

handling system using these equipments. In fact, at the contrary of ALV, AGV has to wait for ASC 

to unload container and then it can move to transfer next container under QC. 

For Lower-Bound evaluations, we consider all results of part 3.1 taking into account traffic 

layout particularities in the case of Handling System using ALV and especially the associated 

routing paths.  

3.4 Mono-objective optimization of IPLAVS with new cooperative 

tabu search approach 

Before solving IPLAVS considering its Multi-objective aspect, we solved it considering mono-

objective version with the only objective of minimizing makespan. After testing different 

approaches, we opted to develop a new cooperative tabu search algorithm for an efficient resolution 

of mono-objective IPLAVS. 
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Cooperative approaches are applied to different meta-heuristics and especially tabu search, 

genetic algorithm and simulated annealing algorithm. In this part, we propose a cooperative 

exploration of the solution space based on tabu search, threading and communication. To test the 

efficiency of our approach in the general context of combinatorial optimization, the algorithm is 

applied to the Traveling Salesman Problem (TSP) which is known to be NP-Complete. To prove the 

efficiency of our approach, we compare it to classic tabu search and Late Acceptance Hill-Climbing 

algorithm (LAHC).  

Late Acceptance Hill Climbing is a recent and efficient meta-heuristic in the realm of local 

search based algorithm. LAHC delay the comparison between neighbors of current solution and 

compare new candidates to solutions having been current for several iterations of the exploration 

process. The LAHC was successfully tested for exam timetabling PATAT 2008 conference in, the 

traveling salesman problem and the magic square problem. LAHC is known to be very efficient 

considering especially running time. 

In the last 15 years, parallelization of TS has been treated by several studies. Threading and 

parallel computing offer different advantages to meta-heuristic approaches. These advantages 

concern essentially the sharing of computational tasks and the possibility of communication 

between different processes in order to improve the parameters of search. The main goal of meta-

heuristic parallelization is to make shorter running time. However, parallelization can improve 

solution efficiency for approaches which don’t surely converge to the global optima. 

 Three kinds of parallelization are identified in reviews of literature: 

 Operation parallelization 

It is a low-level parallelization sharing and accelerating computational tasks of algorithms. 

 Search space decomposition 

This approach use parallel searches of sub-solutions in different sub-spaces.  Global solutions are 

regularly given by the set of sub-solutions. 
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 Multi-search threads  

This approach uses several searchers (or threads) at the same time. The threads can be 

independent or cooperative.  

We propose a new Multi-search threads approach which is a cooperative tabu search (CTS) 

based on threading and interaction between the different used threads. We apply this approach to 

NP-Complete combinatorial problem which is TSP. To prove the efficiency of our approach we 

compared the numerical results of CTS with those of classic TS and LAHC heuristic. 

TS is an efficient approach of resolution for NP-hard combinatorial problem developed by 

Glover [1] in 1986. TS algorithm starts from an initial solution and move from neighborhood to 

neighborhood. At every neighborhood the best solution is selected.  The efficiency of TS algorithm 

compared to others approaches is the direct consequence of its opportunist and intelligent 

exploration of the solution space.  In fact, the exploration is regulated by a memory list named “tabu 

list” which contains the set of n last selected solutions. The tabu list is used to not end-up trapped in 

local optima. The main goal of meta-heuristic parallelization is to solve NP-hard problems in a 

small amount of time. In some situations, the parallelization improves the solution efficiency. Two 

level of parallelization are identified: a low level and a high-level. The low level parallelization is 

based on sharing computational tasks to accelerate the resolution. The high-level parallelization is a 

cooperative strategy using communication between different threads in order to improve the 

efficiency of search parameters and solve the problem in a small run time. Cooperative multi-search 

threads approaches are generally based on communication and cooperation between the different 

used threads. Different levels of communication and cooperation can be considered.  

In the taxonomy of El-Abed and Kamel [2], two kinds of Cooperative multi-search threads 

approach are identified in review of literature: the heterogeneous approach and the homogeneous 

approach.  The heterogeneous approaches use threads which apply different kind of algorithms in 

parallel with different possibilities of communication and cooperation. The homogeneous 

approaches use threads which apply the same algorithm in parallel, generally with communication 
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of integral information to improve the parameters of search.    These methods are applied to 

different meta-heuristics and especially TS [3], genetic algorithm [4] and simulated annealing 

algorithm [5].  

Our cooperative strategy is based on TS, threading and communication between the different 

used threads. Communication is exploited to regulate and improve the direction of exploration for 

each thread (or searcher). Considering the theoretical convergence of classic TS, the principal goal 

of our CTS strategy is to make shorter the run time.  

For the description of our CTS approach, we consider combinatorial problems of minimization. 

In our approach, we use cooperative exploration of the solution space. Many threads explore the 

solution space using the opportunist strategy of TS algorithm but with a common tabu list. The 

different threads communicate with each-other. This communication insures the use of the best 

current solution data to establish a set of actions and reactions for each thread during the solution 

space exploration. These actions and reactions are described in next part.  

3.4.1 Concept of action and reaction 

We construct the processes of actions and reactions as follow: 

Action: When one thread finds a solution better than the last absolute best solution (the best 

solution considering all threads), it gives this solution to the others threads. The communicated 

solution becomes the current absolute best solution. We describe this process of the mechanism as 

an action.  

Reaction: Our approach considers a tolerance of deviation between the current solution of every 

thread (excepting the thread given the current absolute best solution) and the current absolute best 

solution. We denote this limit of deviation by ∆. If the deviation between the current solution and 

the absolute best solution known at the current time becomes greater than ∆, the thread associated to 

that current solution modifies its search. This search modification is the reaction of restarting 

exploration from the (current) absolute best solution. We describe this process of the mechanism as 

a reaction.  
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For each thread, the exploration of solution space is composed of three processes: the interaction 

processes (action-reaction) discussed in the last part, and two others process which are the increase 

of deviation limit and the deterioration of current solution in order to find new effective exploration 

zones of the solution space (a zones of which contain one or many minima). The increase of 

deviation limit is insured by the dynamic evaluation of ∆ described in next part.  

3.4.2 Dynamic evaluation of deviation limit ∆ 

Consider the evaluation of ∆ (the limit of deviation) during the exploration. The limit of 

deviation between the absolute best solution and the current solution of each thread is variable. ∆ 

depends on the value of the absolute best solution which is minimized during the exploration. 

R

SA  

SA: The value of A.B.S (Absolute Best Solution). 

R: Variable integer dependent on the exploration step of the considered thread. In the algorithm, 

presented next, R is denoted by Th.R for each thread Th.  

The value of R is also variable and depends on the variation of the current best solution (the 

current best solution of the thread and not the absolute best solution). R is initialized by R0 and 

when the variation of the current best solution becomes nil, R regresses (∆ increases).The regression 

of R (the increase of ∆) is compounded by k steps and at every step R is divided by a static value D 

(∆ is multiplied by D). This mechanism is a diversification strategy used to explore relatively bad 

solutions in order to find others optima.  

For each used thread, at the end of this step, the variation of current best solution stay nil for 

significant run time even if we increase another time the limit of deviation ∆.To improve the 

solution space exploration we deteriorate the current solution in order to diversify the explored 

solutions and find more minima. This process is described in the following part. 
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3.4.3 Deterioration process 

When the increase of ∆ becomes inefficient to find more optima another mechanism of 

diversification is used. In fact, if after the k steps of increase of R, the variation of the local best 

solution becomes again nil, we apply a forced increase (gap regression) of the current solution until 

it reaches a sufficiently bad value 𝛾 . This value is evaluated as next: 

p

CBU
prandomC




.
)(

 

U.B: Upper Bound 

C: The value of the current solution of the thread 

p: a chosen integer 

random(p): a random integer between p/2 and p. 

 

3.4.4) Algorithm 

In this part, we introduce the algorithm of our CTS approach. We consider next variables: 

Th: a thread. 

Th.current: The current solution of the thread Th. 

Th.best: The best solution found by Th. 

Absolute Best: The best solution considering all the threads. 

Th.step: The step of resolution for the considered thread Th. For each thread, the process is 

composed of four steps. Steps 0 to 2 are characterized by the interaction between the considered 

thread and the other threads. During step 3, the current solution of the thread Th is deteriorated.  

Th.negative iter: The number of successive negative iterations. We define a negative iteration as an 

iteration which has not improved the best solution of the thread Th (Th.best). 
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Th.degradation( ): The process of degradation of current solution of the thread Th (Th.current). 

During this process, the thread Th is isolated from the other threads. 

Th.TS():The process of classic tabu search used after the degradation of the current solution of Th. 

During this process, the thread is partially isolated from the other threads, actions and reactions are 

not supported and only the absolute best solution is communicated. 

Th.R (or R) and D are defined in part 3.3. 2. 

R0: Initial value of R. 

We present next the pseudo-code of our strategic exploration considering the described variables. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 3 - IPLAVS in MACT at import 

 

 

89 
 

CTS Algorithm 

𝑓𝑜𝑟 (𝑇ℎ ∈ 𝑙𝑖𝑠𝑡 𝑜𝑓 𝑡ℎ𝑟𝑒𝑎𝑑𝑠)  

𝑇ℎ. 𝑅 ←  𝑅0 

𝑊ℎ𝑖𝑙𝑒 (𝑐𝑜𝑠𝑡 > 𝑐𝑜𝑠𝑡𝑀𝑎𝑥)  

𝑓𝑜𝑟 (𝑇ℎ ∈ 𝑙𝑖𝑠𝑡 𝑜𝑓 𝑡ℎ𝑟𝑒𝑎𝑑𝑠)  

{     𝑖𝑓 ( 𝑇ℎ. 𝑠𝑡𝑒𝑝 < 3 ) 

    {  𝑇ℎ. 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ← 𝑏𝑒𝑠𝑡 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟 𝑜𝑢𝑡 𝑇𝑎𝑏𝑢 𝐿𝑖𝑠𝑡  

       𝑖𝑓 (𝑇ℎ. 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 < 𝑇ℎ. 𝑏𝑒𝑠𝑡) 

                  { 𝑇ℎ. 𝑏𝑒𝑠𝑡 ← 𝑇ℎ. 𝑐𝑢𝑟𝑟𝑒𝑛𝑡  

                     𝑇ℎ. 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑖𝑡𝑒𝑟 ← 0        } 

              𝑒𝑙𝑠𝑒  𝑇ℎ. 𝑛𝑒𝑔𝑎𝑡𝑖𝑣 𝑖𝑡𝑒𝑟 ← 𝑇ℎ. 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑖𝑡𝑒𝑟 + 1      

              𝑖𝑓 (𝑇ℎ. 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑖𝑡𝑒𝑟 > 𝑙𝑖𝑚𝑖𝑡) 

                  { 𝑇ℎ. 𝑠𝑡𝑒𝑝 ← 𝑇ℎ. 𝑠𝑡𝑒𝑝 + 1 

                    𝑇ℎ. 𝑅 ←
𝑇ℎ. 𝑅

𝐷
                

                    𝑇ℎ. 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑖𝑡𝑒𝑟 ← 0          }                                   }  

      𝑒𝑙𝑠𝑒 𝑖𝑓 (𝑇ℎ. 𝑠𝑡𝑒𝑝 = 3)   

              {   𝑇ℎ. 𝑑𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛( ) 

                  𝑊ℎ𝑖𝑙𝑒(𝑇ℎ. b𝑒𝑠𝑡 > 𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝐵𝑒𝑠𝑡)      𝑇ℎ. 𝑇𝑆( )  

                  𝑇ℎ. 𝑠𝑡𝑒𝑝 ← 0                                                           

                  𝑇ℎ. 𝑅 ← 𝑅0                                                                      } 

                 𝑖𝑓 (𝑇ℎ. 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 < 𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝐵𝑒𝑠𝑡)  

                        𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝐵𝑒𝑠𝑡 ← 𝑇ℎ. 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 

         𝑒𝑙𝑠𝑒 𝑖𝑓 (𝑇ℎ. 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 > 𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝐵𝑒𝑠𝑡 + 
𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝐵𝑒𝑠𝑡

𝑇ℎ.𝑅
 ) 

         𝑇ℎ. 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ← 𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝐵𝑒𝑠t                                  } 
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Our approach uses a mechanism of interaction (actions - reactions) between the different 

searchers (or threads) to improve the solution space exploration. We applied our approach to the 

Traveling Salesman Problem (TSP). 

In what follows, we compare our CTS approach to classic TS and Late Acceptance Hill-

Climbing algorithm (LAHC). 

3.4.5 Application to the traveling Salesman Problem  

TSP is one of the most famous NP-Complete Combinatorial problems in literature. Many 

methods are applied to TSP. One of the most efficient approaches used to solve TSP in reasonable 

run time is the Late Acceptance Hill Climbing heuristic (LHAC) [6] [7]. Note that LAHC is a 

performed version of the greedy Hill-Climbing algorithm. 

In this part, we show the efficiency of our CTS approach compared to the classical TS and 

LAHC algorithm for different instances of TSP.  

If we consider initially a limited run time, the cooperation between the different threads 

improves considerably the efficiency of solutions given by classical TS. Considering the numerical 

results of TABLE 10, CTS is much more powerful than classical TS. LAHC is applied to TSP.  

We used the java code of LAHC developed by the authors [6] [7]. We coded TS algorithm and 

our CTS approach also in java language. Simulations have been run on a PC with an INTEL Xeon 

running at 2.67 GHz under the Windows 7 operating system (32 bit). The CTS resolution is 

established with 12 threads. The end condition proposed for CTS is not considered in the presented 

simulations. 

We compare our CTS approach and LAHC for instance of more than 50 cities and less than 144 

cities. In Table I0 we show that for these instances our CTS approach is more efficient than LAHC 

considering solution gap. Note that for each solution S, the gap is evaluated as next: 

gap(S) = ( value (S) – Lower Bound )  / Lower Bound ). 

Note that, for instance of more than 100 cities CTS need more computational capacity to solve 

efficiently TSP. 
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Resolution of TSP by CTS, TS and LHAC 

 

Instance 

 

TS 

V / R.T 

 

CTS 

V / R.T 

 

LHAC 

V / R.T 

Berlin 52 7876 / 1s to15 h 
 

7542 (optimal) / 6 s 7570 / 2s 

ST70 688 / 1s to 30 h 675 (optimal) / 19 min  681 / 5 s 

Eil76 572 / 1s to 30 h  538 (optimal) / 21 min  548 / 2 s 

KroC100 22144 / 1s to 60 h 20749 (optimal) / 6 h  20940 / 4s 

Eil101 676 / 1s to 60 h 629 (optimal) / 6 h  639 / 4s 

Pr144 62960 / 1s to 60 h 

 

58537 (optimal) / 1h   58607 / 3s 

 

V / R.T: Value / Run Time 

Table 10 

 

3.5 Multi-Objective Optimization 

For many optimization problems, to take a decision, we have to satisfy different criteria. 

Considering the case of container terminal managed by straddle carriers, a trial objective is to 

minimize the makespan which is the date of the last task, but in a real situation, the decision has to 

take into account other criteria such as the sum of vehicle operating time, the number of straddle 

carriers used, the number of storage bays used etc. To solve the integrated problem of location 

assignment and straddle carrier scheduling in maritime terminal at import, we have two possible 

approaches. The first is to consider a known operating coast function which we evaluate 

considering the handling time, the equipment used and the final storage space configuration. The 

second is to solve the problem considering the strict multi-objective aspect.  
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Consider S a set of realizable solutions, n > 1, fi (1 ≤ i ≤ n) a scalar function over S. Multi-

objective optimization can be represented mathematically as: 

min (f1(x), f2(x), …, fn(x)) 

x Є S 

When we solve a multi-objective problem, we cannot consider directly the ordinary scalar 

optimality. In fact, a Pareto optimality concept is defined:  

 ∀ (𝑥, 𝑦) ∈ 𝑆2, 𝑥 ≠ 𝑦: 𝑥 𝑤𝑒𝑎𝑘𝑙𝑦 𝑝𝑎𝑟𝑒𝑡𝑜 − 𝑑𝑜𝑚𝑖𝑛𝑎𝑡𝑒𝑠 𝑦 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓: 

∀ 𝑖 ∈ {1,2. . , 𝑛}: 𝑓𝑖(𝑥) ≤ 𝑓𝑖(𝑦) 

∃ 𝑖 ∈ {1,2, . . , 𝑛}: 𝑓𝑖(𝑥) < 𝑓𝑖(𝑦) 

 ∀ (𝑥, 𝑦) ∈ 𝑆2, 𝑥 ≠ 𝑦: 𝑥 𝑠𝑡𝑟𝑜𝑛𝑔𝑙𝑦 𝑝𝑎𝑟𝑒𝑡𝑜 − 𝑑𝑜𝑚𝑖𝑛𝑎𝑡𝑒𝑠 𝑦 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓: 
∀ 𝑖 ∈ {1,2. . , 𝑛}: 𝑓𝑖(𝑥) < 𝑓𝑖(𝑦) 

 A solution x is Pareto-optimal if and only if there does not exist another solution y which 

weakly Pareto-dominates x. 

 A solution x is weakly Pareto-optimal if and only if there does not exist another solution y 

which strongly Pareto-dominates x.  

3.6 Multi-Objective Tabu Search Algorithm – MOTSA 

3.6.1 Data for solution representation 

For the most general context of IPLASS, each solution is a four-dimensional vector and every 

variable of this vector comprises four integers which represent a task, a container, a vehicle and a 

storage location. With our traffic layout particularities (at every time the vehicle to use for the next 

container transfer is the first straddle carrier returning to quay entry) and established container 

transfer schedule, the decisional problem concerns only the choice of storage places for every 

container. We can establish a total container order without changing makespan optimality for 

general real configuration of storage space. We conclude that we can use a data list to represent 

solutions. Consider an instance of 10 containers and 30 storage places. We denote by ((1, 10), (2, 
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13), (3, 3), (4, 1), (5, 0), (6, 6), (7, 7), (8, 22), (9, 29), (10, 5)) the solution S which assign for 

containers 1 to 10 the respective storage locations 10, 13, 3, 1 etc. Considering the established 

container order, S can be also represented by the list (10, 13, 3, 1, 0, 6, 7, 22, 29, 5).  

3.6.2 Approach description 

To solve efficiently IPLAVS, we developed a Multi-Objective Tabu Search Algorithm 

(MOTSA). Our resolution is a dynamic opportunist exploration of the solution space considering a 

specific neighborhood. We defined the neighborhood taking into account the different goals to 

optimize. The exploration of solution space is composed of different cycles and every cycle is 

composed of different periods. 

The initial solution is elected from a sufficiently big set of feasible solutions. 

Considering a current solution, the best neighbor is determined using weighted sum method. In 

fact, we evaluate linear objective function updated at the beginning of every cycle and at the 

beginning of each period. The elected neighbor is added to a Tabu list and declared Tabu during the 

current period.  At the end of current period, the Tabu list of best neighbors will be cleared.  

Consider now every current solution (at the beginning the current solution is the initial solution). 

Firstly, if the resolution process is at the beginning of a period, objective weights are updated. Then 

we elect the best neighbor considering the new objective coefficient update. If the elected neighbor 

is not dominated by the Pareto solutions, we add it to the set of Pareto solutions and we update the 

Pareto list. 

Because the problem is a mixed-integer problem, not only the best neighbor is considered when 

we update Pareto list, but also all non-dominated solutions in every neighborhood to approach more 

efficiently the non-convex Pareto Front.  

Every non-dominated solution in the current neighborhood is added to the Pareto list. After every 

solution injection, the Pareto list is updated and each dominated solution is deleted from the list. 

For next step, the neighborhood of best current solution is explored. 
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When the current Pareto-optimal solutions satisfy the user, the procedure is stopped and user has 

to choose a solution from the Pareto list. 

3.6.3 Neighborhood construction 

The neighborhood is composed of three different sub-neighborhoods: neighborhood considering 

storage location aspect, neighborhood considering storage bay aspect and neighborhood considering 

the number of straddle carriers  

3.6.3.1 Neighborhood considering storage location aspect 

For every solution, the global neighborhood contains |C|*(|P|-1) elements. Considering the real 

dimensions of instances, it is not effective to select all the solutions during the exploration of each 

neighborhood. Only a sufficient random part of the neighborhood is considered. Consider a solution 

S = (P1, P2, …, P|C|), where Pi is an element of P for each integer i between 1 and |C|. Consider 

V(S) the neighborhood of S, then:          

∀ 𝑁 ∈ 𝑉(𝑆),𝑁 = (𝑁1, … , 𝑁|𝐶|): ∃! 𝑖 ≤ |𝐶|,𝑁𝑖 ≠ 𝑃𝑖 

In figure 16, we present two possible neighbors for solution S considering storage location aspect.                                   

 

Figure 16 - Neighborhood considering storage location aspect 

 

3.6.3.2 Neighborhood considering storage bay aspect 

Consider now a solution S, B(S) the set of bays used considering solution S and B(Si) the bay of 

storage location assigned to container number i. 

𝑁 ∈ 𝑉+ ⇔  𝐵(𝑆) ⊂ 𝐵(𝑁), |𝐵(𝑁)| = |𝐵(𝑆)| + 1 𝑎𝑛𝑑 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑖 ≤ |𝐶|  𝑖𝑓 𝐵(𝑁𝑖) ∈ 𝐵(𝑆) 𝑡ℎ𝑒𝑛  

𝑁𝑖 = 𝑆𝑖 𝑒𝑙𝑠𝑒 𝑁𝑖 ≠ 𝑆𝑖 
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𝑁 ∈ 𝑉− ⇔ 𝐵(𝑁) ⊂ 𝐵(𝑆), |𝐵(𝑁)| = |𝐵(𝑆)| − 1 𝑎𝑛𝑑 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑖 ≤ |𝐶|  𝑖𝑓 𝐵(𝑆𝑖) ∈ 𝐵(𝑁)𝑡ℎ𝑒𝑛  

𝑁𝑖 = 𝑆𝑖 𝑒𝑙𝑠𝑒 𝑁𝑖 ≠ 𝑆𝑖 

In figure 17, we present two possible neighbors of a giving solution S. 

 

Figure 17 - Neighborhood considering storage bay aspect 

3.6.3.3 Neighborhood considering straddle carriers used 

Considering solution S using n vehicles, two neighbors are possible: one with n+1 (if n is smaller 

than maximal number of straddle carriers used) vehicles and another with n-1 vehicles (if n is larger 

than 1). 

3.6.4 Initial solution election 

The initial solution is elected considering a set of n solutions. The size of this set depends on 

instance size and exactly on the number of containers.  

3.6.5 Cycles and periods 

The exploration of solution space is composed of different cycles and every cycle is composed of 

different periods. Each period is composed of a set of neighborhood explorations.  

3.6.6 Objective weights and distant elements 

The MOTSA is based on a cyclic opportunist exploration. The updated objective weights 

determine the influence of every objective at every exploration period. For every objective k, the 

weight 𝑊𝑘, is evaluated as follows: 

𝑊𝑘 = 𝛼𝑘 × 𝐶𝑘 
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𝛼𝑘: The 𝛼 -weight of objective k. The 𝛼 -weights are updated at every new period. To update 𝛼 -

weights, we use weighted sum method explained in part 3.4.8. 

𝐶𝑘: The cost of objective k during the current cycle. 𝐶𝑘 has to be sufficiently large compared to the 

𝛼 -weights. We use dynamic cost 𝐶𝑘 in order to perform the classic weighted sum method. In fact, 

we regulate the exploration of Pareto Front Region (PFR) with strategy of compromise and with 

diversification of the value of each objective unity (the value of losing or earn one unity of handling 

times or vehicles used or other objective).  

At the beginning of every period, we select a neighbor which represents a maximal distance 

considering the Pareto List. We can describe this neighbor as a distant element. We use next 

function for that selection: 

𝑑𝑖𝑠𝑡𝑎𝑛𝑡𝐸𝑙𝑒𝑚𝑒𝑛𝑡(𝑉(𝑆), 𝐿): From the neighborhood of solution S, we select the solution which 

maximizes next distance d evaluated as:  

∀𝑣 ∈ 𝑉, 𝑑(𝑣) =  ∑ |𝐹𝑘(𝑣) − 𝐹𝑘(𝑤)|/ℎ𝑘𝑤∈𝐿 . Where ℎ𝑘is the difference between the maximal and 

the minimal values of objective k considering the current solutions of Pareto list. 

3.6.7 Costs update 

Every cycle is composed of a set of periods. At the beginning of each cycle, the cost of every 

objective is updated. To update the different costs we consider two factors; the first is the deviation 

of the objectives from their lower bounds considering the solutions in the current Pareto List; the 

second is the values of objective costs during the precedent cycles. We describe the cost of each 

objective k as an objective cost and we denote by it 𝑐𝑘. 

For the first factor influencing the update of objective cost 𝑐𝑘, we consider all the elements of 

Pareto List and we define the average gap of objective k 𝑔𝑎𝑝̃𝑘as follows: 

𝑔𝑎𝑝̃𝑘 =
∑ 𝑔𝑎𝑝𝑘(𝑆)𝑆∈𝑃𝐿

|𝑃𝐿|
 

Where |PL| is the number of solutions in Pareto List PL and 𝑔𝑎𝑝𝑘(𝑆) the gap of solution S 

considering the objective k. 
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We evaluate this gap as follows: 

𝑔𝑎𝑝𝑘(𝑆) =
𝐹𝑘(𝑆) − 𝐿𝐵𝑘

𝐿𝐵𝑘
 

𝐹𝑘(𝑆): 𝑇ℎ𝑒 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑘 𝑐𝑜𝑛𝑠𝑖𝑑𝑒𝑟𝑖𝑛𝑔 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑆. 

𝐿𝐵𝑘: 𝑇ℎ𝑒 𝑙𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑 𝑜𝑓 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑘. 

After the evaluation of the average gaps of Pareto List PL, we store them in a list 𝐿𝐺  in ascending 

order and we define the first priority of objective k as follows: 

 

𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦𝑘
1 = 𝑖𝑛𝑑𝑒𝑥 𝑜𝑓 𝑔𝑎𝑝̃𝑘 𝑖𝑛 𝐿

𝐺  

For the second factor influencing the update of objective cost 𝑐𝑘, we consider all precedent values 

of 𝑐𝑘 for each objective k. We evaluate the average cost of objective k (noted 𝑐̃𝑘) as follows: 

𝑐̃𝑘 =
∑ 𝑐𝑘

𝑢
𝑢∈𝑈

|𝑈|
 

U: The set of precedent cycles  

𝑐𝑘
𝑢: The cost of objective k during the cycle u. 

After the evaluation of the average cost of every objective k (𝐴𝐶𝑘) during the precedent cycles, we 

store them in a list 𝐿𝑈 in descending order and we define the second priority of objective k 

(𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦𝑘
2) as follows:   

𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦𝑘
2 = 𝑖𝑛𝑑𝑒𝑥 𝑜𝑓 𝐴𝐶𝑘 𝑖𝑛 𝐿

𝑈 

The new cost of each objective k is evaluated as follows: 

𝑐𝑘 = 10
2× 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦𝑘

1+𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦𝑘
2
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3.6.8 α-weights updat 

At the beginning of each cycle, the cost of every objective is updated, then these costs are fixed 

and no other update is possible until the end of the cycle. However, during the cycle, weighted sum 

method is applied to more diversify the exploration of Pareto Front Region (PFR).   

During each cycle, at the beginning of every period, the -weights are updated. Update process 

is based on two considerations; the 𝛼 − 𝑤𝑒𝑖𝑔ℎ𝑡 history during current cycle and the deviation of 

the objectives from their lower bound during previous periods in current cycle.  

For each objective, the new updated 𝛼 − 𝑤𝑒𝑖𝑔ℎ𝑡 is a perturbation of its last -weight. Perturbation 

can be positive or negative with a probability which depends on the average gap (𝑔𝑎𝑝̃) and the 

average 𝛼 − 𝑤𝑒𝑖𝑔ℎ𝑡 (𝛼̃) of the objective.  

Average gap is evaluated as in part 3.4.7. Average -weigh is evaluated for each objective k as 

follows: 

𝛼̃𝑘
𝑐,𝑝 =

∑ 𝛼𝑘
𝑐,𝑚

𝑚∈𝑝𝑟𝑒𝑑𝑝
𝑐

|p𝑟𝑒𝑑𝑝
𝑐 |

 

c: current cycle 

p: current period in cycle c. 

𝑝𝑟𝑒𝑑𝑝
𝑐 : 𝑡ℎ𝑒 𝑠𝑒𝑡 𝑜𝑓 𝑝𝑒𝑟𝑖𝑜𝑑𝑠 𝑝𝑟𝑒𝑐𝑒𝑒𝑑𝑖𝑛𝑔 𝑝𝑒𝑟𝑖𝑜𝑑 𝑝 𝑑𝑢𝑟𝑖𝑛𝑔 𝑐𝑦𝑐𝑙𝑒 𝑐. 

|𝑝𝑟𝑒𝑑𝑝
𝑐 | = 𝑡ℎ𝑒 𝑠𝑖𝑧𝑒 𝑜𝑓 𝑝𝑟𝑒𝑑𝑝

𝑐 . 

𝛼̃𝑘
𝑐,𝑝: 𝑡ℎ𝑒 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑘 𝑐𝑜𝑛𝑠𝑖𝑑𝑒𝑟𝑖n𝑔 𝑝𝑟𝑒𝑑𝑝

𝑐 . 

𝛼𝑘
𝑐,𝑚: 𝑡ℎ𝑒 𝛼 − 𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑘 𝑑𝑢𝑟𝑖𝑛𝑔 𝑝𝑒𝑟𝑖𝑜𝑑 𝑚 𝑜𝑓 𝑐𝑦𝑐𝑙𝑒 𝑐. 

After the evaluation of the average weight of every objective k during the periods preceding 

period p in current cycle c, we store them in a list 𝐿𝑊 in descending order and we define the third 

priority of objective k (𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦𝑘
3) as follows:   

𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦𝑘
3 = 𝑖𝑛𝑑𝑒𝑥 𝑜𝑓 𝛼̃𝑘

𝑐,𝑝 𝑖𝑛 𝐿𝑊 
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At the beginning of period p, the probability of positive deviation of the weight associated to 

objective k,𝑃𝑟𝑏𝑘
𝑝
, is evaluated as next: 

𝑃𝑟𝑏𝑘
𝑝 = 

2 × 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦𝑘
1 + 𝑝𝑟𝑖𝑜𝑟i𝑡𝑦𝑘

3

3 × |𝑂|
 

|𝑂|: 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒𝑠 𝑡𝑜 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒. 

For the objective having favorable average Gap (AG) compared to the other objectives, the 

probability of negative perturbation of the associated weigh is greater especially if the average value 

of the associated weigh is significant. On the contrary, the probability of positive deviation is 

greater. 

After each update, the vector of new 𝛼 − 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 (𝛼 = ( 𝛼1, … , 𝛼|𝑂|)) is added to the Tabu list of 

weight used. When the Tabu list size limit is reached, as for classical Tabu list, the oldest vector of 

weight is removed. 

At the end of every cycle, the Tabu list of 𝛼 − 𝑤𝑒𝑖𝑔ℎ𝑡  vector is initialized and all weight vectors 

are removed from the Tabu list. 

We present next the algorithm of the described process of weight update. 

∆: 𝑡ℎ𝑒 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑢𝑚 𝑜𝑓 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑝𝑒𝑟𝑡𝑢𝑟𝑏𝑎𝑡𝑖𝑜𝑛𝑠  

𝑄: 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒r 𝑜𝑓 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑝𝑒𝑟𝑡𝑢𝑟𝑏𝑎𝑡𝑖𝑜𝑛𝑠 

𝑝: 𝑡ℎ𝑒 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑝𝑒𝑟𝑖𝑜𝑑. 

𝜎𝑘
𝑝 = 𝑡ℎ𝑒 𝑠𝑖𝑔𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑒𝑟𝑡𝑢𝑟𝑏𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑘 𝑑𝑢𝑟𝑖𝑛𝑔 𝑝𝑒𝑟𝑖𝑜𝑑 𝑝. 

𝛼𝑝: 𝑡ℎ𝑒 𝑣𝑒𝑐𝑡𝑜𝑟 𝑜𝑓 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑤𝑒𝑖gℎ𝑡𝑠 𝑖𝑛 𝑝𝑒𝑟𝑖𝑜𝑑 𝑝.  𝛼𝑝 = (𝛼1
𝑝, 𝛼2

𝑝, … , 𝛼𝑘
𝑝, … , 𝛼𝑁

𝑝) 

𝐿𝑊: 𝑇ℎ𝑒 𝑇𝑎𝑏𝑢 𝑙𝑖𝑠𝑡 𝑜𝑓 𝑢𝑠𝑒𝑑 𝑣𝑒𝑐𝑡𝑜𝑟𝑠 𝑜𝑓 𝑤𝑒𝑖𝑔𝑡ℎ𝑡. 
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𝑓𝑜𝑟 (𝑘 ← 1 𝑡𝑜 𝑘 = 𝑁)  

{  𝛿 ← 𝑟𝑎𝑛𝑑𝑜𝑚 𝑟𝑒𝑎𝑙 𝑖𝑛 [0; 1]  

𝑖𝑓 (𝛿 < 𝑃𝑟𝑏𝑘
𝑝) 

{    𝛼𝑘
𝑝 ← 𝛼𝑘

𝑝−1 − 𝜀 

      𝜎𝑘
𝑝 ← −1 

      ∆← ∆ + 𝜀                   } 

𝑒𝑙𝑠𝑒  

{       𝜎𝑘
𝑝 ← +1 

         𝑄 ← 𝑄 + 1                }                       }  //𝑒𝑛𝑑 𝑓𝑜𝑟 

𝑓𝑜𝑟 (𝑘 ← 1 𝑡𝑜 𝑘 = 𝑁) 

𝑖𝑓 (  𝜎𝑘
𝑝 = +1)   𝛼𝑘

𝑝 ← 𝛼𝑘
𝑝−1 +

∆

𝑁
 

𝐿𝑊 ← 𝐿𝑊 ∪ {𝛼
𝑝} 

𝐿𝑊 ← 𝐿𝑊 \𝑜𝑙𝑑𝑒𝑠𝑡 𝑣𝑒𝑐𝑡𝑜𝑟 (𝐿𝑊) 

Note that "𝑜𝑙𝑑𝑒𝑠𝑡 𝑣𝑒𝑐𝑡𝑜𝑟(𝐿𝑊)" is a function giving the oldest element injected to the list of 

weights 𝐿𝑊. 

3.6.9 Pareto list update 

After every election of a new current solution S, if S is not dominated by Pareto list elements, it 

is added to the Pareto list and Pareto solutions dominated by S are removed from the list. 

3.6.10 Finalization condition 

We consider the number of successive periods without change in the Pareto list (successive 

negative periods). At any time in the resolution process, if this number is bigger than a chosen 

number MMax, the exploration is stopped. Another condition of finalization is when the number of 
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exploration periods is equal to a chosen number EMax. For experiments, we change the second 

condition with a maximal run time. The user can also stop the process if he is satisfied by the set of 

Pareto solutions.  

3.6.11 MOTSA  

M: Pareto list evolution indicator considering period iterations. MOTSA use M to determine the end 

of solutions space exploration. 

N: Pareto list evolution indicator considering exploration iterations. MOTSA use N to determine a 

good timing to regulate objectives coefficients. 

S: Current solution. At every iteration of the exploration process, the current solution is the elected 

neighbor of the last solution. 

Elite Neighbor (S): Function returning an elected neighbor which is the best neighbor considering 

the current solution S and the current objective coefficient regulation. 

L: Pareto list, which contains the different Pareto solutions. MOTSA updates this list at every 

exploration of a new Pareto solution (positive exploration). 

Mmax, Nmax, Emax: Maximal tolerable values of M, N and E. 

MOTSA uses two kinds of iteration: period iterations and exploration iterations. 

A negative exploration is an exploration which doesn’t affect the Pareto list while a positive 

exploration is an exploration which affects the Pareto list. 

P: Period, which is a set of exploration. The end of a period is when the number of successive 

negative explorations is equal to Nmax.   

Negative period is a period which doesn’t affect the Pareto list while a positive period is a period 

which affects the Pareto list. 

The end of MOTSA resolution process is when the number of successive negative periods is equal 

to Mmax. 

H(x): the promised indicator of solution x. 



Chapter 3 - IPLAVS in MACT at import 

 

 

102 
 

H(x) is evaluated as next: 𝑓𝑜𝑟 (𝑥 ∈ 𝐿) 𝑖𝑓 𝑥 𝑒𝑞𝑢𝑎𝑙 𝑆     𝐻(𝑆) ← 𝑥. ℎ 

𝐻𝑝𝑟𝑜𝑚𝑖𝑠𝑒𝑑 : Characterization of promised solutions. This value is used to establish the aspiration 

strategy. 

𝑒𝑙𝑖𝑡𝑒 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟(𝑆): The best neighbor of S considering the last update of weights. The elected 

neighbor can be a Tabu solution with a small probability. 

V(S): Partial neighborhood of S. 

VH (S): a partial neighborhood of S with a size depending on H(S): 

 if H(S)  ≥ Hpromised, then |VH(S)| = 2 |V(S)|, else VH(S) = V(S). 
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Algorithm 

𝑃 ← 0 ,𝑀 ← 0 , 𝐸 ← 0 , 𝑆 ← 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 , 𝐿 ← {𝑆} 

initialize objective costs  

While ( ( M <Mmax ) and ( E<Emax ) ) 

{ 

Initialize α-weights  

𝑁 ← 0 

 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑝𝑒𝑟𝑖𝑜𝑑 ← 𝑡𝑟𝑢𝑒 

if (new cycle) update objective costs 

if (new period) 

{   update α-weights 

     𝑆 ← 𝑑𝑖𝑠𝑡𝑎𝑛𝑡𝐸𝑙𝑒𝑚𝑒𝑛𝑡(𝑉(𝑆), 𝐿) } 

 

 While (N < Nmax) 

{ 

 𝐸 ← 𝐸 + 1 

 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑒𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛 ← 𝑡𝑟𝑢𝑒 

 if (S is not in L)   and    S (is not dominated by the solutions in L) 

 { 𝐻 ← 0 

  𝑓𝑜𝑟 𝑥 ∈ 𝐿 

  if (x is dominated by S) 

  {  𝐿 ← 𝐿\{𝑥}  

   𝐻 ← 𝐻 + 1                  }  // end if 

  𝐿 ← 𝐿 ∪ {𝑆} 

  𝑥. ℎ ← 𝐻          }  // end if //  x.h is an efficiency indicator of solution x     

 

  𝑖𝑓 (𝑆 𝑖𝑠 𝑛𝑜𝑡 𝑖𝑛 𝑡𝑎𝑏𝑢 𝑙𝑖𝑠𝑡)  𝑜𝑟 (𝐻(𝑆) ≥ 𝐻𝑝𝑟𝑜𝑚𝑖𝑠𝑒𝑑) 

  { 𝑖𝑓 (𝑆 𝑖𝑠 𝑛𝑜𝑡 𝑖𝑛 𝑡𝑎𝑏𝑢 𝑙𝑖𝑠𝑡)      𝑇 ← 𝑇 ∪ {𝑆} 

   𝑓𝑜𝑟 𝑣 ∈ 𝑉𝐻(𝑆) 
   if (v is not dominated by solutions of L)   

   {  𝑁 ← 0 

     𝑀 ← 0 

    𝑖𝑓 (𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑒𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛 = 𝑡𝑟𝑢𝑒) 
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    𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑒𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛 ← 𝑓𝑎𝑙𝑠𝑒 

    𝑖𝑓 (𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑝𝑒𝑟𝑖𝑜𝑑 = 𝑡𝑟𝑢𝑒 ) 

    𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑝𝑒𝑟𝑖𝑜𝑑 ← 𝑓𝑎𝑙𝑠𝑒 

   𝑓𝑜𝑟 𝑥 ∈ 𝐿 

   if (x is dominated by v) 

   𝐿 ← 𝐿\{𝑥} 

   𝐿 ← 𝐿 ∪ {𝑣}   }   // end for 

   if negative exploration 𝑁 ← 𝑁 + 1 

   𝑆 ← 𝑒𝑙𝑖𝑡𝑒 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟(𝑆)        
       } // end if 

  𝑃 ← 𝑃 + 1        

  if (negative period = true) 𝑀 ← 𝑀 + 1     }  // end 

 

3.6.12 Solution election 

Considering the Pareto list elements, we elect a set of solutions using efficiency indicators EI. 

The first indicator of efficiency is evaluated as follows: 

𝐸𝐼(𝑆) =  ∑ ∑ 𝐼𝑆,𝑝,𝑘
𝑝∈𝑃𝐿𝑘∈𝑂

 

Where,𝐼𝑆,𝑝,𝑘 = 1 𝑖𝑓 𝐹𝑘(𝑆) ≤ 𝐹𝑘(𝑝) − 𝛿𝑘, 0  else.  

𝛿𝑘𝑖𝑠 𝑐𝑜𝑛𝑠𝑡𝑎𝑖𝑛𝑡 𝑑𝑒𝑝𝑒𝑛𝑑𝑖𝑛𝑔 𝑜𝑛 𝑡ℎ𝑒 𝑠𝑚𝑎𝑙𝑙𝑒𝑟 𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑡 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑘. 

For experiments, the value of 𝛿𝑘depends on the objective. For the first, fifth and sixth objectives 

(objectives evaluating operating times): 𝛿1 = 𝛿5 = 𝛿6 = 60 𝑠𝑒𝑐𝑜𝑛𝑑𝑠.  

For the second, the third, the fourth, the seventh and the eighth objectives (objectives evaluating the 

number of equipment used and the location assignment cost): 𝛿2 = 𝛿3 = 𝛿4 = 𝛿8 = 𝛿7 = 0 unity. 

The second indicator of solution efficiency, noted as Ind2, is equal to the sum of the orders of 

preference of the solution considering the different objectives.  Consider solution S with the 

respective orders of preference I1 until I8 considering the eight objectives to minimize, the second 
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indicator of efficiency is equal to the sum of these orders: Ind2 (S) = ∑ 𝐼𝑘1≤𝑘≤8 (𝑆). The best 

solution considering the second indicator of efficiency is the one which minimizes it. 

The third one, noted as Ind3, is a linear function with choosing objective weights. The best 

solution for the third indicator is the one which minimize that chosen function. To choose an 

efficient weights, we have to consider the difference between the objectives in their intervals of 

variations. For example we can’t accept a big number of unproductive moves to win only some 

seconds of operating time. In fact, the chosen weights have to establish some equilibrium between 

the different objectives. 

The fourth indicator of efficiency, noted as Ind4, is a function of the three first indicators. 

Consider a solution S and O1, O2 and O3 the respective orders of efficiency of S considering all 

solutions in approximated Pareto-Front for the first, the second and the third indicators. The value 

of the fourth indicators is equal to the sum of these orders of preference: Ind4 (S) = O1 + O2 + 

O3.The best solution considering the fourth indicator is the one which minimize it. 

The first and the second indicators of efficiency are theatrically adapted to the combinatorial 

aspect of the problem as a non-convex problem with a non-convex Pareto-Front Region. The third 

indicator of efficiency is easy to be adapted by operators in the container terminal considering the 

current situation and especially the current priorities. The fourth indicator of efficiency is able to 

give a solution taking into consideration the combinatorial aspect of the problem and the 

preferences of the operator. 

To elect a solution from the Pareto List, we used 2D projections of the multi-objective space and 

we select one of the solutions proposed by the different indicators of efficiency.  

3.7 Numerical experiments 

3.7.1 Numerical experiments for Mono-Objective IPLAVS 

In next table, we present numerical result, of CTS approach considering different instance sizes. 

Instances used for the different kind of MACT are equivalents.  

To solve the problem considering mono-objective aspect, we do not tolerate any unproductive move 
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using additional hard constraint. For the last instance, we stopped the resolutions after 2 h of 

running time. 

Numerical results for Mono-objective IPLAVS 

 

Containers / 

Capacity of free 

storage space 

MACT with 

ALV 

MACT with 

AGV 

MACT with 

Auto-Strad 

100/1000 Gap: 0.0 

Run Time: 30 s 

Gap: 0.0 

Run Time: 80 s 

Gap: 0.0 

Run Time: 77 s 

200/2000 Gap: 0.0 

Run Time: 120 s 

Gap: 0.0 

Run Time: 308 s 

Gap: 0.0 

Run Time: 135 s 

500/5000 Gap: 0.0 

Run Time: 702 s 

Gap: 0.0 

Run Time: 609 s 

Gap: 0.0 

Run Time: 550 s 

1000/10000 Gap: 0.08 

Run Time: 2 h  

Gap: 0.12 

Run Time: 2h 

Gap: 0.15 

Run Time: 2h 

Table 11 

3.7.2 Numerical experiments for Multi-Objective IPLAVS  

We solve IPLAVS in MACT using our MOTSA and considering the three presented kinds of 

terminals: MACT with Auto-Strads, MACT with AGVs and MACT with ALVs. For the case of 

Auto-Strad Terminal, we generate realistic data considering the MCT “Terminal de Normandie” in 

Maritime Port of Le Havre in France. We modified the maximal capacity of storage locations (these 

of "Terminal de Normandie") in order to treat large instances of the problem. For the case of MACT 

with ALVs and MACT with AGVs, we generate similar instances based on the layout of “Terminal 

de Normandie” and taking into account the specificity of these cases; Fictive installation of ASCs is 

considered and vehicle routing paths are adapted to each kind of terminal. 
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For each type of terminal, we show elected solutions given by MOTSA for a large instance of 

1000 containers and a stacking space with a total storage capacity supporting 10000 containers. 

Only four elected solutions are presented for each case of equipment. 2D-projections of Pareto-

Front are introduced and elected solutions are distinguished in these projections. The next 

computational results are obtained after 5000 neighborhood explorations. Lower bounds are 

determined to evaluate resolution quality.  

3.7.2.1 Multi-objective resolution Case of MACT with Auto-Strads 

For this instance, we evaluated the following lower bounds;  

Makespan Lower Bound: 27110 sec 

Lower Bound of |ASC*|:  11 ASCs 

Lower Bound of |P
*
| (the number of storage location to be used): 112 locations; Lower Bound of |V| 

(the number of Auto-Strads to be used, considering an optimal makespan):  18 

Lower Bound of ∑ 𝑡𝑏𝑏∈𝐵∗ (total storage bay occupation time): 14000 s 

Lower Bound of ∑ 𝑡𝑣𝑣∈𝑉 (total Auto-Strad routing time):  465465 s 

Lower Bound of LAC 1 (First Location Assignment Cost): 1 s  

Lower Bound of LAC 2 (Second Location Assignemnt Cost): 0 UM (UM: Unproductive Moves). 

To elect solutions from the set of approximated Pareto-Front, indicators of efficiency are 

presented in part 3.6.12. The projections of solutions proposed by indicators of efficiency are 

presented in the figures of 2D-projections using specific colors. In the following figures, we show 

the 2D-projections of more than 5000 solutions which approximate the Pareto Front.  
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2D-Projection of Pareto-Front Approximation  

 Plane of  

Total Bay Occupation Time - TBOT 

(Unity of graphic representation: 2000 sec)  

AND  

Total Straddle Carriers Routing Time - TSRT  

(Unity of graphic representation: 1000 sec) 

 

 

Figure 18 
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2D-Projection of Pareto-Front Approximation  

Plane of  

First Location Assignment Cost - LAC 1 

(Unity of graphic representation: seconds of routing time  

between two container locations assigned to the same client) 

AND 

Second Location Assignment Cost - LAC 2 

(Unity of graphic representation: number of unproductive moves 

 to be caused by location decision) 

 

 

Figure 19 
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2D-Projection of Pareto-Front Approximation 

Plane of  

Makespan - Cmax  

(Unity of graphic representation: seconds of  

deviation from Lower Bound) 

AND 

First Location Assignment Cost - LAC 1 

 (Unity of graphic representation: seconds of routing time  

between two container locations assigned to the same client) 

 

 

Figure 20 
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2D-Projection of Pareto-Front Approximation 

Plane of  

 Makespan - Cmax  

(Unity of graphic representation: second of  

deviation from Lower Bound) 

AND 

Number of storage bays to be used - |B*| 

 

 

Figure 21 
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For 2D-projections showed in figures 18, 19, 20 and 21 and these presented in next sub-sections, 

we consider next representations of objective value projections: 

 

Solution proposed by indicator 1   
Solution proposed by indicator 2  
Solution proposed by indicator 3  
Solution proposed by indicator 4  

 

In the following table, we present the best and worst values for which the gap reaches at every 

objective taking into account all the elements of approximated Pareto-Front. 

Best and Worst Gap of approximated Pareto-Front 

 CMax |V| |B*| |P*| ∑tv
v∈V

 ∑ tb
b∈B

 
LAC1 LAC2 

Best gap 0 0 0 0.21 0.09 0.02 7.8 0 

Worst gap 0.08 0.17 14.09 7.43 0.21 62.06 40.93 399 

Table 12 

Solutions elected by indicators have objective values and objective gaps presented in next tables: 

Objective values of elected solutions 

 IND CMax |V| |B*| |P*| ∑tv
v∈V

 ∑ tb
b∈B

 
LAC1 LAC2 

Solution 1 4616 27930  19 11 141 526144 25762 10.88 374 

Solution 2 4371 29096 18 12 140 519467 30130 14.88 376 

Solution 3 5012 29155 18 12 143 520205 14612 15.62 382 

Solution 4 2651 29163 18 12 140 520523 15120 23.02 371 

Table 13 
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Objective gaps of elected solutions 

 IND CMax |V| |B
*
| |P

*
| ∑tv

v∈V

 ∑ tb
b∈B

 
LAC1 LAC2 

Solution 1 4616 0.03   0.06 0 0.26 0.13 0.85 9 374 

Solution 2 4371 0.07 0 0.09 0.25 0.12 1.17 13 376 

Solution 3 5012 0.08 0 0.09 0.28 0.12 0.06 14 382 

Solution 4 2651 0.08 0 0.09 0.25 0.12 0.06 23 371 

Table 14 

Solution 1: Solution proposed by first indicator. 

Solution 2: Solution proposed by second indicator. 

Solution 3: Solution proposed by third indicator. 

Solution 4: Solution proposed by fourth indicator. 

IND: Index of the solution in Pareto-List which represent the approximate Pareto-Front. All the elements of Pareto-List are 

presented is annexed parts. 

We evaluate the gap of every objective value for each solution proposed by indicators of efficiency. 

The gap is equal to the difference between objective value and its lower bound divided by the lower 

bound. 

𝑔𝑎𝑝𝑘(𝑆) =
𝐹𝑘(𝑆)−𝐿𝐵𝑘

𝐿𝐵𝑘
  if k < 8  

𝑔𝑎𝑝8(𝑆) = 𝐹8(𝑆) (different evaluation because LB8 = 0). 

𝑔𝑎𝑝𝑘(𝑆): Gap of solution S considering only objective k. 

𝐹𝑘(𝑆): Objective value of solution S considering objective k. 

𝐿𝐵𝑘: Lower Bound of objective k.   
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3.7.2.2 Numerical experiments for Multi-Objective IPLAVS (case of AGVs) 

For this instance, we evaluated the following lower bounds;  

Makespan Lower Bound: 27051 sec 

Lower Bound of |ASC*|:  11 ASCs 

Lower Bound of |P
*
| (the number of storage location to be used): 111 locations Lower Bound of 

|AGV| (the minimal number of AGV to be used, considering an optimal makespan):  16 

Lower Bound of ∑ tcc∈ASC∗ (total ASC handling time): 78842 s 

Lower Bound of ∑ tvv∈AGV (total AGV routing time):  406406 s 

Lower Bound of LAC 1 (First Location Assignment Cost): 1 s  

Lower Bound of LAC 2 (Second Location Assignment Cost): 0 UM (UM: Unproductive Moves). 

We present next the same 2D-Projections as in last section where solutions proposed by efficiency 

indicators are presented with the same colors. For the first location assignment (LAC1) cost we 

consider for the unity of graphic representation: one second of routing time between two containers 

of same client. For the second location assignment (LAC2) cost we consider for the unity of graphic 

representation: one unproductive move. Finally, for Equipment handling time we consider 1000 

seconds as unity of representation. The number of equipment is represented with one unity. 
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2D-Projection of Pareto-Front Approximation 

Plane of  

 Second Location Assignment Cost - LAC2  

AND 

First Location Assignment Cost – LAC1 

  

 

 

 

Figure 22 
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2D-Projection of Pareto-Front Approximation 

Plane of  

 Number of locations to be used - |P
*
|  

AND 

First Location Assignment Cost – LAC1 

 

 

 

 

Figure 23 
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2D-Projection of Pareto-Front Approximation 

Plane of  

 Number of ASCs to be used - |B
*
|  

AND 

First Location Assignment Cost – LAC1 

 

 

 

Figure 24 
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2D-Projection of Pareto-Front Approximation 

Plane of  

 Total ASC handling Time  

AND 

First Location Assignment Cost – LAC1 

 

Figure 25 
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In next tables, we present the same elements as in last sub-section.  

Best and Worst Gap of approximated Pareto-Front 

 CMax |V| |ASC*| |P*| ∑ tv
v∈AGV

 ∑ tc
c∈ASC

 
LAC1 LAC2 

Best gap 0 0 0.181 0.225 0.072 0.03 17 0 

Worst gap 0.099 0.312 15 7.981 0.386 12.09 40 412 

Table 15 

Objective values of elected solutions 

 IND CMax |V| |ASC*| |P*| ∑ tv
v∈AGV

 ∑ tc
c∈ASC

 
LAC

1 

LAC2 

Solution 1 1146 28403  16 16 148 450143 136585 28 369 

Solution 2 1141 27532 17 14 146 463779 125557 28 370 

Solution 3 246 27577 17 16 154 465518 81282 35 367 

Solution 4 1119 27534 17 13 145 463772 113477 24 381 

Table 16 

Objective gap of elected solutions 

 IND CMax |V| |ASC
*
| |P

*
| ∑ tv

v∈AGV

 ∑ tc
c∈ASC

 
LAC1 LAC2 

Solution 1 1146 0.05  0 0.45 0.33 0.1 1.6 27 369 

Solution 2 1141 0.02  0.06 0.27 0.32 0.14 1.38 27 370 

Solution 3 246 0.07 0 0.36 0.24 0.08 1.55 25 373 

Solution 4 1119 0.06 0 0.45 0.34 0.07 1.17 25 379 

Table 17 

Solution 1: Solution proposed by first indicator. 

Solution 2: Solution proposed by second indicator. 
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Solution 3: Solution proposed by third indicator. 

Solution 4: Solution proposed by fourth indicator. 

IND: Index of the solution in Pareto-List which represent the approximate Pareto-Front.  

We evaluate the gap of every objective value for each solution proposed by indicators of efficiency 

as described in preceding part. 

3.7.2.3 Numerical experiments for Multi-Objective IPLAVS (case of ALVs) 

For this instance we evaluated the following lower bounds;  

Makespan Lower Bound: 20013 sec 

Lower Bound of |ASC*|:  11 ASCs 

Lower Bound of |P*| (the number of storage location to be used): 112 locations; Lower Bound of 

|ALV| (the minimal number of AGVs to be used, considering an optimal makespan):  18 

Lower Bound of ∑ tASCc∈ASC∗ (total ASC handling time): 37156 s 

Lower Bound of ∑ tvv∈ALV (total ALV routing time):  424962 s 

Lower Bound of LAC 1 (First Location Assignment Cost): 1 s  

Lower Bound of LAC 2 (Second Location Assignment Cost): 0 UM (UM: Unproductive Moves). 

Remark: We refuse any solution with makespan gap upper to 0.1. 

In next Tables and figures we present the same elements as in the previous part.  

Best and Worst Gap of approximated Pareto-Front 

 CMax |V| |ASC*| |P*| ∑ tv
v∈ALV

 ∑ tc
c∈ASC

 
LAC1 LAC2 

Best gap 0 0 0 0.225 0.018 0.05 10 0 

Worst gap 0.081 0.32 15.09 8.009 0.383 21,2 40 400 

Table 18 
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The objective values of solutions elected by indicators have objective values presented in next table: 

Objective values of elected solutions 

 IND CMax |V| |ASC*| |P*| ∑ tv
v∈ALV

 ∑ tb
c∈ASC

 
LAC

1 

LAC2 

Solution 1 349 28670 15 13 47 426907 53573 24 376 

Solution 2 581 27052 16 12 138 429546 151950 18 380 

Solution 3 334 27335 16 13 132 434135 39953 22 368 

Solution 4 334 27335 16 13 132 434135 39953 22 368 

Table 19 

Objective gap of elected solutions 

 IND CMax |V| |ASC*| |P*| ∑ tv
v∈ALV

 ∑ tb
c∈ASC

 
LAC

1 

LAC2 

Solution 1 349 0.06 0.062 0.181 0.324 0.05  0.44 23 376 

Solution 2 581 0 0 0.09 0.24 0.06  3.089 17 380 

Solution 3 334 0.01 0 0.181 0.37 0.07  0.07 21 368 

Solution 4 334 0.01 0 0.181 0.37 0.07  0.07 21 368 

Table 20 

Solution 1: Solution proposed by first indicator. 

Solution 2: Solution proposed by second indicator. 

Solution 3: Solution proposed by third indicator. 

Solution 4: Solution proposed by fourth indicator. 

IND: Index of the solution in Pareto-List which represent the approximate Pareto-Front. All the elements of Pareto-

List are presented is annexed parts. 
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We evaluate the gap of every objective value for each solution proposed by indicators of 

efficiency as described in part 3.7.2.1. 

In table 14, we present the gap of each solution proposed by indicators for efficiency considering 

every objective.  

Two indicators of efficiency propose the same solution, then we can elect that solution without 

taking into account the 2D-Projections of approximated Pareto Front. In next Figures we present 

2D-Projections of Pareto Front approximation considering another resolution process of the same 

instances. Indicators of efficiency propose for that resolution distinct solutions. 
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2D-Projection of Pareto-Front Approximation 

Plane of  

 Total ASC handling Time  

AND 

First Location Assignment Cost – LAC1 

 

 

 

Figure 26 
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2D-Projection of Pareto-Front Approximation 

Plane of  

 Total ALV Routing time 

AND 

First Location Assignment Cost – LAC1 

 

 

 

Figure 27 

 



Chapter 3 - IPLAVS in MACT at import 

 

 

125 
 

 

2D-Projection of Pareto-Front Approximation 

Plane of  

 Second Location Assignment Cost - LAC2  

AND 

First Location Assignment Cost – LAC1 

 

 

Figure 28 
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2D-Projection of Pareto-Front Approximation 

Plane of  

 Number of bays to be used - |B*|  

AND 

Number of locations to be used – |P*| 

 

 

 

 

Figure 29 
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For the three case of MACT, if we consider the approximated Pareto-Front, the different lower 

bounds are reached efficiently seven objectives from eight. For the last objective, which is the first 

Location assignment cost and which represent the average distance between a container and the 

other containers to be delivered for the same client, short values of routing times between two 

containers of same client are reached (generally less than 10 seconds). Considering practice these 

values insure high quality of storage space. 
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3.8)  Conclusion 

In this part, we explore a problem which has not been extensively studied: the multi-objective 

integrated problem of location assignment and vehicle scheduling (IPLAVS) in maritime automated 

container terminal at import. As we know, this work is the second study of this specific problem 

considering container terminals and the first study of the problem considering straddle carrier 

terminals.  

Considering our approach, in one hand, the integration of two optimization problems is 

theoretical guaranty of higher optimality. In the other hand, our solution proposes an 8-objective 

optimization process. It is also a new and efficient approach considering the real-world significance 

of the optimized objectives. We proved that the problem is NP-Complete using polynomial 

reductions of IPLASS to the parallel machine problem (PMP) and the Traveling Salesman Problem 

(TSP). We studied the numerical aspect of the total routing path variation considering a chosen 

layout. We developed a Multi-Objective Tabu Search Algorithm (MOTSA) adapted to the studied 

problem.  

In the last part, we presented numerical results of MOTSA considering a large real instance of 

1000 containers and a total storage space capacity of 10 000 containers. Four indicators of 

efficiency are evaluated for each solution of the approximated Pareto-Front in order to elect 

efficient solutions. The first and second indicators of efficiency are adapted to the combinatorial 

aspect of the problem, to its non-convexity, to the non-convexity of the Pareto Front Region. The 

third indicator is adapted to be easily used by operators in container terminal. The fourth indicator 

considers the two aspects. 2D-projections of the approximated Pareto Front are proposed to elect 

with efficiency one solution from the solutions proposed by indicators of efficiency. Considering 

the approximated Pareto-Front, the different lower bounds are reached efficiently considering the 

gap of every objective and realistic needs of operators in container terminal for large instance of 

1000 containers 10 000 free storage locations. 
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Considering the approximated Pareto-Front, the different lower bounds are reached efficiently 

seven objectives from eight. For the last objective, which is the first Location assignment cost and 

which represent the average distance between a container and the other containers to be delivered 

for the same client, the value of 5.2 second of routing time between two containers of same client is 

reached. Considering practice these values insure high quality of storage space. 
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Conclusion

 

Maritime Container Terminals (MACT) plays a crucial role in global logistic networks. Because 

of the ever-increasing quantity of cargo, terminal operators need solutions for different decisional 

problems. In the maritime terminal, at boat arrival or departure, we observe five main problems: the 

allocation of berths, the allocation of query cranes, the allocation of storage space, the optimization 

of stacking cranes work load and the scheduling and routing of vehicles.  

A good cooperation between the different installations in the terminal is important in order to 

optimize the productivity of Container Handling System (CHS). In an automated container terminal 

numerical solutions have become essential to optimize operators’ decisions. Many recent researches 

have discussed the optimization of equipment scheduling in Maritime Automated Container 

Terminal (MACT).  

We identify three kinds of MACT, considering their equipment; MACT using Automated 

Guided Vehicles (AGVs), Automated Stacking Cranes (ASCs) and Quay Cranes (QCs), MACT 

using ALVs, ASCs and QCs and MACT using Auto-Straddle-Carriers and QCs (without ASCs). In 

our study, we consider these three situations in Maritime Automated Container Terminal (MACT) 

at import. 

In our study, we consider two optimization problems in automated container terminals at import; 

the first is the vehicle scheduling problem; the second is the integrated problem of location 

assignment and vehicle scheduling. 

In the first part of our study, we propose different traffic layout adapted to the two studied 

problems and to every kind of automated container terminal. We present also relevant reviews of 

literature treating the optimization of container handling systems at maritime container terminal, the 

optimization of general automated guided vehicle system and the muti-objective optimization in 

general and in particular context of maritime container terminals.   
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In the second part, we resolve the planning of QC-AV-ASC. We present an effective model for 

every kind of traffic layout. We propose an efficient bi-objective model, which is important to 

determine the optimal storage time and the minimal number of AVs required. The bi-objective 

model can resolve large instances (until 500 containers) with double optimality (giving the optimal 

makespan and the minimum number of required AVs) in reasonable run time (less than 60 s). Our 

bi-objective model is perhaps the first model optimizing in on time the makespan and the AV fleet 

size in an automated container terminal. Our models consider 3 handling equipments (AV, QC and 

ASC) which is an efficient approach.  We treated the three existing AVs: AGVs, ALVs and Auto-

Strads. 

In the third part of our work, we explore a problem which has not been extensively studied: the 

integrated problem of location assignment and vehicle scheduling (IPLAVS) in automated maritime 

container terminal at import. For resolution we considered two aspect of the problem: a mono-

objective aspect and a multi-objective aspect. As we know, this work is the second study of this 

specific problem considering container terminals and the first study of the problem considering 

multi-objective aspect. For mono-objective IPLAVS, we developed a new cooperative tabu search 

and we prove its efficiency for solving combinatorial problems using an application to the Traveling 

Salesman Problem. 

Considering our approach, in one hand, the integration of two optimization problems is 

theoretical guaranty of higher optimality. In the other hand, our solution proposes an 8-objective 

optimization process. It is also a new and efficient approach considering the real-world significance 

of the optimized objectives. We proved that the problem is NP-Complete using polynomial 

reductions of IPLASS to the parallel machine problem (PMP) and the Traveling Salesman Problem 

(TSP). We studied the numerical aspect of the total routing path variation considering a chosen 

layout. We developed a Multi-Objective Tabu Search Algorithm (MOTSA) adapted to the studied 

problem. In the last part, we presented numerical results of MOTSA considering a large real 

instance of 1000 containers and a total storage space capacity of 10 000 containers. Four indicators 

of efficiency are evaluated for each solution of the approximated Pareto-Front in order to elect 

efficient solutions. The first and second indicators of efficiency are adapted to the combinatorial 
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aspect of the problem, to its non-convexity, to the non-convexity of the Pareto Front Region. The 

third indicator is adapted to be easily used by operators in container terminal. The fourth indicator 

considers the two aspects. 2D-projection of the approximated Pareto Front are proposed to elect 

with efficiency one solution from the solutions proposed by indicators of efficiency. Considering 

the approximated Pareto-Front, the different lower bounds are reached efficiently considering the 

gap of every objective and realistic needs of operators in container terminal for large instance of 

1000 containers 10 000 free storage locations. 

Different parts of our study was published and communicated in international conferences. 

Publication in book chapter 

1. H. DKHIL, A. YASSINE, H. CHABCHOUB: Optimization of Container Handling Systems in 

Automated Maritime Terminal. Advanced Methods for Computational Collective Intelligence Studies in 

Computational Intelligence (Springer), Vol. 457, pp. 301-312, 2013. 

http://link.springer.com/chapter/10.1007%2F978-3-642-34300-1_29 

Publications in international journals 

1. Multi-objective optimization of the integrated problem of location assignment and straddle carrier 

scheduling in maritime container terminal at import. Accepted for publication in Journal of Operational Research 

Society 

2. A new collaborative meta-heuristic approach: application to the Traveling Salesman Problem, Accepted 

for publication in International Journal of Artificial Intelligence 

International conferences 

1. H. DKHIL, A. YASSINE, H. CHABCHOUB: Optimization of Container Handling Systems in 

Automated Maritime Terminal. International Conference on Computational Collective Intelligence - 

Technologies and Applications (ICCCI 2012), Ho Chi Minh City –Vietnam, 28-30 novembre 2012.  

2. H. DKHIL, A. YASSINE, H. CHABCHOUB: The AGV scheduling problem: Metaheuristic approach 

with genetic and hybrid algorithms. International Conference on Metaheuristics and Nature Inspired Computing 

(Meta 2012), Sousse – Tunisie, 27-31 octobre 2012. 

http://link.springer.com/book/10.1007/978-3-642-34300-1
http://link.springer.com/bookseries/7092
http://link.springer.com/bookseries/7092
http://link.springer.com/chapter/10.1007%2F978-3-642-34300-1_29
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3. H. DKHIL, A. YASSINE, H. CHABCHOUB: Optimisation bi-objective du problème de stockage de 

conteneurs dans un terminal maritime. International Conference on Logistics Operations Management (GOL’12), 

Université du Havre - France, 17-19 octobre 2012. 

http://marlog-aast.org/2013/Papers/S3P1.pdf 

4. H. DKHIL, A. YASSINE, H. CHABCHOUB: Optimization of container handling systems in automated 

maritime terminals: A hybrid genetic and a tabu search algorithms. International Conference on Advanced 

Logistics and Transport (ICALT 2013), pp. 539-544, Sousse - Tunisia, 29-31 Mai 2013. 

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&tp=&arnumber=6568516 

5. H. DKHIL, A. YASSINE, H. CHABCHOUB: TITRE 4. European Conference on Operational Research 

(Euro Informs 2013), Roma – Italy, 1-4 Juliet 2013. 

6. H. DKHIL, A. YASSINE, H. CHABCHOUB: TITRE 2. International Conference on Metaheuristics and 

Nature Inspired Computing (Meta 2014), Marrakech – Morocco, 27-31 octobre 2014. 

7. H. DKHIL, A. YASSINE, H. CHABCHOUB: Optimization and Simulation of Container Handling 

Systems in Automated Maritime Terminal. THE INTERNATIONAL MARITIME TRANSPORT & LOGISTICS 

CONFERENCE (MARLOG 2): Sustainable Development of Suez Canal Region, Alexandria – Egypt, 17-19 mars 

2013.        

 

 

In next works, we will study the dynamic integrated problem of location assignment and vehicle 

scheduling in maritime automated container terminals at import. We will study also the export case 

and the general case of import-export with dynamic aspect.

http://marlog-aast.org/2013/Papers/S3P1.pdf
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