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Introduction

Weak shock waves are one of the most intense and spectacular features of nonlinearities in acoustics. In high amplitude acoustic waves, the nonlinearities get predominant because of long-term accumulation of small nonlinear perturbations. Many experimental setups exist to investigate this phenomenon, but it becomes costly to use them repeatedly. This creates a need of in-silico analysis. Numerical methods are developed, validated with different experimental data, and are thereafter used to perform simulations instead of repeating the real experiments.

Motivation and Objective

Instances involving propagation of acoustical shock waves in complex geometry are numerous, sometimes-wanted and sometimes-unwanted. Here are a few examples presented which motivate this thesis project.

Buzz-Saw Noise

As defined by McAlpine et al. [103], it is the noise generated from the turbo-fan engine of an aeroplane when the relative speed of the inlet flow impinging on the fan blades is supersonic. The pressure field associated to a supersonic ducted fan, in a direction normal to the shock fronts, looks like a sawtooth waveform. This is how, this buzzing noise gets the name Buzz-saw noise. It is particularly significant during the take-off and climb, and affects the sound level of the cabin and community. With the increase of commercial air traffic, it becomes important to predict and control these emissions.

It has been previously discussed by several authors like Philpot [109], and Hawkings [START_REF] Hawkings | Multiple tone generation by transonic compressors[END_REF].This nonlinear propagation of high amplitude sawtooth wave form inside a duct is classical example of propagation of acoustical shock waves in complex geometry. Here, the complex geometry is due to the inner shape of the turbofan.

Sonic Boom

The introduction of supersonic flights in 1950's brought into the phenomenon of sonic boom, it is a well-known phenomenon in the field of acoustical shock waves. The pressure disturbance created by the supersonic jet transforms into a N-wave i.e., weak acoustical shock waves. This N-wave is annoying for the population. A detailed discussion on the nature of sonic boom is done in [START_REF] Maglieri | Sonic boom[END_REF]110,137]. The interaction of N-wave with topography can lead to diffraction of shock waves and formation of a shadow zone [START_REF] Berry | Controlled experiments of the diffraction of sound by a curved surface[END_REF][START_REF] Coulouvrat | Sonic boom in the shadow zone: A geometrical theory of diffraction[END_REF]. This interaction brings in the complex geometries as it could be any landscape.

Reflection of Shock Waves

Reflection of acoustical shock waves over a rigid surface are one of the most fundamental phenomenon for shock waves, including acoustical shock waves. The reflection can be broadly classified into two categories namely, regular and irregular (see Ben-Dor [START_REF] Ben-Dor | Shock Wave and High Pressure Phenomena[END_REF]).

The type of reflection depends on the grazing angle and the strength of the incident shock.

Regular reflection is one which has 2 shock fronts which are the incident and the reflected fronts. It is observed for a sufficiently large grazing angle or a sufficiently weak shock. It is further subdivided into two categories. First case is when reflection obeys the linear Snell-Descartes law of reflection, secondly, when the reflected shock has a curvature and therefore has a varying angle of reflection.

As the criterion for regular reflection is no more satisfied, the point of intersection of the incident and the reflected shock detaches form the surface and gives rise to a third shock. This new shock is called the Mach shock/stem [START_REF] Mach | Uber den Verlauf von Funkenwellen in der Ebene und im Raume[END_REF]: it connects the merging point of the two shocks and the surface, and is called the triple point. It is important to mention that the slope has a discontinuity at the triple point. Such type of reflection comes under the category of irregular reflection. Premier theory for shock wave reflection was done by von Neumann [133], he called irregular reflection as three-shock theory and regular reflection as two-shock theory.

Colella and Henderson [START_REF] Colella | The von Neumann paradox for the diffraction of weak shock waves[END_REF] observed numerically and experimentally that for weak shocks there is no triple point, the reflected shock front has a continuous slope along the incident shock and the Mach shock. This happens because the reflected shock breaks down in a band of compressive waves as it approaches the incident shock. They called this new type of reflection as von Neumann reflection. Such weak shock waves exist in acoustics. First numerical observation of nonlinear reflections are done by Sparrow et al. [121]. Baskar et al. [START_REF] Baskar | Nonlinear reflection of grazing acoustic shock waves: unsteady transition from von Neumann to Mach to Snell-Descartes reflections[END_REF] studied the transition in detail theoretically and numerically. They observed the one-shock irregular reflection at almost grazing case where the reflected is not visible as it merges with the incident shock. They call it as weak von Neumann reflection. An experimental validation is done underwater by Marchiano et al. [START_REF] Marchiano | Experimental evidence of deviation from mirror reflection for acoustical shock waves[END_REF]. Karzova et al. [START_REF] Karzova | Interaction of weak shocks leading to Mach stem formation in focused beams and reflections from a rigid surface: numerical modeling and experiment[END_REF][START_REF] Karzova | Mach stem formation in reflection and focusing of weak shock acoustic pulses[END_REF] studied the interaction of weak shock waves leading to formation of Mach stem in focused beams using optical instruments. Moreover, Pinton et al. [111] simulated the nonlinear reflection of acoustical shear shock waves in soft elastic tissues (involving cubic nonlinearities). This application demonstrates the importance of nonlinear effects near the region of reflection in the propagation of shock waves.

Lithotripsy

Ultrasound has gained importance for therapeutic applications. Extracorporeal shock wave lithotripsy (ESWL) is used for breaking stones in human body, when they are too big to pass through the urinary tract. It is the most prominent example of therapeutic ultrasound. The first attempts for such a procedure were made in 1950s [START_REF] Lamport | Fragmentation of biliary calculi by ultrasound[END_REF]. It has been successfully implemented since 1980 [START_REF] Chaussy | Extracorporeally Induced Destruction Of Kidney Stones By Shock Waves[END_REF] for fragmenting kidney stones, and later on for gall bladder stones [117].

ESWL involves focusing of high amplitude acoustical shock waves that are generated outside the body and are focused onto a stone within the body. Due to the focusing there is a very high pressure on the stone and significantly lower in the surrounding. The patient is positioned in a way such that the focus of the lithotripter coincides with the stone inside the body, this is achieved through ultrasonic imaging (or other imaging devices). There have been various explanations of the destruction of the stone like compressive failure [START_REF] Chaussy | Extracorporeal shock wave lithotripsy: new aspects in the treatment of kidney stone disease[END_REF], spalling [START_REF] Delius | A mechanism of gallstone destruction by extracorporeal shock waves[END_REF], cavitation [START_REF] Coleman | Acoustic cavitation generated by an extracorporeal shockwave lithotripter[END_REF][START_REF] Crum | Cavitation microjets as a contributory mechanism for renal calculi disintegration in ESWL[END_REF]. The problems associated with lithotripsy includes Hematuria, renal injury [START_REF] Kaude | Renal morphology and function immediately after extracorporeal shock-wave lithotripsy[END_REF][START_REF] Evan | Renal Trauma and the Risk of Long-Term Complications in Shock Wave Lithotripsy[END_REF], spalling in tissues at the air interfaces such as lung [START_REF] Dalecki | A test for cavitation as a mechanism for intestinal hemorrhage in mice exposed to a piezoelectric lithotripter[END_REF] and intestines [START_REF] Hartman | Lung damage from exposure to the fields of an electrohydraulic lithotripter[END_REF]. Cavitation is also associated to the injury bubble implosion could lead to tissue damage [START_REF] Coleman | A review of the physical properties and biological effects of the high amplitude acoustic fields used in extracorporeal lithotripsy[END_REF]. Dornier HM3 is one of the first and most popular lithotripter in clinical and scientific fraternity [START_REF] Cleveland | Design and characterization of a research electrohydraulic lithotripter patterned after the Dornier HM3[END_REF][START_REF] Christopher | Modeling the Dornier HM3 lithotripter[END_REF]. The geometry includes an ellipsoidal geometry with one focus as the source of shock waves and the other focus is made at the stone location inside the body. In other words, half-ellipsoid is outside the body and acts as the mirror to reflect and focus the shock waves at the stone and breaks it (all this is done without any surgery). This clearly demonstrates that it is a well-suited example for propagation of acoustical shock waves in complex geometry.

High Intensity Focused Ultrasound

As mentioned before, use of ultrasound in therapeutic applications is getting importance [START_REF] Bailey | Physical mechanisms of the therapeutic effect of ultrasound (a review)[END_REF]. High intensity focused ultrasound (HIFU) is used for noninvasive thermal destruction of tumors (see Crum and Hynynen [START_REF] Crum | Sound therapy[END_REF], ter Haar [123]), to stop hemorrhage of punctured blood vessels (Vaezy et al. [130]), acoustic characterization Hoff [START_REF] Hoff | Acoustic Characterization of Contrast Agents for Medical Ultrasound Imaging[END_REF], breaking down of microscopic structures Burov et al. [START_REF] Burov | Nonlinear Ultrasound: Breakdown of Microscopic Biological Structures and Nonthermal Impact on a Malignant Tumor[END_REF]. The HIFU devices are constructed using the two-dimensional phased arrays (see Pernot et al. [107], Hand et al. [START_REF] Hand | A random phased array device for delivery of high intensity focused ultrasound[END_REF]) along a spherical aperture. The ultrasound waves emitted by the transducers are focused on the center of the sphere, which is expected to be a tumor in case of hyperthermic treatments. A detailed discussion on HIFU can be found in [139].

Traditionally, HIFU does not involve shock waves but high intensity continuous waves. Nevertheless, Canney et al. [START_REF] Canney | Shock-induced heating and millisecond boiling in gels and tissue due to high intensity focused ultrasound[END_REF] showed that the use of shock waves can improve the heating effects. Indeed, higher frequencies are more readily absorbed and converted to heat than the fundamental frequency. Therefore, the impact of enhanced heating due to acoustical shock waves could be either useful or dangerous and should be properly estimated. It is important to note that this example involves a complex geometry as the medium could have bones and other tissues, and thermal effect could damage them severely. This makes it an interesting case for shock propagation, especially if there are heterogeneities in the domain.

Above examples illustrate different situations involving acoustical shock waves in complex geometries. Although, this is not an exhaustive list but it illustrates well the variety of problems which motivates this work and the need of a numerical solver for the propagation of acoustical shock waves in complex geometry.

Popular Models and Numerical Methods for Propagation of Acoustical Shock Waves

Numerous works on the propagation of acoustical shock waves using different models have been done since the beginning of numerical computing. In this section a rough survey is done for different models and their associated numerical methods. We choose to present them in an increasing order of complexity starting from the simplest 1D equation to the most general system of equations. Note that, this order corresponds more or less to the historical development of numerical simulation of shock waves.

The simplest equation for propagation of acoustical shock waves is the inviscid Burgers equation [113,[START_REF] Burgers | A mathematical model illustrating the theory of turbulence[END_REF]. It is a 1D nonlinear advection equation. Starting from a smooth initial waveform, it can take into account the steepening of the waveform until the formation of a discontinuity called the acoustical shock. Once the shock is formed the Burgers equation alone cannot manage the shock as it could lead to multi-valued solution and so the weak shock theory is coupled to provide a physically admissible solution [START_REF] Hamilton | Nonlinear Acoustics[END_REF]137]. Beyond 1D problem, it is also used to solve multi-dimensional problems like sonic boom coupled with the technique of ray-tracing. Many numerical methods have been used to solve this equation, details can be found in the textbooks [125, [START_REF] Leveque | Wave Propagation Algorithms for Multidimensional Hyperbolic Systems[END_REF][START_REF] Leveque | Finite Volume Methods for Hyperbolic Problems[END_REF][START_REF] Hirsch | Numerical Computation of Internal and External Flows: The Fundamentals of Computational Fluid Dynamics: The Fundamentals of Computational Fluid Dynamics[END_REF][START_REF] Godlewski | Hyperbolic systems of conservation laws[END_REF]. Note that in this work, we solve the Burgers equation for the development of the method. To assess the quality of the numerical solution, we compare the solution using a Burgers-Hayes quasi-analytical solution developed by Coulouvrat [START_REF] Coulouvrat | A quasi-analytical shock solution for general nonlinear progressive waves[END_REF] based on so-called Burgers-Hayes method [START_REF] Burgers | Further statistical problems connected with the solution of a simple nonlinear partial differential equation[END_REF][START_REF] Hayes | Sonic Boom Propagation In A Stratified Atmosphere, With Computer Program[END_REF].

The next model is the Khokhlova-Zabolotskaya-Kuznetsov (KZK) equation [START_REF] Kuznetsov | Equations of Nonlinear Acoustics[END_REF] or the KZ equation (KZK without the thermoviscous effects) [141].This is a one-way equation which takes into account the diffraction, nonlinearity and attenuation with a limited angular validity. Indeed, its derivation is based on paraxial approximation of the propagation operator. Note that, this equation can be reduced to the Burgers equation if the diffraction is not taken into the account. This model is very useful to simulate propagation of narrow beams in acoustics. The first implementation has been the calculation of the pressure field produced by axisymmetric sources in the near field of a piston com-pletely in frequency domain [START_REF] Aanonsen | Distortion and harmonic generation in the nearfield of a finite amplitude sound beam[END_REF]. This code is the known as the Bergen code. It was later used to investigate the focused beams [START_REF] Hart | Nonlinear effects in focused sound beams[END_REF], interaction between finite amplitude beams [124]. Three dimensional codes were developed [START_REF] Kamakura | Harmonic generation in finite amplitude sound beams from a rectangular aperture source[END_REF][START_REF] Cahill | Increased off-axis energy deposition due to diffraction and nonlinear propagation of ultrasound from rectangular sources[END_REF] to investigate the generation of harmonics from a rectangular aperture source. This spectral method was very successful, especially in handling attenuation but was not efficient for strong nonlinearity, where there is generation of higher harmonics (Gibbs phenomenon). There are three other popular approaches based on the fractional step procedure [START_REF] Ames | Numerical Methods for Partial Differential Equations[END_REF]. Since KZK is a one-way wave equation, it models the propagation in the privileged direction. It involves splitting of the physical effects in each spatial advancement step. The same procedure is carried out iteratively. The first of its kind was proposed by Bakhvalov et al. [START_REF] Bakhvalov | Nonlinear theory of sound beams[END_REF]. It solves diffraction and attenuation in frequency domain and nonlinearity in temporal domain. This pseudospectral method has also been used to treat the problem of focusing of sonic boom on fold caustics by Marchiano et al. [START_REF] Marchiano | Numerical simulation of shock wave focusing at fold caustics, with application to sonic boom[END_REF]101] through a generalized KZ equation with the heterogeneous term proportional to the distance from the caustic. Another method proposed by Lee and Hamilton [START_REF] Lee | Time-domain modeling of pulsed finite-amplitude sound beams[END_REF], solves the KZK equation directly in time domain. This code is known as the Texas code. Coulouvrat and co-workers [START_REF] Coulouvrat | Nonlinear Fresnel diffraction of weak shock waves[END_REF]100] used split-step approach to study the nonlinear Fresnel diffraction and focusing of shock waves. Conclusively, the popularity of this model is due to the fact that its simulation is really fast and efficient but is limited to paraxial approximation.

Several improvements have been proposed to go beyond the parabolic approximation. First of all, the wide-angle approximation [START_REF] Claerbout | Fundamentals of geophysical data processing with applications to petroleum prospecting[END_REF] is done to extend the angle of validity [START_REF] Ganjehi | Evidence of wave front folding of sonic booms by a laboratory-scale deterministic experiment of shock waves in a heterogeneous medium[END_REF]. Christopher and Parker [START_REF] Christopher | New approaches to nonlinear diffractive field propagation[END_REF] proposed a method without any angular restriction which relies on the phenomenological way. Recently, Dagrau et al. [START_REF] Dagrau | Acoustic shock wave propagation in a heterogeneous medium: a numerical simulation beyond the parabolic approximation[END_REF] introduced the HOWARD method which stands for heterogeneous one-way approximation for the resolution of diffraction. The numerical resolution is based on the pseudo-spectral approach, diffraction and heterogeneities are solved using spectral methods and nonlinear effects are taken into account using Burgers-Hayes analytical solution [START_REF] Hayes | Sonic Boom Propagation In A Stratified Atmosphere, With Computer Program[END_REF][START_REF] Coulouvrat | A quasi-analytical shock solution for general nonlinear progressive waves[END_REF]. It has been extended to simulate the propagation of shock waves in flows (FLHOWARD [START_REF] Gallin | One-way approximation for the simulation of weak shock wave propagation in atmospheric flows[END_REF]). Nevertheless, though these methods have no limitation of angular validity, they are still one-way methods. Consequently, they cannot take into account the effects of back scattering due to heterogeneities or boundaries in complex geometries.

Back scattering effects can be taken into account only using a full-wave approach. The simplest model dealing with propagation in all directions of space and nonlinearity is the Westervelt equation [136,[START_REF] Hamilton | Nonlinear Acoustics[END_REF]. It consists of a scalar wave equation augmented with a nonlinear term similar to the one in Burgers equation. Note that, in the derivation of this equation the local nonlinear effects are not taken into account (see Chapter 2 for details). Therefore, this is not the most general nonlinear wave equation. The most general nonlinear wave equation in fluid is the Kuznetsov equation [START_REF] Kuznetsov | Equations of Nonlinear Acoustics[END_REF] which incorporates both local and cumulative nonlinear effects. Nevertheless, the most popular is the Westervelt equation because the local nonlinear effects are expected to be small [START_REF] Aanonsen | Distortion and harmonic generation in the nearfield of a finite amplitude sound beam[END_REF][START_REF] Jing | Verification of the Westervelt equation for focused transducers[END_REF] and from a numerical point of view the remaining nonlinear term is simpler to solve. Different numerical techniques exists: Pinton et al. [112] proposed to solve it using the FDTD, Treeby et al. [128] used k-space method, Verweij et al.

[132] used the convolution approach. Note that, all these methods are having limitations in handling complex geometries or steep shocks, although possible approaches are in development (see [127] for an implementation of nonuniform grid in 1D).

As mentioned before, the direct resolution of the Kuznetsov equation is not easily implementable. A first-order system of equations equivalent to Kuznetsov is usually preferred. The pioneering work has been proposed by Sparrow et al. [121] who derived a system based on primitive variables (retaining up to the quadratic terms) and solved it using the FDTD method in Cartesian mesh. They showed the formation of Mach stem using a spherical source over a plane surface. Ginter et al. [START_REF] Ginter | Full-wave modeling of therapeutic ultrasound: Nonlinear ultrasound propagation in ideal fluids[END_REF] used similar system in axisymmetric form to investigate nonlinear ultrasound propagation in ideal fluids: it was solved using FDTD approach, in which they are using the DRP (Dispersion relation preserving) scheme. Delpino et al. [START_REF] Del Pino | 3D Finite Volume simulation of acoustic waves in the earth atmosphere[END_REF] proposed a very high order finite volume method to simulate the propagation of shock waves induced by explosive source in air. Velasco-Seguar and Rendon [131] recently implemented a low-order finite volume method based on the CLAWPACK codes [START_REF] Leveque | Wave Propagation Algorithms for Multidimensional Hyperbolic Systems[END_REF] on graphical processing units, but it requires fine discretization to capture the shock. Few researchers are solving directly the Euler [138,102] or the Navier-Stokes [START_REF] Albin | Fourier continuation methods for high-fidelity simulation of nonlinear acoustic beams[END_REF] equations for the propagation of nonlinear waves.

Again all these examples deal with regular geometries. Nevertheless, there are clear advantages of solving the system of first order equations. It is closer to the physics than wave equations (conservation properties). It gives access to all the velocity components, density variations and the pressure. This enables a more detailed study of different phenomenon of reflection, refraction, diffraction, attenuation, dispersion, nonlinearity. For instance, the effect of Lagrangian density [START_REF] Aanonsen | Distortion and harmonic generation in the nearfield of a finite amplitude sound beam[END_REF], which is a local effect, can be studied accurately. Nevertheless, as it has been outlined, it is difficult to handle complex geometries. A solution is to use a method build on unstructured mesh. To our knowledge, such a method has not yet been developed for the system of nonlinear equations.

Numerical Methods for Complex Geometry and Acoustical Shock Waves

Choice of the Method

In this section, we discuss about the main numerical methods and their ability to propagate acoustical shock waves in complex geometries. Generally in nonlinear acoustics there are long propagation distance involved (about 100 wavelengths), for which there is a need of a method with low dispersion and low dissipation. Such attributes are contained in a high-order methods. Therefore, it implies three features: high order schemes for long propagation, handling complex-domains, capturing of nonlinear effects including shock formation, propagation and merging.

The finite difference methods (FDMs or FDTD in acoustics) [START_REF] Cohen | Higher-Order Numerical Methods for Transient Wave Equations[END_REF] are the most popular methods for solving the nonlinear partial differential equations as seen in the previous section. Indeed, they are easily implementable. It is relatively easy to get high order discretization in space, which gives the freedom to choose an efficient time-stepping method.

These features make it applicable to variety of problems in nonlinear acoustics. However, despite techniques like curvilinear coordinates or immersed boundary condition, the finite difference methods are ill-equipped for handling complex geometries [START_REF] Fadlun | Combined Immersed-Boundary Finite-Difference Methods for Three-Dimensional Complex Flow Simulations[END_REF]129].

The family of FVMs are good in handling the problem of complex geometry as, in these methods, the space is discretized in volumes or cells. In each cell, the numerical computations are purely local and the fluxes are computed with the neighboring cells. Higher-order spatial accuracy in finite volume methods involves re-construction of cell averages. This creates an expanded numerical stencil, which drastically impacts the iterative algorithm and also complicates implementation of boundary condition. Nevertheless, FVMs are the most popular methods for hyperbolic problems, with second-order accurate methods being most frequently used [START_REF] Leveque | Finite Volume Methods for Hyperbolic Problems[END_REF]125].

On the other hand in the FEMs [START_REF] Hughes | The Finite Element Method: Linear Static and Dynamic Finite Element Analysis[END_REF]142,122], a spectral solution is constructed using a globally defined basis and with the same test functions. This gives a implicit semidiscrete form and the mass matrix is required to be inverted. Here the problem is the large global mass matrix which requires large memory. Moreover, it could also lead to instabilities [START_REF] Hesthaven | Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications[END_REF]. Such methods are the best choice for problems like heat equation but not for wave propagation problems.

The Discontinuous Galerkin Method (DGM) is a kind of hybrid of the FEM and the FVM. It is capable of handling complex geometries thanks to unstructured mesh. DGM preserves the spectral nature of the solution within one element as in FEMs based on basis and test functions, and can have high order representation. But, it satisfies the equations locally within each element this attribute resembles the FVMs. This gives DGM the ability of local (within a element) high-order accuracy, wherever needed. Therefore, it happens to be an appealing choice.

The DGM was first proposed by Reed and Hill [115] for solving a steady-state neutron transport equation, with its analysis given by Lesaint and Raviart [START_REF] Lesaint | On a finite element method for solving the neutron transport equation[END_REF]. At present the DGM is widely applied to many areas [START_REF] Hesthaven | Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications[END_REF]. In acoustics, it has been used mainly for linear acoustics [START_REF] Kopriva | Implementing Spectral Methods for Partial Differential Equations: Algorithms for Scientists and Engineers[END_REF], aeroacoustics [126,[START_REF] Gabard | Discontinuous Galerkin methods with plane waves for the displacement-based acoustic equation[END_REF][START_REF] Gabard | Discontinuous Galerkin methods with plane waves for time-harmonic problems[END_REF], propagation at the interface between moving media and isotropic solids Luca et al. [START_REF] Luca | Simulation Numérique de Débitmètres à Ultrasons par Une Méthode Galerkin Discontinu[END_REF][START_REF] Luca | Numerical Simulations of Transit Time Ultrasonic Flowmeters by a Direct Approach[END_REF], and nonlinear acoustics in solids [START_REF] Bou Matar | A nodal discontinuous Galerkin finite element method for nonlinear elastic wave propagation[END_REF]. To our knowledge, DGM has not been used for propagation of acoustical shock waves. Indeed, when an acoustical shock appears the method does not capture it properly by itself.

Shock Management

As mentioned before, the nonlinear propagation of acoustical waves generates highharmonics and the shock is formed. In the first order methods/monotone schemes, the truncation error is of second order which has a dissipative effect on the numerical solution and so the solution is smooth [START_REF] Godlewski | Hyperbolic systems of conservation laws[END_REF]. But, it could be too dissipative and smear the shock. On the other hand, higher-order schemes have very less numerical dissipation but dispersion increases [START_REF] Hu | An Analysis of the Discontinuous Galerkin Method for Wave Propagation Problems[END_REF][START_REF] Cockburn | Discontinuous Galerkin Methods: Theory, Computations and Applications[END_REF][START_REF] Ainsworth | Dispersive and dissipative behaviour of high order discontinuous Galerkin finite element methods[END_REF] i.e., when different harmonics travel with different speeds. And, since the shock is made up of 'infinitely' many frequencies, it is manifested in the form of oscillations which is known as the Gibbs phenomenon. Consequently, these oscillations will spread over the entire solution. Hence, there is a trade-off between the low-order physically plausible, smeared solution and a high-order solution with non-physical oscillations at the discontinuities.

In order to tackle the problem of Gibbs phenomenon in high-order schemes, there are many schemes/tools available in the literature. There are many non-oscillatory schemes like TVD (total variation diminishing), TVB (total variation bounded), ENO (essentially non-oscillatory) schemes see [START_REF] Harten | On a Class of High Resolution Total-Variation-Stable Finite-Difference Schemes[END_REF]106,118]. These methods are stable and capture shock very sharply without the oscillations for one-dimensional scalar nonlinear problems. Their extension to multiple dimensions works well in rectangular coordinates. But, they are difficult to apply in complex geometries and add further complications to the boundary conditions. Hughes and co-workers [START_REF] Brooks | Streamline Upwind/Petrov-Galerkin Formulations For Convection Dominated Flows With Particular Emphasis On The Incompressible Navier-Stokes Equations[END_REF][START_REF] Hughes | A New Finite Element Formulation For Computational Fluid Dynamics: I. Symmetric Forms Of The Compressible Euler And Navier-Stokes Equations And The Second Law Of Thermodynamics[END_REF][START_REF] Hughes | A New Finite Element Formulation For Computational Fluid Dynamics: II. Beyond SUPG[END_REF][START_REF] Hughes | A New Finite Element Formulation For Computational Fluid Dynamics: III. The Generalized Streamline Operator For Multidimensional Advective-Diffusive Systems[END_REF][START_REF] Hughes | A New Finite Element Formulation For Computational Fluid Dynamics: IV. A Discontinuity-Capturing Operator For Multidimensional Advective-Diffusive Systems[END_REF] introduced the streamline diffusion method which is quite successful in damping the oscillations. However these methods are implicit in time, therefore are not the best choice for hyperbolic problems. Cockburn et al. [START_REF] Cockburn | TVB Runge-Kutta Local Projection Discontinuous Galerkin Finite Element Method for Conservation Laws II : General Framework[END_REF] proposed something more local i.e., using the information only within the cell. Based on the minmod function [START_REF] Harten | High resolution schemes for hyperbolic conservation laws[END_REF], a class of the socalled slope limiters was created to truncate the higher spectral modes of the solution near the shock. It has been further extended by Cockburn and co-worker to 1D systems in [START_REF] Cockburn | TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: One-dimensional systems[END_REF], and to multidimensional cases in [START_REF] Cockburn | The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws IV: The multidimensional case[END_REF][START_REF] Cockburn | The Runge Kutta Discontinuous Galerkin Method for Conservation Laws V[END_REF]. However, the slope limiter proposed by Cockburn flattens the smooth extrema significantly. An improvement to this slope limiter was proposed by Biswas et al. [START_REF] Biswas | Parallel, adaptive finite element methods for conservation laws[END_REF], and based on Biswas, Burbeau et al. [START_REF] Burbeau | A Problem-Independent Limiter for High-Order Runge-Kutta Discontinuous Galerkin Methods[END_REF] proposed another slope limiter. Nevertheless, slope limiters are not the best choice for high-order methods as they flatten the smooth extrema and the accuracy is lost.

The method of artificial viscosity given by von Neumann and Richtmyer [134] has been popular method of shock capturing as in streamline upwind Petrov-Galerkin (SUPG) [START_REF] Brooks | Streamline Upwind/Petrov-Galerkin Formulations For Convection Dominated Flows With Particular Emphasis On The Incompressible Navier-Stokes Equations[END_REF]. Hartmann and Houston [START_REF] Hartmann | Adaptive Discontinuous Galerkin Finite Element Methods for the Compressible Euler Equations[END_REF][START_REF] Hartmann | Adaptive discontinuous Galerkin methods with shock-capturing for the compressible Navier-Stokes equations[END_REF] used this approach for DGM. The method of artificial viscosity involves parabolic regularization of the hyperbolic equation i.e., a dissipative term is added on the right hand side of the equation which is controlled by the amount of viscosity. Recent approaches of shock capturing using residual-based artificial viscosity are done by Reisner et al. [116], Kurganov et al. [START_REF] Kurganov | New adaptive artificial viscosity method for hyperbolic systems of conservation laws[END_REF], Nazarov and Hoffmann [105]. Convergence of the residual-based viscosity in finite element method is done by Nazarov [104]. For DGM in past few years, the local artificial viscosity method has gained significant importance. It is possible to couple it with the sub-cell shock detection, which is particularly important for unstructured mesh. Persson and Peraire [108] proposed this idea of sub-cell shock detection using the magnitude of the highest-order coefficients in an orthonormal representation of the solution. Once a shock is sensed in a particular element a piecewise constant artificial viscosity is introduced depending on the mesh and the solution. This local approach makes it highly adaptable for parallelization which is important for DG implementation. The problem with this method is the jump discontinuities occurring in the viscosity map of the solution, which induce oscillations at the boundary of the element. As an improvement to this problem of oscillations, Barter and Darmofal [START_REF] Barter | Shock capturing with PDE-based artificial viscosity for DGFEM: Part I. Formulation[END_REF] proposed the use of smooth artificial viscosity by modeling the viscosity coefficients using a diffusion equation. They worked using hybrid mesh (structured near the shock and unstructured otherwise) for solving compressible Navier-Stokes equations. They also used a inter-element jump indicator proposed by Dolejsi et al. [START_REF] Dolejsi | On some aspects of the discontinuous Galerkin finite element method for conservation laws[END_REF]. Based on the work of Persson, Klockner et al. [START_REF] Klöckner | Viscous Shock Capturing in a Time-Explicit Discontinuous Galerkin Method[END_REF] developed a viscous shock capturing tool. However, all these works are not directly related with nonlinear acoustics, new development are required to take into account the features of acoustical shock waves.

Outline of the Manuscript

Based on the literature review of the previous sections, we can conclude that numerical method for propagation of acoustical shock wave in complex geometry is not available. The goal of this thesis is to propose such a tool. To do that the main steps are: 1. Development of numerical solver based on DGM parallelized using CUDA on GPUs for 1D and 2D problems.

2.

A new sub-cell shock detection tool adapted to acoustical shock waves in fully unstructured mesh.

3. Stabilization of the shock with local smooth artificial viscosity based on the shock detector.

The thesis is organized in the following way: Chapter 2 presents the formulation of the system of equations for nonlinear acoustics in lossless, homogeneous, and quiescent medium in a conservative form relevant for the numerical implementation. Chapter 3 encapsulates the DG implementation of the 1D and 2D conservation law(s). In chapter 4, the key idea of this work is introduced: the new shock management tool is developed in 1D for inviscid Burgers equation. Relevant comparisons are done for different cases with a quasi-analytical solution. The extension of this tool to the 2D system of nonlinear acoustics (developed in chapter 2) is done in chapter 5. Different aspects of 2D implementation are also discussed. Applications of acoustical shock waves in complex geometries: reflection over a surface and HIFU are presented in Chapter 6 for original configurations.

In this chapter, we intend to derive the basic equations of propagation in nonlinear acoustics with a pedagogical approach. We start with the basic equations of conservation laws and the state equation from which we derive the equations of nonlinear acoustics. Thereafter, we derive the dimensionless system of nonlinear acoustics. Finally, we compare the system of equation to the classical equations of nonlinear acoustics.

Conservation Laws

In order to derive the equations of nonlinear acoustics, we present the conservation laws describing the motion of fluid in a lossless, homogeneous and quiescent medium. The assumption of quiescent medium implies no flow in the medium.

The conservation of mass or the continuity equation [START_REF] Landau | Fluid mechanics[END_REF] is given by

∂ρ ∂t + ∇ • (ρv) = 0. (2.1)
Here, ρ is the density and v = (u(x, y, z, t), v(x, y, z, t), w(x, y, z, t)) is the velocity of the fluid with 'x','y','z' as Cartesian space variables and 't' as the temporal variable. Also,

∇ = ∂ ∂x nx + ∂ ∂y ny + ∂ ∂z nz , ( 2.2) 
where nx , ny and nz are the unit normal vectors in the x, y and z direction respectively. The balance law for momentum [START_REF] Landau | Fluid mechanics[END_REF] is

  ρu ρv ρw   t + ∇ •   ρu 2 + p ρvu ρwu ρuv ρv 2 + p ρwv ρuw ρvw ρw 2 + p   = 0, (2.3)
where p is the pressure. Alternatively, we can write it as

∂ ∂t ρv + ∇ • Π = 0, (2.4) 
where Π is a tensor with

Π ik = pδ ik + ρv i v k , (2.5)
and where v i is the ith component of velocity vector v. The system (2.3) in tensor notation can be expressed as

∂ ∂t (ρv i ) + ∂Π ik ∂x k = 0. (2.6)
The conservation of energy [START_REF] Landau | Fluid mechanics[END_REF] is given by ∂ ∂t

[ 1 2 ρv 2 + ρU ] + ∇ • [ ρv ( 1 2 v 2 + h )] = 0. (2.7)
Here, U is the internal energy per unit mass and h is the enthalpy per unit mass. Also,

h = U + p ρ . (2.8)
Using (2.8), the conservation law of energy becomes

∂E ∂t + ∇ • [v(E + p)] = 0, (2.9) 
where

E = ρ [ 1 2 v 2 + U ] , ( 2.10) 
is the total energy per unit mass. In order to close the system one more equation is required: the state equation is used to incorporate the property of the medium into the system p = p(ρ, s), (2.11) where s is the entropy. Note, here the state equation is adding another variable into the list of unknown variables, but it will be ultimately eliminated. More detailed illustration of the state equation is done in the next section.

The equations (2.1),(2.3),(2.7), (2.11) are the basis for the development of equations for nonlinear acoustics.

Equations for Nonlinear Acoustics

Acoustics is about very small pressure disturbances that propagate through compressible gas (or any other medium) causing infinitesimally small changes in the density and pressure of the gas due to the particles of the medium oscillating at an infinitesimally small velocity.

Since acoustic perturbations are really small in comparison to ambient state, we write the state variables as the sum of ambient state and the acoustical perturbation [110,[START_REF] Coulouvrat | On the equations of nonlinear acoustics[END_REF]. In homogeneous and quiescent medium the primary variables are, Pressure:

p(x, t) = p 0 + p a (x, t) Velocity: v(x, t) = v a (x, t) = (u a (x, y, t), v a (x, y, t), w a (x, y, t)) Density: ρ(x, t) = ρ 0 + ρ a (x, t) Internal Energy: U (x, t) = U 0 + U a (x, t) Entropy: s(x, t) = s 0 + s a (x, t)
. (2.12)

Here, the subscript 'a' indicates the acoustical perturbation. Note, according to our assumption of medium having no flow, we have v 0 = 0 and also we assume that the atmospheric pressure is constant (steady and homogeneous) i.e. p 0 (x, t) = p 0 .

For the sake of brevity, the arguments of the state variables are dropped from here onwards, they will be used wherever necessary for the better understanding.

In order to derive our system of nonlinear acoustics, we substitute equation (2.12) in the conservation laws (2.1),(2.3),(2.7) and retains terms up to second order whereas the O(ρ 3 a ) and higher order terms are neglected. We begin with the equation of continuity (2.1) in consideration of (2.12) and have

∂ ∂t (ρ 0 + ρ a ) + ∇ • ((ρ 0 + ρ a )v a ) = 0 (2.13)
or,

∂ρ 0 ∂t + ∂ρ a ∂t + ∇ • (ρ 0 v a + ρ a v a ) = 0. (2.14)
From the assumption of homogeneity ρ 0 is independent of t, so (2.14) becomes

∂ρ a ∂t + ∇ • (ρ 0 v a + ρ a v a ) = 0. (2.15)
Moving on to the conservation of momentum (2.4), we take up the tensor definition (2.5) with (2.12), which gives

Π ik = (p 0 + p a )δ ik + (ρ 0 + ρ a )v ai v ak .
(2.16)

On neglecting the third and higer order terms, we get

Π ik = pδ ik + ρ 0 v ai v ak .
(2.17) Therefore, the system (2.3) becomes

  ρu a ρv a ρw a   t + ∇ •   ρ 0 u 2 a + p ρ 0 v a u a ρ 0 w a u a ρ 0 u a v a ρ 0 v 2 a + p ρ 0 w a v a ρ 0 u a w a ρ 0 v a w a ρ 0 w 2 a + p   = 0, (2.18) 
(2.19)

Next, we take the balance equation of energy, the equation (2.9) with (2.12) yields,

∂E ∂t + ∇ • [v a (E + p)] = 0 (2.20)
where,

E = 1 2 ρv 2 a + ρU = 1 2 (ρ 0 + ρ a )v 2 a + (ρ 0 + ρ a )(U 0 + U a ) = 1 2 (ρ 0 + ρ a )(u 2 a + v 2 a + w 2 a ) + ρ 0 U 0 + ρ 0 U a + ρ a U 0 + ρ a U a (2.21)
On substituting (2.21) back in (2.20), we get

∂ ∂t [ 1 2 (ρ 0 + ρ a )(u 2 a + v 2 a + w 2 a ) + ρ 0 U 0 + ρ 0 U a + ρ a U 0 + ρ a U a ] +∇ • [ v a ([ 1 2 (ρ 0 + ρ a )(u 2 a + v 2 a + w 2 a ) + ρ 0 U 0 + ρ 0 U a + ρ a U 0 + ρ a U a ] + p )] = 0 (2.22)
On neglecting the third and higher order terms, in the above equation, we get

∂ ∂t [ 1 2 ρ 0 (u 2 a + v 2 a + w 2 a ) + ρ 0 U a + ρ a U a ] + ∇ • [v a (ρ 0 U a + p)] +U 0 [ ∂ ∂t (ρ 0 + ρ a ) + ∇ • [v a (ρ 0 + ρ a )] ] = 0. (2.23)
On substituting (2.15) in the above equation, we get

∂ ∂t [ 1 2 ρ 0 (u 2 a + v 2 a + w 2 a ) + ρ 0 U a + ρ a U a ] + ∇ • [v a (ρ 0 U a + p 0 + p a )] = 0. (2.24)
On combining the equations (2.15), (2.18), (2.24), we get

      ρ a ρu a ρv a ρw a E a       t + ∇ •   ρu a ρ 0 u 2 a + p ρ 0 v a u a ρ 0 w a u a u a (ρ 0 U a + p) ρv a ρ 0 u a v a ρ 0 v 2 a + p ρ 0 w a v a v a (ρ 0 U a + p) ρw a ρ 0 u a w a ρ 0 v a w a ρ 0 w 2 a + p w a (ρ 0 U a + p)   = 0, (2.25) 
where, E a is defined as

E a = 1 2 ρ 0 (u 2 a + v 2 a + w 2 a ) + ρ 0 U a + ρ a U a . (2.26)
As mentioned before, another equation is required to close the system, the state equation is used to incorporate the property of the medium into the system as explained now.

It is provided by Taylor's expansion of the state equation (2.11) in pressure p in terms of variations in density ρ and entropy s. The changes in these variables are carried out reversibly, adiabatically and at a constant chemical composition. The constraint of an adiabatic and reversible process implies that, the entropy is constant i.e. s = s 0 , we get

p = p(ρ 0 + ρ a , s 0 + s a ) = p(ρ 0 + ρ a , s 0 ) = p(ρ 0 , s 0 ) + ( ∂p ∂ρ ) s 0 (ρ -ρ 0 ) + 1 2! ( ∂ 2 p ∂ρ 2 ) s 0 (ρ -ρ 0 ) 2 + O(ρ 3 a ). (2.27)
On neglecting the third and higher order terms, we get

p a = ( ∂p ∂ρ ) s 0 ρ a + 1 2! ( ∂ 2 p ∂ρ 2 ) s 0 ρ 2 a , ( 2.28) 
or,

p a = A ( ρ a ρ 0 ) + B 2 ( ρ a ρ 0 ) 2 , ( 2.29) 
where

A = ρ 0 ( ∂p ∂ρ ) s 0 , ( 2.30) 
and

B = ρ 2 0 ( ∂ 2 p ∂ρ 2 ) s 0 . ( 2 

.31)

The parameters A and B [START_REF] Beyer | Nonlinear acoustics[END_REF][START_REF] Hamilton | Nonlinear Acoustics[END_REF] are temperature dependent quantities. The ratio of B/A plays an important role in nonlinear acoustics and so its values are computed and collected for different media at different temperatures [START_REF] Beyer | Nonlinear acoustics[END_REF]. Now introducing the parameter 1 c 0 (which is the speed of sound) in (2.29) gives

p a (x, t) = c 2 0 ρ a + c 2 0 ρ 0 B 2A ρ 2 a .
(2.32) Also, the linearized state equation is the truncated (2.32), which is

p a (x, t) = c 2 0 ρ a . (2.33)
Consequently, the system becomes 1 From equation (2.28), ( ∂p ∂ρ ) s will have the same units as p ρ and its dimension equation is as follows

[ p ρ ] = [ M L -1 T -2 M L -3 ] = [ L 2 T -2 ] .    ρa ρua ρva ρwa Ea    t + ∇ •   ρua ρ0u 2 a + c 2 0 ρa + c 2 0 ρ 0 B 2A ρ 2 a ρ0vaua ρ0waua ua(ρ0Ua + p0 + c 2 0 ρa) ρva ρ0uava ρ0v 2 a + c 2 0 ρa + c 2 0 ρ 0 B 2A ρ 2 a ρ0wava va(ρ0Ua + p0 + c 2 0 ρa) ρwa ρ0uawa ρ0vawa ρ0w 2 a + c 2 0 ρa + c 2 0 ρ 0 B 2A ρ 2 a wa(ρ0Ua + p0 + c 2 0 ρa)   = 0, (2.34) 
where

E a = 1 2 ρ 0 (u 2 a + v 2 a + w 2 a ) + ρ 0 U a + ρ a U a . (2.35)
From here, we proceed to derive a dimensionless system of equations equivalent to the system of nonlinear acoustic equations (2.34). Dimensionless system has many advantages as it keeps a track of different units of the variables, which makes it very easy to switch from one medium to the other. It highlights all the small and big parameters, which helps in clearly identifying different phenomenon.

Dimensionless Formulation of the System of Equations

Characteristic Parameters and Variables

We start with the motivation in choosing the respective parameters, in order to define the various characteristic parameters and variables.

The classification (linear, weak-shocks, strong-shocks) of any acoustical propagation is done using the acoustical Mach number of the wave, which is defined as

= max x {u a } c 0 . (2.36)
Using the impedance relation for a plane wave, which is which will play a crucial role in the final form of dimensionless system of equation, which will be derived in folllowing sections. From the impedance relation (2.37), we have the characteristic velocity as

u a = p a ρ 0 c 0 , ( 2 
u m a = v m a = w m a = p m a ρ 0 c 0 . (2.41)
We use the linearized state equation (2.33) i.e., p a = c 2 0 ρ a , which gives the characteristic density as,

ρ m a = p m a c 2 0 . (2.42)
Next is the choice of characteristic internal energy, since E a is total energy per unit volume and U a is the specific internal energy i.e. internal energy per unit mass. From equation (2.10), we observe that the dimension of specific internal energy (U a ) is same as that of 1 2 v 2 . Therefore, we choose the characteristic internal energy as Here, ω 0 = 2πf 0 is the angular frequency computed from the Fourier spectrum of the initial condition, and L = c 0 /ω 0 is the characteristic wavelength. Using the above transformations, the state equation (2.32) becomes

U m a = (u m a ) 2 . ( 2 
pa = ρa + B 2A ρ2 a (2.46)
Based on these characteristic variables, the dimensionless system of equations equivalent to system of nonlinear acoustics (2.34) is developed.

∂ ρa ∂ t + ∂ ∂ x (1 + ρa ) ūa + ∂ ∂ ȳ (1 + ρa ) va + ∂ ∂ w (1 + ρa ) wa = 0 (2.47) ∂ ∂ t (1 + ρa ) ūa + ∂ ∂ x [ ū2 a + c 2 c 2 0 ρa + c 2 c 2 0 B 2A ρ2 a ] + ∂ ∂ ȳ (ū a va ) + ∂ ∂ z (ū a wa ) = 0 (2.48)
Similarly, we can get the dimensionless form of conservation of momentum along Y and Z-axis, as

∂ ∂ t (1 + ρa ) va + ∂ ∂ x (v a ūa ) + ∂ ∂ ȳ [ v2 a + c 2 c 2 0 ρa + c 2 c 2 0 B 2A ρ2 a ] + ∂ ∂ z (v a wa ) = 0 (2.49)
and, 

∂ ∂ t (1 + ρa ) wa + ∂ ∂ x ( wa ūa ) + ∂ ∂ ȳ ( wa va ) + ∂ ∂ z [ w2 a + c 2 c 2 0 ρa + c 2 c 2 0 B 2A ρ2 a ] = 0 (2.50) ∂ ∂ t [ 1 2 ( ū2 a + v2 a + w2 a ) + Ūa + ρa Ūa ] + ∂ ∂ x [ ūa ( Ūa + τ + ρa )] + ∂ ∂ ȳ [ va ( Ūa + τ + ρa )] + ∂ ∂ z [ wa ( Ūa + τ + ρa )] = 0, ( 2 

Summary

This far we developed our first-order conservative system of equations for propagation of weak acoustical shock waves. It is important to note that the energy equation (2.51) is actually inert and not having any interaction with the other equations, therefore it is also, dropped from here onwards. In the next section, popular models of nonlinear acoustics are derived using this system of equations. 

2D-Dimensionless Hyperbolic

Conservation of Mass:

∂ ρa ∂ t + ∂ ∂ x (1 + ρa ) ūa + ∂ ∂ ȳ (1 + ρa ) va = 0 (2.52)
Conservation of Momentum along X-Axis:

∂ ∂ t (1 + ρa ) ūa + ∂ ∂ x [ ū2 a + ρa + B 2A ρ2 a ] + ∂ ∂ ȳ (ū a va ) = 0 (2.53)
Conservation of Momentum along Y-Axis: 

∂ ∂ t (1 + ρa ) va + ∂ ∂ x(ū a va ) + ∂ ∂ ȳ [ v2 a + ρa + B 2A ρ2 a ] = 0 (2.
ρ 0 ∂ ∂t v ai + ∂ ∂x k p a δ ik + ρ a ∂ ∂t v ai + ρ 0 v ak ∂ ∂x k v ai = 0. (2.58)
Therefore, the system of equation with primitive variables is

∂ρ a ∂t + ∇ • (ρ 0 v a + ρ a v a ) = 0 (2.59) ρ 0 ∂v a ∂t + ∇p a + ρ a ∂v a ∂t + ρ 0 (v a • ∇)v a = 0. (2.60)
Recall, the state equation remains the same i.e.,

p a = c 2 0 ρ a + c 2 0 ρ 0 B 2A ρ 2 a . (2.61)
It can also be rewritten with the same level of accuracy as 

ρ a = p a c 2 0 - 1 ρ 0 c 4 0 B 2A p 2 a . ( 2 

Kuznetsov Equation

In this section, we derive the Kuznetsov equation [START_REF] Kuznetsov | Equations of Nonlinear Acoustics[END_REF] 

ρ 0 ∂v a ∂t + ( 1 - ρ a ρ 0 ) ∇p a + ρ 0 (v a • ∇)v a = 0. (2.63)
We recall the identity,

(v a • ∇)v a = 1 2 ∇v 2 a -v a × ∇ × v a . (2.64)
Here, we can consider that the flow is irrotational: ∇ × v a = 0. Indeed, our derivation is restricted to ideal fluids. In this case the Kelvin theorem states that the vorticity is conserved; therefore if there is no vorticity at t = 0 then the flow can be considered irrotational for all time [START_REF] Landau | Fluid mechanics[END_REF]. Consequently, the equation (2.63) becomes

ρ 0 ∂v a ∂t + ∇p a = ρ a ρ 0 ∇p a - ρ 0 2 ∇v 2 a .
(2.65)

The RHS contains the nonlinear terms. On using (2.62) at first order they can be rewritten as

ρ 0 ∂v a ∂t + ∇p a = 1 2c 2 0 ρ 0 ∇p 2 a - ρ 0 2 ∇v 2 a .
(2.66)

Here, the second order Lagrangian density is introduced [START_REF] Aanonsen | Distortion and harmonic generation in the nearfield of a finite amplitude sound beam[END_REF] This implies that the operand inside the nabla is a function of t, which we choose to be 0 for simplicity. This gives a relation between the pressure and the velocity potential, and also the Lagrangian density.

L = ρ 0 2 v 2 a - p 2 a 2c 2 0 ρ 0 . ( 2 
p a = -ρ 0 ∂φ ∂t -L. (2.72)
The first term is the linear component whereas L corresponds to the nonlinear part.

The equation for conservation of mass (2.59) is expanded to give

∂ρ a ∂t + ∇ • (ρ 0 v a ) = -ρ a ∇ • v a -v a ∇ρ a .
(2.73)

By using the state equation to replace ρ a and doing some manipulations, we obtain

1 c 2 0 ∂p a ∂t + ρ 0 ∇v a = ( 1 + B 2A ) 1 ρ 0 c 4 0 ∂p 2 a ∂t + 1 c 2 0 ∂ ∂t ( 1 2 ρ 0 v 2 a - 1 2ρ 0 c 2 0 p 2 a )
.

(2.74)

In this equation on the RHS, we can recognize the coefficient of nonlinearity β (β = 1 + B/2A) and the Lagrangian density:

∂p a ∂t + c 2 0 ρ 0 ∇v a = β ρ 0 c 2 0 ∂p 2 a ∂t + ∂L ∂t . ( 2.75) 
In order to derive a wave equation, the time derivative of the equation (2.75) and the divergence of (2.68) are combined:

∂ 2 p a ∂t 2 -c 2 0 ∆p a = c 2 0 ∆L + β ρ 0 c 2 0 ∂ 2 p 2 a ∂t 2 + ∂ 2 L ∂t 2 .
(2.76)

In order to have a scalar equation, we introduce the velocity potential (2.69):

∂ 3 φ ∂t 3 -c 2 0 ∆ ∂φ ∂t = - 1 ρ 0 ∂ 2 ∂t 2 ( 2L + βρ 0 c 2 0 ( ∂φ ∂t ) 2 )
.

(2.77) Integrate (2.77) once with respect to time and take the constant of integration to be zero, we get 

∂ 2 φ ∂t 2 -c 2 0 ∆φ = - 1 ρ 0 ∂ ∂t ( 2L + βρ 0 c 2 0 ( ∂φ ∂t ) 2 ) . ( 2 
∂ 2 φ ∂t 2 -c 2 0 ∆φ = ∂ ∂t ( (∇φ) 2 + B 2A 1 c 2 0 ( ∂φ ∂t ) 2 ) (2.79)
The equation (2.79) is known as the Kuznetsov equation [START_REF] Kuznetsov | Equations of Nonlinear Acoustics[END_REF]120] for nonlinear acoustics. Its derivation required no further assumption and therefore it is equivalent to our system. Note that, in case of non-ideal fluid the two approaches are not strictly equivalent since the Kuznetsov equation requires the flow to be irrotational, which is not the case for our system of equations.

Westervelt Equation

Since the Lagrangian density is attributed to local nonlinear effects, it is assumed to be a very small quantity as in the nonlinear propagation cumulative effects are more dominant. Moreover, for plane waves it turns out to be zero as per the definition. Therefore, it is often neglected [START_REF] Aanonsen | Distortion and harmonic generation in the nearfield of a finite amplitude sound beam[END_REF][START_REF] Hamilton | Nonlinear Acoustics[END_REF].

If we consider L = 0, then equation (2.77) becomes

∂ 3 φ ∂t 3 -c 2 0 ∆ ∂φ ∂t = - 1 ρ 0 ∂ 2 ∂t 2 ( βρ 0 c 2 0 ( ∂φ ∂t ) 2 )
.

(2.80)

Moreover, the relation between pressure and velocity potential is reduced to 

p a = -ρ 0 ∂φ ∂t . ( 2 
∂ 2 p a ∂t 2 -c 2 0 ∆p a = β ρ 0 c 2 0 ∂ 2 p 2 a ∂t 2 .
(2.82)

This equation is very popular as it consists of a wave equation formulated for pressure with an additional quadratic term for the nonlinearity. From a numerical point of view, it is much simpler to solve than the Kuznetsov equation, even though it requires sophisticated schemes and heavy computational resource.

In a sense one-way approaches such as HOWARD [START_REF] Dagrau | Acoustic shock wave propagation in a heterogeneous medium: a numerical simulation beyond the parabolic approximation[END_REF] or angular spectrum [START_REF] Christopher | New approaches to nonlinear diffractive field propagation[END_REF]140], can be seen as a numerical approximation of this equation.

KZ Equation

Kuznetsov and Westervelt equations are full wave equations. As outlined above, the only difference is the Lagrangian density, which is expected to be small. Historically, an important approximation has been widely used by the community of nonlinear acoustics: the nonlinear parabolic equation mainly known as the KZ [141] (or KZK if the thermoviscous effects are taken into account [START_REF] Kuznetsov | Equations of Nonlinear Acoustics[END_REF]). The derivation of this equation is based on the choice of a privileged direction of propagation. This situation occurs for instance in acoustic beams where waves are emitted by transducers. By assuming the propagation of the waves is paraxial, it is possible to build a new operator of propagation coming from the Westervelt equation2 [START_REF] Hamilton | Nonlinear Acoustics[END_REF]:

∂ 2 p a ∂x∂τ - c 0 2 ∇ 2 ⊥ p a = β 2ρ 0 c 3 0 ∂ 2 p 2 a ∂τ 2 .
(2.83)

Here, τ = t -x/c 0 is the retarded time, ∇ 2 ⊥ = ∂ 2 ∂y 2 + ∂ 2 ∂z 2 is the transverse Laplacian. The KZ equation is for narrow angle beam propagation. There are many numerical methods for solving this equation as detailed in the previous chapter.

Inviscid Burgers Equation

On further restricting to 1D propagation along with the previous assumptions, the equation (2.83) reduces

∂ 2 p a ∂x∂τ = β 2ρ 0 c 3 0 ∂ 2 p 2 a ∂τ 2 (2.84)
which on integration with respect to time τ , gives

∂p a ∂x = β 2ρ 0 c 3 0 ∂p 2 a ∂τ . (2.85)
This is the inviscid Burgers equation. It is the simplest equation of nonlinear acoustic propagation. Despite its simplicity, it contains all of insights, as we would see in the development of the numerical method in the coming chapters.

Conclusions

In this chapter, we developed a first-order conservative system of equations for propagation of acoustical shock waves in homogeneous, lossless, quiescent fluids. The conservative system is crucial for the development of the numerical method (Chapter 3). It is shown that this system is equivalent to the Kuznetsov equation. On neglecting the Lagrangian density in the Kuznetsov equation, it is reduced to Westervelt equation. On further restricting by using a parabolic one-way approximation it is reduced to the KZK equation. This one eventually leads to the inviscid Burgers equation in 1D. This discussion of hierarchy of equations shows the consistency of our model.

In the coming chapters, we develop the numerical solver using the Burgers equation in 1D and the first-order system in 2D. The first order system is advantageous as it gives access to all the state variables unlike the other full-wave equations which are only in terms of pressure.

In this chapter, the Discontinuous Galerkin Method (DGM) for approximating the solution of hyperbolic conservation laws in one (1D) and two (2D) dimensions is presented. This numerical method belongs to the family of spectral element methods. The word 'spectral' emphasizes that the solution is written as a combination of some basis elements and the word 'element' emphasizes on the fact that the domain is discretized as in finite element methods.

The aim of this thesis is to study the propagation of nonlinear acoustic waves in complex geometry modeled by the system of equations (2.52)-(2.55). Although, the contents of this chapter are primarily imbibed from the textbook by Hesthaven and Warburton [START_REF] Hesthaven | Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications[END_REF], this chapter presents the formulation of the method in a concise way. In section 3.1, we present the semi-discrete formulation of the nodal DGM in 1D with the details of the computations done in the reference element. The idea of DGM is extended to 2D system of equations in section 3.2. Further in section 3.3, we briefly outline the implementation of the method on graphical processing units (GPUs). In section 3.4, we explain the low storage explicit Runge-Kutta (LSERK) method for time discretization of the semi-discrete system, and also explain the stability criterion for choosing the time discretization parameter. The illustration of the method using 1D linear advection equation is presented in section 3.5.

Nodal Discontinuous Galerkin Method in 1D

In this section, we discuss the basics to construct a DG solver for a scalar conservation law

∂q ∂t + ∂f ∂x = 0 in Ω × (0, T ], (3.1) 
where Ω is an open interval, q : Ω × [0, T ] → R, and f : R → R is the flux function. The initial condition is given by

q(x, 0) = q 0 (x), x ∈ Ω. (3.2) k k r x x k l Fig. 3.1. Element definition.

Weak Formulation

In DGM the approximate solution is computed using the weak formulation of the equation (3.1) given by ∫

Ω ∂q ∂t ϕ(x)dx + ∫ Ω ∂f ∂x ϕ(x)dx = 0. (3.3)
Here, ϕ is the test function belonging to the spectral basis of the approximate solution.

Using the integration by parts in the above equation leads to

∫ Ω ∂q ∂t ϕ(x)dx - ∫ Ω f ∂ϕ(x) ∂x dx + [ f (Ω R )ϕ(Ω R ) -f (Ω L )ϕ(Ω L ) ] = 0, (3.4) 
where, Ω R is the boundary of Ω in the direction of the wave propagation, whereas Ω L is the boundary in the other direction.

Let the domain of interest Ω = [a, b] be partitioned into K non-overlapping elements

a = x 0 , x 1 , • • • , x K-1 , x K = b, ( 3.5) 
where the elements are given by (see Figure 3.1)

Ω k = [x k-1 , x k ] := [x k l , x k r ], k = 1, • • • , K, (3.6) such that Ω = K ∪ • k=1 Ω k ; k = 1, • • • , K. (3.7)
As a consequence of discretization of the space Ω, it is important to observe that the boundary of an element is common to another element. Therefore, the boundary terms are to be treated differently than as in equation (3.4). Also, from the physics of the problem, we get the conditions at the boundary of the actual domain ( Ω). These conditions are the boundary conditions and are implemented using the same procedure as adopted for the treatment of the inter-element boundaries (see Figure 3.2). Based on this partition, we write the weak formulation in an element Ω k with the modified boundary terms as ∫

x k-1 l k -1 x k-1 r x k l k x k r x k+1 l k + 1 x k+1 r Fig. 3.2. Discontinuous elements. x k l x k-1 r x int x ext x ext x int
Ω k ∂q k ∂t ϕ(x)dx - ∫ Ω k f k ∂ϕ(x) ∂x dx + [ f * (x k r )ϕ(x k r ) -f * (x k l )ϕ(x k l ) ] = 0. (3.8)
The most important difference between the systems (3.4) and (3.8), other than using the solutions within the element k, is in the boundary terms. The terms f * in the boundary integral are the numerical fluxes, which depend on the internal and external states of the solution with respect to the boundary of the element/domain. Numerical fluxes can be defined in various ways [125,[START_REF] Leveque | Finite Volume Methods for Hyperbolic Problems[END_REF], we choose to use the local Lax-Friedrich flux

f * (x) := f * (x int , x ext ) = 1 2 [ f (q int ) + f (q ext ) + λ(q int -q ext ) ] , (3.9) 
where

q int = q(x int ), q ext = q(x ext ), λ = max q∈I |f (q)| (3.10) 
with I = [min(q int , q ext ), max(q int , q ext )]. Here, x is a boundary point with x int as the internal information at the boundary of the element and x ext as the external information at the same boundary of the element as shown in Figure 3.3.

In DGM, the approximate solution can be represented in two different forms, namely, 1. nodal form, where the solution is represented as a Lagrange interpolant of degree N and 2. modal form, where the solution is represented as a linear combination of N orthonormal polynomial basis.

From here onwards, we use the notation q k and f k to represent the approximate solution in the k th element and should not be confused with the analytical solution in the k th element as used in the above equations.

The two forms are represented as

q k (x, t) = Np ∑ i=1 q k (x k i , t)l k i (x) = Np ∑ n=1 qk n (t)ϕ n (x), x ∈ Ω k . (3.11)
Here, ϕ n (x) are the orthonormal polynomials of degree n, l k i (x) are the Lagrange interpolating polynomials and q k (x, t) is the approximate solution in the k th element with N p = N + 1 points in each element. The details of these N p points are given later.

Similarly, for x ∈ Ω k , the flux(f ) in nodal form turns out to be

f k (x, t) = Np ∑ i=1 f k (x k i , t)l k i (x), x ∈ Ω k . (3.12)
In this work, we intend to choose the nodal form of solution, therefore we choose the test functions

ϕ(x) = l k j (x), j = 1, . . . , N p . With this argument (3.8) becomes, ∫ Ω k ∂q k ∂t l k j (x)dx - ∫ Ω k f k dl k j (x) dx dx + [ f * (x k r )l k j (x k r ) -f * (x k l )l k j (x k l ) ] = 0 j = 1, ..., N p . ( 3.13) 
Substitution of the nodal expansions of q k from (3.11) and f k from (3.12) in the above equation leads to

∫ Ω k Np ∑ i=1 dq k (x k i , t) dt l k i (x)l k j (x)dx - ∫ Ω k Np ∑ i=1 f k (x k i , t)l k i (x) dl k j (x) dx dx + [ f * (x k r )l k j (x k r ) -f * (x k l )l k j (x k l ) ] = 0, j = 1, ..., N p or, Np ∑ i=1 dq k (x k i , t) dt ( l k i (x), l k j (x)
)

Ω k - Np ∑ i=1 f k (x k i , t) ( l k i (x), dl k j (x) dx ) Ω k + [ f * (x k r )l k j (x k r ) -f * (x k l )l k j (x k l ) ] = 0, j = 1, ..., N p (3.14)
where

(f, g) Ω k = ∫ Ω k f g dx (3.15)
is the L 2 inner product of f and g. Matrix notations of the above formulation gives

M k dq k dt -(S k ) T f k + [ f * (x k r )l k (x k r ) -f * (x k l )l k (x k l ) ] = 0,
which can be written as

dq k dt = [ M k ] -1 (S k ) T f k - [ M k ] -1 [ f * (x k r )l k (x k r ) -f * (x k l )l k (x k l ) ] , (3.16) 
where

M k = ( M k ij ) and S k = ( S k ij )
are the mass and the stiffness matrices, respectively, with

M k ij = ( l k i (x), l k j (x)
)

Ω k ; i, j = 1, ..., N p , S k ij = ( l k i (x), dl k j (x) dx ) Ω k ; i, j = 1, ..., N p , ( 3.17) 
and

q k = [ q k (x k 1 ), • • • , q k (x k Np ) ] T f k = [ f k (x k 1 ), • • • , f k (x k Np ) ] T l k = [ l k 1 (x), • • • , l k Np (x)
] T

(3.18)

Computations in Reference Element

In order to compute (3.16) efficiently, it is possible to project each element on the reference element I = [-1, 1], and thereafter, a lot of preprocessing can be done. The reference element is related to the physical coordinates by the transformation

x ∈ Ω k : x(ξ) = x k l + 1 + ξ 2 (x k r -x k l ) (3.19)
with the reference variable ξ ∈ I.

Polynomial Basis and Nodes

Next, an orthonormal basis (ϕ n (x), n = 1, . . . , N p ) is needed to compute the modal solution. In view of the affine mapping (3.19), it is wise to choose a basis whose support is in the reference element. This leads to the choice of Legendre polynomials (P n (ξ)), which is given by

ϕ n (ξ) = Pn-1 (ξ) = √ 2n -1 2 P n-1 (ξ), n = 1, . . . , N p (3.20)
where Pn (ξ) are normalized Legendre polynomials of degree n. The recursive relation used to compute the normalized Legendre polynomials is

a n+1 Pn+1 (ξ) = ξ Pn (ξ) -a n Pn-1 (ξ), n = 1, . . . , N p -1 (3.21)
where

a n = √ n 2 (2n + 1)(2n -1) , ( 3.22) 
with

ϕ 1 (ξ) = P0 (ξ) = 1 √ 2 , ϕ 2 (ξ) = P1 (ξ) = √ 3 2 ξ. (3.23)
Upto this point, the choice of N p points in each element is not discussed. Consider the modal solution at a point ξ i , (i = 1, . . . , N p ) in the reference element as

q(ξ i ) = Np ∑ j=1 qj Pj-1 (ξ i ). (3.24)
This can be re-written in matrix notation as

q = V q, ( 3.25) 
where

V ij = Pj-1 (ξ i ), q = [ q1 , • • • , qNp ] T , q = [ q 1 , • • • , q Np ] T . ( 3.26) 
The matrix V is the generalized Vandermonde matrix and plays a significant role in various parts of the method. Alternately, it can be written as

q(ξ i ) = Np ∑ j=1 q(ξ j )l j (ξ i ), (3.27) 
where

l i (ξ) = Np ∏ j=1,j =i ξ -ξ j ξ i -ξ j (3.28)
is the Lagrange interpolating polynomial with l j (ξ i ) = δ ij . Also, the uniqueness of polynomial interpolation gives

V T l(ξ) = P (ξ) (3.29) with l = [ l 1 (ξ), • • • , l Np (ξ) ] T , P = [ P0 (ξ), • • • , PN (ξ) ] T . (3.30)
Now for having a well-conditioned Vandermonde matrix which depends on the grid points, which in turn are chosen so that the best Lagrange interpolation based on Lebesque constant [START_REF] Hesthaven | Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications[END_REF] is obtained. The solution of this optimization problem is the set of solutions of 

(1 -ξ 2 ) P N (ξ) = 0. ( 3 

Mass and Stiffness Matrix

Consider the mass matrix as defined in (3.17),

M k ij = ∫ Ω k l k i (x)l k j (x)dx = J k ∫ I l i (ξ)l j (ξ)dξ = J k M ij , (3.32)
where J k is the Jacobian of the transformation (3.19), which is a positive constant, given by

J k = dx dξ = x k r -x k l 2 . ( 3.33) 
In the last equality of (3.32), it is important to observe that the mass matrix (M k ) for all the elements are differing by J k which is just a constant for each element. Therefore, the advantage of transforming the physical element to reference element is evident, as there is no need to compute the individual mass matrix for each element.

Now (3.29) implies

l i (ξ) = Np ∑ n=1 (V T ) -1 in Pn-1 (ξ). (3.34)
On substituting the above relation in (3.32), we have

M ij = ∫ I Np ∑ n=1 (V T ) -1 in Pn-1 (ξ) Np ∑ m=1 (V T ) -1 jm Pm-1 (ξ)dξ = Np ∑ n=1 Np ∑ m=1 (V T ) -1 in (V T ) -1 jm ∫ I Pn-1 (ξ) Pm-1 (ξ)dξ = Np ∑ n=1 (V T ) -1 in (V T ) -1 jn (3.35)
The above equation is a consequence of the orthonormal basis in the reference element I. Therefore, the mass matrix becomes

M k = J k M = J k ( VV T ) -1 (3.36)
Next consider the stiffness matrix

S k ij = ∫ Ω k l k i (x) dl k j (x) dx dx. (3.37)
Transforming this integral on the reference element (I) gives

S k ij = J k ∫ I l i (ξ) ( dξ dx d dξ ) l j (ξ)dξ. (3.38)
The term dξ dx is the metric constant for each element, therefore it comes out of the integral.

Moreover, [START_REF] Cockburn | The Local Discontinuous Galerkin Method for Time-Dependent Convection-Diffusion Systems[END_REF]. With this argument, the above equation takes the form

dξ dx = 1 J k from (3.
S k ij = ∫ I l i (ξ) dl j (ξ) dξ dξ = ∫ I l i (ξ) [ Np ∑ n=1 dl j (ξ) dξ ξn l n (ξ) ] dξ = Np ∑ n=1 ∫ I l i (ξ)l n (ξ) dl j (ξ) dξ ξn dξ = Np ∑ n=1 M in (D ξ ) nj = (MD ξ ) ij (3.39)
Here, the derivative matrix D ξ 1 is defined as

1 Consider any differentiable function f (ξ), then its Lagrange interpolant can be written as

f (ξ) = Np ∑ j=1 f (ξj)lj(ξ) (3.40)
Differentiating it on both sides with respect to ξ gives

df (ξ) dξ = Np ∑ j=1 f (ξj) dlj(ξ) dξ (3.41) or, df (ξi) dξ = Np ∑ j=1 f (ξj) dlj(ξ) dξ ξ i . (3.42)
In compact form,

d dξ f = D ξ f (3.43) (D ξ ) nj := dl j (ξ) dξ ξn (3.44)
In order to compute D ξ , differentiate (3.29) with respect to ξ to get

V T d dξ l(ξ) = d dξ P (ξ). (3.45)
Using the notation,

V ξ,(i,j) = d dξ Pj (ξ) ξ i , ( 3.46) 
the above equation can be written as

V T D ξ T = V T ξ , ( 3.47) 
where the right hand side matrix V ξ can be obtained using the identity

d dξ Pn (ξ) = √ n(n + 1) P (1,1) n-1 (ξ), (3.48) 
where P (1,1) n-1 (ξ) is the Jacobi polynomial. The equation (3.47) gives

D ξ = V ξ V -1 . ( 3.49) 
The matrix D ξ can be used to rewrite the Jacobian of the transformation (3.19) as

J k = D ξ X k , ( 3.50) 
where

X k = [ x k 1 , • • • , x k Np ] T
. However, it is important to note that this calculation gives a constant vector. But, we would always consider J k as a constant unless otherwise mentioned.

Assembling

Now all the pieces are in place to fully determine the semi-discrete form (3.16). Substitution of M k from (3.36), S k from (3.39) and (3.49) in (3.16) gives

dq k dt = [ J k ( VV T ) -1 ] -1 [ ( VV T ) -1 V ξ V -1 ] T f k - [ J k ( VV T ) -1 ] -1 [ f * (x k r )l k (x k r ) -f * (x k l )l k (x k l )
] ,

which simplifies to

dq k dt = 1 J k [ VV T ξ ( VV T ) -1 ] f k - 1 J k [ ( VV T ) -1 ] -1 [ f * (x k r )l k (x k r ) -f * (x k l )l k (x k l ) ] (3.51)
This is the final semi-discrete equation which is solved using a suitable time solver discussed in section 3.4.

Nodal Discontinuous Galerkin Method in 2D

As done in the scalar one-dimensional case, we present the nodal discontinuous Galerkin method for a two-dimensional system of equations. Let the system of equations be

∂q m ∂t + ∂f m ∂x + ∂g m ∂y = 0, m = 1, ..., M , (3.52) 
which we write as

∂q m ∂t + ∇ • H m = 0, m = 1, ..., M , (3.53) 
where H m = (f m , g m ) and

∇ = ∂ ∂x î + ∂ ∂y ĵ (3.54)
with î and ĵ as the unit vectors representing the x and y directions, respectively.

Weak Formulation

As in 1D, we start with the weak formulation of (3.53) given by

∫ Ω ∂q m ∂t ϕ(x)dx + ∫ Ω ∇ • H m ϕ(x)dx = 0, m = 1, ..., M, (3.55) 
where ϕ(x) is the test function belonging to the spectral basis of the approximate solution.

Integrating of the above equation by parts gives ∫

Ω ∂q m ∂t ϕ(x)dx - ∫ Ω H m • ∇ϕ(x)dx + ∫ ∂Ω n(x) • H m ϕ(x)dx = 0, m = 1, ..., M (3.56)
where n(x) = nx î+n y ĵ is the outward unit normal to the boundary ∂Ω The above system of equations is obtained by usual integration by parts involving continuous functions in domain Ω with a boundary ∂Ω. Now, we divide the domain Ω into K non-overlapping triangular elements as

Ω = K ∪ • k=1 Ω k ; k = 1, • • • , K. (3.57)
With the same reasoning as in 1D, we get the weak formulation in an element Ω k with the modified boundary terms as In 2D, the role of the normal vectors comes into picture, which is trivial in 1D. The various normal vectors in a triangular element along with one of its neighboring element is shown in Figure 3.5.

∫ Ω k ∂q k m ∂t ϕ(x)dx - ∫ Ω k H k m • ∇ϕ(x)dx + ∫ ∂Ω k [ nk • H k m ] * ϕ(x)dx = 0, m = 1, ..., M (3.58)
The numerical fluxes occurring in the system (3.58) are denoted by

(F * m ) k := [ nk • H k m ] * = [ nk x f k m + nk y g k m ] * . (3.59)
For the sake of clarity, the superscript k is dropped in the numerical fluxes as the entire problem is inside the element k. We choose the local Lax-Friedrichs flux

F * m := [ nx f m + ny g m ] * = nx f int m + f ext m 2 + ny g int m + g ext m 2 + λ 2 (q int m -q ext m ), (3.60)
where the superscripts 'int' and 'ext' denote the values of the respective quantities obtained as the limit approaches ∂Ω k from interior and exterior of the element, respectively, and

λ = max 1≤m≤M (|λ int m |, |λ ext m |). (3.61)
Here λ m , m = 1, ..., M , are the real eigenvalues of the matrix

[ nx F q + ny G q ]
with F q and G q being the Jacobian matrices of the fluxes

F = [f 1 , . . . , f M ] T and G = [g 1 , . . . , g M ] T , respectively.
Analogous to one-dimensional case, we use the notation q k m (and similar notation for fluxes) to represent the approximate solution in the k th element. Define the nodal representation of the state variables and the fluxes in 2D as

q k m (x, t) = Np ∑ i=1 q k m (x k i , t)l k i (x), f k m (x, t) = Np ∑ i=1 f k m (x k i , t)l k i (x), g k m (x, t) = Np ∑ i=1 g k m (x k i , t)l k i (x), . (3.62) 
where, x k i := (x k i , y k i ) and l k i (x), i = 1, . . . N p are the two-dimensional Lagrange interpolating polynomials. Here, number of points inside an element comes out to be the number of terms in the local modal expansion, which counts to

N p = (N + 1)(N + 2) 2 , ( 3.63) 
where N is the polynomial order of approximation in two variables. The expansion of the modal solution is explained later in detail.

The discretized form of the weak formulation (3.58) is written as

∫ Ω k ∂q k m ∂t l k j (x)dx - ∫ Ω k H k m • ∇l k j (x)dx + ∫ ∂Ω k (F * m ) k l k j (x)dx = 0,
which can be expanded as

∫ Ω k ∂q k m ∂t l k j (x)dx - ∫ Ω k [ f k m ] ∂l k j (x) dx dx - ∫ Ω k [ g k m ] ∂l k j (x) dy dx + ∫ ∂Ω k [ (F * m ) k ] l k j (x)dx = 0, j = 1, ..., N p . (3.64)
The most subtle difference between the one-dimensional and two-dimensional implementation of DGM is in the treatment of the boundary integrals. In order to have a nodal representation of the numerical fluxes, the boundary integral is split into three integrals, each over the edge of the element k, which looks like

∫ ∂Ω k (F * m ) k l k j (x)dx = ∫ edge k 1 (F * m ) k,e1 l k j (x)dx + ∫ edge k 2 (F * m ) k,e2 l k j (x)dx + ∫ edge k 3 (F * m ) k,e3 l k j (x)dx. (3.65)
With this partition, the nodal representation of the numerical fluxes at the boundary can be expressed as

(F * m ) k,e1 = N +1 ∑ i=1 F * m (x k,e1 i , t)l k i (x), x k,e1 i are the points on edge k 1 (F * m ) k,e2 = N +1 ∑ i=1 F * m (x k,e2 i , t)l k i (x), x k,e2 i are the points on edge k 2 (F * m ) k,e3 = N +1 ∑ i=1 F * m (x k,e3 i , t)l k i (x), x k,e3 i are the points on edge k 3 . (3.66)
From here, the computation of the numerical fluxes at edge k 1 is presented as it can be extended for the other two edges in the same way. On substituting the nodal solution of (F * m ) k edge 1 from (3.66) in the boundary integral, that is

∫ edge k 1 (F * m ) k,e1 l k j (x)dx = ∫ edge k 1 N +1 ∑ i=1 F * m (x k,e1 i , t)l k i (x)l k j (x)dx (3.67) = N +1 ∑ i=1 F * m (x k,e1 i , t) ∫ edge k 1 l k i (x)l k j (x)dx (3.68) for j = 1, • • • , N p . Define M k,e 1 ij = ∫ edge k 1 l k i (x)l k j (x)dx (3.69) for i = 1, • • • , N + 1 and j = 1, • • • , N p .
It appears that M k,e 1 is a full matrix of order (N + 1) × N p . But l k j (x) is a Lagrange polynomial of order N , including the points along the edge. Thus, if x k j is not on the edge then l k j (x) is zero for all the points on the edge, since

l k j (x r ) = δ rj . (3.70)
Therefore, the mass matrix M k,e 1 will have non-zero entries, only in j th columns, where x k j resides on the edge. Therefore, there are only (N + 1) × (N + 1) non-zero terms in the mass matrix. Since the polynomial interpolation is unique, we reduce the problem on the edge into a one-dimensional problem using the N + 1 nodes on the edge. Using the argument of uniqueness of polynomial interpolation, the mass matrix corresponding to the one-dimensional Lagrange interpolating polynomials are computed to fill up the (N + 1) × (N + 1) places of M k,e 1 . With these definitions, we can now write the boundary integral (3.65) in using the nodal solutions as

∫ ∂Ω k (F * m ) k l k j (x)dx = [ M k,e 1 •j ] T (F * m ) k,e1 + [ M k,e 2 •j ] T (F * m ) k,e2 + [ M k,e 3 •j ] T (F * m ) k,e3 (3.71)
where,

(F * m ) k,e1 = [ F * m (x k,e1 1 ), • • • , F * m (x k,e1 N +1 ) ] T (3.72) (F * m ) k,e2 = [ F * m (x k,e2 1 ), • • • , F * m (x k,e2 N +1 ) ] T (3.73) (F * m ) k,e3 = [ F * m (x k,e3 1 ), • • • , F * m (x k,e3 N +1 ) ] T (3.74)
As the boundary integral is computed, next the remaining integrals of (3.64) are taken up. Substitution of the solution and the flux vectors from (3.62) give

∫ Ω k ( Np ∑ i=1 dq k m (x k i , t) dt l k i (x)
)

l k j (x)dx - ∫ Ω k ( Np ∑ i=1 [ f k m (x k i ) ] l k i (x) ) ∂l k j (x) dx dx - ∫ Ω k ( Np ∑ i=1 [ g k m (x k i ) ] l k i (x) ) ∂l k j (x) dy dx + ∫ ∂Ω k [ (F * m ) k ] l k j (x)dx = 0 (3.75)
which can be rewritten as

Np ∑ i=1 dq k m (x k i , t) dt ∫ Ω k l k i (x)l k j (x)dx - Np ∑ i=1 [ f k m (x k i ) ] ∫ Ω k l k i (x) ∂l k j (x) dx dx - Np ∑ i=1 [ g k m (x k i ) ] ∫ Ω k l k i (x) ∂l k j (x) dy dx + ∫ ∂Ω k [ (F * m ) k ] l k j (x)dx = 0 (3.76)
Therefore, the compact form of the semi-discrete comes out to be

M k dq k m dt - [ S k x ] T [ f k m ] - [ S k y ] T [ g k m ] = - [ M k,e 1 ] T [ (F F F * m ) k,e1
] -

[ M k,e 2 ] T [ (F F F * m ) k,e1 ] - [ M k,e 3 ] T [ (F F F * m ) k,e1 ] . (3.77)
Left multiplication of the inverse of M k of the above equation leads to

dq k m dt = [ M k ] -1 [ S k x ] T [ f k m ] + [ M k ] -1 [ S k y ] T [ g k m ] - [ M k ] -1 [ M k,e 1 ] T [ (F F F * m ) k,e1
] -

[ M k ] -1 [ M k,e 2 ] T [ (F F F * m ) k,e2
] - 

[ M k ] -1 [ M k,e 3 ] T [ (F F F * m ) k,e3 ] . (3.78) x = T (ξ) (x k 3 ,y k 3 ) (x k 2 ,y k 2 ) (x k 1 ,y k 1 ) (-1,1) y x (1, -1) (-1, -1) η ξ ∆- ξ η ∆- ξ + η ∆ ∆ I k

Computations in Reference Element

Analogous to DG1D, in DG2D the computations in each element are done using some preprocessed quantities computed in a reference element. In order to solve a problem using DGM, a mesh file containing all the elements with their respective vertices is supplied. Once a mesh file is read, we need to define the inner mesh points inside each element depending on the order of polynomial approximation. For this the problem is solved in a reference element(I), inside which are the points defined depending on the order of approximation and its respective orthonormal basis for the spectral solution representation.

Transformation

The standard triangle is defined as

I = {ξ = (ξ, η)|(ξ, η) ≥ -1; ξ + η ≤ 0}. (3.79)
This is a right-angled triangle in ξ-coordinates. The transformation (T :

I → Ω k ) is defined as x = - ξ + η 2 x k 1 + ξ + 1 2 x k 2 + η + 1 2 x k 3 , y = - ξ + η 2 y k 1 + ξ + 1 2 y k 2 + η + 1 2 y k 3 .
(3.80)

Here, the points (x k i , y k i ), i=1,2,3 are the vertices of the triangle in the physical domain (see figure 3.6). Differentiation of (3.80) with respect to ξ and η gives

[ ∂x ∂ξ ] k = 1 2 (x k 2 -x k 1 ) [ ∂y ∂ξ ] k = 1 2 (y k 2 -y k 1 ) [ ∂x ∂η ] k = 1 2 (x k 3 -x k 1 ) [ ∂y ∂η ] k = 1 2 (y k 3 -y k 1 ) . (3.81)
With the above differentials, the Jacobian (J) is defined as 

J = ∂x ∂ξ = det ( ∂x
] k = 1 J k [ ∂y ∂η ] k , [ ∂ξ ∂y ] k = - 1 J k [ ∂x ∂η ] k , [ ∂η ∂x ] k = - 1 J k [ ∂y ∂ξ ] k , [ ∂η ∂y ] k = 1 J k [ ∂x ∂ξ ] k . (3.84)
It is important to identity that, since the mapping is linear, the derivatives in equation (3.81) and (3.84), and the transformation Jacobian(J k ) are constant.

The chain rule gives the following relations to compute the spatial derivative operators as,

∂ ∂x = ∂ξ ∂x ∂ ∂ξ + ∂η ∂x ∂ ∂η ∂ ∂y = ∂ξ ∂y ∂ ∂ξ + ∂η ∂y ∂ ∂η . (3.85)

Normals

Another important tool needed is the unit normals to the edges of the element (see figure 3.6), which are defined as

nk,e i = n k,e i x √ { n k,e i x } 2 + { n k,e i y } 2 î + n k,e i y √ { n k,e i x } 2 + { n k,e i y } 2 ĵ, i = 1, 2, 3. (3.86)
Using (3.85), the normals on each of the edge can be computed as following:

n k,e 1 x = [ ∂ ∂x (-η) ] k = 1 J k [ ∂y ∂ξ ] k (3.87) n k,e 1 y = [ ∂ ∂y (-η) ] k = - 1 J k [ ∂x ∂ξ ] k (3.88) n k,e 2 x = [ ∂ ∂x (ξ + η) ] k = 1 J k [ ∂y ∂η ] k - 1 J k [ ∂y ∂ξ ] k (3.89) n k,e 2 y = [ ∂ ∂y (ξ + η) ] k = - 1 J k [ ∂x ∂η ] k + 1 J k [ ∂x ∂ξ ] k (3.90) n k,e 3 x = [ ∂ ∂x (-ξ) ] k = - 1 J k [ ∂y ∂η ] k (3.91) n k,e 3 y = [ ∂ ∂y (-ξ) ] k = 1 J k [ ∂x ∂η ] k (3.92)

Polynomial Basis

Next is the need of an orthonormal basis in I for the construction of the modal solution.

The first intuition is the choice of the canonical basis, which is

ψ m (ξ) = ξ i η j , i, j ≥ N ; i + j ≤ N (3.93)
where, the index m is

m = j + (N + 1)i + 1 - i 2 (i -1), i, j ≥ N ; i + j ≤ N (3.94)
As in 1D, the 2D canonical basis leads to an ill-conditioned Vandermonde matrix, so it cannot be considered. However, after the Gram-Schmidt orthonormalization it results into a stable choice. This has been done independently by Dubiner [START_REF] Dubiner | Spectral Methods on Triangles and other Domains[END_REF], and is given by Here, P (α,β) n (x) is a n th order Jacobi polynomial. With this orthonormal basis, consider the nodal and the modal representation of the solution in the reference element, given by

ψ m (ξ) = √ 2P i (a)P (2i+1,0) j (b)(1 -b) i (3.95) with a = 2 1 + r 1 -s -1, b = s. (3.96) N = 1 N = 3 N = 6 N = 9 N = 12 N = 15
q(ξ) = Np ∑ i=1 q(ξ i , t)l i (ξ) = Np ∑ i=1 qi (t)ψ i (ξ).
(3.97) Here, {ξ i ; i = 1, ..., N p } is the set of appropriately chosen nodes inside the reference element (discussed later). The modal equation in (3.97) gives

q(ξ i ) = Np ∑ j=1 qj (t)ψ j (ξ i ). (3.98)
This can be re-written as

q = V q, ( 3.99) 
where

V ij = ψ j (ξ i ), q = [ q1 , • • • , qNp ] T , q = [ q 1 , • • • , q Np ] T . (3.100)
The matrix V is the generalized Vandermonde matrix and plays a significant role in various parts of the method. Alternatively, the nodal solution in (3.97) can be written as From the above equation with the argument of uniqueness of polynomial interpolation, it can be deduced that

q(ξ i ) = Np ∑ j=1 q(ξ j )l j (ξ i ), ( 3 
V T l(ξ) = ψ(ξ), (3.105) 
with

l = [ l 1 (ξ), • • • , l Np (ξ) ] T , P = [ ψ 1 (ξ), • • • , ψ Np (ξ) ] T . (3.106)
Since the explicit expression for multi-dimensional Lagrange interpolant is not known, it is computed using (3.105). Therefore, the Vandermonde matrix should be well-conditioned in order to have a stable inverse. The choice of the grid points in the reference element determines the conditioning of the Vandermonde matrix. For the same reason, the Legendre-Gauss-Lobatto quadrature points were chosen in 1D case (see section 3.1.2). However, the same cannot be extended to the 2D case, as a tensor product would result to (N + 1) 2 points, asymmetrically distributed with a clustering at one vertex. This would result into severely ill-conditioned operators. The tensor product would be applicable only in the cases of square and cubic geometries.

Nodes

There are numerous ways of allocating nodes in a reference element. In this work, the set of nodes proposed by Warburton [135] is used. The computations of these points are done using a equilateral triangle and then transforming the points to the reference element.

On each edge, consider the equidistant grid(ξ e i ) as in one-dimensional case,

ξ e i = -1 + 2i N , i = 0, ..., N (3.107)
and the Legendre-Gauss-Lobatto grid (ξ LGL i ) as developed in 1D case. These two nodal sets are connected through the warp function as

w(ξ) = Np ∑ i=1 (ξ LGL i -ξ e i )l e i (ξ) (3.108)
where l e i (ξ) are the Lagrange polynomials based on ξ e i . This edge mapping is extended into the triangle through the blend function. These nodes are constructed in a optimized way such that Lebesque constant is minimized which inturn symbolizes the well-conditioning of the generalized Vandermonde matrix (see figure 3.7). Excerpts from [START_REF] Hesthaven | Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications[END_REF] are presented above, this gives a general idea about the node-generation, for more details see the above mentioned references.

Mass and Stiffness Matrices

As we stated earlier, almost all the computations are done in I and then the results are transformed back to the actual element. Another important point in our implementation of DGM is that, we compute the nodal solution i.e. the solution is represented as a Lagrange interpolant where the Lagrange polynomials are constructed using the nodal sets in I. Therefore, we calculate few terms in standard element I in what follows.

Consider the matrix M k with

M k ij = ∫ Ω k l k i (x)l k j (x)dxdy = J k ∫ I l i (ξ)l j (ξ)dξdη = J k M ij , (3.109)
where J k is the Jacobian of the transformation (3.82), which is a positive constant. As in 1D, it is important to observe that the last equality of (3.109) implies that the mass matrix M k of each element is differing by J k . This is the clear benefit of working in the reference element.

Use of relation (3.105) in the above equation gives 

l i (ξ) = Np ∑ n=1 (V T ) -1 in ψ n (ξ). ( 3 
M ij = ∫ I Np ∑ n=1 (V T ) -1 in ψ n (ξ) Np ∑ m=1 (V T ) -1 jm ψ m (ξ)dξdη = Np ∑ n=1 Np ∑ m=1 (V T ) -1 in (V T ) -1 jm ∫ I ψ n (ξ)ψ m (ξ)dξdη = Np ∑ n=1 (V T ) -1 in (V T ) -1 jn . (3.111)
The last step is a consequence of the orthonormal basis in the reference element I. Therefore, the mass matrix becomes

M k = J k M = J k (VV T ) -1 (3.112)
Similarly, consider the stiffness matrix along the x-axis

(S k x ) ij := ∫ Ω k l k i (x) dl k j (x) dx dxdy. (3.113)
Transforming this integral on the reference element (I), gives

(S k x ) ij = J k ∫ I l i (ξ) ( ∂ξ ∂x ∂ ∂ξ + ∂η ∂x ∂ ∂η ) l j (ξ)dξdη. = J k ∫ I l i (ξ) ∂ξ ∂x ∂l j (ξ) ∂ξ dξdη + J k ∫ I l i (ξ) ∂η ∂x ∂l j (ξ) ∂η dξdη. (3.114)
The expressions ∂ξ ∂x and ∂η ∂x are metric constants for each element, therefore, they come out of the integral. For the sake of clarity, we write these constants as

[ ∂ξ ∂x
] k and

[ ∂η ∂x
] k , in order to distinguish them for each element. With this argument, the above equation takes the form

(S k x ) ij = J k [ ∂ξ ∂x ] k ∫ I l i (ξ) ∂l j (ξ) ∂ξ dξdη + J k [ ∂η ∂x ] k ∫ I l i (ξ) ∂l j (ξ) ∂η dξdη. = J k [ ∂ξ ∂x ] k ∫ I l i (ξ) Np ∑ n=1 ∂l j (ξ) ∂ξ ξ n l n (ξ)dξdη + J k [ ∂η ∂x ] k ∫ I l i (ξ) Np ∑ m=1 ∂l j (ξ) ∂η ξ m l m (ξ)dξdη. = J k [ ∂ξ ∂x ] k Np ∑ n=1 ∫ I l i (ξ)l n (ξ) ∂l j (ξ) ∂ξ ξ n dξdη + J k [ ∂η ∂x ] k Np ∑ m=1 ∫ I l i (ξ)l m (ξ) ∂l j (ξ) ∂η ξ m dξdη. = J k [ ∂ξ ∂x ] k Np ∑ n=1 M in (D ξ ) nj + J k [ ∂η ∂x ] k Np ∑ m=1 M im (D η ) mj . = J k [ ∂ξ ∂x ] k (MD ξ ) ij + J k [ ∂η ∂x ] k (MD η ) ij . (3.115)
Here, D ξ and D η are the derivative matrices defined as

(D ξ ) nj := ∂l j (ξ) ∂ξ ξ n ; (D η ) mj := ∂l j (ξ) ∂η ξ m . (3.116)
As in one-dimensional case, the derivative operators D ξ and D η are calculated using (3.95) as

D ξ = V ξ V -1 and D η = V η V -1 , (3.117) where V ξ,(i,j) = d dξ ψ j (ξ) ξ i and V η,(i,j) = d dη ψ j (η) ξ i . (3.118)
Similarly, we define,

(S k y ) ij := ∫ Ω k l k i (x) dl k j (x) dy dxdy. (3.119)
Based on the similar arguments as for S k x , we have

(S k y ) ij = J k [ ∂ξ ∂y ] k (MD ξ ) ij + J k [ ∂η ∂y ] k (MD η ) ij . (3.120)
Another component which needs some attention is the treatment of the M k,ei , (i = 1, 2, 3) in the reference element. As mentioned before, the mass matrix on the edge (3.69) has only (N + 1) × (N + 1) non-zero elements, which are actually the elements of the onedimensional mass matrix (3.36). Based on the same arguments, we define a mass matrix on edge of the reference element as M I,ei , (i = 1, 2, 3), note the size of this matrix is (N + 1) × N p with (N + 1) × (N + 1) non-zero elements of ( VV T ) -1 , here V is onedimensional Vandermonde matrix.

Assembling

On Substitution of all the preprocessed quantities into the semi-discretized formulation (3.78), one gets

dq k m dt = [ ∂ξ ∂x ] k [ VV T ξ ( VV T ) -1 ] f k m + [ ∂η ∂x ] k [ VV T η ( VV T ) -1 ] f k m + [ ∂ξ ∂y ] k [ VV T ξ ( VV T ) -1 ] g k m + [ ∂η ∂y ] k [ VV T η ( VV T ) -1 ] g k m - J k,e1 J k ( VV T ) -1 [ M I,e1 ] T (F F F * m ) k,e1 - J k,e2 J k ( VV T ) -1 [ M I,e2 ] T (F F F * m ) k,e2 - J k,e3 J k ( VV T ) -1 [ M I,e3 ] T (F F F * m ) k,e3 (3.121)
The above equation is the final semi-discrete formulation with all the spatial components well-defined. From here, the Low-Storage Explicit Runge-Kutta method (LSERK) of fourth order (discussed in the next section) is used to advance in time to give the solution vector (q 1 ) at the next time step for the first unknown q 1 of the system (3.53), likewise the other solution vectors of the system are calculated.
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Brief Review on GPU Implementation

The numerical method is developed using python scripting. Moreover, the two-dimensional method is parallelized on graphical processing units (GPUs). The key feature of the discontinuous Galerkin method is that it has a element-centric approach implying that the computations are done in each element almost independently. Since all the computations in a element are done using the information inside the element except the numerical fluxes, which requires the information from the neighbors sharing the edges of the element. Therefore, it gives enough motivation to parallelize the computation in each element.

The real advantage of GPU parallelization is in breaking up a big problem into many small arithmetical problems which are thereafter solved parallely and finally combined together to compute the solution of the big problem. We use pycuda a toolkit for use of CUDA (programming language for NVIDIA graphic cards) in python environment. Each small problem is called a kernel and is taken up by a block which in turn is a collection of threads. And, the collection of parallel blocks is called a grid. A grid is a two-dimensional collection of blocks, whereas the blocks are a two or three dimensional collection of threads (see figure 3.8). Each block work independently and are asynchronous. Similarly, the threads are also asynchronous within a block. Therefore, its important that how the big problem is broken into small problems and accordingly, how the grid and blocks are defined.

Element 1 (0,0) Element k (k-1,0) Element K (K-1,0) Grid Node 1 (0,0) Node Np (Np-1,0)
Element k Fig. 3.9. Grid-Block-Thread orientation of the GPUs in our implementation of the DGM.

In our implementation of DGM, the small problems are computations in a element, so each block is dedicated to a element. Thus, K blocks are defined in a grid. And, within each element there are N p nodes, so each block contains N p threads (see figure 3.9). This strategy is slightly changed in case of kernels dedicated for numerical flux computations as instead of N p points, there are N + 1 points of each edge.

Time Discretization

This far, the spatial approximation of the hyperbolic equation(s) is discussed both in one and two dimension cases, and the respective semi-discrete formulations are obtained in (3.51) and (3.121). A general semi-discrete problem takes the form

d dt q(t) = R(q n , t n ), (3.122) 
where q n is the solution vector at any time step t n (say) and R(q n , t n ) is the fully determinied spatial terms using the solution vector q n .

The only piece which remains is the construction of a tool for the temporal advancement of the problem, for which the choice of fourth-order explicit Runge-Kutta method could be appropriate. The method unfolds as follows

g 1 = R (q n , t n ) g 2 = R ( q n + 1 2 ∆tg 1 , t n + 1 2 ∆t
)

g 3 = R ( q n + 1 2 ∆tg 2 , t n + 1 2 ∆t
) 

g 4 = R (q n + ∆tg 3 , t n + ∆t) q n+1 = q n + 1 6 ∆t (g 1 + 2g 2 + 2g 3 + g 4 ) (3.
s[0] = 0 g[0] = q n for i = 1 to 5 : s[i] = a[i]s[i -1] + ∆tR(g[i -1], t n + c[i]dt) g[i] = g[i -1] + b[i] s[i] end q[n + 1] = g[5]
(3.124) where, a[i], b[i], c[i] are the coefficients given in Table 3.1. The significant difference is that, only one additional storage array is required and thus removing the drawback of memory usage. On the other hand, it increases the computation time because of an additional function evaluation at all the five stages of the method. This lowers the interest in the method but it has other advantage of having bigger time steps(∆t). For its implementation the next thing needed is the choice of ∆t.

Stability Condition

The time discretization parameter ∆t needs to be chosen in such a way that the method is stable. Let us first consider the case of 1D system of hyperbolic conservation laws. If the time discretization, denoted by ∆t E , is done using forward Euler method then the stability condition, also called the CFL condition, is given by (see [START_REF] Leveque | Finite Volume Methods for Hyperbolic Problems[END_REF])

max k,m |λ k m | ∆t E min i,k (∆x k i ) ≤ C, ( 3.125) 
for k = 1, . . . K and m = 1, . . . , M , where

∆x k i = x k i+1 -x k i , i = 1, . . . , N p -1,
|λ k m | = max i=1,...,Np |λ m (x k i , t)|, (3.126)
λ m being the eigenvalues of the system, and C is the CFL number which is of O [START_REF] Aanonsen | Distortion and harmonic generation in the nearfield of a finite amplitude sound beam[END_REF].

In most of the problems it can be shown that C ≤ 1 leads to stable results. From the transformation (3.19), it can be seen that

∆x k i = (x k r -x k l ) 2 ∆ξ i , ( 3.127) 
where ∆ξ i = ξ i+1 -ξ i , i = 1, . . . , N p -1 is the grid spacing between the nodes of the reference element. Using the above equation, the inequality (3.125) can be written as

∆t E ≤ C 1 max k,m |λ k m | min k,i { (x k r -x k l ) 2 ∆ξ i } . (3.128)
In the case of Runge-Kutta method of order 4, the time discretization parameter ∆t is chosen such that [119]

∆t ≤ 2 3 ∆t E , (3.129)
where ∆t E is chosen such that the condition (3.128) is satisfied.

For the scalar 1D conservation law (3.1), the stability condition takes the form

∆t ≤ 2 3 C   1 max k |f (q k )| min k,i { (x k r -x k l ) 2 ∆ξ i }   . (3.130)
The number 2 3 C is referred as CFL coefficient.

For the 2D system (3.52), we consider the inequality (as suggested by [START_REF] Hesthaven | Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications[END_REF])

max k,m |λ k m | 2D ≤ 2 max k,m |λ k m | 1D . ( 3 

.131)

In the above inequality, the suffix '1D' and '2D' refers to the eigenvalues of the system in one and two space dimensions, respectively. This inequality motivates to extend the 1D stability condition (3.130) to 2D. However, in 2D we use a triangle element instead of intervals. Thus, we need a characteristic length of a triangle in 2D in place of the length of the 1D element, which is taken to be the radius (denoted by r k ) of the inscribed circle given by

r k = A k s k , (3.132)
where A k is the area and s k is the semi-perimeter of the k th triangular element. In the virtue of the inequality (3.131) the time discretization parameter is chosen such that

∆t ≤ C ( 2 3 min i ∆ξ i ) min k   r k max k,m |λ k m |   , ( 3.133) 
where λ m , m = 1, . . . , M are the eigenvalues of the 2D system (3.52). Here also, ∆ξ i = ξ i+1 -ξ i , i = 1, . . . , N p -1 are the grid spacing between the nodes of the 1D reference element. 

Application 1D: Advection Equation

The linear propagation of a pulse can be studied using the advection equation

∂q ∂t + ∂q ∂x = 0. (3.134)
In this section, the DGM developed in section 3.1 is used to obtain the approximate solution of the advection equation with different initial conditions. The numerical variables are chosen to be Space:

x ∈ [-2.5, 2.5], Time:

T ∈ [0, 1], Elements: K = 40, Polynomial: N = 8, (3.135) with C = 0.8. With this setup, we give the Gaussian-pulse as the initial condition which travels a unit distance in unit time, as evident in right plot of Figure 3.10. It is important to observe that no significant dispersion is present, although the polynomial order 8.

Next, a sine-period is taken as the initial condition, it travels a unit distance in unit time as depicted in Figure 3.11. Here also no dispersion is visible, even though a sineperiod has singularities and consequently it is a composition of high-frequencies. This clearly demonstrates the capacity of DGM (1D) in to propagate high frequencies present in the signal, which is a prerequisite for any numerical method for acoustical propagation.

Lastly, an indicator-pulse is propagated. As it is a composition of infinite frequencies, the dispersive phenomenon is inevitable as seen in Figure 3.12. This example shows that if the solution includes a jump discontinuity then the numerical solution obtained using the DGM may develop Gibbs phenomenon which may lead to instability in the method. 

Conclusions

This chapter presents the numerical formulation of the discontinuous Galerkin method for 1D and 2D for hyperbolic partial differential equations. The entire chapter is presented as a self-contained introduction of DGM. Numerical experiments based on the 1D linear advection equation are presented for different initial conditions. The Gaussian pulse and the sine-period shows insignificant dispersion and dissipation. However, in the case of indicator pulse, the occurrence of spurious oscillations associated to the jump discontinuity is obvious. This conveys a point that due to shocks, where there are discontinuities, the method may generate instabilities. An additional shock management tool is therefore required as we discussed in the coming chapter.

In section 3.5, the linear advection equation is presented as a 1D application to the DGM and it was observed that for a discontinuous initial condition, dispersion is a prominent effect (see Figure 3.12). The dispersion is due to the high-frequency components present in the indicator function as it can't propagate all the frequency with the same speed with the same discretization. In the case of nonlinear problems, even with a smooth initial condition high-frequency components may be generated due to the nonlinearity. Unlike linear case, these high-frequency components (Gibbs phenomenon) can lead instability in the method. In fact, this unstable behavior is not only for the DGM but also for any higher-order finite volume methods. Two common approaches to stabilize a higher-order method are slope limiters and the artificial viscosity approaches.

In section 4.1, we consider an initial value problem for the 1D inviscid Burgers equation where the solution develops shock in finite time. We apply DGM to this initial value problem and show that spurious oscillations are generated, once the shock appears. Using this solution, we discuss the behavior of the modes showing the uncontrolled increment of the higher order modes along with the first order modes. This gives the motivation that the numerical solution needs to be stabilized by tuning the modes. Section 4.2 is intended to discuss some of the slope limiters in the context of inviscid Burgers equation. In this thesis, we develop a tool to sense the region of Gibbs phenomenon and impose an appropriate artificial viscosity locally. For this, the nodal DG formulation for a convectiondiffusion equation is needed, which is discussed in section 4.3. Further in this section, the DGM is implemented with uniform constant viscosity. Section 4.4 introduces our new shock sensor and the methodology of choosing the Element Centered Smooth Artificial Viscosity (ECSAV). The chapter is concluded by validating the method for some standard 1D problems in section 4.5.

Illustration

In this section, the motivation behind the development of the shock management tool is presented, which is done using the simplest 1D, scalar, nonlinear conservation law i.e., the inviscid Burgers equation (2.85) (shown in Chapter 2). In this chapter, all the 1D simulations are done using the dimensionless form of the inviscid Burgers equation in retarded time frame (i.e., for an observer in a reference frame that moves at a speed c 0 ). With the following characteristic parameters

p = p p m a , σ = x L , τ = ω 0 ( t - x c 0 ) , ( 4.1) 
the dimensionless form of the inviscid Burgers equation (2.85) is obtained, given by

∂p ∂σ - ∂ ∂τ p 2 2 = 0, (4.2) 
with the initial condition

p(0, τ ) = { sin(π(τ -0.05)), if -2π ≤ τ -0.05 ≤ 2π 0, Otherwise . ( 4.3) 
In retarded time frame, there is a notion of shock length (denoted by L) i.e., the distance σ at which the shock is formed. The shock length is defined as

L = 1 k β , ( 4.4) 
where k is the wavenumber, is the acoustical Mach number, and β is the coefficient of nonlinearity. In the 1D case, we choose the underwater propagation with the ambient density: ρ 0 = 1000 kg.m -3 , speed of sound: c 0 = 1500 m.s -1 , coefficient of nonlinearity: with C = 1. This numerical problem demonstrates the Gibbs phenomenon during the waveform steepening around the high gradient, as shown in Figure 4.1 and the method becomes unstable. Therefore, there is a need of a shock management tool which could control this phenomenon without compromising the accuracy of the solution. In the process of shock formation, it is important to observe the behavior of the modes of the modal solution

q k (x, t) = N +1 n=1 qk n-1 (t) Pn-1 (x), x ∈ Ω k , ( 4.6) 
where Pn (x) are the orthonormal Legendre polynomials of order n. From the Figure 4.2, it is clearly evident that the first-order mode is increasing predominantly. Moreover, the right plot implies that the highest-order mode is also growing up during the shock formation. These behaviors are exploited in the later sections of the chapter, in order to sense the shock.

Slope Limiters

In the class of shock management tools, slope limiters are one of the most popular tools for reducing the spurious oscillations at the discontinuities (shocks) produced in propagation of nonlinear waves. The idea of slope limiters lies in the truncation/re-computation of the modes. The general working of the slope limiters is that the modes (q k n (t)) of the modal solution (4.6) are given as an input. Thereafter, it is modified to get the new set of modes which are used to get the modified modal solution.

In this section, most common slope limiters are presented, namely, first by Cockburn et al. [START_REF] Cockburn | TVB Runge-Kutta Local Projection Discontinuous Galerkin Finite Element Method for Conservation Laws II : General Framework[END_REF], second by Biswas et al. [START_REF] Biswas | Parallel, adaptive finite element methods for conservation laws[END_REF] as a modification of the first one, thirdly an extension of Biswas was given by Burbeau et al. [START_REF] Burbeau | A Problem-Independent Limiter for High-Order Runge-Kutta Discontinuous Galerkin Methods[END_REF].

Slope Limiter: Cockburn

The slope limiter by Cockburn et al. [START_REF] Cockburn | TVB Runge-Kutta Local Projection Discontinuous Galerkin Finite Element Method for Conservation Laws II : General Framework[END_REF] modifies the modes of the solution while preserving the zeroth-order mode i.e. qk 0 (t) (which is a constant). It tests the variation of qk 0 (t) with respect to the neighboring elements and accordingly modifies the other modes in the k th element. It is explained in what follows. Define

q k = q k (1, t) -qk 0 (t) = N ∑ n=1 qk n (t) Pn (1), (4.7 
)

q k = q k (-1, t) -qk 0 (t) = N ∑ n=1 qk n (t) Pn (-1). (4.8)
For the sake of brevity, the argument t is dropped from the modes in the following equations. We modify q k and q

k as q k(new) = minmod ( q k , qk+1 0 -qk 0 , qk 0 -qk-1 0 ) (4.9)
and

q k(new) = minmod ( q k , qk 0 -qk+1 0 , qk-1 0 -qk 0 ) , ( 4.10) 
respectively 1 , where 1 Note, the change in sign of the arguments in minmod function for computing q

k(new)
. This is because of the direction of flux on the left boundary, which is opposite to that of the right boundary.

minmod(a 1 , • • • , a n ) = { sign(a 1 ) min 1≤i≤n |a i |, if sign(a 1 ) = • • • = sign(a n ) 0, otherwise . (4.11)
For N = 2, the new modes qk(new)

1
and qk(new)

2 can be uniquely determined by solving the linear system

q k(new) = qk(new) 1 P1 (1) + qk(new) 2 P2 (1) q k(new) = qk(new) 1 P1 (-1) + qk(new) 2 P2 (-1)
which gives qk(new)

1 = q k(new) -q k(new) 2 , ( 4.12) 
qk(new)

2 = q k(new) + q k(new) 2 . ( 4.13) 
For N ≥ 3, the modes can no longer be uniquely determined using these modified fluxes. If the modes, qk(new)

1
and qk(new)

2 turn out to be different from the original modes then the remaining modes n ≥ 3 are made 0.

Slope Limiter: Biswas

Biswas et al. [START_REF] Biswas | Parallel, adaptive finite element methods for conservation laws[END_REF] proposed to determine the higher-order modes by limiting the solution moments. The limiter is given as follows,

√ (2n -1)(2n + 1)q k(new) n = minmod ( √ (2n -1)(2n + 1)q k n , qk+1 n-1 -qk n-1 , qk n-1 -qk-1 n-1
) .

(4.14

)
As it is evident from (4.14), this slope limiter works adaptively, i.e., it works only when it feels the need of itself. First, the highest-order coefficient is limited, then successively the lower-order coefficients are limited when the next higher order coefficient on the interval has already been changed by limiting. In this way, the limiting is applied only where it is needed, and the accuracy is retained in smooth regions.

Slope Limiter: Burbeau

As an extension of the previous slope limiter, Burbeau et al. [START_REF] Burbeau | A Problem-Independent Limiter for High-Order Runge-Kutta Discontinuous Galerkin Methods[END_REF] proposed a limiter, in which Biswas limiter is used as a regularity criterion, which is

√ (2n -1)(2n + 1)q k(min) n = minmod ( √ (2n -1)(2n + 1)q k n , qk+1 n-1 -qk n-1 , qk n-1 -qk-1 n-1
) .

If q k(min) n

= qk n , then the limited solution takes the form

q k (x, t) = n ∑ l=0 qk l Pl (x) + N ∑ l=n+1 qk(new) l Pl (x)
and otherwise, qk(new)

n = maxmod ( q k(min) n , q k(max) n )
where,

√ (2n -1)(2n + 1)q k(max) n = minmod ( √ (2n -1)(2n + 1)q k n (t), w k + -qk n-1 (t), qk n-1 (t) -w k - ) w k + = qk+1 n-1 - √ (2n -1)(2n + 1)q k+1 n w k -= qk-1 n-1 + √ (2n -1)(2n + 1)q k-1 n maxmod(a 1 , • • • , a n ) = { sign(a 1 ) max 1≤i≤n |a i |, if sign(a 1 ) = • • • = sign(a n ) 0, otherwise . 
Here, the slopes are limited using the unlimited slopes of the neighboring elements, and one must store the limited slopes and the unlimited slopes separately until all the limited slopes are computed.

Numerical Experiment

Consider the inviscid Burgers equation (4.2) with the initial condition with C = 1. The comparative results obtained using the all the three slope limiter with a quasi-analytical solution obtained using the method proposed by Burger-Hayes [START_REF] Hayes | Sonic Boom Propagation In A Stratified Atmosphere, With Computer Program[END_REF][START_REF] Coulouvrat | A quasi-analytical shock solution for general nonlinear progressive waves[END_REF] are given in the Figure 4.3, it clearly shows that the oscillations are reduced and are in control. But, in nonlinear acoustics there is a need of high-order approximations in order to capture the high-frequency generated due to the nonlinear phenomenon. Therefore, consider the same setup with 40 elements and polynomial order as 8. The comparison is presented in Figure 4.4, it is important to observe that the extrema are significantly flattened, and the accuracy is lost near the shock. This makes this tool less preferable for the problems in nonlinear acoustics.

p(0, τ ) = { sin(π(τ -0.05)), if -2π ≤ τ -0.05 ≤ 2π 0, Otherwise . ( 4 

Method of Global Artificial Viscosity

The numerical experiment presented section 4.2.4 shows that the slope limiters may not be the best choice for nodal DGM, so we choose to use the method of artificial viscosity. This approach involves a parabolic-regularization of hyperbolic conservation laws, i.e., a dissipative term is added on the right hand side (RHS) of the equation (3.1). The choice of the dissipative terms could be many, with η(x) as the coefficient of viscosity, the most obvious choice could be

( η ∂ 2 ∂x 2
) . But instead of this term, we choose the parabolic term to be

( ∂ ∂x ( η ∂ ∂x
))

, as it will play a important role in the DGM implementation. With this idea, the parabolic-regularization of the scalar conservation law (3.1) is given by

q t + f x = (η(x)q x ) x .
(4.17)

From here onwards, for the sake of brevity, the argument x is dropped from the viscosity terms and will be used wherever necessary. Before discussing the details of the choice of viscosity η, the method for solving a convective-diffusive equation is presented. In order to solve this convective-diffusive equation, there is a need of a modification to what has been discussed in DGM in 1D (chapter 3).

Local Discontinuous Galerkin Method in 1D

The local discontinuous Galerkin method was initially proposed by Bassi and Rebay [START_REF] Bassi | A High-Order Accurate Discontinuous Finite Element Method for the Numerical Solution of the Compressible NavierStokes Equations[END_REF] for compressible Navier-stokes. It was further studied by Cockburn and Shu [START_REF] Cockburn | The Local Discontinuous Galerkin Method for Time-Dependent Convection-Diffusion Systems[END_REF].

It involves the splitting of the convective-diffusive equation into a system of first-order equations. The equation (4.17) is re-written into a system of first-order equations as

q t + F x = 0, q a -q x = 0, (4.18) 
where F is the total flux given by

F = f -ηq a . (4.19)
Here, q a is the auxillary variable for constructing the first-order system. It will be observed later that the scope of this variable is within a particular element and therefore the word local is added to the DGM.

In light of the theory developed in the chapter 3, the weak formulation for the firstorder system (4.18) is presented using the nodal approximations of the state and flux variables in the k th element given by

q k (x, t) = Np ∑ i=1 q k (x k i , t)l k i (x), F k (x, t) = Np ∑ i=1 F k (x k i , t)l k i (x) = Np ∑ i=1 ( f k (x k i , t) -η k (x k i , t)(q a ) k (x k i , t) ) l k i (x), (q a ) k (x, t) = Np ∑ i=1 (q a ) k (x k i , t)l k i (x). (4.20)
The weak formulation of the system (4.18) takes the form ∫

Ω k ∂q k ∂t l k j (x)dx + ∫ Ω k ∂F k ∂x l k j (x)dx = 0, ∫ Ω k (q a ) k l k j (x)dx - ∫ Ω k ∂q k ∂x l k j (x)dx = 0, (4.21) 
for j = 1, ..., N p . On integrating the above system by parts, we get ∫

Ω k ∂q k ∂t l k j (x)dx - ∫ Ω k F k ∂l k j (x) ∂x dx + [ F * (x k r )l k j (x k r ) -F * (x k l )l k j (x k l ) ] = 0, ∫ Ω k (q a ) k l k j (x)dx + ∫ Ω k q k ∂l k j (x) ∂x dx - [ q * (x k r )l k j (x k r ) -q * (x k l )l k j (x k l ) ] = 0. (4.22)
Substitution of (4.20) in the above equation gives

Np ∑ i=1 dq k (x k i , t) dt ( l k i (x), l k j (x) ) - Np ∑ i=1 F k (x k i , t) ( l k i (x), ∂l k j (x) ∂x ) + [ F * (x k r )l k j (x k r ) -F * (x k l )l k j (x k l ) ] = 0, Np ∑ i=1 (q a ) k (x k i , t) ( l k i (x), l k j (x) ) + Np ∑ i=1 q k (x k i , t) ( l k i (x), ∂l k j (x) ∂x ) - [ q * (x k r )l k j (x k r ) -q * (x k l )l k j (x k l ) ] = 0,
where (•, •) is L 2 -inner product. In matrix notations the above system can be written as

M k dq k dt -(S k ) T F k h + [ F * (x k r )l k (x k r ) -F * (x k l )l k (x k l ) ] = 0, M k (q a ) k + (S k ) T q k - [ q * (x k r )l k (x k r ) -q * (x k l )l k (x k l ) ] = 0, (4.23) 
where

M k ij = ( l k i (x), l k j (x)
)

Ω k ; i, j = 1, ..., N p , S k ij = ( l k i (x), dl k j (x) dx ) Ω k ; i, j = 1, ..., N p (4.24)
are the mass and the stiffness matrices, respectively, and

l k = [ l k 1 (x), • • • , l k Np (x)
] T ,

F k = [ F k (x k 1 ), • • • , F k (x k Np )
] T ,

q k = [ q k (x k 1 ), • • • , q k (x k Np ) ] T , (q a ) k = [ (q a ) k (x k 1 ), • • • , (q a ) k (x k Np )
] T .

(4.25)

Numerical Fluxes

Next component is the definition of numerical fluxes F * and q * in (4.23). The numerical flux F * is defined as

F * (x) = f * (x) -η * (x)(q a ) * (x), (4.26) 
where f * (x) is chosen to be the local Lax-Friedrich flux as in (3.9) given by

f * (x) := f * (x int , x ext ) = 1 2 [ f (q int ) + f (q ext ) + λ(q int -q ext ) ] , (4.27) 
where

q int = q(x int ), q ext = q(x ext ), λ = max q∈I |f (q)| (4.28)
with I = [min(q int , q ext ), max(q int , q ext )]. For the remaining numerical fluxes of the diffusive terms, we use the central fluxes as

η * (x) = η(x int ) + η(x ext ) 2 , (4.29) (q a ) * (x) = (q a )(x int ) + (q a )(x ext ) 2 , ( 4.30) 
and q * (x) = q(x int ) + q(x ext ) 2 (4.31) 

Numerical Experiment

Consider the parabolic-regularization of the The methodology developed allows the implementation of constant viscosity η in the whole domain. Figure 4.5 depicts the effect of uniform constant viscosity in the whole domain, cases for η = 0.04 (left) and η = 0.06 (right) are shown. The uniform constant viscosity (UCV) is strong enough to not only kill the spurious oscillations but also smoothen the non-smooth signal.

Element Centered Smooth Artificial Viscosity

The numerical experiment presented in section 4.3.2 shows that the uniform viscosity smears the shock over many elements and therefore loses the accuracy of the solution. This motivates us to look for methodology to apply the viscosity locally around the region of shock. This methodology involves two steps, namely, 1. Identifying the regions of shock (shock sensor), and 2. Allocation of adequate viscosity in those regions in order to stabilize the method (smooth artificial viscosity).

Based on the inspiring work by Persson et al.

[108], we propose to construct a new shock sensor. The idea of shock sensor comes from the unusual behavior of the modes of the solution, which is utilized in section 4.2 as well. Recall, the modal solution is

q k (x, t) = Np ∑ n=1 qk n-1 (t) Pn-1 (x), x ∈ Ω k (4.35)
where Pn (x) are the orthonormal Legendre polynomials of order n.

From Figure 4.2, it is important to observe that the modes of the solution near the shock behaves in an unusual manner. Specially, the second mode qk 1 , which is the coefficient corresponding to the linear polynomial in the Legendre basis, is unusually high with the neighboring modes almost zero. Also, the highest order mode qk N behaves unusually both near the shock and the regions of sharp changes, heuristically, it is analogous to the mode of highest frequency in Fourier space. This motivates the idea of shock sensor which would turn on the artificial viscosity only around shock, and turn it off elsewhere.

Shock Sensor

With this motivation, we construct our Shock Sensor (SS) based on the first-order and highest-order modes for the k th element as Once (SS) k (t) is computed for an element, it is checked whether it needs viscosity or not using the condition where α 1 is a user-given parameter. If this condition is satisfied by a particular element, then it implies that a shock is sensed in it, and the element is flagged as an infected element.

(SS) k (t) = (SS1) k (t) max k {(SS1) k (t)} + (SSN ) k (t) max k {(SSN ) k (t)} , k = 1, • • • , K, ( 4 
(SS) k (t) ≥ max k {(SS) k (t)} α 1 , k = 1, • • • , K, ( 4 
It is important to highlight the comparison of this shock sensor (SS) with the Persson's smoothness indicator (SI). Figure 4.6 shows the comparison of the two, the first row highlights shows the unstabilized DG solution (both the subplots are the same). In Persson's approach (bottom-left subplot), the value of SI must be greater than the value of the black dotted line in order to turn on the viscosity, which is clearly not the case. On the other hand, the value of SS (bottom-right subplot) must also be greater than the black dotted line calculated using the inequality (4.39), which in this case is well above the mark and hence the shock is sensed. This clearly highlights the benefits of SS over SI.

Another important ingredient which we introduce is the Gradient Factor (GF), in order to determine the strength of the shock and in turn the strength of viscosity in a particular time step. Gradient factor is defined as

GF (t) = exp   max k {(SS1) k (t)} max k {(SS1) k (0)} -1   . (4.40)
It measures the change of steepness at a particular time step with respect to the initial condition, it is initially equal to one and thereafter increases as and when the steepening increases and vice-versa.

Theoretically, the steepening of a smooth initial condition could lead to a very high value of the gradient factor. Therefore, as a precautionary measure it is important to put an upper limit to GF as,

GF (t) ≤ α 2 , (4.41)
where α 2 is a user-given parameter. The GF (t) plays an important role in viscosity allocation among the infected elements as it discussed in the next section.

Smooth Artificial Viscosity

Since discontinuous Galerkin Method is an element-centered method as most of the computations are done within an element and then the information is linked with the neighboring elements. We propose to use an element-centered smooth viscosity profile with the minimum support possible. The use of smooth viscosity profile is preferred over piecewise constant viscosity as proposed by Persson et al. because it induces oscillations at the boundary of the element (see Barter [START_REF] Barter | Shock capturing with PDE-based artificial viscosity for DGFEM: Part I. Formulation[END_REF]).

With this argument, we define our smooth artificial viscosity η k (x), which we call as Element Centered Smooth Artificial Viscosity (ECSAV), as

η k (x k i ) = (η 0 ) k exp [ - ( x k i -(x 0 ) k (σ 0 ) k ) 2 ] , i = 1, . . . , N p , ( 4.42) 
where (η 0 ) k , (σ 0 ) k , and (x 0 ) k are the parameters determined by the intrinsic parameters of the problem like the discretization (mesh) and the amplitude of the signal. The position of the ECSAV in each element depends on x 0 , which is taken to be the mid-point of the infected elements, which is

(x 0 ) k = (x k r + x k l ) 2 . (4.43)
The width of the ECSAV (σ 0 ) depends on the size of the element, which we define as the circumradius of the element, which is

(σ 0 ) k = (x k r -x k l ) 2 . (4.44)
Finally, the choice of η 0 is very crucial because it has to be nonzero only around the shock and zero elsewhere. The amplitude η 0 in the k th element is defined as

(η 0 ) k (t) =      α 3 .GF (t).(SS) k (t) if (SS) k (t) ≥ max k {(SS) k (t)} α 1 , 0 if Otherwise, (4.45)
where α 3 is an empirically chosen parameter. Note that the inequality (4.39) is behaving like an indicator function to turn on/off the viscosity. Also, the amplitude of ECSAV has a factor GF (t) which actually makes it adaptive depending on the shock strength. For instance, in case of a smooth initial condition, it is very small in the beginning and it exponentially increases as the steepening increases with time. It is important to highlight the use of smooth artificial viscosity with respect to the constant viscosity. quasi-analytical solution (BH). From the zoom-in of the lower discontinuity, it can be inferred that SS+ECSAV gives better results at around 1.5 shock length with 50 elements and fourth polynomial order.

Implementation Issues

Consider the r th element is an infected element, i.e., (η 0 ) r = 0. It has neighbors r -1 and r + 1. Then the computation of the viscosity coefficients η r is mainly divided in two parts. First, the viscosity within the r th element is computed using the theory developed above, as

η r (x r i ) = (η 0 ) r exp [ - ( x r i -(x 0 ) r (σ 0 ) r ) 2 ] , i = 1, . . . , N p , ( 4.46) 
as shown in Figure 4.8.

Next step is to link this Gaussian curve with the neighboring elements. This can be achieved by adding the neighboring viscosity distributions to the viscosity of the r th element and vice-versa. Here, the procedure is presented in the scenario where the computations are done in the r th element.

With reference to the Figure 4.9, the red solid line is the ECSAV of the r th element within its domain, whereas the blue dashed line is the ECSAV of the (r -1) th element in the (r -1) th element, and the green dashed line is the ECSAV of the (r + 1) th element in the (r + 1) th element. The blue and green solid lines are the ECSAV contributions of (r -1) th and (r + 1) th element in the r th element, respectively. On addition of all solid lines gives the net artificial viscosity within the r th element as given by

η r (x r i ) = η r (x r i ) + (η 0 ) r-1 exp [ - ( x r i -(x 0 ) r-1 (σ 0 ) r-1 ) 2 ] + (η 0 ) r+1 exp [ - ( x r i -(x 0 ) r+1 (σ 0 ) r+1 ) 2 ] , i = 1, . . . , N p . (4.47)
Observe that the parameters of the neighboring elements are taken to compute the viscosity within the r th element using its grid points. With this step, we are able to bring in the component of the Gausses of the neighboring elements and thus the continuity of the ECSAV across the element boundaries is achieved, as it is visible in the Figure 4.10.

Validation

In this section, validation tests are performed for different waveforms in comparison with a quasi-analytical solution (BH), in the same ambient conditions. All the numerical experiments performed in this section are done underwater with the ambient density: ρ 0 = 1000 kg.m -3 and speed of sound: c 0 = 1500 m.s -1 with the coefficient of nonlinearity:

β = 3.5.
Here, the parabolic-regularized form of the Burgers equation (4.2) is solved, which is given by Here, η(τ ) = 0 if and only if a shock is sensed by the shock sensor. For all the examples in this section, the waveforms are taken to be of the same amplitude: p m a = 5 × 10 5 Pa and frequency: 10 6 Hz. A clear agreement is visible between the numerical solution and the quasi-analytical solution (BH) developed using the hayes method [START_REF] Hayes | Sonic Boom Propagation In A Stratified Atmosphere, With Computer Program[END_REF][START_REF] Coulouvrat | A quasi-analytical shock solution for general nonlinear progressive waves[END_REF]. It is important to note that the disspation sufficent enough to dissipate the higher frequencies and not damp the lower frequencies, which in turn would dissipate the entire signal.

∂p ∂σ - ∂ ∂τ p 2 2 = ∂ ∂τ ( η(τ ) ∂ ∂τ p) ( 4 

Sine-period to Sawtooth

Next, consider the equation (4.48) with the initial condition, given by Figure 4.12 shows the formation of a sawtooth waveform from a sine-wave due to the nonlinear propagation. The results are shown at 2 shock length (left) and 5 shock length (right). A clear agreement is visible between the numerical solution and the quasianalytical solution (BH).

p(0, τ ) = { sin((τ -0.05)), if -π ≤ τ -0.05 ≤ π 0, Otherwise . ( 4 

N-wave

Now consider the N-wave itself as the initial condition to the equation (4.48), given by

p(0, τ ) = { -(τ -0.05) π , if -π ≤ τ -0.05 ≤ π 0, Otherwise (4.53)
The numerical parameters for DGM are taken to be .13 shows the comparison of the numerical solution of the N-wave with analytical solution computed using the equal area rule. The left plot is the initial condition whereas the right plot is at 5 shock length. Note that initially there is no viscosity and as the propagation occurs the viscosity is nonzero only in the neighborhood of shock.

Sawtooth

Similar to the previous case, now consider a sawtooth waveform as the initial condition given by Figure 4.14 shows the comparison of the numerical solution of the Sawtooth wave with analytical solution computed using the equal area rule. The left plot is the shows the waveform at one shock length whereas the right plot is at 5 shock length. Note that viscosity is decreasing as the shock strength is decreasing due to nonlinear propagation.

p(0, τ ) =          - (τ + (π -0.05)) π , if -π ≤ τ -0.05 ≤ 0 - (τ -(π + 0.05)) π , if 0 < τ -0.05 ≤ π 0, Otherwise

Multiple Shocks

Finally, consider a initial condition with multiple shocks, given by

p(0, τ ) =            - (τ + 0.5π) π , if -π ≤ τ ≤ -0.7π - τ π , if -0.7π < τ ≤ π 0, Otherwise (4.57)
The numerical parameters for DGM are taken to be 

Space: τ ∈ [-2.2π, 2.2π], Time: σ ∈ [0, 5], Elements: K = 110, Polynomial: N = 6,

Conclusions

In this chapter, the occurrence of Gibbs phenomenon is shown around the shock, it outlines the need a shock management tool. Some popular slope limiters are tested to reduce the spurious oscillations. They work fine for lower degrees of polynomials. However, for higher orders, they flatten the extrema significantly and are therefore not an optimal choice.

Introduction of uniform viscosity in the whole domain turns out too dissipative and smoothens the whole profile. This motivates the need of an artificial viscosity located only around the shock. This is achieved by the development of a new sub-cell shock capturing tool, which we call as shock sensor (SS). Its advantages over the existing sub-cell shock capturing tool are shown in the framework of weak acoustical shock capturing. Based on the SS, an element centered smooth artificial viscosity (ECSAV) is introduced into the system. The name 'ECSAV' suggests that the viscosity is local in an element. This makes it easily parallelizable. Moreover, the superiority of smooth artificial viscosity in comparison to piecewise-constant viscosity is shown, as the latter induces oscillations at the boundary of the elements. The amount of viscosity to be added is determined by the gradient factor (GF), which again depends on the spectral solution within one element. Details on the implementation of ECSAV in 1D domain are also presented.

Various validation cases are presented using different initial conditions with inviscid Burgers equation. The numerical results are compared with a quasi-analytical solution, highlighting a very good agreement.

Shock Management in Two-Dimensions

The problem of shock management in 2D is highly complex in comparison to the 1D problem. Here the shock is spread into various elements depending on the propagation, and consequently, the element-centered approach of treating the shock is of great importance. The motivation of the shock management is already discussed in chapter 4. In this chapter, we construct the shock management tool for solving 2D problems of propagation of weak acoustical shock waves.

In section 5.1, the hyperbolic system (2.52)-(2.55) is recalled, its Jacobian matrices and eigenvalues are computed. The parabolic-regularized hyperbolic system is presented in section 5.2. In section 5.3, the local discontinuous Galerkin formulation is briefly discussed for 2D problems in order to solve the convective-diffusive system. Section 5.4 presents the method of element centered smooth artificial viscosity (ECSAV) introduced by the shock sensor (SS). The construction of the the shock sensor is discussed in detail in section 5.5. Lastly, the implementation issues related to ECSAV on a unstructured mesh is discussed, and the best solution is validated with a quasi-analytical solution in section 5.6.

Equations of Nonlinear Acoustics

Here the equations of nonlinear acoustics (2.52)-(2.55) are recalled for a 2D problem, which in compact form is

  ρa (1 + ρa )ū a (1 + ρa )v a   t + ∇ •    (1 + ρa )ū a ū2 a + ρa + B 2A ρ2 a ūa va (1 + ρa )v a ūa va v2 a + ρa + B 2A ρ2 a    = 0. (5.1)
In order to have its DG implementation, it is important to rewrite the above system in primitive sense. The system (5.1) can be written in the vector notation as

∂Q ∂t + ∂F ∂x + ∂G ∂y = 0, (5.2) 
where

Q =   ρa (1 + ρa )ū a (1 + ρa )v a   =   q 1 q 2 q 3   (say) (5.3)
and,

F =    (1 + ρa )ū a ū2 a + ρa + B 2A ρ2 a ūa va    =       q 2 ( q 2 1 + q 1 ) 2 + q 1 + B 2A q 2 1 ( q 2 1 + q 1 ) ( q 3 1 + q 1 )       =   f 1 f 2 f 3   (say), (5.4 
)

G =    (1 + ρa )v a ūa va v2 a + ρa + B 2A ρ2 a    =       q 3 ( q 2 1 + q 1 ) ( q 3 1 + q 1 ) ( q 3 1 + q 1 ) 2 + q 1 + B 2A q 2 1       =   g 1 g 2 g 3   (say), (5.5) 
The complete system of equations becomes

  q 1 q 2 q 3   t +       q 2 ( q 2 1 + q 1 ) 2 + q 1 + B 2A q 2 1 ( q 2 1 + q 1 ) ( q 3 1 + q 1 )       x +       q 3 ( q 2 1 + q 1 ) ( q 3 1 + q 1 ) ( q 3 1 + q 1 ) 2 + q 1 + B 2A q 2 1       y = 0. (5.6)
Therefore, in order to compute the numerical fluxes in the DGM, the eigenvalues of matrix

C = n x F q + n y G q =     0 n x n y n x ( q 1 (γ -1) -2q 2 2 2 (q 1 +1) 3 + 1 ) -2nyq 2 q 3 2 (q 1 +1) 3 nyq 3 (q 1 +1) 2 + 2nxq 2 (q 1 +1) 2 nyq 2 (q 1 +1) 2 n y ( q 1 (γ -1) -2q 3 2 2 (q 1 +1) 3 + 1 ) -2nxq 2 q 3 2 (q 1 +1) 3 nxq 3 (q 1 +1) 2 2nyq 3 (q 1 +1) 2 + nxq 2 (q 1 +1) 2     (5.7)
are needed, where F q and G q are the Jacobian matrices given by

F q =       0 1 0 q 1 (γ -1) - 2q 2 2 2 (q 1 + 1) 3 + 1 2q 2 (q 1 + 1) 2 0 - 2q 2 q 3 2 (q 1 + 1) 3 q 3 (q 1 + 1) 2 q 2 (q 1 + 1) 2       (5.8) G q =       0 0 1 - 2q 2 q 3 2 (q 1 + 1) 3 q 3 (q 1 + 1) 2 q 2 (q 1 + 1) 2 q 1 (γ -1) - 2q 3 2 2 (q 1 + 1) 3 + 1 0 2q 3 (q 1 + 1) 2       (5.9)
Here, γ = B A + 1. Also, note that the fluxes are computed in the direction of the surface normal ( n = n x î + n y ĵ) of an element.

The eigenvalues of C are

λ 1 = - √ α + β δ , λ 2 = √ α + β δ , λ 3 = β δ ,
(5.10)

where

α = (1 + q 1 ) 4 q 1 γ -q 5 1 5 -3q 4 1 4 -2q 1 (n y q 3 + n x q 2 ) 2 3 -2q 3 1 3 -(n y q 3 + n x q 2 ) 2 2 + 2q 2 1 2 + 3q 1 + 1, (5.11) 
β = (n y q 3 + n x q 2 ) and δ = q 2 1 2 + 2q 1 + 1.

(5.12)

Convective-Diffusive System for Nonlinear Acoustics

Analogous to 1D case, a convective-diffusive system is constructed by adding dissipative terms to the RHS of the original system of equations (5.1), which then becomes

  ρa (1 + ρa )ū a (1 + ρa )v a   t + ∇ •    (1 + ρa )ū a ū2 a + ρa + B 2A ρ2 a ūa va (1 + ρa )v a ūa va v2 a + ρa + B 2A ρ2 a    = ∇ •    η 1 ∂ ∂x ρa η 2 ∂ ∂x ((1 + ρa ) ūa ) η 3 ∂ ∂x ((1 + ρa ) va ) η 1 ∂ ∂y ρa η 2 ∂ ∂y ((1 + ρa ) ūa ) η 3 ∂ ∂y ((1 + ρa ) va )    .
(5.13)

Here, the viscosity coefficients η i = η i (x, y), i = 1, 2, 3 are the functions of spatial variables and are non-zero only in a small neighborhood of a shock, details of the viscosity coefficients are given later. Recall, the choice of the dissipative term is important instead of the classical dissipative term

( η ∂ 2 ∂x 2 + η ∂ 2 ∂y 2
) , the diffusive terms chosen would yield a first order system which is essential for DG implementation.

In terms of the conserved variables written in primitive sense (5.3) i.e., q 1 , q 2 , q 3 the above system can be written as

  q 1 q 2 q 3   t +       q 2 ( q 2 1 + q 1 ) 2 + q 1 + B 2A q 2 1 ( q 2 1 + q 1 ) ( q 3 1 + q 1 )       x +       q 3 ( q 2 1 + q 1 ) ( q 3 1 + q 1 ) ( q 3 1 + q 1 ) 2 + q 1 + B 2A q 2 1       y =        η 1 ∂ ∂x q 1 η 2 ∂ ∂x q 2 η 3 ∂ ∂x q 3        x +         η 1 ∂ ∂y q 1 η 2 ∂ ∂y q 2 η 3 ∂ ∂y q 3         y (5.14)
or, in light of (5.4) and (5.5), the above system becomes

∂q m ∂t + ∂f m ∂x + ∂g m ∂y = ∂ ∂x η m ( ∂ ∂x q m ) + ∂ ∂y η m ( ∂ ∂y q m ) ; for m = 1, 2, 3 (5.15)
or,

∂q m ∂t + ∂f m ∂x + ∂g m ∂y = ∂ ∂x (η m q ax m ) + ∂ ∂y (η m q ay m ) ; for m = 1, 2, 3 (5.16)
where, q ax m = ∂q m ∂x and q ay m = ∂q m ∂y . Here, the superscript 'a' is used to indicate that the variable is artificial and is not the part of the original system (5.1). This can be rewritten as

∂q m ∂t + ∇ • H m = ∇ • ( η m q art m ) , ( 5.17) 
with the two auxiliary equations

q ax m - ∂q m ∂x = 0, (5.18)
q ay m -∂q m ∂y = 0, (5.19) where H m = (f m , g m ) and q art m = (q ax m , q ay m ). As evident, now there is a system of three equations (5.17)-(5.19) instead of one equation in the system (5.15). Also, observe it is a system of first-order equations which is a prerequisite of DG method. Moreover, it explains the structure of the dissipative term in (5.15) as it makes the equation easily reducible to the system of first-order equations with non-constant viscosity coefficients.

Local Discontinuous Galerkin Implementation

In this section, the semi-discrete formulation of the first-order system (5.17)-(5.19) is derived using the details from Chapter 3. Here, all the computations are done in the physical coordinates.

Weak Formulation

The weak formulation of the first-order system (5.17)- (5.19) in a domain Ω with a boundary ∂Ω, is given as follows

∫ Ω ∂q m ∂t ψ(x)dx + ∫ Ω ∇ • (H m -η m q art m )ψ(x)dx = 0, ∫ Ω q ax m ψ(x)dx - ∫ Ω ∂q m ∂x ψ(x)dx = 0, ∫ Ω q ay m ψ(x)dx - ∫ Ω ∂q m ∂y ψ(x)dx = 0, (5.20) 
where ψ(x) is a test function. Define, J m := H m -η m (x, y)q art m and integrate by parts the above system of equations to get

∫ Ω ∂q m ∂t ψ(x)dx - ∫ Ω J m • ∇ψ(x)dx + ∫ ∂Ω n(x) • J m ψ(x)dx = 0 ∫ Ω q ax m ψ(x)dx + ∫ Ω q m ∂ψ(x) ∂x dx - ∫ ∂Ω n x (x)q m ψ(x)dx = 0 ∫ Ω q ay m ψ(x)dx + ∫ Ω q m ∂ψ(x) ∂y dx - ∫ ∂Ω n y (x)q m ψ(x)dx = 0 . (5.21)
Now, the domain Ω is partitioned into K non-overlapping triangular elements as

Ω = K ∪ • k=1 Ω k ; k = 1, • • • , K. (5.22)
Based on this partition, the weak formulation in an element Ω k with the modified boundary terms is

∫ Ω k ∂q k m ∂t ψ(x)dx - ∫ Ω k J k m • ∇ψ(x)dx + ∫ ∂Ω k [ nk • J k m ] * ψ(x)dx = 0, ∫ Ω k (q ax m ) k ψ(x)dx + ∫ Ω k q k m ∂ψ(x) ∂x dx - ∫ ∂Ω k [ nk x q k m ] * ψ(x)dx = 0, ∫ Ω k (q ay m ) k ψ(x)dx + ∫ Ω k q k m ∂ψ(x) ∂y dx - ∫ ∂Ω k [ nk y q k m ] * ψ(x)dx = 0, (5.23) 
where nk = (n k x , nk y ) denote the outward normal vector to k th element Ω k .

Numerical Fluxes

As described in Chapter 3, the boundary integrals are the numerical fluxes, which depend on the internal and external state of the solution with respect to the boundary of the element/domain. The various numerical fluxes are defined as follows, starting with

[ nk • J k m ] * = [ nk x ( f k m -η k m (q ax m ) k ) + nk y ( g k m -η k m (q ay m ) k ) ] * := [ nk x f k m + nk y g k m ] * - [ nk x η k m (q ax m ) k ] * - [ nk y η k m (q ay m ) k ] * (5.24)
which has three parts. For the sake of clarity, the superscript k is dropped in the remaining numerical fluxes as the entire problem is inside the element k. The first part defined as

F * m = [ nx f m + ny g m ] * (5.25)
contains the advective term and therefore the Lax-Friedrich flux is used, which gives

F * m = nx f int m + f ext m 2 + ny g int m + g ext m 2 + λ 2 (q int m -q ext m ) (5.26) 
where the superscripts 'int' and 'ext' denote the values of the respective quantities obtained as the limit approaches ∂Ω k from interior and exterior of the element, respectively, and

λ = max 1≤m≤3 (|λ int m |, |λ ext m |). ( 5.27) 
Here λ m , m = 1, 2, 3, are the real eigenvalues (5.10)-(5.12) of the matrix C in (5.7).

The other two parts of (5.24) are coming from the dissipative term and the central flux is used for these terms, which led to

Q ax * m := [ nx η m (q ax m ) ] * = nx η int m + η ext m 2 (q ax m ) int + (q ax m ) ext 2 (5.28)
and

Q ay * m := [ ny η m (q ay m ) ] * = ny η int m + η ext m 2 (q ay m ) int + (q ay m ) ext 2 (5.29)
Also, central fluxes are used in the case of the auxiliary variables, as

Q x * m := [ nx q m ] * = nx q int m + q ext m 2 , ( 5.30) 
Q y * m := [ ny q m ] * = ny q int m + q ext m 2 .
(5.31) On substitution of these numerical fluxes in (5.23), one gets

∫ Ω k ∂q k m ∂t ψ(x)dx - ∫ Ω k J k m • ∇ψ(x)dx + ∫ ∂Ω k [ (F * m ) k -(Q ax * m ) k -(Q ay * m ) k ] ψ(x)dx = 0, ∫ Ω k (q ax m ) k ψ(x)dx + ∫ Ω k q k m ∂ψ(x) ∂x dx - ∫ ∂Ω k [ (Q x * m ) k ] ψ(x)dx = 0, ∫ Ω k (q ay m ) k ψ(x)dx + ∫ Ω k q k m ∂ψ(x) ∂y dx - ∫ ∂Ω k [ (Q y * m ) k ] ψ(x)dx = 0.
(5.32)

Nodal Approximation

On substitution of the nodal solutions and the Lagrange polynomials as the test function in the system (5.32), gives ∫

Ω k ∂q k m ∂t l k j (x)dx - ∫ Ω k J k m • ∇l k j (x)dx + ∫ ∂Ω k [ (F * m ) k -(Q ax * m ) k -(Q ay * m ) k ] l k j (x)dx = 0, ∫ Ω k (q ax m ) k l k j (x)dx + ∫ Ω k q k m ∂l k j (x) ∂x dx - ∫ ∂Ω k [ (Q x * m ) k ] l k j (x)dx = 0, ∫ Ω k (q ay m ) k l k j (x)dx + ∫ Ω k q k m ∂l k j (x) ∂y dx - ∫ ∂Ω k [ (Q y * m ) k ] l k j (x)dx = 0, (5.33) 
for, j = 1, ..., N p .

Also, it is important to identify that the flux J m depends on q art m . Therefore, it becomes a necessity to solve the last two equation to get q ax m and q ay m , and then solve the first equation to get the original variable q m . This is why, these variables are called local/auxiliary variables as they exist only in the integral domain Ω k and consequently, the method is called the local discontinuous Galerkin method.

We first start with the second equation in (5.33). Substituting the nodal approximations similar to as defined in (3.62) gives

∫ Ω k Np ∑ i=1 (q ax m ) k (x k i , t)l k i (x)l k j (x)dx + ∫ Ω k Np ∑ i=1 q k m (x k i , t)l k i (x) ∂l k j (x) ∂x dx - ∫ ∂Ω k (Q x * m ) k l k j (x)dx = 0. (5.34)
Using the notation (q ax m ) k i = q ax (x k i , t) and similarly for other quantities lead to

Np ∑ i=1 (q ax m ) k i ∫ Ω k l k i (x)l k j (x)dx + Np ∑ i=1 (q k m ) i ∫ Ω k l k i (x) ∂l k j (x) ∂x dx - ∫ ∂Ω k (Q x * m ) k l k j (x)dx = 0. (5.35)
As illustrated in Chapter 3, the boundary integral in (5.33) can be written as

∫ ∂Ω k (Q x * m ) k l k j (x)dx = [ M k,e 1 ij ] T (Q x * m ) k e1 + [ M k,e 2 ij ] T (Q x * m ) k e2 + [ M k,e 3 ij ] T (Q x * m ) k e3 , ( 5.36) 
where

(Q x * m ) k e 1 = [ (Q x * m )(x k,e 1 1 ), • • • , (Q x * m )(x k,e 1 N +1 ) ] T , ( 5.37) 
(Q x * m ) k e 2 = [ (Q x * m )(x k,e 2 1 ), • • • , (Q x * m )(x k,e 2 N +1 ) ] T , (5.38) 
(Q x * m ) k e 3 = [ (Q x * m )(x k,e 3 1 ), • • • , (Q x * m )(x k,e 3 N +1 ) ] T . ( 5.39) 
This leads to the compact semi-discretized form of the first auxiliary equation as

M k (q ax m ) k + [ S k x ] T q k m = [ M k,e 1 ] T (Q x * m ) k e 1 + [ M k,e 2 ] T (Q x * m ) k e 2 + [ M k,e 3 ] T (Q x * m ) k e 3 (5.40) 
or

(q ax m ) k + [ M k ] -1 [ S k x ] T q k m = [ M k ] -1 [ M k,e 1 ] T (Q x * m ) k e 1 + [ M k ] -1 [ M k,e 2 ] T (Q x * m ) k e 2 + [ M k ] -1 [ M k,e 3 ] T (Q x * m ) k e 3 , ( 5.41) 
where

(q ax m ) k = [ (q ax m )(x k 1 ), • • • , (q ax m )(x k Np ) ] T , ( 5.42 
)

q k m = [ q m (x k 1 ), • • • , q m (x k Np ) ] T . ( 5.43) 
Likewise, a compact matrix form similar to the equation (5.41) for the third equation of (5.33) will be

(q ay m ) k + [ M k ] -1 [ S k y ] T q k m = [ M k ] -1 [ M k,e 1 ] T (Q y * m ) k e 1 + [ M k ] -1 [ M k,e 2 ] T (Q y * m ) k e 2 + [ M k ] -1 [ M k,e 3 ] T (Q y * m ) k e 3 , ( 5.44) 
where

(q ay m ) k = [ (q ay m )(x k 1 ), • • • , (q ay m )(x k Np ) ] T , ( 5.45) 
(Q y * m ) k e 1 = [ (Q y * m )(x k,e 1 1 ), • • • , (Q y * m )(x k,e 1 N +1 ) ] T , ( 5.46) 
(Q y * m ) k e 2 = [ (Q y * m )(x k,e 2 1 ), • • • , (Q y * m )(x k,e 2 N +1 ) ] T , ( 5.47) 
(Q y * m ) k e 3 = [ (Q y * m )(x k,e 3 1 ), • • • , (Q y * m )(x k,e 3 N +1 ) ] T .
(5.48)

Assembling

From the equations (5.41) and (5.44), the local variables (or vectors) (q ax m ) k and (q ay m ) k are obtained respectively. Finally, the semi-discretized form of the first equation of (5.33) can be written, starting from

∫ Ω k ∂q k m ∂t l k j (x)dx - ∫ Ω k J k m • ∇l k j (x)dx + ∫ ∂Ω k [ (F * m ) k -(Q ax * m ) k -(Q ay * m ) k ] l k j (x)dx = 0, (5.49) or, 
∫

Ω k ∂q k m ∂t l k j (x)dx - ∫ Ω k [ f k m -η k m (q ax m ) k ] ∂l k j (x) dx dx - ∫ Ω k [ g k m -η k m (q ay m ) k ] ∂l k j (x) dy dx + ∫ ∂Ω k [ (F * m ) k -(Q ax * m ) k -(Q ay * m ) k ] l k j (x)dx = 0. (5.50)
On substituting the nodal solution as in (3.62) in the first three terms of the above equation, we get

∫ Ω k ( Np ∑ i=1 ∂q k m (x k i , t) ∂t l k i (x) ) l k j (x)dx- ∫ Ω k ( Np ∑ i=1 [ f k m (x k i ) -η k m (x k i )(q ax m ) k (x k i ) ] l k i (x) ) ∂l k j (x) dx dx - ∫ Ω k ( Np ∑ i=1 [ g k m (x k i ) -η k m (x k i )(q ay m ) k (x k i ) ] l k i (x) ) ∂l k j (x) dy dx + ∫ ∂Ω k [ (F * m ) k -(Q ax * m ) k -(Q ay * m ) k ] l k j (x)dx = 0, (5.51) or, Np ∑ i=1 ∂q k m (x k i , t) ∂t ∫ Ω k l k i (x)l k j (x)dx - Np ∑ i=1 [ f k m (x k i ) -η k m (x k i )(q ax m ) k (x k i ) ] ∫ Ω k l k i (x) ∂l k j (x) dx dx - Np ∑ i=1 [ g k m (x k i ) -η k m (x k i )(q ay m ) k (x k i ) ] ∫ Ω k l k i (x) ∂l k j (x) dy dx + ∫ ∂Ω k [ (F * m ) k -(Q ax * m ) k -(Q ay * m ) k ] l k j (x)dx = 0. (5.52)
The last integral is treated exactly in the same way as done before for the local variables. Therefore, we have the semi-discretized form of the original equation (5.17) as

M k ∂q k m ∂t - [ S k x ] T [ f k m -η k m (q ax m ) k ] - [ S k y ] T [ g k m -η k m (q ay m ) k ] = - [ M k,e 1 ] T [ (F F F * m ) k,e 1 -(Q ax * m ) k,e 1 -(Q ay * m ) k,e 1 ] - [ M k,e 2 ] T [ (F F F * m ) k,e 2 -(Q ax * m ) k,e 2 -(Q ay * m ) k,e 2 ] - [ M k,e 3 ] T [ (F F F * m ) k,e 3 -(Q ax * m ) k,e 3 -(Q ay * m ) k,e 3 ] (5.53) 
or

∂q k m ∂t - [ M k ] -1 [ S k x ] T [ f k m -η k m (q ax m ) k ] - [ M k ] -1 [ S k y ] T [ g k m -η k m (q ay m ) k ] = - [ M k ] -1 [ M k,e 1 ] T [ (F F F * m ) k,e 1 -(Q ax * m ) k,e 1 -(Q ay * m ) k,e 1 ] - [ M k ] -1 [ M k,e 2 ] T [ (F F F * m ) k,e 2 -(Q ax * m ) k,e 2 -(Q ay * m ) k,e 2 ] - [ M k ] -1 [ M k,e 3 ] T [ (F F F * m ) k,e 3 -(Q ax * m ) k,e 3 -(Q ay * m ) k,e 3 ] , (5.54) 
where

(F F F * m ) k,e 1 = [ F * m (x k,e 1 1 ), • • • , F * m (x k,e 1 N +1 ) ] T , ( 5.55) 
(Q ax * m ) k,e 1 = [ Q ax * m (x k,e 1 1 ), • • • , Q ax * m (x k,e 1 N +1 ) ] T , ( 5.56) 
(Q ay * m ) k,e 1 = [ Q ay * m (x k,e 1 1 ), • • • , Q ay * m (x k,e 1 N +1 ) ] T , ( 5.57) 
and the numerical flux vectors for other edges are defined in the same way.

The semi-discretized equation (5.54) is taken up by the fourth-order LSERK method to advance in time till the required time level T .

Element Centered Smooth Artificial Viscosity

In the above discussion, the only thing missing is the definition of the η k m (x), for m = 1, 2, 3, which we call as, the Element Centered Smooth Artificial Viscosity (ECSAV) function. Analogous to 1D, here the 2D Shock Sensor (SS) is developed to identify the infected elements. Then the 2D smooth artificial viscosity is introduced in the respective element.

Shock Sensor

In order to extend the idea of shock sensor in 2D, the primitive variables ρ a , u a , v a are computed using the conserved quantities q 1 , q 2 , q 3 . Consider the nodal and the modal representation of ρ a in the reference element as given by equation (3.97), which is

ρ a (ξ) = Np ∑ i=1 ρ a (ξ i , t)l i (ξ) = Np ∑ i=1 (ρ a ) i (t)ψ i (ξ).
(5.58) Here, {ξ i ; i = 1, ..., N p } is the set of appropriately chosen nodes inside the reference element. The modal equation in the above equation gives

ρ a (ξ i , t) = Np ∑ j=1 (ρ a ) j (t)ψ j (ξ i ). (5.59) 
In terms of Vandermonde matrix V, the above equation can be re-written as

ρ ρ ρ a = V -1 ρ ρ ρ a , (5.60) 
where

V ij = ψ j (ξ i ), ρ ρ ρ a = [ (ρ a ) 1 , • • • , (ρ a ) Np ] T , ρ ρ ρ a = [ (ρ a ) 1 , • • • , (ρ a ) Np ] T . ( 5.61) 
In order to develop the 2D SS, it is important to understand the 2D modal solution given by (5.59). These polynomials being two dimensional, it can be rewritten using two indices as

ρ a (ξ, t) = N ∑ i=0 N -i ∑ j=0 (ρ a ) ij (t)ψ ij (ξ).
(5.62)

Here, i and j denotes the order of ψ ij (ξ) with respect to ξ and η, respectively.

As stated earlier, all the one-time computations are done for the reference element (I), so is the computation of the orthonormal basis. The corresponding Vandermonde matrix is given as

V =        ψ00(ξ 1 ) ψ01(ξ 1 ) • • • ψ0N (ξ 1 ) ψ10(ξ 1 ) • • • ψ 1N -1 (ξ 1 ) • • • ψN0(ξ 1 ) ψ00(ξ 2 ) ψ01(ξ 2 ) • • • ψ0N (ξ 2 ) ψ10(ξ 2 ) • • • ψ 1N -1 (ξ 2 ) • • • ψN0(ξ 2 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . ψ00(ξ Np-1 ) ψ01(ξ Np-1 ) • • • ψ0N (ξ Np-1 ) ψ10(ξ Np-1 ) • • • ψ 1N -1 (ξ Np-1 ) • • • ψN0(ξ Np-1 ) ψ00(ξ Np ) ψ01(ξ Np ) • • • ψ0N (ξ Np ) ψ10(ξ Np ) • • • ψ 1N -1 (ξ Np ) • • • ψN0(ξ Np )        (5.63) 
The yellow highlighted columns in the matrix (5.63) are the linear components of the modal solution of order N , whereas the green highlighted columns in the matrix (5.63) are the highest order i.e. N th order components of the modal solution of order N . The corresponding vector of coefficients (modes) 1 of these basis functions in the k th element, computed using (5.60) is given by

ρ ρ ρ k a = [ (ρ a ) k 00 (t), (ρ a ) k 01 (t) , • • • , (ρ a ) k 0N (t) , (ρ a ) k 10 (t) , • • • , (ρ a ) k 1N -1 (t), • • • , (ρ a ) k N 0 (t) ] T (5.65)
Likewise, the modes of u a and v a i.e., ûa and va are computed. Now, we define the Shock Sensor (SS) corresponding to each variable in the system (5.13), as

(SS) k ρa (t) = (SS1) k ρa (t) max k {(SS1) k ρa (t)} + (SSN ) k ρa (t) max k {(SSN ) k ρa (t)} (5.66) (SS) k ua,va (t) = (SS1) k ua,va (t) max{max k {(SS1) k ua (t)}, max k {(SS1) k va (t)}} + (SSN ) k ua,va (t) max{max k {(SSN ) k ua (t)}, max k {(SSN ) k va (t)}} , (5.67) 
where (SS1) ρa is the first-order sensor of ρ a defined as

(SS1) k ρa (t) =| (ρ a ) k 01 (t) | + | (ρ a ) k 10 (t) | (5.68)
and, (SSN ) ρa is the Nth-order sensor for ρ a defined as

(SSN ) k ρa (t) =| (ρ a ) k 0N (t) | + | (ρ a ) k N 0 (t) | (5.69)
Similarly, SS1 and SSN are computed for u a and v a .

1 Observe, the total number of modes are

Np = (N + 1) + N + (N -1) + • • • + 1 = 1 2 (N + 1)(N + 2) (5.64)
Once (SS) k m (t), m = ρ a , u a , v a , (corresponding to the conserved variables q 1 , q 2 , q 32 ) is calculated for each element, the need of viscosity in the k th element is sensed using the condition

(SS) k m (t) ≥ max k {(SS) k m (t)} α 1 , k = 1, • • • , K, (5.70) 
where α 1 is a user-given parameter for calculating the minimum value of (SS) k m (t) above which a region of high gradient is sensed. The corresponding element is tagged as an infected element. In this thesis, all the 2D numerical results are computed with α 1 = 10.

The next ingredient is the Gradient Factor (GF), defined as

GF (t) = exp   max k {(SS1) k ρa (t)} max k {(SS1) k ρa (0)} -1   . (5.71)
It is important to note that the gradient factor GF (t) is governed by approximate solution corresponding to the acoustical perturbation in density ρ a , as it is the leading variable.

Recall, the role of the gradient factor is to increase the maximum viscosity exponentially, as the slope of the profile increases or vice-versa. Therefore, it is initially equal to one and then increases as and when the steepening increases and vice-versa.

In order to have the GF (t) in control, it is tapped using an upper limit as

GF (t) ≤ α 2 , ( 5.72) 
where α 2 is a user given parameter. In this thesis, all the 2D numerical results are computed with α 2 = 20.

Smooth Artificial Viscosity

As concluded from 1D formulation (section 4.4), ECSAV gives good results. Therefore, here we directly define the 2D ECSAV as

η k m (x k i ) = (η 0 ) k m exp [ - ( x k i -(x 0 ) k (σ 0 ) k ) 2 - ( y k i -(y 0 ) k (σ 0 ) k ) 2 ] , i = 1, ..., N p , ( 5.73) 
where η 0 , σ 0 , x 0 are parameters which are determined by the intrinsic parameters of the problem like the discretization (mesh) and the amplitude of the signal. The position of the ECSAV in each element depends on (x 0 , y 0 ), which is taken to be the centroid of the infected elements and is given by

(x 0 ) k = x k v 1 + x k v 2 + x k v 3 3 , (y 0 ) k = y k v 1 + y k v 2 + y k v 3
3 .

(5.74)

Here, the points (x k v i , y k v i ), i=1,2,3 are the vertices of the triangle in the physical domain. The width of the ECSAV (σ 0 ) depends on the size of the triangular element, defined as the circumradius of each element, which is

(σ 0 ) k = a k b k c k (a k + b k + c k )(b k + c k -a k )(a k + c k -b k )(a k + b k -c k ) (5.75)
where, a k , b k , c k are the length of the sides of the k th element.

Finally, the choice of (η 0 ) k m is very crucial because it has to be nonzero around the shock and zero elsewhere. The amplitude (η 0 ) k m of ECSAV in the k th element is defined as

(η 0 ) k m (t) =      α 3 .GF (t).(SS) k m (t) if (SS) k m (t) ≥ max k {(SS) k m (t)} α 1 0 otherwise (5.76)
Note that the inequality (5.70) is used here as an indicator function to turn on/off the viscosity. Here, α 3 is an empirically chosen parameter. At present, we do not have an expression/bound for this parameter. But based on our experience relying on numerous numerical tests, we propose a conjecture:

α 3 ≈ O(2 × 10 -2 ), (5.77) 
where is the acoustical Mach number. 

Numerical Explanation of the Shock Sensor

Consider a rectangular domain [-5, 5] × [-1, 1] mm 2 with all the four boundaries as rigid walls. The unstructured mesh consists of 1308 elements and the order of polynomial approximation is 8. Here, we try to simulate the propagation of an inverted sine-period to-and-fro within a box with water for a long time. This is analogous to a one-way plane wave propagation underwater for a long duration in 1D. The initial condition is shown in figure 5.1, and is given by

p a = -p m a sin ( 2πx λ ) ; if |x| ≤ λ 2 , ( 5.78) 
where p m a = 5 × 10 5 Pa. The frequency of the sine-period f = 10 6 Hz, with the ambient parameters: ρ 0 = 1000 kg.m -3 , and speed of sound c 0 = 1500 m.s -1 gives the wavelength λ = 1.5 × 10 -3 m. In order to have plane wave like situation, the impedance relation is used to prescribe the velocity as

u a = p a ρ 0 c 0 , ( 5.79 
)

v a = 0 (5.80)
and from the linearized state equation the initial density is computed as

ρ a = p a c 2 0 . ( 5.81) 
Also, the acoustical Mach number: = 2.2 × 10 -4 , and the shock formation distance as given by equation (4.4) is 30 cm. The numerical parameters related to ECSAV taken for this configuration are: α 1 = 10, α 2 = 20, and

α 3 = 6 × 10 -6 .
This numerical experiment is to emphasize upon the robustness of the shock sensor. It is achieved by analyzing the two components of the shock sensor separately. The importance of SS1 is highlighted in subsection 5.5.1, and that of SSN is discussed in subsection 5.5.2. 

First-Order Contribution to the Shock Sensor

(SS) k ρa (t) = 2 (SS1) k ρa (t) max k {(SS1) k ρa (t)} (SS) k ua,va (t) = 2 (SS1) k ua,va (t) max{max k {(SS1) k ua (t)}, max k {(SS1) k va (t)}} , ( 5.82) 
The subplot-(b) shows (SS) k ρa (t), k = 1, • • • , K, when only the highest-order contribution of the modal solution (5.62) is considered to construct the shock sensor. In this case, the shock sensor takes the form:

(SS) k ρa (t) = 2 (SSN ) k ρa (t) max k {(SSN ) k ρa (t)} (SS) k ua,va (t) = 2 (SSN ) k ua,va (t) max{max k {(SSN ) k ua (t)}, max k {(SSN ) k va (t)}} , m = 2, 3 (5.83) 
Lastly, the subplot-(c) shows (SS) k ρa (t), k = 1, • • • , K, with the actual definition of SS as given by (5.66)- (5.67). Note, the multiplication by a factor 2 in (5.82) and (5.83) is to normalize them to same scale as the original SS.

After the propagation of around two times the shock length, the sine-period is transformed into sawtooth waveform due to the nonlinear effect. This is clearly located by the first order shock sensor (5.82) as evident from figure 5.2-(a). Also, the value of shock sensor is very high around the shock, consequently the viscosity introduced into the system is high as expected, to suppress the oscillations.

In the case of highest-order sensor (5.83), no clear shock front is visible in the figure 5.2-(b), as the value of the shock sensor is not very high, in the elements around the shock. Consequently, the viscosity introduced is very small and nonuniform around the shock. Therefore, there exists a possibility of spurious oscillations due to insufficient dissipation. However, in the case of full shock sensor SS, a clear shock front is captured by the shock sensor as evident from figure 5.2-(c). This case is similar to the first order sensor, higher value of shock sensor imposes high viscosity, as required for dissipating spurious oscillations.

All the above remarks are supported by the plot over x-axis of p a , shown in figure 5.2-(d). As expected P a corresponding to SSN (blue) is having some spurious oscillations, whereas the other two curves corresponding to the first-order sensor and full SS are having no oscillations and are close to each other. With this it can be concluded that highest-order sensor SSN is not sufficient alone to capture shocks, in the framework of weak acoustical shock waves on unstructured mesh. On the other hand, first-order sensor SS1 seems to be the key ingredient in capturing shocks.

Highest-Order Contribution to the Shock Sensor

Since we are trying to simulate a one-way 1D plane way in a 2D setup, ideally v a must remain almost zero. But due to non-smooth ICs or discontinuities, it becomes noninsignificant in our method. Therefore, it is required to locate such mild oscillations right at the beginning of the simulation and to damp them. Otherwise, they could get dominant in long propagation due to cumulative effect. In this subsection, the role of highest-order sensor is highlighted for this purpose. (SS) k va (t), k = 1, • • • , K, when only the highest-order sensor (5.83) is considered. Lastly, the subplot-(c) shows the map of (SS) k va (t), k = 1, • • • , K when the full shock sensor is used.

It is important to observe that there is no clear pattern in the figure 5.3-(a). Moreover, the value of the shock sensor is almost zero, and consequently, the viscosity imposed is feeble. It can therefore be concluded that such mild oscillations are not detected by the shock sensor (5.82).

On the other hand, a slightly better pattern is visible in figure 5.3-(b), and also the value of the SS is significantly high. As a result, the viscosity imposed is very strong but because of non-distinguishable pattern in SS map, the viscosity is spread almost everywhere. This could lead to unwanted dissipation, but is definitely required as it senses the oscillations.

In the case of figure 5.3-(c), a clearly distinguishable pattern is visible where the oscillations are important. Also, its value is significant enough to impose the required viscosity. As the contrast in the pattern is significant, introduction of viscosity is more localized near the oscillations, instead of everywhere as in the previous case.

All the above observations are supported by the plot over x-axis of v a , shown in figure 5. 3-(d). The v a corresponding to SS1 (blue) is greater than the others as expected, because there is almost no viscosity damping it. On the contrary, the dissipation is maximum in the v a corresponding to SSN (green) as the viscosity is highest with respect to others. However, in the case of v a corresponding to the full shock sensor (red), the dissipation is evident. Therefore, we can conclude that the first-order sensor is not able to sense the mild oscillations caused due to non-smooth ICs or discontinuities, whereas the highest-order sensor and the full shock sensor are able to sense it well.

Therefore, we conclude this section with the inference that: neither SS1 nor SSN is independently well suited for capturing of weak acoustical shock waves in the numerical method based on DGM using fully unstructured mesh. However, the full shock sensor (5.66)-(5.67) which is the amalgamation of SS1 and SSN works well as it is able to capture the shock as well as to capture the mild oscillations caused by the non-smooth part of the waveform.

Implementation Issues and Validation

Till now, the ECSAV is presented without discussing much about its support on unstructured mesh. Recall in 1D, it was shown to have its scope in the neighboring elements. Similarly, in order to discuss the scope of 2D ECSAV consider the following numerical configuration.

Consider the same numerical domain as in the previous numerical example, but with polynomial order N = 5. Unlike, the previous experiment, here a sine-period (not inverted) is taken with ten times the previous amplitude. The initial condition shown in 

p a = p m a sin 2πx λ ; if |x| ≤ λ 2 , ( 5.84) 
where p m a = 5×10 6 Pa. All the other physical parameters remain the same. Due to higher amplitude than in the previous case, the acoustical Mach number becomes: = 2.2×10 -3 , and the shock formation distance as given by equation (4.4) is 3 cm. The numerical parameters related to ECSAV taken for this configuration are:

α 1 = 10, α 2 = 20, α 3 = 2 × 10 -4 .
With this numerical setting, figure 5.5 presents four different implementations of artificial viscosity, without deteriorating the parallelization potential of the method. The results shown are after the propagation of a sine-period over 5 shock lengths, and so the two shocks of the N-wave are clearly visible. The viscosities presented are η k 1 , k = 1, • • • , K (see equation (5.73)) corresponding to ρ a .

In order to define the four different ways, let us assume the r th element is an infected element i.e., (η 0 ) r m = 0. With its edges shared by three different elements, say, r e 1 , r e 2 , r e 3 , we call these neighbors as the edge neighbors (ENs) (in case of boundaries it will have two edge neighbors). Moreover, its vertices are shared by elements other than just the edge neighbors, let us label them , r v 1 , • • • , r v R , (say), and we call them as vertex neighbors (VNs).

The first approach is when a piecewise constant viscosity (similar to [108]) is introduced instead of a smooth artificial viscosity, as shown in figure 5.5-(a). We choose that piecewise-constant viscosity to be η r m (x) = (η 0 ) r m := CV.

(5.85)

The second approach is when ECSAV is introduced only in the respective element without any interaction with the neighbors, as shown in figure 5.5-(b), in this case the viscosity in r th element is The third approach is when the ECSAV in the r th element interacts with the ECSAVs of the three neighbors sharing the edges with the r th element, as shown in figure 5.5-(c). The viscosity function in (5.86) is appended by the edge contributions, given by

η r m (x r i ) = (η 0 ) r m exp - x r i -(x 0 ) r (σ 0 ) r 2 - y r i -(y 0 ) r (σ 0 ) r
η r m (x r i ) = ECSAV + (η 0 ) re 1 m exp [ - ( x r i -(x 0 ) re 1 (σ 0 ) re 1 ) 2 - ( y r i -(y 0 ) re 1 (σ 0 ) re 1 ) 2 ] + (η 0 ) re 2 m exp [ - ( x r i -(x 0 ) re 2 (σ 0 ) re 2 ) 2 - ( y r i -(y 0 ) re 2 (σ 0 ) re 2 ) 2 ] + (η 0 ) re 3 m exp [ - ( x r i -(x 0 ) re 3 (σ 0 ) re 3 ) 2 - ( y r i -(y 0 ) re 3 (σ 0 ) re 3 ) 2 ] := ECSAV + EN (5.87)
This makes the viscosity map smoother than the previous approaches. This is important because, as shown in 1D, discontinuities in the viscosity function could induce oscillations at the element boundaries. To further smoothen the viscosity function, it is important to take into account the viscosity contributions of the vertex neighbors, as shown in figure 5. 5-(d). This is achieved by appending the viscosity function in (5.87) by viscosity of vertex neighbors, given by

η r m (x r i ) = ECSAV + EN + (η 0 ) rv 1 m exp [ - ( x r i -(x 0 ) rv 1 (σ 0 ) rv 1 ) 2 - ( y r i -(y 0 ) rv 1 (σ 0 ) rv 1 ) 2 ] + • • • • • • • • • • • • + (η 0 ) rv R m exp [ - ( x r i -(x 0 ) rv R (σ 0 ) rv R ) 2 - ( y r i -(y 0 ) rv R (σ 0 ) rv R ) 2 ] := ECSAV + EN + V N (5.88)
This approach makes the viscosity function smoothest out of all the previous approaches.

In the above step, the parameters of the neighboring elements are taken to compute the viscosity but within the r th element using its grid points. With this step, we are able to bring in the component of the Gaussian viscosity of all the neighboring elements and thus the continuity of the ECSAV across the element boundaries is achieved.

The importance of these implementations are discussed using the remaining subplots. Subplot-(e) presents a comparison of the pressure profiles obtained using the four different approaches. The first two approaches i.e., CV and ECSAV are not able to damp the oscillations around the shock as clearly evident from the subplot-(f). However, the difference between ECSAV+EN and ECSAV+EN+VN is subtle in subplot-(f). This difference is highlighted in subplot-(g) where the solution obtained using the fourth approach is having smaller oscillations than the one obtained using the third approach.

Therefore, the solution p a obtained using the approach ECSAV+EN+VN for the introduction of artificial viscosity turns out to be the most efficient. Its 2D representation is shown in figure 5.6. Its comparison with the quasi-analytical solution (BH) of 1D inviscid Burgers equation [START_REF] Hayes | Sonic Boom Propagation In A Stratified Atmosphere, With Computer Program[END_REF][START_REF] Coulouvrat | A quasi-analytical shock solution for general nonlinear progressive waves[END_REF] is presented in figure 5.7. 

Conclusions

This chapter presents the parabolic-regularized form of the hyperbolic system of equations of nonlinear acoustics, with its eigenvalues. The local DGM formulation of the 2D convective-diffusive system is discussed. The construction of the 2D shock sensor is done based on the 2D modal solution. The element centered smooth artificial viscosity is introduced based on the condition: if the presence of a shock is detected in an element by the shock sensor. The gradient factor is introduced to measure the steepening of the waveform and accordingly scales the artificial viscosity. Two out of the three parameters involved in the introduction of artificial viscosity are almost fixed for all 2D simulations in this thesis. However, a conjecture is proposed for the third parameter based on numerical experiences during this thesis. This makes the method effectively depending on only one parameter, which makes it easier to tune.

The two components of the shock sensor are studied independently, highlighting their abilities and disabilities. It is concluded that the amalgamation of the two components of shock sensor is indeed the most appropriate choice for sub-cell shock capturing, in the framework of weak acoustical shock waves. Our analysis indicates that it is capable of sensing numerical noise as well.

Different implementations of artificial viscosity in a 2D mesh are illustrated, inferring that the best way to introduce artificial viscosity in an element is by taking into account the viscosities of the edge and vertex neighbors along with the viscosity of the element itself. This illustration is done using one-way 1D plane wave like configuration. Therefore, the numerical solution obtained (with the recommended approach of viscosity allocation) is compared with the quasi-analytical solution of 1D inviscid Burgers equation, showing a good agreement.

In this chapter, the numerical method presented in the previous chapters is used to investigate different configurations involving complex geometries and acoustical shock waves. As outlined in the other chapters, the main challenges are to be able to compute accurately the acoustical shock waves and their interactions with complex geometries. To be more specific, we want to highlight the possibility to deal with reflections on rigid bodies not aligned with a Cartesian mesh. Concerning the simulation of shock waves, we want to assess that the code is able to reproduce challenging configurations such as the focusing effects which are also very interesting from a physical point of view because of numerous applications (see Introduction). Therefore, we choose to split this chapter into two main parts: the reflection of shock waves on a rigid surface, and the focusing of shock waves. For each part, we choose to illustrate the capabilities of the code on relevant applications involving different media of propagation as well as different characteristic parameters. Moreover, the chosen configurations share a common feature: a strong coupling between diffraction and nonlinearity. A good way to highlight this strong coupling is to compare the nonlinear results with the linear ones. In order to obtain the linear results, the same code is used with a very low amplitude with respect to the nonlinear cases.

Reflection of Acoustical Shock Waves

As our first application, we choose the case of reflection of an acoustical shock wave over a rigid surface. Normally, when an acoustical wave impinges on a wedge inclined at an angle θ, (0 < θ < π/2), it gives rise to a reflected wave according to the Snell-Descartes law. However, this pattern gets more complicated for shock waves, even of low amplitude. In some cases, there are not just two shocks involved and one can observe either only the incident shock or a third shock connecting the surface and the point of contact of the incident and the reflected shocks. A detailed study of acoustical shock wave reflection is done by Baskar et al. [8]. This is analogous to the study of reflection of aero-dynamical shock waves presented in the book by Ben-Dor [START_REF] Ben-Dor | Shock Wave and High Pressure Phenomena[END_REF].

The reflection of a shock wave can be broadly characterized in two categories i.e., regular and irregular reflections. The regular reflections are those which have two shocks which are, the incident shock and the reflected shock. Figure 6.1 shows the two situations possible under the regular reflections. The first case is when the Snell-Descartes law is satisfied i.e., the angles of incidence and reflection are equal. The second possibility is when the reflected shock is having a curvature and so the angle of incidence and angle of reflection are not equal, we call it as regular nonlinear reflection. In the case of irregular reflections, the number of shocks is not equal to two. This category also observes two situations, which are the von Neumann (analogous to the Mach reflection [START_REF] Ben-Dor | Shock Wave and High Pressure Phenomena[END_REF]) and the weak von Neumann reflections according to Baskar et al. [START_REF] Baskar | Nonlinear reflection of grazing acoustic shock waves: unsteady transition from von Neumann to Mach to Snell-Descartes reflections[END_REF]. The von Neumann reflection is a regime where the reflected shock has a continuous slope and also the Mach stem i.e., the reflected shock meets the incident shock above the surface but there is no discontinuity so there is no triple point. This makes it different from the actual Mach reflection regime, where there is a discontinuity at the triple point. The weak von Neumann regime is for almost grazing incidence, where there is no reflected shock evident, with a almost undisturbed incident shock. The type of reflection depends on the angle of incidence and the shock amplitude, and of course the medium of propagation. This is quantified in terms of the parameter 'a' introduced Hunter and Brio [START_REF] Hunter | Weak shock reflection[END_REF] and by Baskar et al. [START_REF] Baskar | Nonlinear reflection of grazing acoustic shock waves: unsteady transition from von Neumann to Mach to Snell-Descartes reflections[END_REF]. It was experimentally validated by Marchiano et al. [START_REF] Marchiano | Experimental evidence of deviation from mirror reflection for acoustical shock waves[END_REF], and is defined as

a = sin θ √ 2β , ( 6.1) 
where θ is the angle of inclination of the wedge, β is the coefficient of nonlinearity, and is the acoustical Mach number. The parameter 'a' marks the transition from weak von Neumann to von Neumann, and finally to regular reflection.

Numerical Experiments

The numerical study is conducted based on the experimental work of Karzova et al. [START_REF] Karzova | Mach stem formation in reflection and focusing of weak shock acoustic pulses[END_REF]. They observed the nonlinear reflection of spark-generated shock pulses in air over a rigid surface. They presented the Schlieren images of the reflection patterns for different regimes of reflection.

The numerical experiment is performed in air with speed of sound c 0 = 340 m.s -1 , ambient density ρ 0 = 1.2 kg.m 3 , and with coefficient of nonlinearity β = 1.2. The 2D system of nonlinear acoustics is initialized by an N-wave with a frequency of 33 × 10 3 Hz and a characteristic amplitude of P m a = 6000 Pa (and P m a = 6 Pa for linear simulation). Unlike Karzova et al. [START_REF] Karzova | Mach stem formation in reflection and focusing of weak shock acoustic pulses[END_REF] the configuration is 2D and the initial wave is supposed to be a plane wave (in Karzova et al. the experiment is studied and the incident shock wave is spherical). We consider an incoming plane wave going on a wedge, the angle of which being changed to investigate the different kinds of reflection, with the values θ =2 • , 14 Four meshes have been built for this problem corresponding to four values of the angle of the wedge. Figure 6.3 illustrate the mesh for the wedge with θ = 14 • . Note, the mesh is finer near the reflecting surface (wedge) in order to get a better description of the shock.

To be precise, near the boundaries there are 5 elements per wavelength and 1 element per wavelength otherwise. Figure 6.4 illustrates the reflection of a plane N-wave by the wedge. At t = 0 the plane wave is located in the region before the wedge and then propagates towards it. As it touches the wedge, a reflected wave is generated. As discussed above, depending on the values of the parameter a different regimes should be observed. Note that these effects will occur in the vicinity of the region of reflection. The next section is dedicated to the analysis of this region for the four values of a. In particular comparison between linear and nonlinear simulations are shown to highlight the differences in the two regimes. 

Results and Discussion

In order to observe the four different regimes of reflection, the results are presented with a decreasing value of the angle of the wedge thus going from Snell-Descartes (quasi-linear) regular reflection to regular (nonlinear) reflection to von Neumann reflection and then to weak von Neumann case. For each case, the incident and the reflected wave fronts obtained by the theory of geometrical reflection (Snell-Descartes) are presented as black lines in both regimes. The discussion is focused on the reflection of the head shock of the N-wave. For the rear shock situation is similar but less clear as it is perturbed by the reflection of the simple wave between the two shocks. 

Snell-Descartes Reflections

Theoretically, to observe regular reflection the parameter a has to satisfy the condition a ≥ 1.414 [START_REF] Baskar | Nonlinear reflection of grazing acoustic shock waves: unsteady transition from von Neumann to Mach to Snell-Descartes reflections[END_REF] (at least for a step shock). In order to match the experimental configuration of Karzova et al. [START_REF] Karzova | Mach stem formation in reflection and focusing of weak shock acoustic pulses[END_REF] (with P m a = 6000 Pa in air), the angle of the wedge is chosen to be θ = 30 • corresponding to a = 1.55. Figure 6.5 shows the linear and nonlinear reflections. We can see the black lines are coinciding with the wavefronts for both regimes, which is a confirmation that the reflection follows the Snell-Descartes law. When a gets smaller, the reflection no more follows the Snell-Descartes law but still is in the regular regime. Here, we choose the case a = 1.11 (corresponding to θ = 21 • and P m a = 6000 Pa in air). Note the value a = 1.11 should theoretically lead to irregular reflection in the ideal case of step-shock, according to Baskar et al. . However, the limit value between regular and irregular reflection is expected to be different and smaller in the realistic case of an N-wave from the ideal step-shock case (where it is equal to a = √ 2). Based on numerical observation, Baskar et al. proposed a critical value around 0.8 while Karzova et al. proposed a critical value around 1.05, also depending on the shock amplitude. Figure 6.6 shows our numerical simulations in the linear and nonlinear regimes. For the linear regime, the black lines coincide with the incident and the reflected wavefronts, whereas in case of nonlinear regime only the incident wavefront coincides. Indeed, the reflected wavefront exhibits a slight curvature and does not follow the geometrical law. Nevertheless, it is important to highlight that there are only two shocks, the incident and the reflected shocks meet on the surface: this is characteristic for regular reflection.

Regular Nonlinear Reflection

von Neumann Reflection

As the value of a is further reduced, the reflection is no more regular and as the reflected shock merges with the incident one above the surface. Here, this regime is illustrated by the value a = 0.75 (corresponding to θ = 14 • and P m a = 6000 Pa in air). Figure 6.7 shows that the linear regime still follows the Snell-Descartes law. For the sake of clarity, the black lines corresponding to the incident wave front are removed in both the regimes. For the nonlinear regime, 'smooth' Mach stem is visible; it corresponds to the curved part of the wavefront joining the incident and the reflected wavefronts to the rigid surface. Its presence implies that the incident shock front is not straight near the surface and the reflected shock front is curved. Physically, the smooth Mach stem appears because of the strong nonlinear effects due to the high amplitude of the reflected shock near the surface. In order to clearly emphasize the differences between the linear and nonlinear cases, figure 6.8 is presented. It shows the pressure along different equally-spaced lines parallel to the wedge surface. The top-left and top-right subplots figure 6.8 precises the positions where the pressure is extracted for both linear and nonlinear regimes, respectively. The bottom-left subplot shows the linear reflections whereas the bottom-right subplot presents the nonlinear reflections. It is important to observe how the two shocks merge into a single one in the nonlinear regime whereas in the linear regime no such merging of the shocks is observed. Also, in the von Neumann regime there is no triple point (point where the three shocks meet) as observed in Mach reflection (where there is a discontinuity at the triple point [START_REF] Ben-Dor | Shock Wave and High Pressure Phenomena[END_REF]); the Mach stem connects smoothly with the reflected shock as a characteristic feature.

Weak von Neumann Reflection

For a very small value of a, the theory predicts that no reflected shock is visible. This regime is observed here for a = 0.1 (corresponding to θ = 2 • and P m a = 6000 Pa in air). The results are presented in figure 6.9. Here, the black lines are not shown to clearly highlight the absence of any reflected wavefront. In order to differentiate the difference in the two cases, the y-component of the velocity is presented for both regimes in figure 6.10. The y-component is an interesting variable as it is nonzero before the reflection. With respect to the black lines, it can be concluded that the y-component in the linear regime obeys the Snell-Descartes, whereas in the nonlinear case the y-component is parallel to the incident front for some height before it begins to be curved. Note that, due to our system of equations, we are able to observe all the velocity components. It is one of the interesting advantages of the present simulation over previous ones. Indeed, previous simulations [START_REF] Baskar | Nonlinear reflection of grazing acoustic shock waves: unsteady transition from von Neumann to Mach to Snell-Descartes reflections[END_REF][START_REF] Marchiano | Experimental evidence of deviation from mirror reflection for acoustical shock waves[END_REF][START_REF] Karzova | Mach stem formation in reflection and focusing of weak shock acoustic pulses[END_REF] used the KZK equation to simulate the problem. This equation is scalar (using pressure only) and therefore does not allow a direct access to the velocity components.

Reflection on a convex-concave geometry

This part is inspired by the work of Ram et al. [114], where they observed the Mach reflection (which they call as the primary Mach reflection) and the reflection of the Mach stem (which they call as the secondary Mach reflection) using a convex-concave cylindrical surface. We choose this geometry with a convex and concave cylindrical surface to observe multiple reflections of an acoustical shock wave in this complex geometry. For this test, the ambient parameters are taken from the previous numerical experiment. The maximum pressure is taken to be P m a = 10000 Pa for the nonlinear case and P m a = 10 Pa for the linear case. With this setup, we observe the smooth Mach stem and its reflection in this domain. As before, the discussion is focused on the reflection of the head shock of the N-wave. In figure 6.11, the left plot shows the propagation of the N-wave in full computational domain. A zoom-in of the left plot is shown in the right; it clearly demonstrates the formation of the smooth Mach stem in both the front and rear shock of the N-wave. The time of numerical snapshot is chosen just after grazing over the complete convex surface. very different, in the nonlinear case a clear reflection of Mach stem is visible, whereas there is no Mach stem formation in the linear case. In order to further analyze this difference, a zoom-in near the region of reflection is shown in figure 6.13. The left-subplot shows that all the three shocks, namely, 1) the original incident front, 2) the reflected front created while grazing over the convex surface, 3) the reflected front created by the reflection of the first two. On the other hand, the right-subplot shows the presence of five shock fronts, namely, 1) the original incident front, 2) the reflected front created while grazing over the convex surface, 3) The smooth Mach stem (primary Mach stem) created by the interaction of the first two, 4) the reflected front created by the reflection of the primary Mach stem. And, 5) the secondary Mach stem created by the interaction of the previous two fronts.

Moreover, it is interesting to observe the ECSAV map in this complex geometry. Figure 6.14 represents the viscosity allocation for both linear and nonlinear regimes. Recall, in the linear case the same code is used with low amplitude with negligible nonlinear effects, and consequently very low viscosity. The left plot corresponds to the viscosity in the linear map, it clearly highlights the three shocks are at the same point. In the nonlinear regime (right plot), the Mach stem is distinctly visible with a very small reflection of the Mach stem arising at the surface. This feature of nonlinear Mach stem reflection leading to a five-shock pattern is in agreement with experimental results from Ram et al. [114] for strong shocks. 

Conclusions

We conclude this application with the inference that the method is capable of managing shocks in complex geometries. Different cases of regular and irregular reflections are produced using original configurations (complex geometries). To our knowledge, the observation of secondary Mach stem caused by the reflection of the primary Mach stem formed using weak acoustical shock waves is first of its kind. Moreover, access to all the velocity components is helpful in distinguishing the weak von Neumann reflection in linear and nonlinear regimes, which is not very clear with single variable like pressure.

Focusing of continuous (shock) waves: application to HIFU

Instances of focusing of shock waves are found in many practical situations like lithotripsy, HIFU, traumatic brain injury, acceleration of sonic boom. In the above mentioned cases there are other complications like the heterogeneities in the physical parameters and the thermo-viscous effects which are significant. Nevertheless, we try in this section, to demonstrate the ability of the method to manage the focusing of high amplitude acoustical waves induced by complex geometries using our system of nonlinear acoustics. The geometry for this numerical experiment is presented in figure 6.15, with a lining of transducers located on a circular aperture of radius R = 6.26 cm, indicated as the active surface. The domain presented is half of the actual domain, assuming symmetry with respect to the focal line. Therefore the central axis is assumed to have a wall boundary conditions and the remaining are assumed to have non-reflecting boundary conditions. The propagation medium is water with speed of sound c 0 = 1500 m.s -1 , ambient density ρ 0 = 1000 kg.m 3 , and with coefficient of nonlinearity β = 3.5.

The active surface is set to vibrate with uniform normal velocity (v) at each point of the transducer surface with an amplitude of 3.33 m.s -1 at frequency 1 MHz, starting at initial time. This has been achieved by precisely by imposing each velocity component depending on the angle (θ) of inclination of that point with respect to center. An example of simulation is illustrated by figure 6.16, showing various fields after 12 periods of time, just before the wave reaches the focus. The top-left subplot shows the x-component of the velocity which is almost constant over the insonated zone because the aperture angle θ is small, while the edge-wave emanating from the transducer edge clearly appears as a cylindrical wave in the geometrical shadow zone. The y-component of the velocity illustrates the complex shape of the edge-wave inside the insonated zone interfering with the geometrical wave as shown in the top-right subplot. The bottom-left subplot shows the magnitude of the velocity vector in the domain which is equal for all the transducers along the active surface. Based on this vibration of the boundary, the pressure created is shown in the bottom-right subplot of the figure.

Mesh Refinement Based on ECSAV

An interesting feature of using an unstructured mesh is the possibility to refine it locally when necessary. In linear acoustics, this feature is useful only in the situations for which the waves do not propagate in some regions of the computational domain. Otherwise, as the sizes of the meshes are related to the wavelength, the sizes are uniform. In nonlinear acoustics, situation can be slightly different. First of all, the sizes of the meshes have to be smaller. Indeed, in nonlinear acoustics, high frequencies are generated and so wavelengths which are smaller than the initial wavelength can appear. If the mesh is too coarse, then these wavelengths will be discretized incorrectly. As for linear fields, the shadow zones can be meshed with a poorer refinement. But this is also true for the regions of space where the nonlinearity is not too strong. For instance, if we consider the field radiated by a focused transducer, the nonlinear effects are important in the focal region but have less importance on the lateral parts of the field and beyond the focal point. Even if situations for which the nonlinear effects occur in whole domain, it is interesting to have at one's disposal a procedure to reduce the computational cost. The easiest way to obtained a mesh with finer meshes in key regions is to build the mesh by hand. A user knowing well the physics is able to determine which zones are important or not. The difficulty here is to have enough experience and also to be sure to not have problem in the transition regions. Therefore an automatic procedure is appealing but it has to be fast enough to be useful. In the following paragraph a procedure adapted to our solver for some interesting problems in nonlinear acoustics is presented. This procedure is illustrated in the case described previously: a HIFU transducer. Figure 6.17 presents the mesh built with a uniform resolution and with a characteristic size equal to λ/10. This mesh is referred as the high resolution mesh. It has 124052 elements. Note that this number of elements does not take into account the inner elements generated by the inner points (due to the polynomial order). The proposed procedure is based on a two steps simulation:

1. Firstly, a solution with a low resolution (corresponding to a resolution adapted to the linear problem) is obtained and the information concerning the artificial viscosity (η 1 ) introduced is recorded.

2. A new mesh is build from the previous solution. The key idea is to use the spatial information of the viscosity as an indication of the spatial importance of the nonlinear effects. Therefore, starting from the low resolution mesh, the new mesh is obtained by using a higher resolution in the region where viscosity is high and keeping low resolution otherwise.

3. Finally, a second simulation using the locally refined mesh is performed.

The following subsections are describing each step of this procedure. 

Low resolution simulation

This step is about the nonlinear simulation using a mesh suitable for the linear case. Note that, this computation is fully nonlinear. A good criterion for this simulation is to take about 2 elements per wavelength with a polynomial degree less than 5, corresponding mesh is shown in figure 6.18. The artificial viscosity map obtained after this simulation is recorded.

Local high resolution mesh

The starting point to build the local high resolution mesh is the averaged viscosity map of η 1 used to stabilize the nonlinear solution on the low resolution mesh. Then, the value of viscosity is used to build a map whose values represent the desired size of the mesh. To do that, the mesh refinement factor is scaled to the averaged (over the whole computational time) viscosity, from value equal to one (no refinement) in regions where the average viscosity is null, to the value 1/5 (mean mesh size around λ/10) in regions where the viscosity is highest.

This new map is then used as a target by the mesh software (GMSH) to generate the new mesh which is locally well resolved (near the shocks) and which has a lower resolution (corresponding to the quality of linear propagation) in other parts of the domain. Figure 6.19 shows the mesh obtained with this local high resolution with only 14526 elements which is around one-tenth of the high resolution mesh with uniform size (see figure 6.17). 

Focusing in a homogeneous medium

In this section, the results for the propagation (focusing) in an homogeneous medium (water) are given. They have been computed by using the local high resolution mesh described in the previous section. Figure 6.20 shows a snapshot of the pressure field, while a cross-section of the pressure over the focal line is shown in figure 6.21. A clear amplification can be seen near the focus. The nonlinear effects are sufficient to produce shock waves just before the focus. The classical 'U' shape is recovered as illustrated by the differences between the positive and negative parts, visible in the zoom of the figure 6.21. This is a classical example of the coupling of the nonlinear and the diffraction effects. It is also interesting to study the spatial evolution of the maxima and minima of the pressure in time. Figure 6.22 highlights the maximum and the minimum pressure in time on the focal line for both linear and nonlinear regime. In the linear regime, the maximum and minimum pressure are the same, in fact they are symmetrical and are around four times the original pressure. However in the nonlinear regime, it is interesting to observe that the amplification is enhanced by nonlinear effects with a maximum pressure in time now around seven times the original pressure. The strong nonlinear effects that take place mostly around the focus induce the generation of high frequencies, which are more efficiently focused.

On the other hand, the minimum pressure is around three times the initial minimum pressure, slightly less than in the linear case. A lower value of minimum pressure is appreciated, otherwise it could lead to cavitation in the tissues and damage them.

Intensity near the focus

In the context of HIFU, the intensity I is an important quantity because it is related to the heating rate by the approximate relation (α is the attenuation coefficient in the tissues at the source frequency) [START_REF] Bessonova | A Derating Method For Therapeutic Applications Of High Intensity Focused Ultrasound[END_REF]:

H ≈ 2αI, (6.2) 
where I is the norm of the mean value (I = √ < I > 2 ) of the intensity theoretically defined by the following relation:

< I >= 1 T T 0 p(x, t)v(x, t)dt, ( 6.3) 
where T is the time-period. Therefore, it is important to quantify precisely the intensity in the focal region in order to be able to determine the heat deposition. As it can be seen This relation is very convenient to estimate the intensity from pressure measurements or from simulations for which the variable is the pressure given by the codes based on the KZK approximation. Nevertheless, it remains an approximation which is rarely justified more deeply than with the previous argument of assuming a plane wavefront near the focus. The method developed in this thesis allows us to compare the intensity computed with the theoretical definition (6.3) and the approximate definition (6.4). Figure 6.23 presents the maps of theoretical intensity (top) and approximate intensity (bottom). The two figures look similar. To highlight the differences between the two intensities, the relative error is plotted in Figure 6.24 (||I theo | -|I approx ||/ max t |I theo |). It shows that there is up to 7% of difference between the two ways of computing intensity in this case. This difference is weak but not completely negligible. The moderate aperture of the transducer (approximatively 30 • ) explains also that these effects are limited. Note, the maximum difference is located in the focal region, where tissue heating is most important. So this difference may not be negligible. 

Focusing in a medium with an obstacle

To mimic ribs, a perfectly rigid disc is inserted in the mesh. The radius of the disk is 1cm and its center is located at x = -2.5 cm, y = 1.2 cm. Then, the method of local mesh refinement described above is applied to build the mesh. The resulting mesh has 13764 elements and is presented in Figure 6.25. The refinement of the mesh is still important in the region between the transducer and the focal spot but the region of the ribs is also well refined (at least the side illuminated by the transducer). 3) and the approximate one (6.4). The main distinction between the two figures is the position of maximum intensity, which is close to the surface of ribs in the apprximate case and near the center the theoretical case. Nevertheless, the intensity is high in the region close to the ribs even in the theoretical case. This phenomenon is well known and understood: because of the reflection in this region, the amplitude is increased and some heating effects can appear here and burn the tissue in a undesired region. The relative error is presented in the figure 6.29, showing that the difference is around 200% which outlines the fact that the approximate definition has to be used with caution. 

Conclusions

This application presents the high-fidelity qualities of the solver, like the ability to handle rigid obstacles in the domain, which to our knowledge can not be simulated with the existing methods for HIFU. The access to the velocity components ables us to compute the exact intensity instead of the approximate one (obtained using impedance relation). It also enables us to impose the velocity components exactly for each transducer in the active surface, instead of imposing pressure as done in most of the simulations (one variable methods) which is not fully realistic.

The relative error between the intensities calculated using the theoretical definition and the approximate definition is less than 10% in the medium without obstacles. However, the relative error goes up to around 200% in the medium with the rigid obstacles. This clearly highlights the importance of solving the system of equations instead of a scalar pressure wave equation as it gives access to the velocity. Also, a significant contribution brought by the solver is its ability to manage mesh refinement for better shock capturing, as it automatically decides the location where the refinement is needed, through the ECSAV.

Conclusions and Perspectives

Conclusions

The aim of this work was to develop a numerical solver for the propagation of acoustical shock waves in complex geometry. Based on the conservation laws of fluid dynamics, a first-order system in conservative form relevant for propagation of acoustical shock waves is derived in terms of acoustic perturbations. This system of equations is equivalent to the Kuznetsov equation of nonlinear acoustics in lossless, homogeneous and quiescent medium. On further restricting the system, different equations like Westervelt, KZK, Burgers are deduced from it, in order to highlight the consistency of the system.

The numerical solver for this system is built using the discontinuous Galerkin method. Its formulation is presented for 1D and 2D problems. Numerical experiments based on the 1D linear advection equation are presented for different initial conditions, highlighting the effect of discontinuities. Even in linear problems the discontinuities create the phenomenon of Gibbs oscillations, which could later lead to instabilities.

The numerical solver is developed using the 1D equivalent of the nonlinear system of equations which is the Burgers equation. The nonlinear steepening due to the nonlinearity is the reason for the Gibbs phenomenon. Some popular slope limiters are implemented on the spectral solution, to basically truncate/limit the solution. From our point of view, the use of slope limiters is not the best choice for high-order polynomial approximations. But for long range propagation, high-order methods are preferred because of their lowdissipative properties. However, with it comes the problem of numerical dispersion, which becomes a even bigger issue in nonlinear simulations. This is manifested in the form of spurious oscillations around the shock, and we recommend the use of artificial viscosity to mange it. The introduction of the artificial viscosity into the system is done by the parabolic-regularization of the hyperbolic system. Since uniform viscosity dissipates the entire wave, therefore it is implemented only locally in coupling with a shock detector. We proposed a new tool for sub-cell shock detection suitable for unstructured mesh, which we call as, the shock sensor (SS), in the framework of nonlinear acoustics. In 1D, it is compared with the state of the art in order to highlight the benefits of our method in detecting the position of shocks/discontinuities in the weak acoustical shock waves. Accordingly, an appropriate amount of viscosity, which we call as, element centered smooth artificial viscosity (ECSAV), is introduced into the system wherever there is a shock-detected, zero elsewhere. The name ECSAV comes from the fact that the viscosity is imposed locally in an element where a shock is detected. The amount of viscosity is decided using another component, which we call as the gradient factor (GF). The pedagogical development is done in the 1D setup. The numerical results are validated with a quasi-analytical solution of the inviscid Burgers equation for various initial value problems.

The method is extended for the 2D problems using the dimensionless form of the first-order system of equations. Using the 2D solver, the motivation behind the development of the new SS is presented more clearly, again highlighting the importance of different components of the SS in comparison to the state of the art (in the framework of nonlinear acoustics). In 2D, the implementation of ECSAV is not straight forward, therefore different implementations are presented distinguishing the advantage of one over the other. The 2D solver is validated using the one-way plane wave configuration with the quasi-analytical solution of the Burgers equation.

This solver is at present equipped for propagation of weak acoustical shocks in complex geometry in lossless, homogeneous, quiescent medium. In this framework, two different applications are presented. The first is the reflection of acoustical shock waves over a wedge using an original configuration. The reflections in linear and nonlinear regimes are compared for different angles of the wedge. Since we have chosen to solve the full system, we have all the velocity components which further emphasize the linear and nonlinear reflection, especially in weak von Neumann regime (where the effect is minute). A complex geometry other than the wedge is chosen, to further demonstrate the von Neumann reflection and the reflection of the smooth Mach stem in complex domain, which to our knowledge has never been observed before in acoustics.

Second application is the focusing of continuous high-amplitude ultrasound waves in a complex geometry, with and without obstacles. This example is analogous to high intensity focused ultrasound (HIFU) like setup, where the problem is initialized through a set of transducers arranged over a spherical surface. Thanks to our full system we are able to accurately prescribe the velocity components of the transducers on a curved surface. The maximum and minimum pressure at the focus in a domain without obstacles for both linear and nonlinear regimes shows clearly the effect of nonlinearity. In the nonlinear regime, the maximum pressure is around seven times the initial pressure and this enhances the generation of higher harmonics due to the strong nonlinear effect. This increases the absorption of necessary for hyperthermic treatments. On the other hand, a smaller value for the minimum pressure reduces the chances of cavitation in tissues, which would otherwise damage them. Moreover, the access to velocity components enables to compare the exact intensity and the appropriate intensity (obtained using the impedance relation). In a domain without any rigid obstacles the relative error between the two intensities is under 10% whereas in a domain with a rigid obstacle before the focus the relation error between the two intensities is as high as around 100%. This clearly demonstrates the ability of the code to simulate the propagation of acoustical shock waves in complex geometries (including obstacles). Moreover, a local mesh refinement tool is also developed based on the ECSAV allocation on a coarse mesh. The new mesh is constructed such that the element size is inversely proportional to ECSAV in that element of the original coarse mesh.

Perspectives

The present version of the numerical method for the system of equations of nonlinear acoustics in homogeneous, lossless, and quiescent medium can be used to the study the Lagrangian density as it is contained in the system, which is not possible with Westervelt or KZK equation. The quantitative analysis of the energy dissipation caused by the ECSAV has to be investigated. As expressed earlier in Chapter 5, the parameters involved in the working of SS, GF, and ECSAV are very robust and do not vary from problem to problem. Based on the conjecture: α 3 ≈ O(2 × 10 -2 ) proposed in Chapter 5, it becomes interesting to work for expressions/bounds of the empirical parameters.

The theoretical advancements could be the extension of the model to incorporate the heterogeneous and lossy media with flows. Due to the versatile nature of the DG method, it can be coupled with different media to study the multi-physics. For instance, in the application of HIFU with obstacles (Chapter 6), the rigid obstacle/hole could be replaced by a bone and then the propagation inside the bone can be studied in coupling with the heterogeneous fluid surrounding it.

The code needs further optimization for more efficiency. Thereafter, it will be extended to work on multiple-GPU cards. Again due to the versatile nature of the DG method, it can be coupled with other numerical solvers such as ray-tracing methods or one-way methods involved in sonic boom propagation until they start interacting with topography (complex geometries). Another improvement in the 2D solver is the inclusion of impedance boundary conditions, as can be found for instance in turbofan liners. The 2D code can be extended for 3D axisymmetric problems, and finally can be extended for full 3D system in order to solve realistic problems.
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 43 With this set of characteristic parameters, we are in a position to define the dimensionless variables define the transformation of the independent variables in the dimensionless frame of reference as Time: t = ω 0 t Space along x-axis: x = x L Space along y-axis: ȳ = y L Space along z-axis: z = z L . (2.45)

Fig. 3 . 3 .

 33 Fig. 3.3. Internal and external states.
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 3134 Fig. 3.4. Legendre-Gauss-Lobatto nodes in the k th element for N = 8.
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 35 Fig. 3.5. Normal vectors of the second edge (e2) of the k th element (blue) along with its neighboring element (green).
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 36 Fig. 3.6. Transformation from the reference element I to the k th element.
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 37 Fig. 3.7. Inner nodes inside a element for different order of approximations.

  .101) which is obtained from the Lagrange interpolating polynomial with l j (ξ i ) = δ ij . On equating the solutions provided by equations (3.98) and (3.101), one gets qT ψ(ξ) = q T l(ξ)(3.102) Using(3.99) in the above equation gives qT ψ(ξ) = (V q) T l(ξ),(3.103) which can be rewritten as qT ψ(ξ) = qT V T l(ξ).(3.104) 

  .110) Now use the above relation in (3.109) to get
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 38 Fig. 3.8. Example of a 4 × 2 grid (8 blocks) with a block of size 2 × 3 (6 threads each).
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 3 Fig. 3.10. Left: Gaussian-pulse is the initial condition at T=0. Right: DG solution at T = 1.
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 311312 Fig. 3.11. Left: Sine-pulse as the initial condition at T=0. Right: DG solution at T = 1.
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 41 Fig. 4.1. Approximate DG solution at different distances of propagation till one shock length, showing the waveform steepening (zoom-in of the actual domain).
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 42222 Fig. 4.2. Left: Variation of the modes of the solution in time till the shock length L. Right: 1D plot of the normalized (with respect to their maximum) first and highest order modes.
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 1543 Fig. 4.3. Left: Comparison of the DG solution obtained using the slope limiters by cockburn (SL1), Biswas (SL2), and Burbeau (SL3) with a quasi-analytical solution (BH) at a distance of σ = 1.5, with a discretization of 100 elements with polynomial order 3. Right: Zoom-in of the lower discontinuity in the left plot.
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 44 Fig. 4.4. Left: Comparison of the DG solution obtained using the slope limiters by cockburn (SL1), Biswas (SL2), and Burbeau (SL3) with a quasi-analytical solution (BH) at a distance of σ = 1.5, with a discretization of 40 elements with polynomial order 8. Right: Zoom-in of the lower discontinuity in the left plot.
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 45 Fig. 4.5. Comparison of the uniformly dissipated solution (UCV) and the quasi-analytical solution (BH) in a domain with with K = 40 elements and order of polynomial N = 8 at 5 shock length (σ = 5.0) with viscosity η = 0.04 (left) and η = 0.06 (right).
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 46 Fig. 4.6. Comparison smoothness indicator (SI) and the shock sensor (SS): top row shows the unstabilized DG solution with 40 elements and polynomial order 8 at a shock distance of 1.07 in contrast with the quasi-analytical solution (BH). Bottom left shows the value of the SI whereas the bottom right shows the value of the SS. The black dotted line shows the threshold above which a shock is sensed.
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 47 Fig. 4.7. Comparison of the three viscosity implementations namely, Persson's approach (SI+CV), constant viscosity based on SS (SS+max(ECSAV)), ECSAV based on SS (SS+ECSAV) with the quasi-analytical solution (BH) in a domain with K = 50 elements and order of polynomial N = 4 at shock distance σ = 1.455. Top subplot shows the pressure variation with its viscosity in lower subplot. The zoom-in of the lower discontinuity is shown in the right plot.
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 448 Fig. 4.8. ECSAV in r th element.
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 49 Fig. 4.9. Interaction of ECSAV in r th element with the neighboring elements.
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 410 Fig. 4.10. Final smooth artificial viscosity allocation.
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 514 Figure 4.11 shows the nonlinear propagation of a sine-period (4.49) using the Burgers equation. The results are shown at 2 shock length (left) and 5 shock length (right).A clear agreement is visible between the numerical solution and the quasi-analytical solution (BH) developed using the hayes method[START_REF] Hayes | Sonic Boom Propagation In A Stratified Atmosphere, With Computer Program[END_REF][START_REF] Coulouvrat | A quasi-analytical shock solution for general nonlinear progressive waves[END_REF]. It is important to note that the disspation sufficent enough to dissipate the higher frequencies and not damp the lower frequencies, which in turn would dissipate the entire signal.

Fig. 4 . 11 .

 411 Fig. 4.11. Top: Comparison of the solution obtained using the method (DG+SS+ECSAV) and the quasianalytical solution (BH) of the IVP (4.48)-(4.49); Middle: Viscosity allocation in the domain, Bottom: SS Vs element, the dotted line indicates the threshold above which a shock is sensed. Left: At around 2 shock length. Right: At around 5 shock length.
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 412 Fig. 4.12. Top: Comparison of the solution obtained using the method (DG+SS+ECSAV) and the quasianalytical solution (BH) of the IVP (4.48)-(4.51); Middle: Viscosity allocation in the domain, Bottom: SS Vs element, the dotted line indicates the threshold above which a shock is sensed. Left: At around 2 shock length. Right: At around 5 shock length.
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 413 Fig. 4.13. Top: Comparison of the solution obtained using the method (DG+SS+ECSAV) and the quasianalytical solution (BH) of the IVP (4.48)-(4.53); Middle: Viscosity allocation in the domain, Bottom: SS Vs element, the dotted line indicates the threshold above which a shock is sensed. Left: Initial condition. Right: At around 5 shock length.
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 4 Figure 4.[START_REF] Beyer | Nonlinear acoustics[END_REF] shows the comparison of the numerical solution of the N-wave with analytical solution computed using the equal area rule. The left plot is the initial condition whereas the right plot is at 5 shock length. Note that initially there is no viscosity and as the propagation occurs the viscosity is nonzero only in the neighborhood of shock.
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 414 Fig. 4.14. Top: Comparison of the solution obtained using the method (DG+SS+ECSAV) and the quasianalytical solution (BH) of the IVP (4.48)-(4.55); Middle: Viscosity allocation in the domain, Bottom: SS Vs element, the dotted line indicates the threshold above which a shock is sensed. Left: At 1 shock length. Right: At around 5 shock length.
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 415 Fig. 4.15. Top: Comparison of the solution obtained using the method (DG+SS+ECSAV) and the quasianalytical solution (BH) of the IVP (4.48)-(4.57); Middle: Viscosity allocation in the domain, Bottom: SS Vs element, the dotted line indicates the threshold above which a shock is sensed. Left: Initial condition. Right: At around 2 shock length.
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 4 Figure 4.15 shows the initial condition (left) and the waveform after propagating two shock distance. Observe that the viscosity allocation in center-right plot is proportional to the shock strength. The second Gaussian in the viscosity plot (corresponding to the moving shock) is actually moving with the shock, this demonstrates the sensitivity of the shock sensor.
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 416 Fig. 4.16. Top: Comparison of the solution obtained using the method (DG+SS+ECSAV) and the quasianalytical solution (BH) of the IVP (4.48)-(4.57); Middle: Viscosity allocation in the domain, Bottom: SS Vs element, the dotted line indicates the threshold above which a shock is sensed. Left:At around 3 shock length. Right: At around 5 shock length.
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 4 Figure 4.[START_REF] Brooks | Streamline Upwind/Petrov-Galerkin Formulations For Convection Dominated Flows With Particular Emphasis On The Incompressible Navier-Stokes Equations[END_REF] shows the waveform after traveling three shock length (left) and five shock length (right). The left plot shows the merging of two shocks (top-left) and corresponding viscosity profiles are also merging (center-left). This further strengthens the argument in support of the ECSAV. Finally, after five shock length there are only two shocks left and the N-wave propagates.
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 51 Fig. 5.1. The 2D rectangular domain with all rigid boundaries containing water is shown with an inverted sine-period (5.78) as the initial condition.
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 52 Fig. 5.2. Comparison of the different numerical solutions after the propagation of a sine-period (5.78) till three shock lengths. SS corresponding to ρ a is shown in subplots (a), (b), (c) using the definition 'SS1':(5.82), 'SSN': (5.83), 'SS1+SSN': (5.66)-(5.67), respectively. Plot over x-axis of p a of all the three cases is shown in subplot-(d).
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 5 Figure 5.2 presents three different shock sensors corresponding to ρ a , along with a zoomin of the plot over x-axis of p a . All these plots are made after the propagation of around two shock lengths. The subplot-(a) shows (SS) k ρa (t), k = 1, • • • , K, when only the linear contribution of the modal solution (5.62) is considered to construct the shock sensor. In this case, the shock sensor takes the form:

Figure 5 .

 5 3 presents three different shock sensors corresponding to v a , along with a zoom-in of the plot over x-axis of v a . All these plots are made after the propagation of around half shock length.As before, the subplot-(a) shows the value of (SS) k va (t), k = 1, • • • , K, when only the first-order sensor (5.82) is considered, whereas the subplot-(b) shows the map

Fig. 5 . 3 .

 53 Fig. 5.3. Comparison of the different numerical solutions after the propagation of a sine-period (5.78) till half shock length. SS corresponding to v a is shown in subplots (a), (b), (c) using the definition 'SS1':(5.82), 'SSN': (5.83), 'SS1+SSN': (5.66)-(5.67), respectively. Plot over x-axis of v a of all the three cases is shown in subplot-(d).

Fig. 5 . 4 .

 54 Fig. 5.4. The 2D rectangular domain with all rigid boundaries containing water is shown with a sine-period (5.84) as the initial condition.

figure 5 . 4 ,

 54 figure 5.4, which is given by:

Fig. 5 . 5 .

 55 Fig. 5.5. Comparison of the different numerical solutions after the propagation of a sine-period (5.84) till five shock lengths. Viscosity corresponding to ρa is shown in subplots (a), (b), (c), (d) using the definition 'CV':(5.85), 'ECSAV': (5.86), ECSAV+EN: (5.87), ECSAV+EN+VN: (5.88), respectively. Plot over x-axis of pa of all the four cases is shown in subplot-(e) with zoom-in near the discontinuities in subplots (f),(g).

Fig. 5 . 6 .

 56 Fig. 5.6. Numerical solution after the propagation of a sine-period (5.84) till five shock lengths. The numerical solution is obtained using the approach (5.88) for the introduction of viscosity.

Fig. 5 . 7 .

 57 Fig.5.7. Comparison of the plot over x-axis of the numerical solution (ECSAV+EN+VN) after the propagation of a sine-period (5.84) till five shock lengths with a quasi-analytical solution (BH) of the 1D inviscid Burgers equation. The numerical solution is obtained using the approach (5.88) for the introduction of viscosity.

Fig. 6 . 1 .

 61 Fig. 6.1. Schematic illustration of the regular reflection phenomenon: (left) Snell-Descartes reflection, (right) nonlinear reflection.

Fig. 6 . 2 .

 62 Fig. 6.2. Schematic illustration of the irregular reflection phenomenon: (left) von Neumann reflection, (right) weak von Neumann reflection.

, 21 •

 21 and 30 • investigated by Karzova et al. . For these configurations, the key parameter 'a' is obtained using equation 6.1 as a = 0.10, a = 0.75, a = 1.11, a = 1.55, respectively.

Fig. 6 . 3 .

 63 Fig. 6.3. Example mesh of a rigid plane inclined at an angle θ = 14 • .

Fig. 6 . 4 .

 64 Fig. 6.4. Reflection of a shock wave on a wedge for θ = 14 • .

Fig. 6 . 5 .

 65 Fig. 6.5. Reflection of a shock wave on a wedge at θ = 30 • in a Snell-Descartes reflection regime (a = 1.55): (left) linear propagation, (right) nonlinear propagation.

Fig. 6 . 6 .

 66 Fig. 6.6. Reflection of a shock wave on a wedge at θ = 21 • in a regular nonlinear reflection regime (a = 1.11): (left) linear propagation, (right) nonlinear propagation.

Fig. 6 . 7 .

 67 Fig. 6.7. Reflection of a shock wave on a wedge at θ = 14 • in von Neumann reflection regime (a = 0.75): (left) linear propagation, (right) nonlinear propagation.

Fig. 6 . 8 .

 68 Fig. 6.8. Comparison of the linear (top-left) and nonlinear (top-right) simulation in von Neumann reflection regime; with five equally spaced plot-over-lines near the region of reflection for linear (bottom-left) and nonlinear (bottom-right) propagation.

Fig. 6 . 9 .

 69 Fig. 6.9. Reflection of a shock wave on a wedge at θ = 2 • in a weak von Neumann reflection regime(a = 0.10): (left) linear propagation, (right) nonlinear propagation.

Fig. 6 .

 6 Fig. 6.10. Y-component of the velocity va in the weak von Neumann reflection regime(a = 0.10): (left) linear propagation, (right) nonlinear propagation.

Fig. 6 . 11 .

 611 Fig. 6.11. Reflection of a shock wave on a concave-convex geometry: Complete computational domain (left) , zoom-in near the region of reflection (right).

Fig. 6 . 12 .

 612 Fig. 6.12. Reflection of the Mach stem created by the convex surface over the concave surface: linear regime (left) and nonlinear regime (right).

Figure 6 .

 6 Figure 6.12 shows the interaction of the waves while grazing over the concave surface that occurs after passing over the convex surface. The left-subplot corresponds to the linear regime, whereas the right-subplot to the nonlinear regime. The two subplots are

Fig. 6 .

 6 Fig. 6.13. Zoom-in of the reflection of the Mach stem created by the convex surface over the concave surface: linear regime (left) and nonlinear regime (right).

Fig. 6 .

 6 Fig. 6.14. ECSAV corresponding to the reflection of the Mach stem created by the convex surface over the concave surface: linear regime (left) and nonlinear regime (right).

Fig. 6 . 15 .

 615 Fig. 6.15. Computational domain for the HIFU transducer.

Fig. 6 . 16 .

 616 Fig. 6.16. Velocity components along x-axis (top-left) and along y-axis (top-right) are shown; with its magnitude (bottom-left) and the pressure fields generated by the boundary conditions (bottom-right).

Fig. 6 . 17 .

 617 Fig. 6.17. High resolution mesh (124052 elements) for the HIFU transducer.

Fig. 6 . 18 .

 618 Fig. 6.18. Low resolution mesh (5194 elements) for the HIFU transducer.

Fig. 6 . 19 .

 619 Fig. 6.19. Local high resolution mesh (14526 elements) for the HIFU transducer.

Fig. 6 . 20 .

 620 Fig. 6.20. Snapshot of the pressure field produced by the HIFU transducer.

Fig. 6 . 21 .

 621 Fig. 6.21. Pressure along the focal axis (top) and zoom-in around the focal region (bottom) in HIFU.

Fig. 6 . 22 .

 622 Fig. 6.22. Maximum (blue) and minimum (green) pressure in time along the focal line for both linear (left) and nonlinear (right) regimes.

Figure 6 .

 6 Figure 6.20, near the focus the wavefront are quasi-plane. Therefore, one often assumes that the impedance relation is valid in the focal region, and the intensity is computed by

Fig. 6 . 23 .

 623 Fig. 6.23. Comparison of the intensity computed by the theoretical (top) and approximate (bottom) definition in HIFU.

Fig. 6 . 24 .

 624 Fig.6.24. Relative error between the theoretical and the approximate intensity in HIFU.

Fig. 6 . 25 .

 625 Fig. 6.25. Mesh of the computational domain for HIFU with rigid obstacle.

Fig. 6 . 26 .

 626 Fig. 6.26. Snapshot of the pressure field produced by the HIFU transducer, showing its interaction with the rigid obstacle.

Figure 6 .

 6 Figure 6.26 shows a snapshot of the pressure field. We can see that the spatial distribution is completely different from the homogeneous case (Fig.6.20). It is not a surprise that the presence of rigid obstacle completely modifies the pressure field. In particular, the axial pressure distribution does not present shock waves anymore (Figure6.[START_REF] Claerbout | Fundamentals of geophysical data processing with applications to petroleum prospecting[END_REF] 

Figure 6 .

 6 Figure 6.28 shows the intensities computed with the theoretical definition (6.3) and the approximate one(6.4). The main distinction between the two figures is the position of maximum intensity, which is close to the surface of ribs in the apprximate case and near the center the theoretical case. Nevertheless, the intensity is high in the region close to the ribs even in the theoretical case. This phenomenon is well known and understood: because of the reflection in this region, the amplitude is increased and some heating effects can appear here and burn the tissue in a undesired region. The relative error is presented in the figure6.29, showing that the difference is around 200% which outlines the fact that the approximate definition has to be used with caution.

Fig. 6 . 28 .

 628 Fig. 6.28. Comparison of the intensity computed by the theoretical (top) and the approximate (bottom) definition in HIFU with rigid obstacle.

Fig. 6 . 29 .

 629 Fig. 6.29. Relative error between the theoretical intensity and the approximate intensity in HIFU with rigid obstacle.

54) Equation of State:

  

	(2.55)
	ρ2 a
	B	2A
	pa = ρa +

2.5 Comparison with other Equations of Nonlinear Acoustics 2.5.1 Conservative to Primitive form

  

	In this paragraph, the system of conservative variables (2.25) is transformed to the prim-
	itive variables. Calculations are done in tensor notations for the sake of clarity.
	The mass equation (2.15) is equivalent in both the formulations i.e.the primitive and
	conservative forms, which is				
		∂ρ a ∂t	+	∂ ∂x k	ρv ak = 0.	(2.56)
	The momentum equation in the tensor notation is
	∂ ∂t	ρv ai +	∂ ∂x k	(ρ 0 v ai v ak + p a δ ik ) = 0.	(2.57)
	On expanding the above equation and subtracting the v ai ×(2.56), one gets

  123)Even though it is the most widely used method, it has a drawback that it requires four extra storage arrays for the intermediate time steps. An efficient alternative to it is the Low-Storage Explicit Runge-Kutta method (LSERK), which is of the form

	i	a i	b i	c i
	1	0	1432997174477 9575080441755	0
	2 -567301805773 1357537059087	5161836677717 13612068292357	1432997174477 9575080441755
	3 -2404267990393 2016746695238	1720146321549 2090206949498	2526269341429 6820363962896
	4 -3550918686646 2091501179385	3134564353537 4481467310338	2006345519317 3224310063776
	5 -1275806237668 842570457699	2277821191437 14882151754819	2802321613138 2924317926251

Table 3 . 1 .

 31 Coefficients for fourth-order Low Storage Explicit Runge-Kutta method (LSERK).

Equations of Propagation in Nonlinear Acoustics

Derivation from Westervelt to KZ is done on Page 60 of Hamilton and Blackstock[START_REF] Hamilton | Nonlinear Acoustics[END_REF] and is not reproduced here.

Shock Management in One-Dimension

Shock Management in Two-Dimensions

The subscript m = ρa, ua, va of the SS is replaced by m = 1, 2,

[START_REF] Albin | Fourier continuation methods for high-fidelity simulation of nonlinear acoustic beams[END_REF], whenever used with respect to the system (5.[START_REF] Beyer | Nonlinear acoustics[END_REF] 

Applications
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