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Abstract

Lots of researches convey the importance of the RNA molecules, as they play

vital roles in many molecular procedures. And it is commonly believed that the

structures of the RNA molecules hold the key to the discovery of their functions.

During the investigation of RNA structures, the researchers are dependent on

the bioinformatical methods increasingly. Many in silico methods of predicting

RNA secondary structures have emerged in this big wave, including some ones

which are capable of predicting pseudoknots, a particular type of RNA secondary

structures.

The purpose of this dissertation is to try to compare the state-of-the-art meth-

ods predicting pseudoknots, and offer the colleagues some insights into how to

choose a practical method for the given single sequence. In fact, lots of efforts

have been done into the prediction of RNA secondary structures including pseu-

doknots during the last decades, contributing to many programs in this field.

Some challenging questions are raised consequently. How about the performance

of each method, especially on a particular class of RNA sequences? What are

their advantages and disadvantages? What can we benefit from the contemporary

methods if we want to develop new ones? This dissertation holds the confidence

in the investigation of the answers.

This dissertation carries out quite many comparisons of the performance of

predicting RNA pseudoknots by the available methods. One main part focuses

on the prediction of frameshifting signals by two methods principally. The second

main part focuses on the prediction of pseudoknots which participate in much

more general molecular activities.

In detail, the second part of work includes 414 pseudoknots, from both the

Pseudobase and the Protein Data Bank, and 15 methods including 3 exact meth-
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ods and 12 heuristic ones. Specifically, three main categories of complexity mea-

surements are introduced, which further divide the 414 pseudoknots into a series

of subclasses respectively.

The comparisons are carried out by comparing the predictions of each method

based on the entire 414 pseudoknots, and the subsets which are classified by both

the complexity measurements and the length, RNA type and organism of the

pseudoknots.

The result shows that the pseudoknots in nature hold a relatively low complex-

ity in all measurements. And the performance of contemporary methods varies

from subclass to subclass, but decreases consistently as the complexity of pseu-

doknots increases. More generally, the heuristic methods globally outperform the

exact ones. And the susceptible assessment results are dependent strongly on

the quality of the reference structures and the evaluation system. Last but not

least, this part of work is provided as an on-line benchmark for the bioinformatics

community.
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Résumé

De nombreuses recherches ont constaté l’importance des molécules d’ARN, car

ils jouent un rôle vital dans beaucoup de procédures moléculaires. Et il est accepté

généralement que les structures des molécules d’ARN sont la clé de la découverte

de leurs fonctions.

Au cours de l’enquête de structures d’ARN, les chercheurs dépendent des méth-

odes bioinformatiques de plus en plus. Beaucoup de méthodes in silico de pré-

diction des structures secondaires d’ARN ont émergé dans cette grosse vague, y

compris certains qui sont capables de prédire pseudo-nœuds, un type particulier

de structures secondaires d’ARN.

Le but de ce travail est d’essayer de comparer les méthodes de l’état de l’art

pour prédiction de pseudo-nœud, et offrir aux collègues des idées sur le choix d’une

méthode pratique pour la seule séquence donnée. En fait, beaucoup d’efforts ont

été fait dans la prédiction des structures secondaires d’ARN parmi lesquelles le

pseudo-nœud les dernières décennies, contribuant à de nombreux programmes dans

ce domaine. Certaines enjeux sont soulevées conséquemment. Comment est-elle la

performance de chaque méthode, en particulier sur une classe de séquences d’ARN

particulière? Quels sont leurs pour et contre? Que pout-on profiter des méthodes

contemporaines si on veut développer de nouvelles? Cette thèse a la confiance

dans l’enquÃłte sur les réponses.

Cette thèse porte sur très nombreuses comparaisons de la performance de

prédire pseudo-nœuds d’ARN par les méthodes disponibles. Une partie princi-

pale se concentre sur la prédiction de signaux de déphasage par deux méthodes

principalement. La deuxième partie principale se concentre sur la prédiction de

pseudo-nœuds qui participent à des activités moléculaires beaucoup plus générale.

Dans le détail, la deuxième partie du travail comprend 414 pseudo-nœuds de
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Pseudobase et de la Protein Data Bank, ainsi que 15 méthodes dont 3 méthodes

exactes et 12 heuristiques. Plus précisément, trois grandes catégories de mesures

complexes sont introduites, qui divisent encore les 414 pseudo-nœuds en une série

de sous-classes respectivement.

Les comparaisons se passent par comparer les prédictions de chaque méthode

basée sur l’ensemble des 414 pseudo-nœuds, et les sous-ensembles qui sont classés

par les deux mesures complexes et la longueur, le type de l’ARN et de l’organisme

des pseudo-nœuds.

Le résultat montre que les pseudo-nœuds portent une complexité relativement

faible dans toutes les mesures. Et la performance des méthodes modernes varie de

sous-classe à l’autre, mais diminue constamment lors que la complexité de pseudo-

nœuds augmente. Plus généralement, les méthodes heuristiques sont supérieurs

globalement à celles exacts. Et les résultats de l’évaluation sensibles sont dépen-

dants fortement de la qualité de structure de référence et le système d’évaluation.

Enfin, cette partie du travail est fourni comme une référence en ligne pour la

communauté bioinformatique.
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Chapter 1

Introduction

This dissertation focuses on the identification of pseudoknots, a secondary

structural motif of RNA, including principally the study of the hierarchical clas-

sifications of pseudoknots, and the comparison of mechanisms and performances

of the methods that are available to predict pseudoknots.

Pseudoknots are involved in a variety of molecular processes, such as playing

the role as a stimulator in the programmed ribosomal frameshifting, one classical

recoding event where the ribosome can switch to an alternative open reading frame

such that a different peptide is translated.

The repertoire of pseudoknots includes the participation in more general molec-

ular activities. These versatile motifs are publicly accessible via the PseudoBase

[Van Batenburg et al., 2000], a particular database for pseudoknots, and the Pro-

tein Data Bank (PDB) [Berman et al., 2000], a database with some entries contain-

ing pseudoknots. The pseudoknots from both provenances are well anatomized in

this dissertation, including their classification in accordance to several measure-

ments of complexity hierarchically.

Based on the entries from the two databases, a series of comparisons are car-

ried out to verify the flexibility of the contemporary methods in predicting the

pseudoknots. The evaluation of performance of prediction will be performed from

the perspectives of the characteristics of both the pseudoknots and the prediction

methods. In other words, the performance of prediction is revealed from the eval-

uation of sub-collections of predictions which are separated in accordance to the

length of the sequences, the complexities of the pseudoknots, the mechanism of
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the prediction methods etc.

In detail, the dissertation is organized as follows.

Chapter 2 is a brief introduction about the background of RNAs and two types

of RNA secondary structures, the standard pseudoknot-free secondary structures

and the pseudoknots. Couples of RNA file formats employed in bioinformatics

are introduced as well, which encompass both the sequential and structural in-

formation of the given RNA. The pseudoknot pattern and the linear graphical

representation of the pseudoknots are introduced in this chapter, which two serve

as the principal demonstration of the pseudoknots in the following chapters.

Chapter 3 is a general description of the state-of-the-art researches on the

prediction of RNA secondary structures. Predicting RNA secondary structures

can take advantage of the comparative methods, with the assistance of sequence

or structural alignment, but this dissertation focuses on the methods predicting

RNA secondary structure from a single given sequence. The methods may employ

the mechanisms of minimizing the free energy of the RNA folding, maximizing

the number of base pairs, calculating the partition functions and probability of

base pairs, or some heuristic strategies to detect a best secondary structure in

the defined model. However it has been proved that predicting an RNA sec-

ondary structure containing arbitrary pseudoknots is NP-hard. Consequently,

each method that can perform the prediction in polynomial time has different

levels of compromise between the computational cost and agreeable performance,

such as the pseudoknot types that are recognized. On the other hand, heuristic

methods may remedy the restriction on the types and the lengths of pseudoknots

that can be detected by the particular searching model, but with a sacrifice on

the optimality of the detection.

Chapter 4 describes a cooperative work of detecting the -1 programmed ri-

bosomal frameshifting (-1 PRF) signals. The ribosomal frameshiftings are one

classical recoding event occurring in the regulation of post transcription. A

frameshifting signal contains two primary components, the slippery sequence and

the downstream secondary structure as a stimulator. The pseudoknot is declared

to promote a frameshifting more efficiently than the standard stem-loop secondary

structure, especially in the viruses [Brierley, 1995; Brierley et al., 2007]. Several

2



algorithms detecting the frameshifting signals, and the comparison of their per-

formance of prediction are introduced. Particularly, as a significant part of the

comparisons, Orphea [Brégeon et al.; Forest, 2005], a software developed by the

LRI and IGM groups, and KnotInFrame [Theis et al., 2008], a pipeline for detect-

ing the frameshifting signals by a German group, the two programs are compared

for their detection of frameshifting signals based on 34 frameshifting signals in

Pseudobase.

The pseudoknots involved in the frameshifting recoding events are a subset of

the pseudoknot family. Chapters 5, 6 and 7 illustrates the study of much more gen-

eral pseudoknots and the prediction methods. The study is carried out in two main

categories. First, a set of classifications of the RNA pseudoknots are introduced,

covering the physical interactions, the algorithmic accessibilities and the confor-

mational characteristics. Then, a benchmark of predicting pseudoknots by the

state-of-the-art methods is shown. The predictions are evaluated with the criteria

of the sensitivity, the positive predictive value (PPV) and the Matthews correla-

tion coefficient (MCC), in a variety of the separated sub-collections of pseudoknots

which are divided with respect to the lengths and complexities of the pseudoknots,

the RNA families they belong to etc. Additionally, the general performance of the

exact methods and the heuristic methods, will be compared as well. The bench-

mark can be expected as a database of the knowledges which are learned from

the anatomization of the pseudoknots in hand and the predictions based on them

by the state-of-the-art capable methods. The knowledges or experiences obtained

cater to the motivation of the benchmark, which is at the service of giving a hand

to the users who are interested in the prediction of RNA pseudoknots in silico,

helping or guiding them to accomplish the mission of how to predict a plausible

pseudoknot from the given RNA sequence?

In practice, Chapter 5 introduces the preparation part of this benchmark. It

covers the motivation of this study, the dataset of pseudoknots, three pseudo-

knot complexity measures which classify the dataset hierarchically, the prediction

methods, and the evaluation parameters. Chapter 6 shows the results of this

benchmark. It includes both the classification of pseudoknots and the predic-

tion of pseudoknots by the considered methods. And the web development of

3

https://www.lri.fr/index_en.php?lang=EN
http://www.igmors.u-psud.fr/?lang=en


the benchmark is introduced next, which allows the results being available to the

community on-line. Chapter 7 discusses the results, and concludes the benefits

and lessons that are obtained from this study.

The closing chapter, Chapter 8 summarizes the dissertation by the concluding

remarks of the previous chapters, and proposes the perspectives of the future work.
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Chapter 2

Background

2.1 RNA and Structures

2.1.1 RNA

A ribonucleic acid (RNA) is a chain of ribonucleotides linked together by cova-

lent chemical bonds, with each nucleotide containing a ribose sugar, a phosphate

molecule, and one of the four nitrogenous bases: adenine(A), cytosine(C), gua-

nine(G) or uracil(U) attached to the ribose. RNA is an ubiquitous family of large

biological molecules that perform multiple vital roles in the coding, decoding,

regulation, and expression of genes.

In the classical view of the so-called central dogma of biology, the messenger

RNAs (mRNA), also referred to as the coding RNAs, serve as the template of the

synthesis of a particular protein with the coded genetic information transcribed

from the deoxyribonucleic acid(DNA) [Crick et al., 1970].

The RNAs that do not encode a protein are termed as the non-coding RNA

(ncRNA). More and more researches convey that the non-coding RNA molecules

are critical components of transport, transcriptional and post-transcriptional reg-

ulation, chromosome replication, RNA processing and modification, mechanism of

some diseases and other fundamental biological functions [Mattick and Makunin,

2006]. In the domain of RNA genomics of ribonomics, the efforts are devoted

to find the determination of the physiological roles of RNA structures [Bourdeau

et al., 1999].

5



2.1.2 RNA Structures

In the RNA world, much of the primary sequence is unimportant to function as

long as the conformation and overall stability of the structure is maintained [Brier-

ley et al., 2008]. And it is illustrated that the structural space is vastly smaller

than the nucleotide sequence space [Gan et al., 2003; Haslinger and Stadler, 1999].

This means that there are a number 4𝑛 of RNA sequences of length 𝑛 theoretically,

and the number of secondary structures without isolated base pairs is significantly

smaller than 2𝑛 [Grüner et al., 1996; Haslinger and Stadler, 1999]. This point of

view suggests a way to survey the function of the RNA molecules, through the

window of structures.

The first level of the organization of RNA structures, the primary structure, is

the sequence of bases of the RNA chain that are attached to the sugar-phosphate

backbone, and it is determined experimentally [Schmitt and Waterman, 1994;

Westhof and Auffinger, 2000].

An RNA chain bends and twines about itself [Zuker and Sankoff, 1984]. Bases

form chemical bonds, hydrogen bonds, with their proximal complementary neigh-

bors, which are characterized as base pairs: two standard or canonical Watson-

Crick base pairs of A with U and G with C, as well as a wobble base pair of G

with U. This collection of base pairs is referred to as classical or regular secondary

structure [Leontis and Westhof, 2001].

Besides the wobble pair, a wide variety of the non-Watson-Crick pairs, involv-

ing 30-40% of bases, contribute to the tertiary structure of an RNA superiorly,

which organizes the loops and distortions folded up from the secondary structure

precisely in space. The three-dimensional arrangement of the atoms in the ter-

tiary structure can be decomposed into a collection of spatial interactions, some

of them being promoted by spatial motifs that are held together by pairwise in-

teractions. The tertiary structure is the level of conformation relevant for the bio-

chemical function of the structured RNA molecule. [Tinoco Jr and Bustamante,

1999; Westhof and Auffinger, 2000; Zuker and Sankoff, 1984]

Tertiary RNA-RNA and quaternary RNA-protein interactions are mediated by

RNA motifs, defined as recurrent and ordered arrays of non-Watson-Crick base-

pairs [Leontis and Westhof, 2002].
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An example of three levels of RNA structures is shown in Figure 2.1, where

the secondary structure is visualized by VARNA [Darty et al., 2009], the tertiary

structure is downloaded from the PDB website.

(a) Primary structure (b) Secondary structure

(c) Tertiary structure

Figure 2.1: The hierarchical structures of Class II PreQ1 Riboswitch RNA of Lactobacillus

Rhamnosus (PDBID: 4JF2, chain A).

During the last decades, lots of efforts have been spent on investigating the

full spatial functional conformations, the tertiary structures, with a variety of

experimental techniques, such as X-ray crystallography and nuclear magnetic res-

onance(NMR). However, since they are extremely costly and time consuming, an

alternative avenue which takes advantages of the bioinformatic methods is desired

complementarily.

On the other hand, the RNA structure is declared to be hierarchical and its

folding is sequential [Tinoco Jr and Bustamante, 1999] during the investigation

of the tertiary structure. This survey [Tinoco Jr and Bustamante, 1999] implies

that the information in the sequence flows sequentially, first to the secondary

folding and then to the tertiary structure, since some secondary structures are
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found to be present in the tertiary structure. The folding of RNA molecule is

concluded as that the primary sequence determines the secondary structure which,

in turn, determines its tertiary folding, whose formation alters only minimally the

secondary structure. Meanwhile, the secondary structure is more stable than the

tertiary folding and can exist and be stable independently of its tertiary folding,

since the energies involved in the formation of secondary structure are larger than

those involved in the tertiary interactions.

Thanks to these hypotheses, one of the most contemporarily prevalent inves-

tigations of the RNA functions increasingly focuses on the secondary structure

characterization in the bioinformatic fashion, such as the theoretical prediction

with the computational assistance, which provides an attractive alternative to the

empirical discovery of RNA secondary structure. Computational prediction of the

RNA secondary structures is the main interest of this dissertation and will be

elaborated in detail in the next chapters.

2.2 RNA Secondary Structures

The secondary level of RNA structure identifies both the canonically base-

paired regions as helix stems, and non-paired regions as loops. [Hendrix et al.,

2005]

2.2.1 Preliminaries

From a computer science point of view, an RNA sequence 𝑆, composed of

𝑁 nucleotides, can be represented as a string over the base alphabet {A,C,G,U}:

𝑆 = 𝑆1𝑆2𝑆3...𝑆𝑛, where the sequence is numbered from 1 to 𝑛 from the 5’ terminus

to the 3’ terminus, with the 𝑆𝑖 denoting the base corresponding to the 𝑖th position

in 𝑆.

Normally, we may put more attention to the integers of positions, rather than

the composition of the RNA sequence in the context of secondary structure. An

RNA sequence 𝑆 can be notated as a string of [1, 𝑛]. And in such case of prediction

issues, we often focus on a partial sequence, which is termed as fragment. A

fragment [𝑖, 𝑗] refers to the substring of 𝑆 from 𝑖 to 𝑗.
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Two complementary bases 𝑖 and 𝑗 may form a base pair (𝑖, 𝑗). Each such

pair of integers represents the pairing of the 𝑖th nucleotide in 𝑆 with the 𝑗th one.

Normally, an hairpin constraint [Jiang et al., 2010] that 𝑗 − 𝑖 > 3 is taken into

account, indicating that there are at least three other nucleotides in the sequence

between 𝑖 and 𝑗.

Given two base pairs (𝑖, 𝑗) and (𝑘, 𝑙), with 𝑖 < 𝑗 and 𝑘 < 𝑙, they can be:

∙ Nested if either 𝑖 < 𝑘 < 𝑙 < 𝑗 or 𝑘 < 𝑖 < 𝑗 < 𝑙.

∙ Sequential if either 𝑖 < 𝑗 < 𝑘 < 𝑙 or 𝑘 < 𝑙 < 𝑖 < 𝑗. Two sequential base pairs

are referred to as two independent structural elements in this dissertation

unless otherwise noted.

∙ Crossing or overlapping if either 𝑖 < 𝑘 < 𝑗 < 𝑙 or 𝑘 < 𝑖 < 𝑙 < 𝑗.

The consecution of two base pairs is a special case of the nesting, if either

𝑘 = 𝑖 + 1 and 𝑙 = 𝑗 − 1 or 𝑖 = 𝑘 + 1 and 𝑗 = 𝑙 − 1. Two consecutive base pairs

form a base pair stacking.

An RNA secondary structure is an union of disjoint base pairs, where each

base participates in at most one base pair. A secondary structure is standard or

pseudoknot-free if all the base pairs in the structure are either nested or sequential,

which are referred to as the consistency of the base pairs in [Stadler and Haslinger,

1997]. A secondary structure contains a pseudoknot if at least two base pairs are

crossing.

2.2.2 Standard Secondary Structures

The standard secondary structure corresponds to a network of structural el-

ements such as hairpin loops, interior loops, bulges, multi-loops which are also

referred to as junctions [Gan et al., 2003; Hendrix et al., 2005] and helical stems.

A concise definition of the elements is as follows [Andronescu et al., 2003; Spirollari

et al., 2009]:

∙ Hairpin loop: a loop which contains exactly one base pair.

∙ Interior loop: a loop which contains exactly two base pairs, referred to as

internal loop in some literatures.
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∙ Bulge: a bulge is a special interior loop. A bulge has two base pairs but with

only one side of the loop having one or several unpaired bases.

∙ Multi-loop: a loop which contains more than two base pairs.

∙ Helical stem or helix: a set of consecutive base pairs.

∙ External base: a unpaired base not contained in any loop.

Figure 2.2 shows the examples for each type of the structural elements, where

the full circles in the line represent the backbone of the sequence, and the dashed

lines represent the base pairs.

Figure 2.2: The structural elements of an RNA secondary structure.

2.2.3 Structures With Pseudoknots

The first RNA secondary structure known as a pseudoknot, a hairpin-type

(H-type) pseudoknot, was found in the turnip yellow mosaic virus (TYMV) [Ri-

etveld et al., 1982]. The H-type pseudoknot is formed when the single-stranded

region of a hairpin loop base pairs with complementary bases outside that loop.

The formation of H-type pseudoknots is known as the simplest way of forming a
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pseudoknot [Ten Dam et al., 1992], and consequently ensuring them as the best

characterized pseudoknots.

The base pairs in a pseudoknot break the consecutive nesting rule in the stan-

dard secondary structure. The schematic diagram of an H-type pseudoknot is

shown in Figure 2.3(a), where Stem1 and Stem2 cross each other.

(a) H-type pseudoknot (b) Kissing hairpin

Figure 2.3: The schematic diagrams of an H-type pseudoknot and a kissing hairpin.

More generally, the unpaired single-stranded loops in Figure 2.3(a), Loop 1,

Loop 2 and Loop 3 can harbor local secondary structure themselves, forming a

recursive H-type pseudoknot or more complex one [Akutsu, 2000; Ten Dam et al.,

1992]. Particularly, the beginning and ending loops of the pseudoknot can harbor

a substructure locally as well, which is referred to as a recursive pseudoknot in

this dissertation and will be elaborated more in Chapter 5. In contrast, the 3D

conformation may change in the cases where one of the three loops reduces to the

length of zero nucleotide. For example, in the case of the absence of Loop 2, the two

stems become adjacent and may be stacked coaxially to form a quasicontinuous

double helix.

Another prevalent type of pseudoknot is the kissing hairpin, formed when the

unpaired bases in a hairpin loop base pair with complementary unpaired bases in

another hairpin loop [Brunel et al., 2002], as shown in Figure 2.3(b). Similarly,

the single-stranded loops in the kissing hairpin can harbor local substructures as

well, to form a recursive pseudoknot.

The detailed introduction of the pseudoknot types and respective examples are

shown in Section 5.3.1, with respect to the crossing interactions of the base pairs.
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Lots of researches reveal that pseudoknots play vital roles in a variety of molec-

ular processes, especially in viral genomes, due to the variation of structural diver-

sity caused by the length of the loops and stems, as well as the type of interactions

between them [Brierley et al., 2007; Staple and Butcher, 2005].

The functional versatility of pseudoknots includes: being involved in the recod-

ing events such as programmed ribosomal frameshifting due to their more stable

conformation than an equivalent hairpin, which will be introduced in detail in

Chapter 4; offering binding sites for proteins or single-stranded loops of RNA; fa-

cilitating long-range interactions [Brierley et al., 2007]; maintaining the activity of

telomerase [Staple and Butcher, 2005]; stabilizing the compact tertiary structures;

switching the conformational states of the RNA [Ten Dam et al., 1992] and etc.

2.3 RNA Representations

From the perspective of computer scientists, some formal representations of the

RNA secondary structures are desired. We can describe an RNA secondary struc-

ture, with or without pseudoknots, by some particular file formats and graphical

representations. In the context of RNA pseudoknots, the pseudoknot pattern is

quite useful to represent the crossing interactions inside the pseudoknotted con-

formation.

2.3.1 RNA File Formats

RNA file formats are designed so as to be able to hold the sequence data and

other information about the sequence, such as the hierarchical structures.

As a preliminary, FASTA(.fasta) format is one of the most prevalent formats

of sequence, and sometimes also referred to as the Pearson format, who is the

author of the FASTA program [Pearson and Lipman, 1988]. The first line of a

FASTA file, is a title consisting of the ID name of the sequence, starting with

a ‘>’. Subsequent lines are composed of the sequence as a continuous string of

characters from the 5’ terminus to the 3’ end.

The FASTA format is a well accepted type of the input for certain programs of

predicting RNA secondary structures. However, on the other hand, the programs
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develop particular file formats for their output, representing both the sequence

and the predicted structure.

Dot-Bracket

Dot-bracket format is also referred to as Dot Bracket Notation, which is em-

ployed by Vienna web server [Hofacker, 2003]. The dot-bracket notation is the

dominant format of the secondary structures that is adopted in the following sec-

tions of this dissertation.

In this format, the sequence is provided in the first line from 5’ to 3’ end, and

a secondary structure with corresponding positions is given in the second line,

where an unpaired base in the structure is denoted with a dot, and a base pair is

denoted with a pair of opening and closing brackets.

In the standard RNA secondary structure, the base pairs are well nested, in

which the opening bracket denotes the upstream 5’ partner, and the closing bracket

denotes the downstream 3’ partner. The dot-bracket notation of 3IZF with chain

C is shown in Figure 2.4(a).

However, when pseudoknots are allowed, more types of brackets are used to rep-

resent the non-nested knotted secondary structures. In the extended dot-bracket

format, squared brackets, curly brackets and even alphabetical letters are employed

to represent higher levels and more complicated interactions. The dot-bracket no-

tation of 4JF2 with chain A, a typical H-type pseudoknot, is shown in Figure

2.4(b), where the squared brackets are utilized to represent the overlapping stems.

Please refer to the coming introduction of the planar and linear representa-

tions of RNA secondary structures for a better understanding of the dot-bracket

notation. Quite remarkably, the Figure 2.6(a) shows the corresponding planar

representation of 3IZF with chain C, the one without pseudoknot, Figure 2.6(b)

shows the corresponding planar representation of 4JF2 with chain A, the one with

pseudoknot. And Figure 2.7 shows the linear representations of the two genes.

BPSEQ

BPSEQ(.bpseq) format has originated from the Comparative RNA Web site [Can-

none et al., 2002], storing the information of secondary structure in three columns.
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(a) 3IZF with chain C

(b) 4JF2 with chain A

Figure 2.4: The dot-bracket notation of a standard secondary structure and an H-type pseu-

doknot.

The first column is the numeric positions of the sequence from 5’ to 3’ end,

counting from 1. The second column stores the information of bases, letter by

letter. The third column is the numeric position of the pairing partner of the base

if it is paired, or 0 if unpaired. A part of BPSEQ file of 3IZF with chain C is

shown in Figure 2.5(a).

CT

CT(.ct) format is also referred to as connect format, which has been introduced

by Zuker’s mfold program [Zuker, 2003]. It always stores the information of the

secondary structure in six columns. The first column is the numeric positions of the

sequence from 5’ to 3’ end, counting from 1. The third, fourth and sixth columns

repeat the numeric positions again, counting from 0, 2 and 1. The second column

is the sequence of bases, letter by letter. And the fifth column is the numeric

positions of the pairing partner of the base if it is paired, or 0 if unpaired.

There are exceptions of the numeric value of the third and fourth columns.
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(a) BPSEQ file (b) CT file

Figure 2.5: A part of BPSEQ file and CT file of 3IZF with chain C.

For each sequence, the third column is 0 for the first base of the sequence and the

fourth column is 0 for the last base. This is particularly useful to distinguish the

boundaries of several sequences explicitly when they are provided in one CT file.

A part of CT file of 3IZF with chain C is shown in Figure 2.5(b).

Others

There still are some formats of RNA files that store the information of RNA

tertiary structure, in addition to the sequence and secondary structure.

PDB format [wwPDB, 2014]: This is an standard representation provided by

the Protein Data Bank [Berman et al., 2000] for macromolecular structure data

derived from X-ray diffraction and NMR studies. A PDB file stores various data

concerning the three-dimensional structure of a molecule, the experiment carried

for structure determination, the authors, etc..

RNAML format [Waugh et al., 2002]: This is an XML format that has been de-

signed specifically to easily express data on RNA sequence and structure, allowing

for the storage and the exchange of information about RNA sequence, secondary

and tertiary structures. RNAML permits the description of more information

about the base pairs, base triples, and pseudoknots etc.

Additionally, several RNA file formats are in existence for the purpose of mul-
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tiple sequence alignment and other bioinformatical studies [course, 2014], such as

Aln format, Stockholm format. They are beyond the scope of this dissertation.

2.3.2 Graphical Representations

Despite the diverse files that store the information of RNA structures, graphical

representations are desired in existence for an eyeball and more intuitive compar-

ison. Drawing an RNA secondary structure in a two-dimensional way is more

aesthetically pleasing, easier to grasp and evaluate, making it the prevalent visu-

alization of RNA secondary structures [De Rijk and De Wachter, 1997].

This part is going to introduce some classical graphical representations. They

are the planar graph representation, the linear representation, and the circular

representation, where the former two representations are massively preferred in

this dissertation. Specifically, VARNA [Darty et al., 2009] utilizes all these three

representations to visualize an RNA secondary structure, suggesting it as the main

visualization tool of the RNA secondary structures in this dissertation.

Planar Graph Representations

The planar graph representation is a conventional drawing of RNA secondary

structures. The planar representation is also referred to as rod-and-loop repre-

sentation in [Rødland, 2006]. A standard secondary structure and a pseudoknot

represented in the planar graphical way are shown in Figure 2.6.

Linear Representations

An RNA secondary structure can be represented in a linear way, which is also

referred to as bond representation in [Rødland, 2006]. The linear representation

is the dominant graphical representation in the following elaborations of RNA

secondary structures.

In this representation, the RNA sequence is drawn as the backbone on a hor-

izontal straight line, the paired bases are connected with arcs in the upper semi-

plane. The arcs can intersect when the pseudoknots are allowed. Examples of a

standard secondary structure and a pseudoknot are shown in Figure 2.7.
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(a) 3IZF with chain C (b) 4JF2 with chain A

Figure 2.6: The planar graph representations, drawn by VARNA.

(a) 3IZF with chain C (b) 4JF2 with chain A

Figure 2.7: The linear representations, drawn by VARNA.

Others

Besides the planar and linear representations, an RNA sequence can be drawn

as the backbone on a circle in the circular representation, with the corresponding

interacting partners connected with chords. The chords can cross the others when

the pseudoknots are allowed. Examples of a standard secondary structure and a

pseudoknot are shown in Figure 2.8.

There are still some graph theoretical methods to visualize an RNA secondary

structure, such as the dual graphs [Gan et al., 2003], which are available to rep-

resent both the pseudoknot-free structures and the pseudoknots. On the other
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(a) 3IZF with chain C (b) 4JF2 with chain A

Figure 2.8: The circular representations, drawn by VARNA.

hand, the RNA trees [Fontana et al., 1993; Gan et al., 2003; Kim et al., 2013;

Schmitt and Waterman, 1994; Shapiro, 1988; Zhang and Shasha, 1989] and the

forest [Hochsmann et al., 2003] are only capable to show the pseudoknot-free

structures contrastively.

2.3.3 Pseudoknot Pattern

Aiming at demonstrating the crosswise interactions or overlaps between the

stems in a given pseudoknot intuitively, the pseudoknot pattern is used prevalently,

which is defined formally by [Condon et al., 2004].

In the pseudoknot pattern representation, an even number of alphabetical let-

ters is employed with two identical ones representing the base pairs. For example,

an H-type pseudoknot has a pseudoknot pattern of ABAB, where two stems de-

noted as AA and BB cross each other. A kissing hairpin has a pattern of ABACBC,

where the stem denoted as BB connects the stems AA and CC but promote a global

non-nested conformation at the same time.

This representation provides an easy-to-understand method for us to describe

the interactions inside the pseudoknot, especially for some recursive and complex

pseudoknots. An example is the pseudotrefoil [Rødland, 2006], which has the

pattern of ABCABC revealing the mutual crosses between the stems. As a conse-

quence, the pseudoknot pattern has an overwhelming superiority of representing

the pseudoknots in this dissertation.
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Chapter 3

Previous Work

This chapter principally introduces the research status of the RNA secondary

structure prediction methods, given a single input sequence. It includes the meth-

ods predicting the pseudoknot-free RNA secondary structures, and the ones pre-

dicting RNA pseudoknots.

3.1 Approaches Predicting Pseudoknot-Free RNA

Secondary Structures

3.1.1 Minimizing Free Energy Approach

It has been proposed that a majority of RNAs exist naturally in their thermo-

dynamically most stable conformations, with a minimum free energy [Tinoco Jr

and Bustamante, 1999]. Similarly it has been declared that the lowest free energy

structure is the most represented conformation at equilibrium [Mathews, 2006].

Such kind of theories vote the most popular method during the last decades, pre-

dicting an RNA secondary structure from a given sequence, as predicting a con-

formation with the minimum free energy (MFE). The calculated structures with

higher free energies would correspond to less stable secondary structures [Tinoco Jr

and Bustamante, 1999].
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Introduction

Predicting an RNA secondary structure with MFE is to sum up all the ener-

getic stabilities of each structural element, which are provided as thermodynamic

parameters. The parameters are on the basis of experimentally derived free energy

parameters for the base pairs, in an empirical nearest-neighbor model where the

thermodynamic contributions are from both base pairing and base stacking. [Math-

ews, 2006; Schroeder, 2009]

The calculation of the energetically preferable structure takes advantage of

computer algorithms based on dynamic programming [Mathews, 2006], which

implicitly check all possible secondary structures without generating the struc-

tures explicitly, and employ the thermodynamic free energy values as their scoring

scheme.

[Mathews, 2006] describes how the two steps of dynamic programming algo-

rithms work. In the step of fill, the lowest conformational free energy is determined

for each possible sequence fragment starting with the shortest ones, and then for

the longer fragments by using a recurrence formula. In the second traceback step,

the MFE structure is computed with the lowest free energy calculated in the fill

step.

The same process is utilized by some other approaches predicting pseudoknot-

free secondary structures, such as the antecedent approach proposed by Nussinov

et al. [Nussinov and Jacobson, 1980] where the scoring scheme is to maximize the

base pairs rather than to minimize the free energies.

Note that, the context-free grammar (CFG) formalism can be referred to as an

alternative representation of recursions in the dynamic programming algorithms,

and possibly with probabilities if the grammar is stochastic (SCFG).

Zuker & Stiegler (Z&S)’s Algorithm

A pioneering approach predicting MFE structures based on dynamic program-

ming is the Z&S’s algorithm [Zuker and Stiegler, 1981]. Zuker et al. propose a

model of predicting pseudoknot-free structures by employing two non-gap matri-

ces, as shown in the Figure 3.1 where the wavy line in the figures indicates that

the two ends connected are definitely paired, while the dashed line indicates that
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the relation between the ends connected is unknown.

(a) The ‘wx’ non-gap matrix (b) The ‘vx’ non-gap matrix

Figure 3.1: The non-gap matrices in the Z&S’s algorithm.

More precisely, given an RNA sequence of 𝑁 nucleotides, the two triangular

𝑁 × 𝑁 non-gap matrices wx and vx in this pseudoknot-free secondary structure

detecting algorithm are defined as:

∙ 𝑣𝑥(𝑖, 𝑗): representing the score of the best folding between the fragment [𝑖, 𝑗]

with 𝑖 < 𝑗, provided that 𝑖 and 𝑗 are paired to each other; and

∙ 𝑤𝑥(𝑖, 𝑗): representing the score of the best folding between the fragment

[𝑖, 𝑗] with 𝑖 < 𝑗, regardless of whether 𝑖 and 𝑗 are paired to each other or

not.

The recursion relation used to fill the 𝑣𝑥(𝑖, 𝑗) is given by:

𝑣𝑥(𝑖, 𝑗) = 𝑚𝑖𝑛 (𝐸𝑉 1, 𝐸𝑉 2, 𝐸𝑉 3) (3.1)

where 𝐸𝑉 1 indicates the energy corresponding to a hairpin loop that is closed by

the base pair (𝑖, 𝑗), 𝐸𝑉 2 indicates the energy corresponding to a stem, a bulge or

an interior loop that is closed by the base pair (𝑖, 𝑗), and the 𝐸𝑉 3 indicates the

energy corresponding to a multi-loop between 𝑖 and 𝑗, where the energy is split

into the sum of two substructures, a bifurcation [Zuker and Stiegler, 1981]. The

recursion of vx is shown in Figure 3.2, where contiguous nucleotides are indicated

by explicit dots.

And the recursion relation used to fill the 𝑤𝑥(𝑖, 𝑗) is given by:

21



𝑤𝑥(𝑖, 𝑗) = 𝑚𝑖𝑛 (𝐸𝑊1, 𝐸𝑊2, 𝐸𝑊3) (3.2)

where 𝐸𝑊1 indicates the energy corresponding to the case where 𝑖 and 𝑗 are

paired to each other, 𝐸𝑊2 indicates the energy corresponding to the case where

the structure, based on [𝑖, 𝑗], has at least one single-stranded dangling end, namely

either 𝑖 or 𝑗 or both do not participate in the structure, and 𝐸𝑊3 indicates the

energy corresponding to the case of bifurcation where both 𝑖 and 𝑗 are paired but

not with each other. The recursion of wx is shown in Figure 3.3, where contiguous

nucleotides are indicated by explicit dots.

The last score 𝑤𝑥(1, 𝑛) is the desired global thermodynamic score of the opti-

mal folding, which will be used to determine a secondary structure in the traceback

step.

Figure 3.2: The recursion of vx in the Z&S’s algorithm.
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Figure 3.3: The recursion of wx in the Z&S’s algorithm.

Extensions

Suboptimal structures are structures that are similar in score to the structure

that is predicted to have the best score. In the case of minimizing free energy,

the suboptimal structures are those that have low free energies, although higher

than the MFE structure. It has been pointed out that the MFE structure may

not be the true structure [Ding and Lawrence, 2003], and is often not a reasonable

representative for the global ensemble of secondary structures, neither single struc-

ture can be, since the structures with low free energies provide more significant

information than the MFE structure [Mathews, 2006].

On the other hand, some combinations of the MFE approach and additional in-

formation, and other strategies such as covariation, phylogeny, kinetics of folding,

heuristic algorithms, comparative methods, application of Bayesian statistical in-

ference, are utilized to narrow the distribution of the ensemble of all foldings, and

improve the fidelity of predicting RNA secondary structures [Ding, 2006; Zuker,

2000].
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However, the accuracy of predicting RNA secondary structures by free en-

ergy minimization is limited by the incompletion of the nearest-neighbor model,

the unavailability of the equilibrium state of some secondary structures, and the

multi-conformations of some RNA sequences [Mathews, 2006; Seetin and Math-

ews, 2012]. Consequently, other considerations and improvements are proposed

alternatively.

3.1.2 Statistical Approaches

Statistics refers to the thermodynamic and statistical mechanics definitions

based on a Boltzmann distribution [Schroeder, 2009].

Partition Function

A partition function is a quantity that encodes the statistical properties of a

system in the thermodynamic equilibrium.

The partition function 𝑄 [McCaskill, 1990] is the sum over all admissible sec-

ondary structures S of the given sequence 𝐼:

𝑄 =
∑︁
𝑆∈Ω

𝑒−[𝐹 (𝑆) / 𝑘𝑇 ] (3.3)

where Ω is the set of all possible secondary structures for the given sequence, and

𝐹 (𝑆) is the free energy of the structure 𝑆 in equilibrium, and is assumed additive

in terms of its loops. 𝐹 (𝑆) is also referred to as Δ𝐺0 in other literatures such

as [Mathews and Turner, 2006], and as 𝐸(𝐼, 𝑆) in the literatures such as [Ding

and Lawrence, 2003]. The number 𝑘 is the gas constant, and 𝑇 is the absolute

temperature.

Given the partition function, the Boltzmann equilibrium probability of any

structure 𝑆 can be calculated by:

𝑃 (𝑆) =
1

𝑄
𝑒−[𝐹 (𝑆) / 𝑘𝑇 ] (3.4)

Typically, in the set of the sampled structures, the probability of any given

base pair is the frequency of its occurrence in the global ensemble of secondary

structures. The probability of a given base pair (𝑖, 𝑗) can be calculated by summing
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over all the equilibrium probabilities for the structures containing that chosen

binding pair, and dividing by the partition function [Mathews and Turner, 2006]:

𝑃 =
1

𝑄

∑︁
𝑆, 𝑠.𝑡.(𝑖,𝑗)∈𝑆

𝑒−[𝐹 (𝑆) / 𝑘𝑇 ] (3.5)

The calculation of partition functions and base-pairing probabilities itself, how-

ever, does not determine secondary structures [Ding and Lawrence, 2003; Math-

ews, 2006]. More efforts, such as RNAstructure [Reuter and Mathews, 2010],

have been made to combine the partition function calculations with the free en-

ergy minimization to annotate the predicted minimum free energy structure with

base pair probabilities from the partition function [Mathews and Turner, 2006].

Quite remarkably, the color annotation is employed to indicate the likelihood of

the predicted base pairs and unpaired bases assuming the global structure in a

fine-grained fashion [Schroeder, 2009].

Statistical Sampling

Based on the partition function, [Ding and Lawrence, 2003] proposes an ap-

proach to predict an RNA secondary structure by statistically sampling the struc-

tures from the Boltzmann equilibrium probability distribution of the secondary

structures for a given RNA sequence. This algorithm incorporates comprehensive

structural features and the thermodynamic parameters to generate a statistically

representative secondary structure from the Boltzmann ensemble.

For an RNA sequence, the secondary structures in the Boltzmann ensemble are

assigned with a Boltzmann equilibrium probability, which is calculated by Equa-

tion 3.4. The Boltzmann equilibrium probability distribution gives the probability

for every structure, and therefore statistically characterizes the ensemble.

With the partition function 𝑄(1, 𝑛) available, the Boltzmann equilibrium prob-

ability for a secondary structure 𝑆1𝑛 of sequence 𝐼1𝑛 can then be computed. Under

the Boltzmann model, 𝑆1𝑛 is a random variable. When 𝐼1𝑛 is also considered a

random variable, the Boltzmann equilibrium probability is, in fact, a conditional

probability of the secondary structure, given the sequence data:
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𝑃 (𝑆1𝑛|𝐼1𝑛) =
1

𝑄(1, 𝑛)
𝑒−[𝐸(𝐼1𝑛,𝑆1𝑛) / 𝑘𝑇 ] (3.6)

where the symbols are consistent to the Equations 3.3 and 3.4.

This is the scheme adopted for the secondary structure sampling algorithm

described here. More specifically, given the sequence y, if we can sequentially

sample 𝑥1 from the conditional distribution 𝑝(𝑥1|𝑦), 𝑥2 from 𝑝(𝑥2|𝑥1, 𝑦) and 𝑥𝑘

from 𝑝(𝑥𝑘|𝑥1, ..., 𝑥𝑘−1, 𝑦) with 𝑘 = 3, ...,𝑚, then 𝑥 = (𝑥1, 𝑥2, ..., 𝑥𝑚) follows dis-

tribution 𝑝(𝑥|𝑦), because the joint probability distribution is the product of the

conditional distributions.

The sampling process is similar to the dynamic programming algorithms de-

scribed above, but it differs in that base pairs and unpaired bases are randomly

sampled with Boltzmann conditional probabilities, rather than selected by the

minimum energy principle for the fragments. On the other hand, the most likely

structure in a sample is the MFE structure as the probability of a structure de-

creases exponentially with the increasing free energy. In other words, the MFE

structure has the largest sampling probability, because its Boltzmann probability

is larger than that for any other structure.

Ensemble Centroid

In the sampled ensemble, [Ding and Lawrence, 2003] also proposes that the

Boltzmann ensemble can be efficiently represented by distinct structural clusters,

with each cluster containing similar structures.

The advantage of clustering is to find the centroid structure, as the single most

representative of the cluster. The centroid of any set of structures is defined as

the structure that has the minimum total base-pairing distance, where the base-

pairing distance is the number of base pairs that differ between two structures. In

other words, the centroid structure is the closest in similarity, to all the structures

in the cluster. And the ensemble centroid is the centroid that best represents the

entire collection of the structures sampled from the Boltzmann ensemble. [Ding

et al., 2005]
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Others

There still are some approaches to predict RNA secondary structures, such as

the approach assembling a structure composed of the most probable base pairs

with the maximum expected pair accuracy, which was pioneered by CONTRAfold

[Do et al., 2006]. The expected accuracy is calculated by summing over both the

probability of base pairs and the probability of single-stranded bases. Alterna-

tively, in the aspect of comparative sequence analysis, as shown in Figure 1 in

[Gardner and Giegerich, 2004], the approaches in this domain infer the secondary

structures by determining canonical base pairs that are common among multiple

homologous sequences. However, the comparative study is beyond the interest of

this dissertation.

On the other hand, not all the approaches mentioned above are capable to

predict pseudoknots, such as the statistical approaches based on the calculation of

the partition functions [McCaskill, 1990]. The ones which are available to predict

pseudoknots are elaborated in the following sections.

3.2 Approaches Predicting RNA Secondary Struc-

tures with Pseudoknots

Pseudoknots are a complex family of RNA secondary structures, whose non-

nested characterization makes some of the approaches mentioned above unable

to predict them. The problem of predicting RNA secondary structures including

arbitrary pseudoknots, in realistic energy models, has been proved to be NP-

hard [Akutsu, 2000; Lyngsø and Pedersen, 2000b; Sheikh et al., 2012]. Many

approaches which are available to predict pseudoknots in polynomial time have

different levels of trade-offs between the practical prediction of limited types of

pseudoknots and reasonable computer cost. In other words, the approaches that

are going to be introduced below consider generally a part of the pseudoknot

family.
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3.2.1 Exact Approaches

Exact approaches for RNA pseudoknots prediction prevalently consider the

thermodynamic stability of the prediction, and/or the calculation of partition

function, a maximum of base pairs etc., based on dynamic programming algo-

rithms.

Dynamic programming is based on the observation that within optimal so-

lutions there exist optimal solutions to smaller and self-contained subproblems.

However, when pseudoknots are allowed, the broken nesting of both the struc-

ture and the energy is not sufficient to define a self-contained subproblem for the

considered fragment. Thus, to use a dynamic programming algorithm for pseu-

doknots, simplifying assumptions about the complexity of pseudoknots must be

made, as well as more intricate recursions.

Several applications to predict pseudoknots with dynamic programming are

the R&E’s algorithm [Rivas and Eddy, 1999], extended R&G’s algorithm [Reeder

and Giegerich, 2004], the Akutsu’s algorithm [Akutsu, 2000] and the L&P’s algo-

rithm [Lyngsø and Pedersen, 2000a]. All algorithms search for a structure with

the optimal thermodynamic stability.

Rivas & Eddy (R&E)’s Algorithm

The R&E’s algorithm, sometimes referred to as the corresponding program

PKNOTS , finds an RNA structure with minimal energy using the standard

RNA secondary structure thermodynamic model, which has been pioneered by

the Z&S’s algorithm [Zuker and Stiegler, 1981] for predicting the pseudoknot-free

structures. The R&E’s algorithm is augmented by a few pseudoknot-specific pa-

rameters that are not yet available in the standard folding parameters, and by

coaxial stacking energies for both pseudoknotted and non-pseudoknotted struc-

tures. The computer time complexity of the R&E’s algorithm is 𝑂(𝑛6) and space

complexity is 𝑂(𝑛4) [Rivas and Eddy, 1999].

The implementation of the algorithm is to allow the incorporation of four gap

matrices to represent the crossing conformation of pseudoknots. The non-gap

matrices, utilized in detecting pseudoknot-free structures in the Z&S’s algorithm,

are contained as a particular case of the gap matrices.
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Each of the gap matrices in the R&E’s algorithm can in turn be constructed

iteratively by the other two of those matrices, which implies that the algorithm

includes in its configuration space a large variety of knotted motifs, the R&E class

of pseudoknots.

Figure 3.4 shows the four gap matrices employed in the model of the R&E’s

algorithm, where the wavy line in the figures indicates that the two ends connected

are definitely paired, and the dashed line indicates that the relation between the

ends connected is unknown.

(a) The ‘whx’ gap matrix (b) The ‘vhx’ gap matrix

(c) The ‘yhx’ gap matrix (d) The ‘zhx’ gap matrix

Figure 3.4: The gap matrices in the R&E’s algorithm.

More precisely, the gap matrices whx, vhx, yhx and zhx in the R&E’s pseu-

doknot detecting algorithm are defined as:

∙ whx: the score of the best folding that connects fragments [𝑖, 𝑘] with [𝑙, 𝑗],

𝑖 ≤ 𝑘 ≤ 𝑙 ≤ 𝑗, such that the relation between 𝑖 and 𝑗 and between 𝑘 and 𝑙

is undetermined;
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∙ vhx: the score of the best folding that connects fragments [𝑖, 𝑘] with [𝑙, 𝑗],

𝑖 ≤ 𝑘 ≤ 𝑙 ≤ 𝑗, such that 𝑖 and 𝑗 are paired and 𝑘 and 𝑙 are paired as well;

∙ yhx: the score of the best folding that connects fragments [𝑖, 𝑘] with [𝑙, 𝑗],

𝑖 ≤ 𝑘 ≤ 𝑙 ≤ 𝑗, such that the relation between 𝑖 and 𝑗 is undetermined but 𝑘

and 𝑙 are paired; and

∙ zhx: the score of the best folding that connects fragments [𝑖, 𝑘] with [𝑙, 𝑗],

𝑖 ≤ 𝑘 ≤ 𝑙 ≤ 𝑗, such that 𝑖 and 𝑗 are paired but the relation between 𝑘 and 𝑙

is undetermined.

A non-gap matrix in the Z&S’s algorithm can be obtained by combining two

gap matrices in the R&E’s algorithm together. In this aspect, the recursion of the

pseudoknot detecting algorithm is an expansion in the number of gap matrices

by adding one more case, which takes care of the crossing conformation, to the

recursion of the pseudoknot-free structure detecting algorithm.

The recursion relation used to fill the 𝑣𝑥(𝑖, 𝑗) available to predict pseudoknots

is given by:

𝑣𝑥(𝑖, 𝑗) = 𝑚𝑖𝑛 (𝐸𝑉 1, 𝐸𝑉 2, 𝐸𝑉 3, 𝐸𝑉 4) (3.7)

where 𝐸𝑉 1, 𝐸𝑉 2 and 𝐸𝑉 3 are identical to Equation 3.1, while 𝐸𝑉 4 indicates the

energy corresponding to a non-nested multi-loop. In detail, the whx connecting the

fragments [𝑖+1, 𝑟] and [𝑘, 𝑙] overlaps the whx connecting the fragments [𝑘+1, 𝑗−1]

and [𝑙 − 1, 𝑟 + 1]. The recursion of vx in the pseudoknot detecting algorithm is

shown in Figure 3.5, where contiguous nucleotides are indicated by explicit dots.

Similarly, the recursion relation used to fill the 𝑤𝑥(𝑖, 𝑗) available to predict

pseudoknots is given by:

𝑤𝑥(𝑖, 𝑗) = 𝑚𝑖𝑛 (𝐸𝑊1, 𝐸𝑊2, 𝐸𝑊3, 𝐸𝑊4) (3.8)

where 𝐸𝑊1, 𝐸𝑊2 and 𝐸𝑊3 are identical to Equation 3.2, while 𝐸𝑊4 indicates

the energy corresponding to a non-nested bifurcation. In detail, the whx con-

necting the fragments [𝑖, 𝑟] and [𝑘, 𝑙] overlaps the whx connecting the fragments

[𝑘 + 1, 𝑗] and [𝑙 − 1, 𝑟 + 1]. The recursion of wx in the pseudoknot detecting
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Figure 3.5: The recursion of vx in the R&E’s algorithm.

algorithm is shown in Figure 3.6, where contiguous nucleotides are indicated by

explicit dots.

The algorithm can parse more complicated pseudoknots if more gap matrices

are involved. But its consideration of four gap matrices is able to detect a majority

of pseudoknots, both the planar pseudoknots and parts of non-planar pseudoknots,

which are going to be elaborated in the classification of the pseudoknots in Section

5.3.2 and the result part of the benchmark in Section 6.1.

Analogues

There are several analogous approaches predicting pseudoknot in polynomial-

time based on the dynamic programming algorithms. They adopt basically the

same recurrence element with the R&E’s algorithm, the MFE structure on a frag-

ment of the RNA sequence with a region restricted yet to be unpaired. However,

the recurrence relations of the analogous approaches are more restricted than the

R&E’s algorithm, making them detecting more limited types of pseudoknots, but

with a lower algorithmic complexity.
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Figure 3.6: The recursion of wx in the R&E’s algorithm.

The Reeder & Giegerich (R&G)’s algorithm [Reeder and Giegerich, 2004] de-

tects the MFE structure, by the canonization of search space of pseudoknots,

and disallowing pseudoknots with more than two stems. The Akutsu’s algo-

rithm [Akutsu, 2000] predicts the MFE pseudoknots which are composed of two

stems. The stems are formed with the bases from three non-intersected regions

of the given sequence. The Lyngso & Pederson (L&P)’s algorithm [Lyngsø and

Pedersen, 2000a] predicts the MFE structure by summing up the energy of the

computed optimal substructures based on two pairs of opposite regions of given se-

quence. The Dirks & Pierce (D&P)’s algorithm [Dirks and Pierce, 2003] calculates

the partition functions of a restricted set of pseudoknots additionally.

The algorithms mentioned above take the given sequence as input, and search

for the MFE structure in the search space under the respective models. In contrast,

the Jabbari & Condon (J&C)’s algorithm [Jabbari et al., 2007], known as HFold,

requires a pseudoknot-free secondary structure as additional input to predict the

MFE structure. In detail, the J&C ’s algorithm takes a pair of the given sequence 𝑆

and a pseudoknot-free secondary structure 𝐺 for 𝑆 as input. The J&C ’s algorithm

32



then finds another pseudoknot-free structure 𝐺′ for 𝑆, which will form a density-2

secondary structure (More details about density-2 secondary structure are shown

in Section 5.3.2) with 𝐺, such that the free energy of 𝐺 ∪𝐺′ is less than or equal

to the free energy of 𝐺 ∪ 𝐺′′, where 𝐺′′ takes over all pseudoknot-free secondary

structures for 𝑆 with 𝐺′′ ̸= 𝐺′.

In conclusion, Table 3.1 shows the computational complexities of the exact

algorithms mentioned above, in the order of increment of complexity, as well as

the calculation models. The parameters used to predict pseudoknot-free (PKF)

structures are from the algorithm mfold [Zuker, 2003]. More details are shown in

Section 6.1 of the classification of pseudoknots.

Table 3.1: The comparison of parameters of exact approaches

Algorithm
Complexity In

Calculation Model
Time Space

PKF 𝑂(𝑛3) 𝑂(𝑛2) Thermodynamic Stability

J&C’s 𝑂(𝑛3) 𝑂(𝑛2) Thermodynamic Stability

R&G’s 𝑂(𝑛4) 𝑂(𝑛2) Thermodynamic Stability

A&U’s 𝑂(𝑛5) 𝑂(𝑛3) Thermodynamic Stability

L&P’s 𝑂(𝑛5) 𝑂(𝑛3) Thermodynamic Stability

D&P’s 𝑂(𝑛5) 𝑂(𝑛4) Thermodynamic Stability + Partition Function

R&E’s 𝑂(𝑛6) 𝑂(𝑛4) Thermodynamic Stability

PK NP

Others

The efforts that have been made to predict the pseudoknots in silico are not

exhaustively listed in this dissertation. There are still some examples.

Besides the thermodynamic minimization, calculation of partition functions,

predicting RNA pseudoknots can also maximize the number of stacking pairs

under the assumption that the stacking pairs are the only loops that stabilize

the secondary structures. The algorithm makes use of a geometric visualization

of the planarity of stacking pairs on a rectangular grid for the approximation

algorithm of the planar pseudoknots, and combines multiple greedy strategies for
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the approximation algorithm of general pseudoknots [Ieong et al., 2003].

Predicting RNA pseudoknots can use such graph theoretical approach as the

method detecting the structure as a number of stem sets, assembled from con-

served stems across 𝑘 sequences in topological order which are found by applying

a maximum clique finding algorithm [Ji et al., 2004].

As the computational complexity and detected pseudoknots restriction of the

algorithms mentioned above, the performance of the exact algorithms is often im-

practical, especially for long sequences and for detecting the most general types

of pseudoknots. Another dilemma for some algorithms predicting pseudoknots,

which are based on the energy models, is that there is little experimentally deter-

mined thermodynamic parameters for pseudoknots, making their prediction not

satisfactory even for short sequences. So the coming section is going to introduce

the heuristic approaches used in predicting RNA pseudoknots.

3.2.2 Heuristic Approaches

If we agree to find structures that are not necessarily with the lowest free

energy, then heuristics can be applied to search for structures with low energy.

Searching a partial structure space ensures that the heuristic approaches are

practical in time, and are inherently much less restricted with respect to the

complexity of pseudoknot models and underlying energy models, compared to the

exact approaches. But the sacrifice of the optimality of the predicted structures

by the heuristic methods is unable to guarantee that they have found the global

‘optimal’ structure. The output of the heuristic methods is the ‘best’ secondary

structure under their searching models.

Classical Algorithms

A greedy search based on Monte-Carlo simulation is proposed by [Abrahams

et al., 1990]. It finds all possible stems for the given sequence, determines the free

energies of their loops and base pairs, and iteratively checks the stems which will

be added to the previously calculated structure with the maximum decrease of

the free energy. Additionally, once a stem is added to the structure, it can not be

removed in the next steps. The algorithm terminates when the MFE structure is
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determined.

A genetic algorithm proposed by [Gultyaev et al., 1995], meanwhile, simulates

the model of the RNA folding kinetics. Quite remarkably, the algorithm calculates

all possible stems for a given RNA sequence, and generates the initial population

of 𝑁 structures. The simulation is carried out by first mutating each structure

of the initial population which produces 𝑁 new structures, and then crossovering

the 2𝑁 structures and generating new population of 𝑁 structures according to

the fitness, where the fitness is defined as the total free energies of generated

structures, and last increasing the chain length depending on the improvement of

the free energy. The procedure of genetic algorithm simulation terminates when

a predetermined number of repetitions has been done.

Others

Some other representative heuristics are as follows:

HotKnots [Ren et al., 2005], builds up the candidate pseudoknots by adding

one substructure at a time to the partially formed structure, based on the thermo-

dynamic model extended for pseudoknots as in the D&P’s algorithm [Dirks and

Pierce, 2003].

McQFold is based on a Markov-chain Monte-Carlo (MCMC) method for sam-

pling the RNA structures according to their approximate posterior distribution

for a given sequence [Metzler and Nebel, 2008].

Similarly, McGenus [Bon et al., 2012], also uses a Monte Carlo algorithm to

search for an MFE structure.

MC-Fold, is a part of the pipeline proposed in [Parisien and Major, 2008]. The

main idea is based on the nucleotide cyclic motifs (NCM). It infers the secondary

and tertiary structures from a given sequence thanks to the empirical scoring of

3D structures.

CyloFold, is based on simulating a folding process in a coarse-grained 3D man-

ner, and choosing stems under the established energy rules [Bindewald et al.,

2010].

DotKnot, predicts the RNA pseudoknots by extracting the stem regions from

the secondary structure probability dot plot, and assembling the pseudoknot can-
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didates in a constructive fashion [Sperschneider and Datta, 2010].

IPknot, predicts RNA secondary structures with pseudoknots based on maxi-

mizing the expected accuracy of a predicted structure [Sato et al., 2011].

The detailed mechanisms of these methods are presented in Section 5.4.2, as

they are the main considered methods of that part of work. Particularly, there

are still some heuristic methods which are available to predict RNA pseudoknots.

But they are excluded from the consideration, with the reasons given in Section

5.4.2 as well.

3.3 Conclusion

This chapter introduces the approaches of predicting RNA secondary struc-

tures from a single sequence, including both the standard pseudoknot-free struc-

tures and the ones containing pseudoknots. The exact methods search for the sec-

ondary structure from the entire structure space, guaranteeing an optimal output

either with the minimum free energy or with the maximum statistic probability.

But on the other hand, the ergodic search brings the exact methods a heavy com-

puting burden, especially for the longer inputs, which arouses the application of

the heuristics. Heuristic methods search for the secondary structure in a partial

space which is reduced by the previous steps iteratively. The heuristic process

costs a more agreeable complexity in time and detects a less restricted type of

the pseudoknots, but with the sacrifice of the optimality of the prediction. This

dissertation focuses on the prediction of pseudoknots by the state-of-the-art meth-

ods, and the comparison of their performance. These parts of work are shown in

the following chapters.
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Chapter 4

Frameshifting Pseudoknots and

Comparison of Prediction Methods

The main interest of this dissertation is about the comparison of predicting

RNA pseudoknots in silico, based on a variety of datasets. A series of compar-

isons all serve the purpose of assessing the accuracy of the predicted pseudoknots

by each program. The motivation of the comparisons comes from that it is nei-

ther guaranteed nor expected that all the predictions are one hundred percent

acceptable. Which of the predictions are more reliable if they conflict, especially

in such situations that the reference structures which are completely determined

empirically are insufficient?

In fact, comparison between predictions can not give a completely satisfactory

answer. But a matching prediction between the programs can strengthen the

plausibility of this prediction. On the other hand, the conflicting predictions may

decrease the persuasion of either prediction, or reflect a weak spot of the prediction

methods [Theis et al., 2008].

The following chapters are going to introduce a variety of comparisons princi-

pally. In this chapter, We are going to compare the prediction of -1 programmed

ribosomal frameshifting signals by several methods. And the following three chap-

ters are about the comparison of predicting RNA pseudoknots which are involved

in much more general molecular activities.

In practice, this chapter first describes the frameshifting, one classic type

of recoding events, including the motif of a frameshifting signal, the types of
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frameshifting, and the frameshifting pseudoknots. Next, several programs pre-

dicting frameshifting signals are introduced.

The prediction of frameshifting signals by these methods are compared, based

on three genomes. And as a significant method in this chapter, the prediction

of the best predicted candidates of Orphea, which have been verified to promote

frameshifting in vivo with a frameshifting rate over 5%, are carried out by the

state-of-the-art methods additionally. Last, based on the frameshifting entries in

PseudoBase, the comparison of detecting the frameshifting signals is carried out.

4.1 Frameshifting

4.1.1 Recoding events

During the expression of certain genes, the recoding events occur in response

to special signals in mRNA, where two protein products are decoded from one

coding mRNA [Baranov et al., 2002]. There are three main types of recoding

events [Baranov et al., 2001] typically, as shown in Figure 4.1:

1), Bypassing, in which ribosomes suspend translation at a certain site and

then resume translation downstream without decoding a block of intermediate

nucleotides.

2), Readthrough (also referred to as redefinition), in which the stop codon is

assigned to a different meaning, synthesizing an elongated product. Particularly

the UGA can be recoded to specify the 21st amino acid selenocysteine, and the

UAG can be recoded to specify the 22nd amino acid pyrrolysine.

3), Frameshifting, in which ribosomes switch to an alternative open reading

frame (ORF) at a specific shift site. In most observed cases, the frameshifting

involves a shift of one base from the reference 0 frame, either to +1 of the down-

stream 3’ direction or to -1 of the upstream 5’ direction. Some shifts of two

bases are observed as well. In this dissertation, we focus on the -1 programmed

ribosomal frameshifting (-1 PRF).
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Figure 4.1: Three main types of recoding events.

4.1.2 Frameshifting Signals

-1 PRF may occur in prokaryotes and eukaryotes, and is particularly exploited

by RNA viruses, with a governable ratio of efficiency [Giedroc and Cornish, 2009;

Jacobs et al., 2007].

The frameshifting events are termed as programmed frameshifting since in-

variably important structural features of the frameshifting signals predispose the

ribosome toward the shift in frames, and thus program the change. Consequently,

the protein product is not directly encoded in a single ORF, but in two overlap-

ping reading frames. Since the efficiency of frameshifting is nearly always much

less than one hundred percent, this kind of recoding event allows for the expres-

sion of two primary translational products from one single mRNA that share the

5’ terminal sequence encoded upstream of the shift, and differ in the 3’ terminal

sequence encoded downstream of the shift [Farabaugh, 1996].

-1 PRF may produce longer or shorter peptides than those synthesized from

the standard decoding, thanks to the alternation of reading frames [Baranov et al.,
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2002]. Figure 4.2 shows the former case where the protein synthesis starts at A,

and terminates at C rather than at B, the terminal of the standard decoding.

Figure 4.2: The structural elements of a frameshifting signals in the overlapping of two ORFs.

According to the common knowledge [Brierley, 1995; Brierley et al., 2007;

Giedroc and Cornish, 2009], frameshifting signals contain two main elements,

∙ A slippery sequence, where the shift occurs. The slippery sequence is com-

posed of a heptamer with seven nucleotides prevalently, particularly in eu-

karyotes and viruses, or a tetramer with four nucleotides [Mazauric et al.,

2008], particularly in prokaryotes. The slippery sequence with seven nu-

cleotides is referred to as X XXY YYZ in the reference 0 frame, which will

alter to XXX YYY Z once the -1 PRF occurs. More precisely, the XXX

represent three identical nucleotides, so do the YYY. And the Z can be any

nucleotide. In some previous work [Brierley et al., 1992], the XXX may have

some variants such as the 𝑋1𝑋2𝑋3, where any nucleotide may be held by

each X.

∙ A downstream stimulator, which is secondary structure adjacent to the slip-
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pery sequence. An H-type RNA pseudoknot is contained more often than a

stem-loop [Brierley, 1995; Brierley et al., 2007; Giedroc and Cornish, 2009].

There is some mechanical explanation on how the downstream pseudoknot

stimulates the PRF [Namy et al., 2006], in which the pseudoknot blocks the mRNA

entrance channel by interacting with the ribosome. But the precise mechanism

of the PRF still remains as a cipher, although the pseudoknots are accepted to

stimulate a frameshifting more efficiently as they are more stable to pause the

ribosome [Giedroc and Cornish, 2009; Jacobs et al., 2007].

The region separating the two elements is the spacer, which generally contains

six to eight nucleotides. There is no affirmative determination on the precise size

of the spacer yet. But there exists a common agreement on the importance of this

spacing distance, which must be maintained for efficient frameshifting to occur,

and probably directly affects the mechanism of the frameshifting process [Brierley,

1995].

Figure 4.2 shows a frameshifting signal embedded in the overlapping region of

two ORFs, where the downstream H-type pseudoknot is represented in the linear

model.

The precise description of a frameshifting signal is shown in Figure 4.3, where

an H-type pseudoknot follows the slippery sequence and then the spacer. Similarly

to the nomenclature of [Bekaert et al., 2003], the simulating pseudoknot in the

frameshifting signals is denoted as Enhancer in this dissertation as well. In detail,

ES1.5’ is the 5’-arm of the first stem Stem 1, EL1 is the Loop 1, ES2.5’ is the

5’-arm of the second stem Stem 2, EL1’ is the Loop 2, ES1.3’ is the 3’-arm of

Stem 1, EL2 is the Loop 3, and ES2.3’ is the 3’-arm of Stem 2.

4.2 Methods Predicting -1 PRF Signals

This section is going to introduce some computer methods which have been de-

veloped for predicting -1 PRF signals, including FSFinder, PRFdb, KnotInFrame

and Orphea.
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Figure 4.3: The motif of -1 programmed ribosomal frameshifting signal.

4.2.1 FSFinder

Frameshifting Signal Finder (FSFinder) [Moon et al., 2004], developed in 2004,

searches the entire genome or mRNA sequences for frameshifting signals.

Specifically, FSFinder is designed to find -1 frameshifting signals, with a hep-

tamer as the slippery sequence, in viruses, prokaryotes and eukaryotes, and two

cases of +1 frameshifting sites in the eukaryotic and prokaryotic organisms. It con-

siders both the pseudoknots and simple stem-loops as the downstream stimulatory

structures.

In detail, FSFinder searches for possible slippery sequences in the form of X

XXY YYZ, in which X and Z can be any nucleotide, and Y can be A or C. After

a slippery sequence is identified, FSFinder searches for a downstream structure by

sliding 4-11 nucleotides along the spacer. Then FSFinder filters the downstream

structures which are subject to certain requirements, such as the first stem of

the pseudoknot must not be larger than 13 base pairs, the second stem must not

be larger than 6 base pairs, and the size of first two loops may not exceed 6
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nucleotides.

The mechanism of FSFinder is to focus on an overlap of the open reading

frames. It is declared that the largest ORF in the overlapping frames has the

highest probability of containing frameshifting signals.

As shown in Figure 4.4, the screenshot of FSFinder shows the exploration of

the overlapping region. The reading frame from A to B in frame -1 and the reading

frame from C to D in frame 0 partially overlap at their termini A and D, in the

region denoted as E.

Figure 4.4: The exploration of overlapping region of FSFinder.

However, since the automatic exportation of the predictions of FSFinder is

unavailable, which means that all the results are shown only in the FSFinder

panels instead of a file, FSFinder must rather been used in an interactive fashion.

In this aspect, the comparison of predicting -1 PRF signals by FSFinder is ignored

in this dissertation.

4.2.2 PRFdb

PRFdb [Jacobs et al., 2007] is a database built in 2006, containing computer

detected frameshifting candidates among which 1679 are classified as strong can-

didates by the authors.
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Principally, the authors build an RNA motif which is learned from the anal-

ysis of viral -1 PRF signals from the RECODE database. Their aim is to find

subsequences in the Saccharomyces cerevisiae genome and use pattern matching

methods to detect the putative candidates.

In practice, RNAMotif [Macke et al., 2001] is employed for searching for sub-

sequences in the genome, and the corresponding descriptor must meet several

requirements. The slippery sequence is in the form of X XXY YYZ in frame 0, in

which X represents any identical nucleotides, Y represents A or U, and Z is not

equal to G. Next, after sliding 0-12 nucleotides along the spacer, the downstream

structure is searched. The allowance includes that each stem in the pseudoknot

contains between 4 and 20 nucleotides in length, the first loop must be between 1

and 3 nucleotides in length, and the third loop must be at least as long as one-half

the length of the first stem and not longer than 100 nucleotides.

RNAMotif then returns the collection of identified motif hits back, and pknots,

the implementation of the R&E’s algorithm [Rivas and Eddy, 1999], is used to

predict for each motif hit a MFE secondary structure.

To estimate the statistical significance and uniqueness of the predicted struc-

ture for each motif hit, the authors utilize a normalized z-score, comparing the

matched candidates with those expected by chance in random genomes. This

intention is because they hold the hypothesis that the frequency of finding the

motif in randomized sequences can provide some insight into the likelihood that

the match in natural sequence occurs by chance.

For each hit, the MFE value of the predicted structure, which is assigned by

pknots, is compared to the distribution of MFE values obtained from 100 times of

random shuffle and refolding of the same sequence. And the normalized z-score is

given as follows:

𝑍𝑅 =
𝑋 − 𝑥

𝛿

where X is the MFE value for the predicted structure, x is the estimate of the

mean for the distribution of MFE values obtained from the 100 randomizations

with the same sequence, and 𝛿 is the standard deviation of MFE values for random

structures.
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The -1 PRF signals having a 𝑍𝑅 ≤ −1.65 and a MFE value among the lowest

25% of all the structures are considered as strong candidate of -1 PRF signals.

These two requirements pick up those energetically strong candidates with statis-

tically significant predicted secondary structures, which have been deposited into

the PRFdb.

As a closing part, nine candidate signals possessing a wide range of feature

statistics are selected for empirical testing, and further for their abilities to promote

-1 PRF experimentally. More precisely, first, eight of nine candidate signals are

chosen as they are predicted to fold into a pseudoknot. Next, a flexible requirement

on the 𝑍𝑅 and MFE values of the strong signals is allowed for some of the nine

candidates. The authors conclude the following:

∙ Every signal which contains a predicted pseudoknot promotes -1 PRF at

significant levels. And the pseudoknot-free signal does not promote a mea-

surable frameshifting.

∙ The frameshifting rates obtained ranges from 0.4% to 63.7%.

∙ Mutating the pseudoknot structure may uncontrollably affect the frameshift-

ing. On the other hand, mutation in the spacer region can change -1 PRF

efficiencies, but not completely abrogates the frameshifting.

4.2.3 KnotInFrame

With the ‘dissatisfaction’ of the RNAMotif that is used in the pattern match-

ing step of PRFdb mentioned above, KnotInFrame [Theis et al., 2008], a similar

pipeline which detects -1 PRF signals from genomic sequences, has been devel-

oped in 2008. The prime motivation of KnotInFrame comes from the declaration

that most of the strong candidates with good z-score in the PRFdb do not contain

pseudoknots.

Principally, the authors also build up a -1 PRF signal motif, and invoke the

program pknotsRG-fs to predict a -1 PRF pseudoknot with the minimal free en-

ergy for the given input sequence. This program is a specialized version of pknot-

sRG [Reeder et al., 2007], which explicitly folds a given sequence into a more stable
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structure than pknotsRG by modifying the grammars of the stems and loops of

pseudoknots to describe a frameshifting pseudoknot more precisely.

In detail, the authors first build a -1 PRF motif with the slippery sequence in

the form of X XXY YYZ, based on the knowledge of the frameshifting signals of

RECODE, in which X represents any identical nucleotide, Y stands for either A

or U, and Z for any nucleotide. The length of the spacer is between 1 nucleotide

and 12 nucleotides.

Then, there are three main steps in the pipeline of KnotInFrame.

In the first searching phase, the pipeline scans the input sequence for occur-

rences of the -1 PRF motif slippery site, and folds the downstream regions by

invoking pknotsRG-fs and RNAfold [Hofacker et al., 1994] respectively, where

RNAfold returns a MFE structure without pseudoknots to the input sequence.

The output of the invocation of pknotsRG-fs is notated as pknotsRG-fs(u), rep-

resenting the MFE value of an enforced pseudoknotted folding. The result of the

invocation of RNAfold is notated as RNAfold(u), representing the MFE value of

an unconstrained folding without pseudoknots. And 𝑢 represents the substring of

the input sequence 𝑥, with the slippery sequence removed from 𝑥.

The secondary filtering phase has three criteria to reduce the number of can-

didates, based on the energy values of the constrained folding pknotsRG-fs(u) and

the unconstrained folding RNAfold(u), as follows.

The low energy filter (LEF) discards the candidates whose constrained energy

value pknotsRG-fs(u) is over a threshold 𝛼, since the pseudoknots in their test are

supposed to have an equal or lower energy value than the unconstrained foldings.

Particularly, the authors choose the threshold of 𝛼 = −7.4 kcal/mol. The pipeline

discards the candidates that are subject to:

𝑝𝑘𝑛𝑜𝑡𝑠𝑅𝐺-𝑓𝑠(𝑢) > 𝛼

Next, the energy difference filter (EDF) discards the candidates that rather

fold into an unknotted structure, where the difference between RNAfold(u) and

pknotsRG-fs(u) is larger than another threshold 𝛽. And the threshold is chosen

as 𝛽 = 8.7 kcal/mol. The discarded formula is:
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𝑅𝑁𝐴𝑓𝑜𝑙𝑑(𝑢) + 𝛽 < 𝑝𝑘𝑛𝑜𝑡𝑠𝑅𝐺-𝑓𝑠(𝑢)

The resulting set may still hold several predictions which have a same slip-

pery site. Then, the normalized dominance filter (NDF) computes the length-

normalized energy dominance as follows:

Δ(𝑢) =
𝑅𝑁𝐴𝑓𝑜𝑙𝑑(𝑢)− 𝑝𝑘𝑛𝑜𝑡𝑠𝑅𝐺-𝑓𝑠(𝑢)

|𝑢|
where Δ gives an indication of the stability of a secondary structure, namely how

strong this structure outweighs the others referring to their energy values. A

positive Δ means that the pseudoknotted structure is more stable than the free-

folded structure. And the NDF phase only retains the candidates which maximize

Δ(𝑢).

In the third ranking phase, all remaining candidates passing the three filters

are ranked by an evaluation function which is based on the normalized dominance

of the predictions. In other words, the remaining candidates are ranked in the

descending order of their Δ(𝑢) values.

The final result of the pipeline is a list of the strongest frameshifting signals,

which may have different slippery sequences, and respective structural elements

and the two free energy values leading to the ranking.

4.2.4 Orphea and Ranking Process

Orphea [Brégeon et al.; Forest, 2005] is a program predicting -1 PRF signals.

A ranking process follows in order to rank the predictions of Orphea.

Searching for Slippery Sequence

Orphea uses a pattern-matching algorithm to detect the slippery sequence

which is in the form of X XXY YYZ. The algorithm then searches the candi-

dates which have passed the requirements of the slippery motif for potential stems

further. The detailed requirements of the slippery motif are considered as follows:

∙ 𝑋1𝑋2𝑋3 must be among {GGG, GUG, GAG, GUU, GAA, GAU, GUA,

CCC, AAA, UUU}.
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∙ 𝑌 𝑌 𝑌 must be among {AAA, UUU}.

∙ 𝑍 must be among {A, C, U}.

∙ There are two exceptions: the G UGA AAZ and G UAA AAZ motifs which

contain stop codons in the non-shifted 0 frame.

Searching for Stimulator

For each matched slippery sequence, the program searches for a potential pseu-

doknot in the downstream 3’ direction. A dynamic programming algorithm is

employed for searching and assigning a score to each putative stem, which is the

sum of scores of its base pairs.

More precisely, for the first stem ES1, ES1.5’ is searched for among the first

20 nucleotides after the slippery sequence, while ES1.3’ is searched for among the

first 50 nucleotides.

Only the stems whose scores are above a given threshold and which satisfy

some given length and distance requirements are chosen as a potential ES1. The

selected ES1 stem is stepped into a similar stage for a further search of the second

stem ES2. The overlap of two stems must be retained, namely the ES2.5’ must lie

between ES1.5’ and ES1.3’, and ES2.3’ must lie after ES1.3’. The two stems may

contain bulges.

The parameters and thresholds used by Orphea depend on the statistics which

were computed on 17 known frameshifting signals in viral genomes. These 17 viral

signals are referred as the learning data of Orphea in the following parts.

Candidates Ranking and Selecting

However, as the candidates detected by Orphea may be numerous, the authors

have designed a method to rank all the candidates in order to find out the best

predictions of Orphea, according to some scores which take advantage of the known

frameshifting sites.

In this step, several machine-learning approaches are combined to give a rank

to each candidate, and the top ranked ones are supported to be the most promising

candidates of -1 PRF signal, and are considered to be tested experimentally.
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In detail, the authors have trained four predictors, J48, JRip, Random Forest

and Naive Bayes which are implemented in WEKA [Hall et al., 2009], by exploiting

the features of the known frameshifting signals. The candidates having the best

predicted rate within all the predictors are considered as the most promising ones.

In other words, the ranking scheme here follows a consensus policy to select the

candidates as the promising ones.

Compared to the third ranking phase of the pipeline in KnotInFrame, the

ranking scheme for ranking the predictions of Orphea is different. Orphea ranks

all the candidates which have reached the requirements of the detecting model,

and the candidates may have different slippery sequences. On the other hand,

KnotInFrame ranks the candidates by their Δ(𝑢) values in the context of the

candidates with a same slippery sequence. This is determined by the premise of 𝑢,

the substring of the input sequence with the slippery sequence removed, as shown

in Section 4.2.3.

As the most interesting work that the authors of Orphea have done, testing the

propensity of the best ranked candidates to induce -1 PRF in vivo [Brégeon et al.]

may verify the fidelity of the predictions of Orphea. This part of work differs from

the research carried out by PRFdb, whose empirically testing candidates possess

a wide range of feature statistics, rather than good rankings, as shown in Section

4.2.2. The second difference from PRFdb is that the authors of Orphea have tested

the predictions of the -1 PRF signals by Orphea based on the human mRNAs and

a synthetic genome, in addition to the Saccharomyces cerevisiae genome.

The work-flow of the searching step of Orphea and the ranking step is shown

in Figure 4.5.

4.3 Evaluation

4.3.1 Parameters

For quantifying the accuracy of the predicted RNA secondary structures, three

evaluation criteria are used in this dissertation.

∙ The sensitivity, which is called recall in the information retrieval community.
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Figure 4.5: The work-flow of Orphea and ranking process, taken from Fig.2 in [Brégeon et al.].

∙ The positive predictive value (PPV), which is called precision in the infor-

mation retrieval community. The PPV is also referred to as the selectivity

in [Gardner and Giegerich, 2004].

∙ The Matthew’s correlation coefficient (MCC) [Matthews, 1975], which com-

bines the sensitivity and PPV, suggesting it as a more representative and

comprehensive parameter.

The formal definitions of these three measures are:

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
=

𝑇𝑃

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑎𝑠𝑒 𝑝𝑎𝑖𝑟𝑠 𝑖𝑛 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒
(4.1)

𝑃𝑃𝑉 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
=

𝑇𝑃

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑎𝑠𝑒 𝑝𝑎𝑖𝑟𝑠 𝑖𝑛 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛
(4.2)

𝑀𝐶𝐶 =
𝑇𝑃 × 𝑇𝑁 − 𝐹𝑃 × 𝐹𝑁√︀

(𝑇𝑃 + 𝐹𝑃 )(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃 )(𝑇𝑁 + 𝐹𝑁)
(4.3)
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where the positives (P) and the negatives (N) both refer to base pairs. Particularly,

TP is the number of true positives, the set of correctly predicted base pairs, FP

is the number of false positives, the set of incorrectly predicted base pairs, FN is

the number of false negatives, the set of base pairs in the reference structure that

are absent in the predicted one, and TN is the number of true negatives [Puton

et al., 2013], the set of correctly predicted unpaired bases.

Equations 4.1, 4.2 and 4.3 are the standard ways to calculate the sensitivity,

PPV and MCC, which are prevalently employed in the assessment of predictions.

And they are used to assess all the predictions in this dissertation as well.

4.3.2 Variants

One of the pioneered applications of the three parameters on the evaluation of

RNA secondary structure prediction is proposed in [Gardner and Giegerich, 2004],

where the positives and negatives are used to refer to the base pairs. However, their

definitions are sightly different from Equations 4.2 and 4.3, with an introduction

of the subtraction of 𝜉 from the false positives.

𝑃𝑃𝑉 =
𝑇𝑃

𝑇𝑃 + (𝐹𝑃 − 𝜉)
(4.4)

𝑀𝐶𝐶 =
𝑇𝑃 × 𝑇𝑁 − (𝐹𝑃 − 𝜉)× 𝐹𝑁√︀

(𝑇𝑃 + 𝐹𝑃 − 𝜉)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃 − 𝜉)(𝑇𝑁 + 𝐹𝑁)
(4.5)

The subtraction of 𝜉 is introduced because the authors believe that some of the

FP are not equally false, assuming the FP can be classified as either inconsistent,

contradicting or compatible.

∙ The inconsistent group of false positives is the set of predicted base pairs

that conflict with a base pair in the reference structure, namely either end

of a base pair in the reference structure has a base-pairing with another base

in the predicted structure.

∙ The contradicting group is the set of predicted base pairs that are not nested

with respect to the reference structure, namely a predicted base pair crosses
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one base pair in the reference structure, and both ends of the predicted base

pair are unpaired in the reference structure.

∙ The compatible false positives are those neutral with respect to the reference

structure, namely a predicted base pair does not satisfy the two requirements

above and is not present in the reference structure. Their number is denoted

as 𝜉 in Equations 4.4 and 4.5.

In practice, the compatible false positives 𝜉 are subtracted from the false posi-

tives as the authors declare that this part of predicted base pairs does not conflict

with the reference structure. The acceptance is supported by the requirements that

both ends of the compatible false positives are unpaired in the reference structure,

and the formed base pair does not intersect any base pair in the reference structure

at the same time.

Figure 4.6 shows an example of the positive and negative predictions compared

to the reference structure. Specifically, the number of base pairs in the reference

structure, which is shown in the upper semi-plane, equals to the sum of the number

of TP and FN. On the other hand, the number of base pairs in the predicted

structure, which is shown in the lower semi-plane, equals to the sum of the number

of TP and FP. TN is calculated by subtracting the existing pairs TP from all

possible base pairs, where all the possible base pairs are the exhaustive number of

the A:U, the G:C and the G:U pairs in this given sequence.

As mentioned above, this dissertation prefers to evaluate the predictions with

the parameters calculated according to the Equations 4.1, 4.2 and 4.3, without

further considering the subsets of the false positives. This consideration is made

by noticing that, when dealing with pseudoknots, the notions of ‘contradicting’

and ‘compatible’ base pairs are irrelevant. This argument is illustrated in Figure

4.7, where the base pairs in the reference structure are shown in solid lines in the

upper semi-plane, and the predicted base pairs are shown in dashed lines in the

lower semi-plane. The notation of the base pairs in both structures are numbered

in the order of the numeric position of their 5’ ends.

Figure 4.7(a) depicts a pseudoknot-free secondary structure. We may classify

the predicted base pair P1 as a contradicting base pair because of its overlap
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Figure 4.6: The schematic example of the positive and negative predicted base pairs.

with the base pair R1 in the reference structure. And we may also classify the

predicted base pair P2 as a compatible one since it does not cross any base pair

in the reference structure and neither end of P2 forms a base pair in the reference

structure. We notate that the base pair P2 is embedded in the base pair R2.

Figure 4.7(b) depicts a pseudoknot. The predicted base pair P1 is contradicting

with the reference structure as it crosses the R2. While the P2 is compatible with

the reference structure.

But it is interesting to analyze some other cases, especially the base pairs

highlighted in red in Figure 4.7, where the prediction has a pseudoknotted con-

formation.

According to the division of false positives introduced above, the predicted

base pair P2 in the Figure 4.7(c) is a compatible false positive. And P1 and P3

are two true positives as they correspond to two reference base pairs, R1 and R2.

But we hold a different opinion on the classification of the predicted base pair

P2 in the Figure 4.7(d), which is highlighted in red. P2 may be contracting as

it crosses R2 in the reference structure. We argue that P2 is a ‘compatible’ false

positive, as it is embedded in the correctly predicted base pair P1 and does not

break the global crossing interactions in the reference structure.

Let us go further. The predicted base pair P1 in the Figure 4.7(e) is classified
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as a contradicting base pair as it crosses the base pair R2 in the reference structure.

But it is the P1 that makes the prediction a pseudoknotted conformation globally,

much closer to the crossing interaction shown in the reference structure. We

strongly prefer to classify P1 as a ‘compatible’ base pair.

Further, we lengthen the 3’ end of the compatible P2 in the Figure 4.7(e) to

make it cross the base pair R1, as shown in Figure 4.7(f). Is P2 a contradicting

base pair right now? We still argue that P2 is ‘compatible’ with the reference

structure, as it is embedded in the correctly predicted base pair P3.

In fact, if we examine all the base pairs in red in Figures 4.7(d), 4.7(e) and

4.7(f), we may conclude the argument of their compatibility with the reference

structure is well supported by the reasons as follows:

∙ They cross the base pairs in the reference structure. P2 in Figure 4.7(d)

crosses R2. P1 crosses R2 in both Figures 4.7(e) and 4.7(f). And P2 in

Figure 4.7(f) crosses R1.

∙ Simultaneously, the base pairs in red are embedded in some base pair in the

reference structure. P2 in Figure 4.7(d) is embedded in R1. P1 is embedded

in R1 in both Figures 4.7(e) and 4.7(f). And P2 in Figure 4.7(f) is embedded

in R2.

In our opinion, a more comprehensive classification of the false positives is as

shown in Algorithm 1.

But unfortunately, our confidence on the classification shown in Algorithm 1

fails quickly as we encounter the examples as shown in Figures 4.7(g) and 4.7(h).

The predicted base pair P1 in Figure 4.7(g) crosses R2 in the reference struc-

ture and concurrently is embedded in R1, suggesting P1 a compatible false positive

in accordance to Algorithm 1. But on the other hand, the 5’ end of P2 forms a

base pair R2 in the reference structure, should we accept it as the inconsistent false

positive rather than a compatible one? Furthermore, all the three predicted base

pairs in Figure 4.7(h) are classified as compatible ones according to the Algorithm

1, should we accept them as compatible predictions?

Actually, we may classify the pseudoknot shown in Figure 4.7(g) as an accept-

able prediction. But contrarily, we do not accept the prediction shown in Figure
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Algorithm 1 The Classification of the False Positives.
Input: The set of false positive base pairs (𝑥, 𝑦).

Output: The classification of each (𝑥, 𝑦) into the inconsistent, contradicting and compatible

subsets.

1: if (𝑥, 𝑦) shares either end with one base pair in the reference structure. then

2: (𝑥, 𝑦) is an inconsistent base pair.

3: else ◁ Both ends of (𝑥, 𝑦) are unpaired in the reference structure.

4: if (𝑥, 𝑦) crosses any base pair in the reference structure then

5: if (𝑥, 𝑦) is embedded in one base pair in the reference structure then

6: (𝑥, 𝑦) is a compatible base pair.

7: else

8: (𝑥, 𝑦) is contradicting with the reference structure.

9: end if

10: else

11: (𝑥, 𝑦) is a compatible base pair.

12: end if

13: end if

4.7(h) as it is a completely different pseudoknot from the reference structure.

The examples shown in Figure 4.7 are not exhaustive. So, what precise defini-

tions of classifying the false positives should we adopt?

Frankly speaking, as the unavailability of a systemic interpretation of the cross-

ing interactions in an arbitrary pseudoknot, we can not perceive the quintessence

of the similarity between the prediction and the reference structure. We may not

define the degree of acceptation in the sequel. So we prefer to use the criteria

calculated by the Equations 4.1, 4.2 and 4.3, without further considering the clas-

sification of the false positives, as there are no better options of evaluation to

choose and no reliable suggestions on a practical applicability of them.

4.3.3 Why Not ROC Curve?

Someone may wonder why not evaluating the predictions by the receiver op-

erating characteristic (ROC) analysis which is a graphical plot illustrating the

performance.

In fact, the y-axis of the ROC curve is the sensitivity, which is referred to as
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(a) Case 1 (b) Case 2

(c) Case 3 (d) Case 4

(e) Case 5 (f) Case 6

(g) Case 7 (h) Case 8

Figure 4.7: The schematic examples of the classification of false positives.
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the true positive rate (TPR) and calculated by the Equation 4.1. And the x-axis

is the false positive rate (FPR) which is calculated by the Equation 4.7. Each

prediction given by a certain method corresponds to a point with respect to the

number of their positives and negatives.

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
=

𝑇𝑃

𝑃
(4.6)

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
=

𝐹𝑃

𝑁
(4.7)

However, the ROC analysis is not taken into account by this dissertation for

two reasons. First, we expect each ROC curve may reflect the performance of

prediction by one method. But the predictions are returned by the certain method,

where the threshold of classifying of the positives and negatives may not be altered.

Consequently, the ROC figure may be composed of the discrete points, rather than

a classical curve passing from the point with both TPR and FPR equal to 0, to

the point with both values equal to 1. Second, TN in Equation 4.7 is calculated

by subtracting TP from all possible base pairs based on the given sequence. The

amount of all possible base pairs induces TN to cover a quite large number of

pairs. The enormous gap between FP and TN, which may range from ten times

to thousand times, contributes FPR a quite low value approaching to 0. These

low values induce a quite thicker aggregation of discrete points in the small area

near the y-axis, compared to the global plane.

Obviously, the ROC analysis is not very likely to succeed in the evaluation of

predicting RNA secondary structures.

4.4 Comparison of Predictions

This section introduces a series of comparisons. A comparison of the param-

eters that the programs mentioned above utilize is introduced first. Then, the

predictions of Orphea and KnotInFrame, based on the Saccharomyces cerevisiae

genome are compared with the strong candidates of PRFdb, and the predictions

of Orphea and KnotInFrame, based on a synthetic genome and Human mRNAs

are compared with each other. Additionally, predicting the best predictions of
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Orphea, which have been tested empirically, is performed by the contemporary

methods. Last, the comparison of the predictions of Orphea and KnotInFrame

with the viral frameshifting signals in PseudoBase is carried out.

4.4.1 Comparison of Parameters

We can not deny the difference between the approaches is strongly due to the

diverse definitions of the slippery sequence, the size of the downstream pseudoknot

structure and some other elements of a frameshifting signal, and particularly the

algorithm used to search for the structures. In this aspect, a reasonable compar-

ison of the predictions should start from a good comprehension of the respective

divergences of the parameters used by each method.

The parameters of the four programs introduced above are shown in Table

4.1, where the rightmost column Energy illustrates whether the thermodynamic

parameters are considered by the corresponding program in their detecting models.

4.4.2 Prediction of Three Genomes

This section is about the comparison of the common predictions based on three

genomes. The predictions can be referred to as common if their slippery sequence

is the same at the same slippery position in the genome, regardless of the shapes

of the predicted secondary structures.

Datasets

We have tried to find the common predictions of the methods, in the context

of the following three datasets:

∙ The Saccharomyces cerevisiae genome, which has been obtained from Sac-

caromyces Genome Database as of April 2011, of length about twelve million

nucleotides.

∙ A synthetic genome, which has been generated as a random sequence with

the GenRGenS software [Ponty et al., 2006], of length of twelve million

nucleotides, with the same average composition in hexanucleotides as the

Saccharomyces cerevisiae genome (12Mb).
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∙ Human mRNAs, which have been obtained from the 01/09/09 version of the

NIH Mammalian Gene Collection, a number of 42,433 sequences with lengths

ranging from dozens of nucleotides to tens of thousands of nucleotides. Typ-

ically, we refer to the Human mRNAs as the third genome without special

notification for convenience.
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Table 4.1: The comparison of parameters of four programs.
Program Slippery Sites Spacer ES1 ES2 EL1,EL1’ and EL2 Learning Data Energy

FSFinder

X = N

4 - 11 nt

4 - 13 bp

0 - 6 bp

EL1: 0 - 6 nt RECODE1

NOY = A or U At least 2 G:C in EL1’: 0 - 6 nt and

Z = N first 4 bp EL2: 6 - 30 nt PseudoBase

PRFdb

X = N

0 - 12 nt

4 - 20 /nt 4 - 20 /nt EL1: 1 - 3 nt 56 sequences

YESY = A or U
G:U allowed G:U allowed

EL1’: optional in

Z ̸= G EL2: 1/2EL1 - 100 nt RECODE

KnotInFrame

X = N

1 - 12 nt 4 - 17 bp/nt 3 - 18 bp/nt

EL1: 1 - 10 nt 28 sequences

YESY = A or U EL1’: 0 - 50 nt in

Z = N EL2: 6 - 40 nt RECODE

Orphea

𝑋1𝑋2𝑋3=

3 - 9 nt

The ES1.5’ lies in The ES2.5’ lies between

EL2: ≥ 4 nt

17 sequences

NO

{GGG, GUG, the first 20 nt ES1.5’ and ES1.3’.

GAG, GUU, from Z. ES2.3’ is searched

GAA, GAU, The ES1.3’ lies in alternatively
in

GUA, CCC, the following 30 according to the

AAA, UUU} nt from Z. the length

PseudoBaseY = A or U May contain of ES1.

Z ̸= G bulges.

1 The number of sequences in the learning data of FSFinder in unknown.
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Results

Orphea had 171 predictions based on the Saccharomyces cerevisiae genome,

102 predictions on the synthetic genome, and 4414 ones on the human mRNAs.

All of them are available in Supplementary File Frameshifting.

To carry out the comparisons, I practically ran KnotInFrame through its web

service.

For the entire Saccharomyces cerevisiae and synthetic genomes, I cut the se-

quences into pieces of approximately 40 000 nucleotides, on the advice of the

developers of KnotInFrame about the maximum length of input. This was done

in an overlapping fashion to avoid the omittance of the candidates which locate

potentially in the overlap of any two consecutive pieces. The pieces of sequence

were sent successively as input to the web service of KnotInFrame, ensuring the

candidates that locate on two different pieces can be detected. KnotInFrame also

needs a parameter of the maximum number of best candidates that can be de-

tected in the given input sequence. I fixed this number to 15, which is 10 by fault,

for a larger group of ‘best’ predictions returned by KnotInFrame. Otherwise,

I employed the default parameters. For the Human mRNAs, I sent the 42,433

sequences directly into the web service of KnotInFrame.

As a result, KnotInFrame had 10118 predictions based on the Saccharomyces

cerevisiae genome, 9974 predictions based on the synthetic genome, and 160 509

ones based on the Human mRNAs respectively (available in the Supplementary

File Frameshifting).

There were 4 common candidates found between the 171 predictions of Orphea

and the 10118 predictions of KnotInFrame based on the Saccharomyces cerevisiae

genome. Based on the synthetic genome, only 1 common candidate was found

between the 102 predictions of Orphea and the 9974 predictions of KnotInFrame.

And based on the human mRNAs, 70 common candidates were found between

the 4414 predictions of Orphea and the 160 509 predictions of KnotInFrame. The

results are shown in Table 4.2 and Figure 4.8.

However, regarding the 1679 strong candidates of PRFdb (available in the

Supplementary File Frameshifting), since the unavailability of the version of the

Saccharomyces cerevisiae genome that was used in [Jacobs et al., 2007], I could
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(a) Based on the Saccharomyces cere-

visiae genome

(b) Based on the synthetic genome

(c) Based on 42 433 human mRNAs

Figure 4.8: The common prediction between Orphea and KnotInFrame.

Table 4.2: The prediction of Orphea and KnotInFrame based on three datasets.
Size Orphea KnotInFrame Common predictions

S.cerevisiae > twelve million nucleotides 171 10118 4

Synthetic twelve million nucleotides 102 9974 1

Human mRNAs 42 433 sequences 4414 160 509 70

not compare the PRFdb data with the predictions of Orphea and KnotInFrame

based on a different version of Saccharomyces cerevisiae genome.

Indeed, KnotInFrame have stated that they have 74 common predictions with

these 1679 strong candidates of PRFdb [Theis et al., 2008]. So I ran Orphea

on the 1679 strong candidates of PRFdb directly to try to find the possibility of

something interesting among Orphea and KnotInFrame and the strong candidates

of PRFdb.

The result was that 12 matches were found between Orphea and PRFdb, but

the three approaches did not have any common agreement, as shown in Figure 4.9.

Additionally, there is not so much sense to compare the predictions between Or-
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phea and KnotInFrame based on the 1679 strong candidates, as the unavailability

of the entire genome and consequently the exhaustive predictions of Orphea and

KnotInFrame. This corresponds to an empty subset in the intersection between

Orphea and KnotInFrame in Figure 4.9.

Figure 4.9: The common prediction among Orphea, KnotInFrame and PRFdb.

Discussion

After the ranking and selecting procedures mentioned in the Section 4.2.4, there

were 49 predictions of Orphea chosen to be tested experimentally to promote a

frameshifting in vivo, based on the Saccharomyces cerevisiae genome, the synthetic

genome, and human mRNAs.

However, according to [Brégeon et al.], none of the common matches between

Orphea and KnotInFrame, as shown in Figure 4.8, was among the 49 best predic-

tions of Orphea which were tested empirically. Thus, we may have the conclusion

that the best candidates of Orphea obtaining a strong frameshifting rate in the

biological experiments had not been detected by KnotInFrame.

And as the reason of the unknown version of the Saccharomyces cerevisiae

genome used by PRFdb, there is no obvious hints obtained from the comparison

based on the 1679 strong candidates of PRFdb.
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4.4.3 Comparison Based on the Best Predictions of Orphea

Dataset

As mentioned in Section 4.4.2, 49 predictions of Orphea were chosen to be

tested experimentally, based on the Saccharomyces cerevisiae genome, the syn-

thetic genome, and human mRNAs.

Learned from [Bekaert et al., 2003], the predictions having a frameshifting rate

above 5% are considered as good predictions in this dissertation as well, and those

having a frameshifting rate below 2% are considered as bad ones. Particularly,

this part of comparison focuses on the good predictions, which include a collection

of 6 best predictions of Orphea. They are listed in the descending order of their

frameshifting rates in Table 4.3.

Some notations in the table are introduced here. For convenience, Saccha-

romyces cerevisiae genome is referred to as Yeast, the synthetic genome is referred

to as Random, and human mRNAs is referred to as Human. Meanwhile, Orphea

had 171 predictions based on the Yeast genome, 102 predictions based on the

Random genome, and 4414 ones based on the Human genome respectively.

Aiming at distinguish the predictions, Orphea has assigned a reference num-

ber to each of its predictions, according to their detected positions in the input

sequence. In this context, the Sequence Name in the first column of Table 4.3

are written in the order of respective reference number in the predictions of Or-

phea genome frameshifting rate discovered in vivo. For example, the 54_Ran-

dom_0.179 represents the 54th prediction of Orphea, based on the synthetic

genome with the frameshifting rate of 17.9% observed. Typically, their individual

slippery positions are not shown in this nomenclature.

Methods

The comparison was carried out to test whether some other state-of-the-art

programs can agree with the 6 best predictions of Orphea. The programs used were

CyloFold [Bindewald et al., 2010], IPknot [Sato et al., 2011], pknotsRG [Reeder

et al., 2007], DotKnot [Sperschneider and Datta, 2010], and Vsfold5 [Dawson et al.,

2007]. All of them were run through web services.
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Particularly, the programs of IPknot, pknotsRG and DotKnot are labeled with

several trailing letters in Table 4.3, corresponding to several variant algorithms

that are adopted by each program to calculate the energy and fold the pseudo-

knot. In detail, IPknot-2 denotes that IPknot predicts the pseudoknot with the

number of decomposed levels of 2, IPknot-3 denotes that IPknot predicts the struc-

tures with the number of decomposed levels of 3 [Sato et al., 2011]. pknotsRG-M

and pknotsRG-F represent the standard MFE folding and enForced folding algo-

rithms of pknotsRG respectively [Reeder et al., 2007]. DotKnot and DotKnot-K

represent the detection of standard Pseudoknotted folding and the ones preferring

the conformations of Kissing hairpin [Sperschneider and Datta, 2010].

Results

The results shown in Table 4.3 were obtained by feeding the programs directly

with the 6 best predictions of Orphea.

Inside the table, a ‘yes’ means that the corresponding program can predict a

pseudoknot in the given sequence, otherwise a ‘no’.

The rightmost column Score of Table 4.3 shows the number of programs which

detect a pseudoknot in the given sequence. And the nethermost rows Overall

concludes the overall number of pseudoknots predicted by each program, based on

the 6 best predictions of Orphea.

The precise comparison of the 6 best predictions of Orphea with the corre-

sponding ones predicted by the other programs are provided in Appendix A, as

well as the comparison that is based on the left 43 empirically tested structures of

Orphea.
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Table 4.3: The general comparison of 6 best predictions of Orphea.

Sequence

Name

KnotIn

Frame
CyloFold IPknot-2 IPknot-3 pknotsRG-M pknotsRG-F DotKnot DotKnot-K MCFold Vsfold5

Scores

(YES/10)

54_Random

_0.179
no yes yes yes yes yes yes yes no no 7/10

3406_Human

_0.1332
yes no no no no yes no no no 2/10

57_Random

_0.131
no yes yes yes yes yes yes yes yes no 8/10

4335_Human

_0.0881
yes yes no no yes yes yes yes no yes 7/10

1679_Human

_0.0592
no yes no no no yes yes yes yes yes 6/10

4339_Human

_0.0558
yes yes no no yes yes yes yes yes no 7/10

Overall 3/6 5/6 2/6 2/6 4/6 6/6 5/6 5/6 3/6 2/6
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Discussion

According to Table 4.3, the programs have responded diversely to the 6 best

predictions of Orphea. We cannot have a prominent conclusion of the most ‘popu-

lar’ sequences clearly. It seemed that the best predictions of Orphea with efficient

frameshifting rates were not identified well by all the programs, especially the

3406_Human_0.1332.

But generally, CyloFold and DotKnot had a relatively good performance, as

they detected 5 sequences out of 6. Especially, pknotsRG has obtained a very good

sensitivity (100%) on predicting pseudoknots with its Enforced folding algorithm

as it predicted all the predictions, but offering no guarantee on the quality of the

prediction. The enforcing pseudoknotted folding algorithm focuses on searching a

pseudoknot globally, in spite of the free energy of the folded structure. Contrarily,

pknotsRG with the MFE algorithm focuses on finding a more stable structure

with the lowest free energy, which may not contain pseudoknots.

Meanwhile, Table 4.3 shows that it seems difficult for a majority of methods

to agree with the best predictions of Orphea, in spite of their high level of -1

PRF rates obtained in vivo. This may be because of the diversity of the calcu-

lating algorithms and the predicting parameters and models which are restrained

greatly by the available structures in the database to learn and the functional and

mechanical knowledge of pseudoknots.

Particularly, this round of comparisons can not be assessed by the evaluation

parameters as introduced in Section 4.3.1, as the 6 best predictions of Orphea can

not be referred to as the reference structures.

4.4.4 Comparison Based on the Frameshifting Signals in

PseudoBase

This section is about the comparison between the prediction of Orphea and

KnotInFrame on the reference structures of the frameshifting signals in Pseu-

doBase.
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Datasets

There are 34 viral frameshifting signals in PseudoBase [Van Batenburg et al.,

2000], as of January 22, 2015.

Particularly, 17 signals were chosen as the learning data of Orphea [Brégeon

et al.; Forest, 2005], as mentioned in Section 4.2.4. Consequently, the comparison

was carried out in two rounds. The first one was based on the 17 learning sequences

of Orphea. And the second one was based on the other 17 frameshifting signals

in PseudoBase, which are referred to as the testing data of Orphea below.

The information of the 17 learning frameshifting signals of Orphea are shown

in Table 4.4 in detail, including the reference number in PseudoBase, with the

prefix of PKBNo., the organisms they come from, and the corresponding sizes of

the submotifs of a frameshifting signal. Table 4.5 shows the similar information

of the 16 testing frameshifting signals of Orphea, where one signal is excluded

as its stimulating pseudoknot is a kissing hairpin. Particularly, it is the Human

Coronavirus 229E (HCV_229E), with the reference number of PKB171 and a

length of 224 nucleotides.

Table 4.6 shows the information of the Human Coronavirus 229E (HCV_229E)

provided in PseudoBase, where ‘:::’ represents the unpaired region in the refer-

ence structure. This unpaired region corresponds to the horizontal unpaired line

between two hairpins in Figure 4.10, which is drawn with all 224 nucleotides. We

supposed a free unpaired region between the two hairpins, because of the omitted

secondary information in PseudoBase.
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Table 4.4: The 17 learning frameshifting signals of Orphea in PseudoBase.

Gene Name PKBNo. Organism
Length

(nt)

Spacer

(nt)

Stem1

(bp)

Stem2

(bp)

Loop1

(nt)

Loop2

(nt)

Loop3

(nt)

BLV PKB1 Bovine Leukemia Virus 34 7 6 3 5 0 4

BWYV PKB2 Beet Western-Yellows Virus 32 6 5 4 2 0 6

EIAV PKB3 Equine Infectious Anemic Virus 44 9 6 4 3 0 12

FIV PKB4 Feline Immunodeficiency Virus 43 8 5 6 2 0 11

PLRV-W PKB42 Potato Leafroll Virus 32 6 4 3 2 1 9

PLRV-S PKB43 Potato Leafroll Virus 32 6 4 4 2 0 8

CABYV PKB44 Cucurbit Aphid-Borne Yellows Virus 32 5 5 3 2 1 8

PEMV PKB45 Pea Enation Mosaic Virus 34 6 6 4 2 0 6

BYDV-NY-RPV PKB46 Barley Yellow Dwarf Virus 32 5 5 4 2 0 7

MMTV_gag/pro PKB80 Mouse Mammary Tumor Virus 41 7 5 7 1 1 8

IBV PKB106 Infectious Bronchitis Virus 75 6 11 7 1 0 32

SRV1_gag/pro PKB107 Simian RetroVirus-1 44 7 6 6 1 0 12

BEV PKB128 Berne Virus 110 5 11 5 4 0 69

LDV-C PKB217 Lactate Dehydrogenase-elevating Virus 65 6 11 6 3 3 19

PRRSV-16244B PKB218 Porcine Reproductive Respiratory Syndrome Virus 63 5 12 7 4 0 15

PRRSV-LV PKB233 Porcine Reproductive Respiratory Syndrome Virus 63 5 12 7 4 0 15

BChV PKB240 Beet Chlorosis Virus 33 7 4 4 1 1 8
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Table 4.5: The 16 testing frameshifting signals of Orphea in PseudoBase.
Gene Name PKBNo. Organism Length(nt) Spacer(nt) Stem1(bp) Stem2(bp) Loop1(nt) Loop2(nt) Loop3(nt)

EAV PKB127 Equine Arteritis Virus 122 6 11 6 2 1 69

RSV PKB174 Rous Sarcoma Virus 128 1 14 8 11 52 11

WBV PKB253 White Bream Virus 82 4 14 5 4 0 29

SARS-CoV PKB254 SARS Coronavirus 82 5 11 7 3 0 29

Mm_Edr PKB257 Mus Musculus (mouse) 66 5 10 9 3 0 9

Hs_Ma3 PKB258 Homo Sapiens 60 6 11 5 3 1 10

VMV PKB280 Visna-Maedi Virus 68 6 7 7 5 7 14

ScYLV PKB281 Sugarcane Yellow Leaf Virus 43 6 5 3 2 1 9

KUNV PKB346 West Nile virus, Kunijn Subtype 75 5 11 7 6 3 17

WNV PKB347 West Nile virus 75 5 11 7 6 3 17

JEV PKB348 Japanese Encephalitis Virus 77 5 11 7 7 2 16

MVEV PKB349 Murray Valley Encephalitis Virus 80 5 11 7 7 2 16

ALFV PKB350 Alfuy Virus 77 5 11 6 8 2 16

USUV PKB351 Usutu Virus 80 5 11 7 7 2 16

MIDV PKB352 Middelburg Virus 70 6 10 7 3 1 13

SESV PKB353 Seal Louse Virus 70 7 11 8 1 0 9
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Table 4.6: The sequence and secondary structure of the Human Coronavirus 229E

(HCV_229E), PKB171 in PseudoBase.

Human Coronavirus 229E (HCV_229E): PKB171, 224 nucleotides

Sequence UUUAAACGAGUCCGGGGCUCUAGUGCCGCUCGACUAGAGCCCUGUAA:::CAGUUAUGGACCACGAGCAGUCCAUGUA

Structure ............((((((((((((...[[[[[))))))))))))...:::....(((((((..]]]]].)))))))..

Figure 4.10: The reference structure of the Human Coronavirus 229E (HCV_229E).

Results

The comparison of the predicted structures with the reference structures in

PseudoBase are partially shown in Table B.2. The entire comparison can be

found in the Appendix B.

Quite remarkably, Orphea failed twice to predict a pseudoknot based on the

17 learning signals, and failed six times based on the 17 testing signals. On the

other hand, KnotInFrame failed eight times based on the 17 learning signals, and

failed five times based on the 17 testing signals.

Table 4.8 and Table 4.9 show the performance of the corresponding predictions

by Orphea and KnotInFrame based on the 17 learning frameshifting signals of

Orphea, calculated by Equations 4.1, 4.2 and 4.3. Table 4.10 and Table 4.11 show

the performance of corresponding predictions by Orphea and KnotInFrame based

on the 17 testing frameshifting signals of Orphea.
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Table 4.7: Three examples of the comparison with the refer-

ence structures in PseudoBase.

Gene Name Program Result

Sequence UUUAAACUGCUAGCCACCUCUGGUCUCGACCGCUGUACUAGAGGUGGGCUGACGGUGUYUGGCGAUGCGGUCA

Slippery Site UUUAAAC

LDV-C SubSequence UGCUAGCCACCUCUGGUCUCGACCGCUGUACUAGAGGUGGGCUGACGGUGUYUGGCGAUGCGGUCA

(PKB217) PseudoBase ......(((((((((((...[[[[[[...)))))))))))...................]]]]]].

Orphea ......(((((((((((......[[[[[[)))))))))))...........]]]]]].........

KnotInFrame ......(((((((((((......[[[[[[)))))))))))....]]]]]]................

Sequence
UUUAAACUGUUGAGAGGUGCCUGGAGCGCCUGCAGGCAUCUCUGUUUUCAAAAUGGCGCAUACCAGUCUUCAAGGUCAAAACAUUAUAUUGAU

UUGGCAACUGAGUAUAAUGCAGGCA

Slippery Site UUUAAAC

BEV SubSequence
UGUUGAGAGGUGCCUGGAGCGCCUGCAGGCAUCUCUGUUUUCAAAAUGGCGCAUACCAGUCUUCAAGGUCAAAACAUUAUAUUGAUUUGGCAA

CUGAGUAUAAUGCAGGCA

(PKB128) PseudoBase
.....(((((((((((....[[[[[))))))))))).........................................................

............]]]]].

Orphea
.....(((((((((((..[[[[[..)))))))))))...........]]]]].........................................

..................

KnotInFrame
.....(((((((((((..[[[[[..)))))))))))...........]]]]].........................................

..................

Continued On Next Page
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Table 4.7 – Continued From Previous Page

Gene Name Program Result

Sequence

UUUAAACGAGUCCGGGGCUCUAGUGCCGCUCGACUAGAGCCCUGUAAUGGUACAGACAUAGAUUACUGUGUCCGUGCAUUUGACGUUUACAAU

AAAGAUGCGUCUUUUAUCGGAAAAAAUCUGAAGUCCAAUUGUGUGCGCUUCAAGAAUGUAGAUAAGGAUGACGCGUUCUAUAUUGUUAAACGU

UGCAUUAAGUCAGUUAUGGACCACGAGCAGUCCAUGUA

HCV_ Slippery Site UUUAAAC

229E SubSequence

GAGUCCGGGGCUCUAGUGCCGCUCGACUAGAGCCCUGUAAUGGUACAGACAUAGAUUACUGUGUCCGUGCAUUUGACGUUUACAAUAAAGAUG

CGUCUUUUAUCGGAAAAAAUCUGAAGUCCAAUUGUGUGCGCUUCAAGAAUGUAGAUAAGGAUGACGCGUUCUAUAUUGUUAAACGUUGCAUUA

AGUCAGUUAUGGACCACGAGCAGUCCAUGUA

(PKB171) PseudoBase

.....((((((((((((...[[[[[))))))))))))........................................................

.............................................................................................

.......(((((((..]]]]].)))))))..

Orphea

.....((((((((((((.[[[....))))))))))))...]]]..................................................

.............................................................................................

...............................

KnotInFrame

.....((((((((((((.[[[....)))))))))))).....((((.(((((((....))))))).))))....(((((.............)

))))......]]]................................................................................

...............................
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Tables 4.12 and 4.13 conclude the global performance of Orphea and KnotIn-

Frame in predicting the 34 frameshifting signals, where the higher values based

on each frameshifing signal are highlighted in bold.

Quick remarkably, Orphea prevailed over KnotInFrame globally.

Based on the learning data, Orphea successfully detected more pseudoknots

than KnotInFrame, and obtained an average higher values of sensitivity, PPV and

MCC than KnotInFrame. Based on the testing data, Orphea won for its higher

values as well, in spite of failing one more time in detecting pseudoknot than

KnotInFrame. Particularly, Orphea has obtained 11 precise predictions compared

to the reference structures, with their MCC values equal to 1. On the other

hand, KnotInFrame has obtained several negative MCC values, which shows the

disagreement between the predictions and the reference structures in different

levels [Matthews, 1975].

Table 4.8: The 15 predictions of Orphea based on 17 learning signals.
Name PKBNo. TP TN FP FN Sensitivity PPV MCC

BLV PKB1 8 217 0 1 0.889 1.0 0.941

BWYV PKB2 9 253 0 0 1.0 1.0 1.0

EIAV PKB3 10 306 0 0 1.0 1.0 1.0

FIV PKB4 11 269 0 0 1.0 1.0 1.0

PLRV-S PKB43 8 105 0 0 1.0 1.0 1.0

CABYV PKB44 2 124 6 6 0.25 0.25 0.204

BYDV-NY-RPV PKB46 3 137 6 6 0.333 0.333 0.291

MMTV_gag-pro PKB80 11 288 0 1 0.917 1.0 0.956

IBV PKB106 17 1143 0 1 0.944 1.0 0.971

SRV1_gag-pro PKB107 12 307 0 0 1.0 1.0 1.0

BEV PKB128 11 2313 5 5 0.688 0.688 0.685

LDV-C PKB217 11 827 6 6 0.647 0.647 0.64

PRRSV-16244B PKB218 19 822 1 0 1.0 0.95 0.974

PRRSV-LV PKB233 19 783 0 0 1.0 1.0 1.0

BChV PKB240 3 131 4 5 0.375 0.429 0.368
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Table 4.9: The 9 predictions of KnotInFrame based on 17 learning signals.
Name PKBNo. TP TN FP FN Sensitivity PPV MCC

BLV PKB1 6 216 3 3 0.667 0.667 0.653

BWYV PKB2 9 253 0 0 1.0 1.0 1.0

MMTV_gag-pro PKB80 5 289 5 7 0.417 0.5 0.436

IBV PKB106 0 1149 11 18 0.0 0.0 -0.012

SRV1_gag-pro PKB107 5 311 3 7 0.417 0.625 0.495

BEV PKB128 11 2313 5 5 0.688 0.688 0.685

LDV-C PKB217 11 827 6 6 0.647 0.647 0.64

PRRSV-16244B PKB218 6 827 12 13 0.316 0.333 0.31

PRRSV-LV PKB233 0 785 17 19 0.0 0.0 -0.022

Table 4.10: The 11 predictions of Orphea based on 17 testing signals.
Name PKBNo. TP TN FP FN Sensitivity PPV MCC

EAV PKB127 11 2522 3 6 0.647 0.786 0.711

HCV_229E PKB171 12 9098 3 12 0.5 0.8 0.632

WBV PKB253 16 1062 0 3 0.842 1.0 0.916

SARS-CoV PKB254 14 1082 0 12 0.538 1.0 0.73

Hs_Ma3 PKB258 16 431 0 0 1.0 1.0 1.0

VMV PKB280 14 617 0 0 1.0 1.0 1.0

ScYLV PKB281 8 135 1 0 1.0 0.889 0.939

WNV PKB347 18 877 0 2 0.9 1.0 0.948

JEV PKB348 18 939 0 2 0.9 1.0 0.948

ALFV PKB350 16 922 0 1 0.941 1.0 0.97

SESV PKB353 19 655 0 0 1.0 1.0 1.0
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Table 4.11: The 12 predictions of KnotInFrame based on 17 testing signals.
Name PKBNo. TP TN FP FN Sensitivity PPV MCC

HCV_229E PKB171 12 9098 19 12 0.5 0.387 0.438

RSV PKB174 32 2650 3 7 0.821 0.914 0.864

WBV PKB253 14 1060 4 5 0.737 0.778 0.753

SARS-CoV PKB254 10 1082 4 16 0.385 0.714 0.516

Mm_Edr PKB257 5 552 4 14 0.263 0.556 0.369

Hs_Ma3 PKB258 0 438 9 16 0.0 0.0 -0.027

VMV PKB280 13 618 3 1 0.929 0.813 0.865

WNV PKB347 11 878 6 9 0.55 0.647 0.588

JEV PKB348 11 940 6 9 0.55 0.647 0.589

ALFV PKB350 7 925 6 10 0.412 0.538 0.463

MIDV PKB352 14 607 3 3 0.824 0.824 0.819

SESV PKB353 11 659 4 8 0.579 0.733 0.643

Table 4.12: The comparison of predictions of Orphea and KnotInFrame based on

17 learning signals.

Name PKBNo.
Sensitivity PPV MCC

Orphea KIF Orphea KIF Orphea KIF

BLV PKB1 0.889 0.667 1.0 0.667 0.941 0.653

BWYV PKB2 1.0 1.0 1.0 1.0 1.0 1.0

EIAV PKB3 1.0 1.0 1.0

FIV PKB4 1.0 1.0 1.0

PLRV-S PKB43 1.0 1.0 1.0

CABYV PKB44 0.25 0.25 0.204

BYDV-NY-RPV PKB46 0.333 0.333 0.291

MMTV_gag-pro PKB80 0.917 0.417 1.0 0.5 0.956 0.436

IBV PKB106 0.944 0.0 1.0 0.0 0.971 -0.012

SRV1_gag-pro PKB107 1.0 0.417 1.0 0.625 1.0 0.495

BEV PKB128 0.688 0.688 0.688 0.688 0.685 0.685

LDV-C PKB217 0.647 0.647 0.647 0.647 0.64 0.64

PRRSV-16244B PKB218 1.0 0.316 0.95 0.333 0.974 0.31

PRRSV-LV PKB233 1.0 0.0 1.0 0.0 1.0 -0.022

BChV PKB240 0.375 0.429 0.368

Overall 0.803 0.461 0.82 0.496 0.802 0.465
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Table 4.13: The comparison of predictions of Orphea and KnotInFrame based on

17 testing signals.

Name PKBNo.
Sensitivity PPV MCC

Orphea KIF Orphea KIF Orphea KIF

EAV PKB127 0.647 0.786 0.711

HCV_229E PKB171 0.5 0.5 0.8 0.387 0.632 0.438

RSV PKB174 0.821 0.914 0.864

WBV PKB253 0.842 0.737 1.0 0.778 0.916 0.753

SARS-CoV PKB254 0.538 0.385 1.0 0.714 0.73 0.516

Mm_Edr PKB257 0.263 0.556 0.369

Hs_Ma3 PKB258 1.0 0.0 1.0 0.0 1.0 -0.027

VMV PKB280 1.0 0.929 1.0 0.813 1.0 0.865

ScYLV PKB281 1.0 0.889 0.939

WNV PKB347 0.9 0.55 1.0 0.647 0.948 0.588

JEV PKB348 0.9 0.55 1.0 0.647 0.948 0.589

ALFV PKB350 0.941 0.412 1.0 0.538 0.97 0.463

MIDV PKB352 0.824 0.824 0.819

SESV PKB353 1.0 0.579 1.0 0.733 1.0 0.643

Overall 0.843 0.546 0.952 0.629 0.89 0.573

Discussion

According to Tables 4.12 and 4.13, Orphea and KnotInFrame both failed to

predict some frameshifting signals some times.

The reason to explain the failures of Orphea may be that the input sequences

are basically too small. This results in either the threshold score assigned during

the searching phase is not reached for the ES1, or the length is too small to find

ES2 when a valid ES1 is found.

The reason that KnotInFrame fails to predict a structure may be because

the length of some sequences are too short to reach the threshold of the input

requirement. However, KnotInFrame can occasionally have a not bad prediction,

compared to the reference structure, once they are elongated with an AAA-tail,

to the length of around 50 nucleotides. Another prominent explanation of the

failures of KnotInFrame is that KnotInFrame requires a much more restricted

slippery sequence, namely three identical nucleotides for X in X XXY YYZ.
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And again, according to Tables 4.12 and 4.12, it is clear to have the following

conclusions. First, Orphea had an overwhelming triumph as it obtained higher

values of sensitivity, PPV and MCC, based on most reference structures. Second,

Orphea is more sensitive, especially to short sequences than KnotInFrame, and

can tolerate a more general composition of slippery sequence in predicting -1 PRF

signals.

On the other hand, for the genes of BWYV, BEV, LDV-C and HCV_229E,

Orphea has obtained a draw with KnotInFrame for their equal values of sensitivity,

PPV and MCC. However, it is very interesting to reveal that Orphea has predicted

a different pseudoknot from KnotInFrame although both programs have identical

evaluation values. The examples are LDV-C and HCV_229E, as shown in Table

B.2. This further explains the dilemma we mention in Section 4.3 where we notice

the unsatisfactory assessments by sensitivity, PPV and MCC as calculated by

Equations 4.1, 4.2 and 4.3, but there are no better options of evaluation parameters

for us to choose and no reliable suggestions on a practical applicability of them to

benefit.

4.5 Conclusion

This chapter has introduced one typical recoding event, -1 programmed ribo-

somal frameshifting, where the downstream pseudoknot plays the role of a strong

stimulator. Brief introduction of four programs predicting -1 PRF signals, FS-

Finder, the corresponding work of PRFdb, KnotInFrame and Orphea followed.

This chapter principally focused on a series of comparisons of predicting -1

programmed ribosomal frameshifting signals by the available methods. For the

assessment of the predictions, three evaluation parameters and their variants were

discussed as well.

However, the pseudoknots involved in frameshifting are only a subset of the

pseudoknots family, many other pseudoknots may take care of the other types of

recoding events and much more general molecular procedures. So in the follow-

ing chapters, the study of more general pseudoknots is going to be introduced,

including the classification of pseudoknots, and prediction of pseudoknots by the
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contemporary methods.

Typically, we term this coming work as a benchmark for the pseudoknots and

the prediction methods.
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Chapter 5

Preparation of the Benchmark for

Pseudoknots and Prediction

Methods

This chapter opens a new topic of my work, a benchmark particularly designed

for the RNA pseudoknots and the prediction methods. As the main contributions

of this dissertation, this part of work is organized in three chapters.

This chapter introduces the motivation and preliminaries of this benchmark, as

well as the preparation work, such as the datasets and methods involved, the char-

acteristics of pseudoknots considered, and the evaluation parameters employed.

Chapter 6 shows the results obtained, including both the classification of pseu-

doknots, and the prediction of pseudoknots. Further, the benchmark is accessible

with an on-line version for the community, suggesting some details of the web

development.

Based on the results shown in Chapter 6, the respective discussions are aroused

in Chapter 7, and the conclusion about the benefits and lessons we may obtain

from this benchmark.

5.1 Motivation

Comparison of the predicting results from more than one program is a good

approach to generating an informed hypothesis about RNA structure and func-
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tion [Schroeder, 2009]. The evaluation criteria and databases of known secondary

structures used to evaluate prediction accuracy vary substantially between dif-

ferent research groups and make direct comparisons complex [Schroeder, 2009].

Comparing, or benchmarking the predictions returned by different RNA struc-

ture prediction methods, which are based on the sequences in the same dataset,

suggests an acceptable and reliable comparison.

However, such kind of benchmarking systems for assessing the RNA secondary

structure prediction methods is rarely performed, compared to other bioinformatic

domains, such as the practice of the protein-folding algorithms [Eyrich et al., 2001],

protein-protein docking [Chen et al., 2003] and multiple sequence alignment [Gard-

ner et al., 2005; Thompson et al., 1999]. This is significant to bear in mind which

of the available methods for secondary structure prediction is the most accurate

and useful practically, as an increasing number of efforts have been made on the

exploration of more powerful in silico prediction methods.

As one of the pioneers, BRAliBase I by [Gardner and Giegerich, 2004] bench-

marks the comparative RNA structure prediction algorithms, which are preferred

as the homologous RNA sequences are available. But BRAliBase I did neither

pay much attentions on the RNA structure prediction methods based on a single

sequence, nor on the pseudoknots.

Recently, [Puton et al., 2013] proposes a benchmark of RNA structure pre-

diction methods, CompaRNA. CompaRNA focuses on the methods predicting an

RNA secondary structure either from a single sequence or from the compara-

tive analysis when a set of homologous sequences are available. And CompaRNA

considers both the pseudoknot-free secondary structures and the pseudoknots con-

currently.

More precisely, CompaRNA considers pairs of programs at a time exhaustively,

and compares the mean evaluation values based on the dataset to which both

programs return a secondary structure. The programs are ranked according to

the number of being a winner in the pair-wise comparisons.

However, CompaRNA does not separate the comparative structure prediction

methods and the ones based on a single sequence, and compares them equally

on the benchmarking datasets. This suggests few insights into the predictions
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of the ‘single-sequence’ methods, which is caused by their generally worse perfor-

mance compared to the comparative methods, as the latter holds more information

from the set of homologous sequences provided. This is further supported by the

ranking result obtained by CompaRNA on the PDB dataset (Table 5 therein)

where comparative methods have obtained an overwhelming dominance [Puton

et al., 2013]. On the other hand, the datasets in CompaRNA correspond to par-

ticular collections of sequences which are determined by the pairs of methods in

comparison, as each sequence is returned with a secondary structure by both pro-

grams. It implies that all the methods are not evaluated with the consistent set

of sequences, suggesting CompaRNA’s ranking system is not global enough. In

addition, CompaRNA pays few attention on the failure of predictions in the pair-

wise comparisons. Last but not least, CompaRNA takes the ranking generated on

pseudoknots as only a particular case.

This part of work is going to introduce a benchmark of RNA secondary struc-

ture prediction methods which particularly focuses on the ones predicting RNA

pseudoknots from a given sequence. The primary purpose and contribution of this

benchmark is to take advantage of the existing methods to generate a practical

prediction for the given sequence. It is relative to the questions of how to carry

out a reasonable prediction, how to make a proper selection of prediction methods

for the given sequence, and how much accuracy the prediction holds.

Meanwhile, a good knowledge on the characteristics of pseudoknots will pro-

mote a more persuasive comparison of predictions. This arouses the second con-

tribution of this benchmark, a comprehensive analysis of the pseudoknot classifi-

cations, according to several categories of complexity measures.

In practice, this benchmark considers a common or shared set of sequences

where each sequence is returned with a secondary structure by all the benchmark-

ing methods. Further, the predictions are assessed on hierarchical subsets of this

common set which are divided by the length, organism and RNA type of the se-

quences, and the classifications that the implied pseudoknots are subject to. In

addition, the sequences which are returned with a secondary structure by some

methods and are not by some other methods are considered as an uncommon or

missing set. The predictions based on this set of sequences are compared as well,
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which is expected to reflect different levels of failure of prediction by the prediction

methods.

5.2 Datasets

There are two provenances of pseudoknots used for benchmarking in this chap-

ter, one provenance is database PseudoBase [Van Batenburg et al., 2000], a partic-

ular database for the pseudoknots, and the other is the set of some pseudoknotted

entries from the database Protein Data Bank (PDB) [Berman et al., 2000]. More

precisely, there are:

∙ 367 pseudoknots from PseudoBase, as of March 28, 2014. The sequences,

PKB1-PKB367 have been downloaded from the database directly. Partic-

ularly, PseudoBase focuses on the crossing interactions forming the pseu-

doknot, and omits partial structural information elsewhere for 27 relatively

long sequences, such as the PKB64 and PKB192. An example PKB171 is

shown in Table 4.6, where the ‘:::’ represents the unknown potential details

in PseudoBase, and Figure 4.10. In this benchmark, the corresponding un-

known parts are referred to as unpaired bases consistently, and the complete

sequences and structures are provided in the Supplementary File Benchmark.

Additionally, the first 304 pseudoknots in this dataset, PKB1-PKB304, cor-

respond to the records in the PseudoBase++ [Taufer et al., 2009].

∙ 47 pseudoknots extracted from PDB, which are provided by CompaRNA’s

authors kindly, as of June 5, 2013. Specifically, CompaRNA uses several

filters to select PDB records for benchmarking, such as the restrictions on the

length which should be longer than 20 nucleotides, and the RNA backbone

which should be continuous [Puton et al., 2013].

The pair-wise interactions of the total 414 pseudoknots contain only the canon-

ical A-U, G-C pairs and the wobble G-U pair. The collection of such types of base

pairs are also referred to as the standard base pairs. And we do not consider the

non-canonical interactions [Leontis and Westhof, 2001].
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Additionally, the isolated base pair is allowed in this benchmark, while the

triples are forbidden. The notion of isolated base pair corresponds to a stem with

only one base pair, and the triples are those bases which participate in the base

pairing with two partners at the same time.

The details of the 414 sequences are provided in Supplementary File Bench-

mark.

5.3 Classification of Pseudoknots

The pseudoknots can be classified according to hierarchical complexity mea-

sures, such as the physical interactions, algorithmic accessibilities and conforma-

tional characteristics, which refer to the physical interaction of stems, the algo-

rithms that can predict them, and some conformational characteristics respec-

tively.

The pseudoknots can be sorted into classes by some other criteria, such as the

mathematical definitions proposed in [Han et al., 2008; Wong et al., 2011]. But

this dissertation has more interests on the first three classifications.

5.3.1 Physical Interactions

Pseudoknots are formed by non-nested base pairs. A general definition of

the conformation of a pseudoknotted structure is that an unpaired loop region in

a classical secondary structure is involved in the standard base-pairings with a

complementary region outside this loop [Pleij, 1993].

As a preliminary, the shadow of a RNA secondary structure is obtained by

removing all non-crossing arcs, collapsing all unpaired bases, and replacing all

adjacent parallel arcs by single arcs, with the loss of some information on the size

of the stems and non-crossing components of the global structure [Reidys et al.,

2011]. A schematic figure is shown in Figure 5.1.

In the context of pseudoknot study, the RNA shadow captures the dominant

interactions forming the pseudoknot, in spite of sacrificing some details. Con-

sequently, this dissertation declares each pseudoknot a particular physical type

against the corresponding RNA shadow.
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(a) An H-type pseudoknot (b) The shadow

Figure 5.1: An H-type pseudoknot and its shadow.

As an extension of the introduction of the structures with pseudoknots in

Chapter 2, this dissertation concludes the pseudoknots family as the following

four types principally, from the aspect of physical interaction of the stems:

∙ The H-type pseudoknots, as described in Section 2.2.3. This most prevalent

pseudoknot type covers the major members of PseudoBase with the pseudo-

knot pattern of ABAB. An example is the gag/pro ribosomal frameshifting

pseudoknot of the simian retrovirus-1 (SRV1_gag/pro) with the reference

number of PKB107 in PseudoBase.

∙ The kissing hairpin pseudoknots, or kissing hairpins for short, as introduced

in Section 2.2.3. An example of kissing hairpin is the pseudoknot present in

the coxsackie B virus (CoxB3), with the pattern of ABACBC and reference

number of PKB169 in PseudoBase.

∙ The recursive pseudoknots, where a pseudoknot is locally embedded in the

unpaired single-strand region of another pseudoknot. The embedding and

embedded pseudoknot can be either an H-type pseudoknot or a kissing hair-

pin. In fact, the beginning and ending loops of the pseudoknot hold the

possibility to harbor a substructure locally as well, which makes the re-

cursive pseudoknot a conformation of several consecutive pseudoknots. An

example of this case is the pseudoknot found in the Thermus thermophilus

tmRNA, with the pattern of ABAB and reference number of 3IYQ in PDB.

∙ The complex pseudoknots, which contain more complex interactions than
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the previous three types. A common case is the pseudotrefoil pseudoknot

present in the Escherichia coli (Ec_alpha) 𝛼 mRNA, with the pattern of

ABCABC and reference number of PKB71 in PseudoBase. Another example

is the pseudoknot found in the ribozyme of the Hepatitis delta virus, with

the pattern of ABCDCADB and reference number of PKB75 in PseudoBase.

Figure 5.2 shows these four types of pseudoknots, where subfigures 5.2(a),

5.2(c), 5.2(e) and 5.2(g) are the visualizations of PKB107, PKB169, 3IYQ and

PKB71 by VARNA, and the 5.2(b), 5.2(d), 5.2(f) and 5.2(h) are their correspond-

ing RNA structure shadows. Particularly, there are four consecutive, or ‘indepen-

dent’ H-type pseudoknots in 3IYQ, as shown in Figures 5.2(e) and 5.2(f). We

prefer to declare its pseudoknot pattern of ABAB as the global shadow in the fol-

lowing chapters, rather than ABABCDCDEFEFGHGH as they are four identical

H-type pseudoknots.

As the variants of H-type pseudoknots, [Pleij, 1993] introduces the bulge-type

(B-type) pseudoknot and the interior-type (I-type) pseudoknot, which have the

same pseudoknot pattern of ABAB. Specifically, instead of the hairpin loop, the

unpaired nucleotides in a bulge loop or an interior loop can base pair with a region

outside the loop, constructing the rare B-type pseudoknot and I-type pseudoknot.

Similarly, once the unpaired nucleotides in the multi-loop are involved in forming

a pseudoknot, the pseudoknot can be classified as the multi-loop-type (M-type)

pseudoknot.

A typical example of the B-type pseudoknot is found in the tRNA-like struc-

ture at the end of the tobacco mosaic virus (TMV) [Pleij, 1993], with the reference

number of PKB57 in PseudoBase. A typical example of the I-type pseudoknot is

found in the internal ribosomal entry site (IRES) region in the Plautia stali intes-

tine virus (PSIV_IRES-PKIII), with the reference number of PKB212 in Pseu-

doBase. An example of the M-type pseudoknot is found in the viral frameshifting

pseudoknot of the rous sarcoma virus (RSV) with the reference number of PKB174

in PseudoBase.
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(a) PKB107 in PseudoBase, an H-type

pseudoknot.

(b) The shadow of PKB107.

(c) PKB169 in PseudoBase, a kissing hair-

pin.

(d) The shadow of PKB169.

(e) 3IYQ in PDB, a recursive pseu-

doknot.

(f) The shadow of 3IYQ, with the pseudoknot

pattern of ABAB as the identical pseudoknots.

(g) PKB71 in PseudoBase, a pseudotrefoil. (h) The shadow of PKB71.

Figure 5.2: Physical classification of the pseudoknots.
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5.3.2 Algorithmic Accessibilities

As mentioned in Section 3.2.1, the methods which are available to predict

pseudoknots have more or less trade-offs between the practical consideration of

the generality of pseudoknots and reasonable computer cost. Comparison of their

performance of predictions will be more persuasive with a good knowledge on the

characteristics of pseudoknots detected by them. In this algorithmic classification,

the classes of pseudoknots are defined according to the specification of algorithms

which can predict them or not, as done by [Condon et al., 2004] and [Saule et al.,

2011]. Both researches contribute to the formal definitions of each algorithmic

class of pseudoknots, and the inclusion relationships between them.

Lyngso & Pederson (L&P) Class

The set of pseudoknots that the L&P’s algorithm [Lyngsø and Pedersen, 2000a]

can detect composes the L&P class of pseudoknots.

The basic component of the L&P class of pseudoknots is one H-type pseu-

doknot. Although the authors of the L&P’s algorithm report the possibility of

containing a B-type or an I type pseudoknot in their model, the L&P class of

pseudoknots is always referred to as the set of any number of pseudoknot free

structures, and the structures with only one H-type pseudoknot.

Dirks & Pierce (D&P) Class

The set of pseudoknots that the D&P’s algorithm [Dirks and Pierce, 2003] can

detect composes the D&P class of pseudoknots.

The basic component of the D&P class of pseudoknots is also one H-type

pseudoknot, where two pseudoknot-free structures cross each other. But compared

to the L&P class, the D&P class allows the recursion of any H-type pseudoknots

arbitrarily concatenated and embedded inside the unpaired intervals, as shown in

Figure 5.3(b), where the recursive regions are marked with R.

As a result, the set of the D&P class of pseudoknots consists of any number of

pseudoknot free structures, H-type pseudoknots and their arbitrary concatenation

and embedment inside each other, such as the pseudoknots with the patterns of
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ABCBCA, and ABCDCDAB. But more complex knotted structures such as the

pseudotrefoil are excluded from this class.

Akutsu & Uemura (A&U) Class

The set of pseudoknots that the Akutsu’s algorithm [Akutsu, 2000] can detect

composes the A&U class of pseudoknots.

The basic components of the A&U class pseudoknots are the simple pseudo-

knots [Akutsu, 2000]. The terminology of Akutsu’s simple pseudoknots contains

two crossing stems, each with a set of base pairs. The right bases of the first stem

and the left bases of the second stem are interleaved arbitrarily, and the other

bases all lie outside the interleaved area, as shown in Figure 5.3(c). Particularly,

the full circles in Figure 5.3(c) represent the right bases of the first stem, and

the open circles represent the left bases of the second stem. Recursion allows the

internal subfoldings of the unpaired strands, with or without pseudoknots, in the

formed structure. In addition, Figure 5.3(d) shows an example of simple pseudo-

knot in the A&U class, which is representative as the corresponding shadow of the

simple pseudoknot shown in Figure 2(A) in [Akutsu, 2000], with the pattern of

ABCBDADC.

As a conclusion, the set of the A&U class of pseudoknots consists of any

number of pseudoknot free structures, simple pseudoknots and their arbitrary

concatenation and embedment inside each other [Nebel and Weinberg, 2012]. But

more complex knotted structures with the interaction of three stems, such as

kissing hairpin with the pattern of ABACBC, and complex pseudotrefoil with the

pattern of ABCABC, are excluded from this class.

Jabbari & Condon (J&C) Class

The set of pseudoknots that the J&C ’s algorithm [Jabbari et al., 2007] can

detect composes the J&C class of pseudoknots.

The basic component of the J&C class of pseudoknots is the set of the H-

type pseudoknots and kissing hairpins, which are referred to as the density-2 (D2)

pseudoknots.

The notion of density is defined as the maximum number of stems where a par-
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(a) An non-recursive H-type pseudoknot. (b) A recursive H-type pseudoknot in the

D&P class.

(c) The simple pseudoknot model of the A&U

class.

(d) A simple pseudoknot in the A&U class.

Figure 5.3: Algorithmic classification of pseudoknots.

ticular nucleotide 𝑘 is embedded or a vertical line through 𝑘 is intersected [Jabbari

et al., 2008], as shown in Figure 5.4(a). And the J&C class of D2 pseudoknots,

corresponds to a class of pseudoknots in which each nucleotide is embedded in at

most two stems, and recursions in length and depth are allowed, as shown in the

Figure 5.4(b) and 5.4(c). Specially, the dashed line in both figures indicates an

uncertain number of stems which are involved in an analogous fashion potentially.

Compared to the A&U class of pseudoknots, the kissing hairpins are included in

the J&C class of pseudoknots, as the latter supports the conformation containing

more than two stems. On the other hand, the simple pseudoknots in the A&U class

with the pattern of ABCBDADC, as shown in Figure 5.3(d), are excluded from

the D2 structures in the J&C class. The rejection of such pseudoknots is because

91



some nucleotides are embedded in more than two stems, such as the position 𝑘 in

Figure 5.4(a), where the vertical dashed line through 𝑘 intersects three stems.

(a) An A&U simple pseudoknot corresponds to

the density of 3, as the vertical line through 𝑘

intersects three stems.

(b) A D2 structure with arbitrary number of

stems in J&C class.

(c) A D2 structure with arbitrary depth of stems in J&C class.

Figure 5.4: The density and the J&C class of pseudoknots.

Last but not least, the J&C class contains the L&P class and the D&P class

of pseudoknots, and is a subclass of the R&E class of pseudoknots, which is going

to be introduced next.

Rivas & Eddy (R&E) Class

The set of pseudoknots that the R&E’s algorithm [Rivas and Eddy, 1999] can

detect is the R&E class of pseudoknots.

The recursions of the gap matrices in the R&E’s algorithm allow the possi-

bility of decomposing a large number of pseudoknots, making the R&E class of
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pseudoknots the superclass of any other classes mentioned above [Condon et al.,

2004]. This conclusion may be supported further by the results shown in Section

6.1.1.

Generally, the R&E class of pseudoknots consists of both planar pseudoknots

and some non-planar pseudoknots, such as the pseudotrefoil with the pattern of

ABCABC. An example which does not belong to the R&E class is the pseudoknot

with the pattern of ABCADCEDFEBF [Rivas and Eddy, 1999].

The notion of planar pseudoknot defines the set of pseudoknots for which

a planar representation does not require crossing lines. An example of planar

pseudoknot, with the pattern of ABCDCADB, is shown in Figure 5.5, where the

planar representation may not involve any crossing. In details, the nested base

pairs AA and CC can be decomposed in the upper semi-plane, and the other two

nested base pairs BB and DD can be decomposed in the lower one.

Particularly, the planar pseudoknots are also referred to as the bi-secondary

structures in some other literature, with the definition of a superposition of two

disjoint pseudoknot-free secondary structures [Haslinger and Stadler, 1999; Witwer

et al., 2004].

Contrarily, the non-planar pseudoknots collect the pseudoknots for which a

planar representation requires crossing lines. A typical example is the pseudotre-

foil, with the pattern of ABCABC, as shown in Figure 5.6. Any of the base pairs

AA, BB and CC crosses the other two. If the base pair AA is decomposed in the

upper semi-plane, and BB is decomposed in the lower semi-plane, the base pair

CC has to be decomposed in a third semi-plane to avoid the crossing with AA

and BB, which is marked in the dashed line in Figure 5.6.

Quite obviously, all of the L&P class, the D&P class, the A&U class, and the

J&C class mentioned above contain only planar pseudoknots.

Containments Between Classes

According to [Condon et al., 2004] and [Saule et al., 2011], the inclusion re-

lation between these algorithmic classes, as well as the pseudoknot-free structures

(PKF) and the arbitrary pseudoknots (PK) can be set as follows:
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Figure 5.5: A planar pseudoknot with the pattern of ABCDCADB, which can be represented

in a planar diagram.

Figure 5.6: The non-planar pseudotrefoil with the pattern of ABCABC, which can not be

represented in a planar diagram.

𝑃𝐾𝐹 ⊂ 𝐿&𝑃 ⊂ 𝐷&𝑃 ⊂ 𝐴&𝑈 ⊂ 𝑅&𝐸 ⊂ 𝑃𝐾

where the J&C class of pseudoknots is ignored in this containment because of its

incomplete inclusion with the A&U class. In other words, the J&C class and the
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A&U class intersect partially.

Figure 5.7 and Table 5.1 conclude the description of the algorithmic classes

of pseudoknots, where the example column in Table 5.1 shows a typical example

that is not contained in all the classes before the current one. The J&C class of

pseudoknots, taking a kissing hairpin as its corresponding example, is ignored in

this conclusion for the same reason as above.

Figure 5.7: The Venn diagram of the algorithmic classes.

Table 5.1: The comparison of algorithmic pseudoknots
Class Pseudoknot Models Example

PKF All nested structures

L&P’s One H-type pseudoknot ABAB

D&P’s Recursive H-type pseudoknots ABCDCDAB

A&U’s Simple and recursive pseudoknots ABCBDADC

R&E’s All planar and part of non-planar pseudoknots ABCABC

PK All planar and non-planar pseudoknots ABCADBECDE

5.3.3 Conformational Characteristics

Besides the physical and algorithmic classifications, the pseudoknots can be

classified according to some conformational or topological complexity measures,
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such as the planar pseudoknots, or the bi-secondary structures, and the non-planar

pseudoknots that are mentioned above. Further, this part is going to introduce

three other conformational characteristics of pseudoknots, the knot-component,

the genus, and the page number.

Knot-Component

[Rødland, 2006] defines the notion of knot-component as the structural com-

ponents in the linear representation of RNA secondary structure, which are made

by grouping the base pairs, with respect to some particular rules.

In detail, the knot-components collapse the consecutive base pairs in the pseu-

doknots, remove the nested substructures. Their illustration of the crossing in-

teractions in the pseudoknots is quite analogous to that of the shadow of RNA

secondary structures, as introduced in Section 5.3.1. But knot-components de-

fined by [Rødland, 2006] correspond to structural elements, and the RNA shadow

corresponds to a global secondary structure. We may say the knot-components

are the bricks metaphorically, and the RNA shadow is a house built with these

bricks.

Let 𝑃 𝑛 denote the knot-components with 𝑛 stems, and 𝑃 𝑛,𝑘 distinguish the

different types of knot-components with the same number of stems, where 𝑘 is the

numeration index proposed by the author. The classification is defined as:

∙ 𝑃 1: the pseudoknot-free structures consisting of only one stem, which is

referred to as orthodox in this literature.

∙ 𝑃 2: the H-type pseudoknots, with the pattern of ABAB.

∙ 𝑃 3,1: the kissing hairpin pseudoknots, with the pattern of ABACBC.

∙ 𝑃 3,2: the pseudotrefoils, with the pattern of ABCABC.

∙ 𝑃 4,1: the complex pseudoknots such as the one with the pattern of ABCB-

DADC.

∙ 𝑃 5,1: the complex pseudoknots such as the one with the pattern of ABCD-

EDBCAE.
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The knot-components may decompose the algorithmic classes of pseudoknots.

Both the L&P class and the D&P class of pseudoknots only allow H-type pseudo-

knots, which belong to the 𝑃 2 type. The A&U class allows the H-type pseudoknots

in the 𝑃 2 type, and complex pseudoknots in the 𝑃 4,1 type, but none of the oth-

ers. The bi-secondary structures extend the A&U class, also allowing the kissing

hairpin in the 𝑃 3,1 type additionally. The R&E class contains the pseudoknots in

all of the 𝑃 2, 𝑃 3,1, 𝑃 3,2, 𝑃 4,1 and 𝑃 5,1 types [Rødland, 2006].

Genus

[Bon et al., 2008] recalls the notion of genus as the minimal number of handles

that a surface should have, such that a diagram can be drawn on the surface with-

out crossing. When the RNA secondary structure is represented by a double-line

diagram in the linear model, as shown in Figure 5.8, the genus can be calculated

by:

𝑔 =
𝑃 − 𝐿

2

where 𝑃 denotes the number of stems, and 𝐿 denotes the number of closed loops,

e.g. the number of closed circuit formed by the double lines.

Examples are given in Figure 5.8, where the base pairs in the left are replaced

by double lines in the right, and the closed loops are highlighted in red. Specifically,

the pseudoknot-free structure, as the first example, contains two stems and two

closed loops. Both 𝑃 and 𝐿 equal to 2, suggesting the genus 𝑔-0. And both the

latter two examples correspond to an H-type pseudoknot, with 𝑃 = 3 and 𝐿 = 1

respectively, suggesting the genus 𝑔-1.

There are four types of pseudoknots correspond to the genus 𝑔-1:

∙ The H-type pseudoknots, with the pattern of ABAB.

∙ The kissing hairpins, with the pattern of ABACBC

∙ The pseudotrefoil, with the pattern of ABCABC

∙ The complex pseudoknots, with the pattern of ABCADBCD.
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Figure 5.8: The schematic diagram of the double lines and closed loops (in red) in the calcu-

lation of genus, where the first one has a genus 𝑔-0, and the latter two have a genus 𝑔-1.

The pseudoknots having more complex interactions between the stems cor-

respond to a genus 𝑔-2, such as the delta ribozyme RNA in the hepatitis delta

virus (HDV-It_g), with the pattern of ABCDCADB and the reference number of

PKB75 in PseudoBase.

The pseudoknots classified by genus can be referred to as the 𝛾-structures [Rei-

dys et al., 2011]. The 0-structure corresponds to a secondary structure without

pseudoknots, and a 1-structure corresponds to the four types of pseudoknots with

the genus 𝑔-1. The 2-structures and more general 𝛾-structures have a similar

correspondence.

[Reidys et al., 2011] compares the 𝛾-structures with the algorithmic classes.

The Venn diagram of the relations is shown in Figure 7 in [Reidys et al., 2011],

with the conclusions:

∙ The L&P class and D&P class are subsets of the 1-structures.

∙ The A&U class and the 1-structures and 2-structures intersect partially.

∙ The R&E class may contain 𝛾-structures with arbitrary 𝛾. All the 1-
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structures are contained in the R&E class, but a 2-structure with the pattern

of ABCADCEDBE is an exclusion of the R&E class.

Page Number

A 𝑝-book is a set of 𝑝 distinct half-planes, which are called as the pages of

the book, that share a common boundary line 𝑙, which is called the spine of the

book. The book-thickness, which is referred to as the page number of a graph,

is the minimal number 𝑝 of pages of a book into which it can be embedded so

that the edges assigned to the same page do not cross. In the application of RNA

secondary structures, the page number is the minimal number 𝑝 such that the

given secondary structure can be decomposed into a disjoint union of 𝑝 nested

substructures without crossing. [Clote et al., 2012; Haslinger and Stadler, 1999]

The notion of page number generalizes the structures which are either defined

as the planar pseudoknots, with their page numbers of at most two, or classified

into other classes. More precisely, the correspondence of the page number 𝑝 to the

pseudoknots is:

∙ 𝑝 = 1: 1-page, the pseudoknot-free structures.

∙ 𝑝 = 2: 2-page, the planar pseudoknots or the bi-secondary structures, such as

the H-type pseudoknots with the pattern of ABAB and the kissing hairpins

with the pattern of ABACBC.

∙ 𝑝 = 3: 3-page, complex pseudoknots, such as the pseudotrefoil with the

pattern of ABCABC.

∙ 𝑝 ≥ 4: 4-page and above, more general pseudoknots with more complex

conformations. Some examples are shown in the results in Section 6.1.4.

The L&P class, the D&P class, the A&U class and the J&C class of pseu-

doknots are all 2-page pseudoknots, while the R&E class pseudoknots may have

page number 𝑝 ≥ 3.
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Benchmark and Conformational Characteristics

As introduced in each conformational measurement above, the majority of

natural pseudoknots have relatively low complexity values, such as the genus 𝑔 ≤ 1

or page number 𝑝 ≤ 3.

This benchmark is going to study the page number of each pseudoknot in

the dataset manually. Although the calculation of page number for arbitrary

pseudoknots has been proved to be NP-hard [Clote et al., 2012] and there is no

precise solution in polynomial time, we can do this work thanks to the relatively

low complexity of the natural pseudoknots which is proposed by [Clote et al.,

2012].

We do not consider the other conformational characteristics in this bench-

mark for the following reasons. First, it is quite obvious that the bi-secondary

structures correspond to the pseudoknots with page number of 2, thus the planar

pseudoknots. Then [Bon et al., 2012] has already proposed an algorithm which

both predicts a secondary structure and calculates a corresponding genus value

for the given sequence. Last but not least, the Knot-Component classification

separates the pseudoknots into classes according to the number of stems, which,

for example, assigns an H-type pseudoknot and a kissing hairpin two different

complexities. But both pseudoknots normally belong to the same complexity cat-

egory under the other classifications, such as they are both planar pseudoknots,

bi-secondary structures, pseudoknots with the genus 𝑔-1 and pseudoknots with

page number of 2.

How Complicated Is the Calculation of Page Number?

The NP-completeness of computing the page number for arbitrary pseudokots

is illustrated with the assistance of the chromatic number of a given secondary

structure. The chromatic number of an RNA structure is defined by the minimal

number of colors such that each base pair can be colored in a manner, with crossing

base pairs in distinct colors [Clote et al., 2012].

In the context of the dot-bracket notation of RNA secondary structures as

introduced in Section 2.3.1, the chromatic number, corresponding to the page

number, can be represented by the number of different types of brackets used for
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the given pseudoknot. In other words, the pseudoknot-free substructure in each

page corresponds to the set of base pairs that are notated in the same type of

brackets.

Saying given a shadow of an H-type pseudoknot, the page number is 2 as two

types of brackets are enough to represent the crossing interactions of the given

pseudoknot, the parentheses and the square brackets. But given such complex

pseudoknots with the pattern of ABACDCEBED, how about their page number?

And how about the page number for more general ones?

In this part of work, this benchmark considers to utilize as less types of brackets

in as many cases as possible. In other words, this idea can be realized by checking

the availability of all the brackets in hand iteratively for each base pair in the given

pseudoknot. And a new type of brackets is introduced until all the previous types

are not available to notate the crossing interactions any more. More precisely, it

is supported by prioritizing the types of brackets, and assigning the foremost type

of brackets available to the current base pair.

Table 5.2 shows some examples about this idea of saving the types of brackets

for page number, where the parentheses ‘(’ and ‘)’ and square brackets ‘[’ and ‘]’

are used to represent a pseudoknot initially, and the parentheses hold the highest

priority of notation. The curly brackets ‘{’ and ‘}’ are introduced when the former

two types of brackets are incapable to represent the conformation, and later the

alphabetical letters ‘A’, ‘a’ and ‘B’, ‘b’ are introduced similarly.

In fact, the operation upon this idea of saving the types of brackets for page

number works well for most cases, out of the 414 pseudoknots in this benchmark.

It follows the order of picking the parentheses for the current base pair whenever

they are available, and then the square brackets, and then the curly brackets, and

so forth.

However, for the complex pseudoknot c2 in Table 5.2, is its page number

equal to 3? No, the answer is 2, but with the corresponding dot-bracket notation

breaking the predefined prioritization. The final notation of c2 which is highlighted

in red shows that c2 also has the possibility of being represented in two types of

brackets, corresponding to a page number of 2.

In fact, the problem of assigning a proper dot-bracket notation to the given

101



Table 5.2: The page number of some typical pseudoknots.
Example Page Number Dot-Bracket Notation Prioritization

H-type
Page No.

2

Pattern ABAB

‘(’and ‘)’

First

Notation ([)]

Kissing hairpin
Page No.

2

Pattern ABACBC

Notation ([)(])

A recursive
Page No.

2

Pattern ABCDCDAB

Notation ([([)])]

Pseudotrefoil
Page No.

3

Pattern ABCABC

Notation ([{)]}

A complex

c1

Page No.

2

Pattern ABCDCADB

Notation ([([))]]

A complex

c2

Page No. Pattern ABCDBDECAE

3 ? Notation (([[)]{])} ‘(’,‘)’ First

2 Notation [([[)](]]) A notation.

pseudoknot with a minimal page number is not the question of predefining the

order of choosing the brackets, but a foresight to the crossing interactions globally.

The base pair EE in c2 crosses the base pairs AA and CC, and CC crosses the

base pair BB. This makes the base pair BB have to hold a different bracket type

from the base pair AA for the sake of saving the types of brackets, although AA

and BB are nested.

This illustrates, in some sense, the NP-hardness of computing the page number.

If 𝑃 ̸= 𝑁𝑃 , there is no polynomial algorithm can compute it in the general cases.

However as the page number of the pseudoknots in nature is relatively low, this

benchmark concludes all the page number for the 414 pseudoknots in the Section

6.1.

5.4 Methods Involved

This benchmark is going to consider 11 programs with different options on the

algorithms. If the program allows an alternative algorithm, it is referred to as a

different method.

Totally, there are 15 methods: CyloFold, DotKnot, DotKnot-K representing

DotKnot with the kissing hairpin algorithm, HotKnots-cc representing HotKnots
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with the CC energy model, HotKnots-dp representing HotKnots with the DP en-

ergy model, HotKnots-re representing HotKnots with the RE energy model, IP-

knot, MC-Fold, McGenus, McQFold, pKiss, pknotsRG-M representing pknotsRG

with the MFE algorithm, pknotsRG-F representing pknotsRG with the enforcing

pseudoknots algorithm, pknots, and vsfold5.

Typically, the variants of IPknot used in Chapter 4, as shown in Section 4.4.3,

are slightly different with the one used in this benchmark, which is caused by the

fashion of the utilization. In detail, IPknot-2 and IPknot-3 denote two decomposed

levels employed by the web service of IPknot [Sato et al., 2011] in Section 4.4.3,

and IPknot in this benchmark corresponds to the single algorithm of the locally

installed version.

The listed methods in this benchmark are not exhaustive. Some other methods

are not taken into account as the unavailability of their executables or editable

outputs, or in consideration of some other reasons. These programs and more

explanations are shown in Section 5.4.3.

5.4.1 Exact Methods

pknots

pknots implements the R&E’s algorithm [Rivas and Eddy, 1999], which is

elaborated in Section 3.2.1 as a typical exact method predicting pseudoknots,

with the assistance of the dynamic programming.

As a pioneer of the prediction of RNA secondary structure including pseudo-

knots, pknots opened the door to the world of predicting pseudoknots based on

the idea of maximizing the thermodynamic stability of the conformation. The

algorithm has the complexity of 𝑂(𝑛6) in time and 𝑂(𝑛4) in space, and captures

a fairly general class of pseudoknots.

pknotsRG

The R&G’s algorithm [Reeder and Giegerich, 2004], pknotsRG, is designed

based on the MFE model and the dynamic programming. The complexity is

𝑂(𝑛4) in time and 𝑂(𝑛2) in space.
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The algorithm calculates the MFE structures based on the model of the canon-

ized simple recursive pseudoknots principally, which allow the crossing interaction

of two stems and the arbitrary internal interaction of unpaired strands surrounded

by the pseudoknots.

The canonization policy is employed to restrict the search space of MFE struc-

tures. And there are three restrictions on the canonization of the simple recursive

pseudoknots, as proposed in the A&U class of pseudoknots: both stems must not

have bulges, both stems must have maximal extent, and the compartment Loop

2 must not be negative as both stems compete for the same bases of Loop 2 for a

maximal extent.

The R&G’s algorithm provides three variants of predicting pseudoknots:

∙ pknotsRG-mfe, which computes the MFE structure, with or without pseu-

doknot.

∙ pknotsRG-enf, which picks out the energetically best structure with pseudo-

knot from the folding space.

∙ pknotsRG-loc, which computes the energetically best pseudoknot formed in

a local region in the sequence, the one has the best energy to length ratio.

The variants of pknotsRG-mfe and pknotsRG-enf are both considered in this

benchmark, which are referred to as two different methods of the pknotsRG-M

and the pknotsRG-F respectively. But the pknotsRG-loc is ignored since the

unavailability of its global conformation.

5.4.2 Heuristic Methods

HotKnots

[Ren et al., 2005] reports an heuristic algorithm, HotKnots, for predicting

pseudoknots. Roughly, the algorithm builds up candidate secondary structures

by adding low-energy substructures one at a time to partially formed structures

based on the thermodynamic model extended for pseudoknots as in [Dirks and

Pierce, 2003].
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The calculation is remained as a tree since multiple partially formed structures

are maintained and each of them considers several different additions of a single

substructure. The added substructures are termed as hotspots which are energet-

ically favorable structural elements determined by [Zuker and Stiegler, 1981] with

the constraint that no base already paired may be present in the structure.

In detail, a set of hotspots is built up in a tree like fashion, and each hotspot in

the set is used as a basis for expanding a secondary structure for the given sequence.

The output of the algorithm is a list of secondary structures corresponding to each

hotspot set, sorted by their free energies.

Besides the thermodynamic model extended from the D&P’s algorithm, Hot-

Knots still uses the energy parameters from two energy models for secondary

structures with pseudoknots, the R&E’s model [Rivas and Eddy, 1999], and the

Cao&Chen (CC)’s model [Cao and Chen, 2006]. Specifically, the computation of

HotKnots with the three energy models are referred to as three methods in this

benchmark, notated as HotKnots-dp, HotKnots-re and HotKnots-cc respectively.

vsfold5

vsfold5 is an algorithm predicting MFE pseudoknots by using structure map-

ping and an entropy model, along a sequential, from 5’ end to 3’ end, and ther-

modynamically plausible folding pathway [Dawson et al., 2007].

The folding pathway is described as the decomposition of the structure into a

set of substructures. And the pseudoknots are considered as the addition of stems

into the loop region of a formed stable secondary structure. And typically, vsfold5

employs the mapping routines of the pointers for the secondary structure without

pseudoknots, and handles for the pseudoknots.

In details, in the globular model of vsfold5, a pointer consists of the current base

pair, a tag suggesting the structural element where the base pair locates, a forward

link which is used to map the next base pair of the secondary structure from the

current one, and a reverse link.which is used to map any previous part that is

present in the structure. While, a handle, as the extension of the pointers, contains

the indexes considering more complex and detailed information additionally to

map out the global configuration.
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MC-Fold

MC-Fold is a phase of the pipeline proposed in [Parisien and Major, 2008]

which infers the secondary and tertiary structures from the given sequence.

Based on the nucleotide cyclic motifs (NCM), MC-Fold predicts a sorted list

of possible secondary structures for the given sequence according to their ther-

modynamic stabilities. The predicted secondary structures can be sent into the

next phase MC-Sym of the pipeline that determines the RNA three-dimensional

structure.

More precisely, the NCMs are two types of cyclic structural elements, the lone-

pair loops, corresponding to the hairpin loops, that are up to six nucleotides, and

double-stranded NCMs, corresponding to stems, bulges and interior loops, that

are up to eight nucleotides.

MC-Fold determines a list of initiation sites which are assigned lone-pair NCMs,

and then recursively matches the rest of the given sequence to the double-stranded

NCMs. Finally, MC-Fold determines a set of assemblies of the stem-loops for the

given sequence, and ranks them according to their free energies.

McQFold

McQFold is a probabilistic model for predicting RNA secondary structures

with pseudoknots, it employs a Markov-chain Monte-Carlo (MCMC) method for

sampling RNA structures in the Bayesian framework, according to their posterior

probability distribution for a given sequence [Metzler and Nebel, 2008].

The basic idea of the algorithm is to use a stochastic context-free grammar

(SCFG) to generate a pseudoknot-free framework of a structure. And then, the

algorithm additionally develops a special symbol 𝑞, as a terminal in the grammar,

in order to generate pairs of regions in the sequence that will form the pseudoknots

further.

The main idea of McQFold is analogous to HotKnots, which appends the ad-

ditional stems to the partially formed structure, but according to the probability

of base pairs, rather than the thermodynamic stability in HotKnots.

106



CyloFold

CyloFold simulates a folding process by choosing stems based on the estab-

lished energy rules and using a three-dimensional model for representing the RNA

structures [Bindewald et al., 2010].

The idea of CyloFold is to maximize matching helices in a secondary structure.

Initially, CyloFold generates a stem list of all possible stems with more than three

base pairs. And the secondary structure prediction is performed by picking the

structure from the stem list with best score, where the score is set to be the sum

of the free energy of the already placed stems. And fifty rounds of the folding

simulations are performed to return the overall optimal structure.

DotKnot

DotKnot predicts the RNA pseudoknots by extracting stem regions from the

secondary structure probability dot plot and assembling pseudoknot candidates [Sper-

schneider and Datta, 2010].

The basic idea of DotKnot is to calculate the secondary structure partition

function first, as in [McCaskill, 1990], in the purpose of finding a set of promis-

ing structure elements in 𝑂(𝑛3) of time and 𝑂(𝑛2) of space, which may contain

potential pseudoknot foldings. Second, DotKnot assembles the pseudoknot can-

didates using this set of promising elements in two levels, finding the stable core

H-type pseudoknots, and then the recursive formations. Last, DotKnot employs

the loop entropy parameters to evaluate their free energy values and credibility in

the folded sequence. The output of DotKnot is a set of detected pseudoknots and

a global conformation.

Additionally, DotKnot considers the prediction of pseudoknots including the

kissing hairpins, which is referred to as the variant method DotKnot-K in this

benchmark.

pKiss

As the successor of pknotsRG, [Theis et al., 2010] proposes an heuristic method

for predicting RNA pseudoknots including kissing hairpins, pKiss. pknotsRG
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considers the class of canonized simple recursive pseudoknot, while pKiss considers

the canonized simple recursive kissing hairpins specifically.

In details, the basic idea of pKiss is the view that the kissing hairpins can

be referred to as an overlap of two simple pseudoknots, as shown in Figure 5.9.

Consequently, pKiss uses a way similar to pknotsRG to predict an optimal simple

pseudoknot 𝑠1 as the left pseudoknot in the overlap. And then it searches for

another simple pseudoknot 𝑠2, such that the left part of 𝑠2 may match the right

part of the previously computed 𝑠1, e.g. the 𝐵𝐵s, and with the 5’ end of the

𝐶𝐶 of 𝑠2 lying strictly to the right of the 3’ end of the 𝐴𝐴 of 𝑠1. A symmetric

step starting from predicting an optimal choice as the right pseudoknot in the

overlap is applied in a second round. The output of pKiss is the energetically

better prediction between the two rounds of detections.

pKiss also supports other strategies of predicting kissing hairpins, but this

benchmark considers the detection introduced above, which is referred to as Strat-

egy A, pKiss’s default mode of predicting pseudoknots.

Figure 5.9: The overlap of two H-type pseudoknots in the pKiss’s model.

IPknot

IPknot predicts RNA secondary structures with pseudoknots based on maxi-

mizing expected accuracy of a predicted structure with respect to an ensemble of

all possible structures [Sato et al., 2011].

Similar to most approaches predicting pseudoknots, IPknot decomposes a pseu-

doknotted structure into a set of pseudoknot-free substructures and approximates
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the base-pairing probability distribution that considers pseudoknots, which is used

in the following integer programming objective function. And the maximization

of expected accuracy refers to maximizing the expectation of the number of true

predictions of base pairs under the computed probability distribution.

The solution of the integer programming problem corresponds to the thermo-

dynamically optimal pseudoknotted prediction of IPknot.

McGenus

McGenus [Bon et al., 2012] uses a Monte Carlo algorithm to search for an MFE

structure, with a general scoring function which includes both the free energy con-

tributions for pair stacking, loop penalties, etc. and a penalty for the topological

genus of the pseudoknots.

An RNA structure in the McGenus’s model is referred to as a collection of

stem-like structures, which are termed as the helipoints, the ensemble of helices,

or stems, for a given sequence. The MFE structure amounts to the set of pairwise

compatible helipoints for which the overall free energy is minimum. The compati-

bility of two helipoints arise when there is no shared base between them. And the

choosing of the helipoints is done according to the stochastic Monte Carlo scheme.

The output of McGenus is a set of pseudoknots marked with the corresponding

genus.

5.4.3 Benchmark and Prediction Methods

Table 5.3 presents all the 15 methods considered in this benchmark in alpha-

betic order. There still are other approaches predicting RNA pseudoknots from a

single sequence.

KnotSeeker [Sperschneider and Datta, 2008] uses a hybrid sequence matching

and free energy minimization approach to perform a screening of the sequence.

The short sequence fragments are considered as possible candidates that may con-

tain pseudoknots, suggesting the output of KnotSeeker is a set of partial pseudo-

knots found on the sequence fragments rather than a global structure based on the

entire sequence. Lots of the omitted structural information between the pseudo-

knots make KnotSeeker excluded from the prediction methods of this benchmark,
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although it is available to handle long sequences.

HFold [Jabbari et al., 2007], the corresponding program of the J&C ’s algo-

rithm, is not included in this benchmark because its prediction is restricted by

the pseudoknot-free structure provided as input, as introduced in Section 3.2.1.

In this benchmark, we only consider the prediction methods which take a single

sequence as input, and yield a secondary structure or several ones as output.

In addition, some programs are omitted in this benchmark as the unavailabil-

ity of the executables, such as FlexStem [Chen et al., 2008], HPknotter [Huang

et al., 2005] and TT2NE [Bon and Orland, 2011]1. Some are ignored as either

there are no editable outputs, such as Kinefold [Xayaphoummine et al., 2005] and

ProbKnot [Bellaousov and Mathews, 2010], or the incapability of compiling the

executables, such as the iterative loop matching approach (ILM) [Ruan et al.,

2004].

5.4.4 Normalization of the Predictions

As mentioned in Section 2.3.1, the methods may have different formats of

output of RNA secondary structures, either be in dot-bracket notations, or in

BPSEQ format, or in CT format. As a result, this part is going to introduce the

idea of the normalization of the predictions in the purpose of comparisons.

Specifically, there are two types of normalization, translating the dot-bracket

notations into the BPSEQ or CT formats, and the reverse operation. The former

translation is needed for calculating the evaluation values which are introduced in

the next section. And the latter is needed for facilitating the intuitive comparison

of the predictions.

In fact, the evaluation of the predictions, compared to the reference structures,

is carried out by comparing both structures in the BPSEQ format. It is relatively

easy to translate the predictions from the CT format into the BPSEQ format,

by just removing the third, fourth and sixth columns from the original files. On

the other hand, translating the prediction from the dot-bracket notation into the

1It is an algorithm of predicting MFE pseudoknots based on the topological genus classi-

fication. But as TT2NE is available only with the web service and functionally analogous to

McGenus, it is not considered in this benchmark.
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Table 5.3: The 15 methods considered in the benchmark.

Methods Utilization Version Date Reference

Heuristic

Methods

CyloFold Web Service [Bindewald et al., 2010]

DotKnot Local Installation 1.3.1 Oct. 2011 [Sperschneider and Datta, 2010]

DotKnot-K Local Installation 1.3.1 Oct. 2011 [Sperschneider and Datta, 2010]

HotKnots-cc Local Installation 2.0 Jan. 2010 [Ren et al., 2005]

HotKnots-dp Local Installation 2.0 Jan. 2010 [Ren et al., 2005]

HotKnots-re Local Installation 2.0 Jan. 2010 [Ren et al., 2005]

IPknot Local Installation 0.0.2 Jan. 2011 [Sato et al., 2011]

MC-Fold Remote Server1 [Parisien and Major, 2008]

McGenus Local Installation Feb. 2013 [Bon et al., 2012]

McQFold Local Installation May 2006 [Metzler and Nebel, 2008]

pKiss Local Installation 2.2.11 Dec. 2014 [Janssen and Giegerich, 2014]

vsfold5 Web Service 5.23 [Dawson et al., 2007]

Exact

Methods

pknotsRG-M Local Installation 1.3 Sep. 2006 [Reeder and Giegerich, 2004]

pknotsRG-F Local Installation 1.3 Sep. 2006 [Reeder and Giegerich, 2004]

pknots Local Installation 1.08 Sep. 2012 [Rivas and Eddy, 1999]

1 MC-Fold is provided with the .cgi file, which computes the structure for a given sequence

on the remote server. And the version information is unknown.
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BPSEQ format can be done with an algorithm which uses several stacks.

More precisely, the number of different types of brackets represented in the

dot-bracket representation corresponds to the number of stacks used. And each

stack is used to store one distinct type of opening brackets.

Given a secondary structure 𝑆 with 𝑛 nucleotides in the dot-bracket represen-

tation, the translation starts from the 5’ end of the sequence to the 3’ end. A dot

‘.’ in the 𝑆 is referred to as a ‘0’ in the third column of this corresponding un-

paired base in the generated BPSEQ file. The position 𝑖 of a opening parenthesis

‘(’ in 𝑆 is deposited into the first stack, the position of a opening square bracket

‘[’ is deposited into the second stack, the position of a opening curly bracket ‘{’ is

deposited into the third stack, and so forth.

The encounter of a closing parenthesis ‘)’ will pop the uppermost element

of the first stack, and both positions of the closing parenthesis and its popped

partner will be stored into the generated BPSEQ file as a base pair. Similarly,

the encounter of a closing square bracket ‘]’ or a curly bracket ‘}’ will have an

analogous operation on popping the top element of the second or third stack, and

having both positions of the matching pair of brackets deposited into the BPSEQ

file as a base pair. And so forth.

However, we hardly capture the crossing interactions from the BPSEQ files

readily, and decide to devote more efforts into the opposite operation. We believe

the translation of structures from the BPSEQ file into the dot-bracket notation

can intuitively facilitate the comparison of the predictions, as the results shown

in Table B.2.

But, how to describe the pseudoknotted conformation properly in the dot-

bracket representation? The utilization of a set of stacks may answer the question,

where each stack is used to store the base pairs that can be represented in one

particular type of brackets.

Given a BPSEQ file 𝑆, an initialization step is to remove the unpaired bases

from 𝑆, and generate the 𝐵𝑃 , a list of base pairs (𝑥, 𝑦), where 𝑥 and 𝑦 are the

first and third columns of each base pair in 𝑆. The second column of the sequence

information is omitted temporarily, as it is easy to be referred later with the

corresponding position of 𝑥. The procedure of processing the 𝐵𝑃 is to consider
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each base pair in the ascending order of 𝑥. The global idea is to either deposit

the current base pair in one of the stacks, or pop the top element of a stack and

store the base pair in the result list 𝑆𝑡𝑟, which represents the secondary structure

in the dot-bracket notation.

As the preliminaries, here are two important notions in the process:

∙ The crossing of two base pairs. Given two base pairs (𝑥1, 𝑦1) and (𝑥2, 𝑦2)

with 𝑥1 < 𝑦1 and 𝑥2 < 𝑦2, they are crossing if the conditions of either

𝑥1 < 𝑥2, 𝑦1 < 𝑦2 and 𝑥2 < 𝑦1, or 𝑥2 < 𝑥1, 𝑦2 < 𝑦1 and 𝑥1 < 𝑦2 are satisfied.

∙ The matching of two base pairs. Given a base pair (𝑥, 𝑦), the matching of

two base pairs is declared if the pair (𝑦, 𝑥) is encountered.

Initially, the first base pair is deposited in the first stack, which is particularly

used to store the base pairs that can be represented in parentheses ‘(’ and ‘)’ in

𝑆𝑡𝑟. And then the second base pair (𝑥, 𝑦) will be checked with the possibilities

that whether (𝑥, 𝑦) matches the top element of the first stack, i.e. the first base

pair, or crosses it. If they are matched, saying the top element of the first stack is

the base pair (𝑦, 𝑥), the (𝑦, 𝑥) will be popped, and stored in the 𝑆𝑡𝑟 with assigning

𝑦 a ‘(’ and 𝑥 a ‘)’. If they are crossed, a new stack is desired. Consequently, (𝑥, 𝑦)

is going to be deposited in the second stack, declaring that (𝑥, 𝑦) and its future

‘stack-mates’ are going to be represented in square brackets ‘[’ and ‘]’ in 𝑆𝑡𝑟. If

both possibilities fails, (𝑥, 𝑦) is deposited in the current stack, as it is compatible

with the element of the first stack.

The third base pair (𝑥, 𝑦) will be checked with the possibilities of matching

and crossing with the top elements of the stacks, if there are more than one stack.

If there is a matching, the matched (𝑦, 𝑥) will be popped, and 𝑦 will be assigned

a ‘(’ or ‘[’ depending on which stack the (𝑦, 𝑥) is found, and 𝑥 will be assigned

a ‘)’ or ’]’ accordantly. If (𝑥, 𝑦) crosses the top elements of both stacks, it may

be deposited in the third stack, with its representation and future stack-mates’ in

𝑆𝑡𝑟 of the ‘{’ and ’}’. If neither is satisfied, (𝑥, 𝑦) can be deposited either in the

first stack if it is compatible with the element of the first stack, or in the second

stack if not. And so forth.
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Algorithm 2 concludes this idea of translating the secondary structure from

the BPSEQ file into the dot-bracket representation.

We may notice that the first stack, which holds the parentheses for the repre-

sentation of its members in 𝑆𝑡𝑟, has the highest priority of storing the base pair

(𝑥, 𝑦), if (𝑥, 𝑦) is compatible with more than one stack. The next priority goes

to the second stack, and so forth. This caters to the idea of saving the types of

brackets for page number which is mentioned in the Section 5.3.3, with the same

prioritization of choosing the brackets for base pairs.

We expect such kind of prioritization may reduce the number of stacks used,

which reflects the number of different types of brackets used, and further the page

number of the given structure. But the efforts may not succeed with the inacces-

sibility of any foresight to the global crossing interactions and other inestimable

complex reasons, as mentioned above, although the expectation is supported by

the study of page number for the 414 pseudoknots in this benchmark.

5.5 Evaluation Parameters

In the purpose of evaluating the performance of the predictions by 15 methods,

this benchmark is going to use the same criteria as in Chapter 4: the sensitivity,

the positive predictive value (PPV) and the Matthews Correlation Coefficient

(MCC).

The computation of the three evaluation values are given again, with the TP,

FP, TN and TP having the same definitions as in Section 4.3.1.

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(5.1)

𝑃𝑃𝑉 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(5.2)

𝑀𝐶𝐶 =
𝑇𝑃 × 𝑇𝑁 − 𝐹𝑃 × 𝐹𝑁√︀

(𝑇𝑃 + 𝐹𝑃 )(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃 )(𝑇𝑁 + 𝐹𝑁)
(5.3)

And as the participation of crossing interactions, the Equations 5.2 and 5.3

do not consider the division of false positive further, for the reason explained in

Section 4.3.2.
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Algorithm 2 The algorithm of translating the structures from BPSEQ to dot-

bracket representation.
Input: A BPSEQ file 𝑆 for a given structure, either containing the pseudoknot(s) or not.

Output: A list 𝑆𝑡𝑟, storing the structure in the dot-bracket representation.

1: procedure Translation(𝐵𝑃 )

Initialization: Remove the unpaired bases from 𝑆, and assign a dot to the corresponding

position in 𝑆𝑡𝑟. Create 𝐵𝑃 , the list of base pairs (𝑥, 𝑦) of 𝑆, in the ascending order of

𝑥. Create 𝑏𝑝𝑆, a list of stacks. Create a stack, and add it to 𝑏𝑝𝑆.

2: 𝑛← size of 𝑏𝑝𝑆.

3: for each (𝑥, 𝑦) in 𝐵𝑃 do

Loop:

4: for 𝑖← 1 to 𝑛 do ◁ iteratively check all the stacks to deposit (𝑥, 𝑦).

5: if 𝑏𝑝𝑆(𝑖) is empty then

6: if 𝑏𝑝𝑆(𝑖) is the only stack then

7: Push (𝑥, 𝑦) into 𝑏𝑝𝑆(𝑖).

8: Invoke STACK-SYM to assign a symbol to 𝑏𝑝𝑆(𝑖).

9: Break Loop.

10: else ◁ 𝑏𝑝𝑆(𝑖) is not the only stack in 𝑏𝑝𝑆.

11: for 𝑗 ← 𝑖+ 1 to 𝑛 do

12: /*Check if (𝑥, 𝑦) matches with the top element of the

13: following stack(s) if the current stack is empty.

14: Either pop the match if yes, or deposit it into the empty stack if no.*/

15: if 𝑏𝑝𝑆(𝑗) is not empty and (𝑥, 𝑦) matches the top element of 𝑏𝑝𝑆(𝑗)

then

16: Pop the top element of 𝑏𝑝𝑆(𝑗).

17: Assign the symbol of 𝑏𝑝𝑆(𝑗) to 𝑦, invoke ASSIGN-BRACKETS to

18: assign a closing bracket to 𝑥, and add them to 𝑆𝑡𝑟.

19: Break Loop.

20: end if

21: end for

22: Push (𝑥, 𝑦) into 𝑏𝑝𝑆(𝑖). ◁ Push (𝑥, 𝑦) into current stack.

23: Break Loop.

24: end if
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25: else ◁ 𝑏𝑝𝑆(𝑖) is not empty.

26: if (𝑥, 𝑦) matches the top element of 𝑏𝑝𝑆(𝑖) then

27: Pop the top element of 𝑏𝑝𝑆(𝑗).

28: Assign the symbol of 𝑏𝑝𝑆(𝑖) to 𝑦, invoke ASSIGN-BRACKETS to

29: assign a closing bracket to 𝑥, and add them to 𝑆𝑡𝑟.

30: Break Loop.

31: else if (𝑥, 𝑦) crosses the top element of 𝑏𝑝𝑆(𝑖) then

32: if 𝑖 = 𝑛 then ◁ New stack is desired.

33: Create a new stack, and add it to 𝑏𝑝𝑆.

34: Push (𝑥, 𝑦) into the new stack.

35: Invoke STACK-SYM to assign a symbol to 𝑏𝑝𝑆(𝑖+ 1).

36: Break Loop.

37: else

38: Continue Loop. ◁ Check the availability of the

39: ◁ next stack to deposit (𝑥, 𝑦).

40: end if

41: else

42: /*In the case that (𝑥, 𝑦) does neither match nor cross

43: the top element of 𝑏𝑝𝑆(𝑖), push (𝑥, 𝑦) into it.*/

44: Push (𝑥, 𝑦) into 𝑏𝑝𝑆(𝑖).

45: Break Loop.

46: end if

47: end if

48: end for

49: end for

50: end procedure
1: procedure Stack-sym:(Number)

2: return a opening parenthesis to the stack in response to its position Number in 𝑏𝑝𝑆.

3: Specifically, ‘1’ corresponds to the first level of brackets, a ‘(’, ‘2’ to a ‘[’, ‘3’ to a ‘{’.

4: And then ‘4’ and ‘5’ corresponds to the alphabetical letters ‘A’ and ‘B’, representing

5: a higher level of crossing, and so forth.

6: end procedure
1: procedure Assign-brackets(Character)

2: return a closing parenthesis, in response to the opening parenthesis Character.

3: end procedure
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Chapter 6

Results

6.1 Pseudoknot Classification

6.1.1 Global Classification

According to the three classifications mentioned in Section 5.3, the classifica-

tion of the 414 pseudoknots is shown in Table 6.1. Particularly, the third category

of Algorithmic Accessibilities shows the algorithmic classifications which have been

computed by the software RNAtest, provided by Condon et al. [Condon et al.,

2004] kindly. A Y is assigned when the current pseudoknot falls into the certain

algorithmic class, and an N represents the opposite.

Additionally, Section 5.3.2 shows an inclusion relation between the classes,

except the J&C class. Therefore, the number of pseudoknots in each algorithmic

class, and the number of pseudoknots which are in the complementary set of the

current class compared to its superset are shown respectively in Table 6.1. The

complete information of the classification for the 414 pseudoknots is provided

in Appendix C, and the corresponding details of each sequence, such as their

RNA type, organism, sequence and structure, are shown in Supplementary File

Benchmark.

6.1.2 Correlation between the Classifications of Sequences

The last section has shown the classifications of 414 RNA pseudoknots. Mean-

while, as mentioned in Section 5.1, we are considering a particular collection of
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Table 6.1: The classification of the 414 pseudoknots.

Physical Interactions

H-type Kissing Recursive Complex

341 25 4 44

Conformational Characteristics

Page No.=2 Page No.=3 Page No.=4

409 3 2

Algorithmic Accessibilities

L&P class D&P class A&U class J&C class R&E class Number

The Number of Pseudoknots Belonging to Each Algorithmic Class

Y 333

Y 344

Y 344

Y 370

Y 411

The Number of Pseudoknots in the Complementary Set of Each Class

Y Y Y Y Y 333

N Y Y Y Y 11

N N Y Y Y 0

N N N Y Y 26

N N N N Y 41
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pseudoknots which contains the sequences that can be handled by all the meth-

ods, with the consideration of comparing the predictions of all the methods with a

consistent set of sequences. And 387 sequences compose the shared set, with the

detailed reasons of selection given in Section 6.2.

In order to have a comprehensive understanding of the relation between the

characteristic of sequences and the classification of pseudoknots of the 387 se-

quences, we are going to introduce the correlation. Typically, the notion of the

correlation is to find the relationship between different classes of sequences, which

are divided into subsets in accordance to diverse aspects of the sequences, such

as the length, organism and page number of them. This study will benefit the

comparison of the prediction methods based on the shared set, as the methods are

going to be compared based on these individual classes of sequences.

In practice, we are going to count how many sequences in a particular class

intersect with another one. And as the functional families of the RNA sequences

are the most interesting parts for the bioinformatics community, we show the

result in Table 6.2, where the numeric values represent the number of sequences

belonging to the corresponding two classes.

6.1.3 The Recursive and Complex Pseudoknots

The H-type pseudoknots and kissing hairpins have well-known crossing inter-

actions of ABAB and ABACBC respectively. And this dissertation pays more

attention on the four recursive pseudoknots and 44 complex pseudoknots in Table

6.1, which are provided in detail in Tables 6.3 and 6.4.

Specially, the pseudoknot pattern of some complex pseudoknots with page

number ≥ 3, as shown in Table 6.4, is assigned others as their much more compli-

cated crossing interactions. Typically, a majority of the complex pseudoknots in

PseudoBase are the ribozymes from the eukaryotic molecules. The homology of

these sequences contribute them a same pseudoknot pattern, a same page num-

ber and the same affiliation with the algorithmic classes in Table 6.4. The akin

homology of 3RKF_A, 3IVN_B and 3LA5_A is shown as well. And typically, as

the inaccessibility of the functional family of 3KIY_A, we may not conclude the

homology between 3KIY_A and 2WDL_A.
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Table 6.2: The correlation between the classifications of sequences.
Aptamers mRNA tRNA tmRNA rRNA Riboswitch Ribozymes Others

Len

gth

≤ 100 nt 14 6 8 10 5 10 31 11

101-160 nt 1 10 0 0 5 1 6 2

Orga

nism

Eukaryote 1 8 2 0 7 0 29 10

Prokaryote 5 5 5 10 3 7 3 2

Virus 0 2 0 0 0 0 4 0

Unknown 9 1 1 0 0 4 1 1

Page

No.

2 15 15 8 10 10 11 37 13

3 0 1 0 0 0 0 0 0

Pknot

Type

H-type 13 15 0 10 6 5 5 12

Kissing 1 0 8 0 4 3 2 1

Complex 1 1 0 0 0 3 30 0

Vr. 3

UTR

Vr. 5

UTR

Frame

shift

Vr.Read

through

Vr. tR

NA-like

Vr. Ot

hers
Unknown

Len

gth

≤ 100 nt 103 29 30 7 52 23 6

101-160 nt 0 0 3 0 6 7 1

Orga

nism

Eukaryote 0 0 2 0 0 0 0

Prokaryote 0 0 0 0 0 0 0

Virus 103 29 31 7 58 30 2

Unknown 0 0 0 0 0 0 5

Page

No.

2 103 29 33 7 58 30 7

3 0 0 0 0 0 0 0

Pknot

Type

H-type 102 29 33 7 58 30 5

Kissing 1 0 0 0 0 0 2

Complex 0 0 0 0 0 0 0
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Table 6.3: The 4 recursive pseudoknots.

Name Length
RNA

Type
Organism

Pseudoknot

Type
Pseudoknot Pattern

Page

No.

L&P

class

D&P

class

A&U

class

J&C

class

R&E

class

3IYQ_A 349 tmRNA Thermus thermophilus HB8 recursive H-type ABAB* 2 N Y Y Y Y

3IZ4_A 377 tmRNA Escherichia coli recursive H-type ABAB* 2 N Y Y Y Y

3J2C_N 927 16S rRNA Escherichia coli recursive H-type ABAababcdcdB 2 N Y Y Y Y

3JYX_5 3170 26S rRNA Thermomyces lanuginosus
recursive

kissing hairpin
ababABAcdcdDEDFEFefefCBC 2 N N N Y Y

* But this pseudoknot contains four identical pseudoknots, all with the pattern of ABAB.

Table 6.4: The 44 complex pseudoknots.

Name Length
RNA

Type
Organism

Pseudoknot

Type

Pseudoknot

pattern

Page

No.

L&P

class

D&P

class

A&U

class

J&C

class

R&E

class

PKB326 63 Ribozymes
Branchiostoma

floridae
complex ABCDCADB 2 N N N N Y

PKB331 64 Ribozymes
Strongylocentrotus

purpuratus
complex ABCDCADB 2 N N N N Y

PKB330 64 Ribozymes
Strongylocentrotus

purpuratus
complex ABCDCADB 2 N N N N Y

PKB338 66 Ribozymes
Petromyzon

marinus
complex ABCDCADB 2 N N N N Y

Continued On Next Page
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Table 6.4 – Continued From Previous Page

Name Length
RNA

Type
Organism

Pseudoknot

Type

Pseudoknot

pattern

Page

No.

L&P

class

D&P

class

A&U

class

J&C

class

R&E

class

PKB315 67 Ribozymes Dog complex ABCDCADB 2 N N N N Y

PKB318 67 Ribozymes Opossum complex ABCDCADB 2 N N N N Y

PKB319 67 Ribozymes Mouse complex ABCDCADB 2 N N N N Y

PKB320 67 Ribozymes Rabbit complex ABCDCADB 2 N N N N Y

PKB321 67 Ribozymes Chimpanzee complex ABCDCADB 2 N N N N Y

PKB322 67 Ribozymes Rat complex ABCDCADB 2 N N N N Y

PKB317 67 Ribozymes Elephant complex ABCDCADB 2 N N N N Y

PKB316 67 Ribozymes
Homo

sapiens
complex ABCDCADB 2 N N N N Y

PKB340 67 Ribozymes

Invertebrate

iridescent

virus 6

complex ABCDCADB 2 N N N N Y

PKB314 67 Ribozymes Cow complex ABCDCADB 2 N N N N Y

PKB333 68 Ribozymes
Strongylocentrotus

purpuratus
complex ABCDCADB 2 N N N N Y

PKB332 68 Ribozymes
Strongylocentrotus

purpuratus
complex ABCDCADB 2 N N N N Y

Continued On Next Page
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Table 6.4 – Continued From Previous Page

Name Length
RNA

Type
Organism

Pseudoknot

Type

Pseudoknot

pattern

Page

No.

L&P

class

D&P

class

A&U

class

J&C

class

R&E

class

PKB339 69 Ribozymes
Faecalibacterium

prausnitzii
complex ABCDCADB 2 N N N N Y

PKB341 76 Ribozymes
Diplonema

papillatum
complex ABCDCADB 2 N N N N Y

PKB334 77 Ribozymes
Strongylocentrotus

purpuratus
complex ABCDCADB 2 N N N N Y

PKB325 78 Ribozymes
Branchiostoma

floridae
complex ABCDCADB 2 N N N N Y

PKB328 81 Ribozymes
Anopheles

gambiae
complex ABCDCADB 2 N N N N Y

PKB327 82 Ribozymes
Anopheles

gambiae
complex ABCDCADB 2 N N N N Y

PKB329 82 Ribozymes
Anopheles

gambiae
complex ABCDCADB 2 N N N N Y

PKB342 88 Ribozymes
Trichoderma

atroviride
complex ABCDCADB 2 N N N N Y

PKB75 88 Ribozymes
Hepatitis

Delta Virus
complex ABCDCADB 2 N N N N Y

Continued On Next Page
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Table 6.4 – Continued From Previous Page

Name Length
RNA

Type
Organism

Pseudoknot

Type

Pseudoknot

pattern

Page

No.

L&P

class

D&P

class

A&U

class

J&C

class

R&E

class

PKB335 104 Ribozymes
Caenorhabditis

japonica
complex ABCDCADB 2 N N N N Y

PKB337 106 Ribozymes
Pristionchus

pacificus
complex ABCDCADB 2 N N N N Y

PKB336 106 Ribozymes
Pristionchus

pacificus
complex ABCDCADB 2 N N N N Y

PKB356 140 Ribozymes
Drosophila

ananassae
complex ABCDCADB 2 N N N N Y

PKB355 150 Ribozymes
Drosophila

yakuba
complex ABCDCADB 2 N N N N Y

PKB357 160 Ribozymes
Drosophila

pseudoobscura
complex ABCDCADB 2 N N N N Y

PKB323 180 Ribozymes
Anopheles

gambiae
complex ABCDCADB 2 N N N N Y

PKB324 181 Ribozymes
Anopheles

gambiae
complex ABCDCADB 2 N N N N Y

PKB358 190 Ribozymes
Drosophila

falleni
complex ABCDCADB 2 N N N N Y

Continued On Next Page
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Table 6.4 – Continued From Previous Page

Name Length
RNA

Type
Organism

Pseudoknot

Type

Pseudoknot

pattern

Page

No.

L&P

class

D&P

class

A&U

class

J&C

class

R&E

class

PKB354 190 Ribozymes
Drosophila

simulans
complex ABCDCADB 2 N N N N Y

3RKF_A 67
Guanine

Riboswitch
complex ABCBDADECE 2 N N N N Y

3IVN_B 69
Adenosine

Riboswitch

Bacillus

subtilis
complex ABCBDADECE 2 N N N N Y

3LA5_A 71
Adenosine

Riboswitch

Bacillus

subtilis
complex ABCBDADECE 2 N N N N Y

4FRN_A 102

Cobalamin

riboswitch

aptamer domain

Marine

metagenome
complex ABCDCEBEAFDF 2 N N N N Y

PKB71 108 mRNA
Escherichia

coli
complex ABCABC 3 N N N N Y

3ZEX_B 1465 28S rRNA
Trypanosoma

brucei
complex others 3 N N N N N

3J20_2 1495 16S rRNA

Pyrococcus

furiosus

DSM 3638

complex others 3 N N N N Y

Continued On Next Page
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Table 6.4 – Continued From Previous Page

Name Length
RNA

Type
Organism

Pseudoknot

Type

Pseudoknot

pattern

Page

No.

L&P

class

D&P

class

A&U

class

J&C

class

R&E

class

2WDL_A 2807 23S rRNA
Thermus

thermophilus HB8
complex others 4 N N N N N

3KIY_A 2848
Thermus

thermophilus HB8
complex others 4 N N N N N
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6.1.4 Complex Pseudoknots with Page Number ≥ 3

If we focus on the most complex pseudoknots, we may wonder how compli-

cated the crossing interactions are. In fact, in the purpose of illustrating the

complex pseudoknots with page number ≥ 3, the schematic figures of the crossing

interactions representing the conformation are provided.

The pseudotrefoil PKB71, with the pseudoknot pattern of ABCABC, is quite

easy to be understood as its page number of 3. The stems AA, BB and CC cross

mutually, which requires exactly three pages to decompose it into the union of

pseudoknot-free substructures.

On the other hand, 3ZEX_B, 3J20_2, 2WDL_A and 3KIY_A, the 4 com-

plex pseudoknots display much more complicated conformations. Specifically, the

schematic figures for demonstrating each complex pseudoknot are composed of the

following four subfigures:

∙ One screen-shot of the global structure of the pseudoknot, visualized by

VARNA.

∙ One screen-shot of the dominant local structure of the pseudoknot,visualized

by VARNA. The notion of the dominant local structure used here declares

the smallest substructure which has the same page number as the global

conformation.

∙ The corresponding RNA shadow of the dominant local region.

∙ The coloring notation of the RNA shadow, corresponding to a decomposition

of the pseudoknotted conformation with colors such that the nested base

pairs are represented in an unique color.

6.1.5 3ZEX_B

Figure 6.1(a) shows the global conformation of 3ZEX_B, while Figure 6.1(b)

shows the dominant local part, from the 1015 base to the 1174 base. And Figure

6.1(c) corresponds to the shadow of the current dominant region, from which we

may bear in mind how complicated the crossing interactions that 3ZEX_B has.
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(a) The global structure of 3ZEX_B.

(b) The dominant local part of 3ZEX_B, 1015nt-1174nt.

(c) The corresponding shadow, 1015nt-1174nt.

(d) The coloring notation of the shadow, 1015nt-1174nt.

Figure 6.1: The schematic figures of 3ZEX_B.

128



We investigate the page number of 3ZEX_B by decomposing it into a union

of nested base pairs in the context of RNA shadows, such that each set of nested

base pairs are colored with an unique color.

Figure 6.1(d) shows that the decomposition of the shadow of 3ZEX_B requires

three colors. Particularly, the base pair GG crosses both the base pairs represented

in the upper semi-plane in red and the ones represented in the lower semi-plane in

blue. It suggests that the base pair GG should be represented in a third semi-plane

which is marked in the dashed line and colored with a third color.

The pseudoknot pattern of the dominant region of 3ZEX_B is ABCDBED-

FGFCEAG. But since the global conformation still contains some local subpseu-

doknots which are nested inside the unpaired loops elsewhere, the pseudoknot

pattern of 3ZEX_B is assigned as others by this benchmark.

6.1.6 3J20_2

Figure 6.2 shows the three subfigures of 3J20_2, where the local dominant

region starts from the 523 base to the 1484 base.

3J20_2 has relatively simple crossing interactions, compared to the 3ZEX_B.

As shown in Figure 6.2(c), 3J20_2 has pseudotrefoil-like crossing interactions

with the pattern of ABCABC, accompanied by another base pair DD. The de-

composition of the dominant region of 3J20_2 in colors is shown in Figure 6.2(d),

suggesting 3J20_2 a page number of 3.

The pseudoknot pattern of the dominant region of 3J20_2 is ABCDADBC. But

the global pseudoknot pattern of 3J20_2 is assigned as others by this benchmark

under the same consideration as 3ZEX_B.

6.1.7 2WDL_A

Figure 6.3(a) shows the global conformation of 2WDL_A, Figure 6.3(b) shows

the dominant local part, from the 429 base to the 2617 base, and Figure 6.3(c)

shows the shadow of the dominant region.

The decomposition of the dominant region of 2WDL_A in colors is shown in

Figure 6.3(d).
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(a) The global structure of 3J20_2.

(b) The dominant local part of 3J20_2, 523nt-1484nt.

(c) The corresponding shadow, 523nt-1484nt.

(d) The coloring notation of the shadow, 523nt-1484nt.

Figure 6.2: The schematic figures of 3J20_2.
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(a) The global structure of 2WDL_A.

(b) The dominant local part of 2WDL_A, 429nt-2617nt.

(c) The corresponding shadow, 429nt-2617nt.

(d) The coloring notation of the shadow, 429nt-2617nt.

Figure 6.3: The schematic figures of 2WDL_A.
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Particularly, the base pair BB crosses both the base pairs AA and EE repre-

sented in the upper semi-plane in red and DD represented in the lower semi-plane

in blue. It suggests that the base pair BB should be represented in a third semi-

plane with a third color. Further, the base pair CC crosses all the bases pairs

represented in the last three semi-planes, suggesting its representation in a fourth

semi-plane with a fourth color, which is shown in brown dashed line in Figure

6.3(d).

As a consequence, the page number of the dominant region of 2WDL_A is 4,

so is the global conformation. The pseudoknot pattern of the dominant region of

2WDL_A is ADEBCDEABC, and the global pseudoknot pattern of 2WDL_A

is assigned as others by this benchmark, as some local substructures are located

outside the dominant region.

6.1.8 3KIY_A

3KIY_A is another example which has a page number of 4 in this benchmark.

Similarly, Figure 6.4(a) shows the global conformation of 3KIY_A, Figure 6.4(b)

shows the local dominant part, from the 434 base to the 2658 base, and Figure

6.4(c) shows the shadow of the dominant region of 3KIY_A. The decomposition

of the dominant region of 3KIY_A in colors is shown in Figure 6.4(d).

In fact, as shown in Figure 6.4(c), 3KIY_A has the same shadow for the

dominant region as 2WDL_A. The same pseudotrefoil-like crossing interactions

with the pattern of DEBCDEBC contributes both the dominant structure and

global conformation of 3KIY_A a page number of 4.

6.2 Prediction of the Pseudoknots

A series of comparisons are carried out which aims to compare the perfor-

mance of predicting pseudoknots by each method. In practice, the performance

of predictions is assessed based on the entire dataset, the shared set of sequences,

and hierarchical subsets of pseudoknots which are divided by levels of complexity

measurement of the pseudoknots, and the length, organism and RNA type of the

sequences.
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(a) The global structure of 3KIY_A.

(b) The dominant local part of 3KIY_A, 434nt-2658nt.

(c) The corresponding shadow, 434nt-2658nt.

(d) The coloring notation of the shadow, 434nt-2658nt.

Figure 6.4: The schematic figures of 3KIY_A.
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A comprehensive classification of the pseudoknots and respective sizes is shown

in Table 6.5, as well as the numeric values of pseudoknots that each method can

handle. The ability of handling or predicting a sequence means that the method

can return for the input sequence a secondary structure or several ones, with or

without pseudoknots, but offers no guarantee of the quality of the prediction.

Particularly, the input length thresholds in Table 6.5 are given by the longest

sequence that the method can handle and the shortest one it can not. For example,

the longest sequence that CyloFold can handle is 412 nucleotides, and the shortest

one that CyloFold fails to predict a secondary structure is 920 nucleotides. Con-

sequently, the input length threshold of CyloFold is longer than 412 nucleotides

but shorter than 920 nucleotides, the same to that of HotKnots-dp, HotKnots-re

and vsfold5.

In addition, the unassigned values in the Organism and RNA Type classifi-

cation of the sequences are considered as well, marked with a value Unknown in

Table 6.5.

Meanwhile, as mentioned in Section 5.1, a subset of pseudoknots containing the

sequences which can be handled by all the benchmarking methods is considered,

with the consideration of comparing the predictions of all the methods with a

consistent set of sequences. In fact, the threshold of choosing sequences for this

shared subset depends on MC-Fold, as it has the most restricted requirement on

the length of the input sequence.

Finally, out of 414 sequences, 387 sequences that MC-Fold can handle compose

the shared set. And the non-shared, or missing 27 sequences left from the entire

dataset compose the missing set.
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Table 6.5: The numeric value of the predictions.

Attr

ibute
Value Size

Cylo

Fold

Dot

Knot

DotK

not-K

HotK

nots-cc

HotK

nots-dp

HotK

nots-re

IP

knot

MC-F

old

McG

enus

McQ

Fold

pK

iss

vsfo

ld5

pknots

RG-M

pknots

RG-F

pkn

ots

Input Length Threshold (nt)
≥ 4121

< 920
≥ 3170 ≥ 3170

≥ 920

< 927

≥ 412

< 920

≥ 412

< 920
≥ 3170

≥ 158

< 160

≥ 412

< 920

≥ 1248

< 1465

≥ 190

< 207

≥ 412

< 920

≥ 1248

< 1465

≥ 1248

< 1465

≥ 212

< 219

All

PseudoBase 367
365 367 367 366 365 365 367 350 365 367 355 365 367 367 357

99.5% 100% 100% 99.7% 99.5% 99.5% 100% 95.4% 99.5% 100% 96.7% 99.5% 100% 100% 97.3%

PDB 47
41 47 47 41 41 41 47 37 41 42 39 41 42 42 39

87.2% 100% 100% 87.2% 87.2% 87.2% 100% 78.7% 87.2% 89.4% 83.0% 87.2% 89.4% 89.4% 83.0%

Leng

th(nt)

≤ 100 345
345 345 345 345 345 345 345 345 345 345 345 345 345 345 345

100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

101− 200 49
49 49 49 49 49 49 49 42 49 49 49 49 49 49 49

100% 100% 100% 100% 100% 100% 100% 85.7% 100% 100% 100% 100% 100% 100% 100%

201− 300 6
6 6 6 6 6 6 6 0 6 6 0 6 6 6 2

100% 100% 100% 100% 100% 100% 100% 0% 100% 100% 0% 100% 100% 100% 33.3%

301− 400 5
5 5 5 5 5 5 5 0 5 5 0 5 5 5 0

100% 100% 100% 100% 100% 100% 100% 0% 100% 100% 0% 100% 100% 100% 0%

401− 500 1
1 1 1 1 1 1 1 0 1 1 0 1 1 1 0

100% 100% 100% 100% 100% 100% 100% 0% 100% 100% 0% 100% 100% 100% 0%

501− 1000 2
0 2 2 1 0 0 2 0 0 2 0 0 2 2 0

0% 100% 100% 50.0% 0% 0% 100% 0% 0% 100% 0% 0% 100% 100% 0%

Continued On Next Page
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Table 6.5 – Continued From Previous Page

Attr

ibute
Value Size

Cylo

Fold

Dot

Knot

DotK

not-K

HotK

nots-cc

HotK

nots-dp

HotK

nots-re

IP

knot

MC-F

old

McG

enus

McQ

Fold

pK

iss

vsfo

ld5

pknots

RG-M

pknots

RG-F

pkn

ots

≥ 1001 6
0 6 6 0 0 0 6 0 0 1 0 0 1 1 0

0% 100% 100% 0% 0% 0% 100% 0% 0% 16.7% 0% 0% 16.7% 16.7% 0%

Orga

nism

Eukaryote 68
66 68 68 66 66 66 68 59 66 66 65 66 66 66 65

97.1% 100% 100% 97.1% 97.1% 97.1% 100% 86.8% 97.1% 97.1% 95.6% 97.1% 97.1% 97.1% 95.6%

Prokaryote 52
47 52 52 48 47 47 52 40 47 49 41 47 49 49 42

90.4% 100% 100% 92.3% 90.4% 90.4% 100% 76.9% 90.4% 94.2% 78.8% 90.4% 94.2% 94.2% 80.8%

Virus 272
271 272 272 271 271 271 272 266 271 272 266 271 272 272 267

99.6% 100% 100% 99.6% 99.6% 99.6% 100% 97.8% 99.6% 100% 97.8% 99.6% 100% 100% 98.2%

Unknown 22
22 22 22 22 22 22 22 22 22 22 22 22 22 22 22

100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

Pknot

Type

H-type 341
339 341 341 340 339 339 341 330 339 341 331 339 341 341 332

99.4% 100% 100% 99.7% 99.4% 99.4% 100% 96.8% 99.4% 100% 97.1% 99.4% 100% 100% 97.4%

Kissing 25
25 25 25 25 25 25 25 22 25 25 23 25 25 25 24

100% 100% 100% 100% 100% 100% 100% 88.0% 100% 100% 92.0% 100% 100% 100% 96.0%

Complex 44
40 44 44 40 40 40 44 35 40 40 40 40 40 40 40

90.9% 100% 100% 90.9% 90.9% 90.9% 100% 79.5% 90.9% 90.9% 90.9% 90.9% 90.9% 90.9% 90.9%

Recursive 4
2 4 4 2 2 2 4 0 2 3 0 2 3 3 0

50.0% 100% 100% 50.0% 50.0% 50.0% 100% 0% 50.0% 75.0% 0% 50.0% 75.0% 75.0% 0%

Continued On Next Page
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Table 6.5 – Continued From Previous Page

Attr

ibute
Value Size

Cylo

Fold

Dot

Knot

DotK

not-K

HotK

nots-cc

HotK

nots-dp

HotK

nots-re

IP

knot

MC-F

old

McG

enus

McQ

Fold

pK

iss

vsfo

ld5

pknots

RG-M

pknots

RG-F

pkn

ots

Page

No.

2 409
405 409 409 406 405 405 409 386 405 408 393 405 408 408 395

99.0% 100% 100% 99.3% 99.0% 99.0% 100% 94.4% 99.0% 99.8% 96.1% 99.0% 99.8% 99.8% 96.6%

3 3
1 3 3 1 1 1 3 1 1 1 1 1 1 1 1

33.3% 100% 100% 33.3% 33.3% 33.3% 100% 33.3% 33.3% 33.3% 33.3% 33.3% 33.3% 33.3% 33.3%

4 2
0 2 2 0 0 0 2 0 0 0 0 0 0 0 0

0% 100% 100% 0% 0% 0% 100% 0% 0% 0% 0% 0% 0% 0% 0%

RNA

Type

Aptamers 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15

100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

mRNA 17
17 17 17 17 17 17 17 16 17 17 16 17 17 17 16

100% 100% 100% 100% 100% 100% 100% 94.1% 100% 100% 94.1% 100% 100% 100% 94.1%

tRNA 8
8 8 8 8 8 8 8 8 8 8 8 8 8 8 8

100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

tmRNA 12
12 12 12 12 12 12 12 10 12 12 10 12 12 12 10

100% 100% 100% 100% 100% 100% 100% 83.3% 100% 100% 83.3% 100% 100% 100% 83.3%

rRNA 18
12 18 18 13 12 12 18 10 12 14 11 12 14 14 11

66.7% 100% 100% 72.2% 66.7% 66.7% 100% 55.6% 66.7% 77.8% 61.1% 66.7% 77.8% 77.8% 61.1%

Riboswitch 12
12 12 12 12 12 12 12 11 12 12 12 12 12 12 12

100% 100% 100% 100% 100% 100% 100% 91.7% 100% 100% 100% 100% 100% 100% 100%

Continued On Next Page
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Table 6.5 – Continued From Previous Page

Attr

ibute
Value Size

Cylo

Fold

Dot

Knot

DotK

not-K

HotK

nots-cc

HotK

nots-dp

HotK

nots-re

IP

knot

MC-F

old

McG

enus

McQ

Fold

pK

iss

vsfo

ld5

pknots

RG-M

pknots

RG-F

pkn

ots

RNA

Type

Ribozymes 45
45 45 45 45 45 45 45 37 45 45 42 45 45 45 43

100% 100% 100% 100% 100% 100% 100% 82.2% 100% 100% 93.3% 100% 100% 100% 95.6%

Others 13
13 13 13 13 13 13 13 13 13 13 13 13 13 13 13

100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

Vr. 3 UTR 103
103 103 103 103 103 103 103 103 103 103 103 103 103 103 103

100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

Vr. 5 UTR 32
32 32 32 32 32 32 32 29 32 32 29 32 32 32 30

100% 100% 100% 100% 100% 100% 100% 90.6% 100% 100% 90.6% 100% 100% 100% 93.8%

Frameshifting 34
34 34 34 34 34 34 34 33 34 34 33 34 34 34 33

100% 100% 100% 100% 100% 100% 100% 97.1% 100% 100% 97.1% 100% 100% 100% 97.1%

Vr. Readthrough 7
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

Vr. tRNA-like 58
58 58 58 58 58 58 58 58 58 58 58 58 58 58 58

100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

Vr. Others 32
31 32 32 31 31 31 32 30 31 32 30 31 32 32 30

96.9% 100% 100% 96.9% 96.9% 96.9% 100% 93.8% 96.9% 100% 93.8% 96.9% 100% 100% 93.8%

Unknown 8
7 8 8 7 7 7 8 7 7 7 7 7 7 7 7

87.5% 100% 100% 87.5% 87.5% 87.5% 100% 87.5% 87.5% 87.5% 87.5% 87.5% 87.5% 87.5% 87.5%

1The manual of CyloFold mentions that the restriction on the length of input sequence is shorter than 550 nucleotides.
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6.2.1 Average Performance

Based on the 387 shared sequences, and the subsets divided hierarchically, as

shown in Tables 6.2 and 6.5, the density diagrams of the average sensitivity, PPV

and the MCC values obtained by each method are shown in Figures 6.5, 6.6 and

6.7 respectively, where different classifications of the sequences are separated with

empty rows in blue. Typically, the three evaluation parameters are calculated via

the Equations 5.1, 5.2 and 5.3 defined in Section 5.5.
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Figure 6.5: The density diagram of the sensitivity of the predictions.
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In detail, the x-axis is labeled with the methods, where the twelve heuristic

methods are listed before the three exact methods. And the y-axis is labeled with

the different classes and corresponding number of sequences inside.
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Figure 6.6: The density diagram of the PPV of the predictions.

Particularly, each prediction by one method for one class of sequences corre-

spond to a rectangular box in each figure, and the evaluation values are reflected

by the density of the colors in this box. The darker the green filled in the box is,

the better the average prediction is, and the darker the fuchsia is, the worse the
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average prediction is.

The detailed tables containing the evaluation values of the predictions, from

which the three figures are generated, are provided in the Appendix D.
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Figure 6.7: The density diagram of the MCC of the predictions.

Particularly, we select a corresponding winner program which has obtained an

optimal prediction on average for each class of sequences in Figures 6.5, 6.6 and

6.7, as concluded in Table 6.6.
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Table 6.6: The winner program of the evaluation values.
Attribute Value Size Sensitivity PPV MCC

All

Entire Set 414 pKiss pKiss pKiss

Shared Set 387 pKiss DotKnot DotKnot

Missing Set 27 pKiss pKiss pKiss

Length
1-100 nt 345 pKiss DotKnot DotKnot

101-160 nt 42 McGenus McGenus McGenus

RNA

Type

Aptamers 15 CyloFold McQFold CyloFold

mRNA 16 McGenus McGenus McGenus

tRNA 8 DotKnot-K McQFold McQFold

tmRNA 10 McGenus HotKnots-dp McGenus

rRNA 10 pKiss McQFold McQFold

Riboswitch 11 HotKnots-dp HotKnots-dp HotKnots-dp

Ribozymes 37 pKiss pKiss pKiss

Others 13 McGenus pknotsRG-M McGenus

Vr. 3 UTR 103 pKiss pKiss pKiss

Vr. 5 UTR 29 pKiss pKiss pKiss

Frameshifting 33 pKiss CyloFold pKiss

Vr. ReadThrough 7 McGenus DotKnot McGenus

Vr. tRNA-like 58 DotKnot DotKnot DotKnot

Vr. Others 30 McGenus McGenus McGenus

Unknown 7 HotKnots-cc HotKnots-cc HotKnots-cc

Organism

Eukaryote 59 McGenus McGenus McGenus

Prokaryote 40 McGenus McQFold CyloFold

Virus 266 pKiss DotKnot DotKnot

Unknown 22 HotKnots-cc McQFold HotKnots-cc

Page

No.

2 386 pKiss DotKnot DotKnot

3 1 McGenus McGenus McGenus

Pseudoknot

Type

H-type 330 pKiss DotKnot DotKnot

Kissing 22 DotKnot-K IPknot IPknot

Complex 35 McGenus DotKnot pKiss

The Program with the

Maximal Times of Being a Winner

pKiss DotKnot McGenus

12 8 8

Figure 6.8 counts the winner program of the three evaluation parameters in

Table 6.6, from which we observe the best three winner programs intuitively,

DotKnot, McGenus and pKiss. These three methods obtain 15, 23 and 24 times
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of best evaluation values respectively, accumulated based on the sensitivity, PPV

and MCC. We term them as the specific winner methods, which have the maximum

number of times in achieving the averagely optimal performance on predicting a

particular class.

Contrarily, it is obvious to observe that the programs, such as MC-Fold, vsfold5

have a bare preponderance in this competition, as they are not present in Table

6.6 and with no score in Figure 6.8 at all.
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Figure 6.8: The win counts of each method.

Further, we may wonder how these specific winner methods perform on predict-

ing other classes? Are they always good choices or just effective to some certain

classes?

Figure 6.9 shows the global prediction performance of each method, where

the line corresponds to the evaluation values ranging between the maximal and

minimal ones that the certain method, labeled in the x-axis, has obtained, and
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the solid point represents the arithmetic average of the evaluation values.

C y
l o F

o l d
D o

t K n
o t

D o
t K n

o t -
K

H o
t K n

o t s
- c c

H o
t K n

o t s
- d p

H o
t K n

o t s
- r e

I P k
n o t

M C
- F o

l d
M c

G e
n u s

M c
Q F

o l d p K
i s s

v s f
o l d

5
p k n

o t s
R G

- M
p k n

o t s
R G

- F
p k n

o t s

0 . 0

0 . 1

0 . 2

0 . 3

0 . 4

0 . 5

0 . 6

0 . 7

0 . 8

0 . 9

1 . 0

 

Ra
ng

e

 M C C
 P P V
 S E N

Figure 6.9: The global sensitivity, PPV and MCC of each prediction method.

We notice that the performance values of the majority of prediction methods

aggregate between 0.6 and 0.75, which two are denoted by two dashed lines in

Figure 6.9. The excluded five methods, HotKnots-dp, HotKnots-re, IPknot, MC-

Fold and vsfold5 are not taken into account in the further comparisons, as some

or all of their evaluation values are beneath 0.6.

But which of the other ten prediction methods are the best ones generally?

In the investigation of the answer, we consider to estimate a consensus ranking

which suggests a single ranking that best ‘agrees’ with all the individual preference

rankings of predicting the classes in Table 6.6. In practice, we employ the heuristic

BioConsert in the Median Ranking web service [Brancotte et al., 2015] to perform

the consensus ranking, which is a heuristic method designed for the biological data

consensus ranking with ties. In this ranking model, some of ranking elements are
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allowed to be aggregated which are considered as one group with a same ranking.

In detail, we have divided the 414 pseudoknots into 29 classes hierarchically

in accordance to both the characteristic of sequences and the classification of

pseudoknots, as shown in Figures 6.5, 6.6 and 6.7. And based on each class of

sequences, there is an individual ranking of the prediction performance of the 15

methods, which is considered as one input of the consensus ranking.

Based on 29 inputs, the implementation of BioConsert have returned the con-

sensus ranking of the prediction methods, with respect to the sensitivity, PPV and

MCC respectively, as shown in Table 6.7.

Table 6.7: The consensus ranking of the prediction methods.
Rk. Sensitivity PPV MCC Rk. Sensitivity PPV MCC

1 pKiss DotKnot DotKnot 9 MC-Fold IPknot pknotsRG-F

2 McGenus CyloFold pKiss 10 McQFold pknotsRG-F HotKnots-cc

3 DotKnot McGenus CyloFold 11 HotKnots-cc HotKnots-cc HotKnots-re

4 DotKnot-K DotKnot-K McGenus 12 HotKnots-re HotKnots-re IPknot

5 CyloFold McQFold DotKnot-K 13 IPknot HotKnots-dp MC-Fold

6 pknotsRG-M pknotsRG-M pknotsRG-M 14 HotKnots-dp MC-Fold HotKnots-dp

7 pknots pKiss pknots 15 vsfold5 vsfold5 vsfold5

8 pknotsRG-F pknots McQFold

According to the Table 6.7, the best three prediction methods in the consensus

ranking vary along with the three evaluation values, the sensitivity, PPV and

MCC. But if we take the union of the top three ranked methods of each evaluation

value, we have the following four ones: CyloFold, DotKnot, McGenus and pKiss.

These four prediction methods are termed as the global winner methods, which

have achieved the globally optimal performance on predicting all the classes.

Very interestingly, three of the global winner methods correspond to the spe-

cific winner methods, suggesting the union of both types of winner programs is

comprised by the four global winner methods.

As a consequence, DotKnot, pKiss, CyloFold and McGenus are termed as the

winner methods of this benchmark.

With respect to a comprehensive understanding of the relation between the 29

classes of sequences, as shown in Table 6.2, we plot the performance of the four
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methods on predicting the functional families in the polar diagrams, as shown in

Figures 6.10, 6.11 and 6.12. Particularly, the functional families and respective

sizes are located along the circumference, and the radius correspond to the eval-

uation values ranging from 0 to 1, where the detailed sensitivity, PPV, and MCC

of the predictions by the four winner programs are connected by lines.
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Figure 6.10: The sensitivity of predicting functional families by DotKnot, pKiss, CyloFold

and McGenus.
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Figure 6.11: The PPV of predicting functional families by DotKnot, pKiss, CyloFold and

McGenus.
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Figure 6.12: The MCC of predicting functional families by DotKnot, pKiss, CyloFold and

McGenus.

And we plot the other classifications of Table 6.2 in the histograms, as shown

in Figures 6.13, 6.14 and 6.15. Particularly, the x-axis is label with the classes and

their sizes, and the y-axis is label with the evaluation values ranging from 0 to 1.
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Figure 6.13: The sensitivity of the predictions by DotKnot, pKiss, CyloFold and McGenus.

149



0.
71

7

0.
74

1

0.
23

6

0.
72

3

0.
75

2

0.
31

3

0.
70

6

0.
72

6

0.
29

8

0.
73

2

0.
73

6

0.
53

5
E n t i r e  S e t ,  4 1 4

S h a r e d  S e t ,  3 8 7
M i s s i n g  S e t ,  2 70 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0
Va

lu
e

C l a s s ,  S i z e

 C y l o F o l d
 D o t K n o t
 M c G e n u s
 p K i s s

(a) Based on global groups.

0.
77

4

0.
46

9

0.
74

2

0.
36

7

0.
78

9

0.
44

3

0.
75

3

0.
31

4

0.
75

4

0.
49

8

0.
72

7

0.
52

8

0.
77

3

0.
42

9

0.
73

7

0.
28

9

L e n g t h  1 - 1 0 0 n t ,  3 4 5
L e n g t h  1 0 1 - 1 6 0 n t ,  4 2

P a g e  N o .  2 ,  3 8 6
P a g e  N o .  3 ,  1

0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

Va
lu

e

C l a s s ,  S i z e

 C y l o F o l d
 D o t K n o t
 M c G e n u s
 p K i s s

(b) Based on the length and page no. of the

sequences.

0.
61

2 0.
73 0.

76
2 0.

84
5

0.
59

6 0.
70

7 0.
78

9

0.
79

1

0.
63

2 0.
69

9

0.
74

5

0.
79

9

0.
61

9

0.
67

1 0.
76

8

0.
77

7

E u k a r y o t e ,  5 9
P r o k a r y o t e ,  4 0

V i r u s ,  2 6 6
U n k n o w n ,  2 2

0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

Va
lu

e

C l a s s ,  S i z e

 C y l o F o l d
 D o t K n o t
 M c G e n u s
 p K i s s

(c) Based on organisms.

0.
73

9

0.
64

0.
82

3

0.
75

3

0.
56

3

0.
85

4

0.
72

6

0.
54

3

0.
83

7

0.
73

1

0.
63

3

0.
84

7

H - T y p e  P s e u d o k n o t s ,  3 3 0
K i s s i n g  H a i r p i n s ,  2 2

C o m p l e x  P s e u d o k n o t s ,  3 50 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

Va
lu

e

C l a s s ,  S i z e

 C y l o F o l d
 D o t K n o t
 M c G e n u s
 p K i s s

(d) Based on pseudoknot types.

Figure 6.14: The PPV of the predictions by DotKnot, pKiss, CyloFold and McGenus.
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(a) Based on global groups.
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(b) Based on the length and page no. of the

sequences.
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(c) Based on organisms.
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(d) Based on pseudoknot types.

Figure 6.15: The MCC of the predictions by DotKnot, pKiss, CyloFold and McGenus.

In addition, Figure 6.16 shows the average performance on predicting each

class of pseudoknots by the 15 benchmarking methods. Particularly, the classes

are labeled in the x-axis, and the evaluation values ranging from 0 to 1 are labeled

in the y-axis.
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Figure 6.16: The average sensitivity, PPV and MCC upon the classes.

6.2.2 Individual Predictions

As Figures 6.5, 6.6 and 6.7 show the global performance of the predictions

based on the 387 sequences in the shared set, we may still wonder how about the

predictions based on the 27 sequences in the missing set.

Table 6.8 shows the detailed information of the 27 missing pseudoknots, in-

cluding the length, pseudoknot type, page number, RNA type and organism, in

the descending order of their lengths.

Figures 6.17, 6.18 and 6.19 tell the individual sensitivity, PPV and MCC details

of predicting the 27 missing sequences by the 15 methods. Particularly, the failures

of the prediction by each method are marked in yellow, namely the method fails

to return a secondary structure for the given sequence.
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Table 6.8: The 27 missing sequences.
Name Length Pseudoknot Type Page No RNA Type Organism

3JYX_5 3170 recursive 2 rRNA Eukaryote

3KIY_A 2848 complex 4 Prokaryote

2WDL_A 2807 complex 4 rRNA Prokaryote

3J20_2 1495 complex 3 rRNA Prokaryote

3ZEX_B 1465 complex 3 rRNA Eukaryote

PKB192 1248 simple H-type 2 Viral others Virus

3J2C_N 927 recursive 2 rRNA Prokaryote

PKB64 920 simple H-type 2 rRNA Prokaryote

PKB239 412 simple H-type 2 Viral others Virus

3IZ4_A 377 recursive 2 tmRNA Prokaryote

PKB149 351 simple H-type 2 Ribozymes Prokaryote

3IYQ_A 349 recursive 2 tmRNA Prokaryote

PKB193 341 simple H-type 2 mRNA Prokaryote

PKB129 313 simple H-type 2 rRNA Prokaryote

PKB208 237 simple H-type 2 Viral 5 UTR Virus

PKB209 234 simple H-type 2 Viral 5 UTR Virus

PKB171 224 kissing hairpin 2 Frameshifting Virus

PKB77 219 simple H-type 2 Ribozymes Eukaryote

PKB150 212 kissing hairpin 2 Ribozymes Prokaryote

PKB181 207 simple H-type 2 Viral 5 UTR Virus

PKB354 190 complex 2 Ribozymes Eukaryote

PKB358 190 complex 2 Ribozymes Eukaryote

PKB324 181 complex 2 Ribozymes Eukaryote

PKB323 180 complex 2 Ribozymes Eukaryote

3ZEX_C 169 kissing hairpin 2 rRNA Eukaryote

3PDR_A 161 simple H-type 2 Riboswitch Prokaryote

PKB357 160 complex 2 Ribozymes Eukaryote
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Figure 6.17: The density diagram of the sensitivity of the missing predictions.
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Figure 6.18: The density diagram of the PPV of the missing predictions.
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Figure 6.19: The density diagram of the MCC of the missing predictions.

The discussion and conclusion of the comparisons in this benchmark are going

to be shown in the next chapter.
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6.3 Web Development

This part of work is going to introduce the web development of the benchmark,

providing the accessibility of the results of this dissertation to the researchers in

the community.

Specifically, the web development of the benchmark includes three parts car-

dinally:

∙ What can be found in this on-line benchmark?

∙ How is the benchmark organized?

∙ How is the benchmark developed?

6.3.1 Functionalities

The main data that the benchmark has referred to are two datasets of pseu-

doknots, three complexity measures of pseudoknots, 15 secondary structure pre-

diction methods, and three evaluation parameters. The results part includes the

classification of pseudoknots, and the prediction of pseudoknots.

As a result, the on-line benchmark is going to consider the following sections,

which are going to be represented in the main menu:

∙ Introduction

∙ Dataset

∙ Characteristics of pseudoknots

∙ Method

∙ Evaluation parameter

∙ Result

– Classification of pseudoknots

– Prediction of pseudoknots

∙ Manual
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∙ Feedback

The introduction conveys a global description of this benchmark, covering the

background of RNA secondary structure prediction, the motivation and main con-

tributions of this benchmark. Quite remarkably, the benchmark first considers 414

pseudoknots from two prevalent databases, and analyses the hierarchical subsets

of them based on three classifications, emphasizing on the page number particu-

larly. Second, the on-line version of the benchmark supports the download and

visualization of pseudoknots, and the querying of interested ones according to their

length, RNA type, organism, pseudoknot pattern and any of the three pseudoknot

classifications. Last but not least, 15 prediction methods which are available to

predict pseudoknots are introduced, and their performance on predicting the 414

pseudoknots are compared, which is expected to help the users make a practical

selection of prediction methods for the given sequence.

In the dataset part, the 414 pseudoknots from Pseudobase and PDB are listed.

Specifically, the users can find the reference number of the pseudoknots, the links

back to the two databases, the length of the pseudoknots, and the RNA type, or-

ganism and nucleotide composition details, as well as the corresponding reference

secondary structure. In addition, a quick and an advanced search for the inter-

ested pseudoknots are provided, according to the length, RNA type, organism,

pseudoknot pattern and complexity of the pseudoknots.

The characteristics of pseudoknots cover the three complexity measures of

pseudoknots, which suggests the classifications of pseudoknots according to the

physical interactions of base pairs, the theoretical treatability of certain algo-

rithms, and the conformational page number.

The 15 methods considered in this benchmark are introduced in the method

part.

And the calculations of the sensitivity, positive predictive value and Matthews

correlation coefficient are listed in the evaluation parameter part.

The result part shows the classification of the 414 pseudoknots in the classifi-

cation of pseudoknots part, and the prediction of pseudoknots by the 15 methods

in the prediction of pseudoknots part.

The manual is a tutorial brochure, suggesting where the users can obtain the
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information they are looking for, and a guide of the proper utilization of this

benchmark.

And the feedback collects the comments and suggestions from the users, en-

suring an improved and continuous support for this benchmark by us.

6.3.2 Architecture

Figure 6.20 shows the work-flow of this on-line benchmark. The 414 sequences

in the datasets are classified into subsets according to three classifications of pseu-

doknots. Meanwhile, the 414 sequences are returned with one secondary structure

by 15 prediction methods. Further, the predicted structures are compared with the

references structures, assigning each prediction the evaluation values of true pos-

itives, true negatives, false positives, false negatives, sensitivity, PPV and MCC.

We take the latter three as the prime evaluation parameters in this benchmark.

The average sensitivity, PPV and MCC on the prediction of each class are calcu-

lated, voting a winner method which has obtained the optimal performance based

on the particular class. Meanwhile, a consensus ranking based on all the classes

is implemented, in order to vote the winner methods globally.

The corresponding entity relationship diagram of the data in the benchmark

is shown in Figure 6.21. Specifically, the tables True Negatives, False Negatives,

True Positives, False Positives, PPV and MCC have a similar table structure with

the table Sensitivity. And the tables Average_PPV and Average_MCC have a

consistent table structure with the table Average_Sensitivity.

6.3.3 Accessibility

In practice, the benchmark is built upon the framework of WordPress [Mul-

lenweg et al., 2011], which is web software based on PHP and MySQL.

The web site is located on the server of LRI, and accessible to the bioinformatics

community at: http://bernard-pk.lri.fr/, where the BERNARD-PK stands for a

BEnchmark for RNA stRucture preDiction with PseudoKnots. And the screen-

shot of the home page is as follows:
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Figure 6.20: The work-flow of the benchmark.
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Figure 6.21: The entity relationship diagram of the tables in the benchmark.
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Figure 6.22: The on-line version of this benchmark.
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Chapter 7

Discussion

7.1 Discussion

7.1.1 Pseudoknots Classification

As shown in Section 6.1, we may associate the relationship between the clas-

sifications of the Physical Interactions and the Conformational Characteristics in

Table 6.1. The 409 pseudoknots having a page number of 2 include all the H-type

pseudoknots, the kissing hairpins and recursive pseudoknots, and most part of the

complex family. The excepted five complex pseudoknots with page number ≥ 3

contain more intricate crossing interactions.

This part of discussion pays more attention to the relationship between the

physical classification and the algorithmic one, which is principally based on the

discussion of the number of pseudoknots in the complementary set of each algo-

rithmic class, as shown in Table 6.1.

It is very interesting to mention that the recursive pseudoknots defined in this

benchmark are different from those defined in the algorithmic classification. This

benchmark classifies the pseudoknots based on the RNA shadows, which removes

all the non-crossing arcs from the original structure, collapses all unpaired bases,

and replaces all adjacent parallel arcs by single arcs. The recursive pseudoknots

in this context correspond to the set of pseudoknots which may include a second

pseudoknot embedded in the unpaired single-strand region of them locally, as in-

troduced in the Section 5.3.1. Contrarily, the algorithmic classification defines the
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set of recursive pseudoknots as the ones containing some embedded substructures,

which can either be the pseudoknots or the pseudoknot-free secondary structures.

For example, given a pseudoknot with the pattern of ABAcddcB, the algorithmic

classification will notate it as a recursive pseudoknot as there is a embedded sub-

structure cddc embedded in the unpaired region of the pseudoknot ABAB. But the

RNA shadow will notate its pseudoknot pattern as ABAB since the substructure

cddc is nested, which is removed according to the definition of RNA shadows.

As a consequence, the RNA shadows are preferred to classify the pseudoknots

physically as the 414 pseudoknots considered in this benchmark may display some

intricate conformation.

H-type Pseudoknots and L&P Class of Pseudoknots

The conflict of defining recursive pseudoknots is specifically reflected on the

different numbers between the H-type pseudoknots in the Physical Interactions

and the L&P class of pseudoknots in the Algorithmic Accessibilities in Table 6.1,

where the two numbers are supposed to be the same. More precisely, there are

seven pseudoknots which belong to the H-type pseudoknots but not to the L&P

class, the PKB65, 3JOL_A, 3NKB_B, 3PDR_A, 3SD1_A, 3U4M_B, 4FRG_B,

and 4JRC_A.

Figure 7.1 shows four representative examples of the seven pseudoknots. It is

clear that the four examples all contain some nested substructures inside or outside

the H-type pseudoknots. We agree with the conclusion that the RNA shadow

does lose the information on the size of the stems and non-crossing components

of the global structure, although it captures the main crossing interactions of the

pseudoknots.

Typically, 3JOL_A and 3SD1_A shown in the Figures 7.1(c) and 7.1(d) do

not have a consecutive stem to construct the pseudoknot, which may prevent them

from falling into the L&P class further.

D&P Class of Pseudoknots

On the other hand, the D&P class of pseudoknots allows any number of H-type

pseudoknots and their arbitrary concatenation and embedment inside each other.
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(a) The linear model of 3NKB_B (b) The linear model of 4FRG_B

(c) The linear model of 3JOL_A (d) The linear model of 3SD1_A

Figure 7.1: The H-type pseudoknots that do not belong to the L&P class of pseudoknots.

So the 344 D&P class of pseudoknots are composed of 341 H-type pseudoknots

and three recursive H-type pseudoknots with their pseudoknot patterns shown in

the Table 6.3.

A&U Class of Pseudoknots

As shown in Table 6.1, the number of pseudoknots in the relative complemen-

tary set of the D&P class in the A&U class is zero. It means that there is no

pseudoknot in this benchmark which falls into the A&U class but does not belong

to the D&P class.

We may wonder why? Is the A&U class of pseudoknots supposed to include

a large number of simple pseudoknots and recursive simple pseudoknots which

are composed of two stems? And what is the difference between the 35 complex

pseudoknots shown in Table 6.4 with the pattern of ABCDCADB and the typical

simple pseudoknot in the A&U class, which is shown in Figure 5.3(d) with the
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pattern of ABCBDADC?

If we go back to the definition of the A&U class in Section 5.3.2, we have the

explanation. In fact, the Akutsu’s terminology of simple pseudoknots contains two

crossing stems. The right bases of the first stem and the left bases of the second

stem are interleaved arbitrarily, but the other bases all lie outside the interleaved

area. Figure 5.3(c) shows the schematic diagram of the pseudoknot model in the

A&U class. In other words, the pseudoknot model in the A&U class divides the

sequence into three parts, the left region, the middle region, and the right region.

The base pairs having a base on the left region can not have their partner on the

right region, but on the middle region only, vice versa.

We try to decompose the 35 complex pseudoknots with the pattern of ABCD-

CADB in Table 6.4 into the pseudoknot model of the A&U class. The base pair

BB locates its 3’ end at the end of the pseudoknot, which represents its location

on the right region of the sequence. So the 5’ end of BB should be on the middle

region. On the other hand, the location of the 5’ end of BB is close to the be-

ginning of the pseudoknot, which suggests the embedded base pairs CC and DD

both locate on the right part of the pseudoknot. But the overlap between the CC

and DD makes it impossible to decompose the pseudoknot in the model of the

A&U class, as shown in Figure 7.2(b), with respect to the rule that the base pairs

on either left or right part of the A&U class of pseudoknots should not cross each

other.

J&C Class of Pseudoknots

Next, the J&C class of pseudoknots corresponds to the density-2 pseudoknots,

such as the H-type pseudoknots and the kissing hairpins. Consequently, the num-

ber of relative complementary set of the D&P class in the J&C class is 26, com-

posed of 25 kissing hairpins and one recursive kissing hairpin, as shown in Table

6.3.

R&E Class of Pseudoknots

And there are 41 pseudoknots which fall into the R&E class, but neither into

any of the previous classes. Specially, they are composed of all the complex pseu-

166



(a) The pseudoknots with the

pattern of ABCBDADC.

(b) The pseudoknots with the

pattern of ABCDCADB.

Figure 7.2: Comparison between the simple pseudoknots of the A&U class and the complex

pseudoknots in Table 6.4.

doknots, except the 3ZEX_B, 2WDL_A and 3KIY_A, which do not belong to

any algorithmic classes. The explanation of the exclusion of 3ZEX_B, 2WDL_A

and 3KIY_A is unclear so far, as there is no precise description of the structure

space of the textslR&E class of pseudoknots [Rivas and Eddy, 1999].

7.1.2 Prediction of the Pseudoknots

RNA Sequence Classes

The Section 6.2 shows the comparison of predicting the 414 pseudoknots by

the 15 methods, based on the evaluation values which are assessed on the classes

ranging from the entire set of 414 pseudoknots to each subclass inside the shared

set.

As shown in Table 6.5, almost every method can handle the pseudoknots which

are shorter than 200 nucleotides, with only one exception of MC-Fold as its thresh-

old of length is shorter than 160 nucleotides. And the failure rate in handling the

sequences by most methods increases as the length of sequence increases. For long

sequences with more than 1000 nucleotides, most methods are incapable to predict

them a secondary structure.

Similarly, the failure rate in handling the sequences by most methods increases

as the complexity of pseudoknots grows. It is further supported by the fact that
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nine complex pseudoknots and all the four recursive ones are excluded from the

shared set. And two pseudoknots with a page number of 3 and both pseudoknots

with a page number of 4 are excluded from the shared set. The only pseudoknot

with a page number of 3 which is included in the shared set is the pseudotrefoil,

PKB71.

Next, we are going to discuss the results in accordance of the classifications as

shown in Table 6.2, based on Figures 6.5, 6.6 and 6.7.

In the classification of the global groups, as the entire set, shared set and

missing set, the 15 methods have a close performance on predicting the entire set

and the shared set, which is much higher than that of the missing set.

In the classification of the sequence lengths, we can see the performance based

on the sequences with the length shorter than 100 nucleotides is better than that

of the longer ones. Particularly, the performance gap between these two classes is

much larger in the PPV and MCC values, compared to the sensitivity, suggesting

the conclusion that the PPV and MCC values are more sensitive to some classes

than the sensitivity.

In the classification of the functional families that the sequences belong to, all

the 15 methods have obtained the worst performance based on the mRNAs and

rRNAs, and viral readthrough. And they have obtained the best performance

based on the viral 3 UTR, viral 5 UTR, riboswitch, aptamer and ribozyme. Par-

ticularly, the PPV and MCC values based on the mRNAs and rRNAs are greatly

lower, compared to the sensitivity, which correspond to the rows in a darker fuchsia

in Figures 6.6 and 6.7.

In the classification of their organisms, we can see that the 15 methods have

the best performance based on the sequences with their organisms unknown, and

have a relatively bad performance based on viral RNAs, and then the one based

on the prokaryotic molecules. All the methods have the worst performance based

on the eukaryotic molecules.

In the classification of the page number of each sequence, the performance of

the 15 methods based on the sequences with a page number of 2 is much better

than that of the particular sequence with a page number of 3. This supports

the statement mentioned above, the performance decreases as the complexity of
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pseudoknots grows. Particularly, the performance gap between these two classes

is also much larger in the PPV and MCC values, compared to the sensitivity.

And in the classification of the pseudoknot types, we can see the performance

of the 15 methods decrease in the order of predicting the complex pseudoknots,

H-type pseudoknots, and then the kissing hairpins.

The average performance of the 15 methods can be referred to Figure 6.16.

Typically, we can obtain the correlation between the evaluation parameters in

Figure 6.16, as the three evaluation points gather in most classes.

On the other hand, Figures 6.5, 6.6 and 6.7 have an agreement that HotKnots-

dp, HotKnots-re and IPknot have a common difficulty in predicting the viral

readthrough sequences, and vsfold5 is a globally poor method in predicting all the

classes. And Figures 6.6 and 6.7 vote MC-Fold as another poor method, as it has

obtained a relative good performance of sensitivity. Contrarily, CyloFold, Dot-

Knot, DotKnot-K, McGenus, pKiss and pknots are the relatively good prediction

methods.

Further, as elaborated in Section 6.2.1, DotKnot, pKiss, CyloFold and Mc-

Genus are selected as four winner methods of this benchmark. Figures 6.10, 6.11

and 6.12 show their performance of predicting the functional families of the 387

sequences in the shared set. According to these three figures, we can see the four

best programs perform well on predicting the sequences with their functional fam-

ilies of the aptamer, tRNA, riboswitch, ribozyme, viral 3 UTR, viral 5 UTR, and

frameshifting. And the four programs have a relatively bad performance based on

the prediction of the mRNA and rRNA. Typically, their performance always do

not agree on the prediction of viral readthrough sequences, with respect to the

sensitivity, PPV and MCC values.

Figures 6.13, 6.14 and 6.15 show the performance of DotKnot, pKiss, CyloFold

and McGenus on predicting the other classifications of sequences, according to

Table 6.2.

In the classification of the global groups, the four methods have obtain a com-

parative performance on predicting the entire set and the shared set, where a

comparative performance suggests the closeness of evaluation values obtained by

the four methods. While their performance varies much larger based on the miss-
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ing set, but pKiss is always the best one to predict the 27 missing sequences,

compared to the other three.

In the classification of the sequence lengths, the four methods have a generally

better and comparative performance on predicting the sequences with the length

shorter than 100 nucleotides, compared to the ones with a longer length. In

the classification of the page number of each sequence, the four methods have a

generally better and comparative performance on predicting the sequences with

a page number of 2, compared to the sequence with a page number of 3. And

both classifications vote McGenus as the best program of predicting the longer

sequences and the pseudoknot with a page number of 3.

In the classification of their organisms, the performance of the four winner

programs decreases slightly in the order of predicting the sequences with their

organisms unknown, viral RNAs, prokaryotic molecules, and then the eukaryotic

molecules. This tendency of losing advantages on prediction is consistent with

that of the 15 methods based on the same classification of sequences.

And in the classification of pseudoknot types, the performance of the four

winner programs decrease in the order of predicting the complex pseudoknots,

H-type pseudoknots, and then the kissing hairpins, which is also consistent with

that of the 15 methods based on the same classification of sequences.

If we move to the Figures 6.17, 6.18 and 6.19 for the individual prediction

based on the 27 missing sequences outside the shared set, we may notice that the

evaluation values for predicting the pseudoknots from PseudoBase are generally

lower than the ones for predicting the pseudoknots from PDB.

This phenomenon can be explained by the incomplete information provided

in the PseudoBase partially. Out of the 367 sequences in PseudoBase, there are

27 ones with different levels of structural information omitted, with an example

PKB171 shown in Table 4.6, where the ‘:::’ represents the unknown potential de-

tails in PseudoBase, and Figure 4.10. And the reason is that PseudoBase focuses

on the crossing interactions forming the pseudoknots, and omits the partial struc-

tural details elsewhere. Consequently, in such cases, the inconclusive potential

local substructures are referred to as unpaired bases in this benchmark, which

makes the reference structures a conformation of a local pseudoknot and a long
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unpaired free loop potentially. This operation decreases the total number of base

pairs in the reference structures. As the consequence, the sensitivity of a predic-

tion can be increased as the false negatives may decrease, and the PPV and MCC

values can be decreased as the false positives may increase.

The evaluation values for predicting PKB64 may illustrate this phenomenon.

The reference structure of PKB64 constructed in this benchmark contains only

8 base pairs, with 920 nucleotides. This makes the PKB64 very difficult to be

predicted an acceptable secondary structure by the benchmarking methods, as

extremely few information of the conformation is shown. The density of the cor-

responding boxes in Figures 6.17, 6.18 and 6.19 is in the darkest fuchsia. In other

words, several methods can handle PKB64, but probably predict it a very differ-

ent secondary structure. We can not tell how about the predictions as we have

far from enough details to count the correct number of true positives and false

negatives etc. of the prediction.

Prediction Methods

Table 6.6 concludes the winner program of the Figures 6.5, 6.6 and 6.7, with

the highest evaluation values on average upon different classes, which are based

on the 387 sequences in the shared set.

Globally speaking, pKiss is the one of best programs of this benchmark, as it

obtains the highest sensitivity, PPV and MCC values for the 414 sequences in the

entire set, although it has a restriction on the length of the input sequence which

should be shorter than 207 nucleotides. It raises the possibility that pKiss may

handle less number of pseudoknots, but it may return a secondary structure to

the given sequence which is close to the reference structure once it is available.

More precisely, pKiss has obtained the optimal sensitivity, PPV and MCC

for some certain classes, such as the ribozymes, viral 5’ and 3’ UTR under the

classification of the functional families of the sequences. Meanwhile, McGenus,

DotKnot have obtained the optimal sensitivity, PPV and MCC values for some

certain classes as well.

However, for the rRNA, tRNA, viral molecules, there is no single method

which has obtained the optimal sensitivity, PPV and MCC. In fact, according to
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Equation 5.3, MCC combines the sensitivity and PPV, suggesting it as the most

comprehensive evaluation parameter of the three ones.

As a consequence, we consider the method which has an optimal MCC and

either an optimal sensitivity or PPV as the optimal method in predicting the cur-

rent class. But there are two extremely special cases, the optimal sensitivity, PPV

and MCC for the prokaryotic molecules and complex pseudoknots are obtained by

three inconsistent prediction methods, as shown in Table 6.6.

In the purpose of investigating the prediction of the two special classes by

the corresponding three winner methods, Table 7.1 shows the detailed evaluation

scores that each method has obtained respectively, based on the particular classes

of sequences.

Table 7.1: The performance of predicting prokaryotic molecules and complex pseu-

doknots by certain methods.
The Prediction for the Prokaryotic Molecules

Sensitivity PPV MCC

McGenus McQFold CyloFold McGenus McQFold CyloFold McGenus McQFold CyloFold

0.75 0.694 0.727 0.669 0.738 0.73 0.712 0.703 0.718

The Prediction for the Complex Pseudoknots

Sensitivity PPV MCC

McGenus DotKnot pKiss McGenus DotKnot pKiss McGenus DotKnot pKiss

0.821 0.783 0.811 0.837 0.854 0.847 0.822 0.812 0.824

The performance of predicting the two special classes by the corresponding

three winner methods is comparable, from which we do not see any great difference

of the evaluation values. We may suggest that McGenus, McQFold and CyloFold

are all good choices in predicting the prokaryotic molecules with respect to the

classification of the organism of the sequences. And McGenus, DotKnot and

pKiss are good choices in predicting the complex pseudoknots with respect to the

classification of the pseudoknot types alternatively.

Further, Table 6.6 and Figure 6.8 select three specific winner programs, Dot-

Knot, McGenus and pKiss. And Figure 6.9 and Table 6.7 of the consensus ranking

choose four global winner programs, CyloFold, DotKnot, McGenus and pKiss. We

are wondering why CyloFold is a global winner program as its win counts in Figure
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6.8 is four, which is far away from the other three winner programs?

In the investigation of the answer, we compare the rankings of these four winner

methods based on 29 individual classes of Figure 6.7, with respect to the MCC

values as an example. And typically, we focus on the comparison of rankings

between CyloFold and McGenus principally, as their win counts of MCC in Figure

6.8 are two and eight respectively.

In fact, we notice that CyloFold has obtained 17 times of better MCC values

than McGenus, while McGenus has 12 times of better MCC values than CyloFold.

These superior MCC values obtained by CyloFold contribute it a cracking position

in the consensus ranking, although CyloFold has obtained only two optimal MCC

values in the 29 individual rankings.

This supports our conjecture that, there may be some method which performs

globally great and stable but is hidden in the assessment of the optimal predic-

tions. In fact, pknots is another underestimated method which has a good global

performance as shown in Figure 6.9, but is not detective according to the Figure

6.8. Contrarily, McGenus is effective to a majority of classes, but may have an

unsatisfactory performance in predicting other classes.

We may conclude that the consensus ranking assesses the performance of each

prediction method more efficiently and comprehensively, as it recommends the

winner programs based on a global assessment of the predictions. However, the

specific winner methods selected from certain classes are significant as well, as they

are more sensitive to the particular classes. The optimality of prediction may lose

if we employ the global winner program to predict the certain class, rather than

selecting the corresponding winner program as shown in Table 6.6.

In fact, the specific winner programs and the global winner programs are two

pillars of the predictions in this benchmark, although they both contain DotKnot,

McGenus and pKiss. They answer the motivation of this benchmark from two

aspects, which of the prediction methods may effectively handle as many classes

as possible, and which of the prediction methods may return an relatively best

secondary structure for the given sequence?

A consequent recommendation of selecting a practical prediction method for

the given sequence is as follows: Once certain information of the given sequence
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is provided, the specific winner programs are recommended, or other particular

method corresponding to the known information, according to Table 6.6. If there

is no details about the given sequence, the global winner programs of CyloFold,

DotKnot, McGenus and pKiss are strongly recommended.

In addition, MC-Fold and vsfold5, HotKnots-dp are the relatively poor predic-

tion methods, based on the dataset of this benchmark.

Regarding the prediction of 27 sequences in the missing set, Figures 6.17, 6.18

and 6.19 show the performance of the individual predictions.

We may notice that IPknot displays its advantage in predicting the 27 se-

quences as it corresponds to the majority of green boxes in Figures 6.17, 6.18 and

6.19.

As the length of the sequence decreases, McGenus shows a good performance

alternatively on some sequences. DotKnot, McQFold and pKiss can serve as an

option as well. But after all, IPknot wins in this round of comparisons.

Additionally, the heuristic methods outperform the exact methods in almost

all the comparisons, with the exception of vsfold5. This supports the main state-

ment that the heuristic methods have a less restriction on the input length and

pseudoknot type than the exact methods, but may bear a sacrifice on the optimal-

ity of the prediction. But the result shown in Table 6.6 and Table 6.7 oppose this

declaration, arguing that the heuristic methods may predict a better conformation

than the exact methods, and be more sensitive to the input sequences.

The Accuracy of the Predictions

We find out that pKiss is one of the best programs in this benchmark, as it has

obtained dominant times of optimal evaluation values in Figure 6.8. Particularly,

we investigate the predictions of pKiss in this part to start a discussion about

the accuracy of the predicted structures. We try to answer the question: is pKiss

always a reliable program?

As introduced in Section 5.4.2, pKiss is a program developed for predicting the

kissing hairpins principally. In fact, after re-checking all the predictions of pKiss, I

find that the 394 predictions are composed of 265 H-type pseudoknots, 95 kissing

hairpins and 34 pseudoknot-free structures.
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This discovery may disappoint the supporters of pKiss. pKiss predicts 72 more

kissing hairpins than the reference structures as shown in Table 6.5. And it fails

to predict any complex pseudoknots.

So another question may be raised again, how does pKiss achieve such high

evaluation values? It may be explained as follows. pKiss has a relatively large

group of the correctly predicted base pairs, but the global conformation is quite

different from the reference structure.

This raises the third question. So how to evaluate the prediction? I am afraid

it should be conquered by new evaluation parameters. In fact, as introduced

in Section 4.3, the three criteria of sensitivity, PPV and MCC do not take care

of the crossing interactions between base pairs, which are the most significant

characteristic of pseudoknots.

Table 7.2 shows two different predictions as the examples, which may have the

same evaluation values, both containing two predicted base pairs. Obviously, the

predicted base pairs in both predictions are true positives. But two base pairs

in the reference structure are missed, suggesting both predictions have their false

negatives equal to 2, and false positives equal to 0. Meanwhile, the two predictions

may have the same number of true negatives, which are computed according to

the base pairs in the reference structure. The consistent numbers of TP, FN, FP

and TN assign both predictions equivalent evaluation values. But theoretically

Prediction 1 may be the better prediction as it detects an analogous conformation

to the reference structure, while Prediction 2 predicts a conformation without any

crossing interactions. This phenomenon screams for a more comprehensive evalu-

ation system which takes the overlap of base pairs present in the pseudoknotted

conformations into account.

Table 7.2: An example showing the flaw of the evaluation of two predictions.
Reference ...(([[..).)..]]

Prediction 1 ...(..[....)..].

Prediction 2 ...((....).)....
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7.2 Conclusion

The last three chapters introduce a benchmark which focuses on the pseudo-

knots and the single-sequence prediction methods.

Chapter 5 introduces the motivation of this benchmark, as well as the prepara-

tion work. Specifically, Section 5.2 introduces the datasets used in the benchmark,

Section 5.3 shows three main complexity measurements to classify the pseudoknots

of the two datasets. Section 5.4 introduces 3 three exact methods and 12 heuris-

tic methods involved in this benchmark. And Section 5.5 gives three evaluation

parameters that are employed to assess the predictions returned by the methods.

Chapter 6 shows the results obtained, including both the classification of pseu-

doknotss, shown in Section 6.1, and hierarchical comparisons of predicting pseu-

doknots by the benchmarking methods, shown in Section 6.2.

Based on two sets of results, the respective discussions are aroused in Section

7.1 of the current chapter, which highlights the practical considerations for select-

ing an RNA pseudoknot prediction program. As the benchmark is accessible with

an on-line version to the community, suggesting some web development details in

Section 6.3 of this current chapter as well.

In addition, the benefits and lessons on selecting a practical prediction method

that we obtain from this benchmark are concluded as follows:

∙ CyloFold, DotKnot, McGenus and pKiss are four best methods in this bench-

mark.

∙ The user may choose the specific winner programs, or a particular program

for the given sequence according to the Table 6.6, if certain information is

provided. In the majority cases, there should be one method which cor-

responds to the optimality in prediction. But if the optimal methods of

sensitivity, PPV and MCC do not agree, such as the case in predicting

the prokaryotic molecules and complex pseudoknots, the respective winner

methods may be the alternative options to attempt. And for the sequences

which are longer than 160 nucleotides, IPknot may be the first choice to try.

∙ If there is no details about the given sequence, the global winner programs
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are recommended which are selected based on a global assessment of all the

classes considered in this benchmark.

∙ If the user is interested in the local pseudoknots, KnotSeeker, or pknotsRG-

loc are recommended, which are excluded from this benchmark as their un-

availability of a global conformation.

∙ Both the quality of the reference structures and the reliable evaluation sys-

tem may influence the comparison of predictions inestimably.

However, the ‘best’ program is the user’s decision that depends on the RNA

studied, the questions asked, the available experimental data and resources, and

the intended applications of the structure prediction [Schroeder, 2009].

The efforts that this benchmark has made is trying to provide the user the

useful information on how to choose a practical prediction program based on the

statistical analysis of the 414 pseudoknots in this benchmark. But we offer no

guarantee on an absolutely prefect recommendation of prediction method without

any exceptions, as our conclusions are supported only by the optimality of the

predictions by the 15 methods and based on the 414 sequences in this benchmark.

And frankly speaking, we don’t expect that the winner programs in Tables 6.6

and Table 6.7 do know, or are capable to capture the crossing interactions very

well. But we lay our confidence on the hypothesis that the sequences belong to the

same subclass may display some analogous secondary structures. This hypothesis

is supported by the theory that the sequences having a similar function may hold

an analogue on the structural similarity as well. And we expect that the specific

winner programs upon certain classes may capture this kind of analogues on the

structures further.
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Chapter 8

Conclusion and Perspectives

8.1 Conclusion

This dissertation focuses on the identification of pseudoknots, a secondary

structural motif of RNA. It includes the study of the hierarchical classifications of

pseudoknots, and the comparison of performance of the prediction methods that

are available to predict pseudoknots from a single given sequence.

An RNA secondary structure without pseudoknots corresponds to a collection

of nested base pairs, while the RNA pseudoknots are formed by the overlap or cross

of the based pairs. The non-nested base pairs in the pseudoknotted conformation

make their prediction much more complicated than that of the nested ones.

On the other hand, predicting an RNA secondary structure from the given

sequence may employ diverse mechanisms. Minimizing the free energy of the RNA

folding is the most prevalent strategy to predict an RNA secondary structures,

which is implemented by dynamic programming algorithms and some heuristic

strategies. Besides the thermodynamic stability, the probability of base pairs

is frequently considered in many pseudoknot detection models. However it has

been proved that predicting an RNA secondary structure containing arbitrary

pseudoknots is NP-hard.

Specifically, we have conducted two rounds of researches of pseudoknots. The

first one is based on the pseudoknots involved in the programmed ribosomal

frameshifting, one typical recoding event which occurs in the regulation of post

transcription. And the second one is based on the pseudoknots which participate
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in more general molecular activities.

In practice, Chapter 4 describes the work on detecting the -1 programmed

ribosomal frameshifting (-1 PRF) signals, where the ribosome switches to an al-

ternative open reading frame by shifting one nucleotide to the upstream direction.

The pseudoknots, one of the two main elements of a frameshifting signal, play the

role in stimulating a frameshifting.

Principally, Orphea, KnotInFrame and PRFdb (a corresponding database stor-

ing their strong -1 PRF candidates), three methods detecting the -1 frameshifting

signals were introduced, and their performance on predicting -1 frameshifting sig-

nals on three genomes were compared. Next, as another significant part of the

comparisons, the former two programs were compared with their detection of

frameshifting signals based on 34 frameshifting signals in PseudoBase.

Specifically, the sensitivity, positive predictive value (PPV) and Matthew’s

correlation coefficient (MCC), three evaluation parameters were introduced. A

discussion about the further division of false positives was carried out as the con-

sideration of the compatible set of false positives by the pioneered researchers. We

finally decided to employ the standard equations to calculate the PPV and MCC,

which do not consider the further separations, as the compatible false positives do

not take the cross of base pairs into account.

According to the evaluation criteria, it has been shown that Orphea achieves

a globally better performance than KnotInFrame as the corresponding evaluation

values are higher than that of KnotInFrame.

Chapters 5, 6 and 7 introduce a benchmark on the much more general pseu-

doknots and prediction methods. Our motivation of this work was to guide the

users to select a practical RNA pseudoknots prediction method with respect to the

given sequence. In practice, we considered 414 pseudoknots which are the entries

of PseudoBase and Protein Data Bank (PDB), and 15 state-of-the-art methods

that are available to predict RNA pseudoknots, including three exact methods

and 12 heuristic ones. The predictions of the 414 pseudoknots by the 15 meth-

ods were assessed with the consistent evaluation parameters with Chapter 4, and

based on individual sub-collections of pseudoknots which are divided by hierar-

chical measurements, such as the length of the sequences, the RNA family they
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are.

In addition, a detailed anatomy of the complexity of pseudoknots was intro-

duced. This refers to the classifications of the 414 pseudoknots, with respect to

the physical interactions of the crossing base pairs, the algorithmic accessibilities

where a particular class of pseudoknots is defined as the set of structures that

can be returned by the corresponding prediction method theoretically, and the

conformational characteristics such as the page number of each pseudoknot. It

has been proven that the calculation of page number for arbitrary pseudoknots is

NP-hard.

The results of the classification of RNA pseudoknots show that the pseudoknots

in nature have a relatively low value of complexity, such as the maximal page

number of the 414 pseudoknots is 4. On the other hand, the results of comparing

the prediction of pseudoknots by the 15 methods were concluded as follows.

We voted three methods as the specific winner programs, which have obtained

the optimality in predicting some particular sub-collections of pseudoknots. And

we voted four methods as the global winner programs, which have obtained the

optimality in predicting all the 414 pseudoknots. We recommend the ‘beneficiaries’

of this benchmark to choose the specific winner programs or some others which are

optimal to the certain sub-collection of pseudoknots, as some detailed information

of the given sequence are known. The global winner programs can be effective if

there is no details about the given sequence.

8.2 Perspectives

As shown in Section 6.2.1, the main work of the benchmark is to compare the

prediction performance of the 15 methods, based on the 29 classes of sequences

shown in Table 6.6, which are divided in accordance of the hierarchical classi-

fications of sequences. The optimal programs for individual classes are chosen

respectively according to the predicted evaluation values. Our first perspective

is the consideration of selecting the optimal prediction method based on several

classes concurrently. For example, we have selected McGenus as the best program

both in predicting mRNA with respect to the classification of the functional fami-
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lies of the sequences, and in predicting the eukaryotic molecules with respect to the

classification of the organisms of the sequences. We are wondering: may McGenus

achieve an optimality on predicting the mRNAs which are found in the eukaryotic

molecules particularly, as shown in Table 6.2 in Section 6.1.2. This consideration

is expected for increasing the practicality of the recommended prediction methods,

which are chosen according to their optimality in a set of classes.

Second, as mentioned in Section 7.1.2, there are dozens of pseudoknots of

PseudoBase whose secondary structural information is omitted partially as the

database focuses more on the crossing interaction forming the pseudoknots. The

incomplete details suggest a huge obstacle to compare the predicted structure

with the reference. The extreme cases are the PKB64 and PKB192, with 920

and 1248 nucleotides respectively, whose secondary structural details are almost

unknown except the pseudoknotted base pairs. This bothers the comparison of

prediction outside this pseudoknot, namely the predicted base pairs should be

classified as false positives or not and the non-predicted ones should be classified

as false negatives or not. This dilemma suggests a new comparison of predicting

pseudoknots by the contemporary methods once new and more comprehensive

datasets are available.

Third, as mentioned in Section 5.4, the considered methods in this benchmark

are not exhaustive. We hold an expectancy of a continuous evaluation of the RNA

pseudoknots prediction methods. It relies on two aspects of efforts. The first one

is to carry out the evaluation of prediction methods based on the newly released

datasets, and the second one is based on the emerging prediction methods. In

practice, we expect to provide a platform for the developers of the new methods,

who may expect to upload the performance of their methods on predicting the 414

pseudoknots in this benchmark, and compare with that of the 15 benchmarking

prediction methods.

Fourth, we also want to extend our benchmark as an automated recommender

system, which is able to return the users a prediction method and the correspond-

ing predicted secondary structure, with respect to the sequence and the descriptive

details provided.

Last but not least, we show our explanations on the unsatisfactory preciseness
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of the employed evaluation parameters in Section 4.4.4 and the last part of Section

7.1.2, as they do not consider the crossing interaction in the pseudoknots partic-

ularly. We neither have a more comprehensive conception of a new evaluation

system so far, nor a plausible modification of the definitions of the compatible

false positives, which are tolerated as acceptable prediction by the previous work.

But we hold a strong confidence on the significance of this part of future work.
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Appendix A

The Comparison of Predicting the

Strong Candidates of Orphea
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Table A.1: The Comparison of Orphea’s 6 Best Predictions

Sequence Name Program Result

54_Random_0.179

Slippery Site GUUAAAU

SubSequence UGGAGGCAGACAAAAAUUGGAAGAUCAAGCCCAUCUGCCUUUCAGUUGCCAUAGUCCAAUUU

Orphea ...(((((((...[[[[[[[[............)))))))..............]]]]]]]]

KnotInFrame No suitable slippery sites have been detected.

CyloFold .(((((((((...[[[[[[[[............)))))))))............]]]]]]]]

IPknot-2 .(((((((((......(([[......))..]].)))))))))..((((........))))..

IPknot-3 .(((((((((......(([[......))..]].)))))))))..((((........))))..

pknotsRG-M (((.((((((......(((......))).....))))))....[[[[[))).....]]]]].

pknotsRG-F (((.((((((......(((......))).....))))))....[[[[[))).....]]]]].

DotKnot-P .(((((((((...[[[[[[[[............)))))))))............]]]]]]]]

DotKnot-K .(((((((((...[[[[[[[[............)))))))))............]]]]]]]]

MC-Fold (((((..))))).((((((((((((...(.((((((((...)))))))))))))))))))))

Vsfold5 ..((((((((......(((......))).....))))))))..(((((........))))).

Slippery Site GGGAAAA

SubSequence UACGUGGGCACAGCAGUGAAUCCUCACACCCUGGGCUUUGCCCAAGAAGUGCUCGUGAACCUGAUGAAAGUGUCGGGUGU

3406_Human_0.1332 Orphea ....((((((.(((...........[[[[[[...))).))))))..............................]]]]]]

KnotInFrame ...(((((...[[[[.......)))))....(((((...))))).....]]]]...........................

CyloFold ..(((((((((....((((....))))....(((((...)))))....))))))))).(((((((......)))))))..

IPknot-2 ..(((((((((....((((....))))....(((((...)))))....))))))))).((((((((....))))))))..

Continued On Next Page
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Table A.1 – Continued From Previous Page

Gene Name Program Result

IPknot-3 ..(((((((((....((((....))))....(((((...)))))....))))))))).((((((((....))))))))..

pknotsRG-M ..(((((((((....((((....))))....(((((...)))))....))))))))).(((((((......)))))))..

3406_Human_0.1332 pknotsRG-F ....((((((.....((((....))))....[[[[[..))))))......]]]]]...(((((((......)))))))..

DotKnot-P ..(((((((((....((((....))))....(((((...)))))....))))))))).(((((((......)))))))..

DotKnot-K ..(((((((((....((((....))))....(((((...)))))....))))))))).(((((((......)))))))..

MC-Fold

Vsfold5 .....((((((....((((....))))....((((.....))))....))))))....(((((((......)))))))..

57_Random_0.131

Slippery Site GUUUUUU

SubSequence GGAGGUCAGGGGUGUCAUUCUUGGGGUACCCCCCCAAAUAUUUGUCCGUAUACUAUCAUUAUGCUCAACAAGGCCGAG

Orphea ........((((((((...[[[[[)))))))).........................................]]]]]

KnotInFrame No suitable slippery sites have been detected.

CyloFold ...((((.((((((......[[[[[.))))))]]]]]..........(((((.......))))).......))))...

IPknot-2 ...((((..[[[[[......((((((]]]]]))))))..........((((.........)))).......))))...

IPknot-3 ...((((..[[[[[......((((((]]]]]))))))..........((((.........)))).......))))...

pknotsRG-M ........((((((((...[[[[[)))))))).........((((..(((((.......)))))...))))..]]]]]

pknotsRG-F ........((((((((...[[[[[)))))))).........((((..(((((.......)))))...))))..]]]]]

DotKnot-P ........((((((((...[[[[[)))))))).........((((..(((((.......)))))...))))..]]]]]

DotKnot-K (((.....[[[[[....)))(((((..]]]]])))))....((((..(((((.......)))))...)))).......

MC-Fold (((((((.[[[[[)))))))(((((((...)))))))((((((((((((((((...))))))))))))))))]]]]].

Vsfold5 ...((((.(((......))).(((((.....)))))......(((..(((((.......)))))...))).))))...

Continued On Next Page
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Table A.1 – Continued From Previous Page

Gene Name Program Result

4335_Human_0.0881

Slippery Site GGGAAAC

SubSequence GAGGCAGGGGCUGGGGCCAUGAGCCAUCCCAAGCCCUGGGAAACAUAGGCUCA

Orphea .......(((((.(((...[[[[[[..))).)))))...........]]]]]]

KnotInFrame ........((((.[[[[....)))).......]]]].................

CyloFold ..(((.[[[[[[...))).((((((.((((.]]]]]]))))......))))))

IPknot-2 ......(((((((((............))).))))))................

IPknot-3 ......(((((((((............))).))))))................

pknotsRG-M ..(((...(((....)))....))).(((((.[[[.)))))......]]]...

pknotsRG-F ..(((...(((....)))....))).(((((.[[[.)))))......]]]...

DotKnot-P ..(((...[[[[...)))...]]]].(((.....[[[[)))....]]]]....

DotKnot-K ..(((.[[[[[[...)))........((((.]]]]]]))))............

MC-Fold ((((((((((((((((..(((...))))))))))))(((...)))))))))).

Vsfold5 ........((((.........)))).(((((.[[[.)))))......]]]...

Slippery Site GGGAAAC

SubSequence UCCCCGGCCCCGCUGUAGAGGGACCUUCAGCGACCGGGCCAGAAAUAAUAAGGUCCC

Orphea .....(((((.........[[[[[[[[........))))).........]]]]]]]]

1679_Human_0.0592 KnotInFrame No suitable slippery sites have been detected.

CyloFold .....((((([[[[[....{{{{{{{{]]]]]...))))).........}}}}}}}}

IPknot-2 .....((((((((((.((......)).)))))...))))).................

IPknot-3 .....((((((((((.((......)).)))))...))))).................

Continued On Next Page
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Table A.1 – Continued From Previous Page

Gene Name Program Result

pknotsRG-M .....((((((((((..(((....))))))))...))))).................

pknotsRG-F .....(((((.((((..(((....)))))))[[[[)))))...........]]]]..

1679_Human_0.0592 DotKnot-P .....(((((.........[[[[[[[[........))))).........]]]]]]]]

DotKnot-K .....(((((.........[[[[[[[[........))))).........]]]]]]]]

MC-Fold ((((((((((((((((((.[[[[[[[[))))))))))))))))))....]]]]]]]]

Vsfold5 ..(((((...(((((....[[[[[[[[))))).)))))...........]]]]]]]]

4339_Human_0.0558

Slippery Site GGGAAAC

SubSequence GGGAACUGGGCUUGGGACAAGAGCCAUCCCAAGUCCAAGGCCAAGUAGGCUC

Orphea ......(((((((((((...[[[[[.)))))))))))..........]]]]]

KnotInFrame ........(((((.[[[[..))))).......]]]]................

CyloFold ......(((((((((((...[[[[[.)))))))))))..........]]]]]

IPknot-2 ......(((((((((((.........))))))))))).((((.....)))).

IPknot-3 ......(((((((((((.........))))))))))).((((.....)))).

pknotsRG-M ......(((((((((((...[[[[[.)))))))))))..........]]]]]

pknotsRG-F ......(((((((((((...[[[[[.)))))))))))..........]]]]]

DotKnot-P ......(((((((((((...[[[[[.)))))))))))..........]]]]]

DotKnot-K ......(((((((((((...[[[[[.)))))))))))..........]]]]]

MC-Fold (((((((((((((((((...[[[[[[)))))))))))))))))...]]]]]]

Vsfold5 ......(((((((((((.........))))))))))).((((.....)))).
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Table A.2: The General Comparison of 49 predictions of Or-

phea.

Sequence

Name

KnotIn

Frame

Cylo

Fold

IPknot

-N

IPknot

-P

pknots

RG-M

pknots

RG-F

pknots

RG-L

DotKnot

-P

DotKnot

-K
MCFold

Kine

Fold

Prob

Knot
Vsfold5

Scores

(YES/13)

Bracket1 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes No No Yes

54_Random

_0.179
no yes yes yes yes yes yes yes yes no yes no no 9/13

3406_Human

_0.1332
yes no no no no yes yes no no no no no 3/12

57_Random

_0.131
no yes yes yes yes yes yes yes yes yes yes no no 10/13

4335_Human

_0.0881
yes yes no no yes yes yes yes yes no yes yes yes 10/13

1679_Human

_0.0592
no yes no no no yes yes yes yes yes yes no yes 8/13

4339_Human

_0.0558
yes yes no no yes yes yes yes yes yes no no no 8/13

51_Yeast

_0.0325
no yes no no no yes yes no no no no no yes 4/13

Continued On Next Page
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Table A.2 – Continued From Previous Page

Sequence

Name

KnotIn

Frame

Cylo

Fold

IPknot

-N

IPknot

-P

pknots

RG-M

pknots

RG-F

pknots

RG-L

DotKnot

-P

DotKnot

-K
MCFold

Kine

Fold

Prob

Knot
Vsfold5 Scores

35_Random

_0.0248
no no yes yes no yes yes yes yes no no no no 6/13

4_Yeast

_0.0214(54)
yes yes yes yes yes yes yes yes yes yes yes no no 11/13

86_Yeast

_0.0172
yes yes no no no yes yes yes yes no yes no yes 8/13

1455_Human

_0.0156
no yes no no yes yes yes yes yes yes yes no no 8/13

6_Random

_0.0155
no yes no no yes yes yes yes yes yes yes no yes 9/13

87_Random

_0.0143
yes yes yes yes no yes yes no no no no no yes 7/13

27_Random

_0.0133
yes yes no no no yes yes yes yes yes yes no no 8/13

48_Random

_0.0127
no no no no no yes yes no no no no no no 2/13

226_Human

_0.0105
no no yes yes yes yes yes yes yes yes yes no yes 10/13

Continued On Next Page
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Table A.2 – Continued From Previous Page

Sequence

Name

KnotIn

Frame

Cylo

Fold

IPknot

-N

IPknot

-P

pknots

RG-M

pknots

RG-F

pknots

RG-L

DotKnot

-P

DotKnot

-K
MCFold

Kine

Fold

Prob

Knot
Vsfold5 Scores

19_Yeast

_0.0102
no yes no no no yes yes yes yes yes no no no 6/13

263_Human

_0.0096(54)
yes no no no no yes yes yes yes no no no no 5/13

4395_Human

_0.009
no no no no yes yes yes yes yes no yes no yes 7/13

4287_Human

_0.0088
no yes yes yes yes yes yes yes yes no yes no yes 10/13

1539_Human

_0.0088
yes yes no no yes yes yes yes yes no no no yes 8/13

3280_Human

_0.0083
yes yes yes yes no yes yes yes yes no yes no yes 10/13

144_Yeast

_0.0077
no no no no no yes yes no no no no no no 2/13

55_Yeast

_0.0071
yes yes yes yes yes yes yes yes yes yes yes yes no 12/13

155_Yeast

_0.0065
no yes yes yes yes yes yes yes yes yes yes yes no 11/13
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Table A.2 – Continued From Previous Page

Sequence

Name

KnotIn

Frame

Cylo

Fold

IPknot

-N

IPknot

-P

pknots

RG-M

pknots

RG-F

pknots

RG-L

DotKnot

-P

DotKnot

-K
MCFold

Kine

Fold

Prob

Knot
Vsfold5 Scores

161_Yeast

_0.0064
no no no no no yes yes no no no yes no no 3/13

2487_Human

_0.0063
no yes yes yes no yes yes yes yes no yes no no 8/13

84_Random

_0.0062
yes yes yes yes yes yes yes yes yes no yes yes yes 12/13

29_Yeast

_0.0051
no yes yes yes yes yes yes yes yes yes yes no yes 11/13

77_Random

_0.0049
no yes yes yes no yes yes no no yes yes yes yes 9/13

2314_Human

_0.0047
no yes yes yes no yes yes yes yes no yes no no 8/13

3_Random

_0.0045
no yes no no no yes yes yes yes yes yes no yes 8/13

33_Random

_0.0044
yes yes no no yes yes yes yes yes yes yes yes yes 11/13

37_Random

_0.0039(37)
no yes yes yes yes yes yes yes yes no yes no yes 12/13
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Sequence

Name

KnotIn

Frame

Cylo

Fold

IPknot

-N

IPknot

-P

pknots

RG-M

pknots

RG-F

pknots

RG-L

DotKnot

-P

DotKnot

-K
MCFold

Kine

Fold

Prob

Knot
Vsfold5 Scores

141_Yeast

_0.0034
no yes no no yes yes yes yes yes yes no no no 7/13

65_Yeast

_0.0032(37)
no yes yes yes yes yes yes yes yes no yes yes no 11/13

105_Yeast

_0.0029
no no no no yes yes yes yes yes no no no no 5/13

52_Random

_0.0028
no yes no no no yes yes yes yes no yes no no 6/13

102_Yeast

_0.0026
no yes no no yes yes yes yes yes yes yes no yes 9/13

1_Yeast

_0.0022
yes no yes yes no yes yes yes no no no no no 6/13

51_Random

_0.0021
no yes yes yes yes yes yes yes yes no no yes no 9/13

90_Yeast

_0.0021
yes yes no no no yes yes yes yes no yes no no 7/13

3045_Human

_0.002
no yes no no no yes yes no no no no no yes 4/13
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Sequence

Name

KnotIn

Frame

Cylo

Fold

IPknot

-N

IPknot

-P

pknots

RG-M

pknots

RG-F

pknots

RG-L

DotKnot

-P

DotKnot

-K
MCFold

Kine

Fold

Prob

Knot
Vsfold5 Scores

2811_Human

_0.0018
no yes yes yes yes yes yes no no yes yes yes yes 10/13

15_Random

_0.0018
no yes no no yes yes yes yes yes yes yes no yes 9/13

871_Human

_0.0017
no yes yes yes yes yes yes yes yes no yes no no 9/13

1951_Human

_0.0013
no yes yes yes no yes yes yes yes no yes no no 8/13

643_Human

_0.0013
no yes no no yes yes yes yes yes no no no no 6/13

89_Yeast

_0.0009(41)
no no no no no yes yes no no yes no no no 3/13

Ratio

(yes/49)
17/49 38/49 22/49 22/49 26/49 49/49 49/49 39/49 38/49 21/48 32/49 9/49 21/49 383/636

Ratio_Yeast

(yes/16)
6/16 11/16 6/16 6/16 8/16 16/16 16/16 12/16 11/16 8/16 9/16 3/16 4/16 116/208

Ratio_Random

(yes/15)
5/15 13/15 8/15 8/15 8/15 15/15 15/15 12/15 12/15 8/15 11/15 4/15 8/15 127/195
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Sequence

Name

KnotIn

Frame

Cylo

Fold

IPknot

-N

IPknot

-P

pknots

RG-M

pknots

RG-F

pknots

RG-L

DotKnot

-P

DotKnot

-K
MCFold

Kine

Fold

Prob

Knot
Vsfold5 Scores

Ratio_Human

(yes/18)
6/18 14/18 8/18 8/18 10/18 18/18 18/18 15/18 15/18 5/17 12/18 2/18 9/18 140/233

1Whether the particular method has an editable output.
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Table B.1: The Comparison Based on the 17 Learning Signals.

Gene Name Program Result

Sequence UUUAAACUGCUAGCCACCUCUGGUCUCGACCGCUGUACUAGAGGUGGGCUGACGGUGUYUGGCGAUGCGGUCA

Slippery Site UUUAAAC

LDV-C SubSequence UGCUAGCCACCUCUGGUCUCGACCGCUGUACUAGAGGUGGGCUGACGGUGUYUGGCGAUGCGGUCA

(PKB217) PseudoBase ......(((((((((((...[[[[[[...)))))))))))...................]]]]]].

Orphea ......(((((((((((......[[[[[[)))))))))))...........]]]]]].........

KnotInFrame ......(((((((((((......[[[[[[)))))))))))....]]]]]]................

Sequence UUUAAACUGCUAGCCGCCAGCGGCUUGACCCGCUGUGGUCGCGGCGGCUUGGUUGUUACUGAGACAGCGGUA

PRRSV- Slippery Site UUUAAAC

16244B SubSequence UGCUAGCCGCCAGCGGCUUGACCCGCUGUGGUCGCGGCGGCUUGGUUGUUACUGAGACAGCGGUA

(PKB218) PseudoBase .....(((((((((((((....[[[[[[[))))))))))))...............]]]]]]]..

Orphea ....(((((((.((((((....[[[[[[[)))))))))))))..............]]]]]]]..

KnotInFrame ....(((((((.(((((.......))))).[[[..))))))).(((....)))..]]].......

Sequence UUUAAACUGUUAGCCGCCAGCGGCUUGACCCGCUGUGGCCGCGGCGGCCUAGUUGUGACUGAAACGGCGGU

PRRSV Slippery Site UUUAAAC

-LV SubSequence UGUUAGCCGCCAGCGGCUUGACCCGCUGUGGCCGCGGCGGCCUAGUUGUGACUGAAACGGCGGU

(PKB233) PseudoBase .....(((((((((((((....[[[[[[[))))))))))))...............]]]]]]].

Orphea .....((((((.((((((....[[[[[[[))))))))))))...............]]]]]]].

KnotInFrame ....(((((.[[[)))))......((((.(((((...))))))))).....]]]..........

Sequence GGGAAAUGGACUGAGCGGCGCCGACCGCCAAACAACCGGCA

Continued On Next Page
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Table B.1 – Continued From Previous Page

Gene Name Program Result

Slippery Site GGGAAAU

BChV SubSequence GGACUGAGCGGCGCCGACCGCCAAACAACCGGCA

(PKB240) PseudoBase .......((((.[[[[.))))........]]]].

Orphea

KnotInFrame No suitable slippery sites have been detected.

Sequence
UUUAAACUGUUGAGAGGUGCCUGGAGCGCCUGCAGGCAUCUCUGUUUUCAAAAUGGCGCAUACCAGUCUUCAAGGUCAAAACAUUAUAUUGAU

UUGGCAACUGAGUAUAAUGCAGGCA

Slippery Site UUUAAAC

BEV SubSequence
UGUUGAGAGGUGCCUGGAGCGCCUGCAGGCAUCUCUGUUUUCAAAAUGGCGCAUACCAGUCUUCAAGGUCAAAACAUUAUAUUGAUUUGGCAA

CUGAGUAUAAUGCAGGCA

(PKB128) PseudoBase
.....(((((((((((....[[[[[))))))))))).........................................................

............]]]]].

Orphea
.....(((((((((((..[[[[[..)))))))))))...........]]]]].........................................

..................

KnotInFrame
.....(((((((((((..[[[[[..)))))))))))...........]]]]].........................................

..................

Sequence AAAAAACUAAUAGAGGGGGGACUUAGCGCCCCCCAAACCGUAACCCC

Slippery Site AAAAAAC

BLV SubSequence UAAUAGAGGGGGGACUUAGCGCCCCCCAAACCGUAACCCC

(PKB1) PseudoBase .......((((((.....[[[))))))....]]]......

Continued On Next Page
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Table B.1 – Continued From Previous Page

Gene Name Program Result

Orphea .......((((((......[[))))))....]].......

KnotInFrame .......((((((..[[[...))))))......]]]....

Sequence GGGAAACGGAGUGCGCGGCACCGUCCGCGGAACAAACGGAGAAGGCAGCU

Slippery Site GGGAAAC

BWYV SubSequence GGAGUGCGCGGCACCGUCCGCGGAACAAACGGAGAAGGCAGCU

(PKB2) PseudoBase ......(((((..[[[[)))))......]]]]...........

Orphea ......(((((..[[[[)))))......]]]]...........

KnotInFrame ......(((((..[[[[)))))......]]]]...........

Sequence GGGAAACGGGAAGGCGGCGGCGUCCGCCGUAACAAACGC

BYDV- Slippery Site GGGAAAC

NY-RPV SubSequence GGGAAGGCGGCGGCGUCCGCCGUAACAAACGC

(PKB46) PseudoBase .....(((((..[[[[))))).......]]]]

Orphea .......(((((([[[))))))......]]].

KnotInFrame No suitable slippery sites have been detected.

Sequence GGGAAACGGGCAGGCGGCGGCGACCGCCGAAACAACCGC

Slippery Site GGGAAAC

CABYV SubSequence GGGCAGGCGGCGGCGACCGCCGAAACAACCGC

(PKB44) PseudoBase .....(((((..[[[.)))))........]]]

Orphea .......(((((([[.)))))).......]].

KnotInFrame No suitable slippery sites have been detected.

Continued On Next Page
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Table B.1 – Continued From Previous Page

Gene Name Program Result

Sequence AAAAAACGGGAAGCAAGGGGCUCAAGGGAGGCCCCAGAAACAAACUUUCCCGAU

Slippery Site AAAAAAC

EIAV SubSequence GGGAAGCAAGGGGCUCAAGGGAGGCCCCAGAAACAAACUUUCCCGAU

(PKB3) PseudoBase .........((((((...[[[[))))))............]]]]...

Orphea .........((((((...[[[[))))))............]]]]...

KnotInFrame No suitable slippery sites have been detected.

Sequence GGGAAACUGGAAGGCGGGGCGAGCUGCAGCCCCAGUGAAUCAAAUGCAGC

Slippery Site GGGAAAC

FIV SubSequence UGGAAGGCGGGGCGAGCUGCAGCCCCAGUGAAUCAAAUGCAGC

(PKB4) PseudoBase ........(((((..[[[[[[)))))...........]]]]]]

Orphea ........(((((..[[[[[[)))))...........]]]]]]

KnotInFrame No suitable slippery sites have been detected.

Sequence UUUAAACGGGUACGGGGUAGCAGUGAGGCUCGGCUGAUACCCCUUGCUAGUGGAUGUGAUCCUGAUGUUGUAAAGCGAGCCUU

Slippery Site UUUAAAC

IBV SubSequence GGGUACGGGGUAGCAGUGAGGCUCGGCUGAUACCCCUUGCUAGUGGAUGUGAUCCUGAUGUUGUAAAGCGAGCCUU

(PKB106) PseudoBase ......(((((((((((.[[[[[[[)))))))))))................................]]]]]]].

Orphea ......((((((.((((.[[[[[[[)))).))))))................................]]]]]]].

KnotInFrame .....((((.....[[[[[[[)))).........]]]]]]]...................................

Sequence AAAAAACUUGUAAAGGGGCAGUCCCCUAGCCCCGCUCAAAAGGGGGAUG

Continued On Next Page
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Table B.1 – Continued From Previous Page

Gene Name Program Result

MMTV_ Slippery Site AAAAAAC

gag/pro SubSequence UUGUAAAGGGGCAGUCCCCUAGCCCCGCUCAAAAGGGGGAUG

(PKB80) PseudoBase .......(((((.[[[[[[[.)))))........]]]]]]].

Orphea .......(((((..[[[[[[.)))))........]]]]]]..

KnotInFrame .......(((((...[[[[[.))))).......]]]]]....

Sequence GGGAAACGGAUUAUUCCGGUCGACUCCGGAGAAACAAAGUC

Slippery Site GGGAAAC

PEMV SubSequence GGAUUAUUCCGGUCGACUCCGGAGAAACAAAGUC

(PKB45) PseudoBase ......((((((..[[[[))))))......]]]]

Orphea 0 Pseudoknot found.

KnotInFrame No suitable slippery sites have been detected.

Sequence UUUAAAUGGGCAAGCGGCACCGUCCGCCAAAACAAACGG

Slippery Site UUUAAAU

PLRV-S SubSequence GGGCAAGCGGCACCGUCCGCCAAAACAAACGG

(PKB43) PseudoBase ......((((..[[[[))))........]]]]

Orphea ......((((..[[[[))))........]]]]

KnotInFrame No suitable slippery sites have been detected.

Sequence UUUAAAUGGGCGAGCGGCACCGCCCGCCAAAACAAACGG

Slippery Site UUUAAAU

PLRV-W SubSequence GGGCGAGCGGCACCGCCCGCCAAAACAAACGG

Continued On Next Page

202



Table B.1 – Continued From Previous Page

Gene Name Program Result

(PKB42) PseudoBase ......((((..[[[.)))).........]]]

Orphea 0 Pseudoknot found.

KnotInFrame No suitable slippery sites have been detected.

Sequence GGGAAACGGACUGAGGGGCCAGCCCCAGGCCCCGAAACAAGCUUAUGGGGCG

SRV1_ Slippery Site GGGAAAC

gag/pro SubSequence GGACUGAGGGGCCAGCCCCAGGCCCCGAAACAAGCUUAUGGGGCG

(PKB107) PseudoBase .......((((((.[[[[[[))))))............]]]]]].

Orphea .......((((((.[[[[[[))))))............]]]]]].

KnotInFrame .......(((((.[[[.....))))).......]]].........203



Table B.2: The Comparison Based on the 17 Testing Signals.

Gene Name Program Result

Sequence UUUAAACUGGUGGGGCAGUGUCUAGGAUUGACGUUAGACACUGCUUUUUGCCCGUUUCAAACAGGUGAAUACAAACCGUCAU

Slippery Site UUUAAAC

WBV SubSequence UGGUGGGGCAGUGUCUAGGAUUGACGUUAGACACUGCUUUUUGCCCGUUUCAAACAGGUGAAUACAAACCGUCAU

(PKB253) PseudoBase ....((((((((((((((...[[[[[)))))))))))))).............................]]]]].

Orphea .......(((((((((((...[[[[[)))))))))))................................]]]]].

KnotInFrame ....((((((((((((((....[[[[)))))))))))))).....]]]]..........................

Sequence UUUAAACGGGUUUGCGGUGUAAGUGCAGCCCGUCUUACACCGUGCGGCACAGGCACUAGUACUGAUGUCGUCUACAGGGCUU

Slippery Site UUUAAAC

SARS-CoV SubSequence GGGUUUGCGGUGUAAGUGCAGCCCGUCUUACACCGUGCGGCACAGGCACUAGUACUGAUGUCGUCUACAGGGCUU

(PKB254) PseudoBase .....(((((((((((...[[[[[[[)))))))))))((((((((.........))).)))))...]].]]]]].

Orphea .......(((((((((...[[[[[..)))))))))..................................]]]]].

KnotInFrame .((((.[[[[[[[[[[...))))...]]]]]]]]]].......................................

Sequence GGGAAACUCCCCGGCCCCGCUGUAGGGGGACCUUCAGCGACAGGGCCAGAACGAAUAAGGUCCCCA

Slippery Site GGGAAAC

Mm_Edr SubSequence UCCCCGGCCCCGCUGUAGGGGGACCUUCAGCGACAGGGCCAGAACGAAUAAGGUCCCCA

(PKB257) PseudoBase .....((((((((((...[[[[[[[[[)))))...))))).........]]]]]]]]].

Orphea 0 PK found.

KnotInFrame .((((.....[[[[[..))))......]]]]]...........................

Sequence GGGAAACGGGAACUGGGCUUGGGACAAGAGCCAUCCCAAGUCCAAGGCCAAGUAGGCUCG

Continued On Next Page
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Table B.2 – Continued From Previous Page

Gene Name Program Result

Slippery Site GGGAAAC

Hs_Ma3 SubSequence GGGAACUGGGCUUGGGACAAGAGCCAUCCCAAGUCCAAGGCCAAGUAGGCUCG

(PKB258) PseudoBase ......(((((((((((...[[[[[.)))))))))))..........]]]]].

Orphea ......(((((((((((...[[[[[.)))))))))))..........]]]]].

KnotInFrame ........(((((.[[[[..))))).......]]]].................

Sequence GGGAAACAACAGGAGGGGGCCACGUGUGGUGCCGUCCGCGCCCCCUAUGUUGUAACAGAAGCACCACC

Slippery Site GGGAAAC

VMV SubSequence AACAGGAGGGGGCCACGUGUGGUGCCGUCCGCGCCCCCUAUGUUGUAACAGAAGCACCACC

(PKB280) PseudoBase ......(((((((.....[[[[[[[.......)))))))..............]]]]]]].

Orphea ......(((((((.....[[[[[[[.......)))))))..............]]]]]]].

KnotInFrame ......(((((((......[[[[[[.......))))))).(((....)))...]]]]]]..

Sequence GGGAAACGAGCCAAGUGGCGCCGACCACUUAAAAACACCGGAA

Slippery Site GGGAAAC

ScYLV SubSequence GAGCCAAGUGGCGCCGACCACUUAAAAACACCGGAA

(PKB281) PseudoBase ......(((((..[[[.))))).........]]]..

Orphea .....((((((..[[[.))))))........]]]..

KnotInFrame No suitable slippery sites have been detected.

Sequence UCCUUUUCAGCUGGGCCUUCUGGUCGUGUUCUUGGCCACCCAGGAGGUCCUUCGCAAGAGGUGGACAGCCAAGAU

Slippery Site UCCUUUU

KUNV SubSequence CAGCUGGGCCUUCUGGUCGUGUUCUUGGCCACCCAGGAGGUCCUUCGCAAGAGGUGGACAGCCAAGAU

Continued On Next Page
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Gene Name Program Result

(PKB346) PseudoBase .....(((((((((((......[[[[[[[...))))))))))).((....))........]]]]]]].

Orphea 0 PK found.

KnotInFrame No suitable slippery sites have been detected.

Sequence CCCUUUUCAGUUGGGCCUUCUGGUCGUGUUCUUGGCCACCCAGGAGGUCCUUCGCAAGAGGUGGACAGCCAAGAU

Slippery Site CCCUUUU

WNV SubSequence CAGUUGGGCCUUCUGGUCGUGUUCUUGGCCACCCAGGAGGUCCUUCGCAAGAGGUGGACAGCCAAGAU

(PKB347) PseudoBase .....(((((((((((......[[[[[[[...))))))))))).((....))........]]]]]]].

Orphea .....(((((((((((......[[[[[[[...))))))))))).................]]]]]]].

KnotInFrame .....(((((((((((.((......)).[[[[)))))))))))..........]]]]...........

Sequence CCCUUUUCAGCUGGGCCUUCUGGUGAUGUUUCUGGCCACCCAGGAGGUCCUUCGCAAGAGGUGGACGGCCAGAUUGA

Slippery Site CCCUUUU

JEV SubSequence CAGCUGGGCCUUCUGGUGAUGUUUCUGGCCACCCAGGAGGUCCUUCGCAAGAGGUGGACGGCCAGAUUGA

(PKB348) PseudoBase .....(((((((((((.......[[[[[[[..))))))))))).((....)).......]]]]]]]....

Orphea .....(((((((((((.......[[[[[[[..)))))))))))................]]]]]]]....

KnotInFrame .....(((((((((((.((....))...[[[[)))))))))))..........]]]].............

Sequence UCCUUUUCAGUUAGGCCUUCUGGUGAUGUUUCUGGCCACCCAGGAGGUCUUGAGGAAGAGGUGGACGGCCAGACUUACUC

Slippery Site UCCUUUU

MVEV SubSequence CAGUUAGGCCUUCUGGUGAUGUUUCUGGCCACCCAGGAGGUCUUGAGGAAGAGGUGGACGGCCAGACUUACUC

(PKB349) PseudoBase .....(((((((((((.......[[[[[[[..)))))))))))................]]]]]]].......

Orphea 0 PK found.

Continued On Next Page
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Gene Name Program Result

KnotInFrame No suitable slippery sites have been detected.

Sequence CCCUUUUCAGCUGGGCCUCUUGGUAGUUUUCCUGGCCACCCAGGAGGUCUUGAGGAAGAGGUGGACGGCCAGAAUGA

Slippery Site CCCUUUU

ALFV SubSequence CAGCUGGGCCUCUUGGUAGUUUUCCUGGCCACCCAGGAGGUCUUGAGGAAGAGGUGGACGGCCAGAAUGA

(PKB350) PseudoBase .....(((((((((((........[[[[[[..)))))))))))................]]]]]].....

Orphea ......((((((((((........[[[[[[..)))))))))).................]]]]]].....

KnotInFrame ..((((((.[[[[[[[.......))))))...]]]]]]]...............................

Sequence AUCCUUUUCAGUUGGGCCUUCUGGUGAUGUUUCUGGCCACCCAGGAGGUCCUGAGGAAGAGGUGGACGGCCAGAUUGACU

Slippery Site UCCUUUU

USUV SubSequence CAGUUGGGCCUUCUGGUGAUGUUUCUGGCCACCCAGGAGGUCCUGAGGAAGAGGUGGACGGCCAGAUUGACU

(PKB351) PseudoBase .....(((((((((((.......[[[[[[[..)))))))))))................]]]]]]]......

Orphea 0 PK found.

KnotInFrame No suitable slippery sites have been detected.

Sequence UUCUUUUUUAGUGGCAGUAAGCCUGGGAAUGGGGGCGACCCAGGCGUAUGAACAUAGUGUAACGCUCCCC

Slippery Site UUUUUUA

MIDV SubSequence GUGGCAGUAAGCCUGGGAAUGGGGGCGACCCAGGCGUAUGAACAUAGUGUAACGCUCCCC

(PKB352) PseudoBase ......(((.(((((((...[[[[[[[.))))))).))).............]]]]]]].

Orphea 0 PK found.

KnotInFrame ..........(((((((...[[[[[[[.)))))))......(((...)))..]]]]]]].

Sequence UUUGUUUUUUAGCUGUGCUGGGUGCGAGUGUGGCAGCGGCUCGUGCCUACGAACACACCGCUGUCAUGCC

Continued On Next Page

207



Table B.2 – Continued From Previous Page

Gene Name Program Result

Slippery Site UUUUUUA

SESV SubSequence GCUGUGCUGGGUGCGAGUGUGGCAGCGGCUCGUGCCUACGAACACACCGCUGUCAUGCC

(PKB353) PseudoBase .......(((((((((((.[[[[[[[[))))))))))).........]]]]]]]]....

Orphea .......(((((((((((.[[[[[[[[))))))))))).........]]]]]]]]....

KnotInFrame .((((..[[[[[[[[[[[...))))..]]]]]]]]]]].....................

Sequence
GUUAAACUGAGAGCGCCCCACAUCUUUCCCGGCGAUGUGGGGCGUCGGACCUUUGCUGACUCUAAAGACAAGGGUUUCGUGGCUCUACACAGU

CGCACAAUGUUUUUAGCUGCCCGGGACUU

Slippery Site GUUAAAC

EAV SubSequence
UGAGAGCGCCCCACAUCUUUCCCGGCGAUGUGGGGCGUCGGACCUUUGCUGACUCUAAAGACAAGGGUUUCGUGGCUCUACACAGUCGCACAA

UGUUUUUAGCUGCCCGGGACUU

(PKB127) PseudoBase
......(((((((((((..[[[[[[.)))))))))))........................................................

.............]]]]]]...

Orphea
......(((((((((((...[[[...)))))))))))...........................]]]..........................

......................

KnotInFrame No suitable slippery sites have been detected.

Sequence
AAAUUUAUAGGGAGGGCCACUGUUCUCACUGUUGCGCUACAUCUGGCUAUUCCGCUCAAAUGGAAGCCAGACCACACGCCUGUGUGGAUUGAC

CAGUGGCCCCUCCCUGAAGGUAAACUUGUAGCGCU

Slippery Site AAAUUUA

RSV SubSequence
UAGGGAGGGCCACUGUUCUCACUGUUGCGCUACAUCUGGCUAUUCCGCUCAAAUGGAAGCCAGACCACACGCCUGUGUGGAUUGACCAGUGGC

CCCUCCCUGAAGGUAAACUUGUAGCGCU
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Gene Name Program Result

(PKB174) PseudoBase
.((((((((((((((...........[[[[[[[[((((((..(((((......)))))))))))((((((....))))))......)))))))

)).)))))...........]]]]]]]].

Orphea 0 PK found.

KnotInFrame
......(((((((((............[[[[[[[(((((((..((((......)))))))))))((((((....))))))......)))))))

))..((.....))......]]]]]]]..

Sequence

UUUAAACGAGUCCGGGGCUCUAGUGCCGCUCGACUAGAGCCCUGUAAUGGUACAGACAUAGAUUACUGUGUCCGUGCAUUUGACGUUUACAAU

AAAGAUGCGUCUUUUAUCGGAAAAAAUCUGAAGUCCAAUUGUGUGCGCUUCAAGAAUGUAGAUAAGGAUGACGCGUUCUAUAUUGUUAAACGU

UGCAUUAAGUCAGUUAUGGACCACGAGCAGUCCAUGUA

HCV_ Slippery Site UUUAAAC

229E SubSequence

GAGUCCGGGGCUCUAGUGCCGCUCGACUAGAGCCCUGUAAUGGUACAGACAUAGAUUACUGUGUCCGUGCAUUUGACGUUUACAAUAAAGAUG

CGUCUUUUAUCGGAAAAAAUCUGAAGUCCAAUUGUGUGCGCUUCAAGAAUGUAGAUAAGGAUGACGCGUUCUAUAUUGUUAAACGUUGCAUUA

AGUCAGUUAUGGACCACGAGCAGUCCAUGUA

(PKB171) PseudoBase

.....((((((((((((...[[[[[))))))))))))........................................................

.............................................................................................

.......(((((((..]]]]].)))))))..

Orphea

.....((((((((((((.[[[....))))))))))))...]]]..................................................

.............................................................................................

...............................
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KnotInFrame

.....((((((((((((.[[[....)))))))))))).....((((.(((((((....))))))).))))....(((((.............)

))))......]]]................................................................................

...............................
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Table C.1: The Classification of the 414 sequences in the Bench-

mark

PKBNo. Length Pseudoknot Type Pseudobase Pattern Page No. L&P class D&P class A&U class J&C class R&E class

PKB1 47 simple H-type ABAB 2 Y Y Y Y Y

PKB2 50 simple H-type ABAB 2 Y Y Y Y Y

PKB3 54 simple H-type ABAB 2 Y Y Y Y Y

PKB4 50 simple H-type ABAB 2 Y Y Y Y Y

PKB5 41 simple H-type ABAB 2 Y Y Y Y Y

PKB6 42 simple H-type ABAB 2 Y Y Y Y Y

PKB7 42 simple H-type ABAB 2 Y Y Y Y Y

PKB8 40 simple H-type ABAB 2 Y Y Y Y Y

PKB9 42 simple H-type ABAB 2 Y Y Y Y Y

PKB10 40 simple H-type ABAB 2 Y Y Y Y Y

PKB11 42 simple H-type ABAB 2 Y Y Y Y Y

PKB12 40 simple H-type ABAB 2 Y Y Y Y Y

PKB13 42 simple H-type ABAB 2 Y Y Y Y Y

PKB14 40 simple H-type ABAB 2 Y Y Y Y Y

PKB15 41 simple H-type ABAB 2 Y Y Y Y Y

PKB16 42 simple H-type ABAB 2 Y Y Y Y Y

PKB17 42 simple H-type ABAB 2 Y Y Y Y Y
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PKBNo. Length Pseudoknot Type Pseudobase Pattern Page No. L&P class D&P class A&U class J&C class R&E class

PKB18 38 simple H-type ABAB 2 Y Y Y Y Y

PKB19 38 simple H-type ABAB 2 Y Y Y Y Y

PKB20 38 simple H-type ABAB 2 Y Y Y Y Y

PKB21 38 simple H-type ABAB 2 Y Y Y Y Y

PKB22 39 simple H-type ABAB 2 Y Y Y Y Y

PKB23 38 simple H-type ABAB 2 Y Y Y Y Y

PKB24 39 simple H-type ABAB 2 Y Y Y Y Y

PKB25 37 simple H-type ABAB 2 Y Y Y Y Y

PKB26 37 simple H-type ABAB 2 Y Y Y Y Y

PKB27 38 simple H-type ABAB 2 Y Y Y Y Y

PKB28 37 simple H-type ABAB 2 Y Y Y Y Y

PKB29 37 simple H-type ABAB 2 Y Y Y Y Y

PKB30 41 simple H-type ABAB 2 Y Y Y Y Y

PKB31 40 simple H-type ABAB 2 Y Y Y Y Y

PKB32 38 simple H-type ABAB 2 Y Y Y Y Y

PKB33 40 simple H-type ABAB 2 Y Y Y Y Y

PKB34 40 simple H-type ABAB 2 Y Y Y Y Y

PKB35 40 simple H-type ABAB 2 Y Y Y Y Y

PKB36 41 simple H-type ABAB 2 Y Y Y Y Y
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PKBNo. Length Pseudoknot Type Pseudobase Pattern Page No. L&P class D&P class A&U class J&C class R&E class

PKB37 41 simple H-type ABAB 2 Y Y Y Y Y

PKB38 41 simple H-type ABAB 2 Y Y Y Y Y

PKB39 41 simple H-type ABAB 2 Y Y Y Y Y

PKB40 40 simple H-type ABAB 2 Y Y Y Y Y

PKB41 41 simple H-type ABAB 2 Y Y Y Y Y

PKB42 39 simple H-type ABAB 2 Y Y Y Y Y

PKB43 39 simple H-type ABAB 2 Y Y Y Y Y

PKB44 39 simple H-type ABAB 2 Y Y Y Y Y

PKB45 41 simple H-type ABAB 2 Y Y Y Y Y

PKB46 39 simple H-type ABAB 2 Y Y Y Y Y

PKB47 61 simple H-type ABAB 2 Y Y Y Y Y

PKB48 61 simple H-type ABAB 2 Y Y Y Y Y

PKB49 30 simple H-type ABAB 2 Y Y Y Y Y

PKB50 59 simple H-type ABAB 2 Y Y Y Y Y

PKB51 46 simple H-type ABAB 2 Y Y Y Y Y

PKB52 52 simple H-type ABAB 2 Y Y Y Y Y

PKB53 22 simple H-type ABAB 2 Y Y Y Y Y

PKB54 22 simple H-type ABAB 2 Y Y Y Y Y

PKB55 30 simple H-type ABAB 2 Y Y Y Y Y
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PKBNo. Length Pseudoknot Type Pseudobase Pattern Page No. L&P class D&P class A&U class J&C class R&E class

PKB56 24 simple H-type ABAB 2 Y Y Y Y Y

PKB57 67 simple H-type ABAB 2 Y Y Y Y Y

PKB58 30 simple H-type ABAB 2 Y Y Y Y Y

PKB59 22 simple H-type ABAB 2 Y Y Y Y Y

PKB60 30 simple H-type ABAB 2 Y Y Y Y Y

PKB61 22 simple H-type ABAB 2 Y Y Y Y Y

PKB62 30 simple H-type ABAB 2 Y Y Y Y Y

PKB63 22 simple H-type ABAB 2 Y Y Y Y Y

PKB64 920 simple H-type ABAB 2 Y Y Y Y Y

PKB65 46 simple H-type ABAB 2 N Y Y Y Y

PKB66 40 simple H-type ABAB 2 Y Y Y Y Y

PKB67 30 simple H-type ABAB 2 Y Y Y Y Y

PKB68 68 simple H-type ABAB 2 Y Y Y Y Y

PKB69 61 simple H-type ABAB 2 Y Y Y Y Y

PKB70 55 simple H-type ABAB 2 Y Y Y Y Y

PKB71 108 complex ABCABC 3 N N N N Y

PKB72 67 simple H-type ABAB 2 Y Y Y Y Y

PKB73 33 simple H-type ABAB 2 Y Y Y Y Y

PKB74 28 simple H-type ABAB 2 Y Y Y Y Y
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PKBNo. Length Pseudoknot Type Pseudobase Pattern Page No. L&P class D&P class A&U class J&C class R&E class

PKB75 88 complex ABCDCADB 2 N N N N Y

PKB76 89 simple H-type ABAB 2 Y Y Y Y Y

PKB77 219 simple H-type ABAB 2 Y Y Y Y Y

PKB78 62 simple H-type ABAB 2 Y Y Y Y Y

PKB79 61 simple H-type ABAB 2 Y Y Y Y Y

PKB80 49 simple H-type ABAB 2 Y Y Y Y Y

PKB81 26 simple H-type ABAB 2 Y Y Y Y Y

PKB82 26 simple H-type ABAB 2 Y Y Y Y Y

PKB83 24 simple H-type ABAB 2 Y Y Y Y Y

PKB84 32 simple H-type ABAB 2 Y Y Y Y Y

PKB85 24 simple H-type ABAB 2 Y Y Y Y Y

PKB86 22 simple H-type ABAB 2 Y Y Y Y Y

PKB87 32 simple H-type ABAB 2 Y Y Y Y Y

PKB88 62 simple H-type ABAB 2 Y Y Y Y Y

PKB89 33 simple H-type ABAB 2 Y Y Y Y Y

PKB90 24 simple H-type ABAB 2 Y Y Y Y Y

PKB91 33 simple H-type ABAB 2 Y Y Y Y Y

PKB92 27 simple H-type ABAB 2 Y Y Y Y Y

PKB93 24 simple H-type ABAB 2 Y Y Y Y Y
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PKBNo. Length Pseudoknot Type Pseudobase Pattern Page No. L&P class D&P class A&U class J&C class R&E class

PKB94 33 simple H-type ABAB 2 Y Y Y Y Y

PKB95 23 simple H-type ABAB 2 Y Y Y Y Y

PKB96 24 simple H-type ABAB 2 Y Y Y Y Y

PKB97 32 simple H-type ABAB 2 Y Y Y Y Y

PKB98 62 simple H-type ABAB 2 Y Y Y Y Y

PKB99 63 simple H-type ABAB 2 Y Y Y Y Y

PKB100 31 simple H-type ABAB 2 Y Y Y Y Y

PKB101 26 simple H-type ABAB 2 Y Y Y Y Y

PKB102 24 simple H-type ABAB 2 Y Y Y Y Y

PKB103 25 simple H-type ABAB 2 Y Y Y Y Y

PKB104 26 simple H-type ABAB 2 Y Y Y Y Y

PKB105 32 simple H-type ABAB 2 Y Y Y Y Y

PKB106 83 simple H-type ABAB 2 Y Y Y Y Y

PKB107 52 simple H-type ABAB 2 Y Y Y Y Y

PKB108 35 simple H-type ABAB 2 Y Y Y Y Y

PKB109 24 simple H-type ABAB 2 Y Y Y Y Y

PKB110 33 simple H-type ABAB 2 Y Y Y Y Y

PKB111 24 simple H-type ABAB 2 Y Y Y Y Y

PKB112 33 simple H-type ABAB 2 Y Y Y Y Y
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PKBNo. Length Pseudoknot Type Pseudobase Pattern Page No. L&P class D&P class A&U class J&C class R&E class

PKB113 24 simple H-type ABAB 2 Y Y Y Y Y

PKB114 33 simple H-type ABAB 2 Y Y Y Y Y

PKB115 24 simple H-type ABAB 2 Y Y Y Y Y

PKB116 33 simple H-type ABAB 2 Y Y Y Y Y

PKB117 24 simple H-type ABAB 2 Y Y Y Y Y

PKB118 33 simple H-type ABAB 2 Y Y Y Y Y

PKB119 24 simple H-type ABAB 2 Y Y Y Y Y

PKB120 36 simple H-type ABAB 2 Y Y Y Y Y

PKB121 26 simple H-type ABAB 2 Y Y Y Y Y

PKB122 31 simple H-type ABAB 2 Y Y Y Y Y

PKB123 26 simple H-type ABAB 2 Y Y Y Y Y

PKB124 29 simple H-type ABAB 2 Y Y Y Y Y

PKB125 25 simple H-type ABAB 2 Y Y Y Y Y

PKB126 27 simple H-type ABAB 2 Y Y Y Y Y

PKB127 122 simple H-type ABAB 2 Y Y Y Y Y

PKB128 118 simple H-type ABAB 2 Y Y Y Y Y

PKB129 313 simple H-type ABAB 2 Y Y Y Y Y

PKB130 40 simple H-type ABAB 2 Y Y Y Y Y

PKB131 48 simple H-type ABAB 2 Y Y Y Y Y
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PKBNo. Length Pseudoknot Type Pseudobase Pattern Page No. L&P class D&P class A&U class J&C class R&E class

PKB132 49 simple H-type ABAB 2 Y Y Y Y Y

PKB133 48 simple H-type ABAB 2 Y Y Y Y Y

PKB134 137 simple H-type ABAB 2 Y Y Y Y Y

PKB135 116 simple H-type ABAB 2 Y Y Y Y Y

PKB136 134 simple H-type ABAB 2 Y Y Y Y Y

PKB137 133 simple H-type ABAB 2 Y Y Y Y Y

PKB138 96 simple H-type ABAB 2 Y Y Y Y Y

PKB139 70 simple H-type ABAB 2 Y Y Y Y Y

PKB140 69 simple H-type ABAB 2 Y Y Y Y Y

PKB141 70 simple H-type ABAB 2 Y Y Y Y Y

PKB142 71 simple H-type ABAB 2 Y Y Y Y Y

PKB143 71 simple H-type ABAB 2 Y Y Y Y Y

PKB144 71 simple H-type ABAB 2 Y Y Y Y Y

PKB145 58 simple H-type ABAB 2 Y Y Y Y Y

PKB146 50 simple H-type ABAB 2 Y Y Y Y Y

PKB147 51 simple H-type ABAB 2 Y Y Y Y Y

PKB148 108 simple H-type ABAB 2 Y Y Y Y Y

PKB149 351 simple H-type ABAB 2 Y Y Y Y Y

PKB150 212 Kissing Hairpin ABACBC 2 N N N Y Y
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PKBNo. Length Pseudoknot Type Pseudobase Pattern Page No. L&P class D&P class A&U class J&C class R&E class

PKB151 32 simple H-type ABAB 2 Y Y Y Y Y

PKB152 26 simple H-type ABAB 2 Y Y Y Y Y

PKB153 33 simple H-type ABAB 2 Y Y Y Y Y

PKB154 26 simple H-type ABAB 2 Y Y Y Y Y

PKB155 21 simple H-type ABAB 2 Y Y Y Y Y

PKB156 23 simple H-type ABAB 2 Y Y Y Y Y

PKB157 26 simple H-type ABAB 2 Y Y Y Y Y

PKB158 28 simple H-type ABAB 2 Y Y Y Y Y

PKB159 25 simple H-type ABAB 2 Y Y Y Y Y

PKB160 32 simple H-type ABAB 2 Y Y Y Y Y

PKB161 24 simple H-type ABAB 2 Y Y Y Y Y

PKB162 35 simple H-type ABAB 2 Y Y Y Y Y

PKB163 47 Kissing Hairpin ABACBC 2 N N N Y Y

PKB164 96 simple H-type ABAB 2 Y Y Y Y Y

PKB165 23 simple H-type ABAB 2 Y Y Y Y Y

PKB166 24 simple H-type ABAB 2 Y Y Y Y Y

PKB167 35 simple H-type ABAB 2 Y Y Y Y Y

PKB168 105 simple H-type ABAB 2 Y Y Y Y Y

PKB169 73 Kissing Hairpin ABACBC 2 N N N Y Y
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PKB170 149 simple H-type ABAB 2 Y Y Y Y Y

PKB171 224 Kissing Hairpin ABACBC 2 N N N Y Y

PKB172 39 simple H-type ABAB 2 Y Y Y Y Y

PKB173 73 Kissing Hairpin ABACBC 2 N N N Y Y

PKB174 128 simple H-type ABAB 2 Y Y Y Y Y

PKB175 57 simple H-type ABAB 2 Y Y Y Y Y

PKB176 33 simple H-type ABAB 2 Y Y Y Y Y

PKB177 70 simple H-type ABAB 2 Y Y Y Y Y

PKB178 90 Kissing Hairpin ABACBC 2 N N N Y Y

PKB179 124 simple H-type ABAB 2 Y Y Y Y Y

PKB180 143 simple H-type ABAB 2 Y Y Y Y Y

PKB181 207 simple H-type ABAB 2 Y Y Y Y Y

PKB182 42 simple H-type ABAB 2 Y Y Y Y Y

PKB183 27 simple H-type ABAB 2 Y Y Y Y Y

PKB184 31 simple H-type ABAB 2 Y Y Y Y Y

PKB185 24 simple H-type ABAB 2 Y Y Y Y Y

PKB186 29 simple H-type ABAB 2 Y Y Y Y Y

PKB187 27 simple H-type ABAB 2 Y Y Y Y Y

PKB188 23 simple H-type ABAB 2 Y Y Y Y Y
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PKB189 28 simple H-type ABAB 2 Y Y Y Y Y

PKB190 47 simple H-type ABAB 2 Y Y Y Y Y

PKB191 113 simple H-type ABAB 2 Y Y Y Y Y

PKB193 341 simple H-type ABAB 2 Y Y Y Y Y

PKB194 28 simple H-type ABAB 2 Y Y Y Y Y

PKB195 31 simple H-type ABAB 2 Y Y Y Y Y

PKB196 24 simple H-type ABAB 2 Y Y Y Y Y

PKB197 29 simple H-type ABAB 2 Y Y Y Y Y

PKB198 32 simple H-type ABAB 2 Y Y Y Y Y

PKB199 23 simple H-type ABAB 2 Y Y Y Y Y

PKB200 28 simple H-type ABAB 2 Y Y Y Y Y

PKB201 29 simple H-type ABAB 2 Y Y Y Y Y

PKB202 34 simple H-type ABAB 2 Y Y Y Y Y

PKB203 24 simple H-type ABAB 2 Y Y Y Y Y

PKB204 29 simple H-type ABAB 2 Y Y Y Y Y

PKB205 48 simple H-type ABAB 2 Y Y Y Y Y

PKB206 45 simple H-type ABAB 2 Y Y Y Y Y

PKB207 45 simple H-type ABAB 2 Y Y Y Y Y

PKB208 237 simple H-type ABAB 2 Y Y Y Y Y
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PKB209 234 simple H-type ABAB 2 Y Y Y Y Y

PKB210 90 simple H-type ABAB 2 Y Y Y Y Y

PKB211 146 simple H-type ABAB 2 Y Y Y Y Y

PKB212 64 simple H-type ABAB 2 Y Y Y Y Y

PKB213 45 simple H-type ABAB 2 Y Y Y Y Y

PKB214 145 simple H-type ABAB 2 Y Y Y Y Y

PKB215 64 simple H-type ABAB 2 Y Y Y Y Y

PKB216 45 simple H-type ABAB 2 Y Y Y Y Y

PKB217 73 simple H-type ABAB 2 Y Y Y Y Y

PKB218 72 simple H-type ABAB 2 Y Y Y Y Y

PKB219 147 simple H-type ABAB 2 Y Y Y Y Y

PKB220 64 simple H-type ABAB 2 Y Y Y Y Y

PKB221 45 simple H-type ABAB 2 Y Y Y Y Y

PKB222 146 simple H-type ABAB 2 Y Y Y Y Y

PKB223 64 simple H-type ABAB 2 Y Y Y Y Y

PKB224 43 simple H-type ABAB 2 Y Y Y Y Y

PKB225 147 simple H-type ABAB 2 Y Y Y Y Y

PKB226 64 simple H-type ABAB 2 Y Y Y Y Y

PKB227 44 simple H-type ABAB 2 Y Y Y Y Y
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PKB228 148 simple H-type ABAB 2 Y Y Y Y Y

PKB229 67 simple H-type ABAB 2 Y Y Y Y Y

PKB230 48 simple H-type ABAB 2 Y Y Y Y Y

PKB231 130 simple H-type ABAB 2 Y Y Y Y Y

PKB232 62 simple H-type ABAB 2 Y Y Y Y Y

PKB233 71 simple H-type ABAB 2 Y Y Y Y Y

PKB234 84 simple H-type ABAB 2 Y Y Y Y Y

PKB235 77 simple H-type ABAB 2 Y Y Y Y Y

PKB236 120 simple H-type ABAB 2 Y Y Y Y Y

PKB237 96 simple H-type ABAB 2 Y Y Y Y Y

PKB238 84 simple H-type ABAB 2 Y Y Y Y Y

PKB239 412 simple H-type ABAB 2 Y Y Y Y Y

PKB240 41 simple H-type ABAB 2 Y Y Y Y Y

PKB241 34 simple H-type ABAB 2 Y Y Y Y Y

PKB242 34 simple H-type ABAB 2 Y Y Y Y Y

PKB243 121 simple H-type ABAB 2 Y Y Y Y Y

PKB244 55 simple H-type ABAB 2 Y Y Y Y Y

PKB245 35 simple H-type ABAB 2 Y Y Y Y Y

PKB246 34 simple H-type ABAB 2 Y Y Y Y Y
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PKB247 22 simple H-type ABAB 2 Y Y Y Y Y

PKB248 66 simple H-type ABAB 2 Y Y Y Y Y

PKB249 33 simple H-type ABAB 2 Y Y Y Y Y

PKB250 24 simple H-type ABAB 2 Y Y Y Y Y

PKB251 26 simple H-type ABAB 2 Y Y Y Y Y

PKB252 110 simple H-type ABAB 2 Y Y Y Y Y

PKB253 82 simple H-type ABAB 2 Y Y Y Y Y

PKB254 82 simple H-type ABAB 2 Y Y Y Y Y

PKB255 56 simple H-type ABAB 2 Y Y Y Y Y

PKB256 56 simple H-type ABAB 2 Y Y Y Y Y

PKB257 66 simple H-type ABAB 2 Y Y Y Y Y

PKB258 60 simple H-type ABAB 2 Y Y Y Y Y

PKB259 57 simple H-type ABAB 2 Y Y Y Y Y

PKB260 57 simple H-type ABAB 2 Y Y Y Y Y

PKB261 59 simple H-type ABAB 2 Y Y Y Y Y

PKB262 56 simple H-type ABAB 2 Y Y Y Y Y

PKB263 62 simple H-type ABAB 2 Y Y Y Y Y

PKB264 62 simple H-type ABAB 2 Y Y Y Y Y

PKB265 61 simple H-type ABAB 2 Y Y Y Y Y
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PKB266 47 simple H-type ABAB 2 Y Y Y Y Y

PKB267 72 simple H-type ABAB 2 Y Y Y Y Y

PKB268 40 simple H-type ABAB 2 Y Y Y Y Y

PKB269 66 simple H-type ABAB 2 Y Y Y Y Y

PKB270 62 simple H-type ABAB 2 Y Y Y Y Y

PKB271 75 simple H-type ABAB 2 Y Y Y Y Y

PKB272 66 simple H-type ABAB 2 Y Y Y Y Y

PKB273 48 simple H-type ABAB 2 Y Y Y Y Y

PKB274 49 simple H-type ABAB 2 Y Y Y Y Y

PKB275 85 simple H-type ABAB 2 Y Y Y Y Y

PKB276 73 simple H-type ABAB 2 Y Y Y Y Y

PKB277 37 simple H-type ABAB 2 Y Y Y Y Y

PKB278 29 simple H-type ABAB 2 Y Y Y Y Y

PKB279 21 simple H-type ABAB 2 Y Y Y Y Y

PKB280 68 simple H-type ABAB 2 Y Y Y Y Y

PKB281 43 simple H-type ABAB 2 Y Y Y Y Y

PKB282 28 simple H-type ABAB 2 Y Y Y Y Y

PKB283 29 simple H-type ABAB 2 Y Y Y Y Y

PKB284 30 simple H-type ABAB 2 Y Y Y Y Y
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PKB285 27 simple H-type ABAB 2 Y Y Y Y Y

PKB286 30 simple H-type ABAB 2 Y Y Y Y Y

PKB287 26 simple H-type ABAB 2 Y Y Y Y Y

PKB288 25 simple H-type ABAB 2 Y Y Y Y Y

PKB289 28 simple H-type ABAB 2 Y Y Y Y Y

PKB290 30 simple H-type ABAB 2 Y Y Y Y Y

PKB291 26 simple H-type ABAB 2 Y Y Y Y Y

PKB292 25 simple H-type ABAB 2 Y Y Y Y Y

PKB293 24 simple H-type ABAB 2 Y Y Y Y Y

PKB294 25 simple H-type ABAB 2 Y Y Y Y Y

PKB295 24 simple H-type ABAB 2 Y Y Y Y Y

PKB296 26 simple H-type ABAB 2 Y Y Y Y Y

PKB297 33 simple H-type ABAB 2 Y Y Y Y Y

PKB298 29 simple H-type ABAB 2 Y Y Y Y Y

PKB299 25 simple H-type ABAB 2 Y Y Y Y Y

PKB300 37 simple H-type ABAB 2 Y Y Y Y Y

PKB301 37 simple H-type ABAB 2 Y Y Y Y Y

PKB302 31 simple H-type ABAB 2 Y Y Y Y Y

PKB303 76 simple H-type ABAB 2 Y Y Y Y Y
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PKB304 34 simple H-type ABAB 2 Y Y Y Y Y

PKB305 80 simple H-type ABAB 2 Y Y Y Y Y

PKB306 78 simple H-type ABAB 2 Y Y Y Y Y

PKB307 80 simple H-type ABAB 2 Y Y Y Y Y

PKB308 80 simple H-type ABAB 2 Y Y Y Y Y

PKB309 145 simple H-type ABAB 2 Y Y Y Y Y

PKB310 130 simple H-type ABAB 2 Y Y Y Y Y

PKB311 120 simple H-type ABAB 2 Y Y Y Y Y

PKB312 130 simple H-type ABAB 2 Y Y Y Y Y

PKB313 130 simple H-type ABAB 2 Y Y Y Y Y

PKB314 67 complex ABCDCADB 2 N N N N Y

PKB315 67 complex ABCDCADB 2 N N N N Y

PKB316 67 complex ABCDCADB 2 N N N N Y

PKB317 67 complex ABCDCADB 2 N N N N Y

PKB318 67 complex ABCDCADB 2 N N N N Y

PKB319 67 complex ABCDCADB 2 N N N N Y

PKB320 67 complex ABCDCADB 2 N N N N Y

PKB321 67 complex ABCDCADB 2 N N N N Y

PKB322 67 complex ABCDCADB 2 N N N N Y
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PKB323 180 complex ABCDCADB 2 N N N N Y

PKB324 181 complex ABCDCADB 2 N N N N Y

PKB325 78 complex ABCDCADB 2 N N N N Y

PKB326 63 complex ABCDCADB 2 N N N N Y

PKB327 82 complex ABCDCADB 2 N N N N Y

PKB328 81 complex ABCDCADB 2 N N N N Y

PKB329 82 complex ABCDCADB 2 N N N N Y

PKB330 64 complex ABCDCADB 2 N N N N Y

PKB331 64 complex ABCDCADB 2 N N N N Y

PKB332 68 complex ABCDCADB 2 N N N N Y

PKB333 68 complex ABCDCADB 2 N N N N Y

PKB334 77 complex ABCDCADB 2 N N N N Y

PKB335 104 complex ABCDCADB 2 N N N N Y

PKB336 106 complex ABCDCADB 2 N N N N Y

PKB337 106 complex ABCDCADB 2 N N N N Y

PKB338 66 complex ABCDCADB 2 N N N N Y

PKB339 69 complex ABCDCADB 2 N N N N Y

PKB340 67 complex ABCDCADB 2 N N N N Y

PKB341 76 complex ABCDCADB 2 N N N N Y

Continued On Next Page
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Table C.1 – Continued From Previous Page

PKBNo. Length Pseudoknot Type Pseudobase Pattern Page No. L&P class D&P class A&U class J&C class R&E class

PKB342 88 complex ABCDCADB 2 N N N N Y

PKB343 54 simple H-type ABAB 2 Y Y Y Y Y

PKB344 94 Kissing Hairpin ABACBC 2 N N N Y Y

PKB345 52 simple H-type ABAB 2 Y Y Y Y Y

PKB346 75 simple H-type ABAB 2 Y Y Y Y Y

PKB347 75 simple H-type ABAB 2 Y Y Y Y Y

PKB348 77 simple H-type ABAB 2 Y Y Y Y Y

PKB349 80 simple H-type ABAB 2 Y Y Y Y Y

PKB350 77 simple H-type ABAB 2 Y Y Y Y Y

PKB351 80 simple H-type ABAB 2 Y Y Y Y Y

PKB352 70 simple H-type ABAB 2 Y Y Y Y Y

PKB353 70 simple H-type ABAB 2 Y Y Y Y Y

PKB354 190 complex ABCDCADB 2 N N N N Y

PKB355 150 complex ABCDCADB 2 N N N N Y

PKB356 140 complex ABCDCADB 2 N N N N Y

PKB357 160 complex ABCDCADB 2 N N N N Y

PKB358 190 complex ABCDCADB 2 N N N N Y

PKB359 40 simple H-type ABAB 2 Y Y Y Y Y

PKB360 130 simple H-type ABAB 2 Y Y Y Y Y

Continued On Next Page
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Table C.1 – Continued From Previous Page

PKBNo. Length Pseudoknot Type Pseudobase Pattern Page No. L&P class D&P class A&U class J&C class R&E class

PKB361 80 simple H-type ABAB 2 Y Y Y Y Y

PKB362 90 simple H-type ABAB 2 Y Y Y Y Y

PKB363 80 simple H-type ABAB 2 Y Y Y Y Y

PKB364 80 simple H-type ABAB 2 Y Y Y Y Y

PKB365 90 simple H-type ABAB 2 Y Y Y Y Y

PKB366 80 simple H-type ABAB 2 Y Y Y Y Y

PKB367 64 simple H-type ABAB 2 Y Y Y Y Y

PKB192 1248 simple H-type ABAB 2 Y Y Y Y Y

2KFC_A 36 simple H-type ABAB 2 Y Y Y Y Y

2KRL_A 102 simple H-type ABAB 2 Y Y Y Y Y

2LC8_A 56 simple H-type ABAB 2 Y Y Y Y Y

2M58_A 58 simple H-type ABAB 2 Y Y Y Y Y

2RP0_A 27 simple H-type ABAB 2 Y Y Y Y Y

2WDL_A 2807 complex others 4 N N N N N

2ZZN_D 71 Kissing Hairpin ABACBC 2 N N N Y Y

3A2K_C 77 Kissing Hairpin ABACBC 2 N N N Y Y

3A3A_A 86 Kissing Hairpin ABACBC 2 N N N Y Y

3ADB_C 92 Kissing Hairpin ABACBC 2 N N N Y Y

3GCA_A 33 simple H-type ABAB 2 Y Y Y Y Y

Continued On Next Page
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Table C.1 – Continued From Previous Page

PKBNo. Length Pseudoknot Type Pseudobase Pattern Page No. L&P class D&P class A&U class J&C class R&E class

3GX2_A 94 Kissing Hairpin ABACBC 2 N N N Y Y

3IVN_B 69 complex ABCBDADECE 2 N N N N Y

3IWN_A 93 Kissing Hairpin ABACBC 2 N N N Y Y

3IYQ_A 349 recursive H-type ABAB 2 N Y Y Y Y

3IZ4_A 377 recursive H-type ABAB 2 N Y Y Y Y

3J0L_A 48 simple H-type ABAB 2 N Y Y Y Y

3J3D_C 75 Kissing Hairpin ABACBC 2 N N N Y Y

3J3E_8 123 Kissing Hairpin ABACBC 2 N N N Y Y

3J3F_8 157 Kissing Hairpin ABACBC 2 N N N Y Y

3J20_0 76 Kissing Hairpin ABACBC 2 N N N Y Y

3J20_2 1495 complex others 3 N N N N Y

3JYV_7 76 Kissing Hairpin ABACBC 2 N N N Y Y

3KIY_A 2848 complex others 4 N N N N N

3LA5_A 71 complex ABCBDADECE 2 N N N N Y

3NKB_B 64 simple H-type ABAB 2 N Y Y Y Y

3NPB_A 119 Kissing Hairpin ABACBC 2 N N N Y Y

3O58_3 158 Kissing Hairpin ABACBC 2 N N N Y Y

3PDR_A 161 simple H-type ABAB 2 N Y Y Y Y

3RKF_A 67 complex ABCBDADECE 2 N N N N Y

Continued On Next Page
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Table C.1 – Continued From Previous Page

PKBNo. Length Pseudoknot Type Pseudobase Pattern Page No. L&P class D&P class A&U class J&C class R&E class

3SD1_A 89 simple H-type ABAB 2 N Y Y Y Y

3U4M_B 80 simple H-type ABAB 2 N Y Y Y Y

3W1K_J 92 Kissing Hairpin ABACBC 2 N N N Y Y

3W3S_B 98 Kissing Hairpin ABACBC 2 N N N Y Y

3ZEX_C 169 Kissing Hairpin ABACBC 2 N N N Y Y

4A1C_2 154 Kissing Hairpin ABACBC 2 N N N Y Y

4AOB_A 94 Kissing Hairpin ABACBC 2 N N N Y Y

4ATO_G 33 simple H-type ABAB 2 Y Y Y Y Y

4ENB_A 51 simple H-Type ABAB 2 Y Y Y Y Y

4ENC_A 52 simple H-Type ABAB 2 Y Y Y Y Y

4FRG_B 84 simple H-type ABAB 2 N Y Y Y Y

4FRN_A 102 complex ABCDCEBEAFDF 2 N N N N Y

4JF2_A 76 simple H-type ABAB 2 Y Y Y Y Y

4JRC_A 56 simple H-type ABAB 2 N Y Y Y Y

3J2C_N 927 recursive H-type ABAababcdcdB 2 N Y Y Y Y

3JYX_5 3170 recursive Kissing Hairpin ababABAcdcdDEDFEFefefCBC 2 N N N Y Y

3ZEX_B 1465 complex others 3 N N N N N
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Appendix D

The Evaluation Values of the

Prediction by the 15 Methods

There are 15 methods considered in the benchmark, twelve heuristic methods

and three exact ones. Typically, the heuristic methods are listed before the exact

methods in the following tables. And each table highlights the winner program

for the subsets in bold, which have obtained the highest corresponding evaluation

values. And in the end, the Winner Times counts the number of obtaining the

best evaluation values for each program.
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Table D.1: The sensitivity of the predictions.

Attr

ibute
Value Size

Cylo

Fold

Dot

Knot

DotK

not-K

HotK

nots-cc

HotK

nots-dp

HotK

nots-re

IP

knot

MC-F

old

McG

enus

McQ

Fold

pK

iss

vsfo

ld5

pknots

RG-M

pknots

RG-F

pkn

ots

All

Entire Set 414 0.737 0.751 0.739 0.681 0.568 0.621 0.578 0.701 0.739 0.632 0.772 0.525 0.736 0.743 0.735

Shared Set 387 0.753 0.766 0.754 0.688 0.567 0.621 0.575 0.701 0.745 0.639 0.774 0.535 0.749 0.756 0.737

Missing Set 27 0.404 0.531 0.52 0.552 0.583 0.615 0.618 0 0.634 0.521 0.663 0.316 0.506 0.515 0.634

Length
≤ 100 nt 345 0.773 0.792 0.781 0.705 0.57 0.629 0.577 0.714 0.751 0.641 0.799 0.557 0.775 0.78 0.754

101-160 nt 42 0.592 0.55 0.537 0.541 0.547 0.558 0.56 0.591 0.688 0.622 0.57 0.353 0.543 0.559 0.598

RNA

Type

Aptamers 15 0.854 0.777 0.777 0.717 0.62 0.7 0.657 0.645 0.811 0.754 0.76 0.616 0.749 0.772 0.761

mRNA 16 0.544 0.46 0.517 0.442 0.375 0.424 0.361 0.436 0.575 0.493 0.427 0.374 0.441 0.42 0.559

tRNA 8 0.767 0.796 0.854 0.624 0.624 0.624 0.797 0.566 0.656 0.843 0.739 0.82 0.663 0.618 0.825

tmRNA 10 0.562 0.653 0.653 0.61 0.594 0.576 0.559 0.716 0.732 0.494 0.507 0.324 0.551 0.472 0.54

rRNA 10 0.443 0.386 0.361 0.432 0.432 0.445 0.41 0.277 0.45 0.44 0.463 0.42 0.423 0.336 0.418

Ribozymes 37 0.756 0.773 0.766 0.669 0.615 0.756 0.62 0.755 0.794 0.775 0.825 0.542 0.784 0.802 0.773

Riboswitch 11 0.751 0.774 0.657 0.82 0.82 0.82 0.749 0.679 0.789 0.777 0.733 0.621 0.775 0.707 0.744

Others 13 0.691 0.581 0.64 0.632 0.593 0.622 0.549 0.6 0.75 0.492 0.697 0.521 0.667 0.62 0.634

Vr. 3 UTR 103 0.833 0.848 0.851 0.726 0.603 0.698 0.633 0.78 0.802 0.634 0.923 0.648 0.868 0.888 0.824

Vr. 5 UTR 29 0.791 0.846 0.81 0.743 0.523 0.612 0.586 0.698 0.685 0.527 0.92 0.632 0.857 0.893 0.775

Frameshifting 33 0.832 0.799 0.795 0.797 0.571 0.656 0.485 0.775 0.844 0.744 0.846 0.287 0.76 0.753 0.772

Vr. ReadThrough 7 0.666 0.738 0.738 0.49 0.071 0.071 0.071 0.8 0.862 0.776 0.427 0.261 0.529 0.676 0.819

Vr. tRNA-like 58 0.704 0.822 0.753 0.692 0.538 0.484 0.546 0.663 0.624 0.596 0.693 0.5 0.753 0.774 0.652

Continued On Next Page
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Table D.1 – Continued From Previous Page

Attr

ibute
Value Size

Cylo

Fold

Dot

Knot

DotK

not-K

HotK

nots-cc

HotK

nots-dp

HotK

nots-re

IP

knot

MC-F

old

McG

enus

McQ

Fold

pK

iss

vsfo

ld5

pknots

RG-M

pknots

RG-F

pkn

ots

Vr. Others 30 0.712 0.651 0.652 0.614 0.575 0.598 0.606 0.698 0.818 0.619 0.654 0.487 0.603 0.602 0.746

Unknown 7 0.779 0.767 0.755 0.903 0.609 0.73 0.582 0.81 0.686 0.648 0.786 0.592 0.811 0.832 0.717

Organism

Eukaryote 59 0.613 0.581 0.613 0.548 0.497 0.573 0.515 0.55 0.659 0.596 0.626 0.447 0.604 0.603 0.63

Prokaryote 40 0.727 0.709 0.685 0.67 0.662 0.677 0.638 0.703 0.75 0.694 0.688 0.544 0.668 0.617 0.667

Virus 266 0.78 0.814 0.795 0.708 0.558 0.611 0.57 0.734 0.758 0.63 0.818 0.539 0.788 0.809 0.766

Unknown 22 0.849 0.789 0.76 0.853 0.687 0.77 0.685 0.7 0.805 0.754 0.791 0.701 0.825 0.776 0.812

Page

No.

2 386 0.754 0.767 0.755 0.688 0.567 0.622 0.576 0.702 0.744 0.639 0.775 0.536 0.75 0.757 0.738

3 1 0.458 0.458 0.458 0.458 0.458 0.458 0.5 0.292 0.792 0.458 0.458 0.167 0.458 0.458 0.458

Pknot

Type

H-type 330 0.759 0.775 0.76 0.693 0.557 0.609 0.565 0.709 0.747 0.624 0.777 0.53 0.754 0.764 0.737

Kissing 22 0.65 0.602 0.673 0.595 0.595 0.599 0.658 0.506 0.587 0.656 0.667 0.628 0.602 0.593 0.653

Complex 35 0.763 0.783 0.754 0.694 0.64 0.752 0.625 0.743 0.821 0.768 0.811 0.518 0.802 0.781 0.79

Winner Time(28) 1 1 2 3 1 1 0 0 10 0 12 0 0 0 0
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Table D.2: The PPV of the predictions.

Attr

ibute
Value Size

Cylo

Fold

Dot

Knot

DotK

not-K

HotK

nots-cc

HotK

nots-dp

HotK

nots-re

IP

knot

MC-F

old

McG

enus

McQ

Fold

pK

iss

vsfo

ld5

pknots

RG-M

pknots

RG-F

pkn

ots

All
Entire Set 414 0.717 0.723 0.708 0.689 0.633 0.658 0.674 0.607 0.706 0.703 0.732 0.584 0.713 0.698 0.708

Shared Set 387 0.741 0.752 0.736 0.71 0.65 0.675 0.694 0.607 0.726 0.727 0.736 0.603 0.737 0.721 0.715

Missing Set 27 0.236 0.313 0.305 0.279 0.301 0.318 0.398 0 0.298 0.279 0.535 0.196 0.292 0.284 0.387

Length
≤ 100 nt 345 0.774 0.789 0.774 0.744 0.676 0.703 0.72 0.635 0.754 0.755 0.773 0.641 0.773 0.755 0.748

101-160 nt 42 0.469 0.443 0.427 0.428 0.438 0.45 0.477 0.379 0.498 0.495 0.429 0.296 0.441 0.444 0.444

RNA

Type

Aptamers 15 0.898 0.784 0.784 0.759 0.743 0.77 0.84 0.598 0.848 0.918 0.76 0.718 0.778 0.771 0.799

mRNA 16 0.453 0.381 0.429 0.38 0.379 0.394 0.391 0.324 0.461 0.453 0.344 0.358 0.369 0.352 0.45

tRNA 8 0.755 0.772 0.778 0.609 0.609 0.609 0.78 0.461 0.627 0.863 0.743 0.838 0.641 0.586 0.807

tmRNA 10 0.661 0.748 0.748 0.726 0.783 0.772 0.734 0.644 0.765 0.657 0.593 0.402 0.735 0.543 0.602

rRNA 10 0.347 0.305 0.274 0.313 0.313 0.318 0.339 0.18 0.314 0.373 0.343 0.311 0.328 0.247 0.305

Riboswitch 11 0.81 0.827 0.659 0.87 0.881 0.862 0.869 0.587 0.812 0.837 0.754 0.644 0.816 0.735 0.745

Ribozymes 37 0.805 0.83 0.817 0.691 0.626 0.761 0.769 0.682 0.795 0.817 0.846 0.632 0.808 0.819 0.775

Others 13 0.605 0.547 0.585 0.621 0.573 0.621 0.595 0.52 0.636 0.535 0.646 0.57 0.655 0.598 0.596

Vr. 3 UTR 103 0.884 0.89 0.892 0.877 0.853 0.866 0.88 0.787 0.901 0.888 0.914 0.814 0.895 0.885 0.896

Vr. 5 UTR 29 0.854 0.909 0.869 0.872 0.748 0.784 0.75 0.709 0.779 0.74 0.952 0.821 0.915 0.909 0.856

Frameshifting 33 0.747 0.708 0.699 0.678 0.499 0.563 0.49 0.504 0.696 0.668 0.739 0.258 0.681 0.683 0.618

Vr. ReadThrough 7 0.519 0.692 0.664 0.426 0.053 0.053 0.053 0.47 0.601 0.6 0.371 0.257 0.487 0.62 0.567

Vr. tRNA-like 58 0.585 0.657 0.609 0.572 0.493 0.471 0.568 0.464 0.513 0.572 0.552 0.464 0.618 0.613 0.535

Continued On Next Page
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Table D.2 – Continued From Previous Page

Attr

ibute
Value Size

Cylo

Fold

Dot

Knot

DotK

not-K

HotK

nots-cc

HotK

nots-dp

HotK

nots-re

IP

knot

MC-F

old

McG

enus

McQ

Fold

pK

iss

vsfo

ld5

pknots

RG-M

pknots

RG-F

pkn

ots

Vr. Others 30 0.67 0.665 0.658 0.628 0.622 0.63 0.671 0.577 0.719 0.638 0.618 0.539 0.627 0.592 0.676

Unknown 7 0.725 0.727 0.718 0.834 0.641 0.685 0.68 0.662 0.648 0.733 0.732 0.617 0.746 0.77 0.674

Organism

Eukaryote 59 0.612 0.596 0.614 0.549 0.498 0.57 0.61 0.473 0.632 0.613 0.619 0.497 0.612 0.601 0.602

Prokaryote 40 0.73 0.707 0.671 0.672 0.682 0.695 0.705 0.591 0.699 0.738 0.671 0.55 0.688 0.597 0.654

Virus 266 0.762 0.789 0.773 0.739 0.667 0.684 0.698 0.638 0.745 0.737 0.768 0.619 0.767 0.763 0.743

Unknown 22 0.845 0.791 0.748 0.859 0.79 0.816 0.839 0.626 0.799 0.89 0.777 0.796 0.802 0.761 0.799

Page

No.

2 386 0.742 0.753 0.738 0.711 0.651 0.676 0.694 0.608 0.727 0.728 0.737 0.605 0.738 0.722 0.716

3 1 0.367 0.314 0.314 0.297 0.297 0.297 0.333 0.2 0.528 0.314 0.289 0.154 0.289 0.306 0.333

Pknot

Type

H-Type 330 0.739 0.753 0.738 0.717 0.653 0.67 0.684 0.611 0.726 0.721 0.731 0.601 0.736 0.722 0.712

Kissing 22 0.64 0.563 0.601 0.575 0.575 0.584 0.662 0.414 0.543 0.646 0.633 0.633 0.591 0.542 0.613

Complex 35 0.823 0.854 0.809 0.729 0.669 0.777 0.8 0.689 0.837 0.834 0.847 0.61 0.841 0.821 0.809

Winner Time(28) 1 8 0 1 2 0 1 0 5 5 5 0 1 0 0
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Table D.3: The MCC of the predictions.

Attr

ibute
Value Size

Cylo

Fold

Dot

Knot

DotK

not-K

HotK

nots-cc

HotK

nots-dp

HotK

nots-re

IP

knot

MC-F

old

McG

enus

McQ

Fold

pK

iss

vsfo

ld5

pknots

RG-M

pknots

RG-F

pkn

ots

All
Entire Set 414 0.713 0.723 0.71 0.668 0.578 0.62 0.604 0.633 0.705 0.645 0.741 0.535 0.711 0.707 0.706

Shared Set 387 0.733 0.746 0.733 0.683 0.586 0.63 0.613 0.633 0.719 0.662 0.743 0.55 0.731 0.726 0.712

Missing Set 27 0.295 0.389 0.379 0.376 0.401 0.423 0.466 0 0.415 0.361 0.582 0.235 0.367 0.362 0.477

Length
≤ 100 nt 345 0.76 0.779 0.765 0.709 0.6 0.647 0.626 0.654 0.737 0.676 0.775 0.579 0.761 0.756 0.737

101-160 nt 42 0.515 0.482 0.467 0.468 0.477 0.489 0.507 0.461 0.572 0.543 0.482 0.311 0.478 0.486 0.502

RNA

Type

Aptamers 15 0.869 0.771 0.771 0.728 0.664 0.722 0.73 0.602 0.819 0.819 0.751 0.652 0.753 0.762 0.771

mRNA 16 0.488 0.407 0.461 0.398 0.36 0.395 0.36 0.359 0.503 0.458 0.371 0.354 0.392 0.373 0.491

tRNA 8 0.755 0.779 0.81 0.608 0.608 0.608 0.783 0.499 0.633 0.849 0.735 0.825 0.644 0.593 0.812

tmRNA 10 0.595 0.689 0.689 0.652 0.669 0.654 0.627 0.667 0.737 0.554 0.534 0.338 0.623 0.491 0.554

rRNA 10 0.377 0.325 0.296 0.352 0.352 0.361 0.358 0.203 0.361 0.391 0.381 0.344 0.357 0.269 0.34

Ribozymes 37 0.772 0.794 0.784 0.669 0.608 0.75 0.679 0.708 0.788 0.788 0.83 0.574 0.79 0.804 0.765

Riboswitch 11 0.773 0.794 0.649 0.839 0.845 0.835 0.8 0.618 0.794 0.8 0.736 0.623 0.789 0.713 0.737

Others 13 0.635 0.55 0.601 0.614 0.565 0.607 0.559 0.543 0.677 0.495 0.659 0.529 0.649 0.595 0.6

Vr. 3 UTR 103 0.844 0.857 0.86 0.782 0.698 0.758 0.728 0.766 0.834 0.73 0.912 0.706 0.87 0.876 0.846

Vr. 5 UTR 29 0.809 0.866 0.827 0.788 0.601 0.67 0.642 0.677 0.711 0.598 0.929 0.699 0.873 0.892 0.798

Frameshifting 33 0.777 0.742 0.735 0.725 0.516 0.593 0.47 0.61 0.756 0.691 0.781 0.253 0.709 0.707 0.677

Vr. ReadThrough 7 0.577 0.707 0.691 0.444 0.039 0.039 0.042 0.602 0.712 0.675 0.382 0.243 0.495 0.638 0.674

Vr. tRNA-like 58 0.625 0.722 0.662 0.612 0.495 0.458 0.537 0.534 0.548 0.568 0.602 0.463 0.668 0.675 0.575

Continued On Next Page
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Table D.3 – Continued From Previous Page

Attr

ibute
Value Size

Cylo

Fold

Dot

Knot

DotK

not-K

HotK

nots-cc

HotK

nots-dp

HotK

nots-re

IP

knot

MC-F

old

McG

enus

McQ

Fold

pK

iss

vsfo

ld5

pknots

RG-M

pknots

RG-F

pkn

ots

Vr. Others 30 0.675 0.643 0.639 0.604 0.579 0.595 0.619 0.616 0.748 0.605 0.621 0.496 0.599 0.582 0.696

Unknown 7 0.742 0.736 0.726 0.863 0.609 0.697 0.611 0.721 0.654 0.675 0.75 0.588 0.77 0.793 0.684

Organism

Eukaryote 59 0.601 0.577 0.602 0.535 0.483 0.558 0.546 0.496 0.633 0.592 0.611 0.457 0.598 0.591 0.604

Prokaryote 40 0.718 0.697 0.668 0.659 0.658 0.673 0.659 0.631 0.712 0.703 0.669 0.532 0.665 0.595 0.647

Virus 266 0.756 0.788 0.77 0.705 0.587 0.626 0.611 0.662 0.733 0.659 0.781 0.558 0.764 0.774 0.738

Unknown 22 0.841 0.781 0.745 0.85 0.724 0.783 0.746 0.646 0.794 0.809 0.775 0.736 0.805 0.759 0.798

Page

No.

2 386 0.734 0.747 0.734 0.684 0.587 0.63 0.614 0.634 0.719 0.662 0.744 0.551 0.732 0.727 0.712

3 1 0.403 0.371 0.371 0.361 0.361 0.361 0.4 0.232 0.642 0.371 0.356 0.151 0.356 0.366 0.383

Pknot

Type

H-type 330 0.734 0.751 0.735 0.688 0.581 0.62 0.602 0.637 0.719 0.649 0.742 0.545 0.731 0.731 0.709

Kissing 22 0.634 0.57 0.626 0.573 0.573 0.58 0.65 0.444 0.553 0.642 0.638 0.619 0.586 0.554 0.621

Complex 35 0.786 0.812 0.774 0.701 0.643 0.756 0.697 0.706 0.822 0.793 0.824 0.551 0.815 0.794 0.791

Winner Time(28) 2 6 0 2 1 0 1 0 8 2 7 0 0 0 0
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Table D.4: The sensitivity of predicting missing set.

Name Length
Cylo

Fold

Dot

Knot

DotK

not-K

HotK

nots-cc

HotK

nots-dp

HotK

nots-re

IP

knot

MC-F

old

McG

enus

McQ

Fold

pK

iss

vsfo

ld5

pknots

RG-M

pknots

RG-F

pkn

ots

3JYX_5 3170 0.523 0.479 0.475

3KIY_A 2848 0.458 0.445 0.674

2WDL_A 2807 0.443 0.42 0.675

3J20_2 1495 0.58 0.617 0.748

3ZEX_B 1465 0.364 0.378 0.276

PKB192 1248 0.529 0.529 0.529 0.529 0.0 0.0

3J2C_N 927 0.593 0.508 0.75 0.415 0.69 0.665

PKB64 920 0.0 0.0 0.0 0.625 0.0 0.0 0.375

PKB239 412 0.556 0.407 0.407 0.407 0.407 0.407 0.259 0.148 0.259 0.37 0.0 0.0

3IZ4_A 377 0.221 0.589 0.589 0.6 0.6 0.6 0.747 0.516 0.463 0.347 0.579 0.653

PKB149 351 0.219 0.156 0.156 0.75 0.75 0.75 0.781 0.688 0.219 0.438 0.75 0.5

3IYQ_A 349 0.235 0.529 0.529 0.333 0.333 0.333 0.392 0.686 0.314 0.373 0.333 0.353

PKB193 341 0.2 0.7 0.7 0.567 0.567 0.567 0.5 0.767 0.6 0.2 0.567 0.567

PKB129 313 0.818 0.727 0.727 0.818 0.818 0.818 0.909 0.818 0.818 0.273 0.818 0.818

PKB208 237 0.259 0.519 0.519 0.667 0.519 0.926 0.667 1.0 0.704 0.148 0.519 0.667

PKB209 234 0.0 0.667 0.259 0.333 0.333 0.333 0.741 0.333 0.889 0.0 0.333 0.0

PKB171 224 0.792 0.792 1.0 0.792 0.792 0.792 0.75 1.0 1.0 0.417 0.708 0.708

Continued On Next Page

242



Table D.4 – Continued From Previous Page

Name Length
Cylo

Fold

Dot

Knot

DotK

not-K

HotK

nots-cc

HotK

nots-dp

HotK

nots-re

IP

knot

MC-F

old

McG

enus

McQ

Fold

pK

iss

vsfo

ld5

pknots

RG-M

pknots

RG-F

pkn

ots

PKB77 219 0.35 0.35 0.35 0.7 0.7 0.7 0.7 0.95 0.6 0.35 0.7 0.7

PKB150 212 0.278 0.278 0.278 0.278 0.278 0.278 0.5 0.0 0.5 0.0 0.222 0.5 0.778

PKB181 207 0.682 0.409 0.409 0.364 0.364 0.364 0.545 0.909 0.409 0.773 0.364 0.409 0.545

PKB354 190 0.4 0.52 0.52 0.52 0.76 0.52 0.52 0.52 0.28 0.28 0.28 0.52 0.52 0.88

PKB358 190 0.0 0.542 0.542 0.542 0.542 0.542 0.542 0.542 0.542 0.542 0.0 0.542 0.542 0.25

PKB324 181 0.534 0.793 0.793 0.81 0.81 0.897 0.793 0.793 0.707 0.845 0.328 0.741 0.741 0.862

PKB323 180 0.424 0.864 0.864 0.606 0.909 0.909 0.773 0.712 0.5 0.803 0.621 0.864 0.864 0.894

3ZEX_C 169 0.345 0.448 0.448 0.345 0.0 0.345 0.345 0.138 0.345 0.448 0.448 0.345 0.345 0.138

3PDR_A 161 0.8 0.92 0.92 0.8 0.8 0.8 0.9 0.72 0.8 0.92 0.64 0.9 0.86 0.64

PKB357 160 0.56 0.64 0.64 0.8 0.8 0.8 0.56 0.8 0.56 0.8 0.0 0.64 0.56 0.72

Average Sensitivity 0.404 0.531 0.52 0.552 0.583 0.615 0.618 0.634 0.521 0.663 0.316 0.506 0.516 0.634

Winner Time(28) 1 5 6 2 3 4 10 8 4 4 1 1 1 2
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Table D.5: The PPV of predicting missing set.

Name Length
Cylo

Fold

Dot

Knot

DotK

not-K

HotK

nots-cc

HotK

nots-dp

HotK

nots-re

IP

knot

MC-F

old

McG

enus

McQ

Fold

pK

iss

vsfo

ld5

pknots

RG-M

pknots

RG-F

pkn

ots

3JYX_5 3170 0.26 0.238 0.28

3KIY_A 2848 0.417 0.389 0.681

2WDL_A 2807 0.409 0.38 0.702

3J20_2 1495 0.513 0.532 0.657

3ZEX_B 1465 0.289 0.294 0.348

PKB192 1248 0.021 0.021 0.02 0.022 0.0 0.0

3J2C_N 927 0.507 0.443 0.7 0.368 0.584 0.561

PKB64 920 0.0 0.0 0.0 0.019 0.0 0.0 0.01

PKB239 412 0.165 0.102 0.096 0.087 0.087 0.087 0.096 0.031 0.07 0.085 0.0 0.0

3IZ4_A 377 0.214 0.538 0.538 0.5 0.5 0.5 0.747 0.386 0.44 0.3 0.519 0.544

PKB149 351 0.083 0.051 0.049 0.222 0.222 0.222 0.278 0.198 0.067 0.143 0.226 0.157

3IYQ_A 349 0.132 0.27 0.27 0.15 0.15 0.15 0.196 0.297 0.138 0.174 0.153 0.158

PKB193 341 0.064 0.208 0.208 0.167 0.167 0.167 0.17 0.202 0.184 0.061 0.165 0.165

PKB129 313 0.225 0.174 0.167 0.176 0.176 0.176 0.198 0.171 0.188 0.071 0.178 0.178

PKB208 237 0.111 0.175 0.175 0.237 0.192 0.301 0.237 0.31 0.237 0.056 0.179 0.237

PKB209 234 0.0 0.237 0.1 0.118 0.118 0.118 0.256 0.102 0.369 0.0 0.118 0.0

PKB171 224 0.306 0.264 0.312 0.25 0.25 0.257 0.261 0.304 0.32 0.164 0.239 0.239
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Table D.5 – Continued From Previous Page

Name Length
Cylo

Fold

Dot

Knot

DotK

not-K

HotK

nots-cc

HotK

nots-dp

HotK

nots-re

IP

knot

MC-F

old

McG

enus

McQ

Fold

pK

iss

vsfo

ld5

pknots

RG-M

pknots

RG-F

pkn

ots

PKB77 219 0.132 0.103 0.103 0.206 0.206 0.206 0.212 0.253 0.2 0.109 0.206 0.194

PKB150 212 0.1 0.083 0.077 0.078 0.078 0.078 0.18 0.0 0.188 0.0 0.071 0.15 0.209

PKB181 207 0.242 0.134 0.134 0.118 0.118 0.118 0.214 0.247 0.145 0.27 0.119 0.138 0.169

PKB354 190 0.179 0.217 0.217 0.206 0.292 0.206 0.255 0.2 0.146 0.117 0.132 0.197 0.197 0.344

PKB358 190 0.0 0.228 0.228 0.232 0.232 0.22 0.302 0.22 0.228 0.236 0.0 0.22 0.22 0.097

PKB324 181 0.62 0.852 0.852 0.81 0.81 0.929 0.979 0.807 0.82 0.925 0.432 0.878 0.878 0.781

PKB323 180 0.5 0.877 0.877 0.667 0.938 0.938 0.944 0.81 0.524 0.898 0.732 0.95 0.95 0.843

3ZEX_C 169 0.233 0.277 0.277 0.189 0.0 0.189 0.556 0.071 0.286 0.232 0.289 0.208 0.182 0.069

3PDR_A 161 0.851 0.92 0.92 0.784 0.784 0.784 0.9 0.692 0.816 0.902 0.711 0.865 0.811 0.627

PKB357 160 0.326 0.327 0.327 0.392 0.392 0.392 0.35 0.364 0.378 0.435 0.0 0.34 0.269 0.34

Average PPV 0.236 0.313 0.305 0.279 0.301 0.318 0.398 0.298 0.279 0.535 0.196 0.292 0.284 0.387

Winner Time(28) 2 2 3 0 0 0 12 3 2 1 1 1 1 2
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Table D.6: The MCC of predicting missing set.

Name Length
Cylo

Fold

Dot

Knot

DotK

not-K

HotK

nots-cc

HotK

nots-dp

HotK

nots-re

IP

knot

MC-F

old

McG

enus

McQ

Fold

pK

iss

vsfo

ld5

pknots

RG-M

pknots

RG-F

pkn

ots

3JYX_5 3170 0.368 0.337 0.364

3KIY_A 2848 0.436 0.416 0.677

2WDL_A 2807 0.425 0.399 0.688

3J20_2 1495 0.545 0.573 0.7

3ZEX_B 1465 0.324 0.333 0.309

PKB192 1248 0.104 0.104 0.102 0.109 -0.0 -0.0

3J2C_N 927 0.548 0.474 0.724 0.39 0.635 0.610

PKB64 920 -0.0 -0.0 -0.0 0.108 -0.0 -0.0 0.062

PKB239 412 0.302 0.202 0.197 0.186 0.186 0.186 0.156 0.065 0.133 0.176 -0.002 -0.002

3IZ4_A 377 0.215 0.562 0.562 0.546 0.546 0.546 0.746 0.444 0.449 0.32 0.546 0.594

PKB149 351 0.133 0.087 0.085 0.407 0.407 0.407 0.465 0.368 0.119 0.248 0.411 0.278

3IYQ_A 349 0.174 0.376 0.376 0.221 0.221 0.221 0.275 0.449 0.205 0.252 0.223 0.234

PKB193 341 0.111 0.38 0.38 0.306 0.306 0.306 0.29 0.392 0.33 0.108 0.304 0.304

PKB129 313 0.428 0.354 0.347 0.379 0.379 0.379 0.423 0.373 0.39 0.138 0.381 0.381

PKB208 237 0.167 0.298 0.298 0.395 0.313 0.526 0.395 0.556 0.406 0.088 0.302 0.395

PKB209 234 -0.004 0.395 0.158 0.195 0.195 0.195 0.434 0.181 0.571 -0.004 0.195 -0.005

PKB171 224 0.491 0.455 0.557 0.443 0.443 0.449 0.44 0.55 0.564 0.259 0.41 0.41
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Table D.6 – Continued From Previous Page

Name Length
Cylo

Fold

Dot

Knot

DotK

not-K

HotK

nots-cc

HotK

nots-dp

HotK

nots-re

IP

knot

MC-F

old

McG

enus

McQ

Fold

pK

iss

vsfo

ld5

pknots

RG-M

pknots

RG-F

pkn

ots

PKB77 219 0.212 0.187 0.187 0.377 0.377 0.377 0.383 0.489 0.344 0.193 0.377 0.367

PKB150 212 0.163 0.149 0.142 0.144 0.144 0.144 0.297 -0.005 0.304 -0.004 0.122 0.271 0.401

PKB181 207 0.404 0.231 0.231 0.203 0.203 0.203 0.339 0.472 0.241 0.455 0.205 0.235 0.301

PKB354 190 0.264 0.332 0.332 0.324 0.469 0.324 0.361 0.319 0.198 0.176 0.188 0.316 0.316 0.548

PKB358 190 -0.005 0.348 0.348 0.351 0.351 0.342 0.402 0.342 0.348 0.355 -0.005 0.342 0.342 0.151

PKB324 181 0.572 0.82 0.82 0.808 0.808 0.912 0.88 0.798 0.759 0.883 0.371 0.805 0.805 0.819

PKB323 180 0.455 0.869 0.869 0.632 0.922 0.922 0.853 0.757 0.507 0.848 0.671 0.905 0.905 0.867

3ZEX_C 169 0.278 0.348 0.348 0.25 -0.007 0.25 0.435 0.092 0.31 0.318 0.356 0.263 0.245 0.091

3PDR_A 161 0.823 0.919 0.919 0.79 0.79 0.79 0.899 0.703 0.806 0.91 0.671 0.881 0.833 0.63

PKB357 160 0.423 0.454 0.454 0.557 0.557 0.557 0.439 0.536 0.457 0.587 -0.007 0.463 0.384 0.491

Average MCC 0.295 0.389 0.379 0.376 0.401 0.423 0.466 0.415 0.361 0.582 0.235 0.367 0.362 0.477

Winner Time(28) 2 2 2 0 1 2 9 5 3 1 0 0 0 2
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