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Abstract

Lots of researches convey the importance of the RNA molecules, as they play vital roles in many molecular procedures. And it is commonly believed that the structures of the RNA molecules hold the key to the discovery of their functions.

During the investigation of RNA structures, the researchers are dependent on the bioinformatical methods increasingly. Many in silico methods of predicting RNA secondary structures have emerged in this big wave, including some ones which are capable of predicting pseudoknots, a particular type of RNA secondary structures.

The purpose of this dissertation is to try to compare the state-of-the-art methods predicting pseudoknots, and offer the colleagues some insights into how to choose a practical method for the given single sequence. In fact, lots of efforts have been done into the prediction of RNA secondary structures including pseudoknots during the last decades, contributing to many programs in this field. Some challenging questions are raised consequently. How about the performance of each method, especially on a particular class of RNA sequences? What are their advantages and disadvantages? What can we benefit from the contemporary methods if we want to develop new ones? This dissertation holds the confidence in the investigation of the answers. This dissertation carries out quite many comparisons of the performance of predicting RNA pseudoknots by the available methods. One main part focuses on the prediction of frameshifting signals by two methods principally. The second main part focuses on the prediction of pseudoknots which participate in much more general molecular activities.

In detail, the second part of work includes 414 pseudoknots, from both the Pseudobase and the Protein Data Bank, and 15 methods including 3 exact methiii ods and 12 heuristic ones. Specifically, three main categories of complexity measurements are introduced, which further divide the 414 pseudoknots into a series of subclasses respectively.

The comparisons are carried out by comparing the predictions of each method based on the entire 414 pseudoknots, and the subsets which are classified by both the complexity measurements and the length, RNA type and organism of the pseudoknots.

The result shows that the pseudoknots in nature hold a relatively low complexity in all measurements. And the performance of contemporary methods varies from subclass to subclass, but decreases consistently as the complexity of pseudoknots increases. More generally, the heuristic methods globally outperform the exact ones. And the susceptible assessment results are dependent strongly on the quality of the reference structures and the evaluation system. Last but not least, this part of work is provided as an on-line benchmark for the bioinformatics community.

Résumé

De nombreuses recherches ont constaté l'importance des molécules d'ARN, car ils jouent un rôle vital dans beaucoup de procédures moléculaires. Et il est accepté généralement que les structures des molécules d'ARN sont la clé de la découverte de leurs fonctions.

Au cours de l'enquête de structures d'ARN, les chercheurs dépendent des méthodes bioinformatiques de plus en plus. Beaucoup de méthodes in silico de prédiction des structures secondaires d'ARN ont émergé dans cette grosse vague, y compris certains qui sont capables de prédire pseudo-noeuds, un type particulier de structures secondaires d'ARN.

Le but de ce travail est d'essayer de comparer les méthodes de l'état de l'art pour prédiction de pseudo-noeud, et offrir aux collègues des idées sur le choix d'une méthode pratique pour la seule séquence donnée. En fait, beaucoup d'efforts ont été fait dans la prédiction des structures secondaires d'ARN parmi lesquelles le pseudo-noeud les dernières décennies, contribuant à de nombreux programmes dans ce domaine. Certaines enjeux sont soulevées conséquemment. Comment est-elle la performance de chaque méthode, en particulier sur une classe de séquences d'ARN particulière? Quels sont leurs pour et contre? Que pout-on profiter des méthodes contemporaines si on veut développer de nouvelles? Cette thèse a la confiance dans l'enquÃłte sur les réponses.

Cette thèse porte sur très nombreuses comparaisons de la performance de prédire pseudo-noeuds d'ARN par les méthodes disponibles. Une partie principale se concentre sur la prédiction de signaux de déphasage par deux méthodes principalement. La deuxième partie principale se concentre sur la prédiction de pseudo-noeuds qui participent à des activités moléculaires beaucoup plus générale.

Dans le détail, la deuxième partie du travail comprend 414 pseudo-noeuds de v Pseudobase et de la Protein Data Bank, ainsi que 15 méthodes dont 3 méthodes exactes et 12 heuristiques. Plus précisément, trois grandes catégories de mesures complexes sont introduites, qui divisent encore les 414 pseudo-noeuds en une série de sous-classes respectivement.

Les comparaisons se passent par comparer les prédictions de chaque méthode basée sur l'ensemble des 414 pseudo-noeuds, et les sous-ensembles qui sont classés par les deux mesures complexes et la longueur, le type de l'ARN et de l'organisme des pseudo-noeuds.

Le résultat montre que les pseudo-noeuds portent une complexité relativement faible dans toutes les mesures. Et la performance des méthodes modernes varie de sous-classe à l'autre, mais diminue constamment lors que la complexité de pseudonoeuds augmente. Plus généralement, les méthodes heuristiques sont supérieurs globalement à celles exacts. Et les résultats de l'évaluation sensibles sont dépendants fortement de la qualité de structure de référence et le système d'évaluation.

Enfin, cette partie du travail est fourni comme une référence en ligne pour la communauté bioinformatique. The repertoire of pseudoknots includes the participation in more general molecular activities. These versatile motifs are publicly accessible via the PseudoBase [START_REF] Van Batenburg | PseudoBase: A database with RNA pseudoknots[END_REF], a particular database for pseudoknots, and the Protein Data Bank (PDB) [START_REF] Berman | The Protein Data Bank[END_REF], a database with some entries containing pseudoknots. The pseudoknots from both provenances are well anatomized in this dissertation, including their classification in accordance to several measurements of complexity hierarchically.

Based on the entries from the two databases, a series of comparisons are carried out to verify the flexibility of the contemporary methods in predicting the pseudoknots. The evaluation of performance of prediction will be performed from the perspectives of the characteristics of both the pseudoknots and the prediction methods. In other words, the performance of prediction is revealed from the evaluation of sub-collections of predictions which are separated in accordance to the length of the sequences, the complexities of the pseudoknots, the mechanism of 1 the prediction methods etc.

In detail, the dissertation is organized as follows.

Chapter 2 is a brief introduction about the background of RNAs and two types of RNA secondary structures, the standard pseudoknot-free secondary structures and the pseudoknots. Couples of RNA file formats employed in bioinformatics are introduced as well, which encompass both the sequential and structural information of the given RNA. The pseudoknot pattern and the linear graphical representation of the pseudoknots are introduced in this chapter, which two serve as the principal demonstration of the pseudoknots in the following chapters.

Chapter 3 is a general description of the state-of-the-art researches on the prediction of RNA secondary structures. Predicting RNA secondary structures can take advantage of the comparative methods, with the assistance of sequence or structural alignment, but this dissertation focuses on the methods predicting RNA secondary structure from a single given sequence. The methods may employ the mechanisms of minimizing the free energy of the RNA folding, maximizing the number of base pairs, calculating the partition functions and probability of base pairs, or some heuristic strategies to detect a best secondary structure in the defined model. However it has been proved that predicting an RNA secondary structure containing arbitrary pseudoknots is NP-hard. Consequently, each method that can perform the prediction in polynomial time has different levels of compromise between the computational cost and agreeable performance, such as the pseudoknot types that are recognized. On the other hand, heuristic methods may remedy the restriction on the types and the lengths of pseudoknots that can be detected by the particular searching model, but with a sacrifice on the optimality of the detection.

Chapter 4 describes a cooperative work of detecting the -1 programmed ribosomal frameshifting (-1 PRF) signals. The ribosomal frameshiftings are one classical recoding event occurring in the regulation of post transcription. A frameshifting signal contains two primary components, the slippery sequence and the downstream secondary structure as a stimulator. The pseudoknot is declared to promote a frameshifting more efficiently than the standard stem-loop secondary structure, especially in the viruses [Brierley, 1995;[START_REF] Brierley | Viral RNA pseudoknots: versatile motifs in gene expression and replication[END_REF]. Several algorithms detecting the frameshifting signals, and the comparison of their performance of prediction are introduced. Particularly, as a significant part of the comparisons, Orphea [START_REF] Brégeon | In silico selection and in vivo characterization of synthetic -1 ribosomal frameshift sequences. submitted. 1995. Ribosomal frameshifting on viral RNAs[END_REF][START_REF] Forest | Modélisation et détection automatique de sites de décalage de cadre en -1 dans les génomes eucaryotes[END_REF], a software developed by the LRI and IGM groups, and KnotInFrame [START_REF] Theis | KnotInFrame: prediction of -1 ribosomal frameshift events[END_REF], a pipeline for detect- The pseudoknots involved in the frameshifting recoding events are a subset of the pseudoknot family. Chapters 5, 6 and 7 illustrates the study of much more general pseudoknots and the prediction methods. The study is carried out in two main categories. First, a set of classifications of the RNA pseudoknots are introduced, covering the physical interactions, the algorithmic accessibilities and the conformational characteristics. Then, a benchmark of predicting pseudoknots by the state-of-the-art methods is shown. The predictions are evaluated with the criteria of the sensitivity, the positive predictive value (PPV) and the Matthews correlation coefficient (MCC), in a variety of the separated sub-collections of pseudoknots which are divided with respect to the lengths and complexities of the pseudoknots, the RNA families they belong to etc. Additionally, the general performance of the exact methods and the heuristic methods, will be compared as well. The benchmark can be expected as a database of the knowledges which are learned from the anatomization of the pseudoknots in hand and the predictions based on them by the state-of-the-art capable methods. The knowledges or experiences obtained cater to the motivation of the benchmark, which is at the service of giving a hand to the users who are interested in the prediction of RNA pseudoknots in silico, helping or guiding them to accomplish the mission of how to predict a plausible pseudoknot from the given RNA sequence?

In practice, Chapter 5 introduces the preparation part of this benchmark. It covers the motivation of this study, the dataset of pseudoknots, three pseudoknot complexity measures which classify the dataset hierarchically, the prediction methods, and the evaluation parameters. Chapter 6 shows the results of this benchmark. It includes both the classification of pseudoknots and the prediction of pseudoknots by the considered methods. And the web development of 3 the benchmark is introduced next, which allows the results being available to the community on-line. Chapter 7 discusses the results, and concludes the benefits and lessons that are obtained from this study.

The closing chapter, Chapter 8 summarizes the dissertation by the concluding remarks of the previous chapters, and proposes the perspectives of the future work.

Chapter 2 Background 2.1 RNA and Structures

RNA

A ribonucleic acid (RNA) is a chain of ribonucleotides linked together by covalent chemical bonds, with each nucleotide containing a ribose sugar, a phosphate molecule, and one of the four nitrogenous bases: adenine(A), cytosine(C), guanine(G) or uracil(U) attached to the ribose. RNA is an ubiquitous family of large biological molecules that perform multiple vital roles in the coding, decoding, regulation, and expression of genes.

In the classical view of the so-called central dogma of biology, the messenger RNAs (mRNA), also referred to as the coding RNAs, serve as the template of the synthesis of a particular protein with the coded genetic information transcribed from the deoxyribonucleic acid(DNA) [START_REF] Crick | Central dogma of molecular biology[END_REF].

The RNAs that do not encode a protein are termed as the non-coding RNA (ncRNA). More and more researches convey that the non-coding RNA molecules are critical components of transport, transcriptional and post-transcriptional regulation, chromosome replication, RNA processing and modification, mechanism of some diseases and other fundamental biological functions [START_REF] Mattick | Non-coding RNA[END_REF]]. In the domain of RNA genomics of ribonomics, the efforts are devoted to find the determination of the physiological roles of RNA structures [START_REF] Bourdeau | The distribution of RNA motifs in natural sequences[END_REF].

RNA Structures

In the RNA world, much of the primary sequence is unimportant to function as long as the conformation and overall stability of the structure is maintained [START_REF] Brierley | RNA pseudoknots and the regulation of protein synthesis[END_REF]. And it is illustrated that the structural space is vastly smaller than the nucleotide sequence space [START_REF] Gan | Exploring the repertoire of RNA secondary motifs using graph theory; implications for RNA design[END_REF][START_REF] Haslinger | RNA structures with pseudo-knots: Graph-theoretical, combinatorial, and statistical properties[END_REF]. This means that there are a number 4 𝑛 of RNA sequences of length 𝑛 theoretically, and the number of secondary structures without isolated base pairs is significantly smaller than 2 𝑛 [START_REF] Grüner | Analysis of rna sequence structure maps by exhaustive enumeration i. neutral networks[END_REF][START_REF] Haslinger | RNA structures with pseudo-knots: Graph-theoretical, combinatorial, and statistical properties[END_REF]. This point of view suggests a way to survey the function of the RNA molecules, through the window of structures.

The first level of the organization of RNA structures, the primary structure, is the sequence of bases of the RNA chain that are attached to the sugar-phosphate backbone, and it is determined experimentally [START_REF] Schmitt | Linear trees and RNA secondary structure[END_REF][START_REF] Westhof | RNA tertiary structure[END_REF]].

An RNA chain bends and twines about itself [START_REF] Zuker | RNA secondary structures and their prediction[END_REF]. Bases form chemical bonds, hydrogen bonds, with their proximal complementary neighbors, which are characterized as base pairs: two standard or canonical Watson-Crick base pairs of A with U and G with C, as well as a wobble base pair of G with U. This collection of base pairs is referred to as classical or regular secondary structure [START_REF] Leontis | Geometric nomenclature and classification of RNA base pairs[END_REF].

Besides the wobble pair, a wide variety of the non-Watson-Crick pairs, involving 30-40% of bases, contribute to the tertiary structure of an RNA superiorly, which organizes the loops and distortions folded up from the secondary structure precisely in space. The three-dimensional arrangement of the atoms in the tertiary structure can be decomposed into a collection of spatial interactions, some of them being promoted by spatial motifs that are held together by pairwise interactions. The tertiary structure is the level of conformation relevant for the biochemical function of the structured RNA molecule. [START_REF] Tinoco | How RNA folds[END_REF][START_REF] Westhof | RNA tertiary structure[END_REF][START_REF] Zuker | RNA secondary structures and their prediction[END_REF] Tertiary RNA-RNA and quaternary RNA-protein interactions are mediated by RNA motifs, defined as recurrent and ordered arrays of non-Watson-Crick basepairs [START_REF] Leontis | The annotation of RNA motifs[END_REF]. the secondary structure is visualized by VARNA [START_REF] Darty | VARNA: Interactive drawing and editing of the RNA secondary structure[END_REF], the tertiary structure is downloaded from the PDB website. During the last decades, lots of efforts have been spent on investigating the full spatial functional conformations, the tertiary structures, with a variety of experimental techniques, such as X-ray crystallography and nuclear magnetic resonance(NMR). However, since they are extremely costly and time consuming, an alternative avenue which takes advantages of the bioinformatic methods is desired complementarily.

On the other hand, the RNA structure is declared to be hierarchical and its folding is sequential [START_REF] Tinoco | How RNA folds[END_REF] during the investigation of the tertiary structure. This survey [START_REF] Tinoco | How RNA folds[END_REF] implies that the information in the sequence flows sequentially, first to the secondary folding and then to the tertiary structure, since some secondary structures are found to be present in the tertiary structure. The folding of RNA molecule is concluded as that the primary sequence determines the secondary structure which, in turn, determines its tertiary folding, whose formation alters only minimally the secondary structure. Meanwhile, the secondary structure is more stable than the tertiary folding and can exist and be stable independently of its tertiary folding, since the energies involved in the formation of secondary structure are larger than those involved in the tertiary interactions.

Thanks to these hypotheses, one of the most contemporarily prevalent investigations of the RNA functions increasingly focuses on the secondary structure characterization in the bioinformatic fashion, such as the theoretical prediction with the computational assistance, which provides an attractive alternative to the empirical discovery of RNA secondary structure. Computational prediction of the RNA secondary structures is the main interest of this dissertation and will be elaborated in detail in the next chapters.

RNA Secondary Structures

The secondary level of RNA structure identifies both the canonically basepaired regions as helix stems, and non-paired regions as loops. [START_REF] Hendrix | RNA structural motifs: building blocks of a modular biomolecule[END_REF] 

Preliminaries

From a computer science point of view, an RNA sequence 𝑆, composed of 𝑁 nucleotides, can be represented as a string over the base alphabet {A,C,G,U}: 𝑆 = 𝑆 1 𝑆 2 𝑆 3 ...𝑆 𝑛 , where the sequence is numbered from 1 to 𝑛 from the 5' terminus to the 3' terminus, with the 𝑆 𝑖 denoting the base corresponding to the 𝑖th position in 𝑆.

Normally, we may put more attention to the integers of positions, rather than the composition of the RNA sequence in the context of secondary structure. An RNA sequence 𝑆 can be notated as a string of [1, 𝑛]. And in such case of prediction issues, we often focus on a partial sequence, which is termed as fragment. A fragment [𝑖, 𝑗] refers to the substring of 𝑆 from 𝑖 to 𝑗.

Two complementary bases 𝑖 and 𝑗 may form a base pair (𝑖, 𝑗). Each such pair of integers represents the pairing of the 𝑖th nucleotide in 𝑆 with the 𝑗th one.

Normally, an hairpin constraint [START_REF] Jiang | K-partite RNA secondary structures[END_REF] that 𝑗 -𝑖 > 3 is taken into account, indicating that there are at least three other nucleotides in the sequence between 𝑖 and 𝑗.

Given two base pairs (𝑖, 𝑗) and (𝑘, 𝑙), with 𝑖 < 𝑗 and 𝑘 < 𝑙, they can be:

• Nested if either 𝑖 < 𝑘 < 𝑙 < 𝑗 or 𝑘 < 𝑖 < 𝑗 < 𝑙.

• Sequential if either 𝑖 < 𝑗 < 𝑘 < 𝑙 or 𝑘 < 𝑙 < 𝑖 < 𝑗. Two sequential base pairs are referred to as two independent structural elements in this dissertation unless otherwise noted.

• Crossing or overlapping if either 𝑖 < 𝑘 < 𝑗 < 𝑙 or 𝑘 < 𝑖 < 𝑙 < 𝑗.

The consecution of two base pairs is a special case of the nesting, if either 𝑘 = 𝑖 + 1 and 𝑙 = 𝑗 -1 or 𝑖 = 𝑘 + 1 and 𝑗 = 𝑙 -1. Two consecutive base pairs form a base pair stacking.

An RNA secondary structure is an union of disjoint base pairs, where each base participates in at most one base pair. A secondary structure is standard or pseudoknot-free if all the base pairs in the structure are either nested or sequential, which are referred to as the consistency of the base pairs in [START_REF] Stadler | RNA structures with pseudo-knots-graph-theoretical and combinatorial properties[END_REF]. A secondary structure contains a pseudoknot if at least two base pairs are crossing.

Standard Secondary Structures

The standard secondary structure corresponds to a network of structural elements such as hairpin loops, interior loops, bulges, multi-loops which are also referred to as junctions [START_REF] Gan | Exploring the repertoire of RNA secondary motifs using graph theory; implications for RNA design[END_REF][START_REF] Hendrix | RNA structural motifs: building blocks of a modular biomolecule[END_REF] and helical stems.

A concise definition of the elements is as follows [START_REF] Andronescu | Algorithms for testing that sets of DNA words concatenate without secondary structure[END_REF][START_REF] Spirollari | Predicting consensus structures for RNA alignments via pseudo-energy minimization[END_REF]:

• Hairpin loop: a loop which contains exactly one base pair.

• Interior loop: a loop which contains exactly two base pairs, referred to as internal loop in some literatures.

only one side of the loop having one or several unpaired bases.

• Multi-loop: a loop which contains more than two base pairs.

• Helical stem or helix: a set of consecutive base pairs.

• External base: a unpaired base not contained in any loop. 

Structures With Pseudoknots

The first RNA secondary structure known as a pseudoknot, a hairpin-type (H-type) pseudoknot, was found in the turnip yellow mosaic virus (TYMV) [START_REF] Rietveld | The tRNA-like structure at the 3' terminus of turnip yellow mosaic virus RNA. differences and similarities with canonical tRNA[END_REF]. The H-type pseudoknot is formed when the single-stranded region of a hairpin loop base pairs with complementary bases outside that loop.

The formation of H-type pseudoknots is known as the simplest way of forming a pseudoknot [START_REF] Ten Dam | Structural and functional aspects of RNA pseudoknots[END_REF], and consequently ensuring them as the best characterized pseudoknots.

The base pairs in a pseudoknot break the consecutive nesting rule in the stan- More generally, the unpaired single-stranded loops in Figure 2.3(a), Loop 1, Loop 2 and Loop 3 can harbor local secondary structure themselves, forming a recursive H-type pseudoknot or more complex one [START_REF] Akutsu | Dynamic programming algorithms for RNA secondary structure prediction with pseudoknots[END_REF][START_REF] Ten Dam | Structural and functional aspects of RNA pseudoknots[END_REF]. Particularly, the beginning and ending loops of the pseudoknot can harbor a substructure locally as well, which is referred to as a recursive pseudoknot in this dissertation and will be elaborated more in Chapter 5. In contrast, the 3D conformation may change in the cases where one of the three loops reduces to the length of zero nucleotide. For example, in the case of the absence of Loop 2, the two stems become adjacent and may be stacked coaxially to form a quasicontinuous double helix.

Another prevalent type of pseudoknot is the kissing hairpin, formed when the unpaired bases in a hairpin loop base pair with complementary unpaired bases in another hairpin loop [START_REF] Brunel | RNA loop-loop interactions as dynamic functional motifs[END_REF], as shown in Lots of researches reveal that pseudoknots play vital roles in a variety of molecular processes, especially in viral genomes, due to the variation of structural diversity caused by the length of the loops and stems, as well as the type of interactions between them [START_REF] Brierley | Viral RNA pseudoknots: versatile motifs in gene expression and replication[END_REF][START_REF] Staple | Pseudoknots: RNA structures with diverse functions[END_REF].

The functional versatility of pseudoknots includes: being involved in the recoding events such as programmed ribosomal frameshifting due to their more stable conformation than an equivalent hairpin, which will be introduced in detail in Chapter 4; offering binding sites for proteins or single-stranded loops of RNA; facilitating long-range interactions [START_REF] Brierley | Viral RNA pseudoknots: versatile motifs in gene expression and replication[END_REF]; maintaining the activity of telomerase [START_REF] Staple | Pseudoknots: RNA structures with diverse functions[END_REF]; stabilizing the compact tertiary structures;

switching the conformational states of the RNA [START_REF] Ten Dam | Structural and functional aspects of RNA pseudoknots[END_REF] and etc.

RNA Representations

From the perspective of computer scientists, some formal representations of the RNA secondary structures are desired. We can describe an RNA secondary structure, with or without pseudoknots, by some particular file formats and graphical representations. In the context of RNA pseudoknots, the pseudoknot pattern is quite useful to represent the crossing interactions inside the pseudoknotted conformation.

RNA File Formats

RNA file formats are designed so as to be able to hold the sequence data and other information about the sequence, such as the hierarchical structures.

As a preliminary, FASTA(.fasta) format is one of the most prevalent formats of sequence, and sometimes also referred to as the Pearson format, who is the author of the FASTA program [START_REF] Pearson | Improved tools for biological sequence comparison[END_REF]. The first line of a FASTA file, is a title consisting of the ID name of the sequence, starting with a '>'. Subsequent lines are composed of the sequence as a continuous string of characters from the 5' terminus to the 3' end.

The FASTA format is a well accepted type of the input for certain programs of predicting RNA secondary structures. However, on the other hand, the programs develop particular file formats for their output, representing both the sequence and the predicted structure.

Dot-Bracket

Dot-bracket format is also referred to as Dot Bracket Notation, which is employed by Vienna web server [START_REF] Hofacker | Vienna RNA secondary structure server[END_REF]. The dot-bracket notation is the dominant format of the secondary structures that is adopted in the following sections of this dissertation.

In this format, the sequence is provided in the first line from 5' to 3' end, and a secondary structure with corresponding positions is given in the second line,

where an unpaired base in the structure is denoted with a dot, and a base pair is denoted with a pair of opening and closing brackets.

In the standard RNA secondary structure, the base pairs are well nested, in which the opening bracket denotes the upstream 5' partner, and the closing bracket denotes the downstream 3' partner. The dot-bracket notation of 3IZF with chain C is shown in Figure 2.4(a).

However, when pseudoknots are allowed, more types of brackets are used to represent the non-nested knotted secondary structures. In the extended dot-bracket format, squared brackets, curly brackets and even alphabetical letters are employed to represent higher levels and more complicated interactions. The dot-bracket notation of 4JF2 with chain A, a typical H-type pseudoknot, is shown in The first column is the numeric positions of the sequence from 5' to 3' end, counting from 1. The second column stores the information of bases, letter by letter. The third column is the numeric position of the pairing partner of the base if it is paired, or 0 if unpaired. A part of BPSEQ file of 3IZF with chain C is shown in Figure 2.5(a).

CT

CT(.ct) format is also referred to as connect format, which has been introduced by Zuker's mfold program [START_REF] Zuker | Mfold web server for nucleic acid folding and hybridization prediction[END_REF]. It always stores the information of the secondary structure in six columns. The first column is the numeric positions of the sequence from 5' to 3' end, counting from 1. The third, fourth and sixth columns repeat the numeric positions again, counting from 0, 2 and 1. The second column is the sequence of bases, letter by letter. And the fifth column is the numeric positions of the pairing partner of the base if it is paired, or 0 if unpaired.

There are exceptions of the numeric value of the third and fourth columns. For each sequence, the third column is 0 for the first base of the sequence and the fourth column is 0 for the last base. This is particularly useful to distinguish the boundaries of several sequences explicitly when they are provided in one CT file.

A part of CT file of 3IZF with chain C is shown in Figure 2.
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Others

There still are some formats of RNA files that store the information of RNA tertiary structure, in addition to the sequence and secondary structure.

PDB format [wwPDB, 2014]: This is an standard representation provided by the Protein Data Bank [START_REF] Berman | The Protein Data Bank[END_REF] for macromolecular structure data derived from X-ray diffraction and NMR studies. A PDB file stores various data concerning the three-dimensional structure of a molecule, the experiment carried for structure determination, the authors, etc..

RNAML format [START_REF] Waugh | RNAML: a standard syntax for exchanging RNA information[END_REF]: This is an XML format that has been designed specifically to easily express data on RNA sequence and structure, allowing for the storage and the exchange of information about RNA sequence, secondary and tertiary structures. RNAML permits the description of more information about the base pairs, base triples, and pseudoknots etc.

Additionally, several RNA file formats are in existence for the purpose of mul-tiple sequence alignment and other bioinformatical studies [course, 2014], such as Aln format, Stockholm format. They are beyond the scope of this dissertation.

Graphical Representations

Despite the diverse files that store the information of RNA structures, graphical representations are desired in existence for an eyeball and more intuitive comparison. Drawing an RNA secondary structure in a two-dimensional way is more aesthetically pleasing, easier to grasp and evaluate, making it the prevalent visualization of RNA secondary structures [START_REF] De Rijk | RnaViz, a program for the visualisation of RNA secondary structure[END_REF]].

This part is going to introduce some classical graphical representations. They are the planar graph representation, the linear representation, and the circular representation, where the former two representations are massively preferred in this dissertation. Specifically, VARNA [START_REF] Darty | VARNA: Interactive drawing and editing of the RNA secondary structure[END_REF] utilizes all these three representations to visualize an RNA secondary structure, suggesting it as the main visualization tool of the RNA secondary structures in this dissertation.

Planar Graph Representations

The planar graph representation is a conventional drawing of RNA secondary structures. The planar representation is also referred to as rod-and-loop representation in [START_REF] Rødland | Pseudoknots in RNA secondary structures: representation, enumeration, and prevalence[END_REF]. A standard secondary structure and a pseudoknot represented in the planar graphical way are shown in Figure 2.6.

Linear Representations

An RNA secondary structure can be represented in a linear way, which is also referred to as bond representation in [START_REF] Rødland | Pseudoknots in RNA secondary structures: representation, enumeration, and prevalence[END_REF]. The linear representation is the dominant graphical representation in the following elaborations of RNA secondary structures.

In this representation, the RNA sequence is drawn as the backbone on a hor- There are still some graph theoretical methods to visualize an RNA secondary structure, such as the dual graphs [START_REF] Gan | Exploring the repertoire of RNA secondary motifs using graph theory; implications for RNA design[END_REF], which are available to represent both the pseudoknot-free structures and the pseudoknots. On the other hand, the RNA trees [START_REF] Fontana | Statistics of RNA secondary structures[END_REF][START_REF] Gan | Exploring the repertoire of RNA secondary motifs using graph theory; implications for RNA design[END_REF][START_REF] Kim | Graph applications to RNA structure and function[END_REF][START_REF] Schmitt | Linear trees and RNA secondary structure[END_REF][START_REF] Shapiro | An algorithm for comparing multiple RNA secondary structures[END_REF][START_REF] Zhang | Simple fast algorithms for the editing distance between trees and related problems[END_REF]] and the forest [START_REF] Hochsmann | Local similarity in RNA secondary structures[END_REF] are only capable to show the pseudoknot-free structures contrastively.

izontal

Pseudoknot Pattern

Aiming at demonstrating the crosswise interactions or overlaps between the stems in a given pseudoknot intuitively, the pseudoknot pattern is used prevalently, which is defined formally by [START_REF] Condon | Classifying RNA pseudoknotted structures[END_REF].

In the pseudoknot pattern representation, an even number of alphabetical letters is employed with two identical ones representing the base pairs. For example, an H-type pseudoknot has a pseudoknot pattern of ABAB, where two stems denoted as AA and BB cross each other. A kissing hairpin has a pattern of ABACBC,

where the stem denoted as BB connects the stems AA and CC but promote a global non-nested conformation at the same time.

This representation provides an easy-to-understand method for us to describe the interactions inside the pseudoknot, especially for some recursive and complex

pseudoknots. An example is the pseudotrefoil [START_REF] Rødland | Pseudoknots in RNA secondary structures: representation, enumeration, and prevalence[END_REF], which has the pattern of ABCABC revealing the mutual crosses between the stems. As a consequence, the pseudoknot pattern has an overwhelming superiority of representing the pseudoknots in this dissertation.

Chapter 3

Previous Work

This chapter principally introduces the research status of the RNA secondary structure prediction methods, given a single input sequence. It includes the methods predicting the pseudoknot-free RNA secondary structures, and the ones predicting RNA pseudoknots.

3.1 Approaches Predicting Pseudoknot-Free RNA

Secondary Structures

Minimizing Free Energy Approach

It has been proposed that a majority of RNAs exist naturally in their thermodynamically most stable conformations, with a minimum free energy [START_REF] Tinoco | How RNA folds[END_REF]. Similarly it has been declared that the lowest free energy structure is the most represented conformation at equilibrium [START_REF] Mathews | Revolutions in RNA secondary structure prediction[END_REF].

Such kind of theories vote the most popular method during the last decades, predicting an RNA secondary structure from a given sequence, as predicting a conformation with the minimum free energy (MFE). The calculated structures with higher free energies would correspond to less stable secondary structures [START_REF] Tinoco | How RNA folds[END_REF].

Introduction

Predicting an RNA secondary structure with MFE is to sum up all the energetic stabilities of each structural element, which are provided as thermodynamic parameters. The parameters are on the basis of experimentally derived free energy parameters for the base pairs, in an empirical nearest-neighbor model where the thermodynamic contributions are from both base pairing and base stacking. [START_REF] Mathews | Revolutions in RNA secondary structure prediction[END_REF][START_REF] Schroeder | Advances in RNA structure prediction from sequence: new tools for generating hypotheses about viral RNA structure-function relationships[END_REF] The calculation of the energetically preferable structure takes advantage of computer algorithms based on dynamic programming [START_REF] Mathews | Revolutions in RNA secondary structure prediction[END_REF], which implicitly check all possible secondary structures without generating the structures explicitly, and employ the thermodynamic free energy values as their scoring scheme.

[ [START_REF] Mathews | Revolutions in RNA secondary structure prediction[END_REF] describes how the two steps of dynamic programming algorithms work. In the step of fill, the lowest conformational free energy is determined for each possible sequence fragment starting with the shortest ones, and then for the longer fragments by using a recurrence formula. In the second traceback step, the MFE structure is computed with the lowest free energy calculated in the fill step.

The same process is utilized by some other approaches predicting pseudoknotfree secondary structures, such as the antecedent approach proposed by Nussinov et al. [START_REF] Nussinov | Fast algorithm for predicting the secondary structure of single-stranded RNA[END_REF] where the scoring scheme is to maximize the base pairs rather than to minimize the free energies.

Note that, the context-free grammar (CFG) formalism can be referred to as an alternative representation of recursions in the dynamic programming algorithms, and possibly with probabilities if the grammar is stochastic (SCFG).

Zuker & Stiegler (Z&S)'s Algorithm

A pioneering approach predicting MFE structures based on dynamic programming is the Z&S's algorithm [START_REF] Zuker | Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information[END_REF] The recursion relation used to fill the 𝑣𝑥(𝑖, 𝑗) is given by:

𝑣𝑥(𝑖, 𝑗) = 𝑚𝑖𝑛 (𝐸𝑉 1, 𝐸𝑉 2, 𝐸𝑉 3) (3.1)
where 𝐸𝑉 1 indicates the energy corresponding to a hairpin loop that is closed by the base pair (𝑖, 𝑗), 𝐸𝑉 2 indicates the energy corresponding to a stem, a bulge or an interior loop that is closed by the base pair (𝑖, 𝑗), and the 𝐸𝑉 3 indicates the energy corresponding to a multi-loop between 𝑖 and 𝑗, where the energy is split into the sum of two substructures, a bifurcation [START_REF] Zuker | Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information[END_REF]. The recursion of vx is shown in Figure 3.2, where contiguous nucleotides are indicated by explicit dots.

And the recursion relation used to fill the 𝑤𝑥(𝑖, 𝑗) is given by:

𝑤𝑥(𝑖, 𝑗) = 𝑚𝑖𝑛 (𝐸𝑊 1, 𝐸𝑊 2, 𝐸𝑊 3) (3.2)
where 

Extensions

Suboptimal structures are structures that are similar in score to the structure that is predicted to have the best score. In the case of minimizing free energy, the suboptimal structures are those that have low free energies, although higher than the MFE structure. It has been pointed out that the MFE structure may not be the true structure [START_REF] Ding | A partition function algorithm for nucleic acid secondary structure including pseudoknots[END_REF], and is often not a reasonable representative for the global ensemble of secondary structures, neither single structure can be, since the structures with low free energies provide more significant information than the MFE structure [START_REF] Mathews | Revolutions in RNA secondary structure prediction[END_REF].

On the other hand, some combinations of the MFE approach and additional information, and other strategies such as covariation, phylogeny, kinetics of folding, heuristic algorithms, comparative methods, application of Bayesian statistical inference, are utilized to narrow the distribution of the ensemble of all foldings, and improve the fidelity of predicting RNA secondary structures [START_REF] Ding | Statistical and Bayesian approaches to RNA secondary structure prediction[END_REF][START_REF] Zuker | Calculating nucleic acid secondary structure[END_REF].

However, the accuracy of predicting RNA secondary structures by free energy minimization is limited by the incompletion of the nearest-neighbor model, the unavailability of the equilibrium state of some secondary structures, and the multi-conformations of some RNA sequences [START_REF] Mathews | Revolutions in RNA secondary structure prediction[END_REF]Seetin and Mathews, 2012]. Consequently, other considerations and improvements are proposed alternatively.

Statistical Approaches

Statistics refers to the thermodynamic and statistical mechanics definitions based on a Boltzmann distribution [START_REF] Schroeder | Advances in RNA structure prediction from sequence: new tools for generating hypotheses about viral RNA structure-function relationships[END_REF].

Partition Function

A partition function is a quantity that encodes the statistical properties of a system in the thermodynamic equilibrium.

The partition function 𝑄 [START_REF] Mccaskill | The equilibrium partition function and base pair binding probabilities for RNA secondary structure[END_REF] is the sum over all admissible secondary structures S of the given sequence 𝐼:

𝑄 = ∑︁ 𝑆∈Ω 𝑒 -[𝐹 (𝑆) / 𝑘𝑇 ] (3.3)
where Ω is the set of all possible secondary structures for the given sequence, and 𝐹 (𝑆) is the free energy of the structure 𝑆 in equilibrium, and is assumed additive in terms of its loops. 𝐹 (𝑆) is also referred to as Δ𝐺 0 in other literatures such as [START_REF] Mathews | Prediction of RNA secondary structure by free energy minimization[END_REF], and as 𝐸(𝐼, 𝑆) in the literatures such as [START_REF] Ding | A partition function algorithm for nucleic acid secondary structure including pseudoknots[END_REF]. The number 𝑘 is the gas constant, and 𝑇 is the absolute temperature.

Given the partition function, the Boltzmann equilibrium probability of any structure 𝑆 can be calculated by:

𝑃 (𝑆) = 1 𝑄 𝑒 -[𝐹 (𝑆) / 𝑘𝑇 ] (3.4)
Typically, in the set of the sampled structures, the probability of any given base pair is the frequency of its occurrence in the global ensemble of secondary structures. The probability of a given base pair (𝑖, 𝑗) can be calculated by summing over all the equilibrium probabilities for the structures containing that chosen binding pair, and dividing by the partition function [START_REF] Mathews | Prediction of RNA secondary structure by free energy minimization[END_REF]:

𝑃 = 1 𝑄 ∑︁ 𝑆, 𝑠.𝑡.(𝑖,𝑗)∈𝑆 𝑒 -[𝐹 (𝑆) / 𝑘𝑇 ] (3.5)
The calculation of partition functions and base-pairing probabilities itself, however, does not determine secondary structures [START_REF] Ding | A partition function algorithm for nucleic acid secondary structure including pseudoknots[END_REF][START_REF] Mathews | Revolutions in RNA secondary structure prediction[END_REF]]. More efforts, such as RNAstructure [START_REF] Reuter | RNAstructure: software for RNA secondary structure prediction and analysis[END_REF],

have been made to combine the partition function calculations with the free energy minimization to annotate the predicted minimum free energy structure with base pair probabilities from the partition function [START_REF] Mathews | Prediction of RNA secondary structure by free energy minimization[END_REF].

Quite remarkably, the color annotation is employed to indicate the likelihood of the predicted base pairs and unpaired bases assuming the global structure in a fine-grained fashion [START_REF] Schroeder | Advances in RNA structure prediction from sequence: new tools for generating hypotheses about viral RNA structure-function relationships[END_REF].

Statistical Sampling

Based on the partition function, [START_REF] Ding | A partition function algorithm for nucleic acid secondary structure including pseudoknots[END_REF] proposes an approach to predict an RNA secondary structure by statistically sampling the structures from the Boltzmann equilibrium probability distribution of the secondary structures for a given RNA sequence. This algorithm incorporates comprehensive structural features and the thermodynamic parameters to generate a statistically representative secondary structure from the Boltzmann ensemble.

For an RNA sequence, the secondary structures in the Boltzmann ensemble are assigned with a Boltzmann equilibrium probability, which is calculated by Equation 3.4. The Boltzmann equilibrium probability distribution gives the probability for every structure, and therefore statistically characterizes the ensemble.

With the partition function 𝑄(1, 𝑛) available, the Boltzmann equilibrium probability for a secondary structure 𝑆 1𝑛 of sequence 𝐼 1𝑛 can then be computed. Under the Boltzmann model, 𝑆 1𝑛 is a random variable. When 𝐼 1𝑛 is also considered a random variable, the Boltzmann equilibrium probability is, in fact, a conditional probability of the secondary structure, given the sequence data:

𝑃 (𝑆 1𝑛 |𝐼 1𝑛 ) = 1 𝑄(1, 𝑛) 𝑒 -[𝐸(𝐼 1𝑛 ,𝑆 1𝑛 ) / 𝑘𝑇 ] (3.6)
where the symbols are consistent to the Equations 3.3 and 3.4. This is the scheme adopted for the secondary structure sampling algorithm described here. The sampling process is similar to the dynamic programming algorithms described above, but it differs in that base pairs and unpaired bases are randomly sampled with Boltzmann conditional probabilities, rather than selected by the minimum energy principle for the fragments. On the other hand, the most likely structure in a sample is the MFE structure as the probability of a structure decreases exponentially with the increasing free energy. In other words, the MFE structure has the largest sampling probability, because its Boltzmann probability is larger than that for any other structure.

Ensemble Centroid

In the sampled ensemble, [START_REF] Ding | A partition function algorithm for nucleic acid secondary structure including pseudoknots[END_REF]] also proposes that the Boltzmann ensemble can be efficiently represented by distinct structural clusters, with each cluster containing similar structures.

The advantage of clustering is to find the centroid structure, as the single most representative of the cluster. The centroid of any set of structures is defined as the structure that has the minimum total base-pairing distance, where the basepairing distance is the number of base pairs that differ between two structures. In other words, the centroid structure is the closest in similarity, to all the structures in the cluster. And the ensemble centroid is the centroid that best represents the entire collection of the structures sampled from the Boltzmann ensemble. [START_REF] Ding | RNA secondary structure prediction by centroids in a Boltzmann weighted ensemble[END_REF] 

Others

There still are some approaches to predict RNA secondary structures, such as the approach assembling a structure composed of the most probable base pairs with the maximum expected pair accuracy, which was pioneered by CONTRAfold [START_REF] Do | CONTRAfold: RNA secondary structure prediction without physicsbased models[END_REF]. The expected accuracy is calculated by summing over both the probability of base pairs and the probability of single-stranded bases. Alternatively, in the aspect of comparative sequence analysis, as shown in Figure 1 in [START_REF] Gardner | A comprehensive comparison of comparative RNA structure prediction approaches[END_REF], the approaches in this domain infer the secondary structures by determining canonical base pairs that are common among multiple homologous sequences. However, the comparative study is beyond the interest of this dissertation.

On the other hand, not all the approaches mentioned above are capable to predict pseudoknots, such as the statistical approaches based on the calculation of the partition functions [START_REF] Mccaskill | The equilibrium partition function and base pair binding probabilities for RNA secondary structure[END_REF]. The ones which are available to predict pseudoknots are elaborated in the following sections.

Approaches Predicting RNA Secondary Structures with Pseudoknots

Pseudoknots are a complex family of RNA secondary structures, whose nonnested characterization makes some of the approaches mentioned above unable to predict them. The problem of predicting RNA secondary structures including arbitrary pseudoknots, in realistic energy models, has been proved to be NPhard [START_REF] Akutsu | Dynamic programming algorithms for RNA secondary structure prediction with pseudoknots[END_REF]Lyngsø and Pedersen, 2000b;[START_REF] Sheikh | Impact of the energy model on the complexity of RNA folding with pseudoknots[END_REF]. Many approaches which are available to predict pseudoknots in polynomial time have different levels of trade-offs between the practical prediction of limited types of pseudoknots and reasonable computer cost. In other words, the approaches that are going to be introduced below consider generally a part of the pseudoknot family.

Exact Approaches

Exact approaches for RNA pseudoknots prediction prevalently consider the thermodynamic stability of the prediction, and/or the calculation of partition function, a maximum of base pairs etc., based on dynamic programming algorithms.

Dynamic programming is based on the observation that within optimal solutions there exist optimal solutions to smaller and self-contained subproblems.

However, when pseudoknots are allowed, the broken nesting of both the structure and the energy is not sufficient to define a self-contained subproblem for the considered fragment. Thus, to use a dynamic programming algorithm for pseudoknots, simplifying assumptions about the complexity of pseudoknots must be made, as well as more intricate recursions.

Several applications to predict pseudoknots with dynamic programming are the R&E's algorithm [START_REF] Rivas | A dynamic programming algorithm for RNA structure prediction including pseudoknots[END_REF], extended R&G's algorithm [START_REF] Reeder | Design, implementation and evaluation of a practical pseudoknot folding algorithm based on thermodynamics[END_REF], the Akutsu's algorithm [START_REF] Akutsu | Dynamic programming algorithms for RNA secondary structure prediction with pseudoknots[END_REF] and the L&P's algorithm [Lyngsø and Pedersen, 2000a]. All algorithms search for a structure with the optimal thermodynamic stability.

Rivas & Eddy (R&E)'s Algorithm

The R&E's algorithm, sometimes referred to as the corresponding program PKNOTS , finds an RNA structure with minimal energy using the standard RNA secondary structure thermodynamic model, which has been pioneered by the Z&S's algorithm [START_REF] Zuker | Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information[END_REF] for predicting the pseudoknot-free structures. The R&E's algorithm is augmented by a few pseudoknot-specific parameters that are not yet available in the standard folding parameters, and by coaxial stacking energies for both pseudoknotted and non-pseudoknotted structures. The computer time complexity of the R&E's algorithm is 𝑂(𝑛 6 ) and space complexity is 𝑂(𝑛 4 ) [START_REF] Rivas | A dynamic programming algorithm for RNA structure prediction including pseudoknots[END_REF].

The implementation of the algorithm is to allow the incorporation of four gap matrices to represent the crossing conformation of pseudoknots. The non-gap matrices, utilized in detecting pseudoknot-free structures in the Z&S's algorithm, are contained as a particular case of the gap matrices.

Each of the gap matrices in the R&E's algorithm can in turn be constructed iteratively by the other two of those matrices, which implies that the algorithm includes in its configuration space a large variety of knotted motifs, the R&E class of pseudoknots. More precisely, the gap matrices whx, vhx, yhx and zhx in the R&E's pseudoknot detecting algorithm are defined as:

• whx: the score of the best folding that connects fragments A non-gap matrix in the Z&S's algorithm can be obtained by combining two gap matrices in the R&E's algorithm together. In this aspect, the recursion of the pseudoknot detecting algorithm is an expansion in the number of gap matrices by adding one more case, which takes care of the crossing conformation, to the recursion of the pseudoknot-free structure detecting algorithm.

The recursion relation used to fill the 𝑣𝑥(𝑖, 𝑗) available to predict pseudoknots is given by:

𝑣𝑥(𝑖, 𝑗) = 𝑚𝑖𝑛 (𝐸𝑉 1, 𝐸𝑉 2, 𝐸𝑉 3, 𝐸𝑉 4) (3.7)
where 𝐸𝑉 1, 𝐸𝑉 2 and 𝐸𝑉 3 are identical to Equation 3 The algorithm can parse more complicated pseudoknots if more gap matrices are involved. But its consideration of four gap matrices is able to detect a majority of pseudoknots, both the planar pseudoknots and parts of non-planar pseudoknots, which are going to be elaborated in the classification of the pseudoknots in Section 5.3.2 and the result part of the benchmark in Section 6.1.

Analogues

There are several analogous approaches predicting pseudoknot in polynomialtime based on the dynamic programming algorithms. They adopt basically the same recurrence element with the R&E's algorithm, the MFE structure on a fragment of the RNA sequence with a region restricted yet to be unpaired. However, the recurrence relations of the analogous approaches are more restricted than the R&E's algorithm, making them detecting more limited types of pseudoknots, but with a lower algorithmic complexity. The Reeder & Giegerich (R&G)'s algorithm [START_REF] Reeder | Design, implementation and evaluation of a practical pseudoknot folding algorithm based on thermodynamics[END_REF] detects the MFE structure, by the canonization of search space of pseudoknots, and disallowing pseudoknots with more than two stems. The Akutsu's algorithm [START_REF] Akutsu | Dynamic programming algorithms for RNA secondary structure prediction with pseudoknots[END_REF] predicts the MFE pseudoknots which are composed of two stems. The stems are formed with the bases from three non-intersected regions of the given sequence. The Lyngso & Pederson (L&P)'s algorithm [Lyngsø and Pedersen, 2000a] The algorithms mentioned above take the given sequence as input, and search for the MFE structure in the search space under the respective models. In contrast, the Jabbari & Condon (J&C)'s algorithm [START_REF] Jabbari | HFold: RNA pseudoknotted secondary structure prediction using hierarchical folding[END_REF], known as HFold, requires a pseudoknot-free secondary structure as additional input to predict the MFE structure. In detail, the J&C's algorithm takes a pair of the given sequence 𝑆 and a pseudoknot-free secondary structure 𝐺 for 𝑆 as input. The J&C's algorithm secondary structure (More details about density-2 secondary structure are shown in Section 5.3.2) with 𝐺, such that the free energy of 𝐺 ∪ 𝐺 ′ is less than or equal to the free energy of 𝐺 ∪ 𝐺 ′′ , where 𝐺 ′′ takes over all pseudoknot-free secondary structures for 𝑆 with 𝐺 ′′ ̸ = 𝐺 ′ .

In conclusion, Table 3.1 shows the computational complexities of the exact algorithms mentioned above, in the order of increment of complexity, as well as the calculation models. The parameters used to predict pseudoknot-free (PKF)

structures are from the algorithm mfold [START_REF] Zuker | Mfold web server for nucleic acid folding and hybridization prediction[END_REF]. More details are shown in Section 6.1 of the classification of pseudoknots. 

Others

The efforts that have been made to predict the pseudoknots in silico are not exhaustively listed in this dissertation. There are still some examples.

Besides the thermodynamic minimization, calculation of partition functions, predicting RNA pseudoknots can also maximize the number of stacking pairs under the assumption that the stacking pairs are the only loops that stabilize the secondary structures. The algorithm makes use of a geometric visualization of the planarity of stacking pairs on a rectangular grid for the approximation algorithm of the planar pseudoknots, and combines multiple greedy strategies for the approximation algorithm of general pseudoknots [START_REF] Ieong | Predicting RNA secondary structures with arbitrary pseudoknots by maximizing the number of stacking pairs[END_REF].

Predicting RNA pseudoknots can use such graph theoretical approach as the method detecting the structure as a number of stem sets, assembled from conserved stems across 𝑘 sequences in topological order which are found by applying a maximum clique finding algorithm [START_REF] Ji | A graph theoretical approach for predicting common RNA secondary structure motifs including pseudoknots in unaligned sequences[END_REF].

As the computational complexity and detected pseudoknots restriction of the algorithms mentioned above, the performance of the exact algorithms is often impractical, especially for long sequences and for detecting the most general types of pseudoknots. Another dilemma for some algorithms predicting pseudoknots, which are based on the energy models, is that there is little experimentally determined thermodynamic parameters for pseudoknots, making their prediction not satisfactory even for short sequences. So the coming section is going to introduce the heuristic approaches used in predicting RNA pseudoknots.

Heuristic Approaches

If we agree to find structures that are not necessarily with the lowest free energy, then heuristics can be applied to search for structures with low energy.

Searching a partial structure space ensures that the heuristic approaches are practical in time, and are inherently much less restricted with respect to the complexity of pseudoknot models and underlying energy models, compared to the exact approaches. But the sacrifice of the optimality of the predicted structures by the heuristic methods is unable to guarantee that they have found the global 'optimal' structure. The output of the heuristic methods is the 'best' secondary structure under their searching models.

Classical Algorithms

A greedy search based on Monte-Carlo simulation is proposed by [START_REF] Bibliography Abrahams | Prediction of RNA secondary structure, including pseudoknotting, by computer simulation[END_REF]. It finds all possible stems for the given sequence, determines the free energies of their loops and base pairs, and iteratively checks the stems which will be added to the previously calculated structure with the maximum decrease of the free energy. Additionally, once a stem is added to the structure, it can not be removed in the next steps. The algorithm terminates when the MFE structure is A genetic algorithm proposed by [START_REF] Gultyaev | The computer simulation of RNA folding pathways using a genetic algorithm[END_REF], meanwhile, simulates the model of the RNA folding kinetics. Quite remarkably, the algorithm calculates all possible stems for a given RNA sequence, and generates the initial population of 𝑁 structures. The simulation is carried out by first mutating each structure of the initial population which produces 𝑁 new structures, and then crossovering the 2𝑁 structures and generating new population of 𝑁 structures according to the fitness, where the fitness is defined as the total free energies of generated structures, and last increasing the chain length depending on the improvement of the free energy. The procedure of genetic algorithm simulation terminates when a predetermined number of repetitions has been done.

Others

Some other representative heuristics are as follows:

HotKnots [START_REF] Ren | HotKnots: Heuristic prediction of RNA secondary structures including pseudoknots[END_REF], builds up the candidate pseudoknots by adding one substructure at a time to the partially formed structure, based on the thermodynamic model extended for pseudoknots as in the D&P's algorithm [Dirks and Pierce, 2003].

McQFold is based on a Markov-chain Monte-Carlo (MCMC) method for sampling the RNA structures according to their approximate posterior distribution for a given sequence [START_REF] Metzler | Predicting RNA secondary structures with pseudoknots by MCMC sampling[END_REF].

Similarly, McGenus [START_REF] Bon | McGenus: a Monte Carlo algorithm to predict RNA secondary structures with pseudoknots[END_REF], also uses a Monte Carlo algorithm to search for an MFE structure.

MC-Fold, is a part of the pipeline proposed in [START_REF] Parisien | The MC-Fold and MC-Sym pipeline infers RNA structure from sequence data[END_REF]. The main idea is based on the nucleotide cyclic motifs (NCM). It infers the secondary and tertiary structures from a given sequence thanks to the empirical scoring of 3D structures.

CyloFold, is based on simulating a folding process in a coarse-grained 3D manner, and choosing stems under the established energy rules [START_REF] Bindewald | CyloFold: secondary structure prediction including pseudoknots[END_REF].

DotKnot, predicts the RNA pseudoknots by extracting the stem regions from the secondary structure probability dot plot, and assembling the pseudoknot can-didates in a constructive fashion [START_REF] Sperschneider | DotKnot: pseudoknot prediction using the probability dot plot under a refined energy model[END_REF].

IPknot, predicts RNA secondary structures with pseudoknots based on maximizing the expected accuracy of a predicted structure [START_REF] Sato | IPknot: fast and accurate prediction of RNA secondary structures with pseudoknots using integer programming[END_REF].

The detailed mechanisms of these methods are presented in Section 5.4.2, as they are the main considered methods of that part of work. Particularly, there are still some heuristic methods which are available to predict RNA pseudoknots.

But they are excluded from the consideration, with the reasons given in Section 5.4.2 as well.

Conclusion

This chapter introduces the approaches of predicting RNA secondary structures from a single sequence, including both the standard pseudoknot-free structures and the ones containing pseudoknots. The exact methods search for the secondary structure from the entire structure space, guaranteeing an optimal output either with the minimum free energy or with the maximum statistic probability.

But on the other hand, the ergodic search brings the exact methods a heavy computing burden, especially for the longer inputs, which arouses the application of the heuristics. Heuristic methods search for the secondary structure in a partial space which is reduced by the previous steps iteratively. The heuristic process costs a more agreeable complexity in time and detects a less restricted type of the pseudoknots, but with the sacrifice of the optimality of the prediction. This dissertation focuses on the prediction of pseudoknots by the state-of-the-art methods, and the comparison of their performance. These parts of work are shown in the following chapters.

Chapter 4

Frameshifting Pseudoknots and

Comparison of Prediction Methods

The main interest of this dissertation is about the comparison of predicting RNA pseudoknots in silico, based on a variety of datasets. A series of comparisons all serve the purpose of assessing the accuracy of the predicted pseudoknots by each program. The motivation of the comparisons comes from that it is neither guaranteed nor expected that all the predictions are one hundred percent acceptable. Which of the predictions are more reliable if they conflict, especially in such situations that the reference structures which are completely determined empirically are insufficient?

In fact, comparison between predictions can not give a completely satisfactory answer. But a matching prediction between the programs can strengthen the plausibility of this prediction. On the other hand, the conflicting predictions may decrease the persuasion of either prediction, or reflect a weak spot of the prediction methods [START_REF] Theis | KnotInFrame: prediction of -1 ribosomal frameshift events[END_REF].

The following chapters are going to introduce a variety of comparisons princi- 

Frameshifting

Recoding events

During the expression of certain genes, the recoding events occur in response to special signals in mRNA, where two protein products are decoded from one coding mRNA [START_REF] Baranov | Recoding: translational bifurcations in gene expression[END_REF]. There are three main types of recoding events [START_REF] Baranov | RECODE:a database of frameshifting, bypassing and codon redefinition utilized for gene expression[END_REF] typically, as shown in Figure 4.1:

1), Bypassing, in which ribosomes suspend translation at a certain site and then resume translation downstream without decoding a block of intermediate nucleotides.

2), Readthrough (also referred to as redefinition), in which the stop codon is assigned to a different meaning, synthesizing an elongated product. Particularly the UGA can be recoded to specify the 21st amino acid selenocysteine, and the UAG can be recoded to specify the 22nd amino acid pyrrolysine.

3), Frameshifting, in which ribosomes switch to an alternative open reading frame (ORF) at a specific shift site. In most observed cases, the frameshifting involves a shift of one base from the reference 0 frame, either to +1 of the downstream 3' direction or to -1 of the upstream 5' direction. Some shifts of two bases are observed as well. In this dissertation, we focus on the -1 programmed ribosomal frameshifting (-1 PRF). 

Frameshifting Signals

-1 PRF may occur in prokaryotes and eukaryotes, and is particularly exploited by RNA viruses, with a governable ratio of efficiency [START_REF] Giedroc | Frameshifting RNA pseudoknots: structure and mechanism[END_REF][START_REF] Jacobs | Identification of functional, endogenous programmed -1 ribosomal frameshift signals in the genome of Saccharomyces cerevisiae[END_REF].

The frameshifting events are termed as programmed frameshifting since invariably important structural features of the frameshifting signals predispose the ribosome toward the shift in frames, and thus program the change. Consequently, the protein product is not directly encoded in a single ORF, but in two overlapping reading frames. Since the efficiency of frameshifting is nearly always much less than one hundred percent, this kind of recoding event allows for the expression of two primary translational products from one single mRNA that share the 5' terminal sequence encoded upstream of the shift, and differ in the 3' terminal sequence encoded downstream of the shift [START_REF] Farabaugh | Programmed translational frameshifting[END_REF].

-1 PRF may produce longer or shorter peptides than those synthesized from the standard decoding, thanks to the alternation of reading frames [START_REF] Baranov | Recoding: translational bifurcations in gene expression[END_REF]. Figure 4.2 shows the former case where the protein synthesis starts at A, and terminates at C rather than at B, the terminal of the standard decoding. According to the common knowledge [Brierley, 1995;[START_REF] Brierley | Viral RNA pseudoknots: versatile motifs in gene expression and replication[END_REF][START_REF] Giedroc | Frameshifting RNA pseudoknots: structure and mechanism[END_REF], frameshifting signals contain two main elements,

• A slippery sequence, where the shift occurs. The slippery sequence is composed of a heptamer with seven nucleotides prevalently, particularly in eukaryotes and viruses, or a tetramer with four nucleotides [START_REF] Mazauric | Apical loop-internal loop RNA pseudoknots: a new type of stimulator of -1 translational frameshifting in bacteria[END_REF], particularly in prokaryotes. The slippery sequence with seven nucleotides is referred to as X XXY YYZ in the reference 0 frame, which will alter to XXX YYY Z once the -1 PRF occurs. More precisely, the XXX represent three identical nucleotides, so do the YYY. And the Z can be any nucleotide. In some previous work [START_REF] Brierley | Mutational analysis of the "slippery-sequence" component of a coronavirus ribosomal frameshifting signal[END_REF], the XXX may have some variants such as the 𝑋 1 𝑋 2 𝑋 3 , where any nucleotide may be held by each X.

• A downstream stimulator, which is secondary structure adjacent to the slip-stem-loop [Brierley, 1995;[START_REF] Brierley | Viral RNA pseudoknots: versatile motifs in gene expression and replication[END_REF][START_REF] Giedroc | Frameshifting RNA pseudoknots: structure and mechanism[END_REF].

There is some mechanical explanation on how the downstream pseudoknot stimulates the PRF [START_REF] Namy | A mechanical explanation of RNA pseudoknot function in programmed ribosomal frameshifting[END_REF], in which the pseudoknot blocks the mRNA entrance channel by interacting with the ribosome. But the precise mechanism of the PRF still remains as a cipher, although the pseudoknots are accepted to stimulate a frameshifting more efficiently as they are more stable to pause the ribosome [START_REF] Giedroc | Frameshifting RNA pseudoknots: structure and mechanism[END_REF][START_REF] Jacobs | Identification of functional, endogenous programmed -1 ribosomal frameshift signals in the genome of Saccharomyces cerevisiae[END_REF].

The region separating the two elements is the spacer, which generally contains six to eight nucleotides. There is no affirmative determination on the precise size of the spacer yet. But there exists a common agreement on the importance of this spacing distance, which must be maintained for efficient frameshifting to occur, and probably directly affects the mechanism of the frameshifting process [Brierley, 1995]. The precise description of a frameshifting signal is shown in Figure 4.3, where an H-type pseudoknot follows the slippery sequence and then the spacer. Similarly to the nomenclature of [START_REF] Bekaert | Towards a computational model for -1 eukaryotic frameshifting sites[END_REF] 

Methods Predicting -1 PRF Signals

This section is going to introduce some computer methods which have been developed for predicting -1 PRF signals, including FSFinder, PRFdb, KnotInFrame and Orphea. 

FSFinder

Frameshifting Signal Finder (FSFinder) [START_REF] Moon | Predicting genes expressed via -1 and +1 frameshifts[END_REF], developed in 2004, searches the entire genome or mRNA sequences for frameshifting signals.

Specifically, FSFinder is designed to find -1 frameshifting signals, with a heptamer as the slippery sequence, in viruses, prokaryotes and eukaryotes, and two cases of +1 frameshifting sites in the eukaryotic and prokaryotic organisms. It considers both the pseudoknots and simple stem-loops as the downstream stimulatory structures.

In detail, FSFinder searches for possible slippery sequences in the form of X XXY YYZ, in which X and Z can be any nucleotide, and Y can be A or C. After a slippery sequence is identified, FSFinder searches for a downstream structure by sliding 4-11 nucleotides along the spacer. Then FSFinder filters the downstream structures which are subject to certain requirements, such as the first stem of the pseudoknot must not be larger than 13 base pairs, the second stem must not be larger than 6 base pairs, and the size of first two loops may not exceed 6 nucleotides.

The mechanism of FSFinder is to focus on an overlap of the open reading frames. It is declared that the largest ORF in the overlapping frames has the highest probability of containing frameshifting signals.

As shown in However, since the automatic exportation of the predictions of FSFinder is unavailable, which means that all the results are shown only in the FSFinder panels instead of a file, FSFinder must rather been used in an interactive fashion.

In this aspect, the comparison of predicting -1 PRF signals by FSFinder is ignored in this dissertation.

PRFdb

PRFdb [START_REF] Jacobs | Identification of functional, endogenous programmed -1 ribosomal frameshift signals in the genome of Saccharomyces cerevisiae[END_REF] In practice, RNAMotif [START_REF] Macke | RNAMotif, an RNA secondary structure definition and search algorithm[END_REF] is employed for searching for subsequences in the genome, and the corresponding descriptor must meet several requirements. The slippery sequence is in the form of X XXY YYZ in frame 0, in which X represents any identical nucleotides, Y represents A or U, and Z is not equal to G. Next, after sliding 0-12 nucleotides along the spacer, the downstream structure is searched. The allowance includes that each stem in the pseudoknot contains between 4 and 20 nucleotides in length, the first loop must be between 1 and 3 nucleotides in length, and the third loop must be at least as long as one-half the length of the first stem and not longer than 100 nucleotides.

RNAMotif then returns the collection of identified motif hits back, and pknots, the implementation of the R&E's algorithm [START_REF] Rivas | A dynamic programming algorithm for RNA structure prediction including pseudoknots[END_REF], is used to predict for each motif hit a MFE secondary structure.

To estimate the statistical significance and uniqueness of the predicted structure for each motif hit, the authors utilize a normalized z-score, comparing the matched candidates with those expected by chance in random genomes. This intention is because they hold the hypothesis that the frequency of finding the motif in randomized sequences can provide some insight into the likelihood that the match in natural sequence occurs by chance.

For each hit, the MFE value of the predicted structure, which is assigned by pknots, is compared to the distribution of MFE values obtained from 100 times of random shuffle and refolding of the same sequence. And the normalized z-score is given as follows:

𝑍 𝑅 = 𝑋 -𝑥 𝛿
where X is the MFE value for the predicted structure, x is the estimate of the mean for the distribution of MFE values obtained from the 100 randomizations with the same sequence, and 𝛿 is the standard deviation of MFE values for random structures.

The • Every signal which contains a predicted pseudoknot promotes -1 PRF at significant levels. And the pseudoknot-free signal does not promote a measurable frameshifting.

• The frameshifting rates obtained ranges from 0.4% to 63.7%.

• Mutating the pseudoknot structure may uncontrollably affect the frameshifting. On the other hand, mutation in the spacer region can change -1 PRF efficiencies, but not completely abrogates the frameshifting.

KnotInFrame

With the 'dissatisfaction' of the RNAMotif that is used in the pattern matching step of PRFdb mentioned above, KnotInFrame [START_REF] Theis | KnotInFrame: prediction of -1 ribosomal frameshift events[END_REF], a similar pipeline which detects -1 PRF signals from genomic sequences, has been developed in 2008. The prime motivation of KnotInFrame comes from the declaration that most of the strong candidates with good z-score in the PRFdb do not contain pseudoknots.

Principally, the authors also build up a -1 PRF signal motif, and invoke the program pknotsRG-fs to predict a -1 PRF pseudoknot with the minimal free energy for the given input sequence. This program is a specialized version of pknot-sRG [START_REF] Reeder | pknotsRG: RNA pseudoknot folding including near-optimal structures and sliding windows[END_REF], which explicitly folds a given sequence into a more stable structure than pknotsRG by modifying the grammars of the stems and loops of pseudoknots to describe a frameshifting pseudoknot more precisely.

In detail, the authors first build a -1 PRF motif with the slippery sequence in the form of X XXY YYZ, based on the knowledge of the frameshifting signals of RECODE, in which X represents any identical nucleotide, Y stands for either A or U, and Z for any nucleotide. The length of the spacer is between 1 nucleotide and 12 nucleotides.

Then, there are three main steps in the pipeline of KnotInFrame.

In the first searching phase, the pipeline scans the input sequence for occurrences of the -1 PRF motif slippery site, and folds the downstream regions by invoking pknotsRG-fs and RNAfold [START_REF] Hofacker | Fast folding and comparison of RNA secondary structures[END_REF] respectively, where RNAfold returns a MFE structure without pseudoknots to the input sequence.

The output of the invocation of pknotsRG-fs is notated as pknotsRG-fs(u), representing the MFE value of an enforced pseudoknotted folding. The result of the invocation of RNAfold is notated as RNAfold(u), representing the MFE value of an unconstrained folding without pseudoknots. And 𝑢 represents the substring of the input sequence 𝑥, with the slippery sequence removed from 𝑥.

The secondary filtering phase has three criteria to reduce the number of candidates, based on the energy values of the constrained folding pknotsRG-fs(u) and the unconstrained folding RNAfold(u), as follows.

The low energy filter (LEF) discards the candidates whose constrained energy value pknotsRG-fs(u) is over a threshold 𝛼, since the pseudoknots in their test are supposed to have an equal or lower energy value than the unconstrained foldings.

Particularly, the authors choose the threshold of 𝛼 = -7.4 kcal/mol. The pipeline discards the candidates that are subject to:

𝑝𝑘𝑛𝑜𝑡𝑠𝑅𝐺-𝑓 𝑠(𝑢) > 𝛼

Next, the energy difference filter (EDF) discards the candidates that rather fold into an unknotted structure, where the difference between RNAfold(u) and pknotsRG-fs(u) is larger than another threshold 𝛽. And the threshold is chosen as 𝛽 = 8.7 kcal/mol. The discarded formula is:

𝑅𝑁 𝐴𝑓 𝑜𝑙𝑑(𝑢) + 𝛽 < 𝑝𝑘𝑛𝑜𝑡𝑠𝑅𝐺-𝑓 𝑠(𝑢)
The resulting set may still hold several predictions which have a same slippery site. Then, the normalized dominance filter (NDF) computes the lengthnormalized energy dominance as follows:

Δ(𝑢) = 𝑅𝑁 𝐴𝑓 𝑜𝑙𝑑(𝑢) -𝑝𝑘𝑛𝑜𝑡𝑠𝑅𝐺-𝑓 𝑠(𝑢) |𝑢|
where Δ gives an indication of the stability of a secondary structure, namely how strong this structure outweighs the others referring to their energy values. A positive Δ means that the pseudoknotted structure is more stable than the freefolded structure. And the NDF phase only retains the candidates which maximize Δ(𝑢).

In the third ranking phase, all remaining candidates passing the three filters are ranked by an evaluation function which is based on the normalized dominance of the predictions. In other words, the remaining candidates are ranked in the descending order of their Δ(𝑢) values.

The final result of the pipeline is a list of the strongest frameshifting signals, which may have different slippery sequences, and respective structural elements and the two free energy values leading to the ranking.

Orphea and Ranking Process

Orphea [START_REF] Brégeon | In silico selection and in vivo characterization of synthetic -1 ribosomal frameshift sequences. submitted. 1995. Ribosomal frameshifting on viral RNAs[END_REF][START_REF] Forest | Modélisation et détection automatique de sites de décalage de cadre en -1 dans les génomes eucaryotes[END_REF] is a program predicting -1 PRF signals.

A ranking process follows in order to rank the predictions of Orphea.

Searching for Slippery Sequence

Orphea uses a pattern-matching algorithm to detect the slippery sequence which is in the form of X XXY YYZ. The algorithm then searches the candidates which have passed the requirements of the slippery motif for potential stems further. The detailed requirements of the slippery motif are considered as follows:

• 𝑋 1 𝑋 2 𝑋 3 must be among {GGG, GUG, GAG, GUU, GAA, GAU, GUA, CCC, AAA, UUU}.

• 𝑍 must be among {A, C, U}.

• There are two exceptions: the G UGA AAZ and G UAA AAZ motifs which contain stop codons in the non-shifted 0 frame.

Searching for Stimulator

For each matched slippery sequence, the program searches for a potential pseudoknot in the downstream 3' direction. A dynamic programming algorithm is employed for searching and assigning a score to each putative stem, which is the sum of scores of its base pairs. 

Candidates Ranking and Selecting

However, as the candidates detected by Orphea may be numerous, the authors have designed a method to rank all the candidates in order to find out the best predictions of Orphea, according to some scores which take advantage of the known frameshifting sites.

In this step, several machine-learning approaches are combined to give a rank to each candidate, and the top ranked ones are supported to be the most promising candidates of -1 PRF signal, and are considered to be tested experimentally.

and Naive Bayes which are implemented in WEKA [START_REF] Hall | The WEKA data mining software: an update[END_REF], by exploiting the features of the known frameshifting signals. The candidates having the best predicted rate within all the predictors are considered as the most promising ones.

In other words, the ranking scheme here follows a consensus policy to select the candidates as the promising ones. 

Evaluation

Parameters

For quantifying the accuracy of the predicted RNA secondary structures, three evaluation criteria are used in this dissertation.

• The sensitivity, which is called recall in the information retrieval community. • The positive predictive value (PPV), which is called precision in the information retrieval community. The PPV is also referred to as the selectivity in [START_REF] Gardner | A comprehensive comparison of comparative RNA structure prediction approaches[END_REF]].

• The Matthew's correlation coefficient (MCC) [START_REF] Matthews | Comparison of the predicted and observed secondary structure of T4 phage lysozyme[END_REF], which combines the sensitivity and PPV, suggesting it as a more representative and comprehensive parameter.

The formal definitions of these three measures are:

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑇 𝑃 𝑇 𝑃 + 𝐹 𝑁 = 𝑇 𝑃 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑎𝑠𝑒 𝑝𝑎𝑖𝑟𝑠 𝑖𝑛 𝑟𝑒𝑓 𝑒𝑟𝑒𝑛𝑐𝑒 (4.1) 𝑃 𝑃 𝑉 = 𝑇 𝑃 𝑇 𝑃 + 𝐹 𝑃 = 𝑇 𝑃 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑎𝑠𝑒 𝑝𝑎𝑖𝑟𝑠 𝑖𝑛 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 (4.2) 𝑀 𝐶𝐶 = 𝑇 𝑃 × 𝑇 𝑁 -𝐹 𝑃 × 𝐹 𝑁 √︀ (𝑇 𝑃 + 𝐹 𝑃 )(𝑇 𝑃 + 𝐹 𝑁 )(𝑇 𝑁 + 𝐹 𝑃 )(𝑇 𝑁 + 𝐹 𝑁 ) (4.3)
where the positives (P) and the negatives (N) both refer to base pairs. Particularly, TP is the number of true positives, the set of correctly predicted base pairs, FP is the number of false positives, the set of incorrectly predicted base pairs, FN is the number of false negatives, the set of base pairs in the reference structure that are absent in the predicted one, and TN is the number of true negatives [START_REF] Puton | CompaRNA: a server for continuous benchmarking of automated methods for RNA secondary structure prediction[END_REF], the set of correctly predicted unpaired bases.

Equations 4.1, 4.2 and 4.3 are the standard ways to calculate the sensitivity, PPV and MCC, which are prevalently employed in the assessment of predictions.

And they are used to assess all the predictions in this dissertation as well.

Variants

One of the pioneered applications of the three parameters on the evaluation of RNA secondary structure prediction is proposed in [START_REF] Gardner | A comprehensive comparison of comparative RNA structure prediction approaches[END_REF],

where the positives and negatives are used to refer to the base pairs. However, their definitions are sightly different from Equations 4.2 and 4.3, with an introduction of the subtraction of 𝜉 from the false positives.

𝑃 𝑃 𝑉 = 𝑇 𝑃 𝑇 𝑃 + (𝐹 𝑃 -𝜉) (4.4) 𝑀 𝐶𝐶 = 𝑇 𝑃 × 𝑇 𝑁 -(𝐹 𝑃 -𝜉) × 𝐹 𝑁 √︀ (𝑇 𝑃 + 𝐹 𝑃 -𝜉)(𝑇 𝑃 + 𝐹 𝑁 )(𝑇 𝑁 + 𝐹 𝑃 -𝜉)(𝑇 𝑁 + 𝐹 𝑁 ) (4.5)
The subtraction of 𝜉 is introduced because the authors believe that some of the FP are not equally false, assuming the FP can be classified as either inconsistent, contradicting or compatible.

• The inconsistent group of false positives is the set of predicted base pairs that conflict with a base pair in the reference structure, namely either end of a base pair in the reference structure has a base-pairing with another base in the predicted structure.

• The contradicting group is the set of predicted base pairs that are not nested with respect to the reference structure, namely a predicted base pair crosses one base pair in the reference structure, and both ends of the predicted base pair are unpaired in the reference structure.

• The compatible false positives are those neutral with respect to the reference structure, namely a predicted base pair does not satisfy the two requirements above and is not present in the reference structure. Their number is denoted as 𝜉 in Equations 4.4 and 4.5.

In practice, the compatible false positives 𝜉 are subtracted from the false positives as the authors declare that this part of predicted base pairs does not conflict with the reference structure. The acceptance is supported by the requirements that both ends of the compatible false positives are unpaired in the reference structure, and the formed base pair does not intersect any base pair in the reference structure at the same time. with the base pair R1 in the reference structure. And we may also classify the predicted base pair P2 as a compatible one since it does not cross any base pair in the reference structure and neither end of P2 forms a base pair in the reference structure. We notate that the base pair P2 is embedded in the base pair R2. But it is the P1 that makes the prediction a pseudoknotted conformation globally, much closer to the crossing interaction shown in the reference structure. We strongly prefer to classify P1 as a 'compatible' base pair.

Further, we lengthen the 3' end of the compatible P2 in the Figure 4.7(e) to make it cross the base pair R1, as shown in Figure 4.7(f). Is P2 a contradicting base pair right now? We still argue that P2 is 'compatible' with the reference structure, as it is embedded in the correctly predicted base pair P3.

In fact, if we examine all the base pairs in red in Frankly speaking, as the unavailability of a systemic interpretation of the crossing interactions in an arbitrary pseudoknot, we can not perceive the quintessence of the similarity between the prediction and the reference structure. We may not define the degree of acceptation in the sequel. So we prefer to use the criteria calculated by the Equations 4.1, 4.2 and 4.3, without further considering the classification of the false positives, as there are no better options of evaluation to choose and no reliable suggestions on a practical applicability of them.

Why Not ROC Curve?

Someone may wonder why not evaluating the predictions by the receiver operating characteristic (ROC) analysis which is a graphical plot illustrating the performance.

In fact, the y-axis of the ROC curve is the sensitivity, which is referred to as the true positive rate (TPR) and calculated by the Equation 4.1. And the x-axis is the false positive rate (FPR) which is calculated by the Equation 4.7. Each prediction given by a certain method corresponds to a point with respect to the number of their positives and negatives.

𝑇 𝑃 𝑅 = 𝑇 𝑃 𝑇 𝑃 + 𝐹 𝑁 = 𝑇 𝑃 𝑃 (4.6) 𝐹 𝑃 𝑅 = 𝐹 𝑃 𝐹 𝑃 + 𝑇 𝑁 = 𝐹 𝑃 𝑁 (4.7)
However, the ROC analysis is not taken into account by this dissertation for two reasons. First, we expect each ROC curve may reflect the performance of prediction by one method. But the predictions are returned by the certain method,

where the threshold of classifying of the positives and negatives may not be altered.

Consequently, the ROC figure may be composed of the discrete points, rather than a classical curve passing from the point with both TPR and FPR equal to 0, to the point with both values equal to 1. Second, TN in Equation 4.7 is calculated by subtracting TP from all possible base pairs based on the given sequence. The amount of all possible base pairs induces TN to cover a quite large number of pairs. The enormous gap between FP and TN, which may range from ten times to thousand times, contributes FPR a quite low value approaching to 0. These low values induce a quite thicker aggregation of discrete points in the small area near the y-axis, compared to the global plane.

Obviously, the ROC analysis is not very likely to succeed in the evaluation of predicting RNA secondary structures. 

Comparison of Predictions

Comparison of Parameters

We can not deny the difference between the approaches is strongly due to the diverse definitions of the slippery sequence, the size of the downstream pseudoknot structure and some other elements of a frameshifting signal, and particularly the algorithm used to search for the structures. In this aspect, a reasonable comparison of the predictions should start from a good comprehension of the respective divergences of the parameters used by each method.

The parameters of the four programs introduced above are shown in Table 4.1, where the rightmost column Energy illustrates whether the thermodynamic parameters are considered by the corresponding program in their detecting models.

Prediction of Three Genomes

This section is about the comparison of the common predictions based on three genomes. The predictions can be referred to as common if their slippery sequence is the same at the same slippery position in the genome, regardless of the shapes of the predicted secondary structures.

Datasets

We have tried to find the common predictions of the methods, in the context of the following three datasets:

• The Saccharomyces cerevisiae genome, which has been obtained from Saccaromyces Genome Database as of April 2011, of length about twelve million nucleotides.

• A synthetic genome, which has been generated as a random sequence with the GenRGenS software [START_REF] Ponty | GenRGenS: software for generating random genomic sequences and structures[END_REF], of length of twelve million nucleotides, with the same average composition in hexanucleotides as the Saccharomyces cerevisiae genome (12Mb).

NIH Mammalian Gene Collection, a number of 42,433 sequences with lengths ranging from dozens of nucleotides to tens of thousands of nucleotides. Typically, we refer to the Human mRNAs as the third genome without special notification for convenience. Z ̸ = G bulges.

Results

Orphea had 171 predictions based on the Saccharomyces cerevisiae genome, 102 predictions on the synthetic genome, and 4414 ones on the human mRNAs.

All of them are available in Supplementary File Frameshifting.

To carry out the comparisons, I practically ran KnotInFrame through its web service.

For However, regarding the 1679 strong candidates of PRFdb (available in the Supplementary File Frameshifting), since the unavailability of the version of the Saccharomyces cerevisiae genome that was used in [START_REF] Jacobs | Identification of functional, endogenous programmed -1 ribosomal frameshift signals in the genome of Saccharomyces cerevisiae[END_REF], I could Indeed, KnotInFrame have stated that they have 74 common predictions with these 1679 strong candidates of PRFdb [START_REF] Theis | KnotInFrame: prediction of -1 ribosomal frameshift events[END_REF]. So I ran Orphea on the 1679 strong candidates of PRFdb directly to try to find the possibility of something interesting among Orphea and KnotInFrame and the strong candidates of PRFdb.

The result was that 12 matches were found between Orphea and PRFdb, but the three approaches did not have any common agreement, as shown in Figure 4.9.

Additionally, there is not so much sense to compare the predictions between Or- 

Discussion

After the ranking and selecting procedures mentioned in the Section 4.2.4, there were 49 predictions of Orphea chosen to be tested experimentally to promote a frameshifting in vivo, based on the Saccharomyces cerevisiae genome, the synthetic genome, and human mRNAs.

However, according to [Brégeon et al.], none of the common matches between Orphea and KnotInFrame, as shown in 

Comparison Based on the Best Predictions of Orphea

Dataset

As mentioned in Section 4.4.2, 49 predictions of Orphea were chosen to be tested experimentally, based on the Saccharomyces cerevisiae genome, the synthetic genome, and human mRNAs.

Learned from [START_REF] Bekaert | Towards a computational model for -1 eukaryotic frameshifting sites[END_REF], the predictions having a frameshifting rate above 5% are considered as good predictions in this dissertation as well, and those having a frameshifting rate below 2% are considered as bad ones. Particularly, this part of comparison focuses on the good predictions, which include a collection of 6 best predictions of Orphea. They are listed in the descending order of their frameshifting rates in Table 4.3.

Some notations in the table are introduced here. For convenience, Saccharomyces cerevisiae genome is referred to as Yeast, the synthetic genome is referred to as Random, and human mRNAs is referred to as Human. Meanwhile, Orphea had 171 predictions based on the Yeast genome, 102 predictions based on the Random genome, and 4414 ones based on the Human genome respectively.

Aiming at distinguish the predictions, Orphea has assigned a reference number to each of its predictions, according to their detected positions in the input sequence. In this context, the Sequence Name in the first column of Table 4.3 are written in the order of respective reference number in the predictions of Orphea genome frameshifting rate discovered in vivo. For example, the 54_Ran-dom_0.179 represents the 54th prediction of Orphea, based on the synthetic genome with the frameshifting rate of 17.9% observed. Typically, their individual slippery positions are not shown in this nomenclature.

Methods

The comparison was carried out to test whether some other state-of-the-art programs can agree with the 6 best predictions of Orphea. The programs used were

CyloFold [START_REF] Bindewald | CyloFold: secondary structure prediction including pseudoknots[END_REF], IPknot [START_REF] Sato | IPknot: fast and accurate prediction of RNA secondary structures with pseudoknots using integer programming[END_REF], pknotsRG [START_REF] Reeder | pknotsRG: RNA pseudoknot folding including near-optimal structures and sliding windows[END_REF], DotKnot [START_REF] Sperschneider | DotKnot: pseudoknot prediction using the probability dot plot under a refined energy model[END_REF], and Vsfold5 [START_REF] Dawson | Prediction of RNA pseudoknots using heuristic modeling with mapping and sequential folding[END_REF]. All of them were run through web services.

Particularly, the programs of IPknot, pknotsRG and DotKnot are labeled with several trailing letters in Table 4.3, corresponding to several variant algorithms that are adopted by each program to calculate the energy and fold the pseudoknot. In detail, IPknot-2 denotes that IPknot predicts the pseudoknot with the number of decomposed levels of 2, IPknot-3 denotes that IPknot predicts the structures with the number of decomposed levels of 3 [START_REF] Sato | IPknot: fast and accurate prediction of RNA secondary structures with pseudoknots using integer programming[END_REF]. pknotsRG-M and pknotsRG-F represent the standard MFE folding and enForced folding algorithms of pknotsRG respectively [START_REF] Reeder | pknotsRG: RNA pseudoknot folding including near-optimal structures and sliding windows[END_REF]. DotKnot and DotKnot-K represent the detection of standard Pseudoknotted folding and the ones preferring the conformations of Kissing hairpin [START_REF] Sperschneider | DotKnot: pseudoknot prediction using the probability dot plot under a refined energy model[END_REF].

Results

The results shown in According to Table 4.3, the programs have responded diversely to the 6 best predictions of Orphea. We cannot have a prominent conclusion of the most 'popular' sequences clearly. It seemed that the best predictions of Orphea with efficient frameshifting rates were not identified well by all the programs, especially the 3406_Human_0.1332.

But generally, CyloFold and DotKnot had a relatively good performance, as they detected 5 sequences out of 6. Especially, pknotsRG has obtained a very good sensitivity (100%) on predicting pseudoknots with its Enforced folding algorithm as it predicted all the predictions, but offering no guarantee on the quality of the prediction. The enforcing pseudoknotted folding algorithm focuses on searching a pseudoknot globally, in spite of the free energy of the folded structure. Contrarily, pknotsRG with the MFE algorithm focuses on finding a more stable structure with the lowest free energy, which may not contain pseudoknots.

Meanwhile, Table 4.3 shows that it seems difficult for a majority of methods to agree with the best predictions of Orphea, in spite of their high level of -1 PRF rates obtained in vivo. This may be because of the diversity of the calculating algorithms and the predicting parameters and models which are restrained greatly by the available structures in the database to learn and the functional and mechanical knowledge of pseudoknots.

Particularly, this round of comparisons can not be assessed by the evaluation parameters as introduced in Section 4.3.1, as the 6 best predictions of Orphea can not be referred to as the reference structures.

Comparison Based on the Frameshifting Signals in PseudoBase

This section is about the comparison between the prediction of Orphea and 

Results

The comparison of the predicted structures with the reference structures in PseudoBase are partially shown in (((((((((...[[[[[[...))))))))))).. Quick remarkably, Orphea prevailed over KnotInFrame globally.

Based on the learning data, Orphea successfully detected more pseudoknots than KnotInFrame, and obtained an average higher values of sensitivity, PPV and MCC than KnotInFrame. Based on the testing data, Orphea won for its higher values as well, in spite of failing one more time in detecting pseudoknot than KnotInFrame. Particularly, Orphea has obtained 11 precise predictions compared to the reference structures, with their MCC values equal to 1. On the other hand, KnotInFrame has obtained several negative MCC values, which shows the disagreement between the predictions and the reference structures in different levels [START_REF] Matthews | Comparison of the predicted and observed secondary structure of T4 phage lysozyme[END_REF]. 

Discussion

According to Tables 4.12 and 4.13, Orphea and KnotInFrame both failed to predict some frameshifting signals some times.

The reason to explain the failures of Orphea may be that the input sequences are basically too small. This results in either the threshold score assigned during the searching phase is not reached for the ES1, or the length is too small to find ES2 when a valid ES1 is found.

The reason that KnotInFrame fails to predict a structure may be because the length of some sequences are too short to reach the threshold of the input requirement. However, KnotInFrame can occasionally have a not bad prediction, compared to the reference structure, once they are elongated with an AAA-tail, to the length of around 50 nucleotides. Another prominent explanation of the failures of KnotInFrame is that KnotInFrame requires a much more restricted slippery sequence, namely three identical nucleotides for X in X XXY YYZ. 

Conclusion

This chapter has introduced one typical recoding event, -1 programmed ribosomal frameshifting, where the downstream pseudoknot plays the role of a strong stimulator. Brief introduction of four programs predicting -1 PRF signals, FS-Finder, the corresponding work of PRFdb, KnotInFrame and Orphea followed.

This chapter principally focused on a series of comparisons of predicting -1 programmed ribosomal frameshifting signals by the available methods. For the assessment of the predictions, three evaluation parameters and their variants were discussed as well.

However, the pseudoknots involved in frameshifting are only a subset of the pseudoknots family, many other pseudoknots may take care of the other types of recoding events and much more general molecular procedures. So in the following chapters, the study of more general pseudoknots is going to be introduced, including the classification of pseudoknots, and prediction of pseudoknots by the This chapter introduces the motivation and preliminaries of this benchmark, as well as the preparation work, such as the datasets and methods involved, the characteristics of pseudoknots considered, and the evaluation parameters employed.

Chapter 6 shows the results obtained, including both the classification of pseudoknots, and the prediction of pseudoknots. Further, the benchmark is accessible with an on-line version for the community, suggesting some details of the web development.

Based on the results shown in Chapter 6, the respective discussions are aroused in Chapter 7, and the conclusion about the benefits and lessons we may obtain from this benchmark.

Motivation

Comparison of the predicting results from more than one program is a good approach to generating an informed hypothesis about RNA structure and func-tion [START_REF] Schroeder | Advances in RNA structure prediction from sequence: new tools for generating hypotheses about viral RNA structure-function relationships[END_REF]. The evaluation criteria and databases of known secondary structures used to evaluate prediction accuracy vary substantially between different research groups and make direct comparisons complex [START_REF] Schroeder | Advances in RNA structure prediction from sequence: new tools for generating hypotheses about viral RNA structure-function relationships[END_REF].

Comparing, or benchmarking the predictions returned by different RNA structure prediction methods, which are based on the sequences in the same dataset, suggests an acceptable and reliable comparison.

However, such kind of benchmarking systems for assessing the RNA secondary structure prediction methods is rarely performed, compared to other bioinformatic domains, such as the practice of the protein-folding algorithms [START_REF] Eyrich | EVA: continuous automatic evaluation of protein structure prediction servers[END_REF],

protein-protein docking [START_REF] Chen | A protein-protein docking benchmark[END_REF] and multiple sequence alignment [START_REF] Gardner | A benchmark of multiple sequence alignment programs upon structural RNAs[END_REF][START_REF] Thompson | BAliBASE: a benchmark alignment database for the evaluation of multiple alignment programs[END_REF]. This is significant to bear in mind which of the available methods for secondary structure prediction is the most accurate and useful practically, as an increasing number of efforts have been made on the exploration of more powerful in silico prediction methods.

As one of the pioneers, BRAliBase I by [START_REF] Gardner | A comprehensive comparison of comparative RNA structure prediction approaches[END_REF] benchmarks the comparative RNA structure prediction algorithms, which are preferred as the homologous RNA sequences are available. But BRAliBase I did neither pay much attentions on the RNA structure prediction methods based on a single sequence, nor on the pseudoknots.

Recently, [START_REF] Puton | CompaRNA: a server for continuous benchmarking of automated methods for RNA secondary structure prediction[END_REF] proposes a benchmark of RNA structure prediction methods, CompaRNA. CompaRNA focuses on the methods predicting an RNA secondary structure either from a single sequence or from the comparative analysis when a set of homologous sequences are available. And CompaRNA considers both the pseudoknot-free secondary structures and the pseudoknots concurrently.

More precisely, CompaRNA considers pairs of programs at a time exhaustively, and compares the mean evaluation values based on the dataset to which both programs return a secondary structure. The programs are ranked according to the number of being a winner in the pair-wise comparisons.

However, CompaRNA does not separate the comparative structure prediction methods and the ones based on a single sequence, and compares them equally on the benchmarking datasets. This suggests few insights into the predictions of the 'single-sequence' methods, which is caused by their generally worse performance compared to the comparative methods, as the latter holds more information from the set of homologous sequences provided. This is further supported by the ranking result obtained by CompaRNA on the PDB dataset (Table 5 therein) where comparative methods have obtained an overwhelming dominance [START_REF] Puton | CompaRNA: a server for continuous benchmarking of automated methods for RNA secondary structure prediction[END_REF]. On the other hand, the datasets in CompaRNA correspond to particular collections of sequences which are determined by the pairs of methods in comparison, as each sequence is returned with a secondary structure by both programs. It implies that all the methods are not evaluated with the consistent set of sequences, suggesting CompaRNA's ranking system is not global enough. In addition, CompaRNA pays few attention on the failure of predictions in the pairwise comparisons. Last but not least, CompaRNA takes the ranking generated on pseudoknots as only a particular case.

This part of work is going to introduce a benchmark of RNA secondary structure prediction methods which particularly focuses on the ones predicting RNA pseudoknots from a given sequence. The primary purpose and contribution of this benchmark is to take advantage of the existing methods to generate a practical prediction for the given sequence. It is relative to the questions of how to carry out a reasonable prediction, how to make a proper selection of prediction methods for the given sequence, and how much accuracy the prediction holds.

Meanwhile, a good knowledge on the characteristics of pseudoknots will promote a more persuasive comparison of predictions. This arouses the second contribution of this benchmark, a comprehensive analysis of the pseudoknot classifications, according to several categories of complexity measures.

In practice, this benchmark considers a common or shared set of sequences where each sequence is returned with a secondary structure by all the benchmarking methods. Further, the predictions are assessed on hierarchical subsets of this common set which are divided by the length, organism and RNA type of the sequences, and the classifications that the implied pseudoknots are subject to. In addition, the sequences which are returned with a secondary structure by some methods and are not by some other methods are considered as an uncommon or missing set. The predictions based on this set of sequences are compared as well, which is expected to reflect different levels of failure of prediction by the prediction methods.

Datasets

There are two provenances of pseudoknots used for benchmarking in this chapter, one provenance is database PseudoBase [START_REF] Van Batenburg | PseudoBase: A database with RNA pseudoknots[END_REF], a particular database for the pseudoknots, and the other is the set of some pseudoknotted entries from the database Protein Data Bank (PDB) [START_REF] Berman | The Protein Data Bank[END_REF]]. More precisely, there are:

• 367 pseudoknots from PseudoBase, as of March 28, 2014. The sequences, PKB1-PKB367 have been downloaded from the database directly. Particularly, PseudoBase focuses on the crossing interactions forming the pseudoknot, and omits partial structural information elsewhere for 27 relatively long sequences, such as the PKB64 and PKB192. An example PKB171 is shown in Table 4.6, where the ':::' represents the unknown potential details in PseudoBase, and Figure 4.10. In this benchmark, the corresponding unknown parts are referred to as unpaired bases consistently, and the complete sequences and structures are provided in the Supplementary File Benchmark.

Additionally, the first 304 pseudoknots in this dataset, PKB1-PKB304, correspond to the records in the PseudoBase++ [START_REF] Taufer | Pseudobase++: an extension of pseudobase for easy searching, formatting and visualization of pseudoknots[END_REF].

• 47 pseudoknots extracted from PDB, which are provided by CompaRNA's authors kindly, as of June 5, 2013. Specifically, CompaRNA uses several filters to select PDB records for benchmarking, such as the restrictions on the length which should be longer than 20 nucleotides, and the RNA backbone which should be continuous [START_REF] Puton | CompaRNA: a server for continuous benchmarking of automated methods for RNA secondary structure prediction[END_REF].

The pair-wise interactions of the total 414 pseudoknots contain only the canonical A-U, G-C pairs and the wobble G-U pair. The collection of such types of base pairs are also referred to as the standard base pairs. And we do not consider the non-canonical interactions [START_REF] Leontis | Geometric nomenclature and classification of RNA base pairs[END_REF].

triples are forbidden. The notion of isolated base pair corresponds to a stem with only one base pair, and the triples are those bases which participate in the base pairing with two partners at the same time.

The details of the 414 sequences are provided in Supplementary File Benchmark.

Classification of Pseudoknots

The pseudoknots can be classified according to hierarchical complexity measures, such as the physical interactions, algorithmic accessibilities and conformational characteristics, which refer to the physical interaction of stems, the algorithms that can predict them, and some conformational characteristics respectively.

The pseudoknots can be sorted into classes by some other criteria, such as the mathematical definitions proposed in [START_REF] Han | Structural alignment of pseudoknotted RNA[END_REF]Wong et al., 2011]. But this dissertation has more interests on the first three classifications.

Physical Interactions

Pseudoknots are formed by non-nested base pairs. A general definition of the conformation of a pseudoknotted structure is that an unpaired loop region in a classical secondary structure is involved in the standard base-pairings with a complementary region outside this loop [START_REF] Pleij | APPENDIX 2: RNA Pseudoknots[END_REF].

As a preliminary, the shadow of a RNA secondary structure is obtained by removing all non-crossing arcs, collapsing all unpaired bases, and replacing all adjacent parallel arcs by single arcs, with the loss of some information on the size of the stems and non-crossing components of the global structure [START_REF] Reidys | Topology and prediction of RNA pseudoknots[END_REF]. A schematic figure is shown in Figure 5.1.

In the context of pseudoknot study, the RNA shadow captures the dominant interactions forming the pseudoknot, in spite of sacrificing some details. Consequently, this dissertation declares each pseudoknot a particular physical type against the corresponding RNA shadow. As an extension of the introduction of the structures with pseudoknots in Chapter 2, this dissertation concludes the pseudoknots family as the following four types principally, from the aspect of physical interaction of the stems:

• The H-type pseudoknots, as described in Section 2.2.3. This most prevalent pseudoknot type covers the major members of PseudoBase with the pseudoknot pattern of ABAB. An example is the gag/pro ribosomal frameshifting pseudoknot of the simian retrovirus-1 (SRV1_gag/pro) with the reference number of PKB107 in PseudoBase.

• The kissing hairpin pseudoknots, or kissing hairpins for short, as introduced in Section 2.2.3. An example of kissing hairpin is the pseudoknot present in the coxsackie B virus (CoxB3), with the pattern of ABACBC and reference number of PKB169 in PseudoBase.

• The recursive pseudoknots, where a pseudoknot is locally embedded in the unpaired single-strand region of another pseudoknot. The embedding and embedded pseudoknot can be either an H-type pseudoknot or a kissing hairpin. In fact, the beginning and ending loops of the pseudoknot hold the possibility to harbor a substructure locally as well, which makes the recursive pseudoknot a conformation of several consecutive pseudoknots. An example of this case is the pseudoknot found in the Thermus thermophilus tmRNA, with the pattern of ABAB and reference number of 3IYQ in PDB.

• The complex pseudoknots, which contain more complex interactions than the previous three types. A common case is the pseudotrefoil pseudoknot present in the Escherichia coli (Ec_alpha) 𝛼 mRNA, with the pattern of ABCABC and reference number of PKB71 in PseudoBase. Another example is the pseudoknot found in the ribozyme of the Hepatitis delta virus, with the pattern of ABCDCADB and reference number of PKB75 in PseudoBase. As the variants of H-type pseudoknots, [START_REF] Pleij | APPENDIX 2: RNA Pseudoknots[END_REF] introduces the bulge-type (B-type) pseudoknot and the interior-type (I-type) pseudoknot, which have the same pseudoknot pattern of ABAB. Specifically, instead of the hairpin loop, the unpaired nucleotides in a bulge loop or an interior loop can base pair with a region outside the loop, constructing the rare B-type pseudoknot and I-type pseudoknot.

Similarly, once the unpaired nucleotides in the multi-loop are involved in forming a pseudoknot, the pseudoknot can be classified as the multi-loop-type (M-type) pseudoknot.

A typical example of the B-type pseudoknot is found in the tRNA-like structure at the end of the tobacco mosaic virus (TMV) [START_REF] Pleij | APPENDIX 2: RNA Pseudoknots[END_REF], with the reference number of PKB57 in PseudoBase. 
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As mentioned in Section 3.2.1, the methods which are available to predict pseudoknots have more or less trade-offs between the practical consideration of the generality of pseudoknots and reasonable computer cost. Comparison of their performance of predictions will be more persuasive with a good knowledge on the characteristics of pseudoknots detected by them. In this algorithmic classification, the classes of pseudoknots are defined according to the specification of algorithms which can predict them or not, as done by [START_REF] Condon | Classifying RNA pseudoknotted structures[END_REF] and [START_REF] Saule | Counting RNA pseudoknotted structures[END_REF]. Both researches contribute to the formal definitions of each algorithmic class of pseudoknots, and the inclusion relationships between them.

Lyngso & Pederson (L&P) Class

The set of pseudoknots that the L&P's algorithm [Lyngsø and Pedersen, 2000a] can detect composes the L&P class of pseudoknots. 

Akutsu & Uemura (A&U) Class

The set of pseudoknots that the Akutsu's algorithm [START_REF] Akutsu | Dynamic programming algorithms for RNA secondary structure prediction with pseudoknots[END_REF] As a conclusion, the set of the A&U class of pseudoknots consists of any number of pseudoknot free structures, simple pseudoknots and their arbitrary concatenation and embedment inside each other [START_REF] Nebel | Algebraic and combinatorial properties of common RNA pseudoknot classes with applications[END_REF]. But more complex knotted structures with the interaction of three stems, such as kissing hairpin with the pattern of ABACBC, and complex pseudotrefoil with the pattern of ABCABC, are excluded from this class.

Jabbari & Condon (J&C) Class

The set of pseudoknots that the J&C's algorithm [START_REF] Jabbari | HFold: RNA pseudoknotted secondary structure prediction using hierarchical folding[END_REF] can detect composes the J&C class of pseudoknots.

The basic component of the J&C class of pseudoknots is the set of the Htype pseudoknots and kissing hairpins, which are referred to as the density-2 (D2)

pseudoknots.

The notion of density is defined as the maximum number of stems where a par- Last but not least, the J&C class contains the L&P class and the D&P class of pseudoknots, and is a subclass of the R&E class of pseudoknots, which is going to be introduced next.

Rivas & Eddy (R&E) Class

The set of pseudoknots that the R&E's algorithm [START_REF] Rivas | A dynamic programming algorithm for RNA structure prediction including pseudoknots[END_REF] can detect is the R&E class of pseudoknots.

The recursions of the gap matrices in the R&E's algorithm allow the possibility of decomposing a large number of pseudoknots, making the R&E class of pseudoknots the superclass of any other classes mentioned above [START_REF] Condon | Classifying RNA pseudoknotted structures[END_REF]. This conclusion may be supported further by the results shown in Section 6.1.1.

Generally, the R&E class of pseudoknots consists of both planar pseudoknots and some non-planar pseudoknots, such as the pseudotrefoil with the pattern of ABCABC. An example which does not belong to the R&E class is the pseudoknot with the pattern of ABCADCEDFEBF [START_REF] Rivas | A dynamic programming algorithm for RNA structure prediction including pseudoknots[END_REF].

The notion of planar pseudoknot defines the set of pseudoknots for which a planar representation does not require crossing lines. An example of planar pseudoknot, with the pattern of ABCDCADB, is shown in Figure 5.5, where the planar representation may not involve any crossing. In details, the nested base pairs AA and CC can be decomposed in the upper semi-plane, and the other two nested base pairs BB and DD can be decomposed in the lower one.

Particularly, the planar pseudoknots are also referred to as the bi-secondary structures in some other literature, with the definition of a superposition of two disjoint pseudoknot-free secondary structures [START_REF] Haslinger | RNA structures with pseudo-knots: Graph-theoretical, combinatorial, and statistical properties[END_REF][START_REF] Witwer | Prediction of consensus RNA secondary structures including pseudoknots[END_REF].

Contrarily, the non-planar pseudoknots collect the pseudoknots for which a planar representation requires crossing lines. A typical example is the pseudotrefoil, with the pattern of ABCABC, as shown in Figure 5.6. Any of the base pairs AA, BB and CC crosses the other two. If the base pair AA is decomposed in the upper semi-plane, and BB is decomposed in the lower semi-plane, the base pair CC has to be decomposed in a third semi-plane to avoid the crossing with AA and BB, which is marked in the dashed line in Figure 5.6.

Quite obviously, all of the L&P class, the D&P class, the A&U class, and the J&C class mentioned above contain only planar pseudoknots.

Containments Between Classes

According to [START_REF] Condon | Classifying RNA pseudoknotted structures[END_REF] and [START_REF] Saule | Counting RNA pseudoknotted structures[END_REF], the inclusion relation between these algorithmic classes, as well as the pseudoknot-free structures (PKF) and the arbitrary pseudoknots (PK) can be set as follows: 5.1 conclude the description of the algorithmic classes of pseudoknots, where the example column in Table 5.1 shows a typical example that is not contained in all the classes before the current one. The J&C class of pseudoknots, taking a kissing hairpin as its corresponding example, is ignored in this conclusion for the same reason as above. 

Conformational Characteristics

Besides the physical and algorithmic classifications, the pseudoknots can be classified according to some conformational or topological complexity measures, such as the planar pseudoknots, or the bi-secondary structures, and the non-planar pseudoknots that are mentioned above. Further, this part is going to introduce three other conformational characteristics of pseudoknots, the knot-component, the genus, and the page number.

Knot-Component [START_REF] Rødland | Pseudoknots in RNA secondary structures: representation, enumeration, and prevalence[END_REF] defines the notion of knot-component as the structural components in the linear representation of RNA secondary structure, which are made by grouping the base pairs, with respect to some particular rules.

In detail, the knot-components collapse the consecutive base pairs in the pseudoknots, remove the nested substructures. Their illustration of the crossing interactions in the pseudoknots is quite analogous to that of the shadow of RNA secondary structures, as introduced in Section 5.3.1. But knot-components defined by [START_REF] Rødland | Pseudoknots in RNA secondary structures: representation, enumeration, and prevalence[END_REF] correspond to structural elements, and the RNA shadow corresponds to a global secondary structure. We may say the knot-components are the bricks metaphorically, and the RNA shadow is a house built with these bricks.

Let 𝑃 𝑛 denote the knot-components with 𝑛 stems, and 𝑃 𝑛,𝑘 distinguish the different types of knot-components with the same number of stems, where 𝑘 is the numeration index proposed by the author. The classification is defined as:

• 𝑃 1 : the pseudoknot-free structures consisting of only one stem, which is referred to as orthodox in this literature.

• 𝑃 2 : the H-type pseudoknots, with the pattern of ABAB.

• 𝑃 3,1 : the kissing hairpin pseudoknots, with the pattern of ABACBC.

• 𝑃 3,2 : the pseudotrefoils, with the pattern of ABCABC.

• 𝑃 4,1 : the complex pseudoknots such as the one with the pattern of ABCB-DADC.

• 𝑃 5,1 : the complex pseudoknots such as the one with the pattern of ABCD-EDBCAE.

Both the L&P class and the D&P class of pseudoknots only allow H-type pseudoknots, which belong to the 𝑃 2 type. The A&U class allows the H-type pseudoknots in the 𝑃 2 type, and complex pseudoknots in the 𝑃 4,1 type, but none of the others. The bi-secondary structures extend the A&U class, also allowing the kissing hairpin in the 𝑃 3,1 type additionally. The R&E class contains the pseudoknots in all of the 𝑃 2 , 𝑃 3,1 , 𝑃 3,2 , 𝑃 4,1 and 𝑃 5,1 types [START_REF] Rødland | Pseudoknots in RNA secondary structures: representation, enumeration, and prevalence[END_REF].

Genus [START_REF] Bon | Topological classification of RNA structures[END_REF] There are four types of pseudoknots correspond to the genus 𝑔-1:

• The H-type pseudoknots, with the pattern of ABAB.

• The kissing hairpins, with the pattern of ABACBC

• The pseudotrefoil, with the pattern of ABCABC

• The complex pseudoknots, with the pattern of ABCADBCD. [ [START_REF] Reidys | Topology and prediction of RNA pseudoknots[END_REF] compares the 𝛾-structures with the algorithmic classes.

The Venn diagram of the relations is shown in Figure 7 in [START_REF] Reidys | Topology and prediction of RNA pseudoknots[END_REF],

with the conclusions:

• The L&P class and D&P class are subsets of the 1-structures.

• The A&U class and the 1-structures and 2-structures intersect partially.

• The R&E class may contain 𝛾-structures with arbitrary 𝛾. All the 1-structures are contained in the R&E class, but a 2-structure with the pattern of ABCADCEDBE is an exclusion of the R&E class.

Page Number

A 𝑝-book is a set of 𝑝 distinct half-planes, which are called as the pages of the book, that share a common boundary line 𝑙, which is called the spine of the book. The book-thickness, which is referred to as the page number of a graph, is the minimal number 𝑝 of pages of a book into which it can be embedded so that the edges assigned to the same page do not cross. In the application of RNA secondary structures, the page number is the minimal number 𝑝 such that the given secondary structure can be decomposed into a disjoint union of 𝑝 nested substructures without crossing. [START_REF] Clote | On the page number of RNA secondary structures with pseudoknots[END_REF][START_REF] Haslinger | RNA structures with pseudo-knots: Graph-theoretical, combinatorial, and statistical properties[END_REF] The notion of page number generalizes the structures which are either defined as the planar pseudoknots, with their page numbers of at most two, or classified into other classes. More precisely, the correspondence of the page number 𝑝 to the pseudoknots is:

• 𝑝 = 1: 1-page, the pseudoknot-free structures.

• 𝑝 = 2: 2-page, the planar pseudoknots or the bi-secondary structures, such as the H-type pseudoknots with the pattern of ABAB and the kissing hairpins with the pattern of ABACBC.

• 𝑝 = 3: 3-page, complex pseudoknots, such as the pseudotrefoil with the pattern of ABCABC.

• 𝑝 ≥ 4: 4-page and above, more general pseudoknots with more complex conformations. Some examples are shown in the results in Section 6.1.4.

The L&P class, the D&P class, the A&U class and the J&C class of pseudoknots are all 2-page pseudoknots, while the R&E class pseudoknots may have page number 𝑝 ≥ 3.

Benchmark and Conformational Characteristics

As introduced in each conformational measurement above, the majority of natural pseudoknots have relatively low complexity values, such as the genus 𝑔 ≤ 1

or page number 𝑝 ≤ 3.

This benchmark is going to study the page number of each pseudoknot in the dataset manually. Although the calculation of page number for arbitrary pseudoknots has been proved to be NP-hard [START_REF] Clote | On the page number of RNA secondary structures with pseudoknots[END_REF] and there is no precise solution in polynomial time, we can do this work thanks to the relatively low complexity of the natural pseudoknots which is proposed by [START_REF] Clote | On the page number of RNA secondary structures with pseudoknots[END_REF].

We do not consider the other conformational characteristics in this benchmark for the following reasons. First, it is quite obvious that the bi-secondary structures correspond to the pseudoknots with page number of 2, thus the planar pseudoknots. Then [START_REF] Bon | McGenus: a Monte Carlo algorithm to predict RNA secondary structures with pseudoknots[END_REF] The NP-completeness of computing the page number for arbitrary pseudokots is illustrated with the assistance of the chromatic number of a given secondary structure. The chromatic number of an RNA structure is defined by the minimal number of colors such that each base pair can be colored in a manner, with crossing base pairs in distinct colors [START_REF] Clote | On the page number of RNA secondary structures with pseudoknots[END_REF].

In the context of the dot-bracket notation of RNA secondary structures as introduced in Section 2.3.1, the chromatic number, corresponding to the page number, can be represented by the number of different types of brackets used for page corresponds to the set of base pairs that are notated in the same type of brackets.

Saying given a shadow of an H-type pseudoknot, the page number is 2 as two types of brackets are enough to represent the crossing interactions of the given pseudoknot, the parentheses and the square brackets. But given such complex pseudoknots with the pattern of ABACDCEBED, how about their page number?

And how about the page number for more general ones?

In this part of work, this benchmark considers to utilize as less types of brackets in as many cases as possible. In other words, this idea can be realized by checking the availability of all the brackets in hand iteratively for each base pair in the given pseudoknot. And a new type of brackets is introduced until all the previous types are not available to notate the crossing interactions any more. More precisely, it is supported by prioritizing the types of brackets, and assigning the foremost type of brackets available to the current base pair. In fact, the operation upon this idea of saving the types of brackets for page number works well for most cases, out of the 414 pseudoknots in this benchmark.

It follows the order of picking the parentheses for the current base pair whenever they are available, and then the square brackets, and then the curly brackets, and so forth.

However, for the complex pseudoknot c2 in Table 5.2, is its page number equal to 3? No, the answer is 2, but with the corresponding dot-bracket notation breaking the predefined prioritization. The final notation of c2 which is highlighted in red shows that c2 also has the possibility of being represented in two types of brackets, corresponding to a page number of 2.

In fact, the problem of assigning a proper dot-bracket notation to the given Table 5.2: The page number of some typical pseudoknots. pseudoknot with a minimal page number is not the question of predefining the order of choosing the brackets, but a foresight to the crossing interactions globally.

Example

The base pair EE in c2 crosses the base pairs AA and CC, and CC crosses the base pair BB. This makes the base pair BB have to hold a different bracket type from the base pair AA for the sake of saving the types of brackets, although AA and BB are nested.

This illustrates, in some sense, the NP-hardness of computing the page number.

If 𝑃 ̸ = 𝑁 𝑃 , there is no polynomial algorithm can compute it in the general cases.

However as the page number of the pseudoknots in nature is relatively low, this benchmark concludes all the page number for the 414 pseudoknots in the Section 6.1. The listed methods in this benchmark are not exhaustive. Some other methods are not taken into account as the unavailability of their executables or editable outputs, or in consideration of some other reasons. These programs and more explanations are shown in Section 5.4.3.

Methods Involved

Exact Methods

pknots pknots implements the R&E's algorithm [START_REF] Rivas | A dynamic programming algorithm for RNA structure prediction including pseudoknots[END_REF], which is elaborated in Section 3.2.1 as a typical exact method predicting pseudoknots, with the assistance of the dynamic programming.

As a pioneer of the prediction of RNA secondary structure including pseudoknots, pknots opened the door to the world of predicting pseudoknots based on the idea of maximizing the thermodynamic stability of the conformation. The algorithm has the complexity of 𝑂(𝑛 6 ) in time and 𝑂(𝑛 4 ) in space, and captures a fairly general class of pseudoknots.

pknotsRG

The R&G's algorithm [START_REF] Reeder | Design, implementation and evaluation of a practical pseudoknot folding algorithm based on thermodynamics[END_REF], pknotsRG, is designed based on the MFE model and the dynamic programming. The complexity is 𝑂(𝑛 4 ) in time and 𝑂(𝑛 2 ) in space.

The algorithm calculates the MFE structures based on the model of the canonized simple recursive pseudoknots principally, which allow the crossing interaction of two stems and the arbitrary internal interaction of unpaired strands surrounded by the pseudoknots.

The canonization policy is employed to restrict the search space of MFE structures. And there are three restrictions on the canonization of the simple recursive pseudoknots, as proposed in the A&U class of pseudoknots: both stems must not have bulges, both stems must have maximal extent, and the compartment Loop 2 must not be negative as both stems compete for the same bases of Loop 2 for a maximal extent.

The R&G's algorithm provides three variants of predicting pseudoknots:

• pknotsRG-mfe, which computes the MFE structure, with or without pseudoknot.

• pknotsRG-enf, which picks out the energetically best structure with pseudoknot from the folding space.

• pknotsRG-loc, which computes the energetically best pseudoknot formed in a local region in the sequence, the one has the best energy to length ratio.

The variants of pknotsRG-mfe and pknotsRG-enf are both considered in this benchmark, which are referred to as two different methods of the pknotsRG-M and the pknotsRG-F respectively. But the pknotsRG-loc is ignored since the unavailability of its global conformation.

Heuristic Methods

HotKnots [START_REF] Ren | HotKnots: Heuristic prediction of RNA secondary structures including pseudoknots[END_REF] reports an heuristic algorithm, HotKnots, for predicting pseudoknots. Roughly, the algorithm builds up candidate secondary structures by adding low-energy substructures one at a time to partially formed structures based on the thermodynamic model extended for pseudoknots as in [Dirks and Pierce, 2003].

are maintained and each of them considers several different additions of a single substructure. The added substructures are termed as hotspots which are energetically favorable structural elements determined by [START_REF] Zuker | Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information[END_REF] with the constraint that no base already paired may be present in the structure.

In detail, a set of hotspots is built up in a tree like fashion, and each hotspot in the set is used as a basis for expanding a secondary structure for the given sequence.

The output of the algorithm is a list of secondary structures corresponding to each hotspot set, sorted by their free energies.

Besides the thermodynamic model extended from the D&P's algorithm, Hot-Knots still uses the energy parameters from two energy models for secondary structures with pseudoknots, the R&E's model [START_REF] Rivas | A dynamic programming algorithm for RNA structure prediction including pseudoknots[END_REF], and the Cao&Chen (CC)'s model [START_REF] Cao | Predicting RNA pseudoknot folding thermodynamics[END_REF]]. Specifically, the computation of HotKnots with the three energy models are referred to as three methods in this benchmark, notated as HotKnots-dp, HotKnots-re and HotKnots-cc respectively.

vsfold5

vsfold5 is an algorithm predicting MFE pseudoknots by using structure mapping and an entropy model, along a sequential, from 5' end to 3' end, and thermodynamically plausible folding pathway [START_REF] Dawson | Prediction of RNA pseudoknots using heuristic modeling with mapping and sequential folding[END_REF].

The folding pathway is described as the decomposition of the structure into a set of substructures. And the pseudoknots are considered as the addition of stems into the loop region of a formed stable secondary structure. And typically, vsfold5 employs the mapping routines of the pointers for the secondary structure without pseudoknots, and handles for the pseudoknots.

In details, in the globular model of vsfold5, a pointer consists of the current base pair, a tag suggesting the structural element where the base pair locates, a forward link which is used to map the next base pair of the secondary structure from the current one, and a reverse link.which is used to map any previous part that is present in the structure. While, a handle, as the extension of the pointers, contains the indexes considering more complex and detailed information additionally to map out the global configuration.

CyloFold

CyloFold simulates a folding process by choosing stems based on the established energy rules and using a three-dimensional model for representing the RNA structures [START_REF] Bindewald | CyloFold: secondary structure prediction including pseudoknots[END_REF].

The idea of CyloFold is to maximize matching helices in a secondary structure.

Initially, CyloFold generates a stem list of all possible stems with more than three base pairs. And the secondary structure prediction is performed by picking the structure from the stem list with best score, where the score is set to be the sum of the free energy of the already placed stems. And fifty rounds of the folding simulations are performed to return the overall optimal structure.

DotKnot

DotKnot predicts the RNA pseudoknots by extracting stem regions from the secondary structure probability dot plot and assembling pseudoknot candidates [START_REF] Sperschneider | DotKnot: pseudoknot prediction using the probability dot plot under a refined energy model[END_REF].

The basic idea of DotKnot is to calculate the secondary structure partition function first, as in [START_REF] Mccaskill | The equilibrium partition function and base pair binding probabilities for RNA secondary structure[END_REF], in the purpose of finding a set of promising structure elements in 𝑂(𝑛 3 ) of time and 𝑂(𝑛 2 ) of space, which may contain potential pseudoknot foldings. Second, DotKnot assembles the pseudoknot candidates using this set of promising elements in two levels, finding the stable core H-type pseudoknots, and then the recursive formations. Last, DotKnot employs the loop entropy parameters to evaluate their free energy values and credibility in the folded sequence. The output of DotKnot is a set of detected pseudoknots and a global conformation.

Additionally, DotKnot considers the prediction of pseudoknots including the kissing hairpins, which is referred to as the variant method DotKnot-K in this benchmark.

pKiss

As the successor of pknotsRG, [START_REF] Theis | Prediction of RNA secondary structure including kissing hairpin motifs[END_REF] proposes an heuristic method for predicting RNA pseudoknots including kissing hairpins, pKiss. pknotsRG considers the class of canonized simple recursive pseudoknot, while pKiss considers the canonized simple recursive kissing hairpins specifically.

In details, the basic idea of pKiss is the view that the kissing hairpins can be referred to as an overlap of two simple pseudoknots, as shown in Figure 5.9.

Consequently, pKiss uses a way similar to pknotsRG to predict an optimal simple pseudoknot 𝑠 1 as the left pseudoknot in the overlap. And then it searches for another simple pseudoknot 𝑠 2 , such that the left part of 𝑠2 may match the right part of the previously computed 𝑠 1 , e.g. the 𝐵𝐵s, and with the 5' end of the 𝐶𝐶 of 𝑠 2 lying strictly to the right of the 3' end of the 𝐴𝐴 of 𝑠 1 . A symmetric step starting from predicting an optimal choice as the right pseudoknot in the overlap is applied in a second round. The output of pKiss is the energetically better prediction between the two rounds of detections.

pKiss also supports other strategies of predicting kissing hairpins, but this benchmark considers the detection introduced above, which is referred to as Strategy A, pKiss's default mode of predicting pseudoknots.

Figure 5.9: The overlap of two H-type pseudoknots in the pKiss's model.

IPknot

IPknot predicts RNA secondary structures with pseudoknots based on maximizing expected accuracy of a predicted structure with respect to an ensemble of all possible structures [START_REF] Sato | IPknot: fast and accurate prediction of RNA secondary structures with pseudoknots using integer programming[END_REF].

Similar to most approaches predicting pseudoknots, IPknot decomposes a pseudoknotted structure into a set of pseudoknot-free substructures and approximates the base-pairing probability distribution that considers pseudoknots, which is used in the following integer programming objective function. And the maximization of expected accuracy refers to maximizing the expectation of the number of true predictions of base pairs under the computed probability distribution.

The solution of the integer programming problem corresponds to the thermodynamically optimal pseudoknotted prediction of IPknot.

McGenus

McGenus [START_REF] Bon | McGenus: a Monte Carlo algorithm to predict RNA secondary structures with pseudoknots[END_REF] uses a Monte Carlo algorithm to search for an MFE structure, with a general scoring function which includes both the free energy contributions for pair stacking, loop penalties, etc. and a penalty for the topological genus of the pseudoknots.

An RNA structure in the McGenus's model is referred to as a collection of stem-like structures, which are termed as the helipoints, the ensemble of helices, or stems, for a given sequence. The MFE structure amounts to the set of pairwise compatible helipoints for which the overall free energy is minimum. The compatibility of two helipoints arise when there is no shared base between them. And the choosing of the helipoints is done according to the stochastic Monte Carlo scheme.

The output of McGenus is a set of pseudoknots marked with the corresponding genus.

Benchmark and Prediction Methods

Table 5.3 presents all the 15 methods considered in this benchmark in alphabetic order. There still are other approaches predicting RNA pseudoknots from a single sequence.

KnotSeeker [START_REF] Sperschneider | KnotSeeker: Heuristic pseudoknot detection in long RNA sequences[END_REF]] uses a hybrid sequence matching and free energy minimization approach to perform a screening of the sequence.

The short sequence fragments are considered as possible candidates that may contain pseudoknots, suggesting the output of KnotSeeker is a set of partial pseudoknots found on the sequence fragments rather than a global structure based on the entire sequence. Lots of the omitted structural information between the pseudoknots make KnotSeeker excluded from the prediction methods of this benchmark, although it is available to handle long sequences.

HFold [START_REF] Jabbari | HFold: RNA pseudoknotted secondary structure prediction using hierarchical folding[END_REF], the corresponding program of the J&C's algorithm, is not included in this benchmark because its prediction is restricted by the pseudoknot-free structure provided as input, as introduced in Section 3.2.1.

In this benchmark, we only consider the prediction methods which take a single sequence as input, and yield a secondary structure or several ones as output.

In addition, some programs are omitted in this benchmark as the unavailability of the executables, such as FlexStem [START_REF] Chen | FlexStem: improving predictions of RNA secondary structures with pseudoknots by reducing the search space[END_REF], HPknotter [START_REF] Huang | A heuristic approach for detecting RNA H-type pseudoknots[END_REF] and TT2NE [START_REF] Bon | TT2NE: a novel algorithm to predict RNA secondary structures with pseudoknots[END_REF] 1 . Some are ignored as either there are no editable outputs, such as Kinefold [START_REF] Xayaphoummine | Kinefold web server for RNA/DNA folding path and structure prediction including pseudoknots and knots[END_REF] and

ProbKnot [START_REF] Bellaousov | ProbKnot: fast prediction of RNA secondary structure including pseudoknots[END_REF], or the incapability of compiling the executables, such as the iterative loop matching approach (ILM) [START_REF] Ruan | An iterated loop matching approach to the prediction of RNA secondary structures with pseudoknots[END_REF].

Normalization of the Predictions

As mentioned in Section 2.3.1, the methods may have different formats of output of RNA secondary structures, either be in dot-bracket notations, or in BPSEQ format, or in CT format. As a result, this part is going to introduce the idea of the normalization of the predictions in the purpose of comparisons.

Specifically, there are two types of normalization, translating the dot-bracket notations into the BPSEQ or CT formats, and the reverse operation. The former translation is needed for calculating the evaluation values which are introduced in the next section. And the latter is needed for facilitating the intuitive comparison of the predictions.

In fact, the evaluation of the predictions, compared to the reference structures, is carried out by comparing both structures in the BPSEQ format. It is relatively easy to translate the predictions from the CT format into the BPSEQ format, by just removing the third, fourth and sixth columns from the original files. On the other hand, translating the prediction from the dot-bracket notation into the More precisely, the number of different types of brackets represented in the dot-bracket representation corresponds to the number of stacks used. And each stack is used to store one distinct type of opening brackets.

Given a secondary structure 𝑆 with 𝑛 nucleotides in the dot-bracket representation, the translation starts from the 5' end of the sequence to the 3' end. A dot '.' in the 𝑆 is referred to as a '0' in the third column of this corresponding unpaired base in the generated BPSEQ file. The position 𝑖 of a opening parenthesis '(' in 𝑆 is deposited into the first stack, the position of a opening square bracket '[' is deposited into the second stack, the position of a opening curly bracket '{' is deposited into the third stack, and so forth.

The encounter of a closing parenthesis ')' will pop the uppermost element of the first stack, and both positions of the closing parenthesis and its popped partner will be stored into the generated BPSEQ file as a base pair. Similarly, the encounter of a closing square bracket ']' or a curly bracket '}' will have an analogous operation on popping the top element of the second or third stack, and having both positions of the matching pair of brackets deposited into the BPSEQ file as a base pair. And so forth.

However, we hardly capture the crossing interactions from the BPSEQ files readily, and decide to devote more efforts into the opposite operation. We believe the translation of structures from the BPSEQ file into the dot-bracket notation can intuitively facilitate the comparison of the predictions, as the results shown in Table B.2.

But, how to describe the pseudoknotted conformation properly in the dotbracket representation? The utilization of a set of stacks may answer the question, where each stack is used to store the base pairs that can be represented in one particular type of brackets.

Given a BPSEQ file 𝑆, an initialization step is to remove the unpaired bases from 𝑆, and generate the 𝐵𝑃 , a list of base pairs (𝑥, 𝑦), where 𝑥 and 𝑦 are the first and third columns of each base pair in 𝑆. The second column of the sequence information is omitted temporarily, as it is easy to be referred later with the corresponding position of 𝑥. The procedure of processing the 𝐵𝑃 is to consider each base pair in the ascending order of 𝑥. The global idea is to either deposit the current base pair in one of the stacks, or pop the top element of a stack and store the base pair in the result list 𝑆𝑡𝑟, which represents the secondary structure in the dot-bracket notation.

As the preliminaries, here are two important notions in the process:

• The crossing of two base pairs. Given two base pairs (𝑥 1 , 𝑦 1 ) and (𝑥 2 , 𝑦 2 )

with 𝑥 1 < 𝑦 1 and 𝑥 2 < 𝑦 2 , they are crossing if the conditions of either

𝑥 1 < 𝑥 2 , 𝑦 1 < 𝑦 2 and 𝑥 2 < 𝑦 1 , or 𝑥 2 < 𝑥 1 , 𝑦 2 < 𝑦 1 and 𝑥 1 < 𝑦 2 are satisfied.
• The matching of two base pairs. Given a base pair (𝑥, 𝑦), the matching of two base pairs is declared if the pair (𝑦, 𝑥) is encountered.

Initially, the first base pair is deposited in the first stack, which is particularly used to store the base pairs that can be represented in parentheses '(' and ')' in 𝑆𝑡𝑟. And then the second base pair (𝑥, 𝑦) will be checked with the possibilities that whether (𝑥, 𝑦) matches the top element of the first stack, i.e. the first base pair, or crosses it. If they are matched, saying the top element of the first stack is the base pair (𝑦, 𝑥), the (𝑦, 𝑥) will be popped, and stored in the 𝑆𝑡𝑟 with assigning 𝑦 a '(' and 𝑥 a ')'. If they are crossed, a new stack is desired. Consequently, (𝑥, 𝑦) is going to be deposited in the second stack, declaring that (𝑥, 𝑦) and its future 'stack-mates' are going to be represented in square brackets '[' and ']' in 𝑆𝑡𝑟. If both possibilities fails, (𝑥, 𝑦) is deposited in the current stack, as it is compatible with the element of the first stack.

The third base pair (𝑥, 𝑦) will be checked with the possibilities of matching and crossing with the top elements of the stacks, if there are more than one stack.

If there is a matching, the matched (𝑦, 𝑥) will be popped, and 𝑦 will be assigned a '(' or '[' depending on which stack the (𝑦, 𝑥) is found, and 𝑥 will be assigned a ')' or ']' accordantly. If (𝑥, 𝑦) crosses the top elements of both stacks, it may be deposited in the third stack, with its representation and future stack-mates' in 𝑆𝑡𝑟 of the '{' and '}'. If neither is satisfied, (𝑥, 𝑦) can be deposited either in the first stack if it is compatible with the element of the first stack, or in the second stack if not. And so forth.

the BPSEQ file into the dot-bracket representation.

We may notice that the first stack, which holds the parentheses for the representation of its members in 𝑆𝑡𝑟, has the highest priority of storing the base pair (𝑥, 𝑦), if (𝑥, 𝑦) is compatible with more than one stack. The next priority goes to the second stack, and so forth. This caters to the idea of saving the types of brackets for page number which is mentioned in the Section 5.3.3, with the same prioritization of choosing the brackets for base pairs.

We expect such kind of prioritization may reduce the number of stacks used, which reflects the number of different types of brackets used, and further the page number of the given structure. But the efforts may not succeed with the inaccessibility of any foresight to the global crossing interactions and other inestimable complex reasons, as mentioned above, although the expectation is supported by the study of page number for the 414 pseudoknots in this benchmark.

Evaluation Parameters

In the purpose of evaluating the performance of the predictions by 15 methods, this benchmark is going to use the same criteria as in Chapter 4: the sensitivity, the positive predictive value (PPV) and the Matthews Correlation Coefficient (MCC).

The computation of the three evaluation values are given again, with the TP, FP, TN and TP having the same definitions as in Section 4.3.1.

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑇 𝑃 𝑇 𝑃 + 𝐹 𝑁

(5.1)

𝑃 𝑃 𝑉 = 𝑇 𝑃 𝑇 𝑃 + 𝐹 𝑃 (5.2) 𝑀 𝐶𝐶 = 𝑇 𝑃 × 𝑇 𝑁 -𝐹 𝑃 × 𝐹 𝑁 √︀ (𝑇 𝑃 + 𝐹 𝑃 )(𝑇 𝑃 + 𝐹 𝑁 )(𝑇 𝑁 + 𝐹 𝑃 )(𝑇 𝑁 + 𝐹 𝑁 ) (5.3)
And as the participation of crossing interactions, the Equations 5.2 and 5.3

do not consider the division of false positive further, for the reason explained in Section 4.3.2.

Algorithm 2 The algorithm of translating the structures from BPSEQ to dotbracket representation.

Input: A BPSEQ file 𝑆 for a given structure, either containing the pseudoknot(s) or not.

Output: A list 𝑆𝑡𝑟, storing the structure in the dot-bracket representation.

1: procedure Translation(𝐵𝑃 ) 2: return a opening parenthesis to the stack in response to its position Number in 𝑏𝑝𝑆.

Initialization

3:

Specifically, '1' corresponds to the first level of brackets, a '(', '2' to a '[', '3' to a '{'.

4:

And then '4' and '5' corresponds to the alphabetical letters 'A' and 'B', representing 5: a higher level of crossing, and so forth.

6: end procedure 1: procedure Assign-brackets(Character)

2:

return a closing parenthesis, in response to the opening parenthesis Character.

3: end procedure

Chapter 6 Results

Pseudoknot Classification

Global Classification

According to the three classifications mentioned in Section 5.3, the classification of the 414 pseudoknots is shown in Table 6.1. Particularly, the third category of Algorithmic Accessibilities shows the algorithmic classifications which have been computed by the software RNAtest, provided by Condon et al. [START_REF] Condon | Classifying RNA pseudoknotted structures[END_REF] kindly. A Y is assigned when the current pseudoknot falls into the certain algorithmic class, and an N represents the opposite.

Additionally, Section 5.3.2 shows an inclusion relation between the classes, except the J&C class. Therefore, the number of pseudoknots in each algorithmic class, and the number of pseudoknots which are in the complementary set of the current class compared to its superset are shown respectively in Table 6.1. The complete information of the classification for the 414 pseudoknots is provided in Appendix C, and the corresponding details of each sequence, such as their RNA type, organism, sequence and structure, are shown in Supplementary File Benchmark.

Correlation between the Classifications of Sequences

The last section has shown the classifications of 414 RNA pseudoknots. Meanwhile, as mentioned in Section 5.1, we are considering a particular collection of 
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118 pseudoknots which contains the sequences that can be handled by all the methods, with the consideration of comparing the predictions of all the methods with a consistent set of sequences. And 387 sequences compose the shared set, with the detailed reasons of selection given in Section 6.2.

In order to have a comprehensive understanding of the relation between the characteristic of sequences and the classification of pseudoknots of the 387 sequences, we are going to introduce the correlation. Typically, the notion of the correlation is to find the relationship between different classes of sequences, which are divided into subsets in accordance to diverse aspects of the sequences, such as the length, organism and page number of them. This study will benefit the comparison of the prediction methods based on the shared set, as the methods are going to be compared based on these individual classes of sequences.

In practice, we are going to count how many sequences in a particular class intersect with another one. And as the functional families of the RNA sequences are the most interesting parts for the bioinformatics community, we show the result in Table 6.2, where the numeric values represent the number of sequences belonging to the corresponding two classes.

The Recursive and Complex Pseudoknots

The H-type pseudoknots and kissing hairpins have well-known crossing interactions of ABAB and ABACBC respectively. And this dissertation pays more attention on the four recursive pseudoknots and 44 complex pseudoknots in Table 6.1, which are provided in detail in Tables 6.3 and 6.4.

Specially, the pseudoknot pattern of some complex pseudoknots with page number ≥ 3, as shown in Table 6.4, is assigned others as their much more complicated crossing interactions. Typically, a majority of the complex pseudoknots in PseudoBase are the ribozymes from the eukaryotic molecules. The homology of these sequences contribute them a same pseudoknot pattern, a same page number and the same affiliation with the algorithmic classes in Table 6.4. The akin homology of 3RKF_A, 3IVN_B and 3LA5_A is shown as well. And typically, as the inaccessibility of the functional family of 3KIY_A, we may not conclude the homology between 3KIY_A and 2WDL_A. If we focus on the most complex pseudoknots, we may wonder how complicated the crossing interactions are. In fact, in the purpose of illustrating the complex pseudoknots with page number ≥ 3, the schematic figures of the crossing interactions representing the conformation are provided.

The pseudotrefoil PKB71, with the pseudoknot pattern of ABCABC, is quite easy to be understood as its page number of 3. The stems AA, BB and CC cross mutually, which requires exactly three pages to decompose it into the union of pseudoknot-free substructures.

On the other hand, 3ZEX_B, 3J20_2, 2WDL_A and 3KIY_A, the 4 complex pseudoknots display much more complicated conformations. Specifically, the schematic figures for demonstrating each complex pseudoknot are composed of the following four subfigures:

• One screen-shot of the global structure of the pseudoknot, visualized by VARNA.

• One screen-shot of the dominant local structure of the pseudoknot,visualized by VARNA. The notion of the dominant local structure used here declares the smallest substructure which has the same page number as the global conformation.

• The corresponding RNA shadow of the dominant local region.

• The coloring notation of the RNA shadow, corresponding to a decomposition of the pseudoknotted conformation with colors such that the nested base pairs are represented in an unique color. We investigate the page number of 3ZEX_B by decomposing it into a union of nested base pairs in the context of RNA shadows, such that each set of nested base pairs are colored with an unique color. The pseudoknot pattern of the dominant region of 3ZEX_B is ABCDBED-FGFCEAG. But since the global conformation still contains some local subpseudoknots which are nested inside the unpaired loops elsewhere, the pseudoknot pattern of 3ZEX_B is assigned as others by this benchmark. The pseudoknot pattern of the dominant region of 3J20_2 is ABCDADBC. But the global pseudoknot pattern of 3J20_2 is assigned as others by this benchmark under the same consideration as 3ZEX_B.

3ZEX_B

3J20_2

6.1.7 2WDL_A As a consequence, the page number of the dominant region of 2WDL_A is 4, so is the global conformation. The pseudoknot pattern of the dominant region of 2WDL_A is ADEBCDEABC, and the global pseudoknot pattern of 2WDL_A is assigned as others by this benchmark, as some local substructures are located outside the dominant region.

3KIY_A

3KIY_A is another example which has a page number of 4 in this benchmark.

Similarly, Figure 6.4(a) shows the global conformation of 3KIY_A, Figure 6.4(b)

shows the local dominant part, from the 434 base to the 2658 base, and Figure 6.4(c) shows the shadow of the dominant region of 3KIY_A. The decomposition of the dominant region of 3KIY_A in colors is shown in Figure 6.4(d).

In fact, as shown in Figure 6.4(c), 3KIY_A has the same shadow for the dominant region as 2WDL_A. The same pseudotrefoil-like crossing interactions with the pattern of DEBCDEBC contributes both the dominant structure and global conformation of 3KIY_A a page number of 4.

Prediction of the Pseudoknots

A series of comparisons are carried out which aims to compare the performance of predicting pseudoknots by each method. In practice, the performance of predictions is assessed based on the entire dataset, the shared set of sequences, and hierarchical subsets of pseudoknots which are divided by levels of complexity measurement of the pseudoknots, and the length, organism and RNA type of the sequences. in Table 6.5, as well as the numeric values of pseudoknots that each method can handle. The ability of handling or predicting a sequence means that the method can return for the input sequence a secondary structure or several ones, with or without pseudoknots, but offers no guarantee of the quality of the prediction.

Particularly, the input length thresholds in Table 6.5 are given by the longest sequence that the method can handle and the shortest one it can not. For example, the longest sequence that CyloFold can handle is 412 nucleotides, and the shortest one that CyloFold fails to predict a secondary structure is 920 nucleotides. Consequently, the input length threshold of CyloFold is longer than 412 nucleotides but shorter than 920 nucleotides, the same to that of HotKnots-dp, HotKnots-re and vsfold5.

In addition, the unassigned values in the Organism and RNA Type classification of the sequences are considered as well, marked with a value Unknown in Table 6.5.

Meanwhile, as mentioned in Section 5.1, a subset of pseudoknots containing the sequences which can be handled by all the benchmarking methods is considered, with the consideration of comparing the predictions of all the methods with a consistent set of sequences. In fact, the threshold of choosing sequences for this shared subset depends on MC-Fold, as it has the most restricted requirement on the length of the input sequence.

Finally, out of 414 sequences, 387 sequences that MC-Fold can handle compose the shared set. And the non-shared, or missing 27 sequences left from the entire dataset compose the missing set. Particularly, we select a corresponding winner program which has obtained an optimal prediction on average for each class of sequences in Figures 6.5, 6.6 and 6.7, as concluded in Table 6.6. and MCC. We term them as the specific winner methods, which have the maximum number of times in achieving the averagely optimal performance on predicting a particular class.

Contrarily, it is obvious to observe that the programs, such as MC-Fold, vsfold5

have a bare preponderance in this competition, as they are not present in Table 6.6 and with no score in Figure 6.8 at all. Further, we may wonder how these specific winner methods perform on predicting other classes? Are they always good choices or just effective to some certain classes?
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Figure 6.9 shows the global prediction performance of each method, where the line corresponds to the evaluation values ranging between the maximal and minimal ones that the certain method, labeled in the x-axis, has obtained, and 143 the solid point represents the arithmetic average of the evaluation values. We notice that the performance values of the majority of prediction methods aggregate between 0.6 and 0.75, which two are denoted by two dashed lines in Figure 6.9. The excluded five methods, HotKnots-dp, HotKnots-re, IPknot, MC-Fold and vsfold5 are not taken into account in the further comparisons, as some or all of their evaluation values are beneath 0.6.
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But which of the other ten prediction methods are the best ones generally?

In the investigation of the answer, we consider to estimate a consensus ranking which suggests a single ranking that best 'agrees' with all the individual preference rankings of predicting the classes in Table 6.6. In practice, we employ the heuristic BioConsert in the Median Ranking web service [START_REF] Brancotte | Rank aggregation with ties: Experiments and analysis[END_REF] to perform the consensus ranking, which is a heuristic method designed for the biological data consensus ranking with ties. In this ranking model, some of ranking elements are allowed to be aggregated which are considered as one group with a same ranking.

In detail, we have divided the 414 pseudoknots into 29 classes hierarchically in accordance to both the characteristic of sequences and the classification of pseudoknots, as shown in Figures 6.5, 6.6 and 6.7. And based on each class of sequences, there is an individual ranking of the prediction performance of the 15 methods, which is considered as one input of the consensus ranking.

Based on 29 inputs, the implementation of BioConsert have returned the consensus ranking of the prediction methods, with respect to the sensitivity, PPV and MCC respectively, as shown in Table 6.7. According to the Table 6.7, the best three prediction methods in the consensus ranking vary along with the three evaluation values, the sensitivity, PPV and MCC. But if we take the union of the top three ranked methods of each evaluation value, we have the following four ones: CyloFold, DotKnot, McGenus and pKiss.

These four prediction methods are termed as the global winner methods, which have achieved the globally optimal performance on predicting all the classes.

Very interestingly, three of the global winner methods correspond to the specific winner methods, suggesting the union of both types of winner programs is comprised by the four global winner methods.

As a consequence, DotKnot, pKiss, CyloFold and McGenus are termed as the winner methods of this benchmark.

With respect to a comprehensive understanding of the relation between the 29 classes of sequences, as shown in Table 6.2, we plot the performance of the four Figures 6.10, 6.11 and 6.12. Particularly, the functional families and respective sizes are located along the circumference, and the radius correspond to the evaluation values ranging from 0 to 1, where the detailed sensitivity, PPV, and MCC of the predictions by the four winner programs are connected by lines. And we plot the other classifications of Table 6.2 in the histograms, as shown in Figures 6.13, 6.14 and 6.15. Particularly, the x-axis is label with the classes and their sizes, and the y-axis is label with the evaluation values ranging from 0 to 1. In addition, Figure 6.16 shows the average performance on predicting each class of pseudoknots by the 15 benchmarking methods. Particularly, the classes are labeled in the x-axis, and the evaluation values ranging from 0 to 1 are labeled in the y-axis.
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Individual Predictions

As Figures 6.5, 6.6 and 6.7 show the global performance of the predictions based on the 387 sequences in the shared set, we may still wonder how about the predictions based on the 27 sequences in the missing set. Table 6.8 shows the detailed information of the 27 missing pseudoknots, including the length, pseudoknot type, page number, RNA type and organism, in the descending order of their lengths. Figures 6.17 The discussion and conclusion of the comparisons in this benchmark are going to be shown in the next chapter.

• Feedback

The introduction conveys a global description of this benchmark, covering the background of RNA secondary structure prediction, the motivation and main contributions of this benchmark. Quite remarkably, the benchmark first considers 414 pseudoknots from two prevalent databases, and analyses the hierarchical subsets of them based on three classifications, emphasizing on the page number particularly. Second, the on-line version of the benchmark supports the download and visualization of pseudoknots, and the querying of interested ones according to their length, RNA type, organism, pseudoknot pattern and any of the three pseudoknot classifications. Last but not least, 15 prediction methods which are available to predict pseudoknots are introduced, and their performance on predicting the 414 pseudoknots are compared, which is expected to help the users make a practical selection of prediction methods for the given sequence.

In the dataset part, the 414 pseudoknots from Pseudobase and PDB are listed. Specifically, the users can find the reference number of the pseudoknots, the links back to the two databases, the length of the pseudoknots, and the RNA type, organism and nucleotide composition details, as well as the corresponding reference secondary structure. In addition, a quick and an advanced search for the interested pseudoknots are provided, according to the length, RNA type, organism, pseudoknot pattern and complexity of the pseudoknots.

The characteristics of pseudoknots cover the three complexity measures of pseudoknots, which suggests the classifications of pseudoknots according to the physical interactions of base pairs, the theoretical treatability of certain algorithms, and the conformational page number.

The 15 methods considered in this benchmark are introduced in the method part.

And the calculations of the sensitivity, positive predictive value and Matthews correlation coefficient are listed in the evaluation parameter part.

The result part shows the classification of the 414 pseudoknots in the classification of pseudoknots part, and the prediction of pseudoknots by the 15 methods in the prediction of pseudoknots part.

The manual is a tutorial brochure, suggesting where the users can obtain the information they are looking for, and a guide of the proper utilization of this benchmark.

And the feedback collects the comments and suggestions from the users, ensuring an improved and continuous support for this benchmark by us. We take the latter three as the prime evaluation parameters in this benchmark.

Architecture

The average sensitivity, PPV and MCC on the prediction of each class are calculated, voting a winner method which has obtained the optimal performance based on the particular class. Meanwhile, a consensus ranking based on all the classes is implemented, in order to vote the winner methods globally.

The corresponding entity relationship diagram of the data in the benchmark is shown in Figure 6 

Accessibility

In practice, the benchmark is built upon the framework of WordPress [START_REF] Mullenweg | WordPress[END_REF], which is web software based on PHP and MySQL.

The web site is located on the server of LRI, and accessible to the bioinformatics community at: http://bernard-pk.lri.fr/, where the BERNARD-PK stands for a BEnchmark for RNA stRucture preDiction with PseudoKnots. And the screenshot of the home page is as follows: 

Pseudoknots Classification

As shown in Section 6.1, we may associate the relationship between the classifications of the Physical Interactions and the Conformational Characteristics in Table 6.1. The 409 pseudoknots having a page number of 2 include all the H-type pseudoknots, the kissing hairpins and recursive pseudoknots, and most part of the complex family. The excepted five complex pseudoknots with page number ≥ 3 contain more intricate crossing interactions. This part of discussion pays more attention to the relationship between the physical classification and the algorithmic one, which is principally based on the discussion of the number of pseudoknots in the complementary set of each algorithmic class, as shown in Table 6.1.

It is very interesting to mention that the recursive pseudoknots defined in this benchmark are different from those defined in the algorithmic classification. This benchmark classifies the pseudoknots based on the RNA shadows, which removes all the non-crossing arcs from the original structure, collapses all unpaired bases, and replaces all adjacent parallel arcs by single arcs. The recursive pseudoknots in this context correspond to the set of pseudoknots which may include a second pseudoknot embedded in the unpaired single-strand region of them locally, as introduced in the Section 5.3.1. Contrarily, the algorithmic classification defines the set of recursive pseudoknots as the ones containing some embedded substructures, which can either be the pseudoknots or the pseudoknot-free secondary structures.

For example, given a pseudoknot with the pattern of ABAcddcB, the algorithmic classification will notate it as a recursive pseudoknot as there is a embedded substructure cddc embedded in the unpaired region of the pseudoknot ABAB. But the RNA shadow will notate its pseudoknot pattern as ABAB since the substructure cddc is nested, which is removed according to the definition of RNA shadows.

As a consequence, the RNA shadows are preferred to classify the pseudoknots physically as the 414 pseudoknots considered in this benchmark may display some intricate conformation.

H-type Pseudoknots and L&P Class of Pseudoknots

The conflict of defining recursive pseudoknots is specifically reflected on the different numbers between the H-type pseudoknots in the Physical Interactions and the L&P class of pseudoknots in the Algorithmic Accessibilities in Table 6.1, where the two numbers are supposed to be the same. More precisely, there are seven pseudoknots which belong to the H-type pseudoknots but not to the L&P class, the PKB65, 3JOL_A, 3NKB_B, 3PDR_A, 3SD1_A, 3U4M_B, 4FRG_B, and 4JRC_A. So the 344 D&P class of pseudoknots are composed of 341 H-type pseudoknots and three recursive H-type pseudoknots with their pseudoknot patterns shown in the Table 6.3.

A&U Class of Pseudoknots

As shown in Table 6.1, the number of pseudoknots in the relative complementary set of the D&P class in the A&U class is zero. It means that there is no pseudoknot in this benchmark which falls into the A&U class but does not belong to the D&P class.

We may wonder why? Is the A&U class of pseudoknots supposed to include a large number of simple pseudoknots and recursive simple pseudoknots which are composed of two stems? And what is the difference between the 35 complex pseudoknots shown in Table 6.4 with the pattern of ABCDCADB and the typical simple pseudoknot in the A&U class, which is shown in The base pairs having a base on the left region can not have their partner on the right region, but on the middle region only, vice versa.

We try to decompose the 35 complex pseudoknots with the pattern of ABCD-CADB in Table 6.4 into the pseudoknot model of the A&U class. The base pair BB locates its 3' end at the end of the pseudoknot, which represents its location on the right region of the sequence. So the 5' end of BB should be on the middle region. On the other hand, the location of the 5' end of BB is close to the be- 

J&C Class of Pseudoknots

Next, the J&C class of pseudoknots corresponds to the density-2 pseudoknots, such as the H-type pseudoknots and the kissing hairpins. Consequently, the number of relative complementary set of the D&P class in the J&C class is 26, composed of 25 kissing hairpins and one recursive kissing hairpin, as shown in Table 6.3.

R&E Class of Pseudoknots

And there are 41 pseudoknots which fall into the R&E class, but neither into any of the previous classes. Specially, they are composed of all the complex pseu- doknots, except the 3ZEX_B, 2WDL_A and 3KIY_A, which do not belong to any algorithmic classes. The explanation of the exclusion of 3ZEX_B, 2WDL_A and 3KIY_A is unclear so far, as there is no precise description of the structure space of the textslR&E class of pseudoknots [START_REF] Rivas | A dynamic programming algorithm for RNA structure prediction including pseudoknots[END_REF].

Prediction of the Pseudoknots

RNA Sequence Classes

The Section 6.2 shows the comparison of predicting the 414 pseudoknots by the 15 methods, based on the evaluation values which are assessed on the classes ranging from the entire set of 414 pseudoknots to each subclass inside the shared set.

As shown in Table 6.5, almost every method can handle the pseudoknots which are shorter than 200 nucleotides, with only one exception of MC-Fold as its threshold of length is shorter than 160 nucleotides. And the failure rate in handling the sequences by most methods increases as the length of sequence increases. For long sequences with more than 1000 nucleotides, most methods are incapable to predict them a secondary structure.

Similarly, the failure rate in handling the sequences by most methods increases as the complexity of pseudoknots grows. It is further supported by the fact that nine complex pseudoknots and all the four recursive ones are excluded from the shared set. And two pseudoknots with a page number of 3 and both pseudoknots with a page number of 4 are excluded from the shared set. The only pseudoknot with a page number of 3 which is included in the shared set is the pseudotrefoil, PKB71.

Next, we are going to discuss the results in accordance of the classifications as shown in Table 6.2, based on Figures 6.5, 6.6 and 6.7.

In the classification of the global groups, as the entire set, shared set and missing set, the 15 methods have a close performance on predicting the entire set and the shared set, which is much higher than that of the missing set.

In the classification of the sequence lengths, we can see the performance based on the sequences with the length shorter than 100 nucleotides is better than that of the longer ones. Particularly, the performance gap between these two classes is much larger in the PPV and MCC values, compared to the sensitivity, suggesting the conclusion that the PPV and MCC values are more sensitive to some classes than the sensitivity.

In the classification of the functional families that the sequences belong to, all the 15 methods have obtained the worst performance based on the mRNAs and rRNAs, and viral readthrough. And they have obtained the best performance based on the viral 3 UTR, viral 5 UTR, riboswitch, aptamer and ribozyme. Particularly, the PPV and MCC values based on the mRNAs and rRNAs are greatly lower, compared to the sensitivity, which correspond to the rows in a darker fuchsia in Figures 6.6 and 6.7.

In the classification of their organisms, we can see that the 15 methods have the best performance based on the sequences with their organisms unknown, and have a relatively bad performance based on viral RNAs, and then the one based on the prokaryotic molecules. All the methods have the worst performance based on the eukaryotic molecules.

In the classification of the page number of each sequence, the performance of the 15 methods based on the sequences with a page number of 2 is much better than that of the particular sequence with a page number of 3. This supports the statement mentioned above, the performance decreases as the complexity of pseudoknots grows. Particularly, the performance gap between these two classes is also much larger in the PPV and MCC values, compared to the sensitivity.

And in the classification of the pseudoknot types, we can see the performance of the 15 methods decrease in the order of predicting the complex pseudoknots, H-type pseudoknots, and then the kissing hairpins.

The average performance of the 15 methods can be referred to Figure 6.16.

Typically, we can obtain the correlation between the evaluation parameters in Figure 6.16, as the three evaluation points gather in most classes.

On the other hand, Figures 6.5 In the classification of their organisms, the performance of the four winner programs decreases slightly in the order of predicting the sequences with their organisms unknown, viral RNAs, prokaryotic molecules, and then the eukaryotic molecules. This tendency of losing advantages on prediction is consistent with that of the 15 methods based on the same classification of sequences.

And in the classification of pseudoknot types, the performance of the four winner programs decrease in the order of predicting the complex pseudoknots, H-type pseudoknots, and then the kissing hairpins, which is also consistent with that of the 15 methods based on the same classification of sequences.

If we move to the Figures 6.17 The evaluation values for predicting PKB64 may illustrate this phenomenon.

The reference structure of PKB64 constructed in this benchmark contains only 8 base pairs, with 920 nucleotides. This makes the PKB64 very difficult to be predicted an acceptable secondary structure by the benchmarking methods, as extremely few information of the conformation is shown. The density of the corresponding boxes in Figures 6.17 However, for the rRNA, tRNA, viral molecules, there is no single method which has obtained the optimal sensitivity, PPV and MCC. In fact, according to Equation 5.3, MCC combines the sensitivity and PPV, suggesting it as the most comprehensive evaluation parameter of the three ones.

As a consequence, we consider the method which has an optimal MCC and either an optimal sensitivity or PPV as the optimal method in predicting the current class. But there are two extremely special cases, the optimal sensitivity, PPV and MCC for the prokaryotic molecules and complex pseudoknots are obtained by three inconsistent prediction methods, as shown in Table 6.6.

In the purpose of investigating the prediction of the two special classes by the corresponding three winner methods, Table 7.1 shows the detailed evaluation scores that each method has obtained respectively, based on the particular classes of sequences. In addition, MC-Fold and vsfold5, HotKnots-dp are the relatively poor prediction methods, based on the dataset of this benchmark.

Regarding the prediction of 27 sequences in the missing set, Figures 6.17 We may notice that IPknot displays its advantage in predicting the 27 sequences as it corresponds to the majority of green boxes in Figures 6.17 Additionally, the heuristic methods outperform the exact methods in almost all the comparisons, with the exception of vsfold5. This supports the main statement that the heuristic methods have a less restriction on the input length and pseudoknot type than the exact methods, but may bear a sacrifice on the optimality of the prediction. But the result shown in Table 6.6 and Table 6.7 oppose this declaration, arguing that the heuristic methods may predict a better conformation than the exact methods, and be more sensitive to the input sequences.

The Accuracy of the Predictions

We find out that pKiss is one of the best programs in this benchmark, as it has obtained dominant times of optimal evaluation values in Figure 6.8. Particularly, we investigate the predictions of pKiss in this part to start a discussion about the accuracy of the predicted structures. We try to answer the question: is pKiss always a reliable program?

As introduced in Section 5.4.2, pKiss is a program developed for predicting the kissing hairpins principally. In fact, after re-checking all the predictions of pKiss, I find that the 394 predictions are composed of 265 H-type pseudoknots, 95 kissing hairpins and 34 pseudoknot-free structures.

This discovery may disappoint the supporters of pKiss. pKiss predicts 72 more kissing hairpins than the reference structures as shown in Table 6.5. And it fails to predict any complex pseudoknots.

So another question may be raised again, how does pKiss achieve such high evaluation values? It may be explained as follows. pKiss has a relatively large group of the correctly predicted base pairs, but the global conformation is quite different from the reference structure.

This raises the third question. So how to evaluate the prediction? I am afraid it should be conquered by new evaluation parameters. In fact, as introduced in Section 4.3, the three criteria of sensitivity, PPV and MCC do not take care of the crossing interactions between base pairs, which are the most significant characteristic of pseudoknots.

Table 7. Prediction 2 ...((....).)....

Conclusion

The last three chapters introduce a benchmark which focuses on the pseudoknots and the single-sequence prediction methods.

Chapter 5 introduces the motivation of this benchmark, as well as the preparation work. Specifically, Section 5.2 introduces the datasets used in the benchmark, Section 5.3 shows three main complexity measurements to classify the pseudoknots of the two datasets. Section 5.4 introduces 3 three exact methods and 12 heuristic methods involved in this benchmark. And Section 5.5 gives three evaluation parameters that are employed to assess the predictions returned by the methods.

Chapter 6 shows the results obtained, including both the classification of pseudoknotss, shown in Section 6.1, and hierarchical comparisons of predicting pseudoknots by the benchmarking methods, shown in Section 6.2.

Based on two sets of results, the respective discussions are aroused in Section 7.1 of the current chapter, which highlights the practical considerations for selecting an RNA pseudoknot prediction program. As the benchmark is accessible with an on-line version to the community, suggesting some web development details in Section 6.3 of this current chapter as well.

In addition, the benefits and lessons on selecting a practical prediction method that we obtain from this benchmark are concluded as follows:

• CyloFold, DotKnot, McGenus and pKiss are four best methods in this benchmark.

• The user may choose the specific winner programs, or a particular program for the given sequence according to the Table 6.6, if certain information is provided. In the majority cases, there should be one method which corresponds to the optimality in prediction. But if the optimal methods of sensitivity, PPV and MCC do not agree, such as the case in predicting the prokaryotic molecules and complex pseudoknots, the respective winner methods may be the alternative options to attempt. And for the sequences which are longer than 160 nucleotides, IPknot may be the first choice to try.

• If there is no details about the given sequence, the global winner programs are recommended which are selected based on a global assessment of all the classes considered in this benchmark.

• If the user is interested in the local pseudoknots, KnotSeeker, or pknotsRGloc are recommended, which are excluded from this benchmark as their unavailability of a global conformation.

• Both the quality of the reference structures and the reliable evaluation system may influence the comparison of predictions inestimably.

However, the 'best' program is the user's decision that depends on the RNA studied, the questions asked, the available experimental data and resources, and the intended applications of the structure prediction [START_REF] Schroeder | Advances in RNA structure prediction from sequence: new tools for generating hypotheses about viral RNA structure-function relationships[END_REF].

The efforts that this benchmark has made is trying to provide the user the useful information on how to choose a practical prediction program based on the statistical analysis of the 414 pseudoknots in this benchmark. But we offer no guarantee on an absolutely prefect recommendation of prediction method without any exceptions, as our conclusions are supported only by the optimality of the predictions by the 15 methods and based on the 414 sequences in this benchmark.

And frankly speaking, we don't expect that the winner programs in Tables 6.6

and Table 6.7 do know, or are capable to capture the crossing interactions very well. But we lay our confidence on the hypothesis that the sequences belong to the same subclass may display some analogous secondary structures. This hypothesis is supported by the theory that the sequences having a similar function may hold an analogue on the structural similarity as well. And we expect that the specific winner programs upon certain classes may capture this kind of analogues on the structures further.

Chapter 8

Conclusion and Perspectives

Conclusion

This dissertation focuses on the identification of pseudoknots, a secondary structural motif of RNA. It includes the study of the hierarchical classifications of pseudoknots, and the comparison of performance of the prediction methods that are available to predict pseudoknots from a single given sequence.

An RNA secondary structure without pseudoknots corresponds to a collection of nested base pairs, while the RNA pseudoknots are formed by the overlap or cross of the based pairs. The non-nested base pairs in the pseudoknotted conformation make their prediction much more complicated than that of the nested ones.

On the other hand, predicting an RNA secondary structure from the given sequence may employ diverse mechanisms. Minimizing the free energy of the RNA folding is the most prevalent strategy to predict an RNA secondary structures, which is implemented by dynamic programming algorithms and some heuristic strategies. Besides the thermodynamic stability, the probability of base pairs is frequently considered in many pseudoknot detection models. However it has been proved that predicting an RNA secondary structure containing arbitrary pseudoknots is NP-hard. In addition, a detailed anatomy of the complexity of pseudoknots was introduced. This refers to the classifications of the 414 pseudoknots, with respect to the physical interactions of the crossing base pairs, the algorithmic accessibilities where a particular class of pseudoknots is defined as the set of structures that can be returned by the corresponding prediction method theoretically, and the conformational characteristics such as the page number of each pseudoknot. It has been proven that the calculation of page number for arbitrary pseudoknots is NP-hard.

The results of the classification of RNA pseudoknots show that the pseudoknots in nature have a relatively low value of complexity, such as the maximal page number of the 414 pseudoknots is 4. On the other hand, the results of comparing the prediction of pseudoknots by the 15 methods were concluded as follows.

We voted three methods as the specific winner programs, which have obtained the optimality in predicting some particular sub-collections of pseudoknots. And we voted four methods as the global winner programs, which have obtained the optimality in predicting all the 414 pseudoknots. We recommend the 'beneficiaries' of this benchmark to choose the specific winner programs or some others which are optimal to the certain sub-collection of pseudoknots, as some detailed information of the given sequence are known. The global winner programs can be effective if there is no details about the given sequence.

Perspectives

As shown in Section 6.2.1, the main work of the benchmark is to compare the prediction performance of the 15 methods, based on the 29 classes of sequences shown in Table 6.6, which are divided in accordance of the hierarchical classifications of sequences. The optimal programs for individual classes are chosen respectively according to the predicted evaluation values. Our first perspective is the consideration of selecting the optimal prediction method based on several classes concurrently. For example, we have selected McGenus as the best program both in predicting mRNA with respect to the classification of the functional fami-lies of the sequences, and in predicting the eukaryotic molecules with respect to the classification of the organisms of the sequences. We are wondering: may McGenus achieve an optimality on predicting the mRNAs which are found in the eukaryotic molecules particularly, as shown in Table 6.2 in Section 6.1.2. This consideration is expected for increasing the practicality of the recommended prediction methods, which are chosen according to their optimality in a set of classes.

Second, as mentioned in Section 7.1.2, there are dozens of pseudoknots of PseudoBase whose secondary structural information is omitted partially as the database focuses more on the crossing interaction forming the pseudoknots. The Third, as mentioned in Section 5.4, the considered methods in this benchmark are not exhaustive. We hold an expectancy of a continuous evaluation of the RNA pseudoknots prediction methods. It relies on two aspects of efforts. The first one is to carry out the evaluation of prediction methods based on the newly released datasets, and the second one is based on the emerging prediction methods. In practice, we expect to provide a platform for the developers of the new methods, who may expect to upload the performance of their methods on predicting the 414 pseudoknots in this benchmark, and compare with that of the 15 benchmarking prediction methods.

Fourth, we also want to extend our benchmark as an automated recommender system, which is able to return the users a prediction method and the corresponding predicted secondary structure, with respect to the sequence and the descriptive details provided.
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  The Comparison of Predicting the Strong Candidates of Orphea185 B The Comparison of Predicting 34 Viral Frameshifting Signals in PseudoBase C The Classification of the 414 sequences in the Benchmark xi Chapter 1 Introduction This dissertation focuses on the identification of pseudoknots, a secondary structural motif of RNA, including principally the study of the hierarchical classifications of pseudoknots, and the comparison of mechanisms and performances of the methods that are available to predict pseudoknots. Pseudoknots are involved in a variety of molecular processes, such as playing the role as a stimulator in the programmed ribosomal frameshifting, one classical recoding event where the ribosome can switch to an alternative open reading frame such that a different peptide is translated.

  ing the frameshifting signals by a German group, the two programs are compared for their detection of frameshifting signals based on 34 frameshifting signals in Pseudobase.

Figure 2 . 1 :

 21 Figure 2.1: The hierarchical structures of Class II PreQ1 Riboswitch RNA of Lactobacillus Rhamnosus (PDBID: 4JF2, chain A).

Figure 2 .

 2 Figure 2.2 shows the examples for each type of the structural elements, where the full circles in the line represent the backbone of the sequence, and the dashed lines represent the base pairs.

Figure 2 . 2 :

 22 Figure 2.2: The structural elements of an RNA secondary structure.

  dard secondary structure. The schematic diagram of an H-type pseudoknot is shown in Figure 2.3(a), where Stem1 and Stem2 cross each other.

Figure 2 . 3 :

 23 Figure 2.3: The schematic diagrams of an H-type pseudoknot and a kissing hairpin.

  Figure 2.3(b). Similarly, the single-stranded loops in the kissing hairpin can harbor local substructures as well, to form a recursive pseudoknot. The detailed introduction of the pseudoknot types and respective examples are shown in Section 5.3.1, with respect to the crossing interactions of the base pairs.

  Figure 2.4(b), where the squared brackets are utilized to represent the overlapping stems. Please refer to the coming introduction of the planar and linear representations of RNA secondary structures for a better understanding of the dot-bracket notation. Quite remarkably, the Figure 2.6(a) shows the corresponding planar representation of 3IZF with chain C, the one without pseudoknot, Figure 2.6(b)shows the corresponding planar representation of 4JF2 with chain A, the one with pseudoknot. And Figure2.7 shows the linear representations of the two genes. BPSEQ BPSEQ(.bpseq) format has originated from the Comparative RNA Web site[START_REF] Cannone | The comparative RNA web (CRW) site: an online database of comparative sequence and structure information for ribosomal, intron, and other RNAs[END_REF], storing the information of secondary structure in three columns.

Figure 2 . 4 :

 24 Figure 2.4: The dot-bracket notation of a standard secondary structure and an H-type pseudoknot.

Figure 2

 2 Figure 2.5: A part of BPSEQ file and CT file of 3IZF with chain C.

  straight line, the paired bases are connected with arcs in the upper semiplane. The arcs can intersect when the pseudoknots are allowed. Examples of a standard secondary structure and a pseudoknot are shown in Figure 2.7.

  Figure 2.6: The planar graph representations, drawn by VARNA.

Figure 2 . 8 :

 28 Figure 2.8: The circular representations, drawn by VARNA.

  Figure 3.1: The non-gap matrices in the Z&S's algorithm.

  𝐸𝑊 1 indicates the energy corresponding to the case where 𝑖 and 𝑗 are paired to each other, 𝐸𝑊 2 indicates the energy corresponding to the case where the structure, based on [𝑖, 𝑗], has at least one single-stranded dangling end, namely either 𝑖 or 𝑗 or both do not participate in the structure, and 𝐸𝑊 3 indicates the energy corresponding to the case of bifurcation where both 𝑖 and 𝑗 are paired but not with each other. The recursion of wx is shown in Figure 3.3, where contiguous nucleotides are indicated by explicit dots. The last score 𝑤𝑥(1, 𝑛) is the desired global thermodynamic score of the optimal folding, which will be used to determine a secondary structure in the traceback step.

Figure 3 . 2 :

 32 Figure 3.2: The recursion of vx in the Z&S's algorithm.

Figure 3 . 3 :

 33 Figure 3.3: The recursion of wx in the Z&S's algorithm.

Figure 3 .

 3 Figure 3.4 shows the four gap matrices employed in the model of the R&E's algorithm, where the wavy line in the figures indicates that the two ends connected are definitely paired, and the dashed line indicates that the relation between the ends connected is unknown.

  Figure 3.5: The recursion of vx in the R&E's algorithm.

Figure 3 . 6 :

 36 Figure 3.6: The recursion of wx in the R&E's algorithm.

  predicts the MFE structure by summing up the energy of the computed optimal substructures based on two pairs of opposite regions of given sequence. The Dirks & Pierce (D&P)'s algorithm [Dirks and Pierce, 2003] calculates the partition functions of a restricted set of pseudoknots additionally.

Figure 4 . 1 :

 41 Figure 4.1: Three main types of recoding events.

Figure 4 . 2 :

 42 Figure 4.2: The structural elements of a frameshifting signals in the overlapping of two ORFs.

Figure 4 .

 4 Figure 4.2 shows a frameshifting signal embedded in the overlapping region of two ORFs, where the downstream H-type pseudoknot is represented in the linear model.

Figure 4 . 3 :

 43 Figure 4.3: The motif of -1 programmed ribosomal frameshifting signal.

  Figure 4.4, the screenshot of FSFinder shows the exploration of the overlapping region. The reading frame from A to B in frame -1 and the reading frame from C to D in frame 0 partially overlap at their termini A and D, in the region denoted as E.

Figure 4 . 4 :

 44 Figure 4.4: The exploration of overlapping region of FSFinder.

  Compared to the third ranking phase of the pipeline in KnotInFrame, the ranking scheme for ranking the predictions of Orphea is different. Orphea ranks all the candidates which have reached the requirements of the detecting model, and the candidates may have different slippery sequences. On the other hand, KnotInFrame ranks the candidates by their Δ(𝑢) values in the context of the candidates with a same slippery sequence. This is determined by the premise of 𝑢, the substring of the input sequence with the slippery sequence removed, as shown in Section 4.2.3. As the most interesting work that the authors of Orphea have done, testing the propensity of the best ranked candidates to induce -1 PRF in vivo [Brégeon et al.] may verify the fidelity of the predictions of Orphea. This part of work differs from the research carried out by PRFdb, whose empirically testing candidates possess a wide range of feature statistics, rather than good rankings, as shown in Section 4.2.2. The second difference from PRFdb is that the authors of Orphea have tested the predictions of the -1 PRF signals by Orphea based on the human mRNAs and a synthetic genome, in addition to the Saccharomyces cerevisiae genome. The work-flow of the searching step of Orphea and the ranking step is shown in Figure 4.5.

Figure 4 . 5 :

 45 Figure 4.5: The work-flow of Orphea and ranking process, taken from Fig.2 in [Brégeon et al.].

Figure 4 .

 4 Figure 4.6 shows an example of the positive and negative predictions compared to the reference structure. Specifically, the number of base pairs in the reference structure, which is shown in the upper semi-plane, equals to the sum of the number of TP and FN. On the other hand, the number of base pairs in the predicted structure, which is shown in the lower semi-plane, equals to the sum of the number of TP and FP. TN is calculated by subtracting the existing pairs TP from all possible base pairs, where all the possible base pairs are the exhaustive number of the A:U, the G:C and the G:U pairs in this given sequence. As mentioned above, this dissertation prefers to evaluate the predictions with the parameters calculated according to the Equations 4.1, 4.2 and 4.3, without further considering the subsets of the false positives. This consideration is made by noticing that, when dealing with pseudoknots, the notions of 'contradicting' and 'compatible' base pairs are irrelevant. This argument is illustrated in Figure 4.7, where the base pairs in the reference structure are shown in solid lines in the upper semi-plane, and the predicted base pairs are shown in dashed lines in the lower semi-plane. The notation of the base pairs in both structures are numbered in the order of the numeric position of their 5' ends.

Figure 4

 4 Figure 4.7(a) depicts a pseudoknot-free secondary structure. We may classify the predicted base pair P1 as a contradicting base pair because of its overlap

Figure 4 . 6 :

 46 Figure 4.6: The schematic example of the positive and negative predicted base pairs.

Figure 4

 4 Figure 4.7(b) depicts a pseudoknot. The predicted base pair P1 is contradicting with the reference structure as it crosses the R2. While the P2 is compatible with the reference structure. But it is interesting to analyze some other cases, especially the base pairs highlighted in red in Figure 4.7, where the prediction has a pseudoknotted conformation. According to the division of false positives introduced above, the predicted base pair P2 in the Figure 4.7(c) is a compatible false positive. And P1 and P3 are two true positives as they correspond to two reference base pairs, R1 and R2. But we hold a different opinion on the classification of the predicted base pair P2 in the Figure 4.7(d), which is highlighted in red. P2 may be contracting as it crosses R2 in the reference structure. We argue that P2 is a 'compatible' false positive, as it is embedded in the correctly predicted base pair P1 and does not break the global crossing interactions in the reference structure. Let us go further. The predicted base pair P1 in the Figure 4.7(e) is classified

  Figure 4.7(f) crosses R1.

Figure 4 . 7 :

 47 Figure 4.7: The schematic examples of the classification of false positives.56

  This section introduces a series of comparisons. A comparison of the parameters that the programs mentioned above utilize is introduced first. Then, the predictions of Orphea and KnotInFrame, based on the Saccharomyces cerevisiae genome are compared with the strong candidates of PRFdb, and the predictions of Orphea and KnotInFrame, based on a synthetic genome and Human mRNAs are compared with each other. Additionally, predicting the best predictions of methods. Last, the comparison of the predictions of Orphea and KnotInFrame with the viral frameshifting signals in PseudoBase is carried out.

FSFinder

  

  the entire Saccharomyces cerevisiae and synthetic genomes, I cut the sequences into pieces of approximately 40 000 nucleotides, on the advice of the developers of KnotInFrame about the maximum length of input. This was done in an overlapping fashion to avoid the omittance of the candidates which locate potentially in the overlap of any two consecutive pieces. The pieces of sequence were sent successively as input to the web service of KnotInFrame, ensuring the candidates that locate on two different pieces can be detected. KnotInFrame also needs a parameter of the maximum number of best candidates that can be detected in the given input sequence. I fixed this number to 15, which is 10 by fault, for a larger group of 'best' predictions returned by KnotInFrame. Otherwise, I employed the default parameters. For the Human mRNAs, I sent the 42,433 sequences directly into the web service of KnotInFrame. As a result, KnotInFrame had 10118 predictions based on the Saccharomyces cerevisiae genome, 9974 predictions based on the synthetic genome, and 160 509 ones based on the Human mRNAs respectively (available in the Supplementary File Frameshifting). There were 4 common candidates found between the 171 predictions of Orphea and the 10118 predictions of KnotInFrame based on the Saccharomyces cerevisiae genome. Based on the synthetic genome, only 1 common candidate was found between the 102 predictions of Orphea and the 9974 predictions of KnotInFrame. And based on the human mRNAs, 70 common candidates were found between the 4414 predictions of Orphea and the 160 509 predictions of KnotInFrame. The results are shown in Table 4.2 and Figure 4.8.
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 48 Figure 4.8: The common prediction between Orphea and KnotInFrame.

  phea and KnotInFrame based on the 1679 strong candidates, as the unavailability of the entire genome and consequently the exhaustive predictions of Orphea and KnotInFrame. This corresponds to an empty subset in the intersection between Orphea and KnotInFrame in Figure4.9.

Figure 4 . 9 :

 49 Figure 4.9: The common prediction among Orphea, KnotInFrame and PRFdb.

  Figure 4.8, was among the 49 best predictions of Orphea which were tested empirically. Thus, we may have the conclusion that the best candidates of Orphea obtaining a strong frameshifting rate in the biological experiments had not been detected by KnotInFrame. And as the reason of the unknown version of the Saccharomyces cerevisiae genome used by PRFdb, there is no obvious hints obtained from the comparison based on the 1679 strong candidates of PRFdb.

  Human Coronavirus 229E (HCV_229E): PKB171, 224 nucleotides Sequence UUUAAACGAGUCCGGGGCUCUAGUGCCGCUCGACUAGAGCCCUGUAA:::CAGUUAUGGACCACGAGCAGUCCAUGUA Structure ............((((((((((((...[[[[[))))))))))))...:::....(((((((..]]]]].)))))))..

Figure 4 .

 4 Figure 4.10: The reference structure of the Human Coronavirus 229E (HCV_229E).

  .................]]]]]].Orphea......(((((((((((......[[[[[[)))))))))))...........]]]]]]......... KnotInFrame ......(((((((((((......[[[[[[)))))))))))....]]]]]]................ ..(((((((((((....[[[[[)))))))))))......................................................... ............]]]]]. Orphea .....(((((((((((..[[[[[..)))))))))))...........]]]]]......................................... .................. KnotInFrame .....(((((((((((..[[[[[..)))))))))))...........]]]]]......................................... .................. ..((((((((((((...[[[[[))))))))))))........................................................ ............................................................................................. .......(((((((..]]]]].))))))).. Orphea .....((((((((((((.[[[....))))))))))))...]]].................................................. ............................................................................................. ............................... KnotInFrame .....((((((((((((.[[[....)))))))))))).....((((.(((((((....))))))).))))....(((((.............)))))......]]]................................................................................ ............................... Tables 4.12 and 4.13 conclude the global performance of Orphea and KnotIn-Frame in predicting the 34 frameshifting signals, where the higher values based on each frameshifing signal are highlighted in bold.

  a new topic of my work, a benchmark particularly designed for the RNA pseudoknots and the prediction methods. As the main contributions of this dissertation, this part of work is organized in three chapters.

  Figure 5.1: An H-type pseudoknot and its shadow.

Figure 5 .

 5 Figure 5.2 shows these four types of pseudoknots, where subfigures 5.2(a), 5.2(c), 5.2(e) and 5.2(g) are the visualizations of PKB107, PKB169, 3IYQ and PKB71 by VARNA, and the 5.2(b), 5.2(d), 5.2(f) and 5.2(h) are their corresponding RNA structure shadows. Particularly, there are four consecutive, or 'independent' H-type pseudoknots in 3IYQ, as shown in Figures 5.2(e) and 5.2(f). We prefer to declare its pseudoknot pattern of ABAB as the global shadow in the following chapters, rather than ABABCDCDEFEFGHGH as they are four identical H-type pseudoknots.

  A typical example of the I-type pseudoknot is found in the internal ribosomal entry site (IRES) region in the Plautia stali intestine virus (PSIV_IRES-PKIII), with the reference number of PKB212 in Pseu-doBase. An example of the M-type pseudoknot is found in the viral frameshifting pseudoknot of the rous sarcoma virus (RSV) with the reference number of PKB174 in PseudoBase.

  The shadow of PKB169. (e) 3IYQ in PDB, a recursive pseudoknot. (f) The shadow of 3IYQ, with the pseudoknot pattern of ABAB as the identical pseudoknots. (g) PKB71 in PseudoBase, a pseudotrefoil. (h) The shadow of PKB71.

Figure 5 . 2 :

 52 Figure 5.2: Physical classification of the pseudoknots.

  Figure 5.3(b), where the recursive regions are marked with R. As a result, the set of the D&P class of pseudoknots consists of any number of pseudoknot free structures, H-type pseudoknots and their arbitrary concatenation and embedment inside each other, such as the pseudoknots with the patterns of

  can detect composes the A&U class of pseudoknots. The basic components of the A&U class pseudoknots are the simple pseudoknots [Akutsu, 2000]. The terminology of Akutsu's simple pseudoknots contains two crossing stems, each with a set of base pairs. The right bases of the first stem and the left bases of the second stem are interleaved arbitrarily, and the other bases all lie outside the interleaved area, as shown in Figure 5.3(c). Particularly, the full circles in Figure 5.3(c) represent the right bases of the first stem, and the open circles represent the left bases of the second stem. Recursion allows the internal subfoldings of the unpaired strands, with or without pseudoknots, in the formed structure. In addition, Figure 5.3(d) shows an example of simple pseudoknot in the A&U class, which is representative as the corresponding shadow of the simple pseudoknot shown in Figure 2(A) in[START_REF] Akutsu | Dynamic programming algorithms for RNA secondary structure prediction with pseudoknots[END_REF], with the pattern of ABCBDADC.

  (a) An non-recursive H-type pseudoknot. (b) A recursive H-type pseudoknot in the D&P class. (c) The simple pseudoknot model of the A&U class. (d) A simple pseudoknot in the A&U class.
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 53 Figure 5.3: Algorithmic classification of pseudoknots.

Figure 5 . 4 :

 54 Figure 5.4: The density and the J&C class of pseudoknots.

Figure 5

 5 Figure 5.5: A planar pseudoknot with the pattern of ABCDCADB, which can be represented in a planar diagram.

Figure 5 . 6 :

 56 Figure 5.6: The non-planar pseudotrefoil with the pattern of ABCABC, which can not be represented in a planar diagram.

Figure 5 . 7 :

 57 Figure 5.7: The Venn diagram of the algorithmic classes.

  recalls the notion of genus as the minimal number of handles that a surface should have, such that a diagram can be drawn on the surface without crossing. When the RNA secondary structure is represented by a double-line diagram in the linear model, as shown in Figure 5.8, the genus can be calculated by: 𝑔 = 𝑃 -𝐿 2 where 𝑃 denotes the number of stems, and 𝐿 denotes the number of closed loops, e.g. the number of closed circuit formed by the double lines. Examples are given in Figure 5.8, where the base pairs in the left are replaced by double lines in the right, and the closed loops are highlighted in red. Specifically, the pseudoknot-free structure, as the first example, contains two stems and two closed loops. Both 𝑃 and 𝐿 equal to 2, suggesting the genus 𝑔-0. And both the latter two examples correspond to an H-type pseudoknot, with 𝑃 = 3 and 𝐿 = 1 respectively, suggesting the genus 𝑔-1.

Figure 5 . 8 :

 58 Figure 5.8: The schematic diagram of the double lines and closed loops (in red) in the calculation of genus, where the first one has a genus 𝑔-0, and the latter two have a genus 𝑔-1.

  has already proposed an algorithm which both predicts a secondary structure and calculates a corresponding genus value for the given sequence. Last but not least, the Knot-Component classification separates the pseudoknots into classes according to the number of stems, which, for example, assigns an H-type pseudoknot and a kissing hairpin two different complexities. But both pseudoknots normally belong to the same complexity category under the other classifications, such as they are both planar pseudoknots, bi-secondary structures, pseudoknots with the genus 𝑔-1 and pseudoknots with page number of 2. How Complicated Is the Calculation of Page Number?

  This benchmark is going to consider 11 programs with different options on the algorithms. If the program allows an alternative algorithm, it is referred to as a different method. Totally, there are 15 methods: CyloFold, DotKnot, DotKnot-K representing DotKnot with the kissing hairpin algorithm, HotKnots-cc representing HotKnots with the CC energy model, HotKnots-dp representing HotKnots with the DP energy model, HotKnots-re representing HotKnots with the RE energy model, IPknot, MC-Fold, McGenus, McQFold, pKiss, pknotsRG-M representing pknotsRG with the MFE algorithm, pknotsRG-F representing pknotsRG with the enforcing pseudoknots algorithm, pknots, and vsfold5. Typically, the variants of IPknot used in Chapter 4, as shown in Section 4.4.3, are slightly different with the one used in this benchmark, which is caused by the fashion of the utilization. In detail, IPknot-2 and IPknot-3 denote two decomposed levels employed by the web service of IPknot [Sato et al., 2011] in Section 4.4.3, and IPknot in this benchmark corresponds to the single algorithm of the locally installed version.

Figure 6

 6 Figure 6.1(a) shows the global conformation of 3ZEX_B, while Figure 6.1(b)shows the dominant local part, from the 1015 base to the 1174 base. And Figure6.1(c) corresponds to the shadow of the current dominant region, from which we may bear in mind how complicated the crossing interactions that 3ZEX_B has.

  (a) The global structure of 3ZEX_B. (b) The dominant local part of 3ZEX_B, 1015nt-1174nt. (c) The corresponding shadow, 1015nt-1174nt. (d) The coloring notation of the shadow, 1015nt-1174nt.

Figure 6 . 1 :

 61 Figure 6.1: The schematic figures of 3ZEX_B.

Figure 6

 6 Figure 6.1(d) shows that the decomposition of the shadow of 3ZEX_B requires three colors. Particularly, the base pair GG crosses both the base pairs represented in the upper semi-plane in red and the ones represented in the lower semi-plane in blue. It suggests that the base pair GG should be represented in a third semi-plane which is marked in the dashed line and colored with a third color.

Figure 6 .

 6 Figure 6.2 shows the three subfigures of 3J20_2, where the local dominant region starts from the 523 base to the 1484 base. 3J20_2 has relatively simple crossing interactions, compared to the 3ZEX_B. As shown in Figure 6.2(c), 3J20_2 has pseudotrefoil-like crossing interactions with the pattern of ABCABC, accompanied by another base pair DD. The decomposition of the dominant region of 3J20_2 in colors is shown in Figure 6.2(d), suggesting 3J20_2 a page number of 3.

Figure 6

 6 Figure 6.3(a) shows the global conformation of 2WDL_A, Figure 6.3(b) shows the dominant local part, from the 429 base to the 2617 base, and Figure 6.3(c) shows the shadow of the dominant region. The decomposition of the dominant region of 2WDL_A in colors is shown in Figure 6.3(d).

  (a) The global structure of 3J20_2. (b) The dominant local part of 3J20_2, 523nt-1484nt. (c) The corresponding shadow, 523nt-1484nt. (d) The coloring notation of the shadow, 523nt-1484nt.

Figure 6 . 2 :

 62 Figure 6.2: The schematic figures of 3J20_2.

Figure 6 . 3 :

 63 Figure 6.3: The schematic figures of 2WDL_A.

  (a) The global structure of 3KIY_A. (b) The dominant local part of 3KIY_A, 434nt-2658nt. (c) The corresponding shadow, 434nt-2658nt. (d) The coloring notation of the shadow, 434nt-2658nt.

Figure 6 . 4 :

 64 Figure 6.4: The schematic figures of 3KIY_A.
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 656667 Figure 6.5: The density diagram of the sensitivity of the predictions.

Figure 6 . 8 :

 68 Figure 6.8: The win counts of each method.

Figure 6 . 9 :

 69 Figure 6.9: The global sensitivity, PPV and MCC of each prediction method.

  y p e P s e u d o k n o t s , 3 3 0 K i s s i n g H a i r p i n s , 2 2 C o m p l e x P s e u d o k n o t s , Based on pseudoknot types.
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 613 Figure 6.13: The sensitivity of the predictions by DotKnot, pKiss, CyloFold and McGenus.

Figure 6 .

 6 Figure 6.14: The PPV of the predictions by DotKnot, pKiss, CyloFold and McGenus.

Figure 6 .

 6 Figure 6.15: The MCC of the predictions by DotKnot, pKiss, CyloFold and McGenus.

Figure 6 . 16 :

 616 Figure 6.16: The average sensitivity, PPV and MCC upon the classes.

  Figures 6.17, 6.18 and 6.19 tell the individual sensitivity, PPV and MCC details of predicting the 27 missing sequences by the 15 methods. Particularly, the failures of the prediction by each method are marked in yellow, namely the method fails to return a secondary structure for the given sequence.

Figure 6 Figure 6

 66 Figure 6.17: The density diagram of the sensitivity of the missing predictions.

Figure 6

 6 Figure 6.19: The density diagram of the MCC of the missing predictions.

Figure 6 .

 6 Figure 6.20 shows the work-flow of this on-line benchmark. The 414 sequences in the datasets are classified into subsets according to three classifications of pseudoknots. Meanwhile, the 414 sequences are returned with one secondary structure by 15 prediction methods. Further, the predicted structures are compared with the references structures, assigning each prediction the evaluation values of true positives, true negatives, false positives, false negatives, sensitivity, PPV and MCC.

Figure 6 .

 6 Figure 6.20: The work-flow of the benchmark.

Figure 6 .

 6 Figure 6.21: The entity relationship diagram of the tables in the benchmark.

Figure 6 .

 6 Figure 6.22: The on-line version of this benchmark.

Figure 7 .

 7 Figure 7.1 shows four representative examples of the seven pseudoknots. It is clear that the four examples all contain some nested substructures inside or outside the H-type pseudoknots. We agree with the conclusion that the RNA shadow does lose the information on the size of the stems and non-crossing components of the global structure, although it captures the main crossing interactions of the pseudoknots. Typically, 3JOL_A and 3SD1_A shown in the Figures 7.1(c) and 7.1(d) do not have a consecutive stem to construct the pseudoknot, which may prevent them from falling into the L&P class further.

  Figure 7.1: The H-type pseudoknots that do not belong to the L&P class of pseudoknots.

  Figure 5.3(d) with the If we go back to the definition of the A&U class in Section 5.3.2, we have the explanation. In fact, the Akutsu's terminology of simple pseudoknots contains two crossing stems. The right bases of the first stem and the left bases of the second stem are interleaved arbitrarily, but the other bases all lie outside the interleaved area. Figure 5.3(c) shows the schematic diagram of the pseudoknot model in the A&U class. In other words, the pseudoknot model in the A&U class divides the sequence into three parts, the left region, the middle region, and the right region.

  ginning of the pseudoknot, which suggests the embedded base pairs CC and DD both locate on the right part of the pseudoknot. But the overlap between the CC and DD makes it impossible to decompose the pseudoknot in the model of the A&U class, as shown in Figure 7.2(b), with respect to the rule that the base pairs on either left or right part of the A&U class of pseudoknots should not cross each other.

Figure 7 . 2 :

 72 Figure 7.2: Comparison between the simple pseudoknots of the A&U class and the complex pseudoknots in Table 6.4.

  , 6.6 and 6.7 have an agreement that HotKnotsdp, HotKnots-re and IPknot have a common difficulty in predicting the viral readthrough sequences, and vsfold5 is a globally poor method in predicting all the classes. And Figures 6.6 and 6.7 vote MC-Fold as another poor method, as it has obtained a relative good performance of sensitivity. Contrarily, CyloFold, Dot-Knot, DotKnot-K, McGenus, pKiss and pknots are the relatively good prediction methods. Further, as elaborated in Section 6.2.1, DotKnot, pKiss, CyloFold and Mc-Genus are selected as four winner methods of this benchmark. Figures 6.10, 6.11 and 6.12 show their performance of predicting the functional families of the 387 sequences in the shared set. According to these three figures, we can see the four best programs perform well on predicting the sequences with their functional families of the aptamer, tRNA, riboswitch, ribozyme, viral 3 UTR, viral 5 UTR, and frameshifting. And the four programs have a relatively bad performance based on the prediction of the mRNA and rRNA. Typically, their performance always do not agree on the prediction of viral readthrough sequences, with respect to the sensitivity, PPV and MCC values.

Figures 6 .

 6 Figures 6.13, 6.14 and 6.15 show the performance of DotKnot, pKiss, CyloFold and McGenus on predicting the other classifications of sequences, according to Table 6.2. In the classification of the global groups, the four methods have obtain a comparative performance on predicting the entire set and the shared set, where a comparative performance suggests the closeness of evaluation values obtained by the four methods. While their performance varies much larger based on the miss-

  , 6.18 and 6.19 for the individual prediction based on the 27 missing sequences outside the shared set, we may notice that the evaluation values for predicting the pseudoknots from PseudoBase are generally lower than the ones for predicting the pseudoknots from PDB. This phenomenon can be explained by the incomplete information provided in the PseudoBase partially. Out of the 367 sequences in PseudoBase, there are 27 ones with different levels of structural information omitted, with an example PKB171 shown in Table4.6, where the ':::' represents the unknown potential details in PseudoBase, and Figure4.10. And the reason is that PseudoBase focuses on the crossing interactions forming the pseudoknots, and omits the partial structural details elsewhere. Consequently, in such cases, the inconclusive potential local substructures are referred to as unpaired bases in this benchmark, which makes the reference structures a conformation of a local pseudoknot and a long unpaired free loop potentially. This operation decreases the total number of base pairs in the reference structures. As the consequence, the sensitivity of a prediction can be increased as the false negatives may decrease, and the PPV and MCC values can be decreased as the false positives may increase.

  , 6.18 and 6.19 is in the darkest fuchsia. In other words, several methods can handle PKB64, but probably predict it a very different secondary structure. We can not tell how about the predictions as we have far from enough details to count the correct number of true positives and false negatives etc. of the prediction.Prediction MethodsTable6.6 concludes the winner program of the Figures 6.5, 6.6 and 6.7, with the highest evaluation values on average upon different classes, which are based on the 387 sequences in the shared set.Globally speaking, pKiss is the one of best programs of this benchmark, as it obtains the highest sensitivity, PPV and MCC values for the 414 sequences in the entire set, although it has a restriction on the length of the input sequence which should be shorter than 207 nucleotides. It raises the possibility that pKiss may handle less number of pseudoknots, but it may return a secondary structure to the given sequence which is close to the reference structure once it is available.More precisely, pKiss has obtained the optimal sensitivity, PPV and MCC for some certain classes, such as the ribozymes, viral 5' and 3' UTR under the classification of the functional families of the sequences. Meanwhile, McGenus, DotKnot have obtained the optimal sensitivity, PPV and MCC values for some certain classes as well.

  , 6.18 and 6.19 show the performance of the individual predictions.

  of the sequence decreases, McGenus shows a good performance alternatively on some sequences. DotKnot, McQFold and pKiss can serve as an option as well. But after all, IPknot wins in this round of comparisons.

  2 shows two different predictions as the examples, which may have the same evaluation values, both containing two predicted base pairs. Obviously, the predicted base pairs in both predictions are true positives. But two base pairs in the reference structure are missed, suggesting both predictions have their false negatives equal to 2, and false positives equal to 0. Meanwhile, the two predictions may have the same number of true negatives, which are computed according to the base pairs in the reference structure. The consistent numbers of TP, FN, FP and TN assign both predictions equivalent evaluation values. But theoretically Prediction 1 may be the better prediction as it detects an analogous conformation to the reference structure, while Prediction 2 predicts a conformation without any crossing interactions. This phenomenon screams for a more comprehensive evaluation system which takes the overlap of base pairs present in the pseudoknotted conformations into account. Table 7.2: An example showing the flaw of the evaluation of two predictions.

  Prediction 1 ...(..[....)..].

  Specifically, we have conducted two rounds of researches of pseudoknots. The first one is based on the pseudoknots involved in the programmed ribosomal frameshifting, one typical recoding event which occurs in the regulation of post transcription. And the second one is based on the pseudoknots which participate in more general molecular activities. In practice, Chapter 4 describes the work on detecting the -1 programmed ribosomal frameshifting (-1 PRF) signals, where the ribosome switches to an alternative open reading frame by shifting one nucleotide to the upstream direction. The pseudoknots, one of the two main elements of a frameshifting signal, play the role in stimulating a frameshifting. Principally, Orphea, KnotInFrame and PRFdb (a corresponding database storing their strong -1 PRF candidates), three methods detecting the -1 frameshifting signals were introduced, and their performance on predicting -1 frameshifting signals on three genomes were compared. Next, as another significant part of the comparisons, the former two programs were compared with their detection of frameshifting signals based on 34 frameshifting signals in PseudoBase.Specifically, the sensitivity, positive predictive value (PPV) and Matthew's correlation coefficient (MCC), three evaluation parameters were introduced. A discussion about the further division of false positives was carried out as the consideration of the compatible set of false positives by the pioneered researchers. We finally decided to employ the standard equations to calculate the PPV and MCC, which do not consider the further separations, as the compatible false positives do not take the cross of base pairs into account.According to the evaluation criteria, it has been shown that Orphea achieves a globally better performance than KnotInFrame as the corresponding evaluation values are higher than that of KnotInFrame.Chapters 5, 6 and 7 introduce a benchmark on the much more general pseudoknots and prediction methods. Our motivation of this work was to guide the users to select a practical RNA pseudoknots prediction method with respect to the given sequence. In practice, we considered 414 pseudoknots which are the entries of PseudoBase and Protein Data Bank (PDB), and 15 state-of-the-art methods that are available to predict RNA pseudoknots, including three exact methods and 12 heuristic ones. The predictions of the 414 pseudoknots by the 15 methods were assessed with the consistent evaluation parameters with Chapter 4, and based on individual sub-collections of pseudoknots which are divided by hierarchical measurements, such as the length of the sequences, the RNA family they are.

  incomplete details suggest a huge obstacle to compare the predicted structure with the reference. The extreme cases are the PKB64 and PKB192, with 920 and 1248 nucleotides respectively, whose secondary structural details are almost unknown except the pseudoknotted base pairs. This bothers the comparison of prediction outside this pseudoknot, namely the predicted base pairs should be classified as false positives or not and the non-predicted ones should be classified as false negatives or not. This dilemma suggests a new comparison of predicting pseudoknots by the contemporary methods once new and more comprehensive datasets are available.
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  More specifically, given the sequence y, if we can sequentially sample 𝑥 1 from the conditional distribution 𝑝(𝑥 1 |𝑦), 𝑥 2 from 𝑝(𝑥 2 |𝑥 1 , 𝑦) and 𝑥 𝑘 from 𝑝(𝑥 𝑘 |𝑥 1 , ..., 𝑥 𝑘-1 , 𝑦) with 𝑘 = 3, ..., 𝑚, then 𝑥 = (𝑥 1 , 𝑥 2 , ..., 𝑥 𝑚 ) follows distribution 𝑝(𝑥|𝑦), because the joint probability distribution is the product of the conditional distributions.

Table 3

 3 

		.1: The comparison of parameters of exact approaches
		Complexity In	
	Algorithm		Calculation Model
		Time Space	
	PKF	𝑂(𝑛 3 ) 𝑂(𝑛 2 )	Thermodynamic Stability
	J&C's	𝑂(𝑛 3 ) 𝑂(𝑛 2 )	Thermodynamic Stability
	R&G's	𝑂(𝑛 4 ) 𝑂(𝑛 2 )	Thermodynamic Stability
	A&U's	𝑂(𝑛 5 ) 𝑂(𝑛 3 )	Thermodynamic Stability
	L&P's	𝑂(𝑛 5 ) 𝑂(𝑛 3 )	Thermodynamic Stability
	D&P's	𝑂(𝑛 5 ) 𝑂(𝑛 4 ) Thermodynamic Stability + Partition Function
	R&E's	𝑂(𝑛 6 ) 𝑂(𝑛 4 )	Thermodynamic Stability
	PK	NP	

  -1 PRF signals having a 𝑍 𝑅 ≤ -1.65 and a MFE value among the lowest 25% of all the structures are considered as strong candidate of -1 PRF signals.

	These two requirements pick up those energetically strong candidates with statis-
	tically significant predicted secondary structures, which have been deposited into
	the PRFdb.
	As a closing part, nine candidate signals possessing a wide range of feature
	statistics are selected for empirical testing, and further for their abilities to promote
	-1 PRF experimentally. More precisely, first, eight of nine candidate signals are
	chosen as they are predicted to fold into a pseudoknot. Next, a flexible requirement
	on the 𝑍 𝑅 and MFE values of the strong signals is allowed for some of the nine
	candidates. The authors conclude the following:

Table 4 .

 4 1: The comparison of parameters of four programs.

	Program	Slippery Sites	Spacer	ES1	ES2	EL1,EL1' and EL2	Learning Data Energy

Table 4

 4 

		Size	Orphea KnotInFrame Common predictions
	S.cerevisiae	> twelve million nucleotides	171	10118	4
	Synthetic	twelve million nucleotides	102	9974	1
	Human mRNAs	42 433 sequences	4414	160 509	70

.2: The prediction of Orphea and KnotInFrame based on three datasets. not compare the PRFdb data with the predictions of Orphea and KnotInFrame based on a different version of Saccharomyces cerevisiae genome.

Table 4

 4 

.3 were obtained by feeding the programs directly with the 6 best predictions of Orphea.

Inside the table, a 'yes' means that the corresponding program can predict a pseudoknot in the given sequence, otherwise a 'no'.

The rightmost column Score of Table

4

.3 shows the number of programs which detect a pseudoknot in the given sequence. And the nethermost rows Overall concludes the overall number of pseudoknots predicted by each program, based on the 6 best predictions of Orphea.

The precise comparison of the 6 best predictions of Orphea with the corresponding ones predicted by the other programs are provided in Appendix A, as well as the comparison that is based on the left 43 empirically tested structures of Orphea.

Table 4 .

 4 3:The general comparison of 6 best predictions of Orphea.

	Sequence	KnotIn	CyloFold IPknot-2 IPknot-3 pknotsRG-M pknotsRG-F DotKnot DotKnot-K MCFold Vsfold5	Scores
	Name	Frame										(YES/10)
	54_Random	no	yes	yes	yes	yes	yes	yes	yes	no	no	7/10
	_0.179											
	3406_Human	yes	no	no	no	no	yes	no	no		no	2/10
	_0.1332											
	57_Random	no	yes	yes	yes	yes	yes	yes	yes	yes	no	8/10
	_0.131											
	4335_Human	yes	yes	no	no	yes	yes	yes	yes	no	yes	7/10
	_0.0881											
	1679_Human	no	yes	no	no	no	yes	yes	yes	yes	yes	6/10
	_0.0592											
	4339_Human	yes	yes	no	no	yes	yes	yes	yes	yes	no	7/10
	_0.0558											
	Overall	3/6	5/6	2/6	2/6	4/6	6/6	5/6	5/6	3/6	2/6	

Table 4 .

 4 And the second one was based on the other 17 frameshifting signals in PseudoBase, which are referred to as the testing data of Orphea below. The information of the 17 learning frameshifting signals of Orphea are shown in Table4.4 in detail, including the reference number in PseudoBase, with the prefix of PKBNo., the organisms they come from, and the corresponding sizes of the submotifs of a frameshifting signal. Table4.5 shows the similar information 4: The 17 learning frameshifting signals of Orphea in PseudoBase. Table 4.5: The 16 testing frameshifting signals of Orphea in PseudoBase. Table 4.6: The sequence and secondary structure of the Human Coronavirus 229E

	Datasets
	There are 34 viral frameshifting signals in PseudoBase [Van Batenburg et al.,
	2000], as of January 22, 2015.
	Particularly, 17 signals were chosen as the learning data of Orphea [Brégeon
	et al.; Forest, 2005], as mentioned in Section 4.2.4. Consequently, the comparison
	was carried out in two rounds. The first one was based on the 17 learning sequences
	of Orphea.

KnotInFrame on the reference structures of the frameshifting signals in Pseu-doBase. of the 16 testing frameshifting signals of Orphea, where one signal is excluded as its stimulating pseudoknot is a kissing hairpin. Particularly, it is the Human Coronavirus 229E (HCV_229E), with the reference number of PKB171 and a length of 224 nucleotides. Table 4.6 shows the information of the Human Coronavirus 229E (HCV_229E) provided in PseudoBase, where ':::' represents the unpaired region in the reference structure. This unpaired region corresponds to the horizontal unpaired line between two hairpins in Figure 4.10, which is drawn with all 224 nucleotides. We supposed a free unpaired region between the two hairpins, because of the omitted secondary information in PseudoBase. (HCV_229E), PKB171 in PseudoBase.

Table 4 .

 4 7: Three examples of the comparison with the reference structures in PseudoBase.

	Gene Name Program	Result
		Sequence	UUUAAACUGCUAGCCACCUCUGGUCUCGACCGCUGUACUAGAGGUGGGCUGACGGUGUYUGGCGAUGCGGUCA
		Slippery Site	UUUAAAC
	LDV-C	SubSequence UGCUAGCCACCUCUGGUCUCGACCGCUGUACUAGAGGUGGGCUGACGGUGUYUGGCGAUGCGGUCA
	(PKB217)	PseudoBase	......((

Table 4

 4 

	Name	PKBNo. TP TN FP FN Sensitivity PPV MCC
	BLV	PKB1	8	217	0	1	0.889	1.0	0.941
	BWYV	PKB2	9	253	0	0	1.0	1.0	1.0
	EIAV	PKB3	10	306	0	0	1.0	1.0	1.0
	FIV	PKB4	11	269	0	0	1.0	1.0	1.0
	PLRV-S	PKB43	8	105	0	0	1.0	1.0	1.0
	CABYV	PKB44	2	124	6	6	0.25	0.25 0.204
	BYDV-NY-RPV	PKB46	3	137	6	6	0.333	0.333 0.291
	MMTV_gag-pro PKB80	11	288	0	1	0.917	1.0	0.956
	IBV	PKB106 17 1143	0	1	0.944	1.0	0.971
	SRV1_gag-pro	PKB107 12	307	0	0	1.0	1.0	1.0
	BEV	PKB128 11 2313	5	5	0.688	0.688 0.685
	LDV-C	PKB217 11	827	6	6	0.647	0.647 0.64
	PRRSV-16244B PKB218 19	822	1	0	1.0	0.95 0.974
	PRRSV-LV	PKB233 19	783	0	0	1.0	1.0	1.0
	BChV	PKB240	3	131	4	5	0.375	0.429 0.368
				74					

.8: The 15 predictions of Orphea based on 17 learning signals.

Table 4 .

 4 9: The 9 predictions of KnotInFrame based on 17 learning signals.

	Name	PKBNo. TP TN FP FN Sensitivity PPV MCC
	BLV	PKB1	6	216	3	3	0.667	0.667 0.653
	BWYV	PKB2	9	253	0	0	1.0	1.0	1.0
	MMTV_gag-pro PKB80	5	289	5	7	0.417	0.5	0.436
	IBV	PKB106	0	1149 11	18	0.0	0.0	-0.012
	SRV1_gag-pro	PKB107	5	311	3	7	0.417	0.625 0.495
	BEV	PKB128 11 2313	5	5	0.688	0.688 0.685
	LDV-C	PKB217 11	827	6	6	0.647	0.647	0.64
	PRRSV-16244B PKB218	6	827	12	13	0.316	0.333	0.31
	PRRSV-LV	PKB233	0	785	17	19	0.0	0.0	-0.022

Table 4 .

 4 10: The 11 predictions of Orphea based on 17 testing signals.

	Name	PKBNo. TP TN FP FN Sensitivity PPV MCC
	EAV	PKB127 11 2522	3	6	0.647	0.786 0.711
	HCV_229E PKB171 12 9098	3	12	0.5	0.8	0.632
	WBV	PKB253 16 1062	0	3	0.842	1.0	0.916
	SARS-CoV PKB254 14 1082	0	12	0.538	1.0	0.73
	Hs_Ma3	PKB258 16	431	0	0	1.0	1.0	1.0
	VMV	PKB280 14	617	0	0	1.0	1.0	1.0
	ScYLV	PKB281	8	135	1	0	1.0	0.889 0.939
	WNV	PKB347 18	877	0	2	0.9	1.0	0.948
	JEV	PKB348 18	939	0	2	0.9	1.0	0.948
	ALFV	PKB350 16	922	0	1	0.941	1.0	0.97
	SESV	PKB353 19	655	0	0	1.0	1.0	1.0

Table 4 .

 4 11: The 12 predictions of KnotInFrame based on 17 testing signals.

	Name	PKBNo. TP TN FP FN Sensitivity PPV MCC
	HCV_229E PKB171 12 9098 19	12	0.5	0.387 0.438
	RSV	PKB174 32 2650	3	7	0.821	0.914 0.864
	WBV	PKB253 14 1060	4	5	0.737	0.778 0.753
	SARS-CoV PKB254 10 1082	4	16	0.385	0.714 0.516
	Mm_Edr	PKB257	5	552	4	14	0.263	0.556 0.369
	Hs_Ma3	PKB258	0	438	9	16	0.0	0.0	-0.027
	VMV	PKB280 13	618	3	1	0.929	0.813 0.865
	WNV	PKB347 11	878	6	9	0.55	0.647 0.588
	JEV	PKB348 11	940	6	9	0.55	0.647 0.589
	ALFV	PKB350	7	925	6	10	0.412	0.538 0.463
	MIDV	PKB352 14	607	3	3	0.824	0.824 0.819
	SESV	PKB353 11	659	4	8	0.579	0.733 0.643
				Sensitivity	PPV		MCC
	Name	PKBNo.							
			Orphea	KIF	Orphea	KIF	Orphea	KIF
	BLV	PKB1	0.889	0.667	1.0		0.667	0.941	0.653
	BWYV	PKB2		1.0	1.0	1.0		1.0	1.0	1.0
	EIAV	PKB3		1.0		1.0			1.0
	FIV	PKB4		1.0		1.0			1.0
	PLRV-S	PKB43		1.0		1.0			1.0
	CABYV	PKB44		0.25		0.25			0.204
	BYDV-NY-RPV	PKB46	0.333		0.333			0.291
	MMTV_gag-pro PKB80	0.917	0.417	1.0		0.5	0.956	0.436
	IBV	PKB106	0.944	0.0	1.0		0.0	0.971	-0.012
	SRV1_gag-pro	PKB107		1.0	0.417	1.0		0.625	1.0	0.495
	BEV	PKB128	0.688	0.688	0.688	0.688	0.685	0.685
	LDV-C	PKB217	0.647	0.647	0.647	0.647	0.64	0.64
	PRRSV-16244B PKB218		1.0	0.316	0.95		0.333	0.974	0.31
	PRRSV-LV	PKB233		1.0	0.0	1.0		0.0	1.0	-0.022
	BChV	PKB240	0.375		0.429			0.368
	Overall		0.803	0.461	0.82		0.496	0.802	0.465

Table 4.12: The comparison of predictions of Orphea and KnotInFrame based on 17 learning signals.

  conclusions. First, Orphea had an overwhelming triumph as it obtained higher values of sensitivity, PPV and MCC, based on most reference structures. Second,

	Orphea is more sensitive, especially to short sequences than KnotInFrame, and
	can tolerate a more general composition of slippery sequence in predicting -1 PRF
	signals.
	On the other hand, for the genes of BWYV, BEV, LDV-C and HCV_229E,
	Orphea has obtained a draw with KnotInFrame for their equal values of sensitivity,
	PPV and MCC. However, it is very interesting to reveal that Orphea has predicted
	a different pseudoknot from KnotInFrame although both programs have identical

evaluation values. The examples are LDV-C and HCV_229E, as shown in Table

B

.2. This further explains the dilemma we mention in Section 4.3 where we notice the unsatisfactory assessments by sensitivity, PPV and MCC as calculated by Equations 4.1, 4.2 and 4.3, but there are no better options of evaluation parameters for us to choose and no reliable suggestions on a practical applicability of them to benefit.

Table 5 .

 5 

	Class	Pseudoknot Models	Example
	PKF	All nested structures	
	L&P's	One H-type pseudoknot	ABAB
	D&P's	Recursive H-type pseudoknots	ABCDCDAB
	A&U's	Simple and recursive pseudoknots	ABCBDADC
	R&E's All planar and part of non-planar pseudoknots	ABCABC
	PK	All planar and non-planar pseudoknots	ABCADBECDE

1: The comparison of algorithmic pseudoknots

Table 5

 5 

.2 shows some examples about this idea of saving the types of brackets for page number, where the parentheses '(' and ')' and square brackets '

[' and ']

' are used to represent a pseudoknot initially, and the parentheses hold the highest priority of notation. The curly brackets '{' and '}' are introduced when the former two types of brackets are incapable to represent the conformation, and later the alphabetical letters 'A', 'a' and 'B', 'b' are introduced similarly.

Table 5 .

 5 3: The 15 methods considered in the benchmark.

		Methods	Utilization	Version	Date	Reference
		CyloFold	Web Service			[Bindewald et al., 2010]
		DotKnot	Local Installation	1.3.1	Oct. 2011	[Sperschneider and Datta, 2010]
		DotKnot-K	Local Installation	1.3.1	Oct. 2011	[Sperschneider and Datta, 2010]
		HotKnots-cc Local Installation	2.0	Jan. 2010	[Ren et al., 2005]
		HotKnots-dp Local Installation	2.0	Jan. 2010	[Ren et al., 2005]
	Heuristic	HotKnots-re Local Installation	2.0	Jan. 2010	[Ren et al., 2005]
	Methods	IPknot	Local Installation	0.0.2	Jan. 2011	[Sato et al., 2011]
		MC-Fold	Remote Server 1			[Parisien and Major, 2008]
		McGenus	Local Installation		Feb. 2013	[Bon et al., 2012]
		McQFold	Local Installation		May 2006	[Metzler and Nebel, 2008]
		pKiss	Local Installation	2.2.11	Dec. 2014	[Janssen and Giegerich, 2014]
		vsfold5	Web Service	5.23		[Dawson et al., 2007]
		pknotsRG-M Local Installation	1.3	Sep. 2006	[Reeder and Giegerich, 2004]
	Exact					
		pknotsRG-F Local Installation	1.3	Sep. 2006	[Reeder and Giegerich, 2004]
	Methods					
		pknots	Local Installation	1.08	Sep. 2012	[Rivas and Eddy, 1999]

1 It is an algorithm of predicting MFE pseudoknots based on the topological genus classification. But as TT2NE is available only with the web service and functionally analogous to McGenus, it is not considered in this benchmark.
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:

  Remove the unpaired bases from 𝑆, and assign a dot to the corresponding position in 𝑆𝑡𝑟. Create 𝐵𝑃 , the list of base pairs (𝑥, 𝑦) of 𝑆, in the ascending order of 𝑥. Create 𝑏𝑝𝑆, a list of stacks. Create a stack, and add it to 𝑏𝑝𝑆.

	25:		else	◁ 𝑏𝑝𝑆(𝑖) is not empty.
	26:		if (𝑥, 𝑦) matches the top element of 𝑏𝑝𝑆(𝑖) then
	27:		Pop the top element of 𝑏𝑝𝑆(𝑗).
	28:		Assign the symbol of 𝑏𝑝𝑆(𝑖) to 𝑦, invoke ASSIGN-BRACKETS to
	29:		assign a closing bracket to 𝑥, and add them to 𝑆𝑡𝑟.
	30:		Break Loop.
	31:		else if (𝑥, 𝑦) crosses the top element of 𝑏𝑝𝑆(𝑖) then
	32:		if 𝑖 = 𝑛 then	◁ New stack is desired.
	33:			Create a new stack, and add it to 𝑏𝑝𝑆.
	2:	𝑛 ← size of 𝑏𝑝𝑆.
	34:			Push (𝑥, 𝑦) into the new stack.
	3:	for each (𝑥, 𝑦) in 𝐵𝑃 do
	35:	Loop:	Invoke STACK-SYM to assign a symbol to 𝑏𝑝𝑆(𝑖 + 1).
	4: 36:			Break Loop.
	37:		else
	38:			Continue Loop.	◁ Check the availability of the
	39:			◁ next stack to deposit (𝑥, 𝑦).
	40:		end if
	9: 41:		Break Loop. else
	10: 42:		else /*In the case that (𝑥, 𝑦) does neither match nor cross ◁ 𝑏𝑝𝑆(𝑖) is not the only stack in 𝑏𝑝𝑆.
	11: 43:		for 𝑗 ← 𝑖 + 1 to 𝑛 do the top element of 𝑏𝑝𝑆(𝑖), push (𝑥, 𝑦) into it.*/
	12: 44:		/*Check if (𝑥, 𝑦) matches with the top element of the Push (𝑥, 𝑦) into 𝑏𝑝𝑆(𝑖).
	13: 45:		following stack(s) if the current stack is empty. Break Loop.
	46:		end if
	47:		end if
	48:	then	end for
	16: 49:	end for	Pop the top element of 𝑏𝑝𝑆(𝑗).
	17: 50: end procedure	Assign the symbol of 𝑏𝑝𝑆(𝑗) to 𝑦, invoke ASSIGN-BRACKETS to
	18: 1: procedure Stack-sym:(Number) assign a closing bracket to 𝑥, and add them to 𝑆𝑡𝑟.
	19:			Break Loop.
	20:			end if
	21:		end for
	22:		Push (𝑥, 𝑦) into 𝑏𝑝𝑆(𝑖).	◁ Push (𝑥, 𝑦) into current stack.
	23:		Break Loop.
	24:		end if

for 𝑖 ← 1 to 𝑛 do ◁ iteratively check all the stacks to deposit (𝑥, 𝑦).

5:

if 𝑏𝑝𝑆(𝑖) is empty then

6: if 𝑏𝑝𝑆(𝑖)

is the only stack then 7: Push (𝑥, 𝑦) into 𝑏𝑝𝑆(𝑖).

8:

Invoke STACK-SYM to assign a symbol to 𝑏𝑝𝑆(𝑖).

14:

Either pop the match if yes, or deposit it into the empty stack if no.*/ 15: if 𝑏𝑝𝑆(𝑗) is not empty and (𝑥, 𝑦) matches the top element of 𝑏𝑝𝑆(𝑗)

Table 6 .

 6 1: The classification of the 414 pseudoknots.

		Physical Interactions	
	H-type	Kissing	Recursive	Complex
	341	25	4	44
		Conformational Characteristics	
	Page No.=2	Page No.=3	Page No.=4
	409	3		2
		Algorithmic Accessibilities	
	L&P class D&P class A&U class J&C class R&E class Number
	The Number of Pseudoknots Belonging to Each Algorithmic Class
	Y				333
	Y				344
		Y			344
			Y		370
				Y	411
	The Number of Pseudoknots in the Complementary Set of Each Class

Table 6 .

 6 2: The correlation between the classifications of sequences.

			Aptamers mRNA tRNA tmRNA	rRNA	Riboswitch Ribozymes Others
	Len	≤ 100 nt	14	6	8	10	5	10	31	11
	gth	101-160 nt	1	10	0	0	5	1	6	2
		Eukaryote	1	8	2	0	7	0	29	10
	Orga	Prokaryote	5	5	5	10	3	7	3	2
	nism	Virus	0	2	0	0	0	0	4	0
		Unknown	9	1	1	0	0	4	1	1
	Page	2	15	15	8	10	10	11	37	13
	No.	3	0	1	0	0	0	0	0	0
		H-type	13	15	0	10	6	5	5	12
	Pknot									
		Kissing	1	0	8	0	4	3	2	1
	Type									
		Complex	1	1	0	0	0	3	30	0
			Vr. 3	Vr. 5	Frame	Vr.Read	Vr. tR	Vr. Ot	Unknown	
			UTR	UTR	shift	through	NA-like	hers		
	Len	≤ 100 nt	103	29	30	7	52	23	6	
	gth	101-160 nt	0	0	3	0	6	7	1	
		Eukaryote	0	0	2	0	0	0	0	
	Orga	Prokaryote	0	0	0	0	0	0	0	
	nism	Virus	103	29	31	7	58	30	2	
		Unknown	0	0	0	0	0	0	5	
	Page	2	103	29	33	7	58	30	7	
	No.	3	0	0	0	0	0	0	0	
		H-type	102	29	33	7	58	30	5	
	Pknot									
		Kissing	1	0	0	0	0	0	2	
	Type									
		Complex	0	0	0	0	0	0	0	
					120					

* But this pseudoknot contains four identical pseudoknots, all with the pattern of ABAB.

Table 6 .

 6 5:The numeric value of the predictions.

	Attr	Value	Size	Cylo	Dot	DotK	HotK	HotK	HotK	IP	MC-F	McG	McQ	pK	vsfo	pknots	pknots	pkn
	ibute			Fold	Knot	not-K	nots-cc	nots-dp	nots-re	knot	old	enus	Fold	iss	ld5	RG-M	RG-F	ots
	Input Length Threshold (nt)	≥ 412 1	≥ 3170 ≥ 3170	≥ 920	≥ 412	≥ 412	≥ 3170	≥ 158	≥ 412	≥ 1248	≥ 190	≥ 412	≥ 1248	≥ 1248	≥ 212
				< 920			< 927	< 920	< 920		< 160	< 920	< 1465	< 207	< 920	< 1465	< 1465	< 219
				365	367	367	366	365	365	367	350	365	367	355	365	367	367	357
		PseudoBase	367															
				99.5%	100%	100%	99.7%	99.5%	99.5%	100%	95.4% 99.5%	100%	96.7% 99.5%	100%	100%	97.3%
	All																	
				41	47	47	41	41	41	47	37	41	42	39	41	42	42	39
		PDB	47															
				87.2%	100%	100%	87.2%	87.2%	87.2%	100%	78.7% 87.2% 89.4% 83.0% 87.2% 89.4%	89.4% 83.0%
				345	345	345	345	345	345	345	345	345	345	345	345	345	345	345
		≤ 100	345															
				100%	100%	100%	100%	100%	100%	100%	100% 100%	100%	100% 100%	100%	100%	100%
		101 -200	49															
				100%	100%	100%	100%	100%	100%	100%	85.7% 100%	100%	100% 100%	100%	100%	100%
				6	6	6	6	6	6	6	0	6	6	0	6	6	6	2
		201 -300	6															
				100%	100%	100%	100%	100%	100%	100%	0%	100%	100%	0%	100%	100%	100%	33.3%
	Leng			5	5	5	5	5	5	5	0	5	5	0	5	5	5	0
		301 -400	5															
	th(nt)			100%	100%	100%	100%	100%	100%	100%	0%	100%	100%	0%	100%	100%	100%	0%
				1	1	1	1	1	1	1	0	1	1	0	1	1	1	0
		401 -500	1															
				100%	100%	100%	100%	100%	100%	100%	0%	100%	100%	0%	100%	100%	100%	0%
				0	2	2	1	0	0	2	0	0	2	0	0	2	2	0
		501 -1000	2															
				0%	100%	100%	50.0%	0%	0%	100%	0%	0%	100%	0%	0%	100%	100%	0%
																Continued On Next Page

Table 6 .

 6 6: The winner program of the evaluation values.

	Attribute	Value	Size	Sensitivity	PPV	MCC
		Entire Set	414	pKiss	pKiss	pKiss
	All	Shared Set	387	pKiss	DotKnot	DotKnot
		Missing Set	27	pKiss	pKiss	pKiss
		1-100 nt	345	pKiss	DotKnot	DotKnot
	Length					
		101-160 nt	42	McGenus	McGenus	McGenus
		Aptamers	15	CyloFold	McQFold	CyloFold
		mRNA	16	McGenus	McGenus	McGenus
		tRNA	8	DotKnot-K	McQFold	McQFold
		tmRNA	10	McGenus	HotKnots-dp	McGenus
		rRNA	10	pKiss	McQFold	McQFold
		Riboswitch	11	HotKnots-dp HotKnots-dp HotKnots-dp
		Ribozymes	37	pKiss	pKiss	pKiss
	RNA					
		Others	13	McGenus	pknotsRG-M	McGenus
	Type					
		Vr. 3 UTR	103	pKiss	pKiss	pKiss
		Vr. 5 UTR	29	pKiss	pKiss	pKiss
		Frameshifting	33	pKiss	CyloFold	pKiss
		Vr. ReadThrough	7	McGenus	DotKnot	McGenus
		Vr. tRNA-like	58	DotKnot	DotKnot	DotKnot
		Vr. Others	30	McGenus	McGenus	McGenus
		Unknown	7	HotKnots-cc HotKnots-cc HotKnots-cc
		Eukaryote	59	McGenus	McGenus	McGenus
		Prokaryote	40	McGenus	McQFold	CyloFold
	Organism					
		Virus	266	pKiss	DotKnot	DotKnot
		Unknown	22	HotKnots-cc	McQFold	HotKnots-cc
	Page	2	386	pKiss	DotKnot	DotKnot
	No.	3	1	McGenus	McGenus	McGenus
		H-type	330	pKiss	DotKnot	DotKnot
	Pseudoknot					
		Kissing	22	DotKnot-K	IPknot	IPknot
	Type					
		Complex	35	McGenus	DotKnot	pKiss
	The Program with the		pKiss	DotKnot	McGenus
	Maximal Times of Being a Winner	12	8	8

Figure 6.8 counts the winner program of the three evaluation parameters in Table 6.6, from which we observe the best three winner programs intuitively, DotKnot, McGenus and pKiss. These three methods obtain 15, 23 and 24 times of best evaluation values respectively, accumulated based on the sensitivity, PPV

Table 6 .

 6 7: The consensus ranking of the prediction methods.

	Rk.	Sensitivity	PPV	MCC	Rk.	Sensitivity	PPV	MCC
	1	pKiss	DotKnot	DotKnot	9	MC-Fold	IPknot	pknotsRG-F
	2	McGenus	CyloFold	pKiss	10	McQFold	pknotsRG-F HotKnots-cc
	3	DotKnot	McGenus	CyloFold	11	HotKnots-cc HotKnots-cc HotKnots-re
	4	DotKnot-K	DotKnot-K	McGenus	12	HotKnots-re HotKnots-re	IPknot
	5	CyloFold	McQFold	DotKnot-K	13	IPknot	HotKnots-dp	MC-Fold
	6	pknotsRG-M pknotsRG-M pknotsRG-M 14 HotKnots-dp	MC-Fold	HotKnots-dp
	7	pknots	pKiss	pknots	15	vsfold5	vsfold5	vsfold5
	8	pknotsRG-F	pknots	McQFold				

  .21. Specifically, the tables True Negatives, False Negatives, True Positives, False Positives, PPV and MCC have a similar table structure with the table Sensitivity. And the tables Average_PPV and Average_MCC have a consistent table structure with the table Average_Sensitivity.

Table 7 .

 7 1: The performance of predicting prokaryotic molecules and complex pseudoknots by certain methods. McGenus and pKiss. And Figure 6.9 and Table 6.7 of the consensus ranking choose four global winner programs, CyloFold, DotKnot, McGenus and pKiss. We are wondering why CyloFold is a global winner program as its win counts in Figure method corresponding to the known information, according to Table 6.6. If there is no details about the given sequence, the global winner programs of CyloFold, DotKnot, McGenus and pKiss are strongly recommended.

			The Prediction for the Prokaryotic Molecules		
		Sensitivity			PPV			MCC	
	McGenus McQFold CyloFold McGenus McQFold CyloFold McGenus McQFold CyloFold
	0.75	0.694	0.727	0.669	0.738	0.73	0.712	0.703	0.718
			The Prediction for the Complex Pseudoknots		
		Sensitivity			PPV			MCC	
	McGenus DotKnot	pKiss	McGenus DotKnot	pKiss	McGenus DotKnot	pKiss
	0.821	0.783	0.811	0.837	0.854	0.847	0.822	0.812	0.824
	The performance of predicting the two special classes by the corresponding	
	three winner methods is comparable, from which we do not see any great difference	
	of the evaluation values. We may suggest that McGenus, McQFold and CyloFold	
	are all good choices in predicting the prokaryotic molecules with respect to the	
	classification of the organism of the sequences. And McGenus, DotKnot and	
	pKiss are good choices in predicting the complex pseudoknots with respect to the	
	classification of the pseudoknot types alternatively.				
	Further, Table 6.6 and Figure 6.8 select three specific winner programs, Dot-	
	Knot,								

  Table A.1: The Comparison of Orphea's 6 Best Predictions

	Sequence Name	Program	Result
		Slippery Site	GUUAAAU
		SubSequence UGGAGGCAGACAAAAAUUGGAAGAUCAAGCCCAUCUGCCUUUCAGUUGCCAUAGUCCAAUUU
		Orphea	...((
	54_Random_0.179		

Table A

 A 

			.1 -Continued From Previous Page
	Gene Name	Program	Result
		IPknot-3	

Table A

 A KnotInFrame ........((((.[[[[....)))).......]]]].................

			.1 -Continued From Previous Page
	Gene Name	Program	Result
		Slippery Site	GGGAAAC
		SubSequence GAGGCAGGGGCUGGGGCCAUGAGCCAUCCCAAGCCCUGGGAAACAUAGGCUCA
		Orphea	.......(((((.(((...[[[[[[..))).)))))...........]]]]]]
		CyloFold	..((
	4335_Human_0.0881		

Table A .

 A 1 -Continued From Previous Page

	Gene Name	Program	Result
		pknotsRG-M .....((((((((((..(((....))))))))...))))).................
		pknotsRG-F	.....(((((.((((..(((....)))))))[[[[)))))...........]]]]..
	1679_Human_0.0592 DotKnot-P	.....(((((.........[[

Table A

 A 

						.2 -Continued From Previous Page Table A.2 -Continued From Previous Page Table A.2 -Continued From Previous Page					
	Sequence Sequence Sequence	KnotIn KnotIn KnotIn	Cylo Cylo Cylo	IPknot IPknot IPknot	IPknot IPknot IPknot	pknots pknots pknots	pknots pknots pknots	pknots pknots pknots	DotKnot DotKnot DotKnot	DotKnot DotKnot DotKnot	MCFold	Kine	Prob	Vsfold5	Scores
	Name Name Name	Frame Frame Frame	Fold Fold Fold	-N -N -N	-P -P -P	RG-M RG-M RG-M	RG-F RG-F RG-F	RG-L RG-L RG-L	-P -P -P	-K -K -K		Fold	Knot		
	Ratio_Human	6/18	14/18	8/18	8/18	10/18	18/18	18/18	15/18	15/18	5/17	12/18	2/18	9/18	140/233
	(yes/18)														
	55_Yeast	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	no	12/13
	_0.0071														
	155_Yeast	no	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	no	11/13
	_0.0065														
														Continued On Next Page

1 Whether the particular method has an editable output.

Table B .

 B 1: The Comparison Based on the 17 Learning Signals.

	Gene Name Program	Result
		Sequence	UUUAAACUGCUAGCCACCUCUGGUCUCGACCGCUGUACUAGAGGUGGGCUGACGGUGUYUGGCGAUGCGGUCA
		Slippery Site	UUUAAAC
	LDV-C	SubSequence UGCUAGCCACCUCUGGUCUCGACCGCUGUACUAGAGGUGGGCUGACGGUGUYUGGCGAUGCGGUCA
	(PKB217)	PseudoBase	......((

Table B .

 B 1 -Continued From Previous Page

	Gene Name Program	Result
		Slippery Site	GGGAAAU
	BChV	SubSequence GGACUGAGCGGCGCCGACCGCCAAACAACCGGCA
	(PKB240)	PseudoBase	.......((((.[[[[.))))........]]]].
		Orphea	
		KnotInFrame No suitable slippery sites have been detected.
		Sequence	UUUAAACUGUUGAGAGGUGCCUGGAGCGCCUGCAGGCAUCUCUGUUUUCAAAAUGGCGCAUACCAGUCUUCAAGGUCAAAACAUUAUAUUGAU
			UUGGCAACUGAGUAUAAUGCAGGCA
		Slippery Site	UUUAAAC
	BEV	SubSequence	UGUUGAGAGGUGCCUGGAGCGCCUGCAGGCAUCUCUGUUUUCAAAAUGGCGCAUACCAGUCUUCAAGGUCAAAACAUUAUAUUGAUUUGGCAA
			CUGAGUAUAAUGCAGGCA
	(PKB128)	PseudoBase	.....

(((((((((((....[[[[[)

))))))))))......................................................... ............]]]]]. Orphea .....((

  KnotInFrame No suitable slippery sites have been detected.

			Table B.1 -Continued From Previous Page Table B.1 -Continued From Previous Page
	Gene Name Program Gene Name Program	Result Result
		Orphea Sequence	.......((((((......[[))))))....]]....... AAAAAACGGGAAGCAAGGGGCUCAAGGGAGGCCCCAGAAACAAACUUUCCCGAU
		KnotInFrame .......((((((..[[[...))))))......]]].... Slippery Site AAAAAAC
	EIAV	Sequence SubSequence GGGAAGCAAGGGGCUCAAGGGAGGCCCCAGAAACAAACUUUCCCGAU GGGAAACGGAGUGCGCGGCACCGUCCGCGGAACAAACGGAGAAGGCAGCU
	(PKB3)	Slippery Site PseudoBase	GGGAAAC .........((((((...[[[[))))))............]]]]...
	BWYV	SubSequence GGAGUGCGCGGCACCGUCCGCGGAACAAACGGAGAAGGCAGCU
	(PKB2) FIV	PseudoBase Sequence Slippery Site ......Sequence GGGAAACUGGAAGGCGGGGCGAGCUGCAGCCCCAGUGAAUCAAAUGCAGC GGGAAAC GGGAAACGGGAAGGCGGCGGCGUCCGCCGUAACAAACGC SubSequence UGGAAGGCGGGGCGAGCUGCAGCCCCAGUGAAUCAAAUGCAGC
	BYDV-NY-RPV (PKB46) (PKB4) IBV	Slippery Site SubSequence GGGAAGGCGGCGGCGUCCGCCGUAACAAACGC GGGAAAC PseudoBase PseudoBase ...Sequence UUUAAACGGGUACGGGGUAGCAGUGAGGCUCGGCUGAUACCCCUUGCUAGUGGAUGUGAUCCUGAUGUUGUAAAGCGAGCCUU Slippery Site UUUAAAC .....Sequence GGGAAACGGGCAGGCGGCGGCGACCGCCGAAACAACCGC SubSequence GGGUACGGGGUAGCAGUGAGGCUCGGCUGAUACCCCUUGCUAGUGGAUGUGAUCCUGAUGUUGUAAAGCGAGCCUU
	(PKB106)	Slippery Site PseudoBase	GGGAAAC ......((
	CABYV	Sequence SubSequence GGGCAGGCGGCGGCGACCGCCGAAACAACCGC AAAAAACUAAUAGAGGGGGGACUUAGCGCCCCCCAAACCGUAACCCC
	(PKB44)	Slippery Site PseudoBase	AAAAAAC .....(((((..[[[.)))))........]]]
	BLV	SubSequence UAAUAGAGGGGGGACUUAGCGCCCCCCAAACCGUAACCCC Orphea .......(((((([[.)))))).......]].
	(PKB1)	PseudoBase KnotInFrame No suitable slippery sites have been detected. .......((((((.....[[[))))))....]]]......
			Continued On Next Page Continued On Next Page

..]]]]]......................................... .................. (((((..[[[[)))))......]]]]........... Orphea ......(((((..[[[[)))))......]]]]........... KnotInFrame ......(((((..[[[[)))))......]]]]........... (((((..[[[[))))).......]]]] Orphea .......(((((([[[))))))......]]]. KnotInFrame No suitable slippery sites have been detected. Orphea .........((((((...[[[[))))))............]]]]... .....(((((..[[[[[[)))))...........]]]]]] Orphea ........(((((..[[[[[[)))))........

...]]]]]]

KnotInFrame No suitable slippery sites have been detected.

Table B .

 B 1 -Continued From Previous Page KnotInFrame No suitable slippery sites have been detected. Table B.2: The Comparison Based on the 17 Testing Signals.

			Table B.1 -Continued From Previous Page
	Gene Name Program Gene Name Program	Result Result
	MMTV_ gag/pro (PKB80) (PKB42) SRV1_ gag/pro (PKB107) WBV ...Gene Name Program Slippery Site AAAAAAC SubSequence UUGUAAAGGGGCAGUCCCCUAGCCCCGCUCAAAAGGGGGAUG PseudoBase .......(((((.[[[[[[[.)))))........]]]]]]]. Orphea .......(((((..[[[[[[.)))))........]]]]]].. Sequence GGGAAACGGAUUAUUCCGGUCGACUCCGGAGAAACAAAGUC Slippery Site GGGAAAC PseudoBase ......((((..[[[.)))).........]]] Orphea 0 Pseudoknot found. KnotInFrame No suitable slippery sites have been detected. Sequence GGGAAACGGACUGAGGGGCCAGCCCCAGGCCCCGAAACAAGCUUAUGGGGCG Slippery Site GGGAAAC SubSequence GGACUGAGGGGCCAGCCCCAGGCCCCGAAACAAGCUUAUGGGGCG PseudoBase Result Sequence UUUAAACUGGUGGGGCAGUGUCUAGGAUUGACGUUAGACACUGCUUUUUGCCCGUUUCAAACAGGUGAAUACAAACCGUCAU Slippery Site UUUAAAC SubSequence UGGUGGGGCAGUGUCUAGGAUUGACGUUAGACACUGCUUUUUGCCCGUUUCAAACAGGUGAAUACAAACCGUCAU (PKB253) PseudoBase ....((
	PEMV	SubSequence GGAUUAUUCCGGUCGACUCCGGAGAAACAAAGUC
	(PKB45)	PseudoBase ...Sequence UUUAAAUGGGCAAGCGGCACCGUCCGCCAAAACAAACGG
		Slippery Site	UUUAAAU
	PLRV-S	SubSequence GGGCAAGCGGCACCGUCCGCCAAAACAAACGG
	(PKB43)	PseudoBase	......((((..[[[[))))........]]]]
		Orphea	......((((..[[[[))))........]]]]
		Sequence	UUUAAAUGGGCGAGCGGCACCGCCCGCCAAAACAAACGG
		Slippery Site	UUUAAAU
	PLRV-W	SubSequence GGGCGAGCGGCACCGCCCGCCAAAACAAACGG
			Continued On Next Page

KnotInFrame .......

(((((...[[[[[.)

)))).......]]]]].... ...((((((..[[[[))))))......]]]] Orphea 0 Pseudoknot found. KnotInFrame No suitable slippery sites have been detected. ....((((((.[[[[[[))))))............]]]]]]. Orphea .......((((((.[[[[[[))))))............]]]]]]. KnotInFrame .......(((((.[[[.....))))).......]]].........

Table B .

 B 2 -Continued From Previous Page

	Gene Name Program	Result
	(PKB346)	PseudoBase	.....((

  )................]]]]]]].......

			Table B.2 -Continued From Previous Page
	Gene Name Program	Result
		Slippery Site	UUUUUUA
	SESV	SubSequence GCUGUGCUGGGUGCGAGUGUGGCAGCGGCUCGUGCCUACGAACACACCGCUGUCAUGCC
	(PKB353)	PseudoBase	.......((
		Orphea	0 PK found.
			Continued On Next Page

  ..]]].................................................. ............................................................................................. ...............................

		Table B.2 -Continued From Previous Page
	Gene Name Program	Result
		.....((
	KnotInFrame	
		Continued On Next Page

Table D .

 D ..]]]................................................................................ ............................... 1: The sensitivity of the predictions.Table D.2: The PPV of the predictions.Table D.3: The MCC of the predictions.Table D.5: The PPV of predicting missing set.
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	PKBNo. Length PKB18 38 PKB37 41 PKB56 24 PKB75 88 PKB94 33 PKB113 24 PKB132 49 PKB151 32 PKB170 149 PKB189 28 PKB209 234 PKB228 148 PKB247 22 PKB266 47 PKB285 27 PKB304 34 PKB323 180 PKB342 88 PKB361 80 3GX2_A 94 3SD1_A 89 Attr Value ibute Attr Value ibute Attr Value ibute Name Length PKB19 38 PKB38 41 PKB57 67 PKB76 89 PKB95 23 PKB114 33 PKB133 48 PKB152 26 PKB171 224 PKB190 47 PKB210 90 PKB229 67 PKB248 66 PKB267 72 PKB286 30 PKB305 80 PKB324 181 PKB343 54 PKB362 90 3IVN_B 69 3U4M_B 80 ibute Vr. Others Cylo Pseudoknot Type simple H-type simple H-type simple H-type complex simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type complex complex simple H-type Kissing Hairpin simple H-type Size Cylo Fold Size Cylo Fold Size Cylo Fold Dot DotK Fold Knot not-K simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type Kissing Hairpin simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type complex simple H-type simple H-type complex simple H-type Fold 30 0.712 ibute Fold Vr. Others 30 0.67 ibute Fold Vr. Others 30 0.675 Fold Knot not-K PKB77 0.212 0.187 0.187	Dot Knot Dot Knot Dot Knot HotK nots-cc Knot 0.651 Knot 0.665 Knot 0.643 nots-cc 0.377	Pseudobase Pattern ABAB ABAB ABAB ABCDCADB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABCDCADB ABCDCADB ABAB ABACBC ABAB DotK HotK HotK not-K nots-cc nots-dp DotK HotK HotK not-K nots-cc nots-dp DotK HotK HotK not-K nots-cc nots-dp HotK HotK IP nots-dp nots-re knot ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABACBC ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABCDCADB ABAB ABAB ABCBDADECE ABAB not-K nots-cc nots-dp 0.652 0.614 0.575 not-K nots-cc nots-dp 0.658 0.628 0.622 not-K nots-cc nots-dp 0.639 0.604 0.579 nots-dp nots-re knot 0.377 0.377 0.383	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 MC-F HotK nots-re HotK nots-re HotK nots-re old Page No. L&P class D&P class A&U class J&C class R&E class Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y N N N N Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y N N N N Y N N N N Y Y Y Y Y Y N N N Y Y N Y Y Y Y IP MC-F McG McQ pK vsfo pknots pknots pkn knot old enus Fold iss ld5 RG-M RG-F ots IP MC-F McG McQ pK vsfo pknots pknots pkn knot old enus Fold iss ld5 RG-M RG-F ots IP MC-F McG McQ pK vsfo pknots pknots pkn knot old enus Fold iss ld5 RG-M RG-F ots McG McQ pK vsfo pknots pknots pkn enus Fold iss ld5 RG-M RG-F ots 2 Y Y Y Y Y 2 Y Y Y Y Y 2 Y Y Y Y Y 2 Y Y Y Y Y 2 Y Y Y Y Y 2 Y Y Y Y Y 2 Y Y Y Y Y 2 Y Y Y Y Y 2 N N N Y Y 2 Y Y Y Y Y 2 Y Y Y Y Y 2 Y Y Y Y Y 2 Y Y Y Y Y 2 Y Y Y Y Y 2 Y Y Y Y Y 2 Y Y Y Y Y 2 N N N N Y 2 Y Y Y Y Y 2 Y Y Y Y Y 2 N N N N Y 2 N Y Y Y Y nots-re knot old enus Fold iss ld5 RG-M RG-F ots 0.598 0.606 0.698 0.818 0.619 0.654 0.487 0.603 0.602 0.746 nots-re knot old enus Fold iss ld5 RG-M RG-F ots 0.63 0.671 0.577 0.719 0.638 0.618 0.539 0.627 0.592 0.676 nots-re knot old enus Fold iss ld5 RG-M RG-F ots 0.595 0.619 0.616 0.748 0.605 0.621 0.496 0.599 0.582 0.696 old enus Fold iss ld5 RG-M RG-F ots 0.489 0.344 0.193 0.377 0.367
	PKB1 PKB2 PKB20 PKB39 PKB58 PKB77 PKB96 PKB115 PKB134 PKB153 PKB172 PKB191 PKB211 PKB230 PKB249 PKB268 PKB287 PKB306 PKB325 PKB344 PKB363 3IWN_A 3W1K_J All 3JYX_5 PKB150 All PKB21 PKB40 PKB59 PKB78 PKB97 PKB116 PKB135 PKB154 PKB173 PKB193 PKB212 PKB231 PKB250 PKB269 PKB288 PKB307 PKB326 PKB345 PKB364 3IYQ_A 3W3S_B All 3KIY_A PKB181	47 50 38 41 30 219 24 24 137 33 39 113 146 48 33 40 26 78 78 94 80 93 92 Entire Set Unknown Entire Set Unknown Entire Set Unknown 3170 0.163 38 40 22 62 32 33 116 26 73 341 64 130 24 66 25 80 63 52 80 349 recursive H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type complex Kissing Hairpin simple H-type Kissing Hairpin Kissing Hairpin 414 0.737 7 0.779 414 0.717 7 0.725 414 0.713 7 0.742 0.26 0.238 0.149 0.142 simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type Kissing Hairpin simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type complex simple H-type simple H-type 98 Kissing Hairpin Shared Set 387 0.753 Eukaryote 59 0.613 Shared Set 387 0.741 0.752 0.736 ABCDCADB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABACBC ABAB ABACBC ABACBC 0.751 0.739 0.681 0.767 0.755 0.903 0.723 0.708 0.689 0.727 0.718 0.834 0.723 0.71 0.668 0.736 0.726 0.863 0.144 0.144 0.144 ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABACBC ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABCDCADB ABAB ABAB ABAB ABACBC 0.766 0.754 0.688 0.581 0.613 0.548 0.71 Eukaryote 59 0.612 0.596 0.614 0.549 Shared Set 387 0.733 0.746 0.733 0.683 Eukaryote 59 0.601 0.577 0.602 0.535 2848 0.417 0.389 0.404 0.231 0.231 0.203 0.203 0.203	0.568 0.609 0.633 0.641 0.578 0.609 0.28 0.297 0.567 0.497 0.65 0.498 0.586 0.483 0.681 0.339	0.621 0.73 0.658 0.685 0.62 0.697 0.621 0.573 0.675 0.57 0.63 0.558	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y N N Y N N 0.578 0.701 0.582 0.81 0.674 0.607 0.68 0.662 0.604 0.633 0.611 0.721 -0.005 0.304 Y Y Y Y Y Y Y Y N Y Y Y Y Y Y Y N Y Y N N 0.575 0.701 0.515 0.55 0.694 0.607 0.61 0.473 0.632 0.613 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y N N Y N N 0.739 0.632 0.772 0.525 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y N N Y N N 0.686 0.648 0.786 0.592 0.706 0.703 0.732 0.584 0.648 0.733 0.732 0.617 0.705 0.645 0.741 0.535 0.654 0.675 0.75 0.588 -0.004 0.122 0.271 0.736 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y N Y Y Y Y 0.811 0.713 0.746 0.711 0.77 0.401 0.743 0.832 0.698 0.77 0.707 0.793 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y N N Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y N N N Y Y Y Y Y Y Y Y Y N N Y 0.745 0.639 0.774 0.535 0.749 0.756 0.659 0.596 0.626 0.447 0.604 0.603 0.726 0.727 0.736 0.603 0.737 0.721 0.619 0.497 0.612 0.601 0.613 0.633 0.719 0.662 0.743 0.55 0.731 0.726 0.546 0.496 0.633 0.592 0.611 0.457 0.598 0.591 0.472 0.241 0.455 0.205 0.235 0.301	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y 0.735 0.717 0.708 0.674 0.706 0.684 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y 0.737 0.63 0.715 0.602 0.712 0.604
	PKB3 PKB4 PKB5 PKB22 PKB23 PKB41 PKB42 PKB60 PKB61 PKB79 PKB80 PKB98 PKB99 PKB117 PKB118 PKB136 PKB137 PKB155 PKB156 PKB174 PKB175 PKB194 PKB195 PKB213 PKB214 PKB232 PKB233 PKB251 PKB252 PKB270 PKB271 PKB289 PKB290 PKB308 PKB309 PKB327 PKB328 PKB346 PKB347 PKB365 PKB366 3IZ4_A 3J0L_A 3ZEX_C 4A1C_2 Length Organism Length Organism 2WDL_A PKB354 Organism 3J20_2 PKB358 Length PKB24 PKB43 PKB62 PKB81 PKB100 PKB119 PKB138 PKB157 PKB176 PKB196 PKB215 PKB234 PKB253 PKB272 PKB291 PKB310 PKB329 PKB348 PKB367 3J3D_C 4AOB_A 3ZEX_B PKB324	54 50 41 39 38 41 39 30 22 61 49 62 63 24 33 134 133 21 23 128 57 28 31 45 145 62 71 26 110 62 75 28 30 80 145 82 81 75 75 90 80 377 48 169 154 Missing Set ≤ 100 nt Prokaryote Virus Missing Set ≤ 100 nt Prokaryote Virus Missing Set ≤ 100 nt Prokaryote 2807 0.264 recursive H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type complex complex simple H-type simple H-type simple H-type simple H-type simple H-type Kissing Hairpin Kissing Hairpin 27 0.404 345 0.773 40 0.727 266 0.78 27 0.236 345 0.774 0.789 0.774 ABCDCADB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABCDCADB ABAB ABAB ABAB ABAB ABAB ABAB ABACBC ABACBC 0.531 0.52 0.552 0.792 0.781 0.705 0.709 0.685 0.67 0.814 0.795 0.708 0.313 0.305 0.279 0.744 40 0.73 0.707 0.671 0.672 266 0.762 0.789 0.773 0.739 27 0.295 0.389 0.379 0.376 345 0.76 0.779 0.765 0.709 40 0.718 0.697 0.668 0.659 0.409 0.38 0.332 0.332 0.324 0.469 0.324 Virus 266 0.756 0.788 0.77 0.705 1495 0.513 0.532 -0.005 0.348 0.348 0.351 0.351 0.342 39 simple H-type ABAB 39 simple H-type ABAB 30 simple H-type ABAB 26 simple H-type ABAB 31 simple H-type ABAB 24 simple H-type ABAB 96 simple H-type ABAB 26 simple H-type ABAB 33 simple H-type ABAB 24 simple H-type ABAB 64 simple H-type ABAB 84 simple H-type ABAB 82 simple H-type ABAB 66 simple H-type ABAB 26 simple H-type ABAB 130 simple H-type ABAB 82 complex ABCDCADB 77 simple H-type ABAB 64 simple H-type ABAB 75 Kissing Hairpin ABACBC 94 Kissing Hairpin ABACBC 101-160 nt 42 0.592 0.55 0.537 0.541 Unknown 22 0.849 0.789 0.76 0.853 101-160 nt 42 0.469 0.443 0.427 0.428 Unknown 22 0.845 0.791 0.748 0.859 101-160 nt 42 0.515 0.482 0.467 0.468 Unknown 22 0.841 0.781 0.745 0.85 1465 0.289 0.294 0.572 0.82 0.82 0.808 0.808 0.912	0.583 0.57 0.662 0.558 0.301 0.676 0.682 0.667 0.401 0.6 0.658 0.702 0.361 0.587 0.657 0.402 0.547 0.687 0.438 0.79 0.477 0.724 0.348 0.88	0.615 0.629 0.677 0.611 0.318 0.703 0.695 0.684 0.423 0.647 0.673 0.626 0.558 0.77 0.45 0.816 0.489 0.783	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y N N Y Y Y Y N N N N 0 0.577 0.714 0.618 0.638 0.703 0.57 0.734 0.398 0 0.72 0.635 0.705 0.591 0.698 0.638 0.466 0 0.626 0.654 0.659 0.631 0.319 0.198 0.611 0.662 0.342 0.348 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y N Y Y N N 0.56 0.591 0.688 0.622 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y N N Y Y Y Y Y Y N N 0.634 0.521 0.663 0.316 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y N N Y Y Y Y Y Y N N 0.751 0.641 0.799 0.557 0.75 0.694 0.688 0.544 0.758 0.63 0.818 0.539 0.298 0.279 0.535 0.196 0.754 0.755 0.773 0.641 0.699 0.738 0.671 0.55 0.745 0.737 0.768 0.619 0.415 0.361 0.582 0.235 0.737 0.676 0.775 0.579 0.712 0.703 0.669 0.532 0.176 0.188 0.316 0.316 0.506 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y N N Y Y Y Y Y Y Y Y 0.775 0.668 0.788 0.292 0.773 0.688 0.767 0.367 0.761 0.665 0.548 0.515 0.78 0.617 0.809 0.284 0.755 0.597 0.763 0.362 0.756 0.595 0.733 0.659 0.781 0.558 0.764 0.774 0.355 -0.005 0.342 0.342 0.151 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y N N N Y Y Y Y Y Y N N Y N N Y 0.57 0.353 0.543 0.559 0.685 0.7 0.805 0.754 0.791 0.701 0.825 0.776 0.477 0.379 0.498 0.495 0.429 0.296 0.441 0.444 0.839 0.626 0.799 0.89 0.777 0.796 0.802 0.761 0.507 0.461 0.572 0.543 0.482 0.311 0.478 0.486 0.746 0.646 0.794 0.809 0.775 0.736 0.805 0.759 0.798 0.759 0.883 0.371 0.805 0.805 0.819	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y 0.634 0.754 0.667 0.766 0.387 0.748 0.654 0.743 0.477 0.647 0.737 0.738 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y 0.598 0.812 0.444 0.799 0.502 0.798
	PKB6 PKB25 PKB44 PKB63 PKB82 PKB101 PKB120 PKB139 PKB158 PKB177 PKB197 PKB216 PKB235 PKB254 PKB273 PKB292 PKB311 PKB330 PKB349 PKB192 3J3E_8 4ATO_G Page Page Page PKB192 PKB323	42 37 39 22 26 26 36 70 28 70 29 45 77 82 48 25 120 64 80 1248 123 33 Aptamers 2 Aptamers 2 Aptamers 2 1248 0.455	simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type complex simple H-type simple H-type Kissing Hairpin simple H-type 15 0.854 0.777 386 0.754 0.767 15 0.898 0.784 386 0.742 0.753 0.738 ABCDCADB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABACBC ABAB 0.777 0.717 0.755 0.688 0.784 0.759 0.711 15 0.869 0.771 0.771 0.728 386 0.734 0.747 0.734 0.684 0.021 0.021 0.869 0.869 0.632 0.922 0.922	0.62 0.567 0.743 0.651 0.664 0.587 0.02 0.853		0.7 0.622 0.77 0.676 0.722 0.63	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y N Y Y N Y 0.657 0.645 0.576 0.702 0.84 0.598 0.694 0.608 0.73 0.602 0.614 0.634 0.022 0.757 0.507	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y N Y Y N Y 0.811 0.754 0.744 0.639 0.775 0.536 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y N Y Y N Y 0.76 0.616 0.848 0.918 0.76 0.718 0.727 0.728 0.737 0.605 0.819 0.819 0.751 0.652 0.719 0.662 0.744 0.551 0.0 0.0 0.848 0.671 0.905 0.905 0.749 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y N Y Y Y Y 0.75 0.778 0.738 0.753 0.732 0.867 0.772 0.757 0.771 0.722 0.762 0.727	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y 0.761 0.738 0.799 0.716 0.771 0.712
	PKB7 PKB26 PKB45 PKB64 PKB83 PKB102 PKB121 PKB140 PKB159 PKB178 PKB198 PKB217 PKB236 PKB255 PKB274 PKB293 PKB312 PKB331 PKB350 2KFC_A 3J3F_8 4ENB_A No. No. No. 3J2C_N 3ZEX_C	42 37 41 920 24 24 26 69 25 90 32 73 120 56 49 24 130 64 77 36 157 51 mRNA 3 mRNA 3 mRNA 3 0.278	simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type Kissing Hairpin simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type complex simple H-type simple H-type Kissing Hairpin simple H-Type 16 0.544 1 0.458 16 0.453 1 0.367 16 0.488 1 0.403 0.507 0.443 0.348 0.348	0.46 0.458 0.381 0.314 0.407 0.371 0.25	ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABACBC ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABCDCADB ABAB ABAB ABACBC ABAB 0.517 0.442 0.458 0.458 0.429 0.38 0.314 0.297 0.461 0.398 0.371 0.361 -0.007 0.25	0.375 0.458 0.379 0.297 0.36 0.361 0.7 0.435		0.424 0.458 0.394 0.297 0.395 0.361	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Y Y Y Y Y Y Y Y Y N Y Y Y Y Y Y Y N Y Y N Y 0.361 0.436 0.575 0.493 0.427 0.374 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y N N Y Y Y Y Y Y Y Y Y Y Y Y Y Y N N Y Y Y Y N N Y Y 0.5 0.292 0.792 0.458 0.458 0.167 0.391 0.324 0.461 0.453 0.344 0.358 0.333 0.2 0.528 0.314 0.289 0.154 0.36 0.359 0.503 0.458 0.371 0.354 0.4 0.232 0.642 0.371 0.356 0.151 0.368 0.584 0.561 0.441 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y N Y Y Y Y 0.458 0.369 0.289 0.392 0.356 0.092 0.31 0.318 0.356 0.263 0.245 0.091 0.458 0.42 0.352 0.306 0.373 0.366	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y 0.559 0.458 0.45 0.333 0.491 0.383
	PKB8 PKB9 PKB10 PKB27 PKB28 PKB29 PKB46 PKB47 PKB48 PKB65 PKB66 PKB67 PKB84 PKB85 PKB86 PKB103 PKB104 PKB105 PKB122 PKB123 PKB124 PKB141 PKB142 PKB143 PKB160 PKB161 PKB162 PKB179 PKB180 PKB181 PKB199 PKB200 PKB201 PKB218 PKB219 PKB220 PKB237 PKB238 PKB239 PKB256 PKB257 PKB258 PKB275 PKB276 PKB277 PKB294 PKB295 PKB296 PKB313 PKB314 PKB315 PKB332 PKB333 PKB334 PKB351 PKB352 PKB353 2KRL_A 2LC8_A 2M58_A 3J20_0 3J20_2 3JYV_7 4ENC_A 4FRG_B 4FRN_A Pknot Type Pknot Type PKB64 3PDR_A Pknot PKB239 PKB357 Type 3IZ4_A Average MCC 40 42 40 38 37 37 39 61 61 46 40 30 32 24 22 25 26 32 31 26 29 70 71 71 32 24 35 124 143 207 23 28 29 72 147 64 96 84 412 56 66 60 85 73 37 25 24 26 130 67 67 68 68 77 80 70 70 102 56 58 76 1495 76 52 84 102 tRNA tmRNA rRNA H-type Kissing Complex tRNA tmRNA rRNA H-Type Kissing Complex tRNA tmRNA H-type 0.823 0.919 0.919 simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type complex complex complex complex complex simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type Kissing Hairpin complex Kissing Hairpin simple H-Type simple H-type complex 8 0.767 10 0.562 10 0.443 330 0.759 22 0.65 35 0.763 8 0.755 10 0.661 10 0.347 330 0.739 0.753 0.738 ABCDCADB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABCDCADB ABCDCADB ABCDCADB ABCDCADB ABAB ABAB ABAB ABAB ABAB ABAB ABACBC others ABACBC ABAB ABAB ABCDCEBEAFDF 0.796 0.854 0.624 0.624 0.653 0.653 0.61 0.594 0.386 0.361 0.432 0.432 0.775 0.76 0.693 0.557 0.602 0.673 0.595 0.595 0.783 0.754 0.694 0.64 0.772 0.778 0.609 0.609 0.748 0.748 0.726 0.783 0.305 0.274 0.313 0.313 0.717 0.653 22 0.64 0.563 0.601 0.575 0.575 35 0.823 0.854 0.809 0.729 0.669 8 0.755 0.779 0.81 0.608 0.608 10 0.595 0.689 0.689 0.652 0.669 330 0.734 0.751 0.735 0.688 0.581 0.0 0.0 0.0 0.019 0.79 0.79 0.79 0.899 rRNA 10 0.377 0.325 0.296 0.352 0.352 Kissing 22 0.634 0.57 0.626 0.573 0.573 0.165 0.102 0.096 0.087 0.087 0.087 0.096 0.423 0.454 0.454 0.557 0.557 0.557 0.439 Complex 35 0.786 0.812 0.774 0.701 0.643 0.214 0.538 0.538 0.5 0.5 0.5 0.747 0.295 0.389 0.379 0.376 0.401 0.423 0.466	0.624 0.576 0.445 0.609 0.599 0.752 0.609 0.772 0.318 0.67 0.584 0.777 0.608 0.654 0.62 0.361 0.58 0.756	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 2 2 2	Y Y Y Y Y Y Y Y Y N Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y N N N N N Y Y Y Y Y Y N N N Y N N 0.797 0.566 0.559 0.716 0.732 0.494 0.507 0.324 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y N N N N N N N N N N Y Y Y Y Y Y Y Y Y Y Y Y N N N N N N Y Y Y Y N N 0.656 0.843 0.739 0.82 0.41 0.277 0.45 0.44 0.463 0.42 0.565 0.709 0.747 0.624 0.777 0.53 0.658 0.506 0.587 0.656 0.667 0.628 0.625 0.743 0.821 0.768 0.811 0.518 0.78 0.461 0.627 0.863 0.743 0.838 0.734 0.644 0.765 0.657 0.593 0.402 0.339 0.18 0.314 0.373 0.343 0.311 0.684 0.611 0.726 0.721 0.731 0.601 0.662 0.414 0.543 0.646 0.633 0.633 0.8 0.689 0.837 0.834 0.847 0.61 0.783 0.499 0.633 0.849 0.735 0.825 0.627 0.667 0.737 0.554 0.534 0.338 0.602 0.637 0.719 0.649 0.742 0.545 0.0 0.0 0.01 0.703 0.806 0.91 0.671 0.881 0.833 0.663 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y N N N N N Y Y Y Y Y Y Y N Y Y Y N 0.551 0.423 0.754 0.602 0.802 0.641 0.735 0.328 0.736 0.591 0.841 0.644 0.623 0.731 0.63 0.358 0.203 0.361 0.391 0.381 0.344 0.357 0.65 0.444 0.553 0.642 0.638 0.619 0.586 0.031 0.07 0.085 0.0 0.0 0.536 0.457 0.587 -0.007 0.463 0.384 0.491 0.618 0.472 0.336 0.764 0.593 0.781 0.586 0.543 0.247 0.722 0.542 0.821 0.593 0.491 0.731 0.269 0.554 0.697 0.706 0.822 0.793 0.824 0.551 0.815 0.794 0.386 0.44 0.3 0.519 0.544 0.415 0.361 0.582 0.235 0.367 0.362 0.477	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y 0.825 0.54 0.418 0.737 0.653 0.79 0.807 0.602 0.305 0.712 0.613 0.809 0.812 0.709 0.554 0.621 0.34 0.791
	PKB11 PKB30 PKB49 PKB68 PKB87 PKB106 PKB125 PKB144 PKB163 PKB182 PKB202 PKB221 PKB240 PKB259 PKB278 PKB297 PKB316 PKB335 PKB354 2RP0_A 3KIY_A 4JF2_A PKB149 Winner Time(28) 42 41 30 68 32 83 25 71 47 42 34 45 41 57 29 33 67 104 190 27 2848 76 Ribozymes Riboswitch Winner Time(28) Ribozymes Winner Time(28) 0.083 Kissing Hairpin simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type complex complex complex simple H-type complex simple H-type 37 0.756 1 11 0.81 1 37 0.772 2 0.051 0.049 Winner Time(28) 2 2 2	0.773 1 0.827 8 0.794 6 0.222 0	ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABACBC ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABCDCADB ABCDCADB ABCDCADB ABAB others ABAB 0.766 0.669 2 3 0.659 0.87 0 1 0.784 0.669 0 2 0.222 0.222 1 2	0.615 1 0.881 2 0.608 1 0.278 9	0.756 1 0.862 0 0.75 0	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4 2	Y Y Y Y Y Y Y Y N Y Y Y Y Y Y Y N N N Y N Y 0.755 0 0.587 0 0.679 0.708 0.62 0 0.869 1 1 0 0.198 0.067 5 3	Y Y Y Y Y Y Y Y N Y Y Y Y Y Y Y N N N Y N Y 0.794 0.775 0.825 0.542 Y Y Y Y Y Y Y Y N Y Y Y Y Y Y Y N N N Y N Y 10 0 12 0 0.812 0.837 0.754 0.644 5 5 5 0 0.788 0.788 0.83 0.574 8 2 7 0 0.143 0.226 0.157 0.784 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y N N N Y N Y 0 0.816 1 0.79 0 1 0 0 0	2	0.802 0 0.735 0 0.804 0	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y N Y 0.773 0 0.745 0 0.765 0
	PKB12 PKB31 PKB50 PKB69 PKB88 PKB107 PKB126 PKB145 PKB164 PKB183 PKB203 PKB222 PKB241 PKB260 PKB279 PKB298 PKB317 PKB336 PKB355 2WDL_A 3LA5_A 4JRC_A RNA RNA RNA 3IYQ_A	40 40 59 61 62 52 27 58 96 27 24 146 34 57 21 29 67 106 150 2807 71 56 Riboswitch Ribozymes Riboswitch 0.132	simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type complex complex complex complex complex simple H-type 11 0.751 37 0.805 11 0.773 0.27 0.27	0.774 0.83 0.794 0.15	ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABCDCADB ABCDCADB ABCDCADB others ABCBDADECE ABAB 0.657 0.82 0.82 0.817 0.691 0.626 0.649 0.839 0.845 0.15 0.15 0.196		0.82 0.761 0.835	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4 2 2	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y N N N N N N 0.749 0.679 0.769 0.682 0.8 0.618 0.297 0.138	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y N N N N N Y 0.789 0.777 0.733 0.621 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y N N N N N Y 0.795 0.817 0.846 0.632 0.794 0.8 0.736 0.623 0.174 0.153 0.158 0.775 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y N N N N N Y 0.808 0.789	0.707 0.819 0.713	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y N Y Y 0.744 0.775 0.737
	PKB13 PKB32 PKB51 PKB70 PKB89 PKB108 PKB127 PKB146 PKB165 PKB184 PKB204 PKB223 PKB242 PKB261 PKB280 PKB299 PKB318 PKB337 PKB356 2ZZN_D 3NKB_B 3J2C_N Type Type Type PKB193	42 38 46 55 33 35 122 50 23 31 29 64 34 59 68 25 67 106 140 71 64 927 Others Others Others 0.064 0.208 0.208 simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type complex complex complex Kissing Hairpin simple H-type recursive H-type 13 0.691 13 0.605 13 0.635	0.581 0.547 0.55 0.167	ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABCDCADB ABCDCADB ABCDCADB ABACBC ABAB ABAababcdcdB 0.64 0.632 0.593 0.585 0.621 0.573 0.601 0.614 0.565 0.167 0.167 0.17		0.622 0.621 0.607	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y N N N N N N 0.6 0.52 0.559 0.543 0.677 0.495 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y N N N N Y Y 0.549 0.75 0.492 0.697 0.521 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y N N N N Y Y 0.595 0.636 0.535 0.646 0.57 0.659 0.529 0.202 0.184 0.061 0.165 0.165 0.667 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y N N N Y Y Y 0.655 0.649	0.62 0.598 0.595	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y 0.634 0.596 0.6
	PKB14 PKB33 PKB52 PKB71 PKB90 PKB109 PKB128 PKB147 PKB166 PKB185 PKB205 PKB224 PKB243 PKB262 PKB281 PKB300 PKB319 PKB338 PKB357 3A2K_C 3NPB_A 3JYX_5 PKB129	40 40 52 108 24 24 118 51 24 24 48 43 121 56 43 37 67 66 160 77 119 3170 Vr. 3 UTR recursive Kissing Hairpin simple H-type simple H-type simple H-type complex simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type complex complex complex Kissing Hairpin Kissing Hairpin 103 0.833 0.848 ababABAcdcdDEDFEFefefCBC ABAB ABAB ABAB ABCABC ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABCDCADB ABCDCADB ABCDCADB ABACBC ABACBC 0.851 0.726 0.603 Vr. 3 UTR 103 0.884 0.89 0.892 0.877 0.853 Vr. 3 UTR 103 0.844 0.857 0.86 0.782 0.698 0.225 0.174 0.167 0.176 0.176 0.176 0.198		0.698 0.866 0.758	2 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Y Y Y N Y Y Y Y Y Y Y Y Y Y Y Y N N N N N N 0.78 0.787 0.728 0.766 0.633 0.88 0.171 0.188	Y Y Y N Y Y Y Y Y Y Y Y Y Y Y Y N N N N N N 0.802 0.634 0.923 0.648 Y Y Y N Y Y Y Y Y Y Y Y Y Y Y Y N N N N N N 0.901 0.888 0.914 0.814 0.834 0.73 0.912 0.706 0.071 0.178 0.178 0.868 Y Y Y N Y Y Y Y Y Y Y Y Y Y Y Y N N N Y Y Y 0.895 0.87	0.888 0.885 0.876	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y 0.824 0.896 0.846
	PKB15 PKB34 PKB53 PKB72 PKB91 PKB110 PKB129 PKB148 PKB167 PKB186 PKB206 PKB225 PKB244 PKB263 PKB282 PKB301 PKB320 PKB339 PKB358 3A3A_A 3O58_3 3ZEX_B PKB208	41 40 22 67 33 33 313 108 35 29 45 147 55 62 28 37 67 69 190 86 158 1465 Vr. 5 UTR Vr. 5 UTR Vr. 5 UTR 0.111 Kissing Hairpin simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type simple H-type complex complex complex Kissing Hairpin complex 29 0.791 29 0.854 29 0.809 0.175 0.175	0.846 0.909 0.866 0.237	ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABCDCADB ABCDCADB ABCDCADB ABACBC ABACBC others 0.743 0.869 0.81 0.872 0.827 0.788 0.192 0.301	0.523 0.748 0.601 0.237		0.612 0.784 0.67	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y N N N N N N 0.586 0.698 0.75 0.709 0.642 0.677 0.31 0.237	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y N N N N N N 0.685 0.527 0.92 0.632 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y N N N N N N 0.779 0.74 0.952 0.821 0.711 0.598 0.929 0.699 0.056 0.179 0.237 0.857 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y N N N Y Y N 0.915 0.873	0.893 0.909 0.892	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y N 0.775 0.856 0.798
	PKB16 PKB17 PKB35 PKB36 PKB54 PKB55 PKB73 PKB74 PKB92 PKB93 PKB111 PKB112 PKB130 PKB131 PKB149 PKB150 PKB168 PKB169 PKB187 PKB188 PKB207 PKB208 PKB226 PKB227 PKB245 PKB246 PKB264 PKB265 PKB283 PKB284 PKB302 PKB303 PKB321 PKB322 PKB340 PKB341 PKB359 PKB360 3ADB_C 3PDR_A PKB209 3GCA_A 3RKF_A PKB171	42 42 40 41 22 30 33 28 27 24 24 33 40 48 351 212 105 73 27 23 45 237 64 44 35 34 62 61 29 30 31 76 67 67 67 76 40 130 92 161 Frameshifting Continued On Next Page simple H-type simple H-type simple H-type simple H-type Continued On Next Page simple H-type simple H-type Continued On Next Page simple H-type simple H-type Continued On Next Page simple H-type simple H-type Continued On Next Page simple H-type simple H-type Continued On Next Page simple H-type simple H-type Continued On Next Page simple H-type Kissing Hairpin Continued On Next Page simple H-type Kissing Hairpin Continued On Next Page simple H-type simple H-type Continued On Next Page simple H-type simple H-type Continued On Next Page simple H-type simple H-type Continued On Next Page simple H-type simple H-type Continued On Next Page simple H-type simple H-type Continued On Next Page simple H-type simple H-type Continued On Next Page simple H-type simple H-type Continued On Next Page complex complex Continued On Next Page complex complex Continued On Next Page simple H-type simple H-type Continued On Next Page Kissing Hairpin simple H-type 33 0.832 0.799 Frameshifting 33 0.747 0.708 Frameshifting 33 0.777 0.742 0.0 0.237 0.1 0.118 33 simple H-type 67 complex Vr. ReadThrough 7 0.666 0.738 Vr. ReadThrough 7 0.519 0.692 0.664 ABCDCADB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABACBC ABAB ABACBC ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABAB ABCDCADB ABCDCADB ABCDCADB ABAB ABAB ABACBC ABAB 0.795 0.797 0.699 0.678 0.735 0.725 0.118 0.118 ABAB ABCBDADECE 0.571 0.499 0.516 0.256 0.738 0.49 0.071 0.426 0.053 Vr. ReadThrough 7 0.577 0.707 0.691 0.444 0.039 0.306 0.264 0.312 0.25 0.25 0.257 0.261 Continued On Next Page Continued On Next Page Vr. tRNA-like 58 0.704 0.822 0.753 0.692 0.538 Vr. tRNA-like 58 0.585 0.657 0.609 0.572 0.493 Vr. tRNA-like 58 0.625 0.722 0.662 0.612 0.495		0.656 0.563 0.593 0.071 0.053 0.039 0.484 0.471 0.458	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y N Y N Y Y Y Y Y Y Y Y Y Y Y Y Y Y N N N N Y Y N N 0.485 0.775 0.49 0.504 0.47 0.61 0.102 0.369 Y N 0.071 0.8 0.053 0.47 0.042 0.602 0.712 0.675 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y N Y N Y Y Y Y Y Y Y Y Y Y Y Y Y Y N N N N Y Y N Y 0.844 0.744 0.846 0.287 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y N Y N Y Y Y Y Y Y Y Y Y Y Y Y Y Y N N N N Y Y N Y 0.696 0.668 0.739 0.258 0.756 0.691 0.781 0.253 0.0 0.118 0.0 Y Y N N 0.862 0.776 0.427 0.261 0.601 0.6 0.371 0.257 0.382 0.243 0.304 0.32 0.164 0.239 0.239 0.529 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y N N N N Y Y Y Y 0.76 0.681 0.709 Y N 0.487 0.495 Continued On Next Page Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y 0.753 0.772 0.683 0.618 0.707 0.677 Y Y 0.676 0.819 0.62 0.567 0.638 0.674 Y Continued On Next Page Continued On Next Page 0.546 0.663 0.624 0.596 0.693 0.5 0.753 0.774 0.652 0.568 0.464 0.513 0.572 0.552 0.464 0.618 0.613 0.535 0.537 0.534 0.548 0.568 0.602 0.463 0.668 0.675 0.575 Continued On Next Page

The number of sequences in the learning data of FSFinder in unknown.

MC-Fold is provided with the .cgi file, which computes the structure for a given sequence on the remote server. And the version information is unknown.

The manual of CyloFold mentions that the restriction on the length of input sequence is shorter than 550 nucleotides.
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Typically, we term this coming work as a benchmark for the pseudoknots and the prediction methods.

MC-Fold is a phase of the pipeline proposed in [START_REF] Parisien | The MC-Fold and MC-Sym pipeline infers RNA structure from sequence data[END_REF] which infers the secondary and tertiary structures from the given sequence.

Based on the nucleotide cyclic motifs (NCM), MC-Fold predicts a sorted list of possible secondary structures for the given sequence according to their thermodynamic stabilities. The predicted secondary structures can be sent into the next phase MC-Sym of the pipeline that determines the RNA three-dimensional structure.

More precisely, the NCMs are two types of cyclic structural elements, the lonepair loops, corresponding to the hairpin loops, that are up to six nucleotides, and double-stranded NCMs, corresponding to stems, bulges and interior loops, that are up to eight nucleotides.

MC-Fold determines a list of initiation sites which are assigned lone-pair NCMs, and then recursively matches the rest of the given sequence to the double-stranded NCMs. Finally, MC-Fold determines a set of assemblies of the stem-loops for the given sequence, and ranks them according to their free energies.

McQFold

McQFold is a probabilistic model for predicting RNA secondary structures with pseudoknots, it employs a Markov-chain Monte-Carlo (MCMC) method for sampling RNA structures in the Bayesian framework, according to their posterior probability distribution for a given sequence [START_REF] Metzler | Predicting RNA secondary structures with pseudoknots by MCMC sampling[END_REF].

The basic idea of the algorithm is to use a stochastic context-free grammar (SCFG) to generate a pseudoknot-free framework of a structure. And then, the algorithm additionally develops a special symbol 𝑞, as a terminal in the grammar, in order to generate pairs of regions in the sequence that will form the pseudoknots further.

The main idea of McQFold is analogous to HotKnots, which appends the additional stems to the partially formed structure, but according to the probability of base pairs, rather than the thermodynamic stability in HotKnots. 

Web Development

This part of work is going to introduce the web development of the benchmark, providing the accessibility of the results of this dissertation to the researchers in the community.

Specifically, the web development of the benchmark includes three parts cardinally:

• What can be found in this on-line benchmark?

• How is the benchmark organized?

• How is the benchmark developed?

Functionalities

The main data that the benchmark has referred to are two datasets of pseudoknots, three complexity measures of pseudoknots, 15 secondary structure prediction methods, and three evaluation parameters. The results part includes the classification of pseudoknots, and the prediction of pseudoknots.

As a result, the on-line benchmark is going to consider the following sections, which are going to be represented in the main menu:

6.8 is four, which is far away from the other three winner programs?

In the investigation of the answer, we compare the rankings of these four winner This supports our conjecture that, there may be some method which performs globally great and stable but is hidden in the assessment of the optimal predictions. In fact, pknots is another underestimated method which has a good global performance as shown in Figure 6.9, but is not detective according to the Figure We may conclude that the consensus ranking assesses the performance of each prediction method more efficiently and comprehensively, as it recommends the winner programs based on a global assessment of the predictions. However, the specific winner methods selected from certain classes are significant as well, as they are more sensitive to the particular classes. The optimality of prediction may lose if we employ the global winner program to predict the certain class, rather than selecting the corresponding winner program as shown in Table 6.6.

In fact, the specific winner programs and the global winner programs are two pillars of the predictions in this benchmark, although they both contain DotKnot,

McGenus and pKiss. They answer the motivation of this benchmark from two aspects, which of the prediction methods may effectively handle as many classes as possible, and which of the prediction methods may return an relatively best secondary structure for the given sequence?

A consequent recommendation of selecting a practical prediction method for the given sequence is as follows: Once certain information of the given sequence of the employed evaluation parameters in Section 4.4.4 and the last part of Section 7.1.2, as they do not consider the crossing interaction in the pseudoknots particularly. We neither have a more comprehensive conception of a new evaluation system so far, nor a plausible modification of the definitions of the compatible false positives, which are tolerated as acceptable prediction by the previous work.

But we hold a strong confidence on the significance of this part of future work.

Appendix A

The Comparison of Predicting the (((((((((........[[[[[[..)))))))))))..............

Strong Candidates of Orphea

..]]]

]]]..... ......((((((((((........[[[[[[..))))))))))...............

Orphea

..]]]

]]]..... ..((((((.[[[[[[[.... (((((((((.......[[[[[[[..) (.(((((((...[[[[[[[.))))))).)))...........

KnotInFrame

...))))))...]]]]

..]]]]]]].

Orphea 0 PK found.

KnotInFrame .......... (((((((...[[[[[[[.)))))))..