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Introduction

Information theory has a wide range of applications. In this thesis, we focus on two different machine learning problems, for which information theoretical insight was useful.

The first one is regression of a function f : X → Y . We are given a sequence (x i ) and we want to predict the f (x i ) knowing the f (x j ) for j < i. We use techniques inspired by the Minimum Description Length principle to obtain a quick and robust algorithm for online regression.

The second one is black box optimization. Black-box optimization consists in finding the minimum of a function f when the only information we have about f is a "black box" returning f . Our goal is to find the minimum of f using as few calls of the black box as possible. We transform this optimization problem into an optimization problem over a family Θ of probability distributions, and by exploiting its Riemannian manifold structure [START_REF] Amari | Methods of Information Geometry[END_REF], we introduce a black-box optimization algorithm that does not depend on arbitrary user choices.

Regression

Density estimation and text prediction can be seen as general regression problems. Indeed, density estimation on X is regression of a random function from a singleton to X, and text prediction with alphabet A is regression of a function from N to A, with sample points coming in order.

This remark led us to generalize a well-known text compression algorithm, Context Tree Weighting (CTW), to general regression problems, and therefore also to density estimation. The CTW algorithm computes the Bayesian mixture of all visible Markov models for prediction.

The generalized CTW algorithm computes a similar Bayesian mixture, but on regression models using specialized submodels on partitions of D f . The idea of using trees for regression is not new. We give the essential characteristics of the general CTW algorithm below:

• The main motivation for the generalized CTW algorithm is the minimum description length principle: we want the shortest description of the data. More precisely, the prediction of f (x i ) is a probability distribution P on Y , and the loss is -ln P (f (x i )) (this point of view will be developed in part I). MDL-driven histogram models for density estimation have been studied in [START_REF] Kontkanen | Mdl histogram density estimation[END_REF].

In several other methods where Y = R, the prediction for f (x i ) is a real number, and the loss incurred is the square of the error, this corresponds to the log loss, where the prediction is a Gaussian probability distribution around f (x i ) with fixed variance.

• CTW is robust: it computes the Bayesian mixture of a very large number of models, and consequently, performs at least as well as the best of these models (up to a constant independent of the data). Moreover, since CTW performs model averaging and not model selection (as in [START_REF] Akakpo | Adaptive estimation by selecting a best partition into dyadic rectangles[END_REF]), a small variation in the previous data cannot lead to a large variation in the predictions (unless the local models are not continuous).

• The tradeoff for this robustness is that to compute the average over all the models, the tree has to be fixed in advance (for example, by splitting the interval corresponding to a given node in two equal parts, we obtain a Bayesian mixture on all dyadic partition models). This is different from CART or random forests [START_REF] Breiman | Classification and Regression Trees[END_REF], [START_REF] Hastie | The Elements of Statistical Learning[END_REF] [RG11], since the trees built by these algorithms are allowed to depend on the data.

• Contrarily to kernel methods for density estimation, or lasso and ridge regression for regression [START_REF] Hastie | The Elements of Statistical Learning[END_REF], CTW is an online model,and conse-quently, it has to run fast: the running time for one data point is the depth of the tree multiplied by the time complexity of the models at the nodes.

• CTW is not a model by itself, it is a way of combining models. It is close to Hierarchical Mixtures of Experts [START_REF] Hastie | The Elements of Statistical Learning[END_REF], but the main difference with the latter is that CTW treats all nodes the same way.

2 Black-Box optimization: Gradient descents

A common approach for black-box optimization, shared for example by CMA-ES [START_REF] Hansen | The CMA evolution strategy: A tutorial[END_REF] and xNES [GSY + 10], is the maintaining of a probability distribution P t according to which new points are sampled, and updating P t according to the sampled points at time t.

A simple way of updating P t is a gradient descent on some space of probability distributions (we will be specifically interested in Gaussian distributions), parametrized by some Θ (e.g. mean and covariance matrix for Gaussians). We try to minimize E Pt (f ), thus yielding the update:

θ t+δt = θ t -δt ∂E P θ t (f ) ∂θ (1) 
However, there is a fundamental problem:

∂E P θ t (f ) ∂θ
depends on the parametrization θ → P θ .

As a simple example, suppose we are tring to minimize f : (x, y) → x 2 + y 2 . The gradient update is (x, y) t+δt = (x, y) t -δt(2x, 2y). Now, we change the parametrization by setting x = 1 1000 x. We have f (x , y) = 10 6 (x ) 2 + y 2 , so the new gradient update reads: (x , y) t+δt = (x , y) t -δt(2.10 6 x , 2y), which corresponds to (x, y) t+δt = (x, y) t -δt(2.10 3 x, 2y), a different update.

In general, for any given time step δt, by simply changing the parametrization, it is possible to reach any point of the half space ∂f ∂θ < 0, so gradient descents are not well defined.

A possible way of solving this problem is to endow Θ with a metric θ → I(θ), and the gradient update then reads θ t+δt = θ t -δtI -1 (θ)

∂E P θ t (f ) ∂θ
. This point of view will be developed at the beginning of part III.

The Fisher metric is a metric that appears naturally when considering probability distributions. The gradient associated with the Fisher metric is called the natural gradient, and the study of spaces of probability distributions endowed with this metric (so they are Riemannian manifolds) is called Information Geometry [START_REF] Amari | Methods of Information Geometry[END_REF].

As shown in [START_REF] Ollivier | Information-geometric optimization algorithms : A unifying picture via invariance principles[END_REF], both CMA-ES and xNES can be described as natural gradient descents, for different parametrizations. Following [START_REF] Ollivier | Information-geometric optimization algorithms : A unifying picture via invariance principles[END_REF], instead of applying a pure gradient method, we used this Riemannian manifold structure to define a fully parametrization-invariant algorithm that follows geodesics.

Contributions

The contributions of this thesis can be separated in two parts: the first one concerns the generalization of the Context Tree Weighting algorithm, and the second one concerns black-box optimization. They are the following:

Generalization of the Context Tree Weighting algorithm. The Context Tree Weighting algorithm efficiently computes a Bayesian combination of all visible Markov models for text compression. We generalize this idea to regression and density estimation, replacing the set of visible Markov models by (for example) the set of dyadic partitions of [0, 1], which correspond to the same tree structure. The framework developed here also recovers several algorithms derived from the original CTW algorithm such as Context Tree Switching [START_REF] Veness | Context tree switching[END_REF], Adaptive Context Tree Weighting [START_REF] Alexander | Adaptive context tree weighting[END_REF], or Partition Tree Weighting [START_REF] Veness | Partition tree weighting[END_REF].

Edgewise context tree algorithms. Suppose that we are regressing a function on [0, 1) but we mostly saw points in [0, 0.5). If the predictions on [0, 0.5) are good, the posterior of the model "split [0, 1) into [0, 0.5) and [0.5, 1) will be much greater than the posterior of the model "use the local expert on [0, 1)". In particular, a new point falling in [0.5, 1) will be predicted with the local expert for [0.5, 1), but this model will not have enough observations to issue a meaningful prediction.

The edgewise versions of the context tree algorithms address this by allowing models of the form "Use the local expert on [0, 0.5) if the data falls there, and use the local expert on [0, 1) if the data falls into [0.5, 1)", with the same algorithmic complexity as the non edgewise versions. The edgewise context tree weighting algorithm can even be described as a Bayesian combination similar to the regular CTW case (Theorem 4.41).

Switch behaves better than Bayes in Context Trees. We prove that in a 1-dimensional regression case, the Context Tree Switching algorithm offers better performance that the Context Tree Weighting algorithm. More precisely, for any Lipschitz regression function:

• The loss of the CTS and edgewise CTS algorithms at time t is less than -t ln t + O(t).1 This bound holds for a larger class of sample points with the edgewise version of the algorithm (Corollaries 5.14 and 5.18).

• The loss of the CTW algorithm at time t is at least -t ln t + 1 2 t ln ln t + O(t) (Corollary 5.20). 2More generally, under the same assumptions, any Bayesian combination of any unions of experts incurs the same loss (Corollary 5.21).

A fully parametrization-invariant black-box optimization algorithm. As shown in [START_REF] Ollivier | Information-geometric optimization algorithms : A unifying picture via invariance principles[END_REF], xNES [GSY + 10] and CMA-ES [START_REF] Hansen | The CMA evolution strategy: A tutorial[END_REF] can be seen as natural gradient descents in G d the space of Gaussian distributions in dimenstion d endowed with the Fisher metric, using different parametrizations. Although the use of the natural gradient ensures that they are equal at first order, in general, different parametrizations for G d yield different algorithms. We introduce GIGO, which follows the geodesics of G d and is consequently fully parametrization-invariant.

Application of Noether's Theorem to the geodesics of the space of Gaussians. Noether's theorem roughly states that if a system has symmetries, then there are invariants attached to these symmetries. It can be directly applied to computing the geodesics of G d . While a closed form of these geodesics has been known for more than twenty years [Eri87, CO91], Noether's theorem provides enough invariants to obtain a system of first order differential equations satisfied by the geodesics of G d . 3A description of xNES as a "Blockwise GIGO" algorithm. We show that contrary to previous intuition ([DSG + 11], Figure 6), xNES does not follow the geodesics of G d (Proposition 9.13). However, we can give an almost intrinsic description of xNES as "Blockwise GIGO" (Proposition 9.10): if we write G d ∼ = R d × P d and split the gradient accordingly, then the xNES update follows the geodesics of these two spaces separately.

Thesis outline

The first part (Chapters 1 to 3) is an introduction focusing on the Minimum Description Length principle, and recalling the Context Tree Weighting [START_REF] Frans | The context tree weighting method: Basic properties[END_REF] algorithm, which will be generalized in part II, and the Fisher metric, which will be used in part III. This part mostly comes from the notes of the first three talks of a series given by Yann Ollivier, the full notes can be found at www.lri.fr/ ~bensadon.

Chapter 4 introduces a formal way of handling sequential prediction, experts4 , and presents switch distributions. These tools are then used to generalize the Context Tree Weighting (CTW) and the Context Tree Switching (CTS) algorithm.

Chapter 5 compares the performance of the Context Tree Weighting and the Context Tree Switching algorithms on a simple regression problem. In Chapter 6, numerical experiments are conducted.

The next part led to [START_REF] Bensadon | Black-box optimization using geodesics in statistical manifolds[END_REF]. Chapter 7 presents the IGO framework [START_REF] Ollivier | Information-geometric optimization algorithms : A unifying picture via invariance principles[END_REF], that can be used to describe several state of the art black-box optimization algorithms such as xNES [GSY + 10] and CMA-ES [START_REF] Hansen | The CMA evolution strategy: A tutorial[END_REF] 5 ; and introduces Geodesic IGO, a fully parametrization-invariant algorithm. The geodesics of G d the space of Gaussians in dimension d, needed for the practical implementation of the GIGO algorithm, are computed in Chapter 8.

Chapter 9 introduces two possible modifications of GIGO (twisted GIGO and blockwise GIGO) to allow it to incorporate different learning rates for the mean and the covariance.

Finally, GIGO is compared with pure rank-µ CMA-ES and xNES in Chapter 10.

Notation

We introduce here some general notation that we will use throughout this document.

• |x| is the "size" of x. Its exact signification depends on the type of x (length of a string, cardinal of a set, norm of a vector... ).

• If A is a set, A * denotes the set of finite words on A.

• m i=n ... and m i=n ... when m < n denote respectively an empty product, which is 1, and an empty sum, which is 0.

• We usually denote the nodes of a tree T by character strings. In the binary case, for example, the root will be ε, and the children of s are obtained by appending 0 or 1 to s. We will use prefix or suffix notation according to the context.

We simply refer to the set of the children of a given node whenever possible.

• If T is a tree, we denote by T s the maximal subtree of T with root s.

• Vectors (and strings) will be noted either with bold letters (e.g. z) if we are not interested in their length, or with a superscript index (e.g. z n = (z 1 , z 2 , ..., z n )). z n:m := (z n , z n+1 , ..., z m-1 , z m ) denotes the substring of z from index n to index m. If no z 0 is defined, z 0 := ∅.

• For any set X, for any x ∈ X, for any k ∈ N ∪ {∞}, x k is the vector (or string) of length k containing only x.

• For any set X, for I, J ∈ X N , we write I ∼ n J if I i = J i for i n.

Part I

Information theoretic preliminaries

Chapter 1

Kolmogorov complexity

Most of the ideas discussed here can be found in [START_REF] Li | An Introduction to Kolmogorov Complexity and Its Applications[END_REF].

Motivation for Kolmogorov complexity

When faced with the sequence 2 4 6 8 10 12 x, anybody would expect x to be 14. However, one could argue that the sequence 2 4 6 8 10 12 14 does not exist "more" than 2 4 6 8 10 12 13, or 2 4 6 8 10 12 0: there seems to be no reason for picking 14 instead of anything else.

There is an answer to this argument: 2 4 6 8 10 12 14 is "simpler" than other sequences, in the sense that it has a shorter description. This can be seen as a variant of Occam's razor, which states that for a given phenomenon, the simplest explanation should be preferred. This principle has been formalized in the 60s by Solomonoff [START_REF] Ray | A formal theory of inductive inference[END_REF] and Kolmogorov [START_REF] Kolmogorov | Three approaches to the quantitative definition of information[END_REF]. As we will soon see, the Kolmogorov complexity of an object is essentially the length of its shortest description, where "description of x" means "algorithm that can generate x", measured in bytes. However, in practice, finding the shortest description of an object is difficult.

Kolmogorov complexity provides a reasonable justification for "inductive reasoning", which corresponds to trying to find short descriptions for sequences of observations. The general idea is that any regularity, or structure, detected in the data can be used to compress it.

This criterion can also be used for prediction: given a sequence x 1 , ..., x n , (?) choose the x n+1 such that the sequence x 1 , ..., x n+1 has the shortest description, or in other words, such that x n+1 "compresses best" with the previous x i . For example, given the sequence 0000000?, 0 should be predicted, because 00000000 is simpler than 0000000x for any other x. As a more sophisticated example, given a sequence x 1 , y 1 , x 2 , y 2 , x 3 , y 3 , x 4 , ..., if we find a simple f such that f (x i ) = y i , we should predict f (x 4 ) as the next element of the sequence. With this kind of relationship, it is only nec-essary to know the x i , and f to be able to write the full sequence. If we also have x i+1 = g(x i ), then only x 0 ,f and g have to be known: somebody who has understood how the sequence (1, 1; 2, 4; 3, 9; 4, 16; ...) is made will be able to describe it very efficiently.

Any better understanding of the data can therefore be used to find structure in the data, and consequently to compress it better: comprehension and compression are essentially the same thing. This is the Minimum Description Length (MDL) principle [START_REF] Rissanen | Modeling by shortest data description[END_REF].

In the sequence (1, 1; 2, 4; 3, 9; 4, 16; ...), f was very simple, but the more data we have, the more complicated f can reasonably be: if you have to learn by heart two sentences x 1 , y 1 , where x 1 is in English, and y 1 is x 1 in German, and you do not know German, you should just learn y 1 . If you have to learn by heart a very long sequence of sentences such that x i is a sentence in English and y i is its translation in German, then you should learn German. In other words, the more data we have, the more interesting it is to find regularity in them.

The identity between comprehension and compression is probably even clearer when we consider text encoding: with a naive encoding, a simple text in English is around 5 bits for each character (26 letters, space, dot), whereas the best compression algorithms manage around 3 bits per character. However, by removing random letters from a text and having people try to read it, the actual information has been estimated at around 1 bit per character [START_REF] Elwood | Prediction and entropy of printed english[END_REF] estimates the entropy between .6 and 1.3 bit per character).

Formal Definition

Let us now define the Kolmogorov complexity formally: Definition 1.1. The Kolmogorov complexity of x a sequence of 0s and 1s is by definition the length of the shortest program on a Universal Turing machine1 that prints x. It is measured in bits. 2The two propositions below must be seen as a sanity check for our definition of Kolmogorov complexity. Their proofs can be found in [START_REF] Li | An Introduction to Kolmogorov Complexity and Its Applications[END_REF].

Proposition 1.2 (Kolmogorov complexity is well-defined). The Kolmogorov complexity of x does not depend on the Turing machine, up to a constant which does not depend on x (but does depend on the two Turing machines).

Sketch of the proof. if P 1 prints x for the Turing machine T 1 , then if I 12 is an interpreter for language 1 in language 2, I 12 :: P 1 prints x for the Turing machine T 2 , and therefore K 2 (x) K 1 (x) + length(I 12 )

In other words, if P is the shortest zipped program that prints x in your favourite programming language, you can think about the Kolmogorov complexity of x as the size (as a file on your computer) of P (we compress the program to reduce differences from alphabet and syntax between programming languages).

Since Kolmogorov complexity is defined up to an additive constant, all inequalities concerning Kolmogorov complexity are only true up to an additive constant. Consequently, we write K(x) + f (x) for K(x) f (x) + a, where a does not depend on x: Notation 1.3. Let X be a set, and let f , g be two applications from X to R.

We write f + g if there exists a ∈ R such that for all x ∈ X, f (x) g(x) + a.

If the objects we are interested in are not sequences of 0 and 1 (pictures, for example), they have to be encoded.

Proposition 1.4. the Kolmogorov complexity of x does not depend on the encoding of x, up to a constant which does not depend on x (but does depend on the two encodings). Sketch of the proof. Let f ,g be two encodings of x. We have K(g(x)) < K(f (x)) + K(g • f -1 ) (instead of encoding g(x), encode f (x), and the map g • f -1 . max K(g • f -1 ), K(f • g -1 ) is the constant).

In other words, the Kolmogorov complexity of a picture will not change if you decide to put the most significant bytes for your pixels on the right instead of the left.

Notice that the constants for these two propositions are usually reasonably small (the order of magnitude should not exceed the megabyte, while it is possible to work with gigabytes of data).

Kolmogorov complexity is not computable

Kolmogorov complexity is not computable. Even worse, it is never possible to prove that the Kolmogorov complexity of an object is large.

An intuitive reason for the former fact is that to find the Kolmogorov complexity of x, we should run all possible programs in parallel, and choose the shortest program that outputs x, but we do not know when we have to stop: There may be a short program still running that will eventually output x. In other words, it is possible to have a program of length K(x) that outputs x, but it is not possible to be sure that it is the shortest one.

Theorem 1.5 (Chaitin's incompleteness theorem). There exists a constant L3 such that it is not possible to prove the statement K(x) > L for any x.

Sketch of the proof. For some L, write a program that tries to prove a statement of the form K(x) > L (by enumerating all possible proofs). When a proof of K(x) > L for some x is found, print x and stop.

If there exists x such that a proof of K(x) > L exists, then the program will stop and print some x 0 , but if L has been chosen largen enough, the length of the program is less than L, and describes x 0 . Therefore, K(x 0 ) L. contradiction. This theorem is proved in [START_REF] Chaitin | Computational complexity and gödel's incompleteness theorem[END_REF] and can be linked to Berry's paradox: "The smallest number that cannot be described in less than 13 words" "The [first x found] that cannot be described in less than [L] bits".

Corollary 1.6. Kolmogorov complexity is not computable.

Proof. Between 1 and 2 L+1 , there must be at least one integer n 0 with Kolmogorov complexity greater that L (since there are only 2 L+1 -1 programs of length L or less). If there was a program that could output the Kolmogorov complexity of its input, we could prove that K(n 0 ) > L, which contradicts Chaitin's theorem.

As a possible solution to this problem, we could define K t (x), the length of the smallest program that outputs x in less than t instructions, but we lose some theoretical properties of Kolmogorov complexity (Proposition 1.2 and 1.4 have to be adapted to limited time but they are weaker, see [START_REF] Li | An Introduction to Kolmogorov Complexity and Its Applications[END_REF], Section 7. For example, Proposition 1.2 becomes K ct log 2 t,1 (x) K t,2 (x)+c).

Chapter 2

From Kolmogorov Complexity to Machine Learning

Because of Chaitin's theorem, the best we can do is finding upper bounds on Kolmogorov complexity. First, we introduce prefix-free Kolmogorov complexity and prove Kraft's inequality, and state Shannon encoding theorem. Finally, we give classical upper bounds on Kolmogorov complexity, firstly for integers, then for other strings.

Prefix-free Complexity, Kraft's Inequality

If we simply decide to encode an integer by its binary decomposition, then, we do not know for example if the string "10" is the code for 2, or the code for 1 followed by the code for 0.

Similarly, given a Turing machine, and two programs P 1 and P 2 , there is nothing that prevents the concatenation P 1 P 2 from defining another program that might have nothing to do with P 1 or P 2 . This leads us to the following (not formal) definition:

Definition 2.1. A set of strings S is said to be prefix-free is no element of S is a prefix of another.

A code is said to be prefix-free if no codeword is a prefix of another (or equivalently, if the set of codewords is prefix-free).

We then adapt the definition of Kolmogorov complexity by forcing the set of programs to be prefix-free (hence the name prefix-free Kolmogorov complexity 1 ).

1 "self-delimited" is sometimes used instead of prefix-free.
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It is clear now that if we receive a message encoded with a prefix-free code, we can decode it unambiguously letter by letter, while we are reading it, and if a Turing machine is given two programs P 1 and P 2 , their concatenation will not be ambiguous.

With programming languages, for example, working with prefix-free complexity does not change anything, since the set of compiling programs is prefix free (the compiler is able to stop when the program is finished).

However, being prefix-free is a strong constraint: a short codeword forbids many longer words. More accurately, we have the following result: Proposition 2.2 (Kraft's inequality). Let S ⊂ {0, 1} * be the set of prefixfree set of strings, and let S ∈ S. We have

s∈S 2 -|s| 1 (2.1)
Sketch of the proof. We construct an application φ from S to the set of binary trees: for S ∈ S, φ(S) is the smallest full binary tree T such that all elements of s are leaves of T . Such a tree always exists: start with a deep enough tree2 , and close nodes until each pair of "sibling leaves" contain either an element of S or a node that has at least one element of s as its children. No internal node can correspond to an element of S, because it would then be the prefix of another element of s.

So finally, we have:

s∈S 2 -|s| s leaves ofφ(S) 2 -|s| = 1 (2.2)
For the general proof, see Theorem 1.11.1 in [START_REF] Li | An Introduction to Kolmogorov Complexity and Its Applications[END_REF].

Classical lower bounds for Kolmogorov complexity 2.2.1 Coding integers

Now, let us go back to integers:

Proposition 2.3. Let n be an integer. We have

K(n) + log 2 n + 2 log 2 log 2 n. (2.3)
Proof, and a bit further. Let n be an integer, and let us denote by b its binary expansion, and by l the length of its binary expansion (i.e. l = log 2 (n + 1) ∼ log 2 n).

Consider the following prefix codes (if c is a code, we will denote by c(n) the codeword used for n):

• c 1 : Encode n as a sequence of n ones, followed by zero. Complexity n.

• c 2 : Encode n as c 1 (l) :: b, with l and b as above. To decode, simply count the number k of ones before the first zero. The k bits following it are the binary expansion of n. Complexity 2 log 2 n.

• c 3 : Encode n as c 2 (l) :: b. To decode, count the number k 1 of ones before the first zero, the k 2 bits following it are the binary expansion of l, and the l bits after these are the binary expansion of n. Complexity log 2 n + 2 log 2 log 2 n, which is what we wanted.

• We can define a prefix-free code c i by setting c i (n) = c i-1 (l) :: b. The complexity improves, but we get a constant term for small integers, and anyway, all the corresponding bounds are still equivalent to log 2 n as n → ∞.

• It is easy to see that the codes above satisfy c n (1) = n + 1: for small integers, it would be better to stop the encoding once a number of length one (i.e. one or zero) is written. Formally, this can be done the following way: consider c ∞,1 defined recursively as follows :

c ∞,1 (n) = c ∞,1 (l -1) :: b :: 0, (2.4) c ∞,1 (1) = 0. (2.5)
It is easy to see that c ∞,1 (n) begins with 0 for all n, i.e, c ∞,1 = 0 :: c ∞,2 .

We can now set c ∞ (0) = 0 and c ∞ (n) = c ∞,2 (n + 1).

The codes c 2 and c 3 are similar to Elias gamma and delta (respectively) coding. c ∞ is called Elias omega coding [START_REF] Elias | Universal codeword sets and representations of the integers[END_REF].

Generic bounds

We also have the following bounds:

1. A simple program that prints x is simply print(x). The length of this program is the length of the function print, plus the length of x, but it is also necessary to provide the length of x to know when the print function stops reading its input (because we are working with prefix-free Kolmogorov complexity). Consequently

K(x) + |x| + K(|x|).
(2.6) By counting arguments, some strings x have a Kolmogorov complexity larger than |x|. These strings are called random strings by Kolmogorov. The justification for this terminology is that a string that cannot be compressed is a string with no regularities.

2. The Kolmogorov complexity of x is the length of x compressed with the best compressor for x. Consequently, we can try to approximate it with any standard compressor, like zip, and we have:

K(x) + |zip(x)| + |unzip program|.
(2.7)

This property has been used to define the following distance between two ob-

jects: d(x, y) = max (K(x)|y), K(y|x)) max (K(x), K(y))
. By using distance-based clustering algorithms, the authors of [CV] have been able to cluster data (MIDI files, texts...) almost as anyone would expected (the MIDI files were clustered together, with subclusters essentially corresponding to the composer, for example). In the same article, the Universal Declaration of Human Rights in different languages has been used to build a satisfying language tree.

3. If we have some finite set E such that x ∈ E, then we can simply enumerate all the elements of E. In that case, an x can be described as "the n th element of E. For this, we need K(E) bits to describe E, and log 2 |E| bits to identify x in E:

K(x) + K(E) + log 2 |E| .
(2.8) 4. More generally, Theorem 2.4. If µ is a probability distribution on a set X, and x ∈ X, we have

K(x) + K(µ) -log 2 (µ(x)).
(2.9)

For example, if µ is uniform, we find equation (2.8). Another simple case is the i.i.d. case, which will be discussed later. This inequality is the most important one for machine learning, because a probability distribution µ such that K(µ) -log 2 (µ(x)) is small can be thought of as a "good" description of x, and we can expect it to predict upcoming terms well. The proof of this inequality consists in noting that coding x with -log 2 µ(x) bits satisfies Kraft's inequality.

Probability distributions and coding: Shannon encoding theorem

Let X be a countable alphabet, and suppose we are trying to encode efficiently a random sequence of characters (x i ) ∈ X N , such that P (x n |x n-1 ) is known:

For all n, we are trying to find the codelength L minimizing

E(L(x n )) = x n ∈A n P (x n )L(x n ), (2.10) 
under the constraint given by Kraft's inequality:

x n ∈A n 2 -L(x n ) 1 (2.11)
The solution of this optimization problem is L(x) := -log 2 P (x), and from now on, we will identify codelengths functions L with probability distributions 2 -L . Definition 2.5. Let X be a countable alphabet, let µ and ν be probability distributions on X, and let (x i ) be a sequence of i.i.d random variables following µ.

The quantity

H(µ) = - x∈X µ(x) log 2 µ(x) is called entropy of µ. It is
the expected number of bits needed to encode an x sampled according to µ when using µ.

The quantity KL(µ ν) :

= x∈X ν(x) log 2 ν(x) µ(x) is called Kullback-Leibler divergence from ν to µ.
It is the expected additional number of bits needed to encode if x is sampled according to ν, and we are using µ instead of ν.

The Kullback-Leibler divergence is always positive. In particular, the entropy of a probability distribution µ is the minimal expected number of bits to encode an x sampled according to µ.

Proposition 2.6. The Kullback-Leibler divergence is positive:

Let X be a countable alphabet, and let µ, ν be two probability distributions on X. We have: KL(µ ν) 0 (2.12)

Proof.

KL(µ ν) := x∈X ν(x) log 2 ν(x) µ(x) (2.13) log 2 x∈X ν(x) ν(x) µ(x) = 0 (2.14)
In all this section, we have been suggesting to encode any x with -log 2 µ(x) bits for some µ, without checking that -log 2 µ(x) is an integer. We now justify this apparent oversight.

Non integer codelengths do not matter: Arithmetic coding

The idea behind (2.9) is that for a given set E, if I think some elements are more likely to appear than others, they should be encoded with fewer bits. For example, if in the set {A, B, C, D}, we have P (A) = 0.5, P (B) = 0.25, and P (C) = P (D) = 0.125, instead of using a uniform code (two bits for each character), it is better to encode for example3 A with 1, B with 01, C with 001 and D with 000.

In the first example, the expected length with the uniform code is 2 bits per character, while it is 1.75 bits per character for the other.

In general, it can be checked that the expected length is minimal if the length of the code word for x is -log 2 (µ(x)). If we have a code satisfying this property, then (2.9) follows immediately (encode µ, and then use the code corresponding to µ to encode x).

However, if we stick to encoding one symbol after another approximations have to be made, because we can only have integer codelengths. For example, consider we have: P (A) = 0.4, P (B) = P (C) = P (D) = P (E) = 0.15. The -log 2 P ( * ) are not integers: we have to assign close integer codelengths. We describe two possible ways of doing this:

• Sort all symbols by descending frequency, cut when the cumulative frequency is closest to 0.5. The codes for the symbols on the left (resp. right) start with 0 (resp. 1). Repeat until all symbols have been separated. This is Shannon-Fano coding ( [START_REF] Fano | Transmission of information a statistical theory of communications[END_REF], similar to the code introduced in the end of the proof of Theorem 9 in [START_REF] Shannon | A Mathematical Theory of Communication[END_REF]).

• Build a binary tree the following way: Start with leave nodes corresponding to the symbols, with a weight equal to their probability. Then, take the two nodes without parents with lowest weight, and create a parent node for them, and assign it the sum of its children's wieght. Repeat until only one node remains. Then, code each symbol with the sequence of moves from the root to the leaf (0 corresponds to taking the left child, for example). This is Huffman coding [START_REF] Huffman | A method for the construction of minimum-redundancy codes[END_REF], which is better than Shannon-Fano coding.

On the example above, we can find the following codes (notice that some conventions are needed to obtain well-defined algorithms from what is described above: for Shannon-Fano, what to do when there are two possible cuts, and for Huffman, which node is the left child and which node is the right child): However, if instead of encoding each symbol separately, we encode the whole message (2.9) can actually be achieved up to a constant number of bits for the whole message4 by describing a simplification of arithmetic coding [START_REF] Rissanen | Generalized kraft inequality and arithmetic coding[END_REF]:

The idea behind arithmetic coding is to encode the whole message as a number in the interval [0, 1], determined as follow: consider we have the message (x 1 , ..., x N ) ∈ X N (here, to make things easier, we fix N ). We start with the full interval, and we partition it in #X subintervals, each one corresponding to some x ∈ X and of length our expected probability to see x, given the characters we have already seen, and we repeat until the whole message is read. We are left with an subinterval I N of [0, 1], and we can send the binary expansion of any number in I N (so we choose the shortest one 
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.3 @ @ @ @ @ @ @ @ @ .3 r r r Algorithm 2.7 (End of the proof of (2.9): A simplification of arithmetic coding). We are given an ordered set X, and for x 1 ,...,x n ,y ∈ X, we denote by µ(y|x 1 , ..., x n ) our expected probability to see y after having observed x 1 , ..., x n .5 Goal: Encode the whole message in one number 0 x 1.

Encoding algorithm

Part 1: Encode the message as an interval.

i = 1 I = [0, 1] while x i+1 = END do Partition I into subintervals (I x ) x∈X such that: x < y =⇒ I x < I y , 6 length(I x ) = length(I)µ(x|x 1 , ..., x i-1 ) Observe x i I = I x i i = i + 1 end while return I Part 2: pick a number in the interval I.
We can find a binary representation for any real number x ∈ [0, 1], by writing x = +∞ 1 a i 2 i , with a i ∈ {0, 1}. Now, for a given interval I, pick the number x I ∈ I which has the shortest binary representation. 7 The message will be encoded as x I .

Decoding algorithm. x I received. i = 1 I = [0, 1]
while not termination criterion 8 do Partition I into subintervals (I x ) x∈X as in the encoding algorithm.

x i ← the only y such that x I ∈ I y I = I x i i = i + 1 end while Arithmetic coding allows to find a code such that the length of the code word for

x = (x 1 , ..., x n ) is n i=1 -log 2 (µ(x i |x 1 , ..., x i-1 )) = n i=1 -log 2 (µ(x i |x 1 , ..., x i-1
), which is what we wanted.

However, arithmetic cannot be implemented like this, because of problems of finite precision: if the message is too long, the intervals of the partition might become undistinguishable. It is possible to give an online version of this algorithm which solves this problem: the encoder sends a bit once he knows it (he can send the n-th bit if I contains no multiple of 2 -n ). In that case, he does not have to worry about the n first digits of the bounds of the intervals of the partition anymore, which solves the problem of finite precision. In the case 0.5 remains in the interval, the encoder can remember that if the first bit is 0, then the second is 1, and conversely, thus working in [.25, .75] instead of [0, 1] (and the process can be repeated).

Arithmetic coding ensures that we can focus on codelengths, instead of actual codes.

Model selection and Kolmogorov complexity

The term -log 2 (µ(x)) in Theorem 2.4 is essentially the cost of encoding the data with the help of the model, whereas K(µ) can be seen as a penalty for complicated models (which, in machine learning, prevents overfitting: if the data is "more compressed", including the cost of the model and the decoder, the description is better).

As a basic example, if µ is the Dirac distribution at x, K(µ) = K(x): in 8 There are several possibilities for the termination criterion:

• We can have an END symbol, to mark the end of the message (in that case, stop when END has been decoded).

• We can give the length N of the message first (in that case, stop when N characters have been decoded)

• The message sent by the encoder can be slightly modified as follows. We decide that a sequence of bits (a1, ..., an) represents the interval Ia of all numbers of which the binary expansion starts with (a1, ..., an). Now, the message a sent by the encoder is the shortest non ambiguous message, in the sense that Ia is contained in I, but is not contained in any of the subintervals Ix corresponding to I (where I is the interval obtained at the end of the first part of the encoding algorithm).

that case, all the complexiy is in the model, and the encoding of the data is completely free. More interestingly, if we are trying to fit the data x 1 , ..., x n to an i.i.d. Gaussian model (which corresponds to the description: "this is Gaussian noise"), with mean m and fixed variance σ 2 , the term -log 2 (µ(x)) is equal to i (x i -m) 2 up to additive constants, and the m we should select is the solution to this least square problem, which happens to be the sample mean (if we neglect K(m), which corresponds to finding the maximum likelihood estimate).

In general, K(µ) is difficult to evaluate. There exists two classical approximation, yielding different results:

• K(µ) can be approximated by the number of parameters in µ. This gives the Akaike Information Criterion (AIC) [START_REF] Akaike | Information theory and an extension of the maximum likelihood principle[END_REF].

• K(µ) can also be approximated by half the number of parameters in µ multiplied by the logarithm of the number of observations. This gives the Bayesian Information Criterion (BIC) [START_REF] Schwarz | Estimating the dimension of a model[END_REF]. The reason for this approximation will be given in Section 3.1.3.

Possible approximations of Kolmogorov complexity

Now, even with these upper bounds, in practice, it is difficult to find good programs for the data.

As an introduction to the next chapter, we give some heuristics:

• Usual compression techniques (like zip) can yield good results (as in [CV], for example).

• Minimum description length techniques ([Ris78], [START_REF] Peter | The Minimum Description Length Principle (Adaptive Computation and Machine Learning)[END_REF] for example): starting from naive generative models to obtain more complex ones: for example, if we have to predict sequences of 0 and 1, and we initially have two experts, one always predicting 0 and the other predicting always 1, we can use a mixture of experts: use the first experts with probability p, and the second with probability 1 -p, and we can obtain all Bernoulli distributions. More interestingly, we can also automatically obtain strategies of the form "after having observed x i , use expert k to predict x i+1 ", thus obtaining Markov models.

• Auto-encoders can also be used: they are hourglass shaped neural networks (fewer nodes in the intermediate layer), trained to output exactly the input. In that case, the intermediate layer is a compressed form of the data, and the encoder and decoder are given by the network.

• The model class of Turing machine is very large. For example, if we restrict ourselves to finite automata, we can compute the restricted Kolmogorov complexity, and if we restrict ourselves to visible Markov models we can even use Kolmogorov complexity for prediction.

Chapter 3

Universal probability distributions

The equivalence between coding and probability distribution, combined with Occam's razor is probably the main reason for defining Kolmogorov complexity: Kolmogorov complexity gives the length of the "best" coding (according to Occam's razor), so the probability distribution it defines must be the "best" predictor or generative model. More precisely, we can define the following probability distributions on X * (All finite sequences of elements of X. These distributions are defined up to a normalization constant for programs that do not end), that should be usable for any problem [START_REF] Ray | A formal theory of inductive inference[END_REF].

P 1 (x) = 2 -K(x) ,
(3.1)

P 2 (x) = all deterministic programs 2 -|p| 1 p outputs x , (3.2) 
P 3 (x) =
all random programs 2 -|p| P (p outputs x), (3.3)

P 4 (x) = probability distributions 2 -|µ| µ(x), (3.4) 
where a program is any string of bits to be read by a universal Turing machine, and a random program is a program that has access to a stream of random bits (in particular, a deterministic program is a random program), and |µ| is the Kolmogorov complexity of µ, i.e., the length of the shortest program computing µ (if µ is not computable, then its Kolmogorov complexity is infinite, and µ does not contribute to P 4 : the sum is in practice restricted to computable probability distributions). For example, P 2 is the output of a program written at random (the bits composing the program are random, but the program is deterministic), and P 3 is the output of a random program written at random.

Notice that P 1 (x) can be rewritten as Diracs 2 -|δ| δ(x): P 4 is to P 1 what P 3 is to P 2 (the Diracs are the "deterministic probability distributions"). Since Kolmogorov complexity is defined only up to an additive constant, the probability distributions above are only defined up to a multiplicative constant. This leads us to the following definition: Definition 3.1. Let P and P be two probability distributions on a set X. P and P are said to be equivalent if there exists two constants m and M such that:

mP P M P (3.5)
Proposition 3.2 (proved in [START_REF] Zvonkin | The complexity of finite objects and the development of the concepts of information and randomness by means of the theory of algorithms[END_REF]). P 1 , P 2 , P 3 and P 4 are equivalent.

Consequently, we can pick any of these probability distributions (which are called Solomonoff universal prior) as a predictor. We choose P 4 :

P 4 (x k+1 |x k , ...x 1 ) : = µ 2 -|µ| µ(x 1 , ..., x k+1 ) µ,x 2 -|µ| µ(x 1 , ..., x k , x ) (3.6) = µ 2 -|µ| µ(x 1 , ..., x k )µ(x k+1 |x 1 , ..., x k ) µ 2 -|µ| µ(x 1 , ..., x k ) (3.7) = µ w µ µ(x k+1 |x 1 , ..., x k ) µ w µ , (3.8) 
where w µ = 2 -|µ| µ(x 1 , ..., x k ) can be seen as a Bayseian posterior on the probability distributions (we had the prior 2 -|µ| ). In particular, the posterior weights depend on the data.

However, as we have seen, the Kolmogorov complexity and therefore P 4 are not computable.

We have to replace Kolmogorov complexity by something simpler: we choose a family of probability distibutions F, and restrict ourselves to this family. The distribution we obtain is therefore

P F := µ∈F 2 -|µ| µ.
We now give some possible families:

• F = {µ}. One simple model that explains past data can be good enough, and the computation cost is small (depending on µ).

• F = {µ 1 , ..., µ n }: as seen in equation (3.8), we obtain a Bayesian combination.

• F = {µ θ , θ ∈ Θ}: this case will be studied below. As a simple example, we can take Θ = [0, 1], and µ θ is Bernoulli, with parameter θ.

In that case, we have

P F = θ∈Θ 2 -K(θ) µ θ .
(3.9)

Notice that the right side of equation (3.9) is only a countable sum: if θ is not computable, then K(θ) = +∞, and the corresponding term does not contribute to the sum. There exist different techniques for approximating P F in the parametric case (see for example [START_REF] Peter | The Minimum Description Length Principle (Adaptive Computation and Machine Learning)[END_REF]):

1. Encoding the best θ 0 to encode the data. In that case, θ∈Θ 2 -K(θ) µ θ is approximated by the largest term of the sum. Since we encode first a θ ∈ Θ, and then the data, with the probability distribution P θ , these codes are called two-part codes.

2. We can replace the penalization for a complex θ by a continuous Bayesian prior q on Θ. In that case, θ∈Θ 2 -K(θ) µ θ is approximated by

Θ q(θ)µ θ . (3.10) 
As we will see later, there exists a prior (called Jeffreys' prior) with good theoretical properties with respect to this construction.

3. Normalized maximum likelihood techniques (will not be discussed here) 4. We can make online predictions in the following way: use a default prior for x 1 , and to predict (or encode) x k , we use past data to choose the best µ θ .1 With this method, the parameter θ is defined implicitly in the data: there is no need to use bits to describe it.

We also introduce the definition of prequential models [START_REF] Dawid | Statistical theory: the prequential approach (with discussion)[END_REF]. Although we will not use it directly, it will be an important inspiration for the definition of "experts" in Section 4.1: Definition 3.3. A generative model P is said to be prequential (contraction of predictive-sequential, see [START_REF] Peter | The Minimum Description Length Principle (Adaptive Computation and Machine Learning)[END_REF]) if

x P (x 1 , ..., x k , x) = P (x 1 , ..., x k ) (i.e.

different time horizons are compatible).

A predictive model Q is said to be prequential if the equivalent generative model is prequential, or equivalently, if

Q(x k+1 , x k |x 1 , ..., x k-1 ) = Q(x k+1 |x 1 , ..., x k )Q(x k |x 1 , ..., x k-1 ) (i.e.
predicting two symbols simultaneously and predicting them one after the other are the same thing, hence the name "predictive-sequential")

It can be checked that the Bayesian model and the online model are prequential, whereas the two others are not.

Notice that prequential models really correspond to one probability distribution on X n . The reason why two-part codes and NML codes are not prequential is that for any fixed k, they correspond to a probability distriution P k on the set of sequences of symbols of length k, but for k = k, P k and P k are not necessarily related.

We now study the first of these techniques: two-part codes.

Two-part codes

Our strategy is to use the best code θ 0 in our family (P θ ). Since the decoder cannot know which P θ we are using to encode our data, we need to send θ 0 , first. Since θ 0 is a real parameter, we would almost surely need an infinite number of bits to encode it exactly: we will encode some θ "close" to θ 0 instead.

Suppose for example that θ 0 ∈ [0, 1]. If we use only its k first binary digits for θ, then we have |θ -

θ 0 | 2 -k .
Consequently, let us define the precision of the encoding of some θ ∈ [0, 1] with ε := 2 -number of bits to encode θ (so we immediately have the bound |θ -θ 0 | ε).

We recall the bound (2.9): for any probability distribution µ,

K(x) K(µ) -log 2 (µ(x)), (3.11) 
which corresponds to coding µ, and then, using an optimal code with respect to µ to encode the data.

Here, increasing the precision (or equivalently, reducing ε) increases the likelihood of the data (and consequently -log 2 (µ(x)) decreases), but K(µ) increases: we can suppose that there exists some optimal precision ε * . Let us compute it.

Optimal precision

In the ideal case (infinite precision), we encode the data x 1 , ..., x n by sending θ * := argmax θ µ θ (x 1 , ..., x k ), and then, the data encoded with the probability distribution µ θ * .

The codelength corresponding to a given ε is:

l(ε) := -log 2 ε -log 2 (µ θ (x)), (3.12)
where |θ -θ * | ε (i.e. we encode θ, which takes -log 2 ε bits, and then, we encode x using µ θ , which takes -log 2 (µ θ (x)) bits).

With a second order Taylor expansion around θ * , we find:

l(ε) = -log 2 ε-log 2 µ θ * (x)+ ∂(-log 2 µ θ (x)) ∂θ (θ-θ * )+ ∂ 2 ∂θ 2 (-log 2 µ θ (x)) (θ -θ * ) 2 2 +o((θ-θ * ) 2 ),
(3.13) where the derivatives are taken at θ = θ * . The first order term is equal to zero, since by definition, µ θ * is the probability distribution minimizing -log 2 µ θ (x). If we approximate θ -θ * by ε and write J(θ * ) := ∂ 2 ∂θ 2 (-ln µ θ (x)) (which is positive), we find:

l(ε) ≈ -log 2 (µ θ * (x)) -log 2 ε + J(θ * ) ln 2 ε 2 2 . (3.14)
Differentiating with respect to ε, we find dl dε = 1 ln 2 -1 ε + εJ(θ * ) . If we denote by ε * the optimal precision, we must have dl dε | ε=ε * = 0, i.e.

ε * ≈ 1 J(θ * ) , (3.15) 
which, by plugging (3.15) into (3.14), yields the following codelength:

l(ε * ) ≈ -log 2 µ θ * (x) + 1 2 log 2 J(θ * ) + cst. (3.16)
Essentially, the idea is that if θ -θ * < ε * , and if we denote by x the data, the difference between P θ (x) and P θ * (x) is not significant enough to justify using more bits to improve the precision of θ. Another possible way to look at this is that we cannot distinguins θ from θ * , in the sense that it is hard to tell if the data have been sampled from one distribution or the other.

The i.i.d. case: confidence intervals and Fisher information

Let us now consider the i.i.d. case: all the x i are sampled from the same probability distribution, and we have -

log 2 µ θ (x) = i -log 2 α θ (x i ). In that case, J(θ) = n i=1
∂ 2 ∂θ 2 ln α θ (x i ), so it is roughly proportional to n, and ε * is therefore proportional to 1 √ n : we find the classical confidence interval. Moreover, if the x i really follow α θ , then

E x∼α (J(θ)) = nE x∼α ∂ 2 ∂θ 2 (-ln α θ (x)) =: nI(θ),
(3.17)

where I(θ) is the so-called Fisher information [START_REF] Fisher | On the mathematical foundations of theoretical statistics[END_REF]. We will often use the following approximation J(θ) ≈ nI(θ).

(3.18)

With this, we can rewrite equation (3.15) for the i.i.d. case, and we find that the optimal ε is approximately equal to:

ε * ≈ 1 √ n 1 I(θ * ) . (3.19)
By simply studying the optimal precision to use for a parameter from a coding perspective, we managed to recover confidence intervals and the Fisher information.

Link with model selection

Now that we have the optimal precision and the corresponding codelength, we can also solve certain model selections problems.

Consider for example you are playing heads or tails n times, but at the middle of the game, the coin (i.e. the parameter of Bernoulli's law) is changed. You are given the choice to encode a single θ, or θ 1 which will be used for the first half of the data, and θ 2 which will be used for the second half.

Let us compute the codelengths corresponding to these two models. If we denote by x all the data, by x 1 the first half of the data, and by x 2 the second half of the data, we find, by combining equations (3.16) and (3.18):

l 1 = -log 2 µ θ (x) + 1 2 log 2 I(θ) + 1 2 log 2 (n) + cst, (3.20) l 2 = -log 2 µ θ 1 (x 1 ) -log 2 µ θ 2 (x 2 ) + 1 2 log 2 I(θ 1 ) + 1 2 log 2 I(θ 2 ) + 1 2 log 2 (n/2) + 1 2 log 2 (n/2) + cst (3.21) = -log 2 µ θ 1 ,θ 2 (x) + 2 2 log 2 (n) + O(1). (3.22)
It is easy to see that for a model with k parameters, we would have:

l k = -log 2 µ θ 1 ,...,θ k (x) + k 2 log 2 (n) + O(1). (3.23)
Asymptotically, we obtain the Bayesian information criterion, which is often used. It could be interesting to use the non-asymptotic equation (3.21) instead, but the Fisher information is usually hard to compute.

It is also interesting to notice that using two-part codes automatically makes the corresponding coding suboptimal, since it reserves several codewords for the same symbol: coding θ 1 followed by x coded with P θ 1 yields a different code than θ 2 followed by x coded with P θ 2 , but these two codes are codes for x. A solution to this problem is to set P θ (x) = 0 if there exists θ such that P θ (x) > P θ (x) , and renormalize. Then, for a given x, only the best estimator can be used to encode x. This yields the normalized maximum likelihood distribution (if we denote by θ(x) the maximum likelihood estimator for x, NML(x) = P θ(x) (x)

x P θ(x) (x)

).

Another way to look at this problem is the following: consider as an example the simple case Θ = {1, 2}. The encoding of θ corresponds to a prior q on Θ (for example, using one bit to distinguish P 1 from P 2 corresponds to the uniform prior q(1) = q(2) = 0.5).

The two-part code corresponds to using max(q(1)P 1 , q(2)P 2 ) as our "probability distribution" to encode the data, but its integral is not equal to 1: we lose X min(q(1)P 1 (x), q(2)P 2 (x))dx, which makes the codelengths longer. Consequently, it is more interesting to directly use the mixture q(1)P 1 + q(2)P 2 to encode the data when it is possible, because all codewords will then be shorter. We are thus naturally led to Bayesian models.

Bayesian models, Jeffreys' prior

Motivation

We need a reasonable default prior q for the probability distribution (3.10):

P Bayes F (x) = Θ q(θ)µ θ (x)dθ.
(3.24)

A naive choice for a default prior is "the uniform prior" (i.e. q(θ) = cst). Sadly, the uniform prior on a family of probability distributions can be ill-defined.

Consider for example B the family of Bernoulli distributions. If P θ is the Bernoulli distribtion of parameter θ, and Q θ is the Bernoulli distribtion of parameter θ 100 , then {P θ , θ ∈ [0, 1]} = {Q θ , θ ∈ [0, 1]} = B, but most of the time, the uniform prior on the family (Q θ ) will select a Bernoulli distribution with a parameter close to 0 (θ is picked uniformly in [0, 1], so θ 100 < 0.1 with probability 0.1 1 100

.97). This shows that a uniform prior depends not only on our family of probability distributions, but also on its parametrization, which is an arbitrary choice of the user.

Any reasonable default prior should be invariant by reparametrization of the family {P θ , θ ∈ Θ} (else, there would be as many possible priors as there are parametrizations), and Jeffreys' prior [START_REF] Jeffreys | Theory of Probability[END_REF], constructed below, does have this property.

Construction

Consider we are sending a message of length n with a two-part code.

Equation (3.19) (about the optimal coding precision) shows that when coding a given message with a two-part code, only a finite number of elements of Θ will actually be used in the first part of the coding, each θ k being used for all θ ∈ I k ; and it also shows that the length of

I k is 1 √ n 1 √ I(θ k )
.

The fact that all elements of I k are encoded the same way means that we will not distinguish different θ in the same I k , and in practice, we will only use the m different θ k corresponding to each interval.

Consequently, a reasonable procedure to pick a θ would be to start by picking some k ∈ [1, m], and then, pick θ ∈ I k uniformly.

It is easy to see that the probability distribution q n corresponding to this procedure is given by the density:

q n (θ) = K n I(θ k(θ) ), (3.25)
where K n is a normalization constant, and k(θ) is defined by the relation θ ∈ I k(θ) . Now, if n → ∞, it can be proved2 that (q n ) converges to the probability distribution q given by the density:

q(θ) = K I(θ), (3.26) 
where K is a normalization constant.3 Also notice that sometimes (for example with the family of Gaussian distributions on R), Jeffreys' prior cannot be normalized, and consequently, cannot be used.

We now have a reasonable default prior, and we are going to use it to predict the next element of a sequence of zeros and ones.

Example: the Krichevsky-Trofimov estimator

We introduce the following notation: Notation 3.4. We denote by P θ the Bernoulli distribution of parameter θ, and we define B := {P θ , θ ∈ [0, 1]}.

Suppose we are trying to learn a frenquency on the alphabet X = {c, d}. For example, given the message ccc, we want P (x 4 = c).

A first approach is using the maximum likelihood (ML) estimator:

P ML (x n+1 = c|x 1 , ..., x n ) = n i=1 1 x i =c n = number of c in the past number of observations . (3.27)
This has two drawbacks: ML assigns the probability 0 to any letter that has not been seen yet (which is a major problem when designing codes, since probability 0 corresponds to infinite codelength), and is undefined for the first letter.

Let us now consider the Bayesian approach with Jeffreys' prior.

Lemma 3.5. The Fisher metric on B is given by

I(θ) = 1 θ(1 -θ) , (3.28) 
and Jeffreys' prior is given by

q(θ) = 1 π 1 θ(1 -θ) (3.29)
Proof. It is a straightforward calculation. We have P θ (0) = 1 -θ, P θ (1) = θ, so ∂ 2 ln P θ (0)

∂θ 2 = -1 (1-θ) 2 and ∂ 2 ln P θ (1)
∂θ 2

= -1 θ 2 . Finally:

I(θ) = - ∂ 2 ln P θ (0) ∂θ 2 P θ (0) - ∂ 2 ln P θ (1) ∂θ 2 P θ (1) (3.30) = 1 (1 -θ) 2 (1 -θ) + 1 θ 2 θ (3.31) = 1 1 -θ + 1 θ (3.32) = 1 θ(1 -θ) , (3.33) 
and we have the Fisher information. The only difficulty to compute Jeffreys' prior is the normalization constant, which is

K := 1 0 dθ θ(1 -θ) , (3.34) 
and the substition θ = sin 2 u yields

K = π/2 0 2 sin u cos udu √ sin 2 u cos 2 u = π. (3.35)
We have therefore, by using Jeffreys' prior in (3.10):

P Jeffreys (x n+1 |x 1 , ..., x n ) = 1 π 1 0 1 θ(1 -θ) P θ (x 1 , ..., x n )P θ (x n+1 |x 1 , ..., x n )dθ.
(3.36) This is actually easy to compute, thanks to the following proposition (proved for example in [START_REF] Fink | A compendium of conjugate priors[END_REF]):

Proposition 3.6. Let α, β > 0. If q(θ) ∝ θ α-1 (1 -θ) β-1 , then P Bayes (x n+1 = c|x 1 , ..., x n ) = α + n i=1 1 x i =c α + β + n , (3.37) 
where

P Bayes (x) = Θ q(θ)B θ (x)dθ (3.38)
is the Bayesian prediction with Bernoulli distributions and the prior q on the parameter θ of the distributions.

In other words, using such a prior is equivalent to using ML, with fictional observations (c occuring α times and d occuring β times). 4In particular, for Jeffreys' prior, we have α = β = 1 2 , so

P Jeffreys (x n+1 = c|x 1 , ..., x n ) = 1 2 + n i=1 1 x i =c n + 1 = 1 2
+ number of c in the past 1 + number of observations .

(3.39)

Consequently, we introduce the following notation: KT(x, y) :=

1 2 + x 1 + x + y .
This estimator is called "Krichevsky-Trofimov estimator" (KT, [START_REF] Krichevsky | The performance of universal encoding[END_REF]), and it can be proved ([WST95], [START_REF] Veness | Context tree switching[END_REF]) that, when using it instead of knowing the "real" θ, no more than 1 + 1 2 log(n) bits are wasted. We can also define the generative model corresponding to Jeffreys' prior. It is easy to prove (by induction on the total number of symbols) that the probability assigned to any given sequence (x 1 , ..., x a+b ) with a zeros and b ones is equal to

P J (a, b) := 0 i<a (i + 1 2 ) 0 i<b (i + 1 2 ) 0 i<a+b (i + 1) = 0 i<a KT(i, 0) 0 j<b KT(a, j),
(3.40) with the convention that the empty product is equal to 1 (i.e. P J (0, 0) = 1).

In particular, we can see that the probability of a sequence (x 1 , ..., x n ) depends only on the number of c and d in (x 1 , ..., x n ), and not on the order, and P J satisfies the relations,

P J (a + 1, b) = P J (a, b)KT(a, b) and P J (a, b + 1) = P J (a, b)(1 -KT(a, b)).
It is also useful to remark that P J (0, 0) = 1 and P J (1, 0) = P J (0, 1) = 1 2 .

In practice, Jeffreys' prior is not efficient when the optimal θ is on the boundary: for instance, when encoding text, most punctuation symbols are always followed by a space. The corresponding new prior for Bernoulli distributions is given by 1

2 q + 1 4 δ 0 + 1 4 δ 1 , (3.41)
where q is Jeffreys' prior on B, and δ i is the Dirac distribution at i. This new prior is called a "zero-redundancy estimator" [START_REF] Rashid | Analysis of zero-redundancy estimator with a finite window for markovian source[END_REF].

Context tree weighting

In this section, we quickly present context tree weighting, a Bayesian text prediction model combining all visible Markov models of any finite order, see [START_REF] Frans | The context tree weighting method: Basic properties[END_REF] and [START_REF] Frans | The context-tree weighting method: Extensions[END_REF] for more information. In part II, we describe this algorithm and prove its fundamental property5 in a more elegant way (Section 4.3.4.3 in particular), and we extend it to other applications.

We start by showing a simple way to describe one visible Markov model.

Markov models and full binary trees

Learning a frequency on the alphabet X = {c, d} corresponds to restricting ourselves to the family of Bernoulli distributions, which can be thought of as the family of Markov models of order 0. Still working on the alphabet {c, d}, we are going to present the context tree weighting algorithm, which uses the family of all visible Markov models.

Notice in particular that we can use Markov models of variable order, for example: "if the last symbol was c, predict c with probability 0.7, if the last symbol was d, then look at the next-to-last symbol: if it was a c then predict c with probability 0.5, else predict c with probability 0.3."

A Markov model can be described by a full6 binary tree the following way: For a given tree, the contexts we are interested in are the leaves of the tree: with the example above, the leaf labeled 0.7 corresponds to the context "c?", the leaf 0.5 corresponds to the context "cd?" and the leaf 0.3 corresponds to "dd?" (notice in particular that contexts are read backwards in the tree).

Suppose for now that we have such a tree. It is easy to see that there is exactly one context appearing in the tree and corresponding to a suffix of the past observations: we output c with probability equal to the value of the leaf corresponding to this context.

Our model can therefore be decomposed as a finite full binary tree T (the structure of the tree), and the ordered set θ T := (θ s ) of the labels on the leaves, and we will try to estimate it online. Now that we are able to describe efficiently a Markov model, we can go back to our main problem: prediction using universal probability distributions on all visible Markov models.

Prediction for the family of visible Markov models

The distribution we would like to use for prediction is (3.4), with Θ = {(T, θ T ), T finite binary tree, θ T ∈ [0, 1] number of leaves of T } :

P F = θ∈Θ 2 -K(θ) µ θ ,
where µ θ is given by the previous subsection. K(θ) remains problematic, but we can decompose θ 2 -K(θ) into T 2 -K(T ) θ T 2 -K(θ T ) , and then: • A full binary tree T can be described by as many bits as it has nodes, by labelling internal nodes by 1 and leaves by 0, and read breadth-first (our example would give the code 10100).

• We can use Jeffreys' prior for θ T .

With these new approximations, we have:

P F = T full binary trees 2 -#nodes(T ) [0,1] #leaves(T ) dθ s 1 π θ s 1 (1 -θ s 1 ) ... dθ s l π θ s l (1 -θ s l ) P (T,(θ i )) ,
(3.42) where θ i denotes the parameter of the i-th leaf. (3.42) can be interpreted as a double mixture over the full binary trees and over the parameter values. Now, we have to compute (3.42). This sum has an infinite number of terms (and even if we restrict ourselves to a finite depth D, the number is still exponential in D). However, it is possible to compute it efficiently and exactly.

Computing the prediction

The general idea is to maintain the tree of all observed contexts, and each node s will weight the choices "using s as a context", and "splitting s into the subonctexts cs and ds" by using information from deeper nodes (more precisely, the number of times a c or a d has been written in a given context).

Bounded depth

Here, we restrict ourselves to Markov models of depths at most D. For simplicity, we will not try to predict the D first symbols.

Notice that in that case, the cost to describe a tree can be modified: since a node at depth D is automatically a leaf, it is no longer necessary to use bits to describe them. If we denote by T D the complete binary tree of depth D, and by n D (T ) the number of nodes at depths less than D of a tree T , then the probability distribution corresponding to this model is

P F = T subtree of T D 2 -n D (T ) [0,1] #leaves(T ) dθ s 1 π θ s 1 (1 -θ s 1 ) ... dθ s l π θ s l (1 -θ s l ) P (T,(θ i )) , (3.43) 
Notation 3.7. We will denote each node by the suffix corresponding to it (for example, the root is ε, the node labeled 0.7 in Figure 3.1 is c, etc. . . ), and at each node s, we will maintain two numbers c s and d s , respectively the number of times a c and a d have been observed after the context s (starting the count at x 1 ). Notice that we have the relation

c s = c 1s + c 0s . 7
Now, let us look at equation (3.43) more closely. The goal of the following lemma and its corollary is to write equation (3.43) in a way that will allow to compute it efficiently.

Firstly, we can see that Lemma 3.8. If c s (k) and d s (k) are respectively the number of times a c and a d have been observed after the context s from x 1 to x k , we have:

P (T,(θs i )) (x 1 , ..., x n ) = s leaves of T θ cs(n) s (1 -θ s ) ds(n) , (3.44) Proof. By induction. P (T,(θs i )) (x 1 ) = θ 1x 1 =c s T (Lx 1 ) (1-θ s T (Lx 1 ) ) 1 x 1 =d
, where s T (x) is the only leaf of T corresponding to a suffix of x, which is what we want. Now,

P (T,(θs i )) (x 1 , ..., x k+1 ) =P (T,(θs i )) (x k+1 |x 1 , ..., x k )P (T,(θs i )) (x 1 , ..., x k ) =θ 1x k+1 =c s T (Lx 1 ...x k ) (1 -θ s T (Lx 1 ...x k ) ) 1 x k+1 =d s leaves of T θ cs(k) s (1 -θ s ) ds(k) ,
and since for all s for λ ∈ {c, d}, λ s (k+1) = λ s (k)+1 x k+1 =λ 1 s=s T (Lx 1 ...x k ) , we find

P (T,(θs i )) (x 1 , ..., x k+1 ) = s leaves of T θ cs(k+1) s (1 -θ s ) ds(k+1) , (3.45)
which is what we wanted.

Consequently, the integral in (3.43) can be computed with Proposition 3.6: Corollary 3.9. We have:

[0,1] #leaves(T ) dθ s 1 π θ s 1 (1 -θ s 1 ) ... dθ s l π θ s l (1 -θ s l ) P (T,(θ i )) (x 1 , ..., x n ) = u leaves of T P J (c u , d u ) (3.46)
Proof. It is a consequence of Lemma 3.8 and of the fact that P J (a, b) is the probability of seeing a sequence containing respectively a and b times the letters c and d with Jeffreys' prior.

Equation 3.43 can therefore be rewritten:

P F (x 1 , ..., x n ) = T subtree of T D 2 -n D (T )
u leaves of T P J (c u , d u ).

(3.47)

Under this form, P F can be computed recursively, starting by its leaves, by the following lemma: Lemma 3.10. If we assign to each node s the following probability:

P s := P J (c s , d s ) if |s| = D 1 2 P J (c s , d s ) + 1 2 P cs P ds if |s| < D (3.48)
then, for any node s, P s satsifies:

P s = T subtree of T D with root s 2 -n D (T ) u leaves of T P J (c u , d u ). (3.49)
Notice that by definition, s is automatically a suffix of all the u in the equation above.

Proof. By induction. If |s| = D, it is clearly true. Suppose now that (3.49) holds for all nodes deeper than s. We have, by definition:

P s = 1 2 P J (c s , d s ) + 1 2 P cs P ds = 1 2 P J (c s , d s ) + 1 2   T subtree of T D with root cs 2 -n D (T ) u leaves of T P J (c u , d u )   *   T subtree of T D with root ds 2 -n D (T ) u leaves of T P J (c u , d u )  
The first term corresponds to the subtree composed only of the root, and the second term corresponds to all other subtrees, described by the part on the left of the root and the part of the right of the root. In other words:

P s = 2 -1 P J (c s , d s )+ T subtree of T D with root cs T subtree of T D with root ds 2 -1-n D (T )-n D (T ) u leaves of T or T P J (c u , d u ), (3.50) which is what we want.
As an immediate corollary, we have:

P ε = T subtree of T D with root ε 2 -n D (T ) u leaves of T P J (c u , d u ), (3.51)
which is exactly equation (3.47).

Let us now consider the general case.

Generalization

The method presented above has two shortcomings: the fact that we cannot predict the first D symbols, and the bounded depth.

The first one can be solved by adding a "beginning of the message" character §. The corresponding trees are then ternary, and since undefined symbols can only occur at the beginning of a word, any suffix starting with § is a leaf. Now, to work with unbounded depth, we simply maintain the tree T n of all suffixes seen up to time n (i.e: all factors of the word §, x 1 , ..., x n-1 , x n . T n is therefore exactly of depth n + 1), and, at each node s of T n , the counts c s , d s , and § s .

To compute the corresponding distribution, we replace the P s in (3.48) by:

P s := 1 2 if s is a leaf of T n 1 2 P J (c s , d s ) + 1 2 P cs P ds P §s else, (3.52)
with the convention that P λs = 1 if λs has never appeared yet (for λ = c, d, §), and we use P ε again as our probability distribution.

It can be proved that this algorithm achieves entropy (i.e. optimal coding length) for arbitrary-depth tree sources (Theorem 3 in [START_REF] Frans | The context-tree weighting method: Extensions[END_REF]).

We can now describe the actual algorithm.

Algorithm

Suppose that we have P F ,n (x n |x 1 , ..., x n-1 ), with the corresponding tree T n-1 (the tree containing all suffixes in x 1 , ..., x n-1 ).

When we read x n , we update T n-1 by adding to it the suffix corresponding to the branch (x 1 , ..., x n ). We add at most n nodes. Now, we compute the new P s . Since the only modified P s are those corresponding to a suffix of (x 1 , ..., x n ), the complexity is O(n).

We can therefore read P (x 1 , ..., x n ) at the root. Now, add the node x 1 , ..., x n , c to compute P (x 1 , ..., x n , c) at the root (the computation is again O(n)), and the prediction is

P F ,n+1 (x n+1 |x 1 , ..., x n ) = P F ,n+1 (x 1 ,...,x n+1 ) P F ,n (x 1 ,...,xn) .
The complexity of this algorithm is O(n 2 ), whereas the bounded version has complexity O(nD), where, n is the length of the data we are compressing and D is the depth bound. However, if the data is "sufficiently random", the complexity of the unbounded version is only O(n log 2 n) when coded properly8 , which makes it usable in general.

Part II

Expert Trees

The Context Tree Weighting algorithm, detailed in Section 4.3.1, is a well-known online text compression algorithm which computes a very large Bayesian mixture of models with a suitable prior (all finite visible Markovian models) efficiently by starting with complex models (i.e. models using a long context for the current data point), and recursively comparing them to (just) simpler models, up to the root of the tree, which will give the final prediction. In other words, each node of the context tree computes the (Bayesian) weight of the options "being open" (i.e. using more sophisticated experts) or "being closed".

This general idea can actually be applied to a much larger class of problems including regression, and density estimation: in Chapter 4, we give an adequate formal context to define a generic Context Tree Weighting algorithm: we define experts, which are entities that make predictions, and we give different ways of combining them.

Moreover, it has been noted in [START_REF] Van Erven | Catching up faster by switching sooner: a predictive approach to adaptive estimation with an application to the AIC-BIC dilemma[END_REF] that Bayesian mixtures have a lot of "intertia": complex experts need a long time to estimate their parameters correctly, so by design, they make poor predictions in the beginning, which hurts their Bayesian posterior. The Bayesian mixture starts using them again only once their new predictions offset their slow start.

This issue is adressed (still in [START_REF] Van Erven | Catching up faster by switching sooner: a predictive approach to adaptive estimation with an application to the AIC-BIC dilemma[END_REF]) by introducing Switch distributions:

• From a predictive point of view, at each step, the switch distribution takes a small part of the posterior and redistributes it, thus allowing complex models to quickly become relevant once they start making good predictions.

• From a generative point of view, while a regular Bayesian mixture corresponds to an average on the different models in it, the switch distribution is an average on sequences of models. In particular, we can expect that sequences with models of increasing complexity to perform very well.

Since the Context Tree Weighting algorithms contain infinitely many models of arbitrary complexity, it seems reasonable to try to use Switch distribution in context trees. It is not possible to compute the switch distribution corresponding to all finite visible Markovian models, but it is possible to use switch distributions locally at each node, for the open/closed choice.

This approach has been tried for text compression in [START_REF] Veness | Context tree switching[END_REF], with promising results. However, the switch distributions considered in [START_REF] Veness | Context tree switching[END_REF] switch infinitely many times with probability one, while we expect that the most interesting sequences on a given node are of the form "closed until time n (so that the more specialized experts get enough data), open afterwards" (with possibly n = ∞). Consequently, we try using the distributions in [START_REF] Van Erven | Catching up faster by switching sooner: a predictive approach to adaptive estimation with an application to the AIC-BIC dilemma[END_REF], which give a strictly positive wieght to any of these sequences instead.

Chapter 5 is a proof of concept for using these switch distributions in context trees: we show that in the case where local experts are fitting a Gaussian with variable mean and variance, the Context Tree Swiching algorithm outperforms the Context Tree Weighting algorithm on any Lipschitz function, in the sense that it assigns a higher probability to the actually observed data (i.e. the comparison criterion is the log-loss).

Finally, these results are illustrated by numerical experiments in Chapter 6.

Chapter 4

Expert trees: a formal context

We begin by giving a formal context which will enable us to describe the generalized context tree weighting and context tree switching algorithms easily.

Experts are a generalization of Prequential Forecasting Systems introduced in [START_REF] Dawid | Statistical theory: the prequential approach (with discussion)[END_REF], that allow for an elegant expression of the Context Tree Weighting algorithm.

The general idea is that we have the choice between a "simple" expert, and two (or more) more complex experts, each of these experts making recursively the same choice. For example, in the text compression setting, as seen in Section 3.3, an expert chooses between directly making its prediction and asking an expert with longer context, while in the regression setting, one could choose between a local expert on [0, 1) and two experts, on [0, 0.5) and [0.5, 1).

We will consider explicitly three different problems to illustrate the definitions:

• Text compression: We are trying to predict the character x n ∈ X knowing the previous characters x n-1 ∈ X * .

• Density estimation: We are trying to predict where the point x n ∈ X will appear, knowing the previous points x n-1 .

• Regression: Given some unknown, possibly noisy function f : X → Y , we are trying to predict f (x n ), knowing the (x k , f (x k )) for k < n. 1

In Section 4.1, we give a formal definition of experts, and in Section 4.2, we define basic operations to build new experts from existing ones. In particular, the Switching combination of experts is defined in Section 4.2.3. Finally, we define Expert Trees in Section 4.3, which allows for the description of a generic context tree weighting/switching algorithm.

Experts

Keeping in mind that a prediction is a probability distribution (as seen in part I), we define experts as applications matching previous data to a prediction:

Definition 4.1. An expert from X to Y is an application E from a subset D of (X × Y ) * × X to probability distributions on a non empty subset T of Y .
D is called the domain of E, and is noted Dom(E).

T is called the target of E, and is noted Tar(E).

If X is a singleton2 , we will identify X × Y with Y , and we will simply write "an expert on Y ". This is a generalization of Prequential Forecasting Systems [START_REF] Dawid | Statistical theory: the prequential approach (with discussion)[END_REF], in the sense that Prequential Forecasting Systems are experts with domain (X × Y ) * × X and target Y . 3Intuitively:

• E(z)(z ) is the probability assigned to z after having seen z.

• An expert issues a prediction only if the previous data falls in its domain4 , and the prediction is conditioned on the new data falling in its target ("if y is in my target, then I think it follows the probability distribution p").

For formal simplicity, we will only consider the cases Y discrete, or Y continuous but the probability distribution issued by the experts have a density (and in that case, E(x)(y) is the density at y). This leads us to the following notation:

Notation 4.2. Let X, Y be two sets. If E is an expert from X to Y , z, z = (x , y ) ∈ (X × Y ) * , we write: E(z |z) := 1 i |z | (z • (z ) i-1 ,x i )∈Dom(E) y i ∈Tar(E) E(z • (z <i ), x i )(y i ). (4.1) Moreover, if x ∈ X, y ∈ Y , z,z ∈ (X × Y ) *
, we also write:

E((y, z )|(z, x)) := E((x, y, z )|z) (4.2)
The following proposition justifies using E(z |z) for E(z)(z ):

Proposition 4.3. If E is an expert from X to Y , z, z , z ∈ (X × Y ) * , we have: E(z • z |z) = E(z |z)E(z |z • z ). (4.3) In particular, if E(z|∅) = 0, E(z |z) = E(z • z |∅) E(z|∅) , (4.4) 
Proof. Immediate consequence of the definition of E(z |z).

By definition, if y ∈ Y \ Tar(E), then E(y|x) = 1. In particular, E(.|x) is not a probability distribution on Y restricted to Tar(E). This is the reason the target of an expert has to be defined explicitly.

Moreover, by equation (4.4), an expert E that never issues a zero probability can also be defined by specifying

E(z|∅) for z ∈ D × T instead of E(y|z, x) (or equivalently E((x, y)|z)) for all (z, x) ∈ Dom(E), y ∈ Tar(E).
Finally, in the particular case of an expert E on a set X, with Tar(E) = X and Dom(E) = X * , E(.|∅) is a probabilistic source (as defined in [START_REF] Peter | The Minimum Description Length Principle (Adaptive Computation and Machine Learning)[END_REF]) on X. Indeed, we can easily check that:

• For all x ∈ X * , y∈X E(xy|∅) = y∈X E(x|∅)E(y|x) = E(x|∅) • E(∅|∅) = 1,

General properties

In this section, we define a "no peeking out" condition, ensuring that an expert only uses data in its domain and target, and a compatibility condition between experts. These two conditions will be necessary for the good implementation of the expert tree algorithms.

We say that an expert does not peek out if it only watches its domain: it updates its predictions only after making one.

Notation 4.4. If z = (z 1 , ..., z n ) ∈ A * and S ⊂ A * , we define: z ∩ A := (z i |z i ∈ S). (4.5)
If E is an expert from X to y with domain D and target T and z = ((x 1 , y 1 ), ..., (x n , y n )) ∈ (X × Y ) n , we define z ∩ E as the subword of z containing only the (x i , y i ) for which E has been used. In other words:

z ∩ E := z ∩ (D × T ) = (x i , y i )|(z <i , x i ) ∈ D, y i ∈ T (4.6)
Definition 4.5 (No peeking out). Let E be an expert from X to Y with domain D and target T . We say E does not peek out iff:

E(z|∅) = E(z ∩ E|∅), (4.7) for all z ∈ (X × Y ) *
This condition will be used to ensure that the Context Tree Weighting predictions can be computed in a reasonable time.

The compatibility condition will be used to define infinite depth expert tree algorithms.

Definition 4.6 (Compatible experts). Let X, Y be two sets, and let E 1 , E 2 be two experts from X to Y with same domain and same target. We say they are compatible if

E 1 (∅) = E 2 (∅) (4.8)
as applications X → Y . If T is an expert tree, we say that the experts in T are compatible if for any internal node s, we have:

t∈c(s) E t (∅) = E s (∅).
We now define several operations allowing us to create new experts from existing ones.

Operations with experts

In this section, we define the mixture of experts, the bayesian and switch combination of experts, the restriction of an expert, and the union of experts.

Fixed mixtures

The fixed mixture of n experts consists in averaging the prediction of these experts with fixed coefficients:

Definition 4.7. Let (α 1 , ..., α n ) ∈ R n + \ {0, ..., 0}.
The fixed mixture of n density experts on X with same domain D and target T with coefficients α 1 , ..., α n , with is the expert with domain D and target T defined by:

mix((α i E i ) i=1,..,n )(z |z) := 1 i α i i α i E i (z |z), (4.9) 
for z = (x , y ), (z, x ) ∈ D, y ∈ T .

Notice however that for y ∈ T * , mix((

α i E i ) i=1,..,n )(y|x) is not equal to 1 i α i i α i E i (y|x) in general.

Bayesian combinations

Definition 4.8. Let E 1 , ..., E n be n experts from X to Y with the same domain D and target T such that for all z ∈ (X × Y ) * , there exists i ∈ {1, ..., n} such that E i (z|∅) = 0. The Bayesian combination of E 1 , ..., E n is the expert with domain D and target T defined by:

Bayes(E 1 , ..., E n )(z |z) := i E i (z|∅)E i (z |z) i E i (z|∅) = i E i (z • z |∅) i E i (z|∅) , (4.10 
)

for z = (x , y ), (z, x ) ∈ D, y ∈ T .
Under the same assumptions, we also define the Bayesian combination of E 1 , ..., E n with prior w 1 , ..., w n as:

Bayes ((E 1 , w 1 ), ..., (E n , w n )) (z |z) := i w i E i (z|∅)E i (z |z) i w i E i (z|∅) , (4.11)
and the Bayesian combination of (E θ , w θ ) θ∈Θ as

Bayes ((E θ , w θ ) θ∈Θ ) (z |z) := Θ w θ E θ (z|∅)E θ (z |z)dθ θ w θ E θ (z|∅)dθ . (4.12)
As an immediate consequence of the definition, we have:

Proposition 4.9. For all λ ∈ R * , we have

Bayes((E i , λw i )) = Bayes((E i , w i )) (4.13)
An important property of the Bayesian combination is that from a generative point of view, it is simply a sum: Proposition 4.10. We have, for all z, z ∈ (X × Y ) * :

Bayes((E 1 , w 1 ), ..., (E n , w n ))(z |z) = i w i E i (z|∅)E i (z |z) i w i E i (z|∅) . (4.14)
In particular, if the w i sum to one:

Bayes((E i , w i ))(z|∅) = w i E i (z|∅) (4.15)
Proof. By definition, we have:

Bayes((E 1 , w 1 ), ..., (E n , w n ))(z |z) = |z | k=1 Bayes((E 1 , w 1 ), ..., (E n , w n ))(z k |z • z <k ) (4.16) = |z | k=1 i w i E i (z • z k |∅) i w i E i (z • z <k |∅) (4.17) = i w i E i (z • z |∅) i w i E i (z|∅) , (4.18)
which is what we wanted.

Corollary 4.11. For any three experts E 1 , E 2 , E 3 with same domain D and target T , and four weights w 1 , w 2 , w 3 , w 2,3 , we have:

Bayes((E 1 , w 1 ), (Bayes((E 2 , w 2 ), (E 3 , w 3 )), w 2,3 )) = Bayes((E 1 , w 1 ), (E 2 , w 2,3 w 2 w 2 + w 3 ), (E 3 , w 2,3 w 3 w 2 + w 3 )) (4.19)
Proof. Immediate consequence of (4.15).

Corollary 4.12. Let E 1 , ..., E n be n experts with the same domain D and target t such that for all z ∈ (X × Y ) * , there exists i ∈ {1, ..., n} such that E i (z|∅) = 0.

If the E i do not peek out, then Bayes i (E i ) do not peek out.

Proof. Immediate with (4.15).

Following the specialist framework, a more general Bayesian combination could be defined by removing the condition that all the experts in the combination must have the same domain.

Switching

The Bayesian combination penalizes models with many parameters too harshly, because these parameters need to be estimated:

Consider that we are trying to predict a text actually generated with a (non degenerate) Markov model of order 2 using B, a Bayesian combination of the experts E 1 and E 2 , using visible Markov models of respective order 1 and 2. At the beginning, E 2 will not have enough data to have a good estimate of its parameters, and will be inferior to E 1 . At some point t 0 , E 2 will start being better than E 1 , but its posterior weight at this time w 2 (t 0 ) will be much smaller than w 1 (t 0 ), so B will still behave like E 1 , until some time t 1 , when w 2 catches up with w 1 (this is the "catch-up phenomenon" in [START_REF] Van Erven | Catching up faster by switching sooner: a predictive approach to adaptive estimation with an application to the AIC-BIC dilemma[END_REF]).

Switching, which has been introduced in [START_REF] Van Erven | Catching up faster by switching sooner: a predictive approach to adaptive estimation with an application to the AIC-BIC dilemma[END_REF], and also discussed in [START_REF] Wouter | Combining expert advice efficiently[END_REF] and [vE10], remedies this drawback: from a generative point of view, Bayes consists in choosing one model, and sticking with it, whereas Switch allows switching (hence the name) between models, and the posterior weights remain quick to compute.

Definition

We start with a concise way of writing sequences of experts: Notation 4.13. Given n experts E 1 ,...,E n with same domain D and target T , and I = (i 1 , ..., i k , ...) ∈ 1, n N * , we denote by E I the expert using E i k for its k-th prediction:

E I (y|z, x) = E i φ(z) (y|z, x) (4.20)
for all y ∈ T , (z, x) ∈ D, where φ(z)

:= 1 + |z ∩ (D × T )|
We define the switching combination of n experts as a Bayesian combination on sequences of experts: Definition 4.14. Let E 1 ,...,E n be experts with same domain D and target T , and let µ be a probability distribution on {1, ..., n} N . We define the expert Switch µ (E 1 , ..., E n ) by:

Switch µ (E 1 , ..., E n )(z|∅) := I∈{1,...,n} N µ(I)E I (z|∅) = Bayes I (E I , µ(I))(z|∅), (4.21) for all z ∈ D × T .
More generally, we have:

Switch µ (E 1 , ..., E n )(z |z) = I∈{1,...,n} N µ(I|z)E I (z |z), (4.22) 
where µ(I|z)

:= µ(I)E I (z|∅) J∈{1,...,n} N µ(J)E J (z|∅)
is the Bayesian posterior weight after z of I.

Proof. Direct application of Proposition 4.10.

Notice that in particular, if µ(I) = 0 for all non constant sequences I, then Switch µ (E 1 , ..., E n ) is simply a Bayesian combination of the (E i ). Of course, for most probability distributions µ, it is impossible to compute the posterior weights corresponding to (4.21).

However, under certain conditions on µ, the predictions of the switch experts can be computed in a reasonable time.

Computing some switch distributions: The forward algorithm

This section follows [START_REF] Wouter | Combining expert advice efficiently[END_REF] and [START_REF] Van Erven | Catching up faster by switching sooner: a predictive approach to adaptive estimation with an application to the AIC-BIC dilemma[END_REF].

The most important condition for some switch distributions to be computed exactly is that the posterior weight of each expert at time n + 1 must only depend of the weights at time n.

We start by describing a probability distribution on "switch parameters": sequences (t i , k i ) i i n{1,...,m} corresponding to sequences of experts starting with k 1 , and switching at the t i to the expert k i ; we then pull this probability distribution back to actual sequences of experts: Definition 4.15. Let Ξ = {E 1 , ..., E n } be a set of experts with domain D and target T .

We call set of switch parameters on Ξ the set:

Θ = {(t m , k m )|1 m ∞, k m ∈ Ξ m , t m ∈ N m , 0 = t 1 < t 2 < ...}. 5 (4.23)
We now define a surjective map from Θ to sequences of experts φ : Θ → Ξ N by: φ(θ) := (φ 1 (θ), φ 2 (θ), ...), and:

φ n (t m , k m ) = E k sup{i∈{1,...,m}|t i <n} . (4.24)
Any probability distribution π on Θ defines a probability distribution on

Ξ N by π * (A) = π(φ -1 (A)), (4.25) for A ⊂ Ξ N .
In other words, φ sends the switch parameters (t m , k m ) to the sequence using k 1 for t ∈]t 1 , t 2 ], k 2 for t ∈]t 2 , t 3 ] and so on. We now describe the actual prior that we will use, introduced in [START_REF] Van Erven | Catching up faster by switching sooner: a predictive approach to adaptive estimation with an application to the AIC-BIC dilemma[END_REF].

Definition 4.16. The switch prior π Switch is the following distribution on switch parameters:

π Switch (t m , k m ) = π M (m)π K (k 1 ) m i=2 π τ (t i |t i > t i-1 )π K (k i ), (4.26) 
where π M is geometric with rate θ, π K is an arbitrary probability distribution on Ξ, and π τ is an arbitrary probability distribution on N * .

As described in [START_REF] Wouter | Combining expert advice efficiently[END_REF] and [START_REF] Van Erven | Catching up faster by switching sooner: a predictive approach to adaptive estimation with an application to the AIC-BIC dilemma[END_REF], this probability distribution can be computed by using a hidden Markov model with the following parameters:

• Ξ = {E 1 , ..., E n } a set of experts with domain D and target T .

• A probability distribution w Ξ on Ξ (or on {1, ..., n}, by identifying E i and i).

• Freezing probabilities (τ n ) n∈N : a sequence of probability distributions on {0, 1}. By abuse of notation, we will write τ n := τ n (1) the probability of freezing at time n.

• Switching probabilities (σ n ) n∈N * : a sequence of probability distributions on {0, 1}. By abuse of notation, we will write σ n := σ n (1) the probability of switching at time n.

and, the forward algorithm, described for example in [START_REF] Wouter | Combining expert advice efficiently[END_REF] computes the predictions for a HMM (Theorem 3 in [START_REF] Wouter | Combining expert advice efficiently[END_REF]).

Figure 4.1: The unfolded switch HMM, with two experts, with w i := w Ξ (E i ) (see also Figure 12 in [START_REF] Wouter | Combining expert advice efficiently[END_REF])
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Algorithm 1 Forward algorithm from time n to time n + 1, for the switch HMM 1. Observe z n and compute posterior weights at time n.

for all E ∈ Ξ, * ∈ {u, f } do w(E, * , n) ← w(E, * , n)E(z n |z n-1 ) end for 2. Forward propagation of the weights while Dom(w) = {(E, * , n + 1)|E ∈ Ξ, * ∈ {u, f }} do Pick u ∈ Dom(w) such that u is not the descendent of any v ∈ Dom(w). for all v children of u do if v / ∈ Dom(w) then initalize w(v) ← 0. end if w(v) ← w(v) + w(u)P (u → v) end for Dom(w) ← Dom(w) \ {u} end while Renormalize w. 3. Predict z n+1 : P Forward (z n+1 ) = E∈Ξ * ∈{u,f } w(E, * , n + 1)E(z n+1 |z n )
This algorithm actually computes π * Switch described in (4.26). Theorem 4.17. Let Ξ = {E 1 , ..., E n } a set of experts, and let

• w Ξ = π K • For all n, τ n = θ • For all n, σ n = πτ (n) πτ ([n,+∞[)
Then Algorithm 1 for the switch HMM defined by w Ξ , (τ n ) and σ n computes the predictions from the switch distribution defined by π M geometric with rate θ, π K and π τ . In other words:

n i=1 P Forward (z i |z <i ) = θ∈Θ π Switch (θ) [φ(θ)(z n |∅)] , (4.27)
where φ is from Definition 4.15 (in particular, φ(θ) is an expert).

In particular,

Switch π * Switch (E 1 , ..., E n )(z m |∅) can be computed in O(nmt)
, where t is the maximal computing time for the likelihoods E k (z i |z <i ) (knowing the state of E k before i).

See Appendix A.7 in [START_REF] Van Erven | Catching up faster by switching sooner: a predictive approach to adaptive estimation with an application to the AIC-BIC dilemma[END_REF] (Theorem 14) for the proof.

If θ ∈ (0, 1), Supp(π K ) = Ξ and Supp(π τ ) = n, π * Switch has the intersting property that any sequence I that is constant for large n is given a positive weight. Consequently, the weight of all the sequences of experts using for example E 1 after the time n can be uniformly bounded by some h = h(n) > 0.

This property leads to a bound for the posterior weight of given sequences that is uniform on z. Lemma 4.18. Let E 1 , ..., E m be m experts from X to Y with same domain D and target T .

Let µ be a probability distribution on {1, ..., m} N , and for all I ∈ {1, ..., n} N ,

z ∈ (X × Y ) * , let us write µ(I|z) := µ(I)E I (z|∅) J∈{1,...,n} N µ(J)E J (z|∅)
the posterior weight after having seen z of the expert

E I in Switch µ (E 1 , ..., E m ).
Let n ∈ N, and let I ∈ {1, ..., m} N . If there exists h(n) such that for all J ∈ {1, ..., m} N , J ∼ n I =⇒ µ(J) h(n), then, for all z such that φ(z)

:= 1 + |z ∩ (D × T )| n: max J∈{1,...,m} N J∼ φ(z) I µ(J|z) h(n). (4.28) 6
Proof. The idea behind this proof is that one of the E J for J ∼ n I makes the best possible predictions, and consequently, its posterior weight will be greater than its prior weight. More precisely:

Let z = z N ∈ (X × Y ) N .
For 1 i φ(z) -1, we write d(i) = inf{j ∈ N|φ(z j ) = i + 1} the index of the i-th point predicted by the E k , and f i (z) := argmax k E k (z d(i) |z d(i)-1 ) the index of the best expert at local time k. 7 Notice that by definition of the d(i) the E k issue a prediction for z d(i) , i.e. y d(i) ∈ T and (z

d(i)-1 , x d(i) ) ∈ D.
Let us now define the sequence J * (depending on z) by:

• J * i = f i (z) if i < φ(z) • J * i = I i if i φ(z)
. By definition, J * ∼ φ(z) I, so J * ∼ n I. Moreover, for all J ∈ {1, ..., m} N , we have:

E J (z|∅) = φ(z)-1 i=1 E J (z d(i) |z d(i)-1 ) (4.29) φ(z)-1 i=1 E f i (z) (z d(i) |z d(i)-1 ) = φ(z)-1 i=1 E J * (z d(i) |z d(i)-1 ) = E J * (z|∅), (4.30) since E J * (z d(i) |z d(i)-1 ) = E J * i φ(z d(i)-1 ) (z d(i) |z d(i)-1 ) = E J * i (z d(i) |z d(i)-1
). Consequently, we have:

µ(J * |z) = µ(J * )E J * (z|∅) J∈{1,...,n} N µ(J)E J (z|∅) (4.31) µ(J * )E J * (z|∅) J∈{1,...,n} N µ(J)E J * (z|∅) = µ(J * ) J∈{1,...,n} N µ(J) = µ(J * ) h, (4.32)
which is what we wanted.

Restriction

This simple operation consists in restricting the domain of an expert to a smaller set: 

E |D (x, y|z) = E(x, y|z) (4.33)
for all (z, x) ∈ D , for all y ∈ Y .

Union

There are two different kinds of union for experts: a domain union (uniting two experts with disjoint domains), and a target union (uniting two experts with disjoint targets): Suppose that we have two experts for regression: E 1 , an expert on [0, 0.5), and E 2 , an expert on [0.5, 1). It is straightforward to define an expert E 1 ∪ E 2 on [0, 1) that will use either E 1 or E 2 , depending on where x falls. This is the domain union.

However, if we have two density estimation experts E 1 and E 2 , respectively on [0, 0.5) and on [0.5, 1), we need a way to weight each of these experts in order to obtain a density on [0, 1). This is the target union.

Defining the former is straightforward, but for the latter (which we want to use for density estimation), another expert has to be added: we need to choose if we will be using E 1 or E 2 for the next prediction.

Domain union

Given two different experts E 1 and E 2 with disjoint domains D 1 and D 2 , it is straightforward to obtain a single expert with target D 1 ∪ D 2 by using either E 1 or E 2 , depending on where the data falls: Definition 4.20. If E 1 , ...E n are experts with same target T and disjoint domains D i , then the union of the (E i ), noted n i=1 E i , is the expert with domain i D i and target T defined by:

( n i=1 E i )(y|z, x) = n i=1 E i (z |z, x)1 (z,x)∈Dom(E i ) (4.34) for (z, x) ∈ D, y ∈ T .
An interesting property of the domain union is that if the experts do not peek out, it is essentialy a product: Lemma 4.21. Let E 1 , ..., E m be m experts from X to Y with target T , with respective disjoint domains D 1 , ..., D n . We have:

i E i (z n |z) = i E i (z n |z), (4.35) for any z ∈ (X × Y ) * , z n ∈ (X × Y ) n .
Proof. Let us write z k = (x k , y k ) for all k, and D = i D i . We have:

i E i (z n |z) = n l=1 (z • z l-1 ,y l )∈D y l ∈T i E i (z l |z • z l-1 ) (4.36) = n l=1 (z • z l-1 ,y l )∈D y l ∈T m i=1 1 (z • z l-1 ,x)∈Dom(E i ) E i (z l |z • z l-1 ). (4.37)
Since the E i have disjoint domains, all the sums above have exactly one term. Consequently, if we regroup all of these terms according to the expert used:

i E i (z n |z) = m i=1 n l=1 z • z l-1 ,x∈Dom(E i ) y l ∈T E i (z l |z • z l-1 ) (4.38) = m i=1 E i (z n |z), (4.39)
which is what we wanted.

Target union

Given two density experts E 1 and E 2 with respective targets T 1 and T 2 , we need some way to weight them to renormalize the density.

To do so, we introduce a particular class of experts.

Definition 4.22. Let X, Y be two sets. If E is an expert from X to Y , and Y = {y 1 , ..., y n } is finite, we call E a choice expert. If X is clear from the context, we will simply write "a choice expert on Y ".

From a formal point of view, this definition is not necessary: writing that an expert is a choice expert is the statement that it will be used in a union of experts (in particular, they are only used for generation, not for prediction).

We are now able to define the target union of two or more experts: 

( n C,i=1 E i )(y|z, x) = n i=1 C(E i |z, x)E i (y|z, x)1 z,x∈T i (4.40) for (z, x) ∈ D, y ∈ T 1 ∪ ... ∪ T n .
The presence of an expert in the subscript of ∪ indicates if the union is a domain union or a target union: E 1 ∪ E 2 is a domain union, and

E 1 ∪ C E 2 is a target union.

Properties

Although these two unions are different, they have similar properties.

We write them only for the target union (for the domain union, invert the target and the domain situations, and remove the choice experts).

By definition, ∪ is commutative. It is also associative in the following sense: Proposition 4.24. Let E 1 ,E 2 ,E 3 be three X-experts, let C 1 (resp. C ) be a choice expert between E 1 and E 2 (resp. between E 1 ∪ C 1 E 2 and E 3 ). Then:

(E 1 ∪ C 1 E 2 ) ∪ C E 3 = C (E 1 , E 2 , E 3 ), (4.41)
where C is the choice expert between E 1 , E 2 and E 3 defined by

C(E 1 |z, x) = C (E 1 ∪ C 1 E 2 |z, x)C 1 (E 1 |z, x), C(E 2 |z, x) = C (E 1 ∪ C 1 E 2 |z, x)C 1 (E 2 |z, x) and C(E 3 |z, x) = C (E 3 |z, x).
Proof. Let z, x ∈ D, y ∈ T 1 ∪ T 2 ∪ T 3 . We have:

(E 1 ∪ C 1 E 2 ) ∪ C E 3 (y|z, x) = C (E 1 ∪ C 1 E 2 |z, x)E 1 ∪ C 1 E 2 (y|z, x)1 (z,x)∈T 1 ∪T 2 (4.42) + C (E 3 |z, x)E 3 (y|z, x)1 (z,x)∈T 3 (4.43) = C (E 1 ∪ C 1 E 2 |z, x)C (E 1 |z, x)E 1 (y|z, x)1 (z,x)∈T 1 (4.44) + C (E 1 ∪ C 1 E 2 |z, x)C (E 2 |z, x)E 2 (y|z, x)1 (z,x)∈T 2 (4.45) + C (E 3 |z, x)E 3 (y|z, x)1 (z,x)∈T 3 , (4.46)
which is what we wanted.

There is a form of distributive property of the union over the Bayesian combination.

The following lemma is merely a technical tool:

Lemma 4.25. If E 1 and E 2 are two experts with domain D and respective targets T 1 and T 2 , with T 1 ∩ T 2 = ∅, and if C is a choice expert between E 1 and E 2 , then we have:

(E 1 ∪ C E 2 )(z |z) = E 1 (z |z)E 2 (z |z) 1 i n z • z i ∈D×(T 1 ∪T 2 ) C(arg(z i )|z • z <i ), (4.47) with arg((x, y)) = E 1 if y ∈ T 1 and arg((x, y)) = E 2 if y ∈ T 2 , for any z, z ∈ (X × Y ) * .
Proof. Let us write z = ((x 1 , y 1 ), (x 2 , y 2 ), ...).

(E 1 ∪ C E 2 )(z |z) = 1 i n z • z i ∈D×(T 1 ∪T 2 ) C(E 1 |z • z <i )E 1 (z i |z • z <i )1 y i ∈T 1 + C(E 2 |z • z <i )E 2 (z i |z • z <i )1 y i ∈T 2 = 1 i n z • z i ∈D×T 1 C(E 1 |z • z <i )E 1 (z i |z • z <i ) 1 i n z • z i ∈D×T 2 C(E 2 |z • z <i )E 2 (z i |z • z <i ) =E 1 (z |z)E 2 (z |z) 1 i n z • z i ∈D×(T 1 ∪T 2 ) C(arg(z i )|z • z <i )
and the distributive property is the following: 

Bayes i ((E i , w i )) ∪ C Bayes j ((E j , w j )) = Bayes i,j ((E i ∪ C E j , w i w j )) (4.48)
Proof. Let z = ((x 1 , y 1 ), ..., (x n , y n )), and let us write B 1 := Bayes i ((E i , w i )) and B 2 := Bayes j ((E i , w i )). By lemma 4.25, we have:

B 1 ∪ C B 2 (z|∅) =B 1 (z|∅)B 2 (z|∅) 1 k n z k ∈D×(T ∪T ) C(arg(z k )|z <k ) = i w i E i (z|∅) j w j E j (z|∅) 1 k n z k ∈D×(T ∪T ) C(arg(z k )|z <k ). and Bayes i,j ((E i ∪ C E j , w i w j ))(z|∅) = i,j w i w j E i ∪ C E j (z|∅) = i,j w i w j E i (z|∅)E j (z|∅) 1 k n z k ∈D×(T ∪T ) C(arg(z k )|z <k ).
And as a consequence of the description of Switch as a Bayesian combination, this proposition extends to switch: 

Switch µ ((E i )) ∪ C Switch µ ((E j )) = Bayes I (E I , µ(I)) ∪ C Bayes J (E J , µ (J)) (4.50) = Bayes I,J (E I ∪ E J , µ(I)µ (J)) (4.51)

Expert trees

We can now describe the different algorithms that we will be using. The general idea is always the same: we build a tree such that each node s corresponds to an expert E s , deeper experts being more specialized, and, starting from the bottom of the tree we recursively choose if we are using the children of a node, or the node itself. More precisely:

Definition 4.28. Let X, Y be two sets. We call expert tree from X to Y a rooted tree T with root ε such that

• Each node s of T has a finite number of children. The set of the children of s is denoted by c(s).

• Each node s contains an expert E s from X to Y .

• Dom(E s ) = t∈c(s) Dom(E t )
We call weighted expert tree an expert tree T with a probability distribution µ s on {0, 1} N at each non-leaf node s.

Intuitively, E s is the local expert, and µ s corresponds to the prior probability of opening the node s (i.e. with prior probability I,it=1 µ s (I), the "tree expert" at s uses the "tree experts" at the children of s instead of the local expert at s).

Notation 4.29. If T is an expert tree, and if S is the set of leaves of T, we denote by E T the expert:

∪ s∈S E s (4.52) If T = (T k
) is a sequence of expert trees, we denote by E T the expert using E T k at time k.

As seen in Section 3.3, the CTW algorith recursively computes a Bayesian posterior at each node, finally yielding the prediction corresponding to the Bayesian combination of all the E T .

If we replace the Bayesian combination by a switching combination, we obtain another algorithm, Context Tree Switching [START_REF] Veness | Context tree switching[END_REF], but it is not a switching combination of all the E T , because Switch (E 1 , Switch(E 2 , E 3 )) cannot be written Switch(E 1 , E 2 , E 3 ) in general. Consequently, we introduce Switching patterns, that can be though of as data-dependent trees. A switching pattern assigns to each node s a sequence in I s ∈ {0, 1} N to each node, and (I s ) n indicates whether s is open (1) or closed (0) at time n. The prediction corresponding to the switching pattern is the prediction using the resulting tree.

Definition 4.30. Let T be an expert tree. We call switching pattern on T an application matching each internal node s of T to

I s ∈ {0, 1} N .
If T is an expert tree from X to Y , and I = (I s ) a switching pattern on T, for any node s of T, we define the expert E I,s by: Dom(E I,s ) = Dom(E s ) =: D, Tar(E I,s ) = Tar(E s ) =: T , and

• E I,s (y|z n , x) := 1 (Is) k =0 E s (y|z n , x) + 1 (Is) k =1 t∈c(s) E I,t (y|z n , x), for all (z n , x) ∈ D, for all y ∈ T , where k = k(s, z n ) := 1 + |{z k |1 k n, (z <k , x k ) ∈ D, y k ∈ T }|, if s is not a leaf of T. • E I,s (y|z n , x) := E s (y|z n , x) otherwise.
We define the weight w I of a switching pattern I as:

w I = s∈T s not a leaf ofT µ s (I s ) (4.53)

Context Tree Weighting

Context tree weighting has been introduced in [START_REF] Frans | The context tree weighting method: Basic properties[END_REF] for text compression.

Let T be a finite weighted expert tree, such that for any internal node s of T, µ s (0 ∞ ) + µ s (1 ∞ ) = 1. We write w s := µ s (0 ∞ ).

We denote by T s the set of subtrees of T with root s such that each node t of the subtree has either 0 or c(t) children.

We define the weight of T ∈ T s as

w T := q internal nodes of T (1 -w s )
q leaves of T q not a leaf of T w s (4.54)

It can be checked that T ∈Ts w T = 1.

Definition 4.31. We define the Context Tree Weighting algorithm corresponding to the finite weighted expert tree T as:

CTW T := Bayes T ∈Tε (E T , w T ) (4.55)
The interesting point here is that this gigantic Bayesian combination can be computed "locally", starting from the bottom nodes, and going up to the root.

Theorem 4.32. Let T be a weighted expert tree with w s := µ s (0 ∞ ) = 1 -µ s (1 ∞ ). For each node s of T, we define the expert CTW s as follows:

The target of CTW s is Tar(E s ), its domain is Dom(E s ), and

CTW s = Bayes   (E s , w s ), ( Cs,t∈c(s) CTW t , 1 -w s )   , (4.56)
if s is an internal node of T, and

CTW s = E s (4.57) if s is a leaf of T.
With these notations, we have:

CTW s = Bayes T ∈Ts (E T , w T ) , (4.58) 
or equivalently:

CTW s = Bayes I switching pattern on Ts (E I,s , w I ) , (4.59)

where, if I = (I s ), w I = s nodes of T µ s (I s ).

In particular, CTW ε = CTW T (4.60)

Proof. By induction on the nodes, starting from the leaves.

If s is a leaf, there is nothing to prove (the two experts are E E(s) ). Now, let s be an internal node such that the hypothesis is true for all descendents of s, and let {t 1 , ..., t n } = c(s). By induction and lemma 4.26, we have:

n i=1 CTW t i = n i=1 Bayes T ∈Tt i (E T , w T ) =Bayes T 1 ∈Tt 1 ... Tn∈Tt n (E T 1 ∪ ... ∪ E Tn , w T 1 ...w Tn ) =Bayes T ∈Ts T ={s} E T , 1 1 -w s w T
The theorem then easily follows from Corollary 4.11 and the fact that

T ∈Ts,T ={s} w T = 1 -w s .
For the equivalence between (4.58) and (4.59), just remark that the only switching patterns I with non-zero weight are constant switching patterns, so E I,s = E T , where T is the subtree of T s corresponding to the switching pattern I, and w I = w T , so the two Bayesian combinations are exactly the same.

In the case of text compression, the original Context Tree Weighting algorithm uses Krichefsky-Trofimov estimators as local experts. Other experts can be used, as in [START_REF] Alexander | Adaptive context tree weighting[END_REF], which uses "discounted" KT estimators (more weight on recent observations). Conditional NML [START_REF] Rissanen | Conditional NML universal models[END_REF] could also be a possibility.

It is also possible to recover the more recent Partition Tree Weighting algorithm [START_REF] Veness | Partition tree weighting[END_REF] at fixed time horizon. We give more details about this in Section 4.3.4.3.

There are several more conditions for CTW to be implemented efficiently, they will be discussed in Section 4.3.4.

Context Tree Switching

[VNHB11] introduced a version of context tree switching, using a switch inspired by [START_REF] Van Erven | Catching up faster by switching sooner: a predictive approach to adaptive estimation with an application to the AIC-BIC dilemma[END_REF]. We will define a more general algorithm, by replacing the Bayesian combination in context tree weighting (4.56) by a switch. Definition 4.33. Let T be a finite weighted expert tree. For each node s of T, we define the expert CTS s as follows: The target of CTS s is Tar(E s ), its domain is Dom(E s ), and:

CTS s = Switch µs   E s , t∈c(s) CTS t   , (4.61)
if s is an internal node of T, and

CTS s = E s (4.62) if s is a leaf of T.
We write

CTS T := CTS ε . (4.63)
As for the context tree weighting algorithm, an unbounded depth context tree switching algorithm can be defined.

This algorithm does not generalize Definition 4.31 in the sense that Context Tree Switching will not actually be a switch combination of context trees. Actually, CTS is not even a Bayesian combination of switching patterns. However, it is still possible to obtain theoretical guarantees.

Properties

As an immediate consequence of the definition of the switch, we have: Lemma 4.34. Let X, Y be two sets, Let µ be a probability distribution on {0, 1} N , let E 0 , E 1 be two experts, and let E = Switch µ (E 0 , E 1 ). There exists an expert E from X to Y such that

E = Bayes((E 0 , k 0 ), (E 1 , k 1 ), (E , 1 -k 0 -k 1 )), (4.64) 
where

k 0 = µ(0 ∞ ) and k 1 = µ(1 ∞ ).
Proof. (4.64) is exactly the definition of switch if

E (z|∅) = 1 1 -k 0 -k 1 I∈{0,1} N \{(0 ∞ ),(1 ∞ )} µ(I)E I (z|∅) (4.65)
and therefore:

Corollary 4.35. Let θ ∈ R, let µ be a probability distribution on {0, 1} N such that min(µ(0 ∞ ), µ(1 ∞ )) θ 2
, let E 0 , E 1 be two experts, and let E = Switch µ (E 0 , E 1 ). We have:

E(z|∅) θ 2 (E 0 (z|∅) + E 1 (z|∅)) (4.66) for all z ∈ (X × Y ) *
θ corresponds to the freezing probability at t = 0 in [START_REF] Van Erven | Catching up faster by switching sooner: a predictive approach to adaptive estimation with an application to the AIC-BIC dilemma[END_REF] (hence the factor 1 2 . Finally, Theorem 4.36. Let T be a finite weighted expert tree, let s be a node of T, and let T s be the set of subtrees of T with root s. There exists an expert E on Tar(E s ) such that

CTS s = Bayes (E T , w s (T )) T ∈Ts , (E , 1 - w s (T )) (4.67)
where, if

θ s := min(µ s (0 ∞ ), µ s (1 ∞ )):
w s (T ) = q∈T q not a leaf of T θ q , (4.68)

In particular:

CTS s (z|∅) T ∈Ts w(T )E T (z|∅), (4.69) 
Proof. We give the proof in the binary case, the generalization is straightforward. We denote the children of s by s0 and s1. By induction on |s|. If |s| = D, then T s = {s}, and we do have

CTS s (x|∅) = E s (x|∅) θs 2 E s (x|∅),
which is what we wanted. Now, let s such that 0 |s| D -1, and suppose that for all q longer than s, CTS q (x|∅)

T ∈Tq w(T )E T (x|∅). By Lemma 4.34, there exists E such that:

CTS s = Switch s (E s , CTS s0 ∪ CTS s1 ) (4.70) = Bayes (E s , θ s 2 ), (CTS s0 ∪ CTS s1 , θ s 2 ), (E , 1 -θ s ) (4.71)
Now, by induction, let E 0 and E 1 be such that:

CTS s0 = Bayes (E T , w s0 (T )) T ∈T s0 , (E 0 , 1 - w s0 (T )) . (4.72) CTS s1 = Bayes (E T , w s1 (T )) T ∈T s1 , (E 1 , 1 - w s1 (T )) . (4.73)
We have, by Lemma 4.26:

CTS s0 ∪CTS s1 = Bayes     (E T ∪ E T , w s0 (T )w s1 (T )) T ∈T s0 T ∈T s1 , (E , 1 - T ∈T s0 T ∈T s1 w s0 (T )w s1 (T )     ,
(4.74) where E contains all the other terms. Now, by combining equations (4.71) and (4.74), and using Lemma 4.26, we obtain:

CTS s = Bayes     (E s , θ s 2 ), E T ∪ E T , θ s 2 w s0 (T )w s1 (T ) T ∈T s0 T ∈T s1 , (E , 1 - θ s 2 - T ∈T s0 T ∈T s1 θ s 2 w s0 (T )w s1 (T ))     , (4.75) which is what we wanted.
In particular, CTS s (z|∅) lCTW s (z|∅) if the product q all prefixes θ q converges to l, and we have l > 0 in any of the following cases:

• T is finite.

• min(µ s (0 ∞ ), µ s (1 ∞ )) 1 2 (1 -2 -|s| |s| 2 )
. This is the case if the probability of starting unfrozen for a node at depth d is less than 2 -d d 2 (with prior opening weight 1 2 ). • We are given a sequence of positive numbers (u t ) such that u t converges. Let N t be the number of nodes opened at time t. The probability of starting unfrozen for a node s is then a |s| u ot(s) , where (a k ) sums to one. However, these conditions essentially amounts to preventing the algorithm from switching, which is not satisfying. In Chapter 5, we will show that in a particular case, CTS does behave better than CTW.

To do so, we will need the following lemma.

Lemma 4.37. Let T be a (possibly infinite) weighted expert tree, and let n 0 ∈ N. Let I := (I s ) be a switching pattern on T such that for all s,

I s = 0 ∞ or I s ∈ {0 k 1 ∞ |0 k n} (i.
e. the expert uses E s for the first k points, and then switches to the children of s). For all s ∈ T, we have:

CTS Ts (z|z ) h(n 0 ) |(Ts|I)| E I|s (z|z ), (4.76) for all z, z ∈ (X × Y ) * such that φ(z ) := 1 + |z ∩ E s | n 0 , 8 where: • h(n 0 ) := inf{µ s (J)|s ∈ T, (J ∼ n+1 1 ∞ or J = 0 ∞ )}, 9
• I|s is the restriction of I to T s ,

• T s |I is the tree obtained by removing the descendents of all the nodes t such that I t = 0 ∞ from T s .

Proof. If T|I is infinite, then h(n 0 ) |(Ts|I)| = 0 and there is nothing to prove. 10 We now suppose that T|I is finite, and we proceed by induction on s, starting with the leaves of T|I.

Preliminary computation.

Let s ∈ T|I, let k ∈ 0, n 0 ∪ {∞} such that I s = (0 k 1 ∞ ).
Let us denote T = Tar(E s ), D = Dom(E s ), and let t 1 , ..., t |c(s)| be an enumeration of the children of s. Let z ∈ (X × Y ) * such that φ(z) n 0 . We have, for all n, for all

z n = (z 1 , ..., z n ) ∈ (X × Y ) n : CTS s (z n |z) = Switch µs (E s , t∈c(s) CTS t )(z n |z) (4.77) = Is∈{0,1} N µ s (I s |z) n l=1   1 Is φ(z • z l ) =0 E s (y l |z • z l-1 , x l ) + 1 I s φ (z • z l ) =1 t∈c(s) CTS t (y l |z • z l-1 , x l )   .
(4.78)

The first φ(z) -1 terms of I s are not used in the product above, so we regroup all the terms corresponding to sequences ending as I s :

CTS s (z n |z) Is∈{0,1} N Is∼ φ(z) Is µ s (I s |z) n l=1   1 Is φ(z • z l ) =0 E s (y l |z • z l-1 , x l ) + 1 I s φ(z • z l ) =1   t∈c(s) CTS t   (y l |z • z l-1 , x l )   (4.79) max Is∈{0,1} N Is∼ φ(z) Is µ s (I s |z) n l=1   1 φ(z • z l ) k E s (y l |z • z l-1 , x l ) + 1 φ(z • z l )>k   t∈c(s) CTS t   (y l |z • z l-1 , x l )   .
(4.80) Now, by Lemma 4.18, max

Is∈{0,1} N Is∼ φ(z) Is µ s (I s |z) h(n 0 ), so: CTS s (z n |z) h(n 0 ) n l=1   1 φ(z • z l ) k E s (y l |z • z l-1 , x l ) + 1 φ(z • z l )>k   t∈c(s) CTS t   (y l |z • z l-1 , x l )   , (4.81) h(n 0 ) m l=1 E s (y l |z • z l-1 , x l ) n l=m+1   t∈c(s) CTS t   (y l |z • z l-1 , x l ) (4.82)
where m := max(sup{l|1 l n, φ(z • z l ) k}, 0)

h(n 0 ) m l=1 E s (y l |z • z l-1 , x l )   t∈c(s) CTS t   (z m+1:n |z • z m ), (4.83) 
where we define z 0 := ∅ and 0 l=1 f (l) := 1, for any f . So finally, we have:

CTS s (z n |z) h(n 0 ) m l=1 E s (y l |z • z l-1 , x l )   t∈c(s) CTS t (z m+1:n |z • z m )   (4.84)
by lemma 4.21.

Actual induction.

If s is a leaf of T|I, then by definition, k = ∞, so we have m = n, and:

CTS s (z n |z) h(n 0 ) n l=1 E s (y l |z • z l-1 , x l ) (4.85) h(n 0 )E s (z n |z) = h(n 0 )E I|s (z n |z) (4.86)
by definition of E I|s . This is what we wanted.

If s is any non-leaf node (of T|I) such that (4.76) is true for all descendents of s, then k = ∞ by definition of T|I (so k n 0 ). Now, by defintion of m:

• either φ(z) > k, and then m = 0, so z m = 0, and φ(z • z m ) = φ(z) n 0

• or φ(z) k, and then, by definition of m, φ(z • z m ) k n 0

In both cases φ(z • z m ) n 0 , so by induction, and using the definition of

E I|s : CTS s (z n |z) h(n 0 ) m l=1 E I|s (y l |z • z l-1 , x l )   t∈c(s) h(n 0 ) |(Tt|I)|   t∈c(s) E I|t (z m+1:n |z • z m ) (4.87) h(n 0 ) m l=1 E I|s (y l |z • z l-1 , x l )   t∈c(s) h(n 0 ) |(Tt|I)|     t∈c(s) E I|t   (z m+1:n |z • z m ) (4.88)
by Lemma 4.21 again, so finally:

CTS s (z n |z) h(n 0 ) |(Ts|I)| E I|s (z m |z)E I|s (z m+1:n |z • z m ) (4.89) h(n 0 ) |(Ts|I)| E I|s (z n |z) (4.90)
This is what we wanted.

Edgewise context tree algorithms

Since we cannot always control where our data falls, it is possible to have a lot of points on the left of the tree, and almost none on the right. If we open the root, we will predict better on the left, but we will not have enough points on the right, while if we close the root, we will not be able to use enough the information we have on the left. This problem can be solved if instead of opening or closing nodes, we open and close vertices. This leads us to the following definition:

We can now define the edgewise context tree switching algorithm11 :

Definition 4.38. We call edgewise weighted expert tree an expert tree T such that a probability distribution µ s→t on {0, 1} N is associated to each edge s → t.

Intuitively, E s has the same role as in a weighted expert tree, but instead of controlling the status (open/closed) of a node s, µ s→t controls the status of the vertex s → t.

The edgewise context tree switching algorithm can now be defined:

Definition 4.39. Let T be a finite edgewise weighted expert tree. For each s ∈ T, we define the edgewise context tree switching expert ECTS s as follows:

The target of ECTS s is Tar(E s ), its domain is Dom(E s ), and:

ECTS s = t∈c(s) Switch µs→t (ECTS t , (E s ) |Dom(Et) ) (4.91)
is s is an internal node of T, and

ECTS s = E s (4.92)
otherwise.

We write ECTS T := ECTS ε .

(4.93)

In the case that for all s ∈ T and t ∈ c(s), µ s→t (0 ∞ ) + µ s→t (1 ∞ ) = 1, which is of particular interest, we will use the denomination "edgewise context tree weighting" (ECTW).

As for regular context tree switching, we will study this algorithm by using edgewise switching patterns, which are a straightforward generalization: instead of opening or closing nodes, we open or close edges, and we use the deepest expert with the right domain that can be attained with open edges. In other words, I s→t controls whether we use the father E s (0) or the child E t (1): Definition 4.40. Let T be an expert tree. We call edgewise switching pattern on T an application I matching each edge s → t to

I s→t ∈ {0, 1} N .
If T is an expert tree from X to Y , and I = (I s→t ) an edgewise switching pattern on T, for any node s of T, we define the expert E I,s by: Dom(E I,s ) = Dom(E s ) =: D, Tar(E I,s ) = Tar(E s ) =: T , and

• E I,s (y|z, x) :=   t∈c(s) E Is→t   (y|z, x)
for all (z, x) ∈ D, for all y ∈ T , where

E Is→t (y|z, x) := 1 (Is→t) φ t (z) =0 (E s ) |Dom(Et) (y|z, x) + 1 (Is→t) φ t (z) =1 E I,t (y|z, x), with φ t (z n ) := 1 + |{z k |1 k n, (z <k , x k ) ∈ Dom(E t ), y k ∈ T }|, if s is not a leaf of T.
• E I,s (y|z, x) := E s (y|z, x) otherwise.

We will write E I := E I,ε , where ε is the root of T. We define the weight w I of a switching pattern I as:

w I = s∈T t∈c(s) µ s→t (I s→t ).
(4.94)

Edgewise Context Tree Weighting as a Bayesian combination

Edgewise context tree weighting behaves just as regular context tree weighting, except that now, a node can activate separately its children.

Theorem 4.41. Let T be an edgewise weighted expert tree with 

w s→t := µ s→t (0 ∞ ) = 1 -µ s→t (1 ∞ ).
µ s→t (I s→t ).
Sketch of the proof. The general idea is the same as in Theorem 4.32, but the terms appearing in the equations are more complicated.

For simplicity, we suppose that T is a binary tree, and we proceed by induction on s starting with the leaves. If s is a leaf, there is nothing to prove.

Suppose s is an internal node of T such that (4.95) holds for all descendents of s, and let us write c(s) = {t 1 , t 2 }.

We have, by Lemma 4.26:

ECTW s = t∈c(s)
Bayes ((E s ) |Dom(Et) , w s→t ), (ECTS 

+ ECTW t 1 ∪ ECTW t 2 , (1 -w s→t 1 )(1 -w s→t 2 ) (4.102)
And by induction, these four terms are Bayesian combinations corresponding respectively to switching patterns such that:

I s→t 1 = I s→t 2 = 0 ∞ , I s→t 1 = 0 ∞ and I s→t 2 = 1 ∞ , I s→t 1 = 1 ∞ and I s→t 2 = 0 ∞ , and I s→t 1 = I s→t 2 = 1 ∞ ,
with their respective weights.

General properties of ECTS

We also have an analogous of Lemma 4.37 and its corollary, where the switching patterns are replaced by edgewise switching patterns: Lemma 4.42. Let T be a (possibly infinite) weighted expert tree, and let n 0 ∈ N. Let I := (I s→t ) be an edgewise switching pattern on T such that for all s, t,

I s→t = 0 ∞ or I s→t ∈ {0 k 1 ∞ |0 k n 0 }.
For all s ∈ T|I such that s is not a leaf of T|I,12 we have:

ECTS Ts (z|z ) h(n 0 ) n edge (Ts|I) E I|s (z|z ), (4.103)
for all z, z ∈ (X × Y ) * such that φ s (z ) := 1 + |z ∩ E s | n 0 ,13 where:

• h(n 0 ) := inf{µ s→t (J)|s ∈ T, t ∈ c(s), (J ∼ n 0 +1 1 ∞ or J = 0 ∞ )}, 14
• I|s is the restriction of I to T s ,

• T|I is the tree obtained by removing the descendents of all the nodes t such that I s→t = 0 ∞ from T, where s is the father of t.

• n edge (T) := |T| -1 is the number of edges of T.

Proof. The proof is essentially the same as the proof of Lemma 4.37:

We work by induction on T |I.

If T s |I is infinite, then h(n 0 ) |(Ts|I)| = 0 and there is nothing to prove. 15We now suppose that T s |I is finite, and we proceed by induction on s, starting with the nodes of T s |I whose only children are leaves.

Preliminary computation.

Let s be a non-leaf node of T|I. Let us denote T = Tar(E s ), D = Dom(E s ), and let t 1 , ..., t |c(s)| be an enumeration of the children of s. Let z ∈ (X × Y ) * such that φ s (z) n 0 . We have, for all n, for all Let k = k(t) ∈ 0, n 0 ∪ {∞} such that I s→t = (0 k 1 ∞ ). Now, by Definition 4.14, for all t ∈ c(s), we have:

z n = (z 1 , ..., z n ) ∈ (X × Y ) n : ECTS s (z n |z) =   t∈c(s) Switch µs→t (ECTS t , (E s ) |Dom(Et) )   (z n |z) (4.104) = t∈c(s) Switch µs→t (ECTS t , (E s ) |Dom(Et) )(z n |z) =:
S t = Is→t∈{0,1} N µ s→t (I s→t |z) n l=1 1 I (s→t) φ(z • z l ) =0 (E s ) |Dom(Et) (y l |z • z l-1 , x l ) + 1 I (s→t) φ (z • z l ) =1 ECTS t (y l |z • z l-1 , x l ) .
(4.106)

The first φ t (z) -1 terms of I s are not used in the product above, so we regroup all the terms corresponding to sequences ending as I s :

S t I s→t ∈{0,1} N I s→t ∼ φ t (z) I s→t µ s→t (I s→t |z) n l=1 1 I (s→t) φ t (z • z l ) =0 (E s ) |Dom(Et) (y l |z • z l-1 , x l ) + 1 I (s→t) φ t (z • z l ) =1 ECTS t (y l |z • z l-1 , x l ) (4.107)    max I s→t ∈{0,1} N I s→t ∼ φ t (z) I s→t µ s→t (I s→t |z)    n l=1 1 I (s→t) φ t (z • z l ) =0 (E s ) |Dom(Et) (y l |z • z l-1 , x l ) + 1 I (s→t) φ t (z • z l ) =1 ECTS t (y l |z • z l-1 , x l ) (4.108)
Now, by Lemma 4.18, max

I s→t ∈{0,1} N I s→t ∼ φ t (z) I s→t µ s→t (I s→t |z) h(n 0 ), so: S t h(n 0 ) n l=1 1 Is→t φ t (z • z l ) =0 (E s ) |Dom(Et) (y l |z • z l-1 , x l ) + 1 Is→t φ t (z • z l ) =1 ECTS t (y l |z • z l-1 , x l ) , (4.109) 
h(n 0 ) m l=1 (E s ) |Dom(Et) (y l |z • z l-1 , x l ) n l=m+1 ECTS t (y l |z • z l-1 , x l ) (4.110)
where m = m(t) := max(0, sup{l|1 l n, φ t (z • z l ) k}), since by definition of the I s→t ,

I s→t φ t (z • z l ) = 0 iff l m. h(n 0 ) (E s ) |Dom(Et) (z m |z) ECTS t (z m+1:n |z • z m ), (4.111) 
Where we define z 0 := ∅ and 0 l=1 f (l) := 1, for any f . In particular, if I s→t = 0 ∞ , we have: k(t) = ∞, so m = n, and: 

S t = Switch µs→t (ECTS t , (E s ) |Dom(Et) )(z n |z) h(n 0 )(E s ) |Dom(Et) (z n |z) = h(n 0 )E Is→t (z n |z), ( 4 
s (z n |z) = t∈c(s) I s→t =0 ∞ S t t∈c(s) I s→t =0 ∞ S t . (4.116) If t is such that I s→t = 0 ∞ , then k(t) = ∞ by definition of T|I (so k(t) n 0 ). So, by definition of m, φ t (z • z m ) k(t) n 0
Consequently, by induction, using (4.111):

S t h(n 0 ) (E s ) |Dom(Et) (z m |z) ECTS t (z m+1:n |z • z m ) (4.117) h(n 0 ) (E s ) |Dom(Et) (z m |z) h(n 0 ) n edge (Tt|I) E I|t (z m+1:n |z • z m ) (4.118) h(n 0 ) n edge (Tt|I)+1 (E s ) |Dom(Et) (z m |z)E I|t (z m+1:n |z • z m ) (4.119) h(n 0 ) n edge (Tt|I)+1 E Is→t (z m |z)E Is→t (z m+1:n |z • z m ) = h(n 0 ) n edge (Tt|I)+1 E Is→t (z n |z), (4.120) 
by definition of E Is→t . So by injecting (4.112) and (4.120) in (4.116): 

ECTS s (z n |z) = t∈c(s) I s→t =0 ∞ S t t∈c(s) I s→t =0 ∞ S t (4.121) t∈c(s) I s→t =0 ∞ h(n 0 ) n edge (Tt|I)+1 E Is→t (z n |z) t∈c(s) I s→t =0 ∞ (h(n 0 )E Is→t (z n |z)) (4.122) and since n edge (T s |I) = |c(s)| + t∈c(s) I s→t =0 ∞ n edge (T t |I), ECTS s (z n |z) h(n 0 ) |c(s)|+ t∈c(s) I s→t =0 ∞ n edge (Tt|I) t∈c(s) E Is→t (z n |z) = h(n 0 ) n edge (Ts|I) t∈c(s) E Is→t (z n |z).

Practical use

For all these expert tree algorithms to be implemented properly, it is necessary to make sure that new data points only affects the experts in one branch of the tree: this is exactly the no peeking-out condition.

We only defined our algorithms on finite expert trees. As for the original CTW algorithm, it is possible to define unbounded depth algorithms on expert trees if the union involved at the nodes of the tree are domain unions. We do this in the following section.

Infinite depth algorithms

For an infinite depth CTW16 algorithm to be defined, we need that for all z ∈ (X × Y ) * , there exists a weighted expert tree T such that for all T such that T is a subtree of T, CTS T (z|∅) = CTS T (z|∅).

This condition is satisfied if the experts in T are compatible. Moreover, we want to prevent two different points from corresponding to the same infinite branch of the tree.

This leads us to the following definition:

Definition 4.43. We say that an expert tree T is a proper expert tree if:

• The experts in T are compatible.

• The experts in T do not peek out.

• lim k→∞ sup{|Dom(E s )|, |s| = k} = 0 (i.e. the domains shrink when depth increases)17 

Now, suppose we are trying to compute CTW T (y n |z n-1 , x n ) under the following conditions:

• T is a full expert tree with depth D "large".

• T is proper.

• The x i are pairwise distinct.

• We define s 0 as the first node (in terms of depth) satisfying x n ∈ Dom(E s 0 ) and ∀k < n, x k / ∈ Dom(E s 0 ) ("D large" in the first condition means "s 0 exists").

In that case have CTW s 0 (z n |z n-1 ) = CTW s 0 (z n |∅) (no peeking out), and since the experts in T are compatible, CTW s 0 (z n |∅) = E s 0 (z n |∅) (if nothing has been seen in the context s yet, then a simple proof by induction yields CTW s (∅) = E s (∅)). In particular, CTW s 0 (z n |z n-1 ) does not depend on D for D large: the only nodes of the tree for which computations are needed are the nodes that have already been visited at least once.

Notice however that for practical implementation of the infinite depth algorithm, it is necessary to store z n at the node s 0 . If another point z m with m > n is such that z m ∈ Dom(E s 0 ), then z n has to be moved to the first node not also used for z m . The algorithm is described in the Appendix. Definition 4.44. Let T be a (not necessarily finite) proper weighted expert tree.

We define the Context Tree Weighting expert corresponding to T by: Tar(CTW T ) = Tar(CTW T 0 ), Dom(CTW T ) = Dom(CTW T 0 ) ∩ D, and:

CTW T (z n |z n-1 ) = lim D→∞ CTW T D (z n |z n-1 ), (4.124)
where T D is the subtree of T obtained by removing all nodes at depth > D, and

D = {(x 1 , y 1 ), ..., (x n , y n ), x n+1 ∈ (X × Y ) * × X|∀k, k ∈ {1, ..., n + 1}, ∃s ∈ T, (x k ∈ Dom(E s ) and x k / ∈ Dom(E s ))}.
In the infinite case, we restrict the domain to make sure that the Bayesian posteriors can still be normalized. Indeed, (z n , x n+1 ) ∈ D ensures that only a finite number of experts will have to be considered to compute the prediction CTW T (y n+1 |z n , x n+1 ). On [0, 1], if T is proper and if the x i are i.i.d following a probability distribution with bounded density, x n ∈ D with probability one, because of the condition lim k→∞ sup{|Dom(E s )|, |s| = k} = 0. 4.3.4.1.1 Properties Lemmas 4.37 and 4.42, stating that the Context Tree Switching algorithms do "better" than given sequences of trees can be generalized to the infinite case. More precisely, we have: Lemma 4.45. Let T be a proper infinite weighted expert tree. Let I := (I s ) be a switching pattern on T such that:

• for all s, I s ∈ {0 ∞ , 01 ∞ , 001 ∞ }.
• There exists D ∈ N such that for all s such that |s| = D, I s = 0 ∞ . For all s ∈ T, we have:

CTS Ts (z|∅) h 2 D+1 -1 E I|s (z|∅), (4.125)
for all z ∈ (X × Y ) * , where I|s is the restriction of I to T s , and h = inf{µ t (J)|t ∈ T,

(J ∼ 3 1 ∞ or J = 0 ∞ )}.
Proof. Direct application of Lemma 4.37 with n 0 = 2, noting that a binary tree with maximal depth D has 2 D+1 -1 nodes.

Lemma 4.46. Let T be a proper infinite edgewise weighted expert tree. Let I := (I s→t ) be a switching pattern on T such that:

• for all s, I s→t ∈ {0 ∞ , 01 ∞ , 001 ∞ }.

• There exists D ∈ N such that for all s such that |s| = D, for all t ∈ c(s),

I s→t = 0 ∞ .
For all s ∈ T, we have:

ECTS Ts (z|∅) h 2 D-|s|+2 -2 E I|s (z|∅), (4.126)
for all z ∈ (X × Y ) * , where I|s is the restriction of I to T s , and

h = inf{µ t→t (J)|t ∈ T, t ∈ c(t), (J ∼ 3 1 ∞ or J = 0 ∞ )}.
Proof. Direct application of Lemma 4.42 with n 0 = 2, noting that a binary tree with maximal depth D has 2 D+1 -2 edges, and that the depth of

T s |I is D + 1 -|s|.
We now give some example of experts that could be used for expert tree algorithms in different situations.

Density estimation

The algorithms above have been described only for experts that can work with domain union. It is not the case for density estimation experts, which need target union. The algorithms can be adapted by adding at each node s a choice expert C s for the union at s.

It is however harder to define an unbounded CTW algorithm for density estimation, since contrarily to the domain union case, the sequence (CTW T D ) D∈N is not constant at infinity.

To give more intuition on Context Tree Weighting applied to density estimation, we give an example with one point:

Logarithmic singularity with only one point. Consider the following weighted expert tree for density on [0, 1]: each node s of T has two children: s0 and s1, for each s, E s is the uniform density expert with target the set of numbers whose binary expansion start with s, w s = 1 2 for all s, and the choice experts C s are defined by: C s (E s0 |x n ) = |{k∈{1,...,n}|x k ∈Dom(E s0 )}| |{k∈{1,...,n}|x k ∈Dom(Es)}| if {k ∈ {1, ..., n}|x k ∈ Dom(E s )} = ∅, and C s (E s0 |x n ) = 1 2 otherwise. Then we have: Proposition 4.47. The density φ x 0 output by the CTW T algorithm with T described above after having observed one single point x 0 = i 1 a i 2 -i (with a i = 0 or 1) satisfies:

φ x 0 ( b i 2 -i ) = 1 2 inf{i, a i = b i }, (4.127) 
where b i = 0 or 1.

In particular, we have φ 0 (x) = -log 2 (x) .

Proof. By definition of E s , we have x 0 ∈ Tar(E s ) iff s is a prefix of (a 1 , a 2 , ...). Now, let

x := i 1 b i 2 -i ∈ [0, 1] \ {x 0 }. CTW T (x|x 0 ) = Bayes T (E T , w T )(x|x 0 ) (4.128) = T w T E T (x 0 |∅) T w T E T (x 0 |∅) E T (x|x 0 ) (4.129) = T w T E T (x|x 0 ), (4.130) since E T (x 0 |∅) = 1 and thus T w T E T (x 0 |∅) = T w T = 1.
We now regroup the trees according to the leaf containing x 0 . Let us denote by f x 0 (T ) the leaf of T such that x 0 ∈ Dom(E fx 0 (T ) ):

CTW T (x|x 0 ) = ∞ n=0 T fx 0 (T )=a 1 ,...,an w T E T (x|x 0 ). (4.131)
If f x 0 (T ) = a 1 , ..., a n , then E T (x|x 0 ) = 2 n 1 inf{i,a i =b i }>n . Indeed, the choice expert ensures that E T (x|x 0 ) = E fx 0 (T ) (x|x 0 ) if x ∈ Dom(E fx 0 (T ) ) and E T (x|x 0 ) = 0 otherwise.

Moreover, E T (x 0 |∅) = 1 for all T . So we have:

CT W T (x|x 0 ) = ∞ n=0
2 n 1 inf{i,a i =b i }>n T fx 0 (T )=a 1 ,...,an w T .

(4.132)

But for n ∈ N, T fx 0 (T )=a 1 ,...,an w T = 1 2 n+1 , since {T |f x 0 (T ) = a 1 , ..., a n } can be characterized exactly by " the nodes ε;a 1 ; a 1 , a 2 ;...; a 1 , ..., a n-1 are open, and a 1 , ..., a n is closed".

So finally,

CTW T (x|x 0 ) = 1 2 ∞ n=0 1 inf{i,a i =b i }>n (4.133) = 1 2 inf{i, a i = b i }, (4.134)
which is what we wanted.

This proposition allows us to actually compute an unbounded CTW algorithm for T (specifically with uniform density experts, though): we just have to plug a logarithmic singularity once we reach an interval containing only one data point.

We have not used in practice though.

Text compression

The original CTW algorithm on {0, 1} can be described in the expert tree framework:

• T is an expert tree from { * } to {0, 1}.

• w s = 1/2 for all s.

• Each node s has three children: 0s and 1s, and a special symbol §s corresponding to the beginning of the word.

• Tar(E s ) = {0, 1}, and Dom(E s ) = {( * , y 1 ), ..., ( * , y n ), * |s is a suffix of § ∞ y n }.

• E s uses a Krichevsky-Trofimov estimator:

E s (i|y n ) = |{k|y k-1 ∈Dom(Es),y k =i}|+1/2 |{k|y k-1 ∈Dom(Es)}|+1
, and Definition 4.44 can be used directly for the infinite depth CTW algorithm.

It is also possible to recover the Partition Tree Weighting algorithm at fixed time horizon n = 2 K : this time, each node s has two children, s0 and s1 (notice the suffix notation), and

Dom(E s ) =

The K bits binary expansion of n starts with s ({ * } × {0, 1}) n × { * }. 18(4.135) In other words the left children of E s are used for the first half of the points seen by E s , and the right children are used for the second half.

Regression

Let us consider f : [0, 1) → R. Given x i ∈ [0, 1), we try to predict f (x i ). An expert tree framework for this problem could be for example:

• T is an expert tree from [0, 1) to R

• w s = 1/2 for all s.

• Dom(E ε ) = [0, 1), Tar(E ε ) = Y .

• Each node s has two children: s0 and s1.

• If Dom(E s ) = [a, b[, then Dom(E s0 = [a, a+b 2 [) and Dom(E s1 = [ a+b 2 , b[). • Tar(E s ) = R.
• E s can be any local regression expert on Dom(E s ) (examples of local regression experts will be given in Section 5.1).

The generalization from f : X → Y is straightforward.

We have not been able to find a general theorem showing that context tree switching behaves better than context tree weighting if we are using a version of CTS that actually switches often. However, as we are now going to show, CTS behaves better than CTW on a reasonable regression problem.

Chapter 5

Comparing CTS and CTW for regression

In this chapter, we are trying to predict the behavior of an unknown function f : [0, 1] → R. We show that in the noiseless case (i.e., we observe exactly the f (x i )), with local experts fitting a Gaussian with unknown mean and variance to the data, infinite-depth CTS is better than infinite-depth CTW in the sense that its cumulated log-loss is smaller.

Local experts

In this section, we define the experts that will be used in the context tree to give an estimate of some function f on a fixed set A ⊂ R. These experts use respectively a fixed Gaussian, a Gaussian with fixed variance and variable mean, and a Gaussian with variable mean and variance, which is the expert we will use for the comparison between CTW and CTS.

Information about conjugate priors can be found in [START_REF] Fink | A compendium of conjugate priors[END_REF].

The fixed domain condition

Most of the time, we think of a local regression expert E from X to Y as attached to a subset D of X: E will issue a prediction for x n if and only if x n ∈ D. In that case, we say that E is a fixed domain expert. More precisely:

Definition 5.1 (Fixed domain). Let E be an expert from X to Y with domain D and target T . We say that the domain of E is fixed if there exists A ⊂ X such that D = (X × Y ) * × A. In other words, a prediction is issued if and only if the last x seen is in A.

In that case we will often abuse the definition of the "domain" and write that A is the domain of E.

We will define fixed domain experts below, but the generalization is straightforward.

Blind experts

We first define an expert with fixed mean and fixed precision (inverse of variance).

Definition 5.2. Let d ∈ N, µ, τ ∈ R and D ⊂ R d . We call blind expert with domain D, mean µ and precision τ the fixed domain expert E defined by: Dom(E) = (R d × R) * × D, Tar(E) = R, and

E((x, y)|z) = √ τ √ 2π e -τ (y-µ) 2 2 (5.1) for all x ∈ D, y ∈ R
This expert is not useful by itself, but it will be a building block for the more refined Gaussian expert and Normal-Gamma expert.

Gaussian experts

Gaussian experts try to fit a Gaussian with unknown mean, but fixed precision τ to the data. Definition 5.3. Let d, t, τ 0 ∈ N, D ⊂ R d , and T ⊂ R, µ 0 , λ ∈ R. We call Gaussian expert with domain D, regularization µ 0 , λ and precision τ 0 (or with variance 1 τ 0 ) the expert noted E defined by: Dom(E) = (R d × R) * D, Tar(E) = R, and:

E(z|∅) = √ λ µ √ τ 0 √ 2π e -λ τ 0 (µ-µ 0 ) 2 2 E µ,τ 0 (z|∅)dµ (5.2) for z ∈ (R d × R) * × D × R
, where E µ,τ 0 is the blind expert with domain D, mean µ and precision τ . In other words, E is a Bayesian combination of blind experts with weights:

w µ = √ λ √ τ 0 √ 2π e -λ τ 0 (µ-µ 0 ) 2 2 . E = Bayes µ ((E µ,τ 0 , w µ )), (5.3) 
Remark. The regularization can be interpreted as Jeffreys' prior (which is uniform on µ) with additional λ observations at µ 0 .

The predictions are actually simple to compute: Proposition 5.4 (Computing predictions (conjugate prior)). Let d, n ∈ N, µ 0 , λ, τ 0 ∈ R, and let D ⊂ R. For all z ∈ (D × R) n , if E µ 0 ,λ,τ 0 denotes the Gaussian expert with domain (R × R) * × D, regularization µ 0 , λ and precision τ 0 , we have:

E µ 0 ,λ,τ 0 (.|z) = E λµ 0 +nȳ λ+n ,λ+n,τ 0 (.|∅),
(5.4)

where x := 1 m m i=1 y i is the sample mean, and:

E µ 0 ,λ,τ 0 (.|x) = N (µ 0 , 1 (λ + 1)τ 0
).

(5.5) for x ∈ D.

Normal-Gamma experts

Normal-Gamma experts try to fit a Gaussian with unknown mean and variance to the data. These are the experts we will use in the expert tree.

Definition 5.5. Let d, t ∈ N, D ⊂ R d , µ 0 ∈ R, λ, α, β > 0.
We call Normal-Gamma expert with domain D, with regularization µ 0 , λ, α, β the expert E satisfying:

Dom(E) = (R d × R) * × D,
Tar(E) = R, and:

E(z|∅) = µ τ β α √ λ Γ(α) √ 2π τ α-1 2 e -βτ e -λτ (µ-µ 0 ) 2 2 E µ,τ (z|∅)dτ dµ (5.6)
for z ∈ D × R, where E µ,τ is the blind expert with domain D, mean µ and precision τ . In other words, E is a Bayesian combination of blind experts with weights

w µ,τ = β α √ λ Γ(α) √ 2π τ α-1 2 e -βτ e -λτ (µ-µ 0 ) 2 2 : E = Bayes µ,τ ((E µ,τ , w µ,τ )), (5.7) 
where E µ,τ is the blind expert with domain D,, mean µ and precision τ .

Consequently, E is also a Bayesian combination of Gaussian experts with weights w τ = β α τ α-1 e -βτ Γ(α) (Gamma distribution on τ ):

E = Bayes τ ((E µ 0 ,λ,τ , w τ )),
(5.8)

where E µ 0 ,λ,τ is the Gaussian expert with domain D, precision τ , and regularizaion µ 0 , λ.

Remark. If λ = 2α, the regularization can be interpreted as Jeffreys' prior with additional α observations at µ 0 + β/α and α observations at µ 0 -β/α.

We have the following well-known propositions: Proposition 5.6 (Conjugate prior). Let d, n, m ∈ N, µ 0 , λ, α, β ∈ R, D ⊂ R. Let E D,µ 0 ,λ,α,β be the Normal-Gamma expert with domain D and target R with regularization µ 0 , λ, α, β. For all z ∈ (D × R) n , we have: Proposition 5.7 (Computing predictions). Let d, t ∈ N, D ⊂ R d , µ 0 , λ, α, β ∈ R, let E D,µ 0 ,λ,α,β be a Normal-Gamma expert on D with regularization µ 0 , λ, α, β, and let z = (x, y) ∈ D × R. We have:

E D,µ 0 ,λ,α,β (.|z) = E D,
E D,µ 0 ,λ,α,β (z|∅) = t 2α (y|µ 0 , β(λ + 1) αλ ), (5.10) 
where t α (.|µ, σ 2 ) is the Student distribution with α degrees of freedom, with mean µ and variance σ 2 (i.e. ∀x, t α (x|µ, σ 2 ) := t α ( x-µ σ )).

From now on, we suppose that µ 0 = 0, without loss of generality.

It is easy to check that all the experts defined in this section do not peek out (the blind experts do not peek-out since their prediction is independent of the data, and the other experts are Bayesian combinations of blind experts)1 , so they can be used for expert tree algorithms. Since we want to use infinite depth expert trees, we also have to ensure the experts are compatible. This is the objective of the next section.

Regularization in expert trees

We consider an infinite depth weighted expert tree T for regression on the interval [0, 1], as defined in Section 4.3, with a Normal-Gamma expert E s at each node s.

We are interested in the relation between the hyperparameters of the the different E s .

Since we want to use an infinite depth expert tree, the different experts we use have to be compatible. In other words, E s (.|x) must not depend on s (if x ∈ Dom(E s )). Since we know (Proposition 5.7) that E D,µ 0 ,λ,α,β (y|x) = t 2α (y|µ 0 , β(λ+1) αλ ), we must have the following condition:

Condition 5.8. We say that S satisfies condition 5.8 if S is a set of Normal-Gamma experts, and:

• µ 0 (E) = cst (we fix it to zero without loss of generality).

• α(E) = cst

• β(E)(λ(E)+1) λ(E) = cst =: B(S)
for E ∈ S.

Proposition 5.9. Let S be a set of Normal-Gamma experts. S satisfies Condition 5.8 iff for all E, E ∈ S, E and E are compatible.

In particular, an expert tree containing Normal-Gamma experts is a proper tree iff it satisfies Condition 5.8.

Proof. Let E, E ∈ S, with respective regularizations (µ 0 , λ, α, β), (µ 0 , λ , α , β ). By Proposition 5.7, E(∅) = x → t 2α (y|µ 0 , β(λ+1) αλ ), and

E (∅) = x → t 2α (y|µ 0 , β (λ +1) α λ
). Since two student distributions are equal iff they have same mean and variance, and same number of degrees of freedom, E and E are compatible iff:

• µ 0 = µ 0 • α = α • β(λ+1) αλ = β (λ +1) α λ
This is exactly condition 5.8. Consequently, the most important question when regularizing is: "how should λ (or β) change with |s| (or more precisely, with Dom(E s )) ?". This issue will be adressed in Section 5.2.1 below.

We will only consider the cases λ = K|Dom(E s )| h , with K > 0, h 0. In particular, λ = O(1) and β = O(1) uniformly on the whole tree.

Choosing the regularization

We are interested in the "best" choice of regularization among the λ(E s ) = K|Dom(E s )| h for the Normal-Gamma experts in an expert tree satisfying Condition 5.8 for regression. To do so, we will study a very simple case: regression for f : x → x on [0, 1], and sample points x i such that at time t = 2 K , each expert at depth K has seen exactly one point.

We show that in this case, the best choice is

λ(E s ) ∝ |Dom(E s )| 2 .
Notation 5.10. We denote by (u n ) n∈N the sequence defined by: u 0 = 0, and for all k, m,

if 0 m < 2 k , u 2 k +m = 2m+1 2 k+1 . If 0 m < 2 k , we write I k,m := [ m 2 k , m+1 2 k ).
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Notice in particular that the (u n ) are such that u 2 k +m is the second point in I k,m , and the first point in any I k ,m containing u 2 k +m with k > k.

We now use these (u n ) to study the behaviour of the CTW algorithm in an expert tree satisfying Condition 5.8.

Let t = 2 K , v n = (u n , f (u n )) = (u n , u n ), and let us consider an expert E at depth k, with k K. In particular, |Dom(E)| = 1 2 k , and t k = t 2 k is the number of data points actually seen by E. By Lemma A.9, we have:

-ln E(v t |∅) = (α + t k /2) ln V 0 (t k , λ) + 1 + ln 2π 2 t k + ln t k - 1 2 ln λ -α ln β + O(1), (5.11) with V 0 (t k , λ) = 2β t k +λ + λ t k +λ u i ∈Dom(E) u 2 i t k +λ + t k t k +λ 2 Var u i ∈Dom(E) (u i ) (with also t k = |{u i ∈ Dom(E)}|).
Now, since ln β = ln λ + O(1), the average cost of a point is:

- 1 t k ln E(v t |∅) = ( α t k + 1/2) ln V 0 (t k , λ) + 1 + ln 2π 2 - 1 t k ln 1 t k - 1 t k ( 1 2 + α) ln λ + O( 1 t k ),
(5.12)

= ( α t k + 1/2) ln V 0 (t k , λ) - 1 t k ( 1 2 + α) ln λ + O(1) (5.13) = α + 1/2 t k (ln V 0 (t k , λ) -ln λ) + t k -1 2t k ln V 0 (t k , λ) + O(1)
(5.14) =: φ(t k , λ) + O(1).

(5.15)

Lemma 5.11. We have, if λ = O(1): t k > 1: We now apply this to the three terms in V 0 (t + λ):

ln V 0 (t k , λ) = max [ln λ -ln t k , -2k ln 2] + O(1) if t k > 1, (5.16) ln V 0 (t k , λ) = ln λ + O(1) if t k = 1 (5.17) where V 0 (t k , λ) = 2β t k +λ + λ t k +λ u i ∈Dom(E) u 2 i t k +λ + t k t k +λ 2 Var u i ∈Dom(E) (u i ).
ln 2β t k + λ = ln Bλ (λ + 1)t k (1 + λ t k ) = ln( λ t k ) + ln B (λ + 1)(1 + λ/t k ) = ln λ -ln t k + O(1).
(5.18)

Since for all i, u i ∈ [0, 1], we have u i ∈Dom(E) u 2 i t, so:

ln λ t k + λ u i ∈Dom(E) u 2 i t k + λ ln λt k t 2 k (1 + λ t k ) 2 = ln λ -ln t k + O(1).
(5.19)

If t k = 1, Var u i ∈Dom(E i ) (u i ) = 0 and the lemma follows. If t k > 1, suppose without loss of generality that Dom(E) = [0, 1 2 k ), so that {u i ∈ Dom(E i )} = { m 2 K |m ∈ 0, 2 K-k -1 }.
Let us consider the (2 K u i ), and let us write A = 2 K-k-1 . Their average is ū = A 2 , so

Var u i ∈Dom(E i ) (2 K u i ) = 1 A + 1 A m=0 (m -A/2) 2
(5.20)

= 1 A + 1 A m=0 m 2 - A 2 A m=0 m + (A + 1)A 2 /4 (5.21) = A(2A + 1) 6 - A 2 2 + A 2 4 (5.22) = A 2 12 + A 6 . (5.23) So Var u i ∈Dom(E i ) (u i ) = 1 2 2K Var u i ∈Dom(E i ) (2 K u i ) = 2 -2k-2 12 + 2 -k-K-1 6 . Since k K, we finally have: ln Var u i ∈Dom(E i ) (u i ) = -2k ln 2 + O(1), and 
ln t k t k + λ 2 Var u i ∈Dom(E) (u i ) = ln( 1 (1 + λ t k ) 2 ) + ln Var u i ∈Dom(E i ) (u i ) (5.24)
= -2k ln 2 + O(1).

(5.25)

The lemma follows Plugging t k = 1 in (5.14) immediately yields a O(1) average loss, for any regularization. As we will see, this worse than what we can obtain with t k > 1:

• Suppose λ(ε) = ε h , with h > 2. Then V 0 (t k , λ) = -2k ln 2 + O(1).
In particular, h → φ(t k , 1 2 kh ) is decreasing on (2, +∞). Intuitively, increasing h over 2 increases the cost for each expert (-ln λ term), but does not improve their performance (-ln V 0 term).

• Suppose λ(ε) = ε h , with h < 2. In that case, ln λ -ln t k = (-kh - K + k) ln 2 = -(K + k(h -1)) ln 2.
Let us study how the average loss of E varies with its depth k.

-For k(3-h) K, ln λ-ln t k -2k ln 2, so ln V 0 (t k , λ) = ln λ-ln t k . In particular, (5.14) yields:

- 1 k ln E(v t |∅) = t k -1 2t k (ln λ -ln t k ) (5.26) = - t k -1 2t k (K + k(h -1)) ln 2 + O(1).
(5.27)

The dominant term is therefore -1 2 (K + k(h -1)) ln 2 (if it is not also in the O(1)). In particular:

-It is decreasing in k if 2 > h 1, so the optimal choice is k = K 3-h , and the loss is (up to terms of lesser order) -

1 2 (K + K h-1 3-h ) ln 2 = -h-1 3-h ln t, with h-1 3-h < 2-1 3-2 = 1. -It is increasing in k if h 1,
so the optimal choice is k = 0, and the loss is (up to terms of lesser order) -1 2 K ln 2 = -1 2 ln t.

-For k(3 -h) K, ln λ -ln t k -2k ln 2, so ln V 0 (t k , λ) = -2k ln 2.

In this case, we show that the best loss is achieved for k close to K (i.e. k = K 3-h ), and then, as seen before, the loss is and-1 2 ln t otherwise. Indeed, (5.14) yields

-h-1 3-h ln t if h 1,
φ(t k , λ) = α + 1/2 t k (-2k ln 2 + kh ln 2) - t k -1 2t k 2k ln 2 (5.28) = -k + k 2 k t -(α + 1/2)(2 -h)k 2 k t ln 2) (5.29) = -k + k 2 k t (1 -(α + 1/2)(2 -h)) ln 2, (5.30) so 1 ln 2 dφ(t k , λ) dk = -1 + 2 k t (1 -(α + 1/2)(2 -h)) + k 2 k t (1 -(α + 1/2)(2 -h)) ln 2 (5.31) = -1 + 2 k t (cst * k ln 2 + cst) (5.32) But since k K 3-h K, we have 2 k t 1 3-h =: t 1-ν , with ν = 1-1 3-h > 0 ; and k ln 2 K ln 2 = ln t. So 1 ln 2 dφ(t k , λ) dk -1 + cst ln t t ν .
(5.33)

Consequently, for t large enough dφ(t k ,λ) dk is negative on [0, K 3-h ), so the optimal k is K 3-h , with an average loss of -h-1 3-h ln t.

So finally, the best regularization for a linear function with a balanced sequence of sample points is λ(ε) ∝ |Dom(E)| 2 . This is the regularization we will use from now on.

At first glance, it would have seemed reasonable to choose a regularization proportional to λ(ε) ∝ ε, because it is the only regularization that could be described as virtual points seen by the whole tree.

However, since we suppose we are regressing Lipschitz functions, we know that the variation of f in an interval of size ε is of order ε, so a better regularization would ensure that the expected deviation of E s after having seen on point is of order ε. Since the variance is roughly proportional to λ(ε), we must have λ(ε) = ε2 . We expect that in general, if we are regressing a h-Hölder function, the best regularization is λ(ε) = ε 2h .

Regret bounds in the noiseless case

We are now going to prove that for an infinite binary weighted expert tree T satisfying Condition 5.8, if the sequence of sample points (x i ) is sufficiently well-behaved:

• The loss of the context tree weighting algorithm corresponding to T (and more generally, of any Bayesian combination of Normal-Gamma experts) is greater than -t ln t + 1 2 t ln ln t + O(t) • The loss of the context tree switching algorithm corresponding to T is lower than -t ln t + O(t). 2 Using the edgewise version of the algorithm broadens the class of functions for which the bound holds.

The idea behind the proofs is always the following: to generate the image f (x i ) of a new point x i , CTS can use the deepest expert that has seen x i and at least one other data point (provided the expert is not "too deep": the cost of specifying the tree must not be too high), whereas CTW cannot (from a generative point of view, CTW consists in choosing a given tree, and using it to generate the data).

CTS

The expert trees we use to achieve the bound for CTS and ECTS are "wellbehaved" infinite binary trees. More precisely: Definition 5.12. Let I ⊂ R be an interval, and let T be an expert tree with Dom(E ε ) = I.

We say that T is n-balanced if:

• Each node of T has exactly n children.

• For all s ∈ T, the domain of E s has is fixed.

• For all s ∈ T, Dom(E s ) is an interval.

• For all s ∈ T and for all t, t ∈ c(s),

|Dom(E t )| = |Dom(E t )|
In particular, a n-balanced tree is infinite.

The bound we obtained for non edgewise CTS holds only in a simple case: we choose a sequence of sample points such that at time 2 K , each expert at depth K has seen exactly one data point.

Theorem 5.13 (Lower bound for CTS regret). Let (u n ) be as in Notation 5. [START_REF]GSY +[END_REF].

Let K f ∈ R + , let f be a K f -Lipschitz function on [0, 1], and let t ∈ N.

Let T be a proper 2-balanced weighted expert tree such that DomE ε = [0, 1] and h := inf{µ t (J)|t ∈ T,

(J ∼ 3 1 ∞ or J = 0 ∞ )} > 0.
If for any expert E s , for any (z 1 , z 2 ) ∈ Tar(E s ) N , we have:

-ln E s (z 1 |∅) C(f ) (5.34) and, -ln E s (z 2 |z 1 ) C(f ) -|s| ln 2 =: L |s| , (5.35) then, -ln CTS T (v t |∅) -t ln t + O(t), (5.36) 
where for all n, v n := (u n , f (u n ))

Proof. Let K such that t ∈ (2 K-1 , 2 K ].
Let I be a switching pattern on T such that I s = (001 ∞ ) for |s| K -2 and I s = (0 ∞ ) for |s| = K -1.

By Lemma 4.45, we have:

-ln CTS T (v t |∅) -ln E I (v t |∅) -(2 K -1) ln h = -ln E I (v t |∅) + O(t).
(5.37) By definition of I ε , we have

E I (v 1 |v 0 ) = E ε (v 1 |v 0 ).
(5.38) Now, by Lemma A.6, for all k > 0, for all 0 m < 2 k , u 2 k +m is at least the third point in all of the I k ,m such that k < k and u 2 k +m ∈ I k ,m , and it is the second point in I k,m , so we have

E I (v 2 k +m |v 2 k +m-1 ) = E s(k,m) (v 2 k +m |v 2 k +m-1 ), where s(k, m) is the node of T satisfying Dom(E s ) = I k,m . Finally, if t 0 is the index of the first point in I k,m , E s(k,m) (v 2 k +m |v 2 k +m-1 ) = E s(k,m) (v 2 k +m |v t 0 ), since the experts do not peek out. Since by construction, |s(k, m)| = k, we have E I (v 2 k +m |v 2 k +m-1 ) = E s(k,m) (v 2 k +m |v t 0 ) L k .
Consequently, we have (up to the term corresponding to v 0 , which is a constant):

-ln CTS T (v t |∅) -ln E I (v t |∅) + O(t) = K-2 k=0 2 k L k + (t -2 K-1 )L K-1 + O(t) (5.39) -ln 2 K-2 k=0 2 k k -(t -2 K-1 )(K -1) ln 2 + O(t)
(5.40) and by applying Corollary A.2, we find:

-ln CTS T (v t |∅) -t ln t + O(t), (5.41)
which is what we wanted.

Corollary 5.14.

Let K f ∈ R + , let f be a K f -Lipschitz function on [0, 1],
let (u n ) be as in Notation 5.10.

Let T be a 2-balanced weighted expert tree with DomE ε = [0, 1], satisfying Condition 5.8 with λ(E s ) = |Dom(E s )| 2 , and such that there exists h > 0 such that for any node s of T, min(µ s (01 ∞ ), µ s (0 ∞ )) h.

We have:

-ln CTS T (v t |∅) -t ln t + O(t).

(5.42)

where for all n, v n := (u n , f (u n ))

Proof. By Proposition 5.9, a weighted expert tree satisfying Condition 5.8 is a proper tree, and by Lemma A.10, the Normal-Gamma experts satisfy conditions of Theorem 5.13.

As discussed at the beginning of 4.3.3, the problem with CTS (or at least with the proof of Theorem 5.13) is that the data points have to alternate exactly between the left and right, for all experts.

Edgewise CTS offers the same guaranteed performance on a larger class of functions.

ECTS

For ECTS to work properly, we need sequences with "low discrepancy". More precisely, Definition 5.15. Let I 0 be a bounded interval of R.

Let (x n ) n∈N ∈ I N 0 . Let K > 1.
For any interval I ⊂ I 0 , for any t ∈ R, let N t (I) := |{k|1 k t, x k ∈ I}| be the number of points of (x n ) having falled in I before time t.

• We say that (x n ) is well K-balanced if for any interval I ⊂ I 0 , for any t ∈ N 1 K |I|t N t (I) max(1, K|I|t).

(5.43)

• We say that (x n ) is upper well K-balanced if for any interval I ⊂ I 0 , for any t ∈ N N t (I) max(1, K|I|t).

(5.44)

We say that (x n ) is well balanced (resp. upper well balanced) if there exists K such that (x n ) is well K-balanced (resp. upper well K-balanced).

Remark 5.16. Let (u n ) ∈ [0, 1] N defined by u 0 = 0, and for all k, m, if

0 m < 2 k , u 2 k +m = 2m+1 2 k+1 (Notation 5.10). (u n ) is well 4-balanced.
Proof. For t ∈ (2 K-1 , 2 K ], there are less points in a given I than for t = 2 K , and for t = 2 K , the distance between a point and its closest neighbor is 1 2 K , so if |I| < 1 2 K , I contains at most one point, and if

|I| 1 2 K , I contains at most 2 K |I| + 1 2 * 2 K |I| 2 * 2t|I|, so (u n ) is upper well 4-balanced. Conversely, for t ∈ [2 K , 2 K+1
), there are more points in a given I than for t = 2 K , and there are 2 K |I| elements of u n in the adherence Ī of I, so there are at least 2 K |I| /2 2 K |I|/4 in I, so (u n ) is well 4-balanced.

Theorem 5.17 (Lower bound for ECTS).

Let K f ∈ R + , let f be a K f - lipschitz function on [0, 1].
Let T be an proper infinite 2-balanced edgewise weighted expert tree such that DomE ε = [0, 1] and h := inf{µ s→t (J)|s ∈ T, t ∈ c(s),

(J ∼ 2 1 ∞ or J = 0 ∞ )} > 0 .
If for all s ∈ T, for any (x i ) ∈ Dom(E s ) N , the local experts satisfy:

- 1 n ln E s (z 1 , ..., z n |z 1 , ..., z m ) C(f, m) -|s| ln 2 =: L |s|,m (5.45)
for all n ∈ N, m ∈ N * . Then, for any well balanced sequence (x i ) ∈ (DomE ε ) N we have:

-ln ECTS T (z t |∅) -t ln t + O(t), (5.46)
where

z n := (x n , f (x n )). Proof. Let K ∈ N such that t ∈ (2 K-1 , 2 K ], let (x n ) ∈ [0, 1] N . Let λ such that (x n
) is well λ-balanced, and let I = I(x) be an edgewise switching pattern such that for any s ∈ T, and t ∈ c(s)

• I s→t = 0 ∞ if |s| = K -1. • I s→t = 01 ∞ otherwise.
In other words, to predict x n , E I tries to use the deepest expert (at maximum depth K -1) that has seen at least one other data point before x n (Lemma A.3 in the Appendix). By Lemma 4.46 applied to the root of T, we have:

-ln ECTS T (z t |∅) -ln E I (z t |∅) -(2 K+1 -2) ln h = -ln E I (z t |∅) + O(t).
(5.47) If we denote by s n the node corresponding to the expert used at time n, we have:

-ln E I (z t |∅) = - t n=1 ln E sn (x n |x n-1 ) = - t n=1 |sn|<K-1 ln E sn (x n |x n-1 )- t n=1 |sn|=K-1 ln E sn (x n |x n-1 ). (5.48) By Lemma A.3, s n satisfies x n ∈ Dom(E sn ), x n-1 ∩ Dom(E sn ) = ∅ and either |s n | = K -1 or x n-1 ∩ Dom(E tn ) = ∅, where t n is the child of s n containing x n .
In particular, for any s ∈ T:

if |s| = K -1 and n > n(s) where n(s) := inf{i ∈ N||x i ∈ Dom(E s )|} is the index of the first point of x belonging to Dom(E s ), then x n ∈ Dom(E sn ) ⇔ s n = s.
If we regroup the terms corresponding to the same experts in the second sum, we see that:

- t n=1 |sn|=K-1 ln E sn (x n |x n-1 ) = - s∈T |s|=K-1 ln E s (x t(s)+1:t |x t(s) ) (5.49) because if |s| = K -1, every point falling in Dom(E s ) after t(s) is predicted with E s , (5.50) = - s∈T |s|=K-1 ln E s (x t(s)+1:t ∩ Dom(E s )|x t(s) ∩ Dom(E s ))
(5.51) because the local experts do not peek out (By hypothesis: T is a proper tree),

(5.52) = - s∈T |s|=K-1 ln E s (x t(s)+1:t ∩ Dom(E s )|x t(s) ),
(5.53) by definition of t(s).

So by hypothesis (5.45), we have:

-

t n=1 |sn|=K ln E sn (x n |x n-1 ) = - s∈T |s|=K ln E s (x t(s)+1:t ∩ Dom(E s )|x t(s) ) s∈T |s|=K-1 n s L K-1,1 = n K-1 L K-1,1
(5.54)

where n s = |x t(s)+1:t ∩ Dom(E s )| is the number of times E s has been used, and

n K-1 = s∈T |s|=K-1
n s is the number of times an expert at depth K -1 has been used.

Now, let us consider the term

- t n=1 |sn|<K-1 ln E sn (x n |x n-1 ) = - t n=1 |sn|<K-1 ln E sn (x n |x n-1 ∩ Dom(E sn )). (5.55)
The s n in this sum satisfy:

x n ∈ Dom(E sn ), x n-1 ∩ Dom(E sn ) = ∅, and x n-1 ∩ Dom(E tn ) = ∅, where t n is the child of s n containing x n .
In particular, since x n-1 ∩ Dom(E tn ) = ∅, if we denote by t n ∈ T the child of s n that is not t n , we have:

x n-1 ∩ Dom(E sn ) = x n-1 ∩ Dom(E t n ). Now, by Proposition A.4, x n-1 ∩ Dom(E tn ) = ∅ implies 1 x n-1 ∩ Dom(E t n ) λ 2 ,
so by hypothesis (5.45), if we write

L n := max 1 m λ 2 L n,m : 3 - t n=1 |sn|<K-1 ln E sn (x n |x n-1 ∩ Dom(E sn )) t n=1 |sn|<K-1 L |sn| = K-2 k=0 n k L k , (5.56)
where n k = |{s n , |s n | = k}| is the number of times an expert at depth k has been used.

So finally, if we regroup the two sums:

-

ln E I (z t |∅) = - t n=1 |sn|<K-1 ln E sn (x n |x n-1 ) - t n=1 |sn|=K-1 ln E sn (x n |x n-1 ) K-1 k=0 n k L k (5.57)
But any given node s ∈ T satisfying |s| < K -1 can appear only once in the sum (5.56) (after a node appears in the sum, its two children contain at least one data point, and the condition x n-1 ∩ Dom(E tn ) = ∅ cannot be satisfied anymore), so we must have n k 2 k for all k K -2.

Since k → L k is decreasing and

n k = t is fixed, K-1 k=0 n k L k is clearly maximal for n k = 2 k for all k < K -1: If one of the n k , say k 0 , is smaller than 2 k , we must have n K-1 > 2 K-1 . Therefore, n K-1 ← n K-1 -1; n k 0 ← n k 0 +1
; yields a larger sum. Consequently, up to the first point, we have 

-ln ECTS T (z t |∅) -ln E I (z t |∅) + O(t) K-2 k=0 2 k L k + (t -2 K-1 )L K-1 + O(t) (5.58) -ln 2 K-2 k=0 k2 k -(t -2 K-1 )(K -1) ln 2 + O(t) (5.
:= inf{µ s→t (J)|s ∈ T, t ∈ c(s), (J ∼ 2 1 ∞ or J = 0 ∞ )} > 0 .
4 Then, we have:

-ln ECTS T (z t |∅) -t ln t + O(t), (5.61) 
for any well balanced sequence (x i ) ∈ (DomE ε ) N , where z n := (x n , f (x n )).

Proof. By Proposition 5.9 Condition 5.8 ensures that T is a proper tree, and by Lemma A.11, the Normal-Gamma experts satisfy the condition of Theorem 5.17.

CTW

It is possible to obtain a lower bound on the loss of any Context Tree Weighting algorithm, also holding on Bayesian combination of histograms, provided the observed is only upper well balanced (we only need to prevent deep experts from seeing "too many" data points).

The bound for the Context Tree Weighting algorithm, and the Bayesian histograms follows from the theorem below:

Theorem 5.19 (Average loss). Let K f ∈ R + , let f be a K f -Lipschitz func- tion on [0, 1].
Let S be a set of Normal-Gamma experts satisfying condition 5.8, with

λ(E) = |Dom(E)| 2 and E → |Dom(E)| bounded on S.
We have, for any E ∈ S, for any upper well balanced sequence (x n ):

-

1 t E ln E(z t |∅) -ln t + 1 2 ln ln t + O(1), (5.62) 
uniformly on S, where z t = (x t , f (x t )), and t E := |z t ∩Dom(E)| is the number of points predicted by the expert E.

Proof. We write ε := |Dom(E)|. Since Normal-Gamma experts do not peek out, we have by Lemma A.12:

1 t E E(z t |∅) = 1 t E E(z t ∩ Dom(E)|∅) (1 - 1 t E ) ln ε - 1 2 ln t E + O(1) =: φ ε (t E ) + O(1) (5.63) We have dφε dt E = ln ε t 2 E -1 2t E = 2 ln ε-t E 2t 2 E : φ ε is increasing on [1, 2 ln ε] (if non
empty) and decreasing on [2 ln ε, ∞), so its minimum on any segment [1, a] is attained either at 1 or at a. Since (x n ) is upper well balanced, there exists K such that t E max(1, Kεt). So we have:

φ ε (t E ) min(φ ε (1), φ ε (max(1, Kεt))) = min(0, φ ε (K 1 εt)) (5.64) 
We are therefore interested in the minimum value of ε → φ ε (Kεt). We have

φ ε (Kεt) = (1 - 1 Kεt ) ln ε - 1 2 ln(Kεt) (5.65) = 1 2 ln ε - 1 2 ln t - ln ε Kεt + O(1).
(5.66)

If we set u = εt ln t , we find:

φ ε (Kεt) = 1 2 ln u - 1 2 ln t + 1 2 ln ln t - 1 2 ln t - ln(u ln t) -ln t Ku ln t + O(1) (5.67) = -ln t + 1 2 ln ln t + 1 2 ln u + 1 Ku - 1 K ln(u ln t) u ln t + O(1) (5.68) ln x/x 1/e for all x > 0, so φ ε (Kεt) -ln t + 1 2 ln ln t + 1 2 ln u + 1 Ku + O(1) (5.69) 
We then see that

1 2 ln u + 1 Ku 1 2 ln 2 K + 1 2 = O(1). So finally 1 t E E(z t |∅) -ln t + 1 2 ln ln t + O(1)
, which is what we wanted.

Corollary 5.20 (Lower bound on regret for Context Tree Weighting). Let

K f ∈ R + , let f be a K f -Lipschitz function on [0, 1].
Let T be a proper (possibly infinite) weighted expert tree with DomE ε = [0, 1] and such that for all s ∈ T, Dom(E s ) is an interval, with λ(E s ) = |Dom(E s )| 2 . We have, for any upper well balanced sequence (x n ):

-ln CTW T (z t |∅) -t ln t + 1 2 t ln ln t + O(t), (5.70) 
where

z k = (x k , f (x k )).
Proof. By definition, we have CTW T = Bayes T (E T , w T ), so -ln CTW T (z t |∅) -max T ln E T (z t |∅). Now, for any T , E T = s leaf of T E s , so by Lemma 4.21, we have:

E T (z t |∅) = s leaf of T E s (z t |∅), (5.71) 
so

-ln E T (z t |∅) s leaf of T -ln E s (z t |∅). (5.72) 
Now, by Theorem 5.19:

-ln E T (z t |∅) 

-ln CTW T (z t |∅) -max T ln E T (z t |∅) -t ln t + 1 2 t ln ln t + O(t), (5.75) 
which is what we wanted.

Notice in particular that we use intervals of size ln t/t even if f is constant5 , because the regularisation is ε 2 : going deeper allows the Normal-Gamma experts to have less added artificial variance.

More generally, since Theorem 5.19 bounds uniformly the loss of individual Normal-Gamma experts, we have the following, stronger result, which applies in particular to Bayesian histograms.

Corollary 5.21 (Lower bound on regret for Bayesian histograms). Let

K f ∈ R + , let f be a K f -Lipschitz function on [0, 1].
Let H be a (possibly infinite) Bayesian combination of (possibly countable) unions of Normal-Gamma experts satisfying condition 5.8 with λ(E) = |Dom(E)| 2 , and with DomH = [0, 1].

We have, for any upper well balanced sequence (x n ):

-ln H(z t |∅) -t ln t + 1 2 t ln ln t + O(t), (5.76) 
where

z k = (x k , f (x k )).
In particular, (5.76) holds if H is an histogram or a Bayesian combination of histograms.

Proof. Same proof as Corollary 5.20. This bound does not hold when using time-dependent histograms (for example, with t 1/3 bins): using more complex histograms when more data is available is exactly the switch strategy. The advantage of CTS is that it simultaneously considers many different sequences of histograms, so one of them uses the "right" bin size.

Chapter 6

Numerical experiments

We conclude this part with some numerical experiments, to test some of the new algorithms described here. In particular, we are interested in knowing if CTS is also better than CTW for "reasonably small" t.

We used finite binary trees for the experiments (depth 17 for regression, 30 for text compression). The weighting algorithms used equal to 1 2 , and the switch algorithms used correspond to Definition 4.16, with π K uniform, freezing rate θ = 1 2 , and the probability distribution

π τ : n → ln 2 n+2 -ln 2 n+1 on N * .
The details specific to the application are given in the corresponding parts.

Regression

In order to illustrate the results in Section 5.3, we test the CTW and CTW algorithms, and their edge counterparts with Normal-Gamma experts on several test functions. The regularization for the experts was α = .5, λ(ε) = ε 2 , and β = λ λ+1 . The choice of the log-loss could seem unorthodox, but it is quite natural in the MDL context: we want to minimize the description length of the data, which is -ln P (z n ). Moreover, minimizing the log-loss amounts to minimizing the square error, assuming Gaussian noise with fixed variance.

Since the (z i ) are real numbers, P is usually a probability density on R, so strictly speaking, -ln P (z n ) is not the number of bits needed to encode z k (which is infinite). What we are interested in is encoding the z i up to a precision ε. And in that case, the cost of encoding z i as "a point in an interval I of size ε" is: -ln

I P (z)dz ≈ -ln ε -ln P (z i ).
We use some classical test functions from [MAJ + 98]].

As we can see, in the noiselesse case, the edgewise versions of the algo- Since CTW has to learn the constant at each step, we can expect CTS to be much better than CTW here SteepLinear x → 100x SteepLinearConstant x → 100x + 10 6 Blocks x → h j K(x -x j ) Should behave like Constant for CTW.

K(x) = 1+sg(x) 2 . x j , h j in Figure 6.2 Bumps x → h j K( x -x j w j ) K(x) = (1 + |x|) -4 . x j , h j , w j in Figure 6.2 Doppler x → x(1 -x) sin( 2.1π x + .05 ) Wave x →.5 + .2 cos(4πx) + .1 cos(24πx) Additive noise on f x →f (x) + ε E(ε) = 0. Multiplicative noise on f x →f (x) + εf (x) E(ε) = 0.
The fact that Normal-Gamma experts adapt their variance should be put to use in this case. rithm are systematically superior to the non edgewise versions (except for the CTW algorithms on SteepLinearConstant), and switching is systematically superior to weighting (except for a tie on the non edgewise versions on SteepLinearConstant), which confirms our intuition.

However, the performance of the switching algorithms on LargeConstant and SteepLinearConstant is surprising: we would have expected a performance similar to the Constant and SteepLinear functions, since Switch should have paid the price of fixing the constant only once.

The second set of experiments consisted in comparing these algorithms on noisy functions with an oracle (in the noiseless case for density, the loss incurred by an oracle would be -∞: we know f (x) so for any ε, the cost of encoding f (x) up to ε is zero. Intuitively, the "density of a Dirac" is infinite).

In the noisy case, the differences between the algorithms are smaller. In particular, the difference between the edgewise and the non edgewise version of an algorithm is extremely small, with a very slight edge for the non edgewise algorithms1 . CTS remains consistently better than CTW, though, and the average performance of the algorithms is not very far from the oracle.

As we can see, most of the time, vanilla CTW gives the best performance, although our version of CTS is always very close (never more than .02 bits per byte in favor of CTW). Interestingly, there is apparently no correlation between the files where our implementation of CTS is better than CTW and the files where CTS from [START_REF] Veness | Context tree switching[END_REF] is better than CTW.

CTS in [VNHB11]

As discussed before, a Context Tree Switching algorithm, using different switch distributions, had already been defined in [START_REF] Veness | Context tree switching[END_REF].

The Markov model corresponding to these distributions was the one described in Section 4.2.3 with two differences:

• The switch in [START_REF] Veness | Context tree switching[END_REF] never freezes.

• The switching probabilities (σ t ) are allowed to depend on the global time T of the algorithm.2 

It was noticed that choosing σ t = 1 t (so t is the "local" time) for the E s gave poor empirical performance, contrary to σ t = 1 T (where T (t, s) := min{u ∈ N||x u ∩ Dom(E s )| t} is the global time, if the data are the (x i )). Moreover, a theoretical bound on CTS regret was obtained. We believe that an intuitive reason for this is the following: For context trees, the situation is very similar to the one described in the introduction of [START_REF] Van Erven | Catching up faster by switching sooner: a predictive approach to adaptive estimation with an application to the AIC-BIC dilemma[END_REF], comparing a Markov model of order 1 and a Markov model of order 2 for text compression: we can expect that at some point, any given node will have enough information to "open"3 , and once it is open (i.e. once the local experts at its children nodes have enough data to predict well), it should stay open (the children nodes should continue being better than their father).

However, the typical sequence predicted by a switch distribution that does not freeze with a switching rate σ t = 1 t switches infinitely many times (since t 1 t diverges). Choosing σ t = 1 T instead of σ t = 1 t allows for less frequent switching when t is large in deep nodes, which could partly explain the improved performance.

This property is also probably the reason why our implementation of CTS and CTS from [START_REF] Veness | Context tree switching[END_REF] behave differently: the latter is better suited for models that change over time (as suggested by Theorem 3 in [START_REF] Veness | Context tree switching[END_REF]), while the former should be better on a fixed model. More investigation is needed to confirm this intuition.

Consider an objective function f : X → R to be minimized. We suppose we have absolutely no knowledge about f : the only thing we can do is ask for its value at any point x ∈ X (black-box optimization) and that the evaluation of f is a costly operation. We are going to study algorithms that can be described in the IGO framework (see [START_REF] Ollivier | Information-geometric optimization algorithms : A unifying picture via invariance principles[END_REF]).

We consider the following optimization procedure:

We choose (P θ ) θ∈Θ a family of probability distributions (which will be given a Riemannian manifold structure, following [START_REF] Amari | Methods of Information Geometry[END_REF]) on X and an initial probability distribution P θ 0 . Now, we replace f by

F : Θ → R (for example F (θ) = E x∼P θ [f (x)]
), and we optimize F by gradient descent, corresponding to the gradient flow:

dθ t dt = -∇ θ E x∼P θ [f (x)]. (6.1)
However, because of the gradient, this equation depends entirely on the parametrization we chose for Θ, which is disturbing: we do not want to have two different updates, because we chose different parameters to represent the objects with which we are working. Moreover, in the case of a function with several local minima, changing the parametrization can change the attained optimum (see [START_REF] Malagò | Combinatorial optimization with information geometry: The newton method[END_REF], for example). That is why invariance is a design principle behind IGO. More precisely, we want invariance with respect to monotone transformations of f and invariance under reparametrization of Θ.

The IGO framework uses the geometry of the family Θ, which is given by the Fisher metric to provide a differential equation on θ with the desired properties, but because of the discretization of time needed to obtain an explicit algorithm, we lose invariance under reparametrization of θ: two IGO algorithms applied to the same function to be optimized, but with different parametrizations, coincide only at first order in the step size. A possible solution to this problem is geodesic IGO (GIGO), introduced here (see also IGO-Maximum Likelihoodin [START_REF] Ollivier | Information-geometric optimization algorithms : A unifying picture via invariance principles[END_REF], for example.): the initial direction of the update at each step of the algorithm remains the same as in IGO, but instead of moving straight for the chosen parametrization, we use the Riemannian manifold structure of our family of probability distributions (see [START_REF] Amari | Methods of Information Geometry[END_REF]) by following its geodesics.

Finding the geodesics of a Riemannian manifold is not always easy, but Noether's theorem will allow us to obtain quantities that are preserved along the geodesics, thus allowing, in the case of Gaussian distributions, one to obtain a first order differential equation satisfied by the geodesics, which makes their computation easier.

Although the geodesic IGO algorithm is not, strictly speaking, parametrizationinvariant when no closed form for the geodesics is known, it is possible to compute them at arbitrary precision without increasing the numbers of objective function calls.

Chapter 7 consists in preliminaries: we recall the IGO algorithm, introduced in [START_REF] Ollivier | Information-geometric optimization algorithms : A unifying picture via invariance principles[END_REF], and we describe particular cases of the xNES and CMA-ES updates as IGO updates.

Chapter 8 focuses on Noether's theorem: in Section 8.1, after a reminder about Riemannian geometry, we state Noether's theorem, which will be our main tool to compute the GIGO update for Gaussian distributions. In Section 8.2, we consider Gaussian distributions with a covariance matrix proportional to the identity matrix: this space is isometric to the hyperbolic space, and the geodesics of the latter are known. Finally, in Section 8.3, we consider the general Gaussian case, and we use Noether's theorem to obtain two different sets of equations to compute the GIGO update. The equations are known (see [START_REF] Eriksen | Geodesics connected with the fisher metric on the multivariate normal manifold[END_REF][START_REF] Calvo | An explicit solution of information geodesic equations for the multivariate normal model[END_REF][START_REF] Imai | Remarks on geodesics for multivariate normal models[END_REF]), but the connection with Noether's theorem has not been mentioned. 4 We then give the explicit solution for these equations, from [START_REF] Calvo | An explicit solution of information geodesic equations for the multivariate normal model[END_REF].

In chapter 9, we introduce two possible slight modifications of the IGO algorithm to incorporate the direction-dependent learning rates used in CMA-ES and xNES. We then compare these different algorithms and prove that while xNES is not GIGO in general, it can be described as "Blockwise GIGO", thus recovering xNES from abstract principles.

Finally, Chapter 10 presents numerical experiments, which suggest that when using GIGO with Gaussian distributions, the step size must be chosen carefully.

Chapter 7

The IGO framework

In this section, we recall what the IGO framework is and we define the geodesic IGO update. Consider again Equation (6.1):

dθ t dt = -∇ θ E x∼P θ [f (x)].
As we just saw:

• The gradient depends on the parametrization of our space of probability distributions (see 7.3 for an example). • The equation is not invariant under monotone transformations of f . For example, the optimization for 10f moves ten times faster than the optimization for f .

In this section, we recall how IGO deals with this (see [START_REF] Ollivier | Information-geometric optimization algorithms : A unifying picture via invariance principles[END_REF] for a better presentation).

Invariance under Reparametrization of θ: Fisher Metric

In order to achieve invariance under reparametrization of θ, it is possible to turn our family of probability distributions into a Riemannian manifold (this is the main topic of information geometry; see [START_REF] Amari | Methods of Information Geometry[END_REF]), which allows us to use a canonical, parametrization-invariant gradient (called the natural gradient). The first brick in this construction is the differential Kullback-Leibler divergence:

Definition 7.1. Let P, Q be two probability distributions on X. The Kullback-Leibler divergence of Q from P is defined by:

KL(Q P ) = X ln( Q(x) P (x) )dQ(x). (7.1)
It is the immediate generalization of the Kullback-Leibler divergence in Definition 2.5, and by definition, it does not depend on the parametrization. It is not symmetrical, but if for all x, the application θ → P θ (x) is C 2 , then a second-order expansion yields:

KL(P θ+dθ P θ ) = 1 2 i,j I ij (θ)dθ i dθ j + o(dθ 2 ), (7.2) 
where:

I ij (θ) = X ∂ ln P θ (x) ∂θ i ∂ ln P θ (x) ∂θ j dP θ (x) = - X ∂ 2 ln P θ (x) ∂θ i ∂θ j dP θ (x). (7.3)
This is enough to endow the family (P θ ) θ∈Θ with a Riemannian manifold structure: a Riemannian manifold M is a differentiable manifold, which can be seen as pieces of R n glued together, with a metric . The metric at x is a symmetric positive-definite quadratic form on the tangent space of M at x: it indicates how expensive it is to move in a given direction on the manifold. We will think of the updates of the algorithms that we will be studying as paths on M . The matrix I(θ) is called the "Fisher information matrix", and the metric it defines is called the "Fisher metric".

Given a metric, it is possible to define a gradient attached to this metric; the key property of the gradient is that for any smooth function f :

f (x + h) = f (x) + i h i ∂f ∂x i + o( h ) = f (x) + h, ∇f (x) + o( h ), (7.4)
where x, y = x T Iy is the dot product in metric I. Therefore, in order to keep the property of Equation (7.4), we must have ∇f = I -1 ∂f ∂x . We have therefore the following gradient (called the "natural gradient"; see [START_REF] Amari | Methods of Information Geometry[END_REF]):

∇θ = I -1 (θ) ∂ ∂θ , (7.5) 
and since the Kullback-Leibler divergence does not depend on the parametrization, neither does the natural gradient.

Later in this paper, we will study families of Gaussian distributions. The following proposition gives the Fisher metric for these families.

Proposition 7.2. Let (P θ ) θ∈Θ be a family of normal probability distributions:

P θ = N (µ(θ), Σ(θ)
). If µ and Σ are C 1 , the Fisher metric is given by:

I i,j (θ) = ∂µ T ∂θ i Σ -1 ∂µ ∂θ j + 1 2 tr Σ -1 ∂Σ ∂θ i Σ -1 ∂Σ ∂θ j . (7.6)
Proof: This is a non-trivial calculation. See [SSUSCU81] or [START_REF] Porat | Computation of the exact information matrix of Gaussian time series with stationary random components[END_REF] for more details.

As we will often be working with Gaussian distributions, we introduce the following notation: Notation 7.3. G d is the manifold of Gaussian distributions in dimension d, equipped with the Fisher metric. Gd is the manifold of Gaussian distributions in dimension d, with the covariance matrix proportional to identity in the canonical basis of R d , equipped with the Fisher metric.

IGO Flow, IGO Algorithm

In IGO [START_REF] Ollivier | Information-geometric optimization algorithms : A unifying picture via invariance principles[END_REF], invariance with respect to monotone transformations is achieved by replacing f by the following transform; we set:

q(x) = P x ∼P θ (f (x ) f (x)), (7.7) 
a non-increasing function w : [0; 1] → R is chosen (the selection scheme), and finally, W f θ (x) = w(q(x)) (this definition has to be slightly changed if the probability of a tie is not zero, see [START_REF] Ollivier | Information-geometric optimization algorithms : A unifying picture via invariance principles[END_REF] for more details). By performing a gradient descent on E x∼P θ [W f θ t (x)], we obtain the "IGO flow": 

dθ t dt = ∇θ X W f θ t (x)P θ (dx) = X W f θ t (x)
E x∼P θ [W f θ (x)]
(the second function is constant and always equal to 1 0 w). In particular, the function for which we are performing the gradient descent changes at each step, although their optimum (a Dirac at the minimum of f ) does not: the IGO flow is not a gradient flow; it is simply a vector flow given by the gradient of interrelated functions.

For practical implementation, the integral in (7.8) has to be approximated. For the integral itself, the Monte-Carlo method is used; N values (x 1 , ..., x N ) are sampled from the distribution P θ t , and the integral becomes:

1 N N i=1 W f θ t (x i ) ∇θ ln P θ (x i ) (7.9)
and we approximate 1

N W f θ (x i ) = 1 N w(q(x i )) by ŵi = 1 N w( rk(x i )+1/2 N
), where rk(x i ) = |{j, f (x j ) < f (x i )}|: it can be proven (see [START_REF] Ollivier | Information-geometric optimization algorithms : A unifying picture via invariance principles[END_REF]) that lim N →∞ N ŵi = W θ t f (x i ) (here again, we are assuming that there are no ties). We now have an algorithm that can be used in practice if the Fisher information matrix is known.

Definition 7.4. The IGO update associated with parametrization θ, sample size N , step size δt and selection scheme w is given by the following update rule:

θ t+δt = θ t + δtI -1 (θ t ) N i=1 ŵi ∂ ln P θ (x i ) ∂θ . (7.10)
We call IGO speed the vector I -1 (θ t ) N i=1 ŵi

∂ ln P θ (x i ) ∂θ
.

Notice that one could start directly with the ŵi rather than w, as we will do later.

Replacing f by its expected value under a probability distribution P θ and optimizing over θ using the natural gradient have already been discussed. For example, in the case of a function f defined on {0, 1} n , IGO with the Bernoulli distributions yields the algorithm, PBIL [START_REF] Baluja | Removing the genetics from the standard genetic algorithm[END_REF]. Another similar approach (stochastic relaxation) is given in [START_REF] Malagò | Towards the geometry of estimation of distribution algorithms based on the exponential family[END_REF]. For a continuous function, as we will see later, the IGO framework recovers several known rankedbased natural gradient algorithms, such as pure rank-µ CMA-ES [KMH + 03], xNES or SNES (Separable Natural Evolution Strategies) [WSG + 14]. See [START_REF] Huang | Optimization algorithms on Riemannian manifolds with applications[END_REF] or [START_REF] Absil | Optimization Algorithms on Matrix Manifolds[END_REF] for other, not necessarily gradient-based, optimization algorithms on manifolds.

Geodesic IGO

Although the IGO flow associated with a family of probability distributions is intrinsic (it only depends on the family itself, not the parametrization we choose for it), the IGO update is not. However, the difference between two steps of IGO that differ only by the parametrization is only O(δt 2 ), whereas the different between two vanilla gradient descents with different parametrizations is O(δt).

Intuitively, the reason for this difference is that two IGO algorithms start at the same point and follow "straight lines" with the same initial speed, but the definition of "straight lines" changes with the parametrization.

For instance, in the case of Gaussian distributions, let us consider two different IGO updates with Gaussian distributions in dimension one, the first one with parametrization (µ, σ) and the second one with parametrization (µ, c := σ 2 ). We suppose that the IGO speed for the first algorithm is ( μ, σ). The corresponding IGO speed in the second parametrization is given by the identity ċ = 2σ σ. Therefore, the first algorithm gives the standard deviation σ new,1 = σ old + δt σ and the variance c new,1 = (σ new,1 ) 2 = c old + 2δtσ old σ + δt 2 σ2 = c new,2 + δt 2 σ2 .

The geodesics of a Riemannian manifold are the generalization of the notion of a straight line: they are curves that locally minimize length. In particular, given two points a and b on the Riemannian manifold M , the shortest path from a to b is always a geodesic (the converse is not true, though). The notion will be explained precisely in Section 8.1, but let us define the geodesic IGO algorithm, which follows the geodesics of the manifold instead of following the straight lines for an arbitrary parametrization.

Definition 7.5 (GIGO). The geodesic IGO update (GIGO) associated with sample size N , step size δt and selection scheme w is given by the following update rule:

θ t+δt = exp θ t (Y δt) (7.11)
where: Notice that while the GIGO update is compatible with the IGO flow (in the sense that when δt → 0 and N → ∞, a parameter θ t updated according to the GIGO algorithm is a solution of Equation (7.8), the equation defining the IGO flow), it not necessarily an IGO update. More precisely, the GIGO update is an IGO update if and only if the geodesics of Θ are straight lines for some parametrization (by Beltrami's theorem, this is equivalent to Θ having constant curvature). This is a particular case of a retraction [START_REF] Absil | Optimization Algorithms on Matrix Manifolds[END_REF]: a map from the tangent bundle of a manifold to the manifold itself satisfying a rigidity condition. Arguably, the Riemannian exponential is the most natural retraction, since it depends only on the Riemannian manifold itself and not on any decomposition. However, in general, the geodesics are difficult to compute.

Y = I -1 (θ t ) N i=1 ŵi ∂ ln P θ (x i ) ∂θ , ( 7 
In the next section, we will state Noether's theorem, which will be our main tool to compute the GIGO update for Gaussian distributions.

Comparable pre-existing algorithms

In this section, we recall the xNES and pure rank-µ CMA-ES, and we describe them in the IGO framework, thus allowing a reasonable comparison with the GIGO algorithms.

xNES

We recall a restriction of the xNES algorithm, introduced in [GSY + 10] (this restriction is sufficient to describe the numerical experiments in [GSY + 10]).

where:

Y δ (δ, M ) = N i=1 w i ∇ δ ln(p(x i |(δ, M ))
and:

Y M (δ, M ) = N i=1 w i ∇ M ln(p(x i |(δ, M )).
Since tr(M ) = log(det(exp(M ))), we have:

ln P δ,M (x) = - d 2 ln(2π)-ln(det A)- 1 2 tr M - 1 2 exp(- 1 2 M )A -1 (x-µ-Aδ) 2 ,
and a straightforward computation yields:

Y δ (δ, M ) = N i=1 w i z i = G µ ,
and:

Y M (δ, M ) = 1 2 N i=1 w i (z i z T i -I) = G M .
Therefore, the IGO update is:

δ(t + δt) = δ(t) + δtG µ , M (t + δt) = M (t) + δtG M ,
or, in terms of mean and covariance matrix:

µ(t + δt) = µ(t) + δtA(t)G µ A(t + δt) = A(t) exp(δtG M /2), or: Σ(t + δt) = A(t) exp(δtG M )A(t) T .
This is the xNES update.

Pure Rank-µ CMA-ES

We now recall the pure rank-µ CMA-ES algorithm. The general CMA-ES algorithm is described in [START_REF] Hansen | The CMA evolution strategy: A tutorial[END_REF].

Chapter 8

Using Noether's theorem to compute geodesics 8.1 Riemannian Geometry, Noether's Theorem

The goal of this section is to state Noether's theorem. See [START_REF] Arnold | Mathematical Methods of Classical Mechanics[END_REF] for the proofs and [START_REF] Bourguignon | Calcul variationnel[END_REF] or [START_REF] Jost | Calculus of Variations[END_REF] for a more detailed presentation. Noether's theorem states that if a system has symmetries, then there are invariants attached to these symmetries. Firstly, we need some definitions.

Definition 8.1 (Motion in a Lagrangian system). Let M be a differentiable manifold, T M the set of tangent vectors on M (a tangent vector is identified by the point at which it is tangent and a vector in the tangent space) and L : T M → R (q, v) → L(q, v) a differentiable function called the Lagrangian function (in general, it could depend on t). A "motion in the Lagrangian system (M, L) from x to y" is map γ : [t 0 , t 1 ] → M , such that:

• γ(t 0 ) = x • γ(t 1 ) = y
• γ is a local extremum of the functional:

Φ(γ) = t 1 t 0 L(γ(t), γ(t))dt, (8.1)
among all curves c : [t 0 , t 1 ] → M , such that c(t 0 ) = x, and c(t 1 ) = y.

For example, when (M, g) is a Riemannian manifold, the length of a curve γ between γ(t 0 ) and γ(t 1 ) is:

t 1 t 0 g( γ(t), γ(t))dt. (8.2)
The curves that follow the shortest path between two points x, y ∈ M are therefore the minima γ of the functional (8.2), such that γ(t 0 ) = x and γ(t 1 ) = y, and the corresponding Lagrangian function is (q, v) → g(v, v). However, any curve following the shortest trajectory will have minimum length. For example, if γ 1 : [a, b] → M is a curve of the shortest path, so is γ 2 : t → γ 1 (t 2 ): these two curves define the same trajectory in M , but they do not travel along this trajectory at the same speed. This leads us to the following definition: Definition 8.2 (Geodesics). Let I be an interval of R and (M, g) be a Riemannian manifold. A curve γ : I → M is called a geodesic if for all t 0 , t 1 ∈ I, γ| [t 0 ,t 1 ] is a motion in the Lagrangian system (M, L) from γ(t 0 ) to γ(t 1 ), where:

L(γ) = t 1 t 0 g( γ(t), γ(t))dt. (8.3)
It can be shown (see [START_REF] Bourguignon | Calcul variationnel[END_REF]) that geodesics are curves that locally minimize length, with constant velocity, in the sense that dg( γ(t),( γ(t)) dt = 0. In particular, given a starting point and a starting speed, the geodesic is unique. This motivates the definition of the exponential of a Riemannian manifold.

Definition 8.3. Let (M, g) be a Riemannian manifold. We call the exponential of M the application:

exp : T M → M (x, v) → exp x (v),
such that for any x ∈ M , if γ is the geodesic of M satisfying γ(0) = x and γ (0) = v, then exp x (v) = γ(1).

In order to find an extremal of a functional, the most commonly-used result is called the "Euler-Lagrange equations" (see [START_REF] Arnold | Mathematical Methods of Classical Mechanics[END_REF], for example); a motion γ in the Lagrangian system (M, L) must satisfy:

∂L ∂x (γ(t)) - d dt ∂L ∂ ẋ ( γ(t)) = 0. (8.4)
By applying this equation with the Lagrangian given by (8.3), it is possible to show that the geodesics of a Riemannian manifold follow the "geodesic equations": ẍk + Γ k ij ẋi ẋj = 0, (8.5)

where the

Γ k ij = 1 2 g lk ∂g jl ∂q i + ∂g li ∂q j - ∂g ij ∂q l (8.6)
are called "Christoffel symbols" of the metric g. However, these coefficients are tedious (and sometimes difficult) to compute, and (8.5) is a second order differential equation. Noether's theorem will give us a first order equation to compute the geodesics.

Definition 8.4. Let h : M → M , a diffeomorphism. We say that the Lagrangian system (M, L) admits the symmetry h if for any (q, v) ∈ T M , L (h(q), dh(v)) = L(q, v), (8.7)

where dh is the differential of h.

If M is clear in the context, we will sometimes say that L is invariant under h. An example will be given in the proof of Theorem 8.13. We can now state Noether's theorem (see, for example, [START_REF] Arnold | Mathematical Methods of Classical Mechanics[END_REF]).

Theorem 8.5 (Noether's Theorem). If the Lagrangian system (M, L) admits the one-parameter group of symmetries h s : M → M , s ∈ R, then the following quantity remains constant during motions in the system (M, L). Namely,

I(γ(t), γ(t)) = ∂L ∂v dh s (γ(t)) ds | s=0 (8.8)
does not depend on t if γ is a motion in (M, L).

Now, we are going to apply this theorem to our problem: computing the geodesics of Riemannian manifolds of Gaussian distributions.

GIGO in Gd

If we force the covariance matrix to be either diagonal or proportional to the identity matrix, the geodesics have a simple expression that we give below. In the former case, the manifold we are considering is (G 1 ) d , and in the latter case, it is Gd .

The geodesics of (G 1 ) d are given by: Proposition 8.6. Let M be a Riemannian manifold; let d ∈ N; let Φ be the Riemannian exponential of M d ; and let φ be the Riemannian exponential of M . We have:

Φ (x 1 ,...,xn) ((v 1 , ..., v n )) = (φ x 1 (v 1 ), ..., φ xn (v n )) (8.9)
In particular, knowing the geodesics of G 1 is enough to compute the geodesics of (G 1 ) d . This is true, because a block of the product metric does not depend on variables of the other blocks.

Consequently, a GIGO update with a diagonal covariance matrix with the sample (x i ) is equivalent to d separate one-dimensional GIGO updates using the same samples. Moreover, G 1 ∼ = G1 , the geodesics of which are given below.

We will show that Gd and the "hyperbolic space", of which the geodesics are known, are isometric.

The Lagrangian for the geodesics is invariant under all translations along the x i , so by Noether's theorem, its geodesics stay in a plane containing the direction y and the initial speed . The induced metric on this plane is the metric of the Poincaré half-plane. The geodesics are therefore given by the following proposition: Proposition 8.10 (Geodesics of the hyperbolic space). If γ : t → (x 1 (t), ..., x n-1 (t), y(t)) = (x(t), y(t)) is a geodesic of H n , then there exists a, b, c, d ∈ R, such that ad -bc = 1, and v > 0, such that x(t) = x(0) + ẋ0 ẋ0 x(t), y(t) = (γ C (t)), with x(t) = (γ C (t)) and:

γ C (t) := aie vt + b cie vt + d . (8.11)

Computing the GIGO Update in Gd

If we want to implement the GIGO algorithm in Gd , we need to compute the natural gradient in Gd and to be able to compute the Riemannian exponential of Gd . Using Proposition 7.2, we can compute the metric of Gd in the parametrization (µ, σ) → N (µ, σ 2 I). We find: (8.12)

     
Since this matrix is diagonal, it is easy to invert, and we immediately have the natural gradient and, consequently, the IGO speed.

Proposition 8.11. In Gd , the IGO speed Y is given by:

Y µ = i ŵi (x i -µ), (8.13) 
Y σ = i ŵi (x i -µ) T (x i -µ) 2dσ - σ 2 . (8.14)
Proof. We recall the IGO speed is defined by

Y = I -1 (θ t ) N i=1 ŵi ∂ ln P θ (x i ) ∂θ . Since P µ,σ (x) = (2πσ 2 ) -d/2 exp(-(x-µ) T (x-µ) 2σ 2
), we have:

∂ ln P µ,σ (x) ∂µ = x -µ, ∂ ln P µ,σ (x) ∂σ = - d σ + (x -µ) T (x -µ) σ 3 .
The result follows.

The metric defined by Equation (8.12) is not exactly the metric of the hyperbolic space, but with the substitution µ ← µ √ 2d , the metric becomes 2d σ 2 I, which is proportional to the metric of the hyperbolic space and, therefore, defines the same geodesics.

Theorem 8.12 (Geodesics of Gd ). If γ : t → N (µ(t), σ(t) 2 I) is a geodesic of Gd , then there exists a, b, c, d ∈ R, such that ad -bc = 1, and v > 0, such that:

µ(t) = µ(0) + √ 2d μ0 μ0 r(t), σ(t) = (γ C (t)), with r(t) = (γ C (t)) and γ C (t) := aie vt + b cie vt + d . (8.15)
Now, in order to implement the corresponding GIGO algorithm, we only need to be able to find the coefficients a, b, c, d, v corresponding to an initial position (µ 0 , σ 0 ) and an initial speed ( μ0 , σ0 ). This is a tedious but easy computation, the result of which is given in Proposition B.5.

The pseudocode of GIGO in Gd is also given in the Appendix: it is obtained by concatenating Algorithms 3 and 9 (Proposition B.5 and the pseudocode in the Appendix allow the metric to be slightly modified; see Section 9.1.1).

GIGO in G d

Obtaining a First Order Differential Equation for the

Geodesics of G d

In the case where both the covariance matrix and the mean can vary freely, the equations of the geodesics have been computed in [START_REF] Eriksen | Geodesics connected with the fisher metric on the multivariate normal manifold[END_REF] and [START_REF] Calvo | An explicit solution of information geodesic equations for the multivariate normal model[END_REF]. However, these articles start with the equations of the geodesics obtained with the Christoffel symbols, then partially integrate them . These equations are in fact a consequence of Noether's theorem and can be found directly.

Theorem 8.13. Let γ : t → N (µ t , Σ t ) be a geodesic of G d . Then, the following quantities do not depend on t:

J µ = Σ -1 t μt , (8.16 
)

J Σ = Σ -1 t ( μt µ T t + Σt ). (8.17)
Proof. This is a direct application of Noether's theorem, with suitable groups of diffeomorphisms. By Proposition 7.2, the Lagrangian associated with the geodesics of G d is:

L(µ, Σ, μ, Σ) = μT Σ -1 μ + 1 2 tr( ΣΣ -1 ΣΣ -1 ). (8.18)
Its derivative is:

∂L ∂ θ = (h, H) → 2 μT Σ -1 h + tr(HΣ -1 ΣΣ -1 ) . (8.19)
Let us show that this Lagrangian is invariant under affine changes of basis (thus illustrating Definition 8.4).

The general form of an affine change of basis is φ µ 0 ,A : (µ, Σ) → (Aµ + µ 0 , AΣA T ), with µ 0 ∈ R d and A ∈ GL d (R).

We have:

L(φ µ 0 ,A (µ, Σ), dφ µ 0 ,A ( μ, Σ)) = Ȧµ T (AΣA T ) -1 Ȧµ+ 1 2 tr ȦΣA T (AΣA T ) -1 ȦΣA T (AΣA T ) -1 , (8.20) 
and since Ȧµ = A μ and ȦΣA T = A ΣA T , we find easily that:

L(φ µ 0 ,A (µ, Σ), dφ µ 0 ,A ( μ, Σ)) = L(µ, Σ, μ, Σ), (8.21)
or in other words: L is invariant under φ µ 0 ,A for any

µ 0 ∈ R d , A ∈ GL d (R).
In order to use Noether's theorem, we also need one-parameter groups of transformations. We choose the following:

1. Translations of the mean vector. For any i ∈ [1, d], let h s i : (µ, Σ) → (µ+se i , Σ), where e i is the i-th basis vector. We have θ (e i , 0) = 2 μT Σ -1 e i = 2e T i Σ -1 μ remains constant for all i. The fact that J µ is an invariant immediately follows.

2. Linear base changes. For any i, j ∈ [1, d], let h s i,j : (µ, Σ) → (exp(sE ij )µ, exp(sE ij )Σ exp(sE ji )), where E ij is the matrix with a one at position (i, j) and zeros elsewhere. We have:

dh

s E ij ds | s=0 = (E ij µ, E ij Σ + ΣE ji ).
Therefore, by Noether's theorem, we then obtain the following invariants:

J ij := ∂L ∂ θ (E ij µ, E ij Σ + ΣE ji ) (8.22) =2 μT Σ -1 E ij µ + tr((E ij Σ + ΣE ji )Σ -1 ΣΣ -1 ) (8.23) =2 (Σ -1 μ) T E ij µ + tr(E ij ΣΣ -1 ) + tr(E ji Σ -1 Σ) (8.24) =2(J µ µ T ) ij + 2(Σ -1 Σ) ij , (8.25) 
and the coefficients of J Σ in (8.17) are the (J ij /2).

Theorem 8.15 (GIGO-A). If µ : t → µ t and A : t → A t satisfy the equations:

μt = A t A T t J µ , (8.28) Ȧt = 1 2 (J Σ -J µ µ T t ) T A t , (8.29) 
where:

J µ = (A -1 0 ) T A -1 0 µ 0 and: J Σ = (A -1 0 ) T A -1 0 ( μ0 µ T 0 + Ȧ0 A T 0 + A 0 ȦT 0 ), then t → N (µ t , A t A T t ) is a geodesic of G d .
Proof. This is a simple rewriting of Theorem 8.14: if we write Σ := AA T , we find that J µ and J Σ are the same as in Theorem 8.14, and we have: μ = ΣJ µ , and:

Σ = ( ȦA T + A ȦT ) = 1 2 (J Σ -J µ µ T ) T AA T + 1 2 AA T (J Σ -J µ µ T ) = 1 2 (J Σ -J µ µ T ) T Σ+ 1 2 Σ(J Σ -J µ µ T ) = 1 2 Σ(J Σ -J µ µ T )+ 1 2 [Σ(J Σ -J µ µ T )] T .
By Theorem 8.14, Σ(J Σ -J µ µ T ) is symmetric (since Σ has to be symmetric). Therefore, we have Σ = Σ(J Σ -J µ µ T ), and the result follows.

Notice that Theorem 8.15 gives an equivalence, whereas Theorem 8.14 does not. The reason is that the square root of a symmetric positive-definite matrix is not unique. Still, it is canonical; see the discussion in Section 8.4.

As for Theorem 8.14, we can solve Equations (8.28) and (8.29) numerically, and we obtain another algorithm (Algorithm 5 in the Appendix; we will call it GIGO-A), with a behavior similar to the previous one (with Equations (8.26) and (8.27)). For both of them, numerical problems can arise when the covariance matrix is almost singular.

We have not managed to find any example where one of these two algorithms converged to the minimum of the objective function, whereas the other did not, and their behavior is almost the same.

More interestingly, the performances of these two algorithms are also the same as the performances of the exact GIGO algorithm, using the equations of Section 8.3.2.

Notice that even though GIGO-A directly maintains a square root of the covariance matrix, which makes sampling new points easier (to sample a point from N (µ, Σ), a square root of Σ is needed), both GIGO-Σ and GIGO-A still have to invert the covariance matrix (or its square root) at each step, which is as costly as the decomposition, so one of these algorithms is roughly as expensive to compute as the other.

Explicit Form of the Geodesics of G d (from [CO91])

We now give the exact geodesics of G d : the following results are a rewriting of Theorem 3.1 and its first corollary in [START_REF] Calvo | An explicit solution of information geodesic equations for the multivariate normal model[END_REF].

Theorem 8.16. Let ( μ0 , Σ0 ) ∈ T N (0,I) G d . The geodesic of G d starting from N (0, 1) with initial speed ( μ0 , Σ0 ) is given by:

exp N (0,I) (s μ0 , s Σ0 ) = N 2R(s)sh( sG 2 )G -μ0 , R(s)R(s) T , (8.30)
where exp is the Riemannian exponential of G d , G is any matrix satisfying:

G 2 = Σ2 0 + 2 μ0 μT 0 , (8.31) R(s) = ch( sG 2 ) -Σ0 G -sh( sG 2 ) -1 T (8.32)
and G -is a pseudo-inverse of G

In [START_REF] Calvo | An explicit solution of information geodesic equations for the multivariate normal model[END_REF], the existence of G (as a square root of Σ2 0 + 2 μ0 μT 0 ) is proven. Notice that, anyway, in the expansions of (8.30) and (8.32), only even powers of G appear.

Additionally, since, for all A ∈ GL d (R), for all µ 0 ∈ R d , the application:

φ : G d → G d N (µ, Σ) → N (Aµ + µ 0 , AΣA T ) (8.33)
preserves the geodesics, we find the general expression for the geodesics of G d .

Corollary 8.17.

Let µ 0 ∈ R d , A ∈ GL d (R) and ( μ0 , Σ0 ) ∈ T N (µ 0 ,A 0 A T 0 ) G d . The geodesic of G d starting from N (µ, Σ) with initial speed ( μ0 , Σ0 ) is given by: exp N (µ 0 ,A 0 A T 0 ) (s μ0 , s Σ0 ) = N (µ 1 , A 1 A T 1 ), (8.34) 
with:

µ 1 = 2A 0 R(s)sh( sG 2 )G -A -1 0 μ0 + µ 0 , (8.35) A 1 = A 0 R(s), (8.36)
where exp is the Riemannian exponential of G d , G is any matrix satisfying:

G 2 = A -1 0 ( Σ0 Σ -1 0 Σ0 + 2 μ0 μT 0 )(A -1 0 ) T , (8.37) R(s) = ch( sG 2 ) -A -1 0 Σ0 (A -1 0 ) T G -sh( sG 2 ) -1 T , (8.38)
and G -is a pseudo-inverse of G.

It should be noted that the final values for mean and covariance do not depend on the choice of G as a square root of:

A -1 0 ( Σ0 Σ -1 0 Σ0 + 2 μ0 μT 0 )(A -1 0 ) T .
The reason for this is that ch(G) is a Taylor series in G 2 , and so are sh(G)G - and G -sh(G).

For our practical implementation, we actually used these Taylor series instead of the expression of the corollary.

Using a Square Root of the Covariance Matrix

The IGO framework (on G d , for example) emphasizes the Riemannian manifold structure on G d . All of the algorithms studied here (including GIGO, which is not strictly speaking an IGO algorithm) define a trajectory in G d (a new point for each step), and to go from a point θ to the next one (θ ), we follow some curve γ : [0, δt] → G d , with γ(0) = θ, γ(δt) = θ and γ(0) given by the natural gradient ( γ(0) = N i=1 ŵi ∇θ P θ (x i ) ∈ T θ G d ). To be compatible with this point of view, an algorithm giving an update rule for a square root (any matrix A such that Σ = AA T : since we do not force A to be symmetric, the decomposition is not unique) of the covariance matrix A has to satisfy the following condition: for a given initial speed, the covariance matrix Σ t+δt after one step must depend only on Σ t and not on the square root A t chosen for Σ t .

The xNES algorithm does satisfy this condition: consider two xNES algorithms, with the same learning rates, respectively, at (µ, A t 1 ) and (µ, A t 2 ), with A t 1 (A t 1 ) T = A t 2 (A t 2 ) T (i.e., they define the same Σ t ), using the same samples x i to compute the natural gradient update , then we will have Σ t+δt 1 = Σ t+δt 2 . Using the definitions of Section 9.2, we have just shown that what we will call the "xNES trajectory" is well defined.

It is also important to notice that, in order to be well defined, a natural gradient algorithm updating a square root of the covariance matrix has to specify more conditions than simply following the natural gradient.

The reason for this is that the natural gradient is a vector tangent to G d : it lives in a space of dimension d(d + 3)/2 (the dimension of G d ), whereas the vector (µ, A) lives in a space of dimension d(d + 1) (the dimension of R n × GL n (R)), which is too large: there exists infinitely many applications t → A t , such that a given curve γ : t → N (µ t , Σ t ) can be written γ(t) = N (µ t , A t A T t ). This is why Theorem 8.15 is simply an implication, whereas Theorem 8.14 is an equivalence.

More precisely, let us consider A in GL d (R) and v A , v A two infinitesimal updates of A. Since Σ = AA T , the infinitesimal update of Σ corresponding to

v A (resp. v A ) is v Σ = Av T A + v A A T (resp. v Σ = Av T A + v A A T ).
It is now easy to see that v A and v A define the same direction for Σ (i.e., v Σ = v Σ ) if and only if AM T + M A T = 0, where M = v A -v A . This is equivalent to A -1 M antisymmetric.

For any A ∈ M d (R), let us denote by T A the space of the matrices M , such that A -1 M is antisymmetric or, in other words, T A := {u ∈ M d (R), Au T + uA T = 0}. Having a subspace S A in direct sum with T A for all A is sufficient (but not necessary) to have a well-defined update rule. Namely, consider the (linear) application:

φ A : M d (R) → S d (R) v A → Av T A + v A A T
, sending an infinitesimal update of A to the corresponding update of Σ. It is not bijective, but as we have seen before, Ker φ A = T A , and therefore, if we have, for some

U A , M d (R) = U A ⊕ T A , (8.39) 
then φ A | U A is an isomorphism. Let v Σ be an infinitesimal update of Σ. We choose the following update of A corresponding to v Σ :

v A := (φ A | U A ) -1 (v Σ ). (8.40) Any U A , such that U A ⊕ T A = M d (R), is a reasonable choice to pick v A for a given v Σ . The choice S A = {u ∈ M d (R), Au T -uA T = 0}
has an interesting additional property; it is the orthogonal of T A for the norm:

v A 2 Σ := Tr(v T A Σ -1 v A ) = Tr((A -1 v A ) T A -1 v A ). (8.41)
and consequently, it can be defined without referring to the parametrization, which makes it a canonical choice. To prove this, remark that

T A = {M ∈ M d (R), A -1 M antisymmetric} and S A = {M ∈ M d (R), A -1 M symmetric} and that if M is symmetric and N is antisymmetric, then Tr(M T N ) = d i,j=1 m ij n ij = d i=1 m ii n ii + 1 i<j d m ij (n ij + n ji ) = 0. (8.42)
Let us now show that this is the choice made by xNES and GIGO-A (which are well-defined algorithms updating a square root of the covariance matrix).

Proposition 8.18. Let A ∈ M n (R). The v A given by the xNES and GIGO-A algorithms lies in

S A = {u ∈ M d (R), Au T -uA T = 0} = S A . Proof. For xNES, let us write γ(0) = (v µ , v Σ ) and v A := 1 2 AG M . We have A -1 v A = 1
2 G M , and therefore, forcing M (and G M ) to be symmetric in xNES is equivalent to A -1 v A = (A -1 v A ) T , which can be rewritten as Av T A = v A A T . For GIGO-A, Equation (8.27) shows that Σ t (J Σ -J µ µ T t ) is symmetric, and with this fact in mind, Equation (8.29) shows that we have

Av T A = v A A T (v A is Ȧt ).
Chapter 9

Blockwise GIGO, twisted GIGO 9.1 Decoupling the step size

Twisting the Metric

As we can see, the IGO framework does not allow one to recover the learning rates for xNES and pure rank-µ CMA-ES, which is a problem, since usually, the covariance learning rate is set much smaller than the mean learning rate (see either [START_REF] Hansen | The CMA evolution strategy: A tutorial[END_REF] or [GSY + 10]).

A way to recover these learning rates is to incorporate them directly into the metric (see also blockwise GIGO, in Section 9.1.2). More precisely: Definition 9.1 (Twisted Fisher metric). Let η µ , η Σ ∈ R, and let (P θ ) θ∈Θ be a family of normal probability distributions: P θ = N (µ(θ), Σ(θ)), with µ and Σ C 1 . We call the "(η µ , η Σ )-twisted Fisher metric" the metric defined by:

I i,j (η µ , η Σ )(θ) = 1 η µ ∂µ T ∂θ i Σ -1 ∂µ ∂θ j + 1 η Σ 1 2 tr Σ -1 ∂Σ ∂θ i Σ -1 ∂Σ ∂θ j . (9.1)
All of the remainder of this section is simply a rewriting of the work in Chapter 7 with the twisted Fisher metric instead of the regular Fisher metric. We will use the term "twisted geodesic" instead of "geodesic for the twisted metric".

This approach seems to be somewhat arbitrary: arguably, the mean and the covariance play a "different role" in the definition of a Gaussian (only the covariance can affect diversity, for example), but we lack a reasonable intrinsic characterization that would make this choice of twisting more natural. This construction can be slightly generalized (see the Appendix).

The IGO flow and the IGO algorithms can be modified to take into account the twisting of the metric; the (η µ , η Σ )-twisted IGO flow reads:

dθ t dt = I(η µ , η Σ ) -1 (θ) X W f θ t (x)∇ θ ln P θ (x)P θ t (dx). (9.
2)

The only difference with (7.8) is that I -1 (θ) has been replaced by I(η µ , η Σ ) -1 (θ). This leads us to the twisted IGO algorithms.

Definition 9.2. The (η µ , η Σ )-twisted IGO algorithm associated with parametrization θ, sample size N , step size δt and selection scheme w is given by the following update rule:

θ t+δt = θ t + δtI(η µ , η Σ ) -1 (θ t ) N i=1 ŵi ∂ ln P θ (x i ) ∂θ .
Definition 9.3. The (η µ , η Σ )-twisted geodesic IGO algorithm associated with sample size N , step size δt and selection scheme w is given by the following update rule:

θ t+δt = exp θ t (Y δt) (9.3) 
where:

Y = I(η µ , η Σ ) -1 (θ t ) N i=1 ŵi ∂ ln P θ (x i ) ∂θ . (9.4)
By definition, the twisted geodesic IGO algorithm does not depend on the parametrization (but it does depend on η µ and η Σ ).

There is some redundancy between δt, η µ and η Σ : the only values actually appearing in the equations are δtη µ and δtη Σ . More formally:

Proposition 9.4. Let k, d, N ∈ N, η µ , η Σ , δt, λ 1 , λ 2 ∈ R and w : [0; 1] → R.
The (η µ , η Σ )-twisted IGO algorithm with sample size N , step size δt and selection scheme w coincides with the (λ 1 η µ , λ 1 η Σ )-twisted IGO algorithm with sample size N , step size λ 2 δt and selection scheme 1 λ 1 λ 2 w. The same is true for geodesic IGO.

In order to obtain the twisted algorithms, the Fisher metric in IGO has to be replaced by the metric from Definition 9.1. In practice, the equations found by twisting the metric are exactly the equations without twisting, except that we have "forced" the learning rates η µ , η Σ to appear by multiplying the increments of µ and Σ by η µ and η Σ .

We can now describe pure rank-µ CMA-ES and xNES with separate learning rates as twisted IGO algorithms:

• We denote by Φ θ,i the exponential at θ of the manifold Θ θ,i . Definition 9.9 (Blockwise GIGO update). Let Θ 1 , ..., Θ n be a compatible splitting. The blockwise GIGO algorithm in Θ with splitting Θ 1 , ..., Θ n associated with sample size N , step sizes δt 1 , ..., δt n and selection scheme w is given by the following update rule:

θ ← (θ t+δt 1 1 , ..., θ t+δtn n ) (9.5)
where:

Y = I -1 (θ t ) N i=1 ŵi ∂ ln P θ (x i ) ∂θ , (9.6) 
θ t+δt k k = Φ θ t ,k (δt k Y k ), (9.7) with Y k the T Θ θ,k -component of Y .
This update only depends on the splitting (and not on the parametrization inside each Θ k ).

The compatibility condition ensures that the natural gradient of W f θ t (defined in Section 7.2) in the whole manifold Θ really is the sum of the gradients of this same function in the submanifolds Θ k . A practical consequence is that the Y k in Equation (9.7) can be computed simply by taking the natural gradient in Θ k :

Y k = I -1 k (θ t i ) N i=1 ŵi ∂ ln P θ (x i ) ∂θ k , (9.8) 
where I k is the metric of Θ k .

Since blockwise GIGO only depends on the splitting (and the tunable parameters: sample size, step sizes and selection scheme), it can be thought of as almost parametrization-invariant.

Notice that blockwise GIGO updates and twisted GIGO updates are two different things: firstly, blockwise GIGO can be defined on any manifold with a compatible splitting, whereas twisted GIGO (and twisted IGO) are only defined for Gaussians. However, even in G d (η µ , η Σ ), with the splitting (µ, Σ), these two algorithms are different: for instance, if η µ = η Σ and δt = 1, then the twisted GIGO is the regular GIGO algorithm, whereas blockwise GIGO is not (actually, we will prove that it is the xNES algorithm). The only thing blockwise GIGO and twisted GIGO have in common is that they are compatible with the (η µ , η Σ )-twisted IGO flow Equation (9.2): a parameter θ t following these updates with δt → 0 and N → ∞ is a solution of Equation (9.2).

We 

= (R d × {Σ t }) → G d , Θ θ t ,2 = ({µ t } × P d ) → G d .
The induced metric on Θ θ t ,1 is the Euclidean metric, so we have:

µ ← µ t + δt 1 Y µ .
Since we have already shown (using the notation in Definition 7.6) that Y µ = AG µ (in the proof of Proposition 7.7), we find:

µ ← µ t + δt 1 AG µ .
On Θ θ t ,2 , we have the following Lagrangian for the geodesics:

L(Σ, Σ) = 1 2 tr( ΣΣ -1 ΣΣ -1 ).
By applying Noether's theorem, we find that

J Σ = Σ -1 Σ
is invariant along the geodesics of Θ θ t ,2 , so they are defined by the equation Σ = ΣJ Σ = ΣΣ -1 0 Σ0 (and therefore, any update preserving the invariant J Σ will satisfy this first-order differential equation and follow the geodesics of Θ θ t ,2 ). The xNES update for the covariance matrix is given by A(t) = A 0 exp(tG M /2). Therefore, we have Σ

(t) = A 0 exp(tG M )A T 0 , Σ -1 (t) = (A -1 0 ) T exp(-tG M )A -1 0 , Σ(t) = A 0 exp(tG M )G M A T 0 and, finally, Σ -1 (t) Σ(t) = (A -1 0 ) T G M A T 0 = Σ -1 0 Σ0
. Therefore, xNES preserves J Σ , and therefore, xNES follows the geodesics of Θ θ t ,2 (notice that we had already proven this in Proposition 9.13, since we are looking at the geodesics of G d with a fixed mean).

Although blockwise GIGO is somewhat "less natural" than GIGO, it can be easier to compute for some splittings (as we have just seen), and in the case of the Gaussian distributions, the mean-covariance splitting seems reasonable.

Trajectories of Different IGO Steps

As we have seen, two different IGO algorithms (or an IGO algorithm and the GIGO algorithm) coincide at first order in δt when δt → 0. In this section, we study the differences between pure rank-µ CMA-ES, xNES and GIGO by looking at the second order in δt, and in particular, we show that xNES and GIGO do not coincide in the general case.

• At order two, GIGO moves the mean faster than xNES and CMA-ES if the standard deviation is increasing and more slowly if it is decreasing. This seems to be a reasonable behavior (if the covariance is decreasing, then the algorithm is presumably close to a minimum, and it should not leave the area too quickly). This remark holds only for isolated steps, because we do not take into account the evolution of the variance. • The geodesics of G 1 are half-circles (see Figure 9.1 below; we recall that G 1 is the Poincaré half-plane). Consequently, if the mean is supposed to move (which always happens), then σ → 0 when δt → ∞. For example, a step whose initial speed has no component on the standard deviation will always decrease it. See also Proposition 10.1, about the optimization of a linear function.

• For the same reason, for a given initial speed, the update of µ always stays bounded as a function of δt: it is not possible to make one step of the GIGO algorithm go further than a fixed point by increasing δt. Still, the geodesic followed by GIGO changes at each step, so the mean of the overall algorithm is not bounded. We now show that xNES follows the geodesics of G d if the mean is fixed, but that xNES and GIGO do not coincide otherwise.

Proposition 9.13 (xNES is not GIGO in the general case). Let µ, v µ ∈ R d , A ∈ GL d , v Σ ∈ M d .
Then, the GIGO and xNES updates starting at N (µ, Σ) with initial speeds v µ and v Σ follow the same trajectory if and only if the mean remains constant. In other words:

T GIGO (µ, Σ, v µ , v Σ ) = T xNES (µ, Σ, v µ , v Σ ) if and only if v µ = 0.
Proof. If v µ = 0, then we can compute the GIGO update by using Theorem 8.14: since J µ = 0, μ = 0, and µ remains constant. Now, we have J Σ = Σ -1 Σ; this is enough information to compute the update. Since this quantity is also preserved by the xNES algorithm (see, for example, the proof of Proposition 9.10), the two updates coincide.

If

v µ = 0, then Σ xNES (µ, Σ, v µ , v Σ ) (0)-Σ GIGO (µ, Σ, v µ , v Σ ) (0) = η µ η Σ v µ v T µ = 0 and, in particular, T GIGO (µ, Σ, v µ , v Σ ) = T xNES (µ, Σ, v µ , v Σ ).

Chapter 10

Numerical experiments

We conclude this part with some numerical experiments to compare the behavior of GIGO, xNES and pure rank-µ CMA-ES (we give the pseudocodes for these algorithms in the Appendix). We made two series of tests. The first one is a performance test, using classical benchmark functions and the settings from [GSY + 10]. The goal of the second series of tests is to illustrate the computations in Section 9.2 by plotting the trajectories (standard deviation versus mean) of these three algorithms in dimension one.

The source code is available at https://www.lri.fr/ ~bensadon.

Benchmarking

For the first series of experiments, presented in Figure 10.1, we used the following parameters, taken from [GSY + 10] (we recall that xNES and pure rank-µ CMA-ES are seen as IGO algorithms):

• Varying dimension.

• Sample size: 4 + 3 log(d) .

• Weights:

w i = max(0,log( n 2 +1)-log(i) N j=1 max(0,log( n 2 +1)-log(j) -1 N . • IGO step size and learning rates: δt = 1, η µ = 1, η Σ = 3 5 3+log(d) d √ d .. • Initial position: θ 0 = N (x 0 , I)
, where x 0 is a random point of the circle with center zero, and radius 10. • Euler method for GIGO: Number of steps: 100. We used the GIGO-A variant of the algorithm. No significant difference was noticed with GIGO-Σ or with the exact GIGO algorithm. The only advantage of having an explicit solution of the geodesic equations is that the update is quicker to compute. • We chose not to use the exact expression of the geodesics for this benchmarking to show that having to use the Euler method is fine. However, we did run the tests, and the results are basically the same as GIGO-A. Initial position θ 0 = N (x 0 , I), with x 0 uniformly distributed on the circle of center zero and radius 10. We recall that the "CMA-ES" algorithm here is using the so-called pure rank-µ CMA-ES update.

Discussion

As the last item in Section 10.1.1 shows, all of the algorithms converge prematurely in a low dimension, probably because the covariance learning rate has been set too high (or because the sample size is too small). This is different from the results in [GSY + 10]. This remark aside, as noted in [GSY + 10], the xNES algorithm shows more robustness than CMA-ES and GIGO: it is the only algorithm able to find the minimum of the Rosenbrock function in high dimensions. However, its convergence is consistently slower.

In terms of performance, when both of them work, pure rank-µ CMA-ES (or equivalently, IGO in the parametrization (µ, Σ)) and GIGO are extremely close (GIGO is usually a bit better). An advantage of GIGO is that it is theoretically defined for any δt, η Σ , whereas the covariance matrix maintained by CMA-ES (not only pure rank-µ CMA-ES) can stop being positive definite if η Σ δt > 1. However, in that case, the GIGO algorithm is prone to premature convergence (remember Figure 9.1 and see Proposition 10.1 below), and in practice, the learning rates are much smaller.

Plotting Trajectories in G 1

We want the second series of experiments to illustrate the remarks about the trajectories of the algorithms in Section 9.2, so we decided to take a large sample size to limit randomness, and we chose a fixed starting point for the same reason. We use the weights below because of the property of quantile improvement proven in [START_REF] Akimoto | Objective improvement in information-geometric optimization[END_REF]: the 1/4-quantile will improve at each step. The parameters we used were the following:

• Sample size: λ = 5, 000 • Dimension one only.

• Weights: w = 41 q 1/4 (w i = 4.1 i 1,250 ) • IGO step size and learning rates:

η µ = 1, η Σ = 3 5 3+log(d) d √ d
= 1.8, varying δt.

• Initial position: θ 0 = N (10, 1) • Dots are placed at t = 0, 1, 2 . . . (except for the graph δt = 1.5, for which there is a dot for each step). x 2 in dimension one with δt = 0.1, sample size 5000, weights w i = 4.1 i 1250 and learning rates η µ = 1, η Σ = 1.8. One dot every 10 steps. All algorithms exhibit a similar behavior, and differences start to appear. It cannot be seen on the graph, but the algorithm closest to zero after 400 steps is CMA (∼ 1.10 -16 , followed by xNES (∼ 6.10 -16 ) and GIGO (∼ 2.10 -15 ). in dimension one with δt = 0.5, sample size 5000, weights w i = 4.1 i 1250 and learning rates η µ = 1, η Σ = 1.8. One dot every two steps. Stronger differences. Notice that after one step, the lowest mean is still GIGO (∼ 8.5, whereas xNES is around 8.75), but from the second step, GIGO has the highest mean, because of the lower variance. and learning rates η µ = 1, η Σ = 1.8. One dot per step. The CMA-ES algorithm fails here, because at the fourth step, the covariance matrix is not positive definite anymore (it is easy to see that the CMA-ES update is always defined if δtη Σ < 1, but this is not the case here). Furthermore, notice (see also Proposition 10.1) that at the first step, GIGO decreases the variance, whereas the σ-component of the IGO speed is positive. .9 show that when δt 1, GIGO reduces the covariance, even at the first step. More generally, when using the GIGO algorithm in Gd for the optimization of a linear function, there exists a critical step size δt cr (depending on the learning rates η µ , η σ and on the weights w i ), above which, GIGO will converge, and we can compute its value when the weights are of the form 1 q q 0 (for q 0 0.5, the discussion is not relevant, because in that case, even the IGO flow converges prematurely. Compare with the critical δt of the smoothed cross entropy method and IGO-ML in [START_REF] Ollivier | Information-geometric optimization algorithms : A unifying picture via invariance principles[END_REF]).

Proposition 10.1. Let d ∈ N, k, η µ , η σ ∈ R * + ; let w = k.1 q q 0 ; and let

g : R d → R x → -x 1 .
Let µ n be the first coordinate of the mean, and let σ 2 n be the variance (at step n) maintained by the (η µ , η σ )-twisted geodesic IGO algorithm in Gd associated with selection scheme w, sample size ∞ 1 and step size δt, when optimizing g.

There exists δt cr , such that:

• if δt > δt cr , (σ n ) converges to zero with exponential speed and (µ n ) converges.

• if δt = δt cr , (σ n ) remains constant and (µ n ) tends to ∞ with linear speed. • if 0 < δt < δt cr , both (σ n ) and µ n tend to ∞ with exponential speed.

The proof and the expression of δt cr can be found in the Appendix. In the case corresponding to k = 4, n = 1, q 0 = 1/4, η µ = 1, η σ = 1.8, we find: δt cr ≈ 0.84. (10.1)

1 It has been proven in [START_REF] Ollivier | Information-geometric optimization algorithms : A unifying picture via invariance principles[END_REF] that IGO algorithms are consistent with the IGO flow, i.e., they get closer and closer to the IGO flow as sample size tends to infinity. In other words: Sample size ∞ means that we replace the IGO speed in the GIGO update by its limit for large N . In particular, it is deterministic.

Conclusion 1 Summary

In this thesis, we introduced two different algorithms, generic Context Tree Weighting and GIGO, motivated respectively by minimum description length considerations and invariance principles.

Expert Trees

By defining a new formal context, we generalized the Context Tree Weighting and Context Tree Switching algorithms, obtained an elegant proof of the property of the former, and introduced edgewise versions of these algorithms.

As for the original CTW, the new algorithms introduced here consider simultaneously a large quantity of models explaining the data, and, for the generalized CTW, computes Bayesian posteiors efficiently. We also investigated the behavior of context tree switching algorithms, using different switch distributions than the ones used in [START_REF] Veness | Context tree switching[END_REF], and showed that for regression, the corresponding Context Tree Switching algorithms achieve better performance than Context Tree Weighting or Bayesian histograms on a specific sequence.

GIGO

We introduced GIGO, a fully parametrization-invariant black-box optimization algorithm, and, thanks to Noether's theorem, we obtained first order equations for the geodesics of G d .

Moreover, we described xNES as a "blockwise GIGO" algorithm, giving it an almost intrinsic description.

Future directions

The following questions are still open:

GIGO on other manifolds. We only studied GIGO on G d . Geodesics are usually hard to compute, except in some cases, such as the manifold of Bernoulli distributions. However, in that case the length of the geodesics is finite, so definition problems arise. Noether's theorem could be useful to obtain equations for computing GIGO updates on other manifolds.

Stochastic IGO. (mentioned in [START_REF] Ollivier | Information-geometric optimization algorithms : A unifying picture via invariance principles[END_REF]) The IGO algorithm can be seen as a stochastic process θ t+δt = θ t + δtX t N , where X t N is computed from N random samples of f (x i ). Because of computation time considerations, it is natural to take N ∝ δt (we want the same number of calls of the objective function f to go from θ t to θ t+T ).

The stochastic differential equation obtained when δt → 0, with N ∝ δt should be easier to study theoretically than the actual IGO update.

From experts to specialists. In order to recover the specialists framework, it is necessary to define a Bayesian combination for experts with domains that are not necessarily identical. It cannot be done directly since by definition, experts are not penalized when data falls outside of their domain, so it seems necessary to define a "domain extension" for experts.

Parameters of the switch distribution in expert trees. Our numerical tests were conducted with generic settings for the switch distributions in the expert trees. Putting more prior mass on sequences starting closed and opening at some time (i.e. of the form 0 n 1 ∞ , n ∈ [0, ∞)) might yield better results, since this seems to be the "reasonable behaviour". This remark can be extended to switch distributions out of expert trees: more prior mass should be put to sequences that go from simple models to more complex (in the sense that they have more parameters to estimate) ones. Experiments are needed to confirm or infirm this intuition.

Testing expert tree algorithms on real data, with more refined experts. The expert tree algorithms introduced in part II are a general framework for expert aggregation, and as such, they could be used in a large variety of situations. It would be interesting to study their performance with more sophisticated experts at the leaves.

Lemma A.3. Let X, Y be two sets, Let T be an infinite binary edgewise weighted expert tree from X to Y such that for all s ∈ T, the domain of E s is fixed1 , and Tar(E s ) = Y . Let x = (x 1 , x 2 , ...) ∈ X N , let (y 1 , y 2 , ...) ∈ Y N , let z k = (x k , y k ) for all k ∈ N * , and let I = I(x) be an edgewise switching pattern such that for any s ∈ T, and t ∈ c(s)

• I s→t = 0 ∞ if |s| = K -1. • I s→t = 01 ∞ otherwise.
Then, to predict y n , E I tries to use the deepest expert that has seen at least one other data point before x n .

In other words, for all n > 1, E I (z n |z n-1 ) = E s(x n ) (z n |z n-1 ), where s(x n ) ∈ T is defined by: x n ∈ Dom(E s(x n ) ), x n-1 ∩ Dom(E s(x n ) ) = ∅, and either |s(x n )| = K -1 or x n-1 ∩ Dom(E t(x n ) ) = ∅, where t(x n ) is the child of s(x n ) containing x n .

Proof. Firstly, we recall that by Definition 4.40:

E Is→t (y|z, x) := 1 (Is→t) φ t (z) =0 (E s ) |Dom(Et) (y|z, x) + 1 (Is→t) φ t (z) =1 E I,t (y|z, x), where φ t (z n ) = |{x k |1 k n, x k ∈ Dom(E t )}|, if we use the fixed domain convention, and the fact that Dom(E t ) = Y .

Let n ∈ N and let us write s = s(x n ). Now, let s ∈ T such that |s | < |s| (in particular, |s | < K), and x n ∈ Dom(E s ) (i.e. s is a descendent of s ); and let t be the child of s such that x n ∈ Dom(E t ). By definition of s(x n ), x n-1 ∩ Dom(E s(x n ) ) = ∅. Consequently, x n is at least the second point in Dom(E t ). Since I s →t = 01 ∞ , (I s →t ) 1+|x n-1 ∩Dom(E t )| = 1, so E I,s (x n |x n-1 ) = E I,t (x n |x n-1 ).

We have just show that for any ascendent s of s, we have E I,s (x n |x n-1 ) = E I,t (x n |x n-1 ), where t is the child of s which is also an ascendent of s (or s itself). Consequently, E I = E I,ε = E I,s(x n ) . Moreover, either x n-1 ∩ Dom(E t (x n )) = ∅ or |s(x n )| = K -1. In both cases, (I s(xn)→t(xn) ) 1+|x n-1 ∩Dom(E t(x n ) )| = 0, so E I,s(xn) (x n |x n-1 ) = E s(xn) (x n |x n-1 ), which concludes the proof.

A.1 Balanced sequences

Proposition A.4. Let K > 1. If (x i ) is well K-balanced, and I, J are two intervals such that |I| = |J|, then the first point in I appears before the K 2 + 1-st point in J. In other words, if t I is the index of the first point in I:

|{i|1 i < t I , x i ∈ J}| K 2 (A.10)

Algorithm 5 GIGO Update, one step, updating a square root of the covariance matrix. wi ziz T i -I A T .

Compute the Noether invariants:

Jµ ← Σ -1 vµ, JΣ ← Σ -1 (vµ t µ + vΣ).

3. Solve numerically the equations of the geodesics: h ← δt/N for i = 1 to N do µ ← µ + hηµAA T Jµ A ← A + h 2 ηΣ(JΣ -Jµµ T ) T A end for return µ, A Algorithm 6 Exact GIGO, one step. Not exactly our implementation; see the discussion after Corollary 8.17. 

Applications of Information Theory to Machine Learning

Summary: We study two different topics, using insight from information theory in both cases: -Context Tree Weighting is a text compression algorithm that efficiently computes the Bayesian combination of all visible Markov models: we build a "context tree", with deeper nodes corresponding to more complex models, and the mixture is computed recursively, starting with the leaves. We extend this idea to a more general context, also encompassing density estimation and regression; and we investigate the benefits of replacing regular Bayesian inference with switch distributions, which put a prior on sequences of models instead of models. -Information Geometric Optimization (IGO) is a general framework for black box optimization that recovers several state of the art algorithms, such as CMA-ES and xNES.

The initial problem is transferred to a Riemannian manifold, yielding parametrization-invariant first order differential equation. However, since in practice, time is discretized, this invariance only holds up to first order. We introduce the Geodesic IGO (GIGO) update, which uses this Riemannian manifold structure to define a fully parametrization invariant algorithm. Thanks to Noether's theorem, we obtain a first order differential equation satisfied by the geodesics of the statistical manifold of Gaussians, thus allowing to compute the corresponding GIGO update. Finally, we show that while GIGO and xNES are different in general, it is possible to define a new "almost parametrization-invariant" algorithm, Blockwise GIGO, that recovers xNES from abstract principles.

Keywords: MDL, Switching, Prediction, Black-box optimization, Riemannian geometry Applications de la théorie de l'information à l'apprentissage statistique

Résumé: On considère ici deux sujets différents, en utilisant des idées issues de la théorie de l'information:

-Context Tree Weighting est un algorithme de compression de texte qui calcule exactement une prédiction Bayésienne qui considère tous les modèles markoviens visibles: on construit un "arbre de contextes", dont les noeuds profonds correspondent aux modèles complexes, et la prédiction est calculée récursivement à partir des feuilles. On étend cette idée à un contexte plus général qui comprend également l'estimation de densité et la régression, puis on montre qu'il est intéressant de remplacer les mixtures Bayésiennes par du "switch", ce qui revient à considérer a priori des suites de modèles plutôt que de simples modèles.

-Information Geometric Optimization 

Figure 1 :Figure 2 :

 12 Figure 1: A Markov model for text prediction on {c, d} (Figure 3.1). Each leaf s contains a local model for characters occuring after the context s

Figure 2 . 1 :

 21 Figure 2.1: Arithmetic coding of a word starting with ABB, with P (A) = 0.6, P (B) = 0.2, P (C) = 0.2

Figure 3 . 1 :

 31 Figure 3.1: Tree corresponding to the example above

  Definition 4.19. If D ⊂ D, the restriction to D of an expert E from X to Y with domain D is the expert E |D with domain D defined by:

  Proposition 4.26 (Concatenation and Bayes). If E i are experts with target T and domain D and E i are experts with target T and domain D, with T ∩ T = ∅, and the w i , w i are positive numbers, then for any expert C:

  Corollary 4.27 (Concatenation and Switch). If E i are experts with target T and domain D and E i are experts with target T and domain D, with T ∩ T = ∅, and if µ and µ are probability distributions on {1, ..., n} N , then for any expert C with domain D and target {Switch µ ((E i )), Switch µ ((E j ))}: Switch µ ((E i )) ∪ C Switch µ ((E j )) = Bayes I,J (E I ∪ E J , µ(I)µ (J)), (4.49) Proof. By Proposition 4.26,

  (4.123) We conclude with Lemma 4.21 and the definition of E I|s (z n |z) = t∈c(s) E Is→t (z n |z).

  is the sample mean, and Var(y) := m i=1 (y i -ȳ) 2 is the sample variance.

Proof.

  We have, for any a, b, c > 0, ln(max(a, b, c)) ln(a + b + c) ln(3 max(a, b, c)) = ln(max(a, b, c)) + ln 3. In particular ln(a + b + c) = ln(max(a, b, c)) + O(1) = max(ln(a, b, c)) + O(1).

Figure 6 . 1 :

 61 Figure 6.1: Regression functions list Constant x → 0 "CTW-friendly" setting. LargeConstant x → 10 6Since CTW has to learn the constant at each step, we can expect CTS to be much better than CTW here SteepLinear x → 100x SteepLinearConstant x → 100x + 10 6

Figure 6 . 2 :

 62 Figure 6.2: Complement to Figure 6.1: Parameters for the Blocks and Bumps functions Blocks and Bumps, x j .1 .13 .15 .23 .25 .40 .44 .65 .76 .78 .81 Blocks, h j 4 -5 3 -4 5 -4.2 2.1 4.3 -3.1 5.1 -4.2 Bumps, h j 4 5 3 4 5 4.2 2.1 4.3 3.1 5.1 4.2 Bumps, w j .005 .005 .006 .01 .01 .03 .01 .01 .005 .008 .005

Figure 6 . 3 :

 63 Figure 6.3: Complement to Figure 6.1: Graphs of the functions. From left to right then top to bottom: Blocks, Bumps, Doppler, Wave.

Figure 6 . 5 :

 65 Figure 6.5: Average loss in bits after 2.10 5 points in the noisy case. Average on ten runs. For additive and multiplicative noise, ε ∼ Unif[-.1, .1].

  s=0 = (e i , 0), so by Noether's theorem, ∂L ∂

Figure 9 . 1 :

 91 Figure 9.1: One step of the geodesic IGO (GIGO) update.

Figure 10 . 1 :

 101 Figure 10.1: Median number of function calls to reach 10 -8 fitness on 24 runs for: sphere function, cigar-tablet function and Rosenbrock function. Initial position θ 0 = N (x 0 , I), with x 0 uniformly distributed on the circle of center zero and radius 10. We recall that the "CMA-ES" algorithm here is using the so-called pure rank-µ CMA-ES update.

Figures 10 .

 10 Figures 10.2-10.6 show the optimization of x → x 2 , and Figures 10.7-10.9 show the optimization of x → -x.

Figure 10 . 2 :Figure 10 . 4 :

 102104 Figure 10.2: Trajectories of GIGO, CMA and xNES optimizing x → x 2 in dimension one with δt = 0.01, sample size 5000, weights w i = 4.1 i 1250 and learning rates η µ = 1, η Σ = 1.8. One dot every 100 steps. All algorithms exhibit a similar behavior

Figure 10 . 3 :

 103 Figure 10.3: Trajectories of GIGO, CMA and xNES optimizing x → x 2 in dimension one with δt = 0.5, sample size 5000, weights w i = 4.1 i 1250 and learning rates η µ = 1, η Σ = 1.8. One dot every two steps. Stronger differences. Notice that after one step, the lowest mean is still GIGO (∼ 8.5, whereas xNES is around 8.75), but from the second step, GIGO has the highest mean, because of the lower variance.

Figure 10 . 5 :

 105 Figure 10.5: Trajectories of GIGO, CMA and xNES optimizing x → x 2 in dimension one with δt = 1, sample size 5000, weights w i = 4.1 i 1250 and learning rates η µ = 1, η Σ = 1.8. One dot per step. The CMA-ES algorithm fails here, because at the fourth step, the covariance matrix is not positive definite anymore (it is easy to see that the CMA-ES update is always defined if δtη Σ < 1, but this is not the case here). Furthermore, notice (see also Proposition 10.1) that at the first step, GIGO decreases the variance, whereas the σ-component of the IGO speed is positive. 147

Figure 10 . 6 :Figure 10 . 7 :

 106107 Figure 10.6: Trajectories of GIGO, CMA and xNES optimizing x → x 2 in dimension one with δt = 1.5, sample size 5000, weights w i = 4.1 i 1250 and learning rates η µ = 1, η Σ = 1.8. One dot per step. Same as δt = 1 for CMA. GIGO converges prematurely.

Figure 10 . 8 :Figure 10 . 9 :

 108109 Figure 10.8: Trajectories of GIGO, CMA and xNES optimizing x → -x in dimension one with δt = 0.1, sample size 5000, weights w i = 4.1 i 1250 and learning rates η µ = 1, η Σ = 1.8. One dot every 10 steps. It is not obvious on the graph, but xNES is faster than CMA, which is faster than GIGO.

Figures 10 .

 10 Figures 10.5,[START_REF]GSY +[END_REF].6 and 10.9 show that when δt 1, GIGO reduces the covariance, even at the first step. More generally, when using the GIGO algorithm in Gd for the optimization of a linear function, there exists a critical step size δt cr (depending on the learning rates η µ , η σ and on the weights w i ), above which, GIGO will converge, and we can compute its value when the weights are of the form 1 q q 0 (for q 0 0.5, the discussion is not relevant, because in that case, even the IGO flow converges prematurely. Compare with the critical δt of the smoothed cross entropy method and IGO-ML in[START_REF] Ollivier | Information-geometric optimization algorithms : A unifying picture via invariance principles[END_REF]).

  t (x) P θ (dx).

R

  vµ ← ηµλvµ vΣ ← ηΣvΣ 3. Intermediate computations. G 2 ← A -1 vΣ(A -1 ) T A -1 vΣ + 2vµv T µ (A -1 ) T C1 ← ch( ← (C1 -A -1 vΣ(A -1 ) T C2) -1 T 4. Actual update µ ← µ + 2ARC2A -1 vµ A ← AR 5. Return to the "real" µ µ ← µ λ return µ, AAlgorithm 7 xNES update, one step.1. Compute Gµ and GM (equivalent to the computation of the IGO speed): update:µ ← µ + ηµAGµ A ← A + A exp(ηΣGM /2) return µ, A Algorithm 8 pure rank-µ CMA-ES update, one step 1. Computation of the IGO speed: -µ)(xi -µ) T -Σ 2. Actual update: µ ← µ + ηµvµ Σ ← Σ + ηΣvΣ return µ, ΣAlgorithm 9 GIGO in Gd , one step.1. Compute the IGO speed: vσ := ησYσ 3. Find a, b, c, d, v corresponding to µ, σ, μ, σ:

(

  IGO) est un cadre général permettant de décrire plusieurs algorithmes d'optimisation boîte noire, par exemple CMA-ES et xNES. On transorme le problème initial en un problème d'optimisation d'une fonction lisse sur une variété Riemannienne, ce qui permet d'obtenir une équation différentielle du premier ordre invariante par reparamétrage. En pratique, il faut discrétiser cette équation, et l'invariance n'est plus valable qu'au premier ordre. On définit l'algorithme IGO géodésique (GIGO), qui utilise la structure de variété Riemannienne mentionnée ci-dessus pour obtenir un algorithme totalement invariant par reparamétrage. Grâce au théorème de Noether, on obtient facilement une équation différentielle du premier ordre satisfaite par les géodésiques de la variété statistique des gaussiennes, ce qui permet d'implémenter GIGO. On montre enfin que xNES et GIGO sont différents dans le cas général, mais qu'il est possible de définir un nouvel algorithme presque invariant par reparamétrage, GIGO par blocs, qui correspond exactement à xNES dans le cas Gaussien. Mots clés: MDL, Switching, Prediction, Optimisation boîte noire, Géométrie riemannienne Université Paris-Saclay Espace Technologique / Immeuble Discovery Route de l'Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France

  Definition 4.23. If E 1 , ...E n are experts with same domain D, and if C is a choice expert on {E 1 , ..., E n }, then the union of the (E i ) with choice expert C, noted n C,i=1 E i is the expert with domain D and target i T i defined by:

  For each node s of T, we define the edgewise context tree weighting expert ECTW s as follows: The target of ECTW s is Tar(E s ), its domain is Dom(E s ), and ECTW s = Bayes I edgewise switching pattern on Ts (E I,s , w I ) , (4.97)where, if I = (I s→t ), w I =

	ECTW s = if s is a leaf of T. With these notations, we have: s∈T Bayes ((E ECTW s = E s t∈c(s)	(4.96)
	t∈c(s)	

s ) |Dom(Et) , w s→t ), (ECTS t , 1 -w s→t ) , (4.95) if s is an internal node of T, and

  .112) by definition of E Is→t . ) n edge (Ts|I) E s (z n |z) = h(n 0 ) n edge (Ts|I) E I|s (z n |z) is any non-leaf node (of T|I) such that (4.103) is true for all the children t of s satisfying I s→t = 0 ∞ , we have, from equation (4.105):

	then by (4.112),			
	ECTS s (z n |z) =	S t h(n 0 ) |c(s)|	(E s ) |Dom(Et) (z n |z)	(4.113)
	t∈c(s)	t∈c(s)		
					
		h(n 0 ) n edge (Ts|I)		(E s ) |Dom(Et)	 (z n |z)
				t∈c(s)
					(4.114)
	by lemma 4.21,			
		h(n 0 (4.115)
	and (4.103) holds.			
	Now, if s ECTS		
	Actual induction.		
	If all the children of s in T s |I are leaves (i.e. I s→t = 0 ∞ for all t ∈ c(s)),

  ∇θ ln P θ (x)P θ t (dx).

	(7.8)
	Notice that the function we are optimizing is E x∼P θ [W f θ t (x)] and not

  .12) is the IGO speed and exp θ t is the exponential of the Riemannian manifold Θ. Namely, exp θ t (Y δt) is the endpoint of the geodesic of Θ starting at θ t , with initial speed Y , after a time δt. By definition, this update does not depend on the parametrization θ.

  now have a new description of the xNES algorithm: Proposition 9.10 (xNES is a Blockwise GIGO algorithm). The Blockwise GIGO algorithm in G d with splitting Φ : N (µ, Σ) → (µ, Σ), sample size N , step sizes δt µ , δt Σ and selection scheme w coincides with the xNES algorithm with sample size N , weights w i and learning rates η µ = δt µ , η σ = η B = δt Σ . Proof. Firstly, notice that the splitting (µ, Σ) is compatible, by Proposition 7.2. Now, let us compute the Blockwise GIGO update: we have G d ∼ = R d ×P d , where P d is the space of real positive-definite matrices of dimension d. We have Θ θ t ,1

Negative losses are an artifact due to the continuous setting, with densities instead of actual probabilities. "Loss L" has to be read as "-ln ε + L bits are needed to encode the data with precision ε".

See footnote 1.

Theorem 8.13 gives equation (4) from[START_REF] Calvo | An explicit solution of information geodesic equations for the multivariate normal model[END_REF], the integration constants being the Noether invariants.

Experts can be seen as a generalization of Prequential Forecasting Systems[START_REF] Dawid | Statistical theory: the prequential approach (with discussion)[END_REF].

Actually, only pure rank-µ CMA-ES can be described in the IGO framework

Your favorite programming language, for example.

Or any multiple of bits.

reasonably small, around 1Mb

We overlook the "infinite S" case, for example, S = {0, 10, 110, 1110, ...}, but the idea behind a more rigorous proof would be the same.

We do not care about the code, we care about the length of the code words for the different elements of X.

Since all the inequalities were already up to an additive constant, this does not matter at all.

A simple particular case is the case where µ does not depend on past observations (i.e. µ(y|x1, ..., xn) =: µ(y)) and can therefore be identified with a probability distribution on X

If I, J are intervals, we write I < J for ∀x ∈ I, ∀y ∈ J, x < y.

We call length of the representation (a1, ..., an, ...) the number min{n ∈ N, ∀k > n, a k = 0}. If length(I) = 0, I necessarily contains number with a finite representation.

Here, "the best" does not necessarily mean the maximum likelihood estimator: if a symbol does not appear, then it will be predicted with probability 0, and we do not want this. A possible solution is to add fictional points of data before the message, which will also yield the prior on x0. For example, when encoding the results of a game of heads or tails, it is possible to add before the first point a head, and a tail, each with weight 1/2.

The important idea is that θ k(θ) → θ when n → ∞, since the length of all the intervals I k tends to 0.

In dimension larger than 1, (3.26) becomes q(θ) = K det I(θ).

Distributions satisfying q(θ) ∝ θ α-1 (1 -θ) β-1 are called beta distributions. The simplification in this proposition is due to the fact that if we have a beta prior for a Bernoulli distribution, then the posterior will also be a beta distribution. The beta distributions are called conjugate priors to Bernoulli distributions.

It does compute the advertised Bayesian mixture.

All nodes have either 0 or 2 children.

Unless s is a prefix of the word we are reading. In practice, as we will see in the next section, this problem can be solved by adding a new character § indicating the beginning of the message: cs = c0s + c1s + c §s is always true.

The algorithm described here is always O(n 2 ), but it can be improved by using the fact that some points are "equivalent" (for example, we can stop going deeper in the tree once we find a suffix that has appeared only once).

As seen in part I, we do note care about the "existence" of such a function, we are simply trying to compress the data using different models.

This will happen for text compression and denstiy estimation.

Specialists ([FSSW97],[START_REF] Wouter | Warmuth. Putting bayes to sleep[END_REF]) could also be seen as experts with target Y (the specialist being awake iff the previous data falls in its domain). However, the main point of defining specialists is the combined prediction of a bunch of specialists (a specialist that is asleep issues the same prediction as the average of the awake specialists), whereas the experts defined here are not penalized for predictions that are out of their domain.

Notice that there is nothing in the definition preventing an expert from using data outside of its domain.

[START_REF] Wouter | Combining expert advice efficiently[END_REF] and[START_REF] Van Erven | Catching up faster by switching sooner: a predictive approach to adaptive estimation with an application to the AIC-BIC dilemma[END_REF] only consider the case m < ∞.

We recall that I ∼n J ⇔ ∀k n, I k = J k .

If the maximum is attained by several experts, choose the smallest index, for example.

We recall that by definition, EI (.|z) = Ei φ(z) (.|z).

We recall that I ∼n J ⇔ ∀k n, I k = J k .

h(n0) cannot be equal to 1, since {J ∈ {0, 1} N | (J ∼n+1 1 ∞ or J = 0 ∞ )} contains at least two elements.

We have seen that the context tree weighting algorithm is a frozen context tree switching algorithm (Section 4.3.2.1). Similarly, the edgewise context tree weighting algorithm is simply a frozen edgewise context tree switching, i.e. a context tree switching algorithm such that for all sT and t ∈ c(s), µs→t(0 ∞ + 1 ∞ = 1).

Technically, it is possible to take any s ∈ T but we are not interested in what happens elsewhere.

We recall that by definition, EI (.|z) = Ei φ(z) (.|z).

We recall that I ∼n J ⇔ ∀k n, I k = J k .

h(n0) cannot be equal to 1, since {J ∈ {0, 1} N | (J ∼n+1 1 ∞ or J = 0 ∞ )} contains at least two elements.

We only describe the CTW algorithm here for simplicity, but the remarks in this section are also valid for the other expert tree algorithms.

This condition is mostly useful for regression and density estimation. It can be applied to text compression with alphabet A by setting {x ∈ A * |x = x n ; x n-|s|+1:n = s} := |A| |-s| .

"K bits binary expansion" means that we complete the binary expansion of n with zeroes on the left.

This argument also holds for the non fixed domain versions of the experts.

Under a condition on the switching that is satisfied by the Switch prior from Definition 4.16.

So by definition, LK-1,1 from (5.45) is smaller than LK-1

We recall that this condition is achieved by the switch distribution from[START_REF] Van Erven | Catching up faster by switching sooner: a predictive approach to adaptive estimation with an application to the AIC-BIC dilemma[END_REF].

The optimal u = εt ln t in the proof of Theorem 5.19 is constant.

The samples have very small variance, so the difference is actually significant for CTS and ECTS.

In particular, these experts do not satisfy the "no peeking out condition". However, the CTS update is still easy to compute, since the global time is the same for all experts by definition.

Supposing that the best model is not the local expert Es.

Another interesting point is that Noether's theorem shortcuts the tedious computation of the Christoffel symbols.

So formally, Dom(Es) = (X × Y ) * × Ds for some Ds, but we will write Dom(Es) = Ds.

Remerciements

Part III

Geodesic Information Geometric Optimization

Definition 7.6 (xNES algorithm). The xNES algorithm with sample size N , weights w i and learning rates η µ and η Σ updates the parameters µ ∈ R d , A ∈ M d (R) with the following rule: At each step, N points x 1 , ..., x N are sampled from the distribution N (µ, AA T ). Without loss of generality, we assume f (x 1 ) < ... < f (x N ). The parameter is updated according to:

where, setting z i = A -1 (x i -µ):

The more general version decomposes the matrix A as σB, where det B = 1, and uses two different learning rates for σ and for B. We gave the version where these two learning rates are equal (in particular, for the default parameters in [GSY + 10], these two learning rates are equal). This restriction of the xNES algorithm can be described in the IGO framework, provided all of the learning rates are equal (most of the elements of the proof can be found in [GSY + 10] (the proposition below essentially states that xNES is a natural gradient update) or in [START_REF] Ollivier | Information-geometric optimization algorithms : A unifying picture via invariance principles[END_REF]): Proposition 7.7 (xNES as IGO). The xNES algorithm with sample size N , weights w i and learning rates η µ = η Σ = δt coincides with the IGO algorithm with sample size N , weights w i , step size δt and in which, given the current position (µ t , A t ), the set of Gaussians is parametrized by:

The parameters maintained by the algorithm are (µ, A), and the x i are sampled from N (µ, AA T ).

Proof. Let us compute the IGO update in the parametrization φ µt,At : we have δ t = 0, M t = 0, and by using Proposition 7.2, we can see that for this parametrization, the Fisher information matrix at (0, 0) is the identity matrix. The IGO update is therefore, (δ, M ) t+δt = (δ, M ) t + δtY δ (δ, M ) + δtY M (δ, M ) = δtY δ (δ, M ) + δtY M (δ, M ), Definition 7.8 (Pure rank-µ CMA-ES algorithm). The pure rank-µ CMA-ES algorithm with sample size N , weights w i and learning rates η µ and η Σ is defined by the following update rule: At each step, N points x 1 , ..., x N are sampled from the distribution N (µ, Σ). Without loss of generality, we assume f (x 1 ) < ... < f (x N ). The parameter is updated according to:

The pure rank-µ CMA-ES can also be described in the IGO framework; see, for example, [START_REF] Akimoto | Bidirectional relation between CMA evolution strategies and natural evolution strategies[END_REF].

Proposition 7.9 (Pure rank-µ CMA-ES as IGO). The pure rank-µ CMA-ES algorithm with sample size N , weights w i and learning rates η µ = η Σ = δt coincides with the IGO algorithm with sample size N , weights w i , step size δt and the parametrization (µ, Σ).

Preliminaries: Poincaré Half-Plane, Hyperbolic Space

In dimension two, the hyperbolic space is called the "hyperbolic plane" or the Poincaré half-plane. We recall its definition: Definition 8.7 (Poincaré half-plane). We call the "Poincaré half-plane" the Riemannian manifold:

with the metric ds 2 = dx 2 +dy 2 y 2 . We also recall the expression of its geodesics (see, for example, [START_REF] Gallot | Riemannian Geometry[END_REF]): Proposition 8.8 (Geodesics of the Poincaré half-plane). The geodesics of the Poincaré half-plane are exactly the:

where:

with ad -bc = 1 and v > 0.

The geodesics are half-circles perpendicular to the line y = 0 and vertical lines, as shown in Figure 8 The generalization to the higher dimension is the following: Definition 8.9 (Hyperbolic space). We call the "hyperbolic space of dimension n" the Riemannian manifold:

with the metric ds 2 = dx 2 1 +...+dx 2 n-1 +dy 2 y 2 (or equivalently, the metric given by the matrix Diag( 1 y 2 ) ).

This leads us to first order equations satisfied by the geodesics mentioned in [START_REF] Eriksen | Geodesics connected with the fisher metric on the multivariate normal manifold[END_REF][START_REF] Calvo | An explicit solution of information geodesic equations for the multivariate normal model[END_REF][START_REF] Imai | Remarks on geodesics for multivariate normal models[END_REF].

Theorem 8.14 (GIGO-Σ). t → N (µ t , Σ t ) is a geodesic of G d if and only if µ : t → µ t and Σ : t → Σ t satisfy the equations:

where: J µ = Σ -1 0 μ0 , and:

. Proof: This is an immediate consequence of Proposition 8.13. These equations can be solved analytically (see [START_REF] Calvo | An explicit solution of information geodesic equations for the multivariate normal model[END_REF]); however, usually, that is not the case, and they have to be solved numerically, for example with the Euler method (the corresponding algorithm, which we call GIGO-Σ, is described in the Appendix). The goal of the remainder of the subsection is to show that having to use the Euler method is fine.

To avoid confusion, we will call the step size of the GIGO algorithm (δt in Proposition 7.5) "GIGO step size" and the step size of the Euler method (inside a step of the GIGO algorithm) "Euler step size".

Having to solve our equations numerically brings two problems:

The first one is a theoretical problem: the main reason to study GIGO is its invariance under reparametrization of θ, and we lose this invariance property when we use the Euler method. However, GIGO can get arbitrarily close to invariance by decreasing the Euler step size. In other words, the difference between two different IGO algorithms is O(δt 2 ), and the difference between two different implementations of the GIGO algorithm is O(h 2 ), where h is the Euler step size; it is easier to reduce the latter. Still, without a closed form for the geodesics of G d , the GIGO update is rather expensive to compute, but it can be argued that most of the computation time will still be the computation of the objective function f .

The second problem is purely numerical: we cannot guarantee that the covariance matrix remains positive-definite along the Euler method. Here, apart from finding a closed form for the geodesics, we have two solutions.

We can enforce this a posteriori : if the covariance matrix we find is not positive-definite after a GIGO step, we repeat the failed GIGO step with a reduced Euler step size (in our implementation, we divided it by four; see Algorithm 4 in the Appendix.).

The other solution is to obtain differential equations on a square root of the covariance matrix (any matrix A, such that Σ = AA T ). Proposition 9.5 (xNES as IGO). The xNES algorithm with sample size N , weights w i and learning rates η µ , η σ = η B = η Σ coincides with the ηµ δt , η Σ δt -twisted IGO algorithm with sample size N , weights w i , step size δt and in which, given the current position (µ t , A t ), the set of Gaussians is parametrized by:

The parameters maintained by the algorithm are (µ, A), and the x i are sampled from N (µ, AA T ).

Proposition 9.6 (Pure rank-µ CMA-ES as IGO). The pure rank-µ CMA-ES algorithm with sample size N , weights w i and learning rates η µ and η Σ coincides with the ( ηµ δt , η Σ δt )-twisted IGO algorithm with sample size N , weights w i , step size δt and the parametrization (µ, Σ).

The proofs of these two statements are an easy rewriting of their nontwisted counterparts: one can return to the non-twisted metric (up to a η Σ factor) by changing µ to

We give the equations of the twisted geodesics of G d in the Appendix.

Blockwise GIGO, an almost intrinsic description of xNES

Although xNES is not GIGO, it is possible to define a family of algorithms extending GIGO and including xNES, by decomposing our family of probability distributions as a product and by following the restricted geodesics simultaneously.

Definition 9.7 (Splitting). Let Θ be a Riemannian manifold. A splitting of Θ is n manifolds Θ 1 , ..., Θ n and a diffeomorphism Θ ∼ = Θ 1 × ... × Θ n . If for all x ∈ Θ, for all 1 i < j n, we also have T i,x M ⊥ T j,x M as subspaces of T x M (see Notation 9.8), then the splitting is said to be compatible with the Riemannian structure. If the Riemannian manifold is not ambiguous, we will simply write a "compatible splitting".

We now give some notation, and we define the blockwise GIGO update:

Notation 9.8. Let Θ be a Riemannian manifold, Θ 1 , ..., Θ n a splitting of Θ, θ = (θ 1 , ..., θ n ) ∈ Θ, Y ∈ T θ Θ and 1 i n.

• We denote by Θ θ,i the Riemannian manifold

with the metric induced from Θ. There is a canonical isomorphism of vector spaces T θ Θ = ⊕ n i=1 T Θ θ,i . Moreover, if the splitting is compatible, it is an isomorphism of Euclidean spaces.

We view the updates done by one step of the algorithms as paths on the manifold G d , from (µ(t), Σ(t)) to (µ(t + δt), Σ(t + δt)), where δt is the time step of our algorithms, seen as IGO algorithms. More formally: Definition 9.11.

1. We call the GIGO update trajectory the application:

(exp is the exponential of the Riemannian manifold G d (η µ , η Σ ))

2. We call the xNES update trajectory the application:

with AA T = Σ. The application above does not depend on the choice of a square root A.

3. We call the CMA-ES update trajectory the application:

These applications map the set of tangent vectors to

We will also use the following notation:

In particular, Im(φ µ ) ⊂ R d and Im(φ Σ ) ⊂ P d , where P d (the set of real symmetric positive-definite matrices of dimension d) is seen as a subset of R d 2 .

For instance, T GIGO (µ, Σ, v µ , v Σ )(δt) gives the position (mean and covariance matrix) of the GIGO algorithm after a step of size δt, while µ GIGO and Σ GIGO give, respectively, the mean component and the covariance component of this position.

This formulation ensures that the trajectories we are comparing had the same initial position and the same initial speed, which is the case provided the sampled points (the values directly sampled from N (µ, Σ), not from N (0, I) and transformed) are the same.

Different IGO algorithms coincide at first order in δt. The following proposition gives the second order expansion of the trajectories of the algorithms.

Proposition 9.12 (Second derivatives of the trajectories). We have:

Proof. We can immediately see that the second derivatives of µ xNES , µ CMA and Σ CMA are zero. Next, we have:

The expression of Σ xNES (µ, Σ, v µ , v Σ ) (0) follows. Now, for GIGO, let us consider the geodesic starting at (µ 0 , Σ 0 ) with initial speed (η µ v µ , η Σ v Σ ). By writing J µ (0) = J µ (t), we find μ(t) = Σ(t)Σ -1 0 μ0 . We then easily have μ(0) = Σ0 Σ -1 0 μ0 . In other words:

Finally, by using Theorem 8.14 and differentiating, we find:

In order to interpret these results, we will look at what happens in dimension one. In higher dimensions, we can suppose that the algorithms exhibit a similar behavior, but an exact interpretation is more difficult for GIGO in G d .

• In [GSY + 10], it has been noted that xNES converges to quadratic minima slower than CMA-ES and that it is less subject to premature convergence. That fact can be explained by observing that the mean update is exactly the same for CMA-ES and xNES, whereas xNES tends to have a higher variance (Proposition 9.12 shows this at order two, and it is easy to see that in dimension one, for any µ,

We plot the median number of runs to achieve target fitness (10 -8 ). Each algorithm has been tested in dimension 2, 4, 8, 16, 32 and 64: a missing point means that all runs converged prematurely.

Failed Runs

In Figure 10.1, a point is plotted even if only one run was successful. Below is the list of the settings for which at least one run converged prematurely.

• Only one run reached the optimum for the cigar-tablet function with CMA-ES in dimension eight. • Seven runs (out of 24) reached the optimum for the Rosenbrock function with CMA-ES in dimension 16. • About half of the runs reached the optimum for the sphere function with CMA-ES in dimension four.

For the following settings, all runs converged prematurely.

• GIGO did not find the optimum of the Rosenbrock function in any dimension. • CMA-ES did not find the optimum of the Rosenbrock function in dimension 2, 4, 32 and 64. • All of the runs converged prematurely for the cigar-tablet function in dimension two with CMA-ES, for the sphere function in dimension two for all algorithms and for the Rosenbrock function in dimension two and four for all algorithms.

Appendix A Expert Trees

Lemma A.1 (Useful computation). Let K ∈ N. We have:

We have:

which is what we wanted.

Proof. Let N J (t) be the number of points in J at time t. We prove that

A.1.1 Specific sequence achieveing the bound in Section 5.3.1

We recall that (u n ) n∈N is the sequence defined by: u 0 = 0, and for all k, m,

Proof.

which is what we wanted. and Lemma A.6. We have, for all k > 0, 0 m < 2 k :

Proof. Firstly notice that for all k for all 0

2 is therefore a consequence of 1 applied to

The odd n are by definition the u 2 k-1 +m , and the even n come frome the previous u 2 k +m ). Since I k,m is exactly of length 1 2 k , there is exactly one of the

Finally, for m < m, u

, which concludes the proof.

A.2 Loss of Normal-Gamma experts

This section contains various bounds on the loss incurred by Normal-Gamma experts. They are used in section 5.3.

and let E D,µ 0 ,λ,α,β be a Normal-Gamma expert on D with regularization µ 0 , λ, α, β. We have:

τ α+t/2-1/2 e -βτ I τ dτ, (A.16)

where I τ = µ e -λτ µ 2 2 e -τ 2 (y i -µ) 2 dµ. Now,

, (A.17) so we have:

The lemma follows.

We also add a useful decomposition of V 0 :

Lemma A.8 (Another form of V 0 ). Let t ∈ N, β, λ > 0, (y i ) ∈ R t . We have:

We can extract the important terms under Condition 5.8 in the loss of the Normal-Gamma experts computed in Lemma A.7: Lemma A.9 (Loss of Normal-Gamma experts satisfying Condition 5.8). Let t ∈ R, let S be a set of Normal-Gamma experts satisfying Condition 5.8 such that λ is bounded on S. We have, for all z t = (x, y) t such that x t ∈ Dom(E) t :

-ln E(z t |∅) = (α+t/2) ln V 0 + 1 + ln 2π 

-ln E(z 2 , ..., z t |z 1 ) = (α + t/2) ln(

where d 1 = (α+t/2) ln( t+λ 2 )-ln Γ(α+t/2)-(α+1/2) ln( 1+λ 2 )+ln Γ(α+1/2), and d 0 = (α+t/2) ln V 0 (t)-(α+1/2) ln V 0 (1). We have, by Stirling formula,

and

, and λ = ε 2 , so:

Consequently ln V 0 (t) 2 ln ε + cst. Moreover

(A.48) Therefore, we have: 

uniformly on S, where z n := (x n , f (x n )) and z n := (x n , f (x n )).

Proof. Let E ∈ S, and let us write ε = |Dom(E)|. By Lemma A.7, if we write

where

We have, by Stirling formula,

and

2 ) 2 for any (x i ), and λ = ε 2 , so for any T :

Consequently ln V 0 (T ) 2 ln ε + cst for any T . Moreover which is what we wanted.

Lemma A.12 (Uniform lower bound on the average loss at interval size ε with n observations under condition 5.8). Let S be a set of Normal-Gamma experts satisfying Condition 5.8 such that λ

We have, for any E ∈ S, for any

where O(1) is uniform on S.

Proof. Let E ∈ S, and let ε := |Dom(E)|. By Lemma A.9, we have:

n+λ , and by Condition 5.8, we have: α = cst, β = Bε 2 + o(ε 2 ), so ln β = 2 ln ε + O(1).

Consequently:

which is what we wanted.

A.3 Pseudocode for CTW

Notation for the algorithm below:

The latest data point is x n , the previous data is z n-1 = (x, y) n-1 , and we want to predict f (x n ).

Each node s of the tree contains, in addition to the expert E s : two weights w s ∈ [0, 1] the posterior weights for closing the node s,n s ∈ N (initialized to the prior weight), the number of data points that have already fallen in Dom(E s ), and x s ∈ s (useful only if n s = 1, the exact value of the data point in Dom(E s ).

Algorithm 2 Infinite depth CTW algorithm for regression: computing E(y n |z n-1 , x n ), and updating the tree The generalization to other algorithms (edgewise or using switch) is straightforward.

Appendix B

Geodesic IGO

Proof of Proposition 10.1. Let us first consider the case k = 1.

When optimizing a linear function, the non-twisted IGO flow in Gd with the selection function w : q → 1 q q 0 is known [START_REF] Ollivier | Information-geometric optimization algorithms : A unifying picture via invariance principles[END_REF], and in particular, we have:

where, if we denote by N a random vector following a standard normal distribution and F the cumulative distribution of a standard normal distribution,

and:

In particular, α := α( 1 4 , 1) ≈ 0.107 and β := β( 1 4 ) ≈ -0.319. With a minor modification of the proof in [START_REF] Ollivier | Information-geometric optimization algorithms : A unifying picture via invariance principles[END_REF], we find that the (η µ , η σ )-twisted IGO flow is given by:

Notice that Equation (B.5) shows that the assertions about the convergence of (σ n ) immediately imply the assertions about the convergence of (µ n ).

Let us now consider a step of the GIGO algorithm: The twisted IGO speed is Y = (η µ βσ 0 , η σ ασ 0 ), with ασ 0 > 0 (i.e., the variance should be increased: this is where we need q 0 < 0.5). Proposition B.5 shows that the covariance at the end of the step is (using the same notation):

and it is easy to see that f only depends on δt (and on q 0 ). In other words, f (δt) will be the same at each step of the algorithm. The existence of δt cr easily follows (furthermore, recall Figure 8.1 in Section 8.2.1), and δt cr is the positive solution of f (x) = 1. After a quick computation, we find:

where:

and:

Finally, for w = k.1 q q 0 , Proposition 9.4 shows that:

B.1 Generalization of the Twisted Fisher Metric

The following definition is a more general way to introduce the twisted Fisher metric.

Definition B.1. Let (Θ, g) be a Riemannian manifold, (Θ 1 , g| Θ 1 ), ..., (Θ n , g| Θn ), a splitting (as defined in Section 9.1.2) of Θ compatible with the metric g. We call (η 1 , ..., η n )-twisted metric on (Θ, g) for the splitting Θ 1 , ..., Θ n the metric g on Θ defined by g | Θ i = 1 η i g| Θ i for 1 i n, and Θ i ⊥ Θ j for i = j. 

B.2 Twisted Geodesics

The following theorem can be used to compute the twisted geodesics from the non twisted geodesics. It is a simple calculation.

.

(B.12)

We denote by φ (resp. ψ) the Riemannian exponential of G d (resp. G d with the (η µ , η Σ )-twisted Fisher metric) at N (

Proof. Let us denote by: I µ 0 0 I Σ the Fisher metric in the parametrization µ, Σ, and consider the following parametrization of

The Riemannian exponential at N (µ 0 , A 0 A T 0 ) in this parametrization is:

However, in this parametrization, the Fisher metric reads:

which is proportional to the (η µ , η Σ )-twisted Fisher metric up to a factor 1 η Σ . Consequently, the Christoffel symbols are the same as the Christoffel symbols of the (η µ , η Σ )-twisted Fisher metric, and so are the geodesics. Therefore, we have:

which is what we wanted.

For the remainder of this section, we fix η µ and η Σ ; G d is endowed with the (η µ , η Σ )-twisted Fisher metric, and Gd is endowed with the induced metric. The proofs of the propositions below are a simple rewriting of their non-twisted counterparts that can be found in Sections 8.2 and 8.3 and can be seen as corollaries of Theorem B.3. Theorem B.4. If γ : t → N (µ(t), σ(t) 2 I) is a twisted geodesic of Gd , then there exists a, b, c, d ∈ R, such that ad -bc = 1, and v > 0, such that µ(t) = µ(0) + 2dηµ ησ μ0 μ0 r(t), σ(t) = (γ C (t)), with r(t) = (γ C (t)) and:

is the twisted geodesic of Gn satisfying γ(0) = (µ 0 , σ 0 ) and γ(0) = (v µ , v σ ).

The regular geodesics of Gn are obtained with η µ = η σ = 1.

Theorem B.6. Let γ : t → N (µ t , Σ t ) be a twisted geodesic of G d . Then, the following quantities are invariant:

Theorem B.7. If µ : t → µ t and Σ : t → Σ t satisfy the equations:

where:

, and:

Theorem B.8. If µ : t → µ t and A : t → A t satisfy the equations:

where:

and:

B.3 Pseudocodes B.3.1 For All Algorithms

All studied algorithms have a common part, given here: Variables: µ, Σ (or A such that Σ = AA T ). List of parameters: f : R d → R, step size δt, learning rates η µ , η Σ , sample size λ, weights (w i ) i∈[1,λ] , N number of steps for the Euler method, r Euler step size reduction factor (for GIGO-Σ only).

Algorithm 3 For all algorithms.

µ ← µ0 if The algorithm updates Σ directly then Σ ← Σ0 Find some A, such that Σ = AA T else {The algorithm updates a square root A of Σ} A ← A0 Σ = AA T end if while NOT (Termination criterion) do for i = 1 to λ do zi ∼ N (0, I) xi = Azi + µ end for Compute the IGO initial speed, and update the mean and the covariance (the updates are Algorithms 4 to 8). end while Notice that we always need a square root A of Σ to sample the x i , but the decomposition Σ = AA T is not unique. Two different decompositions will give two algorithms, such that one is a modification of the other as a stochastic process: same law (the x i are abstractly sampled from N (µ, Σ)), but different trajectories (for given z i , different choices for the square root will give different x i ). For GIGO-Σ, since we have to invert the covariance matrix, we used the Cholesky decomposition (A lower triangular. The the other implementation directly maintains a square root of Σ). Usually, in CMA-ES, the square root of Σ (Σ = AA T , A symmetric) is used.

B.3.2 Updates

When describing the different updates, µ, Σ, A, the x i and the z i are those defined in Algorithm 3.

For Algorithm 4 (GIGO-Σ), when the covariance matrix after one step is not positive-definite, we compute the update again, with a step size divided by r for the Euler method (we have no reason to recommend any particular value of r, the only constraint is r > 1).

Algorithm 4 GIGO Update, one step, updating the covariance matrix. 

Compute the Noether invariants:

Jµ ← Σ -1 vµ, JΣ ← Σ -1 (vµ t µ + vΣ). 

Solve