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Résumé

Dans cette thèse, nous étudions plusieurs problèmes de mathématiques financières liés à la pré-
sence d’imperfections sur les marchés. Notre approche principale pour leur résolution est l’uti-
lisation d’un cadre asymptotique pertinent dans lequel nous parvenons à obtenir des solutions
approchées explicites pour les problèmes de contrôle associés.

Dans la première partie de cette thèse, nous nous intéressons à l’évaluation et la couverture
des options européennes. Nous considérons tout d’abord la problématique de l’optimisation des
dates de rebalancement d’une couverture à temps discret en présence d’une tendance dans la
dynamique du sous-jacent. Nous montrons que dans cette situation, il est possible de générer un
rendement positif tout en couvrant l’option et nous décrivons une stratégie de rebalancement
asymptotiquement optimale pour un critère de type moyenne-variance. Ensuite, nous proposons
un cadre asymptotique pour la gestion des options européennes en présence de coûts de tran-
saction proportionnels. En s’inspirant des travaux de Leland, nous développons une méthode
alternative de construction de portefeuilles de réplication permettant de minimiser les erreurs
de couverture.

La seconde partie de ce manuscrit est dédiée à la question du suivi d’une cible stochastique.
L’objectif de l’agent est de rester proche de cette cible tout en minimisant le coût de suivi. Dans
une asymptotique de coûts petits, nous démontrons l’existence d’une borne inférieure pour la
fonction valeur associée à ce problème d’optimisation. Cette borne est interprétée en terme du
contrôle ergodique du mouvement brownien. Nous fournissons également de nombreux exemples
pour lesquels la borne inférieure est explicite et atteinte par une stratégie que nous décrivons.

Dans la dernière partie de cette thèse, nous considérons le problème de consommation et inves-
tissement en présence de taxes sur le rendement des capitaux. Nous obtenons tout d’abord un
développement asymptotique de la fonction valeur associée que nous interprétons de manière
probabiliste. Puis, dans le cas d’un marché avec changements de régime et pour un investisseur
dont l’utilité est du type Epstein-Zin, nous résolvons explicitement le problème en décrivant
une stratégie de consommation-investissement optimale. Enfin, nous étudions l’impact joint de
coûts de transaction et de taxes sur le rendement des capitaux. Nous établissons dans ce cadre
un système d’équations avec termes correcteurs permettant d’unifier les résultats de [ST13] et
[CD13].

Mots-clefs

Couverture discrète, théorèmes limites, temps d’arrêt, optimalité asymptotique, coût de tran-
sactions, contrôle linéaire-quadratique, stratégie de Leland, variance conditionnelle, contrôle
singulier, théorème limite central, mesure d’occupation, borne inférieure asymptotique, contrôle
impulsionnelle, contrôle moyen en temps, programmation linéaire, problème de martingale, maxi-
misation d’utilité, discrétisation des intégrales stochastiques, coût illiquidité, impact de marché
temporaire, taxe de rendement des capitaux, utilité récursive, Epstein-Zin, homogénéisation.





Abstract

In this thesis, we study several mathematical finance problems related to the presence of market
imperfections. Our main approach for solving them is to establish a relevant asymptotic frame-
work in which explicit approximate solutions can be obtained for the associated control problems.

In the first part of this thesis, we are interested in the pricing and hedging of European options.
We first consider the question of determining the optimal rebalancing dates for a replicating
portfolio in the presence of a drift in the underlying dynamics. We show that in this situation,
it is possible to generate positive returns while hedging the option and describe a rebalancing
strategy which is asymptotically optimal for a mean-variance type criterion. Then we propose an
asymptotic framework for options risk management under proportional transaction costs. Ins-
pired by Leland’s approach, we develop an alternative way to build hedging portfolios enabling
us to minimize hedging errors.

The second part of this manuscript is devoted to the issue of tracking a stochastic target. The
agent aims at staying close to the target while minimizing tracking e�orts. In a small costs
asymptotics, we establish a lower bound for the value function associated to this optimization
problem. This bound is interpreted in term of ergodic control of Brownian motion. We also
provide numerous examples for which the lower bound is explicit and attained by a strategy
that we describe.

In the last part of this thesis, we focus on the problem of consumption-investment with capital
gains taxes. We first obtain an asymptotic expansion for the associated value function that we
interpret in a probabilistic way. Then, in the case of a market with regime-switching and for an
investor with recursive utility of Epstein-Zin type, we solve the problem explicitly by providing a
closed-form consumption-investment strategy. Finally, we study the joint impact of transaction
costs and capital gains taxes. We provide a system of corrector equations which enables us to
unify the results in [ST13] and [CD13].

Keywords
Discrete hedging, limit theorems, stopping times, asymptotic optimality, transaction costs, linear-
quadratic control, Leland strategy, conditional variance, singular control, central limit theo-
rem,occupation measure, asymptotic lower bound, impulse control, time-average control, linear
programming, martingale problem, utility maximization, discretization of stochastic integrals,
illiquidity cost, temporary market impact, capital gains taxes, recursive utility, Epstein-Zin,
homogenization.
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Introduction

This thesis is devoted to the study of three di�erent problems in mathematical finance, which
involve various important market features such as time discretization, transaction costs and
capital gains taxes. Due to the presence of these market features, the optimal strategies de-
duced from most of the existing financial models cannot be implemented in practice. Therefore
more complex models and advanced theoretical tools have been developed in order to deal with
these market imperfections. However, the resulting stochastic control problems often become
intractable. While it is possible to obtain numerical solutions in some cases, the required com-
putational e�ort in reality is usually prohibitively large. In this thesis, we aim at proposing an
asymptotic framework for the associated stochastic control problems, providing explicit and fea-
sible optimal strategies. We focus both on the theoretical investigation of the related stochastic
control methods, and on the economic analysis of the impact of market frictions.

In the first part, we study the pricing and hedging of option when taking into account discrete
rebalancing and transaction costs.

In Chapter 1, we consider the hedging error of a derivative due to discrete trading. It turns out
that, in the presence of a drift in the dynamics of the underlying asset, the trader can actually
benefit from market trend. We suppose that the trader wishes to find rebalancing times for the
hedging portfolio which enable him to keep the discretization error small while taking advantage
of market tendency. Assuming that the portfolio is readjusted at high frequency, we introduce
an asymptotic framework in order to derive optimal discretization strategies. More precisely,
we formulate the optimization problem in terms of an asymptotic expectation-error criterion.
In this setting, the optimal rebalancing times are given by the hitting times of two barriers
whose values can be obtained by solving a linear-quadratic optimal control problem. In specific
contexts such as in the Black-Scholes model, explicit expressions for the optimal rebalancing
times can be derived.

In Chapter 2, we study the dynamic hedging of a European option under a general local volatility
model with small proportional transaction costs. Extending the idea of Leland, which consists in
modifying the volatility in the pricing PDE in order to compensate the costs incurred by discrete
rebalancing, we consider instead a continuous version (with finite variation) of Leland’s strategy
that asymptotically replicates the payo�. In the limit of small proportional costs, an associated
central limit theorem for hedging error is proved. The asymptotic variance is minimized by an
explicit replication strategy. Depending on the transaction costs and the gamma of the option,
the optimal replication strategy is given by either an absolutely continuous process or a singular
process based on two barriers around a benchmark position. Numerical simulations demonstrate
a significant improvement of our strategies over Leland’s strategy in terms of conditional vari-
ance of the hedging error.

In the second part, we consider tracking problems which arise from the study of trading strategies
under various market frictions and discretization e�ects. The aim is to minimize both deviation
from the target and tracking e�orts.



2 Introduction

In Chapter 3, we propose an asymptotic framework and establish the existence of asymptotic
lower bounds for the value functions of the corresponding control problems. These lower bounds
can be related to the time-average control problem of Brownian motion. A key step is the use of
a linear programming characterization of the lower bounds. Our probabilistic approach enables
us to treat (the combination of) di�erent control types such as (absolutely continuous) regular
control, singular control and impulse control. Moreover, the lower bound are shown to hold
pathwise. A comprehensive list of examples with closed-form solutions for the lower bounds is
also provided.

In Chapter 4, we focus on strategies of feedback form for the problem of tracking and study
their performance under our asymptotic framework. Depending only on the current state of the
system, these strategies maintain the deviation from the target inside a time-varying domain.
Although the dynamics of the target is non-Markovian, it turns out that they asymptotically
attain the lower bounds previously established for a large list of examples. We apply our results
to the analysis of discretization errors of stochastic integrals and impact of market frictions on
portfolio management.

In the third part of this thesis, we perform asymptotic analysis for the problem of consumption-
investment optimization with capital gains taxes.

In Chapter 5, we study the optimal consumption and portfolio decisions in the presence of cap-
ital gains tax and stochastic investment opportunity. The option to defer taxation of capital
gain gives rise to an optimal investment strategy consisting of buy and sell boundaries around
the tax-deflated Merton line. In a bull-bear switching market, the optimal investment strategy
is a�ected by the investment opportunity in the other regime. Consequently, there is a cross-
regime smoothing e�ect on the value of the deferral option. Moreover, regime switching has a
greater impact under the bear regime and in the region of high capital gains. Depending on
the level of capital gains, a sudden change of economic condition might not lead to an instanta-
neous jump in the optimal portfolio allocation. In contrast, for an investor with recursive utility,
the EIS of the investor determines the optimal consumption rate but has little impact on the
optimal investment strategy. Our asymptotic analysis is supported not only by numerical res-
olution of the corresponding PDEs but also by an underlying two time scales probabilistic model.

In Chapter 6, we are interested in the joint impact of capital gains taxes and transaction costs.
Guided by the local probability model developed in the previous chapter, we develop a new
system of corrector equations, unifying previous results on capital gains taxes and transaction
costs via homogenization technique. In particular, we find that the presence of capital gains
taxes has an equivalent e�ect of increasing selling costs for the non-transaction zone.
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Part I : Option pricing and hedging

1.1 Discrete hedging with directional views

In order to manage the risks inherent to the derivatives they buy and sell, practitioners use
continuous time stochastic models to compute their prices and hedging portfolios. In the simplest
cases, notably in that of the so-called delta hedging strategy, the hedging portfolio obtained from
the model is a time-varying self-financed combination of cash and the underlying. We denote
the price at time t of the underlying asset by Yt and assume it to be a one-dimensional semi-
martingale. Hence, in such situations, the outputs of the model are the price of the option
together with the number of shares in the underlying asset to be held in the hedging portfolio
at any time t, denoted by Xt. The proportion invested in cash is then deduced from the
self-financing property. Therefore, assuming zero interest rates, the theoretical value of the
model-based hedging portfolio at the maturity of the option T is given by

⁄ T

0
XtdYt.

Typically, the process Xt derived from the model is a continuously varying semi-martingale, re-
quiring continuous trading to be implemented in practice. This is of course physically impossible
and would be anyway irrelevant because of the costs induced by microstructure e�ects. Hence
practitioners do not use the strategy Xt, but rather a discretized version of it. This means that
the hedging portfolio is only rebalanced a finite number of times and is held constant between
these times. Let us denote by (·n

j )jØ0 an increasing sequence of rebalancing times over [0, T ].
With respect to the target portfolio obtained by continuous rebalancing, the hedging error due
to discrete trading Zn

T is therefore given by

Zn
T =

+Œÿ

j=0
X·n

j

(Y·n

j+1·T ≠ Y·n

j

·T ) ≠
⁄ T

0
XtdYt.

Why market trends matter ?

When X and Y are Itô processes, the case of equidistant rebalancing dates ·n
j = jT/n has

been investigated in [BKL00, HM05, Roo80]. In these works, the following convergence in law
is proved:

Ô
nZn

T
L≠æ

Û
T

2

⁄ T

0
‡X

t ‡Y
t dBt, (1.1)

where ‡X and ‡Y are the volatilities of X and Y and B is a Brownian motion independent of
the other quantities.

This asymptotic approach has also been recently used in [Fuk11c, RR10, GL14a, Lan13], where
the rebalancing times are random stopping times. More precisely, for a given parameter n
driving the asymptotic, one considers an increasing sequence of stopping times

0 = ·n
0 < ·n

1 < . . . < ·n
j < . . .

with Nn
t := max{j Ø 0; ·n

j Æ t} < Œ almost surely for any t Ø 0. When

E[(X·n

j+1
≠ X·n

j

)4|F·n

j

]
E[(X·n

j+1
≠ X·n

j

)2|F·n

j

] = Á2
na2

·n

j

+ op(Á2
n),

E[(X·n

j+1
≠ X·n

j

)3|F·n

j

]
E[(X·n

j+1
≠ X·n

j

)2|F·n

j

] = ≠Áns·n

j

+ op(Án)
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for a sequence Án æ 0 and left continuous adapted processes a and s, it is shown in [Fuk11c]
that Á≠1

n Zn converges weakly to

1
3

⁄ ·

0
stdYt + 1Ô

6

⁄ ·

0

!
a2

t ≠ 2
3s2

t

"1/2
‡Y

t dBt, (1.2)

where B is a Brownian motion independent of all the other quantities.

One can remark a crucial di�erence between the deterministic discretization schemes associated
to (1.1) and the random stopping times case leading to (1.2). For deterministic dates, the
discretization error asymptotically behaves as a stochastic integral with respect to Brownian
motion. Therefore, it is centered. In the case of random discretization dates, one may obtain a
“biased” asymptotic hedging error because of the presence of the term

⁄ T

0
stdYt.

Hence, if s does not vanish and Y has non zero drift, the asymptotic hedging error is no longer
centered.

An asymptotic linear-quadratic criterion

A natural question is to determine the e�cient frontier for the first and second moments of
hedging errors and to find stopping times ·n

j which attain the e�cient frontier. More precisely,
we are interested in

inf
(·n

j

)

!
≠ Á≠1

n E[Zn
T ], Á≠2

n E[(Zn
T )2]

"
, (1.3)

as Án æ 0, meaning that the hedging frequency is high and the hedging error should be small.
Our main contribution in Chapter 1 is the following result.

Main Result 1. The e�cient frontier of (1.3) can be explicitly determined from the solution
of the following optimal control problem

inf
(s

t

)
≠E[Zú

s,T ] + ⁄E
Ë
(Zú

s,T )2 + 1
2

⁄ T

0
s2

t (‡Y
t )2dt

È
, (1.4)

where
Zú

s,T =
⁄ T

0
stdYt.

Moreover, given an optimal strategy sú
t for (1.4), one can construct explicitly two barriers l

ú
t and

lút such that the sequence of rebalancing dates (·n,ú
j ) defined by

·n,ú
j+1 = inf

Ó
t > ·n,ú

j : Xt /œ (X·n,ú
j

≠ Ánlút , X·n,ú
j

+ Ánl
ú
t )

Ô
· T

attains asymptotically the e�cient frontier of (1.3).

Comparing to the classical continuous-time portfolio selection problem without hedging con-
straint and discrete rebalancing (see [ZL00])

inf
(s

t

)
≠E[Zú

s,T ] + ⁄E
#
(Zú

s,T )2$
,

we note that the discrete nature of the hedging strategy introduces an extra uncertainty on the
final hedging error, which is approximately quantified in (1.4) by

E
Ë1
2

⁄ T

0
s2

t (‡Y
t )2dt

È
,
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as Án tends to zero.

1.2 Option replication with modified volatility

In Chapter 2, we develop a framework for option pricing and replication under proportional
transaction costs. As we have seen in the previous section, without transaction costs the hedging
error with respect to the target portfolio tends to zero as the rebalancing dates become more
frequent. However, transaction costs increase as the rebalancing intervals decrease. Therefore,
when pricing and hedging derivatives, one should include transaction costs. Inspired by the
work of [Lel85], our approach has the following advantages :

1. The strategy replicates the option payo� under transaction costs, with an error whose
distribution is explicitly determined in the limit of small costs.

2. We find explicit strategies minimizing the conditional variance of hedging errors.
In order to explain our framework and state the main results, we begin by a brief review of
Leland’s strategy in the Black-Scholes framework.

Leland’s idea has two ingredients. The first is to find a good benchmark strategy by an en-
largement of volatility, yielding certain surplus in the absence of transaction costs . Let p– be a
solution of the partial di�erential equation

ˆtp
–(s, t) + 1

2

3
1 + 2

–

4
‡2s2ˆ2

s p–(s, t) = 0, p–(s, T ) = f(s), (1.5)

where f(s) = (s ≠ K)+ is the payo� of a European call option, T is the maturity of the option,
‡ is the volatility of Black-Scholes model. Here, – is an arbitrary positive constant that controls
the enlargement of volatility, which should be determined by market supply-demand equilibrium.
By Itô’s formula, we have

f(ST ) = �–
0 +

⁄ T

0
X–

u dSu ≠ 1
–

⁄ T

0
�–

udÈSÍu,

where
�–

t = p–(St, t), X–
t = ˆsp–(St, t), �–

t = ˆ2
s p–(St, t). (1.6)

This means that, without transaction costs and assuming zero interest rates, the self-financing
strategy X– with initial capital �–

0 super-hedges the payo� f(ST ) with surplus

1
–

⁄ T

0
�–

t dÈSÍt Ø 0, (1.7)

where �– Ø 0 follows from the convexity of the payo� f .

The second step of Leland’s strategy is to construct a good approximation of the benchmark
X– by a strategy with finite transaction cost so that the incurred costs are compensated by the
surplus. Assume that the trader has to pay Ÿ|�X| to buy or sell �X shares of stocks, where
Ÿ is a positive constant representing the proportional transaction costs. Leland considers an
equidistant discretization of X– defined by

X–,Ÿ
t = X–

jh, t œ (jh, (j + 1)h], j = 0, 1, 2, . . . , (1.8)

with h > 0 the interval of rebalancing. Set the initial capital �–,Ÿ
0≠ , that is the price of the option,

to be
�–,Ÿ

0≠ = �–
0 + ŸS0|X–

0 |.
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The second term is to compensate the transaction cost at the inception. The associated wealth
process �–,Ÿ under transaction costs is then

�–,Ÿ
t = �–

0 +
⁄ t

0
X–,Ÿ

u dSu ≠ Ÿ
ÿ

0<uÆt

Su|�X–,Ÿ
u |. (1.9)

By choosing

h = 2
fi

Ÿ2–2

‡2 , (1.10)

we have
⁄ T

0
X–,Ÿ

u dSu æ
⁄ T

0
X–

u dSu,

Ÿ
ÿ

0<uÆT

Su|�X–,Ÿ
u | æ 1

–

⁄ T

0
�–

udÈSÍu,
(1.11)

as Ÿ æ 0. Consequently, the terminal wealth �–,Ÿ
T is close to f(ST ) when Ÿ is small which is the

case in liquid markets. In this sense, the self-financing strategy X–,Ÿ is an asymptotic replication
strategy. The way to discretize X– is essential. The first convergence in (1.11) holds in general
as transactions are more and more frequent. On the other hand, if they are too frequent, then
the total amount of transaction costs exceeds the surplus (1.7) and the second convergence of
(1.11) fails. Therefore the frequency (1.10) results from a delicate balance.

Although the approach of Leland is consistent and easy to implement, it is still not fully satisfac-
tory due to the lack of optimality. The strategy (1.8) is not the only choice as an approximation
to X–. For example, it is not necessary to match the benchmark strategy X– after each rebal-
ancing. In particular, it is possible to trade more frequently but with a smaller trading volume
each time. Indeed, several results on related problems under the framework of utility maxi-
mization suggest that, under proportional transaction costs, the optimal strategy is to trade a
minimal amount in continuous-time to keep the deviation from the benchmark inside a no trade
zone (see [WW97, BS98, ST13]).

Our contribution in this context is two-fold. First, we introduce a reasonable class of continuous
trading strategies with finite transaction costs, and provide a limit theorem for the corresponding
replication error. In particular, we identify conditions for those strategies to (asymptotically)
replicate or super-replicate the option. Second, we minimize the asymptotic variance of hedging
error among those replicating strategies.

Under our framework, a candidate strategy Xb,c,Ÿ is indexed by two non-negative functions
b(s, t) and c(z, s, t). Let ZŸ = (X– ≠ Xb,c,Ÿ)/Ÿ be the normalized deviation of Xb,c,Ÿ from the
benchmark position X–. We consider Xb,c,Ÿ of the form

dXb,c,Ÿ
t = 1

Ÿ
sgn(ZŸ)c(|ZŸ

t |, St, t)dÈX–Ít ≠ ŸdLŸ
t + ŸdRŸ

t , Xb,c,Ÿ
0+ = X–

0 ,

where LŸ and RŸ are non-decreasing processes such that

LŸ
t =

⁄ t

0
1{ZŸ

u

=≠b(S
u

,u)}dLŸ
u, RŸ

t =
⁄ t

0
1{ZŸ

u

=b(S
u

,u)}dRŸ
u, |ZŸ

t | Æ b(St, t).

Intuitively, the regular control part Ÿ≠1sgn(ZŸ)c(|ZŸ
t |, St, t)dÈX–Ít pushes Xb,c,Ÿ toward X– and

is active when X– moves. The singular control part ≠ŸdLŸ
t +ŸdRŸ

t keeps ZŸ within the stochas-
tic interval [≠b(St, t), b(St, t)], and is active only when ZŸ touches the boundary.
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Figure 1 – Comparison between ÷L(–) and ÷†(–).

Denoting by �b,c,Ÿ the wealth process associated with Xb,c,Ÿ and Eb,c,Ÿ the process of tracking
error associated with the strategy Xb,c,Ÿ, we have

Eb,c,Ÿ
t = �–

t ≠ �b,c,Ÿ
t

= Ÿ
⁄ t

0
ZŸ

udSu +
⁄ t

0
Suc(|ZŸ

u |, Su, u)dÈX–Íu + Ÿ2
⁄ t

0
Su[dLŸ

u + dRŸ
u] ≠

⁄ t

0

1
–

‡2S2
u�–

udu.

Our first main result in Chapter 2 is the following.
Main Result 2 (Limit distribution of normalized hedging errors). Under general local volatility
model for S and technical conditions for b and c, we have

Ÿ≠1
3

Eb,c,Ÿ
· ≠

⁄ ·

0
”b,c(St, t)dt

4
æ W

Qb,c

·
,

stably in law on C[0, T ] as Ÿ æ 0, where W is an independent Brownian motion,

Qb,c
· =

⁄ ·

0
÷b,c(Su, u)dÈSÍu,

and ”b,c, ÷b,c are explicitly determined by b and c.
Fixing the conditional bias of hedging error ”b,c = ”, it is natural to minimize the conditional
variance Qb,c. Our second contribution in this chapter is to provide an explicit expression for
the infimum

Q”,ú := essinf(b,c) s.t. ”b,c©” Qb,c,

among all candidate strategies, together with a sequence of strategies (bú, cú) attaining asymptot-
ically the infimum Q”,ú. Comparing to the strategy of Leland, the hedging error is significantly
reduced. Indeed, it is shown in [DK10] that, following the strategy of Leland,

Ÿ≠1(�– ≠ �–,Ÿ) æ WQ
L

, QL = ÷L(–)
⁄ ·

0
|�–

uSu|2dÈSÍu,

where
÷L(–) = 1

fi
–2 + 2

fi
– + 1 ≠ 2

fi
.

On the other hand, taking ” = 0, our optimal strategy (bú, cú) satisfies

Ÿ≠1(�– ≠ �bú,cú,Ÿ) æ WQ0,ú , Q0,ú = ÷†(–)
⁄ ·

0
|�–

uSu|2dÈSÍu,

where ÷† has closed-form expression and is much smaller than ÷L, see Fig.1.
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Part II : Asymptotic optimal tracking

To illustrate the type of problems treated in this part, we consider a government having two
means of influencing the foreign exchange rate of its own currency:

1. By choosing the domestic interest rate. A higher interest rate encourages the investors
to buy the domestic currency, and as a consequence this currency becomes more valuable
and the exchange rate increases.

2. At selected times the government can intervene in the foreign exchange market by buying
or selling large amounts of foreign currency. Such intervention is applied only at discrete
time and can change the exchange rate instantaneously.

A fluctuating exchange rate is not suitable for the domestic economy due to the uncertainty
that it creates. On the other hand, the application of the two policies to stablize the exchange
rate is also costly. The objective of the government is to keep the exchange rate close to a given
central parity with minimal costs. See [MØ97, CZ00] for more details.

Similar tracking problems arise naturally in various situations such as the management of
an index fund ([PS04, Kor99]), discretization of hedging strategies ([Fuk14, RT14, GL14a]),
portfolio selection under transaction costs ([KMK15, ST13, PST15, AMKS15]), trading under
market impact ([MMKS14, LMKW14, GW15a, GW15b, GW15c, BSV15]) or illiquidity cost
([RS10, NW11]).

These problems have two common components:
1. A target with stochastic evolution. Usually the target is a benchmark portfolio or index

which fluctuates as function of market conditions.
2. A cost structure representing the tracking e�ort and deviation from the target. In general,

greater tracking e�ort is needed to maintain smaller deviation from the target.
This leads us to formulate the tracking problem as follows.

2.1 Formulation of the tracking problem

We consider a target whose dynamics (X¶
t ) is modeled by a continuous Itô semi-martingale

defined on a filtered probability space (�, F , (Ft)tØ0,P) with values in Rd such that

dX¶
t = btdt +

Ô
atdWt.

Here, (Wt) is a d-dimensional Brownian motion and (bt), (at) are predictable processes with
values in Rd and the set S+

d of d ◊ d symmetric positive definite matrices respectively. An agent
observes X¶

t and adjusts her position Ât in order to follow X¶
t . However, she has to pay certain

intervention costs for position adjustments. The objective of the agent is to stay close to the
target X¶

t while minimizing the tracking e�orts. More precisely, let (Xt) be the deviation of the
agent from the target (X¶

t ), we have

Xt = ≠X¶
t + Ât. (2.1)

Let H0(X) be a penalty functional for the deviation from the target and H(Â) the cost incurred
by the control process (Ât) up to horizon T . Denote by A the set of admissible strategies
depending on the cost structure H0 and H. Then the problem of tracking can be formulated as

inf
(Â

t

)œA
J(Â) := H0(X) + H(Â). (2.2)
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Depending on the specific problem under consideration, the control process Â can be (the com-
bination of) regular control, singular control or impulse control.

To fix idea, we consider in this introduction the case of combined regular and impulse control,
which corresponds to the management of exchange rate mentioned above. In that case, a tracking
strategy Â = (u, ·, ›) is given by a progressively measurable process u = (ut)tØ0 with values in
Rd and (·, ›) = {(·j , ›j), j œ Nú}, with (·j) an increasing sequence of stopping times and (›j) a
sequence of F·

j

-measurable random variables with values in Rd. The process (ut) represents the
speed of the agent. The stopping time ·j represents the timing of jth jump toward the target
and ›j the size of the jump. The tracking error obtained by following the strategy (u, ·, ›) is
given by

Xt = ≠X¶
t +

⁄ t

0
usds +

ÿ

j:0<·
j

Æt

›j .

At any time the agent is paying a cost for maintaining the speed ut and each jump ›j incurs a
positive cost. We are interested in the following type of cost functional

J(u, ·, ›) =
⁄ T

0
(rtD(Xt) + l¶t Q(ut))dt +

ÿ

j:0<·
j

ÆT

(k¶
·

j

F (›j) + h¶
·

j

P (›j)),

where (rt), (l¶t ), (k¶
t ) and (h¶

t ) are random weight processes. The cost functions D, Q, F , P are
deterministic functions defined for example by

D(x) = Èx, �DxÍ, Q(u) = Èu, �QuÍ, F (›) =
dÿ

i=1
Fi {›i ”=0}, P (›) =

dÿ

i=1
Pi|›i|,

with Fi, Pi œ R+ such that mini Fi > 0 and �D, �Q are d ◊ d positive definite matrices. Note
that we have

D(Áx) = Á’
D D(x), Q(Áu) = Á’

QQ(u), F (Á›) = Á’
F F (›), P (Á›) = Á’

P P (›), (2.3)

for any Á > 0 and
’D = 2, ’Q = 2, ’F = 0, ’P = 1.

2.2 Asymptotic framework

Our first contribution in this part is to introduce an asymptotic setting for the tracking prob-
lem (2.1)-(2.2). In general, the problem rarely admits explicit solution. Under our asymptotic
framework of small tracking costs, we are able to establish an asymptotic lower bound for (2.2),
which is related to the time average control of Brownian motion.

Assume that there exist Á > 0 and —Q, —F , —P > 0 such that

l¶t = Á—
Q lt, k¶

t = Á—
F kt, h¶

t = Á—
P ht. (2.4)

Then the asymptotic framework of small tracking costs consists in considering the sequence of
optimization problems indexed by Á æ 0

inf
(uÁ,·Á,›Á)œAÁ

JÁ(uÁ, · Á, ›Á),

with

JÁ(uÁ, · Á, ›Á) =
⁄ T

0
(rtD(XÁ

t ) + Á—
Q ltQ(uÁ

t ))dt +
ÿ

j:0<·Á

j

ÆT

(Á—
F k·Á

j

F (›Á
j ) + Á—

P h·Á

j

P (›Á
j )),
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and
XÁ

t = ≠X¶
t +

⁄ t

0
uÁ

sds +
ÿ

j:0<·Á

j

Æt

›Á
j .

The key observation is that under such setting, the tracking problem can be decomposed into
a sequence of local problems. More precisely, let {tÁ

k = k”Á, k = 0, 1, · · · , KÁ} be a partition of
the interval [0, T ] with ”Á æ 0 as Á æ 0. Then we can write

JÁ(uÁ, · Á, ›Á) =
KÁ≠1ÿ

k=0
jÁ

tÁ

k

(tÁ
k+1 ≠ tÁ

k),

with

jÁ
t = 1

”Á

1 ⁄ tÁ

k

+”Á

tÁ

k

(rtD(XÁ
t ) + Á—

Q ltQ(uÁ
t ))dt +

ÿ

j:tÁ

k

<·Á

j

ÆtÁ

k

+”Á

(Á—
F k·Á

j

F (›Á
j ) + Á—

P h·Á

j

P (›Á
j ))

2

As Á tends to zero, we approximately have

JÁ(uÁ, · Á, ›Á) ƒ
⁄ T

0
jÁ

t dt.

Now consider the following rescaling of XÁ over the horizon (t, t + ”Á]:

ÂXÁ,t
s = 1

Á—
XÁ

t+Á–—s, s œ (0, T Á],

with T Á = Á≠–—”Á, where – = 2 and — > 0 is to be determined (here – = 2 is related to the
scaling property of Brownian motion). On the one hand, we have

d ÂXÁ,t
s = ÂbÁ,t

s ds +
Ò

ÂaÁ,t
s dÊW Á,t

s + ÂuÁ,t
s ds + d(

ÿ

0<Â·Á,t

j

Æs

Â›Á
j ), (2.5)

where
ÂbÁ,t

s = ≠Á(–≠1)—bt+Á–—s, ÂaÁ,t
s = at+Á–—s, ÊW Á,t

s = ≠ 1
Á—

Wt+Á–—s,

ÂuÁ,t
s = Á(–≠1)—uÁ

t+Á–—s, Â›Á
j = 1

Á—
›Á

j , Â· Á,t
j = 1

Á–—
(· Á

j ≠ t) ‚ 0.

On the other hand, using the homogeneity properties (2.3) of the cost functions, we obtain

jÁ
t ƒ 1

T Á

1 ⁄ T Á

0

!
Á—’

D rtD( ÂXÁ,t
s ) + Á—

Q

≠(–≠1)’
Q

—ltQ(ÂuÁ,t
s )

"
ds

+
ÿ

0<Â·Á,t

j

ÆT Á

!
Á—

F

≠(–≠’
F

)—ktF (Â›Á
j ) + Á—

P

≠(–≠’
P

)—htP (Â›Á
j )

"2
.

The second approximation can be justified by the continuity of cost coe�cients rt, lt, kt and ht.

If there exists — > 0 such that

—’D = —Q ≠ (– ≠ 1)’Q— = —F ≠ (– ≠ ’F )— = —P ≠ (– ≠ ’P )—,

or equivalently,
— = —F

’D + – ≠ ’F
= —P

’D + – ≠ ’P
= —Q

’D + (– ≠ 1)’Q
, (2.6)
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where – = 2, then we have
jÁ

t ƒ Á—’
D IÁ

t ,

with
IÁ

t = 1
T Á

1 ⁄ T Á

0

!
rtD( ÂXÁ,t

s ) + ltQ(ÂuÁ,t
s ))ds +

ÿ

0<Â·Á,t

j

ÆT Á

(ktF (Â›Á
j ) + htP (Â›Á

j )
"2

. (2.7)

It follows that
Á≠—’

D JÁ ƒ
⁄ T

0
IÁ

t dt. (2.8)

We are hence led to study IÁ
t as Á æ 0, which is closely related to the time-average control

problem of Brownian motion.

2.3 Main results

Lower bounds

In Chapter 3, we study IÁ
t and establish an asymptotic lower bound for (2.8). By suitably

choosing ”Á, we have ”Á æ 0 and T Á æ Œ as Á æ 0. Then we have ÂbÁ,t
s ƒ 0 and ÂaÁ,t

s ƒ at for
s œ (0, T Á]. Therefore, the dynamics of (2.5) is approximately a controlled Brownian motion
with fixed di�usion matrix at. Hence (2.5) together with (2.7) can be approximately bounded
from below by the optimal cost of time-average control problem of a Brownian motion, that is

IÁ
t & I(at, rt, lt, kt, ht), (2.9)

with the term on the right hand side being defined as

I(a, r, l, k, h) = inf
(u,·,›)

lim sup
SæŒ

1
S
E

Ë ⁄ S

0

!
rD(Xs) + lQ(us)

"
ds +

ÿ

0Æ·
j

ÆS

!
kF (›j) + hP (›)

"È
, (2.10)

where
dXs =

Ô
adWs + usds + d

1 ÿ

0<·
j

Æs

›j

2
. (2.11)

Consequently, we obtain
Á≠—’

D JÁ ƒ
⁄ T

0
IÁ

t dt &
⁄ T

0
Itdt,

as Á æ 0. The main contribution in Chapter 3 is to formulate rigorously the above result as the
following.

Main Result 3 (Lower bound). There exists — explicitly determined by (2.6) such that, for all
” > 0 and any sequence of admissible strategies {ÂÁ œ AÁ, Á > 0}, we have

lim
Áæ0+

P
Ë 1
Á—’

D

JÁ(ÂÁ) Ø
⁄ T

0
Itdt ≠ ”

È
= 1, (2.12)

where It = I(at, rt, kt, ht, lt) is essentially the optimal cost of time-average control of Brownian
motion (2.10)-(2.11) with parameters frozen at time t.

Various versions of Main Result 3 under di�erent cost structures are also presented in Chapter
3, together with a comprehensive list of explicit examples for I.

A key step in the proof of Main Result 3 is to justify rigorously (2.9). More precisely, we show
that

lim inf
Áæ0

P[IÁ
t Ø It ≠ ”] = 1, ’” > 0, (2.13)



12 Introduction

where IÁ
t is given by (2.5)-(2.7) and It = I(at, rt, lt, kt, ht) is given by (2.10)-(2.11). Inspired by

[KM93] and [KS99], we apply weak convergence method on the empirical occupational measures
and express the lower bound It as the solution of an infinite dimensional linear programming on
a suitable space of measures. Such characterization is essentially equivalent to (2.10)-(2.11) if we
formulate the controlled Brownian motion through a controlled martingale problem (see [KS01]).

Feedback strategies

Our goal in Chapter 4 is to build strategies attaining the lower bounds (2.12). Following classical
approaches, we are interested in a class of feedback strategies which consists in keeping the
deviation Xt inside a time-dependent domain. Consider for example the case of combined
regular and impulse control. Let (Gt) be a moving open bounded domain associated with jump
rule (›t) from ˆGt to Gt, and (ut) be a continuous function from Ḡt to Rd. The sequence of
feed-back strategies (XÁ, uÁ, · Á, ›Á) corresponding to the triplet (ut, Gt, ›t) can be constructed
in the following recursive way :

1. Let · Á
0 = 0, XÁ

0 = 0.
2. For t Ø · Á

j≠1, let XÁ
t be defined by

dXÁ
t = ≠dX¶

t + uÁ
t dt,

with
uÁ

t = Á≠(–≠1)—ut(Á≠—XÁ
t ).

3. Set
· Á

j = inf{t > · Á
j≠1,

1
Á—

XÁ
t /œ Gt}, ›Á

j = Á—›·Á

j

(Á≠—XÁ
·Á

j

≠),

and
XÁ

·Á

j

= XÁ
·Á

j

≠ + ›Á
j .

We now give the main result for combined regular and impulse control in Chapter 4. The cases
involving singular control are also studied in same chapter.

Main Result 4 (Feedback strategies). Let {(XÁ, uÁ, · Á, ›Á), Á > 0} be the feedback strategy
determined by an admissible triplet (ut, Gt, ›t), then we have

1
Á—’

D

JÁ(uÁ, · Á, ›Á) æp

⁄ T

0
c(ut, Gt, ›t)dt,

where c(u, G, ›) can be explicitly determined via the stationary measures of Brownian motion in
the domain G with drift u and jump rule › from the boundary.

For a wide range of examples, we show that there exists explicit triplet (uú
t , Gú

t , ›ú
t ) verifying

c(uú
t , Gú

t , ›ú
t ) = It. Hence, the associated feedback strategy {(XÁ,ú, uÁ,ú, · Á,ú, ›Á,ú), Á > 0} satisfies

1
Á—’

D

JÁ(uÁ,ú, · Á,ú, ›Á,ú) æp

⁄ T

0
Itdt.

In other words, the asymptotic lower bound in Main Result 3 is tight.

2.4 Relation with other asymptotic studies

Our final contribution in Chapter 4 is to establish a link among di�erent asymptotic analysis in
the literature on various topics such as optimal discretization of hedging strategies, discretiza-
tion error of stochastic integrals and impact of small market frictions.
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Main Result 3 and 4 enable us to revisit the asymptotic lower bounds for the discretization of
hedging strategies in [Fuk11a, GL14a]. In these papers, the lower bounds are deduced by using
subtle inequalities. We show that theses bounds can be simply interpreted through the time
average control problem of Brownian motion.

As a corollary of Main Result 4, we establish a weak convergence theorem for discretization
errors of stochastic integrals with random stopping times. The limit law of the normalized
discretization errors turns out to be a mixture of Gaussian distributions, with the conditional
mean and variance being expressed as the first and second moments of the stationary measures
of Brownian motion in a domain with jumps from the boundary. Our approach suggests that
the results in [HM05, Fuk11c, Roo80, LR13] can be interpreted in a similar way.

The lower bound (2.12) appears also in the study of small market frictions under the framework of
utility maximization. Indeed, we observe that utility maximization under small market frictions
is heuristically equivalent to the tracking problem with the target being the optimal strategy
under frictionless market. Consider, for example, the optimization of terminal wealth given by

u(w0) = sup
Ï

E[U(wÏ
T )],

where w0 is the initial wealth and wÏ
T the terminal wealth following the trading strategy Ï. In

a market with proportional transaction costs, the portfolio dynamics is given by

wÁ
t = w0 +

⁄ t

0
ÏÁ

udSu ≠
⁄ t

0
ÁhudÎÏÁÎu,

where St is the risky asset price, Áht is a random weight process representing transaction costs,
and ÏÁ

t is a trading strategy with finite variation. Assume that Ïú
t is the optimal trading strategy

in the frictionless market (Á = 0), and denote the equivalent martingale measure by Q and the
indirect risk-tolerance process by Rt. When Á is small, we can expect that ÏÁ

t is close to Ïú
t .

Then up to first order quantities, we have (see also [KMK15, KL13, Rog04])

E[U(wÁ
T )] ≠ u(w0) ƒ ≠uÕ(w0)EQ

Ë
Á

⁄ T

0
htdÎÏÁÎt +

⁄ T

0

aS
t

2Rt
(ÏÁ

t ≠ Ïú
t )2dt

È
,

where aS
t is the quadratic variation of the risky asset St. Hence the optimization of terminal

wealth under small proportional costs can be reduced to a tracking problem with stochastic
target Ïú

t and deviation penalty

rtD(x) := aS
t

2Rt
x2.

Denoting the value function under transaction costs by uÁ, and defining the certainty equivalent
wealth loss �Á by

uÁ =: u(w0 ≠ �Á),

then we have
1

Á—’
D

�Á ƒ EQ[
⁄ T

0
Itdt].

Similar correspondences can also be established for the cases with di�erent cost structures
([AMKS15, MMKS14]), the indi�erence pricing of option ([WW97, WW99, KMK13]), the max-
imization of long term growth rate ([AW95, APW97, GW15a, GW15b, GW15c, LMKW14]),
and optimization of consumption ([ST13, PST15]).
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Part III : Portfolio selection with capital gains taxes

In contrast to transaction costs, the problem of portfolio selection under capital gains taxes
received relatively limited attention. Capital gain taxes di�er from transaction costs in the
following aspects:

1. Investors pay taxes for capital gains but receive tax rebates for capital losses.
2. The amount of capital gains or losses taxed depends on the purchase price of stock

holdings, known as the tax basis, which incurs strong path-dependency.
As a consequence, much of the existing literature on capital gain taxes has been restricted to
discrete-time models with small number of time steps, see [Con83, Con84, DK96, DU05, GH06].

Using the average purchase price of stocks as an approximation for tax basis, [DSZ01, DSZ03]
develop a binomial tree model that is able to e�ectively work with multi-step investment and
consumption decisions. The advantage of the approximation is that the path dependency of
the problem is considerably reduced, as the dynamics of the tax basis becomes Markovian.
[GKT06] further extend the model to the multiple stocks case. In [BST10], the authors formu-
late a continuous-time version of the model introduced by [DSZ01].

In this part, we are interested in the joint impact of capital gains taxes with other market fea-
tures such as regime-switching and transaction costs. Our work is mainly based on extensions of
the models of [BST10, BST07]. We point out that the goal of this part is to provide a deep un-
derstanding of the optimal strategy and related probabilistic interpretation, although the main
results remain to be rigorously proved.

3.1 Preliminary : the model of [BST10]

Let us describe the model of [BST10] in more details. Consider a financial market with two
assets that the investor can trade without any transaction costs. The first asset is a bond with
pre-tax interest rate r. The second asset is a risky stock whose price (St) evolves according to
the Black-Scholes model:

dSt = St(µdt + ‡dWt).

The investor is subject to capital gain taxes. The tax basis (Bt) used to evaluate capital gains
is defined as the weighted average of past purchase prices. The amount of tax to be paid for
each sale of risky asset is given by

–(St ≠ Bt),

where – œ [0, 1). When St Ø Bt, i.e. the current price of the risky asset is greater than the tax
basis, the investor realizes a capital gain by selling the risky asset. When St < Bt, the sale of
the risky asset corresponds to the realization of a capital loss.

Let Xt, Yt, and Kt be the amount invested in the bond, the current dollar value of, and the
cumulated purchase price of stock holdings, respectively. We introduce two càdlàg, non-negative,
and non-decreasing Ft-adapted processes Lt and Mt with L0≠ = M0≠ = 0, where dLt represents
the dollar amount transferred from the bank to the stock account at time t (corresponding to
a purchase of stock), while dMt represents the proportion of shares transferred from the stock
account to the bank at time t (corresponding to a sale of stock). We assume the no-short-sales
constraint such that dMt Æ 1. Note that the cumulated purchase price of stock holding Kt is
related to the tax basis Bt by

Kt = Bt
Yt

St
.
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Hence, when one sells stock at time t, the cumulated purchase price Kt declines by the same
proportion dMt as the dollar value of stock holdings does, and the realized capital gain is
(Yt≠ ≠ Kt≠)dMt. Then, the evolution processes of Xt, Yt, and Kt are

dXt = [(1 ≠ –)rXt ≠ Ct] dt ≠ dLt + [Yt≠ ≠ – (Yt≠ ≠ Kt≠)] dMt,

dYt = Yt(µdt + ‡dWt) + dLt ≠ Yt≠dMt,

dKt = dLt ≠ Kt≠dMt,

where (Ct) is the consumption stream.

The investor aims to find

Ï(x, y, k) := sup
(C

t

,L
t

,M
t

)
E

Ë ⁄ Œ

0
e≠—tU(Ct, “)dt

--X0 = x, Y0 = y, K0 = k
È
, (3.1)

where — > 0 is a constant discount factor and U(·, “) is a power utility function with parameter “.

Since the value function (3.1) admits no closed-form solution, [BST10] provide instead analytical
upper and lower bounds. First, if there is no capital gains taxes (– = 0), then the above problem
reduces to the classical tax-free Merton problem. Denote the value function of the Merton
problem by Ï̄ and the optimal consumption-investment strategy by (c̄, ›̄). Second, consider the
following tax-free model with parameters

µ– = (1 ≠ –)µ, ‡– = (1 ≠ –)‡, r– = (1 ≠ –)r. (3.2)

This is the so called tax-deflated model. Denote the value function of the corresponding Merton
problem by Ï̄– and the optimal consumption-investment strategy by (c̄–, ›̄–). Then it is shown
in [BST10, Propostion 4.1, 4.2] that,

Ï̄–(z) Æ Ï(x, y, k) Æ Ï̄(z), (3.3)

where z is the liquidation wealth z = x + y ≠ –(y ≠ k).

While the upper bound is natural in that the investor cannot take advantage of tax rebates
to do better than in a tax-free market, [BST10] provide an insight for the lower bound. More
precisely, define the portfolio value after liquidation Zt by

Zt = Xt + Yt ≠ –(Yt ≠ Kt).

Then we have

dZt = dXt + (1 ≠ –)dYt + –dKt

= [(1 ≠ –)rZt ≠ Ct]dt + (1 ≠ –)Yt(µdt + ‡dWt ≠ (1 ≠ –)rdt) ≠ (1 ≠ –)–rKtdt.

Taking
›t = Yt

Zt
, bt = Kt

Yt
, ct = Ct

Zt
, (3.4)

we obtain

dZt = Zt
#
(r– ≠ ct)dt + ›t(µ–dt + ‡–dWt ≠ r–dt) + –r–›t(1 ≠ bt)dt

$
. (3.5)

The process bt Ø 0 is called the relative tax basis. Note that bt > 1 corresponds to capital losses
while bt < 1 corresponds to capital gains. By constructing a sequence of strategies which keeps
asymptotically bt © 1, [BST10] show that Zt can be approximated by

dZt = Zt
#
(r– ≠ ct)dt + ›t(µ–dt + ‡–dWt ≠ r–dt)

$
,

which is exactly the wealth process under the tax-deflated model (3.2). The lower bound follows
from the possibility to replicate (asymptotically) any consumption stream which is admissible
for the tax-deflated model under the model of [BST10].



16 Introduction

3.2 Expansion around tax-deflated model

Our first contribution in Chapter 5 is to improve the bounds in (3.3) by providing a first order
correction in terms of a time-average control problem. The sub-optimal stratey b1 © 1 proposed
by [BST10] consist in realizing both capital losses and gains immediately. We observe that keep-
ing bt © 1 is apparently not the optimal choice. Indeed, as long as 1 ≠ bt Ø 0, the last term in
(3.5) is in the favor of the investor. Therefore, it is better for the investor to defer capital gains
and keep bt Æ 1. Meanwhile, such deferral will drive the portfolio away from the benchmark
›̄– under the tax-deflated model. Hence the optimal strategy should be a delicate balancing
between capital gains deferral and the utility loss due to deviation from the benchmark optimal
strategy ›̄– under the tax-deflated model.

The main idea is to consider the asymptotic setting where the interest rate or tax rate are small.
Then the extra benefit from tax deferral –r–›t(1 ≠ bt) is small and ›t ≠ ›̄– should also be small.
Using heuristic Taylor expansion as in [Rog04], we obtain

E
Ë ⁄ Œ

0
e≠—tU(Ct, “)dt

È

ƒ Ï̄–(z) + (1 ≠ “)U(c̄–z, “)
⁄ Œ

0
e≠c̄

–

tEQ
–

Ë ⁄ t

0
(–r–›s(1 ≠ bs) ≠ “‡2

–

2 (›s ≠ ›̄–)2)ds
È
dt.

where Q– is a suitable change of probability.

In order to obtain extra welfare by tax-deferral, the investor needs essentially to maximize

EQ
–

Ë ⁄ t

0
(–r–›s(1 ≠ bs) ≠ “‡2

–

2 (›s ≠ ›̄–)2)ds
È
, (3.6)

where the first term represents the benefit of tax-deferral and the second the equivalent wealth
loss due to deviation from the benchmark strategy ›̄–. Applying Itô formula to (3.4), it is not
di�cult to deduce the dynamics of ›t and bt :

dbt ƒ ≠‡btdWt + 1 ≠ bt

›̄
dDt + dRt,

d(1 ≠ –)›t ƒ ‡›̄(1 ≠ ›̄)dWt + dDt ≠ dUt,

(3.7)

where Dt, Ut and Rt are processes with finite variation determined by Lt and Mt.

An interesting property of the coupled system (3.7) is that

›t ≠ ›̄– = O(”2) … 1 ≠ bt = O(”).

In other words, 1 ≠ bt and ›t ≠ ›̄– have di�erent time scales. Defining

pt = 1 ≠ bt

”
, qt = ›t ≠ ›̄–

”2 ,

where

” = (AÁ)2/3, Á =

Û
2–r–›̄–

“‡2 , A = 4
[3›̄(›̄ ≠ 1)]2

,

and applying similar arguments as in the tracking problem, we are led to consider the following
time-average control problem in which the fast variable qt disappears:

I” = sup
(l

t

)
lim inf
T æŒ

1
T
E

Ë ⁄ T

0
(pt ≠ 1

3A2l2t )dt
È
, (3.8)
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and the dynamics of pt becomes

dpt = ‡(1 ≠ ”pt)dWt ≠ ‡2

3Alt
ptdt + dRt, (3.9)

where lt is an adapted positive process and Rt a non-decreasing process representing the reflection
of pt at p = 0. Our first contribution in Chapter 5 is the following result, which is only
heuristically proved.

Main Result 5. Taking z = x + y ≠ –(y ≠ k) and defining the value of tax deferral w by

Ï(x, y, k) = Ï̄–(zew),

then we have
w = “

c̄–

‡2

2 I”A2/3Á8/3 + o(Á8/3),

where I” is given by the optimal cost of the time-average control problem (3.8)-(3.9).

Compare to the case of utility maximization with market frictions, we have identified a new
local probabilistic model (3.8)-(3.9) in the first order expansion of the value function.

3.3 Capital gains taxes with recursive utility and regime-switching

Our second contribution in Chapter 5 is to study the impact of capital gains taxes in a regime-
switching market for an investor with recursive utility of Epstein-Zin type. We not only provide
asymptotic analysis based on the intuition developed in the previous section, but also perform
extensive numerical study to validate our asymptotic analysis.

Let Ïi be the value function under regime i œ I. As before, we introduce the tax-deflated
regime-switching model for which the market parameters r–,i, µ–,i and ‡–,i are given by

r–,i = (1 ≠ –)ri, µ–,i = (1 ≠ –)µi, ‡–,i = (1 ≠ –)‡i, ’i œ I.

We denote the value function of tax-free problem under regime i by Ï̄–,i and the optimal strategy
by (c̄–,i, ›̄–,i). The main result of Chapter 5 is the following heuristic expansion of value function.

Main Result 6. Defining the value of deferral wi under regime i by

Ïi(x, y, k) = Ï̄–,i(zew
i),

then we have

wi = “

c̄–,i

‡2
i

2 miA
2/3
i Á8/3

i + o(Á8/3
i ),

where {mi, i œ I} are explicitly determined in term of {I”
i , i œ I} via a linear system.

The key step to obtain the above expansion is first suggested in [CD13], where the authors use
the following “fast variables”

pi = 1 ≠ k/y

”i
, qi = y/z ≠ ›̄–,i

”2
i

,

and postulate in the associated HJB equation that

wi = “Á2
i

1
”i

‡2
i

2
1

c̄–,i
mi + ”3

i g”
i (pi) + ”5

i v”
i (pi, qi)

2
.
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This asymptotic setting is now fully supported by our probabilistic analysis in Section 3.2.

The asymptotic expansion allows us to perform fruitful economic analysis of the impact of cap-
ital gains taxes. In particular, we obtain the impact of capital gains taxes in function of the
elasticity of inter-temporal substitution (EIS) and regime transition intensities, together with
explicit trading boundaries. Moreover, these asymptotic analysis are all validated by a direct
numerical computation of the associated HJB equation based on penalty method.

3.4 Joint impact of capital gains taxes and transaction costs

Our goal in Chapter 6 is to derive a system of corrector equations for the value function of port-
folio selection problem under proportional transaction costs and capital gains taxes, extending
both [ST13] and [CD13]. Models with both transaction costs and capital gains taxes have also
been studied in [CP99, BCP05, Lel99] but under quite di�erent settings.

For simplicity, we use the model of [BST07] and keep the same notation as in Section 3.1. Given
any strategy (Ct, Lt, Mt), the dynamics of Yt and Kt remain the same and we have

dXt = ((1 ≠ –)rXt ≠ Ct)dt ≠ (1 + ⁄B)dLt + (1 ≠ ⁄S)[(1 ≠ –)Yt≠ + –Kt≠]dMt,

where ⁄B, ⁄S œ [0, 1) represent the buy/sell costs and – œ [0, 1) is the tax rate. In the asymptotic
setting of small transaction costs and interest rate, we replace the transaction cost coe�cients
⁄B, ⁄S and the interest rate r by

⁄”
B = ⁄B”6, ⁄”

S = ⁄S”6, r” = r”3, ” > 0.

and denote the corresponding value function by Ï”(x, y, k). The associated tax-deflated model
is defined by

µ– = (1 ≠ –)µ, ‡– = (1 ≠ –)‡, r”
– = (1 ≠ –)r”.

Denote the value function of Merton problem under the tax-deflated model (without transaction
costs and taxes) by Ï̄”

–(z), and the corresponding optimal consumption-investment strategy by
(C̄”

–(z), ȳ”
–(z)). The main contribution of Chapter 6 is the formal derivation of the following

corrector equations.

Main Result 7. Taking z = x + y ≠ –(y ≠ k), we have

Ï”(x, y, k) = Ï̄”
–(z) + u”

–(z)”4 + o(”4),

where u”
– is given by

≠1
2‡2

–(ȳ”
–(z))2ˆ2

zzu”
–(z) ≠ [(µ– ≠ r”

–)ȳ”
–(z) + r”

–z ≠ C̄”
–(z)]ˆzu”

–(z) + —u”
–(z) ≠ a(z) = 0.

The constant a(z) (depending on z) is determined by

min
Ó

≠ 1
2‡2(1 ≠ ”p)2ˆ2

ppG”
–(z, p) ≠

!
–r–ˆzÏ̄”

–(z)ȳ”
–(z)p ≠ b(z, p)

"
+ a(z),

G”
–(z, p) + (⁄S + ⁄B)ˆzÏ̄”

–(z)ȳ”
–(z) ≠ G”

–(z, 0)
Ô

= 0,

and

min
Ó1

2‡2(ȳ”
–(z))2[1 ≠ (1 ≠ –)ˆz ȳ”

–(z)]2ˆ2
qqw”

–(z, p, q) + 1
2‡2

–(≠ˆ2
zzÏ̄”

–(z))q2 ≠ b(z, p),
p

ȳ”
–(z)ˆpG”

–(z, p) + ⁄BˆzÏ̄”
–(z) ≠ ˆqw”

–(z, p, q),

≠⁄SˆzÏ̄”
–(z) ≠ ˆqw”

–(z, p, q)
Ô

= 0.
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In particular, we recover the corrector equations in [ST13, Definition 3.1] if – = 0, and [CD13,
Equation (A.13)] if ⁄B = ⁄S = 0.

In [ST13, Remark 3.3], the equation for w”
–(q) is represented by the time-average control of

Brownian motion with proportional costs. We find that the equation for G”
–(p) is also closely

related to a time-average control problem like (3.8)-(3.9) and a(z) can be interpreted as the
corresponding optimal cost I”.
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1.1 Introduction
In order to manage the risks inherent to the derivatives they buy and sell, practitioners use
continuous time stochastic models to compute their prices and hedging portfolios. In the simplest
cases, notably in that of the so-called delta hedging strategy, the hedging portfolio obtained from
the model is a time-varying self-financed combination of cash and the underlying. We denote
the price at time t of the underlying asset by Yt and assume it to be a one-dimensional semi-
martingale. Hence, in such situations, the outputs of the model are the price of the option
together with the number of shares in the underlying asset to be held in the hedging portfolio
at any time t, denoted by Xt. The proportion invested in cash is then deduced from the
self-financing property. Therefore, assuming zero interest rates, the theoretical value of the
model-based hedging portfolio at the maturity of the option T is given by

⁄ T

0
XtdYt.
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Typically, the process Xt derived from the model is a continuously varying semi-martingale, re-
quiring continuous trading to be implemented in practice. This is of course physically impossible
and would be anyway irrelevant because of the costs induced by microstructure e�ects. Hence
practitioners do not use the strategy Xt, but rather a discretized version of it. This means that
the hedging portfolio is only rebalanced a finite number of times and is held constant between
these times. Let us denote by (·n

j )jØ0 an increasing sequence of rebalancing times over [0, T ]
(the meaning of the parameter n will be explained below). With respect to the target portfolio
obtained by continuous rebalancing, the hedging error due to discrete trading Zn

T is therefore
given by

Zn
T =

+Œÿ

j=0
X·n

j

(Y·n

j+1·T ≠ Y·n

j

·T ) ≠
⁄ T

0
XtdYt.

Thus, some important questions in practice are:
• What is the order of Zn

T for commonly used discretization strategies ?
• For a given criterion, how to optimize the rebalancing times ?

The most widely studied rebalancing scheme is that of equidistant trading dates of the form

·n
j = jT/n, j = 0, . . . , n,

where n represents the total number of trades during the time period [0, T ]. In this setting,
the first question has been addressed in detail. There are two popular approaches to quantify
the hedging error Zn

T , both of them being asymptotic, assuming the rebalancing frequency n/T
tends to infinity (that is n tends to infinity since T is fixed). A first possibility is to use the
L2-norm, where one typically looks for asymptotic bounds of the form

E[(Zn
T )2] Æ cn≠◊, n æ Œ.

Many authors have explored various aspects of this problem in this deterministic rebalancing
dates framework. For European call and put options in the Black-Scholes model, it is shown
in [BKL00] and [Zha99] that the L2-error has a convergence rate ◊ = 1. For other options, the
convergence rate depends on the regularity of the payo�. For example, it is shown in [GT01] that
for binary options, the convergence rate is ◊ = 1/2. However, in this context, the convergence
rate ◊ = 1 can be recovered by choosing a suitable non equidistant deterministic rebalancing
grid, see [Gei02]. An asymptotic lower bound for the L2-error is given in [Fuk11a, Fuk14] for a
general class of rebalancing schemes.

The second way to assess the hedging error is through the weak convergence of the sequence of the
suitably rescaled random variables Zn

T . When X and Y are Itô processes, the case of equidistant
rebalancing dates has been investigated using this approach in [BKL00, HM05, Roo80]. In these
references, with varying degree of generality, the following convergence in law is proved:

Ô
nZn

T
L≠æ

Û
T

2

⁄ T

0
‡X

t ‡Y
t dBt, (1.1.1)

where ‡X and ‡Y are the volatilities of X and Y and B is a Brownian motion independent of
the other quantities. The case where X and Y are processes with jumps is treated in [TV09],
and [GT09] allow for non-equidistant time nets.

This asymptotic approach has also been recently used in the context where the rebalancing
times are random stopping times. Some specific hitting times based schemes derived from a
microstructure model are investigated in [RR10]. In [Fuk11c], the author works with quite
general sampling schemes based on stopping times. More precisely, for a given parameter n
driving the asymptotic, one considers an increasing sequence of stopping times

0 = ·n
0 < ·n

1 < . . . < ·n
j < . . .
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with Nn
t := max{j Ø 0; ·n

j Æ t} < Œ almost surely for any t Ø 0. When

E[(X·n

j+1
≠ X·n

j

)4|F·n

j

]
E[(X·n

j+1
≠ X·n

j

)2|F·n

j

] = Á2
na2

·n

j

+ op(Á2
n),

E[(X·n

j+1
≠ X·n

j

)3|F·n

j

]
E[(X·n

j+1
≠ X·n

j

)2|F·n

j

] = ≠Áns·n

j

+ op(Án)

for a sequence Án æ 0 and left continuous adapted processes a and s, under some additional
regularity conditions, it is shown in [Fuk11c] that Á≠1

n Zn converges weakly to

1
3

⁄ ·

0
stdYt + 1Ô

6

⁄ ·

0

!
a2

t ≠ 2
3s2

t

"1/2
‡Y

t dBt, (1.1.2)

where B is a Brownian motion independent of all the other quantities. Further,

lim
næŒ

P
A

Á2
nNn

t <
⁄ t

0

(‡X
u )2

a2
u ≠ s2

u

du ≠ ”

B

= 0 (1.1.3)

for all ” > 0 and t Ø 0.

One can remark a crucial di�erence between the deterministic discretization schemes associated
to (1.1.1) and the random stopping times case leading to (1.1.2). For deterministic dates, the
discretization error asymptotically behaves as a stochastic integral with respect to Brownian
motion. Therefore, it is (essentially) centered. In the case of random discretization dates, one
may obtain a “biased” asymptotic hedging error because of the presence of the term

⁄ T

0
stdYt.

Hence, if s does not vanish and Y has non zero drift, the asymptotic hedging error is no longer
centered.

From a practitioner viewpoint, this is quite an interesting property. Indeed, it shows that in the
presence of market trends, the trader, whose principal goal is to hedge the option, may actually
be compensated for the extra risk arising from discrete trading, provided that the rebalancing
dates are chosen in an appropriate way. Intuitively, the idea is to wait longer before rebalancing
the portfolio if the market is moving in a direction which is favorable for the trader. Of course
one may say this is not the option trader’s job to try to get a positive expected return with the
hedging strategy. However, knowing that there is anyhow a hedging error, it seems reasonable
to optimize it to the trader’s benefit.

Hence, we place ourselves in the asymptotic high frequency regime where n is large and therefore

sup
j

(·n
j+1 ≠ ·n

j )

is small, meaning that the hedging error should be small. In this setting we address the second
question raised above, that is finding the optimal times to rebalance the portfolio. To do so, we
simply use an asymptotic expectation-error type criterion. More precisely, we wish to maximize
the expectation of the hedging error under a constraint on its L2-norm. This is somewhat re-
lated to [Sep13], where the author aims at finding an optimal hedging frequency to optimize the
Sharpe ratio. However, in this reference, the market trend is assumed to be zero and the hedging
error is not centered due to the presence of transaction costs. Observe that in our context, the
L2-norm is more meaningful than the variance since the primary goal of the trader is to make
the hedging error small. Our asymptotic approach goes as follows. First, we approximate the
law of the renormalized hedging error by that in Equation (1.1.2). Then we find the processes aú

t

and sú
t which correspond to optimality in terms of our expectation-error criterion for the family
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of laws given by (1.1.2). Finally, we show that we can indeed build a discretization rule which
leads to the optimal aú

t and sú
t in the limiting distribution of the hedging error.

Using an asymptotic framework to design optimal discretizations of hedging strategies has been
quite a popular approach in the recent years. This method (although in a slightly di�erent
context) is in particular used in [Fuk11a, Fuk11c, GL14a] in the continuous setting whereas the
case with jumps is investigated in [RT14]. All these works aim at minimizing some form of
transaction costs (typically the number of trades) under some constraint on the L2-norm of the
hedging error. Here we also put a constraint on the L2-norm of the hedging error. However,
instead of minimizing transaction costs, we maximize the expectation of the hedging error. Thus
our viewpoint is that of a trader giving himself a lower bound on the quality of his hedge (the
L2-norm of the hedging error), but allowing himself to try to take advantage of market trends
provided the constraint is satisfied.

In practice, our optimal strategy should probably only be considered as a benchmark. Indeed,
its computation requires precise knowledge of the market trend over the hedge horizon. This
is of course not realistic since any kind of statistical estimation of the drift is irrelevant in this
high frequency setting. However, some practitioners have views on the market based, for exam-
ple, on economic analysis, and our work gives them a way to incorporate their beliefs in their
hedging strategies. To assess the robustness of our approach with respect to drift misspecifica-
tion, in Section 1.5.2 we compare numerically the performance of the optimal strategy to the
performance of alternative strategies based on misspecified values of the drift. We find that the
optimal strategies (with misspecified drift) can still recover a large part of the extra return if
the directional bet is good.

The paper is organized as follows. In Section 1.2, we investigate the set of admissible discretiza-
tion rules, that is those leading to a limiting law of the form (1.1.2). In particular, we extend the
examples provided in [Fuk11c] by showing that the discretization rules based on hitting times of
stochastic barriers are admissible. In Section 1.3, we consider a first criterion for optimizing the
trading times: the modified Sharpe ratio. It enables us to carry out very simple computations.
However, the relevance of the modified Sharpe ratio being in fact quite arguable, a more suitable
approach in which we consider an expectation-error type criterion is investigated in Section 1.4.
Using tools from linear-quadratic optimal control theory, explicit developments are provided in
the Black-Scholes model in Section 1.5. Numerical illustrations are given in Section 1.5.2 and
the longest proofs are relegated to an appendix.

1.2 Assumptions and admissible strategies

In this section, we detail our assumptions on the processes X and Y together with the admissi-
bility conditions for the sampling schemes.

1.2.1 Assumptions on the dynamics and admissibility conditions

Let (�, F ,F,P) be a filtered probability space satisfying the usual conditions. We write Y for the
price dynamics of the underlying risky asset. Let T > 0 stand for the maturity of the derivative
to be hedged. We assume that the benchmark hedging strategy deduced from a theoretical
model simply consists in holding a certain number of units of the underlying asset, denoted by
X, and some cash in a self-financed way, under zero interest rates. Throughout the paper, we
assume both Y and X are Itô processes of the form

dYt = bY
t dt + ‡Y

t dW Y
t , dXt = bX

t dt + ‡X
t dW X

t (1.2.1)
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on [0, T ], where W X and W Y are F-Brownian motions which may be arbitrarily correlated, and
the coe�cients of X and Y satisfy the following technical assumptions.

Assumption 1.2.1.
1. The processes bY , bX , ‡Y , and ‡X are adapted and continuous on [0, T ] almost surely.
2. The volatility process ‡Y of Y is positive on [0, T ] almost surely.
3. The volatility process ‡X of X is positive on [0, T ) almost surely.
4. The instantaneous Sharpe ratio fl = bY /‡Y satisfies

E
# ⁄ T

0
fl2

t dt
$

< +Œ.

Remark 1.2.1. Up to some technicalities, the requirement on the positivity of the volatility
processes ‡X and ‡Y might be weakened. See for example the perturbation arguments in [GL14b].

Example 1.2.1 (The Black-Scholes model). The case of bY
t = bYt and ‡Y

t = ‡Yt with constants
b and ‡ > 0 corresponds to the Black-Scholes model. The instantaneous Sharp ratio fl = b/‡ is
a constant. To hedge a call option with payo� (YT ≠K)+ and strike K > 0, the standard theory
suggests to use the so-called Delta hedging strategy:

Xt = �(d1(t, Yt)), d1(t, y) = log(y/K) + ‡2(T ≠ t)/2
‡

Ô
T ≠ t

,

where � stands for the distribution function of a standard Gaussian random variable. By Itô’s
formula, we see that X is an Itô process of the form (1.2.1) with W X = W Y and

bX
t = „(d1(t, Yt))

I
ˆd1
ˆt

(t, Yt) + ‡2

2
ˆ2d1
ˆy2 (t, Yt)Y 2

t + b
ˆd1
ˆy

(t, Yt)Yt

J

+ ‡2

2
!ˆd1

ˆy
(t, Yt)

"2
„Õ(d1(t, Yt))Y 2

t ,

‡X
t = ‡„(d1(t, Yt))

ˆd1
ˆy

(t, Yt)Yt,

with „ being the density of a standard Gaussian random variable. Almost surely, YT ”= K and
therefore both bX and ‡X are continuous on [0, T ] and bX

T = ‡X
T = 0. Furthermore ‡X is positive

on [0, T ). Hence Assumption 1.2.1 is satisfied.

As explained in the introduction, in practice, the trader cannot realize the theoretical strategy
Xt which typically implies continuous trading. Hence the quantity

⁄ T

0
XsdYs

only represents a benchmark terminal wealth and Xt is a benchmark hedging strategy. Thus,
we discretize this strategy over the stopping times

0 = ·n
0 < ·n

1 < · · · < ·n
j < · · · ,

so that for given n, almost surely, ·n
j attains T for j large enough. Such array of stopping times

is called a discretization rule. Consequently, if we define the discretized process Xn by

Xn
t = X·n

j

, t œ [·n
j , ·n

j+1),

the hedging error Zn
T with respect to the benchmark strategy writes as

Zn
T =

⁄ T

0
(Xn

s≠ ≠ Xs)dYs.

We now define the admissibility conditions for our discretization rules which we comment in the
next subsection.
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Condition 1.2.1 (Admissibility conditions). A discretization rule (·n
j ) is admissible if there

exist continuous F-adapted processes a and s satisfying

E
C⁄ T

0

!
1 + (flt)2"

(a2
t + s2

t )(‡Y
t )2dt

D

< Œ, (1.2.2)

and a positive sequence Án tending to zero such that:
— The first two moments of the renormalized hedging error Á≠1

n Zn
T converge to those of a

random variable of the form

Zú
a,s = 1

3

⁄ T

0
stdYt + 1Ô

6

⁄ T

0

3
a2

t ≠ 2
3s2

t

41/2
‡Y

t dBt, (1.2.3)

that is,
E[Á≠1

n Zn
T ] æ E[Zú

a,s], E[(Á≠1
n Zn

T )2] æ E[(Zú
a,s)2], (1.2.4)

where B is a Brownian motion, independent of all the other quantities.
— Almost surely, the processes at and st satisfy a2

t Ø s2
t , for all t œ [0, T ].

1.2.2 Comments on the admissibility conditions
Equation 1.2.2 is simply a technical integrability condition. We now give the interpretation of
the sequence Án. Recall that for fixed n, we deal with an increasing sequence of stopping times
(·n

j ) over [0, T ]. Typically, Á2
n will represent the order of magnitude of the interarrival time

·n
j+1 ≠ ·n

j . For example, in the case of equidistant trading times with frequency n/T , Án can
simply be taken equal to n≠1/2. In the case of the hitting times based scheme consisting in
rebalancing the portfolio each time the process X has varied by ‹n, where ‹n is a deterministic
sequence tending to zero, one can choose Án = ‹n (since the order of magnitude of the time
interval between two hitting times is ‹2

n).

The specific form (1.2.3) may appear rather ad hoc at first sight. However, it is in fact quite
natural. Indeed, Proposition 1.2.1 below, which is proved in the Appendix and used to show
the main result of the next subsection, indicates that as soon as the quadratic covariations
Á≠2

n ÈZnÍ and Á≠1
n ÈZn, Y Í have regular limits, the form (1.2.3) appears for the weak limit of the

renormalized hedging error. So the idea for this admissibility condition is that in our asymptotic
approach, we want to work in regular cases where the renormalized hedging error can be approx-
imated by a random variable of the form (1.2.3). However, our asymptotic optimality criterion
will be based on the first two moments of the renormalized hedging error only. Therefore, we just
require these first two moments to be asymptotically close to those of a random variable of the
form (1.2.3) (in particular we do not impose the convergence in law of the renormalized hedging
error towards Zú

a,s, although this is the underlying idea behind this admissibility condition). We
now give Proposition 1.2.1.

Proposition 1.2.1. If there exists a sequence Án æ 0 and continuous processes s and a such
that

Á≠2
n ÈZnÍ· æ 1

6

⁄ ·

0
a2

u(‡Y
u )2du, (1.2.5)

Á≠1
n ÈZn, Y Í· æ 1

3

⁄ ·

0
su(‡Y

u )2du, (1.2.6)

in probability uniformly on [0, T ], then Á≠1
n Zn converges in law to

1
3

⁄ ·

0
stdYt + 1Ô

6

⁄ ·

0

3
a2

t ≠ 2
3s2

t

41/2
‡Y

t dBt (1.2.7)
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in C[0, T ]. In particular, the convergence in law of Á≠1
n Zn

T to Zú
a,s defined by (1.2.3) holds. If in

addition,
Á≠4/3

n sup
jØ0

(·n
j+1 · T0 ≠ ·n

j · T0) æ 0 (1.2.8)

in probability, for all T0 œ [0, T ), then almost surely a2
t Ø s2

t for all t œ [0, T ].

We now consider the processes a2
t and st appearing in the admissibility conditions. We place

ourselves in the situation where Proposition 1.2.1 can be applied. In that case, an inspection
of the proof of this proposition shows that the inequality a2

t Ø s2
t essentially follows from the

elementary fact that E[�2]E[�4] Ø E[�3]2 for a general random variable �. Indeed, a2
t and st

are respectively related to the local third and fourth conditional moments of the increments of
X. Proposition 1.2.2 below, which is proved in the Appendix and used to show the main result
in the next subsection, somehow illustrates the connections between a2

t and st on the one hand
and the conditional moments on the other hand. To that end, let �j,n = X·n

j+1
≠ X·n

j

be the
increment of X between ·n

j and ·n
j+1 and Nn

t be the number of rebalancing times until time t:

Nn
t = max

Ó
j Ø 0|·n

j Æ t
Ô

.

The following proposition holds.

Proposition 1.2.2. Let Án be a positive sequence tending to 0 and s and a be continuous
processes. Assume the following:

— The family of random variables

Á≠4
n sup

tœ[0,T ]
|Xn

t ≠ Xt|4 (1.2.9)

is uniformly integrable.
— The following uniform convergences in probability on [0, T0] hold for all T0 œ [0, T ):

Á≠1
n

Nn

·ÿ

j=0
Ÿ·n

j

E
#
�3

j,n

--F·n

j

$
æ ≠

⁄ ·

0
su(‡Y

u )2du,

Á≠2
n

Nn

·ÿ

j=0
Ÿ·n

j

E
#
�4

j,n

--F·n

j

$
æ

⁄ ·

0
a2

u(‡Y
u )2du,

(1.2.10)

where Ÿu = (‡Y
u /‡X

u )2.
Then the convergences (1.2.5), (1.2.6) and (1.2.8) hold.

Proposition 1.2.2 is useful to obtain the convergences (1.2.5) and (1.2.6) for a given discretiza-
tion rule since it is usually easy to have approximate values of the conditional moments of
the increments. We actually apply this approach in the proof of the main result of the next
subsection.

1.2.3 Examples of admissible discretization rules
We show in this section that the most common discretization rules are admissible. We start
with hitting times based schemes. We have the following result.

Proposition 1.2.3 (Hitting times based discretization rule). Let Án be a positive sequence
tending to zero and l and l be two adapted processes which are positive and continuous on [0, T ]
almost surely with

E
C⁄ T

0

!
1 + (flt)2"

(lt ‚ lt)2(‡Y
t )2dt

D

< Œ. (1.2.11)
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The discretization rule based on the hitting times of Ánlt or Ánlt by the process X:

·n
j+1 = inf

Ó
t > ·n

j : Xt /œ (X·n

j

≠ Ánlt, X·n

j

+ Ánlt)
Ô

· T (1.2.12)

is admissible with
st = lt ≠ lt, a2

t = s2
t + ltlt. (1.2.13)

Moreover,

Á2
nNn

t æ
⁄ t

0

(‡X
u )2

lulu
du (1.2.14)

in probability for all t œ [0, T ).

It is interesting to note here that the limit Zú
a,s does not depend on the structure of X.

This result is particularly important since many traders monitor the values of the increments of
their so-called delta (which corresponds to the process X) in order to decide when to rebalance
their portfolio. Thus, they are indeed using hitting times based strategies. The use of time
varying barriers (which correspond to l and l) is more natural in financial practice than that of
constant barriers ( between ·n

j and ·n
j+1) treated in [Fuk11c, Lan13], although the arguments

therein might be adapted to certain cases in our current situation.

Now remark that under the condition a2
t > s2

t , we can always find some positive processes lt and
lt such that (1.2.13) is satisfied. Indeed, it is easy to see that the real numbers lt and ≠lt can be
taken as the roots of the quadratic equation x2 +stx+s2

t ≠a2
t = 0. Under the condition a2

t > s2
t ,

this equation admits two nonzero roots with di�erent signs. Therefore, another interesting
property of hitting times based schemes is the following.

Lemma 1.2.1. For any pair of limiting processes s and a satisfying (1.2.2) and a2
t > s2

t , we can
always build a corresponding admissible discretization rule based on hitting times as in (1.2.12)-
(1.2.13).

Consequently, if one has some processes at and st as targets, Lemma 1.2.1 implies that a strategy
giving rise to these processes in the limiting distribution (1.2.3) can be found. We will work in
this framework in Section 1.4. Remark that there are infinitely many strategies for which the
renormalized hedging error converges in law to Zú

a,s with the same a and s due to the degree of
freedom in choosing the normalizing sequence Án. The hitting time strategy is an e�cient one
among them in the sense that it attains the asymptotic lower bound (1.1.3).

Another classical discretization rule is given by equidistant trading times. Here, the integrability
property (1.2.4) in the admissibility conditions does not hold in full generality. Compared to the
hitting times setting, this is because the deviations of the benchmark strategy are not explicitly
controlled by the barriers. Nevertheless, the following example describes a reasonable framework
under which such a discretization rule is admissible.

Proposition 1.2.4 (Equidistant sampling discretization rule). Consider the hedging strategy of
a European option with payo� h(YT ) where the underlying Yt follows a di�usion process of the
form

dYt = b(t, Yt)Ytdt + ‡(t, Yt)YtdWt,

with b, ‡ and h deterministic functions satisfying the following regularity assumptions:
— b and ‡ are bounded, of class C1,Œ([0, T ] ◊ R+), such that x ˆb

ˆx , xˆ‡
ˆx , x2 ˆ2‡

ˆx2 and x3 ˆ3‡
ˆx3

are bounded;
— ‡ is Hölder continuous in x and bounded away from zero uniformly in (t, x) œ [0, T ]◊R+.
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— h is almost everywhere di�erentiable with

|h| + |hÕ| Æ L(1 + |x|–)

almost everywhere, for positive constants L and –.
Define the delta hedging portfolio:

Xt = ˆP

ˆy
(t, Yt), with P (t, y) = EQ

(t,y)[h(YT )],

where EQ denotes the expectation operator under the risk neutral probability. Let Án be a positive
sequence tending to zero. Then the equidistant trading times discretization rule:

·n
j = jÁ2

n, j = 0, . . . , n, . . .

is admissible (under the original measure). Moreover, we can take

st = 0, a2
t = 3(‡X

t )2.

Proof. The proof of Proposition 1.2.4 follows easily from the results in [Zha99]. Indeed, with
the notation of this proposition,

‡X
t = Yt‡(t, Yt)

ˆ2P

ˆy2 (t, Yy),

and by Proposition 2.2.31 in [Zha99], using the Hölder inequality and the assumptions on ‡ and
b, we have that

E[Zú
a,s] = 0, E[(Zú

a,s)2] = 1
2E

C⁄ T

0
(‡Y

t )2(‡X
t )2dt

D

and (1.2.2) is satisfied. For the convergence of the second moment it su�ces to use Theorem
2.4.1 in [Zha99]. The convergence of the first moment to zero, on the other hand, is shown on
pages 86–88 of this reference.

Note that the discretization rule based on equidistant trading times will not be of interest for us
since the associated st process vanishes and so the expectation of the limiting variable is zero.

1.3 Asymptotic optimality: a preliminary approach
Our viewpoint is that the trader’s priority is to get a small hedging error. However, once this
error is suitably controlled, he may try to take advantage of the directional views he has on the
market. Hence, adopting the asymptotic approximation under which the first two moments of
the renormalized hedging error are given by those of Zú

a,s, we aim at maximizing E[Zú
a,s] while

keeping E[(Zú
a,s)2] reasonably small. This very problem is treated in Section 1.4.

Here, as a first step, we consider the approximation for E[(Zú
a,s)2] given by E[(Zú,c

a,s)2], where Zú,c
a,s

denotes the sum of the two integrals with respect to the Brownian motions W Y and B in the
definition of Zú

a,s in Equation (1.2.3), that is

Zú,c
a,s = 1

3

⁄ T

0
st‡

Y
t dW Y

t + 1Ô
6

⁄ T

0

3
a2

t ≠ 2
3s2

t

41/2
‡Y

t dBt.

To do so, we place ourselves in this section under the additional admissibility condition that the
renormalized hedging error weakly converges in the sense of (1.2.7) and we take st and a2

t as
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the processes in the limit (1.2.7) (so st and a2
t are uniquely defined). Replacing E[(Zú

a,s)2] by
E[(Zú,c

a,s)2] is technically very convenient but in practice quite arguable since this approximation
is meaningful only when the drift is small. However, our aim here is only to have a first rough
idea about the form of the optimal discretization rules. Since we wish to get the moment of order
one large while that of order two remains controlled, we consider that we want to maximize the
so-called modified Sharpe ratio S defined by

S = S(a, s) =
E[Zú

a,s]
Ò
E[(Zú,c

a,s)2]
.

This ratio is said to be modified since we use E[(Zú,c
a,s)2] instead of the variance of Zú

a,s.

Hence we are looking for strategies which maximize S. To do so, we now introduce the notion
of nearly e�cient (modified) Sharpe ratio.

Definition 1.3.1 (Nearly e�cient Sharpe ratio). The value Sú œ R is said to be a nearly e�cient
Sharpe ratio if:

1. For any admissible discretization rule with associated limiting processes a and s, the
associated modified Sharpe ratio S(a, s) satisfies

S(a, s) Æ Sú.

2. For any ÷ > 0, there exists a discretization rule with associated limiting processes a and
s such that

S(a, s) Ø Sú ≠ ÷.

We only consider nearly e�cient ratios since our strategies will not enable us to attain exact
e�ciency (which would corresponds to ÷ = 0 in the previous definition). Of course, the slight
di�erence between e�cient and nearly e�cient ratios has no importance in practice.

In our setting, for any limiting variable Zú
a,s, we have

S(a, s) =
E

Ë
1
3

s T
0 stbY

t dt
È

1
E

Ë
1
9

s T
0 s2

t (‡Y
t )2dt + 1

6
s T

0
!
a2

t ≠ 2
3s2

t

"
(‡Y

t )2dt
È21/2 .

Now, the admissibility condition a2
t Ø s2

t implies

S(a, s) Æ
Ô

6
3

E
Ë s T

0 stbY
t dt

È

1
E

Ë s T
0 s2

t (‡Y
t )2dt

È21/2

and Cauchy-Schwarz inequality gives

S(a, s) Æ
Ô

6
3

1
E

Ë ⁄ T

0

! bY
t

‡Y
t

"2
dt

È21/2
.

This provides an upper bound for the modified Sharpe ratio. We now wish to find a discretization
rule enabling to (almost) attain this upper bound. To achieve this, our rule must be such that
for the associated processes at and st, the inequalities used above (a2

t Ø s2
t and Cauchy-Schwarz)

become almost equalities. This means that at should be close to st and st should essentially be
proportional to bY

t /(‡Y
t )2. Furthermore, we want the product stbY

t to be essentially positive in
order to get a positive modified Sharpe ratio. If we look for this rule among the hitting times
based schemes specified by two processes (lt, lt), Lemma 1.2.1 implies that
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— the di�erence lt ≠ lt should be essentially proportional to bt/(‡Y
t )2,

— the product ltlt should be negligible compared to (lt ≠ lt)2,
— the term (lt ≠ lt)bY

t should be essentially positive.
From these remarks together with Proposition 1.2.3, we easily deduce the following theorem.

Theorem 1.3.1. Suppose that for all t Æ T , bY
t ”= 0. Then the value

Ô
6

3
1
E

Ë ⁄ T

0

! bY
t

‡Y
t

"2
dt

È21/2

is a nearly e�cient Sharpe ratio. It is approximately attained by the discretization rule defined
for ⁄ > 0 by

·n,⁄
j+1 = inf

Ó
t > ·n,⁄

j ; Xt ≠ X
·n,⁄

j

= ≠ bY
t

(‡Y
t )2 e⁄Án or bY

t

(‡Y
t )2 e≠⁄Án

Ô
, ·n

0 = 0. (1.3.1)

Indeed,

lim
⁄æ+Œ

S(⁄) =
Ô

6
3

1
E

Ë ⁄ T

0

! bY
t

‡Y
t

"2
dt

È21/2
,

where S(⁄) denotes the modified Sharpe ratio obtained for the law of the variable Zú
a,s associated

to the discretization rule (1.3.1) with parameter ⁄.

This result provides simple and explicit strategies for optimizing the modified Sharpe ratio. It
is also very easy to interpret. Indeed, we see that in order to take advantage of the drift, one
needs to consider asymmetric barriers. The limitation is that we do not really control accurately
the magnitude of the hedging error at maturity.

The asymptotic setting simply means that we require ⁄ to be quite large while e⁄Án is small.
When using such discretization rule in practice, it is reasonable to consider that the trader fixes
a maximal value for the asymmetry between the barriers controlled by ⁄. This way he can
choose the parameter ⁄. Then Án is set to match the bound on E[(Zú,c

a,s)2] that the trader does
not want to exceed.

1.4 Asymptotic expectation-error optimization

In this section, we now consider a natural expectation-error type criterion in order to optimize
our discretization rules. To do so, we work in an asymptotic setting where we are looking for
discretization rules which are optimal in the expectation-error sense for their associated limiting
random variable Zú

a,s. We start with a definition inspired by the classical portfolio theory.

Definition 1.4.1 (E�cient couples). A couple (m, v) œ (R+)2 is said to be nearly e�cient if
there exists no admissible discretization rule such that its associated limiting random variable
Zú

a,s satisfies
E[Zú

a,s] Ø m, E[(Zú
a,s)2] < v.

and for any ÷ > 0, there exists an admissible discretization rule such that its associated limiting
random variable Zú

a,s satisfies

E[Zú
a,s] = m, E[(Zú

a,s)2] Æ v + ÷.

It is said to be e�cient if we can take ÷ = 0.
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We introduce the set ZT of random variables of the form

ZT,s = 1
3

⁄ T

0
stdYt + 1

3
Ô

2

⁄ T

0
st‡

Y
t dBt, (1.4.1)

where B is a Brownian motion independent of F and st is an adapted continuous process such
that

E
# ⁄ T

0

!
1 + (flt)2"

s2
t (‡Y

t )2dt
$

< Œ. (1.4.2)

We can now state our main result which enables us to compute e�cient discretization rules.

Theorem 1.4.1. The following results hold:
— Let (mú, vú) be an e�cient couple. Then there exists an adapted continuous process sú

satisfying (1.4.2), such that E[ZT,sú ] = mú and E[(ZT,sú)2] = vú, and for no other process
s satisfying (1.4.2), one has E[ZT,s] Ø mú and E[(ZT,s)2] < vú.

— Conversely, let sú be an adapted continuous process satisfying (1.4.2), such that E[ZT,sú ] =
mú and E[(ZT,sú)2] = vú. Then, (mú, vú) is a nearly e�cient couple. More precisely, let
” > 0 and (l”t , l

”
t ) be defined by

l”t ≠ l
”
t = sú

t , (l”t )2 ≠ l”t l
”
t + (l”t )2 = (sú

t )2 + 6”

(‡Y
t )2 ,

that is

l”t =
Û

(sú
t )2

4 + 6”

(‡Y
t )2 + sú

t

2 , l
”
t =

Û
(sú

t )2

4 + 6”

(‡Y
t )2 ≠ sú

t

2 . (1.4.3)

Then the hitting times based discretization rule specified through the barriers (l”t , l
”
t ) sat-

isfies
E[Zú

a,s] = mú, E[(Zú
a,s)2] = vú + ”T.

Therefore, we have reduced the impulse control problem of finding the optimal rebalancing times
to a classical expectation-error optimization with continuous dynamics. The solutions of this
problem can be obtained by solving for µ > 0

inf
(s

t

)

)
≠ E[ZT,s] + µE[(ZT,s)2]

*
,

for which we can apply the theory of linear-quadratic optimal control, see for example [LZ02]
and [ZL00]. As shown in the next section, we can even obtain closed formulas in the case where
the underlying has deterministic drift and volatility. Note that again, our barriers strategies
enable us to attain only nearly e�cient couples. Indeed, reaching e�cient couples would lead to
the use of degenerate barriers with ” = 0. This does not make sense in practice, however ” can
of course be selected small.

1.5 Black-Scholes model with time-varying coe�cients
In this section, we explain how our method can be applied in practice through the simple example
of the Black-Scholes model with time-varying coe�cients. So, we assume the underlying risky
asset follows the dynamics

dYt = Yt(btdt + ‡tdWt),

where bt and ‡t are continuous deterministic functions. We also assume bt and ‡t do not vanish.
Using the theory of linear-quadratic optimal control, we give an explicit solution for the problem
of designing optimal rebalancing times in this specific setting.
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1.5.1 Explicit formulas
We aim at finding the e�cient couples for the controlled random variables of the form ZT,s as
in (1.4.1). Following [ZL00], such problem is classically recast as follows: solving for any µ > 0
the optimization problem

inf
(s

t

,0ÆtÆT )
≠E[ZT,s] + µE[(ZT,s)2] = inf

(s
t

,0ÆtÆT )
µE

#!
ZT,s ≠ 1

2µ

"2$
≠ 1

4µ
.

Let us define the family of processes of the form

dŽt = stYt(b̃tdt + ‡̃tdWt), Ž0 = 0,

with b̃t = bt/3, ‡̃t = ‡t/3 and st being adapted continuous. Using obvious computations,
the independence between the process B in Equation (1.4.1) and F , and the fact that st is
F-adapted, we get E[ŽT ] = E[ZT,s] and

µE
#!

ŽT ≠ 1
2µ

"2$
= µE

#!
ZT,s ≠ 1

2µ

"2$
≠ µ

18E
# ⁄ T

0
(st‡tYt)2dt

$
.

Hence, we can equivalently solve

inf
(s

t

,0ÆtÆT )
E

#
µZ̃2

T + µ

2

⁄ T

0
(st‡̃tYt)2dt

$
,

with
dZ̃t = stYt(b̃tdt + ‡̃tdWt), Z̃0 = ≠ 1

2µ
.

Using the results of [ZL00] which are summarized in Theorem 1.B.1 in Appendix 1.B, the optimal
control sú

t and the optimally controlled process Z̃ú
t satisfy

sú
t Yt = ≠ 1

b̃t

Ṗt

Pt
Z̃ú

t ,

where Pt is the solution of the (ordinary) di�erential equation

Ṗt = fl2
t

P 2
t

Pt + µ
, PT = 2µ,

with flt = bt/‡t. The solution of this equation is given by

Pt = µ

L
1

1
2exp

! s T
t fl2

sds + 1
2
"2 ,

with L(·) being the inverse function of x ‘æ xex. Moreover, the optimal process Z̃ú satisfies

dZ̃ú
t

Z̃ú
t

= ≠ Ṗt

Pt
(dt + 1

flt
dWt), Z̃ú

0 = ≠ 1
2µ

.

Therefore, we obtain
E[Z̃ú

T ] = ≠ 1
2µ

P0
PT

.

Using Theorem 1.B.1, we get

E
Ë
(Z̃ú

T )2 + 1
2

⁄ T

0
(sú

t Yt‡̃t)2dt
È

=
! 1
2µ

"2 P0
PT

.
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Consequently, we have that the optimal variable ZT,sú satisfies

E[ZT,sú ] = 1
2µ

!
1 ≠ P0

PT

"

and
E

#!
ZT,sú ≠ 1

2µ

"2$
=

! 1
2µ

"2 P0
PT

.

Hence
E[(ZT,sú)2] =

! 1
2µ

"2(1 ≠ P0
PT

).

We have thus proved the following proposition.

Proposition 1.5.1. In the Black-Scholes model with time-varying coe�cients, the e�cient
points are the couples of the form

3 1
2µ

,
1

4µ2

4 3
1 ≠ P0

PT

4
, (1.5.1)

with µ > 0 (notice that the ratio P0
P

T

does not depend on µ). Furthermore, the associated process
sú

t enabling us to compute optimal rules according to Theorem 1.4.1 is given by

1
3sú

t Yt = ≠ 1
bt

Ṗt

Pt
Z̃ú

t ,

with
dZ̃ú

t

Z̃ú
t

= ≠ 1
bt

Ṗt

Pt

dYt

Yt
, Z̃ú

0 = ≠ 1
2µ

.

Note that, in practice, Z̃ú is not observable. However, it can of course be approximated by a
process Z̃(ú) thanks to historical data, using for example a scheme of the form

Z̃(ú)
t
i+1 = Z̃(ú)

t
i

1
1 ≠ 1

bt
i

Ṗt
i

Pt
i

Yt
i+1 ≠ Yt

i

Yt
i

2
, Z̃(ú)

0 = ≠ 1
2µ

,

where the ti are the observation times of market data.

To implement our strategy in practice, the trader must choose three parameters: the value µ
which determines a point on the e�cient frontier, the asymmetry parameter ” and finally the
value Án which determines how close to the limit we are. However, in the Black-Scholes model
the sequence of renormalized hedging error processes corresponding to an optimal discretization
rule satisfies

E[µÁ≠1
n Zn

T ] æ 1
2

3
1 ≠ P0

PT

4
and E[(µÁ≠1

n Zn
T )2] æ 1

4

3
1 ≠ P0

PT

4
.

This means that (in the asymptotic regime) Án and µ are redundant parameters, and one can
simply take µ = 1. This leaves the trader with the choice of Án and ”. These parameters will
typically be chosen to meet two conflicting objectives: keep the tracking error below a certain
threshold, and limit the number of transaction dates. With the above choice of µ = 1, using the
suboptimal strategy of Theorem 1.4.1, we see that

E[((Án)≠1Zn
T )2] æ PT ≠ P0

PT
+ ”T

as n æ Œ. Therefore, if ” is small, its e�ect on the tracking error is neglilgible. However, it has
a strong e�ect on the total number of transaction dates, which tends to infinity as ” æ 0. In
view of these observations, we propose the following approach for choosing Án and ”:
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— First, choose Án to meet the tracking error target for the optimal strategy (assuming
” = 0).

— Then, choose the smallest ” which meets the target of the total expected number of
transaction dates (e.g., by simulation). The transaction dates target should be large
enough so that the loss of optimality due to nonzero ” is negligible.

1.5.2 Numerical study
In this section, we present a numerical example illustrating the performance of our asymptoti-
cally optimal strategy for finite values of Án, as well as its robustness to drift misspecification.

The dynamics of the underlying Y is given by the Black-Scholes model with constant drift b and
volatility ‡ :

dYt = Yt(bdt + ‡dWt),
and the reference strategy X by the continuous delta hedging strategy of European calls. The
values of the model parameters are given in the following table:

b ‡ Y0 T K X0
{0.10, 0.20 } {0.15, 0.30} 100.0 1.0 100 0.53

In the numerical implementation, we choose:

µ Án

1.0 {1.0, 1.2, 1.4, 1.6, 1.8, 2.0, 2.4, 2.8, 3.2, 3.6, 4.0}

For each set of parameter values, and for each Án, we simulate 40000 trajectories of the asset
price with 80000 discretization points. Then we compute the rebalancing dates according to the
optimal strategy determined from formula (1.4.3), and evaluate the expectation and the second
moment of the hedging error.

Remark 1.5.1. To simplify the implementation, in the simulations, we have taken ” = 0 in
formula (1.4.3), which corresponds to a degenerate barrier. In practice, ” should be significantly
positive in order to avoid microstructure e�ects.

Validity of the asymptotic framework. We perform the computation for di�erent values
of Án in order to evaluate the speed of convergence of the strategies built with finite Án towards
the asymptotic e�cient frontier. Following the results of Section 1.5.1, for given Án, the moments
of the hedging error E[Zn

T ] and E[(Zn
T )2] should be close to ÁnE[ZT,sú ] and Á2

nE[(ZT,sú)2]). Figure
1.1 shows the empirical counterparts of E[Zn

T ] and E[(Zn
T )2], together with the couples of the

form (xE[ZT,sú ], x2E[(ZT,sú)2]), with x Ø 0 (red curve). The patterns being very similar in all
cases, we only show one set of parameters in Figure 1.1. We see that indeed, the empirical first
and second moments are close to the theoretical frontier, for quite a large choice of Án.

Performance under di�erent market scenarios. We now fix Án and consider the per-
formance of the optimal strategy under di�erent scenarios for the market. Table 1 gives the
first and second moments of hedging errors obtained by Monte Carlo simulations under these
scenarios.

(E[Zn
T ],E[(Zn

T )2]) low drift (b = 0.10) high drift (b = 0.20)

low volatility (‡ = 0.15) (0.043, 0.0085) (0.136, 0.0316)

high volatility (‡ = 0.30) (0.010, 0.0019) (0.041, 0.0083)

Table 1.1 – Hedging errors under di�erent markets with Án = 2.
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Figure 1.1 – Convergence to e�cient frontier (point size prop. to Án, b = 0.10, ‡ = 0.30).

To give an idea of the order of magnitude of extra return which can be generated thanks to
our approach, we place ourselves in the scenario with high drift and low volatility in Table
1.1. In this case, the call option premium is approximately equal to 7.97. The second moment
E[(Zn

T )2] = 0.0316 corresponds to a hedging error less than 2.3% of the option’s premium (which
is a rather tight bound), while the expected extra return E[Zn

T ] = 0.136 is slightly more than
1.7% of the option’s premium.

Robustness against drift misspecification. In practice, it is di�cult to obtain an accurate
estimation b̂ of the drift. Table 1.2 illustrates the robustness of the strategies which are deduced
from misspecified drift b̂, where the last column is the standard Sharpe ratio (expectation divided
by standard deviation) of the hedging error. In particular, it shows that a right view on the
market trend plays an essential role in order to obtain a positive expected gain.

b̂/b E[Zn
T ] E[(Zn

T )2] Sharpe ratio

1 0.136 0.0316 1.19

2 0.191 0.0646 1.14

0.5 0.070 0.0085 1.15

≠1 -0.481 0.7129 -0.69

Table 1.2 – Performance with misspecified drift and b = 0.20, ‡ = 0.15, Án = 2.
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Appendix 1.A Proofs
In the following C denotes a constant which may vary from line to line. Note that we use
several localization procedures in the proofs. We often give them in detail since some of them
are slightly unusual, in particular because of the fact that ‡X may vanish at maturity.

1.A.1 Proof of Proposition 1.2.1
We start by proving in a very standard way the stable convergence of Á≠1

n Zn in C[0, T ], which is
stronger than the weak convergence. More precisely, we show that for any bounded continuous
function f on C[0, T ] and bounded random variable U defined on (�, F ,F,P),

lim
næŒ

E[Uf(Á≠1
n Zn

· )] = E[Uf(Zú
· )],

where Zú is defined by

Zú
t = 1

3

⁄ t

0
sudYu + 1Ô

6

⁄ t

0

3
a2

u ≠ 2
3s2

u

41/2
‡Y

u dBu,

on an extension of (�, F ,F,P) on which B is a Brownian motion independent of all the other
quantities. For K > 0, we set

–K = inf{t > 0; |flt| Ø K} · T.

Since fl is continuous on [0, T ] almost surely,

lim
KæŒ

P[–K < T ] = 0.

Now observe that

|E[Uf(Á≠1
n Zn

· )] ≠ E[Uf(Zú
· )]|

Æ |E[Uf(Á≠1
n Zn

· )] ≠ E[Uf(Á≠1
n Zn

··–K

)]| + |E[Uf(Á≠1
n Zn

··–K

)] ≠ E[Uf(Zú
··–K

)]|
+ |E[Uf(Zú

··–K

)] ≠ E[Uf(Zú
· )]|

Æ 4ÎfÎŒÎUÎŒP[–K < T ] + |E[Uf(Á≠1
n Zn

··–K

)] ≠ E[Uf(Zú
··–K

)]|.

Consequently, it su�ces to show that for any K > 0,

lim
næŒ

|E[Uf(Á≠1
n Zn

··–K

) ≠ E[Uf(Zú
··–K

)]| = 0.

Let
E = exp

)
≠

⁄ –K

0
fltdW Y

t ≠ 1
2

⁄ –K

0
fl2

t dt
*
.

Since E[E ] = 1, the measure Q defined by

dQ
dP = E

is a probability measure under which Zn
··–K

is a local martingale. Under Q, the uniform con-
vergences in probability on [0, T ] given in (1.2.5) and (1.2.6) remain true. Therefore by Theo-
rem IX.7.3 of [JS13], we have the stable convergence of Á≠1

n Zn
··–K

to Zú
··–K

under Q. Note that
Ũ = U/E is a Q-integrable positive random variable and moreover, for all A > 0,

|E[Uf(Á≠1
n Zn

··–K

)] ≠ E[Uf(Zú
··–K

)]|
Æ|EQ[Ũf(Á≠1

n Zn
··–K

)] ≠ EQ[Ũf(Zú
··–K

)]|
Æ|EQ[(Ũ · A)f(Á≠1

n Zn
··–K

)] ≠ EQ[(Ũ · A)f(Zú
··–K

)]| + 2ÎfÎŒEQ[Ũ {ŨØA}].
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The second term tends to 0 uniformly in n as A æ Œ. The first term converges to 0 due to the
stable convergence under Q, where it is used that (Ũ · A) is a bounded random variable.

Now, we prove a2 Ø s2 under the additional condition (1.2.8). Since a and s are continuous, it
su�ces to show a2

t Ø s2
t for all t œ [0, T ). Fix T0 < T and let

–̂K = inf{u > 0; |bX
u | ‚ ‡X

u ‚ ‡Y
u Ø K or ‡X

u Æ 1/K} · T0 (1.A.1)

for K > 0. Since ‡X is positive and continuous on [0, T0], we have

lim
KæŒ

P[–̂K < T0] = 0. (1.A.2)

Therefore, it su�ces to show
a2

u·–̂K

Ø s2
u·–̂K

(1.A.3)

for all u Ø 0 and K > 0. Fix K and define the probability measure Q̂ by

dQ̂
dP = exp

Ó
≠

⁄ –̂K

0

bX
u

‡X
u

dW X
u ≠ 1

2

⁄ –̂K

0

! bX
u

‡X
u

"2
du

Ô
.

Under Q̂, X··–̂K

is a martingale with bounded quadratic variation. Since Q̂ is equivalent to P,
it su�ces to show (1.A.3) under Q̂.

By (1.2.8), there exists a subsequence {n(k)} such that

Q̂
Ë
Á≠4/3

n(k) sup
jØ0

(·n(k)
j+1 · T0 ≠ ·n(k)

j · T0) >
1
k

È
<

1
k

.

Let
Tk = inf

)
u > 0, Á≠4/3

n(k) sup
jØ0

(·n(k)
j+1 · u ≠ ·n(k)

j · u) >
1
k

*
· –̂K .

Then
lim

kæŒ
Q̂[Tk < –̂K ] = 0

and so,

Á≠1
n(k)

e
Zn(k), Y

f

t·T
k

æ 1
3

⁄ t·–̂K

0
su(‡Y

u )2du,

Á≠2
n(k)

e
Zn(k)

f

t·T
k

æ 1
6

⁄ t·–̂K

0
a2

u(‡Y
u )2du,

(1.A.4)

in probability as k æ Œ for all t Ø 0. Let

·̂k
j = ·n(k)

j · Tk

for j Ø 0. We now give three technical lemmas.

Lemma 1.A.1. Let Ÿu = (‡Y
u /‡X

u )2. We have

1
3Á≠1

n(k)

N
n(k)
t·T

kÿ

j=0
Ÿ·̂k

j

·tEQ̂
Ë
(X·̂k

j+1·t ≠ X·̂k

j

·t)3--F·̂k

j

·t

È
≠ Á≠1

n(k)

e
Zn(k), Y

f

t·T
k

æ 0,

in probability as k æ Œ for all t Ø 0.
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Proof. By Itô’s formula,

1
3E

Q̂#
(X·̂k

j+1·t ≠ X·̂k

j

·t)3--F·̂k

j

·t

$
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By Lenglart inequality for discrete martingales (see e.g., Lemma A.2 of [Fuk11c]), a su�cient
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in probability. To get this convergence, first use successively Hölder inequality, Itô’s formula
and Burkholder-Davis-Gundy inequality to obtain that
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Then (1.A.7) follows since
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which converges to 0 due to (1.A.4) and the uniform continuity of Ÿ.

Lemma 1.A.2. We have
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Proof. The proof is very similar to the previous one. By Itô’s formula,

1
6E

Q̂#!
X·̂k

j+1·t ≠ X·̂k

j

·t

"4--F·̂k

j

·t

$
= EQ̂# ⁄ ·̂k

j+1·t

·̂k

j

·t
(Xu ≠ X·̂k

j

)2d ÈXÍu

--F·̂k

j

·t

$
.

We now show that

Á≠2
n(k)

N
n(k)
t·T

kÿ

j=0
Ÿ·̂k

j

·tEQ̂# ⁄ ·̂k

j+1·t

·̂k

j

·t
(Xu ≠ X·̂k

j

)2d ÈXÍu

--F·̂k

j

·t

$

≠ Á≠2
n(k)

N
n(k)
t·T

kÿ

j=0
Ÿ·̂k

j

·t

⁄ ·̂k

j+1·t

·̂k

j

·t
(Xu ≠ X·̂k

j

)2d ÈXÍu æ 0

(1.A.8)

and

Á≠2
n(k)

N
n(k)
t·T

kÿ

j=0
Ÿ·̂k

j

·t

⁄ ·̂k

j+1·t

·̂k

j

·t
(Xu ≠ X·̂k

j

)2d ÈXÍu ≠ Á≠2
n(k)

e
Zn(k)

f

t·T
k

æ 0, (1.A.9)

in probability.



1.A. Proofs 43

By Lenglart inequality for discrete martingales, a su�cient condition for (1.A.8) is
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in probability. To get this convergence, first use successively Hölder inequality, Itô’s formula
and Burkholder-Davis-Gundy inequality to obtain that
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which gives (1.A.8). The proof for (1.A.9) is obtained in the same way as that for (1.A.6).

We finally give the following almost straightforward result, which is easily deduced from simpli-
fied versions of the proofs of the previous lemma.

Lemma 1.A.3. We have
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in probability as k æ Œ for all t Ø 0.

We are now ready to complete the proof of Proposition 1.2.1. From (1.A.4) and Lemmas 1.A.1,
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1.A.2 and 1.A.3, we have the following convergences in probability as k æ Œ for all 0 Æ v Æ t:
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This implies that for all 0 Æ v Æ t,
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Thus we obtain (1.A.3).

1.A.2 Proof of Proposition 1.2.2
In this proof, using a classical localization procedure together with Girsanov theorem, we can
assume that bX = 0 and that ‡X and ‡Y are bounded on [0, T ]. We start with two technical
lemmas and their proof.
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Here we have used that E[ÈXÍT ] < Œ. The result follows using Hölder inequality.
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Now remark that the following convergences in probability hold:
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(1.A.15)
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Indeed, as seen in the proofs of Lemmas 1.A.1 and 1.A.2, the convergences in probability in
(1.A.15) are deduced from the following ones:
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(1.A.16)

Since Qn = Á≠4
n suptœ[0,T ] |Xn

t ≠ Xt|4 is uniformly integrable and
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is bounded and converges to 0 in probability by Lemma 1.A.4, we have
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for k = 1, 2, which gives (1.A.16).

We also have
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(1.A.17)

in probability. These two convergences follow using that
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in probability for i = 1, 2, which is deduced from (1.A.12) and the fact that
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in probability, by Lemma 1.A.4.

Finally, remark that the uniform continuity of Ÿ and (1.A.14) imply

sup
tØ0

---Á≠1
n

Œÿ

j=0
Ÿ·n

j

⁄ ·n

j+1·—n

M

·n

j

·—n

M

(Xu ≠ Xn
·n

j

)d ÈXÍu + Á≠1
n ÈZn, Y Í—n

M

--- æ 0,

sup
tØ0

---Á≠2
n

Œÿ

j=0
Ÿ·n

j

⁄ ·n

j+1·—n

M

·n

j

·—n

M

(Xu ≠ Xn
·n

j

)2d ÈXÍu ≠ Á≠2
n ÈZnÍ—n

M

--- æ 0,

(1.A.18)

in probability. Then Proposition 1.2.2 is eventually obtained from (1.A.15) together with
(1.A.17) and (1.A.18).
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1.A.3 Proof of Proposition 1.2.3

Proof of the convergence in law to (1.2.3)

We start with the stable convergence in law of the renormalized hedging error. Such convergence
being stable against localization procedures, we can assume without loss of generality that |bX |,
‡X , |bY |, ‡Y , 1/‡Y , l, 1/l, l and 1/l are bounded by a constant M > 0. Then in particular we
have Á≠1

n suptœ[0,T ] |Xn
t ≠ Xt| Æ M .

Fix T0 œ [0, T ) and define –̂K by (1.A.1). Then we have (1.A.2) and so, we can assume without
loss of generality that 1/‡X Æ K in order to show the convergences (1.2.5) and (1.2.6) on [0, T0].
Also, thanks to the Girsanov-Maruyama transformation, we can assume bX = 0. In order to
apply Proposition 1.2.2, it remains to show (1.2.10).

Part 1: Technical lemma

We give here a first technical lemma.

Lemma 1.A.6. The sequence Á2
nNn

T0 is tight.

Proof. Since for j < Nn
T0 ,

|X·n

j+1·T0 ≠ X·n

j

·T0 |2 Ø Á2
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K2 ,

we have
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·T0)2 æ K2 ÈXÍT0 ,

in probability by Lemma 1.A.5.

Part 2: Approximation lemma

Let ·̃n
j+1 be the exit time of fixed barriers defined by

·̃n
j+1 = inf

)
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j : Xt /œ (X·n
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≠ Ánl·n
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*

· T0. (1.A.19)

We have the following lemma.

Lemma 1.A.7. We have
Nn

T0ÿ

j=0
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#
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j+1|

---F·n

j

$
æ 0,

in probability.

Proof. Define for ” > 0 and t œ [0, T0]

wt(”) = sup{|lu ≠ lv| + |lu ≠ lv|; 0 Æ u Æ t, 0 Æ v Æ t, |u ≠ v| Æ ”}.

Since l and l are continuous and bounded, we have

E[wT0(”)] æ 0

as ” æ 0. For m œ N, let

T n
m = inf{t > 0; wt(Án) Ø mE[wT0(Án)]} · T0.



1.A. Proofs 49

For the proof of, the lemma, we can estimate the probability as follows:
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Since wt(Án) is increasing in t,
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as m æ Œ. On the set {T n
m = T0}, we can replace l and l by l··T n

m

and l··T n

m

, respectively, which
means that without loss of generality it is enough to prove the lemma under the assumption
that wT0(Án) Æ mE[wT0(Án)].
Since the sequence Á2
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T0 is tight, it is enough to show that
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We first treat R1. We have
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Since l, l and bounded by M and ‡X is bounded from below by 1/K, using the Dambis, Dubins-
Schwartz theorem we get

P
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Æ P[fln Ø Án/K2],

with fln being the first exit time of [≠ÁnM, ÁnM ] by a Brownian motion starting from zero. Since
fln admits an exponential moment (see e.g., Exercice 3.10 in [RY99]), from the scaling property
of the Brownian motion we have that E[(fln)k] Æ CÁ2k

n for k œ N. Markov’s inequality then gives
the convergence to zero of R1.

We now turn to R2. Recall that wT0(Án) Æ mE[wT0(Án)] = :”n æ 0. Then, we have
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By the Dambis, Dubins-Schwarz theorem, there exists a Brownian motion W ú such that
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An explicit computation with the Brownian exit time yields:
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Consequently,
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which gives the result.

Part 3: Proof of (1.2.10)

Here we prove (1.2.10), which completes the proof of the convergence in law of Á≠1
n Zn

T with the
help of Proposition 1.2.1 and Proposition 1.2.2. As already seen, by Itô’s formula, we have
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Note that the integrals above may be signed integrals. Since Á≠1
n supt |Xt ≠ Xn

t | Æ M and
‡X Æ M , R and RÕ converge to 0 uniformly in probability on [0, T0] by Lemma 1.A.7.
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By the optional sampling theorem,
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l + l
+ p0 and l
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l + l
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For qœ N, we then get,
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where
a2 = l

2 + l2 ≠ ll, s = l ≠ l.

The terms in the right-hand side are positive and converge to zero in expectation, thus also
in probability. Using (1.A.20), we see that to complete the proof it su�ces to show that the
convergences
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hold uniformy in probability on [0, T0]. These follow from
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and Lemmas 1.A.4 and 1.A.7 with the aid of Lenglart inequality for discrete martingales.

Proof of (1.2.14)

Before completing the proof for the admissibility, here we prove (1.2.14) that shows the e�ciency
of the hitting times strategy. The same localization procedure applies here as in 1.A.3. From
(1.A.20) and the following estimates, we have
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which implies (1.2.14) by Lenglart inequality for discrete martingales.

Proof of (1.2.4)

Here, we prove a moment convergence result. Thus, the localization procedure does not apply
here. We set
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We have
(Á≠1

n Zn
T )2 = (An + Bn)2 Æ 2(A2

n + B2
n).

Thus it is enough to prove the uniform integrability of (A2
n) and (B2

n) to obtain the result. For
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n), we have
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The right hand side of the last inequality being integrable, this gives the result for (An)2. We now
turn to (B2

n). The sequence (B2
n) is non-negative, integrable, and converges in law towards an

integrable limit. Thus, the uniform integrability is equivalent to the convergence in expectation,
see for example [Bil09]. Since
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which concludes the proof.

1.A.4 Proof of Theorem 1.4.1

We start with the first part of Theorem 1.4.1. Let (mú, vú) be an e�cient couple. Suppose that
there exists a process sÕ

t such that the associated expectation, say mÕ = E[ZT,sÕ ], is larger than
mú and the expected error, say vÕ = E[(ZT,sÕ)2], is strictly smaller than vú. From Lemma 1.2.1,
for any ÷ we can find an admissible strategy with limiting variable Zú

sÕ+÷,sÕ . Clearly, we can find
÷ small enough, such that E[Zú

sÕ+÷,sÕ ] = mÕ and

vÕ Æ E[(Zú
sÕ+÷,sÕ)2] < vú,

which is a contradiction. On the other hand, taking Zú
aú,sú to be the limiting random variable

associated to (mú, vú), the process ZT,sú satisfies the required conditions.

For the second part, assume that sú is an adapted continuous process satisfying the conditions
of the theorem. Then, since a2

t Ø s2
t , there is no admissible discretization rule whose associated

limiting random variable Zú
a,s satisfies

E[Zú
a,s] Ø mú and E[(Zú

a,s)2] < vú.

It remains to show that the proposed discretization rules indeed lead to nearly e�cient couples.
The fact that they are admissible is clear from Proposition 1.2.3. Recall now that for the
suggested rule

a2
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t )2 + 6”
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This equality gives that the limiting variable Zú
a,s associated to this discretization rule satisfies
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and
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being an e�cient couple with respect to ZT , we obtain the result.

Appendix 1.B Linear-quadratic optimal control
We give here a summary of useful formulas from [ZL00]. Consider a controlled system governed
by the following linear SDE:

I
dXt = (AtXt + Btut + ft)dt +

qm
j=1 Dj

t utdW j
t ,

X0 = x œ Rn,
(1.B.1)

where x is the initial state and W = (W 1, · · · , W m) is a m-dimensional Brownian motion on a
given filtered probability space (�, F ,P, (Ft)tØ0) and u œ L2

F ([0, T ],Rm) is a control. For each
control u, the associated cost is

J(u) = E
C⁄ T

0

1
2

!
X Õ

tQtXt + uÕ
tRtut

"
dt + 1

2X Õ
T HXT

D

. (1.B.2)

We suppose that all the parameters are deterministic and continuous on [0, T ] and H belongs
to Sn

+ the set of n ◊ n symmetric positive matrices. We introduce the following matrix Riccati
equation Y

__]

__[

Ṗt = ≠PtAt ≠ AÕ
tPt ≠ Qt + PtBtK

≠1
t BÕ

tPt,

PT = H,

Kt = Rt +
qm

j=1 DjÕ

t PtD
j
t > 0, ’t œ [0, T ],

(1.B.3)

along with an equation I
ġt = ≠AÕ

tgt + PtBtK
≠1
t BÕ

tgt ≠ Ptft,

gT = 0.
(1.B.4)

Then following result is given in [ZL00].

Theorem 1.B.1. If (1.B.3) and (5.4.7) admit solutions P œ C([0, T ], Sn
+) and g œ C([0, T ],Rn),

respectively, then the stochastic linear-quadratic control problem (1.B.1)-(1.B.2) has an optimal
feedback control

uú(t, x) = ≠K≠1
t BÕ

t(PtXt + gt).

Moreover, the optimal cost value is

Jú = 1
2

⁄ T

0

1
2f Õ

tgt ≠ gtBtK
≠1
t BÕ

tgt

2
dt + 1

2xÕP0x + xg0.
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2.1 Introduction
We consider in this chapter dynamic hedging of an European option under a general local volatil-
ity model with proportional transaction costs. The standard delta hedging strategy is no longer
feasible since a continuous rebalance according to the strategy incurs infinite transaction cost.
Moreover, as shown by [SSC95, LS97], the super replication of the option payo� is as expen-
sive as a trivial static hedging strategy. Therefore, the classical framework of perfect (super)
replication does not give a reasonable price of the option. One should give up hedging in the
almost-sure sense and try to reduce hedging error in a distributional sense by a dynamic strategy
with a reasonable amount of initial capital. The aim of this study is to give such a strategy
which is as explicit as possible and optimal in a suitable sense.

1. This is a joint work with Prof. Masaaki Fukasawa.
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There have been two approaches for this problem in the literature. The first approach is based on
the utility indi�erence principle: [HN89, DPZ93]. In general, optimal strategies are not explicit.
Denote by Ÿ the proportionality coe�cient of transaction cost. Considering Ÿ to be small as it is
in liquid markets, [WW97] performed a formal asymptotic analysis to give an explicit strategy
which is asymptotically optimal. The results have been rigorously proved by [Bic12, KL13].
The asymptotically optimal hedging strategy is a singular control; the number of shares of the
underlying assets is singularly controlled so that it keeps staying around a benchmark level
which is optimal under no transaction cost. [BS98] studied another scaling limit of the utility
indi�erence price, where not only Ÿ tends to zero but also the parameter of risk aversion tends to
infinity. Their optimal strategy is again a singular control, while their benchmark strategy is not
the same as in the Whalley-Wilmott strategy and given in terms of a nonlinear Black-Scholes
equation.

The second approach is to replicate the option payo� asymptotically. [Lel85] claimed that a
carefully modified and discretized delta hedging strategy asymptotically replicates the option
payo� as Ÿ æ 0. A rigorous treatment was given by Lott; see [KS09]. An associated central
limit theorem was shown by [DK10]. As we explain later in more detail, Leland’s idea has two
ingredients. The first is to find a good benchmark strategy which yields certain surplus in the
absence of transaction cost. The second is to construct a good approximation to the bench-
mark by a strategy of finite transaction cost so that the incurred costs are compensated by the
surplus. Thanks to this compensation, Leland’s strategy enjoys a better rate of convergence
than the Whalley-Wilmott strategy does. The rate is the same as for the Barles-Soner strat-
egy as we show later. For the approximation part, Leland used an equidistant discretization
of the benchmark strategy. Other discretization rules have been examined in the literature:
[Tof96, GS96, ADG98, DK10, Fuk11b, Lan13]. They result in di�erent asymptotic variances
of hedging error. None of them uniformly outperforms others. To find an optimal method has
been an open problem.

To discuss the optimality among discretization rules is however not relevant because other than
discretized processes (simple predictable processes), any predictable process can work as an ap-
proximation of finite cost as long as it is staying around the benchmark and of finite variation.
Moreover, the utility-based approach explained above suggests the superiority of singular con-
trol strategies that form a particular class of such processes. In this chapter, we consider a
reasonable class of continuous control strategies including singular ones, and give a condition
under which the option payo� is asymptotically replicated. More precisely, we consider a class
of trading strategies of finite transaction cost and study the deviations of the associated wealth
processes from a given benchmark portfolio value process. We prove a central limit theorem for
the tracking error processes as Ÿ æ 0. The limit distribution serves as a reasonable approxi-
mation to the distribution of the tracking (or hedging) error when Ÿ is small as it is in liquid
markets. Further, we give a sequence of explicit strategies which is asymptotically optimal in
the sense that the asymptotic variance of hedging error is minimized. The minimization is done
by fixing a benchmark; to optimize the benchmark strategy becomes a relevant problem only
after the tracking error is minimized and so, is beyond the scope of this already lengthy chap-
ter. We find in particular that our optimal strategy enjoys a better rate of convergence than
the Whalley-Wilmott strategy does, and that the Barles-Soner strategy is not always optimal
according to our criterion.

Our optimal strategy uniformly outperforms Leland’s strategy. To explain it, here we focus on
the case that the payo� function is convex and the benchmark strategy is given by a constant en-
largement of volatility, although our framework is much more general as described in Section 2.2.
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Let us start with a revisit to Leland’s idea. The first trick is to consider the delta hedging
strategy with enlarged volatility. Let p– be a solution of the partial di�erential equation (PDE)

ˆtp
–(s, t) + 1

2

3
1 + 2

–

4
‡(s, t)2ˆ2

s p–(s, t) = 0, p–(s, T ) = f(s), (2.1.1)

where f is a convex payo� function, T is the maturity of the option, ‡ is the local volatility
function of the underlying asset S, and – is an arbitrary positive constant that controls the
enlargement of volatility. By the convexity of f , we have ˆ2

s p– Ø 0 under a reasonable condition
on ‡; see [EJPS98]. By Itô’s formula,

f(ST ) = �–
0 +

⁄ T

0
X–

u dSu ≠ 1
–

⁄ T

0
�–

udÈSÍu,

where
�–

t = p–(St, t), X–
t = ˆsp–(St, t), �–

t = ˆ2
s p–(St, t). (2.1.2)

This means that, without transaction costs and assuming zero interest rates, the self-financing
strategy X– with initial capital �–

0 super-hedges the payo� f(ST ) with surplus

1
–

⁄ T

0
�–

t dÈSÍt Ø 0. (2.1.3)

The second trick of Leland is to approximate X– by a strategy of finite transaction cost, and
exploit the surplus (2.1.3) to compensate the incurred costs. Under the Black-Scholes model
(‡(s, t) = vs, v > 0), Leland considered an equidistant discretization of X–; define X–,Ÿ by

X–,Ÿ
t = X–

jh, t œ (jh, (j + 1)h], j = 0, 1, 2, . . . , (2.1.4)

with h > 0 the interval of rebalancing. Set the initial capital �–,Ÿ
0≠ , that is, the price of the

option to be
�–,Ÿ

0≠ = �–
0 + ŸS0|�X–

0 |.

The second term is to compensate the transaction cost at the inception. The associated wealth
process �–,Ÿ is then

�–,Ÿ
t = �–

0 +
⁄ t

0
X–,Ÿ

u dSu ≠ Ÿ
ÿ

0<uÆt

Su|�X–,Ÿ
u |. (2.1.5)

The magic is that, by choosing

h = 2
fi

Ÿ2–2

v2 , (2.1.6)

we have
⁄ T

0
X–,Ÿ

u dSu æ
⁄ T

0
X–

u dSu,

Ÿ
ÿ

0<uÆT

Su|�X–,Ÿ
u | æ 1

–

⁄ T

0
�–

udÈSÍu

(2.1.7)

as Ÿ æ 0 with rate Ÿ.

Consequently, the terminal wealth �–,Ÿ
T is close to f(ST ) when Ÿ is small as it is in liquid mar-

kets. In this sense, the self-financing strategy X–,Ÿ is an asymptotic replication strategy. The
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Figure 2.1 – Comparison between ÷L(–) and ÷F (–).

way how to discretize X– is essential. The first convergence of (2.1.7) holds in general as trans-
actions are more and more frequent. On the other hand, if they are too frequent, then the total
amount of transaction costs exceeds the surplus (2.1.3) and the second convergence of (2.1.7)
fails to hold. Therefore the frequency (2.1.6) results from a delicate balance. Given Ÿ, the value
of h can be very small if – is very small, which is the case that the pricing volatility is much
enlarged to make the option price close to the super replication price.

Naturally we expect that a strategy with smaller – (requiring more initial capital) results in a
smaller error. In fact, we have (cf. [DK10, KS09])

Ÿ≠1(�– ≠ �–,Ÿ) æ WQ, Q = ÷L(–)
⁄ ·

0
|�–

uSu|2dÈSÍu (2.1.8)

stably in law on D[0, T ] as Ÿ æ 0, with an independent standard Brownian motion W and

÷L(–) = 1
fi

–2 + 2
fi

– + 1 ≠ 2
fi

.

The function ÷L is increasing as shown in the left panel of Fig. 2.1 (black curve). In particular,
the distribution of normalized hedging error (f(ST ) ≠ �–,Ÿ

T )/Ÿ is asymptotically mixed normal
with mean zero and variance

QT = ÷L(–)
⁄ T

0
|�–

uSu|2dÈSÍu.

The conditional variance Q represents in a certain sense the quality of replication. The smaller
the conditional variance is, the better hedging is achieved. Therefore, this asymptotic result
serves as an important element when considering the trade-o� between cost (initial capital) and
risk (hedging error) by controlling –; see the right of Fig. 2.1, where (�–,Ÿ

0≠ , ÷L(–)) is plotted for
– œ (0, 4) and f(s) = (s ≠ 100)+, T = 1, S0 = 100, Ÿ = 0.01 under the Black-Scholes model
with volatility 0.2.

Fig. 2.1 also represents another function

÷F (–) = (– + 2)2

6
together (in red), which appears instead of ÷L when we use a discretization rule with respect to
a specific sequence of random times

·Ÿ
0 = 0, ·Ÿ

j+1 = inf{t > ·Ÿ; |X–
t ≠ X–

·Ÿ

j

| Ø Ÿb·Ÿ

j

}, bt = –St�–
t . (2.1.9)
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As Fig. 2.1 shows, neither ÷L nor ÷F is uniformly smaller; see [Fuk11b] for more details.

While the approach of Leland is appreciated since it is easy to implement, the solution is still
far from being satisfactory. The strategies (2.1.4) and (2.1.9) are by no means the only choices
as an approximation to X–. For example, it is not necessary to match the benchmark strategy
X– after each rebalancing. In particular, it is possible to trade frequently but with a small
trading volume each time. Indeed, as already mentioned, several results on related problems
under the framework of utility maximization suggest that, under proportional transaction costs,
the optimal strategy is to trade a minimal amount in continuous-time to keep the deviation
from the benchmark inside a non-transaction zone; see [WW97, Bic14, BS98, ST13, KL13]. The
contribution of the current chapter in this context is therefore two-fold. First, we consider a
reasonable class of continuous trading strategies of finite transaction cost, and provide a limit
theorem for the corresponding replication error. In particular, we identify the condition for
those strategies to (asymptotically) replicate or super-replicate the option in question. Second,
we minimize the asymptotic variance of replication error among those asymptotic replication
strategies.

Under our framework, a candidate strategy Xb,c,Ÿ, see Fig. 2.2, is indexed by two nonnegative
functions b(s, t) and c(z, s, t). Let ZŸ = (X– ≠ Xb,c,Ÿ)/Ÿ be the normalized deviation of Xb,c,–

from the benchmark position X–. We treat Xb,c,Ÿ of the form

dXb,c,Ÿ
t = 1

Ÿ
sgn(ZŸ)c(|ZŸ

t |, St, t)dÈX–Ít ≠ ŸdLŸ
t + ŸdRŸ

t , Xb,c,Ÿ
0+ = X–

0 ,

where LŸ and RŸ are non-decreasing processes such that

LŸ
t =

⁄ t

0
1{ZŸ

u

=≠b(S
u

,u)}dLŸ
u, RŸ

t =
⁄ t

0
1{ZŸ

u

=b(S
u

,u)}dRŸ
u, |ZŸ

t | Æ b(St, t).

Intuitively, the regular control part Ÿ≠1sgn(ZŸ)c(|ZŸ
t |, St, t)dÈX–Ít pushes Xb,c,Ÿ toward X– and

is active when X– moves. The singular control part ≠ŸdLŸ
t +ŸdRŸ

t keeps ZŸ within the stochas-
tic interval [≠b(St, t), b(St, t)], and is active only when ZŸ touches the boundary.

Denoting by �b,c,Ÿ the wealth process associated with Xb,c,Ÿ, we show in Theorem 2.3.1 that

Ÿ≠1
3

�– ≠ �b,c,Ÿ ≠
⁄ ·

0
”b,c(St, t)dt

4
æ WQb,c

,
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Figure 2.3 – Comparison between ÷L(–) and ÷†(–).

stably in law on C[0, T ] as Ÿ æ 0, where W is a standard Brownian motion independent of S,
and Qb,c and ”b,c are explicitly determined by b and c. Fixing the local limit of hedging error
”b,c = ”, we provide in Theorem 2.3.2 an explicit expression for the infimum

Q”
ú := essinf(b,c) s.t. ”b,c©”Qb,c,

among the candidate strategies, together with a sequence of explicit strategies attaining asymp-
totically the infimum Q”

ú. In particular, if b and c are chosen in such a way that ”b,c © 0 (i.e.
asymptotic replication), then we have

Q0
ú = ÷†(–)

⁄ ·

0
|�–

uSu|2dÈSÍu.

The coe�cient ÷†(–) is represented in Fig. 2.3(red), where we observe a significant improvement
in terms of the asymptotic variance of hedging error compared to Leland’s strategy.

The rest of the chapter is structured as follows. In Section 2.2, we define a class of continuous
trading strategies which is admissible in the presence of proportional transaction costs. The main
results are stated in Section 5.4. We also provide a detailed description for the implementation
in practice and several numerical experiments. In Section 2.4, a heuristic derivation of main
results and a detailed comment on the relation with existing literature can be found. We give
the rigorous proofs in Section 2.A and 2.B.

2.2 Framework
In this section, we give a rigorous formulation of the problem and describe our class of continuous
trading strategies. Let (�, F ,P, {Ft; t Ø 0}) be a filtered probability space satisfying the usual
assumptions. Let T > 0 be a constant which stands for the maturity of an European option. Let
f be a Borel function on (0, Œ) which stands for the payo� function of the option. We suppose
the underlying asset price process S of the option to be positive and continuous on [0, T ] and to
follow

dSt = �tdt + ‡(St, t)dBt

on [0, T ], where � is an {Ft}-adapted locally bounded process, B is an {Ft}-standard Brownian
motion and ‡ is a positive C3,1 functions on (0, Œ) ◊ [0, T ]. We assume interest rates to be zero
for brevity.
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A trading strategy is given by an {Ft}-adapted caglad process X and the associated wealth
process � is defined by

�t = �0≠ +
⁄ t

0
XudSu ≠ Ÿ

⁄

[0,t]
⁄(Su, u)dÎXÎu, (2.2.1)

where Î · Î is the total variation representing the trading volume, and ⁄ is a nonnegative C3,1

function on (0, Œ)◊ [0, T ] representing the structure of transaction cost. Note that (2.1.5) is the
particular case where ⁄(s, t) = s. The constant Ÿ > 0 appeared in (2.1.5) and (2.2.1) represents
the proportionality coe�cient of transaction cost, which is supposed to be small. We will study
the asymptotic behavior of hedging as Ÿ æ 0, which serves as a valid approximation to the
hedging behavior when Ÿ is su�ciently small.

2.2.1 Benchmark strategy
Denote by A the set of C3,1 functions Ï on (0, Œ) ◊ [0, T ) such that for each i œ {0, 1, 2, 3} and
j œ {0, 1}, ˆi

sˆj
t Ï(St, t) converges almost surely as t æ T .

Definition 2.2.1. Let q be a continuous function on (0, Œ) ◊ [0, T ) such that
1. for each i œ {0, 1, 2} and j œ {0, 1}, ˆi

sˆj
t q exists and belongs to A,

2. limtæT q(St, t) = f(ST ) almost surely, and
3. ˆ2

s q is nondegenerate in the sense that
⁄ T

0
1{|ˆ2

s

q(S
t

,t)|=0}dt = 0 (2.2.2)

almost surely.
Define �q, Xq and �q by

�q
t = q(St, t), Xq

t = ˆsq(St, t), �q
t = ˆ2

s q(St, t).
Then we call �q the benchmark portfolio value and Xq the benchmark strategy.
By Itô’s formula, the benchmark portfolio value verifies

�q
t = �q

0 +
⁄ t

0
Xq

udSu +
⁄ t

0
Lq(Su, u)du, (2.2.3)

where
Lq(s, t) = ˆtq(s, t) + 1

2‡(s, t)2ˆ2
s q(s, t).

Example 2.2.1. When f is a piecewise C2 convex non-a�ne function and ST admits a density,
an example of q is given by the Black-Scholes pricing function

q(s, t) =
⁄

f(s exp{≠w2(T ≠ t)/2 + w
Ô

T ≠ tz})„(z)dz, (2.2.4)

where w > 0 is an arbitrary constant and „ is the standard normal density. In fact, ˆ2
s q > 0

since f is a piecewise C2 convex non-a�ne function (consider its decomposition to a smooth
payo� and a linear combination of call and put payo� functions). The derivatives of q belong to
A because q is singular at only finitely many points. Since q is the solution of

ˆtq(s, t) + 1
2w2s2ˆ2

s q(s, t) = 0, q(s, T ) = f(s),

we have
Lq(s, t) = ≠1

2(w2s2 ≠ ‡(s, t)2)ˆ2
s q(s, t).

Under the Black-Scholes model with ‡(s, t) = vs, the solution p– of (2.1.1) with convex f is of
the form (2.2.4) with w = v


1 + 2/–. We have then

Lp–(s, t) = ≠v2

–
s2ˆ2

s p–(s, t). (2.2.5)
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2.2.2 Continuous control strategies

As already mention in the Introduction, we are interested in a trading strategy X of finite cost
which approximates the benchmark strategy Xq. In order to make the tracking error small, a
reasonable control would be based on the deviation between Xq and X. Let ZŸ = (Xq ≠ X)/Ÿ.
We will consider X = Xb,c,Ÿ of the form

dXt = 1
Ÿ

sgn(ZŸ)c(|ZŸ
t |, St, t)dÈXqÍt ≠ ŸdLŸ

t + ŸdRŸ
t , X0+ = Xq

0 (2.2.6)

where c is a nonnegative Borel function, and LŸ and RŸ are nondecreasing processes such that

LŸ
t =

⁄ t

0
1{ZŸ

u

=≠b(S
u

,u)}dLŸ
u, RŸ

t =
⁄ t

0
1{ZŸ

u

=b(S
u

,u)}dRŸ
u, |ZŸ

t | Æ b(St, t) (2.2.7)

on [0, T ] for a positive Borel function b. The idea is to introduce a regular control part which
pushes X up or down if ZŸ is positive or negative respectively at some rate determined by c,
and a singular control part which keeps ZŸ within a stochastic interval determined by b.

The existence of the triplet (Xb,c,Ÿ, LŸ, RŸ) follows from that of a solution of a Skorokhod-type
equation. Denote by B the set of the positive functions b on (0, Œ) ◊ [0, T ) such that both b and
1/b belong to A. For b œ B, denote by Cb the set of nonnegative and piecewise C0,3,1 functions
c on

Db := {(x, s, t) œ R ◊ (0, Œ) ◊ [0, T ) ; |x| Æ b(s, t)}

such that

1. for all (s, t), c(·, s, t) are even:

c(x, s, t) = c(≠x, s, t),

2. for all x, c(x, ·) are C3,1 and

sup{|ˆi
sˆj

t c(x, St, t)|; t œ [0, T ), x œ [≠b(St, t), b(St, t)]} < Œ (2.2.8)

almost surely for each i œ {0, 1, 2, 3} and j œ {0, 1}, and
3. for any compact set A µ Db, there exists K > 0 such that

(x ≠ y)(≠sgn(x)c(x, s, t) + sgn(y)c(y, s, t)) Æ K|x ≠ y|2 (2.2.9)

for all (x, s, t), (y, s, t) œ A.

For b œ B and c œ Cb, by a fixed point argument thanks to the one-sided Lipschitz condition
(2.2.9) (see e.g., [Tan79]), we can show that there exists a unique solution (ZŸ, LŸ, RŸ) of a
Skorokhod-type equation

dZŸ
t = 1

Ÿ
dXq

t ≠ 1
Ÿ2 sgn(ZŸ

t )c(ZŸ
t , St, t)‹(St, t)2dt + dLŸ

t ≠ dRŸ
t , ZŸ

0 = 0 (2.2.10)

with (2.2.7) on [0, T ). The strategy (2.2.6) is therefore well-defined by

Xb,c,Ÿ = Xq ≠ ŸZŸ

for each b œ B and c œ Cb.
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2.2.3 Hedging error
Denote by �b,c,Ÿ the associated wealth process of the strategy Xb,c,Ÿ with initial capital

�0≠ = �q
0 + Ÿ⁄(S0, 0)|�Xq

0 |. (2.2.11)

The total variation of Xb,c,Ÿ is given by

dÎXb,c,ŸÎt = 1
Ÿ

c(ZŸ
t , St, t)dÈXqÍt + Ÿ[dLŸ

t + dRŸ
t ].

Then, from (2.2.1) and (2.2.3), the associated tracking error Eb,c,Ÿ is given by

Eb,c,Ÿ
t =�q

t ≠ �b,c,Ÿ
t

=Ÿ
⁄ t

0
ZŸ

udSu +
⁄ t

0
⁄(Su, u)c(ZŸ

u , Su, u)dÈXqÍu

+ Ÿ2
⁄ t

0
⁄(Su, u)[dLŸ

u + dRŸ
u] +

⁄ t

0
Lq(Su, u)du.

(2.2.12)

Since b œ B µ A, sup{|Zt|; t œ [0, T )} is finite almost surely. Therefore, the process Eb,c,Ÿ is
well-defined as a C[0, T ]-valued random variable. The terminal value Eb,c,Ÿ

T = f(ST ) ≠ �b,c,Ÿ
T

represents the hedging error. The question is whether the tracking error converges to 0 as Ÿ æ 0
with a good rate. If the answer is positive for a certain class of b and c, then the next question
is which combination of b and c is optimal. We will answer these questions in the following
sections.

2.3 Main results
2.3.1 Limit theorem of hedging error
Let b œ B and c œ Cb. Define

g(x, s, t) = exp
I

≠2
⁄ |x|

0
c(y, s, t)dy

J

,

a(s, t) = 2
⁄ b(s,t)

0
g(x, s, t)dx,

h(x, s, t) = 2sgn(x)
g(x, s, t)

⁄ |x|

0

3
c(z, s, t) ≠ 1

a(s, t)

4
g(z, s, t)dz.

(2.3.1)

For notational simplicity, the dependence on b and c is omitted. See Lemma 2.4.1 for an
interpretation of these quantities. We have the first main result.

Theorem 2.3.1. Let b œ B, c œ Cb and Eb,c,Ÿ be the process of tracking error associated with
the strategy Xb,c,Ÿ defined by (2.2.6) and (2.2.12). Then

Ÿ≠1
3

Eb,c,Ÿ ≠
⁄ ·

0
”b,c(St, t)dt

4
æ WQb,c

stably in law on C[0, T ] as Ÿ æ 0, where W is a standard Brownian motion independent of F
and

”b,c(s, t) = 1
a(s, t)⁄(s, t)|ˆ2

s q(s, t)|2‡(s, t)2 + Lq(s, t),

Qb,c =
⁄ ·

0
÷b,c(St, t)dÈSÍt,

÷b,c(s, t) = 2
a(s, t)

⁄ b(s,t)

0
(x ≠ ⁄(s, t)ˆ2

s q(s, t)h(x, s, t))2g(x, s, t)dx.

(2.3.2)
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In particular, for any q with Lq < 0 on (0, Œ) ◊ [0, T ), by taking b œ B and c œ Cb such that

a Ø ⁄|ˆ2
s q|2‡2

|Lq| ,

we have ”b,c Æ 0 and therefore an asymptotic super replication strategy:

�b,c,Ÿ
T æ f(ST ) ≠

⁄ T

0
”b,c(St, t)dt Ø f(ST )

as Ÿ æ 0. This is always possible; say, let

b(s, t) = 1
2

⁄(s, t)|ˆ2
s q(s, t)|2‡(s, t)2

|Lq(s, t)| + ‘, c(x, s, t) = 0 (2.3.3)

with ‘ > 0. Further if 1/ˆ2
s q, 1/Lq œ A, one can take ‘ = 0 to have ”b,c = 0.

Example 2.3.1 (Black-Scholes model with convex payo�). Let ‡(s, t) = vs, v > 0, ⁄(s, t) = s,
f be a piecewise C2 convex non-a�ne function and – > 0 be a constant. Let q be given by
(2.2.4) with w = v


1 + 2/– > v. As explained in Introduction, the original Leland strategy

uses the equidistant discretization of Xq with (2.1.6). The renormalized tracking error at time
t œ [0, T ] converges in law to the mixed normal distribution with mean 0 and variance

÷L(–)
⁄ t

0
|Su�q

u|2dÈSÍu.

The use of the hitting times (2.1.9) changes the asymptotic variance to

÷F (–)
⁄ t

0
|Su�q

u|2dÈSÍu

without changing the initial capital q(S0, 0) + ŸS0|�Xq
0 |. Now, let us consider the simplest

control strategy in our framework for the same function q. We have

Lq(s, t) = ≠ 1
–

v2s2ˆ2
s q(s, t) < 0, (s, t) œ (0, Œ) ◊ [0, T )

Let b œ B and c = 0 œ Cb. Then, we have

g(z, s, t) = 1, a(s, t) = 2b(s, t), h(x, s, t) = ≠x/b(s, t)

by definition and so,

”b,c(s, t) = v2s2
I

s|ˆ2
s q(s, t)|2

2b
≠ |ˆ2

s q(s, t)|
–

J

, ÷b,c(s, t) = 1
3

1
b(s, t) + sˆ2

s q(s, t)
22

.

With the same initial capital q(S0, 0) + ŸS0|�Xq
0 | as before and taking b and c as (2.3.3), that

is,
b(s, t) = –

2 s|ˆ2
s q(s, t)| + ‘, c(x, s, t) = 0, (2.3.4)

the tracking error has the asymptotic variance

(– + 2)2

12

⁄ t

0
|Su�q

u|2dÈSÍu + ‘

3 (– + 2)
⁄ t

0
Su�q

udÈSÍu + ‘2

3 ÈSÍT

with the asymptotic positive surplus ≠”b,c > 0. It is easy to see

(– + 2)2

12 < min{÷L(–), ÷F (–)}

for all – > 0 and so, the simplest singular control with su�ciently small ‘ > 0 is already
more preferable than the existing ones. This superiority continues to hold even if we consider a
time-varying – as in [DK10]. We will minimize ÷b,c in the next section.
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Example 2.3.2 (Local volatility model with convex payo�). The Black-Scholes pricing function
q given by (2.2.4) is useful under a more general local volatility model. Suppose a volatility bound
‡(s, t) < vs is given for a constant v > 0. Let

–(s, t) = 2‡(s, t)2

v2s2 ≠ ‡(s, t)2 .

Then, the function q given by (2.2.4) solves (2.1.1). When f is piecewise C2, non-a�ne and
convex, we have

Lq(s, t) = ≠ 1
–(s, t)‡(s, t)2ˆ2

s q(s, t) < 0.

If we take
b(s, t) = 1

2–(s, t)s|ˆ2
s q(s, t)| + ‘, c(x, s, t) = 0,

then, we have
⁄ ·

0
”b,c(St, t)dt = ≠‘

⁄ ·

0

2
–(St, t)

|�q
t |2

–(St, t)St|�q
t | + 2‘

dÈSÍt < 0 (2.3.5)

and ⁄ ·

0
÷b,c(St, t)dÈSÍt = 1

12

⁄ ·

0
((–(St, t) + 2)St�q

t + 2‘)2 dÈSÍt.

Example 2.3.3 (Local volatility model with concave payo�). The preceding two examples are
for a convex payo� f . It is not di�cult to treat a concave payo� in a similar way. Under the
Black-Scholes model of Example 3.1, consider the Black-Scholes function q given by (2.2.4) with
w = v


1 ≠ 2/– for – > 2. Then,

Lq(s, t) = 1
–

v2s2ˆ2
s q(s, t) < 0.

if f is piecewise C2, non-a�ne and concave. The strategy (2.3.4) results in the asymptotic
positive surplus ≠”b,c > 0 with asymptotic variance

(– ≠ 2)2

12

⁄ t

0
|Su�q

u|2dÈSÍu + ‘

3 (– ≠ 2)
⁄ t

0
Su�q

udÈSÍu + ‘2

3 ÈSÍT .

Remark that when – = 2, we have q(s, 0) = f(s), which is the capital required by a trivial static
hedging strategy for the concave payo� f . Under a general local volatility model with a lower
bound ‡(s, t) > v2s2, v > 0, the strategy of Example 3.2 works with

–(s, t) = 2‡(s, t)2

‡(s, t)2 ≠ v2s2

and (2.3.5), while the asymptotic variance changes to
⁄ ·

0
÷b,c(St, t)dÈSÍt = 1

12

⁄ ·

0
((–(St, t) ≠ 2)St|�q

t | + 2‘)2 dÈSÍt.

Example 2.3.4 (The Barles-Soner strategy). [BS98] studied a scaling limit of the utility indif-
ference price under ‡(s, t) = vs, v > 0 and ⁄(s, t) = s. As the asymptotically optimal strategy,
they derived a continuous control strategy (2.2.6) (2.2.7) with

b(s, t) = g(–2s2ˆ2
s q(s, t))

–2s
, c(z, s, t) = 0,

where – > 0 is a parameter of the scaling limit and

g(x) =
Ò

xh(x) ≠ x, x œ R.
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The function h is the unique solution of the ordinary di�erential equation

hÕ(x) = 1 + h(x)
2


xh(x) ≠ x
, h(0) = 0. (2.3.6)

The benchmark strategy Xq
t = ˆsq(St, t) is determined by the solution q of a nonlinear PDE

ˆtq(s, t) + 1
2v2s2ˆ2

s q(s, t)(1 + h(–2s2ˆ2
s q)) = 0, q(s, T ) = f(s). (2.3.7)

If q is enough regular that our assumptions are satisfied, then we can apply our result with

”b,c(s, t) = 1
2v2 A

–2

;
A

g(A) ≠ h(A)
<

, ÷b,c(s, t) = 1
3

(g(A) + A)2

–4s2 = 1
3

Ah(A)
–4s2 ,

where A = –2s2ˆ2
s q(s, t). Remark that the PDE (2.3.7) has an explicit smooth solution

q(s, t) = ≠k log s + 1
2v2k(1 + h(–2k))(T ≠ t) (2.3.8)

when f(s) = ≠k log s, k œ R. It turns out that ”b,c ”= 0, which means that the strategy is not
asymptotically replicating; for an asymptotic replication of order Ÿ, the function h has to satisfy
h(x) = x/g(x), which leads to an equation similar to but di�erent from (2.3.6):

hÕ(x) = 1 + h(x)
3


xh(x) ≠ 2x
, h(0) = 0.

2.3.2 Minimum conditional variance
By Theorem 2.3.1, the law of the hedging error at the maturity T associated with the strategy
(2.2.6) is approximated by the mixed normal distribution with conditional mean

⁄ T

0
”b,c(Su, u)du

and conditional variance
Ÿ2Qb,c

T = Ÿ2
⁄ T

0
÷b,c(Su, u)dÈSÍu.

If the bias ”b,c is zero, then the strategy is asymptotically replicating with rate Ÿ. If the bias
is negative, the strategy is asymptotically super-replicating. A natural problem is to minimize
the variance Qb,c while fixing the bias ”b,c © ”. In the case ” = 0, the strategy minimizing Qb,c,
if exists, minimizes also

lim
ŸæŒ

E[l(Ÿ≠1Eb,c,Ÿ
T )] =

⁄
E[l(

Ò
Qb,c

T z)]„(z)dz

for any nonnegative bounded continuous quasi-convex function l with l(0) = 0. Recall that q
is fixed. Since there is a one-to-one correspondence between ”b,c and a by (2.3.2), it su�ces to
minimize Qb,c among b and c with a fixed. Therefore, for given a œ B, we consider

Sa =
I

(b, c) œ B ◊ Cb

--- a(s, t) = 2
⁄ b(s,t)

0
g(x, s, t)dx,

g(x, s, t) = exp
I

≠2
⁄ |x|

0
c(y, s, t)dy

J J

. (2.3.9)

Note that
Qb,c Ø

⁄ ·

0
÷a

ú(Su, u)dÈSÍu, ÷a
ú(s, t) = inf

(b,c)œS
a

÷b,c(s, t)

for any (b, c) œ Sa.
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Definition 2.3.1. Let a œ B. We say that a sequence of strategies (bn, cn) œ Sa, n œ N is
asymptotically optimal if

lim sup
næŒ

÷b
n

,c
n(s, t) = ÷a

ú(s, t) (2.3.10)

for all (s, t) œ (0, Œ) ◊ [0, T ) and
⁄ t

0
÷b

n

,c
n(Su, u)dÈSÍu æ

⁄ t

0
÷a

ú(Su, u)dÈSÍu

in probability for all t œ [0, T ].

Below is the second main result of this chapter.

Theorem 2.3.2. (i) Let

÷†(x) =

Y
__]

__[

0 if ≠ 2 < x Æ 1,

÷1(x) if 1 < x < 2,

÷2(x) if |x| Ø 2,

where
÷1(x) = 4

3
(x + 2)2(x ≠ 1)

x3(4 ≠ x) , ÷2(x) = 1
12(x + 2)2,

and denote
“(s, t) = ⁄(s, t)ˆ2

s q(s, t). (2.3.11)

Then for all (s, t) œ (0, Œ) ◊ [0, T ),

÷a
ú(s, t) = |“(s, t)|2÷†

3
a(s, t)
“(s, t)

4

if “(s, t) ”= 0, and

÷a
† (s, t) = lim

‘æ0
‘2÷†

3
a(s, t)

‘

4
= a(s, t)2

12
otherwise.
(ii) There exists an asymptotically optimal sequence (bn, cn).

The function – æ ÷†(–) is represented in Fig. 2.3 in Introduction.

2.3.3 Asymptotically optimal sequence
Here, we construct a sequence of continuous trading strategies (bú

n, cú
n) which can be considered

essentially asymptotically optimal. This is not necessarily asymptotically optimal in the precise
sense of Definition 2.3.1 because each (bú

n, cú
n) is not necessarily satisfying the technical condi-

tions in Section 2.2.2. It means that the strategy associated with (bú
n, cú

n) is not well-defined
in general. However in the proof of Theorem 2.3.2 in Section 4.5, we show that there exists
a sequence (bn, cn) œ Sa which is an approximation to (bú

n, cú
n) in a suitable sense and in fact

asymptotically optimal. Therefore, from practical point of view, one may use (bú
n, cú

n) defined
below as an optimal strategy.

Define l = l(s, t) as follows:

l =

Y
_____]

_____[

0 if “ Ø a

2“(a ≠ “)/(4“ ≠ a) if a > “ Ø a/2
“ if a/2 > “ Ø 0
0 if 0 > “,

(2.3.12)
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where a = a(s, t) and “ = “(s, t) (see (2.3.11)). Let Ân = 1 ≠ 2/n and

rn = l + en2(“ ≠ a/2)5
+ + |“|(1 ≠ exp{≠n(“ + a/2)5

≠}).

Consider the following sequence of (bú
n, cú

n):

bú
n(s, t) = rn(s, t) + “(s, t) + Ânrn(s, t)

“(s, t) + Ânl(s, t)

3
a(s, t)

2 ≠ l(s, t)
4

, (2.3.13)

cú
n(x, s, t) = Âna(s, t) + 2“(s, t)

2(a(s, t) ≠ 2l(s, t))
1

“(s, t) + Ân|x|1[l(s,t),r
n

(s,t))(|x|). (2.3.14)

Remark 2.3.1. With cú
n given as in (2.3.14), bú

n is derived from

a(s, t) = 2
⁄ bú

n

(s,t)

0
gú

n(x, s, t)dx. (2.3.15)

where gú
n is defined by (2.3.1).

In terms of “ and a, this strategy can be divided into four cases.
1. If “(s, t) < ≠a(s, t)/2, then l(s, t) = 0 and

bú
n(s, t) =

3
1 + Âna(s, t)

2“(s, t)

4
rn(s, t) + a(s, t)

2 ,

cú
n(x, s, t) = Âna(s, t) + 2“(s, t)

2a(s, t)
1

“(s, t) + Ân|x|1{|x|<r
n

(s,t)},

We have rn < min{bú
n, |“|}, hence rn, bú

n æ |“| and bú
n ≠rn æ 0. The strategy is essentially

a regular control with singularity at x = ±“; see Fig. 2.4a.
2. if ≠a(s, t)/2 Æ “(s, t) Æ a(s, t)/2, then l(s, t) = rn(s, t) and so,

bú
n(s, t) = a(s, t)

2 , cú
n(x, s, t) = 0,

The strategy has only a singular part and is given by Fig. 2.4b. Note that the strategy
does not depend on n.

3. If a(s, t)/2 < “(s, t) < a(s, t), then for su�ciently large n,

bú
n(s, t) = rn(s, t) + (2“(s, t) ≠ a(s, t))(2“(s, t) + a(s, t))

2(4“(s, t) ≠ a(s, t))
“(s, t) + rn(s, t)
“(s, t) + l(s, t) ,

cú
n(x, s, t) = Âna(s, t) + 2“(s, t)

a(s, t) + 2“(s, t)
4“(s, t) ≠ a(s, t)

2(2“(s, t) ≠ a(s, t))
1

“(s, t) + |x|1{l(s,t)Æ|x|<r
n

(s,t)},

and we have rn, bú
n, bú

n ≠ rn æ Œ. The strategy is essentially a regular control with
non-intervention zone near zero; see Fig. 2.4c.

4. If “(s, t) Ø a(s, t), then l(s, t) = 0 and

bú
n(s, t) = rn(s, t) + Âna(s, t)

2“(s, t) (“(s, t) + rn(s, t)),

cú
n(x, s, t) = Âna(s, t) + 2“(s, t)

2a(s, t)
1

“(s, t) + Ân|x|1{|x|<r
n

(s,t)},

We have rn, bú
n, bú

n ≠ rn æ Œ. The strategy is again, essentially a regular control; see
Fig. 2.4d.
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Zb_n−b_n

gamma −gamma

−r_n r_nl=0

c_n

(a) “ < ≠a/2

Zb_n−b_n r_n = l = 0

a/2−a/2 c_n

(b) ≠a/2 Æ “ Æ a/2

Zb_n−b_n−r_n r_n−l l

c_n

oo−oo

(c) a/2 < “ < a

Zb_n−b_n−r_n r_nl=0

c_n

oo−oo

(d) “ Ø a

Figure 2.4 – Qualitative behavior of asymptotically optimal strategies

Remark 2.3.2. The Barles-Soner strategy is not always asymptotically optimal in the sense of
Definition 2.3.1. Here, we use the notation in Example 2.3.4. The strategy is a purely singular
control and therefore, asymptotically optimal only if

s|ˆ2
s q(s, t)| = |“(s, t)| Æ a(s, t)

2 = b(s, t) = g(–2s2ˆ2
s q(s, t))

–2s

for all (s, t); see case 2 above. This is equivalent to say

g(A)
|A| Ø 2, A = –2s2ˆ2

s q(s, t). (2.3.16)

According to [BS98], limAæŒ h(A)/A = 1, which implies that limAæŒ g(A)/A = 0. Therefore,
the condition (2.3.16) is violated, say, for a log contract (2.3.8) with –2k su�ciently large.

2.3.4 Implementation and numerical experiments

Here we describe the implementation of our new results in the specific case that the payo� is
convex and the benchmark is given by a constant enlargement of volatility. Let f be convex
and q = p– be the solution of (2.1.1). Consider the case ” © 0. By (2.2.5) and (2.3.2), we have
a = –⁄ˆ2

s p–. Hence

“(s, t) = 1
–

a(s, t).

The situation can be divided into three cases: 0 < – Æ 1, 1 < – < 2 and – Ø 2.
The case where 0 < – Æ 1 corresponds to Fig. 2.4d. The optimal strategy X is essentially given
by

dXt = sgn(X–
t ≠ Xt)

– + 2
2–

|�–
t |2

Ÿ⁄(St, t)�–
t + |X–

t ≠ Xt|
‡(St, t)2dt. (2.3.17)

Denoting by � the wealth process associated with X, we have

Ÿ≠1(�– ≠ �) æ 0
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uniformly on [0, T ] in probability as Ÿ æ 0. This means that the hedging error under (2.3.17) is
of a smaller order than Ÿ while, as explained above, Leland’s strategy has a nondegenerate limit
of order Ÿ. The strategy (2.3.17) can be implemented as, say, Xt = Yj for t œ (j”, (j + 1)”],

Yj =
I

Ŷj if (Ŷj ≠ Yj≠1)(X–
j” ≠ Ŷj) Ø 0,

X–
j” otherwise,

where

Ŷj = Yj≠1 + sgn(X–
j” ≠ Yj≠1)– + 2

2–

|�–
j”|2

Ÿ⁄(Sj”, j”)�–
j” + |X–

j” ≠ Yj≠1|‡(Sj”, j”)2”

with a su�ciently small ” > 0. This is a discretized process of a process of finite variation and
so, taking ” very small is not costly under the proportional transaction costs and makes the
discretization error negligible.

The case where 1 < – < 2 corresponds to Fig. 2.4c and the optimal strategy X is essentially
given by

dXt = sgn(X–
t ≠ Xt)

4 ≠ –

2(2 ≠ –)
|�–

t |2

Ÿ⁄(St, t)�–
t + |X–

t ≠ Xt|
1{|X–

t

≠X
t

|ØŸ–̂⁄(S
t

,t)�–

t

}‡(St, t)2dt,

where –̂ = 2(– ≠ 1)/(4 ≠ –). The associated central limit theorem for � = �–,Ÿ is (2.1.8) with
÷L(–) replaced by

÷†(–) = 4
3

(– + 2)2(– ≠ 1)
–3(4 ≠ –) .

See the left panel of Fig. 2.3 on the region 1 < – < 2. The implementation of the strategy can
be done in a way similar to (2.3.17): Xt = Yj for t œ (j”, (j + 1)”],

Yj =
I

Ŷj if |X–
j” ≠ Ŷj | Ø Ÿ–̂�j”�–

j” or Ŷj = Yj≠1,

X–
j” + sgn(Yj≠1 ≠ X–

j”)Ÿ–̂�j”�–
j” otherwise,

where �j” = ⁄(Sj”, j”) and

Ŷj = Yj≠1+sgn(X–
j” ≠ Yj≠1) 4 ≠ –

2(2 ≠ –)
|�–

j”|2

Ÿ�j”�–
j” + |X–

j” ≠ Yj≠1|‡(Sj”, j”)2”

◊ 1{|X–

j”

≠Y
j≠1|ØŸ–̂�

j”

�–

j”

}

with a su�ciently small ” > 0.

The case where – Ø 2 corresponds to Fig. 2.4b and the optimal strategy is

Xt = X–
0 ≠ ŸLŸ

t + ŸRŸ
t (2.3.18)

where LŸ and RŸ are nondecreasing processes such that

LŸ
t =

⁄ t

0
1{X–

u

≠X
u

=≠Ÿb(S
u

,u)}dLŸ
u, RŸ

t =
⁄ t

0
1{X–

u

≠X
u

=Ÿb(S
u

,u)}dRŸ
u

and
|X–

u ≠ Xu| Æ Ÿb(St, t), b(St, t) = –

2 ⁄(St, t)�–
t .

This is a singular control strategy which keeps the distance between Xt and X–
t less than

Ÿb(St, t). The associated central limit theorem for � = �–,Ÿ is (2.1.8) with ÷L(–) replaced by

÷†(–) = (– + 2)2

12 .
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See Fig. 2.3 on the region – Ø 2. The function ÷† is continuously concatenated at – = 2. It
is interesting to note that the hitting barrier bt in (2.1.9) coincides with 2b(St, t) and ÷F (–) =
2÷†(–) for – Ø 2. The strategy (2.3.18) can be implemented as

Xj” =

Y
__]

__[

X–
j” + Ÿb(Sj”, j”) if X–

j” ≠ X(j≠1)” < ≠Ÿb(Sj”, j”),
X–

j” ≠ Ÿb(Sj”, j”) if X–
j” ≠ X(j≠1)” > Ÿb(Sj”, j”),

X(j≠1)” otherwise

with a su�ciently small ” > 0.

Now we examine numerically the validity of the discretization methods of the optimal strategies
explained in Section 1.3. We take

dSt = St(0.1dt + 0.2dBt), S0 = 100

with small proportional transaction costs : Ÿ = 0.01 and ⁄(s, t) = s, and a call payo� f(s) =
(s ≠ 110)+ with maturity T = 1. Here we consider

– œ {0.5, 1.5, 2.5}.

For each case, we calculate the hedging error at the maturity from 10000 paths simulated from the
model. We choose the discretization step size ” = 10≠5, which corresponds to about one minute
in terms of trading time. The hedging error of Leland’s strategy explained in the introduction
is calculated for comparison. Then we draw the histogram of normalized hedging error

f(ST ) ≠ �T

Ÿ
Òs T

0 S2
t |�–

t |2dÈSÍt

.

Fig. 2.5a is for the case – = 0.5. The left and right are respectively for the discretized optimal
strategy and for Leland’s strategy. The green curves represent the normal density with mean 0
and variance ÷L(–) that corresponds to the limit distribution for Leland’s strategy. First we no-
tice that the limit distribution for Leland’s strategy approximates quite well to the corresponding
hedging error distribution with a realistic size of transaction coe�cient Ÿ = 0.01. Next, observe
that the normalized hedging error of the discretized optimal strategy is more concentrated to
its mean value, which is consistent to our theoretical result that the limit is degenerate. We
however observe a negative bias which has not been explained by the theory. Remark that this
negative bias means the strategy tends to be super-hedging for the seller of the option.

Figures 2.5b and 2.5c are respectively for the cases – = 1.5 and – = 2.5. The red curves represent
the normal density with mean 0 and variance ÷(–) that corresponds to the limit distribution
for the optimal strategy in each case. The normalized hedging error distributions are quite
well approximated by their theoretical limits. This suggests that the discretization error with
” = 10≠5 is negligible and the proposed strategies in fact improve Leland’s strategy significantly.

2.4 Heuristic derivation

In this section, we provide a probabilistic interpretation for Theorem 2.3.1, and explain the
relation with the equidistant strategy (2.1.4) of [Lel85] and the random time strategy (2.1.9) of
[Fuk11b]. We will also compare the di�erence between Leland’s approach and the indi�erence
pricing approach, the latter being based on utility maximization (cf. [WHW94, Bic12, ST13,
KL13]).
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(a) Histograms for the optimal (left) and Leland’s strategy (right) : – = 0.5.
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(b) Histograms for the optimal (left) and Leland’s strategy (right) : – = 1.5.
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(c) Histograms for the optimal (left) and Leland’s strategy (right) : – = 2.5.

Figure 2.5 – Histograms for optimal and Leland’s strategies.
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2.4.1 Local probability model

Let Xb,c,Ÿ be the continuous replication strategy based on b and c under proportional cost
parameter Ÿ. Recall that the hedging error is given by

Eb,c,Ÿ
t =Ÿ

⁄ t

0
ZŸ

udSu +
⁄ t

0
⁄(Su, u)c(ZŸ

u , Su, u)dÈXqÍu

+ Ÿ2
⁄ t

0
⁄(Su, u)(dLŸ

u + dRŸ
u)+

⁄ t

0
Lq(Su, u)du.

Consider a decomposition of the horizon [0, T ) in to small intervals [uj , uj+1) where uj = jŸ, j =
0, 1, · · · , NŸ

T = ÂT/ŸÊ. Then we have

Eb,c,Ÿ
t =

ÿ

j

1
Ÿ

1
Eb,c,Ÿ

(j+1)Ÿ·t ≠ Eb,c,Ÿ
jŸ·t

2
(uj+1 ≠ uj).

Therefore the total hedging error can be seen as the Riemann sum of local hedging error over
the horizon [uj , uj+1):

1
Ÿ

1
Eb,c,Ÿ

(j+1)Ÿ ≠ Eb,c,Ÿ
jŸ

2
. (2.4.1)

Now let’s take a closer look at (2.4.1). Fix j and perform the following time scaling

ÂZŸ
t = ZŸ

u
j

+Ÿ2t,
ÂLŸ

t = LŸ
u

j

+Ÿ2t,
ÂRŸ

t = RŸ
u

j

+Ÿ2t,

and
ÂBŸ

t = 1
Ÿ

Bu
j

+Ÿ2t

where W is the driving Brownian motion of S and t œ [0, T Ÿ = 1
Ÿ). We obtain

1
Ÿ

1
Eb,c,Ÿ

(j+1)Ÿ ≠ Eb,c,Ÿ
jŸ

2

=
⁄ (j+1)Ÿ

jŸ
ZŸ

udSu + 1
Ÿ

⁄ (j+1)Ÿ

jŸ
⁄(Su, u)c(ZŸ

u , Su, u)dÈXqÍu

+ Ÿ
⁄ (j+1)Ÿ

jŸ
⁄(Su, u)(dLŸ

u + dRŸ
u)+ 1

Ÿ

⁄ (j+1)Ÿ

jŸ
Lq(Su, u)du

ƒ 1
T Ÿ

AjŸ

⁄ T Ÿ

0
ÂZŸ

t d ÂBŸ
t + 1

T Ÿ
KjŸ’2

jŸ

⁄ T Ÿ

0
c( ÂZŸ

t , SjŸ, jŸ)dt

+ 1
T Ÿ

KjŸ

⁄ T Ÿ

0
(dÂLŸ

t + d ÂRŸ
t ) + Lq(SjŸ, jŸ),

where
At = ‡(St, t), Kt = ⁄(St, t), ’t = ‡(St, t)�q

t (2.4.2)

and the dynamic of ÂZŸ is given by

d ÂZŸ
t = ‡(Su

j

+Ÿ2t, uj + Ÿ2t)�q
u

j

+Ÿ2td ÂBŸ
t

≠ sgn( ÂZŸ
t )c( ÂZŸ

t , Su
j

+Ÿ2t, uj + Ÿ2t)’2
u

j

+Ÿ2tdt + dÂLŸ
t ≠ d ÂRŸ

t ,

ƒ ’jŸd ÂBŸ
t ≠ sgn( ÂZŸ

t )c( ÂZŸ
t , SjŸ, jŸ)’2

jŸdt + dÂLŸ
t ≠ d ÂRŸ

t ,

for t œ [0, T Ÿ). As the time scale of ÂZŸ is faster than S, we are led to consider the following
model of controlled Brownian motion with constant coe�cients.
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0

Figure 2.6 – Rescaling of tracking error ZŸ on [jŸ, (j + 1)Ÿ) (green zone).

Lemma 2.4.1 (Local probability model). Let b œ R+ and c : R æ R+ an even function. Let
Zt be a controlled Brownian motion with drift ≠sgn(Zt)c(Zt)’2 and reflection at ±b, i.e.

dZt = ’dBt ≠ sgn(Zt)c(Zt)’2dt + dLt ≠ dRt, (2.4.3)

see right panel of Fig.2.6. Then we have

(LLN) 1
T

1
K’2

⁄ T

0
c(Zt)dt + K(LT + RT )

2
æ m,

(CLT) 1Ô
T

1
A

⁄ T

0
ZtdBt + K’2

⁄ T

0
c(Zt)dt + K(LT + RT ) ≠ mT

2
∆ N (0, v),

where
m = K

’2

a
, v = 2

a

⁄ b

0
(Az ≠ K’h(z))2g(z)dz.

and

g(z) = exp
!

≠ 2
⁄ |z|

0
c(x)dx

"
, a = 2

⁄ b

0
g(z)dz, h(z) = 2sgn(z)

g(z)

⁄ |z|

0

!
c(x) ≠ 1

a

"
g(x)dx.

In particular, if c © 0, we have

m = K
’2

2b
, v = 1

3(Ab + K’)2.

Proof. See e.g. [GW13].

As a consequence of Lemma 2.4.1, we have

1
Ÿ

1
Eb,c,Ÿ

(j+1)Ÿ ≠ Eb,c,Ÿ
jŸ

2
ƒ ”jŸ +

Ô
ŸNj(0, vjŸ),

where Nj are normal distributions and

”jŸ = m(AjŸ, KjŸ, ’jŸ, c(·, SjŸ, jŸ), b(SjŸ, jŸ)) + Lq(SjŸ, jŸ)
vjŸ = v(AjŸ, KjŸ, ’jŸ, c(·, SjŸ, jŸ), b(SjŸ, jŸ))

Intuitively, Nj can be considered as independent. By (2.4.1), we have

Eb,c,Ÿ
· ƒ

⁄ ·

0
”udu + ŸN

1
0,

⁄ ·

0
vudu

2
,

which is the main content of Theorem 2.3.1.
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Figure 2.7 – Local models for [Lel85] (left) and [Fuk11b] (right).

2.4.2 Relation with Leland’s strategy

Using a similar argument as in the previous section, we can easily identify the underlying prob-
ability models for [Lel85], [DK10] and [Fuk11b].

Lemma 2.4.2 (Local probability model for [Lel85],[DK10]). Let h œ R+ and

Zt = ’Bt +
ÿ

0<·
j

Æt

›j

with ·j = jh, j = 1, 2, · · · , and ›j = ≠X·
j

≠, see Fig. 2.7. We have

(LLN) 1
T

ÿ

0<·
j

ÆT

K|›j | æ mL,

(CLT) 1Ô
T

1
A

⁄ T

0
ZtdBt +

ÿ

0<·
j

ÆT

K|›j | ≠ mLT
2

∆ N (0, vL),

where
mL = Kh≠1/2’

Ú
2
fi

, vL = A2’2 h

2 + AK

Ú
2
fi

’2Ô
h + K2’2(1 ≠ 2

fi
). (2.4.4)

Lemma 2.4.3 (Local probability model for [Fuk11b]). Let b œ R+ and

Zt = ’Bt +
ÿ

0<·
j

Æt

›j

with ·j = inf{t > ·j≠1, |Xt| Ø b} for j Ø 1, ·0 = 0, and ›j = ≠X·
j

≠, see Fig. 2.7. We have

(LLN) 1
T

ÿ

0<·
j

ÆT

K|›j | æ mF ,

(CLT) 1Ô
T

1
A

⁄ T

0
ZtdBt +

ÿ

0<·
j

ÆT

K|›j | ≠ mF T
2

∆ N (0, vF ),

where
mF = K

’2

b
, vF = 1

6(Ab + 2K’)2. (2.4.5)

Consider the case of convex payo� and q = p– under Black-Scholes model ‡(s, t) = vs. Taking
h in (2.1.6) and b in (2.1.9) and the parameters in (2.4.2), we recover from (2.4.4) and (2.4.5)
that

mL = mF = 1
–

v2S2�–,
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Since Lp– = ≠ 1
–v2S2�– (see (2.2.5)), we obtain

”L = ”F = 0,

which means that with the choice of h in (2.1.6) and b in (2.1.9), Leland’s strategy replicates
asymptotically the payo�. Moreover, we recover

vL = ÷L(–)(S�–)2(vS)2,

vF = ÷F (–)(S�–)2(vS)2,

with ÷L and ÷F the same as those in [DK10] and [Fuk11b].

2.4.3 Relation with Whalley and Wilmott’s strategy

Under the framework of indi�erence pricing, [WHW94] obtain a singular control as their asymp-
totically optimal strategy, which is given by

dXt = ≠Ÿ1/3dLŸ
t + Ÿ1/3dRŸ

t

when ⁄(s, t) = s and dSt = vStdWt with v > 0, where LŸ and RŸ are nondecreasing processes
such that

LŸ
t =

⁄ t

0
1{Xq

u

≠X
u

=≠Ÿ1/3b(S
u

,u)}dLŸ
u, RŸ

t =
⁄ t

0
1{Xq

u

≠X
u

=Ÿ1/3b(S
u

,u)}dRŸ
u

and

|Xq ≠ Xu| Æ Ÿ1/3b(St, t), b(St, t) =
----

3
2–

Stˆ
2
s q(St, t)2

----
1/3

. (2.4.6)

The constant – > 0 is the parameter of risk-aversion. The function q is given by (2.2.4) with
w = v, which satisfies Lq = 0. This is the result of a delicate balancing between the utility
loss due to deviation from frictionless optimal strategy and transaction costs. In particular,
as Ÿ æ 0, both the loss due to deviation and the accumulated transaction costs are of order
O(Ÿ2/3). We can actually formally recover their result by our approach. Just replacing Ÿ by
Ÿ1/3 in our candidate strategy, the associated tracking error becomes

Êb,c,Ÿ
t =�q

t ≠ �b,c,Ÿ
t

=Ÿ1/3
⁄ t

0
ẐŸ

udSu + Ÿ2/3
⁄ t

0
⁄(Su, u)c(ZŸ

u , Su, u)dÈXqÍu

+ Ÿ4/3
⁄ t

0
⁄(Su, u)[dLŸ

u + dRŸ
u],

where Ẑ = (Xq ≠ X)/Ÿ1/3. By a similar argument to the proof of Theorem 2.3.1 below, we can
prove that

Êb,c,Ÿ = Ÿ1/3
⁄ ·

0
ẐŸ

t dSt + Ÿ2/3
⁄ ·

0
”b,c(St, t)dt + Op(Ÿ)

and ⁄ ·

0
ẐŸ

t dSt æ ŴQ̂, Q̂ =
⁄ ·

0
÷̂b,c(St, t)dÈSÍt,

where Ŵ is an independent Brownian motion and

÷̂b,c(s, t) = 2
a(s, t)

⁄ b(s,t)

0
x2g(x, s, t)dx.
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This leads to the maximization problem of the asymptotic utility

≠ E

C

exp
I

≠–

A

≠Ÿ2/3
⁄ T

0
”b,c(St, t)dt + Ÿ1/3N

A

0,
⁄ T

0
÷̂b,c(St, t)dÈSÍt

BBJD

= ≠E

C

exp
I

Ÿ2/3
A

–
⁄ T

0
”b,c(St, t)dt + –2

2

⁄ T

0
÷̂b,c(St, t)dÈSÍt

BJD

.

First by fixing ”b,c, or equivalently, fixing a, the pointwise minimization of ÷̂b,c results in

b(s, t) = a(s, t)
2 , c(z, s, t) = 0, ÷̂b,c(s, t) = a(s, t)2

12 .

Next, the pointwise minimization of

”b,c + –

2
a2

12‡2 = ⁄

a
|ˆ2

s q‡|2 + –a2‡2

24

results in

a =
----
12
–

⁄|ˆ2
s q|2

----
1/3

,

which coincides with the Whalley-Wilmott strategy (2.4.6).

As the above argument shows, the rate of convergence in the Whalley-Wilmott strategy is Ÿ1/3

with transaction costs of O(Ÿ2/3). On the other hand, we attain a convergence with a faster rate
Ÿ with transaction costs of O(1). The transaction costs can be compensated at the beginning by
a modification of volatility. In terms of utility, it amounts to considering a scaling limit where
the parameter of risk aversion tends to infinity as in [BS98].

It is easier to understand if we look at the corresponding local probability models. It is known
that, in the limit of small proportional transaction costs, the first order correction of utility
maximization corresponds to an ergodic control of Brownian motion. That is,

I = inf
(L,R)

lim sup
T æŒ

1
T

1 ⁄ T

0
�Z2

t dt + Ÿ(LT + RT )
2
,

where � is related to the risk aversion of the investor and

dZt = ’dBt + dLt ≠ dRt,

with Lt and Rt non-decreasing processes. See Part II for more details. In contrary, Theorem
2.3.2 corresponds to the following optimization problem

inf
(b,c)

v(b, c; A, K, ’),

with (2.4.3) under the constraint that

m(b, c; A, K, ’) = m̂ (2.4.7)

for a given constant m̂. Here v = v(b, c; A, K, ’) and m = m(b, c; A, K, ’) are defined in
Lemma 2.4.1. It turns out that the optimal strategy depends on the constraint (2.4.7), see
Fig.2.4, which is the main content of Theorem 2.3.2.
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Appendix 2.A Proof of Theorem 2.3.1

We denote in this section
‹(s, t) = ˆ2

s q(s, t)‡(s, t).

The proof of Theorem 2.3.1 utilizes a homogenization technique of two-scale stochastic di�eren-
tial equations and the theory of scale function and speed measure for one-dimensional ergodic
di�usions. In fact the function g defined in (2.3.2) is the speed measure density for the corre-
sponding di�usion. See [GW13] for more general results. We start with the following lemma.

Lemma 2.A.1. Let Â be a piecewise C0,2,1 function on Db such that
1. for each (s, t),

⁄ b(s,t)

≠b(s,t)
Â(x, s, t)g(x, s, t)dx = 0

and
2. for each x, Â(x, ·) is C2,1 and

sup{|ˆi
sˆj

t Â(x, St, t)|; t œ [0, T ), x œ [≠b(St, t), b(St, t)]} < Œ (2.A.1)

almost surely for each i œ {0, 1, 2} and j œ {0, 1}.
Then,

sup
tœ[0,T ]

----
⁄ t

0
Â(ZŸ

u , Su, u)‹(Su, u)2du

---- æ 0

in probability as Ÿ æ 0.

Proof. Let

�(x, s, t) =
⁄ x

0
Â1(z, s, t)dz,

Â1(z, s, t) = 2
g(z, s, t)

⁄ z

≠b(s,t)
Â(x, s, t)g(x, s, t)dx.

Then, � is a C1,2,1 and piecewise C2,2,1 function and

Â1(b(s, t), s, t) = Â1(≠b(s, t), s, t) = 0 (2.A.2)

by the assumption. Note also that

≠ sgn(z)c(z, s, t)Â1(z, s, t) + 1
2ˆzÂ1(z, s, t) = Â(z, s, t). (2.A.3)

By a generalized Itô formula of [Pes07],

�(ZŸ
t , St, t) =�(ZŸ

0 , S0, 0) +
⁄ t

0
Â1(ZŸ

u , Su, u)dZŸ
u +

⁄ t

0
ˆs�(ZŸ

u , Su, u)dSu

+
⁄ t

0
ˆt�(ZŸ

u , Su, u)du + 1
2

⁄ t

0
ˆ2

s �(ZŸ
u , Su, u)dÈSÍu

+
⁄ t

0
ˆsÂ1(ZŸ

u , Su, u)dÈZŸ, SÍu + 1
2

⁄ t

0
ˆzÂ1(ZŸ

u , Su, u)dÈZŸÍu

=�(ZŸ
0 , S0, 0) + 1

Ÿ2

⁄ t

0
Â(ZŸ

u , Su, u)‹(Su, u)2du + MŸ
t
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for t œ [0, T ), where

MŸ
t = 1

Ÿ

⁄ t

0
Â1(ZŸ

u , Su, u)dXq
u +

⁄ t

0
ˆs�(ZŸ

u , Su, u)dSu

+
⁄ t

0
ˆt�(ZŸ

u , Su, u)du + 1
2

⁄ t

0
ˆ2

s �(ZŸ
u , Su, u)dÈSÍu

+ 1
Ÿ

⁄ t

0
ˆsÂ1(ZŸ

u , Su, u)dÈXq, SÍu.

Here we have used (2.2.10), (2.A.2) and (2.A.3). Since

|ZŸ
t | Æ b(St, t), (2.A.4)

the condition (2.A.1) implies that

lim
tæT

�(ZŸ
t , St, t) = �(ZŸ

0 , S0, 0) + 1
Ÿ2

⁄ T

0
Â(ZŸ

u , Su, u)‹(Su, u)2du + MŸ
T .

Therefore,

sup
tœ[0,T ]

----
⁄ t

0
Â(ZŸ

u , Su, u)‹(Su, u)2du

----

Æ Ÿ2 sup
tœ[0,T )

|�(ZŸ
t , St, t) ≠ �(ZŸ

0 , S0, 0)| + Ÿ2 sup
tœ[0,T ]

|MŸ
t | æ 0

in probability as Ÿ æ 0.

Lemma 2.A.2. Let Â be a function satisfying the conditions of Lemma 2.A.1. Then

sup
tœ[0,T ]

----
⁄ t

0
Â(ZŸ

u , Su, u)du

---- æ 0

in probability as Ÿ æ Œ.

Proof. We use Lemma 2.A.1 and (2.2.2). For n Ø 1, let ‹n be a C3,1 function on (0, Œ) ◊ [0, T ]
such that ‹n(s, t) = |‹(s, t)| when |‹(s, t)| Ø 2/n and |‹n(s, t)| Ø 1/n and |v(s, t)2 ≠ vn(s, t)2| Æ
4n≠2 for all (s, t). Then,

Ân(x, s, t) := Â(x, s, t)
‹n(s, t)2

meets the conditions of Lemma 2.A.1 and so,

sup
tœ[0,T ]

----
⁄ t

0
Ân(ZŸ

u , Su, u)‹(Su, u)2du

---- æ 0

in probability as Ÿ æ 0 for each n. Therefore,

sup
tœ[0,T ]

----
⁄ t

0
Â(ZŸ

u , Su, u)du

---- Æ sup
tœ[0,T ]

----
⁄ t

0
Ân(ZŸ

u , Su, u)‹(Su, u)2du

----

+ 4
-----

⁄ T

0
Â(ZŸ

u , Su, u)2du

-----

1/2 ⁄ T

0
1{|‹(S

u

,u)|<2n≠1}du,

which converges to 0 as n æ Œ and then, Ÿ æ 0 by (2.2.2) and (2.A.4).
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Proof of Theorem 2.3.1. Since a stable convergence is preserved under the localization and the
Girsanov-Maruyama transformation, we can and do assume � = 0 without loss of generality.
Note that h defined by (2.3.2) satisfies

≠ sgn(z)c(z, s, t)h(z, s, t) + 1
2ˆzh(z, s, t) = c(z, s, t) ≠ 1

a(s, t) (2.A.5)

and
h(b(s, t), s, t) = ≠1, h(≠b(s, t), s, t) = 1. (2.A.6)

Let
H(x, s, t) = ⁄(s, t)

⁄ x

0
h(z, s, t)dz.

Then by the generalized Itô formula, using (2.2.10), (2.A.5) and (2.A.6),

H(ZŸ
t ,St, t) ≠ H(ZŸ

0 , S0, 0)

=
⁄ t

0
⁄(Su, u)h(ZŸ

u , Su, u)dZŸ
u +

⁄ t

0
ˆsH(ZŸ

u , Su, u)dSu

+
⁄ t

0
ˆtH(ZŸ

u , Su, u)du + 1
2

⁄ t

0
ˆ2

s H(ZŸ
u , Su, u)dÈSÍu

+
⁄ t

0
ˆs(⁄h)(ZŸ

u , Su, u)dÈZŸ, SÍu + 1
2

⁄ t

0
⁄(Su, u)ˆzh(ZŸ

u , Su, u)dÈZŸÍu

= 1
Ÿ

⁄ t

0
⁄(Su, u)h(ZŸ

u , Su, u)dXq
u +

⁄ t

0
⁄(Su, u)d[LŸ + RŸ]u

+ 1
Ÿ2

⁄ t

0
⁄(Su, u)

3
c(ZŸ

u , Su, u) ≠ 1
a(Su, u)

4
‹(Su, u)2du + NŸ

t ,

where

NŸ
t =

⁄ t

0
ˆsH(ZŸ

u , Su, u)dSu +
⁄ t

0
ˆtH(ZŸ

u , Su, u)du

+ 1
2

⁄ t

0
ˆ2

s H(ZŸ
u , Su, u)dÈSÍu + 1

Ÿ

⁄ t

0
ˆs(⁄h)(ZŸ

u , Su, u)dÈXq, SÍu.

Therefore,

Ÿ≠1
3

Eb,c,Ÿ
t ≠

⁄ t

0
”(Su, u)dÈSÍu

4

=Ÿ(H(ZŸ
t , St, t) ≠ H(ZŸ

0 , S0, 0)) ≠
⁄ t

0
h(ZŸ

u , Su, u)Ï(Su, u)du ≠ ŸNŸ
t

+
⁄ t

0
(ZŸ

u ≠ ⁄(Su, u)ˆ2
s q(Su, u)h(ZŸ

u , Su, u))dSu,

where Ï is a certain C3,1 function. The first term converges to 0 uniformly on [0, T ] in probability
due to (2.A.4). Since

z ‘æ h(z, s, t), z ‘æ ˆs(⁄h)(z, s, t)
are odd functions and z ‘æ g(z, s, t) is an even function, the second and third terms also converge
to 0 in probability by Lemma 2.A.2.
It remains to show that

⁄ ·

0
(ZŸ

u ≠ ⁄(Su, u)ˆ2
s q(Su, u)h(ZŸ

u , Su, u))dSu

converges stably to WQb,c

in law on C[0, T ]. By [JS13, Theorem IX.7.3], it su�ces to see that
⁄ t

0
(ZŸ

u ≠ ⁄(Su, u)ˆ2
s q(Su, u)h(ZŸ

u , Su, u))2‡(Su, u)2du æ Qb,c
t ,

⁄ t

0
(ZŸ

u ≠ ⁄(Su, u)ˆ2
s q(Su, u)h(ZŸ

u , Su, u))‡(Su, u)2du æ 0
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in probability for all t œ [0, T ], both of which follow from Lemma 2.A.2.

Appendix 2.B Proof of Theorem 2.3.2
The aim of this section is to prove Theorem 2.3.2. For notational convenience, fix for a while
(s, t) œ (0, Œ) ◊ [0, T ) and write

a = a(s, t), b = b(s, t), c(x) = c(x, s, t), g(x) = g(x, s, t), h(x) = h(x, s, t),
“ = “(s, t), ÷b,c = ÷b,c(s, t).

.

Lemma 2.B.1. If c is continuous, then hÕ is continuous and for all x œ (0, b),

h(x) > ≠1, hÕ(x) Ø ≠2
a

, c(x) = hÕ(x) + 2/a

2(1 + h(x)) . (2.B.1)

Proof. Recall that
h(0) = 0, h(b) = ≠1. (2.B.2)

By (2.A.5), we have
2(1 + h(x))c(x) = hÕ(x) + 2

a
. (2.B.3)

Therefore hÕ is continuous on [0, b]. Further, if there exists x œ (0, b) such that h(x) Æ ≠1, then
hÕ(x) Æ ≠2/a < 0 since c Ø 0. As a result, h(x̂) < ≠1 for all x̂ > x. This contradicts (2.B.2).
Thus we obtain h(x) > ≠1. From this and (2.B.3) again, we conclude (2.B.1).

Lemma 2.B.2. If c is continuous, then

÷b,c = 2
a

⁄ Œ

0
(x(t) + “(1 ≠ xÕ(t)))2e≠2t/adt,

where x is the solution of the ordinary di�erential equation

xÕ = 1 + h(x), x(0) = 0. (2.B.4)

Further, the solution x is C2 and satisfies

x(Œ) = b, xÕ(0) = 1, xÕ(Œ) = 0, xÕ > 0, xÕÕ Ø ≠2
a

xÕ. (2.B.5)

Proof. By (2.B.1),
⁄ b

0
g(x)dx =

⁄ b

0

dx

1 + h(x) exp
;

≠2
a

⁄ x

0

dy

1 + h(y)

<
=

⁄ b̂

0
e≠2t/adt, (2.B.6)

where
b̂ =

⁄ b

0

dx

1 + h(x) .

Since (2.B.6) is equal to a/2 by definition, we conclude b̂ = Œ. As a result,

÷b,c =2
a

⁄ b

0

(x ≠ “h(x))2

1 + h(x) exp
;

≠2
a

⁄ x

0

dy

1 + h(y)

<
dx

=2
a

⁄ Œ

0
(x(t) + “(1 ≠ xÕ(t)))2e≠2t/adt,

where t ‘æ x(t) is the inverse function of

x ‘æ t(x) =
⁄ x

0

dy

1 + h(y) .

The rest follows from (2.B.1) and (2.B.2).
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Lemma 2.B.3. If c is continuous, then there corresponds an increasing convex C2 function y
on [0, 1] such that

y(0) = 0, yÕ(0) = a

2 (2.B.7)

and
÷b,c = ÷a[y] :=

⁄ 1

0

3
y(u) + “ + 2“

a
(u ≠ 1)yÕ(u)

42
du.

Proof. Let x be the solution of (2.B.4) and

y(u) = x
3

≠a

2 log(1 ≠ u)
4

= x(v≠1(u)), v(t) = 1 ≠ e≠2t/a.

Since x(t) = y(v(t)), we have

xÕ(t) = 2
a

yÕ(v(t))(1 ≠ v(t)), xÕÕ(t) = 4
a2 yÕÕ(v(t))(1 ≠ v(t))2 ≠ 2

a
xÕ(t).

From (2.B.5), we obtain yÕÕ Ø 0 and yÕ > 0. Changing variable u = v(t), the result follows from
Lemma 2.B.2.

The next lemma is a key and the most di�cult part to prove.

Lemma 2.B.4. Denote by Ya the set of increasing convex functions y on [0, 1] with (2.B.7).
Then

inf
yœY

a

÷a[y] = lim
xæ“

x2÷†(a/x).

Proof. It is easy to see that when “ = 0, the minimum of ÷a is attained by y(u) = au/2 and so,

inf
yœY

a

÷a[y] = a2

12 = lim
xæ“

x2÷†(a/x).

Now, suppose “ ”= 0. Then we have five cases: (1) ≠2 < a/“ < 1, (2) a = “, (3) 1 < a/“ < 2,
(4) a/“ Ø 2 and (5) a/“ Æ ≠2.

Case 1). Assume ≠2 < a/“ < 1. For ‘ œ (0, 1), define y‘ as

y‘(u) =
I

“(1 ≠ u)≠a/2“ ≠ “ if 0 Æ u Æ 1 ≠ ‘

y‘,0 + yÕ
‘,0(u ≠ u‘,0) if 1 ≠ ‘ < u Æ 1,

where
u‘,0 = 1 ≠ ‘, y‘,0 = “(1 ≠ u‘,0)≠a/2“ ≠ “, yÕ

‘,0 = a

2(1 ≠ u‘,0)≠a/2“≠1.

Then, y‘ œ Ya for all ‘. Note that

y‘(u) + “ + 2“

a
(u ≠ 1)yÕ

‘(u) = “(1 ≠ u)≠a/2“ + 2“

a
(u ≠ 1)a

2(1 ≠ u)≠a/2“≠1 = 0

for u œ (0, 1 ≠ ‘). Therefore,

÷a[y‘] = ÷(u‘,0, y‘,0, yÕ
‘,0, 2“/a),

where
÷(v, w, z, ◊) =

⁄ 1

v
(w + z(u ≠ v) + “ + ◊(u ≠ 1)z)2 du.
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By a straightforward calculation,

÷(v, w, z, ◊) =◊2 ≠ ◊ + 1
3 (1 ≠ v)3

3
z + 3

2
1 ≠ ◊

◊2 ≠ ◊ + 1
“ + w

1 ≠ v

42

+ (◊ + 1)2

4(◊2 ≠ ◊ + 1)(“ + w)2(1 ≠ v).
(2.B.8)

It follows that
÷(u‘,0, y‘,0, yÕ

‘,0, 2“/a) = O(‘1≠a/“) æ 0 (2.B.9)

as ‘ æ 0, which means that
inf

yœY
a

÷a[y] = 0 = |“|2÷†(a/“).

Note that if a/“ < ≠2 then y‘ is not convex and if a/“ Ø 1 then (2.B.9) doesn’t hold.

Case 2). Assume a = “. For ‘ œ (0, 1), define y‘ as

y‘(u) =

Y
]

[

“
1≠‘

Ó
(1 ≠ u)≠(1≠‘)/2 ≠ 1

Ô
if 0 Æ u Æ 1 ≠ e≠1/‘2

y‘,0 + yÕ
‘,0(u ≠ u‘,0) if 1 ≠ e≠1/‘2

< u Æ 1,

where

u‘,0 = 1 ≠ e≠1/‘2
, y‘,0 = “

1 ≠ ‘

Ó
(1 ≠ u‘,0)≠(1≠‘)/2 ≠ 1

Ô
, yÕ

‘,0 = “

2 (1 ≠ u‘,0)≠(1≠‘)/2≠1.

Then, y‘ œ Ya for all ‘. Note that

“ + y‘(u) + 2(u ≠ 1)yÕ
‘(u) = ≠ “‘

1 ≠ ‘
+ “‘

1 ≠ ‘
(1 ≠ u)≠(1≠‘)/2

for u œ (0, u‘,0). Therefore,

÷a[y‘] = “2‘2

(1 ≠ ‘)2

⁄ u
‘,0

0

Ó
(1 ≠ u)≠(1≠‘)/2 ≠ 1

Ô2
du + ÷(u‘,0, y‘,0, yÕ

‘,0, 2),

which converges to 0 = ÷†(1) as ‘ æ 0 by (2.B.8).

Case 3). Assume 1 < a/“ < 2. For y œ Ya, let

Ï(u) = (1 ≠ u)a/2“(y(u) + “).

Then, Ï(0) = “, Ï(1) = 0 and

y + “ + 2“

a
(u ≠ 1)yÕ(u) = ≠2“

a
(1 ≠ u)1≠a/2“ÏÕ(u).

By the Cauchy-Schwarz inequality, for u0 œ [0, 1],

Ï(u0)2 =
----
⁄ 1

u0
ÏÕ(u)du

----
2

Æ
⁄ 1

u0
(1 ≠ u)2≠a/“ |ÏÕ(u)|2du

⁄ 1

u0
(1 ≠ u)a/“≠2du. (2.B.10)

Therefore,
⁄ 1

u0

3
y + “ + 2“

a
(u ≠ 1)yÕ(u)

42
du = 4“2

a2

⁄ 1

u0
(1 ≠ u)2≠a/“ |ÏÕ(u)|2du

Ø 4“2

a2

3
a

“
≠ 1

4
(1 ≠ u0)1≠a/“Ï(u0)2.

(2.B.11)
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Under the constraint Ï(1) = 0, (2.B.11) attains equality if and only if there exists r œ R such
that

Ï(u) = r(1 ≠ u)a/“≠1,

which corresponds to
y(u) = r(1 ≠ u)a/2“≠1 ≠ “. (2.B.12)

For ‘ œ (0, 1 ≠ u0), define y‘ as

y‘(u) =

Y
__]

__[

au/2 if 0 Æ u Æ u0
r(1 ≠ u)a/2“≠1 ≠ “ if u0 < u Æ u‘,0
y‘,0 + yÕ

‘,0(u ≠ u‘,0) if u‘,0 < u Æ 1,

(2.B.13)

where (u0, r) is the solution of
a

2u0 = r(1 ≠ u0)a/2“≠1 ≠ “,
a

2 = r
3

1 ≠ a

2“

4
(1 ≠ u0)a/2“≠2 (2.B.14)

and
u‘,0 = 1 ≠ ‘, y‘,0 = r(1 ≠ u‘,0)a/2“≠1 ≠ “, yÕ

‘,0 = r
3

1 ≠ a

2“

4
(1 ≠ u‘,0)a/2“≠2.

The solution of (2.B.14) uniquely exists and u0 œ (0, 1) and r > 0; in fact

u0 = 4“(a ≠ “)
a(4“ ≠ a) > 0, 1 ≠ u0 = 4“2 ≠ a2

a(4“ ≠ a) > 0, r = a“

2“ ≠ a
(1 ≠ u0)2≠a/2“ > 0.

Then, y‘ œ Ya for all ‘. By a straightforward calculation,

÷a[y‘] =
3

“ + a

2

42 u3
0

3 + 4“

a2 (a ≠ “)r2
1
(1 ≠ u0)a/“≠1 ≠ (1 ≠ u‘,0)a/“≠1

2

+ ÷(u‘,0, y‘,0, yÕ
‘,0, 2“/a)

æ
3

“ + a

2

42 u3
0

3 + 4“

a2 (a ≠ “)r2(1 ≠ u0)a/“≠1

=“2÷†(a/“)

as ‘ æ 0. Here we have used (2.B.8) to observe ÷(u‘,0, y‘,0, yÕ
‘,0, 2“/a) = O(‘a/“≠1). Now, let

us show this is the infimum. Suppose there exists y œ Ya such that ÷a[y] < “2÷†(a/“). Since a
convex function is approximated by piecewise linear convex functions arbitrarily close, we can
and do assume y itself is piecewise linear without loss of generality. Let

0 < u1 < u2 < · · · < un < 1

be the discontinuity points of yÕ. Let u0 = 0 and un+1 = 1. Denote yi = y(ui), yÕ
i≠ = limuøu

i

yÕ(u)
and yÕ

i+ = limu¿u
i

yÕ(u). Note that
a

2 = yÕ
0+ = yÕ

1≠ < yÕ
1+ = yÕ

2≠ < · · · < yÕ
n+

and yÕ
i≠ui Ø yi for each i by convexity. Let (vi, ri) be the solution of

yi + yÕ
i+(vi ≠ ui) = ri(1 ≠ vi)a/2“≠1 ≠ “, yÕ

i+ = ri

3
1 ≠ a

2“

4
(1 ≠ vi)a/2“≠2.

The solution uniquely exists and vi œ (0, 1) and ri > 0; in fact

vi =
“(2yÕ

i+ + a ≠ 2“) + (2“ ≠ a)(yÕ
i+ui ≠ yi)

yÕ
i+(4“ ≠ a) > 0,

1 ≠ vi =
(2“ ≠ a)(“ + yi + (1 ≠ ui)yÕ

i+)
yÕ

i+(4“ ≠ a) > 0.

(2.B.15)
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Further, it holds vi < vi+1 because

vi+1 ≠ vi =2“ + (2“ ≠ a)ui+1
4“ ≠ a

≠ (2“ ≠ a)(“ + yi+1)
yÕ

i+1+(4“ ≠ a)

≠ 2“ + (2“ ≠ a)ui

4“ ≠ a
+ (2“ ≠ a)(“ + yi)

yÕ
i+(4“ ≠ a)

>
2“ + (2“ ≠ a)ui+1

4“ ≠ a
≠ (2“ ≠ a)(“ + yi+1)

yÕ
i+(4“ ≠ a)

≠ 2“ + (2“ ≠ a)ui

4“ ≠ a
+ (2“ ≠ a)(“ + yi)

yÕ
i+(4“ ≠ a)

=(2“ ≠ a)(ui+1 ≠ ui)
4“ ≠ a

≠ (2“ ≠ a)(yi+1 ≠ yi)
yÕ

i+(4“ ≠ a) = 0.

In particular if vi+1 Æ ui+1, then vi < ui+1. This implies that the set

I := {i œ {0, 1, . . . , n}; ui Æ vi < ui+1}

is not empty. In fact, if vn < un, then vn≠1 < un. If vn≠1 < uu≠1, then vn≠2 < uu≠1. If I is
empty, then we conclude v0 < u0 = 0 by induction, which contradicts (2.B.15). Now, let

k = min{i œ {0, 1, 2, . . . , n}; ui Æ vi < ui+1}.

Then vi≠1 Ø ui for all i Æ k. For z Ø yÕ
i≠, define yi(·, z) by

yi(u, z) =

Y
__]

__[

y(u) if 0 Æ u Æ ui

yi + z(u ≠ ui) if ui < u Æ vi(z)
ri(z)(1 ≠ u)a/2“≠1 ≠ “ if vi(z) < u Æ 1,

(2.B.16)

where (vi(z), ri(z)) is the solution of

yi + z(vi(z) ≠ ui) = ri(z)(1 ≠ vi(z))a/2“≠1 ≠ “, z = ri(z)
3

1 ≠ a

2“

4
(1 ≠ vi(z))a/2“≠2.

The solution uniquely exists as before and we have

vi(yÕ
i+) = vi, ri(yÕ

i+) = ri

and
vi(yÕ

i≠) = vi≠1, ri(yÕ
i≠) = ri≠1.

Since
vi(z) = 2“ + (2“ ≠ a)ui

4“ ≠ a
≠ (2“ ≠ a)(“ + yi)

z(4“ ≠ a) ,

vi(z) is an increasing function. This implies that vi(z) Ø vi≠1 Ø ui for all i Æ k. Note also
that yk(u, yÕ

k+) = y(u) for u œ [0, vk]. Recall that a function of the form (2.B.12) for u Ø vk

minimizes (2.B.11) with u0 = vk. This implies that

÷a[yk(·, yÕ
k+)] < ÷a[y].

Further,

ˆz {÷a[yi(·, z)]}

= (4“z(1 ≠ ui) + (2“ ≠ a)(“ + yi))(2“z(1 ≠ ui) ≠ (2“ ≠ a)(“ + yi))2

3z2a2(4“ ≠ a)
> 0

(2.B.17)
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for all z Ø yÕ
i≠ (see Appendix). It means that

÷a[yk(·, yÕ
k≠)] < ÷a[yk(·, yÕ

k+)] < ÷a[y].

The function yk(·, yÕ
k≠) is continuously di�erentiable at uk and coincides with yk≠1(·, yÕ

k≠1+).
Again by (2.B.17), we have

÷a[yk≠1(·, yÕ
k≠1≠)] < ÷a[yk≠1(·, yÕ

k≠1+)] < ÷a[y].

We can repeat this argument to conclude

÷a[y1(·, yÕ
1≠)] < ÷a[y].

Note that yÕ
1≠ = a/2 and so, y1(·, yÕ

1≠) coincides with the limit of y‘ defined by (2.B.13) as
‘ æ 0. It is not di�cult see ÷a[y1(·, yÕ

1≠)] = “2÷†(a/“), which contradicts how y was chosen.
This completes Case 3.

Case 4). Assume a/“ Ø 2. Let ŷ(u) = au/2. Then, ŷ œ Ya and ÷a[ŷ] = “2÷†(a/“). Suppose
there exists y œ Ya such that ÷a[y] < “2÷†(a/“). Since a convex function is approximated by
piecewise linear convex functions arbitrarily close, we can and do assume y itself is piecewise
linear without loss of generality. Let u0 œ (0, 1) be the last point where yÕ jumps. Denote
y0 = y(u0), yÕ

≠ = limuøu0 yÕ(u) and yÕ
+ = limu¿u0 yÕ(u). For z Ø yÕ

≠, define y(·, z) as

y(u, z) =
I

y(u) if 0 Æ u Æ u0
y0 + z(u ≠ u0) if u0 < u Æ 1.

Note that y(·, yÕ
+) = y. As seen before,

⁄ 1

u0

3
y(u, z) + “ + 2“

a
(u ≠ 1)yÕ(u, z)

42
du = ÷(u0, y0, z, 2“/a)

and ÷ is given by (2.B.8). Since 1 ≠ ◊ = 1 ≠ 2“/a Ø 0, the first term of (2.B.8) is minimized by
z = yÕ

≠ on the region z Ø yÕ
≠. This implies

÷a[y(·, yÕ
≠)] < ÷a[y(·, yÕ

+)] = ÷a[y].

The function y(·, yÕ
≠) is continuously di�erentiable at u0. We can repeat the same argument

with y replaced by y(·, yÕ
≠) to obtain a smaller value of ÷a. Eventually, all discontinuity points

are removed and the final product coincides with ŷ(u) = au/2. This contradicts how y was
chosen. This completes Case 4.

Case 5). Assume a/“ Æ ≠2. The idea is the same as in the previous case. Let ŷ(u) = au/2. As
before, ŷ œ Ya and ÷a[ŷ] = “2÷†(a/“). Suppose there exists y œ Ya such that ÷a[y] < “2÷†(a/“).
Since a convex function is approximated by piecewise linear convex functions arbitrarily close,
we can and do assume y itself is piecewise linear without loss of generality. Let u0 œ (0, 1) be
the last point where yÕ jumps. Denote y0 = y(u0), yÕ

≠ = limuøu0 yÕ(u) and yÕ
+ = limu¿u0 yÕ(u).

For z Ø yÕ
≠, define y(·, z) as

y(u, z) =
I

y(u) if 0 Æ u Æ u0
y0 + z(u ≠ u0) if u0 < u Æ 1.

As seen before, y(·, yÕ
+) = y and

⁄ 1

u0

3
y(u, z) + “ + 2“

a
(u ≠ 1)yÕ(u, z)

42
du = ÷(u0, y0, z, 2“/a)
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with ÷ given by (2.B.8). Note that yÕ
≠ Ø a/2 by the convexity of y. Therefore, the same

argument as in the previous case remains valid here once we prove that

≠3
2

1 ≠ ◊

◊2 ≠ ◊ + 1
“ + w

1 ≠ v
Æ a

2 (2.B.18)

for ◊ = 2“/a, v = u0 and w = y0. By the convexity, we have y0 Ø u0a/2. Note also that

ˆv

;
“ + va/2

1 ≠ v

<
= a + 2“

2(1 ≠ v)2 Ø 0.

Therefore,

≠3
2

1 ≠ ◊

◊2 ≠ ◊ + 1
“ + y0
1 ≠ u0

Æ ≠3
2

1 ≠ ◊

◊2 ≠ ◊ + 1
“ + u0a/2

1 ≠ u0

Æ ≠3
2

1 ≠ ◊

◊2 ≠ ◊ + 1“.

To show (2.B.18), it su�ces then to see

a

2 + 3
2

1 ≠ ◊

◊2 ≠ ◊ + 1“ = a(2 ≠ ◊)(1 + ◊)
4(◊2 ≠ ◊ + 1) Ø 0.

Now, we can deduce a contradiction as in the previous case, which completes the proof.

Proof of Theorem 2.3.2. In order to bound the infimum of ÷b,c, it su�ces to consider c which is
continuous. Then by the preceding lemmas, we conclude

÷b,c(s, t) Ø lim
xæ“(s,t)

x2÷†(a(s, t)/x)

for any (b, c) œ Sa. It remains to show that this lower bound is asymptotically attained by a
sequence (bn, cn) œ Sa. By a localization argument, we can and do assume a, 1/a and “ are
bounded without loss of generality. It su�ces then to construct (bn, cn) œ Sa in such a way that
÷b

n

,c
n(s, t) is bounded in (n, s, t) and

÷b
n

,c
n(s, t) æ lim

xæ“(s,t)
x2÷†(a(s, t)/x)

for all (s, t). We often omit the dependence in (s, t) in the following. Define l = l(s, t) by
(2.3.12). Note that l can be expressed as

l(s, t) = a(s, t)l̂
3

“(s, t)
a(s, t)

4
,

where

l̂(x) =

Y
_____]

_____[

0 if x Ø 1
2x(1 ≠ x)/(4x ≠ 1) if 1 > x Ø 1/2
x if 1/2 > x Ø 0
0 if 0 > x.

Note that l̂ is continuous and 0 Æ l̂ Æ 1/2. Let ln = al̂n(“/a), where l̂n is a sequence of C4

functions such that

max
;

l̂(x) ≠ 1
n

,
4n

5n ≠ 2 l̂(x)
<

Æ l̂n(x) < min
;

l̂(x) + 1
n

,
1
2

<
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for all x and n Ø 3 and that l̂n(x) = 0 when x Æ ≠1/2. Let rn = a r̂n(“/a), where

r̂n(x) = l̂n(x) + exp{n2}(x ≠ 1/2)5
+ + |x|(1 ≠ exp{≠n(x + 1/2)5

≠}).

Note that r̂n is a C4 function, r̂n(x) = l̂n(x) when |x| Æ 1/2, and that the pointwise limit of r̂n

is

r̂Œ(x) =

Y
__]

__[

Œ if x > 1/2
l̂(x) if ≠ 1/2 Æ x Æ 1/2
|x| if x < ≠1/2.

Let Ân = 1 ≠ 2/n and

—̂n(x) =
I

Ân(1 ≠ 2l̂n(x))/(x + Ân l̂n(x)), if |x| Ø 1/2,

(x + 1
2)—̂n(≠1

2) + (x ≠ 1
2)—̂n(1

2) if |x| < 1/2.

Define hú
n(y) = hú

n(y, s, t) for y Ø 0 by

hú
n(y, s, t) = ĥú

n

3
y

a(s, t) ,
“(s, t)
a(s, t)

4
,

where

ĥú
n(z, x) =

Y
__]

__[

≠2z if 0 Æ z < l̂n(x)
—̂n(x)(z ≠ l̂n(x)) ≠ 2l̂n(x) if l̂n(x) Æ z < r̂n(x)
≠2(z ≠ r̂n(x)) + —̂n(x)(r̂n(x) ≠ l̂n(x)) ≠ 2l̂n(x) if z Ø r̂n(x).

Note that ĥú
n is continuous in (z, x) and therefore, so is hú

n in (y, s, t). Let

bú
n = inf{y > 0; hú

n(y) = ≠1}

and

gú
n(x) = 1

1 + hú
n(x) exp

;
≠2

a

⁄ x

0

dy

1 + hú
n(y)

<
,

÷ú
n = 2

a

⁄ bú
n

0
(x ≠ “hú

n(x))2gú
n(x)dx.

It is straightforward to see

bú
n = ab̂n(“/a) = rn + “ + Ânrn

“ + Ânln

3
a

2 ≠ ln

4
,

where
b̂n(x) = r̂n(x) + x + Ânr̂n(x)

x + Ân l̂n(x)

31
2 ≠ l̂n(x)

4
.

This is a sequence of C3,1 bounded functions, since

“ + Ânrn

“ + Ânln
= 1

if |“| Æ a/2 and we have
|“ + lnÂn| Ø a

2 (2.B.19)

otherwise. We always have ln Æ rn < bú
n.
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Define ‘ú
n(y) for y Ø 0 by ‘ú

n(y) = ‘̂n(y/a, “/a), where

‘̂n(z, x) =

Y
__]

__[

0 if 0 Æ z Æ l̂n(x),
1/n if l̂n(x) < z < (r̂n(x) + b̂n(x))/2,

0 if (r̂n(x) + b̂n(x))/2 Æ z.

Take a sequence of C5,4 functions ĥn such that

1 ≠ ‘̂n(z, x) Æ 1 + ĥn(z, x)
1 + ĥú

n(z, x)
Æ 1 + ‘̂n(z, x), ˆzĥn(z, x) Ø ≠2.

Such a sequence exists because —̂ Ø ≠2 and

inf
x

I
r̂n(x) + b̂n(x)

2 ≠ l̂n(x)
J

> 0

for each n. Define hn(y) = hn(y, s, t) for y Ø 0 by hn(y) = ĥn(y/a, “/a). Then, hn is a sequence
of C1,3,1 functions such that

1 ≠ ‘ú
n(y) Æ 1 + hn(y, s, t)

1 + hú
n(y, s, t) Æ 1 + ‘ú

n(y), ˆyhn(y, s, t) Ø ≠2/a

for all (y, s, t). Define bn, gn and ÷n as in same manner as bú
n, gú

n and ÷ú
n with hú

n replaced by
hn. It is easy to see bn = bú

n. Since hú
n(x) is piecewise linear in x, it is also easy to see
⁄ bú

n

0

dy

1 + hú
n(y) = Œ.

Therefore, ⁄ b
n

0

dy

1 + hn(y) = Œ

and so, ⁄ b
n

0
gn(x)dx =

⁄ Œ

0
e≠2t/adt = a

2 .

This means (bn, cn) œ Sa, where cn is defined by

cn(x) = hÕ
n(x) + 2/a

2(1 + hn(x)) .

Now, we show that (bn, cn) is an asymptotically optimal sequence. When |“| Æ a/2, we have
rn = ln, bn = a/2 and so, hn(x) = hú

n(x) = ≠2x/a. By a straightforward computation, we have

÷n = ÷ú
n = 1

3

3
“ + a

2

42
= “2÷†(a/“).

We therefore assume |“| > a/2 in the sequel. Define

‘n(y) =
I

0 if y Æ ln

1/n if y > ln.

Note that ‘n(y) Ø ‘ú
n(y) and so,

÷n Æ 2
a

⁄ bú
n

0
(x ≠ “hn(x))2 1 + ‘n(x)

1 + hú
n(x) exp

;
≠2

a

⁄ x

0

1 ≠ ‘n(y)
1 + hú

n(y)dy
<

dx.
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Since the square root of the right hand side is less than or equal
I

2
a

⁄ bú
n

0
(x ≠ “hú

n(x))2 1 + ‘n(x)
1 + hú

n(x) exp
;

≠2
a

⁄ x

0

1 ≠ ‘n(y)
1 + hú

n(y)dy
<

dx

J1/2

+ “

n

I
2
a

⁄ bú
n

0
(1 + hú

n(x))2 1 + ‘n(x)
1 + hú

n(x) exp
;

≠2
a

⁄ x

0

1 ≠ ‘n(y)
1 + hú

n(y)dy
<

dx

J1/2
,

it su�ces to show that

2
a

⁄ bú
n

0
(x ≠ “hú

n(x))2 1 + ‘n(x)
1 + hú

n(x) exp
;

≠2
a

⁄ x

0

1 ≠ ‘n(y)
1 + hú

n(y)dy
<

dx (2.B.20)

is bounded in (n, s, t) and æ “2÷†(a/“) as n æ Œ for all (s, t), and that

1
n

2
a

⁄ bú
n

0
(1 + hú

n(x))(1 + ‘n(x)) exp
;

≠2
a

⁄ x

0

1 ≠ ‘n(y)
1 + hú

n(y)dy
<

dx (2.B.21)

is bounded in (n, s, t). Let

tn(x) =
⁄ x

0

1 ≠ ‘n(y)
1 + hú

n(y)dy.

By a straightforward computation,

tn(x) =

Y
]

[
≠a

2 log(1 ≠ 2x/a) if x < ln,

≠a
2 log(1 ≠ 2ln/a) + 1

—
n

1
1 ≠ 1

n

2
log

1
1≠2l

n

/a+—
n

(x≠l
n

)
1≠2l

n

/a

2
if ln Æ x Æ rn,

where —n = —̂n(“/a)/a. Note that ln < a/2 by definition. Put

un = 1 ≠ exp{≠2tn(rn)/a}

and consider changing variable as

≠a

2 log(1 ≠ u) = tn(x),

that is,

x =

Y
]

[
au/2 if u < 2ln/a,
1
ln + “

Â
n

2 1
1≠u

1≠2l
n

/a

2”
n

≠ “
Â

n

if 2ln/a Æ u < un,

where
”n = ≠a

2
n

n ≠ 1—n = ≠1
2

n ≠ 2
n ≠ 1

a ≠ 2ln
“ + lnÂn

.

For u œ (un, 1], x = x(u) has the form of linear extrapolation because tÕ
n(x) is continuous at

x = rn and the slope of hú
n(x) is ≠2/a for x > rn. Then, we have that (2.B.20) is equal to

⁄ 2l
n

/a

0

3
x(u) + “ + 2“

a
(u ≠ 1)xÕ(u)

42
du

+ n + 1
n ≠ 1

⁄ 1

2l
n

/a

3
x(u) + “ + 2“

a

3
1 ≠ 1

n

4
(u ≠ 1)xÕ(u)

42
du.

The first term is equal to 3
“ + a

2

42 1
3

32ln
a

43
,
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which is bounded and converges to
3

“ + a

2

42 1
3

32l

a

43
. (2.B.22)

The second terms is dominated by (n + 1)/(n ≠ 1) times

⁄ 1

2l
n

/a

A

“
3

1 ≠ 1
Ân

4
+

3
ln + “

Ân

4
(1 ≠ “—n)

3 1 ≠ u

1 ≠ 2ln/a

4”
n

B2
du

+ ÷(un, wn, zn, 2“(1 ≠ 1/n)/a),
(2.B.23)

where ÷ is defined by (2.B.8) and

wn =
3

ln + “

Ân

4 3 1 ≠ un

1 ≠ 2ln/a

4”
n

≠ “

Ân
,

zn = ≠ a”n

a ≠ 2ln

3
ln + “

Ân

4 3 1 ≠ un

1 ≠ 2ln/a

4”
n

≠1
.

Looking at the explicit expression of ÷(un, wn, zn, 2“(1 ≠ 1/n)a), nontrivial estimates are neces-
sary only for

(1 ≠ un)1+2”
n

and
(a ≠ 2ln)≠2”

n .

Since minx>0 x log x = 1/e, the latter is dominated by

exp
;2

e

n ≠ 2
n ≠ 1

1
“ + lnÂn

<

and so, bounded thanks to (2.B.19). By definition of ln and Ân, we have that

ln Ø 0, a ≠ 2ln > 0,
3

2 + Ân

2

4
ln Ø 2l

and that ln = 0 when “ < ≠a/2. This implies that

1 + 2”n = 1 ≠ n ≠ 2
n ≠ 1

a ≠ 2ln
“ + lnÂn

>

Y
]

[
1 if “ < ≠a/2,
“≠a+2l
“+a/2 Ø 0 if “ > a/2.

It follows then that ÷(un, wn, zn, 2“(1 ≠ 1/n)/a) is bounded in (n, s, t). Moreover, since un æ 1,
it converges to 0 for all (s, t) and this is easy to see if “ ”= a. In case “ = a, note that there exist
constants C, C Õ such that

1 ≠ un Æ C(C Õ + —nrn)≠2(1≠1/n)/(a—
n

)

and —n æ 1/a. Since
1 + 2”n > 1 ≠ n ≠ 2

n ≠ 1
and 1/rn = O(e≠n2), we have

(1 ≠ un)1+2”
n Æ C(C Õ + —nrn)≠2/(na—

n

) æ 0.

Now, let us see the first term of (2.B.23) is bounded in (n, s, t) and converges to

l2(a + 2“)2(“ + l)(a ≠ 2l)
a3(“ ≠ a + 3l) . (2.B.24)
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By a straightforward computation,
3

ln + “

Ân

42
(1 ≠ “—n)2

⁄ 1

2l
n

/a

3 1 ≠ u

1 ≠ 2ln/a

42”
n

du

= (lnÂn(a + 2“) + a“(1 ≠ Ân))2

a3Â2
n

a ≠ 2ln
1 + 2”n

.

(2.B.25)

When “ < ≠a/2, we have 1 + 2”n Ø 1 as already seen and so, (2.B.25) is bounded. When
“ > a/2, note that

ln
1 + 2”n

Æ (“ + lnÂn)ln
“ ≠ a + ln(2 + Ân) Æ (“ + lnÂn)ln

“ ≠ a + 2l + lnÂn/2 Æ 2“ + lnÂn

Ân

since “ ≠ a + 2l Ø 0. Further, if a/“ Æ 1 + 1/(2n), then

1 + 2”n Ø 1 ≠ n ≠ 2
n ≠ 1

a

“
Ø 1 ≠ n ≠ 2

n ≠ 1

3
1 + 1

2n

4
= n + 2

2n(n ≠ 1)

and if a/“ > 1 + 1/(2n), then

1 + 2”n >
“ ≠ a + 2l

“ + a/2 = a(a ≠ “)
(4“ ≠ a)(“ + a/2) >

1
2n + 1

a2

(4“ ≠ a)(“ + a/2)

These estimates imply that ln/(1+2”n) and (1≠Ân)/(1+2”n) are bounded in (n, t, s). It follows
then that (2.B.25) is bounded in (n, t, s). It is easy to see that (2.B.25) converges to (2.B.24)
for all (s, t). By a straightforward computation, we see that the sum of (2.B.22) and (2.B.24)
coincides with “2÷†(a/“).
It only remains to show that (2.B.21) is bounded. By the same change of variable, we have that
(2.B.21) is equal to

1
n

⁄ 2l
n

/a

0

32
a

(u ≠ 1)xÕ(u)
42

du + n + 1
n(n ≠ 1)

⁄ 1

2l
n

/a

32
a

3
1 ≠ 1

n

4
(u ≠ 1)xÕ(u)

42
du.

The first term is less than 1/n. It is then su�cient to estimate

1
n

⁄ 1

2l
n

/a
(1 ≠ u)2|xÕ(u)|2du

Æ ”2
n

n

3
ln + “

Ân

42 ⁄ 1

2l
n

/a

3 1 ≠ u

1 ≠ 2ln/a

42”
n

du + z2
n

3n
(1 ≠ un)3.

The right hand terms are shown to be bounded by using the above estimates to deal with
(2.B.23). This completes the proof.
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3.1 Introduction
We consider the problem of tracking a target whose dynamics (X¶

t ) is modeled by a continuous
Itō semi-martingale defined on a filtered probability space (�, F , (Ft)tØ0,P) with values in Rd

such that
dX¶

t = btdt +
Ô

atdWt, X¶
0 = 0.

Here, (Wt) is a d-dimensional Brownian motion and (bt), (at) are predictable processes with
values in Rd and Sd

+ the set of d ◊ d symmetric positive definite matrices respectively. An agent
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observes X¶
t and adjusts her position in order to follow X¶

t . However, she has to pay certain
intervention costs for position adjustments. The objective is to stay close to the target X¶

t while
minimizing the tracking e�orts. This problem arises naturally in various situations such as dis-
cretization of option hedging strategies [Fuk11a, RT14, GL14a], management of an index fund
[PS04, Kor99], control of exchange rate [MØ97, CZ00], portfolio selection under transaction costs
[KMK15, ST13, PST15, AMKS15], trading under market impact [BSV15, MMKS14, LMKW14]
or illiquidity costs [NW11, RS10].

More precisely, let (Y Â
t ) be the position of the agent determined by the control Â, with Y Â

t œ Rd

and let (Xt) be the deviation of the agent from the target (X¶
t ), so that

Xt = ≠X¶
t + Y Â

t . (3.1.1)

Let H0(X) be the penalty functional for the deviation from the target and H(Â) the cost incurred
by the control Â up to a finite horizon T . Then the problem of tracking can be formulated as

inf
ÂœA

J(Â), J(Â) = H0(X) + H(Â), (3.1.2)

where A is the set of admissible strategies. As is usually done in the literature (see for example
[Kar83, MRT92]), we consider a penalty H0(X) for the deviation from the target of additive
form

H0(X) =
⁄ T

0
rtD(Xt)dt,

where (rt) is a random weight process and D(x) a determinstic function. For example, we can
take D(x) = Èx, �DxÍ where �D is positive definite and È·, ·Í is the inner product in Rd. On the
other hand, depending on the nature of the costs, the agent can either control her speed at all
times or jump towards the target instantaneously. The control Â and the cost functional H(Â)
belong to one of the following classes:

1. Impulse Control. There is a fixed cost component for each action, so the agent has to
intervene in a discrete way. The class A of admissible controls contains all sequences
{(·j , ›j), j œ Nú} where {·j , j œ Nú} is a strictly increasing sequence of stopping times
representing the jump times and satisfying limjæŒ ·j = +Œ, and for each j œ Nú, ›j œ Rd

is a F·
j

-measurable random vector representing the size of j-th jump. The position of
the agent is given by

Yt =
ÿ

0<·
j

Æt

›j

and the cumulated cost is then given by

H(Â) =
ÿ

0<·
j

ÆT

k·
j

F (›j),

where (kt) is a random weight process and F (›) > 0 is the cost of a jump with size › ”= 0.
If we take kt = 1 and F (›) =

qd
i=1 {›i ”=0} where ›i is the i-th component of ›, then H(Â)

represents the total number of actions on each component over the time interval [0, T ],
see [Fuk11a, GL14a]. If F (›) =

qd
i=1 {›i ”=0} +

qd
i=1 Pi|›i| where Pi Ø 0, we say that the

cost has a fixed component and a proportional component.
2. Singular Control. If the cost is proportional to the size of the jump, then infinitesimal

displacement is also allowed and it is natural to model (Yt) by a process with bounded
variation. In this case, the class A of admissible controls contains all couples (“, Ï)
where Ï is a progressively measurable increasing process with Ï0≠ = 0, which represents
the cumulated amount of intervention and “ is a progressively measurable process with
“t œ � := {n œ Rd|

qd
i=1 |ni| = 1} for all t Ø 0, which represents the distribution of
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the control e�ort in each direction. In other words, Ït =
qd

i=1 ÎY iÎt where Î · Î denotes
the absolute variation of a process, and “i

t is the Radon-Nikodym derivative of Y i
t with

respect to Ït. The position of the agent is given by

Yt =
⁄ t

0
“sdÏs,

and the corresponding cost is usually given as (see for example [KMK15, ST13])

H(Â) =
⁄ T

0
htP (“t)dÏt,

where (ht) is a random weight process and we take (for example) P (“) = ÈP, |“|Í with P œ
Rd

+ and |“| = (|“1|, · · · , |“d|)T . The vector P = (P1, · · · , Pd)T represents the coe�cients
of proportional costs in each direction.

3. Regular Control. Most often, the process (Yt) is required to be absolutely continuous with
respect to time, see for example [RS10, MMKS14] among many others. In this case, the
class A of admissible controls contains all progressively measurable integrable processes
u with values in Rd, representing the speed of the agent, the position of the agent is given
by

Yt =
⁄ t

0
usds,

and the cost functional is
H(Â) =

⁄ T

0
ltQ(ut)dt,

where (lt) is a random weight process and, for example, Q(u) = Èu, �QuÍ with �Q a
positive definite matrix. Comparing to the case of singular control where the control
variables are (“t) and (Ït), here we optimize over (ut).

4. Combined control. It is possible that several types of control are available to the agent. In
that case, Â = (Â1, . . . , Ân) where for each i, Âi belongs to one of the classes introduced
before. For example, in the case of combined regular and impulse control (see [MØ97]),
the position of the agent is given by

Yt =
ÿ

0<·
j

Æt

›j +
⁄ t

0
usds,

while the cost functional is given by

H(Â) =
ÿ

0<·
j

ÆT

k·
j

F (›j) +
⁄ T

0
ltQ(ut)dt.

Similarly, one can consider other combinations of controls.

The problem (3.1.1)-(3.1.2) rarely admits an explicit solution. In this chapter, we propose an
asymptotic framework where the tracking costs are small and derive a lower bound for (3.1.1)-
(3.1.2) under this setting. More precisely we introduce a parameter Á tending to zero and
consider a family of cost functionals HÁ(Â). For example, we can have HÁ(Â) = Á—

Â H(Â) for
some constant —Â, but di�erent components of the cost functional may also scale with Á at
di�erent rates. We define the control problem

XÁ
t = ≠X¶

t + Y ÂÁ

t , (3.1.1-Á)
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and objective function

inf
Â‘œA

JÁ(ÂÁ), JÁ(ÂÁ) = H0(XÁ) + HÁ(ÂÁ). (3.1.2-Á)

Moreover, we assume that the functions D, Q, F , P possess a homogeneity property.

The main result of this chapter is a precise asymptotic relation between JÁ and the time-average
control problem of Brownian motion with constant parameters, in a variety of settings. Let us
give a flavor of the main result in the case of combined regular and impulse control (note that
situations involving singular control are considered in Section 3.3). In this case, the dynamics
of the controlled Brownian motion is given by

Xs =
Ô

aWs +
⁄ s

0
u‹d‹ +

ÿ

0<·
j

Æs

›j , (3.1.1-local)

and the time-average control problem can be formulated as

ÂI(a, r, l, k) = inf
(·

j

,›
j

,u)
lim

SæŒ

1
S
E

Ë ⁄ S

0

!
rD(Xs) + lQ(us)

"
ds + k

ÿ

0<·
j

ÆS

F (›j)
È
. (3.1.2-local)

At the level of generality that we are interested in, we need to consider a relaxed formulation of
the above control problem, as a linear programming problem on the space of measures. Following
[KS01], we introduce the occupation measures

µt(H1) = 1
t
E

⁄ t

0
H1(Xs, us)ds, H1 œ B(Rd ◊ Rd),

flt(H2) = 1
t
E

ÿ

0<·
j

Æt

H2(Xs≠, ›j), H2 œ B(Rd ◊ Rd).

If the process X and the controls are stationary, these measures do not depend on time and
therefore

lim
SæŒ

1
S
E

Ë ⁄ S

0

!
rD(Xs) + lQ(us)

"
ds + k

ÿ

0<·
j

ÆS

F (›j)
È

=
⁄

Rd◊Rd

(rD(x) + lQ(u))µ(dx ◊ du) +
⁄

Rd◊Rd

kF (›)fl(dx ◊ d›).

On the other hand, by Itō’s formula, for any f œ C2
0 ,

f(Xt) = f(X0) +
Ô

a
⁄ t

0
f Õ(Xs)dWs +

⁄ t

0
Af(Xs, us)ds +

ÿ

0<·
j

Æt

Bf(X·
j

≠, ›j), (3.1.3)

where

Af(x, u) = 1
2

ÿ

i,j

aijˆ2
ijf(x) + Èu, Òf(x)Í,

Bf(x, ›) = f(x + ›) ≠ f(x).

Taking expectation in (3.1.3) and assuming once again the stationarity of controls, we see that
under adequate integrability conditions the measures µ and fl satisfy the constraint

⁄

Rd◊Rd

Af(x, u)µ(dx ◊ du) +
⁄

Rd◊Rd

Bf(x, ›)fl(dx ◊ d›) = 0. (3.1.4)
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Therefore, the time-average control problem of Brownian motion (3.1.1-local)-(3.1.2-local) is
closely related to the problem of computing

I(a, r, l, k) = inf
µ,fl

⁄

Rd◊Rd

(rD(x) + lQ(u))µ(dx ◊ du) +
⁄

Rd◊Rd

kF (›)fl(dx ◊ d›), (3.1.5)

where µ is a probability measure and fl is a finite positive measure satisfying the constraint
(3.1.4). In Section 3.4 we shall see that this characterization is essentially equivalent to (3.1.1-local)-
(3.1.2-local) if we formulate the optimal control problem for the Brownian motion as a controlled
martingale problem. In the considered case of combined regular and impulse control, our main
result is the following.

Main result, combined regular and impulse control. There exists —ú > 0 explicitly
determined by the cost structure H0 and (HÁ)Á>0 such that for all ” > 0 and any sequence of
admissible strategies {ÂÁ œ A, Á > 0}, we have

lim
Áæ0+

P
Ë 1
Á—ú JÁ(ÂÁ) Ø

⁄ T

0
Itdt ≠ ”

È
= 1, (3.1.6)

where It = I(at, rt, kt, lt) is the optimal cost of the linear programming formulation (3.1.5) of
the time-average control problem of Brownian motion (3.1.1-local)-(3.1.2-local) with parameters
frozen at time t.

The original problem (3.1.1)-(3.1.2) is therefore simplified in the sense that the local problem
(3.1.1-local)-(3.1.2-local) is easier to analyze since the dynamics of the target is reduced to that
of a Brownian motion and the cost parameters become constant. In many practically important
cases (see Examples 3.4.3-3.4.7), we are able to solve explicitly (3.1.1-local)-(3.1.2-local) and
show that the two formulations of the time-average control problem are equivalent and therefore
I = ÂI. Moreover, in Chapter 4, we show that for the examples where (3.1.1-local)-(3.1.2-local)
admits an explicit solution, the lower bound is tight (see Remark 3.3.1).

Our result enables us to revisit the asymptotic lower bounds for the discretization of hedging
strategies in [Fuk11a, GL14a]. In these papers, the lower bounds are deduced by using subtle
inequalities. In Chapter 4 we show that these bounds can be interpreted in a simple manner
through the time-average control problem of Brownian motion.

The local control problem (3.1.1-local)-(3.1.2-local) also arises in the study of utility maximiza-
tion under transaction costs, see [ST13, PST15, AMKS15, MMKS14]. This is not surprising
since at first order, these problems and the tracking problem are essentially the same, see Sec-
tion 4.4.3. In the above references, the authors derive the PDE associated to the first order
correction of the value function, which turns out to be the HJB equation associated to the
time-average control of Brownian motion. Inspired by [KS99] and [KM93], our approach, based
on weak convergence of empirical occupation measures, is very di�erent from the PDE-based
method and enables us to treat more general situations. Contrary to [KS99], where the lower
bound holds under expectation, we obtain pathwise lower bounds. Compared to [KM93], we are
able to treat impulse control and general dynamics for the target.

The paper is organized as follows. In Section 3.2, we introduce our asymptotic framework and
establish heuristically the lower bound for the case of combined regular and impulse control.
Various extensions are then discussed in Section 3.3. In Section 3.4, we provide an accurate def-
inition for the time-average control of Brownian motion using a relaxed martingale formulation
and collect a comprehensive list of explicit solutions in dimension one. The proofs are given in
Sections 3.5, 3.6 and 3.7.
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Notation. For a complete, separable, metric space S, we define C(S) the set of continuous
functions on S, Cb(S) the set of bounded, continuous functions on S, M(S) the set of finite
nonnegative Borel measures on S and P(S) the set of probability measures on S. The sets
M(S) and P(S) are equipped with the topology of weak convergence. We define L(S) the set
of nonnegative Borel measures � on S ◊ [0, Œ) such that �(S ◊ [0, t]) < Œ. Denote �t the
restriction of � to S ◊ [0, t]. We use Rd

x, Rd
u and Rd

› to indicate the state space corresponding
to the variables x, u and ›. Finally, C2

0 (Rd) denotes the set of twice di�erentiable real functions
on Rd with compact support, equipped with the norm

ÎfÎC2
0

= ÎfÎŒ +
dÿ

i=1
ÎˆifÎŒ +

dÿ

i,j=1
Îˆ2

ijfÎŒ.

3.2 Tracking with combined regular and impulse control
Instead of giving directly a general result, which would lead to a cumbersome presentation, we
focus in this section on the tracking problem with combined regular and impulse control. This
allows us to illustrate our key ideas. Other situations, such as singular control, are discussed in
Section 3.3.

In the case of combined regular and impulse control, a tracking strategy (u, ·, ›) is given by a
progressively measurable process u = (ut)tØ0 with values in Rd and (·, ›) = {(·j , ›j), j œ Nú},
with (·j) an increasing sequence of stopping times and (›j) a sequence of F·

j

-measurable random
variables with values in Rd. The process (ut) represents the speed of the agent. The stopping
time ·j represents the timing of j-th jump towards the target and ›j the size of the jump. The
tracking error obtained by following the strategy (u, ·, ›) is given by

Xt = ≠X¶
t +

⁄ t

0
usds +

ÿ

0<·
j

Æt

›j .

At any time the agent is paying a cost for maintaining the speed ut and each jump ›j incurs a
positive cost. We are interested in the following type of cost functional

J(u, ·, ›) =
⁄ T

0

!
rtD(Xt) + l¶t Q(ut)

"
dt +

ÿ

j:0<·
j

ÆT

!
k¶

·
j

F (›j) + h¶
·

j

P (›j)
"
,

where T œ R+ and (rt), (l¶t ), (k¶
t ) and (h¶

t ) are random weight processes. The cost functions D,
Q, F , P are deterministic functions which satisfy the following homogeneity property

D(Áx) = Á’
D D(x), Q(Áu) = Á’

QQ(u), F (Á›) = Á’
F F (›), P (Á›) = Á’

P P (›), (3.2.1)

for any Á > 0 and
’D > 0, ’Q > 1, ’F = 0, ’P = 1.

Note that here we slightly extend the setting of the previous section by introducing two functions
F and P which typically represent the fixed and the proportional costs respectively.

In this chapter, we essentially have in mind the case where

D(x) = Èx, �DxÍ, Q(u) = Èu, �QuÍ, F (›) =
dÿ

i=1
Fi {›i ”=0}, P (›) =

dÿ

i=1
Pi|›i|,

with Fi, Pi œ R+ such that
min

i
Fi > 0, (3.2.2)

and �D, �Q œ Sd
+. Note that in this situation, we have ’D = ’Q = 2.
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3.2.1 Asymptotic framework
We now explain our asymptotic setting where the costs are small and provide a heuristic proof
of our main result. We assume that there exist Á > 0 and —Q, —F , —P > 0 such that

l¶t = Á—
Q lt, k¶

t = Á—
F kt, h¶

t = Á—
P ht. (3.2.3)

Then the asymptotic framework consists in considering the sequence of optimization problems
indexed by Á æ 0

inf
(uÁ,·Á,›Á)œA

JÁ(uÁ, · Á, ›Á),

with

JÁ(uÁ, · Á, ›Á) =
⁄ T

0

!
rtD(XÁ

t ) + Á—
Q ltQ(uÁ

t )
"
dt +

ÿ

j:0<·Á

j

ÆT

!
Á—

F k·Á

j

F (›Á
j ) + Á—

P h·Á

j

P (›Á
j )

"
,

and
XÁ

t = ≠X¶
t +

⁄ t

0
uÁ

sds +
ÿ

j:0<·Á

j

Æt

›Á
j .

The key observation is that under such setting, the tracking problem can be decomposed into
a sequence of local problems. More precisely, let {tÁ

k = k”Á, k = 0, 1, · · · , KÁ} be a partition of
the interval [0, T ] with ”Á æ 0 as Á æ 0. Then we can write

JÁ(uÁ, · Á, ›Á) =
KÁ≠1ÿ

k=0

1 ⁄ tÁ

k

+”Á

tÁ

k

!
rtD(XÁ

t ) + Á—
Q ltQ(uÁ

t )
"
dt

+
ÿ

j:tÁ

k

<·Á

j

ÆtÁ

k

+”Á

!
Á—

F k·Á

j

F (›Á
j ) + Á—

P h·Á

j

P (›Á
j )

"2

=
KÁ≠1ÿ

k=0

1
”Á

1 ⁄ tÁ

k

+”Á

tÁ

k

!
rtD(XÁ

t ) + Á—
Q ltQ(uÁ

t )
"
dt

+
ÿ

j:tÁ

k

<·Á

j

ÆtÁ

k

+”Á

!
Á—

F k·Á

j

F (›Á
j ) + Á—

P h·Á

j

P (›Á
j )

"2
(tÁ

k+1 ≠ tÁ
k)

=
KÁ≠1ÿ

k=0
jÁ

tÁ

k

(tÁ
k+1 ≠ tÁ

k),

with

jÁ
tÁ

k

= 1
”Á

1 ⁄ tÁ

k

+”Á

tÁ

k

!
rtD(XÁ

t ) + Á—
Q ltQ(uÁ

t )
"
dt +

ÿ

j:tÁ

k

<·Á

j

ÆtÁ

k

+”Á

!
Á—

F k·Á

j

F (›Á
j ) + Á—

P h·Á

j

P (›Á
j )

"2
.

As Á tends to zero, we approximately have

JÁ(uÁ, · Á, ›Á) ƒ
⁄ T

0
jÁ

t dt.

We are hence led to study jÁ
t as Á æ 0, which is closely related to the time-average control

problem of Brownian motion. To see this, consider the following rescaling of XÁ over the
horizon (t, t + ”Á]:

ÂXÁ,t
s = 1

Á—
XÁ

t+Á–—s, s œ (0, T Á],

where T Á = Á≠–—”Á, – = 2 and — > 0 is to be determined (here – = 2 is related to the
scaling property of Brownian motion). We use the superscript t to indicate that the scaled
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systems correspond to the horizon (t, t + ”Á]. Then the dynamics of ÂXÁ,t is given by, see [RY99,
Proposition V.1.5],

ÂXÁ,t
s = ÂXÁ,t

0 +
⁄ s

0
ÂbÁ,t

‹ d‹ +
⁄ s

0

Ò
ÂaÁ,t

‹ dÊW Á,t
‹ +

⁄ s

0
ÂuÁ,t

‹ d‹ +
ÿ

0<Â·Á,t

j

Æs

Â›Á
j ,

with
ÂbÁ,t

s = ≠Á(–≠1)—bt+Á–—s, ÂaÁ,t
s = at+Á–—s, ÊW Á,t

s = ≠ 1
Á—

(Wt+Á–—s ≠ Wt),

and
ÂuÁ,t

s = Á(–≠1)—uÁ
t+Á–—s, Â›Á

j = 1
Á—

›Á
j , Â· Á,t

j = 1
Á–—

(· Á
j ≠ t) ‚ 0.

Note that (ÊW Á,t
s ) a Brownian motion with respect to ÂFÁ,t

s = Ft+Á–—s. Abusing notation slightly,
we write

d ÂXÁ,t
s = ÂbÁ,t

s ds +
Ò

ÂaÁ,t
s dÊW Á,t

s + ÂuÁ,t
s ds + d(

ÿ

0<Â·Á,t

j

Æs

Â›Á
j ), s œ (0, T Á]. (3.2.4)

Using the homogeneity properties (3.2.1) of the cost functions, we obtain

jÁ
t = 1

T Á

1 ⁄ T Á

0

!
Á—’

D rt+Á–—sD( ÂXÁ,t
s ) + Á—

Q

≠(–≠1)’
Q

—lt+Á–—sQ(ÂuÁ,t
s )

"
ds

+
ÿ

0<Â·Á,t

j

ÆT Á

!
Á—

F

≠(–≠’
F

)—kt+Á–—Â·Á,t

j

F (Â›Á
j ) + Á—

P

≠(–≠’
P

)—ht+Á–—Â·Á,t

j

P (Â›Á
j )

"2

ƒ 1
T Á

1 ⁄ T Á

0

!
Á—’

D rtD( ÂXÁ,t
s ) + Á—

Q

≠(–≠1)’
Q

—ltQ(ÂuÁ,t
s )

"
ds

+
ÿ

0<Â·Á,t

j

ÆT Á

!
Á—

F

≠(–≠’
F

)—ktF (Â›Á
j ) + Á—

P

≠(–≠’
P

)—htP (Â›Á
j )

"2
.

The second approximation can be justified by the continuity of the cost coe�cients rt, lt, kt and
ht.

Now, if there exists — > 0 such that

—’D = —Q ≠ (– ≠ 1)’Q— = —F ≠ (– ≠ ’F )— = —P ≠ (– ≠ ’P )—,

that is,
— = —F

’D + – ≠ ’F
= —P

’D + – ≠ ’P
= —Q

’D + (– ≠ 1)’Q
, (3.2.5)

where – = 2, then we have
jÁ

t ƒ Á—’
D IÁ

t ,

with

IÁ
t = 1

T Á

1 ⁄ T Á

0

!
rtD( ÂXÁ,t

s ) + ltQ(ÂuÁ,t
s )

"
ds +

ÿ

0<Â·Á,t

j

ÆT Á

!
ktF (Â›Á

j ) + htP (Â›Á
j )

"2
. (3.2.6)

By suitably choosing ”Á, we have
”Á æ 0, T Á æ Œ.

It follows that ÂbÁ,t
s ƒ 0 and ÂaÁ,t

s ƒ at for s œ (0, T Á]. Therefore, the dynamics of (3.2.4) is
approximately a controlled Brownian motion with di�usion matrix at. We deduce that

IÁ
t & I(at, rt, lt, kt, ht), (3.2.7)
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where the term in the right-hand side is defined by

I(a, r, l, k, h) = inf
(u,·,›)

lim sup
SæŒ

1
S

Ë ⁄ S

0

!
rD(Xs) + lQ(us)

"
ds +

ÿ

0Æ·
j

ÆS

!
kF (›j) + hP (›j)

"È
, (3.2.8)

with
Xs =

Ô
aWs +

⁄ s

0
urdr +

ÿ

0Æ·
j

Æs

›j . (3.2.9)

Therefore, we obtain that as Á æ 0:

JÁ ƒ
⁄ T

0
jÁ

t dt ƒ Á—’
D

⁄ T

0
IÁ

t dt & Á—’
D

⁄ T

0
Itdt.

Then we may expect that (3.2.8) is equal to the following expected cost criterion

I(a, r, l, k, h) = inf
(u,·,›)

lim sup
SæŒ

1
S
E

Ë ⁄ S

0

!
rD(Xs)+lQ(us)

"
ds+

ÿ

0Æ·
j

ÆS

!
kF (›j)+hP (›j)

"È
, (3.2.10)

see for example [BG88, JZ06c, JZ06a]. Therefore, we will use the latter version to characterize
the lower bound since it is easier to manipulate.

Remark 3.2.1. The approach of weak convergence is classical for proving inequalities similar
to (3.2.7), in particular in the study of heavy tra�c networks (see [Kus14, section 9] for an
overview). The usual weak convergence theorems enable one to show that the perturbed system
converges in the Skorohod topology to the controlled Brownian motion as Á tends to zero. How-
ever, since the time horizon tends to infinity, this does not immediately imply the convergence
of time-average cost functionals like IÁ

t .

In [KM93], the authors consider pathwise average cost problems for controlled queues in the
heavy tra�c limit, where the control term is absolutely continuous. They use the empirical
“functional occupation measure” on the canonical path space and characterize the limit as a
controlled Brownian motion. The same method has also been used in [BGL11] in the study of
single class queueing networks.

However, this approach cannot be applied directly to singular/impulse controls for which the
tightness of the occupation measures is di�cult to establish. In fact, the usual Skorokhod topology
is not suitable for the impulse control term

ÂY Á
t :=

ÿ

0<Â·Á

j

Æt

Â›Á
j .

Indeed, in the case of singular/impulse control, the component { ÂY Á} is generally not tight un-
der the Skorokhod topology. For example (see [Kus01, p.72]), consider the family (Y Á

t ) where
the function Y Á

t equals zero for t < 1 and jumps upward by an amount
Ô

Á at times 1 + iÁ,
i = 0, 1, . . . , Á≠1/2 until it reaches the value unity. The natural limit of Y Á is of course {tØ1}
but this sequence is not tight in the Skorokhod topology. The nature of this convergence is dis-
cussed in [Kur91] and a corresponding topology is provided in [Jak97].

This di�culty could be avoided by introducing a random time change after which the (suitably
interpolated) control term becomes uniformly Lipschitz and hence converges under the Skorokhod
topology. This technique is used in [BG06, BG12, Kus01] to study the convergence of controlled
queues with discounted costs. This seems to be a possible alternative way to extend the approach
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of [KM93] to singular/impulse controls. Nevertheless, the analysis would probably be quite in-
volved.

Instead of proving the tightness of control terms ( ÂY Á
t ) in weaker topologies, we shall use an al-

ternative characterization of the time-average control problem of Brownian motion. In [KS99],
the authors characterize the time-average control of a Jackson network in the heavy tra�c limit
as the solution of a linear program. The use of occupation measure on the state space instead
of the path space turns out to be su�cient to describe the limiting stochastic control problem.
However, the optimization criterion is not pathwise.

In this chapter, we use a combination of the techniques in [KS99] and [KM93] to obtain pathwise
lower bounds.

3.2.2 Lower bound

In order to properly state our result for the case of combined regular and impulse control, we
first introduce the solution I = I(a, r, l, k, h) of the following linear programming problem:

I(a, r, l, k, h) = inf
(µ,fl)

⁄

Rd

x

◊Rd

u

!
rD(x) + lQ(u)

"
µ(dx ◊ du) +

⁄

Rd

x

◊Rd

›

\{0
›

}

!
kF (›) + hP (›)

"
fl(dx ◊ d›),

(3.2.11)
with (µ, fl) œ P(Rd

x ◊ Rd
u) ◊ M(Rd

x ◊ Rd
› \ {0›}) satisfying the following constraint

⁄

Rd

x

◊Rd

u

Aaf(x, u)µ(dx ◊ du) +
⁄

Rd

x

◊Rd

›

\{0
›

}
Bf(x, ›)fl(dx ◊ d›) = 0, ’f œ C2

0 (Rd
x), (3.2.12)

where
Aaf(x, u) = 1

2
ÿ

i,j

aijˆ2
ijf(x) + Èu, Òf(x)Í, Bf(x, ›) = f(x + ›) ≠ f(x).

We will see in Section 3.4.2 that it is essentially an equivalent characterization of the time-
average control problem (3.2.9)-(3.2.10). In Example 3.4.6, we consider a particular case for
which I and the optimal solution µú, flú can be explicitly determined. From now on, we make
the following assumptions.

Assumption 3.2.1 (Regularity of linear programming). The function I = I(a, r, l, k, h) defined
by (3.2.11)-(3.2.12) is measurable.

Assumption 3.2.2 (Model). The predictable processes (at) and (bt) are continuous and (at) is
positive definite on [0, T ].

Assumption 3.2.3 (Optimization criterion). The parameters of the cost functional (rt), (lt),
(kt) and (ht) are continuous and positive on [0, T ].

Assumption 3.2.4 (Asymptotic framework). The cost functionals satisfy the homogeneity prop-
erty (3.2.1) and the relation (3.2.5) holds for some — > 0.

Remark 3.2.2. Let us comment briefly the above assumptions. Assumption 3.2.1 is necessary
to avoid pathological cases. In most examples, the function I is continuous (see Examples 3.4.3-
3.4.7). Assumptions 3.2.2-3.2.3 impose minimal regularity on the dynamics of X¶ and cost
parameters. Assumption 3.2.4 ensures that all the costs have similar order of magnitude.

Second, we introduce the following notion.
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Definition 3.2.1. Let {Z, (ZÁ)Á, Á > 0} be random variables on the same probability space
(�, F ,P). We say that ZÁ is asymptotically bounded from below by Z in probability if

’” > 0, lim
Áæ0

P[ZÁ > Z ≠ ”] = 1.

We write lim infÁæ0 ZÁ Øp Z.

We now give the version of our main result for the case of combined regular and impulse control.

Theorem 3.2.1 (Asymptotic lower bound for combined regular and impulse control). Under
Assumptions 3.2.1, 3.2.2, 3.2.3 and 3.2.4, we have

lim inf
Áæ0

1
Á—’

D

JÁ(uÁ, · Á, ›Á) Øp

⁄ T

0
I(at, rt, lt, kt, ht)dt, (3.2.13)

for any sequence of admissible tracking strategies {(uÁ, · Á, ›Á) œ A, Á > 0}.

Thus, in Theorem 3.2.1 we have expressed the lower bound for the tracking problem in terms
of the integral of the solution I of a linear program, which will be interpreted as time-average
control of Brownian motion in Section 3.4. For any subsequence ÁÕ, we can always pick a further
subsequence ÁÕÕ such that

lim inf
ÁÕÕæ0

1
(ÁÕÕ)—’

D

JÁÕÕ(uÁÕÕ
, · ÁÕÕ

, ›ÁÕÕ) Ø
⁄ T

0
I(at, rt, lt, kt, ht)dt ≠ ”,

almost surely. Therefore, by Fatou’s lemma, the following corollary holds.

Corollary 3.2.1. We have

lim inf
Áæ0

1
Á’

D

—
E[JÁ(uÁ, · Á, ›Á) Ø E

Ë⁄ T

0
I(at, rt, lt, kt, ht)dt

È
.

3.3 Extensions of Theorem 3.2.1 to other types of control
In this section, we consider the case of combined regular and singular control and those with
only one type of control. In particular, we will see that in the presence of singular control,
the operator B is di�erent. Formally we could give similar results for the combination of all
three controls or even in the presence of several controls of the same type with di�erent cost
functions and scaling properties. To avoid cumbersome notation, we restrict ourselves to the
cases meaningful in practice, which are illustrated by explicit examples in Section 3.4.

3.3.1 Combined regular and singular control
When the fixed cost component is absent, that is F = 0, impulse control and singular control
can be merged. In that case, the natural way to formulate the tracking problem is to consider
a strategy (uÁ, “Á, ÏÁ) with uÁ a progressively measurable process as before, “Á

t œ � and (ÏÁ
t ) a

possibly discontinuous non-decreasing process such that

XÁ
t = ≠X¶

t +
⁄ t

0
uÁ

sds +
⁄ t

0
“Á

sdÏÁ
s,

and
JÁ(uÁ, “Á, ÏÁ) =

⁄ T

0

!
rtD(XÁ

t ) + Á—
Q ltQ(uÁ

t )
"
dt +

⁄ T

0
Á—

P htP (“Á
t )dÏÁ

t .

To avoid degeneracy, we assume that for any “ œ �,

P (“) > 0. (3.3.1)
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Using similar heuristic arguments as those in the previous section, we are led to consider the
time-average control of Brownian motion with combined regular and singular control

I(a, r, l, h) = inf
(u,“,Ï)

lim sup
SæŒ

1
S
E

Ë ⁄ S

0

!
rD(Xs) + lQ(us)

"
ds +

⁄ S

0
hsP (“s)dÏs

È
, (3.3.2)

where
Xs =

Ô
aWs +

⁄ s

0
urdr +

⁄ s

0
“rdÏr. (3.3.3)

The corresponding linear programming problem is given by

I(a, r, l, h) = inf
(µ,fl)

⁄

Rd

x

◊Rd

u

!
rD(x)+ lQ(u)

"
µ(dx◊du)+

⁄

Rd

x

◊�◊R+
”

hP (“)fl(dx◊d“ ◊d”), (3.3.4)

with (µ, fl) œ P(Rd
x ◊ Rd

u) ◊ M(Rd
x ◊ � ◊ R+

” ) satisfying the following constraint
⁄

Rd

x

◊Rd

u

Aaf(x, u)µ(dx◊du)+
⁄

Rd

x

◊�◊R+
”

Bf(x, “, ”)fl(dx◊d“◊d”) = 0, ’f œ C2
0 (Rd

x), (3.3.5)

where

Aaf(x, u) = 1
2

ÿ

ij

aijˆ2
ijf(x) + Èu, Òf(x)Í, Bf(x, “, ”) =

I
È“, Òf(x)Í, ” = 0,

”≠1!
f(x + ”“) ≠ f(x)

"
, ” > 0.

We have the following theorem.

Theorem 3.3.1 (Asymptotic lower bound for combined regular and singular control). Assume
that I(a, r, l, h) is measurable, that the parameters (rt), (lt) and (ht) are continuous and positive,
that Assumption 3.2.2 holds true and that Assumption 3.2.4 is satisfied for some — > 0. Then,

lim inf
Áæ0

1
Á—’

D

JÁ(uÁ, “Á, ÏÁ) Øp

⁄ T

0
I(at, rt, lt, ht)dt, (3.3.6)

for any sequence of admissible tracking strategies {(uÁ, “Á, ÏÁ) œ A, Á > 0}.

Adapting the proofs of Theorem 3.2.1 and Theorem 3.3.1 in an obvious way, we easily obtain
the following bounds when only one control is present.

3.3.2 Impulse control
Consider

inf
(·Á,›Á)œA

JÁ(uÁ, · Á, ›Á),

with
JÁ(uÁ, · Á, ›Á) =

⁄ T

0
rtD(XÁ

t )dt +
ÿ

0<·Á

j

ÆT

!
Á—

F k·Á

j

F (›Á
j ) + Á—

P h·Á

j

P (›Á
j )

"
,

and
XÁ

t = ≠X¶
t +

ÿ

0<·Á

j

Æt

›Á
j .

We have the following theorem.

Theorem 3.3.2 (Asymptotic lower bound for impulse control). Let I = I(a, r, k, h) be given by

I(a, r, k, h) = inf
(µ,fl)

⁄

Rd

x

rD(x)µ(dx) +
⁄

Rd

x

◊Rd

›

\{0
›

}
(kF (›) + hP (›))fl(dx ◊ d›),



3.3. Extensions of Theorem 3.2.1 to other types of control 107

with (µ, fl) œ P(Rd
x) ◊ M(Rd

x ◊ Rd
› \ {0›}) satisfying the following constraint

⁄

Rd

x

Aaf(x)µ(dx) +
⁄

Rd

x

◊Rd

›

\{0
›

}
Bf(x, ›)fl(dx ◊ d›) = 0, ’f œ C2

0 (Rd
x),

where
Aaf(x) = 1

2
ÿ

i,j

aijˆ2
ijf(x), Bf(x, ›) = f(x + ›) ≠ f(x).

Assume that I(a, r, k, h) is measurable, that the parameters (rt), (kt) and (ht) are continuous
and positive, that Assumption 3.2.2 holds true, and that Assumption 3.2.4 is satisfied for some
— > 0. Then,

lim inf
Áæ0

1
Á—’

D

JÁ(· Á, ›Á) Øp

⁄ T

0
I(at, rt, kt, ht)dt.

See Example 3.4.5 for a closed form solution of I.

3.3.3 Singular control

Consider
inf

(“Á,ÏÁ)œA
JÁ(“Á, ÏÁ),

with
JÁ(“Á, ÏÁ) =

⁄ T

0
rtD(XÁ

t )dt +
⁄ T

0
Á—

P htP (“Á
t )dÏÁ

t .

and
XÁ

t = ≠X¶
t +

⁄ t

0
“Á

sdÏÁ
s.

We have the following theorem.

Theorem 3.3.3 (Asymptotic lower bound for singular control). Let I = I(a, r, h) be given by

I(a, r, h) = inf
(µ,fl)

⁄

Rd

x

rD(x)µ(dx) +
⁄

Rd

x

◊�◊R+
”

hP (“)fl(dx ◊ d“ ◊ d”),

with (µ, fl) œ P(Rd
x) ◊ M(Rd

x ◊ � ◊ R+
” ) satisfying the following constraint

⁄

Rd

x

Aaf(x)µ(dx) +
⁄

Rd

x

◊�◊R+
”

Bf(x, “, ”)fl(dx ◊ d“ ◊ d”) = 0, ’f œ C2
0 (Rd

x),

where

Aaf(x) = 1
2

ÿ

ij

aijˆ2
ijf(x), Bf(x, “, ”) =

I
È“, Òf(x)Í, ” = 0,

”≠1!
f(x + ”“) ≠ f(x)

"
, ” > 0.

Assume that I(a, r, h) is measurable, that the parameters (rt) and (ht) are continuous and pos-
itive, that Assumption 3.2.2 holds true and that Assumption 3.2.4 is satisfied for some — > 0.
Then,

lim inf
Áæ0

1
Á—’

D

JÁ(“Á, ÏÁ) Øp

⁄ T

0
I(at, rt, ht)dt.

See Example 3.4.4 for a closed form solution of I.
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3.3.4 Regular control
Consider

inf
uÁœA

JÁ(uÁ),

with
JÁ(uÁ) =

⁄ T

0

!
rtD(XÁ

t ) + Á—
Q ltQ(uÁ

t )
"
dt,

and
XÁ

t = ≠X¶
t +

⁄ t

0
uÁ

sds.

We have the following theorem.

Theorem 3.3.4 (Asymptotic lower bound for regular control). Let I = I(a, r, l) be given by

I(a, r, l) = inf
µ

⁄

Rd

x

◊Rd

u

!
rD(x) + lQ(u)

"
µ(dx, du),

with µ œ P(Rd
x ◊ Rd

u) satisfying the following constraint
⁄

Rd

x

◊Rd

u

Aaf(x, u)µ(dx, du) = 0, ’f œ C2
0 (Rd

x),

where
Aaf(x, u) = 1

2
ÿ

i,j

aijˆ2
ijf(x) + Èu, Òf(x)Í.

Assume that I(a, r, l) is measurable, that the parameters (rt) and (lt) are continuous and positive
on [0, T ], that Assumption 3.2.2 holds true and that Assumption 3.2.4 is satisfied for some — > 0.
Then,

lim inf
Áæ0

1
Á—’

D

JÁ(uÁ) Øp

⁄ T

0
I(at, rt, lt)dt.

See Example 3.4.3 for a closed form solution of I.

Remark 3.3.1 (Upper bound). It is natural to wonder whether the lower bounds in our theorems
are tight and if it is the case, what are the strategies that attain them. In next chapter, we
show that for the examples provided in Section 3.4, there are closed form strategies attaining
asymptotically the lower bounds. For instance, in the case of combined regular and impulse
control, it means that there exist (uÁ,ú, · Á,ú, ›Á,ú) œ A such that

lim
Áæ0

1
Á—’

D

JÁ(uÁ,ú, · Á,ú, ›Á,ú) æp

⁄ T

0
I(at, rt, lt, kt, ht)dt.

These optimal strategies are essentially time-varying versions of the optimal strategies for the
time-average control of Brownian motion.

3.4 Interpretation of lower bounds and examples
Our goal in this section is to provide a probabilistic interpretation of the lower bounds in
Theorems 3.2.1, 3.3.1, 3.3.2, 3.3.3 and 3.3.4, which are expressed in terms of linear programming.
In particular, we want to connect them with the time-average control problem of Brownian
motion. To our knowledge, there is no general result available for the equivalence between time-
average control problem and linear programming. Partial results exist in [BG88, KS98, KS99,
KS15, HSZ14] but do not cover all the cases we need. Here we provide a brief self-contained
study enabling us to also treat the cases of singular/impulse controls and their combinations with
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regular control. We first introduce controlled martingale problems and show that they can be
seen as a relaxed version of the controlled Brownian motion (3.1.1-local). Then we formulate the
time-average control problem in this martingale framework. We finally show that this problem
has an equivalent description in terms of infinite dimensional linear program. While essential
ingredients and arguments for obtaining these results are borrowed from [KS98] and [KS01], we
provide sharp conditions which guarantee the equivalence of these two formulations.

3.4.1 Martingale problem associated to controlled Brownian motion
In [ST13, PST15, MMKS14, AMKS15], the authors obtain a HJB equation in the first order
expansion for the value function of the utility maximization problem under transaction costs,
which essentially provides a lower bound for their control problems. They mention a connection
between the HJB equation and the time-average control problem of Brownian motion, see also
[Hyn12]. Here we wish to rigorously establish an equivalence between the linear programs in
our lower bounds and the time-average control of Brownian motion. This leads us to introduce
a relaxed version for the controlled Brownian motion. We shall see that the optimal costs for
all these formulations coincide in the examples provided in the next section.

We place ourselves in the setting of [KS01], from which we borrow and rephrase several elements,
and assume that the state space E and control spaces U and V are complete, separable, metric
spaces. Consider an operator A : D µ Cb(E) æ C(E ◊ U) and an operator B : D µ Cb(E) æ
C(E ◊ V ).
Definition 3.4.1 (Controlled martingale problem). A triplet (X, �, �) with (X, �) an E ◊
P(U)-valued process and � an L(E ◊ V )-valued random variable is a solution of the controlled
martingale problem for (A, B) with initial distribution ‹0 œ P(E) if there exists a filtration (Ft)
such that the process (X, �, �t) is Ft-progressive, X0 has distribution ‹0 and for every f œ D,

f(Xt) ≠
⁄ t

0

⁄

U
Af(Xs, u)�s(du)ds ≠

⁄

E◊V ◊[0,t]
Bf(x, v)�(dx ◊ dv ◊ ds) (3.4.1)

is an Ft-martingale.
We now consider two specific cases for the operators A and B, which will be relevant in order to
express our lower bounds. Furthermore, we explain why these specific choices of A and B are
connected to combined regular and singular/impulse control of Brownian motion.
Example 3.4.1 (Combined regular and impulse control of Brownian motion). Let D = C2

0 (Rd)ü
R and define A : D æ C(E ◊ U) and B : D æ C(E ◊ V ) by

Af(x, u) = 1
2

ÿ

i,j

aijˆ2
ijf(x) + Èu, Òf(x)Í, (3.4.2)

Bf(x, ›) = f(x + ›) ≠ f(x). (3.4.3)

Here E = Rd
x, U = Rd

u and V = Rd
› \ {0›}. We call any solution of this martingale problem the

combined regular and impulse control of Brownian motion.

Indeed, consider the following process

Xt = X0 +
Ô

aWt +
⁄ t

0
usds +

ÿ

0<·
j

Æt

›j ,

with (ut) a progressively measurable process, (·j) a sequence of stopping times and (›j) a sequence
of F·

j

-measurable random variables. Define

Nt =
ÿ

j
{·

j

Æt}, ›t = ›j , t œ (·j≠1, ·j ].
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Then for any f œ D, by Itō’s formula,

f(Xt) ≠
⁄ t

0
Af(Xs, us)ds ≠

⁄ t

0
Bf(Xs≠, ›s≠)dNs

= f(X0) ≠
⁄ t

0
Òf(Xs)T Ô

adWs,

which is a martingale. Let

�t = ”u
t

(du), �(H ◊ [0, t]) =
⁄ t

0
H(Xs≠, ›s≠)dNs, H œ B(Rd

x ◊ Rd
› \ {0›}).

Then (X, �, �) solves the martingale problem (A, B) with initial distribution L(X0).
Example 3.4.2 (Combined regular and singular control of Brownian motion). Take D =
C2

0 (Rd) ü R and define

Af(x, u) = 1
2

ÿ

i,j

aijˆ2
ijf(x) + Èu, Òf(x)Í, (3.4.4)

Bf(x, “, ”) =
I

È“, Òf(x)Í, ” = 0
”≠1!

f(x + ”“) ≠ f(x)
"
, ” > 0.

(3.4.5)

Here E = Rd
x, U = Rd

u and V = � ◊ R+
” . Any solution of this martingale problem is called

combined regular and singular control of Brownian motion.

Indeed, let X be given by

Xt = X0 +
Ô

aWt +
⁄ t

0
usds +

⁄ t

0
“sdÏs,

with u a progressively measurable process, “s œ � and Ïs non-decreasing. By Itō’s formula, we
have

f(Xt) ≠
⁄ t

0
Af(Xs, us)ds ≠

⁄ t

0
Bf(Xs≠, “s, ”Ïs)dÏs

= f(X0) ≠
⁄ t

0
Òf(Xs)T Ô

adWs,

which is a martingale for any f œ D. Let

�t = ”u
t

(du), �(H ◊ [0, t]) =
⁄ t

0
H(Xs≠, “s, ”Ïs)dÏs, H œ B(Rd

x ◊ � ◊ R+
” ).

Then (X, �, �) solves the martingale problem (A, B) with initial distribution L(X0).

3.4.2 Time-average control of Brownian motion
Now we formulate a relaxed version of the time-average control problem of Brownian motion in
terms of a controlled martingale problem. This generalizes [KS98, HSZ14] to combined regular
and singular/impulse control of martingale problems, see also [KS15]. Recall that A and B are
two operators where A : D µ Cb(E) æ C(E ◊ U) and B : D µ Cb(E) æ C(E ◊ V ). Consider
two cost functionals CA : E ◊ U æ R+ and CB : E ◊ V æ R+.
Definition 3.4.2 (Martingale formulation of time-average control problem). The time-average
control problem under the martingale formulation is given by

IM = inf
(X,�,�)

lim sup
tæŒ

1
t
E

# ⁄ t

0

⁄

U
CA(Xs, u)�s(du)ds+

⁄

E◊V ◊[0,t]
CB(x, v)�(dx◊dv◊ds)

$
, (3.4.6)

where the inf is taken over all solutions of the martingale problem (A, B) with any initial dis-
tribution ‹0 œ P(E).



3.4. Interpretation of lower bounds and examples 111

Now, let (X, �, �) be any solution of the martingale problem with operators A and B. Define
(µt, flt) œ P(E ◊ U) ◊ M(E ◊ V ) as

µt(H1) = 1
t
E

Ë⁄ t

0

⁄

U
H1(Xs, u)�s(du)ds

È
, (3.4.7)

flt(H2) = 1
t
E

#
�(H2 ◊ [0, t])

$
, (3.4.8)

for H1 œ B(E ◊ U) and H2 œ B(E ◊ V ). Then the average cost up to time t in (3.4.6) can be
expressed as ⁄

E◊U
CA(x, u)µt(dx ◊ du) +

⁄

E◊V
CB(x, v)flt(dx ◊ dv).

On the other hand, for f œ D, (3.4.1) defines a martingale. Taking the expectation, we obtain

1
t
E

Ë ⁄ t

0

⁄

U
Af(Xs, u)�s(du)ds +

⁄

E◊V ◊[0,t]
Bf(x, v)�(dx ◊ dv ◊ ds)

È
= 1

t
E[f(Xt) ≠ f(X0)].

If Xt is stationary, we have
⁄

E◊U
Af(x, u)µt(dx ◊ du) +

⁄

E◊V
Bf(x, v)flt(dx ◊ dv) = 0.

Letting t tend to infinity, this leads us to introduce the following linear programming problem.

Definition 3.4.3 (Linear programming (LP) formulation of time-average control). The time-
average control problem under the LP formulation is given by

IP = inf
(µ,fl)

c(µ, fl), (3.4.9)

with

c : P(E ◊ U) ◊ M(E ◊ V ) æ R+

(µ, fl) ‘æ
⁄

E◊U
CA(x, u)µ(dx ◊ du) +

⁄

E◊V
CB(x, v)fl(dx ◊ dv), (3.4.10)

where the inf is computed over all µ œ P(E ◊ U) and fl œ M(E ◊ V ) satisfying the constraint
⁄

E◊U
Af(x, u)µ(dx ◊ du) +

⁄

E◊V
Bf(x, v)fl(dx ◊ dv) = 0, ’f œ D. (3.4.11)

We now present the theorem which connects linear programming and time-average control of
Brownian motion.

Theorem 3.4.1 (Equivalence between IM and IP ). Assume that
1. (Condition on the operators A and B) The operators A and B satisfy Condition 1.2 in

[KS01]. In particular, there exist ÂA œ C(E ◊ U), ÂB œ C(E ◊ V ), and constants af , bf

depending on f œ D such that

|Af(x, u)| Æ af ÂA(x, u), |Bf(x, v)| Æ bf ÂB(x, v), ’x œ E, u œ U, v œ V. (3.4.12)

2. (Condition on the cost function CA) The cost function CA is non-negative and inf-
compact, that is {(x, u) œ E ◊ U | CA(x, u) Æ c} is a compact set for each c œ R+.
In particular, CA is lower semi-continuous.

3. (Condition on cost function CB) The cost function CB is non-negative and lower semi-
continuous. Moreover, CB satisfies

inf
(x,v)œE◊V

CB(x, v) > 0. (3.4.13)
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4. (Relation between operators and cost functions) There exist constants ◊ and 0 < — < 1
such that

ÂA(x, u)1/— Æ ◊
!
1 + CA(x, u)

"
, ÂB(x, v)1/— Æ ◊CB(x, v), (3.4.14)

for ÂA and ÂB given by (3.4.12).
Then the two formulations above of the time-average control problem are equivalent in the sense
that

IM = IP .

We therefore write I for both IM and IP .

Proof. The idea of the proof is the same as in [KS98], with a key ingredient provided by [KS01,
Theorem 1.7].

We first show that IP Æ IM . Given any solution (X, �, �) of the martingale problem, we define
the occupation measures as (3.4.7) and (3.4.8). Without loss of generality, we can assume that
lim suptæŒ c(µt, flt) < Œ where c is defined in (3.4.10) (otherwise we would have IM = Œ Ø IP ).
We will show that IP Æ lim suptæŒ c(µt, flt).

We consider the one-point compacification E ◊ V = E ◊ V fi {Œ = (xŒ, vŒ)} and extend CB

to E ◊ V by
CB(xŒ, vŒ) = lim inf

(x,v)æ(xŒ,vŒ)
CB(x, v) > 0,

where the last inequality is guaranteed by (3.4.13). Since CB is lower semi-continuous, the level
sets {(x, v) œ E ◊ V | CB(x, v) Æ c} are compact. By Lemma 3.C.1, we deduce that c is a
tightness function on P(E ◊ U) ◊ M(E ◊ V ). So the family of occupation measures (µt, flt)tØ0
is tight if flt is viewed as a measure on E ◊ V . It follows that the family of occupation measures
indexed by t is relatively compact.

Let (µ, fl) œ P(E ◊ U) ◊ M(E ◊ V ) be any limit point of (µt, flt) with canonical decomposition
fl̄ = fl + ◊fl̄”Œ. We claim that (µ, fl) satisfies the linear constraint (3.4.11). Indeed, by (3.4.12)
and (3.4.14), we have

|Af |1/— Æ ◊f (1 + CA), |Bf |1/— Æ ◊f CB,

where ◊f is a non-negative real number depending on f . Then supt c(µt, flt) < Œ implies that
Af and Bf are uniformly integrable with respect to µ and fl̄. We therefore have

⁄

E◊U
Afdµ +

⁄

E◊V
E◊V Bfdfl̄ = lim

tæŒ

⁄

E◊U
Afdµt +

⁄

E◊V
E◊V Bfdflt.

The right hand side being equal to zero, we obtain
⁄

E◊U
Afdµ +

⁄

E◊V
Bfdfl = 0.

Since CA and CB are lower semi-continuous, it follows that (see [DE11, Theorem A.3.12])

IP Æ c(µ, fl) Æ c(µ, fl̄) Æ lim inf
tæŒ

c(µt, flt) Æ lim sup
tæŒ

c(µt, flt).

As the choice of the solution of the controlled martingale problem (X, �, �) is arbitrary, we
conclude that IP Æ IM .

We now show that IM Æ IP . Given any (µ, fl) satisfying the linear constraint (3.4.11) such
that c(µ, fl) < Œ, Theorem 1.7 in [KS01] together with the condition on the operators A and B
provides the existence of a stationary solution (X, �, �) for the martingale problem (A, B) with
marginals (µ, fl), hence IM Æ IP .
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Remark 3.4.1. Compared with the results in [KS98, BG88], no near-monotone condition is
necessary for the singular component. The is due to the fact that in the linear constraint (3.4.11),
fl belongs to M(E ◊ V ) instead of P(E ◊ V ).

We now give natural examples for which IP = IM .

Corollary 3.4.1 (Time-average control of Brownian motion with quadratic costs). Assume that
CA is given by

CA(x, u) = rÈx, �DxÍ + lÈu, �QuÍ, ’(x, u) œ Rd
x ◊ Rd

u, (3.4.15)

where �D, �Q œ S+
d . Then for both following cases, we have IM = IP :

1. The operators A and B are given by (3.4.2)-(3.4.3) and the cost function CB is given by

CB(x, ›) = k
dÿ

i=1
Fi {›i ”=0} + hÈP, |›|Í, (x, ›) œ Rd

x ◊ Rd
› \ {0›}, (3.4.16)

with mini Fi > 0.
2. The operators A and B are given by (3.4.4)-(3.4.5) and the cost function CB is given by

CA(x, “, ”) = hÈP, |“|Í, (x, “, ”) œ Rd
x ◊ � ◊ R+

” , (3.4.17)

with mini Pi > 0.

Proof. We consider the impulse case. First, we show that A and B satisfy [KS01, Condition
1.2]. (i) It is clear that Rd

œ D, and A Rd

= 0, B Rd

= 0. (ii) Define

ÂA(x, u) = 1 ‚
dÿ

i=1
|ui|, ÂB(x, ›) = 1,

then (3.4.12) is satisfied. (iii) Since C2
0 (Rd

x) equipped with Î · ÎC2
0

is separable, the third condi-
tion is satisfied. (iv) Auf(x) = Af(x, u) and B›f(x) = Bf(x, ›) satisfy the positive maximum
principle, so they are dissipative. It is obvious that they verify [KS01, (1.10)]. Hence they are
pre-generators. (v) Obvious. Second, since CA and CB are l.s.c. and mini Fi > 0, the conditions
on CA and CB are verified. Third, (3.4.14) holds with — = 1/2.

The proof for the singular case is similar. Note that mini Pi > 0 is necessary for (3.4.13) and
the second bound in (3.4.14) to hold.

3.4.3 Explicit examples in dimension one
We collect here a comprehensive list of examples in dimension one for which explicit solutions are
available. Most of these results exist already in the literature under the classical SDE formulation
(see for example [DY13, JZ06c, JZ06a, JZ06b, ST13, AMKS15, MMKS14, GL14a, HSZ14]), but
Examples 3.4.6 and 3.4.7 are presented here for the first time. The basic idea is to solve
explicitly the HJB equation corresponding to the time-average control problem and apply a
verification theorem. Similar methods apply under the linear programming framework. However,
for completeness we provide in Section 3.7 detailed proofs tailored to the formulation in terms
of linear programming. In fact, we prove only the case of combined regular and impulse control,
that is Example 3.4.6. The proofs for the other examples are similar and hence omitted.

Example 3.4.3 (Regular control of Brownian motion). Let r, l > 0 and consider the following
linear programming problem

I(a, r, l) = inf
µ

⁄

R
x

◊R
u

(rx2 + lu2)µ(dx, du), (3.4.18)
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where µ œ P(Rx ◊ Ru) satisfies
⁄

R
x

◊R
u

!1
2af ÕÕ(x) + uf Õ(x)

"
µ(dx, du) = 0, ’f œ C2

0 (Rx). (3.4.19)

By Corollary 3.4.1, this is equivalent to the time-average control of Brownian motion with
quadratic costs in the sense of Definition 3.4.2.

Let us explain heuristically how to obtain the optimal solution (a rigorous verification argument
for the linear programming formulation is provided in Section 3.7). Roughly speaking, Definition
3.4.2 describes the following dynamics

dXu
t =

Ô
adWt + utdt.

The optimization objective is

inf
(u

t

)œA
lim sup

T æŒ

1
T
E

Ë ⁄ T

0
(r(Xu

t )2 + lu2
t )dt

È
,

where the set A of admissible controls contains all progressively measurable processes (ut) such
that

lim sup
T æŒ

E[(Xu
T )2] < Œ

Consider the associated HJB equation

inf
uœR

u

1
2awÕÕ(x) + uwÕ(x) + lu2 + rx2 ≠ IV = 0,

where the constant IV must be found as part of the solution. It is easy to find the explicit solution
(see also [MMKS14, Equation (3.18)]):

w(x) =
Ô

rlx2, IV =
Ô

a2rl.

Now, let (ut) be an admissible control and apply Itō’s formula to w(XT ):

w(XT ) = w(X0) +
⁄ T

0

11
2awÕÕ(Xt) + utw

Õ(Xt)
2
dt +

⁄ T

0
wÕ(Xt)dWt.

It follows that
⁄ T

0
(rX2

t + lu2
t )dt Ø

⁄ T

0

1
IV ≠ 1

2awÕÕ(Xt) ≠ utw
Õ(Xt)

2
dt (3.4.20)

= TIV + w(X0) ≠ w(XT ) +
⁄ T

0
wÕ(Xt)dWt.

Taking expectation, dividing by T on both sides, and using the admissibility conditions, we obtain

lim sup
T æŒ

1
T
E

Ë ⁄ T

0
(rX2

t + lu2
t )dt

È
Ø IV .

To show that IV is indeed the optimal cost, it is enough to show that equality holds in (3.4.20).
for the optimal feedback control given by

uú(x) = ≠wÕ(x)
2l

= ≠◊x, ◊ =
Ú

r

l
.

Therefore, the optimally controlled process is an Ornstein-Uhlenbeck process

dXú =
Ô

adWt ≠ ◊Xú
t dt.

Naturally, the stationary distribution of (Xú, uú(Xú
t )) is the solution µú of the linear program-

ming problem. We have the following result.
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Proposition 3.4.1. The solution of (3.4.18)-(3.4.19) is given by

I(a, r, l) =
Ô

a2rl,

and the optimum is attained by

µú(dx, du) = 1Ô
2fi‡

e≠ x

2
2‡

2 dx ¢ ”{≠◊x}(du),

where
‡2 = a

2◊
, ◊ =

Ú
r

l
.

Example 3.4.4 (Singular control of Brownian motion). For any parameters r, h > 0, consider
the following linear programming problem

I(a, r, h) = inf
(µ,fl)

⁄

R
x

rx2µ(dx) +
⁄

R
x

◊{±1}◊R+
”

h|“|fl(dx, d“, d”), (3.4.21)

where µ œ P(Rx) and fl œ M(Rx ◊ {±1} ◊ R+
” ) satisfy

⁄

R
x

1
2af ÕÕ(x)µ(dx) +

⁄

R
x

◊{±1}◊R+
”

“f Õ(x)fl(dx, d“, d”) = 0, ’f œ C2
0 (Rx). (3.4.22)

By Corollary 3.4.1, this is equivalent to the time-average control of Brownian motion with
quadratic deviation penalty and proportional costs in the sense of Definition 3.4.2.

The dynamics of the solution of the controlled martingale problem is heuristically

dXt =
Ô

adWt + “tdÏt,

where “t œ {±1} and Ït is a non-decreasing process. The optimization objective is

inf
(“

t

,Ï
t

)œA
lim sup

T æŒ

1
T
E

Ë ⁄ T

0
rX2

t dt + hÏT

È
.

The associated HJB equation is

(1
2awÕÕ(x) + rx2 ≠ IV ) · ( inf

“œ{±1}
“wÕ(x) + h) = 0.

An explicit solution for w is provided in [ST13] (see also [JZ06a, Kar83, DY13]):

w(x) =

Y
__]

__[

Ax4 + Bx2, ≠U Æ x Æ U,

w(≠U) + h(≠U ≠ x), x < ≠U,

w(U) + h(x ≠ U), x > U,

(3.4.23)

with
A = ≠1

6
r

a
, B = I

a
,

and
I = (3

4ar1/2h)2/3, U = (3
4ar≠1h)1/3.

The optimally controlled process is

dXú
t =

Ô
adWt + dÏ≠

t ≠ dÏ+
t ,
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where Ï± are the local times keeping Xú
t œ [≠U, U ] such that

⁄ t

0
{Xú

s

”=≠U}dÏ≠
s +

⁄ t

0
{Xú

s

”=U}dÏ+
s = 0.

In other words, this is a Brownian motion with reflection on the interval [≠U, U ]. The optimal
solution (µú, flú) is the stationary distribution of Xú

t and the limit of boundary measures
1
t

⁄ t

0
(”(U,≠1,0)dÏ+

s + ”(≠U,1,0)dÏ≠
s ),

as t æ Œ. We have the following result.
Proposition 3.4.2. The solution of (3.4.21)-(3.4.22) is given by

I(a, r, h) = (3
4ar1/2h)2/3.

and the optimum is attained by

µú(dx) = 1
2U [≠U,U ](x)dx, (3.4.24)

flú(dx, d“, d”) = a

2U

11
2”(≠U,1,0) + 1

2”(U,≠1,0)
2
, (3.4.25)

where
U = (3

4ar≠1h)1/3.

Example 3.4.5 (Impulse control of Brownian motion). For any parameters r, k > 0 and h Ø 0,
consider the following linear programming problem

I(a, r, k, h) = inf
(µ,fl)

⁄

R
x

rx2µ(dx) +
⁄

R
x

◊R
›

\{0
›

}
(k + h|›|)fl(dx, d›), (3.4.26)

where µ œ P(Rx) and fl œ M(Rx ◊ R› \ {0›}) satisfy
⁄

R
x

1
2af ÕÕ(x)µ(dx) +

⁄

R
x

◊R
›

\{0
›

}

!
f(x + ›) ≠ f(x)

"
fl(dx, d›) = 0, ’f œ C2

0 (R). (3.4.27)

By Corollary 3.4.1, this is equivalent to the time-average control problem of Brownian motion
in the sense of Definition 3.4.2.

The associated HJB equation is (see also [DY13, JZ06c, AMKS15, GL14a])

(1
2awÕÕ(x) + rx2 ≠ IV ) · ( inf

›œR
›

\{0
›

}
(w(x + ›) + k + h|›|) ≠ w(x)) = 0.

Let ◊1, ◊2 and 0 < Âxú < xú be solutions of the following polynomial system
Y
__]

__[

6a◊1 + r = 0,

P (xú) ≠ P (Âxú) = k + h(xú ≠ Âxú),
P Õ(xú) = h, P Õ(Âxú) = h,

where P (x) = ◊1x4 + ◊2x2. Let U = xú. We can show that the solution of the HJB equation is
given by

w(x) =
I

P (x), |x| Æ U,

w(U) + h(|x| ≠ U), |x| > U,

and
IV = a◊2.

Let ›ú = xú ≠ Âxú. The optimally controlled process is a Brownian motion on the interval [≠U, U ],
which jumps to ±U û›ú when reaching the boundary point ±U . Such processes have been studied
in [BAP09, GK02]. We have the following result.
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Proposition 3.4.3. The solution of (3.4.26)-(3.4.27) is given by

I(a, r, k, h) = a◊2,

and the optimum is attained by

µú = p(x)dx, p(x) =

Y
___]

___[

1
(xú)2≠(Âxú)2 (x + xú), ≠xú Æ x < ≠Âxú,

1
xú+Âxú , ≠Âxú Æ x Æ Âxú,

1
(xú)2≠(Âxú)2 (xú ≠ x), Âxú < x Æ xú,

(3.4.28)

flú = a

(xú)2 ≠ (Âxú)2 (1
2”(xú,Âxú≠xú) + 1

2”(≠xú,≠Âxú+xú)). (3.4.29)

which correspond to the stationary distribution and boundary measure of Brownian motion with
jumps from the boundary on the interval [≠U, U ].

Example 3.4.6 (Combined regular and impulse control of Brownian motion). For any param-
eters r, l, k > 0 and h Ø 0, consider the following linear programming problem

I(a, r, l, k, h) = inf
(µ,fl)

⁄

R
x

◊R
u

(rx2 + lu2)µ(dx, du) +
⁄

R
x

◊R
›

\{0
›

}
(k + h|›|)fl(dx, d›), (3.4.30)

where µ œ P(Rx ◊ Ru) and fl œ M(Rx ◊ R› \ {0›}) satisfy
⁄

R
x

◊R
u

!1
2af ÕÕ(x)+uf Õ(x)

"
µ(dx, du)+

⁄

R
x

◊R
›

\{0
›

}

!
f(x+›)≠f(x)

"
fl(dx, d›) = 0, ’f œ C2

0 (R).

(3.4.31)
By Corollary 3.4.1, this is equivalent to the time-average control problem of Brownian motion
in the sense of Definition 3.4.2.

The corresponding HJB equation is

(1
2awÕÕ(x) + inf

u
(uwÕ(x) + lu2) + rx2 ≠ IV ) ·

!
inf

›
(w(x + ›) + k + h|›|) ≠ w(x)

"
= 0.

In Section 3.7, we show that this equation admits a classical solution

w(x) =

Y
]

[
(rl)1/2x2 ≠ 2al ln 1F1(1≠ÿ

4 ; 1
2 ;

1
r

a2l

21/2
x2), |x| Æ U,

w(U) + h(|x| ≠ U), |x| > U,
(3.4.32)

where 1F1 is the Kummer confluent hypergeometric function (see Section 3.A) and ›ú and U are
such that 0 < ›ú < U and

w(±U û ›ú) + k + h|›ú| ≠ w(±U) = 0.

Moreover,
IV = ÿa

Ô
rl,

for some ÿ œ (0, 1).

Let uú be defined as

uú(x) = Argmin
u

Aw(x, u) + CA(x, u) = ≠wÕ(x)
2l

.

The optimally controlled process is given by

dXú
t =

Ô
adWt + uú(Xú

t )dt + d
1 ÿ

·
j

Æt

!
{Xú

·

j

≠=≠U}›ú ≠ {Xú
·

j

≠=U}›ú"2
.

We have the following result.
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Proposition 3.4.4. The solution of (3.4.30)-(3.4.31) is given by

I(a, r, l, k, h) = ÿa
Ô

rl,

and the optimum is attained by (µú, flú) where

µú(dx, du) = pú(x)dx ¢ ”uú(x)(du),
flú(dx, d›) = (flú

≠”(≠U,›ú) + flú
+”(U,≠›ú))(dx, d›),

with pú(x) œ C0([L, U ]) fl C2([L, U ] \ {L + ›ú(L), U + ›ú(U)}) solution of
Y
_______]

_______[

1
2apÕÕ(x) ≠ (uú(x)p(x))Õ = 0, x œ (≠U, U) \ {≠U + ›ú, U ≠ ›ú},

p(≠U) = p(U) = 0,
1
2apÕ((≠U)+) = pÕ((≠U + ›ú)≠)) ≠ 1

2a(pÕ((≠U + ›ú)+),
1
2apÕ(U≠) = pÕ((U ≠ ›ú)+)) ≠ 1

2a(pÕ((U ≠ ›ú)≠),
s U

≠U p(x) = 1,

and flú
≠, flú

+ œ R+ given by

flú
≠ = 1

2apÕ((≠U)+), flú
+ = ≠1

2apÕ(U≠).

Note that µú and flú are the stationary distribution and boundary measure of the optimally
controlled process Xú

t .
Example 3.4.7 (Combined regular and singular control of Brownian motion). For any param-
eters r, l, h > 0, consider the following linear programming problem

I = inf
(µ,fl)

⁄

R
x

◊R
u

(rx2 + lu2)µ(dx, du) +
⁄

R
x

◊{±1}◊R+
”

h|“|fl(dx, d“, d”), (3.4.33)

where µ œ P(Rx ◊ Ru) and fl œ M(Rx ◊ {±1} ◊ R+
” ) satisfy

⁄

R
x

◊R
u

!1
2af ÕÕ(x) + uf Õ(x)

"
µ(dx, du) +

⁄

R
x

◊{±1}◊R+
”

“f Õ(x)(dx, d“, d”) = 0, ’f œ C2
0 (Rx).

(3.4.34)
Again by Corollary 3.4.1, this is equivalent to the time-average control problem of Brownian
motion in the sense of Definition 3.4.2.

The constant IV and w : R æ R exist with the same expressions as in Example 3.4.6. Similarly,
we have the following result.
Proposition 3.4.5. The solution of (3.4.33)-(3.4.7) is given by

I = ÿa
Ô

rl,

and the optimum is attained by (µú, flú) where

µú(dx, du) = pú(x)dx ¢ ”uú(x)(du),
flú(dx, d“, d”) = (flú

≠”(≠U,1,0) + flú
U ”(U,≠1,0))(dx, d“, d”),

with pú(x) œ C2([≠U, U ]) solution of
Y
__]

__[

1
2apÕÕ(x) ≠ (uú(x)p(x))Õ = 0, x œ (≠U, U),
1
2apÕ(x) + uú(x)p(x) = 0, x œ {≠U, U},
s U

≠U p(x) = 1,

(3.4.35)

and flú
≠, flú

+ œ R+ given by
flú

≠ = 1
2ap(≠U), flú

+ = 1
2ap(U). (3.4.36)
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Remark 3.4.2 (Higher dimension examples). To our knowledge, examples with closed-form
solutions for time-average control of Brownian motion in higher dimension are not available
except [GL14a, MMKS14, AMKS15, JS10, GW15c].

3.5 Proof of Theorem 3.2.1
This section is devoted to the proof of Theorem 3.2.1. In Section 3.5.1, we first rigorously
establish the arguments outlined in Section 3.2.1, showing that it is enough to consider a small
horizon (t, t + ”Á]. Then we prove Theorem 3.2.1 in Section 3.5.2. Our proof is inspired by the
approaches in [KS99] and [KM93]. An essential ingredient is Lemma 3.5.3, whose proof is given
in Section 3.5.3.

3.5.1 Reduction to local time-average control problem

We first show that, to obtain (3.2.13), it is enough to study the local time-average control
problem (note that the parameters rt, lt, kt, ht are frozen at time t)

IÁ
t = 1

T Á

1 ⁄ T Á

0

!
rtD( ÂXÁ,t

s ) + ltQ(ÂuÁ,t
s )

"
ds +

ÿ

0<Â·Á,t

j

ÆT Á

!
ktF (Â›Á

j ) + htP (Â›Á
j )

"2
, (3.5.1)

where
d ÂXÁ,t

s = ÂbÁ,t
s ds +

Ò
ÂaÁ,t

s dÊW Á,t
s + ÂuÁ,t

s ds + d(
ÿ

0<Â·Á,t

j

Æs

Â›Á
j ), ÂXÁ,t

0 = 0 (3.5.2)

with T Á = Á≠–—”Á and ”Á œ R+ depending on Á in such a way that

”Á æ 0, T Á æ Œ, (3.5.3)

as Á æ 0. Recall that – = 2, which is due to the scaling property of Brownian motion. We can
simply put ”Á = Á—.

Localization Since we are interested in convergence results in probability, under Assumptions
3.2.2 and 3.2.3, it is enough to consider the situation where the following assumption holds.

Assumption 3.5.1. There exists a positive constant M œ Rú
+ such that

sup
(t,Ê)œ[0,T ]◊�

|at(Ê)| ‚ rt(Ê)±1 ‚ lt(Ê)±1 ‚ ht(Ê)±1 ‚ kt(Ê)±1 < M < Œ.

Furthermore, X¶ is a martingale (bt © 0).

Indeed, set Tm = inf{t > 0, supsœ[0,t] |bs| ‚ |as| ‚ r±1
s ‚ ls(Ê)±1 ‚ h±1

s ‚ k±1
s Æ m}. Then we

have limmæŒ P[Tm = T ] = 1. By standard localization procedure, we can assume that all the
parameters are bounded as in Assumption 3.5.1. Let

dQ
dP = exp

Ó
≠

⁄ T

0
a≠1

t btdWt ≠ 1
2

⁄ T

0
bT

t a≠2
t btdt

Ô
,

then by Girsanov theorem, X¶ is a martingale under Q. Since Q is equivalent to P, we only
need to prove (3.2.13) under Q. Consequently, we can assume that X¶ is a martingale without
loss of generality.

From now on, we will suppose that Assumption 3.5.1 holds.
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Locally averaged cost
Lemma 3.5.1. Under Assumption 3.5.1, we have almost surely

lim inf
Áæ0

1
Á’

D

—
JÁ Ø lim inf

Áæ0

⁄ T

0
IÁ

t dt.

Proof. We introduce an auxiliary cost functional:

J̄Á =
⁄ T

0

1 1
”Á

⁄ (t+”Á)·T

t

!
rsD(XÁ

s ) + lsQ(uÁ
s)

"
ds

+ 1
”Á

ÿ

t<·Á

j

Æ(t+”Á)·T

!
Á—

F k·Á

j

F (›Á
j ) + Á—

P h·Á

j

P (›Á
j )

"2
dt.

Note that the parameters r, l, k, h inside the integral are not frozen at t. Using Fubini theorem,
we have

J̄Á =
⁄ T

0

s

”Á {0<s<”Á}
!
rsD(XÁ

s ) + lsQ(uÁ
s)

"
ds

+
ÿ

0<·Á

j

ÆT

· Á
j

”Á {0<·Á

j

<”Á}
!
Á—

F k·Á

j

F (›Á
j ) + Á—

P h·Á

j

P (›Á
j )

"
.

Hence
0 Æ 1

Á’
D

—
(JÁ ≠ J̄Á) Æ ”ÁIÁ

0 + {·Á

0 =0}
!
Á—

F k·Á

0 F (›Á
1) + Á—

P h·Á

0 P (›Á
1)

"
, (3.5.4)

where IÁ
0 is given by (3.5.1) with t = 0.

On the other hand, we have
⁄ T

0
IÁ

t dt = 1
Á’

D

—

⁄ T

0

1 1
”Á

⁄ (t+”Á)·T

t

!
rtD(XÁ

s ) + ltQ(uÁ
s)

"
ds

+ 1
”Á

ÿ

t<·Á

j

Æ(t+”Á)·T

!
Á—

F ktF (›Á
j ) + Á—

P htP (›Á
j )

"2
dt,

where the parameters are frozen at time t. It follows that
---

1
Á’

D

—
J̄Á ≠

⁄ T

0
IÁ

t dt
--- Æ M · w(r, l, k, h; ”Á) ·

1 1
Á’

D

—
J̄Á · ÂJÁ

2
, (3.5.5)

with w the modulus of continuity and M the constant in Assumption 3.5.1. Note that we have
w(r, l, k, h; ”) æ 0+ as ” æ 0+ by the continuity of r, l, k, h. Combining (3.5.4) and (3.5.5), the
inequality follows.

Reduction to local problems Using previous lemma, we can reduce the problem to the
study of local problems as stated below.
Lemma 3.5.2 (Reduction). For the proof of Theorem 3.2.1, it is enough to show that

lim inf
Áæ0

E [IÁ
t ] Ø E [It] . (3.5.6)

Proof. In view of Lemma 3.5.1, to obtain Theorem 3.2.1, we need to prove that

lim inf
Áæ0

⁄ T

0
IÁ

t dt Øp

⁄ T

0
Itdt.

By Assumption 3.2.1 and Lemma 3.D.1, it is enough to show that
lim inf

Áæ0
E [Y IÁ

t ] Ø E [Y It] ,

for any bounded random variable Y . Up to a change of notation rt æ Y rt, lt æ Y lt, ht æ Y ht

and kt æ Y kt (note that this is allowed since we do not require rt, lt, ht and kt to be adapted),
it su�ces to show (3.5.6).
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3.5.2 Proof of Theorem 3.2.1

After Section 3.5.1, it su�ces to prove (3.5.6) where IÁ
t is given by (3.5.1)-(3.5.2). In particular,

we can assume that
sup
Á>0

E [IÁ
t ] < Œ. (3.5.7)

Combining ideas from [KM93, KS99], we first consider the empirical occupation measures of
( ÂXÁ,t

s ). Define the following random occupation measures with natural inclusion

µÁ
t = 1

T Á

⁄ T Á

0
”{( ÂXÁ,t

s

,ÂuÁ,t

s

)}ds œ P(Rd
x ◊ Rd

u),

flÁ
t = 1

T Á

ÿ

0<Â·Á,t

j

ÆT Á

”{( ÂXÁ,t

Â·Á,t

j

≠
,Â›Á

j

)} œ M(Rd
x ◊ Rd

› \ {0›}) Òæ M(Rd
x ◊ Rd

› \ {0›}),

where E = E fi {Œ} is the one-point compactification of E. Such compacification of state space
appears in [BG88]. See also the proof of Corollary 3.4.1 where the compactification of state
space is used. Note that for m̄ œ M(E) we have the canonical decomposition

m̄(de) = m(de) + ◊”Œ,

with m œ M(E) and ◊ œ R+. Second, we define ct : � ◊ P(Rd
x ◊Rd

u) ◊ M(Rd
x ◊ Rd

› \ {0›}) æ R,

(Ê, µ, fl̄) ‘æ
⁄

Rd

x

◊Rd

u

!
rt(Ê)D(x) + lt(Ê)Q(u)

"
µ(dx ◊ du)

+
⁄

Rd

x

◊Rd

›

\{0
›

}

!
kt(Ê)F (›) + ht(Ê)P (›)

"
fl̄(dx ◊ d›),

where the cost functions F and P are extended to Rd
x ◊ Rd

› \ {0›} by setting

F (Œ(x,›)) = inf
›œRd

›

\{0
›

}
F (›) > 0, P (Œ(x,›)) = 0, (3.5.8)

with Œ(x,›) the point of compactification for Rd
x ◊ Rd

› \ {0›}. Note that the functions F and
P remain l.s.c. on the compactified space, which is an important property we will need in the
following. Moreover, for any fl̄ = fl + ◊fl̄”Œ(x,›) , we have

ct(Ê, µ, fl̄) Ø ct(Ê, µ, fl). (3.5.9)

Now we have
IÁ

t = ct(µÁ
t , flÁ

t ), (3.5.10)

and we can write (3.5.7) as
sup
Á>0

E [ct(µÁ
t , flÁ

t )] < Œ. (3.5.11)

The following lemma, proved in Section 3.5.3, is the key of the demonstration for Theorem 3.2.1.

Lemma 3.5.3 (Characterization of limits). Assume that (3.5.11) holds, then
1. The sequence {(µÁ

t , flÁ
t )} is tight as a sequence of random variables with values in P(Rd

x ◊ Rd
u)◊

M(Rd
x ◊ Rd

› \ {0›}), equipped with the topology of weak convergence. In particular, {(µÁ
t , flÁ

t )}
is relatively compact in PP!

� ◊ P(Rd
x ◊ Rd

u) ◊ M(Rd
x ◊ Rd

› \ {0›})
"
, equipped with the

topology of stable convergence (see Appendix 3.D).
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2. Let Qt œ PP!
� ◊ P(Rd

x ◊ Rd
u) ◊ M(Rd

x ◊ Rd
› \ {0›})

"
be any F-stable limit of {(µÁ

t , flÁ
t )}

with disintegration form

Qt(dÊ, dµ, dfl̄) = P(dÊ)QÊ
t (dµ, dfl̄).

and

S(a) =
Ó

(µ, fl̄) œ P(Rd
x ◊ Rd

u) ◊ M(Rd
x ◊ Rd

› \ {0›}),

fl̄ = fl + ◊fl̄”Œ with fl œ M(Rd
x ◊ Rd

› \ {0›}),
⁄

Rd

x

◊Rd

u

Aaf(x, u)µ(dx, du) +
⁄

Rd

x

◊Rd

›

\{0
›

}
Bf(x, ›)fl(dx, d›) = 0, ’f œ C2

0 (Rd
x)

Ô
,

where Aa and B are given by (3.4.2) and (3.4.3). Then we have P-almost surely,

(µ, fl̄) œ S(at(Ê)), QÊ
t -almost surely.

By Lemma 3.5.3, we have, up to a subsequence,

(µÁ
t , flÁ

t ) æF Qt œ PP!
P(Rd

x ◊ Rd
u) ◊ M(Rd

x ◊ Rd
› \ {0›})

"
.

Write Qt in disintegration form, we have

Qt(dÊ, dµ, dfl̄) = P(dÊ)QÊ
t (dµ, dfl̄). (3.5.12)

and QÊ
t -almost surely,

(µ, fl) œ S(at(Ê)). (3.5.13)

Since the cost functional ct is lower semi-continuous, we have

lim inf
Áæ0

E [IÁ
t ] (3.5.10)= lim inf

Áæ0
E[ct(µÁ

t , flÁ
t )]

(3.D.1)
Ø EQ

t [ct(Ê, µ, fl̄)]
(3.5.9)

Ø EQ
t [ct(Ê, µ, fl)]

(3.5.12)=
⁄

�
P(dÊ)

⁄

P(R
x

◊R
u

)◊M(R
x

◊R
›

\{0
›

})
ct(Ê, µ, fl)QÊ

t (dµ, dfl̄)

(3.5.13)=
⁄

�
P(dÊ)

⁄

S(a
t

(Ê))
ct(Ê, µ, fl)QÊ

t (dµ, dfl̄)

Ø
⁄

�
P(dÊ) inf

(µ,fl)œS(a
t

(Ê))
ct(Ê, µ, fl).

Finally, by definition of I, we have

lim inf
Áæ0

E [IÁ
t ] Ø E[I(at, rt, lt, kt, ht)].

3.5.3 Proof of Lemma 3.5.3
First we show the tightness of {(µÁ, flÁ)} in P(Rd

x◊Rd
u)◊M(Rd

x ◊ Rd
› \ {0›}). A common method

is to use tightness functions (see Section 3.C).

Recall that the cost functions F and P are extended to Rd
x ◊ Rd

› \ {0›} by (3.5.8) such that c is
lower semi-continuous. Moreover, c is a tightness function under Assumption 3.5.1, see Section
3.C or [DE11, pp. 309].
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Consequently, if (3.5.11) holds, the family of random measures {(µÁ, flÁ)} is tight. Furthermore,
by Proposition 3.D.1, we have

(µÁ
t , flÁ

t ) æF Qt œ PP(P(Rd
x ◊ Rd

u) ◊ M(Rd
x ◊ Rd

› \ {0›})),

up to a subsequence, with

Qt(dÊ, dµ, dfl̄) = P(dÊ)QÊ
t (dµ, dfl̄).

For the rest of the lemma, we use a combination of the arguments in [KS99] and [KM93]. Recall
that

Aaf(x, u) = 1
2

ÿ

i,j

aijˆ2
ijf(x) + uT Òf(x), Bf(x, ›) = f(x + ›) ≠ f(x).

For f œ C2
0 (Rd

x), define

�f
t (Ê, µ, fl̄) :=

⁄

Rd

x

◊Rd

u

Aa
t

(Ê)f(x, u)µ(dx ◊ dx) +
⁄

Rd

x

◊Rd

›

\{0
›

}
Bf(x, ›)fl(dx, d›), fl̄ = fl + ”fl̄”Œ.

Note that �f
t is well-defined since fl œ M(Rd

x ◊ Rd
› \ {0›}). Then we claim that

EQ[|�f
t (Ê, µ, fl̄)|] = lim

Áæ0
E[|�f

t (Ê, µÁ
t (Ê), flÁ

t (Ê))|] = 0. (3.5.14)

Although �f (Ê, ·, ·) œ C(P(Rd
x ◊Rd

u)◊M(Rd
x ◊ Rd

› \ {0›})), it is not bounded. The first equality
in (3.5.14) does not follow directly from the definition of stable convergence. However, by
Corollary 3.4.1, Condition (3.4.14) holds, that is there exists — œ (0, 1) and ◊f non-negative real
number depending on f such that

(Af)1/— Æ ◊f (1 + CA), (Bf)1/— Æ ◊f CB.

By (3.5.11), we deduce that {�f
t (Ê, µÁ

t , flÁ
t )} is uniformly integrable and obtain the first equality

in (3.5.14) by [JM81, Theorem 2.16].

For the second equality in (3.5.14), we apply Itō’s formula to f( ÂXÁ,t
T Á

) (recall that the dynamics
of ÂXÁ,t is given by (3.2.4)) and obtain that

f( ÂXÁ,t
T Á

) = f( ÂXÁ,t
0+) +

⁄ T Á

0
f Õ( ÂXÁ,t

s )
Ò

ÂaÁ,t
s dÊW Á,t

s

+
⁄ T Á

0

1
2

ÿ

ij

ÂaÁ,t
ij,sˆ2

ijf( ÂXÁ,t
s )ds +

⁄ T Á

0

ÿ

i

ÂuÁ,t
i,sˆif( ÂXÁ,t

s )ds

+
ÿ

0<Â·Á,t

j

ÆT Á

!
f( ÂXÁ,t

Â·Á,t

j

≠ + Â›Á
j ) ≠ f( ÂXÁ,t

Â·Á,t

j

≠)
"
.

Combining the definitions of µÁ, flÁ and �f
t , we have

E[|�f
t (Ê, µÁ

t (Ê), flÁ
t (Ê))|] Æ 1

T Á
E[|f( ÂXÁ,t

T Á

) ≠ f( ÂXÁ,t
0+)|] + 1

T Á
E

Ë---
⁄ T Á

0
f Õ( ÂXÁ,t

s )
Ò

ÂaÁ,t
s dÊW Á,t

s

---
È

+ 1
T Á

E[
⁄ T Á

0

1
2

ÿ

ij

|ÂaÁ,t
ij,s ≠ ÂaÁ,t

ij,0|ˆ2
ijf( ÂXÁ,t

s )ds].

By Assumptions 3.2.2 and 3.5.1 and dominated convergence, the term on the right hand side
converges to zero. Therefore (3.5.14) holds.
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By definition of QÊ and Fubini theorem, we have

EQ[|�f
t (Ê, µ, fl̄)|] = EP[EQÊ [|�f

t (Ê, µ, fl̄)|]] = 0.

Hence we have P-a.e.-Ê, EQÊ [|�f
t (Ê, µ, fl̄)|] = 0. Let D be a countable dense subset of C2

0 . Since
D is countable we have P-a.e.-Ê, EQÊ [|�f

t (Ê, µ, fl̄)|] = 0 for all f œ D. Fix Ê œ � \ N for which
the property holds. Again by the same argument, we have QÊ-a.e-(µ, fl̄)., �f

t (Ê, µ, fl̄) = 0 for all
f œ D. Since D is dense in C2

0 , �f
t (Ê, µ, fl̄) = 0 holds for f œ C2

0 .

3.6 Proof of Theorem 3.3.1
The rescaled process ( ÂXÁ,t

s ) is given by

d ÂXÁ,t
s = ÂbÁ,t

s ds +
Ò

ÂaÁ,t
s dÊW Á,t

s + ÂuÁ,t
s ds + Â“Á,t

s d ÂÏÁ,t
s ,

with
Â“Á,t

s = “Á
t+Á2—s, ÂÏÁ,t

s = 1
Á—

(ÏÁ
t+Á2—s ≠ ÏÁ

t ).

The empirical occupation measure of singular control ‹Á
t is defined by

‹Á
t = 1

T Á

⁄ T Á

0
”{( ÂXÁ,t

s

,Â“Á,t

s

,�ÂÏÁ,t

s

)}d ÂÏÁ,t
s .

while µÁ
t is defined in the same way as previously.

Define the cost functional ct : � ◊ P(Rd
x ◊ Rd

u) ◊ M(Rd
x ◊ � ◊ R+

” ) æ R:

(Ê, µ, ‹̄) ‘æ
⁄

Rd

x

◊Rd

u

(rt(Ê)D(x) + lt(Ê)Q(u))µ(dx ◊ du)

+
⁄

Rd

x

◊�◊R+
”

ht(Ê)P (“)‹̄(dx ◊ d“ ◊ d”).

Then we can show a similar version of Lemma 3.5.3 and prove Theorem 3.3.1 with the operator
B replaced by (3.4.5). The key ingredients are

— The functional c is a tightness function.
— The condition (3.4.14) holds for A and B given by (3.4.4)-(3.4.5).

To satisfy these two properties is the main reason why we need to use a di�erent operator B.

3.7 Proof of Propositions 3.4.1-3.4.5
In this section, we prove Propositions 3.4.1-3.4.5. First, we provide a verification argument
tailored to the linear programming formulation in Rd. Second, we give full details for the proof
of Proposition 3.4.4. The proofs in the remaining cases are exactly the same hence omitted.

3.7.1 Verification theorem in Rd

Consider A : D æ C(Rd
x ◊ Rd

u) and B : D æ C(Rd
x ◊ V ) with D = C2

0 (Rd
x). The operator A is

given by
Af(x, u) = 1

2
ÿ

ij

aijˆ2
ijf(x) +

ÿ

i

uiˆif(x), f œ C2
0 (Rd

2),

The operator B is given by
Bf(x, ›) = f(x + ›) ≠ f(x),
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if V = Rd
› \ {0›}, and by

Bf(x, “, ”) =
I

È“, Òf(x)Í, ” = 0,

”≠1!
f(x + ”“) ≠ f(x)

"
, ” > 0,

if V = � ◊ R+
” .

Let CA : Rd
x ◊Rd

u æ R+ and CB : Rd
x ◊V æ R+ be two cost functions. We consider the following

optimization problem:

I = inf
(µ,fl)

c(µ, fl) :=
⁄

Rd

x

◊Rd

u

CA(x, u)µ(dx, du) +
⁄

Rd

x

◊V
CB(x, v)fl(dx, dv), (3.7.1)

where (µ, fl) œ P(Rd
x ◊ Rd

u) ◊ M(Rd
x ◊ V ) satisfies

⁄

Rd

x

◊Rd

u

Af(x, u)µ(dx, du) +
⁄

Rd

x

◊V
Bf(x, v)fl(dx, dv) = 0, ’f œ C2

0 (Rd
x). (3.7.2)

Lemma 3.7.1 (Verification). Let w œ C1(Rd
x) fl C2(Rd

x \ N) so that Aw is well-defined point-
wisely for x /œ N and Bw is well-defined for x œ Rd

x. Assume that
1. For each (µ, fl) œ P(Rd

x ◊ Rd
u) ◊ M(Rd

x ◊ V ) satisfying (3.7.2) and c(µ, fl) < Œ, we have
µ(N ◊ Rd

u) = 0.
2. There exists wn œ C2

0 (Rd
x) such that

Awn(x, u) æ Aw(x, u), ’(x, u) œ Rd
x \ N ◊ Rd

u,

Bwn(x, v) æ Bw(x, v), ’(x, v) œ Rd
x ◊ V,

and there exist ◊ œ R+ such that

|Awn(x, u)| Æ ◊(1 + CA(x, u)), ’(x, u) œ (Rd
x \ N) ◊ Rd

u

|Bwn(x, v)| Æ ◊CB(x, v), ’(x, v) œ Rd
x ◊ V.

3. There exists a constant IV œ R such that

inf
uœRd

u

Aw(x, u) + CA(x, u) Ø IV , x œ Rd
x \ N, (3.7.3)

inf
vœV

Bw(x, v) + CB(x, v) Ø 0, x œ Rd
x. (3.7.4)

Then we have I Ø IV .

If there exists (µú, flú) satisfying the LP constraint and

Aw(x, u) + CA(x, u) = IV , µú ≠ a.e. (3.7.5)
Bw(x, v) + CB(x, v) = 0, flú ≠ a.e. (3.7.6)

then we have I = IV . Moreover, the optimum is attained by (µú, flú) and we call (w, IV ) the
value function of the linear programming problem.

Proof of Lemma 3.7.1. Let (µ, fl) be any pair satisfying (3.7.2) and c(µ, fl) < Œ. We have
⁄

Rd

x

◊Rd

u

Aw(x, u)µ(dx, du) +
⁄

Rd

x

◊V
Bw(x, v)fl(dx, dv)

=
⁄

Rd

x

◊Rd

u

Awn(x, u)µ(dx, du) +
⁄

Rd

x

◊V
Bwn(x, v)fl(dx, dv)

= 0.
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Figure 3.1 – Value function for combined regular and impulse control

The first term is well-defined since Aw is defined µ-everywhere. The second equality follows
from the second condition and dominated convergence theorem. Hence

c(µ, fl) =
⁄

Rd

x

◊Rd

u

(CA(x, u) + Aw(x, u))µ(dx, du) +
⁄

Rd

x

◊V
(CB(x, v) + Bw(x, v))fl(dx, dv) Ø IV ,

where the last inequality is due to (3.7.3)-(3.7.4), and the equality holds if and only if (3.7.5)-
(3.7.6) are satisfied.

Therefore, finding an explicit solution of a linear programming is possible if we can determine a
suitable value function from (3.7.5)-(3.7.6).

3.7.2 Verification of Proposition 3.4.4
In this section, we provide an explicit solution of the following linear programming problem:

I(a, r, l, k, h) = inf
(µ,fl)

⁄

R
x

◊R
u

(rx2 + lu2)µ(dx, du) +
⁄

R
x

◊R
›

\{0
›

}
(k + h|›|)fl(dx, d›), (3.7.7)

where µ œ P(Rx ◊ Ru) and fl œ M(Rx ◊ R› \ {0›}) satisfy
⁄

R
x

◊R
u

!1
2af ÕÕ(x) + uf Õ(x)

"
µ(dx, du) +

⁄

R
x

◊R
›

\{0
›

}

!
f(x + ›) ≠ f(x)

"
fl(dx, d›) = 0, (3.7.8)

for any f œ C2
0 (R). The following lemma, whose proof is given in the Appendix, and Theorem

3.7.1 establish the existence of the value function (w, IV ) for (3.7.7)-(3.7.8).

Lemma 3.7.2 (Value function for combined regular and impulse control). There exist U >
›ú > 0, IV > 0, and w œ C1(R) fl C2(R \ {U, U}) such that

Aw(x, uú(x)) + CA(x, uú(x)) = IV , x œ (≠U, U), (3.7.9)
Bw(x, ≠sgn(x)›ú) + CB(x, ≠sgn(x)›ú) = 0, x œ {≠U, U}, (3.7.10)

where uú(x) is defined by

uú(x) := Argmin
uœR

u

Aw(x, u) + CA(x, u) = ≠wÕ(x)
2l

. (3.7.11)
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More precisely, we have (c.f. Figure 3.1)

w(x) =

Y
]

[
(rl)1/2x2 ≠ 2al ln 1F1(1≠ÿ

4 ; 1
2 ;

1
r

a2l

21/2
x2), |x| Æ U,

w(U) + h(|x| ≠ U), |x| > U,
(3.7.12)

where 1F1 is the Kummer confluent hypergeometric function (see Section 3.A) and

IV = ÿ
Ô

a2rl,

for some ÿ œ (0, 1). Moreover, w satisfies the following conditions

wÕ(x) = wÕ(x ≠ sgn(x)›ú) = sgn(x)h, x œ {≠U, U}, (3.7.13)
wÕÕ(x) < 0, x œ {≠U, U}, (3.7.14)

wÕ(x) œ

Y
__]

__[

(≠Œ, ≠h), ≠U < x < ≠U + ›ú,

(≠h, h), ≠U + ›ú < x < U ≠ ›ú,

(h, Œ), U ≠ ›ú < x < U,

(3.7.15)

and w, ›ú, U and IV depend continuously on the parameters (a, r, k, h).

Remark 3.7.1. Equations (3.7.9) and (3.7.10) correspond essentially to (3.7.5) and (3.7.6). The
interval (≠U, U) is called continuation region. Equation (3.7.13) is the so called “smooth-fit”
condition and guarantees that w is a C1 function. Equations (3.7.14) and (3.7.15) characterize
the growth of the derivatives of w and will be useful in the proof of Theorem 3.7.1.

Proposition 3.4.4 is a direct consequence of the following theorem.

Theorem 3.7.1 (Combined regular and impulse control.). For any parameters a, r, l, k > 0 and
h Ø 0, we have

1. The pair (w, IV ) in Lemma 3.7.2 is the value function of (3.7.7)-(3.7.8) in the sense of
Lemma 3.7.1. In particular, the optimal cost of (3.7.7)-(3.7.8) is given by I = IV .

2. Let pú(x) œ C0([≠U, U ]) fl C2((≠U, U) \ {≠U + ›ú, U ≠ ›ú}) be a solution of
Y
_______]

_______[

1
2apÕÕ(x) ≠ (uú(x)p(x))Õ = 0, x œ (≠U, U) \ {≠U + ›ú, U ≠ ›ú},

p(≠U) = p(U) = 0,
1
2apÕ((≠U)+) = pÕ((≠U + ›ú)≠)) ≠ 1

2a(pÕ((≠U + ›ú)+),
1
2apÕ(U≠) = pÕ((U ≠ ›ú)+)) ≠ 1

2a(pÕ((U ≠ ›ú)≠),
s U

≠U p(x) = 1,

(3.7.16)

write flú
≠, flú

+ œ R+ for

flú
≠ = 1

2apÕ((≠U)+), flú
+ = ≠1

2apÕ(U≠), (3.7.17)

and recall that uú is given by (3.7.11). Then the optimum of (3.7.7)-(3.7.8) is attained
by

µú(dx, du) = pú(x)dx ¢ ”uú(x)(du), flú(dx, d›) = flú
≠”(≠U,›ú) + flú

+”(U,≠›ú). (3.7.18)

Proof.
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1. Consider the function w defined in Lemma 3.7.2. First we show that the three conditions
in Lemma 3.7.1 are satisfied by w.
i) Note that N = {≠U, U}. For any (µ, fl) satisfying the LP constraint, we show that
µ({x} ◊ Ru) = 0, ’x œ Rx. In particular, µ(N ◊ Ru) = 0. Indeed, let fn œ C2

0 (Rx) be
a sequence of test functions such that f ÕÕ

n æ {x}, ÎfnÎŒ ‚ Îf Õ
nÎŒ æ 0 and there exists

◊ œ R+ such that

|Afn(x, u)| Æ ◊(1 + CA(x, u)), |Bfn(x, ›)| Æ ◊CB(x, ›) ’x œ Rx, u œ Ru, › œ R› \ {0›}.

For example, let Ï œ C2
0 with ÏÕÕ being a piece-wise linear function such that ÏÕÕ(±Œ) =

ÏÕÕ(≠1) = ÏÕÕ(1) = ÏÕÕ(3) = ÏÕÕ(5) = 0, ÏÕÕ(0) = ÏÕÕ(4) = 1 and ÏÕÕ(2) = ≠2 and take
fn(z) = 1

n2 Ï(n(z ≠ x)). Since c(µ, fl) < Œ, we have by dominated convergence theorem

µ({x} ◊ Ru) = lim
n

⁄
Afn(z, u)µ(dz ◊ du) +

⁄
Bfn(z, ›)fl(dz ◊ d›) = 0.

ii) Let Ïn œ C2
0 be a sequence of indicator functions such that Ïn(x) = 1 for |x| Æ n and

sup
n

ÎÏnÎC2
0

:= ÎÏnÎŒ ‚ ÎÏÕ
nÎŒ ‚ ÎÏÕÕ

nÎŒ < Œ.

Let wn = wÏn. Then wn is C2 except at {≠U, U} and is of compact support. For each
n, wn satisfies also the LP constraint

⁄
Awndµ +

⁄
Bwndfl = 0.

Indeed, let Ï” be any convolution kernel and wn,” := wn ú Ï”. So wn,” satisfies the LP
constraint. Moreover, Awn,” æ Awn for x /œ {≠U, U}, Bwn,” æ Bwn for any (x, u) and
sup” Îwn,”ÎC2

0
< ÎwnÎC2

0
< Œ. By dominated convergence, wn satisfies the LP constraint.

Finally, a direct computation shows that for some constants ◊ and ◊Õ,

|Awn| Æ ◊ÕÎÏnÎC2
0
(|w| + |wÕ| + |wÕÕ|) Æ ◊(1 + CA), |Bwn| Æ 2ÎÏnÎŒ|wn| Æ ◊CB.

So the second condition is satisfied.
iii) By (3.7.9) and (3.7.14), we have Aw + CA Ø 0 for x /œ {≠U, U}. By (3.7.10)-(3.7.15)
and definition of w outside [U, U ], we have Bw + CB Ø 0.

By Lemma 3.7.1, we then conclude that I = IV .

2. We need to show that µú and flú satisfy the LP constraint. Assume that µú and flú are
given by (3.7.18), then by integration by parts, the LP constraint holds if pú(x) is solution
of (3.7.16). It is easy the see that the latter admits a unique solution.

Appendix 3.A Kummer confluent hypergeometric function 1F1

We collect here some properties of the Kummer confluent hypergeometric function 1F1 which are
useful to establish the existence of value functions of combined control problems in dimension
one. Recall that 1F1 is defined as

1F1(a, b, z) =
Œÿ

k=0

(a)k

(b)k

zk

k! ,

with (a)k the Pochhammer symbol.
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Lemma 3.A.1. We have the following properties.
1. The function 1F1 admits the following integral representation

1F1(a, b, z) = �(b)
�(b ≠ a)�(a)

⁄ 1

0
eztta≠1(1 ≠ t)b≠a≠1dt.

It is an entire function of a and z and a meromorphic function of b.
2. We have

ˆ

ˆz
1F1(a, b, z) = a

b
1F1(a + 1, b + 1, z),

ˆ

ˆa
1F1(a, b, z) =

Œÿ

k=0

(a)k

(b)k

zk

k!

k≠1ÿ

p=0

1
p + a

.

3. We have

(a + 1)z1F1(a + 2, b + 2, z) + (b + 1)(b ≠ z)1F1(a + 1, b + 1, z) ≠ b(b + 1)1F1(a, b, z) = 0.

4. We have

1F1(a, b, z) = �(a)
�(b ≠ a)eifiaz≠a(1 + O( 1

|z|)) + �(b)
�(a)ezza≠b(1 + O( 1

|z|)),

as z æ Œ.
5. Consider the Weber di�erential equation

wÕÕ(x) ≠ (1
4x2 + ◊)w(x) = 0. (3.A.1)

The even and odd solutions of this equation are given, respectively, by

Âw(x; ◊) = e≠ 1
4 x2

1F1(1
2◊ + 1

4 ,
1
2 ,

1
2x2), (3.A.2)

w̄(x; ◊) = xe≠ 1
4 x2

1F1(1
2◊ + 3

4 ,
3
2 ,

1
2x2). (3.A.3)

Proof. See [AS72, AG08].

Appendix 3.B Proof of Lemma 3.7.2
We first look for w in the continuation region (≠U, U). Define (the change of variable comes
from [OS05, pp.260])

w(x) := ≠2al ln Âw( x

–
; ≠ ÿ

2), –2 = 1
2a(r≠1l)1/2, ÿ = IV

(a2rl)1/2 ,

where Âw is the odd solution (3.A.2) of the Weber di�erential equation (3.A.1). Then w satisfies
the following ODE

1
2awÕÕ(x) ≠ 1

4l
(wÕ(x))2 + rx2 = IV ,

which is exactly (3.7.9). Hence we conjecture that the solution in the continuation region (≠U, U)
is given by

w(x) = ≠2al ln
1
e≠ 1

4 x2/–2
1F1(1 ≠ ÿ

4 ,
1
2 ,

1
2–2 x2)

2

= (rl)1/2x2 ≠ 2al ln
1

1F1(1 ≠ ÿ

4 ,
1
2 ,

1
2–2 x2)

2
.
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Now we show that there exist suitable values U , ›(U) and ÿ such that 0 Æ U + ›(U) Æ U ,
ÿ œ (0, 1) and Conditions (3.7.10)-(3.7.15) are satisfied. Let

h(x; ÿ) := ˆw

ˆx
= 2(rl)1/2(1 ≠ (1 ≠ ÿ)g( 1

2–2 x2; ÿ))x,

with
g(z; ÿ) = 1F1(1≠ÿ

4 + 1, 1
2 + 1, z)

1F1(1≠ÿ
4 , 1

2 , z)
.

We have the following lemma.

Lemma 3.B.1. The function g(z; ÿ) satisfies

g(z; ÿ) æ
I

1, z æ 0+,
2

1≠ÿ , z æ +Œ,

and
gÕ(z; ÿ) > 0, ’z œ [0, +Œ).

Proof. The limits of g(z; ÿ) follow from the asymptotic behaviour of 1F1. To show that g is
increasing, we use Properties 2 and 3 in Lemma 3.A.1 and obtain

gÕ(z) = g(z)
!
1 ≠ 1 ≠ ÿ

2 g(z)
"

+ 1
2z

!
1 ≠ g(z)

"
.

Note that gÕ(0) > 0, so g > 1 near x = 0. Since gÕ(z) > 0 for g(z) = 1 and gÕ(z) < 0 for
g(z) = 2

1≠ÿ , g(z) cannot leave the band [1, 2
1≠ÿ ].

We now state a second lemma.

Lemma 3.B.2. The function h(x; ÿ) satisfies the following properties.
1. For ÿ œ (0, 1), we have

h(x; ÿ)
x

æ
I

2(rl)1/2ÿ, x æ 0+,

≠2(rl)1/2, x æ +Œ.

Let 0 < x̄ÿ < Œ be the first zero of h(x; ÿ). We have

hÕ(x; ÿ) =
I

2(rl)1/2ÿ > 0, x = 0,

≠2(rl)1/22(1 ≠ ÿ)x̄ÿgÕ(z̄ÿ) < 0, x = x̄ÿ,

where z̄ÿ = 1
2–2 x̄2

ÿ and
hÕÕ(x; ÿ) < 0, x œ [0, x̄ÿ].

2. For x œ (0, Œ), we have
ˆ

ˆÿ
h(x; ÿ) > 0

and
h(x; ÿ) æ 2(rl)1/2x, ÿ æ 1 ≠ .

We have
x̄ÿ = O(ÿ1/2), ÿ æ 0+

and hence
max

xœ[0,x̄
ÿ

]
h(x; ÿ) æ 0, ÿ æ 0 + .
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Figure 3.2 – Qualitative behaviour of h(x; ÿ)

Proof. For fixed ÿ. The asymptotic behaviour of h follows from Lemma 3.B.1. The second
property is clear since

hÕ(x; ÿ) = 2(rl)1/2
1

≠ 2(1 ≠ ÿ)gÕ(z)z +
!
1 ≠ (1 ≠ ÿ)g(z)

"2

= 2(rl)1/2(≠2(1 ≠ ÿ)gÕ(z)z) + h(x)
x

,

with z = 1
2–2 x2. Finally, we get

hÕÕ(x; ÿ) = d

dz
hÕ(z; ÿ)zÕ(x) = ≠2(rl)1/2(1 ≠ ÿ)(3gÕ(z) + 2gÕÕ(z)z)zÕ(x).

Furthermore, we have

3gÕ(z) + 2gÕÕ(z)z = 3gÕ(z) + 2z
1
gÕ(z)

!
1 ≠ (1 ≠ ÿ)g(z)

"
+ 1

2z2
!
g(z) ≠ 1 ≠ zgÕ(z)

"2

= 2zgÕ(z)
!
1 ≠ (1 ≠ ÿ)g(z)

"
+ 1

z
(g(z) ≠ 1) + 2gÕ(z)

which is strictly positive term by term for x œ [0, x̄ÿ].

For fixed x. The limit of h as ÿ æ 1≠ follows from the fact that 1F1(a, b, z) is entire in a. Now
we show that h is monotone in ÿ. Let G := ˆÿ1F1, we have

ˆÿh(x; ÿ) = ≠2al
ˆ

ˆÿ

ˆ

ˆx
ln 1F1(1 ≠ ÿ

4 ; 1
2; 1

2–2 x2)

= ≠2al
ˆ

ˆx

ˆ

ˆÿ
ln 1F1(1 ≠ ÿ

4 ; 1
2; 1

2–2 x2)

= 1
2al

ˆ

ˆx

G

1F1
(1 ≠ ÿ

4 ; 1
2; 1

2–2 x2)

= 1
2alzÕ(x)1F1

ˆ
ˆz G ≠ G ˆ

ˆz 1F1

1F 2
1

(1 ≠ ÿ

4 ; 1
2; z),

with z(x) = 1
2–2 x2. It is enough to show that the last term is positive. Using the series

representation of 1F1 and G (see Lemma 3.A.1), write

1F1 =
Œÿ

k=0
fkzk, G =

Œÿ

k=0
—kfkzk,
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with

—k =
k≠1ÿ

p=0

1
p + a

, a = 1 ≠ ÿ

4 .

We get

1F1
ˆ

ˆx
G ≠ G

ˆ

ˆx
1F1 =

1 Œÿ

i=0
fiz

i
21 Œÿ

j=0
(j + 1)—j+1fj+1zj

2
≠

1 Œÿ

i=0
(i + 1)fi+1zi

21 Œÿ

j=0
—jfjzj

2

=
Œÿ

k=0

1 ÿ

i+j=k

fi(j + 1)—j+1fj+1
2
zk ≠

Œÿ

k=0

1 ÿ

i+j=k

(i + 1)fi+1—jfj

2
zk.

Then the coe�cient of zk is given by
ÿ

i+j=k

fi(j + 1)—j+1fj+1 ≠
ÿ

i+j=k

(i + 1)fi+1—jfj

=
ÿ

i+j=k

(j + 1)(—j+1 ≠ —i)fifj+1

=
ÿ

1Æi<j+1Æk

1
(j + 1)(—j+1 ≠ —i)fifj+1 ≠ i(—i ≠ —j+1)fj+1fi

2
+

ÿ

j+1=k+1
(· · · ) +

ÿ

i=j+1
(· · · )

=
ÿ

1Æi<j+1Æk

(j + 1 ≠ i)(—j+1 ≠ —i)fifj+1 +
ÿ

j+1=k+1
(· · · ) +

ÿ

i=j+1
(· · · ).

This term is positive since —k is increasing in k. Hence ˆÿh > 0. Thus h(x; ÿ) is increasing in ÿ
for fixed x œ R+.

From the relation between g and h, z̄ÿ is the first solution of

1 ≠ (1 ≠ ÿ)g(z) = 0, z > 0.

Moreover, we have
g(z) = 1 + (1 ≠ 1 ≠ ÿ

2 )z + o(z), z æ 0 + .

Then uniformly on ÿ, g(z) is bounded from below by 1 + 1
3z on [0, z0], hence

z̄ÿ Æ 3ÿ

1 ≠ ÿ
= O(ÿ), ÿ æ 0 + .

Finally, we have
max
[0,x̄

ÿ

]
h(x; ÿ) Æ 2(rl)1/2x̄ÿ æ 0, ÿ æ 0 + .

Proposition 3.B.1. For any parameters r, l, h > 0 and k Ø 0, there exist ÿ œ (0, 1) and
0 Æ U + › Æ U such that

⁄ U

U+›
h(x; ÿ)dx = k ≠ h›,

h(U ; ÿ) = h,

h(U + ›; ÿ) = h,

h(x; ÿ) œ
I

(0, h), 0 Æ x Æ U + ›,

(h, Œ), U + › Æ x Æ U,

hÕÕ(x; ÿ) < 0, 0 Æ x Æ U.

Moreover, (ÿ, ›, U) depends continuously on (r, l, k, h).
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Proof. Existence. Let k > 0. Since h(x; ÿ) is monotone in ÿ and h(x; ÿ) æ 2(rl)1/2x as ÿ æ 1≠,
there exists ÿ = ÿ(h) Ø 0 such that

(ÿ, 1) = {ÿ œ (0, 1), there exists exactly two solutions Uÿ + ›ÿ and Uÿ on [0, x̄ÿ].}

We have
hÕ(Uÿ + ›ÿ; ÿ) > 0, hÕ(Uÿ) < 0,

so by the implicit function theorem, Uÿ and Uÿ + ›ÿ depend continuously on ÿ. Define

K(ÿ) =
⁄ U

ÿ

U
ÿ

+›
ÿ

h(x; ÿ)dx.

Then K is continuous in ÿ and

lim
ÿæÿ

K(ÿ) = 0, lim
ÿæ1≠

K(ÿ) = Œ.

Hence there exists ÿ(h, k) œ (ÿ(h), 1) such that K(ÿ(h, k)) = k. The remaining property of h is
easily verified.

If k = 0, then there exists exactly one ÿ(h) œ (0, 1) such that the maximum of h(x; ÿ) is h and is
attained by Uÿ such that

hÕ(Uÿ; ÿ) = 0.

Since hÕÕ(Uÿ; ÿ) < 0, Uÿ depends continuously on ÿ by the implicit function theorem.

Continuous dependence. Since › and U depend continuously on ÿ, it su�ces to show that ÿ
depends continuously on the parameters a, r, h, k, l. To see this, note that ÿ = ÿ(a, l, r, h, k) is
determined by

K(ÿ; a, r, l, k, h) = k.

But, we have
ˆ

ˆÿ
K(ÿ; a, r, l, k, h) > 0.

Thus ÿ depends continuously on the parameters by the implicit function theorem.

Proof of Lemma 3.7.2. Extend the function w in Proposition 3.B.1 to R by

w(x) =
I

w(|x|), |x| Æ U,

w(U) + h(|x| ≠ U), |x| > U.

Then (3.7.9)-(3.7.14) hold. By (3.7.10) and (3.7.13), we have w œ C1(R) fl C2(R \ {U, U}).

Appendix 3.C Tightness function
For more details on the following results, see [DE11, Appendix A.3] and [Bog07].

Definition 3.C.1. A measurable real-valued function g on a metric space g : (E, d) æ Rfi {Œ}
is a tightness function if

1. infxœE g(x) > ≠Œ.
2. ’M < Œ, the level set {x œ E|g(x) Æ M} is a relatively compact subset of (E, d).

Lemma 3.C.1. If g is a tightness function on a Polish space E, then
1. The function G(µ) =

s
E g(x)µ(dx) is a tightness function on P(E).
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2. If in addition g Ø ” where ” is a positive constant and E is compact, then G(µ) =s
E g(x)µ(dx) is a tightness function on M(E).

Proof. Note that M(E) is a metric space, thus sequential compactness is equivalent to relative
compactness (see [DE11, pp. 303] for the metric). For the first property, see [DE11, pp. 309].
For the second property, we consider the level set {µ œ M(E)|G(µ) Æ M} and let {µn} be any
sequence in the level set. By [Bog07, Theorem 8.6.2], it is enough to show that

1. The sequence of nonnegative real numbers µn(E) is bounded.
2. The family {µn} is tight.

Since g Ø ”, we have µ(E) Æ G(µ)/” Æ M/”. Hence the first condition is true. On the other
hand, for any Á > 0, we consider µn/µn(E) œ P(E). Then G(µn/µn(E)) Æ M/µn(E) Æ M/Á, if
µn(E) > Á. Since G is a tightness function, we deduce that {µn | µn(E) > Á} is tight. Therefore
{µn} is tight and the second condition follows.

Appendix 3.D Convergence in probability, stable convergence
Let (�, F) be a measurable space and (E, E) a Polish space where E is the Borel algebra of E.
Define

� = � ◊ E, F = F ¢ E .

Let Bmc(�) be the set of bounded mesurable functions g such that z ‘æ g(Ê, z) is a continuous
application for any Ê œ �. Let Mmc(�) be the set of finite positive measures on (�, F), equiped
with the weakest topology such that

µ ‘æ
⁄

�
g(Ê, z)µ(dÊ, dz),

is continuous for any g œ Bmc(�).

We fix a probability measure P on (�, F). Let PP(� ◊ E, F ¢ E) µ Mmc(�) be the set of
probability measures on � with marginal P on �, equiped with the induced topology from
Mmc(�). Note that PP(� ◊ E, F ¢ E) is a closed subset of Mmc(�). For any random variable
Z defined on the probability space (�, F ,P), we define

QZ(dÊ, dz) := P(dÊ) ¢ ”Z(Ê)(dz) œ PP(� ◊ E, F ¢ E).

Definition 3.D.1 (Stable convergence). Let {ZÁ, Á > 0} be random variables defined on the
same probability space (�, F ,P) with values in the Polish space (E, E). We say that ZÁ converges
stably in law to Q œ PP(� ◊ E, F ¢ E), written ZÁ æstable Q, if QZÁ æ Q in Mmc(�).

We use the following properties in our proofs.

Proposition 3.D.1. Let {ZÁ, Á > 0} be random variables on the probability space (�, F ,P) with
values in (E, E).

1. We have ZÁ æstable Q œ PP(� ◊ E, F ¢ E) if and only if

E [Y f(ZÁ)] æ EQ [Y f(z)] ,

for all bounded random variables Y on (�, F) and all bounded continuous functions f œ
Cb(E,R).

2. Assume that ZÁ æstable Q œ PP(� ◊ E, F ¢ E). Then

lim inf
Áæ0

E[g(ZÁ)] Ø EQ[g(Ê, z)], (3.D.1)

for any g bounded from below with lower semi-continuous section g(Ê, ·) on E.
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3. Let Z be a random variable defined on (�, F ,P). We have

ZÁ æp Z … ZÁ æstable QZ .

4. The sequence {QZÁ

, Á > 0} is relatively compact in PP(� ◊ E, F ¢ E) if and only if
{ZÁ, Á > 0} is relatively compact as subset of P(E). In particular, if E is compact, then
PP(� ◊ E, F ¢ E) is compact.

Proof.
1. This is a direct consequence of [JM81, Proposition 2.4].
2. This is generalization of the Portmanteau theorem, see [JM81, Proposition 2.11].
3. The ∆ implication is obvious. Let us prove the other. Consider F (Ê, z) = |Z(Ê) ≠ z| · 1. On
the one hand, we have E[F (Ê, ZÁ)] æ EQZ [F (Ê, z)] = 0 by definition. On the other hand, for
any ” œ (0, 1) we have

P[|ZÁ ≠ Z| > ”] Æ E[F (Ê, ZÁ) > ”] Æ E[F (Ê, ZÁ)]
”

,

by Markov inequality. We deduce that ZÁ æp Z.
4. See [JM81, Theorem 3.8 and Corollary 3.9].

Lemma 3.D.1. Let {Z, ZÁ, Á > 0} be positive random variables on the probability space (�, F ,P).
If, for any random variable Y defined on (�, F ,P) with cY Æ Y Æ CY where cY , CY are positive
constants depending on Y ,

lim inf
Áæ0

E [Y ZÁ] Ø E [Y Z] ,

then
lim inf

Áæ0
ZÁ Øp Z.

Proof. Let ” > 0 be any real number and, without loss of generality, let {ZÁ} be a minimizing
sequence of P[ZÁ > Z ≠ ”] as Á æ 0. Considering the one-point compactification R+ fi {Œ}, we
can assume that ZÁ converge stably to Q œ P(� ◊ (R+ fi {Œ})) with canonical realization Z̄.
Then we have

E
Ë
Y Z̄

È
Ø lim sup

Áæ0
E [Y ZÁ] Ø E [Y Z] ,

where the first inequality comes from the fact that z ‘æ z is u.s.c. on R+ fi {Œ} and [JM81,
Prop 2.11]. Since Y is arbitrary, we conclude that Z̄ Ø Z. Then by stable convergence of ZÁ to
Z̄, we have P[ZÁ > Z ≠ ”] æ P[Z̄ > Z ≠ ”] = 1.
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4.1 Introduction

In Chapter 3, we have formulated the problem of tracking as a stochastic control problem min-
imizing both running deviation costs and intervention e�orts. Finding optimal control policies
for such systems, which have general non-Markovian dynamics and complex cost structures, is
in general infeasible. Under a suitable asymptotic framework, we have established rigorously a
lower bound for the best achievable asymptotic performance.

As we have shown heuristically, the lower bound is related to the time-average control of Brow-
nian motion. It is then natural to try to construct tracking policies that are (near-)optimal
by suitably adapting the solution of time-average control of Brownian Motion. We will show
that this is indeed possible when the latter is available. However, closed-form solution of time-
average control of Brownian motion is in general not available either, and numerical solutions are
time-consuming to obtain. From a practical viewpoint, it is also irrelevant to find the optimal
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strategy since there are already many approximations in the model.

As a continuation of Chapter 3, we study a class of feedback strategies which is easy to im-
plement in practice and show how to determine their performance. Here, “feedback” means
that the control decision is Markovian, depending only on the current state of the system. We
establish in this way an upper bound for the best achievable performance and expect the two
bounds to be tight.

Another main contribution of the current paper is to review some interesting asymptotic re-
sults in the literature under a unifying framework. First, we provide a new limit theorem for
the discretization errors of stochastic integrals. Comparing with [HM05, Roo80, Fuk11c], we
establish formally a new relation for di�erent discretization schemes based on time or space.
We also revisit some recent results on the asymptotic optimal discretization of hedging strate-
gies ([Fuk11a, GL14a]) and relate their lower bounds to the time-average control of Brownian
motion. Our approach allows more general cost functions in high dimension and we provide
several new explicit examples in dimension one. The second application is the impact of market
frictions such as transaction costs ([KMK15, KL13, ST13, PST15, AMKS15, LMKW14]), tem-
porary market impact ([MMKS14, BSV15]) and illiquidity cost ([RS10, NW11]). We provide
an alternative probabilistic approach for the asymptotics of small market frictions which have
been extensively studied in the literature in the viscosity approach initiated by [ST13] under
Markovian setting or duality method in [KMK15, KL13]. By a suitable choice of deviation cost,
we establish a correspondence between the formulas in the above references and our asymptotic
lower bounds, see Fig.4.2.

Notation. We denote the graph of an application M : E æ EÕ by Mg. � = {“ œ Rd|
q

i |“i| = 1}
is the simplex in Rd. Let (E, d) be a complete separable metric space. M(E) denotes the space of
Borel measures on E equipped with weak topology and P(E) denotes the subspace of probability
measures. The hausdor� distance on the space of closed sets is given by

H(A, B) = inf{”, B ™ V”(A) and A ™ V”(B)},

where V”(·) denotes the ”-neighbourhood of a closed set, i.e. V”(A) = {x œ E, d(x, A) Æ ”}.

The cost functions D, Q, F , P verify the following homogeneity property

D(Áx) = Á’
D D(x), Q(Áu) = Á’

QQ(u), F (Á›) = Á’
F F (›), P (Á›) = Á’

P P (›),

with ’D > 0, ’Q > 1, ’F = 0, ’P = 1. For example, we could take

D(x) = xT �Dx, Q(u) = uT �Qu, F (›) =
dÿ

i=1
Fi {›i ”=0}, P (›) =

dÿ

i=1
Pi|›i|,

with mini Fi > 0 and �D, �Q œ Sd
+ such that ’D = ’Q = 2. For the rest of the notation, we

refer the reader to Chapter 3.

4.2 Combined regular and impulse control

We focus on the case of combined regular and impulse control. Let (�, F , (Ft)tØ0,P) be a filtered
probability space and (X¶

t ) an Itô di�usion such that

dX¶
t = btdt + Ô

atdWt,
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with (Wt) a d-dimensional Brownian motion and (bt), (at) predictable processes with values in
Rd and Sd

+ respectively. The deviation (Xt) from the target is given by

Xt = ≠X¶
t +

⁄ t

0
usds +

ÿ

j:0<·
j

Æt

›j ,

where (ut) is a progressively measurable process, {·j} a sequence of stopping times and {›j}
corresponding F·

j

-measurable random variables. The process (ut) represents the speed of the
tracker. The stopping time ·j represents the timing of the j-th instantaneous jump towards the
target and ›j the size of the jump.

4.2.1 Feedback strategies
Motivated by various results in the literature and by practice, we consider a class of feedback
strategies which take the following form. Let G be a domain in Rd, x ‘æ x + ›(x) an application
from the boundary ˆG to G, and u a bounded application from G to Rd. When the deviation
Xt is inside the domain G, only the regular control is active and the tracker maintains a speed
of u(Xt). When Xt touches the boundary ˆG at time · , a jump of size ›(X·≠) towards the
interior of G happens and the process Xt begins with X·≠ + ›(X·≠) at time · . Denote the
resulting process by X(u,G,›). Let {· (u,G,›)

j } be the hitting times of X(u,G,›) and {Y (u,G,›)
j } the

corresponding chain on the boundary ˆG where

Y (u,G,›)
j = X(u,G,›)

·
(u,G,›)
j

≠
, j = 1, 2, · · · ,

then we have
X(u,G,›)

t = ≠X¶
t +

⁄ t

0
u(X(u,G,›)

s )ds +
ÿ

0<·
(u,G,›)
j

Æt

›(Y (u,G,›)
j ).

Recall that the asymptotic framework of tracking is to consider the sequence of optimization
problems indexed by Á æ 0 with

JÁ(uÁ, · Á, ›Á) =
⁄ T

0
(rtD(XÁ

t ) + Á—
Q ltQ(uÁ

t ))dt +
ÿ

j:0<·Á

j

ÆT

(Á—
F k·Á

j

F (›Á
j ) + Á—

P h·Á

j

P (›Á
j )), (4.2.1)

where
XÁ

t = ≠X¶
t +

⁄ t

0
uÁ

sds +
ÿ

j:0<·Á

j

Æt

›Á
j ,

and —F , —P some fixed real numbers.

Under our asymptotic setting, an appropriate feedback strategy should depend on time. More
precisely, let (Gt) be a random moving open bounded domain associated with jump rule (›t) on
the boundary such that x + ›t(x) œ C0(ˆGt, Gt), and (ut) be a random function on the closure
Ḡt such that ut œ C0(Ḡt,Rd). The triplet (ut, Gt, ›t) is continuous if (ug

t , ˆGt, ›g
t ) is continuous

as closed set-valued processes w.r.t. the Hausdor� distance H. We say that (ut, Gt, ›t) is pro-
gressively measurable, if (ug

t , ˆGt, ›g
t ) is progressively measurable w.r.t. (Ft) as closed set-valued

processes (see [Kis13] for more details).

We will consider (ut, Gt, ›t) which is continuous and progressively measurable. Intuitively, we
require that the data (ut, Gt, ›t) is determined in a non-anticipative way, based on information
up to time t, and does not vary too much in time. Note that since ˆGt is continuous, the
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topology of the domain Gt (number of holes, boundedness, etc. ) remains the same.

The sequence of feed-back strategies (XÁ, uÁ, · Á, ›Á) can be constructed in the following recursive
way.

1. Let · Á
0 = 0, XÁ

0 = 0.

2. For t Ø · Á
j≠1, let XÁ

t be defined by

dXÁ
t = ≠dX¶

t + uÁ
t dt, (4.2.2)

with
uÁ

t = Á≠(–≠1)—ut(Á≠—XÁ
t ).

3. Put

· Á
j = inf{t > · Á

j≠1,
1
Á—

XÁ
t /œ Gt}, ›Á

j = Á—›·Á

j

(Á≠—XÁ
·Á

j

≠),

and
XÁ

·Á

j

= XÁ
·Á

j

≠ + ›Á
j .

4. Go to step 2.

The boundary chain {Y Á
j } is defined by

Y Á
j = Á≠—XÁ

·Á

j

≠ œ ˆG·Á

j

, j = 1, 2, · · · . (4.2.3)

We assume that

Assumption 4.2.1. The feedback strategy (XÁ, uÁ, · Á, ›Á) exists and is unique for each Á > 0.

A rigorous verification of the above definition requires detailed analysis with specific conditions
on (Gt, ›t, ut). We provide below a simple situation where the above assumption is verified.

Lemma 4.2.1. Let (ut) be a random function with uniformly Lipschitz coe�cient K > 0, and
assume that the distance to the boundary after the jump is bounded from below by ” > 0, i.e.

|ut(x) ≠ ut(y)| Æ K|x ≠ y|, ’x, y œ Rd
x, ’(t, Ê), (4.2.4)

and
H(›t(ˆGt), ˆGt) > ”, ’(t, Ê). (4.2.5)

Then Assumption 4.2.1 holds. Moreover, it continues to hold if (4.2.4)-(4.2.5) are true up to a
localization procedure.

Proof. For the existence of (4.2.2) (in the strong sense), Lipschitz-type regularity on ut is su�-
cient (see [Pro04, Chapter V] for more details). For the existence of XÁ on the whole horizon
[0, T ], it su�ces to show that

lim
jæŒ

· Á
j = +Œ,

the proof of which is the same as in [CK06, Proof of Theorem 4.1] (see also [GK12]).
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4.2.2 Asymptotic performance
In order to have well-behaved strategies, we restrict ourselves to the following class of admissible
triplets (ut, Gt, ›t).

Definition 4.2.1 (Admissible Strategy). The triplet (ut, Gt, ›t) is admissible if
1. (Potential.) There exists V œ C2(Rd,R) such that ’(t, Ê),

V (x + ›Ê
t (x)) ≠ V (x) < 0, ’x œ ˆGÊ

t .

We call V a potential function of the jump rule (Gt, ›t).
2. (Separability.) For any (t, Ê), let u = uÊ

t , G = GÊ
t and › = ›Ê

t , then there exists a unique
couple (fi, ‹) œ P(Ḡ) ◊ M(ˆG) verifying the constraints

⁄

Ḡ
Aa

uf(x, u)fi(dx) +
⁄

ˆG
B›f(x)‹(dx) = 0, ’f œ C2

0 (Rd
x), (4.2.6)

where

Aa
uf(x) = 1

2
ÿ

i,j

aijˆ2
ijf(x) + u(x) · Òf(x), B›f(x) = f(x + ›(x)) ≠ f(x).

We note fi =: fi(a,u,G,›) and ‹ =: ‹(a,u,G,›) to indicate the dependence on (a, u, G, ›).

Remark 4.2.1. The existence of V ensures that all impulse controls try to constrain the process
XÁ in the same direction and hence avoid the explosion of tracking e�orts (last term on the left
hand side of (4.2.1)) due to the cancellation of di�erent jumps.

Loosely speaking, fi and ‹ are, up to a constant, stationary distributions over the horizon (t, t+”Á]
of XÁ and Y Á respectively. The separability of (A, B) w.r.t. (u, G, ›) guarantees uniqueness of
these stationary distributions, which is a desired property when we consider the limit under the
asymptotic framework.

For a numerical computation of (fi, ‹) based on Monte-Carlo simulation, see [BCR13] for a
possible approach.

Usually, the barrier Gt and jump rule › are defined by prescribing a potential function V as the
following example shows.

Example 4.2.1. Let –t, —t be a continuous positive adapted processes such that –t > —t and
V (x) = cx2 with c > 0. Define Gt = {x œ R, V (x) < –t}, we have

Gt = [≠Lt, Lt], Lt =
Ú

–t

c
.

Take

›t(±Lt) = ±lt, lt =

Û
—t

c
.

Then the triplet (ut, Gt, ›t) is admissible.

Indeed, the function V can serve as a potential function for the jump rule. It su�ces to show
the separability of (fi, ‹), which can be written as, ’f œ C2

0 (R),
⁄ L

≠L
[12af ÕÕ(x) + u(x)f Õ(x)]fi(dx) + ‹+[f(l) ≠ f(L)] + ‹≠[f(≠l) ≠ f(≠L)] = 0,
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for some fi œ P([≠L, L]) and ‹± œ R+. Let f(x; g) be a solution of

1
2af ÕÕ(x) + u(x)f Õ(x) = g(x), x œ [≠L, L].

Let U(x) =
s

u(x)dx, we can solve explicitly

f(x; g) =
⁄ x

0

⁄ z

0
g(y)e≠ 2

a

(U(z)≠U(y))dydz + C1

⁄ x

0
e≠ 1

a

U(z)dz + Cz, x œ [≠L, L],

which can be extended to a function in C2
0 (R) and is denoted also by f(x; g). Take g © 0 and

g © 1 on [≠L, L], we obtain
I

‹+(f(l; 0) ≠ f(L; 0)) + ‹≠(f(≠l; 0) ≠ f(≠L; 0)) = 0,

‹+(f(l; 1) ≠ f(L; 1)) + ‹≠(f(≠l; 1) ≠ f(≠L; 1)) = ≠1,

which admits a unique solution (‹+, ‹≠). Hence fl is uniquely determined. Then fi is also
uniquely determined since we can take g|[≠L,L] œ C0([≠L, L]) arbitrarily.

Let fl(dx ◊ d›) = ‹(dx) ¢ ”›(x)(d›), then (fi, ‹) is given by (3.7.18). In particular, if ut © 0 then
(fi, fl) is explicitly given by (3.4.28)-(3.4.29), which corresponds to the stationary distribution and
boundary measures of Brownian motion with rebirth.

Remark 4.2.2. In high dimension, we can define a similar strategy where V = xT �x and
� œ Sd

+. Then Gt is an ellipsoid given by Gt = {x œ Rd|V (x) < –t}. In that case, we
have more freedom for the choice of jump rule ›t. For example, the jump rule ›(x) = ≠x
corresponds to the strategies in [GL14a, AMKS15]. However, the uniqueness of (fi, ‹) can’t be
handled as in dimension one. In Appendix 4.B, we propose an alternative approach which reduces
the uniqueness of (fi, ‹) to the ergodicity of the corresponding di�usion with rebirth, under the
hypothesis that the latter is well-defined.

Now we state one of our main results in this Chapter.

Theorem 4.2.1 (Asymptotic performance for combined regular and impulse control). Con-
sider an admissible triplet (ut, Gt, ›t) and assume Assumption 4.2.1. Let (XÁ, uÁ, · Á, ›Á) be the
corresponding feedback strategy, we have

1
Á’

D

—
JÁ(uÁ, · Á, ›Á) æp

⁄ T

0
c(at, ut, Gt, ›t; rt, lt, kt, ht)dt,

where c(a, u, G, ›; r, l, k, h) is given by

c(a, u, G, ›; r, l, k, h) =
⁄

Ḡ
[rD(x) + lQ(u(x))]fi(a,u,G,›)(dx)

+
⁄

ˆG
[kF (›(x)) + hP (›(x))]‹(a,u,G,›)(dx).

Moreover, the convergence holds term by term for the cost functions D, Q, F , P respectively.

Remark 4.2.3. In the theorem above, we need Assumption 4.2.1 and 4.B.1 to hold. While
these assumptions can be verified directly in dimension one, there is not documented result for
Assumption 4.B.1 in high dimension yet (See however [CK15, Remark 3.2 and 5.3] for an
approach based on viscosity solution).

Corollary 4.2.1. If {Á≠’
D

—JÁ, Á > 0} is uniformly integrable, we have

lim
Áæ0

1
Á’

D

—
E [JÁ] = E[

⁄ T

0
c(at, ut, Gt, ›t; rt, lt, kt, ht)dt].



4.3. Extensions to other types of control 143

Remark 4.2.4. The deviation cost is easily bounded by the barriers hence uniformly integrable
if the latter is integrable. For the uniform integrability of tracking cost, see Assumptions (HA2)
and (HAÕ

2) in [RT14] for a particular jump rule.

Recall that we have established a lower bound of JÁ in terms of I, where I = I(a, r, l, k, h) is
given by

I = inf
(µ,fl)

⁄

Rd

x

◊Rd

u

(rD(x) + lQ(u))µ(dx ◊ du) +
⁄

Rd

x

◊Rd

›

(kF (›) + hP (›))fl(dx ◊ d›),

with (µ, fl) œ P(Rd
x ◊ Rd

u) ◊ M(Rd
x ◊ Rd

›) verifying the following constraints
⁄

Rd

x

◊Rd

u

Aaf(x, u)µ(dx ◊ du) +
⁄

Rd

x

◊Rd

›

Bf(x, ›)fl(dx ◊ d›) = 0, ’f œ C2
0 (Rd

x).

If we can find (ut, Gt, ›t) such that c(ut, Gt, ›t) = It, then the lower bound (3.1.6) is sharp.

Corollary 4.2.2 (Definition of asymptotic optimal strategies). Assume that rt, lt, kt and ht are
adapted and there exists an admissible triplet (uú

t , Gú
t , ›ú

t ) such that dt ¢ dP-a.e. (t, Ê),

c(at, uú
t , Gú

t , ›ú
t ; rt, lt, kt, ht) = I(at, rt, lt, kt, ht).

Then we have
lim
Áæ0

1
Á’

D

—
JÁ(uú,Á, ·ú,Á, ›ú,Á) æp

⁄ T

0
I(at, rt, lt, kt, ht)dt,

and we say that the feed-back strategy (uú,Á, ·ú,Á, ›ú,Á) based on (uú
t , Gú

t , ›ú
t ) is asymptotically

optimal.

The consequence of this section is twofold. First, we will be able to verify that the lower bounds
(3.1.6) established previously in Examples 4.3.2-3.4.7 are in fact tight and can be obtained by
feedback strategies when closed-form solution It of time-average control of Brownian motion
is available. Second, we provide an asymptotic framework for the evaluation of a large class
of feedback strategies which is su�cient for practical purpose. Indeed, to show that the lower
bound is tight, one needs explicit information about the solution of the time-average control of
Brownian motion, which is very di�cult to obtain in general. Hence the lower bound will serve
only as a theoretical benchmark of performance and in practice it is su�cient to compare simple
implementable strategies.

4.3 Extensions to other types of control
4.3.1 Combined regular and singular control
Without the presence of fixed cost component, the tracking problem is to consider a strategy
(uÁ, “Á, ÏÁ) with uÁ a progressively measurable process, “Á

t œ � = {“ œ Rd|
q

i |“i| = 1} and ÏÁ
t

non-decreasing such that
XÁ

t = ≠X¶
t +

⁄ t

0
uÁ

sds +
⁄ t

0
“Á

sdÏÁ
s,

and
JÁ(uÁ, “Á, ÏÁ) =

⁄ T

0
(rtD(XÁ

t ) + Á—
Q ltQ(uÁ

t ))dt +
⁄ T

0
Á—

P htP (“Á
t )dÏÁ

t .

Besides the class of impulse feed-back strategies based on hitting times of moving barriers and
“Markov control” (Gt, ›t, ut) in the previous section, we can also consider another class of strate-
gies based on continuous control of local time type.
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More precisely, let Gt be a moving domain with piecewise C2 boundary and ut a continuous
Markov control defined on Ḡt as before, let �t be a set-valued mapping defined on ˆGt with
closed graph such that �t(x) is a non-empty closed convex cone in Rd with vertex at the origin
0 for each x œ ˆGt. Usually �t(x) contains only a single direction on the smooth part of ˆG. If
ˆG is C2 then �t(x) can also be expressed in terms of a vector field on ˆG. We assume that the
triplet (ut, Gt, �t) is continuous and progressively measurable.

The feedback strategy (XÁ, uÁ, “Á, ÏÁ) based on (ut, Gt, �t) is to keep XÁ
t in the domain Á—Ḡt

using singular control in the direction �t on the boundary and Markov control ut inside the
domain, i.e.

XÁ
t = ≠X¶

t +
⁄ t

0
uÁ

sds +
⁄ t

0
“Á

sdÏÁ
s,

with “Á
t œ �t, ÏÁ continuous non decreasing and

uÁ
t = Á≠(–≠1)—ut(Á≠—XÁ

t ),

such that

1. Á≠—XÁ
t œ Ḡt,

2. “Á
t œ �t(Á≠—XÁ

t ) fl �, dÏt-almost surely,
3.

s T
0 G

t

(Á≠—XÁ
t )dÏÁ

t = 0.

Note that “Á
t œ � allows us to distinguish “Á

t and ÏÁ
t . We assume again that

Assumption 4.3.1. The feedback strategy (XÁ, uÁ, “Á, ÏÁ) exists and is unique for each Á > 0.

While the existence of above strategy is true in dimension one (see [SW13]), it is not at all trivial
in higher dimension.

Remark 4.3.1. The existence of such strategies is closely related to the Skorohod oblique re-
flection problem in time-dependent domain, we refer the reader to [NÖ10] for precise conditions
on (Gt, �t). In particular, using the numerations in [NÖ10], it su�ces to check that (i) The
domain Gt satisfies (1.2), (1.10) and a uniform exterior sphere condition in time in the sense
of (1.8). Note that in general, the condition on the temporal regularity is only C0. (ii) The
cone of reflection �t verifies (1.11), (1.12) and (1.14). (iii) (1.18) and (1.19) hold (cf. [Cos92,
Proposition 2.5]).

However, the result in [NÖ10] is not su�cient here since we need to ensure the existence a
strong solution for each Á > 0 supported on the same probability space (�,P, F). Neverthe-
less, we can avoid this di�culty by implementing the approximation procedure in [NÖ10] which
consists of considering feedback strategies (XÁ,d, uÁ,d, “Á,d, ÏÁ,d) based on piecewise constant data
(uÁ,d

t , GÁ,d
t , �Á,d

t ).

From now on, we restrict ourselves to (ut, Gt, �t) for which the above strategies exist and are
well-behaved.

Definition 4.3.1 (Admissible Strategy). The triplet (ut, Gt, �t) is admissible if

1. (Potential.) There exists V œ C2(Rd) such that ’(t, Ê),

ÈÒV (x), “Í < 0, ’x œ ˆGÊ
t , “ œ �Ê

t (x).

We say that V is a potential function for (Gt, �t).



4.3. Extensions to other types of control 145

2. (Separability.) For any (t, Ê), let u = uÊ
t , G = GÊ

t and � = �Ê
t , then there exists a unique

couple (fi, fl) œ P(Ḡ) ◊ M(�g
�) such that

⁄

Ḡ
Aa

uf(x)fi(dx) +
⁄

�g

�

Bf(x, “)fl(dx, d“) = 0, ’f œ C2
0 (Rd), (4.3.1)

where �g
� = {(x, “)|x œ ˆG, “ œ � fl �(x)} and

Aa
uf(x) = 1

2
ÿ

ij

aijˆ2
ijf(x) + u(x) · Òf(x), Bf(x, “, ”) = “ · Òf(x).

We note fi =: fi(a,u,G,�) and fl =: fl(a,u,G,�).

Below is an example in dimension one.

Example 4.3.1. Let –t be a continuous positive adapted process and V (x) = cx2 with c > 0.
Put Gt = {x, V (x) < –t}, then

Gt = [≠Lt, Lt], Lt =
Ú

–t

c
.

Take � such that
�t(±Lt) = {zÒV (±Lt)|z Ø 0},

then the triplet (ut, Gt, �t) is admissible.

As for Example 4.2.1, we can take V as potential function and the proof for the separability is
the same hence omitted. The pair (fi, fl) is given by (3.4.35)-(3.4.36). For the case where ut © 0,
fi and fl are explicitly given by (3.4.24)-(3.4.25).

Remark 4.3.2. In high dimension, we can characterize (fi, fl) as the stationary distribution
and boundary measure of the corresponding di�usion with reflection as in [KR14] under suitable
regularity conditions on (u, G, �) and reduce the uniqueness of (fi, fl) to the ergodicity of the
reflected di�usion, see Appendix 4.B.

Now we are ready to state another main result.

Theorem 4.3.1 (Asymptotic performance for combined regular and singular control). Let
(ut, Gt, �t) be an admissible triplet and assume Assumption 4.3.1, we have

1
Á’

D

—
JÁ(uÁ, “Á, ÏÁ) æp

⁄ T

0
c(at, ut, Gt, �t; rt, lt, ht)dt,

where c(a, u, G, �; r, l, h) is given by

c(a, u, G, �; r, l, h) =
⁄

Ḡ
(rD(x) + lQ(u(x)))fi(a,u,G,�)(dx)

+
⁄

�g

�

hP (“)fl(a,u,G,�)(dx ◊ d“).

Moreover, the convergence holds term by term for the cost functions D, Q and P respectively.

4.3.2 When only one control is present
In this section, we extend Theorem 4.2.1 and 4.3.1 to the case where only one type of control
is present. The cases with singular or impulse control only are included in the previous results.
Only the case with regular control needs to be treated separately.
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Impulse control

In that case, a feedback strategy is determined by a time-dependent domain Gt with a jumping
rule ›t. Let ut = 0 and l = 0 in Theorem 4.2.1, we obtain
Theorem 4.3.2 (Asymptotic performance for impulse control). Consider an admissible triplet
(Gt, ›t) and assume Assumption 4.2.1. Let (XÁ, · Á, ›Á) be the corresponding feedback strategy,
we have

1
Á’

D

—
JÁ(· Á, ›Á) æp

⁄ T

0
c(at, Gt, ›t; rt, kt, ht)dt,

where c(a, G, ›; r, k, h) is given by

c(a, G, ›; r, k, h) =
⁄

Ḡ
rD(x)fi(a,G,›)(dx)

+
⁄

ˆG
[kF (›(x)) + hP (›(x))]‹(a,G,›)(dx).

Moreover, the convergence holds term by term for the cost functions D, F , P respectively.

Singular control

Similarly, let ut = 0 and l = 0 in Theorem 4.3.1, we obtain
Theorem 4.3.3 (Asymptotic performance for combined regular and singular control). Let
(Gt, �t) be an admissible triplet and assume Assumption 4.3.1, we have

1
Á’

D

—
JÁ(“Á, ÏÁ) æp

⁄ T

0
c(at, Gt, �t; rt, ht)dt,

where c(a, G, �; r, l, h) is given by

c(a, G, �; r, h) =
⁄

Ḡ
rD(x)fi(a,G,�)(dx)

+
⁄

�g

�

hP (“)fl(a,G,�)(dx ◊ d“).

Moreover, the convergence holds term by term for the cost functions D and P respectively.

Regular control

Let ut : Rd æ Rd be continuous predictable random function. The feed-back strategy (XÁ
t , uÁ

t )
based on the Markov control policy ut is given by

XÁ
t = ≠X¶

t + uÁ
t dt, uÁ

t = Á≠—ut(Á≠—XÁ
t ).

Under suitable conditions on ut, we have well-defined process (XÁ, uÁ). Let us just assume that
Assumption 4.3.2. The controlled process (XÁ, uÁ) exists and is unique on [0, T ].
To have well-behaved controlled process XÁ, we consider the following class of admissible strate-
gies.
Definition 4.3.2 (Admissible strategy). The feedback control (ut) is admissible if

1. (Potential.) For each (t, Ê), uÊ
t : Rx æ Ru is locally bounded and there exists a non-

negative, inf-compact Lyapunov function V œ C2(Rx) such that

(Aa
t + ut · Ò)V (x) Æ ◊t ≠ 2�tV (x), ’x œ Rx,

with ◊t, �t positive processes. Moreover, rD + lQ ¶ uÊ
t are dominated by V near infinity,

i.e. there exist locally bounded positive processes Rt and bt such that

rD(x) + lQ ¶ uÊ
t (x) Æ bÊ

t V (x), x œ Rd \ B(x, RÊ
t ).
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2. (Separability.) For each (t, Ê), u := uÊ
t : Rd

x æ Rd
u is a stable Markov, i.e. there exists a

unique fi œ P(Rx) such that,
⁄

R
x

Aa
uf(x)fi(dx) = 0, ’f œ C2

0 (Rx).

We will deonte fi = fi(a,u).

Remark 4.3.3. Here fi is the unique invariant measure of dXt =
Ô

adWt + u(Xt)dt under the
stable control u.

Example 4.3.2. Assume that D and Q are quadratic. Let ut(x) = ≠�tx with �t a continuous
process with values in Sd

+. Then (ut) is an admissible Markov policy. To see this, it su�ces to
take V (x) = xT x. The separability of fi is equivalent to the ergodicity of dXt =

Ô
adWt ≠�Xtdt.

In dimension one, let D(x) = x2, Q(u) = u2, then we have

fi(dx) = 1Ô
2fi‡

e≠ x

2
2‡

2 dx, ‡2 = a

2� .

Below is one of our main results.

Theorem 4.3.4 (Asymptotic performance for regular control). Let (uÁ
t ) be the feed-back strategy

based on the admissible Markov control policy ut, then under the Assumptions 4.3.2, we have

lim
Áæ0

1
Á’

D

—
JÁ æp

⁄ T

0
c(at, ut; rt, lt)dt,

where c(a, u; r, l) is given by

c(a, u; r, l) =
⁄

R
x

(rC(x) + lQ ¶ u(x))fi(dx),

with fi = fi(a,u).

4.4 Applications

4.4.1 Explicit optimal strategies in dimension one

Before reviewing and extending existing results in the literature, we summarize in the following
theorem some explicit asymptotic optimal strategies of the tracking problem. The costs for
deviation and regular control are quadratic and the costs for singular controls are a�ne or
linear, i.e.

CA(x, u) = rx2 + lu2, CB(x, ›) = k + h|›|.

Theorem 4.4.1. Assume that (rt, lt, kt, ht) are progressively measurable. In dimension one, the
asymptotic lower bounds for the tracking problem with combined/single controls are tight and
can be achieved by the admissible feedback strategies defined in Fig.4.1 and Fig.4.2.

Proof. The existence and admissibility of the corresponding feedback strategies being easy to
verify in dimension one (Example 4.2.1, 4.3.1 and 4.3.2), we can apply Theorem 4.2.1, 4.3.1-4.3.4,
and Theorem 3.2.1, 3.3.1-3.3.4.
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4.4.2 Discretization of hedging strategies
Let X¶ be the benchmark strategy in continuous time (e.g. delta strategy under Black-Scholes
model) and the underlying asset (St) be an Ito di�usion with

dSt = bS
t dt +

Ô
aS

tdWt.

Then the deviation from the benchmark following the discretization strategy (· Á, ›Á) is given by
XÁ

t = ≠X¶
t +

ÿ

0<·Á

j

Æt

›Á
j .

and the corresponding d-dimensional hedging error (ZÁ
t ) by

ZÁ
· =

⁄ ·

0
Diag(XÁ

t≠)dSt.

Our results apply directly to the problem of discrete hedging if the discretization is due to the
presence of small fixed transaction cost Á—

F kt and proportional cost Á—
P ht with Á æ 0. To see

this, put
JÁ = ÈZÁÍT +

ÿ

0<·Á

j

ÆT

(Á—
F k·Á

j

+ Á—
P h·Á

j

|›Á
j |),

where
ÈZÁÍ· :=

⁄ ·

0
(XÁ

t )T aS
t XÁ

t dt.

Here the tracking error is represented by the quadratic variation of the deviation process ZÁ.
We can read the optimal strategies from Figure 4.2.

Relation with other asymptotic hedging criteria Di�erent authors (see [Fuk11a, GL14a,
RT14]) have considered the optimal discretization of a hedging strategy X¶

t under various criteria
and asymptotic frameworks. Our framework produces similar results and provides more flexible
extensions. For example, in [Fuk11a], the problem is to minimize

E [ÈZÁÍT ]E [N Á
T ] ,

with N Á
T the total number of rebalancing. It is shown that, under one dimensional setting,

lim inf
Áæ0

E [ÈZÁÍT ]E [N Á
T ] Ø

11
2E[ 1Ô

6

⁄ T

0
(2
3aX

t aS
t )1/2dt]

22
. (4.4.1)

We can recover above results of [Fuk11a]. To this aim, we consider instead
JÁ = ÈZÁÍT + ÁN Á

T .

Lemma 4.4.1. The asymptotic lower bound (4.4.1) is equivalent to

lim inf
Áæ0

1
Á1/2E [JÁ] Ø E[

⁄ T

0
(2
3aX

t aS
t )1/2dt].

which is given by the third column of Figure 4.2.
Proof. Note that the sequence of Á in the above lower bound is arbitrary. Assuming there is a
strategy such that

lim inf
Áæ0

E [ÈZÁÍT ]E [N Á
T ] <

31
2E [Jú ≠ ”]

42
.

with ” > 0, then we have ÂÁ(Á) = E [ÈZÁÍT ]1/2 E [N Á
T ]≠1/2 æ 0 and we have for the same strategy,

lim inf
ÂÁæ0

1
ÂÁ1/2 JÂÁ = lim inf

ÂÁæ0
2 (E [ÈZÁÍT ]E [N Á

T ])1/2 < E [Jú ≠ ”] .

The other direction is obvious by Cauchy-Schwartz inequality.

Applying Theorem 4.2.1, we obtain that the lower bound (4.4.1) is attained by the discretization
scheme based on hitting times of barriers in [Fuk11a].
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Weak Convergence of hedging errors We present weak convergence theorem closely re-
lated to the results in [HM05] and [Fuk11c].

Theorem 4.4.2 (Stable limit in law). Assume that (bS
t ) and (aS

t ) are continuous on [0, T ] and
let (ZÁ

t ) be the error processes based on the moving barrier (Gt, ›t) and — = 1. We have

1
Á

ZÁ
· æF

⁄ ·

0
Diag(mt)dSt +

⁄ ·

0

Ò
vt · aS

t ≠ mT
t aS

t mT dW ú
t ,

where the convergence holds stably in law in C[0, T ], (W ú
t ) is a Brownian motion independent

of F and mt = (m1
t , · · · , md

t ), vt = (vij
t ) with

mi
t =

⁄

G
t

xidµ(at, Gt, ›t), vij
t =

⁄

G
t

xixjdµ(at, Gt, ›t),

and vt · aS
t := (vij

t aS
ij,t).

Proof. After [JS13, Theorem IX.7.3], it su�ces to show that

1
Á

⁄ ·

0
(ZÁ

t )T bS
t dt

u.c.p.æ
⁄ ·

0
mT

t bS
t dt,

1
Á2

⁄ ·

0
(ZÁ

t )T aS
t ZÁ

t dt æp

⁄ ·

0
vt · aS

t dt,

1
Á

⁄ ·

0
(ZÁ

t )T aS
t dt æp

⁄ ·

0
mT

t aS
t dt.

To see this, just put rtD(x) = xT bS
t , xT aS

t x and xT aS
t .

Example 4.4.1. Consider the discretization strategies based on two barriers lt > 0 and lt > 0
such that Gt = [≠lt, lt] and ›t(lt) = ›t(≠lt) = 0. The corresponding (µ, fl) is given by the
stationary distribution and boundary measure of Brownian motion with rebirth (see [GK07]).
We have

mt = 1
3(lt ≠ lt), vt = 1

6(l2t + l2t ≠ ltlt),

recovering example in [Fuk11c].

Remark 4.4.1. If we compare with the results in [Roo80] and [HM05], we observe that their
results fall into above framework in the sense that, for equidistant discretization scheme, (µ, fl)
satisfies the LP constraint

⁄

R

1
2af ÕÕ(x)µ(dx) +

⁄

R
(f(0) ≠ f(x))fl(dx) = 0, ’f œ C2

0 (R),

and fl(R) = 1. Intuitively, fl is Gaussian distribution N (0, a) and µ is the stationary measure
of a Brownian motion with rebirth at t œ Nú. However, some technical issues for the tightness
of occupation measure and characterization of (µ, fl) need to be treated with care.

The quantities m and ‹ are the first and second moments of µ. By Ito formula, µ is the law
of

s 1
0

Ô
aWtdt = 1

2
Ô

a(W 2
t ≠ 1), so m and ‹ are related to the third and fourth moments of a

normal distribution, which is a known fact in the literature.

4.4.3 Impacts of small market frictions
As we have already mentioned, the lower bound (3.1.6) appears also in the study of impact of
small market frictions in the framework of utility maximization, see [KMK15, KL13, GW15a,
ST13, PST15, AMKS15, MMKS14, LMKW14]. In this section, we explain heuristically how to
relate utility maximization under small market frictions to the problem of tracking. It should
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be pointed out that we are just making connections between these two problems and rigorous
proof of the equivalence is left for future research.

We follow the presentation in [KMK15] and consider the classical utility maximization problem

u(t, wt) = sup
Ï

E[U(wt,w
t

T )],

with
wt,w

t

s = wt +
⁄ s

t
ÏudSu,

where Ï is the trading strategy. The market dynamics is an Itō semi-martingale

dSt = bS
t dt +

Ò
aS

t dWt.

In the frictionless market, we denote by Ïú
t the optimal strategy and by wú

t the corresponding
wealth process. As mentioned in [KMK15], the indirect marginal utility uÕ(t, wú

t ) evaluated along
the optimal wealth process is a martingale density, which we denote by Zt:

Zt = uÕ(t, wú
t ).

Note that S is a martingale under Q with
dQ
dP = ZT

Z0
.

One also defines the indirect risk tolerance process Rt by

Rt = ≠ uÕ(t, wú
t )

uÕÕ(t, wú
t ) .

Consider the exponential utility function as in [KL13], that is

U(x) = ≠e≠px, p > 0.

Then we have
Rt = R = 1

p
.

In a market with proportional transaction costs, the portfolio dynamics is given by

wt,w
t

,Á
s = wÁ

t +
⁄ s

t
ÏÁ

udSu ≠
⁄ s

t
ÁhudÎÏÁÎu,

where ht is a random weight process and ÏÁ
t a process with finite variation. The control problem

is then
uÁ(t, wt) = sup

ÏÁ

E[U(wt,w
t

,Á
T )].

When the cost Á is small, we can expect that ÏÁ
t is close to Ïú

t and set

�wÁ
T := w0,w0,Á

T ≠ wú
T =

⁄ T

0
(ÏÁ

t ≠ Ïú
t )dSt ≠ Á

⁄ T

0
htdÎÏÁÎt.

Then up to first order quantities, we have

uÁ ≠ u = E [U(wú
T + �wÁ

T )] ≠ E [U(wú
T )]

ƒ E[U Õ(wú
T )�wÁ

T + 1
2U ÕÕ(wú

T )(�wÁ
T )2]

= ≠uÕ(w0)EQ[�wÁ
T + 1

2R
(�wÁ

T )2]

ƒ ≠uÕ(w0)EQ[Á
⁄ T

0
htdÎÏÁÎt + 1

2R
(
⁄ T

0
(ÏÁ

t ≠ Ïú
t )dSt)2]

= ≠uÕ(w0)EQ[Á
⁄ T

0
htdÎÏÁÎt +

⁄ T

0

aS
t

2R
(ÏÁ

t ≠ Ïú
t )2dt].
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Similarly, in a market with fixed transaction costs Ákt, see [AMKS15], the portfolio dynamics is
given by

wt,w
t

,Á
s = wÁ

t +
⁄ s

t
ÏÁ

udSu + �s ≠ Á
ÿ

t<·Á

j

Æs

k·Á

j

F (›Á
j ), ÏÁ

t =
ÿ

0<·Á

j

Æt

›Á
j ,

and we have

uÁ ≠ u ƒ ≠uÕ(w0)EQ[Á
ÿ

0<·Á

j

ÆT

k·Á

j

F (›Á
j ) +

⁄ T

0

aS
t

2R
(ÏÁ

t ≠ Ïú
t )2dt].

Finally, in a market with linear impact Ált on price, see [RS10, MMKS14], the portfolio dynamics
is given by

wt,w
t

,Á
s = wÁ

t +
⁄ s

t
ÏÁ

udSu ≠ Á
⁄ s

t
lu(uÁ

u)2du, ÏÁ
t =

⁄ t

0
uÁ

t dt,

and we have
uÁ ≠ u ƒ ≠uÕ(w0)EQ[Á

⁄ T

0
lt(uÁ

t )2dt +
⁄ T

0

aS
t

2R
(ÏÁ

t ≠ Ïú
t )2dt].

To sum up, utility maximization under small market frictions is heuristically equivalent to the
tracking problem if the deviation penalty is set to be

rtD(x) = aS
t

2R
x2. (4.4.2)

Defining the certainty equivalent wealth loss �Á by

uÁ =: u(w0 ≠ �Á),

it follows that
1

Á—’
D

�Á ƒ EQ[
⁄ T

0
Itdt], (4.4.3)

see also [KMK15, Equation (3.4)] and [MMKS14, pp. 18].

Remark 4.4.2 (Higher dimension and general utility function). For the case of higher dimension
and general utility function, one should set

rtD(x) = 1
2Rt

Èx, aS
t xÍ. (4.4.4)

In other words, utility maximization under market frictions can be approximated at first order by
the problem of tracking with quadratic deviation cost (4.4.4). Thus one can establish a connection
between the tracking problem and the utility maximization problems in [AMKS15, MMKS14,
GW15c, GW15b].

Remark 4.4.3 (General cost structures). When there are multiple market frictions with com-
parable impacts, the choice of deviation penalty is the same as (4.4.4) and one only needs to
adjust the cost structure. Our results apply directly in these cases, see [LMKW14, GW15b]. For
example, in the case of trading with proportional cost and linear market impact, see [LMKW14],
the local problem is the time-average control of Brownian motion with cost structure

CA(x, u) = rx2 + lu2 + h|u|.

Indeed, Equations (4.3)-(4.5) in [LMKW14] give rise to a verification theorem for the HJB
equation of the time-average control problem of Brownian motion under this cost structure.
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Remark 4.4.4 (Non-zero interest rate). In the case of non-zero interest rate, the correspondence
should be written as

1
Á—’

D

�Á ƒ EQ[
⁄ T

0
e≠rItdt], (4.4.5)

where e≠rtSt is a Q-martingale and the tracking problem is defined by (4.4.4). For example,
the right hand side of (4.4.5) is the probabilistic representation under Black-Scholes model of
Equation (3.11) in [WW97].

Remark 4.4.5 (Optimal consumption over infinite horizon). In [ST13, PST15], the authors
consider the problem of optimal consumption over infinite horizon under small proportional
costs. Their results can be related to the tracking problem in the same way, that is

1
Á—’

D

�Á ƒ EQ[
⁄ Œ

0
e≠rItdt],

where e≠rtSt is a Q-martingale and the tracking problem is defined by (4.4.4).

Remark 4.4.6 (Indi�erence pricing of option). The formula (4.4.3) is used in [KMK13] for the
indi�erence pricing of option under small proportional transaction costs. Let �H and �0 be the
normalized CE for the problem of utility maximization with and without selling option payo� H.
Let Ïú be the optimal strategy of the pure investment problem and ÏH the replicating strategy
for H (we assume complete market), then the tracking targets for �H and �0 are Ïú + ÏH and
Ïú respectively. The short/long price pÁ

± of the option H is given by

±pÁ
± ƒ EQ[±H] + Á—’

D (�±H ≠ �0).

The option spread due to transaction costs is given by

pÁ
+ ≠ pÁ

≠ ƒ Á—’
D (�H + �≠H ≠ 2�0),

which is always positive by convexity. If the pure investment strategy Ïú is negligible compared
to ÏH , then we have

pÁ
+ ≠ pÁ

≠ ƒ 2Á—’
D �H ,

see also [MT15, Section 6].

4.5 Proofs
4.5.1 Proof of Theorem 4.2.1
Recall that the dynamics of ÂXÁ,t is given by

ÂXÁ,t
s = ÂXÁ,t

0 +
⁄ s

0
ÂbÁ,t

‹ d‹ +
⁄ s

0

Ò
ÂaÁ,t

‹ dÊW Á,t
‹ +

⁄ s

0
ÂuÁ,t

‹ d‹ +
ÿ

0<Â·Á,t

j

Æs

Â›Á
j ,

with (ÊW Á,t
s ) Brownian motion w.r.t. ÂFÁ,t

s = Ft+Á–—s,

ÂbÁ,t
s = Á(–≠1)—bt+Á–—s, ÂaÁ,t

s = at+Á–—s,

and
ÂuÁ,t

s = Á(–≠1)—uÁ
t+Á–—s, Â›Á

j = 1
Á—

›Á
j , Â· Á,t

j = 1
Á–—

(· Á
j ≠ t) ‚ 0.

The corresponding local cost is

IÁ
t = 1

T Á

1 ⁄ T Á

0
(rtD( ÂXÁ,t

s ) + ltQ(ÂuÁ,t
s ))ds +

ÿ

0<Â·Á,t

j

ÆT Á

(ktF (Â›Á
j ) + htP (Â›Á

j ))
2
.

It is enough to study the term on the right hand side thanks to the following fact.



4.5. Proofs 153

Lemma 4.5.1. We have
lim
Áæ0

1
Á’

D

—
JÁ = lim

Áæ0

⁄ T

0
IÁ

t dt, a.e.,

if the term on the right hand side exists.

Proof. see Section 3.5.1.

Moreover, up to a localization procedure, we can assume that ug
t = {(x, ut(x)), x œ Gt} is con-

tained in a bounded ball of Rd
x ◊ Rd

u, and there exist positive constants ” and M such that
” < V (›t(x)) ≠ V (x), x œ ˆGt, and V (x) < M , x œ Gt, for any (t, Ê). We assume also that
Assumption 3.5.1 holds.

Define random measures (µÁ
t , flÁ

t ) by

µÁ
t = 1

T Á

⁄ T Á

0
”{( ÂXÁ,t

s

,ÂuÁ,t

s

)}ds œ P(Rd
x ◊ Rd

u),

flÁ
t = 1

T Á

ÿ

0<Â·Á,t

j

ÆT Á

”{( ÂXÁ,t

Â·Á,t

j

≠
,Â›Á

j

)} œ M(Rd
x ◊ Rd

›)),

and c : � ◊ [0, T ] ◊ P(Rd
x ◊ Rd

u) ◊ M(Rd
x ◊ Rd

›) æ R by

ct(Ê, µ, fl) :=
⁄

Rd

x

◊Rd

u

(rt(Ê)D(x) + lt(Ê)Q(u))µ(dx ◊ du)

+
⁄

Rd

x

◊Rd

›

(kt(Ê)F (›) + ht(Ê)P (›))fl(dx ◊ d›).

Then (µÁ, flÁ) is a sequence of stochastic processes with values in P(Rd
x ◊Rd

u)◊M(Rd
x ◊ Rd

›) and

⁄ T

0
IÁ

t dt =
⁄ T

0
ct(µÁ

t , flÁ
t )dt.

Let (fit, ‹t) := (fi(a
t

,u
t

,G
t

,›
t

), ‹(a
t

,u
t

,G
t

,›
t

)) be the process uniquely determined by (4.2.6), and put

µt(dx ◊ du) = fit(dx) ¢ ”u(x)(du), flt(dx ◊ d›) = ‹t(dx) ¢ ”›(x)(d›).

Then we have to show ⁄ T

0
ct(µÁ

t , flÁ
t )dt æp

⁄ T

0
ct(µt, flt)dt. (4.5.1)

In view of Appendix 4.A, it su�ces to prove the following lemma.

Lemma 4.5.2. 1. For any t œ [0, T ), (µÁ
t , flÁ

t ) converges in probability to (µt, flt).
2. The sequence {(µÁ

t , flÁ
t )tœ[0,T ], Á > 0} of measure valued stochastic processes is weakly tight

with respect to the cost functional c (see Definition 4.A.2).

Remark 4.5.1. Let E := P(Rd
x ◊ Rd

u) ◊ M(Rd
x ◊ Rd

›). The first property implies that (µÁ, flÁ)
converges weakly to (µ, fl) (in fact in probability) in ME([0, T ], B([0, T ]), dt), the space of E-valued
measurable functions equipped with the topology of convergence in dt-measure (see [Tsu07]).

Proof of Lemma 4.5.2. We claim first that

sup
Á>0

E
Ë1N Á

T Á

T Á

2kÈ
< Œ, k = 1, 2, (4.5.2)
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Indeed, by Ito formula, we have

N Á
T Á

T Á
Æ 1

T Á

NÁ

T

Áÿ

j=1
”≠1(V ( ÂXÁ,t

Â·Á

j

≠) ≠ V ( ÂXÁ,t

Â·Á

j

))

= ”≠1 1
T Á

Ë
≠ V ( ÂXÁ,t

T Á

) + V ( ÂXÁ,t
0+) +

⁄ T Á

0
ÒV ( ÂXÁ,t

s )T
Ò

ÂaÁ,t
s dÊW Á,t

s

+
⁄ T Á

0

ÿ

i

ÂuÁ,t
i,sˆiV ( ÂXÁ,t

s )ds +
⁄ T Á

0

1
2

ÿ

ij

ÂaÁ,t
ij,sˆ2

ijV ( ÂXÁ,t
s )ds

È

Æ M

”

1
const. +

⁄ T Á

0
ÒV ( ÂXÁ,t

s )T
Ò

ÂaÁ,t
s dÊW Á,t

s

2

the last term being obviously square-integrable after the localization procedure. Now we are
ready to prove the two claims.

Convergence in probability. By (4.5.2) and localization, for any t œ [0, T ) fixed, the family
{(µÁ

t , flÁ
t ), Á > 0} is tight. Let Qt be any stable limit of (µÁ

t , flÁ
t ). Since

ct(µÁ
t , flÁ

t ) Æ M(1 + N Á
T Á

T Á
),

we have supÁ E[ct(µÁ
t , flÁ

t )] < Œ in view of (4.5.2) with k = 1. Then by Lemma 3.5.3, we have
QÊ

t -a.e.,
(µ, fl) œ S(at(Ê)),

where we recall that S(a) is defined by

S(a) =
Ó

(µ, fl̄) œ P(Rd
x ◊ Rd

u) ◊ M(Rd
x ◊ Rd

› \ {0›}),

fl̄ = fl + ◊fl̄”Œ with fl œ M(Rd
x ◊ Rd

› \ {0›}),
⁄

Rd

x

◊Rd

u

Aaf(x, u)µ(dx, du) +
⁄

Rd

x

◊Rd

›

\{0
›

}
Bf(x, ›)fl(dx, d›) = 0, ’f œ C2

0 (Rd
x)

Ô
.

On the other hand, let F Ê
µ and F Ê

fl be given by

F Ê
µ = {(x, uÊ

t (x))|x œ GÊ
t }, F Ê

fl = {(x, ›Ê
t (x))|x œ ˆGÊ

t }.

By the continuity of (Gt, ›t), QÊ
t -a.e., (µ, fl) is supported on F Ê

µ and F Ê
fl respectively. By the

separability (4.2.6) of (Gt, ›t), such couple of (µ, fl) is unique, so we have

Qt = P(dÊ) ¢ ”{(µ(a

t

,u

t

,G

t

,›

t

)(Ê),fl(a

t

(,u

t

,G

t

,›

t

)(Ê))}.

which is the unique possible limit point and we deduce that convergence in probability holds.

Weak tightness of (µÁ, flÁ) with respect to c. In view of (4.5.2) with k = 2, the application
(t, Ê) ‘æ ct(Ê, µÁ

t (Ê), flÁ
t (Ê)) is uniformly square-integrable w.r.t. P ¢ dt, hence uniformly inte-

grable. By Lemma 2 of [CK86] and the remark after it, (µÁ, flÁ) is wealky tight w.r.t. c.

4.5.2 Proof of Theorem 4.3.1

The proof is exactly the same as Theorem 4.2.1 with (4.5.2) replaced by

sup
Á>0

E
Ë1 ÂÏÁ

T Á

T Á

2kÈ
< Œ, k = 1, 2,
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which can be obtained by applying Itô formula to V ( ÂXÁ
T Á

) :

ÂÏÁ
T Á

T Á
Æ 1

T Á

⁄ T Á

0
”≠1[≠Â“Á

t · ÒV ( ÂXÁ,t
s )]d ÂÏÁ

t

= ”≠1 1
T Á

Ë
≠ V ( ÂXÁ,t

T Á

) + V ( ÂXÁ,t
0+) +

⁄ T Á

0
ÒV ( ÂXÁ,t

s ) ·
Ò

ÂaÁ,t
s dÊW Á,t

s

+
⁄ T Á

0

ÿ

i

ÂuÁ,t
i,sˆiV ( ÂXÁ,t

s )ds +
⁄ T Á

0

1
2

ÿ

ij

ÂaÁ,t
ij,sˆ2

ijV ( ÂXÁ,t
s )ds

È

Æ M

”

1
const. +

⁄ T Á

0
ÒV ( ÂXÁ,t

s )T
Ò

ÂaÁ,t
s dÊW Á,t

s

2
.

4.5.3 Proof of Theorem 4.3.4
The rescaled process ( ÂXÁ,t

s ) is given by

d ÂXÁ,t
s = ÂbÁ,t

s ds +
Ò

ÂaÁ,t
s dÊW Á,t

s + ÂuÁ,t
s ds,

with
ÂbÁ,t

s = Á—
t+Á2—s

, ÂaÁ,t
s = at+Á2—s

, ÂuÁ,t
s = Á(2≠1)—uÁ

t+Á2—s.

The empirical occupation measure µÁ
t is defined by

µÁ
t = 1

T Á

⁄ T Á

0
”{( ÂXÁ,t

s

,ÂuÁ,t

s

)}ds.

The proof is slightly di�erent since XÁ is not constrained inside a uniformly bounded domain
Gt as before.

Up to a localization procedure, we can assume that there exist ◊, � > 0 such that

(Aa
t + ut(x) · Ò)V (x) Æ ◊ ≠ 2�V (x), x œ Rd

x.

We follow [ABG11, Lemma 2.5.5] and obtain that

E
Ë
V ( ÂXÁ,t

s )
È

Æ ◊

2� + V (0), ’t œ [0, T ), s œ (0, T Á]. (4.5.3)

Let fiÁ
t be the marginal of µÁ

t on Rd
x. Since rD + lQ ¶ u Æ V near infinity, the empirical costs

{ct(µÁ
t )} are bounded by

s
(b0 + b1V (x))dfiÁ

t . By (4.5.3), we have

sup
Á

E[ct(µÁ
t )] Æ sup

Á
E[

⁄
(b0 + b1V (x))dfiÁ

t ] = b0 + b1
1

T Á

⁄ T Á

0
E[V ( ÂXÁ,t

s )]ds < Œ. (4.5.4)

Convergence in probability. Since ut is admissible, ut sends compact sets into compact sets, the
tightness of µÁ

t follows directly from the tightness of fiÁ
t . By (4.5.4) we can apply Lemma 3.5.3

and the convergence in probability follows from the separability of fi w.r.t. Aa
u.

Weakly tightness. For any t œ [0, T ) and Á > 0, we have that (4.5.4) holds for a su�cient
large constant. Since ct(µÁ

t ) æp ct(µt), we have by Fubini theorem and dominated convergence
theorem

lim sup
Áæ0

⁄
ct(µÁ

t )dt ¢ dP =
⁄

ct(µt)dt ¢ dP < Œ.

By [CK86, Lemma 3], we obtain the weakly tightness.
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Appendix 4.A Convergence of integral functionals
In this section, we provide a direct generalization of the result in [CK86], which allows us to pass
from the convergence of local systems (Lemma 4.5.2) to the convergence of cost integrals (4.5.1).

Let (�, F ,P) be a probability space, (T, B, µ) a ‡-finite measure space and S a Polish space with
Borel ‡-filed BS = B(S), C(S)(Cb(S)) the space of continuous (bounded continuous) real-valued
functions on S, L1(µ) := L1(T, B, µ) the space of integrable real-valued functions with seminorm
ÎxÎ1 :=

s
T |xt|µ(dt) and L1(µ) := L1(T, B, µ) the corresponding Banach space.

Now let c : � ◊ T ◊ S æ R be a F ¢ B ¢ BS-measurable function with ct(Ê, ·) œ C(S) for all
t œ T . Let {Xn, n œ N} be a sequence of F ¢ B/Bs-measurable functions Xn : � ◊ T æ S with

⁄

T
|ct(Ê, Xn

t (Ê))|µ(dt) < +Œ, Ê œ �, n œ N.

Then the random integral I(Xn, c) is defined by

I(Xn, c) :=
⁄

T
ct(Xn

t )µ(dt).

Note that the map (Ê, t) ‘æ Xn,c
t (Ê) := ct(Ê, Xn

t (Ê)) is F ¢ B-measurable. For all Ê œ �,
X̂n,c := Xn,c

· (Ê) is an element of L1(µ) and Ê ‘æ X̂n,c(Ê) is F/B(L1(µ))-measurable (see
[CK86]).

Definition 4.A.1. The processes Xn converges to X0 in probability in finite dimension if there
is T0 œ B with µ(T \ T0) = 0 such that for any t1, · · · , tk œ T0, (Xn

t1 , · · · , Xn
t
k

) converges to
(X0

t1 , · · · , X0
t
k

) in probability.

Definition 4.A.2. A sequence {Xn, n œ N} of measurable processes is called weakly tight with
respect to c if for each ” > 0, there is K µ L1(µ) weakly compact, that is compact in the
‡(L1(µ), LŒ(µ))-topology, such that

inf
n

P[X̂n,c œ K] > 1 ≠ ”.

In particular, the family Xn is weakly tight with respect to c if one of the following condition
holds:

1. The family of r.v. {(Ê, t) ‘æ ct(Ê, Xn
t (Ê)), n œ Nú} is P ¢ µ-uniformly integrable, see

[CK86, Lemma 2].
2. Xn converges weakly to X0 in finite dimension and

lim sup
n

⁄
ct(Xn

t )dt ¢ dP Æ
⁄

ct(X0
t )dt ¢ dP < Œ.

See [CK86, Lemma 3].
Now we can state our result concerning the convergence in probability of the random variables
I(Xn, c).

Theorem 4.A.1. Let {Xn, n œ N} be a sequence of stochastic process. If Xn converges to X0

in probability in finite dimension and if {Xn, n œ N} is weakly tight w.r.t. c, then I(Xn, c)
converges to I(X0, c) in probability.

Proof. After Lemma 3.D.1, it su�ces to show that I(Xn, c) converges stably to I(X0, c). Let Y
be any bounded r.v. and f bounded continuous and Lipschitz, we will show that

E[Y f(I(Xn, c))] æ E[Y f(I(X0, c))], n æ Œ. (4.A.1)
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i.) Let h œ L+
1 (µ). Define

ch
t (Ê, x) := max{≠ht, min{ht, ct(Ê, x)}},

and
I(Xn, ch) :=

⁄

T
ch

t (Xn
t )µ(dt), n œ N.

We show that I(Xn, ch) converges stably to I(X0, ch), i.e.

E[Y f(I(Xn, ch)] æ E[Y f(I(X0, ch)], n æ Œ. (4.A.2)

Since |I(Xn, ch)| Æ ÎhÎ1 and polynomials are dense in C([≠ÎhÎ1, ÎhÎ1]), we only need to consider
f(x) = xl for some l œ N. By Fubini’s theorem, we obtain

E[Y f(I(Xn, ch))] =
⁄

�
Y (Ê)

1 ⁄

T
ch

t1(Ê, Xn
t1)µ(dt1) · · ·

⁄

T
Y (Ê)ch

t
l

(Ê, Xn
t
l

)µ(dtl)
2
P(dÊ)

=
⁄

· · ·
⁄

Fn(t1, · · · , tl)µ(dt1) · · · µ(dtl)

where
Fn(t1, · · · , tl) :=

⁄

�
Y (Ê)ch

t1(Ê, Xn
t1) · · · ch

t
l

(Ê, Xn
t
l

)P(dÊ).

By weak convergence and the finite dimensional convergence in probability of Xn, we have
Fn(t1, · · · , tl) æ F0(t1, · · · , tl) for any t1, · · · , tl œ T0. Since

Fn(t1, · · · , tl) Æ (sup
Ê

|Y |)h(t1) · · · h(tl),

we have
⁄

· · ·
⁄

Fn(t1, · · · , tl)µ(dt1) · · · µ(dtl) æ
⁄

· · ·
⁄

F0(t1, · · · , tl)µ(dt1) · · · µ(dtl),

by dominated convergence, whence (4.A.1).

ii.) By [CK86, Remark 1] and the weakly tightness of Xn w.r.t. c, for all N œ Nú there is a
weakly compact KN of L1(µ) and hN œ L+

1 (µ) such that

inf
n

P[X̂n,c œ KN ] Ø 1 ≠ 1
N

, (4.A.3)

and
sup

xœK
N

⁄

T
(|x| ≠ hN )+dµ Æ 1

N
. (4.A.4)

We can assume w.l.o.g that hN ø Œ for N ø Œ. We have

|E[Y f(I(Xn, c))] ≠ E[Y f(I(X0, c))]| Æ |E[Y f(I(Xn, c))] ≠ E[Y f(I(Xn, ch
N ))]|

+ |E[Y f(I(Xn, ch
N ))] ≠ E[Y f(I(X0, ch

N ))]|
+ |E[Y f(I(X0, ch

N ))] ≠ E[Y f(I(X0, c))]|
=: e1 + e2 + e3.

Since Y is bounded and f is bounded Lipschitz, we have

e1 Æ (sup
Ê

|Y |)(2(sup
x

|f |)P[|I(Xn, c) ≠ I(Xn, ch
N )| Ø 1

N
] + Lip(f) 1

N
)

Æ const.
1
N

,
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where the constant is independent of n. Here we use (4.A.3), (4.A.4) and

|I(Xn, ch
N ) ≠ I(Xn, c)| Æ

⁄

T
|ch

N

t (Xn
t ) ≠ ct(Xn

t )|µ(dt)

=
⁄

T
(|ct(Xn

t )| ≠ hN (t))+µ(dt).

Hence e1 < Á for N large enough. By dominated convergence, I(X0, ch
N ) æ I(X0, c) pointwise,

hence e3 < Á for N large enough. Now fix N , by (4.A.2), we have e2 < Á for n large enough. In
sum, we have |E[Y f(I(Xn, c))] ≠E[Y f(I(X0, c))]| Æ 3Á for n large enough. Since Á is arbitrary,
(4.A.1) follows and we can conclude.

Appendix 4.B Separability of (A, B)
In this section, we describe a su�cient condition for the separability of (A, B) with respect to a
given domain G and its associated jump rule › or reflection �.

Let fi œ P(Ḡ) and ‹ œ M(ˆG) be the marginal distribution of µ and fl on Rd
x, then the LP

constraint (4.2.6) and (4.3.1) can be rewritten as
⁄

Ḡ
Aa

uf(x)fi(dx) +
⁄

ˆG
Bf(x)‹(dx) = 0, ’f œ C2

0 (Rd
x),

with
Aa

uf(x) = 1
2

ÿ

ij

aijˆ2
ijf(x) + Èu, ÒfÍ,

and
1. In the impulse case, Bf(x) = f(x + ›(x)) ≠ f(x)
2. In the singular case, Bf(x) = “(x) · Òf(x) if we consider the case where �(x) is one

dimensional, i.e. �(x) fl � = {“(x)}.
The basic idea is to reduce the uniqueness of (µ, fl) to the ergodicity of the corresponding con-
strained martingale problem developed by [Kur90, KS01, CK15].

Let G be a bounded domain of Rd with piecewise-C2 boundary and let

ˆG = fim
i=1ˆiG,

be a partition into C2 segments of the boundary ˆG. Let A := Aa
u and Bi, i = 1, · · · , m be the

corresponding operator of di�usion and boundary jumps/reflections and D the common domain
of the operators.

Definition 4.B.1 (Constrained Martingale Problem). A stochastic process X with sample path
in DḠ[0, Œ) is a solution of the constrained martingale problem for (A, G; B1, ˆiG; · · · ; Bm, ˆmG)
if there exist a filtration (Ft) and random measures �i on [0, Œ) ◊ ˆiG, i = 1, · · · m, such that
for any f œ D,

f(Xt) ≠
⁄ t

0
Af(Xs)ds ≠

mÿ

i=1

⁄

[0,t]◊ˆ
i

G
Bif(x)�i(ds ◊ dx)

is a Ft-martingale.

We will assume that

Assumption 4.B.1. The constrained martingale problem for (A, G; B1, ˆiG; · · · ; Bm, ˆmG) is
well-posed, i.e. for any given initial distribution ‹, there exists a unique distribution P‹ on
DḠ[0, Œ) which solves the martingale problem.
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Note that here the uniqueness is for the distribution of the process X only.

Remark 4.B.1. While a solution of the constrained martingale problem with given initial con-
dition is easy to construct, uniqueness is not trivial.

In the case of di�usion with reflection, there exists criteria (see [CK15, Theorem 5.11]) based
on the comparison principle for the viscosity solution of the resolvent equation

⁄u ≠ Au = h,

with suitable first order boundary condition(see [CK15, Definition 2.20]).

They also suggest that the approach might be generalized to di�usion with rebirth [CK15, Remark
3.2 and 5.3]. Nevertheless, if B› is given by a jump rule › on ˆG, one might directly show that
the solution of the corresponding constrained martingale problem is indeed a di�usion with rebirth
defined in the next section, following the idea in [Kur11].

Theorem 4.B.1. Under suitable conditions (see Conditon 1.2 and equation (1.16) in [KS01]),
there exists a stationary solution (X, �i) of the constrained martingale problem (A, G, Bi, ˆiG)
such that Xt has distribution fi œ P(Ḡ)and E[�i([0, t] ◊ ·)] = t‹i(·) for any t Ø 0 if and only if

⁄

Ḡ
A(x)fi(dx) +

mÿ

i=1

⁄

ˆ
i

G
Bif(x)‹i(dx) = 0, ’f œ C2

0 (Ḡ).

Proof. The ∆ direction is evident. The ≈ direction follows from [KS01, Theorem 1.7].

4.B.1 Di�usion with Rebirth
Let x + ›(x) œ C0(ˆG, G) be a jump rule from the boundary ˆG to the domain G. Then the
boundary operator is given by

B›f(x) = f(x + ›(x)) ≠ f(x).

The solution (X(G,›)
t ) of the corresponding constrained martingale problem with initial distribu-

tion fi can be constructed as in [GK12, GK07, BAP09, GK02]. There is also a natural associated
Markov chain (Y (G,›)

n ) which is the hitting position of X(G,›)
t on the boundary. The following

construction is taken from [BAP09].

Let Zfi,0 be a di�usion killed at the boundary with generator A and initial distribution fi. Let
{Zy+›(y),n, y œ ˆG, n œ N} be a family of independent di�usion killed at ˆG with generator A
and initial distribution ”y+›(y). Denote ·Z

G the hitting time of a di�usion Z on the boundary of
G. Put ·0 = 0 and Y0 = Zµ,0

·0 . Let

·1 = ·Zfi,0
G , Y1 = Zfi,0

·Z

fi,0
G

,

and
·n+1 = ·n + ·ZY

n

+›(Y

n

),n

G , Yn+1 = ZY
n

+›(Y
n

),n
·Z

Y

n

+›(Y

n

),n

G

.

Under suitable conditions, we have ·n æ +Œ almost surely, so

XG,›
t :=

Œÿ

n=0
{[·

n

,·
n+1)}(t)ZY

n

+›(Y
n

),n
t≠·

n

is well defined. We can verify that XG,› constructed in this way is a solution of the constrained
martingale problem with initial distribution fi. We call (Y (G,›)

n ) the boundary chain.
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Proposition 4.B.1 (Separability). Under Assumption 4.B.1, if the di�usion with rebirth (X(G,›)
t )

is ergodic, then there exists a unique couple (fi, ‹) œ P(Ḡ) ◊ M(ˆG) verifying
⁄

Ḡ
A(x)fi(dx) +

⁄

ˆG
B›f(x)‹(dx) = 0, ’f œ C2

0 (Ḡ).

Proof. Since {B›f, f œ C2
0} is a separating class of M(ˆG), the uniqueness of ‹ follows from

the uniqueness of fi . The latter is by definition the ergodicity of (X(G,›)
t ).

Remark 4.B.2. For the ergodicity of di�usion with rebirth, see [GK12], [BAP09] or [AKK14].

4.B.2 Di�usion with Reflection
Let G be of C2 boundary. Let “ : ˆG æ � be a Lipschitz continuous vector field on the
boundary. Let �(x) be the closed convex cone in Rd with vertex at the origin spanned by “(x).
Let n(x) be the interior normal vector to the domain G at x œ ˆG and assume that

’x œ ˆG, Èn(x), “(x)Í > 0. (4.B.1)

The boundary operator B“ is given by

B“f(x) = È“(x), Òf(x)Í.

The solution of the corresponding constrained martingale problem is denoted by XG,�, see for
example [LS84].

Remark 4.B.3. Under the condition (4.B.1), the constrained martingale problem is equivalent
to the submartingale problem in [SV71], see Theorem 6.3.1 of [Kur90]. In [KR14], the authors
provide a characterization of the marginal fi using the submartingale formulation.

Proposition 4.B.2 (Separability). Under Assumption 4.B.1, if the di�usion with reflection
(X(G,�)

t ) is ergodic, then there exists a unique couple (fi, ‹) œ P(Ḡ) ◊ M(ˆG) verifying
⁄

Ḡ
A(x)fi(dx) +

⁄

ˆG
B“f(x)‹(dx) = 0, ’f œ C2

0 (Ḡ).

Proof. The uniqueness of fi is equivalent to the ergodicity of (X(G,�)
t ). The uniqueness of ‹ is

less obvious since we do not know whether {B“f, f œ C2
0} is a separating class. However, by

[KS01, Lemma 2.4], the random measure � can be written as

�(· ◊ [0, t]) =
⁄ t

0
{·}(X(G,�)

s )dÏs,

for some continuous non-decreasing process Ï. By Remark 4.B.3 and [SV71, Theorem 2.4], Ï is
the unique boundary process. Hence ‹ is uniquely determined as marginal of �.

Remark 4.B.4. For the case where G is a bounded domain with piecewise smooth boundary, we
can follow the arguments in [RW88, Theorem 1] to show that Ïi does not charge the non-smooth
part of int(ˆiG), where the reflecting direction is not unique. It follows, see for example [TW93,
Lemma 2.1] and [DW96, Lemma 4.6] , that Ïi, i = 1, · · · , m can be written as functional of
X(G,�), hence are uniquely determined by the latter.

Remark 4.B.5. For the ergodicity of reflected Brownian motion in a bounded planar region,
see [HLS85, Theorem 2.8, 3.8]. Close-formed expresson for fi can be found in [HLS85, Theorem
2.18, 3.13]. A more general characterization of the stationary distribution fi in terms of adjoint
PDE is given in [KR14, Theorem 3].
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Figure 4.1 – Explicit formula for quadratic deviation cost: combined control
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Figure 4.2 – Explicit formula for quadratic deviation cost: single control
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5.1 Introduction
In this part, we turn our attention to another important topic in portfolio selection: the impact
of capital gains taxes in the implementation of consumption-investment strategy. Capital gain
taxes di�er from transaction costs in the following aspects: 1) investors pay taxes for capital
gains but receive tax rebates for capital losses and 2) the amount of capital gains or losses taxed
depends on the purchase price of stock holdings, known as the tax basis, which incurs strong

1. This is a joint work with Prof. Xinfu Chen and Prof. Min Dai based on the preprint [CD13].
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path-dependency.

As a consequence, much of the existing literature on capital gain taxes has been restricted to
discrete-time models with small number of time steps (see [Con83, Con84, DK96, DU05, GH06]).
Using the average tax basis as an approximation, [DSZ01, DSZ03] develop a binomial tree model
that is able to e�ectively work with multi-step investment and consumption decisions. [GKT06]
further extend to the multiple stocks case. It is worth pointing out that the average tax basis
is indeed used in Canada. In [BST10], the authors fomulate a continuous-time version the the
model introduced by [DSZ01], extending the classical Merton optimal consumption-investment
problem.

In this chapter, we consider the optimal consumption investment problem with capital gain taxes
in a regime switching market for an agent with recursive utility of Epstein-Zin type. First, it is
well-known that the implication of the expected utility is not compatible with empirical findings,
causing various asset pricing puzzles like the equity puzzle, the excess volatility puzzle and the
credit spread puzzle and etc. The discounted expected utility in Merton’s model restricts the
relationship between the agent’s risk aversion and elasticity of intertemporal substitution (EIS):
the EIS is equal to the reciprocal of risk aversion. By separating these two parameters, recur-
sive utility of Epstein-Zin type provides a framework to address aforementioned asset pricing
anomalies (see [DE92, BY04, BCDG11, Bha09]). And it would be interesting to understand the
impact of capital gains taxes on agents of di�erent time-preference. Second, [Ham89] shows that
regime-switching model represents the stock returns better than the model with deterministic
coe�cients. By introducing a two-state Markov chain, one can take into account of stochastic
investment opportunities and distinguish the impact of capital gains taxes on the investment
strategy under di�erent economic conditions.

Since closed-form solutions are generally unavailable for the continuous-time model, we aim to
utilize asymptotic analysis to characterize the optimal strategy. However, even for the single
risky asset case, the model with capital gain taxes has to involve the tax basis as an additional
state variable, which makes rigorous expansions intractable. Therefore, we only provide formal
expansions that will be justified by numerical results.

To conduct asymptotic expansions with capital gain taxes, it is crucial to find appropriate per-
turbation parameters because unlike the transaction cost rate, the tax rate is relatively large.
[BST10] provide an interesting insight: the Merton problem with capital gain taxes reduces to
a frictionless Merton problem with tax-deflated drift and volatility coe�cients as the interest
rate vanishes. 2 Since the interest rate is typically small, it can serve as one of the perturbation
parameters. In light of theoretical analysis, we find that asymptotic expansions can be sought
in terms of not only small interest rate or tax rate but also other parameters, including large
stock volatility and risk aversion index of the investor. We will introduce a unified perturbation
parameter integrating these factors (see (5.4.1)).

Because no capital gains tax is paid until capital gains are realized, investors tend to defer real-
ization of capital gains so as to save interest. This deferral option is constrained by suboptimal
risk exposure. As such, investors need to achieve a trade-o� between the benefit of tax deferral
and the cost of suboptimal risk exposure. This leads to a no-trading region enclosed by two
trading boundaries: the optimal buy boundary and the optimal sell boundary, which determine
the optimal investment strategy. When the investment opportunity set is constant, we obtain
explicit approximations of the optimal trading boundaries and the value of deferral. The ap-
proximations o�er qualitative and quantitative insights about the e�ects of various factors on

2. The insight was initially documented by Domar and Musgrave (1944).
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the optimal strategy and the deferral option. We deduce that capital gains tax may have a first
order e�ect on investor utility. On the other hand, we discover several delicate properties of
the optimal trading boundaries using numerical method. For example, we find that the initial
tax-adjusted optimal fraction of wealth in the risky asset is slightly higher than the Merton line,
and the buy boundary typically deviates more from the Merton line than the sell boundary does.

When the investment opportunity set is not constant, we find that investors smooth the value
of deferral across regimes and that in contrast to the myopic investment strategy in the absence
of capital gains tax, the optimal investment strategy is a�ected by the investment opportunity
in the other regime. While such smoothing e�ect is similar to that observed in the present of
transaction costs, the situation in our case is more involved. We find that the degree of the
smoothing e�ect varies in function of the level of capital gains. In the region of low capital
gains, the optimal strategy is highly sensitive to market regime and the investor follows closely
to the myopic strategy in the absence of capital gains tax. In contrast, if the level of capital
gains is high, then the costs of reacting to market change become significant and the investor is
reluctant to rebalance the portfolio.

Finally, we find that the elasticity of intertemporal substitution (EIS) may dramatically alter
the value of deferral but has littler impact on the optimal investment strategy.

The remainder of the paper is organized as follows. In Section 5.2, we formulate the problem as
a stochastic control problem whose value function satisfies a Hamilton-Jacobi-Bellman (HJB)
equation. Some properties of the value function are given in Section 5.3. In Section 5.4, we
present the main results and discuss their financial implications. Numerical analysis and justi-
fications are given in Section 5.5. We provide a probabilistic model in Section 5.6 to provide
more insight into our asympotitic analysis. All technical derivations and proofs are contained
in the Appendix.

5.2 Model formulation
In this section, we present a mathematical formulation for the consumption investment problem
with the average tax basis, extending the model established by [BST10] to a regime switching
market and for an agent with recursive utility of Epstein-Zin type. We work on a filtered
probability space (�, F , {Ft}t>0,P). Here {Ft}tØ0 is the filtration generated by a standard
Wiener process {Wt, t Ø 0} with W0 = 0 and a Markov process {it, t Ø 0} with values in
I = {1, 2, · · · } and generator matrix

Q = (qij)i,jœI ,

where
q

jœI qij = 0, ’i œ I. Moreover, Wt and it are independent of each other.

Assume that there are two assets that the investor can trade without any transaction costs.
The first asset (“the bond”) is a money market account growing at a continuously compounded,
before-tax interest rate rt. The second asset (“the stock”) is a risky investment and its price St

follows
dSt = µtStdt + ‡tStdWt.

The market parameters rt, µt and ‡t are regime dependent: let the Markov process {it, t Ø 0}
represent the market regime, then rt, µt and ‡t depend on it through

rt = ri
t

, µt = µi
t

, ‡t = ‡i
t

,

where ri, µi and ‡i are market parameters under regime i œ I.
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The investor is subject to capital gain taxes. We assume that (i) the capital gain can be real-
ized immediately after sale, (ii) there is no wash sale restriction,(iii) short selling is prohibited,
and (iv) the tax basis used to evaluate capital gains is defined as the weighted average of past
purchase prices.

Let Xt, Yt, and Kt be the amount invested in the bond, the current dollar value of, and the
purchase price of stock holdings, respectively. We introduce two càdlàg, nonnegative, and non-
decreasing {Ft}t>0-adapted processes Lt and Mt with L0 = M0 = 0, where dLt represents the
dollar amount transferred from the bank to the stock account at time t (corresponding to a
purchase of stock), while dMt 6 1 represents the proportion of shares transferred from the stock
account to the bank at time t (corresponding to a sale of stock). Bear in mind that the average
tax basis is used to evaluate capital gains. Hence, when one sells stock at time t, the purchase
price Kt declines by the same proportion dMt as the dollar value of stock holdings does, and
the realized capital gain is (Yt ≠ Kt)dMt. Then, the evolution processes of Xt, Yt, and Kt are 3

dXt = [(1 ≠ –)rtXt ≠ Ct] dt ≠ dLt + [Yt≠ ≠ – (Yt≠ ≠ Kt≠)] dMt,

dYt = µtYt≠dt + ‡tYt≠dWt + dLt ≠ Yt≠dMt,

dKt = dLt ≠ Kt≠dMt,

where – and {Ct, t Ø t} are the tax rate and the consumption streams, respectively.

We consider an investor who’s preference over the random consumption streams {Ct, t Ø 0} is
described by a continuous time stochastic di�erential utility of Epstein-Zin type. More precisely,
let — œ (0, Œ) be the rate of time preference, “ œ (0, 1) fi (1, Œ) be the relative risk aversion and
1
Ÿ be the EIS with Ÿ œ (0, 1) fi (1, Œ), then the Epstein-Zin aggregator f is given by

f(C, V ) = —

1 ≠ Ÿ
C1≠Ÿ!

(1 ≠ “)V
"◊ ≠ p—V, (5.2.1)

where
p = 1 ≠ “

1 ≠ Ÿ
, ◊ = 1 ≠ 1

p
. (5.2.2)

The Epstein-Zin utility {V C
t , t Ø 0} over the consumption streams {Ct, t Ø 0} is implicitly

determined by 4

V C
t = E

Ë ⁄ Œ

t
f(Cs, V C

s )ds
---Ft

È
, ’t Ø 0. (5.2.3)

When “ = Ÿ, the aggregator reduces to

f(C, V ) = —U(C, “) ≠ —V,

where U(·, “) is the CRRA utility function with parameter “ :

U(C, “) = C1≠“

1 ≠ “
. (5.2.4)

Then (5.2.3) can be written as

V C
t = —E

Ë ⁄ Œ

t
e≠—(s≠t)U(Cs, “)ds

---Ft

È
, (5.2.5)

which is the standard additive utility up to a multiplication of —.

3. For notational reason, the bond is assumed to be also subject to capital gain taxes. The resulting model is
equivalent to that in [BST10] with (1 ≠ –)r replaced by r.

4. For conditions on C

t

guaranteeing the existence of V

C

t

, see e.g. Du�e and Lions (1994), Hao (2015).
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Denote by
Zt = Xt + Yt ≠ –(Yt ≠ Kt)

the liquidation value of the portfolio, and define the solvency region as

� := {(Xt, Yt, Kt) œ R3 : Zt > 0, Yt > 0, Kt > 0}.

Then a consumption investment strategy {(Ct, Lt, Mt), t Ø 0} is said to be admissible if (i)
(Xt, Yt, Kt) œ � and (ii) the Epstein-Zin utility V C

t is uniquely determined by (5.2.3). Since the
utility process is subject to the trading constraint (i), we denote V C

t by V (C,L,M)
t . Let Ai(x, y, k)

be the set of all admissible strategies under initial condition X0 = x, Y0 = y, K0 = k and i0 = i,
then the agent aims to find

Ïi(x, y, k) := sup
(C,L,M)œA

i

(x,y,k)
V (C,L,M)

0 . (5.2.6)

and the corresponding optimal strategy {(Cú
t , Lú

t , Mú
t ), t Ø 0}. Here a consumption investment

strategy {(Cú
t , Lú

t , Mú
t ), t Ø 0} is said to be an optimal strategy if

Ïi(x, y, k) = V (Cú,Lú,Mú)
0 .

5.3 Preliminary analysis
We first present some properties of the value function using similar arguments from [BST10].

5.3.1 First properties of the value function

If the tax rate – = 0, our model reduces to the classical problem of recursively utility maximi-
sation with regime switching. We have (see [Xia12]),

Proposition 5.3.1 (Tax-free model). Assume that |I| = 1 or 2, and

Ki := —

Ÿ
≠ 1 ≠ Ÿ

Ÿ

1
ri + (µi ≠ ri)2

2“‡2
i

2
> 0, ’i œ I. (5.3.1)

Then the following system

—
1
Ÿ G

1≠ 1
Ÿ

i ≠ Ki + 1 ≠ Ÿ

Ÿ

1
1 ≠ “

ÿ

jœI
qij

G
1≠“
j

G
1≠“
i

= 0, i œ I, (5.3.2)

admits a unique solution {Gi, i œ S}. Denote by Ï̄i the value function (5.2.6) without capital
gains taxes (i.e. – = 0), then Ï̄i depends only on the initial wealth z = x + y such that

Ï̄i(z) = G
1≠“
i

1 ≠ “
z1≠“ .

Moreover, the optimal consumption rate and risk asset proportion under regime i œ I is given
by

ci = —
1
Ÿ G

1≠ 1
Ÿ

i , ›i = µi ≠ ri

“‡2
i

. (5.3.3)

We remark that for an agent with utility of Epstein-Zin type, the optimal trading strategy ›̄i

doesn’t depends on Ÿ or transition intensities qij . In contrast, the optimal consumption rate c̄i

is closely related to the EIS and transition intensities. When necessary, we use superscript c̄q
i to
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indicate the dependence of consumption rate in the transition densities

As in [BST10], we introduce the tax-deflated model in tax-free market for which the market
parameters r–,i, µ–,i and ‡–,i are given by

r–,i = (1 ≠ –)ri, µ–,i = (1 ≠ –)µi, ‡–,i = (1 ≠ –)‡i, ’i œ I. (5.3.4)

We define similarly G–,i and K–,i by

—
1
Ÿ G

1≠ 1
Ÿ

–,i ≠ K–,i + 1 ≠ Ÿ

Ÿ

1
1 ≠ “

ÿ

jœI
qij

G
1≠“
–,j

G
1≠“
–,i

= 0, i œ I, (5.3.5)

with

K–,i := —

Ÿ
≠ 1 ≠ Ÿ

Ÿ

1
r–,i + (µ–,i ≠ r–,i)2

2“‡2
–,i

2
. (5.3.6)

Let Ï̄–,i be the value function (5.2.6) under the tax-deflated model (5.3.4) without capital gains
taxes, then we have

Ï̄–,i(z) =
G

1≠“
–,i

1 ≠ “
z1≠“ ,

with
c–,i = —

1
Ÿ G

1≠ 1
Ÿ

–,i , ›–,i = µ–,i ≠ r–,i

“‡2
–,i

. (5.3.7)

As before, we use superscript c̄q
–,i to indicate the dependence of consumption rate in the transition

densities. Note also that
›̄–,i = 1

1 ≠ –

µi ≠ ri

“‡2
i

= 1
1 ≠ –

›̄i.

Proposition 5.3.2. Denote the wealth after immediate liquidation by

z = x + (1 ≠ –)y + –k.

then for any k > y (i.e. under capital loss),

Ïi(x, y, k) = Ïi(z, 0, 0) = Ïi((1 ≠ ◊)z, ◊z, ◊z), (5.3.8)

where ◊ is any positive constant.

Proof. This is a consequence of the monotonicity in consumption of stochastic di�erential utility,
see [DE92, Section 5.3] and [BST10, Proposition 3.5].

Proposition 5.3.2 implies that it is optimal to realize capital losses whenever they occur. Hence,
when Kt > Yt, the wash sale

(Xt, Yt, Kt) ≠æ (Zt, 0, 0) ≠æ ((1 ≠ ›ú
i )Zt, ›ú

i Zt, ›ú
i Zt) (5.3.9)

is an optimal strategy, where ›ú
i is the optimal fraction of wealth in the risky asset after realizing

capital losses under market regime i œ I.
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5.3.2 Certainty equivalent wealth loss (CEWL)
In [BST10], it is shown that the investor cannot take advantage of tax rebates to do better than
in a tax-free market. Therefore we can define the certainty equivalent wealth loss (CEWL) �i

incurred by capital gain taxes in terms of the following equation:

Ïi(x, y, k) = G
1≠“
i

1 ≠ “
[(1 ≠ �i)z]1≠“ , (5.3.10)

that is,

�i ¥ ≠ log(1 ≠ �i)

= ≠ 1
1 ≠ “

log
#
(1 ≠ “) z≠(1≠“)Ïi

$
+ log Gi.

5.3.3 The value of deferring capital gains realization
On the other hand, consider the value function associated with the sub-optimal strategy de-
scribed below: for any t > 0 and total wealth Zt, one keeps liquidating the portfolio and
maintains 5

Yt

Zt
= ›̄–,i,

Ct

Zt
= c̄–,i. (5.3.11)

The strategy can be regarded as a modified Merton strategy in the tax market. The modified
Merton strategy is optimal in a restricted set of admissible strategies that the investor cannot
defer realizing any capital gains. Because tax is paid only when capital gains are realized, the
investor has not only an incentive but also an option to defer capital gains tax payment. We
then define the value of this deferral option, denoted by �i,0, as follows:

Ïi(x, y, k) ©
G

1≠“
–,i

1 ≠ “
[(1 + �i,0)z]1≠“ ,

that is,

�i,0 ¥ log(1 + �i,0)

= 1
1 ≠ “

log
#
(1 ≠ “)z≠(1≠“)Ïi

$
≠ log Ḡ–,i (5.3.12)

Later we will see that (5.3.12) implies a transformation which plays a critical role in our asymp-
totic analysis.

5.3.4 HJB equation
The value function Ïi turns out to satisfy the following HJB equation: 6

max
)
AiÏi +

ÿ

jœI
qijÏj , TiÏi, PiÏi

*
= 0 in �, ’i œ I, (5.3.13)

where

AiÏi := 1
2‡2

i y2Ïi,yy + µiyÏi,y + (1 ≠ –)rixÏi,x + Ū(Ïi,x, Ïi),

TiÏi := [(1 ≠ –)y + –k]Ïi,x ≠ yÏi,y ≠ kÏi,k,

PiÏi := ≠Ïi,x + Ïi,y + Ïi,k,

5. Strictly speaking, the strategy is not in the set of admissible strategies. However, we can always use a
sequence of admissible strategies to approach the strategy.

6. In [BST10], the authors show rigorously that the value function is a viscosity solution of the HJB equation
in a suitable sense. The well-posedness is given in [BST07]. In this paper, we don’t attempt to prove such results
but concentrate on the financial implications.
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and

Ū(q, Ï) := sup
C>0

(f(C, Ï) ≠ Cq)

= —
1 1

1 ≠ Ÿ
≠ 1

21 q

—

21≠ 1
Ÿ

!
(1 ≠ “)Ï)

◊

Ÿ ≠ p—Ï.

for each q > 0. The optimal consumption proves to be

Cú
i =

1 1
—

Ïi,x

((1 ≠ “)Ïi)◊

2≠ 1
Ÿ

. (5.3.14)

Since the Epstein-Zin utility (5.2.3) is homothetic, i.e. V ⁄C
t = ⁄1≠“V C

t , we have

Ïi(⁄x, ⁄y, ⁄k) = ⁄1≠“Ïi(x, y, k), ’ ⁄ > 0. (5.3.15)

Hence, there is a dimension reduction: 7

› = (1 ≠ –) y

x + (1 ≠ –) y + –k
, b = k

y
, (5.3.16)

such that
Ïi(x, y, k) = (x + (1 ≠ –) y + –k)1≠“ „i(b, ›), (5.3.17)

where b is the scaled average tax basis. The combination of (5.3.12) and (5.3.17) motivates us
to make the following transformation:

wi = 1
1 ≠ “

log[(1 ≠ “)„i] ≠ log G–,i. (5.3.18)

It is not hard to verify that wi satisfies

max
Ó‡2

i

2 (Liwi + fi) + 1
1 ≠ “

ÿ

jœI
qij

G
1≠“
–,j

G
1≠“
–,i

!
e(1≠“)(w

j

≠w
i

) ≠ 1
"
,

≠ wi,›, ›wi,› + (1 ≠ b)wi,b

Ô
= 0, (5.3.19)

in Q, where

Liwi = b2wi,bb ≠ 2b›(1 ≠ ›)wi,b› + ›2(1 ≠ ›)2wi,››

+
Ë
2
!
1 ≠ µi

‡2
i

"
+ (1 ≠ “)

!
≠ 2› ≠ ›(1 ≠ ›)wi,› + bwi,b

"È
bwi,b

+
Ë!

≠ 2“(› ≠ ›̄i) + (1 ≠ “)(›(1 ≠ ›)wi,› ≠ bwi,b)
"
(1 ≠ ›) + 2ri–[1 + (b ≠ 1)›]

‡2
i

È
›wi,›

+ 2
‡2

i

c̄–,i
!
Uú(ew

i(1 ≠ ›wi,›), Ÿ) ≠ Uú(1, Ÿ)
"
,

fi(b, ›) = ≠“(› ≠ ›̄i)2 + 2
‡2

i

ri–›(1 ≠ b). (5.3.20)

and
Uú(q, Ÿ) = Ÿ

1 ≠ Ÿ
q1≠ 1

Ÿ .

7. Following (5.3.15), one should use ›̂ = y/(x+(1≠–)y +–k) and b̂ = k/(x+(1≠–)y +–k) as state variables.
To derive (5.3.17), we can further make a transformation: › = (1 ≠ –)›̂ and b = b̂/›̂.
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It is worth pointing out that the reduced equation (5.3.19) remains valid for “ = 1, which
corresponds to the logarithm utility case. As such, the subsequent analysis works for all “ > 0. 8

In what follows we identify wi with the value of deferral �i,0. It is easy to see that we can
rewrite the CEWL as

≠ log(1 ≠ �i) = log Gi

G–,i
≠ wi.

5.3.5 Trading and no-trading regions

From now on, we assume miniœI ri– > 0. We define the wash-sale region WSi, the sell region
SRi, the buy region BRi, and the non-trading region NTi by

WSi := {(b, ›) | b > 1, › > 0},

SRi := {(b, ›) | 0 6 b < 1, wi,› = 0},

BRi := {(b, ›) | 0 6 b < 1, ›wi,› + (1 ≠ b)wi,b = 0},

NTi := {(b, ›) | 0 6 b < 1, ›wi,› + (1 ≠ b)wi,b < 0 < wi,›}.

The definition of the WSi is based on part (i) of Proposition 5.3.2. As a consequence, we are
able to restrict attention to the domain 0 6 b 6 1.

0 0.2 0.4 0.6 0.8 1
0.1

0.2

0.3

0.4

0.5

0.6

⇠

b

NT

BR

SR

⇠+(b)

⇠�(b)

Figure 5.1 – Trading and No-trading Regions

We assume that „i œ C1([0, Œ)◊ [0, Œ)) and there exist functions ›±
i (·) œ C1[0, 1)flC[0, 1] such

that

SRi = {(b, ›) | 0 6 b < 1, › > ›+
i (b)},

BRi = {(b, ›) | 0 6 b < 1, › 6 ›≠
i (b)},

NTi = {(b, ›) | 0 6 b < 1, ›≠
i (b) < › < ›+

i (b)}.

The assumption relies on the financial intuition that an investor whose preference is of Epstein-
Zin type should sell (buy) the risky asset when the fraction of wealth in the risky asset is high

8. In fact, transformation (5.3.18) is initially inspired by an attempt to derive a unified reduced equation for
all CRRA investors. A similar transformation is used in [DY09] for the Merton problem with transaction costs,
where the transformation does not involve the constant ≠ log G

–,i

.
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(low) enough. 9 These regions are depicted in Figure 1. The existence of the NTi in b < 1
implies that the investor can defer paying capital gain taxes.

We call the curve {(b, ›±
i (b)), b œ [0, 1]}, i œ I, the sell boundary/buy boundary (the free bound-

ary in mathematics). By analyzing the trading strategy, we shall assume that there hold the
admissibility conditions

›≠
i (b) < ›+

i (b), ’ b œ [0, 1)

and
›+

i (1) = ›≠
i (1). (5.3.21)

Recall that there is a factor (1 ≠ –) in the transform (5.3.16), Assumption (5.3.21) implies that
after wash sale, the fraction in the risky asset should be re-balanced to

›ú
i = ›±

i (1)
1 ≠ –

.

Coinciding with (5.3.9), ›ú
i is the optimal fraction of wealth in the risky asset after wash sale.

It can also be regarded as the optimal fraction of initial wealth in the risky asset. 10 When we
implement the above strategy, the trading boundaries in terms of risky asset proportion should
be

›≠
i (bt)

1 ≠ –
Æ yt

zt
Æ ›+

i (bt)
1 ≠ –

. (5.3.22)

We emphasize that all of the above assumptions are supported by numerical results.

5.4 Asymptotic analysis

In this section, we present the main theoretical results derived from asymptotic analysis. All
technical derivations and proofs are deferred to the Appendix. We shall perform the asymptotic
analysis using the HJB equation (5.3.19).

5.4.1 Small parameter

The expression of fi(b, ›) in (5.3.20) inspires us to introduce a small parameter

Ái :=
Û

2ri–›̄i

“‡2
i

, (5.4.1)

to be used for asymptotic expansions. Then we can rewrite fi(b, ›) as

fi(b, ›) = “[Á2
i (1 ≠ b) ≠ (› ≠ ›̄i)2] + Á2

i (1 ≠ b)(1 ≠ ›

›̄i

).

Due to the quadratic term (› ≠ ›̄i)2, we expect the non-transaction zone be a narrow band
containing the Merton line › © ›̄i. We will seek asymptotic expansion of the solution to (5.3.19)
as Ái √ 0 such that the last term on the right hand side becomes negligible and

fi(b, ›) ¥ “[Á2
i (1 ≠ b) ≠ (› ≠ ›̄i)2]. (5.4.2)

9. However, it is di�cult to prove the assumption because the value function is no longer concave [see [BST10]]
for the additive utility case.

10. Apparently ›

±
i

(1) (or ›

ú
i

) plays a key role in application. Nevertheless, a rigorous mathematical proof for
(5.3.21) is unavailable.
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5.4.2 Asymptotic expansion
The di�erential operator Li in (5.3.19) is degenerate at › = 1, which results in di�erent expan-
sions for ›̄i ”= 1 and ›̄i = 1. Let us first investigate in this section the following case that is our
primary interest.
Asymptotic Expansion 5.4.1. 11 Assume that ›̄i ”= 1, ’i œ I. Let Ái be as given in (5.4.1),
and let ›+

i (·) and ›≠
i (·) be the optimal sell and buy boundaries, respectively. Denote

Ai := 4/[3›̄i(›̄i ≠ 1)2], ”i = (AiÁi)2/3, ◊i = ‡2
i

2 A2/3
i Á8/3

i . (5.4.3)

i) We have the following approximation for the value of deferral wi in NTi:

wi(b, ›)|b=1 = “

c̄–,i

‡2
i

2 miA
2/3
i Á8/3

i + o(Á8/3
i ), (5.4.4)

¥ “

c̄–,i
◊imi. (5.4.5)

where {mi, i œ I} is the solution of the following linear system:
1
1 + pŸ(K–,i

c–,i
≠ 1)

2
(◊imi) ≠

ÿ

jœI

G
1≠“
–,j

G
1≠“
–,i

qij

c–,j
(◊jmj) = ◊im

”
i

ú , i œ I, (5.4.6)

with mú : ” ‘æ m”
ú uniquely determined by

I
(1 ≠ ”p)2gÕÕ(p) + p ≠ m”

ú ≠ (pgÕ(p))2/3 = 0, p œ [0, 1
” ],

g(0) = 0, gÕ(0) = 0.
(5.4.7)

ii) We have an approximation to the optimal trading boundaries ›±
i (b), b œ [0, 1]:

›±
i (b) ¥ ›̄i ± Ái

Ô
1 ≠ b

1gÕ
i(pi)Ô

pi

21/3---
p

i

= 1≠b

”

i

, (5.4.8)

iii) We have an approximation to the optimal consumption strategy for i œ I:

Cú

x + (1 ≠ –)y + –k
= c̄–,i + Ÿ ≠ 1

Ÿ

‡2
i

2 “miA
2/3
i Á8/3

i + o(Á8/3
i ). (5.4.9)

We remark that the only unknown parameters mi in the expansion (5.4.4) are determined by
m”

ú, which depends on the parameter ” only. Using shooting method, we obtain numerically the
constant m”

ú as a function mú : ” ‘æ m”
ú in Fig.5.2. It turns out that m”

ú is a decreasing function
of ” and has a maximum of about m”

ú = 0.78 for ” = 0. Moreover, we observe numerically that
the solution g of (5.4.7) verifies

gÕ(p) ¥ ÷”p, (5.4.10)
where ÷” is a constant depending on ” (see Fig.5.2). Hence we obtain an explicit approximation
for the trading boundaries

›±
i (b) ¥ ›̄i ± ÷1/3

”
i

”≠1/6
i Ái(1 ≠ b)2/3. (5.4.11)

Combining (5.3.22) and (5.3.7), Theorem 5.4.1 states that, up to first order approximation, the
optimal trading strategy is to keep the proportion of risk asset (over liquidation wealth) around

›ú
i = ›̄–,i, (5.4.12)

which is the "Merton line" of the tax-deflated model (5.3.4), such that
---
yt

zt
≠ ›̄–,i

--- Æ 1
1 ≠ –

÷1/3
”

i

”≠1/6
i Ái(1 ≠ bt)2/3. (5.4.13)

11. This argument fo this result is heurstic without rigorous justification.
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Figure 5.2 – The constants m”
ú in (5.4.7) and ÷” in (5.4.10)

5.4.3 Economic analysis: single-regime case
We begin by analysing the case of single regime market. Fixing a market regime i0 œ I and
taking qi0j = 0, ’j œ I in Theorem 5.4.1, we obtain 12

w(b, ›)|b=1 = “

c̄–

‡2

2 m”
úA2/3Á8/3 + o(Á8/3), (5.4.14)

where m”
ú is given in Fig.5.2.

The impact of capital gains taxes is O(Á8/3)

In the classical optimal consumption investment problem, it is well-known that the utility loss
due to proportional transaction costs is of order O(Á2/3) if the proportional transaction cost
coe�cient is Á. It is the consequence of minimizing the utility losses due to deviation from the
Merton line and the cumulated transaction costs.

In our case, the deferral value w is the result of a delicate balancing between the loss due to
deviation from the Merton line and the benefit of deferring capital gains. Recall that

f(b, ›) = “[Á2(1 ≠ b) ≠ (› ≠ ›̄)2].

The term ≠(› ≠ ›̄)2 corresponds to the utility loss and Á2(1 ≠ b) corresponds to the benefit of
deferring capital gains. As already pointed out in the literature, the deferral value originates
from the non-zero interest r = O(Á2). Here we obtain a more precisely expression for the deferral
benefit: it is actually weighted by (1 ≠ b). Therefore, the investor should keep high capital gains
(b small) while stay close to the Merton line ((› ≠ ›̄)2 small). On the one hand, as Á tends to
zeros, the non-transaction zone ›± ≠ ›̄ should shrink to the Merton line › = ›̄, reducing utility
loss of deviating from Merton line. On the other hand, a narrow non-transaction zone would
incur frequent trading and push the tax basis b towards 1. Consequently, the benefit of deferring
capital gains taxes Á2(1 ≠ b) decreases.

Di�erent from the impact of transaction costs, our results show that the impact of capital
gains taxes w is of order O(Á8/3), i.e. O(–4/3). Indeed, we can show heuristically that if the
non-transaction zone ›± ≠ ›̄ has width of order O(Á2‹), then (1 ≠ b) would be of order O(Á‹).

12. For notational simplicity, we omit the index i0 in this part.
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Therefore the deviation loss ≠(› ≠ ›̄)2 is about O(Á4‹) while the deferral benefit Á2(1 ≠ b) is
O(Á2+‹). To attain the optimal solution, we must have

4‹ Ø 2 + ‹ ∆ ‹ Ø 2
3 .

At the same time, we want the deferral value to be as large as possible. Hence ‹ should be as
large as possible, i.e. ‹ = 2/3. The order of deferral value is

O(Á4‹) = O(Á2+‹) = O(Á8/3).

In the Appendix, we provide a detailed explanation for the order O(Á8/3) of w and a related
optimal control problem for the constant m”

ú.

Impact of EIS

We rewrite (5.4.14) as

c̄–w ¥ ‡2

2 m”
úA2/3Á8/3, (5.4.15)

where the right hand side does not depends on the EIS. It means that the agent’s EIS influence
the deferral value only through the optimal consumption rate. Recall that c̄– = K– under single
regime model, we have

ˆc̄–

ˆŸ
= ≠ 1

Ÿ2

1
— ≠ (1 ≠ –)r ≠ (µ ≠ r)2

2“‡2

2
.

Consequently,
1. If — ≠ (1 ≠ –)r ≠ (µ≠r)2

2“‡2 > 0, the deferral value w decreases when the EIS is higher;

2. If — ≠ (1 ≠ –)r ≠ (µ≠r)2

2“‡2 < 0, the deferral value w increases when the EIS is higher.
On the other hand, since (5.4.7) depends only on ” but not Ÿ, the trading boundaries are
independent of the EIS. This is consistent with the tax-free case (5.3.3) where Ÿ impacts the
optimal consumption rate c̄ but not the optimal proportion of risky asset ›̄.

5.4.4 Economic analysis: two-regime case
Consider the case of two regimes where I = {1, 2} and

Q =

Q

ca
≠⁄1 ⁄1

⁄2 ≠⁄2

R

db ,

with ⁄1, ⁄2 > 0. The system (5.4.6) can be rewritten as
Q

ca
M⁄

11 M⁄
12

M⁄
21 M⁄

22

R

db

Q

ca
◊1m1

◊2m1

R

db =

Q

ca
◊1m”1

ú

◊2m”2
ú

R

db , (5.4.16)

where M⁄ = (M⁄
ij) is given by

M⁄
11 = 1 + pŸ

!K–,1
c–,1

≠ 1
"

+ ⁄1
c–,1

, (5.4.17)

M⁄
12 = ≠pŸ(K–,1

c̄–,2
≠ c̄–,1

c̄–,2
) ≠ ⁄1

c̄–,2
, (5.4.18)

M⁄
21 = ≠pŸ(K–,2

c̄–,1
≠ c̄–,2

c̄–,1
) ≠ ⁄2

c̄–,1
, (5.4.19)

M⁄
22 = 1 + pŸ

!K–,2
c–,2

≠ 1
"

+ ⁄2
c–,2

. (5.4.20)
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Value of deferral and impact of transition intensities

Using the expansion (5.4.4), we can evaluate not only the impact of capital gains taxes under
di�erent economics but also the dependence of the impact in terms of the transition intensities
⁄ = (⁄1, ⁄2). Let (w⁄

1 , w⁄
2 ) the corresponding deferral value. By (5.4.5), we have

Q

ca
M⁄

11 M⁄
12

M⁄
21 M⁄

22

R

db

Q

ca
c̄⁄

–,1w⁄
1

c̄⁄
–,2w⁄

2

R

db ¥ “

Q

ca
◊1m”1

ú

◊2m”2
ú

R

db , ’⁄ œ R2
+. (5.4.21)

where the right hand side is independent of ⁄, and we use superscript ⁄ to indicate the depen-
dence of c̄–,i, i = 1, 2 on ⁄. Denote (w0

1, w0
2) for ⁄ = (0, 0), which corresponds to the deferral

values under each economics. Note that M⁄ = Id when ⁄ = (0, 0). Then the right hand side of
(5.4.21) corresponds to ⁄ = 0 and we obtain that

Q

ca
M⁄

11 M⁄
12

M⁄
21 M⁄

22

R

db

Q

ca
c̄⁄

–,1

c̄⁄
–,2

R

db

Q

ca
w⁄

1

w⁄
2

R

db ¥

Q

ca
c̄0

–,1

c̄0
–,2

R

db

Q

ca
w0

1

w0
2

R

db ,

or equivalently,
Q

ca
w⁄

1

w⁄
2

R

db ¥

Q

ca
M⁄

11 1 ≠ M⁄
11

1 ≠ M⁄
22 M⁄

22

R

db

≠1 Q

ca
c̄0

–,1/c̄⁄
–,1

c̄0
–,2/c̄⁄

–,2

R

db

Q

ca
w0

1

w0
2

R

db . (5.4.22)

We can write

w⁄
1 = 1

M⁄
11

c̄0
–,1

c̄⁄
–,1

w0
1 +

1
1 ≠ 1

M⁄
11

2
w⁄

2 ,

w⁄
2 = 1

M⁄
22

c̄0
–,2

c̄⁄
–,2

w0
2 +

1
1 ≠ 1

M⁄
2

2
w⁄

1 .

By (5.4.17) and (5.4.20), M⁄
11 and M⁄

22 increase as ⁄1 and ⁄2 increase, hence the above relation
shows that w⁄

1 and w⁄
2 will move towards each other. This is a typical behaviour of values

functions for models with regime-switching. Our asymptotic expansion captures this feature in
an explicit way.

Trading boundaries

Since the optimal proportional of risky asset ›̄i doesn’t depend on the EIS or the transition
intensities (see (5.3.3), the non-transaction zone NTi should always be a wedged region around
the line › © ›̄i.

On the other hand, the asymptotic trading boundaries ›±
i are determined by (5.4.7), hence is

approximately independent of the transition intensities between the two regimes. This is true
only if Á is small enough.

5.5 Numerical results
5.5.1 Single-regime case
In this section, we present our asymptotic results for single regime market. This allows us to
analyze the joint impact of capital gains taxes and EIS on the value function and optimal trading
boundaries. For comparison, we always employ the penalty method with the finite di�erence
discretization (see [FV02]) to generate benchmark values. 13

13. It should be emphasized that implementing the penalty method with the finite di�erence discretization is
absolutely non-trivial. Because the resulting matrix is, in general, not an M-matrix for the present problem, one
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– 8% 16% 24% 32% 40% 48%

” 1.32 1.66 1.90 2.09 2.25 2.39

Á 0.14 0.20 0.24 0.28 0.32 0.35

Table 5.1 – Tax rates and corresponding values of ”.
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)

Black points: numerical results for (5.5.1) . Blue dashed line: the reference line log(Á) ‘æ 8
3 log(Á).

Parameters: — = 0.05, r = 3%, µ = 0.09, ‡ = 0.20, “ = 3, Ÿ = 0.7.

Figure 5.3 – The order of deferral value is O(Á8/3)

The value of deferring capital gains realization

After the expansion (5.4.4), (5.5.1) should be close to the line log(Á) ‘æ 8
3 log(Á). We take tax

rate from 1% to 48% (see Table 5.1). Fig.5.3 shows a very good fit for the order of w.

In this section, we examine the asymptotic expansion (5.4.14) for the option value of deferring
capital gains. We compare the following function

log(Á) ‘æ log(w) ≠ log( “

c̄–
A2/3m”

ú). (5.5.1)

Fig.5.4 compares the expansion (5.4.4) and the numerical results of the deferral value. We
introduce

m :=
1
“

‡2

2
1
c̄–

A2/3Á8/3
2≠1

w(1, ›̄), (5.5.2)

where w(1, ›̄) is obtained numerically. Our formula (5.4.14) exhibits an extremely good approx-
imation (Fig.5.4).

On the other hand, we can compare CEWL with its upper bound log Ḡ
Ḡ

–

by computing

relative-� := �
log (Ḡ/Ḡ–)

. (5.5.3)

needs to carefully choose the penalty parameter to guarantee convergence. Moreover, it is very time-consuming
and often divergent for small Á. That is why we seek for asymptotic analysis.
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Left panel: deferral values Right panel: black points for (5.5.2) vs. blue dashed line for (5.4.7)).
Parameters: — = 0.05, r = 3%, µ = 0.08, ‡ = 0.25, “ = 3, Ÿ = 0.7.

Figure 5.4 – Asymptotic expansion in terms of tax rate
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Parameters: — = 0.05, r = 3%, µ = 0.08, ‡ = 0.25, “ = 3, Ÿ = 0.7.

Figure 5.5 – Relative CEWL (5.5.3)

We observe that the deferral value accounts for up to 30% of the gap in [BST10](Fig.5.5). This
means that, by optimally deferring the realisation of capital gains taxes, the investor can obtain
up to 30% of extra benefit in terms of expected utility.

Impact of capital gains taxes and EIS

In this section we study the impact of tax for investors of di�erent EIS. As predicted by the
asymptotic expansion (5.4.14), we obtain a horizontal line in Fig.5.6. Fig.5.7 reports di�erent
monotonicity of w in terms of Ÿ, corresponding to — ≠ (1 ≠ –)r ≠ (µ≠r)2

2“‡2 < 0 (> 0 respectively).

Approximations to the optimal trading boundary

The trading boundaries provided by asymptotic expansion depend only on Á and ” (through g).
In particular, they are independent of EIS. This is supported by the numerical results in the
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Numerical values of c̄–w (black points) vs. asymptotic expansion (blue dashed line). We take
Ÿ œ {0.65, 0.70, 0.75, 0.80, 0.85}. Parameters: — = 0.1, – = 40%, r = 5%, µ = 0.15, ‡ = 0.35, “ = 4.

Figure 5.6 – The value of c̄–w in terms of EIS
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Left panel: — = 0.10, µ = 0.15. Right panel: — = 0.02, µ = 0.10. We take
Ÿ œ {0.65, 0.70, 0.75, 0.80, 0.85}. Other parameters: – = 40%, r = 5%, ‡ = 0.35, “ = 4.

Figure 5.7 – Impact of tax (i.e. deferral value w) in terms of EIS

left panel of Fig.5.8. We observe also that the explicit approximation (5.4.11) is quite close to
numerical results, in particular for small values of – (see right panel of Fig.5.8).

To further examine the e�ect of approximation (5.4.11), we plot in Fig.5.9 the optimal trading
boundaries at b = 0.5 against Á, i.e. ›±(0.5; Á), using the approximation and the penalty method
respectively. We let – vary from 4% to 32%. It can be seen that the approximation is reasonably
good even with high tax rate. The same pattern is observed for varying values of interest rate
(right panel of Fig.5.9) and di�erent value of b œ [0, 1].

An interesting phenomenon is that the trading boundaries are not symmetric with respect to the
Merton line › © ›̄: the selling boundary is closer to the Merton line than the buying boundary
does. This is due to the fact that selling stock does not alter tax basis b while buying stock
increases tax basis (hence reduces the deferral benefit Á2(1 ≠ b).) As the utility loss ≠(› ≠ ›̄)2

is symmetric to both positive and negative deviation, the investor will tend to avoid positive
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Figure 5.8 – The dependence of trading boundary on EIS and tax rate
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finite di�erence discretization and the blue line is the given by (5.4.11). The x-axis is the corresponding
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Figure 5.9 – Approximation (5.4.11) at b = 0.5 with varying –.

deviation while being more patient for negative deviation. Our expansion (5.4.8) is symmetric
since when Á is small, such e�ect can be and is ignored. This limitation should be kept in mind
when Á is not small enough.

5.5.2 Two-regime Case

We consider two economics where for i = 1, the optimal strategy is ›̄1 = 0.19, and the economics
i = 2 is less risky with ›̄2 = 0.42. Fig.5.10 reports the performance of the expansion (5.4.4) in
two-regime case. We observe e�ectively a better approximation as the tax rate decreases. Now
we examine the relation (5.4.22). We use deferral values under single regimes for w0

1 and w0
2.

Fixing ⁄2, the two deferral values decreases to the same value w0
2 as ⁄1 increases, see Fig.5.11.
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The red lines are computed using w0
1, w0

2 and (5.4.22). The relation (5.4.22) captures well the
impact of capital gains taxes under regime-switching market.
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Black curves: numerical results. Blue curves: Asymptotic expansion (5.4.4).
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Figure 5.10 – Asymptotic for two-regime deferral values in terms of tax rate
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Figure 5.11 – Impact of transition intensities on deferral values

Fig.5.12 reports the trading boundaries for the case where the tax rate is small ( – = 0.08). The
trading boundaries contain the tax-free strategy ›i © ›̄i and do not change significantly when
⁄1 increases from zero to 2. The expansion (5.4.8) fits well the numerical results.

If the tax rate is high (– = 0.20), Fig.5.13 shows that ›±
i (1) ƒ ›̄i and are not sensible to the

transition intensities ⁄1 and ⁄2, as indicated by Theorem 5.4.1. However, second order e�ects
begin to appear. We can observe that the trading boundaries of the two regimes move toward
each other as the transition intensity ⁄1 increases, in particular in the region of high capital
gains (b close to 0). The only exception is the selling boundary ›+

2 (b). This is due to the
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Figure 5.12 – Impact of transition intensities on trading boundaries: small tax rate
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Figure 5.13 – Impact of transition intensities on trading boundaries

fact that, when the market regime changes, the investor has to adjust her portfolio to the new
non-transaction zone. In general this will cause the increase of tax basis, except for the highest
selling boundary ›+

2 (b). As a consequence, when the transition intensities increase, the investor
will add an extra bu�er zone for the original non-trading zone.
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5.6 Why is the order of deferral value O(Á8/3)?
We present here a probabilistic explanation for the value of deferring capital gains taxes w, in
particular the fact that w = O(Á8/3). We provide also an heuristic interpretation of m”

ú in terms
of a optimal control problem. To simplify the notation, we consider the classical additive utility
maximisation under a single-regime market, i.e. the model established by [BST10].

Recall that the portfolio under the strategy {(Ct, Lt, Mt), t Ø 0} is given by

dXt = [(1 ≠ –)rtXt ≠ Ct] dt ≠ dLt + [Yt≠ ≠ – (Yt≠ ≠ Kt≠)] dMt,

dYt = µtYt≠dt + ‡tYt≠dBt + dLt ≠ Yt≠dMt,

dKt = dLt ≠ Kt≠dMt,

and the expected utility is given by

V C,L,M
0 = —E

Ë ⁄ Œ

0
e≠—(sU(Cs, “)ds

È
, (5.6.1)

Define the portfolio value after liquidation by Zt where

Zt = Xt + Yt ≠ –(Yt ≠ Kt).

We have

dZt = dXt + (1 ≠ –)dYt + –dKt

= [(1 ≠ –)rZt ≠ Ct]dt + (1 ≠ –)Yt(µdt + ‡dWt ≠ (1 ≠ –)rdt) ≠ (1 ≠ –)–rKtdt.

Denote
›t = Yt

Zt
, bt = Kt

Yt
, ct = Ct

Zt
, (5.6.2)

and define the tax-deflated model by

r– = (1 ≠ –)r, µ– = (1 ≠ –)µ, ‡– = (1 ≠ –)‡.

We have

dZt = Zt{[(1 ≠ –)r ≠ ct]dt + (1 ≠ –)›t[µdt + ‡dWt ≠ (1 ≠ –)rdt] ≠ (1 ≠ –)–r›tbtdt}
= Zt{[(1 ≠ –)r ≠ ct]dt + (1 ≠ –)›t[µdt + ‡dWt ≠ rdt] + (1 ≠ –)–r›t(1 ≠ bt)dt}
= Zt[(r– ≠ ct)dt + ›t(µ–dt + ‡–dWt ≠ r–dt) + –r–›t(1 ≠ bt)dt] (5.6.3)

5.6.1 Expansion around the tax-deflated model

The main idea is to consider the case where the interest rate or tax rate are small. Then the
extra benefit from tax deferral is small since the terms 1 ≠ bÁ

t and ›Á
t ≠ ›̄Á

– should be small, where
›̄Á

– is the optimal investment strategy under tax-deflated model. Consider any consumption-
investment strategy {(CÁ

t , LÁ
t , M Á

t ), t Ø 0} with {(cÁ
t , ›Á

t , bÁ
t ), t Ø 0} determined by (5.6.2), then

the corresponding liquidation wealth ZÁ
t satisfies

dZÁ
t = ZÁ

t [(r– ≠ cÁ
t )dt + ›Á

t (µ–dt ≠ r–dt + ‡–dWt) + –r–›Á
t (1 ≠ bÁ

t )dt],
ZÁ

0 = z.

We rewrite
ZÁ

t = zeMÁ

t , (5.6.4)
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where

M Á
t =

⁄ t

0
(r– ≠ cÁ

s)ds +
⁄ t

0
›Á

s(µ–dt ≠ r–dt + ‡–dWt)

+
⁄ t

0
–r–›Á

s(1 ≠ bÁ
s)ds ≠ 1

2

⁄ t

0
(›Á

s)2‡2
–ds.

Set the consumption rate to be the optimal rate under the taxe-deflated model:
cÁ

t © c̄–.

Then we have
≠ —t + (1 ≠ “)M Á

t

=
⁄ t

0
(≠—)ds + (1 ≠ “)

⁄ t

0
(r– ≠ c̄–)ds + (1 ≠ “)

⁄ t

0
›Á

s(µ–dt ≠ r–dt + ‡–dWt)

≠ 1
2(1 ≠ “)

⁄ t

0
(›Á

s)2‡2
–ds + (1 ≠ “)

⁄ t

0
–r–›Á

s(1 ≠ bÁ
s)ds

=
⁄ t

0
‡–(1 ≠ “)›Á

sdWs ≠ 1
2

⁄ t

0
(1 ≠ “)2(›Á

s)2‡2
–ds

+
⁄ t

0

Ë
≠ — + (1 ≠ “)(r– ≠ c̄–) + 1

2(≠“)(1 ≠ “)‡2
–(›Á

s)2 + (1 ≠ “)(µ– ≠ r–)›Á
s

È
ds

+
⁄ t

0
(1 ≠ “)–r–›Á

s(1 ≠ bÁ
s)ds

=
⁄ t

0
(1 ≠ “)‡–›Á

sdWs ≠ 1
2

⁄ t

0
(1 ≠ “)2(›Á

s)2‡2
–ds ≠ c̄–t

≠ 1
2(1 ≠ “)“‡2

–

⁄ t

0
(›Á

s ≠ ›̄Á
–)2ds +

⁄ t

0
(1 ≠ “)–r–›Á

s(1 ≠ bÁ
s)ds (5.6.5)

Now define
dQÁ

–

dP

----
F

t

= exp
1 ⁄ t

0
(1 ≠ “)‡–›Á

sdWs ≠ 1
2

⁄ t

0
(1 ≠ “)2(›Á

s)2‡2
–ds

2
.

Note that
dW Á

–,t := dWt ≠ (1 ≠ “)‡–›Á
t dt

is a QÁ
–-Brownian motion. Consequently,

E
Ë ⁄ Œ

0
e≠—tU(cÁ

t ZÁ
t )dt

È

(5.6.4)= E
Ë ⁄ Œ

0
e≠—tU(c̄–zeMÁ

t )dt
È

(5.2.4)= U(c̄–z)E
Ë ⁄ Œ

0
exp(≠—t + (1 ≠ “)M Á

t )dt
È

(5.6.5)= U(c̄–z)EQÁ

–

Ë ⁄ Œ

0
e≠c̄

–

t exp
1
(1 ≠ “)

⁄ t

0
(–r–›Á

s(1 ≠ bÁ
s) ≠ “‡2

–

2 (›Á
s ≠ ›̄Á

–)2)ds
2
dt

È

Using ex ƒ 1 + x, we obtain

E
Ë ⁄ Œ

0
e≠—tU(cÁ

t ZÁ
t )dt

È

ƒ U(c̄–z)EQÁ

–

Ë ⁄ Œ

0
e≠c̄

–

t
1
1 + (1 ≠ “)

⁄ t

0
(–r–›Á

s(1 ≠ bÁ
s) ≠ “‡2

–

2 (›Á
s ≠ ›̄Á

–)2)ds
2
dt

È

= U(c̄–z)
⁄ Œ

0
e≠c̄

–

tdt + (1 ≠ “)U(c̄–z)EQÁ

–

Ë ⁄ Œ

0
e≠c̄

–

t
1 ⁄ t

0
(–r–›Á

s(1 ≠ bÁ
s) ≠ “‡2

–

2 (›Á
s ≠ ›̄Á

–)2)ds
2
dt

È

= Ï̄–(z) + (1 ≠ “)U(c̄–z)EQÁ

–

Ë ⁄ Œ

0
e≠c̄

–

t
1 ⁄ t

0
(–r–›Á

s(1 ≠ bÁ
s) ≠ “‡2

–

2 (›Á
s ≠ ›̄Á

–)2)ds
2
dt

È

= Ï̄–(z) + (1 ≠ “)U(c̄–z)
⁄ Œ

0
e≠c̄

–

tEQÁ

–

Ë ⁄ t

0
(–r–›Á

s(1 ≠ bÁ
s) ≠ “‡2

–

2 (›Á
s ≠ ›̄Á

–)2)ds
È
dt
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To obtain extra welfare by tax-deferral, the investor needs to maximize essentially

EQÁ

–

Ë ⁄ t

0
(–r–›Á

s(1 ≠ bÁ
s) ≠ “‡2

–

2 (›Á
s ≠ ›̄Á

–)2)ds
È
,

where the first term represents the benefit of tax-deferral and the second term utility loss due
to deviation from the benchmark strategy ›̄Á

–.

Introducing the change of variable
’Á

s = (1 ≠ –)›Á
s ,

we obtain that

E
Ë ⁄ Œ

0
e≠—tU(cÁ

t ZÁ
t )dt

È

ƒ Ï̄–(z) + 1
2(1 ≠ “)“‡2c̄–Ï̄–(z)

⁄ Œ

0
e≠c̄

–

tEQÁ

–

Ë ⁄ t

0
(2–(1 ≠ –)›Á

sr

“‡2 (1 ≠ bÁ
s) ≠ (’Á

s ≠ ›̄Á)2)ds
È
dt,

ƒ Ï̄–(z) + 1
2(1 ≠ “)“‡2c̄–Ï̄–(z)

⁄ Œ

0
e≠c̄

–

tEQÁ

–

Ë ⁄ t

0
(Á2(1 ≠ bÁ

s) ≠ (’Á
s ≠ ›̄Á)2)ds

È
dt, (5.6.6)

where we have approximated ›Á
s by ›̄Á

– in (5.6.6) and used the fact that ›̄Á = (1 ≠ –)›̄Á
–. The

constants ”, A are given in (5.4.3).

In sum, to obtain an approximation of ÏÁ, the investor is led to consider the following control
problem

JÁ
T = EQÁ

–

Ë ⁄ T

0
(Á2(1 ≠ bÁ

s) ≠ (’Á
s ≠ ›̄Á)2)ds

È
, (5.6.7)

where, applying Itô formula to (5.6.2), the dynamics of (’Á
t ) and (bÁ

t ) are given by

dbÁ
t = ≠‡bÁ

t dW–,t + 1 ≠ bÁ
t

’Á
t

dLÁ
t + dRÁ

t + o(1)dt, (5.6.8)

d’Á
t = ‡’Á

t (1 ≠ ’Á
t )dW–,t + dLÁ

t ≠ dU Á
t + o(1)dt. (5.6.9)

The processes LÁ
t and U Á

t correspond to buy and sell strategies while RÁ
t is the liquidation strategy

realising capital losses and keeping bÁ
t inside the interval [0, 1]. To maximize (5.6.7), the investor

should try to keep ’Á
t close to ›̄Á. This in turn pushes bÁ

t towards 1≠, reducing the benefit of tax
deferral.

5.6.2 Strategies based on barriers and reduced model
In this section, we restrict ourselves to a particular class of investment strategies based on bar-
riers.

1. Change of Variables. Consider the following change of variables

pÁ
t = 1 ≠ bÁ

t , qÁ
t = ’Á

t ≠ ›̄Á,

we have

dpÁ
t = ≠‡(1 ≠ pÁ

t )dW–,t + pÁ
t

›̄Á + qÁ
t

dLÁ
t + dRÁ

t + o(1)dt, (5.6.10)

dqÁ
t = ‡(›̄Á + qÁ

t )(1 ≠ ›̄Á ≠ qÁ
t )dW–,t + dLÁ ≠ dU Á

t + o(1)dt. (5.6.11)

The optimization objective becomes

JÁ
T = EQÁ

–

Ë ⁄ T

0
(Á2pÁ

t ≠ (qÁ
t )2)dt

È
.
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2. Strategies Based on Barriers l. Let l : [0, 1
” ] æ R+ be a continuous function such that

l(0) = 0 and l(p) > 0 for p œ (0, 1/”]. The investment strategy (LÁ
t , U Á

t , RÁ
t ) based on the barrier

l consists of three non-decreasing processes keeping (pÁ
t , qÁ

t ) inside the domain G:

G := {(p, q) œ [0, 1] ◊ R| ≠ ”2l(p) Æ q Æ ”2l(p), ’p œ [0, 1/”]},

such that ⁄ T

0 {pÁ

t

”=0}dRÁ
t +

⁄ T

0 {qÁ

t

”=l(pÁ

t

)}dU Á
t +

⁄ T

0 {qÁ

t

”=≠l(pÁ

t

)}dLÁ
t = 0.

3. Change of Scaling. Now consider the following change of scaling

ÂpÁ
t = 1

”
pÁ

”2t, ÂqÁ
t = 1

”2 qÁ
”2t. (5.6.12)

The optimisation problem becomes

JÁ
T

T
= I”A2/3Á8/3, (5.6.13)

with I” given by

I” = 1
T Á

EQÁ

–

Ë ⁄ T Á

0
(ÂpÁ

t ≠ A2(ÂqÁ
t )2)dt

È
, (5.6.14)

Here, T Á = ”≠2T æ Œ as Á æ 0, and

dÂpÁ
t = ‡(1 ≠ ”ÂpÁ

t )dÊW Á
–,t ≠ (1 + o(1))

ÂpÁ
t

›̄
dLÁ

”2t + d ÂRÁ
”2t ≠ o(”)dt, (5.6.15)

dÂqÁ
t = 1

”
‡(›̄ + o(1))(1 ≠ ›̄ + o(1))dÊW Á

–,t + 1
”2 (dLÁ

”2t ≠ dU Á
”2t) + o(1)

”2 dt, . (5.6.16)

Note that o(·) is uniform for all Ê œ �.

4. Reduced Model. The above system is a two-time scales system with slow variable ÂpÁ
t and fast

variable ÂqÁ
t , which can be approximated by averaging the fast variable ÂqÁ

t . Recall that, for a
reflected Brownian motion ‡Wt inside the interval [≠l, l], i.e.

dXt = ‡dWt + dLt ≠ dUt,

the stationary measure is uniform on [≠l, l] and we have

lim
tæŒ

Lt

t
= lim

tæŒ

Ut

t
= ‡2

4l
.

Assume that ÂqÁ
t achieves its unique stationary state on the interval [≠lt, lt] with lt = l(ÂpÁ

t ). We
obtain therefore,

LÁ
”2(t+�t) ≠ LÁ

”2t

�t
ƒ ‡2›̄2(1 ≠ ›̄)2

4lt
= ‡2

3Alt
,

and
1

�t

⁄ t+�t

t
ÂqÁ
sds ƒ

⁄ l
t

≠l
t

q2 dq

2lt
= 1

3(lt)2.

Hence I” can be approximated by the following single variable control problem

Ī” = sup
(l

t

)
lim inf
T ”æŒ

1
T ”

EQÁ

–

Ë ⁄ T ”

0
(p̄Á

t ≠ 1
3A2(lt)2)dt

È
, (5.6.17)
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with
dp̄Á

t = ‡(1 ≠ ”p̄Á
t )dW̄ ”

–,t ≠ ‡2

3Alt
p̄Á

t dt + dR̄Á
t . (5.6.18)

5. Approximation of Value Function. Plugging (5.6.17) into (5.6.13) and (5.6.6), we obtain the
following lower bound for the Merton problem with taxes:

Ï̄(x, y, k) ƒ V CÁ,LÁ,MÁ

0 (x, y, k)

ƒ Ï̄–(z) + 1
2(1 ≠ “)“‡2c̄–Ï̄–(z)

⁄ Œ

0
e≠c̄

–

t(Ī”A2/3Á8/3t)dt

ƒ Ï̄–(z)
1
1 + (1 ≠ “)“‡2

2c̄–
Ī”A2/3Á8/3

2
. (5.6.19)

5.6.3 Solution of the optimal control problem (5.6.17)-(5.6.18)
In this section, we provide a verification theorem for the problem of time-average control

I” = sup
(l

t

)
lim inf
T æŒ

1
T
E

Ë ⁄ T

0
(pt ≠ 1

3A2l2t )dt
È
, (5.6.20)

with
dpt = ‡(1 ≠ ”pt)dWt ≠ ‡2

3Alt
ptdt + dRt, (5.6.21)

where (lt) is an adapted positive process and (Rt) a non-decreasing process restricting pt inside
[0, 1/”). More precisely, we have ⁄ ·

0
{p

t

”=0}dRt = 0.

Lemma 5.6.1 (Verification). Assume that there exists a unique pair of g : [0, 1/”) æ R+ and
m”

ú > 0 such that

(1 ≠ ”p)2gÕÕ(p) = (pgÕ(p))2/3 ≠ p + m”
ú,

with g(0) = 0, gÕ(0) = 0 and that the limit g(1
” ≠) exists. Then, the optimal solution of (5.6.20)-

(5.6.21) is given by
I” = m”

ú,

and the corresponding optimal strategy is given by

dpú
t = ‡(1 ≠ ”pú

t )dWt ≠ ‡2

3Alút
pú

t dt + dRú
t ,

with
lút = 1

A
(pú

t gÕ(pú
t ))1/3.

Proof. Define G(p) = ‡2
2 g(p), then we have

‡2

2 (1 ≠ ”p)2GÕÕ(p) + p ≠ (‡2

2 pGÕ(p))2/3 ≠ m”
ú = 0.

Let (lt) be any admissible strategy and (pt) the corresponding controlled process. Applying Itô
formula to G(pT ), we obtain

G(pT ) = G(p0) +
⁄ T

0
GÕ(pt)dpt + 1

2

⁄ T

0
GÕÕ(pt)dÈpÍt.
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Since GÕ(0) = 0, we obtain

G(pT ) = G(p0) +
⁄ T

0

1‡2

2 (1 ≠ ”pt)2GÕÕ(pt) ≠ ptG
Õ(pt)

‡2

3Alt

2
dt +

⁄ T

0
‡(1 ≠ ”pt)GÕ(pt)dWt.

Consequently, the averaged cost over the horizon T is given by

1
T

⁄ T

0
(pt ≠ 1

3A2l2t )dt

= 1
T

⁄ T

0

1‡2

2 (1 ≠ ”pt)2GÕÕ(pt) ≠ ptG
Õ(pt) + pt ≠ 1

3A2l2t ) ‡2

3Alt

2
dt

+ 1
T

1 ⁄ T

0
‡(1 ≠ ”pt)GÕ(pt)dWt ≠ G(pT ) + G(p0)

2

Æ 1
T

⁄ T

0

1‡2

2 (1 ≠ ”pt)2GÕÕ(pt) + pt ≠
!‡2

2 ptG
Õ(pt)

"2/32
dt

+ 1
T

1 ⁄ T

0
‡(1 ≠ ”pt)GÕ(pt)dWt ≠ G(pT ) + G(p0)

2

= m”
ú + 1

T

1 ⁄ T

0
‡(1 ≠ ”pt)GÕ(pt)dWt ≠ G(pT ) + G(p0)

2
.

Since G is bounded, the conclusion follows directly by taking the expectation.
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Appendix 5.A Formal derivation of Asymptotic Expansion 5.4.1
We note that all the computation is heuristic and rigorous proof is still missing. Let us first
rewrite Liwi as follows:

Liwi = b2wi,bb ≠ 2b›(1 ≠ ›)wi,b› + ›2(1 ≠ ›)2wi,›› + cibwi,b + di›wi,› ≠ Ki,1wi,

ci = 2
1
1 ≠ µi

‡2
i

2
+ (1 ≠ “)

1
≠ 2› ≠ ›(1 ≠ ›)wi,› + bwi,b

2
,

di =
Ë

≠ 2“(› ≠ ›̄i) + (1 ≠ “)
1
›(1 ≠ ›)wi,› ≠ bwi,b

2È
(1 ≠ ›) + 2ri–[1 + (b ≠ 1)›]

‡2
i

+ Ki,2,

Ki,1 = ≠ 2
‡2

i

c̄–,i
Uú(q, Ÿ) ≠ Uú(1, Ÿ)

q ≠ 1
---
q=ew

i (1≠›w
i,›

)

ew
i ≠ 1
wi

= 2
‡2 c̄–,i + O(|wi| + |›wi,›|),

Ki,2 = ≠ 2
‡2

i

c̄–,i
Uú(q, Ÿ) ≠ Uú(1, Ÿ)

q ≠ 1
---
q=ew

i (1≠›w
i,›

)
ew

i = 2
‡2

i

c̄–,i + O(|wi| + |›wi,›|),

where O(|wi|+|›wi,›|) represents the same order of |wi|+|›wi,›|, and we have used Uú
q (1, Ÿ) = ≠1

when evaluating Ki,1, Ki,2.

5.A.1 Expansion at solution of tax-defalted model
Near the tip (1, ›±

i (1)), we use the stretched variable

qi = › ≠ ›̄i

”2
i

, pi = 1 ≠ b

”i
, ”i := (AiÁi)2/3,

where Ai is as given in (5.4.3). Define

q±
i (pi) := ›±

i (b) ≠ ›̄i

”2
i

---
b=1≠”

i

p
i

.

We write the solution in the form

wi = “Á2
i

Ó
”i

‡2
i

2
1

c̄–,i
mi + ”3

i g”
i (pi) + ”5

i v”
i (pi, qi)

Ô
, (5.A.1)

where mi is a positive constant to be determined, g”
i (0) = 0, and vi,”(pi, qi) = 0 for qi Ø q+

i (pi).
Then

Liwi + fi

“Á2
i ”i

= aiv
”
i,qq + (1 ≠ ”ipi)2g”

i,pp ≠ mi + pi ≠ A2
i q2

i + O(”i),

›wi,› + (1 ≠ b)wi,b

“Á2
i ”3

i

= ›̄iv
”
i,q ≠ pig

”
i,p + O (”i) ,

where ’i = 2(1 ≠ µi/‡2
i ) ≠ 2›̄i(1 ≠ “), and

2
‡2

i

1
“Á2

i ”i

1
1 ≠ “

ÿ

jœI
qij

G
1≠“
–,j

G
1≠“
–,i

!
e(1≠“)(w(j)≠w

i

) ≠ 1
"

= 1
◊i

ÿ

jœI
qij

G
1≠“
–,j

G
1≠“
–,i

1
◊j

mj

c̄–,j
≠ ◊i

mi

c̄–,i

2
+ O(”j , j œ I).

Sending ‚jœI”j √ 0, we see that (vi, gi) := lim”√0(v”
i , g”

i ) is the solution of the limit problem
for the tip

Y
_____]

_____[

max{aivi,qq ≠ A2
i q2

i + (1 ≠ ”ipi)2gÕÕ
i + pi ≠ m”

iú , ≠vi,q, ›̄ivi,q ≠ pigÕ
i} = 0

vi(pi, Œ) = 0,

gi(0) = 0, gÕ
i(0) = 0
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in pi œ [0, 1/”i], qj œ R, where m”
iú is defined by

◊im
”

i

ú = ◊imi +
ÿ

jœI
qij

G
1≠“
–,j

G
1≠“
–,i

1
◊j

mj

c̄–,j
≠ ◊i

mi

c̄–,i

2

=
1
1 + pŸ(K–,i

c̄–,i
≠ 1)

2
(◊imi) ≠

ÿ

jœI

qij

c̄–,j

G
1≠“
–,j

G
1≠“
–,i

(◊jmj)

i.e. the linear system (5.4.6).

Denote by q±
i (pi) the resulting free boundary. One finds that vi,q = 0 for qi > q+

i (pi) is the
global minimum and vi,q = pigÕ

i/›̄i for qi 6 q≠
i (pi) is the global maximum. Thus,

vi,qq(pi, q±
i (pi)) = 0, q±

i (pi) = ±


�i(pi)
Ai

, �i(pi) := pi + (1 ≠ ”ipi)gÕÕ
i ≠ m”

i

ú .

The variational inequality can be written as

vi © 0 ’ qi > q+
i (pi),

aivi,qq(pi, qi) = A2
i q2

i ≠ �i(pi) ’ qi œ (q≠
i (pi), q+

i (pi)),
›̄ivi,q(pi, qi) = pig

Õ
i(pi) ’ qi 6 q≠

i (pi).

It then follows that when qi œ [q≠
i (pi), q+

i (pi)],

vi,q(pi, qi) = A2
i

ai

Óq3
i ≠ q+

i (pi)3

3 ≠ q+
i (pi)2(qi ≠ q+

i (pi))
Ô

,

vi(pi, qi) = A2
i

ai

Óq4
i ≠ q+

i (p)4
i

12 ≠ q+
i (pi)3

3 (qi ≠ q+
i (pi)) ≠ q+

i (pi)2

2 (qi ≠ q+
i (pi))2

Ô
.

The boundary condition ›̄ivi,q = pigÕ
i(pi) at qi = q≠

i (pi) = ≠q+
i (pi) gives

pigi,p(pi) = 4›̄i

3ai
A2

i q+
i (pi)3 =

!
�i(pi)

"3/2 =
!
pi + (1 ≠ ”ipi)2gÕÕ

i (pi) ≠ m”
i

ú
"3/2

,

since Ai = 4›̄i/(3ai). The equation for gi becomes
Y
_]

_[

(1 ≠ ”ipi)2gÕÕ
i (pi) + pi ≠ m”

iú ≠
!
pigÕ

i(pi)
"2/3 = 0 ’ pi œ [0, 1/”i],

gi(0) = 0, gÕ
i(0) = 0.

(5.A.2)

At the leading order, the free boundary is given by qi = ±


�i(pi)/Ai with

�i(pi) = (1 ≠ ”ipi)2gÕÕ
i + p ≠ m”

i

ú =
1
pig

Õ
i(pi)

22/3
= pi

1gÕ
i(pi)Ô

pi

22/3
.

In the original variable, this gives the approximation

›±
i ¥ ›̄i ± ”2

i


�i(pi)
Ai

= ›̄i ±
”2

i
Ô

pi

Ai

1gÕ
i(pi)Ô

pi

21/3

= ›̄i ± Ái

Ô
1 ≠ b

1gÕ
i(pi)Ô

pi

21/3---
p

i

= 1≠b

(A

i

Á

i

)2/3
.

Using a shooting method with m”
iú , i œ I being the shooting parameter, one can numerically

show that, at least for the cases |I| Æ 2, there exists unique values for m”
iú , i œ I such that gi(pi)

is defined on [0, 1/”i] for all i œ I.
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Figure 5.14 – Numerical evidence for the existence of unique solution m”
ú for (5.A.2)

5.A.2 An approximation to the optimal consumption strategy
By (5.3.14), (5.3.17), and (5.3.18), we can express the optimal consumption as

Cú

x + (1 ≠ –)y + –k
= c̄–,ie

(Ÿ≠1)w
i

/Ÿ!
1 ≠ ›wi,›

"≠1/Ÿ

= c̄–,i + Ÿ ≠ 1
Ÿ

‡2
i

2 “miA
2/3
i Á8/3

i + o(Á8/3
i ) (5.A.3)

by noting that ›wi,› = O(Á4
i ) (see (5.A.1)).





Chapter 6

Joint impact of capital gains taxes
and transaction costs

Contents
6.1 Main result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

6.1.1 HJB equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
6.1.2 Benchmark model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
6.1.3 Asymptotic expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

6.2 Probabilistic interpretation . . . . . . . . . . . . . . . . . . . . . . . . 198
6.3 Homothetic case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
6.4 Asymptotic development . . . . . . . . . . . . . . . . . . . . . . . . . . 201

6.4.1 Fast variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
6.4.2 Corrector equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

We present in this chapter a homogenization result for portfolio selection under proportional
transaction costs and linear capital gains taxes, which generalizes both [ST13] and [CD13]. The
same problem has been considered under di�erent settings in [Lel99, BCP05, CP99].

For simplicity, we consider the model in [BST07]. However, we note that the same result can be
obtained for more general models and cost structures (e.g. stochastic volatility models with fixed
and proportional transaction costs), as long as the structure of linear tax rate is maintained.
The dynamics of risky asset is given by the Black-Scholes model

dSt = St(µdt + ‡dWt),

and we use the following notations:
— ⁄B, ⁄S œ [0, 1) the proportional transaction costs coe�cients.
— – œ [0, 1) the tax rate.
— Xt the wealth in non-risky asset.
— Yt the wealth in risky asset.
— Kt the weighted cumulated investment in risky asset.
— Ct the consumption process.
— dLt the amount invested in risky asset at time t.
— dMt the proportion of risky asset sold at time t.

The dynamics of portfolio for the strategy (Ct, Lt, Mt) is given by

dXt = ((1 ≠ –)rXt ≠ Ct)dt ≠ (1 + ⁄B)dLt + (1 ≠ ⁄S)[(1 ≠ –)Yt≠ + –Kt≠]dMt,
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dYt = Yt(µdt + ‡dWt) + dLt ≠ Yt≠dMt,

dKt = dLt ≠ Kt≠dMt.

Fixing any general utility function U , the problem of optimal consumption and investment under
both transaction costs and captial gains taxes is defined by

Ï(x, y, k) = sup
(C,L,M)œA

E
Ë ⁄ Œ

0
e≠—tU(Ct)dt

È
, (6.0.1)

where A is the set of all admissible strategies.

6.1 Main result
6.1.1 HJB equation
The HJB equation for Ï is formally given as

min
Ó

≠
11

2‡2y2ˆ2
yyÏ + µyˆyÏ + (1 ≠ –)rxˆxÏ ≠ —Ï + Ũ(ˆxÏ)

2
, (6.1.1)

(1 + ⁄B)ˆxÏ ≠ ˆyÏ ≠ ˆkÏ, (6.1.2)
≠ (1 ≠ ⁄S)[(1 ≠ –)y + –k]ˆxÏ ≠ yˆyÏ ≠ kˆkÏ, (y, k) ”= (0, 0), (6.1.3)

≠ (1 ≠ ⁄S)ˆxÏ + 1
1 ≠ –

ˆyÏ, y = k = 0, (6.1.4)

inf
y+

1
Ï(x, y, k) ≠ Ï(x + (1 ≠ –)y + –k ≠ ⁄Sy ≠ ⁄By+, y+, y+)

2Ô
= 0. (6.1.5)

Comparing to [BST07], we have added (6.1.5) which corresonds to the liquidation of the portfo-
lio. The conditon (6.1.2) is the buy boundary condtion and (6.1.3)-(6.1.4) are the sell boundary
condtions.

We consider an asymptotic developement for small transaction costs ⁄B, ⁄S and small interest
rate r. More precisely, we assume that

⁄”
B = ⁄B”6, ⁄”

S = ⁄S”6, r” = r”3, ” > 0. (6.1.6)

Then the above HJB equation becomes 1

min
Ó

≠
11

2‡2y2ˆ2
yyÏ” + µyˆyÏ” + (1 ≠ –)r”3xˆxÏ” ≠ —Ï” + Ũ(ˆxÏ”)

2
, (6.1.1”)

(1 + ⁄B”6)ˆxÏ” ≠ ˆyÏ” ≠ ˆkÏ”, (6.1.2”)
≠ (1 ≠ ⁄S”6)[(1 ≠ –)y + –k]ˆxÏ” + yˆyÏ” + kˆkÏ”, (y, k) ”= (0, 0), (6.1.3”)

inf
y+

1
Ï”(x, y, k) ≠ Ï”(x + (1 ≠ –)y + –k ≠ ⁄S”6y ≠ ⁄B”6y+, y+, y+)

2Ô
= 0. (6.1.5”)

The asymptotic development can be deduced heuristically from probabilistic arguments or di-
rectly from (6.1.2”).

6.1.2 Benchmark model
Without transaction costs and captial gains taxes, the solution of the optimal consumption and
investment problem is given by

1
2‡2ȳ2ˆ2

zzÏ̄(z) + ȳ(µ ≠ r)ˆzÏ̄(z) + rzˆzÏ̄(z) ≠ —Ï̄(z) + Ũ(ˆzÏ̄(z)) = 0,

1. Since we will essentially look at the zone around Merton line, the boundary condition (6.1.4) is omitted.
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where the optimal investment ȳ(z) verifies

‡2ȳˆ2
zzÏ̄(z) = ≠(µ ≠ r)ˆzÏ̄(z).

The optimal consumption rate is given by

C̄(z) = ≠Ũ Õ(ˆzÏ̄(z)) = (U Õ)≠1(ˆzÏ̄(z)).

By similar probabilistic argument as in Section 5.6, the rigth benchmark turns out to be the
following “tax-deflated” model

1
2‡2

–(ȳ”
–)2ˆ2

zzÏ̄”
–(z) + ȳ”

–(µ– ≠ r”
–)ˆzÏ̄”

–(z) + r”
–zˆzÏ̄”

–(z) ≠ —Ï̄”
–(z) + Ũ(ˆzÏ̄”

–(z)) = 0, (6.1.7)

where
µ– = (1 ≠ –)µ, r”

– = (1 ≠ –)r”, ‡– = (1 ≠ –)‡. (6.1.8)
Here we use ·̄”– to indicate the optimal quantities under the frictionless tax-deflated model.
In contrary to asymptotic developement in the presence of only transaction costs, here the
benchmark depends also on the small parameter ”. This helps eliminating unrelated terms from
the underlying control problem. Denote the corresponding optimal soluton by ȳ”

– and C̄”
– such

that
‡2

–ȳ”
–ˆ2

zzÏ̄”
–(z) = ≠(µ– ≠ r”

–)ˆzÏ̄”
–(z), (6.1.9)

and
C̄”

–(z) = ≠Ũ Õ(ˆzÏ̄”
–(z)) = (U Õ)≠1(ˆzÏ̄”

–(z)). (6.1.10)

6.1.3 Asymptotic expansion
The main result of this chapter is the following.

Asymptotic Expansion 6.1.1. 2 Replacing the transaction cost coe�cients ⁄B, ⁄S and the
interest rate r by

⁄”
B = ⁄B”6, ⁄”

S = ⁄S”6, r” = r”3, ” > 0,

and let Ï” be the corresponding value function defined by (6.0.1). Then we have

Ï” = Ï̄”
–(z) + u”

–(z)”4 + o(”6),

where u”
– is given by

≠ 1
2‡2

–(ȳ”
–(z))2ˆ2

zzu”
–(z) ≠ [(µ– ≠ r”

–)ȳ”
–(z) + r”

–z ≠ C̄”
–(z)]ˆzu”

–(z) + —u”
–(z) ≠ a(z) = 0. (6.1.11)

The constant a(z) (depending on z) is uniquely determined by

min
)

≠ 1
2‡2(1 ≠ ”p)2ˆ2

ppG”
–(z, p) ≠

!
–r–ˆzÏ̄”

–(z)ȳ”
–(z)p ≠ b(z, p)

"
+ a(z),

G”
–(z, p) + (⁄S + ⁄B)ˆzÏ̄”

–(z)ȳ”
–(z) ≠ G”

–(z, 0)
*

= 0, (6.1.12)

and the constant b(z, p) (depending on p and z) is uniquely determined by

min
)1

2‡2(ȳ”
–(z))2[1 ≠ (1 ≠ –)ˆz ȳ”

–(z)]2ˆ2
qqw”

–(z, p, q) + 1
2‡2

–(≠ˆ2
zzÏ̄”

–(z))q2 ≠ b(z, p),
p

ȳ”
–(z)ˆpG”

–(z, p) + ⁄BˆzÏ̄”
–(z) ≠ ˆqw”

–(z, p, q),

≠⁄SˆzÏ̄”
–(z) ≠ ˆqw”

–(z, p, q)
*

= 0.
(6.1.13)

2. We provide only formal derivation of the corrector equations.
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6.2 Probabilistic interpretation
It is convenient to consider the certainty equivalent wealth gain, so we postulate

Ï” = Ï̄”
–

!
z + ũ”

–(z)”4 + G̃”
–(z, p)”6 ≠ w̃”

–(z, p, q)”8 + o(”8)
"

= Ï̄”
–(z) + ˆzÏ̄”

–ũ”
–(z)”4 + ˆzÏ̄”

–(z)G̃”
–(z, p)”6 ≠ ˆzÏ̄”

–(z)w̃”
–(z, p, q)”8 + O((ũ”

–)2”8) + o(”8)

It is straightforward to see that

min
)

≠ 1
2‡2(1 ≠ ”p)2ˆ2

ppG̃”
–(z, p) ≠ –r–ȳ”

–(z)p + ã(z) + b̃(z, p),

G̃”
–(z, p) + (⁄S + ⁄B)ȳ”

–(z) ≠ G̃”
–(z, 0)

*
= 0, (6.2.1)

min
)1

2‡2(ȳ”
–)2[1 ≠ (1 ≠ –)ˆz ȳ”

–(z)]2ˆ2
qqw̃”

–(z, p, q) + 1
2

‡2
–

÷”
–(z)q2 ≠ b̃(z, p),

p

ȳ”
–(z)ˆpG̃”

–(z, p) + ⁄B ≠ ˆqw̃”
–(z, p, q),

≠⁄S ≠ ˆqw̃”
–(z, p, q)

*
= 0, (6.2.2)

with
ã(z)ˆzÏ̄”

–(z) = a(z), b̃(z, p)ˆzÏ̄”
–(z) = b(z, p).

First corrector equation The dynamic of the optimal wealth process Z̄”
–,t satisfies

dZ̄”
–,t =

!
r”

–Z̄”
–,t ≠ C̄”

–(Z̄”
–,t)

"
dt + ȳ”

–(Z̄”
–,t)

!
(µ– ≠ r”

–)dt + ‡–dWt
"
, Z̄”

–,0 = z.

Denoting the generator of Z̄”
–,t by L”

–, then (6.1.11) can be written as

≠L”
–u”

–(z) + —u”
–(z) = ˆzÏ̄”

–(z)ã(z).

Therefore, we obtain the following probabilistic representation of ũ”
–(z) (see [ST13, Equation

(1.2)]) :

u”
–(z) = E

Ë ⁄ Œ

0
e≠—tˆzÏ̄”

–(Z̄”
–,t)ã(Z̄”

–,t)dt
È
.

Define the risk-neurtal measure Q”
– under the frictionless tax-deflated model by

dQ”
–

dP

-----
F

t

=
e≠(—≠r”

–

)tˆzÏ̄”
–(Z̄”

–,t)
ˆzÏ̄”

–(z) = E
1

≠
⁄ t

0

ȳ”
–(Z̄”

–,s)
÷”

–(Z̄”
–,s)

‡–dWs

2
= E

1
≠

⁄ t

0
(µ– ≠ r”

–)‡≠1
– dWs

2
,

where we have used (6.1.7) and (6.1.9) for the second and third equality. We obtain therefore

u”
–(z) = ˆzÏ̄”

–(z)EQ”

–

Ë ⁄ Œ

0
e≠r”

–

tã(Z̄”
–,t)dt

È
,

and
dZ̄”

–,t =
!
r”

–Z̄”
–,t ≠ C̄”

–(Z̄”
–,t)

"
dt + ȳ”

–(Z̄”
–,t)‡–dWQ”

–

t ,

where WQ”

–

t is a Q”
–-Brownian motion by Girsanov theorem. In particular, the equivalent wealth

gain with respect to the frictinless tax-deflated model is given by

ũ”
–(z) = EQ”

–

Ë ⁄ Œ

0
e≠r”

–

tã(Z̄”
–,t)dt

È
,

see also [HMK15, Theorem 4.1] and Remark 4.4.5.
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Second corrector equation Now following [ST13, Equation (4.4), Section 4.1], we solve
explicitly (6.2.2) and obtain

b̃(z, p) = 1
2

‡2
–

÷”
–(z)

Ë3
4

‡2(ȳ”
–(z))2[1 ≠ (1 ≠ –)ˆz ȳ”

–]2
‡2

–/÷”
–(z)

1
⁄S + ⁄B + 1

ȳ”
–

pˆpG̃”
–(z, p)

2È2/3

Note that we can also write

b̃(z, p) = inf
l>0

1
⁄S + ⁄B + 1

ȳ”
–

pˆpG̃”
–(z, p)

2‡2(ȳ”
–(z))2[1 ≠ (1 ≠ –)ˆz ȳ”

–]2
4l

+ ‡2
–

2÷”
–(z)

l2

3

= inf
l>0

1
⁄S + ⁄B + 1

ȳ”
–

pˆpG̃”
–(z, p)

2aȳ”

–(z)
4l

+ r(z) l2

3 ,

where
aȳ”

–(z) = ‡2(ȳ”
–(z))2[1 ≠ (1 ≠ –)ˆz ȳ”

–]2, r(z) = ‡2
–

2÷”
–(z) .

Plugging above expression into (6.2.1) and using similar arguments as in Section 5.6.3, it follows
that ã(z) can by represented by the following time-average control problem :

ã(z) = sup
(l

t

)
lim

T æŒ

1
T
E

Ë ⁄ T

0

1
–r–ȳ”

–(z)pt ≠ aȳ”

–(z)(⁄S + ⁄B)
4lt

≠ r(z) l2t
3

2
dt ≠

ÿ

·
j

ÆT

(⁄S + ⁄B)ȳ”
–(z)

È
,

(6.2.3)
where

dpt = ‡(1 ≠ ”pt)dWt ≠ aȳ”

–

(z)

4ȳ”
–lt

ptdt ≠
ÿ

·
j

Æt

p·
j

≠.

The four terms in (6.2.3) are interpreted sequentially as i) certainty equivalent wealth profit
of the tax deferral value with respect to the frictionless tax-deflated model, ii) proportional
transaction costs incurred when restricting yt ≠ ȳ”

–(Z̄”
–,t) inside [≠lt, lt], iii) certainty equivalent

wealth loss due to deviation from the benchmark position ȳ”
–(Z̄”

–,t), iv) transaction costs incurred
by wash-sale (realization of capital losses).

Third corrector equation The interpretation of (6.2.2) is already given in [ST13, Remark
3.3], that is

≠b̃(z, p) = inf
(L,U)

lim
T æŒ

1
T
E

Ë ⁄ T

0
r(z)q2 + h≠(z, p)LT + h+(z, p)UT

È
,

where
dqt =


aȳ”

–

(z)dWt + Lt ≠ Ut,

and
h≠(z, p) = ⁄B + p

1
ȳ”

–(z)ˆpG̃”
–(z, p), h+(z, p) = ⁄S .

This coincides with the heuristics in Section 4.4.3. Indeed, using the following change of variable

q̃ = q

S
,

we obtain

≠b̃(z, p) = inf
(L̃,Ũ)

lim
T æŒ

1
T
E

Ë ⁄ T

0
r̃(z, S)q̃2 + h̃≠(z, p, S)L̃T + h̃+(z, p, S)ŨT

È
,

where
dq̃t =


ãȳ”

–

(z)dWt + L̃t ≠ Ũt,
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with
r̃(z, S) = ‡2

–S2

2÷”
–(z) , ãȳ”

–(z, S) = ‡2(ȳ”
–(z))2[1 ≠ (1 ≠ –)ˆz ȳ”

–]2/S2,

and
h̃≠(z, p, S) = ⁄BS + p

S

ȳ”
–

ˆpG̃”
–(z, p), h̃+(z, p, S) = ⁄SS.

We verify easily that r(Z̄”
–,t, St), h±(Z̄”

–,t, pt, St) and ãȳ”

–(Z̄”
–,t, St) correspond to rt, ht and at in

4.4.3, with the target Ïú
t being ȳ”

–(Z̄”
–,t)/St.

Remark 6.2.1. From the corrector equation (6.2.2), we observe that the impact of capital gains
taxes on the non-transaction zone is asymptotically equivalent to adding an extra proportional
cost

p

ȳ”
–(z)ˆpG̃”

–(z, p),

to the cost coe�cient ⁄B of the buy side.

Remark 6.2.2. Based on the system of corrector equations, one can easily derive the trading
boundaries in the presence of both capital gains taxes and transaction costs. The non-transaction
zone is similar to [Lel99, Figure 3]. However, the corrector equations contain much more quan-
titative information for economic analysis. It would be interesting to compare numerical com-
putation with our asymptotic analysis.

6.3 Homothetic case
We illustrate our result in the case of classical CRRA utility function

U(C) = C1≠“

1 ≠ “
, C > 0,

for “ > 0 and “ ”= 1. We have

Ï̄(z) = K̄≠“

1 ≠ “
z1≠“ , ȳ(z) = ›̄z, C̄(z) = K̄z,

where
K̄ = —

“
≠ 1 ≠ “

“

Ë
r + (µ ≠ r)2

2“‡2

È
, ›̄ = µ ≠ r

“‡2 .

Moreover, we have

÷(z) := ≠ ˆzÏ̄(z)
ˆ2

zzÏ̄(z) = z

“
.

Without capital gains taxes (– = 0) In the absence of capital gains taxes, G̃”
– is just a

constant and we have
ã(z) © b̃(z, p).

The corrector equations (6.2.1)-(6.2.2) reduce to (3.12) in [ST13].

Without transaction costs (⁄B = ⁄S = 0) Define fl by

b̃(z, p) =
Ë
fl3 + ‡2

2
1Ô

2A(“‡2z)≠1/2 pˆpG̃”
–(z, p)

È2/3
, A = 4›̄”

3(›̄”)2(1 ≠ ›̄”)2 .
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Then G̃”
– solves

≠1
2‡2(1 ≠ ”p)2ˆ2

ppG̃”
–(z, p) ≠ –r–ȳ”

–(z)p + ã(z) +
Ë
fl3 + ‡2

2
1Ô

2A(“‡2z)≠1/2 pˆpG̃”
–(z, p)

È2/3
= 0.

By a change of variables, we can show that

ã(z) =
1Ô

2A(“‡2z)≠1/2
22/31

–r–ȳ”
–(z)

21/3
m”(fl̃), fl̃ = fl

Ò
–r–ȳ”

–

,

where m”(fl) solves

≠1
2(1 ≠ ”p)2GÕÕ(p) ≠ p + m”(fl) + (fl3 + 1

2pGÕ(p))2/3 = 0.

For ⁄S = ⁄B = 0, we have fl = 0 and consequently

ˆzÏ̄”
–(z)ũ”

– = 1
K̄”

–

(1 ≠ “)Ï̄”
–(z)

z
ã(z) = Ï̄”

–(z)1 ≠ “

K̄”
–

“‡2

2
12–r›̄”

“‡2

24/3
m”(0)A2/3,

which is exactly the result in Chapter 5 in a single regime market(see also [CD13, Equatioin
(A.13)]).

6.4 Asymptotic development
6.4.1 Fast variables
We postulate

Ï”(x, y, k) = Ï̄”
–(z) + ”4u”

–(z) + ”6G”
–(z, p) ≠ ”8w”

–(z, p, q) + o(”8), (6.4.1)

where

z = x + (1 ≠ –)y + –k, (6.4.2)

p =
1 ≠ k

y

”
, (6.4.3)

q = y ≠ ȳ”
–(z)

”2 . (6.4.4)

The Jacobian of the above change of variable is

J =

Q

cccca

1 1 ≠ – –

0 1≠”p
”(ȳ”

–

(z)+”2q)
≠1

”(ȳ”

–

(z)+”2q)
≠ˆ

z

ȳ”

–

(z)
”2

1≠(1≠–)ˆ
z

ȳ”

–

(z)
”2

≠–ˆ
z

ȳ”

–

(z)
”2

R

ddddb
.

By chain rule, we have

ˆxÏ” = ˆzÏ” + ≠ˆz ȳ”
–

”2 ˆqÏ”,

ˆyÏ” = (1 ≠ –)ˆzÏ” + 1 ≠ ”p

”(ȳ”
–(z) + ”2q)ˆpÏ” + 1 ≠ (1 ≠ –)ˆz ȳ”

–(z)
”2 ˆqÏ”,

ˆkÏ” = –ˆzÏ” + ≠1
”(ȳ”

–(z) + ”2q)ˆpÏ” + ≠–ˆz ȳ”
–(z)

”2 ˆqÏ”.
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In particular, we have

ˆxÏ” ≠ ˆyÏ” ≠ ˆkÏ” = p

(ȳ”
–(z) + ”2q)ˆpÏ” + 1

”2 ˆqÏ”.

and
≠–ˆyÏ” + (1 ≠ –)ˆkÏ” = ≠1 + –p”

”(ȳ”
–(z) + ”2q)ˆpÏ” ≠ –

”2 ˆqÏ”.

Plugging (6.4.1) into above equations, we obtain

ˆxÏ” =
1
ˆzÏ̄”

–(z) + ”4ˆzu”
–(z) + ”6ˆzG”

–(z, p) + o(”6)
2

+ ≠ˆz ȳ”
–

”2

1
≠ ”8ˆqw”

–(z, p, q) + o(”8)
2

= ˆzÏ̄”
–(z) + ”4ˆzu”

–(z) + ”6
1
ˆzG”

–(z, p) + ˆz ȳ”
–ˆqw”

–(z, p, q)
2

+ o(”6),

ˆyÏ” = (1 ≠ –)
1
ˆzÏ̄”

–(z) + ”4ˆzu”
–(z) + ”6ˆzG”

–(z, p) + o(”6)
2

+ 1 ≠ ”p

”(ȳ”
–(z) + ”2q)

1
”6ˆpG”

–(z, p) + o(”8)
2

+ 1 ≠ (1 ≠ –)ˆz ȳ”
–(z)

”2

1
≠ ”8ˆqw”

–(z, p, q) + o(”7)
2

= (1 ≠ –)ˆzÏ̄”
–(z) + ”4(1 ≠ –)ˆzu”

–(z) + ”5 1
ȳ”

–(z) + ”2q
ˆpG”

–(z, p)

+ ”6
1
(1 ≠ –)ˆzG”

–(z, p) ≠ p

ȳ”
–(z) + ”2q

ˆpG”
–(z, p) ≠ [1 ≠ (1 ≠ –)ˆz ȳ”

–(z)]ˆqw”
–(z, p, q)

2

+ o(”6),

ˆkÏ” = –
1
ˆzÏ̄”

–(z) + ”4ˆzu”
–(z) + ”6ˆzG”

–(z, p) + o(”6)
2

+ ≠1
”(ȳ”

–(z) + ”2q)
1
”6ˆpG”

–(z, p) + o(”8)
2

+ ≠–ˆz ȳ”
–(z)

”2

1
≠ ”8ˆqw”

–(z, p, q) + o(”7)
2
,

= –ˆzÏ̄”
–(z) + ”4–ˆzu”

–(z) ≠ ”5 1
ȳ”

–(z) + ”2q
ˆpG”

–(z, p)

+ ”6
1
–ˆzG”

–(z, p) + –ˆz ȳ”
–(z)ˆqw”

–(z, p, q)
2

+ o(”6)

Similarly, we obtain ˆ2
yyÏ” up to o(”4) as

ˆ2
yyÏ” = ˆz

ˆy

1ˆz

ˆy
ˆ2

zzÏ” + ˆp

ˆy
ˆ2

zpÏ” + ˆq

ˆy
ˆ2

zqÏ”
2

+ ˆzÏ” ˆ2z
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=
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2
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”(ȳ”
–(z) + ”2q)

1 1 ≠ ”p

”(ȳ”
–(z) + ”2q)”6ˆ2
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2
+ O(”6)O(1

”
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+ 1 ≠ (1 ≠ –)ˆz ȳ”
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6.4.2 Corrector equations
Using the expression in the previous section, we obtain
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≠ Ũ(ˆzÏ̄”
–(z) + ”4ˆzu”

–(z) + o(”4)) + o(”4)

= ≠1
2‡2y2(1 ≠ –)2ˆ2

zzÏ̄”
–(z) ≠ µy(1 ≠ –)ˆzÏ̄”

–(z)

≠ (1 ≠ –)r”3xˆzÏ̄”
–(z) + —Ï̄”

–(z) ≠ Ũ(ˆzÏ̄”
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Similarly,
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ȳ”
–(z)ˆpG”

–(z, p) ≠ ˆqw”
–(z, p, q) + ⁄BˆzÏ̄”

–(z)
2

+ o(”6).

(6.1.3) = ≠[(1 ≠ –)y + –k]
1
(1 ≠ ⁄S”6)ˆxÏ” ≠ ˆyÏ” ≠ ˆkÏ”

+ ≠–(y ≠ k)
(1 ≠ –)y + –k

ˆyÏ” + (1 ≠ –)(y ≠ k)
(1 ≠ –)y + –k

ˆkÏ”
2

= ≠[(1 ≠ –)y + –k]
1
(1 ≠ ⁄S”6)ˆxÏ” ≠ ˆyÏ” ≠ ˆkÏ”

+ ”p

1 + ”p

! ≠1 + –p”

”(ȳ”
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Finally, introducuing a(z) and b(z, p) for the separation of variables, we obtain
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–(z)]2ˆ2
qqw”

–(z, p, q) ≠ 1
2‡2

–ˆ2
zzÏ̄”

–(z)q2 ≠ b(z, p),
p

ȳ”
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