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Abstract

Infrared correlation functions in Quantum Chromodynamics

Abstract
The aim of this thesis is to investigate the infrared behaviour of Yang-Mills correlation
functions. It is known that the gauge invariance of the theory brings as a consequence
the necessity of a gauge fixing procedure in order to compute expectation values analyti-
cally. The standard procedure for fixing the gauge is the Faddeev-Popov (FP) procedure
which allows one to do perturbation theory in the ultraviolet regime. Perturbative cal-
culations using the Faddeev-Popov gauge fixed action successfully reproduce Quantum
Chromodynamics observables measured by experiments in the ultraviolet regime.

In the infrared regime the coupling constant of the theory computed with the above
procedure diverges, and standard perturbation theory does not seem to be valid. However,
lattice simulations show that the coupling constant takes finite and not very large value.
This suggests that some kind of perturbative calculations should be valid even in the
infrared regime.

The theoretical justification for the FP procedure depends on the absence of Gribov
copies and hence is not valid in the infrared regime (where such copies exist). To correct
this we propose to take into account the influence of the Gribov copies by adding a mass
term for the gluons in the gauge-fixed Lagrangian, which is a particular case of Curci-
Ferrari Lagrangian. The gluon mass term is also motivated by lattice simulations which
observe that the gluon propagator behaves as it was massive in the infrared regime.

We use this massive extension of the FP gauge fixed action to compute the one loop
correction of the two- and three-point correlation functions in the Landau gauge for arbi-
trary kinematics and dimension. We investigate the quenched ghost and gluon propagators
in detail, and compare the results obtained using two different renormalization schemes.
Taking into account the Renormalization Group effects we compare our results with the
lattice data available. Once the parameters of our model are fixed so that the propagators
match their values in simulations, the same parameters also produce very good matches
for the quenched ghost-gluon and three-gluon vertices.

We continue our investigation by including dynamical quarks and studying the un-
quenched gluon, ghost and quark propagators. The analysis is also extended to the quark-
gluon vertex. Our one-loop calculations are enough, in general, to reproduce with good
accuracy the lattice data available in the literature.

Keywords

Quantum Chromodynamics, Gribov copies, Non-perturbative QCD.
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Fonctions de corrélation infrarouges de la
Chromodynamique Quantique

Résumé
Le but de cette thèse est l’étude des fonctions de corrélation des théries Yang-Mills dans
le régime infrarouge. Il est connu que, à cause de l’invariance jauge, il est nécessaire de
fixer la jauge pour calculer des valeurs moyennes analytiquement. La procedure de fixation
gauge standard est la procedure de Faddeev-Popov (FP). Le Lagrangien de FP permet
de faire des calculs perturbatifs pour la Chromodynamique Quantique dans le régime de
hautes énergies dont les résultats sont comparés avec succès avec des expériences.

Cependant, dans le régime de basses énergies, il se trouve que la constante de couplage,
calculée avec la procedure antérieure, diverge. En conséquence, la théorie des perturbations
standard n’est plus valide. D’autre part, les simulations du réseau trouvent que la constante
de couplage est finie avec une valeur modérée même dans le régime infrarouge. Ceci suggère
qu’il devrait exister une manière de faire des calculs perturbatifs également dans le régime
infrarouge.

Cette différence dans la constante de couplage peut être due au fait que la procedure
de FP n’est pas bien justifiée dans ce régime parce qu’elle ignore l’existence des copies
de Gribov. Afin de prendre en compte les copies de Gribov, nous proposons de modifier
le Lagrangien de FP avec un terme massif pour les gluons. Ce Lagrangien est un cas
particulier du Lagrangien de Curci-Ferrari. Cette modification est également justifiée par
le fait que le réseau trouve un propagateur du gluon qui paraît massive aux basses énergies.

Nous utilisons cette version massive pour calculer à une boucle les fonctions de corré-
lations à deux et trois points pour une configuration cinématique générale et en dimension
quelconque dans la jauge de Landau. En particulier, nous calculons les propagateurs du
gluon et du fantôme sans la présence des quarks et on compare nos résultats avec du
réseau. Une fois fixés les paramètres de la théorie, on utilise les mêmes pour comparer
les vertex fantôme-gluon et trois-gluons en obtenant un très bon accord avec le réseau.
Finalement, on inclut les effets des quarks dynamiques pour étudier les propagateurs du
gluon, du fantôme et du quark. L’analyse est aussi faite pour le vertex quark-gluon.

On trouve que les comparaisons de notre calcul à une boucle avec les résultat du réseau
donnent, en géneral, un très bon accord.

Mots-clefs

Chromodynamique Quantique, Copies de Gribov, QCD non-perturbative.
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Funciones de correlación en Cromodinámica Cuántica

Resumen
La presente tesis investiga el comportamiento de las funciones de correlación de las teorías
Yang-Mills en el límite infrarrojo. Como es sabido, para poder calcular valores espera-
dos en el marco de estas teorías invariantes gauge, debe realizarse algún procedimiento
que permita fijar el gauge. El procedimiento estándar, ultilizado exitosamente para hacer
cálculos perturbativos a grandes energías, es el procedimiento de Faddeev-Popov (FP).
Los cálculos perturbativos usando el Lagrangiando de Faddeev-Popov para Cromodinámi-
ca Cuántica permiten reproducir con éxito los valores obtenidos en los experimentos que
involucran la fuerza fuerte a grandes energías.

Sin embargo, los cálculos perturbativos usando el Lagrangiano de FP muestran una
constante de acoplamiento divergente en el régimen de bajas energía. Por ende, la teoría de
perturbaciones en este régimen no es válida. Por otra parte, las simulaciones Monte Carlo,
que no implementan dicho procedimiento, encuentran una constante de acoplamiento que
se mantiene finita tomando valores no muy grandes incluso a bajas energías. Este hecho
sugiere que debe existir alguna forma de teoría de perturbaciones que pueda ser aplicada en
el régimen infrarrojo. Esta diferencia encontrada en el comportamiento de la constante de
acoplamiento puede deberse al hecho de que el procedimiento de FP no está completamente
justificado a bajas energías. Este último ignora la presencia de copias de Gribov en este
régimen.

Para tener en cuenta la existencia de copias de Gribov, proponemos usar una pequeña
modificación del Lagrangiano de FP. Esta consiste en agregar un término de masa para los
gluones, caso particular del Lagrangiano de Curci-Ferrari. Otra motivación para considerar
el término de masa para los gluones es el hecho de que las simulaciones Monte Carlo
muestran que el propagador del gluon se comporta a bajas energías como un propagador
masivo.

Dicha extensión del Lagrangiano de FP es usada para calcular a un loop las funciones de
correlación a dos y tres puntos en el gauge de Landau para una configuración cinemática
genérica y en dimensión arbitraria. El primer cálculo está enfocado en el propagador
del fantasma y del gluón despreciando el efecto de los quarks. Ambos propagadores son
renormalizados usando dos esquemas diferentes. Teniendo en cuenta los efectos del grupo
de renormalización comparamos nuestros resultados con los obtenidos por las simulaciones
numéricas. Esto permite fijar los dos parámetros de nuestra teoría para luego usarlos en los
cálculos del vértice gluón-fantasma y del vértice de tres gluones. Para finalizar, incluimos
los efectos de los quarks dinámicos en el estudio a primer orden del propagador de gluón,
fantasma y quark así como del vértice quark-gluon.

Observamos que la corrección a un loop en este modelo con gluones massivos permite
en general reproducir bastante bien los datos de las simulaciones numéricas.

Palabras claves

Cromodinámica Cuántica, copias de Gribov, QCD no perturbativa
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Introduction

The strong nuclear force is one of the fundamental forces in nature. It is responsible for
holding neutrons and protons together within the atomic nucleus in spite of the electric
charge of protons. The particles that feel the strong nuclear force are generically called
hadrons, and include not only protons and neutrons but also many other particles such
as pions, deltas, etc. The most accepted theory to describe microscopically the strong
force is Quantum Chromodynamics (QCD). QCD is a quantized non-abelian gauge field
theory invariant under the SU(3) symmetry group. This theory predicts the masses of
hadrons and the interaction between them with great accuracy. However, the building
blocks of Quantum Chromodynamics are not the hadrons themselves. The fundamental
constituents of QCD are the quarks and gluons. Quarks are the fundamental fermions
which bound together to form the hadrons.

In the beginning of the 60’s Gell-Mann classified the hadrons according to their isospin,
charge and strangeness. As a result the baryons (heavy hadrons) and mesons (middle
weight hadrons) known at that moment could be grouped into octets and decuplets. This
classification was called Eightfold Way. These interesting patterns led Gell-Mann and
Zweig, independently, to propose the Quark model in 1964 [GM64, Zwe64]. The quark
model stated that there were just a few elementary particles called quarks which formed
the hadrons. This theory allowed to describe all the hadrons known at that moment
through a combination of three different point-like particles, called quarks up, down and
strange with spin 1/2 and charges 2/3, -1/3 and -1/3 times the charge of the electron
respectively. Three more quarks were predicted some years after, the charm, bottom and
top, and later found experimentally. We say that quarks come in six flavours: up, down,
charm, strange, bottom and top.

At the same time, scientists were trying to answer the question of what the proton
was made of. The first experiment to observe that the proton did not have a uniform
charge distribution was the deep inelastic electron-proton scattering at SLAC (Stanford
Linear Accelerator Center). The observations were interpreted by Bjorken and Feynman
as indicating that the constituents of the nucleon look like almost free point-like particles
at high energy. These were called partons. After the charge and spin of these particles
were measured, it was concluded that these partons were, in fact, the quarks predicted by
Gell-Mann and Zweig.

Now, it was necessary to have a theory to describe the dynamics of the quarks. The
most important condition for this theory was that the interaction between quarks gets
weaker at short distances. In the early 70s it was already believed that another quantum
number for the quarks was needed in order to explain some problems with the wave
function of the baryons. For instance the ∆++, particle formed by three up quarks with
total angular momenta 3/2, in the state of third component of the total angular momenta
3/2 is given by
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|u ↑, u ↑, u ↑〉

However, there is a problem in this state since it is formed by three identical fermions
in the same state contradicting Pauli’s principle. Therefore, these quark should have
another quantum number with at least three different values to be able to distinguish the
mentioned up quarks.

Fortunately the study of non-abelian gauge theories was in progress since the Yang and
Mills’s work in 1954 [YM54]. In 1967 Faddeev and Popov quantized this kind of theories
[FP67], and in 1971 ’t Hooft proved they were renormalizable [tH71a]. In 1973, Politzer,
Gross and Wilczek computed the renormalization group equation and noticed that the
coupling constant falls down at high energies [Pol73, GW73]. This property was called
asymptotic freedom. Politzer, Gross and Wilczek were awarded with a Nobel prize in 2004
for this discovery.

The same year, Coleman and Gross probed that the only theories with asymptotic
freedom in dimension four are the non-abelian gauge theories, see [CG73]. Gell-Mann
and Fritzsch proposed to consider SU(3) as the group to describe the strong interaction
[BFGM72, FGML73]. Therefore, the corresponding non-abelian gauge theory has an extra
non-abelian symmetry which will give to the quarks the extra quantum number needed,
the color. For this reason the theory acquired the name Quantum Chromodynamics.
Gluons are the bosons who play as mediators of the strong force. Gluons in QCD have the
equivalent role as photons in the quantum electrodynamics. Evidence of their existence
was found in 1978 in electron-positron annihilation.

Every quark has an extra quantum number called color with values red, green and
blue. And gluons are essentially associated with a pair of colors. Neither the flavour or
the color are related to the colloquial meaning of the word. Experimental evidence for the
existence of color was found, for instance, in the electron-positron annihilation and in the
decay rate of the pion into photons. The color is used to describe why quarks and gluon
are not found isolated in nature. They always appear forming bound states (hadrons).
This property is called confinement. Quantum Chromodynamics describes confinement
imposing that only combinations of quark and gluons which together form singlet states
(that means that the state has all the three colors in the same quantity, or a quark and
an anti-quark with opposite color charge) are the possible hadrons. How this affirmation
is deduced from first principles using the QCD Lagrangian is still unsolved. Nowadays,
explaining confinement is one of the most ambitious tasks for physicists.

Another important feature in nature that is supposed to be explained by QCD is the
spontaneous chiral symmetry breaking. The chiral symmetry allows to interchange the left
handed and the right handed quarks when no masses for the quarks are considered. The
chiral symmetry is not a real symmetry of the QCD Lagrangian since quarks are massive
but it is a good approximation in what concerns the lightest quarks. This symmetry seems
to be spontaneously broken and the consequence of this fact is that, in the broken phase,
the mass of the hadrons is much larger than the mass of the quarks forming the hadron.
For example, as the proton is made of two up quark and one down the sum of their masses
gives approximately 9 MeV (mu ∼ 2 MeV and md ∼ 5 MeV, see [O+14]) while the mass
of the proton is 938 MeV. Most of the mass of the proton arrives from the interactions.
The main consequence of chiral symmetry breaking is the generation of 98% of the hadron
masses.

We have mentioned three important features of nature that should be explained by
QCD. Now, we want to summarize the techniques used to work with this theory. First
of all, we have mentioned that the strength of the interaction between quarks and gluons
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(represented by the coupling constant) goes to zero when the energy scale grows. When the
coupling constant is small the system behaves as a weakly interacting theory and therefore
its study using perturbation theory is well justified. Perturbation theory is the most useful
technique to compute cross sections when the momentum scale is much bigger that the
mass of the proton. In this regime a variety of predictions of perturbation theory, such
as the running of the coupling constant and the rates of the electron-proton annihilation,
were successfully compared with the experimental result.

On the other hand, the low momentum regime is indeed difficult to access and phenom-
ena with characteristic momentum scale less than 1 GeV are not well described using usual
perturbation theory. In fact, the coupling constant computed perturbatively in this limit
grows significantly. For this reason most of the processes can not be calculated directly
with perturbative QCD. Generally the calculation of the cross section is separated in two
parts. The first part is the perturbative process at high energies where the computation
with quark and gluons are justified. The other one is how to relate the starting hadrons
with the quarks and gluons that will be actors of the perturbative process. This is gen-
erally done through the universal long-distance functions such as the parton distribution
functions, fragmentation functions, generalized parton distribution and other types of form
factors. This techniques allowed to test QCD in several processes such as the Drell–Yan
process, the rate of hadron production from the annihilation of a electron-positron pair,
etc.

To study the infrared (low momenta) regime some alternatives to perturbation theory
have been explored. The most reliable tool to study this regime are Monte Carlo simula-
tions [MM94]. It consists in simulating the system in a discrete lattice with finite volume.
The accuracy of the simulations grows when the volume increases and the lattice spacing
decreases. However, increasing the volume and reducing the lattice space increase the cost
of the simulations. The challenge is to choose these parameters to make the simulations
treatable while keeping the discretization errors small. The lattice simulations allowed to
compute observables far away from the perturbative regime. It was possible, for example,
to calculate the hadron masses (protons, neutrons, pions, etc.) and the results are in good
agreement with experimental results.

Moreover, the results of lattice simulations agree with the principal features of the
strong force. For instance, the simulations are consistent with confinement. When a
static quark-antiquark pair is studied, the simulations show that when the quarks are
far apart, the energy of the configuration is proportional to their distance and therefore
grows to infinity. In this case, as the energy needed to keep them apart is huge, it is
energetically favourable to create another pair quark-antiquark and form again two pairs
that are color singlets as confinement imposes. There is another important characteristic
of QCD well reproduced by lattice simulations, which is the spontaneous chiral symmetry
breaking. Lattice simulations observe that even when the quark mass in really small in
the ultraviolet the mass is enhanced strongly in the infrared.

Even if lattice simulations have had an important role in our understanding of QCD,
they are difficult to produce and only the simplest quantities have been computed with
them. Moreover, the lattice results can guide us to know how QCD works but in general
it does not explain why or how its features depend on each other or which contributions
are more important than others.

In consequence, several semi-analytical approaches have been developed to access the
infrared properties. The most popular are Dyson-Schwinger equations (DS) [vSAH97,
AvS01, AN04] and the non perturbative renormalization group (NPRG) [BTW02]. Both
approaches consist of a infinite set of coupled equations relating correlation functions with
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a different number of fields. These sets match with the perturbative expansion in the limit
where perturbation theory is valid. However, in the infrared regime, some approximations
have to be done in order to solve the system of equations. The idea is to use approximations
schemes consistent with the information obtained from lattice simulations. The only
problem is that the most accurate lattice simulations are done for observables (i.e. gauge
invariant quantities) but the most treatable DS or NPRG equations relate correlation
functions which are gauge dependent and therefore gauge fixing is needed.

For this reason, some simulations on the lattice have been done for the correlation
functions [CM08a, BIMPS09, CM10]. These simulations are restricted to the propagators
and the three-points correlation functions. As the correlation functions depend on the
gauge choice, most of the simulations have been done in the Landau gauge. This gauge is
preferred because in the continuum it presents many symmetries and because there is a
well established non perturbative definition of this gauge which is easy to implement on
lattice simulations.

Fixing the gauge in QCD is necessary to define the correlation functions and in par-
ticular the gluon propagator. In the end, for calculations in the continuum we have to
use a gauge-fixed Lagrangian instead of the original QCD one. The use of a gauge-fixed
Lagrangian to compute gauge invariant quantities gives the same results as the one ex-
pected for the standard QCD Lagrangian. The standard procedure to fix the gauge in
the continuum is due to Faddeev and Popov [FP67]. The Faddeev-Popov Lagrangian is,
therefore, the one used to do perturbation theory at high energies.

However, this procedure is ill-defined in the infrared regime. The issue lies on the
existence of Gribov copies [Gri78], which are not considered in the Faddeev-Popov pro-
cedure. Gribov copies refer to the different configurations of the fields, related through a
gauge transformation, that fulfil the same gauge condition. For instance, in Landau gauge
we impose ∂µAµ = 0 (where Aµ represents the gluon field) and this condition presents a
family of possible solutions. To fix the gauge we have to choose only one of these solutions.
Lattice simulations do not need to fix the gauge but when they do, they can avoid the
Gribov problem. Therefore, the fundamental difficulty on fixing the gauge comes when an
analytical analysis is performed because it is not known in general how to build a gauge
fixed Lagrangian without Gribov copies.

This last problem was faced first by Gribov and then by Zwanziger. They proposed
to restrict the functional integrals appearing in the correlation function to what is known
as the first Gribov zone. In this way the number of Gribov copies decreases considerably,
however, it was shown that there still are Gribov copies inside this region. The restriction
to this zone is done through the introduction of new auxiliary fields in an action called the
Gribov-Zwanziger action, SGZ. This action was shown to be renormalizable even though
it is not known if it is unitary. The results obtained with this action were not completely
satisfactory with respect to lattice results when treated in some naive approximation. A
different treatment was proposed, which leads to the so called the refined Gribov-Zwanziger
action, which reproduces the behaviour of the propagators observed by lattice simulations.
The extra fields included by this action make the calculations more complicated and
therefore additional approximations have to be used.

Let us stress the importance of the lattice results to guide us in the study of the infrared
regime. For example, to solve the system of DS equation the first solution proposed was
to consider that every correlation function behaves in the infrared as a power law in the
momentum scale. This assumption gives a solution of the DS equation called the scaling
solution. However, with the improvement of lattice simulations it was seen that this
solution was not coherent with lattice results which instead find a finite gluon propagator
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and a tree-level like ghost propagator in the infrared regime. The scaling solution cannot
reproduce both result simultaneously. Therefore, another solution was looked for called
the decoupling or massive solution. This solution gives the same qualitative behaviour for
the propagators found by lattice simulations.

Another important observation of lattice simulations is that the coupling constant
does not present a Landau pole, this means that it does not go to infinity for a finite value
of momentum as it was believed from the perturbative analysis. Moreover, the coupling
constant observed at low momenta point out that higher orders in the perturbative analysis
should be of order of 20% of the leading contributions even in that regime. This result
suggests that it should be possible to consider a perturbative analysis able to reproduce
the infrared results. This fact opens the question of which is the most simple Lagrangian
that allows to perform a perturbative expansion even in the low momenta regime, to
reproduce the lattice results and match with the standard Lagrangian in the ultraviolet.
An answer to this question was proposed in [TW10, TW11]. The Lagrangian consists on a
simple modification of the Faddeev-Popov Lagrangian by adding a gluon mass term. This
Lagrangian corresponds to a particular case of the Curci-Ferrari Lagrangian proposed in
the seventies [CF75]. This model was successfully proved to be renormalizable [CF76,
dBSvNW96].

The Curci-Ferrari model was discarded at that moment because there were unsatisfac-
tory aspects of theory. For instance, the standard definition of the physical space could
not be applied to it because it was shown that it includes states with negative norms.
States with negative norm should not belong to the physical space. It is an open question
to determine a satisfactory physical space of this model. However, states with negative
norm were observed by lattice simulations and also by Gribov-Zwanziger approach in the
infrared regime. In particular the transverse gluon propagator present positivity viola-
tions, a fact that could be related to confinement [Gri78, Zwa93, DGS+08a]. We insist on
not discarding a model with positivity violation given that the lattice simulations (which
is a non perturbative technique) observe the same behaviour. This only shows that the
usual definition of physical space is not appropriate.

The aim of this thesis is to prove that, generally speaking, one loop calculation of
this model reproduces the results obtained by lattice simulations. For that reason in the
first chapter we introduce the basic features of QCD and the standard quantization of
it. In the second chapter we treat in detail the problems found at low momenta and
possible solutions. In chapter 3 we are going to present the analytical results for the
quenched propagators in the model with a gluon mass which compare very well with lattice
data [TW10, TW11]. We also discuss the order of magnitude of higher loop corrections.
In the next chapter we compute the quenched three-point correlation functions at one
loop. The results fit with great accuracy the lattice data [PTW13]. In chapter 4 the
unquenched gluon propagator and the quark propagator are studied [PTW14]. The last
chapter complements the unquenched analysis by presenting the quark-gluon vertex and
its matching with the lattice results. At the end we present the conclusions of our work.





Chapter 1

Quantum Chromodynamics

1.1 Non-abelian gauge theories

Quantum Chromodynamic is a theory based on the non-abelian gauge group SU(3) which
describes the interaction of colored particles. Every particle is described by a local field.
Fermions interact between each other by exchanging a gauge boson called gluon. There are
8 such particles which arise from the local gauge symmetry of the theory. The Lagrangian
governing this theory is SU(3) invariant. In order to find the Lagrangian of QCD we will
work in a more general case considering the gauge group SU(N) where N generalizes the
number of colors.

Let us start discussing which are the terms invariants under the SU(N) group (a
detailed analysis can be found e.g. in [PS95]). We are allowed to include fields belonging
to different representations. In each case we have to say how the SU(N) group acts over
those fields. An element of local SU(N) can be written as U(x) = e−igθ

a(x)ta where θa(x) is
an arbitrary function. The Latin letter a goes from 1 to N2 − 1 and ta are the generators
of the corresponding Lie algebra which satisfy [ta, tb] = ifabctc with fabc the structure
constants. We choose the generators to be hermitian and normalized as

Tr(tatb) = δab

2

when ta are in the fundamental representation.
Contrarily to the deduction presented in [PS95] where the non-abelian gauge invariant

Lagrangian is obtained in the Minkowski space, we are going to work in the Euclidean
space. The equivalent in Minkowski space can be obtained through a Wick rotation, see
[PS95]. We choose to work in the Euclidean space since our calculations will be compared
with lattice simulations which are done in the Euclidean space. It is worth mentioning
that in this case the position of the "Lorentz" indices is irrelevant.

The fundamental representation of the group is formed by the N -component fields, ψ.
When ψ describes a fermion field, this vector is also a spinor under space-time transforma-
tions. An element of the SU(N)-group acts over ψ(x) in the fundamental representation
with the standard matrix product. The ψ(x) field transforms as

ψ(x)→ ψ′(x) = U(x)ψ(x)

under the local gauge symmetry SU(N). Consequently we have that ψ(x)† → ψ†
′(x) =

ψ(x)†U †(x). Therefore, we can build a gauge invariant terms as ψ†ψ. However, this is not
Lorentz invariant. Instead, we will use ψ̄ = ψ†γ0, where γ0 is one of the Euclidean Dirac
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matrices γµ which satisfy {γµ, γν} = 2δµ,ν . The first term gauge and Lorentz invariant
that we can build is ψ̄ψ.

To include terms with derivatives in the Lagrangian we have to introduce the parallel
transport, T (y, x), to compare two fields at different points of the space-time. The parallel
transport in general is related to a curve Cxy from x to y, as

T (y, x) = Peig
∫
Cxy

dxµAµ(x)

where P denotes the path ordering and Aµ which is a N × N matrix is usually called
the connection and in physics the gauge field. The gauge field belongs to the adjoint
representation of the Lie algebra of SU(N) and can be written as Aµ(x) = Aaµ(x)ta. The
gauge field will describe the gluon field. The parallel transport of ψ(x) gives a new field
ψ̃(y) which is required to transform like ψ(y). That means that

ψ̃(y) = T (y, x)ψ(x)→ U(y)ψ̃(y).

Therefore,
T (y, x)→ U(y)T (y, x)U †(x)

and the gauge bosons under a gauge transformation transform as

A′µ(x) = UAµU
† − i

g
(∂µU)U † (1.1)

which in a infinitesimal gauge transformation can be written as

A′µ(x) ∼ Aµ(x)−
(
∂µθ

a + gfabcAbµθ
c
)
ta +O(θ2).

Let us define the covariant derivative, Dµ, in the direction of the unit vector n̂ using
the parallel transport as

nµDµψ = limε→0
1
ε

(ψ(x+ εn̂)− T (x+ εn̂, x)ψ(x)) .

A straightforward calculation shows that the covariant derivative takes the form

Dµ = ∂µ − igAaµta.

Over the spinor ψ it takes the form

(Dµψ)b = (Dµ)bcψc = ∂µψ
b − igAaµ(tar)bcψc

where we have made explicit the color index b and c for the fermions. The generators ta in
this case are in the fundamental representation denoted by the subindex r. If, on the other
hand, we consider a field X in the adjoint representation (subindex G) the generators have
to be in the same adjoint representation and therefore

(DµX)b = (Dµ)bcXc = ∂µX
b + gf bacAaµX

c

where we have used that (taG)bc = if bac.
These derivatives are called covariant since they transform as the field itself, meaning

that
Dµψ(x)→ U(x)Dµψ(x).
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Then, a good gauge and Lorentz invariant candidate is ψ̄(γµDµ)ψ which is a similar term
of the one in the Dirac Lagrangian by changing the standard derivative to the covariant
one. This term includes a kinetic term for the fermions and also an interaction term
between fermions and gluons.

A gauge invariant term governing the dynamics of the gauge bosons can be obtained
by observing that [Dµ, Dν ]ψ(x) is also covariant and therefore

[Dµ, Dν ]ψ(x)→ U(x)[Dµ, Dν ]ψ(x).

Using some algebra we can compute

[Dµ, Dν ]ψ(x) = −ig
(
∂µA

a
ν − ∂νAaµ + gfabcAbµA

c
ν

)
taψ(x) = −igF aµνtaψ(x)

where we have defined
F aµν = ∂µA

a
ν − ∂νAaµ + gfabcAbµA

c
ν .

With this definition Tr
(
F aµνt

aF bµνt
b
)

= 1
2

(
F aµνF

a
µν

)
is also gauge invariant.

We could also include a term of the form ΘabεµνρσF
a
µνF

b
ρσ, where Θab is a constant

matrix and εµνρσ is the Levi-Civita tensor, but this term is a total derivative and therefore
it does not affect the equation of motion or the Feynman rules. For this reason it is not
included in our Lagrangian.

To conclude, we can write the SU(N) invariant Euclidean Lagrangian as

Linv =1
4F

a
µνF

a
µν +

Nf∑
i=1

ψ̄i(−γµDµ +Mi)ψi, (1.2)

where

F aµν = ∂µA
a
ν − ∂νAaµ + gfabcAbµA

c
ν ,

Dµψ = ∂µψ − igAaµtaψ.

The index i runs over the Nf quark flavours. The coupling constant g represents the
strength of the interaction between quarks and gluons as well as the gluon self-interaction.
The gauge invariance imposes us to describe both interactions with the same bare coupling
constant. It is important to mention that the sign for each term on the Lagrangian
was chosen so this Lagrangian matches through a Wick rotation with the Minkowski
Lagrangian used by, e.g. [Gra03].

It is possible to consider other terms invariant under this gauge group, however, these
terms would include a larger number of fields or derivatives. These other terms are known
as non-renormalizable and they are associated with irrelevant operators, that means that
at low energies with respect to a microscopical natural scale, the contribution of this terms
can be ignored.

1.2 Quantization
In the previous section we have introduced the classical Lagrangian density for the SU(N)-
invariant renormalizable theory. In this section we would like to quantize the theory.

In order to quantize the theory there are a few standard methods commonly used in
physics in the Minkowski space, see e.g. [Mut10]. We are going to mention only two of
them here. The first one is the canonical quantization based on considering the fields as
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operators with some commutation rules. In this case, the Green’s functions are computed
as the expectation value of the operators acting in the vacuum as

〈0|T [φ̂(x1)...φ̂(xn)] |0〉

where φ represents any possible field and φ̂ the corresponding operator in Heisenberg
picture, T is the time ordering, and |0〉 is the vacuum of the theory. The second equivalent
method is the functional formalism based on Feynman integrals. It relies on the idea that
a physical system going from state a to state b can take any possible path between those
configurations. Every path contributes with an amplitude proportional to the exponential
of iSM with SM the classical action in the Minkowski space. In this formalism the Green’s
functions can be written, using the functional integral, as∫

Dφ φ(x1)...φ(xn)eiSM∫
Dφ eiSM

computing SM considering a slightly imaginary temporal axis.
Both formalisms give the same Green’s functions, therefore,

〈0|T [φ̂(x1)...φ̂(xn)] |0〉 =
∫
Dφ φ(x1)...φ(xn)eiSM∫

Dφ eiSM
.

The right hand side integral can be computed in the Euclidean space through a Wick’s
rotation which consists in rotating the temporal coordinate to the imaginary axis by
changing x0

M to ix0
E . This deformation of the contour transform the Minkowski path

integral into an Euclidean one:∫
Dφ φ(x1)...φ(xn)eiSM∫

Dφ eiSM
=
∫
Dφ φ(x1)...φ(xn)e−Sinv∫

Dφ e−Sinv

where Sinv =
∫
d4xLinv is the Euclidean classical action. The last term can be thought

as the expectation value of the product φ(x1)...φ(xn) with a Boltzman-like weight e−Sinv .
The correlation functions that we are interested in calculating are

〈0|T [φ̂(x1)...φ̂(xn)] |0〉 ≡ 〈φ(x1)...φ(xn)〉 =
∫
Dφ φ(x1)...φ(xn)e−Sinv∫

Dφ e−Sinv
.

The functional or Feynman formalism [Fey48] shows the symmetries involved in the
theory explicitly. That is an important reason to choose it when we want to study features
related to the symmetries. Moreover, any correlation function can be easily obtained by
derivation of the generating functional, Z[J ] , which is analogue to the partition function
defined as

Z[J ] =
∫
Dφ e−S+

∫
d4xJi(x)φi(x)

where φi denotes all the field involved. The correlation function

〈φin(xn)...φi1(x1)〉 = 1
Z[J ]

∫
Dφ φin(xn)...φi1(x1)e−S+

∫
d4xJi(x)φi(x)

is obtained by successive derivatives of the generating function

〈φin(xn)...φi1(x1)〉 = 1
Z[J ]

δnZ[J ]
δJin(xn)...δJi1(x1)
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where the first derivative was taken with respect to Ji1 and so on. Generally it is convenient
to define W [J ] as Z[J ] = eW [J ], W [J ] is the generating function of the connected Green’s
function. That means that

〈φin(xn)...φi1(x1)〉c = δnW [J ]
δJ in(xn)...δJ i1(x1)

(perturbatively only connected diagrams contribute to the connected Green’s functions).
If we perform the Legendre transformation ofW [J ] we construct Γ[〈φ〉] called the effective
action or the generating functional of the proper vertex, explicitly defined as

Γ[〈φ〉] = −W [J ] +
∫
d4xJ i(x)〈φi(x)〉.

From this definition it can be shown that

δΓ[φ]
δφi(z)

= J i(z)

where φi = 〈φi〉 = δW [J ]
δJi

. The functional Γ is also called the one particle irreducible (1-PI)
generating functional, because the n-derivative of Γ, Γ(n) can be represented by the 1-PI
Feynman diagrams with n external legs. We say that a connected diagram is 1-PI if, when
cutting any internal line, the diagram remains connected. The second and third derivative
of the vertex functional are related to the two and three-point correlation functions as it
is shown in the Appendix A.1. This will be very useful for our calculations.

1.2.1 Functional integral quantization

In this formalism it is easy to observe the problems arising from the gauge symmetry. For
instance, the bare propagator of the gluon is ill defined. Remember that the propagator
is the two-point connected correlation function using only the quadratic part of the La-
grangian, L0, and it can be calculated as the inverse of the second derivative of the action
as

〈φ(x1)φ(x2)〉0 =
∫
Dφ φ(x1)φ(x2)e−

∫
d4xL0∫

Dφ e−
∫
d4xL0

=
(

δ2S

δφ(x1)δφ(x2)

)−1

.

The term of the quadratic Lagrangian involved in the gluon propagator is 1
4

(
∂µA

a
ν − ∂νAaµ

)2
.

The second derivative in the Fourier space takes the form p2δµν−pµpν (see Appendix A.2.2)
which is degenerate and is thus not invertible. To define the gluon propagator we have to
fix the gauge, by imposing a gauge condition.

With this purpose we are going to define what is called a gauge orbit. A gauge orbit
consists of iterations of the gauge transformation, e.g. Eq.(1.1), of a chosen configuration
of the field. Let us write φ′ = φθ, where φ represents an arbitrary field, in order to make
explicit the dependence on the gauge parameter θ. The gauge orbit of φ(x) is the set
{φθ} for all θ. Along the orbit the physics of the systems remains the same due to the
gauge invariance of the action and of the physical observables. We want to choose only
one representative of the gauge orbit, φθ̄, for example the one satisfying a certain gauge
condition f [φθ̄, x] = 0.

Faddeev and Popov in [FP67] proposed a mechanism for fixing the gauge in gauge
theories which can be expressed in a Lagrangian formalism. The Faddeev-Popov procedure
is really useful to determine the gauge-fixed Lagrangian which allow to compute with
success several quantities in QCD. However, it relies on the hypothesis of the existence of
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a unique θ̄ which satisfies the gauge condition. Constraints with that property are called
ideal gauge conditions [Wil03]. However, there are some gauges for which this hypothesis
is not true. That means that there exists different φθ in the same orbit, usually called
Gribov copies, that satisfy the same gauge condition. In this case, the Faddeev-Popov
procedure is not well justified. We will come back to this issue in chapter 2.

1.2.2 Faddeev and Popov procedure

As explained in the above section, in order to be able to compute the Green’s function
we would like to choose in the integral one representative of the gauge orbit satisfying the
gauge condition, f [φθ, x] = 0.

For that purpose (see e.g.[Wei96]) Faddeev and Popov proposed to consider the integral

J =
∫
Dφ Y[φ]B[f [φ]]DetF [φ]

where Dφ will represent DψDψ̄DAµ, Y[φ] is a gauge invariant functional, B[f [φ]] is a
weight that impose the gauge condition and

Fax,by = δfa[φθ, x]
δθb(y)

∣∣∣
θ=0

.

If we consider the same integral J but we use instead as integration variable the transform
of φ with parameter Θ, φΘ we have

J =
∫
DφΘ Y[φΘ]B[f [φΘ]]DetF [φΘ]

and assuming that the measure and Y are gauge invariant we obtain

J =
∫
Dφ Y[φ]B[f [φΘ]]DetF [φΘ].

We can integrate now with respect to Θ with an auxiliary weight ρ[Θ] that will be
characterised latter. We can observe that

J
∫ ∏

x,a

dΘa(x)ρ[Θ] =
∫
Dφ Y[φ]C[φ]

where
C[φ] =

∫ ∏
x,a

dΘa(x)ρ[Θ]B[f [φΘ]]DetF [φΘ].

We would want to show that C[φ] actually does not depend on φ. Let us define Θ̃ to be
the parameter associated with the product of the gauge transformation with parameter θ
and Θ. If we apply the chain rule to F [φΘ], we obtain

Fax,by[φΘ] = δfa[(φΘ)θ, x]
δθb(y)

∣∣∣
θ=0

=
∫
d4z

δfa[φΘ̃, x]
δΘ̃c(z)

∣∣∣
Θ̃=Θ

δΘ̃c(z)
δθb(y)

∣∣∣
θ=0

(1.3)

where we are going to denote

δfa[φΘ̃, x]
δΘ̃c(z)

∣∣∣
Θ̃=Θ

= δfa[φΘ, x]
δΘc(z) = Jax,cz[φ,Θ] (1.4)
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and
δΘ̃c(z,Θ, θ)
δθb(y)

∣∣∣
θ=0

= Rcz,by.

Therefore, we can write

DetF [φΘ] = DetJ [φ,Θ] DetR[Θ].

Now, it is convenient to choose ρ[Θ] = 1/DetR[Θ] and therefore when these expression
are introduced in the definition of C[φ] we obtain

C[φ] =
∫ ∏

x,a

dΘa(x)B[f [φΘ]]DetJ [φ,Θ]. (1.5)

If we change the variable integral from Θ to f , DetJ [φ,Θ] acts as the Jacobian determinant
and the integral can be simplified to

C[φ] =
∫ ∏

a,x

dfa(x)B[f ] = C.

We can conclude that ∫
Dφ Y[φ] = 1

C
J
∫ ∏

x,a

dΘa(x)ρ[Θ] (1.6)

If we want to compute the expectation value of a gauge invariant operator Oinv, we
can use the preceding result taking Y = Oinve

−Sinv and Y0 = e−Sinv to write

〈Oinv〉 =
∫
Dφ Oinve

−Sinv∫
Dφ e−Sinv

=
∫
Dφ Y[φ]∫
Dφ Y0[φ] =

∫
Dφ Y[φ]B[f ]DetF [φ]∫
Dφ Y0[φ]B[f ]DetF [φ]

(1.7)

For simplicity, we can choose

B[f ] = e
− 1

2ξ

∫
d4xfa(x)fa(x)

where ξ is an arbitrary real parameter. Moreover, we can consider the simplest covariant
gauge condition:

fa[Aµ, x] = ∂µA
a
µ(x).

Therefore, the only effect of B[f ] is to modify the action by a gauge-fixing term SGF =∫
d4x 1

2ξ

(
∂µA

a
µ

)2
.

In consequence, including this result in Eq.(1.7), we obtain

〈Oinv〉 =
∫
Dφ Y[φ]e−SGFDetF [φ]∫
Dφ Y0[φ]e−SGFDetF [φ] =

∫
Dφ Oinve

−(Sinv+SGF )DetF [φ]∫
Dφ e−(Sinv+SGF )DetF [φ]

.

This means that gauge invariant operator can be calculated with or without gauge
fixing obtaining the same result. This can be verified in lattice simulations where both
calculations are well defined. However, as we mentioned earlier the integrals without fixing
the gauge in the continuum carry some problems due to the gauge invariant property and
they are not properly defined. Therefore, in the continuum it is necessary to compute the
expected values fixing the gauge.
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1.2.3 The ghost invasion

With the help of Grassman variables (see e.g. [PS95]) we can express the determinant of
an arbitrary matrixM as

detF =
∫
Dc̄Dc exp

{
−
∫
d4xd4y c̄(x)F(x, y)c(y)

}
(1.8)

We will use this trick to write DetF [φ] explicitly . The auxiliary Grassman field, c and
c̄ are usually called ghosts because they are not physical fields.

For the covariant gauge condition ∂µAθ,aµ (x) the matrix is

Fax,by =
δ(∂xµAθ,aµ (x))

δθb(y)

∣∣∣
θ=0

= ∂xµ
δAθ,aµ (x)
δθb(y)

∣∣∣
θ=0

= −∂xµ(∂µδab + gfacbAcµ)δ4(x− y). (1.9)

which is called the Faddeev-Popov operator. In summary the factor DetF [φ] can be
expressed as

DetF [φ] =
∫
Dc̄Dc exp

{
−
∫
d4x ∂µc̄

a(∂µδab + gfacbAcµ)cb
}
. (1.10)

The final effective Lagrangian density in a linear covariant gauge is

L = Linv + LGF + LFP

= 1
4F

a
µνF

a
µν + 1

2ξ (∂µAaµ)2 + ∂µc̄
a(∂µδab + gfacbAcµ)cb (1.11)

where the first term is the gauge invariant Lagrangian, the second term arises from fixing
the gauge and the third one is the Faddeev-Popov ghost Lagrangian.

The ghost lives in the adjoint representation. Accordingly the covariant derivative over
c takes the form,

(Dµc)a = ∂µc
a + gfabcAbµc

c.

The Faddeev-Popov procedure remains untouched for linear covariant gauges with the
addition of the quarks. To conclude, the effective Lagrangian might be written as

L = 1
4F

a
µνF

a
µν +

Nf∑
i=1

ψ̄i(−γµDµ +Mi)ψi + ∂µc̄
a(Dµc)a + 1

2ξ (∂µAµ)2. (1.12)

Landau gauge

There is still a little modification of the specific form of the Lagrangian that we are going
to use. In this thesis the gauge fixing condition chosen is the Landau gauge. Landau gauge
condition consists in constraining the gauge field to the ones fulfilling exactly ∂µAaµ = 0
which is equivalent to imposing ξ = 0.

The term of the functional integral corresponding to LGF = 1
2ξ

(
∂µA

a
µ

)2
can be ex-

pressed in a more convenient form by using an auxiliary bosonic field ha. For that purpose
let us note that the Gaussian integral

∫
Dhae

−
∫
d4x

(√
ξ
2h
a+ i√

2ξ
∂µAaµ

)2

= const
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gives a constant value which can be omitted in the generating functional.
Thus, we can do the following replacement

e
−
∫
d4x 1

2ξ (∂µAaµ)
2

∝ e−
∫
d4x 1

2ξ (∂µAaµ)
2 ∫
Dhae

−
∫
d4x

(√
ξ
2h
a+ i√

2ξ
∂µAaµ

)2

=
∫
Dhae−

∫
d4x( ξ2 (ha)2+iha∂µAaµ). (1.13)

That is, one can add the auxiliary field ha and replace the term of the action
∫
d4x 1

2ξ

(
∂µA

a
µ

)2

by
∫
d4x

(
ξ
2(ha)2 + iha∂µA

a
µ

)
.

For now on we work in Landau gauge (ξ → 0). In consequence, the Lagrangian we are
going to work with is

L = 1
4F

a
µνF

a
µν +

Nf∑
i=1

ψ̄i(−γµDµ +Mi)ψi + ∂µc̄
a(Dµc)a + iha∂µA

a
µ. (1.14)

The Feynman rules associated with this Lagrangian are presented in section 1.3.

1.2.4 BRST symmetry

After fixing the gauge the action is no longer gauge invariant. However, it still has a
symmetry called BRST symmetry. The BRST symmetry was discovered by Becchi, Rouet
and Stora [BRS75, BRS76] and independently by Tyutin [Tyu75].

This symmetry acts on the fields introducing variations of the form:

δsΦ = η sΦ

where η is an x-independent Grassmann number and s is the BRST operator that acts
over the fields as:

sAaµ = (Dµc)a, sψ = −igtacaψ, sca = −g2f
abccbcc, sc̄a = iha and sha = 0.

Moreover for any product of two set of fields Φ1 and Φ2 the BRST operator acts as

s (Φ1Φ2) = (sΦ1)Φ2 ± Φ1sΦ2

where the ± sign is plus if Φ1 is bosonic and minus if Φ1 is fermionic. Knowing this, one
of the most useful properties of BRST symmetry can be demonstrated: BRST symmetry
is nilpotent meaning that s2 = 0, see e.g. [Wei96].

In order to verify that the above transformation is a symmetry of the action it is
convenient to note that the BRST transformation for the matter and gauge field is like
an infinitesimal gauge transformation with gauge parameter ηc. Therefore, the gauge
invariant terms of Linv are also BRST invariant. On the other hand, it can be shown that
the remaining terms of the action corresponding to

∫
d4x (LGF + LFP ) are of the form

sS(A,ψ, ψ̄, c, c̄, h). In the case of Landau gauge, we can write∫
d4x (LGF + LFP ) =

∫
d4x

(
iha∂µA

a
µ + ∂µc̄

a(Dµc)a
)

= s

∫
d4xc̄a∂µA

a
µ.

More generally, see [Wei96], the BRST-invariant action takes the form

S = Sinv + sS. (1.15)
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The first term is BRST invariant because it is gauge invariant and the second term is also
BRST invariant because s is nilpotent. We can say that Sinv ∈ Ker(s) and sS ∈ Im(s).

Fixing the gauge with the Faddeev-Popov procedure brings new fields which are not
expected to have physical meaning. Hence, we need to clarify which is the Hilbert space
containing only physical states. To define physical states we are going to consider the
asymptotic fields, long-time before or after the interaction. Physical states should have
positive norm and do not depend on the gauge. That means that any change in S, ∆S,
should not change the matrix element 〈α|β〉 for any pair of physical states, |α〉 and |β〉.

To define the physical space let us introduce the BRST charge. As the BRST is a
global symmetry it has a conserved current. This current allows us to define an associated
charge Qs which is the generator of the symmetry. The variation of an arbitrary set of
fields Φ can be expressed as:

i sΦ = [Qs,Φ]∓

where the sign being − or + depending on whether Φ is bosonic or fermionic. For physical
states we expect that

〈α| s∆S |β〉 = 0

This implies,
〈α| [Qs,∆S] |β〉 = 0.

As this happens for any possible change ∆S we can conclude that one must require
〈α|Qs = Qs |β〉 = 0, both states belong to the kernel of Qs. Two states differing by
a state in the image of Qs give the same S-matrix element (because Qs is also nilpotent),
so those states are equivalents. That is the reason why the physical space, Vphys, is taken
as the cohomology of the BRST symmetry,

Vphys = Ker(Qs)
Im(Qs)

.

It can be shown, see [Wei96], that only gluons with transverse polarization belong to
the cohomology of the BRST symmetry. The antighost does not belong to the KerQs and
the ghost belongs to Im(Qs). Therefore none of them belong to Vphys.

To conclude that Ker(Qs)/Im(Qs) is a good definition for the physical space it is necessary
to prove that the S-matrix, S, restricted to Vphys is unitary. The S-matrix is pseudo-unitary
for an action of the form (1.15) that means that S†S = SS† = I but we must assure that
the space is a Hilbert space with positive norm. In fact, we build Vphys in order to ensure
that any matrix element between two physical states are gauge independent. Therefore,
we can study the S-matrix in a more physical gauge like Coulomb or axial gauge where
there is no problem of positivity of the states, see [Wei96]. Therefore in this gauges the
restriction of the S-matrix to the physical space Vphys is unitary and, as in this space the
elements of the S-matrix do not depend on the gauge, we can conclude that the S-matrix
is unitary in Vphys.

Another important feature of BRST symmetry is that it allows us to prove that the
theory is renormalizable (concept introduced in Sect.1.4) to all orders of perturbation
theory [tH71a, tH71b, tHV72].

1.3 Feynman rules

Let us return to the computation of Green’s functions. We are going to use the gauge-fixed
Lagrangian presented in Eq.(1.14). The Green’s function of n-arbitrary fields, φ, in the
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functional formalism can be expressed as

G(x1, ..., xn) = 〈φ(x1)...φ(xn)〉 =
∫
DADhDc̄DcDψ̄Dψ φ(x1)...φ(xn)e−

∫
d4xL∫

DADhDc̄DcDψ̄Dψ e−
∫
d4xL

Obviously the problem is not completely solved: those integrals can not be easily
computed analytically. However, perturbation theory and Feynman diagrams allows us to
manipulate them in a clever way.

To use perturbation theory it is convenient to separate the Lagrangian into the free or
quadratic Langrangian, L0, and the interacting Lagrangian, Lint.

L = L0 + Lint

where

L0 = 1
4(∂µAaν − ∂νAaµ)2 +

Nf∑
i=1

ψ̄i(−γµ∂µ +Mi)ψi + ∂µc̄
a∂µc

a + iha∂µA
a
µ (1.16)

and

Lint = 1
2gf

abc(∂µAaν−∂νAaµ)AbµAcν + 1
4g

2(fabcAbµAcν)2 + ig

Nf∑
i=1

ψ̄iγµA
a
µt
aψi+gfabc∂µc̄

aAbµc
c.

(1.17)
If the coupling constant, g, is small enough we can expand the exponential

e−
∫
d4xL ∼ e−

∫
d4xL0

(
1−

∫
d4xLint + 1

2

(∫
d4xLint

)2
− 1

3!

(∫
d4xLint

)3
+ . . .

)
.

The advantage is that every term in the expansion can be seen as an expectation value
with a Gaussian weight. Using Wick theorem, see e.g. [PS95], the Gaussian expectation
value can be computed easily as the sum of all possible pairwise contractions. That means,

〈φ(x1)...φ(xn)〉0 = 〈φ(x1)φ(x2)〉0...〈φ(xn−1)φ(xn)〉0 + 〈φ(x1)φ(x3)〉0...〈φ(xn−1)φ(xn)〉0
+ all other product of pairwise Gaussian expectation values (1.18)

where the subindex 0 denotes the expectation value with L0. This property allows us to
describe the correlation functions with the Feynman diagrams.

The Wick theorem is a very useful tool since the Gaussian expectation value of two
fields is really easy to compute, it takes the value

D0(x1 − x2) = 〈φ(x1)φ(x2)〉0 =
∫
Dφ φ(x1)φ(x2)e−

∫
d4xL0∫

Dφ e−
∫
d4xL0

=
(

δ2S

δφ(x1)δφ(x2)

)−1

.

The Green’s function 〈φ(x1)φ(x2)〉0 is called the free propagator and it will be represented
in Feynman diagrams with a line (full, dashed, curled, etc depending on the field) from
x2 to x1.
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The interacting Lagrangian which will define the interaction vertex of the theory can
be written in a symmetric way as follows∫

ddxLint =
∫
ddx

{1
2gf

abc(∂µAaν − ∂νAaµ)AbµAcν + 1
4g

2(fabcAbµAcν)2 + gfabc∂µc̄
acbAcµ

}
=
∫
ddxddyddz

1
3!A

a
µ(x)Abν(y)Acρ(z)Sabcµνρ(x, y, z)

+
∫
ddxddyddzddw

1
4!A

a
µ(x)Abν(y)Acρ(z)Adσ(w)Sabcdµνρσ(x, y, z, w)

+
∫
ddxddyddzAcµ(z)c̄b(y)ca(x)Sabcµ (x, y, z)

+
∫
ddxddyddzAcµ(z)ψ̄b(y)Sabcµ,ψ(x, y, z)ψa(x) (1.19)

where

Sabcµνρ(x, y, z) = δ3S

δAaµ(x)δAbν(y)δAcρ(z)

∣∣∣
A,c,c̄=0

,

Sabcdµνρσ(x, y, z, w) = δ4S

δAaµ(x)δAbν(y)δAcρ(z)δAdσ(w)

∣∣∣
A,c,c̄=0

,

Sabcµ (x, y, z) = δ3S

δca(x)δc̄b(y)δAcµ(z)

∣∣∣
A,c,c̄=0

and

Sabcµ,ψ(x, y, z) = δ3S

δψa(x)δψ̄b(y)δAcµ(z)

∣∣∣
A,ψ,ψ̄=0

.

All these derivative are presented in the Appendix A.2. The Fourier transform of, for
instance, Sabcµ (x, y, z), is given by∫

ddxddydze−ipxe−iqye−ikzSabcµ (x, y, z) = (2π)dδ(p+ q + k)Sabcµ (p, q, k)

and in a similar way for the others (all momenta are incoming to the vertex). The inverse
Fourier transform is defined as

Sabcµ (x, y, z) =
∫

ddp

(2π)d
ddq

(2π)d
ddk

(2π)d
(
(2π)dδ(p+ q + k)Sabcµ (p, q, k)

)
eipxeiqyeikz.

At the lowest order in the perturbation theory (tree level) the Legendre transform of
the effective action, Γ, has the same form as the action, that means that

Γtree[〈φ〉] = S[〈φ〉]

Therefore, Γ(3),tree-level and Γ(4),tree-level will represent the third and fourth derivative
of the action, usually called the three-gluon and four-gluon vertex. The number of Lorentz
indices reflects the number of derivatives with respect to gauge fields.

To summarise the Feynman diagrams are a diagrammatic representation of the expres-
sion to be computed. Each diagram represents an integral in the perturbative expansion.
They consist in putting together: external lines (associated with φ(x1), ..., φ(xn)), propa-
gators (internal lines) and vertices; obeying the following rules (in momenta space, with
all momenta incoming) of table 1.1.

Each diagram comes with a symmetry factor, which can be calculated as follows:

• There is a minus for each fermion loop.
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Table 1.1 – Feynman rules.

ghost propagator Dab
0 (p) = δab

p2
p

gluon propagator Dab
0,µν = δab 1

p2P
⊥
µν(p) p

quark propagator Dab
0,ψψ̄(p) = δab

i/p+M
p2+M2

p

ghost-gluon vertex
[
Γ(3),tree-level
cc̄A

]bca
µ

(r, p, k) = −igfabcpµ
rp

k

µ, a

quark-gluon vertex
[
Γ(3),tree-level
ψψ̄A

]a
µ

= igtaγµ

rp

k

µ, a

three-gluon vertex
[
Γ(3),tree-level

]abc
µνρ

(p, q, r) = igfabc [(q − r)µδνρ

+(r − p)νδµρ + (p− q)ρδµν ]
qr

p

µ, a

ν, bρ, c

four-gluon vertex
[
Γ(4),tree-level

]abcd
µνρσ

= g2
(
feabfecd(δµρδνσ − δµσδνρ)

+ feacfebd(δµνδρσ − δµσδνρ)
+feadfecb(δµρδνσ − δµνδσρ)

)

µ, a ν, b

ρ, cσ, d

• There is a (−1)v/v! (where v is the number of vertex) that come from the expansion
of the exponential.

• There is a 1/3! for each three gluon vertex.

• There is a 1/4! for each four gluon vertex.

• There is an extra factor for the diagrams that have different kind of vertex that come
from expanding (Lint)v. We will have a factor v!/(v1!v2!v3!) where v1 is the number
of the vertex of one type and v2 for the other type, and v3 for the last one.

• Finally, we have to add the usual combinatorial factor due to the possible contrac-
tions coming from the Wick theorem.

The extraction of Feynman rules was done using the following convention of the Fourier
transformation:
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f(p) =
∫
e−ipxf(x)d4x.

We want to recall that the second derivative of Γ(2) is the inverse of the propagator,
see Appendix A.1. While, the three-point vertex, Γ(3), is related to the expectation value
of the mentioned involved fields, G(p1, p2, p3; g,M), by

G(p1, p2, p3; g,M) = −D(p1)D(p2)D(p3)Γ(3)(p1, p2, p3; g,M)

where D(pi) are the propagators of the external fields.
For a detailed deduction of the Feynman rules from the action see Appendix A.2.

1.4 Regularization and Renormalization
When we want to explicitly calculate the Feynman diagrams some of the integrals present
ultra-violet divergences. To avoid these infinities, a regularization method is commonly
used. The most popular ones are: the inclusion of an ultra-violet cut-off, Λ, as the
upper bound of the integrals; Pauli-Villars regularization; lattice regularization and the
dimensional regularization (see [BG72b, BG72a, tHV72]). The last two have the advantage
of respecting gauge invariance. In the analytical calculation of Feynman diagrams the
dimensional regularization is the most convenient regularization to use and is the one that
we will use in chapters 3,4,5 and 6.

The dimensional regularization consists in computing the integrals appearing in the
Feynman diagrams analytically as a function of the space dimension, d. Usually the
integral in four dimension momentum space

∫ d4q
(2π)4 is replaced by

∫ ddq
(2π)d . This behaves

as an ultraviolet regulator because it eliminates some ultraviolet divergent integrals. For
instance, the integral

∫ ddq
(2π)d

1
(q2+m2)n can be computed as

∫
ddq

(2π)d
1

(q2 +m2)n = Γ(n− d/2)
(4π)d/2Γ(n)

(m2)d/2−n

and therefore the integral
∫ ddq

(2π)d
1
q2 , which is a priori UV-divergent in four dimensions, is

set to zero in the dimensional regularization.
Even though the cut-off regularization is not gauge invariant and therefore it will not

be used in our calculations, for the introduction of the renormalization concept it is better
to work with the cut-off regularization, that means that the integrals are replaced by∫ ∞

dq →
∫ Λ

dq

We would like to redefine the field, masses, and coupling constant in order to absorb the
dependence on the cut-off. The new field and couplings are said to be renormalized and
the ones appearing at the beginning in the Lagrangian are called bare quantities.

AaµB =
√
ZAA

aµ, caB =
√
Zcc

a, c̄aB =
√
Zcc̄

a,

ψaB =
√
Zψψ

a, gB = Zgg and MB = ZMM (1.20)

The index B represents the bare quantities. In this section, all quantities are assumed to
be renormalized unless the subindex B is present.
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With the new normalization the bare Green’s function are related to their correspond-
ing renormalized one, i.e. the expected value of the renormalized fields, through the
product of Z-factors of the intervening fields, ZG,

GR(p1, .., pn; g,M) = ZGGB(p1, .., pn; gB,MB)

The renormalized quantities are defined by choosing a renormalization scheme. That
means, in a given momentum scale µ we choose the value of some renormalized Green’s
functions in order to define the renormalization factors. For a renormalizable theory it is
enough to fix the Green’s functions appearing at tree level, i.e. the ones that explicitly
appear in the Lagrangian.

However, ignoring the gauge-fixing term, there are seven different Green’s functions
with tree-level contribution; the inverse of gluon, ghost and quark propagators and the
three-gluon, four-gluon, ghost-gluon and quark-gluon vertex, and only five Z-factors to
define. Fortunately, thanks to BRST invariance it is possible to find some identities,
called Slavnov-Taylor identities, which relate the Green’s functions and allow to show
that the renormalization can be successfully done.

There are different renormalization schemes, all of which absorb the divergence in
the Z-factors but they differ in the modification of the finite part. The most common
schemes are the minimal subtraction schemes MS and MS. The scheme that we used in
our calculations is presented in section 3.2.1.

Let us continue with an example of the procedure to obtain the Z-factor of a given
renormalization scheme. The bare ghost propagator computed from the Feynman digra-
mas has the form

Dab
B (p) = δab

JB(p)
p2

where JB(p) is the bare dressing function of the ghost propagator. The renormalized ghost
propagator is obtained by including the Zc and expressing all the masses and coupling
constant in term of the renormalized ones, thus

Dab(p) = Zcδ
abJB(p)

p2 = δab
J(p)
p2

where J(p) is called the ghost dressing function. In the scheme that we are going to use,
a particular case of the MOM scheme, Zc is defined by requiring that the propagator
acquires its tree-level form at some momentum scale µ. That means,

Dab(p = µ) = δab
1
µ2 .

This allow us to obtain the Zc. Obviously Zc depends on the scale µ where the renormal-
ization scheme was defined, and so does the propagator.

1.5 Renormalization group

In this section we are going to introduce the renormalization group equation in order to
study the dependence on the renormalization scale of the correlation function. When we
renormalize the theory at the scale µ, generally in four dimensions, the calculation of the
correlation function brings logarithms of the form log(µp ) where p is the typical momentum
of the function studied. In order to avoid large logarithms the renormalization scale µ
should be chosen near p. The problem is that we are usually interested in studying a
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large spectra of momenta. The idea is to think µ as a sliding scale and compare how the
evolution of µ affects the correlation functions.

For the derivation of the renormalization group equation it is convenient to note that
the bare correlation functions does not depend on the scale µ, that is

0 = µ
d

dµ
GB(p, gB, {Mi}B).

On the other hand, when we express the bare function in terms of the renormalized
correlation function the last one depends explicitly and implicitly on the scale µ. It de-
pends implicitly on the renormalization scale through the dependence of the renormalized
coupling constant, masses and field. The dependence of these quantities is determine by
the β-functions and anomalous dimensions defined as:

βg(g, {Mi}) = µ
dg

dµ

∣∣∣
gB ,{Mi}B

,

γA(g, {Mi}) = µ
d logZA
dµ

∣∣∣
gB ,{Mi}B

,

γc(g, {Mi}) = µ
d logZc
dµ

∣∣∣
gB ,{Mi}B

,

βMi(g, {Mi}) = µ
dMi

dµ

∣∣∣
gB ,{Mi}B

,

γψ(g, {Mi}) = µ
d logZψ
dµ

∣∣∣
gB ,{Mi}B

. (1.21)

The evolution of g(µ) and Mi(µ) are obtained by integration of the beta functions with
initial conditions given at some scale µ0.

That gives origin to the renormalization group equation:µ ∂

∂µ
+ 1

2nγ + βg
∂

∂g
+

Nf∑
i

βMi

∂

∂Mi

G(p, µ, g(µ), {Mi(µ)}) = 0. (1.22)

where n is the number of fields appearing in the correlation function G. For convenience
we are going to write down the renormalization group equation for the vertex function
with nA gluon legs, nc ghost legs and nψ quark legs explicitly:µ∂µ − 1

2(nAγA + ncγc + nψγψ) + βg
∂

∂g
+

Nf∑
i

βMi

∂

∂Mi

Γ(nA,nc,nψ)(p, µ, g(µ){Mi(µ)}) = 0,

(1.23)
The solution of the renormalization group equation (1.23)has the form

Γ(nA,nc,nψ)(p, µ, g(µ), {Mi(µ)}) = zA(µ)nA/2zc(µ)nc/2zψ(µ)nψ/2Γ(nA,nc,nψ)(p, µ0, g(µ0), {Mi(µ0)}).
(1.24)

where

log zA(µ) =
∫ µ

µ0

dµ′

µ′
γA
(
g(µ′), {Mi(µ′)}

)
,

log zc(µ) =
∫ µ

µ0

dµ′

µ′
γc
(
g(µ′), {Mi(µ′)}

)
,

log zψ(µ) =
∫ µ

µ0

dµ′

µ′
γψ
(
g(µ′), {Mi(µ′)}

)
.

(1.25)
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This last equation relates the vertex function renormalized at the scale µ0,
Γ(nA,nc,nψ)(p, µ0, g(µ0), {Mi(µ0)}), to the vertex function Γ(nA,nc,nψ)(p, µ, g(µ), {Mi(µ)})
renormalized at the scale µ. In this thesis we are going to compute some particular cases
of Γ(nA,nc,nψ)(p, µ0, g(µ0), {Mi(µ0)}) when we choose µ0 = 1GeV. In order to avoid the
large logarithms we use the relation (1.24) to relate it to Γ(nA,nc,nψ)(p, µ, g(µ), {Mi(µ)})
which ensure us avoiding large logarithms if µ ∼ p.

1.5.1 Asymptotic freedom

The evolution of the coupling constant is of great importance when studying the non-
abelian gauge theories. For instance, we know that when the coupling constant is small
enough we are allowed to do perturbation theory. In that regime, even though the calcu-
lations could be tedious there is a well known strategy to follow.

The calculations of the βg-function in QCD was first done by Politzer, Gross and
Wilczek in 1973, see [Pol73, GW73]. It can be computed from the ghost-gluon, quark-
gluon, three-gluon or four-gluon vertex. The first mentioned is the easiest to compute, and
shows no divergence in four-dimensions in Landau gauge. In that gauge Zg can be easily
obtained from ZA and Zc of the gluon and ghost propagators. The relation in Landau
gauge is given by Taylor’s theorem [Tay71a]:

Zg
√
ZAZc = 1

Taylor’s theorem (see Appendix B.5.1) is based on the fact that, except for the tree-
level expression, the contribution for the ghost-gluon vertex is proportional to the ghost
momentum to all orders of the perturbation theory. Therefore, the ghost-gluon vertex at
vanishing ghost momentum, Γabcµ,B(p = 0, r), is equal to the tree-level vertex form, gBfabcrµ
(with rµ the anti-ghost momentum). In the MS scheme, the renormalized quantities satisfy
the relation √

ZAZcΓabcµ (p = 0) = g

Zg
fabcrµ.

Taylor’s scheme generalize this property also to the finite parts even without taking the
MS scheme.

Once, the renormalized coupling constant is defined we can compute the perturbative
β-function at µ�M , for M the mass of the quarks, obtaining [Cas74, Jon74]:

βg(g(µ)) = −β0
g(µ)3

16π2 − β1
g(µ)5

256π4 +O(g7)

were the first two coefficients in the expansion, β0 and β1, are renormalization-scheme
independent and have the expressions.

β0 = 11
3 Ca −

4
3TfNf , and β1 = 34

3 C
2
a − 4CfTfNf −

20
3 CaTfNf

where Ca = N ,Cf =
(
N2−1

2N

)
and Tf = 1/2. For SU(3), as the number of quark flavours

does not exceed six, the β-function is negative. This sign is really important because it
means that the coupling constant falls down at high momentum. On the contrary, it seems
to blow up at low momentum. This fact forbids the use of standard perturbation theory
at low momenta, where others techniques need to be implemented.





Chapter 2

Infrared Regime of QCD

At very high energies, QCD is asymptotically free, meaning that quarks and gluons behave
like weakly interacting particles. On the other hand, at low energies quarks and gluons
strongly interact. In fact, when we try to separate a pair quark-antiquark the gluon field
forms a narrow tube with energy proportional to the distance. As the quarks are taken
further apart the energy stocked in this tube increases until nature prefers to use the
energy to create a new quark-antiquark pair instead of isolate the quarks. In fact, the way
to study the strong force is through the bound states of quarks and gluons, the hadrons, as
no free quark or gluon have ever been detected. This phenomenon is called confinement.
Why confinement takes place and how it can be explained from the QCD Lagrangian is
one of the most interesting questions of modern physics since there is no fully-understood
analytical demonstration of confinement from first principles.

Although some progress in the subject have been made we are not going to treat the
problem of confinement in this thesis. However, we are going to focus on a previous
analysis trying to understand the problems and properties of the infrared regime. In this
chapter, we would like to mention the problems which appear in the infrared regime, and
the relevant features of the different methods used to attack them.

2.1 Gribov region

In chapter 1 we introduced the classical Lagrangian density invariant under the SU(N)-
gauge group. In order to work with a quantized theory we presented the functional Feyn-
man formalism. The quantization of the theory implies to define the propagators of the
involved fields. In order to properly define the propagators of a gauge-invariant theory it is
necessary to fix the gauge. The standard procedure to fix the gauge is the Faddeev-Popov
procedure which was presented in chapter 1. However, for instance in covariant gauges
(Lorentz invariant gauges), the Faddeev-Popov procedure is not fully justified. This quan-
tization assumes that every gauge orbit intersect the gauge condition only once. However,
this assumption is not always true. For simplicity we are going to focus on a particular
covariant gauge, the Landau gauge, which satisfies ∂µAµ = 0.

If we go back to the FP procedure there are some observations that we have ignored.
Faddeev-Popov quantization is based on performing the change of variable Θ→ f [φΘ] in
the Eq. (1.5) with the goal of proving that C[φ] is constant. Nevertheless, this can be
done if the DetJ defined in Eq. (1.4) is positive and f [φ] invertible. The procedure is not
justified if there are more than one field configuration satisfying the same gauge condition.
The field configurations on the same gauge orbit which satisfy the same gauge condition
are known as Gribov copies [Gri78, Sin78].
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We are going to study the condition for a gauge orbit to intersect the Landau gauge
condition twice, for simplicity we are going to focus on the gauge field, φ = Aµ. Let us
consider Aµ and Aθµ fulfilling ∂µAµ = 0 and ∂µAθµ = 0 both in the same gauge orbit. That
means,

Aθµ = UAµU
† − i

g
(∂µU)U †

with U = e−igθ(x) an element of the SU(N)-group where θ = θ(x) represents θa(x)ta.
Assuming that the gauge fields are close enough we can approximate U ∼ 1− igθ(x),

then the relation becomes:
Aθµ = Aµ −Dµθ

where Dµθ = (Dµθ)ata and Dµ is the covariant derivative in the adjoint representation
(Dµθ)a = ∂µθ

a + gfabcAbµθ
c.

Both gauge fields can satisfy Landau gauge condition if and only if there is a solution
to the equation

− ∂µDµθ = 0. (2.1)
The term in the left hand side of this equation is the FP operator already introduced in
section 1.2.3.

It is worth mentioning that in the perturbative regime (Aµ ∼ 0) as well as in the
abelian theory (fabc = 0) the gauge field does not present Gribov copies in Landau gauge.
The reason is that in both cases the previous equation simplifies to −∂2θ = 0. The Laplace
equation does not have any solution except for the trivial one, with the border condition
that θ(x) vanishes at infinity. However, Gribov showed that eq. (2.1) has non trivial
solutions for SU(N) and that means that for some values of the field A the Faddeev-
Popov operator has zero modes.

To find a well defined gauge fixing procedure one option is to restrict the integration
domain of the functional integral to a region containing only one representative of each
gauge orbit. This aim can be divided in two difficult tasks. The first one is to identify
the mentioned region and the second is to find a clever way to constrain the functional
integral to it.

Eq. (2.1) gives a hint of how to determine the region without Gribov copies. It is
natural to think that this region should avoid the zone in which FP operator has zero
modes.

In fact, Gribov in [Gri78] suggested to consider the so-called first Gribov region, Ω.

Ω =
{
Aaµ, ∂µA

a
µ = 0 and F positive definite

}
where the matrix F was introduced in Eq. (1.9) and reads

Fax,by = −∂µDac
µ δ(x− y) = −

(
∂2,x
µ δac + ∂xµf

abcAbµ

)
δ(x− y).

For the case when ∂µAµ = 0, F is hermitian. Therefore its eigenvalues are real, and the
condition of being in the Gribov region implies that all the eigenvalues of F are positive.

At first sight the Gribov region seems to be the good choice to restrict the domain of the
functional integrals. However, even though the Gribov region does not have Gribov copies
which are infinitesimally close, it has been proved to still have Gribov copies [STSF82,
DZ89, DZ91, vB92]. To see this, it is better to study an equivalent definition of Ω.

Let us consider the set of relative minima of:

‖Aθ‖2 = 1
2

∫
ddxAθ,aµ (x)Aθ,aµ (x) (2.2)
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as a function of the gauge parameter θ at fixed Aµ. We are going to show that the region of
Aθµ defined by this set is the first Gribov region. First of all, we are going to demonstrate
that the extrema of ‖Aθ‖2 are the configurations in Landau gauge.

The extrema are obtained by taking δ‖A‖2 = 0 where δ represents an infinitesimal
gauge variation around a configuration Aµ.

δ‖A‖2 =
∫
ddx (δAaµ(x))Aaµ(x) = −

∫
ddx (Dµθ)aAaµ(x)

= −
∫
ddx ∂µθ

a(x)Aaµ(x) =
∫
ddx θa(x)∂µAaµ(x) = 0

(2.3)

where in the second line we have used that the second term of the covariant derivative
vanishes since fabcAbµAaµ is zero by interchanging a and b. The relative extrema fulfils the
above condition for all infinitesimal gauge variations θ and thus it implies that ∂µAaµ = 0,
the Landau gauge condition required by the first definition.

Secondly, for the minima the matrix of second derivatives should be positive. This
condition forces the FP operator to be positive definite because:

δ(δ‖A‖2) =
∫
dxθa(x)(−∂µ(Dµθ)a) > 0

This new definition of the Gribov region i.e. the relative minima of {‖Aθ‖2} makes us
doubt on the non-existence of Gribov copies inside Ω. It seems natural to think that there
may be many local minima of {‖Aθ‖2}. In fact, an explicit example is given in [vB92]
and, moreover, in lattice simulations a lot of Gribov copies have been found.

In order to consider only one representative configuration for every gauge orbit one
should take, for example, the absolute minimum of {‖Aθ‖2}. This set is called the fun-
damental modular region, FMR [Zwa94]. The FMR is included in the Gribov region and
is the ideal restriction of the functional integral domain. However, it is more difficult
to work with the FMR than with the first Gribov region. The difficulty lies in how to
include this constraint in the functional integral. Some interesting ideas were developed
by Gribov using the semiclassical approach [Gri78] and by Zwanziger in [Zwa04] including
a new local term in the action.

2.1.1 Properties of the Gribov region

It is important to mention that every gauge orbit intersect the Gribov region at least once,
see [DZ91]. Therefore, the Gribov region contains informations about all configurations.

Another important property is that Aµ = 0 belongs to the Gribov region. We have
already seen that, for Aµ = 0, the FP operator is positive definite, see [Zwa04]. This
means that the perturbative region is included in Ω. The Gribov region is also convex and
bounded in every direction, see [Zwa04].

In relation with Gribov copies, it is known that every configuration in the first Gribov
region near enough to its boundary, δΩ, presents Gribov copies outside Ω but near the
δΩ, [Gri78]. Moreover, it was proposed by Zwanziger in [Zwa04] that the important
configurations lie on the intersection of the Gribov boundary, δΩ, with the boundary of
the fundamental modular region, δΛ. Therefore, if it were confirmed, the copies in the
interior of the Gribov region should not play any role but there is no proof for the moment
for that.
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2.1.2 Restriction to the Gribov region

The aim of this section is to briefly present some ideas used to restrict the functional
integral in the generating function to the Gribov region,

Z[J ] =
∫

Ω
Dφ e−Sinv−SFP−SGF+Ssource

where Dφ represents the product of DAµDψDψ̄DcDc̄ and Ssource is the part of the action
that includes the external sources as in Sec. 1.2.1.

To implement the restriction it is better to modify the integrand using a factor V(Ω),
to be determined later. So the generating function can be expressed as

Z[J ] =
∫

Ω
Dφ e−Sinv−SFP−SGF+Ssource

=
∫
Dφ V(Ω)e−Sinv−SGF+Ssource−

∫
d4x{−c̄a∂µ(Dµc)a}) (2.4)

The restriction of the integral Z to Ω implies the restriction to fields in which the
FP operator is positive definite thus it has no zero modes. This implies that the ghost
propagator in presence of a background gauge field in Landau gauge, that we denote
Dab(p2, Aµ), does not have a non-trivial pole inside the first Gribov region (remember
that the ghost propagator is related to the inverse of the FP operator which does not
have zero modes inside the Gribov zone). This is known as the Gribov no-pole condition
because in [Gri78] Gribov proposed using this condition of the ghost propagator in order
to define the constraint for the Gribov region.

In order to study the no-pole condition, Gribov proposed to compute the ghost prop-
agator in presence of a background gauge field using a semi-classical approximation. The
ghost propagator in presence of a background gauge field can be obtained as the second
derivative with respect to the external sources J and J̄ of the log I [A, J, J̄ ], where I [A, J, J̄ ]
is defined as

I [A, J, J̄ ] =
∫
DcDc̄ exp

{
−
∫
d4xd4y c̄a(x)(−∂µDab

µ )cb(y)

+
∫
d4x

(
J̄ac (x)ca(x) + c̄a(x)Jac̄ (x)

)}
= Cdet (−∂µDµ) exp

{
−
∫
d4xd4y J̄ac (x)(∂µDab

µ )−1Jbc̄ (y)
}

(2.5)

where the character C represents a constant that will be ignore because no multiplicative
constant survives in the correlation functions.

Gribov in [Gri78] computed Dab(p2, Aµ) to the second order and found that

Dab(p2, Aµ) ∼ 1
p2

1
1− σ(p,Aµ)

where σ is given by

σ(p,Aµ) = 1
V

1
p2

Ng2

N2 − 1

∫
ddq

(2π)dA
a
µ(−q)Aaν(q)(p− q)µpν

(p− q)2 .

The no-pole condition for the ghosts forces σ to be less than one. Therefore, one obtains

V(Ω) = Θ(1− σ(0, Aµ))
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where Θ represents the step function.
In the way to rewrite the restriction to the Gribov region in a local action Zwanziger,

in [Zwa93, Zwa94], described this change using the horizon function, SH,

SH = γ4
∫
d4xH(x)

where H is proportional to F−1

H(x) = g2fabcAbµ

(
F−1

)ad
fdecAcµ

and γ has dimension of mass and it can be determined as function of g and ΛQCD through
the horizon condition [Zwa89, Zwa93]

〈H(x)〉 = 4(N2 − 1).

The restriction to the Gribov region was done under the assumption that the relevant
Gribov copies are located near the border of the first Gribov region and therefore we
can approximate the step function into a δ-function. Using this conjecture the functional
integral restricted to the first Gribov region can be modified as:∫

Ω
→
∫
e−SH .

This introduces a non-local modification in the action that suppresses the probability of
configurations near the boundary δΩ. (A pedagogical introduction to this subject can
be found in [SS05, Van11].) It is worth mentioning that the horizon function, which is
non-local, can be localized through the help of additional fields [Zwa89, Zwa93],

e−SH =
∫
DϕDϕ̄DωDω̄e−Sloc .

The term Sloc has the form

Sloc =
∫
d4x

(
−ϕ̄acµ Fabϕbcµ − ω̄acµ Fabωbcµ

)
− γ2g

∫
d4x

(
fabcAaµϕ

bc
µ + fabcAaµϕ̄

bc
µ

)
,

where the fields ϕ̄µ and ϕµ are a pair of complex conjugate bosonic fields, and ω̄µ and ωµ
are fermionic fields. Each of them with 4(N2 − 1)2 components.

To conclude, under some assumptions, it is possible to express the restriction to the
Gribov region with a local action, usually called Gribov-Zwanziger action, SGZ as follows:∫

Ω
DAµδ(∂µAµ)det(F)e−Sinv =

∫
DAµDψDψ̄DϕDϕ̄DωDω̄DbDcDc̄e−SGZ

where

SGZ =Sinv +
∫
d4x

(
ba∂µA

a
µ − c̄aFabcb

)
+
∫
d4x

(
−ϕ̄acµ Fabϕbcµ − ω̄acµ Fabωbcµ

)
− γ2g

∫
d4x

(
fabcAaµϕ

bc
µ + fabcAaµϕ̄

bc
µ

)
. (2.6)

The behaviour of the propagator using the Gribov-Zwanziger action at tree level shows
an enhanced ghost propagator and a gluon propagator which vanishes at the origin. Un-
fortunately, this is not the behaviour found by lattice simulation, discussed in Sec.2.3.

The study of the restriction to the Gribov region has gone beyond Gribov-Zwanziger
action with the introduction of the refined Gribov-Zwanziger action, SRGZ , [DGS+08b].
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It consists of taking into account the two-dimension non-trivial condensate
〈0|
(
ϕ̄abµ ϕ

ab
µ − ω̄abµ ωabµ

)
|0〉 by the introduction of the operator

(
ϕ̄abµ ϕ

ab
µ − ω̄abµ ωabµ

)
directly

in the action. The action includes the term,

Sϕ̄ϕ = −
∫
d4xµ2

(
ϕ̄abµ ϕ

ab
µ − ω̄abµ ωabµ

)
where the µ parameter can be fixed by a variational principle.

The refined Gribov-Zwanziger action is therefore,

SRGZ = SGZ + Sϕ̄ϕ.

This new action shows a non-vanishing gluon propagator in the infrared and a ghost
propagator that goes as 1

p2 when p→ 0 [Sor09] as it is expected by lattice simulations, see
[CM08b].

Both the GZ and RGZ models are renormalizable. However, there are a few remarks
that need to be made. The GZ and RGZ actions are no longer BRST invariant. In fact,
this symmetry is softly broken. This is enough to prove renormalizability but the definition
of the physical Hilbert space using the cohomology of the BRST symmetry is no longer
valid. The problem of the unitarity of the theory is unsolved. Another inconvenient with
this approach is that the calculations in this model are cumbersome since there are several
more fields in the action, however some corrections for the propagators were computed in
[Gra10a, Gra10b].

2.2 Dyson-Schwinger approach

There exists a non-perturbative analysis of quantum field theories introduced by Dyson
and Schwinger [Dys49, Sch51] that can be used to study the infrared region of QCD.
The Dyson-Schwinger equations is an infinite set of coupled non-linear integral equations
relating the different Green’s functions.

The Dyson-Schwinger equations can be found through the observation that the integral
of a total derivative is zero. If we apply this to the generating function Z[J ], we obtain

0 =
∫
Dφe−S[φ]+

∫
d4xφJ

(−∂S[φ]
∂φ

+ J

)
= −

〈(
∂S

∂φ
− J

)〉
J

as usual, φ represents any arbitrary field and J the source associated with it. The Dyson-
Schwinger equation is therefore, 〈(

∂S

∂φ
− J

)〉
J

= 0. (2.7)

It is worth mentioning that the source J can be related to the effective action Γ[〈φ〉], by

J(x) = δΓ
δ〈φ(x)〉 .

The set of infinite equations can be obtained from successive derivations of the Dyson-
Schwinger equation (2.7), and by setting the sources to zero.

In order to clarify how to obtain these equations let us study an example. We are going
to focus on the ghost-gluon sector, that means that we are going to ignore the quarks.
This restriction is usually called quenched approximation. The action has the form
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S =
∫
d4x

{1
4F

a
µνF

a
µν − c̄a∂µ(∂µ + gfabcAbµc

c) + iha∂µA
a
µ

}
.

Note that this action corresponds to the Lagrangian of Eq. (1.14) without including
quarks.

In this case, we have to consider sources Jaµ ,χ̄a, χa and Ra for the gluon, ghost, anti-
ghost and ha respectively, so the action associated with the sources is

Ssources =
∫
d4x

{
JaµA

a
µ + χ̄aca + c̄aχa +Raha

}
.

Then, as an example, the Dyson-Schwinger equation taking φ = c̄a is〈
− ∂S

∂c̄a(x) + χa(x)
〉
J

= 0.

The next step is to take the derivative respect to χb(y). We have to be careful with the
signs because the derivative is made with respect to a fermionic field. At this point one
obtains 〈

− ∂S

∂c̄a(x) c̄
b(y)

〉
= −δabδ(x− y).

The derivative ∂S
∂c̄a(x) can be calculated explicitly

∂S

∂c̄a(x) = −∂µDµc
a.

Thus,〈
∂S

∂c̄a(x) c̄
b(y)

〉
= (−∂2)

〈
ca(x)c̄b(y)

〉
−
〈
gfadc∂xµ

∫
d4z

∫
d4z′Adµ(z)cc(z′)δ(z − x)δ(z − z′)c̄b(y)

〉
= (−∂2)Dab(x− y) +

∫
d4z

∫
d4z(−gfadc∂xµδ(z − x)δ(z − z′)

〈
cc(z′)c̄b(y)Adµ(z)

〉
.

(2.8)

In the last line we have identify the ghost propagator Dab(x− y) =
〈
ca(x)c̄b(y)

〉
.

Furthermore, the connected correlation function
〈
cc(z′)c̄b(y)Adµ(z)

〉
can be expressed

in term of the three-point vertex as (see the Appendix for a perturbative explanation)〈
cc(z′)c̄b(y)Adµ(z)

〉
= −

∫
d4ud4vd4wDde

µν(z − u)Dcf (z′ − v)Γefgν (u, v, w)Dgb(w − y).

Here, Dde
µν(z − u) =

〈
Adµ(z)Aeν(u)

〉
is the gluon propagator and Γefgν (u, v, w) represents

the ghost-gluon vertex function defined as:

Γefgν (u, v, w) = δ3Γ
δcg(w)δc̄f (v)δAeν(w) .

To conclude with the example one can include these elements in the last line of Eq.
(2.8) to obtain

(−∂2)Dab(x− y)−
∫
d4ud4vd4wd4zd4z′(−gfadc(∂zµδ(z − x))δ(z − z′)Dde

µν(z − u)

×Dcf (z′ − v)Gefgν (u, v, w)Dgb(w − y)

=
{∫

d4wδ(x− w)δag(−∂2)−
∫
d4ud4vd4wd4zd4z′(−gfadc(∂zµδ(z − x))δ(z − z′)

×Dde
µν(z − u)Dcf (z′ − v)Gefgν (u, v, w)

}
Dgb(w − y) = δabδ(x− y) (2.9)
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Therefore the expression within the braces is the inverse of the full ghost propagator.
Moreover, we can identify in the first term the tree-level of the ghost propagator, (−∂2).
In the second term the −gfadc(∂zµδ(z − x))δ(z − z′) = gfacd∂zµδ(z − x)δ(z − z′) is the
tree level of the ghost-gluon vertex (see the Appendix A.2). Taking into account all these
observations, Eq. (2.9) can be represented diagrammatically as shown in figure 2.1.

= −
−1 −1

Figure 2.1 – Dyson-Schwinger equation for ghost propagator, original figure from [AHS10].
The bold line refers to the full propagator while the biggest point is the full vertex.

Similar equations can be obtained for the other propagators and vertices if different
derivatives are considered. Other examples are, the gluon propagator in figure 2.2 and the
ghost-gluon vertex 2.3.

=

− 1
6

−1

− 1
2

+
−1

− 1
2

− 1
2

− 1
2

Figure 2.2 – Dyson-Schwinger equation for gluon propagator, original figure from [AHS10].
The bold line refers to the full propagator while the biggest point is the full vertex.

= + + +

Figure 2.3 – Dyson-Schwinger equation for ghost-gluon propagator, original figure from
[AHS10]. The bold line refers to the full propagator while the biggest point is the full
vertex.

We can see that nth-derivative of Γ is related to higher order derivatives. This gives a
infinite system with coupled equations. It is worth noting that until now the procedure to
obtain the DS equation is exact, no approximation was done. However, to go further and
obtain more information some approximations are needed. In general, one implements a
truncation scheme and give an ansatz for the unknown higher order vertex functions.

The first approximation made for the gluon DS equation was proposed by Mandelstam
in [Man79]. It consists in neglecting all ghost contributions, neglecting the two loop
diagrams and taking the vertices as the bare ones. However, for the Landau gauge the
ghosts are of great importance in the infrared [vSHA98, vSAH97].

In fact, there exists a solution of the DS equation where the ghost propagator is en-
hanced in the infrared. This solution is the so called scaling solution [FP07]. It is obtained
by assuming that all the one-particle irreducible Green’s function with 2nc external ghost
legs and nA external gluon legs follow an infrared scaling law [AFLE05, HAFS08] of the
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form
Γ(nc,nA)(p2) ∼ (p2)(nc−nA)κ+(1−nc)(d/2−2)

where d is the space-time dimension and κ the anomalous dimension. For the ghost
dressing function and the gluon propagator, J(p) and D(p) respectively, defined by

Dab
µν(p) = δab

(
δµν −

pµpν
p2

)
D(p),

Dab(p) = δab
J(p)
p2

the scaling solution implies that in the infrared for d=4

D(p) ∼ (p2)κA−1,

J(p2) ∼ (p2)−κc .

In four dimensions the relation κA = 2κC holds where κC = κ. For κA > 1 the gluon
propagator goes to zero in the infrared while the ghost propagator goes to infinity quicker
than the tree-level propagator. This solution satisfies the Gribov-Zwanziger confinement
condition [Zwa04] and the Kugo-Ojima confinement scenario [KO79]. Among others, the
scaling solution has been studied by [vSAH97, AvS01, FA03, Blo03, FMP09].

On the other hand, lattice simulations [BIMPS07, CM07, SvSLW07, CM08a, CM08b]
show an infrared finite gluon propagator and more important an infrared finite ghost
dressing function. A infrared finite gluon can also be obtained by the scaling solution
considering κA = 1, but even in this case the ghost propagator exponent is enhanced with
respect to the tree level one.

A new solution called the decoupling solution was studied in [Blo03, AN04, BBL+06,
AP08, ABP08, BLLY+08, RQ11a, HvS13]. The decoupling solution succeeds in recovering
the lattice prediction of the propagators. Its name is due to the fact that the gluons
decouple below a scale corresponding to their mass. The generation of an effective dynamic
gluon mass was first elaborated by [Cor79, Cor82]. The infrared behaviour imposed by
the decoupling solution for the dressing functions are

D(p) ∼ const J(p) ∼ const.

It is worth mentioning that the scaling solution is unique while there is a family of
decoupling solutions [FMP09]. One of the decoupling solutions seem to reproduce all
lattice results even for the simulation of the vertex functions, see e.g. [AIP13, ABIP14a].

2.3 Lattice simulation
All the techniques presented before in this chapter have the aim of studying non-perturbative
QCD analytically. However, we have seen that in the infrared regime some approximations
have to be done in order to go further in the investigation. The best way to choose the
approximation is to use the results obtained by lattice simulations as a benchmark.

Lattice simulations are the most reliable tool to investigate the infrared regime. The
aim of lattice studies is to perform the functional integral explicitly with the help of com-
puters. The functional formalism contains an integral over all possible field configurations
with a weight analogous to a statistical mechanics Boltzman one. To compute the path
integral on the lattice a finite number of configuration are taken into account. We are
going to return to the path integral in the subsection 2.3.3.
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In order to compute the action it is necessary to discretize the space considering only
a finite set of points {xi} on it. Lattice simulations are realized on an hypercubic four-
dimensional lattice where the field configurations are simulated (the form of the lattice
could also be changed).

Let us define the four dimensional lattice of length L with site-spacing a, as it is shown
is figure 2.4.

a

L

Figure 2.4 – Lattice

The space-time integral becomes a sum over all lattice sites,
∫
d4x→ a4∑

x and we use
an equivalent discretized form of the Lagrangian. That means that Langrangian depends
on the value of the fields evaluated at the lattice sites, φ(xi). In the lattice approximation
we only know the fields at the lattice sites. Thus all derivatives in the Lagrangian must
be converted to finite differences.

The size of the lattice spacing has to be chosen small enough so that the discretization
remains a good approximation. But for smaller lattice spacing the cost of the simulation
is larger. The difficulty is to choose a lattice spacing as large as possible to make the
simulations treatable while keeping the discretization errors small. The lattice spacing
also acts as a ultraviolet regulator. The gluons and quarks with momenta larger than π/a
are not reachable by the lattice simulations. This cut-off introduces an error because in
a quantum field theory like QCD ultraviolet modes strongly affect infrared ones. This
effect is usually reduced by the renormalization of the parameters or by adding new local
interactions.

2.3.1 Gluon sector

In this subsection we are going to present the basic ideas of lattice QCD in the gluon sector,
a pedagogical review can be found in [Lep98, Dav02, Ste06a]. A detailed explanation and
more modern strategies can be found e.g. in [MM94].

In this case we are going to focus on the dynamical term of the gluons

SYM =
∫
d4x

1
4F

a
µνF

a
µν .

Let us remark that it is extremely difficult to formulate a lattice version of QCD
directly in terms of the gluon field Aµ, because its gauge transformation is complicated.
For the gluon sector it is better to describe the theory using the link variable Uµ(x),

Uµ(x) = Pe
{
ig
∫ 1

0 Aµ(x+atµ̂)dt
}
,
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where Uµ(x) is an element of SU(3) and P denotes the path ordering along the integration
from x to x+ µ̂. The link variable Uµ(x) is represented pictorially by a directed line from
x to x+ aµ̂. The gauge transformation of U is simply,

Uµ(x)→ U(x)Uµ(x)U †(x+ aµ̂).

Gauge invariant objects can easily be made out of links variables forming a closed loop.
The smallest nontrivial gauge invariant object built from the link operators is the

plaquette operator Px,µν which involves the product of link variables around the smallest
square at site x.

Px,µν = 1
N

ReTr
(
Uµ(x)Uν(x+ aµ̂)U†µ(x+ aµ̂+ aν̂)U†ν(x+ aν̂)

)
The plaquette allows us to describe the action in terms of the link variables since

Px,µν ∼ 1− c1a
4Tr(gFµν(x))2 +O(a6)

where c1 is a constant.
The simpler gauge invariant action that can be built, is the so called Wilson action

[Wil74]
SWil[U ] = β

∑
x

∑
1≤µ<ν≤4

(1− Px,µν)

where β = 2N
g2 and N = 3 for QCD.

The continuum expression for the Wilson action takes the form of SYM up to order a2,
in fact,

SWil =
∫
d4x

1
4Tr(Fµν)2 +O(a2)

The error in the discretization of the action can be improved by adding a rectangle operator
which cancels the order a2 of the Wilson action [Lep98]. In this way the discretization of
the classical action is achieved to order a4.

There are different ways to define the lattice action of QCD. All of them are required
to be gauge invariant and to be equal to the continuum action when the lattice spacing
vanishes.

It is important to remark that lattice simulations respect gauge invariance but the
space-time discretization softly breaks Lorentz symmetry, rotational symmetry, etc. Of
course those symmetries are recovered once the continuum limit is taken. However, it is
necessary to impose gauge invariance in order to have the same coupling constant for all
the interactions. In this way we reduce the number of parameters to work with.

2.3.2 Quark sector

Working with fermions on the lattice is much more difficult. The dynamical term of the
continuum action of the fermions is

Sf =
∫
d4xψ̄ (−γµ∂µ +M)ψ.

A naïve discretisation leads us to consider

Slatt,naïve = a4∑
x

ψ̄x
4∑

µ=1
−γµ

ψx+µ̂ − ψx−µ̂
2a +Mψ̄xψx
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This action gives problems in the computation of the propagator. In order to see them let
us consider the propagator in Fourier space:

−iγµ
Sin(pµa)

a
+M

which in the continuum takes the form −iγµpµ+M . The problem arises in the Sin function
because it goes to zero when p ∼ 0 but also when p ∼ π

a , this is called the doubling problem.
There are various possible definitions for the fermion action, e.g. the Wilson fermion

action, the Staggered fermion action, the clover-improved Wilson action, etc. The impor-
tant clue is to impose the fermionic behaviour in the functional integral, which means that
if the quark action has the form Sf = a4∑

x ψ̄xQxyψy, where Q is the fermion matrix that
depends on the gauge field Aµ, then∫

DψDψ̄e−Sf = det(Q).

Having integrated the fermions the QCD lattice action can be written as

Slattice = β
∑
x

∑
1≤µ<ν≤4

(1− Px,µν)− log (det(Q)) .

Even in the unquenched case, to compute the path integral we have to integrate over all
configurations of U (the gluon field) and the role of quarks is to introduce the extra term
− log (det(Q)). Let point out, however, that the det(Q) is more difficult to compute than
the Wilson action.

2.3.3 Path integral

A mean value in the functional formalism can be computed as the path integral over
all possible configuration of the field weighted by the exponential of the action properly
normalised,

〈O〉 =
∫
DU O e−S∫
DU e−S

To compute this integral in the lattice we can generate the configurations Uα with a
density probability e−Slattice and substitute the correlation function by

〈O〉 = 1
Nconf

Nconf∑
α

O[Uα] (2.10)

where Nconf is the number of configurations. The observable is calculated as the average of
the operator evaluated in the field configurations which were generated with a probability
e−S .

2.3.4 Landau gauge

We want to emphasize that in lattice simulations it is not necessary to fix the gauge in order
to calculate gauge invariant physical observables. However, as the lattice simulations is
the most controlled tool to investigate the infrared zone it is useful to use these simulations
to compare with analytical computations. Generally the analytical calculations are done
in a given gauge. In the lattice approach it is possible to fix the gauge and the procedure
avoid the Gribov problem.



2.3. Lattice simulation 47

For fixing the gauge in the lattice, the basic idea is to generate the set of configurations
{Uα} using some Monte Carlo method with gauge-invariant action. This set does not
respect any gauge condition in particular. Then, one applies a gauge transformation to
take the gauge configuration through the gauge orbit until it satisfies the gauge condition.
Let us call Uθµ(x) the gauge transformation of Uµ(x) that satisfies a given gauge condition,

Uθµ(x) = U(x)Uµ(x)U †(x+ µ̂).

With these configurations we compute the expectation value of a given quantity by

〈O〉 = 1
Nconf

Nconf∑
α

O[Uθα].

It is important to observe that this procedure does not affect gauge invariant quantities
because O[Uα] = O[Uθα]. In order to find the gauge configuration Uθµ(x) satisfying the
Landau gauge condition we are going to consider the functional

FU [θ] = 1
4
∑
x

4∑
µ=1

ReTrUθµ(x).

This functional is the lattice analogous to Eq. (2.2). In this case all the extrema of
the functional FU [θ] fulfil the Landau gauge condition. There exists many extrema, each
of them represent a Gribov copy. If we want to fix the gauge it is enough to consider
only one extremum. Contrarily to the analytical analysis, the choice of one and only one
maximum on the lattice can be achieved without much problem using standard algorithms
and this avoids the Gribov problem. There exist different algorithms for gauge-fixing in
the lattice, for instance the over relaxation [MO90] and Fourier-accelerated gauge-fixing
[DBK+88], a comparison of both methods can be found in [CM96, Ste06b]. The problem
is that the non-perturbative corresponding continuum limit of the action is unknown.

The Landau gauge condition on the lattice can be expressed as ∇µAθµ(x) = 0 where ∇
denotes the finite difference,

∇µAµ(x) =
4∑

µ=1
{Aµ(x+ µ̂/2)−Aµ(x− µ̂/2)}

The Aµ can be defined, for instance, at the midpoint of a link as

Aµ(x+ µ̂/2) = 1
2i
(
Uµ(x)− U†µ(x)

)
− 1

6iTr
(
Uµ(x)− U†µ(x)

)
having a precision of O(a2).

In this thesis we are going to compute correlation functions, that are gauge-dependent
quantities. Our calculations will be done in Landau gauge because this is the gauge
condition in which more simulations have been done and accordingly, the results can be
better tested. To conclude with the basic ideas of lattice simulation we are going to present
how to compute the gluon and ghost propagator on the lattice.

On the lattice, the gluon propagator is the Monte Carlo average of the corresponding
two-point function

Dab
µν(x, y) = 〈Aaµ(x)Abν(y)〉

here Aaµ(x) = Aµ(x+ µ̂/2) using Uµ(x) satisfying the Landau-gauge condition.
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The discretised Fourier transform of the propagator is

Dab
µν(q) = 1

V

〈∑
x,y

Aaµ(x)Abν(y)eiq.(x+µ̂/2)e−iq.(y+ν̂/2)
〉
.

In the continuum the tensor structure of the gluon propagator takes the form

Dab
µν(q) = δab

(
δµν −

qµqν
q2

)
D(q2).

Assuming that lattice propagator has the same tensor structure as in the continuum limit,
D(q2) can be computed as

D(q2) = 1
N2 − 1

1
d− 1

∑
a,µ

Daa
µµ(q).

The gluon propagator has been simulated in several opportunities, see e.g. [BCLM04,
FN04a, CM06, CM07, CMM08, SMP12] for quenched (without quarks) SU(2), [LSWP98,
BBLW00, FN04a, BLLY+05, BIMPS07, SvSLW07, CMM08] for quenched SU(3), [BHL+04,
FN06, IMPS+07, SMMPvS12] for full QCD simulations. The figure 2.5 shows the typical
behaviour of the gluon propagator which is qualitatively the same for both quenched and
unquenched cases and for SU(2) and SU(3).

0.0 0.5 1.0 1.5
0

1

2

3

p HGeVL

D
Hp
L
HG

eV
-

2 L

Figure 2.5 – Gluon propagator, lattice data from [CMM08].

The gluon propagator is found to be finite at low and zero momentum [OS09, BIMPS07,
CM07, SvSLW07, CM08a, CM08a, CM08b, CM10, BIMPS09, DOV10]. Another interest-
ing feature is the violation of the positivity of the spectral function. In the Euclidean
space, the spectral function, ρ(σ), is related to the gluon propagator, by

D(p) = 1
π

∫ ∞
0

dσ
ρ(σ)
p2 + σ

.

The spectral function of physical fields should be positive. In Landau gauge lattice simula-
tions found that the gluon spectral function has a negative part [BPS94, LSWP98, FN04b,
CMT05, SIMP+06, BHL+07, DSVV08, Cor13]. This may be related to gluon confinement
as the gluon propagator does not correspond (even in the transverse sector) to physical
particles.

In Landau gauge, the algorithms to fix the gauge can be thought as a standard algo-
rithm for maximizing a function. Therefore there is no need for introducing explicitly the
ghosts. However we can obtain information about the ghost propagator through the FP
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operator F . The FP operator is defined only as a function of gluons. On the lattice the
FP operator is computed by

F [U ] = −∇.D[U ]
where D[U ] denotes the covariant derivative. It can be shown that in the lattice represen-
tation

(Dµ[U ])abxy = 2ReTr[tatbUxµ ]δx+µ̂,y − 2ReTr[tatbUxµ ]δx,y
Thus, the ghost propagator in momentum space is obtained by

Dab(q) = 1
V

〈∑
x,y

(
F−1

)ab
xy
eiq.(x−y)

〉
.

If we extract the color factor Dab(q) = δab J(q)
q2 then

J(q)
q2 = 1

N2 − 1
∑
a

Daa(q) = 1
N2 − 1〈TrF

−1〉.

A typical behaviour of the ghost dressing propagator in d = 4 is shown in figure 2.6,
[CMM08]. The infrared divergence of the ghost propagator has the same order as the one
appearing at tree level in three and four dimensions [CM08b]. Contrarily to the d = 4
and d = 3 case where in the infrared the ghost propagator diverges as the tree-level, in
two dimension the ghost propagator diverges faster as p−2−2κ with anomalous dimension
κ between 0.1 and 0.2.
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Figure 2.6 – Ghost dressing function for d = 4, lattice data from [CMM08].

As we mentioned earlier there is no Gribov problem on the lattice. One could want
to try to implement in analytical calculations the same gauge fixing as the one used on
the lattice. The problem is that no representation of this fixing in terms of an action is
known.

Another option could be to try to implement directly a BRST invariant action on
the lattice. This was proposed by Neuberger in [Neu86] where a general BRST invariant
Lagrangian is presented. As in the continuum it is the solution to QsL = 0 where Qs
is the charge generator of BRST symmetry. The solution found has the form L0 + QsL̂
where L0 is gauge invariant and does not depend on the antighost and the ghost fields.
This fact makes the functional integral to vanish [Neu87] due to the antighost integral. In
order to see this, let us define in the functional integral a BRST invariant measure, which
has the form

dµ =
(∏
x,a

dca(x)dc̄a(x)dha(x)
)
×
∏
x

(
dψ(x)dψ̄(x)

∏
µ

dUµ(x)
)
ρ(h)
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where Uµ are the link variables and ρ(h) is a function that ensures the convergence of the
h-integral. This measure has the property that any integral of the form

∫
dµQsR vanishes

for any operator R, see [Neu87]. If we consider a BRST invariant operator O = O0 +QsÔ
where O0 is gauge invariant we can define the function

f(t) =
∫
dµe−

∫
L0+tQsL̂O.

For t = 1 the function matches with the numerator of the expectation value of O. We can
observe that the derivative df

dt is zero since

df

dt
=
∫
dµQs

(
e−
∫
L0+tQsL̂L̂O

)
= 0.

Therefore,

f(1) = f(0) =
∫
dµe−

∫
L0O =

∫
dµe−

∫
L0O0 +

∫
dµe−

∫
L0QsÔ

as Qse−
∫
L0 = 0 the second integral is zero. Moreover, the first integral is also zero,∫

dµe−
∫
L0O0 since the integrand does not depend on the ghost field. This implies that∫

dµe−
∫
L0+QsL̂O = 0.

This zero is independent of the physics and should be factorized from the integral and
would have to cancel with the corresponding zero in the denominator of the expectation
values. This problem is similar to FP problem where we want to factorize the gauge vol-
ume, in this case we wonder how to factorise these zeros both in the numerator and in
the denominator of a Green’s function. Perturbatively these zeros are associated with dis-
connected vacuum diagrams and in the average of gauge invariant quantities this spurious
0/0 cancels. Therefore, to any order of perturbation theory the Green’s functions of gauge
invariant quantities are the same as the ones computed with a gauge invariant action. On
the other hand, if we want to compute the expectation value non perturbatively we do not
know a way to eliminate these zeros. In consequence the problem of finding a continuum
action in the non-perturbative (infrared) regime remains unsolved.

2.4 Curci-Ferrari model in Landau gauge

The Dyson-Schwinger equations allowed to study the infrared regime reproducing with
reasonable accuracy the lattice data. However, it could be nice to have a more manageable
method to study the infrared regime, for example, pertubation theory.

We wonder which is the simplest Lagrangian that allows one to make perturbative
expansion at low momenta, reproduces the lattice data, and matches QCD at high mo-
menta. The aim of this thesis is to prove that the simplest modification of the Lagrangian
consisting of adding a gluon mass term reproduces the lattice results with good accuracy
and at the same time, gives the standard QCD results in the ultraviolet. That means
that a standard one-loop calculation of the propagators and vertices gives the expected
results obtained by lattice simulations for both the quenched and the unquenched case
in the infrared regime. The following chapters will show a detailed computations of the
propagators and vertices and the corresponding matching with lattice data.
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The Lagrangian we are going to work with is a particular case of Curci-Ferrari model
[CF75, CF76] but setting Landau gauge condition. In the Euclidean space the Lagrangian
density has the form

L = 1
4F

a
µνF

a
µν + ∂µc̄

a(Dµc)a + iha∂µA
a
µ + m2

2 AaµA
a
µ +

Nf∑
i=1

ψ̄i(−γµDµ +Mi)ψi, (2.11)

where, we recall that

F aµν = ∂µA
a
ν − ∂νAaµ + gfabcAbµA

c
ν ,

(Dµc)a = ∂µc
a + gfabcAbµc

c,

Dµψ = ∂µψ − igAaµtaψ.

The Curci-Ferrari model was introduced in the mid-seventies as an alternative to the
Higgs mechanisms for describing massive vector mesons. However, even though the model
did not succeed at that time, it was useful to study the infrared problem of massless
Yang-Mills theories.

The problem of the change in the Lagrangian is that the addition of a mass term breaks
BRST symmetry. BRST symmetry and the fact that it is nilpotent was used to prove
renormalizability at all orders using the Slavnov-Taylor identities and to define the physical
space by the cohomology of the symmetry. However, the Curci-Ferrari Lagrangian breaks
the BRST symmetry softly and it is possible to prove that the theory is renormalizable
[CF76]. The multiplicative renormalization factors were computed at one loop explicitly
in [dBSvNW96, AS03] and more recently at two and three loops inMS in [Gra02, Gra06].

It is worth mentioning that the procedure used in chapter 1 to define the Hilbert
space of physical states cannot be applied to the Curci-Ferrari Lagrangian. Furthermore
[Oji82, dBSvNW96] investigated the BRST algebra and explicitly constructed a negative
norm state, showing that the theory is not unitary with the standard definition of the
physical space. The only hope to prove the unitarity is to define another physical space
with the properties mentioned in Sec.1.2.4. It is important to mention that the same
difficulty takes place each time that BRST symmetry is broken as happens in lattice
simulations, in Gribov-Zwanziger action and in Dyson-Shwinger approach, that is in all
non-perturbative gauge-fixed analysis of QCD.

2.4.1 Symmetries and identities

In this subsection we want to discuss the remaining symmetries of the Lagrangian and the
Slavnov-Taylor identities produced by them. These identities will be useful later on when
we have computed the vertices to test the validity of the calculations.

The Slavnov-Taylor identities [Tay71a, Sla72] are a generalization of Ward identities
[War50, Tak57]. They are obtained by using the symmetries of the action in the functional
integral. In order to derive them let us consider that the action and the measure are
invariant under the infinitesimal transformation φ → φ′ = φ + δφ. Thus, the generating
functional, Z[J ], can be written as

Z[J ] = eW [J ] =
∫
Dφe−S[φ]+Ssources[φ]

=
∫
Dφ′e−S[φ′]+Ssources[φ′] =

∫
Dφe−S[φ]+Ssources[φ]+δSsources

∼
∫
Dφe−S[φ]+Ssources[φ] (1 + δSsources) .
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Therefore the Slavnov-Taylor identity is

〈δSsources〉 =
∫
ddx

δΓ
δ〈φ〉
〈δφ〉 = 0. (2.12)

In the particular case where δφ is linear in the fields we recover the Ward identities.
For simplicity we are going to focus on the quenched case. As we mentioned above

the Lagrangian of Eq. (2.11) does not respect the nilpotent BRST symmetry but it is
invariant under the soft-BRST symmetry, which for an arbitrary field φ′ is φ → φ + ηsφ
where η is a Grassmann variable. The soft-BRST symmetry is defined as

sAaµ = (Dµc)a, sca = −g2f
abccbcc, sc̄a = iha and si(ha) = m2ca. (2.13)

For the soft-BRST symmetry is enough to consider the term of sources

Ssources =
∫
ddx

{
JaµA

a
µ + χ̄aca + c̄aχa +Raha + K̄asAaµ + L̄asca

}
.

Remembering the relation between Γ and the action

Γ(〈Aaµ〉, 〈ca〉, 〈c̄a〉, 〈ha〉, K̄a, L̄a) = −
∫
Dφe−S+Ssources

+
∫
ddx

{
Jaµ〈Aaµ〉+ χ̄a〈ca〉+ 〈c̄a〉χa +Ra〈ha〉

}
(2.14)

we obtain that

δΓ
δ〈Aaµ〉

= Jaµ ,
δΓ
δ〈ca〉

= −χ̄a, δΓ
δ〈c̄a〉

= χa,
δΓ
δ〈ha〉

= Ra,

δΓ
δK̄a

µ

= −〈sAaµ〉 and δΓ
δL̄a

= −〈sca〉.

If we include these relations in the Slavnov-Taylor equation (2.12) we can write

〈
∫
ddxJaµsA

a
µ − χ̄asca + sc̄aχa +Rasha〉 = 0

=
∫
ddx

{
Jaµ〈sAaµ〉 − χ̄a〈sca〉+ 〈sc̄a〉χa +Ra〈sha〉

}
=
∫
ddx

{
− δΓ
δAaµ

δΓ
δK̄a

µ

− δΓ
δca

δΓ
δL̄a

+ iha
δΓ
δc̄a
− im2 δΓ

δha
ca
}

(2.15)

We can conclude that the Slavnov-Taylor identity associated with the soft-BRST is
∫
ddx

{
δΓ

δAaµ(x)
δΓ

δK̄a
µ(x)

+ δΓ
δca(x)

δΓ
δL̄a(x)

− iha(x) δΓ
δc̄a(x) + im2 δΓ

δha(x)c
a(x)

}
= 0 (2.16)

The second symmetry we are going to briefly mention is the conservation of the ghost
number. One must associate a ghost number 1 to the ghost field, a -1 to the anti-ghost
field and to K̄a

µ and a ghost number -2 to L̄ while other fields are consider to have zero
ghost number so the action has zero ghost number. The same property is fulfilled by Γ.

Another important relation between the derivatives of the effective action is the equa-
tion of motion for c̄a. It consists in translating the anti-ghost c̄a(x) → c̄a(x) + ε̄a(x),
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where ε is an infinitesimal x-dependent Grassman variable. This transformation is not a
symmetry of the action and therefore we have to modify a little the condition (2.12) to

〈δS − δSsources〉 = 0.

Which in terms of ε reads

〈
∫
ddx(−∂µε̄a(Dµc)a + ε̄aχa)〉 = 0,

we can integrate by parts and express the source as the derivative of Γ to obtain∫
ddxε̄a(−∂µ

δΓ
δK̄a

µ

+ δΓ
δ〈c̄a〉

) = 0.

As this relation holds for an arbitrary ε̄a, we can deduce the equation of motion related
to c̄a as

∂µ
δΓ

δK̄a
µ(x)

= δΓ
δ〈c̄a〉(x) . (2.17)

More relations between the different derivatives of Γ can be obtained by taking the
derivatives with respect to other fields. Moreover, the symmetry group of the action is
bigger that the soft-BRST [DS89, TW09b], this group and its Slavnov-Taylor equations
will be presented and studied in the Appendix together with the equation of motions of
the theory.





Chapter 3

One loop corrections: Ghost and
Gluon propagator

In the last chapter we have motivated the use of Curci-Ferrari model based on phenomeno-
logical arguments. The gluon propagator behaves as if it was massive at low momentum.
In the Landau gauge the Curci-Ferrari model consists in adding a gluon mass term to the
QCD Lagrangian,

L = 1
4F

a
µνF

a
µν + ∂µc̄

a(Dµc)a + iha∂µA
a
µ + m2

2 AaµA
a
µ +

Nf∑
i=1

ψ̄i(−γµDµ +Mi)ψi, (3.1)

where,

F aµν = ∂µA
a
ν − ∂νAaµ + gfabcAbµA

c
ν ,

(Dµc)a = ∂µc
a + gfabcAbµc

c,

Dµψ = ∂µψ − igAaµtaψ.

The aim of this thesis is to analyse to what extent this little modification can reproduce
the lattice simulations of Landau gauge correlation functions by doing perturbation theory.
The theory was already shown to be renormalizable [CF76, dBSvNW96, DS89, BM96] but
the unitarity of the theory remains unproven. More than that lattice simulations show
that at low momenta the standard definition of the physical space also includes negative
norm states. On the opposite regime, this model matches with Yang-Mills theory in the
limit of large momentum since, for momentum scales much larger than the mass of the
gluons, this mass can be neglected. Some ideas to justify the presence of this new term
from first principles can be found in [ST12].

In this chapter we are going to work in the quenched approximation meaning that
quarks will be ignored. We are going to compute one loop corrections for the gluon and
ghost propagators and for the ghost-gluon and three-gluon vertices. These corrections
were computed several times in standard Yang-Mills theory, see e.g. [DOT96b, DOT96a].
The presence of a mass term yields a different propagator for the gluons and this fact
makes the calculation of the vertices considerably harder.

In Sect 3.1 we will present the techniques used to compute the Feynman diagrams
using the ghost propagator as an example. The calculation can be done by hand for the
propagators and for the ghost-gluon vertex setting the gluon momentum to zero. More
general cases are difficult to manage manually and the Mathematica software [Wol10] is
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used. The expressions for the one-loop gluon and ghost propagator are presented in Sect
3.2. All the calculations are done in the Euclidean case for arbitrary space-time dimension,
d.

In section 3.3 it is shown that our calculations compare very well with lattice sim-
ulations in d = 3, d = 4 both for SU(2) and SU(3). Later the renormalization group
improvement is considered and we show the comparison with lattice data in this situation.
Furthermore, an estimation of the error depending on the initial values of the parameters
in the flow of the renormalization group equation is studied.

3.1 Feynman diagram techniques: Ghost propagator
In this section we are going to compute the one loop correction to the ghost propagator.
The calculation will be presented in detail in order to introduce the techniques used to
compute correlation functions in general. In Sect. 1.3 we presented the perturbative ap-
proach where it was established that when the coupling constant g is small it is convenient
to separate the Lagrangian in two, the quadratic part and the interacting Lagrangian Lint.
The quadratic part gives Gaussian expectation values which are easier to compute due to
Wick’s theorem.

To compute a propagator in Fourier space, D(p), we are going to consider only the
1-PI diagrams since the propagator is related with Σ(p), the sum of all amputated 1-PI
contributions, as

D−1(p) = D−1
0 (p2)− Σ(p2)

where D0(p2) is the free propagator. This relation holds if Σ commutes with the free
propagators. This is clearly the case for ghosts and gluons but it is not so clear for quarks.
However, for the quarks propagator the corresponding 1-PI diagrams depend only on /p,
that means Σ = Σ(/p) and the propagator, 1

−i/p+M , also commutes with Σ.
Therefore in the computation of the ghost propagator, we only need terms associated

with one-particle irreducible diagrams which correspond at one loop to the diagram of
figure 3.1. In Fourier space it takes the form∫

ddq

(2π)d
(
ipµgf

aAc
) 1
q2

(
iqνgf

Bac
) P⊥µν(q − p)

(q − p)2 +m2

= −g2faAcfBacpµ

∫
ddq

(2π)d qν
1
q2

P⊥µν(q − p)
(q − p)2 +m2 .

p pq

q − p

A Ba

c

µ ν

Figure 3.1 – One-loop correction for the ghost propagator.

The factors of the structure constants are equal to faAcfBac = −NδAB. Furthermore,
the last line can be improved observing that qνP⊥µν(q−p) = (qν−pν)P⊥µν(q−p)+pνP⊥µν(q−
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p) = pνP
⊥
µν(q − p) which has the advantage of having one internal momentum component

less to compute in the integral. This trick will be used wherever possible. Therefore, the
diagram of figure 3.1 represents the integral

Ng2δABpµpν

∫
ddq

(2π)d
1
q2

P⊥µν(q − p)
(q − p)2 +m2

3.1.1 Feynman trick

It is important to remark that, as some of the integral are divergent, we have to regularize
the theory. In the previous example we have already regularized the theory using the
dimensional regularization and we will continue using it so the integrals that we are going
to present are well-defined.

The gluon propagator always comes with a factor P⊥µν(q)
q2+m2 which has a term like 1

q2
1

q2+m2 .
The more fractions of the form 1

q2+m2 we have, the harder the corresponding integrals are
to compute. The first trick we are going to present allows us to reduce the number of
propagators in each integral at the cost of increasing the number of integrals to be done.
It consists in the substitution

1
q2

1
q2 +m2 = 1

m2

( 1
q2 −

1
q2 +m2

)
. (3.2)

This trick will be implemented as many times as needed to reduce the number of prop-
agator in the integrals. As a consequence the number of Feynman parameters (presented
below) needed will be reduced and the integrals will be easier to compute.

The integral ∫
ddq

(2π)d
1

(q + p)2
P⊥µν(q)
q2 +m2

which is equivalent to the integral of Eq. (3.1) will be separated in∫
ddq

(2π)d
1

(q + p)2

(
δµν

q2 +m2 −
1
m2

qµqν
q2 + 1

m2
qµqν

q2 +m2

)
.

It will be conveniently expressed in terms of

I1 =
∫

ddq

(2π)d
1

(q + p)2
δµν

q2 +m2 ,

I2 = − 1
m2

∫
ddq

(2π)d
1

(q + p)2
qµqν
q2

and
I3 = 1

m2

∫
ddq

(2π)d
1

(q + p)2
qµqν

q2 +m2

The denominators can be combined using the Feynman trick, see e.g [PS95], which will
simplify the computation of the angular integral. Feynman trick consists in using x1,...,xn,
Feynman parameters, one for each different propagator and making the substitution

1
Dν1

1 D
ν2
2 ...D

νn
n

=
∫ 1

0
dx1...dxnδ(

∑
xi − 1)

∏
xνi−1
i

(x1D1 + ...xnDn)
∑

νi

Γ(ν1 + ...+ νn)
Γ(ν1)...Γ(νn) (3.3)
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where Di denotes the ith-propagator and Γ in this case is the Euler Gamma function.
To compute the three integrals mentioned earlier we only need one Feynman parameter,

x. If we apply the Feynman trick to the denominator of I1 we have

1
(q + p)2(q2 +m2) =

∫ 1

0
dx

1
(x(q + p)2 + (1− x)(q2 +m2))2

=
∫ 1

0
dx

1
(q2 + 2xq.p+ xp2 + (1− x)m2)2 =

∫ 1

0
dx

1
(l2 + ∆)2

where in the last line we change of variable l = q + xp and ∆ = x(1 − x)p2 + (1 − x)m2

does not depend on the integration momentum variable.
The first integral I1 in dimensional regularization is given by

I1 =
∫ 1

0
dx

∫
ddl

(2π)d
δµν

(l2 + ∆)2 =
∫ 1

0
dx δµν

Γ(2− d/2)
(4π)d/2

∆d/2−2.

Applying the same trick to the third integral I3 we obtain

I3 = 1
m2

∫ 1

0
dx

∫
ddl

(2π)d
(l − xp)µ(l − xp)ν

(l2 + ∆)2 = 1
m2

∫ 1

0
dx

∫
ddl

(2π)d
lµlν + x2pµpν

(l2 + ∆)2

where the odd power of l were eliminated because they integrate to zero. Moreover,
integrals with two power of l can be substituted by∫

ddl

(2π)d lµlνf(l2) = δµν
d

∫
ddl

(2π)d l
2f(l2).

Including this into the calculation of I3 we have

I3 = 1
m2

∫ 1

0
dx

{
δµν
d

∫
ddl

(2π)d
l2

(l2 + ∆)2 + x2pµpν

∫
ddl

(2π)d
1

(l2 + ∆)2

}
.

The integrals over l are known and they can be found in e.g. [LB91]. We are interested
in the value of ∫

ddl

(2π)d
l2

(l2 + ∆)2 = d

2
Γ(1− d/2)

(4π)d/2
∆d/2−1.

Putting this result in I3 we obtain

I3 = 1
m2

1
(4π)d/2

∫ 1

0
dx

(
δµν
2 ∆d/2−1Γ(1− d/2) + x2pµpν∆d/2−2Γ(2− d/2)

)
= 1
m2

Γ(2− d/2)
(4π)d/2

∫ 1

0
dx

(
δµν

(2− d)∆ + x2pµpν

)
∆d/2−2.

The second integral I2 has a similar form

I2 = − 1
m2

Γ(2− d/2)
(4π)d/2

∫ 1

0
dx

(
δµν

(2− d)∆(m = 0) + x2pµpν

)
∆(m = 0)d/2−2.

To conclude, the steps we are going to use for computing a Feynman diagram are:

• Apply the substitution of Eq. (3.2) in order to decrease the number of propagators
in each integral.
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• Expand the sum and perform the Feynman trick.

• Ignore the integrals with an odd number of l in the numerator by using parity
symmetry.

• Perform the integrals of the form
∫ ddl

(2π)d
ln

(l2+∆)2 .

All these tasks are done by the Mathematica algorithm. The result is an integral over the
Feynman parameters that in some cases can be computed analytically in integer dimen-
sions. In other cases, this integral can not be calculated analytically so the integration is
done numerically.

To conclude Eq. (3.1) is given by

Ng2δABpµpν (I1 + I2 + I3)

= Ng2δABpµpν
Γ(2− d/2)

(4π)d/2
∫ 1

0

{
∆d/2−2

(
δµν + 1

m2 ( δµν
(2− d)∆ + x2pµpν)

)
−∆′d/2−2 1

m2

(
δµν

2− d∆′ + x2pµpν

)}
= Ng2δAB

Γ(2− d/2)
(4π)d/2

p2

m2

∫ 1

0

{(
(1− x)m2 + x(1− x)p2

)d/2−2

×
(
m2 + p2x2 + (1− x)m2 + x(1− x)p2

2− d

)
−
(
x(1− x)p2

)d/2−2
(
p2x2 + x(1− x)p2

2− d

)}
.

The bare one-loop inverse of the ghost propagator is given by

Γ(2)
cac̄b

(p) = δabp2 −Ng2δab
Γ(2− d/2)

(4π)d/2
p2

m2

∫ 1

0
dx

{(
(1− x)m2 + x(1− x)p2

)d/2−2

×
(
m2 + p2x2 + (1− x)m2 + x(1− x)p2

2− d

)
−
(
x(1− x)p2

)d/2−2
(
p2x2 + x(1− x)p2

2− d

)}
.

This integral can be done analytically for integer dimension (see for some examples
Sect.3.3).

3.2 Gluon propagator
Let us consider now the self energy for gluons. The diagrams which contribute at one loop
are the three shown in figure 3.2. In order to calculate those diagrams we are going to

Figure 3.2 – One-loop correction for the two-point gluon vertex function.

follow the same procedure explained for the ghost propagator. The computation of these
diagrams by hand using the Feynman parameters are cumbersome but they were done
in order to compare the results with the ones given by the Mathematica algorithm. The
calculation is not particularly enlightening and we do not give the details here.



60 Chapter 3. One loop corrections: Ghost and Gluon propagator

q

µ, a ν, b

ρ σ

c

p p

Figure 3.3 – Snail

Let us start with the left diagram of the gluon correction. This diagram is known as
snail and its only effect is to renormalize the mass. The definition of momenta and indices
chosen is shown in figure 3.3.

Following the Feynman rules the calculation of this diagram that we denote DAA
1 is

given by

DAA
1 = −1

2g
2
∫

ddq

(2π)d
1

q2 +m2P
⊥
ρσ(q)

{
feabfecc(δµρδνσ − δµσδνρ) + feacfebc(δµνδρσ − δµσδνρ)

+feacfecb(δµρδνσ − δµνδρσ)
}

= −1
2g

2feacfebc
∫

ddq

(2π)d
1

q2 +m2P
⊥
ρσ(q) {2δµνδρσ − δµσδνρ − δµρδνσ}

= −1
2g

2Nδab
∫

ddq

(2π)d
1

q2 +m2

(
2δµν(d− 1)− 2P⊥µν(q)

)
= −Ng2δab

∫
ddq

(2π)d
1

q2 +m2

(
δµν(d− 1)− P⊥µν(q)

)
= −g

2Nδab
(4π)d/2

(d− 1)2

d
md−2Γ(1− d/2)δµν

where the last integral was done by standard textbook formulas.
The next diagram that we are going to compute is more interesting and is represented

in figure 3.4. There is a factor 1/2 coming from the expansion of the exponential and a
factor 2 from Wick’s theorem. On the other hand, the ghost loop brings a minus sign.
Feynman rules lead to the expression DAA

2 given by

DAA
2 = −

∫
ddq

(2π)d
(
igfacdqµ

) 1
(q − p)2

(
igf bdc(qν − pν)

) 1
q2

= −g2Nδab
∫

ddq

(2π)d
qµ(q − p)ν
(q − p)2q2

= g2N
(
p2)d/2−2

(d− 2)(4π)d/2
Γ
(
2− d

2

)
Γ
(
d
2

)2

Γ(d)
(
(d− 2)pµpν + p2δµν

)
. (3.4)

The last diagram is the most complex due to the presence of two three-gluon vertices.
It is represented in figure 3.5 and it is denoted as DAA

3 . The vertices bring a factor
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µ, a ν, b

p p

q

q − p

c

d

Figure 3.4 – One loop diagram with a ghost loop.

1/(3!)2, the exponential a factor 1/2 and there are 6 × 3 × 2 equivalent ways of choosing
the pairwise contractions in Wick’s theorem. Therefore, the global factor is 1/2. The
diagram is computed as follows

µ, a ν, b

σ ǫ

ηρ

p p−(q + p)

q

d

c

Figure 3.5 – One loop diagram with a gluonic loop.

DAA
3 = 1

2

∫
ddq

(2π)d if
acd [(2q + p)µδσρ + (p− q)σδµρ − (2p+ q)ρδµσ] P⊥σε(p+ q)

(q + p)2 +m2

× if bdc [(2q + p)νδεη + (p− q)εδνη − (2p+ q)ηδνε]
P⊥ηρ(q)
q2 +m2

= 1
2f

acdf bdc
∫

ddq

(2π)d i [(2q + p)µδσρ + (2p− (p+ q))σδµρ − ((p+ q) + p)ρδµσ] P⊥σε(p+ q)
(q + p)2 +m2

× i [(2q + p)νδεη + (2p− (p+ q))εδνη − (2p+ q)ηδνε]
P⊥ηρ(q)
q2 +m2 .

Eliminating the trivial projections of the form qνP
⊥
µν(q) we have

DAA
3 = N

2

∫
ddq

(2π)d [(2q + p)µδρσ + 2pσδµρ − 2pρδµσ] [(2q + p)νδεη + 2pεδνη − 2pηδνε]

× P⊥σε(p+ q)
(q + p)2 +m2

P⊥ηρ(q)
q2 +m2 .

After doing the Feynman trick and performing the integral over momentum space the
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third diagram reads

DAA
3 =

g2NΓ
(
2− d

2
)

2(4π)d/2

∫ 1

0
dx

4p2
(

∆d/2
0 + ∆d/2

1 − 2∆d/2
2

)
(d− 2)dm4 + 4p2∆d/2−2

1
(
2 + p2/m2 (2x2 − 2x+ 1

))
− 8∆2

1p
4/m2∆d/2

2 + (2− d)
(

(d− 1)∆
d
2−1
1 − p4

m4

((
2x2 − 2x+ 1

)
∆d/2−1

2 − (x− 1)2∆d/2−1
1

)
+ p4

m4 (x− 1)2∆d/2−1
0 + 3p2

m2

(
∆

d
2−1
1 −∆

d
2−1
2

)))
δµν +

g2NΓ
(
2− d

2
)

8(4π)d/2m4

∫ 1

0
dx

32
(

∆d/2
0 + ∆d/2

1 − 2∆d/2
2

)
(d− 2)d

− (d− 2)
x− 1

(
−(x− 1)

(
∆

d
2−1
1

(
8m2 + p2 (−20x2 + 4x+ 3

))
− 2∆

d
2−1
2

(
4m2 − 5p2(1− 2x)2))

−3p2(x− 1)∆
d
2−1
0 − 4(5x− 1)∆d/2

0

)
+ 4 1

∆2
1∆2

2∆2
3x

2

(
∆2

2∆2
3x

2∆d/2
1
(
m4 (d(1− 2x)2 − 4x2 + 4x− 9

)
+m2p2 (−4x2 + 4x− 3

)
+ p4(1− 2x)2x2)−∆2

1p
2∆d/2

2

×
(
∆2

2
(
m2 (1− 4x2)+ p2 (8x4 − 16x3 + 14x2 + 1

))
− 2∆2

3x
3 (2m2 + 3p2)) +(1− 2x)2∆d/2

0
(x− 1)2

))
pµpν

(3.5)

where ∆0 = −p2(−1 + x)x, ∆1 = m2 − p2(−1 + x)x, ∆2 = m2x − p2(−1 + x)x, ∆3 =
m2 − p2(−1 + x). It is possible to perform the integral over the Feynman parameter x
analytically in integer dimension but since the result is really long we will not write it
here (for special dimensions see Sect.3.3). The results of all diagrams agree with those
presented in [TW11].

Both the ghost and gluon two-points vertex functions are divergent when d = 4. The
divergent part of the ghost two-point vertex function is

Γ(2),1-loop
cac̄b

(p) d→4∼ −3
2
g2Nδabp2

16π2(4− d)

and for the gluon

Γ(2),1-loop
AaµA

b
ν

(p) d→4∼ g2N

16π2(4− d)

(3
2m

2 − 13
3 p

2
)
δabP⊥µν(p). (3.6)

The divergences found are in agreement with previous calculations [dBSvNW96, Gra03].
The renormalization factors in MS scheme in dimensional regularization, that means

the ones that do not modify the finite parts while absorbing the divergences, are

Zm2 = 1− 35
6
g2N

16π2
1

4− d ,

Zc = 1 + 3
2
g2N

16π2
1

4− d ,

ZA = 1 + 13
3
g2N

16π2
1

4− d . (3.7)

3.2.1 Renormalization scheme and renormalization group

We have already computed the renormalization factors in the MS scheme. However, we
prefer to introduce another scheme with more physical meaning which leads to different
finite parts for the renormalization factors. Moreover, to estimate the dependence on the
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scheme we are going to work with two different schemes, the vanishing momentum (VM)
and the infrared safe(IS), already presented in [TW11]. Physical quantities are supposed
to be scheme independent. However, as our calculations are only the leading order in
perturbation theory a dependence is expected (hopefully small).

The relations between bare and renormalized vertices are the following:

Γ(2)
AaµA

b
ν
(p) = ZAΓ(2),bare

AaµA
b
ν

(p)

Γ(2)
cac̄b

(p) = ZcΓ(2),bare
cac̄b

(p)

Γ(3)
cac̄bAcµ

(p, r) = Zc
√
ZAΓ(3),bare

cac̄bAcµ
(p, r)

Γ(3)
AaµA

b
νA

c
ρ
(p, r) = Z

3/2
A Γ(3),bare

AaµA
b
νA

c
ρ
(p, r) (3.8)

For convenience in the definition of the renormalization scheme we are going to parametrize
the two-point vertex function as

Γ(2)
AaµA

b
ν
(p) = δab

(
Γ⊥(p)P⊥µν + Γ‖(p)P ‖µν

)
, (3.9)

Γ(2)
cac̄b

(p) = δab
p2

J(p) (3.10)

It is important to note that only the transverse part of the gluon vertex function is related
with the gluon propagator in Landau gauge, 〈AaµAbν〉(p) = δab

P⊥µν(p)
Γ⊥(p) , and therefore the lon-

gitudinal part is not directly accessible by lattice simulations. However, some information
about the longitudinal part can be obtained from Ward identities.

The relation for the renormalization of the coupling constant is based on the Taylor
scheme [Tay71b]. The relation Zg

√
ZAZc = 1 is automatically fulfilled by the divergent

parts of the renormalization factors to all orders of perturbation theory since no loop
corrections appear when the ghost momentum is zero. The Taylor scheme extends this
property also to the finite parts. The Taylor scheme used in both schemes makes the
β-function of the coupling constant easy to compute in terms of the gluon and ghost
anomalous dimensions, as

βg = µ
∂g

∂µ

∣∣∣
gB

= µ
∂
(
gB
Zg

)
∂µ

= −µgB
Zg

1
Zg

∂Zg
∂µ

= −g
(
µ
∂ logZg
∂µ

)

= −g
(
µ
∂ log(

√
ZAZc)−1

∂µ

)
= g

(
µ
∂(1/2 log(ZA) + log(Zc))

∂µ

)
= g

(
γA
2 + γc

)
. (3.11)

The β-functions and the anomalous dimensions are important in order to know the evo-
lution of the renormalized parameter with the scale. All the parameters will be expressed
in term of the renormalized ones, which evolve following Eqs. (1.21). Once the initial
condition are imposed at a scale µ0 and taking the running scale µ ∼ p, the two-point
vertex functions have the form

Γ(2)
AA(p, µ0, g,m

2) = p2 +m2(p)
zA(p) ,
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and
Γ(2)
cc̄ (p, µ0, g,m

2) = p2

zc(p)

where z was defined in Eq. (1.25).
These last relations can be simplified using the precise choice of the renormalization

scheme. We are going to separate the rest of the section in two, one for each scheme in
order to give more details of the behaviour of each one.

The vanishing momentum scheme

The vanishing momentum (VM) scheme is defined as

Γ⊥(p = µ) = m2 + µ2, J(p = µ) = 1, Γ⊥(p = 0) = m2 and Zg
√
ZAZc = 1. (3.12)

Unfortunately it presents a Landau pole, that means that the coupling constant goes to
infinity at finite renormalization scale µ. The infrared Landau pole that appears in this
scheme has no physical meaning. It is just an artificial pole which is consequence of
the renormalization scheme chosen, which is not compatible with the fact that Γ⊥ is not
monotonic.

The evolution of the gluon mass is given by

βm2 = µ
∂m2

∂µ

∣∣∣
gB ,mB

= µ
∂

(
m2
B

Zm2

)
∂µ

= −m2
(
µ
∂ logZm2

∂µ

)
= −m2

(
µ
∂ logZ−1

A

∂µ

)
= m2γA. (3.13)

where in the last line we have used that ∂ logZm2
∂µ = ∂ logZ−1

A
∂µ . This last relation is a

consequence of the non-renormalization theorem for the mass presented in Appendix B.4.
It can be deduced observing the equation (B.23):

Γ⊥B(0)
JB(0) = m2

B

and imposing the vanishing momentum condition as follows

Γ⊥B(0)
JB(0) = Z−1

A Γ⊥R(0)
JB(0) = Z−1

A m2
R

JB(0) = Zm2m2
R

therefore,
Z−1
A

JB(0) = Zm2 .

If we take the logarithm we obtain

logZ−1
A − log JB(0) = logZm2 .

As the bare quantities do not depend on the renormalization scale µ, we can conclude that

∂ logZm2

∂µ
= ∂ logZ−1

A

∂µ
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The relation (3.13) in addition to the Taylor scheme simplifies the factors z consider-
ably, its expressions are given by

log zA(µ) =
∫ µ

µ0

γA(µ′)
µ′

dµ′ =
∫ µ

µ0

βm2(µ′)
µ′m2(µ′)dµ

′ =
∫ µ

µ0

1
m2(µ′)

∂m2

∂µ′
dµ′ =

∫ m2(µ)

m2(µ0)

dm2

m2

= log
(
m2(µ)
m2(µ0)

)

and

log zc(µ) =
∫ µ

µ0

γc(µ′)
µ′

dµ′ =
∫ µ

µ0

(
βg(µ′)
µ′g(µ′) −

1
2
βm2(µ′)
µ′m2(µ′)

)
dµ′ = log

(
g(µ)
g(µ0)

)
− 1

2 log
(
m2(µ)
m2(µ0)

)

where in the first line we have used that γc = βg
g −

βm2
2m2 deduced from combining Eq. (3.11)

with Eq. (3.13). Therefore

zA(µ) = m2(µ)
m2(µ0) , and (3.14)

zc(µ) = g(µ)
g(µ0)

√
m2(µ0)
m2(µ) . (3.15)

The infrared-safe scheme

The other scheme that we are going to consider has an advantage. For some initial
conditions, it does not present a Landau pole so we can always chose the scale equal to
the relevant momentum scale p. The infrared safe (IS) scheme is characterize by

Γ⊥(p = µ) = m2 + µ2, J(p = µ) = 1, Zm2ZAZc = 1. (3.16)

in addition to the Taylor scheme. The IS renormalization scheme differs from the VM
scheme by replacing the constraint at zero momentum of the gluon two-point vertex func-
tion by

ZAZcZm2 = 1. (3.17)

This relation, for the divergent parts, was first observed through perturbative calculations
in [DRdCS91, Gra03] and it can be seen as a consequence of the nonrenormalization
theorem presented in [DGL+05, Wsc08, TW11] and explained in Appendix B.4.

The equation (B.24) shows that, as the renormalized quantities are finite, the divergent
parts of the renormalization factors satisfy ZAZcZm2 = 1. This relation is also automati-
cally satisfied by the leading order finite parts. Therefore it is possible to choose to satisfy
this identity, also for the finite parts, for all order of perturbation theory. This is the case
of the IS scheme. In this case, the renormalized mass m2

R does not correspond to the value
of the renormalized propagator at zero momentum any more.

From the relation ZAZcZm2 = 1, it is easy to relate the βm2-function with the anoma-
lous dimension of the ghost and gluon propagators, having

βm2 = −m2
(
µ
∂ logZm2

∂µ

)
= −m2

(
µ
∂ log(ZAZc)−1

∂µ

)
= m2

(
µ
∂(log(ZA) + log(Zc))

∂µ

)
= m2 (γA + γc) . (3.18)

In this scheme, the gluon anomalous dimension change with respect to the VM scheme
while the ghost anomalous dimension remains identical at one loop. The expressions
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relating zA(µ) and zc(µ) to the coupling constants can be deduced using the relations
γA = 2

(
−βg

g + βm2
m2

)
and γc = 2βgg −

βm2
m2 which were obtained by Eq. (3.11) and Eq.

(3.18) as follows

log zA(µ) =
∫ µ

µ0

γA(µ′)
µ′

dµ′ =
∫ µ

µ0
{−2 βg(µ

′)
µ′g(µ′) + 2 βm2(µ′)

µ′m2(µ′)}dµ
′

= −2 log
(
g(µ)
g(µ0)

)
+ 2 log

(
m2(µ)
m2(µ0)

)

and

log zc(µ) =
∫ µ

µ0

γc(µ′)
µ′

dµ′ =
∫ µ

µ0
{2 βg(µ

′)
µ′g(µ′) −

1
2
βm2(µ′)
µ′m2(µ′)}dµ

′

= 2 log
(
g(µ)
g(µ0)

)
− 1

2 log
(
m2(µ)
m2(µ0)

)

therefore

zA(µ) = m4(µ)
m4(µ0)

g2(µ0)
g2(µ) and (3.19)

zc(µ) = g2(µ)
g2(µ0)

m2(µ0)
m2(µ) . (3.20)

3.3 Results

3.3.1 Results in d = 4 imposing the VM-renormalization scheme

In general, two-point vertex functions containing only two types of propagators can be
computed analytically in an integer dimensional space. Here, we present the results in
four space dimension which is the dimension with the most physical interest. Imposing
the vanishing momentum condition within the renormalization scheme we find that the
renormalized Γ⊥ and J(p) are finite and take the form

Γ⊥(p)/m2 = s+ 1 + g2Ns

384π2

{
111s−1 − 2s−2 + (2− s2) log s

+ 2(s−1 + 1)3
(
s2 − 10s+ 1

)
log(1 + s)

+ (4s−1 + 1)3/2
(
s2 − 20s+ 12

)
log

(√
4 + s−

√
s√

4 + s+
√
s

)
− (s→ µ2/m2)

}
, (3.21)

J−1(p) = 1 + g2N

64π2

{
− s log s+ (s+ 1)3s−2 log(s+ 1)− s−1 − (s→ µ2/m2)

}
, (3.22)

where s = p2/m2.
These expressions can be compared with lattice simulations. In order to do so, we

have to fix the value of the coupling constant and gluon mass at the renormaliztion scale
µ0 where the renormalization scheme was established. The fitting is done by using a mul-
tiplicative constant to relate our renormalization scheme with the unrenormalized lattice
data. The fitting parameters were chosen to minimize simultaneously the squared errors
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defined as

χ2
AA = 1

4N
∑
i

(Γ⊥lt.(µ0)2 + Γ⊥lt.(pi)2)
(

1
Γ⊥lt.(pi)

− 1
Γ⊥th.(pi)

)2

χ2
cc̄ = 1

4N
∑
i

(J−2
lt. (µ0) + J−2

lt. (pi)) (Jlt.(pi)− Jth.(pi))2 . (3.23)

This definition of the error corresponds to a sort of average between the absolute error
and the relative error.

We expect that if we implement the RG flow the accuracy of the fit in the ultraviolet
will increase allowing us to fit simultaneously the UV and IR regimes. In four dimensions,
imposing the vanishing momentum scheme, the anomalous dimensions read as

γA =− g2N

192π2t3

(
t(34t2 − 175t+ 6)− 2t5 log t+ 2(t+ 1)2(2t3 − 11t2 + 20t− 3) log(t+ 1)

+ 2t3/2
√
t+ 4

(
t3 − 9t2 + 20t− 36

)
× log

(√t+ 4−
√
t√

t+ 4 +
√
t

))
,

(3.24)

and

γc = − g2N

32π2t2

(
2(t+ 1)t− t3 log t+ (t+ 1)2(t− 2) log(t+ 1)

)
, (3.25)

where t = µ2/m2.
From these expressions we can deduce the β-functions for the coupling constant and

mass. The function βm2 is obtained by multiplying the gluon anomalous dimension by
the squared mass. The evolution of the coupling constant is given by Eq. (3.11) which
at high momentum with respect to the gluon mass matches with the standard β-function.
The ultraviolet and infrared limits are

βg ∼
{
− g3N

16π2
11
3 if µ� m,

− g3N
16π2

1
12 if µ� m.

(3.26)

In the VM scheme βg remains negative for renormalization scale smaller than m. This
property results in the existence of a Landau pole meaning that the coupling constant
diverges at a finite renormalization scale.

However, as we established earlier there is no need for the renormalization group at
small momentum in d = 4. At low momentum the large logarithm could only arrive from
the ghost massless propagator since the gluon propagator is regularized in the infrared by
the mass. In four dimensions this effect is not as important as in lower dimensions. Con-
sequently, one could reproduce the results considering the evolution of the flow equation
only for p ≥ m. This can be implemented by using a running scale of the form

µ =
√
p2 + αm2, (3.27)

where α is a positive parameter to be chosen. In this way, µ ∼ p for scales larger than the
mass (where large logarithm are important) and µ freezes out for small momenta.
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Results for the SU(2) gauge group

Let us start comparing our results of equations (3.21) and (3.22) without considering the
effect of the renormalization group. Therefore we fix µ = µ0 = 1 GeV and use the value of
g and m that simultaneously minimize the errors defined in eq. (3.23). The best fits are
obtained using the parameters g = 7.5, m = 0.68 GeV. The corresponding fits are shown
in figures 3.6 for the gluon propagator and in 3.7 for the ghost dressing function. The
results match the lattice data with surprisingly good accuracy.
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Figure 3.6 – Four dimensional gluon propagator for SU(2). In red the results of Eq.(3.21)
renormalized in the VM scheme without including the renormalization group flow. The
value of the parameters used are g = 7.5 and m = 0.68 GeV and µ = 1 GeV. The gray
dots are the lattice data from [CM08a].
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Figure 3.7 – Four dimensional ghost dressing function for SU(2). In red the results of
Eq.(3.21) renormalized in the VM scheme without including the renormalization group
flow. The value of the parameters used are g = 7.5 and m = 0.68 GeV and µ = 1 GeV.
The gray dots are the lattice data from [CM08a].

The lattice data does not reach large values of the momenta therefore we can not test
the necessity of the renormalization group in the ultraviolet. In spite of this, we are going
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to consider the renormalization group effect and study the impact of the value α in the
definition of the running scale (3.27). We show in figure 3.8 the results obtained with
RG improvement for different values of α. The initial conditions of the flow equation,
g0 = g(µ0) and m0 = m(µ0), were imposed at µ0 = 1GeV and are presented in the table
3.1 for different values of α in SU(2).
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Figure 3.8 – Four dimensional SU(2) ghost dressing propagator (top) and gluon propagator
(bottom) as a function of momentum renormalized in the VM scheme by including the
renormalization group effects. The points are lattice data of [CM08a]. The large dashed
line to α = 1.0, while the small and tiny dashed curves correspond to α = 2.0 and α = 3.0
respectively. The initial conditions of the RG flow are the presented in table 3.1.

As the dependence on α is not so big we are going to work with α = 1 every time the
VM scheme is implemented.

We want to stress that the parameter chosen as initial condition of the RG flow are
not unique in the sense that there is a region in the space of parameters which produce
fits with the same level of precision, i.e. less than 10%. This region for the case of α = 1
is shown in figure 3.9. It can be seen that the corresponding region for χAA is narrower
than the region for χcc̄ (which expands far beyond what is shown in the figure). We can
conclude that the gluon propagator is more difficult to reproduce than the ghost dressing
function.

The evolution of the running coupling constant and the running gluon mass are shown
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Scheme α g0 m0 (GeV)
VM 1.0 7.5 0.77
VM 2.0 9.0 0.78
VM 3.0 9.1 0.75

Table 3.1 – Fitting parameters retained for computing correlation functions in d = 4 for
different schemes.

Figure 3.9 – Contour levels for the quantities χAA and χcc̄ for the VM scheme in d = 4
for α = 1. The large diagonal region corresponds to χcc̄ and the small elliptic one to χAA.
From dark to light: 4%, 7% and 10%.
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in figure 3.10 where it can be seen that the Landau pole is reached at approximately
µ ∼ 0.5GeV.
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Figure 3.10 – Evolution of the running constants with VM-RG flow.

Some results for the SU(3) gauge group are presented in [TW11].

3.3.2 Results in d = 4 imposing the IS-renormalization scheme

When we change the vanishing momentum condition to the one based on the non-renormalization
of the mass, the ghost dressing function and its anomalous dimension remain equal to
(3.22) and (3.25) respectively. The modification acts only in the gluon sector where the
gluon propagator is

Γ⊥(p)
m2 = s+ 1 + g2N

384π2

(
2s−2

(
s2 − 10s+ 1

)
(s+ 1)3 log(s+ 1)− s

(
s2 − 2

)
log(s)

− s−1/2(s+ 4)3/2
(
s2 − 20s+ 12

)
log

(√
s+
√
s+ 4√

s+ 4−
√
s

)

+ 12√
s(s+ 4)

(
2s4 + 13s3 + 21s2 + 16s+ 48

)
log

(
1−

√
s

s+ 4

)
+ s(8− 96t)

t2

+
(
s
(
t2 + 4

)
− 6t

)
log(t) +

(
t+ 4
t

)3/2
s
(
t2 − 20t+ 12

)
log

(√
t+
√
t+ 4√

t+ 4−
√
t

)
− 2t−3(t+ 1)3

(
s
(
t2 − 10t+ 4

)
− 3t

)
log(t+ 1)

− 2s√
t3(t+ 4)

(
7t4 + 30t3 − 54t2 − 200t+ 192

)
log

(
1−

√
t

t+ 4

)
− 2s−1 − 6t−1 + 96

)
(3.28)

where s = p2/m2 and t = µ2/m2.
For the renormalization group, the ghost anomalous dimension remains the same as in

the previous scheme and the gluon anomalous dimension takes the form

γA = g2N

96π2t3

(
− (t− 2)2(2t− 3)(t+ 1)2 log(t+ 1) + (−17t2 + 74t− 12)t+ t5 log(t)

− t3/2
√
t+ 4

(
t3 − 9t2 + 20t− 36

)
log

(√t+ 4−
√
t√

t+ 4 +
√
t

))
, (3.29)

Here, the ultraviolet behaviour (µ� m) of the βg function is the same as in standard
Yang-Mills, see (3.26), but for low renormalization scale it changes its sign:
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βg ∼
g3N

16π2
1
6 if µ� m. (3.30)

Depending on the initial condition, this can prevent the flow from having a Landau pole
as a function of the renormalization scale. Let us recall that if the initial condition of the
gluon mass is set to zero we recover the standard Yang-Mills beta function and the infrared
Landau pole is recovered. That is why depending on the initial conditions the flow can be
infrared safe or not. When m is large enough the solution of Eq. (3.30) gives a coupling
constant that goes to zero at low momenta. This property justifies the use of perturbation
theory in the infrared range. It is worth mentioning that this is not in disagreement with
the universality of the β-function since the scheme independence property of the two first
orders of β-functions is valid only for mass-independent schemes or in the ultraviolet limit
when the masses can be neglected.

Results for the SU(2) gauge group

We are going to start studying the results considering the effects of the renormalization
group for α = 0. The fit of the analytical results with the lattice data is shown in
figure 3.11. The initial conditions of the RG flow imposed at 1GeV were g = 5.2 and
m = 0.44 GeV. These parameters were chosen to minimize the errors defined in Eq.
(3.23) demanding a compromise between improving the gluon fits with the ghost one.
The contour plot of these errors are presented in figure 3.12 where it can be appreciated
that there is a region in the parameter space that lead to an error small than 10%. The
region associated with the gluon propagator is narrower than the one associated with the
ghost dressing function which continues beyond what is shown in the figure. This make us
conclude that the gluon propagator is more exigent to fit than the ghost dressing function.

The evolution of the running coupling constant and the running gluon mass are shown
in figure 3.13. The coupling constant does not reach a Landau pole but instead goes
to zero again in the infrared. Similarly the running mass goes to zero in the infrared.
This is not incompatible with the fact that the gluon propagator is finite at low momenta
because, in the IS scheme, the mass is not defined through the value of the propagator at
zero momenta as in the VM scheme.

Although this scheme is infrared safe and it is not necessary to consider a positive
value of α in (3.27), we study the effect of changing α in figure 3.14.

Scheme α g m (GeV)
IS 0.0 5.2 0.44
IS 1.0 5.2 0.43
IS 2.0 5.8 0.48
IS 3.0 6.3 0.53

Table 3.2 – Fitting parameters retained for computing correlation functions in d = 4 for
different schemes.

Henceforth when working with the IS scheme we are going to take α = 0. This choice
is based on the curves that we will show for d = 3 where to reproduce the gluon propagator
the RG flow has to reach the deep infrared.
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Figure 3.11 – Gluon propagator (top) and ghost dressing function (bottom) as a function
of momentum in d = 4. The plain blue line corresponds to the infrared safe scheme with
α = 0 considering the effects of the renormalization group. The initial condition of the
parameters corresponds to g0 = 5.2 and m0 = 0.44 GeV at µ0 = 1 GeV. The points are
lattice data of [CM08a].
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Figure 3.12 – Contour levels for the quantities χAA and χcc̄ for the IS scheme for d = 4.
The large diagonal region corresponds to χcc̄ and the small elliptic one to χAA. From dark
to light: 4%, 7% and 10%.
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Figure 3.13 – Evolution of the running constants with IS-RG flow.
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Figure 3.14 – Ghost dressing propagator (top) and gluon propagator (bottom) as a func-
tion of momentum in d = 4 renormalized in the IS scheme including the effect of the
renormalization group. The points are lattice data of [CM08a]. The full line corresponds
to α = 0, the large dashed line to α = 1.0, while the small and tiny dashed curves corre-
spond to α = 2.0 and α = 3.0 respectively. The initial conditions of the RG flow are the
presented in table 3.2.
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Figure 3.15 – Contour plots for the error functions χAA for the gluon propagator (elliptic
region, for 10%, 15% and 20%) and χcc̄ for the ghost propagator (diagonal region, for 4%,
7% and 10%).

Results for the SU(3) gauge group

We complete our study in four dimensions presenting the results of the gluon propagator
and the ghost dressing function when the IS-renormalization scheme is done and when the
group effects are taking into account. In this case we take α = 0 and therefore the running
scale µ = p.

With this purpose we analyse the corresponding errors defined in (3.23). The contour
lines of them are shown in figure 3.15.

We choose the parameters in the intersection of the darkest region of 3.15 which cor-
respond to consider g0 = 4.1 and m0 = 0.43 GeV at µ0 = 1 GeV. The fits for the gluon
propagator and the ghost dressing function with the lattice data of [BIMPS09] are shown
in figure 3.16. It can be observe that both set of lattice data are well reproduce with our
one-loop results.

3.3.3 Results in d = 3

In this part we are going to present the results for the three dimensional case. The two-
point vertex functions can be written as

Γ(2
cac̄b

(p) = δab
(
p2 + g2mN

32π
√
s

(
πs2 + 2

√
s(1− s)− 2(s+ 1)2 arctan

(√
s
) ))

, (3.31)
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Figure 3.16 – Four dimensional gluon propagator and ghost dressing function for SU(3). In
blue the results of Eq.(3.21) renormalized in the IS scheme including the renormalization
group flow using µ = p. The value of the parameters used are g0 = 4.1 and m0 = 0.43
GeV and µ0 = 1 GeV. The gray dots are the lattice data from [BIMPS09].
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Γ⊥(p) = p2 +m2 + g2mN

128πs3/2

(
− 4

(
5s2 + 7s− 1

)√
s+ π

(
s2 − 2

)
s2

− 4(s+ 1)2
(
s2 − 6s+ 1

)
arctan

(√
s
)

+ 2s(s+ 4)
(
s2 − 12s+ 8

)
arctan

(√
s

2

))
,

(3.32)

where we used the same notation introduced in the previous sections. It is worth noting
that in three dimensions the coupling constant has dimensions of

√
GeV. We are also

going to renormalize the theory with the two schemes discussed above. As these diagrams
do not diverge the only consequence of the renormalization scheme is to modify the finite
part of them.

In figure 3.17 and 3.18 we compare our next to leading order expression with the d = 3
lattice simulations for SU(2) (without including the RG effects). The quality is much
lower than in four dimensions. The fitting that match better seems to be the VM scheme
although the peak in the lattice data is not reproduced. Both schemes were done using
g = 3.7

√
GeV, m = 0.89 GeV and µ = 1 GeV.
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Figure 3.17 – Three dimensional renormalize ghost dressing function for SU(2). In red the
results of Eq. (3.31) without including the effects of the RG using g = 3.7

√
GeV, m = 0.89

GeV and µ = 1 GeV. The gray dots are the lattice data from [CM08a]

We observed that no set of parameters reproduces the gluon’s pronounced growth in
the IR range even though all of them give a finite contribution at low momenta. The
renormalization group approach is important in the infrared for d < 4 since the radiative
corrections become larger in the infrared due to the presence of the massless ghosts at
lower dimensions.

In figure 3.19 we show how the RG can considerably improve the results at low momenta
in d = 3. Moreover the enhancement of the gluon propagator in the infrared is reproduced
using the IS scheme and the evolution of the corresponding RG equation. The initial
condition of the IS flow g0 = 2.4

√
GeV and m0 = 0.55 GeV were fixed at µ0 = 1 GeV. On

the other hand for the vanishing momentum flow the curve was done using g0 = 4
√
GeV

and m0 = 1 GeV at 1 GeV. As this scheme has an infrared Landau pole, we used α = 1
in the running scale µ =

√
p2 + αm2 in order to freeze the flow at scales lower than the

mass.
We study the dependence of the VM scheme on α. For α = 0.5, 1.0, 2.0, 3.0 we deter-

mine the best fitting parameters, however, none of them help to reproduce the pronounced
gluon peak, see figure 3.20. The same analysis was done for IS scheme even though the
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Figure 3.18 – Three dimensional gluon propagator for SU(2). In blue the results of Eq.
(3.32) renormalized with the VM scheme while the dashed red curve show the results
renormzalized with the IS scheme. In both cases we use g = 3.7

√
GeV, m = 0.89 GeV and

µ = 1 GeV and the RG was not taken into account. The gray dots are the lattice data
from [CM08a]

Scheme α g0 (GeV1/2) m0 (GeV)
IS 0.0 2.4 0.55
IS 1.0 2.5 0.55
IS 2.0 2.5 0.55
IS 3.0 3.0 0.65
VM 0.5 3.5 0.95
VM 1.0 4.0 1.00
VM 2.0 4.5 0.95
VM 3.0 6.1 1.11

Table 3.3 – Fitting parameters retained for computing correlation functions in d = 3 for
different schemes.

inclusion of a positive α is not needed since this scheme does not present a Landau pole.
We observe in figure 3.21 that a RG evolution for the IR is important in order to reproduce
the enhancement of the gluon propagator, therefore the flow is required to run into the
deep infrared. That is probably why when using the RG for the IS scheme the parameter
α is set to zero. The fitting parameters used in both cases are summarized in table 3.3.

For now on, we will focus on α = 1 for the study of the VM scheme and α = 0 for the
IS scheme. We want to stress that the choice of parameters is not unique meaning that
there is a region in the parameter space which gives the same accuracy in the fits. This
effect can be seen by studying the contour level of the errors defined in Eq. (3.23). The left
hand side figure of 3.22 shows that we are able to chose any pair of parameters belonging
to the intersection of the contours in order to have an error less that 10%. However, for
the (VM) case the right hand side of figure 3.22 has no intersection so we choose a set of
parameters near both regions. This is in agreement with the fact that the IS scheme work
much better in d = 3. We do not have an explanation why in d = 4 case the preferred
renormalization is VM while when d = 3 it is IS.
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Figure 3.19 – Gluon propagator (top) and ghost dressing function (bottom) as a function
of momentum in d = 3 considering the effects of the RG. The points are lattice data of
[CM08a]. The plain blue line corresponds to the infrared safe scheme with α = 0,g0 =
2.4
√
GeV and m0 = 0.55 GeV were fixed at µ0 = 1 GeV. The dashed red line corresponds

to the vanishing momentum scheme with g0 = 4
√
GeV and m0 = 1 GeV at µ0 = 1 GeV.
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Figure 3.20 – Ghost dressing propagator (top) and gluon propagator (bottom) as a function
of momentum in d = 3 renormalized in the VM scheme considering the RG. The points
are lattice data of [CM08a]. The full line corresponds to α = 0.5, the large dashed line
to α = 1.0, while the small and tiny dashed curves correspond to α = 2.0 and α = 3.0
respectively. The initial conditions of the RG flow are the presented in table 3.3.
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Figure 3.21 – Ghost dressing propagator (top) and gluon propagator (bottom) as a function
of momentum in d = 3 renormalized in the IS scheme considering the RG. The points are
lattice data of [CM08a]. The full line corresponds to α = 0, the large dashed line to
α = 1.0, while the small and tiny dashed curves correspond to α = 2.0 and α = 3.0
respectively. The initial conditions of the RG flow are the presented in table 3.3.
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Figure 3.22 – Contour levels for the quantities χAA and χcc̄ for the IS scheme (left) and
VM scheme (right) both for d = 3 . The large diagonal region corresponds to χcc̄ and the
elliptic one to χAA. From dark to light: 4%, 7% and 10%.

3.4 Estimation of higher loop corrections

The values obtained for the coupling constant could possibly make us doubt on the validity
of perturbation theory. Let us analyse the value of the coupling constant in figure 3.23 in
the IS scheme.
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Figure 3.23 – Running coupling constant in the IS scheme with initial conditions at µ0 = 1
GeV corresponding to g0 = 5.2 and m0 = 0.44 GeV in d = 4 (left) and g0 = 2.4

√
GeV and

m0 = 0.55 GeV in d = 3 (right) for SU(2)

The value of g goes to zero at vanishing momentum but it takes large values around
µ ∼ 1GeV. This situation is better than having a Landau pole but it may invalidate
perturbation theory. The following discussion was obtained from [TW11] and allows us to
justify the use of perturbation theory even at momenta of order of one GeV.

First of all it is worth noting that the real expansion parameter is not g2 but it is

u(p) = g2(p)Npd−4

(4π)d/2Γ(d/2)
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which is dimensionless for any value of the space dimension and includes N and the angular
factor appearing in the loop integral. The full line in Figure 3.24 shows how the angular
factors reduce the expansion parameter with respect to the value of the coupling constant.
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Figure 3.24 – Expansion parameter u(p) (full line) and the effective expansion parameter
u(p) p2

p2+m2 , in d = 4 (left) and d = 3 (right)

Moreover, there is actually another effect that suppresses the corrections in the in-
frared. As the gluons are massive, for momenta lower than their mass all the internal
gluon propagators are suppressed by the inverse of the squared mass and therefore the
internal gluon freezes out at low momenta. So we can think of an effective theory with only
a dynamical massless ghost. But as the ghost interacts through the exchange of gluons
all the vertices of the form shown in figure 3.25 behaves as p1p2g

2/m2, where p1 and p2
are the corresponding ghost momenta. Consequently, the effective expansion parameter is
suppressed by p2/m2 where p is a typical external momentum. In order to estimate this
effect for arbitrary momenta we can consider an interpolation of the ultraviolet expan-
sion parameter u(p) with the effective infrared parameter u(p)p2/m2 as performing the
expansion with respect to

u(p) p2

p2 +m2

which is shown in figure 3.24 with dashed lines. This new parameter is small enough to do
perturbation theory even in the region where the coupling constant is not so small. It is
important to mention that this expansion parameter at low momentum is not as small as
its value in the ultraviolet or in comparison with the one used in QED where perturbation
theory has been completely tested. In our case, the two loop contribution seems to be
of order 0.42 ∼ (15%) which is approximately the error that we will have with the three
point correlations functions computed in next chapter.

∼ ∼ p1p2g
2

m2

p1 p2

Figure 3.25 – Effective vertex



Chapter 4

Quenched three-point vertex
functions

In the preceding chapter we made the first steps towards investigating the theory based
on the Lagrangian (2.11). The one-loop calculations done for the gluon propagator and
the ghost dressing function compare very well with lattice simulations both in d = 4 and
d = 3 [TW11, PTW13] at least in some schemes. It is surprising that such accuracy can be
obtained with a modest one-loop calculation. In the previous chapter we reproduced the
analysis of the estimation of two-loops corrections done in [TW11]. There, it was found
that higher loop corrections to the propagators are suppressed by powers of the external
momenta in the infrared regime. This fact supports the idea that perturbation theory in
this massive version of QCD in Landau gauge is under control.

In this chapter we want to go further in the investigation of one loop corrections intro-
duced by the Lagrangian (2.11). This time we are going to study more complex quantities,
such as the three-point ghost-gluon correlation function and the three-gluon correlation
function. The analysis of these vertices is extremely interesting since their tensor struc-
ture is not as simple as for the propagators. They depend on two independent momenta
or, equivalently on three independent scalar variables. Therefore, the computation of the
three-point vertices is a non-trivial test to validate our model. Moreover, the value of the
coupling constant and gluon mass at 1 GeV is fixed by the analysis of the previous chapter,
and, therefore the three-point vertices are completely determined and we do not have any
free parameter to fix.

In the past few years, several techniques were used with the aim of describing these
three-point correlation functions. For instance, semi-analytical methods such as truncated
Schwinger-Dyson equation or Non-perturbative RG [HvS13, RQ11b, DORQ12, AIP13]
were employed. Some studies [ABIP14b, EWAV14, VAEW14] specially interested in the
zero-crossing of the three-gluon vertex appeared after our results were published. Fortu-
nately several simulations on the lattice were also done, see [Par94, AHP+97, CMM04,
IMPSS06, CMM06, CMM08]. However, as the vertex functions are more complex quanti-
ties, lattice data are not as precise as for the propagators.

In this chapter, we present the Feynman diagrams and their evaluation for the ghost-
antighost-gluon vertex and the three-gluon vertex. The explicit calculation was performed
by implementing a Mathematica algorithm. We performed the calculation in two different
ways. The results for the one-loop expressions using the method of Feynman parame-
ters are too large to be presented here. Instead we used Passarino-Veltman [PV79] in-
tegrals (presented in Appendix C) to present them in a more compact way within the
complementary material of [PTW13]. Some checks were done on the calculations by com-
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paring for example the zero mass limit with the expressions on standard Yang-Mills of
[DOT96b, DOT96a]. Moreover, we deduced some Slavnov-Taylor identities which allow
us to do an independent check of the expressions. Both algorithms, the one performing the
Feynman Trick and the one which reduces the expressions to Passarino-Veltman integral
fulfil the mentioned checks, and, furthermore, they give the same results.

Towards the end of the chapter we implement the renormalization group approach in
order to reproduce the lattice data given by [CMM08]. As we already mentioned, the
comparison was done using the same initial condition obtained in the previous chapter
for the two-point correlation functions. In this sense, the calculation of the three-point
correlation functions becomes a pure prediction without any parameter to adjust. The
results match the three different kinematic configurations provided by lattice simulations
very well.

4.1 Ghost-gluon vertex

In this section we are going to introduce the one loop contribution to the ghost-gluon
vertex. All the calculations presented in this section are in terms of bare quantities even
though it is not specified. The renormalization procedure is deferred to section 4.4. The
one loop contribution to the ghost-gluon vertex function is diagrammatically represented
by the two diagrams of figure 4.1.

Figure 4.1 – One-loop Feynman diagrams for the ghost-gluon vertex.

These diagrams can be computed by using the methods described in the previous
chapter. The corresponding expressions in Landau gauge, in arbitrary dimension d and
number of colors N is described in the next paragraphs.

Our convention of momenta and color indices are elucidated in fig 4.2. The expression
of this diagram, D1cc̄A, can be obtained following the Feynman rules described in Sec.1.3,
and it reads

D1cc̄A = −(ig)3
∫

ddq

(2π)d f
lmcpν

1
(q − p)2 f

anm(q − p)µ
1

(q + r)2 f
lbn(q + r)ρ

P⊥νρ(q)
q2

= i
N

2 g
3fabcpνrρ

∫
ddq

(2π)d (q − p)µ
1

(q − p)2
1

(q + r)2
P⊥νρ(q)
q2

where in the last line we used that f bac = −i(taG)bc where taG is the generator in the adjoint
representation and therefore fanmf lbnf lmc = fmanfnblf lcm = iTr(taGtbGtcG) = −N

2 f
abc and

where we also cancel trivial contractions of the type qρP⊥νρ(q).
The second digram is a bit longer and it is represented in figure 4.3. The Feynman

rules leads us to the expression
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qp

c b

r

q + rq − p

k = −(p+ r)

µ, a

m n

ν ρl

Figure 4.2 – Description of the diagram, D1cc̄A, with three ghost-gluon vertices.

q
p

c b

r

r − qq + p

k = −(p+ r)

µ, a

m n

l

ν

σ

ρ

η

Figure 4.3 – Description of the diagram, D2cc̄A, with one three-gluon vertex and two
ghost-gluon vertices.

D2cc̄A = −(ig)3
∫

ddq

(2π)d
∫
famn [(q + p− (r − q))µδνρ + (r − q + p+ r)νδµρ + (−(p+ r)− (q + p))ρδµν ]

× P⊥νσ(q + p)
(q + p)2 +m2

P⊥ρη(q − r)
(q − r)2 +m2 f

lcm(−pσ) 1
q2 f

blnqη

= −ig3famnf blnf lcmpσ

∫
ddq

(2π)d [(2q + p− r)µδνρ + (−q + p+ 2r)νδµρ + (−q − r − 2p)ρδµν ] qη

× 1
q2

P⊥νσ(q + p)
(q + p)2 +m2

P⊥ρη(q − r)
(q − r)2 +m2

= −iN2 g
3fabcpσrη

∫
ddq

(2π)d [(2q + p− r)µδνρ + 2(p+ r)νδµρ − 2(p+ r)ρδµρ]

× 1
q2

P⊥νσ(q + p)
(q + p)2 +m2

P⊥ρη(q − r)
(q − r)2 +m2
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where, as in the previous diagram, we have cancelled the trivial vanishing projections
and used famnf blnf lcm = N

2 f
abc. Thanks to momentum conservation we can express the

diagrams as functions of only two momenta, r and p.
These expressions are the input for the Mathematica algorithm which performs the

simplification mentioned in the Eq. (3.2), does the Feynman trick, integrates over the
momentum variable and performs the corresponding integrals (numerically or analytically
when possible) over the Feynman parameters. One difference with the calculation of the
propagators is that the Feynman trick brings two different Feynman parameters.

In Fourier space, the bare ghost-gluon vertex including tree-level and one loop contri-
butions then reads

Γ(3)
Aaµc

bc̄c
(k, r, p) = igfabcpµ +D1cc̄A +D2cc̄A.

The tensor structure of the ghost-gluon vertex is rather simple. As we have seen in the
one loop calculation the color dependence is proportional to the structure constant fabc,
where a, b, c are respectively the color indices of the gluon, ghost and antighost external
legs. This is the exact color structure in the case of SU(2) and for large N . For general
SU(N) this is known to be true at one- and two-loop level [DOT98]. However, in a general
situation other color structures could appear for instance the completely symmetric color
structure dabc.

We would like to describe the vertex tensor structure explicitly in momentum space.
The ghost-gluon vertex has two independent tensor structure. However, it is useful to
relate this vertex to Γ(3)

Aaµc
bK̄c

ν
which has a richer tensor structure. To find this relationship

we are going to use the Slavnov-Taylor identities. The first identity of Eq.(B.17) relates the
ghost two point vertex function with the ghost-K̄µ two-point vertex function as following
(K̄a

µ is the source of the sAaµ):

ipνΓ(2)
cbK̄c

ν
(r, p) = Γ(2)

cbc̄c
(r, p). (4.1)

The sameWard identity gives a similar relation for Γ(2)
Aaµc

bc̄c
that matches with the derivative

of Eq. (4.1) with respect to Aaµ. This expression takes the form

ipνΓ(3)
Aaµc

bK̄c
ν
(k, r, p) = Γ(3)

Aaµc
bc̄c

(k, r, p) (4.2)

Assuming the color dependence discussed above (that is valid at one loop), the three-
point vertex function Γ(3)

Aaµc
bK̄c

ν
writes

Γ(3)
Aaµc

bK̄c
ν
(k, r, p) = −gfabcΓνµ(r, p, k). (4.3)

This justify the decomposition introduced by Ball and Chiu in [BC80] where the ghost-
gluon vertex is expressed as a function of a rank two tensor Γνµ,

Γ(3)
cbc̄cAaµ

(r, p, k) = −igfabcpνΓνµ(r, p, k) (4.4)

where the Lorentz structure can be explicitly written using scalar functions a, b, c, d, e as

Γνµ(r, p, k) = δµνa(r2, p2, k2)− kνrµb(r2, p2, k2) + pνkµc(r2, p2, k2)
+ kνpµd(r2, p2, k2) + pνpµe(r2, p2, k2).

(4.5)
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Therefore we can compute the ghost-gluon vertex or even better a richer tensor Γνµ.
Our analysis of the three-point ghost-gluon correlation function was split in two. First,

we calculated directly the one-loop contributions to the three-point vertex. Independently
we performed the computation of Γ(3)

Aaµc
bK̄c

ν
using the diagrams associated with the one

loop contributions (see diagrams of figure 4.4, where the tree-level vertex for Γ(3)
AµcK̄ν

is
−gfabcδµν). This allowed us to compute all the scalar functions that we present in the
suplemental material of [PTW13]. The relation between both independent calculations
was checked using the identity (4.4).

qp

ν, c b

r

q + rq − p

k = −(p+ r)

µ, a

m n

ν ρl

q
p

ν, c b

r

r − qq + p

k = −(p+ r)

µ, a

m n

l

ν

σ

ρ

η

Figure 4.4 – Description of the one loop diagrams of the three ghost-K̄-gluon vertex. Here,
the left bottom wavy external leg correspond to K̄c

ν .

The ghost-gluon vertex is found to have no ultraviolet divergence for d = 4 in Landau
gauge in agreement with the non-renormalization theorem of the coupling constant. It is
important to stress that this does not mean that g is unrenormalized but that its renormal-
ization is fixed in terms of the renormalization field factors ZA and Zc. In particular the
one loop contribution is zero when the ghost or the anti-ghost momentum vanishes. The
limit of vanishing gluon momentum is easy to compute analytically and can be expressed
in d = 4 as

Γµν(−p, p,0) = δµν

{
1 + g2

0N

128π2

[
9/2 + s+ 5s−1 − (7s−1 + 5s−2) log(s+ 1)

− (s− 1)s log
(
s−1 + 1

) ]} (4.6)

were we recall that s = p2/m2.
In three dimensions this tensor reads

Γµν(−p, p,0) = δµν

{
1 + g2

0N

384πms

[
2(6s2 − 5s− 21)− 3π

√
s(2s2 − s+ 288)

+ 6s−1/2(2s3 − s2 − 68s+ 7) arctan(
√
s)
]} (4.7)

These expressions are regular even in the infrared for p � m. In fact, for arbitrary
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momentum configuration if we multiply all the momenta by a coefficient κ we have that

Γµν({κpi})− δµν ∼ κd−2

which is regular in the infrared for d > 2.

4.2 Three-gluon vertex
In this section we present the calculations of the three-gluon vertex at one loop. There
are three diagrams that contribute to this vertex shown in figure 4.5.

Figure 4.5 – One-loop Feynman diagrams for the 3-gluon vertex.

The first diagram, D1AAA, described in detail in figure 4.6 has a loop of ghosts which
contributes with a minus sign. Taking into account the minus coming from the expansion
of the exponential and the combinatorial factor the global symmetry factor is one, so no
factor will precede the integral. We have to take into account that there are two possible
directions for the ghost loop. For convenience, we are going to compute separately the
diagram with the anti-clockwise loop, D1[1]

AAA, and the clockwise loop,D1[2]
AAA. Therefore,

the expression of those diagrams can be computed as

D1[1]
AAA =

∫
ddq

(2π)d (igfalmqµ) 1
(q − p)2 (igf cnl(q − p)ρ)

1
q + r

(igf bmn(q + r)ν) 1
q2

= −ig3N

2 f
abc
∫

ddq

(2π)d qµ(q − p)ρ(q + r)ν
1
q2

1
(q − p)2

1
(q + r)2 (4.8)

and

D1[2]
AAA = ig3N

2 f
abc
∫

ddq

(2π)d (q + p)µ(q − r)ρqν
1
q2

1
(q + p)2

1
(q − r)2

= −ig3N

2 f
abc
∫

ddq

(2π)d (q − p)µ(q + r)ρqν
1
q2

1
(q − p)2

1
(q + r)2 (4.9)

It is worth noting that this is the only infrared singular diagram that we have since all
internal lines correspond to ghost propagators (which are massless). The other diagrams
only have internal gluon propagators which are regular in the infrared.

The second diagram of figure 4.5 is denoted as D2AAA. We have to consider the
possible contribution from the three different external momentum configurations. That
is made explicit in figure 4.7, where the left diagram is called D2[1]

AAA, the middle one is
D2[2]

AAA, and the one in the right position is D2[3]
AAA. A detailed calculation gives
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µ, a

p r

ν, b

ρ, c

k

q + r

q

q − p

l n

m

µ, a

p r

ν, b

ρ, c

k

q − r

q

q + p

l n

m

Figure 4.6 – Description of the diagram with three ghost-gluon vertices. In the left D1[1]
AAA

and in the right D1[2]
AAA.

q

p k

r

q + r

ρ, cµ, a

ν, b

α β

γ δ

l m
q

p r

k

q + k

ν, bµ, a

ρ, c

α β

γ δ

l m
q

r k

p

q + p

ρ, cν, b

µ, a

α β

γ δ

l m

Figure 4.7 – Description of the diagram with one three-gluon vertex and one four-gluon
vertex. In the left D2[1]

AAA, in the middle D2[2]
AAA, and in the right D2[3]

AAA.

D2[1]
AAA = 1

2

∫
ddq

(2π)d igf
mlb

[
(q − r)βδαν + (2r + q)αδβν + (−2q − r)νδαβ

] P⊥γα(q)
q2 +m2

P⊥δβ(q + r)
(q + r)2 +m2

× g2
[
feacfeml(δµδδργ − δµγδρδ) + feacfecl(δµρδγδ − δµγδµγδρδ) + fealfemc(δµδδργ − δµρδγδ)

]
= 3

2 ig
3fabc (δµνδργ − δµγδρδ)

∫
ddq

(2π)d (rβδαν − rα + qνδαβ)
P⊥γα(q)
q2 +m2

P⊥δβ(q + r)
(q + r)2 +m2

where in the last line we have simplified the momentum contracted with the perpendicular
projector. The other diagrams are obtained by permutation of the external legs and take
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the form

D2[2]
AAA = 3

2 ig
3fabc (δµδδνγ − δµγδνδ)

∫
ddq

(2π)d ((p+ r)βδαρ − (p+ r)αδβρ − qρδαβ)

×
P⊥γα(q)
q2 +m2

P⊥δβ(q − p− r)
(q − p− r)2 +m2

D2[3]
AAA = 3

2 ig
3fabc (δνδδργ − δνγδρδ)

∫
ddq

(2π)d (−pβδαµ + pαδβµ − qµδαβ)
P⊥γα(q)
q2 +m2

P⊥δβ(q + p)
(q + p)2 +m2 .

The last diagram that we have to consider is formed by three three-gluon vertices.
This is by far the most difficult diagram to compute due to the complex structure of the
three-gluon vertex in addition to the three gluon propagators. It is presented in figure 4.8
and reads

µ, a

p r

ν, b

ρ, c

k

q + r

q

q − p

l n

m

λ η

δ

γβ

α

Figure 4.8 – Description of the diagram with three three-gluon vertices, D3AAA.

D3AAA = −
∫

ddq

(2π)d f
aml [(−2q + p)µδαβ + (q − 2p)βδµα + (p+ q)αδµβ]

P⊥γβ(q)
q2 +m2

× igfnmb [(q − r)δδνγ + (2r + q)γδνδ + (−2q − r)νδγδ]
P⊥δη(q + r)

(q + r)2 +m2
P⊥λα(q − p)

(q − p)2 +m2

× igf lnc [(q + p+ 2r)λδρη + (q − r − 2p)ηδλρ + (p− 2q − r)ρδλη]

= −i4Ng3fabc
∫

ddq

(2π)d [pαδµβ − qµδαβ − pβδµα] [rγδδν − rδδγν − qνδγδ]

× [(p+ r)λδρη − (p+ r)ηδλρ − (q + r)ρδλη]
P⊥γβ(q)
q2 +m2

P⊥δη(q + r)
(q + r)2 +m2

P⊥λα(q − p)
(q − p)2 +m2

The unrenormalized three-gluon vertex function is obtained, at one loop, by summing
all these diagrams plus the contribution at tree level. That is means that

Γ(3)
AaµA

b
νA

c
ρ
(p, r, k) = −igfabc {(r − k)µδνρ + (k − p)νδµρ + (p− r)ρδµν}

+D1[1]
AAA +D1[2]

AAA +D2[1]
AAA +D2[2]

AAA +D2[3]
AAA +D3AAA (4.10)
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As for the ghost-gluon vertex, we ignore that for a general gauge group, contributions
at higher loop have more complicate color structure involving, for instance, the completely
symmetric color structure dabc. However, for SU(2) or N =∞ as well as for the one- and
two-loop corrections the color structure is fabc and can be factorized as

Γ(3)
AaµA

b
νA

c
ρ
(p, r, k) = −igfabcΓµνρ(p, r, k) (4.11)

(for the two-loop color structure see [DOT98]).
This vertex has a richer momentum structure due to the three different Lorentz indices.

In fact, it involves six independent scalar components. As suggested by Ball and Chiu in
[BC80], it can be expressed in terms of scalar functions as

Γµνρ(p, r, k) = A(p2, r2, k2)δµν(p− r)ρ +B(p2, r2, k2)δµν(p+ r)ρ − C(p2, r2, k2)(δµνp.r − pνrµ)(p− r)ρ

+ 1
3S(p2, r2, k2)(pρrµkν + pνrρkµ) + F (p2, r2, k2)(δµνp.r − pνrµ)(pρr.k − rρp.k)

+H(p2, r2, k2)
[
−δµν(pρr.k − rρp.k) + 1

3(pρrµkν − pνrρkµ)
]

+ cyclic permutations.

(4.12)

The three-gluon vertex is symmetric with respect to any interchange of the external
legs. That is the reason why the scalar functions A,B,C, S, F,H have extra symmetries.
A,C and F are symmetric under a permutation of the first two arguments; B is antisym-
metric under a permutation of the first two arguments while H is completely symmetric
and S completely antisymmetric. In the three-gluon correlation function in Landau gauge
neither B nor S will appear since the vertex is contracted with the transverse gluon prop-
agator which makes the longitudinal part of the vertex disappear.

The full expression for the scalar functions is extremely large and will be not presented
here. It can be found together with the previous vertex in the supplemental material of
[PTW13]. For general momenta it requires to perform the integrals numerically.

The expression considerably simplifies when we set one gluon momentum to zero. For
d = 4− ε it reads

Γµνρ(p, 0,−p) =
{

1− Ng2
0

768π2

[
− 136

ε
(1− ε log m̄) + 1

3(36s−2 − 594s−1 + 319 + 6s) + (3s2 − 2) log s

− 4s−3(1 + s)3(s2 − 9s+ 3) log(1 + s)

+ (4 + s)3/2

s3/2

(
24− 30s+ s2) log

(√
4 + s+

√
s√

4 + s−
√
s

)]}
(pµδνρ + pρδµν)

−
{

2 + Ng2
0

384π2

[
− 136

ε
(1− ε log m̄) + 1

3(18s−2 − 321s−1 − 97 + 24s) + (s− 1)(s2 − 2s− 2) log s

− 2s−3(1 + s)2(s− 1)(s3 − 7s2 + 7s− 3) log(1 + s)

+
√

4 + s

s3/2

(
48 + 16s+ 22s2 − 11s3 + s4) log

(√
4 + s+

√
s√

4 + s−
√
s

)]}
pνδµρ

− Ng2
0

384π2m2

[
(−36s−3 + 278s−2 − 74s−1 − 10)− s2 log s

+ s−3(1 + s)2(36s−1 − 44− 4s− 12s2 + 2s3) log(1 + s)

+
√
s(4 + s)s−3(−144s−1 + 80 + 4s+ 10s2 − s3) log

(√
4 + s+

√
s√

4 + s−
√
s

)]
pµpνpρ +O(ε)

(4.13)
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where m̄2 = m2eγ/(4π) with γ the Euler constant. The divergent term ∝ 1/ε will be
absorbed within the renormalization factors. On the other hand, this quantity is not
ultraviolet divergent in d = 3 where it reads

Γµνρ(p, 0,−p) =
{

1− Ng2
0

128πm
√
s

[
π

2 (2− 3s2) + 2
3s3/2 (3s3 + 23s2 + 56s− 15)

− s−1(4 + s)(16− 18s+ s2) arctan(
√
s/2) + 2s−2(s− 5)(s+ 1)2 arctan(

√
s)
]}

(pµδνρ + pρδµν)

−
{

2 + Ng2
0

128πm
√
s

[
π(−s3 + 3s2 − 1) + 2

3s3/2 (15s3 − 51s2 + 53s− 15)

+ 2(−s3 + 6s2 + 2s− 16− 32s−1) arctan(
√
s/2) + 2(2s3 − 9s2 − 5)(1− s−2) arctan(

√
s)
]}
pνδµρ

− Ng2
0

128πm3√s

[
π(s−1 + s2) + 2

3s5/2 (−21s3 + 5s2 − 139s+ 75)

+ 2s−2(s4 − 5s3 − 16s2 − 40s+ 96) arctan(
√
s/2)

− 2s−3(s+ 1)(2s4 − 7s3 − 9s2 − 15s+ 25) arctan(
√
s)
]
pµpνpρ

(4.14)

The infrared limit when all momenta are smaller that the mass scale shows that

Γµνρ({κpi}) ∼ κd−4 (4.15)

where all momentum have been multiplied by a common coefficient κ. As a consequence
of this behaviour, GAAA diverges as log κ in d = 4 and diverges as 1/κ in d = 3 when
κ→ 0. This behaviour is entirely due to the ghost loop diagram D1 because it is the only
diagram with massless internal propagators allowing a singular behaviour in the IR.

4.3 Checks
In order to avoid errors in the computation of the diagrams we run different tests to check
the correctness of the big expressions for the vertices. First of all, we have compared
our expression in the limit of vanishing gluon mass with the one already obtained in
the literature for standard Yang-Mills theory [DOT96b]. This check allows to compare
independently all the scalar functions. The comparison was done numerically since the
relation (3.2) introduces factors of the form 1/m that compensate in a very subtle way.
Even though the diagrams are regular in the limit of vanishing gluon mass, the analytic
comparison is cumbersome.

There are other tests related to Slavnov-Taylor identities that our results have to fulfil.
The first identity is the relation between both vertices and the propagators,

[Γ⊥(k)P⊥µρ(k) + Γ‖(k)P ‖µρ(k)]Γµν(p, k, r)− [Γ⊥(r)P⊥µν(r) + Γ‖(r)P ‖µν(r)]Γµρ(p, r, k)
= pµJ

−1(p)Γρνµ(k, r, p) (4.16)

already known in the literature (see Appendix B.5.2). It is interesting that this is the
standard identity and is not modified by the presence of the gluon mass. This relation
was verified analytically with our one loop results.

Another identity useful to check the results of the ghost-gluon vertex is deduced in
Appendix B.5.3, and reads as

Γ̃µ(p, k, r) + Γ̃µ(k, p, r)− rµ
r2

[
pν
p2 Γ̃ν(k, r, p) + kν

k2 Γ̃ν(p, r, k)
]

= 0 (4.17)
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where
Γ̃µ(p, k, r) = kνΓνµ(p, k, r)r2J−1(r). (4.18)

To our knowledge, this identity was not known before our study.
It is worth noting that the color structure for the three-point vertices was supposed to

be the same as in the the one-loop one. The identity (4.17) was checked numerically for 50
arbitrary momentum configurations. This new identity gives a new non-trivial constraint
for the ghost-gluon vertex.

4.4 Results

It is important to mention that some of the scalar functions cannot be obtained from lat-
tice simulations. Lattice simulations compute correlations functions, and in consequence,
the three-point vertex functions have their legs contracted with the full propagators, see
relation (A.5). Since the gluon propagator is transverse, the longitudinal part of the vertex
is not accessible. This is the case for the function c(r2, p2, k2) defined in (4.5). However,
we are going to compute the whole diagram because we can obtain information on this
function through Slavnov-Taylor identities. The quantity simulated in the lattice for the
ghost-gluon vertex by [CMM08] is a scalar function called Gcc̄A, defined as

Gcc̄A(p, r, k) =
pνP

⊥
µν(k)pρΓρµ(r, p, k)
pνP⊥µν(k)pµ

(4.19)

where Gcc̄A is the bare ghost-gluon vertex contracted with the corresponding propagator
of the external legs normalized by the same tree level expression.

This function depends on a unique linear combination of the scalar functions a, b, c, d, e,
given by

a(r2, p2, k2) + p · k
[
b(r2, p2, k2) + d(r2, p2, k2)

]
+ p2e(r2, p2, k2). (4.20)

For the three-gluon vertex, lattice simulations on [CMM08] compute the scalar expres-
sion GAAA(p, r, k) defined as

GAAA(p, r, k) =
[(k − r)γδαβ + cyclic perm]P⊥αµ(p)P⊥βν(r)P⊥γρ(k)Γµνρ(p, r, k)

[(k − r)γδαβ + cyclic perm]P⊥αµ(p)P⊥βν(r)P⊥γρ(k)[(k − r)ρδµν + cyclic perm]
(4.21)

where the external legs of the vertex function are contracted with the propagators and the
tree-level of the vertex, normalized to the same expression at the bare level.

Once we have computed the bare expressions (4.19) and (4.21) which will be denoted
respectively Gcc̄AB and GAAAB we have to renormalize the fields and coupling constants with
the renormzalization factors defined in (1.20). In this way the lattice quantities are related
to renormalized ones as follows

Gcc̄AB (p, k, r, gB,mB) = Gcc̄A(p, k, r, gR,mR)

GAAAB (p, k, r, gB,mB) = Zc
ZA

GAAA(p, k, r, gR,mR). (4.22)

The lattice value of GAAA will differ with ours by a multiplicative factor due to the
fact that our is renormalized and the lattice one is not (but their renormalization factors
are finite because of the lattice regularization). The quantity GAAA depends on the lattice
parameters so the multiplicative factor change for each set of lattice data. When we
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consider the renormalization group, the vertex functions renormalized a different scales
are related as

Γ(3)
cbc̄cAaµ

(p, r, k, µ0) = 1
zc(µ)zA(µ)1/2 Γ(3)

cbc̄cAaµ
(p, r, k, µ)

and
Γ(3)
AaµA

b
νA

c
ρ
(p, r, k, µ0) = 1

zA(µ)3/2 Γ(3)
AaµA

b
νA

c
ρ
(p, r, k, µ).

Therefore the quantities, Gcc̄A(p, k, r) and GAAA(p, k, r), that we want to compare are
related with our calculations as follows

Gcc̄A(p, r, k) =
pνP

⊥
µν(k)Γ(3)

cbc̄cAaµ
(p, r, k, µ0)

pνP⊥µν(k)Γ(3),tl
cbc̄cAaµ

(p, r, k, µ0)
=

pνP
⊥
µν(k)Γ(3)

cbc̄cAaµ
(p, r, k, µ0)

pνP⊥µν(k)Γ(3)
cbc̄cAaµ

(p, r = 0, k, µ0)

=
pνP

⊥
µν(k)Γ(3)

cbc̄cAaµ
(p, r, k, µ)

pνP⊥µν(k)Γ(3)
cbc̄cAaµ

(p, r = 0, k, µ)
=
pνP

⊥
µν(k)Γ(3)

cbc̄cAaµ
(p, r, k, µ)

pνP⊥µν(k)Γ(3),tl
cbc̄cAaµ

(p, r, k, µ)
(4.23)

where we have used the abbreviation tl to note that only the tree-level contribution is
considered and therefore we can conclude that no z(µ) factor has to be consider for the
quantity Gcc̄A. On the contrary, GAAA can be expressed as

GAAA(p, r, k) =
[(k − r)γδαβ + c.p.]P⊥αµ(p)P⊥βν(r)P⊥γρ(k)Γ(3)

AaµA
b
νA

c
ρ
(p, r, k, µ0)

[(k − r)γδαβ + c.p.]P⊥αµ(p)P⊥βν(r)P⊥γρ(k)Γ(3,tl)
AaµA

b
νA

c
ρ
(p, r, k, µ0)

=
[(k − r)γδαβ + c.p.]P⊥αµ(p)P⊥βν(r)P⊥γρ(k)Γ(3)

AaµA
b
νA

c
ρ
(p, r, k, µ0)

[(k − r)γδαβ + c.p.]P⊥αµ(p)P⊥βν(r)P⊥γρ(k) (−ig(µ0)fabc[(k − r)µδνρ + c.p.])

= 1
zA(µ)3/2

g(µ)
g(µ0)

[(k − r)γδαβ + c.p.]P⊥αµ(p)P⊥βν(r)P⊥γρ(k)Γ(3)
AaµA

b
νA

c
ρ
(p, r, k, µ)

[(k − r)γδαβ + c.p.]P⊥αµ(p)P⊥βν(r)P⊥γρ(k)Γ(3,tl)
AaµA

b
νA

c
ρ
(p, r, k, µ)

.

To compare our results with the lattice data we need to fix the multiplicative factor
and two other parameters. These last two correspond to the value of the coupling constant
and mass at the renormalization scale µ0, let us call them g0 and m0. We are going to
use the same renormalization scheme introduced in the previous chapter, the VM scheme
(3.12) and the IS scheme (3.16). The coupling constant and the gluon mass will then run
obeying the renormalization group equations.

The best fitting parameters were obtained in the study of the quenched propagators
in chapter 3 and we will use the same values in our study of the vertices.

4.4.1 d=4

In this subsection we compare the renormalized scalar functions Gcc̄A and GAAA with the
lattice data simulated for SU(2) in d = 4 and published in [CMM08]. The value of the
coupling constant and mass at 1 GeV are g0 = 7.5 and m0 = 0.77 GeV with α = 1 for the
vanishing momentum scheme and g0 = 5.2 and m0 = 0.44 GeV with α = 0 for the infrared
safe scheme. In figure 4.9 we show the comparison for the ghost-gluon factor, Gcc̄A, for
different momentum configurations. It is a non-trivial result that the set of parameters
chosen for describing the two-point functions simultaneously give a very good agreement
for the three-point functions.
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Figure 4.10 shows the results for GAAA for the same three momentum configurations.
We want to stress that the comparison was done in the momentum configuration where
lattice data is available although our expressions are valid for arbitrary kinematic config-
uration. The statistical errors for GAAA are larger than for the ghost-gluon correlation
function and even much larger than for the propagators. Our expression for GAAA be-
comes negative and diverges like log(p) for very low momenta, this is not seen by lattice
data because the simulations does not reach sufficiently small momenta.

It can be observed that the preferred scheme to reproduce the propagators in d = 4,
which was the VM, is also the scheme that better reproduce these vertices.

4.4.2 d=3

The same analysis was done in three dimensions. In figure 3.22 the error contours show
the region of parameters for which the gluon propagator and the ghost dressing function
match the lattice data with less than 10% of error. In particular, the IS scheme with α = 0
reproduces with more accuracy the increase of the gluon propagator at low momentum.
However, this effect is not reproduced by the VM scheme. The parameters chosen for the
IS scheme are g0 = 2.4

√
GeV and m0 = 0.55 GeV which belong to the intersection of the

contour errors for the gluon propagator and the ghost dressing function. As mentioned
above this scheme is preferred to reproduce three-dimension lattice data. For the VM
scheme the error contours do not intersect but we have considered a set of parameters in
the middle, g0 = 4.0

√
GeV and m0 = 1.0 GeV. The results for the ghost-gluon factor,

Gcc̄A, is shown in figure 4.11, for both schemes. While in figure 4.12, the comparison for
three-gluon factor, GAAA, is shown.

In all cases our results reproduce the qualitative behaviour of the lattice data. We
find that GAAA becomes negative at small momenta and diverges like 1/p for vanishing
momenta as found in [CMM08] for the lattice data.

In d = 3 the scheme that better reproduces the vertices is the IS scheme which is
consistent with the study of the propagators. It is important to remark that in the
following studies we will restrict ourself to the IS scheme. The reason is that it has been
shown that this scheme considerably improves the propagators at d = 3 while the difference
between both scheme in d = 4 is not very important. Moreover, the IS scheme do not have
a Landau pole so we can choose the renormalization scale equals the momentum which
correspond to α = 0.
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Figure 4.9 – Ghost-antighost-gluon correlation function Gcc̄A for one vanishing momentum
(top figure), all momenta equal (middle figure), two momenta orthogonal, of equal norm
(bottom) as a function of momentum, in d = 4. The lattice data of [CMM08] are compared
with our calculations. The plain blue line corresponds to the IS-scheme with α = 0 and
the dashed red line corresponds to the VM-scheme with α = 1.
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Figure 4.10 – Three gluon correlation function GAAA for one vanishing momentum (top
figure), all momenta equal (middle figure), two momenta orthogonal, of equal norm (bot-
tom) as a function of momentum, in d = 4. The lattice data of [CMM08] are compared
with our calculations. The plain blue line corresponds to the IS-scheme with α = 0; the
dashed red line corresponds to the VM-scheme with α = 1.
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Figure 4.11 – Ghost-antighost-gluon correlation function GcĀ for one vanishing momentum
(top figure), all momenta equal (middle figure), two momenta orthogonal, of equal norm
(bottom) as a function of momentum, in d = 3. The lattice data of [CMM08] are compared
with our calculations. The plain blue line corresponds to the IS-scheme with α = 0; the
dashed red line corresponds to the VM-scheme with α = 1.
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Figure 4.12 – Three gluon correlation function GAAA for one vanishing momentum (top
figure), all momenta equal (middle figure), two momenta orthogonal, of equal norm (bot-
tom) as a function of momentum, in d = 3. The lattice data of [CMM08] are compared
with our calculations. The plain blue line corresponds to the IS-scheme with α = 0; the
dashed red line corresponds to the VM-scheme with α = 1.





Chapter 5

Unquenched two-point correlation
functions

In the previous chapters we have shown that a modest one loop calculation using the
quenched approximation of the Lagrangian introduced in (2.11) remarkably reproduces
the lattice results obtained for the quenched ghost dressing function, gluon propagator,
ghost-gluon vertex and three gluon vertex. The comparison of all these quantities has been
done by fixing just two parameters, the initial condition in the renormalization group flow
of the coupling constant and the gluon mass.

In this chapter we extend the study to the unquenched case, i.e. taking into account
the dynamics of the quarks. We will start by including the contribution of the quarks
to the gluon propagator. The ghost propagator do not have contributions with internal
quarks at one loop. In Sect. 5.1 we present the analytical results in arbitrary dimension
in terms of Passarino-Veltman integrals [PV79] and the simplified expressions in d = 4.
Sect. 5.2 is devoted to the quark propagator. In the following section we implement the
renormalization group approach in the IS scheme and we present the comparison with
lattice data for the ghost and gluon sector. The calculation is done for arbitrary SU(N)
gauge group and for arbitrary number of fermions. For comparison with the lattice data,
the fit is performed for QCD (N = 3 and d = 4) with two light degenerate quarks (Nf = 2)
and two light degenerate quarks in addition to two heavier quarks (Nf = 2 + 1 + 1). In
Sect. 5.5 the quark propagator, parametrized in the usual way in terms of two scalar
functions is compared with the lattice data in the case with Nf = 2+1. In the last section
we present an estimation of the two-loop contributions in order to estimate error bars. All
the results presented in this chapter were published in [PTW14].

5.1 Unquenched gluon propagator
The one-loop contribution to the gluon propagator is represented by the diagrams in
Fig. 5.1.

Figure 5.1 – Diagrams contributing to the gluon self-energy.

The first three diagrams were already computed in chapter 3. Only the last diagram
with a quark loop remains to be computed. The convention of momenta is given in figure
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5.2. The expression of Γ1loop,4
AaµA

b
ν

where the index 4 indicates that we are dealing with the
fourth diagram in figure 5.1, is given by

q + p

q

ν, bµ, a p

Figure 5.2 – Quark loop diagram to the gluon self-energy.

Γ1loop,4
AaµA

b
ν

= −(−g2)
∫

ddq

(2π)dTr
(
γνt

b
(
i/q +M

q2 +M2

)
γµt

a

(
i(/q + /p) +M

(q + p)2 +M2

))

= g2Tr
(
tbta

) ∫ ddq

(2π)d
{
−Tr (γνγργµγσ) qρ(q + p)σ

(q2 +M2) ((q + p)2 +M2)

+Tr (γνγµ)M2 1
(q2 +M2) ((q + p)2 +M2)

}
= g2Tfδ

ab

[
−4 (δνσδρµ − δνµδρσ + δνρδµσ)

∫
ddq

(2π)d
qρ(q + p)σ

(q2 +M2) ((q + p)2 +M2)

+4M2δµν

∫
ddq

(2π)d
1

(q2 +M2) ((q + p)2 +M2)

]

where Tf is defined by Tr(tatb) = Tfδ
ab ( e.g. in the fundamental representation Tf = 1/2).

The mass of the internal quark is denoted byM . A diagram of this kind should be summed
over all quark flavour, changing M for the corresponding mass.

This result can be expressed in terms of Passarino-Veltman integrals [PV79] A(M) and
B0(p,M,M) defined as

Following the procedure explained in the Appendix C, the above diagram can be
expressed in terms of Passarino-Veltman integrals [PV79] as

Γ1loop,4
AaµA

b
ν

(p) = 2g2Tf
(d− 1)

{
[4M2 − (d− 2)p2]B0(p,M,M) + 2(d− 2)A(M)

}
P⊥µν(p). (5.1)

where the integrals A(M) and B0(p,M,M) are defined as (see Appendix C)

A(m) =
∫

ddq

(2π)d
1

q2 +m2

B0(p,m1,m2) =
∫

ddq

(2π)d
1

(q2 +m2
1)
(
(q + p)2 +m2

2
) .

(5.2)

The presence of quarks modifies the perpendicular part of the gluon self energy and
therefore the propagator, however, the parallel part is not affected. The above expression
was successfully checked with [DOT96b].
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In d = 4− ε the perpendicular part defined in 3.9 reads

Γ⊥1loop,4(p) = g2Tfp
2

6π2

{
−1
ε

+ log
(
Meγ/2√

4π

)
− 5

6 + 2t+ (1− 2t)
√

4t+ 1 coth−1 (√4t+ 1
)}

+O(ε)

where t = M2

p2 .
It is important to note that for the ghost self-energy the only diagram that contributes

at one loop, even in the unquenched case, is the one presented in figure 3.1. Therefore,
the one-loop calculation of the ghost propagator is not directly modified with the dynamic
quarks. Note, however, that the ghost dressing function is indirectly influenced by them
through the renormalization group flow.

5.2 Quark propagator
The quark propagator is another fundamental quantity in QCD. The two-point quark
vertex function, i.e. the inverse of quark propagator, can be parametrized in terms of two
scalar components, A(p) and B(p), as

Γ(2)
ψψ̄

(p) = A(p)(−i/p) +MB(p).

We would like to compute the one-loop contribution to the quark propagator using the
Lagrangian (2.11). It is given by the diagram of figure 5.3. Following the Feynman rules
we can compute the diagram as

µ, α ν, β

q

p + qp p

Figure 5.3 – One loop contribution to the quark two-point vertex

Γ(2)
ψψ̄,1loop = −g2

∫
ddq

(2π)d

(
γνt

β

(
i(/p+ /q) +M

(q + p)2 +M2

)
γµt

αP
⊥
µν(q)δαβ

q2 +m2

)

= −g2Cf

{
i (γνγργµ)

∫
ddq

(2π)d
(p+ q)ρP⊥µν(q)

((q + p)2 +M2) (q2 +m2)

+M (γνγµ)
∫

ddq

(2π)d
P⊥µν(q)

((q + p)2 +M2) (q2 +m2)

}

where Cf is defined by tata = Cf Id. In the fundamental representation, Cf = N2−1
2N . The

M here denotes the mass of the quark line. In this case, no sum has to be performed. The
one loop contribution to the quark propagator only depends on the mass of the external
quark flavour and the other quarks are not involved.
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This expression for the quark propagator can be inserted in our Mathematica algorithm
in order to compute the integral by doing the Feynman’s trick. Once the integrals are done
we can identify the tensor structure and contract the external momentum with the Dirac
matrices of each term.

For the first integral, ∫
ddq

(2π)d
(p+ q)ρP⊥µν(q)

((q + p)2 +M2) (q2 +m2)

we obtain terms proportional to pµpνpρ, pµδνρ, pνδµρ and pρδµν , which, contracted with
γνγργµ become p2/p, d/p, d/p and (2− d)/p respectively. All of them contribute to the scalar
function A(p). For the second integral,∫

ddq

(2π)d
P⊥µν(q)

((q + p)2 +M2) (q2 +m2)

the tensor structure is simpler and there are only two terms. One, proportional to δµν and
the other to pµpν . The first term contracted with γνγµ gives a d and the other one a p2.
Since no Dirac gamma remains, this integral contributes to B(p).

The expression of the diagram can be written in terms of Passarino-Veltman integrals
as

Γ(2)
ψψ̄,1loop(p2) = −g2Cf (d− 1)MB0(p,m,M)

+ i/p
g2Cf

2m2p2

{[
(2− d)m4 + (d− 3)m2(M2 − p2) + (M2 + p2)2

]
B0(p,m,M)

+(M2 + p2)2B0(p, 0,M) +A(m)
[
(2− d)m2 −M2 − p2

]
+ (d− 2)m2A(M)

}
.

The previous expression coincides with that of [DOS01] when the gluon mass m is set to
zero. It is worth to mention another test: in each case the divergent part when d = 4 is
compared with the results of [Gra03].

In d = 4− ε, the expression can be written analytically as

Γ(2)
ψψ̄,1loop(p2) =

i/pg2Cf

64π2m2p4

{
k2
[
2m4 +m2(p2 −M2)− (M2 + p2)2

]
Q− 2m2p2(−2m2 +M2 + p2)

−2[2m6 + 3m4(p2 −M2) + (M2 + p2)3] log
(
M

m

)
− 2(M2 + p2)3 log

(
M2 + p2

M2

)}

+ 3g2CfM

8π2

{
−1
ε

+ log
(
meγ/2√

4π

)
− 2

3 −
k2

4p2Q+ 1
2p2 (m2 −M2 + p2) log

(
M

m

)}
+O(ε)

where

k2 =
√
m4 + 2m2(p2 −M2) + (M2 + p2)2 and

Q = log
[

(k2 − p2)2 − (M2 −m2)2

(k2 + p2)2 − (M2 −m2)2

]
.

(5.3)

It can be noted that the part proportional to /p is finite as it is well known in Landau
gauge at one loop. Therefore, the renormalization factor of the fermion field is also finite.
Moreover, even the finite part proportional to /p vanishes in the limit of vanishing gluon
mass. In order to complete the test of this expression we computed the divergent part in
an arbitrary linear gauge and checked it with [Gra03].
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5.3 Renormalization and Renormalization group

As discussed in the previous chapters, in order to absorb the divergences in the vertex
functions we redefine the coupling constant, masses and fields. The renormalization factors
were already introduced in (1.20). Until now we have used the factors related to the ghost
- gluon sector but here, we include the renormalization factor for the quark field and quark
masses, defined as

ψaB =
√
Zψψ

a and MB = ZMM

where the subindex B denotes the bare quantities. The renormalized Γ(2) is related with
the bare one as

Γ(2),R
ψψ̄

(p) = ZψΓ(2),B
ψψ̄

(p) = Zψ
(
A(p)(−i/p) + ZMMB(p)

)
.

In this chapter we focus on the infrared safe IS scheme since although the VM scheme
seems give better results in d = 4 the difference between the schemes is small while in
d = 3 the IS scheme really improves the results. The unquenched IS scheme is defined by
Eqs (3.16) together with

Γ(2),R
ψψ̄

(µ) = −i/µ+M. (5.4)

Therefore,
Zψ = A−1(µ) and ZM = A(µ)B−1(µ). (5.5)

In order to avoid large logarithms the running scale µ has to be chosen as µ ' p for
µ� m for a correlation function with typical momentum p. The β-function for the quark
mass and quark anomalous dimension are given in (1.21).

In this chapter we will focus on the physical dimension d = 4 and all the results will
take into account the renormalization group treatment. In four dimension the contribution
of the quarks to the gluon anomalous dimension is

γquarksA =
Nf∑
i=1

g2Tf
π2

 ti − 6
6ti

− 2√
t3i (ti + 4)

log
(√

ti + 4−
√
ti√

ti +
√
ti + 4

)
where ti = µ2/M2

i . Even though the ghost anomalous dimension remains untouched, this
change in the gluon anomalous dimension also affects the β-functions in the IS scheme,
βm2 = m2(γA + γc) and βg = g(γA/2 + γc).

This time we have to consider the fermion anomalous dimension, given by

γψ = g2Cf
16π2m2µ4

{
m2µ2

(
4m2 − 2M2 + µ2

)
+ −2

(
2m6 − 3m4M2 +M6

)
− 3µ2

(
M4 +m4

)
+ µ6

]
log
(
M

m

)
+
(
−2M6 − 3M4µ2 + µ6

)
log
(
M2 + µ2

M2

)

+ 1
2k2

[
2(m2 −M2)3(2m2 +M2) + µ2(m2 −M2)(7m4 + 6m2M2 + 5M4)

+µ4
(
3m4 − 2m2M2 − 3M4

)
+ µ6

(
m2 +M2

)
+ µ8

]
Q
}
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and

βM = Mγψ + 3g2CfM

8π2

{
−µ2 + (m2 −M2) log

(
M

m

)
− 1

2k2

(
m4 +m2

(
µ2 − 2M2

)
+M2

(
M2 + µ2

))
Q

}
where k and Q are the expressions appearing in Eq. (5.3) with p replaced by the
renormalization-group scale µ.

5.4 Results for the gluon and ghost sectors
We would like to compare the unquenched gluon propagator and the ghost dressing func-
tion with the lattice data available. Lattice data shows that the qualitative behaviour
remains the same with the inclusion of quarks. Our analytical expression has been com-
puted for arbitrary number of colours N , number of flavours Nf and dimension. In this
section we compare the results in four dimensions for SU(3) with two degenerate light
quarks Nf = 2 (both quarks have the same mass), and, with two degenerate light quarks
and two heavier quarks Nf = 2 + 1 + 1 (there are three different quark masses).

Our results depend on the choice of the initial conditions for the renormalization
group flow. We use the coupling constant and masses at the scale µ0 = 1 GeV as fitting
parameters. The best fit between our results and lattice data take place when the value
of the fitting parameters minimize simultaneously the relative errors defined as

χ2
AA,Unq = 1

N

∑
i

Γ⊥lt.(pi)2
(

1
Γ⊥lt.(pi)

− 1
Γ⊥th.(pi)

)2

χ2
cc̄,Unq = 1

N

∑
i

J−2
lt. (pi) (Jlt.(pi)− Jth.(pi))2 . (5.6)

We can observe that there is a small difference between the errors used in the quenched
analysis (3.23) and the last ones (5.6). In the quenched analysis we choose to balance
the relative error with the absolute error. However, we have seen that the information
given by the relative error is practically the same as the defined in Eq.(3.23), considering
that there is a expanded region of possible values, so we decided to use the relative error
instead.

We first study the case with two light fermions with the same mass. Therefore, we
have three fitting parameters to choose: the coupling constant, the gluon mass and the
quark mass. First, we fix the quark mass with the approximate lattice value, Mu,d

0 = 0.13
GeV at 1 GeV. Second, we plot the error contours in terms of the coupling constant and
gluon mass, see figure 5.4. Third, we choose the values of the parameters belonging to the
intersection of the contours. In this case g0 = 4.5 and m = 0.42 GeV. The corresponding
gluon and ghost propagators are shown in figure 5.5 where we can see an excellent match
with the lattice data of [SMMPvS12]. Finally, we fix the value of the coupling constant
of the third step and make the error contour lines as function of the gluon and quark
masses. The last plot displayed in figure 5.6 shows us that the quality of the fits are
almost independent of the quark mass as long as M � 1 GeV.

In the case Nf = 2 + 1 + 1, we have a priori five parameter to fit. They correspond to
the initial conditions of the renormalization group flow at 1 GeV of the coupling constant,
gluon mass and three quark masses. However, we impose at the scale µ0 = 1 GeV the
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Figure 5.4 – Contour levels for the quantities χAA,Unq (forward, oval form) and χcc̄,Unq
(backward) for d = 4, for Nf = 2 and Mu,d

0 = 0.13 GeV. The contour lines correspond to
4%, 7% and 10 % for the gluon and 2%, 4% and 6 % for the ghost.

same ratio for the quark masses as those used in lattice simulations. That means that
the initial condition of the middle quark mass is twice the lightest mass and the heavier
quark mass is twenty times the value of the light mass at 1 GeV. These ratios give at 2
GeV the ratios used by lattice simulations in [ABB+12] which are the data we are going
to compare with.

The error contours in four dimensions with quark masses respecting the ratios men-
tioned above and Mu,d

0 = 0.13 GeV fixed at 1 GeV are shown in figure 5.7. The fitting
parameter that we choose are g0 = 5.3 and m0 = 0.48 GeV which give the fits depicted
in figure 5.8. Again in this case, lattice result are reproduced with great accuracy. The
comparison with lattice data shows that the new diagram with an internal loop of quarks
is not strong enough to modify the qualitative behaviour of the propagators.

As in the previous case, we are not paying attention of the quark mass since the results
seem to be independent of small changes of this value (as long as the lighter quarks have a
mass much smaller than 1 GeV). This independence with respect to the quark mass value
can be seen in figure 5.9.

It is important to note that in this case we have three parameters to fit but, as discussed
for the quenched case, the coupling constant should match with the known value after the
appropriate running. For instance, in [BBB+12] the coupling constant using Taylor scheme
is computed at the Z0-boson mass scale where g(mZ0 ∼ 96) = 1.2274. If we perform the
renormalization group flow of the coupling constant obtained by us at 1 GeV, g0 = 5.3,
it should match to their value at µ = mZ0 . At the momentum scale mZ0 ∼ 96 GeV five
quarks must be considered, since the mass of the up, down, charmed, strange and bottom
quarks is smaller than mZ0 . Therefore, we use the renormalization group flow for the
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Figure 5.5 – Gluon dressing function (top) and ghost dressing function (bottom) as a
function of momentum in d = 4 for Nf = 2. Using g0 = 4.5, m0 = 0.42 GeV and
Mu,d

0 = 0.13 GeV at 1 GeV. The points are lattice data of [SMMPvS12].
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Figure 5.6 – Contour levels for the quantities χAA,Unq (left) and χcc̄,Unq (rigth) for d = 4,
for Nf = 2 and g0 = 4.5. The contour lines correspond to 6%, 10% and 12 % (left), 3%,
5% and 8 % (right). The quality of the fits is almost insensitive to the value of the quark
mass.

Nf = 2+1+1 case up to the scale of the bottom mass and above that scale we include the
bottom quark with a frozen mass in the renormalization group equations. The coupling
constant obtained at mZ0 is g = 1.4. This gives a 17% error on the coupling constant that
is the typical error of the one loop approximation. Even though the coupling constant
is not a free parameter it is convenient to fit it at 1 GeV in order to study the infrared
regime better. We always choose the initial condition of the coupling constant within this
error bar.

It is interesting to analyse the effect of increasing the number of flavours. Figure
5.10 shows the gluon and ghost dressing function for both Nf = 2 and Nf = 2 + 1 + 1.
The comparison is done by normalizing the curves such that they coincide at 4 GeV so
their infrared behaviour can be easily compared. It can be seen that the gluon dressing
function decreases with the addition of more quarks as was observed in lattice simulations
[BHL+04, ABB+12]. It is important to remark that both curves have been done using the
corresponding fitting parameters in each case. We also observed an enhancement of the
ghost dressing function.

5.5 Results for the quark sector

In this section we compare our one loop calculations for the quark propagator shown
in section 5.2 with the lattice data available for this quantity. The data published in
[BHL+04, BHL+05] for the gluon and the light quark propagator respectively correspond
to the SU(3) group in four dimensions and Nf = 2 + 1, i.e. two degenerate light quarks
and one heavy quark. Therefore we restrict our calculations to that case. It is important
to note that in the previous analysis we restricted ourself to the ghost-gluon sector because
no quark data was available.

In this section we have three quantities available from the lattice data to compare with.
They correspond to the gluon propagator and the two scalar functions related to the light
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Figure 5.7 – Contour levels for the quantities χAA,Unq (forward) and χcc̄,Unq (backward)
for d = 4, for Nf = 2 + 1 + 1 and Mu,d

0 = 0.13 GeV. The contour lines correspond to 3%,
4% and 5% for the gluon and 1%, 1.5% and 2% for the ghost.

quark propagator, Zu,d(p) and Mu,d(p), defined as

Γ(2)
ψψ̄

∣∣∣
u,d

= Z−1
u,d(p)

(
−i/p+Mu,d(p)

)
.

To compare with the lattice data we include the effects of the renormalization group and
therefore we can relate

Γ(2)
ψψ̄

(p, µ0) = 1
zψ(µ)Γ(2)

ψψ̄
(p, µ) = Zψ

zψ(µ)
(
A(p)(−i/p) + ZMM(µ)B(p)

)
= A−1(µ)

zψ(µ)
(
A(p)(−i/p) +A(µ)B−1(µ)M(µ)B(p)

)
µ=p= 1

zψ(µ = p)
(
−i/p+M(µ = p)

)
(5.7)

where we have used the relations (5.5). We note that Mu,d(p) corresponds to the Mu,d(µ)
(the light quark running mass) changing µ by p. Therefore, at 1 GeV,Mu,d(1GeV) = Mu,d

0 .
We observe also that Zu,d(p) = z−1

ψ (µ = p), however, due to the different renormalizations
when comparing with the lattice data we have to include a multiplicative factor.

As in the previous case, we first fix the parameters g0 and m0 to obtain a good fit
for the gluon propagator with Mu,d

0 = 0.13 GeV. For the heavy quark mass, the initial
condition at 1 GeV is fixed to be five times the value of Mu,d

0 which is equal to the ratio
used by lattice simulations. Figure 5.11 shows the contour lines for the error quantities
χAA,Unq and χCC,Unq. We mention that the analysis for the ghost dressing function in this
section is done by using the lattice data for the case with Nf = 2 + 1 + 1 as no lattice
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Figure 5.8 – Gluon dressing function (top) and ghost dressing function (bottom) as a
function of momentum in d = 4 for Nf = 2 + 1 + 1. Using g0 = 5.3, m0 = 0.48 GeV and
Mu,d

0 = 0.13 GeV at 1 GeV. The points are lattice data of [ABB+12].
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Figure 5.9 – Contour levels for the quantities χAA,Unq (left) and χcc̄,Unq (rigth) for d = 4,
for Nf = 2 + 1 + 1 and g0 = 5.3. The contour lines correspond to 5%, 7% and 10 % (left),
2%, 4% and 10 % (right). The quality of the fits is almost insensitive to the value of the
quark mass.
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Figure 5.10 – Gluon dressing function (left) and ghost dressing function (right) for different
number of flavours in d = 4.
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data is available for Nf = 2 + 1. This is supported by the idea that this function is rather
insensitive to the inclusion of a heavy quarks. Under this hypothesis, it is interesting to
compare our findings with the ghost dressing function for Nf = 2 + 1 + 1.

Figure 5.11 – Contour levels for the quantities χAAUnq (forward) and χcc̄Unq (backward,
oval form) for d = 4 with Nf = 2 + 1. The contour lines correspond to 5.5%, 6.5% and
7.5 % for the gluon and 2%, 3% and 4 % for the quark mass.
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Figure 5.12 – Gluon dressing function (left) and ghost dressing function (right) as a func-
tion of momentum in d = 4 forNf = 2+1. Using g0 = 4.8,m0 = 0.42 GeV andMu,d

0 = 0.13
GeV at 1 GeV. The points are lattice data of [BHL+04, ABB+12] respectively.

The best fit for both dressing functions was obtained choosing at 1 GeV, g0 = 4.8 and
m0 = 0.42 GeV and it is depicted in figure 5.12. As in the previous section both functions
are almost independent of the value of M0, as can be seen in figure 5.13. However, the
quark propagator itself strongly depends on the choice of M0. In figure 5.14 we show that
those values for the coupling constant and gluon mass are not good enough for fitting the
scalar function Mu,d(p) using Mu,d

0 = 0.13 GeV. In fact, figure 5.15 shows that in order to
reproduce M(p) maintaining Mu,d

0 = 0.13 GeV at 1 GeV the values for g0 and m0 needed
are far away of the expected rank (being g0 = 9.6 and m0 = 1.4 GeV). Clearly, these
values do not reproduce the gluon propagator, see figure 5.16.

It is important to note that the lattice results for the mass of the quark show the
consequence of the chiral symmetry breaking. We can see that even if the starting value
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Figure 5.13 – Contour levels for the quantities χAAUnq (left) and χCCUnq (right) for d = 4
with g0 = 4.8. The contour lines correspond to 6%, 7% and 8 % for the gluon and 2.5%,
3% and 4 % for the ghost.

of the quark mass at large momentum is small, the quark mass increases considerably in
the infrared. In principle, this should happens if we set an arbitrary small value of the
quark mass at high energy. However, our one loop calculation does not reproduce this
feature. Instead, if the ultraviolet quark mass is set to zero, the mass remain zero at every
momentum scale. However, when we considered a small non zero value for the quark mass
the situation is similar enough to the lattice data.

In order to find the correct value ofMu,d
0 to reproduce the lattice data we fixed g0 = 4.8

(extracted from figure 5.11) and study the error dependence on the masses. The left figure
of 5.17 shows the contour errors for χM defined as

χ2
M = 1

N

∑
i

M−2
lt. (pi) (Mlt.(pi)−Mth.(pi))2 .

The right figure of 5.17 shows the superposition of the error contours χM with the contours
of χAA,Unq. It can be observed that the fitting for the M(p) does not depend on the gluon
mass for masses of the gluon bigger than 0.4 GeV.

The parameters found to reproduce the gluon propagator in figure 5.12 belong to the
region of smallest χM . Therefore, we use the same coupling constant and gluon mass used
to reproduced the gluon dressing propagator and we change the initial condition for the
quark mass to Mu,d

0 = 0.08 GeV. In order to complement our analysis we also compare
the ghost dressing function. This comparison is just qualitative due to the fact that we
used the ghost data for Nf = 2 + 1 + 1 as no lattice data was available in the current case.
The best fit is shown in figure 5.18 where g0 = 4.8, m0 = 0.42 GeV and Mu,d

0 = 0.08 GeV.
We also show in figure 5.19 the masses for the degenerate light quark and for the heavy
quark.

We can conclude that a simple one loop calculation for the gluon and ghost dressing
functions and the quark mass reproduces the data obtained in lattice simulations with
great accuracy for gluon and ghost dressing functions and reasonable accuracy for the
quark mass.

There remains to compare Zu,d(p). Let us recall that using the IS scheme Zu,d(p)
matches with zψ(µ), up to a multiplicative constant, replacing µ by p. The result for
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Figure 5.14 – The scalar function M(p) for the light quark as a function of momentum in
d = 4 for Nf = 2 + 1. Using g0 = 4.8, m0 = 0.42 GeV and Mu,d

0 = 0.13 GeV at 1 GeV.
The points are lattice data of [BHL+05].

Zu,d(p) is shown in figure 5.20 where we can see that the results are not good at all. In
fact, the behaviour is not even qualitatively reproduced. We attribute this mismatch to
the fact that the one loop contribution to this function is really small. The reason for
that is that in standard QCD the one loop contribution to this function vanishes. The
important correction to the tree-level expression arrives from the two-loop calculations.
Therefore, it is natural to expect that for the massive case also the two-loop contributions
are not negligible for describing Z(p).

In order to test this explanation, in the next section, we estimate the contribution of
the two-loop diagrams.

5.5.1 Estimate of the two loop contributions

The results of the previous section show that the function Zu,d(p) is not well reproduced
by the one-loop calculations. Although, one-loop contributions are enough to describe
with great accuracy the gluon and ghost dressing functions and with reasonably accuracy
the light quark mass function. The Zu,d(p) function has no one-loop contribution when
the gluon mass is set to zero. In that case, two loop contributions dominate the one loop
corrections. In this section, we argue that two-loop contributions are important in our
case in order to reproduce Zu,d(p), even if they do not influence in a significant manner
the dressing functions and Mu,d(p).

The completely calculation of the two-loops diagrams of momentum dependent quan-
tities with massive propagators is extremely demanding so we are not going to compute
them here. However, we make a first estimation of the two-loop contribution. For that
purpose, we use the ultraviolet behaviour of the β functions and anomalous dimensions
computed in [Gra03]. Since all the two-loop diagrams of the quark propagator have at
least one gluon propagator, a two-loop calculation in Curci-Ferrari model would be sup-
pressed in the infrared. We mimic this effect by modifying the anomalous dimension in a
minimal way by multiplying them by

µ2

µ2 + s2
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Figure 5.16 – Gluon dressing function (left) and the scalar functionM(p) for the light quark
(right) as a function of momentum in d = 4 for Nf = 2 + 1. Using g0 = 9.5, m0 = 1.4
GeV and Mu,d

0 = 0.13 GeV at 1 GeV. The points are lattice data of [BHL+04, BHL+05].

where s is of order 1 GeV. Let us call the results hybrid expressions. In this way, the
hybrid anomalous dimension matches with the one obtained at two loops by [Gra03] in
the ultraviolet limit and goes to zero as µ2 in the infrared, as expected.

We repeat the same procedure as before in order to find the best fitting parameters.
The best fits are obtained for g0 = 3.4, m0 = 0.4 GeV and M = 0.08 GeV at µ0 = 1 GeV
and lead to the curves presented in the figure 5.21.

We can estimate the error of our one-loop calculations to be of the order of the difference
between our one loop results and the hybrid results. The shaded areas of figure 5.22
diagrammatically represent a region centred at the hybrid expression with a shaded region
and limited by the one loop results and by the symmetric curve of one loop results with
respect to the hybrid model. This figure shows that higher correction for the gluon dressing
function are small and of order comparable with the difference between our one-loop
calculations and the lattice data. On the other hand, the higher order contributions to the
quark mass are small but they are not enough to reproduce the lattice data. However, we
still see a quark mass which has small values in the ultraviolet but is abruptly enhanced
in the infrared as is observed in lattice data, as a consequence of the chiral symmetry
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Figure 5.17 – Contour levels for the quantities χM (left) and contour levels for the quan-
tities χM and χAA (right) for d = 4, for Nf = 2 + 1, maintaining g0 = 4.8 at 1 GeV. The
contour lines correspond to 7%, 8% and 10 % for the gluon and 50%, 70% and 90 % for
the quark mass.

braking. Finally, the corrections for Z(p) are large enough to explain the discrepancy
between our one-loop results with the lattice data. This confirm the idea that two loop
contributions to Z(p) are much more important that for the gluon dressing functions and
Mu,d(p), explaining the failure of the one loop contribution to this quantity.
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Figure 5.18 – Gluon dressing function (top), ghost dressing function (middle) and the
scalar function M(p) for the light quark (bottom) as a function of momentum in d = 4 for
Nf = 2 + 1. Using g0 = 4.8, m0 = 0.42 GeV and Mu,d

0 = 0.08 GeV at 1 GeV. The points
are lattice data of [BHL+04, BHL+05] for the gluon dressing function and the quark mass
respectevely and from [ABB+12] for the ghost dressing function

.
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Figure 5.19 – Quark masses of the light (full line, red) and heavy (dashed, black) quark.
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Figure 5.20 – Zu,d(p) in d = 4. The points are lattice data of [BHL+05].
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Figure 5.21 – Gluon dressing function (top), quark mass M(p) (middle) and Z(p)
(bottom) in d = 4 using the hybrid approximation. The points are lattice data of
[BHL+04, BHL+05].



5.5. Results for the quark sector 123

0 1 2 3 4 5

0.5

1.0

1.5

p HGeVL

p
2
�
G

¦

H
p
L

0 1 2 3 4 5

0.05

0.10

0.15

0.20

0.25

0.30

p HGeVL

M
u,

d
Hp
LH

G
eV
L

0 1 2 3 4 5

0.4

0.6

0.8

1.0

1.2

p HGeVL

Z
u,

d
Hp
L

Figure 5.22 – Gluon dressing function (top), quark mass Mu,d(p) (middle) and Zu,d(p)
(bottom) as a function of momentum in d = 4. In red the hybrid calculation results (see
text) and in black the one loop calculation and the symmetrized one loop results with
respect to hybrid calculation. The points are lattice data of [BHL+04, BHL+05].





Chapter 6

One loop corrections to the
quark-gluon vertex

The quark-gluon vertex is another fundamental ingredient of QCD which controls the in-
teraction between quarks and gluons. It is believed that, at least in Landau gauge, it plays
an important role in the confinement mechanism and in the dynamical chiral symmetry
breaking [MR03, RW94, FA03, AP11, CR14]. It is also essential for the formation of phys-
ical bound states [MT99, BDRT02, BHK+04, HKR05, CR09, Wil14]. For instance, the
meson spectrum can be studied by using Bethe-Salpeter equation [MTT07], taking as an
input this vertex and the propagators of the theory.

The strength of the interaction between quarks and gluons is measured through the
running coupling constant αs = g2

4π which can be determined from this vertex as explained
in [Bet00]. As we have mentioned before, the coupling constant obtained through this
vertex or any other of the vertices in the gluon sector give the same value in the ultraviolet
at two-loop order. However, at low momenta the αs extracted from this vertex is larger
than the one computed from the ghost-gluon vertex or from the three-gluon vertex as it
is shown in [SK02].

For these reasons, there is a huge interest in determining the behaviour of the quark-
gluon vertex. For instance, it has been computed at one loop in the limit of vanishing
gluon mass by [DOS00] in arbitrary linear covariant gauge and dimension. Some partial
computations in particular gauges and momentum configurations have been done at two
and three loops in [CS00, CR00] in the same zero gluon mass limit. It was also studied
by Dyson-Schwinger methods in [ABIP14a, Wil14] and by lattice simulations in [SK02,
SBK02, SKB+04, SBK+05]. However, the understanding of this vertex is not complete
since its kinematics has a complex tensor structure with 12 scalar components which
depend on three independent kinematic variables. The lattice simulations for the general
kinematic has been done only for a particular combination of the scalar functions but are
not as precise as in the zero momentum gluon case.

In this chapter present the computation of the quark-gluon vertex at one loop using
the Lagrangian (1.14) which is the standard QCD Lagrangian with the addition of a
gluon mass term. The preceding chapters showed that this little change in the Lagrangian
reproduces with good accuracy the results for the quenched and unquenched propagators
and the three point correlation functions in the gluon sector. All these computations are
done in arbitrary dimension, number of colors and flavours and in general kinematics. The
comparisons between our results and the lattice simulations to be presented are done for
N = 3 in d = 4 and published in [PTW15].
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6.1 Tensor structure
We begin by presenting the tensor structure of the quark-gluon vertex which is repre-
sented in figure 6.1 where p, r and k denote the quark, anti-quark and gluon momentum
respectively. The momentum conservation tells us that r = −k−p. The Lorentz structure
of the vertex consists of 12 independent tensors. They can be grouped in the transverse
terms (8 components) and the non-transverse ones as it was done in [SK02]. The vertex
function can be written as follows

Γψψ̄Aaµ(p, r, k) = taΓµ(p, r, k) = −igta
( 4∑
i=1

λi(p2, r2, k2)Li,µ +
8∑
i=1

τi(p2, r2, k2)Ti,µ

)

where

L1,µ = γµ

L2,µ = −(/p− /r)(p− r)µ
L3,µ = −i(p− r)µ
L4,µ = −iσµν(p− r)ν
T1,µ = i

[
kµ(r.k)− rµk2

]
T2,µ =

[
kµ(r.k)− rµk2

]
(/p− /r)

T3,µ = /kkµ − k2γµ

T4,µ = −i
[
k2σµν(p− r)ν − 2kµσνλrνkλ

]
T5,µ = iσµνkν

T6,µ = /k(p− r)µ − k.(p− r)γµ

T7,µ = − i2k.(p− r)
[
(/p− /r)γµ − (p− r)µ

]
− i(p− r)µσνλrνkλ

T8,µ = −γµσνλrνkλ − /rkµ + /krµ (6.1)

6.2 Symmetries
The scalar functions respect some symmetries due, for example, to the effect of the charge
conjugation applied to the quark-gluon vertex, which implies that

CΓµ(p, r, k)C−1 = −ΓTµ (r, p, k).

Remembering that the charge conjugation acts over the Dirac matrices as

CγµC
−1 = −γTµ ,

we obtain that all the scalar functions are symmetric under the interchange of the quark
and anti-quark momenta except for λ4, τ4 and τ6 which are odd. These properties were
verified by our calculations.

Let us also study the constraint of the chiral symmetry over the scalar functions. With
this purpose we consider the part of the Lagrangian involving quarks but taking the quark
mass to zero

L = −ψ̄γµDµψ.
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We can define the left-handed and the right-handed fermions as

ψL = 1− γ5
2 ψ and ψR = 1 + γ5

2 ψ

and therefore

ψ̄L = ψ̄
1 + γ5

2 and ψ̄R = ψ̄
1− γ5

2 .

This gives the relations ψ = ψL+ψR and ψ̄ = ψ̄L+ ψ̄R. The Lagrangian can be expressed
as

L = −ψ̄LγµDµψL − ψ̄RγµDµψR.

This Lagrangian is invariant under the chiral symmetry defined as

ψL → ULψL = eiθ
a
Lt
a
ψL = ψL + iθaLt

aψL +O(θ2
L)

and
ψR → URψR = eiθ

a
Rt
a
ψR = ψR + iθaRt

aψR +O(θ2
R)

which can be performed independently for each quark flavour. This symmetry leads to
the following Ward identity

Γψψ̄Aaµ(p, r, k)γ5 + γ5Γψψ̄Aaµ(p, r, k) = 0

which implies that, in the case with vanishing quark mass, the quark-gluon vertex anti-
commutes with γ5.

In particular this implies that λ3, λ4, τ1, τ4, τ5 and τ7 vanish in the chiral limit. We
checked that in our one-loop results, where these functions are proportional to M in the
limit of smallM . We will see that the running ofM is really important for these quantities
and they have a behaviour that is similar to the one of the chiral symmetry breaking when
the renormalization group is considered. The other functions, instead, are of order one in
this limit.

k

rp

µ, a

Figure 6.1 – Quark gluon vertex.

6.3 One loop contribution

We consider the one loop contribution for this vertex given by our model. The diagrams
involved are shown in figure 6.2. The first diagram has a similar structure as the one loop
contribution to QED except for a multiplicative factor. It is shown in detail in figure 6.3
and its expression, denoted Γa,1loopµ,1 (p, r, k), is the following
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Figure 6.2 – One loop contribution to the quark-gluon vertex.
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k

p k + pqν, b ρ, c

E D
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B C

Figure 6.3 – One loop contribution to the quark-gluon vertex; QED-like diagram.

(
Γa,1loopµ,1 (p, r, k)

)
CB

= −(ig)3
∫

ddq

(2π)dγρ(t
c)CD

(
i(/q − /k − /p) +M

(q − k − p)2 +M2

)
γµ(ta)DE

×
(
i(/q − /p) +M

(q − p)2 +M2

)
γν(tb)EB

(
P⊥νρ(q)
q2 +m2

)
δbc

= ig3
(
tbtatb

)
CB

∫
ddq

(2π)d

[
γρ

(
i(/q − /k − /p) +M

(q − k − p)2 +M2

)
γµ

(
i(/q − /p) +M

(q − p)2 +M2

)
γν

(
P⊥νρ(q)
q2 +m2

)]

= − i

2N g3(ta)CB
∫

ddq

(2π)d

[
γρ

(
i(/q − /k − /p) +M

(q − k − p)2 +M2

)
γµ

(
i(/q − /p) +M

(q − p)2 +M2

)
γν

(
P⊥νρ(q)
q2 +m2

)]

where the Latin capital letters going from 1 . . . N denotes color of the quark, the Latin
small letters from 1 to N2 − 1 represent the color indices of the gluons and, as usual, the
greek letters represent the Lorentz indices. In the last line we have used that tbtatb =
(Cf − Ca/2) ta = −1/(2N)ta, see [PS95]. Where we have used that, for SU(N),

Ca = N and Cf = N2 − 1
2N .

We can split the integral according to the structure in terms of the Dirac gamma
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matrices. This leads to

Γa,1loopµ,1 (p, r, k) = −i2N g3ta (I1 + I2 + I3 + I4)

where

I1 = γργεγµγηγν

[
−
∫

ddq

(2π)d
(q − k − p)ε

(q − k − p)2 +M2
(q − p)η

(q − p)2 +M2
P⊥νρ(q)
q2 +m2

]

I2 = γργεγµγν

[
iM

∫
ddq

(2π)d
(q − k − p)ε

(q − k − p)2 +M2
1

(q − p)2 +M2
P⊥νρ(q)
q2 +m2

]

I3 = γργµγηγν

[
iM

∫
ddq

(2π)d
1

(q − k − p)2 +M2
(q − p)η

(q − p)2 +M2
P⊥νρ(q)
q2 +m2

]

I4 = γργµγν

[
M2

∫
ddq

(2π)d
1

(q − k − p)2 +M2
1

(q − p)2 +M2
P⊥νρ(q)
q2 +m2

]
The expressions between squared brackets are computed with the Mathematica al-

gorithm which is in charge of doing the Feynman trick and integrate over the internal
momentum. We can then identify the structure in momentum variables and perform the
contraction between them and the corresponding gamma matrices. We can finally identify
the contribution to each scalar function defined in Eq.(6.1). The calculation reproduces
the results of [DOS00] in the limit of vanishing gluon mass.

It can be seen that I1 and I4 contribute to λ1, λ2, τ2, τ3, τ6 and τ8 scalar functions while
I2 and I3 contribute to the remaining ones. An interesting feature is that no contribution
appears for λ4 at one loop.

Moreover, it is known that the λi scalar functions of the QED-like vertex are related to
the quark propagator through an identity identical to the abelian Ward identity of QED
up to a multiplicative factor. The identity, valid only for the QED-like diagram is

kµΓa,1loopµ,1 (p, r, k) = (Cf − 1/2Ca)C−1
f

[(
Γ(2)
ψψ̄

)−1
(−r)−

(
Γ(2)
ψψ̄

)−1
(p)
]1loop

.

This identity was successfully checked by our result.
The calculation was also done using the Mathematica’s package, FeynCalc [MBD91],

which allows us to rewrite the expression in terms of Passarino-Veltman integrals. To
allow FeynCalc to reduce our equation to a manageable size it was necessary to simplify
the input by using, for instance, the substitution (3.2). The result of the scalar functions
using this package is presented in the complement material of [PTW15].

The second diagram is shown in detail in figure 6.4. Its contribution to the quark-gluon
vertex is given by(

Γa,1loopµ,2 (p, r, k)
)
CB

= −(−g)2
∫

ddq

(2π)dγη(t
e)CD

(
i(/q − /p) +M

(q − p)2 +M2

)
γσ(td)DBδdb

P⊥σν(q)
q2 +m2 δ

ce

×
P⊥ηρ(k + q)

(k + q)2 +m2

(
igfabc [(2q + k)µδνρ − (2k + q)νδµρ + (k − q)ρδµν ]

)
= ig3

(
tctb

)
CB

fabc
∫

ddq

(2π)dγη

(
i(/q − /p) +M

(q − p)2 +M2

)
γσ

P⊥σν(q)
q2 +m2

P⊥ηρ(k + q)
(k + q)2 +m2

× [(2q + k)µδνρ − 2kνδµρ + 2kρδµν ]

= N

2 g
3 (ta)CB

∫
ddq

(2π)dγη

(
i(/q − /p) +M

(q − p)2 +M2

)
γσ

P⊥σν(q)
q2 +m2

P⊥ηρ(k + q)
(k + q)2 +m2

× [(2q + k)µδνρ − 2kνδµρ + 2kρδµν ]
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Figure 6.4 – One loop contribution to the quark-gluon vertex; diagram with a three-gluon
vertex.

This diagram does not satisfy a simple abelian Ward identity but the full vertex satisfy a
Slavnov-Taylor identity (see for instance the presentation in [DOS00]). The corresponding
check is beyond the scope of the present calculation because we would need to compute
other vertices appearing in that Slavnov-Taylor identity.

Again we can separate the integral in two parts according to the number of Dirac
matrices. (

Γa,1loopµ,2 (p, r, k)
)
CB

= N

2 g
3 (ta)CB (I5 + I6)

where

I5 = γηγεγσ

(
i

∫
ddq

(2π)d
(q − p)ε

(q − p)2 +M2
P⊥σν(q)
q2 +m2

P⊥ηρ(k + q)
(k + q)2 +m2 [(2q + k)µδνρ − 2kνδµρ + 2kρδµν ]

)

and

I6 = γηγσ

(
M

∫
ddq

(2π)d
1

(q − p)2 +M2
P⊥σν(q)
q2 +m2

P⊥ηρ(k + q)
(k + q)2 +m2 [(2q + k)µδνρ − 2kνδµρ + 2kρδµν ]

)
.

After performing the integral using the Mathematica algorithm we can observe that
the integral I5 contributes to λ1, λ2, τ2, τ3, τ6 and τ8 while I6 contributes to λ3, λ4,τ1,τ4,
τ5 and τ7.

In order to have an idea of the order of magnitude of the scalar functions obtained in
the calculation we present in figure 6.5 all the scalar functions for a fixed value of the gluon
momentum k = 0.555 GeV and the anti-quark momentum r = 0.844 GeV as function of
p (except λ1 that requires to be renormalized and will be discussed below). The general
expression of the scalar functions in the case of vanishing gluon mass was successfully
compared numerically with the results obtained for the standard QCD by [DOS01].

6.4 Renormalization scheme

In order to compare our calculations with the lattice simulations we implement the renor-
malization scheme IS defined in (3.16) and (5.4). It is important to remark that no extra
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Figure 6.5 – Unrenormalized scalar functions as function of p for k = 0.555 GeV and r = 0.844
GeV.
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renormalization condition needs to be imposed to the quark-gluon vertex. Since the renor-
malization factors already defined are enough to renormalize this quantity. Therefore, we
have that

ΓR
ψψ̄Aaµ

(p, r, k) = Zψ
√
ZAΓB

ψψ̄Aaµ
(p, r, k) = taZψ

√
ZAZgΓBµ (p, r, k)

where the combination Zψ
√
ZAZg absorbs the divergences of this vertex. The relation

between the renormalized vertex in two different scales is given by

ΓR
ψψ̄Aaµ

(p, r, k, µ0) = 1
zψ(µ)

√
zA(µ)

ΓR
ψψ̄Aaµ

(p, r, k, µ)

but, as we want to represent the scalar quantities after factorizing (−itag), the scalar
functions that we are going to compare can be written, up to a multiplicative factor, as

λRi (g(µ0),m(µ0),M(µ0)) = Zψ
√
ZAZg

zψ(µ)
√
zA(µ)

g(µ)
g(µ0)λ

B
i (g(µ),m(µ),M(µ))

and
τRi (g(µ0),m(µ0),M(µ0)) = Zψ

√
ZAZg

zψ(µ)
√
zA(µ)

g(µ)
g(µ0)τ

B
i (g(µ),m(µ),M(µ))

where we have made explicit that the effects of the renormalization group flow are consid-
ered.

6.5 Results
The one loop vertex was computed for generic number of colors, flavours, arbitrary di-
mension and general kinematics. Our one-loop calculations are renormalized using the
IS-scheme at µ0 = 1 GeV and we take the running scale µ =

√
r2+p2+k2

2 . The choice of
this scale is motivated so it matches with µ ∼ p for vanishing gluon momentum and when
p2 = r2 � k2, µ ∼ p and in the opposite case the running scale is frozen out by the gluon
momentum.

In this section we compare the scalar functions with the lattice data available in the
literature. The lattice simulations for the quark-gluon vertex have been done for QCD
in the quenched approximation in d = 4. It is important to remark that the gluon and
ghost propagators were already studied with our methods for quenched QCD in section
3.3. In that study the coupling constant and the gluon mass were fixed to reproduce the
lattice data of the propagators. We use here the same values of the parameters, g = 4.1
and m = 0.43 GeV at 1 GeV, for comparing the quark-gluon vertex. Therefore, we only
have to fix the initial condition of the quark mass in the RG flow. In this section we show
how the parameters used to fit the quenched propagators allow us to reproduce with good
accuracy the lattice simulations for the quark-gluon vertex.

Simulations with small error have been done for the case corresponding to the vanishing
gluon momentum by [SBK+03]. We present the comparison of our results, also considering
the quenched approximation, with the lattice data of the three scalar functions involved
in this configuration. Another configuration treated in [SBK+03] is the quark reflection
configuration, which corresponds to r = −p and therefore k = −2p [SBK+03]. In this
case there are only two scalar functions directly accessible to the lattice. They correspond
to the combination λ′1 = λ1 − k2τ3 and τ5. The comparison of these functions with our
results is also presented in this section.
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Some more general kinematics have been studied on the lattice [SBK+05] for one
special combination of the scalar functions but as they present larger statistical errors we
only compare some special cases. For instance, the completely symmetric configuration
with r2 = p2 = k2 and the case in which the quark and antiquark has the same momentum
norm but the gluon momentum is arbitrary.

6.5.1 Vanishing gluon momentum

Let us present the result for the case of vanishing gluon momentum. In this particular
configuration the tensor structure simplifies to

Γµ(p,−p, 0) = −ig
(
λ1(p2)γµ − 4λ2(p2)/ppµ − 2iλ3pµ

)
. (6.2)

Moreover the expression for the scalar functions in this configurations simplify consid-
erably and, in d = 4− ε, they can be done analytically:

λ1(p2) = 1 + 3Ng2

32π2

[
1
ε
− log m̄

]
+ g2

192π2m4Np4 log
(
M

m

){
−6m8 (N2 − 1

)
+m6 [M2 (10N2 − 9

)
−
(
14N2 + 3

)
p2]

−3m4 [M4N2 − 14M2p2 + 3
(
N2 + 2

)
p4]+ 3m2 (M6 − 7M4p2 + 15M2p4 − p6)

−N2 (M2 + p2)4}− g2

192π2m4Np4 log
(
M2 + p2

M2

)(
M2 + p2)3 [N2 (M2 + p2)− 3m2]

+ g2

384π2m4Np4Y1

{
m2p2Y1

[
12m4 (N2 − 1

)
+m2M2 (6− 8N2)+m2p2 (19N2 + 6

)
−6L2

(
2m2 − 5M2 + p2) (m2 −M2 + p2)− 2N2 (M2 + p2)2]

+ L1

[
m4 + 2m2 (p2 −M2)+

(
M2 + p2)2] [6m6 (N2 − 1

)
+m4M2 (3− 4N2)

+m4 (8N2 − 3
)
p2) −M4m2 (N2 − 3

)
+ 6m2M2p2 +m2 (N2 + 3

)
p4 −N2 (M2 + p2)3]} ,

(6.3)

where m̄2 = m2eγ/(4π) with γ the Euler constant as in (4.13),

λ2(p2) = g2

384π2m2Np4

[
12m4 (N2 − 1

)
−m2 (4N2 − 3

) (
2M2 − p2)− 2N2 (M2 + p2)2]

− g2

384π2m4Np6 log
(
M

m

){
12m8 (N2 − 1

)
−m6 (10N2 − 9

) (
2M2 − p2)+ 6m4 (M4N2 + p4)

+m2 [−6M6 − 9M4p2 + 6M2 (5N2 − 1
)
p4 + 9p6]

+2N2 (M8 + 4M6p2 − 9M4p4 + 19M2p6 + p8)}
− g2

384π2m4Np6 log
(
p2

M2 + 1
)(

M2 + p2)2 [m2 (3p2 − 6M2)+ 2N2 (M2 + p2)2]
+ g2

768π2m4Np8
L1

Y1

{
12m10 (N2 − 1

)
p2 +m8p2 [M2 (30− 32N2)+

(
22N2 − 21

)
p2]

+m6p2 [2M4 (13N2 − 9
)

+ 3M2 (1− 2N2) p2 +
(
10N2 − 9

)
p4]

−m4 [150M8N2 + 6M6 (N2 + 1
)
p2 +M4 (10N2 − 3

)
p4 + 2M2 (2N2 − 3

)
p6 + 3p8]

+m2 [300M10N2 + 2M8 (3− 149N2) p2 +M6 (4N2 + 15
)
p4 + 9M4p6 −M2 (4N2 + 3

)
p8

−
(
2N2 + 3

)
p10]+ 150M8N2Y 2

1 − 2N2 (M2 + p2)2 (75M8 +M6p2 + 3M4p4 + 3M2p6 + p8)}
− g2

128π2m4Np2L2
(
m2 + 5M2N2) (m2 −M2 + p2) , (6.4)
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and

λ3(p2) = g2M

64π2m4Np4

{
2 log

(
M

m

)[
3m4 (N2 − 1

)
(m2 −M2)−N2p4 (m2 − 4M2)− p4m2

−p2(m2 −M2)
(
m2 − 3M2N2)−N2p6]− 6m4 (N2 − 1

)
p2

− 3L1

Y1
m4 (N2 − 1

) [
p2 (m2 +M2)+

(
m2 −M2)2]

− p2L2
(
m2 −M2 + p2) [m2 +N2 (p2 − 3M2)] , } (6.5)

where

L1 = Log
((
Y1 − p2) 2 −

(
M2 −m2)2

(p2 + Y1) 2 − (m2 −M2)2

)
,

L2 = Log
((
−m2 +M2 + p2)2 − Y 2

1
(m2 −M2 + p2)2 − Y 2

1

)
and

Y1 =
√

(m2 −M2 + p2)2 + 4M2p2.

In lattice simulations, these functions are obtained from the simulated vertex Γµ(p,−p, 0)
by projecting in the various tensor structures in the following way [SK02, SBK+03]

λ1(p2) = −1
4gB

Im
(
Tr γµΓµ(p,−p, 0)

∣∣∣
pµ=0, pν 6=0 for µ6=ν

)
,

λ2(p2) = 1
4p2

∑
µ

( 1
4gB

Im [Tr γµΓµ(p,−p, 0)] + λ1(p2)
)

(6.6)

and
λ3(p2) = 1

2p2

∑
µ

pµ
1

4gB
Re [TrΓµ(p,−p, 0)]

where no implicit sum over repeated indices is meant.
To compare our results with the lattice simulation of [SBK+03] we renormalize the

vertex using the IS scheme and implement the renormalization group as was presented
in the section 6.4. As mentioned before, the SU(3) quenched results in d = 4 for the
gluon and ghost propagators renormalized using the IS scheme were studied in section 3.3
where it was found that the best fitting parameter for the renormalization group flow at
µ0 = 1 GeV were g0 = 4.1 and m0 = 0.43 GeV. These values are fixed in our study of the
quark-gluon vertex in the quenched approximation.

The only remaining free parameter is the initial condition of the quark mass (except
for a multiplicative factor needed to match the different renormalizations). In order to fit
the quark mass we start studying the scalar function λ1. With this purpose we define the
error associated with it as

χ2
λ1 = 1

N

∑
i

(λ1)−2
lt. (p2

i )
(
(λ1)lt.(p2

i )− (λ1)th.(p2
i )
)2

and represent the error contour lines in figure 6.6. The analysis of the error shows that
the fit for λ1 improves when a smaller quark mass is considered. However the dependence
on the quark mass is not so important. This fact can be seen in figure 6.8 where the
comparison with the lattice data and our analytical results for M0 = 0.02 GeV, M0 = 0.04
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GeV and M0 = 0.08 GeV is done. The same procedure was done for the scalar function
λ3 using the error defined as

χ2
λ3 = 1

N

∑
i

(λ3)−2
lt. (p2

i )
(
(λ3)lt.(p2

i )− (λ3)th.(p2
i )
)2
.

The contour lines of χλ3 are represented in figure 6.7 where it can be noted that the fit
improves for masses near M = 0.08 GeV. This is shown explicit in figure 6.9 where the
lattice data is compared with the analytical result using this mass and also M0 = 0.02
GeV andM = 0.04 GeV. We can also see that this scalar function depends strongly on the
value of the quark mass as all functions that tend to zero in the chiral limit. Moreover,
the rapid growth of the scalar function λ3 looks like a consequence of the chiral symmetry
breaking.

0.3 0.4 0.5 0.6 0.7 0.8

0.02

0.04

0.06

0.08

0.10

0.12

m 0 HGeVL

M
0
HG

eV
L

Figure 6.6 – Contour levels for the quantity χλ1 for d = 4, maintaining g0 = 3.7 at 1 GeV.
The contourlines correspond to 4.3%, 4.4% and 4.6%.

We can conclude that the comparison of λ1 is very good with an error less than 5%
and λ3 is also good when we use M0 = 0.08 GeV. It is important to stress that once the
fitting parameters are fixed we use the same values to reproduce all the other kinematic
configurations. We consider, however, three values of the quark mass in order to see the
dependence on it.

The situation is drastically different for λ2. Instead our analytical expression seems
to be really small in comparison with the lattice data as seen in Fig.6.10. The same
discrepancy was obtained by Dyson-Swinger methods [ABIP14a, Wil14]. In fact, λ2 is not
constrained by the chiral symmetry and therefore there is no reason to expect the growth
found in the lattice data. We believe that this can be an artefact introduced by the way λ2
is obtained from the lattice. We can see in (6.6) that λ2 is computed through the addition
of dλ1 with λ̃2(p2) = 1

4gB Im (TrγµΓµ(p,−p, 0)) = 4p2λ2 − dλ1 (which is directly measured
on the lattice) divided by 4p2. The errors of each term sum to give the error of λ2 which
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Figure 6.7 – Contour levels for the quantity χλ3 for d = 4, maintaining g0 = 3.7 at 1 GeV.
The contourlines correspond to 8.8%, 9% and 9.2%.
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Figure 6.8 – Scalar function λ1 for a vanishing gluon momentum, as a function of the
quark momentum. The initial conditions of the RG equation correspond to g0 = 4.1,
m0 = 0.43 GeV at µ0 = 1 GeV. The full line are the one-loop results with M = 0.02 GeV
(plain line), M = 0.04 GeV (large dashes) and M = 0.08 GeV (dotted line). The dots
correspond to the lattice data of [SBK+03].
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Figure 6.9 – Scalar function λ3 for a vanishing gluon momentum, as a function of the
quark momentum. The initial conditions of the RG equation correspond to g0 = 4.1,
m0 = 0.43 GeV at µ0 = 1 GeV. The full line are the one-loop results with M = 0.02 GeV
(plain line), M = 0.04 GeV (large dashes) and M = 0.08 GeV (dotted line). The dots
correspond to the lattice data of [SBK+03].
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Figure 6.10 – Scalar function λ2 for a vanishing gluon momentum, as a function of the
quark momentum. The initial conditions of the RG equation correspond to g0 = 4.1,
m0 = 0.43 GeV at µ0 = 1 GeV. The full line are the one-loop results with M = 0.02 GeV
(plain line), M = 0.04 GeV (large dashes) and M = 0.08 GeV (dotted line). The dots
correspond to the lattice data of [SBK+03].
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can be larger than expected. In fact, our calculations see that λ2 tends to a constant in
the infrared. This can be interpreted as a compensation of λ̃2 and dλ1 in the limit p→ 0
with the difference being of order p2. Therefore, a small error in one of these two terms
would lead to a spurious divergence of λ2.

The divergence of λ2(p2) observed by lattice simulations implies a non-analytic be-
haviour of the vertex function at small momenta. In our calculations, the only non-analytic
behaviour comes from the ghost loops which do not contribute at one loop to this vertex.
Therefore, our vertex at one-loop is analytic.

For all these reasons, we decided to compare instead the expression λ̃2(p2) which
is directly obtained by the simulations and is not expressed as the subtraction of large
numbers. The results are shown in figure 6.11 where the one loop results are a good
approximation of the lattice data. That seems to confirm that the lattice data of λ2 may
be altered by the way it has been extracted from the lattice data.
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Figure 6.11 – The figure shows the function λ̃2(p2) for d = 4. The initial conditions of
the RG equation correspond to g0 = 4.1, m0 = 0.43 GeV at µ0 = 1 GeV. The red line are
the one-loop results with M = 0.02 GeV (plain line), M = 0.04 GeV (large dashes) and
M = 0.08 GeV (dotted line). The dots the lattice data of [SBK+03].

6.5.2 The quark reflection kinematics

In this section we present the results for the kinematic configuration given by r = p
and k = −2p which was studied in [SBK+03] lattice simulations. In this kinematics the
quark-gluon vertex also simplifies considerably to

Γµ(p, p,−2p) = −ig
(
λ1(p2)γµ + τ3(p2)(/kkµ − k2γµ) + iτ5(p2)σµνkν

)
(6.7)

and the transverse projected vertex, ΓPµ (p, p,−2p) = P⊥µνΓµ(p, p,−2p), has the form

ΓPµ (p, p,−2p) = −ig
(
λ′1(p2)(γµ − /kkµ/k2) + iτ5(p2)σµνkν

)
(6.8)

with λ′1 = λ1 − k2τ3. In spite of this simplification, some of the integrals in terms of
Feynman parameters can not be done analytically in this configurations.
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In the lattice the scalar functions λ′1 and τ5 in this configuration are obtained as

λ′1 = −1
3
∑
µ

1
4gB

Im
(
TrγµΓPµ (p, p,−2p)

)
and

τ5 = 1
3k2

∑
µ,ν

kµ
1

4gB
Re
(
TrσµνΓPµ (p, p,−2p)

)
.

In this case, we use a running scale µ =
√

3p (coherent with µ =
√

p2+r2+k2

2 ). In figure
6.12 we compare the results with the lattice data using the same initial condition of the
coupling constant and masses as in the previous case, g0 = 4.1 and m0 = 0.43 GeV for
different values of the quark mass.
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Figure 6.12 – Scalar function of the quark-gluon vertex: λ′1 (top) and τ5 (bottom) for the
quark reflection configuration. The red line are the one-loop results with M = 0.02 GeV
(plain line), M = 0.04 GeV (large dashes) and M = 0.08 GeV (dotted line). The dots the
lattice data of [SBK+03].

We observe that the function λ′1 is well reproduced by our results. However, we do
not succeed in reproducing quantitatively the behaviour of the scalar function τ5. In
particular, our one-loop calculation does not reach such large values in the infrared. This
observation was already done in the Dyson-Schwinger results of [ABIP14a, Wil14], and in
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[ABIP14a] was found that they can reproduce the lattice data multiplying their results
by a factor different for the factor needed to reproduce λ′1. We also observe that this
function is very sensitive to the choice of the quark mass, as it was expected from the
chiral symmetry.

6.5.3 Completely symmetric configuration

In this section we study the particular case of the completely symmetric configuration,
meaning that the norm of the three momentum are equals, p2 = r2 = k2. To do the
comparison we had to interpolate the lattice data in order to obtain the results for this
configuration as it was done in [SBK+05]. The matching is done by considering the
renormalization group with running scale µ =

√
3/2p. The fitting parameters that we use

correspond to the ones that better fit the quenched propagators and they correspond to
g0 = 4.1 and m0 = 0.43 GeV at 1 GeV while the value of the quark mass varies between
0.02 GeV and 0.08 GeV. The fit is shown in figure 6.13 where we can observe that most
of the lattice data is well reproduced except for the only value which is considered in the
extreme infrared where an error of the order for 25% is offered.
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Figure 6.13 – Scalar function of the quark-gluon vertex λ′1 = λ1−k2τ3 with k2 = r2 = p2.
The initial conditions of the RG equation correspond to g0 = 4.1 and m0 = 0.43 GeV at
µ0 = 1 GeV while the running scale was taken as µ =

√
3/2p. In red the one-loop results

withM = 0.02 GeV (plain line), M = 0.04 GeV (large dashes) andM = 0.08 GeV (dotted
line). The dots the lattice data of [SBK+05].

6.5.4 Symmetric configuration for arbitrary gluon momentum

The last two cases we investigate correspond to a gluon momenta fixed to k = 0.277 GeV
and to k = 0.838 GeV and to equals modulus for the quark and anti-quark momentum.
As in the preceding cases the renormalization scheme used is the IS scheme and the initial
conditions of the renormalization group equations correspond to g0 = 4.1 and m0 = 0.43
GeV at µ0 = 1 GeV. The fits are shown in figure 6.14. The results are better for the lower
gluon momentum while for k = 0.838 GeV there is an infrared discrepancy of order 25%
between our results and the lattice data. One possible explanation to this fact is that
we worked with the coupling constant obtained though the ghost-gluon vertex instead of
using the quark-gluon vertex. As the coupling constant obtained through this vertex is
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larger in the infrared than the one we used it can be expected that perturbation theory
requires to go to the next to leading order.

0.5 1.0 1.5 2.0 2.5 3.0
1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

p HGeVL

Λ
1'
Hp
L

0.5 1.0 1.5 2.0 2.5 3.0
1.0

1.5

2.0

2.5

p HGeVL

Λ
1'
Hp
L

Figure 6.14 – Scalar function of the quark-gluon vertex λ′1 = λ1 − k2τ3 for r2 = p2 and
k = 0.277 GeV (top) and k = 0.838 GeV (bottom). The initial conditions of the RG
equation correspond to g0 = 4.1 and m0 = 0.43 GeV at µ0 = 1 GeV while the running
scale was taken as µ ∼

√
p2+r2+k2

2 . In red the one-loop results with M = 0.02 GeV (plain
line), M = 0.04 GeV (large dashes) and M = 0.08 GeV (dotted line). The dots the lattice
data of [SBK+05].

6.5.5 The influence of dynamic quarks

In this section we analyse how the effects of dynamic quarks influence the results we
have obtained. The inclusion of dynamic quarks on the lattice is cumbersome for Monte
Carlo simulations and therefore no lattice data is still available for the unquenched vertex.
However, in our model taking into account the dynamic quarks is really simple.

First of all it is important to note that the one-loop contribution of the quark-gluon
vertex does not directly depend on the presence of dynamic quark. The first contribution
of dynamic quarks come from two loops diagrams. However, the dynamic quarks modify
the results through the β functions and anomalous dimensions. In fact, dynamic quarks
affect the renormalization factor for the gluon ZA and for the gluon mass Zm2 , which
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both have a contribution from a fermion closed loop. The unquenched effects of the RG
was already studied in chapter 5 where we performed the calculations of the unquenched
propagators.

In this section we compare our one-loop result of the quark-gluon vertex renormalized
with the IS scheme taking into account, on one hand, the quenched analysis that we have
presented in this chapter and on the other hand the influence of the unquenched effects.
In particular, we compare the scalar functions in the vanishing gluon momentum case
considering in the unquenched case two light fermions. The fitting parameters for the
unquenched propagator with Nf = 2 are g0 = 4.5 and m0 = 0.42 GeV (see figure 5.5). We
choose to compare both cases using M0 = 0.08 GeV which has proven to be a reasonable
value for the quark mass.

In order to see how is the influence of dynamic quarks in the infrared we normalized
both cases so the λ1 functions coincide in the ultraviolet at 6 GeV. The comparison is
shown in figure 6.15.

The inclusion of dynamic quarks seems to enhance the absolute value of λ1, λ̃2 and λ3
in the infrared. We conclude that the presence of dynamic quarks enhance the quark-gluon
vertex.
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Figure 6.15 – Scalar functions of the quark-gluon vertex: λ1 (top), λ̃2 (middle) and
λ3 (bottom) for a vanishing gluon momentum, as a function of the quark momentum.
The full line represent the quenched results using initial conditions of the RG equation
g0 = 4.1, m0 = 0.43 GeV and M = 0.08 GeV at µ0 = 1 GeV. The dashed line represent
the unquenched results for Nf = 2 using g0 = 4.5, m0 = 0.42 GeV and M = 0.08 GeV at
µ0 = 1 GeV.





Conclusions and perspectives

In this thesis we studied a simple Lagrangian which allows us to do perturbative calcu-
lations in the infrared and reproduces the behaviour of the gluon propagator given by
lattice simulations. This Lagrangian is a particular case of the Curci-Ferrari model [CF75]
in Landau gauge. It consists on the standard Faddeev-Popov Lagrangian with an ex-
tra term that gives mass to the gluons. This model had been studied several times in
[CF75, CF76, dBSvNW96, Gra02, Gra03, Gra06], where it was demonstrated that it has
the property of being renormalizable. Also it matches with the standard Faddeev-Popov
Lagrangian at high energy which assures us that all the properties already verified by the
standard perturbative QCD are reproduced also by this Lagrangian.

There are three questions to answer about this Lagrangian. The first one is if the
theory is unitary. This question comes together with the definition of the physical space
in which the theory has to be unitary. The standard definition of the physical space relies
on the cohomology of the BRST symmetry [KO78, BRS75, BRS76, Tyu75]. Usually, this
definition is well-defined because BRST symmetry is nilpotent. However, the addition of
a gluon mass term breaks the BRST symmetry. BRST in no longer a symmetry of the
theory based on the Lagrangian (2.11). Fortunately this model presents other symmetries
studied along this thesis. The most important is called soft-BRST. Unfortunately this
new symmetry is not nilpotent so the standard definition of the physical Hilbert space can
not be used. The problem with the definition of the physical space is shared with the GZ
approach and for the moment there is no answer to this question (see however [SZ14] for
recent development).

The second question is what is the origin of this mass. We believe that this term
could encode the problem of the Gribov copies. That means that if a proper definition
of the gauge fixing procedure is considered, a mass term for the gluon would appear as is
observed on the lattice. A possible explanation from first principles is presented in [ST12].

The third question and aim of this thesis is to verify if this model reproduces the lattice
data. The first two questions become relevant once this third question is answered. To
address it we used the standard perturbative analysis with Feynman diagrams. In chapter
3 we presented the computation of the quenched gluon propagator and ghost dressing
function at one loop for arbitrary number of color and dimension. We renormalized the
theory using two different renormalization schemes. The first scheme, called the van-
ishing momentum scheme presents a Landau pole as a function of the renormalization
point. However, the symmetries of the theory allow us to prove some non-renormalization
theorems. The extension of these theorems to the finite parts of the renormalization fac-
tors gives a renormalization scheme without a Landau pole. This scheme is called the
infrared-safe scheme. In order to reproduce the lattice data we considered the effects of
the renormalization group. The comparison between our analytical results and the lat-
tice simulations has only two free parameters to fix. These parameters are the initial
condition of the renormalization group for the coupling constant and the gluon mass. We
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choose these parameters in order to reproduce the gluon propagator and the ghost dressing
function simultaneously maintaining good precision in both fits with a maximum error of
∼ 10%. The matching between our results and the lattice data in four and three dimension
are very good [TW10, TW11, PTW13].

It is important to mention that the coupling constant is not entirely a free parameter.
It should match with the lattice coupling constant at the ultraviolet scale of the order
of the inverse of the lattice spacing. In the same chapter we verified that the coupling
constant we obtained at the renormalization scale 1 GeV evolves to the expected value for
higher scales up to an error of the order of 20%.

In chapter 4 we computed the one-loop quenched three-point correlation functions (cor-
responding to the ghost-gluon and the three gluon vertex) in Landau gauge for arbitrary
dimension and number of colors in all momenta regime [PTW13]. These calculations are
much heavier than the previous ones because they depend on three kinematic independent
variables and the tensor structure is more complex. Few analytical results were known
for the infrared behaviour of the ghost-gluon vertex ([RQ11b, DORQ12, ABCP12, AIP13,
HvS13] and later [Wil14]). For the three-gluon functions some ansatz have been proposed
before this calculation [HvS13]. Our one-loop results were renormalized with the renormal-
ization schemes already presented and also the renormalization group effects were taking
into account. We used the same value of the fitting parameters as the ones obtained by
fitting the two-point correlation functions where the lattice error are small and the quality
of the fits are remarkably good. Therefore the comparison of the three-point functions
with the lattice simulations of [CMM08] were done without any extra free-parameter (with
an exception of a global multiplicative factor for the three-gluon function). It was sur-
prising that without fitting any new parameter the fits for these quantities in d = 4 and
d = 3 and for the three kinematic configurations available on the lattice were very good.
We observed that the qualitative properties of these functions observed in the lattice were
reproduced by our results. For instance, lattice simulations observe that the three-gluon
function becomes negative in d = 3 at low momenta and it seems to diverge when all
the momenta goes to zero. Our calculations showed the same behaviour which can be
explained as a consequence of the infrared singular behaviour of the diagram with a ghost
loop.

In the second half of the thesis we include dynamic quarks in our calculations. We
started by computing the unquenched corrections for the gluon propagator and the one
loop contributions for the quark propagator. These results were presented in chapter 5 and
published in [PTW14]. As in the previous chapters, the calculation were done for Landau
gauge, arbitrary number of colors, number of fermions and dimension. In the unquenched
case we found that the gluon and ghost propagator are reproduced with high precision
for d = 4 and Nf = 2 and Nf = 2 + 1 + 1. We also see that these quantities do not
depend on small changes on the quark mass. On the other hand, the quark sector is not
as well reproduced as the ghost-gluon one. The quark mass seems to have the behaviour
found in lattice simulations where the chiral symmetry breaking makes the quark mass
to increase quickly in the infrared even when the ultraviolet mass is small. However, the
one loop contribution of the scalar function, Zu,d, associated with the tensor /p is not well
reproduced, as it happens in standard QCD where the two loop contribution is dominant.
For this reason, we estimate the two loop contributions using a hybrid model. This model
consists on adding the ultraviolet two loop results obtained by Gracey in [Gra03] (adapted
to the infrared regime) to our one loop calculations. This analysis allows us to estimate
how important are the two loop corrections. We observed that for Zu,d this correction can
not be neglected but it is reasonable small for the other quantities.
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In the last chapter, we extended the analysis of the quark sector studying the quark-
gluon vertex. We computed the one loop contribution in Landau gauge for this quantity
in arbitrary dimension. For this calculation we used the package of the Mathematica
software called FeynCalc which helped us to manipulate the Dirac matrices. For arbitrary
kinematics the quark-gluon vertex depends on twelve scalar functions. We computed all of
them but we compared only some, limited by the lattice data available. The comparison
was satisfactory for most of the scalar functions, in particular we obtained very good results
for λ′1 in all the configurations studied. This scalar function is directly obtained from lattice
simulations and it is the one containing the tree-level structure. Our analysis was done
prioritizing the fits for this quantities. However there are a pair of scalar functions that
we could not quantitatively reproduce. They are λ2 in the vanishing gluon momentum
case and τ5 in the quark reflection kinematic. We believe that the disagreement with
λ2, also found by DS study [ABIP14a], may be due to the way that this function is
extracted from the lattice simulations. If, instead, we compare the function which is
directly obtained by lattice simulations we obtain a very good agreement. For the scalar
function τ5, we observed that its absolute value increases in the infrared as is shown by the
lattice data. However, we can not reproduce the quantitative behaviour of this quantity
which strongly depends on the quark mass as is expected by the chiral symmetry. The same
quantitative problem is found by [ABIP14a, Wil14] where they note that for reproducing
this scalar function an extra ad-hoc multiplicative factor is needed. The problem is that
this multiplicative factor is not coherent with the matching of λ′1.

Independently of this thesis, the investigation of the infrared properties including
a gluon mass term was extended to finite temperature. In [RSTW14b] it is shown
that the properties of the gluon and ghost propagators qualitative reproduced at fi-
nite temperature. The same framework was used to study the deconfinement transition
[RSTW14a, RSTW15]. It was observed that second order transition for SU(2) and the
first order transition for SU(3) are found using a one-loop calculation. Moreover if a next-
to leading order calculation is performed in SU(2) the quantitative value of the critical
temperature is obtained. This work can be extended for the SU(3) and also including
the effects of the renormalization group. The study adding quarks at non zero chemical
potential was also done [RST15].

All these results support the idea that at least an important part of the infrared effects
present in QCD can be reproduced with a gluon mass term. This makes us think that this
mass encode the effects of Gribov copies [Gri78, Zwa89, Zwa93, DGS+08a]. Contrarily
to the previous analysis of the infrared effects of Gribov copies, our approach does not
require extra fields. It has the advantage that the Feynman rules remains practically un-
changed except for a mass term in the gluon propagator and therefore the calculation of
many quantities become treatable. Therefore our analysis can be extended for different
situations, for instance we have in mind to compute more physical quantities like observ-
ables (gauge invariant quantities) such as the glueball masses [CS83]. Moreover, in order
to check completely the validity of the perturbative expansion we would like in the future
to compute also some two-loop corrections. The first task in this direction is to compute
the quenched propagators. It would be also interesting to study deeper the chiral sym-
metry breaking and the possibility of explaining it through our model. We have already
mentioned some of the fundamental open questions produced with this modification of
the Lagrangian. A big task in our future is to investigate the possible answer for those
questions including the definition of a the physical space and the origin of the gluon mass.





Appendix A

Feynman Rules

A.1 Relation between the vertex and the connected corre-
lation function

The generating functional, Z[J ], is analogue to the partition function defined as

Z[J ] =
∫
Dφ e−S+

∫
d4xJi(x)φi(x)

where φi denotes all the field involved. The correlation function

〈φin(xn)...φi1(x1)〉 = 1
Z

∫
Dφ φin(xn)...φi1(x1)e−S+

∫
d4xJi(x)φi(x)

is obtained by successive derivatives of the generating functional

〈φin(xn)...φi1(x1)〉 = δnZ[J ]
δJin(xn)...δJi1(x1)

where the first derivative was taken with respect to the source J i1 and so on. Generally it
is convenient to define W [J ] as Z[J ] = eW [J ]. Moreover, W [J ] is the generating function
of the connected Green function because

〈φin(xn)...φi1(x1)〉c = δnW [J ]
δJ in(xn)...δJ i1(x1) .

The relation between the Green function and the connected ones is

〈φi1(x1)〉 = 〈φi1(x1)〉c
〈φi2(x2)φi1(x1)〉 = 〈φi2(x2)φi1(x1)〉c + 〈φi2(x2)〉c〈φi1(x1)〉c

〈φi3(x3)φi2(x2)φi1(x1)〉 = 〈φi3(x3)φi2(x2)φi1(x1)〉c + 〈φi3(x3)〉c〈φi2(x2)φi1(x1)〉c
+ 〈φi2(x2)〉c〈φi3(x3)φi1(x1)〉c + 〈φi1(x1)〉c〈φi3(x3)φi2(x2)〉c
+ 〈φi3(x3)〉c〈φi2(x2)〉c〈φi1(x1)〉c
... (A.1)

The propagator between φi(x) and φj(y) is

〈φi(x)φj(x)〉c = δ2W [J ]
δJi(x)δJj(y) = δ

∂Ji(x)
δW [J ]
δJj(y) .
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If we perform the Legendre transformation of W [J ] we construct Γ, the 1-PI generating
function

Γ[〈φ〉] = −W [J ] +
∫
d4xJi(x)〈φi(x)〉.

From this definition it can be shown that
δΓ[φ]
δφi(z)

= Ji(z)

where φi = 〈φi〉 = δW [J ]
δJi

. If another derivative δ
δJj(x) is taken we find

δ

δJj(x)
δΓ[φ]
δφi(z)

= δijδ(z − x) =
∫
dy
δφk(y)
δJj(x)

δ2Γ(φ)
δφk(y)δφi(z)

.

We can insert the definition of φ∫
dy

δ2W [J ]
δJj(x)δJk(y)

δ2Γ(φ)
δφk(y)δφi(z)

= δijδ(z − x)

where we can identify the propagator, then∫
dy〈φj(x)φk(y)〉c

δ2Γ(φ)
δφk(y)δφi(z)

= δijδ(z − x).

The last equation allows us to affirm that

〈φi(x)φj(y)〉c =
(

δ2Γ(φ)
δφi(x)δφj(y)

)−1

. (A.2)

To obtain the tree-level propagator for the Feynman rules one has to differentiate the
action twice and take the inverse. In order to find the relation between full connected
Green’s functions and the vertex we will take the derivative δ

δJk(z) of the above equation.
For example,

δ3W [J ]
δJk(z)δJi(x)δJj(y) = δ

δJk(z)

(
δ2Γ(φ)

δφi(x)δφj(y)

)−1

=
∫
ddw

δφl(w)
δJk(z)

δ

φl(w)

(
δ2Γ(φ)

δφi(x)δφj(y)

)−1

.

(A.3)
Using the derivative of the inverse of a matrix, δ

∂xM
−1(x) = −M−1 ∂M

∂x M
−1, we get

δ3W [J ]
δJk(z)δJi(x)δJj(y)

= −
∫
ddw

δφl(w)
δJk(z)

∫
dduddv

(
δ2Γ(φ)

φi(x)φm(u)

)−1(
δ3Γ(φ)

δφl(w)δφm(u)δφn(v)

)(
δ2Γ(φ)

φn(v)φj(y)

)−1

= −
∫
ddwdduddv〈φl(w)φk(z)〉c〈φi(x)φm(u)〉c〈φj(y)φn(v)〉c

(
δ3Γ(φ)

δφl(w)δφm(u)δφn(v)

)
(A.4)

To sumarize,

〈φk(z)φi(x)φj(y)〉c = −
∫
dwdudv〈φl(w)φk(z)〉c〈φi(x)φm(u)〉c〈φj(y)φn(v)〉c〈φl(w)φm(u)φn(v)〉1PI

(A.5)
Similar identities can be obtained for general correlation functions.



A.2. Feynman Rules 151

A.2 Feynman Rules

In this section we present the derivation of Feynman rules for the Curci-Ferrari model in
the Landau gauge. The action considered in a d-dimensional Euclidean space is

S =
∫
ddx

1
4(F aµν)2 + ∂µc̄

a∂µc
a + gfabc∂µc̄

aAbµc
c + iha∂µA

a
µ + m2

2 (Aaµ)2 +
Nf∑
i=1

ψ̄i(−γµDµ +Mi)ψi


From now on, the Fourier transform convention chosen is

f(p) =
∫
ddxe−ipxf(x)

A.2.1 The ghost propagator

The tree-level ghost propagator is: 〈ca(x)c̄b(y)〉 =
(

δ2S
δca(x)δc̄b(y)

)−1
where the first derivative

is with respect to c̄b(y) and the second one with respect to ca(x). It is important to
remark that these are Grassman variables so the order is important. In order to derive the
Feynman rules we consider the second derivative of the action with respect to the ghost
and the anti-ghost, which is

δS

δca(x)δc̄b(y) = δ

∂ca(x)

∫
d4z∂µ(δ(y − z))∂µcb(z) = δab

∫
d4z∂µ(δ(y − z))∂µ(δ(x− z))

Making the Fourier transformation, we have:∫
e−ipyeipxd4xd4yd4z∂µ(δ(y − z))∂µ(δ(x− z))δab

= −
∫
e−ipyeipxd4xd4yd4zδ(y − z)∂µ∂µ(δ(x− z))δab

= −
∫
e−ipyeipxd4xd4y∂µ∂µ(δ(x− y))δab = −

∫
(−ipµ)(−ipµ)e−ipyeipxd4xd4y(δ(x− y))δab

= p2δab (A.6)

If we calculate the inverse function we obtain the ghost propagator

δab

p2 .

A.2.2 The gluon propagator

The second ingredient for the Feynman rules is the gluon propagagor. To compute it let
us focus on the gluon quadratic term of the Lagrangian,

LAA = 1
4(∂µAaν − ∂νAaµ)(∂µAaν − ∂νAaµ) + m2

2 AaµA
a
µ

= 1
4
(
∂µA

a
ν∂µA

a
ν + ∂νA

a
µ∂νA

a
µ − ∂µAaν∂νAaµ − ∂νAaµ∂µAaν

)
+ m2

2 AaµA
a
µ (A.7)
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To obtain the gluon propagator we have to compute the second derivative of this La-
grangian and take the inverse. The derivative is given by

δ2S

δAbν(y)δAaµ(x) = δ

δAbν

(1
4

∫
d4z

(
4∂ν(δ(z − x))∂νAaµ − 4∂µAaν∂ν(δ(z − x))

)
+m2Aaµ

)
= δ

δAbν

(∫
d4z∂ν(δ(z − x))

(
∂νA

a
µ − ∂µAaν

)
+m2Aaµ

)
= δab

∫
d4z∂λ(δ(z − x)) (∂λ(δ(y − z)δµν)− δλν∂µ(∂(y − z))) +m2δµνδ

ab

= −
∫
d4zδ(z − x)∂2(δ(y − z))δµνδab −

∫
d4z∂ν(δ(x− z))∂µ(δ(y − z))δab +m2δµνδ

ab

= −∂2(δ(y − x))δµνδab + ∂ν∂µ(δ(y − x))δab +m2δµνδ
ab (A.8)

In the momentum space we get

δab
(
p2P Tµν(p) +m2δµν

)
where P Tµν(p) is the transverse projector P Tµν(p) = δµν − pµpν

p2 .
We can not ignore that there is another quadratic term in ha and A: LhA = iha∂µA

a
µ.

The derivative of the action with respect to those fields is
δS

δhb(y)δAaµ(x) = iδab∂µ(y)(δ(x− y))

which in Fourier space takes the form

iδab
∫
d4xd4yeipxe−ipy∂µ(δ(x− y)) = −pµδab

The matrix for the second derivatives of the action in terms of A and h is:

Γ(2) = δab
(

(p2 +m2)P Tµν(p) +m2
oP

L
µν(p) −pµ

pν 0

)
We would like to take the inverse of this matrix, in order to doing so we consider an

ansatz for the inverse given by

δab
(
MP Tσµ(p) +NPLσµ(p) Bpσ

Cpµ D

)
Imposing the product of the ansatz with the second-derivative matrix to be the delta

function we obtain

δab
(
M(p2 +m2)P Tσν(p) +Nm2PLσν(p) + pσBpν −Npσ

m2Cpν +Dpν −p2C

)
= δabδσν ,

in summary

δσν = M(p2 +m2)δσν + pσpν
p2

(
−M(p2 +m2) +Nm2 +Bp2

)
.

We conclude that the solution is M = 1
p2+m2 , N = 0, B = 1

p2 , C = −1
p2 and D = m2

p2 .
Therefore the gluon propagator is

δab
1

p2 +m2P
⊥
µν(p).

It is worth noting that the gluon propagator is transverse even though Γ(2) is not. We
can note that 〈haAbµ〉 and 〈hahb〉 are not zero, however, as no vertex involving the field ha
exists they do not play any role in the perturbative calculations.
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A.2.3 The quark propagator

The quark propagator is 〈ψ(y)ψ̄(x)〉 =
(

δ2S
δψ(y)δψ̄(x)

∣∣∣
fields =0

)−1
. Therefore we are going to

compute the second derivative of quadratic part of S. It is easy to see that

δ2S

δψ(y)δψ̄(x)
=
(
−∂xµγµ +M

)
δ(x− y).

Taking the Fourier transformation we obtained∫
ddxddye−ipxe−iry

(
−∂xµγµ +M

)
δ(x− y) =

∫
ddxe−i(r+p)x (−ipµγµ +M)

= (2π)dδ(p+ r) (−ipµγµ +M) .

Therefore the propagator in the Fourier space is

i/p+M

p2 +M2

where the momentum goes in the opposite direction of the charge.

A.2.4 The quark-gluon vertex

The third derivative of the action with respect to anti-quark, a quark and a gluon is

δ3S

δAaµ(z)δψ(y)δψ̄(x)
= igtaγµδ(y − x)δ(z − x).

When we take the Fourier transformation we obtain∫
ddzddyddxe−ipye−irxe−ikz

(
δ3S

δAaµ(z)δψ(y)δψ̄(x)

)
=
∫
ddxe−i(p+r+k)(igtaγµ)

= (2π)dδ(p+ r + k)(igtaγµ).

Therefore, the quark-gluon vertex is
igtaγµ.

A.2.5 The ghost-gluon vertex

We want to calculate
δ3S

δcb(x)δc̄c(y)δAaµ(z)

where the first derivative is taken with respect to Aaµ(z), then the second one respect to
c̄c(y) and the last one with respect to cc(x).

δ3S

δcb(x)δc̄c(y)∂Aaµ(z) = δ

δcb(x)δc̄c(y)
(
∂µc̄

r(z)gf ratct(z)
)

= δ

δcb(x)
(
∂µ(δ(z − y))gf catct(z)

)
= gf cab∂µ(δ(z − y))δ(x− z) (A.9)
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Performing the Fourier transformation
∫
e−ipye−irxe−ikz

{
δ3S

δcb(x)δc̄c(y)∂Aaµ(z)

}
ddxddyddz

We obtain that the ghost-gluon vertex with all momenta incoming, shown in figure
A.1, is given by

gfabc
∫
e−ipxe−i(k+r)z∂µ,z(δ(z − y))ddyddz = i(k + r)µgfabc = −ipµgfabc

k

rp

a, µ

bc

Figure A.1 – ghost-gluon vertex

Therefore, the tree-level ghost-gluon vertex with all incoming momenta is given by

Γ(3),tree-level
cbc̄cAaµ

[r, p, k] = −igfabcpµ.

A.2.6 The three-gluon vertex

Let us consider the terms in the Lagrangian that involves only the interaction of three
gluons.

LAAA =
(
∂νA

a
µgf

abcAbµA
c
ν

)
SAAA = gfa

′b′c′
∫
ddu

(
∂ν′A

a′
µ′A

b′
µ′A

c′
ν′

)
The three-gluon vertex is diagramaticaly represented as it is shown in figure A.2.

p

a, µ

c, ρb, ν

q r

Figure A.2 – Tree level three-gluon vertex.

For calculate the vertex we take the third derivative:

δSAAA
δAaµ

= g

(
fa
′ac′Ac

′
ν′∂ν′A

a′
µ + fa

′b′aAb
′
µ′∂µA

a′
µ′ +

∫
ddufab

′c′Ab
′
µA

c′
ν′∂ν′(δ(x− u))

)
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δ2SAAA
δAaµδA

b
ν

=g
[
fa
′ab∂νA

a′
µ δ(x− y) + f bac

′
Ac
′
ν′∂ν′(δ(x− y))

+ fa
′ba∂µA

a′
ν δ(x− y) + f bb

′aAbν∂µ(δ(x− y))

+
∫
ddu

(
fabc

′
δµνA

c′
ν′δ(x− y)∂ν′(δ(x− u)) + fab

′bAb
′
µ δ(x− y)∂ν(δ(x− u))

)]

δ3SAAA
δAaµδA

b
νδA

c
ρ

=g
[
f cab∂ν(δ(z − x))δ(x− y)δµρ + f bacδ(x− z)∂ρ(δ(x− y))δµν

+ f cbaδρνδ(x− y)∂µ(x− z) + f bcaδ(x− z)δνρ∂µ(δ(x− y))

+
∫
ddu

(
fabcδµνδ(x− z)δ(x− y)∂ρ(δ(x− u)) + facbδµρδ(x− z)δ(x− y)∂ν(δ(x− u))

)]

Once all the interested derivatives are done we make the Fourier transform considering
all momenta incoming to the diagram as is shown in the picture.∫

e−ipxe−iqye−irz
{

δ3S

δAaµδA
b
νδA

c
ρ

}
ddxddyddz

With this convention of signs we arrive at:[
Γ(3),tree-level

]abc
µνρ

(p, q, r) = igfabc {(q − r)µδνρ + (r − p)νδµρ + (p− q)ρδµν} (A.10)

A.2.7 The four-gluon vertex

For derive the four-gluon vertex let us focus in the only term of the action containing four
gluons

SAAAA =
∫
d4v

1
4g

2felmfeijAlα(v)Amβ (v)Aiα(z)Ajβ(z).

The first step in order to deduce the four-gluon vertex is to take the derivative with
respect to Aaµ(x). The symmetry of SAAAA allows us to write this derivative as

δSAAAA
δAaµ(x) = g2feamfeijAmβ (x)Aiµ(x)Ajβ(x).

The second derivative is given by

δ2SAAAA
δAbν(y)δaµ(x) = g2

{
feabfeijAiµA

j
ν

+feamfebjδµνAmβ A
j
β + feamfeibAmν A

i
µ

}
δ(x− y)

To perform the last two derivatives it is better to take them together so

δ4SAAAA
δdσ(w)δcρ(z)δAbν(y)δaµ(x) = g2

{
feabfecd (δµρδνσ − δµσδνρ) +

(
feacfebd + feadfebc

)
δµνδρσ

+feacfedbδµσδνρ + feadfecbδµρδνσ
}
δ(x− y)δ(x− z)δ(x− w)
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As the above expression does not depend on the momenta the Fourier transform is
easier to calculate, then, grouping conveniently the terms we obtain[

Γ(4)
]abcd
µνρσ

= g2
{
feabfecd(δµρδνσ − δµσδνρ) + feacfebd(δµνδρσ − δµσδνρ) + feadfecb(δµρδνσ − δµνδσρ)

}
.

(A.11)



Appendix B

Symmetries and identities

B.1 Slavnov-Taylor identities
The aim of this section is to present the group of symmetries of the theory and some
of the consequently Slavnov-Taylor identities that we are going to use as checks of our
calculations. For simplicity we are going to focus on the quenched case. As we mentioned
above the Lagrangian of Eq. (2.11) does not respect the nilpotent BRST symmetry but it
is invariant under the soft-BRST symmetry, which for an arbitrary field φ is φ→ φ+ ηsφ
where η is a Grassmann variable, and under the soft-anti-BRST, φ→ φ+ ηs̄φ, defined as

sAaµ = (Dµc)a, sca = −g2f
abccbcc, sc̄a = iha, isha = m2ca

s̄Aaµ = (Dµc̄)a, s̄ca = −iha − gfabcc̄bcc, s̄c̄a = −g2f
abcc̄bc̄c, is̄ha = igfabchbc̄c +m2c̄a

(B.1)

In order to study the equation of motion of this theory and the implications of soft-
BRST symmetry it is better to first introduce other simpler symmetries. The ghost-charge
conjugation given by

ca → c̄a c̄a → −ca iha → iha + gfabcc̄bcc (B.2)

while the other fields are invariant. Another symmetry is the symplectic symmetry [DS89]
with generators t, t̄ and N defined as

t Aaµ = 0 t̄ Aaµ = 0 N Aaµ = 0
t ca = 0 t̄ ca = −c̄a N ca = ca

t c̄a = ca t̄ c̄a = 0 N c̄a = −c̄a

t iha = −g2f
abccbcc t̄ iha = g

2f
abcc̄bc̄c N iha = 0. (B.3)

The algebra of these symmetries is given by the commutation relations

{s, s} = 2m2t {s̄, s̄} = 2m2t̄

{s, s̄} = −m2N [s, t] =
[
s, t̄
]

= [s̄, N ] = 0. (B.4)

The generator N is nothing but the counting of the number of ghost.
The Slavnov-Taylor identities associated with these symmetries were already studied

for the explicitly symmetric form of the Lagrangian in [TW09b]. To recover the analysis
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in the asymmetric Lagrangian of the form of (2.11) we have to change ihasym → ihaAsym +
g
2f

abcc̄bcc. Then the Slavnov-Taylor identity can be obtained by considering the sources
Jaµ , χ̄a, χa, Ra, K̄a

µ, Ka
µ, L̄a, La, Ma, αaµ, β̄a and βa coupled to Aaµ, ca, c̄a, ha, sAaµ, sca,

s̄c̄a, sc̄a+ sca, ss̄Aaµ, ss̄ca and ss̄c̄a respectively. The number of sources is obviously larger
than for studying standard BRST.

The action of the sources is

Ssources =
∫
d4x

{
JaµA

a
µ + χ̄aca + c̄aχa +Raha + K̄a

µsA
a
µ + s̄AaµK

a
µ

+L̄sca + Las̄c̄a +Ma
(
sc̄a + s̄ca

2

)
+ αaµss̄A

a
µ + β̄ass̄ca + ss̄c̄aβa

}
. (B.5)

It is important to note that those are all the sources needed. First of all, the variations
associated with t and t̄ are already considered, due to the fact that t(iha) = sca and
t̄(iha) = −s̄c̄a. Secondly, it is not necessary to consider sources for s2,s̄2 or ss̄+ s̄s. This
relies on the equalities s2 = m2t, s̄2 = m2t̄ and {s, s̄} = −m2N . Third, in relation to the
sources for s̄ca and sc̄a we can consider a source for s̄ca − sc̄a which is already included
in Ra and another for s̄ca + sc̄a. And last, ss̄(iha) = s̄ca, therefore it is not necessary to
consider an extra source for this term.

To write Slavnov-Taylor identities it is better to consider the effective action Γ, with

Γ[〈Aaµ〉, 〈ca〉,〈c̄a〉, 〈ha〉, sources] = −W [sources]

+
∫
d4x

{
Jaµ〈Aaµ〉+ χ̄a〈ca〉+ 〈c̄a〉χa +Ra〈ha〉+ K̄a

µ〈sAaµ〉+ 〈s̄Aaµ〉Ka
µ

+L̄〈sca〉+ La〈s̄c̄a〉+Ma
〈
sc̄a + s̄ca

2

〉
+ αaµ〈ss̄Aaµ〉+ β̄a〈ss̄ca〉+ 〈ss̄c̄a〉βa

}
which can be related to the expected value of the fields as

δΓ
δ〈Aaµ〉

= Jaµ
δΓ
δ〈ca〉 = −χ̄a δΓ

δ〈c̄a〉 = χa δΓ
δ〈ha〉 = Ra

δΓ
δK̄a

µ
= −〈sAaµ〉 δΓ

δKa
µ

= 〈s̄Aaµ〉 δΓ
δL̄a

= −〈sca〉 δΓ
δLa = −〈s̄c̄a〉

δΓ
δMa = −〈 (sc̄

a+s̄ca)
2 〉 δΓ

δαaµ
= −〈ss̄Aaµ〉 δΓ

δβ̄a
= −〈ss̄ca〉 δΓ

δβa = 〈ss̄c̄a〉
(B.6)

Doing some straightforward algebra we can computed the Slavnov-Taylor identity for
the t-symmetry, which yields∫

d4x

{
ca
δΓ
δc̄a
−m2βaca + i

δΓ
δha

δΓ
δL̄a
− δΓ
δK̄a

µ

Ka
µ − 2La δΓ

δMa
−Ma δΓ

δL̄a
+ βa

δΓ
δβ̄a

}
= 0

(B.7)
where the bold letters represent the expected value of the corresponding fields. In a similar
way the identity for the t̄- symmetry is∫

d4x

{
δΓ
δca

c̄a − i δΓ
δha

δΓ
δLa
− K̄a

µ

δΓ
δKa

µ

+ 2L̄a δΓ
δMa

+Ma δΓ
δLa

+ β̄a
(
m2c̄a − δΓ

δβa

)}
= 0

(B.8)
In relation with the soft-BRST symmetry ST identities takes us to∫
ddx

〈
JµsA

a
µ − χ̄asca + sc̄aχa +Rasha − K̄a

µs
2Aaµ + ss̄AaµK

a
µ

+L̄as2ca + Lass̄c̄a +Mas

(
sc̄a + s̄ca

2

)
+ αaµs

2s̄Aaµ − β̄as2s̄ca + s2s̄c̄aβa
〉

= 0 (B.9)
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which in terms of Γ takes the form

∫
ddx

{
− δΓ
δAa

µ

δΓ
δK̄a

µ

− δΓ
δca

δΓ
δL̄a

+ iha
δΓ
δc̄a
− i δΓ

δha
m2ca − δΓ

δαaµ
Ka
µ + La

δΓ
δβa

+1
2M

a
(
m2ca − δΓ

δβ̄a

)
−m2αaµ

δΓ
δK̄a

µ

+ β̄am2 δΓ
δL̄a
− 2m2 δΓ

δMa
βa
}

= 0. (B.10)

For the anti-soft BRST the corresponding identity is
∫
ddx

{
δΓ
δAa

µ

δΓ
δKa

µ

− 2 δΓ
δca

δΓ
δMa

− δΓ
δLa

δΓ
δc̄a
− iha δΓ

δca
− i δΓ

δha
m2c̄a + i

δΓ
δha

δΓ
δβa
− δΓ
δαaµ

K̄a
µ

+L̄a
(
δΓ
δβ̄a
−m2ca

)
− 2Ma

(
δΓ
δβa

)
+m2αaµ

δΓ
δKa

µ

− β̄am2iha − 2m2 δΓ
δLa

βa
}

= 0 (B.11)

It is worth mentioning that the identity (B.10) reduces to the standard Slavnov-Taylor
identity for the BRST symmetry (2.16) when Kµ = L = M = α = β̄ = β = 0.

There is another symmetry, similar to the gauge symmetry, presented in [TW09a]
which we will not present here. The same identities were obtained in [BQ13] and related
to the background gauge formalism.

B.2 Equations of motion

Associated with ha

We consider the transformation of ha given by iha → iha + εa(x), with ε an arbitrary
function. The expected value of the variation of the action has to be zero, so∫

ddx〈−εa∂µAaµ − iRaεa + αaµDµ(εa) + β̄a(−gfabcεbcc)− gfabcεbc̄cβa〉 = 0

As this is valid for all ε we have

−∂µAa
µ − i

δΓ
δha
−Dµα

a
µ − gfabcβ̄ccb − gfabcc̄bβc = 0.

Therefore, the explicit dependence of the vertex function Γ with respect to the field ha is

δΓ
δha

= i
(
∂µA

a
µ +Dµα

a
µ + gfabc(β̄ccb + c̄bβc)

)
The effective action has the same dependence on ha as the bare action. In Landau gauge
we do not need an independent renormalization factor for ha.

It is worth noting that there are only two two-point vertex involving ha non zero a
when the limit of vanishing field and sources is taken. They are

δΓ
δAb

µ(y)δha(x)
= iδab∂µ(δ(x− y)) (B.12)

and
δΓ

δαbµ(y)δha(x) = iδab∂µ(δ(x− y)). (B.13)
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B.2.1 Associated with c̄a

To deduce the equation of motion for the anti-ghost we are going to consider the trans-
formation c̄a → c̄a + ε̄a(x).

In consequence,∫
ddx〈−∂µε̄a(DµC)a + ε̄aχa +Dµε̄

aKa
µ + La(−gfabcε̄bc̄c)

+Ma(−g2f
abcε̄bcc) + αaµgf

abcDµc
bε̄c − igfabchbε̄cβa + β̄a(−g

2

2 f
abcf cdeε̄bcdce)〉 = 0

(B.14)

The above relation holds for all εa(x) so

−∂µ
δΓ
δK̄a

µ

+ δΓ
δc̄a
−DµK

a
µ + gfabc

(
Lbc̄c + 1

2M
bcc − δΓ

δK̄b
µ

αcµ + ihbβc + β̄b
δΓ
δL̄c

)
= 0.

B.2.2 Associated with ca

A similar procedure can be done considering the transformation for the ghost field ca →
ca + εa(x) in addition to iha → iha − gfabcεbc̄c

The variation of the action is given by

δS = ∂µ(s̄Aaµ) = ∂µ
δΓ
δKa

µ

Therefore the equation of motion is

− ∂µ
δΓ
δKa

µ

+ δΓ
δca

+DµK̄
a
µ + i

δΓ
δhc

gfabcc̄b +m2β̄a + gfabcβc
δΓ
δLb

+ gfabc
(
−L̄ccb + 1

2M
bc̄c − δΓ

δKb
µ

αcµ + β̄b
(

2 δΓ
δM c

+ ihc
))

(B.15)

B.3 Two-point vertex functions
All the two-point vertex functions are

ΓAA ΓAh Γαh ΓAα
ΓAM ΓαM ΓMM Γαα
Γββ̄ ΓKK̄ Γcβ̄ ΓcK̄
Γβc̄ ΓβK̄ ΓKc̄ Γkβ̄
Γcc̄ ΓLL̄

(B.16)

The derivatives of Slavnov-Taylor identities and the equations of motion allow us to
relate all the two-point vertex functions between them. The final expressions will be
evaluated in zero field and sources so they the ghost number should be zero. Moreover
they should respect Lorentz invariance.

The ghost number of each field is

field Aµ c c̄ h Jµ χ̄ χ R Kµ K̄µ L L̄ M αµ β β̄

Ghost number 0 1 -1 0 0 -1 1 0 1 -1 2 -2 0 0 1 -1

We present a list of all possible derivatives of Slavnov-Taylor identities and the equa-
tions of motion that relate the two-point vertex function. Some of them can be reach from
more than one way.
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From the equation of motion related to c̄a

ipµΓcbK̄a
µ
(p) + Γcbc̄a(p) = 0

ipµΓβbK̄a
µ
(p) + Γβbc̄a(p) = 0

ipµΓKb
νK̄

a
µ
(p) + ΓKb

ν c̄
a(p) + ipνδ

ab = 0 (B.17)

From the equation of motion of ca

− ipµΓKa
µ c̄
b(p) + Γcac̄b(p) = 0

ipµΓKa
µβ̄

b(p)− Γcaβ̄b(p) +m2δab = 0

ipµΓKa
µK̄

b
ν
(p)− ΓcaK̄b

ν
(p) + ipνδ

ab = 0 (B.18)

From the Slavnov-Taylor equation from gauge transformation

− ipµ
(
ΓAbνAaµ(p)− ΓAbναaµ(p)

)
= −im2pνδ

ab

ipµ
(
ΓαbνAaµ(p)− Γαbναaµ(p)

)
= 0

ipµ
(
ΓMbAaµ

(p)− ΓMbαaµ
(p)
)

= 0 (B.19)

From the Slavnov-Taylor equation of t-symmetry

Γβcc̄b(p)− Γcbβ̄c(−p)−m
2δbc = 0 ΓKc

ν c̄
b = ΓcbK̄c

ν
(−p)

ΓKc
ν β̄
b(p) = ΓβbK̄c

ν
(−p) −ipνΓLbL̄c(p) = 2ΓAcνMb(−p)

− ipνΓLbL̄c(p) = 2ΓαcνMb(−p) ΓLbL̄c(p) = −2ΓMcMb(−p) (B.20)
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From the Slavnov-Taylor equation of s-symmetry

ΓAaµAbν (p)ΓKc
ρK̄

a
µ
(p) + ΓαcρAbν (p) = 0

ΓAaµAbν (p)ΓccK̄a
µ
(p)− ipνm2 = 0

ΓAaµAbν (p)ΓβcK̄a
µ
(p) + 2m2ΓMcAbν

(p) = 0

ipµΓKc
νK̄

b
µ
(p) + ΓKc

ν c̄
b(p) = 0

ipµΓccK̄b
µ
(p) + Γccc̄b(p) = 0

ipµΓβcK̄b
µ
(p) + Γβcc̄b(p) = 0

ΓAaµαbν (p)ΓKc
ρK̄

a
µ
(p) + Γαcραbν (p) +m2ΓKc

ρK̄
b
ν
(p) = 0

ΓAaµαbν (p)ΓccK̄a
µ
(p) +m2ΓccK̄b

ν
(p)−m2pνδ

bc = 0

ΓAaµαbν (p)ΓβcK̄a
µ
(p) +m2ΓβcK̄b

ν
(p) + 2m2ΓMcαbν

(p) = 0

ΓAaµMb(p)ΓKc
ρK̄

a
µ
(p) + ΓαcρMb(p)−

1
2ΓKc

ρβ̄
b(p) = 0

ΓAaµMb(p)ΓccK̄a
µ
(p) + 1

2Γccβ̄b(p)−
1
2m

2δbc = 0

ΓAaµMb(p)ΓβcK̄a
µ
(p) + 1

2Γβcβ̄b(p) + 2m2ΓMcMb(p) = 0

ΓcaK̄b
ν
(p)ΓLcL̄a(p)− ΓβcK̄b

ν
(p) = 0

Γcac̄b(p)ΓLcL̄a(p)− Γβcc̄b(p) = 0
Γcaβ̄b(p)ΓLcL̄a(p)− Γβcβ̄b(p) = 0 (B.21)

B.4 The non-renomalization theorem for the mass

One of the important consequence of the relations presented in the preceding section is
the non-renormalization theorem for the mass. This implies, in addition with the Taylor
scheme, that to renormalize the theory, in the quenched approximation, we only need to
define two renormalization factors.

To deduce the non-renormalization theorem let us start observing the first equation of
(B.17) which can be expressed as

−ipµΓcaK̄b
µ
(p) = Γcac̄b(p),

where ΓcaK̄b
µ
(p) can be written as ΓcaK̄b

µ
(p) = δabpµf(p) because it is the only tensor

structure allowed. Therefore, we can invert the relation using that

−ip2f(p)δab = Γcac̄b(p),

obtaining
ΓcaK̄b

µ
(p) = i

pµ
p2 Γcac̄b(p) = iδab

pµ
J(p) . (B.22)

On the other hand the second equation of (B.21), deduced from the Slavnov-Taylor
identity associated with the soft-BRST symmetry, is

ΓAaµAbν (p)ΓccK̄a
µ
(p) = ipνm

2.
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Using the assumption that the gluon two-point vertex is sufficiently regular at low mo-
mentum one must have that Γ⊥(0) = Γ‖(0). Therefore, ΓAaµAbν (0) = δabδµνΓ⊥(0). Putting
all the information together we obtain

Γ⊥B(0)
JB(0) = m2

B (B.23)

where we have introduced the subindex B to make explicit that we are dealing with bare
quantities. If we change to the renormalized fields it holds that

(ZAZc)−1 Γ⊥R(0)
JR(0) = Zm2m2

R. (B.24)

Therefore, the renormalization of the mass is not independent of the renormalization of
the ghost and gluon fields. To absorb the divergences it is not necessary to include an
independent renormalization factor of the gluon mass, that is why we called it a non-
renormalization theorem.

B.5 Three-point vertex functions
We extended our study made for the two-point vertex functions to the three-point vertex
functions by finding automatically all the relations given by the symmetries that involves
the two and three-point vertex functions. The number of relations is really large and
therefore they are not presented here. However, some of them have a particular interest
and will be described in detail.

B.5.1 Taylor non-renormalization theorem

In this thesis we have used the Taylor scheme based on the relation
√
ZAZcZg = 1 to

renormalized the coupling constant (also known as minimal MOM scheme [vSMS09]).
This relation can be hold due to the non-renormalization theorem for the coupling con-
stant shown by Taylor in [Tay71b] where it was proven that the coupling constant can be
renormalized using the ghost and gluon renormalization factors. The theorem is a conse-
quence of the equation of motion for c. Let us start from the equation (B.15). If we take
the derivative of this equation with respect to c̄b(y) follow by the derivative with respect
to Acν(z) we obtain the relation:

−∂µ
δ3Γ

δAcν(z)δc̄b(y)δkaµ(x) + δ3Γ
δAcν(z)δc̄b(y)δca(x) + i

δ2Γ
δAcν(z)δhd(x)gf

abdδ(x− y) = 0.

We can use equation (B.12) to replace δ2Γ
δAcν(z)δhd(x) for iδcd∂ν(δ(x− z)). Therefore, we

can write

−∂µ
δ3Γ

δAcν(z)δc̄b(y)δkaµ(x) + δ3Γ
δAcν(z)δc̄b(y)δca(x) − gf

abc∂ν(δ(x− z))δ(x− y) = 0.

In the Fourier space this last relation become

−ipνΓ(3)
Acν c̄

bKa
µ
(k, r, p) + Γ(3)

Acν c̄
bca

(k, r, p) = igfabc(p+ r)ν .

If we set the ghost momentum p to zero the relation reads

Γ(3),B
Acν c̄

bca
(k, r, 0) = igBf

abcrν
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where we have include the subindex B to remember that we are working with the bare
quantities.

If we renormalized this expression, we obtain

(
√
ZAZc)−1Γ(3),R

Acν c̄
bca

(k, r, 0) = iZggRf
abcrν .

As the renormalized quantities are finite the divergent part of the renormalization factor
have to fulfil the relation

√
ZAZcZg = 1.

As the tree level contribution trivially verifies this relation, it is possible to extend this
property to all orders of perturbation theory. Therefore, Taylor scheme propose to extend
this relation also for the finite parts of the renormalization factors.

B.5.2 Relation between the ghost-gluon vertex and the three-gluon ver-
tex

The ghost-gluon and the three-gluon vertex are related to each other as a consequence
of the Slavnov-Taylor equation (B.10). In order to prove this we take the derivative of
equation (B.10) first with respect to cb(y) and then with respect to Acν(z) and Adρ(w).

This procedure takes as to the following relation∫
ddx

{
δ3Γ

δAdρ(w)δAcν(z)δAaµ(x)
δ2Γ

δcb(y)δK̄a
µ(x)

+ δ2Γ
δAcν(z)δAaµ(x)

δ3Γ
δAdρ(w)δcb(y)δK̄a

µ(x)

+ δ2Γ
δAdρ(w)δAaµ(x)

δ3Γ
δAcν(z)δcb(y)δK̄a

µ(x)

}
= 0

which in the Fourier space can be written as

Γ(3)
AdρA

c
νA

a
µ
(k, r, p)Γ(2)

cbK̄a
µ
(p) + Γ(2)

AcνA
a
µ
(r)Γ(3)

Adρc
bK̄a

µ
(k, p, r) + Γ(2)

AdρA
a
µ
(r)Γ(3)

Acνc
bK̄a

µ
(r, p, k) = 0.

We can use the color structure defined in (3.9), (4.3) and (4.11) and the relation (B.22)
to simplify the above equation, this gives

[Γ⊥(k)P⊥µρ(k) + Γ‖(k)P ‖µρ(k)]Γµν(p, k, r)− [Γ⊥(r)P⊥µν(r) + Γ‖(r)P ‖µν(r)]Γµρ(p, r, k)
= pµJ

−1(p)Γρνµ(k, r, p). (B.25)

This identity is the same identity obtain in standard QCD already known in the liter-
ature.

B.5.3 Constraint for three-gluon vertex

There is another interesting relation arriving from the Slavnov-Taylor identity which makes
a constraint for the three-gluon vertex. This relation is obtained by taking the deriva-
tive of Eq. (B.10) with respect to two ghosts and one antighost and taking the Fourier
transformation. This leads to:

−Γ(3)
ccc̄bAdµ

(k, r, p)Γ(2)
caK̄d

µ
(p) + Γ(3)

cac̄bAdµ
(p, r; k)Γ(2)

ccK̄d
µ
(k) + Γ(2)

cdc̄b
(r)Γ(3)

caccL̄d
(p, k; r) = 0. (B.26)

The second step consist in taking the derivative of the Slavnov-Taylor identity associ-
ated with the t symmetry Eq. (B.7) with respect to a gluon and twice with respect to the
ghost field. If we take the Fourier transform we obtain

Γ(3)
cdc̄cAbµ

(p, k; r)− Γ(3)
ccc̄dAbµ

(k, p; r) + irµΓ(3)
cdccL̄b

(p, k; r) = 0. (B.27)
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Now we can obtain Γ(3)
cdccL̄b

(p, k; r) from Eq. (B.26) and substitute it in Eq. (B.27). These
steps lead us to the identity:

Γ̃µ(p, k, r) + Γ̃µ(k, p, r)− rµ
r2

[
pν
p2 Γ̃ν(k, r, p) + kν

k2 Γ̃ν(p, r, k)
]

= 0 (B.28)

where
Γ̃µ(p, k, r) = kνΓνµ(p, k, r)r2J−1(r). (B.29)

This new identity is used to check our calculation for the one-loop three-gluon vertex.





Appendix C

Reduction to Passarino-Veltman
integrals.

The analysis of the diagrams led us to integrals of the form

∫
ddq

(2π)d
qµ1qµ2 ...qµn

((q + p1)2 +m2
1)ν1((q + p2)2 +m2

2)ν2(q2 +m2
3)ν3

(C.1)

where p1 and p2 represent two independent momenta and the mi takes the value 0 or
m in our case. At this moment, we can choose to follow the techniques mentioned in
the previous chapter. That means, to apply the Feynman trick, shift the momentum q
to l, eliminate the odd powers of l and perform the integral over l. However, when the
integral over the momentum space can be done the remaining integrals over the Feynman
parameters are cumbersome. The difficulty increases with the number of momenta at the
numerator and with the number of propagators. That is why we would like to relate the
integral (C.1) to simpler integrals such as,

A(m) =
∫

ddq

(2π)d
1

q2 +m2

B0(p,m1,m2) =
∫

ddq

(2π)d
1

(q2 +m2
1)
(
(q + p)2 +m2

2
)

C0(p1, p2,m1,m2,m3) =
∫

ddq

(2π)d
1

(q2 +m2
1)
(
(q + p1)2 +m2

2
) (

(q + p1 + p2)2 +m2
3
) .
(C.2)

These are the analogue of Passarino-Veltman integrals [PV79] but in Euclidean space. To
succeed we have to face two different issues. The first one is to make explicit the tensor
dependence of the numerator so that the integrals become scalars. For doing so we are
going to follow the idea presented in [PV79]. The second task is to reduce the number of
propagators in the denominator following the steps mentioned in [Dav92].

To explain how things work, let us start with the integrals Bµ and Bµν defined as

Bµ(p,m1,m2) =
∫

ddq

(2π)d
qµ

(q2 +m2
1)
(
(q + p)2 +m2

2
)

Bµν(p,m1,m2) =
∫

ddq

(2π)d
qµqν

(q2 +m2
1)
(
(q + p)2 +m2

2
) .
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The integral Bµ has only one external momentum p and one Lorentz index µ, therefore it
can be written as

Bµ(p,m1,m2) = pµB1(p,m1,m2)

where B1 is scalar integral that can be determined for example if we contract Bµ with pµ,

B1(p,m1,m2) = pµ.Bµ(p,m1,m2)
p2 .

The next step is to relate the numerator q.p to the propagators, using, for instance, that

q.p = 1
2
(
(q + p)2 − q2 − p2

)
= 1

2
(
(q + p)2 +m2

2 − (q2 +m2
1)− p2 −m2

2 +m2
1

)
.

We can then cancel the inverse of the propagators which appear in the numerator with
the propagators itself. This procedure simplify the integrals at the cost of increasing the
number of integrals

B1(p,m1,m2) = 1
2p2

(
A(m1)−A(m2)− (p2 +m2

2 −m2
1)B0(p,m1,m2)

)
.

For the other integral Bµν , the tensor structure is a bit more complicated, we can describe
the tensor structure as

Bµν(p,m1,m2) = pµpνB21 + δµνB22.

We follow the same strategy to obtain B21 and B22. For example, if we contract Bµν with
δµν we have

p2B21 + dB22 = A(m2)−m2
1B0(p,m1,m2) (C.3)

where the numerator q2 was written as (q2 +m2
1)−m2

1. The contraction with pµpν gives

p4B21 + p2B22 = 1
2
(
p2A(m2)− (p2 +m2

2 −m2
1)p2B1

)
. (C.4)

From equations C.3 and C.4 we can express B21 and B22 in terms of the Passarino-Veltman
integrals A and B0.

The study for

Cµ;µν;µνρ(p1, p2,m1,m2,m3)

=
∫

ddq

(2π)d
qµ; qµqν ; qµqνqρ

(q2 +m2
1)
(
(q + p1)2 +m2

2
) (

(q + p1 + p2)2 +m2
3
) (C.5)

Dµ;µν;µνρ;µνρσ(p1, p2, p3,m1,m2,m3,m4)

=
∫

ddq

(2π)d
qµ; qµqν ; qµqνqρ; qµqνqρqσ

(q2 +m2
1)
(
(q + p1)2 +m2

2
) (

(q + p1 + p2)2 +m2
3
) (

(q + p1 + p2 + p3)2 +m2
4
)

(C.6)

can be found in [PV79].
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We also implement the algorithm for

Bµνρ(p,m1,m2) =
∫

ddq

(2π)d
qµqνqρ

(q2 +m2
1)
(
(q + p)2 +m2

2
)

Bµνρσ(p,m1,m2) =
∫

ddq

(2π)d
qµqνqρqσ

(q2 +m2
1)
(
(q + p)2 +m2

2
)

F1µ(p1, p2,m1,m2,m3) =
∫

ddq

(2π)d
qµ

(q2 +m2
1)3 ((q + p1)2 +m2

2
) (

(q + p1 + p2)2 +m2
3
)

F2µ(p1, p2,m1,m2,m3) =
∫

ddq

(2π)d
qµ

(q2 +m2
1)2 ((q + p1)2 +m2

2
)2 ((q + p1 + p2)2 +m2

3
)

F2µν(p1, p2,m1,m2,m3) =
∫

ddq

(2π)d
qµqν

(q2 +m2
1)2 ((q + p1)2 +m2

2
)2 ((q + p1 + p2)2 +m2

3
)

F2µνρ(p1, p2,m1,m2,m3) =
∫

ddq

(2π)d
qµqνqρ

(q2 +m2
1)2 ((q + p1)2 +m2

2
)2 ((q + p1 + p2)2 +m2

3
)

Hµ(p1, p2,m1,m2,m3) =
∫

ddq

(2π)d
qµ

(q2 +m2
1)2 ((q + p1)2 +m2

2
)2 ((q + p1 + p2)2 +m2

3
)2

Hµν(p1, p2,m1,m2,m3) =
∫

ddq

(2π)d
qµqν

(q2 +m2
1)2 ((q + p1)2 +m2

2
)2 ((q + p1 + p2)2 +m2

3
)2

Hµνρ(p1, p2,m1,m2,m3) =
∫

ddq

(2π)d
qµqνqρ

(q2 +m2
1)2 ((q + p1)2 +m2

2
)2 ((q + p1 + p2)2 +m2

3
)2

The reduction to Passarino-Veltman integrals in simple cases was already implemented
in the Mathematica package FeynCalc. However, the treatment done by FeynCalc was
not enough to simplify our expressions so we implemented a Mathematica algorithm to do
it. We implemented a reduction with a bigger number of propagators and Lorentz indices
but just for the case where the value of the masses are 0 or m.

The final expression simplifies considerably because of the symmetries of Passarino-
Veltman integral. To mention some of them,

A(0) = 0 because of the use of dimensional regularization,
B0(−p,m1,m2) = B0(p,m1,m2),
C0(p2, p1, 0, 0) = C0(p1, p2, 0, 0),
C0(−p1, p2, 0, 0,m) = C0(p1,−p2, 0, 0,m) and
C0(p1,−p1 − p2, 0, 0,m) = C0(p1, p2, 0, 0,m). (C.7)

Once the numerator was simplified and the calculation has been reduced to the scalar
integrals, we want to reduce the number of propagators to be able to express them in
terms of A,B0 and C0. We follow the strategy presented in [Dav91]. Here, we change the
notation a little in order to be clearer. We define the scalar function J(ν1, ν2, ν3) as

Jm1,m2,m3
p1,p2 (ν1, ν2, ν3) =

∫
ddq

(2π)d
1(

(q + p1)2 +m2
1
)ν1 ((q + p2)2 +m2

2
)ν2 (q2 +m2

3
)ν3 (C.8)

for simplicity we omit the indices m1,m2,m3 and p1, p2.
We would like to reduce the number of propagators. Let us start by observing that

the integral of a divergence is zero.
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0 =
∫

ddq

(2π)d
∂

∂qµ

(q + p1)µ(
(q + p1)2 +m2

1
)ν1 ((q + p2)2 +m2

2
)ν2 (q2 +m2

3
)ν3

= dJ(ν1, ν2, ν3)− 2ν1(q + p).(q + p)J(ν1 + 1, ν2, ν3)− 2ν2(q + p2).(q + p1)J(ν1, ν2 + 1, ν3)
− 2ν3q.(q + p1)J(ν1, ν2, ν3 + 1). (C.9)

We can now use the scalar products to reduce the number of propagators. To this end,
we express the scalar products as follows:

(q + p1).(q + p1) =
(
(q + p1)2 +m2

1

)
−m2

1

(q + p2).(q + p2) =
(
(q + p2)2 +m2

2

)
−m2

2

q2 =
(
(q2 +m2

3

)
−m2

3

(q + p1).(q + p2) = q2 + q.p1 + q.p2 + p1.p2

= 1
2
(
(q + p1)2 +m2

1

)
+ 1

2
(
(q + p2)2 +m2

2

)
− 1

2
(
(p1 − p2)2 +m2

1 +m2
2

)
q.(q + p1) = 1

2
(
(q + p1)2 +m2

1

)
+ 1

2
(
q2 +m2

3

)
− 1

2
(
p2

1 +m2
1 +m2

3

)
q.(q + p2) = 1

2
(
(q + p2)2 +m2

2

)
+ 1

2
(
q2 +m2

3

)
− 1

2
(
p2

2 +m2
2 +m2

3

)
.

Using the above relations, Eq. (C.9) now reads

0 = dJ(ν1, ν2, ν3)− 2ν1
(
J(ν1, ν2, ν3)−m2

1J(ν1 + 1, ν2, ν3)
)

− ν2
(
J(ν1, ν2, ν3) + J(ν1 − 1, ν2 + 1, ν3)−

(
(p1 − p2)2 +m2

1 +m2
2

)
J(ν1, ν2 + 1, ν3)

)
− ν3

(
J(ν1, ν2, ν3) + J(ν1 − 1, ν2, ν3 + 1)− (p2

1 +m2
1 +m2

3)J(ν1, ν2, ν3 + 1)
)
.

Therefore, we can relate on function J with another function J with a smaller number of
propagators, as

2ν1m
2
1J(ν1 + 1, ν2, ν3) + ν2

(
(p1 − p2)2 +m2

1 +m2
2

)
J(ν1, ν2 + 1, ν3)

+ν3
(
p2

1 +m2
1 +m2

3

)
J(ν1, ν2, ν3 + 1)

= (2ν1 + ν2 + ν3 − d) J(ν1, ν2, ν3) + ν2J(ν1 − 1, ν2 + 1, ν3) + ν3J(ν1 − 1, ν2, ν3 + 1).
(C.10)

A similar procedure can be done starting with (q+p2)µ in the numerator of Eq. (C.9).
In this case we get the following relation

ν1
(
(p1 − p2)2 +m2

1 +m2
2

)
J(ν1 + 1, ν2, ν3) + 2ν2m

2
2J(ν1, ν2 + 1, ν3)

+ν3
(
p2

2 +m2
2 +m2

3

)
J(ν1, ν2, ν3 + 1)

= (ν1 + 2ν2 + ν3 − d) J(ν1, ν2, ν3) + ν1J(ν1 + 1, ν2 − 1, ν3) + ν3J(ν1, ν2 − 1, ν3 + 1).
(C.11)
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Finally, we can do the same thing with qµ in the numerator of (C.9)

ν1
(
p2

1 +m2
1 +m2

3

)
J(ν1 + 1, ν2, ν3) + ν2

(
p2

2 +m2
2 +m2

3

)
J(ν1, ν2 + 1, ν3)

+2ν3m
2
3J(ν1, ν2, ν3 + 1)

= (ν1 + ν2 + 2ν3 − d) J(ν1, ν2, ν3) + ν1J(ν1 + 1, ν2, ν3 − 1) + ν2J(ν1, ν2 + 1, ν3 − 1).
(C.12)

The three equations (C.10),(C.11) and (C.12) form the follow coupled system 2m2
1 (p1 − p2)2 +m2

1 +m2
2 p2

1 +m2
1 +m2

3
(p1 − p2)2 +m2

1 +m2
2 2m2

2 p2
2 +m2

2 +m2
3

p2
1 +m2

1 +m2
3 p2

2 +m2
2 +m2

3 2m2
3


ν1J(ν1 + 1, ν2, ν3)
ν2J(ν1, ν2 + 1, ν3)
ν3J(ν1, ν2, ν3 + 1)


=

(2ν1 + ν2 + ν3 − d) J(ν1, ν2, ν3) + ν2J(ν1 − 1, ν2 + 1, ν3) + ν3J(ν1 − 1, ν2, ν3 + 1)
(ν1 + 2ν2 + ν3 − d) J(ν1, ν2, ν3) + ν1J(ν1 + 1, ν2 − 1, ν3) + ν3J(ν1, ν2 − 1, ν3 + 1)
(ν1 + ν2 + 2ν3 − d) J(ν1, ν2, ν3) + ν1J(ν1 + 1, ν2, ν3 − 1) + ν2J(ν1, ν2 + 1, ν3 − 1

 .
(C.13)

Accordingly, J(ν1 + 1, ν2, ν3), J(ν1, ν2 + 1, ν3) and J(ν1, ν2, ν3 + 1) can be obtained as
function of J with one less propagator.

With this iterative procedure we can take all the integrals to the form J(1, 1, 1),
J(0, 1, 1), J(1, 0, 1), J(1, 1, 0), J(0, 0, 1) which can be easily related to Passarino-Veltman
integrals.
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