
HAL Id: tel-01298608
https://theses.hal.science/tel-01298608

Submitted on 6 Apr 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Intelligent Mobile Robot Learning in Autonomous
Navigation

Chen Xia

To cite this version:
Chen Xia. Intelligent Mobile Robot Learning in Autonomous Navigation. Automatic Control Engi-
neering. Ecole Centrale de Lille, 2015. English. �NNT : 2015ECLI0026�. �tel-01298608�

https://theses.hal.science/tel-01298608
https://hal.archives-ouvertes.fr

N o d’ordre: 2 8 0

ÉCOLE CENTRALE DE LILLE

THÈSE
présentée en vue d’obtenir le grade de

DOCTEUR
en

Spécialité : Automatique, Génie Informatique, Traitement du Signal et des Images

par

Chen XIA
Master of Science of Beihang University (BUAA)

Doctorat délivré par l’École Centrale de Lille

Titre de la thèse :

Apprentissage Intelligent des Robots Mobiles
dans la Navigation Autonome

Soutenue le 24 novembre 2015 devant le jury d’examen :

M. Pierre BORNE École Centrale de Lille Président

M. Noureddine ELLOUZE École Nationale d’Ingénieurs de Tunis Rapporteur

M. Dumitru POPESCU Université Polytechnique de Bucarest Rapporteur

M. Abdelkader EL KAMEL École Centrale de Lille Directeur de thèse

M. Khaled MELLOULI IHEC Carthage, Tunisie Examinateur

Mme. Shaoping WANG Beihang University, Chine Examinateur

Mme. Liming ZHANG University of Macau Examinateur

Thèse préparée dans le Centre de Recherche en Informatique, Signal et Automatique de Lille
(CRIStAL), UMR CNRS 9189 - École Centrale de Lille

École Doctorale SPI 072
PRES Université Lille Nord-de-France

Serial No : 2 8 0

ÉCOLE CENTRALE DE LILLE

THESIS
Presented to obtain the degree of

Doctor of Philosophy
in

Topic : Automatic Control, Computer Science, Signal and Image Processing

by

Chen XIA
Master of Engineering of Beihang University (BUAA)

Ph.D. awarded by École Centrale de Lille

Title of the thesis :

Intelligent Mobile Robot Learning in Autonomous Navigation

Defended on November 24, 2015 in presence of the committee :

Mr. Pierre BORNE École Centrale de Lille President
Mr. Noureddine ELLOUZE École Nationale d’Ingénieurs de Tunis Reviewer
Mr. Dumitru POPESCU Université Polytechnique de Bucarest Reviewer
Mr. Abdelkader EL KAMEL École Centrale de Lille Supervisor
Mr. Khaled MELLOULI IHEC Carthage, Tunisie Examiner
Mrs. Shaoping WANG Beihang University, Chine Examiner
Mrs. Liming ZHANG University of Macau Examiner

Thesis prepared within the Centre de Recherche en Informatique, Signal et Automatique de
Lille (CRIStAL), UMR CNRS 9189 - École Centrale de Lille

École Doctorale SPI 072
PRES Université Lille Nord-de-France

To my parents,
to all my family,

to my professors,
and to my friends.

Acknowledgements

This dissertation has been realized at “Centre de Recherche en Informatique,

Signal et Automatique de Lille (CRIStAL)” in École Centrale de Lille, with

the research group “Optimisation : Modèles et Applications (OPTIMA)”, from

September 2012 to November 2015. This work is financially supported by China

Scholarship Council (CSC).

First and foremost, I offer my sincerest gratitude to my supervisor, Prof. Ab-

delkader El Kamel. He has provided his supervision, valuable guidance, continu-

ous encouragement as well as given me extraordinary experiences throughout my

Ph.D. experience. A special acknowledgment should be shown to Prof. Shaoping

Wang, who enlightened me at the first glance of research, and she always sup-

ported my thesis work during the past three years with her helpful suggestions

and discussions. My thanks to both Prof. El Kamel and Prof. Wang for having

involved me in their research cooperation project and giving me this opportunity

to study in France.

Besides my supervisor, I would like to thank Prof. Pierre BORNE for his kind

acceptance to be the president of my Ph.D. Committee, as well as Prof. Noured-

dine ELLOUZE and Prof. Dumitru POPESCU, who have kindly accepted the

invitation to be reviewers of my Ph.D. thesis, for their encouragement, insightful

comments and hard questions. My gratitude to Prof. Khaled MELLOULI, Prof.

Shaoping Wang and Prof. Liming ZHANG, for being the examiners of my thesis

and for their kind acceptance to take part in the jury of the Ph.D. defense.

I am also very grateful to the staff in École Centrale de Lille. Vanessa Fleury,

Christine Yvoz, and Brigitte Foncez have helped me in the administrative work.

Many thanks go also to Patrick Gallais, Gilles Marguerite, Jacques Lasue, for

their kind help and hospitality. Special thanks go to Christine Vion, Martine

i

ACKNOWLEDGEMENTS

Mouvaux for their support in my lodgment life at the dormitory “Léonard de
Vinci”.

My sincere thanks also goes to Dr. Tian Zheng, Dr. Yue Yu and Dr. Daji
Tian, for offering me the useful advices during my study in the laboratory as well
as after their graduation.

I would like to take the opportunity to express my gratitude and to thank my
fellow workmates in CRIStAL: Bing Liu, Yihan Liu, Qi Sun, Jian Zhang for the
stimulating discussions for the hard teamwork. Also I wish to thank my friends
and colleagues: Hongchang Zhang, Yu Du, Lijie Bai, Qi Guo, Jing Bai, Lijuan
Zhang, Youwei Dong, Ben Li, Xiaokun Ding, etc., for all the fun we have had in
the past three years. All of them have given me support and encouragement in
my thesis work.

All my gratitude goes to Ms. Hélène Catsiapis who taught me the French
language and culture. My knowledge and interest in the culture is inspired by
her work and enthusiasm. She organized many interesting and unforgettable trips
in France, and she managed to open my appetite for art, history, gastronomy and
wine.

My Ph.D. program was supported by the cooperation between China and
Scholarship Council (CSC) and Ecoles-Centrales Intergroup. So I would like to
thank all of the people who have built this relationship and contributed to select
candidates for interesting research projects.

Last but not least, I convey special acknowledgment to my family for support-
ing me to pursue this degree and to accept my absence for four years of living
abroad: my parents Baoqing Xia and Guihong Gong, for giving birth to me at
the first place and supporting me spiritually throughout my life. So as to the rest
of my family for their love and support. Their encouragement and understand-
ing during the course of my dissertation made me pursue the advanced academic
degree.

Villeneuve d’Ascq, France Chen Xia
November, 2015

ii

Abstract

Modern robots are designed for assisting or replacing our human beings to perform
complicated planning and control operations and tasks, such as manipulating ob-
jects, assisting experts in a variety of professions, navigating in outdoor environ-
ments, exploring unknown territories, and driving in urban areas. Designing a
control schema for such robots to execute these tasks is usually a complicated
process, even for people specialized in programming robots, which requires creat-
ing by hand a new and different controller for each particular task. The designer
has to take deliberately the wide range of situations that the robot may face into
account. This sort of manually programming is generally an expensive as well as
intense time-consuming process. Rather than pre-programming a robot for all the
tasks, it would be more useful if the robot could learn such tasks by themselves.

This dissertation focuses on the intelligent robot control in autonomous nav-
igation tasks and investigates the robot learning in three aspects.

First, we consider the robot learning from expert demonstrations. This method
is inspired by the human instinct of imitation. Providing the examples of stan-
dard behaviors to the robots, the robots learn from these data and generalize
over all potential situations that are not given in the examples. We embedded an
inference mechanism by applying neural network into the robot controllers. With
an acceptable number of demonstrations, the robot can acquire the independent
navigation skills.

Second, we consider the robot self-learning ability without expert demon-
strations in autonomous navigation. We use the state-of-the-art reinforcement
learning techniques to train the robot via interaction with the robots. A neural
network is also incorporated to play the role of fast generalization. We train the
robot with all the past state-action pairs collected during the process of interac-
tion, and this can help the learning to converge in a number of episodes that is

iii

ABSTRACT

greatly smaller than the traditional methods.
Third, we consider the robot learning the potential rewards in states via in-

verse reinforcement learning. Given the expert demonstration, the robots should
not only learn to pair the states and actions, but also try to understand the un-
derlying framework of the demonstrations, the rewards. We proposed a nonlinear
neural policy representation, and the max-margin inverse reinforcement learning
algorithm is applied to refine and train the policy. The resulting policy can be
used for robots to undertake autonomous navigation tasks.

Experimental results on these three aspects showed a reliable and robustness
performance of robot autonomous navigation tasks by using our proposed meth-
ods. Therefore, we prove that the trend of robot learning instead of traditional
robot programming will have a bright future and bring us more benefits and serve
us better.

iv

Contents

Acknowledgements i

Abstract iii

Table of Contents v

List of Figures ix

List of Tables xi

List of Algorithms xii

Abbreviations xv

1 Introduction 1
1.1 Background and Motivation . 1

1.1.1 Mobile Robotics . 1
1.1.2 Autonomous Navigation 3
1.1.3 Robot Learning . 5
1.1.4 Motivation . 7

1.2 Contributions of the Dissertation 9
1.3 Organization of the Dissertation 10

2 Markov Decision Processes and Reinforcement Learning in Robotics 13
2.1 Introduction . 14
2.2 Markov Decision Processes . 15

2.2.1 Policies and Value Functions 16
2.2.2 Partially Observable Markov Decision Processes 20

2.3 Dynamic Programming: Model-Based Algorithms 22

v

CONTENTS

2.3.1 Policy Iteration . 24

2.3.2 Value Iteration . 25

2.4 Reinforcement Learning: Model-Free Algorithms 26

2.4.1 Goals of Reinforcement Learning 27

2.4.2 Monte Carlo Methods . 28

2.4.3 Temporal Difference Methods 29

2.5 Mobile Robot Model . 30

2.5.1 Uncertainty in Mobile Robots 32

2.6 Conclusion . 33

3 Policy Learning from Multiple Demonstrations 35

3.1 Introduction . 36

3.2 Related Work . 37

3.3 Neural Network Model . 38

3.3.1 Backpropagation Algorithm 41

3.4 Policy Learning from Demonstrations 45

3.4.1 Dataset Extraction from Demonstrations 46

3.4.2 Architecture of Neural Network 48

3.4.3 Policy Learning Process 49

3.4.3.1 Neural Network Training 49

3.4.4 Algorithm . 52

3.5 Demonstration by Modified A* Algorithm 52

3.5.1 Node Representation . 53

3.5.2 Algorithm . 54

3.5.3 Result . 54

3.6 Experimental Results . 56

3.6.1 Policy Learning Process 57

3.6.2 Robot navigation in unknown environments 59

3.6.3 Paths Comparison . 61

3.6.4 Autonomous Navigation in Dynamic Environments 61

3.6.5 Discussions . 61

3.7 Conclusion . 64

vi

CONTENTS

4 Reinforcement Learning under Stochastic Policies 65
4.1 Introduction . 66
4.2 Related Work . 67
4.3 Model-Free Reinforcement Learning Methods 69

4.3.1 Q-Learning . 70
4.3.2 SARSA . 71
4.3.3 Function Approximation using Feature-Based Representa-

tions . 72
4.4 Neural Network based Q-Learning 73

4.4.1 State and Action Spaces 74
4.4.2 Reward Function . 76
4.4.3 The Stochastic Control Policy 77
4.4.4 State-Action Value Iteration 78
4.4.5 Algorithm . 81

4.4.5.1 Training Process of NNQL 81
4.4.5.2 Robot Navigation Using NNQL 82

4.5 Experimental Results . 83
4.5.1 Self-learning Results . 84
4.5.2 Autonomous Navigation Results 89
4.5.3 Comparison and Analysis 89
4.5.4 Autonomous Navigation in Dynamic Environments 91
4.5.5 Discussions . 91

4.6 Conclusion . 93

5 Learning Reward Functions with Nonlinear Neural Policy Rep-
resentations 95
5.1 Introduction . 96
5.2 Related Work . 98
5.3 Inverse Reinforcement Learning 100

5.3.1 Preliminaries . 100
5.3.2 Inverse Reinforcement Learning 101

5.4 Nonlinear Neural Policy Representations 103
5.4.1 State and Action Spaces 103
5.4.2 Neural Policy Representation 104
5.4.3 Stochasticity of Policy . 106

vii

CONTENTS

5.5 Neural Inverse Reinforcement Learning 107
5.5.1 Suboptimal Demonstration Refinement via Maximum a Pos-

teriori Estimation . 107
5.5.2 Model-free Maximum Margin Planning 108
5.5.3 Neural Policy Iteration . 109
5.5.4 The Algorithm for Neural Inverse Reinforcement Learning 110
5.5.5 Expert Demonstrations . 112

5.5.5.1 Computer-based Expert Demonstrations 112
5.5.5.2 Human Demonstrations 112

5.6 Experimental results . 112
5.6.1 Comparison of Two Types of Demonstrations 114
5.6.2 Neural Inverse Reinforcement Learning 115
5.6.3 Robot navigation in new unknown environments 118
5.6.4 Analysis of the weight changes 120
5.6.5 Autonomous Navigation in Dynamic Environments 122
5.6.6 Discussions . 123

5.7 Conclusion . 124

Conclusions and Perspectives 125

Résumé Étendu en Français 129

References 137

viii

List of Figures

1.1 Various applications of mobile robots. 2

1.2 Various applications of robot learning. 7

1.3 Stanley: The 2005 DARPA Grand Challenge Winner. (Thrun
et al., 2006) . 8

2.1 The mechanism of interaction between a learning agent and its
environment in reinforcement learning. 14

2.2 Decision network of a finite MDP. 17

2.3 Schema of a Partially Observable Markov Decision Process. 21

2.4 Generalized Policy Iteration (Sutton & Barto, 1998) 23

2.5 Robotino®: a mobile robot system for education and research. . . 30

2.6 The mobile robot model with nine sensors and their corresponding
sensing areas. 31

2.7 The mobile robot environment with a target and an obstacle. . . . 32

3.1 A neural network example. 39

3.2 A neural network example with two hidden layers. 41

3.3 The three-layer neural network architecture in policy learning from
demonstrations. 48

3.4 Modified A* Algorithm Result. 56

3.5 Pathfinding results using modified A* (red solid) and conventional
A* (green dashed) algorithms. 57

3.6 Expert demonstrations given by modified A* algorithm. 58

3.7 Changes of cost J(W) in learning process. 59

3.8 Robot navigation in new environments. 60

ix

LIST OF FIGURES

3.9 Path comparison in two methods. The red dotted curves are the
suggested paths by computer expert, and The blue solid curves are
actual robot navigation trajectories. 62

3.10 Autonomous robot navigation in a dynamic environment using pro-
posed policy learning method. 63

4.1 A three-layer neural network architecture. 79
4.2 Learning results in different episodes via NNQL. 85
4.3 Changes of NN weights in all learning episodes. 86
4.4 Numbers of successful learning episodes in every 30 episodes. . . . 87
4.5 Autonomous navigation results in different environments via NNQL. 88
4.6 Numbers of successful learning episodes in every 30 episodes. . . . 90
4.7 Autonomous robot navigation in a dynamic environment using

NNQL. 92

5.1 Nonlinear neural policy representation. 105
5.2 A black box structure of neural network. 107
5.3 A human expert demonstration. 113
5.4 Expert demonstrations in different numbers of trajectories. 114
5.5 Expert demonstrations with stochastic actions. 115
5.6 Human expert demonstrations. 116
5.7 Changes of margin during the learning episodes. 117
5.8 Changes of NN cost during the learning episodes. 117
5.9 Robot navigation results in different environments. 119
5.10 Comparison of numbers of successful navigations in the environ-

ments of different numbers of obstacles. 120
5.11 Changes of neural policy weights during the learning process. . . . 121
5.12 Autonomous robot navigation in a dynamic environment using NIRL.122
1 Stanley: le champion du DARPA Grand Challenge 2005. (Thrun

et al., 2006) . 130
2 Un schéma simple de l’apprentissage d’une politique. 131
3 Un schéma simple de l’apprentissage en ligne via d’expérience ac-

cumulée. 133
4 Un schéma simple de l’apprentissage de la fonction de récompense. 134

x

List of Tables

3.1 Definition of the degree of danger 47
3.2 Compassion of number of demonstration versus rate of success. . . 61
3.3 Compassion of number of iterations in training performance. . . . 64

4.1 Reward Function . 77
4.2 Compassion of the rate of success versus different robot speeds. . 89
4.3 Comparison of the rate of success versus different methods. 91

5.1 Rate of success in different numbers of demos 118
5.2 Comparison of the rate of success versus different IRL methods. . 123

xi

LIST OF TABLES

xii

List of Algorithms

1 Policy Iteration (Sutton & Barto, 1998) 24
2 Value Iteration (Sutton & Barto, 1998) 26
3 Policy Learning from Multiple Demonstrations 53
4 Modified A* algorithm . 55
5 One-step Q-learning algorithm (Watkins, 1989) 71
6 On-policy SARSA algorithm (Rummery & Niranjan, 1994) 72
7 SARSA with linear function approximation (Poole & Mackworth,

2010) . 74
8 Training algorithm of NNQL . 82
9 Robot Navigation using NNQL 83
10 The NIRL algorithm . 111

xiii

LIST OF ALGORITHMS

xiv

Abbreviations

N - Natural numbers
R - Real numbers
AGV - Automated guided vehicle
AMR - Autonomous mobile robot
ANN - Artificial neural network
AUV - Autonomous underwater vehicle
BPNN - Backpropagation neural network
CNN - Convolutional neural network
DP - Dynamic programming
FFNN - Feedforward neural network
GPI - Generalized policy iteration
IRL - Inverse reinforcement learning
LfD - Learning from demonstration
MAP - Maximum a posteriori
MC - Monte Carlo
MDP - Markov decision process
ML - Maximum likelihood
NN - Neural network
NNQL - Neural network based Q-learning
PI - Policy iteration
POMDP - Partial observable Markov decision process
RL - Reinforcement learning
SGD - Stochastic gradient descent
TD - Temperal difference
UAV - Unmanned aerial Vehicle
UGV - Unmanned ground vehicle

xv

ABBREVIATIONS

VI - Value iteration

xvi

Chapter 1

Introduction

Contents
1.1 Background and Motivation 1

1.1.1 Mobile Robotics . 1

1.1.2 Autonomous Navigation 3

1.1.3 Robot Learning . 5

1.1.4 Motivation . 7

1.2 Contributions of the Dissertation 9

1.3 Organization of the Dissertation 10

1.1 Background and Motivation

1.1.1 Mobile Robotics

Robots are rapidly developing from industrial environments, which are physically
fixed to their working places, to increasingly complex machines capable of per-
forming challenging tasks in our daily environment. Traditional industrial robots
used in manufacturing plants∗ where the environment is highly controlled are
usually more-or-less stationary.

By contrast, mobile robots are the robotic systems that can operate in un-
constrained environments and have the capability to move around freely using,

∗This kind of robots are often referred to as robotic arms or manipulators.

1

1. INTRODUCTION

(a) Curiosity : NASA’s Mars exploration
Rover.

(b) Blackghost : an AUV designed to un-
dertake an underwater assault course au-
tonomously with no outside control.

(c) Kiva Robots: that Amazon used to help
employees in their warehouses.

(d) RP-VITA: a medical robot that doctors
can make remote visits to patients via PCs
or iPads running the robots.

Figure 1.1: Various applications of mobile robots.

for example, wheels. They can operate autonomously in a partially unknown and
unpredictable environment without the need for physical or electro-mechanical
guidance devices (autonomous mobile robot (AMR)). Alternatively, mobile robots
can rely on guidance devices that allow them to travel a predefined navigation
route in relatively controlled space (automated guided vehicle (AGV)).

Mobile robots have been widely used in various fields, such as space explo-
ration (see Figure 1.1(a)), under water survey (see Figure 1.1(b)), industrial and
military industries (see Figure 1.1(c)), and medical service applications (see Fig-
ure 1.1(d)), and so on.

In this dissertation, we place our focus on autonomous mobile robots, robots
that are capable of making their own decisions depending on the situation at

2

1.1 Background and Motivation

hand rather than merely executing a pre-defined sequence of motions. In fact,
since most robots equipped with such decision-making capabilities are mobile,
we may treat an autonomous mobile robot as a mobile robot with the ability to
make decisions.

Advances in autonomous mobile robots also have provided solutions to com-
plex tasks previously only considered achievable by humans. Such domains in-
clude planetary or underwater exploration (Helmick et al., 2006; Kunz et al.,
2008), operation in urban environments (Bohren et al., 2008) and unmanned
flight (Fabiani et al., 2007).

For a comprehensive understanding of autonomous mobile robots, readers are
recommended to see Siegwart et al. (2011); Tzafestas (2013) as references.

1.1.2 Autonomous Navigation

A fully autonomous robot can gain information about the environment, work for
an extended period without human intervention, move either all or part of itself
throughout its operating environment without human assistance, avoid situations
that are harmful to people, property. An autonomous robot may also learn or
gain new knowledge like adjusting for new methods of accomplishing its tasks or
adapting to changing surroundings. Therefore, mobile robots need to have the
capabilities of autonomy and intelligence, and to design algorithms that allow the
robots to function autonomously in unstructured, dynamic, partially observable,
and uncertain environments pose a challenge to researchers to deal with key
issues such as uncertainty (in both sensing and action), reliability, and real-time
response.

In each of those domains of mobile robot applications, mobility is almost
pointless without the ability to navigate. Random movement, which does not
require a navigation capability, may be useful for certain surveillance or cleaning
operations, but for most scientific or industrial applications of mobile robots the
ability to move in a purposeful manner is required. Hence, autonomous navigation
plays a key role in the success of the robots, and also the baseline for the relative
technologies of autonomous mobile robots.

A mobile robot navigation task refers to plan a path with obstacle avoidance
to a specified goal and to execute this plan based on sensor readings. Mobile
robots navigation roughly includes the following six interrelated competences:

3

1. INTRODUCTION

1. Perception: to obtain and interpret sensory information;

2. Exploration: the strategy that guides the robot to select the next direction
to go;

3. Mapping: to construct a spatial representation or an environment model
by using the sensory information perceived;

4. Localization: the strategy to estimate the robot position within the spatial
map that occurs simultaneously to navigation control;

5. Path planning: the strategy to find a path towards a goal location being
optimal or not;

6. Path execution: to determine and adapt motor actions to environmental
changes, also including obstacle avoidance.

A robot requires a mechanism that allows it to move freely in the environment,
i.e., it must be able to detect and react to situations. It is the robot sensors that
play such a role as the eyes of robots, and the robot know where it is or how it get
to some place, or to be able to reason about where it has gone. The sensors can be
flexible and mobile to measure the distance that wheels have traveled along the
ground, to measure inertial changes and external structure in the environment.
Knudson & Tumer (2011) summarized that the sensors may be roughly divided
into two classes: internal state sensors, such as accelerometers, gyroscope, which
provide the internal information about the robot’s movements, and external state
sensors, such as laser, infrared sensors, sonar, and visual sensors, which provide
the external information about the environment. The data from internal state
sensors may provide position estimates of the robot in a 2D space. The data from
external state sensors may be used to directly recognize a place or a situation,
or be converted to information in a map of the environment. In most cases,
the sensor readings are imprecise and unreliable due to the noises. Therefore,
it is important for the mobile robot navigation to process the sensor data with
noises. Since neural networks have many processing nodes, each with primarily
local connections, they may provide some degree of robustness or fault tolerance
for interpretation of the sensor data.

4

1.1 Background and Motivation

To sum up, the autonomous navigation task is the ability for mobile robots
to obtain enough information about the environment, process it, and act, moving
safely through this environment, usually according to a predefined path. The
ability to sense the surrounding environment is a fundamental requirement to
any autonomous system. All action decisions are made based on what sensory
inputs the robot perceive.

1.1.3 Robot Learning

Autonomous robots cannot always be programmed to execute predefined actions
because one does not always know in advance the unpredicted situations that the
robot might encounter. Today, however, most robots used in the industry are
preprogrammed and require a well-defined and controlled environment. Repro-
gramming such robots is often a costly process requiring an expert. By enabling
robots to learn tasks either through autonomous self-exploration or through guid-
ance from a human teacher, robot installation and task reprogramming are simpli-
fied. Meanwhile, robots that cannot learn lack one of the most interesting aspects
of intelligence. Recent researches has shown a drift toward artificial intelligence
approaches to improve the robot autonomous ability based on accumulated expe-
riences, and artificial intelligence methods can be computationally less expensive
than classical ones. Machine learning approaches are often applied, to each the
burden on system engineers. Learning therefore has become a central topic in
modern robotics research.

Robot learning is a research field at the intersection of machine learning and
robotics. It studies techniques allowing a robot to acquire novel skills or adapt
to its environment through learning algorithms.∗ The embodiment of the robot,
situated in a physical embedding, provides at the same time specific difficulties
(e.g. high-dimensionality, real time constraints for collecting data and learning)
and opportunities for guiding the learning process.

Robot learning consists of a multitude of machine learning approaches, partic-
ularly reinforcement learning, imitation learning, inverse reinforcement learning,
and regression methods, that have been adapted sufficiently to domain so that
they allow learning in complex robot systems such as helicopters, flapping-wing

∗https://en.wikipedia.org/wiki/robot_learning

5

1. INTRODUCTION

flight, legged robots, anthropomorphic arms and humanoid robots. While classi-
cal artificial intelligence-based robotics approaches have often attempted to man-
ually generate a set of rules and models that allows the robot systems to sense
and act in the real-world, robot learning centers around the idea that it is unlikely
that we can foresee all interesting real-world situations sufficiently accurate.

While robot learning covers a wide range of fields, from learning to perceive, to
plan, to make decisions, etc., we focus our work on learning control in simulated
or actual physical robots. In general, learning control refers to the process of ac-
quiring a particular control system and a particular task by trial and error (Schaal
& Atkeson, 2010). Reinforcement learning (RL) and learning from demonstration
(LfD) are mentioned as two popular families of algorithms for learning policies
for sequential decision problems (Cobo et al., 2014).

Reinforcement learning algorithms solve sequential decision problems posed as
Markov decision processes (MDPs), learning a policy by letting the agent explore
the effects of different actions in different situations while trying to maximize a
sparse reward signal. RL has been successfully applied to a variety of scenarios.

Learning from demonstration is an approach to robot/agent learning that
takes as input demonstrations from a human in order to build action or task
models. There are a broad range of approaches that fall under the umbrella of
LfD research(Argall et al., 2009). These demonstrations are typically represented
as state-action tuples, and the LfD algorithm learns a policy mapping from states
(input) to actions (output) based on the examples seen in the demonstrations.
Inverse reinforcement learning (IRL), as one important branch of LfD methods,
addresses the problem of estimating the reward function of an agent acting in a
dynamic environment.

Another approach is to provide a mapping from sensory inputs to actions
that statistically capture the key behavioral objectives without needing a model
or detailed domain knowledge (Cummins & Newman, 2007). Such methods are
well-suited to domains where the tools available to learn from past experience
and adapt to emergent conditions are limited.

With the advent of increasingly efficient robot learning methods, one can ob-
serve a growing number of successful applications in robotics, such as autonomous
helicopter control (Abbeel et al., 2007, 2010; Ng et al., 2006), self-driving car
(Montemerlo et al., 2008; Thrun et al., 2006; Urmson et al., 2008), autonomous

6

1.1 Background and Motivation

(a) BRETT is learning how to screw a cap onto
a water bottle.

(b) Learning to flip an artificial pancake.

Figure 1.2: Various applications of robot learning.

underwater vehicles (AUVs) control (Carreras et al., 2005), mobile robot naviga-
tion (Jaradat et al., 2011), robot soccer control (Riedmiller et al., 2009).

Recently, several interesting applications have appeared. Levine et al. (2015)
worked with a Willow Garage Personal Robot 2 (PR2), named Berkeley Robot
for the Elimination of Tedious Tasks (BRETT), and empowered BRETT has
acquired the ability to learn to perform various tasks on its own via trial and error,
without pre-programmed details about its surroundings. Those tasks include
assembling a wheel part onto a toy airplane, stacking a Lego block, and screwing
a cap on a water bottle (see Figure 1.2(a)). Mülling et al. (2013) used imitation
and reinforcement learning techniques to enable a Barrett WAM arm to learn
successful hitting movements in table tennis. Kormushev et al. (2010) taught
a robot to flip a pancake. (see Figure 1.2(b)). Other successful robot learning
applications also include Kolter & Ng (2009); Ratliff et al. (2009b).

1.1.4 Motivation

The ability of autonomous navigation plays an important role in the state-of-
the-art self-driving cars. Dating back to 2003, the Defense Advanced Research
Projects Agency (DARPA) of US government launched the “Grand Challenge” to
spur the development of technologies needed to create the first fully autonomous
ground vehicles capable of completing a substantial off-road course within a lim-
ited time. The Challenge required robotic vehicles to navigate a 142-mile long
course through the Mojave desert in no more than 10 h. The first competition

7

1. INTRODUCTION

was held on March 13, 2004. Unfortunately, None of the 15 participating vehi-
cles have ever completed more than 5% of the entire course. Therefore, a second
DARPA Grand Challenge event was scheduled on October 8, 2005. Five of 23
vehicles successfully conquered the course, and Stanford’s “Stanley” (see Figure
1.3) was crowned the winner with a result of 6 h 53 min (Thrun et al., 2006).
This robotic car was a milestone in the quest for the modern self-driving cars.

Figure 1.3: Stanley: The 2005 DARPA Grand Challenge Winner. (Thrun et al.,
2006)

Two years later, the “DARPA Urban Challenge” took place on November 3,
2007, and called for autonomous vehicles to drive 97 km through a mock urban
environment in less than 6 hours, interacting with other moving vehicles and
obstacles and obeying all traffic regulations. The vehicle “Boss” was declared the
winner (Urmson et al., 2008) and “Junior” won the second place (Montemerlo
et al., 2008). These vesicles were also regarded as the initial prototype of the
Google self-driving car.

In a traditional programming scenario, a human programmer would use hu-
man understanding of the desired task and have to reason in advance to code
a robot controller that is capable of responding to any situation the robot may
face, no matter how unlikely. While such specialized programming is highly effi-
cient, it is also expensive and limited to the situations the human operator had
considered. If errors or new circumstances arise after the robot is deployed, the
entire costly process may need to be repeated. While the mentioned DARPA

8

1.2 Contributions of the Dissertation

challenges were competed in unrehearsed courses, it is hard to imagine that all
possible tasks can be preprogrammed. Therefore, robots need to be able to learn,
either by themselves or with the help of supervision.

Motivated by the DARPA challenges and Google self-driving car, this disser-
tation concentrates on ensuring that robots can learn new skills and improve their
existing abilities autonomously, and providing robots with the ability of making
rational, intelligent decisions. By this means, robots can learn how to optimally
adapt to uncertainty and unforeseen changes in order to tackle stochastic and
dynamic environments.

1.2 Contributions of the Dissertation

This dissertation considers the intelligent control in autonomous navigation via
robot learning from sensory inputs. The aim is for robot capabilities to be more
easily extended and adapted to novel situations, even by users without program-
ming ability.

We developed our research by investigating three major learning algorithms:
reinforcement learning, learning from demonstration, and inverse reinforcement
learning. The main contributions of this dissertation are summarized as follows:

1. Traditional reinforcement learning has a limitation of generalization of un-
visited states, which also caught many researchers’ attentions. Neural net-
work, as a powerful supervised learning algorithm, can alleviate this prob-
lem due to its good generalization performance. Therefore, neural network
was incorporated into reinforcement learning, and this method largely im-
proved learning ability.

2. When we recall that how humans learn new things or skills during child-
hood, the word “imitation” comes to our mind. Robots should also acquire
the basic instinct of imitating. Learning from demonstration, or imitation
learning, is a good tool to enable robots to learn behaviors from expert
demonstrations. We deduced a policy learning method that efficiently pro-
vided robots with a learning ability that can adapt to changing environ-
ments.

9

1. INTRODUCTION

3. When experts could demonstrate optimal examples, learning from demon-
strations showed sufficiently good performance. Most of the time, how-
ever, non-optimal examples are also provided. In such cases, learning from
demonstrations may lead to poor performance. A better way is to learn the
rewards in demonstrated states and then generalize to all undemonstrated
states. Based on inverse reinforcement learning, or apprenticeship learning,
we developed a method by introducing neural network, and we achieved a
fast and robust learning algorithm.

All these three proposed methods were applied to mobile robot navigation
experiments. From the results, we can safely conclude that our methods succeeded
in endowing robots with learning abilities both by themselves via trial and error
and by human demonstrations.

1.3 Organization of the Dissertation

This dissertation is organized as follows.

• In Chapter 2, we begin by formalizing the Markov Decision Processes
(MDPs) and partially observable Markov decision processes (POMDPs)
frameworks. We also review some standard algorithms for solving MDPs,
known as dynamic programming. Then we presents some reinforcement
learning algorithms that can be used in robotics.

• Chapter 3 begins by outlining the framework of learning from demonstration
(LfD), from which we investigate its application on robotics. We present
a method for learning stochastic policies from expert demonstrations and
finding good controllers. Our method also applies well to autonomous nav-
igation tasks, and uses a small amount of examples to learn from large
and complicated sensor data. In real-world applications, examples cannot
often be given by human experts, therefore, we give a modified version of
A* pathfinding algorithm to simulate expert examples, which can generate
paths much faster and is more adaptable to our problem.

10

1.3 Organization of the Dissertation

• In Chapter 4, we investigate the self-learning ability of autonomous robots
without expert demonstrations. We present a method under the reinforce-
ment learning framework and use the artificial neural network to generalize
and optimize the self-learning process. We successfully test our method in
autonomous navigation tasks both in static and dynamic environments.

• In Chapter 5, we consider the potential damage to robots caused by failure
during self-learning process, and we describe inverse reinforcement learning
that robots learn rewards via interactions with the environment. We present
our method neural inverse reinforcement learning, which incorporates neural
network into inverse reinforcement learning and the robot learns a reward
function as well as a policy.

• To conclude, Chapter 6 summaries the key points of our research and out-
lines avenues for further research.

11

1. INTRODUCTION

12

Chapter 2

Markov Decision Processes and
Reinforcement Learning in Robotics

Contents
2.1 Introduction . 14

2.2 Markov Decision Processes 15

2.2.1 Policies and Value Functions 16

2.2.2 Partially Observable Markov Decision Processes 20

2.3 Dynamic Programming: Model-Based Algorithms . . 22

2.3.1 Policy Iteration . 24

2.3.2 Value Iteration . 25

2.4 Reinforcement Learning: Model-Free Algorithms . . 26

2.4.1 Goals of Reinforcement Learning 27

2.4.2 Monte Carlo Methods 28

2.4.3 Temporal Difference Methods 29

2.5 Mobile Robot Model 30

2.5.1 Uncertainty in Mobile Robots 32

2.6 Conclusion . 33

13

2. MARKOV DECISION PROCESSES AND REINFORCEMENT
LEARNING IN ROBOTICS

2.1 Introduction

In recent years, we have seen a fast development of using machine learning tech-
niques onto robot control problems. Machine learning helps an agent to learn
from example data or past experience to solve a given problem. In supervised
learning, the learner is provided an explicit target for every single input, that
is, the environment tells the learner what its response should be. In contrast,
in reinforcement learning, only partial feedback is given to the learner about
the learner’s decisions. Therefore, under the framework of RL, the learner is a
decision-making agent that takes actions in an environment and receives reward
(or penalty) for its actions in trying to solve a problem. After a set of trial-and-
error runs, it should learn the best policy, which is the sequence of actions that
maximizes the total reward (Sutton & Barto, 1998).

��������	�
��	�

	���� �

�
�
	 �

��
�����

Figure 2.1: The mechanism of interaction between a learning agent and its envi-
ronment in reinforcement learning.

Reinforcement learning is typically operated in a setting of interaction, shown
in Figure 2.1: the learning agent interacts with an initially unknown environment,
and receives a representation of the state and an immediate reward as the feed-
back. It then calculates an action, and subsequently undertakes it. This action
causes the environment to transit into a new state. The agent receives the new
representation and the corresponding reward, and the whole process repeats.

The environment in RL is typically formulated as a Markov Decision Process
(MDP), and the goal is to learn to a control strategy so as to maximize the total
reward which represents a long-term objective. In this chapter, we introduces the

14

2.2 Markov Decision Processes

structural background of Markov Decision Process and reinforcement learning in
robotics.

2.2 Markov Decision Processes

A Markov Decision Process describes a sequential decision-making problem in
which an agent must choose the sequence of actions that maximizes some reward-
based optimization criterion (Puterman, 1994; Sutton & Barto, 1998). Formally,
an MDP is a tuple M = {S,A, T , r, γ}, where

• S = {s1, . . . , sN} is a finite set of N states that represents the dynamic
environment,

• A = {a1, . . . , ak} is a set of k actions that could be executed by an agent,

• T : S × A × S �−→ [0, 1] is a transition probability function, or transition
model, where T (s, a, s′) stands for the state transition probability upon
applying action a ∈ A in state s ∈ S leading to state in state s′ ∈ S, i.e.
T (s, a, s′) = P (s′ | s, a),

• r : S × A �−→ R is a reward function with absolute value bounded by
Rmax; r(s, a) denotes the immediate reward incurred when action a ∈ A is
executed in state s ∈ S,

• γ ∈ [0, 1) is a discount factor.

Given an MDP M, the agent-environment interaction in Figure 2.1 happens
as follows: let t ∈ N denote the current time, let St ∈ S and At ∈ A denote the
random state of the environment and the action chosen by the agent at time t,
respectively. Once the action is selected, it is sent to the system, which makes a
transition:

(St+1, Rt+1) ∼ P (· |St, At). (2.1)

In particular, St+1 is random and P (St+1 = s′ |St = s, At = a) = T (s, a, s′)

holds true for any s, s′ ∈ S, a ∈ A. Furthermore, E [Rt+1 |St, At] = r(St, At). The
agent then observes the next state St+1 and reward Rt+1, chooses a new action
At+1 ∈ A and the process is repeated.

15

2. MARKOV DECISION PROCESSES AND REINFORCEMENT
LEARNING IN ROBOTICS

The Markovian assumption (Sutton & Barto, 1998) implies that the sequence
of state-action pairs specifies the transition model T :

P (St+1 |St, At, · · · , S0, A0) = P (St+1 |St, At). (2.2)

State transitions can be deterministic or stochastic. In the deterministic case,
taking a given action in a given state always results in the same next state; while
in the stochastic case, the next state is a random variable.

The goal of the learning agent is to figure out a theory of choosing the actions
so as to maximize the expected total discounted reward:

R =
∞∑
t=0

γtRt+1. (2.3)

If γ < 1 then the rewards received far in the future are exponentially less
worthy than those received at the first stage.

2.2.1 Policies and Value Functions

The agent selects its actions according to a special function called policy. A
policy is defined as a mapping π : S × A �−→ [0, 1] that assigns to each s ∈ S a
distribution π(s, ·) over A, satisfying

∑
a∈A π(a | s) = 1, ∀s ∈ S.

A deterministic stationary policy is the case that for all s ∈ S, π(· | s) is
concentrated on a single action, i.e. at any time t ∈ N, At = π(St). A stochastic
stationary policy is a function that maps each state into a probability distribution
over the different possible actions, i.e., At ∼ π(· |St). The class of all stochastic
stationary policies is denoted by Π.

Application of a policy is done in the following way. First, a start state
S0 is generated. Then, the policy π suggests the action A0 = π(S0) and this
action is performed. Based on the transition function T and reward function r,
a transition is made to state S1, with a probability T (S0, A0, S1) and a reward
R1 = r(S0, A0, S1) is received. This process continues, producing a sequence
S0, A0, R1, S1, A1, R2, S2, A2, ..., as shown in Figure 2.2.

Value functions are functions of states (or of state-action pairs) that estimate
how good it is for the agent to be in a given state (or how good it is to perform a
given action in a given state). The notion of "how good" here is defined in terms

16

2.2 Markov Decision Processes

�� �� �� ��

�� �� ��

�� �� ��

Figure 2.2: Decision network of a finite MDP.

of future rewards that can be expected, or, to be precise, in terms of expected

return. Of course the rewards the agent can expect to receive in the future depend

on what actions it will take. Accordingly, value functions are defined with respect

to particular policies (Sutton & Barto, 1998).

Given a a policy π, the value function is defined as a function V π : S �−→ R

that associates to each state the expected sum of rewards that the agent will

receive if it starts executing policy π from that state:

V π(s) = Eπ

[∞∑
t=0

γtr(St, At) |S0 = s

]
, ∀s ∈ S. (2.4)

St is the random variable representing the state at time t, At is the random

variable corresponding to the action taken at that time instant and is such that

P (At = a |St = s) = π(s, a). (St, At)t≥0 is the sequence of random state-action

pairs generated by executing the policy π.

17

2. MARKOV DECISION PROCESSES AND REINFORCEMENT
LEARNING IN ROBOTICS

The value function of a stationary policy can also be recursively defined as:

V π(s) = Eπ

[∞∑
t=0

γtr(St, At) |S0 = s

]

= Eπ

[
r(S0, A0) +

∞∑
t=1

γtr(St, At) |S0 = s

]

= r(s, π(s)) + Eπ

[∞∑
t=1

γtr(St, At) |S0 = s

]

= r(s, π(s)) + γEπ

[∞∑
t=0

γtr(St, At) |S0 ∼ T (s, π(s), ·)
]

= r(s, π(s)) + γ
∑
s′∈S

T (s, π(s), s′)V π(s′),

(2.5)

where π(s) is the action associated to state s.

If the uncertainty of a stochastic policy π(s) is taken into account, V π(s) can

also be specifically written as:

V π(s) =
∑

a∈A(s)

π(s, a)

(
r(s, a) + γ

∑
s′∈S

T (s, a, s′)V π(s′)

)
. (2.6)

Similarly, the action-value function Qπ : S × A �−→ R underlying a policy π

is defined as

Qπ(s, a) = Eπ

[∞∑
t=0

γtr(St, At) |S0 = s, A0 = a

]
, (2.7)

where St is distributed according to π(St, ·) for all t > 0. Finally, we defined the

advantage function associated with π as

Aπ = Qπ(s, a)− V π(s). (2.8)

A policy that maximizes the expected total discounted reward over all states

is called an optimal policy, denoted π∗. For any finite MDP, there is at least one

optimal policy.

The optimal value function V ∗ and the optimal action-value function Q∗ are

18

2.2 Markov Decision Processes

defined by

V ∗(s) = sup
π

V π(s), s ∈ S,

Q∗(s, a) = sup
π

Qπ(s, a), s ∈ S, a ∈ A.
(2.9)

Moreover, the optimal value- and action-value functions are connected by the
following equations:

V ∗(s) = sup
a∈A

Q∗(s, a), s ∈ S, (2.10)

Q∗(s, a) = r(s, a) + γ
∑
s′∈S

P (s′ | s, a)V ∗(s′), s ∈ S, a ∈ A. (2.11)

It turns out that V ∗ and Q∗ satisfy the so-called Bellman optimality equations
(Puterman, 1994). In particular,

Q∗(s, a) = r(s, a) + γ
∑
s′∈S

P (s′ | s, a)max
b∈A

Q∗(s′, b), (2.12)

V ∗(s) = max
a∈A

r(s, a) + V ∗(s′). (2.13)

We call a policy that satisfies
∑

a∈A π(a | s)Q(s, a) = maxa∈A Q(s, a) at all
states s ∈ S greedy w.r.t. the function Q. It is known that all policies that are
greedy w.r.t. Q∗ are optimal and all stationary optimal policies can be obtained
these way.

Here, we present the following important results concerning MDP (Sutton &
Barto, 1998):

Theorem 2.1 (Bellman Equations). Let a Markov Decision Problem M =

{S,A, T , r, γ} and a policy π : S × A −→ [0, 1] be given. Then, ∀s ∈ S, a ∈ A,
V π and Qπ satisfy

V π(s) = r(s, π(s)) + γ
∑
s′∈S

T (s, π(s), s′)V π(s′), (2.14)

Qπ(s, a) = r(s, a) + γ
∑
s′∈S

T (s, a, s′)V π(s′). (2.15)

Theorem 2.2 (Bellman Optimality). Let a Markov Decision Problem M =

{S,A, T , r, γ} and a policy π : S × A −→ [0, 1] be given. Then, π is an optimal

19

2. MARKOV DECISION PROCESSES AND REINFORCEMENT
LEARNING IN ROBOTICS

policy for M if and only if, ∀s ∈ S,

π(s) ∈ argmax
a∈A

Qπ(s, a). (2.16)

The transition probability T (s, a, s′) = P (s′ | s, a).

2.2.2 Partially Observable Markov Decision Processes

In the setting of an MDP, the agent should obtain a precise state information
of the environment at any moment. Unfortunately, this assumption may not
hold in practice in respect that the agent observes the world through limited
and imperfect receptors, and the information contained in the perceptions is
not sufficient for determining the state. Partially Observable Markov Decision
Processes (POMDPs) (Smallwood & Sondik, 1973) was introduced to handle
such cases.

Formally, a POMDP is a tuple 〈S,A, T ,O, Z, R〉 where 〈S,A, T , R〉 is an
MDP, and:

• O is a set of observations (perceptions),

• Z is an observation function: Z(o, s, a) is the probability of observing o ∈ O
if the state of the system is s and the action that led to this state is a.

The observations can be aliased (the same observation may be observed in
different states) and stochastic (different observations may be observed in the
same state). Consequently, the state of the system cannot be determined from
the observations. Instead, an observation can be seen as an evidence about the
state. The agent’s belief about the hidden state is a probability distribution on
all the possible states, called the belief state:

bt =
[
Pr(st = x0), P r(st = x1), . . . , P r(st = s|S|−1)

]�
(2.17)

The agent starts with an initial belief state b0, and every time an action at

is executed and an observation ot+1 is received, the belief state bt is updated by
using Bayes’ Rule:

20

2.2 Markov Decision Processes

bt+1(x) = Pr(st+1 = s | bt, at, ot+1)

=
Pr(st+1 = s, ot+1 | bt, at)

Pr(ot+1 | bt, at)

=

∑
s′∈S bt(s

′)T (s, at, s
′)Z(ot+1, s, at)∑

s′∈S
∑

s′′∈S bt(s
′)T (s′, at, s′′)Z(ot+1, s′′, at)

(2.18)

Therefore, the belief state bt+1 is a nonlinear function of the previous belief
state bt, action at and observation ot+1:

bt+1 = τ(bt, at, ot+1) (2.19)

The belief state bt at time instant t allows us to calculate the probability of
any observation o at time instant t+ 1 as:

Pr(ot+1 = o | bt, at) =
∑
s∈S

∑
s′∈S

bt(s)T (s, at, s
′)Z(o, s′, at) (2.20)

The expected reward of executing action a for a belief state bt is given by:

r(a | bt) =
∑
s∈S

bt(s)R(s, a) (2.21)

�� �� �� ��

	� 	� 	� 	�

����������

����������

�� �� �� ���������

�� �� �����	���������

������ �� �� ��

Figure 2.3: Schema of a Partially Observable Markov Decision Process.

21

2. MARKOV DECISION PROCESSES AND REINFORCEMENT
LEARNING IN ROBOTICS

A Markovian belief state allows a POMDP to be formulated as a Markov de-
cision process where every belief is a state. The resulting Belief Markov Decision
Process will thus be defined on a continuous state space, since there are infinite
beliefs for any given POMDP (Kaelbling et al., 1998). The belief MDP is defined
as a tuple 〈B,A, τ, r, γ〉 where:

• B is the set of belief states over the POMDP states,

• A is the same set of actions as for the original POMDP,

• τ is the belief state transition function,

• r : B ×A −→ R is the reward function on belief states,

• γ is the discount factor equal to the γ in the original POMDP.

In belief MDP, τ and r need to be derived from the original POMDP. For all
b, b′ ∈ B, a ∈ A:

τ(b, a, b′) =
∑
o∈O

Pr(b′ | b, a, o)Pr(o | a, b), (2.22)

r(b, a) =
∑
x∈S

b(s)R(s, a). (2.23)

Figure 2.3 illustrates the temporal series of belief states. The Markov property
implies that the belief state and the full history of the system (sequence of actions
and observations) contain exactly the same information about the current state,
and consequently, about all the future events.

2.3 Dynamic Programming: Model-Based Algo-
rithms

Dynamic programming (DP) is a method for computing an optimal policy π∗ in
order to solve a given Markov decision process.

Dynamic programming assumes full knowledge of the Markov decision pro-
cess, including the transition dynamics of the environment and the reward func-
tion (Bertsekas, 1996). Therefore, they are classified into model-based learning

22

2.3 Dynamic Programming: Model-Based Algorithms

����

�� �

(a) Interaction of policy
evaluation and improve-
ment processes

�

��
��

����

(b) The convergence of both the value function and the pol-
icy to their optimals

Figure 2.4: Generalized Policy Iteration (Sutton & Barto, 1998)

algorithms. On the contrary are model-free learning algorithms, which do not

require a perfect model of the environment, and will be introduced them later in

this chapter.

Dynamic programming algorithms for solving MDPs can be categorized into

one of the two families: value iteration (VI) and policy iteration (PI) (Sutton &

Barto, 1998). Both of these approaches share a common underlying mechanism,

the generalized policy iteration (GPI) principle (Sutton & Barto, 1998), depicted

in Figure 2.4. This principle consists of two interaction processes. The first step,

policy evaluation, estimates the utility of the current policy π, that is, it computes

the value V π. This step gathers information about the policy for computing

the second step, the policy improvement step. In this step, the values of the

actions are evaluated for every state, in order ot find possible improvements,

that is, possibly other actions in particular states that are better than the action

the current policy proposes. This step computes an improved policy π′ from

the current policy π using the information in V π. As long as both processes

continue to update all states, the ultimate goal is to converge to the optimal value

function and an optimal policy. Figure 2.4(b) presents a geometric metaphor for

convergence of both the value function and the policy in GPI.

23

2. MARKOV DECISION PROCESSES AND REINFORCEMENT
LEARNING IN ROBOTICS

2.3.1 Policy Iteration

Policy iteration iterates between the two processes of GPI. This is repeated until
converging to an optimal policy. This method is depicted in Algorithm 1.

Algorithm 1 Policy Iteration (Sutton & Barto, 1998)
Input: An MDP model 〈S,A, T , r, γ〉;
/* Initialization */

1: t = 0, k = 0;
2: ∀s ∈ S: Initialize πt(s) with an arbitrary action;
3: ∀s ∈ S: Initialize Vk(s) with an arbitrary value;
4: repeat

/* Policy evaluation */
5: repeat
6: ∀s ∈ S : Vk+1(s) = r(s, πt(s)) + γ

∑
s′∈S T (s, πt(s), s

′)Vk(s
′);

7: k ← k + 1;
8: until ∀s ∈ S : |Vk(s)− Vk−1(s)| < ε;

/* Policy improvement */
9: ∀s ∈ S : πt+1(s) = argmaxa∈A

[
r(s, a) + γ

∑
s′∈S T (s, a, s′)Vk(s

′)
]
;

10: t ← t+ 1;
11: until πt = πt−1;
12: π∗ = πt;

Output: An optimal policy π∗.

It consists in starting with a randomly chosen policy πt and a random ini-
tialization of the corresponding value function Vk, for k = 0 and t = 0 (Steps 1
to 3), and iteratively repeating the policy evaluation and the policy improvement
operations.

Policy evaluation (Steps 5 to 8) consists in calculating the action value of
policy πt+1 by solving the solving the equation (2.15) for all the states s ∈ S.
An efficient iterative way to solve this equation is to initialize the value function
of πt+1 with the value function Vk of the previous policy, and then repeat the
operation:

∀s ∈ S : Vk+1(s) = r(s, πt(s)) + γ
∑
s′∈S

T (s, πt(s), s
′)Vk(s

′), (2.24)

until ∀s ∈ S : |Vk(s)− Vk−1(s)| < ε, for a predefined error threshold ε.

Policy improvement (Steps 9 to 10) consists in finding the greedy policy πt+1

24

2.3 Dynamic Programming: Model-Based Algorithms

given the value function Vk:

∀s ∈ S : πt+1(s) = argmax
a∈A

[
r(s, a) + γ

∑
s′∈S

T (s, a, s′)Vk(s
′)

]
. (2.25)

This process stops when πt = πt−1, in which case πt is an optimal policy, i.e.,
π∗ = πt.

In sum, PI generates a direct sequence of alternating policies and value func-
tions:

π0 → V π0 → π1 → V π1 → · · · → π∗ → V ∗ → π∗

The policy evaluation processes occur in the transitions of πt → V πt ; while
the V πt → πt+1 conversions are realized by the policy improvement processes.

2.3.2 Value Iteration

The main drawback of policy iteration is that a complete policy evaluation is
involved in each iteration. Value iteration consists in overlapping the evaluation
and improvement processes.

Instead of completely separating the evaluation and improvement processes,
the value iteration approach breaks off evaluation after just one iteration. In fact,
it immediately blends the policy improvement step into its iterations, thereby
purely focusing on estimating directly the value function.

Value iteration, described in Algorithm 2, can be written as a simple backup
operation:

∀s ∈ S : Vk+1(s) = max
a∈A

[
r(s, a) + γ

∑
s′∈S

T (s, a, s′)Vk(s
′)

]
. (2.26)

This operation is repeated (Steps 3 to 6) until ∀s ∈ S : |Vk(s)− Vk−1(s)| < ε,
in which case the optimal policy is simply the greedy policy with respect to the
value function Vk (Step 7).

VI produces the following sequence of value functions:

V0 → V1 → V2 → V3 → V4 → V5 → · · · → π∗

25

2. MARKOV DECISION PROCESSES AND REINFORCEMENT
LEARNING IN ROBOTICS

Algorithm 2 Value Iteration (Sutton & Barto, 1998)
Input: An MDP model 〈S,A, T , r, γ〉;

1: k = 0;
2: ∀s ∈ S: Initialize Vk(s) with an arbitrary value;
3: repeat
4: ∀s ∈ S : Vk+1(s) = maxa∈A

[
r(s, a) + γ

∑
s′∈S T (s, a, s′)Vk(s

′)
]
;

5: k ← k + 1;
6: until ∀s ∈ S : |Vk(s)− Vk−1(s)| < ε;
7: ∀s ∈ S : π∗(s) = argmaxa∈A

[
r(s, a) + γ

∑
s′∈S T (s, a, s′)Vk(s

′)
]
;

Output: An optimal policy π∗.

2.4 Reinforcement Learning: Model-Free Algorithms

Reinforcement learning (RL) is a machine learning framework for solving sequen-
tial decision problems that can be modeled as MDPs (Kaelbling et al., 1996).
Unlike dynamic programming that assumes the availability of a perfect model
of the environment, RL is primarily concerned with how to obtain an optimal
policy when such a model is not available. Therefore, reinforcement learning is
model-free. In addition, RL adds to MDPs a focus on approximation and incom-
plete information, and the need for sampling and exploration to gather statistical
knowledge about this unknown model.

In a RL problem, the agent and its environment may be modeled being in
a state s ∈ S and can perform actions a ∈ A, each of which may be members
of either discrete or continuous sets and can be multi-dimensional. A state s

contains all relevant information about the current situation to predict future
states. An action a is used to control the state of the system. For every step,
the agent also gets a reward R, which is a scalar value and assumed to be a
function of the state and observation. It may equally be modeled as a random
variable that depends on only these variables. In the navigation task, a possible
reward could be designed based on the energy costs for taken actions and rewards
for reaching targets. Reinforcement learning is designed to find a policy π from
states to actions, that picks action a in given state s maximizing the cumulative
expected reward. The policy π is either deterministic or stochastic. The former
always uses the exact same action for a given state in the form a = π(s), the
later draws a sample from a distribution over actions when it encounters a state,
i.e., a ∼ π(s, a) = P (a|s). The reinforcement learning agent needs to discover

26

2.4 Reinforcement Learning: Model-Free Algorithms

the relations between states, actions, and rewards. Hence exploration is required
which can either be directly embedded in the policy or performed separately
and only as part of the learning process. Different types of reward functions are
commonly used, including rewards depending only on the current state R = R(s),
rewards depending on the current state and action R = R(s, a), and rewards
including the transitions R = R(s′, a, s).

A detailed survey of reinforcement learning in robotics can be found in (Kober
et al., 2013).

2.4.1 Goals of Reinforcement Learning

The goal of reinforcement learning is to discover an optimal policy π∗ that maps
states or observations to actions so as to maximize the expected return J , which
corresponds to the cumulative expected reward. A finite-horizon model only
attempts to maximize the expected reward for the horizon H, i.e., the next H

(time-)steps h:

J = E

{
H∑

h=0

Rh

}
. (2.27)

This setting can also be applied to model problems where it is known how
many steps are remaining.

Alternatively, future rewards can be discounted by a discount factor γ (with
0 ≤ γ < 1):

J = E

{ ∞∑
h=0

γhRh

}
. (2.28)

Two natural goals arise for the learner. In the first, we attempt to find an
optimal strategy at the end of a phase of training or interaction. In the second,
the goal is to maximize the reward over the whole time the robot is interacting
with the world.

In contrast to supervised learning, the learner must first discover its environ-
ment and is not told the optimal action it needs to take. To gain information
about the rewards and the behavior of the system, the agent needs to explore
by considering previously unused actions or actions it is uncertain about. It
needs to decide whether to play it safe and stick to well known actions with

27

2. MARKOV DECISION PROCESSES AND REINFORCEMENT
LEARNING IN ROBOTICS

(moderately) high rewards or to dare trying new things in order to discover new
strategies with an even higher reward. This problem is commonly known as the
exploration-exploitation trade-off.

RL relies on the interaction between a learning agent and its environment (see
Figure 2.1), the process is similar:

1. A learning agent interacts with its environment in discrete time steps;

2. At each time step t, the agent observes the environment, and receives a
representation of state st and a reward rt;

3. The agent infers an action at, and subsequently undertaken in the environ-
ment.

4. The agent observes the new environment, and receives a new state repre-
sentation st+1 and an associated reward rt+1.

Based on how the agent chooses an action, RL can be distinguished between
off-policy and on-policy methods. Off-policy algorithms learn independent of the
employed policy, i.e., an explorative strategy that is different from the desired final
policy can be employed during the learning process. On-policy algorithms collect
sample information about the environment using the current policy. As a result,
exploration must be built into the policy and determines the speed of the policy
improvements. Such exploration and the performance of the policy can result in
an exploration-exploitation trade-off between long- and short-term improvement
of the policy. A simple exploration scheme known as ε-greedy, performs a random
action with probability ε and otherwise greedily follows the state-action values.

2.4.2 Monte Carlo Methods

Monte Carlo methods use sampling in order to estimate the value function and
discover the optimal policy (Sutton & Barto, 1998). This procedure can be used
to replace the policy evaluation step of the dynamic programming-base methods
above. Unlike DP, Monte Carlo methods do not assume complete knowledge of
the environment. Monte Carlo methods are model-free, i.e., they do not need
an explicit transition function. They require only experience – sample sequences

28

2.4 Reinforcement Learning: Model-Free Algorithms

of states, actions, and rewards from online or simulated interaction with an en-
vironment. Learning from online experience requires no prior knowledge of the
environment’s dynamics, yet can still attain optimal behavior. Learning from
simulated experience requires a model, but the model need only generate sample
transitions, not the complete probability distributions of all possible transitions
that is required by dynamic programming methods.

Monte Carlo methods solve reinforcement learning problems based on averag-
ing sample returns. They perform rollouts by executing the current policy on the
system, hence operating on-policy. The frequencies of transitions and rewards
are kept track of and used to form estimates of the value function. For exam-
ple, in an episodic setting the state-action value of a given state action pair can
be estimated by averaging all the returns that were received when starting from
them.

2.4.3 Temporal Difference Methods

Temporal Difference (TD) Methods is a combination of Monte Carlo methods
and dynamic programming methods (Sutton & Barto, 1998). Unlike Monte Carlo
methods, TD learning methods do not have to wait until an estimate of the return
is available (i.e., at the end of an episode) to update the value function. Instead,
they use temporal errors and only have to wait until the next time step. The
temporal error is the difference between the old estimate and a new estimate of
the value function, taking into account the reward received in the current sample.
These updates are done iteratively and, in contrast to dynamic programming
methods, only take into account the sampled successor states rather than the
complete distributions over successor states. Like the Monte Carlo methods, these
methods are model-free, as they do not use a model of the transition function to
determine the value function, and can learn directly from raw experience without
a model of the environment’s dynamics. In this setting, the value function cannot
be calculated analytically but has to be estimated from sampled transitions in
the MDP.

Q-Learning (Watkins, 1989) is a representative off-policy, model-free RL al-
gorithm. It incrementally processes the transition samples. Q-value is updated
iteratively by

29

2. MARKOV DECISION PROCESSES AND REINFORCEMENT
LEARNING IN ROBOTICS

Q′(s, a) ← Q(s, a) + α

(
r(s, a) + γmax

b∈A
Q(s′, b)−Q(s, a)

)
. (2.29)

SARSA (Rummery & Niranjan, 1994) is a representative on-policy, model-free
RL algorithm. Different from Q-learning that uses maxb∈A Q(s′, b) for estimating
future rewards, SARSA uses Q(s′, a′) for a′ the action executed in s′ under the
current policy that generates the transition sample (s, a, , r, s′, a′). Mathemati-
cally, the update rule is:

Q′(s, a) ← Q(s, a) + α (r(s, a) + γQ(s′, a′)−Q(s, a)) . (2.30)

If each action is executed in each state an infinite number of times, and for
all state-action pairs (s, a), the learning rate α is decayed appropriately, the
Q-values will converge with probability 1 to the optimal Q∗ (Watkins & Dayan,
1992). Similar guarantee of convergence for SARSA can be found in (Singh et al.,
2000) with a more strict requirement on the exploration of all states and actions.

More contents about reinforcement learning will be subsequently presented in
Chapter 4.

2.5 Mobile Robot Model

Figure 2.5: Robotino®: a mobile robot system for education and research.

30

2.5 Mobile Robot Model

The mobile robot model used in this dissertation is built according to the
mobile robot system Robotino® from Festo Didactic∗, as shown in Figure 2.5. It
is based on an omnidirectional drive assembly, which enables the system to roam
freely. The Robotino® is equipped with a total of nine infrared sensors arranged
around its base at an angle of 40◦ to each other, and each distance sensor reads
out a voltage level whose value depends on the distance to a reflective object.

Therefore, our mobile robot model is assumed to have three wheels, one in
front and two in back. The robot is equipped with nine distance sensors to deter-
mine the distances of objects within its surroundings. The sensors are arranged
at an angle of 40◦ to each other, and each sensor can cover a scope of detection
of 40◦, as shown in Figure 2.6. (Si){1≤i≤9} are the nine sensors and (Ri){1≤i≤9}
representing the corresponding scopes of detection.

�����

��

��

��

�	

�

��

��
�

���

�������
���������������

����	����

�������
�	�������

�
�������

���������

�����	����
�������

�����������

Figure 2.6: The mobile robot model with nine sensors and their corresponding
sensing areas.

The robot navigation environment consists of its target and the obstacles, as
shown in Figure 2.7. The initial and target positions are predefined to the robot,
and the robot will try to reach the target in a collision-free path in spite of the
presence of static or moving obstacles.

dr−t is the distance between the robot and the target, and dr−o is the distance
between the robot and the obstacle.

∗http://www.festo-didactic.com/int-en/services/robotino/

31

2. MARKOV DECISION PROCESSES AND REINFORCEMENT
LEARNING IN ROBOTICS

�

�����

������

����� !�

��� �

��� �
����

����

�

Figure 2.7: The mobile robot environment with a target and an obstacle.

2.5.1 Uncertainty in Mobile Robots

For mobile robots, uncertainty is everywhere. Wheels may slip, sensors may be
affected by noise, and obstacles move unpredictably. Truly autonomous robots or
decision-making agents must act in ways that are robust to these sorts of failures
and unexpected events which we may think of in general as uncertainty.

Uncertainty can take many forms, but for brevity and clarity we place our
attention to two important types (O’kane et al., 2005):

• Prediction uncertainty occurs when the effects of actions are not fully
predictable. This can be thought of as an uncertainty in future states.

• Sensing uncertainty is the uncertainty in the current state. This occurs,
for example, in robots that have limited or imperfect sensing. We also admit
the case where robots have no sensing at all.

The uncertainty in mobile robots may result in the fact that when a mobile
robot tries to execute an action in a given state of environment, the action does
not always lead to the expected result, because the information represented by
the state may not precisely determine the outcome of the actions.

32

2.6 Conclusion

2.6 Conclusion

This chapter has presented the Markov decision processes, which are the under-
lying structure of robot learning methods presented in this dissertation. Several
classical algorithms for solving MDPs were also briefly introduced. The funda-
mental concepts of the reinforcement learning was then brought. Finally, we
describe the mobile robot model that is used throughout this dissertation.

33

2. MARKOV DECISION PROCESSES AND REINFORCEMENT
LEARNING IN ROBOTICS

34

Chapter 3

Policy Learning from Multiple
Demonstrations

Contents
3.1 Introduction . 36

3.2 Related Work . 37

3.3 Neural Network Model 38

3.3.1 Backpropagation Algorithm 41

3.4 Policy Learning from Demonstrations 45

3.4.1 Dataset Extraction from Demonstrations 46

3.4.2 Architecture of Neural Network 48

3.4.3 Policy Learning Process 49

3.4.4 Algorithm . 52

3.5 Demonstration by Modified A* Algorithm 52

3.5.1 Node Representation 53

3.5.2 Algorithm . 54

3.5.3 Result . 54

3.6 Experimental Results 56

3.6.1 Policy Learning Process 57

3.6.2 Robot navigation in unknown environments 59

3.6.3 Paths Comparison . 61

35

3. POLICY LEARNING FROM MULTIPLE DEMONSTRATIONS

3.6.4 Autonomous Navigation in Dynamic Environments . . 61

3.6.5 Discussions . 61

3.7 Conclusion . 64

3.1 Introduction

Nowadays, robots are designed to perform complicated tasks, such as grasping and
manipulating objects, navigating in outdoor environments, and driving in urban
roads. Traditionally, robots had to be tediously hand programmed for every task
they performed, which is a laborious and time-intensive engineering process (Tian
et al., 2015). Rather than manually pre-programming each desired behavior,
an appropriate robot controller is always preferable that can be derived from
observations of a human’s own performance. In this context, learning mechanisms
are needed to acquire knowledge from such an interaction process.

Learning from demonstration (LfD) is a machine learning mechanism that
enables robotic systems to autonomously perform new tasks, and LfD is inspired
by the way humans learn from being guided by experts, from infancy through
adulthood. The main principle of robot learning from demonstration is that end-
users can teach robots new tasks without programming (Billard & Grollman,
2013).

The basic idea is that the robot learns a behavior from one or several demon-
strations performed by a teacher. Within LfD, a mapping between world states
and actions is learned from examples, or demonstrations. One demonstration is
defined as a sequence of state-action pairs that are recorded during the teacher’s
demonstration of the desired robot behavior. LfD algorithms utilize this dataset
of examples to drive a policy that reproduces the demonstrated behavior. How-
ever, we also need the system to adapt to new and unseen conditions. Therefore,
besides learning, generalizing is another key point to LfD, especially to tackle the
curse of dimensionality in high dimensional spaces.

We proposed our method of policy learning from multiple demonstrations (Xia
et al., 2015) by incorporating artificial neural network (ANN) into learning from
demonstration due to its properties such as nonlinear mapping, ability to learn
from examples, good generalization performance, and capability to approximate

36

3.2 Related Work

an arbitrary function given sufficient number of neurons. Different from direct
imitation learning which could only reproduce what is seen in the demonstrations,
our method can hence generalize to undemonstrated states and endow robots with
the ability to learn what it means to perform a task by generalizing from observing
multiple demonstrations.

As we mentioned before, the navigating capability is quite important for mo-
bile robots. However, in some hazardous cases, providing reliable demonstrations
places a burden on the human expert, even impossible. An alternative way is to
provide robots with computer-based examples and let robots observe and learn.
Based on this assumption, we also proposed an modified version of A* pathfinding
algorithm to play the part of expert demonstrations.

3.2 Related Work

Learning from demonstration (Argall et al., 2009) can be a powerful and natural
tool for developing robot control policies. Many techniques rely upon an unknown
mapping from teacher observations and actions to robot observations and actions
(Alissandrakis et al., 2002; Robins et al., 2004; Ude et al., 2004). A wide variety of
demonstration training methods have been explored in previous work, including
teleoperation (Saunders et al., 2006; van Lent & Laird, 2001), direct manipulation
of the learning agent (Atkeson & Schaal, 1997), object grasping (Sweeney &
Grupen, 2007), the grocery checkout task (Jain et al., 2013), etc. In Abbeel et al.
(2010), acrobatic trajectories of an helicopter are learned by recording the tilt
and pan motion of the helicopter when teleoperated by an expert pilot.

Nicolescu & Matarić (2001, 2003) present a learning framework based on
demonstration, generalization and teacher feedback, in which training is per-
formed by having the robot follow a human and observe its actions. A high-level
task representation is then constructed by analyzing the experience with respect
to the robot’s underlying capabilities. The authors also describe a generalization
of the framework that allows the robot to interactively request help from a hu-
man in order to resolve problems and unexpected situations. This interaction is
implicit as the agent has no direct method of communication; instead, it attempts
to convey its intentions by communicating though its actions.

37

3. POLICY LEARNING FROM MULTIPLE DEMONSTRATIONS

Lockerd & Breazeal (2004) and Breazeal et al. (2004) demonstrate a robotic
system where high-level tasks are taught through social interaction. In this frame-
work, the teacher interacts with the agent through speech and visual inputs, and
the learning agent expresses its internal state through emotive cues such as facial
and body expressions to help guide the teaching process. The outcome of the
learning is a goal-oriented hierarchical task model. In later work (Thomaz &
Breazeal, 2008), the authors examine ways in which people give feedback when
engaged in an interactive teaching task. Although the study’s focus is to examine
the use of a human-controlled reward signal in reinforcement learning, the authors
also find that users express a desire to guide or control the agent while teach-
ing. This result supports our belief that, for many robotic domains, teleoperation
provides an easy and intuitive human-robot communication method.

Bentivegna et al. (2004a,b) and Saunders et al. (2006) present demonstration
learning approaches based on supervised learning methods. Both groups use the
k-nearest neighbor (KNN) (Mitchell, 1997) algorithm to classify instances based
on similarity to training examples, resulting in a policy mapping from sensory
observations to actions.

Chernova & Veloso (2007) represent the policy as a set of Gaussian mixture
models, where each model, with multiple Gaussian components, corresponds to
a single action.

Statistical supervised learning techniques that rely on labeled training data
are frequently used in demonstration-based learning to learn a policy given a fixed
set of labeled data (Bentivegna et al., 2004a; Saunders et al., 2006).

In our work we focus on a policy learning approach, in which the robot ex-
periences the demonstration through its sensors while under the control of an
expert. The task is executed by a computer-based teacher, and the details of
the execution, in the form of paired observations and actions, are passed on to
the robot. The robot then generalizes from these demonstrations in order to
effectively execute the task itself.

3.3 Neural Network Model

An artificial neural network (ANN) (Ng, 2011; Rojas, 1996) is organized in layers
and each layer is composed of a bunch of “neuron” nodes. A neuron is a compu-

38

3.3 Neural Network Model

tational unit that can reads inputs, processes them and generates an output, see
Figure 3.1 as an example.

��

��

��

��

��

�����

�����

�����

�����

	
�� �� 	
����� 	
�����

�������

Figure 3.1: A neural network example.

The whole network is constructed by interconnecting many neurons. In this
figure, one circle represents one neuron. The leftmost layer of the network is
called the input layer, and the rightmost layer the output layer. The middle layer
of nodes is called the hidden layer, since its values are not observed in the training
set. The input and output layers serve respectively as the inputs and outputs of
the neural network. The neurons labeled “+1” are called bias units. A bias unit
has no input and always outputs +1. Hence, this neural network has 3 input
units (excluding the bias unit), 3 hidden units (excluding the bias unit), and 1
output unit.

We use nl to denote the number of layers and label each layer l as Ll. In Figure
3.1, nl = 3, layer L1 is the input layer, and Lnl

is the output layer. The links
connecting two neurons are named weights, representing the connection strength
between the neurons. The parameters inside the neural network are (W, b) =

(W (1), b(1),W (2), b(2)), where we write W
(l)
ij to denote the weight associated with

the connection between unit j in layer l, and unit i in layer l + 1. Also, b(l)i is
the bias associated with unit i in layer l + 1. Thus, we have W (1) ∈ R

3×3 and
W (2) ∈ R

1×3.∗

∗b
(l)
i can also be interpreted as the connecting weight between the bias unit in layer l who

always outputs +1 and the neuron unit i in layer l+1. Thus, b(l)i may be replaced by W
(l)
i0 . In

39

3. POLICY LEARNING FROM MULTIPLE DEMONSTRATIONS

Each neuron in the network contains an activation function in order to control
its output. We denote the activation of unit i in layer l by a

(l)
i . For the input

layer L1, a
(1)
i = xi, the i-th input of the whole network. For the other layers,

a
(l)
i = f(z

(l)
i). Here, z(l)i denote the total weighted sum of inputs to unit i in layer

l, including the bias term (e.g., z(2)i =
∑n

j=1 W
(1)
ij xj + b

(1)
i), so that a

(l)
i = f(z

(l)
i).

Given a fixed setting of the parameters (W, b), the neural network outputs a
real number that is defined as the hypothesis hW,b(x). Specifically, the computa-
tion that this neural network represents is given by:

a
(2)
1 = f(W

(1)
11 x1 +W

(1)
12 x2 +W

(1)
13 x3 + b

(1)
1),

a
(2)
2 = f(W

(1)
21 x1 +W

(1)
22 x2 +W

(1)
23 x3 + b

(1)
2),

a
(2)
3 = f(W

(1)
31 x1 +W

(1)
32 x2 +W

(1)
33 x3 + b

(1)
3),

hW,b(x) = a
(3)
1 = f(W

(2)
11 a

(2)
1 +W

(2)
12 a

(2)
2 +W

(2)
13 a

(2)
3 + b

(2)
1).

(3.1)

For a more compact expression, we can extend the activation function f(·) to
apply to vectors in an element-wise fashion, i.e., f([z1, z2, z3]) = [f(z1), f(z2), f(z3)],
then we can write the equations above as:

a(1) = x,

z(2) = W (1)a(1) + b(1),

a(2) = f(z(2)),

z(3) = W (2)a(2) + b(2),

hW,b(x) = a(3) = f(z(3)).

(3.2)

x = [x1, x2, x3]
� is a vector of values from the input layer. This computational

process, from inputs to outputs, is called forward propagation. More generally,
given any layer l’s activation a(l), we can compute the activation a(l+1) of the next
layer l + 1 as:

z(l+1) = W (l)a(l) + b(l),

a(l+1) = f(z(l+1)).
(3.3)

this way, W (1) ∈ R
3×4 and W (2) ∈ R

1×4.

40

3.3 Neural Network Model

In this dissertation, we will choose f(·) to be the sigmoid function f : R �→
]− 1,+1[:

f(z) =
1

1 + exp(−z)
. (3.4)

Its derivative is given by

f ′(z) = f(z)(1− f(z)). (3.5)

The advantage of putting all variables and parameters into matrices is that
we can greatly speed up the calculation speed by using matrix-vector operations.

Neural networks can also have multiple hidden layers or multiple output units.
Taking Figure 3.2 as an example, this network has two hidden layers L2 and L3

and two output units in layer L4.

��

��

��

��

��

	
����� 	
����� 	
�����

�������

��

	
�����

Figure 3.2: A neural network example with two hidden layers.

The forward propagation applies to all architectures of feedforward neural
networks, i.e., to compute the output of the network, we can start with the input
layer L1, and successively compute all the activations in layer L2, then layer L3,
and so on, up to the output layer Lnl

.

3.3.1 Backpropagation Algorithm

Suppose we have a fixed training set {(x(1), y(1)), . . . , (x(m), y(m))} of m training
examples. We can train our neural network using batch gradient descent. In
detail, for a single training example (x, y), we define the cost function with respect
to that single example to be:

41

3. POLICY LEARNING FROM MULTIPLE DEMONSTRATIONS

J(W, b; x, y) =
1

2
‖hW,b(x)− y‖2. (3.6)

This is a squared-error cost function. Given a training set of m examples, we
then define the overall cost function J(W, b) to be:

J(W, b) =

[
1

m

m∑
i=1

J(W, b; x(i), y(i))

]
+

λ

2

nl−1∑
l=1

sl∑
i=1

sl+1∑
j=1

(
W

(l)
ji

)2

=

[
1

m

m∑
i=1

(
1

2
‖hW,b(x

(i))− y(i)‖2
)]

+
λ

2

nl−1∑
l=1

sl∑
i=1

sl+1∑
j=1

(
W

(l)
ji

)2
. (3.7)

sl denotes the number of nodes in layer l (not counting the bias unit). The
first term in the definition of J(W, b) is an average sum-of-squares error term.
The second term is a regularization term that tends to decrease the magnitude
of the weights, and helps prevent overfitting. Regularization is applied only to
W but not to b. λ is the regularization parameter which controls the relative
importance of the two terms. Note that J(W, b; x, y) is the squared error cost
with respect to a single example; while J(W, b) is the overall cost function that
includes the regularization term.

The goal of the backpropagation is to minimize J(W, b) as a function of W and
b. To train the neural network, we first initialize each parameter W (l)

ij and each b
(l)
i

to a small random value near zero, and then apply an optimization algorithm such
as batch gradient descent. It is important to initialize the parameters randomly,
rather than to all 0’s. If all the parameters start off at identical values, then all
the hidden layer units will end up learning the same function of the input. More
formally, W (1)

ij will be the same for all values of i, so that a
(2)
1 = a

(2)
2 = a

(2)
3 =

. . . for any input x. The random initialization serves the purpose of symmetry
breaking.

One iteration of gradient descent updates the parameters W, b as follows:

W
(l)
ij = W

(l)
ij − α

∂

∂W
(l)
ij

J(W, b),

b
(l)
i = b

(l)
i − α

∂

∂b
(l)
i

J(W, b).

(3.8)

42

3.3 Neural Network Model

The parameter α is the learning rate. It determines how fast W and b move
towards their optimal values. If α is very large, they may miss the optimal and
diverge. If α is tuned too small, the convergence may need a long time.

The key step in Equation (3.8) is computing the partial derivatives terms of
the overall cost function J(W, b). Derived from Equation (3.7), we can easily
obtain:

∂

∂W
(l)
ij

J(W, b) =

[
1

m

m∑
i=1

∂

∂W
(l)
ij

J(W, b; x(i), y(i))

]
+ λW

(l)
ij ,

∂

∂b
(l)
i

J(W, b) =
1

m

m∑
i=1

∂

∂b
(l)
i

J(W, b; x(i), y(i)).

(3.9)

One of the main tasks of the backpropagation algorithm is to compute the par-
tial derivatives terms ∂

∂W
(l)
ij

J(W, b; x(i), y(i)) and ∂

∂b
(l)
i

J(W, b; x(i), y(i)) in Equation

(3.9).
The backpropagation algorithm for one training example is shown as follows:

1. Perform a forward propagation, computing the activations for layers L2, L3,
and so on up to the output layer Lnl

.

2. For each output unit i in the output layer nl, set

δ
(nl)
i =

∂

∂z
(nl)
i

(
1

2
‖y − hW,b(x)‖2

)
= −(yi − a

(nl)
i) · f ′(z(nl)

i). (3.10)

3. For l = nl − 1, nl − 2, nl − 3, . . . , 2:

for each node i in layer l, set

δ
(l)
i =

(
sl+1∑
j=1

W
(l)
ji δ

(l+1)
j

)
f ′(z(l)i). (3.11)

4. Compute the desired partial derivatives, which are given as:

∂

∂W
(l)
ij

J(W, b; x, y) = a
(l)
j δ

(l+1)
i ,

∂

∂b
(l)
i

J(W, b; x, y) = δ
(l+1)
i .

(3.12)

43

3. POLICY LEARNING FROM MULTIPLE DEMONSTRATIONS

Given a training example (x, y), we first run a forward propagation to compute
all the activations throughout the network, including the output value of the
hypothesis hW,b(x). Then, for each node i in layer l, we compute an error term
δ
(l)
i that measures how much that node was “responsible” for any errors in our

output. For an output node, we can directly measure the difference δ
(nl)
i between

the network’s activation and the true target value, and for hidden units, we
compute δ

(l)
i based on a weighted average of the error terms of the nodes that

uses a
(l)
i as an input.

In practice, we use matrix-vectorial operations to reduce the computational
cost. We use “◦” to denote the element-wise product operator ∗. By definition, if
C = A ◦B, then

(C)ij = (A ◦B)ij = (A)ij · (B)ij.

The algorithm for one can then be written:

1. Perform a forward propagation, computing the activations for layers L2,
L3, up to the output layer Lnl

, using the equations defining the forward
propagation steps.

2. For the output layer nl, set

δ(nl) = −(y − a(nl)) ◦ f ′(z(nl)). (3.13)

3. For l = nl − 1, nl − 2, nl − 3, . . . , 2, set

δ(l) =
(
(W (l))�δ(l+1)

)
◦ f ′(z(l)). (3.14)

4. Compute the desired partial derivatives:

∇W (l)J(W, b; x, y) = δ(l+1)
(
a(l)
)�

,

∇b(l)J(W, b; x, y) = δ(l+1).
(3.15)

In steps 2 and 3 above, we need to compute f ′(z(l)i) for each value of i. As-
suming f(z) is the sigmoid activation function, we would already have a

(l)
i stored

∗Also called the Hadamard product.

44

3.4 Policy Learning from Demonstrations

away from the forward propagation throughout the whole network. Thus, using

the Equation (3.5) for f ′(z), we can compute this as f ′(z(l)i) = a
(l)
i (1− a

(l)
i).

After getting all the partial derivatives that we desire, we can finally imple-

ment the gradient descent algorithm. One iteration of batch gradient descent is

processed as follows:

1. Set ΔW (l) := 0, Δb(l) := 0 (matrix/vector of zeros) for all l.

2. For i = 1 to m,

(a) Use backpropagation to compute ∇W (l)J(W, b; x, y) and ∇b(l)J(W, b; x, y).

(b) Set ΔW (l) := ΔW (l) +∇W (l)J(W, b; x, y).

(c) Set Δb(l) := Δb(l) +∇b(l)J(W, b; x, y).

3. Update the parameters:

W (l) = W (l) − α

[(
1

m
ΔW (l)

)
+ λW (l)

]
,

b(l) = b(l) − α

[(
1

m
Δb(l)

)]
.

(3.16)

ΔW (l) is a matrix of the same dimension as W (l), and Δb(l) is a vector of the

same dimension as b(l).

To train the neural network, we can repeatedly take steps of gradient descent

to reduce our cost function J(W, b).

3.4 Policy Learning from Demonstrations

Providing multiple expert demonstrations to mobile robots, we propose a policy

learning method that largely ease the burden of manual programming. An arti-

ficial neural network is applied to generalize the undemonstrated states so as to

give out an efficient policy for robot moving (Xia et al., 2015).

45

3. POLICY LEARNING FROM MULTIPLE DEMONSTRATIONS

3.4.1 Dataset Extraction from Demonstrations

The purpose of our learning from demonstration method is to derive a policy
for the robot autonomous navigation tasks using dataset extracted by observing
expert demonstrations.

Recall that a policy in an MDP is a mapping between states of the environment
and robot actions. Thus, collected dataset should be composed of effective state-
action pairs.

In our autonomous navigation tasks, all the sample data are extracted and
collected from the expert demonstrations of optimal trajectories. We are given
M demonstration trajectories of length Ti, for i = 1, ...,M . Each trajectory is a
sequence of state-action pairs, denoted

D(i) = {(X(i)
t , Y

(i)
t)}0≤t≤Ti−1.

The robot can either observe the expert choices of state-action pairing, or try to
repeat the expert trajectories by itself. Then the robot records the state and the
corresponding action during each moving step.

The mobile robot is presented in Section 2.5. In order to bear the noise of
sensor measurements, the reading distances from the sensors are not used directly
as a state representation. Instead we introduce the degree of danger ∗, defined in
Table 3.1, to express the sensor readings, and each sensor reading corresponds to
one degree of danger. The bigger the degree is, the more dangerous situation the
robot is encountering, and a degree of 7 means a collision. Thus, the information
of sensors at time instant t are stored in a vector

Dt = [d1, d2, d3, d4, d5, d6, d7, d8, d9]
�,

where di is the i-th sensor degree of danger.

Besides sensor readings, a state should include two more parameters. One
is the target region, Vt ∈ {1, 2, ..., 9}, represented by one robot sensor region in
Figure 2.7. The other one is an indicator It ∈ {0, 1} that determines if the robot
has detected the target. It = 1 means the target shows up in the robot sensors.

∗According to different sensor types and detection ranges, the degree of danger can be
defined alternatively.

46

3.4 Policy Learning from Demonstrations

Degree of danger d Reading distance r

7 r < 3 cm
6 3 ≤ r <7 cm
5 7 ≤ r <11 cm
4 11 ≤ r <15 cm
3 15 ≤ r <20 cm
2 20 ≤ r <25 cm
1 25 ≤ r <30 cm
0 r ≥ 30 cm

Table 3.1: Definition of the degree of danger

A complete state representation at time instant t is defined as

Xt =

⎡
⎢⎣
Dt

Vt

It

⎤
⎥⎦ ∈ R

11×1. (3.17)

The first 9 components are sensory degrees of danger, the 10th is the target
region, and the 11th the indicator of the target detection.

The robot movement is discretized into five actions: moving forward (F),
turning left at 30◦ (L30), turning left at 60◦ (L60), turning right at 30◦ (R30),
and turning right at 60◦ (R60). For each state Xt, the robot action undertaken in
the demonstrations is defined as ut ∈ {1, 2, ..., 5} that specifies the action among
F (ut = 1), L30 (ut = 2), L60 (ut = 3), R30 (ut = 4) and R60 (ut = 5).

In the dataset extracted from the demonstrations, in order to represent the
robot action, we construct a label vector Yt = [y1, y2, y3, y4, y5]

� where

yk =

{
1, if k = ut

0, elsewhere
for k = 1, ..., 5.

For example, an action ‘R30’ is labeled by Y = [0, 0, 0, 1, 0]�.
After all the demonstrations, the robot have collected a complete raw dataset

of state-action pairs {D(i)}1≤i≤M . However, not all of them are considered as
effective data. Only a world state where at least one robot sensor has detected
obstacles and the related robot action are considered as an effective state-action
pair, i.e., a state Xt with its components Dt = [0, 0, 0, 0, 0, 0, 0, 0, 0], called a safe

47

3. POLICY LEARNING FROM MULTIPLE DEMONSTRATIONS

state, and together with its corresponding action are considered as a “useless” pair
and is excluded from the effective dataset. Therefore, we collect M demonstration
trajectories with an effective length∗ Ni, for i = 1, ...,M . We give the notation
O(i) = {(X(i)

t , Y
(i)
t)}0≤t≤Ni−1 to the effective dataset.

3.4.2 Architecture of Neural Network

In our method of policy learning from multiple demonstrations, a three-layer
neural network is applied as a supervised learning tool to train effective dataset
in the demonstrations. The architecture is shown in Figure 3.3.

!�

!"

!�

!�

#�

#�

#�

#�

$����%��

$����%��

$����%��

$����%��

�����
��	
�

���
�
��	
�

������
��	
�

����

Figure 3.3: The three-layer neural network architecture in policy learning from
demonstrations.

It has 11 neurons in the input layer and 5 neurons in the output layer. For a
training example (X(i)

t , Y
(i)
t), the state X(i)

t = {xj}1≤j≤11 is sent to the input layer,
and the network outputs a vector of 5 action probabilities P (an |Xt) = {pn}1≤n≤5,
where {an}1≤n≤5 corresponds with the actions {F, L30, L60, R30, R60}. Y

(i)
t

serves as the output label for the neural network training. Moreover, 8 neurons
are designed in the hidden layer.

∗Here, the expression “effective length” means the length of effective state-action pairs in
one demonstration trajectory.

48

3.4 Policy Learning from Demonstrations

From now on, we consider the bias units as parts of the input and hidden

layers, and they are set to 1. Hence, the input is now {xj}0≤j≤11 where x0 = 1 is

the bias unit, and the same goes for the hidden layer.

The weight W (1) is used to connect the input layer and the hidden layer, and

similarly, the weight W (2) links the hidden layer and the output layer.

W (1) =

⎡
⎢⎣
ω
(1)
1,0 . . . ω

(1)
1,11

...
ω
(1)
8,0 . . . ω

(1)
8,11

⎤
⎥⎦ ∈ R

8×12, W (2) =

⎡
⎢⎣
ω
(2)
1,0 . . . ω

(2)
1,8

...
ω
(2)
5,0 . . . ω

(2)
5,8

⎤
⎥⎦ ∈ R

5×9. (3.18)

ω
(1)
i,j represents the weight between j-th input neuron and i-th hidden neuron,

and specifically, the bias unit in the input layer is expressed with j = 0. Similarly,

ω
(2)
i,j represents the weight between j-th hidden neuron and i-th output neuron,

and the bias unit in the hidden layer is also expressed with j = 0. Taking the

bias units into account, W (1) has a size of 8 × 12, and respectively, W (2) has a

size of 5× 9.

For the hidden and output units, we use the sigmoid function as the activation

function, see Equation (3.4).

3.4.3 Policy Learning Process

A neural network training process can generalize over the dataset of available

training examples such that valid solutions are also acquired for similar states

that may not have been encountered during demonstrations.

3.4.3.1 Neural Network Training

The feedforward neural network (FFNN) takes the responsibility to calculate

the predicted probabilities of actions from an state input Xt = {xi}0≤i≤11. The

weights W (1) and W (2) in Equation (3.18) keep unchanged. The hidden units are

calculated as follows:

49

3. POLICY LEARNING FROM MULTIPLE DEMONSTRATIONS

z
(2)
j =

∑
j,i

ω
(1)
j,i × xi, for i = 0, . . . , 11,

hj =
1

1 + e−z
(2)
j

.
(3.19)

where x0 = 1 is the bias unit, and hj ∈ [0, 1], j = 1, . . . , 8 are the hidden units.

Then, adding the bias unit h0 = 1 into the hidden layer, the output layer is

calculated as follows:

z
(3)
k =

∑
k,j

ω
(2)
k,j × hj, j = 0, . . . , 8, (3.20)

pk =
1

1 + e−z
(3)
k

. (3.21)

where pk ∈ [0, 1], k = 1, . . . , 5 are the output units.

In future autonomous navigation tasks, FFNN is also applied in each state to

calculate which action to take by selecting the biggest value of probabilities pi.

FFNN outputs the predicted action probabilities and these need to be com-

pared with desired output label Yt = {yk}1≤k≤5.

The backpropagation neural network (BPNN) is designed to train the neural

network by updating the weights W (1) and W (2). Only a neural network with

fully trained weights can be used in robot navigation tasks. The weight changes

are based on the network’s error, the difference between its output for a given

input and a target value, what the network is expected to output. The output

label in LfD dataset is treated as the target for the output unit corresponding

to the selected action. We use the cross-entropy error to define the cost function

J(W):

J(W) = − 1

m

[
m∑
i=1

5∑
k=1

y
(i)
k · log p(i)k +

(
1− y

(i)
k

)
·

log
(
1− p

(i)
k

)]
+

λ

2m

L−1∑
l=1

sl∑
i=1

sl+1∑
j=1

(
ω
(l)
j,i

)2
(3.22)

50

3.4 Policy Learning from Demonstrations

where m is the total number of training examples (effective state-action pairs).
yk is the output label extracted from demonstrations, and pk is the action proba-
bilities via FFNN. L is the total number of layers in network, and sl is the number
of units in layer l, excluding bias units. The second term of J(W) is the regular-
ization term aimed at avoiding overfitting or underfitting, and λ is regularization
parameter.

The task of BPNN is to find min J(W). Based on the gradient descent method
presented in Section 3.3.1, the network error is optimized so as to update the
weight. We first calculate the errors of all neurons in each training example:

δ
(3)
k = pk − yk, k = 1, . . . , 5 (3.23)

δ
(2)
j =

(
(W (2))T · δ(3)

)
j
· hj(1− hj), j = 0, . . . , 8 (3.24)

δ
(2)
j is the error of j-th neuron in the hidden layer. δ

(3)
k is the error of k-th

neuron in the output layer.
Then, for all the training examples, we calculate the errors of weights Δ

(1)
i,j

and Δ
(2)
i,j using the increments:

Δ
(2)
k,j := Δ

(2)
k,j + hjδ

(3)
k (3.25)

Δ
(1)
j,i := Δ

(1)
j,i + xiδ

(2)
j (3.26)

Finally, we can obtain:

∂J

∂ω
(l)
i,j

=

⎧⎪⎨
⎪⎩

1

m
Δ

(l)
i,j + λω

(l)
i,j , if j �= 0

1

m
Δ

(l)
i,j , if j = 0

(3.27)

We repeat the following step until the weights are updated to their optimal
values:

W (l) ← W (l) − α
∂J

∂W (l)
. (3.28)

We now put together the effective data that are extracted from all demonstra-
tions and we establish a mapping π : S → A between state input S and action
output A.

51

3. POLICY LEARNING FROM MULTIPLE DEMONSTRATIONS

S =

⎡
⎢⎣
X(1)

...
X(M)

⎤
⎥⎦ , A =

⎡
⎢⎣
Y (1)

...
Y (M)

⎤
⎥⎦ . (3.29)

M is the total number of demonstrations. Both X(n) and Y (n) are matrices
with the following expressions:

X(n) =

⎡
⎢⎣
x
(n)
1,1 . . . x

(n)
1,11

...
x
(n)
j,1 . . . x

(n)
j,11

⎤
⎥⎦ , Y (n) =

⎡
⎢⎣
y
(n)
1,1 . . . y

(n)
1,5

...
y
(n)
j,1 . . . y

(n)
j,5

⎤
⎥⎦ . (3.30)

s
(n)
j,i represents the i-th state component of j-th state-action pair extracted in

n-th demonstration. y
(n)
j,k ∈ {0, 1} expresses the k-th action label of j-th state-

action pair extracted in n-th demonstration. Note that j may vary in different
demonstrations, since the number of effective pairs varies in different demonstra-
tions.

The input S and action label A are sent to neural network. An advanced
optimization method fminunc is used to optimize the network error and to update
the weights. The neural network training eventually produces the well-learned
weights W (1) and W (2), and allows the network to work in forward pass only for
future robot navigation tasks in unknown environments.

3.4.4 Algorithm

We now present the algorithm of policy learning from multiple demonstrations in
Algorithm 3.

This algorithm can also be applied to other robot learning problems.

3.5 Demonstration by Modified A* Algorithm

A* is a well known best-first shortest path finding algorithm, and is highly used
in robotics. It is used to find a path from a given start node to a target node. It
searches the whole map area and finds each possible path from the start node to
reach the target node and then gives the shortest path. Unlike most A* algorithms
use rectangle grids for the world representation, we propose a modified A* that

52

3.5 Demonstration by Modified A* Algorithm

Algorithm 3 Policy Learning from Multiple Demonstrations
Input: A set of demonstrations D;

1: Initialize a 3-layer neural network with randomly generated weights;
2: for each demonstration D(i) do
3: The robot observe or repeat the demonstration and collect a dataset of

state-action pairs D(i) = {(s(i)t , a
(i)
t)};

4: end for
5: Gather and scale all the dataset;
6: Extract the effective data to create a training dataset O(i) = {(x(i)

j , y
(i)
j)};

7: Train a neural network with the data;
8: Deploy and test the network on the robot;
Output: An optimal policy π∗.

is based on robot actions. Since a robot can choose 5 possible moving actions,
one node in modified A* have 5 potential neighbor nodes according to actions.
Without restriction of grid representation, the planning becomes more practical.

3.5.1 Node Representation

Each node is represented by a structure array with the following fields: (1) current
position; (2) robot heading; (3) H value; (4) G value; (5) F value; (6) parent
position; (7) robot action.

Take start node as example: current position is the robot starting coordinates;
heading is the robot initial heading; H value is the distance to the target; G value
is 0; F value is the sum of H and G values; it has no parent position and no action
to take.

Only current position is recorded into the open list and the closed list. Other
field values can be called on by searching the node with the corresponding current
position.

Potential neighbor nodes are defined based on the robot actions.
Our work uses the classic representation of the A* algorithm as the evaluation

function F (x):

F (x) = G(x) +H(x). (3.31)

G(x) is the path cost function which calculates the actual total cost of the
path to reach the current node from the start node. G cost is accumulated by

53

3. POLICY LEARNING FROM MULTIPLE DEMONSTRATIONS

the total distance traveled by all the past moving steps.
H(x) is the heuristic function which estimates the cost of the path from the

current node to the goal node. H cost is simply taken as the direct distance from
the current position to the target regardless of obstacles.

The node representation is updated according to the following rule: define
parent position of the neighbor as current position of current node; define G

value of the neighbor as tentative G value; define H value of the neighbor as
distance to target; define F value of the neighbor as sum of G and H; define
heading of the neighbor as the heading after robot movement; define action of
the neighbor as the action the robot take to move from current to this neighbor.

3.5.2 Algorithm

The core the modified A* algorithm is a heuristic search based on robot actions,
not on world grids. A node within the reach of one possible action is considered as
a potential neighbor node of the current node when the nine robot sensors detect
no collision possibility of obstacles in that node. Then the potential neighbor
nodes will be evaluated to determine whether move it to open list or not. The
pseudo code is shown in Algorithm 4.

3.5.3 Result

The advantage of this modified A* algorithm is that the path finding is no longer
restricted to a grid world and this method can be adapted to any real robot
applications with any robot action spaces.

In Figure 3.4, the start point and the target are respectively placed at (10, 10)
(a solid blue rectangle) and (90, 90) (a hollow red circle). The optimal path is
planned by the modified A* algorithm, and represented by red stars in Figure
3.4(a). The blue dots alongside the red path in Figure 3.4(b) showed us all the
world states visited by our algorithm. Without dividing the environment into
grids, the proposed algorithm has successfully programmed an optimal path.

In Figure 3.5, we compare our method (in red solid curves) and the conven-
tional A* algorithm (in green dashed curves). For the same navigation environ-
ment, the conventional A* used 48.1936 s to plan a path of 124.3638 m, while our
algorithm took 23.2288 s to give out a path of 120.2053 m. We could tell that

54

3.5 Demonstration by Modified A* Algorithm

Algorithm 4 Modified A* algorithm
1: Initialize closed list and open list as empty sets.
2: Create a first node structure start node, and add it to the open list.
3: repeat
4: Define current node as the node in open list having the lowest F value.
5: Add current node to closed list, and then remove it from open list.
6: if current node is close enough to the target then
7: Break.
8: end if
9: Evaluate the list of potential neighbor nodes according to their probabil-

ities of collision.
10: if exist collision probability then
11: Remove this node from the list of neighbor nodes.
12: else
13: Keep this node in the list of neighbor nodes.
14: end if
15: for each neighbor node do
16: if neighbor node is in closed list then
17: Continue.
18: end if
19: Define tentative G value as the sum of the G value of current node

and the distance between current node and this neighbor node.
20: if neighbor is not in open list or tentative G value < G value of this

neighbor then
21: Update the node representation.
22: if this neighbor node is not in open list then
23: Add the neighbor to open list.
24: end if
25: end if
26: end for
27: until open list is empty
28: Create an empty set of structure Path.
29: Add current node to Path.
30: repeat
31: Define Next as the parent position of current node.
32: Find the node in the closed list whose current position is Next.
33: Update current node as this node.
34: Add current node to Path.
35: until current node is start node

55

3. POLICY LEARNING FROM MULTIPLE DEMONSTRATIONS

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100
Modified A* Path Planning

(a) Modifed A* planning
0 10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

70

80

90

100
Modified A* Path Planning

(b) Modifed A* with all nodes in the closed
list (blue dots)

Figure 3.4: Modified A* Algorithm Result.

this modified method produced a shorter and more optimal path, and specifically
saved much planning time. In sum, our method is more practical.

3.6 Experimental Results

Given partial knowledge about its environment and a goal position or series of
positions, navigation encompasses the ability of the robot to act based on its
knowledge and sensor values so as to reach its goal positions as efficiently and as
reliably as possible.

Simulation experiments are carried out in order to evaluate the proposed
method. The mobile robot is represented by a blue rectangle-shaped object. It
is equipped with 9 sensors to observe the surrounding environment, as shown in
Figure 2.6. The environment map has a size of 100 m × 100 m. The obstacles
are randomly scattered in the environment. The initial position of the robot is
placed at (10, 10) and the target position, a red circle in the map, is found at
(90, 90). The velocity of the robot is fixed at 2 m/s. The mission of the robot is to
start from the initial position and to find an optimal path to arrive at the target
position without any collision with any obstacles. If no obstacles are detected,
the robot is designed to move in an rough direction to the target.

56

3.6 Experimental Results

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

Conventional A* (green): elapsed time = 48.1936 s, path length = 124.3638 m.
Proposed A* (red): elapsed time = 23.2288 s, path length = 120.2053 m.

Figure 3.5: Pathfinding results using modified A* (red solid) and conventional
A* (green dashed) algorithms.

The neural network has three layers: 11 in the input layer, 8 in the hidden
layer and 5 in the output. The input is the state of the environment. The range
of sensor detection is 10 m. The output is five action probabilities, and the robot
will take the action with the biggest probability. Some important experiment
parameters are selected as follows:

• Regularization parameter in Equation (3.22): λ = 1,

• Total number of demonstrations: M = 25,

• Total iterations of BPNN: iter = 300.

3.6.1 Policy Learning Process

In our work, 25 demonstrations are generated by modified A* algorithm. All of
them have different configurations of random obstacle positions. The advantage
of different maps is that the robot can always face new challenge and help gather
more state-action combination. Some of the demonstrations are presented in
Figure 3.6.

It is observed that the demonstrations can always provide optimal paths, and
this will greatly improve the robot learning performance compared to human

57

3. POLICY LEARNING FROM MULTIPLE DEMONSTRATIONS

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100
Expert Demo by A*: No. 4

Elapsed time: 11.792 seconds. Path length: 123.1558 m.
0 10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

70

80

90

100
Expert Demo by A*: No. 6

Elapsed time: 15.8818 seconds. Path length: 124.8112 m.

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100
Expert Demo by A*: No. 18

Elapsed time: 7.2351 seconds. Path length: 120.0575 m.
0 10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

70

80

90

100
Expert Demo by A*: No. 22

Elapsed time: 24.1611 seconds. Path length: 121.0251 m.

Figure 3.6: Expert demonstrations given by modified A* algorithm.

teachers who cannot guarantee the quality of their demonstrations. Modified A*

algorithm has proven its success in global navigation tasks. However, in real

world, a robot cannot always have a clear prior knowledge about the environ-

ment. That is why we conduct learning from demonstration process, hoping to

transplant the ability of obstacle avoidance to future navigation tasks where only

local environment information is available to robots. Neural network is applied

as a supervised learning tool to train the data collected from the demonstration.

The goal of the neural network training is to minimize the cost J(W) in Equation

(3.22) by iteratively updating the weights W (1) and W (2). The result is shown in

58

3.6 Experimental Results

Figure 3.7.

0 50 100 150 200 250 300
0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7
Cost in Training Process

Iteration

C
os

t

Figure 3.7: Changes of cost J(W) in learning process.

In the first 50 iterations, the cost decreases fast and then becomes smaller
stably. Finally after all 300 iterations, the cost converges and stays around 0.91.
Once the training terminates, W (1) and W (2) stop updating and the learning
process from demonstration is accomplished. It is now the time to examine the
robot learning achievement.

3.6.2 Robot navigation in unknown environments

The robot is now placed in a new and unknown world to execute a navigation task.
Unlike the demonstrations, the robot has no prior knowledge of the numbers,
sizes and positions of the obstacles. It does not know either the exact target
position but only a rough direction. It has a maximum of 500 moving steps
and it chooses the best fit action in each step according to action probabilities
calculated via FFNN. Figure 3.8 shows four different navigation tasks. Although
the environments varied, the robot succeeded in getting to the target in a collision
free path, and always kept a safe distance to surrounding obstacles.

It is also observed that the paths that the robot chose may not be the optimal
ones due to a lack of complete knowledge of environment map, but they are
still fully acceptable and perfect enough to meet our expectation. Therefore,
the above experiments have proven the stability of the proposed learning from
demonstration method.

59

3. POLICY LEARNING FROM MULTIPLE DEMONSTRATIONS

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100
Robot Navigation via Policy Learning

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100
Robot Navigation via Policy Learning

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100
Robot Navigation via Policy Learning

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100
Robot Navigation via Policy Learning

Figure 3.8: Robot navigation in new environments.

60

3.6 Experimental Results

3.6.3 Paths Comparison

Since the paths are not the optimal ones, we are now investigating the difference
between them. Given an unknown world, we first plan an optimal path in red
curve using our modified A* algorithm in a global view, and then let the robot
navigate by the learned policy. Figure 3.9 tells that the robot has learned to
find a quasi-optimal path unless sometimes it thinks dangerous to pass through
a narrow path between obstacles, such as in the last navigation map. Also, after
training the robot, the robot can save much time in real-time navigation.

The robot may not always choose a similar path as the expert suggests, as
the last two figures in Figure 3.9. However, the robot could still navigate to the
target without any collisions.

3.6.4 Autonomous Navigation in Dynamic Environments

We tested our policy learning algorithm in dynamic environments. The results
are shown in Figure 3.10. In the environment, the black solid objects are static
obstacles, and the purple rectangle ones are moving obstacles, which move in an
unpredictable direction.

The robot first encountered a static obstacle at time 10, after avoiding it,
the robot encountered several moving obstacles around him at time 23. The
robot could successfully avoid them. Before arriving at the destination, the robot
met another moving obstacle at time 47, and he kept a safe distance with it.
Finally the robot reached the destination without any collisions. Therefore, the
robot has successfully learned an control policy from the expert demonstration
in autonomous navigation in dynamic environments.

3.6.5 Discussions

We compare the results if providing different number of demonstrations.

Number of demos 20 25 30 35 40
Rate of success 89% 92% 92% 93% 94%

Table 3.2: Compassion of number of demonstration versus rate of success.

61

3. POLICY LEARNING FROM MULTIPLE DEMONSTRATIONS

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100
Comparison in Robot Navigation

Elapsed time of modified A* : 8.0752 seconds.
0 10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

70

80

90

100
Comparison in Robot Navigation

Elapsed time of modified A* : 24.2135 seconds.

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100
Comparison in Robot Navigation

Elapsed time of Modified A* : 72.9017 seconds.
0 10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

70

80

90

100
Comparison in Robot Navigation

Elapsed time of modified A* : 40.0755 seconds.

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100
Comparison in Robot Navigation

Elapsed time of modified A* : 11.4812 seconds.
0 10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

70

80

90

100
Comparison in Robot Navigation

Elapsed time of modified A* : 55.4684 seconds.

Figure 3.9: Path comparison in two methods. The red dotted curves are the
suggested paths by computer expert, and The blue solid curves are actual robot
navigation trajectories.

62

3.6 Experimental Results

Figure 3.10: Autonomous robot navigation in a dynamic environment using pro-
posed policy learning method.

63

3. POLICY LEARNING FROM MULTIPLE DEMONSTRATIONS

We can see the rate of success change not that big, therefore, we can safely
choose a number of demonstrations of 25.

We also give the results how the different numbers of iterations in backprop-
agation would influence the training performance.

Number of iterations 100 200 250 300 350 400 500
Prediction accuracy(%) 81.12 82.68 82.83 83.62 83.31 83.15 83.46

Training time (s) 3.42 6.82 8.75 10.64 12.77 13.64 17.08

Table 3.3: Compassion of number of iterations in training performance.

Using the same training set, we can see that from 250 iterations, the prediction
accuracy stayed stable while the training time increased, and also more iterations
would risk overfitting. Therefore, a number of iterations between 250 and 350
was a good choice.

From the above experiments, the robot successfully reproduces the task after
learning a policy even when all objects are in novel positions. The proposed
method using learning from demonstration has equipped a mobile robot with
intelligence and adaptive abilities in performing an independent navigation task.

3.7 Conclusion

Building robust and reliable autonomous navigation systems that generalize across
environments and operating scenarios remains a core challenge in robotics. Our
motivation is for robot capabilities to be more easily extended and adapted to
novel situations, even by users without programming ability.

Learning from demonstration is an approach aimed at recovering the instruc-
tions directly from teacher’s demonstrations.

In our work, we proposed a method for mobile robots to learning an optimal
policy offline from expert demonstrations, especially in the cases where human
demonstrations are not available to obtain, and then to navigate online new
environments autonomously. The neural network is applied to generalize the
undemonstrated states. The experiments showed a good learning efficiency and
generalization capability without lots of examples, and can eventually enable a
mobile robot to learn a policy to autonomously execute future navigation tasks.

64

Chapter 4

Reinforcement Learning under
Stochastic Policies

Contents
4.1 Introduction . 66

4.2 Related Work . 67

4.3 Model-Free Reinforcement Learning Methods 69

4.3.1 Q-Learning . 70

4.3.2 SARSA . 71

4.3.3 Function Approximation using Feature-Based Repre-
sentations . 72

4.4 Neural Network based Q-Learning 73

4.4.1 State and Action Spaces 74

4.4.2 Reward Function . 76

4.4.3 The Stochastic Control Policy 77

4.4.4 State-Action Value Iteration 78

4.4.5 Algorithm . 81

4.5 Experimental Results 83

4.5.1 Self-learning Results 84

4.5.2 Autonomous Navigation Results 89

4.5.3 Comparison and Analysis 89

4.5.4 Autonomous Navigation in Dynamic Environments . . 91

65

4. REINFORCEMENT LEARNING UNDER STOCHASTIC
POLICIES

4.5.5 Discussions . 91

4.6 Conclusion . 93

4.1 Introduction

Endowing robots with human-like abilities to perform specific skills in a smooth
and natural way is one of the important goals of robotics. In the previous chapter,
we investigated that a mobile robot learned a control policy via multiple expert
demonstrations. These demonstrations provided the robot with prior experience
and our learning algorithm generalized to the undemonstrated states. However,
in some cases, such as exploring hazardous environments, no prior experience or
demonstrations are available to the mobile robots, and we still want them to learn
how to behave in unknown environments. This is the main problem that we are
dealing with in this chapter.

Reinforcement learning (RL) is the key tool that helps us to create robots
that can learn new skills by themselves, just similarly to our human beings.
Reinforcement learning is realized by interacting with an environment. In RL,
the learner is a decision-making agent that takes actions in an environment and
receives an reinforcement signal for its actions in trying to accomplish a task.
The signal, well known as reward (or penalty), evaluates an action’s outcome,
and the agent seeks to learn to select a sequence of actions, i.e. a policy, that
maximize the total accumulated reward over time.

Reinforcement learning can be formulated as a Markov Decision Process.
Model-based RL algorithms can be used if we know the state transition func-
tion T (s, a, s′). In contrast, we focus more on model-free RL that the environ-
ment model T is not known in advance, especially in our work of autonomous
navigation tasks.

The whole learning scenario is a process of trial-and-error runs. We apply
a Boltzmann probability distribution to tackle the problem of the exploration-
exploitation tradeoff, that is, the dilemma between should we exploit the past
experiences and select the actions that as far as we know are beneficial, or should
we explore some new and potentially more rewarding states. Under the circum-
stances, the policies are stochastic.

66

4.2 Related Work

Classic RL algorithms are usually applied to small sets of states and actions,
that is, the agent can only visit a subset of the of states during the trial-and-error
runs. In real applications, the state spaces are of a large scale and this will bring
the problems of the generalization and the curse of dimensionality. We use the
neural network structure to generalize and approximate the value of all the states.
In the previous chapter, we have successfully implemented the neural network to
train offline a control policy for mobile robots after all the state-action pairs are
collected. In this chapter, we use the network to do incremental online learning
without acquiring the output labels explicitly.

In this chapter, we present a RL based self-learning algorithm in the cases
where expert demonstrations cannot provided to learning agents in advance and
they need to find a robust policy via interacting with the environment (Xia &
El Kamel, 2014a,c, 2015d). Experiments are conducted on the autonomous nav-
igation tasks for mobile robots.

4.2 Related Work

Many researches on robot autonomous navigation using reinforcement learning
were conducted. In general, reinforcement learning is realized by the interaction
between the robot and the surrounding environment. Instead of explicitly detail-
ing the solution to a problem, in RL, the designer provides feedback that measures
the one-step performance of the robotic system for future self-improvement.

Yang et al. (2004) used continuous Q-learning algorithm for solving the au-
tonomous navigation problem for mobile robots. They used a multilayer feed-
forward neural network to approximate the Q-learning value function. This
method designed only three actions and was applied for static environments.
Also, the robot was trained in the same environment, and no proof of the porta-
bility of the algorithm in other environments was provided.

Lagoudakis & Parr (2003) proposed the least-squares policy iteration (LSPI)
that is motivated by the least-squares temporal-difference learning algorithm
(LSTD) for prediction problems. This method can be efficiently used on batch re-
inforcement learning problems. Also for batch learning, neural fitted-Q iteration
(NFQ) (Riedmiller, 2005) is a model-free, neural network based reinforcement
learning algorithm to train Q-value functions. The main drawback of batch RL is

67

4. REINFORCEMENT LEARNING UNDER STOCHASTIC
POLICIES

that it relys on the efficiency of a complete data collection, which is quite costly,

especially when the agent cannot achieve its goal in the learning scenarios.

Similar methods using reinforcement learning and neural network were pre-

sented in (Huang et al., 2005; Li et al., 2006; Qiao et al., 2008). These papers

have demonstrated the feasibility of their algorithms, but they share some com-

mon problems. First, these papers used exactly the same environment both to

train the robot learning ability and to test the navigation skills. However, what

is expected is that the robot learns the obstacle avoidance behaviors in some

environments and can navigate independently in a completely new unknown en-

vironment. Therefore, the robustness of their methods need to be proved. Second,

limited number of state and action spaces and simple design for reward function

bring the question of functionality of navigation tasks in more complicated envi-

ronments. Moreover, the algorithms in (Huang et al., 2005; Li et al., 2006) were

tested in static environments and only one dynamic obstacle was considered in

(Qiao et al., 2008).

Knudson & Tumer (2011) evaluated reactive and learning navigation algo-

rithms for exploration robots and showed a better performance using neuro-

evolutionary algorithm compared to rule-based algorithm. At the same time,

they indicated that when the environments became particularly complex, the

neuro-evolutionary algorithm was not able to establish a good policy for naviga-

tion.

Reinforcement learning are widely used in various robotic systems. A hu-

manoid robot navigation was described in (Navarro-Guerrero et al., 2012) by

using a supervised RL approach combined with Gaussian distributed state ac-

tivation, and the robot successfully performed a backward docking movement

used for autonomous recharging. El-Fakdi & Carreras (2013) proposed a two-

step gradient-based reinforcement learning control system for solving the action

selection problem of an autonomous underwater vehicle in a visual-based cable

tracking task. A neural network reinforcement learning method was studied for

visual control of a robot manipulator (Miljković et al., 2013). A direct mapping

from the image space to the actuator command was developed by using two dif-

ferent RL algorithms, Q-learning and SARSA, combined with neural networks. A

database of representative learning samples was also employed in order to speed

68

4.3 Model-Free Reinforcement Learning Methods

up the convergence of the algorithms. This hybrid system could provide a high
accuracy of a manipulator positioning in a situation of low resolution images.

Q-learning and SARSA algorithms are two major RL techniques, but they
possess different characteristics. SARSA has a faster convergence characteristics,
while Q-learning has a better final performance. However, SARSA is easily stuck
in the local minimum and Q-learning needs longer time to learn. Wang et al.
proposed a method of combining Q-learning and SARSA algorithm, called back-
ward Q-learning, to deal with the dilemma between exploration and exploitation
for action selection policy (Wang et al., 2013). This method can enhance learning
speed and improve the final performance. Moldovan and Abbeel also addressed a
method of safe exploration in Markov decision process when in uncertain dynamic
environments (Moldovan & Abbeel, 2012).

Many other RL-related algorithms can be found in (Wiering & van Otterlo,
2012). Xu et al. (2014) presents also a comprehensive survey on recent develop-
ments in reinforcement learning algorithms with function approximation.

4.3 Model-Free Reinforcement Learning Methods

In our work, We study reinforcement learning and robot control problems in
which a mobile robot acts in a stochastic environment by sequentially choosing
actions over a sequence of time steps, in order to maximize a cumulative re-
ward. We model the problem as a Markov Decision Process: a state space S,
an action space A, a transition dynamics distribution P (st+1 | st, at) satisfying
the Markov property P (st+1 | s1, a1, ..., st, at) = P (st+1 | st, at), for any trajectory
s1, a1, s2, a2, ..., sT , aT in state-action space, and a reward function r : S ×A −→
R. A stochastic policy π(st, at) = P (at | st) is used to select actions and produce
a trajectory of states, actions and rewards s1, a1, r1, s2, a2, r2, ..., sT , aT , rT over
S ×A× R.

An on-policy method learns the value of the policy that is used to make
decisions. The value functions are updated using results from executing actions
determined by some policy. An off-policy methods can learn the value of the
optimal policy independently of the agent’s actions. It updates the estimated
value functions using hypothetical actions, those which have not actually been
tried.

69

4. REINFORCEMENT LEARNING UNDER STOCHASTIC
POLICIES

We focus on model-free RL methods that the robot drives an optimal policy
without explicitly learning the model of the environment. Q-learning (Watkins,
1989) and Sarsa (Rummery & Niranjan, 1994) algorithms are two major model-
free reinforcement learning algorithms.

4.3.1 Q-Learning

Q-Learning algorithm is an important off-policy model-free reinforcement learning
algorithm for temporal difference learning. It can be proven that given sufficient
training under any ε-soft policy, the algorithm converges with probability 1 to a
close approximation of the action-value function for an arbitrary target policy.
Q-Learning learns the optimal policy even when actions are selected according to
a more exploratory or even random policy.

The update of state-action values in Q-learning is defined by

Q(st, at) := Q(st, at) + α
[
rt+1 + γmax

a
Q(st+1, a)−Q(st, at)

]
. (4.1)

The parameters used in the Q-value update process are:

α - the learning rate, set between 0 and 1. Setting it to 0 means that the
Q-values are never updated, hence nothing is learned. Setting a high value
such as 0.9 means that learning can occur quickly.

γ - discount factor, also set between 0 and 1. This models the fact that
future rewards are worth less than immediate rewards. Mathematically, the
discount factor needs to be set less than 0 for the algorithm to converge.

In this case, the learned action-value function, Q, directly approximates Q∗,
the optimal action-value function, independent of the policy being followed. This
dramatically simplifies the analysis of the algorithm and enabled early conver-
gence proofs. The policy still has an effect in that it determines which state-
action pairs are visited and updated. However, all that is required for correct
convergence is that all pairs continue to be updated. Under this assumption and
a variant of the usual stochastic approximation conditions on the sequence of
step-size parameters, Qt has been shown to converge with probability 1 to Q∗.
The Q-learning algorithm is shown below.

70

4.3 Model-Free Reinforcement Learning Methods

Algorithm 5 One-step Q-learning algorithm (Watkins, 1989)
1: Initialize Q(s,a) arbitrarily;
2: repeat(for each episode):
3: Initialize s;
4: repeat(for each step of episode):
5: Choose a from s using policy derived from Q;
6: Take action a, observe r, s′;
7: Q(s, a) ← Q(s, a) + α [r + γmaxa′ Q(s′, a′)−Q(s, a)];
8: s ← s′;
9: until s is terminal

10: until all episodes end.

4.3.2 SARSA

The SARSA algorithm is an on-policy algorithm for TD-Learning. The major

difference between it and Q-Learning, is that the maximum reward for the next

state is not necessarily used for updating the Q-values. Instead, a new action, and

therefore reward, is selected using the same policy that determined the original

action. The name SARSA actually comes from the fact that the updates are done

using the quintuple Q(s, a, r, s′, a′). Where: s, a are the original state and action,

r is the reward observed in the following state and s′, a′ are the new state-action

pair. The Q-value update rule is defined by

Q(st, at) := Q(st, at) + α [rt+1 + γQ(st+1, at+1)−Q(st, at)] (4.2)

It is straightforward to design an on-policy control algorithm based on the

SARSA prediction method. As in all on-policy methods, we continually estimate

Qπ for the behavior policy π, and at the same time change π toward greediness

with respect to Qπ. The general algorithm is given as:

As you can see, there are two action selection steps needed, for determining

the next state-action pair along with the first. The parameters α and γ have the

same meaning as they do in Q-Learning.

71

4. REINFORCEMENT LEARNING UNDER STOCHASTIC
POLICIES

Algorithm 6 On-policy SARSA algorithm (Rummery & Niranjan, 1994)
1: Initialize Q(s,a) arbitrarily;
2: repeat(for each episode):
3: Initialize s;
4: Choose a from s using policy derived from Q;
5: repeat(for each step of episode):
6: Take action a, observe r, s′;
7: Choose a′ from s′ using policy derived from Q;
8: Q(s, a) ← Q(s, a) + α [r + γQ(s′, a′)−Q(s, a)];
9: s ← s′; a ← a′;

10: until s is terminal
11: until all episodes end.

4.3.3 Function Approximation using Feature-Based Repre-
sentations

For problems with high dimensionality, the number of states become astronom-
ically large making Q-value table storage infeasible. So the practical implemen-
tation of Q-Learning requires using Q-value approximation via generalization of
states, i.e., features.

Features are functions from states to real numbers that capture important
properties of the state. Using a feature representation, we can write a Q-function
(or value function) for any state using a few weights:

V (s) = ω1f1(s) + ω2f2(s) + ...+ ωnfn(s)

Q(s, a) = ω1f1(s, a) + ω2f2(s, a)...+ ωnfn(s, a)

By this representation, our experience can be summed up in a powerful num-
bers. However, states may share features but actually be very different in value.

In robotics, it’s often usually to use linear or non-linear feature representations
to handle the large-scale state-action spaces.

SARSA with Linear Function Approximation

You can use a linear function of features to approximate the Q-function in
SARSA. This algorithm uses the on-policy method SARSA, because the agent’s
experiences sample the reward from the policy the agent is actually following,

72

4.4 Neural Network based Q-Learning

rather than sampling an optimum policy. A number of ways are available to get
a feature-based representation of the Q-function. In this section, we use features
of both the state and the action to provide features for the linear function.

Suppose {f1, ..., fn} are numerical features of the state and the action. Thus,
fi(s, a) provides the value for the i-th feature for state s and action a. These fea-
tures are typically binary, with domain [0, 1], but they can also be other numerical
features. These features will be used to represent the Q-function.

Qω(s, a) = ω0 + ω1f1(s, a) + ...+ ωnfn(s, a) (4.3)

For some tuple of weights, ω = [ω0, ω1, ..., ωn]. Assume that there is an extra
feature f0 whose value is always 1, so that ω0 does not have to be a special case.

An experience in SARSA of the form {s, a, r, s′, a′} (the agent was in state
s, did action a, and received reward r and ended up in state s′, in which it
decided to do action a′) provides the new estimate of r + γQ(s′, a′) to update
Q(s, a). This experience can be used as a data point for linear regression. Let
δ = r + γQ(s′, a′)−Q(s, a). Weight ωi is updated by

ωi ←− ωi + αδfi(s, a).

This update can then be incorporated into SARSA, giving the algorithm 7.
Similarly, we can use linear function approximation on Q-learning algorithm.

The transition is of the form {s, a, r, s′}, and the difference

δ =
[
r + γmax

a′
Q(s′, a′)

]
−Q(s, a).

The update rules for Q-values and weights are:

Q(s, a) ←− Q(s, a) + αδ;

ωi ←− ωi + αδfi(s, a).

4.4 Neural Network based Q-Learning

In this section we present our contribution that incorporating a neural network
to Q-learning. One of the strengths of Q-learning is that it is able to compare

73

4. REINFORCEMENT LEARNING UNDER STOCHASTIC
POLICIES

Algorithm 7 SARSA with linear function approximation (Poole & Mackworth,
2010)

Input:
f = [f1, ..., fn]: a set of features;
γ ∈ [0, 1]: discount factor;
α > 0: step size for gradient descent.

1: Initialize weights ω = [ω0, ω1, ..., ωn];
2: Observe current state s;
3: Select action a (stochastic policy π(a|s));
4: repeat
5: Carry out action a (transition probability Pr(s′|s, a));
6: Observe state s′ and receive reward r;
7: Select action a′ using a policy based on Qω (stochastic policy π(a′|s′));
8: Let δ = r + γQ(s′, a′)−Q(s, a);
9: for i = 0 to n do

10: Update weights: ωi ← ωi + αδfi(s, a);
11: end for
12: s ← s′, a ← a′;
13: until Termination.

Output: An optimal weights ω∗.

the expected utility of the available actions without requiring a model of the
environment. Q-learning can handle problems with stochastic transitions and
rewards.

4.4.1 State and Action Spaces

Since reinforcement learning algorithms can be modeled as an MDP, we need first
to define the state space S and action space A.

Q-learning is aimed at learning a mapping from the state input to the action
output. In a navigation problem, the robot perceives the state from the environ-
ment by means of its sensors, and this state of environment is used by a reasoning
process to determine the action to execute in the given state.

The action space A is defined by six discrete robot actions. Among them, five
are basic moving actions∗: move forward (F), turn left at 30◦ (L30), turn left at
60◦ (L60), turn right at 30◦ (R30), turn right at 60◦ (R60) and one emergency
action: move backward (B). The six actions are based on the robot heading

∗These five moving actions are defined as the same ones that we used in the previous chapter.

74

4.4 Neural Network based Q-Learning

orientation. A turn at 90◦ is not defined because a sharp turn will bring great

danger to a real vehicle. Moving backward is regarded as an emergency action

that is only executed when no path is available in front of the robot and whatever

turns cannot avoid obstacles. This action is not considered in the self-learning

process, because it is, in some sense, an ‘instinct’ behavior of mobile robots. In

sum,

A = {F, L30, L60, R30, R60, B}. (4.4)

The state space S = {S1, S2, S3, ..., SN} is composed of a very large but finite

number of states, and each state St is defined based on the 11-dimensional state

representation that we gave in Equation (3.17).

However, we do not consider the degrees of danger of the No.5 and No.6

sensors (see Figure 2.6) thanks to the instinct action ‘B’. This can help re-

duce the complexity of the computation of the dimensionality. Thus, Dt =

[d1, d2, d3, d4, d7, d8, d9]
� ∈ R

7×1.

When a sensor detects an obstacle, a robot should distinguish if this obstacle

is an object that can be bypassed or a wall that cannot be bypassed. Hence, we

introduce a vector Ut ∈ R
7×1 to indicate if a wall is detected (U = 1) or an object

obstacle (U = 0) for the seven sensors in Dt.

Therefore, a state can be defined by four groups of features, and is expressed

in:

St =

⎡
⎢⎢⎢⎣
Dt

Vt

It

Ut

⎤
⎥⎥⎥⎦ ∈ R

16×1. (4.5)

Vt ∈ {1, 2, ..., 9} is the target region and It ∈ {0, 1} is the indicator that

determines if the robot has detected the target.

Note: Since the robot needs to deal with different environments, and the robot

position coordinates have no direct relation with the target and the obstacles in

different environments, it is not necessary to include them as part of the state

features. The robot localization can be fixed by many methods and is not the

focus of this thesis, so we assume the robot know its position relative to its start

position.

75

4. REINFORCEMENT LEARNING UNDER STOCHASTIC
POLICIES

4.4.2 Reward Function

The reward function measures the immediate feedback for the action taken at a
given state. It evaluates how good or how bad the performed action is. Before
giving the reward function, one environment state at each time instant is classified
into four properties, called the state property pt:

One world state St is classified into five properties, called the state property
pt:

• Safe State (SS): a state where no surrounding obstacles has been detected.

• Cozy State (CS): a state where the robot has a low or no probability of
collision with surrounding obstacles.

• Dangerous State (DS): a state where the robot has a high probability of
collision with some obstacles in the environment.

• Winning State (WS): a terminate state where the robot reaches its target.

• Failure State (FS): a terminate state where the robot collides with obstacles.

pt =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

SS, dbou ≤ dr−o

CS, dcozy ≤ dr−o ≤ dbou

DS, dcol ≤ dr−o ≤ dcozy

WS, dr−t ≤ dwin

FS. dr−o ≤ dcol

(4.6)

dr−o and dr−t define the distances between the robot and obstacles, and the
target. dbou defines the boundary distance (sensor detection range) of SS and
other states. dcol defines the radius of the collision region around the obstacle.
dwin defines the radius of the winning region around the target. dcozy defines the
cozy distance. These distances can be found in Figure 2.7.

Based on the state properties, the reward function r(t) is defined in Table 4.1.

dt−1
min and dtmin are the minimum distances between the robot and the sur-

rounding obstacles respectively at instant t− 1 and instant t. dwarn is a warning
distance that the robot is approaching too close to an obstacle.

76

4.4 Neural Network based Q-Learning

State Transition Extra Criteria r

other states → Winning State 1
Safe State → Cozy State 0
Cozy State → Safe State 0

Dangerous State → Cozy State 0.5
Cozy State → Dangerous State 0

Dangerous State → Failure State -1
dwarn ≤ dtmin ≤ dt−1

min − 2 -0.2
Dangerous State → Dangerous State dtmin = dt−1

min − 1 ≤ dwarn -0.2
(approaching obsacles) dtmin = dt−1

min − 2 ≤ dwarn -0.5
dtmin ≤ dt−1

min − 3 -1
Nonsafe State → Nonsafe State dwarn ≤ dtmin 0.6

(evading obstacles) dtmin ≥ dwarn 0.4

Table 4.1: Reward Function

4.4.3 The Stochastic Control Policy

A reinforcement learning agent learns from the consequences of its state-action
pairs rather than from being explicitly taught, and it selects its actions on basis
of its past experiences and also by new choices. If we may visit each state-action
(s, a) a sufficient large number of times, we could obtain the state values via,
for example, Monte Carlo methods. However, it is not realistic, and even worse,
many state-action pairs would not be visited once. It is important to deal with
the exploration-exploitation tradeoff.

In our work, we transplant a Boltzmann distribution to express a stochastic
control policy. The learning agent tries out actions probabilistically based on
their Q-values. Given a state s, the stochastic policy outputs an action a with
probability:

π(s, a) = P (a | s) = e
Q(s,a)

T∑
b∈A e

Q(s,b)
T

. (4.7)

where T is the temperature that controls the stochasticity of action selection.
If T is high, all the action Q-values tend to be equal, and the agent choose
a random action. If T is low, the action Q-values differ and the action with
the highest Q-value is preferred to be picked. Thus, P (a|s) ∝ e

Q(s,a)
T > 0 and

77

4. REINFORCEMENT LEARNING UNDER STOCHASTIC
POLICIES

∑
a P (a|s) = 1.
We do not fix the temperature to a constant, since random exploration through-

out the whole self-learning process takes too long to focus on the best actions.
At the beginning, all Q(s, a) are generated inaccurately, so a high T is set to

guarantee the exploration that all actions have a roughly equal chance of being
selected. As time goes on, a large amount of random exploration have been
done, and the agent could gradually exploit its accumulating knowledge. Thus,
the agent decreases T , and the actions with the higher Q-values become more
and more likely to be picked. Finally, as we assume Q is converging to Q∗, T
approaches zero (pure exploitation) and we tend to only pick the action with the
highest Q-value:

P (a|s) =
{

1, if Q(s, a) = maxb∈A Q(s, b)

0, otherwise
(4.8)

In sum, the agent starts with high exploration and converts to exploitation as
time goes on, so that after a while we are only exploring (s, a)’s that have worked
out at least moderately well before.

4.4.4 State-Action Value Iteration

The Q-value function expresses the mapping policy from the perceived state of
environment to the executing action. One Q-value Q(st, at) corresponds with one
specific state and one action in this state. Autonomous navigation tasks are our
main research problems. Like many robotic applications in real life, they have a
large-scale state and action spaces. Traditionally, all the state or action values are
store in a Q-table. However, this is not practical and computationally expensive
for large-scale problems. In our method, We propose to predict all state Q-values
by using a three-layer neural network, as shown in Figure 4.1.

The inputs are the state features that the robot perceives in the surrounding
environment, and the outputs correspond to all the action Q-values. Therefore,
according to Equations (4.4) and (4.5), the network has 16 neurons in the input
layer, and 5 in the output layer∗. Moreover, 8 neurons are designed in the hidden
layer.

∗Remember that the action ’B’ is an instinctive action that we do not need to learn, so only
the other five actions are considered in the output layer.

78

4.4 Neural Network based Q-Learning

��

�"

��

��

&�

&�

&�

&�

' ��� ����

' ��� ����

' ��� ����

' ��� ����

"�� �#����
$���%���

& ����
'�!%��

�� ��
(��� (���

�
�
	���

Figure 4.1: A three-layer neural network architecture.

The bias units are set to 1. The weight W (1) ∈ R
8×17 is used to connect the

input layer and the hidden layer, and similarly, the weight W (2) ∈ R
5×9 links the

hidden layer and the output layer. The sigmoid function is used for calculating

the activations in the hidden and output layers.

We denote Q(st) a vector of all action-values in the state st, and use Q(st, at)

to specify the Q-value of taking at in st. Thus,

Q(st) =

⎡
⎢⎢⎢⎢⎢⎢⎣

Q(st, a1)

Q(st, a2)

Q(st, a3)

Q(st, a4)

Q(st, a5)

⎤
⎥⎥⎥⎥⎥⎥⎦
.

The action value iteration is realized by updating the neural network by the

means of its weights. In the previous chapter, the neural network was applied

for supervised learning where the label for each training state-action pair was

explicitly provided. Differently, the neural network in the reinforcement learning

does not has label outputs. Q-learning is a process of value iteration and the

optimal value after each iteration serves as the target value for neural network

training. The update rule is

79

4. REINFORCEMENT LEARNING UNDER STOCHASTIC
POLICIES

Qk+1(st, at) = Qk(st, at) + α

[
rt + γmax

a∈A
Qk(st+1, a)−Qk(st, at)

]
. (4.9)

where the initial action values Q0 of al the state-action pairs are generated ran-

domly between 0 and 1. Qk+1(st, at) is treated as the target value of the true

value Qk(st, at) in the (k + 1)th iteration.

In the vector Qk(st), only Qk(st, at) is updated to Qk+1(st, at), and the rest

elements stay unchanged. Sometimes, Qk+1(st, at) may exceed the range [0, 1],

then we need to rescale Qk+1(st) to make sure all its components are in [0, 1].

We denote Q̃k+1(st) the rescaled action value. To make it clear, the update of

Q-value is realized along the road Qk → Qk+1 → Q̃k+1.

The network error is a vector of form:

δk+1 = Q̃k+1(st)−Qk(st). (4.10)

We employ the stochastic gradient descent (SGD) to train the neural network

online. The goal is to minimize the cross-entropy cost function J defined as:

J = −
[

NA∑
i=1

(Q̃k+1)i · log(Qk)i + (1− (Q̃k+1)i)(1− log(Qk)i)

]
. (4.11)

where NA is the number of actions used for training. In our navigation tasks,

NA = 5.

The action Q-values are nonlinear functions of weights of the network. SGD

optimizes J and updates weights by using one or a few training examples accord-

ing to:

W (i) ← W (i) − σ
∂J

∂W (i)
. (4.12)

Each iteration outputs new weights W (i) and a new cost J ′ is calculated. This

update repeats until it arrives at a maximum times of iteration or |J ′ − J | < ε.

80

4.4 Neural Network based Q-Learning

4.4.5 Algorithm

An autonomous navigation tasks via NNQL can be divided into two processes.
The first one is the training process to endow the robot with the self-learning
ability, and the second one is the navigation process to use the trained policy to
execute an independent navigation task (Xia & El Kamel, 2015d).

4.4.5.1 Training Process of NNQL

Training the mobile robot is done by exposing it to a bunch of learning episodes
and each episode has a different environment. Also, the robot has a set of initial
starting positions. The variety helps the robot to encounter as many situations
as possible, which could accelerate the learning speed.

Each episode starts by perceiving the current state of the environment. The
robot detects the surrounding obstacle locations through its sensors, and a rough
target region∗ is supplied to the robot. Once the current state is checked, if it
is a Safe State, the robot executes a goal-oriented behavior that it changes its
orientation towards the target position, and moves one step forward trying to
get closer. If the current state is Non-Safe State, the robot sends the current
state features into the FFNN and outputs all the possible Q-values. According to
the action selection strategy represented by a stochastic control policy, the robot
picks an action and moves to a new state. Then, the robot checks the resulting
new state, receives the immediate reward and updates the Q-values accordingly.
Then the updated Q-values are sent back to the neural network and use the
backpropagation algorithm to update the weights of the network.

Each episode has a limited amount of moving steps. The robot needs to reach
the target within the steps. If the robot runs out of the steps and does not reach
the target, or if the robot collides with an obstacle or reach the target, the episode
is terminated and a new episode is started.

The key of training efficiency is greatly related to how to make use of the
accumulated sequence of state-action pairs and their Q-values. A bunch of pre-
vious work (Jaradat et al., 2011; Qiao et al., 2008; Xia & El Kamel, 2015d) used
one-step Q-learning to update one Q-value at a time. When the robot arrives at

∗“A rough target region” means that the robot only knows in which sensor region locates
the target, but has no idea of the exact direction and the relative distance between itself and
the target. This concept was also presented in Equation (4.5).

81

4. REINFORCEMENT LEARNING UNDER STOCHASTIC
POLICIES

a new state, only the new Q-value will be updated and the previous action values
will be discarded. Others used batch learning (Riedmiller, 2005) that updates
all the Q-values once they are all collected. This also poses some advantages.
First, without online update, we cannot guarantee that the collected Q-values
have their optimal target values. Moreover, waiting all the values being obtained
is always time-wasting. We propose to update online not only the current Q-value
but also gather the previous values to train together.

The training algorithm is given in Algorithm 8.

Algorithm 8 Training algorithm of NNQL
1: Initialize the NN weights W (1) and W (2) randomly;
2: for all episodes do
3: Give the target and generate obstacles randomly;
4: Load the robot initial position [x0, y0] and orientation θ0;
5: Observe current state s1 and state property p1;
6: input := [], target := [];
7: t ← 1;
8: for all moving steps do
9: Compute all action-values {Q(st, ai)}i in state st via NN;

10: Select one action at according to the stochastic policy π(s, a) in (4.7),
and then move;

11: Observe new state st+1 and state property pt+1;
12: Obtain the immediate reward rt;
13: Update the Q-value function from Q(st, at) to Q̃(st, at) via (4.9);
14: Apply feature scaling for Q̃ to the range [0, 1];
15: Add st to input, and add Q̃(st, a) to target;
16: Apply SGD to train (input, target) and to update the weights W (1)

and W (2);
17: if st+1 is Winning State or Failure State then
18: Start a new episode;
19: end if
20: t ← t+ 1;
21: end for
22: end for

4.4.5.2 Robot Navigation Using NNQL

After training the robot, the resulting policy is still stochastic but near-deterministic
that used by the robot for future navigation tasks in various environments.

82

4.5 Experimental Results

The robot starts its navigation through the environment by finding its current
state. If it is a Safe State the robot does not need to follow the policy but changes
its orientation towards the target and moves one step forward. It continues mov-
ing until entering a Non-Safe region where the robot needs to adopt the trained
control policy. The robot uses the FFNN to generate all possible state-action
Q-values. The robot greedily takes the action that has the biggest Q-value. Af-
ter that, the robot finds its new state and repeats the process of action selection
until the robot reaches its goal or collide an obstacle. The navigation algorithm
is shown in Algorithm 9.

Algorithm 9 Robot Navigation using NNQL
1: Load the trained NN weights W (1) and W (2);
2: Give the target and generate obstacles randomly;
3: Load the robot initial position [x0, y0] and orientation θ0;
4: t ← 1;
5: for all moving steps do
6: Observe current state st and state property pt;
7: if st is Winning State or Failure State then
8: Terminate the navigation;
9: end if

10: Compute all action Q-values {Q(st, ai)}i via neural network;
11: Pick the moving action at according to greedy policy, and then move;
12: end for

4.5 Experimental Results

We employ the mobile robot model described in Chapter 2.5 to undertake au-
tonomous navigation tasks in unknown environments.

The environment map has a size of 100×100 m2. The obstacles are randomly
scattered in the environment and the robot has no prior knowledge of their num-
bers, sizes and positions. The initial positions of the robot (a blue solid rectangle
in the map) is placed at (10, 10) or (90, 10). The target positions (a red hollow
circle in the map) may be found at (90, 90) or (10, 90). The velocity of the robot
is fixed at 2.5 m/s. The mission of the robot is to start from the initial position
and to find an optimal path to arrive at the target position without any collision

83

4. REINFORCEMENT LEARNING UNDER STOCHASTIC
POLICIES

with any obstacles. If no obstacles are detected, the robot is designed to stick to
a goal-oriented behavior.

We use a 16-8-5 three-layer neural network to approximate all action Q-values.
It is also used to generalize to unvisited states.

4.5.1 Self-learning Results

The self-learning process is conducted in a number of learning episodes, and
each episode has a maximum of 400 moving steps. All episodes have different
configurations of random obstacle positions. A new episode will be started in the
following three situations:

• The robot finds a collision free path to the target;

• The robot collides with an obstacle or the map borders;

• The robot runs out the moving steps.

The training process will be terminated when all the learning episodes are
finished. The experiment parameters are selected as follows:

• Learning rate of Q-function in Equation (4.9): α = 0.8,

• Discount factor of Q-function: γ = 0.7,

• Learning rate of SGD in Equation (4.12): σ = 0.3,

• Maximum temperature in Equation (4.7): Tmax = 0.9,

• Minimum temperature: Tmin = 0.9.

The learning results are shown in Figure 4.2.
300 episodes are set for the robot to learn to navigate in different environ-

ments. One advantage of learning in different environments is that the robot can
always face new challenge and avoid falling into infinite loops when it gets used of
its environment. We can see that the robot tried different actions and the rewards
evaluated this action decision, which can help the robot to correct the action se-
lection in the future. During all episodes, the proposed algorithm adopted BPNN
to train the weights W (1) and W (2). When the learning process is completed, the

84

4.5 Experimental Results

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100
Learning Episode: 10

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100
Learning Episode: 20

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100
Learning Episode: 40

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100
Learning Episode: 70

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100
Learning Episode: 90

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100
Learning Episode: 100

Figure 4.2: Learning results in different episodes via NNQL.

85

4. REINFORCEMENT LEARNING UNDER STOCHASTIC
POLICIES

weights have been well trained and can be used directly in the following process

of robot navigation. Since the proposed algorithm is a trial-and-error method, it

is reasonable that a great number of episodes failed due to a collision.

0 50 100 150 200 250 300

−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02
Changes of W(1) in all learning episodes

episode

(a) Changes of W (1) in all learning episodes

0 50 100 150 200 250 300

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07
Changes of W(2) in all learning episodes

episode

(b) Changes of W (2) in all learning episodes

Figure 4.3: Changes of NN weights in all learning episodes.

We measured the changes of the weights of the network in Figure 4.3. The

change in one episode is computed by the difference between the weight at the

beginning of the episode W̃ (i) and the weight at the end of the episode ˜̃W (i):

86

4.5 Experimental Results

ΔW (i) =
∑
j

∑
k

(
˜̃w
(i)
j,k − w̃

(i)
j,k

)
.

The figures showed that both of the weights fluctuated strong in the beginning

episodes and then went quiet around 0 after 100 episodes. The overall trend of

weight changes was turning stable as the learning process carried on and the

weights converged to their optimal values. That is to say, the robot has gradually

learned how to cope with the surrounding environment.

The numbers of successful learning in every 100 episodes is shown in Figure

4.4.

1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

12

14

16
Total Successful Episodes

N
o.

Every 30 episodes

Figure 4.4: Numbers of successful learning episodes in every 30 episodes.

A successful learning is an episode in which the robot succeeds in arriving

at the target position. In the first 100 episodes, less than 10 were successful,

but in the last 100 episodes, more than 60 witnessed the robot arriving at the

target. This remarkably increasing trend demonstrated that the proposed NNQL

algorithm helped the robot to become intelligent.

87

4. REINFORCEMENT LEARNING UNDER STOCHASTIC
POLICIES

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100
Robot Navigation via NNQL

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100
Robot Navigation via NNQL

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100
Robot Navigation via NNQL

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100
Robot Navigation via NNQL

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100
Robot Navigation via NNQL

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100
Robot Navigation via NNQL

Figure 4.5: Autonomous navigation results in different environments via NNQL.

88

4.5 Experimental Results

4.5.2 Autonomous Navigation Results

In the navigation process, the weights W (1) and W (2) have converged to their
optimal values. The robot has learned how to behave in front of obstacles. The
FFNN is now only adopted, and the robot chooses the best fit action. Then it
is the time for the mobile robot to demonstrate its intelligence of independent
navigation in an unexpected environment.

Figure 4.5 showed six completely new navigation missions using the same
weights. The robot tried from different start points to reach different target
positions. The robot succeeded in getting to the target position in a collision-free
path in all four environments and the robot always kept a safe distance to the
surrounding obstacles.

It is observed that the paths that the robot chose may not be the optimal
ones due to a lack of complete knowledge of environment map, but they are still
fully acceptable and perfect enough to meet our expectation, especially in such
complicated environments.

In order to test the robustness of the algorithm, we tried six different robot
speeds and for each speed we conducted 100 experiments. The results are shown
in Table 4.2.

Robot speed (m/s) 1.5 2 2.5 3 3.5 4
Rate of success (%) 100 100 100 97 94 90

Table 4.2: Compassion of the rate of success versus different robot speeds.

It is normal that a higher speed means a shorter reaction time, and thus a
stronger possibility of collision. These tests with different speeds achieved a high
rate of success.

Therefore, the above experiments have proven the feasibility and the stability
of the proposed NNQL algorithm.

4.5.3 Comparison and Analysis

For our study, we implement and compare several methods: the first one is our
proposed method NNQL; the second one is the online one-step Q-learning (online
QL) that adopted in many previous work; the third one is the neural fitted-Q

89

4. REINFORCEMENT LEARNING UNDER STOCHASTIC
POLICIES

iteration (NFQ), which is a successful batch learning method. We conducted 50
times for each method.

Figure 4.6: Numbers of successful learning episodes in every 30 episodes.

Figure 4.6 showed the comparison of total successful learning in every 30
episodes. The blue solid line is the average result of NNQL over 50 experiments,
the red dashed line is the online QL method, and the green dash-dot line is NFQ
algorithm. The shaded areas represent the standard derivation. We can see that
NNQL outperformed the other two popular methods. NFQ did not begin training
until all the training data had been collected, and hence it was easy to fail an
episode without adjusting its control policy. Online QL did the worst since this
‘extravagant’ method abandoned so many training data and 300 episode was far
from enough.

Let the mobile robot navigate autonomously in unknown environments after
being trained by those three methods. We fixed the robot velocity at 2.5 m/s and
a total amount of 300 learning episodes. For each method we obtained 50 control
policies and for each policy we carried out 100 navigation tasks. The results were
compared in Table 4.3.

We can tell that our method achieved the best result, NFQ did slightly worse,
and online QL needed more episodes to catch up with the performance.

90

4.5 Experimental Results

NNQL Online QL NFQ
Average rate (%) 98 56 87

Best rate (%) 100 74 97
Worst rate (%) 94 29 83

Table 4.3: Comparison of the rate of success versus different methods.

4.5.4 Autonomous Navigation in Dynamic Environments

We tested the NNQL algorithm in dynamic environments. The results are shown

in Figure 4.7. In the environment, the black solid objects are static obstacles,

and the purple rectangle ones are moving obstacles.

At time 31, the robot met some static obstacles around him, and successfully

avoid them. At time 50, before arriving at the destination, the robot found a

moving obstacle in front of him, and the robot successfully avoided it and finally

arrived at the destination. Therefore, NNQL has proven its feasibility in the

application of autonomous navigation in dynamic environments.

4.5.5 Discussions

From the above experiment results, NNQL has demonstrated good and reliable

performance in autonomous navigation tasks without explicitly programming

robot behaviors. With 300 episodes, which is not a big number, the robot can ex-

ecute an independent navigation with almost 100% confidence. Compared with

two popular model-free algorithms, NNQL outperformed them. We can safely

reach the conclusion that NNQL has successfully empowered a mobile robot with

strong self-learning ability in autonomous navigation tasks.

One limitation is that under stochastic policies, the path that the robot choose

may not be optimal, and the robot may wonder for a while in some place before

finding a way out. That is because the robot do not have a global view of the

environment and therefore has to explore the environment in order to memo-

rize a small range of the surrounding environment. One potential solution is to

incorporate simultaneous localization and mapping (SLAM) techniques.

91

4. REINFORCEMENT LEARNING UNDER STOCHASTIC
POLICIES

Figure 4.7: Autonomous robot navigation in a dynamic environment using
NNQL.

92

4.6 Conclusion

4.6 Conclusion

Much of classical robotics focused on reasoning, optimal control and sensor pro-
cessing given models of the robot and its environment. While this approach is
successful for many industrial applications, it falls behind the more ambitious
goal of robotics as a test platform for our understanding of artificial intelligence.

This chapter presented the robot self-learning strategy without prior experi-
ence under explicit feedback. We explored the mobile robot navigation problem
by combining reinforcement learning and neural network. Q-learning is applied
to enhance the self-learning ability of a mobile robot through trial-and-error in-
teractions with an unknown environment. We designed new reward expression
and introduced the neural network architecture to store and train the large-scale
Q-values, and also to generalize the learning performance to large-scale state and
action spaces. The experiment results show the feasibility and the stability of the
proposed method. The robot can complete navigation tasks safely in an unpre-
dicted dynamic environment and becomes a truly intelligent system with strong
self-learning and adaptive abilities.

93

4. REINFORCEMENT LEARNING UNDER STOCHASTIC
POLICIES

94

Chapter 5

Learning Reward Functions with
Nonlinear Neural Policy
Representations

Contents
5.1 Introduction . 96

5.2 Related Work . 98

5.3 Inverse Reinforcement Learning 100

5.3.1 Preliminaries . 100

5.3.2 Inverse Reinforcement Learning 101

5.4 Nonlinear Neural Policy Representations 103

5.4.1 State and Action Spaces 103

5.4.2 Neural Policy Representation 104

5.4.3 Stochasticity of Policy 106

5.5 Neural Inverse Reinforcement Learning 107

5.5.1 Suboptimal Demonstration Refinement via Maximum
a Posteriori Estimation 107

5.5.2 Model-free Maximum Margin Planning 108

5.5.3 Neural Policy Iteration 109

5.5.4 The Algorithm for Neural Inverse Reinforcement Learning110

5.5.5 Expert Demonstrations 112

95

5. LEARNING REWARD FUNCTIONS WITH NONLINEAR
NEURAL POLICY REPRESENTATIONS

5.6 Experimental results 112

5.6.1 Comparison of Two Types of Demonstrations 114

5.6.2 Neural Inverse Reinforcement Learning 115

5.6.3 Robot navigation in new unknown environments . . . 118

5.6.4 Analysis of the weight changes 120

5.6.5 Autonomous Navigation in Dynamic Environments . . 122

5.6.6 Discussions . 123

5.7 Conclusion . 124

5.1 Introduction

In this day and age, more and more robots are produced to assist or replace our
human beings to perform complicated planning and control operations and tasks,
such as manipulating objects, navigating in outdoor environments, and driving
in urban areas. We are aware of the fact that designing such controllers for these
tasks is usually a complicated process, even for people specialized in programming
robots, which requires creating by hand a new and different controller for each
particular task. The designer has to take deliberately the wide range of situations
that the robot may face into account. This sort of manually programming is
generally an expensive as well as intense time-consuming process. Rather than
pre-programming a robot for all the tasks, it would be more useful if the robot
could learn such tasks by themselves.

In the previous chapter, we presented our reinforcement learning technique.
In this framework, an learning robot interacts with a dynamic environment and
finds a policy through a reward function. This method was proven to be a power-
ful and reliable solution to robot learning. However, one fundamental assumption
of successful RL algorithms is the reward function, the most succinct represen-
tation of the designer’s intention, needs to be provided beforehand. In practice,
defining the reward function can itself be a challenge because an informative re-
ward function may be very hard to specify and exhaustive to tune for large and
complex problems. The reward function we used in the previous chapter was not
quite a straightforward one.

96

5.1 Introduction

People are wondering if we could extract a reward function from demonstrated
examples of a desired behavior, and this inspires the advent and the development
of Inverse Reinforcement Learning (IRL). IRL can be taken as an extension of
reinforcement learning, which directly tackles the problems of learning a reward
function through expert demonstrations. It was originally introduced in (Ng
& Russell, 2000), where the authors provided a formal characterization of the
solution space for the IRL problem and three categories of algorithms to tackle
different tasks. In the sequel, many algorithms have been proposed in the subject
of IRL (Abbeel & Ng, 2004; Neu & Szepesvári, 2007; Ramachandran & Amir,
2007; Ratliff et al., 2006; Ziebart et al., 2008).

Inverse reinforcement learning is a particular case of learning from demonstra-
tions. Therefore, generalizing the rewards on undemonstrated states is crucial
since the demonstrations cannot cover all the states, such as in an autonomous
robot navigation problem where the state space is always of large scale. In order
to allow for generalization, the cost function takes as input a set of features that
describe the current state or have been extracted from the current perceptions,
rather than these raw inputs themselves. Current inverse reinforcement learning
algorithms generally solve this problem by using a linear combination of state
and action features to generalize on undemonstrated states and do not give an
explicit policy representation in large-scale spaces.

Our work focuses on improving autonomous robot navigation via inverse re-
inforcement learning. We adopt neural network to generalize the expert’s actions
to unvisited regions of the state space and an explicit policy representation is
easily expressed by neural network. Hence, we proposed an efficient and conve-
nient algorithm called the Neural Inverse Reinforcement Learning (NIRL) (Xia
& El Kamel, 2015a,b) and apply it to autonomous navigation tasks. For com-
putational simplicity, maximum a posteriori (MAP) estimation can be applied,
rather than the full Bayesian inference, as also suggested in (Choi & Kim, 2011b).
We also investigate the robustness of our algorithm by tuning the parameters,
including the features, on a fixed set of demonstrations and then testing their
performance on a large sample of demonstrations drawn from some distribution.
Experimental results on simulated autonomous navigation problems show that a
mobile robot using our approach can successfully navigate to the target position
without colliding with unpredicted obstacles, largely reduce the learning time,

97

5. LEARNING REWARD FUNCTIONS WITH NONLINEAR
NEURAL POLICY REPRESENTATIONS

and has a good generalization performance on undemonstrated states. Hence we
prove the robot intelligence of autonomous navigation transplanted from limited
demonstrations to completely unknown tasks.

5.2 Related Work

Inverse reinforcement learning can be formulated in Markov decision processes.
IRL assumes that an expert demonstrates a task to the learning agent and acts
optimally with respect to an unknown reward function to be discovered, and IRL
algorithms take these demonstrations as input. It is generally assumed that a
model of the transition is known and that the expert is acting optimally or close
to optimally with respect to an unknown reward function. The goal of inverse
reinforcement learning is then to find a reward for which the expert behavior is
optimal.

Inverse reinforcement learning was originally introduced in (Ng & Russell,
2000) where the authors addressed three learning problems: IRL in finite state
spaces, IRL in infinite state spaces and IRL from sampled trajectories. In practice,
it is easier to get samples from an expert. However, the authors also noted that
the IRL problem is ill-posed. In fact, there exists a series of reward functions,
including constant functions, that may lead to the same optimal policy. Most
existing IRL algorithms are then focused on solving this particular problem by
making some assumptions about the form of the demonstrator’s reward function.

Abbeel & Ng (2004) introduced a new indirect learning approach, named ap-
prenticeship learning, where the learning is less concerned about the actual reward
function, and the objective is to recover a policy that is close to the demonstrated
behavior. It is assumed that the reward is a sum of weighted state features, and
finds a reward function to match the demonstrator’s feature expectations. This
method may not explicitly recover the expert’s reward function, but still output
a policy that attains the performance close to that of the expert.

The maximum margin planning algorithm (Ratliff et al., 2006) uses similar
ideas, a linear-in-features reward, where the learner attempts to find a policy
that make the provided demonstrations look better than other policies by a mar-
gin, and minimizes a cost function between observed and predicted actions by a
subgradient descent.

98

5.2 Related Work

The policy of an agent is derived according to the reward function through
RL algorithms, thus a slight change of the reward function can lead to a change
in the policy. Gradient methods is used in (Neu & Szepesvári, 2007) where the
deviations from the expert’s trajectory are penalized through natural gradient.

The Bayesian inverse reinforcement learning approaches (Lopes et al., 2009;
Ramachandran & Amir, 2007) use probability distribution to tackle with the
ill-posed problem. They assume that the demonstrator samples state-action se-
quences from a prior distribution over possible reward functions, and calculates
a posterior on the reward function using Bayesian inference.

Similar to Bayesian IRL, the maximum entropy algorithm (Ziebart et al.,
2008, 2010) use an MDP model for calculating a probability distributionon the
state-actions. Maximum entropy IRL focuses on the distribution over trajectories
rather than pure actions. Similar research using linear programming is proposed
in (Syed et al., 2008). Later on, based on the maximum entropy framework, the
relative entropy inverse reinforcement learning algorithm using policy iteration is
proposed (Boularias et al., 2011). It indirectly employs knowledge of the environ-
ment and minimizes the relative entropy between the empirical distribution of the
state-action trajectories under a baseline policy and the distribution of the tra-
jectories under a policy that matches the reward features of the demonstrations.
A stochastic gradient descent is used to minimize the relative entropy.

Qiao & Beling (2011) proposes a Gaussian processes model and use preference
graphs to represent observations of decision trajectories. Levine et al. (2011)
present a probabilistic algorithm for nonlinear inverse reinforcement learning and
they use Gaussian process model to learn the reward as a nonlinear function.

Much previous work employs a linear approximation with feature expecta-
tions. The general idea is to find a reward function minimizing some loss be-
tween the expert features expectations and the one of the optimal policy for the
approximated dynamics and reward function. Structured Classification for In-
verse Reinforcement Learning (SCIRL) (Klein et al., 2012a,b; Piot et al., 2013)
uses the quadratic programming maximum-margin approach proposed in (Abbeel
et al., 2008) to obtain a reward function and least squares temporal differences
(LSTD) (Bradtke & Barto, 1996) for policy evaluation. The subgradient is es-
timated using importance sampling on trajectories generated using a stochastic

99

5. LEARNING REWARD FUNCTIONS WITH NONLINEAR
NEURAL POLICY REPRESENTATIONS

policy on the real environment. LSTD is also used to estimate the feature expec-
tation of the expert. A similar approach is taken in (Mori et al., 2011), which
used the game-theoretic algorithm MWAL (Syed & Schapire, 2007) where a near
optimal policy is found by using LSPIf, a variant of LSPI (Lagoudakis & Parr,
2003) for discrete finite horizon Markov decision processes.

Another different approach is taken by Levine et al. (2010), which constructs
reward features from a set of component features through logical conjunctions.
Given a set of trajectories, and the true environment model, the algorithm then
estimates a reward function by finding the most effective feature combinations.

Inverse reinforcement learning also gets much attention as an effective tech-
nique for robot learning (Abbeel et al., 2010; Choi & Kim, 2012; Michini et al.,
2013). Other methods also show significant impact in robot intelligence (Cobo
et al., 2014; Shon et al., 2007; Silver et al., 2008, 2012).

5.3 Inverse Reinforcement Learning

5.3.1 Preliminaries

Inverse reinforcement Learning addresses the problem of recovering the unknown
reward function for a given Markov decision problem for which the optimal policy
matches the examples. The reward function can be used to recover a policy for
the expert, and the features can be used to transplant the reward to any novel
environment on which the component features are well defined.

Inverse reinforcement Learning is formulated within the framework of a Markov
decision process without a reward function, denoted by MDP\R. Formally, a
finite-state, infinite horizon MDP is defined as a tuple M = {S,A, T, R, γ}
where S is a set of states, A is a set of actions. T is a transition function
where T (s, a, s′) = P (st+1 = s′ | st = s, at = a) gives the transition probability
from state s to state s′ when action a is taken. R stands for the reward function
where R(s, a) denotes the immediate reward incurred when action a is executed
in state s. γ ∈ [0, 1) is a discount factor.

We assume that both the agent policy π and the environment are Markovian.
Consequently, the action at only depends on the current state st and the next
state st+1 only depends on st, at.

100

5.3 Inverse Reinforcement Learning

A policy is a mapping π : S × A → [0, 1], where π(s, a) is the probability of
choosing action a ∈ A in state s ∈ S.

For a fixed policy, the value function V π : S → R under the policy π is defined
by

V π(s) = Eπ

[∞∑
t=0

γtR(st, at) | s0 = s

]
,

where (st, at)t≥0 is the sequence of random state-action pairs generated by
executing the policy π. The associated action-value function Qπ(s, a) : S×A → R

under the policy π is defined by

Qπ(s, a) = Eπ

[∞∑
t=0

γtR(st, at) | s0 = s, a0 = a

]
, (5.1)

The purpose of the agent is to find an optimal policy π∗ that maximizes the
expected total discounted reward over all states. The optimal value function is
defined by V ∗(s) = supπ V

π(s), while the optimal action-value function is defined
by Q∗(s, a) = supπ Q

π(s, a).

5.3.2 Inverse Reinforcement Learning

Inverse reinforcement learning is defined in MDP\R. The agent observes a set of
expert demonstrations in the form of M state-action pairs:

D = {(s1, a1), (s2, a2), ..., (sM , aM)},

where each pair Di = (si, ai) indicates that the demonstrator took action ai

in state si by adhering to some expert policy πE. We assume that the expert acts
near-optimally trying to solve a certain task.

Inverse reinforcement learning algorithms attempt to find a reward function
R whose corresponding optimal policy π∗ matches the actions taken in the obser-
vations D. In our autonomous navigation tasks, the expert demonstrations are
composed of NT trajectories: D = {τ (i)}1≤i≤NT

. L = {l(i)}1≤i≤NT
are the number

of state-action pairs contained in each trajectory, satisfying M =
∑NT

i=1 l
(i), and

l(i) may vary according to different trajectories.
We assume that the (unknown) reward function R is a linear combination of

K feature vectors fk with weights θk,

101

5. LEARNING REWARD FUNCTIONS WITH NONLINEAR
NEURAL POLICY REPRESENTATIONS

∀(s, a) ∈ S ×A : R(s, a) = θ�f(s, a) =
K∑
k=1

θkfk(s, a). (5.2)

The features indirectly represent the perceived state of environment, and also

act as a portable explanation for the expert’s policy, enabling the expert’s behav-

ior to be predicted in unfamiliar surroundings.

Then the Equation (5.1) can be rewritten as:

Qπ(s, a) = θ�μπ(s, a),

with μπ(s, a) = Eπ

[∞∑
t=0

γtf(st, at) | s0 = s, a0 = a

]
.

(5.3)

The term μπ is called the feature expectations of the policy π, and they

completely determine the expected sum of discounted rewards for acting according

to that policy (Abbeel & Ng, 2004). The expectation of one feature fπ
i under the

policy π can thus be expressed by:

μπ
i (s, a) = Eπ

[∞∑
t=0

γtfi(st, at) | s0 = s, a0 = a

]
.

If two policies share the same feature expectations, then they will have the

same value function whatever reward R = θ�f :

μπ1 = μπ2 =⇒ θ�μπ1 = θ�μπ2 =⇒ Qπ1 = Qπ2 . (5.4)

Therefore, inverse reinforcement learning can be transformed to minimizing

a distance between the feature expectations of the expert μE and those of the

learning agent μπ.

It is well known that the IRL problem is ill-posed. Indeed, R̂(s) = c, ∀s ∈ S,

where c is any constant, will make any set of state-action pairs D trivially optimal.

Also, D may contain inconsistent or conflicting state-action pairs, i.e. (si, a1) and

(si, a2) where a1 �= a2. Furthermore, the rationality of the demonstrator is not

well-defined, i.e., is the demonstrator perfectly optimal, or if not, to what extent

sub-optimal.

102

5.4 Nonlinear Neural Policy Representations

5.4 Nonlinear Neural Policy Representations

A policy connects every state with a corresponding action. If we are dealing
with a large-scale state space, an explicit policy representation would be hard
to describe, and most of previous work omit the policy representation. With a
perfect policy representation, the learning process could be much more efficient.

An artificial neural network can approximate any functions in any accuracy
and has a good generalization performance. Thus, we propose an explicit policy
representation by incorporating the neural network framework, and this repre-
sentation can ease the learning by IRL.

5.4.1 State and Action Spaces

In order to represent a state of environment, we first denote a numerical danger
level of 0 to 7 for each sensor reading, as we defined in the previous chapters. The
bigger the level is, the more possible the robot collides with an obstacle. A level
of 0 means no obstacle detected in this sensor region and 7 means a collision.
Only seven sensors excluding S5 and S6 are used in the state representation,
called state sensors. The reason why we eliminate them is that the experimental
results showed a better performance if not considered S5 and S6 as features.

One state is defined by 16 features: φ(s) = {φi}1≤i≤16, where (φi){1≤i≤7} =

{0, ..., 7} are the danger levels of state sensors, φ8 = {0, 1} represents whether
the target can be detected, φ9 = {0, .., 9} represents the target region, and
(φi){10≤i≤16} = {0, 1} represents whether the state sensors detect a wall.

Since the robot needs to deal with different environments, and the robot
position coordinates have no direct relation with the target and the obstacles in
different environments, it is not necessary to include them as part of the state
features. The robot localization can be fixed by many methods and is not the
focus of this paper, so we assume the robot know its position relative to its start
position.

The action spaces are defined by six robot actions:

A = {u1, u2, u3, u4, u5, u6}.

Among them, five are basic moving actions: move forward (u1), turn left at 30◦

(u2), turn left at 60◦ (u3), turn right at 30◦ (u4), turn right at 60◦ (u5) and one

103

5. LEARNING REWARD FUNCTIONS WITH NONLINEAR
NEURAL POLICY REPRESENTATIONS

emergency action: move backward (u6). The six actions are based on the robot
orientation. A turn at 90◦ is not defined because a sharp turn will bring danger
to a real vehicle. Moving backward is regarded as an emergency action that is
only executed when no path is available in front of the robot and whatever turns
cannot avoid obstacles.

5.4.2 Neural Policy Representation

In general, given a set of n actions , one state at time instant t has a k-feature
representation φ(st) = {φi}1≤i≤k

∗. We can then extend the state representation
by a state-action feature representation f(st, at) at time instant t. It is a row
vector of size k × n:

f(st, at) =
[
ϕ(st, u1)

� ϕ(st, u2)
� . . . ϕ(st, un)

�] . (5.5)

Here,

ϕ(st, ui) =

{
φ(st), if at = ui

0, otherwise.
(5.6)

Then, we denote a function G : S → R
n×1 a three-layer neural network to link

each state st with all its corresponding action values Q(st, u), i.e.,

G(st) =

⎡
⎢⎢⎢⎢⎣
Q(st, u1)

Q(st, u2)
...

Q(st, un)

⎤
⎥⎥⎥⎥⎦ , (5.7)

where n = |A|. The architecture of the neural policy representation is shown
in Figure 5.1.

Generally, the state features φ(s) is sent to the input layer and the network
outputs a vector of action values. Thus, the network has k input units, Lh hidden
units and n output units. From now on, we consider the bias units as parts of the
input and hidden layers, and they are set to 1. Hence, the input of the network
is now x = {φi}0≤i≤k where φ0 = 1 is the bias unit, and the same goes for the

∗From now on, we write st simply to represent φ(st).

104

5.4 Nonlinear Neural Policy Representations

�	
��
��
���

�

!��

"�#	�

$ %%#
&���	�
	�

%�#	�

��
���
�������%�
�	�

�'� ��
� ��� ��
� (� ��
�

)	������
*

&��
��%

Figure 5.1: Nonlinear neural policy representation.

hidden layer. The weight W (1) is used to connect the input layer and the hidden

layer, and similarly, the weight W (2) links the hidden layer and the output layer:

W (1) =

⎡
⎢⎣
ω
(1)
1,0 . . . ω

(1)
1,k

...
ω
(1)
Lh,0

. . . ω
(1)
Lh,k

⎤
⎥⎦ ∈ R

Lh×(k+1), W (2) =

⎡
⎢⎣
ω
(2)
1,0 . . . ω

(2)
1,Lh

...
ω
(2)
n,0 . . . ω

(2)
n,Lh

⎤
⎥⎦ ∈ R

n×(Lh+1).

(5.8)

In our autonomous navigation problem, the network has 16 input units, 10

hidden units and 5 output units. W (1) ∈ R
10×17∗, and similarly, W (2) ∈ R

5×11.

Keeping the weights W (1) and W (2) unchanged, according to Equations (3.19)

- (3.21), we can easily calculate G(st) using FFNN with the parameter Ω =

{W (1),W (2)}:

∗The bias unit is included in the input layer, and thus the weight w(1) has 17 columns, but
not 16. The same goes for the weight w(2).

105

5. LEARNING REWARD FUNCTIONS WITH NONLINEAR
NEURAL POLICY REPRESENTATIONS

z = w(1) · x = w(1) ·
[
1

φt

]
,

h = sig(z),

Gω(st) = sig

(
w(2) ·

[
1

h

])
.

(5.9)

where φt = φ(st) ∈ R
k×1, and sig(x) = 1

1+e−x is the sigmoid function, applied
in both hidden and output units.

We also denote

Gω(st, at) = [Gω(st)]i = Q(st, ui), with ui = at.

5.4.3 Stochasticity of Policy

The stochastic policy is designed based on the neural representation, and is ex-
pressed by a (parametric) Boltzmann probability distribution πΩ(s, a) = P (a|s; Ω)
that stochastically selects action a in state s according to NN weight Ω:

πΩ(st, at) = P (at | st; Ω) =
exp(ηG(st, at))∑
u∈A exp(ηG(st))

. (5.10)

η is the Boltzmann parameter that controls the stochasticity of action se-
lection. If η is low, all the choices have similar values, the policy outputs
more stochastically. On the contrary, if η is high, the action Q-values dif-
fer and the action with the highest Q-value is preferred to be picked. Thus,
P (at|st) ∝ exp(ηQ(st, at)) > 0.

Once the policy stops updating, the robot may start navigation by taking
greedy action selection that selects actions according to the following equation is
optimal:

aπt = πΩ(st, at) = argmax
u∈A

G(st). (5.11)

Since the neural network can approximate any functions, our proposed method
is greatly suitable for large state spaces. One may consider the neural policy
representation as a black box which containing a nonlinear function between
input features and output state-action values, see Figure 5.2(a).

106

5.5 Neural Inverse Reinforcement Learning

Also, if we integrate the action selection strategy inside the black box, we may
choose the selected action as the only output, see Figure 5.2(b).

��
��
�+

�"

'���)��

'���)��

'���)+�

'���)��

(a) multiple outputs

��
��
�+

�"

��

(b) single output

Figure 5.2: A black box structure of neural network.

5.5 Neural Inverse Reinforcement Learning

Inverse reinforcement learning algorithms always need to solve iteratively MDPs
in order to optimize the reward function, and a model of environment is required
in most IRL methods. Our method, NIRL, gets rid of this strict assumption
and is a model-free method (Xia & El Kamel, 2015a,b). They also assume the
reward function to be linear in the state features, and update all states to obtain
a new policy in solving MDPs. With the adoption of our proposed nonlinear
neural policy representation, NIRL only needs to update a subset of state-action
space to achieve the generalization of unvisited regions, which largely reduces the
learning time.

In our method, we do not assume the expert to be optimal. After obtaining
the set of sub-optimal demonstration examples, we may pretreat the dataset via
maximum a posteriori estimation (MAP) before proceeding them by NIRL.

5.5.1 Suboptimal Demonstration Refinement via Maximum
a Posteriori Estimation

When an expert demonstrates one specific task, it is not guaranteed that he is
always making decisions optimally. For instance, the expert may take different
actions for a same state. This can be interpreted as the expert policy is assumed
to be stochastic, even the actions may be stochastic. For example, we desire to
steer the car to the left at 30◦, however, due to the slippery road, the actual

107

5. LEARNING REWARD FUNCTIONS WITH NONLINEAR
NEURAL POLICY REPRESENTATIONS

steering angle turns out to be 60◦. In these cases, we would like to pretreat the
examples from the expert via maximum a posteriori estimation and finally refine
them to be near-optimal.

Formally, given the expert examples DE = {(st, at)}1≤t≤M , there exist some
state-action pairs that the same state correspond to multiple actions. The MAP
is expressed by:

â(st) = argmax
a

P (st | a)P (a). (5.12)

The likelihood P (st | a) can be obtained by counting the frequency of (st, a)
in DE. The prior P (a) can be of any predefined form. If we don’t know
the prior, we can assume P (a) is uniformly distributed. In this case, we have
P (st | a)P (a) ∝ P (st | a) , then â(st) = argmaxa P (st | a). A MAP estimation is
reduced to a maximum likelihood (ML) estimation. Simply, for one particular
state in all expert samples, the most likely action choice is the mode of all the
actions corresponding to that state.

After the pretreatment of suboptimal examples, we can apply NIRL on them.

5.5.2 Model-free Maximum Margin Planning

NIRL is designed to learn a reward function from the expert demonstrations in
the form of multiple trajectories. Assume that the reward rθ(s, a) = θ�f(s, a),
and given a set of demonstrations DE = {τ (i)E }1≤i≤NT

with each trajectory τ
(i)
E =

{(s(i)t , a
(i)
t)}1≤t≤Li

, we denote the empirical estimate for the expert feature expec-
tations μE by

μ̂E =
1

NT

NT∑
i=1

Li∑
t=1

γ(t−1)f(s
(i)
t , a

(i)
t). (5.13)

The maximum margin planning method (MMP) (Ratliff et al., 2006) is applied
to find a policy π that has feature expectations close to those of the expert, that
is, ‖μπ − μE‖ < ε. It iteratively constructs a set of policies until a policy is
found for which the distance between its value and the estimate of the expert’s
policy (using the expert’s feature expectations) is smaller than a given threshold.
If such a policy is not found, a new policy is generated as the optimal policy

108

5.5 Neural Inverse Reinforcement Learning

corresponding to a reward function for which the expert does better by a margin
than any of the policies previously found by the algorithm.

We use the max-margin algorithm in a model-free context, and we compare
the values of the expert in every state in the recorded trajectories to the ones of
learned policy in the same state. We can find the weight vector θ by solving the
quadratic optimization problem:

J(θ) = max
θ

NT∑
i=1

Li∑
t=1

(
QπE

θ (s
(i)
t , a

(i)
t)− Q̂π

θ (s
(i)
t , a

(i)
t)
)2

+ λ‖θ‖2, (5.14)

where Q̂π
θ (s

(i)
t , a

(i)
t) is an estimated Q-value of the learning agent in the current

state s
(i)
t of the expert. Estimating the value Q̂π in a given state st is calculated

by using our neural policy representation.

The objective function J(θ) can be minimized by a subgradient descent method
proposed in Ratliff et al. (2006, 2009b), i.e., θ ← θ − σ ∂J(θ)

∂θ
.

5.5.3 Neural Policy Iteration

After obtaining a reward function rθ(s, a), we update the nonlinear neural policy
iteratively through the backpropagation algorithm. That is realized by minimiz-
ing the neural network error J(Ω) via updating the weights W (1) and W (2). The
network’s error is the difference between its output for a given input and a target
value, what the network is expected to output. The inputs are the state features
and the outputs are the state-action values. The Q-values updated by RL algo-
rithms are treated as the target values. J(Ω) is the cross-entropy cost function
and defined as follows:

J(Ω) = − 1

N

N∑
t=1

[
Q̂π ◦ logQπ + (1− Q̂π) ◦ log (1−Qπ)

]

+
λ

2N

L−1∑
l=1

sl∑
i=1

sl+1∑
j=1

(
w

(l)
j,i

)2
. (5.15)

where

109

5. LEARNING REWARD FUNCTIONS WITH NONLINEAR
NEURAL POLICY REPRESENTATIONS

Qπ = Qπ(st, at) = G(st, at).

N is the total number of state-action pairs generated by the learned policy π.
L is the total number of layers in network, and sl is the number of units in layer
l, excluding bias unit. The second term of J(Ω) is the regularization term aimed
at avoiding overfitting or underfitting, and λ is regularization parameter.

Q̂π is calculated by the on-policy SARSA algorithm. The update rule is:

Q̂π(st, at) = Qπ(st, at) + α[rθ(st, at) + γQπ(st+1, at+1)−Qπ(st, at)]. (5.16)

α is the learning rate, set between 0 and 1. Setting it to 0 means that the
Q-values are never updated, hence nothing is learned. Setting a high value means
that learning can occur quickly.

γ is the discount factor with a range of 0 and 1. If γ is close to 0, the robot
will tend to consider immediate reward. On the contrary, if γ approaches 1, the
robot will take more future reward into account.

The gradient descent method is adopted to minimize the cost J(Ω) by

W (l) ← W (l) − σ
∂J(Ω)

∂W (l)
, Ω = {W (1),W (2), · · · }.

5.5.4 The Algorithm for Neural Inverse Reinforcement Learn-
ing

Given a set of demonstrations, if the expert is suboptimal, we should first decide
if a MAP pretreatment is needed. Then after the refinement, we calculate the
expert’s feature expectations using Eq. (5.13).

The NIRL algorithm iteratively repeat three major steps:

1. Estimate the feature expectations of current learned policy,

2. Find current reward function using MMP,

3. Solve the MDP and calculate current optimal policy with respect to the
reward function.

110

5.5 Neural Inverse Reinforcement Learning

The complete NIRL algorithm for finding an optimal policy is presented in

Algorithm 10.

Algorithm 10 The NIRL algorithm
Input: the expert’s feature expectations μE.

1: Randomly generate an initial neural policy π(1), represented by its weights
Ω(1) = {W (1)(1) ,W (2)(1)}.

2: Set i = 1.
3: while i > 0 do
4: Execute the current policy π(i) and generate a sequence of state-action

pairs ζ(i) = {(s(i)t , a
(i)
t)}, and compute μ(i) = μ(Ω(i)).

5: Minimize the objective function t(i) = minθ J(θ) in Eq. (5.14) s.t. ‖θ‖2 ≤
1, and let θ(i) be the value that attains this maximum.

6: if t(i) ≤ ε then
7: Terminate.
8: end if
9: Compute the rewards r(s

(i)
t , a

(i)
t) = (θ(i))�f(s(i)t , a

(i)
t), and using the

SARSA algorithm, update the Q-values of the sequence ζ(i).
10: Apply the neural policy iteration to compute the current optimal neural

weights Ω(i+1) = {W (1)(i+1)
,W (2)(i+1)}, which represents the new policy π(i+1).

11: Set i = i+ 1.
12: end while

Output: a series of NN weights Ω(1),Ω(2),

In the algorithm, the expert feature expectations μE are represented by its

estimate value μ̂E, i.e., μE = μ̂E.

The outputs of NIRL are also a series of policies:

{π(1), π(2), π(3), π(4), π(5), . . . }.

We use these policies to predict the state-action pairs in the demonstrations

DE, and we choose the policy that achieves the highest prediction accuracy as

the optimal policy of NIRL.

Once learned, the NIRL can recover the reward for the current state space,

and can predict the reward for any unseen state space within the domain of the

features.

111

5. LEARNING REWARD FUNCTIONS WITH NONLINEAR
NEURAL POLICY REPRESENTATIONS

5.5.5 Expert Demonstrations

Two types of demonstrations are used in this paper. The first one is the human
expert demonstrations. A human expert choose the best policy but may still
not an optimal one. The second one is the computer expert demonstrations. A
computer expert can always give optimal policies, and therefore a modified A*
algorithm is applied to generate optimal policies. Another advantage of computer
expert is that in some hazardous situations, human demonstrations cannot be
available for the robot, so learning from computer experts bring less harm.

All the demonstration examples can be gathered either by the modified A*
algorithm, or by the human expert, and NIRL algorithm learns the reward func-
tion. Finally a MDP solver finds a policy mapping from input of world states to
output of robot actions.

5.5.5.1 Computer-based Expert Demonstrations

The computer-based expert demonstrations are realized by the modified A* al-
gorithm and we have presented it in Chapter 3.5.

The expert’s policy πE corresponds to the optimal deterministic policy.

5.5.5.2 Human Demonstrations

A human expert can also demonstrate their navigating strategy by themselves.
An expert can control the learning robot by teleoperation or directly show the
robot how to navigate. We model the human demonstration in Figure 5.3. The
human expert first gave some key points in the navigating map, and a smooth tra-
jectory (Figure 5.3(a)) passing the key points is generated through interpolation
techniques. The trajectory is regarded as the planned path for the robot. Then
the robot follows the path to collect state-action pairs (Figure 5.3(b)). Obviously,
a human expert may not always deliver an optimal policy.

5.6 Experimental results

The mobile robot (see Chapter 2.5) is represented by a rectangle-shaped robot.
It is equipped with 9 sensors to observe the surrounding environment, as shown
in Figure 2.6. The environment map has a size of 100 m × 100 m. The obstacles

112

5.6 Experimental results

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100
Expert Demo: 5

(a) A trajectory given by a human ex-
pert

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100
Expert Demo: 5

(b) Path following to collect data

Figure 5.3: A human expert demonstration.

are randomly scattered in the environment and the robot has no prior knowledge

of their numbers, sizes and positions. The initial position of the robot is placed at

(10, 10) and the target position, a red circle in the map, is found at (90, 90). The

velocity of the robot is fixed at 2 m/s. The mission of the robot is to start from

the initial position and to find an optimal path to arrive at the target position

without any collision with any obstacles. If no obstacles are detected, the robot

is designed to move towards the target.

The neural network adopted in the experiments has three layers: 16 in the

input layer, 8 in the hidden layer and 6 in the output layer. The inputs and

outputs are presented above in Section 5.4.1. Some experiment parameters are

selected as follows:

- Boundary distance: dbou = 10 m,

- Warning distance: dwarn = 5 m,

- Learning rate of Q function: α = 0.8,

- Learning rate of BPNN: σ = 0.4,

- Discount factor: γ = 0.65,

113

5. LEARNING REWARD FUNCTIONS WITH NONLINEAR
NEURAL POLICY REPRESENTATIONS

5.6.1 Comparison of Two Types of Demonstrations

In order to show the relationship between number of demonstrations and collected

samples, different numbers of demonstrations were tested: 20, 25, 30, 35, 40 and

50. Recall that one sample is one state-action pair. Each number is conducted 10

times. The average results are shown in Figure 5.4(a). Averagely, one trajectory

could contain 52-55 samples.

20 25 30 35 40 45 50
800

1200

1600

2000

2400

2800

Number of trajectories

A
m

ou
nt

 o
f c

ol
le

ct
ed

 s
am

pl
es

human expert
computer expert

(a) The average amount of collected samples in different num-
bers of trajectories.

20 25 30 35 40 45 50

400

500

600

700

800

900

Number of trajectories

A
m

ou
nt

 o
f n

on
re

pe
at

ed
 v

is
ite

d
st

at
es

human expert
computer expert

(b) The average amount of nonrepeated visited states in dif-
ferent numbers of trajectories.

Figure 5.4: Expert demonstrations in different numbers of trajectories.

114

5.6 Experimental results

The human’s policies πE correspond to the sub-optimal stochastic policies.
Due to the stochasticity, in the same states, there may exist many action pos-
sibilities. We concern how many different states have been visited during the
demonstrations, therefore, we gave out the relation between the amount of non-
repeated visited states and the number of demonstrations, as shown in Figure
5.4(b).

Averagely, one trajectory could contain 13-19 nonrepeated visited states.

When robot follows the expert trajectories, the actions that the robot take
may be stochastic, that is, a suggested action may lead to a different action
according a probability P (â | a), see Figure 5.5.

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100
Computer−based Expert Demo: No. 3

(a) An expert trajectory with several
stochastic actions

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100
Computer−based Expert Demo: No. 17

(b) An expert trajectory with little
stochastic actions

Figure 5.5: Expert demonstrations with stochastic actions.

In Figure 5.5(a), we can see a number of stochastic actions, while in Figure
5.5(b), there exists only one stochastic action.

5.6.2 Neural Inverse Reinforcement Learning

In this paper, 30 demonstrations are generated by modified A* algorithm. All of
them have different configurations of random obstacle positions. The advantage
of different maps is that the robot can always face new challenge and help gather
more state-action combination. Some of the human expert demonstrations are
presented in Figure 5.6.

115

5. LEARNING REWARD FUNCTIONS WITH NONLINEAR
NEURAL POLICY REPRESENTATIONS

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100
Human Expert Demo: 1

Demo accomplished!
Samples collected: 49 pairs.

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100
Human Expert Demo: 7

Demo accomplished!
Samples collected: 47 pairs.

Figure 5.6: Human expert demonstrations.

It is observed that the computer-based demonstrations can always provide
optimal paths, and this will greatly improve the robot learning performance com-
pared to human teachers who cannot guarantee the quality of their demonstra-
tions.

In each iteration of NIRL, an episode of 10 trajectories is generated using the
current policy and all the sequences of state-action pairs are collected that are
used for updating the policy. In each trajectory, the robot tries to navigate in
different environments in order to assure the diversity of state-action pairs. A
new episode will be started in the following three situations:

• The robot finds a collision free path to the target;

• The robot collides with an obstacle or the map borders;

• The robot runs out the moving steps.

The max-margin method is applied to learn the reward function by minimizing
the margin function J(θ) in Equation 5.14.

Figure 5.7 showed the change of the margin in MMP during the learning
episodes. We can tell the margin was stably diminishing towards 3. Hence, the
margin between a learned policy was gradually approaching the expert policy,
and this is exactly the learning objective.

116

5.6 Experimental results

0 20 40 60 80 100 120 140
2

4

6

8

10

12

14

16

18

20

22

episodes

m
ar

gi
n

Figure 5.7: Changes of margin during the learning episodes.

0 20 40 60 80 100 120 140
3.22

3.24

3.26

3.28

3.3

3.32

3.34

3.36

3.38

episodes

co
st

Figure 5.8: Changes of NN cost during the learning episodes.

The nonlinear neural policy is trained for the state-action pairs collected under
the current policy. The goal is to minimize the cost J(Ω) in Equation (5.15) by
iteratively updating the weights W (1) and W (2). The result is shown in Figure
5.8.

In the first 20 episodes, the cost decreases fast and then becomes smaller

117

5. LEARNING REWARD FUNCTIONS WITH NONLINEAR
NEURAL POLICY REPRESENTATIONS

stably. Finally after 140 episodes, the cost converges and stays around 3.23.
Once the training terminates, W (1) and W (2) stop updating and the learning
process from demonstration is accomplished. It is now the time to examine the
robot learning achievement.

5.6.3 Robot navigation in new unknown environments

In the navigation process, the weights W (1) and W (2) have converged to their
optimal values. The mobile robot has learned how to behave in front of obstacles
in unexpected environments. Some of the navigation results are shown in Figure
5.9.

It is observed that the paths that the robot chose may not be the optimal
ones due to a lack of complete knowledge of environment map, but they are still
fully acceptable and perfect enough to meet our expectation, especially in such
complicated and unstructured environments.

A successful navigation is one in which the robot succeeds in arriving at the
target position. We tried 100 times of autonomous navigation by using various
number of expert demonstrations. We compare the rate of success with both
computer expert demonstrations (CE) and human expert demonstrations (HE).

Number of demos 25 30 40 50
Rate of success of CE (%) 90 91 89 87
Rate of success of HE (%) 82 85 84 84

Table 5.1: Rate of success in different numbers of demos

We observe that both types of demonstrations have proved to be reliable in-
structors to the robot, and the computer expert did slightly better. Also more
demonstrations may not achieve a higher rate of success, because more demon-
strations bring more stochastic in expressing the policies.

In order to test the robustness of the proposed algorithm, we gave the robot six
completely new navigation missions using the same weights with three different
robot velocities, namely 1 m/s, 2 m/s and 3 m/s. 50 runs were conducted for
each velocities. The results are shown in Figure 5.10.

With the increase of obstacles presented in the surrounding environment, the
robot becomes harder to navigate successfully. It is a normal situation that a

118

5.6 Experimental results

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100
Robot Navigation

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100
Robot Navigation

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100
Robot Navigation

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100
Robot Navigation

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100
Robot Navigation

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100
Robot Navigation

Figure 5.9: Robot navigation results in different environments.

bigger speed represents a need for quicker and more accurate reaction to the

environment changes, especially in an completely unknown environment. Despite

that, we can see that at least the robot could manage half of the navigation tasks

119

5. LEARNING REWARD FUNCTIONS WITH NONLINEAR
NEURAL POLICY REPRESENTATIONS

10 15 20 25 30
20

25

30

35

40

45

50

No. obstacles

N
o.

 s
uc

ce
ss

fu
l n

av
ig

at
io

ns

v=1m/s
v=2m/s
v=3m/s

Figure 5.10: Comparison of numbers of successful navigations in the environments
of different numbers of obstacles.

and in most cases, the robot did pretty good. Therefore, the above experiments
have proven the feasibility and the stability of the proposed NIRL algorithm in
different navigation environments and in different robot velocities.

5.6.4 Analysis of the weight changes

We analyzed the changes of neural policy weights W (1) and W (2) during the
learning process using NIRL. The change in one episode is the difference between
the weights before the learning and the ones after learning, i.e., ‖W (l)

new −W (l)‖1.
The results are shown in Figure 5.11(a) and Figure 5.11(b). The X-axis represents
the number of episode and the Y-axis is the weight change.

The changes of the weight W (1) fluctuated strong in the beginning episodes
and then went quiet around 0 after 20 episodes. The overall trend of weight
changes showed that the weight W (1) was turning stable as the learning process
carried on and W (1) converged to its optimal value.

In the meantime, the changes of weight W (2) fluctuated more fiercely through
all the learning process even though the changes went small after 60 episodes.
That is because W (2) is directly related to the errors between the real outputs
and the expected values in the neural network. Since the expected values are

120

5.6 Experimental results

0 20 40 60 80 100 120 140
−0.1

0

0.1

0.2

0.3

0.4

0.5

ch
an

ge

episodes

(a) Changes of W (1) in learning process.

0 20 40 60 80 100 120 140

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

episodes

ch
an

ge

(b) Changes of W (2) in learning process.

Figure 5.11: Changes of neural policy weights during the learning process.

calculated in Equation (5.16), and in each learning episode, the robot needs to

deal with a different environment, there are always errors between the real outputs

and the expected values. Therefore, it is reasonable that the weight W (2) is more

121

5. LEARNING REWARD FUNCTIONS WITH NONLINEAR
NEURAL POLICY REPRESENTATIONS

difficult to converge to an optimal value. However, the overall trend still told
us that W (2) was converging during the learning process, and the experiments
showed that it did not affect the robot learning performance.

The changes of weights showed that NIRL converged to the optimal values
after approximately 80 learning episodes, and the learned policy is close enough
to the expert policy.

5.6.5 Autonomous Navigation in Dynamic Environments

Figure 5.12: Autonomous robot navigation in a dynamic environment using
NIRL.

122

5.6 Experimental results

We tested the NIRL algorithm in dynamic environments. The results are

shown in Figure 5.12. In the environment, the black solid objects are static

obstacles, and the purple rectangle ones are moving obstacles, whose moving

directions are unpredictable.

There are 10 static obstacles and 10 moving obstacles. When the robot de-

tected no obstacles around, it headed to the destination. From the experiment,

we can see that at time 13, the robot met a static obstacle on its left and a moving

obstacle in front of it, and the robot successfully avoided them and finally arrived

at the destination.

Therefore, NIRL has proven its feasibility in the application of autonomous

navigation in dynamic environments.

5.6.6 Discussions

We compare the NIRL algorithm with three major existing methods. The first one

is the apprenticeship learning (AL) in (Abbeel & Ng, 2004; Abbeel et al., 2008),

the baseline of the family of inverse reinforcement learning. The second one is

the relative entropy inverse reinforcement learning (RE), proposed in (Boularias

et al., 2011), a popular IRL algorithm using the theory of entropy. The last one

is the structured classification inverse reinforcement learning (SCIRL), presented

in (Klein et al., 2012a), a recent work using max-margin method for a batch

model-free learning algorithm.

We fixed the robot velocity at 2 m/s at the number of obstacles was 20. We

conducted 25 runs for each learning method and each run was tested on 100 times

of autonomous navigation.

For all the methods, we implemented the same computer expert. The com-

parison of the rate of success are shown in Table 5.2.

NIRL AL RE SCIRL
Average rate (%) 83 66 78 79

Best rate (%) 94 82 87 88
Worst rate (%) 69 43 61 60

Table 5.2: Comparison of the rate of success versus different IRL methods.

123

5. LEARNING REWARD FUNCTIONS WITH NONLINEAR
NEURAL POLICY REPRESENTATIONS

From the results, we can see that NIRL achieved the best rate of success. RE
and SCIRL performed almost equally and slight worse than our NIRL algorithm.
AL, as a pioneer algorithm, did the worst.

Therefore, the NIRL algorithm had a better performance in autonomous nav-
igation tasks over the other three methods.

5.7 Conclusion

In the previous chapters, we have investigated two types of robot learning meth-
ods. The first one is to learn a policy from expert demonstrations, and the second
one is to learn by itself by interacting with the surrounding unknown environ-
ments without any expert indication.

This chapter presents a third robot learning method, that the robot tries to
understand a expert behaviors in executing one specific task by means of learning
the underlying rewards from the expert demonstrations. This method is under
the framework of inverse reinforcement learning. We developed our method, the
neural inverse reinforcement learning algorithm. We first proposed a nonlinear
neural policy representation by incorporating an artificial neural network. This
explicit policy representation make the learning algorithm easy to implement.
NIRL is also a method that does not assume the expert to be optimal. We
proposed to applied maximum a posteriori to pretreat the suboptimal samples
and later use the refined samples to NIRL. Then we adopted the maximum margin
method to learn the reward through minimizing the maximum margin between
the expert policy and the learned policy. Finally, we update the nonlinear neural
policy using the learned reward function.

The experiment results show the feasibility and the robustness of the proposed
NIRL algorithm, and he robot can complete autonomous navigation tasks safely
in an unpredicted dynamic environment. The robot not only can imitate what
the expert behave but also understand why the expert behave that way through
learning the reward function. An autonomous mobile robot equipped with such
learning ability is what we desire during the whole dissertation.

124

Conclusions and Perspectives

In this chapter, we will conclude the dissertation by summarizing the main results
and then present some perspectives of future research to complete and improve
this work.

Conclusions

Mobile robots are now playing a significant role in our society, the capability of
autonomous navigation in dynamic environments is one of the fundamental skills.
The requirement that the robot should be able to react to changes in environ-
mental conditions led to the production of robust and reliable controllers that can
deal with the uncertainty of the world. Since it is unlikely that we can foresee
all potential real-world situations sufficiently accurate, a pre-programmed robot
cannot meet the future requirements, especially when interaction with human is
needed. The aim of this dissertation has been focused on empowering a mobile
robots with an intelligent learning and adaptive ability that can cater to changing
environments.

In this dissertation, we proposed three robot learning frameworks within dif-
ferent situations.

• Efficient policy learning from expert demonstrations. (Chapter 3)

Human-beings are born with imitation ability, so should robots. When an
expert demonstrates one specific task to robots, robots should know to imi-
tate or learn how to behave or how to make decisions as their teacher does.
Here comes our method of efficient policy learning from expert demonstra-
tions. Different from previous work on learning from demonstration, we
placed our focus on human experts are not available to robots. Instead,
an improved version of A* is designed to stimulate expert examples. We

125

CONCLUSIONS AND PERSPECTIVES

established a decision-making process and represented the policy by using
neural network. This algorithm can be efficiently applied to autonomous
navigation tasks. (Xia et al., 2015)

• Self-learning in autonomous navigation using neural network based Q-learning.
(Chapter 4)

An intelligent robot should also learn to make decisions even without any
demonstrations. That is realized by interacting with the environment of
tasks. Based on these assumptions, we proposed neural network based
Q-learning. Since we have proved that a neural network could be an ap-
propriate policy representation, we improved the Q-learning algorithm by
incorporating this representation. Results showed that our method greatly
improved the learning performance and increase the convergence speed.
(Xia & El Kamel, 2014a,b,c, 2015d)

• Learning reward from multiple examples via neural inverse reinforcement
learning. (Chapter 5)

Experts may not always demonstrate optimal policies. In these cases, in-
verse reinforcement learning provides a way to learn reward corresponding
to each state. However, the generalization of undemonstrated states affects
the performance of algorithm. We proposed the neural inverse reinforce-
ment learning, which aligned our interest in neural network. Our method
improved the performance on learning a reward function. This algorithm
could be successfully applied to autonomous navigation, and as well as other
applications. (Xia & El Kamel, 2015a,b)

All the above robot learning methods are model-free algorithms that are more
suitable in real applications since a model of an unknown world is impossible to
acquire.

Future Work

First of all, this dissertation has provided theoretical foundations on mobile robot
learning and achieved reliable results in simulators. Tests on real vehicles in
outdoor environments could be conducted in order to carry the robot learning a
step forward.

126

CONCLUSIONS AND PERSPECTIVES

Second, an intelligent robot control system relies on the various sensors that
capture the environmental information. With the development of robot sensors,
an robot should be able to learn a control strategy from the rich variety of sensory
data, especially those of visual and audio inputs. The ability of learning from
a complexity of sensor data will not only endow the robot intelligence but also
enhance the robot interaction with humans.

Third, robot learning should also be developed in multi-robot systems. More
and more labor work would be done by a group of robots, and thus it would be
necessary to pursue robot learning techniques to predict the behavior and better
interact with other robots.

Last but not least, the deep reinforcement learning method has been presented
by applying covolutional neural network (CNN) (Mnih et al., 2013). As part of
deep learning family, CNN has shown its power in image recognition and computer
vision, therefore, researches in deep reinforcement learning will surely bring new
breakouts to robotics.

127

CONCLUSIONS AND PERSPECTIVES

128

Résumé Étendu en Français

Introduction

Les robots modernes sont conçus pour aider ou remplacer les humains à effectuer
des opérations complexes, des planifications, ou des contrôles de tâches. Les exem-
ples contiennent la manipulation d’objets, l’assistance d’experts dans une variété
de professions, la navigation dans des environnements extérieurs, l’exploration
des territoires inconnus, et la conduite dans les zones urbaines. Il est générale-
ment un processus compliqué pour la conception d’un schéma de contrôle pour
ces robots afin d’exécuter ces tâches, même pour les personnes spécialisées dans
la programmation de robots. Elles doivent prendre en compte délibérément les
spécifications de toutes les situations que le robot peut rencontrer et elle nécessi-
tent à la création nouveau et différent à la main pour chaque tâche particulière.
Ce genre de pré-programmation manuelle est généralement un travail intense et
ennuyeux. Plutôt que de pré-programmer un robot pour toutes les tâches, il serait
plus utile si le robot pourrait apprendre ces tâches par eux-mêmes.

Movitation de la Recherche

La capacité de navigation autonome joue un rôle important dans la des voîtures
autonomes sans conducteur de l’état de l’art. Remontée en 2003, La Defense
Advanced Research Projects Agency (DARPA) du département de la Défense
des États-Unis a organisé le “Grand Challenge” pour stimuler le développement
des technologies nécessaires pour créer les véhicules terrestres sans pilote et au-
tonomes capables de parcourir un cours substantielle hors route dans une période
limitée. Le défi nécessite pour les véhicules de naviguer dans un circuit de 142

129

RÉSUMÉ ÉTENDU EN FRANÇAIS

miles à travers du désert de Mojaves en ne pas surpassant 10 h. La première
compétition a eu lieu le 13 mars, 2004. 15 véhicules ont y participé, mais mal-
heureusement, aucune n’ont pu terminé plus de 5% de l’ensemble du cours. Par
conséquent, le relancement d’un deuxième événement “DARPA Grand Challenge”
était prévue le 8 octobre 2005. Cinq des 23 véhicules ont conquis le cours avec
succès, et "Stanley" de Stanford (voir Figure 1) a été couronné le champion avec
un résultat de 6 h 53 min. Cette voiture robotisée était une étape importante
dans la quête des voitures autonomes modernes.

Figure 1: Stanley: le champion du DARPA Grand Challenge 2005. (Thrun et al.,
2006)

Deux ans plus tard, le “DARPA Urban Challenge” a eu lieu le 3 novembre,
2007, et a appelé à des véhicules autonomes de conduire 97 km à travers une
maquette d’environnement urbaine en moins de 6 heures, en interagissant avec
des obstacles et des autres véhicules en mouvement et aussi en respectant tous les
règlements de la circulation. La véhicule “Boss” a été déclaré la gagnante (Urmson
et al., 2008) et “Junior” (Montemerlo et al., 2008) a remporté la deuxième place.
Ces vésicules ont également été considérées comme le premier prototype de la
voiture sans conducteur de Google.

Traditionnellement, un programmeur humain utilisait son propre compréhen-
sion sur les tâches désirées et dressait un plan à l’avance pour coder un contrôleur
de robot qui permettait de répondre à toutes les situations où le robot pouvait
faire face. Si des erreurs ou de nouvelles circonstances apparaissaient, le robot
devait être programmé à nouveau.

130

RÉSUMÉ ÉTENDU EN FRANÇAIS

Motivé par les défis du DARPA et les voîtures sans conducteur de Google,

cette thèse se concentre sur doter les robots la capacité d’apprendre de nouvelles

techniques et d’améliorer leur compétences autonomes. Par ce moyen, les robots

peuvent prendre de décisions intelligentes et adapter à des incertitudes et des

changements imprévus dans les environnements stochastiques et dynamiques.

Cette thèse étudie le pilotage intelligent de robots dans les tâches de naviga-

tions autonomes et examiner l’apprentissage des robots dans trois aspects.

Apprentissage efficace d’une politique par démon-
strations d’experts

Dans le premier aspect, nous considérons l’apprentissage des robots par dé-

monstrations d’experts. Cette méthode est inspirée par l’instinct humain de

l’imitation. Les humains sont nées avec la capacité d’imitation, et les robots

doivent donc aussi posséder cette capacité.

Nous fournissons un robot des exemples d’une tâche faite par un expert, le

robot observe ces exemple et apprend une politique efficace à partir de ces données

et de généraliser sur toutes les situations potentielles qui ne sont pas données dans

les exemples. Dans la navigation autonome, une série de trajectoires sont données

au robot, le robot apprend à construire une stratégie de contrôle afin d’accomplir

la navigation autonome dans un environnent inconnu et dynamique (voir Figure

2).

���

"	������
���,��	��-�
���	 ��%�
�	
���.

)	����
��
����

/�������
��
��	

�����
���%�
��%��#

Figure 2: Un schéma simple de l’apprentissage d’une politique.

131

RÉSUMÉ ÉTENDU EN FRANÇAIS

Nous avons intégré un mécanisme d’inférence en appliquant un réseau de
neurones. Après avoir obtenu les démonstrations d’un expert, le robot sélectionne
une base de données valables, et cette base est envoyée vers le réseau de neurones
pour s’entraîner. L’algorithme de rétropropagation du gradient est appliqué pour
minimiser itérativement une fonction d’entropie croisée. Notre méthode montre
que avec un nombre acceptable de démonstrations, la structure d’apprentissage
peut converger vers une politique optimale dans un nombre d’épisodes pas grand,
et aussi le robot peut acquérir les compétences de navigation indépendants dans
un nouveau environnent dynamique.

En plus, nous proposons un expert informatique basé sur une variante de
l’algorithme A*. Cet expert peut offrir des trajectoires dans les cas extrêmes où
les démonstrations humaines sont indisponibles.

L’avantage de cette méthode d’apprentissage efficace d’une politique est que le
designer n’ont pas besoin de pré-programmer un robot précisément. L’utilisateurs
peuvent facilement demander les robots d’exécuter un comportement par leur
démontrer comment le faire.

Apprentissage par renforcement sous des politiques
stochastiques

Dans le deuxième aspect, nous considérons l’apprentissage de robots sans dé-
monstrations d’experts et l’application dans la navigation autonome. C’est pour
traiter les situations où les humains ont très peu d’expérience préalable, et donc
aucunes démonstrations seraient être fourni. Un robot intelligent doit aussi pos-
séder la compétence d’apprendre par soi-même à prendre des décisions sans au-
cune direction.

Nous proposons une méthode d’apprentissage en ligne via d’expérience accu-
mulée qui est basée sur l’apprentissage par renforcement (voir Figure 3). Elle
est réalisée par les interactions exploratoires entre le robot et son environnement.
L’algorithme de Q-learning est une méthode qui ne nécessite aucun modèle ini-
tial du système, et Q-learning peut être appliqué pour trouver une suite d’actions
associées à des états d’un Processus de décision markovien. Nous utilisons Q-
learning pour mettre à jour les Q-valeurs dans chaque étape de temps. Différente
que les autres méthodes concernant Q-learning qui utilisent les exemples venants

132

RÉSUMÉ ÉTENDU EN FRANÇAIS

d’une seule interaction, notre méthode accumule les exemples venant de toutes

les interactions dans une base de donnée, ainsi que leurs Q-valeurs renouvelées.

La base est utilisée par un réseau de neurones afin de optimiser itérativement

une politique de contrôle en temps réel. Pendant le processus d’interaction, le

robot doit balancer l’exploration et l’exploitation, donc son politique est traitée

stochastique.

���

)�
����	��-�
��� � %�
	�
	0�	��	��	

/�������
���,��	��-���

�	 ��%
�	
���.

���% �
���
���,��	��-�
12%	������

3��%�
��
	���
���

4�
���%
��%��#

"	����������,��	

Figure 3: Un schéma simple de l’apprentissage en ligne via d’expérience accu-
mulée.

Cette méthode évite l’inconvénient de celles dans la littérature qui abandon-

nent la plupart de données collectées pendant le processus d’interaction. Aussi,

comme cette méthode améliore la politique en temps réel, sa performance est plus

stable que celle de l’apprentissage en batch. Les expériences montrent le succès

d’appliquer notre méthode à la navigation autonome et dépense moins de temps

pour trouver une politique optimale.

133

RÉSUMÉ ÉTENDU EN FRANÇAIS

Apprentissage de la fonction de récompense via une
représentation non-linéaire de la politique neuronale

Dans le troisième aspect, nous considérons que le robot apprend à compren-
dre les comportements d’un expert qui fait des démonstrations. Il est réalisé
par apprendre les récompenses potentielles dans les états via l’apprentissage par
renforcement inverse. C’est parce que une fonction de récompense n’est pas nor-
malement facile à préciser et imiter directement un expert poserait le problème
de l’imprécision si l’expert acte de manière non-optimale. Par conséquent, étant
donné les démonstrations, les robots ne doivent pas seulement apprendre à as-
socier les états et les actions, mais aussi essayer de comprendre les récompenses.

Nous proposons une méthode, l’apprentissage neuronale par renforcement in-
verse (voir Figure 4).

���
4�
���%�5�� ���
���%�
)	����
��
���� �����
���%�

��%��#

����%	
�	-��	�	�

�--	�
��	
��
��	

	����
- ��
���

6��%��	��
�	 ��%���%��#�
�	��	�	�
�
���

3��%�
��
	���
���

���
��#�
	�

Figure 4: Un schéma simple de l’apprentissage de la fonction de récompense.

Une représentation non-linéaire de la politique neuronale est tout d’abord
développée afin d’établir une connexion explicite entre les états et les actions,
et un réseau de neurones est également intégré pour généraliser les actions sur
les états non visités parmi les démonstrations. Ensuite la méthode proposée
de l’apprentissage neuronale par renforcement inverse est appliquée à appren-
dre la fonction de récompense. Après avoir obtenu cette fonction, nous pouvons
d’avantage optimiser itérativement la politique neuronale via les interactions pro-
gressives entre le robot et l’environnement et finalement déduire une politique
optimale. Afin de traiter les démonstrations non-optimales, un raffinement est
désigné à pré-procéder les démonstrations en profitant du maximum a posteriori.

134

RÉSUMÉ ÉTENDU EN FRANÇAIS

Les résultats expérimentaux ont montré une performance fiable et la ro-
bustesse dans la tâche de navigation autonome en utilisant notre méthode pro-
posée.

Conclusions et Perspectives

Cette thèse contribue à la conception de commande intelligente afin de réaliser
l’apprentissage des robots mobiles durant la navigation autonome. Les résultats
expérimentaux ont confirmé l’efficacité et la robustesse de toutes les méthodes
que nous avons proposé, et en plus, l’application de ces méthodes peut largement
soulager du travail fastidieux de préprogrammer un robot manuellement.

Contributions

L’objectif de cette thèse est centrée sur l’habilitation pour les robots mobiles des
capacités d’apprentissage intelligent et d’adaptation qui permet de répondre à
des environnements changeants. Les contributions sont développées dans trois
domaines:

1. Dans les situations où les démonstrations optimales sont fournies, nous
avons proposé la méthode d’apprentissage efficace d’une politique par dé-
monstrations d’experts (Chapître 3). Cette méthode produit une perfor-
mance stable et agréable avec un nombre acceptable de démonstrations. Elle
économise aussi beaucoup de temps pendant le processus d’apprentissage.

2. Dans les situations où les humains manquent d’experience préalable, nous
avons proposé la méthode d’apprentissage en ligne via d’expérience accu-
mulée (Chapître 4). Cette méthode permet d’apprendre par soi-même une
stratégie de contrôle et de traiter l’environnement progressivement en un
certain nombre d’épisodes inférieur a la littérature. Notre méthode réussit
une performance fiable et stable.

3. Dans les situations où les démonstrations fournies ne sont pas toujours op-
timales, nous avons proposé la méthode d’apprentissage neuronale par ren-
forcement inverse (Chapître 5). Cette méthode peut efficacement apprendre
la fonction de récompense en dessous de toute l’espace d’états. Cela permet

135

RÉSUMÉ ÉTENDU EN FRANÇAIS

de mieux comprendre les comportements d’experts et ensuite calculer une
politique de contrôle optimale, même si les exemples sont non-optimaux.

Perspectives

Tout d’abord, cette thèse a fourni les théories fondementales sur l’apprentissage
de robots mobiles et a obtenu des résultats fiables dans les simulateurs. Tests sur
véhicules réelles dans des environnements extérieurs pourraient être menées afin
de réaliser l’apprentissage de robots un pas en avant. En plus, d’autre applications
pourraient aussi être étudié.

Deuxièmement, un système de contrôle du robot intelligent repose sur les dif-
férents capteurs qui perçoivent l’environnement. Avec le développement de cap-
teurs, un robot doit être capable d’apprendre une stratégie de pilotage à partir
de la variété riche de données sensorielles, en particulier celle des entrées au-
dio et visuelles. La capacité d’apprendre à partir d’une complexité des données
de capteurs non seulement dotera l’intelligence du robot, mais aussi améliorer
l’interaction de robot avec les humains.

Troisièmement, l’apprentissage de robot devrait également être développé
dans les systèmes de multi-robots. Puisque de plus en plus de travaux seraient
effectués par un groupe de robots, il serait donc nécessaire de poursuivre les tech-
niques d’apprentissage de robot pour prédire les comportements d’autre robots
en coopération et mieux interagir avec eux.

Dernièrement, la méthode de l’apprentissage profond par renforcement a été
présenté par l’application du réseau neuronal covolutional (CNN, convolutional
neural network en anglais) (Mnih et al., 2013). Dans le cadre de la famille de
l’apprentissage profond, CNN a montré sa puissance en reconnaissance d’image
et de vision par ordinateur, par conséquent, des recherches en l’apprentissage
profond par renforcement apporteront certainement de nouveaux avancements à
la robotique.

136

Bibliography

Abbeel, P. & Ng, A.Y. (2004). Apprenticeship learning via inverse reinforce-
ment learning. In Proceedings of the twenty-first international conference on
Machine learning , 1, ACM.

Abbeel, P. & Ng, A.Y. (2005). Exploration and apprenticeship learning in
reinforcement learning. In Proceedings of the 22nd international conference on
Machine learning , 1–8, ACM.

Abbeel, P., Coates, A., Quigley, M. & Ng, A.Y. (2007). An application
of reinforcement learning to aerobatic helicopter flight. Advances in neural in-
formation processing systems, 19, 1.

Abbeel, P., Dolgov, D., Ng, A.Y. & Thrun, S. (2008). Apprenticeship
learning for motion planning with application to parking lot navigation. In
Intelligent Robots and Systems, 2008. IROS 2008. IEEE/RSJ International
Conference on, 1083–1090, IEEE.

Abbeel, P., Coates, A. & Ng, A.Y. (2010). Autonomous helicopter aero-
batics through apprenticeship learning. The International Journal of Robotics
Research.

Alissandrakis, A., Nehaniv, C.L. & Dautenhahn, K. (2002). Imitation
with alice: Learning to imitate corresponding actions across dissimilar embod-
iments. Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE
Transactions on, 32, 482–496.

Andrieu, C., De Freitas, N., Doucet, A. & Jordan, M.I. (2003). An
introduction to mcmc for machine learning. Machine learning , 50, 5–43.

137

BIBLIOGRAPHY

Argall, B.D., Chernova, S., Veloso, M. & Browning, B. (2009). A sur-
vey of robot learning from demonstration. Robotics and autonomous systems,
57, 469–483.

Atkeson, C.G. & Schaal, S. (1997). Robot learning from demonstration. In
Machine Learning (ICML), International Conference on, vol. 97, 12–20.

Bagnell, J.A., Bradley, D., Silver, D., Sofman, B. & Stentz, A. (2010).
Learning for autonomous navigation. Robotics & Automation Magazine, IEEE ,
17, 74–84.

Bentivegna, D.C., Atkeson, C.G. & Cheng, G. (2004a). Learning from
observation and practice using primitives. In AAAI 2004 Fall Symposium on
Real-life Reinforcement Learning , Citeseer.

Bentivegna, D.C., Atkeson, C.G., UDE, A. & Cheng, G. (2004b). Learn-
ing to act from observation and practice. International Journal of Humanoid
Robotics , 1, 585–611.

Bertsekas, D.P. (1996). Dynamic programming and optimal control , vol. 1.
Athena Scientific Belmont, Massachusetts.

Bertsekas, D.P. (1998). Network Optimization: continuous and discrete meth-
ods , vol. 8. Athena Scientific.

Billard, A. & Grollman, D. (2013). Robot learning by demonstration. Schol-
arpedia, 8, 3824.

Billard, A., Calinon, S., Dillmann, R. & Schaal, S. (2008). Robot
programming by demonstration. In Springer handbook of robotics , 1371–1394,
Springer.

Bohren, J., Foote, T., Keller, J., Kushleyev, A., Lee, D., Stewart,

A., Vernaza, P., Derenick, J., Spletzer, J. & Satterfield, B. (2008).
Little ben: the ben franklin racing team’s entry in the 2007 darpa urban chal-
lenge. Journal of Field Robotics , 25, 598–614.

Boularias, A. & Chaib-Draa, B. (2013). Apprenticeship learning with few
examples. Neurocomputing , 104, 83–96.

138

BIBLIOGRAPHY

Boularias, A., Kober, J. & Peters, J.R. (2011). Relative entropy inverse
reinforcement learning. In International Conference on Artificial Intelligence
and Statistics, 182–189.

Boularias, A., Krömer, O. & Peters, J. (2012). Structured apprenticeship
learning. In Machine Learning and Knowledge Discovery in Databases, 227–
242, Springer.

Bradtke, S.J. & Barto, A.G. (1996). Linear least-squares algorithms for
temporal difference learning. Machine Learning , 22, 33–57.

Breazeal, C., Hoffman, G. & Lockerd, A. (2004). Teaching and working
with robots as a collaboration. In Proceedings of the Third International Joint
Conference on Autonomous Agents and Multiagent Systems-Volume 3 , 1030–
1037, IEEE Computer Society.

Carreras, M., Yuh, J., Batlle, J. & Ridao, P. (2005). A behavior-
based scheme using reinforcement learning for autonomous underwater vehicles.
Oceanic Engineering, IEEE Journal of , 30, 416–427.

Chernova, S. & Veloso, M. (2007). Confidence-based policy learning from
demonstration using gaussian mixture models. In Proceedings of the 6th inter-
national joint conference on Autonomous agents and multiagent systems, 233,
ACM.

Choi, J. & Kim, K.E. (2011a). Inverse reinforcement learning in partially ob-
servable environments. The Journal of Machine Learning Research, 12, 691–
730.

Choi, J. & Kim, K.E. (2011b). Map inference for bayesian inverse reinforcement
learning. In Advances in Neural Information Processing Systems , 1989–1997.

Choi, J. & Kim, K.E. (2012). Nonparametric bayesian inverse reinforcement
learning for multiple reward functions. In Advances in Neural Information Pro-
cessing Systems, 305–313.

Coates, A., Abbeel, P. & Ng, A.Y. (2008). Learning for control from multiple
demonstrations. In Proceedings of the 25th international conference on Machine
learning , 144–151, ACM.

139

BIBLIOGRAPHY

Cobo, L.C., Subramanian, K., Isbell, C.L., Lanterman, A.D. &

Thomaz, A.L. (2014). Abstraction from demonstration for efficient reinforce-
ment learning in high-dimensional domains. Artificial Intelligence, 216, 103–
128.

Cummins, M. & Newman, P. (2007). Probabilistic appearance based naviga-
tion and loop closing. In Robotics and automation, 2007 IEEE international
conference on, 2042–2048, IEEE.

Dimitrakakis, C. & Rothkopf, C.A. (2012). Bayesian multitask inverse re-
inforcement learning. In Recent Advances in Reinforcement Learning , 273–284,
Springer.

Duan, Y., Liu, Q. & Xu, X. (2007). Application of reinforcement learning in
robot soccer. Engineering Applications of Artificial Intelligence, 20, 936–950.

El-Fakdi, A. & Carreras, M. (2013). Two-step gradient-based reinforcement
learning for underwater robotics behavior learning. Robotics and Autonomous
Systems , 61, 271–282.

Ernst, D., Geurts, P. & Wehenkel, L. (2005). Tree-based batch mode
reinforcement learning. In Journal of Machine Learning Research, 503–556.

Fabiani, P., Fuertes, V., Piquereau, A., Mampey, R. & Teichteil-

Königsbuch, F. (2007). Autonomous flight and navigation of vtol uavs: from
autonomy demonstrations to out-of-sight flights. Aerospace Science and Tech-
nology , 11, 183–193.

Fard, M.M. & Pineau, J. (2009). Mdps with non-deterministic policies. In
Advances in neural information processing systems , 1065–1072.

Gosavi, A. (2009). Reinforcement learning: A tutorial survey and recent ad-
vances. INFORMS Journal on Computing , 21, 178–192.

Harmon, M.E. & Harmon, S.S. (1996). Reinforcement learning: A tutorial.
WL/AAFC, WPAFB Ohio, 45433.

He, H., Eisner, J. & Daume, H. (2012). Imitation learning by coaching. In
Advances in Neural Information Processing Systems , 3149–3157.

140

BIBLIOGRAPHY

Helmick, D.M., Roumeliotis, S.I., Cheng, Y., Clouse, D.S., Ba-

jracharya, M. & Matthies, L.H. (2006). Slip-compensated path following
for planetary exploration rovers. Advanced Robotics, 20, 1257–1280.

Hester, T., Quinlan, M. & Stone, P. (2012). Rtmba: A real-time model-
based reinforcement learning architecture for robot control. In Robotics and
Automation (ICRA), 2012 IEEE International Conference on, 85–90, IEEE.

Huang, B.Q., Cao, G.Y. & Guo, M. (2005). Reinforcement learning neural
network to the problem of autonomous mobile robot obstacle avoidance. In
Machine Learning and Cybernetics, 2005. Proceedings of 2005 International
Conference on, vol. 1, 85–89, IEEE.

Jain, A., Wojcik, B., Joachims, T. & Saxena, A. (2013). Learning trajec-
tory preferences for manipulators via iterative improvement. In Advances in
Neural Information Processing Systems , 575–583.

Jaradat, M.A.K., Al-Rousan, M. & Quadan, L. (2011). Reinforce-
ment based mobile robot navigation in dynamic environment. Robotics and
Computer-Integrated Manufacturing , 27, 135–149.

Kaelbling, L.P., Littman, M.L. & Moore, A.W. (1996). Reinforcement
learning: A survey. Journal of artificial intelligence research, 237–285.

Kaelbling, L.P., Littman, M.L. & Cassandra, A.R. (1998). Planning and
acting in partially observable stochastic domains. Artificial intelligence, 101,
99–134.

Klein, E., Geist, M. & Pietquin, O. (2012a). Batch, off-policy and model-
free apprenticeship learning. In Recent Advances in Reinforcement Learning ,
285–296, Springer.

Klein, E., Geist, M., Piot, B. & Pietquin, O. (2012b). Inverse reinforce-
ment learning through structured classification. In Advances in Neural Infor-
mation Processing Systems, 1007–1015.

Klein, É., Piot, B., Geist, M. & Pietquin, O. (2012c). Structured classifica-
tion for inverse reinforcement learning. Journal of Machine Learning Research,
2012, 1–14.

141

BIBLIOGRAPHY

Knudson, M. & Tumer, K. (2011). Adaptive navigation for autonomous
robots. Robotics and Autonomous Systems, 59, 410–420.

Kober, J. & Peters, J. (2010). Imitation and reinforcement learning. Robotics
& Automation Magazine, IEEE , 17, 55–62.

Kober, J., Bagnell, J.A. & Peters, J. (2013). Reinforcement learn-
ing in robotics: A survey. The International Journal of Robotics Research,
0278364913495721.

Kolter, J.Z. & Ng, A.Y. (2009). Policy search via the signed derivative. In
Robotics: science and systems.

Kormushev, P., Calinon, S. & Caldwell, D.G. (2010). Robot motor skill
coordination with em-based reinforcement learning. In Intelligent Robots and
Systems (IROS), 2010 IEEE/RSJ International Conference on, 3232–3237,
IEEE.

Kunz, C., Murphy, C., Camilli, R., Singh, H., Bailey, J., Eustice, R.,

Jakuba, M., Nakamura, K.I., Roman, C., Sato, T. et al. (2008). Deep
sea underwater robotic exploration in the ice-covered arctic ocean with auvs.
In Intelligent Robots and Systems, 2008. IROS 2008. IEEE/RSJ International
Conference on, 3654–3660, IEEE.

Lagoudakis, M.G. & Parr, R. (2003). Least-squares policy iteration. The
Journal of Machine Learning Research, 4, 1107–1149.

Levine, S., Popovic, Z. & Koltun, V. (2010). Feature construction for inverse
reinforcement learning. In Advances in Neural Information Processing Systems ,
1342–1350.

Levine, S., Popovic, Z. & Koltun, V. (2011). Nonlinear inverse reinforce-
ment learning with gaussian processes. In Advances in Neural Information Pro-
cessing Systems, 19–27.

Levine, S., Finn, C., Darrell, T. & Abbeel, P. (2015). End-to-end training
of deep visuomotor policies. arXiv preprint arXiv:1504.00702 .

142

BIBLIOGRAPHY

Li, C., Zhang, J. & Li, Y. (2006). Application of artificial neural network based
on q-learning for mobile robot path planning. In Information Acquisition, 2006
IEEE International Conference on, 978–982, IEEE.

Lockerd, A. & Breazeal, C. (2004). Tutelage and socially guided robot
learning. In Intelligent Robots and Systems, 2004.(IROS 2004). Proceedings.
2004 IEEE/RSJ International Conference on, vol. 4, 3475–3480, IEEE.

Lopes, M., Melo, F. & Montesano, L. (2009). Active learning for reward
estimation in inverse reinforcement learning. In Machine Learning and Knowl-
edge Discovery in Databases, 31–46, Springer.

Melo, F.S., Lopes, M. & Ferreira, R. (2010). Analysis of inverse reinforce-
ment learning with perturbed demonstration. In ECAI , 349–354.

Michini, B. & How, J.P. (2012). Bayesian nonparametric inverse reinforcement
learning. In Machine Learning and Knowledge Discovery in Databases, 148–
163, Springer.

Michini, B., Cutler, M. & How, J.P. (2013). Scalable reward learning from
demonstration. In Robotics and Automation (ICRA), 2013 IEEE International
Conference on, 303–308, IEEE.

Miljković, Z., Mitić, M., Lazarević, M. & Babić, B. (2013). Neural net-
work reinforcement learning for visual control of robot manipulators. Expert
Systems with Applications, 40, 1721–1736.

Mitchell, T.M. (1997). Machine learning. 1997. Burr Ridge, IL: McGraw Hill ,
45.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I.,

Wierstra, D. & Riedmiller, M. (2013). Playing atari with deep reinforce-
ment learning. arXiv preprint arXiv:1312.5602 .

Moldovan, T.M. & Abbeel, P. (2012). Safe exploration in markov decision
processes. In Proceedings of the 29th International Conference on Machine
Learning (ICML-12), 1711–1718.

143

BIBLIOGRAPHY

Montemerlo, M., Becker, J., Bhat, S., Dahlkamp, H., Dolgov, D.,

Ettinger, S., Haehnel, D., Hilden, T., Hoffmann, G., Huhnke, B.

et al. (2008). Junior: The stanford entry in the urban challenge. Journal of
field Robotics , 25, 569–597.

Mori, T., Howard, M. & Vijayakumar, S. (2011). Model-free apprenticeship
learning for transfer of human impedance behaviour. In Humanoid Robots (Hu-
manoids), 2011 11th IEEE-RAS International Conference on, 239–246, IEEE.

Mülling, K., Kober, J., Kroemer, O. & Peters, J. (2013). Learning to se-
lect and generalize striking movements in robot table tennis. The International
Journal of Robotics Research, 32, 263–279.

Navarro-Guerrero, N., Weber, C., Schroeter, P. & Wermter, S.

(2012). Real-world reinforcement learning for autonomous humanoid robot
docking. Robotics and Autonomous Systems, 60, 1400–1407.

Neu, G. & Szepesvári, C. (2007). Apprenticeship learning using inverse rein-
forcement learning and gradient methods. In Proc. UAI .

Ng, A. (2011). Sparse autoencoder. CS294A Lecture notes, 72.

Ng, A.Y. (2006). Reinforcement learning and apprenticeship learning for robotic
control. In Algorithmic Learning Theory , 29–31, Springer.

Ng, A.Y. & Russell, S.J. (2000). Algorithms for inverse reinforcement learn-
ing. In Machine Learning (ICML), International Conference on, 663–670.

Ng, A.Y., Harada, D. & Russell, S. (1999). Policy invariance under reward
transformations: Theory and application to reward shaping. In ICML, vol. 99,
278–287.

Ng, A.Y., Coates, A., Diel, M., Ganapathi, V., Schulte, J., Tse, B.,

Berger, E. & Liang, E. (2006). Autonomous inverted helicopter flight via
reinforcement learning. In Experimental Robotics IX , 363–372, Springer.

Nicolescu, M.N. & Matarić, M.J. (2001). Learning and interacting in
human-robot domains. Systems, Man and Cybernetics, Part A: Systems and
Humans, IEEE Transactions on, 31, 419–430.

144

BIBLIOGRAPHY

Nicolescu, M.N. & Matarić, M.J. (2003). Natural methods for robot task
learning: Instructive demonstrations, generalization and practice. In Proceed-
ings of the second international joint conference on Autonomous agents and
multiagent systems, 241–248, ACM.

O’kane, J.M., Tovar, B., Cheng, P. & LaValle, S.M. (2005). Algorithms
for planning under uncertainty in prediction and sensing. Autonomous Mobile
Robots: Sensing, Control, Decision-Making, and Applications, Series in Con-
trol Engineering , 501–547.

Peters, J., Mülling, K. & Altun, Y. (2010). Relative entropy policy search.
In AAAI .

Piot, B., Geist, M. & Pietquin, O. (2013). Learning from demonstrations:
Is it worth estimating a reward function? In Machine Learning and Knowledge
Discovery in Databases, 17–32, Springer.

Piot, B., Geist, M. & Pietquin, O. (2014a). Boosted and reward-regularized
classification for apprenticeship learning. In Proceedings of the 2014 interna-
tional conference on Autonomous agents and multi-agent systems, 1249–1256,
International Foundation for Autonomous Agents and Multiagent Systems.

Piot, B., Geist, M. & Pietquin, O. (2014b). Boosted bellman residual mini-
mization handling expert demonstrations. In Machine Learning and Knowledge
Discovery in Databases, 549–564, Springer.

Poole, D.L. & Mackworth, A.K. (2010). Artificial Intelligence: foundations
of computational agents. Cambridge University Press.

Puterman, M.L. (1994). Markov Decision Processes: Discrete Stochastic Dy-
namic Programming . John Wiley & Sons, Inc., New York, NY, USA, 1st edn.

Qiao, J., Hou, Z. & Ruan, X. (2008). Application of reinforcement learning
based on neural network to dynamic obstacle avoidance. In Information and
Automation, 2008. ICIA 2008. International Conference on, 784–788, IEEE.

Qiao, Q. & Beling, P.A. (2011). Inverse reinforcement learning with gaussian
process. In American Control Conference (ACC), 2011 , 113–118, IEEE.

145

BIBLIOGRAPHY

Rajasekaran, S. & Pai, G.V. (2011). Neural networks, Fuzzy logic and Genetic
algorithms . PHI Learning Private Limited.

Ramachandran, D. & Amir, E. (2007). Bayesian inverse reinforcement learn-
ing. IJCAI , 51, 2586–2591.

Ratliff, N., Ziebart, B., Peterson, K., Bagnell, J.A., Hebert, M.,

Dey, A.K. & Srinivasa, S. (2009a). Inverse optimal heuristic control for
imitation learning. AISTATS.

Ratliff, N.D., Bagnell, J.A. & Zinkevich, M.A. (2006). Maximum mar-
gin planning. In Proceedings of the 23rd international conference on Machine
learning , 729–736, ACM.

Ratliff, N.D., Silver, D. & Bagnell, J.A. (2009b). Learning to search:
Functional gradient techniques for imitation learning. Autonomous Robots , 27,
25–53.

Riedmiller, M. (2005). Neural fitted q iteration–first experiences with a data
efficient neural reinforcement learning method. In Machine Learning: ECML
2005 , 317–328, Springer.

Riedmiller, M., Gabel, T., Hafner, R. & Lange, S. (2009). Reinforcement
learning for robot soccer. Autonomous Robots, 27, 55–73.

Robins, B., Dautenhahn, K., Te Boekhorst, R. & Billard, A. (2004).
Effects of repeated exposure to a humanoid robot on children with autism. In
Designing a more inclusive world , 225–236, Springer.

Rojas, R. (1996). Neural networks: a systematic introduction. Springer.

Rothkopf, C.A. & Dimitrakakis, C. (2011). Preference elicitation and in-
verse reinforcement learning. In Machine Learning and Knowledge Discovery
in Databases , 34–48, Springer.

Rummery, G.A. & Niranjan, M. (1994). On-line q-learning using connection-
ist systems.

146

BIBLIOGRAPHY

Saunders, J., Nehaniv, C.L. & Dautenhahn, K. (2006). Teaching robots
by moulding behavior and scaffolding the environment. In Proceedings of the
1st ACM SIGCHI/SIGART conference on Human-robot interaction, 118–125,
ACM.

Schaal, S. & Atkeson, C.G. (2010). Learning control in robotics. Robotics &
Automation Magazine, IEEE , 17, 20–29.

Shon, A.P., Verma, D. & Rao, R.P. (2007). Active imitation learning. In
PROCEEDINGS OF THE NATIONAL CONFERENCE ON ARTIFICIAL
INTELLIGENCE , vol. 22, 756, Menlo Park, CA; Cambridge, MA; London;
AAAI Press; MIT Press; 1999.

Siegwart, R., Nourbakhsh, I.R. & Scaramuzza, D. (2011). Introduction
to autonomous mobile robots. MIT press.

Silver, D., Bagnell, J. & Stentz, A. (2008). High performance outdoor
navigation from overhead data using imitation learning. Robotics: Science and
Systems IV, Zurich, Switzerland .

Silver, D., Bagnell, J.A. & Stentz, A. (2010). Learning from demonstration
for autonomous navigation in complex unstructured terrain. The International
Journal of Robotics Research.

Silver, D., Bagnell, J.A. & Stentz, A. (2012). Active learning from
demonstration for robust autonomous navigation. In Robotics and Automation
(ICRA), 2012 IEEE International Conference on, 200–207, IEEE.

Singh, S., Jaakkola, T., Littman, M.L. & Szepesvári, C. (2000). Conver-
gence results for single-step on-policy reinforcement-learning algorithms. Ma-
chine Learning , 38, 287–308.

Smallwood, R.D. & Sondik, E.J. (1973). The optimal control of partially
observable markov processes over a finite horizon. Operations Research, 21,
1071–1088.

Sutton, R.S. & Barto, A.G. (1998). Reinforcement learning: An introduction.
MIT press.

147

BIBLIOGRAPHY

Sweeney, J.D. & Grupen, R. (2007). A model of shared grasp affordances
from demonstration. In Humanoid Robots, 2007 7th IEEE-RAS International
Conference on, 27–35, IEEE.

Syed, U. & Schapire, R.E. (2007). A game-theoretic approach to appren-
ticeship learning. In Advances in neural information processing systems, 1449–
1456.

Syed, U. & Schapire, R.E. (2010). A reduction from apprenticeship learning
to classification. In Advances in Neural Information Processing Systems, 2253–
2261.

Syed, U., Bowling, M. & Schapire, R.E. (2008). Apprenticeship learning
using linear programming. In Proceedings of the 25th international conference
on Machine learning , 1032–1039, ACM.

Szepesvári, C. (2010). Algorithms for reinforcement learning. Synthesis Lec-
tures on Artificial Intelligence and Machine Learning , 4, 1–103.

Thomaz, A.L. & Breazeal, C. (2008). Teachable robots: Understanding hu-
man teaching behavior to build more effective robot learners. Artificial Intelli-
gence, 172, 716–737.

Thrun, S., Montemerlo, M., Dahlkamp, H., Stavens, D., Aron, A.,

Diebel, J., Fong, P., Gale, J., Halpenny, M., Hoffmann, G. et al.
(2006). Stanley: The robot that won the darpa grand challenge. Journal of
field Robotics , 23, 661–692.

Tian, D., Xia, C. & El Kamel, A. (2015). Behavior coordination and com-
mand fusion of autonomous mobile robot using fuzzy control method. In 2nd
Conference on Embedded Systems, Computational Intelligence and Telematics
in Control (CESCIT 2015), Paper 10, Maribor, Slovenia.

Tossou, A.C. & Dimitrakakis, C. (2013). Probabilistic inverse reinforcement
learning in unknown environments. arXiv preprint arXiv:1307.3785 .

Tzafestas, S.G. (2013). Introduction to mobile robot control . Elsevier.

148

BIBLIOGRAPHY

Ude, A., Atkeson, C.G. & Riley, M. (2004). Programming full-body move-
ments for humanoid robots by observation. Robotics and autonomous systems,
47, 93–108.

Urmson, C., Anhalt, J., Bagnell, D., Baker, C., Bittner, R., Clark,

M., Dolan, J., Duggins, D., Galatali, T., Geyer, C. et al. (2008).
Autonomous driving in urban environments: Boss and the urban challenge.
Journal of Field Robotics , 25, 425–466.

van Lent, M. & Laird, J.E. (2001). Learning procedural knowledge through
observation. In Proceedings of the 1st international conference on Knowledge
capture, 179–186, ACM.

Wang, Y.H., Li, T.H.S. & Lin, C.J. (2013). Backward q-learning: The combi-
nation of sarsa algorithm and q-learning. Engineering Applications of Artificial
Intelligence, 26, 2184–2193.

Watkins, C.J. & Dayan, P. (1992). Q-learning. Machine learning , 8, 279–292.

Watkins, C.J.C.H. (1989). Learning from delayed rewards . Ph.D. thesis, Uni-
versity of Cambridge England.

Wiering, M. & van Otterlo, M. (2012). Reinforcement Learning: State-of-
the-art , vol. 12. Springer Science & Business Media.

Xia, C. & El Kamel, A. (2014a). An intelligent method of mobile robot learn-
ing in unknown environments. In International Conference on Computer Sci-
ence and Information Technology (ICCSIT), C048, Barcelona, Spain.

Xia, C. & El Kamel, A. (2014b). Mobile robot navigation using neural net-
work based q-learning. In 2014 IEEE International Conference on Robotics and
Biomimetics (ROBIO), paper 197, Bali, Indonesia.

Xia, C. & El Kamel, A. (2014c). Mobile robot navigation using neural network
based q-learning. In 3rd International Conference on Control, Robotics and
Informatics (ICCRI), M0014, Hong Kong.

Xia, C. & El Kamel, A. (2015a). Learning reward functions with non-linear
neural policy representations. Engineering Applications of Artificial Intelli-
gence, under review.

149

BIBLIOGRAPHY

Xia, C. & El Kamel, A. (2015b). Neural inverse reinforcement learning in
autonomous navigation. Robotics and Autonomous Systems, under review.

Xia, C. & El Kamel, A. (2015c). Online reinforcement learning from accu-
mulated experience based on a nonlinear neural policy. Expert Systems with
Applications, submitted.

Xia, C. & El Kamel, A. (2015d). A reinforcement learning method of obstacle
avoidance for industrial mobile vehicles in unknown environments using neu-
ral network. In 2014 International Conference on Industrial Engineering and
Engineering Management (IEEM), 671–675.

Xia, C., Tian, D. & El Kamel, A. (2015). Improving autonomous navigation
in unknown environments via learning from demonstration. In 2nd Conference
on Embedded Systems, Computational Intelligence and Telematics in Control
(CESCIT 2015), Paper 63, Maribor, Slovenia.

Xu, X., Zuo, L. & Huang, Z. (2014). Reinforcement learning algorithms with
function approximation: Recent advances and applications. Information Sci-
ences , 261, 1–31.

Yang, G.S., Chen, E.K. & An, C.W. (2004). Mobile robot navigation using
neural q-learning. In Machine Learning and Cybernetics, 2004. Proceedings of
2004 International Conference on, vol. 1, 48–52, IEEE.

Zhifei, S. & Joo, E.M. (2012). A review of inverse reinforcement learning
theory and recent advances. In Evolutionary Computation (CEC), 2012 IEEE
Congress on, 1–8, IEEE.

Ziebart, B.D., Maas, A.L., Bagnell, J.A. & Dey, A.K. (2008). Maximum
entropy inverse reinforcement learning. In AAAI , 1433–1438.

Ziebart, B.D., Bagnell, J.A. & Dey, A.K. (2010). Modeling interaction via
the principle of maximum causal entropy.

150

Apprentissage Intelligent des Robots Mobiles dans la Navigation Autonome

Résumé: Les robots modernes sont appelés à effectuer des opérations ou tâches complexes
et la capacité de navigation autonome dans un environnement dynamique est un besoin essentiel
pour les robots mobiles. Dans l’objectif de soulager de la fastidieuse tâche de préprogrammer
un robot manuellement, cette thèse contribue à la conception de commande intelligente afin
de réaliser l’apprentissage des robots mobiles durant la navigation autonome. D’abord, nous
considérons l’apprentissage des robots par démonstrations d’experts. Nous proposons d’utiliser
un réseau de neurones pour apprendre hors-ligne une politique de commande à partir de don-
nées utiles extraites d’expertises. Ensuite, nous nous intéressons à l’apprentissage sans démon-
strations d’experts. Nous utilisons l’apprentissage par renforcement afin que le robot puisse
optimiser une stratégie de commande pendant le processus d’interaction avec l’environnement
inconnu. Un réseau de neurones est également incorporé et une généralisation rapide permet
à l’apprentissage de converger en un certain nombre d’épisodes inférieur à la littérature. En-
fin, nous étudions l’apprentissage par fonction de récompenses potentielles compte rendu des
démonstrations d’experts optimaux ou non-optimaux. Nous proposons un algorithme basé sur
l’apprentissage par renforcement inverse. Une représentation non-linéaire de la politique est
désignée et la méthode du max-margin est appliquée permettant d’affiner les récompenses et de
générer la politique de commande. Les trois méthodes proposées sont évaluées sur des robots
mobiles afin de leurs permettre d’acquérir les compétences de navigation autonome dans des
environnements dynamiques et inconnus.

Mots-clés: Apprentissage automatique, Robots mobiles, Apprentissage par renforcement,
Réseau de neurones, Navigation autonome, Apprentissage par démonstrations, Processus de dé-
cision markovien.

Intelligent Mobile Robot Learning in Autonomous Navigation

Abstract: Modern robots are designed for assisting or replacing human beings to perform
complicated planning and control operations, and the capability of autonomous navigation in
a dynamic environment is an essential requirement for mobile robots. In order to alleviate
the tedious task of manually programming a robot, this dissertation contributes to the design of
intelligent robot control to endow mobile robots with a learning ability in autonomous navigation
tasks. First, we consider the robot learning from expert demonstrations. A neural network
framework is proposed as the inference mechanism to learn a policy offline from the dataset
extracted from experts. Then we are interested in the robot self-learning ability without expert
demonstrations. We apply reinforcement learning techniques to acquire and optimize a control
strategy during the interaction process between the learning robot and the unknown environment.
A neural network is also incorporated to allow a fast generalization, and it helps the learning to
converge in a number of episodes that is greatly smaller than the traditional methods. Finally,
we study the robot learning of the potential rewards underneath the states from optimal or
suboptimal expert demonstrations. We propose an algorithm based on inverse reinforcement
learning. A nonlinear policy representation is designed and the max-margin method is applied
to refine the rewards and generate an optimal control policy. The three proposed methods have
been successfully implemented on the autonomous navigation tasks for mobile robots in unknown
and dynamic environments.

Keywords: Machine learning, Mobile robots, Reinforcement learning, Neural network, Au-
tonomous navigation, Learning from demonstration, Markov decision processes.

