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PREFACE 

Cette étude est une approche pluridisciplinaire qui m'a permis d'acquérir des 

connaissances et des compétences sur les processus biogéochimiques impliqués 

dans le fonctionnement des écosystèmes marins, en particulier, ceux qui affectent la 

dynamique de la matière organique dissoute. Une approche couplée entre des 

sorties en mer, régulières et un travail de laboratoire approfondi a été effectuée. 

Ce travail de recherche s'est inscrit dans les programmes scientifiques 

MERMEX1 du chantier MISTRALS2 (projets nationaux français) et plus précisément 

dans le WP1 (programme DeWEX3), mais également dans le programme DOREMI4 

(projet sous l'égide du ministère espagnol des Sciences et de l'innovation, ICM-

CSIC5). Au cours de mon travail, j’ai mis au point et développé pour le LOMIC 

(Laboratoire d'Océanographie Microbienne), les techniques d’analyses et des 

traitements de la matière organique dissoute colorée (CDOM) et fluorescente 

(FDOM), méthodes qui viennent compléter l'expertise reconnue de l'équipe sur le 

compartiment organique dissous (MOD). Ce travail a été possible grâce notamment 

à l’étroite collaboration avec le Dr. Cèlia Marrasé (CSIC). 

Au cours de ma thèse, j'ai pu acquérir de solides compétences du travail à la 

mer grâce à une participation active à deux campagnes océanographiques 

hauturiers (DeWEX) et (MIFASOL). Pour la campagne DeWEX, j’ai passé 21 jours 

en mer et je me suis occupée des prélèvements, des filtrations et du 

conditionnement des échantillons (CDOM/FDOM, MOD, sels nutritifs dont 

ammonium et pigments). Il s'agissait d'un travail d'équipe, avec Louise Oriol et 

Tatiana Séverin du LOMIC, et Fayçal Kessouri (du LA). De retour au laboratoire, j'ai 

participé aux analyses du carbone organique dissous (COD) et particulaire (COP), 

en collaboration avec Mireille Pujo-Pay et Jocelyne Caparros.  

 

 

 



Préface 
 

 9 

Au cours de la campagne MIFASOL, j'ai passé sept jours en mer, pour la 

préparation et le conditionnement des échantillons de carbone organique total et 

dissous en collaboration avec Marín Isabel, Nunes Sdena et Rodriguez Caterina 

(doctorantes au CSIC). J’étais de plus responsable des analyses des propriétés 

optiques de la matière organique dissoute. 

Finalement, j’ai eu également l’opportunité de participer à d'autres projets, 

comme le projet de campagne en mer CASCADE (MERMEX WP3 – Mars 2011) 

pour lequel j’ai fait les analyses et traitements des pigments par HPLC sur la 

plateforme de l'OOB dirigée par Karine Escoubeyrou, mais aussi le programme 

SPECIMed (Programme MISTRALS-WP2) pour lequel j’ai fait les comptages et 

l'identification des groupes taxomomiques du phytoplancton par microscopie inverse, 

ou encore le projet Vermeillecotox (CNRS - Région - AMP) pour lequel 

mensuellement (entre Avril 2012 et Avril 2013) j’ai fait des sorties journaliers en mer. 

Je me suis également impliquée dans les travaux en mer hebdomadaires et 

mensuels du service d'observation du laboratoire. 

 

 

 

 

 

 

1MERMEX (Marine Ecosystems Response in the Mediterranean Experiment ; 
http://mermex.pytheas.univ-amu.fr). 
2MISTRALS (Mediterranean Integrated Studies at Regional And Local Scales, http://www.mistrals-
home.org/spip/). 
3DeWEX (Deep Water Formation Experiment ; http://mermex.pytheas.univ-amu.fr/wp-
content/uploads/2012/05/).  
4DOREMI (Dissolved Organic Matter Remineralisation in the Ocean : Microbial and Biogeochemical 
Constraints).  
5ICM-CSIC (Intitut de Ciències del Mar-Consejo Superior de Investigaciones Cientificas;  
http://www.icm.csic.es). 

1
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Glossary of relevent terms  

 
aCDOM (254)  Absorption coefficent at 254 nm (in nm) 
 
a*CDOM(254)  Specific absorption coefficent of CDOM at 254 nm  
 
CDOM   Chomophoric organic matter 
 
Chl a   Chlorophyll a 
 
CV    Coefficient of variation  
 
CO   Carbon monoxide  
 
CO2   Carbon dioxide  
 
DIN   Dissolved inorganic nitrogen  
 
DIP   Dissolved inorganic phosphorus  
 
DOC   Dissolved organic carbon  
 
DOM    Dissolved organic matter  
 
DWF   Dense Water Formation  
 
EEM   Excitation-Emission Matrix 
 
FDOM   Fluorescence organic matter 
 
HMW   High Molecular Weight 
 
H4SiO4  Silicate 
 
LMW   Low Molecular Weight 
 
LIW   Levantine Intermediate Water  
 
MAW   Modified Atlantic Water  
 
MLD   Mixing Layer Depth  
 
NH+

4   Ammonium  
 
NO-

3   Nitrate 
 
OM   Organic Matter  
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Peak-A  FDOM at Ex/Em 260 nm/435 nm  
 
Peak-C   FDOM at Ex/Em 340 nm/440 nm 
 
Peak-M  FDOM at Ex/Em 320 nm/ 410 nm  
 
Peak- T   FDOM at Ex/Em 280 nm/350 nm  
 
POC     Particulate organic carbon  
 
PON    Particulate nitrogen 
 
POM    Particulate organic matter  
 
PO-3

4   Phosphate 
 
QSU   Quinine sulfate units  
 
S   Salinity  
 
SCDOM   Spectral slope 
 
T   Temperature  
 
ϕ (340)  Fluorescent quantum yield at 340 nm  
 
UML   Upper mixing layer 
 
UV-R   Ultraviolet Radiation  
 
WMDW  Western Mediterranean Deep Water  
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1. INTRODUCTION  

1.1. Marine dissolved organic matter in the ocean  

Marine dissolved organic matter (marine DOM) represents one of the largest 

exchangeable organic reservoirs at the earth’s surface where it plays a essential 

role in the biogeochemical processes (mainly, in those related to the carbon cycle) 

since constitutes the main substrate to the heterotrophic microbial populations 

(Hedges, 2002,  Hansell et al., 2009).  A substantial part of DOM in the photic zone 

is labile and has been generated by biological processes, such as phytoplankton 

exudation, excretion by zooplankton, viral lysis, and sloppy feeding (Myklestad, 

2000). Most of this DOM produced in surface waters is considered as labile 

(LDOM), that means that it could be quickly consumed by the heterotrophic 

osmotrophs to the extend that trophic condition allows it (Carlson & Hansell, 2015). 

This rapid DOM assimilation contributes to the mineralization of carbon and 

nutrients and to the production of refractory DOM (RDOM). This RDOM has very 

low turnover rates (Hopkinson & Vallino, 2005) and tends to accumulate in deep 

waters. The hal-life of RDOM could vary over a continuum from molecules with half-

life of 50-10 years to molecules of 1000 years (see below for carbon). The diverse 

microbial activities that participate in the generation of recalcitrant organic 

compounds are part of the conceptual scheme for the microbial carbon pump (MCP) 

proposed by Jiao and coauthors, 2010. The MCP together with the organic carbon 

and the carbonate pump compose the biological pump by which CO2 is pumped 

from surface to the deep ocean thanks to biological activities (Ridgwell & Arndt, 

2015). The MCP involves bacteria, archea and virus that transform LDOM into 

RDOM, which is stored mostly in the deep ocean. The MCP operates in the whole 

water column independently of depth, sequestering carbon from the layer surface to 

the deep sea (Fig. 1).   
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Figure.1. The major processes involving the carbon pump such as: Biological 
Carbon Pump and Microbial Carbon Pump (Jiao et al.,  2010). 

 

 

1.2. Marine dissolved organic matter in the carbon cycle  

The marine dissolved organic matter expressed as dissolved organic carbon 

(DOC) constitutes a stock of 662 ± 32 PgC exceeding the inventory of organic 

particles in the seawater (Hansell et al., 2009). This quantity is comparable with all 

living vegetation in the Earth’s continents (600 PgC) and with the CO2 accumulated 

in the atmosphere (720 PgC, Hedges et al.,1992; Hedges, 2002). These quantity 

account for the largest bio-reactive pool of carbon in the ocean (Hansell & Carlson, 

1998; Hansell et al., 2009; Jiao et al., 2010). 

In the organic carbon pump, the CO2 is fixed by the photosynthesis in organic 

carbon (dissolved and particulate) thanks to the light and dissolved inorganic 

nutrients used by the phytoplankton (Ridgwell & Arndt, 2015). It has been reported 
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that this organic carbon is produced at a rate of about 50 PgCy-1 and is the base of 

the marine food web (Chisholm, 2000). A large part of this carbon (~ 39 PgCy-1) is 

respired by organisms in surface waters and converted back to CO2 and released to 

the atmosphere (Chisholm, 2000; Hansell et al., 2009), and only 11 PgCy-1 is 

sinking inward, where it is partially oxidized by heterotrophic respiration (Laws et al., 

2000). Yet, geochemical models estimated that about 20% of the annual net carbon 

production (1.9 PgC) is exported as DOC to depths >100 m  (Hansell et al., 2009), 

while the carbon export in particulate form is of about 9.6 PgCy-1. However only 

small portion of these fractions will reach bathypelagic waters (0.2 and 2.3 PgCy-1 

for dissolved and particulate fractions respectively). See Figure 2. 

 

 
 

Figure. 2. Scheme of the global budget (PgC y-1). Solid lines indicate particulate, 
while dashed lines indicate dissolved organic matter. The carbon pools area 
assumed at steady state; all input fluxes (value at origin of arrow) are balanced by 
removal (value at the end of the arrow). Question marks indicate figures with high 
uncertainty. (from Carlson & Hansell, 2015). 
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The carbonate pump involves the production and dissolution of calcium 

carbonate (CaCO3) by marine organisms (e.g. coccolithophores, foraminifera and 

pteropods) and its following transport to depth. With this mechanism, the particulate 

organic carbon (POC) produced by phytoplankton during photosynthesis and 

formed in the surface ocean (with the following chemical reaction associated: 

Ca2+
(aq) + 2 HCO3

-
(aq) D CaCO3 + CO2) is transported to the depth sea (Jansen, 

2001). When organisms die their carbonate skeletons are transported to seabed, 

CaCO3 dissolution occurs during this transport (Elderfield, 2002). The CaCO3 

dissolution tends to increases carbonate and bicarbonate ions lowering atmospheric 

CO2 in upwelling regions (Sigman & Boyle, 2000). In addition it has been estimated 

that more than 50% carbonate is dissolved in the water column (~ 0.5 PgCaCO3y-1; 

Feely et al., 2004), the remainder reaches the sediments and only 20% is buried in 

shallow and  deep sediment (Ridgwell & Arndt, 2015). 

The bio-reactivity of the DOC pool refers to the chemical structure and to the 

residence time of the different compounds. Considering these particularities, Hansell 

in a recent review (2013) described five major fractions in the ocean, which are 

illustrated in the Fig. 3: labile, semi-labile, semi-refractory, refractory and ultra-

refractory dissolved organic matter (LDOC, SLDOC, SRDOC and RDOC 

respectively). LDOC, representing only a small fraction (< 0.2Pg) of the DOC 

inventory, is quickly assimilated by the marine microorganisms and it supports the 

metabolic energy and the nutrients demand by heterotrophic prokaryotes (Carlson & 

Hansell, 2015). The LDOC fraction comprise organic acids, organic phosphorous, 

sulfur compounds, lipids, amino acids and monosaccharaides, as well as 

hydrolysable high molecular weight (HMW) compounds (Amon & Benner, 1994; 

Benner, 2002). It has been estimated that LDOC production rate is ~15-25PgCy-1 in 

the photic zone, and its residence time of hours to days (Fig. 3b, Carlson & Hansell, 

2015). The SLDOC is dominated by a family of carbohydrates with spectroscopic 

and chemical properties throughout the global ocean (Aluwihare et al., 1997). This 

fraction is more resistant than LDOC to microbial degradation, thus it can persist for 

months to years (Fig. 3b, Carlson, 2002), and it is considered as exportable from the 

euphotic zone to deeper layers (Nagata, 2008). Recent studies have estimated that 

its global inventory is sustained at ~6±2PgC, with a production rate of ~3.4PgCy-1 

(Hansell et al., 2012; Hansell, 2013). The SRDOC constitutes an inventory of about 
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14 PgC and its accumulation in the upper-layer requires a permanent pycnocline. 

The RDOC, is resistant to biological decomposition and dominates the organic 

matter pool in deep waters (about 630 PgC), being its residence time of a scale of 

millennia, in a range of 4,000 to 16,000 years (Bauer, 2002; Hansell, 2013). Finally, 

the URDOC is a small fraction of RDOC (~ 2%) and this part has been inferred from 

radiocarbon and molecular composition analyses (Dittmar & Koch 2006; Dittmar & 

Paeng, 2009; Ziolkowski & Druffel, 2010). Lifetime of this fraction can be larger than 

40000 years.

A recent study based on experimental evidences proposed an alternative 

mechanism for the long-term storage of labile DOC in the deep ocean (Arrieta et al., 

2015). According to these authors, deep-water DOC consists of many different, 

intrinsically labile compounds at concentrations too low to compensate the 

metabolic costs associated to their utilization (as previously suggested by 

Komarova-Komar & Egli, 1985; Jannasch, 1995). 

 

 
 
Figure. 3. (a) Vertical distribution of DOC fractions in the water column defined by its 
reactivity. (b) Estimated range of DOC concentrations for the different DOM pools 
observed in stratified oligotrophic waters. Estimated inventories (in box) and 
removal rates (figures to left of box) for the different fractions (from Carlson and 
Hansell, 2015). 
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2. Optically active fractions of DOM  

Some compounds of the marine RDOM category have optical properties and 

absorb light (UV and visible) and part of these compounds can emit fluorescence. 

For this reason, colored and fluorescent dissolved organic matter have been used 

as proxies of RDOC to study the distribution of recalcitrant organic matter                     

(Yamashita & Tanoue, 2008; Jørgersen et al., 2011; De La Fuente et al., 2014; 

Catalá et al., 2015). 

 

 

2.1. Fundamentals of absorption and fluorescence of DOM  

Light absorption by a chromophore is characterized by its nature and its 

intensity according to the Beer-Lambert law. The light absorption depends upon 

electronic transitions of energy levels of the atoms in the sample (Stedmon & 

Nelson, 2015). In the UV-R and visible region, these transitions involve electrons 

type π-double, triple or rings aromatics, which have states of vibrational and 

rotational electronic energy and therefore specific absorptivity (Repeta, 2015). 

Therefore, the Beer-Lambert law explains that when the energy absorption of a 

photon coincides exactly with the difference between the ground state (S0) and the 

excited state (S1 or S2), the outermost electrons can jump to another empty orbital 

(S0) of higher energy level (S1 or S2). Once that electron is excited, it emits radiation 

and subsequently returns to its ground state after have lost energy to molecular 

vibration and internal conversion (not radioactive process) (Stedmon & Nelson, 

2015). These processes are illustrated in the Fig. 4.  
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Figure. 4. Jablonski diagram typically, S0, S1, and S2 are singlet group, first and 
second electronic states of flourophores respectively. 0, 1, 2, etc. indicates number 
of vibrational energy levels shown the principles of the absorption and fluorescence 
(from Lakowicz, 2006).  
 
 
 

2.2 .   Absorption of CDOM  

Chromophoric dissolved organic matter (CDOM) is an important component 

of DOM pool in the ocean, and play an essential role in the carbon cycle (Coble, 

1998).  

This fraction of DOM is optically active and measurable in natural seawater. 

Its analysis is efficent, sensible, fast, not expensive, and requires only a small 

volume of sample. It can represents about 20 % of DOC in open ocean and close to 

70% in coastal zones (Siegel et al., 2002; Coble, 2007).  

CDOM controls the penetration of light energy in the water column, absorbing 

in the UV-R (200-400 nm) and visible (400-800 nm) radiations of spectrum (Jerlov, 

1976; Kirk, 1994). This control gives rise to ecological implications. First, CDOM can 

limit the light available for photosynthesis, causing a decrease in primary production 

(Arrigo & Brown, 1996; Morris & Hargreaves, 1997; Conde et al., 2000; De Mora et 

al., 2000; Kuwahara et al., 2000). The second, CDOM can reduce harmful UV-R 

effects on plankton organisms, acting as a photo-protector (Williamson et al., 2001). 
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CDOM can play a substantial role in the biogeochemistry of natural waters through 

its light reactivity (Conde et al., 2000; Stedmon & Nelson, 2015), which include the 

photo-oxidative degradation of organic matter, photochemical production of trace 

gases (e.g. CO2, CO), absorption inorganic constituents (nitrate, nitrite and sulfide) 

and photochemical production of lower molecular weight (LMW) organic compounds 

(Blough & Del Vecchio, 2002). Furthermore, CDOM also interferes in satellite-

derived chlorophyll measurements (Carder et al., 1989; Vodacek & Blough, 1997). 

For all these reasons, its study has increased in the past two decades.  

 

The absorption spectra of CDOM are not structured, but the complex mixture 

of chromophores typically decreases exponentially with wavelength (Blough & Del 

Vecchio, 2002, Eq. (1)): 

 

 

aCDOM (λ)= a (λ0)e-S(λ- λ0)                       (1) 

                               

 

Where a(λ) and a(λ0) are the absorption coefficients at wavelength (λ) and reference 

wavelength (λ0) respectively and S is spectral slope (Bricaud et al., 1981; Carder et 

al., 1989; Green & Blough, 1994). The absorption coefficient at a particular λ is 

obtained according to Eq. (2):   

 

 

aCDOM (λ)=2.303A(λ250-700)/ L                 (2) 

 

 

Where a(λ) is the absorbance (log I0/I, dimensionless), l is optical path length (m or 

cm) and 2.303 is a factor, that allows the passage of napierian logarithm to decimal 

logarithm (Fig. 5). The spectral slope was calculated over wavelength range (S250-500 

and S275-295) using linear regressions of the natural log-transformed aCDOM(λ) 

according to Nelson et al. (2004) and Helms et al. (2008).   
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Figure. 5. Typical absorption coefficient of surface Mediterranean Sea water. Brown 
line represents a coastal station (SOLA) and blue line an offshore station (MOLA). 
Measures for this figure were determined in February 2013. 
 

 

The value of absorption coefficient independent of the wavelength provides 

relevant information about quantity of CDOM in the sample. Values of aCDOM(340) in  

aquatic systems varied depending on the area studied, for exemple in the Ria de 

Vigo values of 0.40 ± 0.17 m-1 have been reported by Romera-Castillo et al., 2011, 

while, higher values (0.81± 0.18 m-1) have been found in the Bay of Banyuls-sur-

mer (Sanchez-Perez et al. in preparation, see chapter 3). 

In addition, the value of spectral slope (SCDOM) can be used as a descriptor of 

the origin of CDOM. In fact, low values (S < 0.018 m-1) in coastal zones have been 

related to the terrestrial organic mater (OM). Indeed, this OM is characterized by 

aromatic compounds of high weight molecular (HMW) and high reactivity (Opsahl & 

Benner, 1997), which explain a high absorption in low part of the spectrum. On the 

opposite, high values (S > 0.018 m-1) for oceanic systems, are attributed to “marine” 

OM, e.g. autochthonous and/or photo-bleached origin (Blough & Del Vecchio, 

2002). The spectral slope is also considered as a proxy for molecular structure of 

CDOM, when its aromatic content and its molecular weight increase, the SCDOM 

presents low values. This decrease is due, in part, to the presence of a set of 
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different chromophores with extended aromatic system, which absorbs at long 

wavelengths; otherwise, this increment in absorption at long wavelengths could 

come from intermolecular charge transfer transitions between chromophores of high 

aromaticity (Power & Langford, 1988; Blough & Green, 1995). Conversely, an 

increase of SCDOM suggests a loss of aromaticity and a decrease in the average 

molecular weight of CDOM. In fact, Vodacek & Blough, (1997) and Moran (2000), 

reported that photo-degradation process can produce the same effects, which 

largely complex the interpretation of SCDOM measurements.  

In summary, both absorption coefficent and spectral slopes can be used as 

proxies to some characteristics of the molecular structure of CDOM. For exemple, 

specific absorption coefficent at 254 nm [a*CDOM(254)] is used as aromaticy index 

(Weishaar et al., 2003).   

 

2.3. Fluorescence of DOM  

A small fraction of CDOM can emit blue fluorescence when excited by UV-R, 

which is called fluorescent dissolved organic matter (FDOM; Coble, 1996, 2007). In 

earliest studies, this fraction was used as a tracer of riverine input of DOC in the 

coastal waters (Kalle, 1949; Duursma, 1974). However, FDOM in oceanic 

environments has been investigated using fluorescence spectroscopy analyses, 

and, in particular, Excitation-Emission Matrices (EEMs) have been applied to 

understand the dynamics of DOM (Blough & Del Vecchio, 2002; Nieto-Cid et al., 

2006; Romera-Castillo et al., 2010).  EEMs are obtained by collection of multiple 

emission spectra at different excitation wavelength represented in 3D, which 

provides the presence of fluorophores and its relative concentration in the sample.  

Two main groups of fluorophores have been identified depending of their 

excitation and emission couple (Ex/Em): First group is composed of protein-like 

substances. This group exhibits two major types of aromatic amino acids such as 

tryptophan and tyrosine which, have fluorescence maxima at Ex/Em 280 /350 nm 

(Peak-T), and Ex/Em 275 /300 nm (peak-B) respectively (Coble, 2007). Peak-T has 

been considered as a significant tracer for labile DOM (Coble, 1996; Determann et 

al., 1996; Yamashita & Tanoue, 2003; Nieto-Cid et al., 2006). The second group is 

associated with humic-like compounds, commonly known as Peak-A (Ex/Em 
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250/435 nm), Peak-C (Ex/Em 340/440 nm) and Peak-M (Ex/Em 320/410 nm). All 

these peaks can be visualized in the excitation-emission matrices (EEMs; Fig. 6). 

Both Peak-C and Peak-M (terrestrial and marine humic-like respectively) have been 

found in fresh-water and marine environments.  

Coble (1996) reported that humic-like peaks in freshwater samples presented 

a shift to longer wavelengths. This shift is due to terrestrial humic-like substances 

which are more aromatic compounds that marine humic-like substances (Benner, 

2003). Both peaks M and C have been considered photo-degradable but rather 

resistant to bacterial degradation and they have been associated with catabolic 

microbial activities (Nieto-Cid et al., 2006; Romera-Castillo et al., 2010). 

Furthermore, other authors (Chen & Bada, 1992; Jiao et al., 2010) observed that 

these peaks can accumulate in the ocean for long time scales when they are not 

exposed to natural UV-R, allowing the sequestration of anthropogenic CO2 in DOM. 
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Fiigure. 6. Typical Excitation-Emission Matrix of a surface Mediterranean seawater 
expressed in quinine sulfate units (QSU). Characters indicate the location of the 
main fluorescence peaks: A, C, M and T. EEM was collected at SOLA station at 3 m 
depth on February 2, 2013. 
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The EEMs matrices have been typically used for some decades, because 

contain considerable information in the fluorescent properties of DOM (e.g. Fig. 6). 

This information can be used as a fingerprint that permits identify the origin and fate 

of the CDOM (Table I). For more objective data interpretation, multivariate analysis 

methodologies have been recently adapted to analyze the information contained in 

the EEMs (Stedmon et al., 2003; Boehme et al., 2004). These analyses include 

principal component analysis (PCA) and parallel factor analysis (PARAFAC), which 

provide information on excitation-emission spectra of individual components 

(Stedmon & Bro, 2008). 

In summary, both absorbance and fluorescence provide important 

information about the quality (flourophores identification, e.g. humics and/or 

proteins-like substances) and quantity (fluorescence intensity), of the optically active 

compounds, and they can be used as indicators of OM origin (allochthonous/  

autochthonous), and of possible biotic and abiotic mediated transformations.  

 
 
 
Table I. Fluorescent components identified in aquatic systems (Coble et al., 1998, 
2007).  

Fluorescence DOM
Excitation λ 

(nm)
Emission λ 

(nm)

Peak-A (humic-like) 250 435

Peak-M (marine humic-like) 320 410

Peak-C (terrestrial humic-like) 340 440

Peak-T (protein-like) 280 350

Peak-B (tyrosine) 275 300  
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3. Distribution, sinks and sources of CDOM 

3.1. Distribution in the ocean  

The distribution of CDOM in the ocean is mainly driven by physical processes 

such as vertical mixing, turbulence, up-and/or down-welling of water masses, lateral 

advection and by photo-degradation processes (Helms et al., 2013; Yamashita et 

al., 2013). In surface waters CDOM distribution can show apparently similar patterns 

than that of the chlorophyll (Siegel et al., 2002). Briefly, CDOM tends to decline with 

distance from the coast (Stedmon & Nelson, 2015) as the main sources are 

continental, and with depth because microbes are also the major producers. In 

surface waters, high values of CDOM have been registered in subarctic zones 

(aCDOM (325)  > 0.17 m-1), low values in the sub-tropical gyres (< 0.05 m-1) and 

intermediate values in Equatorial upwelling region and Southern Ocean (about 0.1-

0.15 m-1, Nelson et al., 2010), while, the deep North Pacific and North Indian oceans 

shown a greater vertical gradient of CDOM across the main thermocline (~ 0.22 m-1) 

that it is the Atlantic basin (Fig. 7, Nelson et al., 2010). 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
Figure 7.  Exemple of CDOM absorption coefficient at 325 nm (m-1). Blue and red 
symbols represent observations south and north of the Equator respectively. A) 
Atlantic Ocean, B) Pacific Ocean, and C) Indian Ocean (from Nelson et al., 2010). 
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3.2. Sinks and sources of CDOM  

In the coastal areas influenced by river discharges, the main source of 

CDOM is of terrestrial origin. This terrestrial material represents only ~ 2-3% of total 

organic matter in the ocean (Opsahl & Benner, 1997) that is characterized by a high 

content of humic and fulvic substances, which have high aromaticity and high 

molecular weight. However, in the open ocean, the dominant source of CDOM is the 

"in situ" production, which accounts for more 95% of total CDOM, and is produced 

by a variety of mechanisms. The in situ production of CDOM has been mostly 

associated to prokaryotic activities, however some studies pointed out that 

eukaryotic organism can also mediate the CDOM production. For example, CDOM 

concentration increases with grazing activities (Toulen & Arvola, 2012). In the same 

way, the FDOM production by phytoplankton and posterior transformations by 

prokaryotic cells has been described using experimental approaches by Romera-

Castillo et al. (2010, 2011). These authors found that the growth of different 

phytoplankton species can induce the increase of different fluorescent substances. 

Field studies have also associated chlorophyll variability with CDOM distributions 

(Vodacek & Blough, 1997; Siegel et al., 2002; Xing et al., 2014).  

The main sink of CDOM is photo-bleaching, a key process to consider when 

examining the dynamics of DOM in aquatic systems (Moran et al., 2000). Therefore, 

changes in DOM composition resulting from exposure to solar radiation include loss 

of absorbance capacity and fluorescence efficacy, production of biologically labile 

compounds. The main sources and sinks of CDOM shown in Figure 8.   
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Figure 8. Schematic diagram of sources, sinks and processes of CDOM in the 
aquatics systems (redrawn from Beever, 2007).  
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4. STUDY AREA (Mediterranean Sea) 

4.1. General context of the Mediterranean Sea   

 The Mediterranean Sea is large semi-enclosed basin, with a surface area of 

2.5·106 km2 and 46·103 Km of coastline (Santinelli, 2015) and is surrounded by three 

contrasted continents (Europe, Asia and Africa). Its smaller inertia due to relative 

short ventilation and residence time of its water masses ~ 70 years when compared 

to 200-1000 years for the others oceans (Falkoswki et al., 1998); makes it highly 

reactive to external forcings and it can be considered as a “hotspot” for climate 

change. Moreover, natural perturbations interact with the increasing demographic 

and economic developments occurring heterogeneously in the coastal zone.  

The Mediterranean Sea is classified as a moderate oligotrophic basin with 

relatively low nutrients concentrations (McGill, 1965; Krom et al.,1991) compared 

with other oceans (Estrada et al., 1999). It is characterized by an important west-to-

east gradient of chlorophyll distribution, with an extremely oligotrophic Eastern basin and 

a more productive Western side (D’Ortenzio & Ribera d’Alcala 2009, Pujo-Pay et al., 

2011), indicating that the Mediterranean sub-regions have asymmetric physical, 

chemical and biological forcing factors (as suggested, Crispi et al., 2001). Superimposed 

to these longitudinal differences, a pronounced biological heterogeneity is also observed 

in areas hosting deep convection, fronts, cyclonic and anti-cyclonic gyres or eddies 

(Robinson et al., 2001). In such areas, the intermittent nutrients enrichment promotes a 

switching between a small-sized microbial community and diatom-dominated 

populations (Siokou-Frangou et al., 2010). A coupled observation/ modelling study 

performed by Crise et al. (1999) shows that the biogeochemical response of 

ecosystems to change in trophic type ("oligo- vs meso- trophisation") may depend on 

changes in export of organic matter to the aphotic layers, which mainly depends on 

vortices/ filament structures (meso- submesoscale space) and/or on the blooms intensity 

(location/scale and timescale). These findings were confirmed and extended to the 

whole Mediterranean Sea by the works of Pujo-Pay et al. (2011). 

It has been widely reported that the nutriens availability in the Mediterranean 

Sea is controlled mainly, by physical (e.g. mixed layer evolution) and biological (e.g. 

production/ consumption/ mineralization) processes, but interestingly, in the NWM the 



CHAPTER I                                                                                                      Introduction 

 

 29 

severe winds bring in winter cold and dry continental air over the warmer ocean, 

generating intense air-sea heat exchanges and surface waters cooling (Flamant & 

Pelon, 2003). The loss of heat and buoyancy and mixing mechanisms induce dense 

water formation (DWF) during winter and early spring, and may trigger deep ocean 

convection (Marshall & Schott 1999). This process, although relatively local, strongly 

impacts the macronutrients distribution of the whole basin (Béthoux et al., 2002) and it is 

one of the main forcing factors of the spring bloom observed in the area. In fact, Marty & 

Chiaverini (2010) reported that in the Ligurian Sea that, in winter, nitrate concentration 

can vary threefold depending of the intensity of the convection, indicating a strong 

relation between the depth reached by wintertime convection and the nutrient 

enrichment of the surface layer. The nutrient enrichment triggers short and intense 

diatom production and deep vertical flux in winter before the onset of the stratification 

and the regular spring bloom (Stemmann et al., 2002; Marty & Chiaverini, 2010). 

 

4.2 Nutrients inputs into the Mediterranean Sea 

In the Mediterranean basin, the inputs of nutrients at the boundaries (e.g. 

exchanges through straits, river discharges, wet and dry atmospheric deposition) are 

particularly relevant (Pujo-Pay et al., 2006, Durrieu de Madron et al., 2009). 

Furthermore, extreme events (e.g. large river floods, Saharan dust deposits, deep water 

formation) are recurrently observed (MerMeX Group, 2011), inducing a strong variability 

in terms of quantity and quality of the spatio-temporal nutrients repartition. However, the 

relative importance of the different sources in relation to the estimated nutrient budgets 

at a regional scale, as well as their seasonal variability, are still poorly documented 

(UNEP-MAP 2003, Schroeder et al., 2010). The extreme events, in particular, 

atmospheric depositions also affect the composition of DOM in terms of elemental 

stoichiometry in all compartments (particulate and dissolved, inorganic and organic). 

In fact, it has been reported changes in ocean biogeochemistry such as: an excess 

of carbon, a deficiency of phosphorus relative to nitrogen and a sporadic deficiency 

of silicate have been reported by Béthoux et al. (2002).  

 Although atmospheric deposition has been recognized since long time ago (e.g. 

Guerzoni et al., 1997; Bonnet et al., 2006; Guieu et al., 2010; Guieu et al., 2014), 

scarce studies included the examination of optical properties of FDOM and the 
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relative importance of FDOM inputs in relation to the in situ concentration in 

Mediterranean waters. 

 

4.3. Stations studied  

The two main contrasted stations sampled in this work are part of the "Service 

d'Observation" of the laboratory since 1997 for the coastal one (SOLA; 42°29'300 N - 

03°08'700 E) and since 2003 for the oceanic one (MOLA; 42°27’20 N – 03°32'565 E) 

and are located in the Gulf of Lion (Fig. 9). 

The SOLA station is located 0.3 milles from the coast in the Bay of Banyuls on 

27 m depth, and is characterized by a marked seasonal pattern (Salter et al., 2015). 

During winter, episodes of strong wind homogenize and cool the water column. 

Important rainfalls and continental inputs currently occur, favoring the renewal of 

nutrients and thus the activities of phytoplankton and bacteria. Indeed, from winter to 

early spring, blooms of picophytoplankton are frequently observed. In summer, the 

calm and warm period quickly isolates the surface water from nutrient sources and 

stratification rapidly reaches the bottom. This period is characterized by low 

phytoplankton and bacterial activities due to rapid nutrient depletion. 

The situation in MOLA station at 19 milles offshore and 600 m depth is quite 

different (Laghdass et al., 2012). In winter, the station could be influenced by the 

formation of deep water, either by convection, or by cascading in the Lacaze-Duthier 

canyon and along the continental slope (Mermex Group, 2011). These processes, 

even if limited in intensity enriched the euphotic layer at the origin of a strong and 

well identified spring bloom (D’Ortenzio & Ribera, 2009). This bloom is followed by a 

stratification period, which allows the formation of Deep Chlorophyll Maximum 

(DCM) that deepens during summer with the evolution of the nutricline. Then, at the 

end of summer, a clear upper mixing layer (UML) characterized by low or 

undetectable nutrient concentrations and low biological activities are separated from 

the deep enriched water. During autumn, the UML progressively deepens under the 

influence of gust of winds. 

Complementary to these field studies, we perfomed experiments with natural 

waters sampled in two permanent stations: the Barcelona coast (410 22’ 30” N, 20 11’ 

59” E) and the Blanes Bay Microbial Observatory (410 40’ 0” N, 20 48’ 0” E) (Fig.9). 
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These two sites at a short distance in the Catalan coast (62 km) are similarly 

affected by climatologic events, however the Barcelona station is more influenced 

by anthropogenic activities (Romero et al., 2014). We also used the database of 

dust deposition compiled during the ADEPT project (ICM-CSIC) during 23 months 

(September 2012-July 2014).  

 

 

 
 
 

 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
Figure 9. (a) General Mediterranean map.  (b) Localization of the different sampling 
stations in this study, the red square corresponds to the Gulf of Lion area. The color 
scale indicates the bathymetry.    
 

La
tit

ud
e 

La
tit

ud
e 

Longitude 

!"#$#
%""#$#
&!"#$#
!""#$#
'!"#$#
%"""#$#
%&!"#$##
%!""#$#
&"""#$#
&!""#$#
("""#$#
(!""#$#
)"""#$#
)!""#$#
!"""#$#
!!""#$#

!"#

$"#



CHAPTER I                                                                                                      Introduction 

 

 32 

5. OBJECTIVES OF THESIS 

This work is a contribution for the understanding of the dynamics of the DOM 

pool in marine pelagic ecosystems. By using the fluorescent properties of the 

CDOM samples from two time-series stations in coastal and offshore areas together 

with two experimental mesocosms, we aim to describe the seasonal variability of the 

DOM pool and to define the main drivers of the observed variability. Finally, the 

general aim of this thesis is to determine the influence of biotic (the equilibrium of 

autochthonous production and/or consumption by phytoplankton and prokaryotic 

organisms) and abiotic (e.g. solar radiation, land water inputs) processes on the 

DOM temporal and spatial (vertical) distribution in temperate marine systems. 

Before a general conclusion and perspectives (Chapter 5), the specific objectives 

are separated in 3 chapters as follow: 

 
Chapter 2: To identify the key environmental parameters which modify the quantity 

and quality of DOM in a coastal bay of the North Western Mediterranean Sea.  

 

Sanchez et al. Coupled and mismatched temporal patterns of organic 
and inorganic nutrients in a NW Mediterranean coastal station. (In 

preparation) 
 

 

Chapter 3: To analyze the temporal and vertical DOM variability through 

CDOM/FDOM optical properties in oceanic station of the North Western 

Mediterranean Sea in relation to biotic and abiotic factors during one year period. 

We also aim to evaluate this period in relation to a general context of global change 

thank to the observation time-series from 2007-2014 at the studied station. 

 

Sanchez et al. Seasonal variability and characterization of 
the dissolved organic pool (CDOM/FDOM) at an offshore station 

(NW Mediterranean Sea) (In preparation). 
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Chapter 4: To identify the FDOM alterations induced by different types of dust 

(Anthropogenic and Saharan) and their possible effects on posterior biological-

mediated transformations, as well as to evaluate the relative importance of 

atmospheric input in relation to the FDOM pool of surface waters in a coastal 

Mediterranean ecosystem (Barcelona coast and Blanes Bay Microbial Observatory). 

 

Sanchez et al. Dust inputs affect the optical signatures of dissolved organic matter 
in NW Mediterranean coastal waters. (Submitted in Scientia Marina) 
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ABSTRACT  

The seasonality of diverse environmental parameters in coastal ecosystems is 

still a subject of debate. In temperate areas, episodic meteorological events introduce 

abrupt changes in littoral zones in comparison to open sea, where changes tend to 

be more gradual along the year. In addition, the inputs of nutrients and pollutants in 

coastal areas are strongly influenced by the anthropogenic activity on land, and those 

inputs do not necessarily follow seasonal trends. As a result, the study of the 

temporal variability in coastal systems requires high sampling frequency, often on the 

order of each week. In the present study, we used a weekly sampling scheme to 

examine the temporal variability in a coastal system. We examined the temporal 

trends of nutrients and autotrophic biomass for a period of 15 years (2000-2014). In 

addition, we, exhaustively, evaluate the fluctuation of different fractions of dissolved 

organic matter (DOM) from February 2013 to April 2014. During this period, two, 

extremely high, fresh water intrusions occurred in the study area, which influenced 

the dynamics of some fractions of DOM, particularly the humic-like fraction. Inorganic 

nutrients and Chlorophyll showed regular seasonal patterns, while DOM fractions did 

not follow a clear temporal trend. This is, probably, because factors like microbial 

activity and light exposure simultaneously affect the optical properties of DOM, but in 

opposite directions. Interestingly, dissolved organic carbon (DOC) exhibited the 

highest variability in summer, when the rest of parameters showed minimum 

variations. To explain this mismatch we propose a sequence of abiotic and biotic 

phenomena driving the DOC dynamics. In the suggested conceptual frame, the 

biological factors are dominant in the summer, while during the rest of the year; DOC 

dynamics depends strongly on episodic meteorological events. 

 
Keywords: Chromophoric dissolved organic matter (CDOM), Fluorescent dissolved 

organic matter (FDOM), NW Mediterranean Sea, Coastal systems, Seasonality.  
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1. INTRODUCTION 

Chromophoric dissolved organic matter (CDOM) is a major fraction of 

dissolved organic matter (DOM) that interacts directly and indirectly in 

biogeochemical cycles, principally in the carbon cycle.  CDOM absorbs light over a 

broad range of ultraviolet (UV) and visible wavelengths and consequently it can 

shade plankton cells, thus reducing light for photosynthesis and preventing UV cell 

damage (Blough & Zepp, 1990).  

In marine systems the dynamics of CDOM is governed by physical and 

biological processes, such as photobleaching or in situ microbial activity (Nelson & 

Siegel, 2002 ; Ortega-Retuerta et al., 2009; Romera-Castillo et al., 2013). This 

optically active component in oceanic regions could represent about 70 % of the total 

dissolved organic carbon (DOC) (Chen & Bada, 1992), and it has been demonstrated 

that this percentage can increase in areas with riverine influence (Blough & Del 

Vecchio 2002; Coble, 2007). 

A small fraction of CDOM can emit fluorescence when excited by ultraviolet 

radiation, the so called fluorescent dissolved organic matter (FDOM; Coble, 1996, 

2007). FDOM in aquatic systems has been characterized using fluorescence 

spectroscopy analyses and, in particular, measurements of Excitation-Emission 

Matrix (EEMs) have been applied to understand its dynamics (Blough & Del Vecchio 

2002, Nieto-Cid et al., 2006, Romera-Castillo et al., 2010). Using EEMs matrices, 

Coble (1996) defined three types of substances: two of them humic-like: peak–M and 

peak–C; and the third one protein-like: peak–T.  

Peak–M substances are considered mainly of in situ marine origin, rather bio-

refractory and photo-labile, and their excitation/emission wavelength ranges are 312-

320/380-410 nm (Coble 1996, Nieto-Cid et al., 2006), Peak–C substances emit at 

420-480 nm when excited at 340-350 nm and are associated to materials of 

terrestrial origin and also to biological activity or catabolism of marine prokaryotes 

(Coble 1998; Romera-Castillo et al., 2011; De La Fuente et al., 2014). Peak–T 

compounds emit radiation in the wavelength at 350 nm when excited at 280 nm and 

might be considered as a tracer for labile DOM (Yamashita & Tanoue 2003).  
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The optical properties of the CDOM provide information of the chemical 

structure and biogeochemical processes of DOM in aquatic environments (e.g. 

Green & Blough, 1994). The ratio of aCDOM with respect to DOC concentration gives 

us the specific absorption coefficient, a*CDOM(254) that has been used as a proxy for 

aromaticity (Weishaar et al., 2003), and the ratio between the emitted fluorescence 

and the absorption at 340 nm (aCDOM(340)) provides the quantum yield at 340 nm 

(Φ340), which is an indicator of degradation processes (De Haan, 1993). 

 

CDOM monitoring in Mediterranean coastal areas has shown different 

temporal patterns, which go from weak to strong seasonality (Para et al., 2010; 

Romera-Castillo et al., 2013). Such high variability in the temporal trends of coastal 

systems has been also pointed out in relation to plankton dynamics (Cloern & Jassby 

2008; Romero et al., 2014), and makes it difficult to predict the system response to 

future conditions. To better understand the temporal variability and the role of the 

CDOM in aquatic systems, we, here, present a 14-month dataset of weekly 

samplings in the SOLA station, in the Bay of Banyuls-sur-mer, NW Mediterranean. 

We analyzed different fractions of organic matter (OM) and several biological and 

chemical water-column variables. We used this dataset to identify the environmental 

parameters influencing the quality and quantity of dissolved organic matter, and to 

evaluate the evolution of the different fractions of OM in relation to other biological 

variables. Finally, we explore the variability of inorganic nutrient and chlorophyll 

concentrations, at different temporal scales, using a larger data set (since January 

2000) from the SOLA station. 
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2. MATERIAL AND METHODS  

2.1. Site and sample collection  

Samples were taken from a NW Mediterranean coastal station (SOLA station 

42°29'300 N - 03 °08'700 E), located in the Bay of Banyuls-sur-mer (Fig.1). SOLA 

station was sampled weekly aboard RV “Nereis II” from February 2013 to April 2014. 

Seawater samples were collected at 3 m depth, and taken directly from Niskin 

bottles. Vertical profiles of temperature and salinity were simultaneously performed 

using a CTD (Conductivity-Temperature-Depth, Seabird 19). The data for the 2000-

2012 period were acquired from the French Coastline Observation Service 

(http://somlit.epoc.u-bordeaux1.fr/fr). 

 

 

 

Figure 1. Localization of the study site (SOLA station) in the Bay of Banyuls-sur-
mer, NW Mediterranean Sea. 
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2.2. Chemical and biological analyses  

Chlorophyll concentration was determined by fluorometry, filtering 250 ml 

subsamples on Whatman GF/F filters extracted in 90% acetone and stored at -200C 

for 24h in the dark until analysis, using a Tuner Design 10-AU fluorometer (Holm-

Hansen et al. 1965). Samples for nutrients analyses (NO-
3, NH4

+, PO4
-3 and H4SiO4) 

were collected in 12 ml polyethylene tubes, and stored at –20 0C until analysis in the 

laboratory using a colorimetric “AA3 AXFLOW/SEAL AAHR” auto-analyzer. Accuracy 

of measurements was ±0.05 µmol L-1 for nitrate (NO-
3) and silicates (H4SiO4), ±0.006 

µmol L-1 for ammonium (NH4
+) and ±0.003-0.006 µmol L-1 for phosphate (PO4

-3). 

Ammonium concentrations were obtained using the ophthaldialdehyde method 

(Holmes et al. 1999).  

Samples for analyses of dissolved organic carbon (DOC) were filtered through 

Whatman GF/F filters and collected in pre-combusted glass ampoules (12 h at 450 
0C). The orthophosphoric acid (H3PO4) was added to acidify the DOC samples, and 

the ampoules were heat sealed and stored in the dark until analysis. DOC was 

analysed following the high temperature catalytic oxidation (HTCO) technique 

(Sugimura and Suzuki, 1998, Cauwet, 1994, 1999) using a Shimadzu TOC-L 

analyser. The system was calibrated daily with a solution of acetanilide (C8H9NO 

MW= 135.17). The DOC concentration was determined by subtracting the blank 

samples. 

Samples for analyses of particulate organic carbon (POC) were filtered on pre-

combusted (24 h, 450°C) glass fiber filters (Whatman GF/F, 25 mm). Filters were 

dried overnight at 50°C, and stored in ashed glass vial in a desiccator, after they 

analyzed according to the wet oxidation method described by Pujo-Pay & Raimbault 

(1994) using a CHN Perking Elmer 2400.   

Abundance of prokaryotic cells was counted with a FACScan by flow 

cytometry equipped with argon-ion laser (488 nm excitation) and three fluorescence 

sensors (FL1: 530/30 nm; FL2: 575/26 nm and FL3: 650 LP). For each sample, 1.5 

ml of water was collected and fixed with 25% glutaraldehyde (final concentration 1%), 

left at room temperature in the dark for 15 min to ensure optimal fixation of the cells, 

and stored at -80 0C until analysis.  
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2.3. Optical measurements of CDOM   

Samples water for absorption and fluorescence of CDOM were taken directly 

from the Niskin bottle in glass flasks of 250 ml, previously washed and pre-

combusted  (24 h at 450 0C) to avoid any contamination. The samples were filtered 

by gravity onto Whatman GF/F filters (porosity 0.7 µm), preserved in the dark and 

frozen at -20 0C until analysis (Hancke et al., 2014). FDOM samples were analyzed 

no later than three months after collection, following the methodology described by 

Nieto-Cid et al. (2006). CDOM absorption was measured in 10 cm quartz cuvettes 

using a Varian Cary UV-VIS spectrophotometer equipped with a 10 cm quartz cell.  

Absorbance was performed between 250 and 750 at a constant room temperature of 

200C. Milli-Q water was used as blank. The residual backscattering (colloidal 

material, fine size particle fractions present in the sample) was corrected by 

subtracting the mean absorbance calculated in the spectral range 600-750 nm. The 

absorption coefficient (aCDOM(λ) in m-1), was calculated as:  

 

aCDOM (λ)=2.303A(λ250-700)/ L    

 

Where Abs (λ) is the absorbance at wavelength λ, and l is the optical path length in m 

and 2.303 is the factor that transforms natural logarithms to decimal logarithms. The 

spectral slope was calculated over wavelength range (S250-500 and S275-295) using 

linear regressions of the natural log-transformed aCDOM(λ) according to Nelson et al. 

(2004) and Helms et al. (2008).   

 

FDOM samples were analyzed with a Perkin Elmer luminescence 

spectrometer LS 55 equipped with a xenon discharge lamp, equivalent to 20 kW. Slit 

widths were 10.0 nm for the wavelengths of excitation and emission, and the scan 

speed was 250 nm/min. Matrices (EEMs) were generated by combining 21 

synchronous excitation-emission fluorescence spectra of the sample, obtained for 

excitation wavelength range of 250-450 nm and an offset between the excitation and 

emission wavelengths of 50 nm the first scan and 250 nm the last scan, using a 

Perkin Elmer LS 55 instrument, that was calibrated with quinine sulfate dehydrate 
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(QS) standard made up in 0.05 mol liter-1 of sulfuric acid (Nieto-Cid et al., 2006). Milli-

Q water was used as blank and Raman scattering was corrected subtracting the Milli-

Q water. We used a combination of different pairs of excitation-emission (EX/EM) 

wavelengths previously described by Coble (1996) in order to compare our results 

with previous works. Peak–C (Ex/Em 340-350/420-480 nm) as indicator of terrestrial-

like substances; Peak–M (Ex/Em 312-320/380-420 nm) as indicator of marine-like 

substances and Peak–T (Ex/Em 280/350 nm) as indicator of protein-like substances. 

Fluorescence measurements were expressed in Quinine Sulfate Units (QSU).  

 

The fluorescence quantum yield at 340 nm was determined using the ratio of 

the absorption coefficient at 340 nm and the corresponding fluorescence emission 

between 400 and 600 nm of the water sample and referred to the quinine sulfate 

standard (QS) ratio (Green & Blough, 1994):  
 

   

 
   

Φ 340( ) =
F 400− 600( )
aCDOM 340( )

⋅
aCDOM 340( )QS

F 400− 600( )QS

⋅Φ 340( )QS
 

 

Where aCDOM(340)QS is the absorption coefficient of the QS standard at 340 nm (in   

m-1); F(400-600) and F(400-600)QS are the average integrated fluorescence spectra 

between 400 and 600 nm at a fixed excitation wavelength of 340 nm (in QS units) 

obtained for each sample and the QS standard (Romera-Castillo et al., 2011) 

Φ(340)QS is the dimensionless fluorescence quantum yield of the QS standard and 

equals 0.54 (Melhuish, 1961); and aCDOM(340) is the absorption coefficient of each 

sample at 340 nm. The specific absorption coefficient a*
CDOM(254) was obtained 

dividing the value aCDOM(254) by the DOC concentration, and expressed in m2 g C-1.  
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3. RESULTS  

3.1. Physical drivers and annual variability of the measured Parameters 

In Figure 2 we show the monthly average of the different environmental 

parameters monitored from 2000 to 2012 together with the discrete values obtained 

during the period detailed in this study (February 2013 to April 2014). Temperature 

followed a clear annual cycle: minimum values occurred in February (9.4 and 12.7 ºC 

for 2013 and 2014, respectively) and the maxima (24 ºC) were registered in August 

(Fig. 2a). Salinity ranged from 34.28 to 38.5 and showed two minima, the first one in 

early spring (March 2013) and the second one in early winter (January 2014) (Fig. 

2b). These minima (34.7 and 34.28, respectively) were exceptionally low with regard 

to the average for the last 15 years (Fig. 2b), and coincided with FDOM maxima (Fig. 

3c).  

Inorganic nutrient concentrations were always low in summer and high in 

winter and spring. Nitrate concentrations ranged from 0.2 µmol L-1 to 9.2 µmol L-1 

(Fig. 2c), with values > 5 µmol L-1 in early-mid winter (January, 2013 and March, 

2014). Ammonium concentration ranged between 0.01   µmol L-1 and 0.64 µmol L-1  

(Fig. 2d) showing remarkably low values in late spring and autumn 2013 (< 0.1 µmol 

L-1). Phosphate concentration was low (<0.2 µmol L-1) throughout the time series 

(Fig. 2e). Silicate presented two maxima in March 2013 and January 2014 (9.9 µmol 

L-1 and 11 µmol L-1 respectively) (Fig. 2f) coinciding with the salinity minima and with 

high nitrate values.  The N:P (mol:mol) ratio of inorganic dissolved fraction varied 

from 1 to 130, with values below 16 typically occurring in the summer. Total 

chlorophyll (Chl a) ranged from 0.05 µg L-1 to 4.39 µg L-1 (Fig. 3a). During the period 

studied we found two peaks (February, 2013 and January, 2014) with concentrations 

of 4 µg L-1 and 4.39 µg L-1, respectively. The winter chlorophyll peak in 2013 followed 

a NH4
+ maximum, while the 2014 peak came after a salinity minimum. By contrast, 

during summer and spring, Chl a was rather low, reaching values of < 0.6 µg L-1. 
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Figure 2. (a) Temperature, (b) salinity, (c) nitrate, (d) ammonium, (e) phosphate and 
(f) silicate. T is in 0C, and all nutrients are in µmol L-1. Thin lines indicate the average 
annual cycle of each variable for the 2000-2012 period and vertical bars indicate the 
standard deviation. Purple triangles and green circles represent 2013 and 2014 
sampling, respectively.  
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Figure 3. (a) Chlorophyll a (chl a) in (g L-1 and DOC in (mol L-1 (b) absorption 
coefficient at 254 nm [aCDOM(254)] in m-1 and prokaryotic abundance in cells m-1, (c) 
fluorescence intensity and excitation-emission matrices (EEMs) in quinine sulfate 
units (QSU). The EEMs show the two most contrasting environmental events: (1) 
intrusion of water with low salinity in winter and (2) water photobleached in summer. 
Inside the EEMs, the capital letters indicate the different peaks, and (d) specific 
absorption coefficient a*CDOM(254) in m2 g C-1 and  salinity in the Bay of Banyuls-sur-
mer (SOLA station) during the time series from February 2013 to April 2014. 
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DOC concentration ranged between 60 µM and 117 µM. Maximum values 

occur in mid-summer (August-September), followed by a gradual decrease until the 

winter period, where DOC values remain low (60.2 to 81.9 µM, Fig. 3a). POC 

concentrations were high throughout the whole period, except in late summer, when 

they decreased (~ 58 µM). The highest concentrations of POC occurred in winter and 

spring 2014 (mean 161 µM). Prokaryotic abundance ranged between 3.48·105 cells 

ml-1 to 1.14·106 cells ml-1 and presented high variability and weak seasonal patterns 

(Fig. 3b). 

  

3.2. DOM colored fractions 

This is the first study for the characterization of optical properties of CDOM 

within the SOLA time series; therefore comparisons with previous data were not 

possible. During the first months of sampling EEMs matrices presented marked 

fluorescence peaks in the areas corresponding to the protein-like and humic-like 

substances. In the humic-like area, the most intense peaks appeared in March 11, 

2013 at 340-350 nm/440-460 nm (peak–C) and at 312-328 nm/420 nm (peak–M) 

with values of 2.9 and 3.0 QSU respectively. The fluorescence corresponding to 

protein-like substances (peak–T) ranged from 0.18 to 3.65 QSU and followed 

temporal trends similar to those of the humic-like substances. EEMs matrices 

showed a marked seasonal variability with noticeable differences in fluorescence 

signals associated with the two most contrasting environmental events: (1) the 

intrusion of water with low salinity in winter and (2) the high light exposure and 

stratification occurred in summer. During the fresh water inputs, the peaks were 

clearly defined in the EMM showing high intensities while in summer, a clear 

decrease in fluorescence intensity was found due to photobleaching (Fig. 3c).  

 

The dynamics of the three peaks is shown in Fig. 3c. The three OM groups 

follow similar patterns, with high values coinciding with salinity minima and low 

values along the summer. Accordingly, FDOM-peaks showed significant positive 

correlation with nutrients (Nitrate and Silicate) and negative correlation with 

temperature and salinity (Table1). 
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Table 1. Correlation values between physical and chemical parameters from the sampling period (February 2013 to Avril 2014). 
Colored cells indicate significant correlation where dark gray = p-value ≤ 0.01, light gray= p-value ≤ 0.05. T in 0C, nutrients (NO3

-
, 

PO-3
4, H4SiO4, NH+

4) in µmol L-1, Chl a in µg L-1, DOC in µM, Φ340 in %, aCDOM(254) in m-1, Peak-M, Peak-C and Peak-T in quinine 
sulfate units (QSU) and POC and PON in µg L-1. 
 

  T S  NO3

-
 PO4

-3
 H4 Si O4 NH4

+
  Chl a DOC Φ340 aCDOM(254) 

Peak 
C 

Peak 
M 

Peak 
T POC  

S  0.21              
NO3 -0.54 -0.75             
PO4

-3
 -0.36 -0.39 0.60            

H4 Si O4 -0.35 -0.74 0.90 0.59           
NH4

+
  -0.37 -0.20 0.31 0.32 0.07          

Chl a -0.56 -0.35 0.36 0.18 0.20 0.21         
DOC 0.74 0.10 -0.41 -0.35 -0.29 -0.30 -0.37        
Φ 340 -0.33 -0.25 0.22 -0.04 0.12 0.03 0.39 -0.25       
aCDOM(254) -0.03 -0.58 0.41 0.47 0.48 0.22 0.10 0.00 -0.24      
Peak-C -0.44 -0.67 0.67 0.47 0.66 0.18 0.51 -0.38 0.43 0.55     
Peak-M -0.46 -0.68 0.71 0.54 0.67 0.26 0.51 -0.40 0.43 0.55 0.96    
Peak-T -0.33 -0.35 0.39 0.29 0.27 0.22 0.37 -0.28 0.22 0.32 0.54 0.61   
POC  -0.12 -0.41 0.05 0.05 -0.04 0.03 0.47 -0.11 0.36 0.06 0.30 0.31 0.21  
PON 0.03 -0.31 0.14 0.06 0.17 0.10 0.13 -0.14 0.33 0.18 0.32 0.35 0.08 0.20 
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The aCDOM at 254 nm ranged between 1.5 and 4.6 ± 0.51 m. The maximum 

value was observed in mid-winter (11 March 2013), concomitant with low salinity       

(< 35) and low temperature (12 0C), but otherwise no clear seasonal patterns were 

found (Fig. 3b), and did not correlate significantly with temperature (Table 1). 

 

3.3. Optical indexes  

None of the calculated aCDOM slopes (S250-500, S275-295) followed a regular 

annual pattern. The range and the average of the observed slopes are listed in Table 

2. The fluorescence of quantum yield at 340 nm, (Φ340) in SOLA station ranged 

between 0.08 and 0.87. The highest values of Φ340 (> 0.5%) were observed in winter 

and spring, however, again, no clear seasonal pattern was detected and a weak 

correlation with temperature was observed (Table 1). Summer and fall showed a 

similar Φ340 (mean value 0.29 %). The ratio of aCDOM(254) with respect to the DOC 

(a*
CDOM(254)) was clearly influenced by salinity, the maximum values coincided 

systematically with the salinity minima (Fig. 3d). 

 
 

Table 2. Average ± SD of the spectral slopes over the 250-500 nm, 275-295 nm 

wavelength range, and fluorescence quantum yield at 340 nm (Φ340) from February 

2013 to April 2014 in the Bay of Banyuls-sur-mer (SOLA station). 

 

 
Average ±SD Max Min 

S (250-275) 0.017 ± 0.005 0.03 0.008 
S (275-295) 0.029 ± 0.005 0.041 0.016 
Φ340 0.30 ± 0.17 0.87 0.08 

 
 
 

3.4. Variability trends 

The annual range and median values of the different parameters monitored 

between 2000 and 2014 are shown in Fig. 4. No clear increase of the annual 
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variability is observed throughout the years. In Figure 5 it is represented the data 

range, for each season and for the whole study period, of our weekly sampled 

parameters. The minimum width range of values appeared in the summer for all 

variables except for DOC and aCDOM(254). Actually, the maximum variability for DOC 

is observed in summer. In winter we found the maximum fluctuation in chlorophyll 

values coinciding with those of aCDOM(254) and peak-C. 
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Figure 4. Inter-annual variability of several physical and chemical parameters 
monitored from 2000 to 2014 in the Bay of Banyuls-sur-mer  (SOLA station). (a) 
Temperature, (b) salinity, (c) nitrate (d) silicates and (e) chlorophyll a. The inorganic 
nutrients are in µmol L-1, temperature is in 0C and chlorophyll a (Chl a) is in µg L-1. 
The box encloses 50% of the data; the line inside the box corresponds to the median. 
The lines extending from the top and the bottom mark the minimum and the maximum 
values without considering the outliers. The outliers are represented by dots.  
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Figure 5. Seasonal versus Inter-annual variability of certain physical and chemical 
parameters monitored. (a) Temperature, (b) salinity, (c) nitrate, (d) silicates, (e) peak 
C, (f) dissolved organic matter (DOC), (g) aCDOM (254) and (h) chlorophyll a (Chl a) 
from 2013 to 2014 sampling in the Bay of Banyuls-sur-mer (SOLA station). 
Temperature in 0C, inorganic nutrients are in µmol L-1, peak C in quinine sulfate units 
(QSU), DOC in µM, absorption at 254 nm [aCDOM (254)] in m

-1
and chlorophyll a (Chl a) 

in µg L
-1

.  
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The coefficient of variation (CV) was calculated for each season from 2000 to 

2014 in order to explore if, at the seasonal level, we could detect an increase of 

variability throughout the years (Fig. 6). In general, for all variables examined, low 

coefficients were found in the summer respect to those found in the rest of the 

seasons, with the exception of nitrate for which, in general, the lowest CV values were 

found in winter. In fall, the CVs for temperature and salinity were high at the beginning 

of the series until 2004, and then relative low values were observed until 2011, 

thereafter CV increased.  No clear temporal pattern was observed for the CV of 

chlorophyll in any of the seasons. 

 

 

Figure 6. Seasonal coefficient of variation (CV) from 2000 to 2014 in the Bay of 
Banyuls-sur-mer (SOLA station). (a) Temperature, (b) salinity, (c) nitrates (d) chl a, 
and e) silicates. The CV is expressed in percentage (%).  
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4. DISCUSSION     

4.1. Temporal variability in the Bay of Banyuls-sur-mer 

The Bay of Banyuls-sur-mer was characterized by a well-marked seasonal 

variability, as previously described by other authors (Marty et al., 2002, Estournel et 

al., 2003, Grémare et al., 2003). The annual changes on temperature and wind 

intensity drive the formation and the erosion of the thermocline, this together with the 

seasonal dynamics of river discharges determined the temporal changes of the 

biogeochemical variables examined. Two sharp decreases of salinity were observed 

in the winter (March 11, 2013 and January, 13, 2014). Coinciding with the salinity 

minimum of 2013 we observed high water discharges from the Têt and Tech Rivers (≈ 

40 m3s-1 each), and also an exceptionally high level of the Baullaury river (around 200 

m3s-1). Nutrient dynamics was also strongly influenced by these discharges, the 

nitrate and silicate peaks coincided with the salinity minima and these variables were 

significantly negative correlated with salinity (R2 = -0.75, p-value < 0.05). 

Two maxima of chlorophyll were observed during the study period (25 

February 2013 and 29 January 2014). The 2014 maximum occurred after a minimum 

of salinity; the rapid increase of chlorophyll could be thus the response to the nutrient 

enrichment produced by freshwater discharge (Fig. 3a). In contrast, the 2013 peak in 

February 25 occurred just before the salinity drop and coincided with a relative 

maximum of NH4
+. This ammonia peak could have been originated from a sediment 

resuspension process caused by the strong wind observed those days (19 m s-1). 

High waves and swell have also been reported as a cause for sediment resuspension 

at the SOLA station (Guizien et al., 2007). In fact, coinciding with this chlorophyll peak 

we found a relative minimum of temperature. Other authors related these peaks to the 

development of convective mixing (Béthoux & Prieur, 1983) that typically occurs in 

winter (Marty et al., 2002). Regardless of the cause of the increase of ammonia, this 

increase could have induced the phytoplankton bloom in March 2013 where diatoms 

reached also high abundances (2.0 to 4.0 ·104 cell L-1, data not shown). 

We compare our results with climatological and environmental data collected 

from 2000 to 2012 in the same station. We found that our results, in general, varied 

within the range of the values obtained in the past 15 years, there were, however, two 
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salinity outliers. The annual salinity minima found in our study were also the minima 

for the last 15 years time series. Considering that these minima are associated to high 

nutrient concentration, it would be of interest to follow those phenomena in the future 

to check if they are sporadic events or correspond to a shift in meteorological trends. 

A proper understanding of such variability will help to better simulate future scenarios 

and to predict biological production in coastal areas. It is also noticeable that the 

ammonia concentration showed values always below the mean of the past 15 years, 

while the phosphate values tended to be above the average. This change of tendency 

in nutrient dynamics may be due to local processes as it did not occurred in other 

close areas of the NW Mediterranean (BBMO, 

http://www.icm.csic.es/bio/projects/icmicrobis/bbmo/).  

 

4.2. Variability at different time scales 

Recently it has been reported a high variability and a decrease on seasonality 

of diverse monitored variables in the coastal regions due to anthropogenic actions 

and, also, pointed out the difficulty that this brings when looking for responses to 

human disturbances or to climate change (Cloern & Jassby 2008, Romero et al., 

2014). Long and high frequency time series are necessary for a proper understanding 

of ecosystem processes, yet most of the Mediterranean time series sites are sampled 

monthly. Here, we used a weekly sampling scheme to examine the temporal 

variability of several water-column parameters.  

We found no evidence of an increase in annual variability since 2000 (Fig. 4), 

however, looking at the variability corresponding to the summer period (Fig. 6), it is 

remarkable that along these 15 years the coefficient of variation (CV) of nitrate 

fluctuated much more than that of the other variables, such as the salinity and the 

silicate, which usually correlate with nitrate. This mismatch could indicate a possible 

anthropogenic influence on the nitrate dynamics, as has been suggested by other 

authors (Iversen et al. 1998; Bouwman et al., 2005; Velasco et al., 2006; Rivett et al. 

2008; Taylor & Townsend 2010; Romero et al., 2013, 2014). In fact, the departmental 

tourism committee has reported that the tourist frequency in the Bay of Banyuls- sur- 

mer, was about 4.2 times higher in summer than in any other season of the year. This 



CHAPTER	II																																																																								CDOM	dynamics	in	the	coastal	system		

 

 61 

increase of tourism during summer has been observed since 1997 

(http://observatoirecdt66.typepad.fr/frequentation/frquentation_global/index.html).  

Interestingly the CV of chlorophyll fluctuated less than the CV of nitrates. 

Unfortunately, we have no data of bacterial production. Also, samples for bacterial 

abundance were not always taken. 

 

4.3. Temporal mismatch between chlorophyll and organic matter   

 In order to evaluate the importance of phototrophic components in relation to 

the total biomass we calculate the proportion of particulate organic carbon respect to 

the chlorophyll concentration (POC/Chla), which can be considered a proxy for 

estimating the degree of heterotrophy in a system, at least for a comparative usage in 

the time series. In Figure 7 we plotted the POC/Chla ratio together with the ratio of 

total inorganic nitrogen respect to phosphate concentration (N:P, mol:mol). A clear 

seasonality of both variables can be observed with high values of POC/Chla in 

summer. The quotients DOC/Chla and (POC+DOC)/Chla exhibited the same pattern 

(data not shown). Altogether indicating a higher degree of heterotrophy in summer as 

has been found in other Mediterranean stations (e.g. Alonso-Sáez et al., 2008). 

These maxima in summer coincide with the minima of N:P values. The higher 

proportion of particulate organic carbon in relation to chlorophyll in summer could be 

due, in part, to the use of non-limiting substrates by the osmotrophs to increase in cell 

size, this mechanism has been proposed by several authors, e.g. Malits et al. (2004) 

for bacteria and Thingstad et al. (2005) for osmotrophs in general.  
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Figure 7. Annual variability of POC/Chla and N/P ratios. The data were available from 
2010 to 2014. 
 
 
 

The accumulation of DOC in summer in the Mediterranean waters have been 

attributed to the “malfunction of microbial loop” (Thingstad et al., 1997), these authors, 

based in some experimental results, associated this mechanism to phosphorous 

limitation for bacteria, however we found the lowest N/P ratios in summer indicated a 

nitrogen limitation. In any case, the concentrations of dissolved nitrogen and 

phosphorous are extremely low in summer (close to detection limits) and probably 

osmotrophs are limited by both nitrogen and phosphorous. Nevertheless, in other NW 

Mediterranean sites (Blanes Bay Microbial Observatory, BBMO) it has been found in 

summer a high bacterial production, measured as leucine incorporation, coinciding 

with the lowest inorganic nutrient concentrations (Alonso-Sáez et al., 2008). To 

interpret this mismatch between DOC accumulation and bacterial activity more 

studies should be done, maybe a top-down control should also be consider. In fact, 

several studies reported increases of grazing activity with temperature (Marrasé et al., 

1992; Vaqué et al., 1994). Unrein et al. (2007) also in BBMO station, found the 

highest grazing on bacteria rates during the warmer periods. 
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4.4. Seasonal dynamics of CDOM fractions 

The variability of the FDOM peaks in coastal marine systems depends on 

different physical and biological parameters: the river discharges, the light intensity 

and the microbial activity, among others. Two fluorescence maxima for humic-like 

substances were observed in the period studied (March 2013 to January 2014). 

These peaks coincided with salinity minima and indicate that during the winter the 

FDOM variability is governed by river discharges, while in spring and summer FDOM 

dynamics seems to be driven by the light radiation. Low concentrations of humic-like 

substances were found during the stratification period (April to October) coinciding 

with high sunlight exposure (in average: day length 14 h/d, irradiance 903 Wm-2). 

Thus photobleaching could be the major sink process in this period, as the bulk of 

dissolved organic matter (DOC) was accumulated in this same period. Similar trends 

have been observed in other coastal areas (Coble, 2007; Para et al., 2010; Romera-

Castillo et al., 2013). The DOC maxima in warm periods did not coincide with the 

FDOM peaks as we could anticipate because the processes that regulate and control 

these two pools of matter organic are decoupled and are affected by the environment 

in opposite directions (Chen & Bada 1992; Coble 2007; Romera-Castillo et al., 2013). 

The statistical analyses confirm this inverse relationship showing a negative 

correlation between DOC and any of the humic peaks (Table 1). 

Regarding the optical indexes examined, the ratio aCDOM(254)/DOC showed the 

highest values coinciding with the two salinity minima, indicating that the intrusion of 

fresh waters modified not only the quantity but also the quality of the dissolved 

organic matter. In contrast, the SCDOM values calculated for 250-500 nm did not seem 

to be influenced by fresh water intrusions as it has been suggested in previous 

studies (Ferrari, 2000). Also SCDOM shown a clear seasonal pattern and ranged from 

of 0.011 and 0.023 ± 0.005 m-1, these values are close to those reported by other 

authors (e.g. Ferrari 2000; Babin et al. 2003; Para et al. 2010; Romera-Castillo et al., 

2011). High values of the slope have been also attributed to photobleaching (Vodacek 

& Blough, 1997). However, other factors should have been influence in our site as we 

only occasionally found high values of SCDOM during summer (Table 2). 

The fluorescence quantum yield at 340 nm, [Φ (340)], again, did not show a 

clear seasonality, reaching the highest values in winter and spring. This index is 
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sensitive to both photo and biodegradation (De Haan 1993; Lønborg et al., 2010). 

Although the values obtained in this study are within the range of others previously 

reported, the interpretation of Φ (340) variability during our sampling period would 

require more information about microbial activity. 

It is remarkable how DOC seasonal variability changes in relation to other 

variables. DOC exhibited its highest CV during summer, while most of the other 

environmental variables studied here got the minimum CV in this warm season. This, 

again, indicates that for a complete understanding of DOM dynamics more effort 

should be done during summer not only increasing the sampling frequency but also 

considering measurements related to prokaryotic activity in the monitoring program 

(Fig. 5).  

 
 

4.5. Hypothetical conceptual framework  

The flow chart in Figure 8 aims to visualize the major mechanisms that regulate 

the dynamics of DOM in the temperate oligotrophic (SOLA station). With question 

marks we indicate the variables for which we do not have data but we do have 

indirect evidence to hypothesize that these variables or mechanisms play a role in the 

dynamics of organic matter. This indirect evidence comes from our bulk 

measurements and/or reported data from similar areas. (Unrein et al., 2007; Alonso-

Sáez et al., 2008). The discontinuous line in figure 8 separates the typical recurrent 

mechanisms occurring in summer season (right side) from those episodic operating at 

any time over the year, but scarcely during summer. The episodic mechanisms 

controlling organic matter dynamics are related with abiotic processes (fresh water 

intrusions, storms, etc.), while DOM in summer is mostly governed by biotic 

mechanisms (use of non-limiting nutrients, malfunction for microbial-loop and grazing 

pressure on prokaryotes).    

 

 
 
 
 



!"#$%&'())((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((!"#$%&'()*+,-%+(%./0%,1)-.)2%-'-.0*%%

 

 65 

 

 
 
 
 
 
Figure 8. Hypothetical scheme for the ecosystem response to climatology events and 
photochemical processes in the Bay of Banyuls-sur-mer (SOLA station). The 
discontinuous line separates the typical recurrent mechanisms occurring in summer 
season (right side) from those more episodic operating at any time, but scarcely 
during summer and with question marks we indicate the variables for which we do not 
have data but we do have indirect evidence to hypothesize that these variables or 
mechanisms play a role in the dynamics of organic matter.    
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 5.     CONCLUSIONS   

1. The fluorescent fractions of dissolved organic matter (FDOM) followed opposite 

trends respect to DOC. This fact is very conspicuous in summer where the 

minimum values of FDOM are concomitant with the maximum concentrations of 

DOC. 

2. The annual and seasonal variability of environmental variables studied, contrary 

to what we expected, did not increase along the years.  

3. In general, for the variables studied, the variation coefficient in summer was low 

in relation to the rest of the seasons. The only exception was the case of nitrates 

for which we found relative high variability in summer. It is suggested that this 

high variability in summer could be a consequence of anthropogenic activities. 

4. We found a mismatch between autotrophic biomass (chlorophyll) and total 

organic carbon (particulate and dissolved). In summer we observed the highest 

DOC and POC concentrations concomitant with the lowest chlorophyll values. 

We postulated that both bottom and top-down mechanisms might operate to 

explain the organic matter accumulation, among them the “malfunction of 

microbial-loop”, “the surplus use of non-limiting substrates”, and the predation 

pressure on osmotrophs. 

5. In summer the system dynamics are controlled basically by biological processes, 

while for the rest of the year the dynamics is clearly marked by episodic 

meteorological events. 
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ABSTRACT  
 
 

The offshore station MOLA in the NW Mediterranean is characterized by a 

convective-mixing throughout winter-spring period followed by a posterior 

stratification, these two features drive the DOC dynamics in this area. Our objective 

was to evaluate the effect of the convection event on different environmental 

parameters, in particular on those related to organic matter in the photic zone. To 

achieve this objective, we monitored two winter periods corresponding to 2013-2014, 

which strongly differed in the intensity of the convection processes. Therefore we had 

the opportunity to compare the system response to contrasting convection-mixing 

events. Our results showed that the differences in the vertical distribution of biological 

and chemical variables during the studied period were governed by the marked 

physical features. The strong convection occurred in 2013 injected nutrients in the 

euphotic layer favoring a posterior bloom of phytoplankton, but also provoked a 

dilution of dissolved organic carbon (DOC), colored dissolved organic matter (CDOM) 

and fluorescent dissolved organic matter (FDOM). In contrast during the weak 

convection the dissolved organic matter was relatively higher in surface. In the 

course of stratification period DOC accumulated likely because of the low microbial 

activity and FDOM decreased probably due to photo-bleaching of the humic-like 

substances, which causes a diminution in their aromaticity. Our study evidences that 

in MOLA station, the photo-bleaching is the major sink of FDOM, while the “in situ” 

production is the main source. Briefly, we could summarize the seasonal variability of 

FDOM in three episodes (1) A strong convective-mixing in 2013, which dilutes 

organic matter and injects inorganic nutrients in surface waters favoring a prominent 

bloom of phytoplankton, (2) a strong stratification, which induces photo-bleaching in 

summer time and (3) a weak convective-mixing in 2014, which induced lower 

phytoplankton biomass and an accumulation of DOC.  

 

 

Key words: CDOM, FDOM, DOC, convective-mixing, stratification, photo-bleaching.   
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1. INTRODUCTION  

A small and variable fraction of dissolved organic matter (DOM) absorbs light in 

the ultraviolet (UV-R) and visible ranges of light spectrum. This fraction is called 

chromophoric dissolved organic matter (CDOM) (Hoge et al., 1995). CDOM 

contributes approximately 20% to the bulk of Dissolved Organic Carbon (DOC) in the 

open ocean and more than 70% in the coastal environments (Nelson et al., 1998; 

Siegel, et al., 2002; Kowalczuk et al., 2010). A sub-fraction of this matter can emits 

blue fluorescence when it is excited by UV-R and is called fluorescent dissolved 

organic matter (FDOM, Coble, 1996, 2007). The residence time, cycling and fate of 

CDOM/FDOM in aquatic environments are regulated primarily by biological activity 

and photoinduced degradation. 

CDOM has a significant effect on biological activity in aquatic systems by 

diminishing light penetration in the water column. Thus, this has a limiting effect on 

photosynthesis (Arrigo & Brown, 1996), but on the contrary, it protects organisms from 

DNA damage by harmful UV-R (Williamson et al., 2001; Häder & Sinha, 2005). 

Absorption of UV-R causes CDOM bleached, reducing its optical density and 

absorptive capacity. In fact, the CDOM photodegradation can generate compounds of 

higher biological lability that its precursors, thus favouring microbial activity, and 

reactive oxygen species, which may damage tissues and alter the bioavailability of 

limiting trace metals (Mopper & Kieber, 2002). Actually, Organelli et al. (2014) 

proposes photobleaching as the major cause for CDOM sink in the upper layer.  

The characterization of the optical properties of CDOM such as absorption and 

fluorescence allows the understanding of the DOM dynamics in aquatic environments 

(Romera-Castillo et al., 2011). Absorption coefficients at different wavelengths and 

absorption coefficient ratios can also be used as indicators for the molecular size, 

nature (Carder et al., 1989) and origin (Vodacek & Blough, 1997) of CDOM or as a 

proxy of photochemical/microbial degradation process (Moran, 2000; Helms et al., 

2008). Considering again the optical properties, another indicator, in this case of 

aromaticity, is the specific absorption coefficient [a*CDOM(254)], also called SUVA254  

(Helms et al., 2013), which is the ratio of [aCDOM(254)] to the DOC (Weishaar et al., 

2003). Indeed, the fluorescence can be distinguished into two main groups of 
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fluorophores, depending on their excitation-emission wavelengths (Coble, 1996). The 

first group is called humic-like substances, among them the Peak-A emits 250 nm 

when excited at 350 nm (Coble, 1998) and Peak-M that emits at 320 nm when excited 

at 410 nm. Both peak A and peak M substances are associated to bio-refractory and 

photo-labile material (Chen & Bada, 1992). The second group is called protein-like 

substances, generally associated to Peak-T (280/350), which is considered as a 

tracer for labile DOM (Yamashita & Tanoue, 2003; Nieto-Cid et al., 2006).  

CDOM distribution in coastal environment has been widely studied (Chen & 

Bada, 1992; Ferrari, 2000; Blough & Del Vecchio, 2002; Romera-Castillo et al., 2013). 

These authors suggested that the major source of CDOM in these areas is often the 

fresh water inputs from land, whereas its dynamics depends upon abiotic-biotic 

interaction processes (Sánchez-Pérez et al. in preparation). Indeed, although 

variations in CDOM are primarily the result of natural processes, human activities 

such as: agriculture, effluent discharge, and wetland drainage can affect CDOM 

varibility. In general, CDOM concentrations are much higher in fresh waters and 

estuaries than in the open ocean, though concentrations are highly variable and 

mainly controlled by physical processes such as vertical mixing, ventilation and 

upwelling of water masses and photochemical bleaching (Helms et al., 2013; 

Yamashita et al., 2013). 

To our knowledge, only few studies have been conducted on CDOM 

absorption/fluorescence in the Northwestern Mediterranean Sea (Para et al., 2010; 

Romera-Castillo et al., 2013, Organelli et al., 2014; Xing et al., 2014). In the Gulf of 

Lion, nutrients and chlorophyll have classic seasonal variations for a temperate zone, 

with a well-marked surface nutrient enrichment in winter due to vertical mixing, giving 

rise to a more or less early spring bloom (D'Ortenzio & Ribera d'Alcala, 2009), and 

then with the apparition of the thermocline and reinforcement of oligotrophic condition 

during summer (see Mermex Group, 2011 for details). 
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The aim of the present study is to characterize the vertical distribution and the 

temporal dynamics of CDOM/FDOM through its concentration and optical properties 

in a NW Mediterranean oligotrophic site. Also, we endeavor to extract a coherent 

seasonal signal of the different sources of the DOM components. To achieve these 

objectives, we monthly sampled in MOLA (Microbial Observatory Laboratory Arago) 

station between February 2013 and April 2014. This station is a reference site that 

have been sampled for long time, thus we were able to place our observations in a 

synoptic biogeochemical context (2007-2014) by the means of the MOLA database. 
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2. MATERIAL AND METHODS  

2.1. Sampling strategy  

A monthly sampling of the water column was carried out on board the R/V 

Nereis II, from February 2013 to April 2014 at the MOLA observation station (Microbial 

Observatory Laboratory Arago), located in the Gulf of Lion (42°27'21"N – 03°32'57"E; 

600 m depth, Fig 1.). Due to particularly severe meteorological conditions during 

winter, the station could not be sampled from December to February. This station 

belongs to the MOOSE (Mediterranean Ocean Observing System for the 

Environment) network (http://www.moose-network.fr/) and is monthly sampled since 

2007. Vertical profiles (0-500 m) were performed using a CTD probe from Seabird 

(Conductivity-Temperature-Depth, SEACAT Profiler CTD SBE 19plus V2). Seawater 

samples were then collected with 12-L Niskin bottles at six depths in the euphotic 

layer (5, 20, 40, 80, 120 and 150 m). 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
Figure 1. Localization of the study site (MOLA station) in the Bay of Banyuls-sur-mer, 
NW Mediterranean Sea. 
 
 

MOLA  

Menorca 

Mallorca 

Sa
rd

in
ia

 

Longitude 

La
tit

ud
e 

Banyuls  
sur-mer  

Gulf of 
Lion  



Chapter III                           Winter convection regulates DOM dynamics in MOLA station  

 

 79 

2.2.  Physical and chemical parameters  

2.2.1. Nutrients analyses  

Samples for silicate (H4SiO4 ± 0.05 µmol L-1), nitrate (NO-
3 ± 0.02µmol L-1) and 

phosphate (PO-3
4 ± 0.01 µmol L-1) were immediately filtered on board (using 0.45 µm 

cellulose acetate filters) and stored in 20 ml polyethylene vials at -20°C until analysis. 

In the laboratory, samples were analyzed on a Bran-Luebbe autoanalyzer, according 

to the colorimetric method modified by Aminot & Kérouel (2007). Ammonium 

concentrations (NH+
4 ± 2nM) were determined by nanomolar fluorometric method 

according to Holmes et al. (1999) on a fluorometer Jasco FP-2020. 

 

2.2.2. Total chlorophyll a 

For the samples of chlorophyll, 250 ml of seawater were filtered on Whatman 

GF/F 25mm glass fiber filters. Filters were stored at -80°C. After extraction by 90% 

acetone the total chlorophyll (Chla) concentrations were determined by fluorometry on 

a Turner Design 10-AU fluorometer, according to the method proposed by Strickland 

& Parson (1997). 

 

2.2.3. Dissolved organic carbon analyses  

For dissolved organic carbon (DOC), 20 ml of samples were filtered through 2 

precombusted Whatman GF/F filters, then acidified with orthophosphoric acid 

(H3PO4) and stored in pre-combusted glass ampoules (12h at 450°C), in the dark 

until analysis. DOC concentration was measured by high-temperature catalytic 

oxidation (Cauwet, 1994) using a Shimadzu TOC-L analyser. The system was 

calibrated daily with a solution of acetanilide (C8H9NO MW= 135.17). The DOC 

concentration was determined by subtracting the blank samples. 
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3. Optical properties of CDOM  

2.4. Absorption measurements  

For the absorption analyses, 250 ml of samples were filtered by gravity through 

a precombusted GFF filter pre-rinsed with Milli-Q water (Nieto-Cid et al., 2006). 

Samples were then immediately frozen at -20°C and preserved in the dark until 

analysis (Hacke et al., 2014). 

 

The absorbance of CDOM was measured throughout the UV and visible 

spectral domains (250 to 700 nm wavelength) with 1 nm resolution. A baseline with 

filtered Milli-Q water is used as blank. Spectral absorbance was measured with quartz 

cuvettes of 10 cm path length using a Varian Cary UV-VIS spectrophotometer. The 

absorption coefficient was converted using following relationship: 

 

 

aCDOM (λ)=2.303A (λ250-700)/ L 

 

Where A(λ250-700) is the spectrophotometric absorbance at wavelength 250-700 nm, L 

is the optical path length in meters and 2.303 is the logarithmic factor. The specific 

absorption coefficient at 254 nm [a*CDOM(254)] was calculated dividing the value 

aCDOM(254) by the DOC concentration and expressed in m2 g C-1, and this used as a 

aromaticity index.  

 

3.2. Fluorescence measurements  

Samples were stored for less than 3 months in the dark at -20°C (Hancke et al., 

2014). Samples were thawed at ambient temperature in following the protocol 

proposed by Nieto-Cid et al. (2006) using a LS 55 Perkin Elmer luminescence 

spectrometer equipped with a xenon discharge lamp equivalent to 20 kW. Slit widths 

were 10 nm for excitation and emission wavelengths and speed scan was 250 

nm/min. We performed single measurements of different excitation-emmision 

wavelengths such as: Peak-A (Ex/Em 260nm /435 nm), Peak-M (Ex/Em 320 nm /410 



Chapter III                           Winter convection regulates DOM dynamics in MOLA station  

 

 81 

nm) both peak considered humic-like substances, and Peak-T (Ex/Em 280 nm/ 350 

nm) as a proxy of protein-like substances (Coble, 1996). 

The fluorescence quantum yield at 340 nm is defined as the portion of light 

absorbed at 340 nm that is re-emitted as fluorescence. For all samples in this study, 

the quantum yield [Φ(340)] was determined using the ratio of the absorption coefficient 

at 340 nm and the corresponding fluorescence emission at 400 to 600 nm and 

referring it to the equivalent ratio of the quinine sulfate standard (QS) in 0.1N H2SO4 

using the equation (Green & Blough, 1994): 

 

 

Φ 340( ) =
F 400− 600( )
aCDOM 340( )

⋅
aCDOM 340( )QS

F 400− 600( )QS

⋅Φ 340( )QS
  

 

 

Where aCDOM(340)QS is the absorption coefficient of the QS standard at 340 nm (in    

m-1); F(400-600) and F(400-600)QS are the average integrated fluorescence spectra 

between 400 and 600 nm at a fixed excitation wavelength of 340 nm (in QS units) 

obtained for each sample and the QS standard (Romera-Castillo et al., 2011); Φ(340)QS 

is the dimensionless fluorescence quantum yield of the QS standard and equals 0.54 

(Melhuish 1961); and aCDOM(340) is the absorption coefficient of each sample at 340 

nm. In this study, Φ(340) was used as a proxy for photochemical processes, as 

FDOM is more sensitive to light than CDOM (De Haan, 1993). 

 

4.     STATISTIC AND GRAPHIC TOOLS  

 
The Pearson’s correlation coefficient was used to estimate statistic relationship 

between variables. Statistical analyses were performed with IBM statistical software 

(SPSS). The contours plots were obtained with Ocean Data View 4 (ODV).
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5. RESULTS 

5.1. Hydrological conditions 

 The offshore water column of the Northwestern Mediterranean has a well-

recognized three layers structure (Send et al., 1999) during most of the year. From 

surface until 250-300 m depth, Modified Atlantic Water (MAW), strongly affected in the 

upper 100 m by the annual seasonal cycle, is encountered. Between 300 and 700m, 

Levantine intermediate Water (LIW) is characterized by relative maxima in salinity and 

temperature, more or less pronounced according to the prospected area. The colder 

and less salty deeper layer (from 700m to the bottom) is known as Western 

Mediterranean Deep Water (WMDW) and is formed in the Gulf of Lion in winter, by 

intense thermohaline convection and/or by cascading of dense coastal water from the 

continental shelf (Durrieu de Madron et al., 2005). 

 The 7-years time-series of biogeochemical observations is illustrated for the 0–

150 m layer in Fig. 2 and 3 with a specific focus from February 2013 to April 2014. 

Seasonal changes in temperature and salinity for the surface layer are clearly marked 

by a succession of stages. The winter convective-mixing period, from December to 

May, exhibits very low vertical gradient of temperature (around 13°C) and a relative 

high salinity (>38.10). By the end of April, or early May, there is a gradual increase of 

the surface temperature (it can exceed 22°C in August) and a decrease in salinity 

(37.2 to 38 during the stratification period in the surface layer) (Fig. 2a, b). The 

strengthening of thermal stratification reach the maximum in September and the 

erosion of the stratification begins under the influence of northwestern winds. 

Nevertheless, this pattern shows strong seasonal and annual variability as a result of 

alterations on physical and meteorological forcings. For example, the end of our study 

(March-April 2014) was clearly marked by relative low salinity in the 0-150 m respect 

to the whole period (less than 38, Fig. 2b). In a synoptic context, the variability can 

also be illustrated by the evolution of the depth of the upper mixed layer (UML) in 

winter (Houpert et al., 2015). Indeed, the depth of the UML can reach the bottom 

during strong convection in February and/or March. It was the case in 2009 to 2013, 

whereas in 2007, 2008 and 2014 the maximum depth of the UML was less than 500 

m (data not shown). 
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Figure 2. Temporal and spatial variability of a) Temperature and b) Salinity since 
January 2007 to April 2014. The last year plot is enlarged (the scale of of the colors 
are shown at the right of the pannel. The dots represent the sampling points and the 
starts indicate winter strong convection events.  
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5.2. Nutrients and phytoplankton 

Surface nutrient concentrations follow the general pattern of the thermal 

stratification (Fig. 3). Nitrate (NO-
3), phosphate (PO-3

4) and silicate (H4SiO4) 

concentrations reach respectively, 1.0-4. µmol L-1, 0.05-0.20 µmol L-1 and 1.0-6.0 

µmol L-1 in the 0-150m surface layers during winter mixing conditions (Fig. 3a, b and 

c, respectively). In addition, the depth reached by the UML determines the amount of 

nutrients available in the euphotic layer in spring. This is supported by the weaker 

nutrient enrichment of the surface layer in 2013-2014 with respective concentrations 

for NO-
3, PO-3

4, and H4SiO4 less than 2.5, 0.05, and 2.5 µmol L-1, which are half of 

the concentration measured for the whole period. Concerning the NH+
4 (Fig. 3d), its 

concentrations clearly showed a seasonal pattern associated with biological activity.  

 

With the end of winter mixing, nutrient concentrations decrease in the surface 

layer while increasing stratification from June to November reaching extremely weak 

levels in surface layer at the end of summer. Then, during summer, a poor nutrient 

surface layer is separated from a richer deeper layer by well-defined nutriclines (for 

detailed see Diaz et al., 2000).  

 

Relative homogeneous chlorophyll concentrations are measured in winter 0-

150 m layer (between 0.1 and 0.2 µg L-1). The chlorophyll concentrations are maxima 

in surface layers (0-50 m) during the spring bloom (>1.0 µg L-1) in March and April 

(Fig. 4). The maximum of chlorophyll biomass becomes less pronounced (0.4 µg L-1) 

and deepens (around 80 m at the end of summer) following the depth of the 

nutriclines during summer and fall. In table 1 the correlation between nutrients and 

other biogeochemical variables are shown. Indeed, Chl a concentration had a 

negative correlation with nutrients (p < 0.01). The low nutrients availability in spring 

2014 doesn't strongly impact the total Chl a concentration. Conversely, the 

composition of the phytoplankton community shows a high variability. While in March 

the total number of counted cells does not significantly differ between 2013 and 2014 

(~216·103 and 225·103 cells L-1), the abundance of small size cells does differ 

(Fig.5a). The nanophytoplankton is more abundant in 2014 respect to 2013 (110%), 

whereas the numbers of diatoms and dinoflagellates are lower in 2014 (25%, 2%, 
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respectively). In April, by contrast, the abundance of phytoplankton cells, 

independently of the size class, account for about 30% respect to that of April 2013 

(78·103 in 2014, against 243·103 cells L-1 2013) (Fig. 5b). 
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Table 1. Correlation values between physical and chemical parameters from the sampling period (February 2013 to Avril 2014). 
Colored cells in light gray indicate significant correlation light gray = p-value  ≤  0.01.  Abreviations: T=temperature (0C), S= salinity 
nutrients (NO3

-
, PO-3

4, H4SiO4, NH+
4, in µmol L-1), Chl a= Chlorophyll (µg L-1), dissolved organic carbon= DOC (µM), quantum yield 

at  340  nm=  Φ340  (%), absorption coefficent at 254 nm = aCDOM(254) (m-1), Humic-like substances = Peak-M and Peak-C, protein-
like subtances= Peak-T. All peaks are expressed in quinine sulfate units (QSU), particulate organic carbon and  nitrogen= POC and 
PON (µg L-1). 

 

T S NO-
3 PO3

4 NH+
4 H4SiO4 Chl  a DOC Peak-A Peak-M Peak-T ϕ(340) aCDOM(340) 

T 
S -0.64
NO-

3 -0.59 0.67
PO3

4 -0.43 0.61 0.93
NH+

4 -0.07 0.03 -0.14 -0.11
H4SiO4 -0.68 0.81 0.87 0.82 0.01
Chl  a -0.18 -0.23 -0.39 -0.42 0.15 -0.24
DOC 0.78 -0.57 -0.47 -0.35 0.02 -0.61 -0.22
Peak-A -0.12 -0.26 -0.14 -0.22 0.01 -0.13 0.08 -0.09
Peak-M -0.23 -0.11 0.10 -0.04 0.02 0.06 -0.02 -0.20 0.90
Peak-T -0.12 -0.09 -0.07 -0.16 -0.01 -0.04 0.04 -0.09 0.75 0.70
ϕ(340) -0.35 -0.02 0.02 -0.06 0.20 0.08 0.34 -0.24 0.43 0.37 0.32
aCDOM(340) 0.26 0.13 0.11 0.19 -0.15 0.09 -0.42 0.23 -0.28 -0.28 -0.27 -0.72
a*CDOM(254) -0.03 0.13 0.10 0.06 -0.19 0.08 -0.13 -0.30 -0.13 -0.09 -0.12 -0.49 0.60
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Figure 3. Temporal and spatial variability of a) Nitrates, b) phosphate, c) silicate and d) ammonium since January 2007 to April 
2014. The last year plot is enlarged (the scale of of the colors are shown at the right of the pannel. The dots represent the sampling 
points and the starts indicate winter strong convection events. 
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Figure 4. Temporal and spatial variability of chlorophyll a since January 2007 to April 
2014. The last year plot is enlarged (the scale of of the colors are shown at the right 
of the pannel. The dots represent the sampling points and the starts indicate winter 
strong convection events. 
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Figure 5. Phytoplankton abundances for March and April (a and b respectively) of 
2013 and 2014 at surface (5 m depth) in MOLA station. Note that nanoplankton 
abundances are divided by 100 to fit in the scale. 
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5.3. Variability of the DOM stock and composition in 2013 and 2014 

5.3.1. Dissolved organic carbon distribution

 

DOC concentrations showed a well-marked seasonal pattern (Fig. 6) with a 

clear increase in the upper surface water during the reinforcement of the stratification 

to reach values close to 100 µM. This accumulated DOC is exported towards deeper 

layer when stratification broke down during autumn, and DOC concentrations were 

then uniformly distributed (~50-60 !M in the 0-150 m layer). 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6.  Temporal variability of dissolved organic carbon (DOC). The dots represent 
the sampling points from February 2013 to April 2014.  
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5.3.2. FDOM and CDOM variability in 2013 and 2014 

Seasonal variability of FDOM peaks showed a similar pattern, minimal values for 

marine humic-like substances (peak−M) and protein-like substances (peak-T) and 

slightly higher values showed the peak-A (Fig. 7a, b, c). This values coincide with the 

stabilization of the water column (May-June) and the minimal aCDOM(340) values. 

During June-July, the intensity of each peak slightly increases over the whole 0-150 m 

layer. Peak-A is relatively more pronounced than the 2 others. Then, in August, a 

maximum appears between 50 and 100 m depth, in association with the DCM. In 

October and November, vertical mixing progressively homogenizes the water column 

and high values are measured in the 0-150 m surface layer. In spring 2014 (March-

April), we observed a sharp increase in the intensity of the peaks, excepted for peak-

M. This variation is associated with the relative low salinity described above. 

 

The aCDOM(340) has relatively low values   (≤ 0.8 m-1) over the 0-150m layer 

during our survey (Fig. 7d). The highest values for aCDOM (340) were found in winter 

and spring (>0.3 m-1 in 0-100 m in February 2013, and also in 0-150 m in February 

and April 2014). During summer, aCDOM(340) values were low in the euphotic layer 

(0.05 to 0.25 m-1) but high values could be encountered below (0.40 m-1 in June 2013 

at 150 m) when minimal values were also encountered around 100 m depth, this 

pattern was also observed in the quantum yield of fluorescence. 

 

The quantum yield [Φ(340)] of the all samples studied here, ranged between       

0.04 and 0.64 %. The highest Φ(340) values were observed in spring. This maximum 

was consistent with the observed a*CDOM(254). During the stratification period (June to 

October) the Φ(340) decrease reaching values between 0.04 and 0.20 % (Fig. 7e).   

 

In general values of the specific absorption coefficient [a*CDOM(254)] oscillated in 

the ranges between 1.4 and 4 m2 g C-1. The highest values were found in spring. 

While a*CDOM(254) during summer-fall period was low (< 1.2 m2 g C-1, Fig. 7f).  
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Figure 7.  Temporal variability from February 2013 to April 2014. a) Peak-A, b) Peak-M, c) Peak-T. All peaks are expressed in 
quinine sulfate units (QSU), d) aCDOM(340) in m-1, e) Φ  (340)  in  percentage  (%),  and  f) a*CDOM(254) in m2 g C-1. The dots represent 
the sampling points. 
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6. DISCUSSION   

In our studied area, high values of primary production could be associated with 

continental rich nutrient outflows, inducing rich zooplankton production in the Gulf of 

Lion (Diaz et al., 2008) and along the Catalan coast (Garcia & Palomera, 1996). 

Similarly, high organic carbon input with terrestrial origin stimulates prokaryotic 

degradation (Sempéré et al., 2000). It is particularly relevant to understand the 

relation between the source of DOM and its fate, because at various scales, there is a 

continuous recycling of particulate organic matter (POM) and dissolved organic matter 

(DOM) to dissolved inorganic matter (DIM) and back again through various microbial 

processes (Conan et al., 2007; Thingstad et al., 2008). However, the efficiencies of 

these conversions depend upon not only on quantity but also the quality of DOM. In 

this sense, new approaches are needed to understand the role of the DOM in the 

marine ecosystems because the variability of the DOC stock is not representative of 

its lability. In the Gulf of Lion, the major sources of DOM are river discharges (Para et 

al., 2010 and references therein) and autochthonous production associated with the 

recurrent phytoplanktonic bloom (Avril, 2002; Pujo-Pay & Conan, 2003). In late 

summer, Mediterranean waters are known to be ‘‘greener’’ than expected from their 

surface Chl a concentration because of the presence of Saharan desert dust (Claustre 

et al., 2002) or due to a higher level of CDOM as well as non-algal detrital particles 

(Morel et al., 2007). The open Mediterranean Sea allows deep penetration of solar 

radiation and therefore contains significant photochemical reaction rates. A major sink 

of DOM is due to sunlight-induced degradation: (1) an abiotic oxidation process 

involving the direct production of carbon monoxide (CO) and CO2, and (2) a 

sequential process of abiotic and biotic reactions involving the photochemical 

alteration which increases the biological lability of the organic substrates thus 

facilitating its bacterioplankton utilization (Mopper & Kieber, 2002).  

The Mediterranean oligotrophy is essentially induced by the different 

localizations of the physical and nutrient vertical interfaces (thermocline and nitracline) 

which are both determined by seasonal temperature changes and by the large-scale 

circulation (D’Ortenzio & Ribera d’Alcalà, 2009). Though, in the stratified 

Mediterranean water, the phosphacline is frequently located deeper than the nitracline 
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and also than the thermocline, inducing abnormally high DIN:DIP ratios in sub-surface 

waters (Pujo-Pay et al., 2011) at least at the end of summer stratification. This pattern 

suggests incomplete nitrate utilization by phytoplankton due to the lack of phosphate 

at the bottom of the photic layer (Diaz et al., 2001). Moreover, the winter deep 

convection events allow the replenishment of nutrients in the surface layers 

supporting high phytoplankton productivity (Schroeder et al., 2010). Numerous studies 

have demonstrated that nutrients availability in the euphotic zone during late winter - 

early spring is controlled by convective events (Avril, 2002; Goffart et al., 2002; 

Estournel, 2003; D’Ortenzio, 2012). Thus, a weak winter mixing on the water column 

could explain the general low nutrients contents on the photic layer during our 

sampling of spring 2014 (March-April). When convections are intense and deep, the 

quantity of available nutrients in the photic zone is high, whereas weak winter 

convection prevents an efficient uplift of nutrients (Marty & Chiaverini, 2010). These 

authors observed that the frequency of extreme events (high mixing, high nutrients 

and high biomass) has increased in the recent years, resulting in an increment of 

phytoplankton biomass in the NW Mediterranean Sea, following a trend that has been 

observed since 1991 (Marty et al., 2002). These results suggest an augmentation in 

productivity, contrary to other general models that predict a decrease of primary 

productivity. From these models, the expected alteration would consist on an 

enhancement in upper stratification and slower deep-water formation as a response to 

warming climate (Mermex Group, 2011). However, this warming trend could be partly 

counterbalanced by a salinity increase due to long-term changes in the freshwater 

and heat fluxes of the Mediterranean Sea in relation to global change (Béthoux et al., 

1999; Millot et al., 2006). Moreover, it has been observed that deep waters of the 

Western Mediterranean show a rather constant trend towards higher salinity and 

temperature since the 1980s (Millot, 1987) and this trend significantly affect the 

biogeochemical properties of the deep-water masses (Schroeder et al., 2010). 
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6.1. Deep versus weak winter convection. Nutrient and phytoplankton 
distributions. 

During the period studied in detail (February 2013 to April 2014) we found two 

contrasting situations in terms of intensity of the winter convection; these differences 

are evidenced by temperature and salinity vertical distributions (Fig. 2a, b). During 

winter 2013 a deep convection and strong mixing occurred up to 2000 m, bringing 

nutrients at surface (2 µmol L-1 at 5 m, Fig. 3a, c) while in winter 2014 the winter 

convection observed was rather weak and surface was not enriched as much. 

Unfortunately we could not sample during the months of January and February of 

2014. However, we did have (Fig. 8a, b) and we could also observed the 

consequences of the convection weakness on terms of nutrients and chlorophyll in the 

March and April sampling. During this period, moreover, we found low salinity in the 

first 100 m probably because freshwater discharges. The low salinity values in surface 

could also favor the stratification of the water column. 

When we compare the two winter periods, we found clear differences in the 

vertical distribution of chemical and biological variables. The high convection in 2013, 

with high vertical velocity values (Fig. 8b) injected nutrients in surface waters favoring 

a bloom of phytoplankton with a higher proportion of diatoms than in the 2014, which 

fits with the conceptual framework proposed in the Margalef’s Mandala (Margalef, 

1978). In this mandala life-forms of phytoplankton are placed in an ecological space 

defined by nutrients and turbulence, where the diatoms are associated with rich and 

turbulent waters, while in the opposite corner of the mandala, small and swimming 

cells are related to calm and poor waters. Also, in winter 2013 we found more species 

of larger cell size than in 2014. This could be explained by the higher vertical 

velocities during winter 2014 and it is in agreement with other studies where it was 

found a significant correlation between the cell size of phytoplankton and the vertical 

velocity (Rodriguez et al., 2001). Surprising, in winter 2013 the total number of cells 

did not reach significant higher values than in 2014, this could be explain a 

consequence of the differences in the mixing layer depth (MLD). In 2013 the MLD was 

deeper and the phytoplankton cells could have less light during the day while traveling 

along the MLD. In any case, in terms of biomass, values were higher in 2013 because 

we found high abundances of large cell size species, as discussed above. 
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Figure 8. Data of a) potential temperature and b) vertical velocities in the Gulf of Lion 
from February 2013 to May 2014 until 2330 m depth.   

 

 

6.2. Seasonal patterns of DOC dynamics 

DOC accumulation in the upper layer during summer has been previously 

described (Avril, 2002; Pujo-Pay et al., 2011). This increase could be related to a low 

DOC microbial consumption due to the severe limitation for nutrients that bacteria can 

suffer (Thingstad et al., 1997, Conan et al., 2007) in oligotrophic systems (e.g. NW 

Mediterranean) during the stratification period (Sambrotto et al., 1993; Kähler & 

Koeve, 2001).  

Thus, DOC accumulates because N- and P-limitation (Sala et al., 2002). We 

observed a highly significant positive correlation between bulk DOC and temperature 

(p < 0.01, Table 1) indicating a dominant physical control. This is consistent with that 

reported by Doval & Hansell (2000). 
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6.3. Distribution of CDOM and FDOM 

The vertical mixing, upwelling and convective export together with local 

biological processes (e.g. phytoplankton exudation and photochemical-bleaching) 

drive the distribution of CDOM in the open ocean (Nelson & Siegel, 2002). The 

aCDOM(340) values measured at MOLA during our time series are within the reported 

values for the open ocean (e.g. Determann et al. 1996; Coble, 2007; Organelli et al. 

2014). Discontinuities in CDOM concentration even with relatively high values in the 

upper layer observed during end of winter to early spring were likely driven by water 

mixing. At the contrary, the low values of CDOM found during summer-fall period 

could be attributed to high solar radiation exposure during the stratification period 

especially in surface layers (Romera-Castillo et al., 2013). Interestingly, the CDOM 

followed the same trend than chlorophyll does, showing lower concentrations in 

Spring 2014 in respect to 2013.  This coincidence could indicate an in situ production 

of CDOM by primary producers. The importance of phytoplankton as a source of 

CDOM has been previously suggested in field studies (Xing et al., 2014) and 

quantified in the laboratory experiments (Romera-Castillo et al., 2010). 

Peaks-A and M followed similar trends over the period studied, with low values 

along the water column in spring 2013, probably because the dilution caused by the 

strong convection. Peak-T presented also similar temporal patterns but with very low 

values perhaps due to the more-labile character of protein-like peak-T in relation to 

the humic-like peaks. Previous studies in natural water had suggested that protein-like 

substances (Peak-T) could be released by the phytoplankton (Nieto-Cid et al., 2006). 

In this case, we observed that phytoplankton biomass peaked also in March (1.74 ng 

C L-1, unpublished data), suggesting that fluorescence intensity of peak-T could be 

related to phytoplankton. Briefly, our results showed that changes in the distribution of 

CDOM and FDOM were closely related to the hydrodynamic conditions and to the 

chlorophyll dynamics. Therefore, we could summarize the seasonal variability of 

CDOM and FDOM at MOLA station in three episodes: (1) A strong convective-mixing 

in 2013, which dilutes organic matter and injects inorganic nutrients in surface waters 

favoring a prominent bloom of phytoplankton, (2) a strong stratification, which induces 

photo-bleaching in summertime and (3) a weak convective-mixing in 2014, which 

induced lower phytoplankton biomass and an accumulation of DOC. 
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6.4. Optical characterization of CDOM 

The fluorescence quantum yield [Φ(340)] for all samples analyzed here were 

below 1%, which was the mean value obtained in previous studies (Green & Blough, 

1994; Vodacek & Blough, 1997; Ferrari, 2000) but yet, similar to those in upper 

layers of Ría de Vigo (Romera-Castillo et al., 2011) and in NW Mediterranean Sea 

(Sánchez-Pérez et al., in preparation, see Chapter II). The Φ(340) variations were 

consistent with the changes observed in a*CDOM(254). Both indexes are related with 

the degree of aromaticity of DOM (Benner, 2002). Esteves et al. (2009) suggested 

that in the open ocean the humic substances have an aliphatic structure and a high 

content of olefinic compounds, which are the major constituents of humic substances 

and these should be mainly the result of microbial activity. Weishaar et al. (2003) 

found that a*CDOM(254) is strongly correlated with the percentage of aromaticity 

determined by 13C-nuclear magnetic resonance (13C-NMR) for a large number of 

humic substances. Therefore the low values of a*CDOM(254) and Φ(340) could 

indicate degradation of aromatic compounds and/or highly conjugated DOM fraction 

and usually they have been attributed to photodegradation from high UV radiation. In 

fact (Helms et al., 2013) reported  that decreases of a*CDOM(254) is due to the 

bleaching of specific CDOM fractions of DOM. We found low values of Φ(340) in 

summer and higher coinciding with the spring bloom. The same pattern was 

observed for a*CDOM(254), considering these results, we suggest photobleaching 

process as a major sink of CDOM in the MOLA station, while the principal source 

was the “in situ”  production. 
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7. CONCLUSIONS  

 

1. The variability of properties of DOM was driven by physical phenomena such 

as convective-mixing and thermal stratification. 

 

2.  Low and vertically uniform FDOM and DOC concentrations was observed 

during the strong convective-mixing occurred in spring 2013.  In contrast, 

during spring 2014, the weak convective-mixing provoked certain 

accumulation of DOC and FDOM in surface waters.  

 

  

3. During the thermal stratification occurring during summer-fall period a 

decrease in both absorption and fluorescence occurred as a result of photo-

bleaching. This photo-bleaching caused a diminution in the aromaticity of 

humic-like substances.  

 

4. Our results obtained in MOLA station revealed that the photo-bleaching was 

the major sink of CDOM while the “in situ” production as the principal source. 
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ABSTRACT 

 
Aeolian inputs of organic and inorganic nutrients to the ocean are important as they 

can enhance biological production in surface waters, especially in oligotrophic areas 

like the Mediterranean. The Mediterranean littoral is particularly exposed to both 

anthropogenic and Saharan aerosol depositions on a more or less regular basis. 

During the last decades experimental studies have been devoted to examine the 

effect of inorganic nutrient inputs due to dust on microbial activity. In this study, we 

performed two experiments in different locations of the NW Mediterranean, where we 

evaluated the changes in the quality and quantity of dissolved organic matter due to 

atmospheric inputs of different origin (Saharan and anthropogenic) and its 

subsequent transformations mediated by microbial activities. In both experiments the 

humic-like and protein-like substances, and the fluorescence quantum yield increased 

after addition. In general, these changes in the quality of dissolved organic matter did 

not significantly affect the prokaryotes. The recalcitrant character of the fluorescent 

dissolved organic matter (FDOM) associated with dust was confirmed, as we found 

negligible utilization of chromophoric compounds over the experimental period. We 

framed these experiments within a two-year time series data set of atmospheric 

deposition and coastal surface water analyses. These observations showed that both 

Saharan and anthropogenic aerosols/inputs induced changes in the quality of organic 

matter, increasing the proportion of FDOM substances. This increase was larger 

during Saharan dust events than in the absence of Saharan influence.  

 
Keywords: FDOM, dust deposition, DOC, Mediterranean Sea 
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1. INTRODUCTION  
The Mediterranean Sea, due to its low nutrient and chlorophyll concentration is 

considered as one of the most oligotrophic marine systems (McGill, 1965; Krom et al., 

1991; Lucea et al., 2003). During the stratification period, a severe nutrient depletion 

results in both phytoplankton and bacterioplankton to be strongly limited in 

phosphorus and/or nitrogen (Béthoux et al., 1998; Thingstad et al., 1998; Sala et al., 

2002). However, the climatic conditions and geographic location of the Mediterranean 

favour the reception of a noticeable dust flux from the Saharan desert (Guieu et al., 

2014b). Around of 20 to 50·106 tons y-1 (Guerzoni et al. 1999) of dust from the Sahara 

are transported to the Atlantic ocean through the predominant westerly winds and 

towards the Mediterranean basin influenced by the presence of cyclones (Moulin et 

al.,1997).  

In the Mediterranean Sea, these deposition events occur commonly during spring 

and summer period (Gallisai et al. 2014). Saharan dust contains soluble nutrients and 

organic carbon, therefore its deposition in marine waters can favour plankton 

productivity in the ocean (Prospero et al., 1996; Mahowald et al., 2008). During the 

last years, the effort to understand the impact of dust deposition on the 

biogeochemistry of the ocean has increased (Jickells et al., 2005; Suarez et al., 

2008). In fact, studies combining field and experimental approaches in several 

aquatic ecosystems of the Mediterranean region have demonstrated that the Saharan 

dust stimulated both phytoplankton and bacterioplankton growth (Herut et al., 2005; 

Eker-Develi et al., 2006; Pulido-Villena et al., 2008; Romero et al., 2011; Guieu et al., 

2014a). However, little attention has been paid to the effect of anthropogenic-derived 

particles, which have a mainly European origin in the NW Mediterranean (e.g. 

Guerzoni et al., 1999). In addition, in urban coastal places as Barcelona, they also 

come from local sources.  Anthropogenic aerosols in the Barcelona area are also a 

major source of nitrogen and phosphorous to the atmosphere. Furthermore, they are 

much richer in organic carbon, particularly in black carbon produced by high 

temperature combustion processes, than Saharan particles (Querol et al., 2001; 

Pateraki et al., 2012). On the other hand, anthropogenic aerosols tend to contain high 

amounts of cupper, lead and other trace metals, which are known to be toxic to 

microbiota at high concentrations (Jordi et al., 2012; Paytan et al., 2009). Thus one 

way or another, an effect of anthropogenic aerosols on marine production is also 
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expected.  

Little is known about the impact of aerosols on the fraction of dissolved organic 

matter that is optically active. This fraction is termed chromophoric dissolved organic 

matter (CDOM) as it absorbs light. CDOM is a key parameter regulating the 

penetration of the ultraviolet radiation in the water column and therefore changes in 

its concentration can alter both primary and secondary production (Smith & Cullen, 

1995). A sub-fraction of CDOM that emits light when excited by UV radiation is called 

fluorescent dissolved organic matter (FDOM). Fluorometric analyses can be used to 

characterize this sub-fraction. Emission fluorescence spectra can be collected at 

different excitation wavelengths represented in excitation-emission matrices (EEMs) 

and different peaks of humic- and protein-like fluorophores can be distinguished 

(Coble, 1996; 2007). Usually, peak-C and M are associated to humic-like substances, 

while peak-T corresponds to protein-like substances. The fluorescence intensity of 

these peaks can be used as indicator of biological (Chen & Bada, 1992) and 

photochemical processes (Moran, 2000) of the DOM pool.  

The optical properties of CDOM are sensitive to biological and physical processes 

and thus providing valuable information not only of the biogeochemical processes in 

aquatic environments, but also of the origin of organic matter (OM). In fact,  Mladenov 

et al. (2011) determined that the organic carbon associated with dust inputs can 

contribute to the dissolved organic matter (DOM) pool in alpine lakes and that the 

fraction of airborne water-soluble organic matter can contain chromophoric groups 

similar to humic-like substances. More recently, de Vicente et al. (2012) reported that 

the chromophoric components related to the dust inputs affected significantly water 

transparency to ultraviolet radiation.  

Our study quantifies the importance of CDOM deposition in the presence and 

absence of Saharan events and also evaluates the posterior chemical 

transformations in surface waters by means of CDOM optical signatures. We have 

collected weekly to biweekly samples of atmospheric deposition during 23 months for 

FDOM analyses concurrently with surface water samples in the Barcelona coastal 

area. Within this time frame we have also conducted two aerosols-addition 

experiments with NW Mediterranean coastal waters, where we have evaluated the 

prokaryote and FDOM dynamics in response to both Saharan dust and 

anthropogenic inputs. 
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2. MATERIALS AND METHODS  

5. Time series sampling 

 

 We collected samples for atmospheric deposition and seawater analyses 

over two-year period (September 2012 - July 2014).  For atmospheric deposition, one 

high-density polyethylene (HDPE) container was filled with 500 ml of sterile artificial 

sterile seawater and left open at the roof of the Institute of Marine Sciences (ICM-

CSIC, Barcelona, 41º 23 08’’ N, 2º 11’ 45.5’’E) during one week in summer and two in 

winter. After this time, subsamples for FDOM were analysed fresh. Seawater samples 

were taken monthly at 0.5 km offshore of Barcelona (NW Mediterranean, 41º 22’ 55’’ 

N, 2º 11’ 58’’ E). Surface water was collected in 2-L acid cleaned polycarbonate 

bottles and subsamples for FDOM were analysed freshly.  

 

2.2.  Aerosols collection for experiments 

The aerosols used in the experiments were collected on Munktell quartz filters 

(quality 360) using an MCV CAV-A/mb high-volume air sampler. The sampler 

operated 24 h at 30 m3 h-1. Filter samples for experimental amendments were 

obtained at different times in January and March 2014, at the roof of the Institute of 

Marine Sciences in Barcelona and at the roof of the Center for Advanced Studies of 

Blanes (CEAB, Blanes, 41° 40' 59.5" N, 2° 48' 2.6" E). Once collected, half of the 

filters were used for chemical analyses determination and the other half was 

employed for the amendment experiments. Collected aerosols tend to be a mix from 

different sources. The classification of aerosols according to the relative percentage 

of Saharan dust versus anthropogenic origin inputs was done with previous 

knowledge of the presence of Saharan events based on transport and deposition 

models and forecasts (www.calima.ws) and on the chemical analyses of the filters.  

Aerosols of anthropogenic origin tend to have a higher proportion of non-mineral 

carbon, nitrogen species and phosphorus, while Saharan dust had a higher 

proportion of silicate and aluminium oxide (Table I). 
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2.3. Water sampling and experimental design  

Our experiments were conducted with water from locations that differed in the 

degree of oligotrophy. The water was collected at the Blanes Bay Microbial 

Observatory (41º 40’ 0” N, 2º 48’ 0” E) on April 8th, 2014 and in the Barcelona coast 

on May 12th, 2014. Blanes Bay Microbial Observatory is characterized as an 

oligotrophic area with a chlorophyll annual mean of 0.63 ± 0.05 µg L-1 (Guadayol et 

al.,, 2009). The Barcelona coastal area is less oligotrophic as it receives nutrients 

from the discharge of two rivers, the Besòs River located in the North of the city and 

the Llobregat River in the south. The chlorophyll annual average concentration at the 

Barcelona station is 1.58 ± 1.09 µg L-1 (Romero et al.,  2014). Both experiments were 

conducted in mid-spring. This season appears to be the ideal period for testing the 

impact of dust in surface waters of the Mediterranean Sea, because it is a time 

interval of the year with frequent dust events (Guerzoni et al., 1997; Gkikas et al., 

2009; Gallisai et al., 2014).  

. The experiments were termed as BLSp and the second as BCNSp. In both of 

them the water was collected from the surface layer (approximately 0.5 m depth) and 

pre-filtered through a 150 µm nylon mesh to remove the larger zooplankton. The 

water was then transported to the laboratory in 50-L carboys, which had previously 

been washed with a dilute solution of sodium hypochlorite and exhaustively rinsed 

with Milli-Q water and were in situ rinsed with the sample water itself.  

In the laboratory, the water was distributed in 15-L cylindrical methacrylate 

containers, which were subjected to experimental conditions in a light and 

temperature controlled chamber during 7 days for the BLSp experiment and during 5 

days for BCNSp. Conditions, in duplicate, were: anthropogenic particles enrichment 

(A), Saharan dust enrichment (S) and control (C) without enrichment. Aerosol 

concentration added in each container was 0.8 mg L-1. Light conditions were set to 

225 µmol photons m-2 s-1 inside the containers and the light:dark cycle (13 h:11 h) 

and temperature (17.5 ºC) were adjusted to natural conditions. After placing the 

containers in the experimental chamber we left them for acclimation before starting 

the experiment. Because an in situ Saharan event occurred the day before BLSp 

water collection, we increased the acclimation period (up to 45 hours in BLSp with 

respect to 19 hours in BCNSp) to avoid that the experimental treatment could be 
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masked by a possible response to the in situ input occurred in the field. An initial 

sample was taken and aerosols were subsequently added as unique dose.  

Samples for fluorescence dissolved organic matter (FDOM) and dissolved 

organic carbon (DOC) were taken on hours 0, 4, 49, 97, and 144 for BLSp 

experiment and on hours 0, 4, 49 and 97 for BCNSp experiment. Samples for 

chlorophyll a  (Chla a) and bacteria were taken daily.  

 

2.4. Analytical procedures  

2.4.1. CDOM measurements 
 

CDOM absorption was measured in 10 cm quartz cuvettes using a Varian Cary 

UV-VIS spectrophotometer equipped with a 10 cm quartz cell.  Absorbance was 

performed between 250 and 750 at a constant room temperature of 20 °C. Milli-Q 

water was used as blank. The residual backscattering (colloidal material, fine size 

particle fractions present in the sample) was corrected by subtracting the mean 

absorbance calculated in the spectral range 600-750 nm. The absorption coefficient 

(aCDOM(λ) in m-1), was calculated as:  

 

aCDOM (λ)=2.303A(λ250-700)/ l 

 

Where abs (λ) is the absorbance at wavelength λ, and l is the optical path 

length in m and 2.303 permits the passage of natural to decadic logarithms. 

 

 

2.4.2.  FDOM measurements  

The samples for FDOM were measured immediately after temperature 

acclimation according to Nieto-Cid et al. (2006). Single measurements and excitation-

emission matrices (EEMs) were performed with a Perkin Elmer luminescence 

spectrometer LS-55 equipped with a xenon discharge lamp, equivalent to 20 kW. Slit 

widths were set to 10.0 nm for emission and excitation wavelengths; scan speed was 
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250 nm min-1. Measurements were performed in a 1-cm quartz cell. The EEMs were 

generated by concatenating 21 synchronous spectra over excitation wavelengths of 

250 to 450 nm and emission wavelengths of 300 to 650 nm with an offset between 

the excitation and emission wavelengths of 50 nm the first scan and 250 nm the last 

scan. Milli-Q water was used as blank and Raman scattering was corrected by 

subtracting the Milli-Q water signal. The samples were converted into quinine 

sulphate units (QSU). The excitation-emission (Ex/Em) wavelengths used for single 

measurements were described by Coble (1996): Peak-C (Ex/Em 340 nm /440 nm) as 

indicator of terrestrial-like substances, Peak-M (EX/Em 320 nm /410 nm) as indicator 

of marine-like substances and Peak-T (Ex/Em 280 nm /420 nm) as indicator of 

protein-like substances.   

 Finally, the fluorescence quantum yield at 340 nm, defined as the portion of 

light absorbed at 340 nm that is re-emitted as fluorescence, [Φ(340)] was determined 

using the ratio of the absorption coefficient at 340 nm and the corresponding 

fluorescence emission between 400 and 600 nm of the water sample and referred to 

the quinine sulphate standard (QS) ratio (Green & Blough 1994) : 

 

 

Φ 340( ) =
F 400− 600( )
aCDOM 340( )

⋅
aCDOM 340( )QS

F 400− 600( )QS

⋅Φ 340( )QS
 

  

Where aCDOM(340)QS is the absorption coefficient of the QS standard at 340 nm (in m-

1); F(400-600) and F(400-600)QS are the average integrated fluorescence spectra 

between 400 and 600 nm at a fixed excitation wavelength of 340 nm (in QS units) 

obtained for each sample and the QS standard, respectively (Romera-Castillo et al., 

2011); Φ(340)QS is the dimensionless fluorescence quantum yield of the QS standard 

and equals 0.54 (Melhuish, 1961); and aCDOM(340) is the absorption coefficient of 

each sample at 340 nm. In this study, the ratio, Φ(340), was calculated to add 

another descriptor of the coloured dissolved organic matter. It has been shown that 

this ratio increases when microbial transformations dominate with respect to 

photobleaching and vice versa. (De Hann, 1993; Lønborg et al., 2010).  
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2.4.3. DOC analysis  

Samples for DOC were filtered through Whatman GF/F filters using an acid-

cleaned glass filtration system. Approximately 10 mL of water were collected in pre-

combusted (450 ºC for 12 h) glass flaks for DOC determination. After acidification 

with H3PO4 (50 µL) to pH < 2 the ampoules were heat-sealed and stored in the dark 

until analysis. DOC was analysed following the high temperature catalytic oxidation 

(HTCO) technique (Cauwet, 1994; Sugimura and Suzuki, 1998, Cauwet, 1999) using 

a Shimadzu TOC-L analyser. The system was calibrated daily with a solution of 

acetanilide (C8H9NO MW= 135.17). The DOC concentration was determined by 

subtracting the blank samples.  

 

2.4.4. Prokaryotic abundance and chlorophyll a determination  

Heterotrophic prokaryotic cells were quantified by flow cytometry, according to 

the method proposed by Gasol & del Giorgio (2000). Samples (1.8 mL) were fixed 

with 0.18 ml of a 10 % paraformaldehyde and 0.5 % glutaraldehyde mixture. 

Subsamples of 400 µL were stained with SybrGreen deoxyribonucleic acid 

fluorochrome and left to stain for 15 min in the dark and then ran at low speed (ca, 30 

mL min-1) through a Becton Dickinson FACSCalibur flow cytometer with a laser 

emitting at 488nm. As standard, 10 µL per sample of a 106 mL-1 solution of yellow-

green 0.92 µm latex beads were added.        

For total chlorophyll a 30 mL sample was filtered through Whatman GF/F glass 

fiber filters and subsequently extracted in acetone (90%) and left in the dark at 4ºC for 

24 h. The fluorescence of the extract was measured with a Turner Designs 

fluorometer (Yentsch & Menzel, 1964).    
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3.     RESULTS 

3.1.  FDOM time series   
 

In order to evaluate the potential role of atmospheric deposition on the 

dynamics of coastal FDOM, we calculated its proportion respect to the in situ 

seawater concentration during 23 months (September 2012 to July 2014). The results 

revealed that the deposition of humic-like compounds (peak C and M) and protein-like 

compounds contributed to an increase of FDOM in surface waters that represents 

between less than 0.029 and 2% per m-3 and per day (Figure 1). 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Daily aerosol deposition-derived FDOM flow to the sea surface as a 
percentage of concentration in Barcelona coastal waters. Humic-like (peak C and 
peak M) and protein-like (peak T) substances (from September 2012 to July 2014). 
The arrows indicate the Saharan events. 
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3.2. Microcosms experiments 

3.2.1.  Prokaryotic abundance and chlorophyll a 

 

The initial abundance of prokaryotic cells was of 5.04·105 cells mL-1 in the 

BLSp experiment and 1.15·106 cells mL-1 in BCNSp (Fig. 2a, b). In BLSp, we 

observed a small increase in cell abundance 4 h after the addition in the A treatment 

and a slightly larger increase in the S treatment. At the end of the incubation (144 h) a 

larger decrease in abundance was observed in all containers reaching values of 

2.6·105, 1.06·105 and 8.1·104 cells mL-1 for C, A and S conditions respectively (Fig. 

2a). The BCNSp experiment also showed a small increase in prokaryotic abundance 

following the addition (4 h) in all the treatments. After that, small changes were 

observed in C treatments, while in S and A conditions the abundance peaked at 28 

and 52 hours respectively (Fig. 2b).  

Chlorophyll a, which is a proxy for phytoplankton biomass, showed in both 

experiments and in all treatments, no changes immediately after the aerosols 

addition. However, in BLSp an increase occurred during the course of the incubation, 

reaching values of 0.51±0.02, 0.74 ±0.02 and 0.56±0.01 µg L-1 for C, A and S 

respectively (Table II). While, in the BCNSp experiment, a peak in S and A containers 

was observed at day two (Table II) but then a decline of the Chl a concentration was 

observed until the end of the experiment in all containers reaching values of 0.49± 

0.05 µg L-1 in the last day  (Table II).  
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Figure 2. Prokaryotic abundance over time for the three treatments of BLSp (a) and 
BCNSp (b) experiments. The dust was added at t=4h in both experiments. 

 

 

3.2.2. DOC and FDOM dynamics  

Aerosols did not significantly alter the DOC concentration (Fig. 3d and 4d). The 

largest difference was found after the anthropogenic addition in the BLSp experiment 

(Fig. 3d), where it accounted for an increase of about 10% the total DOC 

concentration. After the enrichment, DOC concentrations were maintained rather 

constant in all conditions of the BLSp experiment. In the BCNSp experiment, DOC 

values did not increase immediately after the addition, however an increment at the 

end of the experiment occurred in all the containers (Fig. 4d). 

In both experiments, the increase of humic-like (Fig. 3a, 3b, 4a and 4b) and 

protein-like (Fig 3c and 4c) substances was higher in the treatment enriched with 

anthropogenic particles than in the one enriched with Saharan dust. Humic 

substances reached values about 1.5 QSU in A conditions, while; in treatments C and 

S the maximum values were about 0.74 and 0.94 QSU respectively. In both BLSp 

and BCNSp experiments, the different groups of organic matter in all treatments 

followed similar patterns (Fig. 3a, 3b, 3c, 4a, 4b and 4c).  After the initial increase due 

to dust addition, FDOM values were maintained rather constant during the course of 

incubation (Fig. 3 and 4).  
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We compared the FDOM matrices before addition (C) with the changes of 

FDOM occurred in each experiment after the addition (Fig. 5).  In the BLSp 

experiment, the excitation-emission matrix (EEM) in A treatment presented marked 

fluorescence peaks in the humic-like and protein-like areas after the addition 

(reaching concentrations around 1.5 QSU) in comparison to S microcosm, where the 

increase of fluorescence intensity was minimal (about 0.2-0.3 QSU) and without any 

defined peak. In the BCNSp experiment, the EEM of the water before the addition (C 

condition, Fig. 5) showed two peaks at Ex/Em 280 nm/ 350 nm and 250 nm/ 435 nm 

corresponding to peak-T and peak-A (2.0 and 1.3 QSU respectively). In contrast, the 

fluorescence in A treatment after the addition presented two peaks within the range of 

the marine and terrestrial humic-like substances (peak-M and peak-C respectively). 

These increases were small (about 0.5 to 0.75 QSU) in comparison with BLSp 

experiment. Finally, the fluorescence alteration after additions in S treatment was low 

with respect to initial fluorescence intensities (values only increased about 0.1-0.3 

QSU in the humic-like area, and about 0.4 QSU in the protein-like area). 

 

 

 

 

 

 

 

 

Figure 3. Fluorescence intensities of FDOM peaks during the course of incubation in 
the BLSp experiment. (a) peak-C, (b) peak-M, (c) peak-T and (d) dissolved organic 
carbon (DOC). The FDOM peaks are in quinine sulfate units (QSU) and DOC is in 
!M. The bars indicate the standard deviation.  

!
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Figure 4. Fluorescence intensities of FDOM peaks during the course of incubation in 
the BCNSp experiment. (a) peak-C, (b) peak-M, (c) peak-T and (d) dissolved organic 
carbon (DOC). The FDOM peaks are in quinine sulfate units (QSU) and DOC is in 
!M. The bars indicate the standard deviation. 
 

 

 

Table I. Relative percentage of the composition of the different aerosols used in BLSp 
and BCNSp experiments respectively. Abbreviations: A= anthropogenic, S=Sahara, 
OC= organic carbon, CO3= carbon trioxide, SiO2= silicate oxide, Al2O3= aluminum 
oxide, NO3

-= Nitrate, NH4
+= ammonium and P= phosphorus. 

 

 

 

 

 

 

 

 

                  Blanes (BLSp)                Barcelona (BCNSp)
A S A S

OC 31.95% 4.93% 26.38% 6.75%
SiO2 4.75% 40.64% 13.56% 27.88%
Al2O3 1.58% 13.55% 4.51% 9.29%
NO3

- 11.01% 2.48% 7.81% 2.11%
NH4

+ 2.12% 0.37% 1.47% 0.52%
P 0.10% 0.08% 0.13% 0.07%

!
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Figure 5. Changes in the excitation-emission matrix (EEM) of FDOM after dust 
addition for two experiments. The column (a) before addition (C=control), column (b) 
after dust (anthropogenic (A) and Saharan (S) respectively). The different peaks are 
indicated. The fluorescence is expressed in quinine sulfate units (QSU). 
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4.    DISCUSSION    

4.1. Atmospheric deposition influence in surface waters 
 

 Interestingly, the highest FDOM deposition values coincided with the Saharan 

dust events (Fig. 1). Although CDOM is present in low concentrations in the 

Mediterranean (Romera-Castillo et al., 2013; Xing et al., 2014), the ratio CDOM to 

Chla a is exceptionally high respect to other areas (Morel & Gentili 2009, Organelli et 

al., 2014). Because FDOM is a part of the CDOM pool, our observations could 

indicate that atmospheric inputs during Saharan events could significantly contribute 

to this high CDOM/Chl a ratio. Para et al. (2010) pointed out that the humic 

fluorescent components and the salinity had an exceptional weak correlation and 

suggested that other processes could influence CDOM distributions. Thus, our results 

about FDOM deposition during Saharan events could contribute to explain these 

anomalies. 

 

4.2. Effects of aerosols additions on the prokaryotic abundances  

Previous studies have demonstrated that prokaryotic abundances increased in 

response to Saharan dust inputs in oligotrophic systems (Pulido-Villena et al., 2008; 

Reche et al., 2009). However, in our experiments, the prokaryotic response to dust 

addition was low. In BLSp and BCNSp experiments, a small prokaryotic growth was 

observed specially in the microcosms enriched with Saharan dust only 4 hours after 

the addition for BLSp and after 28 hours for BCNSp, whereas the response of 

chlorophyll took place much later in time. This is in good agreement with the results 

obtained by Marañon et al. (2010), where a quicker response of prokaryotes was 

observed in more oligotrophic areas compared with the response of chlorophyll. The 

contrary occurred in more eutrophic areas (Teira et al., 2013). In general the 

abundance tended to decrease through the course of the incubations, being this 

decrease more conspicuous in the enriched treatments than in the control. We 

attributed this behaviour to the competition for limiting nutrients between 

phytoplankton and bacteria (Marañón et al., 2010). In any case, the response in both 
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experiments was lower than expected. In fact, authors as Ridame (2001), Marañon et 

al (2010) and Herut et al (2005), also found low prokaryotic stimulation to the aerosols 

inputs in Mediterranean waters. In the BCNSp experiment chlorophyll increased close 

to 4-fold during the first two days of the experiment independently of the treatment, 

although the peak observed at day two was more noticeable in the A microcosms. 

This increase could be, in part, due to the use of nitrate or ammonium that was in the 

initial water, and the larger response in A conditions could be related to the higher 

nitrogen and silicon proportions supplied by the anthropogenic aerosols with respect 

to the Saharan ones (Table I). Differences in the microbial responses seemed to be 

related with the initial environmental conditions (e.g. nutrient availability). Martinez-

Garcia et al. (2015) also pointed out the importance of initial conditions to explain the 

variety of microbial responses when examining the effect of rainwater additions in 

experiments performed with NW Iberian Peninsula shelf waters. In our experiments, 

the quality of the added particles could be another factor explaining the differences in 

microbial response between the two experiments. Even if the A and S aerosols were 

collected during non-Saharan and Saharan events respectively, the organic matter 

composition of the particles differed between experiments, as it will be discussed 

below. 

 

  

Table I. Relative percentage of the composition of the different aerosols used in BLSp 
and BCNSp experiments respectively. Abbreviations: A= anthropogenic, S=Sahara, 
OC= organic carbon, CO3= carbon trioxide, SiO2= silicate oxide, Al2O3= aluminum 
oxide, NO3

-= Nitrate, NH4
+= ammonium and P= phosphorus. 

 
 

 

 

 

 

 

 

 

 

 

                  Blanes (BLSp)                Barcelona (BCNSp)
A S A S

OC 31.95% 4.93% 26.38% 6.75%
SiO2 4.75% 40.64% 13.56% 27.88%
Al2O3 1.58% 13.55% 4.51% 9.29%
NO3

- 11.01% 2.48% 7.81% 2.11%
NH4

+ 2.12% 0.37% 1.47% 0.52%
P 0.10% 0.08% 0.13% 0.07%
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4.3 DOM optical properties transformations after dust additions   

In the BLSp experiment, the humic-like fractions of OM increased after the 

addition of aerosols, being this increase more conspicuous in the A treatment than in 

the S. In fact, Peak-C/DOC ratios in QSU/µmol C L-1 increased a 153% in A and a 

33% in S with respect to the control. However, FDOM compounds did not show a 

variation through the incubation time, In the BCNSp experiment, FDOM values were 

also higher after the addition. However the increases in FDOM/DOC ratio after 

additions were larger in S than in A, 70% and 89% respectively. In both BLSp and 

BCNSp experiments, we observed that DOC tended to increase in all treatments over 

the time of incubation, being this increment larger in BCNSp and in BLNSp 

experiment which is in accordance with a high activity of phytoplankton (Table II). The 

excitation-emission matrices (EEMs) confirmed that both anthropogenic and Saharan 

aerosols contained fluorescence organic substances (Fig. 5) as it has been previously 

reported by Mladenov et al. (2011). 

Regarding the fluorescence quantum yield at 340 nm, [Φ(340)], we observed a 

similar increase in both experiments after the addition was performed, reaching 

values of about 0.65 % (Fig. 6). The quantum yield decreases with light exposure and 

increases with microbial activity (Romera-Castillo et al. 2011). Then, the increase in 

quantum yield values observed after the enrichment could indicate a rapid, although 

low, bacterial response. In fact, we observed that low values of Φ(340) coincided with 

low bacterial abundance and vice versa.  

The values of Φ(340) obtained in our experiments were within the range of 

other previously reported data from field studies in the Mediterranean (Ferrari 2000, 

Romera-Castillo et al. 2011), thus indicating that our induced changes in optical 

characteristics of organic matter were within the range of variations occurring in 

nature.  
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Table II. Concentration chlorophyll in !gr L -1 for the different treatments of BLSp and 
BCNSp experiments at three sampling days: at initial time (t0), final time (144 h and 
97 h for BLSp and BCNSp respectively) at the day where the chlorophyll maximum 
occurred. The day of the maximum is also indicated. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 
 
 
 
 
 
 
Figure 6. Fluorescence quantum yield at 340 nm [" (340)] before-after anthropogenic 
and Saharan dust addition. (a) BLSp experiment and (b) BCNSp experiment. The ["
(340)] is expressed in percentage (%).   

 

BLSp Initial Final Max Day-Max
C 0.27 ± 0.01 0.49 ± 0.05 0.51 ± 0.02 6
A 0.31 ± 0.03 0.60 ± 0.05 0.74 ± 0.02 5
S 0.28 ± 0.01 0.52 ± 0.03 0.56 ± 0.01 4

BCNSp Initial Final Max Day-Max
C 4.75 ± 0.03 0.46 ± 0.1 4.6 ± 0.2 1
A 4.4 ± 0.18 0.48 ± 0.4 6.2 ± 0.04 2
S 4.4 ± 0.03 0.53 ± 0.1 5.2 ± 0.04 2
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5. SUMMARY  

 
Our experimental results revealed that aerosols deposition induced an 

increase in the proportion of FDOM with respect to DOC. An increase of rather 

refractory organic matter was confirmed by the negligible utilization of this fraction 

within a short time period (days). The induced increase of the coloured DOC fraction 

with dust deposition together with the subsequent low utilization could contribute to 

the exceptional high values of CDOM related to chlorophyll in the Mediterranean Sea. 
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1.  CONCLUSIONS 

1.1. Dynamique de la CDOM dans les systèmes côtiers et océaniques 
 

Notre étude s'est focalisée sur l'observation du rôle des facteurs biotiques et 

abiotiques qui influencent dans la dynamique de la MOD et de ses propriétés 

optiques (CDOM). Pour atteindre nos objectifs, nous avons étudié deux systèmes 

contrastés, gouvernés par des facteurs forçants distincts à une station fixe côtière 

(SOLA) et une station fixe hauturière (MOLA). 

 

La station SOLA est un système principalement contrôlé par l'arrivée d'eau 

continentale à faible salinité (rivières méditerranéennes telles que la Baillaury, voire 

la Têt ou le Tech) et par les mélanges liés à la houle. Dans cette zone côtière, nous 

avons supposé que l'influence anthropique pouvait altérer le système et nous avons 

alors montré que, contrairement à ce que l'on pourrait s'attendre, les variabilités aussi 

bien saisonnières qu'annuelles ne montrent pas de tendance à l'augmentation au 

cours de la dernière décennie. 

 

Nous avons trouvé deux mécanismes principaux qui dominant la dynamique 

de la MO et de la production biologique. Une augmentation des Pic-C et Pic-M 

d'environ 1 à 3 fois en hiver par rapport aux valeurs estivales a été mesurée. Ces 

fortes différences entre l'hiver et l'été sont le résultat de: 

 

(i) l'apport hivernal d'eau douce continentale riche en CDOM : En effet, les 

apports telluriques modifient significativement la quantité mais surtout la 

qualité de la CDOM. 

 

(ii)   une forte exposition estivale aux rayonnements solaires : En effet, 

l'apparition puis le renforcement de la stratification au cours de l'été 

entraîne l'exposition de la MOD à la lumière et favorise ainsi une photo-

dégradation entraînant la diminution de l'intensité de fluorescence. 
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Par conséquent, nous suggérons que photo-blanchiment apparaît comme un 

important puits alors que les débits fluviaux représentent une source importante de 

CDOM. En outre, nous suggérons que le dysfonctionnement de la boucle 

microbienne et la pression de prédation sur les hétérotrophes osmotrophes 

pourraient expliquer l'accumulation de COD en été; Tous ces processus peuvent être 

résumés dans la figure 1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Schéma synthétique de la réponse de l'écosystème côtier aux variations 
des conditions météorologiques et des processus photochimiques dans la baie de 
Banyuls-sur-mer (station SOLA). La ligne pointillée bleue sépare les principaux 
mécanismes survenant en saison estivale (côté droit) de ceux plus épisodiques 
hivernaux (à gauche). Les flèches vers le haut indiquent une augmentation, celles 
vers le bas, une diminution. Les points d'interrogation indiquent l'absence de mesures 
directes pour ces variables. 
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La station du large MOLA est influencée d'un point de vue physique par la 

circulation générale (courant Nord Méditerranéen) et par les formations d'eau dense 

hivernale sur le plateau continental (cascading) et au large (convection thermo-

haline). Au cours de notre étude, nous avons échantillonné deux périodes hivernales 

et une période estivale. L'intérêt est que nous avons rencontré deux conditions très 

contrastées, avec un hiver marqué par d'importantes formations d'eau dense, suivi 

par un hiver caractérisé par l'absence de cascading et de convection. Ce constat 

nous a fourni une base solide pour discuter des variations temporelles de la 

dynamique de la matière organique dissoute que nous avons observée à la station 

MOLA. 

 

En effet, le mélange convectif intense de l'hiver 2013-2014 entraîne au 

printemps, des concentrations en FDOM et COD faibles et homogènes sur toute la 

colonne d'eau. En revanche, au printemps 2014, les concentrations en DOM et en 

FDOM étaient relativement plus élevées dans la couche de surface, suite à l'absence 

d'homogénéisation poussée en hiver. Au cours de l'été, l'exposition au rayonnement 

solaire liée à la présence de la stratification thermique entraîne la diminution de 

l'absorption et de fluorescence suite au phénomène de photo-blanchiment des 

substances humiques (diminution de l'aromaticité) et ceci, d'autant plus que les 

concentrations initiales sont importantes. 

 

Par conséquent, cette étude met en évidence que la production "in situ" est la 

source principale et le photo-blanchiment apparaît comme un puits majeur de CDOM 

dans les eaux océaniques. La variabilité des propriétés optiques de la DOM a été 

contrôlée principalement par les processus physiques. Ces processus impliqués dans 

la dynamique de la DOM à la station MOLA sont synthétisés dans la figure 2. 
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Figure 2. Schéma synthétique de la séquence des différents phénomènes physiques 
impliqués dans la dynamique de DOM dans un écosystème hauturier (station MOLA). 
La ligne pointillée bleue sépare les principaux mécanismes survenant en saison 
estivale (côté droit) de ceux plus épisodiques hivernaux (à gauche). Les flèches vers 
le haut indiquent une augmentation, celles vers le bas, une diminution. Les points 
d'interrogation indiquent l'absence de mesures directes pour ces variables. 
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1.2. Source atmosphérique de FDOM 
 

A notre connaissance, les apports atmosphériques de DOM dans les 

écosystèmes marins ont été très peu évalués. Pour déterminer la contribution relative 

des dépositions atmosphériques dans la dynamique de la CDOM, en termes de 

stock, propriétés et comme stimulant de l'activité microbienne, nous avons réalisé 

deux expériences en domaine côtier, en utilisant des mésocosmes alimentés en eau 

de mer naturelle et enrichis à l'aide de poussières provenant de différentes sources 

(régions de Barcelone et Blanes). Ces résultats expérimentaux font partie du projet 

ADEPT "CTM2011-23458" (PI : Dr. Cèlia Marrasé). 

 

Quelle que soit l'origine de l'eau de mer utilisée dans les essais 

expérimentaux, nous avons trouvé une augmentation de la proportion de FDOM par 

rapport au COD après ajout des poussières. Nous avons pu montrer que cette 

augmentation correspondait à de la matière organique plutôt réfractaire comme le 

prouve la faible utilisation de la MO par le compartiment bactérien. Cette 

augmentation de la DOM colorée avec les dépositions atmosphériques et sa faible 

utilisation par le compartiment microbiologique pourraient expliquer en partie les 

valeurs exceptionnellement élevées de CDOM liées à la chlorophylle signalées 

parfois dans les eaux de la mer Méditerranée.  

 

En résumé, les facteurs biotiques et abiotiques, ainsi que les phénomènes 

physiques impliqués dans la dynamique de la matière organique, dans cette étude 

sont représentés dans la figure 3 et 4. 
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Figure 3. Facteurs biotiques et abiotiques contrôlant la dynamique de la CDOM en 
Baie de Banyuls sur-mer (station SOLA) pendant (a) la période hivernale et (b) la 
période estivale. 
 
 

 

 

 

 

 

 

 

 

 

 

Figure 4.  Facteurs biotiques et abiotiques contrôlant la dynamique de la CDOM dans 
le golfe du Lion (station MOLA) pendant (a) la période hivernale (physique dominée 
par les processus de convection) et (b) la période estivale (stratification). 

 
 

(a) 

(b) 
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2.  PERSPECTIVES  
 
 

Ce travail est une première approche du rôle des facteurs biotiques et 

abiotiques dans la dynamique de la MO et son influence sur la biogéochimie de la 

région. Nous avons apporté des éléments importants pour la compréhension du 

fonctionnement et de la variabilité temporelle à différentes échelles des eaux marines 

aussi bien côtières que hauturières de la Mediterranée. 

Il serait nécessaire de poursuivre la quantification et la caractérisation de la 

MOD dans les sources continentales, notamment pour vérifier si les différentes 

rivières (par exemple, Baillaury, Têt, Tech ou Rhône) présentent des signatures 

équivalentes en termes de CDOM/FDOM. Il faudrait également valider nos 

hypothèses sur la dynamique de la MOD, en confrontant nos résultats à d'autres 

régions côtières influencées ou non par des apports continentaux (région de 

Marseille et en mer Ligure par exemple en utilisant le suivi SOMLIT). L'augmentation 

de la fréquence d'observation est également une piste à privilégier (mise au point de 

technique de mesures en continu). 

A la station MOLA, il est nécessaire de poursuivre l'échantillonnage de la 

CDOM couplé au suivi de l'activité microbienne (production primaire et production 

bactérienne). En effet, seule cette approche développée en collaboration avec des 

équipes de modélisateurs devrait nous permettre de confirmer ou d'infirmer nos 

hypothèses sur l'importance des phénomènes physiques tels que le mélange 

convectif. En outre, cela permettrait de suivre l'accumulation et la transformation du 

DOC au cours de la stratification dans les couches superficielles, puis son export vers 

les couches profondes. 

Enfin, nous avons montré que les dépositions atmosphériques ont un impact 

important sur la qualité et la quantité des propriétés optiques de la CDOM disponibles 

dans les eaux de surface. Il faut élargir ces observations à d'autres zones et préciser 

la composition élémentaire des poussières, ainsi que leur devenir dans d'autres types 

d'écosystèmes afin d'expliquer pourquoi ces poussières ne stimulent pas l'activité 

microbienne. 
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Cela pourrait se faire dans le cadre du chantier MISTRALS et de l'évolution de 

la composante MERMEX. L'une des voies actuellement en discussion concerne le 

GOEAST, c'est-à-dire appliquer les stratégies utilisées au cours de l'expérience 

DEWEX au bassin oriental et aux plongées d'eau dense à l'origine de la formation 

des eaux profondes orientales. 

Pour finir, notre objectif est d'élargir nos observations à d'autres zones car la 

Méditerranée constitue un écosystème à part par rapport aux autres systèmes 

océaniques. A notre connaissance, peu d'études existent sur le rôle de la matière 

organique dissoute dans l'écosystème marin des eaux mexicaines. J'envisage de 

proposer une étude ciblée dans les eaux de la Basse Californie (Pacifique Nord). Il 

s'agira d'étudier le rôle de la CDOM liée aux phénomènes physiques caractéristiques 

de la zone (phénomènes contrastés d'el Niño et de la Niña). Les dynamiques et les 

transformations de la CDOM au cours des phénomènes et de la transition entre les 

périodes de Niño/Niña sont essentielles à connaitre pour comprendre le bilan du 

fonctionnement biogéochimique de la zone et son rôle dans le contrôle des 

productions primaire et bactérienne. Cela pourrait se faire dans le cadre du chantier 

IMECOCAL (Investigaciones Mexicanas de la Corriente de California). Le projet 

IMECOCAL développe un programme de recherche dans le secteur sud du courant 

de Californie, qui comprend un plan d’échantillonnage dans eaux océaniques et au 

large de la Basse Californie. L'échantillonnage sera effectué quatre fois par an 

(automne, hiver, printemps et été). Ce projet est financé par plusieurs organismes 

mexicains et étrangers. 
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1. CONCLUSIONS   

 
1.1 CDOM dynamics in coastal and oceanic system  

 
 

Our study focused on examining the role of biotic and abiotic factors that 

influence the dynamics of DOM and its optical properties. To achieve our objectives 

we investigate two contrasting systems governed by distinct driving forces in a 

coastal station (SOLA) and in an oceanic site (MOLA). 

 

SOLA station is located in an oligotrophic system that mostly is controlled by 

the input of low salinity water from rivers e.g. Baullaury, Têt and Tech and also by the 

occurrence of swells. In this coastal area, we assumed that anthropogenic influence 

could alter the system and we showed that, contrary to that you might expect, both 

seasonal and annual variability did not find any reductio with time.  

 
We found an increase of Peak-C and Peak-M of about 1-3-fold in winter 

respect to the summer values. We suggest two mechanisms to explain these high 

differences:  

 

(i) The input of fresh water in winter, which is rich in CDOM: In fact, the 

terrestrial inputs significantly alter the quantity but also the quality of 

CDOM. 

(ii) The stratification and high sunlight exposure in summer favour the 

photo-degradation of organic matter and thus the decrease in 

fluorescence intensity.  

 

Therefore, we suggest that photo-bleaching appears as a major CDOM sink 

whereas the river discharges represent an important source of CDOM. In addition, we 

suggest that both the malfunction of microbial loop and the predation pressure on 

heterotrophic osmotrophs could explain the DOC accumulation in summer; all 

processes can be summarized in the Figure 1.  
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Figure 1. Synthetic scheme of the coastal ecosystem response to meteorological 
events and photochemical processes in the Bay of Banyuls-sur-mer (SOLA station). 
The discontinuous line separates the principal mechanisms occurring in summer 
season (right side) from those more episodic ones operating in winter (left side). The 
arrows up indicate an increase, and the arrows down a diminution. With question 
marks we indicate the variables for which we do not have data but we do have 
indirect evidence to hypothesize that these variables or mechanisms play a role in the 
dynamics of organic matter. 
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The offshore station MOLA is influenced, from a physical point of view, by 

the general circulation (current North Mediterranean), particularly by the formation of 

the dense water on the continental shelf (cascading) and offshore (thermohaline 

convection). During our survey period we monitored two winter periods and one 

summer period. We found two contrasting winter conditions; the first one (2013) was 

marked by significant dense water formations, while the second winter (2014) was 

characterized by the absence of cascading and convection. This contrast has 

provided a solid base to discuss the temporal variations of the dynamics of dissolved 

organic matter that we observed at the MOLA station. 

 

In fact, the intense convective mixing in winter during 2013-2014 led to low and 

homogenous concentrations of DOC and FDOM throughout the water column. In 

contrast, in spring 2014 both DOC and FDOM values were relatively higher in surface 

layer.  In warm periods, the high solar radiation exposure during thermal stratification 

produced a decrease of absorption and fluorescence due to the photo-bleaching of 

the humic-like substances (decrease the aromaticity).  

 

Therefore, this study evidences that the “in situ” production is the main source 

and photo-bleaching is the major sink of CDOM in oceanic waters. Physical 

processes described above governed the variability of optical properties of DOM. The 

involved processes in the dynamics of DOM to MOLA station are summarized in 

Figure 2. 
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Figure 2. Synthetic scheme showing the sequence of the different physical 
phenomena driving the DOM dynamics in an ocean ecosystem (MOLA station). The 
discontinuous line separates the principal mechanisms occurring in summer season 
(right side) from those ones more episodic operating in winter (left side). The arrows 
up indicate an increase, and the arrows down a diminution. With question marks we 
indicate the variables for which we do not have data. 
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1.2 .  Atmospheric source of FDOM  

 

To our knowledge, DOM atmospheric inputs in marine ecosystems have been 

feebly evaluated. To determine the relative contribution of atmospheric depositions in 

the dynamics of CDOM in terms of stock, optical properties, and its influence on 

microbial activity, we conducted two experiments in two different sites (Barcelona and 

Blanes) of the Catalan coast, using mesocosms supplied with natural seawater 

enriched with dust from different sources (Saharan and urban). 

 

Regardless of the origin of the seawater used in the experiments we found an 

increase in the proportion of FDOM respect to DOC after dust additions. We showed 

that this increase corresponds to rather refractory organic material, this refractory 

character being confirmed by the low posterior utilization of the OM. The induced 

increase of colored DOM fraction with dust deposition together with the posterior low 

utilization could contribute to explain the exceptional high values of CDOM related to 

chlorophyll reported in the Mediterranean Sea waters. 

 

In summary, the biotic and abiotic factors and physical phenomena involved in 

the dynamics of organic material, in this study are shown in the figure 3 and 4.  
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Figure 3. Biotic and abiotic factors controlling the dynamics of CDOM in the Bay of 
Banyuls sur Mer (SOLA station) for (a) winter period and (b) summer period.  

 
 

 
 

 
 

 

 

 

 

 

 

Figure 4.  Biotic and abiotic factors controlling the dynamics of CDOM in the Gulf of 
Lion (MOLA station). (a) winter period (physic dominate by convective mixing) and (b) 
summer period (stratification). 

 

(a) 

(b) 
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2. PERPECTIVES  
 
 

This work allowed us to perform a first approach about the role of biotic and 

abiotic factors in the organic matter dynamics and its influence on the 

biogeochemistry of the Mediterranean region. We provided new insights about the 

functioning and temporal variability at different scales in the marine waters as well as 

coastal seas. 

 

It would be necessary to continue the quantification and characterization of the 

DOM in continental sources to verify whether or not if various rivers (e.g. Baillaury, 

Têt, Tech or Rhône) have equivalent signatures in terms of CDOM / FDOM. 

Additional data would also validate our assumptions about the dynamics of DOM, and 

would allow us to compare our results with others coastal regions, which receive or 

not continental inputs (Marseille region and Ligurian Sea, for example using the 

SOMLIT monitoring). Simultaneous sampling for physical, chemical and biological 

variables at high frequency of observation would be crucial for a better understanding 

of CDOM dynamics in coastal areas (e.g. buoys with sensors for continuous 

measurements). 

At the MOLA station we propose to continue the CDOM sampling, this, 

combined with microbial activity (primary production and bacteria production) 

monitoring. In fact, this approach together with modeller’s collaboration would be 

decisive to corroborate or refute our hypotheses about the importance of physical 

phenomena such as convective mixing in driving the organic matter dynamics. Also, it 

would permit to examine the accumulation or transformation of DOC during the period 

of stratification in the surface layers and its possible export to the deeper layers.  

Finally, we showed that atmospheric depositions have an important impact on 

the quality and quantity of the optical properties of CDOM available in surface waters. 

We must extend these observations to other areas and identify the elemental 

composition of the dust, as well as their fate in other types of ecosystems to explain 

why, in our experiments, the dust did not stimulate microbial activity. 
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This could be done through the projects Mistrals and MERMEX. One of the 

paths nowadays in discussion concerns to GOEAST, which applyes strategies used 

in the DEWEX experiments to the oriental basin and, in particular, to the dense 

waters immersions. 

  

Finally, our goal is to extend our observations to other areas because the 

Mediterranean is a separate ecosystem compared with other oceanic systems. To our 

knowledge, few studies exist about the role of dissolved organic matter in the marine 

ecosystem of the Mexican waters. We propose a study in the waters of Baja 

California (North Pacific), in which we will study the role of CDOM related to physical 

characteristic phenomena of the area (e.g. phenomena El Niño and La Niña). The 

dynamics and transformations of CDOM through these phenomena and its transition 

between periods of El Niño / La Niña are essential to understand the balance 

between the biogeochemical functioning of the area and its role in controlling primary 

and bacterial production. This type of study could be performed through the 

IMECOCAL project  (Investigaciones Mexicanas de la corriente de California).  This 

project is funded by several Mexican and foreign organizations and it is developing a 

research program in the southern sector of the California current, which includes a 

seasonal sampling in ocean waters, offshore Baja California. 
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RÉSUMÉ 
 
 
Rôle des mécanismes abiotiques dans les dynamiques de la matière organique 

dissoute dans les écosystèmes pélagiques (Méditerranée Nord occidentale) 
 

 
La matière organique dissoute chromophorique (CDOM) est une fraction 

significative du pool global de matière organique dissoute (MOD) dans les océans. La 
CDOM absorbe une partie de la lumière dans le domaine du rayonnement ultraviolet 
(UV-R) et du visible. Une fraction de cette CDOM peut émettre une fluorescence 
lorsqu'elle est excitée par un UV-R. Cette fraction est alors appelée matière 
organique dissoute fluorescente (FDOM). La CDOM a donc d'une part, un effet 
positif, en protégeant les cellules contre les dommages causés par les UV-R, mais 
d'autre part, un effet négatif en réduisant la quantité de radiation disponible pour la 
photosynthèse. 

 
Les propriétés optiques de la CDOM, particulièrement sensibles aux 

processus physiques (abiotiques) et biologiques (biotiques), renseignent sur 
l'intensité des processus biogéochimiques en milieux aquatiques. Des suivis de la 
dynamique de la CDOM en zones côtière et hauturière en Méditerranée Nord 
occidentale ont permis de décrire différentes tendances temporelles claires, qui vont 
d’une faible à une forte saisonnalité et qui peuvent être découplées des variations du 
pool global de MOD caractérisé par les concentrations en carbone organique dissous 
(COD). Dans les zones tempérées, les événements météorologiques conduisent à 
des changements beaucoup plus brusques dans la frange littorale que dans l’océan, 
où les variations tendent à être plus progressives au cours de l'année. En outre, 
l'apport de nutriments et de polluants dans les zones côtières est fortement influencé 
par l'activité anthropogénique et ces entrées ne suivent pas nécessairement de 
tendances saisonnières nettes. 

 
Dans la présente étude qui effectue un premier bilan de la distribution et du 

devenir de la CDOM/FDOM aux stations d'observation à long terme du laboratoire 
Arago (stations côtière SOLA et hauturière MOLA) à partir respectivement d'un suivi 
hebdomadaire et mensuel, nous nous sommes attachés à extraire un signal cohérent 
et une variabilité claire des sources des différentes fractions de la MOD entre février 
2013 et avril 2014 ceci, de manière à mieux comprendre les rôles respectifs des 
facteurs biotiques et abiotiques. Nos observations ont ensuite pu être replacées dans 
un contexte synoptique d'évolution climatologique des écosystèmes méditerranéens. 

 
Dans la zone du golfe du Lion, les nutriments et la chlorophylle ont des 

variations saisonnières classiques pour une zone tempérée avec une période 
hivernale marquée par un enrichissement des couches superficielles en sels nutritifs 
donnant naissance à un bloom printanier plus ou moins précoce selon les zones. 
L'été est marqué par l'apparition de conditions oligotrophes de plus en plus marquées 
avec l'avancée de la saison jusqu'à la rupture de la stratification en automne. De 
façon surprenante, les différentes fractions de la MOD ne montrent pas de tendance 
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temporelle claire alors que de COD présente une plus forte variabilité en été 
(accumulation en surface). Pour expliquer ce décalage, nous proposons une 
séquence de phénomènes abiotiques et biotiques qui forceraient la dynamique de la 
MOD. 

Dans le cadre conceptuel proposé, les facteurs biologiques sont dominants en 
été, alors que pendant le reste de l'année, la dynamique de la MOD dépend 
fortement d'événements météorologiques (tempête, cascading). Afin de préciser 
l'influence des facteurs biologiques sur la distribution de la FDOM, nous avons suivi 
l'influence du développement et de la composition des blooms phytoplanctoniques 
sur la dynamique de cette FDOM aux différents sites étudiés. Nos observations 
indiquent que les facteurs abiotiques tels que les intrusions d'eau dessalée et/ou 
l'exposition aux radiations solaires sont dominants par rapport à la variabilité des 
communautés phytoplanctoniques. 

 
De façon complémentaire à ces études de terrain, nous utilisons la base de 

données de déposition de poussière de projet ADEPT (ICM-CSIC, Barcelone) pour 
étudier le rôle potentiel du déposition atmosphérique dans la variabilité temporelle 
CDOM et nous avons conduit deux travaux expérimentaux en mésocosmes contrôlés 
afin d'étudier l’effet des apports atmosphériques sur les communautés microbiennes. 
Ces apports ont conduit à de vrais changements dans la composition de la matière 
organique détectée par des méthodes spectroscopiques. Cependant, ces apports 
n’ont pas ou peu été utilisés pour la communauté microbienne au cours des essais 
expérimentaux. 

 
En conclusion, notre étude apporte des éléments clairs quant à l'organisation 

et au fonctionnement des écosystèmes pélagiques méditerranéens et sur les bilans 
de matière à différentes échelles temporelles d’observation. De plus, le suivi mené à 
deux stations contrastées nous a permis de comparer la saisonnalité d'un système 
côtier à un système hauturier. 
 
 
Mots-clés: CDOM, FDOM, MOD, déposition de poussière, biotiques, abiotiques, 
Méditerranée Nord-Occidentale,  
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ABSTRACT 
 
 

The role of abiotic and biotic mechanisms controlling the dynamics of the 
dissolved organic matter in pelagic ecosystem (NW Mediterranean) 

 
 
Chromophoric dissolved organic matter (CDOM) is a major fraction of 

dissolved organic matter (DOM).  CDOM absorbs light over a broad range of 
ultraviolet (UV-R) and visible wavelengths. A small fraction of CDOM can emit 
fluorescence when excited by ultraviolet radiation; so called fluorescent dissolved 
organic matter (FDOM). CDOM plays a key role in regulating light penetration into the 
ocean, absorbing high-energy electromagnetic spectrum (visible and ultraviolet light) 
waves. On one hand, it protects aquatic organisms of potential photo-damage; in the 
other hand it induces a negative effect by reducing light for photosynthesis. 

 
The optical properties of the CDOM are sensitive to biological (biotic) and 

physical (abiotic) processes and for this reason the colored matter can provide 
valuable information about the biogeochemical processes in aquatic environments. 
CDOM monitoring in Mediterranean coastal areas has shown different temporal 
trends, which go from weak to strong seasonality. Interestedly, these temporal trends 
were uncoupled with those of the total dissolved organic carbon. In temperate areas, 
episodic meteorological events can induce much more abrupt changes in the littoral 
than in the open sea, where changes tend to be more gradual along the year. In 
addition, the input of nutrients and pollutants in coastal areas is strongly influenced by 
the anthropogenic activity on land, and those inputs do not necessarily follow 
seasonal trends. In the present study, weekly and monthly samplings were performed 
to investigate the temporal variability in SOLA and MOLA stations, respectively. The 
fluctuation of different fractions of dissolved organic matter (DOM) was evaluated 
from February 2013 to April 2014 and referred to long time-frame databases of SOLA 
and MOLA stations. 
 

Inorganic nutrients and chlorophyll shown the classical seasonal patterns, with 
a winter period characterized by an enrichment of surface waters favoring the spring 
bloom, followed by a calm period that allows the summer stratification and the 
depletion of nutrients in the photic zone. The stratification extended until autumn 
winds and low temperatures eroded the thermocline. In contrast, colored DOM 
fractions did not follow a clear temporal trend. Interestingly, dissolved organic carbon 
(DOC) exhibited the highest variability in summer, when the rest of parameters 
showed minimum variations. To explain this mismatch we proposed a sequence of 
abiotic and biotic phenomena driving the DOC dynamics. In the suggested 
conceptual frame, DOC dynamics depended strongly on episodic meteorological 
events (winds, rains, etc.) along the year, except in summer, where the biological 
factors were more relevant. In order to better understand the influence of biological 
factors, we examined the temporal trends of phytoplankton composition in relation to 
those of the different colored DOM fractions. We found that both phytoplankton and 
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CDOM were strongly influenced by abiotic factors such as the intrusions of fresh 
waters, the vertical mixing due to convection and the light exposure. However we did 
not find a correlation between any of the CDOM fractions and any of phytoplankton 
groups.   

In addition, we use the dust deposition database of ADEPT project (ICM-CSIC, 
Barcelona) to investigate the potential role of atmospheric deposition in the CDOM 
temporal variability, and also performed two dust addition experiments with natural 
plankton communities collected in the Catalan coast. The experimental results shown 
that the dust additions induced changes in the CDOM composition, however 
microbes, in general, did not utilize the added compounds during the incubation 
period.  

 
In summary, we provided new insights about the functioning of the 

Mediterranean marine ecosistems and about the temporal variability at different time 
scales. In addition, the monitoring study in two contrasting marine stations allowed us 
to compare the seasonality in a coastal system with that of offshore waters. 
 
 
Keywords: CDOM, FDOM, DOM, atmospheric deposition, abiotic, biotic, Northwest 
Mediterranean 
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