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Maı̂tre de conférences, HDR, Université Rey Juan Carlos, Madrid, Espagne / Examinateur

Mme. Flavia COIMBRA DELICATO
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Ao professor Flavio Oquendo, da Université de Bretagne-Sud (UBS), França, pelo seu

conhecimento e preciosas orientações durante a condução deste trabalho, bem como a

Andressa pela recepção cordial em Vannes e o apoio durante minha visita.
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Aos meus amigos do Laboratório de Engenharia de Software (LabES), pelo compa-
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Daniel Soares, Brauner Oliveira, Lina Garcés Rodriguez e Valdemar Neto.
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Abstract

Robotics has experienced an increasing evolution and interest from the so-
ciety in recent years. Robots are no longer produced exclusively to perform
repetitive tasks in factories, they have been designed to collaborate with
humans in several important application domains. Robotic systems that
control these robots are therefore becoming larger, more complex, and dif-
ficult to develop. In this scenario, Service-Oriented Architecture (SOA)
has been investigated as a promising architectural style for the design of
robotic systems in a flexible, reusable, and productive manner. Despite
the existence of a considerable amount of Service-Oriented Robotic Systems
(SORS), most of them have been developed in an ad hoc manner. The little
attention and limited support devoted to the design of SORS software archi-
tectures may not only hamper the benefits of SOA adoption, but also reduce
the overall quality of robotic systems, which are often used in safety-critical
contexts. This thesis aims at improving the understanding and systemati-
zation of SORS architectural design. It describes a taxonomy of services for
the robotics domain, as well as proposes a process and a reference architec-
ture that systematize the design of SORS software architectures. Results
achieved in the evaluation studies evidence that both process and reference
architecture can positively impact on the quality of SORS software archi-
tectures and, as a consequence, contribute to the development of robotic
systems.

Keywords: Software architecture; Service-oriented architecture; Reference
architecture; Robotic system; Robotics.
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Resumo

A robótica tem passado por uma notável evolução ao longo dos últimos anos,
juntamente com um crescente interesse por parte da sociedade. Robôs não
são mais exclusivamente produzidos para realizar atividades repetitivas em
fábricas, eles têm sido projetados para apoiar humanos em diversos e impor-
tantes domı́nios de aplicação. Os sistemas robóticos utilizados para controlar
tais robôs têm, portanto, se tornado maiores, mais complexos e dif́ıceis de
desenvolver. Nesse cenário, a Arquitetura Orientada a Serviços (do inglês,
Service-Oriented Architecture - SOA) tem sido investigada como um promis-
sor estilo arquitetural para o desenvolvimento de sistemas robóticos de forma
mais flex́ıvel, reusável e produtiva. Embora um número considerável de Sis-
temas Robóticos Orientados a Serviços (do inglês, Service-Oriented Robotic
Systems - SORS) já exista, grande parte deles têm sido desenvolvida de
maneira ad hoc. A pouca atenção e o suporte limitado ao projeto das ar-
quiteturas de software de SORS pode não só impedir a obtenção dos bene-
f́ıcios associados à adoção da SOA, mas também reduzir a qualidade dos
sistemas robóticos que, frequentemente, são utilizados em contextos de se-
gurança cŕıtica. Essa tese tem por objetivo aprimorar o entendimento e a
sistematização do projeto arquitetural de SORS. Para isso, é proposta uma
taxonomia de serviços para o domı́nio de robótica, bem como um processo e
uma arquitetura de referência para sistematizar o projeto das arquiteturas
de software de SORS. Os resultados obtidos evidenciam que tanto o pro-
cesso quanto a arquitetura de referência podem impactar positivamente na
qualidade das arquiteturas de software de SORS e, consequentemente, con-
tribuir para o desenvolvimento de sistemas robóticos.

Palavras-chave: Arquitetura de software; Arquitetura orientada a serviços;
Arquitetura de referência; Sistemas robóticos; Robótica.
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Résumé

La Robotique a connu une évolution remarquable au cours des dernières an-
nées, couplée à un intérêt croissant de la société pour ce domaine. Des robots
ne sont plus fabriqués exclusivement pour effectuer des tâches répétitives
dans les usines, mais ils sont aussi créés pour collaborer avec les humains
dans plusieurs domaines d’application d’importance. Les systèmes robo-
tiques qui contrôlent ces robots sont donc de plus en plus larges, complexes
et difficiles à développer. Dans ce contexte, l’Architecture Orientée Services
(SOA) a été identifiée comme un style d’architecture logiciel prometteur
pour concevoir des systèmes robotiques de manière flexible, réutilisable, et
productive. Cependant, malgré le nombre considérable de Systèmes Robo-
tiques Orientées Services (SORS) existants aujourd’hui, la plupart d’entre
eux ont été développés de manière ad hoc. Le peu d’attention et le soutien
limité portés à la conception d’architectures logicielles SORS peuvent non
seulement masquer les avantages de l’adoption de la SOA, mais aussi réduire
la qualité globale des systèmes robotiques, qui sont souvent utilisés dans des
contextes de sécurité critiques. Cette thèse vise à améliorer la compréhen-
sion et la systématisation de la conception architecturale SORS. Elle décrit
une taxonomie des services pour le domaine de la robotique, puis propose
une processus ainsi qu’une architecture de référence afin de systématiser la
conception d’architectures logicielles SORS. Les résultats obtenus dans les
études d’évaluation montrent qu’à la fois la processus et l’architecture de
référence peuvent avoir un impact positif sur la qualité des architectures
logicielles SORS et, par conséquent, contribuent à l’amélioration des sys-
tèmes robotiques.

Mots-clés: Architecture logiciel; Architecture orientée services; Architec-
ture de référence; Systèmes robotiques; Robotique.
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Chapter

1

Introduction

Over the past decades, robots have been evolving from assembly-line devices to ma-

chines able to cooperate with or even replace humans in several dangerous, tedious, and

error-prone activities. Recent advancements on hardware and software technologies have

enabled the development of robots that support daily activities inside hospitals (Swiss-

log, 2015; Takahashi et al., 2010), houses (Husqvarna, 2015; iRobots, 2015a,b), and on the

streets (Fernandes et al., 2014; Thrun et al., 2006). The potential of robotics for improving

quality of live and productivity has motivated both academia and industry in investing in

robots of higher autonomy and decision making capacity. Consequently, the robotic sys-

tems that control these robots have grown in size and complexity, demanding more mature

practices of development. In this perspective, the design of software architectures able

to accommodate such complexity and, at the same time, improve the quality of robotic

systems turned into a key concern of robotics (Fluckiger and Utz, 2014). Presently, the

study of the architectural design of robotic systems is considered an important research

field in robotics (Brugali and Scandurra, 2009; Fluckiger and Utz, 2014).

Software architecture forms the backbone of any successful system and plays a funda-

mental role in determining quality (Shaw and Clements, 2006). It represents the structure

or structures of the system, which comprise software elements, the externally visible prop-

erties of these elements, and the relationships among them (Bass et al., 2012). A software

architecture is a collection of explicit architectural design decisions made about the soft-

ware system over time (Jansen and Bosch, 2005). Decisions made at the architectural

1
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level directly impact on the realization of functional and quality requirements of software

systems (Shaw and Clements, 2006). Therefore, both functional and quality characteris-

tics must be considered, designed, and evaluated at the architectural level (Bass et al.,

2012; Clements et al., 2002). In this context, the use of systematic processes associated

with reference models and reference architectures can facilitate and improve the design of

software architectures.

Reference architectures are important assets that guide the design of a range software

architectures of given application domain (Bass et al., 2012). They promote reuse of

design expertise by encompassing best practices of development and knowledge on how

to structure software elements that support the creation of systems in such a domain

(Nakagawa and Oquendo, 2012). Reference architectures are recognized as architectural

blueprints, since they foster standardization, improve communication among stakehold-

ers, and also reduce costs of development (Arsanjani et al., 2007; Cloutier et al., 2010;

Nakagawa and Oquendo, 2012). Many companies and research institutes have already

designed and adopted reference architectures for different application domains (Arsanjani

et al., 2007; Nakagawa et al., 2011b; Oliveira and Nakagawa, 2011; The Open Group,

2015). In particular, several examples of reference architectures are already available for

the development of embedded systems (AUTOSAR, 2015; Eklund et al., 2005; Eklund

and Bosch, 2014; UniversAAL Project, 2015) and robotic systems (Albus, 2002; Alvarez

et al., 2001; Clark, 2005; Heisey et al., 2013; Nakagawa et al., 2014; Ortiz et al., 2005;

Weyns and Holvoet, 2006).

Another important asset that impacts on the development of software architectures

is the architectural style. Nowadays, several software systems are created by the com-

position of existing modules and subsystems implemented by different technologies. In

this scenario, Service-Oriented Architecture (SOA) is an architectural style traditionally

used in the industry for the integration of heterogeneous, distributed software capabilities

provided by multiple organizations (Erl, 2005; Josuttis, 2007). Software capabilities are

encapsulated as services, which are self-contained, well-defined modules capable of pro-

viding business functionalities independently of the state and context of other services

(Erl, 2005; Papazoglou and Heuvel, 2007). Functionalities of a service are offered through

auto-descriptive standard interfaces and can be published in third-party repositories to

be discovered by service consumers. Therefore, SOA can foster reuse and improve pro-

ductivity of software systems development (Papazoglou et al., 2008).

SOA has also been recently investigated as a solution to produce more flexible, re-

configurable, and scalable software for robotic systems. The use of SOA is supporting

developers to overcome traditional problems of robotics design, including integration of

off-the-shelf hardware devices and reuse of complex software modules (Berná-Mart́ınez

2
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and Maciá-Pérez, 2010; Fluckiger and Utz, 2014; Veiga et al., 2009). The adoption of this

architectural style also enables integration of robots as part of larger systems (Waibel et

al., 2011; Yang and Lee, 2013b), adaptation of robot’s behaviour at runtime (Tenorth et

al., 2011), and use of additional sources of knowledge in robotics (e.g., the Internet) (Blake

et al., 2011). Important companies and research institutes are investing on the creation

of Service-Oriented Robotic Systems (SORS). For instance, Microsoft Robotics Developer

Studio (MSDS) (Jackson, 2007) and Robot Operating System (ROS) (Straszheim et al.,

2011) are consolidated environments that currently support the development of robotic

systems based on SOA.

1.1 Problem Statement and Justification for the Research

The potential of SOA for robotics has motivated researchers to develop their robotic

systems as collections of services. Nowadays, there is an increasing number of studies re-

porting the design of SORS (Berná-Mart́ınez and Maciá-Pérez, 2010; Cepeda et al., 2011;

Doriya et al., 2012b; Insaurralde and Petillot, 2015; Koubaa, 2014; Raffaeli et al., 2012).

The development of such systems has produced hundreds of services for the control of

hardware devices, robotic navigation, probabilistic localization, and other complex func-

tionalities associated with the creation of robots1. These services represent an important

support for the development of future projects and can contribute to reduce complexity

and time-to-market of new robots.

However, the use of SOA in robotics is considerably recent if compared to other archi-

tectural styles. As a consequence, most of SORS are still developed in different manners,

without a common understanding on how and which software modules should be pro-

vided as services. The lack of consensus and unified terminology hampers the discovery

of services available for reuse and their integration into other projects, reducing the ca-

pacity of SOA in fostering productivity in the development of SORS. In this perspective,

research focusing on the establishment of a well-accepted vocabulary and classification of

services for SORS can contribute to consolidate SOA in the domain of robotics. Further-

more, such a conceptual basis may pave the way for the creation of mechanisms able to

facilitate publication and discovery of services for SORS.

Important advancements in technology over the past years have enabled the creation

of robotic systems by the composition of services. Nevertheless, little attention has been

paid to the design of their software architectures. Results of a systematic literature review2

(Oliveira et al., 2013b) revels that most of software architectures for SORS are currently

1http://www.ros.org/browse/list.php, last accessed in March 25th, 2015.
2More details can be found in Chapter 2, Section 2.4.5.
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designed in ad hoc manner, without considering an adequate approach of development,

which can hinder the construction, maintenance, and reuse of these systems. Improvement

in the design of SORS software architectures is a key concern, as robots have been used in

safe-critical domains, where failures may cause non-recoverable financial losses and serious

damage to the human lives, environment, and expensive equipments.

Contributions that facilitate the design of software architectures are necessary to in-

crease quality and productivity in the development of SORS. The adequate design of a soft-

ware architecture is fundamental for the achievement of system goals, functional and qual-

ity requirements (Bass et al., 2012). Traditional approaches, as those for object-oriented

software, do not adequately support the design of SOA-based systems (Arsanjani et al.,

2008). On the other hand, approaches for the development of service-oriented systems

do not consider particularities of robotics design, such as limited processing capability

and real-time constraints. Therefore, a systematic process for designing SORS software

architectures can positively impact on the overall quality of these systems. In addition,

reference architectures encompassing the knowledge on how to design SORS would ease

the application of this process and, consequently, produce systems of higher quality. How-

ever, as far as we know, no process or reference architecture is available in the literature

to support the design of robotic systems based on SOA.

1.2 Objectives

According to the research gap characterized in the previous section, the general research

question to be investigated in this thesis is whether or not the systematization of the

architectural design can positively impact on the quality of SORS software architectures.

Based on this general research question, we defined the following objectives:

❼ Definition of a taxonomy of service for SORS: we intent to investigate types of

services used in the development of SORS, the organization of these services, and

their contexts of application. Based on our observations, knowledge of experts,

and guidelines available for robotics and SOA, we aim at defining a taxonomy of

services for the development of SORS to improve understanding among researchers

and practitioners of this domain;

❼ Automation of the classification and discovery of services for SORS: we aim at

using the taxonomy of services to create a mechanism that automates publication,

classification, and transparent discovery of services for the development of SORS. By

creating this mechanism, we intent to facilitate the reuse of services and, therefore,

improve productivity in the development of robotic systems based on SOA;

4
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❼ Definition of a process for the design of SORS software architectures: our main

objective in this thesis is to propose a process to support the systematic design of

SORS software architectures. Through this process, we aim at providing prescriptive

guidance to the architectural design of SORS in order to increase the quality of the

resulting software architectures and, as a consequence, support the development of

these systems; and

❼ Establishment of a reference architecture for SORS: we aim at establishing a refer-

ence architecture for supporting the design of SORS software architectures created

by the application of the process proposed in this thesis. In the definition of such

reference architecture, we plan to focus on the indoor grounded mobile SORS, as

they represent the most common type of robotic system developed using SOA.

The next section addresses contributions of this thesis in accordance with the proposed

objectives. It also presents the organization of this doctoral dissertation and the structure

of its chapters.

1.3 Thesis Outline and Summary of Contributions

Chapter 2 brings an overview of the background information that supports the topics

investigated in this thesis. Initially, terminology and key concepts related to software

architecture are discussed. Then, theory associated with the SOA architectural style

and the main technologies for developing service-oriented systems are addressed. After

that, an introduction to robotics and main characteristics of the development of robotic

systems are presented. The chapter also summarizes results of a systematic literature

review study that characterizes the state-of-the-art on the development of SORS. This

systematic review was published in (Oliveira et al., 2013b) and updated for the inclusion

in this thesis.

Chapter 3 describes two complementary works on the classification of services for the

development of SORS. The first one, published in (Oliveira et al., 2014c), reports the

establishment of a taxonomy created to improve communication among developers and

enable classification of services for SORS. Results of a survey applied to specialists in

robotics indicate this taxonomy is comprehensive enough to classify services that can

be used to develop SORS. The second work, published in (Oliveira et al., 2014b) and

later extended in (Oliveira et al., 2015), presents the design and implementation of a tool

that uses the taxonomy to enable publication, classification, and transparent discovery

of services for SORS. Preliminary results of a case study suggest this tool facilitates

5
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the discovery and reuse of services at design time, which may foster productivity in the

development of robotic systems.

Chapter 4 introduces ArchSORS (Architectural Design of Service-Oriented Robotic

System), a process to support and systematize the design of SORS. ArchSORS encom-

passes a set of methods that describe key activities, roles, and document deliverables to

the development of software architectures for robotic systems based on SOA. We con-

ducted an experimental study to evaluate the influence of this process on the quality of

SORS software architectures. Results show evidences that ArchSORS can produce ar-

chitectures of higher modularity and cohesion, which are also less coupled and centred

in coarse-grained services. Improvements in these characteristics suggest that ArchSORS

can positively impact on the quality of SORS software architectures and, therefore, ben-

efit the development of such systems. This chapter extends content and results reported

in (Oliveira et al., 2014a).

Chapter 5 describes the establishment of RefSORS (Reference Architecture for Service-

Oriented Robotic Systems), a reference architecture for indoor grounded mobile SORS.

RefSORS encompasses the knowledge on how to model and compose services identified

in the taxonomy (Chapter 3) to design software architectures for this particular type

of robotic system. We conducted a case study on the development of a multi-robot

system to illustrate the application of RefSORS in conjunction with the ArchSORS process

(Chapter 4). Results indicate that the software architecture designed by the instantiation

of RefSORS presents better modularity, coupling, and cohesion, if compared to the ones

designed only using ArchSORS.

Finally, Chapter 6 concludes this thesis, revisiting the achieved contributions, summa-

rizing limitations, and presenting perspectives of future research. The list of publications

resulting from this work is presented in Appendix C.

6
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Chapter

2

Background

2.1 Overview

This chapter provides an overview of the subjects that underlie the research developed in

this thesis. The organization of the chapter is as follows. Section 2.2 introduces the termi-

nology and main concepts of software architecture. Section 2.3 presents the SOA architec-

tural style and its implementation technologies. Section 2.4 describes the general struc-

ture, development environments, and design approaches of robotic systems. Particularly,

Section 2.4.5 characterizes the state-of-the-art of the development of Service-Oriented

Robotic Systems (SORS) according to the results of an updated version of a systematic

literature review initially published in (Oliveira et al., 2013b).

2.2 Software Architecture

Software architecture plays an essential role in determining system quality as it forms the

backbone of any successful software-intensive system (Shaw and Clements, 2006). De-

cisions made at the architectural level directly impact on the achievement of business

goals, functional and quality requirements (Bosch, 2000). According to Bass et al. (2012),

software architecture is the structure or structures of the system, which comprise soft-

ware elements, the externally visible properties of those elements, and the relationships

among them. An architecture focuses on the representation of element interfaces and

7
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hides internal details on how such elements are implemented (Bass et al., 2012). Addi-

tionally, Jansen and Bosch (2005) define software architecture as a collection of explicit

architectural design decisions made over time.

2.2.1 Terminology

The first reference to the “Software Architecture” phrase emerged in 1969 (Kruchten et

al., 2006). From then until the late 1980s, the word architecture was mostly associated

with system architectures, in the sense of hardware structure of a system (Kruchten et

al., 2006). The concept of software architecture as it is understood nowadays only arose

in the early 1990s. In the past two decades, several other terms associated with software

architecture have been defined and used in the literature. The comprehension of these

terms is fundamental for the establishment of a unified vocabulary and improvement in

communication among practitioners and researchers of software architecture. Compre-

hensive lists of terms and concepts related to software architecture are available in (SEI,

2015c) and (Eeles, 2008). The most important terms in the context of the presented

research are described as follows:

Stakeholder: refers to any individual, team or organization that is interested in a soft-

ware system and plays a relevant role during its development process (ISO/IEC/IEEE,

2011). Examples of stakeholders include clients, users, software architects, software

engineers, developers, and testers;

Concern: is an interest or need of one or more stakeholders on the software system under

development (ISO/IEC/IEEE, 2011). Concerns can be, for instance, functionalities,

qualities, purposes of use, and costs;

Concrete software architecture: is the software architecture of a given software

system tailored for its particular set of stakeholders and concerns;

Architectural pattern: expresses fundamental structural organization schema for soft-

ware systems. An architectural pattern describes a set of predefined subsystems,

specifies their responsibilities, and includes rules and guidelines for the organiza-

tion of the relationships among them (Buschmann et al., 1996). According to Eeles

(2008), an architectural pattern not only provides the structure of a solution for

an usual problem in software design, but also describes the context in which such

a problem may occur and the consequences associated with the pattern adoption.

The Layers pattern, defined by Buschmann et al. (1996), is a well-known example of

an architectural pattern that enables a software solution to be divided into groups

of behaviour and separated into layers;

8
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Architectural style: is a type of architectural pattern that can be used to start the

process of moving from requirements to solution (Eeles, 2008). An architectural

style defines a family of systems in terms of a pattern of structural organization,

establishes vocabulary of components and connector types, and a set of constraints

on how they can be combined (Shaw and Garlan, 1996). Examples of architectural

styles include Client-server and Pipe-and-filters (Bass et al., 2012). The Client-server

style defines the physical separation of client-side and server-side processing and

enforces communication by protocol. Pipe-and-filter defines data transformation in

a system through filters and communication among such filters via pipes;

Reference model: is an abstract representation of the elements in a given domain of

interest, the behaviour of such elements, and the relationships among them (Bass

et al., 2012). A reference model typically forms the conceptual basis for the de-

velopment of more concrete elements, such as reference architectures (Eeles, 2008).

OASIS (2006) is a well-known example of a reference model that defines the essence

of SOA regardless of technology, standard or development approach;

Reference architecture: is a reference model mapped onto elements of software that

cooperatively implement the functionalities defined in such a model (Angelov et

al., 2009; Bass et al., 2012). It encompasses the knowledge on how to design con-

crete architectures of systems of a given application domain or technological domain

(Nakagawa et al., 2011a). OASIS (2012) is an example of a reference architecture for

SOA designed according to a reference model (OASIS, 2006). Section 2.2.2 provides

additional details and examples of reference architectures as this topic is related to

one of the contributions of this research;

Product line architecture: is an abstract software architecture for describing el-

ements of a family of similar products developed by the Software Product Line

(SPL) approach (Clements and Northrop, 2002). Product line architectures rep-

resent the kernel, optional, and variable components in the SPL, and their inter-

connections (Gomaa, 2004). The literature provides several examples of SPL and

product line architectures that range from medical systems to avionics (SEI, 2015b).

The definition of these terms is important to avoid misconceptions, since some of

them are frequently applied as synonyms. For instance, reference architectures are often

used to refer to reference models, although the latter is more general than the former

(Angelov et al., 2009; Bass et al., 2012; Nakagawa et al., 2014). Product line architectures

are also mistakenly referred to as reference architectures, albeit the focus of product

line architecture is on describing variabilities of a particular subset of software systems

9
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of a given domain (Nakagawa et al., 2011a). Despite reference models, architectural

patterns, and reference architectures aim at facilitating the capture of elements of software

architectures, they play clear and distinct roles in the architectural design (Bass et al.,

2012). Figure 2.1 illustrates the relationship among reference model, architectural pattern,

reference architecture, and concrete architectures.

Figure 2.1: Relationship among reference model, architectural pattern, reference archi-
tecture, and concrete architectures (Bass et al., 2012)

2.2.2 Reference Architecture

Reference architecture has emerged as an important area of research in software archi-

tecture. It is considered a blueprint of software development, since it guides the design

of concrete architectures of systems for a given application domain (Angelov et al., 2008;

Muller, 2008; Nakagawa and Oquendo, 2012). Reference architectures can directly im-

pact on the quality and design of a range of concrete architectures and software systems

developed from them (Angelov et al., 2009). Therefore, they must consider business

rules, architectural styles, best practices of software development, and software elements

that support the design of systems of the application domain (Nakagawa et al., 2011a).

Furthermore, reference architectures must be supported by a unified, unambiguous, and

widely understood domain terminology. In this perspective, RAModel (Reference Archi-

tecture Model) (Nakagawa and Oquendo, 2012) provides a complete list of elements (and

their relationships) that may be considered for engineering reference architectures.

Different institutions in both academia and industry have already proposed and used

reference architectures in several application domains. There are examples of reference ar-

chitectures designed for software engineering tools (Nakagawa et al., 2011b, 2007; Oliveira

and Nakagawa, 2011), service-oriented systems (Arsanjani et al., 2007; OASIS, 2012;

Oliveira et al., 2010; Oliveira and Nakagawa, 2011; The Open Group, 2015; Zimmer-

mann et al., 2009), embedded systems (AUTOSAR, 2015; Batory et al., 1995; Eklund et

al., 2005; Eklund and Bosch, 2014; UniversAAL Project, 2015), robotic systems (Albus,

2002; Alvarez et al., 2001; Clark, 2005; Hayes-Roth et al., 1995; Heisey et al., 2013; Naka-
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gawa et al., 2014; Ortiz et al., 2005; Weyns and Holvoet, 2006), and so forth. However, no

reference architecture has focused on the development of robotic systems based on SOA.

According to Muller (2008), a reference architecture can be used to facilitate the

design of concrete architectures or as a standardization asset that supports interoperability

among systems or components of systems. As shown in Figure 2.2, the same reference

architecture can result in different concrete architectures, depending on the context and

involved stakeholders. Due to the diversity of application domains and interests, reference

architectures can be classified according to three dimensions, described as follows (Angelov

et al., 2012, 2009):

Figure 2.2: Role of stakeholders and contexts for reference and concrete architec-
tures (Angelov et al., 2008)

Context dimension: reference architectures can be designed in the context of a single

organization or multiple organizations that share a common characteristic, such as

geographical location and market domain. Different types of organizations (e.g.,

software organizations, user organizations, research centres, and standardization or-

ganizations) are usually involved in the establishment of these architectures. Be-

sides, such architectures can be designed before any existing systems (i.e., prelimi-

nary) or after accumulating the experience from the development of several systems

(i.e., classical);

Goal dimension: as stated by Muller (2008), reference architectures can be designed

with two main goals: standardization and facilitation. Reference architectures for
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standardization aim at improving interoperability among systems by promoting uni-

fied understanding of the domain at the architectural level. On the other hand,

facilitation reference architectures aim at providing guidelines for the development

of concrete architectures; and

Design dimension: reference architectures are represented by several types of elements,

including components, interfaces, protocols, algorithms, policies, and guidelines.

These elements can be described in different levels of detail (detailed, semi-detailed,

and aggregated), formalism (informal, semi-formal, and formal), and abstraction

(concrete, semi-concrete, and abstract).

The design and evaluation of reference architectures are often associated with their

type. Whereas reference architectures designed in the classical manner usually involve

software organizations, user organizations, and standardization organizations, preliminary

reference architectures are frequently established by research centers (Angelov et al., 2012;

Muller, 2008). Moreover, results and benefits are easier to estimate in classical reference

architectures than in the preliminary ones (Angelov et al., 2008).

Since reference architectures can be the basis for several software systems, studies have

focused on the design of this special type of architectures. Muller (2008) discussed a set

of recommendations to create and maintain reference architectures. Angelov et al. (2012)

described a framework for designing and analysing reference architectures. Galster and

Avgeriou (2011) proposed a procedure to design and evaluate empirically-based reference

architectures. In a more specific context, Dobrica and Niemela (2008) described an ap-

proach for designing reference architectures for embedded systems. Although these studies

have provided important guidelines for the development of reference architectures, they

either lack maturity or do not provide a detailed and general process for building such

architectures. In this perspective, Nakagawa et al. (2014) proposed ProSA-RA, a process

that systematizes the design, representation, and evaluation of reference architectures.

ProSA-RA, illustrated in Figure 2.3, is divided into four steps:

❼ Step RA-1: Information Source Investigation: The main sources of informa-

tion are investigated to help the understanding of the processes, activities, and tasks

that could be supported by software systems in the domain. Examples of relevant

sources of information include stakeholders (e.g., customers, users, and researchers),

existing systems, publications (e.g., articles, books, and technical reports), reference

models, other reference architectures, and ontologies and taxonomies of the domain;

❼ Step RA-2: Architectural Analysis: Information about the domain is obtained

and three artifacts are established. Firstly, the requirements of software systems of
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Architectural design of service-oriented robotic systems Lucas Bueno Ruas de Oliveira 2015



Chapter 2. Background

Step RA-1:
Information Source

Investigation

Step RA-2:
Architectural

Analysis

Domain
Information

Architectural
Requirements 
and Concepts

Publications

Step RA-3:
Architectural

Synthesis

Reference 
Architecture

RAModel + Domain Ontologies

Software systems
Information from people

Step RA-4:
Architectural
Evaluation

Evaluated
Reference 

Architecture

System
Analysts

Software
Architects

Domain
Experts

System
Analysts

Domain
Experts

Domain
Experts

Software
Architects

Domain
Experts

Information from people

Legend:
Step
Flow of information/artifact
Process flow
Involved people

Evaluation
Results

Figure 2.3: Outline structure of ProSA-RA (Nakagawa et al., 2014)

the domain are elicited using the selected sources. Based on the requirements of

the systems, a set of requirements for the reference architecture is then identified.

After that, the set of concepts that must be considered in the reference architecture

is established;

❼ Step RA-3: Architectural Synthesis: The architectural description of the ref-

erence architecture is created with the support of RAModel framework (Nakagawa

and Oquendo, 2012). Different views of the reference architecture are described ac-

cording to architectural styles and patterns probably identified in Step RA-1. These

styles and patterns are the basis on which concepts of the reference architecture are

organized. For instance, if SOA is used as an architectural style of the reference

architecture, concepts are provided as independent services and communicate via

standard interfaces and protocols; and

❼ Step RA-4: Architectural Evaluation: Finally, the reference architecture is

evaluated for the identification of possible problems of omission, ambiguity, incon-

sistency, and missing information. For this, inspection checklists such as FERA

(Framework for evaluation of reference architectures) can be applied (Santos et al.,

2013). Results of the evaluation are used to improve the architectural description

of reference architectures by performing new iterations of Step RA-3.

ProSA-RA is currently the most mature process available for establishing reference

architectures. It has already been applied for the development of several reference archi-

tectures, including for robotics (Nakagawa et al., 2014). Therefore, we adopted ProSA-RA

as the process for establishing the reference architecture for robotic systems based on SOA

described in Chapter 6.
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2.2.3 Architecture Description

Architecture description is considered the main artifact in expressing software architec-

tures, as it plays a key role in communication, quality assessment, evaluation, and evo-

lution (Clements et al., 2010; ISO/IEC/IEEE, 2011; Kruchten, 2009). Defining an ad-

equate architecture description is fundamental for the effective use of software architec-

tures during the life-cycle of software systems. From this perspective, the ISO/IEC/IEEE

42010:2011 standard (ISO/IEC/IEEE, 2011) specifies the manner in which architecture

descriptions of systems should be organized and expressed. It presents the elements of

the architecture description, addressing the creation, analysis, and sustenance of archi-

tectures of software intensive systems. The main elements for constructing architecture

descriptions addressed by ISO/IEC/IEEE 42010:2011 standard are described as follows:

Model kind: defines conventions for a given type of modelling by describing rules,

meta-models, templates, and operations for representing the relationships and infor-

mation in an architecture description. Examples of model kinds include data flow di-

agrams (Gane and Sarson, 1977), class diagrams (OMG, 2015e), statecharts (Harel,

1987), Petri nets (Peterson, 1977), and state transition models (Gill, 1962);

Architecture viewpoint: establishes the conventions for the construction, interpreta-

tion, and use of architecture views for framing specific system concerns. In other

words, a viewpoint formalizes the idea that there are different ways of looking at

the same system;

Architecture view: addresses one or more concerns of stakeholders of the system in

accordance with an architecture viewpoint. Architecture views are composed of one

or more architecture models;

Architecture model: uses modelling conventions appropriate for the concerns to be

addressed by one or more architecture views. These conventions are described by

the model kind that governs the architecture description;

Architecture rationale: records explanation, justification or reasoning about archi-

tecture decisions that have been made. The rationale for a decision can include the

basis for this decision, alternatives and trade-offs considered, as well as potential

consequences and citations to sources of additional information; and

Correspondence: defines a relation between architecture elements by expressing archi-

tecture relations of interest within an architecture description. Correspondences can

be governed by correspondence rules used to enforce relations within an architecture

description (or between architecture descriptions).
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More complex architectural assets, such as reference architectures and architectural

styles, can be described based on these concepts. For instance, the SOA architectural style

can be described by model kinds and a set of concerns. Besides, graphical and textual

languages used to describe architectures can also be expressed in terms of model kinds,

stakeholders, concerns, and correspondence rules (ISO/IEC/IEEE, 2011).

An Architecture Description Language (ADL) is any form of expression for use in

architecture descriptions that provides one or more model kinds as a means to frame

concerns for the audience of stakeholders (ISO/IEC/IEEE, 2011). This definition of ADL

proposed by the ISO/IEC/IEEE 42010:2011 standard is broader than traditional defi-

nitions in the literature, which describe ADLs as formal languages for representing the

architecture of software-intensive systems (Clements, 1996; Medvidovic and Taylor, 2000).

Therefore, ADL is a language of any level of formality (formal, semi-formal or informal)

that may support the creation, refinement, and validation of software architectures.

Formal ADLs are languages based on formal syntax and semantics, e.g., Wright (Allen,

1997), Rapide (Luckham, 1997), π-ADL (Oquendo, 2004a), π-AAL (Architecture Anal-

ysis Language) (Mateescu and Oquendo, 2006), and π-ARL (Architecture Refinement

Language) (Oquendo, 2004b). Among the formal ADLs available in the literature, it is

important to highlight the complementary languages π-ADL, π-AAL, and π-ARL, since

they support the description of the dynamic nature of software architectures. These three

languages form the basis of the π-ArchWare architecture-centric approach for develop-

ing software intensive systems, including service-based systems and embedded systems.

π-ADL is a well-founded language based on the higher-order typed π-calculus (Milner,

1999) that focuses on the description of software architectures from both structural and

behavioural viewpoints. Therefore, it can be used to express how these architectures

evolve over the time. π-AAL is a well-founded theoretical language based on the modal

µ-calculus (Kozen, 1983) that complements the former language by expressing correct-

ness properties. It also provides automated support for the verification of such properties

by using an analytical toolset based on theorem proving and model checking techniques.

π-ARL is an architecture refinement language based on rewriting logic that supports

property-preserving transformations and synthesis application through stepwise refine-

ment. In other words, π-ARL enables incremental refinements in software architectures

while keeping the consistency from higher abstract representations to more concrete ones.

Semi-formal ADLs are languages based on formal syntax and well-described seman-

tics, such as AADL (Architecture Analysis and Design Language) (Allen et al., 2002) and

UML (Unified Modeling Language) (OMG, 2015e). Semi-formal languages are often sup-

ported by graphical notations, which make them easier to be understood by non-technical

stakeholders. AADL is an example of a domain-specific ADL suitable for the analysis
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and specification of complex real-time embedded systems. UML is the industry-standard

language for specifying, visualizing, constructing, and documenting artifacts of software

architectures. It provides a large set of diagrams that enables the description of structural

and behavioural viewpoints of software architectures and has a large tooling support. As

UML is widely adopted in both academia and industry, it has also been tailored to several

specific areas. For instance, MARTE (Modeling and Analysis of Real-Time and Embedded

Systems) (OMG, 2015d) is a UML profile for the model-driven development of embedded

systems that adds notations for representing requirements related to schedulability, per-

formance, and time constraints. Similarly, SysML (Systems Modeling Language) (SysML

Partners, 2015) is a dialect of UML that supports specification, analysis, design, verifica-

tion, and validation of systems. Elements of SysML enables the description of hardware,

software, information, processes, personnel, and facilities involved in the development of a

broad range of systems. In the context of SOA, the SoaML (Service oriented architecture

Modeling Language) (OMG, 2015b) profile introduces elements for describing capabilities,

service interfaces, contracts, protocols, participants (e.g., service consumer and service

provider), as well as the relationship among these elements (for more information about

SOA, see Section 2.3).

Informal ADLs are box-and-lines models highly dependent on textual explanations for

adding meaning to their elements and relationships (Clements et al., 2010). Components

(or boxes) represent modules and subsystems that provide the functionalities of a software

system. Connectors (or lines) represent the communication among the components of this

system. Informal descriptions are useful for providing an overview of the software system,

but may lead to problems associated with ambiguity and misunderstandings. Therefore,

it should not be used as the unique ADL of an architecture description (Land, 2002).

The adoption of an ADL during the design of a software architecture involves a

trade-off between understandability and precision. Informal and semi-formal ADLs are

often easier to understand, which facilitates the communication among technical and

non-technical stakeholders. On the other hand, these languages may conceal inconsis-

tence among models that can be propagated to subsequent stages of software development

life-cycle (Mens et al., 2010). Formal ADLs increase precision and correctness at the cost

of lowering understandability, limiting the use of the architecture description to technical

stakeholders. Therefore, while informal and semi-formal languages are more suitable for

describing information systems (e.g., desktop systems, Web-based systems, service-based

systems), formal languages are frequently applied to the design of safe-critical systems

(e.g, embedded real-time systems).
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2.2.4 Software Architectures and Software Quality

Software systems have been increasingly used in several areas of society and the demand

for these systems has been growing substantially. The achievement of goals and objectives

regarding user satisfaction, business success, and human safety depends on high-quality

software systems (ISO/IEC, 2011). The development of high-quality software systems is

considered even more important in safe-critical domains, such as embedded systems and

robotics, where failures may cause non-recoverable financial losses and serious damage to

the human lives, environment and expensive equipment (Aguiar et al., 2010).

Throughout the history of software engineering, software quality improvement has

been a highly important goal (ISO/IEC, 1999). According to the ISO/IEC 9126:2001

standard (ISO/IEC, 2001), software quality is the totality of features and characteris-

tics of a software product affecting its ability to satisfy stated or implied needs. The

achievement of quality attributes must be considered during design time, implementa-

tion, and deployment (Bass et al., 2012). Therefore, the adequate design of a software

architecture is fundamental for the realization of several quality characteristics in a soft-

ware system (Bass et al., 2012). In addition, the quality characteristics should also be

evaluated at the architectural level.

In this perspective, software quality models have become well-accepted means of de-

scribing, managing, and predicting software quality. Over the years, a variety of quality

models have been proposed to support the development of general software systems. Mc-

Call’s Quality Model (McCall et al., 1977), considered the precursor of the actual models,

established three major perspectives for defining and identifying the quality of a software

product: product revision, product transition, and product operations. Each of these

perspectives describes a set of quality attributes that refers to the ability of a software

system to undergo changes, adapt to new environments, and adequately perform its func-

tionalities. Similarly, Boehm’s Quality Model (Boehm et al., 1976) qualitatively defined

software quality by a given set of attributes and metrics. Another important quality

model was proposed by the ISO/IEC 9126-1:2001 standard, which incorporated quality

goals that encompass a large number of quality attributes.

Nowadays, one of the most important quality models used in software development

is the ISO/IEC 25010:2011 standard (ISO/IEC, 2011), which cancelled and replaced its

predecessor ISO/IEC 9126-1:2001. The ISO/IEC 25010:2011 standard defines quality

characteristics relevant to all software systems. These characteristics are further subdi-

vided into subcharacteristics, which can be measured by one or more quality properties.

The model described by ISO/IEC 25010:2011 presents five characteristics associated with

quality in use and eight about product quality. Quality in use characteristics focus on the
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interactions of users and the product in a particular context of use. These characteristics

are described as follows (ISO/IEC, 2011):

Effectiveness: expresses accuracy and completeness with which users achieve specified

goals;

Efficiency: expresses the amount of resources spent in relation to the accuracy and

completeness with which users achieve goals. Examples of resources include time to

complete a given task, materials, or financial cost of usage;

Satisfaction: is associated with the degree to which user needs are satisfied when a

product or a system is executed in a specified context of use. Satisfaction expresses

the response of the user to the interaction with a product or system. This quality

characteristic encompasses usefulness, trust, pleasure, and comfort;

Freedom from risk: describes the degree to which a product or system mitigates the

potential risk to economic status, human life, health, or the environment. Freedom

from risk is defined by a function of the probability of occurrence of a threat and

the adverse consequences associated with it. This quality characteristic can be

subdivided into the following subcharacteristics: economic risk mitigation, health

and safety risk mitigation, and environmental risk mitigation; and

Context coverage: expresses the degree to which a product or system can be used with

effectiveness, efficiency, freedom from risk, and satisfaction in specified contexts of

use and in contexts beyond the ones initially explicitly identified. Context coverage

can be subdivided into context completeness and flexibility.

Product quality characteristics are related to static properties of software and dy-

namic properties of a computer system. The following product quality characteristics are

described in the quality model (ISO/IEC, 2011):

Functional suitability: expresses the degree to which a software product or system

provides functions that satisfy stated and implied needs when used under speci-

fied conditions. This characteristic encompasses functional completeness, functional

correctness, and functional appropriateness;

Performance efficiency: is related to the amount of resources used under stated con-

ditions. Resources include other software products, hardware configuration of the

system, materials, and so forth. The performance efficiency characteristic can be

subdivided into time behaviour, resource utilization, and capacity;
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Compatibility: describes the degree to which a system can exchange information with

other products, systems or components and perform its required functions, while

sharing the same hardware or software environment. Compatibility can be subdi-

vided into co-existence and interoperability;

Usability: expresses the degree to which a product can be used by specified users to

achieve goals with effectiveness, efficiency, and satisfaction in a given context of

use. This quality characteristic can be divided into appropriateness, recognizability,

learnability, operability, user error protection, user interface aesthetics, and accessi-

bility;

Reliability: describes the degree to which a system, product or component performs

specific functions under certain conditions for a given period of time. It can be

divided into the following subcharacteristics: maturity, availability, fault tolerance,

and recoverability;

Security: expresses the degree to which a product or system protects data so that per-

sons, other products or systems have an appropriate degree of data access to their

levels of authorization. Security encompasses confidentiality, integrity, non-repudiation,

accountability, and authenticity;

Maintainability: expresses the effectiveness and efficiency which a product or system

can be modified by maintainers that aim at performing corrections, improvements

or adaptations to meet changes in the environment or specifications. This qual-

ity characteristic involves modularity, reusability, analysability, modifiability, and

testability; and

Portability: describes the degree of effectiveness and efficiency with which a system or

product can be transferred from one hardware or software environment to another. It

encompasses the subcharacteristics of adaptability, installability, and replaceability.

Besides ISO/IEC 25010:2011, it is also possible to identify studies in the literature

focusing on proposing quality models and sets of quality characteristics for particular

system domains, such as embedded systems (Ahrens et al., 2013; Carvalho and Meira,

2009; Sherman, 2008). These studies add quality characteristics relevant to a particular

domain and adapt definitions of existing characteristics to better describe quality in this

domain. For instance, Sherman (2008) adds durability as a relevant quality characteristic

of embedded systems. The author also advocates that the portability of embedded systems

is rather related to the definition of modifiability. Other studies, such as (Guessi et al.,

2012) and (Oliveira et al., 2013a), identified the most relevant quality characteristics
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associated with embedded systems. These studies aimed at supporting prioritization of

main quality characteristics during the development of embedded systems.

Apart from software system characteristics, there are quality characteristics associated

with the software architecture itself that are important to achieve. Bass et al. (2012)

describe three quality characteristics specific to software architectures:

Conceptual integrity: is related to the underlying theme or vision that unifies the

software system at all levels. In other words, the software architecture of a system

should describe similar functionalities in similar ways;

Correctness and Completeness: is associated with the ability of the software archi-

tecture to enable all specified requirements and runtime resources constraints to be

met; and

Buildability: is related to the ability of a software architecture to enable a system

to be completed by the available team in a timely manner and at reasonable cost.

Buildability is strongly related to the decomposition of the software system into

modules and can be achieved by maximizing the parallelism that may occur during

the development of these modules.

The assessment of a software system in the early stages of development enables de-

signers to discover and anticipate future problems in the project. Therefore, evaluating

the quality of software architectures is fundamental for the design of high-quality software

systems. According to Clements et al. (2002), architecture evaluation is a cheap way to

avoid a software system project to fail. There are several methods in the literature that

can be used to evaluate the quality characteristics of software architectures (Bengtsson

et al., 2004; Galster et al., 2008; van Heesch et al., 2014; Kazman et al., 1994, 1998; SEI,

2015a; Tekinerdogan, 2004). Most of them are based on checklists, personal experience

or usage scenarios and their results are qualitative rather than quantitative (Clements et

al., 2002). Among the scenario-based evaluation methods, it is important to highlight

SAAM (Software Architecture Analysis Method) (Kazman et al., 1994) and ATAM (Ar-

chitecture Trade-off Analysis Method) (Kazman et al., 1998), which have been widely

adopted in software projects and used as a basis for other methods focused on particular

domains (Graaf et al., 2005; Kim et al., 2008; Tekinerdogan, 2004). Recently, methods

based on decisions, such as DCAR (Decision-Centric Architecture Reviews) (van Heesch

et al., 2014), have been proposed aiming at reducing time and cost in software architec-

ture evaluations. Differently from qualitative evaluation methods, only few studies are

available for the quantitative evaluation of software architectures (Galster et al., 2008).
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2.3 Service-Oriented Architecture

Service-Oriented Architecture (SOA) is an architectural style that promotes reusability,

flexibility, and scalability to software systems (Josuttis, 2007; Papazoglou et al., 2008).

It has been increasingly used in both academia and industry, especially in the design of

complex, distributed applications. SOA enables the integration of heterogeneous software

systems by providing interoperability through language-independent, standardized proto-

cols (Erl, 2005; Papazoglou and Heuvel, 2007). This architectural style also provides a

uniform way to offer, discover, interact, and use competencies of software systems for the

development of new applications. Therefore, complex software systems can be produc-

tively developed by assembling resources provided by other systems (Papazoglou et al.,

2008).

2.3.1 Initial Concepts

In SOA, software resources are provided by well-defined, self-contained modules called

services (Papazoglou and Heuvel, 2007). A service shares one or more functionalities that

are independent of the state and context of other services (Josuttis, 2007). Services can

be seen as black-boxes that hide implementation details and only communicate through

interfaces. In service-oriented systems, all functionalities are offered as services, includ-

ing business functionalities, system service functionalities, and business processes of any

abstraction level (Papazoglou and Heuvel, 2007). Interactions in SOA involve two main

concepts (Josuttis, 2007):

Service provider: a software system that implements a service (e.g., a business func-

tionality) to be discovered and reused by other systems; and

Service consumer: a software system that reuses functionalities offered by other ser-

vices, i.e., it consumes a provided service.

A service participant is a system that is a service provider, a service consumer, or

both (Josuttis, 2007). A participant that combines the roles of service provider and service

consumer is called service aggregator (Papazoglou and Heuvel, 2007). As illustrated in

Figure 2.4, a service aggregator can act as a provider of a given system while it also

requests services from other providers to produce more complete functionalities.

Services can be classified with respect to their purposes and roles played in an SOA (Jo-

suttis, 2007; Papazoglou, 2003). According to Josuttis (2007), participants of an SOA can

provide three main types of services:
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Figure 2.4: The role of a service aggregator (adapted from (Papazoglou and Heuvel,
2007))

Basic service: provides basic business functionalities that are meaningless if separated

into multiple services. Basic services are usually short-term running and concep-

tually stateless. These services are designed to provide backend data or business

logics to consumers of higher levels of abstraction. Services that provide data are

responsible for reading and writing information of a backend system. Services that

provide basic logic usually process input data and return corresponding results;

Composed service: describes services composed of basic services and/or other com-

posed services. Composed services operate at a higher level of abstraction than ba-

sic services, but they are also short-term running and conceptually stateless. These

services represent a short-running flow of activities inside a more complex business

process; and

Process service: represents long-term workflows or business processes that are usually

stateful, i.e., services that maintain their state over multiple interactions. Similarly

to composite services, process services are also assembled by the composition of

other services.

The interaction with a service is independent of its type, as the implementation details

are hidden from consumers and the communication only depends on the service interface.

For interacting with a service, it is first necessary to obtain its address (endpoint). In

direct interactions, the service consumer is aware of the provider’s endpoint at the de-

sign time and the communication is straightforward. In indirect interactions, providers

publish standardized descriptions of their services in public and centralized registries so

that they can be found and used by consumers (Papazoglou and Heuvel, 2007). There-

fore, interactions may be performed by dynamic binding and service-oriented systems can
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communicate with service providers discovered at runtime (Josuttis, 2007). Figure 2.5

shows the interaction among service provider, service consumer, and service registry.

Figure 2.5: Interaction among service provider, service consumer and service registry
(adapted from (Papazoglou and Heuvel, 2007))

Different participants can provide similar versions of a service in a service registry.

Although these versions meet the same functional requirements, they usually display dif-

ferent quality characteristics. In this case, service consumers can choose the service to

be invoked based on a set of software quality characteristics or specific Quality of Ser-

vice (QoS) attributes (Canfora et al., 2008). For instance, a service consumer may decide

to choose the fastest service, the most reliable, or one that presents a good compromise

between both characteristics. The ISO 8402:2002 standard (ISO, 2002) describes a com-

prehensive set of QoS attributes, including price, availability, and reputation. Besides

that, it is also possible to adopt additional quality attributes for specific domains. For ex-

ample, a laser sensor service available in an application of the robotics domain could have

measure precision and frequency as attributes. Using QoS attributes, service consumers

may specify constraints on values of service quality characteristics which could impact

on the choice (Canfora et al., 2005). Similarly, service providers can estimate ranges of

QoS attributes values as additional information in contracts with potential users. This

additional information is formally described by Service Level Agreement (SLA) (Canfora

et al., 2008; Dan et al., 2004).

Apart from service registries, another important infrastructure of SOA is the Enter-

prise Service Bus (ESB) (Erl, 2005; Papazoglou and Heuvel, 2007). This infrastructure is

the technical backbone that enables interoperability among services developed in different

languages and platforms. According to Josuttis (2007), adoption of an ESB is essential

for companies to fully achieve the advantages of SOA. An ESB acts as a middleware that

supports several communication patterns over different protocols and provides important
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functionalities for service-oriented systems, including data transformation, routing, mon-

itoring, security, reliability, and logging. Figure 2.6 illustrates how service consumers

and service providers indirectly communicate through an ESB. In such a communication,

all messages are received, mediated, and routed along this intermediary bus. Nowadays,

several open source and proprietary ESBs are available: ServiceMix (Apache, 2015), Ope-

nESB (LogCoy, 2015), MuleESB (Mule Soft, 2015), WSO2-ESB (WSO2, 2015), and JBoss

ESB (JBoss Community, 2015). Among them, MuleESB is one of the most commonly

used.

Figure 2.6: Service interaction through an ESB

2.3.2 Service Composition

Service composition is one of the most promising characteristics of SOA (Erl, 2005;

Kazhamiakin et al., 2006). According to Kazhamiakin et al. (2006), service composi-

tion enables speeding up software systems development, improving reuse, and easing the

interaction among complex services. Using composition, it is possible to design complex

service-oriented systems by assembling functionalities provided by existing services. These

functionalities are integrated and coordinated into workflows to model and execute new

business processes. Developers can coordinate services that are partners in a composition

according to two approaches (Josuttis, 2007; Peltz, 2003): orchestration and choreography.

These coordination approaches are detailed as follows:

Orchestration: A central coordinator controls the execution of all functionalities pro-

vided by service partners according to the specified requirements (Josuttis, 2007).

This coordinator centralizes all activities in the workflow, including the business

logic and the order in which the service partners are invoked. Thus, the partners
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are not aware of the roles they play in the service composition or of being part of a

higher level business process (Peltz, 2003). An orchestration is a service itself and

can be composed by other business process. Figure 2.7 illustrates a generic repre-

sentation of a service orchestration in which the central coordinator communicates

with its service partners by exchanging messages; and

Figure 2.7: Service orchestration (adapted from (Peltz, 2003))

Choreography: No central coordinator controls the execution of the business pro-

cess (Peltz, 2003). Differently from orchestration, all service partners are aware of

the business process, operations to execute, and messages to be exchanged. Each

service involved in the choreography knows when its operations must be executed

and who to interact with. However, nobody is aware of or understands the process

as a whole (Josuttis, 2007). Choreography is more collaborative and enables ser-

vice partners to describe their participation using protocols (Josuttis, 2007). As a

result, choreography has better scalability than orchestration, nonetheless are more

difficult to coordinate (Josuttis, 2007). Tracking the current state of a choreogra-

phy and discovering the cause for misbehaviours are often complex tasks (Josuttis,

2007). Figure 2.8 illustrates a generic representation of a service choreography.

2.3.3 Reference Models and Reference Architectures for SOA

As mentioned before, SOA increases flexibility, reusability, and productivity of the soft-

ware systems development. However, there is a challenging downside to the adoption of

this architectural style: service-oriented systems are usually difficult to be designed (Ar-
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Figure 2.8: Service choreography (adapted from (Peltz, 2003))

sanjani et al., 2007). Development of service-oriented systems may involve integration

of functionalities provided by several companies that follow different policies and gover-

nance. Therefore, architects must create software architectures using widely understood

vocabulary and best design practices (Arsanjani et al., 2007). In this context, reference

models and reference architectures are considered core assets to provide standardization,

better communication, and reduce design complexity. Several companies, research in-

stitutes, and standardization organizations have been working on the establishment of

reference architectures and reference models that support the development of systems

based on SOA (Arsanjani et al., 2007; Dillon et al., 2007; OASIS, 2006, 2012; Oliveira

and Nakagawa, 2011; The Open Group, 2015). Among such initiatives, it is important

to highlight the reference model (OASIS, 2006) and the reference architecture (OASIS,

2012) proposed by the OASIS consortium1, and the S3 (SOA Solution Stack) reference

architecture (Arsanjani et al., 2007) proposed by IBM, which have been widely adopted

in both academia and industry. Given its maturity, S3 has recently become part of an

SOA technical standard (The Open Group, 2015).

OASIS Reference Model for SOA (SOA-RM) provides a common language for un-

derstanding SOA. It identifies the main characteristics of SOA and defines many of the

important concepts necessary to comprehend what this architectural style is and what

makes it important (OASIS, 2006). For instance, it describes the definition and the re-

lationships among elements of a service, including service description, service interface,

contract, and policy. OASIS Reference Architecture Foundation (SOA-RAF), originally

defined in 2008, takes SOA-RM as its starting point to describe in an abstract manner

how SOA-based systems can be realized (OASIS, 2012). SOA-RAF is a technology neu-

tral reference architecture that follows the architecture description terminology defined by

ISO/IEC/IEEE 42010:2011 and is divided into three views: (i) Participation in an SOA

1https://www.oasis-open.org/
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Ecosystem focuses on the manner that participants are part of an SOA ecosystem; (ii) Re-

alization of an SOA Ecosystem addresses the requirements for constructing an SOA-based

system in an SOA ecosystem; and (iii) Ownership in an SOA Ecosystem describes what

is meant to own an SOA-based system.

Differently from SOA-RAF, the S3 reference architecture provides an architectural

definition of SOA based not only on concepts, but also on their implementation technolo-

gies. Figure 2.9 illustrates the nine layers of S3, which comprehend logical and physical

aspects. The logical aspects include architectural building blocks, design decisions, op-

tions, and key performance indicators. The physical aspect encompasses the realization

of the logical aspects using technology and products. Descriptions of the S3 layers are

presented as follows (Arsanjani et al., 2007):

Figure 2.9: S3 reference architecture (adapted from (Arsanjani et al., 2007))

Operational systems: encompasses all application assets running in an operating en-

vironment that support SOA activities. Assets available in this layer can be custom,

semi-custom or off-the-shelf;

Service components: contains software components that realize services and the op-

erations these services provide. Service components reflect both functionality and

quality characteristics of the service they represent;

Services: encompass all services defined within the SOA. As previously mentioned,

services can be basic (i.e., simple) or composed;

Business process: represents business process services (i.e., process services) developed

by the assembly of basic and composed services exposed in the service layer;
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Consumer: represents the interaction of the service-oriented system with users or other

services outside the application boundaries;

Integration: integrates the primary layers 2 through 4, mediating the requests of service

consumers to the correct service provider. Capabilities provided in this layer include

but are not limited to those found in an ESB;

Quality of service: is responsible for signing the noncompliance with service qualities

in each SOA layer. It enables SOA to capture, monitor, log, and indicate noncom-

pliance with quality requirements associated with the service qualities;

Information architecture: ensures that an organization includes the main considera-

tions affecting data and information architectures; and

Governance and policies: encompasses all aspects of the management of the appli-

cation life-cycle. It provides guidance and policies for managing SLAs regarding

capacity, performance, security, and monitoring.

The instantiation of the S3 layers is aligned with the SOMA (Service-Oriented Mod-

eling and Architecture) (Arsanjani et al., 2008) development method, which supports

analysis, design, implementation, and deployment of service-oriented systems. SOMA is

considered a mature method, since it has been successfully adopted in several projects in

the industry.

As SOA-RAF and S3 are general and described in a high-level of abstraction, it is also

possible to find reference architectures focused on specific domains (Costagliola et al.,

2006; Murakami et al., 2007; Oliveira and Nakagawa, 2011; Peristeras et al., 2009). These

reference architectures adds to SOA concepts the knowledge on how to design software

systems in the application domain, such as on-line education (e-learning) (Costagliola

et al., 2006) and software testing (Oliveira and Nakagawa, 2011). Although reference

architectures can be considered the blueprint of software architecture design, no reference

architecture has been defined to support the development of SORS.

2.3.4 Implementation Technologies

Web service is the most adopted way of realizing SOA (Erl, 2005). It enables applica-

tions developed in different programming languages and platforms to communicate over

the Internet by means of standardized Web protocols. Web services are loosely-coupled

software applications offered as a set of functionalities that can be composed to create

complex business processes (Josuttis, 2007). WS-* standards and RESTful are currently

the two main implementations of Web services (Pautasso et al., 2008).
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WS-* standards encompass a set of languages and protocols based on the general

purpose markup language XML (Extensible Markup Language) (W3C, 2015a). These

standards are divided into two generations (Erl, 2005). The first generation forms the

basis of the development of Web services and encompasses the following standards:

SOAP2 (W3C, 2015b): is a lightweight protocol intended for the exchange of struc-

tured information in decentralized, distributed environments. SOAP enables Web

services to execute RPC (Remote Procedure Call) communication over the Inter-

net through several transport protocols, e.g., HTTP (Hypertext Transfer Protocol),

HTTPS (HTTP Secure), and SMTP (Simple Mail Transfer Protocol) (Papazoglou

and Heuvel, 2007);

Web Service Description Language (WSDL) (W3C, 2015c): is the language used

to describe the interface of Web services. It encompasses all information necessary

for the interaction with a service, including data types, port types, endpoint, and

operations. Since operations and messages in WSDL are described abstractly, it

must be used in conjunction with concrete protocols like SOAP; and

Universal, Discovery, Description and Integration (UDDI) (OASIS, 2015b): is

the protocol that supports the description and discovery of Web services in service

registries. It is designed to be interrogated by SOAP messages and provide access

to WSDL documents.

The second generation standards were developed to complement the infrastructure

provided by SOAP, WSDL, and UDDI to support the realization of SOA concepts, such

as composition of business processes and specification of SLAs (Erl, 2007). Nowadays,

different second generation standards are available for the development of Web services3.

The two languages described bellow are examples of standards that implement the con-

cepts of service orchestration and service choreography:

Web Services Business Process Execution Language (WS-BPEL) (OASIS, 2015a):

is a language for describing and executing service orchestrations. Its elements en-

able invoking service partners, process responses, and deal with variables and control

structures (Josuttis, 2007). An orchestration described in WS-BPEL is itself a ser-

vice and, therefore, uses a WSDL document that describes its service interface; and

2Initially, SOAP was acronym for Simple Object Access Protocol. However, this definition is no longer
used after Version 1.2.

3http://en.wikipedia.org/wiki/List_of_web_service_specifications, last accessed in January
13th, 2015.

29

Architectural design of service-oriented robotic systems Lucas Bueno Ruas de Oliveira 2015

http://en.wikipedia.org/wiki/List_of_web_service_specifications


2.3. Service-Oriented Architecture

Web Services Choreography Description Language (WS-CDL) (W3C, 2015d):

is a language for the specification of business processes by choreography. It describes

peer-to-peer collaborations between service partners by establishing a common view

of their observable behaviour. The description of choreography in WS-CDL is a

contract with multiple service partners that models the composition from a global

point of view.

RESTful implementations are simpler alternatives to WS-* standards based on the

Representational State Transfer (REST) architectural style (Fielding, 2000). Such im-

plementations enable developers to create lightweight Web services that are scalable and

easier to maintain (Guinard and Trifa, 2009; Pautasso et al., 2008). RESTful Web ser-

vices are simple because they leverage well-known and widely adopted standards (HTTP,

URI4 and XML) and their necessary infrastructure has already become pervasive (Pau-

tasso et al., 2008). Most programming languages and operating systems support clients

and servers for HTTP. Effort to create a service consumer using RESTful Web services

is reduced as developers can test it from an ordinary Web browser, without having to

develop custom client-side software (Pautasso et al., 2008).

The REST architectural style is based on the concept of resource. Resources are

representations of Web pages, images, files, and so forth. RESTful Web services expose

resources based on four principles (Pautasso et al., 2008):

Resource identification through URI: establishes that resources must be identified

by URIs to enable global addressing and service discovery. Resource URIs represent

interaction targets of Web service consumers;

Uniform interface: establishes that resources of RESTful Web services should be

manipulated by a fixed set of four operations: PUT, GET, POST, and DELETE.

PUT creates a new resource that can be deleted using DELETE; GET retrieves the

state of a resource in a given representation; and POST transfers new states onto a

resource;

Self-descriptive messages: defines that resources must be decoupled from their rep-

resentations. Therefore, the same resource can be accessed in different formats, e.g.,

HTML, JSON5, and YAML6; and

Stateful interactions through hyperlinks: establishes that all interactions with

resources must be self-contained and based on the concept of state transfer. In

4Uniform Resource Identifier (URI): http://www.w3.org/Addressing/. Last accessed in January 14,
2015.

5http://www.json.org/, last accessed in January 14th, 2015
6http://www.yaml.org/, last accessed in January 14th, 2015

30

Architectural design of service-oriented robotic systems Lucas Bueno Ruas de Oliveira 2015

http://www.w3.org/Addressing/
http://www.json.org/
http://www.yaml.org/


Chapter 2. Background

stateful interactions, states can be embedded in response messages to inform valid

future states of a resource.

WS-* standards and RESTful have similar purposes of use, but they display different

conceptual and technological characteristics. According to Pautasso et al. (2008), WS-*

Web services are more suitable for large-scale systems that involve complex business pro-

cesses and constraints of security and reliability. On the other hand, RESTful Web services

are particularly indicated to smaller ad hoc integration scenarios, where they significantly

improve simplicity, performance, and loose integration of service-oriented systems. De-

spite both WS-* standards and RESTful were initially designed for Web-based systems,

they have been adapted and used for the development of several embedded systems and

robotic systems (Eisenhauer et al., 2009; Frenken et al., 2008; Guinard et al., 2010; Zeeb

et al., 2007). Besides that, it is worth noting that Web services are not the only way

to realize SOA. For instance, there are languages and protocols specially designed for

developing service-oriented robotic systems (Ambroszkiewicz et al., 2010; Kononchuk et

al., 2011).

2.4 Robotic Systems

Robotics has played an increasingly important role in several sectors of the society. Robots

are no longer exclusively used to perform fast, repetitive tasks in controlled environments

of factories. The actual generation of robots is being produced to operate along with

humans and support daily activities inside hospitals (Pineau et al., 2003; Takahashi et

al., 2010), houses (iRobots, 2015a,b), and on the streets (Fernandes et al., 2014; Thrun et

al., 2006). According to Murphy (2000), robots can cooperate or even replace humans in

several dangerous, tedious, and error-prone tasks. Their potential for improving quality of

life and productivity has motivated both academia and industry to invest in robotics. For

instance, in 2014, the European Commission announced a new partnership for a US$3.9

billion investment in robotics for the next six years7.

2.4.1 Short History of Robots and Examples

The term robot derives from the Czech word“Robota”, which means“servitude”or“forced

labor”. The word robotics, used to describe the study of robots, was coined in 1947 by

science fiction writer Isaac Asimov in his book “I, Robot”. The first modern robots

emerged in the 1940s as manipulator arms and Automated Guided Vehicles (AGVs) for

the industry (Dudek and Jenkin, 2010). Manipulator arms are fixed robots that move

7http://www.eetimes.com/author.asp?doc_id=1322633, last accessed in January 16th, 2015.
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materials, tools, and other objects by arranging the position and angles of a set of joints.

AGV is a mobile robot that follows markers or wires on the floor to transport materials

from one place to another. These types of industrial robots usually have limited autonomy

and only execute predefined routines. Most of them operate in controlled environments to

avoid damage to humans. Even the AGVs that are able to detect objects blocking their

path depend on humans for removing obstacles.

Over the past decades, several improvements in hardware devices and software algo-

rithms have enabled researchers to develop robots of higher levels of autonomy. Hardware

devices have become more precise, powerful, and cheaper. As a result, developers have

created robotic systems of improved decision-making capacity and artificial intelligence.

The interest in robots evolved from simply manufacturing to a broad range of application

domains. Nowadays, robots support daily tasks, as well as complex, dangerous activ-

ities. For instance, iRobot Roomba (iRobots, 2015a), shown in Figure 2.10 (a), is an

autonomous robot for vacuum cleaning. Husqvarna Automower (Husqvarna, 2015), il-

lustrated in Figure 2.10 (b), is an example of robot for lawn mowing. Scooba (iRobots,

2015b) is a domestic robot designed by iRobot for floor scrubbing (Figure 2.10 (c)). Mars

Pathfinder (Bajracharya et al., 2008) is a complex robot designed by the National Aero-

nautics and Space Administration (NASA) for exploring Mars (Figure 2.10 (d)). Big-

Dog (Boston Dynamics, 2015), illustrated in Figure 2.10 (e), is as a four-legged robot

designed to walk, run, climb, and transport heavy loads in rough terrains.

Figure 2.10: Examples of simple and complex robots: (a) Roomba, (b) Husqvarna
Automower, (c) Scooba, (d) Mars Pathfinder, and (e) BigDog

Mobile robots have as main characteristic the ability of locomoting along the en-

vironment. This locomotion may be done in three levels of autonomy (teleoperated,
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semi-autonomous, and autonomous) and using different devices, such as wheels, legs, and

helix. According to Romero et al. (2014), the most common types of mobile robots in the

literature are:

Grounded: robots designed to operate in domestic environments, industries, and also

rough terrains. They usually locomote using wheels, tracks or legs. Figure 2.11 (a)

shows an example of autonomous grounded robot named Stanley (Thrun et al.,

2006), which won the 2005 DARPA Grand Challenge after navigating 240km of

desert in 6h54 (Thrun et al., 2005);

Aquatic: robots developed to operate on or under the water in rivers, oceans, and so

forth. Underwater robots are commonly used in missions involving hard-to-reach

places or risk to humans, e.g., in deepwater. Figure 2.11 (b) shows the autonomous

underwater robot named Odyssey IV (Desset et al., 2005), which can operate in

depths of up to six thousand meters; and

Aerial: robots able to autonomously fly according to pre-programmed flight plans

or remotely controlled by teleoperation. Aerial robots, also known as Unmanned

Aerial Vehicles (UAVs) or Drones, are frequently used in applications for agricul-

ture, surveillance, and photometry. Figure 2.11 (c) shows an example of an aerial

robot produced in Brazil called Tiriba (AGX, 2015).

The design of a robot is strongly related to its type and characteristics of the environ-

ment it will operate in. For instance, the design of a grounded mobile robot for a static

indoor environment (e.g., industrial shop floor) may differ from another for navigating in

a highly dynamic outdoor environment (e.g., an autonomous car on the streets). Despite

differences may exist, all robots share the same general structure.

Figure 2.11: Examples of grounded, aquatic, and aerial robots: (a) Stanley, (b) Odyssey
IV and (c) Tiriba.
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2.4.2 General Structure of a Robot

The development of a robot is a multidisciplinary task and involves competencies from

mechanical engineering, electrical engineering, automation engineering, computer engi-

neering, and computer science (Romero et al., 2014). Mechanical engineering is the area

responsible for developing the model and the physical structure of the robot. Electrical,

automation, and computer engineerings usually focus on the development of electronic

components (i.e., hardware devices). Computer science deals with the development of

computer software systems for the control of the robot and its hardware devices to per-

form robotic activities (Romero et al., 2014). The software system used for controlling

robots is known as robotic system.

The general structure of a robot can be defined by a relationship among perception,

reasoning, decision making, and action (Iyengar and Elfes, 1991; Romero et al., 2014).

Figure 2.12 illustrates the perception-decision-action loop, in which the robot senses its

environment, decides on actions to perform, and executes them. Actions performed by a

robot affect the environment surrounding it and, therefore, modify its perceptions for the

next instant of time. Hardware devices used for data acquisition from the environment

are called sensors. They enable the robot to obtain information about temperature of the

environment, distance from other objects, possible collisions, and so forth. Actuators are

hardware devices for interacting with the environment that enable robots to locomote,

manipulate objects, and so forth.

Figure 2.12: Perception-decision-action loop (adapted from (Wolf et al., 2009))

Several types of sensors and actuators are available for robotics. Although some may

be used for the same purpose, they display different characteristics and limitations (Dudek

and Jenkin, 2010; Romero et al., 2014). For instance, cameras and laser sensors can detect
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objects in the environment. While cameras may provide better range and less interference

during daylight, laser sensors are more accurate for detecting objects in dark conditions.

Different studies have described these characteristics and properties of hardware devices

for robotics (Bekey, 2005; Romero et al., 2014; Siegwart and Nourbakhsh, 2004). Ac-

cording to Dudek and Jenkin (2010), the decision about the most suitable sensors and

actuators is one of the most important activities during the development of a robot. Ta-

ble 2.1 shows examples of sensors commonly used in robotics and Table 2.2 describes

actuators for locomotion and object manipulation.

Table 2.1: Sensors available for robots (based on (Dudek and Jenkin, 2010))

Sensor Purpose of use Example

Position and
orientation

Estimate the position and ori-
entation of the robot

Global Positioning System (GPS), compass,
inclinometer, and beacons

Contact Detect the contact of the
robot with objects

Bumper, whisker, and magnetic barrier

Obstacle detec-
tion

Estimate the distance be-
tween the robot and objects

infrared (IR), sonar, laser, and stereo cam-
eras

Distance and
velocity

Estimate the relative position
and displacement of the robot

Odometer and angular potentiometer

Estimate the displacement of
the robot

Gyroscope and accelerometer

Communication Send and receive data via sig-
nals

Optical sensors and radio-frequency (RF)
sensors

Other Capacitive sensors, inductive sensors, and pressure sensor

Table 2.2: Actuators available for robots (based on (Dudek and Jenkin, 2010))

Atuador Purpose of use Example

Fixed basis Manipulate objects Industrial robotic arm

Mobile: tracks Locomote on rough terrains Military robots

Joint Biped locomotion Humanoid robots
Quadruped locomotion BigDog

Hexapod locomotion Spider robots

Mobile: helix and
propellant

UAV with helix Planes and Helicopters
Water locomotion Autonomous boats
Underwater locomotion Autonomous underwater ve-

hicle

Other Manipulation with sensory feedback Tactile glove, force feedback
gripper

Trigger actuator Soccer robots

Robotic control is the software module in a robotic system responsible for managing

hardware devices and providing intelligent behaviour for the robot (Dudek and Jenkin,

2010). It processes data obtained from sensors and transforms them into information for
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supporting decision making. The robotic control also defines and executes action plans for

the robot by sending commands to its actuators. Control architectures are the assets that

represent the overall structure and functionalities of the robotic control. Definitions in

the literature describe the control architecture of robotic systems as software architectures

that represent components and the relationship among these components (Arkin, 1998;

Mataric, 1992). However, the purpose of control architectures resembles more architec-

tural styles (see Section 2.2.1), as they impose constraints on how software components of

a robotic system interact. A control architecture is an abstract structure that describes

a family of robotic systems of similar characteristics. According to Murphy (2000) and

Romero et al. (2014), control architectures can be divided into:

Deliberative: robots perform activities based on predefined plans and using their inter-

nal model of the environment. All actions performed are defined prior their execution

and possible changes in the environment are not taken into account. Deliberative

architectures enable the robotic system to establish sets of actions that lead to more

efficient solutions. However, these solutions are strongly dependent upon the cor-

rect representations of the environment. Therefore, this type of architecture is more

suitable to static, controlled environments;

Reactive: actions are performed according to the state of the robot and the environ-

ment in each instant of time. The robotic system creates local models based on

data obtained from sensors. Differently from deliberative architectures, no model

describes the whole environment. Reactive architectures are usually simple and en-

able the robotic system to provide rapid reactions in highly dynamic environments.

However, this type of architecture can produce only primitive behaviours and is

more suitable for elementary actions, e.g., as avoidance of obstacles; and

Hybrid: they combine the main characteristics of deliberative and reactive architec-

tures to produce more robust behaviours. The robotic system uses its global repre-

sentation of the environment to create an initial plan before performing an activity.

Along the execution, it reacts to changes in the environment updating its initial plan

based on information from sensors. Therefore, it is possible, for instance, to plan

and execute an optimal path avoiding unexpected obstacles along the navigation.

Several complex robots have been designed by using hybrid control architectures,

including the Stanley autonomous car presented in Section 2.4.1. Other examples

of hybrid control architectures are described in (Romero et al., 2014; Siegwart and

Nourbakhsh, 2004).

Regardless of the type of control architecture, the creation of robotic systems usually

involves the development of the following functionalities:
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Localization: consists in estimating the position of a robot in the environment through

data from sensors. As any measuring instrument, sensors are imprecise and may re-

turn values slightly different from real ones (Thrun et al., 2005). Localization strate-

gies use the available representation of the environment and algorithms that deal

with uncertain values for reducing measurement errors. These algorithms are usu-

ally based on statistic methods, e.g., Kalman Filter (Leonard and Durrant-Whyte,

1991a), Monte-Carlo (Fox et al., 1999), and Markov chains (Fox et al., 1998);

Mapping: is the task of creating representations of the environment based on the

estimated position of the robot and data from its sensors (Romero et al., 2014).

Global maps are essential for the identification of efficient paths between an initial

position and a goal position in the environment. Local maps help to avoid collisions

with objects, humans or other robots along the path. Mapping may be a challenging

task, since it is based on the current position of the robot, which is estimated by a

representation of the environment that still under construction (Thrun et al., 2005).

In this case, both tasks must be performed at the same time using techniques of

Simultaneous Localization and Mapping (SLAM) (Leonard and Durrant-Whyte,

1991b); and

Navigation: consists in controlling the robot’s speed and orientation for its moving

from an initial position to a goal position (Thrun et al., 2005). It usually aggregates

functionalities from control theory, path planning, and collision avoidance for assur-

ing safety and reducing the risk of damage to the environment, humans or the robot

itself (Romero et al., 2014). Depending on the control architecture, navigation can

be based on global maps or purely reactive and guided by sensors.

Besides localization, mapping, and navigation, robotic systems may also encompass

other tasks, depending on the intended use of the robot. For instance, robots that interact

with humans require functionalities associated with gesture recognition or for interpreting

voice commands. The taxonomy proposed in the context of this thesis, presented in

Chapter 3, describes a broad set of tasks for robotic systems.

2.4.3 Development Environments for Robotic Systems

The development of robotic systems is a complex activity that involves creation and inte-

gration of complex algorithms, as well as the control of different hardware devices. In this

perspective, development environments are tools created for supporting implementation,

simulation, and testing of such systems. The adoption of development environments can

provide several benefits: (i) cost reduction, as simulation can be used for the evaluation
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of a robotic system in different hardware configurations, prior buying any physical com-

ponent; (ii) productivity, since simulation enables evaluation of hours of execution of a

robotic system in only few minutes; (iii) safety, as simulation avoids damages to the robot

or the environment caused by misbehaviours that may occur in early stages of develop-

ment; and (iv) reliability, as the behaviour of the robot can be exhaustively tested in

virtual environments for the reduction of possible faults.

Simulation environments are important modules of development tools that enable the

creation of realistic models of the world. These models represent both the static and

the dynamic of the environment, including forces as friction and gravity. In simulation

environments, error models can be described for different sensors and actuators. The most

used environments for the development and simulation of robotic systems are presented

as follows:

Player, Stage, and Gazebo (Gerkey et al., 2003): Player is a development environment

based on the client-server architectural style that supports over a dozen robotic

platforms, as well as several types of sensors and actuators. It enables a software

system to be written in different programming languages (e.g., C/C++, Java, and

Python) and run on any computer with a network connection to the robot. Using

Player, robotic systems are implemented as clients that manage robots provided

through server interfaces. Therefore, switching from simulation to the real world

is only a matter of changing the address of the virtual server to that of the actual

robot. Player can be used in conjunction with two simulation environments: Stage

and Gazebo. Stage is a two-dimensional bitmapped environment for the simulation

of multiple robots. Gazebo is a multi-robot simulator for outdoor environments that

provides both realistic sensor feedback and physically plausible interactions among

objects;

Orca (Brooks et al., 2005): is an open source development environment for the creation of

component-based robotic systems. It aims at improving modularity and reusability

of robotic systems by providing means for the implementation of functionalities as

self-contained components that interact via standard interfaces. Using ORCA, com-

plex robotic systems can be developed by the assembly of reusable building-blocks

available in public repositories;

Microsoft Robotic Developer Studio (MRDS) (Jackson, 2007): is a Windows-based

environment for the development of service-oriented robotic systems. It uses a

lightweight REST-style based on .NET and supports programming languages like

Java and C#. It encompasses four main modules: (i) Concurrency and Coordina-

tion Runtime (CCR); (ii) Decentralized Software Services (DSS); (iii) Visual Pro-
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gramming Language (VPL); and (iv) Visual Simulation Environment (VSE). CCR

enables the implementation of programs for handling asynchronous input from mul-

tiple sensors and output for actuators. DSS enables to access or set the state of a

robotic system using a Web browser. VPL is a visual language for the creation of

robotics systems by means of composing and connecting blocks of command repre-

senting services. VSE is a simulation environment that provides real-world physics

and models for the representation of several robotic platforms; and

Robotic Operation System (ROS) (Straszheim et al., 2011): is an open source,

meta-operating system that can be used for the development of SORS. Similarly

to MRDS, it provides tools and libraries for the building, writing, and running of

robotics services across multiple computers. Robotic systems implemented in ROS

can communicate via different styles, including synchronous RPC and asynchronous

data streaming. ROS also supports integration to multiple simulation environments,

e.g., Stage and Gazebo. The ROS development environment is supported by dozens

of companies and research institutes. The ROS repository, named ROS Wiki8,

currently lists over a hundred of services provided by the community for the devel-

opment of robotic systems. However, it does not provide a mechanism that enables

efficient description, classification, and discovery of these services.

Development environments have evolved over the years driven by the need of the

robotics community for more reusable, scalable, and flexible robotic systems. This evo-

lution is due mainly to the adoption of software architecture practices that potentially

improve these quality characteristics, as the use of components and SOA.

2.4.4 Architectural Design of Robotic Systems

Robotic systems have become considerably large, complex, and integrated to other de-

vices of the environment. Meanwhile, the increasing adoption of robots has demanded

robotic systems of higher quality and better productivity. As a consequence, both industry

and academia have focused their attention on the architectural design of these systems.

Studies in the literature have described several architectural assets for guiding the devel-

opment of robotic system, including reference models (Pires et al., 2011; Rodrigues et al.,

2011), reference architectures (Albus, 2002; Clark, 2005; Hayes-Roth et al., 1995; Ortiz

et al., 2005; Peters et al., 2000; Weyns and Holvoet, 2006), and design patterns (Fryer

et al., 1997). These assets are commonly used with the support of different development

approaches, as SPLs (Braga et al., 2011, 2012a,b; BRICS, 2015), Model-Driven Engineer-

8http://www.ros.org/browse/list.php, last accessed in January 21st, 2015.
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ing (MDE) (Iborra et al., 2009; Schlegel et al., 2010), and Component-Based Software

Engineering (CBSE) (BRICS, 2015; Iborra et al., 2009).

Regarding architectural assets, Graves and Czarnecki (2000) proposed a set of de-

sign patterns for the development of behaviour-based robotic systems. Pires et al. (2011)

and Rodrigues et al. (2011) designed a reference model for describing missions for aerial

robots (UAVs). Hayes-Roth et al. (1995) defined a reference architecture for supporting

the design of intelligent, adaptive robotic systems. Focusing on scalability, Peters et al.

(2000) described a reference architecture for indoor service robots9. Ortiz et al. (2005)

proposed a component-based reference architecture for teleoperated service robots. Sim-

ilarly, Albus (2002) also established a reference architecture for teleoperation, but focus-

ing on the control of the robot by different types of devices. Clark (2005) designed a

message-based reference architecture that aims at improving interoperability among sub-

systems and hardware devices. Finally, Weyns and Holvoet (2006) described a reference

architecture for the development of multi-robotic systems.

With respect to development approaches, Fryer et al. (1997) investigated the use

of object-orientation to improve modularity of robotic systems. Brugali and Scandurra

(2009) discussed the use of CBSE for the design of robotic systems as a set of reusable

architectural building blocks. In parallel, studies have associated MDE and SPL with

CBSE for the development of robotic systems (Braga et al., 2012b; BRICS, 2015; Iborra

et al., 2009). For instance, Iborra et al. (2009) used MDE and CBSE with reference

architectures in a process to design robotic systems. Schlegel et al. (2010) described a

development process based on MDE for the creation of component-based robotic systems.

The BRICS project (BRICS, 2015) used CBSE and SPL to reduce the development efforts

of engineering robotic systems. Braga et al. (2012a) and Braga et al. (2012b) used CBSE

and SPL as a basis for the incorporation of certification activities into the design of aerial

robots.

Similarly to systems for other domains, robotics has shown an increasing evolution

from procedural paradigm and object-orientation to more modular and reusable forms

of design. For instance, the architectural design of component-based robotic systems

has been widely investigated in the recent literature. However, despite dedicated tooling

already exists, the architectural design of robotic systems using SOA remains a new,

promising topic of research.

9Notice that the term “service robot” is not associated with the use of SOA as architectural style, but
with a particular type of robot that assists human beings in performing tasks that are usually dirty, dull,
distant, dangerous or repetitive.
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2.4.5 Service-Oriented Robotic Systems

SOA has raised considerable attention as an architectural style for the development of

more flexible, integrable, and reusable robotic systems. Several researchers have created

robotic systems based on SOA over the past years. This section describes the results of

a systematic literature review conducted in the context of this thesis, and later updated,

to characterize the state-of-the-art of the development of SORS. A systematic literature

review is a rigorous, well-established approach to identify, evaluate, and interpret all avail-

able evidences regarding to a particular area or topic of interest (Kitchenham, 2004). Re-

sults of the first iteration of our systematic review are summarized in the paper (Oliveira

et al., 2013b). Further details on the planning and conduction are available in a techni-

cal report (Oliveira et al., 2012). This systematic review was updated in January 2015

according to the same planning.

Table 2.3 shows the 57 included primary studies10 and their year of publication. Addi-

tional information on the primary studies is also available in Appendix A. Column“Type”

indicates if the primary study is a Technical Report (TR), Journal Article (JA) or Con-

ference Paper (CP). Column “Criteria” points out the criteria applied to the inclusion of

each study. Three Inclusion Criteria (IC) were used for the selection of primary studies in

our systematic review: (IC1) the study proposes or reports on the design and development

of an SORS; (IC2) the study proposes or reports on a technology for the development of

SORS; and (IC3) the study presents a software engineering contribution (e.g., process,

method, reference architecture, and ADL) for the design or implementation of SORS.

Table 2.3: Included primary studies

ID Author Year Type Criteria

S1 Lee et al. 2004 JA IC1

S2 Ha et al. 2005 CP IC1

S3 Kim et al. 2005 CP IC1

S4 Narita et al. 2005 CP IC2

S5 Ahn et al. 2006 CP IC1, IC2

S6 Berná-Mart́ınez et al. 2006 CP IC1

S7 Amoretti et al. 2007 CP IC1

S8 Coelho et al. 2007 CP IC1

S9 Rahman et al. 2007 JA IC1, IC2

S10 Tikanmaki and Roning 2007 CP IC2

S11 Walter et al. 2007 CP IC1

S12 Wu et al. 2007 JA IC1

10The term “primary study” refers to any individual evidence that contributes to a systematic review.
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Table 2.3: Included primary studies – continued

ID Author Year Type Criteria

S13 Yeom 2007 CP IC1

S14 Awaad et al. 2008 CP IC2

S15 Chen et al. 2008 CP IC1

S16 Chen and Bai 2008 CP IC1

S17 Hongxing et al. 2008 CP IC1

S18 Lee et al. 2008 CP IC1

S19 Majedi et al. 2008 CP IC3

S20 Trifa et al. 2008 CP IC1

S21 Tsai et al. 2008 JA IC2

S22 Barbosa et al. 2009 CP IC1

S23 Chen et al. 2009 CP IC1

S24 Mokarizadeh et al. 2009 CP IC1

S25 Pruter et al. 2009 CP IC1

S26 Veiga et al. 2009 JA IC1

S27 Ambroszkiewicz et al. 2010 JA IC1, IC2

S28 Arumugam et al. 2010 CP IC2

S29 Berná-Mart́ınez and Maciá-Pérez 2010 CP IC3

S30 Cepeda et al. 2010 CP IC2

S31 Cesetti et al. 2010 CP IC1

S32 Chen et al. 2010 CP IC1

S33 Edwards et al. 2010 CP IC1

S34 Pinto et al. 2010 CP IC1

S35 Scotti et al. 2010 CP IC1

S36 Blake et al. 2011 JA IC1, IC2

S37 Kononchuk et al. 2011 CP IC2

S38 Lindemuth et al. 2011 JA IC1

S39 Waibel et al. 2011 JA IC1

S40 Cepeda et al. 2011 CP IC3

S41 Quintas et al. 2011 CP IC1

S42 Brugali et al. 2012 CP IC2

S43 Doriya et al. 2012 CP IC1

S44 Doriya et al. 2012 CP IC1

S45 Muhammad et al. 2012 CP IC3

S46 Raffaeli et al. 2012 JA IC1

S47 Zhou et al. 2012 CP IC1

S48 Ebenhofer et al. 2013 CP IC1

S49 Yang and Lee 2013 JA IC2

S50 Brugali et al. 2014 CP IC2
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Table 2.3: Included primary studies – continued

ID Author Year Type Criteria

S51 Cai et al. 2014 JA IC1

S52 Fluckiger and Utz 2014 JA IC3

S53 Insaurralde and Petillot 2014 JA IC1

S54 Koubaa 2014 CP IC1, IC2

S55 Matta-Gomez et al. 2014 JA IC1

S56 Oliveira et al. 2014 CP IC3

S57 Oliveira et al. 2014 CP IC2

During the conduction of this systematic review, we found overlapping primary studies

reporting different stages or parts of the same research. Following the guidelines proposed

by Kitchenham (2004), we did not consider these studies to avoid computing a same

evidence twice. Only the most complete version of a research was taken into account

during the data extraction. For instance, if a conference paper has an extended version in

a journal, we only considered this most recent version. Table 2.4 shows the studies related

to the development of SORS that were not included in the systematic review. Column

“RS” presents the ID of the included study (listed in Table 2.3) that is directly related to

the excluded study.

Table 2.4: Overlapping primary studies

ID Author Year Type RS

E1 Lee et al. 2003 CP S1
E2 Ahn et al. 2006 CP S5
E3 Kim et al. 2006 CP S3
E4 Berná-Mart́ınez et al. 2006 CP S6
E5 Wu et al. 2006 CP S12
E6 Ambroszkiewicz et al. 2007 TR S27
E7 Veiga et al. 2007 CP S26
E8 Tsai et al. 2008 CP S21
E9 Lee et al. 2008 CP S17
E10 Lee et al. 2008 CP S17
E11 Tsai et al. 2008 CP S21
E12 Du et al. 2011 CP S32
E13 Remy and Blake 2011 JA S36
E14 Insaurralde et al. 2012 CP S53
E15 Insaurralde and Petillot 2013 CP S53
E16 Lee and Yang 2013 CP S49
E17 Yang and Lee 2013 CP S49
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Based on the included primary studies, we answered six research questions. Results

are reported as follows.

Research Question 1 – Types of services for SORS: The development of robotic

systems using SOA is still recent and there is no clear understanding on which modules

of these systems should be provided as services. This research question investigated

how SOA has been applied during the development of SORS. In the analysis of the 57

primary studies, we identified four different categories of services for SORS: (i) Sensors

and Actuators, (ii) Tasks and Activities, (iii) Knowledge and Algorithms, and (iv) Whole

Robot. The category “Sensors and Actuators” indicates that services are applied at the

lowest level of the robotic system infrastructure, i.e., each device used to measure (using

sensors) or interact (using actuators) with the environment is controlled and provides

information as an independent service. In the“Tasks and Activities” category, services are

used to offer functionalities related to the fundamental tasks of robotics (e.g., mapping

and localization, described in Section 2.4.2), as well as more complex activities, such

as surveillance and monitoring. Functionalities related to knowledge acquisition from

different sources (e.g., the Internet) and supporting algorithms were considered services

of the “Knowledge and Algorithms” category. The category “Whole Robot” indicates that

the entire robot is considered a single service, i.e., Robot as a Service (RaaS) (Chen et

al., 2010). Table 2.5 summarizes these categories and shows the total (column #) and

percentage (column %) of primary studies that address each of them. Observe that studies

in Column “Primary Studies” may address more than one category.

Table 2.5: Service development approaches in SOA-based robotic systems

Service
Category

(#) (%) Primary Studies

Sensors and
Actuators

33 57.89 S1, S6, S10, S11, S15, S16, S17, S21, S23, S26, S28,
S29, S30, S31, S32, S33, S34, S35, S36, S37, S40, S42,
S43, S44, S45, S46, S50, S52, S53, S54, S55, S56, S57

Tasks and
Activities

34 64.91 S1, S4, S5, S7, S8, S14, S16, S20, S21, S24, S27, S29,
S31, S32, S33, S34, S35, S39, S40, S42, S43, S44, S45,
S46, S47, S48, S49, S50, S51, S52, S53, S55, S56, S57

Knowledge and
Algorithms

19 33.33 S3, S6, S11, S14, S18, S21, S23, S28, S29, S31, S35,
S36, S37, S39, S40, S41, S46, S56, S57

Whole Robot 33 57.89 S1, S2, S3, S4, S5, S7, S8, S9, S10, S12, S13, S15, S19,
S20, S22, S25, S28, S32, S38, S40, S42, S43, S44, S45,
S47, S48, S50, S52, S53, S54, S55, S56, S57

Notice there is no predominance of a single category. Services have been designed in

different manners and granularities to achieve multiple goals during SORS development.

For instance, developers used SOA to overcome traditional problems regarding integration
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of heterogeneous, off-the-shelf sensors and actuators (as discussed in S16, S17, S26, and

S29). Moreover, services were used to hide details of robotic task implementations for

facilitating their reuse in several projects and robotic systems, as reported in S20, S21,

S24, and S32. One third of the primary studies used service-orientation as a strategy to

improve processing power and the knowledge of robotic systems. Services developed in

the category “Knowledge and Algorithms” enabled fast, distributed implementations of

demanding artificial intelligence algorithms, e.g., Q-Learning (Watkins and Dayan, 1992)

for reinforcement leaning (as presented in S35 and S39). They also enabled the use of

web services as sources of external knowledge for robots, so that the robots could learn

and interact with objects not foreseen during design time (as proposed in S3 and S36).

Finally, services used to wrap functionalities provided by robots reduce complexity and

facilitate their coordination in complex missions (as discussed in S24 and S47).

Research Question 2 – Interactions between services of SORS: This research

question investigated how services that are part of an SORS interact with each other.

Based on the selected primary studies, we have identified five main types of interaction:

(i) interaction of robotic control with its sensors and actuators (Robot to Device); (ii) in-

teraction of the robot with other robots (Robot to Robot); (iii) interaction of the robot

with a back-end computer11 (Robot to Back-end); (iv) access of the robot to external

services, i.e., services which are outside its working environment (Robot to ES); and (v)

interaction of robot with other devices, such as electronic doors, light and temperature

controllers (Robot to Envt.). Table 2.6 shows the types of interaction addressed by the

primary studies. Observe some primary studies have addressed more than one type of

interaction.

Most of the developed SORS (91.22%) are supported by or depend on a back-end

computer to communicate, as they require a server that provides their functionalities

as services. Moreover, robotic systems often use back-end computers as an alternative

to increase their processing power. The second most common way of interaction occurs

between the robotic control and the services that deal with hardware devices (45.61%).

We have also identified studies (19.30%) that investigate the connection between the

robotic system and external services. Those services are used to support robots to make

more intelligent decisions (as in S18 and S36). Studies that use SOA to integrate robotic

systems with elements of the environment, for instance a smart house, have also been

found (S1, S2, S3, S23, and S49). Although this research question has evidenced that

11A back-end computer is a server that remotely supports processing, data storage or interaction among
robots.
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Table 2.6: Interactions among services of SORS

Ways of Interaction (#) (%) Primary studies

Robot to Device 26 45.61 S5, S6, S15, S16, S21, S23, S26, S29, S30, S31, S32,
S33, S35, S36, S40, S42, S43, S44, S45, S46, S48,
S50, S52, S55, S56, S57

Robot to Robot 15 26.31 S1, S4, S7, S9, S30, S32, S37, S38, S42, S45, S50,
S52, S55, S56, S57

Robot to Back-end 52 91.22 S1, S2, S3, S4, S5, S6, S8, S9, S10, S11, S12, S13,
S14, S15, S16, S17, S19, S20, S21, S22, S23, S24,
S25, S26, S27, S28, S29, S30, S31, S33, S34, S35,
S36, S37, S38, S39, S40, S41, S42, S43, S44, S46,
S47, S49, S50, S51, S52, S53, S54, S55, S56, S57

Robot to ES 11 19.30 S3, S18, S36, S39, S41, S42, S43, S44, S50, S56, S57
Robot to Envt. 9 15.79 S1, S2, S3, S23, S41, S47, S49, S56, S57

SORS are still dependent on external infrastructure, we believe this dependency tends to

decrease as improvements are made in hardware and network technologies.

Research Question 3 – SORS development technologies: As mentioned in Sec-

tion 2.4.2, robotic systems have several characteristics, such as resource limitations and

real-time constraints, which differentiate them from information systems. This research

question addresses technologies (in particular, protocols, programming languages, and

frameworks) investigated and used to develop SORS. Although some of them were not

initially designed for implementing robotic systems as services or collections of services,

they have been used as innovative initiatives in the development of SORS. Table 2.7 lists

the development technologies applied for the implementation of SORS and the primary

studies that address each of them. Notice the technologies presented here might not be

classified on the same abstraction level.

The SORS found in the systematic review were predominantly developed using Web

service standards or variations of these standards. SOAP-based standards (WS-*) (36.84%)

and REST (26.32%) are the technologies mostly addressed in primary studies. Together,

they have been used in more than six out of ten SORS available in literature. Besides

Web service standards, researchers have also used UPnP (5.26%) and CORBA (7.02%).

In short, UPnP is a set of networking protocols that enables devices to seamlessly discover

each other’s presence in the network and establishes functional network services for data

sharing and communications. CORBA enables separate pieces of software written in dif-

ferent languages and running on different computers to work with each other as a single

application or a set of services. Although other technologies have been found, they seem

to be isolated initiatives used only by their authors (e.g., S4, S9, S10, S14, S22, S27, and

S37). Studies that do not report on the use of any technology are listed in the category

DNR (Do Not Report).
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Table 2.7: Languages, protocols, and frameworks for developing SORS

Implementation
technology

(#) (%) Primary studies

SOAP (WS-*) 21 36.84 S2, S3, S6, S7, S8, S12, S13, S15, S18,
S19, S23, S24, S29, S30, S31, S32, S36,
S43, S46, S54, S55

REST 15 26.32 S15, S21, S23, S25, S30, S31, S32, S33,
S34, S35, S39, S40, S44, S46, S55

CORBA (Vinoski, 1997) 4 7.02 S11, S17, S42, S52
UPnP (UPnP Forum, 2015) 3 5.26 S5, S13, S26
Simple XML 2 3.51 S22, S27
Java Messaging Service 1 1.75 S50
JINI (Waldo, 1999) 1 1.75 S1
MeRMaID 1 1.75 S22
Entish 1 1.75 S27
RoboCoP 1 1.75 S37
RoboLink 1 1.75 S4
Property 1 1.75 S10
SENORA 1 1.75 S9
XPERSIF 1 1.75 S14
DNR 13 22.81 S16, S28, S38, S35, S41, S45, S47, S48,

S49, S51, S53, S56, S57

Results of this research question evidence most researchers have focused on languages

and protocols widely accepted in commercial information systems (i.e., WS-* and REST)

instead of those specially designed to fit the robots’ needs. Even though generic-purpose

technologies might not ensure important aspects of the robotics domain like message size

and real-time constraints, they are easier to be integrated with other types of services

and, therefore, have been more frequently adopted in robotic systems.

Research Question 4 – SORS development environments: This research question

investigates environments that support the development of SORS. As mentioned in Sec-

tion 2.4.3, development environments are important assets for creating robotic systems.

In particular, when associated with simulators, they can reduce cost, increase productiv-

ity, and improve reliability of robotic systems. Table 2.8 lists the environments found by

our systematic review.

Observe MRDS is the most used environment for the development of SORS. More than

four out of ten primary studies reported the use of a development environment adopted

MRDS. It is recognized as a landmark of SORS development and has been cited by almost

all authors after 2007. However, there has been an increasing interest in the recent ROS

development environment, since it is free, open source, and widely supported by robotics

community. Although ROS has been less frequently addressed than MRDS – probably

because this environment has just taken off – we believe it will be largely used in the
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Table 2.8: Development environments used to create SORS

Development
environment

(#) (%) Primary studies

MSRS 12 21.05 S15, S21, S23, S30, S31, S32, S35, S40, S43, S46,
S55, S57

ROS 8 14.03 S28, S36, S39, S44, S50, S53, S54, S57
Player/Stage 2 3.51 S7, S33
LEGO Mindstorm 1 1.75 S6
YARP 1 1.75 S22
OROCOS 1 1.75 S42
4DIAC 1 1.75 S48
OpenRAVE 1 1.75 S49
XPERSim 1 1.75 S14
Own Environment 2 3.51 S3, S18
DNR 28 56.41 S1, S2, S4, S5, S8, S9, S10, S11, S12, S13, S16,

S17, S19, S20, S24, S25, S26, S27, S29, S34, S37,
S38, S41, S45, S47, S51, S52, S56

next years. Besides these service-oriented tools, researchers have also adapted other en-

vironments for developing and simulating SORS: Lego Mindstorm (LEGO, 2015), YARP

(Metta et al., 2006), Player/Stage, OROCOS (OROCOS, 2015), 4DIAC (PROFACTOR,

2015), and OpenRAVE (Diankov, 2010). Furthermore, studies that propose their own

environments were also found (S3, S14, and S18). Despite the importance of development

environments, more than half of the primary studies did not report the use of such tools.

These studies are found in the DNR category.

Research Question 5 – SORS development scenarios: This research question in-

vestigates scenarios in which SORS have been developed. We looked for characteristics

that could influence the suitability of SOA for the development of robotic systems, as

intended environment and type of robot. We also investigated the context in which SORS

had been applied. Table 2.9 shows the characteristics addressed by each primary study.

Column “Domain” indicates the areas of SORS reported in the primary studies. Column

“App” classifies the studies according to their purpose of use, i.e., for academia (Acd), in-

dustry (Ind), or both. Column “Envt” indicates whether the SORS is destined for indoor

(In) or outdoor (Out) environments. In column“Class”, we classified a robot according to

its mobility, as ground mobile (GM), aquatic (AQ), aerial (AE), and non-mobile (NM).

Finally, in column “Type”, we reported whether an SORS is destined for a single robot

(SR), multiple robots (MR), or robot swarms (RS).

Notice most SORS have been developed for the academy (91.23%) and are generic

(57.84%). Studies considered generic are those that address the SORS development itself,

rather than possible application domains. Moreover, most SORS are grounded mobile

(84.21%) and/or destined to indoor environment (89.47%). These SORS were developed
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Table 2.9: Main characteristics of SORS

ID Domain App Envt Class Type

S5, S6, S13, S14, S17,
S29, S49

Generic Acd In GM SR

S18 Generic Acd In NM SR
S1, S4, S7, S9, S10, S13,
S23, S15, S19, S27, S30,
S33, S40, S42, S50, S51

Generic Acd In GM MR

S28, S32, S39, S41, S43,
S44, S54

Cloud Computing Acd In GM MR

S22, S16 Monitoring Acd In GM MR
S36 Generic Acd In NM SR
S31, S46, S48 Manufacturing Ind In GM SR
S8, S37 Education Acd In GM MR
S2 Ubiquitous Acd In GM SR
S3 Ubiquitous Acd In NM SR
S38 Monitoring Acd Out AE/AQ MR
S20, S24, S47 Generic Acd In GM RS
S56 Generic Acd Out GM MR
S34, S53 Monitoring Acd Out AQ MR
S25 Automation Both In GM MR
S35 Generic Both In GM SR
S21 Gaming Acd In GM MR
S26 Manufacturing Ind In NM SR
S11 Pipe inspection Acd Out AQ SR
S12 Manufacturing Ind Ind NM MR
S52 Space exploration Acd Out GM MR
S45, S56, S57 Generic Both – – –

for robotic applications involving single robots, multiple robots, and in some cases, swarm

of robots (S20, S24, and S47). Studies S45, S56, and S57 are generic software engineering

guidelines that can be used in any type of robotic system. We believe the predominance

of indoor and grounded (including non-mobile) robots can be related to physical limita-

tions of the networks. In fact, this result seems coherent, since availability, reliability,

and management of wireless networks are still a challenging topic in robotics. Another

important fact is the growing interest of developers in providing a robot as a resource in

cloud computing (S28, S32, S39, S41, S43, S44, and S54). The use of cloud computing

in robotics is quite recent, and it seems to be a prominent research topic for the future

(RobotShop, 2015; van de Molengraft, 2015).

Research Question 6 – Software engineering guidelines for SORS: In this re-

search question, we investigated how software engineering has supported the design and

implementation of SORS. As in any new type of software system, the development of

SORS requires software engineering guidelines to become mature and more productive.

Nevertheless, few studies have focused on guiding the creation of such systems. Only six
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studies are related to the design of robotic systems based on SOA. Study S29 describes

an SOA-based integration model for robotic devices. In study S19, the authors propose a

generic SOA-based model to be applied to various classes of pervasive computing appli-

cations, including robotics. Study S40 suggests a generic system architecture for robotic

systems designed in the MDRS development environment. Study S45 proposes a UML

profile for distributed embedded real-time systems that can be used for the design of

SORS architectures. Focusing on space exploration, S54 details an architecture used for

designing a family of NASA rovers. Finally, Study S56 reports the process proposed in

the context of this thesis (See Chapter 4), which supports conception, detailing, and eval-

uation of SORS software architectures. Apart from these studies, no other was found in

the systematic review. It is important to highlight that we have not considered specific

architectures of SORS as software engineering guidelines, since they can not be applied

for the development of other robotic systems.

Besides the primary studies found in the systematic review, we have also identified

an additional work that investigates the architectural design of robotic systems based on

SOA. The thesis presented by Hestand (2011) defines a set of metrics to be used when

comparing the SOA approach with other architectures for integration on robotic systems.

The work also proposes the adaptation of modules available for the Player environment

to enable the development of SORS.

2.5 Final Remarks

This chapter presented the background for the contributions described in the remaining

chapters. Firstly, the terminology and fundamental concepts of software architecture

were discussed. Following, the theory associated with the SOA architectural style and its

implementation technologies were addressed. Finally, an overview of robotics and robotic

system development was provided. The chapter also characterized the state-of-the-art of

SORS development through a systematic literature review. This review allowed us to

identify limitations on the current research into the design of such systems. Despite the

existence of some tooling and several SORS reported in the literature, these systems have

been developed in an ad hoc manner. In particular, there is no support for the systematic

identification of services for an SORS or how to structure these services as a software

architecture. This lack of maturity during the design of SORS software architectures may

impact the overall quality of the systems.

The contributions we present in the next chapters aim at overcoming some limitations

of the SORS software architecture design. The next chapter reports the establishment of

a comprehensive taxonomy of services for developing SORS, as well as the automation of a
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mechanism that enables classification and discovery services based on this a taxonomy. In

Chapter 4, we propose a process aligned with the taxonomy to support the design of SORS

software architectures. Chapter 5 describes a reference architecture that encompasses the

knowledge of how to structure SORS software architectures designed by the proposed

process.
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Chapter

3

A Classification of Services for SORS

3.1 Overview

The potential of SOA in improving modularity, integrability, and flexibility has motivated

researchers to develop their robotic systems as collections of services. As evidenced in

the systematic review presented in Section 2.4.5, an increasing number of studies have

reported the design of SORS. However, most of these systems have been developed in

different manners, without a common understanding on how and which software modules

should be provided as services. This lack of consensus hampers the reuse of services

in other projects and reduces the capacity of SOA in raising productivity during the

development of SORS.

In this sense, a classification of the types of services available for the development

of SORS can provide two important contributions. First, it can be used to support the

identification of services during the development of SORS software architectures. Second,

it can facilitate the description, publication, and discovery of services for SORS, as well

as enable the automation of such activities. Currently, none of the development environ-

ments available for SORS provide an efficient mechanism for publishing and discovering

services. Developers have to manually search for services they need in repositories con-

taining hundreds of different services, which is a time-consuming, error-prone task.

This chapter reports two complementary works on the classification of services for

SORS. The first, presented in Section 3.2, describes a taxonomy of services for developing
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SORS that supports the application of the process proposed in Chapter 4 and is also basis

for the reference architecture detailed in Chapter 5. The second, presented in Section 3.3,

describes a tool based on the proposed taxonomy that facilitates cataloging and discovery

of services for SORS. Section 3.4 discusses results and limitations of both works.

This chapter is a summary of the papers “Towards a Taxonomy of Services for De-

veloping Service-Oriented Robotic Systems”, published in the Proceedings of the 26th In-

ternational Conference on Software Engineering and Knowledge Engineering (SEKE’14)

(Oliveira et al., 2014c), and “Automating the Discovery of Services for Service-Oriented

Robotic Systems”, published in the Proceedings of the 11th IEEE Latin American Robotics

Symposium (LARS’14) (Oliveira et al., 2014b). The latter was awarded as one of the best

papers of the symposium and the authors were invited to submit an extended version.

The extended paper, entitled “RoboSeT: A Tool to Support Cataloging and Discovery of

Services for Service-Oriented Robotic Systems”, will be published in the Communications

in Computer and Information Science series (Oliveira et al., 2015).

3.2 A Taxonomy of Services for SORS

We followed the systematic set of steps illustrated in Figure 3.1 to establish our taxon-

omy of services. In short, in Step 1, we first elicited services from different sources of

information. In Step 2, we grouped the sets of services that display similar characteristics

and purposes of use. In Step 3, these groups were described and organized into different

abstraction levels, which resulted in the types of services and in the Robotics Services

Dependency Stack (RSDS). Finally, in Step 4, the types of services and RSDS were eval-

uated in a survey applied to experts in the robotics area. Each step of the establishment

of our service taxonomy is described in details as follows.

Figure 3.1: Steps followed to establish the taxonomy of services
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3.2.1 Step 1: Service Elicitation

Different information sources were selected for the elicitation of the types of services used

in the development of SORS. These sources encompassed both theoretical and practical

views of the robotic system development. The three sources were: (i) studies on the

development of SORS identified in the first iteration of the systematic review discussed

in Section 2.4.5; (ii) a set of reference architectures that encompass knowledge on how to

structure robotic systems (Feitosa and Nakagawa, 2012); and (iii) expertise and knowledge

of specialists on how to develop robotic systems. By investigating these sources, we

obtained a broad set of services for analysis.

3.2.2 Step 2: Service Analysis and Categorization

Brainstorm meetings were organized for the analysis and classification of the services

identified. During these meetings, we considered the expertise of specialists in software

architecture, SOA, and robotics. Reference architectures for robotics used in Step 1

were again applied for the identification of the main modules and functionalities that

should be considered in robotic systems. The following issues were mitigated during the

categorization of services: (i) similar services with different names; (ii) services with the

same name, but different functionalities; (iii) services lacking cohesion; and (iv) modules of

the robotic systems that could be provided as services, but not identified in the information

sources. As a result, we obtained five groups of services: Device Driver, Knowledge, Task,

Robotic Agent, and Application. Afterwards, we identified the abstraction levels of each

group of services.

3.2.3 Step 3: Taxonomy Establishment

We proposed the taxonomy of services for SORS based on the groups of services identified.

It is composed of two main parts: (i) RSDS, which establishes dependencies between

groups of services, and (ii) description of all types of services within the groups. We

adopted the overall structure of the layered S3 reference architecture (see Section 2.3.3)

to define the dependency stack. In particular, we considered in RSDS the dependencies

established by the primary layers of S3 for operational infrastructure, simple services,

composed services, and business processes. Figure 3.2 shows RSDS and its layers, which

represent the groups of services. In RSDS, less abstract services provide functionalities for

the higher abstract ones (e.g., Device Driver services support Task services). Moreover,

services in lower layers, such as software abstraction of hardware devices, are more fine

grained and provide functionalities that can be used in different application domains.

55

Architectural design of service-oriented robotic systems Lucas Bueno Ruas de Oliveira 2015



3.2. A Taxonomy of Services for SORS

Services in higher-level layers coordinate services in lower-level layers to perform complete

activities and are, therefore, more dependent of the application domain.

Figure 3.2: Robotics Services Dependency Stack

The Device Driver layer encompasses basic services that control hardware devices,

providing their functionalities to the higher layers. The Knowledge layer represents basic

and/or composed services that manage information used by robotic systems for making

their decisions. This information can be based on data from sensors, databases, or both.

Supported by Device Driver and Knowledge services, the Task layer groups composed ser-

vices that provide tasks of robotics (e.g., mapping or localization) according to different

behaviours. The Robotic Agent layer represents business processes that encapsulate the

system controlling a robot as a service. Robotic agent services perform different tasks –

using Task services – based on information gathered from Knowledge services. Finally,

the Application layer encompasses high-level process services that coordinate one or more

Robotic Agents in performing more complex activities, like surveillance and entertain-

ment.

None of these five layers are mandatory during the design of SORS. For instance, a

SORS can be designed without the use of lower level layers by creating coarse grained

robotics services (e.g., a monolithic service that includes both task coordination and hard-

ware abstraction). However, this practice may reduce flexibility and potential of reuse.

A detailed description of each group of services is provided as follows. Observe that the

taxonomy describes modules of robotic systems and, therefore, some content may have

already been discussed along the background (see Section 2.4).

Device Driver Services: This group includes services that encapsulate hardware drivers,

acting as a Hardware Abstraction Layer (HAL). Device driver services are used as design

solutions to provide better integration among heterogeneous off-the-shelf resources. There

are two sets of service types in this group: Actuators and Sensors. Services of this group

are illustrated in Figure 3.3 and described as follows. Notice some devices currently avail-

able can combine more than one type of service, e.g., for sensing position and orientation.

56

Architectural design of service-oriented robotic systems Lucas Bueno Ruas de Oliveira 2015



Chapter 3. A Classification of Services for SORS

In these cases, the device interface is a composition of the interfaces of its provided ser-

vices.

Figure 3.3: Device Driver service group

Locomotion: provide mobility to the robot. Examples of locomotion driver services

include software for controlling wheels, joints, and helix;

Manipulation: enables the robot to manipulate or hold objects of the environment.

Drivers for controlling arms and grippers are considered manipulation device ser-

vices;

Communication: plays the role of both actuator and sensor. Communication is often

bidirectional and the robotic system can use this type of service to feel the environ-

ment or interact with it. Drivers for multimedia, network, and radio frequency are

examples communication services;

Contact: controls sensors that detect whether the robot is in contact with objects in the

environment. Drivers for barrier and bumper are examples of contact services;

Position: obtains information of the location of the robot in the environment. A

well-known example of position service is the GPS device driver service;

Orientation: provides information on the orientation of the robot in the environment.

Inclinometer driver and compass driver are examples of orientation services;

Distance: measures the distance between the robot and the objects in the environment.

Drivers for lasers and sonars are examples of distance measurement services;
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Optical: converts images of the environment into digital information that can be pro-

cessed. Drivers for stereo cameras are examples of optical sensor services;

Thermal: is used to measure temperature of objects inside the environment. Drivers for

thermal cameras are well-known examples of thermal sensor services; and

Movement: measures the distance travelled by the robot. Encoder driver can be consid-

ered a movement service.

Knowledge Services: This group comprises services that gather, interpret, store, and

share information necessary for the accomplishment of tasks and control of the robot

as a whole. This information enables robotic systems to learn about characteristics of

their environment and objects in it. Knowledge services use not only data from sensors,

but also semantic information from a wide range of sources like ontologies and machine

learning datasets. Services that belong to this group are shown in Figure 3.4 and detailed

as follows.

Figure 3.4: Knowledge service group

Internal: gathers, stores, and shares information obtained inside the boundaries of the

environment. This information can be obtained from both sensors and databases

hosted in a back-end server. Information obtained from sensors is generally produced

by Task services and then stored in an internal knowledge service to be shared

among robots. Two examples of internal knowledge are: (i) a service hosted in a

back-end server that provides information on how to deal with a given object in

the environment; and (ii) a service used to share the current representation of the

environment among multiple robots; and

External: obtains and interprets general purpose information obtained from sources out-

side the environment. Through this type of service, a Web-enabled robot can search,

access, and obtain information from machine-readable content on the Internet or

even ordinary Web sites, portals, and wikis. External sources of knowledge enables

the robotic system to learn procedures, semantic concepts, and relationships that

were not considered during the design-time. An example of external knowledge is

the service used by an autonomous robot for learning how to make pancakes based

on information from the Web, described in (Tenorth et al., 2011).
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Task Services: This group encompasses services that perform the tasks usually provided

by robotic systems. Task services enable robots to perform simple activities, such as move

from a position to another, and can be implemented according to different behaviours, i.e.,

a robot can move to another position either by following a wall or keeping the distance

between walls. The group can be divided into seven main types, as shown in Figure 3.5.

Details of these services are discussed as follows.

Figure 3.5: Task service group

Mapping: encapsulates algorithms that estimate and build representations of the envi-

ronment where the robot is. There are two types of mapping services, those that

use Metric Maps and those that use Non-metric Maps. Metric maps are 2D/3D

representations that use coordinates – Geometric or in a Grid – to describe the real

location of objects inside an environment. Non-metric maps are logical representa-

tions that can be either Topological (e.g., an adjacency graph) or Sensorial (e.g.,

sequence of images);

Localization: estimates the position of the robot. Two types of localization services

exists: Probabilistic and Deterministic. Kalman filter is a well-known example algo-
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rithm that can be provided as Probabilistic localization service. Moreover, Deter-

ministic localization service can be any localization algorithm based solely on data

from GPS or other type of position service;

Path Planning: defines good (or optimal) paths between two or more positions in the

environment. These services are often supported by mapping services and are de-

veloped based on two main strategies: (i) Heuristic Search (e.g., A-Star (A*) (Hart

et al., 1968)) and (ii) Exhaustive Search (any type of service that creates a path by

examining all possible paths);

Navigation: is used by the robot to navigate in the environment. The classification of

a navigation service is associated with the control architecture it implements, i.e.,

Deliberative or Reactive. A service based on Deliberative navigation performs a

path according to a predefined plan. Reactive navigation service controls the robot

based on its current sensory data, e.g., using Potential Fields (Borenstein and Koren,

1989). A robotic system can combine these two types of services to provide a more

robust hybrid control;

Interaction: enables the robot to work together with the Environment and Other Robots,

or interact with a User. Interaction services support data exchange and procedures

invocation between the robotic system and other systems. For instance, these ser-

vices can be used to request to a system controlling a smart house to open the door

of a room;

Object Manipulation: provides algorithms to support physical interactions with objects

inside the environment. Object manipulation services encapsulate control algo-

rithms that coordinate actuator devices, e.g., arms and grippers; and

Support: provides general purpose functionalities that support the development of robotic

systems. These functionalities involve data filtering, data fusion, math calculations,

point cloud processing, segmentation of images from cameras, and so forth. As

support services are not only available for robotics, a finite number of subtypes of

services that belong to this group can not be determined.

Robotic Agent Services: This group encompasses services that coordinate other ser-

vices located in less abstract layers (i.e., Task, Knowledge, and Device Driver). Providing

a robotic agent as a service enables robots to be remotely controlled and eases coordina-

tion of multi-robotic systems. As illustrated in Figure 3.6, two types of Robotic Agent

services exist: Non-mobile and Mobile.
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Figure 3.6: Robotic Agent service group

Non-mobile: provides functionalities of a robot without mobility capability. An example

of a non-mobile service is a robotic system that controls an industrial robot designed

to manipulate objects; and

Mobile: provides functionalities related to both locomotion and object manipulation.

Due to the different types of mobile robots, as well as their distinct representations of

position and orientation, mobile robotic services can be divided into three categories:

Aerial, Grounded, and Aquatic.

Application Services: This group comprises services that manage robots to perform

more complex activities. They are orchestrators that acquire knowledge through robotic

agent services, process it, and then request a set of tasks that satisfy a given activity.

This type of service enables designers to focus on the application itself rather than on the

details of implementation of a robotic agent. Figure 3.7 shows the three different types

of Application services, which are described as follows.

Figure 3.7: Application service group

Single Robot Application: describes, coordinates, and monitors high-level robotic activi-

ties. Robotic vacuum cleaning and intrusion detection are examples of this type of

service;

Multi-robot Application: describes, coordinates, and monitors multiple robotic agents

(i.e., multiple robots) for performing a given application. This type of service al-

locates tasks for robots according to their specific features and availability. The

coordination of multiple robotic arms in a factory line is an example of this type of

service; and
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Swarm Application: coordinates and monitors a large amount of simple robots to perform

cooperative applications. In a swarm application, all robots have the same service

interface and provide the same functionalities. The measurement of the temperature

of an environment by a robotic swarm is an example of this type of service.

3.2.4 Step 4: Taxonomy Evaluation

Our taxonomy was evaluated by a group of ten experts in robotics, invited through impor-

tant discussion lists1, who read the taxonomy documentation and then answered questions

in an on-line survey2. The group comprised software architects, software engineers, soft-

ware developers, and research team leaders from six different institutions in five countries,

from both academia and industry. During the survey, we evaluated both acceptance and

comprehension of the service taxonomy and the results are provided as follows. A discus-

sion on these results is presented in Section 3.4.

Three main aspects were considered in the acceptance evaluation: (i) RSDS, (ii) groups

of services, and (iii) taxonomy as a whole. For each aspect, we proposed statements

that should be answered by experts according to a Likert scale (Wohlin and Andrews,

2003) with the following options: Strongly Agree, Agree, Tend to Agree, Neutral, Tend

to Disagree, Disagree, and Strongly Disagree. A Neutral answer was given whenever

the interviewee felt unsure about agreeing or disagreeing with a given statement. Text

fields were also provided after each statement so that interviewees could justify possible

disagreements.

Three statements were proposed in RSDS: ST1 - “The layers of RSDS are sufficient to

describe the main parts and organization of a robotic system”; ST2 - “The dependencies

between layers of RSDS are coherent”; ST3 - “Layers of RSDS are disjoint, i.e., there

is a clear separation among layers”. Table 3.1 shows the summary of answers for each

statement in percentage terms. RSDS was considered (or tended to be considered) com-

plete and coherent by 70% of the experts (i.e., more than 70% of answers about ST1

and ST2 were strongly agreed, agreed, or tended to agree). Besides, 60% of the experts

were in favor of (strongly agreed, agreed, or tended to agree) and 30% were neutral on a

clear separation between layers of RSDS. The negative answers in the three statements

were given by the same interviewee, who was not in favor of the classification of robotics

services into layers.

Three statements were proposed for the evaluation of the five groups of services:

ST1 - “The group of services is complete.”; ST2 - “The group of services is correct.”;

1The robotics-worldwide list is considered the most important forum of robotics. The robotica-l and
robotics-australia-nz-list lists are the main forums of robotics community in Brazil and Australia/Asia,
respectively.

2http://goo.gl/mJkQTd
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Table 3.1: Acceptance of RSDS

Statement Strongly
Agree

Agree Tend to
Agree

Neutral Tend to
Disagree

Disagree Strongly
Disagree

ST1 30 40 10 10 10 0 0
ST2 30 30 10 20 10 0 0
ST3 20 20 20 30 0 10 0

and ST3 - “The group of services has an adequate level of abstraction.”. Table 3.2 shows

the results in percentage terms. A high degree of acceptance is observed in the De-

vice Driver, Task, Robotic Agent, and Application groups, where an average of 87.5%

of answers were positive (i.e., strongly agreed, agreed, and tended to agree). Except for

few disagreements, positive answers were also given by experts regarding the Knowledge

group. These disagreements are mainly related to the fact that this group comprises only

two types of service (i.e., Internal and External). However, a deeper classification would

probably lead to an incomplete set of subcategories, as we could not identify all possible

types of internal and external sources of knowledge. Notice that a similar classification

was also adopted elsewhere (Blake et al., 2011).

Table 3.2: Acceptance of the groups of services

Type ST Strongly
Agree

Agree Tend to
Agree

Neutral Tend to
Disagree

Disagree Strongly
Disagree

Device Driver
ST1 30 30 20 0 20 0 0
ST2 30 40 10 20 0 0 0
ST3 30 30 40 0 0 0 0

Knowledge
ST1 10 30 20 20 20 0 0
ST2 10 30 20 40 0 0 0
ST3 0 40 10 20 10 0 20

Task
ST1 10 60 20 0 10 0 0
ST2 10 50 30 10 0 0 0
ST3 20 40 30 0 0 0 10

Robotic Agent
ST1 40 30 20 10 0 0 0
ST2 30 30 20 20 0 0 0
ST3 30 30 20 10 0 10 0

Application
ST1 20 40 30 10 0 0 0
ST2 20 40 20 20 0 0 0
ST3 30 30 40 0 0 0 0

Four statements were proposed for the evaluation of the overall acceptance of the

proposed taxonomy: ST1 - “I believe the taxonomy is clear and well-described”; ST2 -

“I believe the taxonomy was defined adequately”; ST3 - “I believe the taxonomy is useful

for describing services for diverse types of robotic applications”; and ST4 - “I believe the

taxonomy is useful for describing services of different types of robotic systems”. Table 3.3

shows the results in percentage terms. It can be observed that an average of 80% have
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strongly agreed, agreed or tended to agree with all statements. Moreover, none of them

have disagreed with the statements aforementioned. These results indicate the proposed

taxonomy can describe and classify services currently available for the development of

SORS.

Table 3.3: Overall acceptance of the taxonomy

Statement Strongly
Agree

Agree Tend to
Agree

Neutral Tend to
Disagree

Disagree Strongly
Disagree

ST1 30 30 20 20 0 0 0
ST2 40 30 0 30 0 0 0
ST3 50 10 30 10 0 0 0
ST4 20 40 20 20 0 0 0

The experts’ understanding of the taxonomy was also assessed during the survey.

They were asked to classify services using the taxonomy to answer different questions.

For example, we requested them to indicate the group in which a service that provides

a collision avoidance algorithm should be classified; or if a service that controls a robot

to monitor an office should be classified as a Task service or an Application service.

Table 3.4 summarizes the topics evaluated, the number of multi-choice questions for each

topic (Questions (#)), number of choices available for each question (Choices (#)), and

average of correct answers (Avg. score). Questions about the Robotic Agent service group

were not asked, since the only difference among services in this group is the type of robot

adopted and service interface associated with them.

Table 3.4: Questions and scores obtained in the assessment

Topic Questions (#) Choices (#) Avg score (%)

RSDS 8 5 78.8
Device Driver 6 5 90.0
Knowledge 4 2 80.3
Task 6 4 88.3
Application 4 2 80.0

Notice that 78.8% of the questions about the RSDS were correctly answered. Besides

that, between 80% and 90% of the 20 questions about the types of service in the five groups

were correctly answered. These results evidence a good comprehension of our taxonomy

and its use by the experts for the classification of services for SORS. We believe that the

understanding of the taxonomy can be even higher as other robotics services available in

the literature are classified into the proposed service groups. The larger the number of

examples of services classified in a service group, the easier the decision on the fitting of

a new service in such group.
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The classification described in the taxonomy provided a conceptual base for automat-

ing cataloging and discovery of services for SORS. Next section presents a mechanism that

we have developed to enable developers to discover and reuse services for robotic systems.

3.3 Automating Cataloging and Discovery of Services for

SORS

The development environments available for SORS enable researchers to create services

that can be used in different projects. These environments also provide functionalities for

the construction of robotic systems by means of composition of services into business pro-

cesses. However, finding the appropriate service for reuse during the development of SORS

is currently a difficult task. No development environment provides a mechanism that ade-

quately supports publication and discovery of services for SORS. Developers should either

create services for their robotic system from scratch or try to find equivalent implemen-

tations in repositories containing hundreds of different services. For instance, to find a

service in the ROS Wiki, one needs to read the description of all services that seem to

provide the intended functionalities (i.e., services are not classified into categories and

searches are based on service names). Moreover, users of such a repository must follow

daily updates in the site to be aware of any new content available.

To facilitate the discovery of services at design time, we developed RoboSeT (Robotics

Services Semantic Search Tool), a mechanism that enables classification and search of

services. RoboSeT is composed of two main parts: on-line service repository and plug-ins

that can be locally integrated into development environments. The service repository

enables developers to publish robotics services hosted in different version control systems,

such as Git3 and SVN4, and describe these services using the taxonomy proposed in

the previous section. Each service registered by a service provider is classified according

to the type it belongs in the taxonomy and, therefore, can be discovered semantically.

Service consumers can search for services by using either the Web interface provided by

RoboSeT or a plug-in installed in their machines. Plug-ins are applications integrated

into development environments that access the service repository and allows developers

to search and obtain services. Using RoboSeT, services for SORS can be discovered and

integrated into local projects transparently, i.e., the service consumer does not need to

know where the service is located or who the service provider is. Figure 3.8 illustrates the

overall organization of RoboSeT. Further details about its development and functionalities

3http://git-scm.com/
4http://subversion.tigris.org/
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are provided as follows. Graphical examples and tutorials on how to use its functionalities

are available in the Website5.

Figure 3.8: Overview of RoboSeT

3.3.1 Services Repository

RoboSeT enables users to store and classify information about robotics services in a

repository, as well as search for services to be reused in their robotic systems. Registered

service providers can publish and describe their services by using the taxonomy. These

services are linked to a control version repository where they are hosted, and the provider

describes how they work, license types, versions, and so forth. Service consumers use the

taxonomy to search for services that provide functionalities they need.

For instance, a consumer that needs a service for robotic localization based on a

high precision GPS (Global Localization System) can search for a service whose type

is “Service/Task/Localization/Non-probabilistic” (for more information, see Figure 3.5).

This query retrieves all services in the repository that provide a functionality of the Task

type, related to Localization, and based solely on information of a sensor. A less precise

search, like “Service/Task/Localization”, also retrieves services of the first query and all

other services described as a subtype of Localization, e.g., probabilist localization services.

Figure 3.9 illustrates results of a search performed in the RoboSeT service repository.

In this screen, service consumers obtain a summary of the services retrieved in the search,

including names, providers, and related service types. Buttons in the right side of the

screen can also be used for obtaining further information on a service, accessing its hosting

5http://www.labes.icmc.usp.br:8595/RegistroServicoWeb/
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address, or endorsing it. Endorsements are used to recommend a given service and indi-

cate to other potential consumers that the service is a worthwhile choice. As discussed

in Section 2.3.1, reputation is one of the attributes that may indicate the quality of a

service. In addition to searches using the taxonomy, RoboSeT also provides the following

functionalities:

Figure 3.9: Result of a search in the service repository

Account management: an account is required for the access to the service repository.

Three possible types of user are available: consumer, provider, and administrator.

Consumers can search for and obtain services in the repository. Providers can obtain

services for reuse and also publish their own services in the system. Administrators

manage accounts, the elements of the service taxonomy, and other important aspects

of the systems. The account management enables users to edit information and

promote their account types from a consumer to a provider. Administrators can

also invite consumers and providers to administrate the service repository;

Service management: enables service consumers to get information on services they

have already obtained, such as configuration instructions, comments from other

users, and bug reports. Service providers can also manage their published services

and register new services in the repository;

67

Architectural design of service-oriented robotic systems Lucas Bueno Ruas de Oliveira 2015



3.3. Automating Cataloging and Discovery of Services for SORS

Service ranking: a ranking is provided for the most relevant services available in the

repository, therefore, users can find services of better reputation and data about

their providers. Similarly to the service search functionality, additional information

on a given service can be obtained and the repository where the service is hosted

can be accessed;

Service search: additionally to the search by type, it is possible to look for services

using search strings. This type of search complements the semantic search and en-

ables users to find services by their names and providers. Services are also obtained

through searches in parts of the text contained in the service description;

Service detailing: enables service consumers to obtain all information available about

a service, including its full description, service dependencies, number of users, num-

ber of endorsements, versions, and license of use. Comments made by previous

consumers and reported bugs are also available as references. A complete list of

quality attributes is provided to support consumers in identifying services of higher

quality. Services in the repository can be graded by their consumers in each quality

attribute of ISO/IEC 25010:2011 (see Section 2.3.1); and

News about services: news is automatically generated based on logs of the system

and provided to users in a customized way. Users are notified on updates in the

services they are using, reported or fixed bugs, and so forth. They are also informed

on any changes in the service repository, including as updates in both taxonomy or

quality attributes used for the evaluation of services for SORS.

We adopted the MVC (Model-View-Controller) and the DAO (Data Access Object)

architectural patterns to design a more modular system. RoboSeT modules were divided

into four layers, namely: Model, View, Controller, and Database. These layers were

organized into packages labelled by stereotypes (e.g., classes into Servlets package are

associated with Controller layer), as shown in Figure 3.10. The Entities package contains

classes that represent entities of RoboSeT, such as those related to published services and

users of repository. The DAO package contains classes responsible for the persistence of

entities in the database. Since we adopted Hibernate6 framework, XML files for each

entity were placed in the Mappings package. The JSP package contains Web pages de-

veloped by using the Twitter Bootstrap7 framework. The Controllers package contains

classes responsible for the communication among graphical interface, the entities, and the

DAO package. Different servlets were created and placed in the package Servlets for the

integration of the graphical interface into the controllers.

6hibernate.org/
7getbootstrap.com/
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Figure 3.10: Diagram of packages of the service repository

3.3.2 Semantic Search Plug-in

A RoboSeT plug-in is a local application that remotely searches services in the reposi-

tory and integrates results into the project of a robotic system. Therefore, developers

designing a robotic system can create a project in their development environment using

the plug-in, search for services necessary for their system, and reuse them. Only services

unavailable in the repository and services used to integrate functionalities of the robotic

system have to be implemented. Services used to integrate and coordinate other ser-

vices are more domain-specific and should be implemented according to the requirements

of each project. We have created a plug-in for the ROS development environment to

exemplify functionalities that should be provided by these applications. Although this

implementation is specific for ROS, the functionalities can be adapted to any other SORS

development environment. The following activities were automated by the plug-in for

supporting creation of robotic systems:

Project creation: as this plug-in acts as a layer on top of ROS, we have developed

a functionality to abstract the creation of projects in this environment. Therefore,

the whole ROS file-system can be built using the plug-in, including the appropriate

build and manifest files. The functionality implemented in this plug-in works as a

proxy for the respective functionality in ROS (i.e., the roscreate-pkg command);

Identification of types of services: during the design time, developers should identify

services that will be used for the creation of a robotic system. They analyse, group,

and map the robotic system requirements into the service types of the taxonomy.
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To support this activity, the last version of the taxonomy available in the repository

is obtained every time the plug-in starts, so that developers can get any additional

information on a given type of service in their local machines (e.g., parent type,

description, and examples);

Service search: searches for each type of service identified for the robotic system are

performed in the repository by using the plug-in. As a result, all services that have

matched the searched types are presented along with their ID, description, provider

information, license type, and number of endorsements;

Service selection: searches for a given type of service can retrieve more than one ser-

vice implementation. Therefore, the plug-in enables developers to obtain additional

information about services in the repository. The number of recommendations re-

ceived and score of each quality attribute can help developers to choose the service

to be used;

Service obtaining: the services that will be used in a robotic system can be obtained

by the plug-in. A request using the service ID is sent to the service repository, which

answers with the url of the location of the service. The service is automatically ac-

cessed in the version control repository and downloaded into the local environment.

Notice robotic systems are real-time systems and most of their services must be

deployed and executed locally;

Service deployment: services obtained by the plug-in are deployed inside the current

ROS project to be integrated with other services being developed;

Service evaluation: users can evaluate the quality of services they are using at any

time. Five levels of quality can be assigned to each quality attribute of a service:

(1) unsatisfying, (2) needs improvement, (3) regular, (4) good, and (5) excellent.

As mentioned in the previous section, a service can be evaluated according to any

quality attributes of ISO/IEC 25010:2011. We adopted this quality model as a qual-

ity reference to avoid different interpretations of quality attributes. As a standard,

it provides detailed and widely accepted descriptions of software quality attributes

that can be used as a common vocabulary; and

Comments and bug report: when necessary, users can provide comments and report

errors in the services directly from the plug-in. Comments can be either improve-

ment requests or tips that might be useful for other developers of SORS.

The plug-in we designed for ROS has been implemented in Java and has a command-line

user interface. Figure 3.11 illustrates such an interface being used to obtain information
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about a probabilistic localization service named amcl. We opted for a command-line

plug-in to make it more familiar to ROS developers, who already use this type of interface

to interact with the development environment. A help command is available to support

developers in learning how to use functionalities available. Currently, this plug-in does

not support publication of services directly into the service repository. Nevertheless, new

services developed in projects that use the plug-in can be published through the Web

interface and reused in other projects.

Figure 3.11: Interface used to integrate the plug-in with ROS

3.3.3 RoboSeT Usage Example

In order to illustrate the use of RoboSeT, this section describes the design of a robotic

system of robust navigation capability. Robust navigation enables a robotic system to

guide robots through the environment without risk, avoiding collision with humans, ob-

jects, and other robots. The design of a robotic system for robust navigation involves

coordination of different tasks, including path planning, motion control, and sensor data

processing. Functionalities associated with the development of the system are described

as follows:

Motion Planning: creates a global path between a given starting position and the goal

position represented by a sequence of intermediate points in a static environment;

Trajectory generation: defines the velocity of each part of the path. The trajec-

tory is represented as a sequence of planned intermediate positions and associated

velocities;
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Obstacle detection and representation: represents objects in the environment by

using data from different sensors. These objects and their respective positions are

used to update the map of the environment;

Obstacle avoidance: adapts the pre-defined global trajectory to avoid unexpected

objects in the path, e.g., humans or other robots. It enables the robot to navigate

in dynamic environments safely;

Position and velocity control: generates instant linear and angular velocity so that

the robot can navigate along the computed trajectory. Local navigation is strongly

related to the kinematic model used by the robot; and

Localization: estimates the position of the robot with respect to a global map by using

different types of sensors, e.g., odometer, camera, and laser rangefinder.

Pioneer P3-DX8 robot was adopted as a base platform in this study. It moves using

two-wheel differential drive with rear balancing caster. The two front wheels are indepen-

dent and can have different speeds if necessary. Each wheel has an encoder sensor that

supports the localization task. Moreover, we also used a laser sensor to provide informa-

tion about objects surrounding the robot. Given these hardware specifications, drivers

for robot and laser were considered in the design of the robotic system.

The first step to design the robotic system was investigate services available for reuse.

After creating an ROS project, each functionality necessary to develop the robotic system

was classified according to the service types available in the taxonomy. Table 3.5 shows

functionalities of the robotic system and types of services they are associated with.

Table 3.5: Functionalities of the robotic system and related service types

Functionality Service type

Motion Planning Service/Task/Path planning
Trajectory generation Service/Task/Path planning
Obstacle detection and representation Service/Task/Mapping
Obstacle avoidance Service/Task/Path planning
Position and velocity control Service/Task/Navigation
Localization Service/Task/Localization
Encoder controller Service/Device/Sensor/Movement
Differential drive controller Service/Device/Actuator/Locomotion
Laser controller Service/Device/Sensor/Distance

The search for reusable services was then performed based on the identified types.

Each service type was applied to the plug-in developed for ROS so that services available

8http://www.mobilerobots.com/ResearchRobots/PioneerP3DX.aspx, last accessed in February
5th, 2015.
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in the service repository could be found. Results of the search were analysed and the most

adequate services for our robotic system were selected. Task service and Device Driver

service were the only two groups of the taxonomy necessary for designing robotic systems

with robust navigation capabilities. However, design of more complex SORS may require

other groups of service. Table 3.6 shows services identified for functionalities related to

the Task group and the service types associated with them.

Table 3.6: Functionalities of Task group, service types, and services identified for reuse

Functionality Task service types ROS service

Motion Planning Path planning/Heuristic Search NavfnROS, CarrotPlanner
Trajectory generation Path planning/Heuristic Search TrajectoryPlannerROS, DWA-

PlannerROS
Obstacle detection
and representation

Mapping/Metric/Grid CostMap2D

Obstacle avoidance Path planning/Heuristic Search TrajectoryPlannerROS, DWA-
PlannerROS

Position and velocity
control

Navigation MoveBase

Localization Localization/Probabilistic Amcl

The CostMap2D service implements a 2D costmap that takes in sensor data from the

world and builds a 2D or 3D occupancy grid of the data. NavfnROS and CarrotPlanner

are two complementary implementations of BaseGlobalPlanner interface for ROS. Navfn-

ROS is an A* path-planner for maps described by occupancy grids. CarrotPlanner is a

simpler planner that calculates a straight line between the robot position and the goal

position and checks collisions along the path. Both path planners are complementary

services that can be used to calculate a global path. TrajectoryPlannerROS and DWA-

PlannerROS can be used to generate a trajectory for a defined global path. These services

produce velocity commands based on the map, the global path, and unexpected objects

close to the robot, as well as provide functionalities associated with obstacle avoidance.

The localization of the robot can be estimated by the Amcl service, which uses Monte

Carlo probabilistic method to reduce the error of encoder measurements. Observe that

some task services in the repository were able to provide more than one type of functional-

ity. For instance, services TrajectoryPlannerROS and DWAPlannerROS were associated

with both trajectory generation and obstacle avoidance.

We also obtained services for controlling hardware devices used by services of task

group. Table 3.7 shows the services identified for functionalities related to the Device

Driver group and the service types associated with them. RosAria service provides means

for controlling the differential drive and the encoder of Pioneer P3-DX. SICK Toolbox

73

Architectural design of service-oriented robotic systems Lucas Bueno Ruas de Oliveira 2015



3.3. Automating Cataloging and Discovery of Services for SORS

service was identified for the control of the SICK9 laser rangefinder. Similarly to services

in task group, RosAria provided functionalities in more than one type of service.

Table 3.7: Functionalities of Device Driver group, service types, and services identified
for reuse

Functionality Device service types ROS service

Encoder controller Sensor/Movement RosAria
Differential drive controller Actuator/Locomotion RosAria
Laser controller Sensor/Distance SICK Toolbox

Figure 3.12 illustrates the software architecture we designed for the robotic system us-

ing the services found in RoboSeT repository. In this architecture, CostMap2D builds its

map based on information provided by SICK Toolbox service. MoveBase service orches-

trates mapping (CostMap2D) service and other services for localization (Amcl) and path

planning (NavfnROS, CarrotPlanner, TrajectoryPlannerROS, and DWAPlannerROS ) to

generate robust navigation commands. These commands are provided to RosAria service,

which acts as an interface to control the Pioneer P3-DX robot. As the robot moves in

the environment, RosAria service collects data from the odometer sensor. The odometry

information is consumed by Amcl service and used to estimate the current localization of

the robot.

Figure 3.12: Software architecture of the robotic system

9http://www.sick.com/group/EN/home/products/product_portfolio/laser_measurement_

systems/Pages/laser_measurement_technology.aspx, last accessed in February 5th, 2015.
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The navigation system described in the software architecture is similar to the archi-

tecture of the 2D Navigation Stack10 available for ROS. In fact, services identified by the

plug-in are part of this ROS stack, but registered in the service repository as independent

services. Currently, the services identified for robust navigation are strongly dependent

on MoveBase to start and, therefore, to work properly. However, a study has already

demonstrated these services can work independently after a refactoring process (Brugali

et al., 2012a). Benefits and limitations of RoboSeT are discussed in the following section.

3.4 Discussion of Results and Limitations

The definition of a widely accepted classification of elements of a given domain is a dif-

ficult task. Aiming at establishing a representative taxonomy of services for SORS, we

considered a large amount of information sources, including results of a systematic review

and the knowledge of specialists in robotics. We also submitted this taxonomy to be

evaluated by the robotics community and observed its acceptance and comprehension.

Results indicate our taxonomy can be used for the classification of services for SORS. Re-

sults also evidenced a good comprehension of the taxonomy and its service groups. Minor

issues were pointed out, mainly related to the Knowledge group and the completeness

of the Device Driver group. Few interviewees referred services of Knowledge group as

part of the Task group, albeit these groups play different roles. Knowledge services are

specially dedicated to manage and share information in robotic systems, which is some-

times produced by services from Task group. Regarding the completeness of the Device

Driver group, we highlight that our taxonomy does not encompass all types of drivers for

sensors and actuators available for embedded systems, but the ones frequently used in

the development of SORS. It is worth mentioning this taxonomy can be updated as the

research area evolves.

The proposed taxonomy took the first step towards a better communication among

developers of SORS and enabled the creation of a mechanism to support classification and

discovery of robotics services. The example in the previous section illustrated how services

can be identified, obtained, and reused to develop an SORS. Although services used in

this example are also available in ROS Wiki, their localization depends on the developers’

previous knowledge. Without the support provided by RoboSeT, researchers not aware

of the existence of these services need to manually search them among hundreds of other

services. RoboSeT also promotes indirect communication among service providers and

service consumers. These characteristics can yield benefits in three different perspectives:

service consumer, service provider, and robotic system user.

10http://wiki.ros.org/navigation, last accessed in February 5th, 2015.
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From the service consumer perspective, RoboSeT can facilitate discovery of services

and, therefore, improve reuse during development of robotic systems. It is intuitive that

services easier to be found are more likely to be reused. However, the reuse of a ser-

vice does not depend only on its discovery, but on its documentation and suitability to

the robotic system under development. RoboSeT provides functionalities that enable

consumers to obtain structured information on services being searched, including docu-

mentation, comments from other users, and quality attributes. These functionalities aim

at facilitating the identification of the most suitable service for each robotic system. As a

direct consequence of reuse, RoboSeT intends to improve productivity in the development

of robotic systems. Although quantitative evidences are still necessary, studies in the lit-

erature have already shown that reuse improvements positively influence productivity in

the development of software systems (Mohagheghi and Conradi, 2007).

As a counterpart, service providers of RoboSeT receive in-use feedback from the

robotics community about services they have published. Services provided to the commu-

nity are generally executed in several environment configurations and on different robotic

platforms, which represents an important corpus of evaluation. Comments, suggestions,

bug reports, and quality evaluation of these services are organized in the Web interface of

RoboSeT for each service provider. Providers can use the My Services section in the Web

interface as a guide to improve the quality of their services. By improving the quality of

the service they provide to the community, providers can also improve the overall quality

of their own robotic systems.

Collaboration among service providers and service consumers through RoboSeT can

also provide benefits from the perspective of robotic systems users. As service providers

receive feedback for their services and use it to improve the overall quality of their sys-

tems, higher quality robotic systems are made available for end users. Besides, reuse

improvements in the development of software systems can reduce costs and result in more

affordable systems (Mohagheghi and Conradi, 2007).

Despite the RoboSeT benefits, it is also important highlight limitations of such mech-

anism. Similarly to any repository of services, the success of RoboSeT strongly depends

on the cooperation of the robotics community. We are aware that without adoption of

RoboSeT by the community, few services will be available for searching, fewer consumers

will be interested in searching for them, and weak feedbacks will be offered as counterpart

to providers. Therefore, we have designed RoboSeT to be as flexible as possible to stimu-

late its adoption. The taxonomy can be evolved and modified according to the community

needs and new quality attributes can be proposed for the evaluation of services. Besides

that, we aim at releasing RoboSeT and its plug-in for ROS as open source software to

encourage and support development of plug-ins for other environments.
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3.5 Final Remarks

This chapter has addressed the establishment of a taxonomy of services for SORS and

its use to develop a tool that supports publication and discovery of robotics services.

This taxonomy can contribute to the robotics area by providing a common vocabulary

and knowledge on how to describe services for SORS. RoboSeT tool advances the current

means of publication and discovery of services for SORS, enabling developers to identify,

select, obtain, and deploy services in a transparent, automated manner. Results of a sur-

vey applied to specialists in robotics indicate the taxonomy is representative for classifying

services for SORS. The example described in Section 3.3.3 shows that RoboSeT can be

used to support discovery and reuse of services during the development of an SORS.

The taxonomy proposed in this chapter can be used as guide for identifying services

that will constitute SORS software architectures. Next chapter presents a process for the

development of these architectures.
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Chapter

4

A Process for the Development SORS

Software Architectures

4.1 Overview

Software architecture design directly impacts on the success of software systems projects.

Performing this activity in an adequate manner is fundamental for the development of

high-quality systems (Bass et al., 2012). As discussed in Section 2.4.4, software architec-

ture design has been considered an important concern of robotics in recent years. However,

SORS software architectures are still created without support of a systematic process and

depends on the designers’ personal experience in both robotics and SOA. Traditional

design approaches, including those for object-oriented software, do not adequately sup-

port the creation of software systems based on SOA (Arsanjani et al., 2008). Current

approaches for the development of SOA-based systems do not consider particularities of

robotic systems design, such as limited processing capability and real-time constraints.

Therefore, the proposal of a process for supporting the SORS architectural design can

facilitate the development of these systems and positively impact on their overall quality.

This chapter introduces ArchSORS (Architectural Design of Service-Oriented Robotic

System), a process that aims at systematizing the design of SORS software architectures.

Section 4.2 details the ArchSORS process. Section 4.3 describes an experiment for the
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evaluation of the process. Results and limitations of this experiment are discussed in

Section 4.4.

Contents of this chapter were previously presented in the paper “Towards a Process to

Design Architectures of Service-Oriented Robotic Systems”, published in the Proceedings

of the 8th European Conference on Software Architecture (ECSA’14) (Oliveira et al.,

2014a).

4.2 Establishment of ArchSORS

ArchSORS is a process that intends to foster the systematic development of SORS software

architectures. In order to design this process, we considered different sources of informa-

tion on the development of software architectures, SOA-based systems, and robotic sys-

tems. ArchSORS encompasses the steps proposed by Hofmeister et al. (2007) to design

software architectures (architectural analysis, architectural synthesis, and architectural

evaluation) and the phases proposed by the consolidated SOMA method (Arsanjani et

al., 2008) for the development of service-oriented systems. It is also based on the SORS

software architectures identified through the systematic review reported in Section 2.4.5

and reference architectures that encompass knowledge of how to structure robotic systems

(see Section 2.4.4). Figure 4.1 shows the overall structure of ArchSORS.

Figure 4.1: ArchSORS: a process to develop SORS software architectures

ArchSORS is divided into five phases applied in an iterative, incremental manner.

These phases can also be guided by reference architectures, which enables the develop-

ment of SORS software architectures through stepwise refinements of abstract templates.
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In short, in order to establish a software architecture using ArchSORS, it is first neces-

sary to characterize the robotic application and to produce a document of requirements

(Step RSA-1). Following, in Step RSA-2, these requirements are used to model the ap-

plication flow and identify capabilities that the robotic system should provide. Then, in

Step RSA-3, a functional architecture is described and represented in terms of services

used to provide the identified capabilities. In Step RSA-4, services of the functional ar-

chitecture are further described and decisions about hardware infrastructures are made,

which result in the technical architecture of an SORS. Finally, in Step RSA-5, the SORS

software architecture is evaluated by using architectural analysis methods. If necessary,

the evaluated architecture is refined through new iterations. Software architects (func-

tional and technical) and robotics experts are involved and conduct phases of the process.

Each phase of ArchSORS is supported by a method that describes activities to be

performed and their order of precedence. These activities are further detailed into sets of

tasks. Milestones indicate the end of a method and the completion of a key deliverable.

We described ArchSORS in SPEM (Software & Systems Process Engineering Metamodel

Specification) (OMG, 2015c), which is a standard for process representation. We also

created a method plugin in IBM Rational Method Composer1 to enable the ArchSORS

instantiation for particular projects and its integration into project management tools,

e.g., Microsoft Project2. The ArchSORS phases are detailed as follows3.

4.2.1 Phase RSA-1: Robotic Application Characterization

The design of an SORS software architecture requires the characterization of the appli-

cation (mission) in which the robotic system will be used. Therefore, robotics experts

describe the robotic application in terms of goals, main activities, as well as character-

istics of the system being developed and its operating environment. They also identify

applicable policies, rules, and constraints related to the operation of the robotic system

in this environment. Characteristics of this application are used to guide elicitation of the

SORS requirements. These requirements are then reported in a document, which is the

deliverable that indicates the end of this phase. Figure 4.2 illustrates a method containing

a set of activities to be performed in Phase RSA-1. Descriptions of these activities are

presented as follows.

RSA-A 1.1 – Initiate project activities: The main goals and characteristics of the

robotic application are defined, described, and documented. Robotics specialists organize

brainstorm meetings to identify: (i) goals related to the robotic application; (ii) activities

1http://www-03.ibm.com/software/products/en/rmc, last accessed in February 13th, 2015.
2http://www.microsoft.com/project, last accessed in February 13th, 2015.
3Additional documentation on ArchSORS is available at the process website: http://goo.gl/ykQ2d9.
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Figure 4.2: Method for the characterization of robotic applications

the robotic system should perform to achieve these goals; (v) the environment where the

robotic system will operate (indoor, outdoor or both); (iv) type of robotic system to be

developed, i.e., if the application involves a single robot, a team of robots, or a swarm;

and (v) type of robot (or types of robots) to be used, the characteristics related to its

mobility (if it will be mobile or non-mobile), how it will move through the environment,

its size, and so forth. At this point, no assumption is made on which hardware devices

will be used with the robotic system. Figure 4.3 shows the tasks of Activity RSA-1.1 and

their order precedence.

RSA-A 1.2 – Identify policies and rules: Robotic applications must conform

with applicable policies and rules to be commercialized and used. Therefore, robotics

experts and functional architects identify policies and rules related to the robotic system.

A policy, for instance, is defined by a law that regulates the operation of a given type of

robotic system. Rules are restrictions on the robotic system design and operation that

must be respected to comply with a policy. For example, to comply with a given law, the

robotic system should enforce safety by using redundant, independent sensors to measure

the distance from the objects.
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Figure 4.3: Tasks of Activity RSA-1.1

RSA-A 1.3 – Identify constraints: Based on the decisions made in Activity RSA-A

1.1, constraints related to the robotic application are identified. These constraints are

associated with both hardware requirements and real-time operation. Infrastructure re-

quirements, including battery consumption, processing power, network availability, and

robot autonomy are considered in the identification of hardware constraints. Usage sce-

narios are identified and described in the definition of real-time constraints. Afterwards,

constraints associated with these scenarios are detected and prioritized. As robotic sys-

tems are often used in safe-critical domains, real-time constraints are very important and

they must guide the rationale behind service identification and composition.

RSA-A 1.4 – Identify standards: Robotic systems may need to be certificated to

ensure compliance with policies imposed on its operation. Standards are applied to both

robotic system and its development process for the obtainment of certification. There-

fore, at this point, all standards related to the SORS are identified. Different standards

can be applied to a robotic system depending on its own characteristics and the environ-

ment where it will be used. For instance, standards as DO-178C (RTCA, 2011) should

be considered in the development of UAVs. For road vehicles, standards such as ISO

26262:2011 (ISO, 2011) are also considered very important. The adoption of standards

directly impacts on the software architecture to be designed.

RSA-A 1.5 – Define functional requirements: Based on the outcomes of the

previous activities, a set of functional requirements is elicited and a draft of a document
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is created. These requirements represent functionalities the SORS should provide to

perform the robotic application.

RSA-A 1.6 – Define quality requirements: In this activity, quality require-

ments of SORS are identified based on: (i) application goals, (ii) policies and rules, (iii)

constraints, and (iv) standards. Afterwards, robotic experts and functional architects

organize brainstorm meetings to prioritize quality requirements of the robotic system. A

quality requirement can be considered very important, important, less important, and

unimportant. Requirements considered very important are critical to the success of the

system and must be addressed. However, considering a quality requirement unimportant

does not mean it should be avoided, but designers do not need to make extra effort on

it. In order support this activity, we performed a secondary study (Oliveira et al., 2013a)

to identifying the most addressed quality requirements in the embedded system domain.

Results of this study indicate that requirements such as reliability, security, safety, and

efficiency should be considered very important. Figure 4.4 illustrates the three tasks of

Activity RSA-1.6.

Figure 4.4: Tasks of Activity RSA-1.6

RSA-A 1.7 – Document SORS requirements: A document is created based

on the functional and quality requirements elicited in the previous two activities. The

deliverable containing the SORS requirements will guide the description of the robotic

application flow and support the identification of robotic capabilities. Therefore, it should

be reviewed by all stakeholders to ensure correctness, completeness, and accordance with

the robotic application goals.

4.2.2 Phase RSA-2: Robotic Capabilities Identification

Robotics specialists and functional architects use SORS requirements to describe the ap-

plication in terms of functionalities, flow between these functionalities, and capabilities

responsible for providing them. For this, the application flow is modelled and then de-

composed into different robotic capabilities. A capability is a service candidate that may

either be available or need to be designed and developed. The taxonomy presented in

Section 3.2 can be used to identify capabilities during this phase. Other capability iden-

tification methods, such as those reported by Huergo et al. (2014), may also complement

the guidelines proposed in this phase. Figure 4.5 shows a method for guiding conduction
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of Phase RSA-2. Activities in this method are described as follows. The milestone is

represented by the completion of a document reporting the identified SORS capabilities.

Figure 4.5: Method for the robotic capability identification

RSA-A 2.1 – Model the robotic application flow: The activities of the robotic

application are identified and represented by description languages, such as UML activity

diagrams, Business Process Model and Notation (BPMN) (OMG, 2015a), and π-ADL.

The robotic application flow is described in terms of: (i) functionalities performed in

parallel; (ii) functionalities performed in sequence, i.e., that depend on the result of the

execution of previous functionalities; and (iii) functionalities based on the combination of

results from other functionalities. Thereafter, the model is reviewed for checking whether

it has fulfilled all functional and quality requirements. Figure 4.6 illustrates the sequence

of tasks performed during RSA-A 2.1.

Figure 4.6: Tasks of Activity RSA-2.1

RSA-A 2.2 – Decompose the robotic application: Based on the defined model,

the robotic application is decomposed into capabilities, which encompass a set of func-
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tionalities the robotic system will provide. According to the taxonomy of services for

SORS (see Section 3.2), capabilities identified in this activity are mainly related to: (i)

device drivers, (ii) robotics tasks, (iii) knowledge, and (iv) robotic agents. The latter type

is often identified in multi-robotic applications and swarms, where different robots must

interact with each other.

RSA-A 2.3 – Identify available capabilities: Robotics experts investigate avail-

able capabilities that can be reused. These capabilities are identified from different

sources: (i) robotic systems developed in previous projects; (ii) development environments,

as ROS and MRSD, which provide a set of native services for SORS; (iii) repositories of

services for SORS, as RoboSeT (see Section 3.3) and ROS Wiki; and (iv) general purpose

repositories (e.g., service brokers) from which functionalities considered non-critical can

be remotely accessed. Notice capabilities identified with the support of the service tax-

onomy can be directly searched by using RoboSeT. Figure 4.7 shows the tasks performed

during activity RSA-A 2.3.

Figure 4.7: Tasks of Activity RSA-2.3

RSA-A 2.4 – Identify assets that can be wrapped: Additionally to the available

capabilities, previous projects of non-service-oriented robotic systems are investigated for

identifying assets to be provided as capabilities. These assets are packages, software

modules, legacy applications, and algorithms (e.g., for localization and mapping) that

can be wrapped and then provided as services for the robotic system.

RSA-A 2.5 – Identify assets that can be refactored: Assets useful for the

robotic system but that can not be provided directly as robotic capabilities should also

be identified. These assets must be refactored in order to be reused as capabilities of

the robotic system. For instance, a mapping algorithm tangled into a robotic control

system developed in a previous project can be refactored to be used as an independent,

self-contained service.

86

Architectural design of service-oriented robotic systems Lucas Bueno Ruas de Oliveira 2015



Chapter 4. A Process for the Development SORS Software Architectures

RSA-A 2.6 – Rationalize capabilities: Capabilities necessary for developing the

robotic system are compared to the ones available for reuse. Discussions are made to

decide which capabilities will be exposed as services (service components) and which

capabilities will be provided as components (technical components) that support these

services. The decision is made taking into account the quality requirements defined in

the previous phase, as it can directly affect the achievement of quality attributes, such

as performance, safety, and dependability. As a result, a document is created to report:

(i) capabilities related to the robotic application; (ii) functionalities provided by each

capability; (iii) architectural elements used to provide each capability; and (iv) design

rationale behind the decisions. Figure 4.8 shows the tasks performed during activity

RSA-A 2.6.

Figure 4.8: Tasks of Activity RSA-2.6

4.2.3 Phase RSA-3: Robotic Architecture Modeling

Services and technical components that will expose the robotic capabilities are described,

modelled, and composed. Functional architects create and document different models

to represent interfaces, contracts, participants, as well as relationships among services

and between services and their technical components. These models are designed based

on constraints and quality attributes that each service should comply with. Figure 4.9

illustrates a method to conduct Phase RSA-3. Activities of this method are described as

follows. The SORS functional architecture is the resulting deliverable document and its

development represents a project milestone.

RSA-A 3.1 – Specify robotics services: The document that contains information

on the robotic capabilities is updated and roles played by each service are described in de-
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Figure 4.9: Method for the robotic architecture modelling

tails. The resulting document links requirements of the robotic system to the requirements

provided by each service.

RSA-A 3.2 – Model robotics services: Functional architects design the services

of the robotic system. As mentioned before, different types of ADLs can be used to de-

scribe interfaces, contracts, and functionalities in the software architecture. SoaML and

π-ADL are, respectively, examples of semi-formal and formal languages to this purpose.

Figure 4.10 shows the tasks performed during activity RSA-A 3.2. In SORS, service in-

terfaces are associated with contracts that usually enforce three types of interaction: (i)

synchronous Remote Procedure Call (RPC), used to request simpler functionalities, as

obtaining of the instant position of the robot; (ii) asynchronous RPC, which enables the

request of more complex functionalities, as navigation between positions in the environ-

ment; and (iii) service subscription, which is a long-term interaction commonly established

to obtain data from sensors. In a service subscription, the service client implements a han-

dler method to receive notifications from its service provider. These notifications can be

either periodic (e.g., measures of a laser sensor) or event-driven (e.g., a bumper being

pressed).
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Figure 4.10: Tasks of Activity RSA-3.2

RSA-A 3.3 – Define service constraints: To ensure compliance with the overall

robotic system constraints, each service must guarantee its individual set of constraints.

The clear description of constraints at architectural level is crucial for the determination

of the participant (i.e., concrete service) that will provide a given service. Therefore,

the document of capabilities is updated with information about the constraints of each

robotics service in the software architecture.

RSA-A 3.4 – Describe quality attributes: The quality attributes of all services in

the software architecture are defined according to the quality requirements of the robotic

system and services constraints identified in the previous activity. This information is

included in the document of capabilities to describe how functionalities of robotics services

should be provided.

RSA-A 3.5 – Define services composition: The composition of robotics services

is defined according to obligations of consumers and providers established in the service

contracts. Moreover, important details concerning interactions among service partners

are described, such as services to be deployed in the same infrastructure (e.g., in the

same server). This information will be used to support decisions made during the design

of the technical architecture described in the next phase. Models such as SoaML Service

Architecture diagram can be used to represent relationships among services in the software

architecture.

RSA-A 3.6 – Specify robotics components: Robotics services are often abstrac-

tions of functionalities provided by the coordination of one or more technical components,

i.e., robotic capabilities not directly exposed as services. Therefore, relationships between

services and their technical components are described and modelled by using different

types of representations, e.g., UML component diagrams.

RSA-A 3.7 – Document SORS functional architecture: The document of ca-

pabilities is again updated with all the developed models, the design rationale applied in
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the modelling, and all useful information regarding the functional and quality aspects of

the robotic system. The resulting document reports the SORS functional architecture to

be used as input for the following phase.

4.2.4 Phase RSA-4: Robotic Architecture Detailing

Software architects and robotics experts design the SORS technical architecture by detail-

ing its functional architecture in terms of software modules, technologies, and hardware

devices to be used to develop services of the system. Figure 4.11 shows the method that

guides conduction of this phase. Descriptions of activities in the method are presented as

follows. The completion of the SORS technical architecture document is the milestone of

Phase RSA-4.

Figure 4.11: Method for the robotic architecture detailing

RSA-A 4.1 – Design of new components: Services unavailable for reuse that

must be developed are further described and represented. Different models, including

state and sequence diagrams, can be created by architects to illustrate both design and

runtime aspects of the services. The internal structure of the services can be represented

by ordinary object-oriented (OO) modelling and different design patterns.

RSA-A 4.2 – Design of refactored components: Services that provide capabili-

ties from existing robotics assets are designed with the support of refactoring techniques

available in the literature (Mens and Tourwe, 2004). Therefore, software architects analyse

the documentation and the source code of these assets to create new diagrams representing

the components to be refactored for the robotic system.
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RSA-A 4.3 – Rationalize technical decisions: Technical architects and robotics

experts decide on hardware infrastructures and implementation strategies (e.g., types of

algorithms) to be used during the robotics services realization. Furthermore, decisions are

made on how the services of the robotic system will be deployed, i.e., which services must

be locally provided (inside the robot) and which services can be remotely used (outside

the robot). These decisions are supported by information on concerns and quality require-

ments (e.g., reliability, performance, and security) described in the functional architecture

document. As a result, a document reporting the rationale behind service concretization

is created. Figure 4.12 illustrates the tasks performed during Activity RSA-A 4.3.

Figure 4.12: Tasks of Activity RSA-4.3

RSA-A 4.4 – Detail SORS concrete architecture: Finally, the overall structure

of the functional architecture is described in a document containing all information related

to its design. Textual descriptions of the diagrams and design decisions are documented.

Additional views of the architecture, such as deployment view, can be also created.

4.2.5 Phase RSA-5: Robotic Architecture Evaluation

The SORS software architecture is evaluated for ensuring its compliance with requirements

and constraints of the system. Moreover, the architectural description itself is evaluated

to identify and eliminate defects related to omission, ambiguity, inconsistency, as well as

strange and incorrect information. Different evaluation methods for assessing software

architectures already exist in the literature, e.g., inspection check lists and scenario-based

methods. Section 2.2.4 discussed several studies that can be used to this purpose. Since

evaluation methods are not mutually exclusive, they can be applied in a complementary

manner. As a result, a more reliable software architecture can be achieved. Figure 4.13

shows activities to be performed in the evaluation of SORS software architectures.
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Figure 4.13: Method for robotic architecture evaluation

4.3 Experimental Evaluation of ArchSORS

In order to evaluate ArchSORS, we performed a controlled experiment with students en-

rolled in a preparatory course for the French national robotics competition4. This exper-

imental study aimed at checking whether ArchSORS could design software architectures

with higher quality than those currently developed in an ad hoc manner, i.e., without

considering quality attributes such as reusability, modifiability, and maintainability. We

carried out our study using the systematic process proposed by Wohlin et al. (2012),

which divides an experiment into five phases: (i) scoping, (ii) planning, (iii) operation,

(iv) analysis and interpretation, (v) and presentation.

4.3.1 Scope of the Experiment

The objective of our experimental study was outlined by the Goal, Question, Metric

template (GQM) (Basili et al., 1999). According to this template, the experiment had the

objective of analysing ArchSORS for the purpose of evaluation with respect to modularity,

coupling, and cohesion of the SORS software architectures from the point of view of the

professor and researchers in the context of a preparatory course for a national robotics

competition. Based on this goal, we established four research questions (RQ):

❼ RQ 1: Can ArchSORS produce SORS software architectures of higher modularity

than that of architectures developed in an ad hoc manner?

❼ RQ 2: Can ArchSORS produce less coupled SORS software architectures than

those currently developed in an ad hoc manner?

4www.robafis.fr, last accessed in February 12th, 2015.
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❼ RQ 3: Can ArchSORS produce SORS software architectures less dependent on the

control service than those currently developed in an ad hoc manner?

❼ RQ 4: Can ArchSORS produce more cohesive SORS software architectures than

those currently developed in an ad hoc manner?

In this experiment, we have considered modularity, coupling, and cohesion as indica-

tors of quality since they can affect not only the aforementioned quality attributes, but

also other attributes such as buildability and complexity (Galster et al., 2008). We also

considered that SORS software architectures that are strongly dependent (i.e., coupled)

of coarse-grained control services tend to be less maintainable and reusable.

4.3.2 Planning the Experiment

The experiment was performed in the context of a Software Engineering for Robotics

course at a French national Engineering School. During the course, 30 students of the

second and third years (equivalent to fourth and fifth years at a University) of Computer

Engineering and Automation Engineering were trained to participate in a robotics com-

petition. Students (hereafter referred to as subjects) were chosen by convenience, as they

had prior knowledge on both robotics and SOA and represented a sample from possible

robotics developers. We randomly split the subjects into two groups: (i) one to design

the software architecture of an SORS using ArchSORS and (ii) another to design it in an

ad hoc manner (i.e., the Control group). Four hypotheses were defined in our experiment,

one for each research question. These hypotheses are formally described as follows:

1. Modularity improvement:

Null hypothesis, H0: There is no difference in the modularity (Mod) of SORS

software architectures designed using ArchSORS and architectures designed in an

ad hoc manner, i.e., H0: Mod(ArchSORS) = Mod(Control).

Alternative hypothesis, H1: Mod(ArchSORS) > Mod(Control).

2. Coupling reduction:

Null hypothesis, H0: The coupling (Coup) of SORS software architectures designed

using ArchSORS and architectures designed in an ad hoc manner are the same, i.e.,

H0: Coup(ArchSORS) = Coup(Control).

Alternative hypothesis, H1: Coup(ArchSORS) < Coup(Control).
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3. Control service dependency reduction:

Null hypothesis, H0: Services of SORS are usually strongly connected to the main

service in the architecture, called control. Software architectures designed using

ArchSORS show the same dependency from the control service (Depmax) of archi-

tectures designed in an ad hoc manner. Formally,

H0: Depmax(ArchSORS) = Depmax(Control).

Alternative hypothesis, H1: Depmax(ArchSORS) < Depmax(Control).

4. Cohesion improvement:

Null hypothesis, H0: There is no difference in the cohesion (Coh) of SORS software

architectures designed using ArchSORS and architectures designed in an ad hoc

manner. Formally,

H0: Coh(ArchSORS) = Coh(Control).

Alternative hypothesis, H1: Coh(ArchSORS) > Coh(Control).

We adopted four metrics (i.e., dependent variables) to test our hypotheses: (i) Modu-

larity Factor (MF); (ii) Coupling Factor (CpF); Max Connections per Component (Max

CpC); and (iv) Cohesion Factor (CF). Metrics MF, CpF, and CF were proposed by Gal-

ster et al. (2008), which provide the most validated set of metrics for the prediction of

quality in software architectures we have found in the literature. Metric Max CpC was

proposed by ourselves, aiming at investigating the tendency of designers to concentrate

most functionalities of SORS inside the control service, which can cause reuse and main-

tainability problems. These four metrics range from zero to one. For metrics MF and CF,

the higher the result, the better they are (i.e., more modular and more cohesive). For

metrics CpF and Max CpC, the lower the result, the better they are (i.e., less coupled and

less dependent on a single component). A brief and informal description of these metrics

is provided as follows. Further details and usage examples can be found in (Galster et al.,

2008).

❼ Modularity Factor (MF): describes the degree at which the system is composed

of independent services, such that a change in one service exerts a minimal impact

on the others. This metric is computed (in its non-normalized form) by dividing the

number of requirements by the number of services in the architecture;

❼ Coupling Factor (CpF): measures the strength of association established by a

connection between two architecture artifacts, i.e., the degree of interdependence

between services. Coupling is calculated by summing the number of connections
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of all pair-wise sets of services in the architecture and dividing it by the difference

between the square of the number of requirements and the number of requirements;

❼ Max Connections per Component (Max CpC): expresses the degree of depen-

dency between the most coupled service in the architecture and the other services,

i.e., it indicates how changes in the main component can impact the whole sys-

tem; and

❼ Cohesion Factor (CF): estimated how requirements and tasks are related within

a service. This is expressed by the ratio between the maximal possible (theoretical)

number of dependencies among requirements within a service and the actual number

of dependencies.

We have used the structural view of the software architecture, described by a UML

component diagram, to calculate these metrics. In this diagram, services were represented

by components and service usages by dependency connectors. We also implemented a

script to automate the metric computation and reduce possible human mistakes.

4.3.3 Experiment Operation

The experiment was divided into two parts and conducted in a single day. In the first part,

subjects received training and performed a pilot study similar to the experiment. The

group using ArchSORS was trained on how to design SORS according to the process and

SoaML. The control group received a review on how to create models using UML. In the

pilot study, both groups were asked to design an architecture of a robotic system proposed

in a previous edition of the RobAFIS competition. Doubts and misunderstandings on the

experiment were then clarified. Since subjects were free to decide on their participation

in the experiment, four of them did not attend the second part. As a consequence, the

amount of subjects in the group that used ArchSORS was reduced from 15 to 11. However,

we decided to leave the groups unbalanced as subjects in the control group did not receive

training on ArchSORS.

In the second part, we performed the controlled experiment. The two groups of sub-

jects received the specification of an extended, more complex version of a RobAFIS project

(see Appendix B). As in the pilot study, they also received the document of requirements

associated with the project. As expected outcome, subjects had to provide: (i) three

diagrams and (ii) a table containing the description and the list of requirements related

to each service. Subjects in ArchSORS group were asked to design a BPMN model, an

SoaML Capability diagram, and a UML Component diagram representing the Service Ar-

chitecture. In the control group, subjects were free to choose two diagrams they considered
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most pertinent, plus a UML component diagram. No limit of time was imposed during

the experiment conduction. After the experiment execution, all data were validated to

eliminate possible mistakes.

4.3.4 Analysis and Interpretation of Results

A summary of the results obtained by the subjects in the four metrics (MF, CpF, Max

CpC, and CF) is shown in Table 4.1. Subjects of ArchSORS group are indicated by

the letter ‘P’ and the ones in the control group by the letter ‘C’. For analysing these

data, we applied descriptive statistics. Table 4.2 shows the mean, median, minimum

value (Min), maximum value (Max), and standard deviation (SD) of the results obtained

by the subjects in both groups. Figure 4.14 shows the box plots for the four evaluated

metrics.

Table 4.1: Summary of the experiment results

ArchSORS process
Subject MF CpF Max CpC CF

P01 0.500 0.145 0.328 0.596
P02 0.333 0.198 0.389 0.648
P03 0.333 0.148 0.296 0.526
P04 0.310 0.154 0.333 0.516
P05 0.238 0.200 0.556 0.541
P06 0.405 0.143 0.256 0.770
P07 0.333 0.143 0.538 0.765
P08 0.429 0.137 0.333 0.485
P09 0.238 0.200 0.556 0.400
P10 0.310 0.192 0.467 0.547
P11 0.286 0.220 0.345 0.600

Control (ad hoc)
Subject MF CpF Max CpC CF

C01 0.143 0.400 0.667 0.155
C02 0.286 0.167 0.818 0.282
C03 0.214 0.222 0.875 0.335
C04 0.214 0.222 0.750 0.256
C05 0.190 0.250 1.000 0.232
C06 0.214 0.222 1.000 0.259
C07 0.238 0.222 0.900 0.352
C08 0.190 0.464 0.615 0.234
C09 0.238 0.200 0.889 0.294
C10 0.214 0.222 0.500 0.231
C11 0.262 0.182 1.000 0.342
C12 0.214 0.222 0.875 0.330
C13 0.214 0.222 0.875 0.289
C14 0.214 0.278 0.900 0.318
C15 0.238 0.222 0.700 0.413
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Table 4.2: Experimental results of the metrics in the two treatments

Metric Treatment Mean (x) Median (x̃) Max Min SD (σ)

MF
ArchSORS 0.337 0.333 0.500 0.238 0.079
Control 0.218 0.214 0.286 0.143 0.032

CpF
ArchSORS 0.170 0.154 0.220 0.137 0.031
Control 0.248 0.222 0.464 0.167 0.080

Max CpC
ArchSORS 0.400 0.345 0.566 0.256 0.110
Control 0.824 0.880 1.000 0.500 0.149

CF
ArchSORS 0.581 0.547 0.770 0.400 0.112
Control 0.288 0.290 0.413 0.155 0.062

●

●

●

ArchSORS Control

0
.1

5
0

.2
5

0
.3

5
0

.4
5

M
o

d
u

la
ri

ty
 F

a
c
to

r 
(M

F
) ●

●

●

●

●

ArchSORS Control

0
.1

5
0

.2
5

0
.3

5
0

.4
5

C
o

u
p

lin
g

 F
a

c
to

r 
(C

p
F

)

ArchSORS Control

0
.4

0
.6

0
.8

1
.0

M
a

x
 C

. 
p

e
r 

c
o

m
p

o
n

e
n

t 
(M

a
x
 C

p
C

)

ArchSORS Control

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

C
o

h
e

s
io

n
 F

a
c
to

r 
(C

F
)

Figure 4.14: Box plots of the results for MF, CpF, Max CpC, and CF

Subjects of ArchSORS group developed their SORS software architecture with higher

modularity and cohesion. The mean values of CpF and Max CpC also indicate these

architectures were less coupled and dependent from the control service, which suggests

a positive influence of ArchSORS on the development of SORS software architectures.

We applied a statistical test to ensure that the differences between the means of the two

treatments were significant and not caused by chance. For identifying the proper test,
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we first analysed the data distribution. Histograms shown in Figure 4.15 indicate that

data were not normally distributed, which is confirmed by the normal probability plots

illustrated in Figure 4.16. In a normal probability plot (chi-square test), deviations from

the straight line indicate lack of data normality (Wohlin et al., 2012).
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Figure 4.15: Histogram of the results

●

● ●

●

●

●

●

●

●

●

●

−1.5 −0.5 0.5 1.5

0
.2

5
0

.3
5

0
.4

5

MF (ArchSORS)

Theoretical Quantiles

S
a

m
p

le
 Q

u
a

n
ti
le

s

●

●

● ●

●

● ● ●

●

●

●

−1.5 −0.5 0.5 1.5

0
.1

4
0

.1
8

0
.2

2 CpF (ArchSORS)

Theoretical Quantiles

S
a

m
p

le
 Q

u
a

n
ti
le

s

●

●

●

●

●

●

●

●

●

●

●

−1.5 −0.5 0.5 1.50
.2

5
0

.3
5

0
.4

5
0

.5
5

Max CpC (ArchSORS)

Theoretical Quantiles

S
a

m
p

le
 Q

u
a

n
ti
le

s

●

●

●
●

●

●
●

●

●

●

●

−1.5 −0.5 0.5 1.5

0
.4

0
.5

0
.6

0
.7

CF (ArchSORS)

Theoretical Quantiles

S
a

m
p

le
 Q

u
a

n
ti
le

s

●

●

● ●

●

●

●

●

●

●

●

● ● ●

●

−1 0 1

0
.1

5
0

.2
0

0
.2

5

MF (Control)

Theoretical Quantiles

S
a

m
p

le
 Q

u
a

n
ti
le

s

●

●

● ●

●

● ●

●

●

●

●

● ●

●

●

−1 0 1

0
.2

0
0

.3
0

0
.4

0

CpF (Control)

Theoretical Quantiles

S
a

m
p

le
 Q

u
a

n
ti
le

s

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

−1 0 1

0
.5

0
.7

0
.9

Max CpC (Control)

Theoretical Quantiles

S
a

m
p

le
 Q

u
a

n
ti
le

s

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−1 0 10
.1

5
0

.2
5

0
.3

5

CF (Control)

Theoretical Quantiles

S
a

m
p

le
 Q

u
a

n
ti
le

s

Figure 4.16: Normal probability plot of the results

As the data were skewed and the two sample sizes were unequal, the most appropri-

ate statistical test is Mann-Whitney (Wohlin et al., 2012). Results obtained from the

application of this test show a statistically significant difference, with P-Value < 0.001
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(one-tailed error), between the medians of metrics MF, CpF, Max CpC, and CF for the

development using ArchSORS and the development in ad hoc (Control). Therefore, the

null hypotheses that the differences between the medians arose due to sampling effects

can be rejected in favour of the alternative hypotheses that the adoption of ArchSORS

has positive influence on the quality of SORS software architectures.

4.4 Discussion and Threats to Validity

Results of the experiment indicate that ArchSORS can support the design of SORS soft-

ware architectures of higher quality. Galster et al. (2008) advocate the metrics we adopted

in our study impact on different quality attributes, such as modifiability, reusability, com-

plexity, and buildability. Modifiability expresses cost of change and probability of change

propagation. Software architectures that are more modular and cohesive can be more

easily modified (Galster et al., 2008; Pressman, 2001). Similarly, an architecture that

presents good modularization and whose services are designed with a well-defined objec-

tive (highly cohesive) is more likely to be reusable. A low degree of coupling goes along

with independent artifacts and also leads to a higher chance of later reuse. Complexity de-

scribes the degree at which an architecture can be handled intellectually. Higher coupling

usually involves more complex interfaces, which leads to higher complexity (Galster et al.,

2008). Buildability enables systems to be completed in a timely manner and its improve-

ment is related to the ability of maximizing parallelism that can occur in development.

Additionally, high cohesion facilitates construction of individual artifacts and a system

that is more modularized can be assigned to more development teams. These design-time

attributes, along with the four metrics, can also impact on runtime quality attributes like

availability, reliability, and performance. However, determining the impact of ArchSORS

in runtime quality attributes demands long-term studies, such as evaluations through case

studies.

We were aware of possible threats to the validity of our experiment and tried to

mitigate them. For avoiding problems of internal validity, we decided to perform the ex-

periment in a single day, keeping the two groups separated during the conduction. This

measure aimed at avoiding communication among subjects. Moreover, to motivate par-

ticipation of subjects and, at the same time, avoid competition, the professor proposed

grades for the commitment of the students, rather than for their results. As we decided to

perform the experiment in a single day, some activities of ArchSORS had to be simplified

or omitted, which could result in a threat to construction validity. Nevertheless, even a

simplified version of ArchSORS was able to positively impact on the quality of the SORS

architectures. For reducing possible issues associated with the conclusion validity, we
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carefully chose the statistical test and number of subjects. The main threat of our study

is related to the external validity, because of the choice of students as subjects instead of

professionals. However, obtaining the commitment of a comprehensive amount of profes-

sionals for our experiment was a very difficult and cost expensive choice. Subjects that

participated in our study had competencies on both robotics and SOA and represented

the population usually associated with the development of SORS, i.e., the researchers in

academia. Therefore, we believe our results are still valid.

4.5 Final Remarks

This chapter presented ArchSORS, a systematic process for designing SORS software

architectures. The establishment of this process was based on consolidated guidelines to

design software architectures, SOA-based systems, and robotic systems. Each phase of

ArchSORS was detailed by a method represented in SPEM notation. Finally, the impact

of ArchSORS on the quality of SORS software architectures was evaluated in a controlled

experiment.

The contributions of this chapter are threefold: (i) a process that positively impacts

on coupling, cohesion, and modularity of SORS software architectures and, consequently,

improves the overall quality of their resulting systems; (ii) a SPEM method plugin that

enables the instantiation of this process for particular projects, as well as the monitoring of

its activities directly into project management tools; and (iii) an experimental evaluation

of ArchSORS, including the use of metrics to an early assessment of software architectures.

The next chapter describes a reference architecture established to facilitate the application

of ArchSORS in the design of indoor grounded mobile SORS.
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Chapter

5

A Reference Architecture for Indoor

Grounded Mobile SORS

5.1 Overview

The development of SORS involves integration and coordination of functionalities designed

by multiple teams in different contexts. A common understanding on how to structure

SORS software architectures is, therefore, fundamental to the success of these systems.

Reference architectures are recognized as important assets for improving communication,

promoting standardization, and reducing design complexity of software architectures. Al-

though several reference architectures for robotics exists, none of them support the design

of robotic systems based on SOA. Therefore, the proposal of a reference architecture for

SORS would facilitate the development of such systems and contribute to the consolida-

tion of SOA in robotics.

This chapter reports on the establishment of RefSORS (Reference Architecture for

Service-Oriented Robotic Systems), a reference architecture for indoor grounded mobile

SORS. This reference architecture is aligned with the ArchSORS process and aims at

facilitating the application of its phases. RefSORS is focused on indoor grounded appli-

cations because most of robotic systems based on SOA are intended for this particular

type of environment (see Section 2.4.5, Research Question 5). We adopted the ProSA-RA

process described in Section 2.2.2 to guide the establishment of RefSORS. The conduction
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of this process was supported by the RAModel reference model, as it provides a broad list

of elements that a reference architecture should encompass.

The organization of this chapter follows the steps of ProSA-RA. Section 5.2 details

the sources of information used to establish RefSORS. Section 5.3 reports on the require-

ments of the reference architecture elicited from these information sources. Section 5.4

describes architectural views of RefSORS. Finally, Section 5.5 presents a case study on

the development of a SORS using RefSORS in conjunction with ArchSORS.

5.2 Step RA-1: Information Source Investigation

The first step to establish our reference architecture was to identify information sources

to be used in the elicitation of requirements. We considered four sets of sources regarding

robotics and SOA: Set 1 – Service-oriented robotic systems identified in the literature;

Set 2 – Guidelines to the development of service-oriented systems; Set 3 – Reference

architectures for robotic systems; and Set 4 – Control architectures of the robotics domain.

Following the guidelines proposed by ProSA-RA, we also used results of systematic reviews

to identify information sources in Sets 1, 2, and 3 (Feitosa and Nakagawa, 2012; Oliveira

et al., 2010, 2013b). The sets of information sources considered in this step are detailed

as follows:

Set 1 – Service-oriented robotic systems: The main concern of our reference ar-

chitecture is to understand and represent the knowledge on how to structure SORS

software architectures. We investigated 39 studies on the development of SORS that

were identified in the first iteration of the systematic review detailed in Section 2.4.5.

As result, we elicited the types of services related to the creation of such systems and

described them into a taxonomy (see Section 3.2). The types of services were then

organized into five groups, considered the as concepts of robotics in our reference

architecture: (i) Device driver, (ii) Task, (iii) Knowledge management, (iv) Robotic

agent, and (v) Robotic application. Additionally, we analyzed the SORS software

architectures available in the studies to comprehend how the types of services within

the groups are related to each other;

Set 2 – Guidelines to the development of service-oriented systems: Reference

models and reference architectures for SOA encompass the knowledge on how to

design service-oriented systems. Therefore, these assets can be basis for the es-

tablishment of other domain-specific reference architectures. We used a systematic

review on reference models and reference architectures for SOA, conducted in a pre-

vious work (Oliveira et al., 2010), as a starting point for the identification of concepts
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associated with service-orientation. We also revisited the literature to obtain guide-

lines published more recently, such as the SOA-RA technical standard (The Open

Group, 2015). Particular attention has been paid to the S3 and OASIS reference

architectures, as they are considered the most consolidated ones (see Section 2.3.3).

As a result, we identified the main concepts related to SOA for our reference ar-

chitecture: (i) Service description, (ii) Service publication, (iii) Service interaction,

(iv) Service composition, and (v) Quality of service;

Set 3 – Reference architectures for the robotics domain: Reference architectures

support the reuse of design expertise in the development of a set of software sys-

tems of a similar domain. Therefore, we investigated seven reference architectures

for mobile robotic systems identified by the systematic review reported in (Feitosa

and Nakagawa, 2012). The following functionalities of mobile robotic systems were

identified: sensor data processing, control, collision detection, mapping, localiza-

tion, planning, user interaction, communication, decision judgement, and robots

interaction. Notice all of these functionalities were encompassed by the concepts

already identified in Set 1, which evidences that such concepts are comprehensive

enough for representing the main characteristics of robotics domain. Although any

additional concept of robotics was identified in Set 3, functionalities reported by

reference architectures in the systematic review were important for the elicitation

of requirements described in the next section; and

Set 4 – Control architectures of the robotics domain: Another important source

of information considered in the establishment of our reference architecture is the set

of control architectures available in the robotics literature. Although RefSORS is fo-

cused on how robotic systems are composed using services rather than on how robots

are controlled, these architectures describe the different manners that modules of

robotic systems can be structured and communicate. Particularly, we investigated

the overall structure of deliberative, reactive, and hybrid control architectures dis-

cussed in Section 2.4.2, as well as examples of their implementations reported in

(Dudek and Jenkin, 2010; Romero et al., 2014).

5.3 Step RA-2: Architectural Analysis

The architectural requirements of RefSORS were elicited based on the sources of infor-

mation identified in the previous step. An architectural requirement is a requirement of

a reference architecture that describes the common functionalities of a class of systems

of a given domain (Nakagawa et al., 2014). During the design of concrete architectures

from reference architectures, each architectural requirement will be instantiated as one or
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more system requirements, depending on the context of development and the stakeholders’

concerns. We identified 43 architectural requirements for our reference architecture and

classified them into two groups: requirements of the robotics domain and requirements

related to SOA.

5.3.1 Architectural Requirements of Robotics Domain

The Architectural Requirements of the Robotics domain (AR-R) were obtained by analysing

the information sources described by Sets 1, 3, and 4. They represent functionalities that

a reference architecture must encompass to enable the design of indoor grounded mobile

robotic systems. The requirements related to the robotics domain are presented as follows:

AR-R [1]: The reference architecture must enable the development of robotic systems

able to perform different types of activities in indoor environments;

AR-R [2]: The reference architecture must enable the development of robotic systems

able to perform activities in both structured and dynamic environments;

AR-R [3]: The reference architecture must enable the development of robotic systems

able to coordinate a single robot, multiple robots, and swarms;

AR-R [4]: The reference architecture must enable the development of robotic systems

able to coordinate both homogeneous and heterogeneous teams of robots;

AR-R [5]: The reference architecture must enable the development of robotic systems

able to perform activities in different ways, by adapting their behaviour at runtime;

AR-R [6]: The reference architecture must enable the development of robotic systems

that can be deployed in different robotic platforms;

AR-R [7]: The reference architecture must enable the development of robotic systems

based on different control architectures, such as reactive, deliberative, and hybrid;

AR-R [8]: The reference architecture must enable the development of robotic systems

with different levels of autonomy, such as teleoperated, semi-autonomous, and au-

tonomous;

AR-R [9]: The reference architecture must enable the development of robotic systems

with different levels of criticality;

AR-R [10]: The reference architecture must enable the development of robotic systems

able to communicate with a back-end server;
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AR-R [11]: The reference architecture must enable the development of robotic systems

that support the communication among robots;

AR-R [12]: The reference architecture must enable the development of robotic systems

able to communicate with humans in the environment;

AR-R [13]: The reference architecture must enable the development of robotic systems

able to manipulate objects inside the environment using different strategies;

AR-R [14]: The reference architecture must enable the development of robotic systems

able to perform localization using different strategies;

AR-R [15]: The reference architecture must enable the development of robotic systems

able to navigate in the environment using different strategies;

AR-R [16]: The reference architecture must enable the development of robotic systems

able to plan local and global paths using different strategies;

AR-R [17]: The reference architecture must enable the development of robotic systems

able to map the environment using different strategies and maps representations,

such as topological and metric;

AR-R [18]: The reference architecture must enable the development of robotic systems

able to map the environment cooperatively, i.e., by using data acquired from different

robots;

AR-R [19]: The reference architecture must enable the development of robotic systems

whose tasks, such as image segmentation, can be processed inside robots or remotely

by a back-end server;

AR-R [20]: The reference architecture must enable the development of robotic systems

able to produce and store information using data acquired from the environment;

AR-R [21]: The reference architecture must enable the development of robotic systems

whose robotic agents can share information among them;

AR-R [22]: The reference architecture must enable the development of robotic systems

able to store and acquire information in/from a back-end computer;

AR-R [23]: The reference architecture must enable the development of robotic systems

able to acquire information from sources outside the environment, such as Web

services and machine-readable Wikis;
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AR-R [24]: The reference architecture must enable the development of robotic systems

that can coordinate, monitor, and acquire data from different types of sensors;

AR-R [25]: The reference architecture must enable the development of robotic systems

able to acquire data from sensors spread over the environment;

AR-R [26]: The reference architecture must enable the development of robotic systems

able to share sensor data among different robots;

AR-R [27]: The reference architecture must enable the development of robotic systems

that can coordinate and monitor different types of resources, such as battery and

processor;

AR-R [28]: The reference architecture must enable the development of robotic systems

able to share information about resources state (e.g., battery state of charge) among

its robots;

AR-R [29]: The reference architecture must enable the development of robotic systems

that can coordinate and monitor different types of actuators;

AR-R [30]: The reference architecture must enable the development of robotic systems

that can interact with actuators spread over the environment;

AR-R [31]: The reference architecture must allow the development of robotic systems

by its partial instantiation, i.e., functional robotic systems can be designed using

only part of the services of the reference architecture; and

AR-R [32]: The reference architecture must allow the development of robotic systems

that are compliant with applicable laws and standards.

These architectural requirements are directly related to the concepts of robotics de-

scribed in the previous step (see Section 5.2). The mapping shown in Table 5.1 is impor-

tant to bridge the architectural requirements and the reference architecture description

detailed in Section 5.4, which is based on the concepts of the domain. Requirements

related to the reference architecture itself are referred in the table as “General”.

5.3.2 Architectural Requirements of SOA

Additionally to requirements from robotics domain, we also identified 11 Architectural

Requirements related to SOA (AR-S). These requirements were elicited from the infor-

mation sources reported in Set 2 and describe characteristics that a reference architecture

must encompass to enable the design of software modules of robotic systems as services.

The list of this requirements is presented as follows.
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Table 5.1: Mapping of architectural requirements into concepts of robotics

Concept of robotics Architectural requirements

Robotic Application AR-R [1], AR-R [2], AR-R [3], AR-R [4], AR-R [5]
Robotic Agent AR-R [6], AR-R [7], AR-R [8], AR-R [9]
Task AR-R [10], AR-R [11], AR-R [12], AR-R [13], AR-R [14],

AR-R [15], AR-R [16], AR-R [17], AR-R [18], AR-R [19]
Knowledge AR-R [20], AR-R [21], AR-R [22], AR-R [23]
Device Driver AR-R [24], AR-R [25], AR-R [26], AR-R [27], AR-R [28],

AR-R [29], AR-R [30]
General AR-R [31], AR-R [32]

AR-S [1]: The reference architecture must enable the development of services for SORS

that provide normative descriptions related to their correct use;

AR-S [2]: The reference architecture must enable the development of services for SORS

that provide semantic descriptions for their classification in service repositories;

AR-S [3]: The reference architecture must enable the development of services for SORS

that can be published and discovered by service consumers;

AR-S [4]: The reference architecture must enable the development of services for SORS

that can be invoked directly or through mediators;

AR-S [5]: The reference architecture must enable the development of services for SORS

able to evolve without affecting their interaction with service consumers;

AR-S [6]: The reference architecture must enable the development of SORS composed

by the orchestration of services into business processes;

AR-S [7]: The reference architecture must enable the development of SORS that result

from the collaboration of services in a choreography;

AR-S [8]: The reference architecture must enable the development of SORS that are

scalable and can incrementally evolve through the addition of new services;

AR-S [9]: The reference architecture must enable the development of SORS that can

be composed by other systems or used by client applications;

AR-S [10]: The reference architecture must enable the development of SORS that

encompass or are able to use mechanisms to capture, monitor, log, and signal

non-compliance with quality requirements; and

AR-S [11]: The reference architecture must enable the development of services for

SORS that contain information related to their quality characteristics.
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Table 5.2 shows the mapping between the architectural requirements related to SOA

and their associated concepts identified in the previous step (see Section 5.2).

Table 5.2: Mapping of architectural requirements into concepts of SOA

Concept of SOA Architectural requirements

Service Description AR-S [1], AR-S [2], AR-S [11]
Service Publication AR-S [2], AR-S [3]
Service Interaction AR-S [4], AR-S [5], AR-S [6], AR-S [7],
Service Composition AR-S [6], AR-S [7], AR-S [8], AR-S [9]
Quality of Service AR-S [10], AR-S [11]

All architectural requirements and concepts identified in this step are inputs to build

the architecture description of RefSORS.

5.4 Step RA-3: Architectural Synthesis

Architectural descriptions are important resources of reference architectures used to trans-

mit knowledge of the domain to different stakeholders. An adequate representation of

this knowledge should be documented in different levels of abstraction and according

to multiple architectural views. RefSORS is described by combining informal notation

and the semi-formal languages SoaML and UML. It encompasses five architectural views:

(i) Conceptual view, which provides a general overview of interactions among the con-

cepts associated with SORS; (ii) Capability view, which represents functionalities related

to these concepts in terms of robotic capabilities; (iii) Service Interface and Contracts

view, which represents capabilities in terms of software elements; (iv) Service Architec-

ture view, which illustrates how services interact in a SORS; and (v) Service Deployment

view, which guides the deployment of services of a SORS. These views are detailed in the

following sections.

5.4.1 Conceptual View

High-level informal representations of reference architectures are useful artifacts to de-

scribe interactions among concepts of the domain. They are detailed using informal,

non-technical language that can be easily understood by all stakeholders. We designed

RefSORS based on RSDS proposed in Chapter 3 and the overall structure of S3, which

is aligned with the SOMA method used in the establishment of ArchSORS. Figure 5.1

shows the Conceptual view of RefSORS, which is composed by the four layers:

Robotic Agent Service Layer: contains the elements frequently encompassed by

robotic systems. It is composed of four groups of services: (i) Device Driver
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Figure 5.1: Conceptual view of RefSORS

Services coordinate and monitor sensors, actuators, and resources of the robot;

(ii) Knowledge Management Services are responsible for the management and the

processing of useful information for the robotic system, such as the characteristics of

the environment and the objects inside it; (iii) Robotic Task Services encompass

the core tasks of robotics, including mapping, localization, and navigation; and (iv)

Control Service coordinates tasks performed by a robotic agent to execute more

complex activities, e.g., the transportation of objects;

Robotic Application Layer: coordinates one of more robotic agents to perform a

robotic application (i.e., the robotic mission). In this layer, both orchestration and

choreography strategies can be used for the management of the robotic activities

necessary to achieve the application goals. The robotic application service is respon-

sible for the identification of the most suitable robotic agent services (i.e., robots) to

perform each activity, taking into account their current status, characteristics, and

provided capabilities;

Integration Layer: mediates, routes, and transports requests between service con-

sumers and service providers. This layer enables integration and composition of

services of all levels within the robotic system. It also connects the SORS and its

potential clients. The integration layer provides means for service discovery and

supports the indirect communication among participants of an SORS; and
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Quality of Service Layer: supervises services contained in the other three layers

(Robotic Agent Layer, Robotic Application Layer, and Integration Layer)

to check their compliance with SORS quality requirements. In other words, it ob-

serves and signals when a quality requirement is not fulfilled by a service of the

SORS. This layer ensures that robotic systems encompass adequate levels of relia-

bility, security, availability, and safety. The inclusion of a quality of service layer in

RefSORS is considered very important, as services for SORS can be developed by

several institutions and present different characteristics. Robotic systems are often

created for safety-critical contexts and their overall quality depends on the quality

of the services of which they are composed.

The Conceptual view of RefSORS addresses the following architectural requirements:

AR-R [1] – AR-R [9], AR-R [11] – AR-R [17], AR-R [20], AR-R [23], AR-R [24], AR-R [26]

– AR-R [32], AR-S [3], AR-S [4], AR-S [6], AR-S [7], and AR-S [9] – AR-S [11].

5.4.2 Capability View

The Capability view enables transforming elements of the robotics domain represented in

the Conceptual view into software artifacts adequate for the description of services. A

capability is a representation of a set of functionalities of the robotic system that can be

realized and provided as service. Figure 5.2 shows RefSORS in terms of its capabilities,

provided functionalities, and dependency relationships. This view is described by a SoaML

Capability diagram, which adopts UML stereotyped classes to represent capabilities and

usage links to indicate dependencies between these capabilities.

The Robotic Application capability coordinates activities executed by one or more

Robotic Agents to accomplish the robotic system goals. Each activity is an abstract

workflow of short-term robotic tasks performed by a Robotic Agent. Tasks composition

is coordinated by the Control capability, which uses information of the Knowledge Man-

agement capability to request functionalities from capabilities of Navigation, Localiza-

tion, Mapping, Interaction, Object Manipulation, and Support. The Control also

monitors resources of the robot, such as battery consumption, through Resource Driver

capabilities. Capabilities related to robotic tasks are supported by Sensor Driver and

Actuator Driver capabilities, as well as by other task capabilities. For instance, the Nav-

igation capability may use the Path Planning capability to obtain information on the

navigable path before for driving the robot from a position to another. It may also use the

Mapping capability to obtain the map of the environment, the Localization capability

to estimate the position of the robot, the Sensor Driver capabilities to receive sensory
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Figure 5.2: Capability view of RefSORS

information, and the Actuator Driver capabilities to control the actuators responsible

for the locomotion of the robot.

Each capability of the reference architecture can be instantiated as one or more con-

crete capabilities during the design of SORS software architectures. Besides, capabilities

can be omitted depending on the goals of the robotic system or development concerns.

A capability in this view represents a service candidate in the development of SORS

and, therefore, it can be exposed by a service interface. Service interfaces and contracts

express how capabilities are provided as services and how usage dependencies are trans-

lated into service interactions. This information is described in the Service Interface and

Contracts view.

The following architectural requirements are addressed by the Capability view: AR-R [1]

– AR-R [9], AR-R [11] – AR-R [18], AR-R [20], AR-R [21], AR-R [24], AR-R [26] –

AR-R [29], and AR-R [31].
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5.4.3 Service Interface and Contracts View

This view represents in details how capabilities of SORS are exposed by services and the

agreements of these services with potential service consumers. Functionalities of services

are provided through standard service interfaces, which are described in SoaML by UML

classes with the <<Service Interface>> stereotype. Service contracts represent com-

munication agreements between partners of a service collaboration and are detailed by one

or more description documents called protocols. The use of a service contract enforces

design compatibility between services by demanding both provided and required inter-

faces. Service protocols describe the order that functionalities should be requested and

how responses take place. The service interfaces, contracts, and protocols of each service

of RefSORS are detailed as follows. Additional documentation on the services and possi-

ble types of instantiation are available in the service taxonomy discussed in Section 3.2.3.

Notice that reference architectures are represented at high-level of abstraction. Attributes

of all functionalities were omitted as they may differ from a particular instantiation to

another.

Sensor driver service: exposes the capability of controlling sensors used to obtain

information on the environment. Figure 5.3 shows the SensorDriverService interface,

which implements a provider interface composed by four functionalities: (i) measure

informs the instant value obtained by the sensor; (ii) configure modifies settings of the

sensor such as precision and periodicity; (iii) report provides the current status of a

sensor and its settings; and (iv) subscribe indicates that a service consumer wants to

be notified about updates on the sensor state with a given periodicity or in case of an

event (e.g., the pressing of a contact sensor). The use of subscription demands to service

consumers the implementation of the SensorDriverHandler required interface. It also

enforces a contract whose protocol defines that a subscribe request must be performed

in order to enable the consumer to receive updates on a sensor. This request is followed

by successive response messages sent to the handleEvent functionality implemented by

the service consumer.

Actuator driver service: exposes the capability of controlling actuators of the robot.

Figure 5.4 shows the ActuatorDriverService interface and its provided functionalities:

(i) execute enacts a behaviour on the actuator device, such as stopping an engine or mov-

ing an arm joint; (ii) configure changes the settings of the actuator, e.g., its linear and

angular velocities; and (iii) report informs on the current state of the actuator. The three

functionalities provided by the actuator driver service are simple and stateless. There-

fore, this service does not demand required interfaces nor protocols between participants.

Notice that execute is a generic representation of functionality that can be instantiated
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Figure 5.3: Service interface, contract, and protocol of the sensor driver service

by concrete actuator services as one or more functionalities. For instance, while designing

a locomotion driver service one may instantiate the execute functionality as start and

stop functionalities.

Figure 5.4: Service interface and protocol of the actuator driver service

Resource driver service: exposes the capability of monitoring resources of the robot

like battery, memory, and processor. Figure 5.5 depicts the interfaces and protocol as-

sociated with this service, as well as the following functionalities: (i) report provides a

description of the resource’s state, e.g., as the percentage of charge of the battery; and

(ii) subscribe enables service consumers to be periodically updated on the resource’s
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state. The subscription functionality provided by the ResourceDriverService demands

required interface and protocol similar to those described for the SensorDriverService.

In this sense, service consumers must send a subscribe request to receive updates on the

handleResourceSubscription functionality.

Figure 5.5: Service interface, contract, and protocol of the resource driver service

Localization service: exposes the capability of estimating the position of the robot in

the environment. Figure 5.6 shows the service interfaces and protocol related to Local-

izationService. The functionality getPosition provides the current estimated local-

ization of the robot by using a simple request-response protocol. The subscribe func-

tionality sends periodic updates on the robot’s position and, therefore, demands the use

of both provided and required interfaces. The protocol requires that service consumers

send subscribe requests to be notified on the handleLocalizationSubscription func-

tionality.

Mapping Service: exposes the capability of creating representations of the environment

and the objects inside it. Figure 5.7 illustrates the interfaces and protocol of MappingSer-

vice. This service offers three functionalities through its service interface: (i) getMap

provides the current representation of the environment; (ii) getPositionInfo informs

on the status of a given position in the map, e.g., whether it is navigable of not; and

(iii) subscribe is used to indicate that a consumer wants to receive periodic updates on

the map of the environment. The protocol of MappingService contract is similar to other

protocols of subscription described in the aforementioned robotics services.
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Figure 5.6: Service interface, contract, and protocol of the localization service

Figure 5.7: Service interface, contract, and protocol of the mapping service

Path planning service: exposes the capability of generating navigable paths for the

robotic agent. Figure 5.8 depicts the interfaces involved in the use of this service, as

well as its encompassed functionalities: (i) defineGlobalPath establishes an initial path

from a starting position to a goal position and (ii) defineLocalPath adapts the global

path to avoid collisions with unpredicted obstacles in dynamic environments. The use of
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PathPlanningService requires the fulfilment of a contract that includes the two com-

plementary protocols shown in Figure 5.9. The first defines that consumers must provide

a functionality named executePath to handle the result of a defineLocalPath request.

This behaviour enables asynchronous execution of such a functionality so that its con-

sumer will not be blocked during the processing. The second protocol enforces that a

global path must be defined before a local one, since the latter is defined based on the

former.

Figure 5.8: Service interface of the Path Planning service

Navigation service: exposes the capability of driving the robot through the environ-

ment. Figure 5.10 illustrates the interfaces, contract, and protocol of NavigationSer-

vice. Three main functionalities are provided by this service: (i) driveTo requests the

navigation from a position to another according to a given velocity; (ii) executePath

handles path planning responses; and (iii) stop sets robot’s velocity to zero, which can

be used in emergency situations. NavigationService demands a NavigationHandler

required interface from its consumers to ensure the implementation of a handleNaviga-

tionResult functionality. It enables the service contract to enforce asynchronous com-

munication between service consumer and service provider. The protocol associated with

NavigationContract prescribes that results of driveTo requests must be later notified

to handleNavigationResult by callback messages.

Object manipulation service: exposes the capability of manipulating objects in the

environment. Figure 5.11 shows the manipulation service interface, which provides the

following functionalities: (i) move translates and/or rotates an object; (ii) stop interrupts

the procedure of moving an object; (iii) pick is used to pick an object; and (iv) release

frees the object. Notice the instantiation of these functionalities may vary depending on

the type of actuator used in the robot. For instance, an object manipulation service that
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Figure 5.9: Service contract and protocols of Path Planning service

Figure 5.10: Service interface, contract, and protocol of the navigation service

uses a linear forklift actuator would only need to provide move and stop functionalities.
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The move functionality is driven by a contract whose protocol enforces asynchronous

interaction by callback. Similarly to the NavigationService protocol, results of move

requests are later answered to the handler functionality provided by the service consumer.

Figure 5.11: Service interface, contract, and protocol of the object manipulation service

Interaction service: exposes the capability of interacting with humans, other robotic

agents, and systems in the environment. Figure 5.12 illustrates the interfaces, contract,

and protocol of the InteractionService. The following functionalities are provided

through its interface: (i) requestInfo demands information from other participant of

the SORS, such as a robotic agent; (ii) getInfo obtains information from a source that

the robotic agent has a long-term interaction, e.g., a back-end server; (iii) processInfo

transforms raw data (or signal) into useful information; (iv) presentInfo presents infor-

mation about the robotic agent; (v) lookup finds possible collaborations at runtime, e.g.,

another robotic agent registered in a service broker; (vi) broadcast sends information

on the robotic agent to all participants of a SORS; and (vii) subscribe enables service

consumers to be notified on a given type of information. The subscribe functional-

ity demands a compatible required interface and the fulfilment of a service subscription

protocol.

Knowledge service: exposes the capability of managing knowledge from neural net-

works, information datasets, ontologies, or any similar source of information that can

be useful for the robotic system. The following functionalities are provided through the
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Figure 5.12: Service interface, contract, and protocol of interaction service

KnowledgeService interface: (i) updateKnowledge updates the current knowledge of the

robotic system on a given topic; (ii) getKnowledge provides the current knowledge on a

topic to service consumers; and (iii) subscribe enables consumers to receive updates on

a particular topic. Figure 5.13 illustrates the service interface, contract, and subscription

protocol of the knowledge service.

Figure 5.13: Service interface, contract, and protocol of the knowledge service
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Support service: exposes the general capability of supporting other services of the

robotic system. It represents services for image segmentation, math, and so forth. Fig-

ure 5.14 shows the service interface of SupportService, which provides the execute

abstract functionality. This functionality can be instantiated in different manners de-

pending on the type of support service being designed. For instance, while designing

an image segmentation support service one may instantiate the execute functionality as

segmentImage. The interaction with support service demands the fulfilment of a contract

that enforces asynchronous communication, which ensures that service consumers will not

be blocked during their requests.

Figure 5.14: Service interface, contract, and protocol of the support service

Control service: exposes the capability of coordinating the services of a robotic agent.

Figure 5.15 shows the interfaces of the control service, which provides facade functional-

ities for navigation, object manipulation, and interaction. Five main functionalities are

provided through the ControlService interface: (i) driveRobot coordinates different

services to drive the robot from a position to another; (ii) moveObject controls several

services for the manipulation of objects; (iii) interact manages services to enable the

communication of the robotic agent with humans, other agents, or systems used to control

devices in the environment; (iv) report provides information on the current status of the

control, such as the position of the robot or the battery level of charge; and (v) subscribe

enables consumers to be periodically notified about updates on the state of the robotic

control.
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Figure 5.15: Service interface of control service

The use of ControlService demands the fulfilment of a contract that enforces in-

teractions in accordance with the three services it acts as facade. It also requires from

consumers an interface that is compatible with such a contract. Figure 5.16 illustrates

the three protocols encompassed by the ControllerContract. The protocols on the left

and the centre enforce asynchronous interaction regarding driveRobot and moveObject

functionalities, respectively. The one on the right side describes a service subscription

behaviour. Consumers of control service must provide handler functionalities for each of

these protocols.

Figure 5.16: Service contract and protocols of the Control service

Robotic agent service: exposes the capability of a robotic agent in performing differ-

ent activities. This service hides technical details of complex algorithms and hardware
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devices to facilitate the composition of heterogeneous robots into application workflows.

Figure 5.17 shows the RoboticAgentService interface, which encompasses the following

functionalities: (i) executeActivity enacts the execution of a workflow of robotic tasks

necessary for performing an activity, such as the transportation of an object; (ii) report

provides information on the current status of the robotic agent; and (iii) subscribe en-

ables service consumers to receive periodic updates. Notice that the executeActivity

represented in the reference architecture can result in the design of one or more function-

alities in the software architectures, as robotic agents usually provide multiple activities.

Figure 5.17: Service interface of the robotic agent service

RoboticAgentService demands both provided and required interfaces, as well as the

fulfillment of a contract encompassing two protocols. The executeActivity uses asyn-

chronous communication and requires that consumers provide a callback functionality

named handleActivityResult to receive response messages. Service subscription also re-

quires from service consumers a handler functionality named handleAgentSubscrition.

Figure 5.18 shows the robotic agent service contract and its protocols.

Robotic application service: exposes the capability of coordinating one or more robotic

agents to perform a robotic application. This service offers the general executeApplica-

tion functionality, which is used to enact long-term business processes provided by robotic

systems. The instantiation of this functionality depends on the robotic systems goals es-

tablished for each project. Figure 5.19 depicts the interfaces, contract, and protocol of

robotic application service. As the completion of a robotic application demands consid-

erable amount of time, interactions with the executeApplication functionality must be

asynchronous. Therefore, the service protocol enforces that consumers must provide a

handleApplicationResult to be later notified on robotic application results.
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Figure 5.18: Service contract and protocols of the robotic agent service

Figure 5.19: Service interface, contract, and protocol of the robotic application service

Table 5.3 shows the architectural requirements addressed by each service in the Service

Interface and Contracts view of RefSORS.
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Table 5.3: Architectural requirements addressed by Service Interface and Contracts view

Service Architectural requirement

Sensor driver AR-R [20], AR-R [24] – AR-R [26], AR-S [1]
Actuator driver AR-R [29], AR-R [30], AR-S [1]
Resource driver AR-R [27], AR-R [28], AR-S [1]
Localization AR-R [14], AR-R [19] – AR-R [21], AR-S [1], AR-S [5]
Mapping AR-R [17], AR-R [18] – AR-R [21], AR-S [1], AR-S [5]
Path planning AR-R [16], AR-R [19] – AR-R [21], AR-S [1], AR-S [5]
Navigation AR-R [15], AR-S [1], AR-S [5], AR-S [6]
Object manipulation AR-R [13], AR-S [1], AR-S [5]
Interaction AR-R [10], AR-R [11], AR-R [12], AR-S [1], AR-S [5]
Knowledge AR-R [20] – AR-R [23], AR-S [1], AR-S [5]
Support AR-R [19], AR-S [1], AR-S [5]
Control AR-R [7] – AR-R [9], AR-S [1], AR-S [5], AR-S [6]
Robotic agent AR-R [1], AR-R [2], AR-R [6] – AR-R [9], AR-R [21], AR-S [1],

AR-S [5], AR-S [6], AR-S [8], AR-S [9]
Robotic application AR-R [1] – AR-R [5], AR-R [21], AR-S [1], AR-S [5] – AR-S [9]

5.4.4 Service Architecture View

Services are abstract specifications of capabilities that can be implemented and provided

by different participants of an SOA. The Service Architecture view of RefSORS represents

participants of an SORS, their realization of service interfaces, communication through

service channels, and fulfilment of service contracts. This view is described by the SoaML

Service Architecture diagram shown in Figure 5.20, in which participants are represented

by stereotyped components, contracts by dashed ellipses, and contract fulfilments by

dashed lines. The structure of interaction between robotics services in the Service Ar-

chitecture view is similar to the one illustrated in the Capability view. However, the

first one adds semantics of interaction by contract, which denotes that services are not

simply connected, but they communicate according to specific protocols and compatible

interfaces.

Participants that realize sensor driver services, actuator driver services, and resource

driver services are responsible for interfacing with the hardware of robots and, therefore,

form the basis of the SORS service architecture. They provide functionalities that support

other participants, such as Mapper and PathPlanner, to perform their services. Partici-

pants that realize services associated with robotics tasks offer, in turn, functionalities to

other tasks and to the Robot Controller participant. Knowledge Management and Sup-

port participants are also orchestrated by the Robot Controller. The Robotic Agent

encompasses functionalities executed by the aforementioned participants, providing their

services for the Application. Interactions between participants of the service architecture

are guided by contracts described in the Service Interface and Contracts view.
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Figure 5.20: Service Architecture view of RefSORS

The following architectural requirements of RefSORS are addressed by the Service

Architecture view: AR-R [1] – AR-R [8], AR-R [11] – AR-R [18], AR-R [20], AR-R [21],

AR-R [24], AR-R [26] – AR-R [29], AR-S [1], and AR-S [6] – AR-S [10].

5.4.5 Service Deployment View

Robotic systems are frequently used in safe-critical applications in which quality char-

acteristics such as dependability and performance are not only desirable but mandatory.
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Most of runtime quality attributes can be affected by the network and hardware infras-

tructures adopted in the service deployment. The Service Deployment view of RefSORS

describes the infrastructures involved in the execution of an SORS and details how ser-

vices should be deployed to mitigate possible problems of QoS. Figure 5.21 illustrates a

UML Deployment diagram that represents this view.

Figure 5.21: Service Deployment view of RefSORS

According to this view, services of SORS can be deployed into Robots, local Back-end

Servers, and External Servers. Services that are fundamental for the correct operation

of the robotic system in real-time, e.g., navigation and control, must be deployed into the

robot or in a dedicated computer attached to it. Services providing functionalities that

are not critical for the robotic system operation can be deployed into a Back-end Server.

These services can be used to provide additional processing power for robotic systems,

store large datasets or other sources of knowledge, and control sensors and actuators

spread over the environment. Support and knowledge management services that are

complementary and do not interfere in the real-time operation of the robotic system can

be accessed from External Servers. For instance, machine-readable data available on

the Internet can be used to obtain additional semantic information on objects inside the

environment, as reported by Blake et al. (2011).
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Consumers hosted in Client servers can access services for SORS both directly or

thought a Service Registry Server. Direct communication is used when a consumer

knows the end-point of the service provider at design time. This interaction is often

adopted between services associated with real-time operation, to reduce problems regard-

ing availability and other QoS attributes. Communication thought Service Registry

Server enables robotic systems to transparently discover additional functionalities at

runtime. Service Registry Servers are brokers in which service descriptions are regis-

tered and stored (using Registry Repository Server) to be later discovered. Indirect

communication between services increases flexibility of service-oriented systems, as new

functionalities can be discovered and added on demand. However, dynamic discovery and

dynamic binding of services are still open issues in the domain of robotics. Currently,

services for SORS can be indirectly discovered (as discussed in Section 3.3.1), but their

composition is done at design time.

The Deployment view addresses the following architectural requirements: AR-R [1],

AR-R [8], AR-R [10], AR-R [11], AR-R [19], AR-R [21] – AR-R [23], AR-R [25], AR-R

[28], AR-R [30], AR-S [2] – AR-S [5], and AR-S [8] – AR-S [11].

5.5 Step RA-4: Architectural Evaluation

RefSORS was independently evaluated by three external reviewers to identify possible

problems of omission, inconsistency, and missing information. This activity was performed

incrementally and we updated RefSORS after each review based on the pointed mistakes.

Firstly, we submitted RefSORS to an expert in architectural representation to verify

three main issues: (i) if RefSORS provides an adequate set of architectural views; (ii) if

these views are described using a level of formalism appropriate to stakeholders; and

(iii) if models in the views are represented using adequate description language. After

that, an expert in reference architectures evaluated RefSORS to check the completeness

of information related to its construction and general adequacy of its documentation.

Finally, RefSORS was reviewed by an expert in reference architectures for embedded

systems to evaluate its pertinence with respect to the robotics domain.

These inspections pointed out lack of information on: (i) relation between architec-

tural requirements and architectural views; (ii) points of variability and how they affect

the rest of the architecture; and (iii) how to deploy participants described in the Ser-

vice Architecture view. The first problem was mitigated by adding a list of addressed

architectural requirements to the documentation of each architectural view. The problem

regarding points of variability was not tackled in the current version of the reference archi-

tecture and is considered an object of future research. RefSORS was described in SoaML
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and this language does not support description of variability. The third problem was

solved by adding the Service Deployment view, which complements other views described

in SoaML with a UML deployment diagram. Minor problems of inconsistency between

views were also identified and later corrected in the reference architecture documentation.

As a result, a more consistent and complete architectural description of RefSORS was

achieved.

Additionally to the architectural evaluation, we also conducted a case study to provide

evidences on the viability of RefSORS and observe possible benefits of its adoption. This

study is discussed as follows.

5.6 Case Study

We conducted a two-step case study on the instantiation of RefSORS for the develop-

ment of an indoor grounded mobile SORS. In the first step, a student was selected to

design an SORS software architecture for the same project proposed in the second part

of the experiment reported in Section 4.3 (see Appendix B). We reproduced the same

schedule, activities, and conditions imposed to the group that designed the SORS using

the ArchSORS process, but introducing RefSORS as additional support. After that, we

computed the four metrics (MF, CpF, Max CpC, and CF) for the software architecture

and compared them to the results obtained by the group in the experiment that only used

ArchSORS. In the second step, we asked the same student to instantiate the other views

of RefSORS following ArchSORS and to implement the robotic system.

The project considered in the case study involves the development of a robotic system

that controls two handling robots in an industrial shop floor. Robots in this project must

transport products manufactured in two different production units and place them into

their respective storage units based on the product type. Initially, both robots are in

standby mode in their rest areas. At the signal given by the operator, one of the two

robots must: (i) pick up a product in the production unit; (ii) bring the product to the

storage unit; and (iii) return to a rest area to remain in standby mode until the next

transportation request. Robots used in this project are both Pioneer P3-DX platforms

equipped with a laser rangerfinder, a pan-tilt-zoom (PTZ) camera, a GPS sensor, and a

two-axis gripper.

Phase RSA-1 of ArchSORS was not necessary in this case study – neither in the ex-

periment – because the description of the project already provided requirements for the

robotic system. In Phase RSA-2, system requirements were mapped into architectural

requirements of RefSORS to identify concepts of the domain addressed by the project.

After that, the Conceptual view of RefSORS (Section 5.4.1) was used to identify lanes
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of BPMN diagrams created to represent the application flow. The first BPMN diagram,

shown in Figure 5.22, was created to describe the application flow in terms of Robotic

Application and its Robotic Agents. Activities of this diagram were then further decom-

posed into more concrete BPMN diagrams that illustrate the flow of robotic tasks, such

as the mapping of the environment, manipulation of products, and transport of products

from production units to storage units.

Figure 5.22: BPMN diagram designed to represent the application flow

The capability view of the software architecture was created based on functionalities

described in the BPMN diagrams and the template proposed in the Capability view of

RefSORS (Section 5.4.2). As shown in Figure 5.23, the Sensor Driver capability of

RefSORS was instantiated into four capabilities: GPS Driver, Camera Driver, Laser

Driver, and Sonar Driver. The Actuator Driver capability of RefSORS was used to

identify capabilities for controlling of the Pioneer P3-DX base platform (Base Driver)

and the two-axis gripper (Gripper Driver). Besides that, the Knowledge Management

and Support capabilities of RefSORS were instantiated as capabilities for storing the

map of the environment (Map Information) and processing images (Image Processing),

respectively. The use of a Map Information capability was necessary to enable both

robots to cooperatively build the map of the environment.

In Phase RSA-3, all capabilities identified for the robotic system were modelled as

services according to guidelines provided in the Service Interface and Contracts view of

RefSORS (Section 5.4.3). Requirements of the robotic system addressed by each service

were also documented as prescribed in the Activity RSA-A 3.1 of ArchSORS. After that,

participants designed to provide services of the robotic system were connected to rep-

resent the Service Architecture shown in Figure 5.24. The structure and the contract

fulfilments of this functional architecture were defined based on the Service Architecture

view of RefSORS (Section 5.4.4). Protocols associated with the contracts in the software
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Figure 5.23: Capability view of the software architecture

architecture followed the behaviours of synchronous and asynchronous communication

and service subscription established in RefSORS.

Similarly to the experiment previously conducted (detailed in Section 4.3), we evalu-

ated the SORS functional architecture and its set of services using the same four metrics

related to coupling, cohesion, and modularity. Results shown in Figure 5.25 indicate that

the software architecture designed from the instantiation of RefSORS is more modular

and cohesive than the mean (and median) of the architectures designed only using Arch-

SORS (i.e., it displays higher values for MF and CF). The software architecture of the

case study is also less coupled than the mean (and median) of the architectures produced

in the experiment (i.e., it displays a lower value for CpF), albeit slightly more centred in
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Figure 5.24: Service Architecture view of the software architecture

the control and navigation services (i.e., the most coupled services). Although the value

of Max CpC in the case study is higher than most of software architectures designed using

only ArchSORS, the result is much lower than those obtained by architectures created in

ad hoc manner (see Table 4.1).

In the second part of the case study, the functional architecture was further detailed

to enable the implementation of the robotic system. In Phase RSA-4, different services

of the system were described by object-oriented diagrams representing their strategies of

implementation. For instance, the mapping service was designed to enable creation of an

occupancy grid. The path planning service was modelled to used this occupancy grid to

execute an A* algorithm. The navigation service was designed to be deliberative, as the

robotic application is executed in a controlled environment. Additionally, the deployment

diagram of the software architecture was created by instantiating the Deployment view of

RefSORS. The infrastructure described in Figure 5.26, as well as the hardware realization

strategies, followed specifications established by the proposed project. Therefore, only two
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Figure 5.25: Comparison between results of the case study and results of subjects of
the experiment

robots and a supporting laptop were considered. Due to the dimensions of the project,

activities of Phase RSA-5 were not performed during the case study.

Figure 5.26: Deployment view of the software architecture

The robotic system designed in this case study was implemented in the ROS devel-

opment environment. Both robots and the industrial shop floor were simulated using the

Gazebo virtual environment. Figure 5.27 shows the robots cooperatively mapping the

shop floor before starting the transport of products. In order to create the occupancy
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grid map, the robots execute a wall following navigation until they reach back their rest

areas. This task is partially illustrated in images (1) to (4). This grid map is later used

to calculate optimal paths from the rest areas to the production units by using the A*

algorithm.

Figure 5.27: Simulated robots mapping the shop floor

5.7 Discussion of Results and Limitations

The case study was conducted to illustrate an instantiation of RefSORS to design a

grounded mobile robotic system. We opted for using the same project proposed in the

experiment to observe the impact of associating RefSORS with the ArchSORS process.

Results indicate that RefSORS had positive influence on the modularity, cohesion, and

coupling of the designed architecture. The result for the metric indicating the dependency

from the control service was also good, but not better than results obtained in the ex-

periment. Therefore, in general, the adoption of RefSORS led to a software architecture

that presented good compromise between the three metrics proposed by Galster et al.

(2008) and the metric introduced in the scope of this work. As discussed in Section 4.4,

an architecture that presents good modularity, cohesion, and coupling is more likely to
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result in a system of higher quality. However, the achievement of quality characteris-

tics such reusability, maintainability, and buildability still depends on how the system is

implemented (Bass et al., 2012).

Results obtained by our case study can not be generalized to other contexts, as it in-

volved the development of a single system. However, considering that RefSORS provides

an architectural template for the design of SORS, we believe that software architectures

designed in the future may present similar results. In this sense, we plan to conduct

other case studies to strengthen the evidences obtained thus far. Besides this quantitative

analysis, it is worth mentioning that RefSORS is aligned with several reference architec-

tures of robotics and SOA. Services addressed by RefSORS were based on the taxonomy

described in Section 3.2, which was considered by a board of ten experts as correct and

complete. This reference architecture presents, therefore, good perspectives to be adopted

and contribute to the design of SORS software architectures.

5.8 Final Remarks

This chapter presented RefSORS, a reference architecture for indoor grounded mobile

SORS. The establishment of RefSORS was guided by the taxonomy of services reported

in Chapter 3, several reference architectures for robotic systems and SOA-based systems,

and the main control architectures of robotics. RefSORS was described in five views, rep-

resented in informal and semi-formal notations, to address different concerns and stake-

holders of SORS projects. The documentation of RefSORS was incrementally reviewed by

three independent researchers to mitigate issues related to its completeness and correct-

ness. Additionally, we performed a case study to illustrate the applicability of RefSORS.

Results indicate that RefSORS can contribute to the development of SORS software ar-

chitectures, including those ones designed using the ArchSORS process. However, other

case studies are necessary and will be conducted to confirm the obtained results, identify

possible improvements for the reference architecture, and increase the confidence on its

adoption.

The next chapter concludes this thesis, summarizing the main contributions, discussing

general limitations, and mentioning future work.
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6

Conclusion

Robotics is experiencing rapid growth and robots are already supporting several applica-

tion domains. The demand for robots of higher autonomy and decision making capacity

is challenging engineers, architects, and developers to create considerably large robotic

systems in timely manner. Several architectural styles have already been investigated to

improve both productivity and quality in the development of such systems. Particularly,

SOA has been increasingly adopted as the underlying architectural style of many robotic

systems in recent years. Nevertheless, most of SORS are still designed in ad hoc, which

reduces the potential of SOA in promoting reusability, modularity, and other important

quality attributes. In this perspective, research focusing on the architectural design of

SORS is important to consolidate the adoption of SOA in robotics, as well as foster

productivity and quality in the development of these systems.

This thesis contributed in this sense, supporting a better understanding and system-

atization of the architectural design of SORS. Achievements of this work include the

definition and evaluation of a taxonomy of services for the robotics domain, the creation

of a mechanism for the publication and discovery of services, the proposal of a process for

designing SORS software architectures, and the establishment of a reference architecture

for indoor grounded mobile SORS.

The set of contributions described along the thesis are revisited in Section 6.1. Sec-

tion 6.2 summarizes the limitations of the work, how these limitations can be overcome,

and directions for further research.
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6.1 Revisiting the Thesis Contributions

This section summarizes the main contributions of this thesis.

Definition of a taxonomy of services for SORS: we defined a taxonomy of services

for the robotics domain. This taxonomy, presented in Section 3.2.3, was established

according to 39 studies on the development of SORS (see Section 2.4.5), several

reference architectures for robotic systems, and the knowledge of experts. We ap-

plied a survey to ten specialists in robotics and the results evidenced the taxonomy

is comprehensive enough for the classification of services available for SORS. This

taxonomy can, therefore, be used for improving communication among developers

of robotics, supporting the development of SORS;

Development of a mechanism for cataloging and discovering services for

SORS: we designed and implemented a mechanism, named RoboSeT, to support

classification and discovery of services for SORS (see Section 3.3). RoboSeT au-

tomates the taxonomy proposed in this thesis to overcome limitations of existing

service repositories in robotics, enabling services to be transparently discovered, ob-

tained, and evaluated. Preliminary results of a case study indicate that RoboSeT

can foster service reuse and, therefore, improve productivity in the development

of SORS;

Establishment of a process for the design of SORS software architectures: we

proposed a process, named ArchSORS, to systematize the design of SORS software

architectures (see Chapter 4). For each phase of ArchSORS, we described a method

containing a set of activities, tasks, work products, and key deliverables. We also

represented ArchSORS using the SPEM 2.0 notation and created an IBM RMC

method plugin, which enables instantiations of the process and its integration into

project management tools;

Experimental evaluation of the proposed process: we evaluated ArchSORS in an

experimental study, reported in Section 4.3. The controlled experiment compared

the current ad hoc approach used to create SORS software architectures and the

development using ArchSORS. Results provide evidences that ArchSORS can pro-

duce architectures of higher modularity and cohesion that are also less coupled and

centered in the control service. The improvements achieved in these four metrics

suggest the proposed process can positive impact on important quality attributes of

SORS, such as modifiability, reusability, complexity, and buildability; and

136

Architectural design of service-oriented robotic systems Lucas Bueno Ruas de Oliveira 2015



Chapter 6. Conclusion

Establishment of a reference architecture for indoor grounded mobile SORS:

We proposed a reference architecture, named RefSORS, to facilitate the design of

software architectures for indoor grounded mobile SORS (see Chapter 5). RefSORS

is aligned with the ArchSORS process (see Chapter 4) and describes how services

reported in the taxonomy (see Section 3.2.3) can be designed and composed in

a SORS. Preliminary results of a case study indicate that software architectures

designed from the instantiation of RefSORS have better modularity, coupling, and

cohesion when compared to the ones designed only using ArchSORS.

The achievements of this thesis contribute to the areas of Software Architecture and

Robotics, as they advance the current state-of-the-art on the architectural design of robotic

systems based on SOA.

6.2 Limitations and Future Work

This section describes limitations of this thesis and how they can be tackle in the future.

Notice that specific limitations have already been discussed in previous chapters. There-

fore, we herein focus on broader limitations to be overcome and possible improvements

that can be made during short and medium term research. We conclude pointing out

future directions of research in the areas associated with the design of software architec-

tures for SORS. It worth highlighting that we intent to deal with these issues during the

postdoctoral project planned to shortly after the completion of this doctorate.

Evaluation of the taxonomy of services for SORS: the evaluation of the taxonomy

proposed in Chapter 3 involved ten experts in robotics. This limited number of

interviewees threats the generalization of the achieved results. Therefore, we plan to

conduct broader evaluations of the taxonomy as soon as we obtain the commitment

of more experts. This will support us to revisit and update the taxonomy with the

aim of gaining more confidence on its correctness and completeness, fostering its

adoption as an widely accepted classification of services for robotics;

Limitations of RoboSeT: the mechanism described in Chapter 3 advances the current

practice in classifying and discovering services for SORS. However, improvements

can still be implemented to promote its adoption by the robotics community. For

instance, the inclusion of new services in RoboSeT is currently done manually, but

it could be automated to facilitate the importing of services already registered in

the ROS Wiki. Another possible extension is the publication of services directly

from the plug-ins installed in the local machines, which would ease the sharing of

services through RoboSeT;
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Limitations of the ArchSORS process: the ArchSORS process described in Chap-

ter 4 provides guidelines that facilitate the development of SORS software architec-

tures. However, additional information and support could be provided to facilitate

the application of its phases. For instance, we plan to enrich the proposed methods

by providing document templates and further directions on how to conduct their

activities;

Limitations in the experimental study: the experiment used to evaluate ArchSORS

involved 30 subjects and was performed in a single day. The obtained results pro-

vide encouraging evidences, but the scope was limited and opportunities for future

evaluations are manifold. First, an experiment involving professionals from industry

could be performed to enable a stronger generalization of the results. It is also worth

conducting case studies in larger and longer projects to observe qualitative aspects

involving the development of SORS software architectures according to ArchSORS;

Evaluation of the RefSORS: we conducted a case study to evaluate the RefSORS

reference architecture and the preliminary results were promising. However, as dis-

cussed in Section 2.2.2, the benefits of adopting reference architectures are inherently

difficult to estimate and generalize. Therefore, we plan to conduct other case studies

in order to provide additional evidences that increase the confidence on the adoption

of this reference architecture.

6.3 Possible Extensions

Many opportunities of research emerged during the development of this thesis. They

represent perspectives of future research that can contribute to the areas of Robotics and

Software Architecture. Some of them are described as follows.

Integration of robotic systems in the context of systems-of-systems: most of

robotic systems are still developed to operate isolatedly and can not interact with

other types of systems, which hampers their use into larger and more complete

applications running in the context of Systems-of-Systems (SoS). SoS are complex,

large-scale software systems in which operationally and managerially independent

systems cooperate to provide new, unique features that can not be provided by

any constituent separately (Dagli and Kilicay-Ergin, 2008). In this perspective,

research on the integration of robotic systems in the context of SoS can contribute

to increase the use of robots in many areas of society benefited by SoS, including

national security and elderly care;
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Development of an ADL for service-oriented embedded systems: several de-

scription languages, e.g., as SysML and MARTE, are currently available for the

design of embedded systems. However, these languages do not support the repre-

sentation of elements of SOA, such as service interfaces, contracts, and protocols.

Although a proposal of a UML profile that combine MARTE and SoaML already

exists (Muhammad et al., 2012), further investigation is still necessary and can

contribute to design of a whole class of systems, including SORS;

Support to the instantiation of reference architectures: different processes and

methods in the literature support the establishment of reference architectures. For

instance, ProSA-RA has already attained considerable maturity and can be applied

in different application domains. Nevertheless, instantiation of reference architec-

tures is still performed in ad hoc and depends exclusively on the expertise of software

architects. Future research focused on guiding and facilitating this activity can con-

tribute to increase the adoption of reference architectures;

Support to the dynamic discovery and binding: several techniques and technolo-

gies currently support discovery and binding of Web services at runtime, which

increases flexibility of service-based systems. However, most of safety-critical em-

bedded systems based on SOA are still developed by assembling services identified

at design time. In this perspective, researches proposing techniques and technolo-

gies for enabling dynamic discovery and binding of services for embedded systems

involving real-time and safety constraints are still necessary; and

Evolution of the taxonomy into an ontology: the taxonomy proposed in this

thesis aims at improving communication among developers by identifying the main

types of services that can be used to create robotic systems. The evolution of

such a taxonomy into an ontology can be an important contribution towards the

dynamic discovery, binding, and reconfiguration of services for robotic systems at

runtime. Therefore, investigating the relationship among the taxonomy proposed

herein and available ontologies for non-service-oriented robotic systems, such as the

IEEE 1872-2015 standard (IEEE, 2015), can be considered a promising extension of

this work.
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Brugali, D.; Gherardi, L.; Klotzbücher, M.; Bruyninckx, H. Service Component Archi-

tectures in Robotics: The SCA-Orocos Integration. In: Hähnle, R.; Knoop, J.; Mar-
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Eklund, U.; Örjan Askerdal; Granholm, J.; Alminger, A.; Axelsson, J. Experience of

introducing reference architectures in the development of automotive electronic systems.

ACM SIGSOFT Software Engineering Notes, v. 30, n. 4, p. 1–6, 2005.

Eklund, U.; Bosch, J. Architecture for embedded open software ecosystems. Journal

of Systems and Software, v. 92, n. 1, p. 128–142, 2014.

Erl, T. Service-oriented architecture: Concepts, technology, and design. Upper Saddle

River, New Jersey, USA: Prentice Hall., 2005.

Erl, T. SOA principles of service design. Upper Saddle River, New Jersey, USA:

Prentice Hall., 2007.

Feitosa, D.; Nakagawa, E. Y. An investigation into reference architectures for mobile

robotic systems. In: Proceedings of the 7th International Conference on Software

Engineering Advances (ICSEA’12), Lisbon, Portugal, 2012, p. 465–471.

Fernandes, L. C.; Souza, J. R.; Pessin, G.; Shinzato, P. Y.; Sales, D.; Mendes, C.; Prado,

M.; Klaser, R.; Magalhães, A. C.; Hata, A.; Pigatto, D.; Branco, K. C.; Grassi Jr., V.;
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Appendix

A

List of Included Primary Studies

This appendix lists, in Table A.1, the primary studies included in the systematic review

presented in Section 2.4.5.

Table A.1: Title of the included primary studies

ID Study title

S1 An intelligent service-based network architecture for wearable robots

S2 Service-oriented integration of networked robots with ubiquitous sensors and devices

using the semantic Web services technology

S3 Web services based robot control platform for ubiquitous functions

S4 Reliable protocol for robot communication on web services

S5 UPnP SDK for Robot Development

S6 Distributed Robotic Architecture based on Smart Services

S7 A Service-Oriented Approach for Building Autonomic Peer-to-Peer Robot Systems

S8 A Web Lab for Mobile Robotics Education

S9 SENORA: A P2P Service-Oriented Framework for Collaborative Multirobot Sensor

Networks

S10 Property service architecture for distributed robotic and sensor systems

S11 Data Acquisition and Processing using a Service Oriented Architecture for an Auto-

mated Inspection System

S12 Remote multi-robot monitoring and control system based on MMS and web services

S13 Dynamic Binding Framework for Open Device Services
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Table A.1: Title of the included primary studies – continued

ID Study title

S14 A Software System for Robotic Learning by Experimentation

S15 Developing a Security Robot in Service-Oriented Architecture

S16 On Robotics Applications in Service-Oriented Architecture

S17 A Middleware Based Control Architecture for Modular Robot Systems

S18 Utilizing semantic Web 2.0 for self-reconfiguration of SOA based agent applications in

Intelligent Service Robots

S19 A Generic Service Oriented Architectural Model for Pervasive Applications: A Case

Study in Internet-based Multiple Robot Control

S20 Dynamic control of a robotic swarm using a service-oriented architecture

S21 An ontology-based collaborative service-oriented simulation framework with Microsoft

Robotics Studio

S22 ISROBOTNET: A testbed for sensor and robot network systems

S23 Design and Performance Evaluation of a Service-Oriented Robotics Application

S24 Applying semantic web service composition for action planning in multi-robot systems

S25 Adaptation of resource-oriented service technologies for industrial informatics

S26 Experiments with service-oriented architectures for industrial robotic cells program-

ming

S27 Multirobot system architecture: environment representation and protocols

S28 DAvinCi: A cloud computing framework for service robots

S29 Model of integration and management for robotic functional components inspired by

the human neuroregulatory system

S30 Exploring Microsoft Robotics Studio as a Mechanism for Service-Oriented Robotics

S31 A Service Oriented Architecture supporting an autonomous mobile robot for industrial

application

S32 Robot as a Service in Cloud Computing

S33 Robopedia: Leveraging Sensorpedia for web-enabled robot control

S34 Towards a REST-style architecture for networked vehicles and sensors

S35 Service oriented soft real-time implementation of SLAM capability for mobile robots

S36 Robots on the Web

S37 RoboCoP: A Protocol for Service-Oriented Robot Control Systems

S38 Sea Robot-Assisted Inspection

S39 RoboEarth

S40 Towards a service-oriented architecture for teams of heterogeneous autonomous robots

S41 Cloud robotics: Towards context aware robotic networks

S42 Service Component Architectures in Robotics: The SCA-Orocos Integration

S43 Robotic Services in Cloud Computing Paradigm

S44 Robot-Cloud: A framework to assist heterogeneous low cost robots

170

Architectural design of service-oriented robotic systems Lucas Bueno Ruas de Oliveira 2015



Appendix A. List of Included Primary Studies

Table A.1: Title of the included primary studies – continued

ID Study title

S45 SOA4DERTS: A Service-Oriented UML profile for distributed embedded real-time sys-

tems

S46 Virtual planning for autonomous inspection of electromechanical products

S47 Service-oriented robotic swarm systems: Model and structuring algorithms

S48 A system integration approach for service-oriented robotics

S49 A service-oriented framework for the development of home robots

S50 Developing service oriented robot control system

S51 New layered SOA-Based architecture for multi-robots cooperative online SLAM

S52 Service Oriented Robotic Architecture for Space Robotics: Design, Testing, and Lessons

Learned

S53 Capability-oriented robot architecture for maritime autonomy

S54 A service-oriented architecture for virtualizing robots in robot-as-a-service clouds

S55 Multi-robot data mapping simulation by using microsoft robotics developer studio

S56 Towards a Process to Design Architectures of Service-Oriented Robotic Systems

S57 Automating the Discovery of Services for Service-Oriented Robotic Systems
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Appendix

B

Project Specification and Functional

Requirements

This appendix shows both specification and functional requirements of an extended RobAFIS

project used in the experiment reported in Section 4.3 and in the case study described in

Section 5.6 of this thesis.

Objective

This document describes requirements of a robotic system that controls two handling

robots that transport products in an industrial shop floor. In this document, the handling

robots will be referred generically as robots.

Application Domain

This document is applicable to design a robotic system that will be developed and used

in a comparative evaluation of several competing solutions. The robotic system will be

evaluated in a simulated industrial shop floor.
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Equipment Available

Items of equipment available for the competition are:

❼ Two robots that are capable of fulfilling the mission specified in Section 4;

❼ One computer used for managing the robotic application; and

❼ All network infrastructure needed to the communication among the devices (robots

and computer).

Mission

The nominal mission of the robotic system is to transport products in a shop floor

(schematically described in Section 6). Two robots must transport products manufac-

tured in two different production units (PU1, PU2) and place them in their respective

storage units (SU1, SU2) according to the type of the product (PT1, PT2).

Initially the robots are in standby mode on their rest areas. At the signal given by

the operator, one of the two robots must:

❼ Pick up the product in the production unit;

❼ Bring it in the storage unit according to its type; and

❼ Return to standby mode and stop inside one of three rest areas (RA1, RA2, and

RA3).

Every time the operator requests to the robotic system to transport a product, he

informs the position (x,y) and the type of the product to be transported (PT1 or PT2).

The robotic system must select the most adequate robot to perform the transport based

on the overall distance between the rest area where the robot is, the production unit, and

the respective storage unit. This distance must consider objects and walls blocking the

path and not only the geographic distance.

During transportation, products must be carried by the robot (without ground con-

tact). There is no orientation imposed on the robot in a rest area at the beginning and

end of the mission. The positions of storage units, rest areas, and production units are

well known and described according to simplified geographic coordinates (x,y). All coor-

dinates will be informed in the day of the competition. Geographic coordinates of the four

extremities of the shop floor will be also available in the day of the competition. There

are no marks on the floor to guide the navigation.
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As part of its mission, the robot must move autonomously (without remote control),

except:

❼ If during its navigation the robot encounters an obstacle in its path. In this case,

the robot must stop and wait until the obstacle is removed; and

❼ If the robot is in a non-operational state (stopped, damaged), an operator can

perform corrective maintenance operations, repositioning and restarting the robot

and then carrying it to the initial rest area using a remote control system in the

computer.

Despite the positions of storage units, rest areas, and production units are known and

fixed, the layout of the shop floor can change from a day to another. Walls surrounding

the production units can be added, moved or removed after a working day (see Section

6). Therefore, before starting a work day (before perform the first mission of the day),

the robots must create a new representation of the shop floor, which will be used to define

the navigation path for each transportation request.

Robots Characterization

The two robots used in the mission are Pioneer P3-DX (Figure B.1), with the same

hardware configuration. Each robot is 450mm length, 490mm width, and 500mm height

(including the hardware devices on it). The base of Pioneer P3-DX platform can reach

speeds of 1.6 meters per second and carry a payload of up to 23 kg. The robot is powered

by three hot-swappable 9Ah sealed batteries. The robot’s embedded motion controller

performs velocity and direction control of the robot. In addition to the motion control,

the Pioneer P3-DX platform also allows to perform control and information acquisition

of an embedded GPS (Global Position System), eight sonar sensors in the front (with a

maximum reach of 3.000mm) and the battery. The GPS provides absolute position and

orientation of the robot (x, y, theta). Pioneer P3-DX moves using 2-wheel differential

drive, with rear balancing caster. The two front wheels are independent and can have

different speeds if needed.

The following additional sensors and actuators are attached the robot platform:

❼ Laser rangefinder sensor: it provides a range of 180 measures of distance in a single

plan, with a maximum reach of 8.000mm (as represented in Figure B.2);
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Figure B.1: Pioneer P3-DX robot

Figure B.2: Representation of the laser rangefinder measures

❼ Indoor pan-tilt-zoom (PTZ) camera: it features auto-focus and automatic bright-

ness/gain control, and an image resolution of up to 704x576, making possible the

robotic system to acquire and process images from the environment, including col-

ored objects; and

❼ Gripper actuator: it is a 2-axis, 2 degree-of-freedom (DOF) robotic gripper that

opens and closes horizontally and raises up to carry the grasped object off the floor.

Environment Characterization

The shop floor, defined schematically in Figure B.3, is subject to regular lighting (sun

light passing through the acrylic roof of the room, without extra lighting) except shadows

produced by objects present in the environment and the robots.
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Figure B.3: Layout of the shop floor

The shop floor has a size of 10.000mm x 10.000mm. The floor is perfectly flat, horizon-

tal, rigid with a hard surface, and uniform light color. Walls are also uniform light color,

1.200mm high and 50mm thick. The rest areas, production units, and storage units are

indicated on the ground by 800mmx800mm colored squares (black for the rest area, blue

for the production units, red for the storage units). As mentioned before, walls can be

place in different layouts, according to the factory production requirements. Figure B.4

presents an alternative layout for the shop floor.

Product Characterization

Products transported by the robots, illustrated in Figure B.5, are rigid, green, and

non-reflexives. Products of Type 1 and Type 2 are identical in design, color, and weight

and are differentiated only by marks on the top (PT1, PT2). Products are cylinders

150mm high, with two different thicknesses: 50mm on the extremities, 20mm on the cen-

ter. The thickest parts of the body (the extremities) are 10mm tall and the central part

is 130mm tall.
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Figure B.4: Alternative layout of the shop floor

Figure B.5: Product specifications

Robotic System Functional Requirements

The robotic system to be designed must meet the following functional requirements:

FR 1: The robotic system must coordinate two mobile robots to autonomously transport

products from production units to storage units.
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FR 2: The robots coordinated by the robotic system must be in rest areas when they

are not performing a transport request.

FR 3: At the beginning of the mission, one robot must be at RA1 and the other at RA3.

FR 4: The robotic system must use only one robot to transport each product.

FR 5: The robot controlled by the robotic system must transport only one product at

each time.

FR 6: Once a robot lifts a product in a production unit, this product can only be released

in the respective storage unit.

FR 7: The robotic system must be aware of the position and orientation of both robots.

FR 8: The robotic system must define the navigation path for both robots before choosing

the robot that will perform the transport.

FR 9: The robotic system must choose the robot that can perform the mission using the

shortest path.

FR 10: The robotic system should calculate the shortest path considering objects and

walls blocking the path and not only the geographic distance.

FR 11: The robotic system must create a representation of the shop floor in the beginning

of every working day, before realizing the first transport order.

FR 12: The robotic system should create the shop floor representation based on the

sensory information of the robots.

FR 13: The representation of the shop floor must be built by both robots, cooperatively.

FR 14: After creating the representation of the shop floor, one robot must return to

RA1 and the other to RA3.

FR 15: The current representation of the shop floor must be available for both robots

at any time.

FR 16: The navigation paths must be defined according to the environment representa-

tion created by the robotic system.

FR 17: The navigation paths identified for the robots must be minimum paths.

FR 18: The robotic system must queue a transport order in case of none of the robots

is available for the transport at the moment of a request.

FR 19: The transport order must be done by an operator on a remote computer.

FR 20: The transport order must inform the position of the product (in geographic

coordinates) and its type.
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FR 21: The robotic system must be able to identify the reference areas (rest areas,

production unities, and storage units) in the shop floor.

FR 22: The robotic system must be able to transport products factored in both produc-

tion units (PU1 and PU2).

FR 23: The robotic system must transport products PT1 to ST1 and PT2 to SU2.

FR 24: The robotic system must be able to autonomously localize and identify products

inside the production unit.

FR 25: The robotic system must be able to autonomously pick and release products.

FR 26: The robotic system must release products in vertical position.

FR 27: After the transport mission, the robot must return to the closest Rest Area

(RA1, RA2, or RA3) available in the shop floor.

FR 28: The robot system must be able to identify a rest area occupied by other robot

as a not available rest area.

FR 29: The robotic system must notify the operator whenever it concludes a transport

order.

FR 30: The robotic system must avoid collisions between the robots and the environment.

FR 31: The robotic system must avoid collisions between robots.

FR 32: The robotic system must detect objects blocking the path of a robot and stop it

until the object is removed.

FR 33: If a robot is not able to autonomously navigate, the operator must remotely

drive it to a rest area.

FR 34: The robots controlled by the robotic system must operate independently of each

other. If one robot stops, the other must keep receiving transport requests.

FR 35: The robotic system must be able to be monitored remotely by the operator.

FR 36: The robotic system must be able to control the camera on the top of the robots.

FR 37: The robotic system must be able to process images obtained by the camera.

FR 38: The robotic system must be able to control the differential drive of the robots.

FR 39: The robotic system must be able to control the gripper actuator attached to the

robots.

FR 40: The robotic system must be able to process data acquired by the laser rangefinder

sensor on the robots.
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FR 41: The robotic system must be able to process data acquired by the eight sonars in

each robot.

FR 42: The robotic system must be able to process data acquired by the GPS sensor.
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❼ Oliveira, L. B. R.; Osório, F. S; Nakagawa, E. Y.; “A Systematic Review on Service

Oriented Robotic Systems Development” (Oliveira et al., 2012).

Institution: Institute of Mathematical and Computer Sciences, University of São

Paulo (ICMC/USP).

Level of contribution: High – the PhD candidate is the main investigator and con-

ducted the work together with his contributors.

Other Related Publications

❼ Guessi, M.; Cavalcante, E.; Oliveira, L. B. R.; “Characterizing Architecture Descrip-

tion Languages for Software-Intensive Systems-of-Systems” (accepted for publication)

(Guessi et al., 2015a).

Event: 3rd International Workshop on Software Engineering for Systems-of-Systems

(SESoS’15) – held in conjunction with the 37th International Conference on Software

Engineering (ICSE’15).

Level of contribution: Medium – the PhD candidate helped in the paper writing.

❼ Guessi, M.; Oliveira, L. B. R.; Garcés-Rodŕıguez, L. M.; Oquendo, F.; “Towards
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Résumé

La Robotique a connu une évolution remarquable au cours des dernières

années, couplée à un intérêt croissant de la société pour ce domaine.

Des robots ne sont plus fabriqués exclusivement pour effectuer des tâches

répétitives dans les usines, mais ils sont aussi créés pour collaborer avec les

humains dans plusieurs domaines d’application d’importance. Les systèmes

robotiques qui contrôlent ces robots sont donc de plus en plus larges,

complexes et difficiles à développer. Dans ce contexte, l’Architecture Ori-

entée Services (SOA) a été identifiée comme un style d’architecture logi-

ciel prometteur pour concevoir des systèmes robotiques de manière flexi-

ble, réutilisable, et productive. Cependant, malgré le nombre considérable

de Systèmes Robotiques Orientées Services (SORS) existants aujourd’hui,

la plupart d’entre eux ont été développés de manière ad hoc. Le peu

d’attention et le soutien limité portés à la conception d’architectures logi-

cielles SORS peuvent non seulement masquer les avantages de l’adoption

de la SOA, mais aussi réduire la qualité globale des systèmes robotiques,

qui sont souvent utilisés dans des contextes de sécurité critiques. Cette

thèse vise à améliorer la compréhension et la systématisation de la concep-

tion architecturale SORS. Elle décrit une taxonomie des services pour le do-

maine de la robotique, puis propose une processus ainsi qu’une architecture

de référence afin de systématiser la conception d’architectures logicielles

SORS. Les résultats obtenus dans les études d’évaluation montrent qu’à

la fois la processus et l’architecture de référence peuvent avoir un impact

positif sur la qualité des architectures logicielles SORS et, par conséquent,

contribuent à l’amélioration des systèmes robotiques.

Abstract

Robotics has experienced an increasing evolution and interest from the so-

ciety in recent years. Robots are no longer produced exclusively to perform

repetitive tasks in factories, they have been designed to collaborate with hu-

mans in several important application domains. Robotic systems that control

these robots are therefore becoming larger, more complex, and difficult to

develop. In this scenario, Service-Oriented Architecture (SOA) has been in-

vestigated as a promising architectural style for the design of robotic systems

in a flexible, reusable, and productive manner. Despite the existence of a

considerable amount of Service-Oriented Robotic Systems (SORS), most of

them have been developed in an ad hoc manner. The little attention and lim-

ited support devoted to the design of SORS software architectures may not

only hamper the benefits of SOA adoption, but also reduce the overall qual-

ity of robotic systems, which are often used in safety-critical contexts. This

thesis aims at improving the understanding and systematization of SORS

architectural design. It describes a taxonomy of services for the robotics

domain, as well as proposes a process and a reference architecture that

systematize the design of SORS software architectures. Results achieved in

the evaluation studies evidence that both process and reference architecture

can positively impact on the quality of SORS software architectures and, as

a consequence, contribute to the development of robotic systems.
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