
HAL Id: tel-01300667
https://theses.hal.science/tel-01300667

Submitted on 11 Apr 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Web Service Composition Compatibility : adaptation in
the presence of Business Protocol Evolution

Maryam Darvish Eslamichalandar

To cite this version:
Maryam Darvish Eslamichalandar. Web Service Composition Compatibility : adaptation in the pres-
ence of Business Protocol Evolution. Library and information sciences. Conservatoire national des
arts et metiers - CNAM, 2013. English. �NNT : 2013CNAM0998�. �tel-01300667�

https://theses.hal.science/tel-01300667
https://hal.archives-ouvertes.fr

 1

CONSERVATOIRE NATIONAL DES

ARTS ET MÉTIERS

École Doctorale Informatique, Télécommunications et Electronique de Paris

Centre d’Etudes et De Recherche en Informatique du CNAM

THÈSE DE DOCTORATE

présentée par : Maryam ESLAMICHALANDAR

soutenue le : 19 Décembre 2013

pour obtenir le grade de : Docteur du Conservatoire National des Arts et Métiers

Discipline/ Spécialité : Informatique

Compatibilité de la composition des services Web:

Adaptation suite à l’évolution des

protocoles métier

THÈSE DIRIGÈ PAR:

M. BARKAOUI Kamel Professeur, CNAM (Cedric)

RAPPORTEURS

M. PERRIN Olivier Professeur, Université de Lorraine (INRIA-LORIA)

M. TOUMANI Farouk Professeur, Université Blaise Pascal Clermont-Ferrand (LIMOS)

EXAMINATEURS

 M. AKOKA Jacky Professeur, CNAM (Cedric)

 M. MONSUEZ Bruno Professeur, ENSTA ParisTech (LEI)

 Mme. SI-SAID CHERFI Samira Maître de conférences, CNAM (Cedric)

2

To my adorable husband, Parviz,

 my wonderful parents, my beloved brother, my kind uncles and my dear in laws

for their continuous supports and encouragments.

2

Acknowledgments

First of all, I would like to sincerely thank my supervisor, Professor Kamel Barkaoui. I

genuinely appreciate for his extraordinary patience, countless supports, and invaluable

guidance during my research. Without him, I never could start my doctorate research studies

in Paris. His strong experience and profound knowledge in formal methods especialy in Petri

nets gave me the opportunity to go through and experience this domain. Many thanks to him

for everything that he has been provided me for better conducting my thesis.

My very special thanks go to Dr. Hamid Reza Motahari Nezad, who let me experience the

research on service adpatation and evolution. I am grateful to him for benefiting from his

incredible research expriences, remarkable supports, and invaluable ideas.

Many thanks to my dear friends Redha, Manel, Houda, Amel, Meryem, and Zeinab who

have often been a welcome distraction in the research stress. Many more friends accompanied

me in a wonderful and supportive way during my PhD’s life in Paris form the first year and

without mentioning each of them individually I would like to cordially thank them.

I would like to express my gratitude to my family especially my husband Parviz for their

patience and faithfully supports.

Finally, I gratefully thank the Conservatoire National des Arts et Métiers (CNAM) and

Cedric for providing the opportunity of benefiting from such a reseach environment to

conduct resourcefully my doctorate studies.

 4

Résumé

Avec l’utilisation croissante d’architectures logicielles indépendantes de la plate-forme et

du langage dans le paradigme de l’architecture orientée services (SOA), la technologie de

services web permet l’interopérabilité dynamique et flexible des processus métiers aussi bien

au niveau intra qu’inter-organisationnel. Bien que la normalisation des services web permet

de réduire l’hétérogénéité et rend plus facile leur interopérabilité, il y a toujours besoin de

vérifier leur compatibilité en particulier dans le contexte inter-entreprises. Deux services sont

compatibles si une collaboration entre eux est accomplie avec succès et que chacun puisse

atteindre ses résultats attendus (états finaux). L’approche typique devant permettre à des

services incompatibles d’interagir correctement est l’adaptation du service. L’adaptation

consiste dans ce contexte à faire face principalement aux discordances relevées au niveau des

interfaces de service (incompatibilités entre signatures de services) ainsi qu’aux discordances

qui ont lieu au niveau des protocoles métiers (incompatibilité dans l’ordre des messages

échangés entre services). On distingue deux principales techniques d’adaptation: modification

de service ou synthèse d’un composant adaptateur. L’adaptation en termes de modification de

service exige l’application de certaines mesures d’optimisation pour supporter les

spécifications du service partenaire. Dans le cas où l’adaptation traite de la création d’un

adaptateur, un composant autonome modère les interactions entre les deux services de sorte

que l’interopérabilité soit obtenue. En d’autres termes, l’adaptateur compense les différences

entre interfaces de services par conversion de données (c’est-à-dire par transformation de

message) et celles entre protocoles métiers en réorganisant les échanges de messages ou en

générant un message manquant.

Nous nous concentrons ici sur le problème de la reconfiguration dynamique de l’adaptateur

en presence d’évolution de protocols métiers. Après avoir traité de la vérification d’un

adaptateur en exploitant des techniques structurelles existantes développées dans le cadre de

la théorie des réseaux de Petri, nous établissons une identification des patrons de mise à jour

 5

d’adaptateurs ainsi que la mise en correspondance de ces patrons avec les différents types

d’évolutions possibles au niveau des protocoles métiers des services web. Ce travail a abouti à

la proposition d’un algorithme permettant, d’une part de détecter les patrons d’évolution

adéquats suite à une évolution d’un des protocoles métier des services partenaires et, d’autre

part et sous certaines conditions, la mise à jour à la volée de la specification du nouvel

adaptateur obtenu ainsi que sa verification.

Enfin, les expérimentations réalisées sur un prototype montrent les avantages en termes de

temps et de coût de l'approche dynamique proposée par rapport aux méthodes statiques

conduisant systématiquement à la regeneration complète de l’adaptateur.

Mots-clés: Services Web, composition de services, compatibilité, évolution de protocole

métier, adaptation.

 6

Abstract

The advent of Web service technologies in the paradigm of Service oriented architecture

(SOA) enables dynamic and flexible interoperation of distributed business processes within

and across organization boundaries. One of the challenges in working with heterogeneous and

autonomous Web services is the need to ensure their interoperability and compatibility. The

typical approach for enabling incompatible services to interact is service adaptation. The need

for adaptation in Web services comes from the heterogeneity at the levels of service interface

and business protocol. The service interface incompatibilities include service signature

mismatches (e.g., message and operation name, number; the type of input/output message

parameters of operations; and the parameter value constraint). The mismatches at the business

protocol (or service behavior) level arise from the order constraints that services impose on

messages exchanges (e.g., deadlock where both partner services are mutually waiting to

receive some message from the other, and unspecified reception in which one service sends a

message while the partner is not expecting it). In service interaction through adaptation, an

adapter mediates the interactions between two services with potentially different interfaces

and business protocols such that the interoperability is achieved, i.e., adapter compensates for

the differences between their interfaces by data mappings, and between their business

protocols by rearranging the messages exchanges or generating a missing message.

In this dissertation, we focus on how to cope with the dynamic evolution of business

protocol P of a given service (i.e., P is changed to P) that is adapted by an adapter in the

context of service interaction. Web service specifications constantly evolve. For variety of

reasons, service providers may change their business protocols. Therefore, it is important to

understand the potential impacts of the changes arising from the evolution of service business

protocol on the adapter.

We present an approach to automatically detect the effects of business protocols evolution

on the adapter and, if possible, to suggest fixes to update the specification of adapter on-the-

 7

fly. Besides, we propose a technique to verify the correctness of new adapter which is

dynamically re-configured. Finally, we describe a prototype tool where experimentations

show the benefits of proposed approach in terms of time and cost compared to the static

methods aiming for complete regeneration of adapter or manual inspection and adaption of

the adapter with respect to changes in the business protocols.

Keywords: Web services, compatibility, service composition, business protocol evolution,

adaptation.

 8

Table of contents

Acknowledgments .. 3

Résumé ... 4

Abstract .. 6

Table of contents .. 8

List of tables ... 10

List of figures ... 11

Introduction .. 12

 1 Context ... 12

 2 Contributions ... 16

 3 Outlines .. 19

1 Web service definition and modeling ... 20

 1.1 Background and preliminaries ... 20

 1.2 Formal models .. 22

 1.2.1 Petri nets .. 22

 1.2.1.1 Definitions and specifications .. 22

 1.2.1.2 Basics of structure theory of P/T nets .. 25

 1.2.2 open WorkFlow Nets ... 27

2 Web service composition and compatibility analysis ... 30

 2.1 Research efforts on service composition ... 31

 2.2 Verification of service composition ... 33

 2.3 Structural verification of service composition compatibility 35

3 Adaptation of Web service composition ... 41

 3.1 Adapter specification and modeling .. 43

 3.2 State of the art on service adaptation ... 45

4 Service adaptation in the presence of business protocol evolution 56

Table of contents

9

 4.1 Web service evolution and service interaction .. 57

 4.2 Dynamic adapter re-configuration ... 58

 4.2.1 Motivating example .. 60

 4.2.2 Business protocol evolution patterns .. 63

 4.2.2.1 Adapter adaptation patterns .. 63

 4.2.2.2 Adapter adaptation patterns identification 69

 4.2.3 Protocol evolution impact analysis on the adapter 71

 4.2.4 Dynamic verification of adapted adapter .. 74

 4.2.5 Prototype implementation and experiments ... 75

 4.2.5.1 Implementation ... 75

 4.2.5.2 Experimental evaluation ... 75

Conclusions ... 77

 1 Summery of contributions ... 77

 2 Future directions .. 78

Bibliography .. 79

 10

List of tables

4.1 The specification of AAP #1 ……………………………………………………………………65

4.2 The specification of AAP #2 ……………………………………………………………………67

4.3 The specification of AAP #3 ……………………………………………………………………68

4.4 The specification of AAP #4 ……………………………………………………………………69

4.5 The flags with true value based on the value of Matrices IM
S
 and IM

S
………………………..70

 11

List of figures

1 Web services technologies ...……………………………………………..……………………..11

2 The SOA framework ...……………………………………………..…………………………...12

1.1 The relation between BPEL process definition and the WSDL...………………………………19

1.2 Example of a Petri Net...……………………………………………..………………………….21

1.3 Example of two oWFNs N1 (left net) and N2 (right net) ...…………………………………….26

2.1 Service orchestration vs. service choreography…………………………………………………29

2.2 Not compatible partner services………………………………………………………………...35
3.1 Adaptation of service composition………………………………………………………………41

3.2 The oWFN model of adapter A_{P1, P2} between two business protocols P1 and P2………....45

4.1 The partner services Buyer and Seller in a purchase order scenario…………………………….60

4.2 The business protocols of Buyer (Q) and Seller (P) in the form of oWFN……………………...61

4.3 The model of adapter that sits between partner protocols Buyer and Seller of Figure 4.2……...62

4.4 The architecture of prototype implementation…………………………………………………..76

 12

Introduction

1 Context

With growing the idea of abstracting from underlying technologies and implementations, Service-

Oriented Computing (SOC) [1] has been emerged as a paradigm of cooperation of self-described software

components called services. Services are open components and self-describing encapsulation of business

functionality that support rapid, low-cost development and deployment of distributed applications. A

service has an identifier and can deliver its functionality via a standardized interface [2]. The most

prominent kind of services is Web services [3]. A Web service
1
 defined by World-Wide Web Consortium

(W3C) is a software application identified by a URI, whose interfaces and binding are capable of being

defined, described, and discovered by XML artifacts, and supports direct interactions with other software

applications using XML-based messages via internet-based protocols [4]. Web services can potentially

simplify the building of distributed applications [5]. Standards like XLANG
2
 or Web Services Business

Process Execution Language (WS-BPEL) [6] allow realizing the business processes using Web services.

Web services have been widely adopted to practically implement the fundamental idea of Service-Oriented

Architecture [7-8]. Service-Oriented Architecture (SOA) is an approach to the development of loosely-

coupled, protocol independent and distributed software applications as a collection of well-defined

autonomous services within and across enterprises in a standardized way. Such standardization enhances

re-usability and reduces considerably the cost of application integration. The idea of SOA is to use services

as loosely-coupled interfaces and thereby hiding implementation details [9]. The primary advantages of the

SOA comprises of reusability, interoperability, scalability, flexibility, and cost efficiency. The SOA is often

realized through Web Services technologies [10].

Web services technologies as illustrated in the Figure 1.1 include:

 XML Technologies comprising base XML (Extensible Markup Language)
3
, XML Schema

4
, XSLT,

XPATH, XQUERY to support the data and document that is exchanged, e.g., transformation,

process, manipulation, and etc.

1 In this thesis, we use the terms “Web service” and “service” interchangeably
2
 Thatte S., XLANG: Web Services for Business Process Design, Technical report, Microsoft, 2001

3
 http://www.w3.org/XML.

4 XML Schema provides the way to define an XML document type and structure

Introduction

 13

 Simple Object Access Protocol (SOAP) [11] that is a standard enabling the basic exchange of data

and documents (i.e., in XML format) between two or more peers. SOAP is used for transportation

with different Internet protocols such as HTTP, SMTP, FTP, and so on.

 Web Services Description Language (WSDL) [12] as an XML-based language describes all details

about Web service functionalities, and interfaces. In addition, WSDL describes where the service is

located, and how to access the service.

 Universal Description, Discovery and Integration (UDDI) [13] define the standard infrastructure for

publishing, discovering and integrating services. UDDI is just a registry enabling service requesters

to look for Web services based on their functional specification but not quality information.

Figure 1. Web services technologies

As Figure 1.2 illustrates, the SOA provides a general framework for Web services collaboration

comprising 1) service provider that offers his own Web service (i.e., by generating WSDL) and publishes

the required information to a public/private service repository; 2) service broker that is responsible for

managing the repository and allows the service requester to find an appropriate service (that has already

been published) for binding to his own components; and 3) service requester that invokes the services. The

service broker compares the actual Web service model published by provider with an abstract Web service

model submitted by the service requester, such that they can directly bind their services and initiate the

interaction. In some cases the broker may construct an adapter service to bridge the gap between the

provider and requester. There are two ways of binding of Web services: static binding that is done at design

time where the service requester acquires required information about a service directly from the service

UDDI

Registry

Service

Requester

WSDL

Web Service

Points to Description

Describes

Service
Finds

Service

SOAP

Communicates with

XML Messages

Introduction

 14

provider (i.e., through a private channel like e-mail), and stores it in a local configuration file; and dynamic

binding that occurs at runtime.While the client application is running, it dynamically locates the service

using a UDDI registry and then dynamically binds to it using WSDL and SOAP. This requires that the

contents of the UDDI registry be trusted. Currently, only private UDDI networks can provide such control

over the contents. Felber et al. in [14] introduce some algorithms to provide solutions for the problems

associated with SOAP and related XML-based schemes that require further decoding to bind many kinds of

requests.

The mature standards like WSDL and ebXML Collaboration Protocol Profile [15] are used for Web

service descriptions. Web Service description generally represents service capability, behavior (business

protocol), quality, and interface. An instance of a given service corresponds to the execution of its

activities. These activities are atomic units of work where the partial order of execution of the activities

denotes the behavior of a service. The expected results and conceptual purpose of a service signifies its

capability. The quality of a service (QoS) is realized by non-functional properties. A service interface

represents its functionality. The interface describes service signature (i.e., comprising the operations, the

inputs/outputs messages, message types, and error parameters) facing with an environment from

interactional standpoint. The interface of a service consists of a set of ports (i.e., connected by a channel)

enabling the message exchange for a service using SOAP over the transport protocol such as HTTP or

HTTPS. Web services interfaces are usually described using WSDL.

Figure 2. The SOA framework

In the past decade, numerous approaches have been devoted to different aspects of Web services

associated with modeling, interoperability, quality of services (QoS), semantics, security, and automation

of different processes such as discovery, selection, and composition. Among these challenges, our main

concern in this dissertation
5
 is service composition

6
. Web service composition as the fundamental idea of

SOA is to combine individual and simple services into complex processes to provide dynamic, automatic,

seamless service interoperability. Composition of Web services has grown to support B2B or enterprise

5 We use the terms “dissertation” and “thesis” interchangeably
6 We use the terms “composition”, “interaction”, “interoperability”, “collaboration”, and “integration” interchangeably

Publish Find

Bind

Service

Broker

Service

Requester

Service

Provider

Introduction

 15

application integration. Service composition establishes a value-added functionality by integration of

various services conducted by different organizations such that may not be foreseen at the time when a

Web service is designed. By Web service composition, reuse of services is implemented, the quality and

efficiency are increased, and the dynamic evolvement of the user’s requirements is satisfied. Lots of work

on Web service composition has been presented by focusing on different aspects of Web service

specifications in the literature [16-17]. The process of service composition develops a composite service by

taking a set of service components as input. A composite service is recursively defined as an aggregation of

elementary and composed services [16].

Motahari-Nezhad et al. [18] discuss the specifications of Web services interoperability based on layers

concepts for better investigation of the relevant problems in different layers. The specifications in lower

layer are required properties in most applications while the higher-layer ones are not necessary:

 Messaging layer. In addition to the SOAP as a common protocol, in this level service providers may

consider the desirable properties such as security or reliability as additional service specifications.

 Basic coordination (WS-Transaction). These properties define the specifications associated with

messages exchanges among partner services (e.g., federate security management that is useful in many

business processes developments).

 Business-level interfaces and protocols. This layer includes the functional properties of services (i.e.,

the service interface and service business protocol).

 Policies and non-functional aspects: The specifications of this layer comprise of security policy, the

QoS characteristics such as time-related properties and cost.

In this thesis, we deal with the business-level interfaces and protocols of Web service at higher

abstractions levels of the service interaction stack.

Due to the heterogeneity and autonomy of Web services, the necessity of evaluation and verification the

composite services remains as a fundamental challenge for ensuring the correct composite services. Even

though service providers prevent the publication of erroneous services, nevertheless for service customer it

is crucial to verify the correctness of a composite service before running (like model-checking).

Verification of service composition is inevitable to avoid the great economic loss while checking whether

the designer’s requirement or users’ needs are satisfied. Verification approaches analyze the behavior of a

composite service based on a variety of correctness criteria and different formalisms.

A fundamental challenge in verification of collaborative services is concerned with the compatibility

among participant services [19]. It is crucial that the interoperability of heterogeneous Web services to be

compatible. Two services are said to be compatible if any collaboration between them is accomplished

successfully, and also each of them reaches its expected results (final states). A variety of research efforts

on Web services have fundamentally focused on dealing with incompatibilities of service interaction. The

typical approach for enabling incompatible services to interact is service adaptation [20-22]. The need

Introduction

 16

for adaptation in Web services comes from the heterogeneity at the levels of service interface and business

protocol. The service interface incompatibilities include service signature mismatches (e.g., message and

operation name, number; the type of input/output message parameters of operations; and the parameter

value constraint). The mismatches at the business protocol (or service behavior) level arise from the order

constraints that services impose on messages exchanges, e.g., deadlock where both partner services are

mutually waiting to receive some message from the other, and unspecified reception in which one service

sends a message while the partner is not expecting it.

In service interaction through adaptation [20] [23] an adapter mediates the interactions between two

services with potentially different interfaces and business protocols such that the interoperability is

achieved, i.e., adapter compensates for the differences between their interfaces by data mappings, and

between their business protocols by rearranging the messages exchanges or generating a missing message.

In this dissertation, we focus the adaptation of services from viewpoint of their business protocols and

abstract from any other aspects such as non-functional properties (e.g., time constraint, cost), data and

information semantics.

2 Contributions

Existing service adaptation approaches support the business protocols that do not change after adapter

generation. For variety of reasons, service providers may change their business protocols. One interesting

challenge in service adaptation is to cope with the dynamic evolution of business protocol P of a given

service (i.e., P is changed to P) that is adapted by an adapter. Web service evolution is usually driven by

perfective motivation  to modify the existing functionality of services or business rules; and also by

corrective motivation  to change the service signature, behavior or policy [24]. Implementing these

changes causes challenges in many aspects of managing changes in adapters. An interesting issue is to

understand the impact of the changes on the specification of the existing adapter. A baseline approach

would be to re-generate adapter from scratch whenever there is a change on business protocols of the

partner services. Such an approach is not efficient in the case where changes of business protocols have no

global impact. Instead, a more beneficial approach is to analyze the potential impacts of these changes on

the adapter supporting the interactions among services. Therefore, there is a need a method to detect the

evolution of business protocols participating in an adapter, and identify whether an adapter re-generation is

needed, or alternatively the changes can be remediated on-the-fly.

In this thesis, we focus on the problem of service adaptation when the business protocols of services

evolve and move to a new version. The challenges include identification of the changes on the business

protocols, and their respective impacts on the adapters. Such an analysis would need to distinguish changes

that do not have any impact on the adapter, or can be accommodated in a dynamic change to the adapter

specification via approaches such as software aspect [25], or they would require a re-generation of the

Introduction

 17

adapter. However, updating the adapter specification at run-time may be preferable than a complete

regeneration. The intention is to provide enough information to adapter developers in deciding how to deal

with changes in the underlying interacting services.

In this dissertation, we aim to investigate dynamic adaptation of an adapter in the context of business

protocol evolution. In order to describe, model and analyze the evolution of business protocols we use the

open Workflow Net (oWFN) [26] formalism that is a sort of Petri nets [27] well suited to cope with control

flow dimension of the evolution of service business protocol.

We first present a method to identify the changes in service protocols participating in an adapter. The

proposed method enables us to detect which elements of a given business protocol have been modified, i.e.,

messages or activities added, removed or updated. Then, we identify the potential impacts of the changes

on the current adapter in terms of either partial impact (i.e., dynamically treatable changes) or global

impact (i.e., the changes which need adapter re-generation to be treated). For the changes with partial

impact, we find and suggest updating the specification of current adapter dynamically. We also verify the

correctness of the new adapter which is dynamically re-configured.

In particular, we make the following contributions that summarize the major points of our work:

Introducing Adapter Adaptation Patterns

We identify and classify the possible common adapter adaptation patterns (AAPs) for business

protocols evolution. For this end, we address the taxonomy of these AAPs with respect to the type of

changes that may occur at the level of service’s interface elements (e.g., messages or activities added,

removed or updated in different points of the interactions).

Therefore, each of the AAPs characterizes a business protocol evolution pattern (i.e., the change type)

and describes the potential impact of an evolution pattern on the adapter which can be partial or global

impact. An AAP also recommends a strategy for updating the adapter specification on-the-fly, if the impact

of respective evolution pattern is partial and such a solution exists.

Protocol Evolution Patterns Identification

We present an algorithm to detect the changes of business protocols in terms of the evolution patterns

(of the AAPs). The algorithm allows recognizing the elements of business protocol that have changed in

terms of added, removed, and updated interface elements.

Introduction

 18

Protocol Evolution Impact Analysis on the Adapter

We introduce an algorithm to automatically analyze the impact of evolution in business protocols by

checking the AAPs. The impact analysis algorithm explores the affected areas of business protocol using a

bfs-based method (breadth-first search) and evaluates the potential influences of changes by checking the

corresponding AAPs. For each of the involved AAP with partial impact, the algorithm dynamically applies

the adaptation strategies on current adapter to re-configure the adapter specification. Otherwise, the

algorithm recognizes that the adapter should be completely re-generated from scratch  using a global

analysis of the new interactions among services for the evolved business protocols.

Adapter Verification

We use a technique based on the structure theory of Petri Nets [28] to dynamically verify the

correctness of the adapter which is updated on-the-fly. Indeed, it is crucial to verify the well-formedness

[20] property of generated adapter. An adapter is said to be well-formed if it supports a compatible

collaboration between partner services. We show how we can take the advantages of concepts based on the

structure theory of Petri nets to check whether the new adapter satisfy the well-formedness property.

Prototype Implementation and Experiments

Finally, we present a prototype tool implementing the proposed approach based on the PIPE2 (Platform

Independent Petri Net Editor 2) [29]. The obtained experimental results show that adapter developers can

save a significant amount of time, cost and efforts by applying this approach.

To the best of our knowledge of the state of the art, this work is the first to deal with the dynamic re-

configuration of the adapter in the context of evolution of partner service’s business protocols. The

proposed approach is useful for service clients with adapters in place when they receive notices of changes

in the partner business protocols in order to analyze the impact and ensure compatibility, and identify

possible updates on the adapter specification to remedy the changes.

As we already pointed out, in this work we leave out the discussion about Web service non-functional

requirements (time constraint, cost), data and information semantics. Hence, a Web service can be viewed

as a control structure describing its behavior according to an interface to communicate asynchronously with

other services. Parts of this thesis have been published in earlier papers [30-31] [150].

Introduction

 19

3 Outline

This dissertation proceeds as follows. In chapter 1, we present the basic concepts and some background

on Web service definition and modeling. Chapter 2 is devoted to the Web service composition. It discusses

the verification of service composition and the notion of compatibility. In chapter 3, we present the need of

adaptation for service interaction and review a number of proposed adaptation approaches mainly from

points of view of their interfaces or business protocols mismatches.

Chapter 4 is devoted to the issue of Web service evolution and related concepts. This chapter mainly

presents our proposed approach for adaptation of Web services in the case where the business protocols of

services evolve. Therefore, in this chapter we define the common adapter adaptation patterns in presence of

business protocol evolution. Besides, we present a method for identifying these patterns. We also introduce

an algorithm to analyze the changes in business protocols participating in an adapter and to apply the

adaptation solutions on it. In addition, chapter 4 illustrates a technique to verify the correctness of the new

adapter. We also discuss the implementation of a prototype and experiments in this chapter. In chapter 5,

we conclude and describe some future perspectives.

 20

Chapter 1

Web Service Definition and Modeling

Emerging technologies and industrial standards in the context of Web services facilitate dynamic and

flexible cooperation of distributed business processes within and across organization boundaries to develop

value-added applications. Web service is a functionality described in a standard definition language and can

be accessed via various transport protocols. In this chapter, we provide an overview of the necessary formal

background for modeling the Web service specifications that we apply in this dissertation.

1.1 Background and Preliminaries

Service-orientation specifies common descriptions and definitions for Web services such that each

service has an internal control and an interface [32] to expose a given functionality to its environment. An

interface of a Web service usually consists of the message channels that are exposed to the environment

(i.e., to invoke other services). The message channels group into ports. Using each port, the interface is able

to store messages. In a port, each message channel has a direction and is either an input message channel or

an output message channel. The interfaces can be composed by connecting these message channels that

make the asynchronous communication in which sending and receiving of messages is decoupled. In BPEL

the term partner link has been attributed for a port of an interface. The internal control triggers the actions

of the Web service. An action either operates locally or responsible to send a message to a port or receive

one from a port.

Chapter 1. Web service definition and modeling

 21

Service business protocol

The business protocol of a service (service behavior) describes the external behavior of service

exposing to the environment. In other words, service business protocol
7
 is not concerned with the execution

of internal operations. Indeed, the behavior of a service specifies the order in which messages or documents

are exchanged (i.e., message exchange sequences). The Figure 1.3 depicts an example of a service protocol

in the forms of open Workflow Nets.

The service behavior can be expressed using standard languages such as BPEL (Business Process

Execution Language) [6] or a modeling diagram such as state diagrams [32].

Figure 1.1. The relation between BPEL process definition and the WSDL

Industrial standards

Industrial efforts are principally dedicated to development of XML-based languages on the top of

UDDI, WSDL and SOAP for description of complex business processes and Web services interactions.

The Business Process Execution Language for Web services (BPEL4WS or BPEL for short) [6] is an

XML-based standard language to describe the behavior of Web services in a business process interaction.

Originally, the BPEL has been released by Microsoft, IBM, Siebel Systems, BEA, and SAP by merging the

specification of Microsoft’s XLANG and IBM’s WSFL
8
 in July 2002. BPEL is now supported by the

OASIS group. Due to its expressiveness, BPEL is currently seen as a fundamental standard. BPEL is used

to model two kinds of executable processes and abstract processes. An abstract process describes the

interaction protocol and message exchange between the involved partners without revealing the internal

7 In this dissertation, we use the term “business protocol” and “protocol” interchangeably.
8
 Leymann F., Web Services Flow Language, Technical report, IBM, 2001.

BPEL

Action

Partner
Link

Process

BPEL / Partner Link Type

Partner Link Type

Role

Port Type

Message

Message Part

WSDL

Input

Operation

Output

Fault

Chapter 1. Web service definition and modeling

 22

behavior of them. The executable process essentially models a workflow where specifies the execution

order of number of activities. An activity can either be a primitive activity (e.g., invoke, reply, receive, wait,

assign) or a structured activity. The structured activities are a combination of primary activities in order to

enable the presentation of complex structures such as sequence, switch, while, flow. As shown in Figure

1.1, the BPEL process model places on top of WSDL.

Besides, Business Process Modeling Language (BPML)
9
 proposed by Business Process Management

Initiative. In parallel, the W3C has provided a common framework to Semantic Web idea [33] that allows

resources to be shared and reused across application, enterprise, and community boundaries.

Industrial Web service standard languages often insufficient for modeling complex process and require

theoretical support. Therefore, various formal modeling are used for representing the BPEL activities. Petri

nets [34-38]; Finite State Machines (FSMs) [39-40]; process algebra [41-42]; -calculus [43] are

effectively applied to model, analyze, and verify the behavior of Web services and service interoperability.

Among these formalisms, Petri nets (P/T nets) as well-appropriate techniques representing the behavior of

concurrent and non-deterministic systems are effectively applied for modeling Web services specifications.

1.2 Formal Model

1.2.1 Petri nets

In this section, we provide an overview on the basic definitions and properties of Petri nets while giving

some structure theory of P/T nets.

1.2.1.1 Definitions and specifications

Originally, Petri net has been proposed by Carl Adam Petri [44]. The classical Petri net is a directed,

connected, and bipartite graph with two node types called places and transitions. These nodes are

connected by directed arcs. Due to the intuitive graphical and visualized representation of Petri nets, they

are broadly exploited in both theoretical and practical research studies. The Petri nets can be automatically

extracted from the BPEL [45]. Variety of Petri net tools
10

 exist that each of them has unique internal

representation and file format definition, e.g. Artifex, CPN-AMI, HiQPN-Tool, Renew, PACE. Moreover,

Petri Net Markup Language (PNML)
11

 has been proposed as an XML-based interchange format for

supporting different versions of Petri nets.

9 Arkin, A. 2002. Business Process Modeling Language (BPML), http://www.bpmi.org/
10

 http://www.daimi.aau.dk/PetriNets/tools
11

 http://www.informatic.hu-berlin.ed/top/pnml

Chapter 1. Web service definition and modeling

 23

Definition 1.1 (Petri Net). A Petri net N is a triple (P, T, F) in which

 Two finite and disjoint sets P of places and T of transitions such that P  T =  and P  T  ;

 F is set of arcs with F  (P  T) ∪ (T  P) as the flow relation. Indeed, F is a function that

allocates to each transition its pre-set places and post-set places.

A transition t  T is an active element representing an activity of a service, and a place p  P is a

passive element standing for a message or data. Transitions are represented by rectangles and places by

circles. At any time a place contains zero or more tokens. Graphically, a token is depicted by a black dot.

Tokens in the Petri nets can represent the resources and resource allocation. A marking m (i.e., the state) of

a Petri net is the distribution of tokens over places (i.e., m: P ) that can be represented as 2p1 + p2 + 1p3

+ … + kpn (k  0 and n is the number of set P). Hence, m0 represents the initial marking and mf stands for

the final marking. Besides, m(p) demonstrates the number of tokens in the place p.

The pre-set and post-set of a node x  P  T describe the set

x = {y  P  T | (y, x)  F}, and the set x



= {y  P  T | (x, y)  F}, respectively. A transition t  T is said to be enabled in marking m if and only if

p 

t holds m(p)  0 (i.e., each pre-set place of t contains at least one token). An enabled transition t can

be fired in marking m by consuming tokens from each pre-set place p 

t and producing tokens on the all

post-set places p  t that results in a new marking m denoted by m m such that m = m –

t + t


 (i.e.,

m (p) = m (p) – 1,p 

t; and m (p) = m (p) + 1, p  t


).

Figure 1.2. Example of a Petri Net

A sequence σ over T is a function σ: {1, ..., n}→ T, by length |σ| = n (n ). A marking mn is called

reachable form marking m1 if and only if there is a firing sequence σ = t1t2 ... tn-1 such that m1 mn (i.e.

m1 m2 m3 … mn). A pair (N, m0) represents a marked Petri net N. The set of all reachable

markings of a Petri net (N, m0) is defined as R(N, m0). We also denote by ||m|| = {p  P | m (p)  0} the

support of marking m. We consider P
 for the set of all markings over P. Figure 1.2 shows a simple

t
 


 

t1
 

t2
 

tn
 

p0

t0

p1

t1

t3

P3 P2

P4 P5

P6

t2

 t4

Chapter 1. Web service definition and modeling

 24

example of a Petri net. In this thesis, we use ordinary Petri nets, which do not allow multiple arcs between

places and transitions.

Definition 1.2 (incidence matrix). The incidence matrix of the Petri net N is the matrix C indexed by

P×T and defined by C(p, t) = W(t, p) - W(p, t) in which W(u) = 1 if u  F and W(u) = 0 if u  F.

The notion of place invariants and transitions invariant refers to the conservation of tokens and

sequences without effect respectively. A non-negative integer vector f (f ≠ 0) indexed by P (f  Z
|P|

) is a P-

invariant if and only if it satisfies
t
f.C = 0 (0 is a column vector where every component equals 0). A non-

negative integer vector g (g ≠ 0) indexed by T (g  |T|
) is a T-invariant if and only if it satisfies C.g = 0. P-

invariant characterizes that the number of tokens over a set of places P of a Petri net N is constant

independently from any transition firing. We denote by || f || = {p  P | f(p) ≠ 0} the support of f such that

|| f ||
+
 = {p  P | f(p)  0} and || f ||

-
 = {p  P | f(p)  0} are the positive and negative support of f

respectively.

We recall some behavioral properties of a Petri net N as follows:

 A marking m
*
 is a home state if and only if m  R(N, m), m

*
  R(N, m).

 N is reversible if and only if m0 is a home state.

 N is bounded if and only if for every place p  P and for every reachable marking m  R(N, m0), k 

such that m(p)  k.

 N is structurally bounded if N is bounded for any m0.

 N is conservative if and only if there is a P-invariant f such that || f || = || f ||
+
 = P. In other words, a Petri

net is conservative if the total number of tokens presented in the set places P of the net is constant in

any reachable marking. If N is conservative then N is structurally bounded.

 N is live if and only if for every transition t  T and for every reachable marking m  R(N, m0), there is

a reachable marking m'  R(N, m) in which t is enabled.

 N is quasi-live if and only if t  T, m  R (N, m0) in which t is enabled.

 A transition t of N is dead if and only if for every reachable marking m  R(N, m0), t cannot be enabled.

 N is deadlock-free if and only if for every reachable marking m  R (N, m0), t  T enabled in m and the

final marking is reachable.

 N is structurally live if and only if m0 such that (N, m0) is live.

 A bounded and live Petri net is said to be well-formed.

 N is weakly terminating if and only if for every reachable marking m  R(N, m0), the final marking mf is

reachable, i.e., mf  R(N, m). Weak termination does not require that every transition to be quasi-live.

Chapter 1. Web service definition and modeling

 25

1.2.1.2 Basics of structure theory of P/T nets

Structure theory of Petri nets investigates the relationship between the behavior and structure of the net.

The use of structural methods for the analysis of systems compared to other approaches avoids the state

explosion problem inherent in concurrent systems.

Definition 1.3 (Reachability graph). The reachability graph of a Petri net is the part of the transition

system reachable from the initial place in graph-like notation.

Definition 1.4 (Siphon). A remarkable substructure of Petri nets is siphon. A nonempty place set S  P

of a P/T net N is called a siphon if and only if

S  S


. It means every transition that has inputs from one of

the places in S, as well has outputs to one of the places in S. S is said to be minimal if and only if it contains

no other siphon as a proper subset. Due to its structure, the number of tokens in a siphon will never

increase, and an unmarked siphon will always remain empty. In such a case, the transitions of S

 are dead,

and so S needs to be controlled. S is said to be controlled if and only if S is marked at any reachable

marking (i.e., m  R (N, m0), p  S such that m(p) > 0).

Definition 1.5 (CS-property). N is said to be satisfying the controlled-siphon property (CS-property) if

and only if all its minimal siphons are controlled.

We recall below two well-known basic relations between liveness and the CS-property [46]. The first

states that the CS-property is a sufficient deadlock-freeness condition while the second states that the CS-

property is a necessary liveness condition.

Proposition 1.1. Let N be a P/T net. If N satisfies the CS-property then N is deadlock-free (weakly live).

Proposition 1.2. Let N be a P/T net. If N is live then N satisfies the CS-property.

The following proposition recalls two structural (sufficient but not necessary) conditions permitting us to

check if a given siphon is controlled or not.

Proposition 1.3. Let S be a siphon of N satisfying one of the two following conditions, then S is

controlled [46]:

i) R  S such that R

 


R and R  ||m0||  (i.e. p  R, m0(p) > 0);

ii) P-invariant f Z
P
 such that S  || f ||, || f ||

+
  S and , and p  P [f(p). m0(p)]> 0.

Chapter 1. Web service definition and modeling

 26

Definition 1.6 (K-Systems). P/T nets where CS-property is not only necessary but also sufficient

liveness condition are called K-systems. In other words, there is equivalence between liveness and CS-

property in K-systems [46].

Definition 1.7 (Root place). Let t T be a transition of a Petri net N, r  P, and r 

t; r is a root place

for t if and only if p 

t, r


  p


.

Definition 1.8 (Ordered transition). A transition t  T is said to be ordered if and only if p, q 

t , p



 q


or q

  p


. An ordered transition has at least one root place. A transition admitting a root place is not

necessarily ordered.

Let us to consider the following denotes:

- Root (t): the set of root places of t.

- TO (N): the set of ordered transitions of N.

- TR (N): the set of transitions of N admitting a root (i.e. TO (N)  TR (N)).

- Root (N): the set of root places of N.

Definition 1.9 (Root Component). The Root Component of N is the net RC(N) = (PC(N), TC(N), FC(N))

where PC = Root (N); TC = TR (N); and FC is the restriction of F such that (p, t)  FC if and only if p

Root(t), and (t, p)  FC if and only if (t, p)  F.

Two main subclasses of K-Systems namely Root nets and Ordered nets can be recognized structurally

and effectively [46]. Note that by definition these two subclasses are disjoint.

Definition 1.10 (Root net). N is called a Root net if and only if TR(N) = T and its Root Component

RC(N) is bounded and connected.

Definition 1.11 (Ordered net). N is called an Ordered net if and only if TO (N) = T (i.e. all its

transitions are ordered).

Theorem 1.1. Let N be an Ordered net or a Root net. N is live if and only if it satisfies the CS-property

[46].

In the following, we introduce the open nets (open WorkFlow Net) [26][47][48] formalism that we

apply in this thesis as a basis for modeling and analyzing Web services specifications and services

Chapter 1. Web service definition and modeling

 27

interactions. This formalism is especially exploited for representation and evaluation of Web service

business protocol evolution as the main challenge of this dissertation.

1.2.2 open WorkFlow Nets

In this section, we describe the open Workflow Net (oWFN) formalism to efficiently present our

approaches. An oWFN is a type of Petri nets along with interface places for asynchronous communication

with the partners. Indeed, an oWFN encompasses a workflow net describing the internal process of a Web

service, and input / output interface places enabling the exchange of messages sent or received by a service.

We recall that a workflow net is a Petri net with two distinguished places  the initial place pi (i.e., with

empty pre-set), and the final place pf (i.e., with empty post-set)  and that for every node n  P  T, there

is a directed path from place pi to pf via n [49].

In many references the interface places are considered as data places. More precisely, each input place

(i.e., with empty pre-set) corresponds to an input port of the interface (i.e., used for receiving messages

from a distinguished channel) whereas an output place (i.e., empty post-set) corresponds to an output port

of the interface (i.e., used for sending messages via a distinguished channel). The Web services can be

composed by connecting these interface places.

Definition 1.12 (open WorkFlow Net). An open Workflow Net (oWFN) N = (P, In, Out, T, F, m0, Mf)

consists of :

 Finite and disjoint sets P of internal places, In of input interface places, Out of output interface

places, and T of transitions;

 A flow relation F  (P  T)  (T  P)  (T  Out)  (In  T);

 An initial nonempty marking m0 such that p  In  Out, m0 (p) = 0; and

 A nonempty set of final markings Mf such that:

– mf Mf and p  In  Out, mf (p) = 0;

– p mf , p

 =  where ||m|| = {p P | m(p)  0} is the support of marking m; and

– The final markings are mutually exclusive.

A transition t  T is an interface transition if and only if the pre-set or post-set of t includes an interface

place (i.e., |t

  Out|   or |


t  In|  ). For an oWFN, we denote by TI the set of all interface transitions,

and by PI the set of all interface places In  Out. For every interface place p  In, q Out holds

p   and

q

= .

Chapter 1. Web service definition and modeling

 28

Figure 1.3. Example of two oWFNs N1 (left net) and N2 (right net)

Here, we consider the oWFNs where for each interface transition t holds (|

t  In| = 1 and |t


 Out| =

) or (|t

 Out| = 1 and |


t  In| = ). In addition, our approach assumes that oWFNs are acyclic (i.e.,

which do not contain directed cycles), hence, we can assign a topological ordering (#) to interface

transitions (i.e., if tb can be reached by ta then ta  tb). Besides, we assume that business protocol

evolution in terms of added or removed interface transitions do not create cycle in the internal part of

associated oWFN. Figure 1.3 represents a simplified example of an oWFN. As showed in the Figure a dash

line distinguishes the interface places. The tool BPEL2oWFN [50] automatically transforms the BPEL to

an oWFN.

In the context of oWFNs cooperation, we have to respect the non-visibility of the internal part of

oWFNs. Accordingly, we define the incidence matrix [27] of an oWFN only by the interface elements. The

columns and rows of the matrix include only the input/output interface places and transitions of an oWFN,

respectively.

Definition 1.13 (Incident Matrix of oWFN). For an oWFN N, the incident matrix IM is a |PI|  |TI|

matrix where for each p  PI, t TI, i  In, and o  Out;

 IM[p, t] = 1 if (i, t)  F and (t, o)  F;

 IM[p, t] = −1 if (i, t)  F and (t, o)  F; and

 IM[p, t] = 0 if (i, t)  F and (t, o)  F.

Algorithm 1 represents the method of generation of the incidence matrix of an oWFM.

Chapter 1. Web service definition and modeling

 29

Algorithm 1: Generating the interface incidence matrix of oWFN S

 Input: oWFN S

 Output: IM
S

1 begin

2 FI  {(x, y) | (x, y)  ((TI  PI)  (PI TI))};

3 m = PI;

4 n = TI;

5 IM[m][n]  0;

6 for each (x, y)  FI do

7 if (x = transition)  (p  PI [i]  p = y)  (t  TI [j]  t = x) then

8 IM[i][j]  +1;

9 else IM[i][j]  –1;

10 return IM[m][n];

30

Chapter 2

Web Service Composition and

Compatibility Analysis

Service-orientated architecture (SOA) has been emerged as a computing paradigm to generate complex

services and large distributed systems by composition of several heterogeneous, decentralized, and

autonomous Web services. In the past decade, the interoperability of Web services [51] as the fundamental

idea for effective B2B integration [52] and satisfying business requirements has received significant

attention from both industry and academia, e.g., extended enterprise (business-to-business) pattern

introduced by IBM
12

.

Web service interoperability aims to provide seamless and automatic communication among

independent services regardless of their location and platform. The ability of composition of heterogeneous

and autonomous Web services increases the reusability and quality of services, reduces costs, and can

satisfy a variety of business demands. The process of service composition develops a composite service by

taking a set of service components as input. A composite service is recursively defined as an aggregation of

elementary and composed services [16]. The composition of two or more services generates a new service

providing both the original behavior of initial services and a new collaborative behavior to carry out a new

composite task. This means that existing services are able to cooperate even though the cooperation was not

designed in advance [53] [18].

There are two different service descriptions for a composition model: service orchestration and service

choreography (also called contract) [54]. Although both are applied to model composite services in the

SOA, service orchestration (see Figure 2.1(a)) describes the service interaction from the viewpoint of a

single participant service (orchestrator), while service choreography (see Figure 2.1(b)) describes the

interactions between a collection of participant services from a global perspective such that each party

12

 IBM-WebSphere: Introduce Patterns for e-business.

Chapter 2. Web service composition and compatibility analysis

 31

knows the business logic and messaging sequence. By choreography, we refer to the messages exchanges

that occur among partners in a service interaction. The languages like BPEL and BPMN
13

 describe service

orchestrations. Various specification languages also exist for services choreography such as WS-CDL [55]

and BPEL4Chor [56]. Yushi et al. [57] present a survey on Web service composition languages.

Wil van der Aalst et al. [58] have proposed a public-to-private approach, in which the partners involved

in inter-organizational cooperation describe a common public choreography comprising a set of the task

that each task is associated with an organization. This common schema is defined as a contract based on

predefined rules among the partners. Based on this public contract, organizations can develop and

implement their internal plan (private view) autonomously and preserve their privacy by considering

contract agreements. In some approaches [59-61], the authors apply a logic based framework using Linear

Temporal Logic (LTL) [62] to specify, verify and validate the service composition logic.

(a) service orchestration

(b) service choreography

Figure 2.1. Service orchestration vs. service choreography

2.1 Research Efforts on Service Composition

In this section, we intend to provide a quick overview on the proposed Web services composition

approaches.

Papazouglou M.P. [2] introduces an extended SOA, which includes separate tiers for service

composition, coordination, and service operations management (i.e., to monitor the correctness and overall

functionality of aggregated/orchestrated services in an open marketplaces by employing grid services).

In [63], Benatallah et al. describe the design and implementation of the Self-Serv system where Web

services are declaratively composed using a model-driven approach, and the resulting composite services

are executed in a decentralized way within a peer-to-peer and dynamic environment. Papazouglou M.P.

also in [64] addresses the issues relating to the use of business transactions in Web service based

applications. The paper introduces a business transaction framework (based on collaborating Web services)

13

 Http://www.omg.org/spec/BPMN/1.1.

Service 1

Service 4 Service 3 Service 2

Service 1

Service 4

Service 3

Service 2

Chapter 2. Web service composition and compatibility analysis

 32

that is necessary for building robust and extendible e-business applications. The author also introduce the

standard Web service based initiatives such as BPEL, WS-Transaction, WS-Coordination, the Business

Transaction Protocol (BTP), and the ebXML Business Process Specification Schema (BPSS) that enables

the description of the public interface of e-business processes. Dalal et al. [65] evaluate the application of

BTP (Business Transaction Protocol) for practical cases that has been developed by OASIS to support the

collaboration of commercial Web-based applications.

Alamri et al. [66] introduce a classification of dynamic Web service composition techniques as:

 runtime reconfiguration using wrappers where one or more components are wrapped inside another

component [67].

 runtime service adaptation, where the interface and behavior of services or components are changed

at runtime, which proposed for incompatible service composition.

 composition language, which provides a way to better describe component composition. A

composition language is a combination of an Architectural Description Language (ADL), a

scripting language, a glue language, and a coordination language.

 workflow-driven composition techniques, which define an abstract process model to characterize the

set of tasks and data dependencies of workflow in a composition.

 ontology-driven service composition, which facilitates the semantic dynamic composition of Web

services.

 declarative composition techniques that use the composability rules to determine whether two

services are composable [16].

Spanoudakis et al. [68] propose a framework to dynamically monitor composite services and

dynamically identify the service which will substitute the malfunctioning services. The goal of the

proposed approach is to detect and correct both functional and non-functional requirements violations. The

framework can be applied on both service infrastructure and service composition layers. Skogsrud et al.

[69] introduce a trust negotiation framework for Web services based on state machines, extended with

security abstractions. This model-driven approach provides benefits for developers of composite Web

services. Quintero at al. [70] introduce dynamic model for service composition which allow specifying the

structural and dynamic requirements of Web services compositions. In [71] Casati et al. developed eFlow

which is a system supporting dynamic composition, and management of composite services. They illustrate

how the eFlow enables the specification of processes that can automatically configure themselves at run-

time according to the nature and type of services available on the Internet and to the needs of each

individual customer.

Barros et al. [72] propose a collection of patterns of service interactions which allow emerging Web

services functionality especially those associated with behavioral interface, choreography, and

orchestration. Each of the patterns captures the essence of a problem, collects references by means of

Chapter 2. Web service composition and compatibility analysis

 33

synonyms, provides real examples of the problem, and proposes solutions for implementation in terms of

concrete technologies. They discuss the implementation of these patterns using BPEL. Van der Aalst et al.

[73] present a survey based on some foundational concepts of service interaction. The authors also provide

a set of service interaction patterns to illustrate the relevant challenges. The paper focuses on the main

challenges of service interaction comprising exposing services, replacing and refining services, and

integrating services using adapters.

Several approaches have been conducted for automatic or semi-automatic Web service composition.

Nevertheless, today service composition is often carried out manually and this comes from these facts that

1) published services from different providers have not identical description model, 2) the number of

available services proliferates exponentially in service repository, and 3) Web service composition needs to

be updated at runtime with respect to up to date information from Web services.

Hull et al. [74] provide a survey on the fundamental assumptions and concepts of service composition

and related issues.

2.2 Verification of Service Composition

Even though service providers prevent the publication of erroneous services, nevertheless it is crucial to

verify whether a given Web service does interact properly with his partner. The composition of two

services N and M is usually not foreseen at design time of N and M in advance; therefore the resulting

service N  M may include deadlock or livelock. Accordingly, we inevitably require to analyze the

correctness of N  M. Let N  M be a P/T system. A minimal requirement for N  M to be correct is weak

termination in which the final state is reachable. Numerous research studies have been concentrated on

verification of the service composition model. A formal verification of composite services is necessary to

guaranty the expected requirements, especially in the case where the fundamental constraints exist.

In [151] the authors apply the SPIN
14

 tool for the verification of service composition. They propose the

Labeled Control Flow Graph (LCFG) as a graphical model to represent the basic and structured activities

of BPEL. For better analysis by SPIN, the LCFG is transformed into a PROMELA program to evaluate the

correctness of a given BPEL. M. van Hee et al. in [75] introduce a construction mechanism based on

refinement
15

 rules. The proposed approach verify the weak termination of a service tree by checking

pairwise composition of components: 1) refinement of a safe place of a component by a workflow net

model, 2) refinement of synchronized pairs of places in a composition model, and 3) creation of a new

component for an existing component such that the weak termination property is preserved for the overall

system. The author of [76] suggests two analysis techniques for checking the properties of a composition

model by reachability tree and matrix equations. Hence, a service net is live if all of the leaves in the

14

 http://spinroot.com
15

 In a service net refinement, another service is inserted into its execution path instead of one of its constituent.

Chapter 2. Web service composition and compatibility analysis

 34

associated tree are identical and represent the final marking of the net. If the reachability tree also contains

the leaves different from the final marking, it would mean that there is a deadlock within the service. The

proposed approach in [77] verifies the composed services by inspiring of operating guidelines. The

approach is based on configuration process as an external service for synthesizing a partner. This technique

aims to act as an improver of a service behavior despite other partners in order to remove the blocked

transitions and the corresponding paths that are not used for a long times.

 A fundamental challenge in verification of service composition is compatibility that arises from the

distributed execution of heterogeneous Web services in flexible compositions. Two services are compatible

if any collaboration between them is accomplished successfully, and also each of them can reach their

expected results (final states). Hence, the compatibility verification is a fundamental issue for a proper

interoperability among services [19][78-80].

The authors in [81][19] provide a taxonomy of compatibility for Web service compositions:

 Interface compatibility: it is related to the syntax and types of messages between partner services.

 Semantic compatibility: this type of compatibility ensures that messages and their content are

correctly interpreted.

 Behavioral compatibility: it means there are no deadlock, livelocks, and other unconventional

situations in a composed model.

 QoS compatibility: it focuses on some quality parameters such as time-related properties or security

standards.

Despite tremendous efforts on evaluating the compatibility measures among collaborative services,

there is still significant attention to it as a precondition for a correct service interaction. Indeed, the main

reason for proposing the various compatibility checking approaches arises to verify effectively whether

partner services can successfully interact with each other. Thus, such a requirement remains for providing

an adequate technique to check the interaction behavior among services in order to validate a compatible

service composition. In an appropriate method of service composition verification eventually two services

can reach their expected results in addition to a proper communication. In other word, verification of the

compatibility of collaborative business processes is crucial for success of the interoperability between

services [82].

In the case where a service composition is not compatible, Lohmann N. [83] defines an algorithm to

suggest changes of a service to achieve overall compatibility. Foster H. et al. [84] discuss a model-based

approach to verify process interactions for coordinated Web service composition. The approach uses the

FSM representations of Web service orchestrations. Lohmann N. et al. [85] analyze the compatibility of

BPEL services and compositions of BPEL services. They provide formal semantics for BPEL4Chor

choreographies which enables the application of existing formal methods to industrial service languages.

Chapter 2. Web service composition and compatibility analysis

 35

This checking includes verification of compositions with respect to compatibility and the completion of

partially specified service compositions. Martens A. in [86] verifies and analyzes the compatibility of a

composed system for Web service based business processes by applying the Petri nets formalism. Wu Z. et

al. [80] propose an automatic method to check the behavioral compatibility in a service composition. The

authors apply -calculus to model the service behavior and interaction.

From compositional perspective, the notion of controllability [87] has been proposed as a criterion for

analyzing the correctness of a single service net where a complete composition is usually not available at

design-time. A service is called controllable, if there is at least one compatible partner for it. Controllability

is an extension of compatibility to single services and can be seen as a fundamental soundness property for

services in any possible composition. Weinberg D. in [88] introduces an approach for evaluating the

controllability of an open net based on interaction graph (i.e., a model for viewing all possible

communication between partner services). For a reasonable controllability analysis, the author applies some

particular reduction rules to improve the complexity of the complete interaction graph. A full combination

of an interaction graph with the reduction rules has been presented into the tool Fiona [50]. In the Fiona

controllability is verified by trying to synthesize a compatible partner. Lohmann N. and Weinberg D. [89]

introduce the tool Wendy which is a Petri net-based tool to synthesize the partner services. Wendy analyzes

the controllability of an open net and synthesizes a partner if the net is controllable.

Xiong et al. [90] have worked on behavioral compatibility analysis of Web service interaction. They

exploit a Petri net based model called workflow module net (WMN) for representing the service processes

and their composition net (C-net). The authors perform a structural analysis of C-nets with respect to the

existence of the siphon. For incompatible C-nets, they also propose the policies such as appending the

additional information channels and substituting another compatible C-net. In most research efforts the

authors apply the model checking techniques [91] to automatically verify the compatibility of service

interaction. Model checking is a formal verification method that explores undesired states in a graph

modeling the system behavior. There are many powerful model checkers such as NuSMV [92], BLAST

[93] and SPIN [94].

In the following section, we deal with the correctness of Web service composition in particular with

behavioral compatibility using structure theory of Petri nets. We also provide new way of looking at

interaction services permitting us the identification of some interface patterns ensuring compatibility

between two or more services.

2.3 Structural Verification of Service Composition Compatibility

In this section, we focus on the analysis and verification of Web service composition behavior. In

particular, we check that neither deadlock nor livelock occurs in composition model. Usually, the

Chapter 2. Web service composition and compatibility analysis

 36

verification of such integration is achieved by using techniques based on state space exploration of a given

service formal model. We here present an approach based on structure theory of Petri nets allowing the

recognition of necessary and/or sufficient conditions ensuring compatible composition and a better

understanding of the incompatibility sources. This part of our thesis has been published in earlier paper

[31]. The fact is that verification techniques particularly structural techniques and tools developed for Petri

nets can be fully exploited in the context of Web services described by BPEL [95], or others. The main goal

of this approach is to show how structure theory of Petri nets can provide some guidelines and solutions for

ensuring the correctness of Web services composition.

As we pointed out in the previous section, here we model Web services by means of the oWFNs. From

a modeling point of view, communication between Web services takes place by exchanging messages via

the interface places. Therefore, the interaction between two oWFNs is modeled by merging their respective

shared elements which are the equally labeled input and output interface places. Such a fused interface

place models a channel, and a token on such a place corresponds to a pending message (i.e., ready to be

received or sent) in the respective channel. As it is convenient to require that all interactions are bilateral

and directed (i.e., every interface place p  PI has only one oWFN that sends a message into p and only one

oWFN that receives a message from p). Thereby, oWFNs involved in a composition are pairwise interface

compatible, i.e., only input interface places of the oWFN overlap with output interface places of the other.

The interface compatibility is a basic and first requirement for services composition.

Definition 2.1 (Composable oWFNs). Let N1 and N2 be two oWFNs with pairwise disjoint constituents

except for the interfaces. N1 and N2 are composable oWFNs if and only if they are interface compatible

such that In1  In2 =  and Out1  Out2 = .

Definition 2.2 (oWFNs Composition). Let N1 and N2 be two interface compatible oWFNs. The

interaction of two oWFNs N and M is represented by their composition denoted by N  M. The composite

net N  M is an oWFN where

 P = PN  PM ;

 T = TN  TM ;

 F = FN  FM ;

 In = (InN  InM) \ (OutN  OutM) ;

 Out = (OutN  OutM) \ (InN  InM) ;

 m0 = m0N

 m0M ;

 Mf = MfN  MfM ;

The composition of oWFNs is commutative and associative, i.e., for interface compatible oWFNs N1,

N2 and N3, N1  N2 = N2  N1 and (N1  N2)  N3 = N1  (N2  N3).

Chapter 2. Web service composition and compatibility analysis

 37

Definition 2.3 (Closed net). A composite oWFN N with empty interface places (i.e. In =  and Out =

) is called a closed net.

Figure 2.2. Not compatible partner services

A composite web service modeled as a closed net is a service that consists of coordination of several

conceptually autonomous but interface compatible services. Although, it is not easy to specify how this

coordination should behave, but we show how compatibility analysis and verification of composition of

services can be efficiently undertaken using the results of the structure theory of Petri nets that we provided

in the previous section. We assumed that a closed net is a workflow net. The notion of soundness has been

established as a quality criterion for workflow nets implying the boundedness and liveness [96]. Our focus

here is to structurally check or ensure the behavioral compatibilities for a closed net N:

 Weak-compatibility. A closed net N is said to be weak-compatible if and only if N is deadlock-free.

 Compatibility. A closed net N is said to be compatible if and only if mf  Mf , mf is home state

(final state is always reachable) and N is quasi-live (i.e., proper termination and no dead activities).

Compatibility excludes not only deadlocks but also livelocks.

Remark. Let us to precise that a deadlock state m in a closed net N is a reachable state (mf  Mf ; m 

mf) under which no transition is enabled. Obviously, compatibility implies weak compatibility.

Let N = N1  N2  …  Nk be a closed net and Ni be an oWFN; Ni
*
 = (Pi, Ti, Fi, m0i, Mfi) is called the

inner subnet of Ni. We assume that Ni
*
 holds boundedness property. We denote by Ni

**
the subnet obtained

from Ni
*
 by connecting the initial place pi to the final place pf via an additional transition ti

*
 such that (ti

*
)


= pi and

(ti

*
) = pf. We denote by (N) the net obtained by substituting the Ni

*
 by Ni

**
in each Ni.

p0

t0

p1

t1

t3

p3 p2

p4 p5

t2

q0

 tm0

q1

q2

q3

 tm1

 tm2

K

D

X

X

D

K

Chapter 2. Web service composition and compatibility analysis

 38

First of all, from the two well-known propositions 1.1 and 1.2, we can deduce easily the following

propositions:

Proposition 2.1. Let N = N1  N2  …  Nk be a closed net. If (N) satisfies CS-property then N is

weak compatible.

Proposition 2.2. Let N = N1  N2  …  Nk is a closed net. If N is compatible then all (N) satisfies

CS-property (we prove that (N) is live).

Example. Let us consider two interface compatible oWFNs of Figure 1.3. In the corresponding closed

net N1  N2, (N) satisfies the CS-property; therefore N is weak compatible, but N is not compatible.

Indeed, the final marking p4 + q3 cannot be reached from the reachable marking m
*
 = p4 + K + q3.

Example. Now consider the closed net N obtained by composition of two oWFNs of Figure 2.2. The

CS-property is not satisfied, i.e., there is an empty siphon S = (K, X, p1, p3, q1, q2) at m0, so N cannot be live

neither deadlock-free. Consequently N is not compatible.

Theorem 2.1. Let N = N1  N2  …  Nk be a closed net. If N is compatible then all Ni
*

are sound.

Proof. Suppose there is a Ni
*
 that is not sound (i.e. Ni

**
 is not live or not bounded).

Case (1): Ni
**

 is not live (i.e. there is a non-live transition t  Ti in Ni
**

). As the (input) interface places only

limit the behavior of the associated oWFN Ni
*
, t remains non-live in (N), thus N cannot be compatible.

Case (2): Ni
**

 is live but not bounded, thus mf cannot be a home state and N is not compatible.

According to previous results, the compatibility of oWFNs requires not only interface compatibility of

oWFNs but also soundness of their inner subnets. We define now two classes of oWFNs namely Ordered

oWFNs and Root oWFNs where soundness is equivalent to CS-property [97].

Definition 2.4. (Ordered oWFN). Let N be an oWFN. N is called an Ordered oWFN if and only if N
**

is an Ordered net.

Definition 2.5 (Root oWFN). Let N be an oWFN. N is called a Root oWFN if and only if N
**

 is a Root

net.

From these two classes of oWFNs, we define a large subclass of closed nets called Root Closed nets

presenting realistic interfaces patterns and where compatibility can be structurally decided. In this subclass

we impose a restriction on the connection nature of interface places such that root internal places are

Chapter 2. Web service composition and compatibility analysis

 39

preserved after composition (i.e. an input interface place can be a root place but it cannot take the place of

another internal one). A larger subclass of composite service can be obtained by applying the basic building

process of Root Closed nets in a recursive way (i.e. modules can be root closed nets or more complex nets

defined in such a way).

Definition 2.6 (Root Closed net). A P/T system N = (P, T, F) is called a Root Closed net if and only if

P is disjoint union of P1, …, Pn and B; T is disjoint union of T1, …, Tn; and the following conditions hold:

i) For every i  {1, . . . , n}, let Ni = < Ni
**

, Ini, Outi > be an oWFN such that:

 (Ini  Outi)  B;

 Ni
**

= (Pi, Ti, Fi, m0i, mfi) where Fi  (Pi Ti)  (Ti  Pi) is an Ordered or Root oWFN

satisfying CS-property.

ii) For every Ni
**

 (i  {1, . . . , n}): b  B, b preserves the sets of root places of Ni
**

(i.e. t  Ti,

Root(t)Ni**

 Root(t)Ni).

iii) There is a subset B  B such that the subnet induced by the inner subnets  Ni
**

 (i  {1, . . . , n})

and B (denoted by (N)B) is conservative and connected (if B = B , (N)B = (N)).

Theorem 2.2 Let N be a Root Closed net. The three following assertions are equivalent:

 N is deadlock free;

 N satisfies CS-property;

 N is live;

Proof. Root Closed nets are by construction a subclass of Synchronized Dead Closed Systems (SDCS)

[97], which are a K-Systems. Therefore, this equivalency holds.

Corollary 2.1. Let N be a Root Closed net. If (N)B satisfies CS-property then N is weak compatible.

This means that N is deadlock-free but some interface places can be unbounded.

Corollary 2.2. Let N be a Root Closed net such that B = B. If (N) satisfies CS-property, then N is

compatible.

Proof. Since B = B, (N) is live and bounded. This means that N is deadlock-free and the final marking

is a home state.

In the context of Web service interaction, the approach of service adaptation [98-102] [22] have been

realized for incompatible
16

 collaborative services that have mismatches in their interfaces or behavior such

that they cannot be directly composed. Significant research efforts proposed the adaptation techniques to

tackle with incompatibilities of services. In the next chapter, we argue the need for

16

 We use the term “incompatibility” and “mismatch” interchangeably

Chapter 2. Web service composition and compatibility analysis

 40

adaptation of service as a typical solution for incompatible service interaction. In addition, we present an

overview on proposed adaptation approaches dealing with mismatches at the level of service interfaces and

business protocols. The first one refers to the mismatches between service signatures whereas the latter

concerns with the messages exchanges dependencies.

41

Chapter 3

Adaptation of Service Composition

Despite tremendous efforts on evaluating the compatibility criteria among services [103] [31] [101]

there is still considerable attention to it to verify the correctness of service collaboration. The typical

approach for enabling incompatible services to interact is service adaptation. While standardization in Web

services reduces the heterogeneity and makes their interoperability easier, adaptation still remains

necessary. Adaptation functionality can be offered to enable integration inside and across enterprise

boundaries. The need for adaptation in Web services comes from the following sources: ensuring the

interoperability, optimization, recovery, and context change. Primarily, the mediation concept was

introduced for databases [152].

The authors in [18] [101] [23] identify the needs for adaptation in Web services by addressing the

heterogeneity at the levels of service interface and business protocol:

– The mismatches at service interface level includes service signature incompatibilities (e.g.,

message and operation name, number; the type of input/output message parameters of operations;

and the parameter value constraint) with the following classifications:

 Syntactical. No equality exists between service’s operations name and their input/output

message names. The syntactical compatibility ensures that the provided interface by a service

is equivalent with the required interface of the partner and vice versa.

 Structural. There are differences in the expected types or values of input/output messages.

 Semantical. There are differences in the interpretation of a data element’s meaning or an

operation’s function.

 Messages split / merge. A single message of a service is matched with several messages in

another service for the same functionality, or several message of a service have one matching

message in another one.

Chapter 3. Adaptation of service composition

 42

 The mismatches at the business protocol (or service behavior) level are concerned with the message

exchange dependencies among services (e.g., deadlock where both partner services are mutually

waiting to receive some message from the other, and unspecified reception in which one service

sends a message while the partner is not expecting it):

 Ordering constraint. The constraint that services impose on message exchange sequences.

 Extra / missing messages. A service delivers a message that is not specified in another service

partner and vice versa.

Figure 3.1. Adaptation of service composition

Numerous adaptation approaches have been proposed to tackle with both service interface and business

protocol mismatches between the provided and the required functionalities of services developed by

different parties [104-108] [30] [42]. The proposed approaches rely on one of these two techniques: service

modification or synthesizing an adapter component.

The adaptation in terms of service modification requires applying some tuning actions to support the

partner service’s specifications. Whereas in service interaction where the adaptation is dealing with

Send

message X

Service S1

Send

message Y

Send

message Z

Service S2

Receive

message Y

Receive

message X

Adapter

Receive and store

message X

Receive

message Y

Send

message Y

Map message X to X

and send message X

Receive and

store message Z

Chapter 3. Adaptation of service composition

 43

creating an adapter
17

, a standalone component mediates the interactions between two services with

potentially different interfaces and protocols such that the interoperability is achieved. The issue of

synthesizing adapters for incompatible service interaction has been studied in the area of SOA as well as in

the area of component-based software engineering.

As Figure 3.1 shows, the adapter component is added between partner services that its main role is to

match the messages or manage the messages exchanges. Using such a mediator two services can be

correctly composed. In other words, the adapter compensates for the differences between their interfaces by

transformation functions (e.g., XSLT, XQuery). The interface adaptation arises when the interface that a

service provides does not match the interface that is expected to be provided in a given interoperability. For

instance, as depicted in the Figure 3.1, service S1 sends a message with type X while its partner service S2

needs to receive the same message but with the type X. Many industrial tools have been developed for

interface adaptation using schema mapping tools (e.g., Microsoft BizTalk Mapper
18

, Stylus Studio XML

Mapping
19

 and SAP XI Mapping Editor
20

).

Besides, the adapter reconciles the incompatibilities between service business protocols by rearranging

the messages exchanges or generating a missing message [20]. In particular, some of adaptation approaches

have been focused on the reconciliation of incompatibilities between behavioral interfaces in which

interfaces capture ordering constraints between messages exchanges.

3.1 Adapter Specification and Modeling

More precisely, an adapter specification must be able to monitor and track the state of the partner

services while controlling the messages exchanges between them. In addition, an adapter generally consists

of a set of activities in order to perform the specific functionalities on the messages. These functionalities

comprise of receiving, sending, storing, synthesizing, merging, splitting, and converting the messages. All

of adaptation approaches propose a common logic for an adapter: intercept a message sent by a partner

service; store it if necessary; transform it to a required format supported by other partner service and/or

generates a new message; and then send the message to the partner service that needs to receive it.

The authors in [109] characterize the adapter functionalities based on a combination of operators such

as flow, gather, scatter, collapse, burst, hide, and create for interface matching. Except for the hide and

create operators, the others take as input a transformation function which manipulates the data in an

adapter. The operators flow, gather, scatter, and hide described a syntax corresponding to the mismatch

patterns identified by the adaptation approaches in [110] [23]. For instance, flow corresponds to the one-to-

17

 In other references, the term “adapter” is referred to “mediator” or “middleware”.
18 http://msdn.microsoft.com/en-us/library/ms943073.aspx.
19

 http://www.stylusstudio.com/.
20 http://www.wsw-software.de/en-sap_services-mapping_sap_xi.mapping-sapxi.html.

Chapter 3. Adaptation of service composition

 44

one mapping, gather corresponds to many-to-one mapping, scatter corresponds to one-to-many mapping,

and hide corresponds to one-to-zero mapping.

An adapter specification can be described by BPEL or FSM and/or UML activity diagram. In this thesis,

we represent the adapter using the oWFN where the transitions characterize adapter functionalities and the

interface places denote the messages which are arrived (or sent) from (or to) the partners.

Definition 3.1 (Adapter protocol). An adapter between two business protocols N and M denoted by A_{N,

M} is defined as an acyclic oWFN A_{N, M} = (P
A
, T

A
, F

A
, In

A
, Out

A
, m0

A
, Mf

A
) where

 T
A
  TI

A
(i.e., TI

A
 standing for interface transitions of the adapter);

 In
A
  (Out

N
  Out

M
);

 Out
A
 (In

N
  In

M
).

As we pointed out, all messages exchanges between the partner protocols will go through the adapter.

An adapter also consists of a set of typed memory cells (buffer) to store the messages received from a

partner and not yet needed by the other one.

The adapter business protocol is acquired by its transitions rules to send a message to the appropriate

partner, or to receive a message from a given partner, and a set of memory actions that store or retrieve

messages in/from the buffer. A rule also constructs a missing message that has to be sent to the partners by

adapter which can be viewed as a coordinator [20]. In the BPEL adapter [111], we assign this message to a

message variable which can be allocated to the corresponding input interface place of the requester

protocol. At each transition of adapter we can obtain the state of buffer at this point of coordination. Figure

3.2 shows the adapter A_{P1, P2} between two incompatible collaborative protocols P1 and P2.

In our approach, we use the notion of (In
A
)N or (Out

A
)N to depict the input (output) messages that

adapter receives (sends) from (to) partner N. Also, the flow relation (In
A
  T

A
)N or (T

A
 Out

A
)N shows that

adapter A receives (sends) the input (output) message p In
A
 ( Out

A
) at the transition tT

A
 from (to)

partner N.

Figure 3.2 shows a simple example of two business protocols P1 and P2 that are interacting via adapter

A_{P1, P2}. For instance, P1 needs to receive message X at interface transition t0, while P2 submits

message M, so P1 should wait for X. Therefore, A_{P1, P2} stores M in its buffer until receives a request

for M from P1. The operations in P1 are going forward once A_{P1, P2} sends X to him that has

previously received from P2. In such a way, A_{P1, P2} makes compatible interoperability between P1

and P2 by managing and re-arranging the messages exchanges.

In the next section, we review some of service adaptation approaches (i.e., either generate an adapter

module or modify the specification of participant services).

Chapter 3. Adaptation of service composition

 45

Figure 3.2. The oWFN model of adapter A_{P1, P2} (middle) between two business protocols P1 (left) and P2 (right)

3.2 State of the Art on Service Adaptation

The aim of proposed mediator in [112] is to generate the missing messages which are required to

complete the Cartesian product. The authors also verify the correctness of the mediator. Sheng et al. [113]

develop a middleware for the composition of Web services by focusing on the dynamic and scalable

aspects of Web services composition. Baresi et al. [114] define a modeling framework for adaptive

information systems based on e-services. They propose adaptation rules enabling the composition and

dynamically select e-service channels according to the constraints of available architectures and

application-level requirements. Deng et al. [115] provide an evaluation of the aggregation problem for

synthesized mediators of Web services (SWMs). The aggregation problem aims to optimize the realization

of a given mediator.

Li et al. [116] present an approach based on patterns to generate executable mediators. The authors

present several basic and advance mediator patterns to reconcile all possible business protocol mismatches.

They propose a heuristic technique based on message mappings to semi-automatically identify protocol

mismatches when two services partially compatible (i.e., interface compatible services). The technique

selects appropriate basic mediator patterns according to the identified protocol mismatches. They also

Chapter 3. Adaptation of service composition

 46

develop the corresponding BPEL templates of these patterns which can be used to generate executable

mediation code.

In [117], Brogi et al. propose an approach to check whether two or more partner services involved in an

interaction are compatible or not. The authors also develop the algorithms to automatically generation of

the adapters. They apply the process algebra to represent Web service choreographies. Du et al. [118]

present an approach to mediation-aided composition of Web services. To analyze the compatibility, the

authors propose to automatically construction and analysis of the modular reachability graph (MRG) of

composition where the problem of state space explosion is significantly alleviated. For the compatible

composition, the BPEL code is automatically generated. Erradi et al. [119] present the policy-based

middleware called Manageable and Adaptive Service Compositions (MASC) for dynamic monitoring and

adaptation of Web services compositions. Ardissono et al. [120] present a mediation framework supporting

the Web services interaction to resolve the protocol mismatches.

In the following, we review in detail some of approaches proposing adapter generation methods

focusing on service interface or business protocol mismatches and/or both of them. Besides, numerous

approaches presented techniques of adapter synthesis by taking the service behavior incompatibility into

consideration in the interface matching.

Yellin and Strom [20] present an approach to evaluate the existence of an adapter for protocols-

incompatible interfaces by applying the execution trace. The authors discuss two asynchronous and

synchronous protocol semantics of components collaboration, and propose an automated method of adapter

generation based on synchronous semantic.

The adapter protocol is modeled using the FSM consisting of a set of states, a set of typed memory cells

to store the messages received by the adapter, and a set of state transition rules. The adapter's behavior is

acquired by its transitions rules. Each rule describes a transition from a state to another in the adapter based

on sending or receiving messages, along with a set of memory actions that store or retrieve messages

in/from the cells. If the adapter is in a state with a send transition, the adapter may send a message to the

appropriate component and enter the target state. If the adapter is in a state with a receive transition, the

adapter may wait for a message to arrive and then enter the target state. A rule also constructs missing

messages that have to be sent to partners. According to the synchronous semantic, when an adapter receives

a message from a partner service, the adapter will not accept any message from this service until this

message is forwarded by adapter and receives its response for this message, afterward, the adapter will

continue to receive the other messages from this partner.

To synthesize the adapter specification for a pair of components, their interface mappings are required

as the input (e.g., which messages should be mapped to which other messages). The adapter synthesis

process explores all possible interactions between the participant protocols and adds them to the adapter

protocol. In the case where there are states leading to deadlocks or with unspecified reception, they are

removed

Chapter 3. Adaptation of service composition

 47

from the adapter protocol. The proposed adaptation approach defines interface mapping rules based on

parameters rather than message mapping.

Taher et al. [121] present an adaptation approach based on the Complex Event Processing (CEP) to

automatically adapt both service interface and business protocol levels mismatches. Therefore, they

develop the operators for each of transformation patterns associated with the mismatch types, e.g., match-

make, split, merge, aggregate, and disaggregate. These operators are modeled as configurable automata

where transitions show both observable and unobservable actions. To generate a CEP adapter deployable in

the CEP engine, each operator automata should be converted to a continuous query. For every message

received by a CEP adapter, an input stream is created. Then an appropriate continuous query consumes the

input stream and delivers the corresponding output stream for the target service. In a CEP adapter, all

actions related to messages are molded as events. The CEP platform provides the conditions for running

and analyzing the stream of data, and also the techniques to define the relationships between events.

Brogi et al. [111] provide a methodology for the automated generation of adapters capable of solving

protocol mismatches between the BPEL processes. Given two communicating BPEL processes whose

interaction may not proceed, the adaptation process automatically synthesizes a full/partial BPEL adapter

(if possible). The adaptation methodology consists of service translation, adapter generation, adapter

analysis, and adapter development. The proposed methodology applies the BPEL2YAWL translator [122]

for transforming the BPEL processes into YAWL workflows which are used to model the service protocol.

It also generates the YAWL workflow of the adapter which can be used to check the properties (e.g.,

deadlock-freedom, reachability, liveness, and so on) of the interaction with the adapted services. The

adapter generation phase generates the Service Execution Trees (SETs) of two partner services and an

adapter mediating the interaction between them. The SET of a BPEL process is a tree describing all the

possible scenarios of executing the basic activities. In this phase also the YAWL workflow of the adapter A

from SET(A) is generated, if the adapter has at least one successful trace.

Kongdenfha et al. [98] present an adaptation approach in terms of service modification by proposing

an aspect-oriented paradigm. The main contribution of this approach is to apply the aspect-oriented

programming paradigm to specify the adaptation template of each mismatch pattern in the form of aspect

template. Each aspect template includes a set of (query, advice) pairs that can provide a collection of

adaptation aspects. These adaptation aspects can be merged with runtime instances of an adapted service.

The pair (query, advice) determines where and based on what logic the adaptation has to be applied. An

advice defines the adaptation logic by comprising the procedures with one or more actions to resolve an

associated mismatch. A query (query language) is described as a join-point where specifies in which point,

a set of activities associated with the advice has to be executed. The aspect template for interface mismatch

can be initiated by providing the query input parameters and XQuery / XSLT transformation function as

advice input parameters. In the case of a business protocol mismatch, if a service needs to receive an ack

Chapter 3. Adaptation of service composition

 48

message, while the partner does not supply it, the adapter can provide such a message by evaluating the list

of older messages exchanges.

Moreover, the authors argue their motivation to exploit the aspect-oriented methodology for dynamic

plugging and unplugging the adaptation logics to partner services at runtime. They also try to provide

conditions for deciding where each of two methods, services modification (respecting aspect-oriented

methods) and generating stand-alone adapter, is preferable. In addition, they implement a tool that assists

the developers in semi-automatic generation of their adapter logic. Although, these authors in [108] present

an approach by focusing on both adaptation methods (i.e., developing standalone adapter and service

modification). They introduce mismatch patterns for service interface and business protocol mismatches.

The proposed mismatch patterns include adaptation logic templates which can be initiated by developers to

generate adapters for resolving the associated mismatches.

Benatallah et al. [23] present a methodology for developing adapters based on mismatch patterns,

which are used to reconcile the possible differences between collaborative services. The proposed approach

provides the adapter templates specified in BPEL code for each mismatch pattern scenario. Indeed, they

characterize different kinds of adapter templates as a solution to resolve associated mismatch which is

identified among partner services. Reusing these adapter templates help the developers to synthesize their

stand-alone adapters.

Hung et al. [123] present an adaptation approach for synchronous service interaction. This approach

analyzes only the mismatches at business protocols level assuming that the service interface mismatches

are resolved. The proposed framework represents Web services in the form of IA4WS (Interface Automata

for Web Services) which is a customized model from Interface Automata [124]. The approach applies the

idea of one-session service to avoid the unwanted traces by dealing with unbounded messages (i.e. which

may modify the required functionality of services). The proposed adaptation approach includes (1)

evaluating the interface level compatibility of services; (2) applying the model-checking tool SPIN to

analyze the business protocol compatibility; (3) analyzing the need for adapter generation; (4) applying a

pushdown model-checking for verification of adapter in terms of two specifications fairness property of

looped transition (unbounded messages), and fairness property of branching transitions.

A pushdown automaton namely Interface Pushdown System (IPS) represents the adapter model. Within

the IPS adapter, there are three kinds of transition, e.g., push transition for messages reception; pop

transition for message delivery; and internal transition that is not related to messages exchanges. The

adapter model never creates a message by itself. Also, applying model-checking technique for verification

of adapter during its generation saves more time and cost compared with the cases where service adaptation

and verification are performed separately.

Tan et al. [101] present an automatic approach of service composition and formally checking the

compatibility of two collaborative services respecting the asynchronous semantics. They also propose an

adapter generation algorithm, if two services are partially compatible. The partial compatibility implies two

Chapter 3. Adaptation of service composition

 49

services are functionality compatible, but due to incompatibility in their interfaces or business protocols,

direct composition is not possible.

The proposed adaptation approach applies a state-space method where introduces the concept of

Communication Reachability Graph (CRG) which concurrently constructs the reachability graph of two

collaborative services using data mapping. The CRG is then verified to evaluate whether the adapter

generation is necessary. The CRGs are used as a reduced state-space of the composite service. The authors

discuss the incompatibility at the level of service interfaces. If the direct composition between interfaces is

not possible, a request for data mapping is delivered to build the CRG to verify the adapter generation. The

data mapping defines the rules as <src, target, trans-flag> to relate (syntactically, semantically equivalent)

elements of two messages that are from two interfaces belonging to different services. For a direct map

from src to target, the trans_flag Boolean variable is set to be false and otherwise is set to be true for

additional transformation. In this approach, BPEL services are transformed into Colored Petri Nets.

 Mateescu et al. [99] propose an adaptation technique which reduces the computational complexity of

adapter generation using on-the-fly exploration and reduction technique (i.e., avoids full state space

generation of adapter structure). The adaptation method covers both interface and behavioral mismatches of

services. In this approach, service interface is modeled by the WSDL and its protocol is represented by

means of Symbolic Transition Systems (STS).

The proposed approach takes the parameters coming with a message into consideration in the interface

matching. The adaptation approach first constructs the adaptation contracts which describe how

mismatches can be resolved. The service interfaces and their adaptation contracts (interaction constraints

specifications) are then encoded. Accordingly, the LOTOS code is generated. The LOTOS encoding allows

the automatic generation of adaptor protocols. Moreover, LOTOS encoding enables the adapter verification

using model-checking tools.

In this framework, applying on-the-fly algorithms increases the efficiency of adapter generation. The

reduction of adapter is performed by removing all actions that are not related to the service business

protocol (e.g., the internal transitions, and all interactions with store activity). The authors also apply a

model-checking tool to verify the generated adapter. The verification tool implements two operations: (i)

deletes the states leading eventually to deadlocks; (ii) keeps only the states leading to the transitions

labeled by a given action (here Final). The adaptation contracts are built by designer, hence additional

adapter verification are needed to implement several static evaluations for verifying that the adaptation

contract is correct. The adapter behavior also modeled in STS.

Dumas et al. [125] discuss the service adaptation at service interface level, and propose an approach to

reconcile mismatches between protocols-incompatible interfaces. The authors present a declarative

approach for an adapter execution engine rather than using programming language in order to reduce

development and maintenance cost.

Chapter 3. Adaptation of service composition

 50

In this approach, service interface adaptation is accomplished via mapping operators such as flaw,

scatter, collapse, burst, and hide based on common mismatch patterns. Therefore, they propose a visual

notation for mapping the interfaces using algebraic expression of transformation operators by focusing on

behavioral aspects of interfaces. The behavioral interfaces are defined in terms of communication action

schema using the UML activity diagram where actions are named according to the type of sent or received

messages. The deadlock situation (i.e., message ordering constraint in interface) is verified by defining the

condition on interface mapping expression, i.e. “it is not possible to send or receive the information that is

dependent on other information that we have not yet sent or received”. The service mediation engine also

supports the visual notation. Mediation engine is modeled by the FSM for an abstract representation of

behavioral interfaces. The interface mappings are implemented in the mediation engine based on the logic

of transformation operators. The mediation engine comprises of an administrative console to monitor the

histories of all actions carried out by the engine. Besides, the mediation engine can store unbounded

number of messages.

Motahari-Nezhad et al. [22] propose a semi-automatic adaptation approach for service interface

matching by taking the protocol specifications into considering. In terms of interface matching, the authors

introduce a method to identify message split/merge mismatch type where some elements of a message m 

Is (Ic) are matched with elements of m Ic (Is) and some other elements of m are matched with some

elements in m  Ic (Is). The authors also present the protocol-based interface matching algorithms (i.e.,

depth-based interface matching, and iterative reference-based interface matching). In a depth-based

interface matching approach, messages with the same or similar depths in two protocols may have a higher

chance of matching, and also the infinite loops are avoided. Iterative reference-based interface matching

approach includes the knowledge of previous matching (i.e., a pair of messages is selected as the best

candidate match in each iteration and this pair is referred to as a reference pair for the next iteration.

Potential deadlocks can be avoided by penalizing the conflicting match pair).

Seguel et al. [126] illustrate an automated approach of adapter generation to resolve protocol

mismatches not for all interaction but only for a minimal set of messages exchanged that needs the

adaptation. The authors analyze service collaboration from synchronous semantic standpoint.

The BPEL representation of a service protocol is modeled by a protocol tree. The leaves of this tree

correspond to the basic activities and the internal nodes represent the structured activities. The proposed

approach exploits the behavioral relation (Seq, XOR, AND) of the protocol syntax (i.e., structure of the

protocol tree) to identify the mismatches, and recognizes the set of message exchanged that have to be

adapted. To this end, an Interaction Analysis Matrix (IAM) is built over the pairs of interaction for

comparing and assessing the behavioral relation of their nodes. Accordingly, they demonstrate an algorithm

that can address the minimal set of interactions needing adaptation. Indeed, an IAM is able to evaluate

which parts of collaboration have to be adapted, which parts cannot be resolved. Therefore, the adapter

generated through this approach has lower complexity and improved performance characteristic at runtime.

Chapter 3. Adaptation of service composition

 51

Shan et al. [127] present a technique for a flexible, on-the-fly adapter generation based on message and

control flow adaptation. This approach can also combine control flow constraints into message adaptation.

The main idea of their framework is to provide message transformation patterns which can be extended for

user’s future requirements. Therefore, they first characterize the types of message mismatches, and then

propose a set of patterns for resolving them. These patterns are defined as message data generation,

message data casting, message fragmentation and aggregation, and message reconstruction. The proposed

approach also exploits a set of standard patterns for control flow adaptation (e.g., sequence, parallel, choice

and loop). In addition, a compatibility matrix based on these patterns is represented as a guideline for

processes incorporating. The authors also illustrate an adapter generation algorithm.

Mooij and Voorhoeve [100] present an automated approach for adapter generation. The authors

develop a proof technique for partial adapters based on the open Petri-net [128] formalism. They apply this

technique to the adapter generation approach from [129] where behavioral adapters is proposed to adjust

the communication between two services such that certain behavioral properties (e.g., deadlock-freedom, or

weak termination) preserve in the composite service. The authors particularly address concepts like

operating guidelines, controllability, accordance, and partial adapters. Their proposed approach relies on

this point that the adapters are as controllers for the disjoint composition of two partner services.

As pointed out, the authors in [129] present an automated adaptation approach (using Petri net

formalism) that synthesizes the behavioral adapters. They propose a specification of elementary activities

(SEA) consisting of a set of transformation rules on message types. Therefore, the adapter specification

includes the given partners services and the SEA. In addition, their generated adapters do not need to be

verified, since the synthesis of the adapter guarantees the adapters correctness by construction.

Motahari-Nezhad et al. [130] present an approach to semi-automatically identify the split/merge type

of interface mismatches, and automatically recognize the protocol mismatches by generating a mismatch

tree. Besides, they propose an adapter simulation algorithm which explores all possible messages

exchanges between two service interfaces to evaluate the respective protocol mismatches. The algorithm

results in an adapter protocol, and a message tree that represents all deadlock situations between two

service protocols. The interface matching is done by finding the match between data elements of the XML

schemas associated to service interfaces. To increase the matching accuracy, they suggest the inclusion of

message name and message type in an operation definition.

Furthermore, the authors discuss some evidences that can be used to identify (create) messages in

common deadlocks:

 Evaluating the relation between data structure of message m (engaged in deadlock and need to be

identified) and all of messages of the same interface that has been received before the deadlock point

in the adapter. Indeed, if the elements of message m could be matched with the elements of any of

these messages, there is the possibility of creating the message m.

 Applying the previous interactions’ logs.

Chapter 3. Adaptation of service composition

 52

 Providing the adapter developer’s input to identify the missing message in a deadlock and the input

parameters of the transformation function.

 In this work, the service business protocols are modeled in the form of FSM. They also argue that for a

given interface mapping, it is necessary to take the service protocol incompatibility into account.

Wang et al. [131] characterize a runtime adaptation approach for service behavioral interface

incompatibilities. To this end, they introduce a service adaptation machine that includes a repository of

mapping rules where each rule is associated with an adaptation scenario. When a directed single mapping

rule cannot be applied, the adaptation machine exploits backward-chaining algorithms for firing the rules to

detect the behavioral mismatches, i.e., deadlock and information loss (unspecified message).

The adaptation idea of this paper has been implemented as a tool namely Service Mediation Engine

(Megine). The Megine manages a number of adapters associated with specific pairs of service instances by

using the identifiers and references of the received messages. In addition, the Megine through an

administrative console is able to implement an adaptation scenario where before forwarding a message by

adapter to a partner service, it is possible to check whether the target service is in a given state to consume

that message. In this approach, both the partner service interface and adapter protocol are modeled using

the FSM specifications.

Wohlstadter et al. [132] present the policy-based programming model, architecture, and details of their

proposed middleware called. They also discuss new challenges like distribution of middleware services that

arise from such a context. The Cumulus middleware can be dynamically customized to support diverse

Web services interoperability protocols that the applications need to engage in. The authors aim to find an

appropriate programming model to describe, discover, and compose middleware as separate services (MW

services). Besides, the technical details of the Cumulus4BPEL prototype are provided which developed

specifically to support runtime interoperability in dynamic SOAs.

Becker et al. [133] present an engineering approach to component adaptation which is based upon

introducing a taxonomy of component mismatches, and identifying a number of adaptation patterns to be

used as generic and systematic solutions for eliminating them. The provided taxonomy summarizes the

different types of component mismatches into categories, and classifies them according to a hierarchy of

interface models. Each of the distinguished interface models determines a set of properties which belongs

to a component interface as mentioned in the following:

 The syntax-based interface model, which focuses on signatures as constituent elements of

component interfaces, supports the identification and elimination of signature mismatches.

 The behavioral interface model also contains assertions (i.e. pre- and post-conditions) for the

operations, which have been declared in the required and provided interfaces. By making use of an

interaction-based interface model which focuses on describing the interaction that takes place

between connected components in the form of message calls, developers are able to diagnose and

eliminate protocol mismatches (i.e. ordering and extra/missing of messages).

Chapter 3. Adaptation of service composition

 53

 The quality-based interface model, which focuses on describing the Quality of Service (QoS) (i.e.,

which is being provided by each of the interface operations by describing a set of quality attributes).

By making use of an interface model that is based on the ISO 9126 quality model, it is possible to

detect and eliminate the quality attribute mismatches such as security, persistency, transactions,

reliability, and efficiency.

 A conceptual interface model, which describes the conceptual semantics of component interfaces as

an ontology supports the identification and elimination of so-called concept mismatches.

The presented approach demonstrates both functional and non-functional adaptation patterns.

Bucchiarone et al. [134] propose an extension of a basic iterative service-based applications (SBA)

lifecycle along with the elements to deal with the adaptation-specific needs. From point of view of the

authors, adaptation works properly only in the case the application is designed to be adaptable, so they

focus on the design phase, and suggest a number of design principles and suitable guidelines to enable

adaptation. For the same SBA, several adaptation strategies can be adopted and the selection of the most

suitable one can be a complex issue, hence multiple criteria have to be considered. Therefore, they provide

the guidelines to support this selection. The authors also discuss the effectiveness of the proposed

methodology by means of the real-world scenarios over various types of SBAs. The paper aims at

overcoming the fragmentation in current approaches for SBA adaptation.

Ardagna et al. [135] developed a general framework for flexible and adaptive execution of managed

service-based processes. The framework, PAWS (Processes with Adaptive Web Services), coherently

supports both process design and execution. The PAWS provides methods and a toolset to support design-

time specification of all information required for automatic runtime adaptation of processes according to

dynamically changing user preferences and context. The authors focus on how PAWS selects and adapts

candidate services for a composed process.

In PAWS, both service discovery and service selection are driven by both functional and non-functional

aspects. From a functional perspective, PAWS includes a mediator configurator to support set-up of the

related runtime module  the mediator engine (i.e., to translate between the two service-interface

signatures). If it’s not possible to automatically derive message transformations, the designer defines them

during process execution by providing additional information about parameter and service mappings. Their

proposed mediation engine support service invocation, dynamically binding a generic candidate service

without requiring stub compilation at design time, and manage service substitution which might involve

services that are described by different signatures but have the same choreography.

Whenever the BPEL engine invokes a task, the mediator selects the first service from the optimizer’s

ranked candidate-services list. If the candidate service’s interface differs from the interface that the task

definition requires, the mediator retrieves the proper mapping document produced by the mediator

Chapter 3. Adaptation of service composition

 54

configurator, and then invokes the candidate service by sending transformed messages. The mediator

manages candidate-service invocation through sessions.

Cavallaro et al. [136] identify a number of possible interface or protocol level mismatches between the

interacting partners in a dynamic service composition. The authors address basic mapping functions for

solving the simple mismatches. In addition, they propose to combine such mapping functions in a script

(defined in a domain specific language) to solve complex mismatches. Both simple functions and scripts

are executed by a mediator to perform the required adaptations.

The script language is composed of the rules structured in two parts: mismatch definition part that

specifies the type of the mismatch to be solved by the rule; and mapping function part that contains the

name of the function to be used to solve the mismatch. The rules can characterize the solutions for protocol

or interface mismatches.

Denaro et al. [137] present an approach to design self-adaptive service-oriented architectures. The

authors propose a self-adaptive solution that enables the client applications to easily and automatically

adapt their behavior to the alternative Web services providing compatible functionality through different

business protocols. The proposed framework automatically synthesizes the models which approximate the

interaction protocols by tracing the successful interactions of Web services. It then dynamically handles the

adaptations of client. On this concern, the approach adds an Interaction Protocol Service Extension (IPSE)

to the SOA such that each Web service is associated with an IPSE that serves as a proxy for the Web

service. Before forwarding the requests to the Web service, the IPSE monitors the sequences of interactions

between the client and the Web service. The IPSE uses this information to incrementally synthesize a

model that infers the interaction protocol of the Web service. The main limitation is manual testing by the

developers to analyze the candidates.

Jiang et al. [138] propose an approach for adaptation of two or more services. The authors introduce

new model called protocol structure to characterize the service business protocol using message and

message dependencies. They also provide formal definitions for mismatches. The proposed approach

covers various forms of service interactions such as one-to-zero, one-to-one, one-to-many, zero-to-one,

many-to-one exchange of messages, and message broadcast. Besides, the approach can automatically

detect multiple mismatches at a time and automatically resolve them. The authors present a simple visual

tool for automatic adaptation of services and generation of BPEL adapters. The process of developing an

adapter including:

1. Initial adaptation set (initial message dependency relation of adapter) is semi-automatically

generated based on interface mapping among services.

2. Creation of protocol structure of adapted composition of two services using the initial adaptation set.

3. Final and correct adaptation set among services is obtained through automatic detection and

resolution of message ordering mismatches in the protocol structure (i.e., using an algorithm to

compute dead configuration):

Chapter 3. Adaptation of service composition

 55

 Extra messages are received and stored in the buffers by adapter;

 New messages are provided for missing messages (deadlock).

4. Automatically generation of BPEL adapter based on final adaptation set.

56

Chapter 4

Web Services Adaptation in the presence of

Business Protocol Evolution

Obviously, compatibility analysis [139] and adaptation techniques to enforce service interoperability

are not new ideas. In previous chapter, we have reviewed various adaptation approaches proposed to

encounter the incompatibilities in Web service collaboration. The main challenge of this dissertation is to

concentrate on service adaptation especially for the cases in which the business protocols of services

engaged in interoperability evolve. In all associated works on service adaptation is assumed the business

protocol does not change. However, there are two cases where service business protocols change during the

interactions of services: one is that most of the real world services provide interaction patterns for a group

of related activities such that in one interaction session, two services may engage in conversations that

include two or more of such interaction patterns. One example of such services is Google Checkout
21

. The

other scenario is when the business protocols of a service evolve.

The main question is what happens to adapter development in these cases. Indeed, our contribution is to

propose an efficient solution for service adaptation in the presence of business protocol evolution. In other

words, we provide an evaluation approach to decide how an adaptation mechanism between two services

must be carried out in an efficient manner when one or both of them migrate to the new version through

business protocol evolution.

Obviously, building a new adapter from scratch whenever the business protocol evolves sometimes is

expensive. Therefore, we prefer approaches to update the adapter specification only for parts of protocols

that have modified rather than totally state space exploration of the composed model (i.e., adaptation from

scratch), if it makes sense. Consequently, to achieve a reasonable answer for such ambiguity issues we aim

to more focus on them. Therefore, we are concerned with providing a technique to evaluate automatically,

21

 http://code.google.com/apis/checkout/

Chapter 4. Web services adaptation in the presence of business protocol evolution

 57

which extent of a service business protocol has impressed, or which extent remains without any change and

subsequently which extent of an interaction have to be handled for adapting with the changes. Accordingly,

our method has to determine how adaptation mechanism must be re-carried out for those affected

interactions with the new version of service protocols. This technique must consider those elements of an

adapter protocol that need to be re-managed after happening these changes. However, in some cases of

business protocol evolution is more efficient to accomplish the adapter generation from scratch.

In this dissertation, we aim to challenge the service adaptation to cope with the changes in services

particularly their business protocols evolution.

4.1 Web Service Evolution and Service Interaction

For variety of reasons, service providers needs to improve their services capabilities, for instance to

achieve high productivity. The evolution of Web services is inevitable because the clients will always ask

for new features. In fact, the existing Web Services require to be changed to adapt to the new business

demands. The main issue through such amelioration is to necessarily evaluate whether the correctness of

the new interactions with the new version of services can be verified.

The authors in [140] [24] present a theoretical framework to control and manage the evolution of

services. They discuss Web service evolution from external observable aspects of a service including:

1- Structural changes: affect the service signature such as messages, operations, and data types.

2- Behavioral changes: focus on changes related to the business protocol of services. Indeed, the

business protocol of services change due to changes in the policies, regulations, and changes in the

operational behavior of services.

3- Policy induced changes: include the changes of Quality of Services (QoS) properties.

Moreover, Z. Feng et al. [24] represent a classification of service evolution from different perspectives:

 Perfective Motivation:

1- Enhance/replace existing functionality of services,

2- Reduce existing functionality services,

3- Business rules change.

 Corrective Motivation:

1- Service interface changed,

2- Interface semantics modified, and

3- Service policy is changed.

Related to this space, the focus of this work is the evolution of services behavior (i.e., business protocol

changes). The authors in [141] present an approach to modify the client protocol in a static service

evolution (structural changes) to support the service interaction with regard to the compatibility notions.

Chapter 4. Web services adaptation in the presence of business protocol evolution

 58

They introduce a set of elementary operations to model the changes of service protocols (e.g., the

operators to add/remove states and transitions; and to change the initial and final states).

When a service evolve, the authors in [142] suggest a method for updating the client interface

respecting the compatibility criteria. They assume that services are as black-boxes which cannot change.

Their proposed approach detects the changes by comparing the interfaces of an upgraded service with its

client. Also, the behavioral mismatches are identified. Besides, the compatibility measure between the

updated client and related service is evaluated. S. Rinderle et al [143] discuss how the changes of a service

private process may influence the associated public view, and also the public and the private processes of

its partners. They propose an adaptation technique for automatically propagating such changes to the

partner processes.

S.H. Ryu et al [144] investigate the problem of service protocol changes for a dynamic service

interaction where multiple instances of a service protocol are running through different clients. Their main

challenge is to manage such a protocol evolution regarding its running active instances. The presented

approach in [145] also analyzes the evolution of services from point of view of service dependencies. The

internal relation between the constituents of each service is calculated, and then the relation of two

services’ elements is detected. Consequently, the impact of change in a given element of a service is

assessed. The authors in [146] propose a technique called chain of adapters to manage the evolution of

service interface to preserve the compatibility with the client.

The problem of service adaptation has been investigated extensively in the literature. These approaches

cover mismatch identification and adapter generation both at the interface-level and also business protocol

levels. However, none of these approaches consider the issue of adapter evolution in the presence of

changes in the business protocols participating in the adaptation. In our work, we go beyond the existing

literature by identifying possible evolution patterns in business protocols of services, proposing algorithms

to automatically identify the impact of changes in terms of the occurrence of any of these patterns in an

evolved business protocol with respect of an existing adapter, and a method to automatically identify

whether the adapter specification can be updated on-the-fly to remedy the changes. This will save times and

efforts in assessing the impact of changes and regenerating the adapters from scratch with every change.

Our proposed approach of evolution-aware analysis in this thesis is different from current approaches

wherein propagate the changes of service protocol towards their client protocols to preserve the

compatibility.

4.2 Dynamic Adapter Re-configuration

In this section, we aim to present the main contribution of this thesis in which we challenge the

adapters’ adaptation to comply with the evolution of service business protocols. Indeed, we intend to

evaluate and comprehend the impact of business protocol evolution on the adapter specification. We

Chapter 4. Web services adaptation in the presence of business protocol evolution

 59

present an automatic approach to investigate when it is possible to dynamically update the adapter

specification without the need for re-generation and re-deployment of adapter.

To this end, we characterize the potential impacts of the changes arising from the evolution of service

business protocol on the adapter specification. We present an algorithm to automatically figure out the

impact of evolution on the adapter for common patterns of evolution in business protocols. The impact

analysis algorithm enables us to detect the circumstances in which the current adapter can be updated on-

the-fly.

We developed a prototype tool implementing the proposed approach. The experimental evaluations

show a considerable saving in time, effort and cost compared to the static adapter generation methods.

Experiments also demonstrate that the proposed approach significantly assists the developers to recognize

when they can avoid generating the adapter from scratch.

In the next section, we first provide a motivating example.

Chapter 4. Web services adaptation in the presence of business protocol evolution

 60

4.2.1 Motivating Example

In this section, we present a real-world scenario (i.e., based on RosettaNet
22

 standard) as a motivating

example for better illustration of our proposed approach. Figure 4.1 shows the scenario of a purchase

order. Buyer orders products from Seller. Seller accepts Order and confirms order fulfilment. Seller sends

Advanced Shipment Notification to buyer. Seller then sends Invoice to Buyer. Buyer may cancel the order

or confirm the Invoice. Following Invoice confirmation, Buyer pays Invoice. Seller may receive order

cancelation or payment. The process ends with delivery of the order to the Buyer.

Figure 4.2 depicts the business protocols of Buyer and Seller denoted by Q and P respectively in the

form of oWFN. As illustrated in the Figure 4.3 an adapter component A_{Q, P} is needed to support the

interaction between Q and P. Indeed, due to the protocol mismatches between Q and P (i.e., in terms of

unspecified reception and messages order constraints) direct composition is no possible. For instance,

Buyer confirms invoice and sends InvoiceConf, while there is no need in Seller to receive this message, thus

adapter A_{Q, P} stores it in the buffer at the level of transition tA12. In addition, Buyer first submits the

output message BuyerInfo and then receives shipment notification by the input message ShipNotif. Whereas

Seller first sends the message ShipNotif and then receives BuyerInfo. Consequently, as shown in the Figure

4.3 the adapter should manage the sequence of such messages exchanges.

 Buyer Seller

Figure 4.1. The partner services Buyer and Seller in a purchase order scenario

22

 http://www.rosettanet.org

Create

Purchase

Order

Process Shipment

Notification

Validate

Invoice

Process

Purchase

Order

Create Advance

Shipment Notification

Create

Invoice

Receive

Payment

Pay Invoice

Chapter 4. Web services adaptation in the presence of business protocol evolution

 61

Figure 4.2. The business protocols of Buyer (Q) and Seller (P) in the form of oWFNs

q0

 CreateOrder

q

1

q2

q3

p0

p1

p3

Order Order ProcessOrder

SendOrderConfirmation OrdConf

p

2

ProcessByerInformation

p

4

OrdConf

ReceiveOrder

Confirmation

SendInformation BuyerInfo

BuyerInfo

CreateAdvanceShipment

Notification

ProcessShipment

Notification

ShipNotif

ShipNotif

CreateInvoice Invoice

Invoice

Cancelation

Payment

q4

q5
InvoiceConf

q6

q7

ReceiveCancelation

ReceivePayment

ValidateInvoice

CancelOrder

PayInvoice

ConfirmInvoice

Cancelation

Payment

p

5

p6

Protocol Q

Protocol P

Chapter 4. Web services adaptation in the presence of business protocol evolution

 62

Figure 4.3. The model of adapter that sits between partner protocols Buyer and Seller of Figure 4.2

a0

a1

a3

Order

OrdConf

a2

a4

OrdConf

BuyerInfo

ShipNotif

ShipNotif

Invoice

Cancelation

Payment

InvoiceConf

Cancelation

Payment

a5

Order

tA1

tA2

tA3

tA4

tA5

tA6

a6

a7

a8

a9

tA7

tA8

tA9

BuyerInfo

Invoice

tA10

a10

a11
a12

a13

a14

tA11

tA12

tA13
tA14

tA15

Chapter 4. Web services adaptation in the presence of business protocol evolution

 63

4.2.2 Business protocol evolution patterns

In this section, we define the common adapter adaptation patterns (AAPs) for business protocols

evolution, and we also propose a method to identify these patterns.

4.2.2.1 Adapter adaptation patterns

Similar to the design patterns in software engineering [147], we define the adapter adaptation patterns

(AAPs) to characterize the business protocols evolution, their respective impacts on the current adapter,

and a solution showing how to fix dynamically the adapter, if possible. More precisely, the structure of the

AAP consists of :

 evolution pattern – to capture the possible changes on business protocols evolution;

 potential impact – to describe the effects of respective change on the current adapter;

 adaptation solution – to define the operations to dynamically re-configure the specification of

current adapter.

The structure of an evolution pattern defines the type of an elementary change corresponding to the

occurrence of the added or removed messages. In terms of oWFNs, these changes are translated into four

patterns, which are added (or removed) input (or output) interface places. Moreover, the occurrence of

changes at the level of activities is described as added, removed, or updated interface transitions (i.e., ATI,

RTI, or UTI, respectively) that can easily be deduced in terms of these four evolution patterns.

For each of the AAPs, the potential impact of an evolution pattern is evaluated respecting the

specification of current adapter. We analyze the impact of the evolution patterns from two standpoints:

partial and global impact. In the case where the impact of an evolution pattern on current adapter is partial,

definitely allows updating the adapter on-the-fly. For the evolution pattern with global impact, we are

forced to re-generate the adapter from scratch at design time through a complete analysis of the new

interactions among participant protocols. We also establish a solution of dynamic updating the adapter for

the evolution patterns with partial impact. Such a method either is to add a patch  to extend the adapter

from a given transition, or to change the adapter  to fix the corresponding transition.

We suppose that only the protocol P is changed (we say here P becomes P). The challenge is now

from point of view of P to evaluate the impact of changes (of its messages or activities) on A_{Q, P}, and

to dynamically conceive an appropriate A_{Q, P} between Q and P in the case of partial impact. For both

impact analysis and dynamic adaptation, we denote by B(t) the buffer of current adapter A_{Q, P} at the

level of transition t. To dynamically perform the re-configuration of current adapter, we also need to

identify the transition tA of adapter A_{Q, P} corresponding to each updated or removed transition t of

protocol P (denoted by tA  t). The identification of tA is easily obtained via the input or output interface

Chapter 4. Web services adaptation in the presence of business protocol evolution

 64

place of t in P. We denoted by A_CrT, the set of transitions of current adapter associated with all updated

or removed interface transitions of a business protocol. We illustrate a classification of AAPs as follows:

AAP #1  Input Addition Pattern.

 Evolution pattern: input interface place is added. This pattern deals with the case where the input

interface place ip is added to the interface transition t of protocol P. Indeed, the transition t is either a

new interface transition receiving the input place ip (t  ATI
P

), or t is an existing interface transition in

which the input (or output) interface place is replaced by ip (t  UTI
P

).

 Potential impact. To identify the impact of the evolution pattern on current adapter, we analyze the

specification of adapter A_{Q, P} as follows:

 The message ip exists in the buffer of A_{Q, P} (i.e., cond1. of Table 1). Therefore, the impact of

pattern on A_{Q, P} would be partial. For example, suppose the Seller via P receives the message

InvoiceConf by a new interface transition ReceiveInvoiceConfirmation prior to the transition

ReceivePayment).

 Adaptation solution. To dynamically update the A_{Q, P}, we first check whether the buffer B

includes ip at the transition tAX of A_{Q, P} corresponding to t, i.e., ip B(tAX). Otherwise, we

detect the transition tAY with the largest prefix number in which #tAY  #tAX and B(tAY) contains

ip. Accordingly, A_{Q, P} is extended on-the-fly at tAX or tAY to send ip into t. In the case where

the transition t is a new interface transition such that no transition tAX exists in A_{Q, P}

corresponding to it, A_{Q, P} is dynamically extended at the transition tAZ where B includes ip.

 The buffer B does not include the message ip (i.e., cond2. of Table 4.1). Therefore, due to a potential

deadlock, the impact of the evolution pattern on A_{Q, P} is global. For example, suppose P needs

to receive the message Order&BuyerInfo instead of Order at the transition ProcessOrder. Although,

the evolution of Q in the future may satisfy this request of P, but we assume that the probability of

such an evolution of Q during t is low (i.e., t is the total time of both impact analysis and applying

dynamic adaptation on A_{Q, P} for P). In the case where A_{Q, P} is able to generate ip (i.e.,

using some evidences, or creating mock-up message), the impact of pattern on adapter would be

partial, (i.e., cond3. of Table 1 where the set of output interface places of A_{Q, P} includes ip).

Chapter 4. Web services adaptation in the presence of business protocol evolution

 65

Table 4.1. The specification of AAP #1.

Evolution Pattern: ( t  TI
P
   ip  In

P


)  ip 


t is a new input place

Potential Impact:

Con1. ip  B ( tAZ  TI
A
  ip  B(tAZ))  Partial impact AdaptSolution_1a (tAZ)

Con2. ip  B  Global impact  Adapter re-generation

Con3. ip  B  ip (Out
A
)P : A_{P, Q} can generate ip at tA  AdaptSolution_1b (tA)

AdaptSolution_1a (tAZ) {

1 if ip  (Out
A
)P then (Out

A
)P : (Out

A
)P  {ip};

2 if t UTI
P
  tAX (A_CrT)  t then

3 if ip  B (tAX) then

4 B : B \ ip;

5 FA : FA  {(tAX, ip)P ;

6 else { Ident&Ext (tAX, tAZ); F
A

 : F
A

 {(tAN, ip)P };

7 else if t  ATI
P
 ∄tAX (A_CrT)  t then

8 ExtendAd (tAZ) ;

9 F
A

 : F
A

  {(tAN, ip)P ;

}

AdaptSolution_1b (tA) {

1 ExtendAd (tA);

2 F
A

: F
A
 {(tAN, ip)P };

}

ExtendAd (tA) {

1 F
A

 : F
A
 \ {(tA, tA


)};

2 P
A

 : P
A

 {pAN};

3 TI
A

 : TI
A

  {tAN};

4 F
A

: F
A
 {(tA, pAN), (pAN, tAN),(tAN, tA


)};

5 return tAN; }

Ident&Ext (tAX, tAZ) {

1 if  tAY T
A
  (# tAY  # tAX  ip  B (tAY)) then

2 ExtendAd (tAY);

3 else ExtendAd (tAZ) ;

}

Chapter 4. Web services adaptation in the presence of business protocol evolution

 66

AAP #2  Output Addition Pattern.

 Evolution pattern: output interface place is added. This pattern deals with the case where the output

interface place op is newly added to the interface transition t of P. For example, let the output message

OrdConf of the transition SendOrderConfirmation is replaced by the output message

OrdConf+Alternatives. Similar to AAP #1, the transition t is either a new interface transition receiving

the output place op, or t is an existing interface transition in which the output (or input) interface place

is replaced by op.

 Potential impact. The impact of this type of change of P on A_{Q, P} is partial.

 Adaptation solution. Adapter A_{Q, P} is extended on-the-fly by receiving op at the transition tAX

corresponding to t (i.e.,  tAX  A_CrT  t). Also, the message op is stored in the B at the level of tAX.

For a new interface transition t where there is no transition tAX of adapter corresponding to it, we

propose a solution to identify an appropriate transition of A_{Q, P} to properly re-configure the

adapter on-the-fly.

AAP #3  Input Removed Pattern.

 Evolution pattern: input interface place is removed. In this pattern, the input interface place ip of the

interface transition t in P is removed. For example, suppose the input message Cancelation of the

transition ReceiveCancelation is removed.

 Potential impact. The impact of this pattern on A_{Q, P} is partial.

 Adaptation solution. Adapter A_{Q, P} is dynamically updated to stop sending the respective message

ip to t at the corresponding transition tAX. Besides, the message ip is stored in the B at the level of tAX.

In the case where the transition t is also removed, we apply additional operations on A_{Q, P} to

remove the corresponding transition tAX and respective constituents from adapter (i.e., RedAdp

function of Table 4.3).

AAP #4  Output Removed Pattern.

 Evolution pattern: output interface place is removed. In this pattern, the output place op of the interface

transition t of P is removed. For example, the output message ShipNotif of the transition

CreateShipmentNotification is removed.

 Potential impact. The impact of this type of evolution in P on A_{Q, P} is partial.

 Adaptation solution. Adapter A_{Q, P} can be modified on-the-fly by stopping the reception of op at

the transition tAX corresponding to t, and updating the B. Similar to AAP #3, if transition t is also

removed, we execute additional operations on adapter.

Chapter 4. Web services adaptation in the presence of business protocol evolution

 67

Table 4.2. The specification of AAP #2.

Evolution Pattern: ( t  TI
P
   op  Out

P
)  op  t


 is a new output place

Potential Impact: Partial impact  AdaptSolution_2

AdaptSolution_2 {

1 if op  (InA
) P then (In

A
)P : (In

A
)P {op};

2 if t  UTI
 P
  tAX ( A_CrT)  t then

3 F
A

: F
A

  {(op, tAX)P };

4 if p  B then

5 B(tAX) : B(tAX) {op};

6 else if t  ATI
P
  ∄tAX ( A_CrT)  t then

7 Ident&Ext_2(tAX);

8 F
A

 : F
A

  {(op, tAN,)P };

}

Ident&Ext_2 (tn){

1 if t TI
P
  (# t  # tn  tAY ( A_CrT)  t) then

2 ExtendAd (tAY);

3 else if t  TI
P
  (# t  # tn  tAZ ( A_CrT)  t) then

4 ExtendAd (tAZ);

}

ExtendAd (tA) {

1 F
A

 : F
A
 \ {(tA, tA


)};

2 P
A

 : P
A

  {pAN};

3 TI
A

 : TI
A

  {tAN};

4 F
A

: F
A
{(tA, pAN), (pAN, tAN),(tAN, tA


)};

4 return tAN;

}

Chapter 4. Web services adaptation in the presence of business protocol evolution

 68

 Table 4.3. The specification of AAP #3.

Evolution Pattern: (t  TI
P
   ip  In

P
)  (ip is a removed input place  ip 


t)

Potential Impact: Partial impact  AdaptSolution_3 (tAX) where tAX  A_CrT  t

AdaptSolution_3 (tAX) {

1 (Out
A
)P : (Out

A
)P \ {ip};

2 F
A

 : F
A

\ {(tAX, ip)P };

3 if p  B then

4 B (tAX) : B (tAX) {op};

5 if t  TI
P
 then

5 RedAdp(tAX);

}

RedAdp(tA) {

1 TI
A

 : TI
A

 \ {tA};

2 if {tA}  {(

tA)


} then

3 F
A

 : F
A
 \ {(


tA, tA), (tA, tA


)};

4 else {

5 P
A

: P
A

 \ {

tA};

6 F
A

 : F
A
 \ {(


tA,


tA), (


tA, tA), (tA, tA


)};

7 F
A

 : F
A
  {(


tA, tA


)};

8 }

}

When an interface transition t is newly added to P, accordingly t includes necessarily either an input or

an output interface place. Therefore, the impact of this type of evolution on P is evaluated through the

AAPs #1 or #2, respectively. Moreover, in the case of the new interface transition, since no corresponding

transition exists at adapter level, we propose a solution to identify the relevant transition of adapter for each

of AAPs #1 or #2, separately. Accordingly, there is no need to take this type of change into consideration

as a separate AAP. Furthermore, when an interface transition t is removed from P, subsequently its input

or its output place will be removed. Hence, the impact of this change is also dealt with the AAPs #3 or #4,

respectively.

We provide the description of AAPs #1, #2, #3, and #4 in Tables 4.1, 4.2, 4.3, and 4.4 respectively.

Obviously, when the changes of business protocols involve the respective evolution patterns of AAPs #2,

#3, and #4, their potential impact on the current adapter would be partial. We first need a method to

identify the relevant AAPs for business protocols evolution. Indeed, we detect the AAPs on a business

protocol based on their respective evolution patterns. Hence, in the next section we describe our proposed

method to detect the changes that can be occurred in a business protocol in terms of the evolution patterns.

Chapter 4. Web services adaptation in the presence of business protocol evolution

 69

Table 4.4. The specification of AAP #4.

Evolution Pattern: (t  TI
P
   op  Out

P
)  (op is a removed output place  op  t


)

Potential Impact: Partial impact  AdaptSolution_4 (tAX) where tAX  A_CrT  t

AdaptSolution_4 {

1 (In
A
)P : (In

A
)P \ {op};

2 F
A
 : F

A
\ {(op, tAX) P };

3 if op  B then

4 B (tAX) : B (tAX) {op};

6 if t  TI
P then

7 RedAdp(tAX);

}

RedAdp(tA) {

1 TI
A

 : TI
A

 \ {tA};

2 if {tA}  {(

tA)


} then

3 F
A

 : F
A
 \ {(


tA, tA), (tA, tA


)};

4 else {

5 P
A
: P

A
 \ {


tA};

6 F
A

 : F
A
\{(


tA,


tA), (


tA, tA), (tA, tA


)};

7 F
A

 : F
A
  {(


tA, tA


)};

8 }

 }

4.2.2.2 Adapter adaptation patterns identification

In this section, we introduce a method to identify the AAPs on a business protocol evolution. We

recognize the AAPs based on their respective evolution patterns. To detect the changes of a business

protocol in terms of the evolution patterns, we apply a method on the basis of differences between the

incidence matrices of the old and new version of respective oWFN, i.e., IM
P
 and IM

P
.

From this comparison, we first identify which interface transitions are added, removed or updated. For

each one of these transitions, using boolean variable (flag), we then detect the types of changes in terms of

added/removed input or output interface places (i.e., f_AIn, f_AOut, f_RIn, f_ROut, respectively).

Therefore, with respect to the IM
P

, we acquire the set of added, removed, and updated interface transitions

(i.e., ATI, RTI, and UTI, respectively) and the types of changes on associated input/output interface places.

The time complexity of these operations in the worst case can be expressed as O(m
2
) where m = max (|PI|,

|TI|). In our approach, updated interface transitions represent the interface transitions which are also exist in

the new version such that the evolution only occurs at the level of their respective interface places. In

addition, the removed interface transition t indicates the interface transition which is no longer available in

the new version, i.e., either it becomes an internal transition (t TI
P

), or it is completely removed from the

list of transitions of P (t  TI
P

  T
P

). We denote by RCT the set of interface transitions which are

completely removed from P.

Chapter 4. Web services adaptation in the presence of business protocol evolution

 70

Prior to the comparison of the matrices, we have to rearrange the respective rows and columns in both

of them. Such a re-arrangement makes the columns and rows in both matrices are at the same order.

The method first compares the matrices IM
P
 and IM

P
 from point of view of their columns. Therefore,

the method identifies the removed columns (removed interface transitions) if there is a column ti (i.e., 0  i

 |TI|) in the IM
P
 such that any column ti equivalent to ti does not exist in the IM

P
. The non-zero value of

matrix IM
P
 at column ti and row pj (i.e., 0  j  |PI|) signifies the type of changes in terms of removed input

or removed output associated with this transition.

Similarly, the new interface transitions can be detected if a column ti exists in the IM
S
 such that IM

S

does not include any equivalent column ti to it. Accordingly, the non-zero value of matrix IM
S
 at row pj

and column ti demonstrates the added input or output interface place to this transition.

Each pair of equivalent columns ti (of IM
P

) and ti (of IM
P

) is compared from point of view of the

respective rows to identify the differences on the input or output interface places related to these interface

transitions. Thus, for each two equivalent row pj (of IM
P

) and pj (of IM
P

) we compare the value of IM
P

(at

row pj and columns ti) with the value of IM
S
 (at row pj and columns ti). According to the value of

matrices at corresponding row and column as depicted in Table 4.5, we detect the type of changes on

associated input or output interface places. In such a way, we identify the updated interface transitions and

respective changes on their input or output interface places.

Finally, we acquire the sets of changed interface transitions including added, removed, and updated

interface transitions of P (denoted by CTI
P

), and also the type of changes on respective input/output

interface places.

In the next section, we present an algorithm for evaluating the impact of business protocols evolution

based on the change exploration, and the AAPs. The algorithm also dynamically updates the current

adapter in the case of partial impact of an AAP.

Table 4.5. The flags with true value based on the value of Matrices IM S and IM S

Value of IM S at row i and column j Value of IM S at row i and column j
True

flags

-1 0 f_RIn

0 -1 f_AIn

1 0 f_ROut

0 1 f_AOut

Chapter 4. Web services adaptation in the presence of business protocol evolution

 71

4.2.3 Protocol evolution impact analysis on the adapter

In this section, we present an algorithm that uses the specification of AAPs to automatically apply an

impact analysis over the affected areas of new business protocol P. To this end, the algorithm performs

such an analysis through exploration and evaluation of the new, updated, and removed interface transitions

in P (denoted by dirty transitions) except for the removed interface transitions t  RCT
P

.

The algorithm starts from the initial state in P and explores the dirty transitions according to the prefix

order obtained by breadth-first traversal of the graph associated with the oWFN model. Once the algorithm

meets a dirty transition, analyzes it to recognize its potential impact on the adapter. To do such an impact

analysis, the algorithm uses the values of flags attributed to each dirty transition for identifying the

respective evolution patterns of the AAPs. Therefore, for each dirty transition, the algorithm checks which

flags are true, and which evolution patterns are then involved. According to the selected AAPs, specified

impact analyses are performed.

The algorithm also performs dynamic adaptation solutions of the AAPs where the impact of relevant

evolution patterns on the adapter is partial. Otherwise, if the impact is global, the algorithm stops the

exploration of dirty transitions of P and then results in the fact that the adapter should be re-generated from

scratch. For each of the updated interface transitions, the algorithm first evaluates the impact of the

removed input/output place, and then the impact of an added input/output place. In the case where an

interface transition t is completely removed from P, the algorithm also executes additional tasks to

accomplish the re-configuration of adapter, if dynamic updating the adapter is possible.

Algorithm 2 shows the proposed method of evolution impact analysis for AAP #1. We have left out the

bfs-based exploration of dirty transitions in P.

Algorithm 2 takes as input the oWFN model of protocols P, P, and adapter A_{Q, P}, and also the

incidence matrices IM
P
 and IM

P
. The set dT

P
 stands for dirty transitions of P (i.e., dT

P
 : UTI

P
  ATI

P
 

RTI
P

 \ RCT
 P

). The set TC initiates by the union of the sets dT
P

 and RCT
 P

. For each t of dT
P

, in the case of

AAP #1, algorithm 2 first verifies whether flag f_AIn (standing for its evolution pattern) related to t is true.

Then, algorithm 2 detects the input interface place p of P added to t using the IM
P

 where the element at

row p and column t is the value “-1” (line 2). According to the specification of A_{Q, P}, the algorithm

analyses the potential impact of AAP #1 (line 3).

The algorithm then applies either the function adaptSolution_1a or adaptSolution_1b to dynamically

update A_{Q, P}, if the impact of pattern is partial. Otherwise, if the impact is global, the algorithm

recognizes that A_{Q, P} should be re-developed. Thus, the exploration of P (line 5) is stopped. For every

interface transition t of P which is completely removed (i.e., t RCT
P

and cannot be explored), the

algorithm finally performs function extraAdapt to complete the re-configuration of A_{Q, P} (lines 7-8).

Given the type of interface place on the removed transition t, the algorithm executes appropriate operations

Chapter 4. Web services adaptation in the presence of business protocol evolution

 72

to update the adapter properly. Algorithm 2 finally either yields to a new adapter A_{Q, P } on-the-fly or

realizes that adapter A_{Q, P} should be re-generated at design-time.

Algorithm 2: Impact analysis from point of view of P on adapter A_{Q, P}

1 dT
P
 = CTI

P
 \ RCT

P
 ;

2 while dT
 P
    t  dT

 P
 do

3 if tf_AIn = true  p  In
 P


with IM

 P
 [p, t]  0 then // AAP #1

4 ImpactAnalysis; // Potential Impact of Table 1

5 if impact is global then

6 break;

7 dT
 P
 : dT

 P
 \ t ;

8 if impact is partial  (TC \ dT
 P


    t RCT

 P
) then

8 extraAdapt(t);

9 extraAdapt (t) {

10 if p  Out
P

with IM
P
[p, t] > 0

then

11 AdaptSolution_4 (line 1-4) ;

12 RedAd(tA) ;

13 else if p  In
P

with IM
P
[p, t] < 0

then

14 AdaptSolution_3 (line 1-4) ;

15 RedAd(tA) ;

16 }

Chapter 4. Web services adaptation in the presence of business protocol evolution

 73

Use-Case. We suppose the evolution of protocol P occurs in two use-cases  and  of P.

 The changes of P in the case  comprise of:

1) The new interface transition AnalyzeBuyerHistory (i.e., which is available following the interface

transition ProcessOrder) receives the input message BuyerInfo; and

2) The input message BuyerInfo of interface transition ProcessByuerInformation is removed in which

this transition is also eliminated (i.e., ProcessBuyerInformation  RCTI
 P

).

 In the case  protocol P receives the input message InvoiceConf by the new interface transition

ReceiveInvoiceConfirmation (i.e., prior to the transition ReceivePayment). In the following, we apply

Algorithm 1 on both cases  and  of P.

In the case  of P, Algorithm 2 starts from the initial state p0 and then explores the dirty transition

AnalyzeBuyerHistory which is a new interface transition (i.e., AnalyzeBuyerHistory  ATI
 P

) receiving the

input message BuyerInfo (i.e., flag f_AIn of AnalyzeBuyerHistory is true). Therefore, the algorithm

evaluates the potential impact of AAP #1 for this transition as follows:

 The buffer of A_{Q, P} covers BuyerInfo at the transition tA6. Accordingly, the algorithm calls

function adaptSolution_1a to extend A_{Q, P} at tA6. This function creates the new transition tAN and

flow relation (tAN, BuyerInfo)P which sends BuyerInfo to the transition AnalyzeBuyerHistory). In

addition, the buffer of A_{Q, P} is updated.

 For the dirty removed interface transition ProcessBuyerInformation that is also unobservable in P

(i.e., ProcessBuyerInformation  RCT
 P

), the algorithm calls the function extraAdapt on it. This

function performs final adjustments on A_{Q, P} at the corresponding transition tA8 to stop sending

the respective message BuyerInfo to P (i.e., flag f_RIn of ProcessBuyerInformation is true). This

function also applies the function RedAd on tA8 of A_{Q, P} to remove this transition and its

respective elements from adapter. Consequently, the new adapter A_{Q, P } is dynamically available.

In the case  of P, algorithm 2 visits and analyzes the dirty new interface transition

ReceiveInvoiceConfirmation receiving the input message InvoiceConf based on AAP #1. Respecting the

specification of A_{Q, P}, buffer B includes InvoiceConf at transition tA12. The impact of pattern is partial.

Therefore, the algorithm applies function adaptSolution_1a on A_{Q, P} where extends adapter at

transition tA12 to send this message to transition ReceiveInvoiceConfirmation of P. Similar to the case ,

new adapter A_{Q, P } is provided on-the-fly.

In the next section, we propose a method to verify the correctness of adapter A_{Q, P} that is

dynamically formed in both cases  and . In our approach, adapter A_{Q, P} is correct with respect to P

Chapter 4. Web services adaptation in the presence of business protocol evolution

 74

and Q if it is behaviorally compatible with both of them (i.e., incorrect adapter here means a protocol

mismatch in terms of deadlock exists between the adapter and one of the participant partners).

4.2.4 Dynamic verification of adapted adapter

This section is devoted to verify the correctness of the new adapter which is dynamically provided.

Adapter verification is needed in most adapter re-generation scenarios, except those which guarantee the

adapter soundness, e.g., as in Yellin and Strom [20]. In our approach, the verification phase is performed

on-the-fly once the adaptation of current adapter is done. The proposed verification is based on structural

reasoning related to necessary condition of deadlock occurrence which is equivalent to the existence of

unmarked siphon [46] in the corresponding oWFN Q  A_{Q, P}  P  (i.e., modeling the interaction

among the new adapter A_{Q, P}, and partners Q and P). We take the advantages of this structural

verification to avoid the state-space checking which is computationally expensive in general. This

structural verification can be done in polynomial time that consists in removing the initially marked places,

and checking the existence or non-existence of an unmarked siphon in the resulting subnet.

We recall that a nonempty place set S  P of a P/T net N is called a siphon if and only if

S  S


. S is

said to be minimal if and only if it contains no other siphon as a proper subset. N is said to be satisfying the

controlled-siphon property (CS-property) if and only if all its minimal siphons are controlled. Therefore,

we have the following results:

 In the case where there is no an unmarked siphon, and also if the corresponding oWFN belongs to the

class of K-systems such as root nets or ordered nets [28], we can claim that protocol compatibility is

guaranteed. Indeed, for such classes of nets the CS-property is not only necessary liveness condition but

also sufficient, and for general nets the necessary compatibility condition is satisfied (i.e., the adapter is

quasi-correct).

 In the case of existence of siphon, we identify the incompatibility problem with respect to the siphon

places, and this information is valid for general cases (i.e., any nets). Besides, this information can be

fully exploited for correction bases (e.g. adaptation solutions substitution, or in adapter re-generation

method if such a method is inevitable).

For instance, in the case  of P (as described in the previous section) there is an unmarked siphon on

the corresponding oWFN Q  A_{Q, P}  P  where involves places BuyerInfo and OrdConf (i.e., P

receives BuyerInfo before sending OrdConf). Hence, the CS-property is not satisfied and final marking Mf =

q7 + a14 +p6 is unreachable; while in the case  of P, the correctness of A_{Q, P} is recognized.

Chapter 4. Web services adaptation in the presence of business protocol evolution

 75

4.2.5 Prototype implementation and experiments

4.2.5.1 Implementation

The presented approach has been implemented as a prototype tool in the context of PIPE2 (Platform

Independent Petri net Editor 2) architecture, which is an open source, and Java-based tool for creating and

analyzing Petri nets efficiently [29].

Figure 4.4 represents the architecture of the prototype. We first applied the free tool BPEL2oWFN [50]

to automatically translate the partner business protocols into oWFNs in the format of PNML (Petri Net

Markup Language) [148]. We then made some modifications on the specifications of BPEL2oWFN’s

output files (XML files) to meet the PIPE2’s inputs requirements. Since PIPE2 conforms fully to PNML

(i.e., the file format is extensible through the use of XSLT), we extended the model of place and transition

at various parts of PIPE2’s sources to support the interface transitions and places of an oWFN.

The execution of our module  Evolution-aware Impact Analysis begins by reception of the original

versions of the partner business protocols (e.g., P.XML and Q.XML), and also the new version of P (e.g.,

P.XML). With ex-ante knowledge of incompatible interaction between Q and P, the adapter A.XML is

called (i.e., compatibility checking component will be added in the future). The same method has been

applied to produce an appropriate version of A.XML to be used in the PIPE2. We have also extended the

incidence matrices of PIPE2 to allow to create the incidence matrices IM
P
 and IM

P
. We compare these

matrices by comparison component to identify the differences between these versions in the form of AAPs.

Finally, the impact analysis component provides the results of evaluating the impact of P on the adapter

based on both A.XML and the list of selected AAPs.

Our tool assists the adapter developers to decide efficiently how to deal with the adapter in the context of

business protocols evolution.

4.2.5.2 Experimental evaluation

In support of the proposed approach, we have applied the prototype tool on some synthetic scenarios. In

our experiments, we have taken the specification of all AAPs into consideration. Our investigation shows

that the proposed approach is advantageous to make crucial decisions on when we can prevent from

complete adapter regeneration where dynamic updating the adapter meets the impact of evolution.

To realize the effectiveness of proposed approach, we have made a comparison between our proposed

approach and the static adapter regeneration method [149]. To this end, we have estimated the time

complexity of both of these approaches. The results of this comparison demonstrate the circumstances

where if the changes of business protocols have partial impact on current adapter, the proposed approach is

more effective in cost saving.

Chapter 4. Web services adaptation in the presence of business protocol evolution

 76

The time complexity for a method of complete adapter regeneration is O(m
2
) where m is the number of

interface transitions. The proposed evolution-aware impact analysis for each of the AAPs has the time

complexity of O(m). Moreover, the time complexity of the proposed solutions of dynamic adaptation is

O(m). In the case where a change with global impact exists in a business protocol, both complete adaptation

and our dynamic approach have similar time complexity O(m
2
).

Figure 4.4. The architecture of prototype implementation

P.BPEL

Q.BPEL

BPEL2oWFN

P.XML

Q.XML

Apply

modifications to

adopt with PIPE2

Improved

P.XML

Improved

Q.XML

Evolution-aware Impact

Analysis Module

Compatibility

Checking

Improved

AP.XML

Improved

P.XML

Interface Incidence

Matrices Generation

IM_P IM_P

Comparaison Differences
between
P and P

Impact Analysis

Impact Analysis

results and proposing

solutions for dynamic

update of adapter

Evolution Model

Adapter Generarion

77

Conclusions

In this chapter, we discuss a summary of the contributions. We then conclude the thesis by providing

directions for future extensions of the presented approach.

1 Summery of contributions

The first part of this thesis has been dedicated to the verification of compatibility of composite services.

In our proposed approach, we structurally verified the compatibility of service composition using the

concepts and structure theory of Petri Nets. To this end, the verification method was based on analyzing the

existence of unmarked siphon in the corresponding composit net. In addition, we then discussed the needs

for adaptation of collaboratable services to make their incompatible interactions possible. We also

illustrated an overview of service adaptation approaches which are dealing with mismatches at the level of

their interface and behavior.

In the second part, we concentrated on the main contribution of this thesis relating to the evolution of

partner services for those which their interactions are made by an adapter module. We first discussed the

related works to the context of evolution of services involved in an interoperability. We then investigated

the challenge of adapters’ adaptation to comply with the evolution of participant services particulaly when

their business protocols evolve. On this concern, we introduced the common adapter adaptation patterns of

the evolution of service business protocols. We presented a method to automatically identify these patterns

in a business protocol participating in an adapter. We mainly established an algorithm to evaluate the

impact of such an evolution of partner services on the adapter. When this analyser algorithm recognizes the

fact that the impact of evolution on the adapter is not global, the algorithm allows the re-configuration of

current adapter on-the-fly based on the adaptation patterns.

Furthermore, we applied a structural technique to verify the correctness of the new adapter which is

dynamically updated. If the verification technique recognizes that the protocol compatibility between the

new adapter and respective partners cannot be preserved, the developers then can take the advantage of this

structural information to identify the source of mismatches. Hence, with having such an evolution-aware

analysis method, they can efficiently make an appropriate adapter at design-time compared to adapter re-

Conclusions

 78

generation methods. Another result of this work is to identify the type of business protocol evolution

enabling the adapter developers to avoid the complete adapter re-generation.

We finally presented a prototype tool implementing the proposed approach. The obtained experimental

results show the effectiveness of our approach.

 2 Future directions

This section evaluates the extendability of the core approach presented in this thesis.

As we pointed out already, our approach has been proposed based upon the type of oWFNs in which

each interface transition has only one input or one output interface place. In addition, no directed cycle

exists in the oWFN modeling of the adapter and service business protocols (before and after evolution).

Therefore, as future work, the proposed algorithm of evolution detection in the oWFN model of business

protocols can be optimized by relaxation of acyclic constraint.

In our contribution, we assumed that only one of the partner services’ business protocols evolves.

Therefore, one may desire to take the evolution of both partners’ business protocols into consideration.

Moreover, the evolution of service business protocol can be seen from a different standpoint. Accordingly,

the proposed adapter adaptation patterns (AAPs) could be changed. These changes may also influence

dynamic re-configuration of the adapter.

In addition, one may focus on how the security policy can be preserved by composition of linear

oWFNs. Besides, the proposed compatibility verification approach can be extended under time-constraints

(i.e., timed oWFNs).

The scalability of proposed approach can also be improved by applying more real-world scenarios.

79

Bibliography

[1] M. P. Papazoglou, “Agent-oriented technology in support of e-business,” Commun. ACM, vol.

44, no. 4, pp. 71–77, 2001.

[2] M. P. Papazoglou, “Service-oriented computing: Concepts, characteristics and directions,” in

Web Information Systems Engineering, 2003. WISE 2003. Proceedings of the Fourth

International Conference on, 2003, pp. 3–12.

[3] G. Alonso, F. Casati, H. Kuno, and V. Machiraju, Web Services: Concepts, Architectures and

Applications. Springer Publishing Company, Incorporated, 2010.

[4] D. Austin, A. Barbir, C. Ferris, and S. Garg, “Web services architecture requirements,” W3C

Work. Draft, vol. 19, 2002.

[5] B. Medjahed, A. Rezgui, A. Bouguettaya, and M. Ouzzani, “Infrastructure for e-government

web services,” Internet Comput. IEEE, vol. 7, no. 1, pp. 58–65, 2003.

[6] D. Jordan, J. Evdemon, A. Alves, A. Arkin, S. Askary, C. Barreto, B. Bloch, F. Curbera, M.

Ford, and Y. Goland, “Web services business process execution language version 2.0,” OASIS

Stand., vol. 11, 2007.

[7] K. Gottschalk, “Web Services architecture overview,” IBM Whitepaper IBM Dev., vol. 1, 2000.

[8] T. Erl, Service-oriented architecture, vol. 8. Prentice Hall New York, 2005.

[9] R. J. Glushko and T. McGrath, “Document Engineering: analyzing and designing the semantics

of Business Service Networks,” in Proceedings of the IEEE EEE05 international workshop on

Business services networks, 2005, pp. 2–2.

[10] M. P. Papazoglou and W.-J. Van Den Heuvel, “Service oriented architectures: approaches,

technologies and research issues,” VLDB J., vol. 16, no. 3, pp. 389–415, 2007.

[11] D. Box, D. Ehnebuske, G. Kakivaya, A. Layman, N. Mendelsohn, H. F. Nielsen, S. Thatte, and

D. Winer, Simple object access protocol (SOAP) 1.1. 2000.

[12] R. Chinnici, J.-J. Moreau, A. Ryman, and S. Weerawarana, “Web services description language

(wsdl) version 2.0 part 1: Core language,” W3C Recomm., vol. 26, 2007.

[13] T. Bellwood, S. Capell, and J. Colgrave, “Universal Description, Discovery and Integration

specification (UDDI) 3.0,” Online Httpuddi Orgpubsuddi-V3 00-Publ.-20020719 Htm, 2002.

[14] P. Felber, C.-Y. Chan, M. Garofalakis, and R. Rastogi, “Scalable filtering of XML data for

Web services,” Internet Comput. IEEE, vol. 7, no. 1, pp. 49–57, 2003.

[15] B. Hofreiter, C. Huemer, and W. Klas, “ebXML: status, research issues, and obstacles,” in

Research Issues in Data Engineering: Engineering E-Commerce/E-Business Systems, 2002.

RIDE-2EC 2002. Proceedings. Twelfth International Workshop on, 2002, pp. 7–16.

[16] S. Dustdar and W. Schreiner, “A survey on web services composition,” Int. J. Web Grid Serv.,

vol. 1, no. 1, pp. 1–30, 2005.

[17] J. Rao and X. Su, “A survey of automated web service composition methods,” in Semantic Web

Services and Web Process Composition, Springer, 2005, pp. 43–54.

[18] H. R. M. Nezhad, B. Benatallah, F. Casati, and F. Toumani, “Web services interoperability

specifications,” IEEE Comput. Soc., vol. 39, no. 5, pp. 24–32, 2006.

[19] L. Bordeaux, G. Sala\ün, D. Berardi, and M. Mecella, “When are two web services

compatible?,” Technol. E-Serv., pp. 15–28, 2005.

Bibliography

 80

[20] D. M. Yellin and R. E. Strom, “Protocol specifications and component adaptors,” ACM Trans.

Program. Lang. Syst. TOPLAS, vol. 19, no. 2, pp. 292–333, 1997.

[21] Z. Zhou, S. Bhiri, W. Gaaloul, and M. Hauswirth, “Developing process mediator for supporting

mediated web service interactions,” in IEEE Sixth European Conference on Web Services

ECOWS’08, 2008, pp. 155–164.

[22] H. R. Motahari Nezhad, G. Y. Xu, and B. Benatallah, “Protocol-aware matching of web service

interfaces for adapter development,” in Proceedings of the 19th international conference on

World Wide Web, 2010, pp. 731–740.

[23] B. Benatallah, F. Casati, D. Grigori, H. R. . Nezhad, and F. Toumani, “Developing adapters for

web services integration,” in Advanced Information Systems Engineering, 2005, pp. 415–429.

[24] Z. Feng, K. He, R. Peng, and Y. Ma, “Taxonomy for Evolution of Service-Based System,” in

IEEE World Congress on Services (SERVICES), 2011, pp. 331–338.

[25] C. Courbis and A. Finkelstein, “Towards aspect weaving applications,” in Software

Engineering, 2005. ICSE 2005. Proceedings. 27th International Conference on, 2005, pp. 69–

77.

[26] P. Massuthe, W. Reisig, and K. Wolf, An operating guideline approach to the SOA. Annals of

Mathematics, Computing & Teleinformatics 1(3), 35–43, 2005.

[27] T. Murata, “Petri nets: Properties, analysis and applications,” Proc. IEEE, vol. 77, no. 4, pp.

541–580, 1989.

[28] K. Barkaoui, R. B. Ayed, and Z. Sbaï, “Workflow soundness verification based on structure

theory of Petri nets,” Int. J. Comput. Inf. Sci., vol. 5, no. 1, pp. 51–61, 2007.

[29] P. Bonet, C. M. Lladó, R. Puijaner, and W. J. Knottenbelt, “PIPE v2. 5: A Petri net tool for

performance modelling,” in Proc. 23rd Latin American Conference on Informatics (CLEI

2007), 2007.

[30] M. Eslamichalandar, K. Barkaoui, and H. R. Motahari-Nezhad, “Service Composition

Adaptation: an Overview.”

[31] K. Barkaoui, M. Eslamichalandar, and M. Kaabachi, “A structural verification of web services

composition compatibility,” in Proceedings of the 6th International Workshop on Enterprise &

Organizational Modeling and Simulation, 2010, pp. 30–41.

[32] D. Beyer, A. Chakrabarti, and T. A. Henzinger, “Web service interfaces,” in Proceedings of the

14th international conference on World Wide Web, 2005, pp. 148–159.

[33] T. Berners-Lee, J. Hendler, and O. Lassila, “The semantic web,” Sci. Am., vol. 284, no. 5, pp.

28–37, 2001.

[34] F. Bonchi, A. Brogi, S. Corfini, and F. Gadducci, “Compositional specification of web services

via behavioural equivalence of nets: A case study,” in Applications and Theory of Petri Nets,

Springer, 2008, pp. 52–71.

[35] C. Ouyang, E. Verbeek, W. M. Van Der Aalst, S. Breutel, M. Dumas, and A. H. Ter Hofstede,

“Formal semantics and analysis of control flow in WS-BPEL,” Sci. Comput. Program., vol. 67,

no. 2, pp. 162–198, 2007.

[36] N. Lohmann, P. Massuthe, C. Stahl, and D. Weinberg, “Analyzing interacting WS-BPEL

processes using flexible model generation,” Data Knowl. Eng., vol. 64, no. 1, pp. 38–54, 2008.

[37] T. Murata, “Petri nets: Properties, analysis and applications,” Proc. IEEE, vol. 77, no. 4, pp.

541–580, 1989.

[38] R. Hamadi and B. Benatallah, “A Petri net-based model for web service composition,” in

Proceedings of the 14th Australasian database conference-Volume 17, 2003, pp. 191–200.

[39] X. Fu, T. Bultan, and J. Su, “Analysis of interacting BPEL web services,” in Proceedings of the

13th international conference on World Wide Web, 2004, pp. 621–630.

[40] B. Benatallah, F. Casati, and F. Toumani, “Representing, analysing and managing web service

protocols,” Data Knowl. Eng., vol. 58, no. 3, pp. 327–357, 2006.

[41] A. Ferrara, “Web services: a process algebra approach,” in Proceedings of the 2nd

international conference on Service oriented computing, 2004, pp. 242–251.

Bibliography

 81

[42] R. Mateescu, P. Poizat, and G. Salaün, “Behavioral adaptation of component compositions

based on process algebra encodings,” in Proceedings of the twenty-second IEEE/ACM

international conference on Automated software engineering, 2007, pp. 385–388.

[43] R. Milner, The polyadic π-calculus: a tutorial. Springer, 1993.

[44] C. A. Petri, “Kommunikation mit automaten,” 1962.

[45] S. Hinz, K. Schmidt, and C. Stahl, “Transforming BPEL to Petri nets,” Bus. Process Manag.,

pp. 220–235, 2005.

[46] K. Barkaoui, J. M. Couvreur, and K. Klai, “On the equivalence between liveness and deadlock-

freeness in Petri nets,” Appl. Theory Petri Nets 2005, pp. 90–107, 2005.

[47] W. van der Aalst, K. van Hee, P. Massuthe, N. Sidorova, and J. van der Werf, “Compositional

service trees,” Appl. Theory Petri Nets, pp. 283–302, 2009.

[48] W. Reisig, J. Bretschneider, D. Fahland, N. Lohmann, P. Massuthe, and C. Stahl, “Services as a

Paradigm of Computation,” Form. Methods Hybrid Real-Time Syst., pp. 521–538, 2007.

[49] W. van der Aalst, “Verification of workflow nets,” Appl. Theory Petri Nets 1997, pp. 407–426,

1997.

[50] N. Lohmann, P. Massuthe, C. Stahl, and D. Weinberg, “Analyzing interacting BPEL

processes,” Bus. Process Manag., pp. 17–32, 2006.

[51] C. M. MacKenzie, K. Laskey, F. McCabe, P. F. Brown, R. Metz, and B. A. Hamilton,

“Reference model for service oriented architecture 1.0,” OASIS Stand., vol. 12, 2006.

[52] B. Medjahed, B. Benatallah, A. Bouguettaya, A. H. Ngu, and A. K. Elmagarmid, “Business-to-

business interactions: issues and enabling technologies,” VLDB Journal— Int. J. Very Large

Data Bases, vol. 12, no. 1, pp. 59–85, 2003.

[53] B. Benatallah, F. Casati, and F. Toumani, “Web service conversation modeling: A cornerstone

for e-business automation,” Internet Comput. IEEE, vol. 8, no. 1, pp. 46–54, 2004.

[54] C. Peltz, “Web services orchestration and choreography,” Computer, vol. 36, no. 10, pp. 46–52,

2003.

[55] N. Kavantzas, D. Burdett, G. Ritzinger, T. Fletcher, Y. Lafon, and C. Barreto, “Web services

choreography description language version 1.0,” W3C Candidate Recomm., vol. 9, 2005.

[56] G. Decker, O. Kopp, F. Leymann, and M. Weske, “BPEL4Chor: Extending BPEL for modeling

choreographies,” in Web Services, 2007. ICWS 2007. IEEE International Conference on, 2007,

pp. 296–303.

[57] C. Yushi, L. E. Wah, and D. K. Limbu, “Web Services Composition-An Overview of

Standards,” Singap. Inst. Manuf. Technol. Sect. Four, p. 10, 2004.

[58] W. van der Aalst and M. Weske, “The P2P approach to interorganizational workflows,” in

Advanced Information Systems Engineering, 2001, pp. 140–156.

[59] J. Yu, T. Manh, J. Han, Y. Jin, Y. Han, and J. Wang, “Pattern based property specification and

verification for service composition,” Web Inf. Syst. 2006, pp. 156–168, 2006.

[60] K. Klai and D. Poitrenaud, “MC-SOG: An LTL model checker based on symbolic observation

graphs,” in Applications and Theory of Petri Nets, Springer, 2008, pp. 288–306.

[61] K. Klai, S. Tata, and J. Desel, “Symbolic abstraction and deadlock-freeness verification of

inter-enterprise processes,” Data Knowl. Eng., 2011.

[62] E. A. Emerson, Temporal and modal logic, Handbook of theoretical computer science (vol. B):

formal models and semantics. MIT Press, Cambridge, MA, 1991.

[63] B. Benatallah, M. Dumas, and Q. Z. Sheng, “Facilitating the rapid development and scalable

orchestration of composite web services,” Distrib. Parallel Databases, vol. 17, no. 1, pp. 5–37,

2005.

[64] M. P. Papazoglou, “Web services and business transactions,” World Wide Web, vol. 6, no. 1,

pp. 49–91, 2003.

[65] S. Dalal, S. Temel, M. Little, M. Potts, and J. Webber, “Coordinating business transactions on

the web,” Internet Comput. IEEE, vol. 7, no. 1, pp. 30–39, 2003.

[66] A. Alamri, M. Eid, and A. El Saddik, “Classification of the state-of-the-art dynamic web

services composition techniques,” Int. J. Web Grid Serv., vol. 2, no. 2, pp. 148–166, 2006.

Bibliography

 82

[67] E. Truyen, B. N. Jørgensen, W. Joosen, and P. Verbaeten, “On interaction refinement in

middleware,” 2000.

[68] G. Spanoudakis, A. Zisman, and A. Kozlenkov, “A service discovery framework for service

centric systems,” in Services Computing, 2005 IEEE International Conference on, 2005, vol. 1,

pp. 251–259.

[69] H. Skogsrud, B. Benatallah, and F. Casati, “Trust-serv: model-driven lifecycle management of

trust negotiation policies for web services,” in Proceedings of the 13th international conference

on World Wide Web, 2004, pp. 53–62.

[70] R. Quintero, V. Torres, and V. Pelechano, “Model centric approach of web services

composition,” in Emerging Web Services Technology, Springer, 2007, pp. 65–81.

[71] F. Casati, S. Ilnicki, L. Jin, V. Krishnamoorthy, and M.-C. Shan, “Adaptive and dynamic

service composition in eFlow,” in Advanced Information Systems Engineering, 2000, pp. 13–

31.

[72] A. Barros, M. Dumas, and A. H. Ter Hofstede, “Service interaction patterns,” in Business

Process Management, Springer, 2005, pp. 302–318.

[73] W. M. van der Aalst, A. J. Mooij, C. Stahl, and K. Wolf, “Service interaction: Patterns,

formalization, and analysis,” in Formal Methods for Web Services, Springer, 2009, pp. 42–88.

[74] R. Hull and J. Su, “Tools for composite web services: a short overview,” ACM SIGMOD Rec.,

vol. 34, no. 2, pp. 86–95, 2005.

[75] K. van Hee, N. Sidorova, and J. van der Werf, “Construction of asynchronous communicating

systems: weak termination guaranteed!,” in Software Composition, 2010, pp. 106–121.

[76] D. Zhovtobryukh, “A petri net-based approach for automated goal-driven web service

composition,” Simulation, vol. 83, no. 1, p. 33, 2007.

[77] W. M. . Aalst, N. Lohmann, M. La Rosa, and J. Xu, “Correctness ensuring process

configuration: an approach based on partner synthesis (extended version),” 2010.

[78] O. Oanea and K. Wolf, “An efficient necessary condition for compatibility,” in ZEUS, vol. 438.

[79] X. Li, Y. Fan, Q. Z. Sheng, Z. Maamar, and H. Zhu, “A petri net approach to analyzing

behavioral compatibility and similarity of web services,” Syst. Man Cybern. Part Syst. Humans

IEEE Trans., vol. 41, no. 3, pp. 510–521, 2011.

[80] Z. Wu, S. Deng, Y. Li, and J. Wu, “Computing compatibility in dynamic service composition,”

Knowl. Inf. Syst., vol. 19, no. 1, pp. 107–129, 2009.

[81] M. De Backer, “On the verification of Web services compatibility: a Petri Net approach,” in On

the Move to Meaningful Internet Systems 2004: OTM 2004 Workshops, 2004, pp. 810–821.

[82] A. Martens, “On compatibility of web services,” Petri Net Newsl., vol. 65, pp. 12–20, 2003.

[83] N. Lohmann, “Correcting deadlocking service choreographies using a simulation-based graph

edit distance,” in Business Process Management, Springer, 2008, pp. 132–147.

[84] H. Foster, S. Uchitel, J. Magee, and J. Kramer, “Compatibility verification for web service

choreography,” in Web Services, 2004. Proceedings. IEEE International Conference on, 2004,

pp. 738–741.

[85] N. Lohmann, O. Kopp, F. Leymann, and W. Reisig, “Analyzing BPEL4Chor: Verification and

participant synthesis,” in Web Services and Formal Methods, Springer, 2008, pp. 46–60.

[86] A. Martens, S. Moser, A. Gerhardt, and K. Funk, “Analyzing compatibility of bpel processes,”

2006.

[87] K. Wolf, “Does my service have partners?,” in Transactions on Petri Nets and Other Models of

Concurrency II, Springer, 2009, pp. 152–171.

[88] D. Weinberg, “Efficient controllability analysis of open nets,” in Web Services and Formal

Methods, Springer, 2009, pp. 224–239.

[89] N. Lohmann and D. Weinberg, “Wendy: A tool to synthesize partners for services,” in

Applications and theory of Petri nets, Springer, 2010, pp. 297–307.

[90] P. C. Xiong, Y. S. Fan, and M. C. Zhou, “A Petri net approach to analysis and composition of

web services,” IEEE Trans. Syst. Man Cybern. Part Syst. Humans, vol. 40, no. 2, pp. 376–387,

2010.

[91] E. M. Clarke, O. Grumberg, and D. Peled, Model checking. The MIT press, 1999.

Bibliography

 83

[92] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri, R. Sebastiani, and

A. Tacchella, “Nusmv 2: An opensource tool for symbolic model checking,” in Computer

Aided Verification, 2002, pp. 359–364.

[93] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre, “Software verification with BLAST,” in

Model Checking Software, Springer, 2003, pp. 235–239.

[94] G. J. Holzmann, “The model checker SPIN,” Softw. Eng. IEEE Trans., vol. 23, no. 5, pp. 279–

295, 1997.

[95] H. Dun, H. Xu, and L. Wang, “Transformation of BPEL processes to Petri Nets,” in

Theoretical Aspects of Software Engineering, 2008. TASE’08. 2nd IFIP/IEEE International

Symposium on, 2008, pp. 166–173.

[96] W. M. van der Aalst, “The application of Petri nets to workflow management,” J. Circuits Syst.

Comput., vol. 8, no. 01, pp. 21–66, 1998.

[97] K. Barkaoui, J.-M. Couvreur, and K. Klai, “On the equivalence between liveness and deadlock-

freeness in Petri nets,” in Applications and Theory of Petri Nets 2005, Springer, 2005, pp. 90–

107.

[98] W. Kongdenfha, R. Saint-Paul, B. Benatallah, and F. Casati, “An aspect-oriented framework

for service adaptation,” Serv.-Oriented Comput. 2006, pp. 15–26, 2006.

[99] R. Mateescu, P. Poizat, and G. Sala\ün, “Adaptation of service protocols using process algebra

and on-the-fly reduction techniques,” Serv.-Oriented Comput. 2008, pp. 84–99, 2008.

[100] A. J. Mooij and M. Voorhoeve, “Proof techniques for adapter generation,” in Web Services and

Formal Methods, Springer, 2009, pp. 207–223.

[101] W. Tan, Y. Fan, and M. C. Zhou, “A petri net-based method for compatibility analysis and

composition of web services in business process execution language,” IEEE Trans. Autom. Sci.

Eng., vol. 6, no. 1, pp. 94–106, 2009.

[102] J. A. Martín and E. Pimentel, “Automatic generation of adaptation contracts,” Electron. Notes

Theor. Comput. Sci., vol. 229, no. 2, pp. 115–131, 2009.

[103] M. Ouederni, G. Salaün, and E. Pimentel, “Measuring the compatibility of service interaction

protocols,” in Proceedings of the 2011 ACM Symposium on Applied Computing, 2011, pp.

1560–1567.

[104] Z. Zhou, S. Bhiri, H. Zhuge, and M. Hauswirth, “Assessing service protocol adaptability based

on protocol reduction and graph search,” Concurr. Comput. Pr. Exp., vol. 23, no. 9, pp. 880–

904, 2011.

[105] L. Cavallaro, E. Di Nitto, P. Pelliccione, M. Pradella, and M. Tivoli, “Synthesizing adapters for

conversational web-services from their WSDL interface,” in Proceedings of the 2010 ICSE

Workshop on Software Engineering for Adaptive and Self-Managing Systems, 2010, pp. 104–

113.

[106] C. Canal, P. Poizat, and G. Salaun, “Model-based adaptation of behavioral mismatching

components,” Softw. Eng. IEEE Trans., vol. 34, no. 4, pp. 546–563, 2008.

[107] X. Li, Y. Fan, S. Madnick, and Q. Z. Sheng, “A pattern-based approach to protocol mediation

for web services composition,” Inf. Softw. Technol., vol. 52, no. 3, pp. 304–323, 2010.

[108] W. Kongdenfha, H. R. Motahari-Nezhad, B. Benatallah, F. Casati, and R. Saint-Paul,

“Mismatch patterns and adaptation aspects: A foundation for rapid development of web service

adapters,” IEEE Trans. Serv. Comput., pp. 94–107, 2009.

[109] K. W. Wang, “Interface adaptation for conversational services,” 2008.

[110] H. W. Schmidt and R. H. Reussner, “Generating adapters for concurrent component protocol

synchronisation,” in Proceedings of the IFIP TC6/WG6, 2002, vol. 1, pp. 213–229.

[111] A. Brogi and R. Popescu, “Automated generation of BPEL adapters,” Serv.-Oriented Comput.

2006, pp. 27–39, 2006.

[112] N. Guermouche, O. Perrin, and C. Ringeissen, “A mediator based approach for services

composition,” in Software Engineering Research, Management and Applications, 2008.

SERA’08. Sixth International Conference on, 2008, pp. 273–280.

Bibliography

 84

[113] Q. Z. Sheng, B. Benatallah, M. Dumas, and E. O.-Y. Mak, “SELF-SERV: A platform for rapid

composition of web services in a peer-to-peer environment,” in Proceedings of the 28th

international conference on Very Large Data Bases, 2002, pp. 1051–1054.

[114] L. Baresi, D. Bianchini, V. De Antonellis, M. G. Fugini, B. Pernici, and P. Plebani, “Context-

aware composition of e-services,” in Technologies for E-Services, Springer, 2003, pp. 28–41.

[115] T. Deng, W. Fan, L. Libkin, and Y. Wu, “On the aggregation problem for synthesized web

services,” J. Comput. Syst. Sci., 2013.

[116] X. Li, Y. Fan, S. Madnick, and Q. Z. Sheng, “A pattern-based approach to protocol mediation

for web services composition,” Inf. Softw. Technol., vol. 52, no. 3, pp. 304–323, 2010.

[117] A. Brogi, C. Canal, E. Pimentel, and A. Vallecillo, “Formalizing web service choreographies,”

Electron. Notes Theor. Comput. Sci., vol. 105, pp. 73–94, 2004.

[118] Y. Du, X. Li, and P. Xiong, “A Petri Net approach to mediation-aided composition of Web

services,” Autom. Sci. Eng. IEEE Trans., vol. 9, no. 2, pp. 429–435, 2012.

[119] A. Erradi, P. Maheshwari, and V. Tosic, “Policy-driven middleware for self-adaptation of web

services compositions,” in Proceedings of the ACM/IFIP/USENIX 2006 International

Conference on Middleware, 2006, pp. 62–80.

[120] L. Ardissono, R. Furnari, G. Petrone, and M. Segnan, “Interaction protocol mediation in web

service composition,” Int. J. Web Eng. Technol., vol. 6, no. 1, pp. 4–32, 2010.

[121] Y. Taher, M. Parkin, M. Papazoglou, and W. J. van den Heuvel, “Adaptation of Web Service

Interactions Using Complex Event Processing Patterns,” Serv.-Oriented Comput., pp. 601–609,

2011.

[122] A. Brogi and R. Popescu, “From BPEL processes to YAWL workflows,” in Web Services and

Formal Methods, Springer, 2006, pp. 107–122.

[123] H. H. Lin, T. Aoki, and T. Katayama, “Automated Adaptor Generation for Services Based on

Pushdown Model Checking,” in Engineering of Computer Based Systems (ECBS), 2011 18th

IEEE International Conference and Workshops on, 2011, pp. 130–139.

[124] L. De Alfaro and T. A. Henzinger, “Interface automata,” ACM SIGSOFT Softw. Eng. Notes,

vol. 26, no. 5, pp. 109–120, 2001.

[125] M. Dumas, M. Spork, and K. Wang, “Adapt or perish: Algebra and visual notation for service

interface adaptation,” Bus. Process Manag., pp. 65–80, 2006.

[126] R. Seguel, R. Eshuis, and P. Grefen, “Constructing minimal protocol adaptors for service

composition,” in Proceedings of the 4th Workshop on Emerging Web Services Technology,

2009, pp. 29–38.

[127] Z. Shan, A. Kumar, and P. Grefen, “Towards Integrated Service Adaptation A New Approach

Combining Message and Control Flow Adaptation,” in Web Services (ICWS), 2010 IEEE

International Conference on, 2010, pp. 385–392.

[128] E. Kindler, “A compositional partial order semantics for Petri net components,” in Application

and Theory of Petri Nets 1997, Springer, 1997, pp. 235–252.

[129] C. Gierds, A. J. Mooij, and K. Wolf, Specifying and generating behavioral service adapters

based on transformation rules. Univ., Inst. für Informatik, 2008.

[130] H. R. Motahari Nezhad, B. Benatallah, A. Martens, F. Curbera, and F. Casati, “Semi-automated

adaptation of service interactions,” in Proceedings of the 16th international conference on

World Wide Web, 2007, pp. 993–1002.

[131] K. Wang, M. Dumas, C. Ouyang, and J. Vayssiere, “The service adaptation machine,” in on

Web Services, 2008. ECOWS’08. IEEE Sixth European Conference, 2008, pp. 145–154.

[132] E. Wohlstadter, S. Tai, T. Mikalsen, J. Diament, and I. Rouvellou, “A service-oriented

middleware for runtime web services interoperability,” in Web Services, 2006. ICWS’06.

International Conference on, 2006, pp. 393–400.

[133] S. Becker, A. Brogi, I. Gorton, S. Overhage, A. Romanovsky, and M. Tivoli, Towards an

engineering approach to component adaptation. Springer, 2006.

[134] A. Bucchiarone, C. Cappiello, E. Di Nitto, R. Kazhamiakin, V. Mazza, and M. Pistore, “Design

for adaptation of service-based applications: main issues and requirements,” in Service-

Oriented Computing. ICSOC/ServiceWave 2009 Workshops, 2010, pp. 467–476.

Bibliography

 85

[135] D. Ardagna, M. Comuzzi, E. Mussi, B. Pernici, and P. Plebani, “Paws: A framework for

executing adaptive web-service processes,” IEEE Softw., vol. 24, no. 6, p. 39, 2007.

[136] L. Cavallaro and E. Di Nitto, “An Approach to Adapt Service Requests to Actual Service

Interfaces,” 2008.

[137] G. Denaro, M. Pezzé, D. Tosi, and D. Schilling, “Towards Self-Adaptive Service-Oriented

Architectures,” 2006.

[138] J. Jiang, S. Zhang, P. Gong, and Z. Hong, “Message dependency-based adaptation of services,”

in Services Computing Conference (APSCC), 2011 IEEE Asia-Pacific, 2011, pp. 442–449.

[139] S. Guinea and P. Spoletini, “Evaluating the compatibility of conversational service

interactions,” in Proceeding of the 3rd international workshop on Principles of engineering

service-oriented systems, 2011, pp. 29–35.

[140] V. Andrikopoulos, S. Benbernou, and M. Papazoglou, “On The Evolution of Services,” IEEE

Trans. Softw. Eng., vol. PP, no. 99, pp. 1–1, 2012.

[141] A. Azough, E. Coquery, and M. S. Hacid, “Supporting Web Service Protocol Changes by

Propagation,” in IEEE/WIC/ACM International Joint Conference on Web Intelligence and

Intelligent Agent Technology-Volume 01, 2009, pp. 438–441.

[142] M. Ouederni, G. Salaün, and E. Pimentel, “Client Update: A Solution for Service Evolution,”

in IEEE International Conference on Services Computing (SCC), 2011, pp. 394–401.

[143] S. Rinderle, A. Wombacher, and M. Reichert, “On the controlled evolution of process

choreographies,” in Proceedings of the 22nd International Conference on Data Engineering,

2006, pp. 124–124.

[144] S. H. Ryu, F. Casati, H. Skogsrud, B. Benatallah, and R. Saint-Paul, “Supporting the dynamic

evolution of web service protocols in service-oriented architectures,” ACM Trans. Web TWEB,

vol. 2, no. 2, p. 13, 2008.

[145] S. Wang and M. A. M. Capretz, “A dependency impact analysis model for web services

evolution,” in IEEE International Conference on Web Services, ICWS, 2009, pp. 359–365.

[146] P. Kaminski, H. Müller, and M. Litoiu, “A design for adaptive web service evolution,” in

Proceedings of the 2006 international workshop on Self-adaptation and self-managing systems,

2006, pp. 86–92.

[147] J. Vlissides, R. Helm, R. Johnson, and E. Gamma, “Design patterns: Elements of reusable

object-oriented software,” Read. Addison-Wesley, 1995.

[148] J. Billington, S. Christensen, K. Van Hee, E. Kindler, O. Kummer, L. Petrucci, R. Post, C.

Stehno, and M. Weber, “The Petri net markup language: concepts, technology, and tools,”

Appl. Theory Petri Nets 2003, pp. 483–505, 2003.

[149] Z. Zhou, L. T. Yang, S. Bhiri, L. Shu, N. Xiong, and M. Hauswirth, “Verifying mediated

service interactions considering expected behaviours,” J. Netw. Comput. Appl., 2010.

[150] M. Eslamichalandar, K. Barkaoui, H. R. Motahari Nezhad, “Dynamic Adapter Reconfiguration

in the context of Business Protocol Evolution”, in Proceedings of the the thirteenth IEEE

International Conference on Computer and Information Technology (CIT’13), 2013.

[151] T. H. Quyet, Q. P. Thi, and D. B. Hoang, “A method of verifying web service composition,” in

Proceedings of the 2010 Symposium on Information and Communication Technology, pp. 155–

162, 2010.

[152] G. Wiederhold and M. Genesereth, “The conceptual basis for mediation services,” IEEE Expert,

vol. 12, no. 5, pp. 38–47, 1997.

86

87

Résumé en Français

Avec l'idée croissante de faire abstraction des technologies sous-jacentes et des

implémentations, l’informatique orientée services (SOC) [1] a émergé comme un paradigme

de coopération de composants logiciels auto-descriptifs appelés services. Les services sont

des composants ouverts et une encapsulation auto-descriptive de fonctionnalités d'entreprise

qui soutiennent le développement à faible coût et le déploiement rapide des applications

distribuées. Un service a un identifiant et peut fournir sa fonctionnalité via une interface

standardisée [2]. La sorte de services la plus importante est celle des services Web [3]. Un

service Web tel que défini par le Consortium de World-Wide Web (W3C) est un logiciel

identifié par une URI, dont les interfaces et la liaison sont susceptibles d'être défini, décrit et

découvert par des artefacts XML, et prend en charge les interactions directes avec d'autres

applications logicielles utilisant les messages basés XML via les protocoles basés sur Internet

[4]. Les services Web ont été largement adoptés pour mettre en œuvre pratiquement l'idée

fondamentale de l'architecture orientée services (SOA) [7-8]. La SOA est une approche du

développement d'applications logicielles faiblement couplées et distribuées comme un

ensemble de services autonomes bien définis au sein et entre entreprises. La SOA est souvent

réalisée par des technologies de services web [10] : les technologies XML, Simple Object

Access Protocol (SOAP) [11], Web Services Description Language (WSDL) [12], The

Universal Description, Discovery and Integration (UDDI) [13].

 La description de service Web représente généralement la capacité de service, le

comportement (protocole métier), la qualité, et l'interface du service. Une instance d'un

service donné correspond à l'exécution de ses activités. Ces activités sont des unités de travail

atomiques où l'ordre partiel d'exécution des activités désigne le protocole métier d'un service.

Les résultats attendus et l’approche conceptuelle d'un service signifient sa capacité. La qualité

d'un service (QoS) est réalisée par des propriétés non fonctionnelles. Une interface de service

représente sa fonctionnalité. L'interface décrit la signature de service (comprenant les

88

opérations, les entrées / sorties des messages, des types de messages, et les paramètres

d'erreur) face à un environnement d’un point de vue interactionnel. L'interface de service est

constituée d'un ensemble de portes (reliées par un canal) permettant l'échange de messages

pour un service en utilisant SOAP à travers le protocole de transport tel que HTTP ou

HTTPS. Les interfaces de services Web sont généralement décrites en utilisant WSDL.

 Dans la dernière décennie, de nombreuses approches ont été consacrées à différents

aspects des services Web associés à la modélisation, l'interopérabilité, la qualité des services

(QoS), la sémantique, la sécurité, et l'automatisation des différents processus tels que la

découverte, la sélection, et la composition. Parmi ces défis, notre principale préoccupation

dans ce travail est la composition de services. La composition de services Web comme idée

fondamentale de l'architecture SOA est de combiner des services individuels et simples dans

les processus complexes pour fournir, l'interopérabilité dynamique, automatique et

transparente des services.

 La composition de services Web a été développée pour soutenir le B2B et l'intégration des

applications. La composition de service établit une fonctionnalité à valeur ajoutée par

l'intégration de divers services menés par différentes organisations qui ne peut pas être prévue

au moment où ces différents service Web sont conçus. Le web service composite est défini

récursivement comme une agrégation des web services élémentaires et composites [9].

 Il y a deux descriptions différentes de service pour un model de composition :

l’orchestration de service et la chorégraphie de service (également appelé contrat) [11]. Bien

que toutes les deux soient appliquées au modèle des services composites dans l’architecture

SOA, l'orchestration de service décrit l'interaction de service du point de vue d'un service

participant simple (orchestrateur), tandis que la chorégraphie de service décrit les interactions

entre une collection de service participants à partir d'une perspective globale tels que chaque

partie sait la logique métier et l'ordre de transmission de messages. Par la chorégraphie, nous

nous référons aux échanges de messages qui se produisent entre partenaires dans une

interaction de service. Les langages comme BPEL et BPMN décrivent des orchestrations de

service. Différents langages de spécification existent également pour la chorégraphie de

services tels que WS-CDL [12] et BPEL4Chor [13].

 Beaucoup de travaux sur la composition de services Web sont présentés dans la littérature

mettant l'accent sur différents aspects de spécifications de services [9-10].

89

 Dans notre travail, nous traitons les interfaces de la couche métier et les protocoles de

service Web à un haut niveau d’abstraction de la pile d'interaction de services.

 A cause de problèmes des hétérogénéités et de l’autonomie des services Web, il est

fondamental d’assurer la correction des services composites. Même si les fournisseurs de

services empêchent la publication de services erronés, cependant pour le service client, il est

essentiel de vérifier formellement la correction d'un service composite avant de son exécution

(en utilisant notamment un outil model-checker). La vérification de la composition de services

est inévitable pour éviter une grande perte économique, tout en vérifiant si l'exigence du

concepteur et les besoins des utilisateurs sont satisfaits. Les approches de vérification

analysent le comportement d'un service composite en se basant sur une variété de critères de

conformité et des formalismes différents.

 Un des grands défis dans la vérification des services collaboratifs est préoccupé par la

compatibilité entre les services participants [14]. Il est crucial pour l'interopérabilité des

services Web hétérogènes qu'ils soient compatibles. Deux services sont censés être

compatibles si une collaboration entre eux est accomplie avec succès, et aussi si chacun d'eux

atteint les résultats prévus (états finaux). Certains travaux de recherche sur les services Web

se sont concentrés sur le traitement des incompatibilités d'interaction de service.

 Dans cette thèse, nous sommes également motivés sur l'analyse et la vérification du

comportement de la composition de services Web. Plus particulièrement, nous voulons

assurer l’absence de blocage dans la composition. Généralement, la vérification de

l'intégration de services est réalisée en utilisant des techniques basées sur l'espace

d'exploration d'état d'un modèle formel d’un service donné.

 Nous présentons ici une approche différente, basée sur la théorie de structure de réseaux

de Petri [16] permettant la reconnaissance des conditions nécessaires et / ou suffisantes

assurant à la fois une composition compatible et une meilleure compréhension des sources

d'incompatibilité.

 L'objectif principal de notre approche est de montrer comment la théorie de structure de

réseaux de Petri peut fournir quelques directives et des solutions pour assurer la justesse de la

composition de services Web.

 Afin de décrire, modéliser et analyser le comportement des services Web, nous utilisons

les open workflow net (oWFN) formalisme [15] qui est une sorte de réseaux de Petri bien

adaptées pour faire face à la dimension de flux de contrôle lié à l'évolution du protocole

90

métier de service. Un oWFN est un type de réseaux de Petri avec des places interface pour la

communication asynchrone avec les partenaires.

 Malgré d'énormes efforts pour évaluer les critères de compatibilité entre les services [17-

19] il y a encore une attention considérable pour vérifier la justesse de la collaboration des

services. L'approche typique pour permettre aux services incompatibles d’interagir facilement

est l'adaptation de services web. Bien que la normalisation dans les services Web réduit

l'hétérogénéité et la rend plus facile leur interopérabilité, l'adaptation des services reste

nécessaire. La fonctionnalité d'adaptation peut être offerte pour permettre l'intégration à

l'intérieur entre interfaces d’entreprise. La nécessité d'adaptation dans les services Web

provient des sources suivantes: assurer l'interopérabilité, l'optimisation, la récupération et le

changement de contexte. Principalement, le concept de médiation a été introduit pour les

bases de données [20].

 Les auteurs de [19] [21-22] identifient les besoins pour l'adaptation dans les services Web

en abordant l'hétérogénéité au niveau de l'interface de service et le protocole métier:

 Les incompatibilités au niveau de l'interface du service comprend les incompatibilités

de signature de services (par exemple, les noms du message et de l'opération, le

nombre, le type des paramètres entrée / sortie des opérations, et la contrainte de valeur

de paramètre) avec les classifications suivantes:

 Syntaxique. Aucune égalité existe entre le nom des opérations de service et leurs

noms de messages d'entrée / sortie. La compatibilité syntaxique assure que

l'interface fournie par un service équivalent avec l'interface requise du partenaire et

vice-versa.

 Structurelle. Il existe des différences dans les types attendus ou les valeurs des

messages d'entrée / sortie.

 Sémantique. Il existe des différences dans l'interprétation de la signification d'un

élément de données ou la fonction d'une opération.

 Messages division/ fusion. Un seul message d'un service correspond à plusieurs

messages dans un autre service de la même fonctionnalité, ou plusieurs messages

d'un service ont une même correspondance dans un autre.

 Les incompatibilités au niveau du protocole métier (ou le comportement du service)

sont concernés par les dépendances d'échange de messages entre les services (par

exemple, des blocages où les deux services partenaires attendent mutuellement de

91

recevoir un message de l'autre, et la réception non spécifiée dans lequel un service

envoie un message tandis son partenaire ne s'y attend pas):

 Contrainte de commande. La contrainte que les services imposent sur les

séquences d'échange de messages.

 Les messages supplémentaires / manquants : Un service délivre un message qui

n'est pas spécifié dans un autre partenaire de service et vice versa.

 De nombreuses approches d'adaptation ont été proposées pour faire face à la fois aux

incompatibilités de l'interface de service et du protocole métier entre les fonctionnalités

fournies et requises de services développés par des parties différentes [23-29]. Les approches

proposées s'appuient sur l'une de ces deux techniques: la modification de service ou la

synthèse d'un composant adaptateur. L'adaptation en termes de modification de service exige

l'application de certaines mesures de réglage pour supporter les spécifications du service

partenaire. Alors que dans l'interaction de service où l'adaptation s’occupe de la création d'un

adaptateur, un composant autonome médiatise les interactions entre les deux services avec des

interfaces et des protocoles potentiellement différents de telle sorte que l'interopérabilité est

atteinte. Le problème de la synthèse des adaptateurs pour l'interaction de services

incompatibles a été étudié dans le domaine de la SOA ainsi que dans le domaine du génie

logiciel à base de composants.

 Un composant adaptateur est ajouté entre les services partenaires que son rôle principal est

de faire des correspondances entres les messages ou gérer les échanges entre des derniers.

L'utilisation d'un tel médiateur nous permet la composition correcte entre deux services.

Autrement dit, l'adaptateur pour compenser les différences entre les interfaces de services par

des fonctions de transformation (par exemple, XSLT, XQuery). L'adaptation de l'interface se

présente lorsque l'interface fournit d’un service ne correspond pas à l'interface requise pour

être fourni dans une interopérabilité donné. De nombreux outils industriels ont été

développées pour l'interface d'adaptation à l'aide des outils de transformation de schéma (par

exemple, Microsoft BizTalk Mapper, Stylus Studio de XML mapping tools et SAP Editeur XI

Mapping).

 En outre, l'adaptateur réconcilie les incompatibilités entre les protocoles métier de service

en réorganisant les échanges de messages ou la génération d'un message manquant [30].

Particulièrement, certaines des approches d'adaptation se sont concentrées sur la

92

réconciliation des incompatibilités entre les interfaces comportementales, dans lequel les

interfaces capturent les contraintes l'ordre entre les échanges de messages. Dans cette thèse,

nous avons examiné les différentes approches d'adaptation proposées pour faire face aux

incompatibilités dans collaboration de services Web.

 Ici, nous nous concentrons sur l'adaptation des services du point de vue de leurs protocoles

métier et de résumer de tous les autres aspects tels que les propriétés non-fonctionnelles (par

exemple, la contrainte de temps, coût), les données et la sémantique de l'information.

 Évidemment, l'analyse de compatibilité [31] et les techniques d'adaptation pour faire

respecter l'interopérabilité des services ne sont pas de nouvelles idées. Le principal défi de

cette thèse est de se concentrer sur l'adaptation de service en particulier, dans le cas où les

protocoles métier de services sont engagés dans une l'interopérabilité évolutive.

Dans tous les travaux de l'adaptation de service, le protocole métier est supposé qu’il ne

change pas.

 Les approches d’adaptation de service existantes prennent en considération que les

protocoles métier ne changent pas après la génération d'un adaptateur. Cependant, il existe

deux cas où les protocoles métier service changent au cours des interactions de services: l'une

est que la plupart des services du monde réel fournissent des modèles d'interaction pour un

ensemble d'activités connexes, telles que dans une session d'interaction, deux services peuvent

s'engager dans des conversations qui comprennent deux ou plusieurs de ces modes

d'interaction. Un exemple de ces services est Google Checkout. L'autre scénario, c'est quand

les protocoles métiers d'un service évoluent. Sur cette préoccupation, dans la deuxième partie

de la thèse, nous nous concentrons sur le problème du service d'adaptation lorsque les

protocoles métier évoluent à une nouvelle version. Les défis comprennent l'identification des

changements sur les protocoles métiers, et leurs impacts respectifs sur les adaptateurs.

 Une telle analyse devrait distinguer les changements qui n'ont pas d'impact sur l'adaptateur,

ou ils peuvent être adaptées dans avec changement dynamique de la spécification de

l'adaptateur par des approches telles que les logiciels à base aspect [33], ou ils exigent

totalement une nouvelle génération de la adaptateur. Toutefois, la mise à jour de la description

de l'adaptateur au moment de l'exécution peut être préférable à une régénération complète. La

finalité est de fournir suffisamment d'informations à l'adaptateur développeurs pour décider

comment faire face à des changements dans les services interactifs sous-jacents.

93

 Pour de diverses raisons, les fournisseurs de services peuvent changer leurs protocoles

métiers. Un défi intéressant pour l’adaptation de service afin de faire face à l'évolution

dynamique de protocole P d'un service donné (par exemple, P est modifié à P’) qui est adapté

par un adaptateur. L'évolution des services Web est généralement entraînée par une

motivation perfective - de modifier la fonctionnalité existante de services ou de règles

métiers; et également par une motivation correctives - changer la signature de service, le

comportement ou la politique [32]. L'application de ces modifications entraîne des défis dans

de nombreux aspects de la gestion des changements dans les adaptateurs. La question

principale est ce qui se passe au développement de l'adaptateur dans ces cas.

 Évidemment, la construction d'un nouvel adaptateur à partir de zéro à chaque fois que le

protocole métier évolue est parfois coûteuse. Par conséquent, nous préférons les approches

qui mettent à jour les spécifications de l'adaptateur que pour les pièces de protocoles qui ont

été modifiés plutôt que total exploration d'espace des états _ du modèle composé (c'est à dire,

l'adaptation à partir de zéro), si c'est logique. Par conséquent, pour obtenir une réponse

raisonnable à ces questions d'ambiguïté, nous cherchons à mettre l'accent plus sur eux. Par

conséquent, nous nous intéressons à fournir une technique pour évaluer automatiquement, à

quel point un protocole de service métier a changé, ou à quel point reste sans changement et

par la suite à quel point une interaction doivent être traitées pour l'adaptation aux

changements. Par conséquent, notre méthode doit déterminer le mécanisme d'adaptation qui

doit être à nouveau réalisée pour ces interactions affectées avec la nouvelle version des

protocoles de service. Cette technique doit tenir compte de ces éléments d'un protocole

adaptateur qui doit être réarrangé après ces changements. Cependant, dans certains cas,

l'évolution de protocole métier est plus efficace pour réaliser la génération de l'adaptateur à

partir de zéro.

 Une question intéressante est de comprendre l'impact des changements sur la spécification

de l'adaptateur existant. Une approche de base serait de régénérer l’adaptateur à partir de zéro

chaque fois qu'il y a un changement sur les protocoles métiers des services partenaires. Une

telle approche n'est pas efficace dans le cas où les changements de protocoles d'affaires n'ont

pas d'impact global. Au lieu de cela, une approche plus bénéfique est d'analyser les impacts

potentiels de ces changements sur l'adaptateur supportant les interactions entre les services.

Par conséquent, il y a une nécessité d'une méthode pour détecter l'évolution des protocoles

94

métier participant à un adaptateur, et d'identifier si la régénération d’un adaptateur est

nécessaire, ou encore les changements peut être corrigé à la volée.

 Nous présentons d'abord une méthode pour identifier des changements dans des

protocoles de services participants dans un adaptateur.

 La méthode proposée permet de détecter les éléments d'un protocole métier donné qui ont

été modifiés, ie.,, des messages ou des activités ajoutés, supprimés ou mis à jour. Ensuite,

nous identifions les impacts potentiels des changements sur l'adaptateur courant soit en termes

de l'impact partiel (changements, dynamique traitables) ou de l'impact global (ie., les

changements qui nécessitent re-génération d'adaptateur à). Pour que les modifications avec un

impact partiel, nous trouvons et nous suggérons de mettre à jour les spécifications de

l'adaptateur courant dynamiquement. Nous vérifions également la justesse du nouveau

adaptateur qui est dynamiquement re-configuré. En particulier, nous faisons les contributions

suivantes qui résument les principaux points de notre travail:

 Introduction des Patterns d'adaptation pour un adaptateur. Nous identifions et

classons les paternes communs d'adaptation possibles (AAP) pour évolution des

protocoles métier. Pour ce but, nous abordons la taxonomie de ces AAP par rapport au

type de changements qui peuvent survenir au niveau des éléments de l'interface de

services (par exemple, des messages ou des activités ajoutés, supprimés ou mis à jour en

différents points des interactions). Par conséquent, chacun des AAP caractérise un paterne

d'évolution du protocole métier (_, le type de changement) et décrit l'impact potentiel du

paterne d'évolution à l'adaptateur, et qui peut être un impact partielle ou globale. Une AAP

recommande également une stratégie pour la mise à jour de la spécification de l'adaptateur

à la volée, si l'impact du pattern d'évolution respective est partiel et une telle solution

existe.

 L'identification des modèles d'évolution du protocole. Nous présentons un algorithme

pour détecter les changements de protocoles d'affaires en termes de modèles (des PAA) de

l'évolution. L'algorithme permet de reconnaître les éléments de protocole métier qui ont

été changé en termes d'éléments de l'interface ajoutées, supprimées et mis à jour.

 Protocole Evolution étude d'impact sur l'adaptateur. Nous présentons un algorithme

pour analyser automatiquement l'impact de l'évolution dans les protocoles métiers en

vérifiant la AAPs. L'algorithme d'analyse d'impact explore les zones affectés du protocole

métier en utilisant une méthode basée bfs (recherche en largeur d'abord) et évalue les

95

influences potentielles des changements en vérifiant les AAPs correspondantes. Pour

chacun des AAP impliqué avec un impact partiel, l'algorithme applique dynamiquement

les stratégies d'adaptation de l'adaptateur courant pour re-configurer la spécification

d'adaptateur. Sinon, l'algorithme detecte que l'adaptateur doit être complètement

reconstruit à zero -en utilisant une analyse globale des nouvelles interactions entre les

services pour les protocoles métiers évolué.

 Vérification de l’adaptateur. Nous utilisons une technique basée sur la théorie de la

structure des réseaux de Petri [28] pour vérifier dynamiquement la justesse de l'adaptateur

à quel point est actualisé à la volée. En effet, il est essentiel de vérifier la bonne formation

[30] la propriété de l'adaptateur généré. Un adaptateur est dit être bien formé s’il supporte

une collaboration compatible entre les services partenaires. Nous montrons comment

nous pouvons prendre les avantages de concepts basés sur la théorie de la structure des

réseaux de Petri pour vérifier si le nouveau adaptateur satisfait la propriété de la bonne

formation.

 Implémentation du prototype et expérimentations. Enfin, nous présentons un prototype

qui est un outil d'application de l'approche proposée basée sur la PIPE2 (plate-forme

indépendante de Petri Editor 2) [34]. Les résultats expérimentaux obtenus montrent que

les développeurs de l'adaptateur permet d'économiser beaucoup de temps, le coût et les

efforts en appliquant cette approche.

 Au meilleur de notre connaissance de l'état de l'art, ce travail est le premier à faire face à la

reconfiguration dynamique de l'adaptateur dans le contexte de l'évolution des protocoles

métier de services partenaire. L'approche proposée est utile pour les clients de services avec

des adaptateurs en place quand ils reçoivent des avis de changement dans les protocoles

métiers partenaires afin d'analyser l'impact et assurer la compatibilité, et d'identifier

d’éventuelles mises à jour de la spécification d'adaptateur pour remédier aux changements.

Par conséquent, d'avoir une telle méthode d'analyse sensible aux évolutions, ils peuvent

efficacement faire un adaptateur approprié au moment de la conception par rapport aux

méthodes régénération d’adaptateur. Un autre résultat de ce travail est d'identifier le type de

l'évolution du protocole métier permettant aux développeurs de l'adaptateur d'éviter

régénération complète de l'adaptateur.

96

 Comme nous l'avons déjà précisé, dans notre travail, nous ne considérons pas les

exigences non fonctionnelles des services Web, un service Web peut donc être considéré

comme une structure de contrôle décrivant son comportement en fonction d'une interface pour

communiquer de manière asynchrone avec d'autres services.

97

Maryam ESLAMICHALANDAR

Compatibilité de la composition de services Web:

Adaptation suite à l’évolution des protocoles métier

Résumé
Avec l’utilisation croissante d’architectures logicielles indépendantes de la plate-forme et du langage dans le paradigme de

l’architecture orientée services (SOA), la technologie de services web permet l’interopérabilité dynamique et flexible des

processus métiers aussi bien au niveau intra qu’inter-organisationnel. Bien que la normalisation des services web permet de

réduire l’hétérogénéité et rend plus facile leur interopérabilité, il y a toujours besoin de vérifier leur compatibilité en particulier

dans le contexte inter-entreprises. Deux services sont compatibles si une collaboration entre eux est accomplie avec succès et

que chacun puisse atteindre ses résultats attendus (états finaux). L’approche typique devant permettre à des services

incompatibles d’interagir correctement est l’adaptation du service. L’adaptation consiste dans ce contexte à faire face

principalement aux discordances relevées au niveau des interfaces de service (incompatibilités entre signatures de services)

ainsi qu’aux discordances qui ont lieu au niveau des protocoles métiers (incompatibilité dans l’ordre des messages échangés

entre services). On distingue deux principales techniques d’adaptation: modification de service ou synthèse d’un composant

adaptateur. L’adaptation en termes de modification de service exige l’application de certaines mesures d’optimisation pour

supporter les spécifications du service partenaire. Dans le cas où l’adaptation traite de la création d’un adaptateur, un

composant autonome modère les interactions entre les deux services de sorte que l’interopérabilité soit obtenue. En d’autres

termes, l’adaptateur compense les différences entre interfaces de services par conversion de données (c’est-à-dire par

transformation de message) et celles entre protocoles métiers en réorganisant les échanges de messages ou en générant un

message manquant.

Nous nous concentrons ici sur le problème de la reconfiguration dynamique de l’adaptateur en presence d’évolution de

protocols métiers. Après avoir traité de la vérification d’un adaptateur en exploitant des techniques structurelles existantes

développées dans le cadre de la théorie des réseaux de Petri, nous établissons une identification des patrons de mise à jour

d’adaptateurs ainsi que la mise en correspondance de ces patrons avec les différents types d’évolutions possibles au niveau des

protocoles métiers des services web. Ce travail a abouti à la proposition d’un algorithme permettant, d’une part de détecter les

patrons d’évolution adéquats suite à une évolution d’un des protocoles métier des services partenaires et, d’autre part et sous

certaines conditions, la mise à jour à la volée de la specification du nouvel adaptateur obtenu ainsi que sa verification. Enfin,

les expérimentations réalisées sur un prototype montrent les avantages en termes de temps et de coût de l'approche dynamique

proposée par rapport aux méthodes statiques conduisant systématiquement à la regeneration complète de l’adaptateur.

Mots-clés: Services Web, composition de services, compatibilité, évolution de protocole métier, adaptation.

Abstract
The advent of Web service technologies in the paradigm of Service oriented architecture (SOA) enables dynamic and flexible

interoperation of distributed business processes within and across organization boundaries. One of the challenges in working

with heterogeneous and autonomous Web services is the need to ensure their interoperability and compatibility. The typical

approach for enabling incompatible services to interact is service adaptation. The need for adaptation in Web services comes

from the heterogeneity at the levels of service interface and business protocol. The service interface incompatibilities include

service signature mismatches (e.g., message and operation name, number; the type of input/output message parameters of

operations; and the parameter value constraint). The mismatches at the business protocol (or service behavior) level arise from

the order constraints that services impose on messages exchanges (e.g., deadlock where both partner services are mutually

waiting to receive some message from the other, and unspecified reception in which one service sends a message while the

partner is not expecting it). In service interaction through adaptation, an adapter mediates the interactions between two services

with potentially different interfaces and business protocols such that the interoperability is achieved, i.e., adapter compensates

for the differences between their interfaces by data mappings, and between their business protocols by rearranging the

messages exchanges or generating a missing message.

In this dissertation, we focus on how to cope with the dynamic evolution of business protocol P of a given service (i.e., P is

changed to P) that is adapted by an adapter in the context of service interaction. Web service specifications constantly evolve.

For variety of reasons, service providers may change their business protocols. Therefore, it is important to understand the

potential impacts of the changes arising from the evolution of service business protocol on the adapter.

We present an approach to automatically detect the effects of business protocols evolution on the adapter and, if possible, to

suggest fixes to update the specification of adapter on-the-fly. Besides, we propose a technique to verify the correctness of new

adapter which is dynamically re-configured. Finally, we describe a prototype tool where experimentations show the benefits of

proposed approach in terms of time and cost compared to the static methods aiming for complete regeneration of adapter or

manual inspection and adaption of the adapter with respect to changes in the business protocols.

Keywords: Web services, compatibility, service composition, business protocol evolution, adaptation.

